repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
kwinkunks/rainbow
notebooks/Guessing_colourmaps-MPLIMAGE-DUPECOL.ipynb
1
4242843
null
apache-2.0
Seek/ValueTrackerQT
Untitled.ipynb
1
5336
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sqlalchemy import Column, Integer, String, ForeignKey\n", "from sqlalchemy.orm import relationship, backref\n", "\n", "from sqlalchemy.ext.associationproxy import association_proxy\n", "from sqlalchemy.ext.declarative import declarative_base\n", "\n", "Base = declarative_base()\n", "\n", "class User(Base):\n", " __tablename__ = 'user'\n", " id = Column(Integer, primary_key=True)\n", " name = Column(String(64))\n", "\n", " # association proxy of \"user_keywords\" collection\n", " # to \"keyword\" attribute\n", " keywords = association_proxy('user_keywords', 'keyword')\n", "\n", " def __init__(self, name):\n", " self.name = name\n", "\n", "class UserKeyword(Base):\n", " __tablename__ = 'user_keyword'\n", " user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)\n", " keyword_id = Column(Integer, ForeignKey('keyword.id'), primary_key=True)\n", " special_key = Column(String(50))\n", "\n", " # bidirectional attribute/collection of \"user\"/\"user_keywords\"\n", " user = relationship(User,\n", " backref=backref(\"user_keywords\",\n", " cascade=\"all, delete-orphan\")\n", " )\n", "\n", " # reference to the \"Keyword\" object\n", " keyword = relationship(\"Keyword\")\n", "\n", " def __init__(self, keyword=None, user=None, special_key=None):\n", " self.user = user\n", " self.keyword = keyword\n", " self.special_key = special_key\n", "\n", "class Keyword(Base):\n", " __tablename__ = 'keyword'\n", " id = Column(Integer, primary_key=True)\n", " keyword = Column('keyword', String(64))\n", "\n", " def __init__(self, keyword):\n", " self.keyword = keyword\n", "\n", " def __repr__(self):\n", " return 'Keyword(%s)' % repr(self.keyword)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Keyword('new_from_blammo'), Keyword('its_big')]\n" ] }, { "data": { "text/plain": [ "[Keyword('new_from_blammo'), Keyword('its_big')]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ ">>> user = User('log')\n", ">>> for kw in (Keyword('new_from_blammo'), Keyword('its_big')):\n", "... user.keywords.append(kw)\n", "...\n", ">>> print(user.keywords)\n", "[Keyword('new_from_blammo'), Keyword('its_big')]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<__main__.UserKeyword at 0x21de64d1908>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "UserKeyword(Keyword('its_wood'), user, special_key='my special key')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[Keyword('new_from_blammo'), Keyword('its_big'), Keyword('its_wood')]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "user.keywords" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'Keyword' object has no attribute 'special_key'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-5-743e46fd84aa>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0muser\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mkeywords\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mspecial_key\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m: 'Keyword' object has no attribute 'special_key'" ] } ], "source": [ "user.keywords[2].special_key" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
alvaroing12/CADL
session-2/lecture-2.ipynb
3
2760808
null
apache-2.0
mne-tools/mne-tools.github.io
dev/_downloads/8b7a85d4b98927c93b7d9ca1da8d2ab2/compute_mne_inverse_volume.ipynb
1
3014
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n\n# Compute MNE-dSPM inverse solution on evoked data in volume source space\n\nCompute dSPM inverse solution on MNE evoked dataset in a volume source\nspace and stores the solution in a nifti file for visualisation.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Alexandre Gramfort <[email protected]>\n#\n# License: BSD-3-Clause" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from nilearn.plotting import plot_stat_map\nfrom nilearn.image import index_img\n\nfrom mne.datasets import sample\nfrom mne import read_evokeds\nfrom mne.minimum_norm import apply_inverse, read_inverse_operator\n\nprint(__doc__)\n\ndata_path = sample.data_path()\nmeg_path = data_path / 'MEG' / 'sample'\nfname_inv = meg_path / 'sample_audvis-meg-vol-7-meg-inv.fif'\nfname_evoked = meg_path / 'sample_audvis-ave.fif'\n\nsnr = 3.0\nlambda2 = 1.0 / snr ** 2\nmethod = \"dSPM\" # use dSPM method (could also be MNE or sLORETA)\n\n# Load data\nevoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0))\ninverse_operator = read_inverse_operator(fname_inv)\nsrc = inverse_operator['src']\n\n# Compute inverse solution\nstc = apply_inverse(evoked, inverse_operator, lambda2, method)\nstc.crop(0.0, 0.2)\n\n# Export result as a 4D nifti object\nimg = stc.as_volume(src,\n mri_resolution=False) # set True for full MRI resolution\n\n# Save it as a nifti file\n# nib.save(img, 'mne_%s_inverse.nii.gz' % method)\n\nt1_fname = data_path / 'subjects' / 'sample' / 'mri' / 'T1.mgz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot with nilearn:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plot_stat_map(index_img(img, 61), str(t1_fname), threshold=8.,\n title='%s (t=%.1f s.)' % (method, stc.times[61]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
tomchor/pymicra
publications/agu2017/pprog/all_poster.ipynb
2
193277
{ "cells": [ { "cell_type": "raw", "metadata": {}, "source": [ "\\begin{exampleblock}{Preamble}" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pymicra\n", "import pandas as pd\n", "from glob import glob\n", "import matplotlib.pyplot as plt\n", "\n", "fconfig = pymicra.fileConfig('tij_pr_qc.config')" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "\\end{exampleblock}\n", "\n", "\\begin{exampleblock}{Basic quality control example}" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20110224-1220.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1220.out\n", "\n", "20110224-1250.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1250.out\n", "\n", "20110224-1340.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1340.out\n", "\n", "20110224-1410.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1410.out\n", "\n", "20110224-1440.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1440.out\n", "\n", "20110224-1510.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1510.out\n", "\n", "20110224-1610.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1610.out\n", "\n", "20110224-1640.out\n", "Passed all tests\n", "Re-writing mydata/20110224-1640.out\n", "\n", " control percent\n", "total 8 100.0\n", "failed lines test 0 0.0\n", "failed replacement test 0 0.0\n", "passed all tests 8 100.0\n", "Runs with replaced nans 0 0.0\n", "Runs with replaced bound 0 0.0\n", "Runs with replaced spikes 8 100.0\n", "20110224-1220.out\n", "20110224-1220.out : !FAILED failed maxdif test test!\n", "\n", "Failed variable(s): theta_v, u \n", "\n", "20110224-1250.out\n", "20110224-1250.out : !FAILED failed maxdif test test!\n", "\n", "Failed variable(s): theta_v \n", "\n", "20110224-1340.out\n", "Passed all tests\n", "Re-writing out1/20110224-1340.out\n", "\n", "20110224-1410.out\n", "20110224-1410.out : !FAILED failed maxdif test test!\n", "\n", "Failed variable(s): theta_v \n", "\n", "20110224-1440.out\n", "Passed all tests\n", "Re-writing out1/20110224-1440.out\n", "\n", "20110224-1510.out\n", "20110224-1510.out : !FAILED failed maxdif test test!\n", "\n", "Failed variable(s): theta_v \n", "\n", "20110224-1610.out\n", "20110224-1610.out : !FAILED failed maxdif test test!\n", "\n", "Failed variable(s): theta_v \n", "\n", "20110224-1640.out\n", "Passed all tests\n", "Re-writing out1/20110224-1640.out\n", "\n", " control percent\n", "total 8 100.0\n", "failed STD test 0 0.0\n", "failed maxdif test 5 62.5\n", "passed all tests 3 37.5\n" ] }, { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>passed all tests</th>\n", " <th>total</th>\n", " <th>failed STD test</th>\n", " <th>failed maxdif test</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>NaN</td>\n", " <td>20110224-1220.out</td>\n", " <td>NaN</td>\n", " <td>20110224-1220.out</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>NaN</td>\n", " <td>20110224-1250.out</td>\n", " <td>NaN</td>\n", " <td>20110224-1250.out</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>20110224-1340.out</td>\n", " <td>20110224-1340.out</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>NaN</td>\n", " <td>20110224-1410.out</td>\n", " <td>NaN</td>\n", " <td>20110224-1410.out</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>20110224-1440.out</td>\n", " <td>20110224-1440.out</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>NaN</td>\n", " <td>20110224-1510.out</td>\n", " <td>NaN</td>\n", " <td>20110224-1510.out</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>NaN</td>\n", " <td>20110224-1610.out</td>\n", " <td>NaN</td>\n", " <td>20110224-1610.out</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>20110224-1640.out</td>\n", " <td>20110224-1640.out</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " passed all tests total failed STD test failed maxdif test\n", "0 NaN 20110224-1220.out NaN 20110224-1220.out\n", "1 NaN 20110224-1250.out NaN 20110224-1250.out\n", "2 20110224-1340.out 20110224-1340.out NaN NaN\n", "3 NaN 20110224-1410.out NaN 20110224-1410.out\n", "4 20110224-1440.out 20110224-1440.out NaN NaN\n", "5 NaN 20110224-1510.out NaN 20110224-1510.out\n", "6 NaN 20110224-1610.out NaN 20110224-1610.out\n", "7 20110224-1640.out 20110224-1640.out NaN NaN" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fnames = sorted(glob('mydata/*.out'))\n", "# Prints reports on screen and writes further info to file\n", "pymicra.util.qc_replace(fnames, fconfig,\n", " file_lines=36000,\n", " lower_limits=dict(theta_v=10, mrho_h2o=0, mrho_co2=0),\n", " upper_limits=dict(theta_v=45),\n", " spikes_test=True,\n", " max_replacement_count=360,\n", " chunk_size=1200,\n", " outdir='out1',\n", " replaced_report='rrep.txt')\n", "\n", "fnames2 = sorted(glob('out1/*.out'))\n", "# Prints reports on screen and writes further info to file\n", "pymicra.util.qc_discard(fnames2, fconfig,\n", " std_limits = dict(u=0.03, v=0.03, w=0.01, theta_v=0.02),\n", " dif_limits = dict(u=4.0, v=4.0, w=1.0, theta_v=2.0),\n", " chunk_size=1200,\n", " outdir='out2',\n", " summary_file='discard_summary.csv',\n", " full_report='frep.txt')\n" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "\\end{exampleblock}\n", "\n", "\\begin{exampleblock}{Pre-processing and calculation of fluxes example}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning of pre-processing ...\n", "Rotating data with 2d method ... Done!\n", "Converting theta_v to kelvin ... Done!\n", "Didn't locate mass density of h2o. Trying to calculate it ... Done!\n", "Moist air density not present in dataset\n", "Calculating rho_air = p/(Rdry * theta_v) ... Done!\n", "Calculating dry_air mass_density = rho_air - rho_h2o ... Done!\n", "Dry air molar density not in dataset\n", "Calculating dry_air molar_density = rho_dry / dry_air_molar_mass ... Done!\n", "Calculating specific humidity = rho_h2o / rho_air ... Done!\n", "Calculating h2o mass mixing ratio = rho_h2o / rho_dry ... Done!\n", "Calculating h2o molar mixing ratio = rho_h2o / rho_dry ... Done!\n", "Thermodynamic temperature not found ... trying to calculate it with theta_v ~ theta (1 + 0.61 q) relation ... done!\n", "Didn't locate mass density of co2. Trying to calculate it ... Done!\n", "Calculating co2 mass concentration (g/g) = rho_co2 / rho_air ... Done!\n", "Calculating co2 mass mixing ratio = rho_co2 / rho_dry ... Done!\n", "Calculating co2 molar mixing ratio = mrho_co2 / mrho_dry ... Done!\n", "Pre-processing complete.\n", "\n", "Beginning Eddy Covariance method...\n", "Fluctuations of theta not found. Will try to calculate it with theta' = (theta_v' - 0.61 theta_mean q')/(1 + 0.61 q_mean ... done!\n", "Calculating fluxes from covariances ... done!\n", "Applying WPL correction for water vapor flux ... done!\n", "Applying WPL correction for latent heat flux using result for water vapor flux ... done!\n", "Re-calculating cov(mrho_h2o', w') according to WPL correction ... done!\n", "Applying WPL correction for F_co2 ... done!\n", "Re-calculating cov(mrho_co2', w') according to WPL correction ... done!\n", "Beginning to extract turbulent scales...\n", "Data seems to be covariances. Will it use as covariances ...\n", "Calculating the turbulent scales of wind, temperature and humidity ... done!\n", "Calculating the turbulent scale of co2 ... done!\n", "Calculating Obukhov length and stability parameter ... done!\n", "Calculating turbulent scales of mass concentration ... done!\n", "Done with Eddy Covariance.\n", "\n" ] }, { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr>\n", " <th></th>\n", " <th>tau</th>\n", " <th>H</th>\n", " <th>Hv</th>\n", " <th>E</th>\n", " <th>LE</th>\n", " <th>F_co2</th>\n", " <th>u_star</th>\n", " <th>theta_v_star</th>\n", " <th>theta_star</th>\n", " <th>mrho_h2o_star</th>\n", " <th>mrho_co2_star</th>\n", " <th>Lo</th>\n", " <th>zeta</th>\n", " <th>q_star</th>\n", " <th>conc_co2_star</th>\n", " </tr>\n", " <tr>\n", " <th></th>\n", " <th>&lt;kilogram / meter / second ** 2&gt;</th>\n", " <th>&lt;watt / meter ** 2&gt;</th>\n", " <th>&lt;watt / meter ** 2&gt;</th>\n", " <th>&lt;millimole / meter ** 2 / second&gt;</th>\n", " <th>&lt;watt / meter ** 2&gt;</th>\n", " <th>&lt;millimole / meter ** 2 / second&gt;</th>\n", " <th>&lt;meter / second&gt;</th>\n", " <th>&lt;kelvin&gt;</th>\n", " <th>&lt;kelvin&gt;</th>\n", " <th>&lt;millimole / meter ** 3&gt;</th>\n", " <th>&lt;millimole / meter ** 3&gt;</th>\n", " <th>&lt;meter&gt;</th>\n", " <th>&lt;dimensionless&gt;</th>\n", " <th>&lt;dimensionless&gt;</th>\n", " <th>&lt;dimensionless&gt;</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.034587</td>\n", " <td>-18.135628</td>\n", " <td>-5.744854</td>\n", " <td>3.930086</td>\n", " <td>173.166173</td>\n", " <td>-0.012771</td>\n", " <td>0.180323</td>\n", " <td>-0.029847</td>\n", " <td>-0.094221</td>\n", " <td>21.794729</td>\n", " <td>-0.070824</td>\n", " <td>83.302161</td>\n", " <td>0.022208</td>\n", " <td>0.000369</td>\n", " <td>-0.000003</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tau H Hv \\\n", " <kilogram / meter / second ** 2> <watt / meter ** 2> <watt / meter ** 2> \n", "0 0.034587 -18.135628 -5.744854 \n", "\n", " E LE \\\n", " <millimole / meter ** 2 / second> <watt / meter ** 2> \n", "0 3.930086 173.166173 \n", "\n", " F_co2 u_star theta_v_star theta_star \\\n", " <millimole / meter ** 2 / second> <meter / second> <kelvin> <kelvin> \n", "0 -0.012771 0.180323 -0.029847 -0.094221 \n", "\n", " mrho_h2o_star mrho_co2_star Lo zeta \\\n", " <millimole / meter ** 3> <millimole / meter ** 3> <meter> <dimensionless> \n", "0 21.794729 -0.070824 83.302161 0.022208 \n", "\n", " q_star conc_co2_star \n", " <dimensionless> <dimensionless> \n", "0 0.000369 -0.000003 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fconfig = pymicra.fileConfig('tij_pr.config')\n", "sconfig = pymicra.siteConfig('tij_pr.site')\n", "fname = 'out2/20110224-1340.out'\n", "\n", "data, units = pymicra.timeSeries(fname, fconfig, parse_dates=False)\n", "# Prints reports showing which calculations are being done\n", "data = pymicra.micro.preProcess(data, units, solutes=['co2'])\n", "fulldata = data.detrend(units=units, ignore=['p'], join_data=True)\n", "\n", "# Prints reports showing which calculations are being done\n", "results = pymicra.micro.eddyCovariance(fulldata, units, \n", " site_config=sconfig, \n", " wpl=True, solutes=['co2'])\n", "print(results.with_units(units))" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "\\end{exampleblock}\n", "\n", "\\begin{exampleblock}{Visualization is easy}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAIMCAYAAACJ7y+/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XdgFGX+P/DPhoTepIqgBhWxIIhy\nKAqKiuVET89+6p1653ne13be/fRiO/FE4RQVewPxTkVFFAuhl4ReElooISQhIYWQkN7r/P7IzmZ2\ndsozM8+U3X2//oFkd2ee7LTn85TP4xMEgQAAAAAAAMB7YtwuAAAAAAAAAChDwAYAAAAAAOBRCNgA\nAAAAAAA8CgEbAAAAAACARyFgAwAAAAAA8CgEbAAAAAAAAB6FgA0AAAAAAMCjELABAAAAAAB4FAI2\nAAAAAAAAj0LABgAAAAAA4FGxbuy0b9++whlnnOHGrsEGtbW11KNHD7eLAZzgeEYeHNPIguMZWXA8\nIwuOZ+Sx85impqYeFwRhoN77XAnYBg8eTCkpKW7sGmyQlJREkydPdrsYwAmOZ+TBMY0sOJ6RBccz\nsuB4Rh47j6nP58tleR+GRAIAAAAAAHgUAjYAAAAAAACPQsAGAAAAAADgUa7MYQMAAAAAADCrubmZ\n8vPzqaGhwdb99OnThw4cOGBpG127dqVhw4ZRXFycqc8jYAMAAAAAgLCSn59PvXr1ovj4ePL5fLbt\np7q6mnr16mX684IgUGlpKeXn59Pw4cNNbQNDIgEAAAAAIKw0NDRQ//79bQ3WePD5fNS/f39LPYEI\n2AAAAAAAIOx4PVgTWS0nAjYAAAAAAACPQsAGAAAAAADgUQjYAAAAAAAADMrJyaFRo0YFfp41axZN\nmzaN+36QJRIAAAAAAMLWS7/so/2FVVy3ec5JvenFG8/luk2z0MMGAAAAAADgUehhAwAAAACAsOVW\nT1hsbCy1tbUFfrZrEW/0sAEAAAAAABg0ePBgKi4uptLSUmpsbKTFixfbsh/0sAEAAAAAABgUFxdH\n//rXv2j8+PE0dOhQOuuss2zZDwI2AAAAAAAAEx5//HF6/PHHbd0HhkQCAAAAAAB4FAI2AAAAAAAA\nj0LABgAAAAAA4FEI2GQq6pooPiGRNhw67nZRAAAAAAAgyiFgk0krqCQionvnbnW5JAAAAAAAEO0Q\nsAEAAAAAAHgUAjYAAAAAAACPQsAmIwhulwAAAAAAAKAdAjYAAAAAAAADEhIS6P333w/8PG3aNJo1\na5Yt+4q1ZasAAAAAAABOWJpAVJTGd5snnkf065mqL9955530t7/9jR555BEiIlqwYAEtX76cbxn8\nELDJYEQkAAAAAABoGTt2LBUXF1NhYSGVlJTQCSecQCeffLIt+0LABgAAAAAA4UujJ8xOt99+Oy1c\nuJCKiorozjvvtG0/CNgAAAAAAAAMuvPOO+nPf/4zHT9+nJKTk23bD5KOyPjcLgAAAAAAAHjeueee\nS9XV1TR06FAaMmSIbftBD5sM5rABAAAAAACLtDTOyU4UoIcNAAAAAADAoxCwAQAAAAAAeBQCNhlB\nwKBIAAAAAADwBgRsAAAAAAAAHoWADQAAAAAAwKMQsAEAAAAAAHgUAjYAAAAAAACPQsAGAAAAAADg\nUQjYAAAAAAAADHj99dfpnXfeISKiJ598kq688koiIlqzZg3dc889XPcVy3VrEQBJ/QEAAAAAwsd/\ntv2H0svSuW7zrH5n0T/H/1P19UmTJtEbb7xBjz/+OKWkpFBjYyM1NzfT+vXr6bLLLuNaFvSwAQAA\nAAAAGHDhhRdSamoqVVVVUZcuXWjChAmUkpJC69evp0mTJnHdF3rYAAAAAAAgbGn1hNklLi6Ohg8f\nTp9//jldcsklNHr0aFq7di1lZmbS2WefzXVf6GEDAAAAAAAwaNKkSTRr1iy67LLLaNKkSfTRRx/R\n2LFjyefzcd0PAjY5TGIDAAAAAAAdkyZNoqNHj9KECRNo8ODB1LVrV+7DIYkwJBIAAAAAAMCwq666\nipqbmwM/Z2Rk2LIf9LDJ8e3BBAAAAAAAMA0BmxyGRAIAAAAAgEcgYAMAAAAAAPAoBGwAAAAAABB2\nBCE8hsZZLScCNgAAAAAACCtdu3al0tJSzwdtgiBQaWkpde3a1fQ2kCVSRsAkNgAAAAAATxs2bBjl\n5+dTSUmJrftpaGiwFGwRtQeXw4YNM/15BGwAAAAAABBW4uLiaPjw4bbvJykpicaOHWv7frRgSCQA\nAAAAAIBHIWADAAAAAADwKARsAAAAAAAAHoWATSKvrI7++HmK28UAAAAAAAAgIgRsQb5LzXe7CAAA\nAAAAAAEI2AAAAAAAADwKARsAAAAAAIBHIWADAAAAAADwKARsEj63CwAAAAAAACCBgA0AAAAAAMCj\nELABAAAAAAB4FAI2CR/GRAIAAAAAgIcgYAMAAAAAAPAoBGwAAAAAAAAehYANAAAAAADAoxCwSfiQ\n2B8AAAAAADwEARsAAAAAAIBHIWADAAAAAADwKARsAAAAAAAAHoWADQAAAAAAwKMQsElg4WwAAAAA\nAPASBGwAAAAAAAAehYANAAAAAADAo7gEbD6fr6/P51vo8/nSfT7fAZ/PN4HHdgEAAAAAAKJZLKft\nvE1EywRBuM3n83Umou6ctgsAAAAAABC1LPew+Xy+PkR0GRHNJSISBKFJEIQKq9sFAPuU1TZRelGV\n28UAAAAAAB08hkQOJ6ISIprn8/l2+ny+OT6frweH7QKATaa+s56um73e7WIAAAAAgA6fIAjWNuDz\njSOiLUR0qSAIW30+39tEVCUIwguy9z1ERA8REQ0cOPDCBQsWWNqvHX7KbKJFmc2Bnz+/DnEni5qa\nGurZs6fbxQAD7l9WS0TK5ziOZ+TBMY0sOJ6RBcczsuB4Rh47j+kVV1yRKgjCOL338ZjDlk9E+YIg\nbPX/vJCIEuRvEgThEyL6hIho5MiRwuTJkznsmq89rYeIMjMCP3uxjF6UlJSE7yrcLEskIuVzHMcz\n8uCYRhYcz8iC4xlZcDwjjxeOqeUhkYIgFBFRns/nG+n/1VVEtN/qdgEAAAAAAKIdryyRjxHRV/4M\nkdlE9ACn7QIAAAAAAEQtLgGbIAi7iEh3/CUAAAAAAACw47JwdqSwmH8FAAAAAACAKwRsAAAAAAAA\nHoWATcLnc7sEAN5yrKqBiqsa3C4GAAAAQNRCwAYQxQ4dq9Z8/aJXV9P4V1c7VBoAAAAAkEPABhDF\njlai9wwAAADAyxCwSSDpCEQbnPIAAAAA3oaADSCKCWilAAAAAPA0BGwSFfVNbhcBwFEI1wAAAAC8\nDQGbxLyNOW4XAQAAAAAAIAABG0AESy+q0h72iC42AAAAAE9DwAYQoVJzy+i62etpzvrDqu8RELEB\nAAAAeFpUBmzltU30fWq+28UAsNWRsjoiItpbWKn6HuQcAQAAAPC2WLcL4IbHv9lJ6w8dp7Gn9KXT\nBvZ0uzgAthCDMR/DewAAAADAm6Kyh624qpGIiJpa21wuCYC7WtoQsQEAAAB4WVQGbAePVbtdBABP\nePjLVLeLAAAAAAAaojJgA4gGgSGRPq1BkQAAAADgZVEdsGH+DkQDebh264ebXCkHAAAAABgX1QEb\nQDRKzS13uwgAAAAAwCiqAzaMFINIZqQDef7WI7Q5q9S2sgAAAACAOVGZ1l+EIZEQFRgaJp5dlEZE\nRFmvXm9zYQAAAADAiKjuYQOIZIK/ReKHHQVUUFHP9JnZqzLsLBIAAAAAGISADSBCSTuQn/puN9Nn\ntmSX0uKsJpqzPtueQgEAAACAIVE9JBIgWrAO/92eU07biYgOHaAHJ51mZ5EAAAAAgAF62AAAAAAA\nADwqqgM2JB2BiIbzGwAAACDsRXXABgBs8srqAklMAAAAAMA5CNgAIpTAsYtt0mtr6X+bc7ltz6tu\nem8D3TNni9vFAAAAAAhAwAYATBbtLHC7CLbbnV9JGzOxgDgAAAB4BwI2AGCCIZEAAAAAzkPABhCh\nEF8BAAAAhL+oDth4zvEB8BqrZ3d5bRPX7QEAAACAcVEdsAFEMqUetuX7ihTepxyKtcl+70aP3cuL\n99OGQ8ed3zEAAACARyBgA4gC5XXtvWV/+SLV9DbEHun/bsqhJ7/dRdsOl3Epm5a5Gw7TvXO32r4f\nAAAAAK+KdbsAAGCPZxelBf6fXlSt+j7WnjPxfS/+vI+I2rNG5sycarp8AAAAAKAPPWwAEWjHkXLu\n29xXWEVXvpHEfbsAAAAAoC6qAzZk0YNIdcsHm4J+Hj6gh+p7jVwG2SW1JksEAAAAAGZEdcAGEC1O\nH6gRsKHlAgAAAMCzojpg8/ncLgEAAAAAAIC6qA7Y0LEA0UIro6PaZfDwl+YzSgIAAAAAH1EdsAFE\ni8aWNsOf2Z7DP3EJAABPuaW1dPWbyXS8ptHtogAA2AYBG0AU0Br+i55mAAhXc9YfpkPFNbQk7ajb\nRQEAsA0CNoAo0NBsvIfNLvEJifT3b3e5XQwAiCBoeAKASIaADSDK1Te1Or7PH3YWOL5PPYUV9W4X\nAQAMEkcP1LlwHwMAcAoCNoAoN+bfK9wugus+23CYLpm5JvAzljoACA+78yqIiOg/y9JdLgkAgH0Q\nsAFA1Pv34v1BP+eU1rlUEgAwoqqhxe0iAADYDgEbALhi8Z5Cik9IpPxyBEcAYI60Nzy3tJY+SMp0\nsTQAAPZAwAYAXAmCQM2t+klOfvTPYztwtNruIgFAFPj93G302rKDVFKNFP8AEFkQsAEAVx+vy6YR\nzy2liromIiLKLK6hBdvzFN7Zni2gDfPFAMCkoqqGwP/FxCOYgwoAkSaqA7bqhhaa9vM+amhGdikA\nXr5PzSciomJ/K/e1s9fR09/vCXmfmN1NrW5VXN2g/AIAgJ90yZLAPcWlsgAA2CXW7QK46b21h2hj\nZikNO6EbPTjpNLeLAxCRWtuUq09HK8U0+sqvF1dhWBMAsPPHa1iTDQAiTlT3sDW3tt/VMSQLwHl7\nC6qICJUrAOBD7GEDAIg0UR2wpeVXEhGRSgcAAOjYW1AZ8rtDxTWq729qCU1GMu2XfVzLBADRTcCg\nSACIMFEdsNU3ixOUXS4IgANqGvmvV7Q5q9TQ+zMVgrljGPoIABz4/IMiNxw67nJJAAD4iuqATYTW\nOIgGf/0ylfs2I+HaQUY5gMggDol8amFokiMAgHAW1UlHAKJJmsLwRasam/XXW5MyG+AdraynIX26\nmfqslvlbj1C3zmi3AogEMZjEBgARCjUVwpBIiA52VGbeWJlBqbnlFJ+QSLmltZrvFQSBkjNKTO1n\nwow1tgzpfHZRGj357W7u2wUAAIgkpTWNgfVVwXlRE7BlFtfQA/O2Yc01iHhq57hdbc8LU9sXxd6Q\nqT1vZMbSdHpt2UHT+7FjSKeetQeLaf7WI47vFwCMK6io138TAJhy4fRVdP6/V7pdjKgVNUMip/28\njzZkHqftOWUhr2EOC0SSRTsL3C6ConUme9dEO49UcCoJuwfmbSciorsvOsXxfQMAAAAQRVEPm0gp\nNkO8BpGkRWWditJae4YylDFut6iqwZb9AwAAAESyqAnYxOk7iM0g0lXVNzu6v915yslMrnlrHWWV\ndKTxb7W44KGT6QQ+23DYwb0BAESf+qZWuvn9jYrreQJAsKgJ2ERKwx8RxEEk6RTjbKa0Nv815VMI\nqaTrtLUxBmzltU1UWeds0Cn3xZZc3SQq0aSxpZWaWtpo0c58ik9IpK3ZxtbfAwCQ25lXTrvyKuiG\ndzdgagqAjqiZw+bTyJCH+wREEqcr01rJJ6WXlla8duhYNY0Y3Iue+WEPfb2tPYnJ4scmau53Tfox\n6hYXSxNO72+gtOzUhpZGo5HPL6O4Tj5qbm3/Tn7ZU0gXnWbP9w4A0SGuU0efQWNLG3WN6+RiaYBV\nc2tb0LEDZ0TdN65UBYuExX8BRBc7XJFu8VfiFQM3SWtIvUaG1qvfWkfFVQ2BYE2RbPt//DyFfvfp\nFiNFBQvEYI1IO/gG/o7XNFJeWZ3bxQDgSjoaBGvohY/312a6XYSoFD09bOJ/kHQEIly3zs62Umol\nMzFyaemts+b043xBikbwGOVwz3TWuOmriIgoZ+ZUl0sCwE+sJGBzeig/mHesqtHtIkSlqOlhQ+MN\nRAut4b9OM1Kx12thrWpooZbWNoslYvdxcrZj+wo/iNgAwJrYmI4qqNWkVOCsl37ZR/EJiW4XI6pE\nTcCmBbcJiCRuhWvKS2awX10fr8vSfc9bqzKMFMk25/5rGc1abn4R8HCHHjYAsEraq1bV4G6iKWDX\n1ibQvI05bhcj6kRdwKY4Xw21D4ggbnWwWd2vfP6a0vbSCqqs7YST2qZWei+Kx/G34Z4JABZJ81Z4\nZ1wI6PkW0wVcETUBm3gzQD0DIp1Sen23WLncjlZEzkLbP+4soNUHjrldDG5Y7qMv/LiX5mI9OwBQ\nIR2+76Wh/ABeFD1JR/w3A8VhWw6XBcBObs3d1kkSadjSvUXmP+wxf/t2FxFFTtIIlsP6xZZcIiL6\n08Th9hYGQMPRyno6sXdXBAQeJJ23jJwjANqirodNydHKBlqwHV28EBm8VC+x0hiC5Ta8CyMVIBwc\nLKqmCTPW0GeYb+NJ0jnOXhoZAuBFYR2wfZScRfd9ts3QZ5TqGQtT8+np7/fwKRRAGBgzrA/3bX6z\nPS8ka5SRpCNySg9wK9uLBPsKK3WXP3ACgmnwuubWNsotrSUios1ZpS6XBnQhXvO0okrlKQrR/kx2\nUlgHbDOXplNyRgnTe8VeB5aTqwfV01Bi2y5AOPrkD+O4b3NXXgX3bbJw4oHR3NpG/92U4+iyAkpl\nmPrOBvrLFymulUGEZzR43eoDxbQgJd/tYoAG3EbCx5Zs5UaP/23Odbgk0SusAzZj2Jtvfuz8L9rY\n9QkbywLgrsG9uzqyHysV+yaF4KigvJ7rPlh9uj6bXvx5H83fdoT7tvPL65jeJ65TtD2nnHsZjFq0\ns8DtIgBoEgSBVvkT/XhpmDioQPTmaRnHqhV//+LP+xwuSfSKooCN3YgYVEbsVl7bRNklNZR0sJg+\nXYcFiiFUWW1jyO+yj9eG/M6J5/xry9rXXHtrJd914JakHaWJ/1lLSQeL2T+Eig2ArhYsxBxWpryV\nTCk5ZW4XA1R8kKS/TirYK+oCtmi/hZfWNNJui0PXvtqaa3n429VvJdOVbyTT/fO20ytLDljaFgSz\n2uPEM1vXZpVhFCxY/w6zQyKPVob21ukpr+O7uOvu/Pbr6MBR5dbLlJwy+k625g3mjwHo23DouNtF\nAB3SW3dJdSPd9tFm9woD4HFRE7B1zGFztxxuu/mDjXTT+xstbeO5RXvpZovbOF7TZOnzYJ87R3bm\ntq016QZ6jmSUhjGd0q97yO/MXtK/+2SLyU9ypFP42z7aTE8tREIkABZnDOoZ+D8W9wWASBI9AVvg\nf9EdseWVGe9V4KmmsYXO+dcyV8sA2uI8cldQyhLZJTa0cNJGmOLqBopPSKRV+/UXqT6qkvXKDUv3\nHqUfdeaFtXmstcmNpVC2ZpfSl1swyV2qvLaJUnOjbyhZQ3MrFVQEP88yi2sU34spbF7lrXsagJd5\npGpmvwr/UCaP1XmizsGiaqpranW7GBGN9RQf2reb4u+9UrlpVZiDovS3SYcI7iusIqKORZu1xHUy\nd/uzIyvlnvzKwOLa6vsN/tdtT3+/hwRBoHdWH6LiKmeC3zs/2ULP/7jXkX2Fi7Evr6RbP9xMlfV8\nh+t63aPzd9ClM9e4XQwAAEdwC9h8Pl8nn8+30+fzLea1TR4q6proq625tM0/mdUjdZ2olaOQNALc\ncd5Q5bXYvJJRLaeU7VzJV8gcySKuk7k/1K2AyYv3rtTccnpzZQaNf3W120WJetF2b111wPxwa/AG\nrzQ+AYQDnj1sTxCR57JH/L/v9tBzizpaZHGDcNc/vtvtdhHAb9m+IsXfeyReU6TUu5WukrBDT6cY\n47e//j06hwxNTM0to2veSqbyWnvnZYp/u5duYdUeWMQb2nnpvPCakprQjLMAAOGES8Dm8/mGEdFU\nIprDY3s8HZfdqOU/A4A3sQaOSj2CyRkldMkM7V4fMz2JpbVNIT1/763JpIxjNYHhmHapamgPjpSG\nirrFiUXLITIdLKqmvDK2NQit2nnEWlZjAAC38ephm01ETxNR6Eq3NnhuURrFJySa+mxJtfcCtobm\n1qgbzgKg51fD+4X8TnEOm+SX0hissLKBajR6gMwGG1PeXBf0s7jAt6l0+7KgUS1pAhHR5izzSyTY\nZd7GHN33tHkowIxk4RY8Xzt7HU16ba3bxQgLW7JLA4mUGppbKS2/0uUS8RFeZyyAu2KtbsDn891A\nRMWCIKT6fL7JGu97iIgeIiIaOHAgJSUlmd7nV1uDgxutbVVVBc9vycllzzBmpYxGfLCrgbYVtdLH\nV3enLibn1RjF428Tt1FTU2N5e05919HgYJ5+8gG17/u0PjHU1NhIXhgYWVYSOkelrrYupOw/b9pD\nPcraF7beUxIcoK1fv566xSr/LY1N1ocwJiUlUYV/Dt3u3buptSA2UI5WgWjsoNiQ90vlHQkuw3+X\nbaarTokL2Y+8gcro9cLjGlWyXrLWldr21yQlUSzPxf009hXptO65O3bsoMrsTs4XyiLx7zhe30Zz\n0xrpsbFdqXsc//uPl88Zvevz/mXtdZ7Pr+tBH+9poM2FrfTW5G50QtfwzhtXUB3axu/l48TKrvut\nV0XD3+qFY2o5YCOiS4noNz6f73oi6kpEvX0+35eCINwrfZMgCJ8Q0SdERCNHjhQmT55sfo/Lgisv\nWtt6a99GosqO4RCLs9kzaVkqowGPJy0nIqKLJ0ykPt1DK2tc+b87Ht+/uI2kpCT27S1T7hl16ruO\nBoVbjxDtS9N8z+TJk0OORe+usfTjk1fS2wuTiEg7mHn55lH0gs3Z+k4aMoSoIDh1fPfu3TvOFX/5\nq2L60OTJFxMRkXCwmCh1e+D9EydOpF5dla+puPUriSwGbZMnT6a5WVuJSo/TeaPH0OVnDiQiovv9\nAVbOzClBZZWf51vq04kOZwV+PnPECJo8Ib7jDZyuF0PXqBKVckiFbN//mUsmTqLunXk8aojP/Ssc\nad1z/a+NveACuuCUE0I++l1KHl146gl02sCeIa+5SvY3Pb1wNx0oy6eqPqfT9eNPISKijZnH6fyT\n+1KPLgrnD8M5KeXlc0b3+pR8V/9OSSKiWhp94Xg63WvH1KCDRdVEG4NHLHQ+eRRdcvoAl0rEh+X7\nrRdpXG8R97cq8MIxtdw8IwjCM4IgDBMEIZ6I7iKiNfJgTU11Q7On5mMAWNXQ3ErVDeGZXnvMyX2p\nt0pw4walpChKd4tOkt4bebu8z8GUl80txkeEmy1eOA1/e3T+TreLEBXUTomnFu6h699Z72xhdGid\nv+lF1fTlllwqrKine+Zspb8v0F7uAsy74d31dPnr3hqWevenWw1/pri6geZtPGxDaQC8w7X+9NY2\ngc6btoKe/1G7JwAgnFz1RjKdN22F28XQdMe4YSG/u3HMSTTr9jHM2+jbzf7ATmldKaWK3k3nn6S6\nDa14qIxTVkcxKHz06x3GPyv7mTUMS84oMbwvu+04Uq74+zXp/NOvh1PA6gUNzY5ML2cmbagt9ScC\nW5CST0REn2/Koed/3EsNze3rdWYcU5/XCdbsLaii3FJnEr8o0ZpjbMSjX+2kl37ZrzkHGCDccQ3Y\nBEFIEgThBpb3Nvsn6n+fWsCzCKHC4MHu/RICq4IKc2uC8aSX/KJbXOg8l+ennk2De3dl3odX1moj\nIhpkoNx2EL8KM5VirfOlVqMyk3HM3FIGdjruYEKnXXnI+hfOWiQB24XTV9GyvUdD3iP2nGMUjrIw\nqNromrshm8t2qvyjWppa2mhT1nGKT0ik4uoGLtsG8IrwnrEKEeNoZT3d9P5GLLvgEmn8xRKMeWnx\naGmg4OQQyI59mv9sbWNr0M/S7/XrbUdUP/f+2izV19xS3eDcmmzNrRFQW7XRnPXZIVlFzWZWtoOY\nWVW07XBo72yMz3jA9vWfL7ZWsCjl1PIKco2cen7Fc6VNEOhzf+baHbnKPf4A4cq1gM2pelU4PNY9\n1FnhmrnrD9PuvAr6YUe+20UJez6dM0oxqPEp/jcsSBdjlw+VM3L9f3Tvhab2L/2+jPZ8yQ+FtMdt\neuIB1c/JF+/2grkbMIfEbkcrtXrwO86J6YkH6HefbrG/QCa1yAJuHvWBnJlTacLp/VVfj7TGQJ51\nqEIPjAyxQuyNbRMET43+iBQYgu4NrgVsOP7uWpIWOgTFTeJN9ngNn3lF0aym0XjSE70gL+T9Lj0U\nBaG94sXaW2DsQWP9pnTNW+s0X5fP2Ug+GDwXbfiAHmw78uD9c/9RexcOB6LFu/Xv2+J6XUTk2WFh\nLbIeNifqA+Omr/LEkHXowOuwi3mnahpbaPm+9vNfqS7xzbYjNH3xfk57BTM+Ss5SHAIN+iJySGRx\ndQNll4Tf5NPaJueGFPG8aRXWtFF9U6v+GzUc9i8c/sk6PmPao9mrS9Itfd6NYYWsBBJot8b8JXnZ\njVQI6iyewyxGvbicXl68nwRBoJLqxpChYVp/m5QH4zVwgNalKQY9n0my5ckbBLyimWGYox1z14oq\nvRnAmsEzyHXifiIIgkKgzr7n5IySQIIauRh/xLavoKPR6HmFZWcSfkijORgJYBjPc23m0nR6+Evj\nCbrAYwFbc2sbNbaoV5oEQWC64Y5/ZTVd+Uay/zPcimebKv/cj39+v8exfRZyenA1t7bRsxvq6a9f\npVraThPmpDhGqSIUJ1mwvTunJbO0XDS8n+nPFjuY3MIOczccpr0FVYEseFLfbM9T+EQop4eonDEo\nvNd7ihRajSlN/mUlpMtcePX5J18CQ+nPKq1tVH3NLA+3RUW8F3/eR2c8tzTod2sZGxQaW1rpvs+2\n0R8+26b4eifJHDbgD9+qN7gfsEluoBP/s4ZGPr9M9a0fJWfTxTNWh/x+S3apwrvDT3ZJLbdtpeSU\nOZLiVqz8b8qydgzwHHVOXnn7BPNLz+iY79G3e+fA/8/qF5pFkjezmR3zyupDKqH3TThV9f1Gnt8t\nnFr0WYKpplZrvXlOP0CtXp+Tki8GAAAgAElEQVSVdXzXJozWihnLcYiVBGz5Hh0C2Grg+HEN2Pht\nynXhFnz+b3MuEbHdH7cdLgv6WZzzqFZHignMYbNSQgBvcy1gU0rLfKyqvUVNqeWZiGhj5nHF37+9\n6hC/gklkFjubOpvnDfi2jzbTlDeT+W1Qh9WiY/0U54hBdo/ODnSlqbByvsTIPtyvRxfV9xrpiVK7\nvxglH+aozNoVE24BS7WJeZVaFmzPC6TyjiYszwhpD1ujyrPUa/T+rJrGFsV1GYEPJ28nLEHVHR9v\nDqoHih+pVzmfxfMn3O6L4QJJR7zBlYCtukmguz5pz2DV1BJauVF7EKs9rLTWndJbk0rLVys2m/6s\nGVYCtpve30inPWN/2uZpP+8L+pnXdRxpGby8TAzY1M43tdPwN2NOkrzHWsDRr0dn/TepiAmZp6Z+\nEq4+wL5oM685Myzbsdo407OL/QuX89TGed3mH3YW0GiPL1BvB5bTRjps0qvVLPlzQ+/+P+rF5TTm\npY7jLZ8LxcrL83ONCqc6tLTCz1r5357T0cumF4hF0GH1pDA61SKaKwFbk8mHt9rN1q4bl4841zJ0\n92f+rrM7r8KR4QCfb8oJ+lmsLDe2tNHegkrT2+3cyf3RudFCvIyMnm/nnNQ78H8rDSFERDeMHkIv\n3zzK3IdlxZ6t0cNe50IPA+saYVbuW9efd6L5D5tgpqhD+3YL/P+dNfaMgogGuaUdw8C0Ao7N/qkB\nKyVZIuVr47V5dMxYTmnoOmBa18fPuwtN7Sci6vU2/BFW7ue5pbUUn5AYlJ1UTjrqgPUUlDa2CTpV\nMasNiKCtJMznjUeKsKolq7XMSH9bXNWRTOPb7Udob4H5VNNOP9ukN83M4upA5kQtNY0tqkNI9Wjd\nYFlJD8kN724wXZbzhvWxXBZgIz7cVOt+Kr+/YuQgfmXwEd04eoipzz690EByHkNzZfg89PcxNFzI\newmNsvp5O9x/Sbzqa2vT2Xs6jbAjk6DXNEpGociHA0u9uyYz5HcLU4OT2PCap2ldcDmU/i7xHc0t\noWWWr+PGyoOXjXFeOYR+4vSWnzSC6KzijroMa3AorUuw9rBF8tA9QRAUR6Q54d45WzVfd6tc0Sas\nArb1h5TnmLS1CfTjzgJqbRPoz190ZCv85/dpFvfo3t19ypvr6IpZSbrvG/XicrrstbWm9rFSFrBV\nNTTT+f9ewZzE5ePkLJogSwJjtgIVwfdZzxHnghitvIRDZUdeRCfqp/JMZ3frPNyIrN9ZvHgsendT\nH6bZrbPxRDY/7MinTTrzCtXmtEQS6Zw0owc+TjZy4WCRs/OyWWktqVFUFZrROEYrctWwgdM8VbdI\nexa53gM43Ce1gqUPkjIl72PbnjQzrV7AZjXpWTiYuTSdznx+qSvBkZioTM3RSn7Jjd5edYjeXxva\n+AQeCdg+33iYrnwjyfTnU3LL6W/f7qKHv0ylstrw7bo1261vNs35tynBra97Cyqpoq6Z3lqZwfT5\nGUvTA0sSWGV1iB2wSzM5dFV6dvIIsN0axpKWX6lYuXB6wrqVc97p746p5VrjPY9fNcLwPv++YLdu\n8BvJLeqiTpKaufyo641oaJbN9ZJWnN0kP2zpBgNJ+Qj6O8edHPj/9uemqH7utWUHDe3Hax7/emfg\n/1459cWRCVrFkb7GWu7TB0oDNuPlijTztx0hIrK85q0Zes+bjZn8Aua3VmXQ68vD+zq1iycCtmm/\n7OeS0n7l/mOUV+bNNMYsjpRpt2JIVft7w3gSL0o37o1eefiYlV1SEzQcFxg4EHMs2llAeWV1gfUd\nl+09Sje+t4F+2FEQ8t6BPdWzTZpV26jcoOHzWTvnw61h6uQTupv+rFZQlnOc/Z4ZrqQ9bPJeFaXF\ngaXk8ylXcBgG7xSt60M+JLh/z44kRgN78b+OPcVjveuB4jBGbC2MGYikw3d5N8zEJyRSepH56TJu\nEJfrYP3+rFi29yitPdgxjF2vN/fZRVZHswELTwRsITxSeffyqNx9hVVUwXlto8BF6cL3b3ZdLq+4\n8o1kGv9q6BqBkcojl6iuXXkVNOm1tYH1HbP8DUOHFJaROG1gD+77V/uerPaQ/bjLXNIFO8n/Vmkl\nq7K+yfR2f9wVGlyLapv49PB7WaxkUXtpoFLX1EILU/MNbcsrc/6slsKLczijldFDwTr/ULrMCutp\naySum7/1CPubPSDW363sxDzUh7/cQQ/M2x742cgxLq1ppOwSLNNkB28GbJ4RXQ+Fjngt9IbQ2iYw\nrXdXo9KjoOekvuEZsO0tqKRbPtjodjFMMRo08K0j+WyZh6X1KCutafTM3C+tcpi9huTS8iupos58\noCQl/V5vUEkWo1VZ0usJ0lJYod5zPcCGXlGvURsSuVW2uHCk0epV6WRyDltEsKG+zmuTmcU1inOs\npMPNWRdNl2aktqM3TFzIO1yI9wGvNLqomfTaWrryDefWAI4mrgRserdatdNxqsmscmYd83AqU7V7\nXnxCIqXmmnuQa2XJW7GviN5apT+3bXriAVP7zjwWni0yL/2yj3YcCV0E3mzaaS/jPWyVtcolnZ+i\n58ed6r0xjS5M1tb6G9W+zoMmKycNza1UVtsRoN343ga6/SP+a0l2iVVOIKI1J8/KvIsDR9W/D7NZ\naSNBuCyKrcTqvUSepOTWC4dZ26CHrUkPj2Gsm7KO05Q3k+lF2VqtRMEBm5mlJT5Iygr8n1eCi86x\n4dVfId7bnW50PFbVQA3N7M9OrQRCYI0nz1i1m3kXh9fqCtf5Eb/sPmrp80rfP2tlt6re3DDN1Tal\n/bab2rkqnRzuWQZv/GoVdbvdfdEpNIZx2QettQBTcssD/3c7yY3WQ9fscK9bPthEF7y8Muh3SkM/\nrVK7DcuvBemPVpZMWLznKJXXKvcUvsmYIClSiD1LXx9opCVpRYY/P3wA/2G/bpAvnN2zS6xLJeGv\noKI+qIHjiHyNOjtGJnC4HZb7p2hsOxyagEK6fVMdRJLPPPHNrqCXpD1ORjbdNcwCtiaTi8VbNXfD\nYdXXTu7XLejnWz/cZHdxoponz1jVbG0Otyw4nTWOF2m5f9pVQAnft69blVmsnYkrsJaJwmusFdzk\njBJLC2iHG2kQEG6MXk59usWpDocztX8bmgq1ztJ//bRXcxioHZe7mTlsnWJ8QT1lrPZr9ERZJvlD\neqhUjqWt4HJGh3nKh8MdPKZ87yqsCN8kU2aIwfzy3BZTvfgsa3s6geV5kpRRovqa/NYRSQMkL525\nhh7833b9N4YRaZDGOiRSSnq+bJMNBdaaL1WpMc+/S5w7DZBWldbwGebOSusx3T0u+FmQGsb1oXDg\nSsCmd7kqvb6/sIp254UOPePtglP6Bv5fUe+tCe355XVMwwEEWWvUN9vb0/c/9vUulU+0E6/L1Nxy\n+kk20d/IPfaFn8zPV7HTB0mZFJ+Q6Nj+3KhMLtiep/8mP9aAacSgnpTy/BTq0119nS07+XxE3Tuz\ntaBrNbLoDcURBIHGD+9nqGx61ObhtGeJVH5te055SE+Zl5zQvTONkKyRZAf5oVI7U42mgw930TR3\n60ONBoDYGGtVl9rGFpqx5IBnh9RqpUnnkVFbjueIA4GIGltaKT4hMbCeVm5pR5nNDInU+oh0rUH5\nLTWnVP276uzwiC0jBEGgzVmlis+Ix79xdvSOVuOimeAbzPPkGat0QV//zvpAhjc7qbUee8HE/6yl\nCTPW6L5PrdKqlxpXWn//x4Ldsm3ql09kdVLsvsJK2p7Df0K902vwXDJT/1jx9rS/N9UK+e25U4wv\nJLmD1TTLPp+xVvG37zpf83WxB0erWILqD2KZfMS7Pqzaw+ZTf21Pvv0NU1YIgvYi2dL3mSW/h7E2\nLtQ1tdDHyVmen5hv1tHKyFg6xGo9z+rR/TApiz5el01fhVmmQLuY6dHXUuNfn3XO+mwiCh6abWbk\nkvwzO4509OTEaQxt1Grg8EoCKiULUvLod59uCfSiS4cAm512YpbWM1FcLscOL1hIVBWpPBmwya9n\nrW5t3oIrBu5f0fk6K8wrUbsd6t8nO/5e+Q2y0sBNwmplaeo79iRLAOt4DmNk3ZSPfLrLPvzlixTa\nW1CpOeSrsaWN+0NaPpdGzkzF1IvBhtMlkn8HPh/bvfD15QdpxtJ0SkyzNo/XCzKLayg+IZE2Z3f0\ntvxnWTrXfeSV1WkmdfGafYWVVNXQbLnBSKxo6l2/TnNrIXj5vDCrxMu3XKHutjufbcrEPRed0rE9\n2f3gS0mGR2kW1XoDPaZxHu5hE9fkzfP/++6ajgXvnT5FtJ6ZQ/t2zGGTX0tWz+UvtoRXFk8nePKM\nlXfPrznoTpYkwaWATXqiT/zPWhOfV/m9TrVLemG2CUTXzV7X8ZqB/csrW4IgUFVDM5XWeCfrZktr\nm2L6YQjl5QebKDW3nG54d4Pme/SOt5kHzHtrM7XfoLLJGJ+PvlR5IIXDKBO1+0FpTSOXFNzy78BH\nbImPqv0t+14d6mbE5qz2dagW77Ev+Jz02lr69dvrbdu+GrPn+NR3NtDv527j1oDgtV4Wp659QRAo\ny8a1suT30lFDewf+/wTjkD6xGrFoZ35IkBcj6faR1ms+Sg4eRpuiMVLHy6OLYwIp/Nt/PqSTf8CJ\nsih5csqZgf/L14ebs149WQmY48mamLyB2YGF3QMevvw053amwuq8DLWKp17DvfyylJYjxcBSAXVN\nrdTaJtCLP+2lvLI6+nhdNo2etoIunL6KeRtEFDKPjqdrZ6+jM59fatv2I8lsneGIZrGuA8dSqTKS\ndpjIeDKQU/t3V/z9bJ21CbccLqWdR5QnYs/bmKNStjCI2FRc89Y6um52ewBg5e+Qz40wXLEO368w\nQGz48nLF0iwr58buvArXeqLsZmS4oDjcULQnv4I5uc+bKzPoKk5rZcnvmSVVjfSybHmfvQUdjTji\nn6h3DHNLayk5o4Se/HZ3yGslkiWXtDajVefp3S2O1mWUeLJxR2tNXKfPfK3bT6xGY64d01qinScn\nbMkvZCdP0JNPUK6YhRPVHjaFFwRBCAxz0xruZiRt8pGyOtqVV0H/3ZxLu/IqTA+je+KbXXTT+UNN\nfVaPE/MhI8WQPh3DEXnWHd1o3dbbJe8y/eWLVMPlSOOQZZVnhTazuCZojotAgur3VMppLky4Zujl\nSaxslhhYD/RYFdsct9Y2gX73yRYzxfImg9etV08vpQBD7fn5zfY8mnnraCJqX+fwN+9tpEkjBtAX\nf7pIdz/SIXa8VTe20C+SDKY5KsPU9Y7BpqxS2pSlnHwlWZJBVGszWvfzQb260B8+29ZexplTtQtj\n0RWzkqhNECj5qSuY3i8ec6Xzgfd8Qy3ZJTVUGCHzZiNBWPSwudWa5tY93WomMLXKjlLr24GjHb1o\nSnsVv/vhA4xlhRPL0Nzq0SejnyAI9NbKjMBY8WjCepax9oQZYXatMbfwLq28EjawV0dSl7wya9lF\nt+eUca2QTnkzOWgOqxO349DEU+pHQDFICa/TS1GDf57VjiPsSWi2ZKtnF5QqrW2kbS62gFs9h5o4\nPVfsuLdZodSjwnKrFId773Igk7ZRk2clKf6eV6OMVv1Q66sTh08TEa3YZ3xNQyMOH6+lXPl6ehrE\n56PbPclXvpFMC1PzTX3W2zW/8OTJgE1+qN068G7NYUtjnJSrplilRfZYVejvpfPNlB4My/03MqM3\nV/GG09LW5ukL90hZHb29+hD96b+Rte6N6PXbRtMtY5V7Ka3GTNufm2L6s6OHsi2ETWRPT5xWun0l\nvANM+eaWPjHJ8DYWpCgv4XD7R5vpq632TthmqehayxIp259GVtEEpcyoXr7pMMo8ZnyOEet37rVA\nxaghOkmI9No8vXp6mL1mxEBPGoR43ZK9fIKkZ35IU33tv5vV74PSe/pDKiMh3BJYE9erJ6rfSX3V\nr0OWJajAGE8GbPKHdYZLa+24da3847vQMdtS8zZqT+ZM1lhwVE4vEHv4yx1UXttkuKVHfL8gkOVk\nI2n5lYFhFUkHiyk+IZFLYgOijnMtUhOQ3D7uZHrzTmtz0JRiFUEI7hUyYvSwPhQT43NnSKTGPgUi\nGjGol8oH+ZZDKamGUU8vVF/C4YWf9pnYIhuB2hti7BSSJVLjvSWS+0t4hyHBfthpfA4v69wwXvdP\nt3SJC666yAPQboyLItuZeMNJblbsf9hhrgdGa8FrI9YfOq762uHjtfTasnTF8z3Gw5NDteawecmQ\nPh1ZIuUZmsNtFE048GTAllkcfCHP2YBsM1Iv/bKf24Us3Ypaq+u6QyWG1mEj6qhwCUSUX26tpeXG\n9zYEhlUs39eeMTQlRzmRg1nevi2as/ixidy3yeMebHQTTvYGXD5yoEN7MrfOWMhWXKqpPXDpcFu3\nL081r/X97C2oCqkseL2iYxe106Ffj85BP8uHZxVW1NNeDnMn3SKfRsB69L/ZrtxL7Ral46d1Z7jm\nrfbEIdKPTX7deGZpK1anF5v63M+7CvXfxMEHSVl03ez11CxLO7/OQMO208Rg0us9bFJ2NH6YWWQ9\nknkyYPtCoxs70hSZnNDJ60KW9rCp1YlWHSg2PCSyNdDDxveCCwwV4LrVyHPrBcNolIFhh6yuPfdE\nIupI0/zmHWOMb0RMcsMxS6RRpTXKE7e7q7TM2x0ymt2+3RPQy1W2f+OYk2hAz86Kr4kEIrpoeD9T\n+5X33up9P4ePt1cWwmUokV2U/u437xhDO164Ouh3HyYFpz+/ZOYa3WUxeOJ9fOQBqZ4FkkBth0oW\n13CQ4R82K33O5hiYK+WmbIVkJFbn72vx4vqWorUHixXPQw8XOcSj87WXa3h2URrFJyQa2qY8W3C0\ncydg0zkGmxknTkeCi2esNvW5RSaGyyhhCah+2V2om75czq4RU4HbOacLWVzs0ciE4Ehh5tF4/XlD\nKPOVX9MZ/qGDt1wwzPz+XckS2b5TpeFmFw3vr/45zoUNGRJpYfPvrj5E98yxJ+Pfb95XqMRLhjur\nERcmNvt3KTUQaR0D8e3i8Y3Wx7zS3610jRZUhM/8kt5UQ8/EfkWxpDw/a8rZg0J+p3VuHiyqpmpJ\nAq7vUvLo4ldXh/TAuMFsz3CknO8eHqVoqwfmbadbPtgU+DmQdMR/ZJ1c2ooX+aGcv/WI4W14Och2\ngyd72ECf2cw9ctIHG886qVjh4n258e5hk//NP+0qoOJqfmlsvXzD6c64VIP8O9Jae4Vpe0bf79BD\n/OwhKvPXiH8PW2gORJNDIonojZUZtDHTnkYurYyVWmf2HR9tDklHb2SeqLzCHePzaTYuVdS1Z7Gs\n96+pFMkNs9KMnXJuZ5VjZSQwSYj9mv4Sm0g3xCg3SpzUt1vI707uF/o70d++3RX089fb8qioqkHz\ne3WK2cP3zbbgynB8QiK9tiydFmzP8/QzSM7OeU/hcGlUNTRTaU1jyEiBcFzmpKVNsFyX2n/UG3Nt\nr3krmT7dYy0XAw8I2GSk94toaOyxa0hVm6QVPq6T+W/yka92BP0caEG34f5VWd9MT3yzi8a/Yq7X\nU8k7q431TEYT+VnRp1uc/fvUOBW1enB41yN4nb+8r4NChp4XcZdalYjd/ky30kD0zOeX0lsrM5jK\nId+2z6fd+CEmavrZv/6Tl+enWDXmpRWqr8m/oYcuO83ewjigi6+9N6wTdQT8YvD/u/En07PXnx3y\nmS8fVF+LTD4/UtQmCFRYUW85SRZ3Ojef62avo1krQq+rD5Ky6Onv99A32433bLjFziGR4TCv9VfT\nV9GF01cFehoFlYbvjGPuJOIzYl9hFY1/ZTXVMi7mruQfC7QT8JXWNNJ9n22zfWpAxrEa2ljofgZW\nzwZsV72RRI/M36H/Rq9pqiPa+z1RW6vbJWESNIeNY4gqblYQBIqNMX+aJaYdDfrZzt6Whmb+x2x3\nvvfWxTGKd9IP8RjKAyTVVPseaDrh3fK7OUs9s5kRPIu1LqOELpm5hpbIrjk1LBPC5S2kbzM2YMg3\nXVXfTNMTDzB9lohomc3rKnmW9+ukRGS9oeFf/iyoN4w+iboqzDsd1Es77b9yodrn8l04fZW1wllg\n5mtJ18mizaPncG16Ma09aC65iBGs91kzGYrDoZOq0d8QIT7zxIYJ+bPxnjlbnS2YBbVN5gOd4zqN\nJ59vyqHkjJKoyXvh2YAtq6SWEvewVRwck7GCaFofoipZdqOyw0TN/pbp2aOIFv6RaN3rzpdPg1rr\ntPQ+YCGuCnHAn0Y3t6yO28TRN1YcDMw10xv6szuvgsa/sooq69gfVtKHBWt2ogE9tR8cbj0kWJ57\nTodBpw3sofl6n+7KPWxKf8vN55/Eo0iumfbLflOfkzdA83xQicHVbp3FdztSTutTqiyyJFqS369e\n/HmfoeVKQJ3iQuNhwOfrOCfsmIPnhfq80nPN6pIzPBq8Hvh8Oz0wz/61SlkboMabSGakd3xbWtto\n7obDnlriR1xHTn5a1DeFR4cAkfr8u9mr9Edb6P2d7jflOsuzAZsnpc5r/7dQkg1HEIjeOZ9owR/a\nf67zzyUpDB4n77b525SHRUjrRZ04Ntd/68/CJQjswc+Zg3tqvv7umsxApU1vi2+vPkTF1Y20PadM\n833SeeYbMjsqhGqLEsvpDff0QiXAKjOnxVPXjgz53Wu3jm7fnrhd2evzH7yYeft2zXVQO168k46E\n7oDtbfJLiaXHakt2KRXV2lAJMXlyz1pxkARBoPiERPp0XbbypmU1lEPF+imj7eghDzfyYV9Kp9Wq\nA8ecKYwGI6eOoHFx8LwqvTpP6OXF5hp3RKw95q8k7nd9DiTrkEgzjfl6x/fzTTn08uL9dObzS+mg\nS2v/iuTXsbzkNRaGGTpNrcGeJZHdHb86mWkf4TDclYewCNjuYjxorhCHPmbKhlF4bNHAKpVhEcFp\n/fmVuaW1Y7stjAGbkZZA1ueK3p8kHXLZ0NxRqS1ibIU+qtNbID4A1dKj28Xtuof8e580YgDF+ZOV\niHPVpO8ZNbQ3ndyvu/K2ZD+PHKyeHMQuTlzN9158ii3bveuTLZSwnmOPhP/Aidd1985sixRLibeE\nGUuVhzmayZOgdy0CaPFCbg47ipDGuL7ep+sPux4IuJl0ZI1kPbmHvkixrRxmuB1IW2FlLbXeXXXm\ntXusnm23sAjYnFzc0tfckd49hgTlk0168bT5b3Ax8ox7Oj0vgkBvrjgY8nunh4FK98fz3DeTItnI\n/vVuAeINTm+b0nJKA0ueD+/tOWU09uWVtGyvc8c2MY3foqRmTgt58N29cycaPawPvXDDOfTGHeeH\nvH/hw5cwb3v5k5eZKJE1g3obnzNh1GkDtHuY7SYOP2E99cVhi5sSrjS9T7V9mentCOdKjW0ULt6q\nevVKeYtDqe25HSuOzywvnD/SIpz1wtKwXsxci9p3bW/Axn583Q4D5EX1QmOCWVYW1J6/lW3Ivwcu\nXUeERcDmFh8J9L/NOUG/CSEGbD5jrcwpueX0zprMkN/bmWilm8LkbOnkfJ43KbdTCYt71+u1k74q\nDc55PbzXHzpOm/wp1x/+cgftdGiRVmlvoRvkz90Zt4wmn89Hf5o4PLDIrdij269HZ8XEAWrbav+l\n2XKZ+2APxiUQzPL52Bosrj5nsG1lEIdXHtLJQCYWs8U/OaGbiR62059dQkTqD1qvDk8LN78eNSTw\n/3/dcA4Rac9RzCkNXczYy+xIlOWmHbkdz4eG5jb6bONhR/fv1FfQqDJPzM512PSSswySJDKxM3Bk\nIT0OyRklYX0//HxTjunPVjVo9/gamU8dCRCwyZwY1JIuUGHQMBt+p0WdgUmjSZyyM9XrzPFgHTrB\nwkyiESOVab2AinX30qQh0h42nhPzP0rOCvz/t5LFMcOF3nH58k8X0dPXBc9Zk39CDNLkXr9tNP34\nf5fqlUDndf7MTGq3QhCISmu0h82OHtaHZtxynu1lYR0WJV4uRrPAslybZuon0fLQ1pKS01Hhz5k5\nlc4/uW/g5yF9TGROtAnrsYqjFrqt0zrV13lW8L1QKZZn1ONVJCvD0uwYzq8239TOQOmuT5TX8RNJ\nn3PZx73TcOH1JEEDeio/20VJB+1LFhU4ZA5eu0dK6+jqN5N1M1jqWX+ohHYYbMBHwCYjTbzRidoY\nqormTpRYA0+a+x3IzkREgQyMPEjnsLEycqvenKW9UHCd+OBT2GheWcffed6wPoH/S9fnWZDCZ2Fy\nIqLfTziV27bkWlrb6IstuaaGoPK6xU0cMYD+ctnpQb8LWs9Q48DePu5kOqW/8tw1O7SqpazyGzOs\nL50zpDc9J1vbqa/da8QJRE06x7BLbIxuVlIuRdE5McTj2Tm2/fFhtNK8Jl0/6YUXKs/hSOsezrbg\nvduDwYJdG6P97NNqTOoaZ6x644VhZ1nFwYECr+tAr7FWpLQ7loQ/RkkzMb522+jA/42sw8Z7vp3R\nZ2hrm0DVDfYsth4nuVafXrjHE72/apQSjDnFjSV/Lnt9LR0qrqHFu81PO9mdV0G/n7uNbjHYgI+A\nTcMfY5fJfqO56q6hbdu5QKQSluJdduZAbvuzew7b6nTtXsft/pZmpUUbpYssSm+EC1ODg7T4hESa\nx2FIipmkDHp+P3cr3fbhJvouNZ9e+HEvfbpeOdseD2bO1FP7d6TwH2hDkGH2Rv3qknTN17t17kRL\nnphEYyQ9E0REz00NXZyXN72/SKknq0ss/1s4a93gl0cn0gs3nGN4mGm5xlIb+eV1JAiCqcqzlys1\nTtEa0igepb2F6iMpjDQkWsF6rGJ0zkatU0+nbSb0/S6fQMdrGuktWapzXkHkLp2lOrQ8+S3/jNfS\nP0t6DxOPJ8uC77yDpcUG8we8vHg/nTdthS3ZaQfL5kxvyOSzbmekKa1t7+Vy6sqtqJPUHU1uo66p\nhW56f6Opz7oSsFU3h8eT9aHYRJValE4iEgZmuv7tHtKil6LeCDNz2OwYDaEUsEnpPaQ/TMrSfN0t\n6w8dp5Tc8sAwzvxy44pBbXkAACAASURBVFkA1b5uM8dB/pHLJcE/r6t96nlDAr06TuveuWMO27bn\nruK+fYGEoH0oiVP428ee0lfhnRbL4r8m1NYwFIPlkSf2oj9NHM5tv7/sLqSJ/1lLH6/Ldr3y7Da9\nEQRqiqvVh+kc9g/z0rpXeC/pmiSLscKdRKu44hzLbx9iWy5EOsz+WFUD/WKhBd2MGoX5OryuAyvJ\nS2xZ807lzxLrRZ47DRX8sKO9gRfLiejbX1il/yYT/udfp65aZ64bLz/uLLC8jZX7zS+rgh42HUEt\n+UpPM5M3VDMPRrvqMOJCtizbf/mmc5kqrKyp/KXyyvg/GM4Z0ifkd9LvXu+B6LUKzMfJWfSuZO2t\nrv5KvJ0PDavfgdXzVhwr/v49F1DG9F9b2xgHg3p1pd5d+SYhEQSiiSP6a76ns0KDypZs7XUGlaxN\nL6bfvLdBt1HlH985u5bkY1+3r2+5JbvUZNKfyAnylBYct4qlscO5ZFF89qPVuzukTzciIvpVPNt8\nVOmfftcnW+ixr3c6WhlXrl7w+Z5mLNUeWdCxQ+2Xn/8xzXphiKixpeN7lfawBTp4LT5zHr9qhObr\ns+8MzVRslJ1rc4ZTexVLWa9/Z72tZdCbTmCHT1TWENVjtCdXCgGbXKFGlkatM9OBmr1drc4Xz1hN\nd3y8WffCG9KnK/1+QjwN6mVPT58dlRSlfAjS8fN6DyitoXczliivIWVkG6zWpB+j+IREmrE0nd5Y\n2TFsptQ/vHPnEfNDXniw8/SvUOjp4bk/+fATNd3iOgXmxWx7bgq/AjDi1bv45IJdtCe/UvV6Eyuu\nx6qUe2uGndCNSzlES9KOBlVMBSF4QXuziqu9PVnfaSznz7caS+iU1jTStJ/3mRrubpZSr1rQ6xr3\nge8enkDv330BxcT4mNZylT5fxXnOTjbYKY26cTrbsl7F98stR4iovddt1vKDpgPKv0mGWXaKkQ6J\nbP8OBvfqqnuf0dr1OUN6a36W53G1o1rGssmXftlHCd/voa8YU9+r2ZNfQfEJiYEM1mn54beUhFMB\nrnQ3Ztf9tDLq3FMBW87MqW4XgSj1v0E/6l/Y5s4UvRPslguGBv1cUFGvOdzFqm2Hy+iFn/Zqvsdj\nnU1MlIKlfy/eH/i/3vOwqKqB/vDZNsXXPjbZwmLGHz9XXshzpr/l9LCNWa2styRavZvaezf+8ZFL\nae5943Tft+vFq2n3i9cQEWkuQ2CGQPr3BKPZGOXETHF6R1M83EqVxS/+ND7k3mTV/321g77Y0lHp\nEMjsOmzBPz/gULKmcNGZIemI1j3t34v30+ebcmi5ZCkYs5xYhu2kvt1o6uj2ZQ1m3jqafjdee2F6\nabAqjhBZttf638rqZ4UhmE4nQvnVK6sC/5+x9ADNls2pE/3fVzvovbWZuqny1UgbGKUV2CeuGkFT\nzh5Mt48bRhv+aX59R71nhjSHwNC+5hqgxPukHYeIJRCetzGHvtmeR88t0q636Vmb3p7FUcxgfbTS\n2EgnMxnBjXhg3jbd78NKFlSnyRtmNhxin5/oqYBNyRGOmQvNCJoDpVdxzeNXQegk29enDgQHehOT\nzQxztFtlfTPd+O6GQMCSXVKjuc5Q+3s6ghuWIS/rMqylpfXasEo7yIM66Y+TRvBLZiOKY8p4x2ZI\nn2501dn665t1ie1EXWLVA7XbLxxGd47Tbsm/5HTlYY+CIOieJ327W8tUyfpgFe89SkHTpBEDbRkK\nNHtVxzDf4qoGUy338tvTPpvmTYQrq/Mdxfu/W8O1BIXwzMi5qHfLmLcxJ+R3767JdGxY5FqFRFp2\nLeZ98Wnqw0THv7KKft5dSB8nZwddl1KN/u+ER/Gkh3BAzy40575x1Kur/r3u3TWZdNN7GxRf02vc\nktavepvMANyRUd579SIjrAZcdY32Xh9rD5boztG3O2gUWU3lTxRaH7x37lbmz3o+YLvs9bW2bPen\nRy6ldU9dofs+cVKjKumJ8t19zPvXu8jlB9VqHUm6kPK4U08wtQ07e/jMWrn/GKUVVAbmdV35RnJQ\nBp6NmccpPiExaOK0NB3wTw5PLI8WcZIH5sxbra0dpnSpiMNl7hg3zNK2eXr99jE06cwBmu+53UJ5\nWXpItLAutSEmjDHbem6GNHNrelG1qZ6FTVmRnUntN2NOsvR5cU6XWbs4Drs+wOncMjK8yMzQ9Mzi\nGnolkW3ou1UxCn9MieyZ+9uxfHq3B/dWn9ZQXN1Ij/vnkzpB2oBaUc++5tvX247QbpXhe3q3D+l3\nfeBoFf1ufGhDW2qu9vzgSJnDJj/tjO56xOCe3MpilpERGeW1TaZ75Hh0Wlg5bzwXsA0f0EP/TRz0\n7hZHgxTnrphd1dXH9SqTd5ta3fTPuzqy20RSj4/eSvev+OeZrTmgnJnHiUxg8q87v9zdXmMnSB+I\nWr1SVvW3cV2yMwa1P4ievf4s5s/Ie8ZDXtdo+bVz0VgiomZ/1jy9W0mXuBjH587ImRkS+dIv+4N+\njqT7HJFkbUmTLI6o5Zot8IUf2YZxSQ+hICj0sBkIwsyeDzvzjC1ua5ZS8eQByVsckmUQ6d+nnCRd\nGHqriSRKSk4fqF2PlP/9M24ZHfKeWz/czLQvW4ZEOphASX4NKWUrleohW6Zo8shBtPxvl3Evl1SV\nzhIOrI+L4uoGGvvySnp7tXLPsZ6Pk62PdLPynPdcwHbxadqZ0njxzu1KmTzFt9WEI9KoPsx78IME\nxpHr/FHylkqz1h4spn8u3GNxG9aGWPLCexFmnnNQP/n9hdy2ZZa4ftyok0IzjarRaz1Te1UgolFD\n2fZj9riNnraCrSwC0enPLjG1D15Y40WteUmRdJ8jIjpew977oMRsRWH64v209qD2updOUGwmNdTD\nZs7egqrgRFU2sTuGenPFQSIi+uuXqfSDhfTkW7PNLTmhxo6GqtMGavf68FgH10t1SLUlWFhIv/70\noir6x3e7Vd/718mn05InJoX8fuSJvUzvn8VXW49ovs7a81XsT6S1SqUB3wkRk3SEyNofY2w/7DvS\nzjYmKP5fOH5Qc5t6p1efbnH00b0dlVYxaxUPKbnOtBg6gXXiL68xzg/M207fpuQZWtemoSV4jPce\nC4uY8vTIFWe4XQRV15x7YuD/btW7xax6Rh7ueu9V66UQBPZW716clxQgCh6b74U4h3VeyIxbrA23\nDSdW67Vme1XmbDjsWgIXvSyRhrZl4Qt0I204b++syaTc0lpaajGRitbi7GYYOS4n99Mf1vv4lfrP\nNetL1QRnteXN6DbzDIzaqahrCsoQLP0qrputnX7/n9edRaf270EbE66kxMcnGiukBfO3HqFpP+9T\nfb21je36FDs+pMf/SGkdjZu+0rGRT1ZOPQ8GbM5EbD6fykWrcKWMf2U120Yln/WVZrK+VdXkkR3J\nGtIsLHwZic4/uX0Cvdidr/d98r6p3vCu8mRnJe+vDV58O8bn4xqAm+XWItTh4rXbRtP/TT6deR0n\nIv3EBtK5WlI9unRirkTcfL61eSziMgm78jsaDqQTx51qNNNS1xTdi9EqnQtWn40eGgXHjVP1hRYH\nAjajayqe1Mee5XX0qC33YZb0fqN3ONc/rZ85kiWJiNUetuHPLAksqaPn0DHj8zXtHB1w/r9X0piX\nOkZbsF5CsbLMmucaGHmiZv0h9tFGn2/KCfo50cR6ZuL3Kr1vfJtyhI7XNHFZFJtFRA2J5NFVraVX\nl47WaR7rYwVdWTX8UgD7fMGpw9WGw7z0m3OZtmdn2nc39PHflFl72LzQayBasb+IJr22VjErmBX1\nEVrJPU9hqODAXu3DAgf1sm8O2+DeXenp685STAagRndIpMrL3TvHMrc0/37Cqczl0SLtNZHu2swD\nZWOClRTcoeZtPExE2pkNz9SZ7H6jxSQdblI6AlYfjbySJDgZ+El72JSzRLJvy0o2P2nSLrsYTS8/\n7ITuhvfBI8Dl3dgoLZNTp5ZSb/Pbd5mbH6g336zERGZBo2eqE9ek3j7evut8WvCXCbrzB6V25Bob\nbRSfkEhfb2sfHildXoR1KpX4vbrZdhVRSUesOjzjehozTD3yFytfRiphoeyv/rOWLlxTyn507wWW\nPi+f06f3PTiVmplFub+Hw8iwShZFVZG5UHDPLqFDAG+7YBi9f/cF9IcJ8c4XyG/+ny8K+Z3usDMO\nl6sdCQOmJ3Yk7DCTcCSuE98yiXOGtAJyvWLGeqGr0CSlh7pTvUlPfKOdIdCtR04/X2hPhaGAzcK+\nrSZ8YdHHYHr5U/obD9h4NIhnFNdQvZjWX/KtjjcwEkHKlZ5fhX2azsKqc2KZqXsYrddZuTc0M2YP\n/vYvEzRfv+n8oTR+eD86W2fRcikzuRme+SGNiChoWCer4KGswfuetSKD4hMSA3M97WLlfI+4gM3n\n8zFNWPeRu0NEeGUBOpcxUYHXTB45yNLnxUqlWLHR+zb3qKT/ZbVAsqgqC5aeH97r2u3J98bcOCfE\nxPho6ughtvfIa7nk9NAU/o6Ux4ZdLN/XMQl7hn8xdjmtBbPVRitMGqG9zIEa8cpQWk/pIt8BujZG\nfzHVRTsL6Nvt2pPVvUq5h82Zc/2nXYWa3618GNOGQ8cpl/O8JiVDfKHJLgxlibSwbzOVQ7uZCZx5\n3J9251VQrn993EU7OoaRzbl/nKntSRsn7EyVL7VTYYkKs/vWOwx6y6MoXWtGD23QesGMxNT2rD2m\nF5zCthyUke/RTLnPPak9IJSeyqzXgljl2p1fScOfWaL42ffWBk9nOsh5eZuISjrC43plidp9PhMt\nsOmLxU+HvtbMeyJu+79alaSU56cYml8TScRjPMOftl/vDpdqMdFKYpqx8dLj4vVvbrx7R7cd5pMS\nOZz1tiEhhxEOdLC5NsdMq2dP7SWxYmdUgX+h1HsvDh3++W2Xl+njzrOZtvPP79NM7d9tinPYHHxa\n7z/avui40npFP+4KXgrl3rlb6fLXk2wv00EhdK0sI9dC3+6dTe/7gc/dSbqixcx9IM1iw6XcnA2H\nA//vzbDYtRLpfcWpRgmx0q9H6RldVGlsJEurTg9WtYmgRe62jzarzo9uaG5V7OVr9I9iiOU8OsLI\n1sSRbrvzKuj15coNhXIjB7dnpJQ2PrD31Bl/Ar9jcgkANVamYnkuYONB69iJ9wMf+VRaAlgOqAND\nIv1lW7FPPf2omN5bTMDBYvzwyAjwxHrEUf/Nk0eP5aVn8FlSYtKIATSol/6E8GbOPWxmgtJ7Lz6F\nbr/QO4tPKzHyDN/94jX03z+Ot68wOvQqHDyCdMaEWMx4lEl9uQJrC5SePrAHff9X5aE44TkYnI0d\nSUfktOb4iZUKpey6Tq7hJd1TsxDaGGMorb+FYldYSJvO6uaxxobkmfl7nlqonrLdLUaSjhix6u/W\n1wb7RmFkzcUzgpPQ6d0+zYykedrE0kEXvLxS8feXzFxDZ72wLOT34rqcVhoylBg5huK8+5ve3xiS\nnE2N0ugLoz1sWuRxgdUlteSsNLx5LmDjscguyxfMrZXa7MFk/FgNQ+uLkcXGH2NIeesEq9eAHXP3\nvnrwYtXXCivqmRO3fPGni5gqVx8msd2gWOkNvVAy/ebz6PXbxwT9LkynRRJR+822H+cHkBFODIns\n3sW+hci1aC2NoTYMxmpiJ5/PRxeeqtzIFM7nqR6l7433cLEcjfuZeB67vYC6VJviuRS+8xTlTuyj\nnXTkzTvGaL7Ows0h5Gq6S+Yo8+jtEa+TMwaprw3Gei1tZxi1otco1aLTwmb3EZH2vDVLsp22+Hv+\n3Jzr+8WWXMOfqahr/3vOlySk+oCxLiV/ZqxWWI+ttU0IjCxoamnTXAbjL1+kKI5C0BJRSUd4nDtM\nD3JLOUesP8RYt3DvxeoLw4p2HmnvWbnqrEH0/NSzNd9rR+to/67OX/DyisSStCK6f9422/Z3qLiG\nrpiVZNv2eUt+arLbReBGr9Ivny/Ia36oGXoVIh5BhtUHbPfOHQGfkXmPWg8mu+4AHqxfuob3d3HA\nP+xRifiYUGr8rHcwgdN9scs1XzfyODPSsKkkt7SWKuuauc9pYXWiLI2/mXuJ1cXXjWJZOubyMzuW\nLzrHQMIKJ7A0/uvV11mTejhhliShRktbG/19wS7mYIeV3bfstQfb59C+vrzjbznOmIlT3tCfnFGi\nWFt4ZP4OIurIVqxm+b5j9NE6Y99fRM1h08qUxJp9hmV9DNaW34FUTqf6inQWz7bPGQO1U1cTEeX4\n54kUVzfSg5NO47bvp64dyfQ+M8t5WY0ble6BSQfZ1/SIdKf2t1Y58YIe/sCip868tKEnBLdMu9nz\n4kR8YbWn5YFL4wP//817G2lzdmgyByVaFRO1IkmDZzPrRmn1VF8UIcO7lSj92bwb27SGar29qn3e\nhl4Pm92LzY6O0a4wGRkmajoLoN/lryfRbz/cSNfOXmdpO2r0Ro3I6yy3jwud0+c5DPdiaSOXUiIn\nOXEqiBOaWwU6XtNIxzQyMOv1sDR6KEN1hqSxoaVVoB928F97zMrzycjIKTNTOZS2rtSLunRvEVU1\nNFMuQ0KW/27KMVSGiJrDdr+kMiH3zUMX05LHJ+lugyXaVo1yZSfM9q6PUHKXv1OtZGHZ4KepPbVD\nM+c801hbA9sdNbQPdWGIxh48r/0G2i2OfahWZ70VhnWUMy5a6bTpN49yuwiu2vbsVbT7xWu4bGvf\nv6+jnJlTdXut9HqVnTDl7Pasp1qt+EMYApa7fsVWCZt9p7k1g4qrGkIC2rs/3cr0Wc0hkSo3FulH\nTmNofJLTqpA/MWWE4e3J7ThSTu/LsoJ5gVKlx8msxmKSJb35kk6sT6bFyFfCY0hpdol31jONlPno\n0ts7y/Igej0UnTkm0Whpa6Nx01fRRa+uVs2EWtUQOr+xuK6N/rFgNzW3tlGTzqLrTrYvSns8W2zq\n+XNq8Nrg3sYbAEOXgyJKUZn7P3raCpq/VT/L8LGqRtqUdZy5DGHbw3Zq/+700m/OpWV/m0Sbn2lf\neLVLbCc6PON6xff36RZH5zBm99GjfvNmOGN4DInU2YRYATKyJ5ZiFVc1Ghoud3D6rxV/L11kcsQJ\nnShn5lQ6zcCCidbWwSM6wnnxTtHixyZa+vwWf2+Fm0tGuGlQ766G1xOSGjXU+PUtn/fqRgfbmf7M\nVVoTuLvExug+vFnncNw8Vj17rJY5Gw6b/n40h0QyPEle/e15hveptV0eSThu+WBT0NAaL3Mq5bmU\nVpBOxH8u8YCenemXR5XvwT6FM9fur8TsYsp2cHOot52kjT0sp5Ner6/eiAy5565Xb/CTDmecsUQ5\ni+HUdzaEZGF8f1cjfb8jn15evJ8adRo1BI5tHmISDzXSefjNvLNXiSxck9Iju+Yfl2u/18y9x6ZL\n6IiBbMhhO4etS2wM3XdJPJ11Ym8aIplw68aDSU9MvcrkU5MPrP49Oyp2Y09hz/KohaUk2cdr6dT+\nPejJKWfqvlc8CledFbpm2kCFdcZ4D0Xr5UKK9lEW17WzOlyjtU1wZE0jVkP7ak+E5+2XRydS9qvK\nDTas3FhMnmVemc/no59kKdFDt2PvLbmlVdB9qKt5cNJw1ddYBix062w8WYr3ngTOUDqdeA+J/MOE\n0CUT5PQqxyXVbHNHWPXpFkfnDWO/B1c32Lug9U3nm2sYMapNEOjFn/c5si8nsTRASU/rE3ooN3gt\nfHhCYCSFXiOCUb/VWDpJOmx42b4iamxRvnfKg7Liuvaf/7c5lxoljXTKa66x/z13X3QK/U8jC3KR\nxtBNIqKMYzWB/9vXw8Z+n+rbPbhxt6KuiTrHxtDDl59Opw3sGfJ60H5M3A/tqhk06zTESmHhbJke\nGhUDs9/Vt1tzTH5SmbR1WOn+07H8ADuWimqrv1WF5SZx6Rnt48lPUqi0K12USkGcFXeP10+44jUn\nGMxQWFzdQGn5lYEhnrNXZdDlryeFLE7rhs6xMbQx4UpH9+nz+Qz3vsqH7Rq5Kb944zmG9qWGpcw+\nIpp4hvYcDSMLibJM6Jf7bONh+tzgmHsiolP6dVfN1khkXyOb1nBY1j2q3ReVhjJ5hdL9lXcPyws3\n6J/7esPsn1nk3Dp3gsJ3Iq4l5TT5ObUlu5Q2ZbIPi5Jbc6RFd+mAcJyXzDKlQuvWMf/Bi+jZ68+i\ncfH9AvPzed9ptHrqW2W9UA9/kcq0TekWpcNoldo/jMSfr/72PJo0Qn+eHwsjQYYRRh4Ff5Cts/nK\nkgPU1NJG+wrb1wtUmmJw8/ntc1HNpNuXN0Dxuqe+8NM+amH8Pq2MDPFswDbsBPWW/ZyZUzU/++fL\n+CXeEC1ICV2Po52944CvOnsw1+2K52svhkUuxcoS6xC32XeeT6/dNtp02eSc7CfRWpPICKM3kfGv\nrKYb39tAN72/keITEundNe3zaX4/tyPjpVfn63nFiMHB6ZuNHIIpnK4vpt4PH1Hvbtq9xuV16sda\n3tq48Z/OBdPrnr5C83WWR5CZ55TZCdof//7CwP/VkmvsK1DPkuhFyzXW5GStxEkrQHGdYuh347Xn\nTB7VWSS4qp5P0BvfvzsREf1ZI2mWG0Mi1cjvMXd9soXunsM2F1Qus7iasiv1K3tmRzu4uS6lVZec\nMYAeuuz0oN8pVXiljVdG7xla75b3Qq1VS2wm24j0liPNxiqvHxRXNdA1BpPYaDWOGRldcuuHmwzt\nl5Whb1/2txRXtffYrz/U3vhxpsLSDGLHgJklR+S9s19u0Z+jxmr+NrZtWblleTZg++CeC9zZscoJ\n7yO+rRHSyF7rtDu5X3fmbfJe4E+ktKCn0j3jhB6d6Q6Omav0bj7yceNW3DGOz+LRZo+B1py8t1Zl\nmC1O1Fj+t8toyzNXGf4crwpfJ+aJ7qHvky58r9SjtO6pK+iV346iv1weXHHh3aNtBWO8ynW7vVUa\nkn4VfwKNlgyrUxv648GR9wFGy3bmYPU1p6TEFOrPXn8WERF1i+toQDhRYRL/tsPaGUTLOS0o3d8/\nlPyMQcYT05gxtG83mnmL8TmVIl7D8gor6mnKm+toUyH/oZ23XDCUfnrkUhrJeG7YgaXnncdc1FmS\ntUSNJqPQ2n8ZY2NpXlkd/WdZOgmCQO+tOUQNKlUTef3g2UVpXIcVGzkr7eqdNnQ4Zd/HBoZeajFO\n0xv+qbw7+7oBWIdnW8nf4GrApvXdmWlNWvkk+8r26gdO+ffdfE3K78lay7xP0aFj1XTd7PWBn5V6\nUOyqTJjZrNYClHZSG88uYl17g4XZh8bYU/rSz49eGvhZbPVhvdFr+WV3If20i3/a3evOPZH7Nt02\n8sReknWK2G/KvIbysfSwxffvQUplW/jwhMD/YxWyp57Svzvdc9GpFKfw2h8vDZ5X1l/nmrELS6u2\nme9a6yNdVbLSbs8pD/qu1CbX86go2sVoyU5nzMCZ8Ouz6L27xwZ6LaTz2C489YSQ93to3WxFZo/g\nxoQr6QadURWDe6s3iKi17pfVNtF3qqNxlN9vxZZnrqLfqiQgumPcyTTm5L6OrmU4QhZw29XzLjdA\nkhNgwun9Nd/bXTZlRiux0aHiGvUXJR6dv4M+TMqi9KJqmrVCvYFVXu1cdaCYaftq5LkI3Ji/LWek\nh3PuhsN0r0bPtNK5IV57ZpYksGkUKBER7ddY11IqbOewaZ1aZh7u8qFRPF0Wsyfw/6Cbdekhw9v6\nSpYqVKl3xcxQICevVSeeAfdcpD0pfoXGECGjrPw9o4f1DQw1Ek+NRTutB1qPfb2TnvhmF/fjambu\nUzgx8n3xOo/1lh4gIvrblBGKSWmkQZpSL4eWW2QT5t2KQezqYTMbVLGkr5YeMi9UdILYdBy7xnWi\nG0Z3BCrdu3RUXpXmc2iNGJBnDS020eJN1DEnxQwziWxEel/xmn9MVn1N7Xt5dP4OemrhHso5zpY4\nSmkzgwz0nJ/Yp6tu76qTSdxeuulcw58xWtdR6hnykY+m3XgOrfq7fqP9/D9fLPtsh39crZ+MTYn4\nHestKs9zFNSjV5wRcs16oYHFyOlW29Sq2aumNGXByr3azDBKVsd0ho+LInIOm5VbjFKSDJFYsVZq\nySYi1dqedMIz60WndGI9tyjN1KR/pv0xvIfXvduO816ejVKvrDkcsynGWQxi7vSvn2XHsNRUlXVC\nzLj6nMH0z1+fxfRe7/Y/aDNyBLgNiWQI2GJjYnQn4d9mcDFQefntzjJpVM8u1jK9mg7YJPf35IzQ\nVuy2NoFu+2hzx88eqOhIKVVi1eabPXXtSNND9Ab16mggkHdErj1YrJr1traxhT5alxX0OzPPtffu\nHkuz7xrrSsCsdWr16RZHPfznrlIGWLWKnzhMq0UnZfqyvUcpPiGRCirqQ17TylqoRJ4YQ07v1tQ1\njt89Q76+6kSGuZVGewBrFBIz+XxE9186nGk0kHwUgvQe89hVI+j/Jp8u/4gu8b6uN02D130mZ+ZU\n+n/XjgzZnp0BCSue7QNTzgkN2Kz8iXZNGyJSX89Nzkq2X5eHRGq03sleM7Io8+0XDqN59/9K8bW5\n9/2K5t43zvBaUdKALfaHPxGtndH+w7rXVT+zbG9RyO/kvWtq7Fo428oq61KHiqu5bEfqjEE9KUuS\n0l3vz+F58bGkZdciXoTiDZMlOxYro3/l1Qo3OdGnfxjneKp+pxnrYeNzPYzTyKAY2BfDrrQW3lbc\npqz8RgM+XtQCqyvOGmRpfqjZoyOtOH6Xkh/yujwRidd62JS+TrU5eyMH96J+BrPTKpHfT7/akktn\nnRhcAT6RSmlKTCqd++JyWp8R3DLOY16Xkz3EWte+tBxKz5k2oT3or6xvpqYWadr29n/1Ghq+3tY+\nbDK9KHQYVVaxsYZIsS7z8s2jFF/Xa0z6w4R4Q/vTIv+mfj3qRMqY/mv66sGL1D/E4ZhbmDYVcqwq\nTCTSSS9qrw9V1WvPY2rlnEq/r+ye4IWAjQVLA6eSAT07W7rPeOH7sVI39FZzrIT8iz3zRPbhjj6f\nj65QWDuMqH1eLlgTOAAAIABJREFUlFLmxc3PXElJ/2+y6jb3tHXMFfGRQJQ8U7ccrGNaeTEShFqt\noDSZnLB6Up+ulPlK8GLcCZIen04xvqD117SGiPG89swOGxE/JX5c/FrlQ9WsUOsMVuNWpd0rpGsc\n6uE1v4Nl7SgnKqM8GwqM0PoeX7ttjG5mX9XtmjxA0s9tygpNnCGvhPNe28kqpb9a2jIrfX3KOYPp\n+vOszUsdPqBHyP101YHikN/92OVfNKfzG0REtDlb9r166yvUxXo9Kj1n2toEenv1IRrz0go68/ml\nkvcK/m1rb1ys3/yXw2ibuy86ld68Ywzdo7IMjl5ZnmEcccFCfhldN2oIdY6NCSwRpMT3/9m77vgo\niv797JVUSOiE0HsNvYMQsFHsYkHxZ8cCdn1V7C+K2HsvvKiAoAhSBJESeu+9BwgQIIEEQnpuf3/s\n7d2W2d2ZLXcXzOPHD7nd2ZnZ3dmZ+bbnCw7rX7oCG16+wnS7Vtw+lZdOplSqk/D+gr265z9dzBZC\noxWfKGKEghafFOccatC8C60S0dCP6XRxnKW9q5MWNlqU2xg2PaiomB1+0HUSY9GoRrxmO3e5FzLX\naScphh6u8wdPD+8mn7A/ub2jY22aHfhtkhO03VGV4IH5T16meTrGYz5+gQbXMVD9i5OU6FNuZ9xA\nSSnbsy6vrox2oWnNSriFVmiNEI1+oAxjf5TlwxXDRuO6GOq+6VmalQpBA6+yiIBUK925toI4wcLD\n3fraVZj3xGUgSVyHs+SkC0mctttP+LdC9sEoJ1oZz2PW1hOq40eyhXh0PT1Dbn5JIG7HDpZNt4vD\nTZ3rweXi8OnwTqrzRjqPUMa4keDiBMZbLfdbGli5BTtv/4ABSckPKw5jxX76fH1Na+p7XCjj0e2W\n1+5SCIQ0oHmcpHHa37UVe2PuQWdOm7TFxXGW5mo7BbY/R/UxLkTsg/k2I5Z0pJrfz1h0pwn3YnCb\nJy2k7WnlDiLB46cUV2qjnWRBY+mfHPTaFx48qsRFYf9bg1WuOQDg9dh3f0rfe4BtIhcfvRN6hb2n\n2NxPw70ARwLaJidQlbPLJZKqLc54fLD2R5moPVzvXqtZ6fFQPmsAuKCTGFsZa2IUcxRqkIZJ2+Sg\nFdfOJ5kY60WM103cSHzuzwupBGlTRYrHooXZadPKfEv7qQxtX0d1zOfjdRMP6629T07drNvekr3m\nmQOv65CM7o3l7tmhZEPVs35c2yEZz13dUnWcdc66s4faksjkEgle5okQarbYET/Q5+urq5OPmAS7\nPf6M8oaaRes66vX5Mj+xX2eXthXSxVnzhrCTJbKDJB0PC/TYZ40QsRa2GK8b6eOHBky+ThnYZo/u\ni4VP93emcgvL6vh5eyy3Tnpk4tzUs4k+9a0RtJjXjKCn7RNrVE7gXrcL859Usz81o6SypkEbyQbf\nS51TK9jXYV3q4YrWtfHoACFgOZyWd6vLj9cF9GlWHV+P6GJcuJwjtDEzFGUY+5OUGINFzzg1f9FD\na9MVzu+gRGeOen32LtnvSIhtMEItwkJPq5igQbdG6jjMg2fI8VS3udNUx+ZuO0nVzimTbJJ2Q0+B\nILVcfHRrRzw2sJns/NGz+cg4py2gkj4HUcgzSkZu91gMqcCmc+6z4Z0wakAz1XHW3rUibPZZbpHn\ngR4SoTZc6s2Mc9q5V81CaUFiSTFBgpn5+6F+xqQtpGceVNRrw+XiLFnJlMy24UB6tvn3Hl6BjeLZ\niZONU76nKfUSHUzWGf7BoYT4UbSrmyjL/yRF5wZVMGqA/kdn1sJGmliVh5TxYFrwMAhWLGCxBIgs\neJVjvPj+7q4S1rXwvXurRIEcx2HSAz0140DLA2ifvhMj6JVr2mDOY33VbVE0ZqY/0hxckZxbLFQ7\no5v8cR+lOurUTQpGr47//cfRPrGCNPeRHh9pA2wWD/VrgmXPDaAqa2V26zFuUeBvlrnW7uGj96nU\nl1g2ojwuFbOglGGUBNJ3+OTULWj+0jzqBLt2IcKIY1VgnbIqRZNCIdgqkSqYzBJgWEXfd5YYlnEz\nvryLRUHPgQuFJXju9206pY1h5jsnKZaU0H/n2iddHIedx8+bFnadTmk0f0cmGr0wV9e746u0g5rn\njBDhn3IQdgjGY6lyhESekEULpTuC2eDMz+7ojOeu1g9EbqmT+yU5kS2XVO+mQkDygJaCgCB+rkZC\n+lNTtzK1Qwsx9oWGIt1ODbddCLXrWXmGE1/7/X0bo11dEgmJ8+8lnPLaQ/2bqI7Z1Z8lOoRQSohp\nXfQsbMVOZlC1AQUlwqZeatlx2t3V5eLQoHqcjPRJC7zOWL5YVIqWL8/D4j30eTLDMWylbRqNL1by\nG5LAJsa8GbmOsjBim+2LUzCz5WBdr67voCbiYLKwqa4N/eij3Zv1o0iLIMXjU4Lutsp0QC/P3M5U\nFxBazwNO8mYu07hvFyeEiNAIuyRsOHLW1HW0+OgfwVX8iAUrmh4iNoZNhDjZWGGGqefXltWmSUpr\noyXPxevn5NADKWbLFkgmJ607pXnWvZsKLpUkZko9Rk/S4pFSLxHp44eil79OMX4xXNaCD2/rgJUv\nDKSi+td+hupjj5jI72IKFfIa9WccAaRRMljdPHAA2hswVr5xHXtyWxq8OLg1Vr840JG6WdIdiI9Q\nGpfm8/Fo8uLcACvfmQuhIYQyi8enbAEAdJTESZBGhhPjt09T402iXrOHzlxEUakPHyzQJg9gqU+v\njLUYtuATNRpfrOx70qVj/o5MHDyjT0YhRb8WbJt0JUSBT7Qc6a2j0x8he9mYBSn5uhE4xl0oSXhm\n2SuI+5sUolItNKAdt6zWP6ky4J4J62XnflnDzn5pJrcinSeJupAosPHgNEl/WPeEqw5modELcwPf\n3+8b1SleRKx8YaBpNmMRIt+AU4JuxFvYRCOHlYm5VZJgBaGqgrdP89p151umrx3cTh3obAskD1Lr\nmdI860p+Lex/BqmDiNco6Z4loPngfr6/B966sR2qxlvPLWQG0R436laJpVp8WKaPe3s3Mt0nFlTI\na/SWMzMbDCdh9d1pfV7Sdf9uyTi0QqVNgpK8p1bloHtMqPQvYjNFktQjZTwPHw+MnbOLfFGEQUwO\nnF8cVPpFkrcrr7N1oHVp17iaqXSVOLZ8qrQtKRUnN3dmS5WSlRekJ3/4l424/IOl1NdaFcLfu6U9\nHr+8Obo0qApAP268C0X+SCnqGZFgmLKwWQcb6YiAX+7vgVmjzTH9WQXtY6Lx8lFi9cFsPG/RFVIE\na75iWujNZTy0x+yhLO0chaSk5bP9Vu21hwTLmm7uRe0uqRAXJShFaidE4x7Cvs4ogbpZRLzAJj5g\nKzFsTAudjQJbn7L1xoW0usEw84nPSHkF8ZFJHkaj6nEmeibA63YhffxQ3NlDTftaWKLzDCneRXKV\nWGK9rPh6RBdDWlynQH72oWk7ouOYKqALq6+OA0cce1c2JLu50VBps1A7ixvdxFgvvryzM+62MSkv\nQycAQOaWqnwmdrudOQUpE2GovmsrSoyMc/lBgc2m/uhBdH81A5bHyRr7MnrKJsbeBEHqFwvlfa3K\nMXj6yhYBS5SdLn+VY+zfwNvRPzNVJMZ50b6eOaY/q6D1GOM4divb8O/WYKpFshERg9qy53e0IyTD\nTP7NTUdJKUeEenIKBAWK3jhhmV8bVBP2zmvHXIExQ1qrzt/27RrqulgQXpdIikHbrFYl3N6tPr68\ns3MIegTAghujU/j4NnU+NWmcGMtkJS1ai8ZF1AQ6NdCeBEMpSjSuEY+alc1TqHZvbMykqfXsSZse\nDkKenNSWNU33iQakPs0e3Rdv35TiaLvlEiE0sGUasMMB6s0LiQZb/3pgtD/uSUqUEO81/+XFRtEL\nN9JWhqTUkS28oVYjPC+Jw5Uq/H5ecwQFDmlAQw3SPHNDx2R8PSJE66UCfd9ZElQgMihZaYraMX6k\n34SeoGC1rfMF5vOrkdg6fx3Zw0p3HAdLzlIlaEIPjMAiJESCG7zUAivivj6NVcc4DnCHUQFrxlBi\ntrtSl0gzyql52zNVx8RcyO/OFxKa69Vrtt8srOJWYVlg4ziuPsdxSziO28Vx3E6O456gvZZmKLhd\nHMbf3B7NdUgu9CDNt0E19iLha4Z8ArpBke1+ybOpmPdEkOZe9L9XxuiZ1ZRafQR6/v6hDPC1ug4M\n61IPa8dcburaxjXUzKMcJyxs/7u3u7WOGYC0eKXUS8Tw7ur8Nf92hPJrL2HM9ZU+fqgpFkCRNTIx\n1osJ93bDmCGtMKSxoBnv14JdWdCCYe4NusOFfx6tEh+0Bojd4QF8slA7z08kQ5bTTmdu+/j2Thhk\nwaWeJvzCqbcr3tc1rtWIhnpTaxUrnh+IHW9cTd2PcIC0Rjar5VBMux/PXtWCqpzWd83yvJRulTE2\nWLvZ3lf456Zf1hxRHUuuEoMbFXs9DpwjLJa0VTpl1dd3ieRM7d3OE5gZ/9klJz56qJ+aGCvQJ4a2\npIIsx3Ho2YTNtdgs7LCwlQJ4huf5NgB6AhjFcVwbG+q1jBXPD8CaFy8PW0yPclrQo5lmQeMa8UiU\n+O4/3L8pfrm/B/pTbMZovj+rcT16mzUr74J14rJDODQiqtG61ZH9mmDSA+HRilZ4ROqPQangGuMJ\nnWtcXAjc8GRjnhOYV0f2awqPi0P6+KH46T52ZcHNndWsbJrta7hnq/pmI1wcUFUay+R/9wkS9y1x\nTosEQdIsSF134nas5irSizvfcixH91qeB3BkFT6P+gzfe9+31A8SYqPcgVQsToJkQQknBrfTd20b\nPbC5KWWOCJYve/bovnh8oH3pKFgRCVPA50vICenv76u2sjkhsH1FmWP12avYPDwA+Vioy+CyLGWJ\nXJ9Ocm/UB817ra3HYM7wmJVtkZSaPM+jz/jF2HXiPH3FBrAssPE8f5Ln+U3+vy8A2A2AaoV3+sOp\nVzVOQVwRxi9192zkTn/KcjUtaqstN24Xh74SGtSB/vxZPA9c0bo2Vb1SdhzSe7mhY3Igv5ER9N6r\ndO4ZksLmH53GQO2tbCvUcLs49GkmZ/sKVXciRWCzQghgFXoxJ+L3Ub9arEzx4TSczgEDQEdc0kaM\nV79fTIKWWJTQhXgG10oW7B47CGvHSMhTCP0t8sfVCrJIBOzYHEBqy5pobkNOUTGtiR70aP2DQjvB\nXfOLlbr1chyAHCH+5jL3DkWboYNy7i7voLGUtLAwdgJzBMVUUTU+Cn2b2xsWYIXWPxSoUcmYQK0H\nIQSD45xZz6Mp1qImNeNNrY/S9WLlC2rW4NSWNXV5Dsy+HzpSQZOVG1RDion+Zc0RHM8pwJBPl6PD\nGwtsYY60dQfBcVwjAJ0ArLWzXquICHP51BGovut/DL0g9+OLO4xjE6TMPt/f3VV2jsbXm9Tyx7d3\nwoeEWDq96x/ur6axl37MX97ZhYlGtTrFpBdpkG5SQ+UOGil52NaOuRx7xg4KS9u3dKmveU58Oi0c\ndjMiIRSbBVFhQjsK5jzWF/f1aYwVzw+w3LbeEHdq/Ed73DJhmNSKNFmxkaJw1cEsy1Ymu2D0yKTn\n/3dvd/zzdH/Lbd7WTfvbEVGfO2PYJxaFrFhUT+EQqllt2XMD8BKBSMAMzFh0KzthAaR4eIMMrHAW\nq5eXt/llaq15txPGcrOa1pUarPjPIP28tgDQJjlB9c1wAL6htIaxgIZ90qnv7du7uhJZFK22R/Ot\nvTlXmyWYLQ7SuK1X/twZ+Du3oAQXi0t1StPBtpmB47hKAKYDeJLneZUNkOO4kQBGAkBUkmAOLygo\nQFpamqV2XVzQ516rrqwsIdh/+46diMnaq1tfh7NnUZWy7bS0NKTqnK/N5WDNvKkojK2tW46E9PR0\npKWdUB3fvnk9jsfof2ynTgmBlrt370baebnp/eiRw0hLO666Ji0tDeP6xmLx0RIc3r4ORxhm1Ly8\nPNmzz80VcoFULxTaqRLNIaeI9/ftlOl3Xsq4iVq3bh1ycujyLZnt09GjR5GWpg52FVFWFpyYVq1c\niUpRzm87tm7dgqJj5q0ZyvdZHqGnzdq+Q0ggmpWdbdt90tSzedMmHM6SL1RuTvtaM307eOAAonMO\nAwAK8vMDdWi9U/FYv8rAga2nLfejoFR47iWlpbY8W706tM6R5s7164KsXcUlZHe1tLQ0bD9Tig82\nFuGWFl4MbRJ+BdGuXbsDf2/cuCHwd2lpKQAOO3fuQqWz9PnO7IIb2qQtfy4R9LX7TxvPIzt37UT8\n2b04718zNm/ahOiiPaCNqbDz+x3c2ItSH49D29fhkE11miFtOHFYvUfR+3ZpkHWaTHgkrWPzaeMN\n5YU8cj65TP+6vjtbPi60+rjvnFCuWRWXLe9w48YNOL1PvS8qzVF/68uWLdWt6642Ufh5l70urYf2\n6e87AWDp0jQo5ZilS5cG1BcunbWCFdu3bTUsky9ZPwD6tqVjnnTNqhXLkF2gtrBJSUdY2hOReeq0\n4XpxvlB7jK9ctRJVol2IcgPFBpxUFxXP5ugx4/GybNkKy/s/WwQ2juO8EIS1STzP/0Eqw/P8twC+\nBYDoOs15AIiJjUFqaqq5RufPBSC4GYnmVa26fj22ETiViXZt2yI1xSAY+0gVQN/NPoDUmsZ+tj3X\njgRezwXS6OoU0ahRI6SmSgKB/ffbu1dvJOn54QKYdXoLcOI4WrZqjdQu9QLXAsALt/aXMyf6z4nP\n7g62bgLwC66SZ//xzpVATg46d+6M7YMrweNyofWr8wEAdZKSkJrawUQrfiyYa1zGjzYdOuO9Dhyu\n/XyFYVndcThf3mZyYgxO+Bn/GjRogNRUbe2ZZ8nfQJkwSfTt2wdV4qKIddqJTh07okcTY4ZLLSjf\nZ3lEaZkPWDCPeC6lXQqwaQOqV6+O1NRu1hpSfD+kcyI6d+mCvH1ngAP7MLJfE3y77BAeuKwJUlNb\nE69jegf+a5o1b4buzWoAK5YhLj4eqamCxUX5Tr+rdQqrDmYhNbUtsR4pWPpR5uMRtWQ+Xru+LVIJ\nJDd7+pSh1SvzqeuTta3om6pf/vMtmjVBamoz2bEePXsCS5cAALzeKKBYvcB27N4byxcfAHAY0/eX\n4L37rqLup+3w97tVq9bAdmFz1aVLV2CVMJd5PR4AZWjTpg1SLTD0GbWvBT2XyPnHPQAERZnWOxLR\ntk1bpLavgw+2rwDO56JLly5ocy5bCKyggOV5SvKtGVbFOGenpqaiuNQH/E2eh7TQoX17YJM8JZD0\nPkcX7UWM14XU1ObUdc7I3AxkqhXA0npLdp0CNm1QlZEiLi4eIAhtSbVrIzW1I3qVlmFL/mb8vfOU\nqn4pKqWfBdauRmJiIlJTe1PfRwCKd9GtW9dAvl0pdvj2A/vlCg2jMZMKYCyAfu8uwdGz+ex9IyCl\nXVtgm36qhwGpqYIXwsLgvaWmpgrWnAXzwHEc1TpDgy6dOwHrV+uWiRfXD8b1yOfjgb//Cl6jMW8/\ns1Q4zsGHeBSqBLZAe/7rRw1oii+WHNRst1r1GkhNlXuU9d6/BqsOCnmBu/TsA8xfoHl9n959ULNy\nNLyL56O4TF9iq1+zimzcri7YDRzWV/P06NVb2HsrnsdD/ZpgzDu6lwZgB0skB+AHALt5nv/Qan2s\nUCZqDSl+uydkTYlxJky+2gTtXijiaEQNi4sT8rZIacGjDeJl7ERhiQ8p9RKNCzKiAUP+unA4J8py\nmOQcBY7oT8z/NoSLyVDaXrTHhT1jB+F5ClcZ5nYoylzZpjZeu7atYbkO9dnyFLldHPa9NViTkdSI\nEa5NHfWmixZiwL50TWjo/1ZnbQ1uVrXee+r7afhhhWCdjBCPSMP5PkK6KUMxgVzr13VHVYxtUogh\nAByHyGCFsAlmLGxdGun7+Dx7dUuMHkgvrAF0MWw0a1W8xF3zWoKiINrjxjd3dVUddxpa92dlKC20\nwb1YBM02Vctl3ImvwQkiExGs7q6j3TOxI+YBVOMuBI4NIKQ+apusv5cjedWw3GdwDtK/5u2bUvDl\nnexuqvtPXyAef5HB/dqO3XMfAHcBGMhx3Bb//0NoLrRjXo5mYF6jC0qMzMWiUjR98KduNvcQSBAj\n/EmvmxCo7R+8TJtWtbxAujgYjZZrOwYXNauxZff2aURVTtbKxynAhPDEkYUTepOuOInrpZ+gxcKn\n+1MzLybEetEySYiba5WUgBiv21SCUD1I97tmap4ouZcnr2iOP0f1saVftJj2cC/LdUhf/ZFsQUM+\ncVW64XU5+eZzZzmFCF2OUKazdSguDQpsYuLvF/7Yjgd/0rbeiPcZquTgIjo1qIL3bzHv8XFz53qa\n506dLzQlsCU4kpzannoSYr3o5hcoZemnTNZvl9JMq3krtduZXyvFZIJuGx6xCr2bVmfKfTfhnm74\njWFeZo1VvsYtuKvX5ATXtje9E9AkroCpDoAcMiP9/gznFo1185+n+uGN64LKzeHdG6jy+9LkXbzj\nu7W44kN9d1wj2MESuYLneY7n+fY8z3f0//+X1XppUZWCxSZSWPNYoAo+NXEP4Vrrb+1WH+njh8oY\nhkRWIiNGOjvh1HuXfvhGi+t/JR+61Rm3a0O6XB+ssX7/NlzWvCYeSW2KcTYkEm9Wq5IhHXazWpXw\nx6O90bRmJVzdNgkLn+6Hoe3N58kygsxawYiOko2FU+Q1eukurFCu6+39pEYfO9i6/m34zyA5vbee\nS6SU0v7JqVuo6hctsiw04HZgxqN9MKyLttBlBL1v7OCZvIgZazTfMo1wyfM8GlWPN1W/rLzdpCMa\n9ZkRmIN12tfJSlHm5jWOC24bWmt4HyTEsNXNcWyWpwGtahGTudsFn18McSM4SfeOUrs+GvV46T41\nEVJpWfD97z5JSa+vaKh57cq4u3cj3UumrDtGVfWB0+QYUFqE0Z/QHu3hp8M72dtehKg0lXNFgC2b\nont39RIsXH0J1MSkQR9K+vVIYTC0AqlV5IHL1HlTpPC4XQFh1er8TzvHztmmjlUIIDcDyNyhff5f\nALeLw/ODWqFGpWjjwjbA4+LQuUHQzcnJJLgcx8HtH2ixJjYJUvIwpxQe4aBML5MkLdcLPI80GCqF\nI2S9kkIqpMzddpLqmhE9GyJ9/FB/Gp7Iuyct6L0ej8uFvZlkNygtfHI7HRMzK/o2N45pZpUt29W1\nHm5g35u23yXSTlgJRfG4Xfh1ZE9NT466VelDNABhD+ahsB5anf5pLZSi8sclGQ3tTFoklZAK7EZC\napDchf3On7taUGg1ZAiXMYOwCmxWIGoVQrXpCjWUgo04iGg0Rh3rV0H6+KFIJmgrlVqjVS8MxNJn\nrdN5G0HKdFTeIZ2HWNzqrNy628VRb6B187N/1Bb4OrRubv92sG4a7ujRgDnB9eX+3HKAYNF75soW\n+OpO4xQgSkgXtfL2qZJSoYjuW2aszjzP4/vlh/DO/D2W+2YWWmMn3O+mAE4yaJLvjgOPz++gV9CG\nAnpzstsFDPuaLX74+o70SepZ0Km+Mfc1jfAvLVI5xoN3h7U32SNOVR8LejeVC6CR7kUVazIHpbhf\n69mkuiKnsHlwHAJKPacwZkgrzHnsMqqyvoDAprdxEfpdO0G+33/nZn0vGem8T2tVNPNoHk1tij1j\nB1Gl3bKCsAhs9SpZb9aMuZpubx0ZKhnl5kMcbFZM/CQkVwlt8uCw7zRsgB2uEqyaVGHjSddutfjw\nJayOFEif1E2d66JdXfNkFlahlVNRC+NuTDF0s1RCqpzhOA6PXd6cqLAxglS7yEo4YgXXdkhW5Z8i\n5XHUQyB2T3IPQ/2swBdMWNWmbzqON+fuxldpBy27spiFdOQUlZYRjzsNkptqMRycYzTm13HeHxAL\ne+nWrULPY+SlGeXLk6FMsbdwkqDM6hL64z3dsPHlK4L1aZS7r29jXNshWZMEySxE98RRA9jmKCdw\nc2d2IZ9GeHnmqhaGZbQwsl/TQLy2EUSBTeoSqbXH+vvJfrLfcQZeJNJ8mtK1rUdjbRdPactXtqmt\nW3/gGo5DjNfteMhPubWwiaD57t+4ri3u6NEAA1vRPXwnoZe/Rg9mkpES67F2uWVcEi6RjKsNydR+\nHSMVN8/TL3KXtw7/OA83Aol4OeDDWztizGB7EuGaAU2SUrtgdSMkXch7NTWfGoIFN3Wui8+Gd8L2\nN64GAMwe3ReTHuiBFwabY9CUPgIrpC5fLw3GUYQrFknaeylLWqMEYUzVq+p8zNeUB3uaXnf2R9+F\n0sXj2C7SaCyWK0aNk2nmOuIQ9D7tPYzukOFGd+UmliqERPgn1BauGK8b1SXeVVob/MRYLz4b3gkJ\nsfYmI//k9o6YOaoPnrvafpZfVtzftzH2vTmY6RqaNWlQO+firKUgWdjI+0RO9Z5dHIcmNdQxlYG6\nNcbwlwTvE6XCb+lzqcRyeoj2mM9/S4PyL7BRzBS1EmIw7saUkFDaTyi9Wvd8JbCz3wBsLpERiQAL\nWHi7Ibqa0ZDVaIGZXJDAgMZqpfPxemH+chyzKXfMpQCRDSscX83t3eoDAF6+xnlhkdWKpwWpq4wd\nLJpa8KIUH3q/RD3uDD68VW5tTqmXaFucW8Y5c/MtIA8Qt3vemr/jJNKzLhqWS64Si6Y145EY6w2k\nRGiVVBmDGnsx57G+6EJJRGQFVjbjXq4MnmWUSYYCiMw1bvKDPTBmiHKDXj4UkDRPtFZleX5X0pyi\nNc+YfQpW3zRtzJDd7KOxXjc62uiBsOmVK01fy3Ec096W4zi4bWTAtA51DBtp0iG9QhcnhBBoQapo\n+3jhfsl18sqSEmJQy8/8KM71cVEe5jXQyTUTCDvpiPWJ2fZhZ7FPM8sI8UG5xwN/cpRTlLIb4iCy\nqukNt6+3ncxLRiC9yl5Nq2PcjSmY8WjwPR0aR5WFIgDdGDEdWL31eB0GvemPBGl3T58vstbQJQC3\ni8PjlzfHTD8tvTgWmtVSp5pwCq9f1xY/3N0VvZuGjmTD6tflcnG4pUs9TH5Qm8nRDvRxbcdN7hV4\n0/Ojo+36fx3lAAAgAElEQVR8v1w/mSkt7E6/8PAvm6gonrs1qopFz6Ri62tCEu+pI3ti8oM94eI4\nW0gfaEDa7NKrj2xGGBWWvZvWQFcFW57VOb2RhsDRQZI/9B4DhrpQgucl3gvgTCuK6vndtYe0S7LU\nnyAZm34/7B6tdm9jqtkUn0YDDg7HsJ3aBUy+DSgV9iFGuZI7ugRPhpaujOBBwvvkoN7/chyHe/to\nE79Jyy/cHcwDqZzTvhzRWTLHi/GV8rZqxho/MxoyFysIr8Bm4Vrnxpu1BYG4kH0WNKuSBDaSP7Gy\n1AP+/GW1EmJUZY0gZdIMl0uiOLGH28IGCBqZRhIzOutmTPrh08AKzXqgDl4ItB57Qzvieammvdxa\nYW3G01e2CLiRie8gycT3YxYxXne5dE9975YOjguZARdvG+sUKeFrS96xXZ6Mdm5wth4T8g3pEaHc\n1bMhYrwueBSbnR5Nqod0cwfou/05gnI0f1kdFTSkaVe1tT6HmFGOs1zC+nnUSojBzjeuxsh+1vKy\nigpgo67avV80ip2qVykCNjo6cDJxNmY/DuybD5zcCgDo6id++iPqVSyNepKqCq33pUxhEO116d6L\nMi4z2ID2T6216bVesaoYOiW8DJOlGeVxuXeJtB0WF4s9PME8W1qoe02zmsYvTqQ9NpOn6LoOyWEX\nlEiEAE4j3NZEEeK+TKnVeTSVPmCZh/Ds7urZ0LBszyahiT0qTwiOv/D2owICJtzdzfY67+vbGN//\nX1cMSbGmtSfhjdk7cfq8/jyuxLztJ/H7xgzV8eu/WEl1vdGm0EncJ9Fauzh6hlpbwGu7MLj48CY3\ntyM/qhRarnrSZsKlZCWtIzwveQY2eIyEaj8gjf+0A0ZKk5px9Ftr80yb5sBxUCXOtpuUhYTOrgNo\n6DpNVZY0LjiOUymwlN/PygNZeGXmDpT43aC0yKL09sNB10h5oUpRnCGRCouFbfbovsyusGER2MSH\ndUMneyhs5z1xWcD1yTJ0FgsaGLFnUb9Oh7SM4d6whrJ9O33M7YDy1v8zqBVa1qZjUmLRkIZaA18e\nUH509v8S+Mez18YgbbeLwxVtassW+7dtSI4OAEv2nsGrf+7EjM0ZGDVpE9U1j0zahGd/24qNR84x\nt8cSs+oE+rcMspRyiByjV+LZ7WHugfxBWI2N0rpcOofbEZ/KWsM/T/XDN3d1IZ4T46W8bi5ixoUR\nBrW1T4lDwwRIei41K6utqXf0aIBhnc0nbjcD5ZBzccBDCkunmFfMEvwPwS7X7WhCnJ5S8Lrz+7X4\nec0RLCMk0ZZfp/3dTrinG969uT3xfRmBJZYwNsrNvFcLm8C2679X47mrbBgUEChWbducZ6yzpx4N\n6MWwDXRtQgKMA9HLI6wkJTQLpwNAaRHn1d6U0i7GWpqd27rWx7eKhdXueJtLAaLAG0oLbyhRXjZO\nQQgd7tuMLX0BK2hICW7oSM/Y+tTUrZi7nSIZdM5R1IQgqH34z17q+kWIFvVwQdoyyXPT2eGmXbu3\nKMfRlo2gsrBZqKttcoLmevjRrc4k0DZC+3qJ8Lo5NK9dmRgzzYPHC4Nb4aF+TXBN++B3o7QCdm5Q\nBa0oad2tIBjDZlAuxJ8Sqb2aBPfX+/s21lyvP7y1g93dImLjy1eq+ksSjsziP0rhr6wEyD6I3wfz\n+L3HQeI1pOd3WXO1m77W92O0z1Sels61tRJicKufMIwVTu85w+ZzYZe7R3nbp2gNoyRk48eo95FW\n1gH3lDxvf7scF9ZdXWDDHIa2n7i8OT5ZtN+4oEOYMao3Fu85rTLnA/SvZFgX8gTy9FUtAjE71eKj\ncPZicTnhLQstbPLiiXyUN4HU4f7SKIhoFRzUcR9bfwVmPIT1MUCjwsmmpl2e58Pqxi59bLkFIXZD\n1PFyqXN0FoDbQ9cXBRpUkysAzArV21+/ClEeF+7733ri+arxUejRuBrWHj5rqn6zmDW6r+75fi1q\nIjHWixeHCMy3WkP7j0dt8ngyQuDxG5CO+N/TTTZ5dRmhWRUXNp82TuFUJVbtkbXk2VTEet1ISnQm\n3prjOFSRsGRXjY8ylaeSFqp9z7z/ABt+RFeda2L3/gl0uh6AwMHgdakp/YHgPNWtUVWsTz+nOq6F\nUBoO7ET4nOQtonw+bqC3awdm+eSTGQ8ea2IeAwCkurcCJfYLogH+m3+RS6SIcAtszWpVRrNaZG0j\n/Xs2Lun1+0+H+x1HJCpi2CILdgXCGIBmYaYlFKG2XM94iK6cDny+8G4qeknil6rEeVX53oa41uEZ\nPBrqboUdZtykSKgcI2yYy8vGcfxNKRjYqpaKJEWMhQpFyiQSaC1sALDt9at0vV3o2zR+Z0Mae/Hb\nPrmig/SqqxOsbo118orZBaXwo2dxMlG7/ukNxszA3lNbAn/r5awVvx+lMi2/uCxA7kTsoQ7pSCQj\nMnzG/kWozNHlBXLKGBbuxNXhaD+SXQRpY9NoyI4CxBrlZvoJHQJMnWHuh1Mob54GoZKgaT59WstZ\nxjlz+Q2NPvGbv1qFRi/MlR3zhdnCJtWKl5bxuK5DMn65P5jqIZYr1r2+RW06BrS6IUj8bSdIG93Z\nBlYp8205Uq0pXNshGbUSYlRr6Q2d6uKh/k3w3CB7wltYQcsSCQAJMV6ilwstXr+2DQCgOcXYjmTX\ne+me42oNBlJLvRfDio6ssFCJdg/iooJCtyiwqQjdJm3C9V+sROcG5FApmsThkYjy2etyDFIMWyg8\nFUW3OUfpXHUQKROYshft6iaEpR8izLz7R6TskpIbCsYJalx4ahd7Y5cYImUc2g1xEY5g3YQcIXLP\npnnftAqdguKgi5MW+xgJhw0SZJNISXx85IxVjhP60pcQQ6KFGApLxt9P9iPHnlsk/golCkvKkFLP\nPKmCdKP52MBmsnNOfyJNatJbcrRygHrdLrw4uDUSYvTJ1pwCi4XNKu7p0xgT7+uOifd2pyq/+sWB\nDvfIHNYcEtxs08cPxTd3kR0TbZl6jtORM7FCOm7FqVtrX1tYQp5LwrUPtopyL7DZkXw7lHBBPYBI\nH4cdzFBSTHu4Fz65vWPYB2qE7EEAAHvGDpIl0I5kSEfD84NaoUYlgV1Iak3jgyY2NYrygK96EU78\nO6D3aC4FlCvr6pYpwPT7/T/Cb2HLusCeaD4rj/6aTMZ0AIA/hi1CVmcz5BE0y7IRRXZ5wJR1x5iv\nkRI6SMfn//VqZEOPyGhUXS2clYOZwhCh2k+IrIn9W9REVUpmvzqJkWk9LihRx9bZSaYTrCRYy1Vt\n7MtH6pNsocUmtJRbhYR7FdFBoiyKpH2pHiJkSWCHFe1jysQUPLzwYRt7Qw8XQRALxSarbpVYXN8x\nNAG3JETi9xDjdYedSZJWLFdOqB/f1gndGlWV0cJ+939dcV2HZNSIJ8RZpL1tqn8rjq9AblGuqWsj\nCZd6HrZydX8zHw7mpnS4w0ey9d0Y6yTGEDcwJEitIV6GfDtmILhERsbLNLPWWlI4liMlLKv+85u7\numDlC0HLy3V+htL/dItRxcfZ+fpJitpIseDaAbsV3ErUrRKZwpddKPXJDQlWXEdJiI1ijB3UGZtS\nRRYXcIkkl9Wb2yc/0EPznBXc07uRI/UC5VhgG9iqFgA61wsSVh6nS15qN1zgHZ2YK1C+8PjlzYwL\nAWhWS+4337d5Dfz2cG/ZQtypQVV8OrwT2cVr9efMfTtffB6PLHwEjy1+jPlarPsO+LQz+3UOIbic\nX5of26Ueo2cW2Rf1Y62WPjeAWjCSFou2MX8cCT6+/BBSkGBJ5jJwiRzv+dZC5faC9R31alpdRtxx\nY6d6OPDWYLSprh5PdsutG16+Qva7/I6uIF4a2gZJCTFEC2IF6OFTDLbLW9cKU09EaI/OahKF9Onz\nRbqlT+ZqezfESmSHcuGZgnIssL19UwpWvTBQ07faNGq2src+BTj4qIZGOVIyUsGuvccNHZPRs0k1\neyozCSW1sxXc2Ek/aWbzWpWQPn5oWJJhl5QJLFfpuensF//1LHCWnGMlHBAXpAhJzWc7xPkiIjf5\nZaVAicbCydDf9txBXObaxtS0EXtdlMeFoSl1qOraeeJ84G878xQpUVzqw6ytJwxj35zGjEd749mr\nWpi6tlWSc7HBt3vSHKubFazfG0kWtduaoQUlw2NEzhWM6N+iJtaMudy04v5SglKpywJlrkVa5lxa\nsMY4cnwpMH8MkK9OayHt2YkcgcRvyV79RNkA4EUpZKpbh4a/k2Fa5Xb74nW7kOyEmTq2qv11SuAC\nTzVQLjF5LQCrH8nHt3fCryPlsVhPXN7cWqWM+HpEF+NCNqFdXfMB7bpYNBZ8SSH2njVO6nspuM70\nalodV7SuhZeHtgl3VxxBYMGNtFd1ciswtjrwlj+GIeeo6apmRb+Cn6PGM10TTbEZNhNLNWvrCeZr\nSNhCoJ5etPuULXVbRacGVTF6oLm5tXKMFUVqOVr9GL83D4MrrdPT7iUwrYcM5eFZTXmwp+a5DhJi\nHJJ7Z5lSYrMDu2cDpYIF7IXBbIYQ97lDwJovgH9eUZ0z8y6q4Tz2x/wf7nf/JamHgxtluMK10VYL\nSTVSSIoC8awuon6UW4HNOTj7ZbrhM9Rs3epe4mgfwgEnTc6OTDY6iI92Tps34d5ust/jbkwxV1HO\nMeAt7fwlWP4+flv0DIbNHoZVJ1YRizgdFxBKJMR48f3d3VDfRutoJCFiXSK/6Sf/XaiIh8zc4Wjz\nNPmhUkwoRT5bfMBMd1S44Qu1a/4jk5xhV7MDa3ytqcrFmdyQAKDaPHFS8q6984X5LgwQvc+/vLMz\nFb0/i0eQE4r69S9dYVyoAo7AaS+ZmpWjMWs0mURtWJegJw9pvlO6RNq2kCz/AIB5AQVlJapD0q7R\nxpDW4QRL3U1ueaqBR91/4vuoD5BwbKG5/hHwSGpTQ3K/y5rXNFV3hcCmgrObVBd4w2/hXe93uskC\nyzOcWISI1NAaiHRrUd9mcups5mBdEbtnASX6LlV7C04DAI6dD89mpwI2IkA6EtnjG5xiyTl32NHm\n9CwaD/RtDKB8aM/LG5xwt9vnFZyaAGCAy59Yd9csYMptwGeh83qQwutnQBiSUodI739Tp/ARfZEg\njZ+/FFwinca1Nu7DPr6to211aaF9PfJeiJf9rd6E+ZzKpLH0HeHfc+nmrif4EFcry0JDLhMAy3pH\n3njW5wRXSk9BtqnukRDlceGDWzrolikzuRGuENhCDp6QfFM96FrXCW9+MNvh4NpgxXfbDMpHfCHN\nA6ckW2B9eY7N/hXQgrgRS5C6ov39EjDt7jD1SANKgc1h6CVIFRPghlLInb/jZMjacgKkPKIkXGmF\nxpswwR7yenBzvTr4rKogFPVx7RROiC5TZeypGeyA28DFMdpCbJVTw1K0BFbIa84jffxQpI8fCgCo\nXsnYVU6GPXOB1xOJcVxWQNq/OD4WzOZWJFz3QcZwLI1+Gr1d9nln8DY/AKOYSrNxbhUCW4hBG8NW\nAXpwnOCS4jQaVhfc6eyW16SB/fYNDYpecmJJclnTwbNbp5i7rgKm8dSVLfD+LR2EjTLPA1/2EphB\nd80Md9fkCLHApueaYofiZX36Wew8QZ/2YtJa7Ri+8pZTVA8dGLweAsjcDix4BaS5K8stbIC2RQub\n3vs984QTZjX3NqE5g7IwllF4c2o4NKwhrGOPpDZ1poEK2INVnwn/ntljuSrpWCINq7bJDhoIjqwO\nWtpYofMRTI4ah2oXjGPwAaCfazvxeJU4UcFp96Zcu99V4rwYNYCOHVwJmykWK2AEN3z/SoGtUfU4\n7DuV50jdHDgMMWB647jItYyJcQ1DU+rA43bhx3u6okG1ONSsHONou7SWMyoLxIyHgXY3A82vBC6e\nttizCrAixusOximkvQOc3hXeDmkitJNfy9rOJme+5evVABDQovO8vsu7ngDp44H9p85rno8E1ICD\nORl/HAwUXwAGvqw6FUlLZi/XTmTy1XCYr4MWFONr7A3t8MrMHejbvIZh2VAgIcYbGK8V0MegtkmY\nvfUE2iY7RP4VIkiVQSTFkKNeBhMGWbhYf9MWU0xnfXze+yvxuDugtLYXenvNTS9fSU69RIEKgU0J\nh3f1Ls6YdORSxKQHemLz0XOO0O/SPE4O1j9KsRm7NeEjejZESZkP9/QWYmoGtrLgTqSBQ14PMjwe\n9CvQzktiCVunCP+/nqtQ5/EVvjehQuYOICEZyLaHEMN2vJ4IDCcvnE6hQXVtkhmrw5I0Dxw4nQc9\nXsVMnbxA2XlFGPTxcmudchhRgSgy4Ie7u+L+iRvsq5zRbSoRzigAjTAl6i0AQKPCyaq1fOHT/bHl\nWA6e/W0rAKCwpAy3da2P7Rk5eOaqlkztVEyb4cfQ9nVwddvBIUu9IION+wypQJYYG/oUQaZBIB2R\nom0NtveiVKcF93RM1VC0ow2zwhpQ4RKphsOzJIl05N8wL9esHI2r2iaFuxuWhC1x0rNbpPe6XRjZ\nrykVox095KPq+nrJGJWkSIZpsLE3zxKpENgqEBp83Qf4biDgiuCcRFNuD1vTUqY0OzD4E7VwpUVY\n+/ni/QCAPZkXNOtbsjfyLdMcF7zBy1vbr1gygvTxdnKFXzGh3Hs1q1UJSQlBz4jl+7MQ5XHh3WEd\nUDuBzWOiYuqMDIRFWJPB3h3i69eRU9vc6l6C7txuf4sRsivdM0f3tJUYUSns/tSSEiVzwH8G2FZv\nuEdi5OHoakerV9L692hcDeNuMkndXgEAlBY2h4Stcg1/MDN/cDGQp94sisIt8+Qt05RXPPGQ4tzh\nkMeJlQdc2aY2GlWPQ1/XdlSD4HZodVNCEr5U9Nh+vL9gn2F9//oNushqW5xPVfwz72cOdoYOJFcy\nqaJLazxU4NKBJYIdPRxbY+qyPs2qq44lxAad6SprJLF+1/sdpkWPNdVmuKD8+qIYhWuRRMnur9Tj\n1+R0aVjV1lRCFSt7iOECLxtlUx/qxURLXwE1aPyvR/RoAMAalXH/FkLujMRY8oRX/uCfpvbMBabf\nTzhrTmBbejED9yTVEq6u2LCEHv8WX6oSv3vh3vnAwcWaxfaMHYSvR3QB7yvFL1FvY5Lfpc1O8DyP\nP7ccJ1rdaLFoz2l4UAoPStGGS0d6zB1A9kEbe2kdSpbI4d0b2N/Iig81T/GSoV2ZK7C/bUaQ1pMV\n+7MCf1sR2P4tn3F5xxd30BOetajtPKP1U1cEScwG+b2aYjxslqgqcRG0x9FlyZR/JMVlarfqifd1\n17naGYGtXXIiHurfBJ8O76RdyFcWSCxOi/IpsPl8QG5GuHthEvpB6fcn1ULfBpGVuyXSQbOuvXZt\nW+x9c5BhQkM9vDy0NVY8PwA1/PS8oZh8nYXkWRTkyM6kTEzBD9t/UBWjwZOn07AxNgaC97kwFeaX\n5ONwrrM5tyog4l+y0/uorfDvlNuAn28klynKQ8zhRcJ371/Lm3PHbe8KzwNztlmj7D9wOg/box/A\n+uhHcYPbn1B7z1wbemcfaiioyd++KQXp44finZtTUDvBmLachVVRikgd0aTlRGpxycnXj8HRQ4Wu\nq3yAJZTBiBzNDnRpWNVyHd6wu4FKsOZL4JdhQQWdDMYfSY/G1TTPiUoR3mZRyOXi8OLg1qhbJRYA\n8Mo1BDfUScOAN2upj+vVa0fnQo6VHwuLddb+cPeEGQJLpPbysy42BrnuCI5BiUDQaCJdLg7RjFom\nJTxuF+pVFczbB94ajHlP9LNUn6NgVc8Sdge/7mUniPhs82co9e+MOUm9oxePxnUzr2OurwIm8G9x\niczPMi4z6zFg8i1A9kH4/PFXHs7+PIE8RBdi87tsH88jlitGVS5PUktk7dqjoyVxWFunAvsXAgBu\n69YAa8dcgcHtkvC/e7v5C6j7XrdqbAh6GTqQCAScINaqQGRj6sieVOXMuWFH1hwQcix7DzjwD7WL\n6B+P9pb9ln6PyifpCljYnFUJRZOEeh2vEC2Uz5X98FLh39xjVMVzi3KRMjEFq09ox6eV+kqRMjEF\n3yY6m7DaBZ6olauAeYQjQNbjdlmy1kUGpOQgZZqlWJ7vhB0TiG2sz1zP0rEKWMElLLCVAPghsTKK\naS/Y+Yfw74WTiCs+51CvBGGrdtFRTPSazDcEuat1YAMRaWYWl8RVasZIYNLNstNfjeiC1JaC1rgp\ndyJwvCl3HPWqxuLpK1vgUgLJJdKumJVIcIl89+b2GDWgIl+bEXo0UceN2YZCtlQajlL0hxWE+yLM\nj16X9vqnJvzjtaqJSJTPlV18umcPAQcWGRbfmb0TAPDjjh81yxSXCVuA76s4LbBRancLbNpcbPoJ\nmDnKnroiFJfs/GQFu2axlfdpC2wsUAl35WUmvJRQ3j6IInp69qkJlfFxtar4iUaxJk2q/L+heHD9\nEPa+UYLngTvOfo7+7m2aZfQo/QHgWRntuyiw2W8NtIQsukS1AHCLe1ng70XRz2HF8wPRvp4kXjvv\nNHB8E1VdIjllWGcTnw9Y953sEOlTsyvGORKmzlu71cdzV7cKdzf+3Vhif8xtuQThYxO/tRhvUJQp\nKNHey7RzpWOAa3Pgd8DCVk6UnOWjlyr4Z7K5zwC/3MRwlfYMqGIRbHSZyb7pg1pgK7EpoHrWY8CW\nX+ypK0JB2p7e3NleCu9yh6Or2MrrWNisIQJ2Hf82lJPFJwAGoSTfP0/n01i3T2oLT3r46/HLAtZz\nacxVMy4DB6PvRH3ulOoaYW3RH+v7TwdZJccMUW+CeY2/L1l8dznwnX2U145jx+/AX8/KDpV7J4sK\nhBSmdGkGucj0cE0HIWaudR0DBRcxPizCQNgTu/2anG6NhDi1qnFenC8IPq8bm3JC/k8JJkS9F/hb\ntLCpVqDSItuU2IB9OtRytrKbQ0Drr7MKimUCRaLiHemLkIctgmf5rAPAj4OAwvPh7gk9FI+zdZ0E\nvDusvezYsfPHMG3vtBB2Kozw0W2AS/yzyNxK8bqTE4uLRXl3x8i8mImUiSlYeXxluLtiHpFilTl/\nwrgM4JxF0OA5NMyYBeydpzreJjkBs0b3AQCZ2/Mw9zK4OR5DXOtU16S8+hfaFm5WHZdCOu/f16cx\nnr1K7h5YKmE4C8ZU8Dh24RhyCuWkQBGF/LMa75q84L51Q1t8XGUqkHvUXyyCxNMLmcBP15OZ6YrU\na6LbwfmunE+lFTCAco+iCQvfxzXtk5E+figa1TDYz856zHQbMpSV2lMPCZNvVR/zP5umNQXF2qgB\nzeCVxIt91EtfEA1+YhJRqPC8QAYy+TYLnVW2Y8/H/K8Q2ExtvnzODDw3fBYSEocAS94SctHtXxDu\nnlCAh6fyDvgUG7Nr2tdRxZeNmDcCY9eMRYlP0L6sPL4SV/9+NYrKjGlVvVXWIqpmeXgefvjoNHLZ\nfnKbrTHRupvbwGRTVgqc12fCk05M5ZHWf9sZwSrz+77fw9wTC9ig7fodMmRsBD5sTVfWKYuggcDW\nY+uYQCJvZS4lcdjKY5SEv12E+ftarGDqmsftwuiBzWXHDpwOuoYGWuB9GPLHEAydMZSp/pDio7bq\ndz3tblzuIguwd3ZIxA2FfwYPGLynVbExKA3oXB2WYlZ+ChxKA7ZMIpyUt/2e52vElrLFF1Xg0kWl\naI9xIQlu7VqfrqBj3i8SbLdJmV1GHV1sDheziYel03Tj6vTGliCtv6SC8f73cuAf5u45jfIpsDFu\nAifumihcpiMo8coXZ5dLogLKPDYRB6+fxcuh+7cTnoTNiK33C2YenCo7PqJHQ1XZ3CL5wvrO+ndw\n4uIJHL9gTPEdU2cGomuwM/pEPNzkWItKuXvI5f8eA3zYSjcvisrCFsmWAQK8flKFUocUNmEBY64X\nW7D7T+MydqNUsVmgtfAhmCQ++Fv4Vxq/7vOvDaQ5vL5LnXheCSOLydvzgt+dT1ya/U2dLw6jx8O4\nesDC17XPlxASXe+aieYujblVKaDrCGxbo6PwUFItfFLVoVyl508oXM7Ed2ssGN7iWYb7iv2C3dQR\nwOovAueIrHCMeHloG7RNTjDO07rxf8Cvd1purwLW8CLBzVkJU+qGSPGYoEGBXs40G6DM0eh/NrF+\nJsgojwsNqsdhxfMDcGjcEBg5l3N+l8rETI0QktcTgaXvkc+ZQNOa1jz3yqfA5gCUCzYaBGlap1Wu\nhJTGDbA5OspyOy7wlPKm8/4Qu7N3o0TpHy0upqHQ6lgE5xFiQrIKzgAQ3IwAIJGQ9FGZBFr1vi8p\nBMdOPsfhtEaaCC0zvae0gFxun999TOkapPEseQ7AorHG3XUYWQVZ6PtrX+w9a0yY4HEJWtIS3nzc\nQNjhUoz/uc+Evg8spDeZ2+1pc8d0+e8ECzmPinJRCfkyC5sosA1wb0ZXTq7UqIoLsIJaOIeqCH5X\ngS8qn6xRDimKLwArPrKxQsW8o+OOfc4lzF3pXgcS+RZfFCyDc54MHhPnMkp/xGixX7tnCwqtNPMs\noUq0q5uIuY9fhrgoA8vN7CeAPXNsa7cC5kBiDCXhOtdKDHatpa/YhMD24uBW+OtxZ3gYVOD54Hdz\nRJuJnYiBL7OVX/25/Pf0+wEAowc2w2MDm+H2bg0AAPWqxgkpNwz2eZz/fJ39k7Xj+Ja8ydZHHYix\ndjIwkG79qwQ2GldEXvzmuo8MHJtZSZCK/y85KRD0bhYu+NC/RU1LddiBjAsZuHXOrXhnvdYCU34c\n6MVX8uq1bZA+ntF1qPzcJj0kY/SeOrVxOWMi9lpnlusXECdBnw+Y8zRwepd2WQuWKh/vU7m7msHy\njOXILcrFT7t+Mizr9m8Q7bKwFYjC76zHnXVVlAo9SpfYzT/DXVogvCuGxSFkULrRvN9SxcYHXpi9\nM7x6m1fF/P7naM2SMZBbHWPLJM/FV4aUn1OwI+YB3MwHWYhF74turn34Pfq/suvjOWMrZnGp9lhe\nFzMKm2MeVp9Y+5VhvRGFQ2nAOLb5RmtDuj4mGvuiBIEo6LpkI0QvEkIcI3FhIK39LoUyLG2cZtEK\nVB8eYCQAACAASURBVMBTVoBPo77AV1Gf0F+Ud1oYq3lnqC95qH9TtEk2x3ieHnOH2ltBD99fDrzh\ntwKfN/ZYkiGqMlt5DcRFefDMVS2ZkpgLkMwoxWFaG1fSj4WwCGyxBSeAhW+Eo2kVdmbvxGurXgts\nDIOvjzzjFuvMxAOL3jdsz8XxuKZDMmMv7YfoYiPG7ARR/ixPUe5/ld6BCbsVVuEZlYxN8lXP0bHr\nzd81Cct2TpIF58pj2DhYGU/9pvbD1dOvNn19oE8MuycPJwgEZX6t/6ZTm7DupJpkggZHzx9F90nd\n8cf+P4BNE4E5T5mqhwpp43VP18v4E9jwg8xty1FUTqIv+/dL8t95mSo2PvA8JiVUxozKlaCJAwvl\nv0muen7sibk3+GPbNHx29Aa04dKF3xKLz93ZQRccvZE8TEJhr4Xnft9qWCbYVgTOaTRu8mnjKTY+\niidJ8ObwAbivTm18Vk3YCJ73ewnwkv+dAWPNGvGX7ZIFZrr4qIok2v8W0Kwy3Y9+Z1xIiZJ84Kcb\ngPebsV9rElvTF9JzPxzfGPyb1TOr673GZWhw/iSwQZkDFhQWNomyyEZWSFU7ysGxWcLcvuxd6nrC\nsip4SvPVvqgkHFoq+JCePSw/btKdjeQG9/jix/HH/j9wOl8Rg6CxyeMB/F3WlXjuEJ+MxjXidQOj\n6WPYnBWc3JywkJRpfWDlSEXoouBW1nKBLApHfI9D4Hke0/ZOw4VibfesuRoCWzYXfD68guRWJfD4\nfz+38V2MSqql/z1asJDlFuUi82Km6etFmGFoEu/57vl34/4F95tq91DuIQDA4qPhj38MLEyhiodo\nfR192UyJgmCbdvD7ppjowN85pOSoSpdIWuwXgstbcBkYmlIHyrl39ui+aFG7Eh73zDRXvx9ZefRa\n64hUmymtnqwQ5wnlGDyo/j6urk9Wam6LiUb7xg0wVU9wZ+0P6Rhx/aNL3AsAz10t5NRrkWSPBaEC\nkQ+aLZPHZ3K/cWyNuetMYsTK5/HwQrnFn+d5fLrpUxw5f0T7QlahxxNtXMYIhecFBsk5Twosrwxo\nK0134GDcukhIEwjX+dNcbuSwCGw8gO4N62Hewbn6BbdOEf49yugXq9mufHL18b6A4FLK07+sXF7b\nStGpQRVwdbtonndLNsOPpDbVacVZgUnckGq6nF2iMV7KMfDEkifC1BP7sfXMVoxdMxb/XaudaFN0\nMVKiQDbcWMeexC7NcfKjETSOaOIWI5rB1QIaHRGJeSL4/kqLgD8e1Dgp7/dvCTZuhA8L1rHHr2yJ\n92/pAJyRx6el1EtE1YJj9rVHAZ6PQIWZEaNu8UX9tXrnDOFf5Xc47f8EVlEJMj36cVuzKDwF6CF5\n1uu+Ef7Vsc7KoOGy6nFzcMEHdzmIBS/P2HJ6Cx7+5+GIIIkSFYMDWmqHvBSXhY9A5O8n+2H6I71N\nX595MRPfbf8Ojyx8RLuQhZxxplF0ISioqQRG/fUu1iv59j9qI8xhDmBoSh2Mvb4tnrqihXFhHYRF\nYCvlOBS4XPhg1ev6BR3e7BVLYidoSSh46FvJXr+uLXDZ05rnRYEtffxQPD9Ih1Xo5Bby8TVfA8sp\nrJMGCLh+RcCCsixjGVImpuhahqxCayN+8qI+TX15ghgvda7onGYZrW0gr1NKZaFSfiuS3xdLghPe\nF1UTsbrMGdrrM/lnkDIxBR9uMP4WyntuOFsRMgHaRDt6xBZO9jtPWOyb1ExAbJSbSIJScoE+fkQK\nL8xtJB2nrzcDo3fwu4ElOk+HSXOpfWQd7CDc16L/qo8xzCN1q8Rha/SDmJhrk8tXBYh4YfkLWHli\nZUSs4zzvA+c5jxqVtK1Gx7KdEQho0DKpMro0rKpbxgdgr0SpO+9wML5T3EOV6KUNitWv3xG4PMBF\n/9yybap+WSWU6ascIklzuTjc1asRYrzWXKTD6ygv1WLxPLDpZ7mEu+1X4V9Gqdke6Lg1Kk4d87ix\nwe+ukxDjBdzkD/bJWjXwZmPKicWfH0iF+c8Di6zH/7n8vveaFrYQbnK/2SpoNUUXMhr88WhvxPnj\nA3iex46sHY70rTwhIJTqEEtI3zYndQc9f1ySLJ3x3WuMoYmJCRhZtJ+pqi+3fIn7/zZ2QZx5QHBP\nm7CT4LeuARrrWUQntbcDDFT3lmBGwCrQSwFBWV/2QfNaXj9DKKnvbuhrxv8q6048PsSl78rUQYOy\nPSLtoEbvdB+JvENWgf8fwrPc/7epLjFj2fvAaY20JUbQSmdSrLbGJSXGoDJXgPjiLHNtAcCZvcCk\nW7XZ6yoQ2MdEAuvz+pzpqNR8HNxR2tT24e+lPoYn18awukF2XWI+0vxzwIVT5Ao81pnUmXEwSAyF\n3Az5OdZxEeEkT+EV2HhfUBhLXw7MGg3Me15drtSeCYvOJUoNdepUOYbUr4t760gSr4q5zCQoAbAo\nPg4X3ZHxyYoTXZlSGA5D95SU+zTo3KAqnrhCSDz7695fMXzucKw6rpFLQ97YJQ/uxCbNczkSin+l\nHQ0LBIrd6CK5JjxgoSrzWwtcSncl+x7qV1u/wrpMcyQfIrIKspAyMQWzDgrU8uK/Uguu6I+//5xc\noHTCJTKi3Cy3/GJcxufTTFDqKPSURLQL72edyWsIDQr91uA8RRxEzjH8Fk2wuEig1TtSkm0ptPJ1\n3elZhBIA71VzKP+YiE0/ASs+pitrdR0OxLCF6XvI3A4sHgt8myo/LgpEywzyLWm53S14iXzcKuY+\nIwiyGdbmQynOFp5Vx+uXY4h7BjvYhK3iTJlAKpTu/lazjFULi9PYFS03NvgOLwP2KEKXSi4G6PRV\n8IXhPUiNPCpOAvvnmowLGWFTEIRVYOMB4C2/NC8+9IvmXE/M90GRMNWwPAVxSMPewJD3UfjUAfxa\nmgoAOGngk39t3Tr4RSsuoyhPCMy2UTtuaGELoaVBHPxmrRtF/tiKPefoNadWN9Erjq/A8gwD+vsI\nh+ppG8VtiBtaZcLtMExeeu9PDIp+acVL2Jm9E2tPCjlvlmYsDZTJK8nDd9u/wz3z7xE05+WdfMZO\ni/iSt4D3mjDRSKthZkzo38MpjXyCKhz2v+dmV7A1v9Yfv7RYkXfn43aGl7pNzicf39YRN3eupzqe\nxJ3Dn5Xj8VOiOWpuasx6DFj4Gl1ZGqIwXehY2EIBMc1DaYF/LfX3R3TjVr73rQr3qvXfk+vVsjZY\nwIcbPsRYkJUm2QXZZMsHBfpP7Y/Lf7vcStciCoF9jIEFPBQQ16Sd2drePrUrU1qgCFZbMyjzleHz\nzZ8HWMFZ4eMgWKWVSNfY+xTqeUlooN9z7NfQQmtvUloEFGiHjmjhUM4hDP5jMH7Y8YPFjplD+LmD\nxUBmlk2fWZZI8JqSsfix+Ti/OKazATIU2DgO6P4gEFcN6XyS/5ogdp1QD5T0KC/eqa7h/zvjIeDn\nG4UknxQ4mXcSk3ZP0i0TSROd2AfWWCOlgPfRRvrkrkVGAfQGeGThI3h00aOW6rAdjJ+Fujj5+QcC\nusWNzbG18k2KfwN2SDdHlr2gFe5vnyN3LT5beBZZBUE3pTK+DHs/aoFjU4bZ2j8puHAEYluBmITX\nivLMzByt+/3z2BbDyChWnZEG+xR7Au+73X9jgGszqnJ08bfPeKYhhQu6fidXicVr17Uhli1VjPGc\nwhyM+GsEDpw7wNxP07BTGROg3Q6ThU2aM+3D1nJyGZIb+YyR8njGPC3BzP77mbBzAqZx/j4p3sHT\naU/jjdVv4NgFZ4hwzuSfwblC9s1sOBBJLpE0Vr6trnM4QJMEfuK1NvQIWHJsCb7Z9g3eXUdPHS8F\nc/bDJdqEZypUEZJco3Zbhh4ZgHYLOfE64J1GzNWfLhCs02tOhJa1U0T4BTZWnNgMHKVwffMjX2E1\n0NLMSz/4xXFyl0bpRoFlWuD54PiRCnmbs41z9shwhmA5Wq8t4T+88GGMXzdetjFVIpJcCcxa2LTe\nZV5xnuZ9idfYQRcfaQi6lpq5lvw3oCZmycjeh2+/l6S2KBB89q+vx5ZfML8kH90ndUfasTSm6wDz\nRCL9p/bHgGkDAmON53kMq1cHQ3zp8vpttDDztIxzlmCjha3IL3xIg8tLi4Hjm4T8mVSbI5s3UFpt\nphHIKgKJ3U0QfpzezVT8De9ETIh6Dz1cdNb9xzwzMTv6ZdmxhBiKDRyAl1a+hK1ntuLGWTcy9dES\n7Fwfsvcb1jmtciWkNG5gS3PzD8/HmOVjggeUOdOkm2KtmHGa3HMmNPUsSFk+Gj/v+jnwO7tQsLw5\nxYw48LeB6De1nyN12w1xbaLex2QdAA5b8IzJOwMseEXGqzBlzxRcO+NabD0jz7O4LGMZvtoqj4n6\nOPYAbqxXB1ujDSxtxzeY7+OFU8A+ISZUZD/PL80XEjTnEhJb67i/+yTrim1rYsotwIvHgVHr/RVb\nFEPS3g7+rVwmtPYJrGkSeB7u0ouI/p8wZxSWWXAPZ0lKrkBYBTbZo9zr95PV1GL5ofQ/18HxvOP4\nOz0YzFzGl8kEM47jgoKLxNKUL77kxPrEeulzqQEXIAh/0gftAyszI2HQzX1acxOTW2TMzCdu7qk0\nU0UXgMm3m3LJLCwtxLszh+PR79qp4+UgTLQBpkqG+WBn9k6iRa2gtAC9pvRCh586ABBcAiJB++Y0\ncoty8eWWLwEAnMHtrma1VCjwWMbsQEJbAEybup/XvofMec8API9jF46hoLQAn23+TPeaBekLVMf0\n3qkd79uOuLNCf8zPhZAIbDbivH9R3zZNID4AgDdrAt8NENzitMgXpLD9m9MS2MZplzWzof2yJ3XR\n1nWM3RW7uPZJfll7JtvPsFsALcMJhZ7O2PiNMr/adoo57Lllz2H2odnBA3obQy0Xrx+uBDZO1G8o\n0znCqwv+vci769UWEiJ773Ht+GUppm34FP+Z83+W+2cbNvxIN68oIDIj08zXJZt/RuEXXYGJ1wTj\nsVkx92lg1afAgYWBQ+PWjkP6+XRV0VGLRgXWZCVGJCeZa58G/xsi5CXz+eDy7zz5wvPAP68Cv96h\nLv9eE82qHEnNk5QCRFcCvDHCb6sCW75E4FTOV4cZjSNaWPkxLltxB7yiF7UeU6YR/nrW9KXhj2ET\nIWb+Jk1+JrXpg6YPwqurXg383nZmG5UL4JhaNQBwwMg04X9ldygXXh48ppQNxH9L7oJLeonRjlqE\nUeB/obFgtiQuFs/XrK7bR+URFXZMFxjApJoMSoxfNx4/5+7A8igOOUVq/+YXl7+IfeeETY0LLpT5\nyjBhx4TARKwFpaubCKlFNacwBx1/7oifdv3E3G9aGPUzVBi/bjy2ZW0zLgggyyO4Bkm/KpYpuYBx\nIyx13Xl3z094/NgcJq30hlMWtI1hwNnCs+B5PhBnsjmXjSnTFJxgdV33LfBFd7VGeucfxtduMOHj\nX6ajeTSzaXA4N9Mv95OZIaUY4QkymBkRkCihLK2XrsMytBLO6r0T0wje2RX1k/FJ1UQH2iCAM0n4\nsMlg/aivGAc2xrRlE+I2NRVSG/8nKFX2zjesd+zO7zAve7Pq+MGcg6pjmRczcTj3sGGdppGxATsW\nPI8Tv91pugojC1tJWQk6b3sX3Rr5lfDZBnOyVkyzeDwCPJM0kR10mRYFi7JDS3Da7ca6c2weBMwu\nkVSVKuqzKrDJ6la8ly36oUHUWPg6gOCeyZJS2IIQGXkukb4S9Wau0FzAJAnSB73i+ArJCULh+BpA\ncifVYdqFl+eBMrjxY9lg+fW0AluOTkZ5gGrSeLx2TfxFSDIaiNmjofW3MDgz8jI0z+3O3o2/Dv8l\naZLD3MNz8eHGD/HVFnP0qi7Jx38qX1g4RZZAwH7Gvgk76GnladFrci/8souCzU+CQgmDGwegZ8N6\neKxWDbaG9Tb9kk0Aq2gw5I8hst8XXH53RMp3MWXPFNUxq7nVxOu1+rA+cz1eWP4CVV2Td08OxIye\nzDuJ/lP748cdP4aUHfL9kuO4sa7NWltxs35WsYlLX2HMBpZzlLqZg14PUiamYPn2n4LeDVYgbsxF\nLXpCXet1EuBi7KtLqizMCoEQz4IPWpKP67jem4ZkzTnl8eD7KqES2EyOreMb1IQkevXOfNhcOwQw\n5U8X3XnPmReuZh+crTp25e9X4rqZ15mu0xArP8bwukm4Gtp7BeyaBZzZp3laax9z7MIxPLb4MQJJ\nhM6D3TwJeLMWcJaUZkic0+lfjDIsJ3Tg8cmmTwAAq2NjcEvdJNwvZTOnwPaYaJykzSVJS5SSpCRx\nslPZ6PSaa0P9ZohZ/AiLwLYvSuGzP+tx+e9DS+W/bcg7JkL6YT+55MnA37SbKx7APp+a1UurrAjp\ng3ZTP3V/DVoLDYMgda7wHOYemqs6rtIU6NZp4sPipX/K6759rtxKxoGTuJGZS6LtImhrpO0+m/as\nrRNosQMa6LySPLyzXojNyS3KxdQ9Uw01Ospne9HlQlp8nKn2iS1NuS3wp9XplQcHcK4ApX6k5j4j\nfS8kvL3ubYxfNx4AAlZkacJRLew9uxfZBQz0+UV5wMpPicLSxNLTOBAVohw4u2YC677RPE3lLpKU\nEvhzTazgGvNoUi30aER2Q9+fw0C0Ic4BvlKgWlPgqZ301zJAb/9fAiDXpUqcEcTnkhhQnbyJYYeF\nzQURBefCR+tvpV1dyn/FQDi4mLn6Hfk7cOqi2jLH0uNzvmKTadqFuejXPb9aVoTp4cONH2Ly7snq\nEzQMvdPuAr7opnlaa//27rp3kXYsDQuPLJSf0LvPXX8K/4ru4LKGDPZkBBw+LwjQ4SByOVMgEEcV\nulw4a8CyW6RxS+M8lF5EtHFhjVPlv81Y2G7TsJyRYvRsRMDCZkVwsxDzGhkWtk1KH3HnJnQtTYzq\nuP+DHLtanfn8y7LrMazoVbxdMhyvlNyj2ZY0x47UKlc5Wi6wkmK7AAQfg2ZCWX3GSymeWfoMXlj+\nAk7kCXFoogAQTpZI0rsQF4xCm3LvKZGWkYa5h/U34jzPY/WJ1RER+/baqtfw5to3DRODLzq6SPc8\nDVIurMbDC421wywxnFpYfWoDxqwYo3k+Ep69GcR7BWv2xZKLhpP6sNnDcNOsm+grX/QG8M8rwO5Z\n8uMLXqGvo572pocJGhai9N0z0fnnzvjLSFlQSbAGlgH4K17tAaDE9IN/0vdN3ACUFAjzOMcBXY2T\nsbOCA4ct0VHIImjgXqpZHX0bCsJnFAQB1qU11+bbm/NuWcYy8sbYDOx2/XqveWS7k5mBDULON2e+\nwfC5w1XHy3SUWVLhqhhAv+xFGFujmowQgxbDZg/DW2sZGP5MYMKOCXh7HXtYhQyZ5DhO4npRfBG8\n3y1aFFyCoHlnpDLsFjbuwmkg/yzemTVCdlyZA1QPO6OikNK4Abac3kJ9DXg+EMNGA5L7LQBscPmV\n0sUGiqWja6nbksGMwObWUE4eWUE+rsDeKK9KoUYDyy6Rp3aZu86PyBDYlOB5KiaVQhu1QVK3OSmm\n7Zsm+30BsfDBhQ18K3xTdi1+LrsqcG5Iitwlyet2Ye+bg4QfhPebMjEFDyx4AJ9u/lS/cxc1El2e\n3Eo+ToCovRO133uzBfcJFUEJ8ZnyuDk5CYNyV8uO7jm7B2tO6mtVpJvWk3kndUrKF6A5h+bIXVb9\nWHNyDTOroPLjMvrY/tj/B0b+MxJzDs0xrttm5YKyb6JWzmoaAiOc8286Vx5faViW1qNXD+kGlNRW\nnivNtT0n05NLsEBqLaSZ1M8W6gfal/pKkSNaOcSYVaUyY5XB/CFFxnpTGzo1yPe256Dg4qxk2lXB\nI5BG/JpQSZuuX0JCQHI/POfSWL7EDcDeucF4jtpk6nwr8BxejLuSkzAsuY7q3DyJG/oYj6ANltL5\ny2BiHdt0cRNSJqYEcg4CQcXfqEWjrG+MRdgyVqT1lSBstP6hxJ6/5H9TaNXVQgWIIj5pfiv1j6G/\n4uMcS+T9+ebPA/sF6dw288BMzD+sHTfn432a+ytmZO4IkFWR8Pqq13HnXH8s3Lhk4MA/AAjzrEEK\nkUCZ0iJg6ggg2+8WbmKjzk2+BVjwMoqz5EyyLMq6lX4vhKVHWay3PIp91j2A8sR5ljQXSFPWFJnz\nijKl8DhvzZI2rG4d3FJXPW8bwbKFzaK3YGQKbOCB/X/rljjq8aBbo/qYQYjP0oPSqiNuhKfunUoq\nrsJ/S7SZlT4b3ll1LNpP8CBVyDSpFdygrD25Fj/u+JFcoWIgpzRugDeludo0Ep6Kk9P5Iu3YvzX7\nZ5JPaExI+6KjcNwn3yjeMvsWPLjgQc02APnA3pmt75rEgZMtBKRcFw8ueBCPLX5Muz1C/w8o3KmM\nNtLH84TJQElnHwoYpSOggRk1xkXJ5ne1f3HQrt/ahuu414M5R/S/78VMC9Oli/HrxuOyqZfJ3Xit\nWh9JZEWHl5NdgLSg0Ycy/3HDhSW5IwBtrS4A4I/g3OIm1NivoYZrOuciBLabJJzQQfxvtwIAsj36\ndTflBK+Gt7wa87ybLLDm6vjOT8gSYmd/3fMrtpzeghN5J9Dx546YsX+GUbe1Me1u4OvL5MccsIZt\nyt6JDINnRgOWrejr8x9EijsDH1VNxFktQd8s9qtZbLH8g+Dfvw4P5nyaOgJ4vYq6PANIaXDsUl3r\nuad/s+0bvLf+Paw8vhLtf2qPPWcFAeSVla/guWXayY9nH5yNl1boCZEsvecx5I8heGLxE8R+T98/\nXUa+pTlT6uWYDMwdnMAeunu2mtnPQMiQsZEDaiUbCTNHAT9cRTx1wp/jlE+nsyCZge6qUlYSuGdZ\nOakiYs0XdA0pn53/d/tG9ekJiLK04xlpcdLDnjfW8ndmcR0Kq8CWpbVY87yhZu+APw5O1OSmTEzB\nKyuNXYOULoBGGm4lLkKbTtitY2L9tGpwki4so/QJdqkH1NSEysEfGu4BIvRc/wy1/3+OkhbWL6sD\nFtOxMv7MjBaD5po31+oEkDPCrvirRUcW4XT+aVX/Ravj11u/1s2rJ+8THbTK/SodYxKUAviwahXk\n2KC120YQ3qVWxKfSnjJdN9s7iVxtP8/zAUWSoFG2aVtGckGZeI3ACGkRPlqBrcVgoxKyTZWLZaHj\nOCBDwSwqSZq8w+9edMzEgm0GtTjBQtrSpUWqQB6DG2L0FScAsPLEStw1764AG/L0/dNN9RGAEJuY\nqWCadUBgu3vVGAyuTyaCYfka1+kolmQ5yl5PxPRTgvLvxyqJeEuq9HQKWnm0ds8G011SfvL2zWL6\nNRWWFWLJsSUAgM2n1SyTJJDYoVnaJGH1Sbm3j9a6f1ArSfUEivlHqFhRoRh6oP9ill0IMgFyAFBW\nrBl8cuDcAUFJvOUX4BjZrXC6P93FxXwdQVMJOwmDZj6iXjd4XkgVIKJ6c3N1V2sqVMdx9AREjfub\na8smmPcAsvalhlVg8+mRafBaAhvhGr9wN/OAhtVIVrW1B8ZTzKA+3odbZ98qiyuaIckvU6Z5b+rW\nmLEhyFoo3bgevSCwton3L30OPM/jTGAiILWpPlZSRpeHgs0yJLewmUnqLW3PyQBqUntmUeorxZNp\nT+K+v+/THJ/rMtfhlRnDAsx3zy19DoOnUy46CuQTiVn0cdrtxvK4WEyokoAc3kIOEgLE93Ray/WX\ngJQaKZrnWN6J9HGX+Epsc3Hl/f9pQerKpgUpecfgPwYjrZReuXTW5TJ2GbQEHhkXMlQWnTVFAj28\nS+8xthhEYAojQOLy7Wb5ljkXoCQWkgh8MysLXhkrDCzJdoCHIKiJcWwyvJ4oaK415jkaS7bo6r72\npLDRUybvtQwDxWk+xzFZrOxUjxTpjIkPNnygea44BOuCEcp8ZZh5YKZ2/LofrM/L6vPlS/QtQbbG\nFhfkAAXnUCKxUBo+Dwnhkl6+2Ztm3YSdUV4c9xooZYjtSe5xtz929uBiYK8xkZSI06WStYwHsHu2\n5ru5cdaNGDR9UPCATromo6fv4yVZfnWJctTQ/Sq2/6a2El7MArZKGJy9ajf4OfFxQqxYu2HadVdr\nDDyfztJVoOUgoOt95HMG+fzsGMGmFfUWFWCR6xKp9eGSJtu08dQ1mxECWJFfko/dZ3djzHIyqQJ1\nH77pp0M44ofSyiaJZyEJLKLVzScZtjMPzMTA3wYaEltIQUtWopzgVx5fiVUnVpEL27CO8kZ04xGC\nPw/8GfD7F8fD8bzjqucqnRgKzx8H1n4FbPoJ89Pn66ZM0MObNaoBkE9cWn+LuLxBXawKwQaXFl6X\nhuaUEVLlybYz2zBltzqFgFlsPLVR89w1M65hqqugtABvFmrEQCkwLz4O/RvW03YZNLlk5XEcxler\nKrCJZR3A/837P7y66tWAYHns/DHMyhcEURd4zKgUj39IsWyEhd0Iq1ly8XEu9ZpAYDsM5ba9EjS8\nKgpziYv4EY+Hqn8kVlxbYcCCe3tyEvprjjM1fpZY77dGq4kDWN7Jk7Vryg/4N7plvjKszTRJgBAi\nTN4zGa+sfAW/7/sdf6dru4frfakPLHiAqhwLvt+jn07GLoXWsfPHkPteY+CdRvhc4gb3xRaCW90+\nQaA75PWg246gIC5NJu7jfbK4tv3n9uPjagaupwcXA/+tBhz3z9MXTgFf9QVyM5DlcuGazeNxdJtA\n3pPtcuHg71LSEPYQBaOdSeBLG99ApxSh3cm3C4nHATyy8BF0bOy/Pp/skaMlFOvd0cikmsCfo+Xl\nj2/CkrjY4H0prPNHPB68WKsGnq9ZA7hRyipM+MpjKazeA1+W/9ZKEr9tGvB1X8298xSJ8YQVlke/\nRYVHZApsBTnaApticUuLj8M3R+Waj+yCbE3qdpEl0RCaWjgTQaduObtOKQWhSgAHDdj//An9SCBZ\nwUSNLC+ZPjYcE8z3QqwX3ZJJq2mTTvA8eDy88GE89M9DxLIuuCxbyMx8DppxY4p7PJx7GOPWjpOV\nzynKQcrEFPxz5B9iHZkXM/Hu+ndVk+TLK18O+P2L9ZX6So2f64KXsX7Bs7pFdpugdz8ncU/WYEru\nBAAAIABJREFU6oGZeh2DkSKDElIr1j3z78HiY5Sxc+dPAHOfCeb6UoCF5bRUI8Gzkor6FC/OG9pj\nhAfwH6P8e6xEEn7XxG+rJGJSYmX8VrkykLUP2YUCu6GoVBi3blzgEheAV2tWx9PKTfXAV4ChH7K1\nD2DHWe2EryVQEFBxLuCoQimUEyS5cdwJtldwYyO2da9Hi5SBU61pMyvF45r6yVgdayzYOi6wbZyg\ne/qwMkWPARbGB+9pL2E+MftuSgHkvdMQANDx545MDHzhgOjefqHkAp5dqj2f65GOSGOsaZ4bVboN\nCyDlcAPI1oghM4bgej/pQ6bENVllIT64BJh8C7ZER+GmunVQxAfnSimRSamvFMsy5AmJDb2h9vvX\n7KP+WPktk4BT24Eze/B3pTgcKTyDkUm1sC4mGtfUT8YN9ZL169PAIcpvxLTld988YI4QQqCpDJeg\n1P8MD+YcxK7sXSTbvwqrY2MDxoELfov6X7PuweO1a2KSRgiFOCef8rgBN4P7ea226mOcG+j3/+xd\nd5zU1Np+MmV7741ll46A9CJNqoAUC1VAsfeOBRUVsddrv9fyidiwY7lYrgW7Ioro2hsdll12l+1t\nZvL9kWQm5ZzkJJOZ2cV5/PljJ3NyciY5Oeetz3s5cMaHwBIx7JuWh/jOlcJY/3yf+PVnRoRYOvC/\nZ22NTO3lsuL9W+7HL77gSkpFXGHzAdoJ42nRCYkUsF3m6n6QU7qQJ7w4gcrAE6zlrZ03nnjSgtrk\nER5OQomyCHSX6u3sF9z0qEED9Usu88h4tUKjpAT55IrBz0Io6ZM/Pgn+ezY6aJKl7WDLQY21UB16\nqQe1gmbN7Wx+y79zM1vowMUbL8a6X9dhe+12/7E/awRCE6lwshorP1+Jp39+Gtd/QSaIAYAv9wbi\n8dXKIyf7LP2yUw2KXx6wkNB/TXamYZtQCbpWnjNXZaIuVyjw5sXA5seBG8n3TVJmJLwiI0eqa1OS\nAT289WFiH1d+eqXpYWlqXJJgVmFrFyzXHvExeQGiV0jO6lpOm4PjLwMSMsxd3wCzigowXF6/jZg/\npJ29IfOwTdPSoy90fkRprIwmqXA6cS3DuyhBPZdsQYt+nz/FuDGgtBjlBnWdSJAL0XIzxfSiAtye\nkabY181gRXYmjijpEjwhj034LjYGb+gQoknrvNMgN3MRI5Mdy68+5rVjNMeMQhDV0EuF0IsoIKHK\n5cRLycp7xKvXlcZKfJAQjxML8uDVUWjiXfHBK6Qyb7I0T/e4XTgtPzfAlOiH/uoh39MuFw1o1BQg\nph7NYYOqrMrkxoCiIBkIj339WCz870IsM1lMu0m8FxIHBXWtF2H6d51LUDqle1c4FOg5Rfg7jOVB\nyp1OHHQEinNx1dsMz9lWuw0DnxqI/23/H9b8uAaPlT2GBT7jVAg9RFxhG1hajCGlahewMenIvzL0\nXagS058ar/9pop4PAa0xAW9ZYRqbpu6IUQpveZyJ0DLWYoQSZIuCXuilhsUIwF+1f+EPQpKujzHM\n8KR3TsJlH1+GbbWByWy2zluwIRdy4ZdVEXjmF3IYiDrPSOqPlINIu5a0wb3+1+toINQxaWpvUiRl\na35/RcCzwNN+zg5lAnb3NjYPbrjzI4zwznY6NbQGERDM1vy4Bie+daLwwYDFVo1VkhDeVK3x/v9x\nkN0b8AzFminhQZak7TJlqRLFvXxskra9yHgnbRZiFqzSAKPyNLJ4hwCg3IzllQKJQa3G4cBmWokA\nOzb3rmNNnyLdISd0crJle93kYjIZRyixx+XEO3IB7zZy8XIJEvFVsCHSHtletcftwjOpKWi1wOC4\nKS4W70rKEcO68JFRjUAbcFJBnsII5oFAjPaQ+H5KQjPJQ8rKYqw4h2Gr20UopWJ2v/1o90eKzywG\nA71ImdVZmcoR1GuZmVnmWYwzhmh4ndag9YT8LRkFPC343e0O3G+ZwhZsMYvfWrSMu3bsWC/w9Pw2\nOVaooizkv0fNsFlGWzNDBVOeRLEtgYDP8F3//F4T19HH1OJCTCouxPexwr36jRDOrcYvYums93e8\nj3u+NR9VQkLEFTYi3rtON/EyGDS0GxT/84M8qcrzPwHnPoCYrPc0i52/RonBq2lFKbmfRneq44kk\nFqYWf5c8h+11WUyvj/Cz21XXONhyEG2E3AZJUZPCA7+r+E4RGmYUjlreWI5bNt1C/V4K59TDS3+8\nbNiGFW/+rQzx+Kv2L00bM8+aFPr2wHcPKBRAdQkCTkabS61/tma64mOiz3h+3ZOeZlvJ9DoLBShJ\nMEPlb3f9OyOc/8H5uOfbe7C1cit8vI9KtGA4rnUn4JEfHlEcItUVpBVCv92A4e5PFg/bu1cLLLCP\njBc+PzUn8N0eupVcmn88B4APkKrw4IGfrNHJv5nMUJaFUTk/Iy8Hp+bnkue13NPPNjQtTqGz7hoh\nk6PUKOI44LN/We7XDiwuyPN7Afz4/nngrStCel073uDvY2NwutxDEM6i3AkGoccySOFua1MFZVfa\nm10EQdQcaZL0DlqD0bXW/rSW+h0HDr9WBWqL0Yzkany972v6l6pQswPtDficwfizo24HkfGbtBoe\nU1SArbEx2PjzOswtysd/K8Tx2LFGiChvL9ccM5qZocypbZcpSVajzOR9yH2Z1Htlxw+aJsqDfWeb\nP5fCom5UtoiGdo7DVxbOtVNW6ZgKGwC8F6Do/zXGjQFrB8BTGXzthYomdiY6GhK6PInY7A/AO5Sb\n8NGvHs10/qPVlGRJHTxGs5z7vGj3tmPtT2uFkIDWgEJKs9S9/ufreKNCZ9FUga9U5o+Me2Eczn7v\nbE27vEShcPjgnMG46aubcNLbJ+H3msAzW/szffEHBCZEOdReqykvT2Ees1kYFfWWg1QcmWRF3LRv\nk8JLR/I2NrQ3KBTrpW8FEpsv2XgJGmTKEOv6Ry1ELMOatBRsNrn40CxxY7rqW+RZEW4lzAw+3v2x\n/++Htz6MI7sW4YBKafto10cahVuDA7/h5d/1jQp3br4TF2+8mN5AR4HZTaOxVuO7ZwIsjNs+0W8L\nIcSrySGrwyMXjD1tRFIP23ADW90qotUzV2SjJBqvdDBBRRgVpz+Gx1NTiHXBeAC3ZqTjE9q7xvPA\nto/J34UJ1aTQxvVnAV8/oj0OBmF2ltayXeNwYEBpMbbK1hDdGnyM0I6dbQ1ptUOYPN4oXSEA9aik\nItmkkEgzTIyBGq7Su2nyh/EAdCJo7vrmLsI5gfbyfe+rfUI0UH1bPXiex4C1A/DAdw9oTj/tf6cp\nPsvDDfl6paIz99dHjJkeAbz0+0uGbeQ4sSDP72n7oyWQC7XT5cJbiQlEw3WwID5VQg40D2sePhpv\ng124ODdgoHjVBHEH1dDMgnhx3SV52Fg8dala2cQTBEsskzmoZjuwKhXcfnrd4b0uJ+5NTzUt8XRc\nhU0GqSL52mcI4Tqhgt5DdQpeoz55yvAkKTzAaMHd1LTbFCmBLjgOa39ei7u+uQtDnh6CtobAgkdS\nEDiOw7++NWfR5bc8pTn2Y1WAUfJA+wF8vOtjJMcI9+Pd7e8yFyKXY2vFVuLxL/Z+Yd/9ouCzvewF\nKY974zj/33pKxun/O11h9aN5PGnz5f2d7+Pn2NCFK9AWn88tJOU+mpoS3GAM8PTPTys+21X/zgok\n75daWLzgwwtw0caLSKcEIC80KsOxrx2L+W/Ox76GfXjqZ+37FjIwCId1Dg4nFeThRTEUzgdOSfH8\n79HawrIqHNWlACd20WM/CxHqJKu/Sev5hCuBMRcBrnggLhWYcbtu8/sy0vBsqjZc9aXkJDyXmozz\n8nLIJ/I+oFYbqhZK8DyPu7+5259/6z+uavdlXCwW5+eCTImjxatJiahwOgNClgwkz++atODXDId6\n/jIqO8NKGOfikSuEf08neLwd7AqnNKpmUTmRolB+rvpZ09ZMGoEURm70q2m5ar7Xz9eGSBvhd+Ga\nv1aWadbhyqZKjF43Go+XPQ4AePSHRw3rtX0q22++VRkFqz3WlZB9Lid+1CHKkjxG/nvH+3B8YR6u\nzMkS1jgCqsWw658bdmH9H+sx5OkhzOPZT8r1uqeP5tCTqckYVFpsOnJl5HMjFZ/rZTKsHabQP2T3\nUmKaZgKlUDYTEkXSqjTS+6rqZ94T2iZDl7FfiwG8fOxlZMPrgDdm4970VOAzehjk5dlZ+L+0VPxq\nkrSpUyhsElo4Bw6IlrpIITclDtL0X30MQy0hCvY3GYf30fDvtBQ0SxOH9yksK/LEVpIiYGSFmV+Y\nrykoa/Syr967Gud/eL6fmYtFuVIzOgHA5vLNis8cx+Hvg3/jrPfOwk1fmS92HUmhngSSwnag+YCt\nhbwjhUeDEL5+ERkA9ZRfOYVzpCF50VjyRljxV+1f+LX6V2ypYPC+v34u0BCIFJhfkEdtqqjFll6q\nbcAg4LaR3iNPoMg5arYb9rHP5cJWtZH0VHN5gKxQ/KIxogKdqkM9v/BZYNxyAAJ99cmScjV1NbCy\nHFixExi4SP86INc3NGQk8zSj2uHAbyY3bhYMWDsAv1Vrc2lqWmvw5E9Pajwd6tVpZXYmyuJiFZ6w\n72Nj8B3B0/6H243rszNxWl4O0EMVCXHZH/AmZGvOsQPamamdz82MAqIXQtkBhfdt4lXAqlog73Dt\nCQSr/y6XkyifyEcl98yrmWABcx62dm87Zhfm42ODebbi0xXE43zZC8BPxvVr5fDUCdEor/z9hqYU\nUHmjYDBe/2cgRNoMsQlv0ftB2ut3ut3YrvNePZQuGBbkphwph/InSo5SldOJU/NzsfCHexQlTVjw\nF0l5JDAdvpokeK/GdO1C9phWaVMzSJAbkIw8hrtcTqwzyI82C7WJrB0W0id6TAFOeB4YTwjPHnWO\n8nOv6do2cg8mwdtmFnFyb/Qrp1Hb/V9aqn89/alK62lrdKiMBYzoVApbK8dhqY5wYifKCJYvNRJj\n3bBqu3AEcesfTk/DCIkVTRXOIP9EUhDe2vaWhsFOjdd02K1IUAvaLHT8531wnuaYk2CxlLyWr/8V\nHFmMEeSbpLyeixGke7yjdgcGrB2AAWsHUDeoVm+r5tinez5lHyPCQEluEaZDcSxAqlunB4/Pg1Pf\npRTUtBleALUWSBL0YMQa58euQB7CrzoJ0Kflyzw7ToLw0iSsBZ/ExyksshLOzc3Gf1T5s/dlpMGW\nmVg8yriNhbqKipGNFeiuEZMk+171O/vOArpPBiCQpXwbH4fGdmPaZpY78IlMkCZ6qlrqMK8wD/MY\n2QDNghQqJtUwVK9H8ju90+VChUurkCwtyMMOQtjteXmCQrY9xg3ECoKfF8CkLgXYULEZPndoajhq\nlDHCnkdjwVO3fCsxAXdkpuNhUvqBi/COie/qA2mpuFb0OGyJI/9OuXFnoqxunVv1TlY1V2HoM0PJ\nfRAUuYrmCmyPceMmUm7rqlThf9AJnR5MTxVo4Qn46yBZMZD/lru/VRYol5ix5QQnzKVSIoRfvWIa\niez+/k0JLbeaIUkjTpE/0S2iIUQ+o4lrxgMBr16zpxmn5+UEiFQofRvtzwsK87HWZJRME6PSIV35\ngtxs8+kTHAf0nkEuC5B7mPKzkxCNJFeoa3dZYraVYw6BxIaGSvFaarKf0/NyyMo7AzqVwrYmLYUp\nntkOLH7/TOp3nDhFH976MDiXNpmcyUJml3zL+6hskEaKGQ2tDg47ZJu1WdFsw9/WkvNdnL3P1kwd\nt3u33Ot/bjTWSD1UNAc8HjSF755vgmMK+jY+Dg+ohOfN5ZtxwBn519gOb5PRe3PdF9dhd/1uf7iN\nGtUt1Rj89ODgB8IIHziMNVE0+B0GdjqpNp9dkIexSALmprhYzCnMFzwJD41AhdOJ8/JytMQTEMKV\nXiBZXpMChjMeQrFuKoYEEZby21umTyHPIu0E5eQti49QfMditDG7Lg4uLcYvaou/z4NKgmIUDqj3\nDfnvmdlFW3Nqlw599z7Cb2hwcKh0uXDzVzeHzND0gLo4MmEN+YVi0PhMJURL4Yp1NCNMVi/lZ9Gj\n+mh6Kl4Tc3poyyCtxpZ6zZOIy0j4hVCLUGIhblGP+a+N1H7k0BPSaXlhekqLvJi3HYgNg4i6ySPk\n33pl74OH8iCt5ra9TMn5eku2bp6Tl4MaGXU8QI46+Xdaip/0bdO+TdgUH4d7CKzpciUt1mBv1ZYt\nMMbD6eS83s/j45ReavHSeqkWZrzKVDhd+C42BgNKi4XQbABQlaGYplrXluTn4uKcLHJ5MQLM3CXa\nVNkUBLtu5CU9m3EwlMnvEhyC3eOF315AbI55gQKwMVyP94JX1A8JgBR2yIK1qSmY1aXAb4E1a1Wy\nq0AnB063NIGdqG+rV5QjCAa0YrYSy+Tp71rf1J5PVgrPp757KiYWsysNcjTb6B0KdrkdsHYAUSCR\no9nTjBmvzsB9W+7D/jbte64mrQk11qWwJ14DQj0e1vAsVgxYO4C9cek4AMAtmRnYFuPGLpcbaK5G\nqzgm+YZ6wOHQf+/jlIaDr/WIbtzWC5XC24omvXtWMk5z6FeS9VJRWFv4Z3VWJjwQwsRbfErKEKoA\nIbPiWpnzW9U5qY8eSezbLpCY8+RC4BOKsCn9udlueu5y/n9CtYprBU0T4YTBvosmctiepoSb1bQq\nc1rf3UEPEyaxDFP32nevJh83gc/3fE48HkYeTmaYMc7SsL5xu//vnRQPm9ei3EZbw3apHBDjuxYp\nwji9XUZoznk4PQ2z1ytZE0mzfotsTe7NWOonWPwU48bZeTm4c8LZptZHS4RjhFOeE9+zb6TfLntn\neGjXuB/iYvFBYgIuzM0mlBfTwszcD4Vy1WEUtu02WRnHvaDdwO3EnpYD4ByByc+5lHVI2n3tTJPP\nqOaUOo+MCs6J36oCgq6di6lfYZPN8fo2Cj21DdAU+ub0a8nZDZ+Ot5IG0rOmKWySEBhM8XZHyGzV\nnQuX/6H0gjZ7mhUFzcOBPRbWrJEmPHJ24Z3EBCGXbYaQByjNII4yl/Y5nZjYtQjX6yWWHwjkRvEc\nEDzfHxk8z+MygudP1kBz6A2WUgEiBpcWY+RzI3HUy0eZG9jgpZq7xyLK/V9aCjF8CYA2xMcGfLVX\nW8fTTwXP84p6pkYrn0f1C1v0hOTS8bJ5RptpwcPnUlmrLVrq9zuduFGc71/Ex2s9oUSwCe9NOYfh\nCZb6iFDWEVWDtDepa4K2OTh8HB8HVBindEh4gDI2mhL0LSXs0y6o65+ywKpxWo6DvLFS47WoF9LO\nM5qtnpFn42ZCuOveRqFEkmT4/4TgvZJ7ctRkLqFCrWjE2N4aiO5iuWW2eNhk8F9T5mF7sLgvtb1R\nDqgEo1HKf8cdBiV4rKDDKGyzCSEYNQ4Hfg5BMradcCX+rfi8/KPlGP/CeP/nA80HiOfdt+U+3X5p\nFjkNdn6Bzyu+8X+0kwghUC8l0Oms9bPsu4ABDrYcxIEW8v0LBe7+9m4MfGqgqXPMKHh20NZ3LBqV\nAIKhyrUDI54dgYe2PhTWa1p516wm1QeDy3OyBEpmFSuaNBL1rCwXQ99eM0PdHNwQNdjmduG2jHR4\nmqsVLHIaxGhDMZ8nrZ2SEaX/PHAE4aCmtSbQBjrvqvT89n2vaeFkeL/3u1w4iZJTRaSuDhIe3gMf\n78Pzvz7vD6Na/4dACKH+jbTRN3Mcqh0OzC1S5tk9qUc0tOxNf80ijuPgq2Or0WUW6kgVM8K+vAj9\ncplRYK/bhQWF+ajVECSo2e5I49HexccT7BGzTnz7RA0xFwnni6Q512Rl4My8bE1YmBqPUmq80iJO\n0kyQiFjBrPWzmGqu2g4GpWGnxZScryi15Ixyy/5sLievZyahzq0k5dPbAcX8l/KxGfY8S7IRy6az\n+TH/n4862fPP5JAb2OQeOpLhzazB/wuGGoNydBiFjYTxXYuwMETJ2KHCxl3K2PEz/neGpX5aZZvF\nhyZo1u20Uzzz05MAlJZXUohNqLD+z/W4/GPrOT1mw04/26Ol9jcq9k3CFZ+QC87uqNuBR74n1zaK\novOBRv3cEbGX0Rv4eGqKaQs6D05fqBhv7h0eUFqMs3Nz8GxqMra9ZxDadQzdI6GAtNHGJIIjUkQD\nuJBcVoSI8jKNwu5kXHxraYnvFM98MPD6vNjw9wbcvOlmf8F2iShCbdWmiRpvJSUSc9RIx+SQciId\ncNhT94wEVb+nbryA+dRv4uPwTmICnktO8rO2yVFnGPLI8KN6zcBGsJNYGeH1P9nIt3gAbyQn4cv4\neGUJDhtglA9lB/z1LAlhoKECzyBsP2Mzk6LRFeu9oQllrGutM25kBr2ma3KVeYlUKkXpjLnxyxs1\np1tS2PIHmT/HAo4pCoxf/ryuzNZGfpgpyQFIBF7s6NAK26GAPQ3WLIvywoQX5bJTIn9tZ7jCvh+A\nqr86ZMw6C1Z/tTroPqa9Ms30OWqlXY4Htz4YzHBw0IZis1HYg870XpRLwnUipR6YiPsy0rDeREgh\nExK1G5vH59Gl+94rWi/1GDABAEmMa6No7fWBw0s+ci08pHdl6Qi7XU6UO50a6zhbGJ0OVMQndqDd\n1+4PY1cLaW2qvD0aocK/LRR4VePWTBN1m0ygWvUbzDD8AoJSeSsl9FcT8imWdqh1OATCEtX3+5xO\nbFPlPjXPfwJ/cvbkdJvBOpn8sHbdTFv7Doeh6uz3zwYQxogSnw+/eoyVGLvrohqRmMQZlMOwmrvH\nfa4tbh8U3AlA3gBFpM0FnFCygItRKrkv/k6o+2dlgSHsK3I0cRyeTUnCLpcT1xcwlgI7Vz9d5RFZ\n+DBp/w91Ck+HUtjeT4jHp0EwqHREBEsuYnYeX2pCuTPCty4e+PBGW8Msw4lv938b8mvQLENSOYIo\nDl3U20zpbxaWSHIu/8P/PtNea7tLFZAw+OnBOGHDCYbtggq+KpTRox++EGv7TcbAGjaKcWpOxYQV\nmNGlEFOLCzVv/v+SErFz6EmmhqgQ5btNMHUuC07ud7J/jTIS7vTCs3aYCAVTR2HUtNagSodh0k7U\ntzdYOo+Uj6eZAWMvAVZW4ILcLJyTl4P6dqVyeFRxIR5T5YO12uwhYfVE/C4j3rmLoxgoLKIzGaqY\n4WlBIx8+bx47QuTN/JIxMoEBNU4nkCSEeZ8r1bDkgYp2ke/AZazkauZ176P9fza1NxEJdwAADrqR\n7N70NNyWmYGZRQV4lVXPzhEKme9wuTCsaxFuUbFvyhlnScr2P0phuyQ3G+fm5dhGQNIREGzeki5D\nWjjg80ZpLnQgFQtX45avbgnzSKIIN7ZFOL92zmtzLJ3nz2HjlZ8lmF1xDBPnKZutESsoS9+66DUj\n8Lc7Dnc1kd9VUxh7sf9PUpmGmdUfmepOznIYinU2JTaQZ2ZkPNQTNVboEb+osGmfdVKlSIF0Z/he\nyuiKn6t/wUM/Po4/3YLQ5uOMn9ivNb/qfu8y+bY1tTeZah8KhEseuG/LfdpyBaEC7wVfuzs815LB\nSLy3m4zDDxvFyg1Jifi0x2iFx9ms3Ktpf8I6oWA9gJHPjcTgpweT78Vs0VN4qsCuyhcEwiQPiuWO\nrOSNz+pSgFaHA+tS6SGwck/z7zW/47EfHoPngA17jA46lMImYXeYaq2FA2ZDNNTQm2oHwrCYeX1e\nbEi0OUTqH4AN26zVoosiilDDIe57f8a48WxKkqVEerkX7iODHNtg8l5Zc++I6Hec5VN58CirLPMT\ndJDwH0bmPxIGlBbjlox0xQbsC4Eo3O5rx21f3wYAeO7X57D6S3qY+GabmOTcOlbvjgpSPp5v0krF\n5+UfLcd/vv8P6kVB8LgvVtAZP0Xo1VUDgHSHuQK67+98n6ndKyZLjphBioVi9lZAq7cZEvi8lmus\nBXVZQyOK/r32Wszxs3uluXLzrUBmD//nNpOeZbkytqNuBx7a+hBOeecURRtSqsmAH27HPbOvh7do\nuHDALRjROABvJ5mXW6tbqoEz2GoYyp/M0reW4P7v7sft3wZXa9cIHVIz8gGoIyQB/xOh92JN7FqE\nmyutFcdmxbMtO3F3COhJo4giishAYjO8JIjwaXnB8CsMvC+TX5ps+TqPUBjsjOAF4Kz+C8jqYdiW\nhsVvLQYAHNeTrPjtDdKwuC41GRfUBOoJ+opGBtUfCe9sU5aPoRVDBgQa6mlNwRNk0MqadGSQWG7V\n4U1q5auy9SDWlw4F2vdR+zXyalb6QsPWF0rMbGzULYLcKcH7UG2irp5d+D5OX2HXI0J56qen8OF2\net0+Pdidh1jf3iCEdH8qfN5aaYLACUoPG42JvLGdzPK45sc1WPPjGny26DPLZT0keH1eoHAIU1u5\ngt8qEvu8VWXud5tFh11Zt1MKF/7TYFT345sQ19e406FvIYwiiiiiYMWAtQOwtSK0mxoADCotBgoG\n29JXbWutPyeVVqbFKuTLe3sIjJR/1/5t3EhEhU2pCA9ufdBcQfcOCnWNM5KM+3GsvpC//OPlNo4o\nipCh8QB+NyI4CgHqDKKkNHNQhju/uRPfHvjB0nX/DEE4Py18kwePD3fq5w7T6vuaWb+qmqvwbrW1\n+yHBDImLvKVD/O3tOs/LDnRIhc0HDn9FFTYAxnU6on7IKKL4B6LNfE2ZdrEe018x+oJJqNeUDX+H\nJ1x4wCuTceOXN6K2tRbz35xv2F5egqWqORC5MPb5sRizbgwAoTaknZCLOO2+8LMJhgK0vN7Ohsd+\neEzxmSRUbmsIf95TpGEkk3RKbLw5Ipc9vFU/dJCl1IAVnJ2nzxZsBXqM6BdtvEj33Ae/I7NnH/Pa\nMf6/Q03oAQC/Vf/G3JbjAbQ3A5vDF7rbIRW2h9NTcV12ZqSHEXEMKC02ZGzriLxGUUQRRYjRaN7T\nM+SZIUyej5oQl474vvL7kPYvx4u/v4jX/3wdv1brkz8AwFf7vvL/vWjDImIblmR6M6QbcgbeL/d+\nyXxeKFETYfbTjoKPdn8EANhdvztaP1OG/yZpyXY6PX5+LSKXlZdvIqEtjHXogsXb297bj1hlAAAg\nAElEQVQmHjdae/c07MH6P+m5whIkha2xvRHP/fKcLiHL5SZIkuQ4+/2zzUVReFqBDcuJIdWsMBPE\naUsMBMdx0wHcB8AJ4HGe528Lpr9fIuCa7qi4zSB/7A2DFz6KKKI49FAdJJlRJMHCDsmKB757wLa+\n7IKZDV++WV/+ibkC46GAEYnGPxHnf3A+/qr9K9LD6DD4Mv4Qy1/rwHhi5zvGjToI7v/ufkvnVTZV\nMrWTjGWjnhMKcpeklii+t6uU0sQXJzK14wDgp1eDvl5YFTaO45wAHgIwFcBuAJs5jnuD5/mfg+07\n0qDWfggjPj3UknujiCKKoFDudGL5vs6zkYcSj/7waNiuNee1OTiuhzHzpLnQnY4VXnZMUQEOa+18\nRBihRLBMz1FEYRXlFusKdib8XvM7Uzu1R63Vo1ynPtvzmW1jYkGjg0PjhktRE2SNyR9MOKjsiH0Y\nAeBPnuf/5nm+DcDzAI4xOKdT4P0dbBS6UUQRRRThwk+xMfij1TpVfhTWsK12G+5hoG3+z/f/Ye6z\nI4aXSXXGoogiisiissVekqOOAskI8snuT3DjVzcynfPGX28oPl+48ULbx2UGFS4XRpV0wYwuhUH1\nc2JBHnNbOxS2QgC7ZJ93i8c6PQ6VJPAoooji0AEPoJmPvPe/s+DdHdaor61iZ/1O5rbvJXQ8hS0K\nJVq8LZEeQhQhxs82sSbOryOzHUahxPGvHw/AnHFrS8WWUA2n0yBs2cUcx53Jcdw3HMd9E65rBotf\nfzFOVI8iiigii0OBQjyK0OGHyuConkOJ5g5YbzQSBYQ7Kla9sSqowu+siA1TMeooyFhYmB/pIfyj\nsLthNz766CPU1ZnLOzvrlbOo3+3YsQPJjuRgh2Y7+howgZqBHQrbHgBdZJ+LxGMK8Dz/KM/zw3ie\nH2bDNcOCPn37RHoIUUQRRRRRHKL4OTa0dTStIBjGs0MNr9S8EpbrtEaZOaP4h2HChAnISMswdc4X\nDV9Qv+tW2g31vo7n4Ty23r48RDtWic0AenIcV8pxXAyARQDeMDgniiiiiCIKCzDDKhVFFOGAnVbk\nKKLorIiuzebg5OwrITO2YKxtfdkJO3l3g1bYeJ73ADgfwLsAfgHwIs/zPwXbb0cAS82dKKKIIopw\nwhv1gETRwZDvieZUBos1fenhXlGQ8cKefZEeggaf79hl3CgKbK3YaqvCVnagzLa+7ITDRj3CFj88\nz/Nv8Tzfi+f57jzPR6ZkfBRR2Iic+JxIDwEA8MS+/ZEeQhQdDFEz0qGNBFfHISIZ38RGaR/uDKyM\nOHOhVJ0Bw8p/i/QQTGHjzt2RHgIKO5ihoNzlQoqv46zQ6/aUR3oIVJz49onYVL7Jtv5u/fpW2/qy\nE04bp0M0cFoHv1TZV+A1CvvBhaiG0fcnfY8npj8Rkr7NYnhLK97bqUkJjcIizq05GOkhBI3bM9Ij\nPYQoQgi3042xucMjPQwAwLk1tZEeAhExzkOw9EAnIx7J8kZ+vKkdSDkCgM8iVDd3QAu5dmL/tmio\nciRxXs1B2OdDjCpsunjml2ciPYQoKChMKkS31G6KY88zhkcUteuXa3BwDiS6Ey2PzW5keL2aY8ur\naiIwks6NE2rrMa6p81N0VwVZqLMzosc/SPCY13NeyIxRZvBwTQs4Rn9uuMN01UV0OzvuqDgAmCq4\nHsVAipISCqyurLKln+wQeQQX19Vjw669Iek7Cuv4Ji7O/8wL24N/9hFR2JKj61IUQeDGMTdizbQ1\neHza44rj/drY6uZ1Z3hx0mLTLI0tXCg1UDqjUGJKYxOurq5BUiezYkchYEGdfUxbHR1Dc4eCs6gA\nzWpoNGxz+kE2r9mPBYcxCwgJYXyvlh22LGzXChdmNDaFVWHr32qPspMchJetbBt7vUISik0KwLdU\nGBehHt4cMOh1lxmJjmV4r1gw30bGQDl4AMUdLDw00shPDH+phmtalJ7/TfFxOKKlFQ+VV+AcxnVX\nDxFR2DyuyLiNozg0cGyPY5GflI+s+CxL53MM1lmXw5jbZ1rJNEvXNwuS6PbP87HYg67RTQ3Z8dmR\nHoJp2LlRJbvDU6snmbemdDk5J3Y0WMsPchLWtukl0/1/37u/EkMZPRP7U3LhmH67pXGEEvlJ+ZYV\n2g6NH54PafcjZcpIN0bjphHmhUgBYYFUL/DqA2x18ox29GN7HIsnei3DpdVC9Eqc6l3KT8gzO0QN\nQjZrbew4/hAxarZ6w+eBlZA66VrF5yOahRzg8c0taLFhzYqIwtYRwj2iOLQgvRgssGv2FSYV2tST\neSSGYVEtsMGF31HAqf79J2P9Mes1xyZmD7XcX46oBNtltSehMzy3Y7ofo/jMcQ48t6ccS3NHM50f\n4xCss11Tu6Ki2VoIFuk+XTV0uf/vyU3NGNPMFhbcBB6O0iOZ2voMhJHRBWz3gAWLei+yra9wI5UQ\n3j61sSns44ixKaR0pk2eJyuQdsCJjMQ4Y1naTVqJ/GOFyJ0CT+BZcQBWjbjK5Ai1aIpJCroPEnzi\nm5/p8cItPttbVR7FM/ufztRXb5uU+UgjHAXv1ZjWY47i85TGwJwrtyGVIZrDFkYsqzVX1f1QwjE2\nWeJuGXsL8XiMif2HNuk/WfgJvl36rf/z7eP0rcuRNDxken14em85poVww3yiPMpQGS7M7DYzbNdS\n52deNuwy3D9kOaW1MZ7dux9l23Zi3V7r8+WJafokP3ZSI4eiXMvmJZtx/ejrFcecAAa0teGMggn+\nY8/PpHtRFvZZiE2LN+kagtTsiCNUyhdpRcr43/WGbUjwxaXAwbGJCEZ39JGpj9jG7Oh0ODt8Dtu/\np/wb90+8X3NcHhIX5/Ph7V17hPy1MEBu4uNN7F0unXvdO4Kh+ZIHjHUmGInL0pzyiaGpJG91sPi2\nZIit/Y1Uvf8f7dqDLdt3oWzbTsxSGQIyEqxFJB1KKDv27ZD2r14v5fUpS0QD+OTiydb7t3zmPwxd\nU7oG3UcsA6PR4lp6pXajDW9OBMMTjLC0zp4K9LHO2KD7oG1V6XHpCvaxkRmH6fbDKswEC9J4OQCD\nWtuQEELBpdCjtQZ3VkyPoCWYBbeMvQVly6zXkTmtkd0bSqx9Y3EejWlqRh7Ba2AGg3MGIydBv4yG\nw6ZpzhIOefeRd5vuN84VB7fDrThWwAlrSYY7YFXvl9WP2gcHDglufUr/6pZqHJ8aWJfUawNxRdr2\niW6f1PFwDuY1blNcHPH4vRPuxacLPwUA3DfxPkvj6IwYWzgWE4snAgBGZPb3H5c/r2EtrSjyeBWh\neh+NvRdrp6/FBxaYgccQPEg903oAAE6srdMoNut378Mbu42JKkqCVMouGnIR7jzyzqD6IOF4Ud6x\nGHlMhU9UbdXd7m+uZO6DGnJq83adK0Y38IXDgFX6OVIe36ETMdORcN0R1+G1Y17Dh/M/BKAkyEqT\nRUJJ80mKpLCCqMLGCDu8KeMYwvauqqaz/6lZEdVYQWAOnNXQiG+2syX3frIjcnVVWFkZ7bCOsz7J\n1Ipfg76WHSD9Ylb2tiiAeFc8jmIMm4kUglX+z2hmD5HlOA5ly8pw0mEnBXVNPZhhMe2S3MWwjR0y\n2ZK+S/D4tMcN1xD594VJhfjXhH/ptlcrahIudxWIHfJ4ZF8F7hQ9KTNKZhDbFyQV6F5Hwg35k3FT\nZRXW7yaw4hJ/mrW1ggPHPC+bHeQnNLnrZKTFCQROg3IG4b157+FjG/YZXxgIOpYPXY4fTvohqD42\nLtiIh4dd4/8sNzyQnkqmOwlDcocgx+vFVpOkHIMJIckTukzERws+wuXVB9FPzrTKAT3a21EqC3un\nFT/nAGzevstyQej02HT0SO3B1HatCS+9NDOD3Ql7tLVhfl09Lh12qdCfaLxy5B2uaPdTNXuZp+mN\nZAMhq/zyockadyz9tng6P0Ny8KDvJOqQdlbEOePQPa07shOE3PAXqlrwr/2VOKK5WVEnUJLZgsm/\njSpsYUR8kN6Qy4dfrvs96WG6eR6xsssu1PF0pYcwL8rol1869NKg+mchEpHgYGzLVf2lObZKRu8r\nF2aW9l2KMQVjNO0HxQeYitQx9GkGnokReSMACMnS6hw96ZVX/5JQ0QZ3ZrAaWzZG0GAhYVrJNBxm\nMhfsouqDSLSwlC/ovQAZcRkCeY7FTUR91lGiJ3O2CY+mk3MSn9HX22UC4oAFTH0dni0IWSTj1ooR\nK3BYpr7XHAB+PPCj/++e6T0Rr0OSNbXrVHxxwhfE7+Jkv2l0SwumiyFKdxx5h6btfRPvwwl9TvB/\nHpVDziksSCwAwOOYhkb0IHg+5qqiLB7qcyp17EbwwacQLnLi6V5Q1p0jLzEPGTbsM16evHYutZh2\ncHTp0ZpjJ/c/GRzH4cnpT1rqEwCy4rMQ64zBWWI9O8O3jPf5vd1mM17UXuij+ASccfgZyIzPBAdh\nnZgfV0Q9/4Jqco1KjhfCD2kFoY1y8EiRQYdTiG+GyNY+IwZKaTTZQUaCnJDYA9dNvMc/Tkn5ceQo\n1woXKTJBhnl19X4lW281HhOrH00AANkM7JtTG5swt15YZ0c4U7QNVN76nuk9DfsMFumx1muE3nXk\nXbaMQR5BkuBSRSzo7HNXj7za0vWG5CrDXGMu2IIpBWPwaHmlch7IXh+r0TRRhS3EsJMe3igkkuVh\nXq7jwQsV+re2GipsNCu1GrvrgxeqWSl6uV/e0BybKztXLsycdfhZOKLgCE37O7MCyfYLRWryJ/fu\nx+imZry/Sz/sJV8MqeIAPFquDMewK0QsigCyOgA71l1H3oUXTOaCnV5bBzicTGuNPPSwa0pXfLzw\nY+Ql5gHx1vKL1GvOnZVV2LJtJzJN3Eung6ywyQ1cnNONl/bsM2SEm9tzLgBBcbv+iOt129Kwad8m\n/9/Z8dm63hyXw4U4FzkcMPCLjF/WScWTFAagRDdZSUyOSVbQv8s97cOaW+BUXas4LttyuOvgnMGK\nMV067FK8OudVYtsMmYDZXwwBTI4JHRsn7ZmcopNSIMe1o65FaWqp//Oo/FHUtkNz6YQ8pPDZzLhM\n5QFH4KkYm0V4w+eVRVFQElT35EIuU2FscAPovVvwGFY7tNJCCuWdNZIrSHVC5ZjQZYLGezyQwSiV\nZOBFle4SLcBsamMTFsgM1NS7mpQD9D/e/7F3em8AwJhCpQHWaXAnrq+q8SvZHOViLd4WxHNCEOzo\nIKI+yrbtxD0VBzCktRVl23ai8LDjtY1U3vGxhWMxIUQEN2MKxuDeiffi2ZnPWu7DLk4AueJlxhFg\nJcrlmaOf0eYcJ2YCU1dr2kqhz1EPWxhAEsZZ0Dejr58hK1gZO8mdRKWSH9LSQkzMX6LawGgLSShx\na4Ux45lRDosEOxTgIS2tTDVguIP6yqHH58H3J32Pz0/4HGlxacREeO6n1/1/T2huRtm2nRja2opH\n9lcqPJ9qLKmtx9VfrqOPzeTxfwomR4BxTQ83VVaFlD3RjxFn4KkZTxk201gcJaQWom9KqeJQr/Re\nhv2pvdUOCIKhGZw36DzDicsB6NPWbhgFIG36Ds6Beb3m+Y/HObVK1YbjNhD7kBPATCme4re4qwU4\nQD80Lzjqee25l8V3x4OTH1QI9PJWp9TWoVYliHvAg7Tz5DF44kfmjVRYq2d2m0m10h+QMaBlxmfC\n7XDjqiBY9c4fdD7xuLT/0YQrGjnNY/u0RhD5eu10KL0nrDnrR5UcpTmm2csyuiG2xxQADOyMPi/k\nz6uI4EXt2c5WRJ53aD1Cf7uFt/O7OG0uuOk9ZRwbURHHaXMz1ZT5cvQSiRp6i/8Oo7CaGtUizfB6\ncSqDx1U9kt4ZvfHlCV9qiKCcLvbcI1pe3R81f/jv51yeLQ1EDY2CfO0BoP9cbcPc/oqPMc4YDIwj\ny1kbF2z0/31eDdnTqof/TP0PJhdPFox/OnjPQm6mWSzovQCrjliF1455DdNLp6NXei88PeNpvDv3\nXQAcHi6vIJ7HUspJjYHZA8lfxGqNVVMam7Cw90JcPkw/Uk4PHUZhs1Ibx2r4gxVYJbvgweORqY+Y\ncoGSFuknpz+JpJgk3D7udizqvQi5CbmK7zO9PqLXRc3iZCRC9Gmlbwbjmpo1NL4slMQlHo+hskoS\nhkihSKFKnCXl0HE+/Q3h8bLH4eAcSIkRwhFIceRqizcNo1Qhj6fX1uoSivzTFTMa+hPmbyRrNvVp\na8NZNeR1SgoLYg3RJeHkg3VC6MuYixRrgrA5CeiRFsgf0RNEOZVXR8+zwILPFn7G1C4rPsvQuip9\nP7y5BXEUpe22cbfh6G5HY27Pubh4yMWK7+4YHwhDlAR1WsRCSUqJf70fmT8ykNNC2C69PqXwtLTv\nUv/fDuk3WXi+Ewg0+Mtii5C38XbgwG/+Y0YGuCx3CvH6pHxnNWiez08WkklM4h0xOKrrUbh65NXY\ncuIWzO4+2/AaNJw18CzicSlsKslNpkcn3Y8cgnKak5CjWK/VNZvUxrcP5n9A9S7K69wBQJKaup3j\ncNL0h3HGwVqcWMcgs7x3nf/PREIYIqvRlaSwJYoGhsWE1IhhLa0Y0NLqD2v2X4+2hw2zHm4bL/6u\nc2q0RBkv7C3Ht9t2+sOqLyWEapZt24lU2b2RMzrSGKnNvIWaZ7iyAi4TMqCXsp5dNOQi/9++0vHM\n/V1WVeMPEZ2klrmcFBPZwqc1h5bMe4XYVG4IH9XSiiEtxvluj5RXYOWBanw14LLAUAzCRvO8Xkzs\nMpH4nZmQzcuGXYaFvRdqjk/tOhUAMLfXXHRP647U2FS8MucVDMoZ5PfyjqMYADhwePPYN5nHoA/t\n83dndMfKUSuRGZ9JaM+GDqOwjSsaRzy+YsQK6jmZBnG+KxkLKtqNByc96P9bbrljXTBI1idJeHI6\nnLhm1DVE6mf5wzy/5iBRoTV64JOa6ArYw/sr0VWlAF6nusdnBFHNXa20bzhuA16c9aLiWJuPrFAG\nI5LnxOfgnePf0X7hMxcbT1LYrIzr8x27kGUwt5N1PA135k+1cFXrGO8161NRQh6m8fTecqZzPqXk\nm50SpBHn/v2V9nrEeGCMShk/WxRSXFKuRBDdL685CKQVA1AqpvIQJB/vw2lZpwEQlBoa1MI5S4gK\nBwAJWQDBuJIal2p4vgQjmnYupy8AINPnw2bKs5/ZbSZinbFYNXoV0uOUuRRyy6+kSMQ6YzEkR0uz\n7eE9+GbpNyhbVganw+n3osm9OhJRitrDphAipN9kwWAwLItgua38FfjmCeDbJ4nnkO5gGoXMaXJT\nMzXK4J257+CcgeegJKVE43kC6N6tWHcC7p5wNxN5CkuEgx5o3mTSyB6oCyhsw1N74rGjHsOELhMU\nbdq9yn1N/RtzEnKoAuWdR96pKEtBem/iXHG4sKYWsSUGde3am4AvH9RtouedkoMjCM8ecWwkT18C\nz+O5ffvRXVV/kzp7k4X87LNrahX05TTIheEkcf8iyRsuCGGORzU14/MduzCgzbhv+VtIMtrpgelu\numKxvW479Wu1kX2EqPAMFI1yUm5pSkyKbH6wq5DL+i3DuaJsxVzCiLD+xsen+0sByfN59db6WZQU\nklHNLVhY34BEmSLLElYoZ+KWozS1FE9Of1KTZ9w7vbfGKLKs3zL0zuit6YOkxClAWIvljoGS1BJm\n54puBEESwZOZUao9ZhIdQmEbXzQe7RRvBimURYJefRDAXi8ESaDomd5Tw7S2cuRKHNnlSH/+BDUE\nSQd5shj1GSUzqGGQasgf5lkH63AlwTJldE+k+iyF7R68uIfAQqZpr0QRtdgyw9OQNXlp9kvITshG\n38y+2HLiFrwz9x0clnkYMTmcsXdq24KkAj+TmQJDl5nolTxHHIxKX674zF06yd0Svti+S9f7Ni4p\n+BIUrHhmbznO9VkL7ZAwSmbNG0TYbJO9Pjy3R6nIpVnMtzDCxKZmDGjR3/CfZVQqASDX69WECJ51\nsBYL6upxk0hg04OxUCk1Cb9N38t9/uDzMShxEMqWlWktxzrITVR68UlCmQMACocAVxkzyG1avIn6\nnYcnrBtJsusnZgEryaEsAHsOLCBstF8t/gpup1tTOw0AUmOUgo50H/pl9fMraqf0PwUA/MxgEuQC\niyNBtKQSwmOMwKkEH8FAoV3l5EeI4XYcTCuMhUmFOHfQueA4ztBirrxU+DzZNCu1/K59umM3yrbt\nxGGX/AHkDRC+5zh/vpqUw3bp0Es1Xngjr/xzRz+HZ48O5OvInzv1Plz2J7D4RT+DKpnQU99QV9LW\njusPVOOR8grF/vwdQQHmM7TEO+3i0Fw6W4x6BFTjoKjMZ/l8uKdCh/J+zxbgx1dQklriPyTlp8qH\ncXOlNnXCaC+UwIvPS+5NVZ9J64lV/6ltVRqjL6uqQbx4b0Y2K418w1pa8d22nXh63378wBf7lZ5R\n+aOI6to1B6rxsp68Ne3mwN/9CflqEi75WfaBMA/d8bhq0f+wpPcJeOboZwItVfNdPrYphCgqF+cK\nvGsZ3enjkUGKJGn1aA2iUpjg0NyhGmcEL/6nxpFFBsYPBmTFZ+G5o5/DRUMuIhqn9LC472L6ly6C\nNzbeOiGLhA6hsK0evdqQsp4E9e39dMdufDXpMXsGpQIPXmToCsDFuXDZsMsUx0YXCqEspIRrVjYj\n+cJ1x5F3MLPnsGyXtDYfqazWcxoa0ddCxXtaFLCZcITpJdPRJ6OP/7Pb4UZhUiFemPWCZqNWW2Pu\n2l+J5wkL39TUgDVGugfjbKZ6Jy0qDoOcm1SvF/Pr6v0K25k0D6XMipUsE8xI9zUxiDofZjGwtQ39\nfC6UWJgrEuJUm/IaVb7JKbV1TFbWZK8PHIBXSHTnNmF6QyMOVykuevlAJMXSBeDaqhp08Xjx6L79\neJQSUw8A/9ofEITqnZTleqkQ5kITFKUwESOoz1/YeyHukV3/wWIt7fHI5hZgyDJ6WI4MCe4EhZAg\nBzHU+fzNgbEZCNBGyoJcWHQ6nP4QaPW+89DkhzAsb5ji2GGZh+Hl2S/jzAFn+o+NyBuBW8beguXD\nlHk88nFwYy4C5jwAdJvoVxhIkEKqlf0QoHMPxjU1YxSReY8DwGFGQyMKCMa0yS2BY6/MeUWjVJPy\nOmhWdLOhx/OKJqE4udj/mXQfzIITvQrxPh/VqCNBCnEtTi7WzB9S+CsAPxPwgOwBfkZSQBUKRrsN\nSdmAOw49TdQ1U3c1p6ERGT4fRje3oG9bO64cfiVOPOxEuKbfrj25UBvSPFoMBxtKYWkEAJ/qorcx\n5KDT9vde6b2AxyYCLyvDJ/uK67n8vDkMZGCv7d6Ll3QUm7MP1po2G7BS7csVhD6tbVhWV+/fC6YR\naPxdkN4+DsNaWlHmK0ZxSmCuya+6qL4BvQ32UElemX34qcK6QkKqTNmhvI+ZmT2wYtTVCiOXev77\nZJ9JCruH9wDXHwQu2AJ0Ga47bv/QxH5I64RUsxDQeq5WjlpJNIbnJOSgXya9riUZymufdfhZ6JHe\nA6cPOF1xfHDOYP/fGhIhqxh7ieKj3CvPiogqbKf2PxVfnPAFMuMzcfbAs02fr/awpfl8SLS7iqII\nHjzBCqE9JoEkQGT5fPhiO90SvXqQkHeR4fMhJz4HM0rJ9XqI12MNk6AcN8PqJgcPZcFOvRw4I0iC\nwDUjrzFoGcAZA84AEPhd05qa0Y+w8J3XxPvnixSTf/pBIXyOC2FNnzgDD9tnO/fguqoa401mJZk5\nUP3Ujfq5up1OUU7CtYxhxTmyRGgj1jA11Bv1MB1hQg9SGEovtUDkVc7Jkc0tKKR6gsn1jCSQ7u+L\ne8p1hQg9HNHSSiXSSPV6MaWpGYuNmO+yBXIQGluhVXDgMHVOYFPJSczFlOIp/s8f7tyNRfUNfks7\nCZK19I1jBcZVWpK2nKb9tP6n4dxB5wJxqf41kBNFHwnqWmY+CrH8N0u/wRcnfKFLzS/H+CJyXknv\njN4KCywHDrO7z9b0K98PHO4EYMhJguB05sfAtVrB97Jhlyk8NfL+taB72BbV1avukH9AQEM57qis\nwru79wJLZDks3SYi+3DBSnzeoPPQK72XhhxCEurkips0NhdnPklfjutHrsSG4wPEL1ZrbI6W5fs5\nmg+KfSmRI5oSB6UEvAHze88HIHhOZ5TOUMxNdcikhHsn3ou3j39bc1yusBkZDwa3tOKw1lZcQiJ3\nUO3j6p66qIxDSw9biiuGXwF0m4BktTeqeKSm+3HNLfh22070ZzCASdCVDQoF4wZP+c2vzCHnTEnK\nCe08Grq3e9BHR7Fx8UBv8bcNaWkFZMZLumhIH8P4ovFYPVpg/HMTjFLs7J+B1tISoZnvZ5FzQ6X3\nrKvHg7JtO9E/qz/QVcz5Tw8uzG52t9nimOgetnyPF4/sIxgVOQ7INPauXXfEdZhcPBn/2i/UoVQb\nED9Z+ImiFmd2QjZenv0yAIFkaHDOYOrakBWfZXh9PdD6lRTEU/qdgmX9hEir2WnWc3IBALlK5XJ4\nHpuiK0dEFbb+Wf39nij5hvDZInqy+jxZsqx88H4B7C025iIrUIeHEFkBVa+uos3QU5DM87gvdZhG\nCLuhsgrHySbyBws+UCTKa8YiCg8KpW70hYa/wQhmt0wewIniM3HwPLp6yIspS78ByxP7KFjbFv3x\nfuA66lN2f03pPNDw9d178R+VJyQ/MV/xeVLxJP/f0xoa8dX2XYhlJEkJFAGlLP2M1mse0CU5mO81\nR57TSCmIqwDHEcNZWBFcBpxsGLTjqhCMx8srdHMtZzQ24X0Km5V6wSwVmQv7tLXrKoESnIyGlQ93\n7sbbu/YCCB/BzNQS5UbKcRzQ52g8vbccK6qqAdX6l+2V7LD0EW44bgO2nrhVQaH+3rz3NO3yEgI5\nZhcPvRjnDDxH+CC/XbJ3QF7LbG7Pufi/o/6PeP1YZ6whvbyU33bF8Ct02wGBEHeaoU7hfZI3cTgB\np1bBWdZvmcL75z+VQLuupulWX4IMVQu50Pn3Rn+ftHsk7ctya7z0G9WeNtMhkXmjPfIAACAASURB\nVElCOOm0kmlY0ncJ6tvYKPklxIjC+KDsQYGxif/6VGPpBjfe2L0X53QNhNSPLRyLsmVlyEvMQ2ps\nqsL7e8HgC4jXjHPFoShZW8vMIXtecs8bCQk8jxf27qcoHvrrg17tzlkNjVh5oBqFBgRupPgLl0HU\nBr0z4X1gMnnW7NAcspu02gEhrH7jzt2Y2dgEzLyT4Sz6vH1o8kM4rudxAMje5mLROJiqp9RKhh6/\nwViUc3ge6+esxwfV4r6RoPTkSLUYbxhzg7bPRFFRGUkm50G/4wCHCzhMvxj06jGrqXUk5Rhx9jeG\nbWgYlT8K9068F0N5Yeapia/U+caAYCC7c/yduGG08Nvlyk1JSgn1WmaNPjSWXyniY0rXKTil/yko\nW1aGo1K1jLDMSO1i3IYBEVXYaAt8amwgh+DPg38qvpPXCpGf/eZuQbjB/p/8x2xfDFQbFJFkQtzI\nJSGgV4aMGnuEEFIzaeurGrrZ4xsaAXCC5aSHcQjTTWNuwsLeCzGhaIJiRAvr6vFAuU48OSM48EKo\nk4jrDlSJx5VwIqAADW9ptaU+mJmXrnuqYOFRhzfGqxZQOYW+mZTfGQ2NeKi8At3aPRijYhdSz99u\nqd1QtqwMZdt24q7KKiTyPNDCRoIhef3M+vp84ny7oJs8rp3+y1w6r/xqgtJVFsum4OV5vaZyu8xA\n+jWXGNQQ7Efx7pLuhpFomSsTjKY1NPoJfNTzW05ywuJZfHkP2z3K9vr8oa/S3CCx3dmJU/qd4q9j\nJlxXuEuDWtuwpK4BaDpAUVTo883pcGpyA0jUz8QcUgQ8b3q5VKtGr9IULzWDdTPX4ekZT+PEw040\nbHv/pPtx0ZCLUJRELkCsyGELantlU34M17J93ys/q0IzJSIN2u9xOVy4YPAFxFBWjcJmkY31riPv\nwooRKzR5iEZ1R6XryfPfuUFLAGjD+sDzKG33wGlAipARl4HjehxnOp9Fmp8cOJw78Fz9xuIYydC/\nh4rRLw+whYLj4ACwMLYAy4YIymZ2vDK/koZ3d+3BhzID1QgKix4RokzDFNh0n1aRpc7bvrOBw45l\nH4cIaRhZkgEo0bhcEKu8IfcoLxKN1Cuqa/BweYV++og0r12BuqrSdXuk90CObNP/aMFHeH+3EE2T\nI3qPiIRMcanAqlpg1Dna71bsBI5/XDBwLdAv9eJyuIjGGsX7c+Jr4FKMiYQMce6XwNJXlGukzvs4\nvXS6P3R9Ue9FeHfuuyhbVoY3jwuQ16g9bIZGI3HNmN8s7KU0sqtZ3WcBAJHczxJsin4JLqYhDFDn\nLNGWUf9SL9OYpUKSJx+sw2cJcfgzxnpuD89rwx8lVykJh2cfjnUz16FvRt/AQdn5uV4vRja3YFO8\n6kGe8hbTeAqSCrBy1Eq8s03GbsjzWMlA18wCHhyQWgSI3c2vbxSPK5Hm86FE9KpNaWyiPh+WBf3o\n0qPx3K/PMYcvAUC3tG74fMcubTgIA9LEcEUq6cNXD+MOj3bzuqj6IO7LSMOgnEHac15VWby85sL7\nzP4KSUWQFj4O0KcRpwhV0xoacVxDIz4pGYb3G7f5jxvWDZKhQFIoXPEALyhPT+zbj9WZGdgeI7yh\nRzY14+MEc2GZEk6trce/MsiJuy/v3qfIDbm5sgptHHBDFjn+3G3id11QU4stYt0idZ0neRF2aZM7\nuqERbyUpiVji4UAzfIF7ZAJmxODFfRbjsz1sdPqa66jqJWkEcE8buBjh2I1y5T5Ftan1nQ1Mp7NR\nAgLLX25CrmEYp5KhMTS+xqz4LObQmoKkAk2+gxyKHDYby0nQmAGlEgeS2KO54vsqUpUEpRI0r9c8\n9EzvqcjZUOPMw89UfJYE3KA9bCpkxGVgf1Mg9Hter3l49IdHqe2l63VLC+QhBiIVrOHjhR9bOk8a\nS4/0HqaVPQV+V7IVqyn1De8wz+OEPifghD4nMF+yQJVbf0RLKzZv34XhJVqvwDk1tfh3uoyURwzz\nohIiGUDaX45U55Nn9xUYUU3Cnxpy5OVAwRAgRam0ungeHvV7yTht5c91rrjux/J0mng/uowA8gcC\nw08XL+ePidQgMz4TkO4lZz7iCICGHfLkfifreqVIkF+RT+9qz1qW1gVI6wKuKuBU+f6k73VOCIDj\nOCL77BXDr0BdWx3e2yFEbRh5tyXEivIizcO2uM9iLOq9KLh3WY424/xMFnQI0hE9qC2rGSYWhqMb\nmnBFVQ3OO1iLp/buJ3oQzECeN1GUVIQ53ecAEJghJcg3rf5Z/XUfeIkoYPrzhIJ9KUjMNAQksuSr\n9T8eGHpK4LObznZZ4PFi0/ZdWFjfQF37WJjwrhh+BT5b9JkphQ0QmKQ0BlWG87q3e/DEvv30mkQE\nZQ0AskVPirPiF61y9MPzDFfWwi9omJwC0pNUWo7NiyvSGaMSlML3hWaKaEqdxASUleEtrYqaP+pc\ny7V7ybl5im4Z7knv9nbFYjanoRHTGgR2K9LpMxqbiDWASCjwePxU0ZNFweJ/O/fgxT37FH1LYVgn\nkXLOKFTGLDDjEb5q5FWKvCCzkFscNQK4w+nfuGPlzzFftUm6EwRjjw4G5wxGQVKBoRdF2lDNsBVG\nEo2ewMYcjALDywSJTdt3iQqbdgZcW1WDM2tq/WQS8isOpQmSxWLOV2wqHJxDV1kjQQoNm9BlAiZ1\nCYSBVzYHF9lx8dCLjRvJcO0R1yI9Nl2xLwdCIlUIUy1Go/IUAnTGsmUt8bA6YoTepz1xRTQDwWhV\niRK0C5+zaOOr/lv3Or3b23H9gSptSL3TDTQd8H/8z5T/4LVjXtMfNGR31uECCgYpngePQDkBBbL7\naI8RYHkN6jUNmHwtkJKvGKNPela5InGaSu4ZJob6WiHkk2P5sOWY24tQWFuFY3sci3sn3As4Y5WR\n6OJ/ctBC0JlgY+hbgjvBn4cHkGv3khAw7JAHw3GcfcoaANTvJR5++/i38cH8D5i7iajCpr5ZT814\nyp/gKUE9URbJhT+DJ++EkF8Vx/NI5nm/gmQVZw08S1MXDAAW9lnoL1qrv0krv7u8ugb37K/EAkqh\nRybIu+wyCsils5FJ+IpSx0jRXVYv4iZH+3UJPO9Peu9HIG1I4Hm8s0u/yr3T4VSEw4YDw1taiTH9\nLODKy7QhRwTcWnFAQ0uvxgRREZjcaI65UrKOZogMa6ZzWgy+LfB4cXNlFUY0t+DKqhoMbGmlkmDE\niO9jz9RSjHFn+mng58nmt7r/bibfycEMBT1Z4AL8dW2M4AbQs70dW7ftxETxOeV7vejbThOiVOtS\ncn5QAmNAFCP0cRF9/s3uNlu37pppJOWAxHDmR45Zxi5jSAobx3FhE7qDQVN7gAJbzyr93+P+i3fm\nEmo/ipD2xlSvT7eER5rPhwsO1hIjG56ksY8OF2ryocck8vcGiHXG4r157+GmMTfhyhFXWuqDBHWO\nkJHCO6f7HHyy6BMlGYx4q/gwzxVTHgh102m3Gp5iKONKnlOGdApWkEK8zURcAAAO/GHYZF59IyEH\nTHmTxhSOQfc0Nvp44XRBtOVVqgcJvDpCgAJSDhsT8pVES5p5PW8NsOy/QKIyGuTYkqPx3rz3mL1G\nweLGMTdictfJEOn0dNuOyB9h2N8T057A9JLpGnZ1q+RCNNAIp/QwVNy71Szj4UZRchFyEozDdiV0\nqJDIwTmDNdY+ebgDoBzwtMYmrM7KRLwq9v35PeXY7bLfIuvgHEhyk+sY9cnog/1N+xHL6OUCBHf6\n1GCp5dVz/5zPgH+PAfb/qDg8orkFX8vCLw9rbYVDPD6ExsrH+7C0tk5g7Zv5L+A1JZPnNAoN7/N7\n92NAabHmuO5r2lStCdcJBqRr5Xk82O2mUFy01jPXS1L0zRvnLc0i1DFRo3dbu6VishfUHMSQ49ei\nt1xJ1ttUR5wJfH+L/+OKqmrclpmha7mZ09DoZ3JcKhpMZjc0olUlpKT4eDyxbz/6HHMDkj+7D/j9\nOwBKUhErYpT816zZV2FheTbGMIo3olimUGpWlPM2AQ8GKOD7tbbil9gYrfCR1QsAY34fgVV0UEsr\n1qYCUxubsC41MEdnNDQC6SXUrm4Zdwv1O0tIzMHIxC54Z/s7KCUp2mMuBNZTkuAtIiVWMEQIltOO\nr7DJreF6Coc68V4NSWAK7S+23ruUh0irh2YFPVJ7ABAUQjnOHXQuTu9/OpOgR13HzCoaIYXqvh++\nAHiXXIT3suqDWJWVgWSfDz/p5RMnZgk1uJJy6W1M4qU95djmVoqI2lwtgzn03dOKj6/t3muKUdEs\n/H1LESeqbuQfs+OzUdlcaSmHLSj4IyLF68alAKXjZN+L7z7HKciYwgZee0eshEQOzxtOZEJk80Kz\nw1R/YttJbT58vPBjwwgP22AhH5OEDh8SOb5oPF6d86rimBQ7H8vzWDt9Ld44Xpn31a+tDdPCUGNL\njtvH344npz+pPwFCYPUbXTgaPdracM5BGbkF4TqPlFfga1lJgRf27se6vftxSU0tjiQIqzx4gPfh\nyuqDQhjYIG1MvK2T545SYPvntnUnkXHEyHLb1uyrwJ0VB8ishL+/a9u1Q4Xn9pRrPHVuCKFJykVL\nZ66qnuP8ugbMrW/AlSy5j3Me9P/Zv60NQwme1OEtrUjWYSmTZmaOx4MEn48tPFcGJ9hZJaV2NGVM\nDhKV/7fbduI1vZpuKsvsVVU1eH5POYrU9RbTGBiiaraLF12j+WpKUzM+2LkHV6tIV7oysFKahZzA\nQWNR5hyY23MuNi7YaKlGoxWsGLECK0as8Bc77uiQ5wDqJdQbQdpvzO4Y3c08Fxv2o+CIVZTokd4D\nXy3+Ct8sVTHS8QKlegxDWLFR1E2oVWAm4TFHZdX30p/Z8JZWbNi9T1OrkojUQiITKRPytF6cHK8X\nI1XGXL27J5X0Uazpv7ypaNO93YNuZtet5HzjNiI41V/yHFn5Hfxk4SeYVjJNOM4o8NsWIpcpEP2g\ni8GaFsGIglCaN2z3sJkpy+QWQyZ7TAmfsgYAQ+l8F2YQEYXNzQmilF5BulVHrPIXlpOYrNTgeGBI\n7hAi65jdMHqpE92JGJqrLVSphMEL2G4+3CslJgXr95SjR3s7UCLW5iAICi4A8QwLk2LDk6z9iYHE\n3ePrA141dQFhKlgrvP9sHKNuFuv37MPjYiHmPK8X0xm8XUaQ4vsTfXxoVzYVBrS1UQtIJ4ob06jm\nFlPW5BgAqw5Uy3IQdM6NUeUxpnYRPHZ9xRjy0SIVto6nsou4WZ9XU4tNO3ZTla83d+3FkCDDH+N4\nHq/v3os7GHJXNaUeINwbXeVQpdDEQDAWacDyOFrFsNHGA8SvcwjhSVYITIywtO9SFCUVYeOCjVqF\ng3OA4ziBoKP7ZNuvTUJyTDKW9F3SaUIi5Qgmh80tzq1ecuGWQTBJYTGA2GjhtpNYBYCfFU7etxkB\nT7rn+SFmVKVdlwkjVTVnGe7hMWKEQyiMNAAM2QSpkI1dekoPlVcizevFyxZrUwqdyZ55X0r9K3ci\n+Tjgl4GyE+hMmRIrKasiZlserbiP8vFkZtwAIrXe8VqWVVt7F56tvNRLMDAVEhmXIqQRzL7flmsz\nw6Y1NyIhkanOVDx21GO6VMwsSZJm55QdczBe1ND7ZLAlqpqCJ0ivoET2EIRlV4HELIBzAtMCoVU5\nXi/Ktu3E324XSlk3j4LBwF8fUhOZQ4FHyyvwSnISung8KLZ5857a2ISLqg+KZBph1Nim3gi8dy3x\nq1R3Ejbs2isKKtbHND6xGKikeDrVz+/Mj4Q5wvMCQU18GnDUTeS2IqY2NWFSUxMGGSj7JR4Pbquo\nwmn5OTi23jrDkpE195oD1bg5K0NTZsMQF27VKGx6KEouwh81f9AtZJLgU72N1kKDYykhycGgJLUE\nb8/VFgYGoFxXlrwMrGY0xNiFzqawBTHelJgUIbzYF8ot2gYPm117jY14sLxCqHGWlAc0hKbUiBpS\nHsrivouNG5Nq7BngOJHFVwE799MMq8JzYA6Nbm7Bb7ExKPJ48CmljiU7DH7b/CeB/EHA/UqmZv9o\nZHlj/TP748eqH+HkeZx9sA63Z6YjyZ2EswaehXZfO+b1msc0Irs8bIbvjGSYieC7VdjuwR8UVvX5\nMcE5SCTnh14kjhkkugS5d2HvhWwn6KQRGOGN3Xsxp8hCiYPOrLAB6HAhLiOTS7Gpni4sSVaBrPgs\nPD3jafRK70VtS4XRBm7XAmzDi87zvMA6eX018XtTYQ3i78ry+nDywTo8mZai+FpD6WsDhrW0Crl3\nIYATwOmSgC89s7p9wD0hUOIBIF503Y+5ENjzLdUT6VdM0/TzY/SQ59KxWtLAcYKyxojBjJ7ZfK8X\nb+mFJNqARfUNWGSF9MekgPPo1EfxQ+UPiHviOEoLDqj83RTLaETVFwtCpxEeO+ox/FFjTFLQWRAs\nzf3wllbALRMSbRPQbfSwhXAWWuubD4T4X/Q9U46xHUiNTUXZsjL2E0rGAds/Dd2A1Og9E/jNOnus\nGikiyZVcprmo5iBOqKtX1LA0xGV/CPnjD6iM9/K5TvIs91Ouo3E+H1ocDoEUpe9sICewFz885WFs\nfX4ukvmdWFpXj6XTHgScbridblOkOWbZqzHnATF/WYkAcRPlPUzKBer26DJzhxo3HKjGkYm06wf3\nzvfN7IthucNw+fDLg+pHwtjCsVg5ciVmd6d4Ym0Es5NCjTQtp4MVdDzzGANWj16NwnaPrdqmmS1s\nUM4gRa5CZEYhQ2wqMFJWQNEOhc1uz5EYQrWcQBP/4H6JDrpzWdAFiPdJRj5hO5rJSrMC8rDTfjSl\ngAF61qcgBEaJvCPdYr0eAIrQXAD+gp8bdpEpcyOJV3fvw/P+fEMeWfFZmFRswMr3kDZBmwardY+C\nAquSZnGejMofxVS8WsKrc17F68e+bula4UBQ4YKkcxlCIk1d0QaPpd0hkSSY2ovkc88dJysx0pFI\nRwB0HR3420aiECpsEhgB4MX8mcT3zgnByGYKSTlAJoH90SkLRs+UpcRMuAo4WVurdpS8rIUqRzA9\nLh0TIcprJ70O9LNGABHnFNIOSqQ8UaMQySEnAcVax8SC3gsAAKMLRmu+AwCc8jYwf21IjGJM4Hlk\n6IRWBysbxjpjsWb6GtsYGjmOw8I+C0MkkwcBeY5itgUHDwGdUmE7pscxeIeZbYgNRomL9jDbhGhz\nu2onMENG3x1ErLVb/JmG8dqMm8zze/YB4IFCevirH5EMeZJfu24fcHdfels5pDy/tiBKM5iCah5e\nsEX4V9r0dCjkr61moLE/7Bj2ayfoMMTJx7D8N7yWOx0v79mHLsGEp6oYFNdMW4OTD9YF12eI0LO9\nnZzPZhOG2lTegAmTxDDcvnMMGob3/e2Z3jPoGkWdCwx7UHbv0A8jTDDjYVsxYgVuHXcrDO9RRwmr\nHX6G8C/nDM+YYixETlDQd9Ay5kLzlnHEecBZnwrpFFIZCgCYsCKQq08DSVY76kah7EihdcOqFMro\nClJh6Z/VH2XLyujcC+ld6UplgbmaiZYQS2ZCl5BoF1vmoY5gDOcUdD6FLT6MzC6AvXXBOkFI5JK6\neizpuwQn9zs56GvkeTzox2qN6ki473BqocMOB/lzWFULLP+V2jRT9Mo8c/Qzyi9GWKRi15vP8rmc\nmAM3hNIFQUHlaeyd0RvLaw52fL8sy3v9/Tqmro4PpmajVYy/TJhbTlZ+zg7mzYgQTLGX0WAUGqaC\nrpKTbCH3IhQ48TVguo31AQEs6bsEs7rNChyYupreuCNAKv/jNhlmp4Bd8oLJvTlHZsxkJRRjxbmb\nhLp07ngg/3AhT5p53RFBek8KBgPnfmGojOhBMmL7EnOAoSdb7scyVuwCTg0Dm/U8LVOxHOfF20MW\nEoV5dBqFLd4ZZ9woCNCWvnMGniN+Hw4hxKZrBJEcG8/zWDFihbF72YAl7sMjH8B6f/4RRxzT5VU1\nOEVejqCjiN5eE54RVqFswHxggawmzcpKelvd61mfI9woYS4PzFYW8sTRd2jadoshbMRWr81xRLr6\nQw59Zhm3oWHfVqZmUtFyUhmCiKOjeC8OCZBCIhneP71nIBmhIl2TrPtEYNQ5xu2sQPptiRR2wEj/\ndgkxiYICPetf4bme3rzIFUPTrKxfSexFf5mQ0wc44lzTp0nrYWGQpFt6cIghir74NGD2fcovz/oE\nGHaakJ4SKsSlBBT9UEIso1BEoYqMN/CwvTrnVawcudL2YXU+2D8PO43C9srU/8NtFQcQqpeRpwje\nR5cejb4ZfY09TnZAXZ8lFLDD07WqFsjUCUUadR6ySyYgSdocOQdxwziprh6XynPaIirwWbw2q8LW\ncxpbWKhZmLhnXDElZl6Fm4tuxrquBOYsxsLi2gv/QwT5rrT7y7BmednCOnu3t+OtXXtxiqi4dUh0\nFKE4QpBCnWzxsMnB8B6ZK0psz3uZHhtmtlBd2PvbQgaHE1j+i1A0O5JY9l/gpDfEMTGEutkVkpdc\nYKuX9eTaevx3114hisPqPmUAycPmlYhs1O/jrHuE9JRDHQbrUM/0nljYh5Gx8VBGz6OEf0dfaFuX\nnUZh65JchJnyGlqnvQcses62/kkixsVDLkZ6XDpenP0iipKLbLsWFXZZT0jhiqXjgZjk4GPZ/SEQ\nOi+telHnHKGhqK36C1gVQouWneA4Ie8vsydwwgv0+9HVID5f27GJIbC1TXGmIMGhCkM59t9A7xlm\nBhZaSDkgduGyP4M7f8qq4Ob4zi+Ym3bxeISnbuP6Zw+k+RVihc0wly6ykIpJ2x6VEZti3EZvPVj6\nqqqpPUqNIZlOkDCVPz72UiC9FOg1jfx9ZzQe0YigTBlGKL+7dByQIKWZhNHQctSNtnpZHQC6SrnM\nIQr9lXLYbDfEdDQYviOd8B2KBDK7C86No260rctOo7D5J5GkMHQZAfSZaVv3pM31tAGnEVoGgXBt\nFqSQyGGnAlfvNj53xS76dxf/CFz4nXEfh89Xfua40OSw/b3R/j5Ng3GTi0sVYvEv+AboPR1wuohs\nV1j6CqBLHxxESKSZhVYtDAxabHL+hnjz73+8vf2ZKEtAxNhLwl83xxceynJmhGN9u2IbMO+J0F8n\nCJx++OkAgIy4IPKtSfcyxVgQ1TXK9BDD2G32gF4z8hpb+/PDynTK6QNctFWmhBwKsOG9Ynk3UwqD\nvw4rBrDVPutI0HjYFBEVyvvbkGi9tE6HR2c0ehwi6DwKW3w6MPNugZY1BAhPFE+4JjojGYTmNIcQ\nJ01DWpeAwmzmpeUcjHl1JvrcuQnYsJy9veGlQxwSSfJsqtmuhp8uJFun6myc6jwDyrhJLF7mKLg7\neFib3cqRHf3R+gjZ4tJBn1EoF9OEDPMkBGHG/F7zUbaszHzdplAipx/hoD37kTvEzyM8+eNRYPL1\nkR6BPQiRQuH3sEmU94vWgfgOLf8dW4Zo88I7G4rFHLYYp7qAdlRhixQ6Fz/n8NND1jWPMLi5axk8\nXLbAKjlEqPR3Rg+bmYX2gxusD8dOBCucHv+4EHPfe3rgmN69GrhIoN6/rSvgbQVt8XQQbDH6HjYO\nGGFzmGEoYftcDZMV205U/RXe66nhcAE+Uu5dVMC2D+ZYIrH/JyzOSMeMxka2PjswxheOx8NbH8b4\novHBd9aZ8yrDta64GYjdRp4d+nF0UEjFwuf0EEOyY5OA3H7A/h+Vzyg5F74Qk+SFA3e2xGLLnDuQ\nm6gq4fQP97C9vGcfnBFaTjqXwtbZ0VwTnutoLCIAnFJ+nN5MM/MiMrTN6A5U/yW84HbXB6oKMufI\nNgT55qrDRwGtMtJfFT4ip4KmLJ4kb5ou8+cqVUHzDi/g2Lxp2LEJUZVI2b0sGgHs/jr4awGCoBBJ\nnP8NUPkb4Yt/9oZuCyTlzCOrt8fwTnIArqom7DPhDte1Af2y+qFsWZnNvXbMubmjeD667nyJ8m2I\nxqyXCzrzbnIEy8BFoRmLnYgLMrydggR3AjYv2az0OHX4fdICMnsA3SYgZdK1mFBkvW7doYqgyxMF\ngc63iocIl+RPQlF7iB9EuCwTJPKSXqIH5+i76OdZHN8XR1BySqRkS54XSE9E9GxrQ7K3oyXuhjgk\n0szCrg4fdRGsdQbPSl74fEzhGKw6YhWG5ARYKu888k4c0dys00OQGxHJaKDGwMXW+7f7XbKjP5Zn\nXDwq+OuYuV4okVGq9AxLz9xuqu9/IryEvajsRev9dfAw0n86alP70L+0Za0j9NFdhywmbyD9u46O\nnlND1nWcK84fGqlExzQEWILTLaQeRZW1DoeowiZiWFIXvO2vGxYiRJIkQKwhgkEn0NuYscLKNpG2\n2EyD/njIF7T/21eBl/cS7jWNDSscsJzDBrbQNDPMUi21ys8uPeXH2MOW6ErE3F5zFceml0zHo+U6\nteCScunfsWASQx2WtGLr/bMohOFCisggyzImOxXNjkas0GeWUPT2UMmFiSTibGa/Jc3Nf3hoU6eB\nHYYZs886iFquEYXDFeZ5fQh62IwQaUNhR0C2joElhPhnKGzxDIJNOCahpwMWu1XAxEI3UEfxU4Pn\nFYtous+HAg9BeY2kZb6lzrgNETzQeICtHSvam5Sfh+mwlVI2p1vG3iJrYmEDGzA/OPp0JoEziHcu\nb4D2WDAeO6s4/1vg7E+Fv90Ukgn52hJvQ82qwUuFf7NsDjMOFg6HUPQ2Rif0NgpGcKp/g4TcwxaC\nvW5uz7lY2nep7f3+U9DuJpB9SVES1PU7yOfYZQT9u6xe2mPqUi8dESEKhzRE1Pjxz0KCltQtHDh0\nFLZzNwXZQRgUNj32Pzsx/gqhFg0NNE+amUUnMdu4jeRVcjjR4UMG3rnK2nm8D6jZrj2u3tzMlDVQ\nP59cEsObvzHx6JDcIIt0c5yWkbIjgTRXM3SKuYcKWT3MebqOOD/4a5JCZKM4RKGzLxUO1R6jKfFS\nEVcF7FuTV41ehStHXGlbf/ajY3sFGpIIa1ewNVMVIDzrVJ3asrFJwFUq9U+uWQAAH9pJREFUkrRO\nEercsZ9zFFEEg0NHYcsxdlFmeXVCEsPhYUsLU22OvP5CLRoaaMqc2rOjB5pyJ4+L94cBmhAMmg8C\n798AeEnsczbi/9u783g5qjrv499zb+69SW7WS1aSkIWEmBAwQIgsIQl7QCAZQECRiRBBH3AA2VyC\nisNLHcdnwHFhHHlgFHTEGdfR1zAjqHnNI/MAgmxRDIRlBpBtBEKCskTq+aOqk7p9q7prr1PVn/fr\n1a/urqquOt2nqvr86pw6521Ng3a+vi3Zev77dun75wyd3hx0hdW+BGn+bOBvHWPA7FbLtqpFC2rG\nedljkbfbVubHXMl/1v58GlST5ktXlvcScVW3vqLkbVBtbfPnlp4jXbxJOugvfBMp1NrHwmO5b7R0\ndoSxTn33p+uEL0orbA7cM0bzQBSoPgFbBNO3/0k/euJ3Ov8Ft0e8vV4tuImiLTd+NwZgbdUBSVJn\nfH/n60aB35hoBZCN35N+sl76xVXSgyHj7d3x99KGv1LqP7jme6y6vA5T456Af3FV8PTmoKuvxfh2\nzXpHRV82TaH90kekk66L9xnb7pvyy/PPc7eD2i/T2P4u86T3/Ud+aaGQAEmasnfAxKbzwfCx0ugp\ng88Tjdr/oM6pasvCgMjHCUyeN9FxgsfRi3MeSPo/Mc3fUiNkHWt/JPV7tW/zjrannFOExiDacVrQ\nVB7/P2WpV8B25r+1XWTW9u3q9na4fV/zB2wF7IQltXsNNWHe4Pd9Gd/o7m8SGeUP4zc/kN7wurEO\n66Dl5sukDZ+RXn0peH5UfaOCm5ZlVRiee/jg9xPmRv/sjLfF2FD73zW0hq1/QpsOTXI+JjLvZCbH\n9B7/t+2XmXWI+7zmGvuOdVRMhPNllHETg85ni06Ull0kHWnJWJZoL3UnIOlaaVRG0Z1BNMopVe2k\nBQmVE7TWK2CbeWCsxY3/N/f+2GaVOMZC8ZpO2AMt7ntLYkcNW5zdrJEpbf5M/OMTJRa0jYwOxJUJ\n74mTpPtvir5sns3i4vRsGdf+781+nXmmN8rvPHqydMUW72Z+/4DHXJFECl1Dh0t9ZM7aaFf1g/bb\n7h7piE9k3xOl1Ww/BgPyabfGhbumtI9pce9ZmBFBnXHE/E2i/te0W+3BF8bbbhSHXS6d8QPptG9m\nv+5WdtSw1aso3VIn/5+dWvD+1aSD9rKdxntjgI0fVIvj7oQjOmpn9L5r31hp9K7SmTdnvHpv/XFO\nZhu/632mhKt/T9wpbf5pNutKUxgK6kygWRG/T67HQor0j5oSPD3vY/ecDdL7b3ODsnY66jyCXJ17\n+5BJ24f1B58DGr2n7jJv6DxYfN9nU7qWnCUdeaVvQtD5JMY5ZslZSRKVTLsLZ7suzn6byy+Vdj80\nm15443iz0Ypo6EUV1FDJF7k6ci9bve0VGUnHbXtFVw94B3gRBSwb/ywue8xtGphHV9yNeyzSdA+f\np+Y/lusyHHAzzThmUxdLT/4y4sIR9qmku12eNVZprnhfsin7dUax6z4xFnZCXgMR+P8rAnvzM8EX\nwkZNci8obPistOHTqmWzt05w3NXS/2z23pidgYGUrByRRZO9qGWkwNo8nzr1cjt/lXTnV0svyBfh\nvS9t0T6vviZZfBt77hr3/faNLmXznVHD1nSC65K0ZtsrTdFqjQtVe58WMsO4nUikCdb2Xes+7/WO\noYOzTtxD+tjvpT3XJF//1mek5x5M/vlW/pRjpzMt7w1rI84fso0XARJY99IWffr5KOPZtZBrgBlT\nq8JN6tqPGp+rEGDoMe6Yrs5qhlV3Lc/jzuD7zfO8uDxyl/B5Lz8ZPs9/Tpp/TOtt1Kmzm6M/I138\nUPsgtQYueHGLlv8xi1tRKmz6/tIRn5RWX1PK5jvjjB/lBPdCht2VhyqpcH3i34fMSHniv/x56bjP\nu69P+j/Sx54fukx3ykrcqxdJ1xwQffmRE6S1P06woRa/xdKAbvvzlHFBrGW3/q00mpfE6eEyDl8h\n5cIXt+j4bTGGlQiStiDz7u+1mBn3N/SlZe4Rg2elHV+pcXUv03GaYJW2F2JC5u/4HEF95TUupE7Y\nQ9rrZPf1/Lfnu83z7gxsghtZlAuI3TUK2LqHufcud5QOPrcYIy27UOpvcWEjR/UO2M67M/qy//mF\n/NJRlvf8q3Ty9fmtf1iv1JXTLtQ48b8ZsxOYifOl2Ydkm5ZjP7fz9awE624eRLst35/emr+LvmzW\nGoHjrGWDp1+8Kdp4bGf/TDrsY+HzF66W5h+bPH3N5qxM9/nJi7JIhcsfPC5+1+B5J3wx3bpXfNi9\nyrf3qenWA7tN2lM68drAWY4JaRKJYFW8p3TMru5FpBOvjT9ETlL9E6RJC+J/rjFge5R7uYL22+O/\n4JZX4ho3M3yweOSjf2LZKehY9buH7YwfSDd6TfB6vCtUtjQbKzodsw5us4Alv0vdRelExK+xn8w7\namhhP2zZloskzOewz40O6fSj2bT9Wn/33n7pnd+SrkjR/n+PY6SHbpbmHCrNWZF8PVK2BeDGWET+\nQWUbGuMgJtU70r3Kh3o79z/d5+1BTbe77Plfq5SK/WbNw8PYmuenfUN66m73FovXt7VedsbSodP2\nW5tsuxfen+xziO/c26WfXiktv6zslHSs+l2i2/3QnTe1NtpKx7hybjq5urdTBI2plef9T6MmxVu+\nETgEFfaL9Iffu89Z9JzZm9NNuvu9x33OYrDWLAtDvf3SultCugG2tNCFygivYfMNtizZW8BHPDtq\nCC3NzxHjfU2/26SRMcuqadIC6Z3/mO7+fKRSv4DNr2+0W81+6o2RP+Lk2sTM0pOtlZp+q+2vS/++\nPptVpxlcM05g0BiLrXmA8qiiBJFRatiS7tNP3+c+Z9E5y5SmiybjMxrzzzQVUOMYN7NpXRmfDmcs\nlYbndP8fOtqWsQsUrfDOf04tNGrl/RefbW3mGdirKYC06hmwnf7P7v0xw4a7zQKHj5XGTCs7VfZo\njD9n85Wu5mDlvm9J/+9LET6YsIAStYYtqHYuzCLvRvG9TomZlghXU3fc09A+DyePTHpTdIaFveWX\n7nw9chfpgHOTreftf9M0IUUnC+ff4z7vsar9sllebImyrqLHE4LFhu4vb/SM5R62TjJjqfTen0rL\nL1FpQXjU7vi5MA3kop5n/NnLpVNuGHzi+OCvpf3PLi9NNmn0atSqC9+y/fHFwe/f3B7tc1H+LNJc\nmRy3W/RlJ8x1x0SaFLNGr2+U+9xqbJcIg5KfNO8kSdKuo1LeM5UF/5/9nJXJO6vZ/72D389a5h7v\nR32q/WfnrBz8vqvbzZ93fdt936oAXPQ4O2f9pNjtwWJB56t2nU9YWvuC5KYvyfYia9SAv9Ei5d3f\nTbadAz+Q7HMABqlfpyNhjKF5UsPxfystXJOsN6ii5HqVLkZh5ryoA1hnaNkHpd5R0uLTw5dp1LBF\n+ANP3OlIlpKkodGhSCu9I6W1P4q2Pn930kvWDZ3fqgDTPyHaNqJo91t09bhjGAJS+H4ZNL1537Lh\n2EdOUgblUQf/PeVG6bbPSzNiDK8DIHP1rGELM9HiAKVIw8emG8y6EE0Fjddezm7VUWvYRk5IVnCe\n2a53zjZ6RkgHn99mDLv2NWwNie9hy1TMNCxcLb3rpvibmbJX+Dx/cHvcVUPnV6Fwe/jHy04BihZw\n36xjTHAX6lGbrcE+zeM1hsniNBWndc3EPaQ11yQfU7UK51WgAjorYNstwhWiXXbPPx1or/kkv/XZ\neJ//0OPSQEheRv4DSXAF8xMvSWcmGE8mrgj3sDk2NYsaNHZLjs1W/yxskHi1r40s7J6gkO+/7tbB\n7/d599BlDrk4++Sgmrq63TER/Wxu5l4qi86FNsizV2QAueisgC3KSbunP98kpB00ty4aY+RFdUe7\nAaSbjBjvdq0eJGowkCRoKOpq4hivJ64WQYbjpd+KGrYJc6UDzst/O6Onhs9rO6hrQb9T2D4yde/B\n7xeszj8tqChvH2oeE3HJWe6zrT0Ilq1OtT1p8pj9A6icDgvYLLDPGWWnwA5t289n8McaGsxE/bMK\nWW5U0l4XM3TWzdLJ17fsvKNRw5b4HrZBtWIZ2HVxtuuLq12PmoUV5tpsJywdc4/MPimolyHNJ2sU\noNRd5Br+DPK0qICtb4zYB4FsdFbAZsNVpTpd4UujXa97P75QenVL/PX6f9/cfmsL8nDsdGnRSS0X\nSV3DNuCNlbawJjU97WrYyu4mvatHGjZCWvVXXnp8+XbJZund3yknXbCQBecgZGuY1ynSMZ9rs2AG\n5ZhDLkq/jijO2VDMdoAO0Dm9REqKdqKzIKjrBN297ZfZ8mSCFWdYkAkL8Msu2EeU2T1sUfKqCGf/\nvP0yrYL0tj1qltwksqtLuvwZ/4I7X47KuLYTlea03VX5H6ucxv9NczPXrF2R4EJoXOf9UnrhUfoE\nADLUWQFblBo2asDs8exvUq4gJC8j17SGLGfzgOMBrOjW3y9SegJ++2n7Rll5i1ltAu2KBOJAZLYd\n+2WxoXVNOxHG1vQWyD0pqU3cI7iHZZp1A4l1WAmlAidt7PTsxnK3H7q7VOAPU9LRs46WJL114ltL\nTkkKH0lSyxrCliaRUXtoq8ZuhlL4do4Fxw+dfcC57libS88uLkmVYPFBtaPn35oWy464gmbdQAo1\nPTOEiHKVrQpX4uog0u+cMi9C771KWcPWMyJJagq3fPpyPbD2Ac0eOzvZCrI+FpKsL+rgrg1pmkR2\ndUkf/Z109Gfc97MOibftqIICtsAOUSwuXMIep35j6LSRA9IpX3d7y4WPxf/vOwK2mh33dfs+QEkI\n2Ibg5GKNtN3qz0vZ/CJs++NmpFtv5WR9TERZX9JttmoSGaEpa2//zsBu0oKEaWgjaHDjoEINBR2E\nYt+IpQrHUuwaNouDT789VrnPs1eUmw6g4jorYItygqvAeb0eIuTFE3ek28TkPaVTv7nz/cqPusMq\n7HZQxBWEpPHEa6XjPi+dcoN04AfSpbGjlFzAiHvvYV617YE1tJx40MKh68tOQbVVoeVM1ICtCsGn\n38yD3I5OIt2DDCAMnY40efn1rQUkBJGuIqYN2CRpwXE7X4+fKa38UPTPnvCF4OkjB6QlZ7qvf785\nedo6VdJOR9KuO+qV6x03/xvp9O+ED8Cexglfkh7/hXT/Te77FZcFLFSxghnyM3zc4PfN+/noqdLW\np4tLT2XZfEw1znk2pxFAWahha/LUtqcKSEeHW7hGOvXGnFbe6s8uxh/hwRcOHues0axjyCrrfAiV\neFX6yL/Mfp1JrkzPO9K9Qpy1fc+QJi90Xx92eXDANmbX7LeLimpzLF5wn7T+mdbLwG5x72GLW2u4\nZF37jpcAWKuzjt6ovbOp4j3r2WrMdOnlJ6WjrpTG7Satvkb64bnZbqNlDUuMAnvzsqd9S3L+FLBc\nnQM2T1ZNcOIUMAbmJNxIynvYivS290uvvyId+BfB8yfOl878N2nKXsWmC/Zpd+w0Bl1GdUW+hy3h\n+fi4q9wHgErqgNKmT4wC48DwgRwTEiCvHulsMt+rpeod5T7vc3r225i8Z4uZcQK2pkOjq0vq7hm6\nXJ0L03OPkPonSQeFBBSJ5djkJ9P7O3JumjSsTzr0o1JPQCckDTMPlPpG5ZsOVEAF7sFCNqp2jxqA\nQnRWwGZzF8fHfb7sFORv1WelD/7avQcsL4d/InxeowlaFFFrzuocaPdPkC59OP+gdGJOvTE2e/Gx\nYrYDwDIVCHhXXyMtOUuauazslACwUGc1iRwzNfKipugbfyfMLXZ7ZegeJo2dnvM2AmrBGlrWvjWL\nmv9cDY0upNAUt/fGllrkRzfNxlBR/tYhh31Mit66H342116NmyEdd3XZqQBgqc6qYZOkyV5tQW/M\nAXnRWaL+sdtcALBV82929KdaL7/uVun8e5Kt26/R22PPyDYrqcDVeHQY3z65/JLykgEAKEXnBWyN\n5nhHXVluOjDY7OX5rfv9t7lNMePY7YCICxKwRdaoXZ34lsHTR+7S+nMz9k/RCYlPI5hr7iK93fJA\n2aowjhgAIDedF7Ad/nFp/GxpwfEtFxvTNybfdIwouFMT203fP791T1kUvynm7odFW45CfXSzl0vr\nbpEOOn/w9HG7ZbiRFvkxeqq054nth5Ro5P2eJ2aXLCAVArZUpi1xn9tdHAIAS3XWPWySNH2JdMG9\nobOXTF6iu569S6tmhYy7lYUrtki/u1f66or8tlE1WXSPn8XYXcf+b7c79agI2OKZsXTotOFji9m2\n6ZLe8Q/tl5s43z1GAVtQw5bOUVe6vRLvsnvZKUmP/xygI3VeDVsbw7yBJQvvdKRTTdvPfc4iYGuu\nuUli6dn5Ns9Eeyddl/yzjcLMuJnZpAWwAgFbKt099R6CBUDtdV4NW5NrnnlO07dv3/HeafwxEq8V\n44wfSFufkTZ+N916jv5M+iuPi05K93lkY2B28s8O65M+cLc7CO2Xc2xmCxTp8V+4z/2Tyk0H7EGt\nK9BROr6G7ZA/vqrZb2xvvyDyMXyMNHGP9MHWgeemT0vaoBF2mDA3eDBqmhKhqp570H1+5bly0wEL\ncB4DOlGqgM0Y8zljzG+NMfcbY75vjInY/RrQ5NWXg6cPCyh42+odXy87BWiJgg4qitoUAOhoaWvY\nbpG0yHGcvSU9JOkj6ZNUsh0tIincFer2LwdP3/5qcWk4IGUt3Z5rskkH8kENG6pq5kHu8+LTy00H\nLEIQD3SSVAGb4zg/cRyn0Z7wdkkx+063z7zx8yRJA8Ppdr9QeXbrH1V3T9kpQK4I2FBRfaPc52n7\nlpsOlI8LT0BHyvIetrMk3Zzh+kpx0X4X6Wurvqb5AzG6dk/Cf9KdHtDVeadJ0+HHpIXZpMF5M5v1\nwAIBhRoKOqiqpe+TRk6Q5r+97JQAAErQtpdIY8ytkqYEzFrvOM4PvWXWS9ou6Zst1nOOpHMkaeLE\nidqwYUOS9GZqZcC02/7vbZKkDQ9uyHXbo7Y+Km8oT9096RRtteD3SGrbtm2p83PSs88radi17ZVX\ndFeC7a9sev/Ef/+XHkmxHhv26SxkkZ9xrfS9vvvuX2nrw1tTra/v1ed1YNO0Rx55RE+8sSHVequq\njDxFxpZeJ/1qk6RN5GfNxMnPfd7o1lhJt//yLr064qlc04VkOD7rx4Y8NU7Km5mNMe+R9D5JhzuO\n84con5k/f76zadOmVNvNxBUBA/YWNWDu63+QvriftObL0u6HFbPNnGzYsEErV65MtxLHkT6ZsM+a\nhWukUxJ0+NGc/+tulWYkaJrZWE9NBlvOJD/j8ufFORukXfdJt74tT0pX7zl42pF/KR18Qbr1VlQp\neYrckJ/1Eis/tz4j/eaH0tvel2uakBzHZ/3kmafGmLsdx1nSbrlU47AZY1ZJukzSiqjBGjy9I6WL\nHyw7FfZI01xtdUiHJXElCdaQrUPXS1MXp19P4IUomkQCqLjRUwjWgA6U9h62L0kaLekWY8y9xpiv\nZJAmIJ7GDfmovhWX5XevGfewAQCACkpVw+Y4ztysEgIUbvwsadYy6Z5vSD39yddz6HppzsqMEoVM\nBAVnjGUFAAAqKFXABhTio09Ln56a/XovuM99TtukcsVl6dMCAAAABMiyW38gH70jy04BKofmjwAA\noB4I2AB0CJpEAgCA6qFJJKpr5sHSf91WdiqQhfPvSXcfIQAAQE0RsMFuS9aFz3vXP0lvvlFcWpCf\ngTn5b4NORwAAQAURsMFuyy4Mn9fdS5f+AAAAqDXuYYM9xkwbOm3cbkOnLThBOvFaaVhv/mlCNfm7\n9Z91SHnpAAAASImADRaJ2LPf2OnS3qfkmxRUW9/ona93BP00iQQAANVDwAZ7BA12HLxgrslADfgD\nNvYXAABQYQRssEhTwXpg93KSgXroG+M+N3YrOh0BAAAVRMAGe634UPB0581i04Fq2vtU93nYcG8C\nARsAAKgeAjbY662nhsyg4I0Ijvlr6aLfNjWPBAAAqBYCNtij1a1G/p7+aNqGKLq6pDFTd75nvwEA\nABVEwAZ7+AvUPf2D573nx8WmBTVCpyMAAKC6CNhgEV/BetKCFstRUwIAAIDOQMAGe/SNirZcV0++\n6UBNEegDAIDqIWCDnVqNyTZ6SnHpQPXNPMh9nr5/uekAAABIgIAN9jjhiztfv/W08OUMuy1imHek\ndNlj0pyVZacEAAAgNkq+sMf0JTtfL1kXvlyr2jcgyMiBslMAAACQCAEb7NQqKKOGDQAAAB2Ckq/f\nxLeUnQJEYbrLTgEAAABQCAI2VE8Xuy0AAAA6Q2eXfE+5oWkC90ZVQtewslMAAAAAFKKzA7aFqwe/\n7x1ZTjoQD00iAQAA0CGoqmg49HJp8TvLTgWi6CJgAwAAQGcgYGtYcWnZKUDD6F1bzx8+tph0AAAA\nACUjYINdLn1UGtbXepn5xxaTFgAAAKBkBGywS/8u7Zdh4GwAAAB0iM7udAQAAAAALEYNW0+/9MYr\nZacCUZx8vfTMA2WnAgAAACgMAdsHN0qvE7BVwqKT3AcAAADQIQjYRg64DwAAAACwDPewAQAAAICl\nCNgAAAAAwFIEbAAAAABgKQI2AAAAALAUARsAAAAAWIqADQAAAAAsRcAGAAAAAJYiYAMAAAAASxGw\nAQAAAIClCNgAAAAAwFIEbAAAAABgKQI2AAAAALAUARsAAAAAWIqADQAAAAAsRcAGAAAAAJYiYAMA\nAAAASxGwAQAAAIClCNgAAAAAwFIEbAAAAABgKQI2AAAAALCUcRyn+I0as1XSpsI3jLxMkPQ/ZScC\nmSE/64c8rRfys17Iz3ohP+snzzyd6TjOxHYLDctp4+1schxnSUnbRsaMMXeRn/VBftYPeVov5Ge9\nkJ/1Qn7Wjw15SpNIAAAAALAUARsAAAAAWKqsgO2rJW0X+SA/64X8rB/ytF7Iz3ohP+uF/Kyf0vO0\nlE5HAAAAAADt0SQSAAAAACxVaMBmjFlljNlkjNlsjPlwkdtGPMaYx40xDxhj7jXG3OVNGzDG3GKM\nedh7Hu9NN8aYL3j5er8xZl/fetZ6yz9sjFlb1vfpRMaY640xzxljNvqmZZaHxpj9vH1ks/dZU+w3\n7Cwh+XmFMeYp7zi91xhzrG/eR7y82WSMOdo3PfA8bIyZbYy5w5v+bWNMb3HfrvMYY2YYY35ujPmN\nMebXxpgLvOkcoxXUIj85RivKGDPcGHOnMeY+L08/6U0PzAdjTJ/3frM3f5ZvXbHyGtlrkZ9fM8Y8\n5jtGF3vT7TrnOo5TyENSt6RHJM2R1CvpPkkLi9o+j9j59bikCU3T/lrSh73XH5b0We/1sZJulmQk\nHSDpDm/6gKRHvefx3uvxZX+3TnlIWi5pX0kb88hDSXd6yxrvs8eU/Z3r/AjJzyskXRKw7ELvHNsn\nabZ37u1udR6W9E+STvNef0XS/yr7O9f5IWmqpH2916MlPeTlG8doBR8t8pNjtKIP77gZ5b3ukXSH\ndzwF5oOkcyV9xXt9mqRvJ81rHoXm59cknRywvFXn3CJr2JZK2uw4zqOO47wu6SZJqwvcPtJbLenr\n3uuvS1rjm36D47pd0jhjzFRJR0u6xXGcFxzHeVHSLZJWFZ3oTuU4zn9IeqFpciZ56M0b4zjO7Y57\nlrrBty7kICQ/w6yWdJPjOK85jvOYpM1yz8GB52HvKuBhkr7jfd6/byAHjuM87TjOr7zXWyU9KGma\nOEYrqUV+huEYtZx3rG3z3vZ4D0fh+eA/dr8j6XAv32Lldc5fq2O1yM8wVp1ziwzYpkl6wvf+SbU+\nmaFcjqSfGGPuNsac402b7DjO097rZyRN9l6H5S15bp+s8nCa97p5Oor3Aa+5xvWN5nOKn5+7SHrJ\ncZztTdNRAK/p1D5yr/hyjFZcU35KHKOVZYzpNsbcK+k5uQXzRxSeDzvyzpu/RW6+UUayRHN+Oo7T\nOEY/5R2jVxtj+rxpVp1z6XQEYZY5jrOvpGMknWeMWe6f6V09oIvRCiMPa+HvJO0uabGkpyX9TbnJ\nQVzGmFGSvivpQsdxXvbP4xitnoD85BitMMdx/uQ4zmJJ0+XWiL2l5CQhheb8NMYskvQRufm6v9xm\njh8qMYmhigzYnpI0w/d+ujcNFnIc5ynv+TlJ35d7onrWq/KV9/yct3hY3pLn9skqD5/yXjdPR4Ec\nx3nW+wN6U9K1co9TKX5+/l5uc49hTdORI2NMj9zC/Tcdx/meN5ljtKKC8pNjtB4cx3lJ0s8lHajw\nfNiRd978sXLzjTKSZXz5ucprzuw4jvOapH9Q8mM013NukQHbLyXN83rX6ZV7Q+a/FLh9RGSM6TfG\njG68lnSUpI1y86vRG85aST/0Xv+LpD/3etQ5QNIWr0nPv0s6yhgz3msGcpQ3DeXJJA+9eS8bYw7w\n2uj/uW9dKEijYO/5M7nHqeTm52ler2WzJc2TezN04HnYq8n5uaSTvc/79w3kwDturpP0oOM4V/lm\ncYxWUFh+coxWlzFmojFmnPd6hKQj5d6bGJYP/mP3ZEk/8/ItVl7n/806U0h+/tZ3gczIvefMf4za\nc84N6okkr4fcHlcektsGeH2R2+YRK5/myO2t6D5Jv27kldy22D+V9LCkWyUNeNONpC97+fqApCW+\ndZ0l9wbbzZLOLPu7ddJD0rfkNsF5Q25b6nVZ5qGkJXJPbI9I+pIkU/Z3rvMjJD9v9PLrfrl/LlN9\ny6/38maTfD1VhZ2HveP+Ti+f/1lSX9nfuc4PScvkNne8X9K93uNYjtFqPlrkJ8doRR+S9pZ0j5d3\nGyV9vFU+SBruvd/szZ+TNK95FJqfP/OO0Y2SvqGdPUladc413gYAAAAAAJah0xEAAAAAsBQBGwAA\nAABYioANAAAAACxFwAYAAAAAliJgAwAAAABLEbABAAAAgKUI2AAAAADAUgRsAAAAAGCp/w+c+Ut2\nDk4kQAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7e79141828>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data[['u', 'v', 'w']].plot(figsize=(15,9), grid=True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAJUCAYAAADU0/NQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4k2W6P/Dvk6VJ0ybpnhToQmmh\nCAgiKotgEUdw33VU9Lgy4zLn6BkZjz/1zHLGM+M5Z2bOGfddZ1R01HFhVNywAiLKIsi+FFpa6E6b\nNG32vL8/0pQCXZJmed+03891zQWkyfvexYbpt8/z3LeQJAlERERERETDmUruAoiIiIiIiOKNwYeI\niIiIiIY9Bh8iIiIiIhr2GHyIiIiIiGjYY/AhIiIiIqJhj8GHiIiIiIiGPQYfIiIiIiIa9hh8iIiI\niIho2GPwISIiIiKiYU8jdwEDycnJkYqLi+UugyhhOjs7kZaWJncZRIrD9wZR3/jeIAI2btzYIklS\n7mDPU3TwKS4uxoYNG+QugyhhKisrUVFRIXcZRIrD9wZR3/jeIAKEEDXhPI9b3YiIiIiIaNhTZPAR\nQlwkhHjWZrPJXQoREREREQ0Digw+kiQtlyRpidlslrsUIiIiIiIaBhR9xoeIiIiIiI7l9XpRV1cH\nl8sldykJpdfrMWbMGGi12iG9nsGHiIiIiCiJ1NXVwWg0ori4GEIIuctJCEmS0Nrairq6OowdO3ZI\n11DkVjciIiIiIuqby+VCdnb2iAk9ACCEQHZ2dlSrXAw+RERERERJZiSFnpBoP2cGHyIiIiIiGvYY\nfIiIiIiIaNhj8CEiIiIiItlVV1ejoqIibtdn8CEiIiIiomGP7ayJiIiIiJLUr5dvx47D9phe86RR\nJvzyokn9fryzsxNXX3016urq4Pf78fDDD+P+++/H1VdfjY8//hipqal4/fXXUVpa2ufrb7rpJlx4\n4YW48sorAQDp6elwOBxQq9XIysqK6efSG1d8iIiIiIgobCtWrMCoUaOwZcsWbNu2DYsWLQIAmM1m\nbN26FXfffTfuueeeiK9bUFCAv//977EutwdXfIiIiIiIktRAKzPxMmXKFPz85z/H/fffjwsvvBBz\n584FAFx77bU9v957770Jr2swDD5ERERERBS28ePHY9OmTfjoo4/w0EMPYcGCBQCOnbMz0MwdjUaD\nQCAAAAgEAvB4PPEtuJsit7oJIS4SQjxrs9nkLoWIiIiIiHo5fPgwDAYDFi9ejKVLl2LTpk0AgDff\nfLPn11mzZvX7+uLiYmzcuBEA8MEHH8Dr9ca/aCh0xUeSpOUAls+YMeN2uWshIiIiIqKjtm7diqVL\nl0KlUkGr1eKpp57ClVdeiba2Npx88snQ6XRYtmxZv6+//fbbcckll2Dq1KlYtGgR0tLSElK3IoMP\nEREREREp08KFC7Fw4cITHl+6dCkeffTRQV9vsViwbt26nj+H85pYUORWNyIiIiIioljiig8RERER\nEUWlurr6hMceeeQRvPXWW8c8dtVVV+HBBx9MUFXHYvAhIiIiIqKYe/DBB2ULOX3hVjciIiIiIhr2\nFB182roS09ObiIiIiIiGN0UHn7o2J369fDt8/oDcpRARERERURJTdPDJSdfhpa+rceOL36Gtk6s/\nREREREQ0NIoOPvlmPf77ypOxoboNlzzxNXY3dMhdEhERERERxdHLL7+MX/3qVzG/rqKDDwBcNaMA\nb/5kJlxePy578mus2NYgd0lERERERJRkkqKd9SmFmVj+szOx5K8b8dNXN+Lec8bjZ2eXQqUScpdG\nRERERCSfj/8NaNga22tapwDn/b7fD3d2duLqq69GXV0d/H4/Hn74Ydx///24+uqr8fHHHyM1NRWv\nv/46SktLT3it3+9HaWkp9u/fD5vNhuzsbHz55ZeYN28e5s2bhxdeeAGpqalIT0+P7eeEJFjxCbGY\n9HhzyUxcPn00/vT5Htz52iZ0un1yl0VERERENKKsWLECo0aNwpYtW7Bt2zYsWrQIAGA2m7F161bc\nfffduOeee/p8rVqtxoQJE7Bjxw6sWbMG06dPx+rVq+F2u1FbW4uysjJcc801uO+++2Jed1Ks+ITo\ntWr84aqpOCnfhP/8aCeueKoTz904AwVZBrlLIyIiIiJKvAFWZuJlypQp+PnPf477778fF154IebO\nnQsAuPbaa3t+vffee/t9/dy5c7Fq1SocOHAADzzwAJ577jmcddZZOO200+Jad9Ks+IQIIXDb3BK8\ncsvpqLe5cPHja7C2qkXusoiIiIiIRoTx48dj06ZNmDJlCh566CH85je/ARD8Pj2k9++PN2/ePKxe\nvRrfffcdzj//fLS3t6OysrInQMVL0gWfkLlluXj/rjnITtfhhhe+wytrqyFJktxlERERERENa4cP\nH4bBYMDixYuxdOlSbNq0CQDw5ptv9vw6a9asfl9/+umnY+3atVCpVNDr9Zg2bRqeeeYZzJs3L651\nJ9VWt+MV56Th3Ttn4943N+OXH2zHjsN2/ObSSdBp1HKXRkREREQ0LG3duhVLly6FSqWCVqvFU089\nhSuvvBJtbW04+eSTodPpsGzZsn5fr9PpUFBQgJkzZwIIbn1btmwZpkyZEte6kzr4AIBRr8WzN8zA\nnz7fg8dW7sO+ZgeeWjwdeUa93KUREREREQ07CxcuxMKFC094fOnSpXj00UfDusbq1at7fn/dddfh\nuuuui1l9/UnarW69qVQCPz93Ap64bjp2HLbjkse/xg917XKXRURERERECjEsgk/IBSfn4+07ZkEl\nBK56+hu8v/mQ3CUREREREQ171dXVyMnJOeaxRx55BNOmTTvmf4888ohMFQ6DrW7HmzTKjA/unoM7\nX9uEf3ljM3bU2/GLheVQc9gpEREREQ0TkiQN2DlNCR588EE8+OCDMbtetI3MErbiI4S4VAjxnBDi\nTSHEufG8V3a6Dq/edgYWzyzEM1/tx62vrIfN6Y3nLYmIiIiIEkKv16O1tXVEdTSWJAmtra3Q64d+\njj+qFR8hxIsALgTQJEnS5F6PLwLwfwDUAJ6XJOn3kiS9B+A9IUQmgP8B8Gk09x6MVq3Cby+dgon5\nJvzy/e247Imv8eyNM1Calx7P2xIRERERxdWYMWNQV1eH5uZmuUtJKL1ejzFjxgz59dFudXsZwOMA\n/hJ6QAihBvAEgB8BqAOwXgjxgSRJO7qf8lD3xxPi+jOKUJZnxB2vbsRlT3yNP197CuaX5yXq9kRE\nREREMaXVajF27Fi5y0g6UW11kyRpFYAjxz18OoB9kiTtlyTJA+ANAJeIoEcBfCxJ0qZo7hup08dm\n4YOfnYnCbANueWU9nqqsGlFLg0REREREI108mhuMBlDb6891AM4A8DMA5wAwCyFKJUl6uq8XCyGW\nAFgCABaLBZWVlTEr7J8nSXghoMajK3bhqy17cfNkHXRqZR8Ko5HF4XDE9GueaLjge4Oob3xvEIUv\nYV3dJEn6M4A/h/G8ZwE8CwAzZsyQKioqYlrHuWdLeLKyCv/z6W44VBo8e8MMjMpIjek9iIaqsrIS\nsf6aJxoO+N4g6hvfG0Thi0dXt0MACnr9eUz3Y4oghMBd80vx/I0zUN3ShYsfX4P11cfv1iMiIiIi\nouEkHsFnPYAyIcRYIUQKgB8D+CCSCwghLhJCPGuz2eJQXtCCiRa8d9dsGPVaXPfcOiz77mDc7kVE\nRERERPKKKvgIIZYB+AbABCFEnRDiVkmSfADuBvAJgJ0A/iZJ0vZIritJ0nJJkpaYzeZoyhtUaZ4R\n7905B7PG5eCBv2/Fv7+/DV5/IK73JCIiIiKixIvqjI8kSdf28/hHAD6K5tqJYjZo8dJNp+G/VuzC\nM6v2Y09jB564bjqy03Vyl0ZERERERDESj61uSUetEnjg/In40zVTselgOy5+/GvsOGyXuywiIiIi\nIooRBp9eLjtlDN76ySz4AxKueGotPt5aL3dJsvhydxPauzxyl0FEREREFDOKDD6JaG7Qn6kFGfjg\n7jmYmG/EHa9twh8/3Y1AYOQMO211uHHzS+tx5dPfoN7mlLscIiIiIqKYUGTwSVRzg/7kmfRYtmQm\nrp4xBn9euQ8/eXUjHG6fLLUk2pHO4ErPviYHrnzqG1Q1O2SuiIiIiIgoeooMPkqg06jx6BUn41cX\nnYSVu5rwi7e3yF1SQticXgDA0oUT4PL6cfXT32DbocSvvBERERERxRKDzwCEELhpzljcWTEOH21t\nwO6GDrlLirtQ8JlTmoO3fjoLeq0aP352Hdbtb5W5MiIiIiKioVNk8JHzjE9fbpkzFmkpajzx5T65\nS4m7UPAxp2pRkpuOt++YBatZjxtf/A6f7WiUuToiIiIioqFRZPCR+4zP8TLTUrB4VhH+8cNh7B/m\nZ156Bx8AyDen4m8/mYWJViN++upGvLOxTs7yiIiIiIiGRJHBR4lun1uCFI0KT1ZWyV1KXIWCj0l/\ndLZtVloKXrt9JmaWZOHnb23B86v3y1XekPxQ1469jcN/myIRERER9Y/BJ0w56Tpce3oh3v3+EGqP\ndMldTtzYnT6kpaihUR/7pZGu0+DFm07DoklW/PbDnfifT3ZDkpKjzff972zFPW9ulrsMIiIiIpIR\ng08EfjJvHNRCDOtVH5vT27PN7Xg6jRpPXD8d18wowONf7sPD72+DPwlmHDXaXdh+2I6a1k65SyEi\nIiIimTD4RMBq1uOqGWPw9sbaYTvc0+b0wtRP8AEAtUrg91dMwU/OKsGr6w7iX974Hh5fIIEVRsbr\nD/TMJvpoa4PM1RARERGRXBQZfJTW1a23OyrGQZKAZ75KrnMu4bIPsOITIoTAA+dNxL+dV45//FCP\n2/6yAV0eZQ54bXV4en7/8bZ6GSshIiIiIjkpMvgoratbb2MyDbh8+mgs++4gmjpccpcTcwNtdTve\nT88ah0evmII1e5ux+Plv0d7lGfxFCdbc4QYAzCjKxA91tmF9PouIiIiI+qfI4KN0d1aUwusP4PnV\nB+QuJeYiCT4AcM1phXjy+unYdsiOny37Po6VDU2LIxh8bpxdDABYsY3b3YiIiIhGIgafISjOScPF\nU0fh1XU1PedHhotIgw8ALJqcj/sWjsfqvS3YUH0kTpUNTWjF55SCDEwZbcaHW7ndjYiIiGgkYvAZ\norvml8Lp9ePFNcNn1cfjC8Dp9UccfABg8cwiZKel4P++2BuHyoauuXvFJ9eow3lTrNhc245D7cOz\nMQURERER9Y/BZ4jKLEacN9mKV9ZW9wz9THZ2V/fw0iEEH0OKBrfPK8HqvS3YdLAt1qUNWXOHG0a9\nBnqtGudPzgfA7W5EREREIxGDTxTunl+GDrcPr6ytlruUmAgFuKGs+ADADTOLkGnQ4s8KWvVp7nAj\n16gDENyieFK+CR9xuxsRERHRiKPI4KPkdta9nTTKhHMm5uHFrw/A4VZmO+dIRBt80nQa3Da3BJW7\nm7G5tj2WpQ1Zc4cbuem6nj+fP8WKjTVtaLANv458RERERNQ/RQYfJbezPt7dZ5ehvcuLv35TI3cp\nUQsFn6FsdQv5p9nFyDBo8ZhCVn2aHUdXfADgvCmh7W5c9SEiIiIaSRQZfJLJtIIMzC3LwfOr98Pp\n8ctdTlTsUa74AEC6ToNb54zFF7uasLVO/hW7lg43cnqt+IzLTUe51YiPtvKcDxEREdFIwuATA/+8\noAytnR68/t1BuUuJSrRb3UL+aU4xTHqN7B3enB4/Oty+Y1Z8AOC8yflYX3METXZudyMiIiIaKRh8\nYuC04izMLMnCM19VweVN3lUfW1doq5smquuY9FrcemYJPt/ZiG2H5Fv1aenVyrq386dYIUnAJ9u5\n6kNEREQ0UjD4xMjPzi5DU4cbb22sk7uUIbM5vdBrVdBp1FFf66Y5xTDqNXhspXyrPk0dfQefMosR\nZXnpHGZKRERENIIw+MTI7HHZmF6Ygacrq+DxBeQuZ0jsLm/U29xCzKla3DxnLD7Z3oid9faYXDNS\nzaHgk6474WPnTcnHdweO9DyHiIiIiIY3Bp8YEULgZ2eX4VC7E+99f0jucobE5oxd8AGAW+YUI10n\n36pPc/dWtzzjicHn/ClWBCTg0x2x2+7mD0h4Z2Mdmjp4doiIiIhIaRQZfJJljs/xKibkYspoM56o\n3AefP/lWfWIdfDIMKbhpdjE+2tqA3Q0dMbtuuFo63BACyEpLOeFjEyxGlOSmxWyYqcvrx8+WbcLP\n39qCu17bhEBAisl1iYiIiCg2FBl8kmmOT29CCNx9dilqWruw/IfDcpcTMZvTF9PgAwC3njkWaSlq\nWVZ9mh1uZBlSoFGf+GUuhMD5k/Oxbv8RtDqi2+5md3lx00vf4aOtDVg4yYL11W14aW11VNckIiIi\nothSZPBJZj+aaMEEixGPr9yXdD/1tzu9UQ0v7UtmWgpunF2MD7fWY29jYld9mjvcJzQ26O28KVb4\nAxI+29E45Hs02l24+ulvsKG6Df97zTQ8vfhUnF2eh//+ZBf2NzuGfF0iIiIiii0GnxhTqYKrPlXN\nnfh4W3K1S471VreQ2+eWIFWrxmMr98X82gMZLPiclG9CcbZhyN3dqpoduPzJtTh4pAsv3nQaLj1l\nNIQQ+N3lU5CiVmHp2z/An2Thl4iIiGi4YvCJg/On5KMkNw2PrdwLSUqOb3x9/gAc7thvdQOCZ2xu\nmFWE5T8cxr6mxK2CNHe4++zoFiKEwHlT8rG2qhVvb6zrGeAaju8PtuHKp9bC5fXjjSUzMW98bs/H\nLCY9fn3JJGysacOLaw5E9TkQERERUWww+MSBWiVwV0UpdjV04POdTXKXE5YOlw9AcPhoPNw+twR6\njRpPfJmYVR9JktDsGHjFBwCuPa0QozL0uO+tLZjx289wy8vrBw1BX+5uwnXPfQujXot37piNk8dk\nnPCcS6eNxjkTLfjvT3cnNOwRERERUd8YfOLkkmmjUJCVmjSrPqFv9OOx4gMAOek6LJ5ZiPc3H0rI\n2Re7ywePLzBo8CnMNmDV0vl4987ZuGl2MXY3dPSEoJtf+g5vbaiFretoCHp7Yx1ue2UDSnLT8PYd\ns1Cck9bndYUQ+M/LJ8OQosZ9b23hljciIiIimTH4xIlGrcKdFaX4oc6GVXtb5C5nUPEOPgBw+7wS\naNUqPPFlVdzuEdLS3altsOADBEPKKYWZePCCk7Dm/vl47645uHnOWOxpdGDp2z9gxiOf4aaXvsO/\nv78N9721BTNLsvDGkpnIM+oHvG6eUY9fXzwJm2vb8dzq/TH5vIiIiIhoaBh84uiK6WMwyqzHY18o\nf9WnJ/gY4hd88ox6XH9GEd7bfAg1rZ1xuw8QPN8DBFeaIiGEwLSCDPy/8ydizf3z8f5dc3DLnLHY\n1+TAX76pwUVTR+HFm06DMcwtgRdPHYVFk6z446d7Et7VjoiIiIiOYvCJoxSNCj+tGIcNNW1Yt/+I\n3OUMKBErPgDw07NKoFaJuJ/1CQWfcFZ8+iOEwNSCDDxw/kSs/sV8fPf/FuDPP54GnUYd0TX+49LJ\nSNMFt7wl42BbIiIiouFAkcFHCHGREOJZm80mdylRu3pGAXKNOlkGeEYiUcEnz6THdacX4p1Nh/DY\nF3vRaHfF5T49wSfCFZ/+CCGQZ9JDCBHxa3ONOvzHpZOxpc6GZ1ZxyxsRERGRHBQZfCRJWi5J0hKz\n2Sx3KVHTa9X4ybwSrK1qxcYa5a76JCr4AMDdZ5diVkk2/vDZHsz+/Uos+csGfLm7KaYNAJodbmjV\nIiGfTzguPHkULpiSj//9fA92N3DLGxEREVGiKTL4DDfXnVGIrLSUhA/wjITd6UWKWgWdJv5fEjnp\nOrx62xn48r4K3DZ3LDbWtOHml9Zj3n99iT9/sRcNtuhXgZo73MhJ10GlinyFJl5+c8kkpOk0eDxB\nLb2JiIiI6CgGnwQwpGhw65ljUbm7GT/UtctdTp/sLi9MqdohbeUaqrE5aXjgvIn45oEFeOK66SjJ\nTcMfP9uD2b//Are9sgErdzUOeRWouWPwGT6Jlp2uw7SCjIS08yYiIiKiYzH4JMiNs4pg0mvwuEJX\nfWxOL8ypGlnunaJR4YKT8/HXW8/AV0sr8NOzxmFzbTtueXkD5j66ElVDCAotDnfMzvfEUmGWAQdb\nuxTf5Y+IiIhouGHwSRCjXoub54zFpzsasbPeLnc5JwgGH/nPwxRlp+EXi8rxzQNn46nrp+OwzYWP\nfqiP+DqhrW5KU5hlQIfb13OmioiIiIgSg8EngW6eU4x0hZ7xUErwCdGqVThvSj7GZKZib1NkKz7+\ngITWTo/itroBQEGWAQBQe8QpcyVEREREIwuDTwJlGFJww6wifLS1Hvsi/GY+3pQWfELK8tIjDj5t\nXR74A5Iyg09mMPgcPNIlcyVEREREIwuDT4LdduZY6DVqPKmwVR9bl0KDj8WI/c2OiJocxGJ4abwU\nZKUCYPAhIiIiSjQGnwTLTtfh+jMK8f6Ww6hp7ZS7HABAICChw+1TZPApzUuH2xdAXVv4QUHJwceo\n1yIrLQW1EXw+RERERBQ9Bh8ZLJlXArVK4KnKKrlLAQB0uH2QJMCk0OADAHsbw9/u1uLoDj4KbG4A\nAAWZqajlig8RERFRQjH4yCDPpMePTyvAO5vqcKhd/kPu9u4OY4oOPhGc81Hyig8QbHDArW5ERERE\nicXgI5OfnDUOAPDMV/Kv+oRaKytxq5tJr4XVpMfepo6wX9Pc4UaqVo00nTxziQZTmGXAoTbnkIez\nEhEREVHkGHxkMjojFVdMH4M31teiye6StRYlBx8AKLOkR9QFr9nhVuxqDxAMPr6AhHqb/Kt9RERE\nRCMFg4+M7qwohT8g4dlV+2WtQ+nBpzQvGHwCYa6QNHcoO/iEZvlwuxsRERFR4igy+AghLhJCPGuz\n2eQuJa4Ksw24ZOoovPbtQbR2H8iXg9KDT1meEV0eP+rDXBlr7nArtrEBEFzxAcAGB0REREQJpMjg\nI0nSckmSlpjNZrlLibs755fC5fPj+TUHZKtB6cHnaGe38M75KH2rW75ZD7VKoPYIt7oRERERJYoi\ng89IUpqXjgum5OMva6vR3uWRpQab0wu1SsCQopbl/oMp6w4+4Zzz8fgCaO/yKjr4aNQqjM5I5VY3\nIiIiogRi8FGAu+aXotPjxwdbDstyf7vTC3OqFkIIWe4/mMy0FOSkp4Q1y6e1U9mtrEMKshh8iIiI\niBKJwUcByq1G6LUq2c582LqDj5KV5qWH1dI6NMMnR8FnfIDgOZ+6NgYfIiIiokRh8FEAIQQsJj0a\n7fI0OLA5vYocXtpbWZ4Re5sckKSBO7spfXhpSEGWAS0ODzrdPrlLISIiIhoRGHwUwmLSo0GmeT72\nJFjxKbOko8PlQ1PHwOEwaYJPZndnN676EBERESUEg49CWEx62QaZJstWNwCDnvM5utUtJe41RSPU\n0vpgK4MPERERUSIw+CiE1aRDg9016FaueAgGH03C7xuJ0p7ObgOf82l2uGFO1UKnUWaHupCeWT5t\nymtpva+pAx0ur9xlEBEREcUUg49CWEx6uLwB2F2JPfMhSRLsLp/iV3xy03Uwp2qxd5CW1i0Kn+ET\nkmHQwqjTKG6IaYvDjfP/vAZPVlbJXQoRERFRTDH4KITFpAcANCZ4u1unxw9/QIJJr+zgI4RAWV76\noMGnucONXIV3dAOCn8+YLIPiWlq/ub4WHl8g7GGxRERERMmCwUchQsGnwZbY4GNzBrc0KX3FBwg2\nOBhsiGlzhxs5SbDiAwCFWamKWvHxByS8/u1BAEA1zx4RERHRMMPgoxBWmVZ8bF3JE3xK84w40ulB\nq6P/zm7JsuIDBM/5HDzSJcu5rr5U7m7CoXYnSnLTcLC1C/6AMuoiIiIiigUGH4XIMwW/WU948Emm\nFZ9QZ7d+Vn063T50evxJccYHCM7ycfsCPZ3ooiFJEm55eT3+8cPhIV/jr+tqYDHpcPPsYnj8AdTb\nlNd4gYiIiGioGHwUQq9VI8OgTfgQ01DwUfoAUyC41Q3oP/i0OJJjhk9IQVbsZvk02F1YuasJD7+3\nrWcVLxI1rZ34ak8zrj29EOO6A2YNt7sRERHRMMLgoyBWGYaY2pNoxcdq0iNdp0HVMAk+PbN8YnDO\nZ39zJwCgrcuLP32+J+LXv/7tQaiEwLWnF2JsThoA4EBLZ9R1ERERESkFg4+C5MkwxLRnq5tB+cFH\nCIFxeenY288sn9CWsWQ54zM6IxVCAAdbo99SVtUcDIPnnmTBX9fVYHdD+F3ZXF4/3txQi4WTLLCY\n9LAY9dBpVKhpZfAhIiKi4YPBR0FCQ0wTyeb0QgggPUXZA0xDyvLSsbex7xWfnuCTJCs+eq0aFqM+\nJis+VU0OpOs0+P0VJyNdp8Gvl28Pu2nChz/Uo73Li8UziwAAKpVAcXYaDrRwqxsRERENHww+CmIx\n6dHc4YbPH0jYPe0uL0x6LVQqkbB7RqMsLx1NHe4+z7E0d7ihEkBWWooMlQ1NYZYhJmd89rd0oiQ3\nDVlpKbjv3PFYW9WKFdsawnrtX9fVYFxuGmaVZPc8VpRt4IoPERERDSsMPgpiMekRkIDWTk/C7mlz\nepPifE9IqMHBvuYTt3I1O9zIStNBnSQhDgg2OIjFLJ+qJgfG5Qb/bq49vRDlViN+++FOOD3+AV+3\ntc6GzbXtWDyzCEIc/XsrzklDzZEuBNjSmoiIiIYJBh8FscowxDTpgk+eEQD63O7W3OFOmm1uIQVZ\nqWiwu+D2DRxQBtLl8eGwzYWS7qYEGrUKv7p4Eg61O/HMqqoBX/vquhqkatW4fPqYYx4vzk6DxxdA\nfYK3XhIRERHFS8KCjxCiRAjxghDi7UTdM9lYZBhimmzBZ3RGKvRaVZ8trZMx+BRmGSBJwKG2oTc4\nCHV0C7WhBoCZJdm44OR8PFVZhbp+ttLZurx4f8shXHrKqBO+Boqzgx3natjZjYiIiIaJqIKPEOJF\nIUSTEGLbcY8vEkLsFkLsE0L8GwBIkrRfkqRbo7nfcGcxJ36IabIFH5VKYFxuOvb1EXxaHJ6k6egW\nEouW1vu7w0lJbtoxj/+/8ydCCOB3H+3q83Vvb6qDyxvoaWrQW3GopTXP+RAREdEwEe2Kz8sAFvV+\nQAihBvAEgPMAnATgWiHESVFOf7h3AAAgAElEQVTeZ0TI7j6fksghpnanNymGl/ZWlndi8JEkKWlX\nfABEdc6nqskBIYLb03obnZGKOytK8eHWeqytajnmY4GAhFfX1WB6YQYmjTKfcE2rKdTSmp3diIiI\naHiIKvhIkrQKwJHjHj4dwL7uFR4PgDcAXBLNfUYKtUogz5i4ltaSJCXdig8AlFmMONTuhMPt63nM\n7vTB4w8gJz15OroBwdbbOo0KtdFsdWvpREGmAXqt+oSPLZlXgjGZqfj1BzuO6Ra4tqoVB1o6ccOs\nE1d7gODKWlG2AdXc6kZERETDRDyGt4wGUNvrz3UAzhBCZAN4BMApQogHJEn6XV8vFkIsAbAEACwW\nCyorK+NQonKlwoOd1YdRWdkW93u5fRK8fgkt9QdRWRle62MlcDUFA8/fVnyFEnPwm/3DjuA39S21\n+1FZeVC22oYiWydh4+4aVBoa4XA4Iv6a37LfiQyd6Pd1lxYF8PjmDvzq1S9wTlEw5D72vQtGLZB2\nZC8qK/f1+bo0yYXtBztH3HuQlGko7w2ikYDvDaLwJWxqpSRJrQB+GsbzngXwLADMmDFDqqioiHNl\nyrKsdgMOtHSiouKsuN+rweYCPv8Cp0yagIoz+v7JvxIVNjvw2PdfwTRmAipODXYjW1vVAqz5FvPO\nmIbZ43JkrjAy5dXr0WBzoaJiLiorKxHJ13wgIKHpixX40dRCVFT0vaP0LEnC945vsbzajn+9cjbc\nPj++/2Qllswbh3MXlPd77a87d+Av39Rg3ryzkmbOEw1fkb43iEYKvjeIwhePrm6HABT0+vOY7sco\nDFaTPmHtrG3O4BDQZNvqVphlQIpahb1NR2f5NHcEz0XlJdkZHwAoyExF7ZEuSFLkM3Pq7S64vIET\nGhv0JoTALy+aBIfbhz98uhvLvj0ICcD1ZxQOeO3inDS4fYGEbb0kIiIiiqd4rPisB1AmhBiLYOD5\nMYDr4nCfYSnPpIfd5YPT40dqyolnNmIpWYOPRq1CSW4a9vWa5RMKPrnpernKGrKCLAM63L6e/x6R\nqOpu8hAaXtqf8RYjbpxVhJfXVsOk12L+hDwUdDdW6E+oWUJ1aydGZaRGXBsRERGRkkTbznoZgG8A\nTBBC1AkhbpUkyQfgbgCfANgJ4G+SJG2P8LoXCSGetdls0ZSXlKwJnOWTrMEHCM6s2dd8NPi0ODxI\nUatgSk3Y7s2Yiaal9f7uv4OBVnxC7jlnPDINKbA5vbihjxbWxwu1tK5uYWc3IiIiSn7RdnW7VpKk\nfEmStJIkjZEk6YXuxz+SJGm8JEnjJEl6ZAjXXS5J0hKz+cQ2u8NdIoeYJnPwKctLx8EjXXB5/QCO\nDi8VIvnOohRmDz34VDV3wqjXhDW/yJyqxSOXTsaiSVbMG5876PPzTXqkaFSo4SwfIiIiGgbiccaH\nomDtHmKaiHMVyR18jJAkoKp7xaPZ4U66VtYhBZmhWT6Rt7Te3+JASW562IHvvCn5ePqGU6EOo1mB\nSiVQlGVANYMPERERDQMMPgqTJ8OKj1GfhMHHEjzTEhpkmozDS0PSdBpkp6UMbcWnqRPjwtjmNlRF\n2Wnc6kZERETDgiKDz0g+42PUaWBIUaPR7o77vexOL4w6TVg//Vea4uw0qFUCexuTP/gAwQYHtREG\nH4fbhwa7a9DGBtEozjag5kgnAoHIO84RERERKYkig89IPuMjhIDFpE/IVje70wtTEm5zA4AUjQrF\n2QbsbeqAPyDhSKc7rHMuSlWQZUBtW2TB50BzcAtaPFd8inPS4PIG0NjBltZERESU3BQZfEY6i0mH\npgRtdUvG8z0hZXlG7G1y4EinBwEJSb3iU5iVikNtTvgjWFkJnW+K74oPO7sRERHR8MDgo0DWBK34\nJHvwKc1LR01rFw63B5sCJHfwMcAXkHDEFX7w2d/sgEoc7QoXD8U5wWuzwQERERElOwYfBbKY9Gi0\nuyFJ8T1XkezBp8ySDn9AwvrqIwCSO/iEhom2OCNZ8elEYZYBOk38Bt3mm1ORolYx+BAREVHSU2Tw\nGcnNDYBg8PH4Amjv8sb1PskefErzglu81la1AgBykvmMT3dL6yZnIOzXVDUHW1nHk1olUJhtQA23\nuhEREVGSU2TwGcnNDYBeQ0zjfKDc5vTCbEje4DMuNx1CAN8dCK74JHPwyTfroVEJNHeFt+ITCEg4\n0BLfVtYhxdmc5UNERETJT5HBZ6TrGWJqi1/wcXn9cPsCMOk1cbtHvOm1ahRmGeBw+5CWokaaLnk/\nF41ahdGZqWjuCm/F51C7E25fIO4rPkD3LJ/WzrhvvYxUh8uLe9/cnJCZV0RERJT8GHwUKM8Y/yGm\ndldwG10yb3UDgLLu7W7JfL4npDDLgOYwz/gkoqNbSE9L6wTMlorEpoPtePf7Q3h1XY3cpRAREVES\nYPBRoJ6tbnH8RtPuDAafZJ3jE1KaZwQwPILPmEwDmsM847O/e4ZPSYK2ugHK6+zWYAt283v3+0OK\nW40iIiIi5VFk8BnpzQ1SNCpkp6XEtaW1zTk8VnxKh9mKT4cH6HT7Bn1uVbMD5lQtstNS4l7X0Vk+\nSgs+wR8M1LU5saGmTeZqiIiISOkUGXxGenMDAMgz6eM6xHS4BJ+erW5J3NggJLSysrfJMehzq5od\nGJebBiFEvMvCqIxQS2tldXZrsDth0muQqlXj3e8PyV0OERERKZwigw8BVpOOKz5hKM1LR4pG1TMH\nJ5mdNjYLAsCqPc2DPnd/c2dCGhsAwZbWBVmpqFHYVrd6mwtF2WlYOMmCD3+oh9vnl7skIiIiUjAG\nH4UKDTGNF1vX8Ag+aToNPv6XuVg8s0juUqKWk67DWLMKX+5uGvB5HS4vmjrcCWlsEFKcnYYDitvq\n5oLVrMdl08fA5vTiy10D/70RERHRyMbgo1AWkx4tDje8/vAHWkbC5gyeI0n25gZAsLOZXquWu4yY\nmJqrxubadhzp9PT7nEQ2Nggpyk5DTWuXopoI1NtcsJr0mDMuGznpOm53IyIiogEx+CiUxaSHJAHN\nHfFZ9bG7vDCkqKFV80tASU7OVUOSBt7ulshW1iFjcwxwev1oitPXY6ScHj9sTi+sZj00ahUumTYK\nK3c1ob2r/8BIREREIxu/61Wo0BDTeM3ysTm9Sb/NbTgqMqmQk54y4Ha3/c2dUKsEChN4rqlIYZ3d\nQuff8s3B1u+XnTIaXr+ED7fWy1kWERERKZgig89Ib2cN9J7lw+AzkqiEwFnj8/DVnmb4A31vK6tq\ndqAoy4AUTeLevmNzuoOPQhoc1HfP8LF2B59Jo0woy0vHu5u43Y2IiIj6psjgw3bW8R9ianN6h8X5\nnuFofnku2ru82Fzb3ufHgx3dEne+BwiurGjVQjEtrRtsoRWfVACAEAKXTR+NDTVtOKiQGomIiEhZ\nFBl8CMgypECrFnFraW3nio9izS3NhVol+uxS5g9IONDSmdDzPQCgUQdbhiulpXV9d/Cxdv+AAAAu\nmTYaAPDeZq76EBER0YkYfBRKpRLIM+q51W0EMhu0OLUws89zPnVtXfD4Awlf8QFCLa2VsZrSYHPB\nnKpFasrRbn6jM1IxsyQL735/SFHd54iIiEgZGHwUzGLSMfiMUBXludh+2H7Cf/9QK+tEr/gAweBT\n09qpiFDRYHf1NDbo7bJTRuNASye21I3c84FERETUNwYfBbOY9D1nGWLJ6w+gy+OHSc/go1TzJ+QB\nAL7afWxbazlaWYcU5xjQ5fHHrcV6JELDS4933pR8pGhUeHdTnQxVERERkZIx+CiYxaRHUxyaG9id\nXgCAOVUT82tTbJRbjbCa9Cdsd6tq7kSmQYvMtJSE19TT0loBzQPqbX2v+Jj0WvxoogXLf6iP2/Bf\nIiIiSk4MPgpmMenR4fah0+2L6XVtoeBj4IqPUgkhML88F6v3thzzDXxVs0OW1R4AGKuQWT4eXwAt\nDjesptQ+P37ZKaNxpNMz4BBYIiIiGnkUGXw4xycoXkNMe4IPz/goWsWEPDjcPmyobut5TI5W1iGj\nMvTQqITss3wajxteeryzJuQi06DF379ndzciIiI6SpHBh3N8gkKzfGLd0prBJzmcWZoDrVqgsnu7\nm83pRYvDLduKj0atQmGWATUyb3ULvR8s/QQfrVqFi6aOwuc7GmF3eRNZGhERESmYIoMPBYWCT6zP\n+TD4JIc0nQZnjM3uOeezv7uxQYlMwQcAirINOCDzVrejw0v7Dj5AcLub2xfAiq0NiSqLiIiIFI7B\nR8HiteITam5gYvBRvIoJudjT6EBdWxeqelpZy7PVDQCKc/pvad3c4caKbfX4j3/swCWPr8EZ//k5\nth2K/XbVUPDpq6tbyLSCDIzNScO73O5GRERE3djWS8HSdRqk6zQxb2kdWvFhO2vlm1+eh99+uBOV\nu5txqN0JjUqgIMsgWz3F2Wno7G5pHTp/9F31EWyoPtLT7U2nUWFaQQYkCbj9Lxvw/l1zkGfqP6RE\nqt7mQlqKGkZd//98CSFw6bTR+N8v9uBwuxOjMvpuhEBEREQjB4OPwllMOjR1xHjFx+WDTqOCXqse\n/Mkkq5KcNBRmGVC5uwlqlUBRtgFatXwLtUXZwdB19h++gqO722CmQYsZxVm47oxCzCjOwuRRZqRo\nVNh2yIarnv4Gt/91I95cMjNmX28NdiesZj2EEAM+79JTRuFPn+/B+5sP446KcTG5NxERESUvBh+F\ni8cQU1uXl+d7koQQAvMn5OJvG+qQa9Sh3GqUtZ5TCjMxe1w28s2pOK04EzOKszAuN63PEDJ5tBl/\numYafvrqRtz31hY8du0pg4aVcARn+Ay+glOUnYZTizLx/uZDDD5ERETEMz5KZzXp0RiH5gYMPsmj\nojwPTq8fB490ydrYAAg2xHj99pn4w9VT8ePTC1Galz5gmFk02YpfLJqAf/xQj//7Ym9MamiwuXrO\nvw3mvMlW7GroQI3MLbiJiIhIfgw+Cmcx69HU4UIgcOJh8qFi8Ekus0qyodME36pyNjYYqjvOGofL\np4/G/36+F8u3HI7qWv6AhKYO94Ad3XpbOMkKAPhkO7u7ERERjXQMPgpnMerg9Uto6/LE7JoMPslF\nr1Vj9rhsAPK2sh4qIQR+d/kUnFacifve2oLNte1DvlaLww1/QBqwo1tvBVkGTBplwifbG4d8TyIi\nIhoeFBl8hBAXCSGetdli3wo32YS+wYtlS2sGn+Rz0dRRMOo0KLMkX/ABAJ1GjacXn4o8kw63vbIB\nh9udQ7pOfRgzfI63cJIVG2va0BTjtvBERESUXBQZfCRJWi5J0hKz2Sx3KbLLi8MQU7vTyxk+Seay\nU0Zj/UPnJHUL8ux0HV74p9Pg9vpx6ysb0NndFS4SDbZgYAp3xQc4ut3t0x1c9SEiIhrJFBl86Chr\njIeY+gMSOtw+Bp8kI4QYFu3Hx1uMeOy6U7C7wY573twc8dm1oys+4c/lGW9Jx9icNJ7zISIiGuEY\nfBQu16iDEIhZS+sOV3B4Kbe6kVwqJuTh4QtPwmc7GvHfn+6O6LUNNhdSNCpkGsL/+hVC4NxJFnxT\n1QpblzfScomIiGiYYPBROK1ahey02A0xtTkZfEh+N80uxqXTRuG5Vfvh9vnDfl2D3QWrafDhpcdb\nNMkKX0DCyt3c7kZERDRSMfgkAatZF7MVHwYfUgIhBBZMtMAXkLCvyRH26+ptrojO94RMHZMBi0mH\nFdu43Y2IiGikYvBJAhZj7IaYMviQUkzMNwIAdjd0hP2aBpsroo5uISqVwLknWfHVnmY4PeGvMBER\nEdHwweCTBCxmPRpj1NyAwYeUojg7DSkaVdjBR5IkNAxxxQcAFk22wuUNYNXe5ohe987GOvzHP3bA\n5WVgIiIiSmYMPknAYtSjtdMDjy8Q9bUYfEgpNGoVSnPTsSvM4HOk0wOPP9DT6TBSp4/NgjlVi08i\n2O7WaHfhofe24YU1B3D1M9/EbMspERERJR6DTxKwmnUAEJMGB6HgY0rVRH0tomiVW43Y1WAP67lD\nGV7am1atwjkTLfh8ZyO8/vB+iPDHT/fAFwjgVxedhKomBy56fA02HWwb0v2JiIhIXgw+SSA0xDQW\n293sTh+0aoHUYTAThpJfeb4RjXY32rs8gz439PVvjWCGz/EWTrLA7vJh3f7WQZ+7s96Ov22sxY2z\ninHTnLH4+51zkKpV48fPrMPbG+uGXAMRERHJg8EnCVh7gk/0DQ5sTi/MqdqI2wETxcMEqwkAwtru\nFu2KDwDMG5+LVK06rGGmv/t4F4w6DX52dml3rUa8f9cczCjOxH1vbcFv/7EDvjBXjoiIiEh+DD5J\nwNIdfGJxvsDu9MLE8z2kEOXW8Du7NdhcUKsEctJ1Q76fXqtGxYRcfLq9EYGA1O/zVu1pxqo9zfjn\nBWXIMKT0PJ6ZloK/3HI6bppdjOfXHMDNL6/nUFQiIqIkweCTBDINWqRoVGiM0RkfNjYgpcgz6pBh\n0IZ1zqfe5oLFqINaFd1q5cJJVjR1uPF9bXufH/cHJPznRztRkJWKG2YVnfBxjVqFX108CY9eMQXr\n9rfi0ie/xr6m8FtyExERkTwYfJKAEAIWkw6NMVjxYfAhJRFCdDc4CGPFx+6EJYptbiHzy/OgVQt8\n2s92t3c21WFXQwfuX1QOnab/s3DXnFaIZbfPRIfLi8ueWIvaI11R10ZERETxo8jgI4S4SAjxrLOl\nVu5SFCNWQ0wZfEhpyq0m7GnoGHDrGRBc8YnmfE+IOVWLWeNysGJ7AyTp2Ht2eXz4w6e7Ma0gAxdM\nyR/0WjOKs4Lhx+3Dl7uboq6NiIiI4keRwUeSpOWSJC1J9bQCuz6UuxxFiNUQU5vTC5OewYeUY4LV\niE6PH4fanf0+p2d4qWnoHd16WzjJgprWLuxuPHal6fnVB9Bod+OhCyaG3QCkNC8dVpMeG6rZ5pqI\niEjJFBl8eqQYgLdvAQ5+K3clsrMY9Wiwu074CXUkAgEJdhdXfEhZJnQ3ONhZ3/85nw63D10ef0xW\nfADgRydZIATwybbGnseaOlx4+qsqnDfZihnFWWFfSwiBU4sysbGGwYeIiEjJlB18skoA02hg2TVA\n8x65q5GV1axDl8cPh9s35Gs4PD5IEhh8SFEmWAbv7BbqaGiNUfDJM+pxamEmVvQ65/Onz/bC4wvg\nF4vKI77eqUWZONTuRL2t/1UrIiIikpeyg49KAyx+J/jrq1cA9nq5K5KNJQZDTENtdxl8SEnSdBoU\nZhmwq7H/4BOLGT7HWzTZip31dhxs7cKexg68uf4gFs8swtictIivNaM4EwAUvepzqN2J5VsOw8vZ\nQ0RENEIpO/gAQNZY4Pq3gK5W4LWrANfgbW+HI0sMhpjanMHgwzk+pDQTrMZBVnyCKymh90EsLJxk\nBQB8sr0Bv/toJ9J0GvzzgrIhXWtivgmpWrXizvk02l14cc0BXP7k15jz+5X42bLv8f7mw3KXRURE\nJAvlBx8AGHUKcM1fgOadwJuLAZ9H7ooSzhqDIaZ2J1d8SJnKrUYcaOmEy+vv8+OhFZ9YBp+CLAMm\n5pvwzKr9+HJ3M+6eX4qstJTBX9gHrVqFqQVmbDo4tOBT09qJG174Fk0xaGDS4nDjr99U4+pnvsHM\n332B3/xjB7o8fixdOAF5Rh2+2Nk46DWIiIiGo+QIPgBQeg5w8ePAga+A9+8EAiNru0bPik8UQ0xt\nDD6kUOVWE/wBCfuaHH1+vNHuQk66Dima2P6TtWiSFS0ON0ZnpOKfZhdHda0ZRVnYftiOLk/k5/De\n2ViH1Xtb8MKaA0O+f+XuJlz//Dqc/sjnePj97TjS6cG/LCjD5/96FlbcMw93zS/FgokWrNrTDI9v\nZP37SUREBCRT8AGAadcCC/4d2PoW8Pkv5a4moVJT1DDpNVENMe0JPgYGH1KWUGe3/ra7xWqGz/Eu\nnJqPFLUKD14wEXpt/8NKw3FqUSb8AQmba9sjfu0Xu4IzgF7/9iA6XN6IX9/qcOOnr25EdUsX7qwo\nxYp75uKze+fhnnPGozQvved5C8rz0Onx49sDrRHfg4iIKNklV/ABgDP/FTjtNmDtn4F1T8ldTUJZ\nTNENMe0546PXxKokopgozjYgRaM6Ya5OSIPNFbOObr2Ny03HD786F+eHMax0MNMLgw0ONkXY4KDe\n5sT2w3ZcMCUfHW4f3vgu8sHNL31dDbcvgFduOQ33LZyAcqupzzlEc0pzoNOo8MVODlslIqKRJ/mC\njxDAef8FlF8IrHgA2PZ3uStKGKs5OMtnqGxOL9QqgXQdgw8pi0atQlleer+zfOK14gMg6pWeELNB\ni/GWdGyIMPis7F7tueecMswsycKLXx+IqPNah8uLV76pxsKTrCjNMw743NQUNeaU5uCLXY1RzQQj\nIiJKRskXfABApQaueB4oOAN49ydA9Rq5K0qIPKM+qnbWdpcXJr0m7In0RIlUbjX1udWty+ODzemN\naWODeDm1KAubatoQCIQfKlbubEJBVipK89KxZF4J6m0u/OOH8DuvvbruIDpcPtw5f1xYz18wMQ+1\nR5zY2895KiIiouEqOYMPAGhTgWuXAZljgWXXAY075K4o7qxmHZo63BF9U9WbzeljYwNSrHKrEU0d\nbrR1Htu1sSEOM3zi5dSiTNhdPuxrDi9UOD1+rNnXggXlFgghUDE+D2V56Xjmq/1hrci4vH68sOYA\n5pbl4OQxGWHdc0G5BQC43Y2IiEac5A0+AGDICg44TTEEB5za6uSuKK6sJj38AQktnUM752Nzehl8\nSLFCDQ52HbfqE9reGY8zPrE2oyh4zifceT5rq1rg9gVwdnkeAEClErh9Xgl2NXRgzb6WQV//1oZa\ntDjcuKMivNUeIPj3OGmUiW2tiYhoxEnu4AMAGQXA9W8DHgfw6pWAU1kDBGMpr3urT9MQGxzYnF4O\nLyXFKu8JPsee8zm64pOa8JoiVZRtQE56CjbUHAnr+V/sakJaihpnlGT1PHbJtFHIM+rw7Kr9A77W\n6w/gmVX7cUphBmaVZEdU54KJFmw62IYjnSNvJhoREY1cyR98AMA6Gfjxa0DrPuCN6wFv9EMAlSja\nIaZ2rviQguUadchKSznhnE9oeKk1Cc74CCEwvTAzrM5ukiRh5c4mzC3LhU5ztMGCTqPGTXOKsXpv\nC7YftvX7+uVbDqOuzYk7K0ojPrd3zsQ8BKTg7B8iIqKRYngEHwAYOw+47Gmg5mvg3SVAoO8J8Mks\n2iGmXPEhJRNCYILFeOJWN5sLGQYtUlNi030t3mYUZ6K6tQvNHQOvzO6ot6PB7sLZE/NO+Nj1ZxQh\nLUWN51f3PdA0EJDwVGUVJliMWFB+4usHM3mUGblGHc/5EBHRiDJ8gg8ATLkSOPcRYMf7wVbXw6xd\na056ClQCQxpiKkkSz/iQ4k2wGrGnseOYBh71NldSrPaEnFoU3La2cZBVn5XdoWP+hBODizlVi2tO\nK8TyLYdxuN15wsc/39mIvU0O3FExDipV5F0aVSqBBeV5WLWnGR5f+K2ziYiIktnwCj4AMPtuYNbd\nwHfPBIecDiMatQo56bohzfLp8vjhD0gMPqRo5VYjujx+1LZ19TzWYHcmRWODkMmjTUjRqLDp4MDB\n5/NdTZhakIFco67Pj99yZjEkAC99feyqjyRJeKKyCgVZqbjw5KEPXj27PA8dbh/WV4d3HomIiCjZ\nDb/gAwA/+g9g8hXAZ/8ObHlT7mpiymrWo3EIzQ1sTi8AMPiQopXnmwAc29mtweZOilbWITqNGieP\nNmPDAIGiucONLbXtOGeAbWpjMg248OR8LPuuFnaXt+fxb6pasaW2HT+ZNw4a9dD/CT+zLAcpGhU+\nZ3c3IiIaIYZn8FGpgEufAornAu/fCVStlLuimBnqEFMGH0oG4y3pEAI9DQ48vgBaHG5YTcrv6Nbb\nqcWZ2HbIDpe377OGX3Y3FejrfE9vt88tgcPtw+vfHux57InKfcg16nDlqWOiqtGQosGccdn4YmdT\nWDODiIiIkl3Cgo8QIk0I8YoQ4jkhxPVxv6FGF+z0ljMBePMGoH5L3G+ZCFazjsGHhi1DigaFWYae\n4BP6Wk+mFR8AOLUwEx5/AFsP9d2VbeXOJlhNepzUvcLVn8mjzZhTmo2Xvj4Ajy+AzbXt+HpfK247\ncyz02uibPZw90YKDR7pQFebAVSIiomQWVfARQrwohGgSQmw77vFFQojdQoh9Qoh/6374cgBvS5J0\nO4CLo7lv2PRmYPHbQGom8NpVQFt1Qm4bT1aTHm1d3n5/ktwfBh9KFhMsRuzsnuWTTMNLezu1e5Bp\nXw0O3D4/Vu9txtkT88JqQ3373BI02t34YMthPPnlPpj0Glw/sygmdYY6wrG7GxERjQTRrvi8DGBR\n7weEEGoATwA4D8BJAK4VQpwEYAyA2u6nJa7XtGkUsPgdwOcGXr0C6GxN2K3jITTEdLBWucdj8KFk\nUZ5vQnVLJ1xe/9EZPkkWfLLTdSjJScOG6hODz7f7j6DT48c5g2xzCzlrfC7KrUb88dPd+HRHI26a\nMxbpOk1M6hyVkYqJ+SYGHyIiGhGiCj6SJK0CcPwJ3tMB7JMkab8kSR4AbwC4BEAdguEn6vtGLHcC\ncO0bQHstsOwawNM1+GsUqmeIaYTb3ezdwcekZ/AhZSu3GhGQgH1Njp7W7ckWfABgelEmNh1sO+H8\nzMpdTdBrVZg9Lies6wghcPvcEhy2uZCqVePm2cUxrfOciXnYUHMEbZ2emF6XiIhIaWLzY8NjjcbR\nlR0gGHjOAPBnAI8LIS4AsLy/FwshlgBYAgAWiwWVlZUxKyyn/F5M2v4oWp+5BNsn/RskVXIMROyt\nriM4c2PlN5vQWR3+f74tez0QADZ+uwaqCKe8JzujfTcCKj0602OzPSieHA5HTL/mk5HNEfwaf6/y\nOxy0B6BXAxu/WRPWtjAlMbq8ONLpwZsffQlrWvBnPZIk4cPvnZiQocK6r1eHfS1zQII1TeA0iwpb\n1q+NaZ2ZXX4EJOCp995DMFoAACAASURBVFdh9qh4/F9CbPC9QdQ3vjeIwpew/5eTJKkTwM1hPO9Z\nAM8CwIwZM6SKiooYVlEBFOUg56P7cFbnB8CF/wsk2TdTti4vHvr6U2SPKUHF3JKwX/elbRuMhw7h\n7Pnz41idQj3+CyAtF7jwQ7krGVRlZSVi+zWffPwBCb9atwIwj4YGTozO6sD8+RVylxWxMU0deGn7\nKqgsZaiYUQAA2NPYgeZPVuGeRRNRcUZkQfycs+NRJTAvIOHJbV/gMLJQUTE9PjfpRZIk+AIStBG2\n4uZ7g6hvfG8QhS8ewecQgIJefx7T/ZgynH47YD8MrPkjYBoNnPULuSuKiClVA51GFXFnN5vTC7Nh\nBG5z8/uAI1VARwMgSUkXdEcitUpgvMWI3Y0dcLh9yDcnVyvrkJKcdJhTtdhY3Yaru4NP6CzNgnKL\nnKUdQ6USOLs8Fx9va4DXHxgwkOxrcuCPn+1Gl8ePVK0a+p7/qXr+nKpVw+MPoL3Lg7YuL9q7PGjv\n8qKt+9d2pxdatcAn98xDUXZaAj9TIiIa6eIRfNYDKBNCjEUw8PwYwHVxuM/QLfh3oKMe+PIRwJgP\nTL9B7orCJoQY0hBTm9M7MhsbtNcAAR/gtgG2WiCjUO6KKAwTrEZ8tacZGpXAnNLwzsIojUolcGpR\nJjYePNrgYOWuRkwaZVLcmaWzyy3424Y6rK8+0ufZI0mS8Nq3B/HbD3dAp1GjKNsAl9cPp9cPpycA\nd/fvfYGj55n0WhUyDSnIMKQg06DFBKsRGYYUmFO1eG7Vfrz+7UE8cP7ERH6aREQ0wkUVfIQQywBU\nAMgRQtQB+KUkSS8IIe4G8AkANYAXJUnaHuF1LwJwUWlpaTTlDXQD4OLHAEcTsPxfgHQLMP7c+Nwr\nDiwmfcTNDUZs8Dmy/+jvG7Yy+CSJcqsRb2+sgxBHG3oko1OLMrFyVxPauzyQpGB767vnx+nftSjM\nLctBilqFL3Y2nRB8Wh1u3P/OD/h8ZxPmluXgD1dN7ekueTyvPwCX1w+tWjXgnKHqlk78bUMt/vXc\n8dBpku+sJRERJadou7pdK0lSviRJWkmSxkiS9EL34x9JkjRekqRxkiQ9MoTrLpckaYnZbI6mvIGp\ntcDVrwDWKcBb/wTUbYzfvWLMYtKjicEnPK37jv6+YVv/zyNFmWA1AgjuTlTa6kgkes/zqdzThIAU\nHBqqNGk6DWaNy8bKXce2tV61pxmL/m81Vu1pwcMXnoRXbj6939ADAFq1Cka9dtDhqtefUYS2Li9W\nbGuISf1EREThSGxbaaXRGYHr3woefH/9KqC1Su6KwmI16dBgd53QJncgNqdvZLaybq0CdGYgqwRo\n3Cp3NRSmcqup5/f5SRx8po7JgEYlsLGmDV/sbEJOug4nj47jD3SisGBiHg60dKKq2QGX14/fLN+B\nG1/8DpkGLd6/ew5uPXMsVKrYnJGbPS4bxdkGvLbuYEyuR0REFI6RHXwAID0PuOHd4O9fvTy4/U3h\nLCY9XN4A7E5fWM+XJAn2kbzikz0OsEzmik8SyTXqkJ2WAiC5V3xSU9T/n737Do+ySvs4/n0mbRKS\nSQikQIAkEBJK6L13ASkCAgqKAirq2vv67q5lLburWBFUFEGwAaJIU7HQO0gn9IROAgmk98z7x8lA\nCCkzyUxmJrk/15VrYOYpJyTA3Dnn/G5ahviyLTaJdUcv0b9ZgNWKB2vr30w1VP18QyyjZm7ii02x\nTO4exrJHe9K8nqGcsy2j02lM7NKI7XFJHI1Pteq1hRBCiNI4ZOGjadoITdNmJycnV80N6zSBiYtU\n0fPNeMhOq5r7VlBQ4VKT+FTzlrtl5xWQk1+AoSYWPkkn1Nc3uDVciYWsFHuPSJjJtNzNWVPdTDo0\nqs2uU1dIzcqjvwOluRXXoLYXzYJ9+Hb7aS6nZTN3cideGdmy3GVrFTW2Q0PcXXR8s01mfYQQQlQN\nhyx8qmSPT3ENOsK4eXBhn9rzk59bdfe2kKnwuZhsXuGTnKk+lxo345ObBVfPQJ0ICI5WzyUcsu+Y\nhNlaN/DDoHeltpPHsHcMU/t83F109Grq2Al1j/SLYFyHBvzyZG/6Fc4A2Yp/LXdubRXMkl1nycgx\nb/ZaCCGEqAyHLHzsJnIwDH8Pjv+u0t4s2ENTlUwpV+b28qmxhc+VWMCoCp+gwsLnouzzcRaP9o9g\n6SM90Jy895Ip4KBrkzrU8qiyntEVMqJNfd4e14a63h5Vcr+7uoaSmp3H8r3nq+R+QgghajYpfIrr\ncC/0fRH2fA1/vm7v0ZQo0KDelEjhUw5TWIV/Y/BtAHpfiJd9Ps7C28OVxgHe9h5GpQUZ9Ezr3ZgH\neze291AcTsfQ2kQGefO1LHcTQghRBaTwKUmfF6D9vbBhOuz43N6juYnezQU/Lzezm5gmZ9TUwqcw\nyrpOE9W7Kbi1BBwIu/i/W5s7bSNWW9I0jbu6hLLvbDL7zl6193CEEEJUcw5Z+FR5uMHNA4Bh70Lk\nUFj1HMSssM84yhBsQRPTGjvjk3RCRZXrC/eKBUVD/EEoyLfvuIQQ14xuH4Knm4uEHAghhLA5hyx8\n7BJuUJyLK4z9Auq3hyX3QewG+42lBIEWNDE1FT41LtUt8YTa32MSHA15mZB00n5jEkLcwKB3Y2Sb\n+vy05zwpWY4bKiOEEML5OWTh4zDcvVTMtV8jmH8bbHjHYWYLTE1MzXGt8NE79sZqqzP18DGRgAMh\nHNJdXRuRmZvP0t3n7D0UIYQQ1ZgUPuWpVQfu/x1ajoI//g0LRkHKBXuPiiCDnkup2eTlF5R7bEpW\nLt4erri61KAvd3YqpMWDf5HCJ6AZ6Fwl4EAIB9O6gR+tQnz5eutpjA6apimEEML51aB3wpWg94Xb\n58Bts+DsTvi4Oxz52a5DCjLoKTBCYnpOuccmZ+bWvP09pkS3okvd3PRQN1JmfIRwQHd1acSR+FR2\nnbpS7rF/nb7C35fs42pG+f/+CSGEECYOWfjYPdygJJoG7e6CB9eraORv74RVz6smmXZgSRPTlMzc\nmre/J8lU+DS58fmgaEl2E8IBjWhTHx8P1zKjrQsKjMxcc5xxn2zhux1nmL/lVBWOUAghhLNzyMLH\nIcINSlO3qVr61vUR2P4pfD4AEg5X+TAsaWKqZnxq2v6eIj18igqOhtTzkJFU9WMSQpSqlocro9uH\nsHL/BZJKmMm+klXA3XO28favRxgaHUzXxv4s2HqKnLzyl/sKIYQQ4KCFj8Nz9YAhb8LExZB6EWb3\nhV3zoArXpgf5mt/EtGYudTsOhgbg5nnj8xJwIITDuqtLKDl5BSzZdfaG5/+IiedfmzLZffoqb93e\nmhkT2vFQnyZcSs1m5f7zdhqtEEIIZyOFT2VE3gIPb4JGXWD5E7D4Xsgsf326NdSp5YGLTjOriWly\nZi4GfU0rfE7cvMwNILiVepSAAyEcTlSwD53CavPN9tMUFBjJzsvnlWUHue/Lnfjrdax4vCfjOzVE\n0zR6Nw2gSUAt5myMlUAEIYQQZpHCp7J8guHuH2HQv+HwSvikF5zeavPbuug0An3Mi7SusTM+RYMN\nTLwDwTtIZnyEcFB3dQkl9nI6X287xeiZm5m3OY6pPcL5Vzc9TQK8rx2n02lM6RHOgXMp7DQjEEEI\nIYSQwscadDro8QTct1rFJc8dCmv/Z/OeP4EGfblL3bLz8snKLahZhU9GEmRdLXnGByTgQAgHNiQ6\nmNpebvzrp4NcTMnii8kdeWlEC9x02k3Hjmkfgq+nG19sjLXDSIUQQjgbKXysKaSDSn1rNQ7Wvglf\njoDks+WfV0HBBo9yC5+UzDwAfL0sKHwyr0CBE28YTjyuHkua8QEVcHDpMORJFK4Qjkbv5sLTt0Qx\nrHU9fnmiF/2bBZV6rJe7KxM6N+LXgxc5k5RRhaMUQgjhjByy8HHIOGtz6Q0wZjaM/hQu7IWPe0DM\ncpvcKsigLzfOOjkzF8D8GZ+LB2B6FOxfVNnh2Y+p8PEvZcYnuDUU5MLlo1U3JiGE2SZ1DWXmxPYE\nFqZXluWebqFomsb8LXE2H5cQQgjn5pCFj0PHWZurzZ1q9sc/HBbeDSuegtxMq94iyKAnJSuPzJzS\nl9SZCh+z+vgUFKhx5merRq3OKvEEaC5QO7Tk1yXZTYhqo76fJ0Ojg/luxxnSsvPsPRwhhBAOzCEL\nn2qjThOYuhq6Pw47v4DZ/SD+kNUub04vnxRLZnx2z4ez28FVr5aCOavE41A7DFxK+ZzrRICLhyS7\nCVFNTO0ZTmpW3k0x2EIIIURRUvjYmqs73PIa3P0DZCTCZ/1gx+dW6fkTZEbhY/ZSt/TL8NvLENoD\nWo117sInqZQoaxMXVwhsLjM+QlQT7RvVpm1DP+ZtjqOgQKKthRBClEwKn6oSMQAe3gxhPWHlM2r5\nW0ZSpS4ZXNjEtKxI62tL3crr4/PbS5CTBsPehYDmkH4J0hMrNT67MBoLe/iUEmxgEtxKzfjUtP4f\n53bBurfsPQohrG5qz3BiL6ez9miCvYcihBDCQUnhU5W8A2DiYhj8Jhz9VQUfxG2s8OUCrTXjE7cJ\n9nwN3R+DwGbqA5xz1if1AuRmgH/jso8LbqVm4FIvVs24HEF+Hiz9G6x5w6pLLoVwBEOjgwk26Pli\nY5y9hyKEEMJBSeFT1XQ66PYI3P87uHnCvOHw5xvqTamFfDxc8XJ3IT4lu9RjUjJz8XRzwd21lC91\nXg6sfBp8G0Hv59VzAabCJ8biMdld4gn1WN6MT00MONj7zfVi9sAS+45FCCtzc9FxT/dQNh6/zJGL\nqfYejhBCCAckhY+91G+rUt/a3gXr34J5t0LyOYsuoWmairQuZ8anzNmeLR+pN8O3vg3uXuo5Qwh4\nGODSEYvG4xCu9fApY48PQFBL9RhfQwqfnAxY8yY06AThfVThU9OW+Ylqb0KnRujddMzdJA1NhRBC\n3MwhCx+n7uNjCQ9vGDUTbp+jlh7NuQUuH7PoEkEGDxIqWvhcOaX2ezQbDlFDrj+vaRAQBQlOOOOT\ndEIlthkalH2cpx/4NVJ9i8yRngh/vAZX4io9RLvYOkstAxz0mgqvuBIL53fbe1RCWFXtWu6Mad+A\nH3afIzGt9JlwIYQQNZNDFj7Voo+PJVqNhSkrIS8LvhgC5/eYfWpwRWd8jEb4+XnQdDDkvze/HhDl\npDM+hYluOjO+tYNamRdpfXYnfNobNkyHr26HzCuVH2dVSr8MG9+HqGEQ2g2ajwCdmyx3E9XSlO5h\n5OQV8O320/YeihBCCAfjkIVPjVSvDUz99fq+n7hNZp0WZNATn5KNsZRlS8mZuSU3Lz28Eo7+An3/\nDn4Nb349oDmkJ1Q6ea7KJR4vP9jAJDhaHZ+TUfLrRiNsm62KUZ0LDH8Prp6GhZPU3qiqlHgCDvxQ\nseVp69+G3HQY+LL6vWdtiBgIB39UTWuFqEaaBvnQOzKA+VtOkZMn399CCCGuk8LHkdSNgKm/gKEe\nfDUGjvxS7ilBBj05eQVczcgt8fWUzFwMnq43PpmdBj+/AIEtoOvDJV/YFHDgTMvdCvIhKbb8YAOT\noGgwFpT8OWanwZL74OfnVJHw4DroOBVGfgRxG2DFU1WzRyYpFpY+Ah91gu+nqB5QFp1/EnbMgXaT\n1CyeSfTtkHIOzmyz7niFcABTe4SRkJrNZxtO2nsoQgghHIgUPo7GtwFM+UU12PxuIuxbVObhpiam\npS13K3Gp27r/QspZNYPhUsr+H2eMtL56Ggpyyw82MAkuTHYrHnBw6Qh81l/NiAx4Ge78Rs2SALS5\nA/q8AHu+go3vWW/sxV09Dcseh486wv7F0OVBiBgEv/6fZXtz/nhNfY37vnjj81FDwdVTlruJaql3\n0wAGtwzi7V+P8Mqyg+RLU1MhhBBI4eOYatWBe5ZBaHf44QG13KoUpiamJfXyycsvID0n/8bCJ/4g\nbJmlZgAadS19DIYQcPdxrsInycwoaxO/MPU5Fg042P89zO4HmUlwz0/Q6+mb9wv1fRGix8Ifr8LB\npVYZuolH1mVY8TR82B72fqtmmZ7YC0P+A2NmQ61AWDwZsswI/ji3Cw7+oOLTDfWK3cgbIgfDoaUV\nilIXwpHpdBqz7urA/T3Dmbc5jgfm7yQtW77PhRCippPCx1HpDXDX9xB1q1pute6tEpdWBfqU3sQ0\nJUv9R3+t8CkoUG+q9b4w6N9l39+U7OZMhY+5PXxMdDoVa31xv9qzs+o5tbytXmt4cAOE9y75PE2D\n22ZCwy7w44Nwdpd1xn/xAF22PQR/zYf2k+Dx3Spm3FS0ePnDuLmQfBZ+erTspXZGI6x+CbzqQvfH\nSz4m+nZIv6SW7glRzbjoNP45vAWvjYpm3dFLjPtkC+evZtp7WEIIIexICh9H5qaH8QugzQRY8wb8\n8uJNm9EDDaYZn5ujW5Mz1b6fa4XPnq/gzFa45TX1Jro8gc0gwckKH3cfqBVg/jnB0SrZbe5Q2D4b\nuj0K9y6/eYakODe9WgLnHQTf3qmWplXWiT/RGXPhb1vUMkTfEiK5G3aGga9AzDI13tIcWw2nNqpl\neXpDycc0HaT+vGS5m6jGJnUN5YvJnTiTlMGomZvYf7aat0kQQghRKil8HJ2LK9w2C7o8DNs+hp8e\nuWFpkoerC/613Evc43ND4ZOeCL+9BI26QZuJ5t07oJltkt1S42HRPWpM1pR4XO3v0TTzzwmKhpw0\nta9n/AIY/Ebp+56Kq1UX7loMednwzR3mLT8rS0IM2e61oW7Tso/r9ihEDoVf/wHn/rr59YJ8+O1l\nlW7XYXLp13HzhGbDVBGVJz1PRPXVJzKAJQ93x81Fx/hPt/DrwYv2HpIQQgg7kMLHGeh0ao9Hv3/A\n3m9U0ZB7vdAJMuhLbGJ6Q+Hz20uQnQrD3jWvxw2oSGuw/nK347/BoZ/gyCrrXtdU+Fii+UjodD9M\nWwstRlp+z4AouGM+XD4Ki6dUbr9MwiHSa4WWf5ymwahZ4BOs9vtkXr3x9T3fwKUYGPASuLqXfa3o\n21XBduLPCg9bCGcQFezD0kd6EBXsw0Nf7eKz9SdLbQMghBCienIt/5Cqp2naCGBERISZezVqAk2D\nPs+D3k/t+fl6LEz4Fjx8CDZ4lDnjE3R1t1rm1uMJCGph/j1N8ccJMSpowVpMYQJxG9ReFmvIy4bk\nM9DmTsvOq1UHhr1TuXs37quusfwJ1RR22DuWzTqBWsJ46QjpwYMwYxGiWqo4di7MHaJmAe/4St0z\nJwPWvAkhHaDFKPPG7llbLXeLGmrZmIVwMgE+Hnw3rSvPLNrLG6tiWHMkAW8PV3LyC8jJUx/ZhY85\n+QUUGI081r8pYzuUsOxUCCGE03HIGR+j0bjcaDRO8/X1tfdQHE+XaTDmMzi1Gb4cAemJ15qYFpec\nmYsredTb8CL4NlT7PSzh2wDcvdUyMGuKNxU+G63XC+dKnOrJY26wgbV1mKxCBHbOUUlplroaB3mZ\npNdqZP45DTvBwFfh8ArY9ql6btvHkHoeBr1mXvHl6q5mvQ6vKr2RqxDViN7NhRkT2vHEgKbEp2Rx\nOimDpPQccvIKcHfVUdfbnbC6XkSH+GLQu/HCkn2sPZJg72ELIYSwAoec8RHlaD0ePAyw+F6YO4Qm\nYe+wMC2b3PwC3Fyu17Ipmbnc5/IzrolH4M5vwb2WZfe5luxmxSamRqMqfNxqqQaaV2LVXpTKMiW6\n+Vu41M2aBr4Ku7+C479Dy9GWnVvYRNWiwgdUVPWpTbD6n2qZ38b31f6fsB7mXyP6dvjrSzj2q3nj\nTo0H70DLZ7WEcBA6ncZTgyJ5alBkmcelZecx/pMtPPL1Xyx+qDst6pcSFCKEEMIpOOSMjzBD1BC4\n+wdIvcjEA9MI4wKXUovN+lw9zROuP0DUMGh2a8XuE9DcujM+qRcg8wq0LQxYiLVSlHLicfVYxwpF\nVEXpdGqJWUmBA+UpLHwyvBpadp4pWtunHnw9TgU1DHzFsmuE9VT9gcxJd9sxB96JhO+nqD1jQlRj\n3h6ufDG5Ez56N6bO28HF5JIbRQshhHAOUvg4s7AecO9y3IzZLHZ/lZTYnTe83O/kO+qH8kP/V/F7\nBERBWrz1kt3iD6rHlqNUFHTcRutcN/E4eNVR+1XsKaSDKmIsLQoSYsC3EfmuXpbf09TfR+eqGtMG\nNrPsfJ2Lmuk5uhqyUko/bv/3sPIZCGqlwilm97tWsAlRXQX76vlicidSs3K578sdpEsjVCGEcFpS\n+Di7+m2JG/kD2bjRZOWdau8PwOFVtEjdyAKPO8HPwlmEogKtnOx2cb96DGqpZhqstc8n6aT99vcU\nFdIBMMKFvZadd+nw9T/rimjQEZ7cp1L7KqLVWMjPLj1p7+hq1aw1tAfc/xvcs0ylwX3WH/YurPi4\nhXACLeob+Oiu9hy+mMpj3+4mL7+g/JOEEEI4HCl8qgH/0BaMzX6FdI8AWDAaDv4IPz/PGddQfvcd\nW7mLBxTOHlir8Ik/qIIWPGurwif1vCpaKivxuH3395iEtFeP53aZf05+rorDtnSmpjhDfdX3qSIa\ndALfRiUvdzu1GRZNUsXqhG9V/5/wXvDQBqjXFn6cBiuekl5AolrrFxXIqyNb8ufhBP694pBEYQsh\nhBOSwqca8Pdy57JLXeY3+1gVKosnQ/IZPvT8G95enpW7uCnZLcGKhU9QS/XrsF7qMa6S+3yy09Te\nIUt7+NhCrbrgF2rZPp+kk5CfA4EWRI1bm6ZB9GjVz6fossYLe1VzVt+Gak+Zvsjmbp9guHd5YZrd\nF/DFYLhyqurH7ugKCmB2X9j0ob1HIirp7q6hTOvdmPlbTjFnY6y9hyOEEMJCUvhUAzqdRqCPnrhM\nT/VGtNlw6PkUW/IiMegrGdx3LdnNCoVPbpaa2TAVPnUiwDu48vt8TDNGjrDUDdSsjyWFj2mfTEAl\nZ3wqK/p2KMiDmGXq95ePw4IxKkFw0o+qqCvOxRVueQ3u+Fol633aWy2LE9ddioHzu+HP1yFJ3iw7\nu78PacbQ6GDeWBXDLwculnpcVm4+xxNSWXf0EjvjkjiVmE5GTsX2BxUUyOySEEJYg8RZVxNBBg/i\nU7LUT+Tv/BqA5I2/4uvpVvmLBzRTEc2VdfkIGPMhKFr9XtNu3OdT0Xjka4luDjDjA2qfz8EfIS1B\nxT6XJyEGKCwwj26z+fBKFdxaFY8HlkDEIFgwCjDCPUvL3yfWfLjao7ToXvhmHPR6Fvr9nwpOsKeM\nJNXfqaSizVw7v4CMROj9XMXONyUXahr8+g+Y8E3FxyLsTqfTeO+OtlyYvZUnF+7mPWNb8o1GTiVm\ncDoxg1NJ6ZxKzOBiSlaJ2xdrubsQ4ONBXW8PAnzUh97NhdSsXFKy8kjJzCU1K4+UrMLHzFzyCozM\nm9KJXk0Dqv4TFkKIakQKn2oiyKDnaPz1JLH8AiOpWXnWK3z2fK3eRHr5V/w6Fwsbl5oKH1CFz4Hv\n1WxB3QrO2CSZevjYMcq6qJAO6vHcXyp2vDyXYtTY3Sq5LLGyNE3N+qx7SzXHzbwKk1dA3abmnV+n\niQo+WPksbJgO53bCxEXg6mHbcZcm8QTMvRUwwgNrwDfE8msc+w1WPA0u7tD1EXCvQOpe7HqoHaaa\n3P7+irpm00GWX0c4DL2bC5/f25HRszbx8NfXZ3frervTyN+Lbo3r0KiOF6F1vAjx8yIjJ49Lqdlc\nTsvhUmo2l9KyuZSaxbGENDafSCQrNx+Dpxs+elcMevUYUtsTQ+HvV+y7wP9+OUzPiLpo0j9LCCEq\nTAqfaiLIoGfjscvXfp+WpZZUGKxV+IDq5xPareLXiT8IrvobZ2aK7vOpaOGTeAJ86lveoNVW6rUB\nTacCDswpfBJiKpfoZk0tx8C6/6nmsncvgfptLTvfzRNGzVTnrXoW/poPnR+wzVjLcvU0zL9N7Z3K\nz4Vv74Spv1j2PZJ4Apbcp4I4MpNUo1hLC5aCfDi1EVrcBl3/phrc/vwChPe2X0EorKKutwc//q0H\nu09fJcTPk0Z1vPD2sM1/qU2DfHh28V5+PRjPkOhgm9xDCCFqAtnjU00EGfSkZudd6zGRnJkLYJ0Z\nH1Pa2KVK9myJP6De4Bdd/lSniWq+WZl9PoknHGeZG6g314EtzEt2y8tW43eUwiewmWqAOnGRmo2r\nqE73Q8OusOHdqk97SzmvZqyyU9QyvXFz1ffejw+poAFzZKfBwrtVATv1F1WwH//D8rFc3K9iv8MK\nC52h/1MzlFtnWX4t4XDqenswqEUQLeobbFb0AIxqW5/GAbV477ejst9HCCEqQQqfaiLYV/30OD5F\ndRa3auFjaAButdSMT0UZjerNpynYwOTaPp8NFe/nk3jccYINTELaw/m/yv+cLh9T+54cpfAB6PkU\nNO5TuWtoGvT9u4or/2u+dcZljrQE+HIkpCeqFLp6bdQszS1vqNCGtW+Wfw2jEZY9qgI9xn6h9l6F\n9qjYPrfY9eoxvHBmM2IgRA2DdW9D8jnLrydqJFcXHU8OjORIfCor9l+w93CEEMJpSeFTTQQZ9ABc\ntEXho9OpN38JlZjxSYtXG8SDWt38WlhP9boppMASl46oZUjFCyp7C+kAmVfgSjkpXtcS3Ryo8LGW\nxn3VrM/G96pm1ic9US1vSzkHdy1WTV1Nuj4M7e+B9W/DvsVlX2fzDBVOMeAlaNJfPRcxABKPqSV0\nlojbAHUjVfS3yZA3VXreb/+y7FrlOboajvxsnYbAwuEMb1WPqCAf3v/tqDRQFUKICnLIwkfTtBGa\nps1OTk6291CchqnwSUhRbzCvFT5eVih8QM1IVGbGJ94UbFBCgVKZfj77FqrlSM1HVnxstlA04KAs\nl2JA5+p4M1bWoGnQ9wVViOxeYNt7ZV5VKXSJJ1ST1eJ70TQNbn0HQnvCT4/AmR0lX+fkWvj9ZbUn\np8eT15+PGKgeLVnulp+rmr+avr9NaoepWbUDS64nvlVW5hVYdI/ay/RZf9WPSQqgakWn03hqUCQn\nL6ezdM95ew9HNFlMsgAAIABJREFUCCGckkMWPkajcbnRaJzm6+tr76E4jdJmfAx6KxU+AVGQdlG9\nwaqIi2UUPv6NVTiBpW8CCwpg3yL1U3mfoIqNy1YCmoOrZ/n7fBJiVNHj6l4146pqjftBwy623euT\nnQpf3a7+LO/8Ws00lcTVHe5YAIb68N1EuHrmxtevnobFU6BuFNw268Z49bqRasmnJcvdzu+BnLTr\ny9yK6vkk+DaCn5+H/Ir1drnBnm8hLxP6vgjpl2DBaLXP6cz2yl/bEmd2qL1Rmz6o2vvWEINbBhEd\nYuCDP46SK7M+QghhMYcsfITlvD1c8fZw5WKyDZa6wfWlWBWd9Yk/CIaQkuOwi/fzMdfpLZB8Blrf\nUbEx2ZKLq9pfUm7hc8ix9vdYm2mvj61mfXLS4evxqkHouHnlp655+cPEhZCXBd9OUCEGALmZ6g17\nQb4qnjy8b/48IgaoPTv5ueaNLa5wf0/xGR9Q6XdD3lRf/x2fm3e90hQUqGs07KL+rB/bBUPfVn9X\n5wyCb+5QIQu2dGqLKrbmDISY5bDhHcjLse09ayBN03hmUBRnkjJZvPOsvYcjhBBORwqfaiTI4EFC\nqip8UrJycdVpeLlbqYFkQJR6rOg+n/iDZe/DCesJ6Qlqs7+59i1UoQvNhlVsTLYW0gEu7C39jXJO\nOlw5pRLgqjNbzfqkJ6ri5cxWuP0z1UTVHAFRKukt4SD8+KAqHFY8pb5WY2aXnhAYMUAlxZ0tZZlc\ncbHrIbBl6c1Tmw1Xs5Vr3lChDBUVu1YlxXW6X/3e1QO6TIMn9sCAl9UPCD7pCd9PhcsV2EdX5r03\nwLzhMHcIXNgHg/4Nt89RSXax66x7LwFA36gA2jfyY8afx8jKzbf3cIQQwqlI4VONBBn0N8z4+Hq6\nWa/ZnW/DwmS3w5afm5cNl4/c2Li0uHAL9/nkZsHBpdB8hOP07ykupL2aWUg4VPLrl44Axut9kqqr\nG2Z9vqr89XIzVRH1YVv1/XLbTNV41RIRA2Hwf+DwCvWmfe+3aplYWX2XwvuA5mLePp+8bDi9reRl\nbiaaBkPfUp/P769aNv6itn8OXnXVvqSi3GtBr6fhiX3Q61kVfDCrC5ysZEFiNMKJNfDFUPhyOFw+\nCoPfhCf3Q48n1N9JDwMcWlq5+4gSaZrGM7dEcSE5i++2Wxi2IYQQNZwUPtVIsEFPfJFwA6stc4PC\nZLfIihU+l4+qFKuyZnxqh6ulcOYWPsd+hexkaOOAy9xMrgUclLLczfRnWd1nfEDN+jToXLlZn4J8\n2P01zOgAf7yqIqYf3gJtJ1bsel0ehA5T4Mw2iBwKvZ8v+3hPP2jQCU6YUfic26X23IT3Lvu4uk1V\n4tyer0oPXCjL1TNw9GeVWFdaQ1RPPxjwL3hiL/g1gpVPV/xrkJUM84apIIkrcWpJ3RN7odsj4O6l\njnH1gKihcHil+csChUW6N6lD18b+zFx7gswcmfURQghzSeFTjQT56klIzaKgwEhKZi4GaxY+oPb5\nJFSg8LkWbFDGjI+l+3z2LgTvYPVTeEdVOww8/UtPdks4BC4e4B9epcOyi2uzPmctn/UxGlWowKe9\n4ae/gXcQTF4JE7+73ly3omO69W0Y87laKqcz45/DiAEqtCD9ctnHxa4HNAjtXv41+zyvvpdXPauK\nO0vsmqseO04p/1jvQFWoJB6HLTMtu4/Jby+ppXO3TldL6bpMU/uVimsxSgWhyHI3mzDN+lxKzWbB\n1jh7D0cIIZyGFD7VSJCPB7n5Rq5k5Fh/xgfUm8yKJLvFH1Bv8MuLbA7rpRKpLh8t+7iMJDi2GlqN\nBZ2V9jDZgqapWZ9SC58YNYvmyJ+DNTXpb/msz4W9anbhq9tVQtrYufDAn6pItgYXN2g9Djx8zDu+\nyQCgcKlXWWI3QL3W4Fm7/Gt6+MAtr8OFPbDtE/PGAerP8K/5EDlEzeSYo+lAtbdo/ds3p9qVJ3Y9\n7JoH3R6Fzg+UPsME6mvt7qOWowqb6BTmT+/IAD5Zd5K0bCskAwohRA0ghU81Eux7PdI62SYzPoU/\nXbc02S3+oCqaXFzLPs70ZtbU7b40B3+AglzHTHMrLqSD6tVjSg8rKuFwzVjmZlJ01mfP12Ufm5EE\nPz2qZnku7IMh/4VHtkP0mBtjpqta/bZqFq+s5W65mXB2e/nL3IpqNVYtt/v9VfP/fsUsVz8o6HSf\n+fcBGPIfNYv26/+Zf05OOix7TEXP932x/OPd9IXL3VbIcjcbenpQJEnpOczbVE6jZCGEEIAUPtVK\nYJEmpmrGp5xCw1LXCh8Ll7vFH4CgVuUfVztM9UqJ21j2cfsWqYIh2Ixr2ltIezAWqJmLorKSVQFQ\n3YMNimvSX+2TWV9K3LHRCHu+gY86qsCB7o/B47vVPpiyZhiqis4FmvRTAQcFpfRRObMN8nMgzILC\nR9NgxAdqn8yPD5nX22f7Z6oQadzf/PuAmh3q/SzELDO/Ieufb6g9PSM/ur6Xpzwtbitc7lbODzJE\nhbVt6MfA5oHMXn/yWgsDIYQQpZPCpxoJLix8LiRnkWKLpW6+DcHNy7J9PmkJ6qfSZQUbmJizzyfp\npHpj2Xq8fX/yb6767dVj8YCDhBoUbFDUDbM+xfb6XDqqmm4ufRj8m8CD69USME8/+4y1NBEDVfR6\n/IGSX4/doNLfQrtZdl2fIBj2Lpz/Cza+V/axF/erGO+O95m3N6m47o+pP+Ofny9/2eGZHbB1lrpX\nWA/z7xExANy9Jd3Nxp4aFElKVh4f/nEMoyV90IQQogaSwqcaCfDxQNPgxKU0CoxWbF5qotOpHiiX\nLOjlY3pzaE7hAyr+N+Ny6bNK+xYDGrQaZ/4Y7Mk7QP2EvXjhY/ozrMzmfGfVZMCNsz65mWpG4ePu\ncHEfDH8fpv5q/vdMVWtSOMNy/PeSX4/boGb6zN03VFT0GBXNve6/aolfaXZ8Dq76iifauXrArW8V\nBh18VPpxedmw7FGVuDjwFcvu4eap9h/FyHI3W2pZ35cJnRsyZ2MsLy87SF5+KTORZTgWn8rwGRuY\nMnc7u05ZuIdTCCGciBQ+1Yibi446tTw4Gp8K2KDwAbU0y5I9PuYkuhVl2udT0nI3o1E1LQ3rCb4N\nzB+DvZUUcJAQo/oi+Zq5Kb06KTrr8/PzMKsbrH9Lvel/dKdKKKvILEZV8QlW388n/rz5tew0VeSG\nldG/pzy3TgevOmrJW0mzMVnJarlnq7Hg5V/x+0QMVD131pURdLB+uvohxIj3QW+w/B4tR0Fmkvkx\n9aJC3hjVimm9GzN/yymmLdhFugVhB8v2nue2mZu4cDWLvWeTuf3jzdz9+Ta2xybZcMRCCGEfDvzu\nQlREkMGDY/FqI73NCp/UC5B51bzj4w+CTz2oVce84/1C1ZK6kt4ondulOtQ7Q6hBUSEdIPk0pF26\n/lxCjJrtceQ3+LZkmvXZNRc0HUxaCmNmq8hlZxAxAE5vhezUG58/vVX1rCqrcWl5vPxh5AxIOAhr\n/3vz63u+hdwM6HR/xe9hMvg/6vHXEgILLu6Hje9C6zuh6aCKXT9ioFruJuluNqXTafzfrc15fVQ0\n645eYtwnW641sy5NTl4Bryw7yOPf7qZFPQOrnujFxhf68Y9bm3P4YirjP93CHZ9uYfPxy7KETghR\nbdTQd13VV7BBz8UU9R+e1VPdwPJkt/gDli1ZKmufz76FanlPi5HmX88RmBqZni8y65MQo/oi1VSa\nBrfNUrMbD29WgQHOpMkAlSwYW6xAj10HOjdo2LVy148cDO0mwab3b2xsajSqZW4hHaB+u8rdA8Cv\nIfR5TiXEHSuydC8/T6XqedZWKXAV5eapPpfDK8wLbBCVcnfXUObc25FTiemMmrmJQ+dTSjzuYnIW\nEz7byrzNcUztEc6307oSZNDj5e7KA70bs/GFfrw8ogVxielM/HwbYz/ZwtojCVIACSGcnhQ+1UxQ\nYaQ12GjGx7QnxZx9Pnk5qkAyd5mbSVgvyEhUxYFJfi4cWKIicvW+ll3P3uq1UbMapn0+6Ylqc3xg\nDS58QPUw6vyAij52No26qqCP4rHWcRvUTJa5yWdlGfym2luz9CHIyVDPxa6HxGPQ6YHKX9+k26Oq\nx9bPz11fWrflI9VX6Na3K7ecDlQz04xEOFVOWqOwir5RgSx+SDXOHffJZtYcSbjh9c0nLjN8xgZi\nLqQwY0I7XhrRAjeXG98K6N1cmNIjnHXP9eO1UdFcuJrJ5Lk7uGP2VrJyLWyyK4QQDkQKn2omyOf6\nm0iD3gaFj28j85PdEo+pn4pbXPiUsM/n+B/qzVPrOy27liNwr6XS20yFT00ONqguXD1Un56icdCZ\nV1VseWWWuRWlN8CoWSqA4I9X1XM7PlOzMC1HW+ceoD6XoW+pxMTNH8Ll47D2P6rRaYtRlb9+00Fq\nP5ssd6syLeobWPpID8Lq1uL+L3fy1dZTGI1GPl57grs/34avpxs/PdKDEW3ql3kdvZsLk7qGsva5\nfvxzWHO2xyaxeKeFjW+FEMKBSOFTzQT7Xu914utlg8JHp4O6keb18jEFGwRbWPjUDlUFVtF9Pvu+\nUxu+IwZYdi1HUb+dKnyMxuszWTUtyrq6aTIArsRC4gn1+1ObVc8mSxqXlie8N3R5CLZ9Anu/g8Or\n1BI4a8+SRQxQfXfWvwNL7lPF0LB3rBMZ7+YJkbeo5XSy3K3KBPvqWfRgN/pEBvDPpQcY8v4G/vfL\nYYZG1+OnR3vSNMj81EF3Vx339QynQ2htZq09QXaezPoIIZyTFD7VjKmJqU4Db3crNzC9dpPm5hU+\n8QfAxV0to7FUeC8141NQoFKsjvysYn5dbFDMVYWQDqqZ45VYVfjofVXog3BepiLclO4Wt0HtQWvQ\nybr3GfCy6rnz44OqsOo41brXNxn8pip0LuxRoQc+wda7dotRKqb+1CbrXVOUq5aHK5/d05HJ3cM4\neTmNfw5rzkcT2+HtYfn/DZqm8cSAplxIzmLxzrM2GK0QQtieFD7VjKmJqcHTDZ3ORg0+A6LMS3aL\nP6iOrUixEtZTxeBeioFDyyAvy/nS3IoyBRyc++t6sIEzNGAVpavTBGqHXV/uFrsBGnZRsyXW5O4F\noz9R+8SaDgL/cOte38S3gUqT6/ZoxfsDlabpLWqJrDQzrXIuOo1XRrZk/yuDub9XY7RK/LvTq2ld\n2jXy4+O1J8jJs7xfkBBC2JsUPtVMUGHhY5NgAxNTGll5yW7xByCoVcXuEVrYIT5uo0pz829yvXhw\nRoHNwdVTLXdLOCTBBtVFkwEqcCDlAsTvt97+nuIadoYpv8Coj21zfZNWY2HwG9Yvyt29VPETsxwK\nHGSZlNFYoxqr6t1cKn0N06zPuauZfL9LZn2EEM6nygofTdMaa5o2R9O076vqnjVRbS833F11Ni58\notRjWcvd0i5BWrxlUdZF1Q4Fv0aq6InbqGZ7nHmGxMVNpbsdWQVZV6XwqS4iBkJuOmx4R/0+zIr7\ne4pr1AVq1bXd9W2t5ShIv+Q4y91++xe8GQIL74aDP15PzhNl6hMZQJuGfsxcc1xmfYQQTseswkfT\ntC80TUvQNO1AseeHaJp2RNO045qm/b2saxiNxpNGo/G+ygxWlE/TNIIMHrYtfPxC1exFWYVPfOG3\nSkULH1BvIs/tAozQenzFr+MoQjrAlTj1ayl8qofwXqBzVY1Y3WpBSHt7j8hxNb1F/bvhCOlumVdg\nxxzwbwxntsPiyfB2BCy5X+0nNMV6i5tomsaThbM+P+6WWR8hhHMxd8ZnHjCk6BOaprkAM4GhQAtg\ngqZpLTRNa6Vp2opiH07Sjr16mNojnLEdGtjuBjqd6sGSUEYvn/iD6jG4gkvd4HqsdcMuttvXUJWK\nvimWRLfqwcNHNSstyIPQbs4bvlEV3GtdT3er7HK3pJPw6z9U8ElF/LUAcjNgzKfwdAzcuxxaj4Pj\nv8O3d8LbTWHpI2r/VoHMahTXNyqA1g18+WjNcXLz5c9HCOE8zCp8jEbjeiCp2NOdgeOFMzk5wHfA\nbUajcb/RaBxe7CPhposKm5nSI5zb2obY9iYBzcve4xN/ELyDKrc0p3EfcPGA9vdU/BqOxLRHyauu\ncy9ZEjcypbuF2Wh/T3XS4jbVvPfU5opfI/EEzB2mmqxumWX5+fl5sP0ztY+wXhvQuajY8BEfwLPH\n4K4l0GwYxCyDr8bAhukVH2s1ZdrrcyYpkx93n7P3cIQQwmyVyTsOAYp2MjsLdCntYE3T6gBvAO00\nTXvRaDT+p5TjpgHTAIKCgli7dm0lhihspWGaO01Sz7PxtxXkuXnf9HqHE1vIdavPvkp+/dy6fE7u\nVR+oDt8HRiM9XH1Icw9mbymfT1pamnzPOxl9Zj1ae4awPyWQTPnalcklz4vuOncu/jaTY5GWzfqk\npaWxbdVXtN3zLzRjPpmGZnhtmsHW/Dbku3qZfZ26lzYTnXyaAw0mcrnEr5cr1L4DXefRtDz4Pwwb\nPmBrbivyXT0tGm91pzMaCTPomL5qP3VSjuNiqxRRUS75f0MI89mo0cvNjEZjIvCQGcfNBmYDdOzY\n0di3b18bj0xUyJFMODmfns0CVeJUUfm5sOEctB6BfP2KCZxB7VoB9DUt4ytm7dq18mfmjIZOKP2n\nPuJGiYMJOb2NkJ7dwdXd7NO2r1xA50OvgZsL3LsK99xM+KwfvTwOQ6+nzb//F/8Dv0ZE3/68mu0p\nS6QfzBlEL+9T0LXc/75qnLygeB6Yv5Mrvk1tu7xalEn+3xDCfJVJdTsHNCzy+waFz4maIKCZeixp\nn0/iccjPgaDoqh2TM2g5+vreJSFqojYT1XK3WV3g8CoVK12ehMO03fNPdey9K1Q4SEh7laq3Zab5\niWzn98DpzdB5WvlFD6gf6jTqppbV1aDoa3MNbB5Ii3oGPvrzGHmy10cI4QQqU/jsAJpqmhauaZo7\ncCewzDrDEg7vWrJbCft8LhYmugVL4SOEKKbZrXDX9yoN77sJMP+262EoJYk/BPOGYdQ0mLwSAptd\nf633c5BxGf760rx7b/tEpe+1m2T+eHs8AclnHCONzsFomsbjA5oSl5jBsr3n7T0cIYQol7lx1t8C\nW4AoTdPOapp2n9FozAMeBX4FYoBFRqOxjP+9zKdp2ghN02YnJ1cwsUfYninZ7VIJMz7xB0DnBnWa\nVv24hBCOr+kgeHgzDH0bLu6DT3rCiqcg/fKNx13cD18OBxc39rR9Q/2bU1SjripUYtMH5UdQp8bD\ngSXQdiJ4+lkw1sFQN1Ldw5zZqRrmlhZBNAv24aM/j5NfIH8+QgjHZm6q2wSj0VjPaDS6GY3GBkaj\ncU7h86uMRmOk0WhsYjQa37DWoIxG43Kj0TjN19fXWpcUthDQDBJK6OUTf1C9ZsH6fSFEDePiBl2m\nwWN/qaVnu76ED9vB5hmQlwMX9sGXI8BVD5NXkulVSlJlr2cg9QLs+brs++38Qi3B7fKgZePU6aD7\n4xC/H06usexca0i9CCufhWTHXEmu06mEt5OX01kusz5CCAdXmaVuoqYLaAap52/upRF/oHKNS4UQ\nNYeXPwz9H/xti5rBWf1Ptf/nyxHg7q2Wt9VpUvr5jftCSEfY+F7p+3DysmHnHNVEtW4FZqJbjwfv\nYDXrU5VSL8K8YbDjM/jtpaq9twUGtwwmKsiHD/88JrM+QgiHJoWPqLjA5uqx6D6f9ET101cpfIQQ\nlgiIgrsWw91LwMVdLUebvLL85sWapvb6XD0N+xeXfMyBHyD9EnSpYDKbqwd0fRhOrlUBCVUh9SLM\nGw4pF6DZcDjwvZoFc0A6ndrrc/JSOrPWHJegAyGEw3LIwkf2+DiJgCj1eKnIcrd4CTYQQlRCxED4\n21Z4dCfUDjXvnMjBENQKNrwLBcX6AxmNsHUW1I2CJv0rPq6OU8DdBzZ/WPFrmCs1Xs14pZyHu7+H\n22aC3g/+fM32966godHB9IkM4J3fjjL0gw38eTgeo+yJEkI4GIcsfGSPj5MwJbsV3edjSmeSKGsh\nREVpmtoDZMnxvZ+FxGNw6KcbXzu9RQUodH1IHVdRel/oOFmlu12Jq/h1ypOWoIqe5HNqBiy0u5r9\n6vkUHFsNpzbb7t6VoNNpzJvSiU/ubk9egZGp83Yy8bNtHDgnP8AUQjgOhyx8hJPQuaj18peKFT61\nAsA70H7jEkLUPM1Hqlmd9dOhoMhSq62z1GxJ6zsrf48uD4Omgy2zKn+tkqQlqOVtyWdU0RPW4/pr\nnaepfUa/v+qw6XKapjEkuh6rn+rNqyNbciQ+leEzNvLkd7s5e8XMXktCCGFDUviIyglsXqzw2S+z\nPUKIqqfTQa+nIeEgHP1FPXflFBxeCR0mg7tX5e/hG6KCDv6ar/YzWtO1mZ4Sih5Q4+/7ApzZqmZ+\nHJibi457u4ex9rm+PNy3CT8fuEj/d9bxn59jSM6URrBCCPtxtfcAhJMLiIJ9C1Wym1stteyt8wP2\nHpUQoiaKHgtr3oT1b0PUUJWGhmbdf5O6P6ais3d8rgoRa0i7pIqeK6cKi56eJR/XbpKK+/7j3xAx\nSBV7Dsygd+OFIc2Y1DWU6auPMHv9ST5ddxJPNxd89K6FH2746F0xFD7613JncvcwAg16ew9fCFEN\nOWTho2naCGBERESEvYciyhNgSnY7CnoD5GdDcCv7jkkIUTO5uKpZn+VPwOEVsGs+tBgJvg2sd4/A\n5qqp6fZPocfj4OZZuetdPQ1fjy8sehZBeK/Sj3Vxg37/gCX3qWasrcdV7t5VpL6fJ++Ob8t9PcP5\nIyaBlMxcUrPySM1WjylZeZy7mklqVh5J6TnsjLvCt9O64qKrxJ4sIYQogUMWPkajcTmwvGPHjjJ1\n4OiuJbvFgFvhUhKJshZC2EubCbDuLfhhGuRmqH051tbjCZh3q5r56XS/+ecZjZB0UgUUnN6iHq/E\nqpCYiQshvHf512g5Bja9D2tehxa3OVWj6Jb1fWlZv+zQou93neXZxXv5fMNJHuxTRv8mIYSoAIcs\nfIQTqR2mOqtfOqJ6b+hcoW6kvUclhKipXD1UYfLz81C/HTTsbP17hHZXTVM3z4AOU1TQS0lyMuDy\nETi9DU5vhtNbIS1evebpD426Qaf7IHIo1DVzhYNOB/1fgm/Gwe75lhVeTuD29iH8dugi76w+Sp+o\nAJoFG+w9JCFENSKFj6gcnYsqdBJiCn8dpd54CCGEvbS/B478DN0frVyEdWk0TRVXiyZBzDJo2BUu\nH1UficcLf31MBRWY+DaE8D4Q2g0adVf/blZ0j07TQeoa695SM1zutazzeTkATdN4c3QrBr+/nqcW\n7mXpI93xcC2lsBRCCAtJ4SMqL6AZnNqkfh3ao+xjhRDC1tw84Z6ltr1Hs2Hg3xgWTy5271oq5r9R\nN6h7j/p1SEfwa2i9e2saDHwZvhgM2z5V+5qqkTreHvxnTGsemL+TD34/xvNDmtl7SEKIakIKH1F5\ngc1g/yL1a9nfI4SoCXQuMHIGxCyHOhGqwKkbCT71bDPLVFyjrhA5RO336TgFPGvb/p5VaFCLIMZ3\nbMAn604woHkgHUL97T0kIUQ14JBZmJqmjdA0bXZysnR8dgoBRX4aFyw9fIQQNURYTxj6PxWX3bgv\nGOpXTdFj0v9fkJUCmz6o/LWuxEFOeuWvY0X/Gt6C+n6ePL1oL+nZefYejhCiGnDIwsdoNC43Go3T\nfH3LTn8RDqJo4SPNS4UQomoER0OrcbD1E0i9WLFrJJ6AJffDB21hwWjIy7HuGCvBR+/G9HFtOJ2U\nwZurYuw9HCFENeCQhY9wMqZkN6+64B1k79EIIUTN0e9FKMhVe40OLYO8bPPOSz6n+h191AkOr4To\n2+HMNvj1RZsO11JdG9fh/p7hfL3tNGuOJNh7OEIIJyd7fETl6VxU01LP2lW7zEMIIWo6/8Zqud3a\n/6qUOQ9f1bS19XgI7Xlzclz6Zdj4Hmz/DIwFKg671zPgEwSGeiqiu357aHeXfT6fEjxzSxTrjl7i\nhe/38euTvaldy3l6FwkhHIsUPsI6xi9QPXyEEEJUrU73Q/vJELsW9i2Ggz/C7gXgUx9a3Q6txkPt\nUNgyU33kZkCbidDnefW8yYBX4MI+WPEUBDaHkPZ2+oRupHdz4d3xbRk1cxP//OkAH01ohyY/ZBNC\nVIC8UxXWYahn7xEIIUTN5eIKEQPVR04GHP1ZFUFbP1azOC7ukJ8DLUZBv39AQAmNpl1cYexcmN0H\nFk6CaWvBO6CqP5MSRYf48uTApkxffZTeTesyrkNDdDopfoQQlnHIwkfTtBHAiIgIMztZCyGEEEJx\n91J7dqJvh4wkNQMUfwDa3wv125Z9bq06cMcCmDMYvp8Ck5aqgsgBPNSnCX8eTuCFJft5c9VhOoX5\n0yXcn87h/rSsb8DVRbYtCyHK5hj/mhVjNBqXA8s7duz4gL3HIoQQQjgtL3/odJ9l59RvByM+gKUP\nwe8vw+A3bDM2C7m66PhyamdWH4xne2wS2+OS+D0mHoBa7i60D61Nl3B/ujSuQ/tGtXGRGSEhRDEO\nWfgIIYQQwo7aToDzf8GWj1Qh1Gps1dw38QTUDr85lKGQj96N2zs04PYODQBISMlie1ySKoRik5i+\n+igADWp7MqlrKOM7NpQwBCHENVL4CCGEEOJmg9+Ei/vhp0chIEqld9rS0dXwzTjo/hjc8rpZpwQa\n9AxvXZ/hresDcCU9hw3HL/P11lP85+fDvPvbUUa0qc+93cJo1UB6AwpR08mCWCGEEELczMUNxn0J\nnn7w3V1qv5CtpF+Gnx4BTacCGS4drdBlatdyZ2Sb+ix8sBu/PtmbcR0bsGr/BUZ8tJFRMzfx4+6z\nZOflW3nwQghnITM+QgghhCiZTxCMnw9zb4UFo9XMT3Ya5Jg+0q//Pi8Luv4NBr5s2T2MRlj2OGRd\nhUk/qkS5X/4Ody+pVG+4qGAfXh/ViueHNOOHXWeZv/UUTy3cy+srYpjSI4xpvZvg7io//xWiJpG/\n8UIIIYRtgevtAAAgAElEQVQoXcPOMHIGpCXA6a1wJU4VOXpfqBsJjfuohqlN+sPGd2HrJ5Zd/6/5\ncGQlDHwFGveFvi/CiT/g6C9WGb5B78bkHuH88XQfvrqvC+0a+TF99VGGz9jA7tNXrHIPIYRzkBkf\nIYQQQpSt7QT1UZaCfFh0j5qt8WsIzYaVf93EE+r48D7Q5WH1XOcHYNc8+OVFVUy5elR6+ACaptGz\naV16Nq3LmsMJ/N+P+xnz8Wam9gjnmVsi8XKXt0RCVHcOOeOjadoITdNmJycn23soQgghhDCHzgXG\nfKZS4L6/D87tKvv4/Fz44QHVXHXUx9eT3FzcYOh/4UosbJlpk6H2axbI6qd6c1eXRszZGMuQ9zew\n+fhlm9xLCOE4HLLwMRqNy41G4zRfX0lgEUIIIZyGuxdMXAjegfDNHWpZXGnWT1fF0Yj3wTfkxtea\n9Idmw9UxKedtMlQfvRuvj2rFwmldcdFpTPx8G39fso/kzFyb3E8IYX8OWfgIIYQQwkl5B8Jd30N+\nDnw9HjJL2EdzZjusfxvaTICWo0u+zuA3oCAPfrMwLMFCXRrX4ecnevFgn8Ys2nmGQe+uY/XBiza9\npxDCPqTwEUIIIYR1BUTCnd+o5WoLJ0Fe9vXXslPhh2lqlmfoW6Vfo3YY9Hgc9i9SoQo2pHdz4cWh\nzVn6SA/8a7kzbcEuXl1+kLz8ApveVwhRtaTwEUIIIYT1hfWE22ZB3AZY9piKrQYVWnD1FIz+FPSG\nsq/R8ykwhMCq51R4go21buDH8sd6MrVHOHM3xTFl3g6SM2TpmxDVhRQ+QgghhLCN1uOg/z9h30JY\n8ybELIfdC1RBE9q9/PPda8Etr8HFfSr2ugq4ueh4aUQL3rq9NVtPJjJq1iaOJ6RVyb2FELYlhY8Q\nQgghbKfXs9BuEqx/C354EOq1hT5/N//8lmMgtAf8+VrJ+4VsZHynhnzzQFdSMnMZPWsTa48kVNm9\nhRC2IYWPEEIIIWxH02D4eyqpDaOKvHZ1t+z8of9TRc/a/9psmCXpFObPssd60qC2F1Pn7eDzDScx\nmpbsCSGcjhQ+QgghhLAtFzeYuBie2KeCDywV3Ao6ToXtn0H8IeuPrwwhfp4sebgbg1sG8/rKGJ77\nfh/ZebbfbySEsD4pfIQQQghhey6u4B1Q8fP7/QM8fODHaXC2nOaoVubl7srMie15cmBTvt91lgmz\nt3LofArJGbkyAySEE3G19wCEEEIIIcrl5Q+3zVQJcZ/3h6a3QN+/Q0iHKrm9Tqfx5MBIIoN8eGbR\nXm79cAMAHq46Anw8CDLoCfTxUB8GPVFBPgxoHoimaVUyPiFE+Ryy8NE0bQQwIiIiwt5DEUIIIYSj\naD4cGveB7bNh8wz4rD80HVxYALWvkiHc2qoerUJ82X3mKgkpWSSkZl97PBqfysbjl0nNygPgv2Na\ncWfnRlUyLiFE+Ryy8DEajcuB5R07dnzA3mMRQgghhAPx8IFez0DnabDtU9jyEXzWDyKHqAKofrvr\nxxYUQOoFSDoJSScKH09C3Ujo+6Lae1QBDf29aOjvVerrmTn5PDB/J68sP0iH0No0DfKp0H2EENbl\nkIWPEEIIIUSZPHyg97OqANr+KWz+CGb3hSYDwM0TEk/AlVjIy7p+jou7aogasxwu7INx88DD2+pD\n83R34d3xbRj6wQYe+3Y3Sx/pgd7Nxer3EUJYRgofIYQQQjgvvQF6PwedH1QzQLvmqqLIvzFEDFCP\npg/fBqBzgZ1zYeXTMO9WlTbnE2T1YQUa9Ewf34Ypc3fw5qoY/n1btNXvIYSwjBQ+QgghhHB+egP0\neU59lKfjFDDUh8WTYc5AuPsHqNvU6kPqFxXI/T3D+XxjLD0i6jK4ZbDV7yGEMJ/EWQshhBCi5okc\nDJNXQm4mzBkEp7fa5DbPD2lGqxBfnv9+H+evZtrkHkII80jhI4QQQoiaKaQ93PcbePrDlyPh0E+l\nH5uXA8d/h2WPw/RI+HocZKeWewt3Vx0fTmhHXn4BTy7cQ36B9P0Rwl6k8BFCCCFEzeUfroqfem1g\n0b2w9ZPrr+VmweFV8ONDMD0CvrodDiyB+u3h+B+wYDRkXi33FuF1a/HaqGi2xyYx489jNvxkhBBl\nkT0+QgghhKjZatWBe5fBkvvhlxcg/gDkpMOx1ZCTBnpfiBoGLUZC437gplfJcIunwJcjYNJSdY0y\njGnfgI3HLvPhH8fo1rgOXRqXfbwQwvpkxkcIIYQQws0Txs9X8di7F0Dsemg1VgUfPHcCRn8MUUNV\n0QPQfARM+BYuH4V5wyA1vtxb/HtUNI38vXhy4R6uZuTY+BMSQhQnhY8QQgghBKio66FvwdMx8OxR\nGPGBisQurdFp00EwcRFcPQ1zh0Ly2TIv7+3hyowJ7bmcls3z3+/DaJT9PkJUJSl8hBBCCCFMNE1F\nXevMbDjauA9M+gHSL6ni50pcmYe3auDLC0OasfpQPP/3437iLqdXfsxCCLNI4SOEEEIIURmNusI9\nP6mUty+GwuWyAwym9ghnUtdQFu88S9/pa5k8dztrDidQIIlvQtiUFD5CCCGEEJUV0h7uXQEFuWrm\nJ/5gqYfqdBqvjYpm89/789TASA6dT2HKvB30e2ctn284SXJGbhUOXIiawyFT3TRNGwGMiIiIsPdQ\nhBBCCCHMExwNk1fB/JGq+On9HHS8D9y9Sjw80KDniYFN+Vu/Jvx68CLzN5/i9ZUxTF99hNHtQhjW\nqj7ZeflczcjlSkYOyZnq8UpGLskZuaRm5dLIPYd2nXPx9SplH5IQ4hrNkTfWdezY0bhz5057D0OI\nKrN27Vr69u1r72EI4XDk74ZwKlfiYPmTcHINeAdBz6ehw+TriXBlOHQ+hflb4li65xxZuQU3vKbT\nwM/LHT8vN/w83XB10bE9NgkfvSvTejVmSs9wvD0c8mfaQtiUpmm7jEZjx3KPk8JHCMchb+6EKJn8\n3RBO6dRmWPMmxG0An/rQ+xlodw+4upd76tWMHPafS8agd1OFjpc7Ph6u6HTaDcfNX/YHG6768tuh\neGp7ufFQnybc0y0MT3czwxmEqAbMLXxkj48QQgghhC2EdofJK+CeZeDXEFY+AzPaw64vIb/YPh6j\nUYUjJJ6AU1vwi/uZXsbdtGngS2idWvh6ut1U9AA0Mrjw2T0d+emRHrRu4Md/fj5Mr7fWMHdTLFm5\n+VX0iQrhHGQ+VAghhBDClhr3gfDecOIP+PMNWP44bHwXgqIhLQHS4lUcdm7GzeeG94GRM6B2aJm3\naNPQjy+ndmZnXBLTVx/h1eWHmL3+JE8NjGRcxwZo2s1FkxA1jRQ+QgghhBC2pmkQMRCaDICjv8LG\n99TsjncgNOyiHr0DoVbg9V+f2Q6/vQyzusGgV1VQgq7sxTodw/z5blo3Nh+/zPTVR3h+yT5W7r/A\n22NbE2gof4+RENWZFD5CCCGEEFVF0yBqiPooT3AraHqLmiFa9SwcXAq3zQD/xuWe2j2iLkua1OGr\nrad4Y1UMg99fz3/GtGJIdD0rfBJCOCfZ4yOEEEII4aj8GsLdP8DIj+Difvi4B2z9GAoKyj1V0zQm\ndQtjxWO9aOjvxUNf/cWzi/eSmiV9gkTNJIWPEEIIIYQj0zRoPwke2QphveCXv6s+QZePm3V6RKA3\nSx7uzmP9I/jhr7MM/WAD22OTbDxoIRyPFD5CCCGEEM7AUB8mLoTRn8Klw/BJD0LjFkFuZrmnurno\neOaWKBY/1B0XncYd/9/efUdXVaV9HP/uJIQOgjRpglRBkKYgMAgWRBErRaXYURRGndFxHKePbdQZ\ny1gAGxYUUFHAAlZEkY4NQcCGYEMsKKjU/f6R+A6DgCG5ufcm+X7Wylq5J3s/57ms7JX149yzz+hZ\n/HPqO2zc/MtXjqTiwuAjSZJUVIQA+58E58+BpkfQ8MOxcOuBsHhSzpbYv6D93lV46te/YkCHetw+\n/T2Ou3Umn3zzy8FJKg4MPpIkSUVNxVrQ/z5e3/8fkF0RJgyBe/vAZ4t+cWr50llcc2JrRg9uz4df\nrucvk99OQsNS6hl8JEmSiqhvqrSGc2ZA73/D52/DqF/BExfB+i9/cW7PlrUYcUgTnl38OS8v/yIJ\n3UqpZfCRJEkqyjKz4IAz4dcL4cBzYMG98J+2MHskbNn1Dm5ndG1A/arl+PuUxWze4v0+Kt4MPpIk\nScVB2Spw5DUw7FWo3Q6mXgp3HQ6bftzplNJZmVzee1+Wr17H2DkfJbFZKfkMPpIkScVJjeYw+DE4\n4Q745DWYcd0uh/dsUZMujffk388u4+v1G5PUpJR8Bh9JkqTiJgRo3R/aDISZN8Knb+5iaODPR7fk\nux83ceNzy5LYpJRcBh9JkqTiqucVULYqTB4OWzbvdFizWhUZ2HFvHpjzEUs/+y6JDUrJY/CRJEkq\nrspVhd7Xw6dvwKxbdjn0N4c3pULpLP7xxGJiHp4JJBU1Bh9JkqTirMWx0PxomH41fPneTodVKZ/N\nRYc14ZV31/DcktVJbFBKDoOPJElScdf7X5BZGib/GrbufNvqgZ32pnGNClzx5GI2bN6SxAalwpfU\n4BNCOC6EcEcIYXwIoWcyzy1JklRiVawFR1wJK16BhWN2OqxUZgZ/OroFK778nntmfpi09qRkyHPw\nCSHcHUJYHUJYtN3xXiGEpSGEd0MIv99VjRjj4zHGs4FzgQH5a1mSJEm7re0gaHgwPPsXWPvxTocd\n3LQ6h+1bg/88v5zV3+38GUBSUbM7V3zGAL22PRBCyARuBY4EWgAnhxBahBBahRCe2O6rxjZT/5g7\nT5IkSckQAvS5CbZuhid/A7vYwODy3i3YuGUr109bmsQGpcKV5+ATY5wBfLXd4QOBd2OM78cYNwLj\ngGNjjG/FGI/e7mt1yPFP4OkY48LEvQ1JkiT9oqoN4ZA/wrKpsOjRnQ5rWK08p3dpyMMLVvHmqm+S\n2KBUeLIKOL8OsHKb16uAjrsYPwI4DKgcQmgcYxy5/YAQwlBgKEDNmjWZPn16AVuUio5169b5Oy/t\ngGtD2rF8rY3YnHYVm1Bm8kXM+zSbTdmVdjisfcb3LCr1LpeO/JT1ZetQuXSgUnagcuncr9zvq5QJ\n1CwXCCEU/A1JhaigwWe3xBhvBm7+hTGjgdEAHTp0iN27d09CZ1J6mD59Ov7OSz/n2pB2LN9ro8V9\nMKobXdY9kfPxty+WwhfvwOrFsPod+GIJfPMRR2TA1ozAq6V7clepU1i6viJffL6BTVv+92NyBzet\nzp/7tKBR9QqJeWNSISho8PkYqLfN67q5xyRJkpSuaraAbhfnPNvnzQlAbpDJKAXVmkLdA6DtEKjR\nnIyVc+g6ZxRdN7wMnUcQO4/g2y1l+GLdj6z+bgNvrFzLbS++S68bZ3BGl4YMP6QxFcuUSunbk3ak\noMFnHtAkhNCQnMBzEnBKgbuSJElS4er6G9i4HrLLQ/XmUGNfqLoPZG4XWvbtAx3OhOf/Bi/9k7Bg\nDJUP+SOV2wykcY2KdG5Ujb7t63LdtHcYNeN9Jr72Mb/v1Zzj29YhI8OPvyl97M521g8Bs4BmIYRV\nIYQzY4ybgeHANGAJMCHG+HZBmwoh9AkhjF67dm1BS0mSJGlHsrKh5z+g+++h5XFQvdnPQ89PqjaE\nfmPgzGdhj71h8ggY1Q3eewGA6hVLc23f/Xn8/C7U2aMsv334DU4c+aobIyit7M6ubifHGPeKMZaK\nMdaNMd6Ve/ypGGPTGGOjGOOViWgqxjglxji0cuXKiSgnSZKkRKh3IJz5TE4I2vAd3H88PHAifL4Y\ngDb19mDisM5c329/Vn71A8feOpNLH3mTNes2pLZvid17jo8kSZJKuhCg5fEwfB70vAJWzYORXWDS\ncPj2EzIyAn3b1+XFiw/m7F/tw6MLV3HsLTNZ8eX6VHeuEs7gI0mSpN2XVRo6j4Bfvw4dh8Eb4+Dm\ndvDCFbDhOyqWKcUfjtqXx87rwvcbNzNg1Gw+WGP4UeqkZfDxHh9JkqQiolxV6HUVjJgPzY+CGdfB\nTW1g7h2wZROt6lbmwbM7sWnLVgaMmsW7q9elumOVUGkZfLzHR5IkqYip0gD63g1nv5CzS9xTF8Nt\nnWDJE+xbqyLjhnZia4STRs9i2effpbpblUBpGXwkSZJURNVpD6c9ASePg5AJ4wfCuFNosmc248/p\nRGZG4KTRs1n8ybep7lQljMFHkiRJiRUCNDsShr2aswHC0qdgwhAaVclm/NCDKJ2VwSl3zmbRx97W\noOQx+EiSJKlwZGblbIDQ+9+wbCo8fBoNqmQz4ZyDKJ+dxSl3zOaNlT7rR8mRlsHHzQ0kSZKKkQPO\nhCOvg6VPwiNnUK9yKcaf04k9ymUz6M45LFjxdao7VAmQlsHHzQ0kSZKKmY5Dodc1sGQyTDybupVy\n7vmpVrE0Q+6aw9RFn6W6QxVzaRl8JEmSVAx1GgY9r4S3H4PHzmGvitmMG9qJxjUqcO4DC7jiicVs\n2rI11V2qmDL4SJIkKXk6D4fD/gaLHoHHz6NmhVJMOPcghhy0N3e+8gEnj57Np2t/SHWXKoYMPpIk\nSUqurhfCIX+CN8fB5BGUzgj8/dj9+M/JbVny6bf0vvkVXl7+Raq7VDFj8JEkSVLydbsYuv8BXh8L\nU34NWzbTZ//aTB7RleoVSjPk7rnc8OwytmyNqe5UxURaBh93dZMkSSoBul8K3X4Hr90P9xwJX75H\no+oVePz8LpzQti43Pb+cU++ey5p1G1LdqYqBtAw+7uomSZJUQhxyOZx4F6xZCiO7wtw7KFsqg+v7\nteafJ7Zi3odf0fvml3n6rU/ZuNmND5R/aRl8JEmSVIK06gvnzYb6B8FTF8P9xxO+/YQBB9TnsfO6\nUC47i2FjF9Lxquf4y6RFvLHyG2L0I3DaPVmpbkCSJEmiUm0Y9CgsuAemXQ63HQRHXUeL1v159qJu\nvPzuGiYu/Jhx81Zy76wVNKpenhPa1eW4tnWos0fZVHevIsDgI0mSpPQQAnQ4AxoeDI8Pg8eGwjtT\nyDr6Rno0q0GPZjX49sdNPPXmp0xc+DHXTVvK9c8spVPDPenXoS7H7F+brEw/0KQd8zdDkiRJ6WXP\nRnD60znP+1k2DW7rBEunAlCpTClOOrA+E849iBmX9ODCQ5vyydof+M2ENzjixhk88/ZnfgxOO5SW\nwcdd3SRJkkq4jMyc5/0MnQ4VasFDA2DqH2Dzxv8fUn/PclxwWBOmX9ydUYPbEyMMvX8BA0bN5rWP\nvk5Z60pPaRl83NVNkiRJANRsCWc9BwcOhdm3wt1HwFcf/M+QEAJHtKzFtIu6ccVx+/H+mnUcf9ur\nnD92ISu+XJ+ixpVu0jL4SJIkSf+vVBk46jrofz989R6M6gaLJv58WGYGgzrtzfRLenDBoU144Z3V\nHPbvl/jr5Lf5av3GHRRWSWLwkSRJUtHQ4hg452Wo1hQeOR2mXAibfvjZsAqls7jo8Ka8dEl3+rav\nx32zPuTga1/ktunv8uOmLcnvW2nB4CNJkqSio8recMZU6HJBztbXdxwKXyzb4dAalcpw9QmteOai\nbnTcpyrXTl1Kj+un8/D8lWzZ6gYIJY3BR5IkSUVLZik4/O8w8BFY9xmMPhgWjNnh1R+AxjUqcuep\nBzB+aCdqVCrDJY+8Se+bX2b60tXuAFeCGHwkSZJUNDU5HM6dCXXaw5QL4Np9YNxAeP1BWP/lz4Z3\n3GdPHj+vM7ee0o4fNm3htHvmMeiuOSz62J2ESwIfYCpJkqSiq9JeMGQSvP8iLH065+udJyBkQL1O\n0OxIaN4759lA5OwA17v1XhzeoiYPzlnBTc8v5+j/vMJxbWrz257NqFe1XIrfkApLWl7x8Tk+kiRJ\nyrOMTGh8GPT+F1z0ds6zf7pdAhu+g2f/BP9pB7ccCDNvyjkGZGdlcFqXhrz0ux6c170RTy/6jJ43\nzGDqok9T+lZUeNIy+PgcH0mSJOVLCFC7LfT4Awx7BS58C468FspXg2f/DDfsBy9eDd9/BUClMqX4\nXa/mvHhxd5rVqsi5DyzklheWe+9PMZSWwUeSJElKiD3qQ8dz4PSn4KwXoEFXeOmanAA07XL4NucK\nT+09yjJuaCeOa1Ob659ZxoXjX3fr62LG4CNJkqSSoW57OGksDJuVc9/P7NvgptY5zwP66gPKlMrk\nhgFtuOSIZkx6/RMGjJ7N6m9/THXXShCDjyRJkkqWmi3gxDtgxAJoMxBeH5tzH9Ck4YQtmzi/R2NG\nDmrPss++49hbZ7rrWzFh8JEkSVLJVHUf6HMjXPAmHHgOvHY/TDwLtmym1361eGTYQQSg38hZPP2W\nmx4UdQYfSZIklWyV9oIjr4GeV8LiSTnPBNq6lZa1KzNpeFf23asiw8Yu5D/Pu+lBUWbwkSRJkgA6\nD4eDL4XXH4Bpl0GMVK9YmgfP7sQJbevwr2eX0eeWV5j0+sds3rI11d1qNxl8JEmSpJ90vww6nQdz\nRsKLVwFQplQm/+q/P9f1bc33G7dwwbjXOfi66dz9yges37A5xQ0rr7JS3YAkSZKUNkKAI66CDd/C\njGuhTCXoPIIQAv061OPEdnV54Z3VjJ7xPn9/YjE3PreMQZ325rQuDahRsUyqu9cuGHwkSZKkbYUA\nfW6GDevgmT9C6YrQ/jQAMjICh7WoyWEtavLaR18zesb73P7Se9z58gcc37YOQw/eh0bVK6S2f+1Q\nWgafEEIfoE/jxo1T3YokSZJKooxMOOEO2Lg+5zk/2RWgVd//GdK2fhVuH9SeD9es585X3ufh+at4\n7LWPufTI5pzRpQEhhBQ1rx1Jy3t8YoxTYoxDK1eunOpWJEmSVFJlZUP/+6D+QfDYObB06g6HNahW\nniuOa8XM3x9Ct6bV+ccTizljzDzWrNuQ5Ia1K2kZfCRJkqS0kF0OThkPtVrBhCHw4cydDq1WoTR3\nDGnPP45tycz3vuTIm17m5eVfJLFZ7YrBR5IkSdqVMpVg0ETYoz6MHwRff7jToSEEBh/UgMnDu1Cl\nXCkG3zWXq59awsbNbn+dagYfSZIk6ZeUqwonj4O4BR46JWfjg11oXqsSk87vysCO9Rk14336jnyV\nD9esT1Kz2hGDjyRJkpQX1RpD33vgiyU59/xs3fVVnLLZmVx5fCtGDmrPii+/p/fNLzNx4aokNavt\nGXwkSZKkvGp8KPS8Et55Al66Jk9Teu1Xi6cv+BUt61TmNxPe4Kbnlhdyk9oRg48kSZK0OzoNgzaD\n4KV/wtuP5WlK7T3K8tDZnTixXV1ueG4ZD8xeUchNantp+RwfSZIkKW2FAEf/G9Ysg8eGQdV9YK/9\nf3FaZkbgmhNb8c33G/nTpEVULZ/NUa32SkLDAq/4SJIkSbsvqzQMeCBn04OHToF1q/M0rVRmBrec\n0o729atw4bjXefXdNYXcqH5i8JEkSZLyo2JNOOlB+P5LGD8YNm/M07Sy2ZncdeoBNKxWnrPvm89b\nq9YWcqMCg48kSZKUf7XbwHG3wsrZ8ORvIMY8TatcrhT3nnEge5TL5rR75vKBW10XOoOPJEmSVBD7\nnQi/uhheux9m3vSL21z/pFblMtx/5oFEYPBdc/j82x8Lt88SzuAjSZIkFVSPy6H50fDcX2DUr2Dx\npDwFoH2qV2DM6Qfw9fqNnHr3XNb+sCkJzZZMaRl8Qgh9Qgij1671846SJEkqAjIyoP99cMIdsPlH\nmDAERnaFtx//xQDUuu4ejBrcgfe+WMdZ987jx01bktR0yZKWwSfGOCXGOLRy5cqpbkWSJEnKm4xM\naN0fzp8LJ9wJWzbCw6fCyC45z/vZRQDq2qQaNwxow/wVXzNg1Cwef+1jA1CCpWXwkSRJkoqsjExo\n3Q/OnwMn3gVbN8PDp8HtnWHRxJ0GoKNb1+aG/m34+vtNXDj+dQ648jkuf+wt3lj5DTGPmyZo53yA\nqSRJklQYMjKhVV9oeXzOFZ+XroVHTod6o6DPTVCj+c+mHNe2DsfsX5s5H3zFw/NX8ujCVYyd8xHN\nalakX4e6HN+2DntWKJ2CN1P0ecVHkiRJKkw/BaDzZsExt8CapTn3/7x4FWz6+U5uGRmBgxrtyb8H\ntGHu5Ydx1fGtKFc6kyueXELHq57nnPvn88I7n7N5S952j1MOr/hIkiRJyZCRCe0GQ9NeMO0P8NI/\ncz761udGaNB1h1MqlSnFKR3rc0rH+iz//DseXrCKiQtXMe3tz6lZqTR929elf4d67L1n+SS/maLH\nKz6SJElSMlWoDifeAYMezdkAYUxvmDQcvv9ql9Oa1KzIH47al1mXHcrIQe1psVclbp/+HgdfN52T\nR892Q4Rf4BUfSZIkKRUaHwbnzYaXroFXb4FlU6HXNTkPRA1hp9NKZWbQa79a9NqvFp+u/YFHF6xi\nwvxVXDj+dSpNyuLYNnU4pWN99t2rUhLfTPrzio8kSZKUKtnl4PC/w9DpULkePHomjB8Em37I0/S9\nKpdl+CFNmH5xdx48qyM9mtdg/PyVHHnTywwYNYupiz71XqBcBh9JkiQp1fZqDWc9lxOC3nkSxvaD\nDd/leXpGRqBz42rcdFJb5v7hUP5wVHNWff0D5z6wkIOvm86ol97jm+83FuIbSH8GH0mSJCkdZGRC\nlwvghNGw4lW495hfvO9nR/Yol83Qbo146ZLujBzUnnpVy3L10+/Q6ernuWziWyz7PO+BqjjxHh9J\nkiQpnbTuD6UrwoRT4Z6jYPBjUGmv3S6Ttc29QIs/+ZZ7X/2QiQtX8dDcj/hVk2rcfFJbqpTPLoQ3\nkJ684iNJkiSlm2ZHwqBHYO1KuKcXfP1hgcq1qF2Jf/ZtzazLDuWSI5ox5/2vOP/BhWwqQff/GHwk\nSZKkdNSwGwyZBD98A3f3gtXvFLhk1fLZnN+jMVcevx+vvvcl/3hicQIaLRoMPpIkSVK6qtsBTn8a\n4la450j4eGFCyvbrUI+h3fbhvlkreGD2ioTUTHcGH0mSJCmd1WwBZ0yF0hVyNjz4cGZCyl7aqzk9\nmh4MEUMAABPlSURBVFXnr5Pf5tX31iSkZjoz+EiSJEnpruo+cPrUnE0OHjgBljxR4JKZGYGbTm5L\ng2rlOW/sQlZ8uT4BjaYvg48kSZJUFFSuk/Oxt5r75TzkdPbtBS5ZqUwp7hzSAYCz7p3Pdz9uKnDN\ndGXwkSRJkoqK8tXg1CnQvDdM/T089TvYuqVAJRtUK89tA9vxwZr1XDDudbZsjQlqNr0YfCRJkqSi\nJLsc9L8PDhoOc0fBuIGwsWAfU+vcqBp/OaYlL7yzmmunFXz3uHRk8JEkSZKKmoxMOOJKOOp6WD4t\n50Gn331eoJKDO+3N4E57M+ql93l0waoENZo+DD6SJElSUXXg2XDSQ7BmGdx5KKxeUqByf+7Tgs6N\n9uSyiW8x670vE9Rkekha8Akh7BtCGBlCeCSEMCxZ55UkSZKKtWa9cjY92LIJ7uoJ70/Pd6lSmRnc\nNrAddauUZeCds7n6qSX8uKlg9xClizwFnxDC3SGE1SGERdsd7xVCWBpCeDeE8Ptd1YgxLokxngv0\nB7rkv2VJkiRJ/6N2GzjrOahcFx44EWaPzPemB3uUy2bS8C4MOKA+o2a8T++bX2bBiq8T3HDy5fWK\nzxig17YHQgiZwK3AkUAL4OQQQosQQqsQwhPbfdXInXMM8CTwVMLegSRJkiTYo17Og0736QFTL4XR\nB8OKWfkqVbFMKa4+oRX3n3kgP27aSt+Rr3Llk4uL9NWfEGPetqsLITQAnogx7pf7+iDgrzHGI3Jf\nXwYQY7w6D7WejDH23snPhgJDAWrWrNl+3LhxeepPKg7WrVtHhQoVUt2GlHZcG9KOuTa0QzFS/YuZ\nNHrvHspsWMPnNQ7mvUansrH0nvkq98PmyISlG3lx5WZqlQuc2ao0TapkJrjp/OvRo8eCGGOHXxpX\nkODTF+gVYzwr9/VgoGOMcfhO5ncHTgBKA2/GGG/9pXN26NAhzp8/P0/9ScXB9OnT6d69e6rbkNKO\na0PaMdeGdmnjenjlRph5E2RkQbeL4aDzIat0vsrNfHcNv3vkTT5Z+wNndGnIxT2bUTY79QEohJCn\n4JO0zQ1ijNNjjL+OMZ6Tl9AjSZIkqQCyy8Mhl8PwudCoBzz/N7itEyyblq9yXRpXY9pF3RjUcW/u\neuUDet/8Mss+/y7BTReeggSfj4F627yum3tMkiRJUrqo0gBOGguDJuZc+XmwPzw4ADas2+1SFUpn\n8Y/j9uPBszry3YbNHH/rTJ55+7PE91wIChJ85gFNQggNQwjZwEnA5EQ0FULoE0IYvXbt2kSUkyRJ\nktT4UBj2KvS8ApY/A09cCHm87WV7nRtXY8rwrjSuUYGh9y/gpueWs3Vr/molS163s34ImAU0CyGs\nCiGcGWPcDAwHpgFLgAkxxrcT0VSMcUqMcWjlypUTUU6SJEkSQGYp6DwCuv8B3noYFozJd6lalcsw\n/pyDOLFdXW54bhnDxi5g3YbNies1wbLyMijGePJOjj+FW1NLkiRJRcuvfgsfzYKnL4U67WCv/fNV\npkypTK7v15oWtStx1VNLOOG2mdwxpAN771k+wQ0XXNI2N5AkSZKUJjIy4ITRUG5PmHAq/Jj/W0xC\nCJzZtSH3nXEgq7/bwDG3zOSV5WsS2GxipGXw8R4fSZIkqZCVrwb97oFvPoJJw/N9v89PujSuxuTz\nu1KrUhmG3D2HO19+n7w+OicZ0jL4eI+PJEmSlAT1O8Fhf4Ulk2HOqIKX27McE8/rTM8WtbjiySX8\nedLbabPpQVoGH0mSJElJ0nkEND0SnvkjrJpf4HLlS2dx28B2DO22D/fPXsGfJi1Ki/Bj8JEkSZJK\nshDg+Nuh0l7w8Gnw/VcFLpmREbjsyOYM696IsXM+4vLHUx9+DD6SJElSSVe2CvQbA999Bo8Pg61b\nC1wyhMDvjmjGed0b8dDcj7j88bdSGn7SMvi4uYEkSZKUZHXawxFXwbKp8OrNCSkZQuCSI5oxvEdj\nHpq7kssmpi78pGXwcXMDSZIkKQUOPBtaHAfP/x0+eDkhJUMI/LZnU359SGPGz1/J7ye+mZLwk5bB\nR5IkSVIKhADH/Aeq7gNj+8KiiQkqG7jo8Kb8+tAmTJi/it89+iZbkhx+DD6SJEmS/qtMJThjKuzV\nBh45HV66tsDP+IGc8PObw5ty4WFNeGTBKn73SHLDT1bSziRJkiSpaChfDU6dDJNHwItXwprlOVeC\nSpUpcOkLD2tKIHDDc8vYsnUr/+zbmtJZmQloetcMPpIkSZJ+Lqs0HD8KqjWBF66Ab1bAgLFQoXqB\nS19wWBOyMgPXTVvKyq9/4PZB7ahRseChalfS8qNu7uomSZIkpYEQoNsl0O9e+PQNuPMQWL0kIaXP\n79GYW05py+JPvuWY/8zkjZXfJKTuzqRl8HFXN0mSJCmNtDwOTn8KNm+Au3rC8ucSUvbo1rV5dFhn\nMjMC/UbN4tEFqxJSd0fSMvhIkiRJSjN12sPZL8Aee8OD/WDO6ISUbVG7ElNGdKV9/Sr89uE3+McT\ni9m8peAPUN2ewUeSJElS3lSum7PjW5Mj4OlLYGZiHnRatXw29515IKd1bsBdr3zAaffM4+v1GxNS\n+ycGH0mSJEl5V7oCDHgAWh4Pz/4JZo9MSNlSmRn89ZiWXNu3NXM/+Ipjbn2Fdz77NiG1weAjSZIk\naXdlZsEJd0Dzo2HqpTDvroSV7t+hHuPO6cSGTVs54bZXeXbx5wmpm5bBx13dJEmSpDSXWQr63pPz\nsbcnfwML709Y6Xb1qzBlRFea1KjAOffP575ZHxa4ZloGH3d1kyRJkoqArGzofx80OiTnYadvjE9Y\n6ZqVyvDQ0E4c0rwGf570Nlc9tYStW2O+66Vl8JEkSZJURJQqAyc9CA26wuPnwqKJCStdLjuLUYM7\nMOSgvRk9431GPPQaP27akq9aBh9JkiRJBVOqLJwyHup1gkfPgiVTElY6MyPwt2NacvlR+/LkW58y\n6M45+drxzeAjSZIkqeCyy8PACVCnHTx8OiydmrDSIQTO7rYPt5zSljc/XsuJt7/KR19+v1s1DD6S\nJEmSEqN0RRj4CNRsCRMGw7vPJbT80a1rM/asjnz1/UaOv20mr6/8Js9zDT6SJEmSEqfsHjD4Maje\nDB46JeHh54AGVXl0WGfKlc7kpNGz8jzP4CNJkiQpscpVhSGToXrTnPCzPLHhp1H1Ckwc1oVmNSvm\neY7BR5IkSVLi/X/4aQbjEh9+qlcszUNDO+V5fFoGHx9gKkmSJBUD5arCkEmFFn7KZWfleWxaBh8f\nYCpJkiQVE/8Tfk6G5c+mpI20DD6SJEmSipGfwk+NfXOv/CQ//Bh8JEmSJBW+clVh8OP/DT/Lnknq\n6Q0+kiRJkpJj2/AzfiAsm5a0Uxt8JEmSJCXPth97mzAEPn0zKac1+EiSJElKrrJVYOCjULYqTBgM\nP3xd6Kc0+EiSJElKvgrVof99sPZjmHgObN1aqKcz+EiSJElKjXoHQK+rYfk0ePlfhXoqg48kSZKk\n1DngLGjVH168Et59vtBOk5bBJ4TQJ4Qweu3ataluRZIkSVJhCgH63Jiz2cGjZ8E3HxXKadIy+MQY\np8QYh1auXDnVrUiSJEkqbNnlYcADsHVzzk5vm35M+CnSMvhIkiRJKmH2bATHj4RPXoOplya8vMFH\nkiRJUnpo3hu6XgQLxsBrYxNa2uAjSZIkKX30+CM07AZP/iahDzc1+EiSJElKH5lZcOLdOQ83HT8o\nYQ83NfhIkiRJSi8/Pdz020/gsXMT8nBTg48kSZKk9PPTw02XTYVXCv5wU4OPJEmSpPR0wFnQqh+8\ncCW890KBShl8JEmSJKWnEKDPTVC9ec7DTdeuyncpg48kSZKk9JVdHgbcD5s3wIRTYfPGfJUx+EiS\nJElKb9WawLG3wsfz4ZnL81XC4CNJkiQp/bU8Dg4aDnNHw5sP7/Z0g48kSZKkouGwv0L9zjDl1/D5\n4t2aavCRJEmSVDRkloJ+90B2BZgwGH78Ns9T0zL4hBD6hBBGr127NtWtSJIkSUonFWtBvzHw1Qcw\n6fw8T0vL4BNjnBJjHFq5cuVUtyJJkiQp3TTokvOxtyWT8zwlLYOPJEmSJO1S5xGwb588Dzf4SJIk\nSSp6QoBjb8vzcIOPJEmSpKKpTKU8DzX4SJIkSSr2DD6SJEmSij2DjyRJkqRiz+AjSZIkqdgz+EiS\nJEkq9gw+kiRJkoo9g48kSZKkYs/gI0mSJKnYM/hIkiRJKvYMPpIkSZKKPYOPJEmSpGLP4CNJkiSp\n2DP4SJIkSSr2DD6SJEmSij2DjyRJkqRiz+AjSZIkqdhLavAJIZQPIcwPIRydzPNKkiRJKtnyFHxC\nCHeHEFaHEBZtd7xXCGFpCOHdEMLv81DqUmBCfhqVJEmSpPzKyuO4McAtwH0/HQghZAK3AocDq4B5\nIYTJQCZw9XbzzwD2BxYDZQrWsiRJkiTtnjwFnxjjjBBCg+0OHwi8G2N8HyCEMA44NsZ4NfCzj7KF\nELoD5YEWwA8hhKdijFvz37okSZIk5U1er/jsSB1g5TavVwEddzY4xng5QAjhNGDNzkJPCGEoMBSg\nZs2aTJ8+vQAtSkXLunXr/J2XdsC1Ie2Ya0PKu4IEn3yJMY75hZ+PBkYDdOjQIXbv3j0JXUnpYfr0\n6fg7L/2ca0PaMdeGlHcFCT4fA/W2eV0391jCLFiwYE0IYUUia6ZQZWBtqpvIVdi9JLp+Qerld+7u\nzMvr2LyMqwasyeN5i4OStC4SfY6C1srP/N2d49rIP9dG6moV9tpI9NiStDZcF6mrle5/M/bO0xli\njHn6AhoAi7Z5nQW8DzQEsoE3gJZ5rVfSvoDRqe4hWb0kun5B6uV37u7My+vYvIwD5qf69yOZXyVp\nXST6HAWtlZ/5uzvHtZEevytFoZeStDYSPbYkrQ3XRepqFbW/GTv7yut21g8Bs4BmIYRVIYQzY4yb\ngeHANGAJMCHG+HZe6pVQU1LdwDYKu5dE1y9IvfzO3Z15eR2bTr8D6SKd/k2S0Usiz1HQWvmZv7tz\nXBv5l07/Jq6NxM4prLElQTr9e7guEj+n0P9mhNzkJCkNhBDmxxg7pLoPKd24NqQdc21IeZenKz6S\nkmZ0qhuQ0pRrQ9ox14aUR17xkSRJklTsecVHkiRJUrFn8JEkSZJU7Bl8JEmSJBV7Bh+piAghHBdC\nuCOEMD6E0DPV/UjpIoSwTwjhrhDCI6nuRUqlEEL5EMK9uX8rBqa6HyndGHykJAgh3B1CWB1CWLTd\n8V4hhKUhhHdDCL/fVY0Y4+MxxrOBc4EBhdmvlCwJWhvvxxjPLNxOpdTYzTVyAvBI7t+KY5LerJTm\nDD5ScowBem17IISQCdwKHAm0AE4OIbQIIbQKITyx3VeNbab+MXeeVByMIXFrQyqOxpDHNQLUBVbm\nDtuSxB6lIiEr1Q1IJUGMcUYIocF2hw8E3o0xvg8QQhgHHBtjvBo4evsaIYQAXAM8HWNcWLgdS8mR\niLUhFWe7s0aAVeSEn9fxP7eln3FRSKlTh//+zxzk/MGqs4vxI4DDgL4hhHMLszEpxXZrbYQQ9gwh\njATahhAuK+zmpDSwszUyETgxhHA7MCUVjUnpzCs+UhERY7wZuDnVfUjpJsb4JTn3vkklWoxxPXB6\nqvuQ0pVXfKTU+Riot83rurnHpJLOtSHtmmtEygeDj5Q684AmIYSGIYRs4CRgcop7ktKBa0PaNdeI\nlA8GHykJQggPAbOAZiGEVSGEM2OMm4HhwDRgCTAhxvh2KvuUks21Ie2aa0RKnBBjTHUPkiRJklSo\nvOIjSZIkqdgz+EiSJEkq9gw+kiRJkoo9g48kSZKkYs/gI0mSJKnYM/hIkiRJKvayUt2AJKl4CCFs\nAd7a5tBxMcYPU9SOJEn/w+f4SJISIoSwLsZYYRc/z8p98KIkSUnnR90kSYUmhHBaCGFyCOEF4Pnc\nY5eEEOaFEN4MIfxtm7GXhxCWhRBeCSE8FEK4OPf49BBCh9zvq4UQPsz9PjOEcN02tc7JPd49d84j\nIYR3QghjQwgh92cHhBBeDSG8EUKYG0KoGEKYEUJos00fr4QQ9k/Wv5EkKTn8qJskKVHKhhBez/3+\ngxjj8bnftwNaxxi/CiH0BJoABwIBmBxC6AasB04C2pDzt2khsOAXzncmsDbGeEAIoTQwM4TwTO7P\n2gItgU+AmUCXEMJcYDwwIMY4L4RQCfgBuAs4DbgwhNAUKBNjfKNA/xKSpLRj8JEkJcoPMcY2Ozj+\nbIzxq9zve+Z+vZb7ugI5Qagi8FiM8XuAEMLkPJyvJ9A6hNA393Xl3FobgbkxxlW5tV4HGgBrgU9j\njPMAYozf5v78YeBPIYRLgDOAMXl9w5KkosPgI0kqbOu3+T4AV8cYR207IIRw4S7mb+a/H80us12t\nETHGadvV6g5s2ObQFnbx9y7G+H0I4VngWKA/0H4XvUiSiijv8ZEkJdM04IwQQgWAEEKdEEINYAZw\nXAihbAihItBnmzkf8t8w0ne7WsNCCKVyazUNIZTfxbmXAnuFEA7IHV8xhPBTILoTuBmYF2P8ukDv\nUJKUlrziI0lKmhjjMyGEfYFZufsNrAMGxRgXhhDGA28Aq4F520y7HpgQQhgKPLnN8TvJ+QjbwtzN\nC74AjtvFuTeGEAYA/wkhlCXn/p7DgHUxxgUhhG+BexL0ViVJacbtrCVJaSeE8FdyAsn1STpfbWA6\n0DzGuDUZ55QkJZcfdZMklWghhCHAHOByQ48kFV9e8ZEkSZJU7HnFR5IkSVKxZ/CRJEmSVOwZfCRJ\nkiQVewYfSZIkScWewUeSJElSsWfwkSRJklTs/R9Ui22k3ilD6AAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7e70358f98>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "uw_spectra = pymicra.spectra(fulldata[[\"u'\", \"w'\"]], \n", " frequency=20, anti_aliasing=True)\n", "uw_spectra.binned(bins_number=100).plot(loglog=True, \n", " grid=True, figsize=(14,10))\n", "plt.show()" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "\\end{exampleblock}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
JasonSanchez/w261
week11/MIDS-W261-HW-11-Sanchez.ipynb
1
327022
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# MIDS - w261 Machine Learning At Scale\n", "__Course Lead:__ Dr James G. Shanahan (__email__ Jimi via James.Shanahan _AT_ gmail.com)\n", "\n", "## Assignment - HW11\n", "\n", "\n", "---\n", "__Name:__ *Jason Sanchez* \n", "__Class:__ MIDS w261 (Section *Fall 2016 Group 2*, e.g., Summer 2016 Group 1) \n", "__Email:__ *jason.sanchez*@iSchool.Berkeley.edu \n", "__Week:__ 11" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "<a name=\"1\">\n", "# 1 Instructions\n", "[Back to Table of Contents](#TOC)\n", "\n", "MIDS UC Berkeley, Machine Learning at Scale\n", "DATSCIW261 ASSIGNMENT #11\n", "\n", "Version 2016-07-27 (FINAL)\n", "\n", "\n", " === INSTRUCTIONS for SUBMISSIONS ===\n", "Follow the instructions for submissions carefully.\n", "\n", "https://docs.google.com/forms/d/1ZOr9RnIe_A06AcZDB6K1mJN4vrLeSmS2PD6Xm3eOiis/viewform?usp=send_form \n", "\n", "# TYPE-1.5 Fun option: Complete HW11.8 only (no need to complete the rest of the questions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I am choosing to do the Type 1.5 fun option. Mainly because this will give me more time to perform Spark experiments without focusing on the exact requirements of each HW problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"HW11.8\"><h2 style=\"color:darkgreen\"> HW11.8 [OPTIONAL] Create an animation of gradient descent for the Perceptron learning or for the logistic regression </h2>\n", "[Back to Table of Contents](#TOC)\n", " \n", "Learning with the following 3 training examples. Present the progress in terms of the 2 dimensional input space in terms of a contour plot and also in terms of the 3D surface plot. See Live slides for an example.\n", "[Back to Table of Contents](#TOC)\n", "Here is a sample training dataset that can be used:\n", "-2, 3, +1\n", "-1, -1, -1\n", "2, -3, 1\n", "\n", "Please feel free to use \n", " + R (yes R!)\n", " + d3\n", " + https://plot.ly/python/\n", " + Matplotlib\n", "\n", "I am happy for folks to collaborate on HW11.8 also.\n", "\n", "It would be great to get the 3D surface and contours lines (with solution region and label normalized data) all in the same graph\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I chose to implement the solution for a perceptron.\n", "\n", "In this first chart, I show the decision boundary of the solution after each iteration. The darker the line, the higher the iteration count.\n", "\n", "In implementing the solution, there were a few design decisions I made: \n", "* I presumed an intercept term was not allowed (otherwise the problem would be too each considering there would be three features and only three data points to classify. This meant that the decision boundary must pass through the origin.\n", "* A decision boundary that passes throught the origin on this dataset is particularly pernicious because a line that passes through the positive labels passes directly through the origin. This means that how we deal with predictions of exactly 0 is important. To make the problem more difficult, I wrote the code to classify points that fall on the decision boundary as always being incorrect classifications. The effect of this is that the decision boundary never passes through a point, but instead tries to get very, very close to each point.\n", "* The next issue is that we are guaranteed to misclassify one of the two positive points with every iteration. The weights continually decrease in an effort to classify this single point correctly and never converge to a single solution. To solve this issue, I adjusted the gradient to include a term that forces the weights to sum to 1 over time. This forces the algorithm to converge towards a single point.\n", "* Also, I added a decaying learning rate to prevent oscillations. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGcCAYAAACbTdlDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXl8lOW5//++Mtn3jSSQfSVkYQl7UEAIKrhVRe1iW+vX\n1tparUuL1lq1fttfj21Pa+33aO1pq9YjPe2xtUdFdhAUyMJOgCxkAbLvmeyZmef3xzMzHYYkJDAh\nQe736zUvmHvu57mv55mZ3J+57uu+LtE0DYVCoVAoFApX4jbRBigUCoVCofjsoQSGQqFQKBQKl6ME\nhkKhUCgUCpejBIZCoVAoFAqXowSGQqFQKBQKl6MEhkKhUCgUCpejBIZCoVAoFAqXowSGQqFQKBQK\nl6MEhkKhUCgUCpejBIZiwhCRZSJiEZE7Jnj8pZPp/CJSJSJ/HA+bLjDu81Z7Qy/32K5gou7bSIhI\nhIj8j4g0i4hZRB6ZaJsmGyLyVevnLmeibVG4FveJNkDx2UJELKPopgHXOfx/Ihnv8S/m/JaLPO5S\n0SZoXFcxGW3/NbAKeB5oAIom1JrJy2R87xSXiBIYCldzr9PzrwJ51nZxaD8BZDi1fabQNO1jEfHR\nNG1gjIdORxcZiiuf64D3NE371UQbolBcbpTAULgUTdPecXwuIouBPE3T1jv3FfnMags7FyEu0DRt\ncDxsUYweEfECBrRLrwYZAXSMYjxfTdN6LnEshWJSoWIwFBONBriJyDMickZEekVkq4gkO3cUkYUi\nslFE2kWkW0R2ikjuaAYRkWgReU9EukSkQUT+HfBiCA/KaMcRkWki8gcRqRGRPhGpEJH/EBF36+vn\nxWCISIqIvCsiddZrPSMi60UkwKHPebEEIpIoIn8TkRarTXtFZI1TH9t4d43mfo7AFBH5q4h0WGMH\nfm2dcB3HMojIsyJSbr32ShH5iYh4OvWziMiPhrh351yjwzp8roj8u4g0Wt+rv4tI2BDH/9B6fd0i\nsk1EMoboEyIivxCRIyJitF7PBhGZOcx9u0dE/q+InAW6gdnW9keHOHeu7ZihbqDteqxPH7b2NVtf\nu8/2ubB+XhqAMw7HzhGRj6z2Gq3v38Khzi8iS0TkN9b71SYir4mIu4gEichbItJqffzbUHYOY/tq\nEdllvf+dIvKB8/0VkWwR+ZOInLJ+xuqs34Xz4ncu9D1xwGs0773iykF5MBQTjQBPA2bg50AQsA54\nG1hs7ySyAtiAvob9PPoSwteA7SJyjaZpw65ti4g3sB2IAV4G6oAvAytwWvsd7TgiMhUoBAKB3wEl\nQDSwFvAFOq2n1BzO7QFsBjyA3wD11mNuBoIBo/Mx1uMigL2At9X+VvSlp/8VkTs1Tfun0yU/daH7\nOQIC/BWotJ5nEfCI1b77HPr9AfiKte8vgIXo72M6cOcoxhnOM/AK+vU9DyQAjwG/Bb5gN1DkReAZ\n4APgIyCHf91XR5KAW4G/Wa8nEngQ2CkiGZqm1Tv1fxboR79vnsBJ4FPgS+j33ZEvob/Hzvfexsfo\ny4JvW217y+E127X/B9AIvAD4Wa8tE9iF7vX4GWBysHmppmmFTuO8gv55/hH6e/V1oB3IBarR35M1\nwJMiclTTtLeHsRfr+F8G3gA2At9H/yw/BOwWkTmapp22dl0FJAJ/RP8cZ1rtzODc7+1ovyeC/j6P\n+N4rrjA0TVMP9Ri3B/ofQPMwry1Dn8CPAQaH9u+gT5AZDm0lwIdOx3sBp4CNF7DhUev57nBo8wZK\nre1LxzoO8CYwCMwZYdxljucHZlmv9/YL2FsJ/NHh+a+s51ns0OZntenUxdzPYcZ9znr8353af2s9\nPsv6fKa132tO/V6y9lvm0GYBfjSKa/yqte9Gp36/BAaAAOvzcKAP+KdTv/9rPd7xnB5DjBsH9ALP\nDHHfygBPp/5ft15TmkObO7ow+MMoPv8W4DdObbZr3QmI02v/sNoX79AWhS44dgxxDufP6qdWe3/r\n0OYGnAa2X8BWP/QJ/lWn9ilAm+P7DXgNcfw91rGXjPF7Mqr3Xj2uvIdaIlFMBv6oaZrZ4flu9F80\nSQAiMhtIBdaLSJjtAQQA24ALbQNdDdRpmvZ3W4OmaX3A646dRjuOiAhwG/C/mqYdHMN12tbibxQR\nnzEctxoo0DRtr4P93Vb7E4ZYHhjxfl4ADfh/Tm2vWI+3LcncZO3nHLj4S2u/m0YxznBjv+7Uthsw\nAPHW53nonopXnPr9+ryTOcSyiIib1X3fgy4ih9oS+YZ2fszMX9G9Gl9yaLsRCEP3TlwsGvB7zTqT\n2mxE9wz8Q9O0aofrqAfeAa4REX+nczhvy823/mtv1zTNgu6Ru9D7vwrd4/UXp8+/Zj2vbecXmqb1\nO9jtZe2Xj/7+51jbx/I9Gc17r7jCUEskisnAGafnbdZ/Q6z/plr/fYuhsYhIkKZpwwXTxQPlQ7SX\nOD0f1TjoHo1AoHiYfkOiaVqViPwSeBy4V0R2A/8LvK1pWucIh8YD+4ZoP+Hw+nGH9gvdzwvhfK9O\nof/CTLA+j7M+P6efpmkNItLOpU0IF7Lddm7nsZtFpM2xzTrBfRfdxZ+IPlmBPpk1DzF2lXODpmkd\nIvI+8EV0Dw/oYqNG07QdF7qYC+A83hT0ZYPSIfqeQPdExPKv9x10z4Qjtu+A833s4MLvfyq6QBjq\nujSHcyMiIehLGfegB7I69guy/n8KY/ueXOrnVjHJUAJDMRkwD9NuC8C0edqeAA4P07fLBXaMdhyv\nYV67IJqmfU9E3kD/ZXc9eizGUyKySNO02os9rxMXup9jZbh4iUvZYWEYpn0o24WLs/0Z4MfAfwI/\nRHf/W9DjKYby3vYOc563gLUisgh9+ekW9GWjS2W48cbCcO/1cPdxJNzQ39N70XN2OGNy+P/f0GM+\nXkL/rnRZj9/ExW8ecPXnVjHBKIGhuBI4Zf3XqGna9os4vho9CM2Z9IsZR0Sa0IPTsi7CFjRNK0b/\nVfdT66S1B/gmeqDeUFSj58ZwZobD664k1emcKeiTRqXDeG7WfnYvkDUYNdjp2DZrGw79PICpY7DH\nUcjYzp2KgwdARMI5/5funehxB99wGj8YaBrD+BvRPR5fAgoAHy5teWQ4mtCXcIZ7ry2c/yvflZxC\nn8ybLvD5D0YPkH5W07SfOLSnOHW9pO+J4spHxWAorgT2o//xe1JE/JxftE4uI7EBmCYi9t0NIuKL\nHsA35nGs6+bvAbfIGNIbi0iAiDj/ci9GnzhG8opsABY4blW02vcNoFLTtOPDHjl2BPi2U9sj6JP8\nRgd7bMsPjjxh7fehQ9spzo+ReZDhPRgXYiv6L+nvOLU/NkRfM06/fkXkLvRdDKPGGs+yHn054D7g\nqKZpx8ZyjlGOY0HfcXKbiMTZ2kUkEn0nxW5N01zhqRuOTeiC4AdDbCF1/J7ZPA3O88djOIjBi/2e\nKD47KA+GYtKjaZomIg+gT2zFIvInoAZ9orgOfW34thFO8XvgYeDPIjKPf21T7b6EcX6AHhS3S0Re\nR18Xn4a+/W6JQ0yF4wS3AvitiPwNfZ3dHX2rpwl4dwT7f4Y+wWwUkd+gu/rvQ49HGI86Loki8k90\nQZGL/sv9bU3TjgJomnZERN4EvmFdi/8YfZvqV9B3oHzscK7/BF4Tkf8BtqDvpLmeoT0Iw7nC7e3W\nWItfoC8rfYD+Xs1BD7x0PucHwLOi59vYA2Rbr+UUY+ctdKG1HH375qUy3LX+ED2Q9VMR+Q/0yfwb\n6Ntmncd16dKBpmlGEXkI/VoPiMhf0O9pHHrg7ifAI9Z+u4Dvi573pAb9PU0YwqaL+Z44opZHrmCU\nwFBcDkZaqx/V+r6mp91ejJ6r4NuAP/r++3z0/fXDD6Bpvdb8Fq+gC40edBf3Rv71q3xM42iaVmv1\nKLyIHgAYiP6HdoP1/ENdx2HreDeji5Yea9uNmqYVOB3j+Euw0WrTv1nt9waOADdrmnaO/Vx6vIQF\n/Zf6i8D/hy5+fsP5k9v/QZ+o7wM+h36PfoIe8+DI79Ennv8D3ICe42EV+q4cZ5tG+1l4RkR60ZeV\nlqMHwF6P7jlx7PtT9KDJLwJ3o3uo1qALttGObRvzgIgUoy+rvTNS3yHOO9S5hxxP07TjInIt+r1/\nCt1LsA/4onZ+rpexxsBcsL+maetFpMY69pPonrUa9B0df3Lo+gX079O30EXAJvTdTrWc+9m9mO/J\nmGxWTF7EYZeUQqFQKIZBRA4ALZqmrZpoWxSKKwHlwVAoFIoLYF1am42+DKRQKEaB8mAoFArFMFhT\nd89Dz10SCiQPkYxLoVAMgdpFolAoFMOzFr3uigH4ghIXCsXoUR4MhUKhUCgULkd5MBQKhUKhULgc\nJTAUCoVCoVC4HCUwFIoJRETuExGLY+bGyY6IPC8ilom2YyRExCAiL4nIaRExi8jfL3yUQqFwJUpg\nKBQTy3mJmETkIRH56gTZY7PBR0SeExHnNN+g2zupBQZ6Yq8n0cutf4XzS8vbEZ2viMg+EWkRkU4R\nKRGRNx3Tszv0nyIiPxORIyJiFJFeESkTkT+KyBKnvl+1Ckjbo1dEakRko4h8x6n8ukLxmUIFeSoU\nE4i1pLiH4+4EETmKXnBqxQTaFYaeJvp5TdN+7PSaG+A+mXdUiMh69FTUF/QMichv0TNSvgdsR89e\nOh09M+U7jtcvIgvQM4b6AX8BCoF+9HLwnwMygGWapn1i7f9V4I/omWGrAA8gCj0D6fXo5dZvtaVh\nVyg+S6hEWwrFBGItCDXuE7W1yJqbpmmDoz1kuBesRbkmrbiwEgG0X6iTtQLsQ8DvNE17yOnlxxwL\n6VmriL6Hfu25mqaVOfV/VkTuYegy7Bs1TTvg8PzfRGQ5ulj5p4jM0DSt/0L2KhRXEmqJRKGYQJxj\nMESkEr20/HIHt/p2h/5BIvJra2xBn9U1/32rJ8TWJ9563OMi8qiIlAN9wAwR8RCRH4tIkYi0i0iX\niOyyTnb244FG9KWQ5x3s+JH19fNiMKwxD8+KSLnVrkoR+Ym1GJZjvyoR+V8RWSIi+dYlg1Mi8uVR\n3i9fEfmlw/WfFJEnnK8d3UOQZbXbPMxSD+ieB0EvhnYemqY1Ozx9CIgEHh1CXNj6/7emaftHcy2a\npu1Er9ERD9w7mmMUiisJJTAUionFOQbjUeAsetXJL6FPPD8BPS4CvVjYF4E30EuWf4JeGOuXQ5z7\nfvTiaL9DL6Xeil5s6n5gB3oBs+eAcPRKrTOtxzWhFxIT4O9WG+61/n8om0FPRvUCUIRexn0n8DR6\nmXPn600F/oZemvxxq11/EpEZQ96hc3kf/R5tQC8PfhL4uYjYrr/JamsJcAb9Hn4Z/X4ORbX137us\n93ckbkb3TvxjFHaOlj+j3+frXXhOhWJyoGmaeqiHekzQA/gqeknuOIe2o8D2Ifr+EOgEkpzaf4ru\nto+2Po9HD8JsA0Kd+gp6/IRjWyB6CfvfO7SFWc/xoyHseA4wOzyfae37mlO/l6zXtsyhrdLaluvQ\nFo4+cb90gXt1m3Wcp5za/4oeN5Ho0LYDODLK9+ANq00twLvoomf6EP1agP1DtPtb75ft4TvE+5sz\nwvhtQNFEfxbVQz1c/VAeDIXiymEtetnsDhEJsz3QS5+7A87LAP+jaVqrY4OmYwL77okQwBPd85Bz\nkXatQfdMOO/U+CW6oLnJqf24pmn2JQlNX4YoAZIuMM5qdCHxyhDjuFlfHzOapt2H7umpQA/U/Dlw\nQkS2isg0h66BQNcQp/gzuufE9vjZGE3oAgLGeIxCMelRAkOhuHJIBW7k3MmsCdiCPsFHOPWvGuok\n1q2Th9HjMlrQ4y1uAoIu0i6bx6TcsVHTtAb0QMt4p/6nhzhHGxAyinFqNU3rdmo/4fD6RaFp2qua\nps1H96bchr4Es4Jzl3iM6N4KZ54F8qyPi8Hfem6F4jOF2kWiUFw5uKGLiX9j6F0epU7Pz9vNICL3\nAn9Cj6d4CV1cmIEfcGEPwoUY7Z538zDtw+5cuVxomtYGfAB8ICI7gKUiEqtp2hn0eI+ZImLQNM3s\ncMwx2/8dYm1HhYhEowu78gv1VSiuNJTAUCgmH8NN1KcAf03TdlzCue8ETmmattaxUUR+7NRvLAly\nqtHFTyr6UoftnBFAMP8KpLxUqoGVIuLn5MWY4fC6KylCX3aaih4w+gGwELgd+B8XjfEV9Hu90UXn\nUygmDWqJRKGYfHSjT8zO/BVYLCLn7Tiwbl81jOLc53kPrNkqFzs191j/HcoOZzagex++69T+BPrk\n+eEozjEaNqD/KHrYqf0x9CWaj8Z6QhGJHGr3ioh4oC95OC79vIru8fmViKQOccyY3BcisgI9cLcC\neGeMpisUkx7lwVAoJh/7gW+KyDPok1uj1Wvxc+BWdPf9G9Z+fui7OO4AEtC3fI7EB8AdIvIe+sSf\nBDwIFOMQX6BpWp+IHAfuEZEy63mPaZpW7HxCTdOOiMibwDesQaMfo//S/wrwd03TPr6ou3A+76Pv\nDvmJiCQCh4EbgFuAX2maVnkR54wBCqy5RrYB9eixLF9Av6+/sgXKaprWJiK3A/8LHBYRWybPQSAW\nuAtdUDnHmAiwxipk3NFzaawAVqHvqrlVm8RZURWKi0UJDIVi8vFjIA74Hvrugo+BHZqm9VoTRv0A\nfTL7Mvq21VLgR0CHwzmGylWBpmlviEgkuqi4HjiOnivibs7fhfJ/0Hds/Dv6TpMX0IWI7fzOfU8B\n96HvxKhHz98x1NLLcMsvIy7LaJqmicgt1nPeYx2rCnhS07Shao2MZpmnBD2vxhr+lUirDzgGPKBp\n2p+cbNgnIlnoW1lvQr9vbkANek6Sr2ua9ukQdrxg/f8Aulg7CjwCvDFE0KpC8ZlA1SJRKBQKhULh\nclQMhkKhUCgUCpejBIZCoVAoFAqXowSGQqFQKBQKl6MEhkKhUCgUCpejBIZCoVAoFAqX85nfpmot\nBnUD+na2vom1RqFQKBSKKwpv9Bw7mzRNaxnLgZ95gYEuLv5roo1QKBQKheIK5kuMMePs1SAwqgDe\nfvttEhISKCwspKamhvj4eHJycvD29gagqamJo0ePYjabyczMZOrUqfbCRU1NTZSUlKBpGj4+PmRm\nZuLj43NZL8JisWCxWAAwGAxjLqo01rEaGhp44YUXeOmllwgMDBy3sT5rPPbYY/zqV0PlfJocWCwW\nWlpa8PLymlTv62S/b5MRdc8uDnXfxsaJEye49957YZjqzCNxNQiMPoDjx49zzz33kJubS0lJCR9/\n/DHHjx9nxYoVJCXpRSSXL19OUVER1dXVBAcHM3/+fLy8vOyv7du3j66uLrq6upg2bRqJiYmX9UIs\nFgtms15Kwt3dfdxFxq9//WtiY2MJCQkhNDR03Mb6LBEUFEROTs5EmzEiDQ0NiAgREc7V3SeOK+G+\nTTbUPbs41H27aMYcYnDVBHm+8847PPbYY5w4cYL09HS+9KUvERERwQcffMDmzZvp6+vDy8uLJUuW\nkJubS319PRs2bKC2thYALy8vli5dSkpKCiaTiRMnTrB3715MJtNluwY3Nzfc3XVNaDKZ7B6N8RrL\n29sbd3d32traaG29UIkLxZWCh4cHZrN5XD8/CoVCcdUIjLNnz7J+/XqefvppXn75ZTw9PbnllltY\ntWoVFRUV/Nd//ReVlXqtpISEBNasWUNQUBA7d+6ksLAQk8mEiDB9+nSuueYa3N3daW1tZceOHTQ1\nNV226xARu/divCcJESE2NlaJjM8YNq/cwICqr6VQKMaPq0ZgiAidnZ1s3ryZ3/zmNzz22GMcPnyY\nGTNmcO+99xIeHs7777/Pli1b6O/vx9fXl+uuu4558+ZRUVHBhg0baG5uBnQX28qVK4mMjGRgYICi\noiKOHDly2X4Riog9DsNsNmM2mxmvmjJubm7Exsbi4eGhRMZnBFvcUX9//wRbolAoPssYnn/++Ym2\nYVx54YUXpgIP7ty5kw8//JDu7m46OzspKSmhtLSU2tpaFi9eTGZmJgEBARw6dIji4mJCQ0MJCQkh\nLCyMuLg46urqKC4uxmKxMGXKFAwGA9OmTcPf35/6+no6Ojqoq6sjIiICDw+Pcb8uEbHHYFgsFjRN\nO6fNVWRnZyMiBAQE0N3dTXd3N5qm4evr69JxPktkZ2dPtAkj4ubmZn8f/fz8JtocO5P9vk1G1D27\nONR9Gz11dXW8/vrrAK8///zzdWM59jNfTVVEcoD9+/fvJycnh1/84hc8++yzmM1mDAYDERERrF69\nmq9+9assXrwYo9HItm3bOH36NBkZGVx77bV4eXlhsVgoLi7m2LFjBAcHk5ubS1BQEKD/ErQFgLq7\nuzN9+nQSEhIu2zVeruBPi8XC2bNnGRwcJDg4mLCwsHEZRzH+NDc3Mzg4yNSpUyfaFIVCMYk5cOAA\nc+fOBZiradqBsRx71QkMgMHBQaZPn87Zs2cB8PHxIScnh5UrV/L444/j4+NDcXExu3fvxsvLi7y8\nPOLi4gBobW1lz549dHV1MXv2bKZPn46IoGkaZWVllJWVISKEhoYyb948e1DmeKNpmj3g1GAw4OY2\nPqtfjiIjKCiI8PDwcRlHMb4YjUa6uroICwvD09Nzos1RKBSTlEsRGFdNDIYjHh4eVFRU8NZbb+Hu\n7k5vby979+7ltdde4+GHH2bXrl1kZWXxpS99iZCQEN577z22b9/OwMAAoaGh3HjjjaSmpnLgwAG2\nb99Od3c3IkJaWpo9ALSlpYWdO3fa4zbGm8sV/Onm5kZMTAweHh50dHRctutTuBYVh6FQKMabq9KD\n4YjZbGbOnDmcPHkS0P/wZmRkcMMNN/DEE08QEBDAsWPH+OSTT/D29iYvL4/Y2FgA6uvr2bdvH4OD\ng8ydO5fExET7BH/w4EEaGhpwc3MjOjqarKyscfMqOKJpmj3o083NDTc3t3FZMlGejCufuro6PDw8\n1HunUCiGRXkwLgGDwcCRI0fYvHkznp6e9PX1cfDgQV5//XW+853vsHnzZrKzs/niF79IYGAg//jH\nP9ixYwcDAwNERUWxZs0aoqOj2bdvH5988gl9fX0YDAbmzZtnFzRnzpxh165d9PT0jPv12HaYuLm5\n2WMzxkNE2jwZnp6eypNxheLu7n5Z87goFIqri6veg+HMsmXL2LdvH5qm4enpyfTp07nhhht48skn\nCQkJ4ciRI3z66af4+vqSl5dHTEwMAKdPn6awsBARYeHChURHRwPnB4Cmp6cTHx8/npdsxyYwHLe1\njscYNTU1DAwMEBgYyJQpU1w+hmJ86OjooKenhylTply2WCGFQnFloYI8R2CsAgOguLiYxYsX09fX\nh4gQFBTEqlWrWLt2Lbfffjvt7e1s3bqV2tpaZs2aRW5uLh4eHvT29pKfn09tbS3Jycnk5OTg4eGB\npmmUlpZSXl5+2QNAL8cOEyUyrkz6+vpoa2sjICAAf3//iTZHoVBMQtQSiYvJzMyks7OTW2+9FYD2\n9nbee+89nn32WZ588kn6+/u58847Wbp0KcXFxbzzzjvU1NTg4+PDsmXLWLBgAdXV1WzYsIHGxkZ7\nBtBrr732sgeAXo704rY4E09PTzo7Oy9rZlPFxWPbPaICPRUKxXigPBgXoLa2lqysLLq6uuwJp667\n7jpuv/12Pv/5z9PR0cHWrVupq6tj9uzZLF68GA8PD4xGI3v37qW5uZmMjAyys7MxGAznBYDGxMSQ\nmZk57gGglyP4U3kyrjwaGxvRNI3IyMiJNkWhUExClAdjHJk2bRqtra1885vftKcb//DDD3n++ed5\n4okn6Onp4c477+Saa67h6NGjrF+/nrq6OgICAsjLy2PWrFmcPHmSTZs20d7efl4A6OnTpy9LAKhz\n8Kct+6crsXkyvLy86OzspLGx0aXnV7geDw8P++dBoVAoXInyYIwBo9FISkoKbW1tAPj5+XHNNddw\n++23c99999He3s6WLVtoaGggJyeHRYsW2QuF7dmzB6PRyMyZM0lPT8fNzY2BgQH27t172QNAxzv4\n02KxUFtbS39/PwEBAZOqLLjiXHp6eujo6CA4OBgfH5+JNkehUEwylAfjMhEQEEBDQwM//vGPMRgM\ndHd3s3XrVl588UW++93v0tbWxl133cWSJUs4fPgw69evp76+npCQEG688UamT5/OoUOH2LZtG11d\nXXh6ep5TAr64uJh9+/aN+9ZBNzc3DAaDPfvneHgypk2bhpeXF0ajUXkyJjEq4ZZCoRgvlAfjIhkc\nHCQlJYW6Or32i6+vL/Pnz+eOO+7g61//uj02o7GxkZycHBYuXIi7uzuNjY3s3buX/v5+5s6dS1JS\nkn3pxZa0y8vLizlz5ox7rY/xTi/u6Mnw9/dX6/yTlIaGBkREeZoUCsV5KA/GBODh4UF1dTV/+MMf\ncHd3p6enh927d/PTn/6URx55hMbGRu666y4WLVrEwYMH+ctf/kJDQwMRERGsWbOGuLg48vPz2bVr\nF729vQQGBtpLwPf391NQUMDRo0fHdW18vNOLO3oyurq6aGhocOn5Fa7B3d19XNPLKxSKq5OrxoOx\nYsUK3n33XYKDg10+htlsZubMmZSVlQG623n27NnccccdfOtb38JoNLJ582aam5uZO3cuCxYswN3d\nnbNnz5Kfnw/AggUL7CnI6+rqOHToEBaLBT8/PxYsWDCu5dE1TbMH+o3HDhOLxUJdXR19fX3KkzEJ\n6erqwmg0EhoaipeX10Sbo1AoJhEq0dYI2ASGv78/Xl5efOtb3+L5558fl22hmzdv5o477mBgYAAR\nISwsjBtvvJHvfOc7zJw5k/3791NQUEBISAirVq0iIiKCvr4+CgoKOHv2LElJScydOxcPD4/LHgDq\nKDLGI/jTUWT4+fkRFRXlsnMrLg2TyURTUxO+vr4EBQVNtDkKhWISoQTGCNgExsqVK6moqKC1tZWg\noCB++ctfsnbt2nEZc8mSJRQVFdnTjWdkZHDnnXfy6KOPYjQa2bJlCy0tLcyfP5/58+fj5uZGRUUF\n+/fvx8vLi0WLFhEZGXleCfiwsDDmzp07rhlAxzPzpxIZk5f6+noMBoPKXaJQKM5BCYwRsAmM+fPn\nYzabiYtp7ctJAAAgAElEQVSL49NPP2VgYIC0tDTeeOMNMjIyXD7u0aNHWbJkyTnpxtesWcNDDz3E\nvHnzKCwspKioiNDQUFatWsWUKVPo6upi3759NDY2kp6ezqxZszAYDOcEgHp6epKTkzOuAaDjGfxp\nsVior6+nt7dXiYxJRHNzMyaTSb0fCoXiHK7aIE8ReUpELCLy7xfqO2PGDO666y5qamqYPn06c+fO\npaysjNzcXO6++246Oztdalt2djadnZ2sWbMG0NON/+1vf+PBBx/kpz/9KTNnzuTuu+9G0zT++7//\nm/z8fHx8fFi5ciVz5syhtLSUjRs30traSmBgIHl5eURGRjIwMEBBQQHHjh0bt6C88Qz+dHNzIyoq\nCh8fH7q7u6mvr3fZuRUXj61mjqquqlAoXMUV68EQkfnAfwMdwA5N0x4fpl8OsP/GG29kcHCQ5cuX\n09nZyaZNm4iMjKS5uZmKigo8PDz41re+xXPPPefy+IwzZ84wc+ZMuru7ERECAwNZsWIFDz30ENde\ney0FBQUUFRURHh7OqlWrCA8Pp729nT179tDZ2Ul2djYzZszAzc2N+vp6Dh48iMViwd/fnwULFoxb\ngqTxTC+uPBmTi4GBAVpaWvD39ycgIGCizVEoFJOEq86DISL+wNvAA0D7aI659dZbefDBBykoKKC4\nuJgvf/nLTJs2DZPJxNKlS/H39+fll18mKSmJv//97y61NzY2lra2Nu6//35EhI6ODt5//30eeugh\nfvSjH5GZmcndd9+N2WzmL3/5C4WFhQQGBnLDDTeQnp7OkSNH2Lp1K0ajkaioKFauXElAQABdXV3s\n2rWL6upql9prwzm9uE1suALbFlabJ8OWT0QxMdjiegYGBibYEoVC8VnhivRgiMibQJOmaU+KyA7g\n4IU8GHl5ecTHx/Pggw9SWFjIe++9R3BwMAsXLmT79u3U1NQQHR1NYWHhuMZnGI1GkpOTaW/XdZG/\nvz/Lly/nG9/4Bnl5eRQUFLB//36mTJnCqlWrCAsLo6mpib1799Lb20tOTg4pKSkA5wSAjncJ+PFM\nL15XV0dPTw++vr5MnTrVZedVjA1V+EyhUDhzVXkwROTzwGzg6bEcFxkZSWdnJz//+c85ceIEL730\nEhkZGXz44YdMnTqVe+65h/b2dpKSkpg1a5Y9PuOee+5xaXxGQEAAjY2NPPvss7i5udHV1cVHH33E\nt7/9bZ555hnS09O56667GBwcZP369RQVFREWFsbq1atJTEyksLCQnTt30tfXR1paGkuXLrWXgN+x\nYwetra0us9WR8UwvPnXqVHx9fenp6VGejAnE09NTFT5TKBQu44ryYIhIDFAE5GmadszaNioPxsMP\nP8ytt97Ku+++a5+EU1NT+dznPsebb77J8ePHycnJwdPTk48++ojg4GBaW1uprq7Gw8ODhx9+2C4K\nXEVfXx8pKSn2Wh2+vr4sWbKEBx54gFtuuYV9+/Zx8OBBIiIiWLVqFaGhodTU1JCfn4/FYmHBggXE\nxcVhsVg4ePAg9fX1uLm5ERsbS0ZGxrjk+hjPHSbKkzGx9PX10dbWRlBQ0LgmdlMoFFcOV802VRG5\nDfg7YAZsPnoDoFnbvDSnC7IJjOTkZCwWC76+vvj6+lJXV0d0dDTx8fHMnz+fnJwc/vCHP9DQ0MCS\nJUuor69n7969REVFUVpaSnt7O8HBwbz88svcdtttLr2uP/7xjzz88MOYTCbc3NyIiIhg7dq1PPXU\nU5jNZrZs2YLRaGTx4sXMnj2bgYEBCgsLOXPmDAkJCcybNw9PT8/LFgA6nsGfNpHh4+NDVFTUuIgk\nxdBYLBYaGhrw8vIiNDR0os1RKBSXmfXr17N+/fpz2jo6Oti1axdcBQLDD3BOZ/kGcAL4maZpJ4Y4\nJgfY/9JLL3HzzTfz/vvvU1NTQ2ZmJj4+Pnz00UeYTCYMBgOrV6/G29ubt99+G4vFwqJFizhw4ACl\npaVMnTqVQ4cOMTg4yPTp03nzzTdJT0932bWZzWYyMjKorKwE9HTjc+fO5etf/zpr164lPz+fgwcP\nEhUVxapVqwgODqaqqoqioiI8PDxYtGgRUVFRly0D6HimF6+vr6e7u1uJjAnAVi9GxWEoFAq4ijwY\nQzHaJZIHHniA6OhoFi1axJQpU/jwww9pbW1l3rx5tLa2smfPHiwWC56entx9992cOXOGf/7znwQH\nB5OVlcX27dsxGo14eXlx4oSuY2644Qb+8z//E39/f5ddz8aNG7nzzjsZHBxERAgPD+e2227j6aef\nxmAwsGXLFrq6usjNzWXWrFn09vayb98+GhoaSEtLY/bs2RgMhsuWAXS8gj+VyJgYWltb6e/vJzIy\nUt1zhUJx1QuM7cChCwmMp59+2j7BGgwGli9fjpubGxs3bqS3t5fFixdz4sQJjh07Bui7O+699152\n7drFrl27SEhIICoqis2bN+Pp6YnRaOTMmTN4eHjwyCOP8Mwzz7j0D/KCBQs4dOgQAF5eXmRlZfHA\nAw9w7733kp+fz6FDh5g2bRp5eXkEBQVRUlLC4cOH8fPzY/HixYSFhWE0Gtm7d689A+jcuXPHxfU9\nXunFlci4/HR3d9PZ2UlISAje3t4TbY5CoZhgrmqBcSFsAuMHP/gBy5Yt4+TJkzQ3NwN69sLrr7+e\n9vZ2tm3bBkBubi67d+/mzJkzAPZ4iL/97W+cOHGCWbNmMTg4yK5duwgLC+PUqVP2P8i/+c1vuOWW\nW1xm++HDh7nmmmvo7+9HRAgODubWW2/l6aefxtPTk61bt9LT02P3ZnR2drJ3717a2trIysoiMzMT\n4LIEgI5X8KdNZHh7ezN16lQlMsYZs9lMY2MjPj4+41J5WKFQXFkogTECjgIjJiYGNzc3UlJSOHz4\nsD0XhZeXFzfddBMVFRV88skn+Pr6kpOTw+bNm+07TpKTk1m6dCl//vOfaWxsZMGCBVRUVHDs2DHC\nwsI4fvw4g4ODzJgxgzfeeIPp06e77BpuvPFGduzYgaZpeHh4MGPGDL72ta9x//33k5+fz5EjR5g2\nbRqrVq0iICCAY8eOUVxcTEhICLm5uQQGBp5XAn7RokUu/4XqGPzpSpHR0NBAV1eXEhmXCVX4TKFQ\n2FACYwRsAqOgoICOjg7Ky8vtE2BCQgKHDh2iq6sL0LeJ3nzzzRw6dMheiCwtLY2NGzfS09ODiDBn\nzhwSEhJ45513MJvNzJkzh4KCAhobG/Hy8qK0tBSA1atX8/rrr7ssPqO6uppZs2bZ7QgMDGT16tU8\n9dRTBAQEsG3bNnp7e8nNzWXmzJm0tLSwd+9eenp6mD17NmlpaZhMJvbu3YvRaMTd3Z0ZM2YQFxfn\nEvtsjFfwpxIZl4/m5mYGBwfVVmGFQqEExkjYBMaGDRtYvXq1fdtnVVUVmqbh7u5OQkIChYWF9PX1\nAXoyrDVr1rBnzx6OHTtGdHQ04eHhbNu2jcHBQdzc3FixYgUDAwP885//JCQkhMTERD7++GNMJhM9\nPT3U1tbi4eHBo48+yg9+8AOXTYhf+9rXWL9+PRaLxW77Aw88wDe/+U3y8/M5evQoMTEx5OXl4evr\ny8GDBykrKyMqKopFixbh4+NzXgDovHnzMBgMLrHPhq1ImiuDP20iw8vLi2nTpimRMU4YjUa6uroI\nCwvD09Nzos1RKBQTiBIYI2ATGD/72c/Iyspi1qxZxMTEMDAwwJYtWzhz5ox96SEmJoaioiJ7PYbQ\n0FDy8vLYunUrlZWVpKSkYDKZ7ImuPD09ueWWWzhx4gS7du0iPj6egIAAdu3aha+vL2fOnMFoNBIa\nGsrLL7/ssviMjo4OkpOT7RlG/f39uf7661m3bh1hYWFs27aNvr4+rrnmGrKysqivr2ffvn2YTCbm\nz59PQkLCeQGg8+bNIyQkxCX22RiP4E8lMsafwcFBmpub8fPzIzAwcKLNUSgUE4gSGCNgExh//vOf\n8fb2RtM0fHx8mDVrFrGxsQwMDLBx40ZqamoAPV1yREQEBw8etActRkREkJuby6ZNm6ivryczM5Pa\n2lpOnDiBpmn4+/tzyy23sGXLFk6ePElmZibt7e0cPHiQgIAAysrKMJlMZGRk8Kc//cll8Rk//OEP\n+cUvfoHFYsFgMBATE8N9993HI488Yi/qFhsbS15eHp6enhQVFVFdXU1cXBzz58/Hw8ODAwcO0NDQ\ngJubG3FxcfbAUFcxHsGfjY2N9i3DSmSMD/X19bi7uxMeHj7RpigUiglECYwRsAmM/fv3M3PmTA4d\nOkR1dTUWiwUfHx9mzpxJXFwcvb29bNy4kfr6ekAP/AwKCuLYsWP2X+GxsbFkZWWxadMmOjo6mDVr\nFkePHrXvOAkPD2flypW8++67NDQ0MHv2bEpKSuzpxm1JtNasWcPvfvc7l8Rn9PX1kZycTFNTE6DH\nkSxbtox169YRHR3Ntm3b6O/v59prryUzM5Pq6mqKioowGAwsXLiQadOmnRMA6u/vz8KFC10aADoe\nwZ9KZIwvTU1NmM1moqKiJtoUhUIxgSiBMQKOAiMnJwcAk8nE4cOHqaqqOk9odHd3s2HDBvtWVm9v\nb3x8fDh58qQ9piA5Odk+eQ8MDJCVlcW+ffvsO04SEhLIzs7mr3/9KxaLhenTp1NYWEhXVxe9vb3U\n19fj6enJY489xrp161wyOf7+97/n0Ucftacbj4yM5L777uO73/0u+/fv5/jx48TFxbFy5UoMBgP5\n+fnU1dWRmprKnDlz0DTtnADQjIwMYmNjL9kuG+ORXrypqYnOzk4lMsaBjo4Oenp6mDJlyrhV6FUo\nFJMfJTBGYCiBYcNZaHh7ezNr1izi4uLo6Ohg48aNdtFgK/5UUVGBpmmICJmZmfj5+bFz504MBgNp\naWns3r2b7u5uRITs7GwCAwN5//33CQ4OJjIykj179mAwGKirq6Orq4vQ0FB++9vfsmbNmku+VrPZ\nzPTp0zl9+jSgi6OFCxfy9NNPk5SUZA9SXbp0Kenp6ZSXl3Pw4EF8fX3tybnGMwDUcYeJq4I/bSLD\n09OT6OhoJTJchK3wWUBAgEsz1SoUiisLJTBGwCYw3n77bdasWTNkIONQQmPmzJnEx8fT0dHBhg0b\nzsmZYTabOXv2rP3X+Jw5cxgcHOTTTz8lICCAqKgoPv30U/uOk9zcXFpaWti9ezexsbEYDAYKCgrw\n9vamqqrKHp/x5ptvkpqaesnX/MEHH3DPPffY041PmTKFe++9lyeffJIDBw5w8uRJEhISWLFiBRaL\nhb1799La2kpGRgbZ2dl0d3fbA0C9vLyYO3euSwNAXZ1eXIkM12MrfObp6UlYWNhEm6NQKCYIJTBG\nwCYw/vCHPxATE0NwcDCJiYmEh4efN7FZLBYOHz5MRUWFXWhkZ2eTkJBAa2srH330kX3nhq+vL93d\n3faYDYPBwIIFC2hsbOTAgQNERETYgygtFgseHh4sX76cAwcOUFJSQlpaGg0NDZSVlWEwGKiurkZE\nuOmmm3j99dddUi47JyfHnvrcy8uLOXPmsG7dOmbMmMH27dsxm80sXbqUtLQ0Tpw4wdGjRwkODiY3\nN5eAgIBzMoC6OgDUMfjTFTtMlMhwPY2NjWiapgqfKRRXMUpgjIBNYBQVFREbG0tlZSUdHR0EBASQ\nmJhIZGTkqIRGVlYWiYmJNDQ0sHnzZntyLn9/f1pbW2lpaQGwVzYtLy/n5MmTREdH09XVRUlJCZqm\n4efnx9KlS9m8eTONjY2kp6dz/PhxWlpa6O3tpampCU9PTx5//HG+//3vX/JEWVRUxHXXXWdPNx4S\nEsLnP/95nnrqKQ4fPkxJSQmJiYmsWLGC/v5+9uzZQ1dXF7Nnz2b69Ok0NDScUwLelQGgrt5h0tzc\nTEdHhxIZLqKtrY2+vj5V+EyhuIpRAmMEnGMwNE2jra2NyspKWlpa8PX1JSEhYcggQYvFwpEjRzh1\n6hQWiwUvLy+ys7NJTEyktraWrVu30t3dDYCfnx9NTU10dHQAusdg0aJFHD58mOrqapKSkqiurubs\n2bOAnmNjzpw5fPDBB1gsFuLi4uw5OJqbm+nu7iYsLIzf/va3rF69+pLvQ15eHrt377bn/MjKyuLJ\nJ58kJyeH7du3Y7FYWL58OUlJSRw5coSSkhIiIyNZtGgRnp6eduFhMBjIzMx0WQCoq4M/lchwHT09\nPXR0dBAUFOQSj5pCobjyUAJjBEYK8uzo6KCystKe5jshIYHo6OjzouZtQqOiogKz2XyO0KiurmbH\njh309vYCukejtrbWLjx8fHyYP38++fn5NDY2kpaWxtGjR+3BozExMcTExPDRRx8RGBhIUFAQBQUF\nuLu7c/bsWUwmE1lZWbz55pskJydf0r2orq5m5syZ9Pb2IiIEBQWxdu1a1q1bx4kTJygtLSU5OZnr\nrruOzs5O9u3bx+DgIHPnziUxMXHcAkBdHfxpExm25GlKZFwctjgMb29vlydhUygUVwZKYIzASALD\nRnd3N5WVldTV1eHu7k5cXBxxcXF4eHic089isXD06FFOnTplFxqZmZkkJydz6tQpPv74Y/r7+wHd\no3H27Fl7+nF/f39mz57NJ598gtFoJCkpif3799tri6SlpaFpGnv27GHatGn09fVx8uRJNE2jpqYG\nEeHmm2/md7/73SX/mvziF7/Iu+++a0+VnpKSwve+9z0WLVrEjh07AFi+fDkJCQkUFRVRVVVFbGws\n8+fPZ3BwcNwygLoy+FOJDNfQ0NCAiBARETHRpigUiglACYwRGI3AsNHb22tfxhARYmJiiI+PPy/m\nwFloeHp6kpWVRXJyMiUlJXzyySf2dOO2lOG250FBQaSlpfHpp5/aExkdOHDAvuNk9uzZVFdXc/Lk\nSZKSkjhz5gw1NTX09/fT3NyMp6cnTzzxBOvWrbuk+9Le3k5ycjJGoxHQ66/ccsst/PCHP6S0tJTy\n8nJSUlJYvnw5zc3NFBYWIiIsXLiQqVOnnhMAGh8fT0ZGxiXZY8OV6cWVyLh0WlpaGBgYUHEYCsVV\nihIYI+CYKnzZsmWjih3o7+/n9OnTnDlzBrPZTHR0NAkJCed5DiwWC8eOHaO8vNwuNDIzM0lJSaG4\nuNj+S19E8Pb25vTp0/agxvDwcGJiYtizZw+enp74+vpy7NgxexGzefPmUVhYSFNTEwkJCRQXF9PV\n1UVLSws9PT2Eh4fzyiuvXHJ8xve+9z1eeeUVe7rx+Ph4Hn/8cZYuXcquXbsQEa677jqio6PJz8+n\ntraW5ORkcnJyaGlpGZcAUFcGf7a0tNDe3q5ExkXS1dVlr6fj5eU10eYoFIrLjBIYI2ATGG+88Qbp\n6en22IPk5OQLZig0mUycOXOG6upqBgYGiIqKIjExkYCAgHP6WSwWiouLKSsrswuNjIwMUlNTOXTo\nEIWFhZhMJkQEDw8Pzp49a/+VPnXqVIKDgykoKMDf3x+z2cypU6fQNA1fX1+ys7PZuXMnZrP5nBop\n9fX1mM1msrOzeeutt0hMTLzoe9TX10diYqJ9J4yfnx95eXn8+Mc/pqKiglOnTpGamsqyZcuora3l\nwIEDeHt7s3jxYoKDg+0ZQF0ZAOrK9OJKZFw8JpOJpqYmfH19CQoKmmhzFArFZUYJjBGwCYz8/HwC\nAgIwGo3YrtnHx4fU1FR8fHxGPIfZbKampoaqqir6+voIDw8nMTHxvNiDoYTGjBkzSEtLo6ioiAMH\nDthjDESEuro6e2CjbeI7cuQIYWFhtLS0UFdXB+jLKklJSWzfvh1/f388PT0pLi62Cw0R4dZbb+XV\nV1+9pPiMX//61zz99NOYzWbc3NyYOnUqjz76KDfccAO7du2yl6mPiIhg7969tLS0MGPGDLKzs6mo\nqKC0tNQeADp//vxLnsgdgz8vdYdJa2srbW1tSmRcBPX19RgMBqZMmTLRpigUisuMEhgjMFQMRlVV\nFU1NTVgsFkDPXREXF3fBypEWi4X6+noqKyvp7u4mODiYpKQkwsLCzpn4LBYLx48fp7S0FLPZjIeH\nBxkZGaSkpFBQUMCRI0fsQsMWqW9LP56QkEB3dzdlZWVERUVRVVVFW1sbAFFRUfj5+ZGfn09ERIR9\nF0x/fz9tbW14eXnxve99jyeffPKi75fZbCYlJcVeXdbHx4drr72WF154gdraWiorK5k+fTrXXnst\nlZWVHD16lMDAQHJzczEYDOzbt4+BgQE8PT2ZP38+wcHBF22Lo02u2GFiExnu7u7ExsYqkTFKmpub\nMZlMqvCZQnEVogTGCIwU5Nnc3Ex1dbV9vd9WJCwuLm7Ec2qaRlNT0wWTdo0kND799FOOHz9u/4Vu\nNptpaWmxC43k5GTq6+upqalh6tSplJSU2Guc2FKYl5aWEhMTQ1VVFc3NzbS3t9Pb20t4eDivvvoq\nq1atuuj79o9//IN7773XHnwaERHBt7/9bdasWWOvp7JixQpCQkLYs2cPRqORmTNnkpaWxuHDh12e\nAdRVwZ9KZIydzs5Ouru7VeEzheIqRAmMERjNLpKuri4qKirsuSxEhMDAQFJSUkb8gzrapF02oVFW\nVobJZMLDw4MZM2aQlJTEJ598Ys/yqWkaAwMD9hwZbm5upKSkUFFRQWtrK2FhYZw8edIeOJqamkp5\neTlNTU1MnTqV4uJiezZQV8VnzJw5k5MnTwJ68rCFCxfy4osv0tTURFVVFenp6SxZsoTS0lJOnDjB\nlClTWLx4Md3d3fY06f7+/ixYsOCCS1EXwlXBn21tbbS2tiqRMUoGBgZoaWnB39//vPgjhULx2UYJ\njBEYyzZVk8lEWVnZeXEaycnJ+Pn5jXjsaJJ2WSwWTp48SUlJiV1opKenk5yczM6dO+3BnZqm0dPT\nY697YjAYSElJ4fjx4/T29uLv709paal9x0lqaqp9q2tQUBDFxcX09/fT1NSEiHDbbbfx2muvjXmH\nh82bkp+fz8qVKxkYGEBECA0N5YEHHuCuu+5iz549eHh4sHLlSnx9fdm7dy/9/f3MnTuX6OhoCgoK\nXBoA6qrgTyUyxkZdXZ0qfKZQXIUogTECYxEYjlRXV9PY2DjmOI2uri6qqqpGTNo1ktDYtm0bVVVV\ndoFjNBrtdU88PDxITEy0x3DYiqRpmoaXlxfx8fHk5+fj6+uL2WymvLyc3t5eOjo68PLy4vvf/z5P\nPPHEiPYbjUZe/PkzbN3zPgbfQcw9HuTl3sKz3/sJN910E/n5+WiahqenJzNnzuTFF1/EaDRy+vRp\nMjIyWLRoEceOHaOiooLo6GgWLlzI6dOn7RlAw8PDmTdv3iVN6K5KL65ExuixecVUHIZCcXWhBMYI\nXKzAsNHc3Mzp06cZHBwEsMcjxMfHj3jcaJJ2WSwWSkpKOHnyJCaTCXd3d9LT00lMTGTr1q32kvCg\ne0h6enoAfakiJiaGw4cP4+npSXd3Nw0NDYCeMCs4OJgDBw4QGhpKS0sLtbW1dHZ20tfXx5QpU3j1\n1VfJy8s7z2aj0cj1dywm6bsnSLzBgghoGlRucqPi1zPY/Pe91NfXM3fuXPr6+hARgoOD+cpXvsIX\nvvAF8vPz8fLyYuXKlRgMBvLz8wFYuHAhQUFB5wSAXmoGUFelF7eJDIPBQFxcnBIZw2CL71EJtxSK\nqwslMEbgUgWGje7ubk6dOnVOnEZAQACpqakjxmmMJmnXSEJj06ZN1NbW2vu1t7fb05F7e3sTERHB\nsWPH7MXW2tvbAb2YmsVioaysjIiICE6dOkVHRwctLS1YLBZmzZrFW2+9dY5Q+v6PHqFm4f8j6UbL\neddx6iM3Ygsf5t9eeBmAtWvX8v7779vTjaenp/Piiy8yMDDAmTNnyMzMZP78+Rw6dIizZ8+SlJRE\nTk4OR48edWkGUFekF3cUGbGxsS6pr/JZo6+vj7a2NlX4TKG4ylACYwRcJTBsmEwmysvL6ezstHsX\nvL29SU5Oxt/ff9jjBgcHOXv27IhJuywWC6WlpfZATnd3d6ZPn058fDybNm2yeynMZjPt7e329ON+\nfn4EBARQUlKCv78/NTU19PT0oGkakZGRNDc309jYSGhoqH03SmtrKyLC5z73OV599VW8vb3JyUtk\nzcYqhpqjNQ023JjAga2V9raWlhZSU1PtSziBgYHcdddd3H///RQVFeHt7c2KFSswmUzs37/fXmEW\ncGkAqGPw58XuMGlvb6elpUWJjGGwbaf28vIiNDR0os1RKBSXCSUwRsDVAsOR06dP09DQYI/TsMVc\njJSQaDRJu4YSGmlpacTGxrJp0yaam5sBXey0tbXZJ9eAgADc3d2pqqrC39+fqqoq+46TadOmUV5e\nbl+iKCsro7u7G6PRiJeXF+vWrWP9zn/nxn/UDGv7xtujKfjnmfMm8EceeYTXX3/dnm48KSmJF154\nATc3N86ePUt2djazZ89m//79NDY2kp6ezowZMygsLHRZAKgrgj8dRUZMTIzakumETeBGRkZOsCUK\nheJyoQTGCIynwLAxVJyGTTgMx2iSdlksFsrLyzl+/LhdaKSmphIdHc3mzZvt21kHBgZob2+3T7DB\nwcEMDAxQX1+Pt7c31dXV9myYUVFRHD16FB8fH3uciNFopL+/H8+obr5xzDRqD4YjfX19xMfH25OC\n+fn5cdttt/GNb3yDQ4cO4evry8qVK+nq6uLw4cMEBASwePFiWlpa7BlALzUA1BXBnx0dHTQ3NyuR\nMQStra309/erOAyF4ipCCYwRuBwCw0Zvby/l5eX2YEwRwd/fn7S0tGEnqtEk7XIWGgaDgbS0NKZO\nncrmzZvtcRd9fX10dHTYPSohISH2uAt3d3dqa2vRNA0PDw9CQkIoLi4mMDCQ+vp6mpubae4+y42v\nD5B20/l2OsdgDMdLL73Ec889Z9/lEh0dzXPPPYePjw+1tbXMnDmTzMxMCgsL6ezsJDs7m5iYGAoK\nClySAdQVwZ9KZAxNT08PHR0dhISEuKSonUKhmPwogTECl1Ng2DCZTPagytHGadiSdtmSag2XtKu0\ntKwTU0AAACAASURBVPQcoZGamkpkZCRbtmyx582wbU21jR0WFkZDQwO9vb0MDAzQ1NRkt8lgMFBZ\nWUlISAilpaXUdZWx6jeDpN6EfRdJxUY3Kl/Wd5GMJtHS4OCgPRMp6LlEVq1axXe+8x2Ki4vt3oyW\nlhZOnDhBWFgYixYtoqyszB4AmpCQwIwZMy76PbjU4E8lMs7HFofh4+PjkhTwCoVi8qMExghMhMBw\n5MyZMzQ0NJyT5jomJmbEdezRJO2yZc4cGBiwC43w8HC2bt1KV1cXJpOJ/v5+e9IwW4IsWyVXo9Fo\nFyEBAQF0dXXR1NSEt7c3h07uw+RpxDPAwoBRyEm/hv95+4MxZ3H8y1/+wv3334/JZLKnYX/mmWcI\nCQmhrq6O2bNnk5qaSmFhIX19fcyZM4eAgIBzSsAvWrToosuEX2p6cSUyzkcVPlMori6UwBiBiRYY\nNlpaWqiurj4nTiMsLIy4uLhhJ67RJO0qLy+nuLjYLjRSUlIIDQ1l27Zt9PT0YDKZ6O3tte/0sAmN\nqqoqDAYDTU1N9Pb2omkaQUFB1NfX09fXB0BlZSVGo5GBgQEiIyN57bXXuO6668Z87RkZGZSXlwN6\nDo9rr72WJ554gpMnT+Lv7891111HfX095eXlTJs2jTlz5nD48GF7AGhWVhYxMTFjHhcuPb24TWS4\nubkRGxt71YuMlpYWBgYGmDp16kSbolAoLgNKYIzAZBEYNvr6+igrKzsvTiM1NfUc4eDIaJJ2OQuN\n5ORkAgMD+fjjj+nt7cVkMtHd3X3OuEFBQVRXV+Pu7k59fb1d/AQHB3Pq1Ck8PDzo6Oigvr7eHtsx\nZ84c3nzzzQsWhHPm448/5qabbrKnGw8LC2PdunVERkbS2NjInDlziI+Pp6ioCE3TmD9/Pv39/S4J\nAHUO/hzrFtTOzk6ampqUyOBfmWXDwsLw9PScaHMUCsU4owTGCEw2gWHDZDJRUVFBe3u7PVbCy8uL\n5OTkYZciRpO069SpUxw7duwcoeHr68vu3bvp7+/HZDJhNBrtXgqbwDl79ixubm7U1dXZg0QDAwMp\nLy/Hz8+Ps2fP0tbWRmdnJyLC2rVreeWVV8Yc7Jebm8v+/fvt6cbnzp3LunXrqKysJCAggGXLltmv\nMSEhgfT0dPbv38/AwABeXl7Mmzfvotb/HYM/L2aHiRIZOiaTiaam/5+9Nw+Tqyzz/j+n9qWruqur\nuqv3Tq8JgRCykUnCsIj84OcMo+KgBCOLI4IKvKKCzOA4yqgIiMiIyugoiyg6F+OM6CCM47C8EtZ0\nVghJp/etqmvr2vc67x9tPdOddDrdSTrp5flcV650V5+q85yCzvnWfX+f7+3DarVit9tP93IkEskc\nIwXGNMxXgTGRwcFBPB7PJL9AbW3tUec+zCS0q7u7m3379pFOp0U2hdFoZPv27WQyGXK5HJFIRKSC\najQaDAYDw8PDKIrC6Oio8G7o9XoGBgYoKSmhq6uLSCRCIpHAZDJx1113ccstt8zqeg8cOMCGDRsm\nxY3fcssttLS04Pf7WbNmDVVVVezcuRO9Xs/GjRsZHh4+KQbQfD5/3DtMpMgYx+PxoNPpjjmXRyKR\nLHykwJiGhSAwioyNjdHd3T1jn8ZMQrt6enrYu3cv6XQajUZDS0uLmBOSzWbJZrOEw2Gy2ayI/Ybx\n4Va5XI5gMCgez2az+P1+9Ho93d3dRCIRstnscfsz/uqv/ornn39evP6qVau48847GRoaorS0lD//\n8z+nq6sLr9crtuXu2bPnhA2gJ2L+jEajjI6OLmmRIQefSSRLBykwpmEhCYwiqVRK5GkUqwhWq5XW\n1tYpb6iHh3Y5HA6ampomhXZNJTRUVeWtt94il8uRyWQIh8Pkcjlxw8/lcoyNjZFIJMRuFIPBQCgU\nIpVKkU6nGRwcJBqNUigUWLt2LU888cSsDJk+n4+2tjbhDbHb7dx4442ceeaZBAIB1q5di8PhYO/e\nvVitVtavX8/BgweFAXTVqlXU1tbO+j0+EfPnUhcZxcF7FRUVS+7aJZKlhhQY07AQBUaRXC5HT08P\noVBokk+jubl5yv53MbSrWF2YKrSrp6eHffv2kUql0Gg0NDc3k8vl2LlzJ/l8nlQqRSQSEaZIvV5P\nIpEgHo8TDodJpVIUCgVMJhMjIyNoNBr8fj8+n49YLIZGo+Gv//qvefjhh2dlArzxxht5/PHHKRQK\n6HQ6Wltbueuuu/D5fJSVlbFp0yY6OzsJhUKcddZZGI3GEx4BfyLx4ktZZKTTaYLBIDabbdr5OxKJ\nZOEjBcY0LGSBMZGhoSFGRkZm5NNQVZVgMEhPT89RQ7t6e3vZu3evEBpNTU0kk0n27dtHoVAgmUwS\njUYnCY1wOEwmkyEYDJLNZsnn85hMJoaGhjAYDAwMDIix3iaTiS996UvcfPPNM77GVCpFfX094XAY\ngJKSErZt28bGjRsJBoOsW7cOi8XC/v37KS8v5+yzzxaG1uM1gJ5IvHgsFsPr9aLRaKirqzvqLqDF\nRjFwy2Aw4HQ6T/dyJBLJHCIFxjQsFoFRZGxsjJ6eHjFJVaPRUF5eTmNj45Sfoo8V2nW40KivryeV\nSrF//34KhQKxWIx4PE6hUBBCIxQKkclkxOj3fD6PTqdjZGQEg8FAT0+P8GdUVVXxyCOPcOGFF874\nGv/xH/+Rb3zjGyJuvKGhgb//+79nbGwMh8PBhg0bOHDgAIlEgnPOOYdoNCpu9MczAv5E4sWXqsgo\nmoDl4DOJZHEjBcY0LDaBUWQqn4bFYqG1tXXKraPHCu3q7+9n9+7dk4RGNBqls7MTVVWJRqPE43Fx\nMzYYDIyOjoqJrkUBUvw+n8/T398vvBvr1q3j8ccfn7E/I5vN0tTUxOjoKDAeN/6BD3yAiy++mEgk\nwtq1a9FqtXR1dVFVVUVLSwvvvPPOCRlAjzdefCmKjKIPRw4+k0gWN1JgTMNiFRhFcrkcvb294iYP\nYDAYaGpqmrJdkEwm6e3tZWhoSIR2LVu2TNyM+/v72bNnD8lkUtwww+Gw2N0Sj8dF8mehUECv1+Pz\n+Uin0yJ6XFVVcVw0GsXj8RCPx9FoNFx55ZV897vfnbE/49FHH+Uzn/mMiBuvqqrirrvuIpVK4XQ6\nWbNmDe+++y65XI41a9YwPDx8QgbQiebP2ewwKYqM4nu62EOoioPPSktLJ+WwSCSSxYUUGNOw2AXG\nREZGRhgeHp50g6yurqampuaIY48V2jWV0AgEAmIsfSwWE0Kj6F8IBoPE43HRUlEUhUAgINZW/NRr\nMpn48pe/zKc//ekZX1t7ezu9vb3A+JC2Sy65hL/8y78kHo+zdu1aCoUC/f39NDQ04HQ66e7uRlEU\nKioqWLdu3aw+ZR+v+XMpiYyiD8NkMk3aFi2RSBYXUmBMw1ISGEWKvouJIVplZWU0NTUd4dM4VmjX\nwMAAu3fvJplMihvn6OgoQ0NDk1JBixUNGC+fx2IxUqmUqDz4fD60Wi29vb1EIhFyuRzV1dX88z//\nM+eff/6Mrut//ud/uPzyy8lms0I83Hnnnaiqisvl4swzz+TgwYNotVpWr15NV1eXGAF/7rnnUlpa\nOuP38HjNn0tJZBSvs7Ky8nQvRSKRzBFSYEzDUhQYRdLpNIcOHRLeiel8GlOFdjU3N4s2y+DgILt3\n7yaRSIibp8fjYWRkZFIqaFFo5PN5xsbGiEajItALwO/3o6oqfX19xGIxVFVl/fr1PPHEE1NWWqZi\n/fr17N27V+RybNmyhSuvvJJUKsXatWtJJpN4vV7a2tqAcUOioig0NTXNKgH0eM2f8Xgcj8ez6EVG\ncfCZ9GFIJIsXKTCmYSkLjCK5XI6+vj6CweAxfRrHCu06XGhUVVXh9XqF4XNsbEykgubzebLZLJFI\nhHA4TD6fJ5fLifTQZDLJ8PAwiUQCjUbDRz7yER566KEZ3ZDfeecdNm7cSDqdRlEUHA4Hn/3sZ7Fa\nrVRUVNDe3k5nZycWi4Xly5fT1dV13AbQ4zF/JhIJRkZGFrXIiMViRKNRHA7HrGfSSCSShYEUGNMg\nBcZkPB6PaG/AeIpldXX1EWbIY4V2DQ0NsWvXrklCY3h4WHyqLaaCFisARW9GMfUzm82SSCRIpVIE\nAgF8Ph+ZTAaz2cyXv/xlPvWpT83oei699FJefPFFsYV2zZo1XHPNNWQyGdasWUM0GiUUCrF8+XIx\nCfR4RsAfT7z4YhcZxcFnFotlVu0niUSycJACYxqkwJiaSCRCd3e38GkUh441NzdP8mlMFdrV1NRE\ndXU1Go2G4eFhdu7cKYSG2+1maGiIUCgkdpYUB4wVCgWx3TUWi1EoFMjlcmIU/ODgIGNjY+Tzeaqr\nq/nRj37Eeeedd8xrOTxuvLS0lFtvvZXS0lLcbjeNjY309PRQVlZGbW0tAwMDx2UAPZ548cUuMjwe\nD1qtloqKitO9FIlEMgdIgTENUmBMz1Q+DbPZTFtb2xFl7+lCu4aHh9m1axfxeBxFUXA6nYyMjIhW\nSDEVtCg2itWERCJBLpcjn89Pys8o+jM2bNjA448/PiN/xrXXXssvf/lLETd+xhlncMMNN5DP51m9\nejWhUIh4PM4ZZ5yB1+slm81iMBjYuHHjjEePH27+1Gq1x3zORJFRW1t7XAPa5it+v59cLicHn0kk\nixQpMKZBCoyZkcvl6O/vF+mcAHq9/ojprDDee+/p6RFjuyeGdo2MjLBz504hNMrLyxkaGhJiotgi\nKbZPwuEw0WiUTCYjxsgXk0IHBgZE8NdVV13Fd77znWNWAOLxOI2NjUQiEWA8bvwTn/gENTU14k9/\nfz9utxur1UogEJi1AXSi+XOmO0wWq8iIRCLE43FcLteSCBiTSJYaUmBMgxQYs2cqn0ZVVdURnoXp\nQrsOFxplZWUMDw+L9kg8HhcVjcN3nBTFRtEcOjo6KvwZX/nKV7jxxhuPeQ1/+7d/y4MPPkihUECr\n1dLc3MxNN90k/BeBQIBcLkdbWxvDw8OoqjprA+hszZ8TRUZNTc2iMEYWI+NLSkrE1maJRLJ4WFIC\nQ1GUvwU+CKwAksB24Iuqqh48yvFSYBwnsViMrq4uUqkUMO7TKC0tpaWlZZJPY7rQrpGREXbt2kUs\nFhPPHxoaIplMEolESCQSoqKRz+cJBoPEYjHy+TzpdJpkMkkymWRkZET4M2pra/nhD3/Ili1bpl1/\nNpuloaFBhH1ZLBY+/OEPs3LlSmpra3E6nXg8HmpraykUCiQSiVkngM7W/LkYRcbIyAh6vR6Xy3W6\nlyKRSE4yS01gPAs8BbwF6IB7gLOAM1RVTU5xvBQYJ0g2m6Wzs1P4ImD8Zn24T2O60C6v10tHR4cQ\nGiUlJYyMjIhqRjKZFLtLiubQYpUjnU4TiURE26ToFzn33HN54oknjtn/f+SRR7jtttvI5/NoNBpq\na2u59dZb0ev1rFy5Er/fL+avFGefVFZWztgAOlvzZ3F77mIRGT6fj3w+L30YEskiZEkJjMNRFMUF\njALnq6r6xyl+LgXGSeJoPo2GhoZJn16nC+06XGhYrVZGRkbEFtZ0Ok2hUCCTyZBKpcT491wuRyaT\nYWxsjHQ6PcmfsXXrVh566KEpp8lOpKWlhYGBAWA8bvzyyy9nw4YN1NbWUlpait/vp7GxkXg8PmsD\n6GzjxReTyCj+N6qsrJyR6VUikSwclrrAaAUOAKtUVX1nip9LgTEHjI6OMjAwMOmTe2VlJQ0NDeKY\n6UK7RkdH2blzJ9FoFEVRMJlMeDwekskk4XCYTCYjKhrJZJKxsTFSqRSZTEZUOIqD1LLZLGazmbvv\nvpsbbrhh2nU///zzXHHFFSJu3O12c8stt1BSUkJ7ezt+vx+z2YzD4SASiaAoCs3NzaxYseKY78ls\n48VTqZTwryxkkZFKpQiFQtjtdqxW6+lejkQiOYksWYGhjP/r/RvApqrqBUc5RgqMOWQqn4bdbqe1\ntVVUFKYL7fL5fHR0dAihYTAY8Hq9pFKpSUIjk8kQjUZFlSOdTpNKpYhGo/h8PpFSOlN/xurVq3n3\n3XdRVRWj0ch73/teLrjgAmpra7FYLEQiERoaGsSE2JkaQGcbL55KpRgeHgZYsCKjOPjMaDRSXl5+\nupcjkUhOIktZYPwAuBTYoqrqyFGOkQLjFJDL5ejs7CQajQqfRjFPw2w2A9OHdgUCATo6OsT20uIY\n+GKbJJvNks/nxe6S4o6TZDJJIpEgHo8zNDQk/BkbN27k8ccfn9YXsGfPHrZs2SLixsvLy7n11lsp\nKyujpaWFQCCA3W7HZDKRSqXQarWcffbZM8rkmI35czGIDK/XC4Db7T7NK5FIJCeTJSkwFEV5GLgc\n+HNVVfunOW4tsOP8888/Is5469atbN26dW4XugTp7e3F5/NN69M4WmhXKBSaJDS0Wi1+v1+0TnK5\n3CQ/RiwWI5fLiTCvotAo+jM++tGP8uCDD07rz7jooovYvn27iBvfuHEjf/mXf0l9fT0Gg4FkMklN\nTY1omczUADrR/DlTkaGqKrW1tQtOZASDQdLptBx8JpEsYJ566imeeuqpSY+Fw2FefvllWCoC40/i\n4v3ABaqqdh/jWFnBOE34/X76+vrETVaj0VBZWUljY6M45mihXWNjY5OEhqIoBAIBsb01m80KYVE0\nGRbnm0SjUcLhMB6Ph1wuNyN/xvDwMGeccQbJ5PhGpLKyMj796U9TVVVFY2MjwWAQl8slfBZGo5Fz\nzz33mAbQ2Zg/J4qMmpoaUflZCCQSCcLhMGVlZQtq3RKJZHqWVAVDUZTvA1uBvwImZl+EVVVNTXG8\nFBinmVgsRnd3t7h5T+XTOFpoVzQapaOjQ8w00Wg0IvI7Go2K6azJZJJQKCSMoMWKh9/vn+TP+Jd/\n+Rc2bdp01LV++MMf5plnnhFx46tWreLDH/4w9fX1aLVa8vk8LpdLTICdiQF0NubPhSoyij4Ms9l8\nxIReiUSycFlqAqMATLXo61VVfWKK46XAmCcczafR3NxMSUkJcPTQrmQyyY4dO4TQgPHtkUWhUfRn\nTBQa6XSaeDxOJBIRW2FVVWXTpk089thjR/ULxONxGhoaiEajANhsNj75yU/S2NhIbW0tkUiEiooK\nstkswIwMoLMxf04UGdXV1VgsluN7w08xXq9XtJAkEsniYEkJjNkiBcb8pK+vj9HR0aP6NLLZLAMD\nA/T19ZHNZkVoVyaTmSQ0CoWCMH1ODOaKxWJiF0rRnxGNRhkeHhb+jI997GM88MADR/VnfO5zn+P7\n3/++iBtva2vjmmuuEVtxtVotJSUl5HK5GRtAZxovvhBFRiAQIJPJSB+GRLKIkAJjGqTAmN/4/X76\n+/tFNUCj0VBRUcGyZcuAo4d2FQoF3nrrLSE08vm88F4kEolJCaBFz0ax2jE2Nib8GRaLha997Wt8\n/OMfn3J92WyW+vp6gsEgMJ5g+tGPfpSzzz4bt9tNPB6fVM2YiQF0pjtM0uk0Q0NDC0ZkFCfkOp3O\nRTeWXiJZqkiBMQ1SYCwM4vE4XV1dk3waNpuNtrY2dDrdUUO7NBoNO3bsEHNKstmsqF4UE0DT6bTY\ncZLJZETbZGJ+Rl1dHT/+8Y/ZuHHjlOt76KGHuPPOO4UPpLGxkRtuuIH6+noKhQImk0ncVGeSADrT\nePGFJDJyuRw+nw+LxXLEji2JRLIwkQJjGqTAWFjkcjkOHTpEJBIRPg2TyURLSwslJSVHDe0yGAyT\nhEYmkxFpn+l0Wsw4Ke5EKfozQqEQXq9X+C2O5c9obGxkZGRErOuKK65g06ZNuFwuUqkU5eXlQoQc\nywA6U/NnJpNhcHBwQYiM4m4gOfhMIlkcSIExDVJgLFz6+/vxer3Cp1HcxlpRUXHU0C6z2UxHRweh\nUIh8Pi/SPiORCKlUilwuRyKRIBQKCaFRbJsMDw+TTqfRaDRcc801fOtb35rSn/Ef//EffPSjHxVx\n49XV1XzqU5+isbGRQqGA1WoVgqGkpITNmzej1+unvMaJ5s/FIDL8fj+5XE4OPpNIFglSYEyDFBgL\nn6l8Gi6Xi6amJmDq0C6r1cquXbuOEBpjY2NkMhmRmVEMiCpuaw0Gg3i9XuHP+PrXv871118/5bpW\nrlxJV1eXiBu/7LLLeM973oPT6SSfz2Oz2YBxYXQsA+hMzJ8LQWQUPTAVFRXHHD4nkUjmP1JgTIMU\nGIuHZDLJoUOHSCQSAGLse3t7OzqdbsrQrtLS0klCoxgrXhQamUyGWCxGKBQS/oxwOMzo6CiBQABV\nVamrq+PRRx9lw4YNR6zp9ddf5+KLLyaTyaAoCi6Xi8985jM0NTVRKBSw2WwoiiJCxqYzgM7E/DlR\nZFRVVc274WKZTIZAIIDNZhNbjyUSycJFCoxpkAJj8ZHL5ejq6hKDyGCyT+Pw0K76+nocDgd79uwh\nGAyKNklRTBQntEYiEcLhsNjmGgqF8Hg8k/wZTzzxBBUVFUesacuWLbz11lsibvy8887jAx/4AGVl\nZWg0GsxmMxqNRiSAHs0EORPz50SR4Xa759WNvBi4ZTAYcDqdp3s5EonkBJECYxqkwFjcDAwM4PV6\nJ33yr6urw+12TwrtKhQK1NTU4HQ62bdv3yShUfRoFIVGKBQiFouJtkowGJzkz7j22mu5//77j2gB\n9PX1sWrVKlKpFIqiUFpayqc//Wna2tpQVRWbzYZGo0Gr1dLS0sLy5cunvKaZxIvPZ5ExOjoq1iWR\nSBY2UmBMgxQYS4NAICBCuWDcp+F0OmloaEBV1SNCuyoqKti/fz+BQED4MSZOaU2lUgQCAeLxuBgd\n7/P5GB0dFf6Me+65h2uvvfaItbz//e/n+eefF3Hj69at4+qrr8Zut2MwGDAYDOh0Omw2G5s2bZrS\nADoT8+d8FRnF2TAycEsiWfhIgTENUmAsLVKpFJ2dnZN8Glarlfb2djQazRGhXW63mwMHDogUyqLZ\nsyg0iltZE4mEGOg1MjJCMBhEVVXq6+t59NFHWb9+/aR1RCIRGhsbicfjwHjc+E033cSKFSuEd0Sn\n04l5J7W1tUdcy0zixbPZLIODgxQKhXkjMooD6EpLS+elEVUikcwcKTCmQQqMpUkul6O7u5uxsTHh\n0zAajbS0tGC1Wo8I7XK73Rw6dEgIjaKYmBjOFQgESKVSxGIx0TaJxWIAbN68mccff/wIf8ZNN93E\nY489JuLGV6xYwSc+8QnsdrsI59LpdLjdbtauXTvlJ/5jmT/nm8go+jBMJhMOh+O0rkUikZwYUmBM\ngxQYksHBQTwez6SbdG1tLW63m9HRUXp6ekRol9vtpq+vD7/fTzqdFpkZ8XicbDZLJBIRw9QikQjB\nYJChoSHhz7juuuu47777JvkzstksNTU1hMNhAKxWK9dddx1r1qxBo9FgtVrR6/UYjUb+7M/+TGxv\nncixzJ/zTWTIwWcSyeJACoxpkAJDUmRsbIzu7u5JPo3y8nIaGhqIRCKTQruqq6vp7+/H7/eTSqVI\nJpMEg0ESiYRICS16DcLhMF6vd5I/45vf/CbXXHPNpPPfc8893H333SLps6mpiZtvvhmbzYbFYkGv\n16PX64+aAHos82culxOG1srKyimFyqmimC8ifRgSycJGCoxpkAJDcjipVErkaaiqKnwara2tpFKp\nSaFdVVVVDA8PC6FRHJ5WTAENBoPi+1AoxNDQEKFQSORnPPbYY0f4M+rq6hgdHQXGx9Vv27aNDRs2\noNfrMZvNGAwGbDbblAmgx4oXny8iozjvxeFwYDKZTssaJBLJiSMFxjRIgSE5Grlcjp6eHiEIYNyn\n0dTUhFarnRTa5Xa78Xq9k4TG2NgYqVSKdDqNz+cjHo8Lr8bg4KDwZ2zZsoXHH3980nyOn//853zi\nE58gl8uhKAq1tbXcdttt2O12LBYLRqMRg8EwZQLoscyfE0VGRUXFtEPX5op8Ps/o6KgcfCaRLHCk\nwJgGKTAkM2F4eJjh4eFJPo2amhrKysomhXa53W58Ph9+v19kaBSFRiKREFtbo9EoPp9vkj/j4x//\nOPfdd9+klkFbWxv9/f0ibvyDH/wgF110EUajEbPZjF6vx+12T5kAOl28+HwQGR6PB61WO2UwmUQi\nWRhIgTENUmBIZsPY2Bg9PT1kMhlg3KfhcDioqalhaGhI3LRdLhehUGiS0AiFQmJKq8/nm7SttejP\nMJvN3H///Wzbtk2c849//COXXXaZiBuvrKzkjjvuwGazYbVaMZlMmEymKQ2g0+0wOd0iw+/3k81m\nqa6uPqXnlUgkJw8pMKZBCgzJ8TCVT8NisbBs2TJGR0dFaJfT6SQSieD1ekXrJBwOi68DgYDYiTI4\nOCjyM+rq6njyySc555xzxDnXr1/P3r17UVUVg8HAxRdfzPvf/35MJhNms1lssz08AXS6HSanU2RE\no1FisRhOpxODwXDKziuRSE4eUmBMgxQYkhMhl8vR29tLKBQSY+MNBgMNDQ3E43ER2lVWVkYsFmN0\ndFQkfxaFxtjYGMFgUPgz+vv7j+rPOHjwIOvXrxdx4w6Hg9tvvx2n0ymqGaWlpUckgE5n/szlcgwO\nDpLP53G5XKfME5HNZvH7/ZSUlJzWHS0SieT4kQJjGqTAkJwsRkZGGB4enlQtKJb/e3t7icfj2Gw2\nEokEPp9PJFoWB6gFAgGREurxeKb1Z1x66aW8+OKLqKqKTqdj06ZNbN26lZKSEtEyWb169aT2w3Tx\n4qdLZIyMjKDX6ycZXCUSycJBCoxpkAJDcrIJh8P09PSQTqeB8TjysrIySkpK6O/vJxKJYDabyWQy\nwosRCoWIRCKk02m8Xq8YsDY0NCRCwMxmMw888ABXX301MJ4l0dzcLGLP7XY7n//856mpqRHVjKkM\noEczf54OkeHz+cjn81RVVc35uSQSyclHCoxpkAJDMlek02kOHTpEPB4XPg2z2YzL5WJoaIhgMIjR\naBStguJck2g0KoygxV0o/f39BAKBKf0Z1157Lb/85S9F3PiqVatE3LjZbMZisRxhAD2a+fNUJ3qE\n3wAAIABJREFUi4xwOEwikaCiouKI6bMSiWT+IwXGNEiBIZlrcrkcfX19BINB4dPQ6/VUVlbi8/nw\n+Xzo9XpyuZzYxhoIBIhGoyQSCVHR8Pv99PX1TZpv8uSTT1JeXk4mk6GmpoZIJAJASUkJn/rUp2hv\nbxdtk9bW1kkG0KOZP0+lyEilUoRCIWw222mPL5dIJLPnRASGzPCVSE4QnU5HS0sLGzZsoLGxEZ1O\nRzabZWhoiHw+T0tLi/AgVFRUUF9fT0NDA42NjVRUVNDU1MSyZctoaGhgzZo1tLS0YDQa2b59O62t\nrdxxxx3odDr8fj+33347Wq2WWCzGAw88wLe+9S38fj/RaJQDBw7w8ssviyh0RVFE9SKfzwvxo9Pp\nqKurQ6vV4vf7GRsbm7P3prh7pNhOkkgkSwdZwZBI5oBIJEJ3d/ckn4bVagXGjY+qqqKqKsFgkLGx\nMTFQrZitEYlEGBgYYGRkZEp/Rk1NDX6/HxiPG//kJz/JWWedhc1mw2w2c8455wgD6NHMn/l8noGB\nAfL5PE6nk7Kysjl5L0ZHR1FVFbfbPSevL5FI5g7ZIpkGKTAkp5NsNsvBgweFTwPG48iNRqNIDlVV\nVYiMiS2UYDBIKBQSQ9iK/oyf/exnrF69mh/+8Id89rOfFXHjDQ0NfO5zn6O8vFwMbCuOgD9avPhE\nkVFeXj4n49WL02fl4DOJZOEhBcY0SIEhmQ/kcjlh5Cy2KrRaLWazmdHRUVHpOFxoeL1ewuEwPp+P\n7u7uKf0ZTU1NDA0NAWAymdi6dStbtmwRSaCbNm0SBtCpzJ+FQoH+/v45ExnFRNPS0lIsFstJfW2J\nRDK3SIExDVJgSOYbxQyMogFTo9FgMBjEjotiRWNsbEzsNPH5fIRCIUZGRujr6xP5GX/zN3/Dvffe\ny+9//3s+9KEPibjxqqoq7rzzTsrLy7FarbS1tQkD6FTmz0KhwMDAALlc7qSLjEKhgNfrxWw2z1kb\nRiKRzA3S5CmRLCCqqqpYt24dZ555JiaTiUKhQCqVwmg0UlFRgc1mw+Fw0NjYSFtbG42NjTQ3N9PW\n1kZ7ezsbNmygvr4eRVH40Y9+RG1tLaFQiFgsRnt7OzDu87j99tv593//d4LBIPv37+ell14im81O\naf7UaDTU19ej0+lEa+ZkUfR9FOe7SCSSpYGsYEgkp5lsNktnZyexWEyYPzUaDblcjkgkQj6fJxwO\nT/JleDweQqEQXV1dIj+jpqaGX/ziF2i1Wv7sz/6MdDqNoiiUl5fz5S9/GafTic1mEwbQqeLFVVWd\nk0pGIBAgk8lIH4ZEssA4kQqGTL6RSE4zer2elStXisFkfr9fVBXKyspQVRWtVovdbqe8vBy/309p\naSmBQIDS0lJ8Ph+dnZ0MDw9z/vnns2nTJgYGBrj88st54403CAQCfOELX+DCCy/kqquu4o033qC2\ntpa1a9ei1WqF+bN4nvr6egYGBoSxtLy8/ISv0Wg0kslkyGazGI3Gk/CuSSSS+Y78KCGRzBN0Oh1N\nTU1s2LCBpqYm9Ho9iqKg0WgoLS2lvLwcp9NJc3Mz7e3ttLS0sGLFCpYvX87GjRtZsWIFRqORV199\nlebmZjZu3Ehvby8Wi4VsNsvvf/97Pve5z9HT00Nvby///d//TTQaRavVotVqRUVDURTRLgmFQgSD\nwRO+NpPJBIwHb0kkkqWBbJFIJPOYWCxGV1eXuDEXd4HE43HS6bQYFT82NsbIyAg+n4+enh4R8mUy\nmXjwwQd5+umn+c///E8RN75u3TpuuukmSktLaW9vZ/ny5UfsMFFVlcHBQbLZLA6H44QrGR6PB61W\nS0VFxQm/LxKJ5NQgWyQSySKlpKSE1atXk8vl6OzsJBqNotFosNvt5PN5jEYjdrudSCSC3W7H5XJR\nVlZGfX09Bw4cIBAI8KlPfYrq6mq2b9/OJZdcQjQa5Y033uCdd97hjjvuIJPJ4PF42Lx5Mzqdjlwu\nRy6XQ6vVUldXx+DgIKFQCFVVcTqdx30txdeWSCRLA1nBkEgWGL29vfh8PuGdyOVyJJNJUqmUqGQE\ng0EGBwfxeDwcOHBA5Gds3LiR5uZmHnvsMfL5PBqNhpUrV/L5z3+esrIy1q5dS1VV1STzJ8DQ0BDZ\nbJaysrLjFhly8JlEsvCQORjTIAWGZLHi9/vp7+8nm82iqiqZTIZ0Ok0ikSAQCODxeAgEAgwMDDA4\nOEhXV5fYWfLxj3+cn/70p2IOicVi4bOf/Sxnn3029fX14nelmPypKIoQGaWlpWK2ymzIZDIEAgFK\nSkomTX6VSCTzF9kikUiWIC6XC5fLRSwWo7u7G0VRMBgMmEwmLBYLTqcTv9+Pw+GgqqqK6upqurq6\nGBgY4Mc//jFGo5GrrrqKp59+mkQiwT333ENTUxNf/vKXCQaDbN68GavVKnwZtbW1DA0NEQ6Hxfln\nQ7FqIfMwJJKlgRQYEskCp6SkhLPPPptcLsehQ4eIRCLo9XohNIoCw+VyUVlZSUNDA/v378fv9/PM\nM89QX18vxsV3d3dz0003ccMNN5BMJlm5ciWtra2iZXIiIkOj0aDVaqUPQyJZIkiBIZEsEnQ6HStW\nrACgr6+P0dFR9Ho9ZrMZm81GeXk5NTU1VFdX43a76e/v55133sHr9QJw1llnceDAAVKpFA8//DC/\n+tWv+NrXvsbw8DCbN28Wc0tqamoYGRk5LpFhMBhIJpMi50MikSxepMCQSBYhjY2NNDY2Cp+GTqfD\nbDaLsK7Kykqqqqqoqqri0KFDHDp0iO7ubgwGAzabjVAoxNDQEDfeeCNXXXUVkUiEDRs2UFFRgaqq\nVFdXH5fIMJlMwpAqB59JJIsbKTAkkkVM0acRj8fp6uoSFQ273U5lZSXV1dXU1dXR2NjI/v376e/v\nJ5VKUVJSQjqdJpPJ8NOf/pTf/e533HvvvbS3t7NmzRpUVaWqqgqPx0M4HEZV1RnlWxgMBgApMCSS\nJYAUGBLJEsBqtR7h07BYLJSWllJdXU1VVRV1dXX09PSwe/dufD4fOp0OvV5PIpHA5/Nx44038r73\nvY/rr7+eLVu2YLFYcLvdeL1eIpEIwDFFRnHmSTabPRWXLZFITiNSYEgkS4iJPo3+/n68Xq8QGnV1\nddTU1FBXV8fBgwfZs2cP0WgUo9FIPp8nm83y61//mpdffpkHH3yQtWvX0tLSQmVlJaOjozMWGXq9\nnnQ6LX0YEskiRwoMiWSJ0tDQQENDg/BpmM1mysrKaGxspK6ujmXLlvH222+zf/9+0uk0Wq2WdDpN\nKBTiE5/4BJs3b+bOO+9k8+bNk0SGqqpUVlYe9bxGo1G0X4ozSiQSyeJDCgyJZIlT9Gkkk0kOHTok\nhEZzczPLli2jtbWVnTt30tvbCyCqGS+//DI7d+7k3nvv5bLLLhMiIxqNAhxVZJhMJiKRCKlUSgoM\niWQRs2QERjQaFSVcAEVRxN8Tv5742NH+ALK0K1l0mM1mVq1aRS6Xo6urS2RoNDc309TUxP79+3nj\njTfw+XxotVoymQzRaJRbbrmFc845hwceeIA1a9bg9/unFRlarRZFUaQPQyJZ5CwZgaHT6YQoKMaj\nq6oq/pwIRdEx8evDBclUX0vhIpmP6HQ6li9fDsDAwABWqxWXy0VrayttbW3s2rWLHTt2EIlEyGaz\nZLNZduzYwfve9z7uu+8+PvShDwHjol5VVdxu95TnkAJDIlncLBmBYTabKSkpOeZxhUJh0tcTRcjh\nwmTi1xO/P/yY42Wqykrx79mIFSlaJMdLfX099fX1YoZIdXU1K1as4Mwzz+S1115j7969JJNJMpkM\niUSCW2+9lYcffpgnn3yS8vJyMWTtcJFhNBrJZrNkMhmxdVUikSwulozAmCkTb8Yn88ZcFC6HC5aj\nCZiJx0719fEyXbVlqsdktUUC4HQ6cTqdpFIpDh48SHV1NWeddRY7duzgxRdfpLu7m1QqRTab5d13\n3+W8887jq1/9KldcccWUIsNsNhOLxUilUlJgSCSLFCkwThFzdTMuCpdjCZiJPyt+ffjxJ8KJtolk\ntWVhYDKZRJ5Gd3c3dXV1nHPOOfzxj3/khRdeYGRkhEwmQyqV4s477+R73/sev/rVrwBEOBeMt0gU\nRZGDzySSRYwUGAucubgxz0SsTGwlzdc2kay2zB06nY729nba29tZtmwZTU1NbNq0id///ve89NJL\nBINBMpkM/f39bN68mdtvv52rr74aQIgMOfhMIlnczEpgKIqyGrgcCAL/qqqqf8LP7MB3VFX9+Mld\n4pTr+AzwBaAK2A3coqrqm3N93qXCXFdbZtomOlbL6HiZSbUF/vd9kMJleurq6qirq2PlypUsX76c\nCy64gF//+te8+uqrxONxMpkMX//61/nRj37E888/D4yLDIPBQCKRIJfLiVHuEolk8TDj32pFUf4/\n4DdAJ2AD7lYU5UpVVV/40yFm4FpgTgWGoigfAR4APgm8AdwGPK8oSvtEwSOZf5yKNtHRhMqpbBPN\ntNpy+PcLvU1UVlbGxo0bWb16NevWrWP79u387Gc/Y9++faTTaUZHR9mwYQN/8zd/w9/93d9RXl5O\nIpEQs08kEsniQpnpP6qKomwHXlBV9S5l/F/H24G/B65UVfU5RVHcwLCqqtq5Wy4oivIa8Lqqqv/n\nT98rwADwT6qq3jfF8WuBHTt27GDt2rVzuTTJIuJktYkO/3q2HK3aUvx7PreJcrkcBw8e5D/+4z94\n9NFHGRwcJJ/PA1BaWsqOHTvQ6/UYDAacTucpXZtEIpkZHR0drFu3DmCdqqods3nubOqSZwIfA1DH\n/8W8T1GUQeBpRVGuAua8RaEoih5YB3yj+JiqqqqiKP8NbJrr80uWDvO9TXQqTLlwYm0inU7HypUr\nWblyJdu2beO73/0ujz32GJFIhHA4THt7O3/xF3/B97///RO6FolEMj+ZjcBIA2UTH1BV9eeKohSA\nXwKfP5kLOwouQAt4D3vcCyw/BeeXSE6IU90mmi/ZLU6nk69+9avcdttt3HzzzTz//PNks1l+85vf\n8Ic//IE//vGPrFixYsG3iSQSyf8yG4GxC7gI2DHxQVVVf/GnNsXjJ3NhEolk5pyO3UTHk91itVp5\n9NFHSaVSbN68mcHBQRKJBOvWraO+vp5XXnnliPkkMrtFIlmYzEZg/AA4f6ofqKr61J9Exg0nZVVH\nxw/kgcOzh92AZ7on3nbbbZSWlk56bOvWrWzduvWkLlAiWSzMZbXFZrNx4MABEcqVSCTo7++nubmZ\nSy+9lIcffpiysrLT3iaaic8FpHCRLA6eeuopnnrqqUmPhcPh4369GZs8xRMU5aIJO0cO/9mNqqr+\n83GvZmbnn8rk2c+4yfP+KY6XJk+JZB7j9Xr59Kc/zbPPPks+n0dRFOx2O9dddx233HILDQ0Nx3yN\n4wmamwtTLsiIf8ni4kRMnscjMNLAPwF/p6pq9k+PuYBHgfNUVXXM6gVniaIoHwYeA27if7ep/jWw\nQlVV3xTHS4EhkcxjAoEAmUyGbDbLunXrxCcmrVZLXV0d119/PR/4wAdob28/5XkZJ6NNVGSuslum\nekxWWyQni1O1i6TIRcATwCWKolwNNAE/Bg4C5xzH680KVVX/9U+C5m7GWyO7gEunEhcSiWT+YzQa\nyWQyuN1u9uzZw9e+9jUeffRRcrkc/f39fPOb3+S3v/0tH/3oR9m0aRMrV648wqcxV8iIfxnxLzl+\nZl3BAFAUpQR4hPHKgYbxPIz71BP9v30OkBUMiWR+k8vl8Pl8WCwWSktLGRkZIRgMcumllzI6OgqM\nVzOsVisbN27kgx/8IKtWrWL58uWUlZUd49WXDvMluwVkxP9i4lRXMADagfXAIFDD+BZRCxA/zteT\nSCRLlMMHn1VXV6MoCi+88AI/+9nP+Na3vkUmkyESifDSSy+xd+9eLrjgAi655BJaW1tpaGigrq7u\nNF/F6Udmt4wjI/7nD7MWGIqi3Al8Ffgh42mercBPgT2KomxTVfXVk7tEiUSy2NHpdJMGnxUHon3s\nYx/jiiuu4IorrmBgYIBMJoPP5+OZZ57hzTff5KKLLuK8886jsbGRyspKmpub5VyTk4yM+F/cEf9z\nyfH8Jv4f4AOqqv7uT9/vUxTlXMbTNV8EjCdpbRKJZIlgMBjIZrOTBp9VVVXh9Y5n6v3hD3/gV7/6\nFf/wD/9AKpUimUwyMDDAv/7rv/LWW29x4YUXsm7dOjweD2VlZbS3t58yn4bk+Djd2S2HHzfx++LX\nx8vRqi3Fv5dKm+h4BMYq9bChYn/aTXK7oii/PTnLkkgkSwmTyUQ8HieZTGKz2cTjbvd45E0sFuPK\nK6/k4osvZtu2bRw8eJBsNks+n+fAgQP09/fT0dHBpk2bWLVqFWNjY1itVpYtWybnnCwhZJtofmW3\nzFpgHC4uDvvZSye2HIlEshQxGAwAwocxkYkiw+Fw8MILL/Bv//Zv3HHHHWIaaz6fZ8eOHRw8eJD1\n69dzzjnnsHz5cmKxGBaLhaqqKurr60/pNUkWD0s14l9RFJLJ5HG/rmxWSiSSeYFOpyObzU75M7fb\njaIoRKNRYNybsWrVKm677TZ2794tqhmFQoEXX3yRt99+m3PPPZczzjiDFStWEI/HGR4epqysjJaW\nFunTkMwLTnebaDohU/x6ojdqtsjfMolEMi/Q6/XkcjkKhcKU/+BWVlYCEI1G8fv9rF27lqeffprn\nnnuOL37xi0SjUVKpFHq9Ho/Hw+9+9zv279/PmjVrWL58Oa2trSQSCUKhEFarldbWVsxm86m+TIlk\nTjnZ1ZaJLcvZIgWGRCKZF5hMJpLJJMlkEqvVOuUxE0XG6OgolZWVXH311Sxbtox7772XV155RZhF\nAbq6uhgcHOTQoUOceeaZNDc309zcTFlZGbFYDKPRSENDAy6X65Rdp0SyVJACQyKRzAuKPox0On1U\ngQHjIkNRFCKRiBAZF1xwAXV1dXR0dHDbbbcRCoVENaNQKLBr1y66uro4++yzGRgYYNmyZTQ2NlJa\nWko6naanpwe32z2juScSiWRmSIEhkUjmBRqNBo1Gc1QfxkQqKioAhMhwu920tLRQXV1NWVkZjz76\nKM8++6yoZlgsFqLRKNu3b6ezs5PVq1czPDxMfX09dXV12O12stksHo8Hu91Oa2ur9GlIJCeI/A2S\nSCTzBr1eTzqdPqoPYyITRYbX66WqqgqLxcIll1yCy+Xi/e9/P1/84hfx+/3E43EMBgNGo5HR0VH+\n53/+h4aGBs444wyampqora2lqqpKCI1wOIzZbKalpWXaaopEIjk6UmBIJJJ5g8lkIp1Ok8lkZhSU\nVVFRgaIohMNhPB4P1dXVqKrK2rVrqa+v5wc/+AHPPPMMv/jFL8TEVofDIdoiw8PDtLa2isjx2tpa\nKisrhdDYu3cvBoNB+jQkkuNACgyJRDJvMJlMhMNhUqnUjJM4izf+cDjMyMiIEBkul4vLLrsMu93O\nRRddxJe+9CWGh4cJBoPo9XqWL19Od3c3b7/9Nv39/axcuZKGhgbq6+upqamhvLwcu92OyWTi0KFD\n9PT0UFlZSWNj41y+BRLJokEKDIlEMm/QaDQoijIjH8ZEJoqM4eFhamtrKRQKKIrC+eefT2dnJw8+\n+CD/9//+X370ox+RSqXYt28fLpcLm82G1+vljTfeoLu7mzPOOIPa2lqqq6uF0LDZbJhMJkZGRvB6\nvdhsNtra2qRPQyKZBvnbIZFI5hV6vX7KRM9jMVFkDA0NUVtbi6qq5PN52traqK6uxmw2s27dOu6+\n+256enrw+/2MjY1x5ZVX8txzz+Hz+QgGg9TX19PS0oLf76eyspLq6mpcLhcWiwWTyUShUGDHjh2Y\nzWaam5spKSk52W+DRLLgUU40YnS+oyjKWmDHjh07WLt27elejkQiOQbRaJRYLIbT6RRbV2eD3+8n\nHA6j1+uFyFBVVZhGOzo6GBgYYM+ePXznO98hkUgAUFZWxsc+9jF+8pOfoKoqRqORlpYW6urqqK+v\nx+l0UlVVhdPpxGKxYDQaMRgMKIqCTqejsbFR+jQki46Ojg7WrVsHsE5V1Y7ZPFcKDIlEMq/I5XL4\nfD6sVit2u/24XiMQCDA2NiZEBiBaJlqtFo/HQ0dHB2NjYzzwwAO88847FAoFtFot1157Lb29vbz2\n2msAlJSUsHz5cqqqqqirq6O8vFxshzWZTJjNZnQ6ndhmW1FRwbJly07W2yGRnFakwJgGKTAkkoWH\nx+NBp9OdUEVgosioq6sDIJ/PA+NzT3K5HNu3b8fv99PZ2cn9998vZp3YbDb+67/+i23btjEyMoKi\nKLhcLtrb23G5XFRXV+N0OqmursZut2M0GrFYLEJoKIoifRqSRcGJCIyFO2heIpEsWrRa7QkNWQJw\nOp04HA6y2SyDg4MA4mafy+XQarVccMEFnHXWWZx55pk89NBDnHvuuWi1WqLRKFu2bGHlypX84Ac/\nwGg04vP5eO2119i5cyf79+/nwIEDHDhwgM7OTnw+H6FQiEgkIgavRSIRduzYwe7du4nFYif8nkgk\nCw1ZwZBIJPOOcDhMIpGgoqLihCsAwWCQUCiETqejvr4eRVHI5/OoqopWq0Wj0RCJRHjttdeIRCIM\nDg7y9a9/nXA4DIDFYmH//v088MAD/OQnP6FQKGA0GkVAV0VFBZWVlTgcDpGhodfrsdvtopoBiPMX\n56lIJAsBWcGQSCSLimIGRiqVOuHXKi8vx+FwkMvlGBgYEMKiKDTy+Tw2m433vve9LFu2jKamJr79\n7W9zySWXoNfrSSQSLFu2jNdff53u7m42b95MOp3m3Xff5fXXX+fAgQO8++67dHV1cfDgQbq7uwkE\nAgSDQcbGxoSYyWaz9PT08Oabb9LT03PCFRqJZL4jKxgSyUlEVVXxiVVy/BQKBbxeLwaDAafTeVJe\nMxQKEQwGJ1UyCoXCJPOnoiiMjIywa9cuotEogUCAu+++m2AwKHaWvPbaa+TzebZu3crQ0BCKouB0\nOmlpacHhcFBVVYXD4aC8vByn00lpaSlarRa73Y5OpxPnUxSFkpIS2tra0Ov1J+UaJZKTzYlUMKT7\nSCI5QaLRKN/6h7t45bnfYFWzxBU9Wy67nC989evYbLbTvbwFiUajOSk+jIk4HA5gvGUyMDBAfX39\nEZUMrVYrMi9effVVDAYD9957L88++yy//e1vSafTrF27lra2Nt5++21+8YtfcNttt+H3+wmFQtTU\n1BCLxSgrK6OqqopQKCSERnG+SklJCWazmVwuRzQapaOjA5PJREtLi8zTkCwqZItEIjkBotEoH7pw\nE5te+h6/r+3l1/VD/L62l00vf48PXbhJ7EqQzJ7iqPVCoXDSXrNYWSi2S4o3fa1Wi6qq5HI5VFVF\nr9dz/vnnc8YZZ1BeXs4HP/hB7r//fqqrqwE4ePAgJSUlOBwOhoaGuOGGG1BVlYGBAd58800OHjxI\nZ2cn3d3d9PX10dnZSV9fH6FQiGg0is/nI51OYzKZ0Gg0pFIp3n77bXbs2IHH4zlp1yuRnE5ki0Qi\nOQH+4XO3suml73GZ88ib4O+CGl6/4Ga+8sBDp2FlC59EIkE4HKa0tBSLxXJSX7vYLtFqtTQ0NKDR\naITAAIT5E8ZF5Kuvvko8HicajfLKK6/w1FNPCX9IXV0d3d3dBINBtm3bxvbt24Hx/Izm5mYqKioo\nLS3F7XZjtVrF7paysjIAjEYjlZWVJJNJsY1Wo9HgdDppaGiQ21wlpxVp8pRIThOvPPcbLi2f+hP2\nZY4Crzz3zCle0eKhaPRMp9Mn/bWLlYx8Pk9/fz/5fF4kck5smaiqKgyg9fX1OBwO3vOe93DvvffS\n2NiIoigMDg5isVh4+umnefbZZ3nppZeoq6sjFouxd+9edu3aRX9/P4cOHWJgYICBgQG6urro7e0l\nHA6TyWQYGhoiHA6LTI1CoYDP56Ojo4O333571rNZJJL5gBQYEslxoqoqVjXL0TydigIWNctirxLO\nFcVkzLm6uU4UGQMDA0JkFKsXxfZMMWZ8/fr1rF+/Hrvdjtvt5ktf+hK33nqr8FPcfPPN1NTUsHr1\navbt28cjjzyCyWQiEAiI7Iy+vj66uroYHh5mcHCQ7u5uenp6CAaD5PN5BgcH8fv9lJSUCD9GLBaj\no6ODXbt2EYlE5uS9kEjmAikwJJLjRFEU4oqeo+kHVYU4ermr5ATQ6XTk8/mT6sOYiMPhwOl0Tiky\ntFothUJBVDIAqquree9734vL5cLhcLBu3Truu+8+li9fjkajwe/3Yzabueuuu7jqqqsYGhrik5/8\nJKqqMjg4yM6dO+nq6qK/v5+uri48Hg9DQ0P09vbS399PIBCgUCjg8XgYHh7GbDbjcrnQarWk02n2\n798vfRqSBYMUGBLJCbDlsst5PjT1r9FzIQ3n/f9/dYpXtLgwGo0AxzVddaaUlZXhcrmEyCj6MKYy\nfwLCALp8+XJsNhsul4svfOELfP7zn6ekpIR8Ps/999+Py+Uil8tx3333cejQIbZs2UI6nebQoUPs\n3LmT/v5+ent76enpwefz0dfXR39/PwMDA/h8PmB8cFtXVxdarZba2loMBgO5XI6+vj7efPNNurq6\nZJ6GZN4iTZ4SyQlQ3EVym7KfyxwFFGW8cvFcSMOD6hn824uvyq2qJ0Bx8JnFYqG0tHROzxUOh/H7\n/Wi1Wurq6oS58mjmTxj/7//aa6+RSCRIJpNEIhH+5V/+hb1795LP59FoNHzkIx/h8ccfB2DXrl1s\n27aNwcFBkZ/R0NBAWVkZNpuNiooKrFYrNpsNh8OB1WrF5XKh1+tJp9M4HA7q6urw+/0kk0mRu2K1\nWmltbRWCTCI5WchhZ9MgBYZkrolGozzwlS/xynPPYFGzJBQ9Wy77Kz7/la9JcXES8Hg8aLVaKioq\n5vxc04mMw+PFixQKBXbs2IHX6yWVShGPxxkeHuaBBx4QngmLxUJ3dzfl5eUA/PznP+eRa6pVAAAg\nAElEQVQLX/gCiUQCrVZLVVUVtbW12O12bDYbbrcbo9GI3W7H4XBgsVhwuVwYjUaSySR2u52GhgZi\nsRhjY2OiumIwGGhubp5zMSZZOkiBMQ1SYEhOJTLJ8+Tj9/vJ5XJUVVWdkvNNJzKKxs+iAXXif+uR\nkRF2795NKpUimUwSj8d56qmnePXVV8nlciiKwoUXXsjzzz8PjAuTO+64Y9J8k9raWqqqqrDZbJSW\nluJ0OjEajZSWllJWVobZbKaiogKLxUI0GsVqtYrR8B6PR1RadDodNTU1IrdDIjlepMCYBikwJJKF\nTSQSIR6Pi1bBqWAmImNivHiRbDbLq6++SjgcFtWMQCDA/fffTygUQlVVTCYTb731Fu3t7cC4gLr2\n2mt55ZVXgPH8jIaGBpxOJ1arlfLycsrKyjCZTJSWllJaWorJZKKyshKbzUYoFMJkMrFs2TKsViv9\n/f3Cs6LRaHA4HCxbtkzmaUiOCykwpkEKDIlkYZPJZAgEApSUlJzSllMkEsHn86HRaKivr590gy7u\nLgFEdsZEDhw4QFdXF+l0mmQySSqV4te//jV/+MMfyGQyKIrCWWedxY4dO8RzOjo6uPbaaxkYGEBR\nFMrLy6mrqxMtEqfTid1ux2QyCc9GUWiUlpYSCATQ6/U0NjZSWVlJb28viURCVNUsFgutra0iX0Qi\nmQlSYEyDFBgSycJnZGQEvV6Py+U6peedTmRMZ/6EcW/O66+/LgRGPB4nEolw//33Mzo6iqqqGAwG\nnnvuOc477zzxvCeffJLbb7+dZDKJVqvF7XZTXV0tEk2LRlCj0YjD4cBmswmPhsPhwO/3o9FoqKur\no66ujpGREYLBoNjqazAYaGpqEkmiEsl0SIExDVJgSCQLH5/PRz6fP2U+jIkcS2QczfwJkw2g2WyW\nZDJJOp3mhRde4N///d9Jp9MoikJDQwOdnZ2TnjeVP6OiogKbzSYixy0WCyaTCYfDQUlJiRAaFRUV\neL1eVFWltraWZcuWMTY2xvDw8CRRVFNTQ01Nzal5IyULEikwpkEKDIlk4TM2NkYymaSyshKtVnvK\nzz9TkTGV+RP+1wCayWRIp9MkEgkikQjf/va3GR4eRlVVdDodP/nJT7jqqqvE86byZ9TV1Ql/htVq\npaKiAqPRKFonxTaKy+XC7Xbj9XqFSbapqYl8Pk9PT4+IYFcUBYfDQVNTk/RpSI5ACoxpkAJDIln4\npFIpQqEQdrsdq9V6WtYQjUYZHR09qsiYzvwJ4wbQ7du3E41GyWQyJJNJstksb775Jk8++STJZBKA\nyspKBgcHJz23o6ODa665RuRnlJeXU1NTg8PhwGw2Y7fbKS8vx2g0iu8nCo2amho8Hg/pdJqKigqa\nmpowm80cOnSIeDwufBpms5m2tjbp05AI5LAziUSyqDEYDMDcDD6bKTabjcrKSgqFwqTET2BSvPjE\nisZE9Ho9F1xwgTBaFueNbNy4kW984xu0tLSg0WgYHR3FbDZzzz33iOeuXbuWffv28U//9E+YzWYC\ngQD79+/n0KFDjI6O4vP56O/vx+fzEQ6H8Xq9DA0NEQqFGBwcZM+ePRQKBVpaWojH47zxxhvs3buX\nqqoq1qxZQ0VFBYqikEgk2L17Nx0dHYyNjZ2y91ayOJEVDIlEsiDwer0AuN3u07qOWCyG1+sVRsrD\nt84ea4cJ/G8CaDqdJpvNEo/HKRQK7Ny5k8cee4x4PA5AaWkpw8PDk86Ry+W44447eOyxxyb5M8rL\ny0XVwuFwYLfb0ev1WK1WsRPFaDTicrlobGzE6/USjUax2+00NTVRWVkphMlEn0ZVVRV1dXVz9XZK\n5jmyRTINUmBIJIuDYDBIOp3G7XYfYaY81RxLZBxrhwmMC5GOjg7hkchkMqRSKRE3/u6774q48euu\nu45HHnlk0vN9Ph/XXXfdJH9GTU0N5eXllJSUYDKZhFfDYDBQUlIidqIYDAacTietra14vV5CoZAI\n7aquriYej4tttjBeoSkrK6O5uVn6NJYYUmBMgxQYEsniIJFIEA6HRaLl6WYmIuNY5k+AoaEh9u7d\nSy6XI5fLEYvFUFWVd999l0ceeYRoNAqA1Wqlr68Pu90+6flvvfUW119//aT8jInbWi0Wi5hrotfr\nRUqo2WwWQqO9vR2fz4fP5xOhXbW1tRQKBTo7O8Wa+H/snWl0lNedp5/a95JUpdJS2jcQArGIHQxx\nzGaYztLtpKc9mRg63YmTbsfxpDOTM5O4e5zYjbEdZ7Ed222fOOOOHccLiZe2jQGBASOENgRCAu37\nvi+lUq3zQf2+kRAICSQW6T7n+EOg6q2rkkI9uu/v/v6M1p6LnMb8QQjGJAjBEAjmBoFAgLa2NgwG\nwy3T4SBJhkKhIDY2Vs6KSFytXlxCagAdGBjA5/PJt076+/t5/fXXKSgowOfzoVQq2bFjB+++++6E\na/y///f/+N//+3/jcrlQq9VERETgcDjk5k/paKter5dFw2q1YjQa0Wg02O12Fi1aREdHB62trXJp\nV1xcHAqFYtw4eUD+e7vdPjtvruCWQAjGJAjBEAjmDtKHeURExM1eiszVJAP+nMu40gkTCakB1O/3\nEwgEGBgYQKFQUFFRwfPPPy8PNtPr9Zw7d46EhIRxz/f5fPzwhz/klVdekfMZ0m0TqfnTbDYTFhaG\nTqdDq9XKA9aMRiNqtRqbzcaSJUvo6uqiublZPjUTHx+PTqejra2NxsbGcbeAIiMjiYuLm/k3V3DT\nEYIxCUIwBIK5Q1dXFx6P55bIYYxlOpIBVw5/wugclNOnTzMyMkIgEGB4eJhAIEBvby9/+tOfOHHi\nBF6vF4VCwapVq+QMxlg6OjrYvXs3J0+eBEbzGdHR0XIhlzRAzWq1otPp0Gg0hIaGYjKZxonG0qVL\n6enpoaGhYVxpl8FgYHBwkKqqKtxuNzCa0wgJCSElJUXkNOYQQjAmQQiGQDB3GBgYYHBwELvdftkP\n8ZvJ0NAQra2tk0rGVMKf8OcG0Pb2dgKBAMFgkIGBAZRKJTU1NTz33HN0dnbKdeOHDx9m7dq1E66T\nl5fHN77xDTmfYbfbiYiIwGq1Yjab0Wq1snRotVq0Wu040VCpVISFhbF8+XL6+vqor68fV9plNpvx\n+XyUl5dPyGmkpqbeElkZwfUhBGMShGAIBHMHn89HR0cHRqORkJCQm72cCbhcLlpaWq4qGZPVi4+l\nubmZs2fPylIyMDCASqWiq6uL7OxsPv74Y7luPCUlhdLS0ste55VXXuFHP/qRnM+IjIyUh6cZDAZ0\nOh02m03OY0iiId1WGSsaQ0ND1NbWMjIyQkREBElJSfL3oqamhs7OznE5jfj4+Bs+Q0YwcwjBmAQh\nGALB3KK1tRW1Wn3LfmhNVTKmEv6EPzeADg4Oys8ZGhpCqVRSV1fH888/T0tLC8FgEI1Gw2uvvcaX\nv/zlCdfx+Xz84Ac/4NVXXx2Xz5BEQmoBlToz1Go1er1ezmiMFY2srCyGh4epqanB5XJhs9lISkrC\nZrOhUCjk4i9JjJRKJZGRkcTHx8/smy2YdYRgTIIQDIFgbtHZ2Slv09+qTFcyrhb+BLhw4QLV1dUE\nAgFUKhXd3d3o9Xo6OzvJyclh//79ch7C6XRSW1t72eu0tbWxZ88ecnJygNGG0sjISPkoqyQadrtd\nzmfodDr5eKtWq0WlUhEaGsrKlSvxeDzU1NRMKO1SKBSXzWlYrVZSU1NFTuM2QQjGJAjBEAjmFn19\nfbhcLhwOxy39ITVWMmJiYtDpdJd93FTDnzA6dC03NxePxwMgl3MplUoaGhp46aWXqKurkyXk8ccf\n53vf+95lr5Wbm8vf/d3f0djYiFKpxGaz4XA45HkvUjlXaGgoOp0OtVqNwWAgJCQEs9mMRqMZJxqB\nQICamhq5tCspKYmoqCiUSiU+n4+KigoGBgbknIbBYCAlJeWmzZYRTA0hGJMgBEMgmFt4PB66urqw\nWCyYzeabvZxJmapkTDX8CeMDoDCac+jo6MBkMtHW1sbZs2d57bXXcLlcANhsNhoaGiYUgUn85je/\n4cc//rGcz4iKipJvm0jlXNLwNJ1Oh0qlkjMwFotFnsESEhLCqlWrUCqVVFdX09nZOa60S5qCW1tb\nS0dHh8hp3CbMC8FQKBQJwMPAXUAU0AS8BjwWDAa9kzxPCIZAMIeQCrekFspbnelIxlTDn/DnAKjf\n70etVjM4OCjvhNTX1/Pqq69SUVEh143/wz/8A08//fRlr+Xz+finf/on/v3f/51AIIBer8fpdGKx\nWLBYLHLrp7R7IYmGyWSSC7uUSqUsGitXrkSr1VJTUzOhtEsSnc7OTurr6/F6R//5ViqVRERETOj2\nENxc5otg7AD+GngdqAKWAC8DrwaDwf81yfOEYAgEc4z29naCweBNH3w2VcZKhtPpvGLN9lTrxSVG\nRkY4deoUg4ODwJ93M6xWK01NTdTV1fFv//Zvct24xWKhvr7+irclxuYzFAoFJpOJ6Oho+baJTqeT\nh6lJ0qFSqeTdDqlhdaxoGAwGamtraWpqQqVSjSvtgtEOkerqanlcvUKhwGKxkJaWdkvfApsvzAvB\nuBwKheIHwLeDwWDqJI8RgiEQzDF6e3sZHh6+5Qq3JmM6kjGd8CeMD4AajUY6OztRqVQEAgHq6+v5\nwx/+QElJiVw3/sUvfpE333zzitfLzc3lG9/4Bk1NTXI+Izw8fNwMk7GiodFoUKvVsmiEhYXJORCr\n1crKlSuxWCzU1dVdtrQLRndRKisr6e/vl3Maer2elJSUW/5W2FxmPgvGo8D2YDC4ZpLHCMEQCOYY\nw8PD9Pb2ygO9bheGh4dpbm6+qmTA1OvFJfr7++UGUOnxnZ2d2Gw26urqaG1t5de//jW9vb3AaMiy\nrKwMp9N5xWu+/PLLPPzwwwwPD8v5DCl7IXVmSLNhDAYDarVazmxIJ1Gkzxir1UpWVhahoaHU19df\ntrRLoq6uTi4Zg9Hwa0JCgshp3ATmpWAoFIpUIB/4fjAY/M0kjxOCIRDMMaQchvRb9O3EtUgGXP2E\nifR4KQAaDAaxWq00NzdjMBjweDw0NDTwwQcfkJubK9eNb9iwgSNHjlzxmj6fj+9///v87ne/k/MZ\nMTExcv5CEgvpxIlWq0WtVqNWq+Udj/DwcPnrkEQjLCyMpqamK5Z2weVzGg6Hg8TExKm+3YLr5LYW\nDIVCsRf44SQPCQKLgsFg+ZjnxABHgexgMHj/Va4vBEMgmIO0tbUB3DY5jLG43W6am5sBrioZ0zlh\nIjE2AKrX63G73fT392O326mqqqK3t5df/epXdHd3EwwG0el0fPbZZyxduvSK12xtbWXPnj2cOnVK\nzmdIomE0GuVbJVLoU8pnSHNO9Ho9DocDn88ny09WVhZ2u52WlpYrlnbBqJRVVFSInMZN4HYXDDtw\ntSh4dTAY9P3n453AEeBkMBj82ylcPwso2Lx584Rq4XvvvZd777332hYuEAhuKt3d3YyMjNxWOYyx\nTFcyphP+hPEBUIVCQWhoKHV1dVitVlwuF01NTRw9epTDhw/LdePp6ekUFxdPet3PPvuMb33rW+Py\nGQ6HQ2771Ol0cjGXxWKR+zKkUyh6vZ7IyEg8Hg/BYBCLxcLKlSsJDw+nra1tXGlXcnIyDodD/lp9\nPh9VVVX09fWJnMYs8Pvf/57f//734/6sr6+PY8eOwe0oGNPhP3cusoE84OvBKSxe7GAIBHOToaEh\n+vv7CQsLm/TD+VZmupIx3fAn/DkAGgwGCQkJobu7m+HhYcLDw+UhZc888wxtbW1y3fjbb7/Nzp07\nJ73uiy++yP/9v/+X4eFhNBoNUVFRctunNApep9PJ+QytVotSqZRFw2AwEBUVhdvtlkVjxYoVRERE\n0NXVdcXSLon6+nra29vH3UKKi4sjIiJiKm+9YIrc1jsYU+U/dy4+BWqAPYBf+rtgMNg2yfOEYAgE\ncxC/3097e/stO/hsqkiSEQwGcTqdV51AOt3wJ4xvANVoNJhMJurq6ggPD6evr4+mpiby8vJ4//33\n5VrvuLg4qqqqJr2ux+Phn/7pn3jttdfkfEZcXJwsFlIeQwqC6vV6WTSkXQ6j0YjT6WRoaIhgMIjZ\nbCYrK4vIyEh6e3snLe2Cy+c07HY78fHx4vbJDDBfBGM3cGmYUwEEg8Gg6jJPkZ4nBEMgmKO0trai\nUqlwOBw3eynXxbVKBkwt/Ck9RwqAKhQKHA4HDQ0NBAIBwsPDKS0txePx8Mwzz9DU1CQfM/35z3/O\nt7/97Umv3drayu7du8nNzZXzGXFxcWi12nENoCaTSd7h0Gg0KJVKDAYDJpMJs9lMdHS0PPZ9rGgM\nDAzIpV1arZb4+PhxpV3Se1hRUSE3mCoUCsxmM2lpaVdsMRVcnXkhGNeKEAyBYO7S2dmJ1+slOjr6\nZi/luhkrGdHR0Vc9fnst4U+ApqYmzp07h9/vx2g0olQqaWpqIioqiq6uLpqamigtLeXNN9+UP6zt\ndjv19fVX/aAem8+Q5pRER0djMBjQ6/XyRFaz2YzNZkOlUqFWq1EqlRiNRvl4a0xMjJyzMJlMrFix\ngujoaFwu16SlXTCa06iurqa3t1fkNGYAIRiTIARDIJi7DAwMMDg4iN1uv+zE0tuNa5GM6dSLS1wa\nAHU6nVRUVKBWq7Hb7ZSUlOD3+3nhhReorq7G7/ejUql46KGH2Lt371Wv/8ILL/DII48wPDyMVqsl\nIiKCkJAQQkJC0Gg0aLVa+cRJaGioPM9E2uUwm82YTCacTqcsCmNFw+12U1dXR2Nj42VLuyQaGxtp\nbW0dt9sTExNzS0/ivdUQgjEJQjAEgrmL1+uls7MTs9mMxWK52cuZEUZGRmhqapqWZEjhz6meMJEo\nKyujpqaGYDCI3W5ncHCQ9vZ24uPjaW5ulv97+eWX5Tpyq9VKXV3dVaegejweHnroId54441x+Qyt\nVktYWBhqtRqtVotWq5XDoUqlUt7RkPIZZrOZmJgY+UjtWNHwer1XLe0C6OnpoaamRuQ0rgEhGJMg\nBEMgmNu0tLSg0WjmVMvjdCUDRkOv0z1hAhMDoJGRkZSVlcmV38XFxahUKl588UUuXrwo143/zd/8\nDb/97W+vev3m5mZ2795NXl6enIuIj49HpVIRFhYm3yaRZMJisciD06Q5JwaDAavVSkxMDJ2dnbJo\nLF++HKfTic/nu2ppF/w5pzE8PEwwGJTzIqmpqVccQjffEYIxCUIwBIK5TUdHB36/f85te3s8HvkW\nwFQl41rCn9LzCgoK6OjoIBgMEhcXR1NTE729vSQlJVFXV0dbWxu9vb0888wz9PX1AWA0GqmoqJhS\nyPbEiRN885vfpKWlRc5nSCdCQkJC5J0L6faIJBpjp7RKp1NiY2PlY7VGo5EVK1bgdDoJBAJXLe2C\n0ZyGdAxW+gzU6XQkJydjtVqn9J7NF4RgTIIQDIFgbtPX14fL5cLhcMy57e5rkYxrDX/CaGZByl+Y\nzWasVisXLlwgLCwMi8VCUVERWq2WV199laKiIrlu/M477+TAgQNTeo3nn3+eRx55BLfbjVarxeFw\nYLfbMRgMchuodIvEZDJhMplk0ZDqx7VaLXa7HafTSWtrqyway5cvJyYmhmAweNXSLommpiZaWlpE\nTuMKCMGYBCEYAsHcxu1209PTg8VimZOnBK5VMq4l/AnjA6BKpZKUlBQuXryIy+UiLS2N8vJyOjo6\nGBoa4he/+IW8C6DT6cjNzSUjI2NKX9P3vvc9/vCHP8gTYGNiYtDr9XIQVK1WyzsXVqtVbgRVKBRy\n/bharSYiIoKoqChaWlpk0Vi2bBmxsbEEg8EplXbB6ITempoaPB4PgNxSmpCQMOfEdToIwZgEIRgC\nwdxGGnwm/VY7FxkrGVFRUVcNWMK11YuPZWwAVGrHrKioIDIyEoPBQGFhIXq9nrfeeovPPvsMj8eD\nQqEgMzOT/Pz8Kb1Gc3Mz9913H/n5+XI+IyEhAYVCIWdqNBrNhBMn0tei0+mwWq3ypNfo6Gj5fRor\nGsCUSrtgVFgrKytxuVwip4EQjEkRgiEQzH2k6aG34+CzqTJWMiIjI6e0W3Ot9eISfX19nD59Go/H\ng1arJSUlheLiYvx+PwsWLOD8+fN0dnaiUCh4/PHH5QyHRqPh/fff56677prS6xw7doz777+flpYW\n1Go1VquVxMRE/H4/DoeDQCCAWq1Gr9djNpvlCbqSaOj1eiwWi3x7IzIykoaGBoLBIAaDgWXLlhEX\nFwcwobQrISGB2NjYCR0fPp+P2tpaenp65LHxWq2WpKQkQkNDp/we3u4IwZgEIRgCwdynp6cHt9t9\n2w4+myrXIhlwbfXiY587NgCanJxMV1cX9fX18mmQgoICTCYTH3zwAQcPHpTrxhMTEykvL7/KK/yZ\nX//61/zkJz/B7Xaj1+ux2WxyFsJut8u7MVI2w2az4ff7ZdEwGAyYzWY0Gg1xcXGEh4fT2NhIIBDA\nYDCwdOlS4uPjAaZU2iXR3NxMS0uLnG1Rq9U4nc45UfB2NYRgTIIQDIFg7uNyuejr6yMkJGRKGYXb\nmWuVjLHhz+mcMJEY2wBqsVhwOp0UFRWhVqtJT0+nqKiIrq4u9Ho9//qv/0pLS4u88/Dcc8/xt397\n1eHX8tf34IMP8uabb8r5jOjoaPm4qslkQqFQoFAo5JMl4eHh8vFZSTRMJhMajYbk5GRCQkJk0dDr\n9SxbtkwWjamWdsHlcxphYWEkJibO2ZyGEIxJEIIhEMx9pByGXq+Xt8/nMh6PR54XMl3JuNbwJ0wM\ngGZkZFBVVUVrayspKSn4/X4KCwuxWq0cPnyYP/3pTwwPDwMQERFBTU3NlOeCNDY2snv3bgoKCsbl\nM6T+DEmSpA95KfDp8Xhk0ZCOuyoUClJTU7FarfL8lUtFY6qlXTAqJVVVVfKANoVCgdFoJDU19bad\n7HslhGBMghAMgWB+0NbWhkKhmDfjur1er/xb+bVKxrWEPwFKS0upq6uTX9tisXDmzBmMRiMLFy4k\nLy+Pnp4eQkND+elPf0p9fb1cN/5//s//4eGHH57yax09epRvf/vbtLa2ysdUk5KS8Hg8REdH4/P5\nZFmSKuNtNpscOpVuqZjNZpRKJenp6RgMhnGisXTpUhISEgCmXNolPbauro7u7u45m9MQgjEJQjAE\ngvlBV1cXHo9nzucwxnI9knE94U8YvV2Qn5/PyMgIWq2WzMxMiouL6e7uZtGiRbhcLgoKCrDZbJw+\nfZp///d/l+vGQ0JCaGhomNZv+88++yyPPvoobrdbHv8eFxeHx+MhJiaGkZERlEolGo0Gm82GVqsl\nNDRUFo2xraBKpZIlS5ZgMBioqamRRSMzM5PExESAKZd2SbS0tNDc3DyugyQ6OpqYmJhpva+3GkIw\nJkEIhkAwPxgcHGRgYACbzTavjhP6fD75t/HpSAZcX/hTen5+fr5c352WlsbIyAglJSWEhYWRlpZG\nTk4Ovb29OBwOHn30UaqqquS8xO7du3nxxRen/Hoej4fvfve7vPXWWwQCAcxmMw6Hg/DwcAKBgDwI\nTalUyp0aJpMJo9Eol4KpVCqsVqs82XXFihWo1Wqqq6tl0ViyZAlJSUkA0yrtgtHq9erqakZGRoDR\nsfFhYWEkJSXdljkNIRiTIARDIJgf+Hw+Ojo6MBqNl93OnsuMlYyIiIhpDX671nrxsVwaAF2wYAH5\n+fkMDQ2RmZlJT08PhYWF2O12zp8/z4svvkh/fz8wvbpxicbGRu677z4KCwvl1s/Y2Fj0ej06nY6w\nsDB550IamiYVePl8PhQKxbhWULVazapVq1AoFFRVVREIBNDpdGRmZo4TjamWdsFoXqWysnJcTsNg\nMJCWlnZb5TSEYEyCEAyBYP7Q2tqKSqWa1ofVXOF6JON66sUlLg2ALl26lJaWFsrLy4mMjCQlJYXj\nx4/T19dHTEwMjz/+OCUlJfLOwo4dO3jvvfem9ZpHjhzhO9/5Dq2trWg0Gnl3wev1Eh4ePk4obDYb\narVa/tmQ/lyj0cjyodFoWLt2LX6/Xx5Tf6lowNRLu6TXqa+vp6urS85pSKdbboechhCMSRCCIRDM\nHzo7O+UTAPORsZLhcDimNbjr0vDn5T4sp0JZWRm1tbUEAgGioqJwOp3k5ubi9XpZsWIFra2tFBUV\nER4eTlVVFc888wy9vb0Eg0H0ej15eXksXLhwWq/5zDPP8Nhjj+F2uzEajVitVlJSUhgcHCQuLg6v\n1yvvIkRERBAMBnE6nXg8HvlDf2wrqFarZcOGDXg8HqqqqmTRWLx4MSkpKfLrTrW0S6K1tZWmpqZx\nMhcVFSW3jd6KCMGYBCEYAsH8YS4PPpsq1ysZUvjzWk+YwMQA6MqVK7lw4QK1tbVyodWnn37KwMAA\nSUlJPPHEE+Tn58u3NbKyssjJyZnWa7rdbr773e/y9ttvEwwGsVqthIWFERsby9DQECkpKQwMDACj\n/RXR0dEEAgFiY2MZHByUp6qObQXV6XRs2rQJl8sli4ZWq2XJkiXjRGM6pV0wKiZVVVXjchqhoaEk\nJyffcj+3QjAmQQiGQDB/8Hg8dHV1YTabp3WLYK5xPZIB4Pf7r+uECUwMgC5YsACdTsfp06dRKpWs\nWrWKuro6ioqKiIiIoK2tjX379tHV1UUwGESr1fLhhx+yefPmab1ufX09u3fvpqioCKVSSUhICNHR\n0VitVrxeL8nJyfK4eY1GQ1RUFD6fj4SEBPr6+mTRkFpBpYryO++8k4GBASorK2XRWLx4MampqfJr\nT6e0C0ZPAVVUVIwTHKPReEvlNIRgTIIQDIFg/jAfBp9NleuVjJkIf8L4EfAWi4Vly5ZRWFhIS0sL\nqampREVFceTIEQYHB0lPT+dnP/sZx48fl3+7T0lJoaysbNqvm52dzXe+8x3550GabwKjuxRRUVH0\n9fXJ4UuHw4Hf7ycxMZHu7m75A99sNmMwGFCr1RiNRrZs2UJPTw8VFRWyaGRkZF1kJCEAACAASURB\nVJCWlia/9qWlXdHR0SQmJl7xhM+VchoJCQk3/edYCMYkCMEQCOYX82Hw2VTx+Xw0Njbi9/sJDw+f\n9umamQh/wsQA6IoVKxgYGKCwsBCDwcDq1aupqKjgzJkzOJ1Ouru7eeyxx2hra5Prxn/zm9/wN3/z\nN9N+7V/84hfs3buXkZERzGYzZrOZ1NRUhoaGcDgcmEwmBgcH5epxi8WCSqUiNjZWFg3pNIpOp0Ot\nVmM2m9m6dSudnZ3jRGPRokUsWLBAfu3plHZJtLW10djYOO59j4yMlIe13WiEYEyCEAyBYH7R29vL\n8PDwvCrcmoyZkIzrqRcfy6UB0LS0NE6dOkVXVxeLFi3CZrORnZ2Ny+Vi8eLFPPvss3zyySdy3XhU\nVBRVVVVTrhuXcLvdPPDAA7zzzjsEAgHCwsLkIGhPTw9JSUn4/X55SJvD4UCr1WIwGIiMjKSrqwtA\nlhDplofVamXbtm20t7dTXl6O3+9Ho9GQkZFBamqq/F4FAgGam5upra2dUmkXjPa6VFVVyWuSXjsl\nJeWG5jSEYEyCEAyBYH7hdrvp6emZF4PPpspMSsb1hD9hVADz8vLkEfBr1qyhsbGRc+fOYbVaWb16\nNefPn+fs2bM4nU6Gh4d55JFHaGpqkuvGf/KTn/A//+f/nPJrDgwM8NMnf8THx/5Iv6edgQ4vvgEN\nNoOTiIgIoqKi6O/vJyMjg97eXvnorNPpxOfzYbfbCQkJoaenB0DOdkg5idDQULZv3y4fy72SaEy3\ntAtGv3cVFRUMDAyMy4ekpaVdMdsxkwjBmAQhGALB/ELKYeh0Omw2281ezi3DTEjG9daLS1wuABoe\nHs7JkycZGBhg2bJlmEwmsrOzGR4eZunSpbz00ku8++67DA0NARAWFkZdXd1Vw5ADAwNs/6v1JD9U\nRtKOAAoFBINQ+SF89I9KtG4bISEhJCQkoNfrcbvdcoeHdJomISEBt9tNVFQUWq2W3t5e+T0ICwuT\nd1RsNhvbt2+nqamJiooKfD4fGo2GRYsWkZaWNk40plPaJVFTU0NnZ+e4nEZ8fDzh4eHX9H2YCkIw\nJkEIhkAw/2hrawMQOYxLuF7JgOuvFx9LQ0MD58+flwOgq1evpqysjAsXLhAREcHKlSs5c+YM586d\nIzY2lkAgwL/8y7/IJVhKpZJvfetb/OpXv7ria/yvf36QprXPkXx3YMLfVf6HggPf1hNwabFYLJhM\nJtLS0uTdldTUVJqbmwkGg2g0GhITExkcHCQxMRGfzycfe1Wr1fJEV4Dw8HB27txJfX09Fy9elEUj\nPT2dBQsWjJOI6ZR2SXR0dMgBUhjdUYmMjJQnw84kQjAmQQiGQDD/6O7uZmRkROQwLoPf76ehoQG/\n34/dbr+mNsmx4c/rOWECMDw8zOnTp+UAqPTv9KlTpxgZGWHlypWo1Wqys7Nxu92sWrWK3/zmN7z1\n1lty3bjZbKaiouKyJy6ytiax6+NaLrfEYBD+Y0cCWYlb2L9/P8FgEJvNhslkIj09na6uLiIiIggP\nD5en9RqNRmJiYhgcHGThwoUMDAzIuyrSgDVJDiIjI9mxYwd1dXVXFY3plnbB5XMaVquV1NTUGctp\nCMGYBCEYAsH8Y2hoiP7+fsLCwm6ZPoFbibGSYbPZCAsLm/Y1ZjL8CeNHwEdFRZGZmUlhYSHV1dXE\nxsayfPly8vLyOH/+PHFxcWi1Wh5++GEuXLgg135/8Ytf5K233hq3xjVfiuPuPzZd8XU//ssYTr/b\nQH19Pffddx/FxcWoVCpsNpscqmxvb5dvcXR3dwOjuQuHw8HQ0BCLFy+ms7NTDqPqdDpCQ0Pl98Tp\ndLJjxw5qamrk9arVatLT01m4cOG49266pV1w5ZxGSkoKJpPp2r8pCMGYFCEYAsH8w+/3097eLo/1\nFkwkEAhQX18/Y5JxveFPgJ6eHrnRU6vVsm7dOnp7ezl9+jSAPCfk8OHDjIyMsHbtWn7/+9/z6quv\njqsbLygokHsprraD8eHdiRQeqpH/7ODBg/zDP/wDHR0d6PV6rFYrTqcTu91Od3c3WVlZ9Pb2yrdH\nIiMjMZlMeDweli5dSlNTk9zhMXbwnkKhIDY2lq1bt05JNKZb2iVRV1dHe3v7jOU0hGBMghAMgWB+\nMp8Hn02VQCBAQ0MDPp/vuiRjpsKf0pouDYDGxcWRm5tLU1MTycnJLFmyhFOnTlFaWkp8fDwWi4WH\nH36Ys2fPynXja9eu5dixY5NmMKo+UhKX9wD7HvnlhL/72c9+xhNPPMHIyIh8NDU1NRWVSoXL5WLt\n2rXU1dUxMjKCQqEgPj6eQCCASqUiMzOT2tpavF4vwLhmWYVCQWJiIlu2bKGqqooLFy7g9XpRq9Us\nXLiQ9PT0caIx3dIuic7OTurr6+U1KJVKIiIiSEhImNb3QwjGJAjBEAjmJ52dnXi9XqKjo2/2Um5p\nZkIypOvMVPgTJgZA16xZQ1NTEwUFBeh0OtavX4/L5eLw4cN4vV42bNjAW2+9xcsvvywXZGm1Wt57\n7z1+tPdBkr5XRvLdfz5FUv2xkppfLuKT/TlXrJV3u9185zvf4U9/+hPBYBCHw4FOpyMjI4P+/n40\nGg1ZWVnyiRGlUsmCBQsYHBzEaDSyaNEiuVocRnszjEYjCoUChUJBSkoKd9555wTRWLBgAYsWLRon\nGtdS2gWjtwurqqrk2zdSaVhaWtqUchpCMCZBCIZAMD8ZGBhgcHAQu92OVqu92cu5pZlpyYDrD3/C\n5QOgJpOJnJwcOjo65ObMzz77jAsXLpCYmIjD4eDhhx8mNzdXvlWRlpbGX3xlKwc/ew+V0YvfpWHb\nxi/y4x88OqWZNTU1Ndx3332cO3dO3hUzGAwsXryYlpYWHA4HqampVFRUyCdOMjIy6OjowGazkZyc\nTGVlpXzbwmazodVqZdFYuHAhd9xxBzU1NZSWlsqikZaWRkZGxjjRuJbSLhgVlMrKSvr7+8cNdktJ\nSZl0N0QIxiQIwRAI5ider5fOzk5MJtO053DMR8ZKRlhY2DV3iMxUvfhYLg2ALlu2jIqKCoqLi7FY\nLGzYsIGenh6ys7Px+/1s2LCBDz/8kOeee07OI6jVal577TW+/OUvX7P4HDhwgAceeICOjg453xMe\nHk5CQgJNTU0sXLgQq9VKXV0dwWAQk8nEwoULaWlpITY2lsjISKqqquT6cbvdLr9HSqWSjIwMNm7c\nSGVlpSwaKpWKBQsWTBCNS0u7QkJCSEpKmrS0S6K+vl6uYYdRGUxISLhsTkMIxiQIwRAI5i+tra2o\n1epZLSKaS8ykZIwNf07W6TBVLm0AXbduHX6/n5MnT9Lf309mZiZJSUkcP36cixcvkpSUhNPp5F/+\n5V84fvy4fIsgJiaGysrK61rTU089xRNPPIHH4yEsLAydTiffrmhvb2ft2rUMDQ3R2toKjJaCJSYm\n0traSmpqKmazmdraWlk0oqKiUCgU8omcpUuXsm7dOsrLy8eJRlpaGosXL54gGtdS2gWXz2k4HA55\nKBwIwZgUIRgCwfylo6MDv99PVFTUzV7KbUMgEKCxsRGv13vdkiGFP2fihIm0tksDoMnJyZw7d46y\nsjLsdjvr16+nvb2d7OxsAoEAmzdv5sCBA/zyl7+U2zlVKhV79+7loYceuua1uFwuvvOd7/Dee+8R\nDAaJiopCrVaTkZGB1+tlcHCQz3/+89TW1tLb2wtAdHQ0drudrq4uli5dKr/XkohFR0cTDAZl0cjK\nymLVqlWUl5dTVlaGx+O5omjA6Ckcqe1zqqVdMHorqqKi4rI5jbNnzwrBuBJCMASC+UtfXx8ulwuH\nw3FDB0Td7oyVjNDQ0OsaGe73+2fshInEpQHQ9evX09vbS05ODm63m6ysLJxOJ8eOHaO8vJyUlBSS\nk5P553/+Zw4dOiQXY9ntdmpqaq6rK+XSfIYkGitWrKC9vR2VSsWdd97JuXPncLlcKBQKkpOTUavV\nDA4Osnr1avr6+mhpaQGQJ7l6vV6CwSBqtZrVq1ezfPlyKisrOX/+/FVF43KlXXFxcVf9/4DP56Oq\nqoq+vj45p1FTU8O9994LQjAmIgRDIJi/SIPPLBbLVY/1CcYzk5Ix0+FPGP3e5ubmjhsBb7fbKSws\npKqqCqfTydq1a2lsbOTIkSMAbN68mWPHjvH0009TV1cn141/97vf5cknn7yu9Rw4cIB//Md/pLOz\nE6PRiN1ux2w2s3jxYmpra3E4HKxevZr8/Hz5xMmSJUtwuVx4PB42bNhAY2MjnZ2d8vsUHx+P2+2W\ng6Pr169n8eLFE0QjJSWFzMzMCaJxLaVdEg0NDbS1tXH+/Hn27NkDQjAmIgRDIJi/SIPPtFrtdX1A\nzldmUjJmI/wJEwOgK1asoKWlhdzcXILBIKtXryY8PJyjR49SWVlJamoqCxYs4NFHH+X999+XC7Ms\nFgtVVVXXXcz2xBNP8NRTT+HxeLDb7ej1epxOJ/Hx8VRXV5Oenk5CQgJnzpwhEAjIR12l3paNGzdS\nXl5OX18fMFo/HhcXh8vlkv/3HXfcwcKFC6mqqqKkpOSqonFpaVdsbCwJCQlTmsaanZ3Nli1bQAjG\nRIRgCATzm/b2doLBoBh8do2MlYyQkJDrCszOdL24RE9PDwUFBYyMjMi/6Ws0GvLy8mhoaCAxMZFV\nq1ZRW1vL0aNHUSgUfP7znycnJ4cnn3ySyspKuW78nnvu4fXXX7+u9bhcLr797W/z/vvvyy2cCoWC\n9PR09Ho9zc3NbNiwAYVCQXl5OcFgEKPRyMqVK6mursZisXDHHXdw5swZBgcHgdEjpbGxsfLtHZ1O\nx+c+9zlSUlKorq6mpKSEkZGRSUXjWkq7RMhzEoRgCATzm56eHtxutxh8dh3MlmTMVPgTRrMe+fn5\ndHV1EQwGSUtLIy0tjdraWvLz89FoNKxbtw6r1cqRI0eoqqqSeyb27dvH22+/LWcPDAYDZ8+enXbr\n5aVUVVWxe/duSkpKUKvVxMTE4Pf7WbNmDX19ffT397Nz504aGxtpbGwERjsyMjMzKS8vJyIigrVr\n15KXlycHME0mE06nUxYPg8HA5z//eRISEqipqeHcuXOyaCQnJ7N06dIJP/fTKe0SgjEJQjAEgvmN\ny+Wir6+PkJAQjEbjzV7ObctMS8ZM1ouP5XIBUI/Hw6lTp2hra2PhwoUsXbqU6upqjh49ilKp5K67\n7qKoqIgnn3ySkpISvF4vCoWCTZs2cejQoete04cffsh3v/tdurq6MJlMOBwONBoNq1ator6+HqVS\nyV/8xV9QVFQkD1OTbmNUV1cTHx/PsmXLxpWHhYSEyMPWYHTuydatW4mJiRknGkqlkpSUlMuKxuVK\nu5KTkwkLC5O/H0IwJkEIhkAwv5FyGHq9/pobKgWjBAIBmpqa8Hg81y0Z0vVmOvwJlw+ARkZGcvHi\nRc6cOYPZbGbDhg3odDqys7Opqalh4cKFLFu2jMcff5w33niDnp4egsEgOp2OQ4cOsXbt2utaUyAQ\n4IknnuDpp5/G4/HIbaB2u52MjAwuXLhAREQE27Zt4/jx4wwNDcktn2azmaamJtLT00lNTeXUqVNy\nd4XNZsNut8s7Gmazme3btxMZGUlNTQ0lJSW43W6USiXJycksW7ZsgmhMVtpVVFQkBONKCMEQCARt\nbW0oFAoiIiJu9lJue8ZKhtVqve5hcmPDnzMpGQDnz5+nvr5+XAB0YGCAkydP0tvby5IlS8jIyKC8\nvJxjx46hUqm46667KCsrY9++fRQVFck7BkuWLKGwcFqfr5fF5XJx//3388EHHxAMBklISMDv95OW\nlkZUVBQXL14kPT2dFStW8Omnn+LxeOSadK/XS3t7O1lZWURERHD69GlZ0CIjIzGbzXIY1Gq1snPn\nTmw2G7W1tZw7d04WjaSkJJYuXTrh2KpU2lVdXU1vby8mk4nBwUHuvvtuEIIxESEYAoGgq6sLj8cj\nchgzxGxIxmyEP+HyAVCj0UhJSQmlpaXYbDbWr1+PUqkkOzub2tpa0tPTycrK4qmnnuJ3v/sdHR0d\n8lHRt956i127dl33uioqKtizZw/nz59HrVaTmJiI2+1m9erVcqPqHXfcgcPh4LPPPpNPnGzcuJHW\n1lYGBgbkXZjCwkL5dlNsbCxqtRq32w1AaGgou3btIiQkhLq6Os6ePSuLRmJiIsuWLbtsP4ZU2pWT\nk8MDDzwAQjAmIgRDIBAMDg4yMDCAzWabUgeA4OrMpmTMZPgTrhwA7erqIicnB5fLxYoVK0hNTeXC\nhQscO3YMjUbDli1bqK6uZu/eveTm5sof2vHx8Vy8eHFGKtA//PBDHnjgAbq7uzGbzURHR+P3+2WR\n6O3t5Qtf+AL9/f2cO3dOnnGyadMmysvL8fv93HnnnQwNDXH+/Hm5fjwlJYVgMCjvaNhsNu6++25C\nQkKor6+nuLh4SqJx/PhxNm/eDEIwJiIEQyAQ+Hw+Ojo6MBqNVx1vLZg6syEZsxX+hNEAaGlpKT6f\nTw6AKhQKioqKqKioIDo6mrVr1+L3+zl8+DD19fVkZGSwcuVKfvGLX/Db3/5WHhKmVqv55S9/yTe/\n+c3rXlcgEGDfvn08/fTTeL1eoqKiMBgMmM1mVq9ezcWLF1Eqlfz1X/81586do7a2FhiVhnXr1lFS\nUoJWq2XLli00NzdTWVkpi1p6ejrDw8OyHIWHh7Nr1y5MJhP19fWcPXuW4eFhlEolCQkJLF++fJxo\niJDnJAjBEAgEgFxkdL0fgoLxSCcRRkZGsFgsM5JzkcKfsyEZlwZAly9fTnR0NM3NzeTm5uL3+1m9\nejXx8fGcP3+e48ePo9Pp2LJlC01NTezbt49PP/1U3hlwOBxUVVVdV924xODgIPfffz8ffvghAElJ\nSXi9XhISEli4cCFnzpwhMjKSv/qrvyI7O1tu/YyLiyMzM5Pi4mJCQkLYvn07paWl1NfXA6PFZkuW\nLKGvr0/OlERFRXH33XdjMBhoaGiguLj4sqIhBGMShGAIBAIYnRzp8/nE4LNZYDYlA2Y+/AnjA6CR\nkZFyiDIvL4/6+noSEhJYtWoVHo+HQ4cO0dDQwOLFi1m1ahXPPvssv/3tb2lsbJTrxn/wgx/w6KOP\nzsjaKioq2L17N6WlpajVatLS0hgYGCArK4uQkBDOnz9Peno627dv57333mNwcBCFQsGiRYuIiYmh\npKSEqKgoduzYQU5ODm1tbQDjZqR4PB4AnE4nO3fuRKvV0tjYyJkzZxgeHkahUJCQkEAwGJRO0AjB\nuBQhGAKBAKC/v5+hoSEx+GyWmA3JmK16cYmenh7y8/PxeDxyANRisVBbW0teXh5qtZp169YRFRVF\nSUkJJ06cQK/Xs2XLFjo6OnjyySf55JNP5COiVquVqqqqGbsN98EHH/Dggw/S3d2NxWKRK8M3bdrE\n4OAgdXV1bNq0iYyMDN5//335xMnatWvRaDRUVFSQlJTE1q1bOXTokNyxodVqWbVqldxrolAoiIuL\nY9u2bbJoFBcX43K5qKmp4Yc//CEIwZiIEAyBQADg8Xjo6urCbDZjsVhu9nLmJGMlw2w2z0g9+6Xh\nz5kIVo7lSgHQ4eFhTp06RWtrK2lpaaxYsQKXy8WhQ4dobGwkMzOTtWvX8sILL/Dyyy9TW1srDzG7\n9957eeWVV2ZkfYFAgMcff5yf//zneL1enE4nRqMRtVrN5z73OWpqaujp6eFLX/oSer2eQ4cOySdO\ntmzZQmdnJ01NTSxevJiNGzfy4YcfyvNX9Ho9q1evlteuUChITExk27ZtqFQqGhsbeeedd6Sx9kIw\nLkUIhkAgkGhpaUGj0Vx3QZTgysyWZEjhz5k+YSJRX19PWVkZPp9PLuJSq9VUVFRQVFSE0Whk/fr1\n2O12zp07x4kTJzAajWzZsoWBgQEef/xxPvroI/r7++XZIsXFxdddNy4xODjIt771LT766CMAFixY\nINd8r1mzhqKiIpRKJV/72teora2lqKhIXsfdd99NeXk53d3drFq1iuXLl/PBBx/IORKTycSKFSuo\nra2Vsy8pKSncddddFBcXiwzGlRCCIRAIJDo6OvD7/SKHMcsEAgFaWlpwu90zJhnSdWcr/AmjAdBT\np04xNDQ0LgDa39/PyZMn6enpYfHixSxZsoSBgQEOHjxIc3MzS5cuZc2aNbzyyiu88sorlJWVybce\n7rrrLlkKZoKLFy+yZ88eysrK0Gg0ZGRk0NXVxZIlS0hOTub06dNERETw9a9/nePHj1NZWQmMnjjZ\nvn07BQUFDA8Pc8cdd5CcnMx//Md/jKsfX758OZWVlbLMKRQK7r//fpgvgqFQKLTAaWApsDwYDJ6d\n5LFCMAQCAQC9vb0MDw+Lwq0bwFjJMJlMMyZ1sx3+DAQClJaW0tDQMC4ACqPB0JKSEsLCwli/fj1W\nq5Xi4mJOnjyJ0Whk27ZtjIyMsHfvXt577z16e3vluvETJ06wbNmyGVvnu+++y0MPPURPTw9Wq5WU\nlBS6urrYvHkzGo2G4uJiFi1axFe/+lXefvtt2tvbgdETJ5s2beLkyZMAbNmyhdDQUD755BO5fjw8\nPJxFixZRXV1NbW0tjz/+OMwjwfgFkArsBFYIwRAIBFPB7XbL/yCbTKabvZw5z2xJxmyHPwG6u7sp\nKCiYEACVyrmGhoZYtmwZCxcupK+vj4MHD9LS0sLy5ctZu3Ytv/vd73j55ZflMeoAy5cv5/Tp0zO2\nxkAgwGOPPcavfvUrvF4vsbGxWK1WPB4P27dvl+eLbN68mc2bN/Paa6/J+YvFixeTkZFBTk4OBoOB\nHTt2AHDkyBFZ4JxOJ36/f/40eSoUip3AU8A9QCliB0MgEEwRafCZTqfDZrPd7OXMCwKBAK2trQwP\nD8+4ZMxWvbiEz+ejoKBgQgDU7/dz5swZysvLiYyMZN26dRgMBnk3w2w2s23bNvx+P3v37uXdd9+l\ns7NzxuvGJfr7+7n//vv5+OOPAcjIyMDtdmOxWLjrrrsoKSmht7eXL33pSyQkJPCHP/xBnrS6YcMG\n7HY7eXl52Gw2du3aRWdnJ6dOnZK/dy+99BLMdcFQKBSRQD7wRaAbqEEIhkAgmAZSJ8BM5QIEV2c2\nJWO2w58AdXV1XLhwYVwDqEajobW1VZ5sumrVKhITE+nt7eXgwYO0trayYsUK1q5dy9tvv81LL71E\nQUGB3KiZnJzM+fPnZ/RUzIULF9izZw8XLlxAo9GwbNkyWltbWbBgAStXruTkyZOoVCr++3//77jd\nbj766CP8fj9qtZqdO3fidrspKSkhJiaGL3zhC5SWlnLgwIF5IxgfAseDweBehUKRgBAMgUAwTbq7\nuxkZGRE5jBvMWMkwGo1ER0fPyHVnu15cYnh4mNOnT48bAR8VFYXH4yE/P5/a2lri4uJYvXo1Wq2W\nM2fOkJOTg8VikY99Pv7443IeQqobf/bZZ/nGN74xo2t99913+d73vkdvby+hoaEsXLiQlpYW1q1b\nh9Pp5MSJE0RGRvJ3f/d3FBYWkpeXRzAYxGAwcM8991BdXU1NTQ2pqanEx8fz5S9/GW5HwVAoFHuB\nH07ykCCwCLgb+ApwZzAYDCgUikSgGiEYAoFgGrhcLvr6+ggLC5uRemfB9GhpacHlcs2oZMDshz+l\n1xgbAJVGwCuVSurr6zl9+rRcdBUTE0N3dzcHDx6kvb2dFStWsG7dOt5//31efvllPvvsM/mYaGRk\nJBUVFTP68xgIBPjpT3/Ks88+K9eNh4WF0dfXx86dO/F6vRQUFJCRkcF9993Hu+++S0VFBQBhYWF8\n5StfIT8/n7Nnz/LGG2/AbSoYdsB+lYfVAG8Cf3HJn6sAH/BaMBj82ytcPwso2Lx584R2tXvvvZd7\n7733mtYtEAhuT6QchsFgIDQ09GYvZ14yW5JxI8KfcOUAqFTO1dLSQmpqKitWrEClUlFYWMipU6cI\nCQmR2zL37dvH22+/TXNzs1w3/qMf/YiHH354Rtfa39/PN7/5TQ4cOIBCoWDp0qW43W7UajX/5b/8\nF6qrq6murmbz5s3o9XpefPFFOZRqMBgwmUycO3cObkfBmCoKhSIWsI75IydwgNGw5+lgMNh8heeJ\nHQyBQDCO1tZWlErljNRZC66N2ZSM2Q5/wmgAND8/n+7u7nEBUIDKykoKCwsxGAysX78eh8NBV1cX\nBw8epKOjg5UrV7JmzRoOHTrEv/3bv3H06FG5bjw0NJSqqqoZb5stLS1lz549lJeXo9FoWL16Nc3N\nzcTExHDXXXeRm5srB0HXrFnDiy++SH9/Pz09PRw6dAjmsmBcishgCASCa6WrqwuPxyNyGDcZSTIM\nBgNOp3PGrntpvfhshT9hYgB03bp1aLVaBgYGyMnJoauri0WLFpGZmYlCoaCgoIDc3FxCQ0PZtm0b\nBoOBffv28c4771BfXy/XjX/961+XwpUzyv79+/n+979Pb28vYWFhZGZmUltbS1ZWFpmZmWRnZ6NS\nqfj6179OWFgYTz/9tFQUNu8EoxrRgyEQCKbJwMAAg4OD2O12tFrtzV7OvGasZERFRc2Y8N2o8Cdc\nOQAaCAQoKyvj3LlzhISEsH79ekJDQ+ns7OTgwYN0dnayatUq1qxZw/Hjx3n++efJzs6W68ZNJhPn\nz5+fUfmC0duEP/nJT3juuefwer0kJyfjcDhobW1l+/bthISEcPToUSIjI/nc5z43v5o8p4MQDIFA\ncCk+n4+Ojg5MJhNWq/XqTxDMKq2trQwNDc24ZMDs14uPfZ2ysrIJI+CVSiU9PT2cPHmSgYEBuZwr\nGAySn58v909s3boVs9nMz372M9555x0qKirkuvEdO3bw3nvvzfia+/v7+fu//3s++eQTFAoFWVlZ\neDweRkZG+Mu//Et6eno4cuQI+fn5IARjIkIwBALB5WhtbUWtVovBZ7cIN0IyYPZOmEh0dXVRWFgo\nB0DXrVuH1WrF7/dTXFzMhQsXiIiIYN26dZjNZjo6Ojh48KA8iGz16tXkO3RsdQAAEedJREFU5+fz\n/PPP8+GHH9LX10cwGESv13Py5EmWLFky42sem8/QarVs3LiR+vp6wsLCyMrK4sknnwQhGBMRgiEQ\nCC6HGHx26yFJhl6vJzo6ekYl40adMIGJDaCpqaksWLAAhUJBW1sbp06dYmRkhJUrV5KcnEwgECAv\nL4+8vDzsdjvbtm3DYrHwy1/+knfeeYfS0lI8Ho+8y5CTkzMr696/fz//43/8D/r6+rDZbKxatYqi\noiJpYJoQjEsRgiEQCC5HX18fLpcLh8OBWq2+2csR/CezLRk3KvwJ4wOgZrOZ9evXo9Vq5Q6K6upq\nYmNjWbNmDXq9nvb2dg4ePEhPTw9r1qxh5cqVnD17lmeeeYaPP/5YFhatVsv+/fvZvn37jK85EAjw\nyCOP8Nxzz+Hz+XA6nZSVlYEQjIkIwRAIBJdjZGSE7u5uLBYLZrP5Zi9HMIa2tjYGBwdnTTJuRL24\nhMvl4vTp0xNGwAM0NDRw+vRpFAoFa9asITY2Fp/PR15eHvn5+YSHh7N9+3YsFgu//vWv2b9/P2fO\nnJHrxtPS0jh79uyM1o1L9Pb28vd///ccOHBAOkIrBONShGAIBILLIRVuabVa7Pardf0JbjSzKRlw\n48Kf0mtdbgS8UqmUT6A0NTWRnJzMypUr0Wg0tLW1cfDgQXp7e1m7di0rV67k4sWLPPPMM7z//vt0\ndHTIdeMvvfQSX/va12Zl7W+++Sb/9b/+VxCCMREhGAKB4Eq0t7cTDAbF4LNbFEkydDodTqdz1iQD\nZj/8CaMB0KKiIkZGRsYFQIPBINXV1RQUFKDT6Vi/fj0RERH4fD5yc3MpLCwkIiKCrVu3EhISwksv\nvcT+/fvJy8uT68ajo6OprKxEo9HM6JoLCwtZuXIlXINgiIYZgUAwb9FoNPJ2ueDWIzIyErPZzMjI\nCM3NzTP+fVIqlXL+xufzzfrPgd1u584778Rut+Pz+Th+/DgXL14EICUlhV27dmE0Gjl06BBFRUUo\nFAo2btzIV7/6VTweD2+88QbFxcXcf//9vPDCC9x3333ExMSgUqloaWnBarXyxBNPzOrXMB3EDoZA\nIJi3SIPPQkJCMBqNN3s5givQ3t7OwMDArO1k3Kh68bFcKQAaCAS4cOECZ8+exWKxsGHDBsLCwvD5\nfJw6dYrCwkKioqLYtm0bISEh/Pa3v+WPf/wjJ06cYGhoCBgdVlZZWTkjdeNiB0MgEAiuAWl6pTTc\nSXBrEhERgcVimbWdDCmHoVQq8fv9smzMJgkJCWzatAmTycTg4CCHDx+mpaUFpVJJRkYGO3bsQKFQ\ncODAAc6fP49SqeSOO+7gq1/9Km63m9dff50zZ86wZ88eXnjhBfbs2UNiYiJqtZqenh4cDgcPPvjg\nrH4NV0PsYAgEgnlNW1sbCoVCDD67Dejo6KC/v39WdzJuVL24RCAQ4Pz58zQ2NsoBUGkKq9/v59y5\nc5SWlhIeHi5PbfV6veTk5HDmzBmio6PZtm0bVquVN954gz/+8Y8cOXKEgYEBgsEgZrOZkpKSa64b\nFzsYAoFAcI2o1Wr8fr/IYdwGOBwOrFYrIyMjNDU1zdpOhkqlkou5ZvuXcKVSSWZmJqtXr0an09HW\n1sbhw4fp7+9HpVKxfPlytm7ditvt5qOPPqKyshK1Ws3mzZu55557cLlcvP7665w9e5Z7772XZ599\nlj179pCWloZGo2FwcJCkpCS+8pWvzOrXcTnEDoZAIJjXDA4OMjAwQFhYmHzLRHBrI+1kaLVaYmJi\nZiUzcSObPyUuHQE/tgHU6/VSWFhIVVUVTqeTtWvXYjAY8Hq9nDx5kuLiYpxOJ1u3biU0NJQ//vGP\nvP3223zyySfy8DS9Xk9OTg6LFy+e8pquZwdDCIZAIJjXSIPPjEYjISEhN3s5gilyoyTjRoc/YWIA\ndN26deh0OgCamprIzc0lGAyyevVq4uPjAWhsbOTQoUO4XC42btzI0qVL6enp4amnnuLAgQNcvHhR\nrhtft24dn3766ZTWIm6RCAQCwTUi9R94PJ6bvRTBNHA4HISEhODxeGbldgkwLodxo8KfMDEAmp2d\nTUtLCwAxMTHs2rWLiIgITpw4wcmTJ/F4PMTGxvLf/tt/Y9GiRXz66afs378flUrFv/7rv/LYY49x\nzz33yIVyOTk5mM1mjh07Nqtfh9jBEAgE857Ozk68Xq9c4Sy4fejs7KSvrw+NRkNsbOys7WTc6PAn\njAZAS0pKZIEaGwANBoPU1NRQUFAgl3ZJg/saGho4dOgQbrebjRs3kpmZycDAAD/72c84cOAApaWl\nct14eno6RUVFV6wbFzsYAoFAcB1otVoAvF7vTV6JYLqEh4cTEhKC1+uVT2LMNJeGP2/UToZSqWTp\n0qUTAqB9fX0oFAqSk5PZtWsXFouF7OxsCgoK8Pl8xMXF8bWvfY2FCxdy9OhR/vSnPwHwyCOPsG/f\nPr7yla8QERGBUqnkwoULWCwWXn/99Rlfv9jBEAgE8x6Px0NXVxdms3lGyokEN54bsZMBN75eXGKy\nAGgwGOTixYucOXMGs9nMhg0bsNlswGie4/Dhw4yMjLBp0yYWL17M8PAwTz/9tNwYOjw8DEBsbCwX\nL14cVzcudjAEAoHgOpB2METh1u1LeHg4oaGhs7qTATe+XlxCrVazbt06MjIyUKvVVFZWcuzYMUZG\nRlAoFKSnp7Nz505UKhUHDhzg3LlzBAIBEhIS+NrXvsaCBQvIzs7m3Xffxe/38+Mf/5i9e/dy7733\nEh0djUqlorGxEavVylNPPTUjaxY7GAKBQMDoqQS/3y/fxxbcnnR1ddHb2zvrOxljb5XciLHvYxk7\nAl6hULB8+XK5SMvv91NSUkJpaSk2m43169djtVoBqK2t5fDhw3i9XjZt2kRGRgYjIyM888wzHDly\nhJycHLlu3G63U15eTkVFhTimeiWEYAgEgqnQ29vL8PAwERERVwy8CW4PbqRk3IzwJ0weAIXRW0Yn\nT55keHiYFStWkJaWhkKhYGRkhGPHjlFWVkZCQgJbtmzBbDZz5swZXnrpJT7++GOam5vx+/0olUru\nueceKZ8hbpEIZo7f//73N3sJtx3iPbs2boX3TSrZktL1tzq3wnt2q2K32wkLC7vs7ZKZfN9uVvgT\nxgdAtVrtuAAojN4y2rVrF8nJyeTn53P06FFcLhc6nY5t27bxhS98gc7OTn73u99RVlbGsmXL+PnP\nf86DDz7I9u3bsVqtBAIB3nzzzWtf40x9sYK5h/gHbPqI9+zauBXet9sth3ErvGe3MjabTZaMhoYG\nWTJm431TKpU3tF58LOHh4Xz+85/HZrPh8/k4ceIEFy9eJBgMov7/7d1/bF11Hcbx97OtWTfUsjGl\nbAHadSF02ZxKhlkD2xDdTJch+CMiTTSQmE2UdCSoyD8aDUhIZIoGfwCCwxp//IGMUMLmNmNWYGxu\n4h9ulAUci122bEgnIB3dPv5xT5s5ht525/Z7bu/zSm6a++PcPDm5Pfe55/s950yaxMKFC1m6dCmv\nvvoq3d3d7Nu3D4Dm5mY6OjqYPXs2Gzdu5LHHHuPYsWN0dnYOz81oaWkZnm8yGi4YZmYwPI7uQ1XH\nj6GSMTg4+F8loxJSTf6E0gTQRYsW0dra+rYJoAAzZ86kvb2dxsZGenp66OnpYWBggPr6epYtW8aK\nFSs4dOgQXV1d7Nmzh9bWVtauXcuaNWtoa2sbdS4XDDOzTF1d3fCYuo0P06dPH/51v3///oruXZA0\nfOhqigvoNTc3v+0S8H19fQBMnjyZyy67jLa2Nvr6+uju7h4+O2hLSwsdHR00NTWxYcMGHn/8cQYG\nBli1ahWdnZ2jzuOCYWaWGZqHUS3DJFaeadOmDZeMN998s6Jf/EPzMiZMmDCmpxcfMnXqVBYvXswF\nF1yAJHbt2sWOHTuGz93R1NTEihUraGhoYMuWLWzfvp3BwUGmTJnC8uXLaW9v58CBA3R1ddHb28us\nWbNGnWX0gyvVox5g9+7dqXNUnf7+fnbuHNGk4ZrndTY6RVlvJ06c4MiRI9TX1xf+hFtFWWfV5OjR\no/T399Pd3U1jY2PFL152crkYyyNMhtTV1dHb28vevXvZtm0b8+bNG/5cNzQ00N/fz6ZNm+jp6WH+\n/PlMmzYNgLlz57Jz507uu+++k8vRiC81XAuHqV4HdKXOYWZmVsU6ImJE5xOvhYJxDrAc+DtQHcef\nmZmZFUM90AQ8GRFHRrLguC8YZmZmNvY8ydPMzMxy54JhZmZmuXPBMDMzs9zVVMGQ9KikfZL+LalP\n0jpJ56XOVWSSLpR0v6QXJb0h6QVJ35JUlzpbkUm6TVKPpNclvZI6T1FJ+rKkl7L/yWckLUydqcgk\nXS5pvaR/SDoh6arUmYpO0jckPSvpqKSDkh6RdFHqXEUnabWk5yT1Z7enJH18JO9RUwUD2Ax8BrgI\n+CTQAvwuaaLiuxgQ8EVgLnAzsBq4PWWoKlAH/Bb4ceogRSXps8D3gG8CHwSeA56UNCNpsGI7C/gL\ncCPgGfrluRz4IfBh4KOU/jc3SJqSNFXx7Qe+DnwIuITS9+ejklrLfYOaPopE0krgEWByRBxPnada\nSLoFWB0Rc1JnKTpJXwDWRsT01FmKRtIzwLaI6Mzui9JG7Z6IuCtpuCog6QRwdUSsT52lmmQF9hCw\nOCK2ps5TTSQdAW6JiAfLeX2t7cEYJmk60AH0uFyM2NmAd/vbqGVDbJcAm4Yei9KvnT8Ai1Llsppw\nNqW9P96GlUnSBEnXAlOBp8tdruYKhqQ7Jb0GHAbOB65OHKmqSJoDfAX4SeosVtVmABOBg6c8fhBo\nHPs4VguyvWTfB7ZGxN9S5yk6SfMk/QsYAO4FromIPeUuX/UFQ9J3s8lO73Q7fsqEnruADwAfA44D\nDycJntgo1huSZgFPAL+JiJ+nSZ7OaNaZmRXKvZTmkl2bOkiV2AMsAC6lNJ9snaSLy1246udgZKcC\nP+f/vOzFiBg8zbKzKI35LoqIbZXIV1QjXW+SZgJbgKci4vpK5yui0XzWPAfj9LIhkjeAT508h0DS\nQ0BDRFyTKlu18ByMkZH0I2AlcHlEvJw6TzWStBHYGxFfKuf1VX811ezc6CM6P/pJJmZ/J+cUp2qM\nZL1lRWwzsB24oZK5iuwMP2t2koh4S9KfgSuB9TC8+/pK4J6U2Wz8ycrFJ4AlLhdnZAIj+L6s+oJR\nLkmXAguBrcA/gTnAt4EXGMGklVqT7bn4I/AS8DXgfUOXHI6IU8fPLSPpfGA6cCEwUdKC7Km9EfF6\numSFcjfwUFY0nqV0CPRU4KGUoYpM0lmUtl1D1/2enX22XomI/emSFZeke4HPAVcBr0s6N3uqPyJ8\nAcx3IOkOSkPiLwPvpnRQxBJgWdnvUe1DJOWSNA/4AfB+SseSH6C08m6PiAMpsxVZtov/1PkWojTp\nf+JpFjFA0oPA50/z1BUR8aexzlNUkm6kVFzPpXR+h5siYkfaVMUlaQmlocpTN9y/iIia3bv4v2RD\nSaf7ors+ItaNdZ5qIel+4CPAeUA/8FfgzojYXPZ71ErBMDMzs7FT9UeRmJmZWfG4YJiZmVnuXDDM\nzMwsdy4YZmZmljsXDDMzM8udC4aZmZnlzgXDzMzMcueCYWZmZrlzwTAzM7PcuWCYmZlZ7lwwzCwp\nSY2SuiQ9L+m4pLtTZzKzM+eCYWapTQYOAd+hdMEzMxsHXDDMrKIkzZB0QNKtJz3WJmlA0hURsS8i\nbo6IXwJHE0Y1sxxNSh3AzMa3iDgs6Qbg95I2AL3AOuCeiNiSNp2ZVYoLhplVXEQ8IelnwK+AHcBr\nwG1pU5lZJXmIxMzGylcp/aj5NHBdRLyVOI+ZVZALhpmNlTnATErbnebEWcyswjxEYmYVJ6kOeBj4\nNfA88ICkeRFxOG0yM6sUFwwzGwt3AO8BbgLeANqBB4GVAJIWAALeBbw3u38sInaniWtmZ0oRkTqD\nmY1jkpYAG4ClEfF09tiFlM55cWtE/FTSCeDUjdG+iJg9tmnNLC8uGGZmZpY7T/I0MzOz3LlgmJmZ\nWe5cMMzMzCx3LhhmZmaWOxcMMzMzy50LhpmZmeXOBcPMzMxy54JhZmZmuXPBMDMzs9y5YJiZmVnu\nXDDMzMwsdy4YZmZmlrv/AAKXIWeq1Wj9AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbe7817a940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import matplotlib.pyplot as plt\n", "from random import choice, seed\n", "from mpl_toolkits.mplot3d import axes3d\n", "import numpy as np\n", "from ipywidgets import interact\n", "\n", "seed(333)\n", "\n", "data = [((-2, 3), 1),\n", " ((-1, -1), -1),\n", " (( 2, -3), 1)]\n", "\n", "weights = [1, 1]\n", "\n", "n_iterations = 101\n", "w1_vals = []\n", "w2_vals = []\n", "data_loss = []\n", "\n", "def predict(X, weights, y=None):\n", " return sum(w*x for w, x in zip(weights, X)) or -y\n", "\n", "def error_rate(prediction, y):\n", " return max(0, -y*prediction)\n", "\n", "@np.vectorize\n", "def all_points_error(w1, w2):\n", " data = [((-2, 3), 1),\n", " ((-1, -1), -1),\n", " (( 2, -3), 1)]\n", " total_error = []\n", " for X, y in data:\n", " y_hat = predict(X, (w1, w2), y)\n", " loss = error_rate(y_hat, y)\n", " total_error.append(loss)\n", " average_error = sum(total_error)/len(total_error)\n", " return average_error\n", "\n", "for t in range(n_iterations):\n", " X, y = choice(data)\n", " # Predict with current weights. If tie, predict wrong.\n", " prediction = predict(X, weights, y)\n", " loss = error_rate(prediction, y)\n", " if loss:\n", " for index, x in enumerate(X):\n", " total_weight = sum(weights) or 1\n", " bias = (1-total_weight)*(weights[index]/total_weight)\n", " delta = y*x/(t+1) + bias\n", " weights[index] += delta\n", " if t%(n_iterations//50) == 0:\n", " w1, w2 = weights[0], weights[1]\n", " w1_vals.append(w1)\n", " w2_vals.append(w2)\n", " data_loss.append(all_points_error(w1, w2))\n", " \n", "plt.figure()\n", "for index, (w1, w2) in enumerate(zip(w1_vals, w2_vals)):\n", " x1 = list(range(-3,4))\n", " x2 = [-w1/w2*x for x in x1]\n", " plt.plot(x1, x2, color=\"%f\" % (1-index/len(w1_vals)))\n", "plt.plot(-2, 3, \"o\", color=\"LawnGreen\")\n", "plt.plot(-1, -1, \"o\", color=\"OrangeRed\")\n", "plt.plot(2, -3, \"o\", color=\"LawnGreen\")\n", "plt.title(\"The decision boundary from each \\niteration of SGD\")\n", "plt.xlabel(\"x1\")\n", "plt.ylabel(\"x2\")\n", "plt.ylim(-5,5)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This code demonstrates that the sum of the weights approach one over time." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[-0.2142857142857144,\n", " 2.0650441518460436,\n", " 1.7169103689261154,\n", " 1.7169103689261154,\n", " 0.7312983037479666,\n", " 0.7312983037479666,\n", " 1.0673822587223123,\n", " 1.0673822587223123,\n", " 1.1180876498808339,\n", " 1.1180876498808339,\n", " 1.1180876498808339,\n", " 1.1180876498808339,\n", " 0.9494781872704072,\n", " 0.9494781872704072,\n", " 1.0510890424353243,\n", " 0.950301752291886,\n", " 1.0432275310405712,\n", " 1.0432275310405712,\n", " 0.9604745056017685,\n", " 1.035943177497436,\n", " 1.035943177497436,\n", " 1.035943177497436,\n", " 0.9677563875765219,\n", " 1.030107184823184,\n", " 1.030107184823184,\n", " 1.030107184823184,\n", " 1.030107184823184,\n", " 0.9732447813415748,\n", " 0.9732447813415748,\n", " 1.0243435880581493,\n", " 0.9758710309609366,\n", " 0.9758710309609366,\n", " 1.0216457599432598,\n", " 1.0216457599432598,\n", " 1.0216457599432598,\n", " 0.9791495034306519,\n", " 0.9791495034306519,\n", " 0.9791495034306519,\n", " 1.0181609849994757,\n", " 0.9813639159529808,\n", " 0.9818740380887245,\n", " 0.9818740380887245,\n", " 1.0168554820916589,\n", " 0.9832205292190515,\n", " 0.9832205292190515,\n", " 0.9832205292190515,\n", " 0.9832205292190515,\n", " 1.0149128120401925,\n", " 1.0149128120401925,\n", " 0.9851337734289363,\n", " 0.9851337734289363]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[sum(total_weight) for total_weight in zip(w1_vals, w2_vals)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, here is a 3D surface chart that you can move using the sliders. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXl4HFeZLv5Wd/Wi7tZqS7ZlW5IlS5ZsLV5iAlnIvrEE\nSIBACAzbhUAGCHAvP4Z5LszCkstc4A6EbMOShBAYCARICAmYEOw4TuJVlizZsmVL1mJJlrW0el+q\nfn+0v9LpUlV3dXd1W7bP+zx5kkitU6dOVZ/vvN/yfoIsy+Dg4ODg4OA4t7Cc6wlwcHBwcHBwcIPM\nwcHBwcGxKMANMgcHBwcHxyIAN8gcHBwcHByLANwgc3BwcHBwLAJwg8zBwcHBwbEIwA0yBwcHBwfH\nIgA3yBwcHBwcHIsA3CBzcHBwcHAsAogZfJZLenFwnAPIsgxBEM71NDg4OHJD2i9xJgaZg4OjQJBl\nGZFIBNFoFDabDaIowmKxcMPMwXEBgxtkDo5FBFmWEYvFEAqFEIvFIAgCLBYLJEmCIAiwWq2wWq0Q\nBIEbZw6OCwxCBs0luMuagyOPiMViCAQCCIVCsFqtEEURsVgMoijCbrcDAObm5uBwOOB0OpOMMwcH\nx6JH2i8qN8gcHOcYkiQhFAopLupYLAabzYZoNJr0OYfDgXA4DKfTCafTCQAKgxZFkbNmDo7FDR5D\n5uBYrJBlGeFwGOFwGPF4PMmYRqNRiKIIh8MBURQRiUQQDocBAOFwGBaLBXa7HbIsIx6PIx6Pw2Kx\ncNbMwXEegzNkDo4CQ5ZlRKNRJU5ssViUJC5JkgAATqdTYb02m035u+npaSWmDCRYs91uh9VqVcbn\nrJmDY1GCM2QOjsUCStgKh8OKO9pisShuamK9kUgEFstCiQAyrg6HQ3Ff0z9Wq1Uxzpw1c3Ccn+AG\nmYOjAIjH40qcWJZlWCwWxGIxRKNRxciKoqgw33SwWCwoKiqC0+lENBpFOBxGIBBAIBCA3W6Hw+GA\n1WqFJEmQJEkx+Jw1c3AsXnCDzMGRR0iSpLBYSZIU93QoFIIsy7DZbLDb7QsMpNFQkiAIsNvtsNvt\nSdeKRCIKayaXN2fNHByLG9wgc3DkARQTDoVCihEEoBhmKmXSck1nCz3WDICzZg6O8wDcIHNwmAiK\nEweDwSRhj0gkohjmoqKipCQss5EJa47FYpw1c3AsEnCDzMFhEkhhixK2rFYrIpGIYphJzCMXgycI\ngmF3NpDMmml+Rliz1WrlUp0cHAUGN8gcHDkiHo8jGAwiGAwqhoySuICE4bPZbOfUuFH5lM1mW8Ca\nLRYLnE4nZ80cHOcY3CBzcGQJMmyRSERhwhaLJW3CVioUwvCpWXOqWDMZZs6aOTjyD26QOTgyBAl7\nBINBpekDGSk2TmtmwlY+kI41s3XNnDVzcOQf3CBzcBiEuhMTkDBqJOwBIClhKtdrUaZ2LBbLu4HX\nYs3khtdizWznKc6aOTjMATfIHBwGoBb2sFqtiEajirAHNYMwK3uajCIlcJFhJEOdLxhlzTRHMs6i\nKHLWzMGRI7iWNQdHCrCdmEjYIx6PIxKJAJhP2JIkCcFgMOeSJqofBqDUKpOcZigUUlzkTqezYG5x\nVvKTvW9izTTveDwOt9vNWTMHhzZ4+0UOjmyg1YmJXMiyLC8Q9qBM62wNMrHReDwOAIohpv+mOc3O\nziqfp9+R7GYhDKAkSUmHA2LN9POSkhIlpi6KopIQxsHBwZtLcHBkBK1OTBQnjsfjsFqtC7or5Xo9\n6oNMgh7pmkuIooiioiJNd3IhYs3EztlYM0GSJFitVuW+eKyZg8M4uEHm4ACUDkmssAfbiSmdsEem\nhoYMv9r1DUD5WSoYScLKJ2tWx5p9Ph9isRjm5ubSxpo5a+bg0AY3yBwXPbQ6MWnFiY0Yt3QhIDL8\nlLCldn3T32fSXCJdElYhWLMoiojH4/B4PEmHA5vNphwOOGvm4EgNbpA5LlpQIhZriCmJK1thj1Qg\nI0/1vMS4zcK5ZM20fuzhIBKJIBwOw+fzabJmtrkFZ80cHNwgc1yEYDsxUfclh8ORUyemVEaOjFO2\nmtayLGes9pVOJtPsTlNq6MWaOWvm4NAHN8gcFw30hD2oP7EZnZhYV7NenLiQxkZPJjMQCJyTWLMe\naxYEgbNmjose3CBzXBRQd2JiE7YAmGqY1HFis13f2SAVayapz1xYsxEWz7Jmittz1szBMQ9ukDku\naJBhpDixIAhJnZisVivi8bgpcpfAfFyayn8yTahKZ3Qybb+oBb2WjIVkzaIowuPxGGLNPEOb42IB\nN8gcFyTYTkyUREViH2x2czweV8Q4cgEZyWg0qjBBUVzcX698s2YjULNmHmvmuJixuHcMDo4MoSfs\nQQlbamEPMsaZJk6x1yNhDyDBuJ1OZ86GQpblJFUstl9xPpAra852/QjEgEVRhMvlUg4HPp8PgiAo\n5Vt6rJntuMXBcb6CG2SOCwJaCVtsnNhs1krXI1c421zCDMNAYwuCAIvFohgmIL89kxcDa6ZMdDYR\nLRQKIRQKcdbMcUGDa1lznPdI14nJbrfrsjsy4i6Xy7CRIdequkTK7/crCVzZgG3iAEAZi1zrZBzp\nd9TqMd8GiLwO4XBY8QTY7fak8q25uTkAQHFxcd7moNYWp8MBtYUklsz2a+bGmWMRgTeX4LhwwTI4\nanRAbl6j2c2ZGGS2AQQlH7ElUn6/H6IowuFwZHwvrJEH5g0u/TfdAzWXoL9h3blmiozoQb3mxJqJ\nqebLILOgQ4v6cELeD3Kfc9bMscjAm0twXHhQsyV1nDgTYQ+jcphsAwgzs5DVRr6oqAjBYDBpbPV/\nWywWeDweXXduPlkzG2sm1hwIBJTfxWKxvPdFZmPNFGNnY8307NlYM2fNHOcDuEHmOG9ArlPKwqWN\nmc2kzlbYQ8tTlKmwRyYbfSojrx6HTZhiy570kqAKoWFNoQC73Q5JkuD1epV/E2umJKx8gfUOsKw5\nFApBFEUlZ4AODaWlpRBFkbNmjkULbpA5Fj20OjHRz8igZSpHSdD6fLoGEOnmmu73bDKYGepdWklQ\nbOkQGaZ8smaLxaIYYlYNjAxmvkvAUrFmOqBx1syx2MENMseiBpvMxHZiAhLuXrPkKMmQsg0gzO59\nTIbYiFs9W/EPMkxFRUWK4AbbEjFfrJmS6VjWTM8tHA6fc9YMAHNzc8rhhLwfaqlObpg5ziW4QeZY\nlNAT9qBOTAAUo2YGaOxsG0CkglacON8JWKmaOxRCjUsv1nwuWDMw32NaK9ZMiYCcNXOca3CDzLGo\nwHZi0krYIqYVCoVM3TCJReXCuLViv/lKBstkTurmDlQiVuhYM+vtKDRrFgQBJSUlmrFmSoSjcAJn\nzRznCtwgcywKZCPskYumMxvLBcxV2FLXE5+LLk9ayCdrNqLUZbVa4XK5UFRUVFDWzM5NHWsOh8Pw\n+/2adc2cNXMUGtwgc5xz6HViSsUsc2mywNb8UnMJs9zTsiwrzSWy6atcCJxrNa5Cs2atwwIba6aE\nQSOsmTXOHBxmgxtkjnMGSZIU9ykr7EF1rWa3LSTWo2bcPp/PlLElSVISz3KJE7P3SwaBLYki8RAz\nkE7D2sxYuhYKwZrTsXer1Qq3222INUuSpNRac9bMYTa4QeYoOLRkEAEoCVtGmGUmhildLDeXDVXd\nXEIQBBQVFZni+o5EIkkudYfDkXPrRT3osWajdcVmNJdIxZqdTmfee0qrWbPRWDNnzRxmgRtkjoJB\nqxOTxWLJqszIqMKWugGE3qaeqaHTEg2Jx+M5GyY2Bg1AMQSRSETxHAiCoLDmfOBcZ0hrsWa/37+g\n85RRkNci2zmoWTPNQc2aKRGMs2aObMENMkfeQQbG7/cr7j42YSvbMqNURjSTmt9Mr6knGsKWZGUD\nYqZk1GlNyChLkoS5uTnE43GFueaTOarVuArNWs1izbkckvRYczgcXsCaqbc2Z80c2YIbZI68gu3E\nRExVEATDcpR60Evqyrbm14ghTScaku3mq3apk161et7sz4qKihYwRzLg+YAWa2avnS9XOiEX1pyr\n10JrDpw1c+QD3CBz5AVanZgo7huJRExP2Mpnza967FRsPhPDpKeVrW4uoUYq5kisrRCsWd0SMhwO\nw2KxnDPWrHfvZh8WOGvmyBd4+0UOU6HViYkMGiVhZdJ7WA/EklwuV1I9cTaMOxgMAkiwTvW9ZNJc\nIhwOIxaLwe12p70m1QFrJbGRQXY6nQCS2y/6fD5IkoSSkpIFcyXWRmGAQrVllGUZ09PTSpY8Gc18\nMnb19dncBJaxiqKI6elpOJ3OBc+3UHOwWq3KoYC8H5w1X5Tg7Rc5CgOtDYlN2KJNiNx4ZiEYDGbc\nACId1HFio2zeyObKutSz0crWc9WnqqstRFtGAHA6nbDZbAVl7EB61pxvd3q6OVC8m83Q5qyZQwvc\nIHPkBK1OTFarVVPYg0pFco3pUZcnYL7TUS5MjDVyuTaX0Nv8M3F7pxrHCNR1tep+wU6nMy+iH6Rq\npRVnZTO088ma1bHmUCgEAIpYSyFYu168m2XN5E2gEI7FYoHNZuNSnRc5uEHmyBp6nZhoE1S7eHPd\naFhhDxrLrA2eRErMbi6RqdvbTLCsmVzkoVCoIKw5nRIWMcZ8s2ZRFDEzMwObzaYcEArB2tk5pGPN\nwWAQ8XgcxcXFnDVf5OAGmSNjpOvEZKS1YKalRmqjRmVGuUKWZUVhKxaLmWowMym9yjdYDWcyCj6f\nryANJrSUsFjGXog4t8PhgMfjWcDaCxXr1mPNwHw/aUp6ZDO0qUSQG+eLA9wgcxiGkU5MqVy8tKkY\ndcemEvagBLFsXbvqODEAuN3unNWmgGS3d6HaLRoFsX8zG0ywCUvprq3VqzifjJ2dm5Hs6HPBmkOh\nECRJgtfrVebAY80XJ7hB5kgLo52Y0m0YmRhkdQMINYPLNQbNji0IQpKEZ7ag+2KzpM1ye5u9Eaul\nMtVtGUl0I1+sWd11KV9xbr3DwrmOdbNzoDUXBGGBIhrFmun9JMPMWfOFCW6QOVKCmAyxVL2ELSOb\ng9EsZK0GEHrIhCHrjU0/yxbqVo651lhTkhl5JFjxi3xAqy1joRpM5DvOnY6967FmVr8636yZvD9F\nRUW63a/sdjsAKKxZEASIoshZ8wUGbpA5NEFJToFAALFYDE6nU2ktmEkpkBa0jGi+hT3YGLSZY7Nx\nYmrlmOsGTnFtijHabDbFSFG8vhCs2WiDCaMu63TIR5w7kwPbuWDN6mdppPsVHdjU/Zo5az7/wQ0y\nRxLUwh7sz3JNTtJyWWfSACLdWFr3YmRsdiyjG5qWRCfFpXMxlsSAAChrTXOmeK8sy5idnc1rMta5\nbDDBxrkpQ5vi3DabTfFsZLLGmX42Xa9ks1mz1juZSkc8FWumJDGO8w/cIHMA0O/ERPW+AExJTmJr\nfnPNQtYTyQDSx6CzRSomn4vbmzXwwLxRItD/U8KYKIo5J2MZQTrRjXzGWsnAeDweJdwQDocxNzdn\nmDXnyt71eiWbxZqNzC/V4YhCCpw1XxjgBvkiB7HIcDisK+wBmFfvSxsH1V6anYWcaQya5pQOarZt\nVnmUlmBINBrVPWhQtjAZKTKOkUjEUN/iXKAlukFudQCG+1NnA604t5EDiVkqXflizbRmRg6LeqyZ\nDSnYbDYAnDWfr+AG+SIG24lJT9jDrHpfYD42SnrHubI6liGzceJsx9ZzNRtl8pleS8/Ak5pZOrDM\nibLgC+FWVrPmYDCISCQCv9+PcDicV9GPTLPD6ZmaORczWXO2DF6PNQNYoKHNWfP5A26QL0JodWIC\noAh7mFnvS3/LJlUJggCXy5XzpkAGmcbONdlMjXy1cmTd6WYIhqiNFLG3QvQtpvEjkYjCnAsl+pEu\nO9zhcORVxzpVXbVRNbJcXep6rJn1mLCsmW0JyVnz4gM3yBcRtDoxqYU9zKz3VYtvkNC/WRnCxLhJ\ndzrbOLE6QSxfGd9qd7qegc/lOhaLRdOtXIj6WirdKZToB0EvO5yYIYCkg2c+oK6rNqpGZlaGOqDv\nMQE4az5fwA3yRQC9TkxqYQ+z6n0B/SYNbOJStiDDRuzdrBi0mm1nGifW+1w+S7pSzUUrGSsfWtJq\no6In+lEImU61UfL7/ZAkCTMzM3mvqQYyZ80UvjE7Y1vvgELfdTY8wlnz4gE3yBc46KScrhNTKuEE\nwLhBVjeA0NoAc5G7ZA0b1eSakfkNQLc/cTbzpH9nU9LFjqE110zXT6u+tlDdn9TGKdfypUyubbPZ\nIIqiUhtupKbaTBhhzfmoJ2ehPqDwWPPiBjfIFyhYVgRAiQdnI+xhxAgY7WqUjUHRM2y5KmwB83Fi\ngllsO19lV7lAy0Cyqlj5NJBknNhDQSblS9mCDN65qqkGUrNmYsf5NszpWDObJc4ztM8duEG+wMAm\n9RB7JPdxPup9M2WBLOM2sgGZnQDFzptl2wAy7n2sBo1Da2207OpcQEsVK1sDmUkcNNvypVxAY6Wq\nqc538htBzZoDgYDiUi+UhrYWa1Y/A5Y1AwkvCxlnzprzh8W3U3BkBWKowWBQMWBOpzOrLGE19Axy\nNizQ6JfZSAKUWWzbZrMpbrxswW5ekiSZYljYph750rKmsEIhDSRdV4+xsUpUuR6+qJxPDb12iGyG\ndiFYM3lnKL+iEElw7ByMsGZZljE1NQWPx6OEAThrzg+4QT7PodWJiRXf0IvjZgK2/AnITnxDa95a\n88kkAcostp1rSZe6jSO567MF+/yIaQcCAQSDwZznm+qa6QxkvmKu+aynTvdupGLNhWguQTkLbF2z\nuvPVuWbNtPb0XvJYc/7ADfJ5DK1OTJQ1CejHcTMFfRHNyBbWSxLLJQEqHdKx7UwT1whameR0CMoW\ntA4Ep9OpNPYgBgUgqXeu2ZthpgbSrNIdvUNBLi7lbJtLqEvG2AxtM8EeGNLF+M8Va6Z3zu/368aa\n2X7N3DhnD26Qz0NQnJiNVRKjYuPGZroaZVlGIBDI2Vhq/U22mtbpGHK+yo3IOLKZ5Lm6N9VJcUAi\nwYzmSsYCQNIGmc/6YvXmzAqOsOwxH9BSosrWpZzp8y4ka6ayJzX0Ol+dC9Ysy7JStqUXa6YSSs6a\ncwM3yOcRjAp7sMY5V7CMm+JKZiVVZauEZWTsTNm2mZnkma47sSFyXwqCkJRsxo5Ha19SUlJQFpVK\ncCTfsdZcjGOu2cv5bMlIzzXV94kOfKwrudCsmeLwbJMPVq6Us2bzwA3yeQC1sAclVJC7VG3MzJC7\nZI0lfZmoq0wuoL+PRqPK2NkyVy2Dla+sbLXRNCOeyq4xK57CsuRUyEf/4HTQMpDE2Ofm5vKqY53K\npaxnHM0qJ2KZqVZziWzuO1NX/7l43jRPGjdVljyVznHWnD24QV7EoIShTIU9so2J0t+o3byCICg6\n12bFR0msIZfNm/07o7KURsZioWbx6eKIRu5FvcZmJN2lypTOlzoVGUhBEBSPTKEER9hDgZ5xZD9v\nJrSaS2TjTs429q7FmlmjaDZr1pIdVYcztGrLOWvOHNwgL1IY6cSk96XLxiCncseS1GUujJuNEwNQ\n3MhmgDwFucaJ2fvLxWgardk2K+mOoJcUlW91KhqvtLS04IIj6YxjPqGVhJVJ6RJ9F3JZl0KwZvI2\n6SEda6bvJMuaWalObpjnwQ3yIkO6TkxG3bBGYqKAdgMI9fi5MG6tOLEZ7Rxp3kDi8JJrVjZ7j/kw\nmpm40s3YoPTa86lZs9kwU3AkE+hlKANQFLHyGWvV0+9O5S0wEkM2CtZLQu+aWaxZL/FMaw5arJk9\nILBd5NTlU5w1c4O8aECMLBQKJSVsaTVoMAIjBlmvAYTWWDTHTO9Hi2EaPSykmjcZNwCK+zJXkLSo\nmfHnXF3puaIQGcNaoYx0bvR8Ntgg4+hwOOD1ehVXeiGaW2RSumRWuZj6+may5mwPDSxrJs8eZ83p\nwQ3yOQYxMp/PpxhGthNTtjHGVEbPSAMI9Vg0VyP3ky4TOVuDrGXcgsFgxuNojUtsO1ejya4VrUO2\nrnSz9Y3zmTGsBz03eiEERwhut1vJgyjUoQBI704m5Ov6atasZRTTsWY69GZ7gKEDApuhzVmzPrhB\nPodgOzGFw+EkVgwgpw2DYs4sjJbtaMGIEVVnIusxzEwNcirjliuzIxZP82Jrf7MdMx6Pm1KzrQXW\n4Ofinj8XAhR6bvR8NXlgGajaKLBlOyQ4kk/WrGUYCdFoNK8HAyNGUY8152qQWahZc6pYM9sWkjXO\nFzq4QT4HoJeR4pT0osXjcVPioUCy0TNDBSsd49Yq30kFo2zbyLzN0LOWJClnRhqPxxVFMzM6PLFZ\n9rRhmQ0z3JuZrlsh3Ojq6xG0EpDoUJBv1qw2jD6fD7FYrCAxdoIRV7K6XzPN3Sykc6vTc7BYLJAk\nCZIkJZVPXcismRvkAoIMFxu3JbEPMioul8u0JA/W8OTaBlDLIGebiWw0vm2kcUWmX0y9celAkQ3U\nTJuYYK5gDzm0adJBx2x3drqYb75LpzKpLTaKVDHac+1KJy0Buv9CxtgB46w5H3Fu9TzSCZ9cTKyZ\nG+QCQE/Yg80+tlqtmvV+uSIUCpnSBlDNuLN1favHUiObxhVGGLKR5KpsmTZ17LHb7UpcPluwtdrU\nsYvcqZFIRHF1zs3N5cVonMvSKSO1xZnG4GnsVCi0K52dn8ViSdlxKd/udCB12VIhE6zSyYWS541l\nzZQIdqGwZiGDTcj8FjMXOGhzZTsxUcIWsUq73Q5RFJUvAiWg5HJNlq2ZVbZD2s0Oh8NQnDgVaNNj\n71UdJ6Z1STdvMlB6jFR9eNBjHrRmbrfb0D3o6W+nm48e1G50YN5bQmwAgNLowWazKc84n0aD5kbP\njH1viTX7/X7EYjGUlpaafl228oBl8UbeOVqr8vLyjN9/rb7iZvdLnp2dVTo9sWAPeuyhN9+smQUd\nYEnwpVAudTXY+m4ASayZxXnCmtNOjDPkPEEt7EGdmPSEPXJN1lFv6GTkzTrhUmw0FAplXIKVybzN\nSoJS11cbGdco0zZbf1tdo0y9cfVcrQAUV2O+4690zVQxXyA30ZhU11Unn6llGo0YqGyTIlP1Szaj\njlvvu27EnV4o1kzvIR02C+VSJ6Sr76Z9KB6PK9Kt7GF+ERtnTXCDbDK0OjEBUE6aeqwyk9IiNbTY\nmiAkJOty3ShZVy+QW+Y3gU1iyzW+TeUSLIzGn7XmpActSVGtdcgkg1zPjU5rne5wlq6MKR/SlVrX\npPnSdfMpOMJeN10ylBlx9nwmoBmZH+tOV7fCzGdsnwWpoek1ligEa9Y6nLGqaOQxoudEB2Y64J4v\n4AbZJFByFsueBCG5E1MqVpmNQU7F1th4b7b3w7p689HS0Yz4NjsXega5tEVUb5LZMPh0a27Uja4F\nLU9KujKmfEhXstf0er2KRyjfcpmp4p1q5raY67jJ45RJ3sW5iO2zpCKTtc8ntFhzIBAAgKRsbFY/\n+3wBN8g5Qi9hi1WfMWIYMjHIRtgauWuySVTScvXSqTOXTU5tiMxyT9PJPdskMz1kw7TTga3VNrtG\nGUgtXWlGgpAsyxgZGcP27X246qpmrFy5TBmvuLi4YHKZRty6RiUfs7k23Zc6Ac1oHXcuspmFSkKj\nQ4ORxhLnmjXTwYAOSuQpzFe/7nyBG+QswdaIZtKJSQ9kQNXuV/U1M8luztQgpzJAubjU1Uae4ttm\nuNpoPpFIJKe2iOz90YEnkwOVehw11LXa2cgXZgKtMqZcNu3p6Rns2NGL3t4wpqZWoKjoSvT3v4j/\n9b/mE7nOVemUnoGiOcVisbwlvKmbW7AxzlQJaGaUE6Vyp5uRhGZEFGSxsGYgsR5lZWVJBwSPx5P3\n65oJbpCzQDweTyoLoFR8ihNny3z0DKiWQTOzwYSWlKZ6A8vWIGsZeTPi26yBA2CaRjQdqIDs4+Xs\nfWVTq12IMiYjm7bP58Nrr/Wiq8uH8fEy2GybYbO5QHtcLHYVfvrTl3DXXW80dM1Cl07Nzc1BkiR4\nvd68Jbyx106VgKZmzWbX96rrudVJaNmw5kxEQVJ5LArBmtkwIT3nbHUFziW4Qc4ArLAHGTC73Z6U\nIZuLS1DLgBptAKE3nlmMO1ODnKqeOBdDrDZwbDZ5LqB1ikajpriS1bFns1stZgM1k9QS4ZBlGd3d\n/Xj11VMYGBDR3b0XW7feC5dr4fqKohPDwxvxwgt7cdNNWwxdk9hrvrtOURyR3j0zBUfSwYj6Wb4E\nN8xMQsvWra5ORCsEa6YDv3oePMv6AoS6HpJYMW24ZpW/sAY00wYQeuPpMe58lBrR2EaaS9BnMxlX\nLcJhs9kQj8eVLN9soGbaxGSyBa25GV2j8lFKBCzctIPBII4c6ceuXUMYGXEgEmlGcfG1cLsF1NUt\nx+HDT2L9+rs0x3I6l2PXriHU1Q3ikktaDV9TbSiyEf5IB4p/6gmO5FO3G0jtwqe9It/Z0bmooOUq\nm1lI1qzu2ZxvhbF8gRvkFNAS9rBarUllQLnELdWwWCyKoTQjQUmPcWeTqJQuSSzTut9M4tt6Ihzq\n62eyRmqmbbfblY0iW5B6ECHXQxo7R3pWZuL06Uls23YIf/tbN8rLb4bTeTMEQYLNJimGsqqqCTMz\nAxgZ2YWVK9+kOY7L1YGnnnoRjY01KC0tSXtdrWzldL2Ds4H6ndCL9+bbpaplmEiPwOv1FqS5hdZh\niFTQ9FgzZVibtbflizXLsqypckh71vkEbpB1wHZiAuaNJSvsQRu4WcySTqSRSMS0BhM0di6JSup5\nqqF2qxut+01nkI2IcGQT39VyJdP6ZJu0xnoFAOTcNQpA0uFGlmX4/X5lTFqTTOHz+bBzZy+6u/2Y\nmFgKp/NyeL2zcDgi8HhsEMX5gwXF0+vqrkZ3989QXFyLkpLqBWMmhG/ejB/96CXce+/1GYVUCl2u\npXfdbARHsgG9xySyI4piQeuKMyndykeWejrWnM3hhPZNLZf1+QYunamClrAHuY/VzC8QCJjCXFjW\nCiBn3WkCHSCoaJ5OytluNoFAQPnSAAvd6pkkjgSDQcWlp4YWe9WbM7lcjbBRtSIW+8WXJAmBQCDj\ntVeXMQFh83AaAAAgAElEQVSJOHS22Z30/tG7Ry5VipUHg0HlkGjUeIRCIbz22iF0dXkxOloMi2U9\nHI5i5feyLGPPngfR1nYnnM6ypJ9TSCASCaG7+7+wefM9cDpdSeOTmpMk+dHefgB33PHmrO6drqmu\n58+Wvc7MzMBut8PlcqX9LNtgIdfrGoHf70c0GkVZWVmSYWI9V/lIfNOCWlWQQgihUAiCIKC4uDj9\nIDkgV6nQaDSKubk5lJaWKnsAdc3LJfyUB6R9mNwgn4XWF5IMg557N1vdYvU1WZH0SCRiSjyaNWqA\nOTW/dL+UoJOLW11r7bKJbRsxpOp11oqdEQM1GkPWazlJiUuZGmT1IUSWZeWe6N0A5jcfp9OZdGik\nWCWtlSRJOHLkBF55ZQgnTojYv383LrnksxBF7brMUMiHrq4fY8uWz2gaoHg8jsnJIQwNPYvW1o/D\narUqmyUZZLvdjkDgKN75zhAuvXR9RvevtR5am3QmDHJ6ehpOpzOj76cZ1zUCn88HSZJQUjLv4idP\nC2mGA/nXKWdB7yCrvma1WuHxeAomrqF3OEnFmonls5rl8XhcOcgvInCDnA5awh4AkoQ99B4sMRkj\nJ3D1NbUYIJA4OefKkNWM26wCeUpUonvIxcir1y4Ve02FVAaZdSWnY9pGDbKWKAu7UWs1zkgFrUOI\nKIpJrF/LIJeWliaFUaLRKGRZxtTUDF59dQgDAxb4fPVwu2sgCAJmZkYxOPgsOjo+oTuX06ePY3x8\nB1pb/0H3MwMDuxCJTKCm5iYlaYpNngKAYPBlfPKTq1Fbuyrt/RtBtgxyamoKLpdL0wuTz+sawdzc\nHADosk821kusNZ9lW2rEYjF4vV7l//OdAKdGJqw5EAggHA6jvLxc+VsKRy0ylS7eXEIPeglbmQh7\n0IaY6TX1GCAdjlKVKqWCVqkRuZ1yRTwehyRJZ+OFuTeXIBZopC1iunGAhbW/mTaWSLdG+Shj0kuw\nM/r8KR7n8/nx4ovd2LbtIByON6Oo6A0QRTuKiubf3bKyaszObkR//zNoaHi75niVlfWYnR3EyZMv\noabmas3P1NW9CV1dv4LfP4CyskalnjwWi+H06eOYnNwNSfLh4YeH8LWvvcOURLRsSqfMyFDPpyKW\nlgIWi3z2iTYCGptyIbRKt/IZo00Va1azZq2SJxrjfMNFaZC1OjHF43FF3cfoZssag3SfNZIpnC6T\nWQ9arI09SORa98u6sICEy9qsRLZAIGDo8GMU2SSYqeekNaZR9m6UFavFQrQ29lTPLRgMYs+eozhw\nYAZjY2Ww29+I6ekpVFWJcDpdyvsmCILiXq6tfQO6un6NyckeLF2q7VJeu/YaHDjwOEpLh1Baulrz\nMxs23I69ex9ER8cqhMNB9Pe/iGh0HB5PNerr3waHww1ZjuBnP9uBj33sOtM2xmxKp8y4tpm1vQSj\nVQHpMqTzUS5G8wOgHL61sqMLxZrTNdjQS3A8Hw3yReWyVrugyN2WqQIWgV4O6lub6ppsokiqk606\ncSoVjMRcs00806onBhIZ4Ln0bCb2StnqZsS2fT5fUkJVpglmBL/fr8wHMBZ7ViPVO6FXS61VbsK6\n4dn8gn37erBz5wjOnCkH0IqiovKk8dnkLEmSkuq0yf29f/8jaGu7C06ndolSPB7D3r33Y/PmuyGK\nC9/DSCSII0f+jGPHnkFT01VYseIqFBevgCiKyvUSWcSjuP76U7jlljfmbXNUxz3p2dvtdni9Xng8\nnrzoGatDXWzmthHmmk18m7221j2byZrJZV1SUqIZCjIr8S5bqPdyQRBQVFSkPGtak0VmlHkMGYBS\nYkAM2Gq1Kl+obBSwCOnil0YzhVkYTRQzytpSZTNrIZW7l4xNtgaZnTO5mnIx7jRfv9+v/H8urmS/\n36+sZbbdmPQMciYsm32vrFYrBgZG8OqrQ+jri6Oz8wBaWz+NoqIizb/XSs5is6UTm6kPR448ga1b\nP6c7B6/3NPr7n8KmTZ86O6c4hoc7cebMflgsEqqrr4QkAVNT+7BmzW2wWq1JsXcqnfL5duOuu9xo\nbq7Pe3KSupk9AIVZ5XNjVnvc0jFHWZYxPT2dU3yboL5ns1hrJBKBz+dDWVmZ7jvCHq7ZhjH5LBtT\nQ5IkzMzMKF5OAEpmfbbJtnnExW2Q2VMsbbBU08meLLPNntRKBDKiVJUKdOrUSxTLlLWFQiHIsmzo\n5Uwn00klRqk8AunmTGtOc8t0LBZsGIBOyLmc0Ml9TrHybNi72iBnw7IlScLJk0PYvXsIx48DXm8t\niovXQhAsGB3twcTEbrS3f1D3XicmjmN8fDva2j6sOXYsFsOpU32YmnoNra0fUpizGsPD+zE+vgc2\nWxHi8TksXboBK1dekfTZw4f/BIfDhVWrLtNMhkvc/wv41Kc2wOUqKkhyEimlkRemUAyODuGsop/W\ndckgu91u08RezGatRGDYzOVUKHTZGCEej2N2dhbFxcWwWq3KGpSWluZ82MkDLm6D/KUvfQmbN2/G\nTTfdBIvFojBkwLwWfeTmJBnHbN3fBFLpUpfNZMu40xl4rbH1DimZ1PzSuHqHk2yNO7AwDEB5ALl8\nAYmVAsjaYwIkrxEdcIw+L5/Phxde2I3OzkkEg+vg8bTCZkuwO7Ze+tChZ1FWtgSrV1+uO9axYy/B\nZpNQW3ut5u9lWcbhwy/AbhdRXX254ha3Wq3w+aZw8uQOhMOjmJqaRHPzDVi58o2647z22kNoanob\nKiq0Y87xeARlZdtw991XLTiY5Ss5iVyuLtd8PB3ITwmT3vXVzJWYoyRJmJ2dzZs7PdW1jd4zHWgo\nc9kocq0pzhRaNcjUY2CR1SADF3uW9dzcHA4ePIiZmRlcddVVKCsrgyAIcLlcpiaaUK/gXNzf7HjA\nfNJHNrW56vH0snYzZfNGk8QyyXLOJOFML3mNmFA2UNdrU/w+1/eDPBPpnlciLtyH/funMDpaDEF4\nI7q7f46mpjpYrfOxbJobADQ0XI/e3idRUlKL0lLt0qK1a6/G/v2Po6TkBMrL1yz4vSAIaGm5Gfv3\nP4qysnE4HBXo798On68PTqcTtbU3o7R0JWRZxt69D6OsrAlud4XmOOvXvx+9vT/B1q2fhcWycEux\nWu04ffpS/PGPe3H77Zcrbs58qnLRe0Vja3WdyrU9YSpQgwlSxAqFQkqPaDIU+WKO6muHw5n3p9aS\nojSCVNnR2SpxpQK5qdnxKDn2fIT1X/7lX4x+1vAHFwuee+45PPfcc3jsscfQ1NSE9vZ2ADDtVCpJ\nEqLRaJLCVq4vGxlglnFTP9dsMiopsUf9d+RajcfjypfXqCoOddLRux4JG9CmpzfnaDSqJC2lAlui\nRvfCshxKWsrkRKwe0263K4egbE/WdO9U0lJUVKSbtHX48HE880w3nn32NI4caUAs1gabbRVE0YnS\n0ib09j6GZcu2Ks+Pys5o7suXd+DQocexbNlmWCzaz6KqagO6u59AZWU7rNaF95Q4jMjYtes7iMfH\nUVnZgoaGW1BevgFWa5FyH0uWtODQoUexYsUbdA5VgNtdi/7+p7B8uXbXJ1F04eTJACoqzqC6ulJh\nqmwtNR0MzZCjJe8Ele3Qc6VDHCmisWVn+dKxJjc9K9EKzHcoypcB0bo2ZWjH43HF86J1bRJ7ycWl\nzq45XZ8OYemubxQUsqKQHNUgG9lXzgH+Nd0HLkiX9dGjR/GlL30Jv/vd71BTU4OHHnoIV1xxhcKE\n3G53TuOrmSWAnJOTCOTypPij0bijHrRimloKU0bh8/k0hUaMur3ZzxsRQTGSDJVJnDzVmNkqr6VS\n2WI/Mzo6jh07+vHaa6M4c8aCdevep+s1GBk5jKmp19DS8gHloESGGUi41f3+SQwM/F5JvNLC3NwZ\nHD36C2zc+Gll3c6cGcbo6A7EYjMoL1+H0tJmDAw8jU2b7lGuzyaBWSwWTE+fxOnTOzXj0lSCMzS0\nG7I8jfr6t+jOJxTajs9/vgVLl86z7VTqWNkmgWmpN6mhJb6RrzIiFhSfpXelkFKZRpWwZmdnFZWu\nc3F9o1ArnpFBLmTGdwa4+GLI999/Pz7/+c+juroad999N374wx+ip6cHgiBkrKKkhpb7GIBi5HP9\nMqndp2bEXcjAO51OxONxwwZTD5SJTCdno6U8amglxLHIJBnKqGKaeky1Alumhl1LLMRqtSrrLYoi\npqam8corfTh8OIypqZVwuRphsYjo7HwSNTWXory8IWlM1ugODOyA02lFbe01yuZCzI8wNnYQ4fAw\nmptv153n6GgXJif3wmZbilBoGC7XUtTW3phU9jQ0tA+h0CAaG9+1YM1isRji8TiOH/87nE4L6utv\nSHq+VJMqiiI6O3+BVasuwZIljQvmEY2GceLEy3C79+MHP/hH3eeu3rCzcS1nkpSkV0ZkVtcpvbmV\nlZUp3x02N6QQUpmsh0hLpjMTHfBsr2+GTKj64EAGOd+Z9Vni4jPIO3fuxPbt23HvvfciGo2ivLwc\nY2NjikHKJCmJhZ6qUq6lQMDCjR2YL1/IFXTPhFyT2dg6aSNiJ6mgxbbV3gcjhxLaSPU8H0Zj5ZlI\noaZS2Tpz5gy2bz+AkRE7xsbK4XBsgM2WbOQlKY59+x5Ae/tHYLd7FNc0MVJa066un6Ou7s2oqKhX\n7iUUCilrFovF0Nv7e1RU1KG6enPSISsWi2BwcDe83kM4fXoIdXWXoqnpbbr3dOjQ06isbEBVVbvm\nGsZiMRw48DhWr74c5eVrlCQw1iBLUhx79z6Ajo7EfSXYfjcmJ/dCECKorr4CJSWr0dj4Gj70oatT\nelDYDTvTJDAyehUVC+PeqWBGQlQ6aCVMnUupTK1DUDweR1FRUUFKh3KRKJ2enobD4VC+s1RxsQhr\nkIFCGuT77rsPX/nKV3Dvvffiu9/9ruZn/v73v+Oaa65JnoAg4NSpU6iqqjI6D8OQJAkrVqzA888/\nj7Vr12bV0Scdq8rFyAPaCl7BYDCJhWYLthMRGdFcT/zBYFCJtRoVO9EDy7YzSQRTI5VBZtcgXe9q\noxnpdD32fYjFYujq6sfrr49hYMCGM2cciERG0NT07hT3P4MjR36G1tZPApiP+QmCgEgkAlEUIcsS\n9u9/EJs2fQJ2u0sxyKxLLhaLYc+eB7F27Tvhci3B5OQxnDmzD4IQwrJll2LZsg4IgoB9+/4LTU23\norh4ue697d37MFpa3quZwJW4VhR79vwQbW0fgcViV9yuZJABwOebwYEDD6KkZA3i8WmUl69DTc2b\nkxK+gsFB3HTTGVx1VYfu+hDUxspIrW22WcKEfIpfBAIBRCIRlJWVLfhdIUQ/9KAWOwEK39wiE9as\nVT7GhvkWIQqTZb1792488sgj6OhI/+USBAF9fX1Jour5MMZ0rbq6Opw4cQJr165VvrxGtIIXxERt\nNog2GwQNuUv6fCZI1euXNrlsoVUWZEaSgyzLSo0um+Wc7UmUfR65xLW11ku9Blp6x1rQW3ctli2K\nIgYGhrFz5yAGBkSEQo1wuVrhcERRUyOir+95jI6+jurqN2iO6XQWY9mya3HkyC+wYYN2XbHVKqK5\n+U50df0Ymzbdo7nWoihizZq34OWXv46VKzeguHgN1q59F+x2Z9Jzb2v7IA4ceAiXXPIZzWxoQRDQ\n2noXurp+hC1bPqs5H1G0Yf36D+DIkSewceOnFHd2NBpFMOjD8PAuhEInYbV6IAhB3fh2UVEtXnhh\nHHV1o6itXdhjOXkNknv4hkKhtLrK9I5mC0EQlA5aasnIXOPbqebGGmDKRqdErHxLVZLL3GKxwOv1\nKj3fc5EIzeb6WhKlbOiC9SIByRnWuT73c42cAyQ+nw933XUXfvSjH2me+LRQWVmJqqoq5Z98QRAE\nrFmzBgMDA8r/pzN2tPEGAgFEo1HYbDa4XC64H3wQrve/H5iaWnANwHhDCDp5BwIBSJIEh8OxgF2T\nEc0U6rFJmi9XA8+uCY3jcrly3hjIDcrO16jhZMEeioysb6YgLwixVp8vgGee2YNPfOIH+NGPgJMn\nr4HVehXc7uqk9Vi37haMj3fB6z2VNB5l58fjcSxf3gyncyVOnXpF9/rFxUuxYsU16Ov7ddLPQyEf\nDh9+Hvv3P4zp6dexdes/wul0o7n57XC5EjE1MmCJd9mJtWvfg4MHf6J7LafTgzVr3olDhx7V/UxJ\nSSWWLbsCx449DVG0Ynj4AA4d+hn6+n6BkpJVWL/+w9i69VMQxSqMjr6W4lpb8eijvQgEgrqfYUHG\nqrS0VJF0DAaDmJmZgc/nUzpeAeZtzJQp7PF4UFZWhqKiIqXGeXZ2VmHtmYDcqulgtVrhdrtRVlYG\nt9sNSZLg8/kwOzub1HnNbNC4RUVFyrWBhEdrZmYGgUBAyXPIF+gQVlZWBo/HA4vFolz/29/+tnIQ\nBBaWPC3CZC7DyHnm99xzD97+9rfj2mu1BQjUkGUZGzduRHV1NW688Ua88or+RmQG6urqFIMMIGU3\nHWoATycyl8uluDjjzc2wvvoq3FdeCctr85uMESMPzDNuakxOCRNaRi1V7bDe2NFodMHYxF5zMchk\njGhNaL65GmLaPCkZip1vtiDjzh6kMjk0qNeJSmOCwSB8Pj927OjBgw/uxg9+MIWensvg8bwTJ0++\nAkHQbzTR2noXjhz5FWKxiHIAIVekzWaD1WpFY+P1OH36OGZnhxasE6G6uhVAMYaGXsHJk7tx4MCP\ncfTof6Oqah02bfokmpvfj5Ur2+B2N+PEiT8nxeGsVquS6+DxVKG0tA3Hjj2ruw5Ll9bB5WrA4OA2\n3c84nRU4evQ1bN/+rxAEPzo6PoItWz6FFSs2KAmUtbXXYHj4AObmxnXXR5Kuwk9/uiPj91MUxQVG\ncm5uDl6vV0nOMxvkySotLV1gJPx+v2EjRQzPKNQHEZvNpnsQMQM0FpUkORwOlJSUoLS0FHa7HeFw\nGLOzs/B6vUl5L/kAsebi4mKUlpaeDZklGDwJ+WTrpVyMyMkg//KXv8SBAwfwrW99y9DnV6xYgYcf\nfhi/+c1v8Nvf/harV6/G1VdfjQMHDuQyjZSor69PMsh67k1Wao/0b5O0iG++Gf6dOyFXV8N1yy2w\nff/7wFmjmc7gkaEnhuVyuVK6fjIxoOwhQm/sbAwya4yAZE1gMqTZgDXwZNhzdYPRXMLhMCwWS9JB\nKtvxIpEIzpw5g5df7sSjj+7G978/hNde24hg8Dq43e2wWu2oqmqE3b4aQ0N/0x3LZnOgsfEOHDz4\nX8rGScIN7Pza2u5EX9/vEIstFDmRJAljY30Ihyexb98vEI1Oor39I2hr+xgqKpJFP+rrL4fXewZn\nzhwFAEWIgmqiJUnC8uUb4fXOYny8W3feDQ1XYWbmFKanTyg/Cwbn0Nv7LPbvfwiTk6/jhhu+Co+n\nGuXlLcp3heLqVD7U3PxedHU9jmBQ22CJogOjo1vwzDOv6s4lFbSMJMVoKVHObKiNhMPhQCQSMWyk\ncmHvoigqrJlUyObm5jA7O6skJeYKYvDqOaoZuyzL8Pl8BWXNnZ2HcPnllyfli8zOzirXP99d1lkn\ndQ0PD+OSSy7Btm3b0NraCgC45pprsGnTJt2kLi1cffXVqK2txWOPPWb4bzLBtm3b8MUvfhE7duxQ\nkmWoYxGAzOUoo1HY//3f4fh//w+xm29G8MEHETrrTlInA2Xa6Wn+EunLszIZO5PsYTZWqrUm2ZaO\naZUxkdsp29IKNsEKgG4JlVGQe/fo0ZN4/fVTGBpyoKfnIC655N6UjKaz8+eoqblMUcSinq1Wq1Ux\nCsPDBxAOD6K5WT/Ja27uDI4d+yU6OhKxWb9/CqOjryAWm0RpaS1qa69FPC5jz577sXXrZ2C3a0uF\nSlIce/Y8gI0bE5nOC38vIRIJY9++h7B+/QfgdpdrvvfxeAx79tyPJUs2YW6uD6IoYvXq61FWNi+R\nGQr5sW/fA9i69V7dtT99ehBDQ39CS8s/KIlr6pK7QKALd93lwIYNDZpjZIJ4PI65uTnFOBWivjiT\n0ikzS4pS1XBnKw/q9/sRi8VQWlqa9rP5am6hh2996zv47Gfvhtvths/nU4SCKHTgdDpRWlq6WN3W\n+cuy/v3vf4/bbrtN6ZwEQFFfIZFvIw/kS1/6Enbu3ImdO3canUdGOHHiBDo6OjA0NJRUpkQJC0B2\npUDWF16A85OfBFwueB9+GKHNmxUjn6lIhhrpWvhlOna6siAa14hEp5GWk+px9Qy8kXmlGxNIbALR\naDTrWLEsyxgaGsWLLx7BwICAQGAtSkrWwGKxYGLiKCYnd2H9+g/p/n08HsP+/Q+jvf0fYLd7FJlA\nYD7r02q14vDhZ1FeXq2rZgUAg4O7ceLEcyguroLTWYw1a26G212Z1LlpbGwAo6PPYcuWe3THCQRm\n0dPzKDZv/ozuc/L7Z9Hd/WO0td2txN7IWE5M9OPUqVcQCk3B5xvH1Vf/u+baJsqajuDMmZ3o6PiY\n7nwGBl5BPO5FTc11Se0g2aSzSOQlfOEL7SgvT28I0sHr9SrvG2skKVErnxt2utKpqakpUzo9qZFL\n+RCLubk5yLKsiG0YQT6z0ln88z//O77xjf8NIMGMyWNA1ycWv0hZcv4Mst/vx+DgYNIHPvzhD6Ol\npQVf/vKX0dLSYmjQG2+8ESUlJXjqqaeMziMjRKNReDweHDlyBBUVFUkbebYNIAjC8DCcH/0orLt3\nY+6f/gnyF76A2FkmCGRf80vlWayByVaAA0CSV0Dr83o1tVowWuZlxMDrNdJIBXWZGJVMqdfLCKam\npvH00ztw6pQTs7M1cLkaIQjWBet67Njf4HAAq1dfoztWooTpCWzc+GnF4NDhlDWm+/f/GE1Nt8Lj\nmU9mTLQ23I+pqYOwWiVEIiKWLm3AqlWXKeVlABTjFQ6HMT7ehWj0FBob36E7p/HxIzhzZjfWr79L\n9zMTE0dx+vQuNDd/ADMzEzh58mXEYuMoLq5GQ8MtsNmKMDrajbm5Hqxb994Ff09lWMPDr8Fuj6G2\n9nrda3V2/gKrV78B5eX1C5TAEodKGaHQk/i3f3tvzvK2asGIQtQXq6FnpILBoKmdnrSuq67hZllz\nOni9XlgslqxUuqh8kZVCNau5RDwex1e/eh++8Y1/BrCwpzS52hdhlydC2pvPWsvabrejsrIy6Z8n\nn3wS9fX1uOuuxAbwla98BY8//jje9a6E+s9//ud/YmJiAqIo4tSpU/jmN7+JX/3qV7j//vtRV1eX\nwX0Zh8ViweOPP47a2lr8+Mc/xpVXXqkk1OSs5lJSgtj73gcpGITnP/4D2LsXgSuugFhcnPOXndWM\nps2E1bTOZGxym6oNIp2oib0aPU2n06CmL2QsFoPVak2p6ayls613D5QtTF86uh/agIyUdgWDQezc\n2Y0//KEPL7wQxsjIWvT2voqamrdAFG1J+sKEioo1GBzcBbvdhaIi7fpcu90JQSjBwMBzWLq0TYnd\nqmP5S5a0oLv7MSxfvgVnzpxEf/9zGB9/FS5XBRob347ly7dgxYoO9PX9CS7XMthsblgsFsW7Q8a5\nvHwVJib6IMsheDzadcUez1JMT48hGBxDSUmN5mccjmIcOfJ3HD/+LGR5FnV1V2PVqitRUtIAScJZ\nprQMk5MnEI16UVy8csEYsVgMlZUNOHnyFTgcJSgq0q79rapaj0OHnkRlZRtsNofCxmdnJ9DX90eM\njPwFkYgbodBpdHTk5romtkSGnWLbdNgkg2WmfrYa5J5Xa0kDiXXNp342K0kJJGfbA0jpVSMdhGzC\nP+RpYdeaXPm5rvXg4EmMjp7BpZdugiwnWmyyNcq0pvmu184BabWsTX0b1It86tQpDA3NZ45GIhF8\n8YtfRHt7O66++mp0dXXhr3/9K66++mozp5GE8fFx2Gw2fOQjH8GLL76I6elpzblmi7jFAu8//ROm\nnngC9n37UHXjjXB1dpryRTOSbGYE6ixEcnsHAgGlVRk1l8h0LBbElkg8hE6vevM18gyMlDGlGycW\ni2HfvsN45JG/4777DuGvf23C9PTVcDg6UFGxGitXXov+/t+kHKO19Q4cO/YcIhGf5hyj0SgqKuph\nt1djeHiH7pzC4QCAYjz33Gfg9Xahufld6Oj4JFavviLJzb1hwwfQ1/cUJCmmbLBs7Ws0GkVDw80Y\nHHwFfv+k7rybmm7E6dN9mJ0dTprv6GgvOjsfQ1fXT7Bu3TWoqGjC6tXXorS0Oikpiw5tdXXXY2Rk\nL+bmJlKs0ftx9OgfEIkENH9vsVjR0vIBdHX9GNFoGEePvoTOzgcxMfEM1q3rwKZNd6C29s3Yt8+F\nbdt25ZTBq5fcQzXppaWlSg/dQCCgZEqTd8NMsKVTpL8Qj8dzKp0yCrZ8yEj5EmkNmLF/qddaFEVl\nrX0+n+IhMYqXXtqDyy7bDEC7y9OFkGV9wUlnEoLBIL73ve/hW9/6FqLRKO644w5897vfhd1uT5J/\nzBZsQhGxNOfkJIo/+UlYX38dka99DZHPfhbI4sWW5YTOMzCf0ZkL22YVygBkpYalnhsreaklmmGE\n9aaLlRttO0lzYpO6ZFnGiRND2LlzEM8/vxu1tR+E212tdE1Su5P7+p6Hy1WCqqpLdOceCMzi8OHH\nsXHjPUkqWTQePaN9+x5Fbe3lip5zNBrG4OAu+P39sNnsqKm5AdPTw4hETqGh4e3K+Kx8JgB4vRMY\nGnoGHR2fVFgFHaaoY1Ew6ENv70+wZctnYLNpezdisQj27XsAa9fejpGRV88midWhpuY6iKI96TOb\nN98NUUz+XpC+djDow6FDP8aWLf941iMgKIcwYkPUzGLz5n/UfE7j40fQ2/sbBIMj2LLl3Vi2bGFo\nKx6Pw+/fh61bRXg8TjgcdoiiXanDZUWF2KTimZkZuN1uWCxW+HxzEEUb7HZScJIxPT2F8vKKpINp\nwgAl2Nb09DSKi4thsVhhs4mwWKzKPfr9/rOeGbar0Py1p6fPoLi4jAkxJd/T+Pg4qqqqEItJCIWC\ncBdQUlEAACAASURBVDqLzr7jUcRicYyPn0J1dQ3s9sR12b+XZWBk5CSqq1eDHi/9nv49MnISy5ev\nUhmo+THGxkZRXJzIzI7HJcRiUUSjMQCyciiJRqNYurQKwWAAdrsDVuv8AT0Wi2FkZBA1NQ1J4ydK\n1xIXOnGiF7W165JCNOw8ZmbOIBgMYcmSKgwP96OoqBilpUtgtYqw2UTIMtDXdxBNTa0L1g8AjhzZ\nj//zfz6N4uJiRCIR+Hw+lJWVJem8q5UUFxkuPi1rIPEiXHrppdi/fz8+85nPwOPxYHBwEPfffz8A\nZN3Vh8bWUmwKBAIJI2WxwP6Nb8Dxne8gdsMNCD3yCOQlSwyPzRohKunIlc3ThkI12Ln2bPb7/YqB\nzESaUg29eHQmMW0C6WLPzHixY0cfjh2TMDtbC7d7Dc6cGcDo6N/Q3PxBANB0a8myjAMHHsWqVW/G\n0qX1uvfAxlzVsV1CKBTEgQMPY/nyyzAzcwgWSwwrVlyOysr1SWP19DyNpUsbUFnZlhRPZePG1Dxi\n3brbkuKulPsgyzImJgYwPPw8Nmz4yIJEqWg0jIGBnThzphOnTx/Fddf9G1yupZr35vWexrFjv8Lm\nzdrJYolrDWJo6I/YsOGjyoEmGo0mPaORkYPw+/sU2VCfbwqDg39HJDKmHASOHv0TysuLsHx5m+4z\nDYcDiEbnZRz7+p5Bbe0NKCtbBtrb6Dn5/VM4evQv2LjxDgiCgGAwlCTnOTi4HYLgQW3tlgV/CwCd\nnY9jzZq3we0uYw5tlrNJq1EcPPgktmz5aJLCGf397Owo+vv/hk2b7tR8byYmejE+3oe2tncozUHY\ncNno6H5MTY1i7drrlHeA3PmJd6AT09On0NJys+Y6TU4ewalTvWhre6fm773eMRw79hds2nSXRiZ9\nHKFQAAcOPIb29g/C6UyUUqm/c52dP8Pq1degokK7//bo6B54vTNobtbOIYjFQti373Fs3vxhnDzZ\njbm5Q1i2bDMqKhqZZip/hsu1ArW1mxb8fTQaxJIlB/C5z90KYGHzEFbTYBG7rNNujKYHMO677z5Y\nLBZ84QtfSPm5l156CVu2bIHT6URTU5OpZU+CIODrX/86enp68N3vfhetra1JCWipxEH0wKpKRSIR\n2Gw2uN1uZWNU1LVEEZGvfQ2B3/wGln374Lr8clh37Uo7vlqUxKw+qeq4VbZqWCwSp+J5d7ogCEl1\nypmMQ/Oif7O1z+lc3oTJyTPYtm0/vv/9nfjP/5xET89liMevhcfTAFkGSktXw+msx9DQX3W/sIIg\noLX1TvT3/wHhsF/3WpWVayGKKzEwsE2JlbHzm5oawuHDvwEg4OjR36Ct7S60t/+PBcYYAJqb34HB\nwZ2YmUkoebFxPTKqy5e3IxiUcfLka0kJOvQMAKCqqg7l5e0YHn5RibUfP74Xe/f+CD09j6GsbDne\n+MbPY9Om/4Hh4b/r3ltJSSWqqi5DX5+2+14QBCxbVoelSzdhZORF5XAKIInZr1zZjkjEir17f4r9\n+x/B4OCzqK29HJs2fQr19bdAFO1obr4VIyP98PunNK8FAA6HCx5PBUpLK3H69EGUlbWhpGQlADus\nViccDg/sdjdE0YFjx55DR8f7YLe7YbO5YLMVKf94vafg9/vQ0HA5RNEJUXRAFB2wWu2wWu3o738B\nVVWXorx8Oex2J4qK3HC5PLDZ7IjHJRw48AQaGm4FYFG+k/ScYrEQjhx5Bu3t79F89/3+KQwO7kJr\n660L1hIA5ubGMTbWjQ0b3qLkRQDzMd+pqREMD3eiufkmzTUKhWZw4sTLaG3VTu6LxSI4fPj3aGt7\nr+b8rFYr+vqewoYN74HDUaQcfsjzAwD9/X9Gael6XWM8OzuKsbEjWLfuOs3fS5KEzs4n0NJyO0Ih\nH8bGDmB2dgQ2W5ESHpmc7EE4HEdVVTPC4RDi8QR7T8wlDI9nP+6+e34NKElOfU+LNLvaMEw1yEY1\nrQcGBvC2t70N1113HTo7O/G5z30OH//4x/GXv/zFtLnceOONaGxMuAzr6+sxODiobBjsicoIKEkp\nFArpCk+wGyQAxG+4AYGdOyHV1aHoLW+B/bvfTfavnUWqOHEuRf6sMhh9ybQEKbIZl1rysfKc2Rh4\n1iCzczUS045EIti1qwsPPLAdX/96F554og/B4PWKaAerigUAjY1XIxCYw+TkYd0xRdGOpqb34dCh\nny5YexovGo2ivv7N8PnOYHY2IZoRCMzg8OFn0dn5CM6c2Y3GxrfikkvuQXv7RxfIXRLIPd3c/H4c\nPfrfAOZFZojlEsNbt+4tGB3dDb9/Mum9Zdevru5NmJwcwt69D6O391HE45Nobr4D69Z9CGVljZBl\nGatWbUIsJmJsbL/uGhj5TF3dZQgE5uDzDSohAjpQDg/34sCBxxCNjmN2dgSNje/Chg0fSsoqp7m3\ntX0YPT1/hCSljttOTvYjFIqgqekK5XtHTRCi0Si6un6Bhoa3wuFIrutN6A74cPz4i7rscWysE7GY\nDatWtS34W5vNhpMn/4yVK6+Ax1OhGEk29nnw4JNobr5Ncf2zkCQJPT2/TjKG7J4Ti0XQ2/u7pN+z\npUqyHEdv79NoaroV0Wh0wTspSRK6u/8bbW136H6nu7qeQFPTO2GzaWd09/U9g6qqrSgrW6aEmmjs\ncDiMoaH98Pn8qK3drPn36Q4kAHDkyO9QXX0liouXYHz8KKxWCbOzE7BaE9fy+SYwMXEQ7e1vPXsg\nERCJRM/uuX7YbLtxzz3XJ2WlmxXnXmww7Y4y0bR+8MEHUV9fj29/+9tYt24d7rnnHrz73e/G9773\nPbOmk4SGhgYMDQ0pp3l1jEMPrFoVa3y0XgQy8izk6moEn30Wkc9/HvZ//VcUvfvdECYnlWunSlbS\nGs8otJTBzGgsQXrWND8z5C6B+fInqinUixUnNrhj+MlPtuOb39yP556rwczM9aiquhElJa0YGHgB\nAJRmB+RGp5jwhg23Y2DgRQSDM5rzEAQBHs8SVFdfh76+Xyk/1xqvpeVdeP31h7Fnzw8xMPAHrFix\nCR0dn0Bj421wOBIxzmXL1kEUl2Fk5OUF60i5B253CdaseRd6eh5Tyn/oMEZCKqIoYuPGj6C//9eQ\n5bgSMkkcFP04evQv6Ox85GzdaBQtLXeioeEGFBW5lVZ6VIbS1PRWDA+/ljI5q6XlVoyMvJ4yWay1\n9T04fvzPiMUCCARm0N//Anp6foq5uV40NNyK9es/gksv/Sx6en6ua3Dt9iI0NLwP3d2/071OKOTF\nwMAr2LAhEWtnlcCsViuOH/8rHI41cLsrFdcnfW8kScLBg09iw4b3wmJZeGCcm5vAyMgBtLRos8+R\nkT0QBA9Wr25Lqqmlw0CiXeUlKCmp1Pz77u5fYs2at8DpnC8fYpPNurt/oWssLRYLjhx5CuvXvxsu\nl0fZL9gDQXf3L1FXd3PS+Cz6+p5BZeXWsy7+hRgdPYB43IGVK1sX/C7RXnUOIyN70Nh4k/L+sIeC\nxPo+gebm2zUPJAAwPPwaLJYyrFixDgDg9w/CarVBkmSIouPsoeS3aG9/t/L+JwRVHGf3wFfxoQ9t\nSeoER9dmSYD6kHq+wjSDnImm9auvvorrr0+ONdx0003YZcC1mw1KS0tRVlaG4eFEpmk6g6yVhUzG\nRw+6jFYUEfnqVxH87W9hOXAAriuugLx9e1rN5VTZzHpIxbbVDD4TqPWszXCn02GHoOfylmUZw8On\n8IMf/Bb33bcLP/+5B6dOXQe7/UoUFc1vhLW1b4TPN4tTpzqVrlE2my3pIGKxWNHa+iEcOvRYSla2\nbFkzrNYlGBrarjSBoPseG+tFZ+ej6O39Gdavvw2CEEdz810oLV1YDgQAjY3X4fTp45iZGVAYNpDs\nnl66tBalpe04ceJ5AFggpJIo0XNj7dr34PDhn0EUrRgZOYB9+36Enp4nUFZWi46OT2D9+vejo+Nj\nOHTo0SSVKrbsJhqNoqnpDvT0PKG7Bgn3/QdTGlNZluF2N+JPf/o8Bgb+gNWrt+KSS+5BS8ttcLlK\nzq63DStX3oLOzp/ovscVFTXweNoxMPDygt8lGOBvNA2qIAjwek8iHA6gsfFNAJDEYAHgyJHfYvXq\na5X5JI8dw+HDT+u6cr3eUxgfP4Kmpnk3LHsYmJzsQSxmxdKljUqdMYsTJ16Ex9OApUtXq4eGIAg4\nduw5LFnSoWss6ffl5cuVZ8geCI4ceQFO52pUVCwcH9Bn/oSEq7wLzc03JP2cDgy0Pps2fSBJdpWt\nq+7r+wOWL78cJSXaOQmzsyM4ffo41q27lhk/grm5MbhcVRBFO7q6fo6mplthsy1MsLXZ9uF//s+b\nsGxZYo3U2eFqkpGP0rVCwxSDnKmm9djYmLLIhGXLlsHr9SrxTjMhCAJqa2uTuj4BCzs0pYoTp3vQ\n6Qxo/LrrMLd9O2K1tSh+xzvguf9+uM6qBumVZ6QaTz1vI6VBmTJuPT3rbLtRac0VQFICC2Fqahp/\n+MOr+L//dwceeCCIvXuXYGhIgNtdo2m0ZVlGc/NtGBp6GdHonK4L3en0oK7uXTh0SD9nQZZlrFlz\nDSYmjsHrHYTPN4menqfQ1fUIIpFxtLXdhY6OT6C29jLU1LwVhw8/kfKe16+/A4cPP41QyJeU2U01\nm1arFWvWvAl+vw+jowcgSRJsNtuCA0U8HseZM+PYtu3/g90ewZYt/wMdHR9HWdkaxcvgdBZj9epb\ncPjwzwFAaZdJxiRhUNxYtept2Lv3Id3GBA6HCw0Nt6G7+9Gkn09MHEdn58/Q1fVfKCurwBve8EWI\noh0lJfMtFFm3a1VVPZzOehw9+twChkWor78KMzNBTE+fTPp5b+/TqKm5QdOghkJeHD/+Elpb36HZ\nSGNk5HVYLBWorKzXfCYHDz6JtWtvhd2+MLEzEXf9A9ra3q353fT5TmNiohttbW9T9ga2zndy8ijm\n5mZRX3/pgr9NJMb1IBwGVq/eqDm38fFDmr+nZ+j3jyAQmENNzdYkA0mYmxtPyfxTxZXJILNhAKog\nYGv/Bwd3IRJxoLJyreb7E4kEcOTIH9He/h7lZ5IUhyDE4fNNoLi4CidObMPSpR0oK0sOZyT24dfw\n6U9fgYqKcqW5RUlJCex2u3KQp3f+QmHHgAkGeXh4GPfeey9+/vOf56QjnE8IgoA1a9bgxIkTyv8v\niPmeZYGp4sTprgFoG1AybIGyMkz/+tcIf/7zcH/zm3C/5z2KC1tvvFSslnUjG+kgZdSIqj0EZrjT\n1XMlzwA7z2AwiJde2o/vf387vvOdEezfvxXR6PXweJrR1HQDpqZGMD3dnzQuuZOBxIbV3v5h9Pbq\nsz8AWLq0BsXFG3D8+B81fx+PxxEIzMLpXIodO/4Dp079FY2Nt6Cj427U1V2blGlbWdkAp7MWJ0++\nqHvPgIDm5g+gr+9nSomUlnu6qelWDA/vRCzmUxh0IDCL3t4/Yv/+hzA9vRdXXvkFrFp1GZzOCiXW\nzMb+otEoyspqYbNV4+TJvyUZdLY8q7q6EeXlHejv/6PSc1fN8ioqVsPjacHhw79FT88z2L//QczO\ndqGl5XZs3PgpVFdvxfLl62CxLMHIyELvFomjNDdfB59vElNT/YoBUdf7trXdiaNHdyo1zCdP7oLd\nXo2qqoUGNcGcf4kNG96TxJzpeqHQJKamBlFff6Xm9fr7/4yysg0oL1+h+fy7up7UdSWTi7Wt7b3K\nM2Rd6H7/DPr6tqGp6WbNZgs+3xmMjOzF+vW3aF7b75/E0NBu3d+HQl6cOPF3bNx4W5KBpANBMOhH\nT8/TaG9/X4q48pNobHyH5v3JsoyBgb/qJnFZrVYEg5OYmRlEc/N1ST2b6X4lSUJX15Noabk9qXTq\n9OmT8HiWQ5JkOBzFkGUnVq9OZvCyLCESeR13330pKiuTq1MopEVlb7IsJ7WjvBCQc8HW3r17cfr0\naWzevFnZpOPxOLZv3477779fU9N6+fLlGB9Pbsk2Pj6OkpKSvMnJsX2RgXmjom56kG3jcbV2MaCt\nOy2KIqJf/SqkK66A8+Mfh+vyyxH6yU8Qv/zypPHSMm6mNMiIBKgRIyrLclKsRq/2l52bkQNLqjKm\neDyOrq5j2LatD6dOAUuWvBVOZxm05K3b2t6HffseQmvrB2G3e5TMXtJTT2SRu9HQcDu6u3+C9vZP\n6M6pru6N6O7+DSYmDqKqqv2sOy6E4eF98Hp74HDYsWrVNaitvQJ9fU9qNmkg1NdfhYMHn4TbfVSp\nPSZjTElaxcVLsHz5tTh69Cls2HCn8jzIJU6yih0dH8bBg/+Fioo3wOc7DFG0YNWq61FW9lbleuvX\n34a9ex+Ex7MSTmeZcg22mUVNzRXo6krMqaKiISnEQO9Bff3l6O7+b3i9/Sgra1Tc5Im8AGBoaC9m\nZ3tw6tRRtLS8DevXv33hzQNoaLgevb2/QElJXRJTJgiCgI6OD2Dv3gfQ3v5RCIJViaPTocJqFdHS\n8iF0dz+KNWvejKmpMWzceIfm9Xp7n0JNzfWazDkWC6Gv74/YsOEDSjN7OrTFYjFMT/cjEAiirU1b\nT7yv7xksXbpZ15Xc3f0LrF37jgXMmp7BsWNPo7X1DgiCJWk9E+9oHIcPJzLvtXMkYjh06Cls3PgP\nujkUXV2/wIYN71cOIvTcybu3f//PUFNzMyQJSqhFfX+VlVt07+/06cMIBsNYt057fRJJXM9i8+YP\nK3FjKsej+z127PdYsSKRxMViauooVq1aD7v9NbS03AhRFDE2dhyzswMIhSYgCFGEw6fw9a9/BNXV\n2vMD5t/fkpISxY1O+/f5jpzrkLPRtP7yl7+MP/3pT+js7FR+duedd2JmZgbPPfec4clnggcffBB/\n/vOf8fjjjwOAkqhF95+r1iorTiGKoiFRC+HUKTg/9jFYX3kFkX/+Z0S++MUkIRGqrWV1fbW6JpnR\nQYrtHpWu9tdogwm1eAqtjSzLOH78JHbuPIljx2REIutQXLwK+/Y9gubm2+F2a8ekEmsyg56eR9He\nfndS1yCqHSWmODS0B+HwCNau1dd6lmUZe/Y8hPLydni9fQBCWLp0I1asuCTJ22NEE1qS4ti37yG0\ntNwJmy1xmlCHDCwWC44d2waXy4Xly9+orAuVOE1M9GNsbBd8vjHE4wFcccX/1l3fUMiH7u6fYPPm\nf9T8TOIwGMbevQ+gtfXDcDjcynXYw5kkxbF370Nob/8QHI5ijI8fx8jIDkjSHCorN2H16jfBYhGw\nd+8D6OhY2D2K6mqtVgEHDjyEzZs/rZvgQ6IhGzd+GoIgKFKgbO3tsWPbcfDgD7F27ZVnDQ2tX0Jg\nYmpqCJFICMuXNyvryu5hg4O7sXRpI+x2F2y2+XkkDj9hDA7uRk3NpWfZrah83QRBwOzsGLzeMaxa\npV0lMj5+FBaLiMrKNcxP6bskY2SkEx7PMpSWrji7tjIkKa54ucbGDqC4uBbFxUvOHvoFALIisDE0\ntBtlZWtQXLyUGXceIyP7UFy8EiUlycYqEUICxsZ6YLU6UVFRB1mmvU04W5Zphdc7Ap9vAqtW6WVM\nR3D8+MtoaLiaISUCaLtIsOeXsWzZRtjt1E1qnrzIsoTTp48hFPJh+fLWs2tsgSBYYbEImJo6go0b\n34vnn78PjY3tkOU4iouXYcmSehQXL0M4fBj/P3nnHeVWeef9j+pIGkmjqZreex/bGGwMNmB6D5BQ\nAgQIoeybN8mbswmb5OTdTc5CerK7ZEMwBgPBgGFDNcaADTYY4z69F03vRdKMpFF9/7hz70gjydgG\n0t7fOT4c5l4997nPvff51e/3d9dd1RQV5UacnyiRMMg+n+8zwzn/AvLXIQZZ2YbxBz/4AcPDwxLW\n2GKxUFVVxYMPPsjdd9/Nnj17+Pa3v81bb70VVuz1ecnu3bt56KGHeP/997FarZKSOxO2qmiysLAg\neSmn6rni9aL+2c9Q//KX+C64ANeWLQSSk6XxghsonHaryJDLRFaikbz4T+seJYb3oylk0Vpf2Qhj\nYmKKjz7qCiHt8PmW88hut5PGxseprX0gbFMXPzq/38/0dD9TUx9RVXVXyJyCFTJAW9trJCRkYzaH\nEw3MzY0xMPAhLtcIU1MWLrzwp2g0ejwejxSKDJaurj1oNCqyss6PuCaBQACbbZqOjmepqXlQ8phE\nzzSY8OPYsSfJzd1EfHwuLpeNgYEP8XjGiY1NJy/vYpRKDb29HyGT2cnLixy6BJia6mNs7AMqK++K\neo7NNkVn5/NUVt4LLBsG4rsTCASYmRnh449/RkZGOXq9mZycS1EqNSFkJYuLdjo7t4cZAMFEF1br\nKBbLG9TW3hd1PsPDjczPt4c0qnA6F+jr+5D5+WY0GiguPl/KXQaL1TpKX18rtbW3RRy7o+N19PoC\nUlNLw8g3/H4/x449TlXVV1GptGEMay7XLO3tO1m9OrJ3OjHRxsREN5WVkaMEAwMf4nbLKCzcEHYs\nEAjQ2fk2MpmJrKxa6ZrBkbienndQKpMkeNHKVFV//z58PhX5+edEvP7oaBMzM8OUlV0i/c3v90re\n6/z8FH19+1i16maJ5S1Y/H4v9fXPUlBwLXq9IeT9F8/t6noLo7EEgyGJ4eGDGAzppKYuV2hbraMM\nDHxCRcWVS+sbzIqnJBBw09HxOrW1XwprHepydXDrrcVUVBRFvL9gWVhYWErNmKT1DQQCX3gXr89B\nPnWz/kI4xla+0Cs5rXNzc9m5cyff+c53+M///E8yMzPZunXrF6aMQYA+AWzevJm0tDSeeOIJ/H7/\n56aMRW9b9FxPGZurVOL+0Y/wnXtuaAh7wwYpvyhW3Z7M2/40WRmujKY0T2Xck4XTV3ZjcrkW+eij\nBlpbHezbd5RVq76FSqVjuZHMcpRCrdZSWPhlmpufpLb2fmlMkbpRWC4laWlFLC5OYrHsJjc3cuEK\nQGnpNZw4sRWdLg2DIZXFRQcWy4c4HBZUqlhycjaj1ydjtY7S2bn9pCHuoqKLqK9/Fr2+T+p7LK6B\naAzodHHk5FxFR8d2Sktvk5SZGFIU16W09EY+/PCnmM2FaDSx5OZeGtYgIj9/A42NLzA93UFiYknE\nOSUl5WG1DmKxvEtu7sURzzEak0hPvwCL5XWKi2+U1tLjcTMy0oTV2ohKpaCs7EYWF/spLLxOer4x\nMTES5lyliiU5eSOtrX+iouL2iGkMkymdhITVdHe/FjUykZFRTVtbP2NjRwEDY2MfIZPNkJpaRGnp\npZLX7HK5QljHhFDpx6xeHVnZC8VwGjIyKqR3JXiOLS0vkJd3uQQREg1n4Rtw0tDwAjU1d0RMw4jk\nHmvWRDZ8ZmYszM6OUVNzU8Tjk5PtuN1uKivPkYh0PB6P1BBlZqYTp3ORysplzzVYsUxP92KzTVNT\nE7mXtt0+wdhYI6tW3bFi7oJR6/Es0tLyHlVVtxIIKPB6Bcx9sOHd0PAsRUXXoNMlRlRsw8NHUKuT\nycys4uDBZ4iJcZOcXI5GIyhFt9tBf/8+Vq++IyRvLK6x02mjufllqqquDTO2nc5ubrop75SUsThm\nNHKfv3f5h6TOXCmDg4N873vf44UXXqC8vJxHHnmE884777T6+kaTYA8TlvG5Z/JyyMbGhBD2gQO4\nf/ADrA8+iFgWcqoUktEkmM9aJpOdVv75ZGOJVn5wKN3r9dLcbKGpyc7IiAGFohy1Ws/c3AgWy+th\nynalZzs83MDCQjeFhdeHhTSDpaXlZVJSSklOrpQUzcq2fYuLDj744CckJ+ejVCowmzcQH58nKUrx\nOYkh7pycKyQPZqX4fF6OH/+DFLoNNhSCN4je3v0olV4yMzcFwUj8TEx0MjNzHLncjcFQjtXaQE3N\ng1HXXggn/4GqqjvQaKL3pm1sfJ6MjNUkJhZHPae9/S2MxgRiYjIZHt6PxzNLfHwFqalrpTxkX98+\nYmKUUhRAnHtwWLC9fTc6nZasrPMkT0vsRS1KU9NLpKVVkJQUzk7mcFjp63ufzs63KSoqorR0Uxh3\ntnAtL16vyP4VoLl5J6Wlt4blJUGoKu7qekeihhThZeKcLJZ9+P1q8vPXRVybhoZnSUvbiNGYEmJE\nCffn5dixrVRX3x5GPALgds9TX/88q1ffFaKIRFlYmKG19VVJmYu92MXuXXb7NO3tr7Fq1Z2oVKow\nReNy2Whq2sHq1XdFxFILHORPUlt7Z8SKcYATJ7aRl3c5JpNZUpDB7+3AwF6UymSys+tYXFwM22es\n1mF6e/dTV3cL4+N9dHXtxOWaoqrqK5jNZfj9fk6c2EJJyXXo9eGdvgTazG2UlFxKTEys9F4JUbF+\nrrkmlXXrTk4mFSzBfZBhuVjxdPs+/xXkUyd3xu0X/x5kYWGBhx9+mFtuuYWRkRH0ej1PPvkk5y4V\nUIktDs9EyYkepsvlkloIinCgM+7lqtfjvflmIfzys5+hOnyYxU2biElM/FxeNo/HQ1tbO0ajEZks\ntIXhmYwVzGXscDg4erSJDz7o5913bXR2FuPzVaJSZaBQCOuh0Rjw+VSMj39MYqJQWyAW1gVvRAaD\nmfHxbtzuafT6jIgbFUBychnt7a8QF5eLSqWTxhGgJT309r7F1NRRUlLqcLsnKS+/G50uQRov+L7j\n4tIZH+/A611Ar0+L+E7I5XJMphJaW7eRmFgbsnnDcjg4KSmfwcHDqFRaFhe99PTsZnz8IxQKGYWF\nV5ORcQ4JCTkEAjqGh98nOTmcmEEYT058fCmtrdtITT0r6nNKTi6ntfVFkpPLpbUOFpdrgbm5ARoa\nXkIms1NefiNZWRswmXIkw8Pn8xEXl01f33602nh0uuWNVdxAFQoFKSnF9PbuJSYmAYVCJ0U3gtMn\nKSnltLW9TEJCEUqlBr/fR3//Ufr6dmG1tpGVtZ7y8msYGvqYjIxSZLLQtRbWUYFSKbxfnZ0fEBe3\nBpMpQ1pz8Vper5umpheoqblNUohitEqpVDI93cvkZE9UCFBPz7totdlkZJRJ3rj4bft8viXylvPK\ndAAAIABJREFUjUuW8rqhIlBCPkNZ2U1oNOHK2u/30tT0HFVVN0sVzSLRi3APAZqbn6eq6hYUCmVY\nTj0QCNDQ8AwVFV+JqmwbG/9EQcHVxMZGJmPq7HyDuLgyzOYCaW1FY0MmkzE+3srMzDj5+RukewqO\nlLndDlpa/ofa2luRyxUMDR3F7bZhs42TlbWG2NhE2tpeIjX1LBISIrXmdHPixJOUlV2O0ZgYVOAW\nwG7vY+NGDWefXSnRD3+aBAIBqW9AcCOZSAb736D826ed8A+tkGdnZ7n77rt54IEH2LFjB3v27CEv\nL08qNAvuOXw6EtzvV8TnicD5U+3vG0kCgQAer5eFs87CvXYtumeeQffsswTq6gjk5p72eMHjiuHS\nbdu2ccEFmz6Tty3CLAB6e/vZubOB3bsn2LvXyfi4jKSki1CpwjcoAKMxlakpC273DAaDAKsIVshi\nzishoQCLZS96vRmtNi7qPBITy2luforU1NXYbNNYLO8xMrIPcFNUdBVm81kYjTn4fGomJw9iNldH\nfTZJSSV0dLyJXp+BVhvukQofvgqZzMjQ0G5SU+ukeQTDmNxuJ3Nz4xw7thW5fJ6SkivJydmEySRw\na4ubrtFoZmZmCJdrEqMxMsGD0Dc4EYvlDVJSIuNWZTLBUGhpeYrU1LWSRz44WE9f31vMzDSRlraG\nioqbGBk5SHr6OYidjIIrtGUyGfHxJbS0/InExEoUClXE6uzk5Ara2raTlrYGmUwuec/BytJkKuXI\nkUeZnR1kbOwAen0CRUVXkJpai0ZjRKFQodVm0d39BmZzNM9exthYG263lqKiDSHvxzJe9jkKCq4i\nNnb5HRHn4ve7aG9/g9raW8KUPghNGWZnRykpuUD6W7B3bLG8j1KZQlJSYQhcTZS2tv8hNfWciIoI\noKnpBbKyLpKYvMR1EpVhY+Nz5OVdQlxccggWX4wytba+RHr6eVHhWV1db6HXF5KaWhjx+NhYAwsL\nDgoLzw07JpPJcDrn6Ot7X6pmD4ZpBRsEpaVfQqsVoEZDQ4cJBASmsszMOqan2wkEVGRnh9dpCHnp\npygsvJi4uGWDRojQjXHxxXo2bVojMZ+JVdonq2EJBAS+++ACLnH/+Bsv6IK/ZD/kxx57jJqaGuLi\n4oiLi2P9+vW8/fbbUc/ft2+fZBWJ/xQKBRMT0Sn9TlfMZjMWi4VHHnkEo9FIXl6eVBEeCYv8aXIy\nogzgjBVcJEIS1WWXCUQixcXorr0W9c9/DhFwjZ82bjD2F4TN+7PSXU5NTbNz51F+/esDbN3qZ3j4\nYlSqiykpuZKFBTuTk80n/X1x8WWMj7ditS7XFYihz+Aq7+rq2+nqejVqf13hfmQoFKns2vUthod3\nk529ntra+ykouJJAQCFBinJyViOTGRgdPXTSsSoqbqWz80W8XnfIsWD6zNTUUmJishgY2BuygQwN\nNXLs2Baam58mPj6dSy/9BYGAG50uScLIipXmYog/N/cCxsfbmJsbijIrSEkpRKPJpb//vajnxMbG\nkZV1GceO/TdNTS/Q2PhHAgEb1dV3UV39dRISClCrNRQXf4Xm5q0R712gWY2ltPQ2mpu3hVB0wvL7\nrVSqKSy8idbWp6S/iRSdNtssLS27aG//EzExCQQCdurq7l2q1g79PgSWrjX09UV+Jnb7FKOjA5SW\nXopMJltiLNNIrGPt7W8SG1uKXp8YVs8gQoTKym6MGOp1ueawWA6ENX0QZWqqG6dzgZKSDWENH7xe\nL4ODB1EqEzGbI+c9+/r2YjSGMnUFE1j09u4hLq40BOsrviNarZaxsUOo1WnExWWE8WeDQB7idvsj\ndkYS1u7k5CB+v6Dwq6tvltJWwUaxy+WiufklzOb1IWkCudyDzTaCXp+G3T7G1FQfRUXnRRjfT329\nAGEzmZYNEpttiv7+o5x7roxLLlmHVqslLi4OvV6PXC6X2LgWFhYi4rjF/Tr4XVppKP09y+fm42dl\nZfHzn/+coiKByH7btm1ce+211NfXR4Q+gbCQnZ2dIf1NU1JSIp57pqLTLXtq+fn59Pb2Sv9/qg0c\nouGJo+FzoxUdRBKxSjUi3Cg1lZnnnyf+978n5uGHUXz8sVCFfQprFAn763K5iI9PZGpqiuTkyPy7\n0cThcLB79yFaWmzYbFmoVGejVuswmULJYCoqbuT48cfR6VKjwpdkMhlVVbdx4sQfqaz8GgpFjFQM\nF7yuSqWasrLbaG7eGtKD2O/3MTzcyPT0CeRyHzk5G0lKKsTh6EOnSw6poA2OVhQXX0Z9/Ta02nRM\npsge6XJh2VZqax+Qoh4rQ6WFhRfQ1PQ8AwOHmJ8fxOudxmgsoqzsliBIiIzs7CtobX2GysqvSfcu\nekPi2CUlN9HYuIVVq+4jJiYyLK2wcBMNDc9hNHYTHx/qEbndTvr6PsLh6GV+3o7JlEdR0c0R789k\nSiMhYS1dXa9RVBReeCWTyUhISCUjYxN9fa9TWHi95LGJXohcLic+Pg2rdTWdna+Ql3cV4+OdTEwc\nQiZbxGw+l/j4TchkMiyW/QwM7Cc7O3J1en7+eTQ09DMzMxSinAQCjg+oq7s3bD2EQqguvN4AhYV1\nIQVS4nfX1fUqmZkXoNeHh3LFpgyVlbdFXGuBP3s/q1d/DVjG+or51+npfkZHu6itvTmEd0CUyUmB\nqau6OjKN8PR0BwsLdqqqIndHmpmxYLNNUlNzk3TN4Ht0uWYZHDzC6tV3Rvy92LSiru5rUQ3vaA05\nRChlf/9B5HITiYl5uFwuKZ8O4HRaSU6uZXDwE9avvz9sbCGn/CQ6XSZTU70MDh4FPAQCQgenzZvz\nufLKZSUuokbUarW0b4n/RJTJyg5nK5Ei/yjyhRZ1JSYm8qtf/Yq77gqvTty3bx8XXnghs7OzS6T4\nX7w8//zzPPHEE7z6qkBm73K5lqpjI4dXRc/1VCucIxU7RZNTgRsFjxdz4ACae+4BmQzX1q34zo+8\nwa3EKQc37HY6nXz88SECAdi8edOnLRder5fGxm6OHBlncFDL4mIeHR0vUld3H3K5Omrxk9vtpKHh\ncerqwuFLwTI3N0ln53NUV98fNU8MAv5zevoTUlLOY2TkY/x+G4mJFWRknBtCyNLa+hpGYyppaWui\n1gYIOa3HqKn5Omp1+HMXPZHx8Rbm5zvJz79O8oLFMOni4gIDAx/jdFoYHm5j/frvEBubJhkUK6/b\n07MPpdJDTk5kFIHf72d2dozu7hepqrpPWouV4/j9Po4e/W9qa+9CqdQxMtLC5ORhFAo/6embSEoS\nvLX6+mfIzT0fkyk36to3N79CcnIeZnPkMDhAa+sbxMebSU09SypgC65Ctttn+OST36LX68jOPoec\nnIuQy5fhVGJOtKnpWQoKzpeK6cLv38fRo/9BdfUmqQq6vv5VcnOvj0hgEVwoFVxwJj67kZHDOJ1u\nKisjV543NW0nLe1ckpJyIszFz7FjW6iouCUi8Yjb7aC+/lmqq28H5GFFYC7XHM3Nf2bVqjvDPHOx\niKu7e6c09/DxhSKxNWvuDvm9eI9ut4sTJ56iuvp2dDpDxG8muIgrkvT0vINCkUhubij5h0ji5HRO\n0tf3oWRwiGs7OtqJ1ztOZ+de1q0TjEe93oTDYWNysh+7vR+fz87AQBOJiWZSUwtJSMjHaBS+DZdr\nhoqKWW655ZJPjdCJ++NKHgOR2yAYgyzSBf8dhKz/Ojhkv9/Pjh07uOuuuzhx4gSlpaVh5+zbt48L\nLriA3NxcXC4XlZWV/Ou//ivr168/1cucthw6dIjbbruN48ePS3lQt9uNXh/OwnQydqloIpKDrCTz\nWHmOGAqEk8ONgslGVCoVsvFxNPfei2L/ftwPPYT7n/8Zll7CUxlX6K86w44dr/Htbz8QdX4iaYfF\nomRxsRCVSvCmhZDSDD09L1FZea/kgUaSubkxLJZXqK0Nv06w1zk93cfk5AGqqiJvUPPzMwwOHmBw\n8CA6nZ61a78dpkjF8YQw5dMUF1+N0Rg57wahBBUrn2lwH9iurrcxmcykpq5Z8sobsFqbUCplpKdv\nJC4uF5ttms7OP7F69f8+aSrgVCqhh4YasNlaKCi4IWSjD/bMR0Y6OXr0d2RmVpCQUEp29kaCqTyF\ne/Bw/PgfqK2NbHSIa3b8+OOUld0YNZIheDpPLFXPpizl75z09x/GZmtFrVaTm3sZXV2vU15+c0gh\nmCiCAePi2LFHqa6+E7Vat+TJygnenxwOK52dLyGXexkdbUOl0i+Fe2VL4wjEIIGAH4vlBJmZFahU\nmqUc9nKUa37eythYF9nZNYAMhUIsFhLWcHKyF7/fS0rKylCzuL4N6PWpYeQbIHwbAwNHSEkpl3Kq\nPp9/qYhMOD48fJjMzDVBHZhkyGTyJaiTl76+D8jLOx+1WkRiyKT8diAQoK9vLxkZ66QahuXct/Df\n/v69JCRUodMlSYQiwj0K0YGRkU9QKBIwm0uX1kZMzwnrbbVamJnpp6DgQun5iP/cbg9+v5e+vp1L\noX7l0tyF+7BYDlBQsI49e35DXt5qFAovMpkPtToGozGTpKQCenr2YjIVk5ERuue7XFZKSsa5/fbL\nTztdJsIzg3mr9Xp9SFHX3wEGGf7SCrm5uZl169bhcrkwGAxs376dyy67LOK5nZ2d7Nu3jzVr1rC4\nuMiWLVt49tlnOXz4MLW10a32zyKTk5NkZGQwPj4uUFhGYK86mYd5KhJM5rFSVmJ0TwVuFMbW5fOh\n/tWvUD/yCL7zzsP1xBN4EhM/le4SBAvY4/Hw618/yv/9vw+FHBsfn+T999v44INmEhKuRqfLXWIa\nWiZPEMccH29nauooxcVfOSl/+UoSCNFrWlmd3NX1Pkqll/x8gdTA41lkYOAT7PZOYmK0ZGRchNGY\nRmPjdjIy1khKLRgDLFrLgYCPxsbHqau7LwxOEyxjY+3Mzh6nrOxW6W9ieBCWQ2IHDvyWmBgdGo2c\n5ORq0tMFg1G8DyF8amFi4iMpLB1JThXC1N7+FgZDPKmpa6V783gWGRo6jMvVg0ZjRKcrZGGh86TM\nYXb7DJ2dz1FX909R3zGXa4Gmpi2sXv2/wpS6KG63k/r6P5KdfSXDwx8TCNgwm88iLW2NtP4u1zzt\n7U+zZs23QryUYG/aZpuiu/t5qqruCXmnVkaFJiaamJhopLLyqojzaWzcTnr6+RG7KAnwmmeorLxt\niYVLLj1PhUKB1TrAyEh9VDxvf/9+PB55RHIPEPr6GgwlpKeHp+B8Ph+NjdtJTFxNfHwGcnlw5bl/\nyVh8kaSktZjN2Yj9rwXjL0Ag4Kez800SE2uJj0+TjIzg/1os+4mJSSM1NX/JCPDj9XqWjFs/09Nd\nOJ1O8vJEGmN/0O8DOBxz9Pcfo6jofByOKaam2snKWr+kcIVOcRbLfrKz16LVagkE/JIhBH4UCjV2\n+zAaTQJZWdUEAjJpbZVKJZ2du9HpMsjOrg5Zm8XFeXJyBrjnnqs+M8TUZrOF1DSIe+OZQk3/wvKX\nVcher5eBgQGsVisvv/wyW7ZsYf/+/RE95EiyadMmcnJyJEavz1v8fj8JCQl89NFH5OTkSIxTYo/j\nlW3vzqT4yeFwIHJiB19XpKU8HbpLcTzRQw8Wxf79aO65h4Dfz9zvf49v48aQwoxIIhogv/zlo/zb\nvz2EzWbn44/baG11Mj2djEZTTE/PXjSaOFJTz5ZCtXK5nK6uN0lKKiMmJgWdzkBn53solQHy8yOH\nBUXp6noHrVagioyk3EEolmlr+x9UKj0ezzTgJj19fRgcSKCn/COVlbeiUhnw+XwhRVVijm1+fpqe\nnh3U1Dxw0g1AYN9SkJm5MUSxLyzMMTx8kMXFYXS6JGy2Idas+SfkcrXkQYsFOOJ99PTsQ6FwE42g\nA2BhwUp7+9PU1UWmuxTu0U99/VPk51/KwsIcExOHATcpKetITCyR8pk9Pe8TE6MkO3tj1OuNjLRi\ntTZSVhY5nwwwMzPA0NBuqqvvDTvmci3Q17ePyclGbLYRNm36CbGxcSHPTlTKExM9jI9/QHn51yJS\ndAqh5AYcji6Kiq6TwqCwvKE7nTO0tm5nzZqVBBeC9PW9TyCgjYgnFtbtSQoLryMmxiB9w+L8HI45\nmpp2sGrV11Cpwo3smRkLg4NHoyrr4eGj2O1zlJZGTjv09+/H61VSULBeurfg931gYD9er4qcnLUR\njfWBgQO4XB6KizdFHP/TmMJmZ0fo6NhFdfUtUuok2NgJxlPX179JSkoKi4uzlJZeL41RX/88yckV\nYd6tKG1tf0avTyMrqwJYfvZer5eenr0olfEUFq4N2YPcbgdpab3cd9/Vn0tIeW5uTkK2iJXZer0e\nvV7/D6GQP1fYk1DsEU9aWhoXXXQR77zzDl1dXVx1VWRrd6W0trbS0NDAPffcc6pzOm158cUXWbVq\nFblLMCIxhysqTLGS89PoI6NJMNFFcB4EkHC/p2Mlip5YsCcaCARwpaUxf911qI8cQf/rX6NSKAhs\n2BDChb1SRA/18OFGWlpc7N49z8hIBYFACWp1MiAnLi6H3t4P0OlM6PXJ0hpMTBzD41mgq+sA2dmr\niY/Ppb//IGq1Bp0uOve0yZRLd/de1GoDen1SmDKenh6mu3sngYCNsbF2amq+Snb2+cTGhheuifCe\npqYnSU6uRalUSePJZDLJ4BHChXpGRvaSlBQZ4wuQmJhPb+9+5HINKpWe4eFj9Pfvxm7vICPjXPLy\nLsJsrsJgKKSl5WkSEqqlMP3KdEBCQi4DA4dRKmPQ6cLJKwDUas0ShOl1UlIiV8fabFPY7UMcO7aN\nxEQzZWU3kJ6+FoPBLBW1+Hw+4uNzJcywVhsZg2owJDM9PXhSWJVWG4fDscjcXDPx8UX4/X6Ghxvp\n6dnJ9HQDycm1FBZejlabhN3eGRZyFytc9fpE5uft2Gzd6PXZEhY4ONxuNKYyNtZFIODEYEiTFLdY\n2NjYuIXKyhvDaBWBpdRGXwg1ZLB0dr5BQkI1ycm50nsQ/A23tGynvPzLqFSaMLyvx7NAW9vrUeFR\nNtsog4NHqay8NuKeMD3dy8REt1TRHKwQhXqETiYn+ygquihi3cXc3BCjo61UVFwZNjYIHaC6u/dQ\nW/uViNf3et20tLxIXd1XUas10nceCg/bTm7uJej1CTQ1vYJaLUepVJOUJHj7g4MHcbv95OWtibg/\ndXa+gUYTT07OsvcrPvv+/gNALHl5a0LW1udbJCmpi/vvv/pzwQgHAgGcTqdU5CWm5VQq1d8DBhn+\nkrCnSCJ6hqcq9fX1pKVFz/19VpHJZCFtGMVcochffLotF6NdQ4TwrGyLeCYe90ovI3hcZUYGi6++\nivuHP0T9i1+gvfZaZCu6aK0cC2Dt2nOZmFiLVnsWarV+KfTllYonamtvpbd3Fy6XTfptIOBhfn4Q\nu70Pn0/wbMrKbqSvbw8LCzNh1wqGMVVV3Up//27c7nlAyBe2t79FQ8PjTE8fpKDgMqqrv8HGjf9C\ne/vzRGqdKG4ySqWGnJzr6Oh4LqLFLa5VWlo5SmUSw8Phje/F+S0uLpKUtIqPP/4Nzc2PExOjorr6\nbior78ZgSJciChpNHMnJG+jre+WkUYjKyi/T2/tOyLqtlJSUQrTafCyWZQiT1+umu3sfJ048zvDw\nuxQWbuaii36K3d4vhZLFjTyYEKG09Cba2v6Mw2GLWmlaXHwpExNtWK3DUeeUl7eeyckRDh78Lxoa\nHsPjmaS09GZKS+8gKakQtVpNXt46HA4HU1MtEceQyWQUFV3A/PwUCwuDkqIVc3/it1Zefi1DQ0eZ\nn5+UFKJKpaKz82lyci5ELldLfYXFe3K75+nt3UtV1XURrz0yclyizYTwqtv29j+TmXkBBkNCSKtE\nwXN2cPz4M5SUXB+VCetkvZHd7nl6evZQVXV92DEBxeFiZOQg1dXXSwVIwa0K3W4HXV1vU1X1pYj3\nJsCT/udT2ik+R3HxdajVWimMG8yN0N6+E622kLi4NGy2STyeOZzOOen3c3ODTE72UFi4IeI1enre\nRS7XkpsbbkT29x/E65VTUrI+ZG0XF52o1fXcdtvGpVTSZ6+EFsdYCXn6O/CMT1k+Nw/5Bz/4gZTn\nHBoa4re//S3bt2/nl7/8JXl5efzLv/wLzz77LNdfL7y4//Ef/8HExARKpZLR0VEefvhhduzYwaOP\nPip5r1+EHD58mNnZWXbs2EFxcTFGoxGFQoFWq/1cHqzoIYsEAGLF9ZmOLY6nUCjCyEiUSiUyuRzf\nuefi27AB1ZNPonriCfzV1QTy8iKO5/F4yMlJoanpYxYXMwkEwOtd5okWcm8K4uOLaW19RiKamJg4\nhs+3yPz8GPHxleh0cQQCkJRUQWvr06SmhpJEiOFkwXpVYTQWcODAI9hsFuz2LtLTzyE390ISE8uX\nyDZkqFQx6HTZdHa+SGrq6pA1EMObSqUSgyEBt9vH1NRxEhKWeZ5XkjckJOTT27uPmBgjWq1QcBQI\nBLBaJ+nqepvx8Y9QKv2Ul9/K7GwrRUXXhVQ4B3cD0+uTmZsbw+2ewGjMjri2IrNWMEFHJElIyMVi\nOYjVOsrQ0AEmJ4+SlFRMYeEVJCdXoVLp0Gj0+HwxjI5+SFJSRdA1lklIhLUooK3tGRISaqTjK/+b\nnFxJS8szmM21IblisbtPf/87aLVaXC4rpaW3YTIVolAowxjNkpPLaG19mcTE4qj5+aSkMtranpc6\nAonrGJwSSEqqpLX1GeLicunpeZXBwQ/JyFiP2ZwfwhwmeluNjX+irOzLEakr7fZxBgY+oarqemme\nIkRLLpczOPgxfn+M1LRBXJPlvOdrJCaehdGYEsKBLY7V0PAMxcXXRqy4FsLkT0edm8jkVVHxFTSa\nWMlzl8mW6T0bG5+ltPQGtNrI7T0bG58jN/cyDIaEiMe7unZiNBZjNodC4cT3ZGamC5ttisLC8/F6\nvQwNNeNyjaFSadFqjRiNObS0vEx19U1SJC74vbVYPsDrdVNUFJ4mGBw8xvy8nbIygSLWbp9hdLRr\nqevVEP/8zzcu9ad2SY7ZmUYeYbnQNpj7AYiIbPgblb+chzwxMcGdd95JaWkpmzdv5tixY7zzzjtc\neKFQzTc2NhbSYMLtdvPd736X6upqNm3aRFNTE3v27GHTpk2f15TCxOl00t3dzeOPP86uXbsYHBz8\n3B6kSBoiEnDExMSEvThnKmKoBsLJSETxbdiA48AB/JWVaK+7DvW//3sYkYj4IahUKr7+9bNRKN7F\n7RZI/EXqT1F0ujhyc6+ipeVJYXyfF7lcg8GQhM1mkcbSaPQUFt5EU9OTIeQZYshudLSdhoan6e39\nM9nZF6BSyamouDMMBywqPpMpncTEs+jq+nMYWUjwHLOz1+J2+xkfP3HStauquoWenrdwOGbo6NjL\nsWOPMTj4Fjk566mpuY+8vCswmdKWmkL8CSCkWl0sklMoFOTnX8jISBvT071R8es6nZHs7KtpbY1c\nB2G3T9HS8gp+v5Xe3vcoKrqSmpr7SEmpCjs3M7MGv1/HyMgnEccSUkRmsrIuobf3FakgUcS1L9Na\nqikuvpmmJuFZjo9309DwLM3NT6LXx1Fbey8lJTdTWno7LS3bIr4P4vUqKm6nufnpqPevVKooLf0q\nTU1bCQSEXtVieFGs0xgaasbhEDjGMzLWsWrVV0lJyQuar1JCFnR0vILZvCGk+5QoIt62qurLETd5\nq3WY6emBqHnZwcGDqNVJ5ORUSFW6waxRHR1vkJy8RmLaWiliX+ZIWGeAlpYd5ORcHKLMxfXQaDT0\n9r5BSso6VCpdCAGLKL297xIXV05CQniPaYCxsSbcbhlZWZGLYBcWZhgYOERV1TXSNZ3OEQyGZDye\nAF6vj8bGZykru06KDgSvowDts1FcHMr0JYTI36O19X08nnkaG1+hsfFlRkYOo1JBeXkcP/nJ14iP\nj8doNGI0GlGr1TidTubm5rDb7SERkFOVlQQ1wUQr/yjy/0VziUAgwEsvvcT3vvc9hoeHKSsr4403\n3iAhIUHCuYlE5WcydjCeWKzePuVuTycZ91ThUSHi96P+9a9R//u/4zv3XFxbtxJITZXGXFhYkMLg\ni4tutmw5isdzEQpF5GrpgYEjuN3jLCyMI5NpCQQcyGRGqqpukYqohPOO4XD0UFJyEzbbBMPDH+Lz\nzRIXV0Bm5vkSHtli+QS/f5r8/OV8WbD3K86zpeU14uKSSUs7O6pVHQgEOHFiK0VFV2EwpIY8A/H4\n6Ggbg4MfMDx8grPOuo/09OWwm+hFiDSB3d37CQTsZGdvjlgBLKyZi+PH/0Bl5dfQaPRhsCRRenr2\nI5c7ycu7FK/XjcVyCLu9DbVaQ07OZej1Kadc5HXixJMUFV2B0Rh5Ywbo6HgbnU5Pevq6EG9ULAJz\nOu0cO7aN+fleCgsvkto8ikaPqDxnZvqYnDxIZWVk0gmAiYluJiY+prLyjqjnrCwos1onGBjYi8cz\nRnx8FqmpdfT3H0Wh8JOff0EY0YNMJmNo6BBOp5uiovNDGiKIz6ax8Vlycy8Lw9s6nU5kMqHqefXq\nuyM2fQhumBAsYoRnePgEMzMjlJdfFkI4IsrAwAEWF30UFUXmA4hUse10OqV85+DgQZxOF8XFF0Qs\nApue7mJyMnoRl90+QWfnrggdngSJ1hSjsfFPLCxMolZnMDZ2hIqKm0lNLZJSbWJDjpGR48zM9JKd\nvZqZmSHs9hH8fhcymY/Z2TG8Xg1r1lyJwWAOIeyBBr797UuJiwunuxUNRpH/QSx+PdW6GqfTuURu\ntBzt+juCPMH/780lRPnd737Hvffey8aNG/nNb37DM888w/e///2QIpnT5Z8Wc5rBzSXE/MmZcmSL\n44rUdWLYW2wTeUovnUy2HMJ+6ikhhF1VhS8nR8rlyWQytFotsbGx1NamcvTofny+nIg5tLi4DMbH\nO5iaasFkKmd+vh+1OgazeVUQZ7CfmBgj7e276O9/H4XCSX7+JWRmbsBkyg8Z12TKZHSfEPE5AAAg\nAElEQVS0Bb/fLbUcDGbfETfexMQiLJb30etTo8KEhPBnBS0tTy/xPAuK0W6foqdnF8PD+5HLobDw\nGlJSqpmdPUpyck1I2FcMqXq9XozGDEZGTqDRaKQiqpXXUypVmEzFdHQ8R0rKKvx+vzT/4FCnyZRF\na+tbDAwcYG6uhYSEAgoKLl8K5QrG36kUeQn3WE5z8zbM5tURnxFAUlIhvb170OmSiY1NWLovHwMD\nx+nt3cnsbAtFRVeiUGgxmdIxGLKkugExj6tUKtHrE7HZZpiftxAXFzntERubgM02i93eg8mUH/Ec\ngyGZyck+LJZ9TEwcwuHoID//bLKz1xAfn4VSqSQhIZP+/qPI5RrUaoP0DsjlcqzWEUZGmigvv0J6\nXmLu3Ofz0dn5FjpdHmZzYdh34Xa7aWl5nrKyG4LwwMvi9bpobn5Zapiwcr0XFqYYHDxIdfUNS+eH\nFoFZrcOMjLRSUXFFxHufmbEwPt5JeXloL2sx3WS3jzIy0khFxdXSPQcXgdlsU3R1vUNl5Q0RjT2h\nocZ2ampuQ6mMbEgLoe5LwrpjjY0dZ35+mszMc4iPz5Hywi6Xg6mpQYaGTtDe/jYWywH0eh1O5xRa\nrYns7DoyMqpRKDQsLi6wbt2taDQGaW6BgB+/v5FvfnOzpDBXimhsiNEPkZda3Os+rcGEiEMORrBA\naGOTv3H51JD15+4hP/bYY/zhD3/AYrEAUFFRwY9//OOoeGSADz74gO9+97u0tLSQnZ3ND3/4Q+68\nM7qFfroyMzPDsWPHuPjii3G5XOj1evr7+zEajZJSPZ02jCcjDTkVcpCTjbuSRhM4ZfavlSKbnBSI\nRN5/n/lvfYuF734XlvItwe3ybDY7v//9IXy+CyPiUQMBPw0Nr5KSUkZPz0vExWVQXn4PHo+b4eET\n2O0tqFQKMjLOo7//ALm5F2IyhbIg9fbuJjX1LDSaOGQyeYhnK4YixXdRNGYEVq0/UlNzT1SCC2H+\n43R2vohWW8ziYh9abRyZmZuJiTGF5JQtlgMoFE7y8i6TogTiZivmuyHA8eN/pKLi1qjVywBjYx3M\nzByhtPTWkDaMi4t2Bgc/wuMZx2DIYHq6j5qaO6S+sZHkVCBTc3Oj9PW9Ql3dg1HPEVrx/YG8vGsY\nGzuE1ztLYmIFqannSOsbCARobNxGYeFV6PUpIRClYDkVtq/6+mfJyTmX+PhQpTw9PcDQ0If4/Tas\n1ilWrbo6ItGGMGcPra278fnm8fuF5+/3exgaaicvr2pJYQYkgguB3GISm22a9PSipXdm2cAKBGQM\nDDRjNCYQH78yoiA88/7+eszmIrRaA8vb37JisVgOkZW1Worq+P2C9yfi8oeGDpGfvwmVSsT7y5fm\nKcPv99Lb+wGFhZcuRVgEUhIQiEHkcujre4/i4quQy1XS70TiDoDOzlfIz78ShUJQPAqFUBEtGpCd\nna+QlrYRk8m8pMSWxxCqnvehUJjIyREMOJGYxOGwMji4h4GBE+TnX47TOUog4EQm8yxFCZMAOXNz\nY1RXXx1WvTw7O0hv7yfU1X2JlSxiHk8j/+t/nY/ZfHqUvGKRW/B+Gq0Lnc1mQyaTSVTLoiEstpT9\nO5C/PFPXzp07USgUIZzWv/zlL6NyWlssFiorK3nwwQe55557eO+99/j2t7/NW2+9xcUXnxzjeiYS\nCATIzc1l+/btVFdXh2CRP82jPVXSkGjY4ZPNKRJXtngsmK3rdO7T5/Ox6HSi+6//wvCLX+Bbv565\n3/8ef2pqiEIGsFptPProEQKBC6N6YS6XnQMHHiEpqRCvVwE4SEmpISPjbEnp+Xwejh/fsqREl72T\nxsYtJCbWMDjYxjnn3InHs0hDw2PU1HyDQEC4nugpBMv8/AydndsjsmoJzEiNTE8fx2abQK1WsWrV\nN0MUuyiiYm5p2UFqahUJCaUh5B7B4WmXa56mpidOSpgBAo45JkZOevoG+vsPMzvbhFKpJCPjIuLi\nMlAoFEvt655i1aroYWlhfU6FyesEDkcPxcXhWFm324XFcoCZmUYmJ3vYvPmnUiGbuFZiaNTtdtLS\nspVVq/4JtTryZnYqbF/B54BM4tOOjU0mN/cy1GodbreLhob/oq7uyyelURXn6PF4OHHiWfLzryUu\nLikkJSB8CzO0tb3O6tV3SqmG4KK/yclGZmenqKy8LOL3LJB7FJOeHt6rGYQirqysi0lICEd7+Hw+\njh3bQm6uwAEtk4kEN3ICAd9SAdrzFBZeiUajXfIavUtRJMHw7+7eRW7uBWi1OgIBP4GAb+k8Ic3Q\n3b2HlJRaDAbj0u88S+FswUMfG2skJsZMSoo5hFQEhDD17Oww8/N2MjLyl8ZfJggJBAIkJBRjsXxE\nYeF6kpJypWe7uLjI3NwAQ0P11NRcL0UOgSVs/yTd3ftYvfrLYcp4cbGJBx44h8zM6CmVTxPx2Yvk\nRSKOPLir09zcHCqVKqwP8kqP+W9Y/jrUmSvlZJzW3//+99m1axeNjY3S32655RasVitvvfXWmV7y\npLJx40buu+8+rr766lNSeCvzudGaS4gSXIB1MhE9NLECMVqeeGFhQSouOhUJhlaIhoHq4EE0d98N\nHg/WRx9FeUV4uG121sqjjx5FJrsQj8fF7OwI8/PDOJ1jBAIu/P5Fxsa6OOecbxIbmwwokctlYTm6\nhYVZOjqep7b2m5ISqq//b3S6FCyWBi655KcEAgFmZ8fo6dlBdfX90gcYScbHu5iZOURZ2VeX5jmy\n5IHNER9fQmbmBmQyBW1tb6PVxpCVdb60WYthZHFT9/l8HDny3xQX34DBkBz1OZ6MMEOUiYlePvnk\ntyQkmCkouASzeU1IGkTcMKzWYcbG3qe6Ojq+/lSZvER+6bS0tfj9fsbHuxgfP4hMtkh6+gaSkysY\nHm5kYaGD4uKbgOX3LBifOzMzxMDAm1RU3CMZQishJHb7FJ2d26PmuP1+P729h2hp2UZOzioyMy+U\n+LSDZXZ2hP7+F6mtjU5QIkpn5050uiLS0srCcuEyWYDjx5+iquo2YmJ00vMVZW5uhM7Od6iuvlkK\ncQcr5ZGR49hsM1HJPbq730alSgmpyA6WtraXMZmqSUsrltIcwUqro+PPJCevDqt4FteqqeklkpKq\nyciI3Gynt/c9ZLI48vLOCjsmEqtMTlqIjU3HYEghOTkr5P4Eju8/s2bN7VGL3Lq63mbVqi+FGd0T\nE3309X3MWWfdLB0T3xubbYKOjveoqfkSGo0u5JouVwv33FNHfn5k5MGZSHCDCdFgjomJYWFhAZ1O\nJylg0aM+4/7zf3n5VIX8heOQX3jhBRwOB+vWhZfNA3zyySds3hz6gVx66aUcPHjwC5tXbm6uhEVe\nzoGE2xviCxncFjE2NvZT883B2OFo4vV6cTqdUkcTnU4XlfJS3OQ/TQRrdRGHw4Hf70ej0UgV2b5z\nz8Vx4ADeqipMt9yC+ic/AW8o3jc+Po4HH6yjvf3ndHU9h8vVRnx8HEVFGyktvZKKihs477xv0dX1\nMoGAD5lEqxcqsbHxZGdfTmvrNulvcrkCp3Mah2MYp3Mej8eDwZBEevpF9PS8fNL7MpuLkMmS+Oij\nX1Ff/zgTEwcoKrqcmpr7yMraiN8vVEYXFl7E9LQFq9WydE15SC5f7JhTXv5VurtfRKGIjmFMSMgm\nLq6Knp43Qv7ucFhpbX2DEycew2Zr5pJLHkatjluCb8kl5SEaUHK5HKMxnZiYArq6Xo/6HOVyBRUV\nd9DSsu2kz7q09EoslkMcOfI0DQ2P43D0UFl5KzU195GcLMCjMjKq8ftjGR7+JCQNolQuQ5mSk3NI\nSlpDf/8uKUKzsjrbYEgiLW0zHR07IqzBazQ0PI5MNseqVfcTExMXURkDxMenEx+/np6ePVHvC2B0\ntAGfT0dmZmVYdbbX66W+/jmysjajVguGbvC36/W66ep6k5qar0iGhVhA5PF4sFpHGBtro6Qkcoel\niYk2XC5PVGU8NHQIuTyBtDQhgrES79vffwCZLAmTKSti28ChoSPIZEbS0yOzYE1NdbCwsBBRGQPM\nz08yOlpPdfU1WK1duFzzIe0gfT4Pra0vUl0dGS9tt4/T2bmTurpwvLXdPkl3935qa28IOSas4Tw9\nPXupq7sRpVIdsqZOZxt33FH1uSpjECJbOp0Ok8lEbGys5DRBKNf8SoPsH0G+EIXc3NyMwWAgJiaG\nBx98kFdeeSUqfebY2Bhmc2h+yWw2Y7PZTotU5HQkPz9f6osMkdswioVVLpfrtElDIo0nit/vl6oF\nITqMKVg+TcGvJAyJRkQSSErC/uKL2B96CPVvf4v2qquQjYyEjJWYmMBvf3svJSWZZGaux2DIRKFQ\nSZt5bKyRioov09Dw+FKf4sjzSkrKQ68vord3p3QPghesYWpqQFJaGRmVKJUpDA3ti7BWPgYGjlJf\n/wRe7yhKZSyZmedTUnITGo1RglmJlrJMJqOi4ma6u3fi9TokRSxyiItKyWAwLUG1wvsCB0tOzjm4\nXF7Gxo5jsRzixIkt9Pb+mYyMVdTV3U9h4TVoNAYqKu6gsXFryDMPLkSKiYmhoGADdrud0dGGMMUn\nik5nJCvrioiQKb/fh8VyiIaGrUuY4WGqqu6moOCKiKHgoqJLGR5uYGZmAJGudeX7kJNzNl6vH6u1\nUzIGg8OGgUCA9PRyZDIjw8OfMDBwXFqDzMyzqKu7n4KCy8nKqkMmM0aFZ4nXcjpVTE11Rjxut08w\nMtJGSUlomkpcw9HRjzEai4mPz5CMh+BiwJaW5yksvFZKMYjrLpJUNDf/meLiqyN+RwsLM/T3H6Si\nIjKjoNU6zORkLyUl4e0UhSLCEez2CUpLNwGhfZMF3PsIExNdFBZujLh/LCzM0NcXvTez3++lvf0V\nqqu/glwux2YblJ6pCNU6fvwZsrIuQqUKD98uLEzT1vYKtbXXR4hmzdDW9jaVldeFFYi5XPO0tLxJ\ndfUNeDxORkfb6eraS0vLmxw79iQbNuhIT08+IwjTqYiYvouLi5M68rndbgk6JRIZ/SPJF6KQS0tL\naWho4PDhwzzwwAPccccdtLe3fxGXOiPJz8+Xis4AKbwJSJV/TqdT8jJFrutTlUhe90rvNSYm5pSh\nUSdTyGIOfHFxUbIsT9YiUqZQsPDNb+LYuRO5xYLu3HNRvBfa+D4+Po477yxjcfGAtCGGYpSNlJXd\nQHPzE3g8rqjzzs09B6fTwdhY/VJXHDAaU3A6h0Puu7DwIubmRpma6gJgaspCY+N2mpqeQC53L7Fn\n3cXatd+gv/8DFhamJXxycN5ZmKuakpJbqK/fIuFJxZx/sFJKSMjEZFpFV9drUec/OdmP17vAwYNP\n4PFMU1NzD5WVdxEXlxFyXmxs3FJE4JnIa75UXVpbewvDwwek+YtzC362y0xe7wIwPT1EQ8NzNDZu\nQaUKUFNzD7W1X6eq6i6am8MNCtE4EyIBt9Db+yoyWXRPoqzsegYGPsLpnEOtVktKTEx7TE0N43bb\nOHLkTzgc/dIarIRgFRdfxuhoM3b7WNT1LC+/CYulEZfLGvJ3gQ1rJ1VVX5aM2WDjZnq6G7t9jqKi\n9SFpHXEN29reIC6umtjYeMTGLcF1BJ2dL1NaegMqVQyLi4uSsgSRCeulqExYXq+Ljo43qaq6IeI9\niUxb1dVfktJD4hp6PB7m5+dobX2V8vLrosKTWltfioqlBqFiuqDgGiky4PM5CASW61hGRvaRkFCC\nyZQqhXpFL93lstHS8hI1NdejUoXWtAgKdydVVV+SCtQWF50MD3fR0rKH3bt/Acjo6HiTkZEjqFQK\nSksvoLx8Ff/6r3dw4YXn4vf7sdvtWK1WCc70RcgyesGETqeTwtr/aAr5C4E9nQ6n9csvv4zRaOTS\nSy+V/nbgwAE++OADfvjDH57qJU9LFhYW2LZtG9/4xjekvKL4gYov1cqCgtMRMdQt5qSjwaNO9WUS\nc2nBuRJxwxSbYUSrTIw2N0VeHr5bb0Vx9CgxjzwCHg+edetwLRWXGQwGKioSOHbsBHJ5Zti4arWW\n2NhsWlv/RGrqqijFTwHi4wvp6Hgdj2cepdK41ITci9kc2hFGq03j4MFfYbV2IpO5KCi4koyMdRiN\nWUHXlmE0FtHSIkCAVCphPVayV8XE6FAokrBYXiMpqSZqjtRkEiBdPt88er2gYBwOG93d7zE0tBef\nz0ZR0dUUF1+KxfIOqanRYUexsYnY7VZsti5MpoKI58hkMhITy2lre5aMjLWALKTPsBjy1uvNHDny\nDGNjh5DJnBQVXUVGxnqMxuXnoNEY8HiUjI8fJDGxTIKfiREDYR006PW5dHRsJy0tcihUME7KaGl5\nirS0NcjlCgIBPwMDnzA4+C4OxwBZWRdSVHQ5g4Pvk5q6OiKuV4RnCc9mVcR1kslkmExltLQ8R2pq\nlXQvjY0vkJ9/lUSwIRqgMpkMl8tGR8db1NbeLFULB6cixsaamZ+fIzd3nWT4BH9bnZ1vYjSWYjYX\nhDA6iZCvlpYXluBB4XzsAtPW0xQXf0lqtxh+/BnKym5Eo1nmMRDTFnK5nObm7eTnXy1hgYOr/kHo\nzZydfXFU8pGurrcwGApJTRXSAU6nnbGxY8TFFWIypS3Roo5RWnqBdH/iN+502mls/BNVVdeEMYEt\nLs7zySdPYTIVMz7eysRECxMTbczOCqQ/ExOtrFt3L/n5Z5OaWkFSUhFGYwpu9whXXpnEOefURIUw\niRjjzxMbLBrgYuRPLKg9XbjqX1n+8rCnSHLRRReRk5PDk08+GXbsoYceYteuXTQ0NEh/u/XWW5mb\nm/vCirrGxsbIzc1lbGxsKaS1KDFsiS/ZZ3nIfr8fh8OBWr3cHehUeypHkuA2keL/n2lXqrCqcr8f\n1e9+R8xPf4p7zRqsf/gDqtxcaVMbGhpjy5Zm1OpwKkifz4fVOklf31vU1DwYFDoN4PcH8Pm8BAJC\n5XVLy6sYDGYcji6USj1VVXfj83kZGDjC3FwTcjmkpq5ncPBdVq36ZpiC7+h4nby8y5ZwmuMMDu6k\npuYb0ga3suJWJpMxOHgIsJOVtVna4FfCfIS+wE8QG5uDyzWAUiknM3Mz8fGhsC2hMOm1iP2dg6Wx\n8QUyMupITCyJek5wwZg4Z4/Hw9hYG9PTx1AqIT39fPr73z2FIq/XMJnSSUqqkd6zle+DUJ3dR3Fx\nZL5kgKmpfrq6dqDTpRIIzGM2n01a2ioJKuX1epmbG6W//3Vqa++XFM5KEdZJOCeaCMQi71BZeT3d\n3e+gUmWQkxOOwxb7MZeWfoXY2FCiCeE9mKSt7fUlPK5SojoVFeLUVCvT04OUl18h/UZcF5lMRlfX\nOwQCsWRnrw7BAovS0fEqen2RxJEdvvYvEx9fLeWVV0rw74OZuMT5DQx8gEJhJDf37Ii/Hx9vYWqq\nPwTvPDjYzPT0CcnIiFbE5fE4OXbsSYqKLiEQCDA3N4rDMYbf7yIQcNPX10pp6XqSk4swmTLwegVS\nEL/fy/Hjz1NcfDlGY6iR4nQOsnlzLBdeuDbifE8HwnS6srCwgNfrlQhHxPfy7wjyBH8NYpDT5bQu\nLCzk4Ycfxmq1kp2dzY4dO/jNb37Do48+Sn5+ZNKBzyparZZf/epXrFu3jl27dlFRIXxwn9fLI4YN\nRXyrGMY603HFDVEIKX32rlQiw5ZMJsPr87FQV8fiuecS+/zzxD71FFRVESgQvDyjUU9+voajRxtQ\nKNLDrqVUxmAwZNPWtp3U1DUIXp8Xn8+PXC4QaahUatLTq3E6XVitHchkMDnZweTkIeLi0snPv5TE\nxEoMhmS02nR6ev6M2SxwWYvVrI2NT5GYWEt//ydkZ9fi9cqYnDxCcnKFFOYMzierVCoSE3MZGWlE\npVJgMKRKyk8Mq83MDNPTswu/f4GxsQbOPvt/k5a2NiL+WKs14PUqGR09QFJSZMgMiHzPL56U71no\nsORmZqYBlSqR3t7djI8fICZGQ37+lSQn16LRxBMfX0Zr6zbS0iLzYgcCAUymfNrb38BgyESnM0U0\nzozGNMbHO0MiAaK43U66u/cyPX0Up9NLQkIaFRVfxWAQYD9iVEFIh8ThdsP4+CGMxsKIhCharYHF\nxQBTU8dCeMaDRSAWmaevbzc+n4qCgvMQcLSh825p2UF6+nnEx4dCkISN30lT03aqqm5Bp4uVPGZR\nodps4/T27qOy8ksRvbWpqS7m5kYoL79E8siDq6ZHR0+wuOgnP/+ciPcwOHgQv19Nbu6aiMeHh4+G\n/D649SrAxEQHk5ODFBZeABA2P7t9gt7efdTU3LjCuDpMYmI2Ho+HwcG9VFd/RTKEPZ5FJib6GR4+\nwaFDjxMba8TpHMXhmCAmRoPZXEFychGjo02sXXs7WVlCmD8QQIrQnDjxAgUFmzGZQrutOZ1jnH++\niosvjrweILwHYu5eqVSGVUt/Fq/Z5XKFVFQHG9h/Rwr5L+8hf/3rX2fv3r2Mjo4SFxdHdXU1Dz30\nkMRpfdddd9Hf38/evXul3+zfv5/vfOc7tLa2kpmZyY9//GNuv/32U53Xacvs7Cznn38+7e3tZGZm\nsn///pCGDWcqK+FRooX4WV8Y0UMWx/wsVHFixaJKpQppXBETE4NidhbNffehfOcdFv/P/8H9ox/B\n0nr09Q2xbVsXavXqEO9SDM1brRN0de2kquobiM3h7fZJrNYRFhYG8XpteL0OrNZBVq/+J3S6hCCF\nFcDt9qBUKpDLFQwOHmNxcYzc3Ksk2MuePd+htPQOxsaOcfbZ9yOXy2lrexOTKYXk5FUh+eTgtRE8\n4D9SVnYTsbFJOJ12env343D0odEkkJ9/OVptHDbbJH19L39qD+W2tp3ExSWSnh59Y3I4bLS2bouK\nPfZ6PQwMHKa1dQcJCelUV9+FXp8iPR9ROfj9fqan+5ma+ojq6rtDahPEtRexqs3NW1m1KjhKESpi\nJKC09Dp0uiRGR9uZmDiEQuElPX2TVCHd1PQC6ekn9/Cbm18hISGbxMTKEI80tN3h/5CcXByRo9tu\nn6K/fw8TE4dJSkpCINQQK5NlyGQwNTWM36/BbM4kEJAtVfQHJHKOwcEWzOYCYmODowfL62OxnCAj\nowK5XLk0RwEvLJPJ8XjcDA7Wk5srGjqyJSRDYKnocp7x8Wby8jZIhBwymXIpZC7H4ZhjbKyJoqKL\nl56vYilSowCE46OjRygpuVoi5hCMc+E7E9qYvk1FxZcRyEqEKnshP64GAjQ0PENt7dekvLEoDQ3P\nk5FRx8cfP0FW1nrkcjcymZtAYBG5XE5sbNISC9iXiI8PLZb1et0cPbqdnJwLMZmSpWiKGFVqb3+V\nrKzzSUoKrZFwOidYu9bNdddtivpORBOxOFZk2RIV9umGmufm5qRiVUAKi58q18PfiPxt4JD/VsTn\n87F161Z+9KMfMTs7y1e/+lV+9rOf/T/23ju8sfrM+/6o2ZIs99577/bMEAZC70MPBIaSBEiWQMhm\n99lnk032TXmuzb7ZJPvyJGEhCyRAht5bYOiDB4aBYTzuvdtytyVLsmV1vX8cn2PJOvJ4Cgvstfd1\nzQWXjnyazvnd7fv93uh0uuMS3wg0kU8sPnTixJkTIa0HCobA+qCDE3HwgRQCMXsPCkJ8PjT33EPk\nL36Bd8cOHA89hD9TeEGHhyd45JFhtNoGaV92+zJW6yxW6xRzc12YzaNr1BEPen08UVGZJCTkodUK\npaaFhXGMxg+pqfmbAGcV6JCVeL0+urpeJSEhh/R0IQN5990fkZy8DZOpg/PP/5XktFpaHiI//3wS\nEnJlFadAAK80Nf2SlJRCVCoFWVnnEh+fF9K/nZ3tYXm5m/Ly3SH7WL89grZ0UdHFIeCuQFtYGGF6\n+j2qq9e5x3Nzw0xPH8DvXyE1dQcpKbW0tDxIefk1aypJob+VMPx9PyqVk9zc8xDHBooLkriwbaVU\nbDZP88EHvyQzs5z4+CLy8s4LaQ1shQ8tOPcHKCv7Gnp9YpBSWWCWKiie7Uani5MQ82bzp0REuMnN\nbcRgkJ9gtLQ0zehoH3V1u6X7EBiAGI37UaniyM+XL522tu4hJ+dcEhIypb8V75mgVPYXqqpuICoq\nJgQsKajDPUJV1Q1SuwX8KJWgUPhxuVbo7HyJysor1oIELz6fZ23fPtzuVXp736Ko6ByUSiTxD6fT\njlIpBBZ9fU3k5+9ArVbi9/vWKkrutWfRx+hoC+npxeh0esCHGKSAAr0+Dqt1Bp8PsrOrSUrKlQJb\noaf9tKxTFSZTPU1e3pnEx6dLTlgMALu7XyYn5yukpATLpToci9TUWPn618874XVHRJ8HVgu2klwI\nmgXmLzsHGf7HIa+b3+/n7LPPpqmpiZtvvnmtpJnIT3/6U0DoUYj942OxjSIc4mSgrYqDhDtXkaoj\nOni3231CAcNGERJRPjPcS6b85BN0t9wCdjuOBx7Ae4EwGL6vb5R/+7c3WF1VAh58PtDrU4iNzSMp\nqYClpRnGx9+mtvZbYV+0ubkRZmY+oarq29J3XC7XWh/YhyCTCG1tj1FUtIuYmAw+/vj/w+9X4HDM\ncO65/y5RLfx+Lx0df6Ku7jshilIm06Q05CIiIgOnczJEenLjgj04+A7R0THk5Hw17L0RJSobGm4P\nW5YGGBn5CKdzGtCxujpOVFQaeXkXBJ2nw7FCe/uf2Lbte2FVwfx+P62tT5CaWkNCgpDJyvWKx8eb\ncTqNFBdfIX3m83mZmGjBZGpFo1ERG1vL4uKhTR33VoZeOBwrdHQ8KKmZie2AwADH7V6lpeVeoqOz\n8flmSErKJDOzatMF2OVapbX1DRoavoNarZEcsbgALy2NMDvbG5YiNDT0Nmp1PLm5oaVkQZzjSRIT\nt5GUlCsFD4Esi5aWh8nP30VcXAoi/188vt/vp6vrMUpLrw7pr4rW0vIwhYWXhoC0xJJrT8+zZGSc\nxvz8COXlZwV9x+/3MzDwOgpFLFlZ1bJ97a6uZ4iLyyczM7iC4fP5aG9/noyM7YV6Hl0AACAASURB\nVKSk5Mlse5bMzK+QnByMjfB6vbS1PU98fDnp6cXSc+XzeTGZJtixw8ONN1500srC4nMiZs2AhO4P\nV34WsCoWDAaD5IBF4OLxroefk31+wiC/+tWv2LFjBzExMaSmpnLVVVfR3y/PQRStqalJ6jOI/1Qq\nFXNzcyd8PgqFgjvuuIOPP/6YPXv2UFNTE8RF3oqYR6CFE+EQX57NuMibmRyNSew/Hy/XL3CfYkk3\nXDYpmu+UU1j54AN827ejv+YaIn7+c3C7KS3N4x//8QIKCkooK7uOiorrKCw8j9TUUlQqDYmJ2WRn\nn0t7+6Nhrz8lJZ/U1G10dT0kLXSwLoUnlq5ranYzMPAcXq8TgyGZ1dVFlEo1Kys2CdCm00VRXn4j\nHR1/QpA2XaWv721aWu5nbu5Diosvoa7uDioqriAp6VT6+18IOhex3CqKUJSWXsjsbD9zc/1ST3qj\nqdURlJbeIB0z5N75fIyPt2Cx9DAycgiNRk19/XfXhsgHBw1abRRFRV/blBPt8/koK7uKsbF3cbtX\n1qoI3hDaVE5OIy6Xn9nZFszmGTo6nqKt7QFUqlVqawXqWHZ2A/HxjZvSvaKiYtf40I+F/Y5WG0Vh\n4dV0dj4s3UcR/apQCMFIV9djKBQ63O4R6uouJju7ZlNnLDjM1ykvvx6VSh0UlArofDtjYx9SUSHP\nF15Y6GN1dVXWGQNMTHyIwZBPZmaJBAIL5DQPDLxGSsp2qX8qluNFhzE8/BpJSTvQaKKCeNCi9fe/\nSkrKdlnEtN/vZ3x8PwZDIYmJOUxOHg75ztxcF263m+LiHZLjCRTi6Ol5gejozBBnDNDV9TKpqXUh\nznh9W2OIMwbo69uLSpWA2+2gp+ct2tpeoLn5ST79dA9RUe3ccMOFJ7VHKz4nBoOBuLg4dDodHo8H\nm82G1WrF4XCErHPifQ4MTP47ioLAZ5ghX3LJJezevZtt27bh8Xj48Y9/TGdnJz09PWGzxqamJs45\n5xz6+/slAXGAlJQU2e+fiL366qv867/+K2+99dYavUKA64s9inC2MXsNJ3cpvuhRUVFbenA26mSL\nXEbR7HY7SqXymErg4fYpPvRbyt59PjT/8R9CCbuxkeUHH2Q1KYnu7mFeftmCRlMhOyBcKM9+QHX1\nzWEX4ampHhYWOigrE8b4CX249Z6eSqVc07J+FqUyhsnJTpKTs8jOvoT09OKgXnZHxysYje+RnV0d\n1BPdaFvpAbvdLpqb76Oy8mY0migpMNwYxExNdWO1tlJWdgMAZvMMRuN+PJ4FEhIqyc7+KsBaD/s6\noqLkS7QAY2OHcLtnKCpaz/xETIJYnna5VuntfYSGhu8DBJWKhXvsY3z8Ezo6niQnp47KyuvDDrXo\n6nqRpKR8UlPlZ+kCDAy8R0SEn9xceXUrEBwvWMjPvxiTaZKJiX34/VZSUhpISanF7/czNPQ+KpWR\nvLwda/dR/n3o6XmH2NhtpKaWhOiM+/1+jhz5ExUVu9HrQylIq6tLdHW9SEPDN2Wft8XFYYzGI9TW\nruuAB1ZHZmbaMJunqay8ROqFB2oTTE4eZmXFSlnZeUHl3vWkoROLZZby8gtDjg1gNHaxsNBLXd3X\nWFqa5eDBe7j44l9K21dWFujpeZnGxpuCnjFxvenr+ytqtZ6CgsaQ962n5zWio/PJygoFG3Z3v0pM\nTCFZWRUsLy+xuDjJ8vIkHs8K09MDREToSUnJJy4uh7S0YtRqLXa7hdTUAW688Vyp5/tZjjgUn/Nw\nOtZOp5OVlRXi4+Ol30XUcjiREbefg31xStYLCwukpKSwf/9+Tj/9dNnviA7ZbDYTExOe6nEyrKur\ni/POO4++vj4UCoXUq91sLnLglCcxGwj3kIrc46M55I1AsHClm2MpgQfuU44aJZbYjxZ8BNnBg+hv\nvRWF3Y7tP/4Ddu2io2OQJ5+cISqqRvbFmJ0dZG7uEyord4fcJ3EhNBq7WFkZoaRkNwqFAG4RwDci\n0MaH0diNzTaD0fgxxcWn4fNFUlR0FmbzNEbjfrzeBeLjS3E6PURGqsnNldcqFiPt1taHKSy8aNMe\n8PKymd7ePdTW3iktAHLgpZ6e17FYhomMjECrNZCbexF6fbDj3VjeDWeik0xJqQ2ibwVStebmhpmb\ne5+qqlsB4beenR1icnI/fr+dlJRTSE4up6PjQbZtC6WPBd6LI0ceCNu/Fq219TFyc3eGTHQSzeNx\nsW/fr9Bq1SQn51NQcHHQUBHxHFta9pCRkUxcXNaGAEf4zuRkFzabj8LCs2UBep2dT5KScqpsBigC\n1qqqbpAdt+hyLdPa+gTbtt0my49eXp6nt/d1amp2B2Vj4u9ssUwzNLRvjQutCHo2vV4vS0szDA+/\nQ339jbIYj9XVJVpanmT79tvQaCIYHj7ExMS7nHnmj9fO38Phww9QW3tD0Oxi0YaH38Hr9ZGfvy1I\n31utVjM09A5abTq5ubXS953OVRYXJ+ntfQOv101qag4+n4eIiChiYrJISirAaGxGoYiioGA7DodD\narW5XHZSU4e4/fZLpUQlsLR8osDXo5mcjrVCIYjAJCQI75XY9/4SzUEW7YvjkAcHByktLaWjo4OK\nCnnaSFNTE2effTZ5eXk4HA6qqqr4xS9+wc6dO0/k0LJmt9uJjo7GaDRiMBiCuL4bX6ijZa9ydrQp\nUmIvJRAIthlga6sZ/EZwmdw+txJ8iBZ47SqLhfi/+zs0b76J6wc/wPmzn/HRp528+uoq0dGhaFqA\n6ek+FhdbqKq6Pui6Ax3c+Hgby8vjlJRcBwjj5kRwl5AdCvSppqbf09h4Lc3NjxIXl4JWG01+/vlB\nWWB7+zNkZm6XRQkfOvQ427btxufz0NLyR2prQ/vOgTY318/c3MdUVX1DWnzFHuni4ggLC5+iUDiw\nWpepqroqrNMCgXs8MfEmtbXhh1X4fD4OH76foqJL0evXUbAbf7/h4f14PEv4fBpWV8eIikohN/dC\n1GqtdG+XlqaZmnqD+vrvbvJMHT1Q8Hjca/cqeOrT/PwYU1P78ftXSE8/lfHxD6iu3h0WCCZMhrqH\n6uqzUKk0+Hx+FApQqdSsrCwyMNBCZeV1QY5YPO+xsf14PGoKC+XXgc7OJ0lLO42kpFBNZRGEV1p6\njSQ8EnxeLo4ceZi6um8QEaEL6YV7vU46O5+koeEWNJrIoKxZoVBIILDq6pukXnogBcvn89Hc/ACF\nhVcTF5eEUqmkvf0FvN4l6uuFoKq19S/k5p4VQu8CGB3dj9Npo7T0q0HX5PF46O9/G5vNQVxcKg7H\nAiqVACBTKjWYzdMkJ1dRWnpaiNMaHT2AywUlJadJGJjIyEi8Xhdxcb18//tXBPVmP0t+cTgTQWBO\np1MSbdLpdEHtuy8ZBxm+KA7Z7/dz2WWXYbPZaGoK1SwWrb+/n6amJrZt24bT6eTBBx/k0Ucf5dCh\nQ9TVhS+tHe85ZWVl8fzzz1NZWSnrQI+WaW5mojiIXES5EQi2lUjvaE70WPa5WfAhWthrB6GE/fOf\n42towHTffTTP29m7141eL69XPjnZxdJSJ2Vl10jc7MBzEwRI2lldnaa4+Bo8Hi8ejwuzeQq7fRqH\nYxpwMjc3REHBzrXxdKGLl3AfvDQ3/4mqqptD+MRNTb+hsfE7GAzxR51kJFrgrGK73cLIyPs4HEb0\n+kyys89ac1J+2toeoLb2lpDsMNDkytKB91tQV1qms/PPbNt2FxERwe0Jn8/H9HQ3c3OfMDXVQ1nZ\nhRQWho4oFYOHsbFPcbunKSq6XMr2Nv7eJpMRo3HvplOtbDYT/f2PUVX1bUZHD4SMWAQRCPYw9fXh\naWM22yL9/X+mvv4yQMyGHLS3v0519S1ERupC2j9m8wjj481BpeZAGx7eh9+vpbBQfnhNd/ezJCbW\ny05gAtEZXkh8fFrQ52JVpKXlYXJyLiI2NjlI8W0dBPYI+fmXSBQj0ZmLAWdv77Okp59GTEy65EDa\n25/E73dRW/tNBgf3otEkyAqjTEx8wvLyDGVlZ2GxzGMyTbK8PAW4mJsbBdRkZ1cRE5NBTEwGarXw\njo6OHsDnU1NcHBrAjI8fYmVlhfJygf8srhtqtZKoqC5+8IPLw7bF5ErLgVKhn5VZLBbp9wCBbaLT\n6dDr9f/jkI/H7rjjDt58800OHDhAerr8QhrOzjrrLHJzc/nLX0IF90/UTj/9dO666y527doV5EBF\naslWs1c5E+lFgcjoQBqT+DBvVdgjnBM9nn2K5XS9Xh+GJ3v0LFt56JCAwl5exvqHP/BpagF//asL\nvT5UtUgAObVis/VTUXGt9LnQKlhlaWmG5eUpRkcP4Ha7SEsrQKlUoNMlEx2dRVxcLpGRujWU6lsY\nDMnk5JwZ9vqEecZ/obExuGT73ns/paTkOrKyqgCYmeljcfETKiu/EXZfPp+X99//DWo1JCSkkZ19\nAbGx63QasZe4umphcPApGhru2nRx2ti73aguplarsVhmGB9/VUJCLy+bGR19H7d7hri4QnJzzwEU\nR6Un+f1+OjufJy4ul+Tk6rC98JGRg3i9JoqKdsnuZ3Z2gN7e51lenuQrX7krLEd5bq6f+fmDVFbe\nEPb6p6e7mZ19jaysWkBJb++7ZGdfQWxsCgqFoEWu0USgVmtwu1c2LTUvLg4zOdlKTY28Atn4+EGc\nTjfFxWfIbhfGLabKOkMQ1OGiogrJzKwIQlqL93F4+A0iI7PIzq4JAhmJDntoaB8ej5q8PIGeJQbJ\n7e2C5nla2jbm5vqoqlq/7ysrFhYWxpmY+ISlpX6ys8sAH1ptAjExmSQn5zM11YbdvioNswCkZ2hs\n7GMcDhcVFWeHrAOTky0sLc1TWXlB0N+trtqJjR3gBz/YtaWqmfh3J4NfvBUTOcharVYCucXExBwX\ng+Vzts/fId911128+uqrfPDBB+TkHPuYrh/+8IccOHCAAwcOHM/hN7WbbrqJqqoqvve970kOVBSm\nP5bsNZyJ+xMlNI8GBNvMNjrRrYLL5CxcOT0wy95Sad5kIuL224l8801cf/u3vHfeVbzxrhKdTshG\nAsvTDscyfX3vYrUOkpRUiELhBnyo1RHo9akYDLkYDOlMTDSjUNgoKblEOqeNPNe+vreIi8shKyt8\nK8NkMjIx8Ra1tev0noMHf01CQkPQRKHBwffQaEKBSybTJEbjfny+JRITq5mZaaO6+sYQkFSgkMfM\nzAAm00EqK78ZtpIi9DsfpKzsKvT6JIm+tbE8PTb2KUbjB+j10Wg0GvLyLsJgCM7iBAGSh9ekRuWf\nUbFXXFJyFVptfNheeGfnc6SllZOUJKjWORwrjIw04XCMYzBkkp9/IUND76HXG8jOlseAAAwMvEtk\npD9swCRwSqeZmelgaupDIiMNJCam4PN58fnceL0ePB6B+zsx0UV2dpWE3F5fzxS4XE6mpvrIza1G\noVBKn4vfsdutzM8PBzhbUTRE+H+rdR6rdYrMzLo1Z69aYx8IAiBLSxPY7Uvk5p4KiJ+r8PsV+P0K\nLJYRlpfnKCw8B41GFA9RolQKDAGr1cjMTDc1NVfj9YpcYgU+n4eBgedxOm3YbDaysupwOBZRKNz4\n/W4iIrR4PG5cLh+NjVeFPENG4xEsFhOVlaE4CaNRcLilpWdLZV7xuZqb62VuboSamuCgy+Vy4vUe\n5sc/vjoISLtVOxF+8Vb3v5GDLIoRfck4yPB5O+S77rqLl19+maampuOWwbzggguIiYnhuec2n5l7\nPPazn/2Mubk5fvvb3x5dMOM4zG63B6ECjwYE28wCnSgQ1M851od/Yzl9Y5Z9LKV5p8NBxH33Ef3L\nX+Krr6fpjv/NI/vAbF7C7baiUPhQKLyo1TqiorKw21dRqZYpL79KNjtUKpUMDX0E2Cgqukg6zsbe\nXm/vXhITS8nKOoVwpzk21ozLNUtx8ZUAtLU9AOiorQ1WgWtre5ysrO1ER2czOvohKyvD6HRx5OVd\nLGWfQtb9p037rX6/n/7+91AqnWRnnxNU4gy8l06nnZaWP1JV9R00msigaVpm89QaUM2MzeakqOh0\nSRxFzjaCvOQskOsMyrBCHs3N/0lCQgNWaxcqlY+srPNISAgWimhpeZiCggs2BcS1tu4hL28ncXHB\nNJtA1PjCQgcWy2CQTrNoPp+Prq5niI2tJiWlKIgvLG4/cuRPa8j12JC/d7nstLY+RkPDLSEjBUFE\nNP+VhoZvrNETPfh8HjweFz6fF5tthsHB/VRUXCxtW//nxmZbYHy8lfz8Hfj9bnw+L8JELd8aHdLG\n6GgH+fnVgA+Px4XX60alUuPz+YmJyWNkZD/5+Y2kphYRHZ0iXdvCwjATE23U1YVOh5qZ6WJuboya\nmtB7NjXVyeLiBNXVF0v3Wny35ucHmJnpo67uijXRIheLi9NYrVPo9Yv86EdXkp+fF/b33IoF6hyc\nTBCYyEGOjo6WKo0+nw+NRvOZgss+I/v8HPKdd97Jk08+ySuvvEJJyXoZMzY2Vop0fvKTnzA5OSmV\no3//+9+Tn59PZWUlDoeDBx98kHvvvZe3336bs84661gOvyV75JFHePrppznjjDNoaGigpqYGhUJx\nUnoTggTfqlTiOtE+i+hExXK6OHrteB5KMfgQg4MTKc2Ljjy6u1soYVutvH3jt3nafjpJSevD3sW+\nsVKpZHj4Y9zuefLyLgiitgQet7+/CbXaTUFBcCYgBjdut5uurldITq4kM3P7mkRh6Pl1d79KfHw2\n6ek7aG9/AL9fTW3tuvMS+rI9fPrp78nKqiA//+KwJdmtALNAkDdMS6slLq5QKmWKwYZY5jabp5ma\nep36+jvwet2Mjh7EZutDq40hP/8itNo4yfGUll5OdHRa2OMND+8HVikokKfcCOduZHz8Nerqbpfu\no+iYV1etjI/vZ3XViMk0xvnn/1tYCc6tiKIIAK771qQf9SGBl9Nppr//ORoabpQNJI3GT7DbnRQX\nnxEiNqJSqejtfZ7k5G2kpBRI1xJIgWtpeYiSkquJjg6lmfl8HpqbH1qrdoSWZwWQ1sPU1n4zpIe/\nfv3hQWAA7e2PUFn5NfT6GEkfW1RVs9uX6Op6mqqqK6QyvJjFLi0ZGRn5mIaGa0Pewbm5ASYnu6mr\nu1xmWx9TU33U1l4WtM3r9TA2doTe3vdISSkB3IBQ+YuOTsdgsPG//tflJCcnnlRWy8kEgbndbmw2\nG7GxsRL9TawIfskoT/B5OuRwwhMPP/ww3/iG0LPbqGv929/+lgceeICpqSn0ej01NTX8/Oc/54wz\n5HtAJ2p33303v/vd7zAajfziF7/gjjvu2BKSeTPbSGMCtsxF3uo+j6fkvdGWl5el7P1kTKLSarW4\n5+aI+cEP0L75Jn2XXsN92d9DG10kOeNA5aPh4Y/w+22Ulu4Ke9ze3nfRalXk5Z0Vsk1cCFtbnyMl\npY7U1JqQMiyAz+enpeURiosvY2TkFRQKFTU138FmW2RsrAm3e5rY2DySkxvp7X0ypO+8vh8ho5yY\naA4LzAr8bnPzf1JVdQMRETFBAy0AaXHu6HiFmZkPSU0tIj19p6zus8vloK3tP6mvD69TDVubMjU2\n9jEezzyFhZfh8/mYmupgfv5TVCo/GRnnYTCks7g4xvz8fmprvx32+bJY5hkefob6+u+FPZYImqut\n/Y7krIQsF5qb/0Bd3Y0hOs3CvicZHv6Q+vrrpc8C+cLj4wdwuXyUlJwZwhcWQFQvEhNTTkaGPMCw\nvf1RsrLOJiEhS3Z7a+sj5OVdEjJcYX375iCwjo4nSEqqIylpvTogBpwOhzAOsabmKrTadU1mj8eD\nxTLNyMiHNDZeJ40VFW1xcYyxscPU118d8pssLo4wMnKY/PzTWFqaZmVlBnDh93tZWTFhsdhpbLyM\nhIRsVCqNNHbS5Wrj9ttPJTk5cc1BH3u5+mgmrlvi/OnjAYH9N+Igw+ddsv6i2tDQEP/wD//Ayy+/\nTFxcHC+++CKNjY3HLOax0TaCoUR+84k45EDuMyANwTheCyxPAydcUhLvGQiORq1Sob3/fvT/5/+w\nmFfEvaf/Clf6KbLl6eHhj1AqHbJIYdF6et5Er9eTm/tV2e2CRu8zpKd/hfh4oRKjUinXBlwI91zI\neh6UMnSIRKNRk5d3PgbDugD/wsIYU1PvUVNze8hxxsaa8fm85OfvoLPzRZKTc0lNbQj5nmjigIn6\n+jvw+ZDQ5aurtjWnYiQ2NpPVVS/JyUIGH84EbeeXNh39uBUNaoDm5j04nWZ0Og0JCeVkZ58ZVAr2\ner0MD38ALFNQcHFQqTjQjMY2Vlb6KS29NmQbCM+Z0diO2dxCWdm1qNVqlpdn6Ot7isLCi0lIyAj5\nG4/HQUvLo9TXf0s2+DCbxxgZOUh19ddCSu5KpRKj8VNWVqyUlsoLmQwPv4NCERNWA3tw8DUiI7PJ\nzq6R3T4wsBetNp3sbHnGx9jYftxuHzk524ICMKGq5aS9/VEqKy9Dr48OyuqXlxfo6XmT6uqrUChU\nUo9fAPhNMTR0gPr6r6FQKLFYFlhamsJmm2JlZYH5+TFyckrQ6RLXOMaCtrXVOktf37s0NHydwPnV\nQkm9k299q5aUlETpudRqtZ8pr/d4QWB2ux2n00l8fLx0/l9SDjL8j0MOtebmZnbu3Elqaiq//vWv\nue2222htbSU9PX3LYh4bLZye9dHQzEfb50bus9PpPGa1LtE2gsDErPV4kYqBPSMgqFeqUCiIbGtD\nd8stuBdM7Dn7Z/SVXitbnhZK014KCs4Je6zu7r0YDHHk5MhTWwSn/BQ5OWcRF1eE02nHZDKyvDyJ\n0zmDQuHC41nFZBpn587/jU6XGPb3GBs7hMdjprDwsqDPBwffx+WyUFFxxZZKyX6/n/n5ESYm3qKi\n4pvMz/ezuHgYlcpPevqZxMTkSJldZ+ceiot3bdqXnZhoYXV185nG4UBe63rWLWg0GqxWE7W13wqr\nHOb3B2tnh0Nn9/S8RlxcclAwsRF9PjT0Fg6HEaXSSUREEvn5p8sqbQm/4SMUFl5ObGyo9KTLZaet\n7THq64W+8MZS8fLyLGNjH1JfHypCA4Ks5sxMX1gN7NnZDhYXjVRUXBxmeyfz82NBiOjg/Q8xMfEJ\n5eWXSgGnWBFyOldoa9tDWdnFxMYmSvdRaB2Z6ep6jfr6a4mI0EpZpc1mYmqqh8HBd8jNrUetViCg\nreOIjs4kIkIvlbcDHS7AyoppbZ9fR6MJ1uZfXe3mlltqKC7OA8BkMkltMPjsxT+EgMAZAh4N52CX\nl5fx+XxSSV0MdL6EHGT4IjjkX/3qV7z44ov09vai0+nYuXMnv/71r4P6ynL2/vvv8w//8A90dXWR\nk5PDP//zP/PNb37zeE4hyHw+H3/84x+55ZZb0Ol0VFVVcffdd7Nz586jinlstKNRjo51f+I+w3Gf\nj3dghZzCmOhIj8chB+5P7IuKjjYwY/EuLBDx3e8SuXcv79Xt5r3z/1/8mtBgYrPStGhdXX8lNjaV\nrKzt0mcejwuTaQqLxcjKyjRjY5+SkpKLXh+PXp9ETEwu0dGZqFSaNQm+Fbq6nqGu7rubCoJ0db1M\nYmIhaWnrGXBv7+ssL0+ybZvQP96slCw6JKt1kdbWh/F4FigtvYTc3LOkcnhgGVaY7fsgDQ3fJTIy\nfDAo9MNTN82mBZBXE1VVt2CxzDI+3oTXu0hSUhUZGYJIxFYEQXw+L4cP/5HKyhvRaKJk0dnr/dpL\niY5Ok65bwDssMTnZhNs9hck0zfbtNxEbG5oVi9bf/wpRUUVkZlbKnEv4vrDwDto5cuQvVFffhEYT\nGdK6cDgsdHa+EFZWU1Dq2ktDw02y2wUQ2Gs0NMjLwNrtS7S3P0lNzfVrlK11QKTP5+HIkT9RWHge\nUVFxQffR7V6lufkJ0tK243SacLutCMusF59PweLiNNu2fR2dLk5y8iqViuXlRXp736K+/pqQZ8/h\nsNLe/jJ1ddeG9MAdjj5uuKGEyspi6d6ZzWaioqLQaDT/peIfWwWBWa1WlEolBoNh7X76pIz+S2if\nv0M+Hk3r0dFRqqqquPPOO7ntttt45513+Lu/+ztef/11zj8/fHnzeGzXrl1cccUV7N69W5Y7LGdb\npRxtdX/id4/Gfd6qWlfgPkWlm40gsGPdF4Rm7SJCO3A8pBi5ii+3AojZs4fIf/5/MCaX8czVD7EU\nlx2y781K06LjbWt7ishI/VoG5UahUBIVlUpcXCHx8TmAgiNHHqOo6Bzi1o6xkTblcCzT3//i2uxg\n+Zfa5/Nz5MhDlJZeJWXA7e1Pr6krrZezl5amGRl5UZogJdwLF6Ojh7BYOtFqdeTnX8Lo6H5SUopJ\nSakNczwfJtMMw8PPUlNzewiqOPB7gQ5Qfl9eDh58ELt9hIyMavLzLwmR8gQBoGY0vrmpIEhgxg3B\n2tniOXo8Ltra/kh19e34/QomJ1uwWluJjFSQm3s6BkMSLpeD1tbHaWi4VbYUPTV1BKvVRFmZ/Lvd\n2/s8MTGVYfvCR448RGHhpURHJ4Wco0KhoLX1obCymoJs5Z8lkJb89j9RV/fNkO3is3/kyIOUll4p\nZb/rf+ujpeXPFBSciU4XzcKCEat1ktVVMx7PKkZjP4WFdcTFZZOcXIheL5RlV1ctdHa+Qm3ttURG\n6qT1RgjwLfT17aW+/jqpDy2agC5/jpqar4UA1lZXB7n22hzq69dVEuUQzCej73usthkIbGlpicjI\nyKA5yF/CsYuiff4OeaNtRdP6Rz/6EXv37qW9vV36bPfu3VgsFl5//fWTcRqS3XXXXcTExPDjHwu6\nssvLy9LkHzk7Fj3rQDTzZg/QVlW2tip5ubGcLBcwiI56K0IAG0Fl4ssrlqfF8nwgkA2QXmSFQoHi\n8GE8X/s6KpudFy77Az0lF4Ucp6PjVVQqPxERSaysTCGgQt2AEoMhldjYPIzGVtLTy0hNlZfqFKQe\nH6Ok5CJiY9dFaAJLnDabicHBV2houAuNRiuLzna5nLS2/omGhjtQq7W0LzBG9wAAIABJREFUtT2K\nQuEIcWBGYxt2ez+JiTsZHX0Xr3eJlJQGsrNPlRawrepGG41tWCxdFBV9LQhVHFgqFpzb/Wvntf5M\nmc1TTEw04fNZSE1tYG5uiKyshk1BXkcTBAGYmxtkbu4DqqpuCbmPYutjaqqH9vYHycwsIDW1mMzM\nxpDnd2lpjoGBV0hL24ZaHYFKFYlKpWZ11cbY2CFqar6ORhOBUqleoyopttQX7uv7K1FR+WRlrWfW\ngefY2fkU6emnkZqaLws0bW3dQ27u+bKyleJ2cbZyoIlI/56eZ0hJaSA9vUgSuhEc7zhDQ28TF5dC\ndHQsSqWG6OgMEhMLiIyMorX1WYqLL0GnW+8nq9VqPB4HbW3PU119NVptVFCv2e1e5ciRZygvv5zI\nSL0UFAvvn4OWlmcoL78CgyGYCra6OspllyVz6qnBAeFGBPNGk+v7ihnsZ5U1bwwG/H5hCI6YvHm9\nXjQazZdt7KJoXzyHvBVN6zPPPJPGxkbuvvtu6bNHHnmEv//7v8dsNp+M05Ds7rvv5vDhw9x///1A\n+KlKx6NnLe5PdLIb7VhVtrYiebnVgGGrALbA/YlAE3GRCCpPr5XnxewEkK5bkhs0m5m//Fryjhzk\nnarreaj0SmzORcAFePD7wWRaJCUlm9LSS2WzKZ9PnPtaSUqK/PMjgLgepbT0EmJighdasVRsMs0y\nNPRXqqtvR6vVydKmLJY5hoZeoq7uTjo6HgVWqa7+G+l+ulwORkc/or//VQyGOBoavofBkBDmfq/S\n1vYAjY3h5x6DUBo3GOJITz8lRPN7fdjBLMPDz1Nd/W2JLqXTxQbxptdBXjeFnfgEoYIgcjY4+D4a\njSdoaIfX62Vk5FPM5hY0mkjU6jQ0mjlKSi4I+zzZ7VYWFsbxet34/R48Hif9/e9SULAdhcKLz+fF\n7/eu8X192O0WFhfnyMkpCdjnuviHxTLDyoqNjIzAoGP9e3Nzw/j9PhIT8xFajwpUKjVqdSRKpYq5\nuR7U6ijS0ipRKNRr4h/Cf5VKNbOzh1EqY8jObkAYeqJZE+URHMXg4F5stlkSEzMQg0elUoFen8zs\nbA/5+WeTlhasvyCUsJ+guPgSYmOTgloXLpedjo4Xqai4gpiYdVQxiD3056isvJKoqNig9oDX66ar\n6wXKyy9Dq41iYWGS5eVpVldNeL3L3HbbV7n00rNDfg8RwRwXF7cpxkWu7yuCwD6rPq64ngQmAWKi\ncjI0Ij4n+2I5ZL9/a5rWpaWl3HrrrfzoRz+SPtu7dy+XXnopdrtd1rkdr7344ov8+7//O2+88QYQ\nOlVpY3a42SBtOZPr+x6vytZmILFjDRiO5tw37k+j0QSBwURerd/vl6Jo8UUVIn2P9AKLwUZERAT4\n/ez72je58O2XMSYV8/RVD2JLCtYZ7uh4icTEHDIy5FHMPp+PtrZnyM6uJylJPgMUeryPUl5+JQaD\n/Hxas3mGgQHBKatUajb2HgEmJzux2QZwueyoVEry86/EZptnevoAXq+NlJRtJCVV0N39NIWFFxIX\nF16NzmyeZGxsXRIz/LX9hfz884iNzQrK9kAIciyWKTo7H2dlZZZt224lNVW+FL51Ja+jj4dsa3uc\nnJxTUKniGBl5F6dzhsTEKnJyzpBAQV1dz5OYGE9aWnlYdHagtbY+Tl7eLlmKkcfj4MiRPTQ0yCOu\nbbZZ+vvfpL5evu+7uDjI5GS7JKspOj2324nH42JhoQezeYqiotPw+dySSpjX68LnczM/P4DVOk92\ndjk+n2ctgHDjdjvx+QSxjcjIRKqqvkpsbGbQOXR2vkRCQvmGQEEsYT9JQcG5IbQpIYh8iqKii9Dr\nY4MqJMIwlKcpK9uFwRC/1hJalfATAwPvExeXgV5vQK3WEBOTSWJiHhqNn3PPjeT88+XBkA6HA7vd\nLlGKjmZyfV+xCvZZOEgxg9fpdLhcLrxeL2q1moSEhC8j5Qm24JD/S8OMO++8k+7u7s9EBvN4raCg\ngNHR0SBnI8rObUXT+Wgmgl9EO5aSt9y+AAKDqOMNGAL3FfhdOc6zSDUILJEFSuaJNITAiFksK4nX\n63A4pDFvZzz7MK/86kHO+uPv+MFfdvHCpf+X7tJ19aHKysvp7HwJpVJNWlooBUWpVFJb+3VaW59E\noVCRmBg6OCAiQktt7U20tj5KZeXVIaVihUJBQkI6xcWX0N39ENXVt68NtfAG0aYyM6vo7Z1idvYQ\n5eWX0dHxIPHxeRQX70KlikStVqFSqamtvZEjRx6gru5vwgLG4uMzsdm2MzDwIsXFV8l+R6lUUl19\nY9A0KlFNanj4A5aXB9DrE9m27U7Gxz/A41kN+xvr9THk5FxGd/dfpJKz3PGqqm7eVIXM5/MRG1vM\nvn2/Jje3gfz8y4iOTg16zoTzvpbm5nuJikpGr48Pi84GGBh4k4SE+rB83/b2JygtvVLWGXs8Lnp6\nXqKuTh6k5XBYGR5uorHxW0HXKT6/VqudubleamtvCKryiOe4smJierqV00//TpCYi1glmpk5jEYT\nQUVFKDOgu/uvxMYWyzrjtranyc09I8QZ+3weWlufprj4YuLikoOQ6lariebmR4mNLWBk5EMUCg/g\nR6FQo9cnYzL1cdpp3yExMVOiFQoZ7Rw7dsB554Wf+y2CMre6pikUCum9FuRwHVLmLNIxT6aWtRiE\narVatFqt9Bt8CdHVW7b/sgz5WDSt/ytL1jabjbi4OEmMRMwcxag/kMZ0PCaWpMUo71hL3oEm9qQ3\nZqHHEzDIIcAD9xfoeDcrT6vVanQ63VGDCjHjFqsCSqWSlx55k6/8+XFqB97iwPZv8+Y5P8WripC+\n397+POnp5aSmVoXZp3ct4ziN+Ph82e8IiOLHqa6+Dq02VGYRYGFhnPHx96mtvR2zeZbFxWFWVibw\n++2oVF6USrBaV8jKqiUz8wy83vWRkCLXGYSpSH19T2+akQJ0d79MQkImaWnhJTEFYY0nycy8iJmZ\nj1AoHGRknEFSUlmQg+joeJSioouIj88O+9sPDe1HodhcyUvgYL8V1CO32RYYG3sfl2uOhIRKoqNL\nGBh4gm3bfhA2IxJkOu+lvv7r+P0K2ZL77Gw38/OTYSlEfX1/xWDIl0VcQ3hxDji6rGagUpdGow1p\nCygUfo4c+TPV1dcRGakP4c7PzrZjMg1SVRV6L/v63l6jdtVvOKaPzs4XSEvbFjLPWaB7PUl6+lfw\n+/3YbNM4HCaEFo6XsbEucnJOJTOzDIMhBY1GI72v7e3Pkp5+CsnJOdJvr1AosNvnqKpa4uKLvxJE\nK9q43mykFB2PiYG5iEk5mZxmu92Oy+UiLi5OOpbf/6UcuyjaF6Nkfaya1v/0T//E3r17aWtrkz67\n4YYbWFpaOumgLr/fT0ZGBq+++iolJSWSSPpWerpbsUDhDDgxlS3RIYsR6paHQGyyL61Wi1KpPO7y\n9LGCK8QMXHyBn3i8iYK9XVzxwb8zk1LOU1fejzleUDkSS9OZmXWkpMgjbH0+bwiyeqMJOtRPUF19\nPVptjNSfNJkmsFon8Hpt2GzzLCyMUl5+DjExOcTF5aFSRUrVDaVSSXf3m0RHp5KXd1ZYqc6ZmQEW\nF5uPMkFKQEsXF19CTEwoFcjhWGF0dD8zM814vSuceebPQxDh4uLkcNhpbf1Pamu/Q2RkVNjndStK\nXiMjH+H3m1Gp0jCZjqDRaMjJuZDIyAQpSFtYGDrqhCwBwf0SNTXXyqDcLQwMvENjo3x2Oz3ditk8\nS0WFfPAwMLCXyMh0cnLkxTk6O58mJWUHKSnyAZqg1HVOEEgr8Bw7O58gK+t0kpKyghTGhAEN3WtD\nRi4JOffBwX0oFFEUFoZS0gJL2A7HCouLgrCHw2HGaOwgISGDmJhEoqPTiIvLJTo6de1cnyEjYycp\nKTkhYLqenldITa0jPb04qNfscJiorDRx/fXCRCexvCwHyrJarSgUipOm0iUG9IFg0mNt8QWaHAdZ\nXJf/xyEfp0M+Hk3r0dFRqqurufPOO7n11lt59913JdrTeeeFTjk5EfP7/Zx66qmce+657Nu3jyee\neEKKKE8Uybcx4zzRB0l0okAIR/l49yVWAsRy1EZHLGbJIvpRjFBPlJ8o9qNWV1d5+OF3ULdpuPXN\nH6JfXeKFXXfTXSZkT4JTfors7G0kJclz19eR1aFDDxyOZRYXjczP9zE6uo+cnLq1ICaK6OhckpKK\npcx5ZmaQubmDVFWtayyLUoOi9fW9SUJCIdnZ8n05gMHB/Wg0BIGgNto6WlrQhPb5fMzO9jMzcxCV\nyrPmNArp738LvV5LVlZ4+dilpVkGB5+mouLbUpl4Yw9XlPOUm1gFrA1MaGJ4+AB5eY1UVFwvZY9i\nkCb+3sJEJ/WmIzAF5z5GQcFZgBiIOWlu3kNFxQ3odIaQUrHQF36L+np5jeujiXOMjX2A262kqOg0\n2e1DQ2+jVseTmytfmRgefhufT0dW1nqbRHwHFhcHGR8/SF3d5SHnNjJyALfbT0nJOmtEdLx9fXvx\n+yEpKRO/34tarcFgSCchIZ/R0Q9JSakPAX4BtLc/L7vN7/fT1fUKBkMBaWnFQdUHp9NCUdE0N90k\nMBgChXrEIDgQlOVwONBoNFseubhVE6thIrVSBHce6/pnsVhQqVRBHGQxAfmS2ufvkI9H0xpg//79\n/P3f/z3d3d1kZWXxs5/9jJtvvjlkPydqhw8f5oorrmBqaorLLruM3/3ud+h0uhNyyBvHGPp8vhNS\nv9nIUVYoTnwAhggQA7ZcnhYj7JMtWedyufjjH19ncTiPm5t+Se3AXj5qvJU3zv0ZXnXkWkb5BHl5\nO0lMlK+wOBwrfPTRfSQklKFQOFAoPPj9blQqDQZD9lqfOZKenmeoq7s5bJ93aqqXhYVmqqtvCBoM\nEBiYdHf/lZSUcjIzT0GhUMpmyu3tz5CZuX3TjNRimae39zEMhkJcriliYnLJzT03pG8qUHNOJz4+\nfHVperpTokxtHMYgvoMbQV4+n4+JiSOYTC1ERESSn38JWm0Cn356H6Wl16DTxUvPxkYTJjqdQVxc\nXthz6uh4ivT0TJLWQHvt7U+SmXkOcXEZIaViv99LS8sja3zfUH740cQ5zOYRxsYOU1cnL+V5NKWu\nhYVepqa6KC29QMqKxV6uxTLB2Nj7NDZeE3IvhocPMDU1RGJiLk6nGYXCi0LhQ6nUYDJNkZpaR3Hx\nV0LOubPzJeLjy8jMDK38bLatt/cNdLoMcnNrgjJ7l2uFvLxxvv3ty6XAWvwH6+uwuI6I2gGiw/ss\nQFKB1bBAJslWK3pmsxmtVisBYr/kHGT4IjjkL6rNzc3xk5/8hIceeoikpCQuuugi7r33XmB9jvGx\nRmJyKlsqlUpChh+Pg9/IURad5vFKXgbuD5Ay4Y3lafF7Ynlap9N9plQDj8fDf/7nm0xPVfPVjme5\nvOmXTCeV8uRV97MUn4ff76Ol5XHy8k4HIjCbJ7Dbp/H7nYgiIVptCjMz3dTX75bKfhvNZjPR2/vM\nml5y6MLv9/uZmOjAZGqnvPxa6X4EguA8Hg/t7S+QnFxLamotarUqpIQtZKQPrmlLB2ekwmCHTubn\nD7G8vIBeH0Nj452b3Bv3GsjrViIiQsUtROvt3YvBEEtm5qnSYr2xh7u4OMrw8Gvo9Wm43XMkJ1dL\nCl4it3Z11UZf3x62bftB2IVz/Zy+HTa4Ee7Bf1BdfSFTU0dQKOKDdKSDS8WPkZt7EYmJGTIMAg+H\nDz9ETY38hCaXa5nW1ic2Gbdooqfn5U2Uuhbp6nqOmprrUalUQdUAs9lIf/9fKS4+D4tljpWVWTwe\nGwqFl8VFI16viuLi7SQm5hMVlSTtf7MSdk/P6+j1WeTmhgIWe3tfQ6/PJScnFDcxMPAuKlUcBQWN\nG67PTHr6KDfddI4UhAW2xgKdc6Bsp9VqlfbxWYCyAk0MBAIxL5tpWQeqiInr8Jecgwz/45DD2623\n3spLL73Ev/zLv6DRaHj55Zd56qmngPBc5HB2NJUtse97LJFdOI6yCP8/1olUG/en0WiCOH5i+fuz\nKE9v1dxuN/ff/zZzc/Vkz/ex+6XbMdhN/N+q3XyUUQm4GRvrISengoyM7SQmFoRkk0IpeI8sslo0\ni2WegYEXqasLptQEgqVmZrqx24epqLhGdh/iUIu0tFNISChFoVhXrxLvld1uo6trjzRBannZzOjo\nPtzuaeLiCsnNPQOlUk1f39vo9TFkZ8sP0ABYXjbT1/co9fV3bUphEilTG5XKPB4PRmMLFks7Vusi\n6emllJcL1xaoBCUGZSbTGDMz74dFZ4MQ3PT3P059/ffCnpPdbuWTT36F36+gsPD8NRlT9dp/hX9G\n44eo1UlkZtau8YQ1QZl9W9tjZGefHSLOIV5fS8tDlJZeg8EQWooXQFx/WuNjBwcz4rPe3PwAFRXX\nYDDErumgT2KzTWC1TjI720l2dgkajRa9Po3Y2Cx0ugQWFwdZWBilru6ykHdjZEQonZeUhJbOBwff\nRaWKJz8/lNLX3/8OGk1iCCgMBGCe3e4kNjaL5eVpXC4rCoUXj8dJWpqX3//+J7J0Q1GUSMSAiP/E\nype4jmxVW/pELZCdsdnx5FTEvF7vcY+c/YLYF8chf/DBB/z2t7+lubmZ6elpXnrpJS6/PPwIu6am\nJs4+O5jMrlAomJ6eJiVFnipxLDY7O4tarSYxMZF9+/bx/e9/n48++giFQnFMspJbUdk6Fgd/NI6y\nCBIT+ypb2V9gsBBYnhaPJUbOGo1GGiD/WZWnj2Yul4uf/vQhBgbsJEdE8f32F9gx9iEf1n2DV8/8\nZzwqDR0dT1JScnGQElfwPlbX6E7XhOXWLi3NMTj4Eg0Nt6JQqCSHJAYrSqWSsbEj2O1jlJfLU5TE\noRbZ2WcSF1cUwBUWaFMC/eYTRkf3kplZi0ajIjf3AtnsvaXlMfLzz9m0BDwz03dUQJXAZ12nTK0j\npedJSKggNXUHCoWC7u7nycqqJyGhRCpxbxz8MTz8IQqFjfx8+YELANPTPVgsLZSV3RByb2Zmepid\n/QCVykZiYh7gwet14/N51o7pZnHRiNXqJSMjD5/Pi8fjwusVevYKhYL5+TEiIqJISsogUPRD/P/J\nyS4MhhRiY4V76vcrpP8qlSomJ48QH19IXFwWSmUESqVGEgDxeLz09z9LdHQqsbEJ+P1uNJoIDIZU\ndLp4RkcPhmhC+/1+5ucHGB/voLLykiA6lUKhYHz8ECsrK5SXhwpxDA014fdHUFQUij8QtmkpKNiO\nzWZam+g0i8+3wvz8GF6vl6yskrX+cx4GQyIejxODoYu77rospJonlLFdIUG3UqkMqnyJmgZie+po\n2tIny8R1SQSJbjyey+VieXk5aA7yl3jsomhfHIf8xhtv8NFHH9HY2MjVV1/Niy++eFSHfM4559Df\n3x+EAjwZznijjY+PU1lZidFolB7Yo8lKymWw4R7crQ6F2KiKJefct6LWJdrGYCFQZStwERHBVeKz\n8Hk5Y9GcTif33fc2Fst2NGotO47sYdc7P2MmqYQ9u/6DWUM6nZ1PUVZ2KXFx8gMLBPrNY9TUXB+W\n7mQ2TzE4+CpVVTehUKhCHBLAyMgh3O55SkrkgURCWfZxEhKq8Xjc2O2T+HwOwIVGoyUmJgeVKpqF\nhRZqa78b9p56PJ6j8pgBBgbeIyLCT26uvJQkCBWATz/9HQkJuURGatf0rIVqgbiwCdKgD1Befj06\nXbwUhGy0jo6nyMjYHJ3d1/cGUVEGsrJOx+FYYWTkXRyOAWJj48nLa5DlNoNQau3pOUhDwy1BxxaD\nxdnZHqane6mo2CULVBsfP4jD4aKkRB5cNjT0Fl6vmqysKrxeJ16vC4/HidvtxOGwMzT0FoWFZ5Ob\nWxG0X4djmfb2F6ipuSZEL3pxcZSxsWbq6q6S3h0xEJud7cBmM1FZGapWNjp6EKfTQ2mpUAXx+bxY\nLPOYzdOMjX2C02khI6MIv9+LVhuDwZBOYmI+CwsDWK1mKiqCAYJer5vIyA6+//1LNk0cxHXK5XIF\n6SGIWWng/RbvgSAB6grSSxCFfT6LSpmclrVYDQycgyzqHXxe69JJsC+OQw40pVK5pQz5nHPOwWw2\nnxBPbivm8XiIjo6mq6uL5OTkTZ3e8ahsHc3Bi9J0ckMg5M71aCMd5crTgY5YXHwDOYTitYhlW0Aq\nd30eEanT6eSee95mZeUU1OpI0mc6uP7F2zHYF3juwt9wKPdsOjqepKzscmJjU2XBg3a7jc7OJ6ir\nuzGk9ype58KCkcnJd2houC3sdQ4NfYTfb6Gg4EKWl00sLo6zsmLE611BofDh9/uYmRmjvPw8srJ2\nSGIwgT1ck2mM2dlPqan5m7C/21Z5zG1tj5OVtZ3ExGDUuZgNu91zKBQJREb6KC8PzlzFzER4jmz0\n9u6hpuaO40Zni9bU9FsiIiAqCrKza4mPDz/ZSdivh+bml6iuvlW2LyxOaKqv/4Z0zoFANat1itHR\nA9TXXy+7//n5PmZm2qmuviLgmEKP3O/309v7HCkpZWRkBN9DcUBDZeUVITzmpSUjg4MHaGi4BqVy\n/Vnx+/1MT3cxPT1IZeVFQT17r9dDf/8+pqcHSE7Oxe93A17Aj06XwPLyEhpNNNXVF4Rcw9RUOybT\nFFVVwbrvPp8Htbqd73//oi1VykQRD3E9ENd8kZa0sZwdiM4WS+CBgyY+q2A9sF0mrkGBnOYvOQcZ\nvuwO+eyzzyYvLw+Hw0FVVRW/+MUv2Llz58k6Dcn8fj/l5eXce++97NixI6i/srGvcTwqW+F0o0Xn\nvtkQiI0mcGjtsiMdNwYLgfsShQ3E8pSYFcuVpzeKeIgR8olyso/VVldXueeed1ldFZxypNPGla//\nIzU9L3Ow4Vu8eNo/8mnHM5SWXo7BkBgCwAJYWbHQ1fWUhKwO7JeKwYrJZGRi4l1qa9dBPy7XKouL\nRiyWcZzOBWZn+/H7XeTmNhITk09SUnFQJuvxuGltFYZaBOpnBwKXZmcHMJs7qa39Ttj7uDUes6hT\n/Q0iIgwSUlqjiaCgYJeUDW+kTAUqOa3TeUaZnt5Hefk3gpxe4HzrcBKcLtcqIyP7WVkZIioqFbO5\nh23bLgo7RSvQ2tv/SlbWxSQkZMlcnyDuETihKVC9yulcobPzKRobbyUiIpRK43BY6Oh4msbGm1Eq\nVSE98v7+l4mLyyYrK1gLXZSvLCu7jOjo+KBtNts8fX1vU1d3bQhwbGFhkNHRFjIzG7Fap1lZmcPv\n9wAelpamgWhqas4mPj4r6N5MTraxtDRDZWUo53purp/p6T6qq3eFBEjQyt/+7QXExspXfkQLdHCA\nBNoSEwAxOBHXssAkQPQLYhAfmMXCiXOMj2ZWq1V6HkGo2ul0uhNml3zO9uV1yP39/TQ1NbFt2zac\nTicPPvggjz76KIcOHaKuTl4U4ETswgsv5Nprr+W6666TnJ7YzzjewRKiiVltoEM+XuceKOgR+AKJ\nPaPNytPiiyVGy0dDTwfSFgIpB58VElPOVlZWuOeefbhcX0GlErSwd7Ts4ZK3f858UjF/2fV73h37\ngNLSq9BqY4KyE/Ecl5eX6O5+itramwF1SC/dYpllaOgjZmc/JSurFhDoUlFRmSQmFmMwpK4t5PvQ\naCA/P7Q/COtDLcrKLg3pE4tZntHYjdncTWXlt1CrVbK0qYGBJiIilJuWpefmRvn441+TlVVFSkqN\nhJTeaC0tfyEv7wwMhqwg0Fbgd4Ve8Qp5eRdITk98dsTvzs+PSHOW5+dHmJwU1L+yss6UpEuFYRx7\nqKvbtemzPDx8EIUik/z8U2S3d3Y+SVraaSQlhSr6eb3etZGGl6PXCxm7+LyLlYkjRx6gouJadDpD\nUMVHrVYzOPgaWm08ubnB+t/C0IenKC6+iNjYYDDgyoqJrq7Xqau7Bp/Py+LiFMvLMzgcJlZWFjGb\nZ8jOLsVgSCU+PpfY2HQUChVTU13MzAxQUXFRiETn3FwvMzODVFWFiozMzw9hNLZRW3vlhlK+D6+3\nlbvuOofExPC648L1+FhdXcXj8YRtQW18v8XqnFialsuaxZbextbayRbrsFgsqNVq9Hq9JL0bHR19\nzGDWL5h9eR2ynJ111lnk5uZKAiIn07773e+SnJzMD3/4Q8npiY7neAdLiBYoUynu73idu3hu4ouz\nsTwtfgbIlqcdDodUetpqTygw8w4sXf1Xoa+Xl5e55573cbtPRaUSspP02U6hhL08xzPn/yuPOpeo\nrv46anVU0CAG8d4uLc3R1fUEaWmn43LN4/Uur5UPfeh0icTGFuLx+FlcPBwkDLLRenvfRqfTys5t\nhqOjvP1+P+PjrSwtjVBaej1KpWJtoQ6mTbW1PUVW1leCytICb7h5jTccQUxMGRZLF1VVt8mei/Cb\nO2luvpfq6lvR62PC6gJ0dDxFWlotycnlQYA/seTu93s5dOgBVlenyM/fRkHBxbKZ8ORkOzbbAcrK\nQnWeARYWRpienqG6+mrZ7cPD+/D7tRQWyguv9PS8SGxsORkZZUHnKGb2vb3PkJa2g6SknCD9abVa\nzdDQmyiVERQUBAuDyA19WF62YDJNYbVOMDjYRHZ21dp+IjAY0oiPz8Xv98qWsIXrHGZ8vJW6uiuD\nwJMKhQKzeZTp6W5qa68Iec7M5gmGhw9SX/+1kLK4y9XGXXd9lZSU0GEpwd9bf891Ot2WZ7GL6wgE\nt6vClbMDOc3i2qPVak9Ki2sjB1mU6f0Sc5Dhv5tD/uEPf8iBAwc+k+EUv/nNb+jo6OC+++4DBCcg\n2vEOlhBNzLhFWgIcv3MHJIUtEfgQrjwtZr6B5enAvtHx2EZhgRPd31bNZrNxzz1NeL07JZBQpNPG\nFXt/SG33SxyouYF/TcynvP4bqNU65ufHMZlGWF2dRRDk9+DzKTGbxzj11DuJjpYHB05N9bK42Ex1\n9Y1hz6W7ey8xMfFkZckL9wujFh+lqurr6HTyfdexsSOsrExRVHSH9CNnAAAgAElEQVTNmtMLpk2J\nPOaKihvw+WBsbB8ezxxJSZVkZKwLTQwNHUCpdJKfv7HPuE7hWl21MDT0NA0Nm1Gm5HvFi4tGxsbe\nw+ezkpq6k4WFbrKyaklKKg377Pb2vkZMjJOMjGAtaofDSkdHE42Nt4U4MOFYwROaNprR+CnLy1bK\nyoIrB2I5e3j4PbxeBfn5pwRl+CqViuHhfXg8TkpK1ltePp8Pq3WRI0eeQKtNQq+PQqEQRkBGROiJ\njIxjerqT+vobiIoKxrFYrbP09r5LQ0NoCdtsnmBo6OCao1ZK5+j3+1lYGGFk5BA1NVdK5yZ+x2KZ\nob9/H42NX0epVK2tG1ZMpmkiImb40Y8uIStLnlkA64G/SA86nn7rxnZVyAjVMJzmQCzK0TjGRzM5\nDrLYWvsSU57gv5tDvuCCC4iJieG55547Waci2XPPPccf/vAH7rnnHhQKBcnJQhQq16s9VgtUxTpR\n5w6CQxZ/t62Wp1Uq1UmlMHwefWar1cof/vABfv9OacFaWTZRe+gBbj78R8ajkvl+SiP+olOIjs4m\nJiZ3DeW8LqiysmJiePhVGhpuDYv+NRq7WFrqpKrqurDn0tX1KrGxaWRlbZfdLiB1H6emZrc0o3ij\njYwcwuVaorj4aqnP7HBYMZkmsNvHcDrnmZhoJTe3gdLSK6Xe8Ebr6HiW9PQGkpLKZXvkSqWS6eke\nTKZmKitvCntNQq/4EWprb2ds7BA2Ww86XSwFBbvQaKLWxhe6aG29n8rK64mKipfNuAU62J8pKion\nJiZZ+uzIkReoqPgWen2odrLgrJ+lsfFbss7aYplmaOg96up2ywYVi4tDTEx8Snn5LgLXNJVKxeTk\nQebnR0hMzGN5eQZwAv8/e+cdHlWdtv/PzKRnkkzapPeQXgFFEaUouij2wlpR7NhXd8HXtby77+6+\n2HZ9EQvirohKsWIBlaYgYoX0QHrPpM5MkplJpp3fH5MzTAsQCBh3f/d1cV1cM5OZ75k55zzf53nu\n575tvsudnfUkJMwkPX2q0+9kNg9z4MAmsrMvRS537tU6lrBdVcW0WhW1tbuYOvUat+PQajuord1D\ncfGVCAIOPVKB7u4mqqo2Ex2dh0Riq9yABR+fQKRSHcuXX0lOzhQPv5qzX/FEifiI5WyxDXakmeYj\nSXQez0yzzeVqwD6DLH7O/w/IzjihgKzT6airq0MQBKZOncrzzz/P3LlzCQsLIyEhgUcffZSOjg57\nOfqFF14gJSWF3NxchoeHee2111i1ahXbtm1jzpw5J7IUj9i7dy/Lli3j559/5pprruHpp59GEIQT\n0nl1VcUS1XCOF45sbMCpfHOk8vTJVOBxHas42X1mtVrD449vorvbgkRiwds7iJCQZPKtZm789CGC\nBlU8PeV8eub9D35+cqfNiRj0NJpOWlq+YNq0W+0lcFe0tpYyNFRHdvaVHp+3OfhsJjIyhZgYz5yG\nI7O8LajVKqqqPmZ4eBClMgVBMCKVehEYGE94+BQCAhSYTAYqK9+lqOj2MVW6rFaB/ftfIyvrWry9\n5U49csffoKZmG35+PmNqUNvW8y79/ZWcdtodREe7i1cIgsDQkJbKyjUUFNxuz+pdP8vmR/0KISGB\neHv70tpaRmjomURGpiKTeePl5TMqAOKDTOZFWdk6cnI8OzQdzRvZYNBQWvoOublXMzTUh07XhU7X\nicWip7+/mZERAykphSgU8YSHJ+Pra7umKyo+Ijw8m5iYTJfPM1JSsoEpUy506yfbNg6bKSy82i0Y\nDw31Ul39BcXFV7utc3Cwh4qKz0hKmoVO14Ne32tnXOv1g/T0qMjPv4Do6Cn4+wfZv0uD4SA33phF\nZqZn2VTH6tfJ6OWCe1VMzIDFjS7gZMIi9vKP1zdZnEFWKBT2+9m/wQwyTKaALLKmXU+WxYsX889/\n/tNNz/qZZ55h9erVdlvEgoICnnzySc45Z2yR/eOBIAi89957/O53v6Ojo4N7772XZcuW4evrOy4B\nDtf3dJXQNBqN9iz1eN7PkY0tBhgxADtask1kefp41+jolnUy+sz9/WpefPE7pNIzkUgOlwRlei2X\nf76MqYc+5pO4aey75i0kLiVjcZ09Pa20tn5JUdEtY87gHoswSHn5B8TEZKNUerYKHBrSUF7+NjEx\ns9DrVRiN6tESuhV//0gUijTU6na8vS2kpp5nX6Pj2JRNyvIDiouX4uvrTmoRBIHBQQ2VlWspLr4X\nX1//Mb9zV11sq9VCS8tP9PeX4OcnJzX1Ijo6Ko4qCNLdXUdX19dkZV3r1rN3ZOv39bXS2voVFosR\npTIeq9U4Kg5i+2exGGlqOkBISCxyefDouiWj/XTb/5ubS1EqU/H3Dxp9TPzNJZjNRlpbfyQqKhU/\nPz/k8kgUijhCQ+Pp7a2nu7uJnJwL7NmoWMauqfmcwEB3iUqr1TzaTz6f0FBnYp7RqKe09D1ycy93\ny/J1OjVVVZ9RWHgVRuMIarWKoaEOjMYBjMYhOjsbSE7OQS6PIiQkgdDQOKRSL/vMc17e5XY7SPG7\nNBob+O1vUykocJ8BF4TDzmsymWxCKnlHgzg2JpamjybRCbb2maNk5rHMNA8PD6PX6//dZpBhMgXk\nyYienh4WLVrErl27WLhwId9++y3bt28nPT19XAIcIkRyhCcJzfGofznCVSxE7EOLJSFHcpdjefpU\nXKBHW/PJ7DP39PSxatX3eHnNRBCwj3DIpFLOqNzEwi//SKu/gg9+uwGNB+tGQRDo6mqkrW0HOTnX\nO/XzXIVBjEYVmZme2ys23+Z3iY0tJCIig4GBXvr6mhwEQkyYTFZ6exuZOfNOj3aLAAcP7sDPT0Zy\n8hynNYobiIGBfmprP6Ko6G78/AJHb1RgsZgxmy1IJDAwoKKzcycFBXeO+b2JGtSpqZfS2fkjJlMP\nSmURMTEznH4fR5LXWKir+wpv7xESE+c6WQOKs8JSqRSNpoHm5q8pKvJcaWhu/gajEaZM8UySO3Ro\nM4GBicTHO294BEHAYBiktPRNsrIWoFBEOP1u3d01dHRUUVBwiVOWZbFYqKnZho9PJKmpU50ye1up\nfSOJiWcTEeE8jmXL0jeSk3MZcnmIXdhDo1ExMNBGc/MPxMVlIZN54eMTQGBgFOHhKchkvpSXf0RB\nwZVuIiOeZp7Fe8jQUC0LF0YwfXqem6ubTW/cYJ/LPVXkShGeNt+eytkixPPKdaZ5LN9knU6HyWSy\n+yCL2fevfAYZ/n9APjLMZjOLFi3itttu4ze/+Q0zZsxg+fLlzJ8/34kZfSyB7WgSmsei/uUIx/K0\n2BcWIQYNsb8j4mSXp8cL1z6zo2b2RECl6mblyu+RSE63b1bE7zyqu4pF7y0haLCTjxY8S2WBZxeg\n7u5G2tp2kZNjE9DwNDbV0LAPi6WfKVMOq3WZzUZ6eloYGGjBYOihpWU/CoWSqKgMQkJSiIhId2Ih\na7Xdo/rZt3gsuwJUV39BYKCcxER3DWRBEOjv76Km5iPy8+/Cx8d39MbnOPYDzc0/YDarSUu72O09\nrFYrbW0H6Oj4hu7uas49988EBnpm7B6rIIhNpGQq4eHpbpm9yaSjqmot06cvRiZz/83V6maam38c\n06Gps7MEjaad7Oz5Tt+Drdeup7z8TbKyfoNCEel0vjuqabne7OvqdgEBJCVNdcpGJRIJFRXvExt7\nBkplkv31RuMwfX0dlJSsJzQ0GX//AEQxGH//MPz9Q2ltPUBR0TVuWbMYcPPy3DPqI8086/VNXHih\ngtNOy3Pr4YpZ6i+96RYxlkSn47pEpv6xzjQPDg4iCMK/kw+yiMkXkMeraQ3w1Vdf8fDDD1NZWUli\nYiKPPfYYixcvnojlOGHRokXMmDGD22+/fcx5X1e4jh2NRWw61ozbsdwN2EcWxBPasTztuFMWcSrL\n1McKT33mE2GZO/bIu7v7WLv2IL6+M92O2WdkiAUf38/ptVv5vuh6tsz/M2Zvd/lSlaoOlepb8vKu\ns9/w4XCg0+k0lJZ+yMhID+HhiYBthy+XxxEenkFQkI35ejSLSLVaRX39J6NSkZ7PqcrKzwgJiSA+\n3vOMri0ob6ag4C5smswSN7epysqPiIzMRKm0zdoODalpbt6F0dhJREQOcXFn0t1df1QBEpHkdXR2\n9qrRwO1IijLz88//x5QpCwkICHErZ9vKv29TXOzZocnmjfw5xcWLnErgNn9qI+Xlb5GRca5bWXks\nNS1w9y0Wf2uLxUJJyQa8vCLx9/fHaNQilYoqa9DRUU929oXEx2c5baaOFFRFUpin544086zXt3Le\neQHMnXuYLOhIlAImnKA5EXC9xkVC19HK2Y4SneJxGQwGJ5/mfwPbRRGTLyCPV9O6qamJvLw8li5d\nyq233sr27dt58MEH2bJlC/Pnzx/z744Hy5cvR6/X85e//MVt3tcVjrO5gnB0Cc1jkbz0VJ4W+16O\nNzTHoX9xpyz2ahwD+WQjQUxEn9m1R+7n50dHRxevvFKGr+8M9/cRBLK/fYmr9/wv/eFT2HDFanpH\nhSwc0dlZQ3f3D8TEnI1a3YRe34nVOoIgmPHzC0KhSGNgoBc/P29SUz3P2FqtFvbvf4v09Hl2tyVX\n9Pe309T0OUVFt4x5HpSXf0R4eCKxsYdJVWL2aTabUas7aG3dRVHR0tHHBaexKUEQ2LfvRYKCkrFa\nNXh5SUlKmu8mVmIrOcuOKEBimxveSX6+51lnsKmhVVf/i6lTbRKc/f31NDZ+RlzcLKKiUt3K2RKJ\nhNLSN8jMvIqgIHeBC7PZyP79r4+S4fzsgVOc5a2qeoeUlLMIC3Mu/w8MdFFTs8OjmlZLyw8MDQ0S\nE5OHRmMjfZnNeqRSK62t1YSExBMTk0lISDyBgRH2a7m0dBPJybPdPutIQfXIz7nPPIvQ6zuZNQsW\nLDjL6fXitS5WgOztmRPc2J4MuGoWwLFJdLq2uby8vAgMDByVH/23mEGGyRiQHXEs40/Lli1j69at\nlJWV2R+79tpr0Wq1bNmyZULXs3r1aj777DPeeustYGyXpmMxgXDFkUrgrkpgItUfcCrFOo43jFWe\ndp0JnIwXLWC/aI+1z3y0Ea7W1k5Wr67A1/d0j8fpX7uLxVvuR2ky8NGCp/kuZT69vS0MDjZhNg8C\nZrTaXozGAaZNu5GQkCT7jcIxmNTVfUVAgI9Tr9f5uEwcOGCT0BzLjaq3t8VNqtP1WCsqPiIqagpR\nUflOM8Xi+SCSpQoK7qSvr42+vlp0unYkkhHAjJ9fMCpVI1On3kxoqLvilYiSkvUkJZ1FaKj7JkXE\nsbg+qVSHqKp6E4UigoCAOFJTz8TH53A1wnFDcejQhygU+cTGZnmsJpWU/Ivk5PkoFEqnQCyVSqmq\neofY2Okolc7HpNP1U1W1heLia7BarWg03QwMdKLX96BWd6DX9xMbm4a/v8LumOTnJ+fgwc/x94+1\nexOLJXeTyURV1YfExs4gOjrVRb5y7KB6tOdKSzeSkDCLsLBYew9ap+vCZBrkiivyuO66C+3f11gC\nH55GksRsdDJVxsTStCeJTsesGQ5XAK1WK4ODg/b3EP2PAwMDJ1VF4Djx6w/Is2fPZtq0aTz//PP2\nx9544w0eeugh1Gr1hK5n+/btPPLII+zevRuJROLm0uSpPH2sJ4mYcYsXjviYY3laJGeNVZ4WiWHH\nMvTvetG6lpAmC1zHI1wze/E4xDnuI2XUTU3tvP76QXx9pzsRdbTaLvr6mtC2f889FZu4WNvIl0ln\nsnHmgwRH5RMQcLik2NZWjlZbTW7uNfbHXHujtbU7CAoKIinpbI/rECU0MzMvdNK1dkR3dyMdHbsp\nKLhxzKBcVvYu0dG5KBTpiGpZ/f1taLVNjIz0MzTUQ19fC9nZ5xEZmUFwcKI9m7St2UxFxUaysn5L\ncHC0h1WIJefXKCxcMuZYFdhIXjExhUREOJO8bIYWOzCZOjGZrERFpZKUNGvM92lr+x6dTk9Kyix7\nb9BRO7u29jP8/KKJj89z82iuqNhAZGQWMTG2zYMomqHVtlJb+xWJifnIZLYMPDAwCoUinpGRQXp7\nWzxKVNbW7kQqDSItzX2WvKzsfcLD84iISHYiqtme20RCwiwiIpyrIJ5IYcPDOvr7VQwOdlJfvxu5\nPByFImKU4BmKXB5DYGAQp51m5qqrzrVvAkWBD1HDeaxr9kgjSZMF4jV8LBKdjjLDYgIikUgICwub\nVMd0nPj1B+TMzEyWLFnCsmXL7I9t3bqVhQsXotfr3XxATwSNjY0UFxfT0tJiLwGbzWYCAgLGbQLh\nCtcSuPh+jjOjx1qeHq/UpnjRiuxGR0bkZIGnzF70ZxZvTMfiMlNf38qKFTtRq0ccxovCUSjSCQtL\nob+vjZzvn+Peg1voC01h/eWv0hvhLLjQ3HwAvb7B4wyyGJirqrYgl4eSmHimm0MSiHO468jOvgy5\n3DNxSqWqpbv7O49SnYODarq6GigvX09kZBJyua0PK5cnEBmZhVyudHiP7ykoOCz44ZiNGo3DlJdv\nJDf3eoKDo/F0ytpKzm8xdeoDR+wV79+/mry8a/HxCaajo5yenn14e1tJTZ1NQICt9FxS8gFJSacT\nGpri9h4aTTuNjbspLr7Ovk5H+8Le3io0mlaysubbH5NKpQwN9VNZuQGz2YRCoRzt71rw9vbH11dB\nR0clp512A/7+zhuK3t46WlsrKCy8xO24Ghp2Y7V6e/Qmrqr6hODgVOLjc502Y2azmerqzcTETCcm\nJt1h02dBo+mhtHQT3t4hyOUhSKVWBMGCTOZNUFA0nZ3VJCbOJDbWeYRpeFhNVlYv111nc3s6XoGP\noylsTQaI9yJPEp1SqRSDwWDX2Bdbe2LWfKRW368I/z8gjwfi3HFtbS1hYWH2E1wMjOMxgfAEsQQO\nuJWnXVW2XMvT4sV5IheXKyPyl7RXHAuOGbF4bo5XBrC6up533mnFz89d2AJsJC7fmvd5qvpTQgY6\n2LzgaUrznINvc/NPjIx0kJHh+dwUBIHy8s0EByuJjp7qlOWJ6xQlNHNyriIw0LMZQEdHNe3tewgP\nL2JoqA2r1YDVakQq9UGhSCUyMpODB7eQmnqWxyAH0NlZTV9fCXl517qtURAE9PpBysrWk5t7E4GB\n4R7LxN3dDXR3f09e3thkSbW6k2+++QsxMalERCSRmHiG27VgNpvYv/8tQkJikMkC8Pb2Ryq1XTO1\ntTvIz78eX99AfHx88fLyQXRj6uurp6TkPWJjp2EwdAEjeHkJgIXu7maUylwyM890U9NyHEVyXmsL\nDQ3fj2pCO6+xufl7DIYRsrLcNQ1cS9iOOHBgI4KgwNfXl+HhfqRSAanUprSlUtUTH38GaWnT7Q5V\nIqqrP0MuTyYhwVVKVEtqageLFy+wb7xPVODjaCNJkwWuGwgR4hgX2O5XGzZsYOXKlfzwww9H9ZP/\nFeDXH5BPZclaEASmTJnCmjVrKCgowGQy2ctqJyqabrsx6u3B11MgFrNkkbgkDsNPNN1/stgrusI1\nGDv6M4/3xnLwYCNvvdWKv79nFa3OzhqGVN/waOsBiive46fC6/j0/D9j8j48K9rQ8B1mcx8ZGRd5\nfA+x1xsWlkhkZL6T8IS4ux8e1lFe/jb5+Yvw8ZHT29uGVtuMXq8CTAiCGYPBjCAMMXXq7YDU7T2O\nhSx2NGUx28zuO2RlLcbPLxiZTOqW2dfV7cbbG5KSznP6266uWjo79yCVmpHLs9DpSsjP9zyqJH4v\nWm03RqMBs9mE2TzCoUOfEBOTh4+Pl10QxGw2AbZ54q6uZjIzpxMSkkBISBwyma0C1dS0G2/vUDdD\nCJua1kamTFngRpwSJSo9Ma3b2vaj1faRm+tOCK2t3YFUGkxYWOIo8asLs1mHVGqlre0gQUHRxMdn\nERKSgFweiSDYyq01NVtRKKaQkJDrdv0cOrQNH58IUlKKnR4fGRkiLq6JW2+90N5aEjPDidogT/Zy\ntm2W3GBfH8A999xDbm4uCxcu5KmnnqK2tpbVq1czb55nIuWvDL/+gLx8+XK2bt1KaWmp/bHrrrsO\njUYz4aQugPnz55Oens6OHTvYsmULgYGBJzxi4FieBlsf1FN52jZfOWxnVE6Uc8pYcO3t/BL2iiJc\n+2au/szHwyCvrKxj/fpO/P0LPT7f3l6Jur+Um6xSLv7iUfpDk1l/+WqnEnZ9/bdYrVqmTPFMaBLV\nuqKisoiMzHaYwR1Go+lgcLAFvb6TtrYK4uOzUCiSCQ9PJyQkyen4mpr2MzRUT3b2FR4rIaLfso25\n67kv3dy8H4Ohhaysyzw+b/OG3kRe3u3IZL6jvVFnt6mysk3Exto8n5ua9jA0VEtQUAwpKfPtIz8N\nDXuRSLpISfEswemKmppPCQxMJS4ux+25wcE+ysvXk59/Gf7+AQ7mGlbq67/GZJKSmjrDpY1jU9NK\nS7PNIDu/Xw8HD35JcfE1bkzrzs5yenvbyM9fwPCwflRNqwu9vpfe3iasViNKZaID8SsRP79gDh3a\nhp9fJElJzps7QRA4ePBzvLwiSUjIc5thr6//GvAnLe10p78zGvUolXXceutv7Jv+kynwcTSFrV8C\njiObImFtZGSEe++9lw8++ACz2UxGRgavvPLKhKsz/oKYfAF5vJrWTU1N5Ofns3TpUpYsWcKOHTvs\nY0/nnXfeUT5tfNixYweLFi1CrVazePFinnrqKSfnkvHCVSwEsDuxHIk9PRHl6fFgIsaRTuSzRQnA\no/XNjodBXlZWw8aNPQQE5Ht8XiRxzVUWcu0HtxMy0M7mBSsozbvK/pq6uj1IJMOkpXkesxsa0vD9\n96/h7x9CYGAQgmBCEEAujyM0NIOQkGhGRnRUVW2kqOhGfHwC7MfjaATR0VGKyaQas0x+JL9lEbas\nvpeMjIUenx8c7OfgwQ8oKrobqdQHi8X2+VptF1ptMwZDK83N36NUJpKefjGRke4qZyAaWiQSETE2\nOxugo6OEgYFesrKcr1VBEBgaUlNe/jZ5eZcilwc7Zeu2svIwmZnnODHdASor3yc5eQ7h4XFO7+lq\n+iC6OWm1nahUVXR1HSQ5uQCwIJV6ExioRKFIQKNpZWTE7LGEXVe3C4kk0C2ogo0UJpMFkZp6mpNW\nOkBb2w9YLBIyM50VyMzmEYKDq7jllnPtAfxUCXxMhnK247SEl5cX/v7+9s9uamrivvvuQ61Wc8YZ\nZ7Blyxaam5uZMWMGq1atYtq0aadkjScRky8gj1fTGmD37t089NBDVFVVER8fzxNPPMGNN944EcsB\noLm5mYcffpj333+fpKQkZsyYwZo1awDsvsjjmYFzZWM7OpaIs3kinR84qeXp8eJU2SueSGl+vAzy\nAwcO8v77avz9PetNt7aWMDhYT2H6Ai754lGmlm9yK2HX1OzC21tAocihv78Zna4dQRgGzHh5+RMc\nnExnZxUpKWcSGZlhX6djMDEYBqipeZ+pU29GKvWxj/M4GkE0NHyH1dpHerrnMvnR/JYB6ur2AoOk\np//G7Tmbp3IllZWbiI2dilRqwmo14uMTTHBwMmFhqaNmDxuZMmUhCkWyx884rOS1AD8/d0MIsEl5\n1tXtoqjosLiHSJLS6wcoL3+L/PxLkMsVTr+bp7KyeL6Ulr5LdPR0IiOT7NmoyTSCSlVPefn7REfn\n4u0tw+bmZMHfX4HFAkND/Uyffo3beXykEnZj4x5MJikZGe7KaQ0NezCb3Z8TBIGmpu8ZGhpgypRz\nnGREzWYj/v7l3HLLHHx9fe2Z4S9xvY+lsHUyR4vErBhwGtm0WCysWbOGP/3pT9x+++089dRTBAQE\nYLFY+PTTT3nxxRd55ZVXSEtLO2lrO0WYfAF5MuLJJ5/ktdde45lnnkEmk/HKK6/wySefAGPPInuC\nI6N5LPa07cJ0LmFPdO9oInC8ZeJjgWtp3nGXPB6Mh0H+449VbN48iL+/Z23m5uafMBjayMq6jOKy\njVzy+XK6g2J59rR7qPP2QiIx0dnZiJ+fL1lZFxMenuomgWm1WjhwYL2bWpcj63lwsI/a2g/Jz78R\nHx/PMqd1dXuRSHSkpZ3vca3DwzrKyt6ioOC3YwbDmpqvkcmMBAVNQa1uwmBQIZFYAAuBgZF4eSnp\n7f3ZyYbScQNhNpsoL99AZubVKBTxHtnZBsMQFRWrmTbNfXTLJu7xJkVFN9hdkQ5vpPRUVLxFTs5C\ngoOdyW4qVSU9PS3k5zu3CKxWKz///DZSaRi+vj4YjbbZcUGwZaRdXS0UF19OVFSqkwqaWt1KQ8O+\nUXKX87nb2VlBb2+r22eBTUhEp9ORnT3X7Tkxe8/Kci/Zt7eX0tPTglKZw9BQF0ND3aMVExP+/oM8\n++wDhISEHPc5P9E4FeVsV3ETx2Ovq6vj3nvvpb+/n9dff53TT/esI/BvgskdkFetWsWzzz6LSqWi\nsLCQlStXctppnv1lxczaERKJhM7OTpRKz2bzxwq9Xo/FYiEoKIgff/yRa665htLS0lFSzrGZQriW\np8fyKHYs0ToOw0/WOeGJFBrxVJo/nlaAJ3ja8btuIL77roJPPtETEOBchjUaDfT0NFNb+zkjIxqi\no9NJGOjgv0o3odT3sfmC/6W00OaNXFX1BUFBchIS3LMmOKzWlZY2h9DQw5rIjmpTAwO91NdvpqDg\nJnx9/T2S6Wpqvsbb20JKimcyi6vfstlsore3BY2mieHhHiQSM93drQQG+pOdfTkhIQluAWAs1TBx\nAzE8rKesbD2ZmYsICYlxkucUYVPy+sKN5HXgwFpSUhagUChdlLYslJW9SVbWBW5krO7uGlpaSomL\nm2bv7YqbiNbWg4SFpZCQkEtYWBIBAYrR80lHScm7ZGRchFyucDIIEb2Ji4qucusn28wnDlJQsNB+\n7DKzEYW2A2v9HgK768gNCCFU006otp2qjHP5+qzbaWsrYWCgh4yMOWi1vQwM2MhfVqsBrbaLoSEN\n8fGZyOVKgoPjUChisVisWK0/c+edcwgKCjol/JDxwlVha93R0boAACAASURBVCLK2a4aAo5Zsdls\n5uWXX+Zvf/sb9913H4899tgJWdP+SjB5A/LGjRtZvHgxq1ev5vTTT+fvf/877777LjU1NUREuJfi\nvv76a+bNm0dNTQ1BQYeF2k80GLuiv78fpVJJV1cXPj4+RzWFGKs87Yk97cggdizRurqgTMYxhRMV\nGnEUNjmZpXnXDYSrOtC335azbl0TGo0Wi0UHmJDJvJHLE4iIyKK7u9ZuJOFt1HPxl48xrWwDPxf8\nlk8u+Asm74BRvelw4uPP8LgGGwHrHaZMOY+QkDh7FiJuaLy8vFCrVdTWfkR+/o1IpV5uWs8gOkB5\nk5zs3Ns0Gofp7W2hq6uC5uY9JCYW4OXljVweR0REFnJ5lP19bIYVwSQmus/bwpFVw2wBT8+BA2+T\nmXmtfWTKdQPR2LgP6LSTvGpqtuLvH09CgrPKmEQioaLiTVJTZyOVeqHRdKLTdWMyDaHT9dLf301S\nUiaBgUoni8KxRpEcfYvl8lA7oc4m6qOhpmYbU6deY69kSAQrQYPdyFp+hMYfKAqOJmygg1BNG6Ga\ndoIHu5F6uM31BEbySuHVbPfyQ6ttJyEhC0GAwMBw5PJoFIoEhoZUtLVV2N2lQMw+jZjN+7nnnnlE\nR0fZr6HJOisMRzaMONZ1OmbFriTNgwcPsnTpUkZGRnj99dcpLi6eVMd/EjF5A/IZZ5zBjBkzeOGF\nF2xvLggkJCRw//3384c//MHt9WJAVqvVdheQkwGr1UpkZCQ7d+4kNTV1TFMIxx2lIAh22bqx2NMi\ng/hIJVpPc8KT0ShiPEIjruWqU5UZeFIHEjcQn332NV9/7YVC4T5rCu492OKyTVzyxXLUIYmsv/xV\neiIzqaj4mNDQOOLiPBNNbPO4b5KefgEBARFOVRIR/f3tNDZuJT//JjvHwLHnKJFIKCvbjMUyjI+P\nHJNpEInEtvELCUkiPDwT8KG6ehPFxTc5uUs5orLyE0JCoomP91x96u5uoLPzG/Lzb/D4Gw4P6ygt\nfZucnFvw9rZtTF3HpsrKNhIbm4jFYqS3t5WcnN+g12vo7W1Ar+9geFhFR0c1oaEJBAYG4esbTFBQ\nDKGhiRiNujENIerqdiKVhpCa6vw9H5aoPM9uMCFYrfgbNPh2VKOv/JQiRTxRul7CBzoI07aj0Hbg\nZTk8YjMYGI5aEUevPJoO32DqLGZG+hq4wtDLFG0HKn8FH2Sdyw9ZCzBJJKjVHR5FRvr6mmhq+tE+\n8yxeIzZRmzLuv38eMTGHSXium9vJKn0pbm4dTWGOVs4Wj81gMLhVwUwmEy+88ALPP/88Dz/8MMuX\nL5+wCtmvBJMzIJtMJgICAnj//fedRp5uvvlmtFotH374odvfiCXr5ORkhoeHycvL46mnnmLmzJkT\ntSzAdkJNnz6dJ598krlz53o0hRAD53jK02If+lhOwJNtWzhROJLQiHgxi1q8v5Qt5FgbiL17y9m5\n05uAAM/OTHV1u5FKjaSm2tjBkT2HuPbDOwnVtvDxBf/Lz3lXUVm5mYiIFGJi3MdhDpd83yY7+zJC\nQqI8HntvbwstLdspLFzM8PAQKlU9AwNNWK06ZDIrMpkParWW2NgM0tM9l6+12p5Ra8ebPVo7Wq1W\nKis3ExmZRnS0501IZ2cNvb0/kp9/vcfn9fpBKio2Ulh4JzKZLxaLGUFgdGzKi5GRAfbs+QsGQwfJ\nyTlYLGYkEhlBQeEoFJG0tZURFzcHpdJZ3MRmCLHTY1m5oWE3Fos3U6Yczu69TQZC1G2o928gxy+M\neLOOME27vbTsNzJkf+2wTyB9IXH0B8fSFxJDs8SbA5pWTPHFdPkHMuLlhci4Tujv4OqD25ndW0u/\nIo6vZt7BgfyLscq86etroLn5gEc7R1d3KbEaYrVasVqruPfes4mN9SxbCp5JlJNRrOdYytk2sp7e\nTfJTEAQqKyu5++678fLyYs2aNeTl5f2nZMWOmJwBubOzk7i4OPbt28eMGYdt5pYtW8bu3bvZt2+f\n29/U1NTw9ddfM336dEZGRnjttddYt24dP/zwA0VFnsUfjhdXXXUVZ599NkuWLLGfZGJm51ieFrWn\nAbvqlhiIxypPjweedqiTscTluoFwdHUZr8rWyYTrBmLPnnK+/VZOYKDnoGxjVkNKio274G3Ss/DL\nPzK9dD0/Fyxi83n/w/5DnxMdnUlUlG2sytUIwmo1U1q6zo0VPTSkoa+viYGBJgYGWunpaSIt7TQU\nilTCwzPw8gqwl19lMhlVVZ8SGZnsFvxFaDTd1NV95ETScoRNG/t9YmNzUSrd54FhdC5bXUFe3iKP\nzw8Naaiufp/c3Bvo66tBo6nAaOwHTEilXkRExKFUJtjPAXFjWlGxg7Cw04mNzXB5v16qq7+guPhq\n+0ZCajUTMqDCeGgbCnUX2X4BhGnaCNXagm6Qrs/+92aZN5qQWNQhcfQr4ukNUvJDTy0jsTPo9Aug\nTzAhkQpYrSZ0ugF6e7spLFxAZGQqAQHBSCQSYroOMmvXPyhq2EufIp6vz7qDA3kLscq8R7/XNurr\nv/VICnOceZbJvJxkQK3WQ9xxx+kkJTmPZo2FX4P0JXguZ3t7e9vHmVyzYqPRyHPPPcfKlSv5r//6\nL373u99NusTiFOLfJyB7wpw5c0hKSrLPLE8Ufv/732M2m/nTn/6EINg0qL28vOzjK46ZnqOqkmt5\n+lj1l48G1/nByUoAczx2wF4VmGw3Fceb3/btP/HddwqCglKdZC9FHDy4DX9/X5KSDvdxi8o3cenn\ny1GHJPDOpa+wvbOM2NhCwsLS7RmEY/mxr6+dH35YjVKZNSoHaRuVskljZuPjE2D3ZC4oOFw2dpxT\nFgSB6uqPiYnJJibGc5arVneO+i2PHZRLSzeRkDCViIgMD+8ALS0l6HT1dsUvkfCm0dRjMmkwmQZp\nayujqGg2MTHJ+PkFOG1CAKdgXF29G7k8l4SEPEYPikBdH4Fdh9BVfkqxIoHIwa7RDLeNEK0K2Shz\n2oqEgSAlakUcakU86pA4yodUDCoL0IYm0WY1ozP0AWasViMNDRWkp09DoYgfLY3bWgUGg5by8o/J\nz78CmcwWPOJ6ajj/uzXk1e6iw1/B3jkPUFZwqT0Qw5Gzd8eZZy8vHydHI5OphptvziM9Pdnjd3wk\njFXOPhWaAOOBK1cDsLcwAgICEASBkpIS7r77boKDg1mzZg1ZWZ5n2v+DMDkD8vGUrD3hD3/4A3v3\n7mXv3r0TtTQAXnrpJbZv387atWvtQQawGx64utR4Kk+PRxh+PJiMBDDX8rRYDfg13FRMJhOffPIN\n+/YpCAhIcJKsFOGJGBXZW8O1H9xBqKaZj+b/hddMZuLipuLvH4Fa3cLQUAswgiBY8PMLws8vHpXq\nJ4qKrnfSY3ZER8dB+vp+disbO/YkKyo+IDY2n+joXLd1AvT3t9Hc/CWFhTeP2dM/cOAdt9EsOEwW\nq6nZyvBwHzExaUilEoKC4lEqswkIUAC2bLy+fiPFxfMBqT0Yi+vxNgwRqlVhOrSHeJM36VLsGW6o\ntgMfk8H+mXr/EHuGq1bE0SSRUG+VIM9fSDPe9OvUDA11IQgG2toOIZcHExoaNUr8iiMkJA6pVDqm\ncpfRqKek5D0KCq7Ezy+QGFU1c/e8TG7tLrqDY/lnTD7d8/+Ir4swiaOdo2sbYHh4gPLyzeTnX4lM\n5j1KJrOg12uwWNq4887p5OY6G5YcDzxZlE6WcrbrNS+RSNi7dy+33XYbN9xgMzpZt24dTz75JPfd\nd9+kWPMkwOQMyOCZ1JWYmMj999/P73//+2N6j/PPP5/g4GDee++9iVwan3/+Of/93/9NVlYWs2fP\n5oILLrAHXzhyefpkSuA5YrIQwERxD9EW0nUNrj0yMTBPNvLKRx/tZt++UHx9o90kEAGqqj4jODiC\n+HhbRcdqtaLraeSSHY9zXtMutsUW85giB0XcFBISziYiIt3tRq7XD1JZ+Q6FhdePaXV4pLKxGJj3\n73+H+PhphIene2Q9d3c30dHxFQUFN40RlC389NObKBTpmM16TCY1trKzlODgRCIjc1CparBYupky\nxX0WWmYeQdKyH+Ohd5kaGk3EYA/hg92Ea1SEalUEGA772Rq9fOkPiUOtiEOjiKc3OJqf+hoIzLsM\nfVQGaosVtbqLoSEV/f1N9Pc3kZiYM8o7CEUujyYsLImWlr34+ka5yVfaLA/Xk5w8j7AwZ0lRWzB+\nl9zcy0gf7GDeNy+TU7OLvtAEvjz9Jv5lHCa38CpkMm8nQp3ROER5+ccUFV1tn6EWv7fe3jYOHNhA\nREQWgmBGIrEglYJMJgGGueuu+cydO7G8Fk/a846TA6cajpUwx5ZUY2MjK1as4IMPPkCn03HBBRfw\n6KOPcs4550yqjfgviMkbkDdt2sTNN9/MK6+8Yh97eu+99zh48CCRkZFuEpovvPACKSkp5ObmMjw8\nzGuvvcaqVavYtm0bc+bMmbB1WSwW/va3v7FixQokEgl/+9vfuPLKK+2lakeFrZNRnh4vxjKKONl9\nGkcJPJlMdlS975MpNDIREASBzZu/4ccfI/D2VtrL7rZgZysHl5S8jZeXH2FhSqxWEz4+ChSKKVzQ\nU84V2x5DExzHE5kLkRVePaYzk01Pej1FRTfZJTRd0dpayuBgDTk5ng0cbLPOb5OYOJPg4Hj7Oh1v\n0I4lcKvVTE9PCxpNAyMj/dhsKQVUqlYKCy8lOtpZwcw2HqRCX/kpSl0LWT6BhGrbCNW0EqppI3hQ\nZR8PskgkaIKj0CiiUY/+O2Q00OGXiDz/Qgb9Q9EbBunra0an66C29huiojIJCAhEECz4+AQSEKAE\nJPT1tVBUdJnbNeQoUen8PdhK8HFxM1EqE52es8mMbuC8sAwu3v822bVf0RuayK5Zd/LTlDkcKP+I\n3NzLCQgIspPwbNfzIPv3v0Ns7BlYLIOYTDYBEonE9p4dHY2kpc0hOjqNwMBQe9vIYGhk4cIIzjjD\ns276RMDT6KGjr/DJhqOOgGsVUK/X8+c//5k333yTxx9/HF9fX1atWkV1dTVTp07lu++++09jVHvC\n5A3IYCsNP/3003R1dVFUVMTKlSuZPt3m6uIqofnMM8+wevVqOjo6CAgIoKCggCeffHJChce///57\n7r33Xn766Sfkcrl99Ens5Tkq2ZjNZrt358kqT48Hp4oAdqIVgaPNCf+SEASBDz7Yza5dXmi1veh0\nHdgcmSwEBkYREZFFW1sp4eGJKJX5TkEworeWaz+8gzB1EyszL6LhnD+gCE30+Dk2Pel3KS5ePOao\nUnPzfvT6ZrKzL/f4/GEBkrkEBcXaJVkFwYpa3YFW20h3dwWDgyoSEvIJDo4nIiKLoKBo8WBRdhxg\n4MA6CuRRRBvUhGpbCNO0oNC24WUx2j9L4xfMQHga/SEJ9AXH0hsUhzo0gYGwJOqNRlo7t5GbOwud\nTk1t7U/09amJjU3H5lwlQyr1w88vlJaWH8jOvoTQ0CinscAjqWk1NOzBavXy6FtcVvY+SmUx0dHO\npXer1czgV3/nDlUtBU376A1LYtdZd1KWuwCj1cz+/RtJTp6L0WhAp+tmeLgfiUTAbB6mqamS1NTp\nBAVFExISR1BQJN7e3lgsJvbv30Bq6nyCg8OdWht6fQsXXBDEOeecGq1lsVJyKsvZFosFvV7vpiMg\nCALffvstS5cuJTU1lVdffZXk5GT7Onfs2EFpaSkPP/zwSVnXrwyTOyBPJvT19REfH09WVhYrV67k\n4osvZtmyZdxxxx32gDM8PMzw8LB9B38iso8nCyeTADaRFYETFRo5WRAEgX/8Yx2NjUlERhbaldTE\nDZkgCFRVbSYmJpvYWOdsyNuk56Jtj3NayTtsjylmy8KV+Ed61t/VanuoqXmf4uIlHkeVABobf8Bo\n7CYz07NRhNE4zN69q1AokpFITAiCEavVQmBgNJGROSgU8XR2VqPRVLqVwLMPbeWG95cAoJP5oglN\nRhuWQr8iEbUiCbUikf6QBDSKBMrq9uDnJyM2drqb9jbYqgetrd8zNNSLTOZDYeFv8PM7nP3bysob\nSE6eS2hojJO+99BQNw0N3zB16tVuxKkjSVRWVHxEaGgWcXHORKGY9nJO2/I4M3rq6Q5N5KO8K9gR\nmYneqEEQRmhuLic6OhW5PMxuLhEUFIXVaqakZCOZmRcRFBTmJCNqsZgoL3+PpKRzCQ+Pdto86vXt\nzJ7txfnnexZeOdk42eXsI2XFQ0NDPPnkk2zatImnn36aW265ZVLdCychfh0BeTwSmgBfffUVDz/8\nMJWVlSQmJvLYY4+xePHYxurHih9++IFp06Yhk8lYsmQJO3fuJDAwkPvvv5/U1FT+8Ic/cMUVV3DX\nXXcBTCpilSdMFAHsZBLWxis0ciogCALr1++iujoZX99wp4AsBuiKig+IiysgJsZ9nrKw4n0u3foH\nunwCefuSlxhKmeXxc7Tabmprxx5VgsP2j2lp59Pb2+qgS21GEKzI5TF0dh6ksPBqgoOjncqvIvmw\no6OS4eFGJ69kv2Etv3t5Jg1JM3nzohcoKV1Hfv4i/P0Vbt+FyWSiquozFIoQkpLO8HijV6nK6emp\nJj//QqfHbeNW7xEXdyaRkYcrBoIgMDDQQ3X15+TlXYa3t69TP7y1dT8DA55NHw4e3IK/fzxJSQUY\njcOo1V0om7/j8rJ3Oa37EC3+CjZmzGFf0jT87EFXSWnpJlJTz7cLiRxeo5n9+9eTnu5MChOPvaRk\nA/HxZxMWFuPELzAYupg508JFF53tusRTDk9COCdaznbkh7hmxV999RX33nsv+fn5vPTSS8THx0/w\nEf1bYvIH5PFKaDY1NZGXl8fSpUu59dZb2b59u92Ocf58z/Z4xwuz2czatWt59NFH6e3tJSMjg6ef\nftpu++jaF51MLEhHHEnA40g41YS1413nyYAgCKxbt53KymR8fELsRD4xIJtMJkpLNxIXV4xSmeUm\nexnRV8dv37+NsP56Ppj7RypOvwNPDg1qtYqGho8pLj4clEXykFrdiMGgoru7FjCRmjqLiIhsgoPj\nnD7LaBymtHQdOTmXO806O1oCtrbux2TqJCvrsLjF9JK3uXzLI7x642ZqInOctLEd9afF0b6qqo+J\niIh1G7vq7q6mo+OAky60iLKy91Aqp7mVlcVRpKIi2wyyo3Vhb+8h+vraKCy0OV6ZzUbU6i4GB3to\naPgGMKNUJgMWMrUqrqvby9TOSloDw9k6fTEtZ96E4FD6tmXoG0lOnk1YWKzTOmx96I0kJc1xIoWJ\nmWdFxfvExs4gJibNKWseHu5l2jQ9V189f1Jd764bXBj/deS6AXc0vtFqtTz++ONs3ryZf/zjH1x7\n7bWTLhGZxJj8AXm8EprLli1j69atlJWV2R+79tpr0Wq1bNmyZcLWZbFYePXVV/njH/+IIAjcfPPN\n1NTU8O2333LzzTezdOlSYmNj7TfoX4Oy1ngIYMcq9/lLr/NkQOxz6/V6NmzYQ2trnkerQ4vFwoED\n7xAbO42wsFQ7E18cA/EyGVjwxWOcUbaeH7MWsmXhPzD6OGuiW61WGht/prb2E6KispFKrYCFgABb\nz1o0hRDtH8cymzAaDZSUrCM39yoCA50dlMSbdH39d1gsvaSnX2jrgQpWlq69CBB4+eatDBmGqKzc\nQEHB9Ugk3k7a2+J5brM4TCMyMhO1upmengqGhwc9BuPKyo8JCckgPt7ZYct1FAlsUqMaTQ/NzT/T\n1rafuLhcZDIBiURAIpESGBiJWt1OcHASmZlnEd9exrxvXiaz/hu6w1NYlzSNityriE1wJqjZMvR3\niY09A6Uyye250tJNxMfPtGfvjhuR6uqPiYoqchM0MRj6yMzs4pJLbJmxeH6OR+v5VGCs6+hI6zxS\nVvzll19y//33c8YZZ7By5Uqio8dWIDtVaG5u5s9//jM7d+5EpVIRFxfH9ddfz2OPPXZUEtkTTzzB\nmjVr0Gg0nHXWWbz88sukpx/Z3/sEMbkD8vHMI8+ePZtp06bx/PPP2x974403eOihh1Cr1RO2Nq1W\nS2ZmJgsXLuSvf/0rSqXNtaa8vJznnnuODz74gMsuu4wHHniA7Oxs+0n7a1DWOtI6Aaee0bHKfZ6s\ndTqW4U7F9+k6xuXj48PatTtobMzCz0/h9nqb5eI7JCXNJCgo3qMedXbJBq74YhmDwXG8eu7fqJDI\n0OtthDFb8I3Eyyuc/v5yiovH7sN5EilxxGFbxms9zjoLgkBd3R6s1kGSks5FIpGQ2lXK0rcu5cMF\nz/Bj0fVotb1UV2+ioOAG/P2D7GsZGOilt7eBgYEGmpv3ERamJCqqgMjIFLcSMEB19VYCAuKdDCGs\nViv9/Z0cOPA2ERHZSCSW0X8CgmALyoODek4//Up8fYOc2gRtbT9iNgucJw9m3p6XyWjYS3d4Krtm\n3cl7Uit+gckkJua5raOi4kPCw/OJiXG/0dqy96n27N3RBKS29gtCQ6cQG5vF8PAQ/f0q9PoeDIY+\n5s6N4667rgIYUy99sl3vRytnO2bFMpkMf39/e1bc39/Po48+yrZt21i5ciVXXXXVpDm+L774gk2b\nNnHdddeRlpZGRUUFt912GzfddBNPP/30mH+3YsUKVqxYwZtvvklycjJ//OMfKS8vp7q6Gh8fz5yO\nCcDkDsjHo9iVmZnJkiVLWLZsmf2xrVu3snDhQvR6Pb6+vhO2Po1Gg0LhfhMWBIG2tjb+8Y9/8M9/\n/pMzzzyTBx98kJkzZ9pnk38Nylqu63S8OE+mI9N44WmdEy004jrG5XhDslgs/POf22ltzcXX1z3Q\nHWY8zyM4ONZe1tRqu9FqWzAYOokeaOaRH/9FqmmITbN+R9WZ9yF1KSF2dzfS3v6VR+clEVVVW5HL\nFWO6Nx3LrHNNzddIpSYSE8/BarVy7ecPk9X4FSuW7ELvG4xa3UFZ2Vqio3MAA4JgwNfXh9DQeCIi\nEpFKvThw4DOSk88iPDzZ7XusrPwMvd5ISEgkIyOa0YBrxmo10d5eT2bmecTETCEgINR+nJ4kKsV+\neEvLD8Q0lXJ7536ymvbRHZ7Kzll3UZF9PofqduLtHU5KylQP39UnhISkExfn7oFdVWXL3uPisrBa\nrQwOqkeDbjdtbQfw9rZJgQqCBW/vAAICIvH3DyEnZ4Q77rjU6feZjDwITxirnC2TyTy2pQRB4LPP\nPuPBBx9k7ty5vPDCCx7biJMNzz77LK+88gp1dXVjviY2Npbf//73PPTQQwAMDAwQFRXF2rVrueaa\na07W0o56s5pcNdVJBk/BGGxymQkJCTz33HM8/vjjvPLKK9xyyy3Ex8fzwAMPcPHFF+Pt7W2X2xwZ\nGcFgMDA8PDypFKtEiUeZTGYXhXeEmJ380hDX6e3tbVcvEhnvJyo0cix9chvJ7zzWrPmS9vYCfH2D\nXN5FQkrKeezb9yrh4Un4+fkhCCZ8fcMIDk4jIWEa3t7e/LNwMbM/WsKNu1dQ0lfD5t88jdH3cNBU\nKlOwWi2jWa5n56WcnAVUVHxCW9uPHt2bAgKCyM5eREnJW2POOmdkzObgwe10dn6HUjmV16dcyXOH\nPmPaJ0t5NecifHwCSUmZi1r9M6edttAj4ay4+EIOHPgMlaoMs1mPRAKCACpVA76+0aSmFqFQxCOX\nRyKVSrFazRw4sJ5Zs+50U9MaGOiirm4PRUXObk8SiQR5+Uc88uM7TO2pQRWeyrqL/kLplHORevvQ\n3LAHqTTYYzA+ePBzAgOT7MHYpkk/gEbTRW3tDiwWE2azld7eCkwmIz4+gcjlURiNPaSnn01amvN3\nazTqiY6u4/bb3d2exB67eL2LY30jIyOTqn3luE5xAyryNSQSCTqdjqCgICQSCb29vTzyyCPs3buX\nl19+mUsuuWRS3AuOBRqNhrCwsDGfb2xsRKVSce6559ofCw4OZsaMGezbt+9kBuSj4hc9SyIiIpDJ\nZHR1dTk93tXVNWZ/Ijo62uPrg4ODJzQ7PlYoFAqWL1/Ogw8+yNtvv83//M//2OXirr/+ejsjWQzM\nYiCZDNaKjiMNEomEgIAAJBKJvbw1MjIy6YhqjjcUcY3ijW+8QiPjGeOSyWTceut8XnvtS2pqEtFo\n2tHp2rHJY5oJCAinuPi3tLR8S0rKPIKDbQQhRyKQ4BvM1kvfoOTrp3ik5nPiOstYf8VquhzMHqKj\n0xEEK5WV68d0XsrLu5jy8o+Qybw9mk3I5Qqys6+htPRNiotvts86m80mentbUKvrMRr7aWio4tCh\nXaSmzmHbGfdw8bcvUDf3CTrDM5BKpURETOHAgfcoLr7Q7XuRSmUUFy9keFiHn18AUqmMpqaf8fOL\nJTPTeUxJJFWlpJznFox1un4OHdo2KlF5uDWS2FbCWTueJa+9lK6IVNZf9gyV2edjRYLMYqGxcS8j\nI1YyMortVSib7ryG6urP0ekGCQsbQattACx2EZK+vjaio/PIyJiJ1SrY/9bb25vGxj3I5Qluwdhk\nMhAeXsttty086vklVlf8/PzsbSGdTndM1oWnEmKfHGzXlNls5oILLsDX15f58+ezfv16LrroIioq\nKggNDf2FV3vsqKur48UXX3RqabpCpVIhkUiIinJutURFRaFSqU72Eo+ISUnqOpKE5vLly9m6dSul\npaX2x6677jo0Gs2EkrqOF1arlU8//ZRnn32WQ4cOceedd3LHHXfYd2yTRbFKzApdyRuOx/FLEquO\nFccjNOI6WzmePrnJZGL58hfR64uJjS1wyx5tClHryMpaSFCQsweuGJgHB9XoSlazovErlOpGPpv/\nJ34susGJhW2T0CwjL+9aj+uwEaw+cHKacn2+paWCqqr1xMYWjPZqQS6PIzw8E3//CKxWK4cOfU5Y\nWCzJsUXc99o8BoJieG3Resyjc8JqdTsdHZ9QVHThEc/RtrYyBgZGyMk5z20dZWWbiI11V9MSNaEL\nCw9LVCa2HmDeNy8zpXEfTXIle8/7PdXZ5yNIpPb3MztyJwAAIABJREFUq6//hs7OeiIiUjAY+gEL\nEokViURAo+nE3z+RnJxZ9uxcRH3911itPqSmnu4UjKRSKS0t32EwmMjKcu7Pm80jBAVVcc89C49r\nw++p3fJLlrMdWzOOZE2r1crmzZt58cUX+e677wgKCuLuu+/mnnvuITHRs8DNycSjjz7KihUrxnxe\nIpFQXV1NRsZhwl17eztz5sxh3rx5vPrqq2P+7b59+5g1axYdHR1OQXnRokVIpVLWr18/MQfhYdlH\nfcEvHZDHK6HZ1NREfn4+S5cuZcmSJezYscM+9iSOI00GCILAvn37ePbZZ9mxYwc33HAD9957L4mJ\niU4EMMdAciqYmkfqlY51HL8WotqxEGyOthE5FphMJl566QvU6ul4e7uXhMUxpOzsy5DLnTNCsS+q\n0XTTULWRJzStzCp/h9Kcy/howTNOJezW1jIGBw8dQUJTZBAX4uMTRm9vPTpdGxKJEUGwkcV8faPp\n7v6RqVOXIJHInEaZRD328vKPiIhIZra+j8Ubb+CdK16jIvMiezDp7m6gs3MrhYW/8ZjhdXYepK+v\nn7y8BW5rHEtNy5VpndS6n3l7Xia96Tvaw5J4NSqPxuLr0Rn6MRptfWiw0NfXisXiS0bG6faSONgy\nvqamfQwPG8nKmu12fjY17WNkxERKyhn281h8TVvbfrRa95lni8WEj08Z999/EQEBnmVOxwNXXfdT\nvRk3mUwYDAYEQbBbJIrs+Y0bN7Js2TKuuuoq7r77btauXcvrr7+OTqfjnXfeOeVl3L6+Pvr6+o74\nmtTUVHuC0NHRwdy5c5k5cyb/+te/jvh3jY2NpKWlUVJSQkHBYdLhnDlzKC4u5u9///uJH4BnTP6A\nDOOT0ATYvXs3Dz30EFVVVcTHx/PEE09w4403nqzlnRAEQeDQoUM8//zzbNiwgQULFvDggw9SUFBg\nD8yngkns6s4iZoXjkbx0JaqdSh3dY8VYBBsvLy+71OCxbESOBqPRyEsvfYlGcxre3v4enjeMzga7\njyGJ0Gi6OHTofa73DuPanY8zGBjJ+stX0xV9mC3c3HwAg6GRrKwr7I8NDWno6alncLAZQTDQ0lKJ\nUplESsocIiLS3LJ20ZYxN/dGex/RceMneiXHxGTzyNdPk97wFYNyJbrASIYCIxkMCEdllXBxhXvm\nUBWby47wdPSz7mIg1FkcYiw1LbN5mJ9/3kBi4jmktO3nkpL1FPbU0BgUxRuJ0/lIIic9YxqBgVEo\nFPF2G8WuroOoVLXk51/kll2KQTUzc65dBUwcQ2tv349W2096+jlOxw/Q2VlBb28r+fnOmwmr1YxM\nVsb99/8GudwzOe54caq9j8fKisGWVT7wwAMcOnSI1atXM2/ePPsahoaGePPNN7niiismxYjTWGhv\nb2fevHmcdtpprFu37pi+w7FIXW+++SZXX+15AzwB+HUE5P8ECIKASqVi5cqVvPrqqxQVFdnZi2Mx\nsycq4LmO8ojuLCfyfpOdUQqMCjgM28uTwISyx0dGRli1ahuDg6d71KQeHtZRXv42+fmL8PML8fge\narWK+vqPmRN/Njd+eh9RfbV8PO8pfpp6E1KZjOFhHaWlmxkcbCAyMg0w4eXlT2hoBkplJl5efke0\nVBTPq56eZtradjJ16hKPbQdxJjczMo15nWUE6bqQ6/qQ63qQ63oI1PcSqm076nfy3N1b6A9N4ODB\nLfj5xaFQxKLVdqPTdWE0DgBmmpsrOd/fh1uafyC/p472iFR2nX0PP8YVUnVwG1Onulse9vY20Npa\nRmGhO6nKNag6tgdUqnL6+jrJyZnvZsDR3V1DR8dBtxlqq9UClHD//ecTEuL5d5sInGyzCEfCIuC0\nCbdaraxbt47HHnuMG264gb/+9a8TvvE4Fejo6GD27NmkpKTwxhtvOG2yHcvRWVlZrFixgksvvRSA\np59+mhUrVvDGG2+QnJzM448/TmVlJZWVlf+5Y0//qRgcHGTNmjW88MILKBQKHnjgAa644gp7H9PR\nB/VEAt54y9PjxWRS1vIER9KW2CcDJrQfbjAYWLVqBzrdDLy83HuMw8NDlJe/Q37+b8f0Qe7vb6ex\ncStFWVdy3tblnFfzMV9FF/J/uZdi8g9GoUjHYNAjk+lJT7/I43vY5qHfJjV1NqGhSfbSuDjL6+Xl\nRX9/21FsGW1WhklJMwgP9yCQIAj85W+x7o874Na5d1E6oMHbO4iwsBgCAhSj3sXx+PsHY9rxDHd0\nVpPZXkKnMoOdZy+lOmMuQ3otVVWfUVh4lZPlIYBa3UJDw/ejI1HO6x4rqAqCQEdHBSpVLTk5C+xi\nLaLsZX9/Iw0NP5KcPJPBwV50um4sFgMSiQWZbID/+78HiIw8dSM+E+19bLVaMRgMmM1mN8Jic3Mz\n9913H62traxZs4ZZs2ZNqirXeLB27VqWLFni9Jg4HeI4NSKTyfjXv/7FTTfdZH/sqaeeYvXq1Wg0\nGs4++2xWrVr1ny0M8p8Oo9HIpk2bePbZZ9FoNNxzzz0sXrzYvlM9Xs/jEy1PjxeTjQA2lvb2yeqH\n6/V6XnxxJ8PDZyCTue+uPc0G2+QxW1GrGzAYutHr++jurqOw8DLmq1u5dud/MxgQwbqFL9IRlYdM\nJqOp6TskEj1pae4exWBjUZeUvEV6+nwCApT2Xrrjb+9oyziWV7JjYHd+zkp/fyOzPn+EG1u+A+Dm\nuXeiDYnDzy+E0NBIenrqkUqVpKc7ewInNf3AjM//m8L+FjqVmew8+26qM+YiSKQMDw9RVvbhaD/Z\nuVer1XZQW7uHqVOdR6IA+voaaGkpobDwMpcM10pXVw2trWVkZ89ncLCfoaH/x955xzdZrv//naQz\n6YTSBW1pKaO0dDBlCAKKoOBhKIgcD+OoyC6KchwHcXz1pzIscAREUHAcRUBQ0cNeKg5GF7RAWwot\n3btJmqZJnt8fMbFpUqClC3zer1f/eZInuTKa67nv67o+nwLU6iL0+mrU6lJKSwsIDOyGi4s3Li6+\neHh0xNFRgVabwNy5g/H1tRY7aQlu1SzCtCquqqpCIpGYa8VgmqffwvLly3niiSd49dVXm6Q2LnLT\niAn5dsBgMHDgwAHeffddzp49y5NPPsns2bPx9vZusDSnTqdDo9G0ikdzayhr1X1+0/b89bS3m6M8\noFKpWLPmCDU1A5HJLDu2DQYDeXnpnD27BT+/XshkxgYlhcLXQpvatK0cFTUdr7IrTP36KToUXeLb\n4cv4qddUJFIply//iL29gS5drHXbjd3jVZw9+wldu47B07OjzRVWTk4qxcWn6x2rMib2z+jYsQ8a\nTSHl5Zf+cJPSo1B44uXVCU9P62a19PTTaDTOhIYOMa9Eu2SdZsTx9wnJOsXV9iEcv2chqX8kYviz\nuSsiwuhNXJvKykJSU/cTE/OI1Ra2ybIxOnriH/PFhajVhahURahUxZSUXCMoqDv29s7I5V64ufnh\n7u6HUlnKhQuHiYj4GzKZnVlVTSKRoNUmMXv2XXTq5Edrc7NNirW53qo4PT2defPmUVxczObNmxkw\nYECbWRW/+eab7N27l/j4eBwdHSkpKbnhOTNnzjQ3+poYPXp0m5i0uQ5iQr6dEASB06dPs3LlSvbu\n3cvkyZNZsGABoaGhN5TmBJrNkakxr6OlG8Bq/xg1RHu7qcoDYCxFrFt3nNLS7hQVZaJSZSEIGvOc\nspNTAHl5J+nde4bNmjNAQUEGOTkniIx8HAeDljGHXuOu0x+RGDaOr+77f6jt5KSlHcPJSUZIyAhz\nnLVlHwVBT1LS5/Tsad3lbSI7+xxlZclmW0atVkNhYSalpWno9eUIQjVZWSmEhUXSuXO4lTViXa5e\nTUaplBIWNgK9TkfnzN+47+QHhGafId3Nl719Z5I/YKrFaJdOp+Hs2e306DEOV1fLWVeVqpRz5/YS\nHf0wdnb2lJcXUlFRiEpViFJZQF5eKoGBPZFIwMHBBSen9igUPgiCgStXTtKnzxRkMsvvv1JZRErK\nPmJiHkEms7dwxdJqU5g5M5ru3UPaTKKCm1MBq7sjVndVvH79et58803mzZvHv//9b5ycbH/3WotX\nX30VDw8PsrKy2LJly00n5IKCAj7++GNMOczR0bFZa/5NgJiQb0cEQeDy5cusXr2abdu2MXz4cGJj\nY+nXr585MdedbTR9js3tyNRQmrsBzNaPUWNW5E01H15SUsLixe/j4jIMb+8wq5VdZWUxqalfWQh2\n1CUv7xIFBb8QETENqVRKeMp3TPz+GVTy9nw+fiPZHXqSkrIPJydnAgMHm3dRao8yGUevttGz50Qr\nYwyDwUBxcTYXLuxDqbyKn19XJBIBd/cAOnQIQy43KtQZZ6q3EhYWjYtL/eIQOTkXKS2tIrzn/QRf\n+Z2RJ94nOOs02T5hfBQQTUrog/h37GFhr2i0PPyCrl1H4+7uhVarMSddpTKXzMxf6dQpDHt7ewQB\nnJ09kcu9cHBQkJn56x/+yQ7m/wW9Xo9KVUx6+lHzbbVRqUrrrVGrVOeZPDmY4GBjl3hbEO2xha3v\nqGl6QK/XWzVsXrhwgblz51JVVcXmzZvp3bt3m/ldsMXWrVtZvHjxTSfk8vJydu3a1QKRNRliQr7d\nKSwsZP369axbt47u3buzaNEiRo8ejVQqJT4+Hq1WS/fu3c33b2sJ2URzNIA1dfc4NE5opC7l5eWs\nXfsjgjDIqu5pvN3ogxwdPcMqcZjIyUmlqOg0kZHGbeV2pZk8+vVT+BRe4Pt7X+WXmH+QfO575HI3\nOnbsb9GwZIrTaDbxGSEh91NRUUBl5RWgGpOhRYcO4ZSV5aHRXKVHD9vNYsbxra307NkfhcK6KS0/\nP4O83EL+5ubDvT9tIDjrDNd8wzh891y+rlEhVwQQEBDxR8Isp6ysgKqqUtLSDtCuXSCuru6AAanU\nDicnT5ycPLl69RTR0ZOttrBrJ1V7e0dz05oxzkpSUn4gOvoRq4RrrFHvsnCXMlFVdZHJk4OJjOxu\nM+GZvqNt6f/JJGxjKmGBsR/FpFao0+mIi4tj5cqVPPPMM/zrX/9qzs7hJqOhCXnPnj3Y29vj6enJ\niBEjeOONN64rmdkGEBPynYJarebjjz9m9erVSKVSIiIi2LNnD3/729/46KOPkEgkFqIDt6rx3Fw0\nRQNYc3ePQ+NqeLUpKSll3bqTSKWDkEisP4OysgLS03db+CDXpe62skxXzejDrzPo1GYSuz3Al/e9\nRfzln2jXzh9f35g/tq2rKS6+SmXlZQwGFTpdFdeupRIV9TAdO0bbvADIyPgFnS6Xbt1G24xDo1GT\nmLiVyMiBODn9ORpTVHiFdvEneCo3ieDss2T79uS7Po/xs2cnMi7/THV1Db6+IQiCUbrSzs4RB4d2\n5OTEExo6Gh+fzhY+0tfbwtZq1SQk7KBXr0k4Osqpqakxl210Og1JSbttNoWZatTh4X9DobDczlSr\nMxg/3pd+/SxdomyVhtqa7GVta1RBEFiyZAn79u1j8uTJHD9+HAcHBz788EOz3sHtQEMS8vbt25HL\n5QQHB5Oens4LL7yAq6srJ0+ebMuvV0zIdxKCIPD555+zYMECKisrGTJkCCNGjOCJJ54w107aijTn\njWhMA9jNGEE0R5y2ang3M8tcXFzCunW/IJPZTsqlpblkZOwlJmZGvUk5KyuBysqL9Oz5iHmUqce5\nb5iyfylqZ0/eH/4au6/+hrOzAnd3Y73YxSUQL68wFApPZDIZVVWVnDv3BdHR9TtApaf/hCCUEho6\n0ubtVVVKkpK20bVrFAg1eCUcYHzCPnqrS7jk7s9nXYdzyrsHjk6elJZewcWlE+Hh91h1Pycn78LH\npw/t2wdYCHhIJAIJCV+Zt7BrY0yqXxEePh5HR4X5czBqxFfX2xRm3HL/4g8Z0z+lazUaFWr1VR5+\nuBODB8fU8+n92Quh1WrbxMx9XcnX2n0iCQkJvPnmm+zfvx+9Xs9jjz3G4sWLiYmp//U1J42RvmxI\nQq6LSX3r0KFDDB8+vFExtwBiQr5T0Gq1PPjggxw8eJAJEyawatUqMjMzeffdd/n555+ZMWMGc+fO\nxd/fv1WlORvKzTaANcQIormoK314M7XGgoIi3n//d+zsBtl830tKssnM3Ed0dP0+yFeunEGtvoyP\nz2AKCtJQq7Pxr85n6ZlPCa7MY9fgxWxz6YSffxg+Pr0sDS3+SHgaTSWpqV9dt6EsLe0YUqmakJB7\nbN6uqVLh9ttmHjm3m55lmVzxCePI0LlcCh1qbtbKzPwFjcZaExqMyl3t24fh52cssZguMGpqakhI\n+IKgoBF4eflbfEdNSbVbtwdwdnazkL3U66ttrqh1uhrKyws4e/a/eHiEYm8vwWgBaVyp63Qqpkzp\nz6OPjqv3c6uLrc++JWfua3//a5dnBEEgISGBp59+GldXV959911+/PFH1q1bR1ZWFvPnz2ft2rUt\nEmNtGip9CbeWkAG8vb35v//7P5588slGnd8CiAn5Rvztb38jPj6egoICPD09uffee3n77bfx82v9\n0Ye6vPzyywwaNIgHHnjAfEwQBJKTk1mxYgW7du1i/PjxLFq0iLCwsBaV5mwKbDWA2dvbm+NvqBFE\nc9HQbff8/ALWrz+Lnd1dNt/zoqKrXL16kOjoGeakrNVWkZ+fQVlZOjU1FRQVXcVgqCIycgq+vj2Q\nSu0strCTuj/Ia4F34xE0AG9vo1RlXXEQlaqUtLTd9O49w6bcJ8CFC4dwdDTQufOQPw8KAqGXf2TE\niTiCrp0h1c2fn0ctJb3rPRZd09nZp6moKKdnT+tV9vnz3+HqGkxAQLjVe5mQ8CWdOg3Bw8PXLOZg\n3MqGs2e/IDj4XhQKT4umNaWylFOnPqFdux5IJHoEoRowAAYMBgPXrqUREnI3AQFhyOXtzO+rWp3L\nkCEwZsxgm6//RtzqnHBDud6qWKPR8Pbbb7Nx40ZeeeUVFi5caL5A0Ol07N69G09PTwubwbbMrSTk\n7OxsgoKC2LNnD2PHjm2G6JoEMSHfiLi4OAYOHIifnx/Xrl3j2WefRSKR8OOPP7Z2aA1CEASys7OJ\ni4tj8+bNDBw4kNjYWAYNGtTs0pxNTd0GMDBuvTs7O7epWBsiNJKbm8/69Qk4OFjPfxoMei5e/JnL\nl/fh6xuOVKpDJrPD1TUID49uODq6YGdnx9WrpzAYiq3Uunqm7mXi3mdQO3uyPGwi2l7j8fL6cyvQ\nOApl/PzLywtIS9tDTMxMHB1tv58pKftQKBwIDBhA6OUTjDixhqBrZ8j0jeADv57UjHgWB0fLhJ6T\nk0hRUQ6RkdYGExcuHMDBwYvgYMvtU6OG9g78/fvj7d3ZHKtxNarh9OltuLh0xc5Ogk5XgZ2dFNCj\n1+vIykolOHggvr6huLv7mn2fTe5SnToNxssrwOL5qqoK6Nevmr/9zdIesjE0t+wlGP8P1Gq1lRGK\nIAicOnWKOXPm4O3tzaZNm+jatWuTPGdrkJWVRUlJCXv27GHlypUcP34cgNDQUBQKYxNebelLlUrF\nq6++yqRJk/D19SUtLY2lS5eiUqlITExs9Qv26yAm5Iby7bffMmHCBKqrq9tc3fVmKSsrY+PGjaxZ\ns4aOHTsSGxvL2LFjzVfWbV2LunbTVu2RrtZWAKuPm73Yyc7OY+PGRKqrQygsNDozgRaTSIhM5k55\n+QV69ZpmnpE1GSSYPpu0tJ+ASkJDLRuwPMuu8ujXs/EtOM/Grg+QNHQJ7b26WMVqHHnKIT39GyIj\n/4G9vaNFY9UfLwiHI+8wLW0voUWXyPSN4L/dR3HE3p5ekROsGqcKCi6Sm3vRpulDWtoRJBIFXbr0\nt4rl7NkvsLPzxtnZFbW6CGMHuAGDQc/ly0n4+YXj7R2Mm5s/Li5e5h/axMTtBAQMsUq4xhr11zbd\npTSaYiIjy3n44ZFNbtpyoznhxjxm7VWxXC43/xap1WreeOMNtm7dyhtvvMGcOXPazP9tY5k5cybb\ntm2zOn7kyBGGDjWWPmpLX2o0GsaPH098fDxlZWX4+/tz//3389prr9Ghg+25+zaCmJAbQklJCXPn\nziU3N5djx461dji3jEaj4bPPPmPlypXU1NSwYMECpk2bhrOzcXXTWGnO5qI+yU/gttp2v57QyLlz\nF3j99R14e99Hhw6hFs1cRv3lVPLyfiUsbLL5s6j7GtPSjiOVagkJsbQblem13H/4DQb/vokfvSP4\neuxqnHwtO4hNFBdnk57+Pb16GR2gpFIpdjIZXdMPM+zY23QpPEeCc3u2Bvcnvcu9tGsfjK9viNV3\no7AwnaysRKKjx1vdlpFxgvLyctq1C0atLrKwUczOTsXd3R9//+64uPiaV7l6vZ74+K/w9o7Gzy8U\nmUxmvjjR6XSkpOzB378fvr5drN6XujVqExpNKT16FPHYY6Oa9ftS39hUQy4ga4/y1V0Vnzx5krlz\n5xIUFMQHH3xAcHBwc70UkeZBTMg3w7/+9S/WrVuHWq1m4MCBfPfdd3h61i+EcLthMBj47rvvWLly\nJampqTz11FM89dRTtG/f3nx7XWnOlu7Mvpmmrdtp2/163e4ZGdl89NEFHB37muM2bYEaDAYKCi5R\nVpZMZOTUeh//woVDODhICQ627igNu/ADE7+LpVwq45OxcZR3tZbZBGPtOj39Ozw9Iulx+Qempe+j\nR/k1LrQL4uCQGWSHjSD53GG8vXvg6xtudX5paTYXLhwhMHAwanUJGk0xBoMGQTD5FksICuqJXN4B\nd3d/s43ixYv7cHT0ISgo2vxYps/23Llv8PTsTmBguNVnmpT0Ne7u3fH2Nq5+TXPXUqmU1NS9yOVB\nBAZaXoBoNOWEhOQwffqYFpWQbejYVG399bqjfEqlkuXLl/PFF1/wzjvvMGvWrDa1Km6M9CXAsmXL\n+PDDDykrK2Pw4MGsX7++uc0dWpu/ZkJuaMt9SUkJJSUlXLlyhVdffRU3Nze+++67lgq3xTBdZa9Y\nsYJDhw4xbdo05s+fT1BQkM3O7JZYidZnBHEj2vq2u4n6ut0vX77Gtm0ZODr2Nq/+anv1Xrt2jtLS\nP2eQbZGaegBnZ0eCgqw7mj3Kspjy9VP45SWxe/AzxN+9GJ1eR2FhJiUll9DpyhAMNUReO8fjGf+j\np7KQzI4R7B/4Dy4ExCCppfGclLQfZ2cPBEGPRlOOVCpBra6gsLCA4OBeyOVeuLr64u7uj4ODnOzs\neMrLCwkPt74QqLuFXbvx7MKF/+Hm1pmgIOvZ2dpNYXW7yDMyjuDk5E1wsKUSVXW1ko4dM3niiQdb\npfxkS1HPNMte+3tae1Vce5RPEASOHTvGvHnzCA8PZ/369QQEBFznGVuHxkhfvv3227z99tts27aN\nzp078/LLL5OUlERKSsptIWLSSP6aCbkxLfcmrl27RkBAACdPnmTAgAHNFWKrIggCFy5cYNWqVXzx\nxReMGTOG2NhYs4iArYaVhohi3GwMN2MEcSPaugWkCVtCI5cv5/Dpp1dxdIyy8uoFyxnk+jh//gdc\nXDwIDBxodZuqNJeRB/7NuLS9nOjQg7XRj2Ln1R0f7whicuMZcWIFnXITuOTTi4+DemEYPhtprS1i\nU8ezVCqloqIIBwcnXFw8UKtLSUn5iZiYKVZCI/n558nPv0xkpLXy1+XLJ6ipkdKt22CL98RgMJCR\ncRQnpw6EhPSxOs/Witp0flraUXQ6e4KD+6LT1aBWl6JUGlfrvXo5sWTJ1DbRc2BrbMo0QWBrVVxR\nUcHLL7/M7t27Wb16NdOmTWtzF5t1aUiXtL+/P8899xyLFy8GjK/Xx8eHrVu3Mnny5OYOtbX4aybk\nW+Hq1at07tyZo0ePmhsK7lQEQSAvL49169axYcMGoqOjiY2NZfjw4ebO7LoNKyYFsFtJzI01grjR\nY7YlC8j6qHshkpJyma+/LsHVtY/N9/TKlTNUVV2mR49J9T7muXN7USjcsbNrT1lZGnq9EkGowcnJ\njXbtwhhUmMLDexejlbfnxKCF9E34nE65CWR26s+hu5eQ0XkIuXkXKSo6TK9ef1o72ppnrq5WkZJy\nlOjoR60kKo3exOeJjHzI6vO8cuVX1Go1YWHDzY9r+k5dvfozEomc0FDrC+DaK2qDQU95eRGVlcWo\n1YVcu5aMXq/C17cLBoMeQQAnJ08cHT0IClLx3HNTzf0SbQXT97S6utp8rHbjliAIHDhwgIULF9Kv\nXz/WrVvXJkcwbXGzCdkk4hEfH09kZKT5+D333ENMTAyrV69u7lBbCzEhX4/ffvuN33//nSFDhuDp\n6UlaWhrLli2jsLCQ5OTkttw+3+RUVlby4YcfEhcXh7u7O7GxsUycONHCNeZWpTmbygjiRs/RlhvA\nTF61giDg4ODwx5jOBXbtKkOhiLIZ5+XLv1FTk0e3bg8Bxh/18vJ8CgsvoVbnIJHoyMnJoEOHTkRE\nTMLJydrxRlF4iYlfTqVHxTUuBwzg8N1LyAgabDFHfO1aMqWlPxERYdksZtpWVirLOHfuEOHhk3Bx\ncbdoOCsuzuTKldNER0+w+k7U3sI2bU+bPpvs7N+oqRHo1m0IBoPhDyvFAqqqisnKOktNjRI/v1CM\nM8bg5OSOs3N7VKpCDAY7q5nnmppqHB0TmDVruLkpsC0p1QmCQFVVFTU1NeaL3nXr1vHVV18xa9Ys\nEhISOHToEGvWrGHy5Mlt4jt7s9xsQj558iRDhgwhJycHH58/faenTJmCVCrlv//9b3OH2lqICfl6\nJCcns2jRIhITE1GpVPj5+TFmzBheeuml2+aqtKmpqalh+/btrFixgtLSUubNm8f06dNxcTFKLjZW\nmrM5jCCuR1trALveroDBYOC335LZubMYJ6dwq1EnjUZFfPwulMordOgQ8oedYzvatetJu3adkUql\nf4z87MbbOxRf30ibMWhVZeT9vgHvAXNwcrZtU5eVFU9l5e/07DnC8lythvj4vYSFTcTRUW52l5LJ\nZFRW5pGe/hO9ez9sZaaRl3eOwsJMIiIeQK/MwcivAAAgAElEQVTXo1SWo1SWUFVVRm5uAkplIZ06\n9QAMCIIeBwcFzs5eVFYWIpPJreIAuHYtgbKyPMLD77c4rtfXYG+fyMKFD+Ds7NyiAh43Q+2LsdoW\niSdPnuStt97iyJEj2NvbM2fOHJ577jk6duzYKnFC80pfign5Onf4KydkkfoxGAwcOHCAFStWcObM\nGZ544gmefvppvL29ryvNWXeLuCWMIG5EU3oeN5T6RrlsJYVTp1L46qtilEoFxcVpaLVFyGR6ZDJ7\nPDy6oFYrkUqr6drVWnwDTKIYO/HzC8PHx/a4k1pdSXLy59fVtb5y5TRVVQn06GEU0DDKV35Ljx4T\nzBKVpjpzWVkeaWlHiIl5BAcHRwwGHeXlRSiVReTlXSA/P5mgoCgMhhr0egMODo7I5R2oqirHYJAQ\nFWVda75eU5ixRp1BRMQDdXSy9Ugk8SxceD9ubn+6Ut2qSUhTUPt/oO7FWFFREc8//zzHjx/nlVde\nISUlhS1btlBVVcW8efN47733WiTGujSn9KW4ZX2dO4gJWeR6CILAmTNnWLFiBXv37mXy5MksWLCA\n0NDQ60pzGl14dC1qBHEj6q7um7sBrO4o180ojX3//TG2bTtFx473IZf7AlhYK6alnUAqraZLF9uj\nTEYpyu107BhtltCsi0pV/ofZxONmhau6XL78G1ptCl273sXZs98QGjoOd3cvDAYdlZWFlJfnUF5+\nlUuXfiUwMAapVIIg6JFIpCgUXuh0eioqComJMda+a6/6CwpSyctLs0qqYEy4BQWX6dXLOlEXFaWR\nlZVMVJRljVoQDBgM8cyfP5J27WyPKzaHgMeNqG2GAlhcjAmCwO7du3nmmWcYM2YMq1atMlsHVlRU\n8NFHH+Ho6MjTTz/dLLE1B03R1LVt2zYeeaT+JsbbHDEhizQNgiBw+fJlVq9ezbZt2xg+fDixsbH0\n69fP/ANTe4vYRFM1bTUlzd0Adj394Zvh55+T2LtXg1ze3aLj2ZSY09OPY28PISHW27mm15eQ8AUB\nAX0tJDRrU1lZQmrqDmJi/lGv2URi4m7S0nbj4xP8h28xCIIEJydXZDIHcnPT6Nt3Js7OCovxpbKy\nHDIzTxIZOR6JRGoe5ZJIJPUmVbh+U1hp6VUyMn4lJmZSnWQsoNPFM3fuMLy9LV2i6qNuZ35z1Jmv\nV6LIz8/nmWee4fTp02zYsIExY8bcVrXiujRU+hLgnXfe4e233+bjjz+mc+fO/Pvf/+bcuXOcO3dO\nHHu6ScSELAIYt9nef/99/vOf/9CtWzcWLlzI6NGjqa6uZvXq1Tz++ONmO8i2PiPc1A1g9SktNZQf\nf0zghx90yOVdzbHqdDrzxU56+jHkckeCg++xeb7BYODs2c/p3HkQ7duH2LxPZWUxFy7sJDp6BgAF\nBecpLU1Cp6sA9Dg6KggM7Ilcbrm1bfQmPkp4+GQry8OyslxSUw/Qq9dEZDLjRYgpIZeVZdlMqmBs\nCsvM/N3mbeXlOVy6dMKqRm288Elg7tzB+Pn50FCaY+6+7qq4dq3YYDCwfft2li5dyoQJE3j33XfN\n/ye3Mw2VvjSxfPlyPvjgA8rKyrj77rv5z3/+IwqDiAlZpLGo1Wq2bt3K6tWrzavN3Nxctm7dykMP\nPWSxEoXWl+asj6ZoAGuOWvnRo2c4cECCXP6nJnXtUaQLF/bj4uJG5853I5FIbJpWnD37GSEhw/D0\nDLK4Takso6DgEgUF8eTnxxMY2BUPD198fAKtkmxtdDotZ87sp2fPybi4/JlMBEGgsrKI5OS99Oo1\nEblcgUQiMcdaUZFHZubP9Okz2ZyoTZSVZZOWZrsprLKykPPnfyAkZDgqVRlVVSVUV5chlQpIJBW8\n+eZMQkIsX1tDaSqjiNqr4rpqczk5OcTGxnL+/Hk++OADRo5sWk1tkdsCMSGLNC+5ubksXryYL7/8\nkoCAANq3b8/DDz/MrFmzzFf/bUGa82ZpaANY7RVR7e7ZpvqxPXToFIcP2yOXW+oWm7aIk5O/w8XF\nk06dBphrtLWfW6er4cyZT/Hy6kl1dRnV1cVIJFrs7Bxp374b3t7dKC8vIj19J717j7TQ1rZ+b7TE\nxx+ga9fxuLv/uT1sTMbFJCd/S2TkJBQKV4sYKioKOH9+H716TUAms7OoJ1dU5HP+/D66dBmBSlVq\nkXA1mkpyczMJCuqOXN4eudwLd3c/FAovqqtTmT49nK5dm1bPuTEKcKbvQFVVlXmcr/aq+NNPP+XF\nF19k2rRpvPnmm7i61n/B09KUlpYyf/58vvvuO6RSKZMmTSIuLs681WyLmTNnsnXrVotjo0eP5vvv\nv2/ucG93xIR8O3HlyhVef/11Dh8+TF5eHh07dmTatGm89NJLbXIm+syZMwwfPhxHR0dWrlzJY489\nxokTJ1ixYgU//fQT06dPZ968efj7+9fbmd3aoyj1cTMNYHq9Ho1GY3NF1JTs3/8bx445I5dbrwQF\nQSAp6Vvc3b3w8TFKR9bUaCgqyqCi4jKCUIXBoCMv7wpRUaPx9+9l8zlKSnK4fPlrYmLus/kaDAYd\nZ8/uIyRkHJ6ePubnNloEVpCcvJuoqIdRKNwszlOpSklK2kNIyAjU6nLU6kLU6lIkEgNarZr8/CsE\nBfVAobBMuFqtksTEPURGTrJyl6qqSmXq1K6Ehzef5eDNGkUYZ6fVNhv3rl69yoIFC7hy5QqbNm1i\n6NChbe57PmbMGPLz8/nggw/QarXMmDGD/v378+mnn9Z7zsyZMykoKODjjz82O7E5OjreEdvvzYyY\nkG8n9u3bx/bt23nsscfo0qULycnJPPHEE/zjH//gnXfeae3wrNBqtbzxxhvExsaaO0TB+EOdnJzM\nypUr2blzJ+PHj2fRokWEhYXZ7MxujVGUm6U+Q3pTx27dFVFz8f33J/npJ1fk8kCr+EpLczl16iMc\nHRW4uXkikchwd++Kn184Tk4uSCSSP0aXttKjx/24utq2qCsqyuLq1W+Jjr63zkiRgfj4fXTufD/t\n2nU0HzPuJqhJSPiKwMCh6PVaNJoSqqsrkEj0aLVqsrPTCArqjkLhZU64cnl7NJoKEhJ2ExExAUdH\nZ3MXuUQiQatVEx+/g4iICVbb51VV6Uya1ImYmLAmfodtU1+dWSaTmXdGbK2Kt2zZwiuvvMKsWbN4\n7bXXrrvibC1SU1Pp2bMnp0+fJibG6FW9b98+HnzwQbKzs/H19bV53syZMykvL2fXrl0tGe6dgJiQ\nb3dWrFjBhg0bSEtLa+1QGowgCGRnZxMXF8fmzZsZOHAgixYtYvDgwc0qzdkc1N2ahpbvIP/22584\ncUJBRUUVZWWXMBjUCEINcrk3HTqEk5n5K35+3fHx6WUheWlKdsYt522Ehz+IQtHO5nMUFFwhJ2cv\nkZH3mgVHzp79H25uYTg42KFWF1NVVYYgGN+Tq1fPExQUjqurt8UKV6fTcObMV0RGTrRKqsYkvoOI\nCKPISG3dbEGoISnpa3r2/JtFjRqgquoyY8d6cdddUc3zBl+H+qYI6q6KMzIymDdvHoWFhWzevJm7\n7rqrzX2XTXz00UcsWbLEYt5Yr9fj5OTEjh07zB3RdZk5cyZ79uzB3t4eT09PRowYwRtvvGFxUS5i\nkxt+EdqW0K+IFWVlZbftF10ikRAQEMCKFSt4+eWX2bhxI7NmzaJjx44sWrSIcePGYWdnh52dnTkx\nazQaqqur22Rndm1NZzDWG1UqVYspgD344ECuXv2S337T0737vVbCHu7unUhM3IlEIsXHJwKZTGZO\ndqZmpV69HiMp6TPCwx9CofCweg5v7yBgDAkJR5HJZFy9eg5Pz1Dc3CRIpW54ewcgl7sjk0lITNzB\n8OELzFvYJnQ6DWfPfkXPnuOskrFOpyE+/it69hyPs7MxflNNubq6ivj4rwgNHW1WAzO91yrVVUaP\n9miVZAyYnbhMY2gmPvzwQ65evcqcOXP43//+x5tvvsmcOXP497//3eZ0tOuSl5eHt7e3xTGZTEa7\ndu3Iy8ur97wxY8YwadIkgoODSU9P54UXXuCBBx7g5MmTbfbi43ZBXCG3YdLS0ujbty+rVq1i1qxZ\nrR1Ok6DRaPj8889ZsWIFWq2WhQsXMm3aNPOPV2OlOZuT2pKHtQVOWkMBTBAEvv76BGfP+uHkZD3q\nY0sYxNQAptfr/9iCryIl5b9ERk7EuR4JTYDz53fi5hZAx45h5pEr0yx0QsJ2goOH066df53n13Hm\nzOd07fqAReMXmJrCvrB5m7FG/V9CQkbh6tre4uJHq81n+HAHRo2ydrRqKWqLvJikXwVB4L333mPF\nihVUVlbi6urKqlWrmDlzZqsmppuVvdy5cyfbtm0jJSXF4nYfHx9ee+01Zs+efVPPZ1LeOnToEMOH\nW/tzi5i54Zei7Sw/7mBeeOEFpFJpvX8ymYyLFy9anHPt2jXGjBnDlClT7phkDEa1olmzZpGcnMyq\nVavYuXMnYWFhvPXWWxQXF5uFNNzc3HB0dESn06FUKlGpVOh0uhaN1WAwoFKpUKvVyGQyXF1dLeaK\n7ezskMvluLq6Ym9vT3V1NZWVleYf7uZAIpEwYcLdREZeQ6MpsLpdKpUSFTWZa9fOUFR00XyOTCYz\nXzA4OSno3n0KZ89+hVJZhq2L8tTUPSgUfvj79zCPA5l2M5KTdxEQMMRGMjZw9uyXdOkyymbCTUj4\nki5d7rdxm4H4+K8IDh6Jp6ePuU4vk0mpqLhKTEwVAwdGmOu4LYnJr1upVCIIAgqFwrxFbdLzdnR0\nZMKECXTo0IF//vOfDBw4kG+++aZF46zNkiVLSE1NrfcvJSWFkJAQfH19KSiw/A7p9XpKSkrqrR/b\nIjg4GC8vr9uyrNbWEFfILUBDdWFzcnIYPnw4gwYN4qOPPmqJEFsNQRD45ZdfWLFiBQcPHmTatGnM\nnz+foKCg60pzNmdndmNdqepTADM1KzV1jF98cYRz54JwdrZu0rqRMIggCFRUlHDu3OdEREzA2dnN\nvAtx6dL32Nu7EBAQZd7qNo0pJSXtwssr6g8HJsvni4//ksDAu/Hy6mTzts6dh1kkca1WQ0VFMUlJ\nO3F29sbZWYFEogf0gIBGU87w4aHMm/d3ampqWlyL3NhBrrYSeTHaZqaYZS03b95MZGQkgiDw/fff\ns2rVKgYNGsQbb7zRrPHdKqmpqYSHh3Pq1ClzU9f+/ft54IEHrtvUVZfs7GyCgoLYs2cPY8eObc6Q\nb3fEpq7bjWvXrjFixAj69evHJ5988pepyQiCwIULF1i1ahVffPEFo0ePJjY2lqioKJvSnM3VmW1r\na7Khj99SFxGCIPDZZ4e4cCEEJydr2cjrCYOYUCpL+e23DbRv749Op0QQpHh5dcfPr5t5Ztw023zu\n3Dd4eHSjY8ewOs9jIDFxB/7+/fH27mw+ptGoqKgo5ty5r3Fy6oCLiysSiQDoEQQDEomMvLw0/P37\nERQUjkLhVcvhqoSePUt49NH7zO9ZS5Uz6kqfmryKwThZsGrVKtasWcPSpUtZsmSJzQ57vV7fJufs\n6/LAAw9QUFDA+vXr0Wq1zJo1i/79+/PJJ5+Y71Nb9lKlUvHqq68yadIkfH19SUtLY+nSpahUKhIT\nE9vkeGYbQkzItxM5OTkMGzaM4OBgPv74Y4t/6No2ZXcygiCQn5/P2rVr2bBhA9HR0SxatIgRI0ZY\nNFPVFW9orERl7ee9Ff3p+h6zuS0gBUFg27aDpKV1xcnJuvlPp6shPv5zQkNH4OERgE5XQ35+OqWl\nFzAYSjEY1EilUsrKcunffwa1+zxra1Cnpv4PZ+eOBAUZ3XmM2/llf2hi70Umk+Ph4Y1EYsBkpWhn\n50ROzkU6dbqLoKAI5HLLJrLz57/FzS2ETp3CLY5XV5cTGprL44/b1nhuDsnLP98v29KngiCQmJjI\n008/jUKhYNOmTYSHh9/4Ads4ZWVlzJ8/n2+//RapVMrDDz9MXFwccvmfs9+1ZS81Gg3jx48nPj6e\nsrIy/P39uf/++3nttdfo0MH2OJ2IGTEh305s3brVql4sCIJZgvCvRmVlJZs3byYuLg43NzdiY2OZ\nOHGi+Sq8rklAY6U5m0p/+kbP0VwNYAaDga1bD5KR0R0nJ0u3I7W6ktzcFBITP8fPrzNyuQPu7h3w\n8emKk5OxA1oQBEpLC7lw4QiRkY/i4OBETU01FRX5KJX5ZGX9Tk2NgK9vMGBKuAIODgry89Px8Ymh\nS5feVs5RxhV1V6sVNfBHgvc3J3gT1dWVBAZeZdasB2/43jTlBY+pVqzVaq2kT6urq3n77bfZsGED\ny5YtY+HChU1mRCLyl0JMyCK3PzU1NWzfvp0VK1ZQWlrK3LlzmTFjBi4uxrGZxkpztoZXc3NZQBrF\nKA6QlNSB0tJsqqrykEhqsLNzxNOzO+3bh5KY+Andu8fg5uZlcZ5Op8NgMKBUlpKVdRqJRIpMZo+D\ngztFRRnI5UF07z4Ee3vLVejFi/twdPQhKCjaKp76Ei7ApUuHkUpd6dKln8VxrVaNr28aTz01rsHv\nR2MkL2ufa7ogq91FLwgCp0+fZs6cOXh5ebFp0ya6dbPtntUS/Oc//2HFihXk5eURFRXF2rVr6dev\nX733P3r0KM8++yznzp0jMDCQl156ienTp7dgxCJ1EBOyyJ2DwWDg4MGDvPvuu5w+fZonn3ySp59+\nGm9v73qlOW01VV3Pp7YlX0tTN4Dp9XpeeWU9lZV98PIKs0pGWq2GhIQthIX1Q6HwRK/XmxOYqVZc\nm8zM02g0Urp3H2YlNHL58nHs7NwICbFOCJcuHUIm8yAkpI/VbRkZxzEY7AkNtRxhqqmpol27i8yZ\nM/aW6pANqTNfb1VcVVXFG2+8wccff8zrr7/OnDlzWrUm/OWXXzJ9+nQ++OAD+vfvz+rVq/nqq6+4\nePEiXl7W/QOZmZlEREQwd+5c/vnPf3Lw4EFiY2P5/vvvue8+217aIs2OmJBF7jwEQeDMmTOsXLmS\n7777jsmTJ7NgwQJCQ0NvKM1pcuQxaQ83l/50Q15LUzaA6XQ6Nm3aT25uNI6OLla3a7VVxMdvJjS0\n9x8CHzKbz5WdnUhFRTU9e95rEater+fy5RNotRK6dh2ETCazMLTIyDiOXm9P167WM8NXrvxKVZWG\nHj2G1YlZi6vrOebNG4ujo2ODX7MtbqSbrtPpUKvVVrPlgiBw8uRJ5s6dS2BgIJs2bSI4uGkNLBrD\nXXfdxYABA4iLiwOMry8gIICFCxfy/PPPW91/6dKl/PDDDyQmJpqPTZ06lfLyctEEovUQ55BF7jwk\nEgl9+vThs88+Iz4+HmdnZ4YOHcpjjz3Gb7/9Bhi3gl1cXFAoFEilUqqqqqioqECpVGIwGJDL5cjl\n8lZXAjNtr7q4uJgbadRqNUqlslFzt3Z2djz55Ch8fePRalUWtxn7Eezo3v0xUlN/o6ZGY3NnIDc3\nlZKSCotkbIr12rXT6HQSevS4G8BsW6jT6bhy5SRaLTaTcXb2GZTKCnr0GIbBoKe8vIjs7AtcunQS\nvf4kTz89psmSsSlWR0dHXF1dcXZ2RhAE1Go1lZWV5rl2qVRqMVuuUqlYunQpkydPZsmSJezfv79N\nJOOamhpOnz7NyJEjzcckEgn33nsvJ0+etHnOL7/8wr33Wn5+999/f733F2kbiAlZ5LZFIpEQEhLC\n2rVrSU9Pp0+fPkyZMoXRo0ezd+9eDAYDdnZ2JCQkcOHCBfN5ppWewWBoxegtMW0bmy4iZDIZGo2G\nyspKNBpNg2I1JuX78PI6g1arBv7cItfr9SgUbvTu/SQpKT+j0Sgtzi0oSCc/P5eIiDFWj5udHY9K\nVUFY2D0WQiMSiYQrV36nrKyCkJC7UKkqyM+/QkbGWc6dO8SJE1uIj/8ena6CxMQdJCV9TW7uKXS6\nUry8Snn22YkWXb1NiemCR6FQ4OjoaP7sAQ4fPkxhYSGCIHDs2DEGDBhARkYG8fHxPPXUU61+sWai\nqKgIvV5vNWnh4+NTr8RlXl6ezftXVFRQXV3dbLGK3Bpiq6DIHYGXlxfLli1jyZIlbN26lZdeeomX\nX36ZHj168O233zJ16lQ2bNiARCIxjzfV1sxuSzOjJkUsUz3U9NeQuVt7e3tmz76P99/fT2FhDFKp\nsUZsqhXb2dkRETGDxMSPiIwchpOTC4WFmVy7lkFU1ESrZJSXd47S0muEhd1HaWkelZWlaDQlaDSl\nlJfnUVGRh79/NxITv8LOzgm5vD0uLh2QydypqWnP4MEzLB5TEAwIwlkWLny82W37ajfvmbau1Wo1\nCxYsoLKykr59+5KcnExcXByPP/54m0nEIn89xIQsckchl8uZM2cO3t7ePPnkk2RkZDBs2DDCwsJQ\nKpW4u7vj7OyMo6OjualKq9Wam6ra0jiLaR66dqympHIzDWASiYRp0wbw4YfHUasHYm+vsLi/XO5K\nePh0EhM/JjCwO9nZaXTrNoK8vBTU6gI0mhL0eg0qVSmlpWV06tSd8+e/xcnJA2dnT7y9O1NV5YEg\nCAwePMvCwUuv11NUlElBQToxMZPqNNUZ0OniWbBgZLMn49o65CaLRIlEgpubG2vWrGHTpk389ttv\nqFQqvvjiC/z9/bn33nvblCCPl5cXMpmM/Px8i+P5+fn1qmn5+vravL9JklakbSJeCopclzfffJPB\ngwejUChuC9cprVbL+PHjefjhhxkyZAhpaWksX76cX375hZ49e/Liiy9y7do1JBIJTk5O5hqjSbda\nqVRSU1PT4prJ10MqldqMVaVS2Yy1tga3XC5n0aIxuLufQa/XWtxPq1VTUpKCVCrj1Kl9yGQ6rl37\nmerqfNzd3QkN7U2nTmE4OXkzZsyLREU9QmTkJLp1G0lAQG9qajTk5l6gV68/Z4ZNrkgqVQE5OfFE\nRIwzz2CbygQ1NYnMmTOU9u2b7/tkS4fctL1eVlbG3LlziY2N5amnnqK4uJhPPvmEvLw8Ro0axWef\nfdZscTUGe3t7+vTpw6FDh8zHBEHg0KFDDBo0yOY5AwcOtLg/GGUxBw5sPYMOkRsjdlmLXJdXX30V\nDw8PsrKy2LJlCyUlJa0d0g1ZvHgxQ4YMYeLEieaVjiAIJCcns3LlSnbu3Mn48eNZtGgRYWFhLSrN\n2RTUJ4hhb29vnqmtq8GtVqtZs+Ygly7pqaxMA2qQSqV4ePjh4xOIg4OT1fOUleWRlnaO3r2nIJVa\nbpOXlmaRnn6S3r0nWd1WXp7HpUtHiI5+GJnsT8tCvV5PTU0ys2cPIDg4qFne1+uNtJm0pmNjYxk6\ndCjvvfeeRZ1VEASOHj1K//79USgUTR7brbB9+3ZmzJjBhg0bzGNPO3bsIDU1lQ4dOvDCCy+Qk5PD\n1q1bAePYU69evZg7dy6zZs3i0KFD5rGnus1eIi2GOPYk0jRs3bqVxYsX3xYJ+XoIgsC1a9eIi4vj\nww8/5K677iI2NpbBgwc3qzRnc1FbAcyEnZ0dzs7OVrXQ0tJS/u//NqNQ9LGZgGtTUVHExYtniY6e\ngp2d5VxweXkeFy8eoU+fyVbJWKksIiXlf8TETMbOzsHiNrU6icceC6NTJ2MSbKyyWn2YRtp0Op3V\nSFtxcTHPP/88x44dY926dUyYMKFNfp7X4/333+edd94hPz+f6Oho1q5dS9++fQGYOXMmV65c4fDh\nw+b7Hz9+nMWLF3P+/Hk6derEsmXLePzxx1srfBExIYs0FXdKQq5NWVkZGzduZO3atfj5+REbG8u4\ncePMdWS9Xk91dbU52TV1AmkKajtT1aa+BjClUsmaNbvQ6YKRyWzXy1WqUs6f/5WYmKlWSdWYcPcR\nE/OI1W1VVeUkJX1DdPQjyGQyqquV1NQosbOrQiarYNq0PvTo0cXc8W3q9rW3tzfPCDf2PTDVik07\nAyZxEUEQ2LNnD8888wyjRo3ivffeuy1KLyJ3JGJCFmka7sSEbEKj0fD555+zcuVKqqurWbBgAdOm\nTTOP4thKIM3hMtRQatsDmpypALNSVX0KYBUVFaxd+zUGQxerFa5GoyQp6ThRUVOtVtHGRL2XXr3G\nYzDoaiVbDXK5hLy8i4SEhODl5YqHhyM+Pp74+nri5uaGi4uL1YVMU5hEXG9VnJ+fz7PPPsvvv//O\nhg0beOCBB1ptVdwQ2ctjx44xfPhwi2MSiYTc3Fy8vb1bIlyR5kFMyCLWvPDCC7z99tv13i6RSEhJ\nSbHQ7b2TE7IJg8HA3r17WbFiBSkpKcyePZunnnqK9u3bA7bVn5rL7/h63Iwz1Y0UwMrLy1mzZjfw\nZ1LWatWcPXuQ7t3HIpEYkMk0yGRqnJ0lyOUySkuvEhTUiQ4d3PD19cDHxxN3dzdcXV1v6eKkMSYR\ntjyrTatig8HAV199xfPPP8/48eN599138fDwsPk4LUFDZS+PHTvGiBEjuHjxIq6urubjYjK+7RET\nsog1xcXFFBcXX/c+ISEhFj/yf4WEbEIQBH755RdWrFjBwYMHmTZtGvPnzycoKMimNKdJJKMlGsAa\n6kxVN9mZFKwcHBwoL69g69bv0evtUCjs0Ggq8fX1JjDQF19fDzw83HF1dW3RUbCbMYm4nmd1Tk4O\nixcvJjk5mY0bN3Lfffe1eq24obKXpoRcWlqKm5tbS4cr0nzc8IvYdoYuRVqM9u3bm1d9ItZIJBIG\nDhzIjh07uHjxIqtWreKuu+5i9OjRxMbGEhUVZdHVrNVqqaqqQqPRmJNdUyeBukYILi4uN7UqNSmA\n2dvbm2viGo2G6upqnJwcWbBgSpuqiZtEUUzWmrVFURwcHNDr9eZVsUKhMF8sGAwGPvvsM1588UUe\nffRRPv/8c4vVZWthkr188cUXzcduJHsJxs87OjoajUZDREQEy5cvr3fESeTOoe38J4q0SbKyskhI\nSODKlSvo9XoSEhJISEhApVLd+OTbHIlEQvfu3dmwYQMXL16kW7dujBs3jnHjxnHw4EGz1aNCocDF\nxQU7O7tGy11ej5qaGiorK9FqtTg5OduiZaYAABA4SURBVJmlNRuKTCZDLpfj6uqKvb091dXVVFZW\nolar25zftsl9yaQ1XVNTg0qlQqPRYGdnZ5GMs7KymDRpknmkbd26dW0iGUPjZC/9/PzYuHEjO3fu\nZNeuXQQEBHDPPfcQHx/fEiGLtCLilrXIdZk5cybbtm2zOn7kyBGGDh3aChG1LpWVlWzevJm4uDhc\nXV2JjY1l0qRJFvXLpvI7rt2wVN8o061gqkU3pQVkU1O7Xm6K6fDhw7z99tvMnz8ftVrN8uXLmTlz\nJq+//nqbmx/Ozc2lY8eOnDx5kgEDBpiPL126lOPHj9+02cM999xDUFCQec5Y5LZEdHsSuTU++ugj\ns6hD7b+/YjIGzEn44sWLLF26lHXr1hEVFcW6detQKpXmJqvaKzuTu5BOp7up5zA1LCmVSvR6Pc7O\nzs3iTFWfWll9CmAtjV6vN7teOTg44OrqiqurK76+vri7u/PUU0/x3HPP8fe//51ly5a1uWQMjZO9\ntEX//v1JS0tr6vBE2hhiQhYRaQT29vZMmzaNU6dO8cEHH3DgwAHCwsJYvnw5+fn5FsnOycnppqU5\nTferqqrCzs4OFxeXZqlJ16Y+C8jKyspGWUDeKqZ6uVJpdKJSKBQ4OzsjkUgwGAycOXOGpKQknn76\naSZPnszGjRsJDAxkyZIlbW7rvTGyl7aIj4/Hz8+vOUIUaUOITV0iIreAVCpl1KhR3HfffZw5c4aV\nK1cSFRXF5MmTWbBgAaGhoeZGL1MHsVqttpLmrDvGI5fLzdvgLcX1GsBsdTs3B9frIr948SLz5s2j\nsrKS/fv307dvXyQSCe+88w5r164lIyOj1WfDbfHMM88wY8YM+vTpYx57UqvVzJgxA8BK9jIuLo7g\n4GDCw8PRaDRs2rSJI0eOcODAgVZ8FSItgZiQRUSaAIlEQp8+ffjss8/IzMxk9erVDB06lHvuuYfY\n2Fj69++Pvb29uYO4urra3Jlt6tauLfDR2jVcUwPYrVhANoS6s9W1u8h1Oh3r1q3jnXfeYdGiRbz0\n0ks4OPypEubv789bb73VpPE0JZMnT6aoqIhly5aZZS/37dtHhw4dAKN3cVZWlvn+Wq2WZ599lpyc\nHORyOZGRkRw6dOgvWyb6KyE2dYmINBNFRUWsX7+edevW0bVrVxYtWsTo0aPNica0fW1adTZH41ZT\n0ZyiKPWtigVBICUlhTlz5mAwGNi8eTNRUVGtfrEiItJIRGEQEZHWRq1Ws3XrVlavXo2dnR0LFy6k\nU6dOLF68mClTprB48WIAc2d2W5HmtEVTiqLUna12dnY2v+aamhpWrVpFXFwczz33HM8//3yLb+GL\niDQxYpe1iEhrI5fLmTNnDikpKfzrX//ilVdeYdy4ccjlcu69916cnZ1xdnbGzc0NJycndDqdRWd2\na3c718ZWA1hVVVWDG8B0Op3N2WpBEEhMTGTYsGHs27ePH3/8kZdeeqnVkvGJEyd46KGH6NixI1Kp\nlG+++eaG5xw9epQ+ffrg5OREt27dxFElkZtGTMgibZ7//Oc/BAcH4+zszF133cXvv//e2iE1ih9+\n+IGXXnoJlUrFwoULCQgIYMKECbzwwgtkZ2cD4OjoaHMMyTQr3FYwNYC5uLg0SBRFEASqqqpQqVTm\nWrFpi7q6upo33niD0aNH8/e//50ff/yRiIiIFn5llqhUKqKjo3n//fdvagcgMzOTsWPHMnLkSBIS\nEli0aBFPPPGE2JAlclOIW9YibZqGCvO3VSoqKggODmbAgAFs2LCBwMBABEEgOTnZrDA1fvx4Fi1a\nRFhYmLmG2lDThdakrihK3a13k0WiIAg4OTmZX4cgCJw5c4Y5c+bQrl07PvzwQwtjk7aCVCpl9+7d\nPPTQQ/XeZ+nSpfzwww8kJiaaj02dOpXy8nK+//77lghTpO0iblmL3N6sXr2a2bNn849//IMePXqw\nYcMG5HI5W7Zsae3QGoSbmxunTp1i7969BAYGAsZVZq9evfjoo49ISUnB19eX++67j4cffpgTJ06Y\npTlNq1CZTNYs0pxNhUkUpe7Wu2n7Xa1WI5PJzKIpEomEqqoqli1bxkMPPcTs2bM5cuRIm0zGN8sv\nv/zCvffea3Hs/vvvv2lFLpG/NmJCFmmzmIT5R44caT52M8L8bZXg4GCbK1uJREKnTp149913yczM\nZPjw4fzzn/9k+PDhfP311+h0unp1qE2uR20Jk6OUq6ur2RDC5N50+vRp9Hq92VFr8ODBxMfHc/r0\naRYsWNAmG9kaQl5enk3d6oqKCrOftohIfYgJWaTN0hhh/tsdd3d3nn/+edLS0pg7dy5vvvkmMTEx\nbNq0ySwocqvSnC2BSYdbq9ViZ2eHk5MTBQUFPPjgg/Tq1Ytp06YxceJEFi9ezIEDBwgJCWntkEVE\nWh0xIYuItEGcnJyYOXMmSUlJvPfee+zatYuePXvy1ltvUVxcjFQqbZQ0Z3NTW4dbp9OZdbgdHR3p\n0qULGzZsoGPHjuZu5atXr1JQUNAqsTYHvr6+NnWr3dzccHR0bKWoRG4XxIQs0mZpKmH+2xmpVMq4\nceM4evQoe/bs4fz580RERPDss89y+fJlwNiZXVeHWqlUtnhntsFgQK1W29Thrqys5JlnnuFf//oX\ns2fPJiMjg1mzZrFmzRqCgoJuyxKELQYOHGihWw2wf/9+Bg4c2EoRidxOiAlZpM3SVML8dwISiYSB\nAweyY8cOfv/9dwRBYODAgcycOdPsk2vyZlYoFEil0kbNBzeGuu5Ucrnc7E4lCAIHDx5kwIAB5Ofn\nk5iYyIwZM+jcuTOrVq0iKyuLd955h759+zZbfLeCSqUiISHB/B5nZGSQkJBglrp84YUXmD59uvn+\nTz/9NBkZGSxdupQLFy7w/vvvs2PHDp555plWiV/k9kIcexJp02zfvp0ZM2awYcMG89jTjh07SE1N\nNWsB/1XJy8tj3bp1rF+/nqioKBYtWsTIkSPN0psmzeyamhrA6M3s6OjYpNKctT2b7e3tcXJyMj9+\nWVkZL730Env37iUuLo4pU6a0SVnQ63Hs2DGGDx9u1Yw3ffp0tmzZwsyZM7ly5QqHDx8233b8+HEW\nL17M+fPn6dSpE8uWLePxxx9v6dBF2h6idKbI7c/777/PO++8YxbmX7t2bZtdUbUGSqWSzZs38957\n75n9midNmmRWt7rRfHBjMEloVlVVIZFIcHZ2Nj+fIAj873//Y9GiRQwePJi4uLi/TIlBROQ6iAlZ\nROSvQk1NDdu3b2flypUUFxczb948ZsyYgYuLC9B0BhGmWrFer8fe3t7sVQxQXFzM0qVLOXLkCOvW\nrWPixImtJmJy4sQJ3n33XU6fPk1ubu4NRT1Mq+HaSCQScnNz8fb2bu5wRe58RGEQEZG/Cvb29kyb\nNo1Tp06xadMmDh48SI8ePVi+fLm5Ma4+ac6b6cw2WSRWVlZiMBjMtWKT2taePXvo168fMpmM5ORk\nJk2a1KqKYg2VvQRjAr506RJ5eXnk5eWJyVikRRH9kEVE7jCkUimjRo3ivvvu4+zZs6xcuZKoqCge\neeQRFixYQNeuXc0OTSZpTtOMc33SnHq93ixCUtezuaCggCVLlvDrr7/y4Ycf8uCDD7YJac/Ro0cz\nevRogAY1tXXo0AE3N7fmCktEpF7EFbKIyB2KRCKhd+/efPrppyQkJKBQKBg2bBhTp07l119/BTBL\nc5rclupKc5pWxUqlEkEQUCgU5i1qg8HA9u3b6devHx4eHiQlJTF27Ng2kYwbiyAIREdH4+/vz6hR\no/j5559bOySRvxBiQhYRucORSCQEBwezZs0a0tPT6devH48++ij3338/3333HXq9Hjs7O+RyOS4u\nLhbSnKbkbLJctLMzbqrl5uYydepUli9fzqeffsqmTZvw8PBo5Vd6a/j5+bFx40Z27tzJrl27CAgI\n4J577jGPPImINDdiU5eIyF8QtVrNtm3bWLVqFTKZjEWLFjFlyhQcHR3RarUcPnzYQsxi27ZtDBgw\ngL59+/LZZ5/x4osvMmXKFP7f//t/t8X27s04NdninnvuISgoSPQ0FmkKxC5rERGR+tHr9ezevZsV\nK1Zw5coVHnvsMX744QfS09M5c+YMgYGBqFQqhgwZQlpaGl27dkWpVPLpp5/anM9tqzQ2IT///PP8\n9NNP/PTTT80UmchfCLHLWkREpH5kMhmTJk3iyJEjjBw5klWrVqFUKnniiSews7NDIpGgUChYsGAB\ngwYNQq1Wk5ubS2xsLJ988ol5tvlOJT4+Hj8/v9YOQ+QvgpiQRUQawYkTJ3jooYfo2LEjUqnUbJZw\nO/L777/Tu3dvvvzyS1599VV2796NSqWiT58+TJs2jREjRpjFWa5evcrRo0cJCAhg+vTpfPrpp60d\nfr00VPYyLi6Ob775hvT0dM6dO0dsbCxHjhxh/vz5rRK/yF8PcexJRKQRmGZc//nPfzJx4sTWDueW\nyM/Px8XFhTNnzhAREQHAli1beP3113nyySdxd3fn2LFjODs7AzBs2DCGDRtGcnIyXbp0ac3Qr8up\nU6fM2+oSiYRnn30W+FP2Mi8vz5ycAbRaLc8++yw5OTnI5XIiIyM5dOgQQ4cOba2XIPIXQ6whi4jc\nIo2tT7YlDAbDbaczLSJymyHWkEVERG6MmIxFRFof8b9QRESkTfHWW2/Rv39/3Nzc8PHxYcKECVy8\nePGG5x09epQ+ffrg5OREt27dxFElkdsOMSGLiIi0KU6cOMGCBQv49ddfOXjwIDU1NYwaNYqqqqp6\nz8nMzGTs2LGMHDmShIQEFv3/9u7etak4CuP49xmk6maQXB2KIPhC/gEH0xY1GHQRwaU6KZ1c2i10\ndRC66KCok2L9A1ykBQuKRUxx7CZ0EsFYOrSBIBnscYklrX3R5qW34fnAXQ7nB8+UQ+7hxx0dZWRk\nhJmZmS4mN2uNd8hmLeqFHXKaLS0tkc1mmZ2dJZ/Pb9pTKpWYnp5mfn5+rTY8PMzKygpTU1Pdimq2\nHe+QzWx/W15eRhKZTGbLnrm5OQqFwrpasVikXC53Op5Z2/jak9ku1Go1FhYW1r4i9OeOayaTob+/\nf4/T9Y6IYGxsjHw+Ty6X27KvUqmQJMm6WpIkVKtV6vU6fX19nY5q1rL/eWVtZg2ShoD3/L3KeRkR\nd/YgUk+S9BQoAucj4vs2fV+A5xEx0VS7ArwBDkdEveNhzVrkf8hmuxARH/DKp6MkPQauAgPbDeOG\nCpBsqCVA1cPY9gv/oJhZ6jSG8TXgQkR8/YcjZeDShtrlRt1sX/BANrNUkfQEuAXcBGqSksZzsKnn\nvqTmi8bPgJOSJiSdkXQXuAE86Gp4sxZ4h2xmqSJplc2vWd6OiMlGzwvgRERcbDo3CDwEcsA34F5E\nvOpCZLO28EA2MzNLAb+yNjMzSwEPZDNrC0njkj5Lqkr6Iem1pNM7nBmStLrh+SUp263cZmnhgWxm\n7TIAPALOAQXgAPBW0qEdzgVwCjjWeI5HxGIng5qlkXfIZj1E0jhwHTgL/AQ+AaWI2PlzSe3PchRY\nBAYj4uMWPUPAO+BIRFS7mc8sbX4DCTeS/FdBERYAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbe53e2c390>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def convex_plot(azim, elev):\n", " fig = plt.figure()\n", " ax = fig.gca(projection=\"3d\")\n", "\n", " x1mesh, x2mesh = np.mgrid[-2:2:200j,-2:2:200j]\n", " fmesh = all_points_error(x1mesh, x2mesh)\n", " ax.plot_surface(x1mesh, x2mesh, fmesh, alpha=.5, linewidth=0.35)\n", " ax.view_init(azim=azim, elev=elev)\n", "\n", " ax.plot3D(w1_vals, w2_vals, data_loss, color=\"r\")\n", " plt.show()\n", " \n", "interact(convex_plot, azim=(0,90,10), elev=(0,90,10))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here is a contour plot. I plotted the contour of the original loss function so you could see the valley that the optimization routine would chase as well as the clear convergence of the algorithm." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGyCAYAAACP2j9zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXd4U3X7xj8n6WLvvUQ2KCg4AAX3RsQtigNFUX8unDhf\nt+JAEfQFVFQQRX0dgODAAQgIKJRZQPYo0LIKbWmbJrl/f5ymTUfapDmnNpD7unpBTs/5nm/bJE/u\n576f5zEkEUUUUUQRRRRRFIfj395AFFFEEUUUUVRWRINkFFFEEUUUUQRANEhGEUUUUUQRRQBEg2QU\nUUQRRRRRBEA0SEYRRRRRRBFFAESDZBRRRBFFFFEEQDRIRhFFFFFEEUUARINkFFFEEUUUUQRANEhG\nEUUUUUQRRQBEg2QUUUQRRRRRBICtQdIwjMcNw1hsGMYhwzBSDMP41jCM9kFcd6ZhGEsMw8g2DOMf\nwzButnOfUUQRRRRRRFES7GaSfYDRwKnAuUAs8LNhGFUCXWAYxjHA98CvQDdgFPCBYRjn2bzXKKKI\nIooooigEoyIbnBuGUR9IBfpKmhfgnBHARZK6+h37HKgl6eKK2WkUUUQRRRRRVLwmWRsQsL+Uc3oC\nvxQ59hPQy65NRRFFFFFEEUVJqLAgaRiGAbwNzJOUVMqpjYGUIsdSgJqGYcTbtb8ooogiiiiiKIqY\nCrzXe0Bn4DQrFzUMox5wAbAFyLZy7SiiiCKKKCIKCcAxwE+S9lmyoiTbv4AxwFagZRDnzgFGFjl2\nC3AgwPnXY6ZwK+VXqypo+ZnovAbm4zHHo997o+Nrhr9261po9kDUvIb5+Pk+aM716PgG//7PHf2K\nfkW/ol//4tf1VsUv2407hmGMAS4DzpC0KYjzX8U07nTzO/YZULsk445hGL2B+Q83aYJr92461apF\nm1q1qPfNN+Fv/nAGfDIKfvoGjj8Z7nkGGjUt+zoJDAOAKrvW0nj+x2y+6tX8bx/zzVN44quTfO69\neOOrATBs2DDeeuutkLZXc9d8Gmz4go193ilYe+ET5CbUZ+dxd6OYhJDWC4jkn2HlCPP/xz8Gzc4v\ndkrI+5cb9k6ClLEQ1xyaPwtVjw97q1I6nty38Xq+w3CcQkzsMxiOJkFdW9rPkEsKexhNFiupyfnU\n5RacVAt7vwfZxDomkc1+juESmnMODpzlWsu3fyG2sIa/mIUBnMIFtKJj2Hv14GERScxjBXWoySX0\npCkNwl73MG6+ZgOfDHuZAW89zPW0py7hP3d3kcsYUllFNhdSk5upS9Vy/m79sczl5dl0DylecXc1\nB9dXceLMe72X53UM5lvGD3vgtU0QY8ATbeDs+mFvFbcHJqyED5bDMbXgudOhUynrBrv/Q1nwxkyY\nsQx6t4OnLoNGtcLf7/Zd8Nx4SFwH15wH914HVQPWQhTHmjVrGDRoEMBpkhaEvyOwm0G+BxzALAVp\n5PeV4HfOy8Anfo+PAdKBEUAH4G7ABZwb4B7dAY2IjdU7oHmgQ6+9prAxb5Z0RkupWzVp8nuS1xv8\ntZkHC/6/b6d0Q10paV7Bsb07pDvaSIummY+9Xl166aVlr5u8TJrzupSx13yclSY9X1/aOLvgnNR1\n0istpeTE4PcbCIdTpN+ukj5C+u1K83EABLV/HzJXSStPlhY6pK2PSp6s8PcqyeP+SdmHmys7s7rc\nuePkDeVvppJ/Bq882qdPlaTjtU59lK4/LNmrW9lapfGaqgs1R/fqkLaGveall16qDB3UVI3Tm7pb\n0/WBMnXIgt1KO5SqV/Wp/k8j9Z3myqVcS9ZdrN26Xj9pgGbo1EvPlVeh/c1KgkdeTdReHa8k9dU6\nLVC6BTuVMj1eDUvLlZGcrZ6pOVqb6yl2TkivgzzszJL6/yUxQxq4VNqbY8VupWUp0gkTJOcI6ck5\nUnYQf7Jg9j99qdTkXqnmHdKEOaG9NQaCxyON+kyq0ktq3U/6/a/yrbNkyRIfk+wui+KY3ZrknXkb\nnl3k+GBgYt7/mwAtfN+QtMUwjEuAt4D7gB3AbZKKOl4LoUO1ajRPS6Pt009T45FHyr/jjEMw4hH4\nYjz0PBs+nQPNjwn++nH3wK4N0KIz9LwcuvSBAQ/DRw/DC79BfBWo1wzOuw1mT4JTLs1nnaVi7huw\n5BM4/QGoVg+8HkioBX0ehlnPwB2zzXUatIc2Z8OKL6DpCeX8JQCbv4SF/2f+/4wvoPU15V/LB7lh\n5+uQ/CzEHwtdFkD1U8NfVgdxux7G6/kAw3EusfEfYDhahb2uix3s5HEy+ZM6XEcjHsNJjbDX3U8S\ny3iTw6TQicG04cpys0cfhMggjU94EQODftxGe7qHvVcPHmbxNzP5kwbU4REG0orGYa+bQS7jWMXP\nbKcHDXiAbgxhLAZBvBZKwTZcPE4yizjM9dThURpR3QL2OD/Hy+A0N9s94rWaToZVK2CP5YUEn+2E\ne5Mg1oCvu8MV4f9qyfXAKwvhxQXQoS4sugl6WLDugUx44FOYOB8u6grjb4XmdcNfd+N2uPU5mLsU\n7rkWXr0PqoXAHu2GrUFSUpnuWUmDSzg2F+gRyr1qn38+na++mipXXRXKZYUxfxY8OQTS9sGz78F1\nQ8ERpAHY44bXrzOD4A0vwtIf4KVL4bVFcP4dsCkR3r4JHvvKPD8mDo7pVvqaAF4vjOsLOelwz2KI\nzXv2OPJe+CcNho2/wbdD4Yrxed+LgeYnh/az+5CVagbHrf+DVldCz/egSsPyreWPw6th02DIXAJN\nHobmz4Ej/JSa1/MTua7bQQeIiRuHw3k7RrhvXng5wBRSGIGTWrTiY6pzeth79ZDDWiaykW+oTTvO\n4D1q0DLsdTM5yK98QQrbaclNnM21VLUgmCezh0n8xA72cB4nczE9ibXgLeMvUnib5RzGzQN040Ja\nhh0cvYjJ7Od1UqmDk4m0ojfVw97rYa94Kt3D25keesYaTK8XS4eY8IsCdufA0JUwLRWuawJjukC9\nuLCXZXkq3DIDVu6B4T3h6d4Qb8G7/PeJcMdHcNgFE4bALX2C+2xfGrxeGPMFPD4aGtWD38fDmSeF\nv1erUZHuVltR47HHqNK9+Cdn98aNePfvJ+7kUoJGRjq89ghMGWeyx0mzoUXr4G8ugSsbvG64YwxU\nqwXtToIDu2DsXfCfH83jT/SFUbeY56//C+4eW/baDgd0uhQWjTUD5NYFkDgZ6rWFusdCl8vM4PjB\nufDtnZC6FhCc+5/g9+9DlD0WYY8D89hj+G+2drHHdSzhN77EwKARLenHkLD3WnHs8QQaEj5liGT2\n+E13uLySs8dhk+GTedayxw3bTPb4RyL83zUme6xeNfx1s+2ob7Aqb/tvfZGnSS5ZsqRYftq1bJk2\n1KqlNTExyv7tt5KT2EW1R09xnSFo3H+CNPWtwsfuPU6a+IT5/73J0t8zpS9elNIPFDrts88+K3iw\na6X0ywvSyq8Ljr3TQ3qunvTf06UF70rfPySNOlFKmp639kZTm1z8Yej7DkF7DIRC+/ehkmqPJcEr\nr8Z/dndEaI+S8rTH8YW0xxL/BiFih1L1iibZqj3O1JYStcdQ919Ue5xvofb4QJ722CuA9hgIpf0M\nRbXHPRZqjyd+FJr2GAj++/8+UWp6n1RraOXTHosiI0O67wGpdVvrNcl/PciF/QOUEiT3nH++poGm\ngTZVr66cRD8zS/pB6ak7pHZIN54tbd8c7N/DRNJ8aeSN0k/jpWW/mMfmfCY9caa0dVXBeSt+lx46\nWTq4N7h1Zz1nBr8ZD0vvnSb9/Ix5/OBOadKVUnqq+djtkqYPk2Y9az4u7zN40xfSZ/XNr01TyrdG\nUXhzpeRXpEVx0rKOUvpCa5b1HpQre4iyM1FO1rnyerZYsm6OtmuzbtQqtVGynpTbIrPLPq3Wr7pV\n03WJ/tEX8sgd9ppeebVGf+ldPaL39KjWaakFO5XccusHLdS9ekvP62Nt0S5L1k2XS29oqc7XVD2u\nBUrRYUvW3aocXa9NaqNVelrJSrfgdytJ87I9arc7RwnJ2XojPVduKz6AeaVPd0h1fpYazpK+tuZX\nK5dbem6eFPOa1OUD6a+d1qy7P0O6eZzEjdJFr0vb91mz7oZtUt/bJE6U7nlVSs+0Zt25f0htOkgJ\n1aUHH4wGyZCC5MEXXtAi0B8tW2prly7aXL++cjdtkub9HB57nD1ZGtxc+uZ16aNHpKFtzWCY65Le\nf0AacXVB0NqwRHrrpuDW3bZY+vACMwBK0tw3pRVfFXzfVYSJfX69tOrb0PbugwXssURkrraJPf5o\nA3v0aJ8mK0ldtU6nRwh7tMe5WsAe/7CMPS4Kgj2GCjvZ47ByssfS4M8er7OYPYbqXA0G05faxx6r\n2sAe7x8mGbFS7z7SunX2uFv/9SAX9g9QSpCUpPSRI7UDtKhVK00D7WzRXO7WSNedHjp79OHjR6WF\n3xU8nvGuNLC2lJUh7dkuvdhfeuocs8TjsdOkcfcGt+6WBdILDaXM/dLWP81Sjs8GSl/eUvjZume9\nNPlaacLF0qEQP5Z6vX7ssZ7JHq14JXhzpR0v28Ae02xkj4Py2OMTFrLHpIhijzP1p+7VW3rhKGaP\n83NM9hhvMXuc5Mcev7GBPR73gfS3Revuz5BuGivL2eP6rVKfWyVOlP7vFXvY45sjJXfeUyEaJMsR\nJCUpc/JkrXQ6tbxRI22vXl27qsfKM+AkyeUK6g9SDO/eYaZa/fHSAOmFfub/3W5p0pPSu0Ol78cE\nv25OpvT17dInA6Snq0nLPpd2rzLTrpOvNc/ZsdTUJ2ePCH3fh1NM1vgRFrNHu7THH5V9uIXJHl1j\nLWaPkaQ9Rg57DEZ7DBUVwR4D1T2WB3Zqj3awx+8TzbrHSNIejVjptL4me/RHNEiWM0hKUtYzjyg5\nLlbb4uK0AHSwLtLUT0u9phh8z55lv0gjrpESZxV8b/8u6eFTpbULi59fEnKzC/7vLvJsX/yBadzx\nYcdSacwpUvYhKTu9QJcMBYW0xy9Cv74kRDR7fCrCtMfSn9/BIqo9mvijArTHo5U92qU9zplbwB5H\nvlXAHv0Ric0EKgf+WUXC/96mfqNcdux20jDGoGr3TnBGGeMpszIgoVpBQZDy2s016wBN28H8L6FJ\nW2h0DCRUhzpNoK5fC7SS7OK7VsCPj0O1BhBXDQa8C84Yc23fNQm1Ycs8cB2GuKqQ9B00Oh7i82rf\n4kMoSYjIuschoDSL6x4/z6t7rG1L3WMd2nMG/7G07nEDy2lPd87mGkvqHneyl4n8GDF1j5+yn9dJ\noR4xTKIVvSwoxcmSePJQQd3jtLqxdIy1pu7xzlUwNQUGNoHRlbzuccYys+4xM8f6usfho6GxhXWP\nmZnwxFMw+l3o3QtmToP27cNfN1gc+UHS7Ybhg6FVO+JeGE+rB2+E6jVxTv4NatUJfN28L2Ha22bn\nnGYd4IpHCp5F9ZvDyf1g7ucwZggMmwTzvoD9yWaw8wXTYmuOMusdzxwO9dvBzEfhl+fh3GcKn59Q\nC7LSYPJVYDhBHrh0VOg/e37do2yqe2wTYXWP1nbNSeRNsvLqHttyJYbFdY9Wds35mb/4gYURWff4\nGI2oZkHd4wKXl1sORF7dY8d6sPgm6F6Ju+Zs2Aa3PW92zbGy7vGPeTB4CCQnw5uvwX33gjP8p0Jo\nsIqS/ltflJVufe8lqYNDWrbIfOx2S7llJPPH/p/0eF9p+a/SH19Id7aXDu0ruN6H9P3S6CFm6nV4\nHyl1W+nr/vC4tGluweO5I80yDslM4nvcBf8/sNVMu/71UelrlgS7nKuSdHittLiKtPUxG7THGhZq\nj96o9qiiPVcrv/b4ifbqOK22XHt80M+5usZljfa4K1u67G/Zqj0+ZbFz9UjRHgMhqkmGGiTXrZQ6\nx0mvPVb6b9brlb76UFq1RNqy0jTm5OaZepb8aAbBzcuLa4c+ZAeZdM/cL7kOF6wz8zHp27sKn5Ox\nV9rzT3DrlYRNU0zXqq/u0YpXQlG4rAm6xeserQk4xbVHa95so9qjqT2+qcSI0R4jte4xUrRHn3PV\nrrrHQNpjIESDZChBMjdXuryHdFFnKbt0xuN943Edqo+y21eX/vFrBLDwO2nIMdLr10mvXGmWdfiw\naJq0c32p6wa+Yd4L9Zs7pSUT/facYzYR2Dyv5OtKQzjO1cNJUsZSybU7b3/WfNIuDYXqHi11rlbE\nxI4tlqxbmD2+H3WuRkjdoz97/DcndgQDO+se7WCPvrrHUNijP6JBMpQg+d+XC6dZS4G3LdoB2pUQ\nK53eTErOYzSLp0vbkgpOvLGB2VUnZYv03ZuSK7vkBcuCx2MGxI/6me3k9m8xyz4OJptlIKFi0xd5\n7LEcdY87npcSj5XW3yAt62QGSxthr3P1xghlj9GuOXaxx9ejzlVdaJNz1cq6x2Ccq8EgGiSDDZLB\nplnz4J00RpmNkeuSk3S4Yx3l9jlWOlDCs2rM7dLaP4Nas0ykpxa0nRt9svTri6GvEa72mLVRWt1X\nys7TUrc9Ja3uI2UuD30vQSCy6x6tCeYZSovYeY8/2MQeK3LeY3lg17zH5TZpj5HYc5WYgq454SAa\nJIMJkrm50uUnSRd2KjPNWgg/fCV1jlNa06raXxNp7CtSjt+r4eNHTXPO3h3Br1kaNs+ThhvSZ9dJ\nKWtCu7ZQ15ww6h4PzJTWXlz42PqB0pYHJY81bEGqqLpHu3quTqnk2qMnyh5ln/YY7ZpTMV1zwmGP\n/ogGyWCCZAhp1kJwZUsfPCtXu3h5+nUzG58PuUhat1ga1kN659YCM48VyD4kLQihG48P4WiPGcuk\nna9Lrrxm67lp0t/1pYOz/dZfJy1tKWUklrxGiLBnYkdR7bEcGm4J8GePc3Vf1LkaYc7VnhY6V4tq\nj5W9a47PuVrzjshhj+FojyUhOdmtF1+cFw2SxX4A/yAZYpq1EN65TeqPdHmC9Mr9ZpBsh7Tsj8J9\nWoPBnnIaekqD1+vnXK0XOnvc+bq0/Dgp5YO89fI+tiW/aqZc/V9VG26Rtg4Pc7uRzB6/kLdSs8eK\ncq5aQxnsZo/xUe3Rcu3Rnz1WFudqIHi9Xn3ySYZq196hhg1/jAbJYj+AL0guWmSmWYNwsxbDkh/M\nADnzv+bHp22bpIF9pCnjQ1vHlSXNfFQa7pDW/RTataUhHO3R65ZWnSat6FpyCtWVIq05X9p4e8Gx\njUOkfV8XPzdI2McefRM7jl72mKw9trNHq7XH47RaZ1isPT5os3PVyokdy/3mPdqhPVrNHt/53H72\n+E8YVW7+SE52q1+/PYLtuuGGffrtt7+iQbLYD+ALksPvLl+aNSPNHHv1zHnhPcu2LZLe7CQ9ESf9\n9nLgmspQUWhiRzm1x52vS4nHmP8/NF/adLe0c6S0L48hZ2+REttKm4ZKq8/IM/NsD/k2FcceI8m5\nag973Cxrhgemy6XXbdAetxVhjxkRxB6trnuMtYE9+uY92sUeK6Nz1R9er1cTJ5rssVGjZE2daj5v\no5pkaUGydUz506zX1pBSy8kgXFlmU4DhDtOluntV2dcEg3DYY0aiOY0j92DBsZWnSH/Xk1afLu1+\nV9rykLTiRGn/dPP7WRtNbTLlw3Jt1755j/Zqj5HSNecVTdI9EaI9VsTEDju0R6vZo511j5GkPRJj\nvfZ46aUmexw0aJ/27St4LkSDZGlBstcx5U+z/hRkWnXfTjOobl9rPt66UHqjo/XscfOX5WePySOk\nlT2kXaPNx548s1HOLmndlZIrteD4lmHS9mfNx+V8tUW69hhJ7PFod65azR6jzlWTPdpR92i39ti4\ncQF79Ec0SJYWJD//JLTfeKhpVle2dF1d6XikgU2kb4blsceTKgd79Hqk9ddLfzcIfI6nyMfk9ddL\n+74t315VpO7Rcu0xknqujrdFe4zErjlWa492dc3x1T1eFwF1j3b3XD320shwrvprj/7s0R/RUVml\nof1xoZ0/4UE4fBDu+SC4GTGGAzL2QzZwIAO+HAMd68Mds82RV+Ei3IkdhgPqXQeHfjMfZy6HlHcg\nrjlUOR7qXQWOvNk92Rtg+1PgTYfqPUPeasVM7BiYN7Ej/PFI+0liGW9yOG9iRxuuxGH5xI4htOfE\nsPfqwcMs/mYmf1o+sWMsq5hl88SOR2lEdQsmdszP8TI4zc02j3i9ppMHImBixwsLoGNdWHQT9KjE\nEzs2bodbnyuY2DHifqgW/lOBuX/ArbdbO7FDEp9+epj77ksjIcFg6tR69O9vwWZD3UQkfxHk0OXC\nHzdCTLP68Oe3Uv9Y6YZ60pmGdDXS5zeE99HO6okdm+6UFhqmo3XPJGnrw9K6y6WUceb3MxLNdGzy\niHItH6l1j3Zpj9/rQx22iDkVdq5GTtccu9ij1V1zfNrj9YmVv+eqXc7Viqh7tMu5Gog9+iPKJK1A\n5kEYczuccB6cNyS0a7UTWuXCjgPgFrirw9zJUKMpXPJa6HsJhz16c8ARn7cvjzl3EqDFS+CoAk0e\ngbgm4L0SdjwHuSnm9+NbQ4cfILZBSFuVDuF2PRRR8x7tZ4/WzXu0iz3aNe9xOMkstpE9Rsq8x0hh\njxu2mezxj0Rr5z362OPOndayx0mTDnP//WnExxt89109Lrusgtlj0Q1F8hehMsnyuln3bZKermY2\nIn+qsXRzgvT0WSYjvQVp4bjg1wqHPWYuN1vJbbjZLOXwwX9yR9EpHhsHl9u1KvnYo93aYyTUPVqv\nPUZa1xy76h6H2TDvsahz1Urt0c66x1pDpY/mRgZ79DlX7WCPRZ2rwSBq3Ak3SJY3zerxSOPOkl5p\nabaTO7RLeqeHdGOMud4NSD8+Gdxa4fRc3fW2tKyjlPqxWe+46jRp+3OBz8/aJP1zldksICc5tHsp\nEp2rSdGuOcWcq/Z0zTla6x6ft6nu8WjvuRqMczUYRINkOEEy3816fugf0Ra8Kz2GtP6XgmPZh6T3\nzpRuR/r8JjOQloZC7PGq8mmP2x6XDs4teLxzpFnGIZns0f/nylgmJZ0rJb8S+n0UrXuUoj1XpYqb\n2GFXz1UrtUcfe7RDe7TauWp31xwrJnb4EC579Ec0SIYTJMNNs34ztPj3cnOkf34uO0Ba0TVHknL3\nm63lvHmv0K2PSZvuKnLOPil7q9mOztfIPAREGnuUpGyl6WcNOmrrHn14W8ssr3scGJ33GHF1j3az\nxzdH2sMev/su/OdtNEiWN0iGk2Ydf7b0SiuTOYaKnDRrnas++N5UNt0ppU4sOO7JMTvpHCofQ6uY\nnqvW1D0WhVvWUIZIY4/+yJE7YtijXXWPVrPHqHP13617DBWLFkV7t4YeJMPpzepLs/4zK7Trlk4y\ng+vfL5gBctMUa14JPng9ZkBc289sJ5e9RVo3wNQd3aF/dCzMHs+xmD3eWK6eq4e0VWlaryztN/co\na15EgVAZ2aN/wHNbEPyCQUXMe4wE7dEu9ujruRpp7NEO7bFRI2vYoyTl5Hj0zDNr1bnz+9ESkJAx\n4aHQmgb4sH8z/PAonDoU2p0b/HWHdsGkG2E3sG8NNK8Ora4K7d5lwXCA+yC4D8DeTyDtB6hzGcQ1\nDXkpr+dncl1DQAeIiR2LI+YOjHBt93g5wOekMAIntWnFx1Tn9KCvX8dktjOLOnTiIBvowWPUom1Y\neyoNmRziV75gA8voQA/O5hqqWNDEIJk9fMrPbCeV8ziZi+lJbJAvuU9ZxwFyaEY1rqANTix8/pQA\nL2Iy+3mdVOrgZBKt6GXB7+CwVzyV7uHtTA+nxhpMrxdLhxhH2Ovuyoa7VsPUFLi+KbzTGerFhb0s\ny1Nh8ExYkQrDe8LTvSHegnfJGcvgjo8gMwcmDIFb+oT/luD1wpgvYPhoaFwPfh8PZ54U/l4zM+GJ\np2D0u9C7F8ycBu3bh7/uzp0ehg49wPffZzNoUFVGjapN3brhPxeWLTvILbcsY/XqdAYPrktSUvh7\nLQSrou2/9UVpTNIqN2soSE+VhiENwpwK8qohzb3NWiYpmSnVhYa0/jrp8JqQL6+s2mOGdmqeHtJh\nmanpNfpYf+hBpWmjJfvzR2Vkj9ly62kt1H+0SPO0Uw9orkZoidJl4cDvIohqj1Ht0Qe7JnZYrT1K\nJnv8z3/WKiZmurp2na2lS9OimmSJP0CgIPlvpFlzD0u/Xi593Ex6p7G5xmNIryIt/U9oa5UF9yFp\n15hyXWpfz9VPw573uFsL9aeeKnTsb72slRort7LD3qcPdtY9htNz9aBy9LL+VlbedRly6T7N1bfa\nmH/MKvjXPdqpPUbCxA47natHu/YYaGJHOEhMTFO3brMVEzNdzzyzVjk55rrRIBlKkPS5WVO2hPbb\nL83NWhYWPyR97JD+vFv6qrU0PC9ITjxTegsp6b3Q17QQlXHe4yFtVYr+1mGZ00lcStcPukp7tCz/\nnHRt188apDRtCHuvxdnj0rDXlEz2OFN/los9HlB2fgDcrUxdr58KOVTna6fu1RztyPu9WmHOqQjt\n8Y0I0x6XRBB7vOfVyNEerWaPzzxTmD36Ixokgw2SS34MM83aKvQ0a8p86SNDWvma+Thrr/RND+m/\nCQWM8m2kLV+Xvk7mKmnv56HdOwjY2zWnfM7VNZqoX3Wr/tIL+kPDtE1mHeo/mqI/9GChYLBUr2u1\nyt81SJIylGaLc7Vwz9XQ2OOnWqtHNV97dDj/531dS/WCClOEZ7RQ72ll2HutqHmPkdBz1c6uOZHC\nHu8fVrnrHv3hzx7/858C9uiPaJAMJkj+W2nWr9tL00+VPH4fw3IzpVmXSM8Z5rpf9pH+Gyvtml18\nDW+uWfi/KE5a0d2sc7QAJnu8rdJpj9k6oD/1RL57NVlzNEOX66A2KVsHtECPK1Ej889P1Egll7N8\npDJqjxuVpkc1XyO0pFhXnC06pHs0Rz9rW/6xOUrWe1oR1n7LYo8rVybpq69maPXqpJDWrQj2aLX2\nGCldczZss3/eY2Wue5TKZo/+iLggCfQBpgHJgBfoX8b5Z+Sd5//lARqWck3hIGlH04CysPhB6ZN4\n6UAJBhqPS5p7k/QB0ksNzWD5YXXJlVFwTuYqaeXJ0kKHtPURyRPi8OgAsF97PL3cdY/7tFq/aHCh\nY8s1WgtaN5m3AAAgAElEQVT0uCQpU7v1i27RMr2teXo4z8yTGvJ97Kx7DEd7HKlE9df3+Y+3K137\nlKXsvMD1q7brCs3U30rRVh3Sg/pDX5cz3VwWe9yzZ49OP/0xNWo0WvXrz1TTpqN1zjmPac+ePaWu\nG2ldc+zWHu2a9xgp2qPd7NFfewyESAySFwLPA5flBbtggqQHaAM09H2VcU1BkAy7aUA53KxF06wl\nweuV/h4uvYb0DNLP/c1j3lxpx8sme1zWUUpfGNq9A96uIrTHJ0Jijzk6KEmFOuLM08ParOmFzvtB\nV+enXTO0U3u0XFv1Y8h7tZM9lld7TFaGklRAMa7RD5quzZqktbpfc/WMFukFLdbuPGb5pdZrpBJ1\nu37TFJWvg3Qw2uP55z+mJk02qlUr5X81bbpRvXo9FpBh2OVcnRRhdY+Ryh4jXXsMhIgLkoVuFDyT\n9AA1Q1jXDJLzZpc/zfrne8V7swYDX5r1+56F06yBsHas9Oc9kjvvo/HGu6Q/kbY8YCF79GmPNSxk\nj94iEztCY49JmqBpulhpWm/uUW555NZW/ag/9ZTStSP/3HWarFV6P/++5UHFzHsMjT1O0loN0a+a\nr535Jp0F2qULNFUjlSiXPNqoNI3Wcr1exEx0sBzdhILVHpOSktS27ehCAdL31bDhaD33XJL2+b35\nV4T2aBd7tGtiRySxR7u0Ryu75gSjPQbC0TJP0gCWGYaRAKwCnpW0oMyrpo4sf9OAmY+YTQPanhPa\nTtd/CBlb4ezvwBHEELUOQ81/5YHcQ7BmMaQDtbeBEV4ltHQQt+vhSjfvcT1fso9VtOBcEhnJmbyX\nP9exHsdziE0k8T6n8CwAmeykDp0BMEIsoJdt8x69zOKvcs97/IaNrOEAb3I6NSn4O/eiMa/SixMw\nZ3seSy2aUZ1DuACzwN+BUeiaYLANF4+TzKIg5j1u3rwZM3FTHFIb1q3bwtixnbj4Ysjo6OXWg262\n2zTvMS4679G2eY/JyfbMe0xIsG7eo8vl5aWX1vPyy+vp3LkGixf34cQTa4W9briobEFyFzAU+BuI\nB24HZhuGcYqkZaVeuWgaPDkeGrQM/m5eL/zvNqhaDy5+PfTddrwbGp4GtTsFf40EK0+EtC2Qmg6p\nQLVvIOEBaDWqXG04vJ6fyHXdbnbNiRuHw3m7RV1zpuR1zakZctccH5pzJo04mZq0Zg7/RxIT6Myt\nAFSjKW24iiW8ymKex8VBHMTQgR4h38fsmjOFDSynPSdyNtdS1YLhzeF0zRHCwGAbGdxIB2oSx2r2\ncRAXdUmgI3XyA6T5M+SymBROowkAjhA/JJSna07r1q1JSPgVt9t8avrDMDZSu/Y5ZOaIu6aIha09\nnHIRTG9qfdecgU1gdBdruuasSIVbbOia832i2TXnsCtyuua8MwZO621P15wbbqjKO+9Y0zUnMdHs\nmpOUlM4TT7TjySfbERcX/rpWoFIFSUn/AP/4HVpoGEYbYBhwc6kXdzgVzhsS2g0XjYVNv8NtsyC+\nHG+ohgPqnRjaNfs+h6yV5v89QL1qENMelo+GmMbQ/Imgl6qs7NEfVWiI7zPm8dzNIp6hKX2oTbu8\n7zegJy+RzlYy2UlzzgppffvYo4dZ/F1u9ggFTPgQOSxnL1tJZxqb6UQdFpPKFRzLAI4lCzc/sJVZ\nbOcsmtGPY0Lebyjs0R+dOnWidetPWL16Ex7PsfnHXa5N1K69g6w6HZmS6eWgxHlbnVzwP4OEKw0I\n42nmzx5jDfi6O1xhIXt8cQF0OIrZ4x/zYPAQkz2OfN169hgff+SzR39UqiAZAIuB08o6adgqUeuy\nywodGzhwIAMHDiz5gvL2Zg0Hrt2w9V6oey20ehOqnQeHd8DGRPP7a5+EuMbQ8NYyl7KPPZa/56oH\nF8681KDwYPi9SQtRly604mKW8SZnMhYXh3CTRVUaUYcO1KFDSPstzB67czbXWMYeJ/ETO9gTMnv0\nh49J9qYJC0khDgdj6IuBwd+k8hJ/cz4tceEhg1yG04NWIe6/KHucSCt6h9hzdcKEh7nqqjdYs6Y5\nUhsMYyM1a2+n+gUP8VGWh2YOg4FVndR3GKQfgo8/hj594IwzQn/z3ZUNd66Caan2scfHe8JTR3nP\n1V49Kz979O+5Wh72+Pnnn/P5558XOnbw4MGw91UUhormWGyCYRheYICkaSFe9zNwSNJVAb7fHViy\nZMkSuncPkkF4vfDBubB/EwxbWT4WGSokWH8lpM+DrkkQWx/caZB0ESQtgqqdoUYCuJbCKdOgTr8A\nyxRhj3H/Pns8yCbW8BHx1MJJAl25x9xrXpDI3zteDBz8wQMIL26y6MLtNOKUkPZalD2ew7WWs8eG\n1OFGLgiaPR7CFVA7XE8aU1jPVtL5gLMBOEgOY1jJA3SjKjEh669QfvZYEnJy4NFH17B37xayqrdi\nTo0OHJQ4O95Bz1gDRwmRoXlzuOIKqBsEqyrKHsceZ6326GOPH19iHXscNhk+mQcXd4Nxg61nj/dc\nC6/caz17fPkFe7THsWPrWMYeX355PS+9ZLLHjz8+wRL2uH9/FhMn/sCwYVcC9JC0NOxFsZlJGoZR\nDWgL+e8AxxqG0Q3YL2m7YRivAE0l3Zx3/v3AZmA1kICpSZ4FnGfpxsJNs5YH+6bAgW+h3ddmgASI\nqQ3H/Qbx18P+qbAu7wPL2qvhuF+hRu9CSxSa2GG59vhqHnv8hOplE/d8bOJbtjCDtlxLdZqSxIes\n41M6MKjYG7+Bg2z24SEHJ/GcxJPUDDG1aCd7LK/2+CFJzGQrL3IqnSj+TtqO2lxIS6axhQkkMYBj\nGc0KqhBDPM6QA6QdEzvi46H7qR0Zu6IDC3O9NDPIZ4+BsGMHjB0LF18M3boFZlhFtcd3ukD9Sqw9\n+rPHj26Hm0+vvOzx8OEC7bF3L/hhOrRrF/66lZU9BsLUqWsZOvR7cnN3hL1WUdidbj0J+B3Tkivg\nzbzjnwC3Ao2BFn7nx+Wd0xQ4DKwAzpE017IdhZpmldfUHsOBazdsvcdMs9a9ovD3HFWg/f9g812Q\n+j7UPQtyd0LihXDyIqjSCSkdt+vBSqk95nCAbtxPPY4HoAmnk8UewAzApjJX8A6zho9oxKl04paQ\n7lNZtccZbGEHGXSlHl+xgYc4kWrE5n/f51DtQUNaUoNJrOMtltOZOgwk9FyYlezRH/NzvDzT1EPy\nEoPzirBHh8N8ky8JLhd89x1s2AD9+kFCQsH37NYe7XSuXtgV3rdBe7SaPd56u/lhxQ7nany8wbff\n1mPAAOu1x0WLTqd799phr7t/fxb33fcDkyev5JJL2nHvvady4YWjwl7XH7YGSUlzgIARRtLgIo9f\nB8phMw0SwbpZPTngPgwYEB/mH1KCLXcBTjhmTMnnGE5oPQ7imkHys7DGvDVNnoF2XwEO5P270miP\n/mjD1TiJw4sHB05yOIA3r4TByPvTu0jHRRrVaUE3HsAR4tPOf95je7pzDtdaMu9xJ3uZyI9haY9n\n0ZweNKQxVRnK7/zINq70K6nwOVQ9iEZUZRgn4MZLfIiBzQrtsST4z3s8ua3B5bWc1PYWfsnWrQsn\nngi//ho4WK5aBdu3m+nXVq1gdw4MXWm99rg8FW6ZASv3mNrj06dBXPifEfKdq5GmPfrmPR6N7HHa\ntHUMHfo92dluPvlkADfe2JXExMSw1y2KSDDuWIdg06yzrwFnFUiZC20GwbGDzDIPR2zgawJh3xQ4\n8B20+19BmrUkGAY0/w/ENoa0u6BKLWj2bN43ncTE/40jmFrMMmClcxUgLu9aYaaKc8mkbl6dI4CX\nXNYzhcZ5b+mhBMjKyh79UTUvZQowhC68ywqOoy7tqJ0fIP8ilQxcnEVznBg4QwyQdrLHwWmF6x6/\nam+wdm3h8/buNd+EW7eGr7+GfftKXu/gQfjoI8jtDO/VMoOX1XWPdjhXfdqjlc7Vjdth8LPRukef\n9tili3XO1f37s7j//h/59NMV9OvXnnHj+tG0qX2y2dETJINNsy5/ATDg9AlwcB0sew6WDIeOd0GL\nS0O7Z6E065XBXdNoKPTuCnFNIP4YvN4l5GaciyOuH0b8JxjlTP1ayR4D38FNNnupSxcOk8IqxtKV\ne+jAjcSQUPYSfvDXHjvQg7O4+l/XHgPBiYEXcTINOZEGTOYfnudU9pJFbeJx46UrpXxACgA7tEco\nzB57xhpMr1dQ99i5M8WCJMDq1XDWWTB0KPz4IywtwRKR7obvU+Gf9XBKG5j8f9C2UdjbrRDtsbKz\nx4rQHgcNqsqoUdazxyefbMcTT1jDHqdPX8cdd5jsceLEAQwa1DXszFpZODqCZLBpVq8HDm2EtjdD\nTFWzBvKc7yBpFMy/HXq8Cu1uCe6e+WnWmMBp1kCo0Stv20tx7+tD3OZsvDU+xXNsQ2Li3yzj4uIo\nzB4H0ohHw2KPJcHAgYtD5JLBdmaRyl80phcJ1AtpnUhgjyXB9zK9n27cwxye4E9Wso+nOZle5biP\n3exxW4CuOR06QEwMuN2Fr0tKMoNkXBz07w9t28L06ZCVldcfIx1+2AMOA65pAp0c8NUE09TTtWv5\ngk8k1z3aoT366h7vvSdy6h7/+qsPJ5xgLXu85JJ2jB9/qa3s0R9HR5BcPC64NKvDCXW7wfoJ0Ory\nguOd74eqzWDHzOCD5L7Pg0uz5kHyFmOJ8iZj5GRhCJyHwJU+ErejKTGxDwW1BfvZY2FkkMx+kqhC\nA07kEWoQQvcjimuPla3usTT4zEluvBzGTRxOxnBGWHWPdW3SHnvGGkyrG0vH2OKf7OPjzQBYlE3u\n2QOpqdCwofm4c2ezBOSjL+G/i2FdJhxXHS5qCFXz3sBzcuDbb01TzyWXFDb1lIWi2qNVdY92ao+P\nj4ZG9eC3cXDWyeHvtaj2OGPqkV33GAglaY92s0d/HPlB0r83a6A0q1TwSukwFHbMgOk94OSR0PgM\n83jt42D585BzAOLrlH5P/6YBpaRZpRxME6+BYRQ3CDmcJ+Op0Rlv1XVQ/Qpit36Pp+7DeFo0whkz\nqPQtWKw9BoNatOZ47qY1/UO6riLYY0Mb2GNJ+Jx/OI8Wlc65WlR7LK3naqCUa1JSQZCUYHo6PNsC\nyIBrd0LHAKxp5coCU0/LMj432elctaPuceN2kz3OXWpf3aNd2uPUqfXo39/6ukc7tMeKZo/+OLKD\nZH6atX7paVZ3pulozdxmplgv+AVWvALzb4MGvaD1NbDqTWg9sOwAGUKa1e26BqiC1zsXp3MQjphB\nGEYnDMM0CBlGY2Jr/kluu8sh4zviUnNx7nHiangLhtEAh/OC4rcv1HO1lu3s0R8xVA05QNpV97iT\nvUziJ0u1x2BwAx0qpOdqMChNeywNgVKuq1fDmWeWUPd4FuTsgW++CWzqSUszTT19+5qdehwlbMMu\n9hhJdY+ZmfDk05GjPSYmHmTw4COPPfrjyA6SPjfrkF9KT7POvd50s+5fDlWbwqmjoOvj0PJykz3u\n+h2anmceKwv5btavS02zunNNg1BM3ASkdXhyn8PjGo4j5i6cMQUGIcOoSWz8TNze63HX/waj5m3E\nbZyCu+Fl0OAPHM6CvI5d7HE/SexlGe25Puy1fIg07TGDXCaxlutpTy3iA54XaoCsCPb4ek0nD4Qw\nsSM+Htq0gXXrCh9PTYX/roAnU0qY2NHMNPX88AMEcuFLMGcObNpksso6eZ83K4I9Wln36O9ctYM9\n7txpj/YYCRM7Ktq5GgyO3CDp72YtbQRW4rOAA3qPN+sV/3oQfukHXR6CzvfBGZ8VTseWhtKaBvhB\n8iDvRhzOmzGMqhjGiTjiv8OdOwq363bgVZwxt+SfbxjxxFT5Ck+LYbiz3yE+C5wHapNb82JiE+Zj\nONraoj16yGEtE9nIN9ShPW24Kr83aziwa2KHFXWPJeEvUnib5RzGTS8aF5rcUV5UFHsMpD2WhS5d\nCgfJdDfMSIV1M2HgBSXXPcbFwWWXmcxn2jTIzi557e3bzU49l1wCalzAHiPBufrulzD8HVN7tKvu\n8WjtmuPPHivKuRoMjswgGcoILHcGtL8N4vI+BfUeDzt/gTkDIWcfnPgcZrOgMv5YEmy5m2DSrIbh\nxHB0w+uegDOmwCAUE3s/htEMr2dmoSBpXuPAGfs20Jjclk9A9dOI3Tobd+Mz2V27D+nGEsvZ4zLe\n5DApdOIW2nBV/hzI8iIS2eN4VvMT2+hBAx7gBL+ZJuXHNlwMJ5nFFexcDQXt25ssxu0u7Fy9XTC+\njME3nTtDs2amaWfLlpLPOZwF978Nc93Qsbd92uP4wdDMIufqbc+b2qNdEzveGAH33xfVHv8t7TEQ\njswgGWyaFUzX6l+PQM32UCtvCkXTc+Gs/8Gmz8zHwdQmltSbtQgk5X8ycsYMJdczA1dWD2LiRuJw\nnpF3q+NQ7vNIBzCMwvqnYRjExD2Op0Fj3DlDiMkQRnom7poLaO4cTy0uKnufZcCfPdamHWfwLjXC\nmYuUh6J1j2dzjSVdc+xyrvqzxwfoxoW0LFcTcn8Uda7awR5PDUF7LA0JCVCvJYyaD//4O1dzTKdr\ngzLIdK1acNNNMH8+/P574U49uzNh6npIyYTTm0P/TGiYG9Z2gYqpe5z9PpwR+rjTYoiyRxOVSXsM\nhCMvSOanWe8sPc2alQJVGkGXYZC1G/68C9rcVFDiUaUxpM6HrFSo0rD0ewaZZoVMpBykbTgcJxKX\n8Avu3FfIdd2Gw9ELh/MaPO43ccQMLBYg/eGMGYzXqEF2+xvYX6Um9Z0TqMG5ZLOeeNqW+828MHsc\nTBuuPOrYYya5jGUVP7Pdcvborz0+RiOqVTL26IOv5+rwbPBk59U9+sVyn4GnLDgc5kitY481O/Xs\n2QvzdsCc7VC/CgzpBk2rQ0Y6TJhgGnr69i3Z1FMaitY9vn+rNeyxaNecEfdDtfCfClHtkcqpPQbC\nkRUkC7lZXwt83oHV8Ft/6DXOZI2d7jPLPrb+DzZNMtvQbfgIjr2+7AApwZY7KbU3ax7cruuBKsi7\nHIymxMSNIib2cRzOy/HkPo+8v+NwnkdMbNkGoVTnX6TVbE4LYyw1OJcUvUym9z2qO4bRyHi4zOv9\nUZw9vhdyjWNJsNO5arf2OIxuXBAh7DEc7bEo/J2rV3eDNrsoZlNKSgouSPrQrBn0vgKueQ22bDfZ\nY98W4E92JZg9GzZuhCuvhNpBtkz2sceM7Kj2GGWP9uDICpLBpln/ehCcCbDzZzNIVmsGxw6ERn1g\n21TYs8gMlB3uKPue+6bAgallNg1wu54FHMTEjQecuF0PkpvTD2fMQ8TE3ocj/rNC6djSkM5s0via\npsYr1OQ89vERyn2T5u4DHIh5kX1xDanHTWXvHdjPGpbxRlR7tEl7rAx1j8Gg6MQOn3P1880lu1yD\nSblCEedqN5hyJWz6s3RTz3//a04UOf74wOtG6x7t1R7tZo+VUXsMhCMnSB5Mht+DcLOuHGHqkKd/\nDDNONUdh9XgFYmuYTcxrdwr+niH1Zs3A4bwNwzCfbLHx4/F6fiE3ZyBoHzFxwRmEPBxiJ09Snb7U\n5uq8Y5k48ABQ3Vuf7XqWGKM+tbi4lHXsY4+/MIWNts57PImL6RUR2qNdzlWrtEcoPLHjuryJHb55\nj507Fw+SYLLJM84ofV3/ukd/5+rBE8yayq1bS74uJ8dMz65fbzpg44tQ2Uire4yyx8hjj/44coLk\nr89D9TLcrAf/gfUfwoWzoWoTOO0jWPOOebxOFzNgYgT3igtmBJY/jBZ4ch/BcLTH4TANQg7nucTG\n/w+PxzQIBdO8fDcv4iWTpryU/2Zen1vZEfsn+4xZ1OACjs16j5S4IcTEfE01ehVbw1977MyttOEK\njKOQPY6rAO2xMtQ9BkIg9uiPDh1MxuPxFD6+enXgIFlW3WOtWnDzzSWbevyxYkVBp54WLeyb9+jP\nHu1yrkbSxI4oeyyMIydI7vgbniyjN2vuIeg13mwY4PVAw96w4WOzmcC530O1FoGvLYr83qylNw3w\nISb2ftzahdt1F86YmwpKPIzGyDMfKRXDKF3/TOd30viGprxMLE3yjzuoSgvjY5JjH+eAeyKNgCpq\nwjbdyTHG51TJG10VadpjpDpXrWaPT6Z7GGUDe7xzlV/XHD/26I+EBLOxwD//FD4eKOUaiD0WRVFT\nz/79Je/zwAGzU09cU3hnhckeP7wNBve1vueqnfMej8aeq1OnrmXo0O/JyfHw8ceXcdNN3SKGPfrj\nyAmSx11Z+ggsgPp+rwDDgJgq0GcizBsMGydD1+HB3cvXm7XedaU3DfBuBdwYDnMIrzPmXgzP93jd\n/8Pjnogz5kY87o9wxFxfZoA006xPFUqz+sMglma8RoqzLtvj36MmJ3Js1ockJ1xLc8cMPCTwJ48f\n9dpjpLJHu7THr7vDFWX8art0KR4koXDKtbxdc5r5depZtqz497Nc8NNKWL4NjusAs0ZAl9Zlr1sW\nIk17/PTTw9x3X5Q9/hs4coLk6feHdr7hMNOrhgNaDoA510Lzi8wpIKXBvzdrq9GlnprrugF5F+CM\nfYOY2AcxHM1wGAMxnH3xeqbh9S7CGTMIZ0zZBqHdvJSXZn0xIOsxcNDYeIK9zkakef5DLcChWLZy\nK05uIYMdnMX7lrNHq+serZ73CBXDHu2Y2GEle9yVbbLHaakmeyypa05JKCvlWrTn6tOnmQOXg0V8\nPAwYYE4f+f77AlPPP7theqIZgPt3hxNawrQp4C3D1FMaKqrn6tHKHiNZewyEIydIxlUr+xyvxxyH\n5YNPA2w1AM6eWnaAhKDSrD6XqsN5KTKa4nGPwev+mNiEeci7EIxjiIl9rOx75SHfzcorxNK0zPPr\ncxsxzgZsrPIoCdSiTs4SUuOyiDOahh0gI589dqMh4VOGf2veY3kQjPZYGgKlXHfthsdmwMgka3qu\nHnecOX7r0ynwwQyTPbZtBJeeCDXziJPP1LNhgzmrsqippzQUnff46n3W1j1GnatHDnv0x5ETJAPB\nk2M2C6jeygyQgfqwNr+w7LUKjcAKnGb1fXJyOM/Dq0PEV/mSXNe9uLLqACKuyl6AoEo+CtysfajN\nVWXvMQ+16U+MUYedugPhJpsDNAnh+pJQMdpj1Ll6qoV1j/7a43VNYEyQ7LEoiqZcUzLh239gTyo8\nfr11PVfnbYaXVkO6AQN6QNcWJb9cly+HbdvMmsrmzUtf0+uF0VPg8TH2OVd79YyyxyOJPfrjyA6S\naUnw96Mgjxko+0yEOkXyNIc2QM22Za8VwggsHxyO7nj0BtJuYuNG4/LMQUohN7sXsfE/YjjKFlcK\n0qwvh/QGn8luVvIDbuNE9sZXI55LOZ77gr7eH/axRy+z+Cti6h635/VcPVK1x9LgS7m6cs2uOXO3\nQ70q8GhreLFvWFsFCtc9XtQV3n8OdNhkjQcOBLjmQEGnnj59Su7UU1R7tIM92tVz1Q7tsVOn6lH2\nGCKO7CC56F5o0d/UHNeMhvUfwSkjC76/8xdzPNZxD5W9Vn6atfSmAT74WKLh6ILHPQGUgeFoTVz8\nCnJzbkfklhnyTDfr18XcrGXeGy/LeIODbKIF51CVq2jNZeUy6kTavMfFpDAqQtmjHdpj0brH8iIh\nAWLqw7s/Quphv645WbB3L9Qv+yUREAF7rtaFO++EmTNN5lgSvF6zjGTjRrNUxNepx07nqt3zHq1k\nj4mJJntMSoqyx/LiyA2SSaPMGZGd8ww9LfrDonsgc7tZ6uH1QP1ToO4JZa9VKM1aVtMAEwWNzO/B\n7boTr3cRcfG/AxAb/36Z1xe4WfuU6GYtDVuYzj5W0psR1Kfkn89NNjmkUS0AcyvOHofQnjLGPwQB\nO7XHsaxiVoQ5V7dVcN1jeZDvXP0H6qig56oPSUlmz9VQUZQ9ji+h7jE+Hi6/3AxE/qaeoti2zRy/\n1a8fVKlVuOdqJNU92jWxY9Gi0+nePchef6WgKHscN64fzZrVDHvdyowjN0hWbQatB5r/lxca94Vq\nLSE33Tw2+yro+hTUL6Olf35v1uDTrJIHw3AieYEaOBxn4Ii5AcPRCikXw4gtc42CNOtLIaZZd5HE\nhxzDpQEDpIt0FvIQWWzmJN6iHscVWeMQv/IFG1hm6bxHn3N1B6mcG3Wu2lb3aBV7BNO5OngmrEiF\nhy+G+AVgqPA5q1eHHiS/TzTZ42FXcD1Xfaaeb74xA2JJyMqCR56F31ZB02OjXXOi2qM1OHKD5DFX\ngftw3oO8P2SVRpCxBQ6uA3dW2QES8tKsU8tsGiDlgHZjOFrlBUjld9Bxxt7pd2bZv/JQ3az5e8DL\nMkYST206c1vA8zbxDQkspB6HSeQxTuFdanJMhTlXH45qj5Zrj/clQYwF2qMPgeoeJ6ea7eL8kZIS\nfMq16MSOkthjINSuDbfcAn/8AXPmFO7Us/8gTJ0D23bByV3g6rOhrQW/h2jd49GjPQbCkRskAWLy\ncizyguGERn1h+QvgdUGfyWVfH6Sb1etNwuN6FOEB7SYmfiIOx/FFzlmPw9EuBDdr35DcrOBLs66g\nFyOIKSVYVKEBqSRQFRFLQxbxGD14hXn8EpFdcyJpYoeVztWi2mN5natFUVrdY5cuxYMkBJdy9dce\ny9s1x+EwjTrHHmuyyv37YfEq+GUxVK8CN18KxzSFzAzT1HPmmXD66aGP34rWPZqIJPaYmeni7793\nWr7ukR0kffDVRtbsYE746Pku1O5Y+jUh9GZ1u+7F4exPjHMAHvdovO6PcMQVGIS8nl/wepfjcJRt\nECp/mnVnfpq1QYA0qw+tuBgvblbyHk3Ioh5LWcBwNlGXi7iNTpwc9H0DIdK75kTCvEfbtMdSuuaU\n1lggUJAMRnsMFS1awHmXwNV3QtJqkz2eeyrE+SkZXi/89luBqadWkKSqIuY92lH32KXL0cse58zZ\nwuDBUzlwYJPlax8dQdKH+ifDSSOg411lnxukm9WdOwqDKsTEmgYhh7M/btc9yLsdw9HC1Ccdp+B0\nlLg4e7EAACAASURBVG0QCs/NWnaa1R+t6U88dVjD04iGiMM0JZuNLKMjPTAo/6fQwvMerax7TOVt\nlkWc9mjXvEcrtccVqXBLnvZYWs/VKlVMFldSynXfPqhXr/Bxf+3Ryp6r/vMeP3wLUjabjQZKwtat\n5vitSy81mXAgROseTUQaexw+/BfGjPmLPn1a8tZbAxgw4B1L73F0BUmHE457pOzzQnCzGkYzjBjT\nICR5cTj7YhgtEekYgNt1Fc7Yp3A4Stc/rXKzlpZmLYoGnMof9CSDFTjJpilpbOQXVtGZ4zktpD1A\nRdY9WtM1pyK0R7ucq1Zrjy8ugA5Bds0JlHL1Z5PhaI+lIVDdY1pa6aae7Gz46itz3xddVLxTTyRP\n7LDSuXrffT8wefJK+vVrz7hx/So9e7z11mns2pXOqFEXcs89p7BsWaLl9zm6gmQwCLFpgDPmKqQi\nBiGjEdIWPO51SFllBkiwws3aL6CbNRDmM41k0qnGMTRhExnUwEMjWtAhpHWgaN1jtGtOz0pe9wjB\nT+woikApV58uGbDuMQyUVffoM/XMnWuaeqSS11m2rKBTT7NmFac9jhpVi3r1wv8AZlfdo//EjsrO\nHjMyXDz+eAF7/OmnQbRta8EnsACIBsmi2DclpBFYAIbhYzVewInD2RdP7gsgFzHxZRuEwnOzvkk8\ndejMkKCvA0hmA0uZzRlcQQd68C1vk8MhruQxahN8ZXika4+R4Fy1S3sMhT36I1DKdfM2uPZN+HK5\nfeyxtLpHh8M06rRpY3bqSUsreb39++HDD6FuPXjrHVN7jLS6Rzu0x0hljw6HvcH8yAySgfqzlgXX\nbth6T5lu1kAwDGfevx2QdxExse/icJRuEArfzRp6mjUXFz/xKU04hhM5CwcOrucpPLiJIyHodQpP\n7Igs9mil9ug/79GOnqulzXsMFUWdq0+Vs+dq586Fg6RvYocaw4SHKoY9BkKLFgWdelasKP59lwt+\n/Q0W/2VOHpk3G3oEUQ1WFnbu9HDHHQeYMSObQYOq8vbb1rDHqPZY8ezRH0dekExdAIvug3OmQ9Xg\nzS9mmvVuQmkaEAiG42ScsSNwxpZtELLCzVqeNGs6aVzOXTjyDDpOYnCW8HTYxRbiqUJdGuUf82eP\nDSOAPdqlPc7L8XKrjdpjnE3ssWO98Cd2dOwI06dDZnbBvMe2jeDWvqY5J1xs2Aa3PV/+eY8JCaaj\ntW1bmDGjwNSzdRtMnQaHDsH558Gpp8CsWeb5pZl6SkNFaY9Hq3N19uwt3HZbxbJHfxxZQdKdZQ5Q\njq8LCaUPMS6GfVPgwLdB92YtDYbhJCa2bINQQZrVfjerDwVp1sup4xf4SsIGlvMr7+CgClfyNHVp\nFK17JLLrHof3hGdCnPdYEqpUgUNOGPcruNwF8x5z0kt2uQYLq3uudu1qMsvPP4eJk2DRYmjRHG4Y\nWLBHn6lnwwbT1BMXwu/cX3scNKgqo0ZFnatW4d9kj/44soJk4tOQsdWcDekI4V2gUJo1uN6s4cLD\nQb8RWBXjZi2aZi0LS/iNhuzEiZevGc21PMQoviKO2ErPHu2uezwatMdAyK97/BPa1io87xFMA0+f\nPqGvW3TeY6jsMRBWrYY3R8GO7XDB+XDKySU3F0hMNMtFfKae0hCd92gv/m326I8jJ0juXw47RkKP\nV8tuFOCP/N6sZTcNsBK7eflfS7MO8EuzlobOnMpCEqlFUwzS+Y63yKIG/bnAkgAZyXWPVjpX7a57\nDEd7LAr/usex98PuBcWdpKtXhxYkfexx+Gh75z3+MN1Mq37zTdmmnrPPht69Sw6mkcoes7Jy+fjj\ny7jppm6Vmj0OH/4L777777JHfxw5QXLZs9DxFOgSxNgrf+ybktebNfw0a7AonGYN1c36Vlhp1r4M\nKKQvlobj6U1VqvM9E6hJDk5WU4fjSGIzp3F8uQNapGmPFVH3WNnZI8AHs+H2CXnzHm+FZnXh0xQz\nTemP3bvNYFM3iPe2os7VEfdbP++xqHP1zjtNnXLlypKv9Xrhl1/Mn+uKK6Bm3pCLSOy56qt7jISJ\nHb6uObt3Z/zr7NEfR06QPLwLTv+pwtKsXu8SDOPE/CbmwaKwm7U8adYVYaVZu3N2SPdsQ1eu4h5m\n8BYOOtOATHYzn+nUpT+h59SidY+FtceBeezRDu0x2LrHYHHlyRAfC4N6FzhXu3QpHiShbDZZEewx\nUN1jQoKZUm3XrrCppyi2bCno1FO7duTOe6zs7LFo15yff77xX2eP/gj/r1EKDMPoYxjGNMMwkg3D\n8BqG0T+Ia840DGOJYRjZhmH8YxjGzUHdrMNd5UizBt80wB9e70pys3vh9XwY0nXw77pZL+DGoNKs\nonD+rBltuZER9OIKcsmiOpk0puxxX/7I4P/ZO+/wKOrui38mm04oIaH33nsTEQQrSFf5CQhEqlgQ\nsb2iNAU7qCgqICKhKPoqvQpCKCo1QIAUeguE9F422b2/PyZLNnV3toTie55nH9jdme9Mkt25c889\n99xs5nGMaRykDmVZRC/6UMfuAHkFPSO5xHtEMYjybKaBQwLkX1lG2sZk812agU/L6djnb3+AFIFV\nkdBiHxxIVLPHn9rZHyCzDfD+X9AxEHKMavY4p4djAySAbxkY2S1/a0fTpkVTkqGhxa9z7gr0HA+T\nP4MxAyDkF8cEyH37oU0HWLxEzR737CrZGKB1azWrrFmz+G3S04V339XTuHEihw/rWbfOj5UrK9od\nIPV6IzNnRtC58z4ADh3qznvvNbE7QMbHZzBy5FoGDlxNhw7VOH36RQIC2t6xATIo6BKtWn3HDz8c\nY/783gQFPXdHBUhwfiZZBjgO/ACssbSxoih1gU3At8Bw4BFgiaIo10VkR4k7Nxih7cys9GYtCJFs\ncrICUJTGuOhGaTpkftMArWpW+2jWBxlcIs2aTBrRJFCPauiKoCi98KEqdahCHWrSkE50sfoc7ra+\nR2fMeyyYPTqj71Fr9hgWCZnZUN0XqpRXszut0zJMxgIFs8kbNwpTrqVVe9TimuPrC2PGqC49e/fm\nr6+mpBjZuDGTs2dzaNXKm+HDfenUyTHZ4+jRau3x3Xcb8c47/77ssaBy9U7LHs3h1CApItuAbQCK\ndX+tF4ALIvJW7vMIRVEeAKYAJQdJzTSrdd6sBWHI+RiRENw8DqAoHpZ3MO13i2btbvMILGepWfdy\ngiOE44JCAin0oj0tqY8/+esi5ajIs7xVzCqF4Uzl6ttEcuguqz26K7C2PQwqpYkdJWH2Oli2H7o2\nhOBLsGoitKtr27k0b26ZcjVXrpbkmqMVe/fBmPH2ea66uECvXuZOPUJISDZbt2bi6qowdKgXTZq4\nkZkJS5aoop5u3bSbJfxPuaoiKOgSY8Y4tvYoIixbdpUVK0476CzzcKfVJO8DdhZ4bTvwhcOOYBfN\nGoIhezY61//gotN2C3y7vFkLmgYURBKp7OIo4+lPDSpxgnPs4TiXuMEAHqAithX6D3GT+Xdh36Oz\nlKuOzB5DoiGgmHmP1uBCNOw8DUFToZYfTP8NJq+CBSOhdW3t59O0KWzalH8IMqiUa7duzssezT1X\nt25Ua4z2oHZtGDjQwJAhaQQHQ6tWbvTp44mXV97n1iTqOX8eBg/OE/VYwv/6Hp2XPUZGZjBhQghb\ntkTTt6/9N8sF4dSapA2oCtws8NpNoJyiJW0rCSaatd63NtCsz6EojdG5zdB0SBPNWpV3bFCzmkwD\nbPNmfYD+JZoGJJNOTSpRg0oIQhsaMp7+gMIC1pBIisVj5WBgB4eJJYlUspnLMaab1R57O6D2eLVA\n7XGTg2uP3zqp9vhPQl7t0d4AWVTtcXYP7cYAYdfBx1MNkACzn4aavuq8xwy99vPy9oZ69Qq/fjoc\nuo1yXu1x0fd5tUd7A6SIsHx5Gh06RHHtWipffOHO0KFe+QKkOS5eVEU9YWElr2uqPXbqtA8R59Ye\n72R6NSjoEq1bO7b2aMoeW7QI4tixJDZu7Mz772vQpViJOy2TdC7solk/cQDNWvpqVkumAb6UJYEU\n/uAQj9EZAC88eI4+rOIPbpJABYqnbgRhMRu4ySH+ogaXaUAcRqdkj3dL36Ozlata+x7DIuFqPDSv\noRqOd2sEAYshKAx6NlO3mTUYHv1UFea0raP9/Fq0ULMrUG8SDp2CnYegcu07o/ZYEorre4yPV3sq\nr10rer+MDPjlF2jfHnr3LuzU8z/laulkj6NG1eTLL1vg6+tOcHCkA846P+60IBkFhdKeKkCyiBQj\n1FYxZcoUyhcYPT5s2DCGDVNnPdpPs75fyjRr6ZgG+ODFYHrwEzuIJIan6Ek5ygCqmCeSWJpQPAen\noHCaC9QmnQxicUWhLi14lFoOUa46c2LHFQe75qy6Dq84oe/xw39gzj+21R5nrYHVB6F1LbiRCM/3\nghHd4I0+MGMN7HlHra01rgYPNYdfDtoWJE2Ua2wCrA+CK1HQqQWMGOi47LG05z1WrAijR6uinn37\nih+/FRyc59RTvbpza4/mfY93eu3RGX2PpuxxypTTKMpeOncOJiHBg4DcHoikpCQHnHl+3GlB8h+g\nT4HXHst9vUR88cUXtG/fvvgNbqlZrR+BBSaadbRdNKttI7C+yB2B5RzTgBvEkUgqvvjQkJpMZBA7\nOcIHLKcLzTEiJJPOQ5TwO83Fs/Tlv2xCwR0fkknmFF9Tnsm0tSlQ3u19j46sPZpcc2zpe4xOhoMX\n1EBYpTz895BqBtCmNox5EILCYcJS+D73I+bqAp2KoE2tgacnnI2C1RvBxwsC+kPd6hAfBwkJqorU\nFjij9gjWu+bodKpQp0EDNass7hocF6c69dSqlcrnnx8lLOx/tUfnZ4/v4eub/4sWHBxMB0eMdDGD\nU4OkoihlgIbcmkZMfUVR2gDxInJVUZSPgOoiYuqFXAi8pCjKJ8BS4GHgaeAJu04kH82qbQSWqmY9\nYQPNmnRb1awlmQbs4TgHOU1lfDnBObrSkt50YTiP0p7GHOcctanC/bS0eMwcjKwgikhqU5MbeCL4\nkspuIvDFkwCaWX3+4Lzs0TSxw9HZozNdc2xVrppwNgrO31QDJMCQzrAnHN5cDdvehEWj4ZFPYOKP\nEH5D/XlmDtZ+nFvK1b+gUxN4pAu4m7XRnj4NDzygfd3bkT0Whzp14IUX1Gz51KnC7xsMQlBQHHv3\nxlOzZhV27WpL9+7/vuzRWcrVwMBrvPrqKby9dWzc2Jl+/axzDXMEnJ1JdgR2A5L7mJf7eiAwBlWo\nU8u0sYhcUhSlL6qa9RXgGjBWRAoqXq3HLZpVuzer0XjSDjWryZv1QxvVrM6hWRNJYQeHmcRTVKEi\nsSTxEzv4it8YyeM0pQ5NsZ5vW81ZLpHCdLqzlGNkc5WO1CaDMLaTTmW86WPFendj36O5cvVOcM0J\ni4Sjl+CBxlC3EnRrrAbIhbtgYu4904JRUPklWPmXSrtuf1OtV56/qWaXWmA0wterYeoCVbm6dQkc\n2lW0ylVLkCzomuOM7NEW1xyTU0/DhuqsSn2uyCkqKpN166KIjtbTo0dFunf34++/FSpVUmloW/G/\n7LH42mNpwtl9knsoQUErIqOLeG0v4Lh82QGmAfbRrFpNA+Y51Zs1ByP1qEYV1A+wP+V5hafZygF+\nYDMTGEBNKll1zPMk8RNnGEoj7qcaLfFjBgfZxwXKA95kcJI4i0HS2bXHf0vf4y8HoWM9WHsUGlSG\nT4eqw4/XHIGHm0Oj3PUmPw4hV9X/16sE9SvDgxov5uevwuhZhfseYy7mCXhMuH7desrV1Pd4/bpj\ns0dzz1V7JnYoCrRtq7aL/PKLkdWr49m3L55KldyZMKE2VauqQ8szMmD1anWY8+OPaxu/ZZ499uvX\nmIUL+/7rPFfNa4+3I3s0x51Wk3QsboOaVRBi+CbXm9UWmtX2EVjVqVcizSoI3nhwk3hWsJ2hPIwb\nrghCH+4jhXTiSbYqSOZgZB7HqI0Pw1ElhuVw52O6MhsXziPUoA6v0LrYNZzZ9zg9xcAXTu57dGT2\nONpsYofWvsejF+Hvc3DyQ/Uivjccen4EvZrBoPZw7LJKsa57Vd3+3E3VRAC0N8Rbcs1p3rxwkATL\nlKspe/xqAXS7v/Rrj1px+XIS3313nNOn3enRoxHdu/uh0xX+ZR49mifqqWbF/fLdnD3u2DGSBg0c\nkz2OHx/C1q3RBATU5IsvSj97NMed1ifpODhEzfqWZppVQaEOS6nBp7fBm3WERTWrN55MZBB6slnO\nNs5y9dZ5xpFEDMXMECqA1ZzlIim8TjvczI7piSvv0ZUXeJQP6I5nMfdhBT1XndH3+JmT+x4d6bma\nbbC97zElE6IS1fFVoFKsrWrCuKVQ3hveGwyxKfDkfOjxAVyNg8dbaT9fazxXmzXT7uVq7rn6+WeO\n7Xts0SLqlufqihWO9VxVFDhypDmBgf5UrFj8dz02VnXq+buIsWImxMdnMGLEmru679HeAGne93j8\nuNr3uGxZu9saIOFeziQdomadadOhdZSFEnoLCx3TQd6sJZkG/MMpooinKhXpSkseozMhnGMNe/HB\niypUJIk0HraC6TanWRtRodD7rrjwIEVPrf1f36MKe/oeC6K8F7SrA2+tVoU3n26G13rDd7vgi23w\nZl/44y0IjYSzN2FYV23rm7LHqV9DFQuuOSZjAWso19Loe3TkxI6SXHMmTlRFPaeLcUUzGOCPP1T7\nvsGDoazZ5eFuzh6dUXscObIm8+ff3uzRHPdmkLRLzfqJTWpWe2CvmrU69Uo0DdhNMMc4S3Pqcphw\nutCcGlSiFpXpRDMOcJraVKGnFRlsNkbmFqBZrUUM2bzKNafWHu915WpaFni7qzRpjgFcdaqVXEB3\nWLADnv8R6vqrz09cgXK5HydPN+hYX31owbkrMPb9vHmP1niuFke5mmzqIL9yde4nMPkVxytX7ak9\nmsOavkcvL3j6aVXUs3VrnqinIC5cUJ16BgyAypXvXuXql18+zqRJXe6p2mNxuPeCpJ0jsGw1DbAV\njqBZS/JmjSOJvZxgCv9HOcpwiRusZS9hXOY+WvAIHRmA9dLDX3LVrF/RPR/NaglJGBjBJVIw8hU1\nSEHwspPt/zcpV0OuwIuBqmOOhyssHqPOdgTQuajCm+6NITkDKpTJ/TmS8hx1tE73sGdiR7Nm6pzG\ngirX06dV0YuzlauOrD1q8VxVFGjXThX1rFmj3gAUhfR0eO+9WLZt24fI+f9lj7dRuWoN7r0geRvU\nrLYivzer7WrWkmjWWJKoRkXKUYZIYrhGDJ1pTkNq8hM7cMOVB60MzpZo1pIwmxtEk8P31OZtLpFI\nAqHUYxbVbTIc+Ddlj1fjYMQimPQI9G6tGgKMWgRfjoBqFfLO3cVFDZAHz8NHGyEpI0+gowX2Tuzw\n9oa6ddWsyRz/HICPPoOoqNvf92gJer2RDz88ywcfaHfN8fNTx28FBcH+/fnrkBkZ2Wzdeo6TJ2/S\nqFFDAgL68OijnpoFVKUFZ07scHT2qNcLoaHZdq9TEPdWkCxFNatgRLEzE7JPzbrKomkAQC0qk0om\n77EUV3Q8Sifa59Kk6WRaLdSxh2bdRQrrSOITqjOD68BF/DCynRyq4M6LVracQOHa44aKbjR1sz9j\niMqC5086t/Zoi2sOqM45bWrB+FxGfd1k6DMPVh+AFx4CT/f8KtUFO9RWkGkDtR1HS+3RElq0yAuS\nej38uQsOHYZWrWD70Tu79ugIz1WdDh5+OM+pJzkZwsNj2bTpDDk5RgYNakrr1lXIzlZYskTdtmtX\n7WpjZ8GZ2aNJuerI7DE4WM9zzyVw5Yp11zMtuHeCZCl4sxrJQsgEFHQ2jpAywX6aNYFBTCxRzaq2\nfHgynv5EEcdFbpBC2q33Q7lEDSsDlD006zSu0xMfnqQCq0kgExd0GGmFFwu5SCVcGYLlJrp/U/Zo\nDh9P2HxC9V6tVkENim/0gan/hac7qdM8YlMgLhWaVIOl48BN4zfbltpjSWjaVKVcL16E9RshJQUe\nexQGD7I/QJZW7fHw4e60bWufa07duvDMMxkMHRrC/v0ZNGrkR//+jSlbNu9G3CTqOX8eBg3KL+q5\nHbibao96vTB7djIffZRCq1ZuLFxYAZNdt6Nw77SAJG7LHYH1ndO8Wa/xCteZwTl6E8UnZBKOoD29\nd4Q36wP0L9E0ALhFY5bFm0bUoj1NiCGJZWxlDXtIJJXedLF4THtp1gyMzMmlVZdQh0o0Ip4qCFlU\nI4qPiCCY9GLXSDcKryXl0D0uGz8XOF7ZjTd8XO0OkFFZMDgYRpyA3v4Q2sMxATIkGrqsUNs73u4C\nRwJsD5CgBr6nOsKrK/Ne69sWqpWHRbvV559tUQMlaAuQRiN89TO0HgpXb6rZ44K37R+IrCjw19+w\nbDn4lIGJE1QFa1SUqnK1FdevGxgwII6AgAT69fPi9OmqDgmQx48n0bnzPj788CzvvNPIIQESVOVq\nx47fcvJkEO+/X52AgJb5AqQ5zp9XRT0REXYf1iakpuqZNGkLvXoFUqtWeU6efIHJk++zO0BGRmbQ\nr98hxow5waBBVTl9uqdDAmRwsJ6OHaP5+OMUZswox6FDlWnc2M3yjhpx7wTJqE/t8mZ1dV9WIs0a\nzQJAoQYfU5vv0XORm3xGKns1n6pJzdqWKU5RsxYFQaiADy2pRwV88MCdUfS2uF9RpgHW4s9cmnUa\nVamK+uEtj45AGtCRaoSRA4AOV3yK+Sjuz+17/C533uN+R/Y97nVO32OHAn2PtrZ2mOONJ+BiLCza\nlffaQ82hTu5MyHcHqDZ0WmBN36Mt2LcfWreHoL1q9vhcgFqnM6GknsniYN73eOSIY/seZ81y/rzH\n0NAXmT69MRMnKlQvYdZBejr8/LOahWc7vrxWLMz7Hr/88nF27w5waN+jad6jI/oes7KE6dOT6Nw5\nGp0OjhypzIwZ5XBzcw5Xfe/QrU70ZhUMZHOFCjyJC1540YLaLCSOZVznXSqTiC/W1UDzvFn7OXUE\nVkEoKLiioxPN6KRhP5NpwNf00EyzTuc6vXJpVnN44sICajETF7aTwGIa0BjPfNukG4V3UwzMd3Df\n451ceywJTarBzEEwcpH6PDlD9WRdPEZ9Xk5DMuXI2qM5Cnqu/rYa1q8v3EBv3gpiDW5H36M9KKnv\n0c8Pxo6F3bvhr7+KNxc4fBguXVKdeqo6gN0oDndb32NwsJ6AgHjCw3OYMaMcU6eWdVpwNOHeCZLV\np9pAsz5nFc2qoMODpiTwX8rx2K3X/XgOV6qQyh6rgmR+Nes4q88V4JqV3qyHCKM5dfEpkKEKgoJC\nFHF44UF5Kxr4zWnWhmijnkw06+xi1Ks6FOZQk1nUwLXA+872XL2T5j1qQd+2sGSMOrHjyEXY8jo0\nK9qzoVjYq1wtDsVN7AgJKaxyjYyExESoYIG5d6Zy9XbOe9Tp4JFHVFHP2rWqqKcoxMTA99+r2953\nn+NFPXdT7TErS5gzJ6/2eORIZdq0KZ12kXsnSJZ/WNPmWk0DKvIsaezjPIOoylTK5NbyPGlMDAsw\nkITOQiCxxzTgDytGYK1nPzs4RAvq05su1DMzV1dQ0JPNPkJ4zIpcMo9mLWszzfoJ1W/RrMWhYID8\nJCWHqSl3T9+jueeqPa451uJJLTSAGezpeywJliZ2NG9eOEiCmk3ef3/x694JfY9aYItrTr166vit\njRuLp6ANBti+XXXqcZSo527rezx6VM/o0QmEhWWXWvZojnunJqkB1qpZs4nKFecYcMGDWnxLOR4j\nkre5xuuk8CfXmU55+lkMkI4wDejNyGJp1hTSuUwUbzKcalRkGVvYwWHSyLi1jQ4X+nCfVVlknjdr\nW000ayI5TCuGZrWE79IMvJ1i4B0fB9ce98GBUvBctTdAJqRBUvH6JZvhzNqjyXN13qdFe642a1Z0\nBlScfVtp1B7BebVHrZ6rXl4wZIjqwONWwv2kSdRz5oxdp1uk56q9AVJE+PHHK/lqj4GBjqs9dulS\nOrXH4vCvC5JaaNZrTEbPJZRc6zQXvKjEi9RhCWAkjQP48ACVeKHkYzrAm/UB+pdoGlAWb57iQari\nxyB6MIxHOEw4y9hKPMn8wSEWsaEQDVsU7FGzziGKzBJo1uJwLkd4PTmHF71dmFNOVa7+lmHgq9Qc\nTcc34UZmfuXqaQcpV09EQ+flapD8jwOUqyZsOgYtpsI7/7V/LRPMlavXoh2nXE1Lg8lT4MGHoGoV\nOHEUprxatDFAmTJqG0RBmChXcxSlXHUEvXr8eBKdOu3jgw/O8u67jRxGr27YEEGLFt+yadMZAgMH\nsXHjMJts5RQF2rdX/V8tiXp++sk2UU9qqp6XX1aVqzVrliMk5AVeecV+ejUyMoO+fVXl6sCBjlOu\nHj2qp2PHm/mUq6VFrxbEvUO3WglrTQNiWYIb1SmXqwDN5Ax6LqKjPGW4j5p8cavOZwnO9mY1oQaV\nEFQlQFPq8BbD2chfzOVncjAwyYrRXTl2mAZooVnNYRRhdGI21Vzg03LqR/LHdAOv6uPQuRjQp/rz\nho916xWsPf7eHp68w/oezZGQprZ2LP8L+rSGqf3tXxPy1x5ffgY+muTY2qOWeY8tWqj9kgVholzv\nxtrj5MnbWLkyxKGeqyZRz65dJU8MMYl6nn4aqlgRj4KCLjF27AZu3Ei5K2qPs2cn8/HHpV97LA7/\nqiBprTdrJme5ySc0IgiAm8wjkzAUPMjmCuUZiD/jAAELQdLZ3qwFYQraRoy4omMwPQjhPA/SglpU\ntrj/ajtMA4pTs1rC12kG9uuFID83yrgoGEQYm6infvUYAGbFu1E13ZcR3iVfjaOy1Ikdd0vtcfNx\nmPCjalq+dJw6INlecYYzlavvTlfnPWr1XDV5uRa86J8+DXXr3jvKVUdAp4NHH1WN0tesUU0YikJM\nDCxerG7bpUvRn5uCtcft20f8r/ZoA/41QTKPZm1ikWZ1ozIeNOYyY6jAINI5TG2WoKAjmW1km8jh\nWQAAIABJREFUcALAoi1daXizFgdTUD3LVapQkcfpbHEfR5gG2EKzTk0x8HIZFx70UM9ZAbq4uRCZ\n7U5VndDEA17MTMTfxZfenoV/56bs8ZVQcL0Ls8fFY1Tjcntx/qqaPTrKNceE4pSr1sJEuZpnkyLC\nli3ZvPFGLF5e3BGeqyXBWdljcTAX9YSFFb2NwQDbtuWJenzMpAaloVzdsKET/fvb/4Uo6JpzJ2SP\n5vjXBElr1Kwm+lRHeRqymVi+5yafUo330OWKXTxoQiK/YyAld25k8bhopzdrdepZ9Ga1hEbUojaW\nP8j2mAbssoNmHZNLs35cNu+j6KIoBPm7MzKhDr9nGqhX/QKVy8CwaA9iPMrganbbXFC5+lUL8HfA\n9yskGgKc0Pe4+bhqUO6M7LG0lata0Lx5XpBMSTGycWMmZ8/m8PjjPvz0k88dnT2Gh8fSq1dgqc97\n9PaG//s/CA5Wg2Fxdchz51RRz8CBUL363adcfe650u171Ip/RZC03ps1DSELPZfxpj3+jMeXZ1DM\nGt1jWYQPPSwGyDSuE2anN+tgC96s1sLDisBlUrPa682qBV+nGdhnRrPmO2dFYbWvG68mu/BzWjkU\nRZjg6XErQN4NnqvmMM8en2gDi0Y7Jnss7b5HW6FSrsKJE9ls3ZqJq6vCM8948cgjblS08/fgrNqj\nCQ0a+DJ8eEtef/3+Up/3qCjQoQPUqQO//w43bhS9XVoafPhhItu27SEpKfSumNhxJ2eP5rjng6QW\nb9YbTMdAEgqueNIKf8bnMzKPYzk5xODPhJKPeYtmtd2b9UEG20Sz2gJHerNai7M5RqamGJhURneL\nZi0IF0VhfjkdjdKqkynCG2XVq7Qza48m1xxn1R5/HA8BDzi+9rhrEfSysYfSHPbUHktCcrKBdevS\nOXFCaNXKjT59PPHyUrh2DZKSoLyNMc1Z2aM53Nx0zJv3uEPX1Ap/fxg3ThX1/PVX/vf0egM7d17g\n8OFIateuzdtvP8Izz5TRPEO0IO622uPadfDjMruXKYR7PkhaaxoQzQIEoQbzSONv4gikAoNwpxYA\nRjJxpzY1+MziMe0bgWWbN6utuF1q1jGJOVRzgY/KlpyeKIrCJJ+8bc6lQa+DoDfeHdnjlFUQuN+x\ntce7JXuE/MpVnc6dZ56pQNOm+T8roaHqmCgtMK89tmihLXsMC4shMzOH6tXLUqWKD0aj2J1xlQZM\noh6TU09KCly6lMj69eGkpurp3bshnTvXQETh++/VbTt31n5Ddre55sTFwaRX4efV0KO73csVwj3d\nJ2ktzaonkmQ2U4U3cMWX8vTFjWqksi9vLdIoS0/cKdkHzBFq1scZoYlmTSKVQ4Tdav/QApOa9XXa\n2aRmtZVm3a8XllYoTLOWhLQc6H0YvHVw7IE7u+9x83Fo+Q6sC1Zrj5tftz9AGo0w/yfn9T326GW5\n71ELCvY9Bgf70axZ4Zup4owFioNpYoctfY+zZ++hX7+fmTfvH3r1CuTYsRt3RYA0R/36MHKknn/+\nOUZg4HHKlfPghRc60aVLzVu10pwc2LpV7atMTbV+7WvX7q6+x3XroXlr2LYdVgbC55ZzGM24Z4Ok\nFjWrgiuVeAk3qtwafeVFSzIIASCen4hlseVjOmAEVjf6aaJZBeFn/mQNe8hEr+mY9pkG2EazmtSs\nJdGsxWFqBFzPhE0dobqn5e1LQrYBZue65uQY1exxjoNccwIWQb/P1UHJpz6E0T3sp1fPX4VeE+DV\nuTB2oHNccz7/THXNccy8x8KuObVru1CnTuHtTZSrJej1RmbOzD+xY9Ys611zLlxIYOfOiwQFBbBy\n5ZM89VQzJk/eRkjITY0/4e3Fnj2X6Np1IXv3buH11/0YP74tFSsWzVidPauKeg4ejCE8PJyYmJgi\ntzNljy1bBnH8eBIbNnRyiGuOXp/nmuPqqjjMNScuDp4dCYOfhvu6wOkT8Oxw5wytvmfpVmtNAwDc\nqEIZHkAxoww9aUkGp8ghjnh+ohZfWTymfaYBqyx6sxaFw4RxkvNMYABeWPagzTum7TTrLlJYa6ea\n1RLNWhB74uDry/BFM2hUJu/1tBx4/hT09INxtaxby1m1x03HHN/3CHAxElo941jlanq6qlw11R63\nbLA/OILliR0tWqiN8AVhiXJ1RO0xIiIWHx93atVSs87Zsx9i+PDfCQw8zpw5D+Hl5fhZhI5Eaqqe\nt9/eyTff5O97jI0tXtSTnZ3Ozp0b+e9/fahcuSp16pynQYNUJk7sj7e3SkHcbcrVtetg4kuq2nfF\nMucFRxPuyUwyj2Z9q0Sa1RyuBTIpb9phJI0rTMCXIXhQv8T97adZE0r0Zi0KSaTyX3bTkaa0oaGm\nY/5iB81qqzerSc2qlWbNNMCYk9DdF16pm/d6Wg48flRY5alnfFQOvxaj/DPB5LnaySx7dJTnasAi\n6P8FtK0Npz9yTPZoQr0asOAtx897XPQ9zP3EcdljQc/VlSsLe65q9XK1Z97jiRNRzJ37N3FxqiHu\n/ffX4tChSPbsuXRrm1mzevLbb2FERMRZ/bPeDpg8V5cuVec9mnuu+vurTj1FGcYfObKRlJSeeHv3\nJTW1A5GRfbl+vScLF24s5LnqqOzR3HPVGdnjk0PysscRzzo3QMI9GCTzq1lnWrcPOYWeu+BJDtEI\nRvwIsLC//d6sttKsOnQM0SjyuVNMA6yFhwvMbgQ/tAbz2Jot8FcSUE6ghoFnTwi7Yote40Q0dFmh\nBsm3nFB7XH9MVa7aUnsszn7MHGMGOd5zNSQYXpvi+NpjSZ6rPj5YTbma1x7feacRhw9bX3ucO/dv\nRoxYi6+vJ35+3hgMRsqX9+SNN7oyY0YQkvtLb9zYj4ceqscvv5zS9DOXForyXJ08+b5CdVRXV3js\nMRg5Mm9SSFpaDAkJPri7511XEhMhI6MKJ0968Oij2/PVHh1hDHD0qJ5OnaIdXntcu06tPW7drmaP\n636HatUs7uYQ3HNB0qRmdXVfViLNaiQLPZGAWpM0F70ouSx0ZV6nFt9YPKaJZm3DazarWW2lWYfx\niFWm5SY4Qs06jao2e7OamwZYC0WB4TXy06wAZXQwrAoQ48JQvY6q9XPod8bIcbP5fEVN7HBG7fH0\nh9bTq6EXYOx7sPh3OH3e+XfCYN3EDq2wdWJHixZFv24aF1VU7dHa7NFoFB54YCkrVoRw6NA4xo5t\nD4BOp+47enQ7PD1def75Tbf2cXVV6NRJ42DOUsCePXnZo7UTOxo0UJ16mjSBjIw4RPIHPhHh0KF0\nVq0yEBIS6bCJHea1R0dO7IiLg+G3IXs0xz1Vk7RWzap6s34KGMghhhrMxZMm+bbRc42yPGjxmOY0\nayUb1ayDNHizgn00q73erPaoWYsyDbAHbi6wsrVCjXA35oYJtNGDTvjmsjvft1Jdc57L9Vx1pGuO\nPbXH3/+Et7+CkX3h7BX46EdY/zm0auScL35B15zSqj2WhGbNYMuWwhl0aCh4eqq1x9BQ7bVHUyvH\noEFN+eabw3h5ufH331dZtSqEhg0rUr++LwMHNmXx4n488sgKJk7cRHh4LCIwc+adEyTtnffo7Q1D\nh4K/vx9Hjpy/9XpWloGIiDQSErJo3DiZTZt606iR/crV4GA9AQHOrT2uDIThw0o3ON6CiNzVD6A9\nIEeOHJSs9PaSld5SjMZMKQkXZYTEyo+SJdfkhnwoN2ROvvdTZJ/EyOIS1xARMYpB9svrskNGSrak\nW9zeHFflrMyTl+Sw7NC0n1GM8p2sk//Id5Ki8ZjnJFH6yAZZJmGa9hMReUOuSlsJlRui17Tf2Wyj\neF3PlJcTte2nFZ+dNwp/50ijv41yPV3kvf0irp+KtFwicuSGY44RnyoyaqEII0X6fCZyNc6G8wwU\n+eaXvOeTPhEZ8pZIxCXHnKM59u4TadBExNNHZN7nIjk59q9pNBolMDBVKlS4JlWrRsr69do+gyb8\n+KPIzJl5j2nTjNKjR4zodFulTZsgCQ5OtHqtuDj1HPT6vB+wc+fvxc/vE3nggaXyzTeH5PXXt0u7\ndgtl48YIERE5fz5egoIuyg8/BNt0/s7C7t0XpV69L8XLa47Mn39ADAajXetNmLBauna9IY0bZ4hO\nFytubnHStOll+c9/Vtt9rpmZRnn33UTR6a5K27ZRcvx4lt1riojExIgMfVYEV5EBg0WuX7d+36NH\njwrq5In24qgY46iFbtfDFCQPHnxBMtN0Ysg5XOIvMVZ+lEsy7tbzVDkoZ+UJ0UukiIgYJUdyJFmy\nxfIV8Lysk/XymETLMYvbmkMvWfKDzJSf5DMxiEHTvgfktLwo8+S4nNW0X7YY5AXZLc/LLtFrPOZO\nSZYGckp+k3hN+xmMRukekyX1ozIl1c4vuzU4mCASlyUSsEnE5RORaXtEMrMds/amYyLVXxEpN0Fk\n6R4Ro4YfJyUt7//D3xF568u855lZIo+9IPLBEvW5lnWLQ2qqyCuvqheZ+7uLRETYv6aISGRkjvTt\nGyNwVZ59Nk7i4rR9jsxx8GBegHz++QypUuWiKEqEjBlzSbKyrF/3nXd2ipvb+xIcrF5JMzLUP/iN\nGyny1FO/SHR0qoioAXTKlG0ya9ZuEVGD/Z2ElJQseemlzQKzpHv3pXLunA13YEVg795Y8fNbKLBC\n/PyCpH37DfLYY6vlp5/SLO9cAo4cyZKWLW+Iq+tVee+9JNHrHfP7XLtOpHJ1Ed9KIitXaf8+/C9I\nlhAk/9nvKtlZ71j8JSbKFkmQdSKiZoIiIpdknGTIGRERuSwTJV1OWlwnVSJlk/SXE/K1xW0LYrf8\nV76UyRIvUZr2S5QUeV0WyFLZrPmYKyRcessGOSMJGo+ZI10lXMbJJTGKtk/slynZQmSmBGXafjHV\nimUhInwssvKUY9aLTxUJWCQ2ZY8ZmSIBM0SWbRDR5ybS+4JFqj4qcvZy3nZ7j6qvJaXYf77m2ePn\nXzgue1y+3P7s0RwpKSLTpxukR48YUZQIqVz5okyYkCFLlli/xief7Jfu3ZfK2LHrpW3bhbdez8pS\nf+icnPyfu+HDf5e1a7WzKM5GUNBFqV9/vsOyRxH1b/bjj1ekXLktUrZsmAwefEFeeilc3ngjWmbO\nFPnoI9s+G1lZRpk2zfHZY2ysyPAR6o1d/0HaskdzOCNI3jPCHUWpbdE0AKA8fSjHY6a9AHDFj2wi\nSeYPhEy8aFniGvaoWa/ZpWbdietdoma1xpvV0YhMgcl/wsgW8Gwx4hAtMClX1x7V7pqzZT88MQnK\neEJAf3DL1Tl1aQnPPAqT5+Zt2709dG4BV6JsP9e0NHj1NVW5WqWy411zRo1KoG9fVbk6YID9I63O\nnUti2bIz7NsXT/fuFZkwoQ7Vqnly9ap1xgIAw4a15JtvnmDJkgEoCkyduhMAnU7J/dcl91jxDB36\nG4mJmdx3X027z91RMClXe/YMpEaNsoSEvMArr9g/0ioyMoN+/Q4xevRxBg6syg8/NKB163r4+zeh\nTJlKAGRmwoUL2tY9elRPhw6qa8706c5Trq5fU3rKVWtwzwRJndt7Fk0DTHC5pQY1AlCGzsSwgBi+\noSrTLO5vUrO2tUHN+oddatYLd42a1Vpv1uuZ8Ges2rdoD0Tg+e3g7QbzH7FvrYQ0eG6xmXJVY99j\nxCXoNxlGPAHfTFVfi4xW/3Vzg6lj4EYsTPwAYhLg+zVqgKziZ9v5mpSrpr7Hvbsd3/e4fn3RfY9a\nYa5c9fBIZ/z42vTq5X8rsEHx8xMLolat8rRqpd5oLljwBAsXHuXo0eu3gmNOjpHjx6MYOvQ32rev\nxubNw6la1aekJUsN5n2P1ipXLUGkcN/j8uXt6NKl6O+uSU1sCUX1Pc6ceW8oV63BPRMkXXTNNe+j\noF7A3alHBifw5f/woEGJ+zjCm/UxG7xZ7VWz3onerO+fhZEnYMZZaL4Xvr0MlzPU90SjDe3yU7D5\nPCx8DHyLsKwLugJ1F8L6syWvY4/natgFSE6FJnVhWG9YFwRZenj2XXjxI3huJiz6TQ2Ga+ZCdDyM\nex+WbYRl70ElX20/s3nfoyl7dHTfoyOzR1Pf44cfqn2PBw60pXoR/oJFGQukpelN5RUMhvx3VCLC\n/ffX4vnnOzBmzAYA4uLSiY5Oo23bqmzZ8ixvvdXN7vN3BFJT9UyalL/v0ZHZY1F9j7Vq5fVOmiMi\nQvUDLgnO9Fxt0Ub1XHVU36PBABev2X1qheEo3vZ2PcitSR49etQ2EltUsY71atY3ZIeM0qxmvZar\nZj0iOzWe292pZp2UWLJiJjRFpOFukSu5P9Jv10UeOiAy8rhIZIa2c72WLFL+C5GRG4t+/3SMCPNF\n2Czitlhk75XC2xRUrl7TqJuYu1ykzP0iny7Le833QRGvriIfLRU5c1lk6TqRlkNEDp9W39frRWK0\naaFuwVm1R3Pl6rp19tceRUSysgwyc2a4uLpulNat8ytXly7Nr3I1PZKS1PdPnIiSbt1+kGee+a+M\nGrVWMotRYpnqePfdt0Q6d/5emjZdIFu2nHHI+TsKQUGOVa6KqH+zpUsvS/nyW6Rate2ycWPROodN\nm4r+PZ8/X/S6mZnOqz0Oy609alWuloTwiyJdA0QqdPxfTdIpUNDhz3iL2+XRrFNKbQTW7TINWGun\naYAlmjVeD10qQC0vMAg8VQ1+a6+OwOp9GKKzrDumNTSr+T16JX8Y8DucMvN5Lip7rGFl9nj+Kgx6\nDfYfh4c7g5cZ479/Kfw4E94eDY1qw5BHoVEtdUIDqNSrvx3Zo7Mmdpiyx+Jcc7Tg2LEkOnUq3jWn\nJGOBq1eTGDFiDQEBbfjss0c5deoiHTp8wPLlawtt7+KicONGChkZ2eh0Cr/9NoQ+fRwwCNMBMGWP\nPXs6P3ssbmJH82KItqIo1+DgvOzRGbVH08QOR2WP81ZA22EQmwhzp9h9moXg9CCpKMpLiqJcVBQl\nQ1GUA4qiFDsaVlGUBxVFMRZ4GBRFqezs87SE2zUCS6VZm5Q6zWqrN6u1I7DqeMGpFJh/EUzlKF83\nWN0O2peDixnWHdMSzQrQ1A+mtgEuwgMekNIQHloH4dEFXHM01h7PXIaR06FHe1g7T6VYv/wp7/3m\n9eEZs1m9p89DXJLttce9+/Jcc5zluero2mPnzuq4ueJcc4rzcg0NhejoNNq0qUqPHj507DiSkyeT\nCA31ZsyYE1SpMpCIiIh8+0yd+if9+jXm77/H0qLFbb9kAHm1xx9+cG7t0ZJrTp06qslAQYSH51Gu\nWVnCtGlJdO7s+NrjsBH5a4+OMCWPuATdx8KbX8KLQ+D4z9CuqX1rFglHpaRFPYBngExgFNAUWATE\nA/7FbP8gYAAaAJVNDwvHsJtutYQ8mtV20wDbaNa1pU6zvm4jzXom26DZNGBHjEjjIJERx0RizNic\n7n+LBF61vL+JZh1RDM1aEAuOijBXpV1dvhOp9JptfY8mxCaIRMXmPT91TqTfKyInzPoSjUaVVn3z\nC5H2w0TW7tJ+nLuh79Ecx44lSps2QeLqulFmzAi32PdYHOV65EiM+Pp+LBUrDhZX19Pi4SHi6hoh\nivKteHgckipV+ktMTJqEh8eISH4zgduN1NT8fY9nzzqm7/Hq1XTp0+eAwAYZOTJY4uOtp0HXry/6\n93zpksjRo87re6xSw/a+x6KQk6OWNzzvE2k4QGS/WZv63dgCMgVYJCLLRSQcmAikA2Ms7BcjItGm\nhyNOxDQn0hbY4836h100q21q1nm3Uc1qyZv1dApsjoZzafCIP6zroNrLNdsLb4TB+JPg6gKjLCj1\nTTSrlyvMf9i683ypPfzaF/zPg9cZqFvWvokdfhXUrNB0J+5bDs5fg+S0vHPMyYGdh1Q1686FMEjb\nx6DQvEdHK1ePHnWOclU0eK4WRwVmZ/vTqZMPCQmt0eUK83S6xkBZcnJSSExsz8SJy4mNVad8uLnZ\nyTk7CHv2XKJVK8crV83nPW7c2Jnly7V5rhb1e87JEd5+Oy1f9ujoeY+dOzkuezxzOS97fOFpOLEa\numkj9jTDaUFSURQ3oAPwp+k1ERFgJ1DC5DgU4LiiKNcVRflDUZQiBsBox3WmcZ3pmvdzhDdraatZ\nL96hatYPzqlBcFUktN4HU0LB3w2Wtoaf24JRoGdFCGxt+ZgmmnXR41DMvNkiMbAhVI+C+l7wx5vW\nK1dF1PqHCeaqQBcX9Xn1StC1NfywTn1dUdS648OdYcUcNYhaC2f3PZpP7HCGclXLxI7mzYunXBs3\njkXEC4PhyK3XXVzqoijlMRia0aRJNN261bb7/B0B875HZ9QeTX2PJdUeS0K9euBpVpK4ft3A4sVp\n/PprNtOm3dl9j6baY5uhatvU3iXw+evgbf9H1yKcmUn6Azqg4Njvm0BxM1luAM8DTwFPAleBIEVR\n7LpXSCGIRH7Hi1aa9nPECKwH6E/Fu2AE1pxc04A5ThqBFZEKi6/Af9vDT+3gRHc4ngwPHVT/fcQf\nPm8Oz9ZQxTwlwdw0YIBGbcYHGyD0OiyfABXKWN4eYPdh6PCs2q7x8sfqay4FflTT8wfagpurGjQl\nt43FXeMs39Loe7R2Yoc1mDPnjE0TO0woW1ZtUyiIK1ege/cOuLgkkJOzg5ycIHJy/sJgOIqiVEAk\nDD+/9nafvyMQFHSJNm0WOr3v0Z6JHTqdOh0kJ0fYtSuTJUvScHGB8ePLMm7cndv3aF57NGWPD7Sz\nb00tuKPUrSJyRkS+F5FjInJARMYCf6PStjbBQBLXeRcfulOBIZr2veiAEVilpWbNvs1qVks0q0Gg\nmy/UyL2TbVQGdt8Hg6vCM8cgLNW6Y5rTrF9aSbOaEHwJPtwI7/aHtkXMNCwKh0/DxA9h+jj4z3Oq\nivW1eRCXWPi8ACqWh192QGaW9otDUcpVZ/U9OkK5akJOjmjOHguiKJVrdnY6QUFpuLgkAnUxGs9h\nMBzAze1JRDLx9AwmLa0f15zRG2clzPseq1d3vGuOo+c9Go16Fi9OY/9+PT16eDB+fBmqVtVZbSxQ\nHNauc07fo7lytTSzR3M4c1RWLKoIp2AaVQXQYsB1CLDYCTxlyhTKl8//BR02bBg9hh3HSBrV+VBT\nhpTGdcJspFlvcplM0hlswwisX21Ws56xeQTWNDvVrJZGYIlAFQ8IToYXT8H85modUgTeb6y2e1zJ\ngGZWmKGYaNYNT2mjWfU58Nz30KIGvDOg+O1EIF0PZXJbOWISoPf9MDjXIGnNXFXRunGv6qjjmvsN\nMgXEgT3hyErtX+R9+2H0OIiMVOc9vjLJ/uAoIqxYkc7kyYl4eiqsX+/nEGq1IGbNamJ5Iwto1gy2\nbctvInHkyEZSUnrSrt3DBAcvw2DIAaqRkzMDb+84nnvuMwwG+PVXeP55KGMlM+AoBAVdYuzYDdy4\nkcKXXz7OpEn2B0dT7XHKlNN4e+vYuLGzTdRqQWRlCXPmJPPhhylUqVKeCRPU4GhCWBg8+qj2G7u4\nOJj0Kvy8Ggb0h4XfOMZSLuISjJ4FB07Cq8NhzouFv1M///wzP//8c77Xkqz1NNQCRymAinoAB4D5\nZs8VVAr1TQ1r/AH8VsL7xapbk2WXnJIGEi+/liyXKgB71Kwm6KXkcV2Fj3l7TANsVbNaaxpgjjOp\nIk8dFRkaLLLPTOzX64DI90U0+BeEJdOAkjD9NxHX50SOXSp+G4NB5LlFIt7Pi/yTO2Rl8z6R6o/l\n327pOpEOw/MMyU+dU5uZbYFJuaq4iXTrIXLGQf3vkZE50q+fbcrV0NBkCQ5OlKgo9TPsiKZ3S0hP\n18sPP+QpLt94I1o6ddokXbvGSMWK/xEPj8kCvQXai7t7N3nxxbB8Cs3AQPXvVxpIScmSl192vHL1\n2rV0eeIJVbk6apQ25WpJOHIkS1q1ihJX16sya1aS/PyzsUiVq9bG/jVr8yZ2rFjpWOWqRxeRRgPV\ngQBacDeqWz8HxiuKMkpRlKbAQsAbWAagKMpHiqIEmjZWFGWyoigDFEVpoChKC0VRvgR6AQu0HthA\nMteZhg89qMDTmva1Vc1qDjes85E14XaZBqwjielUs0HNap1pwNEk2BED/ySoFOv0htDUB14NhScO\nwwunIMsI44qoSZnDRLPa4s167BJ8tMkyzbrmCCwLhfR68PjXEH4dnngA2jSGVz/L2270QDXLW74J\nUtJg1RZwtSHrM+97nPep2vfYyM7+dymi9qhFuTp79hn69TvEvHnn6dXrb44dS7I7OyoJ8fEZjBix\nhscfX0mzZnlpZEZGHCJVCQ2dTnz8cbKyQoDmwDD0+o58990EYmPz+iQvXICgIKed5i2Yao/O7Hvc\nuLGzXbVHE8w9V3U6bvU9tm5d9N/TWsq1qL5HR9Qewy8W7nsszdpjcXBqkBSRX4E3gPeBY0Br4HER\nMfmdVAXML4/uwDwgBAgCWgEPi0iQ1mNH8UEuzTpHM81qq5rVVtxub9bBaKsjfZ1mYJ8VatZPzsPr\nYfDNFfj8IpxIhjblYFId1TTgvgrQrzL8ZsUXwRrTgKJgLc0K4O2BWiAAKpWBxz6DyHiYOQH+PAzr\ndudt+2B7qFkFypaBOS9BAwtB3hwFa48hwY5Trvbvb3vt8cKFNHbujCEo6H5WrmzPU09VY/LkU4SE\nJNt3YsVgw4YIWrT4ls2bzzJ2bLt8LQpeXn5kZh4mKekyamIwEPABzgJlERnADz+8km+9vXvhzBmn\nnGq+2qMjJ3Zcu5ZB377WueZoQUmeqw0b5k2lMUdoqGXPZJPn6vY/HFt7nLv89tcei4PThTsi8q2I\n1BURLxHpKiJHzN4bLSIPmT3/TEQaiUgZEakkIg+LyF6txzSpWavyDm5Ut/5c7VCz2oq7Vc1qaQRW\nSDIsj4QNHeCr5uDpAj/mCiwqukPDMjCjEfStDNUsBD2TmnWEDWrWOetVNeuy8eBuoQL/RBtY/CQo\noeDlBZH+8NhcaFIf3hwF42er7R3vLoA1u6BW7rWsoNK1JBTse3RU9rhihf19j2FhqfgVIMlXAAAg\nAElEQVT4uFIrV148e3ZTatb0IjDwKhkZBgt7W4/4+AxGjlzLwIGr6dChGqdPv0hAQFvKl1eondvN\nUaZMJTIz9wEVUMmnP1CrNTVR77d/IzPTkzNnNuVbe80aSEhw2KkCat+jM7LHgn2Pjs4ei+t7dHdX\nA2VBxMVBTEzh103vDS/Q9+hI5epb8++s7NEcd5S61RFQaVbb1Ky2jsCyB4fsoFntMQ1wtjfr/Esw\nojqUc4PaXvBWfdVIIDP3Wns8Oe//JcEW0wATbFGzju8Fa16BMzfATa9SrgO+hCGPwVdvwc04uHRD\n9WXtoGHwjLM9V22Z9xgWlsIff0Rz7ZrqAditW0UOHkwgKCj21jazZjXmt99uEBFhpfzYAkzZ46ZN\nZwgMHMTGjcOoXj1vRIV5NlmlSl0gKffxGnAOtatsDPAEEEt4+OZ862dmqkIekz+uPTD3XHXmvEdn\nZI+WPFe1eLmae646uu/xTs0ezXHPBck8mvUDm2lWrd6stiKJVH67TaYBzvRmNYpaY3wmN4nXG6Gu\nN6QYIFYPVzNUI4F4K0yQbDUN0OfA6O+hZU3LNGtBeGWB/w3IuQhGF9h3E95arXqzvjMWVn0AVf2t\nX8+UPX7/Q1726Iy+Ry3Z46xZEQwefJglS64wbFgwK1deo0IFN954owEzZkSYRHE0buzDQw/588sv\n1+0636Kyx1Gj2qAUSEXML96NGz8BXEcVt/8ITAfeAQbn/v9LQkPz+7cC3LgBW7fadbpOyx5Ntcfj\nx5Odmj1a8lxt3LjoGzTzWZ6l1ffoqOxxVyjM22L/OgVxTwXJPJr13f/RrMVgdi7NOlsjzXo2x2iV\naQCAiwIdy0PNXBpVp0BZV6jsDufS4d0z0KcSFDFKMB9Ki2Y1R1wiBMyE2uVgQC2oXhbIgm42BLWC\n2ePxI/Dq5Nvf9xgdncXBgwns2dONX3/tyCuv1OPll09y8mQyY8bUxttbx4QJIbe2d3VV6NRJ2+fM\nHJayR3OUK5dnLFC7djfc3TNQadbmQGPU+qQJzTAYunLlyl+F1jl6FI4d036uzs4eTbXHU6cedHrt\nsSR4eECDIkbn3rypBseC2eOd3PeYmgkvLoOHP4bwG/atVRSc2SdZqjCQmkuz2q5m7conFmnWVBKJ\nJ4qaNMIF2692Jpp1AgNK3Zv1E6o7zZvVBDezOGqa8tGjIowOgft94a2SZ1vbRbMeu6TSrNMHWk+z\nmjD5M3VQ8u9zVZu5G4lwMQbu1xiknd336OGhsG6dn02mAGfPpnH+fDpVqqgK7CFDqrNnTxxvvhnK\ntm33sWhRax555AATJ4YQHp6KiDBzpva7hPj4DCZP3sbKlSH07duIxYv7FxsczdGiBVy9qv6/d+//\nsGHDr8A4sy32AOFAfTw9W5GREUpRrdSbN6sX9qpW9uDfjX2PH32UQqtWbhw5ot1SrnnzwkKn9HR4\nZjj8uQv694NF35Ze36Mt2B0KY5ZAdDIsGKWO3+v0rf3rmuOeCZJx/ICPnTSrJTXrP2zhGmcxkEM6\nqbSnF/VpQTn8EMTq4zrCm9UW0wB7vVktmQZYQuMycD0LZljxI9trGtCyJkztr+381gfBqq2w/H01\nQAJUq6A+rEVaGrwzDb7+Bu7vCls22E+tgpo9Pv98Aps2ZfLss9589VUFq6nVsLAUjh9PplOnCjRs\nWIZu3SpStaoHCxdeYuLEugAsWNCKypW3s3LlNUaMqMn27V24ejWD8+fTGTNGuzfqhg0RPP/8JjIz\ncwgMHMTIka0LUavFoXlz1VgAoF270WzfvpisrNNAW2Au0Cj3cYrU1D/x92+Buzvo9fnXycmBX35R\njQY8S2At0tL0vP32ThYsOEz37rXZvn2E3dQqqNnjhAkhbNkSzahRNfnyyxZ2U6ugZo+jRycQFpbN\n9OnlmDq1LO7u2r+XTZrk+Q4DhIXDptwS74pljjEkNxjU8XHTvlWFbnuXOIZaTc1USyDf7YIHm8Kf\nb0P9yhAcbP/aheCohsvb9SDXTODXozWdahoQKzfkB5kpyaKOko+QYPlVvpQtskxSJEHDMW+PacAb\npWgaUBzSckQOWPGrikwWqeBE04CiEJcoUvVRkf6TrWuKvhknEhmd/7U9e0UaNBHx9BH5/Au1Mdpe\nGI1GCQxMlQoVrknVqpGybp22z8zHH5+VVq12y6hRwfLEEwdk1Sp1BtnSpZfliScOyJkzKbe2nTMn\nQt588/St49qCuLh0GTFijcAs6dt3lURGJtu0zpIleU3uL70ULtBd4DmBM6JWvY0C6QJ/Ctwvp04V\nPQZq5kyRn34q/m+6e/dFqV9/vnh5zZH58w84xDjBaDTK0qWXpXz5LVKt2nbZuDHK7jVFRDIzjTJt\nWqLodFelbdsoOX7cfrOB5ctF3nxTpGUrERSRxk1FXntNJD7e/vMNvyjSNUBEaS8yZa5Imm2+LIWw\n67RI3SkiZcaJLNiR30TibjQTKDV4085mmtUaNWsmaVSlLmXxxYiRxrSjP+MxYmAN35BOilXHtMc0\nwESzDkMb9+cINeuHFtSsv1yHhCKEOKa+q9MpqoCni4WsTAQmbAfPUvJmNWHSp6rf6sJ3Ld89n7kM\nLZ9VH+euOF+5akvt0WAQJk06yd69cezf343AwHb4+7tToYL693/oIX/q1/fmzTfz5IznzqXTsKHq\n7WZt1mcOLbVHSzD3cvX3b0KjRr6AH+CFOpI2ElXU8wDQk9mzh9K1mNlCERHwV4Gy5d3W9xgcbL1y\nVQtuRsM338G58zB4EAz9P9Vw3lzAoxXOrD2+FAgPfQx1/CHkA3jpEW0tWLbgnqFbK/GSRpr1hiY1\nazkqEsd1gtlN+1yhjSfe9GUM21hOErF4U/IFIc+b1T6a1V1DLdQRatYgPzd8Srh4vB0On16AgVXg\n3QbQ0ewwigKpObDwiuq2Ywn20Ky2qlnXB8FPBWjWkrB0PcS4A+Xh0ZegpQfs2KYqV51Re7TFc1Wn\nU3jttQbUq6eOo9+7N46//orHz8+drCwjgwdXY+bMxgwceJgnnzxMbKwed3cXZs0qvdpjSTCnXAGu\nXfsHGAr4os5x90XtnwRowe7dS1i1Sq0BX7lSeL0//4QaNdRxUXv2XGLMGLX2OH9+b15+ubNDao+B\ngdd49dVTd1ztsSjc8lz9GRo3gn5PqMHRhLAwuN+GIYXOqj3uCoWxubXHr0fCiw87PziacM8ESVes\nuLrlQlWzfm6VmtVUayyLLz15mp2s5iZX6MlTeKE6cicRSwLRVKNeiev8zE5cb5NpgK1qVkumATez\n4FAS/N0Vfr0BQ4/Di7VhdC3wzU1aPVxgZiPwt/DdNlez9td2D3FLzXp4ljY1a3wSPP8B9O8BI/pa\nt0+HZsBaqOEDialwKA0UHYwa6Zjs0bz2OH9+efz8bFu0bl316hQRkcq4cSeYNq0xRqOwdOlVjh5N\nYs6cpuzYcR+hoamcPZvGsGE1NB/DntpjSTCpXE0CHk/PCmRknEYNlN4Ftg7F19cXnQ6GDIGFC9Xs\n3hwisGpVDlev7mLx4n+cVnsMCKjJF184pvYYHKwnICCe8PAcpk8vxzvvlLV7nBWoytWJL0F2NqwI\nhGw9XL6cf5urVyE5Wf07WIPSrj2WJu6ZIKkFFzWoWcM5TH1a4Y4HtWjMAMZzmB0sYzbN6UIWGbig\nozldSlxHpVkvlKqadVcuzWqLmnVsrprVkmlAFQ+Y21Sd4HGfLzxWCd4Kh11xsLAlBEbCwUTY0LHk\nYzrCNGDaAO006yufqmpWa2hWE4Y8Cmt18Ow0cPGARB/Q+cKb/4EfvrdN7GCePXp6aleupqXl4O2t\nQ1EUDAZBp1NuBasmTXw4ceJBvLzUv2VWlpFjx5LIyjLg5aWjY8cKdOyo7ebLGdljQTRvnhck27cf\nz59/rgNOAy3NtjoF7GbcOFX9WrasGigDA/NbrF26lMj69RGkpen54ovevPKKY7JHk3K1TBnXuyd7\nLDCx49ChwkES1GyyS8mXNaB0sscFo+CFh0ovezTHvy5IahmBdYCt3OQKzeh86zU/qtGbUVwmnIuc\nphaN6MoTJa5zu9Ssto7AEqCvhwv3ubtYpWZtXz7vgtS7EvSsqPZCdv5brUPutuKLZqJZ1z9ZujTr\nqq0QaCXNaoLBAPPeB7kA+kbgmwUVm8OPO6HGLJj9nrbzsEe5GhKSzIsvhlCzphceHi4sXtwaD4/C\nNzaennnrhYWl0rSpT5HbWQNnZY8F0bw5bN+u/t/DoywQjTqTvRdqoFQDJERT1owrrFsXHnkEduwA\nvd7Azp0XOHw4ktq1y9O3bw2Sk28QERFOs2bNbD43ZypXn3tOzR5nzFCVqw7PHpflV642awZbimjC\ntxQkSyN77Nns9mSP5rhnhDvWQItpQAyRXCaMh3gGgEjOEcZh/mYzicRSh6b05Cma0Zmy+JZwTJVm\nvVtMAwB0isJ/yrpaNA0wh+kLZxDw1MG8ZuCjgzfrQysLlE1kCrxqo2nABxtsNw14/gPo1x1GWkmz\nmjD/K/jrbxj1JHifA2MYnI8CKsKcr+DSJevWkQKuOVo9V69ezWDEiGACAmrx2WfNuXkzi1GjjnPj\nRmahbRVF4dy5NIYMOUJERCpDhlhvtmGCaWKHJdccR6F8eahZU/2/Xv//7J13eFN1+8Y/6QZaWjaU\nLbsIKA4cjApOBPf7KoiAoLhQ5OdgKUMQcbIUQWW5kNfFEhWBFhRFoSCzUFahjEJbukfaJM/vj9PQ\nNE2TnHOStAXu6+pFOZwR2uQ8576/93M/OcB1KFmuPwDPF/8ZAVxHrp2+etNNYLGk8PHH29i58wy3\n3FKbkJBv+O23Lcyda+Deezdwzz1jSU1NRQ2s7NE6sWPNGs+l5rz2mvPMVS1ITXWdmhMWVhLgYIvj\nxyGnnDRCb6bmdBoPS/9Q2OOGMRVbIOESK5LHVLhZ17KIIEIII4IzJLKZFSSRQA4Z/MJS0jnn1jX/\nKZZZ1bpZizwwAkutm9UTsAYHxKYpEuwYN0MDQnSEBmhxs75QHBqw4DV18mhCAkyYCC+MhPnz4NAe\nuKIJGAqATHj6UWjuxmuxda7261eNvXsbqDbnnDtnpEuXmjz5ZHOaNq3GihXXce6ckW++OUWBXTBu\nXFwGI0fu4Zprwvn11xsuhJi7C9uJHXqdq2pgdbk2bXoj/v7B+PvfB/wHeBD4D4GB91GtWjDdbChP\nbm4hL7ywlqlTF1C7NjzzzHWcOvU12dlPUa3aSGrUuIuiopGcOjWCYcPec/u1OMpcvftuz6TmXHfd\nOd5+W0nN+ftvz8irP65QJna4k5rjKMtVBA4cKL3NF6k5zevCnum+ca66g0rwEnyDEpm1n1tu1u7c\nxxkS+ZbZxPAtN9KX23mUntxPKBEYyXd5Dj3ZrMs9MAJLrczqSfSqDV+7EYGrJ5vV3RFY9rC6Wee8\nol5mffwJhd1Mn6Zsq1sXfv8NHukKYx6GeXOdF1179rhiRR2++KK2JnNOaGgAP/107gJzDAnx5+WX\nW7F4cRIpKUpnfWqqkRMn8ujaNZyvv+7K2LHqqLq7mavegvXm3azZzdSqVYCfXz6Bge0ICLiNGjXa\nERycT/PmBdx8s5K4ExubSKdOHxdnrt7GH390w88vkYyMJgQFXXHhvCIgcgWJiU2Id9HvIF6c92hl\nj9Z5jxMn1tQUDGALLZmr5SnPtj8aW/b49IPeY48bK1hetcclUSRLy6xPuD4AaEUnnuUdgqhGMCG0\nQPm0hlAdI3lk43weT0XJrFpHYHkaBgPUcCF/Wt2sj/k4m1Wtm9WK2XPgr62w+FOobmOwrFEDvv4S\nZkx3fiPSm7lqj3btQnnwwUa8+OK+C9vuvrsBjRqFsGCB4sR4550jJCUVYDAYqF1b3U3dk32PWmEr\nuQ4a9DYREdvw99+Hn98pAgL20azZNn799W1yc0v6Hps0qXmh77FRIwN16x7DYikraRgMINKKRCf6\nuH3mqif7Hq3s0ZN9j9Z5j2ozVyMilBYZexw7BtnZZdnjzJcvbvZoi0vCuKMmm/UECRjJQxDacjX3\nMqIUa9zN74CBNi7YaFVys1YEbN2sakMDdibCW2u0yazWbFY1blYoLbN27+7+cWt/hqu6wO+/5/H0\n0+mEhGjreywPL7/cisce28mCBYk89VQLQAkKqF1b+f2/9lobatZU917whXNVDTp2hJMnITy8Gc8+\n+wUnTmwhJWU/997blyeeuJlNmxKJjv6Y5OQch32PZnNL/Pw2lDlvSAgUFR2hRYuyb8Aq2/f4jfbM\n1Q4dlD5TW5w7D90Hwp7Tlb/vUQTOuJfpogoXfZEsyWbt59LN+g+/kkg8DWlBPP+wk1huYyC1UT4c\n6ZwjjhjuYYTT81Q1N2tFQG82q1aZ1T6b1R04klndwbvvw6szoEV94fThDG6/PZilS9UPQ3aGdu1C\nmTSpLY89poy8yMoyMX9+Ip980gVAdYH0lXNVDWxdrqBIr82a3YzJZOL559deyFxdt+6xMn2P586B\nSAciIpaSnX30guQaHAyFhUdp0eJkGZdrVXSuPjNSya7Vk7kaFQXr1yvfWyxKS8fGbVC3oeecq9n5\nMGa55/sek7LgyV9ge5z+c9njoi6SpUMDnMus6ZxlH1sZxFgCCaYhzdjI//iC6dzOo3TgegII4i6G\nUIfyxwpUdjfrabMQbxJ6BRkI0Hnzm3EEbq4FPVT2Y9vKrGpDA6xuVrWhAWkZ8PR0xc2qVmadM1eR\nWTdtLC2zusL3PwChcNIIFqlLYWEW4eGeLzh3392Azz7rwoEDOWzfnsHatd3o0EEd87NnjwsW9KNx\nYzc7yb0Mq+R68mTJtsTEDGbPPkBBwV6nqTn//qv8ee+9L7Ny5XtkZDRBpBWBgUdo1Ogkixa9fGFf\n277H6tX9WbPmeo8YcwoLhalTfdf3qBW1aysTU/YeUB4oT56Fbp3g9hvgWu3dMhewsXhiR4oH+x5F\nYNFu+L+NEBYEE2+CUfpfailc1EVSkVn3cJMbMmsmadQlkkCU8UGRXEEXelKDmhwgjpZcSRgRhLko\nXv/okFn1ulnfobFTmfWNbBObjBYKBFIs8GKoP3cH+9E8wICIqGIMm8/DuIMwq4O6IikCI37RLrPq\ncbMWGLW5Wce/rsisPVTIrAADHi5kx+RAxAgW/yDWbQxl5MgM5s2L8Dg7e+AB7XfHysge7REVpRRJ\n+77HhQuf4oEHwh0eYzbD7uKxmNWr12XAgBmkpMSTk5PI//1fH7p0Kbnze4s97thRyNChysQOX/U9\naoXZDLuT4JPvoGYNePweaFb8tkpIgM6dtZ3Xvu/RU8YcK3v89Rg83gk+6A1H97s+Ti0u2iJZks3q\nnpu1Hk3IJ5ctrKY57dnNFsKIoDPdOUgc6Zx1GjsH+mXWRJ0jsO7H8c0CIL7Iwhd5FjbWDaSpv4Hv\n883MyzWztdDCjJoBRPq7/wnLNcGw3dC9Fjzfwu3DAEVmXXvUtzLrihh12axWWGXWxo3hzanqrhkT\nU8CLo1KBQPyC6oL4Q2gI8+dn0KRJNhMmVDxLq2xrj84QFQWffKKk5uTkGLnjjtZ069aY7Ozy37eH\nD5ft86tXrwN9+nSgi6JGe23t0VvsMTUVXhitb+3REaypOX/tgBuioPd1EGjzvB0fr61Iemvt0coe\nQ4Pgp4egr4tWMz2oZD4iz0CNzKrsL1QnjKvoSR7Z/MlP1KQ2PbgPAAMG8imnq9bmHMvY4PNs1qlu\nulnPW6BbkIGm/gbMIjxYzZ/vagdSKHBnWhHnzFLusfYYdxBOF8CizqAm2UuPzKrVzXo+U5FZdblZ\nP1McrO4iJ8fC8OHp9OwZRGJiHa5ofh5/v0IeudsEAQ15bSIsWpTr+kTAv/9m0rPnFk6cyFP34l3A\n6lxdvfogS5bcWyHOVXeRm1vI66+vZenSzdSsGcQzz1zHDTc0wWAwkJhYNqfVCqvUao+rip+ZHfU9\neqJAxsUVcs01ysSOiRM951y17Xv8cims/EF/gbTve/x9KQy6t3SBBDh0qOy8Tmewd67ufhNG3qa/\nQCZlwV3fwhO/wANtYd9w7xZIuEiZpNXN6o7MClwoLm3pSkuuxA+/C9v+YR0AV9DJ6Tn+KR6BpVZm\n9URogDtu1uYBBvYWCbNzTIwKVX7ttfwMfFM7kKHpRRwzC/XdYJOb0mDucZjZAdqoKBx63Ky+zmaF\n0m5WtTLr2LGZnD1rYd26ejRvHsA/f9fhnntS+eE7f6AO+NXgq6/OM2xY+T/AwkIL06cf4s03DxEV\nFUZurrncfdWgMq89OkJsbCLDhq0kOTmHF1+8j5o1o0pJwSIKy7nWLhs4L0/5HdojPBxatBAWLy5Z\ne/Skc3Xq1CxmzKjca49W2GaujhoAbz6nOFcL0yElpfS+JpNSKG1HmJUHb2Su2q89eps92uKiY5Jq\nR2BZIShMKpAg/AnAgB/55HCUPUS7mFOpR2b1dmiAFIeqNvE3MCs8gI/zLAxOLyLVhjkeNQsHTa6Z\nZK4Jhu1RZNYXWrj9UoESN+snd/o+m1VraEDjxurcrACxsQV89FEuM2aE07p18cNILT/WravHrX0A\nSzbNGqfz+eflL+T++28m11//O2++eYjx49uwbVsP1UYcR3DEHitrgXTU9zhpUkeHa6X79pU9fs8e\n5fdoj8aNjfTv772+x3fe8Sx71Nr36Ay27DElvWzfo6P0HXA9Y9JbfY+27PHBdrDXB+zRFhcVk1Rk\n1vfdyma1h71UacBANUL5Dy/i72R+Y0WNwHJXZv0630K/ED/CDBAd7McPtQJ4J8dMh5RChlTzJ1OE\nAGBwddeJL+MT4EwB/HKdNpnVlyOwbLNZfeVmzcmxMGyYIrM+91xpllitmoGVK2uzdGkeffvWolGj\nsj/vwkILb755iOnTFfb4zz89uPrq8teZ3UVVZI/Dhzue99i4cdlePqvkaiuJ20utIsKuXVl88ME2\nQkMtXu177Ny56rFHWzRooDhdz58vvT0hQTEK2UuxcHGsPZaHi6pIHlPhZj1IHM3pQIjdbDrr/MhU\nThNCDUKdmGFAu5vVEzKrKzfr1GwTcUXCozYFMCrQjyW1/FhvtLC2wEJ0kB8Tw1y/mzefhzmJ2mRW\nq5vVpyOwdGSzanWzjhmjyKy//VbPYTtCQICB4cMd//COHs3lgQe2s29fNuPHt2HChDYEBekXeqqC\nc9WKnJxCxo5dz0cfbSt33mPHjmWLpL3kmpwMZ86U/HtWVhGrV5/l8OFUBg+uUyX6Hq3O1S+XwsAB\nnnGuWid2NKnvvO/RYFCCBbZsKb29sBCOHIH27Uu2ebvv0da5GhGi/7xacNEUyXxSOOOmzPo7K9jG\nelrRmW7cQUNK7sAGDBRSwG7+4AbucnoeT8is3nKz7imysM5o4Zviycd/GC2cMAsJJmFwdX9uDfbj\nVjenfNi6WdXKrEt1ulm1yKx63axqQwNAcbPOm5fLnDkRtGql7mOVlmbmlVfS2bUrly+/vIpHH22i\n7uIOUNXY46ZNiTz++MpyU3OsiIqCdevKHr9vX0mRtLJIEeHff7P49ddzBAb6MXt2U154oY7u11pV\n+h6tcIc92iMqqmyRBNi/v6RI2vY9eoM9+nrtsTxcNEXyIF/SzA2ZNZcskjnOI7xEAjv4iUVcRU86\ncuMFVulPIDfSl2qElnueyi6zPpJuooW/gcb+Bv4ptPBqlomo4qfcx9KLWForkNYB7j2eWt2sP2uQ\nWV/U4WaN1xEaoMfNqkVmtbpZ7WVWVxARbrwxhUOHaxAc3I5Fi5IYMKCxroHAVY09jhu33mlqji2s\nGaPlSa4hIUpvZAl7zKVz55r071+Pp57Sf7uran2P7rJHe0RGKianzMzS2xMSIDMXxn3rm77HimKP\ntrhoimQmh+nCxy5l1hrUpCf3U5uGRNKS5rTnd1ZwggRu5RH28zdnSOQ+nnZ6Hj3ZrL5ws86o6c/Q\ndBO9UwvJE5gSFsAdIX5kWISnMkykWwTcCEDX42bVGxqgRWb1RDarVjdreTJreTh5Mp9Bg3Zy+EhT\nMFQnKLgGGzeaefnl/XzwgRs2QjtUpb5HKO1cnTXrDp5/vptbP7+oqPIl1xo1hD//zOKXXxT2OGBA\nY9q2DaVLFyWKTits1x6vvNI7fY8VzR5tYZVct24tvT0+CTqOhHT/i2/tsTxcNEUykp4us1mtaECz\nC27WlnSkKW3Zwiq+5l3MmPiPi2CjigwNcDebtX+IP2mN/HnofBEBItxRPJk+ws9AughJZuE6F+fQ\n62b1tcyqN5tVi5s1JkZxs6qVWUWEESN2s2NHJmLJpUaNplzZMZy//mrBzJnniIw8wssvu3+nuJjZ\noz06doTffiu7fcuWQpYsOc6//1ro3Lkmd95Zn2rVlPX4q3Xkju7YUciQIcra4+uv12T8eM+wxxUr\n4alnvbf22LSBvszVqKiSIllogt/2wvZj0LETbJoBrfT7niote7TFRVMkW3Kvqv2tUqUFCwEE0osH\nOcJeriaaejiYGVOMyp7NutloIdki1PczEB3sx3e1A8mylLR3LMg14wc8UM21m3XcwYpzs/4zqWq4\nWYcPT6dHD/Uy6+LFSfz88zlWr76eZs2qMXjwTrZtEyCMNm1q8corh2nYMJhBg5yvT16sa4/OYC+5\nll57NFxgj7b7uzMI2x6+mNhRmdijPZo2hbAw2H0UVu6AXCPc1Rl6XQktVTyEOkJlZ4+2uGiKZADa\nHj/8itlcEgnUoQHXc7vT/SvSzepKZn0r28RvRgsN/ZUy2j3IgB9Qs/gmlGCyMDPXzI+1XP/aN5/X\nHxqgx816dQt1x1ZGN2t5OHkyn9Gj9zFkSJMLbQibN99E375xbN2aRadOjTl0qANDhhynRYtqdO/u\n2GxiZY/5+UUsWXKvT4chq4Ve9mgPq+Rqv/Zoyx6tuOoqbQxt794i3nsv26NrjytWKmuPhYUV41xV\ng1wjbDwJa/9Q+h6HdIdaNSA/X1kDvuIKl6dwCG+xx20ZsPCE/vPY46IpknrRhDHqMOwAACAASURB\nVDalXK6OUNFuVmcy6+4iC98XWPitTiBGgScyTMzLNXPKAtcEGvhvNX/CDAa+iAigQ6Dz6+txs+od\ngVVRblYt2axa3KwiwpNP7iI0NICZM0vWHWvWDGTDhusYPPhfvv32NBCJiIGCAkuZc1Q19uis71Er\nOnQQ3n237NqjI1hzWtXimmuCOH68EfXru1ZdXMGePS6Yp0zc0Atb9uiNeY/Jp+GuLnBdy9LFfP9+\n9UXSW85VoxmmHIZ3jkLbNP3ns8flIlkMA4YLE0AcoaLcrNPcdLNOyzYzuJoftfwMbDZa2FZk4aYg\nf5r6G3gr20wzfwM3BPnRyI3oOT1uVj3ZrHrcrFpkVls3q9ZsVi0y6y+/pLBmzfVlevWCg/1Ztqwr\ndevuY/78g3z1VXtuvbV01bdlj1Vt7dFR36MWlEzsCKFLl/rccUdZ9mhFixZQq5byfXx8EQUFQmSk\nPw0a+GOxiMti7YkCWdF9j2pg3/e47hX48Qsl5s8WBw5A377um3a8xR63Z8DQ3ZCQC1PawG31oJv+\n05bC5SLpJirCzbqRbH500806vWbAhZaO/+WbmR0ewCPV/BER9hdZSDQLN7hxzaqWzTpKh8yq1c3q\nCZm1vDmFfn4GPvroSmbMaE9YWMnHs6qxR0+sPdrDft7j22+3IS/PedG1hplPnZrFkiW53HhjMDt2\nFPLVV7W5+mr964vO4Iu1R0+zR0d9j+3bw44dpffNyYGkJNdrvb5gj13CIO5m6FSz7Ov0BC6pIplH\nNtVRb4mvKDfra27IrFbY9jx+GFFSUA0GA0lmMLox5MMT2axaZNbHNY7A0utm9WVogNXNGhoawKxZ\nV7rc37ZArlt3hDvu+BKABg1qsGLFIwQEVM7YZU+vPVrhaN4jBDF7dsk+KSnxZGQcIyKiJfXqdSAo\nSFm7PHrUxPr1BcTG1qNp0wBefz2TUaMy+PDDCI9EyDmC7dqjN/oe9TpXbWE777FX+7J9j1FRjovP\n/v3Oi6Sv2OOrV4CLFSRdqJyfNC/gFIf5lNc5wzFVx1W0m9WVzGoPi5Suhh/lmjEhDFGRzap1BJYe\nN+vSEb53sy761HPZrK5gdbN+8klnIiKcqwK2MBpNFwpkmzYtOXeuDsOHr74QXF+ZEBubSOfOH7Nw\n4U5mz76T2NihuguklT127BjLzp2ZrF59PUuXXk2tWkHUqqU0veflpbJs2Vi++24D69YZ+O67DSxb\nNpamTVMJCoKDB4sIDfWjaVPlDTZ1ajhNmvizdGke+fme/TmmpcHAx+D+h6Db9bBvFwx6VH+BPJgI\nPYbDK7PgmYfg32WeKZAb90On8bD0D4U9OgoGaNlSCWmwR3y8whTtIQILd8GVC2FvisIeF/XVXyCN\nZphwEG74C4L9FPY4obV3CySgvAmr8hfQFZC4uDgpD4VilIUySb6Wd8Us5nL3c4Stsk+elfflXzmk\n6rgiMcszEiNPyUYpVHnN9ZIlrWSvfCfnVR1X6voWi+wpNMv154yyr9D19TelifCTyMyj6q5jsYj0\n/Z9Iw7kiaXnqjo07JuI/RGTS9+qOExEZOF4koqfI6XPqjjt4UCQkVGTUaPXXfPbZ81K9+kk5fLhI\n1XEnTuRJzZprZciQHaqvOX78eoHJAlMEfhaIFVgo48atV30ubyE72ygjR/4kMFl69Fgkhw6leeS8\nJ0/mSd++WwVWyeDBO+T8eWOZfX7/XaRt2zHSqNERad5cpHlzkUaNjBIWdkx69pwkIiIZGWapW/eU\nxMYWXDju4MFCadbstOzcWfacWvHjCpEGjUVq1RP58ivls6EXJpPIe5+LhNwg0uZekd/Vv4UcIjtf\n5JnFIjwmEj1d5MhZ5/v/8IPIpEllv5KSSu93IlPkjuUizBB5/CeR9HzPvN5t6SIdN4kErhWZekik\nvFtaXFycAAJ0FQ/VmEuCSW5hFdlkcAePXWj5cAeZ5PCdDpn1mBdHYLlCgMFAI38DCyMCiHLDzfq4\nzmxWLSOw9LpZ57wCjXwss86YEa5BZi3rZnUHcXGnefvtLbzwwvW0alULMAFFREc35a23DjBnzlZX\np/A6Nm3yDntcvPjEBfa4atV1F9ijPQID48nIaEJQkGK1zMzMJjX1PCEh9UhPr8vevfGEh/vx8suh\nTJyYeYGBt20bSO/ewSxfnq/rtYLCHh+1Y4+ekFd9wR4/HAwbxriOlStvfNb+/cqf3mSP4+3Y42u+\nYI828PqlDAbDcwaD4ZjBYMg3GAxbDQaD06AXg8EQbTAY4gwGQ4HBYEgwGAxD9Fz/FIfZQSzd6U9t\n3I+IqOwy6/J8c3G0nN3rLr4J7C+y4Adc6ca7yRoaoEVm1ZvNuuRJ9TLrM2/py2bVIrNqdbMuWaK4\nWT/5pLOqyRNGo4mhQ1fSuXMD3nvvdv76axhdupwlJGQ/sbEFQDNGjdrG8uV7Vb0eT8E67zE6umTe\n4wsvuBcr5wwnT+bTr1/peY/9+5ffK5GWdoyAgFaICMnJ58jNzaNhwwY0blwDkVYkJSUC8PjjNQgJ\nMfDUUxkXjg0IMHDddfrWJH9cocx7/PlXxbnq6XmPqRnK2uMHL+k35+iZ99iqFQQ5+FHFx8OJTO/M\ne9yWAddsgfeOKmuPW29SzDk+h6coqaMv4GGgABgMtAcWAOeBuuXs3wLIAd4B2gHPAUXAbU6uUa7c\napVZl8l7qmXWvzXKrIVilqe9LLOOySwSw6kCuS+tULYZy14j22yRkRmFctbkWu+JTdUus979rTaZ\ndccx7TLro8Uy6ykfyqzPPadNZk1KypPwcG0y64QJGyQw8A3ZtSv5wrbsbKPcfvsXYjAsE1glvXr9\nIAEBH8iGDSp/eToRE3NMWracJdWqTZPZs7eK2axfV7RYLLJo0XEJD18rkZHrZPXqZNcHicj+/ful\nQ4e50rKlSERElvj7n5a2bUW6dCmQ2rU3yZgxh2TFCuUNmphYJK1bn5GnnjovvXqdlZ49z0pSkrrf\nqRWpqSIDBokQIHLP/SJnzmg6TRkcOCZy4xARQ1eR0e+J5Kr8bJWHDftEWowWqT5cZO46EbO6W5OI\niHz7bWmpdeJEkf5PiYROFmn8ocjaw555rQUmkbHxIn4/iXT9XWR3pvvHekNu9XaR3ArMtvm7ATgJ\nvFrO/m8Du+22LQPWOrlGuUUyRr6VWTJK0sS9D5wVGZItL8uHskh+UnWciMjnEi93yipJkHSV1zTJ\njXJAnpBEsUj5N51kk0VuSTHKX0azjM4oklbJBfJ+dpGct7lRFVoskuJGgcwpErkiRqT7nyJq73NL\ndivrDqvUPUOIsUik83iRLhOU79VgRYwIV4t8vlrdcSaTyE09RFq1E8nNVXdsTEy+QJLMmZOt6jiL\nxSJ33vmXREauc7iW5gzbtp0Sf/8p8sYbsWX+zWg0ycCBPwhMlbCw1QKrpHr19yU723Nra+XBF2uP\nQ4Y4Xnt0hH37CuW5585L//5jpGvXI3LttSI1aiRLQMApCQ09Lp06fSEvvZQuV1+dLKtXK9XmyJEi\niY0tkIULczS/3qq09piVp27t0Rn27SspkC+OFWn1kAh9RO5403Nrj/+ki0QVrz1Oc7L2WB6qVJEE\nAotZ4D1225cAP5ZzzCbgA7ttQ4F0J9dxWCRPyiF5X56T7aLO4GARi3wsP8oY+ViyRd1j3GHJkLtk\nlSyReFXHiYi8JElyleyX01Loct84o1nyij+ZP+ebpdNZo9ydWihJJotMyyqS/qmuzyEi8vxekWo/\niySovF+czBIJnykySGWxEhF5/TuRgKEiOxPVHZeaLtLgVpF+L6i/Kb3/gYghUGTz7+qOy842S4sW\np6VHj7Oq2dLChccFVsmaNeoe0AoKiqRjx4/k6qvnS2GhyeE+ZrNFXnrpV4FPBJZLv37fiMUTd2on\niIk5JldcMdtr7LFRo1/dZo9WPPHEeTEYkmT69DPSv/8Y6dRprrRrt05q1twqt98+SVJSUqSw0CKj\nR6fL5MmZF66pFfbs8fRpzacqBV+wxw9/08YebWE0ikydqrDHoNtFwu4SGfi8yNy5+h8UCkwi4w6I\n+K9Vzx5tUdWKZCPAAnSz2/428Fc5xxwExthtuwswA8HlHFOmSCoy62Sfull9IbPawvbDnm+xyP9l\nFEmjMwVS50yB7Hbj8UuPzNr3fyKNPhQ5r/Lp0RMy68XuZnUks5aHuXP/lmeeWSNGo+Ni6glUpHO1\nPFgL9MKFOTJlSqb4+SXJ3r2Fsn//flm7dq3s2bO/1P4DB6bKjz/qqzw//FjCHr/40nPs8d2l3nGu\nPrtEYY+93tTHHm1xIlOk8yiFPXYZIDJmQgmzPKvjGv/YOFe1sEdbXC6SbhZJq8x63ocy6xdyQJPM\nWigW6SEHZbgLmbU8mGw+rW2SjTIjy/UN3Sqz3qxBZl2sQ2btVEEya+v26mXWjRv1y6zp6e4xeiu2\nby9fZq0IeHvtUQt7tEW/fily4kSRjBqVLtdfr5zn1KmSB4ZDh4rk4YdTpW/fFDlzRtuDhC/Y44vv\nVq61R3tYLCKf/isS9oFI/XEKe7RvBYmJUX9eT7FHW3ijSHozcSe1uLjZW0obAMnlHJNczv5ZImJ0\ndrHRo0cTHh5OAbmc4ih1aET9ARsZMGCAWy9WKsjNGoiB+TSlNgGqQgOs8C/2mccaLXQINDAmzPWv\nVM8IrBd1hAZozWbVGhpgm83qKzerbTar2tCAIUNW0LlzA8aOVZmTZ4cDB1IJCPDT3IrhrdSckyeV\n1Jyffy5JzVHj+LXCZBICAgw0b+5PYKCBWbMiqF//NBERp3jttZqMHBnKgQNFPPFEOv/9b3VefVXb\n4GlfpOb8vhBudm8MrlPYp+asH+OdeY9vDYNP5ij/D1vEx0N0tPvn9URqzrJly1i2bFmpbakZGeXs\nrQOeqraOvnBs3EkCXiln/xnALrttX+Omcaci3Kx6QgM8CYvFIjluPOnrCQ247GZ1jqQkfaEB7sqs\nzrBhw1EJDp4j1arN1uR6rWxrjzk55gtLCyY7M9rw4WkSG1sg8+dnS+PGpyU4OEmSkxXGmJlplnPn\ntLHHlJSqu/boSfb42b8iNT9QnKs/2ThXv/rKcbBAaqrr83qDPYqInDNZ5L9phdJg3V9VR24VpYD9\nF8ijdAtIGlCv+N/fApba7N8CyEaRZNsBzwKFwK1OrnGhSOp3s65RdZyIdpm1InDZzeoaetysd921\nVZOb1VMyq9lskfDwtwRWCaySwMDpsnz5XreO9dbaY1JSntx1l/q1x127jHLzzWfl4YdTZfDgNCko\nKHnDmkwWKSiwyPPPp0uTJqfljjuUJ6jhw9Okc2d9DxlVybmqNjXHXdim5gxdU9a5unOn4yK5ebPz\n83py7dEW3+WZpF6xH+PNP/6pWkVSlCL2LJAI5AN/Adfa/NtiYKPd/j2BuOL9DwGPuTh/V0B+jltR\npdysFYGq6GbtP0r9jeqDmfrcrD17Vi43qxpMnLhR4DO59db10r79jwIfy5w5W50eU5n6HkVETpwo\nkk6dkuWTT7LlxIkiueOOc/Lf/6bK6dOlfz6LFuXI8uWln4LUsn8rqrJz1Vvssby+x7w8kSlTyhbJ\nBQsc729lj34/iVzjYfb4cFqhcKpA7k8rlGSTpWoZd3z1ZS2SE+NGaJJZK8LNWhG4VLJZDxzwvZu1\nMsisVlgsFhkxYpX4+U27wCjhXZkwYUOZ9ofK1vdoxfbtRhk0qOS15OdbJDr6nHzwQZbk51vKyK4i\nIoWF2gu7LXv0pHPV232Pnnauqslc/fxzx2wy3U5Q2+Zl9lj7dIF8nWu68N6+XCSdFMmX4gZUCTer\nHnybZ5J4De8yWzerGxkDpaBHZvW1m9Vs1i6zXkxu1qIis/Tr9434+S2T7t1jpX79XwQ+l6FDV0pR\nkfL+iY31ztrj4sUndDtXDxwolFq1TpZijmvW5EmnTsly4oTyZkpNNUlCgrqftz1SU0UGXmaPsnCX\n47VHZ9i+3XGR3LJF+Xdvrz3askdbXC6STorkl3Efq/phVzWZ9VCRRaqdLpBRGerlJL0y62NVRGYV\nEVn+P2UyhBpkZ5ulZUttMuuiRZVDZrVHXl6hdO++SMLC5gqsE9gsMEc++WR7pet7dIQnnjgv//1v\naSfI7befkwkTMkRE5NVX0+WPPwocHeoWfvhRpH6k59ceq1rfo7O1R2fIyRGZPLlskfzsM++zxzpn\nCmRZnslhMMTlIumkSG6L26bqB67HzequzJoshbJFsqVIQ/+jLcwWi3RPMcoVyQVuOVhtUREya0WE\nBuiBXjfr4MHeDQ3QivPn86RNm/liMKyUDh3WCbwhfn5TpFq1aTJr1l8V7lx1hgMHCuW665Jl/vwS\nZj9jRqZ88ony98xMbXfey2uPpdceI1WwR3ssXly6QE54XaT7cyJ+33mWPaa4YI+2qGp9kj6F2hFY\n3+oYgZVINnPo4XQE1lzO8Q95GLFwHjNDqcMthNKYIARR1RM5N9fMH4VCbJ1AaqhobLSOwLpZwwis\nz4tHYK18wHcjsFbGwlc/w9I31I3A0oPY2AI++iiX2bPVj8B68sld1Kjhz6xZ6kdgzZjxBxMn9qJz\nZw80szmA0Whi374UevduzKFDO4mPtwBQq1Y1tm59olL1PTpCu3aBTJpUk8ceOw9AVpYwf34un3xS\nC4CaNdUPMKqqfY/RHWCDg2HIWmDf9/hBb+3jrKKiIDFR+f5UAaw8C2mF8KTA3Js8M87q+3wzz2Sa\nMAt8HRHAI9X8MOj9pamFp6ptRX3hxtBlW/hCZj0kBdJbEuRUcQ7rz5Ipg+SYvCRJkuxGNmupcxXL\nrCMz1K+/XCpuVq2oSDdr164LPCqzFhQUyebNiTJ16ibp02epVKs2TWCyhIe/Jbfd9rmMHPmT/Pbb\nEY9cy1Nrj+7g++/z5M03M+X++1Nk/35ta5BVee3RE5mrIs77HrUiK6uEPRoGijR8XOTpsQrD1Avb\ntcf70grljJtmistM0gPYRjx7OMoI7iEU9ylSERbeYyfNCGUgbZ3um4mZLlQjkkDMCHdSkxupwURO\nM4zjfE4L6rjxo7eI8HhGEY38YIYbSTq22Hwe5h6HmR2gjYrQGBEY8QtUC4DZfVRdkh2JMH01vHYP\nXNVc3bEvvAvGQlgwQf/TvbsYMyaTc+csrF9fT9UcxKSkfEaP3seQIU24+251THDq1M0kJKSxffsI\nAgP91b7kCzAaTfzzzyliYxPZtOk4f/6ZRH6+ifDwYHr2bM7Uqbdwyy0t6dKlAf7+ZR/ps7NNvPzy\nPh56KJLbbnOftnuTPTrCAw9UAxWfU3v8uEJhj0VFyrzHgQMubfY49EqY2Uf/MGSAA2ZYZISz6RBd\nR1Gs/A1w/Djk5EBoqLbzVgr2aINLqkjqkVmXuymzAkQSyCGMLCGNodQBIBx/ZtOUVzlFEoVuFcmK\nkFmXFsusqx70rcz69c/wuZsyq8Xi3qBYZ4iJKWDevFzmzIlQLbOOGLGL0NAAZs5UJ7Nu367IrJMm\nqZdZjUYT27adJibmGLGxx/nrr7JFMTq6BVdd1dBhUbRFZmYRt9yyjZ076/DZZ4f5/HMjjz7axOkx\nIsKSJUmMHr2P6tX9WbPmetUPCL5EWho8/yIs+wbu6Q/zP9I/DBngYCIMmwJ/7YYXB8K0Z/UPQwbY\nuB+GfwbnsuDDwfBMb/3vcRFYtBv+byOEBcHah+AuDwxDNpphymF4+wi0aQn3+UH94NLXPXAArr1W\n3XlTzMLzmSaWF1i4P8SPj8MDaOBfccXRikumSIoPs1kbEchYGjCZM+whnwk0pHbxjzqJQo5RyFU4\nDxM9ZLIwLtvMyBp+9ApW92nRms16OhtGV9JsVqMR8vIUFhChLh63DHJyLAwbpi2bdcmSkmxWNQzK\naDQxdKj72axWprhp03FiYxNVM0Vn2LQpjZ07c4Bm+PlVY9CgXZw5Y+Tllx3fQU+dUtjj2rWeZY9x\ncYWcPGnm3ns9UGVs4O21xyb1YfNn0P1q/a81Ox9eXQ7zizNXKzt7tM1cfaMtjLgBPppTdr/4eHVF\nsrKxx1LwlG5bUV+4uSbpi2zWg5IvGyVLjoliTT8kBTJGTsq1Ei/T5YyMk5PyqBxzec2KcrPqyWYN\nGOrdbNZ77hd5eKBIo6Yir4wR2bVLpFBjm5weN2t4uHdGYBUUFMnvvx+XN96Ild69l0pISMmaYv/+\nX8t7722RuLjTYjLpX6CyWCwyaNAO8fOLk6efPiWQJPCvvPTSvlJrs95aezQaLfLaaxni758k0dHn\nPDYLs6qtPW7cJ9K8Cqw9iih9j+PL6XtcsKBsK8iUKe71Krvqe1SLyy0gGoukL0IDPpJz8pAckRcl\nSTrKPpkqpyVVlJvwH5It0+SMrJD0C2YeZ5iVXSScKpDYAnWfGk+EBqxMUHecL7JZ35gmcu8Dyodu\nxw7l+7v6iazSYCyyZrPOnp2l6jjb0AC1PYBnzmRLcPBUee21DRe2WY021qJoa7TxdFF0hMJCs/Tt\nu1WCg/8USBI/vxMCm2TAgB1SWGj2eN+jFXFxRunUKVkCApJkypRMXUk5tvBW36Ntas4fO/WfU8Q3\nfY/upOa4C9vM1akO+h5//91xsMAOF8+S5aXm6MHlIqmhSCpu1hVedbMekQLpIQflTHEBPCYFMlCO\nyl1ySPapvKbVzfp8BYQG+NLNmpbhnpvVZBIZ8rhyE7TFrNlKlNjiJe5fU09ogFY3q4jI6NG/CEyW\n1asPyuTJMRIdvcTnRdERcnKK5Kqrtkhg4H65665kwZAqGA4JrJHq1X/yKHssKChhj1ddlSz//uuZ\nouuLvsf/e//Sc66KuJ+ak5bmuEh+9ZXj/R1lrnoCh6RAJsVtuFwky/wHXBRJX8isCZIvL0pSme0z\n5azcKglySNxLBtEjs8amis9lVj3ZrGpCAz6YKdLv3rLbv/1O5PHh7l+zIkZgiYg89ND/BCYLTJaI\niBly333fyPvv/+nzougIKSkFAqukdevjgiFdMJwT+E369//bY+xx+3bvsEdfZK56kj1WhsxVd/FP\nukiUitScefPKFsk33hDJt3s933qBPZrEIgskRTrIPrkh7sfLRbLMf8BJkfRVNut5KZLbJUFel1NS\nWJyuYyn+8zU5JZvEvTxQvTJr94som9X2s5ObK9LndpGu14nEbirZHh8v0ukqkfPnXV/TEyOw1Gaz\nWmEymeWXXw5ViqJoxZkz+fLNNyfl6ad3CaySCROOS2Tkafn00xwp9FCOmO3ao6fZo7fWHm8aqrDH\nF9/17NqjN9mjntQce2jNXI2Ndcwmd+1S/j3Fru/Rk+zxATkibWSvvCVn5M+4bZeLZJn/QDlF0tfZ\nrMekQEbKCRklJ2SblOidj8ox+UZc38UTisyXQwNskJ2t3Axt1zWmz1DCywcNVtYje/VWtrmCntAA\nrdmslQ3JyQWyfPkpeeaZXdKhw8YLE0Latt0gTz21S86eLfCYgUakZO0xMPDSXnv09rxHb7FHR2uP\nznDunOMi+c03pdcey8tcVYsisch8OScdZJ/cKgkSJ4pL6HKYgAr8ozE0wISF990MDficNB4kgmr4\n0YwgnqIu68nmDZKpRwCNCaQQCw9Ty+l5LCIMzzD5PDTgqV8rb2jAwMegWjXYtRsiG8HsD2DcGLj/\nXnjjTYiJhdtuVba5wtix2kIDTp7M58UX9zF4sPrQgIrG2bNGNm1KIyYmldjYNA4cyAGgXbsa9OpV\nh4kT29KrVx0aNXLdF1BUJAQGuvdzMxqFadOyeOutbDp1CmTbtvp06aK/XSQtDUaOgm+WQ/9+sGCe\n5/oeH58MW/dUvb7Hnx6Cvh7ue7yqJsTdDJ1qqjtHvXpQty6kppZsy7UI03ZZ2NvNxP01Pdf3eBgj\nYzjFbvIZTh1epD4hKmJJVcNT1baivnDAJEtk1jWqn1DUuFmHlNPOcUwKZLaclY2SJWd95GZVm1Wt\n183aebz33KyTpigO1owMhVE++ZRIsytEZs8p2cfdh1HrCCxfulkrArbyqSOm+PXXJ+X0afWU4513\nsiQw6Ix89plrmWL7dqNceeUZCQhIksmTq87aY+t7PDvv8enFUqkmdjiD2rVHZ9iwoYRB/me8Waq/\nVCQh/1ck72zz3NrjJ8Vrj7bs0RaX3a1uFElfuFnjJV8ekaOSXtzisUWy5QtJk1lyVra4uf5ohZ5s\n1hf2aZNZT1ViN6uIyEuvlG3v+G29SN2GIhMnK393Z13HE27Wn36qnDKrtSiWJ59qLYq2mDUrSzHz\nBIjglynTp2c6vNlVxbVHb/U9XmzOVTU4c0bkldctEvWqSfi/Imn/qkleet0i336r/9yHpEAelCPS\nWvbKdDkj+eWYKS/LrW5AyWY94lWZdSpnSMdMBAEcooD3OUdHQgjDn8Wk0YhAWhLs9BygyKzDNGaz\nbkqDOYkas1mLZdY5t6q6pD6Z9R33s1mbNoFXxkLbNtCunbLt1j7w3XL4epnyd3ekq7FjMzl71sJv\nv2nPZu3bt3LIrFb5NDZWkU/j4xX5tG3bGtxyS11ef70t0dHuyafu4sgRMwY/fwToEBXC+Ak5nDqV\nyZw54Rd+njt2FDJ0aDrx8UVMnFiTcePC3JZmncE2c7Wyp+bYZq5WhdScbcWpOYdyYXIbGHOFZyZ2\n/FHTzLxAwZwLD4T4cWWAAYPBQEKC8nsMDFR/TjPCQtKYxTkaE8hyWtLVRVqZx+GpaltRX9gwyQzJ\nlpd84GbdK3kyUI5KH0mQ3pIgMaJIeWlSJE/LcdnsQzerVplVi5tVb2jAUhfMNc/miX7MOJFbbi3d\nB3nggEjHLiJn3ZCwrDKrFjerVWbV6mb1BHzBFF3BaLRIr14pElItXdp2NAthIvjny223pcjixTky\nfrzn2WNKyuW+R2+zR7+fPDvv0TY15+bviuSl1y1lDDzxGubTW52rrYudq+WxR1tclludFMntcdt9\n6mY1iUU+knMy2q4/crgkyhrJcHl8RbpZH6sAN2u/F5zLrAcOKE7V5GJ10WFRJQAAIABJREFU89Qp\nkY/ni9x5t0jv20QWLRbpES3y5luur1kV3azJyQUX1hTbty9dFEeM+NcnRdERsrLM0rVrsvgFFwk1\nleIVXN0oGE55NTXHW2uPnnKuZuVV3b5Htc5VZ7BPzUlKKlsgJ00S+eEH989ZnnPVHVyWW51gH8fY\nwwmvjsCyhT8GnqUeBVgubPuS81iAuwl3eqwn3KyzNLpZqwfCbJUy685ED7hZX3Mulw0ZBsOGQoNi\ndTMyEp5+Cu68A774Cv7+BwYNhBFPur6mHjer1hFYanH2rPGCdFqe+9TT8qkWhIX5sWZNXSIjU/CT\n+lSvbSC/bhAtLY3YtM5C06bax31ZYTux49574OMPPe9cHTUA3nzu0nWuvnMUuoRpc646QopZGJlp\n4n/FEzvmhQfQ0N+AVIPwcMjMLL3/wYOK3O3v4u1ida7uIZ9hvnCuuoGLpkiuZzu30MOrI7AcIQQ/\nBOE4hXxPOu/Q2OUxc3PN/K5jBFb3WvB8C3Wv8/O98NMRWPkA1FJx3/XUCKxIJyOwPvkU6tQpKYDz\nPoZ/dykfqHkfwusTlJuIO2tSMTEFfPSRthFYTz65ixo11I/AcgfJyQXFa4qVuygCmM3C7t1FbNpk\nJDbWyObNRkCoEZKGsaguZjP4+RuoV09/gfTFvMeqtPb4eCf4oHflXnt0NrHDYIAOHWDr1tLHFBTA\n0aPQpo3jc9qvPX5TEWuP5eCiKZJ++PEfeqs6Ru0IrPJgwEBN/HmTSNrg/N192CSMyzbzfA1/n47A\nGlU8Auuect6k5WHaStivYQTW+Uz3RmABNGkC3a5Xvh83AQ4mwH8ehI8XQNfrIGa98nTqCjk5FoYP\nT6dXL/UjsBYv1jYCqzyUVxStRpvKVBQtFqUoxsSUFMWMDCE4GG66KZhRo8K45ZZgrr8+iA0bDcya\nA4s/gxAdL92b8x693fc49zF4to9n2OPC3fBSJex7dAR79lhe32NUVNkiCcr4LEdF0rbvcRh1GF0J\n2KMtLpoieSfdvCaz/kQm3QklnNJPzoJgwMAhCqhPIFEurm8R4fFiN+tbYeqewjelaQ8NGFERoQHv\nuCezikCtCFj6BTSoD0ePwff/U44Z8AgMGATZ2e7NkNTqZvWEzOqqeX/SpLb07FmHyMiKL4pWphgb\nqxTF3383kp5eUhRffLGkKIaElP453t1X+dIDbztXqxp79JZzdUpb37BHezRtCmFhyufWFgcOQL9+\nJQ8XlcK56gYumiLZlqaq9ndXZn2Hs3xKKrcSxrPUo5NNITRgIBczX5POSJzoicWYm2vmD40y67A9\nisz6Qgu3DwNKZNZVD0JtFU/UemXWr9yQWUG5Od54I0wYCxs2KpLM4cPKE+fp07BnL1gszs8B+mTW\nESN2ExqqTmatKmuKUMIUrUVx8+bSRdGWKdoXRXdx7JiiANx5R/n7XGaPZdce1z4Ed3lh7XH7zdDZ\nh+zRFgYDtG8P27aV3p6XB4mJcMUV3mOPBZh0n8MeF02RVAN3ZdZUTOwmn//RkrVkMYqTPEotHqLW\nBVYZhB/PU4/aLn6Uh0wWxmWbGVnDT7XMOj5Bm8x6ykZm7a9uqZZpKyFeg8yaluG+zAola41391XY\nwLFEePJpuON2+P0PxazT3AWLtcqsPXtqk1l//vkcq1c7l1ldFcXKyBRt1xStRfHGGz1TFG2xZw/0\n7A8ZRnj9aZgysSwzrGp9j2OWw7wNVWft8fHdkODDtUdXiIoqWyQB9sYL66/wPHvMpYjP2M8Gdug+\nlz0uuSKpRmatSwBjaUBrgrma6nSnBu9wlq3k8gaR/EgG/5LPJzRzeh69blatoQFas1l94Wa1fZ0G\ng+JqHT5MWZtMOglb/oSnRyiMwxU8IbP261daZi2ved+2KLqbfept2DPFTZtK1hRvvFGRT3v1CqZb\nN88URVtkZ0P0bZARqfx96qdw7ix8NFcxXqWmwgujvcseRz8KU5+57Fz1xtrjfcXssaHKzNXmzaF6\ndYU9WnEeExPiM8m/6yxP+HnOubqDFGbyL9kU0pvGrNZ9xtK45IqkWjfrlVRDEAB6EcYN1OB9zvEg\nRylC+JIWLs9R0W5WX8msK2IUN+tSFzJrbi6cOQOtW5e+Afn5QefOype7615WmXX27HBNblarzOqq\nKKoJBPc2nK0pWotidLR3iqI9qleHjh3gj/Mg/tCtOyxYB6cfhgEPwYsvVY21x+x8hT1e6s7V7/LN\nPKuRPdrCz0+RXHfsAAvCDvL4mzxq5vgxJ+kK7m6u/4nGyh7Xcpwu1OVdbuI0B3Wftww81XBZUV+4\nGLpsCy2hAbYwSUl3cx9JkPniemKwntAAPdmsET4ODUjLEGl4m+ts1l27lFCA2+8SuaKtyEfzRI4e\nLX3MwYPuXdOazdqrl/rQgDVrkks17Fu/b9dOad5ftqximvcdwWSyyI4dRpk5M0vuvTdFatU6KZAk\nwcFJEh19TqZMyZTY2ALJz/fcqCs1SE8XaX2lSKMoEa4V4R4ROogQogTVeyM1xxvzHms8ITJ3nedS\ncz79VySsCmSuipROzbk/rVDOeGDe46FDIs9PKpL2k85L7Ulnpc+kbJkwySJr1+p/vXFyTgbJOrlH\n1sgqOSrm4nvz5TABHTBpDA2whT/KE9VWcmlFME+5MOso2azaZFa92awhATDLx27WAiPMd5HNOnIU\nDHgYnnkavv8BPpwHf/4Fr41Xnjx/Ww9790JbN35FY8Zok1kBunYNZ/jwZlgsQlhYAJMn16qURpuY\nmNItGdY1RV8xRXdgMMCtPeHLb4ErIMIClvoQ1BjenalfXrVnj78vhJuv0v+6q3Lf45Q28KoX1h6X\n1Qrg4RBt7NEWZoQNLdP4JsRMaEEAD1GLRijhrfHxcOed2lSFPEx8yj7WcpyrqMu73ExDLztiL5ki\n+Y3O0ABbdKM6nd1oN7nsZi2NpCRlRuSgR5W/P/iAElz+8qtw972wdhW0aQ1XdXF9zZiYAubNU+9m\ntaJRoxA++8yNC/kA9vKpfVEcPdp7a4pakJkJf2yB2E2waTPE7VAcyLfdChOmwe3PQp32cEbg9ufg\n6CrtMmtVm/do2/foLedqZVp7dIQLzlX/fG5vF0mLXREEUHLerCw4dUrpj1YD69pjFoWMpBN30wI/\nvP95uCSKpKdCA6wwYKC6i1/OZTdrWURGQo0a8O778MZkZVt4OHy6AP7vZdj8Ozz5hOtr5uRYGDZM\nm5u1MsAVU6xsRTErq6Qoxm4qKYqRkXBLL3hyONwSDa1aKcXw6+nw0HQgGAb21VYgq3LfY1VYe7Rl\nj19FBDBA49qjLRz1PdaIqs6yXWX33b/f/SLpaO2xIb773F/0RVJrNqseXEpu1lEq3Kz+/vD6eHj4\nUaWnbuZ7yo0WlGL511b3iqTWbNaKgrOWjJtuUopidLTnWjL0wsoUN20uXRQbN4bonmWLoj0e7ANf\nFcKJZBgzVP31vcUeY/bDsMt9j95lj+Qz3CZz1dQKgoKgsLD0/vHxcNttru8ZFcUebXHRF0m92axa\ncCm5Wd0NDbDi6qth/S/w5ltw/U3w+BBo1hS+/BpWfu/6+NhYbW5WX8JiEXbtKrrQjuHLlgwtyMpS\nelKtTHHHTudM0R0MvEv96zCbYeZX8PrH3mOP0R0us0dvs0fbvseAAMVfsHdv6ePS0yE5ufz1alv2\neFUFsEdbVM67jIegR2adyGmupBr/pZaq46zZrFpkVms266/XgZqHu1PZ8OIGeMzH2azPvAX9e7oX\nGmCLZs2UPrr/boZ585V1ymlTlAZkZ8jJsfD440o268iRoeou6kU4yz61yqeViSm6KoojnlBfFN1B\nURGMeg8a1YXXnih97qq29ujNvkdvZK4+n2liuRfZo7PUnKioskUSFMnVUZGsDOzRFhdtkSxxs4ap\nllk3kM3XpPO2iixYKJ3NqsXNas1mba1FZtUwAssTbtYFLtys5SEgAPr0Vr7cRWWRWV0VRV/2KboD\nV2uK3iqKtigwwn2vwK/JQCEknICFE8Hfzzvs0Rd9j8M6wfvecK56MHPVU32PtjAhLCSV2aTQxI3U\nnNatITBQeUiyRXw89O5d8p4ryx6971x1BxdtkbS6WefSU5XMmomZ1zlNNKE8oJJ96nGzDtfoZl15\nqMTNqnYE1uM63axL34BGbsqseqE1NMATcJV96iwQvCKg1mjjCyxeBb/GAe2BUPgyHr68CUKDITff\nO2uPKdmeX3scvRFqenjtcfIhZe2xIiZ2qIWWeY9BQUqhjI8vvT01FVJSoH790qk5lYE92sJrdxuD\nwVAL+BDoB1iA74FRIpLr5JjFwBC7zb+IiKq5A7Yya2sXA5DtMZUz5GNhGpEYVPySrG5WLSOwxifA\naQ1uVoB+rZV1SC1uVi0yq9XN2r8nPKZSZtUKWzerL2RWV1MyKlufojP5NLqnwhR79VRuVL4qivZ4\n+HZ4fzkcNYFkQmB9qBUJj7aC/0TDjR7oxqmKmatW9vhGW+/0PXqKPeqd9xgVVbZIAsTtN5FQv6Tv\ncXQlYY+28OYj+ddAA6APEAQsARYAg1wc9zMwFC5UKKOai5qw8L5GN+sGsllBJm8TScPixld3YOtm\nVTsCy9bNqkZmtSLAT/065M5EeGsNTOivPZvVVWiAJ+FtmdUXUzI8Cds+Rdui2Lgx9OoBTz1Z8UXR\nChE4kgSxcdA4Ao7sh8C2UL0epPvD94kwwgNqRFVce6xyfY86Jna0bau4283mkm2nyWVy/AkaRp+s\ndOzRFl4pkgaDoT1wB3CNiOws3vY88JPBYHhZRJKdHG4UkRSt1/6GQxzT4Ga1yqy3aJBZP/SAm1Wt\nzKoVVjdrx8bas1nVuFn1whsyqztFsbIxxfLk0+ielbcoxm5X/jx1TilY13SAV/4LUZ3hie+gW3M4\nEg7d3oV1I6GbhgLki75HT689Wid2eCs1x1fOVTUIDlbk/YQEKMTMDlI4RCYNz4byVlo0UXX0O1fT\nyGI3h3Wfxx7eYpI3AunWAlmM9SiZet2AlU6OjTYYDGeBdGAj8JqInHfnonrcrNOKZdapKmXWwyZh\nrAfcrL7yoeiRWbW6WZcsVaYC3BKt7jjbEVh6ZNaqxhRdFcUnh0N0r8pfFLu2h4F3Qq9roMfVUNPm\nVxgUAo/OBzoCQTD2fxAzTt21q+K8R284V7259mjf96gHUVGwKSGXv0jGiJnrqU9bIkjbb4Ae2s8r\nCFvYw49sJpOzul6jI3irSDYEztluEBGzwWA4X/xv5eFnlLXLY0Ar4C1grcFguFFESTMvD3qyWTeQ\nzY8aZVZfu1n1wOpmff1ebTKrFjfrwYPwzEiF7agtklqzWV1NyahsTLE8+bQyrSlaIQKHk5SCuCnO\ncVGMvhZu7gLhYeWfZ+BNcCYDXv4VQoFZL7n/Gqpyao4nnatW9mjBe2uPnpr3mIeJ39rtZ4NfEA0s\nNbidhoTaZLn20Fgk08jia9ZxgBPcxJW05FoWMk3367WFqju7wWB4CxjjZBcBOmh9MSLyP5u/7jMY\nDHuAI0A0EOPs2HWcIJFAzTKrr92sWrNZtcLWzTrOjRmNtlgZWyKzqnGzms0w7Eklfmq6yvetmmxW\nZzFvlZUpujLaVCamaC2KVrZ4OqVsUex+VWmm6A5e6gv1akKXZsqXO/AFe6xKa4+VnT2CTd9jtULu\naXk9YUfqllLrTp+GjAyIUHH7tWWPIQTxHA8QRQt2VIKhy+8Bi13scxRIBko92xkMBn+gdvG/uQUR\nOWYwGFKB1rgokh+Mnkjz8Pq8xKcXtg0YMIABAwY4vYZWN6s1NECLm9Uqs2pxs2qFntAAq5tVrcw6\nZ64SNbdpozJ30F1YZdZevRxns9oyxU2bHMe8VaZEG2dM0dqnWFWK4qN3OZZPtWJwd/f2u5yao8Ab\nzlXbvkdPskdHfY+noqqz+kjZfffvh5tucu+8Vva4etkKUpcdoRF12MMaADIzM3W/bnuoKpIikgak\nudrPYDD8BUQYDIarbdYl+6A4Vv9293oGg6EJUAc442rfW2Y+zzddn1TFIvW4WYcVy6xq3ay2Mqur\nbNbT2RCfBr2aKS5WrdATGvD8O9rcrAkJMP51eGEk9HDzRmjFokW5nDxpviCzms3Cnj0l8mllj3lz\nJZ9WRqNNjJOi6I586k34wrlalSZ2VCn2aNf3GNYe1qxRfv62iI93XSQF4U/28EMxe5w1YBpRA1qU\nvu6OHVxzzTW6X78tvLImKSIHDAbDr8CnBoPhGZQWkLnAMltnq8FgOACMEZGVBoOhBjAJZU0yGYU9\nvg0kAL+6uuZjtPeZm1VPNqu7MusbW2BTEhSYICUPXrwW7m4FzcOVN5i7N1e9I7C0uFnNZnj8CW0y\na1GRMH16NvXr+/Pdd3msX2/k778Lyc4WQkIqb8zbH1sgJrZsS0Zll083OVhTvOW6ii2KVpzPgde+\nq1rOVW/Oe7TguXmPJoRFXlh7dJWaU6OGYuJLTCx9XFKS8jmqWc4Dhf3a4wP0ohrBul+vO/Bmn+RA\nlDCB9ShhAt8Bo+z2aQMXuv3NQGdgMBABnEYpjhNFxC7QqCyaoe4TPVWjm1VPaIC7btb4VPhiH2x8\nBJrWhO8PwrydsPU0zOgFkSr+q1pHYOmRWWfP0SazAqSlWUhPt1BYCFOmZNOnTzDjxoVx001VgylW\nRvnUmft0wB2VpygCFBTC30dh7S6YtxGM4fDGIzDhTs+yx9DL7FFX36MjuJu5GhVVtkiCwia7dSu9\nrby1R1/Ca0VSRDJwERwgIv423xcAd3rr9dhCn8xqIlJjaIC7btbzBdCtkVIgzRZ4sB30bg7P/Ap3\nfgvrH4b6bjhi9WazGgvVu1kTEmDCRBj1vHqZFaBhQ3+OHWvEsWMmrrmmchTFypB96i7cacnQarTx\nBqxFMTYeYg/AX4fBWAQRNSAsCnIawpxTcH8aXKmjN7eq9T3aZq5Wxr5HW6jNXO3QAdauLbvdvkhW\nJHu0xUWb3VoeMjDxWgW4WdWEBjSvCXtTYfZ2GHWtsq1WCHxzLwz9CY5lui6Snshm1eJmtcqsb05V\nd01bREb6Exmp7iHEk3DFFCsi+7Q8uGrer2xM0VgEfx9RCmJMvE1RrK5IqjP+o/x5ZVMI+gAIUybi\n9PhKySfu0VTd9S6vPSqoaPZoi7AwaNpUkVhtcfw45ORAjVDhD/bwI5uoTkiFsEdbXHJFchrJFFSQ\nm9WVzGpda2xSE2b1gad/hbhkxXFXt/jB7GgGHDwP3SKdX/PNVfqzWX0ps1Yk3JFPK1NRLM99alsU\nKz1TrA4925UUxc7NlIkgtlh8Jzy+AXpHwbJQ6PMLrO4Dd1zh3rVt2ePQK2FmH8+wx+0ZMKSKrD1W\nFvZoj6ioskVSBP4+kMP+a3+pcPZoi0uqSFa0m9WVzPr1fiWwPCwIopvBD/fDO39Dh89gyJWQaVRc\nroOvdH6eHYlKkdQks2rMZrXKrFrcrL5GVSuKVqYYs91xn2JlZYqxxUyxwAFTdFQU7TG0EyTnwrh/\ngNZQVA1ik1wXSW/2Pb5xGN6+zB51z3vs0AF+tbFjCkIS53gvfjddrz1f4ezRFpdMkdQbGqDVzeru\nCKypWyDuLDzasWRbVF1YcjesT4S1R5TCOfFm5+fRK7NqdbNqDQ3wBcpzn1Y1o801HUqKYmVjipsc\nyKc928FbKoqiI4zpBiez4aMj0LcevOHiAcybfY/WtUdP9j16Y96j79jjTTREW1xYRITy+Tt9GvIw\nsocjpJJJ82Mt+b+8ntSpXrHs0RaXTJGsiBFY4w4qI7B+diGz7kmBdYnwTXFR++MknMiChPMKa7y1\nhfLlDjwxAkuLzPrnX5VHZnU2JaMy9ik6a8kYcEeJ0aYyMEVXRVENU3QHBgPMuRX6XgF9mkNgOULO\n5dQcBZWZPdqjQ5Sw9fQ54kkkgACupwP1LBGcOAh1PDB421O4JIqkXjert0MDHlkJLcKhcRj8cxpe\njVFYJMBja2Dp3dC6lutr6s1mrQg3qyfgDlOsTPLpxbKm2Ku9whRv6QCdmnqmKDqCn8F5wfMWe9xe\n3PfoafZ4Ka09lofzZLElKpY96+vRlPp0oDmBxeUoPh6uvlwkfYeKcrOqyWadEa24Vnsvg7wimNJd\nWXfJKICnfoX0AtfnsA0NUJvNajsCqyLcrGrhKvu0sjFFd1syKhNTjI1X2KLtmqKVKUZ7uSi6C7MF\nluwp6XusSmuP94X4Mf8SZI+2fY/VagdzV4Ob8Ttbp9Q+R45AQQGEeOBBxxO46IukXjernhFY7maz\n9m8NaaPgvh8UY47VmBARohTIpCy4rpHzc2gNDUjLgKen+zabVS1s+xRjYit/USxvSoZ1TdGT2ad6\n4aolY/p/INqD8qlenMmB2BMQcwJWHYazuVUrNedi7Ht0F0rf428c4PgF5+o/UcHE2E23MpsVhapz\nZ92X9Agu6iLpCTernhFYrmTWzUmQU6iMTrm7Fax4QGGPViz49//ZO+/4qur7jb+/567snbCSQEAQ\nAgQFBBGU4N571C1Vq3VUbW21tj9nW9tqHXW0VTvssmqddVYtoKiAshGQDYGEQEL2uuN8f3+ce5OT\nm7vnuZHn9eIF3Nxz7gnce548n8/zeT4ayZ57aODzrNwBD74FPzkj/DLrLVG4WSPNZg0Gf8P7I0bA\n3KONR4rB5hSrpxuPFBe4y6dLvJTigwYkxUVuUlxUo40/AYwvgEsr4eIJsNwBs7+Q/L1KcHhu4PP5\nw8Heo4Z4qsdXWUQ6tn7O1cpKWOBjdcWGDX0kKZG9AkdFRYnB9xkOBi1JJsvNGmqZ9WefaY7V8YXw\n+R7N3frvs7UZSYDNB+DRL+C1cwKfx1NmnTgi8tCAvz0QmZt1xIjYuFmDKUWj7lP0l31qJKXYbYdl\n23yTokcpxrunGA5q2zQyXLhLG/fY5CbFCYUwr1xztx5TBkPd/7ZrW+H6tS4Y42TOGgv/maBwbFF4\nr6nvPcZLPX6TnKt6HKCVf3ipR/3cY3ExFBVBQ0P/4zZvBrsdllvfoZNW8ilhKscmnCBhEJNktG7W\nSMqsd20Krcy6tQl+vxI2XAMZFnCqWnDA2GfhmZPg8kmQaYG/nQ4TgnzgIw0N0GezXnpq6MdB9G5W\nj/t00ccDY96MWD4Nln1qtJ6inhRjPZIRa3iU4sIaTS1u0inF40ZqpFhdDkP83K97VPB8vCdkS05a\nr/LPsQoXBGlPQGLU48Heo5a5egPnMJEKn8+trISPP+7/mBM7L/b8kRyrQiUzWc5H1FPDPC4gLQY/\nFISDQUmSsXCzhltm/fgA/HZHaGVWIWBKCWS7f6AyKfDn0+DMsVoU3RHDNIUZLMjcExoQkZs1ihVY\n4bpZ/SlFz0jGtVcbb07R3+oooypFf8P7iXCfhgNPT9GXUjy2HB6Yo62G80eK3pieB/cUmbhvjYJp\nkhNnicqFO828oZg4c4j/4+KlHlN77jGWvcfQM1d9kaSw2OloSuNb2ZdgwUY5h/IKT7KepUxmNhas\nUV9nqBh0JJk0N+samB2im7U8R1OPl78F986GMe7xjjMPgf9sgS/qNJIMhGjcrPps1khXYAVyswYK\nBDeqUvRFih6jjdGUon4kw7unaFSjjTcpji/QSPH+OTBXVz6NBPeMhb09gmeagQIwuaDAz8/GB3uP\nGhKhHkNNzRkyBPLzobmnDemwgsMG1h468rbQ5uikwGLDRjozOJFlvE8FE8mnpF+vMp4YdCSZrGzW\nUEIDPDAr8PSJ8NiX8MslcGIFXDBeu6nVtms7JIMhGjdrrLNZA80pGlUp+iufXnqKphSNRIoepejP\nfWo0peirfKpXisdESYreEAKemgS1K8y8vVHy70qFOQUDn5eI3mMqzT1OiWHvMZqNHUJA4Wnv0qNs\npuu1K5AOK7KlEMfW8bw35hUusVwDwCFMYR2fs4qPmcf5CSFIGGQkGU2ZdX4MslmDlVn1GJOvpen8\ndzv8+2u4d7EWWt7cDdceFvjYZLlZPdmsU6rgnXdTSymmUk8x2PC+0ZSihxQX7urvPo0XKfqCScCr\nhwt2dwtGeXFJonqPv8s1MzSG6nGtWz3eOgjVowf72cMiXiF9eC5df7gM2dZX/bN/djwHRv6N9Syl\nEm2HViUz2MPWqK45XAwakmxzu1nnJbjMGmo2qy8cMQzG5mv7I5fVaps+DguyeT0WbtZwy6wAt92u\nDfi+/Ao88dRA92n1XOMk2ujLp4v8jGQYjRQXpVBP0Rcp+nOfJhJmhX4E6ZLwyl64exNs60ytzNVS\nLPxrEKtHD1axiDq2c1P6o+wC2grrkT1pyO501P3D6Fw8jwVnvEiGyCGHfFaykEMIoiJijEFDks/R\nQBdZPGDAbFZ/kFIbgM5Lg9Eh8nqk2ax6N2u4ZVaAq+fDuLFgscDYQ4wV85ZKc4qB3KdGLJ8GG8m4\nLwY9xVjBJWFVKyxshEUHNDNdixNOLoaXDz/Ye4ylevTse/SeewwFDnqwuMn0BC5hC6tZIz6h6PQ2\nHGnrkR1Z4DLT/d9z6FxxBFWzWthUvII6tjOBGUzj2KiuP1wMGpJcSDuPMyxh2awfHwi9zPriBq3v\nmO8nEWTdfijJCL5IeeUOLZs1ohVYv44sm9WDc8/RfiUbgeYU9UYbo6yOChQIHu7qqEQgGT3FSOGS\nsNpNigsOwCduUkxT4Kh8uH20tjlkqjtgYJ9L0iGhwhwZScRj7tGJ5E9x6j0+y3reTUBqTjjqcRnv\ns5stjGQCxQynnPEcz8X8h+cYNWwWnY/eilJUj3XaYmzV79D9xuXYPz+eM8+ELtpJJ/FvvEFDktPI\n4BzCi9uIpsw6f01oZdY7F2o7Ic8aCz+ZBdN181tCaIk7z6yGn84KfB69mzXcMuvrC/rKrOFksxoB\nwWLejKoUfRltPHOKRlWK3ok2HvdpoDnFREJPigt1SlFPinMLYEYu2Lx+5v3aqXJ8czsdwsULmbmc\nlBb6P368e4+xVo/L2cdjrE7a3KMv2OnmA14AJNM4ln3s5i3+xKVNfZBHAAAgAElEQVT8iLEcxvl8\nj7LMcWxLh/b6EaiNJYiMDgA2blQ5/XSFdCU5H/BBQ5I3UJwwN2uooQH1HbCsDj67DF7aCN96E244\nHOZX9alKmwnuPkrrRwZCNGXW7z4YeZk10QhnJMMopOivpxiP1VHRQh/zNmBOcaTxyqf+SHF2Pvyg\nAqoLfZOiN37R5sJWVIMNOGefiWfVTC7NCF49StW5R6P1Hrtop51mLuI2AEooYwULeJ+/cyG3Us44\nENoy5i/WdGEetw7HBq332NmpsGMHjA6ybDteGDQkWRTGt6J3s/4igjJrqKEBQzLh4XnaDejIEVrJ\n9UcL4X+74PcnwvPrYGkdvHle4PNE42b93q+huyd8N2uiEEoguBFXR/nbp2jEOUV/RptYzSnGCsFI\nMZBSDIYxZsG7HdmMS7dTkdXFTc5O6tsL+X6W7/aMd+/xaYOrRyM6V/UQCMxY2MQKxjEVF07GM501\nLGYNi6liDg7sWI9cTOa0JTjWHoHjy6N7j9+wIThJ9tDMflZEdH2BMGhIMhzoy6xZEYQGhONmnTpU\nIwKAk0drpauffAwz/gZ2Fyy4OPDxyXKzxgvBeopG36foPbxvVKXoayTD4z4NJ9EmngilfFpdAEdE\nQIre+L8sE9ubh/H3Ficjh2+jELjngJnDewqY51VJStXMVaOpRz2spFPGOD7lP+xlF9tYw1GcTi6F\n7GUnkzmKbjrJKOhC/mk+9pr+uYIbNsApp2j3CV/YwyLW8hRbaIn4Gv3hG0eS0a7AisTN6vl8uVRI\nM2trff6zBa6eBpODkFekZdZoQgNiiWDuUyPGvPmbU0wlpeghxfsM1lNcpSNFX0abSJViMAgheCbP\nzF5VZb3DiiIk49QMplv6Psip1ns0onrsooN0HySdRgaHU80wRtFCA2O5gmGMYhn/JZNcBApZ5DJb\nnEZjMayo6X98ezvU1MBIr0paD82s4Unq+IRhzCGPY4D/hv+NB8A3iiSjWYEVjpvVHzw31YW7tHLX\nHUcGfv6KHYkPDYgWelJc8OXAnqLRlWKquE/99RSTOafojVj2FGMBixD8O9/KCY3ldErJB0U2st0/\n7SZi7nGwq8dPeJ01LOYcbmS4D1OPBStljKOMcYDWp9zFxt6gAI+npLISVviomm7Y0J8kPepRMwP9\nmOHMZSUrQ/+GQ8Q3iiSjWoEVZpk1EOaWwRFDAz8nVcqsofQUjTS83+OAJVv9K0WjkqIvpejZkmGk\nnuKqVi2FSk+K6W6l+IMKmFcYm/JppMhUBJ8UaeHYbRL+1uni710u/tsj49Z7vDoOqTltCdr3GCrW\n8AkH2Ecp4/iSDziJy7GR7vf5X/Ihq/mESczqJUkPKiogLU0LL9Fj/Xo46SSwi/7qsYqbsYUZIBMO\nvjEkGU2Z9a5N0YUGeEMIyAwSYv/zNyPLZo02NCAYQtmnaDT3aaDVUalEiqniPjUSKerRoko+tqss\n7JEstKusdEgkMMsi+Fe+mQtjkLnqRPJHGnic/XHd2HFbkjZ2+MN4jmAkleRSyPP8nHV8xjSOG/A8\nz9LkYYyigokUMnCnmckEhx4Kq1f3f7y1Fb7c8zmNpY8CMI27GMHcsK81XHwjSFLvZo3nCqxYwRMa\nEKmbNZZl1lCzT43UUxxspGiknmIwUkxk+TQYWlTJJ16kqAKlClTbFG7MNHGCTaEsBsoR4q8eW7Fz\nM1Wcxsiow72jnXv0hpU0zO71VcdwNv/jJUZwCEMoQ7j/DbbzFT10MZ7pjOCQgOerrOxPkk66qWcZ\n7254l1NKJ8ddPerxjSBJj5t1QZxXYMUCsSizPh9FmTUYKRrRaONvn2IqkaJ+TtHopBiLkYx4oNlN\niov8kOINmSbmWhVGm/CrGF1InmY/U8jgmBDTXb7pzlUPFBQkKhVMpJxDWcI7nM13aaOZDLJRcVEa\nhBw9GDMGrFaw26GVHexjGSCQ669m+vGHJNRnMehJ0pPNelOmQnWC3Kx72uDa9+B3J8LI8EKAonaz\nnn40XB5GmTUVSXGwuE+NSIq+eoppBlWKzapksVspLtCVT8tMUG1V+G6GiWpbYFLUw4nkVnaykq08\nTxp3Usn55Ac85pvkXA0N2jWewCX8g1/xCk+ymy2cwTWMoSrks5jNUDGug/+tW047O8minCHMRDal\nsXcvDBtYpY0bBjVJ6rNZE+VmlRKuex9W1kN2mMuzV+yIIpvV7Wb9w08Dl1kDJdqkGimm4pYMo/UU\nfY1keMqnRlSKi4OUT6utChUhkqI3XEg+oIVRdJBFB3exiwacXEfRgPJmItRj7DNXY68eveH5d3Lh\nooduTJi5jDt89h79QSKpZRGtlW/Qte4ohnE0OToy37DhIEnGDNFks0bqZv3rOnh7q5aiU+Df3DUA\ndifMjyKb9Z9+3KzB5hSNtmS4xwFLt/rfkmHEfYoLd6Xelgxfc4pGVIrePUWJRorzbJpSnGeLnBS9\nYUFwMvksp5FTKMLKbv5KI/Ucyt267UKJ6D2mlnociKW8x0RmMpOTwzpOm3t8gjoWM/mQY9hrOR3p\n6H8jXb8e5s1L3GjboCXJaLNZIy2z3vIRXDYRzgit9N6Ln78ZWZlVSrjrSThltuZm9XafpoJS9NdT\nTDWlaOQtGf7mFI3kPtWT4iIvpTjPpnBDmOXTcKEgeIhSrkXlTfaTh5Ns2nmReq6lmCFYDqpHQKL2\nmnH8YRanBH2ON/rmHt3OVetcag7RlKMeDQ2wfz+UBNm9GysMSpLUhwZEsgIrEjerp8yabobHBzqf\nAyIaN+uSNbBhO1SMgFNugmVfQVOr75EMoyjFJVsDLxk2mtEmkFI02vC+r32KeqVoRFJc5NVTDMdo\nE2tYUXiKMi6lmzYaaSOTHzKSNlRuZnvceo9tcXSuxko9OnHwGW/TQgOnc3XA6wyHIL1Tc/TO1crK\ngSQJmpo8SJJRIJrQgFBXYHnDU2Z949zwy6yRulkBvliv/f7eZ3D8DPj+ZTB9Ahw1JTWUotGWDAdK\ntDHq8L6vnuIsg/cUvUnRoxRjWT6NFFmYeI4xzMfMeKwspYNfsJcKrDFTj504eZavDDv36I06tvM+\nf6eFBmZxKiAhSjIH79ScgXOP48Zpc5MuV//jNmyA6uqoXz4kDDqSjDabNZQVWN7Ql1nPHBve9Ubq\nZvXg5m9p5dNRw4yjFJduHTykmCrlU6MabfyNZBiJFEFTX9uxs5QOltHJUjrYh5PN9DCJdB5gGOeS\nhzXG6vF7VHFqCqjH5XxICWVcyh0UMTzq8wZSj3rYbNo4yKZN/R+vr4fGRigs7P+49g6LLQYVSXpC\nA4ZG4GZd1BidmzWSMms0blYPhIAp4yI7NhYIhRSNZrTxRYqeJcNGI8VkBYJHgmBGmxuidJ/GEhLJ\nDjcpLtWRogmYRDpnk8tMMplGBlnE5h/X6Kk53tCrx9mcwXSOR4nBv4V35uoIqgM+v7JyIEmCVnI9\n2r1NS+KkgWep5bWor88bg4okowkNuHpt4t2sV0XoZk0mgq2OevACqE4RpXiQFKNDqinFHdhZQkcv\nMe6PkhQlMmQFmErOVScOPudtvkySevTGoYdqHgvVSyRu2KCRZDebqOVOuliHjVOAD6K+Vj0GDUnW\n6Mqs4YYGJMvNGkk2a6IRSCl6SNFoRht/SjFVeoqpQIoL7CqrvEgx1iMZ0SCYUjzHTYpTySA7AnX0\nOXt5nC+4jEmcHiDOzbv3aHTnarzUYy0fs4YngfAzV9PTtdDzrVv7P76nVmVL81+w5z2EhXIqeIke\nVOC3UV+vHnG7PQsh7gJOAw4DeqSUBSEedz9wDZAHfAp8V0q5Jdhx97ZFHhqQSm7WeCNYzJvRSLG2\nDRbVDHSfHiyfRo9UMdqA/55iPMqnn7OXR/iIEur5J/tpxs6ljBugKhOhHqPNXPUg2b3HYKis7E+S\nThpp40OWrH+f44+aTwm3oGADfOzYihLx1DAW4CXgc+DboRwghLgDuAm4AtgB/Ax4XwgxQUppD3Ts\nKqdkYV5kbtZIslmT5WaNNVJNKQYiRY9SNFrMm95o0+rlPq0uMNZIhr9EGyOSokcpLolR+TRUrKEB\nBScAw3HwKstpoJObOQwTIgXV4w7e529x7D1Gv7Fj/Hh46y1QpUony+lkKQq5tG14iKFHlUd9rYEQ\nN5KUUt4HIIS4MozDbgEekFK+5T72CqAeOBuNcP3iwrTI3azvp5CbNVoEyz5NRVJMlfLpDw2mFD1b\nMhb4MNoka07RH4KR4jnkMZOMuJCiN+Yzgc000IDKGLKQbGItTdxBK+Mo4hNqU6b3aGT1qEdmJgwf\nuZd1OxbhYB8ZTCWTmdTXmGlthZycqC/bLwzTDRNCVABDgY88j0kpW4UQS4FZBCHJ72WG98HQu1kP\nCbPM+p33kudmDRf68umCDamzOipQT9FISjHYSIaRlGKg1VFGVoqBeoqJIEVvWDFxH7O5BZWtbCQD\nlSw66WA9S6hgDAVczySDq8e+3uNRnM4RnJAU52oo8DhXsysXoO44g3wuwELf1voNG2DmzAAniBKG\nIUk0gpRoylGPevfXAiI9AjdrpGXWd7YlNps1HKTy6qgFu1JHKXon2hg15i1g+dRgSjFwTzFxSjEU\nWFA4mXKep5EKnGSiMJzNdCG5nblkEcbNwQe+qb1Hb+idq9Mn3MCGdy5GeNGWoUhSCPEgcEeAp0hg\ngpTSx1SLcRDpCqzaJGSzBkOq9RT9xbwZVSn6Wh3l6SmmEilWG9R96n8kw1ikaMfFBppYTQNraGQj\nTThQySKLqcxiDR9jwkEnHXRjj4okU8256q0ehzM3BuEImnrcz297nasZ2YdRXgY1Nf2fu3MntLdD\nVpx+kA73dv0w8Ocgz9kW4bXsRcs5GkJ/NTkEWBns4Ntuu43c3P7LGy+++GIuvvjifo9FswLrOwZw\ns4biPjXSnKK+p7iopv8+RSOT4gKvnqJRlaK/QHCjkqIRy6e+0OMmxbVuUtzgJsVsLEymkGuopIpC\nRpGDgmAVebzM/7iGUykizCWybnxT5h6DQa8eC7lG51zVXK4ekly79gXWrXsBgI8+grw8aGlpifr1\nvSGklDE/ab8X0Iw7j4YyAiKEqAUeklI+6v57DhphXiGlfNnPMVOB5cuXL2fq1KkBz9/hhKrFMNwG\ni44MT0U+vxauekdzs4Zj1rE7Yfo92mstuzd8FRloddQxh2oRb0ZTiv6WDFeX9/0yCimuboUFfow2\n8wqN1VMMlGhTbVOYZ1MMVT4NRIozyTAUKXqU4hoaWK1Tih5SnEJRP1KMNTT1+AEb2RkH9fg3Wmhk\nFqfGxbk6mRti2nv0qMcR/IoMDuv3nOZmeOyxgceOGQOXXw4rVqxg2rRpANOklDGZB4nnnGQZUACM\nBExCiCnuL22RUna4n7MRuENK+Yb7a48BPxVCbEEbAXkA2A28QQyQLDdrOKEBoayOSpmYt5HG3aeY\nCj3FYEabGw3aU/T0FePZU6ylgy20MIMS0iK4jelJ0Z9SnEwhFVGSYifd7GY/4yjz+fXUdq4eTRU3\nxV096pGXB8OHQ21t/8e3b4fOzqgvwyfiady5H23e0QMPq88DPnb/eSz01SaklL8WQmQAf0ALE/gE\nOCXYjGQo0JdZw3WzxjOb1TOS4Wt1VCr1FPUxb3MNphS93afpBl8d5SHFVQYvn27HzrIEZp968EuW\ns4NW8kljCXu5kEMYRU7QmLidtLGIPazVkWIWFqp8lE9jgVY6eJK/0UYdMzmOszi63/Wlbu8x+rlH\nD3z2Hr3UozcqKweSpKrC119HfTk+Efdya7wRSrm1wwlTFsNQG3wcYZn1zfPCN+vMvBd6nP3LrIHm\nFOeO134ZbUuGp5/o7T6dNxKqy4yXaOOvp1hdaKw5xWA9RaOVTwO5T2eSyUwyIo5580YtHayjkWXU\ncwRDmMcIrJj4lDo+pY4fcDgmBL9hJRK4ncODnvMDavgD66iikMnu8mm0StEfXKj8gr+SzgoUXLSS\nTQVzuZBjScPaTz1eyolxUY8ncXnK9h4DobERnnhi4OPjxsH48SlUbjUSInWzRpPNCtBph1FF8NZK\nWLvb//C+0UjR30iGEWPePEpRT4qp4D41ypJhf4hHIHggNNFNGmbSMfMka3iLHZzNaKZSzCyGYnGv\nqNpHFwfoxuQmttMYxe9Zx27aKSXwm3IeIziO0riQojcUBJmk4XK/1iiK2MXH/JztFFHEZnan5Nxj\n7Jyrz7Gfx93q8UUyQvghx4PCQhgyRFuXpceWLd2MHLkkqmvzhUFPktG4WSMts3rwrSPhp/+Gt1YZ\nu6cYrHxqJFL011P0lE+rC42lFAONZNxosNVR+p7iwESb2JdP99DOC2xmPQcYTQ4XMZax5DGKHA4l\nn+uZNOCYMrJ4n57ev48hFwVBPZ1BSdIcg12QoUIguI6zeIRmBE2Y2cRY9lGHkwNw0Lkapnr0RmVl\nf5KU6lbsjjfYvuUfUV+jNwY1SSYjm1WPH54KZxwGw/OhMEvb/ZhsJLqnuLUDVrTCqcWQGea7zR8p\n6pViKpGi0fYpJpoU9XAhWcAeiknnYWZTQBp2tPXzsxjKk6zhU+pYRyMFpHEy5WRjpYR0JJqiLCEd\nCwomBA10x/wao0EzbWxiN9kUsI1WcpFI8slAkM1OhpIW9WsM9t5jIFRWwoIFIGUPqut9pFyBEKOp\n2fNr4Pior1ePQU2SHjfrewl0s+phNWuKMZkIRIrHjYyvUrx0Faxt03rBb9bDHWNgUram0gNxxKcH\n4JfbBvYUjRbzFshok6qro2JFirtpZxdtTKMEm4/zdeDgQ2r4i/uG1o2z16VaSBpDyeBddjKNEnbQ\nysOs5ArGM4ZcMjDzGXWczWgAcrHR4laXKjIh5VRveEhxMzVsZjf7aQZgGIWcxNFM4kxe42nK6cLM\nJl7m18znF1gjIMvUS83ZTC130MU6iriG4gjVox7FxVBYsIH6+veALhTTGQgxlZrdQUfqw8agJUlP\nmfWxSEID3oMMC/w2tj+QJAT+5hTjpRRru+H1eljTCvPLNFUnBLxSByYBK+dov397DfxmG/x5SnBF\nrQKdLmP2FP0ZbVIt+zReiTYSyZOsZRn17KeLp5jLGB/D9fV0UkYWr7KVleynDQdHM5wjGcIIsniM\no8lz30g7cPAMX/ExtYwhlxMpZyF7yMHKfrpw4OJYSgESRpDNtLGZ3WzyQYoTGMmZzGEspWTr8ltP\n5goW8xh5WCmkHAvWsF9XP/cYK/UokdT2qkcRY/Wo7z1Gpx57zytbcNpvZ+whW9m37yoU05kIoZG5\nyxX16QdgUJJkh1O7Kc/Oh5tHhXesPps1P/qKSNzhb05xQiHMK9cSbWKpFD0qUJVgV+EnX0OHCw7N\ngke3w6w8uKUCtndpKt7kvmddXw63rodN7TAuyLUcXQAfxTGLMVQE26cYS6W4Eztf0UU12WRE0DsL\nPqeYmEQbgeAYhnMzVfyIz9hOaz+S9Ixp2HFhRmEdB7iOSVhQeJb1bKKZHzONbB2BZGCmBxdFbtV1\nImWMIJMX2MwQMjiTCoqizEoNhmba2UxNWKTojfFMx8517GITJ3EZIoz/5/j2Hp+gjsWG7D16Q3X9\nF4f9GpBNTK56ms+XXhb3H0gHJUkmy82aCARTirEOBG+0w6t74YMGOOCAC4fBRcMg1wIfNsBX7bBs\ntvbcV+rglg0aSU7Mgr/u6TvPYTna/8XOruAkmSx4k6J3+TReSvH77OZruinCzEe0cR1FjCMt6Nzf\nXhwspC3gPsVYjWSEg0lo4VqjyOYrDnAcpQO+j+FkoiC0HzrchpszGMWDLAegCye1dPA1TaxkPyYU\nTkYbNjahUEURVRTF7XvwKMXN7hLqPjcpDg2DFH2hiqOp4uiwjklM7zG2Gzti1XvsPa9sxWn/Aarr\nOYRyPBbbcwwfMZKCAmhqivr0ATHoSDKZbtZ4IFDMWzyUoh6qhHf2w7v74dLhUGzTSqY13fDAOEgz\naeYaz3PPGwY3r9fMNhXue0dNF5Slg1UBi9CONQqCbcmIpfu0Hgcf0MbXdHMeeUwhHYHgPVpRgDcZ\ngwnBnezhjzTyK0YEtdovp5N7qDNc9qnJrZCmUsw/2EQnTjKxANoGBIHWRzyOUv5K3wT4VlqYy3BU\nJAfo5u98TTHpzKOUqRT3joHEA/56ikMpZDwjOSNCUgwFEslyPsKJg5mc1KswU6/3GC/1+D4O+7Ug\nmzBb/4Biurb381hZCZ9+GvVLBMSgIkmPm3VOktyssUAwUrwvxoHgm9phfTucVAzpXvdWgVayvmCo\nRogAXzbDlk6NHNMUKLDAri4od/+bVWTA0ma4rhyyzfBafd//RbEVGtzZSaoMT+XHAh5SXJAAo007\nrl6y6kblEfbRicporPyZRg4ng6soZDd2twLUXu9i8vkZe9lODxVBbjDHkc1yxiedFP1hEoW00MNe\nOntLrp6eoYLgKIaxhkbuYxl1dJKNhZuoQkFQTjb3E7+aeyBSjEYphguJZBEvs5sXEUga2cNJXMk+\navgv/4jj3CNx3NgR3tyj3/O6e4969SiU/tFlB0kyTCTbzRoJQlGK8Yh5kxJu/Are3qepu5VzYIrX\ndm8hYLT7HtHt0ojyo0Y4vkjrNeZbIM8Cy5r7SHJKNixp0kjyqhHwrzoosmiv0a3CpSO05yWCID1G\nm0UJWDLciJN3aGED3Syjk9PJ5WaKMSFYQgeb6eFVtxvzPVp5gDquopCx2HjNfYMGmEAaCoI9OIKS\nZFoC5/7ChYokCwtDyGA/XYwhFwcqdXSwkv3MZAhDyeRaJrKDVopIIzcGqsMf/BltEk2K3tjECtby\nASNpo4AD1PIfnuRLVEwMoXzQZK6GC009XgOyeYB61GP4cMjNhTgs/+jFoCHJ5c3wRHeEK7DeS1yZ\nNdA+RU8geCK2ZAih9RefngTHLoU1bQNJ0gOX1AjykwPQ5oTjC7XHx2RAZRY8vwfOH6Y9ZlP6iPWq\nUhiXCT/fCqPS4aaRMCKOZqhgiTbxHMl4ixZ+xl6eo5zrKaZcZzyxIXCh1aVVJCeTw/3UsZ4uSt3P\nq8XBcCxYUTADdThien3RokcXCO5E5dtUBny+AFqx04qdh1iJE5WbmMx0ShhLHsVuo40J4dP9Gi3i\n1VOMNUooRSIwo9BOATn0kEcDpdzIeI6JkXP1Y8PPPerhsN+M6nzSr3rUQwiYMAGWxD5opxeDhiTv\n2wJzJkdWZvW4WeNRZg1ktPHsU0zWlow5+drvk7Jg8QG4bLjv8QyTAKcKj22HU0tgsptM00yaa/Xc\nFXDTV1r/sdEBd7vVuEWBuYXar3gg2OqoWCrF7fSwhR6OJsungjuCDEZgYS7ZANhRsbqfZ0KQh4la\n7Ax3k2IpFlbTxcUUkInCB7RyJdo/VAFmmtyD9cma+wu0JWMmQ4Ie34aDh1jJWPK4kqFUUtA70pEf\ng0F6b+jLp1vY3Y8U491TDBcqLvaxu7fY68RCN7Ox8QXFtJHODnbzHKVUkBNFKk8i5h5jqR49EGJs\nQPXojcrKgyQZEhrssKAqsjLr5TF0swYqnxptdZTZfa8/sQju36KpxBzNXzFg4P/d/ZBjhjvHwFdt\nsKkDTimGYWnw5jT44244Oh9OLNbKsPFAIFKMl/tUIrmHOhbSTh0O3mQME3zc5MdgoxUXN7CLNlSG\nYOYc8phNFkOwkIXCarp6SXI8aayii4uBc8njbVrJx0QdDnqQnOnVw4s3PKS42k2K3vsUr6aSKWFs\nycjBygNJ6CkOMzAp1riveA9bsdONGQsjGMNszmAcU7FzEuv4AQpzyKaRL/kOU3iEQh/xfMHgnbka\nO+dq7OcevWG2fC+s55eVQVYWtLfH/FK064nPaROPG0dG7mZ9LIoyayikaJQlw/4wpwD22bXZxilu\ngtNzjEvCLeuh3QVHfaY5FE8uhmMLNTVZbNPIM9YI1FP0ZJ/GOxBcIDiVXO5nOJexg410+yRJGwpX\nUYgLydnksZQOnqGBBpycRR5jsPEqzZziJj8rorckex75VGDjafZTipXLKWAocfpJw41ASrEqAlKM\nNwKRopHKpzBQKe5hSz9SPIITKGMcQyjH1O8WXEIP/8cqHmYM28gBVvAgJxB6HqkRe4+qugHoRojh\nCDEEKVWEiF0/3VNy/eKLmJ2yHwYNSV4cZm/b42YNt8w6GEhRD1Vq5puKdK1cOiVHCwnY1gnv79f6\nli4JV4yAw3O1VVN5cbp/65cMG2lLxnT3jXccNpbTydnk+nQE3kxx7+NDsdCAkxV0chZ5XEIBN1HD\nvdRRh4NmXNxMCQAWhHvVVPzeND242OhDKWbpSDGeq6PChYcUt7jNNqlJilZGMJojOIFSxjKUkV6k\nOBDlnEg3B6jnNzixMJ5vh3wdRsxcdToewOX8C4oyC6muwGz7B4oSvfPVG5WVbpKMw+rHQUOS8QoN\nSKXyqT4QfOEBaHHAx7MCHyPQAgMa7HDFGo0gn5qoKcUZedrYhlmBe8fF/npD2ZJhhNVRZjdpzCGL\nJ9lPO2rvgL5+4F9PnOkorKGbC90/xQ/FwjOU8xJNHEEGc8giN46jG4HKp0YmxdRWin2k6Fsphoax\nXISCiXSKQyqTxnPucQ930M1XEfUepboN1fUhVttChFKG0/5/OO23YLY+iaJURX19eowsV8lwLYWW\nj2J6XhhEJBkqgrlZU5UUfW3JOKk4eJh4kwOuXA3TcuGBIdpcZLH7czAkxo78ULZkGIEU/WE6GTTi\nZDcOJrgJTk+MtTj4iFaW0MFO7Ewhg6N065sKMHM9xXG5tlDKp0YkxS1e7lPjk+KmAT3FaEnRGwLB\nIVzg82su7ChYet93RlSPHqhyA4IshFIGgNn6AI6eS1CdzyMsP0OIGDkle3agbLua8TmZbFWOjc05\ndfjGkeSiGs3N+to5WjZrTSt8utu3+zQew/vRQL9keKHXPsXZES4ZLrDCW0fE53q9h/fjmX0ab6hI\ncjBRioU6HEwgDTsqNTj4hHZOJQcL0IPkNHKZRSb5cfx4pczo6IIAACAASURBVGJP0d9IhlGNNr6U\n4vAYKMVI0cRGvuR20hjFOK5kF+/HpfcYqXpU1Q0gaxCiEqGUoiizcapXoroWopiqATBZ7sXRcwKK\n+XKEiNL0IyXs+wPs+iGYC6g8/p+8vSX2IwrfOJJ8Yb32+3Nr4Op34YA7Js2opKgvn3qvjjLaPkVP\nT9EXKRqpfAp9WzKW0MEBXNwYROEJoAknTbj4IXtwILmXYRxDFlWkU4AZM4Jr4pQn2uNFiqlQPk01\nUhzoPu0jxVB7ivFCI2tZw/cY49pIp9jBl8oGTBQaRj067feiuv6FUKqQsg6T+TpM5sswWW7H6bgb\ni7IIIQSKMg5FORbV+SKKNQqS7NkB266G1v9ByXeg7CEqRA5W64rIz+kH3ziS/HKv9ntLD9w6HaaU\nwIxhxiufepPiUREqxXgiVXqKEHh11HQyuIGigPFcLbj4EXuYRDq3kc1UMih0f3yK4vAxCoUUU0Ep\nGnkkw1f5dLi7fJpsUtTDThtreIIcFGyqnUy5H7M1j1LuJiuC8RBvRJuaI+U+VHUplrRFCDEEl/Nl\nnPZrEcoUTOZvo7oW4rR/B4vtWfcRZoQSYflKqjr1WAjjP4BcbaehCRjpP3cgYiT/HZBgfPQtsLug\nxCBK0V/51Iik2OJjTtE7+7TaZhxS9KyOWuZzn2J4geB5mHmWOHwC3UjFnmLqk6JxlKIedto4wDoa\n3LarVrYBknLOpMO0CxOHUmRfSYPpIkyml0kPkn7kD7HqPUp1K8itCKGFTJjMF6Cqi3Daf4g17T0s\n1j/g6Dkeh/16pLoRkCjKPeFfcD/1eB2UPwSm7H5PGT06/NMGQ/LfEQlGXhJ3RPoz2njKp7eP1kYs\njFI+Dbpk2GBKMTApxmfJcKRIRaWYqok2vnqKRiPFRtbS6H43eEgxnRKKmMJozqKQKWQylFalkhr5\nXUqdtZilyg7TxZTzezIJYmP3QnRzj+txOZ/GYn0SAMU0C8RwXI7fY7JcD4DF+iQ9nSW4nH/HZL4M\ni+19pKxBKlsxmUMfawF8qMf/Qu4JPp9aWhreqUNB8t8hgxgeUlzUCAvcpNiqU4qxJsWtTskKh8qp\nNoXMCBLEgwWCG00pesqngfYpphIpGlEp+loyfJAUo0MfKa6lgdUBSdEbOZzAMPEzam23kcW3KO/6\nIwcs5+I0/5FcTg362rHY2OFyPIrq+iMucSgmy81I2YPJfCWq898I03EoipZLabLcglTXaAeJChRl\nNITbP/XRe8TsJ2QaMMfhvzf575hBhGA9xR/GUSle2uRgrUMy1ARvdqvckWVikkVBShmQ0L5yqPyp\nUzW8+zQYKRppnyKkplL0Vz419khGapCir/KpnhSLmEKGD1L0hQK+hdO0jyb1YXJkG/mONGpMN+Hi\nPgrE5X6Pi3ru0Z2Uo5hmaXOPjlsRpnkoyiSEMgehrMbluB3F9ob2fHWLpjKJ4P4RoPeYaCT/HZTC\n0CtFXz3FeCjFT+wqb3ernJKmcGm6gk0IXutyYQJWFlswCcG3mxz8pt3Fn/OVoG/OnS7JS12uuGWf\nRopg5VOjkWKgnmIk2afxhr/y6UGlGD30pNjIWlrYSjSk6AvF3IxT7KXB8iy5XMLorsdpNt/EPmsL\nJdzU77mx6j16ouRU52uYrU+DPIDT/m2sacsQZGIy347DfgmOnnORsgGwoij3hv/Nhake443kv6NS\nCMGUYqxJ0SUlJjdZ3dzi4KkOlVsyTZxgUzgrTeldxrTLJalz9T33+kwTt7Y42eRUGedJMfeDk20K\nu4ZYDUGK/tynRiyf+iNFI8e8pdpIhq/s0+FxGN6PFsF6ihWcGTUpekMgGCYeoMbSRLPjJYqBbGcn\ntZY3KRF9JBnLjR1SOhHCDMpIEBbM1sfo6SyhpzMXk+WnmC0/1HqP6ldIuRmT+eIwX8A46lGP5L/D\nDIxEk+J+l+SVbpVP7SrbnJLz0xUuSDdRahJUmhVmWCSP5g78LxtvVvijqvb+/TCLQBGw0wnjgvwP\nK0kiR49SXJZipOhvS8Y1VDLZgKSY6j3FWMS8xRp9SnENjazRKcUhFFEVE6UYCgQmSnmUGvNeWtUP\nabdUUCaewUUHzbyCnV008Y+I1KOUPQhhc//ZhRAmjSABZDdS/RpVfQOEFWQrJvMV7iPTUEzTgenh\nfTMGU496JP8dZyAkmhS98bFdZUGPyjnpCqNNgic6XOxwuXg818wZaQo3tjh5rcvFJ3bJcBNcnWEi\nXxGMNGmbOWpckjKTwCoEFqBGjX3Yb6RIZaPNWh/lU6OSoocY9+uU4sGeYnSw00oj63rVonf5NB5K\nMVQopFEq/kK97RGGcRkChZ3yTDIcq+iwjKFQzKc4LOfqGlz2H4MoBpGJxfoUQpiQUqLdZRwIkYHD\nfhlCTMSWvhtHzzU4uk/Cmr4qit7jj8BcYBj1qEfy34FJRKCeYjwSbTY5VdY7JCelKaT7eDOdnaZw\nXnrfC6V3uhhvFrikpNQkGG2CZztVTrIJ1jklVzY5eSDHxBSLQo6A17pcfC9L+y8tVgQNLo0kVSkT\nrhj1iTaDoadoZFL0Lp8alRR97VM0avnUoxS93aeFVFHBWRRRlRRS9IZE4mQ/aYxjP0/QLhcxsn09\naducFIxMx5xzNooSGkE6HY+jOn+PyXInQozF6fgRTsf9mC13u8lPADaEcjhmZQ4m84UAWGzPabOS\n4SKEuUcjIPnvyAQiWUpRSsmNLU7e7lGpcWkGmymWgTdaT0/x4XYnT3S4sADnp5lwoaVJfF5kpdik\nPadFlfyg1clLXSpTLArzM0y80OWiSHFR45J0S7g0Q/smEkGQeqPN0hRTiqlUPj3YU4w9/JdPPUab\nsymkyudIRqIhkdjZqvuULcNJA2AmnckUcBkm+SOUbhB2gaPrKCxp76KYQki4kfWYrc+gmI4GQFHP\nA1mjfUmqgIoQZkzm+X2HSAdCWBBKGAtl49V7dHbBgdXRn8cLyX+HxhGhZJ8mItFGCMGF6SaezrNw\nbIOdNQ7Zu9xYD4/im2FReLNAodYl+XuXi/VOwa1ZZgp0HpwcAV0SRrhJ86oMhbFmwc/bnYwyCW7K\nNPV+LR4I5D6dqFOKU8noXSuVTAwmpWhUUvSVfWrUnqJnTtF3+dRYStHONjcpLhlAinmcRyZHks5U\nTGSCAFfGSHomXoSpZzK2de9iH3U05qI3UUwnBnwtk+WHQFqfQUfWI9HCrTVnq4KUTUjZ0DsLKUSY\ny2V7dsC2a6D1o9j2HvctgcVXwca90Z/LC8l/x8YQoWSfJisQfI5Vu/FOsigstqtclj5wPMOj+I6x\naWw4xQI1Lni5y8WtWdAmYYtDZZlD8mGPigW4JkN7rlkI5toEc21W4oFAPcWJpHOWTikagRRTsafo\na5+ikUnRaFsy/CF4+TR5PUVv9FeK2o+fGimaSKeKPM4nk5l9pOgDJvOFSNte1I5bAFAcY3G2nIop\n53lM5kv9vrYQ+do1uBcXS1pQlKP6rk3acTl+gWI6Gxgb5jcWR/W48m5Y/wgUTofZPwfOj/68OiT/\nHRwj3Loe1jQMLJ9WFxgj+9TsJsATbYL721TapKYGgX4D/97D/1841N4+ZZ1Lcl+bizITXJKucKJN\nwRqnUqp3+XQZnQPcp0ceVIoRIxApGrWnmIqk6K0UC6kyYPl0m+5HT71SnOQmxRmkM80vKfqC2fI9\nnHm12Mf+CnP7aMyb1+EcehnO4fswW24LflXSAepuFPNspLoTp+NWzJanMFnuQ4gw35Pxcq7u+xwW\nz4f2HTD1QZj4fVi1JvrzeiH57+gYodtlvNVRvjDHqrBPdbLdJZnijo7Tk+JWF7zT7WShXbLdKRlv\nEZyXpqnF8WbBfwrDLG+EiFACwWccVIoRI1D26UFSjA6B5hQ9StFfzFuiEaynGCkp+oLJ+iCSfagH\n/oICKK5puPZ+H2dJLSbrr/06UYVQkLIFSRMu5/Oo6rsoprMQyvAwv1kV9j3Tu+8xburxzJWQNyH6\n8/pB8t/hMcLvJ8PUMCsAiYYqJXmKoMIkqHFpfUm7lGxzSt7vUbkw3USe0IzWF6crHGtTKNRlsMZy\n4D9Y+dTIpJgqMW+b2M0Wr5EMI88p1rivOBXmFAORojGVYl9MxkBSDFw+jRRCCMzWZ3AOq8WRuRBz\nfT2WHnB1PoyrQmK2Puz/utVNSPUzpCjDbP0rijI+vBfXq8fia6D8N7HtPerVoxLf92Ty3/EpDP2W\njAOq5M/5gVWeABpVSYMKVzQ5sePkqVwzJ9sUZlgVihWtLHtLVuz/WwK5Tyd6uU+NRIprUyjmLdVG\nMlJnTjHVSNFXT9FTPvUy2sQZQpgxZ7yCQzkW6r50PwjBbv1CqcJseQKT5cbwXrBXPd4edGNHWEiw\netQj+Z+AFEKz1z7FVbotGcfbgoeJN0m4ssnJNIvggWwTs61K70jHkBg7UYP1FM8x2OqoUHqKVSlC\nikZVir72KRpVKfoz2gTbkpFoBC6fRt5TjCWEyMSS9jaO0TNQWrajFp+MxfKLIMdkh0+Q8Zp7TIJ6\n1CNurySEuAs4DTgM6JFSFoRwzJ+BK70efk9KGXwHTBzgTYr6LRnVNoUbw9ynWKAI3opjTzFw9qlG\niqlitEmV7NNUK58atacYzGhjrJGMrXToAhUDjmQk+3plF1L9HNW1AGkrwlW8E3gPZCPs/CU0vgGV\n/4H0KFRZGPsew0IS1aMe8fyEWICXgM+BcLZsvgtcBb13xp7YXpZ/NKuSxV6kqN+nGC4pxhPBs08P\nKsVokIojGb7mFFOtfJrsmDdvBC6fekhxZlKVYr/rlV1I9TNU10JUdSFSXQbYgUIUUzWKcjnCNA/q\nnoENj0A90H0kVL0L2UcFObsP9Jt7vA7Kfh0/52oC1aMecXtVKeV9AEIIb2UYDD1Syv1xuKQBCEaK\nRtynuGSQJNqkklI0ak8xlUgx0Jyi8ZRi3/B+B0tx0YhxSbETqS7RkeJSNFIsQjHNxWR5GGGahxCV\nvauuAEjbiGZ5NYNtDCyfB1NehfzTQnzhRMw9HgFnroC8yujPGwWS/wkaiGohRD3QBPwP+KmU8kAs\nTuwhxQU+eorVNoUbDKgU/fcUjUuK3iMZRnWf+goEN3751HeijVFJMZlbMkJBsJ5iPhfEzX0a0fX6\nJcVCNyn+BmGqHkiK3ig8H6oe0khuRx2028F1JlT9EYqvCnwRCZt7/AEoyb+3Jf8T1R/vAq8A24Ex\nwIPAO0KIWdITAxEGWnz0FPVK8YYME9U2Y5JiqihFb/dpFhamGJwUB4NSNFpP0VM+7b9kWCPFWJZP\nHdTSxiJ62Ewh87FSFtbxoZVPjdRT7HT3FBeiqov8KMVqhJgYmBR9YdjtYK+D2ke0v6fPgS/mw5Q6\nGH4neN8TE6Yek9N79IewPmFCiAeBOwI8RQITpJSbIrkYKeVLur9+JYRYC2wFqoEFwY4P5D41evnU\n6EpR31Nc7ad8ajRSPNhTjA+CD+/HLvtUpQuFdPefO6nlbkxkY6GUWu6iiBvIYlbAczioo40FKWK0\n0ZOiRyk68PQU/ZZPI0X5Q2DfCw0vwdcfa4+tvguc9VD+CHhe4xumHvUI9xP3MPDnIM/ZFuG1DICU\ncrsQogE4hCAkOfemW2jPygUgTUChAldfeDF3Xn6JYUgxlYw2PbjYmILuU19LhlNRKRqNFIONZMRO\nKdbRxkK6WE0nKylkPnmcg4KNJv6NmUJG8CsA9vIrmvgnmcxABPjMdLKCOu5PEVLUG2305dMIlGIo\nEAqM+TPY68HyP3BZQZkEXz4O3Xtg7N9h/58M6Vx94YUXeOGFF/o91tLSEv21eUFEUMUM7wU0486j\noYyA+Di2FNgJnCWlfMvPc6YCy09dsJRzj5hmqPJpoCXDM8lIGaVYRSGTKTIcKfpSisMoZCyljKUs\nZUixjLGGLZ/2V4pD3O+EKTEb3newDxPZvWpxN9+njQ8p5VFsjMNKGRKJQNDIX2jjf4zirwB0s4E6\n7mUYD5DGOL+vodKNxGUwUlyEqi7QKcUiFNMxKMo8hGlu/EjRH1xtsPYoaG+EzXWa6/VQwJNEV/Id\nKH84RnOPOvV4+P2xca5KCWteZMXbf2HaT94HmCalXBH9xcZ3TrIMKABGAiYhxBT3l7ZIKTvcz9kI\n3CGlfEMIkQncg9aT3IumHn8FbALeD/Z6D+SYmZqZPLLxJsVUKJ+uTzH3aaoFgqeS0SZwok1sjTad\nrOIAz9PNJhTSyORI8jgHG4eQyWzs1JDNcQCo2FHQNtvYGEMzr/Sex8Z4JC6c7IMAJKmQFpPrjgR9\nRpsFXuVTjRTjrhRDhSkbhl4HW24F1QL5KpQdD67346geY+RcbdsLr98AX70G2TG4Ti/E8xN6P3CF\n7u8eVp8HuIvfjAVy3X92AVXuY/KAWjRyvFtK6YjjdUaE4MP7xiNFf3OKRnefporRxlfMW2qSYvxi\n3iQuHNRhYzzDuA+Ji3oe5AD/ZBh3k808armTOu6nm43YOIR8LiKNSqyMQmLHzi6slCMQCCw4qI35\ndUaK4D3FR5KjFP2hpwZaF0LbQq2sarXCeavB3gTFMwAFWjdB23bIroj8deIx9yglrP4XvHkTCBNc\n+jI4RsNPP4juvF6I55zkfGB+kOeYdH/uBk6O1/VEi1TsKQbLPjWiUtySQok2qUSKieop2tlDO4vo\nZCUmct0O1BG9JVOBiUxmkMspvceYGQq4UOnBTAE5nIyZIoZxH218wF5+Rgm3kslMzAyhmVcp4Vb3\nsUW95/G8RiLRv3zqPZJR7VaKMTTaRAs9KbYuhB63hSR9Egy5GfLPglxdmHndAnj9FI3Qznobhs4N\n7/Xi5Vxtq4fXrof1r0PVRXDWk5BZBCtiUmHth+R/gg0KPSn66ikaVSmu9lM+NfLqKO+eorFJMTWy\nT5OhFJ00U8tdWBhCFnNwsJsabqCCF1B0/49mCoG+UmonX5LPRSjYACjlsV4jjpVyHOyhnU/IZCaF\nXEUTL1HL3TjYg8BKLmcBJIQgE+4+jRY9NdC2CFoXDCTFvNMgZy5kzwVL0cBjpQoLzoOdPUAPvHsi\nHPsvGHlOaK+tV4/TfgmV34/euTpAPf4bJp8X3TmDIPmfaIMgWKLNwZ5idGim3e08TR336UClaGEE\nY1JKKXp6iokIBDeTRwm3kMFUAFy008oHdLKaLGb1U3oSBwpWmnkTBRtZzOk9j96pqtKOi2ayORGA\nbI7FxjiaeJFMjiSLOb3kGg/0H973NtokwH0aLgIpxWCk6A2haCMZu38KpSdB6w545Tw49Xcw/jr/\nx8Urc7WtHl7/rtZ7rLoQznwSsoqjP28QJP8TniQMxi0ZRlOKqbY6KpUCwY26OiqDqUhUBAo9bMJM\nQa9y1Cs9gQUXLTTxL4r4Tu9zQAsMaOFtulhHD1vJ5Eiy6SvzWSllCD+Iy/UHHsmojh0p9tRA8zvQ\n9RUMvQ3SIuz39SrFhW5S3Ko93kuK1ZB9TGik6AtVd0FXHax/Gna4JyEWXA/de2HK3QMDB+Lae7xZ\nI+5LX4bJ50d3zjCQ/E98ghA80cZYpBjKkmFjKcXUWx010H1qdKW42nCk6AsCjTza+B8m8khjHNr+\nnP5EeYB/YWUkNg6hkb/ipJFirkcCLtrI5RQymImZ/Lhd68Ce4hL6l09/ExujjasTTO73vqsDdlwP\nplywVcD2a2D4TyD32ODnCagUTw1PKYYCIWDG49C+B/a8CSPmwb6v4J17tceO+p1WQk2IerwIznwi\nIepRj+TfAeIEiWRbr9HGV/k0tVZHpYpSTNWeojFJ0f/qKCORoi90soo2PmIU/wT6k6NExUUTDfwe\nBRsOdmOlghyOR2DFynCG8P24XFff6qiFAUgxBj3Fnt3Q/DZ0LIO2z2DYbVB0JSg2zUVqLtGG+AF2\n/Qj2/V4jOBHkXrT1Co0g0ye7SXFedEoxFCgmqH4BnKdAzVJobtce/+JZqP8Yxs2HzX8eVOpRj+Tf\nEWIETSn2+B3eN3JP0V8guLGUYntvPzF1laJxjTb+SFFbHXWW4UnRGy28SQm3YSafLtZjYSh2ttPG\nRxRwJQIrZTxFGpWYyYvbdQwkRX+B4FEqxe4toPZAeqWmvmruhKbX4ZAXYPhPtXJqb3CLCvaavmML\nL4UdN0LXBsiYFPh1Kn6nJd9YEqumMKfBsa/D60eCZTMUToDtG6G5Fpp/DENi7FxNsnrUI/l3iBhh\nPjvpJC0le4qpNqdoVFJMHaXYSiPrAmSfGm2f4jb3yqgmigm+rb6FtznA3+jmaxp4FpV2hnIXGUzD\nxqGYyAIgiwj2Fwa73oCkGGP3aesnUPcrrXzq2AtDvwfphwJmyD1JK4Xmn6E9V7WDooUikDYBnH/p\nO09GFeACRx0QhCTTxwf+ejxhzoSZD0L7OSBt0OGEA20w+y444YG+nNdI4U7N4Y2b3Oox/s7VUJD8\nO0aMMI9szqXcMKQYyuooYynFg3OK8YKRjTbeCLQlI5MjKOKGoKMWKl3kcCr5XOhWivHsKeqXDC/y\noxTjNLzfuUoL/J7eCsLsuSDt9/zTYNuVsON70LlGU5gl10LGYZA2VlOd3dsgbbSmPIUFenbF9vqi\nheqExuWwdyHsXQT1n4CzHawZMOpk2LAGhlfCMT+KniC91aNn7tEASP4dJEa4kkKmEoNcwQgRLPv0\noFKMHKm8Oiq1SHGpbsmwyR0Ifj6ZzAhryXA+55NPfPpHoZdPo+0p7oTmd6H9czAXwNBbwTZSI0GP\nozP3eKgr1gjS1a4pwbSx2tfMBVBwPliGwKintdLrzluh9H6t92gdDg3PQ+l92vMtuveC/jUSCdUJ\njSvcpLiwjxTNmVAyG6p+ooUJFE0HxQIT5kPWELBlRf6aSZh7DBfJv6OkKFJRKQ4mUjSaUgzUU0zU\nnGIo0JdPfa2Oyud895Lh0EkxrtcbMNEmyn2K/uA8ANuu1Ygs90To2Q6bzoXKj8Gk+zexjdGCwVeP\nB1MWWIZpZpqC87We4Zh/aGQCkDZGWzfV8r5GkkNvhf3PwfYbtMcVGxRdpj03UQTpTymaM6Bkjjb+\nMbS6jxS9UTgmutc3sHrUI/l3mBRBKCMZB5ViZAhUPjUqKSZqn2K0CEyKk1J0dVScs0/NBVB6L2S7\ne6auNk0Jti/VxjSkqpUXFSuMfhbMRRrxtXwE9b8DtQuGfb8/sbhaNfItcKfV5J+umXT2Pas5VHNP\n0IgynuglxUV+lGIQUgwV3R3QvB2G+umvxqv36HTAnohWGQdE8u84BoU+5k2vFLPcpHiNWykaiRQ9\nMW9b2J0SpJhKWzL8zSkaUylu1ZHiMh9Lho2kFPU9Re8tGXOTF/OWfVQfGXauA3OxVjqF/v23At3N\nPWcetLwHjn3a33t2QeOL0LEcujdAzrGQ15dZi20UlP08ft9Dv/LpAqhf7KN8Wg1F06IjRT1WfQj3\nnAD5wEV3wsm/6K+M9Rs7Ypmas3MdPH4VbNwS/bm8kPw7kEGQiu7TVCNFX+5TY/cU1/otnxrRfeoZ\nftJ6inpSTBWlaLBAcM/rN/9HG7vImNhnzPHc+PX9w66voHMtlP3C/TWHpiALL4DsarAUElf0kuIC\nt1L0RYpzo1eKAKoLVv5DIztnFxz7fzBqNhzYo3291Qxv/RJaa+H8P2qzlt4bO2Ix9+hywiu/ghfv\ng2Fj4TtPwLtXBD8uDCT/jpQkhBIIbkSluIXdbKImJQLBU6+n6K0Uh1BkyJGMrXTo9tH07yle4FaK\nRiJFX/sU49hTjCXal0LTmzBhkfZ3735h90ao/RV0rAAlHYou0Qb9QetDlj0Qv2vr11NcGF+l2LZX\n+z3b/RnYtwFW/xMOvxxs2fDqd+Dsp2HqKTDzLLBlwNsvwL6/QsM2yC6E9W/Edu5xx1r47XzYvhLO\nvQO+dQ+s/Sr683oh+XeoBMGfUsxKAaONnhSNn32aGqToUYmNrPWhFM82WE/RV/nUZODyqS/3qad8\narB9isHQ8A8ofUBTgR2rwFoK3V9D039g6M1gGQHF34by3yRIKSaIFAG+fhfWv6kRYsc+OO03cMgJ\nYDLD50/CiOlw+KXac7f+D1b8Fc56Cu56He49WdsQ3GqCT5bAxGGx7T2++us+9fjrJTD2iOjP6wfJ\nv2PFCYHcp0aNefO3OiqVSNGoPUV/Rhst0caIStF7JMOo5VPvnqKnfFqEYjomdiMZsYIn+zR9PGQF\nubE2vgj1T2ol1LqHtNJp+SOQPVsLADC5R85yjonPtfYrny7yMtqE4D4NB84e2PEp5JVBwRhQFPjw\nXkDAFa/3KUhV1X5Py4Om7X3HTz5fe37TDigZD1c8CBs+hcx8WFkHwgHXTY/uGsGtHq+C7av61KMl\nvoan5N/BYgQHLnexbOCcYjxIcT/N1LCPiVRgI/w3qL+eopGVYqDhfaP1FIONZBiVFPsbbSYZtHya\nZPdpOPC3JaP0/uAkqXZCwYVQcg1kHJ5EpRjiSEYkaN8P7/0Ydn0OGYWQWwqj58LM62DiubDzM40g\nnT3Q1QzZbvPSiGmwY3HfeUpnQPs+6G7R/j76cE1R3nOylsxTtxf2fA0lIyO7zgSrRz2Sf0eLEW7/\n//bOPD6K8v7j7yf3TQ5ISAIk5ADCJTcoAgEBQVAQrUrRolbwbEF/VWt/tV61rVVbrRdWPFqrgFpr\nFTkUIagoh0E5g0BIIEASEsh9Jzu/P55ZdhJ3djfJbnbib96v175gd2d2vzPPZD77fZ7vwTZCKOwS\nT/F11nGaUiIIZS+5zGQsCfR02hm9gDN8wZ4fTJ8adU2xO1a0sTd9ajxPsbsF2mx3UObNgKJYmWUT\nxlato9rZJaPXTfLhKRxOn1pFcap7o0+tWAOO8r+E6iK4R13L++wxOPSxFMmhC2DjA/DGXKg4BXFD\nYMRCGHgZJI6CylNyrTK8N/ipJfeqi23fccElcM+b8OQi+PmfYeTMjtlqb+3Rw96jFu/f4dzEfFKY\nzxS3iWI51ezlKKcoZQJDSKY3AsG3HMYHwQNcjw8+0C5HkQAAHrFJREFUvMlGPiObG7jUabmuaurI\n5XS38hSNGn3qqHWUcUXxh3mK0lNsX0Ubj9rrVBS9lJKhR8NJqNzSda2jOoNu8r42T9GNong2Vwre\n8a8guj+MuxWik1tH5CoW6UUqCpzaDUX7YPrD8r2e6TDpf+Q65ICZsONl2Pw4BIRDymSITIKvnoNL\nH4facxCTJr1RLZOvg3GXQ1AHrm2t95gwoEu9Ry1COV+ZvnsihBgFZGdnZzNq1KgOf04TzfirAtBI\nE2vYTANNxBFFCeX0J56pjGIT35BDPr9Qy27lU8h7ZHEDs4jzYI1Kd+LMU+xDukE9RfspGTEMM6Ao\nbrebpxjKeIOJouOC4D4+mQb1FLN+KIoRUw0oinp5ihfLdAxPeYrlJ2D19RA3GFKnyeCbnI/gF9+0\n3q6hGra/CNv+BgGhssxc7CAYczP0myDXIH3UcW9uhHd+Bn3GwORfwbHP4ds3oXg/1JRAxjyY+7Rr\n9jU1Qv4efdHroPe4e/duRo8eDTBaUZTdrhnjGO/fAb2EBYWD5LGdg5RSThK9GUsGaSRyiBMUUsp9\nyMitbznMe2QxlVHEE8MODp7/nD7EIhCco9KwIulKnqIxRbG7dMnQX1OMPF/mrTtMnxp0TVG3yfAc\ng4likyqKjiraeEgU2xKeALP/BElq1aCaUtj3Hpz6FhJH2vI9A8PALxjG3AQz1XSVfy+BrD/JgB0f\nzTVwYrsU/gy1s0nKZIgfDid3Qd9xENTDNdsa6uCRK2DbJrhhOdz8tEaIm+D9J2DNo12+9qiH9++I\nXqKEcrbyHRMYQiI92UMuH/A5v2IhAfhhUTupW1AYyQDeZQsFnCEGeSGUUUUU4fjhiy8+lFHlzcNp\nhX70qT8JpBpYFH/oKRq3IPjObrKm6KwguMHyFFuJ4lbNmqK1yXCmgUTRiafoiYo2ruLrJwXS0iIT\n+U/thqgkCFZ/yFunW5vq5dpiqCZvMe0S2KIWRCjaD1ufgLNHoaURxvwceg20bRscCekzWn93SQFk\nr4MTB2De3RDXv/X7330C6zZDLfDSM7IAwTW/BYRX1x718P4d0kMUU0YRZ8kgiQA70adlVJJHIXey\nAIAcjjMMWbDXF19CCeYclUQTAUAMPciniEkMJ4gAvuMIU5HTu2GEUEMdIEW1q1NK9D1Fmyi6e02x\njjMUs4sqjpPCgnYJmFYUS9ljt/ap8UTRXkqGUdcUHRUE706e4mw5hRo+2UCi2IVriu7AR20bmPOR\nXEO0rkkqis17CwyHfe/CqBukV/jtv2QFHZDe4cDZ0O9Cua7pjPoaeOk2CO0Bsf3h+VvgJ/8Lw6fZ\nthk/D2KSofYY9EyF/34IW98FfwF9MgzhPWr50YmkgsIaNrOfY5RTxa+5gT78sLpDIr0YRD9e4j+U\nUEE1tVzOxdTRQE96EIgf+RSdF8lEepFPIZMYzgQG8w3fE0YwZVTRTDNjkc1Qu0IgHYlioodEUUsz\n9ezhOfwJIYTe7OGvpLOQXoxwuF89Z9nB77pJl4zt3UgU9SraGDHQxtn0aabBRNGZp+imMm+eJHcL\nHMuCX2TL50LIh6UF/INg4jJorIE35shp2oGzYdBlctvIvjDipz/8zF1rYdNrUFYIly+HUbOkMH66\nEnrEwrLX5XZv3AcbVsCQKeCr6fP76gZ46wWaVz5LeTFEj0zA54474Zr/MYT3qOVHJ5ICwSgGcB2X\n8CzvcooSuyIZTgiTGcHn7OEW5uKPH//lS3I5xY3Mpre69jiKAQD44UtPdap1AkOIJYoN7CSGCKYw\ngkgP9rJ0ZfrUE6JYxHZO8AkNnCOF+cQyFn9COcF6AunBSH4FwAFWcpy19GQYwkHD60AiiSTdgJ6i\no+jTqw02fdo2T7FtmTcD1T4FJ6JoxOlTe10yQrqXKGqxtMiOG3Oekmkaxz6H2Awo3AO5n8H42+Q0\n7PSHZDFye5SehOBwKYIgp1Oz/iWFMTZZiuXRXXDTU3JNsbTAtu+URfDynXAyB5I0XUGS02HZY7Dy\nWURoCIoClheex2fcPEgf4rHT0RF+dCIJkEoiIKvV5HKKcWTYTc84QTExRJCA/AOdzHBWshaASVzA\nq6xlDZ9RRjU11HEZ8wE5HZtOX9Lp6xH7vZGS0UIjvgScz/Wso4STbCaWMYQQxwk2Us5hhrAUC83U\nUXJ+3z5MZR8vUEUBESTrfofAlwtY7hZ7O0rr6dOddlpHtb/JsEftbRVos8VOlwwDimLVVpmWoSuK\nk2W/RW/jsCC4AUWx5izkfyG9wsrTsOgd5/t89zbs/LuMbv30d1I05/5VFiNPnSanXBUF/Ox4b5+8\nAu/8HkIj4YLpcMlNUuhytkHhEbh3tdwuIBieuEqKZPJw2PqW7TOSh8vvLCtsLZIAYeH4vbGOmNsu\npzawF2VZe4idfyH+mw5AfAfurVvXw9uvtX8/J/woRdIXebPIIJn1fE09jQQjLwLrmmETzdTTSKma\n1A9wgjOMYiAttBBFOLcxn6/YRxp9yCCJEII8Yq8jTzHRg4E2leRzmLcpZjtJXMZQbsNCE74EUMYh\najjFGH4DgC8B7OIxhrCUCFI4yZbznxNBCgoW6jnrUCS9gbMmw8YLtHEl+tRggTb2KtoYPtAmy86a\nohcDbexRew6ObZWieCwLivbK16P7Q8pUW1COI5obYMQiGHuLTN0IsHON22vyXJwnxe7xLIjsDasf\ngTfuhYfWS49SK6pDJsmC5od3QnyaTBUpzIX4VPnZvv5QcsK+fVNmw+Ovwh03SlPCwyG4nX+HleXw\nx3vg369DxoXt29cFfpQiaSWVBKqo4yyV56dcrWuG/vgxhoG8TzHP8R7V1BFIANcyDV91yjCMYGYy\nzu12GaX2qYVGQklgIDdQwCcA+Kjf50cwPpqApxiG4UsQZRwilAQUmqjhNKEkIBAIfFt5l96ibUWb\nH/ZTNJqnqI0+3aIzfWrA2qfdJnnfUT9FD5R56ww1ZyHvc5soFu+TXl50f+g/RSb2p0yR06OuMu4W\n+dBSdAz2Z8G+LXJN8vJl0svTFhmor4GyIltk6rUPwuLecuo1PAZCIqDwqBRFgJ794MhOmHMXRMXD\nln/CTx+R70VpllW032FlwWJCys8SvObviL+vhcho149v63r47RKoqYLHV0LKCPjQDTViNfxoRdKC\nQghBxBBBGVX0oRfNtFBKBTnkM4xUehPDdVxCKeUk0Iswgj1ki/MuGe6ePq2lmDPs4hw5BBBOClcS\nQlyrbSJIJYx+NFPLEVbTTB1+6jnwJRB/wqjmFGHq9HUwvSjne/ozj0CiKWATg5C924I0OaLOyvO5\nE8eiONSAXTIcRZ9mGtBTPGkTRLue4lQIn2Sg6VN7a4oGFUU9TzEqGVIyYdI98t/2iKLT76yCF5bK\nGqoXTJei9Yd58MweCA6zidiZfOg/QnqUcf1lxZzEgbB7PUxaKD3HnG02kUwaBvmq/VcslwE8K+6Q\nn+MXCJnXy/fsea0AN9+DuPke149D6z1ePFMKZHxf2O2W+gGt+NGKpECWgauhjn+ynmYsXMs0BpNM\nEr2JUgNtook4H8HqLlqL4lG7a4qe9BQbqWQPzxBEDLGMppYidvEoE3kaP82UsQ+++OCLH0EEEU0J\n3xKPTD4OIgY/gjjHwfMiGUF/KpGV/1O4khNsYC/PUUsxPvjTBxnm7UmBdG361IiimIXFshXFsp0f\nRp8aSRT18hSN7Cl2QZNhd6DnKUYly+lTT4hiW0LC4eGNtkjT4jy59nj2JPQZZBPJ0Ei51liQY/Mm\nR82C7z6FmUtgwHgZtTptMTTWQ0OtLD8HMHYu9BsqP/eSqXDBjI5HrG58H47lwNJf22zWeo+/fwV+\n8nN98XUDP1qRrKWeN9lAX+KYy0RSSDhfJzXCzTdPo0yfWgkggoFcTzQySqyZWgr5ijIO0YsRdj29\nKAZTzA7iuQgFCyHEE8kgjvMx/ZhBC420UE8cEwDozQQiSOY46+nHBfRiFL4EuP1YHAfaGFUU7QXa\naD3F7hJo053yFD1cELwjaANtjmXJiFLoWlG0h6+vnHL9+Hn4YjVcfK2cIgVZyxUfiEuBiBjI+RLG\nqOkgweEQoka4zrlLRqz+ZgpUlEDfwTD6Mtt3xCXDDY93ykxlzStU3bmUpnqI2puNz+9XwNMPwHuv\ntfYePYxZu7UDOCvz1tcgtU8VLAh8OMdBDvMWg1miG1hziiwOs5qprDj/WjP17ON5aimigQrC6cco\n7veIGNpsdqX2afcp8+bjM9Wgyfttu2QMk0E27vYUawrg5DooPwCD74ZwFxLSrTgMtLHWPs00nqeY\nt1XmJraaPp0q1xNTMrteFO1RmAt7Nkkv8fvtcOBzeGwTtDTLaj0AOV/Jqdgnd8hgnFeWwXW/g4yJ\n8v2WFji0TQpkhAvXS2EBbF0HRw7AjXdDXwfXwq4vaLl2MqfzoABICxLExCv4RkbAr5/W9R49UbvV\nFEkXcLamaBRR1COH16ilhNHcj6KW22vrSdZTxqcsYgA/pZlaBrAIf0Kx0EIZBwmjH4G4WJuxHTib\nPg1lnAE9RXtrij1VUZxi4OnTLI2nOEwKoic9xaYa2HoN+PeQ4liyXU6Bxk9zvu/WhVCw1tiiWHtO\niqI1Wd/IouiMK/3glXzo2Uc+t4rlhpelt1leDBddDQvuk2uXrlBXC8Fql6PaGlh2DYT3gD794bvt\ncPv/woX610Lz4e8pGDiIhtBQQoSAIH8S1n6E3/iJuvuYBc67CG+lZHiCMg5RxHYm8hTQWhytnuYB\nVnKSzwglnhoKiWfi+bVLH3yJYZjb7HFcEHyYWRC8s+imZHiwok3BWjjyGtQVwuDlkDgLAnrAkZUQ\nFAsXq9VXvrkPvl8BcVOcpy5EDDDemqJVFLWBNq3WFDsQfWoECnMhbYwUxn1Z0sOc8XPpZc66Fabe\nIAN1nFF0ErI+hr07YfdX0ltcsBgCAuUUaUws/Em9Fv58H6xeAePaVOLR4DdgIAlffknp9OkU9ejB\n6eJi/OZdRc8NGwgY4bi6lzsx9h2+izDamqIzmqjGH9d+zZ1kM4NYTAARVJBLED2p5iRn2EFfLiWM\nRPoynTSuJpBIt9vauiB4dwm00SvzZsSC4HrRp9Y1xUz3Ju9X5UPRZogeBTEj5PPcf0lhDEuWYlm6\nC8Y+Jbti1Giqr6Qsgu13QkUORA3V+QKVkY+4x97O0DbQRpun2D8TLr7bOJ6iokDBQcjdLUXNES3N\nkLcHdm+Q64rH98Gs2+U6YnCYFEytt6gnkI0NUgCbmsDfH576NWz6AP6yCm7/rZxOtc5UKhY53Wrl\n8kXwyJ2QmwMD9K+FwIkTiV6zhrPz59MnI4M6i4W8iRNJ/vhjAjMzXTo1ncX7d3wv4I2UjM5gryD4\nJbzhtKzbKbLI40MqyeMo79JMLUO4lWiG0IMU/AhGQXFrAQDXUjKMlrxvnT61V9HmL8bzFLsyT9HS\nAqc/hSOvQt1paCyH6hMw5kkpkqU7oeoIZKrVV/yCYctVUiSjhsMxTfWVqOGgtEiP05lIegM9UfRk\nSkZHsYriviyZ83hgqwyg8fOX0aVhDtr2+frJ0nGlBXIKdcnfIFzNTXS2tnjkALzwGGz+EK67FX7z\nVym6/v5w8aVQcAymqVGujY0QoMYvpGbA+2/YPmeQWomnpNChSAIEX3EFqS+/TPnSpVjnTwNmzSLp\n3Dl8QjzftN77CtAFuCKKRvIUHXXJsBYED3DBk2yhgQQmk8QsepBGgJ1Ul86ma3S/Mm91KJavnNQ+\nNZKn6Kh1VBf0U7Q0yHXBPnOg3zxQmmHzfOg7V74f0AN8NOH9cZPANwRKdkJEGlgaoTIXItTqKz7+\nUmSNgHb61F6gTXcQRV8/mY4xYwkMy4RBF8mcRmdMmC8f7aW+DpLS4JeP2ETPXxXCzDlw/2J47Jfw\n/V5IGwzXLIGMEZCULj3PE8egX4q8Fvz84bRr10LokiW0FBbS66GHaAEib765SwQSPCSSQogk4EFg\nGtAbOAW8BTyuKEqTk30fBW4BIoFtwO2Kohxtz/e7Mn1qNE/x1VV/YdLCOLtNhlOY16Emw/24lH5c\n6lZb9dYU162q5aqFF3WzNcXWyfurV69h4cKF3jVYN/rUeUrGqlWr2m9/9XE4uR5KvobAaLmmGJZk\ny5fzC4Hkq23b1xZCeQ74qoU3fIMgIBIqj0pRBAjrJz3MjLsgOB5y/2mbPg3Wr77SIfvbQxesKbrt\nGBx5imljYeZSGDrFdVF0hRPH2PHcE4xXaiEwCBYvk16edpwyRkjxq66EFX+AmmoIDZORrpHRMOtq\n6BkHC1+ETz+Ax5fDskfl2mNsAvznH7BMvRZ6OanE04bwBx8ko6EB6uuJePJJ9xyzC3hKIQYh8/mX\nALnAUGAlEALcp7eTEOJ+4C7gZ0A+8HtgoxAiQ1GURkdfWEohu/i0WwTa2DzFvedF8fVVu0lbeOl5\nUTRW6yhHgTZyTfHzVU9w78L3vG2uC4E2+muKHr9J26OVKG7p1PRpu+1vOAdfLYHgBEiYCdV5sGUB\nzPoc/NvceK11Qos/h4Tp0FwDxEBIIviHwZltNpGMGgZlqlc2eDkcXglf3wHV+eAbCKn2q6+4/fzr\niaK1zJsH1hQ7fAyOPMX0ce33FNtLdRU8uJTKg4fhgccABW6fBx/ukSJoxc9PPoJDpOh9/RlMn2db\ne/zLKlsgTr9UOJUPX2yUInnjcnhnJTx8B5zMl+uZ85xU4tEghKDH4/q5l57K1PCIYiiKshHYqHkp\nXwjxFHAbDkQSWAY8pijKWgAhxM+AYmA+4LDk/Qb+QTKJhvUUHTUZTmE+vXia6fyzy8q56eF8TdG+\npyjU6Nkut9el1lEGW1N0GH3ahRVtAqNhxMMQK6ss0VQFJz6A0h0yTcPer/uaE9BcK71FgPBU6Dle\nRq2mLYbmevl+X3Vdqu9ciBwKR16B+KkQP0MKpSfQrinmbbUjivcYJ/pUK4oHtkphtHqK50VxKgy6\n0DOi2JawcHhtI89deSUzFiyGgjzo9YqMWE0dZH+fkRfB5o9ai6Q2UrW6EirOwYwr5fOpcyF9KLzz\nClw1FSbOkELZSZqPH6do1ix8amqomqifHtJRulJBIoFzem8KIfojp2Y/s76mKEqlEGIHcCFORHIm\ni5jBHIOJ4l7d6dO2nqIvz3tFIB0n7xtxTdFRRRsjBto4ij41QJm32Itk5KHwgbL9ENQLgtQav1qB\ntKZs+ATIJH+w7TfodijbB+unQH0JRA6GRE31lfBkGNW56it20ctTNKwo5tgKi2unT9PHqdOnmV0n\nivbw9SWusQb+cA+sWw2XXQuxaiUei0W21dJy0XRYoY6rv5qiU1gAH6+G/dkycvXCabLTh5U+yXCP\n+66F5qNHyZ84kd1nzhAeFYVfRYXbPttKlyiKECINOY3qqIJtb0BBeo5aitX3HBJLX68JZCNVnGM/\npezlLHupIJe2nqKxmgzrTZ8aURT1umT0NG6gjdN+igYpCG7Fet4KPoLAGIgaYvMM2nqSZfshcabq\nZar7+YXAxFfllGvkYAjykOBrK9rYmz41Up6i1VPcr3qJ3vYUXUQApAyEP70hE/7vugr+scl2PWgZ\nnwn3Xg/PPSK9xmWPyterKmD2T2BcJkTFeMTO5uPHacjKouLOOznR1ESFry+nq6sJ/O47t39Xu1RF\nCPFH4H4HmyhAhqIohzX7JALrgTWKori/IyYy6z0nJ8cDH61PGYc4y37KOUINpwCFQKLoQTqRXE4k\n6QSrzZxLgVJOA6d1P6+iooLdHqhgD9BCHdVsoY4D1LOfFsqRfT5SCWYCwQwlkAwaCNZ01/y+Xd/h\nTvstlsNYWj5DsWSjWPYBzUAPfHxHI3yWI3xGI0SqRhSbgM7/cXToGBQFytdBzTdQkw2Np+TrQakQ\nOhZCb4PQUdAcJedRzoEstFWg/5kdpDNjEFK7j6SCdzic+nda2n6GZtp18PGNnG5Ip7zhWzufEqZG\nK3YsetWu/ce/huPb4OQ3cPaIvMNExEPiGBh6pfw3It62fd5Z+fAGdVVUHMth9y+nQ242VJfLNcV+\nQyD9cpl/mDwcAtWgJwtwsH1/Z57m+7pmdg8YK59cNJeRzz/K/k/X0xSjzi6oHmXiW88S9eU6LLGJ\n1OzZRfm4aVQcPChnHKYskNvmHZcPN6BYLNR//DFN2dk0ZmdjOS3vpX7p6TTPnMnZFSvokZZGSZ8+\nUFgIuK/5b7vK0gkhYgBnPw2OKYrSrG6fAGwBvlIU5SYnn90fGeQzQlGUvZrXs4BvFUW5W2e/nyIj\nZ01MTExMTAAWKYrytjs+qF2epKIoZwGXfqapHuRmYBdwswufnSeEKAIuAfaqnxEBjAdecLDrRmAR\nMhq23hXbTExMTEx+lAQBybQOHO0UHilwrnqQW4E84EagxfqeoijFmu0OAfcrivJf9fl9yOncG5Gi\n9xgwBBjiLAXExMTExMTE3Xgq0mUGkKI+rIsvArmioK1mmw621hKKovxZCBECvIyMhv0CmG0KpImJ\niYmJN+j2rbJMTExMTEw8hQFi5k1MTExMTIyJKZImJiYmJiY6dDuRFEIkCSFWCiGOCSFqhRBHhBAP\nCyGcdmUVQjwqhDit7vepWuSgyxFC/EYIsU0IUSOE0K1C1Gaf14UQljaPdZ621YE97T4GdT+jjEGU\nEOItIUSFEKJMvaYcZnV7ewyEEHcKIfKEEHVCiO1CiLFOts8UQmQLIeqFEIeFEIu7ylYde1y2Xwgx\nxc65bhFCxHalzRp7JgkhPhRCnFJtucKFfYx2/tt1DAYcgweEEDuFEJVCiGIhxH+EEANc2K9T49Dt\nRJLWxdMHA3cja8I6rHWkKZ6+FBgH1CCLpwd41Fr7+CPL7L3Uzv3WA3HICkS9AW+2rGj3MRhsDN4G\nMpApR3OAyciAMWd4ZQyEENcCTwMPASOBPchzZ7e8jRAiGViLLPN4AfAssFIIMaMr7LVjT7vsV1GQ\nwX3Wcx2vKMoZT9uqQyiyYsUdql0OMdr5V2nXMagYaQwmAc8h0wKnI+9BnwghgvV2cMs4KIrS7R/A\nr4CjTrY5DdyteR4B1AHXeNHuxcA5F7d9HXjf2+e6k8dgiDFA/tCyACM1r12KLO3T24hjAGwHntU8\nF8BJ4D6d7Z8A9rZ5bRWwrpvYPwWZOhbhDXudHIsFuMLJNoY6/x08BsOOgWpfT/U4LvbkOHRHT9Ie\nHSqeDliLp3cXMtVphkNCiBeFENHeNshVDDYGFwJliqJoa6ttQv5qHu9k3y4fA3UpYTStz52CtFnv\n3E1Q39ey0cH2HqOD9oMU0u/U6flPhBAXedZSt2KY899JjDwGkci/WUfLPZ0eh24vksJWPH2Fg806\nVTzdIKxH9tmchmw3NgVYJ4QLjdiMgZHGoDfQaspIUZQW5B+bI1u8NQY9kfnF7Tl3vXW2jxBCeKhX\nlS4dsb8QuBW4CliAzLfOEkKM8JSRbsZI57+jGHYM1L+5Z4AvFUU56GDTTo+D9/tKqQhjFk93mY7Y\n3x4URdG2CjsghNiHrHWbiayP22k8fQyexlX7O/r5XTEGJhL1GtNeZ9uFEKnIGASvBsD8f8HgY/Ai\nMibF/Q0k22AYkQSeQq75OOKY9T9Clr7bjPwlcauT/YqQ0wZxtP5VEQfYa2fQEdplf2dRZK3bUiAN\n992gPXkMRhqDIqBVhJ4QwheIVt9zCQ+NgT1KkWtDcW1ej0Pf3iKd7SsVRWlwr3lO6Yj99thJF9wU\n3YSRzr878foYCCGeBy4DJimKUuhk806Pg2FEUjFm8XSXaY/97kAI0QfZkcXZReIynjwGI42BEOJr\nIFIIMVKzLnkJUsR3uPp9nhgDeyiK0iSEyEba+KH63UJ9/jed3b4GZrd5bab6epfSQfvtMQIPn2s3\nYpjz72a8OgaqQM4DpiiK4kpPts6Pg7cjlDoQ0ZQAHAE+Uf8fZ3202e4QME/z/D7kDfRyYBjwgfo5\nAV44hr7IcOTfARXq/y8AQu3Zjwzd/jNSUJKQN5dvgBzA30vj0K5jMOAYrFPP4VjkL+PvgTf1riFv\njwFwDVCLXBMdhExXOQv0Ut//I/APzfbJQBUyum8gMuy/EZjupeulvfYvA64AUpFNDp5BNg7N9JL9\noer1PQIZUblcfd63O5z/Dh6D0cbgRaAMmQoSp3kEabb5g7vHwSuD1ckTtRg5daN9WICWNtu1AD9r\n89rDyDSEWmSEU5qXjuF1O8fQAky2Zz+y/csG5NRBPXLK8CXrDaY7HIMBxyAS+BdS4MuAV4AQvWvI\nCGOg/oHnI9NmvgbGtBmPzW22nwxkq9sfAW7w1vXSXvuBe1Wba4ASZGTs5K62WWPPFOt9ps3jtW50\n/tt1DAYcA3u2t7rHeGIczALnJiYmJiYmOnT7FBATExMTExNPYYqkiYmJiYmJDqZImpiYmJiY6GCK\npImJiYmJiQ6mSJqYmJiYmOhgiqSJiYmJiYkOpkiamJiYmJjoYIqkiYmJiYmJDqZImpiYmJiY6GCK\npImJiYmJiQ6mSJqYmJiYmOhgiqSJiYmJiYkO/we1jdXTRjE+OQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbe7817a2e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(5,5))\n", "plt.axis(\"equal\")\n", "x1mesh, x2mesh = np.mgrid[-2:2:200j,-2:2:200j]\n", "fmesh = all_points_error(x1mesh, x2mesh)\n", "CS = plt.contour(x1mesh, x2mesh, fmesh, 30)\n", "plt.plot(w1_vals, w2_vals, \"o-\", markersize=5, linewidth=4, alpha=.5)\n", "plt.ylim(-2,2)\n", "plt.xlim(-2,2)\n", "plt.clabel(CS, inline=1, inline_spacing=5, fontsize=8)\n", "\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "widgets": { "state": { "74ca95633023425980ee8f3e511fbc5c": { "views": [ { "cell_index": 9 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
ifduyue/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb
2
369658
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Probabilistic Programming\n", "=====\n", "and Bayesian Methods for Hackers \n", "========\n", "\n", "##### Version 0.1\n", "\n", "`Original content created by Cam Davidson-Pilon`\n", "\n", "`Ported to Python 3 and PyMC3 by Max Margenot (@clean_utensils) and Thomas Wiecki (@twiecki) at Quantopian (@quantopian)`\n", "___\n", "\n", "\n", "Welcome to *Bayesian Methods for Hackers*. The full Github repository is available at [github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers). The other chapters can be found on the project's [homepage](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/). We hope you enjoy the book, and we encourage any contributions!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chapter 1\n", "======\n", "***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Philosophy of Bayesian Inference\n", "------\n", " \n", "> You are a skilled programmer, but bugs still slip into your code. After a particularly difficult implementation of an algorithm, you decide to test your code on a trivial example. It passes. You test the code on a harder problem. It passes once again. And it passes the next, *even more difficult*, test too! You are starting to believe that there may be no bugs in this code...\n", "\n", "If you think this way, then congratulations, you already are thinking Bayesian! Bayesian inference is simply updating your beliefs after considering new evidence. A Bayesian can rarely be certain about a result, but he or she can be very confident. Just like in the example above, we can never be 100% sure that our code is bug-free unless we test it on every possible problem; something rarely possible in practice. Instead, we can test it on a large number of problems, and if it succeeds we can feel more *confident* about our code, but still not certain. Bayesian inference works identically: we update our beliefs about an outcome; rarely can we be absolutely sure unless we rule out all other alternatives. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### The Bayesian state of mind\n", "\n", "\n", "Bayesian inference differs from more traditional statistical inference by preserving *uncertainty*. At first, this sounds like a bad statistical technique. Isn't statistics all about deriving *certainty* from randomness? To reconcile this, we need to start thinking like Bayesians. \n", "\n", "The Bayesian world-view interprets probability as measure of *believability in an event*, that is, how confident we are in an event occurring. In fact, we will see in a moment that this is the natural interpretation of probability. \n", "\n", "For this to be clearer, we consider an alternative interpretation of probability: *Frequentist*, known as the more *classical* version of statistics, assume that probability is the long-run frequency of events (hence the bestowed title). For example, the *probability of plane accidents* under a frequentist philosophy is interpreted as the *long-term frequency of plane accidents*. This makes logical sense for many probabilities of events, but becomes more difficult to understand when events have no long-term frequency of occurrences. Consider: we often assign probabilities to outcomes of presidential elections, but the election itself only happens once! Frequentists get around this by invoking alternative realities and saying across all these realities, the frequency of occurrences defines the probability. \n", "\n", "Bayesians, on the other hand, have a more intuitive approach. Bayesians interpret a probability as measure of *belief*, or confidence, of an event occurring. Simply, a probability is a summary of an opinion. An individual who assigns a belief of 0 to an event has no confidence that the event will occur; conversely, assigning a belief of 1 implies that the individual is absolutely certain of an event occurring. Beliefs between 0 and 1 allow for weightings of other outcomes. This definition agrees with the probability of a plane accident example, for having observed the frequency of plane accidents, an individual's belief should be equal to that frequency, excluding any outside information. Similarly, under this definition of probability being equal to beliefs, it is meaningful to speak about probabilities (beliefs) of presidential election outcomes: how confident are you candidate *A* will win?\n", "\n", "Notice in the paragraph above, I assigned the belief (probability) measure to an *individual*, not to Nature. This is very interesting, as this definition leaves room for conflicting beliefs between individuals. Again, this is appropriate for what naturally occurs: different individuals have different beliefs of events occurring, because they possess different *information* about the world. The existence of different beliefs does not imply that anyone is wrong. Consider the following examples demonstrating the relationship between individual beliefs and probabilities:\n", "\n", "- I flip a coin, and we both guess the result. We would both agree, assuming the coin is fair, that the probability of Heads is 1/2. Assume, then, that I peek at the coin. Now I know for certain what the result is: I assign probability 1.0 to either Heads or Tails (whichever it is). Now what is *your* belief that the coin is Heads? My knowledge of the outcome has not changed the coin's results. Thus we assign different probabilities to the result. \n", "\n", "- Your code either has a bug in it or not, but we do not know for certain which is true, though we have a belief about the presence or absence of a bug. \n", "\n", "- A medical patient is exhibiting symptoms $x$, $y$ and $z$. There are a number of diseases that could be causing all of them, but only a single disease is present. A doctor has beliefs about which disease, but a second doctor may have slightly different beliefs. \n", "\n", "\n", "This philosophy of treating beliefs as probability is natural to humans. We employ it constantly as we interact with the world and only see partial truths, but gather evidence to form beliefs. Alternatively, you have to be *trained* to think like a frequentist. \n", "\n", "To align ourselves with traditional probability notation, we denote our belief about event $A$ as $P(A)$. We call this quantity the *prior probability*.\n", "\n", "John Maynard Keynes, a great economist and thinker, said \"When the facts change, I change my mind. What do you do, sir?\" This quote reflects the way a Bayesian updates his or her beliefs after seeing evidence. Even &mdash; especially &mdash; if the evidence is counter to what was initially believed, the evidence cannot be ignored. We denote our updated belief as $P(A |X )$, interpreted as the probability of $A$ given the evidence $X$. We call the updated belief the *posterior probability* so as to contrast it with the prior probability. For example, consider the posterior probabilities (read: posterior beliefs) of the above examples, after observing some evidence $X$:\n", "\n", "1\\. $P(A): \\;\\;$ the coin has a 50 percent chance of being Heads. $P(A | X):\\;\\;$ You look at the coin, observe a Heads has landed, denote this information $X$, and trivially assign probability 1.0 to Heads and 0.0 to Tails.\n", "\n", "2\\. $P(A): \\;\\;$ This big, complex code likely has a bug in it. $P(A | X): \\;\\;$ The code passed all $X$ tests; there still might be a bug, but its presence is less likely now.\n", "\n", "3\\. $P(A):\\;\\;$ The patient could have any number of diseases. $P(A | X):\\;\\;$ Performing a blood test generated evidence $X$, ruling out some of the possible diseases from consideration.\n", "\n", "\n", "It's clear that in each example we did not completely discard the prior belief after seeing new evidence $X$, but we *re-weighted the prior* to incorporate the new evidence (i.e. we put more weight, or confidence, on some beliefs versus others). \n", "\n", "By introducing prior uncertainty about events, we are already admitting that any guess we make is potentially very wrong. After observing data, evidence, or other information, we update our beliefs, and our guess becomes *less wrong*. This is the alternative side of the prediction coin, where typically we try to be *more right*. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### Bayesian Inference in Practice\n", "\n", " If frequentist and Bayesian inference were programming functions, with inputs being statistical problems, then the two would be different in what they return to the user. The frequentist inference function would return a number, representing an estimate (typically a summary statistic like the sample average etc.), whereas the Bayesian function would return *probabilities*.\n", "\n", "For example, in our debugging problem above, calling the frequentist function with the argument \"My code passed all $X$ tests; is my code bug-free?\" would return a *YES*. On the other hand, asking our Bayesian function \"Often my code has bugs. My code passed all $X$ tests; is my code bug-free?\" would return something very different: probabilities of *YES* and *NO*. The function might return:\n", "\n", "\n", "> *YES*, with probability 0.8; *NO*, with probability 0.2\n", "\n", "\n", "\n", "This is very different from the answer the frequentist function returned. Notice that the Bayesian function accepted an additional argument: *\"Often my code has bugs\"*. This parameter is the *prior*. By including the prior parameter, we are telling the Bayesian function to include our belief about the situation. Technically this parameter in the Bayesian function is optional, but we will see excluding it has its own consequences. \n", "\n", "\n", "#### Incorporating evidence\n", "\n", "As we acquire more and more instances of evidence, our prior belief is *washed out* by the new evidence. This is to be expected. For example, if your prior belief is something ridiculous, like \"I expect the sun to explode today\", and each day you are proved wrong, you would hope that any inference would correct you, or at least align your beliefs better. Bayesian inference will correct this belief.\n", "\n", "\n", "Denote $N$ as the number of instances of evidence we possess. As we gather an *infinite* amount of evidence, say as $N \\rightarrow \\infty$, our Bayesian results (often) align with frequentist results. Hence for large $N$, statistical inference is more or less objective. On the other hand, for small $N$, inference is much more *unstable*: frequentist estimates have more variance and larger confidence intervals. This is where Bayesian analysis excels. By introducing a prior, and returning probabilities (instead of a scalar estimate), we *preserve the uncertainty* that reflects the instability of statistical inference of a small $N$ dataset. \n", "\n", "One may think that for large $N$, one can be indifferent between the two techniques since they offer similar inference, and might lean towards the computationally-simpler, frequentist methods. An individual in this position should consider the following quote by Andrew Gelman (2005)[1], before making such a decision:\n", "\n", "> Sample sizes are never large. If $N$ is too small to get a sufficiently-precise estimate, you need to get more data (or make more assumptions). But once $N$ is \"large enough,\" you can start subdividing the data to learn more (for example, in a public opinion poll, once you have a good estimate for the entire country, you can estimate among men and women, northerners and southerners, different age groups, etc.). $N$ is never enough because if it were \"enough\" you'd already be on to the next problem for which you need more data.\n", "\n", "### Are frequentist methods incorrect then? \n", "\n", "**No.**\n", "\n", "Frequentist methods are still useful or state-of-the-art in many areas. Tools such as least squares linear regression, LASSO regression, and expectation-maximization algorithms are all powerful and fast. Bayesian methods complement these techniques by solving problems that these approaches cannot, or by illuminating the underlying system with more flexible modeling.\n", "\n", "\n", "#### A note on *Big Data*\n", "Paradoxically, big data's predictive analytic problems are actually solved by relatively simple algorithms [2][4]. Thus we can argue that big data's prediction difficulty does not lie in the algorithm used, but instead on the computational difficulties of storage and execution on big data. (One should also consider Gelman's quote from above and ask \"Do I really have big data?\")\n", "\n", "The much more difficult analytic problems involve *medium data* and, especially troublesome, *really small data*. Using a similar argument as Gelman's above, if big data problems are *big enough* to be readily solved, then we should be more interested in the *not-quite-big enough* datasets. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Our Bayesian framework\n", "\n", "We are interested in beliefs, which can be interpreted as probabilities by thinking Bayesian. We have a *prior* belief in event $A$, beliefs formed by previous information, e.g., our prior belief about bugs being in our code before performing tests.\n", "\n", "Secondly, we observe our evidence. To continue our buggy-code example: if our code passes $X$ tests, we want to update our belief to incorporate this. We call this new belief the *posterior* probability. Updating our belief is done via the following equation, known as Bayes' Theorem, after its discoverer Thomas Bayes:\n", "\n", "\\begin{align}\n", " P( A | X ) = & \\frac{ P(X | A) P(A) } {P(X) } \\\\\\\\[5pt]\n", "& \\propto P(X | A) P(A)\\;\\; (\\propto \\text{is proportional to })\n", "\\end{align}\n", "\n", "The above formula is not unique to Bayesian inference: it is a mathematical fact with uses outside Bayesian inference. Bayesian inference merely uses it to connect prior probabilities $P(A)$ with an updated posterior probabilities $P(A | X )$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Example: Mandatory coin-flip example\n", "\n", "Every statistics text must contain a coin-flipping example, I'll use it here to get it out of the way. Suppose, naively, that you are unsure about the probability of heads in a coin flip (spoiler alert: it's 50%). You believe there is some true underlying ratio, call it $p$, but have no prior opinion on what $p$ might be. \n", "\n", "We begin to flip a coin, and record the observations: either $H$ or $T$. This is our observed data. An interesting question to ask is how our inference changes as we observe more and more data? More specifically, what do our posterior probabilities look like when we have little data, versus when we have lots of data. \n", "\n", "Below we plot a sequence of updating posterior probabilities as we observe increasing amounts of data (coin flips)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAKbCAYAAABl+WxSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VOXZ+PHvnZnsgSAoCMFAWEIosggvlRapCwVcaQXc\ni7QUtWgRf4pgXfraWhGxeRWrxfoqtrZqF6j7ghR8rXFBEYLRgoSwG/Y9e2by/P44J5PJkMwZss1J\ncn+uay44c5Z55p4z584z51nEGINSSimllFJKRSIm2gVQSimllFJKtR5agVBKKaWUUkpFTCsQSiml\nlFJKqYhpBUIppZRSSikVMa1AKKWUUkoppSKmFQillFJKKaVUxLQCoZRqViLSS0SqRGR4tMvSUCIy\nRUSqmuA454qIX0Q6N0W5GktE7heRPXaZro92eZqCiEwTkWPRLsfJEpHnROS1Rh7D8bsWuo3TcnOW\nVynVemkFQqlWyk7gVUGP/SLyuogMiHbZQuwATgdyo12QRjD2I2IislVEbg95+kOguzHmUJOVrIFE\nZBDwS+BGrM/nb1EqxzQROd6Eh/wr0KcJj9faOJ2ndX0fTX3r7UpvVR2V3luBHzWyrEqpVkorEEq1\nbiuAblgJfxyQCPwzqiUKYSz7jDGN/gW/tTPG+Iwx+6JdDlt/rI/nNWPMfmNMeZTKIZxk5azeA4l4\njTHlxpgDjTxObFOUp6mPFelLhltZz/dRwqyv/nwk5DjHjTGt7k6PUqppaAVCqdat3P7jb58xJhd4\nFMgSkfjqDUTkIRHZKCIl9q/iD4tInL2ul918pVZzBRG5wb6j4bWXvyUib4jIMRHZKyIviki3oO3P\nFJF/ichRETkuIutE5Nyg1whuIhEjIs+IyBa7TJtE5M6Q13/Ovptyq4jsEpFDIrJERBLqC0Rdv5TW\n8drV21xil7FURNbU8f6vF5FtIlJkN9PoFrK+j4i8IiK77W0+F5FLgta/B/QCHrFfz28/f15wGat/\nfReRC0Qkzz7WKhHpFfJ6v7CbGh0VkWdF5D4R2VpfLII+kxV2jA/aMe1gr/tv7IpmcPnqOEZ1/K4R\nkQ/seG0QkXEh231PRD6x1+8Rkf+pPneC1n9sv9cj9rbfss+RJUBydTlE5Jf2PrH2ubpTRIpFZLWI\njK/j877IXlcGjJc67miIyE0iki8i5fa/M0LWV4nIzSKyTESKgAfricd7IrJYRB6zz8lDIrIwZJut\nIvLf9ud0GPiL/fzgOj6PjnW8xj12DI/b53zwd3mCiPzbft2DIvKOiGTVUdQB9X1eod+JOl4/sN4+\nD1fZq/bbn88Se7s/SkgTJhGZKyKb7fe4XkSuC1n/S7G+V2X2d+ePdZVBKeV+WoFQqo2w/zi8Gvgi\n5NfkIuDHQBYwE7gKuAfAGLMdeBeYHnK4nwB/Msb4RKQ78D7wBfBfwFggGXg1aPsXgUJ7/VDgfqAs\naH3wL8wxwC5gil2mu4FfiMhPQsowBhhkv96VwOXAbIcw1PVLdl3PPQLcCYwAtgCvi105EZGzgeeA\np4BhwOvAr0P2TwHesss2BFgKLBORTHv9JPs9/grr7lD3oLKEliceuAvrMxoFdLJfG7s8V2M1NfqF\nXd584PZ63lf1PknAcuAY1mfyQ+C7WH+sV7//G+z/dwsqX30eBh7D+mxXAK/a5wUi0sOOxedY8ZoO\nXAM8ZK/3AK8A/wYGA9+2j+XHatJ1G1ASVI7f2q/5R6xz4Gqs8+BPwGsiMjikbAuwzucsYLX9XCA2\nInI58Dvgf+zjLAJ+L0EVPtsvgTeBM4Enw8TiWqxf40dhNf+6UURuC9nm/wEbsD6vu+3P4x1O/Dye\nDdnvPKzz6QKsc2g8VuyrJWP9SPBfwLnAEaxz11v7MPV/XjanOz7V63cAk+3/D8T6fGaHbAOAiDyI\ndd2YaW/7EPCUiFxkr58M3AH8DOgHXAJ86lAOpZRbGWP0oQ99tMIH1h+5lcBx+1EFbAO+5bDfTcCm\noOXJwEEgzl4eaB9roL38K2BFyDFOsbf5L3v5KDC1ntfrZW87PEyZHgLeDXlv2wEJeu7p4G3qOMa5\nWH+Udq7vte1tqoCrg7ZJBg4D0+3lF4DlIcf+X8DvENePgbuDlrcCt4crIzDNXu4XtM21QGnQ8kfA\nkyHHWQ5sCVOWG+z3lBTy2lVAn6DP3ek9VcfvrqDnBPga+LW9/CDwdch+04BSIME+V/zAmHpeYxpw\nLOS5PvY+PUOefxl4IuT9/DDc8YAc4H/r+O78O2i5Cngsgu/ce8DGkOfuAXaEfO6vNuDzeA44BCQG\nbXOdHcfEesqTDPiA757E5xX6nXBaPuF7FVTe1+z/J2FVAkeHbPMo8Ib9/+pKlccpzvrQhz7c/9A7\nEEq1bu9j/WI5FBgJrARWiEha9QZijSD0gd1k4DhWUk8POsarWBWRSfbydGC1MWaDvTwCONduUnHc\nPsYOrF8g+9rb/A/wrIisFJG7xaEjt4j8TEQ+E5F99vH+X0iZAP5jjAn+lbMQ6OocEkcG+CSwYEwx\nkAd8y35qIFZlIFitZRFJEpGFIvKV3ZzkOFacQt9DJMqNMZuDlguBOBHpZC9nAZ+F7LOa8LKw7kSV\nBD33EdYfht+qe5ewguNl7NevPk5W8HpbDhCHVTE6jHX34F2xmsH9PxE5w+H1hmP94fufkPPuYmrO\nObA+y88djjUQ672Hli80Dk7HqRb6Xj8G0kQkJei5NSHbRPp5fGGMKQ05dhz2exar6dyLdjOho8Ae\nrDiFnnfhPq/m8C2syuI7IZ/Xz6jp0P4PrD5a28RqwjhF7KaUSqnWRysQSrVuJcaYrcaYLcaYz7F+\n6eyI1bQCERkFvAS8DVyK1cTkXiDQsdMY4wOeB6bbzU1+BDwT9BoxwBvUVFSqH/3t5zHG/ArrD7WX\nsZpmfCEiP66rwCJyFVYlZglWE42hwO+x/lAKVhmybAh/zQru9FmtuTqwZmP9gn8P8D2s9/AZJ76H\nSPhClqsrTc11fW6SDssRCHSONsZMx2q69D4wEfhaQvpRhIjBvsNF7XNuICc2tytuYPlC49DQ49Tl\nZI7l9HkEn89vAl2wvt/fxvo++2nYedeUqs/VS6n9eQ0CJgAYY3YBmVhlP4rVVO1zEUls8dIqpRpN\nKxBKtT0Gq0kBWH/M7zLGzDfGfG6MKQB617HPM1jtrm/Gat8fPKTnWqw/BHbYFZXgR+APJWNMgTHm\nCWPMpVhtu2t1VA0yGvjEGLPYGJNrjNmC1Sa6sfZj/bEV3Nb7LE78A626/bq1IJKM1e79P/ZTG4LX\n274TsjwaeN4Y84ox5kusuwZ9Q7apADwn+R7qshHr7lKwsx322QAMtt9btdFY731D3buEFRqPbxM+\nXmOAcqCg+gljTJ4x5hFjzPnA/2E1NYK647TOLmv3Os653SdZ9g1Y7z20fP+pY9tIhMb+O0ChMabI\noQyRfB6DQ/6g/g52HMXqeD8AmG+MWWWM+RpIBUL7P0Ddn1dDPnewPh8Ify7/xy5n7zo+r53VGxlj\nKowxbxtj7rDLNIgTPxulVCugFQilWrd4EelmP7KwOosmAdWjo2zCal5xrYhkiMhMrE6ptRhjNmE1\n63gE+EfIH0NPYv2h8ncR+bZ9nO+LyB9EJFlEEkTkCbFGxelld0I+B/iqnjJvAoaLyIUi0k9E7sP6\nFb+xNgM7gftFpL9YI/bcU8+299rvYRDWnZByrDs1AI8D3xeRu+zy3YDV6TX0PVwuImfZnXr/jNUZ\nOtg2YIyI9BCRLkHPhx1ms45tFgE/FpGf2OWZi/XHV7hfrl/AapP+vFijMX0Pq2P2MrvCdrJmishk\nEckUkUVYTWaqO3r/Hugh1uhEWXbn5IeA3xljykSkt1gjgX1HRNJF5Hysu1nV58c2IMH+PLqISKIx\nJh+rY/4f7dfNEJERInKHiAR/FpHE8hFgqlijLPUTkVlYnbwfdtivPj1E5FE7FlOAOVhN+MKJ9PPw\nAkvEGqFqHFYcn7abNR0GDgA3iEhfsUawWsyJd+qg7s9rcQPf73asc+0SETk1pBIEgH29+C3wW/s8\n7SsiQ8Ua/WoGBEYc+6n9/ntj3UmqwBoUQCnV2kS7E4Y+9KGPhj2wOjH6gx5HsNo+h3YqfRDYizUC\nzFKsTtQndJ4FptrHGV3Hur7A37E6Wxdj/Zq5COsPnlisP5C2YHX43IX1x0qKvW8v+7jVnTJjsTol\nH8TqNPq/WM2qtoS8t9dCyvDfWG3Ew8VkFNYdk2KsEX4uCnnt6g6hlwLr7fKuIaSDN9av49vs47yJ\ndWfGH7Q+HWv0qur+ILdjVdqWBG1zNtYv6aXV+1J3J+rQDsR1dQa/C6u9+zGs0YkeAr5yiMUgrBF4\niu1YPwt0CFp/Mp2or7HjWWJ/9uNDtjsHq71+KbAb64/JWHtdV2AZVuWu1I7rQwR1psWqpO633/cv\n7ec8WCMjbcYa0asQazSns+qLU5iY3ohV6Su3/50est4PTIrgO/ceVoXpcaw/6A8CC6nd2X8LIZ3n\nI/w8nrPPoXup+b4uARKCtjkPazS0EvvfcfZ214d81+r9vDjx+xh22X7uHuAbrOZ2S8J8R28BvrQ/\n571Ynf3H2ut+gNXv4xDW92Y1cFFLXCv1oQ99NP1DjGmp5rBKKTcTkXnAT4wxdY0r3ybYv9quAk4z\nLpgNuqFE5J9Yf4D/oJlfpxfWqEL/ZYxZ25yv1RqINb9HnjHm1miXRSmloqmutpNKqXbEbpLQG7gV\neCC6pWkRkTR7cQ27TfxMrHkE/Fh3DiZSM2qWUkop1aK0D4RS6gmsZjwfYM210Na1ttuuBqsp1vtY\nQ41eAVxnjHkt7F5N+/rKorFQSinQJkxKKaWUUkqpyOkdCKWUUkoppVTEtAKhlFJKKaWUiphWIJRS\nSimllFIR0wqEUkoppZRSKmJagVBKKaWUUkpFTCsQSimllFJKqYhpBUIppZRSSikVMa1AKKWUUkop\npSKmFQillFJKKaVUxLyN2XnixImmrKyM008/HYDk5GT69evHsGHDAMjNzQVo18ubN29mypQprimP\nG5ern3NLedy2rPFxXg6NVbTL44blpUuXUlBQUOv6vHjxYqEFaG5wXtbcoPHR3ND8y5obmi83iDHm\nZPcJuP76682iRYsavH97sGDBAu66665oF8PVNEbhaXycaYyczZ49m+eff75FKhCaG5zpORuexseZ\nxsiZxshZQ3NDo5ow7dmzpzG7tws7duyIdhFcT2MUnsbHmcbIXTQ3ONNzNjyNjzONkTONUfPRPhBK\nKaWUUkqpiDWqAjFhwoSmKkebde2110a7CK6nMQpP4+NMY+Rs6NChLfZamhuc6TkbnsbHmcbImcbI\nWUNzQ6MqENUdMlT9zjnnnGgXwfXcFqMFCxZEuwi1uC0+bqQxctaS12vNDc70nA3PjfHR3ND6aIyc\nNfR63ahRmHJzcxk+fHhjDtHm5eTk6AnswG0xWrhwYYt1ujLGUFpaijEGkbr7MG3cuJGsrKwWKU9r\npTEicA4lJibWey61FM0Nztx23XMbN8ZHc0Pr095jVD1QUlxcHLGxsU167EZVIJRSjVNaWkpcXBxe\nb/1fxQ4dOpCUlNSCpWp9NEYWn89HaWmpxkKpVk5zQ9PQGFnKysrw+/0kJCQ02TG1CVMzc9svKG7U\nnmNkjAmbIAD69+/fQqVpvTRGFq/XS2OG5m4qmhuctefrXiTae3w0NzQNjZElISEBv9/fpMfUUZiU\niqJoNzVRbY+eU0q1fvo9Vk2tqc+pRjVhWrRoEcnJyaSnpwOQmprK4MGDA78c5OTkALTr5by8PGbO\nnOma8rhxufo5N5WnpV4vKSkp0FY8Pz8fqPnFpHq5+rn61uty/xNiFe3yRHM5LS0NgMWLF5OXlxe4\nPnft2pWxY8fSEjQ3aG5oi/Gpprmh9Sxrbmi+3NComaizs7PN9OnTG7x/e+DGjmBu47YYteTMlSUl\nJY7tM/Pz8113G/aWW24hLS2Nu+++O9pFAdwZo2ip75xau3YtY8eObZGfNTU3OHPbdc9t3BgfzQ3O\nNDe4V1PnBu0D0czcdgF0I7fFyG3T3uvFz1kkMTpy5AhTp07ljDPOYNiwYSxbtqzebV966SUuvvji\npixiu6K5wZnbrntu48b4aG5ofSKJ0TPPPMPYsWPp3r07P//5z8Nuq7mhho7CpJRyJb/fj8fjabLj\nzZkzh/j4eDZt2sT69eu5+uqrOfPMMxkwYMAJ24YbOlEppVT0NHVu6N69O3PmzGHVqlWUlpaG3VZz\nQ41G3YHIzc1tqnK0WaFtJ9WJNEbhBbfhbEmbNm1i4sSJZGRkMHr0aN55551a6w8ePMikSZNIT09n\n4sSJ7Nq1K7Du7rvvZsCAAfTq1YsxY8awceNGACoqKrjvvvsYMmQIAwcOZM6cOZSXlwPw4YcfcuaZ\nZ/L4448zcOBAZs2axahRo1ixYkXguH6/n8zMTPLy8gD47LPPuPDCC+nVqxfnnnsuH374YZ3vpaSk\nhDfeeIN77rmHxMRERo0axcUXX8zf//73Ot/3nDlz+Oyzz0hPT6dPnz4AHDt2jJkzZ5KZmcmwYcPI\nzs4O7LN161Yuu+wyevfuTWZmJjNmzGhULA4dOsQ111xDRkYGffv25dJLL43wU3MHzQ3O9LoXnsbH\nmeaGxucGgEsuuYSLLrqITp06Ob5vzQ01dBQmpdQJfD4f1157LWPHjiU/P58FCxZw4403UlBQENhm\n6dKlzJ07l4KCAgYNGsSNN94IwKpVq1i9ejVr1qxh+/btLFmyhM6dOwNw//33s3XrVnJyclizZg27\nd+/mkUceCRxz3759HD16lC+++IJHH32UKVOmsHTp0sD6lStX0qVLFwYPHkxhYSHXXHMNd955J//6\n17/49a9/zbRp0zh06NAJ76egoIDY2FgyMjICzw0aNChwwQ6WmZlJdnY2I0eOZMeOHWzZsgWAefPm\nUVRURG5uLq+//jp/+9vfeOGFFwCYP38+F1xwAdu2bePLL7/khhtuaFQsnnzySdLS0igoKGDTpk3c\ne++9DfgUlVKqabW13HAyNDfUpn0gmpkb23G6jcYovGi0c12zZg0lJSXMnj0br9fLmDFjmDBhQq1+\nA+PHj2fUqFHExsZy7733smbNGgoLC4mNjaWoqIivv/4aYwz9+/ena9euAPz5z3/mwQcfpGPHjiQn\nJzN79uxax/R4PNx1113ExsYSHx/P5MmTefvttykrKwNg2bJlTJ48GbCS1Pjx4xk7diz9+/fn3HPP\nZdiwYbV+lapWXFxMhw4daj3XoUMHioqKIopHVVUVL7/8Mr/85S9JSkrijDPO4Oabbw7cwYiNjWXn\nzp0UFhYSFxfH2WefHXi+IbHwer3s3buX7du34/F4GDVqVETldAvNDc70uheexseZ5obG54bGas+5\nQe9AKBViwYIF0S5C1O3evZsePXrUeu6MM85g9+7dgeXqIeEAkpOT6dSpE3v27GHMmDHMmDGDuXPn\nMmDAAG6//XaKioo4cOAAJSUlnH/++fTp04c+ffpw5ZVX1vpVqEuXLsTGxgaWMzIyGDBgAO+88w6l\npaW8/fbbXHHFFQDs3LmTV155JXCsjIwMPv30U/bu3XvC+0lOTub48eO1njt27BgpKSkRxePgwYP4\nfD569uxZZzzuv/9+qqqqGDduHKNHjw78+tTQWMyaNYvevXszefJkRowYwaJFiyIqp1Kq+WhuaHu5\nobHac27QPhDNTNtxOnNbjBYuXBjtItQSjXau3bt3p7CwsNZzu3btonv37oHlb775JvD/oqIiDh8+\nzOmnnw7ADTfcwKpVq/j444/ZvHkzv/vd7+jSpQtJSUl89NFHbNmyhS1btrBt2za2b98eOE5dndMm\nTZrEsmXLeOutt8jKyqJXr16AlaSuuuoqtmzZwvLly9m6dSs7duzg1ltvPeEYffv2xefzsXXr1sBz\nX331FVlZWXW+/9ByVCevnTt3Bp7buXNnIB5du3blscce46uvviI7O5s777yTbdu2NTgWKSkpPPDA\nA6xdu5YXXniB3//+93zwwQd1ltWNNDc4c9t1z23cGB/NDW0vN5wszQ019A6EUuoEI0aMIDExkccf\nfxyfz0dOTg7Lly8P3CIGWLFiBatXr6aiooL58+czcuRIevTowbp16/j888/x+XwkJCQQHx9PTEwM\nIsLUqVO5++67OXDgAACFhYWsWrUqbFkmTZrEe++9x3PPPceUKVMCz19xxRUsX76cVatWUVVVRVlZ\nGR9++GGtX8KqJSUlcemll/LQQw9RUlLCJ598wjvvvMOVV15Z52uedtppFBYWUllZCUBMTAw//OEP\n+c1vfkNRURE7d+5k8eLFgf1fffXVQFJNTU0lJiaGmJiYBsfi3XffDVR2UlJS8Hq9xMRYl+tbbrnF\ncahBpZRqDm0tN4DVAbusrIyqqir8fj/l5eX4/f46t9XcUEP7QDQzbcfpTGMUXjTaucbGxvLiiy+y\nYsUK+vXrx9y5c3nqqafo27cvYP0KM2XKFB5++GH69etHXl4ef/jDHwA4fvw4t912G3369OGss86i\nS5cuzJo1C7Bu5/bp04fx48cHbsMGd76rS7du3Rg5ciRr1qzh8ssvDzyflpbGX/7yFx599FEuvvhi\nhg4dyhNPPEFVVVWdx3nkkUcoLS1lwIAB3HTTTWRnZ9c5hCvA9773PbKyssjKyiIzMxOwmi9Uzw57\nySWXcOWVV3LdddcBsG7dOsaNG0d6ejpTp07loYceIj09vcGxKCgo4PLLLyc9PZ2LLrqIn/70p4we\nPRqwkonb+0RobnCm173wND7ONDc0TW747W9/S1paGosWLeIf//gHaWlptUZSCqa5oUajZqKeOXOm\nOXLkSGA67NTUVAYPHhz16eZ1WZcbszxx4kQOHTrUIq9XfdEB90x3r8vuXfb5fEyfPp2cnJzACCCh\n26elpZGUlMTixYvJy8sLXJ+7du3KHXfc0SIDmGtu0OW2uKy5QZfduhyN3NCoCkR2draZPn16g/dv\nD3JycvSXFAdui1Hnzp0bPdxbpOqbWj5Yfn6+zjjqQGNUo75zau3atYwdO7ZFKhCaG5y57brnNm6M\nj+aG1kdjVKOpc4P2gVAqxNy5c6NdBKWUUi6juUGpGo26A7Fy5UpTfYtNKXXywv3KNP6ZdU32Ou/O\nOKvJjqXczQ13IDQ3KNU4mhtUU9M7EEoppZRSSqmo8TZm59zcXPRXpvDc2I7TbTRGdav+Zag1tuF8\n+OGH2bp1K0899VSzv9bEiRM599xzueOOO5r9tVRkNDc40+teeBqf+mluiIzmhualdyCUUhHZuXMn\nP/jBD+jZsyejRo3i/fffD7t9XRP/KKWUalvmz5/POeecQ9euXSOabE9zQ9ug80A0M/0FxZnGKDy3\n/MI0Y8YMhg4dSkFBAffccw8//vGPW2xEEifdunWLdhFUEM0NzvS6F57Gx5lbckPfvn351a9+xYQJ\nE6JdlBNobmg+egdCqRALFiyIdhFcp6CggLy8PObNm0d8fDyXXXYZgwYN4rXXXqt3n/Lycm6++WbS\n09MZPXo069evD6zbs2cP06ZNIzMzk+HDh/P0008H1q1du5YJEyaQkZHBoEGDmDdvHj6fL7D+vffe\n4+yzzyYjI4N58+YRPBDE1q1bueyyy+jduzeZmZnMmDGjiSOhlGqvNDfU7aqrrmLs2LEkJydHtL3m\nhrahURWI3NzcpipHm1U9QYyqn9tiFMkt2JZUPQlMNG3cuJFevXrVShBnnnkmGzdurHef5cuXM3ny\nZLZv386FF17InXfeCYAxhmuvvZYhQ4awYcMGXnnlFf7whz/w3nvvAeDxeJg/fz5btmxh+fLl/Pvf\n/+bZZ58F4NChQ0ybNo377ruPzZs307t3b1avXs3evXsB61b6BRdcwLZt2/jyyy+54YYbmiskKgzN\nDc7cdt1zGzfGR3ND09Dc0DY0qhP1+++/z5o1a3S20TDLeXl5riqPG5ertcfyRDLbaLVoznZZXFxM\nXFxcrU57lZWV7N+/v97yDR48mPT0dESEK6+8ksWLF5Ofn8/Ro0c5ePAgEydOZMuWLfTv35+pU6fy\nxz/+kZ49ezJ06NBax5s2bRoffvghF1xwAW+99RYDBw7k0ksvJT8/n+9///s8+eSTge1LS0vZuXMn\nhYWFFBcX07lzZ1fEryWX09LSAOqcbXTs2LG0BM0NmhvaYnyqaW5oXHk0N7SN3KDzQCgVwm2zjbrB\nm2++yYMPPshHH30UeG7evHmISJ239R9++GG2bdvG4sWLAasD9llnncW+fft47bXXuPHGG0lJSQGs\nX52qqqr47ne/y0svvURBQQH33nsvubm5lJaW4vf7GTp0KG+88QaLFi1i/fr1LFmyJPBaEyZMYOrU\nqfzoRz9i//79PPjgg6xYsYJOnTpx8803c9111zVzdNxF54FQqnlobgjvZz/7GX369Ak74Z7mhuhp\n6tzQqDsQSqn2ISsri+3bt1NcXBxoxvTll19yxRVXnPSx0tLS6N27N59++mmd6+fMmcOQIUN49tln\nSUpK4qmnnuL1118HrA5xu3btqrX9N998E/j/aaedxmOPPQbAJ598wqRJkxg9ejS9e/c+6XIqpZRq\nOZobWhftA9HM3NiO0200RuG5oZ1r3759OfPMM1m4cCHl5eW8/vrrbNiwgYkTJ0Z8jOq7nSNGjCAl\nJYXHH3+csrIy/H4/GzZsYN06a3bV48eP06FDB5KSkti0aRPPPfdc4Bjjx4/n66+/5s0338Tv9/PU\nU0+xb9++QDvXV199lcLCQsBqNhMTE0NMjI4V0dI0NzjT6154Gh9nbsgNAD6fj7KyMqqqqqisrKS8\nvJyqqqqI99fc0Dpp9JQKEe72a3v27LPPsm7dOvr06cNvfvMb/vSnP9VqR+qkeuzvmJgYXnrpJfLy\n8jjrrLPIzMzktttu4/jx4wA88MAD/OMf/yA9PZ3bb7+dyy+/PHCMzp0789xzz/GrX/2Kfv36sW3b\nNkaNGhVYv27dOsaNG0d6ejpTp07loYceCrTzVEqpxtDcULfZs2eTlpbGP//5Tx599FHS0tL4+9//\nHvH+mhvrEDj6AAAgAElEQVRaJ+0DoVQUtcZ2rsrdtA+EUq2f5gbV1Jo6N+gdCKWUUkoppVTEtA9E\nM9N2nM40RuG5pZ2rm2mM3EVzgzO97oWn8XGm1z1nGqPmo3cglFJKKaWUUhFr1DCuw4YNa6pytFnV\nE8Oo+mmMwqueDEbVT2PkLpobnOl1LzyNjzO97jnTGFmMMZRW+thzsJT9xRXsK6pgf3El+4srGNex\nYcdsVAVi6dKlPPPMMzrbqC63qeWcnBzuuusu18w2qsu6fDLLPXr0AKI7E7XmBl1ui8uaG3TZrct+\nY+jWM4Pj5X425edTUuknqesZHCv3s3vHVkor/RzxpPLpngr2fLCUksIC4k85HYDTLhzS8jNRZ2dn\nm+nTpzd4//YgJydHf0lx4LYYtfRso3FxcXi99dfl8/Pz9VcUBxoji8/no6KiIuqjMGlucOa2657b\nuDE+mhtan7YQo6oqQ1GFn6JyH8fK/RSV+zle4eN4mf1vuZ+yyvDzboi/ko37ijlcKSTFeUiJ85AU\n6yE+VvhBl6M6E7VSrU1iYiKlpaWUl5cHxsIOdfz4cUpKSlq4ZK2Lxsi6RS0iJCYmRrsoSqlG0tzQ\nNNweI2MMxXaF4Gi5n+NlVoXgWPW/5T6Kyv04/dQvQII3hvjYGOI9QrzXQ4JXSIyNId4bg0+S6Nut\n4wnnUnGFH3xHG1R2nQdCqRAt+SuTUi1F54FQqnE0N6iTVVzhr93noKiCffa/+4ut5yr9zn+HJ8d5\nSImLIdm+c5AS76FjvJdOiV46JnhJio2pt6LpVL5+vm/0DoRSSimllFLNrcJXFeiIHNwpObiyUOLQ\ntAisOwcpcR6S4zwk25WEDgleUuO9pCZ6SYnz4Ilpkd9+TkqjKhC5ubnor0zhubEdp9tojMLT+DjT\nGLmL5gZnes6Gp/FxpjFy1tAY+asMh0or2V9kVQqC7xzsK65gf1ElR8p8jsfxxggd4u3KQaxVOUiJ\n95CaGEunBC8p8R7iPK1zRgW9A6FUiLlz50a7CEoppVxGc0PbYIzhWLnfbkZUad8xqH0X4UBxJVUO\nLYsESIm3OiQnx3pItisKqQkeOiV46ZDgJcHbsKZFrYH2gVBKqXZA+0AopdqD0ko/+4sq7TsFwU2L\nau4mlEfQ7yAp1mpaFBi1KM5DR7tykJrgJSnOQ0wrrxxoHwillFJKKdWmVfqrOFBiNS3aF9QReX/g\nLkIlRRV+x+PEeaymRUnVdw/iPHRM8JKa4CE1IZaUeA9eF/Y7cBPtA9HMtI2iM41ReBofZxojd9Hc\n4EzP2fA0Ps7aWoyqjOFwqa+mYhC4i2DfOSiu4HCJz3FIU49Ah3gvSXExFG9ZT58hI61+B/FeOiVa\nlYN4b+vsd+AmegdCKaWUUko1G2OsydBCmxbtC/r3YEklPoeOBwK1RiyqblqUmuClU4I1pGli0JCm\nG3ypDOxzSgu8w/anURWIzZs3c/PNN5Oeng5AamoqgwcPjvp0825bruaW8uiyLre15XPOOcdV5XHD\n8uLFi8nLywtcn7t27crYsWNpCZobNDdofNrXcoW/iv5Dv83+4gre/3cOh0sr6dTvLPYVV/Cfzz/h\nSJmfhN5DADhWkAtAx77DTlhOjI2hfNsXJMTGkHHmSJLjYji8OZeUeA9nffs7JMd5+Hrdp1AFA791\nNgAb1q7GAKcPr1kGGDj8bAYOP7vWcuj69rj8zl//yPb8DZzWPY0Kv+H8wRkNyg3aiVqpEAsWLOCu\nu+6KdjGUalLaiVqpxmmvucFXZThYXNOMqKYzcs28B8fKnfsdxHqEDoG7B9aEaB0S7LsH9nwHsa10\nSNPWKmqdqLWdq7OcnLbVRrE5uC1GCxcudFWScFt83Ehj5C6aG5zpORueG+PTFnODMYYjZb4TRy0K\nmu/gUKnzkKYxYjUtqm5SFJjvIMFLpwQPHRNiifNIiw9pumHt6sAv76ppNaoCoZRSSiml3Km4wh80\nz0HNMKb7A3cUKqmMYEjTlKBZkqsfHeOtOwcdE7wkxbbd+Q5U3bQJk1IhOnfuzKFDh6JdDKWalDZh\nUqpx3JYbKnxVQRWBmgrCvqC7CCWVVY7HSfAGz3dgVRI62J2SUxO8JMd58OiQpm2SzgOhlFJKKdVG\n+KsMh0rtUYqKQiZCs/9/tMzneBxvjDXfQeDOQWwMKfEeOiXGkprgpUO89jtQDaN9IJqZG9txuo3G\nKDyNjzONkbtobnCm52x4bTk+xhiOlftDhjKt/f8Dxc79Doq25NJj4IhazYqS4zyk2rMld0jwkuBt\n302LtA9E89E7EEqFmDt3brSLoJRSymUizQ2llfXNd1DTtKg8gn4HSbHBTYuC5jtI9NAxPpbtid8w\naESPxr4tpRpE+0AopVQ7oH0glGq8Sn8VB4pDmxRV2hUF67miCuchTeM9Qkq8l+S4GJJiPSTHW52S\nUxM8pCZYsyV7td+BamZR7QMx/pl1jT2EUkqpZrZA/55XKqwqYzhc6qu5WxC4i1AzetHhUh9OP7t6\nBDrEe0myZ0oODGka76VTolU5iPdqvwPVujWqArFo0SK2FJYTf8rpAHgSk0nq0a/O2QXb63JJ4WZO\nHzPFNeVx43L1c24pj9uWNT7Oy6GxinZ53LC854OllBQWBK7PuTFDWmwm6kWLFpGcnKwzUYdZzsvL\nY+bMma4pj9uWmzo+xhiGjvwO+4srWPl/H3C4tJJTBwxnf1EFX6z5hCNlPkg7E1+VCfvdEqBy+xck\nxnlIHzSClDgPh/NzSY73MGzkKDokeNn2xWeICAOH1J4JuG8Tzyxc/Vy0ZzZ283JorKJdHjcsu2Im\n6uzsbNPtuxMbvH97oB14nGmMwtP4ONMYOetesqPFmjBlZ2eb6dOnt8RLtVptuZNwUzjZ+JT7qmoN\nYVp79CLruTKf85CmibE1dw2SY625DzomeElNrBnSNMYlnZL1uudMYxReY5owNboPxO6k9Abvr5RS\nqmW0ZAVC+0CopuSrMhwsDpnjIGS+g2Plzv0OYj1Ch5ARizrYsyWnJnrpEOfBq0OaqnZE54FQqgn9\n85nHmTTj1mgXQyml2rwqYzha6rPuGgTPklxUEeh/cKjUeUhTj0BK0HwHSbF2vwN7QrSOCV7iPNKo\nIU01NyhVo9HzQHT7rt6BCEdvnzlzW4xeXvKEq5KE2+LjRhojd9F5IJy1lyZMxRX+QKfkfUGdkaub\nGR0orqSyjtrBsYLcQB8EwOqIbM+SXP3oGO/llERrvoOk2Oaf70BzQ+ujMWo+egdCKaWUUietorrf\nQWAY0xPnOyipdO53kOAN6ncQZ/U7OFLWgcFnnhbod+DRIU2VcpVGVSCGDRvG7qYqSRulNV9nGqPw\nND7ONEbuMmzYMOeN2jm3333wVxkOlVZaQ5mG3kGw/3+0zOd4nNgYqWlaZHdKTon30CkxltQELx3i\nPcTW1e+g93lN/6baGL3uOdMYNR+9A6GUUkq1I8YYjpb5gjoj10yEVn0X4WCJc7+DGCHkzoE1Y3Jq\ngofURC8d473Ee5u/aZFSquVpH4hmpu3vnGmMwtP4ONMYuYv2gXDWnH0gSir8tSoDoZ2S9xdXUOF3\nHoExObjPQazd7yDBS6dEq/9BUjMOaarfaWcaI2cao+ajdyCUCnH59J9HuwhKKVWnSn8VB4LvHNSa\nMdmqLBRVOA9pGu8JaVoU76FDvJfUBKt5UXKcB6/2O6hFc4NSNXQeCKWUagd0Hgj3qzKGwyW+QGVg\nX3FNBaF69KLDpT6csrY3RoKaFll3EawhTWPpZM93EOfV+Q6Uau+iNg/E0qVL+XL7Xk7rngZAUkpH\nemUOdM103bqsy7qsy+11+Z2//pHt+RsC1+fR3+rN2LFjaQlLly7lmWeeIT3d+oEpNTWVwYMHB5rs\n5OTkALSrZWMMQ0d+h/3FFaz8vw84XFrJqQOGs7+ogvVrPuZoqR+TNgi/sYYwBQLDmAYvC1C5/QsS\n4zykDxpBSpyHw/m5JMd7GDZyFB0SvGz74jNEhIFDap8bfV1ybuqyLuuyO3JDhd9w/uCMBuWGRt2B\nyM7ONt2+O7HB+7cHG9Zq+zsnGqPwND7ONEbOWvIORHZ2tpk+fXpLvJRrlPmqrLsGQTMlhzYtKvPV\nDGkaOs9BtcTYkCFNY2PsfgfWZGjJzdjvwE30O+1MY+RMYxSezkStlFJKNRNfleFgoN9BRdDoRTUd\nlI+VO/c7iPPUNC063imBvmkd6BDvCVQOOsR58NY1pKlSSrmM9oFQSql2QPtA1K3KGI6W+mqNULSv\nqPYIRodKKh37HXgEq1Oy3SE5KdZDh3gPqQleOiVYsyXHa78DpZSL6B0IpZrQP595nEkzbo12MZRS\njWSMobjCX+98B9XNjCqdJjwAe46DmFpzHnSM93JKolU5SIrV+Q7aOs0NStXQeSCamba/c+a2GL28\n5AlXJQm3xceNNEbu0lLzQFT4qqw7BcGjFlVXEOy7CSWVVY7HSfDGnDBqUccEL6n2IznOg6eJhzTV\nczY8N8ZHc0ProzFqPo2qQGzevJlu322qorRN2zdt0JPXgcYoPI2PM42Rs9zc3BYbhWnz5s2NPoa/\nynCwJLQzsr1s3004WuZzPE5sTNB8B0GzJXdKtCoHHeI9xEah34Ges+FpfJxpjJxpjJw1NDc0qgJR\nXFzcmN3bhZKiY9EugutpjMLT+DjTGDlbv359i72WU24wxnC0zFd7tKKiilqTox0sqcSpZVGMUHvE\nIrtykJrgITXRS8d4q9+BG5sW6TkbnsbHmcbImcbIWUNzg/aBUEop1eS2Hy6t1RF5X0jTogp/JP0O\ngvocxHoCTYs6JXroGB9LUlxMuxjSVCml3KZRFYg9e/Y0VTnarP27v4l2EVxPYxSexseZxshd9uzZ\nww3LNobdJt4rpMR5a1USOsR7SU3w0CkxluQ4D94m7nfgJnrOhqfxcaYxcqYxaj6NqkD07duXdxc/\nEFgeOnQow4adODFOe/bDsaPpXrIj2sVwNbfF6F//+he4qDxui48baYxOlJubW+vWdHJycou9dt++\nfSnO+2Ngue7cYICKug9QBZQ1U+FcQs/Z8NwYH80NrY/G6ERNlRsaNQ+EUkoppZRSqn3RWW2UUkop\npZRSEdMKhFJKKaWUUipiEVUgRORCEdkoIptEZF492zwuIvkikisi7a4jhFOMRORaEVlvP3JEZHA0\nyhktkZxD9nYjRaRSRCa1ZPncIMLv2Xkisk5EvhSR91q6jNEWwfeso4i8Zl+H8kTkx1EoZtSIyLMi\nsldEvgizTZNcqzUvONO84ExzgzPNDeFpXnDWLLnBGBP2gVXJ2Az0AmKBXCArZJuLgDft/58NfOJ0\n3Lb0iDBGo4BU+/8XtqcYRRKfoO1WAm8Ak6JdbrfFCEgFvgLS7OVTo11uF8boF8BD1fEBDgLeaJe9\nBWN0DjAM+KKe9U1yrda80GQxard5IdIYBW2nuUFzQ0Pj067zgv2+mzw3RHIH4ttAvjFmuzGmEvgr\n8IOQbX4APA9gjFkNpIpItwiO3VY4xsgY84kx5qi9+AmQ1sJljKZIziGAWcBSYF9LFs4lIonRtcAy\nY8w3AMaYAy1cxmiLJEYG6GD/vwNw0BjjPF1xG2GMyQEOh9mkqa7VmhecaV5wprnBmeaG8DQvRKA5\nckMkFYg0YGfQ8i5OvMiFbvNNHdu0ZZHEKNgM4O1mLZG7OMZHRHoAPzTGLAba7uDv9YvkHMoEOovI\neyLymYhMbbHSuUMkMXoC+JaIFALrgdktVLbWoqmu1ZoXnGlecKa5wZnmhvA0LzSNk75e60zULUxE\nzgd+gnU7SdV4DAhuu9geE4UTLzAcuABIBj4WkY+NMZujWyxXmQCsM8ZcICJ9gRUiMsQYUxTtgilV\nH80LYWlucKa5ITzNC80gkgrEN0B60HJP+7nQbc5w2KYtiyRGiMgQ4GngQmNMuFtJbU0k8fkv4K8i\nIlhtFC8SkUpjzGstVMZoiyRGu4ADxpgyoExE/g0MxWr/2R5EEqOfAA8BGGMKRGQrkAWsaZESul9T\nXas1LzjTvOBMc4MzzQ3haV5oGid9vY6kCdNnQD8R6SUiccDVQOgX9zXgegARGQUcMcbsjbTUbYBj\njEQkHVgGTDXGFEShjNHkGB9jTB/7kYHV1vXmdpQgILLv2avAOSLiEZEkrI5OG1q4nNEUSYy2A98H\nsNtvZgJbWrSU0SfU/yttU12rNS8407zgTHODM80N4WleiFyT5gbHOxDGGL+I/Bx4F6vC8awxZoOI\n3GStNk8bY94SkYtFZDNQjFXbazciiRFwH9AZ+L39S0qlMebb0St1y4kwPrV2afFCRlmE37ONIrIc\n+ALwA08bY/4TxWK3qAjPo98Afwwaqm6uMeZQlIrc4kTkReA8oIuI7AD+G4ijia/VmhecaV5wprnB\nmeaG8DQvRKY5coMY0+6+j0oppZRSSqkG0pmolVJKKaWUUhHTCoRSSimllFIqYlqBUEoppZRSSkVM\nKxBKKaWUUkqpiGkFQimllFJKKRUxrUAopZRSSimlIqYVCKWUUkoppVTEtAKhlFJKKaWUiphWIJSr\niMhWEbmgOfYVkS9F5Ht1bRu8rjmJSKaIrBORo/bsmaHrG/z+T7Icz4nIr5v7dZRSSinV9nijXQCl\nWoox5sxI1onIVuCnxphVzVCMucAqY8xZzXBspZRSSqlmp3cgVIsREU+0y+ACvYCvol0IpZRSSqmG\n0gqEajS72c1dIvKViBwUkSUiEhe0bq6IrAeKRCRGRAaKyHsiclhE8kTkspBDfjvoWM9WH8s+3jwR\n2Swix+xmRz88iX3rbR5UvU5EngfSgdft15hjP5aGbP+4iDxaz7Gy6np/IrISOB940j52v3pCepaI\nrLf3fynkPXQXkaUisk9ECkRkViSxEZGzRORzu+nUX4GEkDLPE5Fd9r4bROT8esqmlFJKqXZOKxCq\nqVwLjAP6ApnAvUHrrgYuAjphnXOvAe8ApwG3Ai+ISP96jjUg5FibgdHGmI7Ar4C/iEi3CPd1ZIy5\nHtgBXGqM6WiM+S3wF2CCiHSEwJ2Uq4A/he4vIl7g9brenzFmLPABcIt97M31FOMKYDyQAQwFfmwf\nW+xjrwO6A2OB2SIyLlxsRCQWeNkub2fgH8DkoDJnArcAI+x9JwDbTiZuSimllGo/tAKhABCRQSIy\nXUR+KyI/EJEbRGTaSRzid8aYQmPMEeBB4JqgdYvsdeXAKCDZGPOwMcZnjHkPeCNk+3qPZYxZZozZ\na///H0A+8O0w+157Eu8hmAS95h7g31h/2INVGdpvjMmtY79I3p+TRcaYvfZ7eB0YZj//beBUY8yD\nxhi/MWYb8AxWBS1cbEYBXmPM4/Z+y4DPgl7PD8QBZ4qI1xizwxiz9STKq5RSSql2RCsQqlpPYD3Q\n2xjzKvACcM9J7L8r6P/bgR71rOsB7AzZdzuQFsmxROR6exSjwyJyGBgEnBpm3+4Rv4Pwngd+ZP//\nOuDP9WwXyftzsjfo/yVAiv3/dCBNRA7Zj8PAL4CuEDY2PYBv6igTAMaYAuA24H5gr4i8KCJNFTel\nlFJKtTFagVAAGGOWYzWbecN+ajhw4CQOcUbQ/3sBhcGHD/p/Yci2YP1hHPwHbp3HEpF04GngZmPM\nKcaYU7A6JIvTvifJ1PHcK8AQERkEXIpVwapLJO+voXYCW4wxne3HKcaYVGPMZQ6x2Y1VQQwtU4Ax\n5q/GmDFYMQNY0ATlVUoppVQbpBUIFWw88L79/6nAIxCYM2CJw763iEiaiHQG7gb+Ws92q4ESu2O1\nV0TOw/qD/KUIjpUMVAEH7M7YPwFCh2aNtBzh7AX6BD9hN79aBrwIrDbG7KprxwjfX0N9Chy3j50g\nIh676dl/ET42HwOVIjLLLtMkgpp9iTU3xfl2Z+0KoNQ+llJKKaXUCbQCoQAQkWSgGzBGRG4APjPG\nvGyvPgPIcTjEi8C7WB1587H6H0DIr/nGmErgMuBirDscTwBTjTH5QdvXeSxjzAYgG/gE2IPVRCe4\nXPXuW0dZQu8yBC8/BNxnNxO6Pej5PwGDsZoz1SnC9xdOveuNMVVYlZFhwFZgH/C/QMdwsbHLNAn4\nCXAQqy/HsqBDx2PdcdiPdQflNKymUUoppZRSJxBjnP6eUe2BPdToecaYO0KejwVygSHGGH89+zbn\nxGuuISJnABuA040xRdEuj1JKKaVUNOgdCIU9hOodwKki0il4nTGm0hgzqL7KQ3shIjFYMfqrVh6U\nUkop1Z55o10AFX1285rzGnOIJiqKK4lIEla/iK1YQ7gqpZRSSrVb2oRJKaWUUkopFTFtwqSUUkop\npZSKmFYglFJKKaWUUhHTCoRSSimllFIqYlqBUEoppZRSSkVMKxBKKaWUUkqpiGkFQimllFJKKRUx\nrUAopZRSSimlIqYVCKWUUkoppVTEtAKhlFJKKaWUipi3MTtPnDjRlJWVcfrppwOQnJxMv379GDZs\nGAC5ubkA7Xp58+bNTJkyxTXlceNy9XNuKY/bljU+zsuhsYp2edywvHTpUgoKCmpdnxcvXiy0AM0N\nzsuaGzQ+mhuaf1lzQ/PlBjHGnOw+Addff71ZtGhRg/dvDxYsWMBdd90V7WK4msYoPI2PM42Rs9mz\nZ/P888+3SAVCc4MzPWfD0/g40xg50xg5a2huaFQTpj179jRm93Zhx44d0S6C62mMwtP4ONMYuYvm\nBmd6zoan8XGmMXKmMWo+2gdCKaWUUkopFbFGVSAmTJjQVOVos6699tpoF8H1NEbhaXycaYycDR06\ntMVeS3ODMz1nw9P4ONMYOdMYOWtobmhUBaK6Q4aq3znnnBPtIrie22K0YMGCaBehFrfFx400Rs5a\n8nqtucGZnrPhuTE+mhtaH42Rs4Zerxs1ClNubi7Dhw9vzCHavJycHD2BHbgtRgsXLmzRTldlZWX4\n/X5E6u7DtHHjRrKyslqsPK2RxgiMMXg8HhISEqJdFM0NEXDbdc9t3BgfzQ2tT3uPUfVASQkJCXg8\nniY9dqMqEEqpxqmsrASsYdTq06FDB5KSklqqSK2SxshSVlZGZWUlsbGx0S6KUqoRNDc0DY2RVYko\nLi4mMTGxSSsR2oSpmbntFxQ3as8xqqiocPzFuH///i1UmtZLY2RJSEigoqIi2sXQ3BCB9nzdi0R7\nj4/mhqahMQIRITk5mbKysiY9ro7CpJRSSimlVBtVXzO4xmhUBSJ4hj9Vt5ycnGgXwfXac4wi+VLn\n5+e3QElaN41RjeZIFCdLc4Oz9nzdi0R7j4/mhqahMarR1LmhUX0g3n//fdasWUN6ejoAqampDB48\nOHDrsfoC0J6X8/LyXFUeNy5Xc0t55s6d22Kvl5SUFOhsWn2hq77lGnrhq299NJZvueUWEhMTuemm\nm1xRHl2uWU5LSwNg8eLF5OXlBa7PXbt2ZezYsbQEzQ2aG9pifDQ3aG5ozctNnRukuod2Q6xcudLo\nSBtKNVxJSUmr7OB1yy23kJaWxt133x3tokSkoqKCOXPm8P7773PkyBEyMjK49957+f73v1/n9i+9\n9BJ//vOfeeutt1q4pI1X3zm1du1axo4d2yK3JzQ3KNU4mhtazs9+9jPef/99SktL6datGz//+c+Z\nOnVqndtqbqihozAppVzJ7/c32YgRPp+Pnj178uabb9KzZ0/effddpk+fzkcffUTPnj1P2N4Y44qm\nQEoppWprytwAcNttt/HYY4+RkJDA5s2bueyyyxg6dChDhgw5YVvNDTW0D0Qza+/tOCOhMQovWm04\nN23axMSJE8nIyGD06NG88847tdYfPHiQSZMmkZ6ezsSJE9m1a1dg3d13382AAQPo1asXY8aMYePG\njYB1J+C+++5jyJAhDBw4kDlz5lBeXg7Ahx9+yJlnnsnjjz/OwIEDmTVrFqNGjWLFihWB4/r9fjIz\nM8nLywPgs88+48ILL6RXr16ce+65fPjhh3W+l6SkJObOnRuoLIwfP55evXrVeQ3btGkTc+bM4bPP\nPiM9PZ0+ffoAcOzYMWbOnElmZibDhg0jOzs7sM/WrVu57LLL6N27N5mZmcyYMaNRsTh06BDXXHMN\nGRkZ9O3bl0svvTSSj8w1NDc40+teeBofZ5obGp8bALKysgIjXlVXELZu3Vrn+9bcUENHYVJKncDn\n83HttdcyduxY8vPzWbBgATfeeCMFBQWBbZYuXcrcuXMpKChg0KBB3HjjjQCsWrWK1atXs2bNGrZv\n386SJUvo3LkzAPfffz9bt24lJyeHNWvWsHv3bh555JHAMfft28fRo0f54osvePTRR5kyZQpLly4N\nrF+5ciVdunRh8ODBFBYWcs0113DnnXfyr3/9i1//+tdMmzaNQ4cOOb6/ffv2sWXLljonGMrMzCQ7\nO5uRI0eyY8cOtmzZAsC8efMoKioiNzeX119/nb/97W+88MILAMyfP58LLriAbdu28eWXX3LDDTc0\nKhZPPvkkaWlpFBQUsGnTJu69997IPzyllGombTU33HnnnfTs2ZNRo0Zx+umnM27cuBO20dxQm84D\n0cza+1jWkdAYhReNcazXrFlDSUkJs2fPxuv1MmbMGCZMmMCyZcsC24wfP55Ro0YRGxvLvffey5o1\naygsLCQ2NpaioiK+/vprjDH079+frl27AvDnP/+ZBx98kI4dO5KcnMzs2bNrHdPj8XDXXXcRGxtL\nfHw8kydP5u233w6MX71s2TImT54MWElq/PjxjB07lv79+3PuuecybNiwWr9K1cXn83HTTTdxzTXX\n0K9fv4jiUVVVxcsvv8wvf/lLkpKSOOOMM7j55pv5+9//DkBsbCw7d+6ksLCQuLg4zj777MDzDYmF\n1+tl7969bN++HY/Hw6hRoyIqp1tobnCm173wND7ONDc0XW545JFH2LlzJ2+99RaXXnop8fHxEcWj\nPecGvQOhVIgFCxZEuwhRt3v3bnr06FHruTPOOIPdu3cHlqtHdABrttROnTqxZ88exowZw4wZM5g7\ndwOnH9oAACAASURBVC4DBgzg9ttvp6ioiAMHDlBSUsL5559Pnz596NOnD1deeWWtX4W6dOlSaxbl\njIwMBgwYwDvvvENpaSlvv/02V1xxBQA7d+7klVdeCRwrIyODTz/9lL1799b7vowx3HTTTcTHx/Pw\nww9HHI+DBw8G+lHUFY/777+fqqoqxo0bx+jRowO/PjU0FrNmzaJ3795MnjyZESNGsGjRoojLqpRq\nHpob2m5uAGuY07PPPptvvvmGJUuWRBSP9pwbtA9EM9N2nM7cFqOFCxdGuwi1RKOda/fu3SksLKz1\n3K5du+jevXtg+Ztvvgn8v6ioiMOHD3P66acDcMMNN7Bq1So+/vhjNm/ezO9+9zu6dOlCUlISH330\nEVu2bGHLli1s27aN7du3B45TV+e0SZMmsWzZMt566y2ysrLo1asXYCWpq666ii1btrB8+XK2bt3K\njh07uPXWW+t9X7NmzeLQoUM8//zzYTvhhZajOnnt3Lkz8NzOnTsD8ejatSuPPfYYX331FdnZ2dx5\n551s27atwbFISUnhgQceYO3atbzwwgv8/ve/54MPPqi3vG6jucGZ2657buPG+GhuaLu5IZjP56uz\nD0Rd5WjPuUHvQCilTjBixAgSExN5/PHH8fl85OTksHz58sAtYoAVK1awevVqKioqmD9/PiNHjqRH\njx6sW7eOzz//HJ/PR0JCAvHx8cTExCAiTJ06lbvvvpsDBw4AUFhYyKpVq8KWZdKkSbz33ns899xz\nTJkyJfD8FVdcwfLly1m1ahVVVVWUlZXx4Ycf1volLNjtt99Ofn4+L7zwAnFxcWFf87TTTqOwsJDK\nykoAYmJi+OEPf8hvfvMbioqK2LlzJ4sXL+bKK68E4NVXXw0k1dTUVGJiYoiJiWlwLN59991AAktJ\nScHr9RITY12ub7nlFn7+85+HLX8oX1XDh+tWSqlqbS03HDhwgH/+858UFxdTVVXFypUrefnllznv\nvPPqfM22lhsaQ/tANDNtx+lMYxReNNq5xsbG8uKLL7JixQr69evH3Llzeeqpp+jbty9g/QozZcoU\nHn74Yfr160deXh5/+MMfADh+/Di33XYbffr04ayzzqJLly7MmjULsG7n9unTh/HjxwduwwZ3vqtL\nt27dGDlyJGvWrOHyyy8PPJ+WlsZf/vIXHn30US6++GKGDh3KE088QVVV1QnH2LVrF3/605/48ssv\nycrKIj09nfT09FptbIN973vfIysri6ysLDIzMwGr+UL15E6XXHIJV155Jddddx0A69atY9y4caSn\npzN16lQeeugh0tPTGxyLgoICLr/8ctLT07nooov46U9/yujRowErmUTS7tVfZVhXeJxHP9jBVS/k\nOW7flDQ3ONPrXngaH2eaGxqfG0SE5557jsGDB9OnTx/uv/9+5s+fz/jx4+t8zbaQG5pKoyaSmzlz\npjly5IjONqrLbWp54sSJHDp0yDWzjeqyLlcv+3w+pk+fTk5OTmAEkOD1BqhK7sK/thXzlyVPc2B7\nPvGnWE0H7rhwCHfccUeLDGCuuUGX2+Ky5gZdduuyU24Aq2KVlJRU50zUDckNjapAZGdnm+nTpzd4\n//YgJydHf0lx4LYYde7cOaKhQJtCJLON5ufnR+WXptakPceoyhj2HC9n0/5S8g+UsPPAUT7ZbY0Z\n3inBS0bnBAaclswwz54Wm4lac4Mzt1333MaN8dHc0PpojGroTNRKNbO5c+dGuwhKhWVVGirIP1BC\n/oESisr9gXWJ3hiGdE9hwKmJdO8YX9PpryRKhVWqjdDcoFSNRt2BWLlypam+xaaUOnmR/MqkFNiV\nhmPlbDpYyuaQSkNCbAxdkmLplhKHx1/OEf+Jvw11L9nRYncgNDco1TiaG1RT0zsQSrUT459Z12TH\nenfGWU12LNVyqqoMhcfLyT9gVRqKK0IqDYmxdO0QxymJNZfy40Xl0SiqUqqFaG5QbqDzQDQzN45l\n7TYao7bn4Ycf5mc/+1mLvNbEiRPJzs5ukddqCVVVhh2Hy1i5+RDPfvYNS7/Yx/rC4xRX+EmIjSGt\nYzxnpaXw3V6pDOiaVKvy4BaaG5zpdS88jU/bpLmh7XBf5lFKATW/DLmhE9iBAwf4xS9+wUcffURJ\nSQkDBw7kgQceYMSIEfXuU9fEP6puvqoqdh4pI/9AKVsOlVJWWTPcYGJsDJ3t5kmdXFhZUEq1LM0N\nyg0alY10rG9nbhtFwo00RuFFO0EAFBcXM3z4cObPn8+pp57K888/z9VXX8369etd0U63W7du0S7C\nSavwVbHtSCkFB0rZeqiUCn9Nf7SkOKtPQ9eUOFITWl+lQXODM73uhafxcaa5wVlrzA2thc5ErVSI\nBQsWRLsIrtOrVy9mzpzJaaedhogwbdo0Kioq2Lx5c737lJeXc/PNN5Oens7o0aNZv359YN2ePXuY\nNm0amZmZDB8+nKeffjqwbu3atUyYMIGMjAwGDRrEvHnz8Pl8gfXvvfceZ599NhkZGcybN4/ggSC2\nbt3KZZddRu/evcnMzGTGjBlNHInGKan089XeIl79ah9/WP0Nb204yNf7S6jwG1LiPaSfksDIMzoy\nKj2V/qcmtcrKg1JtleaGE2luaL+0D0Qz03acztwWo4ULF0a7CLVUTwLjJnl5efh8PjIyMurdZvny\n5UyePJnt27dz4YUXcueddwJgjOHa/8/evcdHWd6J3//ccz7mBEkggRBAUFSOFqFSdQsVuz7Ktp7a\nWildq+5ia7tbLfXpT3tYW0W7tuquxXar9tn+uu6utQdtq9QqVUEBEYJBTiEnEnLOJJPM+XQ/f9yT\ngRCSGchh7iTf9+s1r+TKTGYuvsxc31z3dbrlFhYtWsShQ4f43e9+x09/+lO2bdsGgNFo5KGHHqKm\npoatW7fy1ltv8cwzzwDg8XjYsGEDDzzwAMeOHaO8vJxdu3bR2toKwEMPPcTq1aupq6vjwIED3HHH\nHaMcifR6QjH2nejhhQ9a+Y9dJ3jtqIdaT4h4QiU3eU7Dylk5XDozh/Om2HFbjdmu8rBJbkhPb+2e\n3ugxPpIb0pPcMHkM6/LWm2++yZ49e+S00SHKlZWVuqqPHst9JmN9MjlttI8eTrsEbUh448aNfOlL\nX6KlpQW3233Gxy9cuJCysjIUReHmm29my5YtVFVV4fV66ezsZN26ddTU1DBv3jzWr1/PL37xC2bM\nmMHixYv7Pd+GDRvYsWMHq1ev5k9/+hMLFizg2muvpaqqik984hM89dRTqccHg0EaGhpoamrC7/dT\nUFAw5vE777zzaPdHeHf/IZp7woRc0wEItjdgUGDazNlMcZqhqwlLQmFagZZoW47XAjCtbHhlZ0ER\nAK/+9y+orzpE4fRSAFZdWM6aNWsYC5IbJDdMxPj0kdwguWE8lktLtVxwppOozyU3yDkQQpxGb6eN\n6kkoFOKmm25i3rx5/OhHPxr0cY888gh1dXVs2bIFgIaGBpYuXUpbWxsvvfQSd955Jy6XC9CuOiUS\nCS677DKef/55qquruf/++6moqCAYDBKPx1m8eDF/+MMfeOKJJ9i/fz/PPvts6rWuvvpq1q9fz623\n3kp7ezs/+MEPeO2118jLy+Ouu+7i85///OgGBYgnVBq9IWo8IWo9QXpCJ4fVjQaFArsptRDaZBzd\nBYS9Pr+cAyHEKJDcMDjJDfon50AIIbIiEolw6623MmPGjCETRDqlpaWUl5eze/fuM95/7733smjR\nIp555hkcDgdPP/00L7/8MqBd4WpsbOz3+BMnTqS+Lyws5PHHHwdg586dXH/99axatYry8vJzru9g\nQtE4dV0hajxB6rpCRGInd06yGBUKnGamOsxMdVowyKYjQogJSnLD5CRrIEaZHudx6o3EaGh6mOca\ni8XYsGEDDocjNSx8tvpGOy+55BJcLhdPPvkkoVCIeDzOoUOH2LdPOxypt7cXt9uNw+Hg6NGjPPfc\nc6nnWLt2LUeOHOGPf/wj8Xicp59+mra2ttQ819///vc0NTUB2rQZg8GAwTBye0V0B6PsPdHDi5Wt\n/GzXCV490snR9gCRWAKnxcDMXCtLS918bHYeFxY5KXJNzs6D5Ib0pN0bmsQnPckN+skNk5FET4jT\nbNq0KdtV0J3du3fz2muvsW3bNsrLyykrK6OsrIydO3dm/Bx9e38bDAaef/55KisrWbp0KfPnz+ef\n/umf6O3tBeDBBx/khRdeoKysjK9//et8+tOfTj1HQUEBzz33HN/73vc477zzqKurY+XKlan79+3b\nx1VXXUVZWRnr16/n4YcfTs3zPBeJhEpjd4i3a7r4//Y08Ys9zbxV001Dd5gEkGdPLoIuy2FFWS7z\nCvV5sJsQYvgkNww0WXODkDUQQmTVeJvnOhkEk1OT6jxB6rtD/Q51MxkU8h0mCuzaGQ3mUV7PcC5k\nDYQQ45/kBjHSZA2EEEKMIFVVafdHqOsKUesJ0dIb5tTrKg6LgXy7malOMwV2M3KIqhBCiMlO1kCM\nMpnHmZ7EaGh6mOeqd2cbo3AsQVVHgL9UdfLz3U38175W3qnz0twTBiD/lKlJK8tyOb/QwRSHdB4y\nJbkhPWn3hibxSU9yQ3oSo9EjIxBCiAlPVVU6A9HU1KSmnjCJU0YZLCYD+XYTBQ4TRU4Lxsm48lkI\nIYTI0LA6EEuWLBmpekxYfQfDiMFJjIbWdxiMGNyZYhSKxmnwhqnv0rZZ9YXj/e7PtZnIs5uY6jKT\na5VrKSNJckN60u4NTeKTnuSG9CRGo0eyphCn2bx5M/fdd9+YvNZwNjEQ/SUSKq2+CPXdIY53hWg+\nbS2DxaSQbzOR7zBT6NTnAmghhH5JbhDj2Ui/p4a1C9O6detUp9OZ2gorNzeXhQsXZv24eT2VKysr\n2bhxo27qo8dy38/0Up9169bh8XjG5PXsdjuXXHIJMPjx830/G6vj7sdTORiLYyyYwb4Dh2n1RYjE\nVeyFMwEIdzTgMBuZUT6HqU4zgbYGFGBa2WwAWo7XwgQs2/KL6E2YePW/f0F91SEKp5cCsOrCcu65\n554x6TVJbpDcMBHjI7lh/JVPj1W265OtsqqqlJaW4nQ62bJlC5WVlan2uaio6Jxyw7A6EI899ph6\n2223nfPvTwbbt2+Xodg09BajgoICPB7PmLxWNBolHo9js9kGfUxVVZUMwyZFYglO9ISo7w5zvCuE\nJxAFINjegL1wJjazgTybtpZhqtOCaZKtZYhFwrQF4sQV44D7xnIbV8kN6emt3dMbPcZHcsP4IzHS\nRh78fj92ux2jcWBuyMo2rjLPNT29NYB6NJljZDabicfj+P3+1GE6pystLSUQCIxxzfQhnlBp6Q1r\ni5+7QjR5Q8RPueZhNECezcyM0hKKXEZclr7GMUYwEMtKnbMpGIe4kv2ZqZIb0pvM7V4mJnt8JDeM\njMkeo75BgsE6D8OR/UwjxCQ31BWmyUZVVRq9YfY19bL3RC/7m334IycXPytAkctMSY6VWfk2ZuTa\nUjsmxYDu+JmfVwghxptzzQ0JVSUYTeCPxAlE4wSjCULRBKFYglAsTjimEokniMQSRBMqseQtnlBJ\nqFo7rAIqWptrUBTtq0HBbFAwJr+ajQpWkwGL0YDNZMBhMWA3G3GYDTgtRlxWE1ajMmgHSIxvw+pA\nVFRUIKeNDk2Pw7B6IzEa2kSPT7s/QkVTL/uafFSc6KUjOS2pT57NxHS3hdI8K3MK7NjNA6+iHNq7\niwXLVoxVlUUakhvSm+if6+GS+JwUiSXwBKN0BWN0Jb96gzH27X6XgvlL6QnF6A3H6Q3H8EXi+MJx\n9LIE22xQcFuN5NhM2s53yd3vChxmpjjMqa9FLgtOy8heIQd5H40mGYEQ4jSbNm3KdhUmtO5glA+a\nfVQ0+aho7qXRG+53v8NsoCTHyvQcK3MKbOTZzVmqqRBCnDQauSEcS9Dmi9Dqi9Duj9Lui9Duj9AZ\niNLhj9IZiNIbPvPQak9dNznGrjPeZzYoWEwKFqMBs0HBZDw5emBKfjUq2s1g0EYZDAooioKiaCMP\nfVS0UQ1VhYRKcqRCJZ5AG7lQVeJxlUgiQTSuEo1rIxzh5AiHJxjDE0w/pdRhNlDksjDNbWG628o0\nt4WSHCszcq1Mc1vlfB6dGdYi6tdff12Vq0xCiKH0hGJUtvjY3+xjf1MvtV2hfvdbjArT3Ram51gp\nz7dR5LLIkPcoGMtF1JIbhNAkVBVPIMoJb5im3ggtvWFaeiM094Rp9UXoyuAPa4MCDrMRu9mg3UxG\nbOa+aUNGHBYDTrMBm9mIzWTAajJg0EkbGotrU6eC0QTBWAJ/OK6NkkTiBCJxgtE4/kgCXyROLDH4\n36NGBabnWJmZZ6M8v+9mZ0auFbPRMIb/ooknK4uohRDidH0dhg9afOxv8lHrCfYbTjcZFKa5tatM\ns/JtlORYdZPshBDiXPSEYjR4QzR6wzR6w5xIft/cEyYcH/wPY4MCLosRl9WI02LEYda+z7UZybGa\ncFtN2M2GcXtRxWQ04DIacFmHfpyqqoRiCXrDcbyhGJ5AFG8wRk84hjekdTj6Yvtuvffk8xsUZuXb\nmFtgZ+4UO/OnOpg71YHNJJ2K0SZrIEaZzL9LT2I0NL3HpysY5UCLnw+afVS29FLrCfXrMBgVKHZb\nmOayMDPPxow824hvryprIPRFckN6ev9cZ5se46OqKp5AjPruIPVdIY53hzjeHeZ4dwhvaPCRBLvZ\nQK7NhMtiJCe5HiDfbibfYcJpMZ7zBZSJ1O4pioLdbMRuNlLksgy4PxpP0B3UOhZt/iidAW30picU\np7ozSHVnEJJHPhgUKM+3cX6hExoPcOPfrmZGrnXcdsL0SkYghBBnpd0fobLZp3UaWnwc7+4/Jclo\ngGLXKR2GXCsmGWIWQowj/kicWk+QGk8wuY201mkYbD2C2aCQZ9cWCmsdBBNTnWby7WascjV82MxG\nA4UuC4UuC+ef8vNILEFHIEpbb4QWX4QOfxRPIEqNJ0SNJ0RPdSuv+A/hthq5uNjFwukuFk13MbfA\nLmsqhmlYHYhjx45x1113yWmjGZy0rKf6SFnKmZZVVaV84XIOtPj4w+tvUusJEpt+EQA91RUAFMxb\nyjS3hfjxSgqdZi6/4nJMBoVDe3cR7AZT8grZob27AFJXzEayvGDZilF9/vFYPtNJ1GvWrGEsSG6Q\n3DBe4pNQVV768zZO9IRxzF5MTWeQPbveoSsYI2eudp5JX1uXM3cJNpOBeEMlTouRBUsuZarLTNex\nCuwmAxcuXQkkP4tdME0nbcFELltMBrzHKrACn0zeX7nnXbqDceyzF9GUv5IjFbs5EUvQG17Cu8e9\n9FRXYDMZuPKKy1lW4ibWUEmR08zll18O6Of9P1rlM51EfS65QRZRC3GazZs3c99992W7GlkRS6gc\n6whwoNXPhy0+DrT6BwzNW4zaGobi5AhDSY7sjjEeyCJqMdnFEir1XUGOdQY51hHgWKc2whCMJgY8\n1mRQKLCbyEtONSpymnn/pV9y4xfvlKkw44yqqvSE45zwhqjvCtHcGxkwkjTVaWb5jByWz8xhWYkb\nxyhsKatXWVlELfNc09PjPE690VuMHn30UV11IEYzPr3hGIfa/HzY4ufDVj9H2v0DFvw5zIZUh6Es\nz0aR26K7Rc8TaS7wRCC5IT29tXt6M9z4ROMJ6rtCVHUEOHpKZyF6hgXNLouRAoeJAruZKU4z090W\n8h3mAe3cd/7jMW76+3845zqNNGn30uuLUa7NRK7NxYXFLiC56L07RF1XiBPeMB3+KK8c6eSVI50Y\nFVg03cVHZ+Xx0bJcit0D12QIWQMhxKSRSJ7yfLDVz6E2Pwdb/dSftn4BoMBu0vbidlkoy7eRZzfJ\nFTchhG7FEyoN3hBH2wMcadc6DIN1FvJspuQBZiaKk+cNTKarzUKTYzNx0TQXF01zoaoq7f6ott7F\nE6LNF2Ffk499TT5+8m4jcwrsfGx2HlfMzqMs79xOB5+IZAqTEKcpKCjA4/FkuxrD5o/EOdLu51Bb\ngENtWqfh9GFbowGKnNrCtBK31mE400nPYvyTKUxiIuj7Y+9Ie4Aj7f5Uh+FM05Dy7CamJk86np5j\nYZrbOqwFzesvm88v3zk6nOqLcSAU1RbQV3UEafSGiZ5yPsWsfBtXzM7j43PzmZE7MToTcg6EEJNY\nPKFyvDvE4TY/h9u1DkN9V//tVAGcFiPFLjOFTgsz8rTTPUd6S1UhhBgpwWico+0BDrX7OdwW4HC7\nH09g4JapbquRQmdfZ8FKSc7wOgti8rKZjSwodrGg2EUsodLQHeJwe4A6j7YT1y+7Wvjl3hbmTbXz\n8bkFfHxuPlMc5mxXe8zJGohRJvNc05MYDe1M8enwRzjcpl2BOzzIFTiDAkVOrbNQ5LZQlmslxzYx\npyPJXGB9kdyQnrR7A/VNszzc5ueV1/9KsPgi6rqCnH5AsdVkoMhpZqrTzDS3hdJcG85JOA1J2r30\nhhsjk0FhdoGd2QX21FS5w23aFLmqjiBVHSf4+e4TXFKaw9r5BXy0LBfLJOm4ygiEEKfZtGlTtqvQ\nTyAa5/3GHo52BJLD9gE6A9EBj8uxGil0Wih0mSnJsTI9R0YXhBD61TfN8mBbgEOtfg63n5xm2XO8\nhxxzEIMChU6zdnNpF0LyHeasXAj59G1fGfPXFPphNCiU59spz7cTiyeo7QpxsNXP8e4Q7zX28F5j\nDy6LkTXn5fO3509lzhR7tqs8qmQNhBA6EojEOdYZ5GhHgKpkh6GpJzzgcVajQqHLwlSHmWk5FmZM\n0itwInOyBkJkk6qqNPVEONjmS23kUNcVGjC64LQYKXKZKXJaKMm1Mt1twSwHUQodC0bjHGkP8GGL\nn45TLu6dX+jgmgum8vG5+dh0PCohayCEGGf6OgtVyc5CVUeARm94wLoFowEKHRamOM0UuczMyLWS\nb8/OFTghhMhEJJbgaEeAg61+Pkzu+nb6mTIGhdSarGK3hbI8K27rxJxmKSYuu9nIkhI3S0rctPsj\nVDb7UrMFjrQf5z92neDq+QVcd2EhJTnWbFd3xMgaiFEm81zTmwwx6gnFqO4MUtUZSB1g1OgdOLJg\nUNB2DXGaKXSYKc210n5kHxcvWZmFWo8fMhdYXyQ3pDfR2r2uQDTVUTjY6qeqI9Bv9xrQzpQpclko\ncpkpzbVR4rZgGmR0QT7T6UmM0hvrGBU6Law+r4DLZ+dR1RFgf5OPNn+UFw+085sD7Vw6M4frLy5i\nSYlr3HeUh9WBePPNN9mzZ0/qOOzc3FwWLlyom+O69VCurKzUVX30WO6jl/oMp6yqKucvXcGxzgCv\nvv4mJ3rChKddSJsvSk91BQA5c5cA4KupIMdqYv6SS5nqNBOo/YB8m4mLl2qdhUN7d+FpI3XK86G9\nuwBSjaGUpTxU+dX//gX1VYconF4KwKoLy1mzZg1jQXLDxM4Nb739Nq29EeyzF3Ow1cebb2+nMxBN\ntW19bd2chcspdJkJ131AscvC8ksvQ1EUDu3dhb8TTEO8l+uPHtLNZ0mv5T56qY+U+5cvXLaCC4td\n7Ni+nWOdQXqnXsCuhh5e++tblLgt/MONn+Tjc/PZ/e47wNh9frds2UJlZWWqfS4qKjqn3CBrIIQ4\nR5FYgvruEDWeIDWdQaqTJ536IvEBjzUZFKY6zRTYtUOMSnOtTHVaUp0DIUabrIEQ5yoYjXO4PcCH\nrX4OtmprGAKn7fpmNigUuy0UOrVNHGbm2WQbVSFOEYjGqWz2sb/Zl9o1cYrDzPUXF3LNBVOzto5R\n1kAIMUI2b97Mfffdlyr3HVxU69E6CLWeILWeEA3egQsAAexmg3bSqd3EVKe2J3mBw4xhnA9XCiEm\nhzZfJNlZ8PNhq48az8CtVN1WI8UuC0UuCzNyrRS7LRO+jfvNz5/k+tu/mu1qiHHKYTayoiyXS2bk\nUNUeYE9jD52BKP+xu4n/qmhh3YJCrl9YRK5tfPxpLmsgRtlEm+c6GvQUo55QjJ+88AoXrvsSdZ4Q\ntV1B6rpC+M8wqqAABXYT+Q4T+XYzRS4L091WnBbDiM5tlHmu6UmM9EVyQ3p6afdiCZXqzkBq7cKH\nbX46/P23iVaSZ8oUuU4uds6xje7BWXr8TP/22X/XVQdCjzHSGz3GyGRQWFDs5IIiB3VdId5r6KG5\nN8Lz+1v57YftXLdgKjcuLCJf54fTjY9ujhAjzB+JU98Vor4rSF13KPl9iM5AlAs2Ps6/v9PY7/F2\nk4GCZEehwKEdXlToNA+6AFAIIfSoOxjlUFuAg8kFz0fb/YTj/YcXrCaFYpdFO7E+10pprlW2UhVi\nhCnKyUPqmnrC7Dru5Xh3mBcq23jpYDvXLpjKzYuLybfrsyMhayDEhNYdjHK8O8zx7hAN3SHqu0Mc\n7wr126v5VGaDQnfdIZZesox8m4kil5litxWHeWRHFYQYa7IGYvKJJ1TquoJah6HVx8G2M58rk283\nUegyU+y0UJZvY0qWDmrTu/WXzeeX7xzNdjXEBNbaG2HncS91XSEAbCYDn76okBsXFeG2js41f1kD\nISateEKl1Reh0RvieHeYhmRn4Xh3iJ7wwKlHoA0h5tlN5NlM5CfXKhS5LOTaTHzh3tV8S5KEEGKc\n6QpGOdwW4HCbn4Ntfo52BFKLNfuYDQqFyYPapuVYKMuzYTfLIZRC6EGx28LfXVRImy/CO3Ve6rtD\nPL+/lZcOtXPzomI+fXGRbg6lkzUQo0wv81z1LJMYqapKTzhOozfECW+YBm+YE94QDd4wTd7wgP3G\n+5iNCgV2E7k2M7k2I1McyY6C3TRuFvzpcQ6n3kiM9EVyQ3rDzQ2ReILqziCH2/wcbtc6Dc29kQGP\ny7UZKXSeXOxc5Bofu7/JZzo9iVF64zVGRS4Ln7q4kOaeMO/Ue2n0hnluTzMvHezgC8umsXb+lKx/\njmUEQuhKbzhGU0+YE94wJ3rC/b7vHWQ0AcBlMZJnM5FjM5JrM1Ho0tYoOC3Gsx6K//RtXxnuarJE\nowAAIABJREFUP0MIIUZMQlVp9IY50u7naHuAw+0BqjuDxE67cNI3ulDotDDNbWFmni1rW0NORJIb\nxFibnmPlhoVFHO8O8XZNNx2BKD/e3sCLB9q5c0UJl87MzVrdZA2EGFOqquIJxGju1ToHTT1hmnsj\nqe+H6iRYjEqyk6Dd+qYeFdjNWHQypCeEXskaiPFBVVXafFGOdGidhSPtAao6AgPOXQCY4jAx1WGh\n0GVmRp6VQufE30pViMlKVVWOdgR5p647NT37IzPc3LmilPJ8+zk/77mugRhWB2Ljxo1qd3e3nDYq\n5X7lpZd+lNbeCH/+65t4/FFyz1tKS2+Yyj078QSi2GYvBhhwMnNPdQUmRaHs4o+QYzXiq92P02Jk\n6aUfpcBhpr7yPRRFyfrpklKW8ngon+kk6nvuuWdM/rqU3JBZedWqVbT5ovxm6xs0ekOopRdT1RGk\n4cM9QP+20W4ypE6tD9V9wBSnmcXLPwpk/70mZSlLeezKB/bs5FhngOac+UTiKr6aClaW5fLdL64j\nx2Y6p5OozyU3DKsD8dhjj6m33XbbOf/+ZDDR1kCoqkpvOE67P0KrL0Jrr/a1zRehJfn9UKMIoB20\nlmM14rKacFuM9FRXsCTZSZDdjgYar3M4x5LEKL2xHIGQ3DBQPKFyoidMdac2/eitt7cTKFpwxo0e\n7CYDU51mpjrNFLsslOZacY3SDix6JZ/p9CRG6U3kGAWicXbWeznQ4kcFcqxGbltewtVnuT5CdmES\nIyISS9Duj9Luj2g3X5Q2v9ZB6Pv+9F09TmcyKORYjTitRtwWI26riTy7iQKHtpjZetp0o0NeBzPz\nbKP5zxJCiDETiMSp6wpR4wlS3RmgxhOkxhMiHDvZdvZ0BMjJjac6CwV2M8VuCyU5FnJsJrmQIoQY\nksNsZPV5BSya7mJbdRdNPREe397AHw938NVVMzm/0Dmqry9rICaJvpGDzkCUzkCUDn+UjkCUDn+E\nTn+Udr/2/WDbnp7KbNQ6CA6L1kFwWrSFy/nJDoKMIgihP7IGYuRF4wkavWHqukLUdQVTp9e3nGE3\nJAC31UiBw8wUu7bRQ0mOBbdVOgtCiOFRVZWqjiBv1XThjyZQgOsunMrff6Qk7UYKMgIxScUTKt5Q\njK5gFE8ghicYxRPQvu8MJL8Pap2GaDx9Z9GgaDsaOS1GnGYjDqsxucORkVy7iRyrCatpYncQfvPz\nJ7n+9q9muxpCCJ0IxxL9zpnpO5Cy0RviTM2qUYECh1kbebVrJ9cXuy1y3sI4J7lB6JWiKMwvdFBe\nYGPXcS/7Tvh46WAHb9d2s3HlDK6ckzfif7fJORCj7GzXQKiqSiiWoDsUwxuM0R2K0R2M0R2K0h2M\n0RVMloNRuoIxvKEYmY4hWYwKTosRh9mIw2LAYdY6Cjk2bQtUl9WUldEDvc1R/O2z/66rJKG3+OiR\nxEhfxmNuiCdU2vwRmpLbRjd6wzR6QzR0h2nzRQZtZ3OTO8Ll2U1MsZuYlmMl325OOwdZ3rND02N8\nJDeMP5MtRhajgctn53NBkZPXq7po9UV4aFsdrx/L4asfm0mh0zJirzWsDsSxY8dGqh4TUkJVeW/f\nfuYsWk5vOEZvOE5vOEZPKI43FKM3rHUAesJxekLa995QjEgGIwWnspsN2E0GHBZj6nu72YjbaiTH\nZsJl1ToKFqM+tzqtP3poUn3Az5bEJz2JUXoVFRWsWbNmTF5Lr7nBF47RmtzwQbud3Ea6pTcy4FyF\nPooC+TYTuclbgcNEkcvCFIcZ8zm2q/KeHZrEJz2JUXqTNUaFTgufWVzEgVY/b9d2s6uhh9t/fYg7\nLi3lmgum9Nvu+Vxzw7A6EH6/fzi/rnvReIJANEEgEicQjeOPxPFHEsmv2s13yldfOI4vEkt+1cqN\nb1fxiv3gWb2uyaBgNxuwmU7e7GYDVpMh2Rkw4bZqIwl2syHrpxEOV8DXk+0q6JrEJz2JUXr79+8f\ns9ca69ygqiqBaEJb09W3xiu5GUTf15beyBnPUjiVy6JdeMlNnjVT4DAx1WEmL4MRhbMl79mhSXzS\nkxilN5ljpCgKC6e5mJ1v541qD7WeEE/uaOCv1V3cc0UZ03OswLnnhnG9BiKeUInEE0TiKuFYgmg8\nQTimEo4nCMcSROIJQrEEoahWDsVOlkOxBMFYglA0TiiWIBBJEIzGCcYSBKMJAtF4RmsG0jEatK21\nrCatA2AxGrCZlFS5bxqR06KNGtjNhnO+oiWEEOOdqqpE4mq/CzN9I7jeU0ZqtSmd2lTOrmA0o5Fb\ns0Ehx6a1uW6rCZfFSL5DW6eQZzdJ2yuEmHBcViPXLZjKsc4g24518UGLj3/4zWHuuLSE/2fB1HN+\n3mF1IFpaWnjmvSatoKqo2pfkV5VEX1lViavalJ5EIvk1+bN4QiWWUE9+VbWvsXjya0IlGleJJhLa\n17hKNJ4gmlAZZLR5xCiA1WTAbFSwGPu+KpgNBqymkz+zJkcI7GajNmKQHD2wmgz8x7Ze/n55yehW\ndJxrbz6R7SromsQnPYmRvrS0tPDz3SdIJNv/WEJr66OJBLGE1kGInHKRJxjVbqGYNsI72FSioZgN\nyTVeyYsxDrMBl0Xb/KHvBHubjjaAkPfs0CQ+6UmM0pMYaRRFYd5UBzNyrWyr7qKqI8i/vdPI9rru\nc37OYXUg5s6dywf/95FUefHixSxZsmQ4T6lD6bc1HUAFotrtU2tWMT1wfKQrNaHoLUZ/+ctfQEf1\n0Vt89EhiNFBFRUW/oWmnc3T3BD/V3LlzqfzVo6ny2OQGFRhiilKyTdYLec8OTY/xkdww/kiMBurx\nVGCq1HJDqPLcc8OwzoEQQgghhBBCTC4y4VMIIYQQQgiRMelACCGEEEIIITImHQghhBBCCCFExjLq\nQCiK8klFUQ4rinJUUZRvDvKYJxVFqVIUpUJRlIm2kjqtdDFSFOUWRVH2J2/bFUVZmI16Zksm76Hk\n45YrihJVFOX6sayfHmT4OfsbRVH2KYpyQFGUbWNdx2zL4HOWoyjKS8l2qFJRlC9moZpZoyjKM4qi\ntCqK8sEQjxmRtlryQnqSF9KT3JCe5IahSV5Ib1Ryg6qqQ97QOhnHgFmAGagALjjtMX8L/DH5/Qpg\nZ7rnnUi3DGO0EshNfv/JyRSjTOJzyuNeB/4AXJ/teustRkAu8CFQmixPzXa9dRij/xd4uC8+QCdg\nynbdxzBGHwOWAB8Mcv+ItNWSF0YsRpM2L2Qao1MeJ7lBcsO5xmdS54Xkv3vEc0MmIxCXAlWqqtar\nqhoF/hv4u9Me83fAfwKoqroLyFUUpTiD554o0sZIVdWdqqp6k8WdQOkY1zGbMnkPAdwN/BpoG8vK\n6UQmMboFeFFV1RMAqqp2jHEdsy2TGKmAO/m9G+hUVTU2hnXMKlVVtwNdQzxkpNpqyQvpSV5IT3JD\nepIbhiZ5IQOjkRsy6UCUAg2nlBsZ2Mid/pgTZ3jMRJZJjE51O/DKqNZIX9LGR1GUEuBTqqpuQTvD\nb7LJ5D00HyhQFGWboijvKYqyfsxqpw+ZxOjfgQsVRWkC9gNfG6O6jRcj1VZLXkhP8kJ6khvSk9ww\nNMkLI+Os2+thHSQnzp6iKB8H/h5tOEmc9Dhw6tzFyZgo0jEBy4DVgBN4V1GUd1VVPZbdaunK1cA+\nVVVXK4oyF3hNUZRFqqr6sl0xIQYjeWFIkhvSk9wwNMkLoyCTDsQJoOyU8ozkz05/zMw0j5nIMokR\niqIsAn4GfFJV1aGGkiaaTOLzEeC/FUVR0OYo/q2iKFFVVV8aozpmWyYxagQ6VFUNASFFUd4CFqPN\n/5wMMonR3wMPA6iqWq0oSi1wAbBnTGqofyPVVkteSE/yQnqSG9KT3DA0yQsj46zb60ymML0HnKco\nyixFUSzAZ4HTP7gvAV8AUBRlJdCtqmprprWeANLGSFGUMuBFYL2qqtVZqGM2pY2PqqpzkrfZaHNd\n75pECQIy+5z9HviYoihGRVEcaAudDo1xPbMpkxjVA58ASM7fnA/UjGkts09h8Ku0I9VWS15IT/JC\nepIb0pPcMDTJC5kb0dyQdgRCVdW4oihfAf6M1uF4RlXVQ4qi/IN2t/ozVVX/pCjKNYqiHAP8aL29\nSSOTGAEPAAXAT5JXUqKqql6avVqPnQzj0+9XxrySWZbh5+ywoihbgQ+AOPAzVVUPZrHaYyrD99H3\ngV+cslXdJlVVPVmq8phTFOW/gL8BpiiKchz4DmBhhNtqyQvpSV5IT3JDepIbhiZ5ITOjkRsUVZ10\nn0chhBBCCCHEOZKTqIUQQgghhBAZkw6EEEIIIYQQImPSgRBCCCGEEEJkTDoQQgghhBBCiIxJB0II\nIYQQQgiRMelACCGEEEIIITImHQghhBBCCCFExqQDIYQQQgghhMiYdCCEEEIIIYQQGZMOhBBCCCGE\nECJj0oEQQgghhBBCZEw6EEIIIYQQQoiMSQdCCCGEEEIIkTHpQAghhBBCCCEyJh0IIYQQQgghRMak\nAyGEEEIIIYTImHQghBBCCCGEEBmTDoQQQgghhBAiY9KBEEIIIYQQQmRMOhBCCCGEEEKIjEkHQggh\nhBBCCJEx6UAIIYQQQgghMiYdCCGEEEIIIUTGpAMhhBBCCCGEyJh0IIQQQgghhBAZkw6EEEIIIYQQ\nImPSgRBCCCGEEEJkTDoQQgghhBBCiIxJB0IIIYQQQgiRMelACCGEEEIIITImHQghhBBCCCFExkzD\n+eV169apoVCIadOmAeB0OjnvvPNYsmQJABUVFQCTunzs2DFuvPFG3dRHj+W+n+mlPnorS3zSl0+P\nVbbro4fyr3/9a6qrq/u1z1u2bFEYA5Ib0pclN0h8JDeMfllyw+jlBkVV1bP9nZQvfOEL6hNPPHHO\nvz8ZbN68mfvuuy/b1dA1idHQJD7pSYzS+9rXvsZ//ud/jkkHQnJDevKeHZrEJz2JUXoSo/TONTcM\nawpTS0vLcH59Ujh+/Hi2q6B7EqOhSXzSkxjpi+SG9OQ9OzSJT3oSo/QkRqNH1kAIIYQQQgghMjas\nDsTVV189UvWYsG655ZZsV0H3JEZDk/ikJzFKb/HixWP2WpIb0pP37NAkPulJjNKTGKV3rrlhWB2I\nvgUZYnAf+9jHsl0F3dNbjDZv3pztKvSjt/jokcQovbFsryU3pCfv2aHpMT6SG8YfiVF659peD2sX\npoqKCpYtWzacp5jwtm/fLm/gNPQWo0cffXTMFl2pqkowGERVVRTlzGuYDh8+zAUXXDAm9RmvJEak\n3kN2u33Q99JYkdyQnt7aPb3RY3wkN4w/kz1GfRslWSwWzGbziD73sDoQQojhCQaDWCwWTKbBP4pu\ntxuHwzGGtRp/JEaaWCxGMBiUWAgxzkluGBkSI00oFCIej2Oz2UbsOWUK0yjT2xUUPZrMMVJVdcgE\nATBv3rwxqs34JTHSmEwmhrM190iR3JDeZG73MjHZ4yO5YWRIjDQ2m414PD6izym7MAmRRdmeaiIm\nHnlPCTH+yedYjLSRfk8NawrTE088gdPppKysDIDc3FwWLlyYunKwfft2gEldrqysZOPGjbqpjx7L\nfT/TU33G6vUcDkdqrnhVVRVw8opJX7nvZ4PdL+V5A2KV7fpks1xaWgrAli1bqKysTLXPRUVFrFmz\nhrEguUFyw0SMTx/JDeOnLLlh9HLDsE6ifuyxx9TbbrvtnH9/MtDjQjC90VuMxvLkykAgkHZ+ZlVV\nle6GYb/85S9TWlrKt771rWxXBdBnjLJlsPfU3r17WbNmzZhc1pTckJ7e2j290WN8JDekJ7lBv0Y6\nN8gaiFGmtwZQj/QWI70dey+NX3pnE6Pq6mpKSkpSVzfP5Pnnn+eaa64ZiapNSpIb0tNbu6c3eoyP\n5IbxJ5MYXXfddZSUlFBWVkZZWRkrVqwY9LGSG06SXZiEELoUj8cxGo0j/rybNm1Ku8XoUFsnCiGE\nyJ6Rzg2KovDDH/6Qz3/+82kfK7nhpGGNQFRUVIxUPSas0+dOioEkRkM7dQ7nWDp69Cjr1q1j9uzZ\nrFq1ildffbXf/Z2dnVx//fWUlZWxbt06GhsbU/d961vf4vzzz2fWrFlcfvnlHD58GIBIJMIDDzzA\nokWLWLBgAffeey/hcBiAHTt2cPHFF/Pkk0+yYMEC7r77blauXMlrr72Wet54PM78+fOprKwE4L33\n3uOTn/wks2bN4sorr2THjh1D/ptefPFF8vLyuOKKK4b8d99777289957lJWVMWfOHAB6enrYuHEj\n8+fPZ8mSJTz22GOp36mtreW6666jvLyc+fPnc/vttw8rFh6Ph8997nPMnj2buXPncu211w7579Ib\nyQ3pSbs3NIlPepIbRi43ZDKdX3JDf7ILkxBigFgsxi233MKaNWuoqqpi8+bN3HnnnVRXV6ce8+tf\n/5pNmzZRXV3NRRddxJ133gnAG2+8wa5du9izZw/19fU8++yzFBQUAPDd736X2tpatm/fzp49e2hu\nbuaHP/xh6jnb2trwer188MEH/PjHP+bGG2/k17/+der+119/nSlTprBw4UKampr43Oc+xze+8Q3+\n8pe/8C//8i9s2LABj8dzxn9TT08PjzzyCN///veHTBbz58/nscceY/ny5Rw/fpyamhoAvvnNb+Lz\n+aioqODll1/mf/7nf/jVr34FwEMPPcTq1aupq6vjwIED3HHHHcOKxVNPPUVpaSnV1dUcPXqU+++/\n/+z+A4UQYhRMxNwA8OCDDzJ//nyuueaaQTsbkhv6kzUQo0yP8zj1RmI0tGzMc92zZw+BQICvfe1r\nmEwmLr/8cq6++mpefPHF1GPWrl3LypUrMZvN3H///ezZs4empibMZjM+n48jR46gqirz5s2jqKgI\ngF/+8pf84Ac/ICcnB6fTyde+9rV+z2k0Grnvvvswm81YrVZuuOEGXnnlFUKhEKCNINxwww2AlqTW\nrl3LmjVrmDdvHldeeSVLlizpd1XqVA8//DDr169n+vTpZx2PRCLBb3/7W7797W/jcDiYOXMmd911\nF//7v/8LgNlspqGhgaamJiwWS2oO7bnGwmQy0draSn19PUajkZUrV551nbNJckN60u4NTeKTnuSG\nkckN3/3ud9m7dy8ffvghX/jCF/jc5z5HfX19RvGYzLlBRiCEOM3mzZuzXYWsa25upqSkpN/PZs6c\nSXNzc6rctyUcgNPpJC8vj5aWFi6//HJuv/12Nm3axPnnn8/Xv/51fD4fHR0dBAIBPv7xjzNnzhzm\nzJnDzTff3O+q0JQpUzCbzany7NmzOf/883n11VcJBoO88sor3HTTTQA0NDTwu9/9LvVcs2fPZvfu\n3bS2tg7491RWVvLmm28OuXB6KJ2dncRiMWbMmHHGeHz3u98lkUhw1VVXsWrVqtTVp3ONxd133015\neTk33HADl1xyCU888cQ51VsIMXIkN0y83ACwbNkynE4nZrOZz372s6xYsWLQzsbpJnNukDUQo0zm\ncaantxg9+uij2a5CP9mY5zp9+nSampr6/ayxsbHf1fsTJ06kvvf5fHR1dTFt2jQA7rjjDt544w3e\nffddjh07xr/9278xZcoUHA4H77zzDjU1NdTU1FBXV9fvSs+ZFqddf/31vPjii/zpT3/iggsuYNas\nWYCWpD7zmc9QU1PD1q1bqa2t5fjx43z1q18d8Bw7duygsbExNaf0qaee4qWXXmL16tVn/PefXo++\n5NXQ0JD6WUNDQyoeRUVFPP7443z44Yc89thjfOMb36Curu6cY+FyuXjwwQfZu3cvv/rVr/jJT37C\n22+/fca66pHkhvT01u7pjR7jI7lh4uWGM1EUZdBprpIbTpIRCCHEAJdccgl2u50nn3ySWCzG9u3b\n2bp1a2qIGOC1115j165dRCIRHnroIZYvX05JSQn79u3j/fffJxaLYbPZsFqtGAwGFEVh/fr1fOtb\n36KjowOApqYm3njjjSHrcv3117Nt2zaee+45brzxxtTPb7rpJrZu3cobb7xBIpEgFAqxY8eOflfC\n+nzxi1/k/fff58033+Stt97ii1/8ImvXru03RH6qwsJCmpqaiEajABgMBj71qU/x/e9/H5/PR0ND\nA1u2bOHmm28G4Pe//30qqebm5mIwGDAYDOcciz//+c/U1tYCWsIwmUwYDFpz/eUvf5mvfOUraf4H\nhRBi5E203NDT08Mbb7xBOBwmHo/zwgsvsHPnzkEPVpPccNKwtnE9duwYd911l5w2qqPTK6U8vv6/\nMjltNBtls9nMww8/zKOPPsqPfvQjSkpK+Pa3v00ikQC0qzBXXXUV3/nOdzh48CCLFy/mvvvuo6qq\nit7eXv7P//k/1NbWYrVaueqqq7j77rupqqri1ltv5Te/+Q1r166lo6ODwsJC/vEf/5HVq1fT2NhI\nLBZLxf/U+ixfvpx33nmHBx54IHV/IBDg4Ycf5sc//jEHDx4E4KKLLmLLli0Dft9ms6WuEM2bNw+n\n00kkEqGjo4P8/PwBj7/iiiuYOXMm8+bNw2KxcPToUe644w7+9V//lWXLlmGz2bj22mu59NJLAdi3\nbx+bNm3C7/czbdo0Hn74YcLhMIcPH+YnP/kJ9fX1mM1mVqxYwd133w3Arbfeys9//nPWrl2Lx+Nh\nypQp3HDDDaxevZrq6mr++Z//Ga/XS35+Pl/60pcoKiqiqqqKpqYmbrjhBl2fRC25QX9tzXgs6y0+\nY1kfyQ1jkxui0Sjf/va3U230vHnzeOSRR4jH42d8PckNJw3rJOrXX39dTbefuhDjTUFBwZC7NYyk\nTE4bFaJPNBrliiuuYPv27YPug66Hk6glN4iJSHKD0Kts5AZZAzHK9DiPU28kRkPL1l7f48lkiZHZ\nbObdd98dlQP2RpLkhvSk3RuaxCe9ydLuDcdkiVE2coOsgRDiNJs2bcp2FYQQQuiM5AYhTpIpTEJk\n0VDD1Gt/vm/EXufPty8dsecS+iZTmIQY/yQ3iJGmqylMQgghhBBCiMllWLswVVRUIFeZhrZ9+3Y5\nUTMNidGZ9V0ZqqqqysqJo8PxyCOPUFtby9NPPz3qr7Vu3TquvPJK7rnnnlF/LZEZyQ3pSbs3NInP\n4CQ3ZEZyw+iSEQghRFodHR3ccccdXHTRRcyePZtrrrmG999/f8jfOdPBP0IIISYOyQ2T17A6EEuW\nLBmpekxYcgUlPYnR0PRwhcnv97Ns2TL++te/UlNTw2c+8xk++9nPEggEsl01AIqLi7NdBXEKyQ3p\nSbs3NIlPepIb0pPcMHpkBEKI02zevDnbVdCdWbNmsXHjRgoLC1EUhQ0bNhCJRDh27NigvxMOh1OH\nia1atYr9+/en7mtpaWHDhg3Mnz+fZcuW8bOf/Sx13969e7n66quZPXs2F110Ed/85jf7HSK0bds2\nVqxYwezZs/nmN7/JqRtB1NbWct1111FeXs78+fO5/fbbRzgSQojJSnLDQJIbJi85B2KUyV7W6ekt\nRo8++mi2q9CPHvexrqysJBaLMXv27EEfs3XrVm644Qbq6+v55Cc/yTe+8Q0AVFXllltuYdGiRRw6\ndIjf/e53/PSnP2Xbtm0AGI1GHnroIWpqati6dStvvfUWzzzzDAAej4cNGzbwwAMPcOzYMcrLy9m1\naxetra0APPTQQ6xevZq6ujoOHDjAHXfcMcqREGciuSE9vbV7eqPH+EhuSE9yw+QxrEXUb775Jnv2\n7Ekdh52bm8vChQuzfty8nsqVlZW6qo8ey30mY30cDkdqselgx8/3Gez+sS4XFxezceNGvvSlL9HS\n0oLb7T7j4xcuXEhZWRmKonDzzTezZcsWqqqq8Hq9dHZ2sm7dOmpqapg3bx7r16/nF7/4BTNmzGDx\n4sX9nm/Dhg3s2LGD1atX86c//YkFCxZw7bXXUlVVxSc+8Qmeeuqp1OODwSANDQ00NTXh9/spKCjQ\nXfxGu1xaWgrAli1bqKysTLXPRUVFrFmzhrEguUFyw0SMTx/JDZIbxmN5pHODnAMhxGkKCgrweDxj\n8lpD7fWtR6FQiJtuuol58+bxox/9aNDHPfLII9TV1bFlyxYAGhoaWLp0KW1tbbz00kvceeeduFwu\nQLvqlEgkuOyyy3j++eeprq7m/vvvp6KigmAwSDweZ/HixfzhD3/giSeeYP/+/Tz77LOp17r66qtZ\nv349t956K+3t7fzgBz/gtddeIy8vj7vuuovPf/7zoxsUnZFzIIQYHZIbBie5Qf9GOjcMawRCCDF5\nRCIRbr31VmbMmDFkgkintLSU8vJydu/efcb77733XhYtWsQzzzyDw+Hg6aef5uWXXwa0K1yNjY39\nHn/ixInU94WFhTz++OMA7Ny5k+uvv55Vq1ZRXl5+zvUVQggxOMkNk5OsgRhlepzHqTcSo6HpYZ5r\nLBZjw4YNOByO1LDw2eob7bzkkktwuVw8+eSThEIh4vE4hw4dYt8+7XTV3t5e3G43DoeDo0eP8txz\nz6WeY+3atRw5coQ//vGPxONxnn76adra2lLzXH//+9/T1NQEaNNmDAYDBoPsFTHWJDekJ+3e0CQ+\n6UlukNyQTRI9IU6zadOmbFdBd3bv3s1rr73Gtm3bKC8vp6ysjLKyMnbu3Jnxc/Tt/W0wGHj++eep\nrKxk6dKlzJ8/n3/6p3+it7cXgAcffJAXXniBsrIyvv71r/PpT3869RwFBQU899xzfO973+O8886j\nrq6OlStXpu7ft28fV111FWVlZaxfv56HH344Nc9TCCGGQ3LDQJIbJi9ZAyFEFo23ea5C/2QNhBDj\nn+QGMdJGOjfICIQQQgghhBAiY7IGYpTJPM70JEZD08M8V72TGOmL5Ib0JnO7F0uo9IRitPZGqOsK\ncrQjwIetPiqaenm/sYc9jT0889ut7GnsYd+JXj5o9nGozU9VR4BGb4hOfxR/JE5iGDMoJgJp99KT\nGI0e2YVJCCGEEMPmj8Rp6Q3T0huhMxClwx+lIxClOxilOxijJxzDG4oTjiXSPldPdRMHLijiAAAg\nAElEQVQ5ndVDPkYBXFYjbqsRt9VEns1Evt1MvsPEFIeZqU4zRU4LhS4LOVZjaq69EGL4htWBWLJk\nyUjVY8LqOxhGDE5iNLS+w2DE4CRG+iK5Ib3x2u7FEyonesLUd4Vo6A7R4A3R6A3T1BOmNxzP6DkU\nwGJUMBsNmI0KRoOCUVEwKGBQFEBlxtIVACRQSaiQSKjEVW30IhpPEE2oROMqveF48nUjQ76mzWRg\nutvC9BwrJTlWZuRamZlnoyzPRq5tfF5LlXYvPYnR6BnWIuqNGzeq3d3dctqolCdUefv27dx33326\nOW1UylI+m3JJSQlOp/OMp43ec889Y3IJVnLDxCiv+Ohl1HpC/G7rGzR6wyRKL6auK0jHUW1bzZy5\nWkexp1qbslYwbym5NiOB2v3YTEbmLFqO02Kks2ovdqORi5evxGYyUL1/N4qisGCZ1kk4tHcXwFmX\nz196KeFYgso9O4nEVKYvWEZvJM7RfbsJxhK45yzGH41z4sP3iSbUAfXtKycaKpnmtnDZqo8xu8BO\nd9U+prktfPzKK/rFQ3KDlMdzeaRzw7A6EI899ph62223nfPvTwbbt28ft1eaxspYxyihqoRjCaJx\nlVhCJa5qX/s+CpcsW8b7e/eiKGBUFEwG7QqZxahgMRowGkbub7BAIIDFYsFkGvwKWFVVlVxFSUNi\npInFYkQikazvwiS5IT095oauQJQPW/0caPXxYaufms4g0cTAvxHcViP5dhO5NhN5dhOFTgsFDjMO\ns2HEpgkd2rsr1WEYCaFYAm8wRlcwiicYoysQxRuK0R2MnfHfaFRgVr6deVPtzJvqYEGRk5UXzKKz\no33E6jQUyQ0jQ2KkCYVCANhstgH3yUnUYlJRVZVANEGnP0pXMEp3MhF4QzF6wzF6wnF84Ti+SIxA\nNEEwGicQSWgdhzMki1MtvO//8sX/PTjo/SaDgtVkwG424DQbsZsNuKxGXBZtHq7bakwmVjN5dm1e\n7hSHGfcZ5uDa7XaCwSDhcHjQxNvb20sgEDj7IE0iEiPtM6EoCna7PdtVEeNEdzDKB80+Kpp8VDT3\n0ugND3hMvt3E1OR6gmK3lWK3BZtp/G3gaDMZsLktFLst/X6uqiq+SJwOf5Q2X4R2fxRPQFuzUeMJ\nUuMJsvWoB4ClD77MP798lAuLnFw0zclFxa5Rm/4kuWFkTPYY9Q0SWCwWzGbziD63nAMhdCmhqnT4\nozT3hGnxRWjtjdDmi9Dmj9Dui9IZiBLKYCHeYEwGbWShb86tomjzclGg7UQDRaUzQYW4qn0A46o2\n9zeWpvMxFItRSS7ss1DsMlPoslDssjDdbWVajoUip2VERzeEOJWcAyFiCZWDrX72JHc6OtYZ7He/\n2aBQ7LZQ5DRTkmtlRq4N6zjsLIyEaDxBuz9Kc2+Ylh4t//ScYY3HzFwri6a7tNs0N1OcI/tHmhCj\nTUYgxLjkC8eo7wpx3BumsVtbjNfoDdHSG0k7UmA2KDgsRhxmQ2pEwGbSbvbkyIA9eZ8luVjPbDRg\nVBhymH39V/+GX75z9Iz39XUmYgmVSCxBJJ4gElcJx+IEoirBaJxgNEEoGicUSxCMardANE4krtLc\nG6G5N0LlGZ7bqECxW1vcNyOZvMvyrJTl2cizS1ISQpy93nCM9xp6ePe4l/caeghET154MRkUprkt\nTHNbmJVvY7rbKhcxksxGAyXJBdeUaj/74ic+wnf+920au0M092qjFQ3eMA3eMH883AnAjFwrS0rc\nLC1xs3i6i5xxukBbiHSG9c6uqKhArjINTY/zXLMhEk/Q0B3ShoQ7g9R4QtR3B/EEYvRUV6QWs53K\nYTaQYzPhsiSnB9mM5NnM5Nq1n1mMyphvy6coCiZFS7xnO4wfiSXwR+L0RuLJ6VbR1A4iveEY/kiC\nph5tN5PdDSd/r6e6gpkXfYRZeTZmF9iZU2BjzhQ75fn2SXt18HTyOdMXyQ3pjeZ7tjMQZUddN9vr\nuvmg2cep12IK7CZKc6yU5dsoz7dhMuqzDRnpNRAjIR7oYXaBndkF2jTBeEKlzRfhePLiV2tvJHkR\nLMwfDnWgAPOmOrhkhpuPzMhhQZET0wh20KTdS09iNHqkayxGXCSeoKZTOxzoWEeQY50B6rpCZ5z+\nYzIo5NlMzJliJ9dmIt9hotBpJt9uxpylxPbp274yKs9rMRmwmAzkO8yU5Q28PxZP4A3F8QSjqbUd\nXcEYAUXBG4rxQYuPD1p8qccbFJiZZ2PeFDvnTXUwf6qDuVPs2M3GUam/EEK/ugJR3qzt5q2aLj5s\n9dPX2hoU7ar4zFwr8wod5Mto5jk7PTcYDQrTc6xMz7GyAm3qbWtvhPquIMe7w7T6IhztCHC0I8Dz\nFa04zAaWlbpZPiOH5TNzmOq0nPmFhBgHZA2EGBZVVWnqiXCozc+hNj9H2gPUeIJn7Czk203JW3JB\nnstCrt2U3PdbDEZVtb3OOwPJRX6+KJ7kwUynR9mgQHm+jfMLnVxQ6ODCYicz82wSYyFrICYgfyTO\n27XdbKvuYn9zb2qkwWiAmbk2yvPtzC+UiwrZEo0naPSGqfUEaegO0x2K9bt/7hQ7K2bmsLIsl/mF\nDmmnRVbIGggxJqLxBMc6gxxo8XGgxc/BNj/e0xpFgCkOE1McFqY4TEzP0XbusOh0qFzvFEUhx2Yi\nx2ZKDZ2DNmLREYjS2huhpffk7iE1nhA1nhCvHNHm5LosRi4ocnBxsYuLpzk5v9ApU5+EGKfiCZX3\nT/TwlyoP79R7icS1XkPfxYM5+TbmFzqwSqch68xGQ78pTz2hGLXJnZ2aeiJUdwap7gzyXxWt5NtN\nrJiZy0dn5bKs1C1ttNA9WQMxysb7/LtIPMHhtgAfNPeyv9nH4TY/4Xj/694Os4Fil4WpTnNq0Znl\nLBo/Pc511ZPB4mMyGpjmtjLNbWVx8md9O4f0raVo80XxReLsaexlT2Ov9nsGhflTHSxO7hxyYbFz\n3F+hHO+fs4lGckN6Z/uebfSG2HrUw2tVnXgCJy/alORYmFtgZ0GRE7tlfH+OTzUR80KOzcTiEjeL\nS9zEEiqN3hDHOoLUd4XoCsZ49Wgnrx7txGoy8JFSN6vK81hRloPbeuY/1aTdS09iNHpkBEL0E0+o\nHO0IUNHUy76mXg62+lNXuPoU2E0UubSdO7QdgkxjvphZnFm/nUOSesMxmrxhjntDtPZG6AzEONim\njR49v78VowIXFDmTO4e4uKDIKaNFQuhAOJbg7dpu/nSkgwMt/tTP8+wmzpti58IiJ/kOWdMwHpkM\nCuX52mYYqqrSEYhyrEPbZKQjEGVHvZcd9V6MCiya7uZj5bmsKs+jQP6/hU4Maw3Exo0b1e7u7tRx\n2Lm5uSxcuHBUj3eX8siWVVVlzqLlvH+il9//eRvVnUEssxYB2u4/AHMWLqfYbSF6/AOKXRaWrbgM\n0K4QAamrRFIeH+U5i5bT1BNm5zs76PBHUUsvRuXk/3fh/KUsnO7C2XaI+VMd3Pi3q1EURRfvVyln\nXt6yZQuVlZWp9rmoqIh77rlnTHr6khuGV37xlTfY2eClxj6X3nCcnuoKTAaFpZd+lAVFDvw1+1EU\nJettiZRHp/z+rndo8oYJTbuQ5p4I3mTbnDt3CRcVO5nafYSF01xcd9XHgey/X6U8vsojlRtkEfUk\nFIjE2d/s473kYUItvZF+9+fZTUx3WyjNsTK7wIbDMrkGqn7z8ye5/vavZrsaYyYcS3DCG6auK8gJ\nbxhPsP+algKHieUzcvjIjByWlrhlX/NxShZR61ssofJOfTcvH+xgf/PJ3daKXGYumKptiCDrGrIr\nG7khGI1T6wlypD3ICW+IUycEXFDo4IrZeVw+O3/ACdtCZCori6hlnmt6eph/p6oqDd4wu4972d3Y\nw4EWf79dkuwmAyW5VkpyLJw3xU6ObWyHSPU21/W3z/67rjoQox0fq8nAnCl25kzRFvr5I3GOd4Wo\n9QQ50RPGE4ix9aiHrUc9GBS4oNDJpTNzWFGWw5wCuy6mr+nhcyZOktyQXt97tisQ5Y9HOvnjoQ46\nA1EAzEaFuQV2Lp7mpDTXluWaZofe8gJkJzfYzUYuLHZxYbGLSCyR7EwEtJy+8x0Oty/hZ7ub+P/Z\nu+/4tqr78f+vK1mSNbz3iB3PDLLDSAgpI0BIC2kJEFZTWkppaUvhVyh00F1mm28LLU3hU6BQKGWE\nUWYIJIwMMshyEifeIx7xnrJsjfv7Q7bItEQsW9f2+/moH+VoXB+/I5+3zz1rUoKFc7Oi+VJ2DIk2\n6UwMkNwwfORW4hjV5/ZQUNfFluoOtlS1U3fEKIMCpEQYSY00kRVrJiXSKNvHCR+rUc+UJCtTkqyo\nqkqz3Ul5i4OKlh7qu/p86yf+9VkdcRYDZ/ZvQzg7LeILH64nxHh1qN3BHz+q5MPSVpz9N3RizGFM\nTrAwI8VGuIw2iGMYw3RMSrQyKdGK0+3hw95SHLHhVLX1crDRzsFGO49vrWVKooVzs2P4Ula0nDUh\nho1MYRpDOhwutlS3s7myg89qOuhxenzPmQ0672FC0eHkxprH1G4dwbbi7Hz+vako1NXQpD6Xh+r+\nnUOq2hzYj/iMGfUKs1IjmJ8ZxbyMKOJksZ+myBSm0HN7VDZXtfPK3gbfomgFyIwJ57QkKzlx2hjR\nEyem1dzgdHuoaHVwoKGbqrbeo2YYTEuycm52DAuzZAG2ODE5B2KcquvsZVNFO5sq29l3uIsjz2+L\ntxhIjzaRHRtOWpQcJiaGzhimIyfOQk6cBVVVaex2UtrcQ3lLD43dTrZWd7C1uoOHqWZSgoWzM6NY\nkBnNhGiT/GEkxq0ep5s1RS28urfBNxps0ivkJ1iYmRohnW0xJAa9jrx4C3nxFpxuD+UtA50JB3sP\nd7P3cDerPj3EjBSbtzMxMVrWsokhkzUQwyzY8+9UVaWspYeN/Z2GspYe33M6BSb0jzLkxZuJNo+O\npKTFua5aotX4KIpCos1Ios3I/Mwouvu8i/2Km+zUtH8+pP7U9jrSo0zezsTEaCYNw4mrMs9VWyQ3\neDXbnby+r5E3C5vo6nMDEBWuZ2qiFVP9fmbmzg9xDbVLq+2elpwoRga9jvwEC/kJFvpcHkqbezjQ\naOdQu4NdtV3squ3ibxurmZ0WwXnZMSyYGI11DM9IkNwwfKQLOgp4VJXChm42VrSzsaLtqPUMRr3C\nhOhwJkabyI23yLzZILj8xh+GugqjktWoZ1qyjWnJNpxuD1VtDoob7VS29XKovZcX9zTw4p4G4iwG\nzs6M4pyJ0cxIsaHXyciEGFsqWnt4eU8D60pbfdNJUiKMTEu2MTnR24EubJL1QqPNaMsNxjCdbz2b\nw+WhtMnOgUbvDZ6Bw0Uf3lDN6RMiOS87hnkZkaP+UFExcmQNhEa5PSp76rvYUN7Gxsq2o04etRh0\nZMSEkx1jJivOTJj8ASY0zKOq1Hb0UtRop6zFQXf/nViACJPe15mYnRYhB9gNI1kDMbxUVaWgvpuX\n9hxmS3UH4F3fkBUbzsyUCDJixuduSkJ77E43JU12DjTYj7ohadIrnJURxbnZMZw5IRKTbIoxLsga\niDHA5VHZVdvJJ+VtbKpsp93xeach0qQnMzqcnHgzE6JlPYMYPXSKQnpUOOlR4ZyvqjR0Oylu7Ka0\n2UGb4/MtYi0GHfMyoliYFc3p6ZK8xOjgUVU2Vbbz4u7DHGi0A95ThvPjzcxJj5T1DUJzLAY9M1Ii\nmJESQVevm+Kmbg402mnocvJxeRsfl7dhNuiY39+ZmJsuN3fE8YY0ArF06VLVarXKaaODlAsKCrjl\nlltO+rzT48EycSaflLfx9gcfYnd6iMyZBYDnUAHJNiPnLjyHlEgTB3ZuBbRzWmawygOPaaU+WiuP\n5fi0O1yQNo3iJjsVe7cDEJkzi/AwHakdRUxPsXHj1y7GbNAP+vs28N8ne348lkN5EvV4yA1OjwdH\n0mm8tOcw+/s/24mT5jA10YK1sRCzQT/oZ7+yqJBLrvnmSZ8f72WJz8jnhrSpcylqsrNpw0bae12+\nv0WclXs4LdnGN5ZeyOzUCLZs3gRo6/fxZGXJDRo9iXrlypXqjTfeeMrvHw9OtICnz+Xhs5pOPi5v\nZXNl+1FbYcZZwsiMDic/wUqizTAudq6RxXKDGy/xaetxUtRop6TZu6PTAJNe4YwJ3pGJk83RlYVy\n/o3kFKaxnBu6+9y8daCJV/Y2+KaWRpr0TEuyMjPVhjEssDnk4+X3+lRJfPwbzhi19Tg52GinqMl+\n1BRqm9E77fRL2dHMTo3AoPGRCckN/p1qbpA1ECOk1+Vh+6EOPi5vY0vV0Z2GeKuBzOhwJidYiJcT\nJIWgw+GiuMlOUaOdhiM6E0a9whnpkf2diSgsY3j3kGCTNRBD02J38mr/jkoD63jiLQamp1g5LUk2\nAxBjV6vd25kobrLT0nN0Z2J+pvfmzhxZwzZqyRoIDXK4PGyv7uDj8la2VB99sFui1UBmTDiTEizE\nyUmRmvLKPx9h2U0/CnU1xrXI8DDmpkcyNz2Szt6BzkQPh7v62FjZzsbKdgx6hdPTvJ2J+ZlRY3or\nQhE6Ne0OXipoYG1xC06394ZbWqSRmSk2cuMt42KUWHiN19wQYzEwLzOKeZlRtBzRmWjtcbG2uIW1\nxd41bGdlRLFwYjSnT4gkXNawjXlyDkSQ9TjdbKvuH2mo7qDx4A7fPMJEW/9IQ6JVToQ8gtaGql99\n8m+aShJai89IizCFMSctkjlpkXQNdCaaeqjv7GNzVTubq9qxl+3m/HMX8qXsaOZnRGEzyb2RUBoL\nueFgYzcv7mlgQ3kbKp/vqDQrSDsqjfffa3+0GB/JDRBrMTA/M4r5/Z2JoiNGJtaXtrK+tBVTmI4z\n0iM4O9M77TSU7bFMYRo+kmWDoLvPzZaqdjZUtLGtuoNe9+fTwmLNBuZMiGRyooWYUXKwmxBaZTOF\nMTstktlpkXT1uilp9k5zOqiqbKnuYEt1B2E6hdmpEZyTFc3ZmVFEyYmrIkCqqrLtUAcv7Wlgd10X\nAHoF8uItzEmzkWAzhbiGQmhH7BEjE8euYdtQ0c6Ginb0CsxMjeDs/k5Hgsy4GDNkDcQp6nC4+LSq\nnU/K29hR2+kb2gZIjjD2jzRYRs1p0OJzK87O59+bikJdDfEFdPe5KW2yc7DJTl1HHwO/jToFZqbY\nOGdiNAsmRo/rkT9ZA3FyfW4P60tbebmggcpWB+BdvD850crstAjphApAckOgOhwuSpvtFPePFB/5\nV2ZevJn5mdHMz4gkO9YsUwA1QNZAjIBmu5PNld6Rht21nRzRZyA18vNOQ2T4+P0jRYhQsBr1zEiN\nYEZqBHanm9KmHoqa7NR29LKztoudtV38bdMhTkuycvbEaBZMjCIlQu4mj3cdDhdvHWji9f2Nvp1m\nbEY9U5OszE61ES6n8grxhUWGfz5S3ON0U9bcQ3FzDzXtvRQ39VDc1MMzn9WRYDVwVkYU8zIimZkS\nIWf/jDKyBsKPmnYHmyrb2VjRTmFDt68nrSgwIcrkWwh9sjl+WpzHqTUSo8FJfPw7MkYWg57pKTam\np9hwON2UtfRQ1NjDoXYHew93s/dwN49vqSE3zuztTGRGMTEmXO6EBZHWc0N1m4NX9zWytqjZN+U0\n3mJgerKV05JHZkcl+b0enMTHv9EQI7NBz2nJNk5LtuFye6hq66W4yU5lm4PGbidvFjbxZmETRr3C\nrNQIzpwQyenpkaRGBucGj6yBGD4yAnEMj6pysNHOp5XtbKpsp7LN4XsuTKeQPtBpiLdgll1fxqTL\nb/xhqKsggiTcoGdqko2pSTb6XB4qWh0UNXZT1dZLSXMPJc3eO2HJEUbOzozi7Mwo2ZJzjPKoKjtq\nOnltXyNbqzt8j2dEmZiebCVHdlQSfkhuGJowvY7sODPZcWZUVaWhy0lJs52KVgdN3U62Vnf4fjdT\nI02cnh7B6emRzEi2yZbdGiRrIPDunLSrtotPq9r5tKqd1iP2OTbpFTKiw8mMCScvwSL7HAsxBrg8\nKtVtDoqa7FS2OOhxfb7FcoRJzxnpkczPjOL09Mgxsz3seF0D0d3n5v3iFl7f38ih9l4A9DqF/Hgz\nM1NsJMlUNiFCrrvPTUVLD2UtPRxq76XviDniegWmJFqZkxbB7LQIJiVYCZObPEETkoPkbrnlFrWt\nrc13HHZUVBTTp0/XzHHdg5XrOnt55vW17G/opilmEk63SkfpLsB7nPuEaBNKzV6SbSamnT4P0M7x\n9VKWspSDV540+0zqO/v46ONPqO/sQzdhOgAdpbvQK3D2gnM4c0Ikupp9JNoMLFy4ENBWe3ai8qpV\nqygoKPC1z4mJidxxxx0jknW1kBtqOxzURuazrqSVhoM7AG/bPiXBgunwfswGfcg/e1KWspSPL+/7\n7FNa7S6UCdOoanVQumcbKvi2xHdU7CErNpyvLDqPGSk2Dh/YgV6naKbt1Xo5WLlhSB2IlStXqjfe\neOMpv38k9bo8FNR3se1QB9uqO3x3ogYk2YykR5nIjTeTZDMGbSh7NMxRDDWJ0eAkPv4FM0atdicl\nzd47YYeP2UEkyWbkjPRITp8QwayUiFE1rD6SIxChyg32Pjcflbfx7sEmChvsvsfTIo1MSbQxJcmC\nTiPTlOT3enASH//GS4x6XR4OtfdS3uJdiN3mcB31fHiYjqlJVqYn2zgtycqkBAvm/g0QZA2Ef7IL\n0zE8qkp5Sw+f1XSyo6aTgvquo7ZaNem96xnSo8LJizdjlYOnhBB4T109w2LgjAmROFweKlu8ayUO\ntfdyuKuPNw808eaBJu+wepKVOWmRzE2LID/eImsnQsCjquw/3M2aomY+KmvD0T8dzRSmkBdnYXqK\njUSb7D0vxGhlCtORE2cmJ84MeKc7Vbc5qGx1UNfZR7vDxY7+v/XAu313TpyZqYk23DUdZHf0khIR\nvBvDwmvMrIFQVZXqtl521XWyu66L3bWddPS6j3pNgtVAWqSJibHhpEeFS7IXQgRMVVUOd/VR3uKg\nosV7WNKRrafFoGN6so1ZqRHMSrUxMcasqTZmrK2BqGpz8EFJC+tKWjnc1ed7PDXSSF6chalJFoxh\no2eESAhxarr73NS0O6hq6+VwZx/N9qPbZoCo8DDy4y3kxZvJT7CQF28h3mKQTgXjcATC5VEpbbaz\n73A3BXVd7D3cTfsxw1oRRj2pUUbSIk1kx8oogwjMK/98hGU3/SjU1RAaoygKyREmkiNMzM+Motfl\nobrNQXn/or+OXrfvNGzwnk0xLcnKtGQb05Ks5MVbMMo+50NS1ebg4/I2Pilrpbz18x3yIkx6smPN\nTEu2Ei8n3YphIrlBm6xGPfkJVvITrID3YMj6zj5q2nup7+ylsdtJu8PlncJ+6PMd2KLCw8iODScn\nzkJ2rJmJMeFMiA6X8ygCNCrOgRi481fUaOdgo53Chm6KmuxHrdIHsBp1JNtMpEQayYo1E2MOC3nv\ncrzMURwKrcXo1Sf/pqkkobX4aFEoYmQK05EbbyE33gJAZ6+L6jYHFS3eYfWuvqM7FGE6pX9Y3TtH\nNz/BQmqkSTNz8oMpWLnB5VHZf7iLrdUdbKnqOGpbbZNeISvWTF68hazY0XeOh/xeD06L8ZHcMDoY\n9ToyosPJiA6ncMcWvnbmmXT0ujnc2UtdZx+NXX009XcqBg4aHaBTvFvIZkR7OxMZ0SYmRIWTFmUi\nQm5CH2VI0SgpKQlWPXwGtlcsa+mhrH8hY3GT/bjpSAAx5jASrAaSI7xnM2ihw3CsyqJC+QX3Q2I0\nOImPf1qIUYQpzHfmBHhPOa5p76W63cHhzj5aelwc7L8JMsBi0JEX7737lRNnJjvWTEZ0+LCMVOza\ntYtFixYF/boncqq5QVVVKlod7KnrYnddJztru+ju+7ztN4XpyIwxkR1rISfOPKq3ctTCZ1bLJD7+\nSYz8G4hRVHiYdxpT/yiFqqp09blp6OqjvrOP5m4nrT0u2h0uDrX3ejfaqWw/6lqRJj2pkSZSI00k\nRRj7R6SNJFqNJFgNo3aE+VRzw5A6EN3d3af0Po+q0tTtpK6jl9rOPuo6eqlqc1DV5qCuoxf3CZZl\nmA06EqwG4izeDsOEaJNvlb2W2bs6/L9onJMYDU7i458WYxQZHkZkeBhTkrwJq9fVP6ze4eBwp5Pm\n7j66nR7vmq26o++AJUcYmRDlvQPmTVhGUiJNJFqNp7yuYvfu3UH5uQIRSG5QVZXWHhclzd5OVVGj\nnQON9uOmosaYw0iPMjEx1kxm9NhZu6bFz6yWSHz8kxj5d7IYKYpChCmMCFMYOXEW3+Muj0qr3UmL\n3Uljt5PWHu9IRYfDTUevm47+dupEosLDfH+nxlo+///o8DCizd6vSFMYVqNeU+3YqeaGIY/HNHX3\n4faAW1XpdXmwO930OD3Y+9y0O1y097pp73HR1uP9x2i2O73vGWTtdlS4nlizgRizgQSbgZQII5Hh\n2htdEEKIQHnvnnsPpRzQ1eumsdt7B6ypu48Wu/cOWG1HH7Udfb7pTwN0CsRaDMRbDMRbjcRavAlp\nIDFZjDosBj1mg47wMD1hOgW9DvQhaDtr2nvpc3twuDy02L1391rsTuq7+jjU5qC6vfeo0YUBNqOe\nlEgjyTYjWXFmYsyGEa+7EGJ8CtMpJNiMJNiMTDricVVVsTs9tPV427LWHicdDjddfW66+7/aHd72\nu6S5Z9DvoQA2k54Ikx6LQY/NpMdq0GMx6rEYdIQb9JjDdIQbdBj1OsLDdBjDFAw6HQa9glGvEKbT\nfd6+6xT0ioJOUdD1t/eKAjoU+v+HcsQ3D1Y2GFIHor6+nuue33dK77UYdESGhxFh9AYxxmIg0WYg\n1mwgbAyd9txYVxPqKmiexGhwEh//RmuMbCY9NpOZrFiz7zGXR6W9x0Wz/fN5uh29bjp7XXT3eWjq\ndtLU7YST3AU7mSnBrvwg6uvr+dZL+/2+zqRXiOu/Y5fYfxZP1Di5WTRaP7MjRWSaH6QAACAASURB\nVOLjn8TIv2DFSFEUrEY9VqOetKjjn/eoKvY+D119Lrr62+vOXjd2pweH04PD5b253uvy0OtW6ex1\n03mCqfmhcKq5YUgdiJycHLoL/uUrz5w5k1mzZgX4bnf/1zF6j39oNPvaogWk2KtCXQ1N01qM3n//\nfdBQfbQWHy0aazGaoADW/q9TtGvXrqOGpq3WIVzsCwo8N6h4G/3ez4uD37wbM8baZzbYtBgfyQ2j\nz4jHSA9Y+r80Kli5YUjnQAghhBBCCCHGl7EzV0gIIYQQQggx7KQDIYQQQgghhAhYQB0IRVEuURTl\ngKIoRYqi3H2S1zyiKEqxoii7FEUJdCHEmOEvRoqiXKcoyu7+rw2KokwPRT1DJZDPUP/rzlAUxako\nyrKRrJ8WBPh7dp6iKDsVRdmrKMr6ka5jqAXwexapKMr/+tuhAkVRvhmCaoaMoihPKIpyWFGUPYO8\nJihtteQF/yQv+Ce5wT/JDYOTvODfsOQGVVUH/cLbySgBMgEDsAuYfMxrlgBv9f/3WcCn/q47lr4C\njNE8IKr/vy8ZTzEKJD5HvO4D4E1gWajrrbUYAVHAPiCtvxwf6nprMEY/A+4fiA/QDISFuu4jGKNz\ngFnAnpM8H5S2WvJC0GI0bvNCoDE64nWSGyQ3nGp8xnVe6P+5g54bAhmBOBMoVlW1UlVVJ/Bf4KvH\nvOarwDMAqqpuAaIURUkK4Npjhd8Yqar6qaqqA8cafgqkjXAdQymQzxDArcDLQMNIVk4jAonRdcBq\nVVVrAFRVbRrhOoZaIDFSgYj+/44AmlVVdTFOqKq6AWgd5CXBaqslL/gnecE/yQ3+SW4YnOSFAAxH\nbgikA5EGVB9RPsTxjdyxr6k5wWvGskBidKSbgHeGtUba4jc+iqKkAl9TVXUVwTvnZDQJ5DOUD8Qq\nirJeUZRtiqKsGLHaaUMgMfobMFVRlFpgN3DbCNVttAhWWy15wT/JC/5JbvBPcsPgJC8Exxdur4d8\nErX4YhRFOR/4Ft7hJPG5vwBHzl0cj4nCnzBgDnAB3hMCNiuKsllV1ZLQVktTFgM7VVW9QFGUHGCt\noigzVFXtCnXFhDgZyQuDktzgn+SGwUleGAaBdCBqgIwjyun9jx37mgl+XjOWBRIjFEWZATwOXKKq\n6mBDSWNNIPE5Hfiv4j2CNh5YoiiKU1XV/41QHUMtkBgdAppUVXUADkVRPgZm4p3/OR4EEqNvAfcD\nqKpaqihKOTAZ2D4iNdS+YLXVkhf8k7zgn+QG/yQ3DE7yQnB84fY6kClM24BcRVEyFUUxAtcAx/7i\n/g/4BoCiKPOANlVVDwda6zHAb4wURckAVgMrVFUtDUEdQ8lvfFRVze7/ysI71/X74yhBQGC/Z68D\n5yiKolcUxYJ3oVPhCNczlAKJUSVwIUD//M18oGxEaxl6Cie/Sxustlrygn+SF/yT3OCf5IbBSV4I\nXFBzg98RCFVV3Yqi/BB4D2+H4wlVVQsVRfmu92n1cVVV31YU5cuKopQA3Xh7e+NGIDECfgnEAn/v\nv5PiVFX1zNDVeuQEGJ+j3jLilQyxAH/PDiiKsgbYA7iBx1VV3R/Cao+oAD9HfwD+dcRWdXepqtoS\noiqPOEVR/gOcB8QpilIF/BowEuS2WvKCf5IX/JPc4J/khsFJXgjMcOQGRVXH3e+jEEIIIYQQ4hTJ\nSdRCCCGEEEKIgEkHQgghhBBCCBEw6UAIIYQQQgghAiYdCCGEEEIIIUTApAMhhBBCCCGECJh0IIQQ\nQgghhBABkw6EEEIIIYQQImDSgRBCCCGEEEIETDoQQgghhBBCiIBJB0IIIYQQQggRMOlACCGEEEII\nIQImHQghhBBCCCFEwKQDIYQQQgghhAiYdCCEEEIIIYQQAZMOhBBCCCGEECJg0oEQQgghhBBCBEw6\nEEIIIYQQQoiASQdCCCGEEEIIETDpQAghhBBCCCECJh0IIYQQQgghRMCkAyGEEEIIIYQImHQghBBC\nCCGEEAGTDoQQQgghhBAiYNKBEEIIIYQQQgRMOhBCCCGEEEKIgEkHQgghhBBCCBEw6UAIIYQQQggh\nAiYdCCGEEEIIIUTApAMhhBBCCCGECJh0IIQQQgghhBABkw6EEEIIIYQQImBhQ3nz0qVLVYfDQXJy\nMgBWq5Xc3FxmzZoFwK5duwDGdbmkpIQrr7xSM/XRYnngMa3UR2tliY//8rGxCnV9tFB++eWXKS0t\nPap9XrVqlcIIkNzgvyy5QeIjuWH4y5Ibhi83KKqqftH3+HzjG99QH3744VN+/3jwwAMP8NOf/jTU\n1dA0idHgJD7+SYz8u+2223jmmWdGpAMhucE/+cwOTuLjn8TIP4mRf6eaG4Y0ham+vn4obx8Xqqqq\nQl0FzZMYDU7i45/ESFskN/gnn9nBSXz8kxj5JzEaPrIGQgghhBBCCBGwIXUgFi9eHKx6jFnXXXdd\nqKugeRKjwUl8/JMY+Tdz5swR+16SG/yTz+zgJD7+SYz8kxj5d6q5YUgdiIEFGeLkzjnnnFBXQfO0\nFqMHHngg1FU4itbio0USI/9Gsr2W3OCffGYHp8X4SG4YfSRG/p1qez2kXZh27drFnDlzhnKJMW/D\nhg3yAfZDazF66KGHRmzRlaqq9PT0oKoqinLiNUwHDhxg8uTJI1Kf0UpihO8zZDabT/pZGimSG/zT\nWrunNVqMTzBzQyBtvz/S7vk33mM0sFGS0WjEYDAE9dpD6kAIIYamp6cHo9FIWNjJfxUjIiKwWCwj\nWKvRR2Lk5XK56OnpkVgIoXGBtP3+SLvnn8TIy+Fw4Ha7CQ8PD9o1ZQrTMNPaHRQtGs8xUlXVbwLJ\ny8sbodqMXhIjr7CwMIayNXewSG7wbzy3e4EY6/EJpO33R9o9/yRGXuHh4bjd7qBeU3ZhEiKEQj3V\nRIw98pkSQvvk91SMtGB/5obU/X344YexWq1kZGQAEBUVxfTp0313DjZs2AAwrssFBQXccsstmqmP\nFssDj2mpPiP1/SwWi2+ueHFxMfD5HZOB8sBjJ3teynnHxSrU9QllOS0tDYBVq1ZRUFDga58TExNZ\ntGgRI0Fyg+SGsRifASPV9vsrDzymlbZHi2XJDcOXG4Z0EvXKlSvVG2+88ZTfPx5ocSGY1mgtRiN5\ncqXdbvc7P7O4uFhzw7A/+MEPSEtL4+c//3moqwJoM0ahcrLP1I4dO1i0aNGI3PaU3OCf1to9rdFi\nfIKZGwJp+/0JRbuntbbfH8kNnwt2bpA1EMNMaw2gFmktRlo79l4aP/8CiVF1dTVXX3012dnZTJ06\nlbvvvhuPx3PC1z7//PN8+ctfDnY1xw3JDf5prd3TGi3GR3LD6JOXl8c///lPFi1aREpKCj/84Q+P\ner66upq4uDgyMjJ8XytXrjzp9ZYuXcqzzz473NUeFWQXJiGEJrndbvR6fdCud+eddxIfH8/Bgwdp\na2vj8ssv54knnuA73/nOca8dytaKQojAeVSVVruLus5e6jv7aHe48KgqHtX7XIQpjDiLgQSrgUSb\nkchw+bNlrAt225+SksKdd97JunXr6OnpOe55RVGorKyUNv8LGtIIxK5du4JVjzHr2LmT4ngSo8Ed\nOYdzJBUVFbF06VKysrJYsGAB77777lHPNzc3s2zZMjIyMli6dCmHDh3yPffzn/+cSZMmkZmZycKF\nCzlw4AAAfX19/PKXv2TGjBlMmTKFO++8k97eXgA2btzItGnTeOSRR5gyZQq33nor8+bNY+3atb7r\nut1u8vPzKSgoAGDbtm1ccsklZGZmcu6557Jx48aT/jxVVVVcfvnlGAwGEhISWLRoka9ex/7cd955\nJ9u2bSMjI4Ps7GwAOjo6uOWWW8jPz2fWrFlH3aUqLy/nsssuY+LEieTn53PTTTcNKRYtLS1ce+21\nZGVlkZOTw6WXXhrAv5h2SG7wb7y2e30uD3vqOnnmszrufLOYr/5rN9c+v5cfv1nMQx9V8tiWGv5v\nay1//u/bPLW9jkc2VvPrtWV8/7WDXPlsASv+u49715Xz6t4GSprsmth1LFSGKzeMprY/Kytr0La/\nuLiYr3zlKyxZsoTo6OgTvkZV1ZOORh/p3nvvZfPmzdx9991kZGT4RqS2bNnChRdeSFZWFhdeeCFb\nt271vec///kPc+bMISMjgzlz5rB69Wpg8JxRVFTEsmXLyMnJ4ayzzuK1117zPbd27Vrmz59PRkYG\n06ZN49FHH/Vb7+EiXXkhxHFcLhfXXXcdK1as4JVXXmHz5s1cf/31rF+/npycHABefvllXnjhBebO\nncuvfvUrbr75Zt5++23WrVvHli1b2L59OxERERQXFxMVFQXAb37zG6qqqtiwYQN6vZ6bb76ZP/7x\nj9xzzz0ANDQ00N7ezp49e/B4PPz1r3/l5Zdf5qKLLgLggw8+IC4ujunTp1NbW8u1117LY489RkZG\nBrW1tdxwww1s3bqV2NjY436m733ve7z66qssWLCA1tZW3n//fd/3PVJ+fj4rV67k2Wef5a233vI9\nfvfdd9PV1cWuXbtobm7miiuuIDk5meuvv5777ruPCy64gDfeeIO+vj527twJcMqxePTRR0lLS6O0\ntBRVVdm2bVsQ/3WFGFluj8qeui7WFjfzSUU7va6j/1gzG3REmvTYTGGEh+nQKVDXGk5qio1elwd7\nn5tup5tOh5vDXX0c7urjo7I2AFIijCzMimZhVjT58Ra5izxEo63tX7RoER999NGgbb8/iqIwc+ZM\nFEXh3HPP5Xe/+90Jr/OLX/yCLVu2sHz5cr7+9a8D0NbWxrXXXstDDz3EsmXLePXVV7nmmmvYsWMH\nRqORn/3sZ6xfv57s7GwaGhpobW0FOGnOsNvtXHHFFfziF79g9erV7Nu3j8svv5ypU6eSn5/Pbbfd\nxlNPPcVZZ51FR0cHlZWVX/jnDRZZAzHMtDiPU2skRoMLxTzX7du3Y7fbue222wgLC2PhwoUsXrzY\nd/cE4OKLL2bevHkYDAbuuecetm/fTm1tLQaDga6uLg4ePIiqquTl5ZGYmAjAv//9b+69914iIyOx\nWq3cdtttR11Tr9fz05/+FIPBgMlk4oorruCdd97B4XAAsHr1aq644grAm8QuvvhiFi1aRF5eHuee\ney6zZs066q7VkebPn09hYSGZmZnMmDGD2bNns2TJkoDi4fF4ePXVV/nVr36FxWJhwoQJfP/73+fF\nF18EwGAwUF1dTW1tLUajkbPOOsv3+KnEIiwsjMOHD1NZWYler2fevHkB/9tpgeQG/8ZDu9fhcPHv\nHXWseGEfd79TwvslrfS6PMRZDExLsnJxfiw3n5XKzWelcc2sZC6dEs+FebFckBvL9ZddxPk5MVwy\nKY5l0xNZMSeF781P4/rZSZyfE01+vBmLQUddZx8v7mng1teL+M7qA7xZ2ESPM7j73WvVcOSG0db2\nA4O2/f5iFBsbywcffMCePXtYv349XV1d3HzzzQHH67333iMnJ4crr7wSnU7HFVdcQV5enm/URq/X\ns3//fhwOB4mJiUyaNAk4ec5Ys2YNmZmZXHPNNSiKwrRp07jssst4/fXXfe87cOAAnZ2dREZGMn36\n9IDrGmxyDoQQx3jggQdCXYWQq6urIzU19ajHJkyYQF1dna88sCUcgNVqJTo6mvr6ehYuXMhNN93E\nXXfdxaRJk/jxj39MV1cXTU1N2O12zj//fLKzs8nOzmb58uW0tLT4rhMXF4fBYPCVs7KymDRpEu++\n+y49PT288847XHXVVYB38dtrr73mu1ZWVhZbt27l8OHDx/08qqpy1VVXsXTpUmpqaigpKaGtrY3f\n/OY3AcWjubkZl8tFenr6CePxm9/8Bo/Hw0UXXcSCBQt47rnnAE45FrfeeisTJ07kiiuuYO7cuTz8\n8MMB1VMILWi1O/nn1hpWvLCPf++op6nbSaRJz5w0GyvmJPP1OcksyotlSqIVsyHwue46RSHeamRG\nSgRLJsfz7TNTuXJ6ItOTrZgNOqraHDyysZrrn9/H/22pocXuDOrPNR5yw1hr+/2xWq3MnDkTnU5H\nfHw8Dz30EOvXr6e7uzug99fX1zNhwoQTxstisfDEE0/w5JNPMmXKFK699lrftLPf/va3J8wZ1dXV\nbN++/aif7eWXX6axsRGAp59+mrVr1zJz5kyWLl0a0tFpWQMxzMbrPNcvQmsxeuihh0JdhaOEYg1E\nSkoKtbW1Rz126NAhUlJSfOWamhrff3d1ddHa2kpycjIA3/nOd1i3bh2bN2+mpKSEv/71r8TFxWGx\nWNi0aRNlZWWUlZVRUVFx1BDsiaYfLFu2jNWrV/P2228zefJkMjMzAW8Su/rqqykrK2PNmjWUl5dT\nVVXFj370o+Ou0draSk1NDd/+9rcxGAxER0dz3XXX8f7775/w5z+2HgPJrbq62vdYdXW1Lx6JiYn8\n5S9/Yd++faxcuZKf/OQnVFRUnHIsbDYbv//979mxYwfPPfccf//73/nkk09OWFctktzgn9bavWDo\ncbp5clstK17Yx4t7GuhxepgQbeKyKfF88/QUFmbFEGsx+L8QULhji9/X6BSFtCgTF+TG8u0zUrlk\nUhyJNgNdfW5eKmjghhf389S2Wrp6XUP90YDxkRtGW9tfVlY2aNt/KjFSFOWkayKOrWdycjJVVVVH\nPXZkvM4//3xeeeUVDhw4QG5uLrfffjsACQkJJ8wZaWlpLFiw4LifbeCzN2vWLJ599lmKi4tZsmQJ\nodwuW0YghBDHmTt3LmazmUceeQSXy8WGDRtYs2aNbwgZvIu5tmzZQl9fH/fddx9nnHEGqamp7Ny5\nk88++wyXy0V4eDgmkwmdToeiKKxYsYKf//znNDU1AVBbW8u6desGrcuyZctYv349Tz31FFdeeaXv\n8auuuoo1a9awbt06PB4PDoeDjRs3HnWnbEBsbCyZmZk89dRTuN1u2tvb+e9//8u0adNO+D0TEhKo\nra3F6fTewdTpdHzta1/jD3/4A11dXVRXV7Nq1SqWL18OwOuvv+5LulFRUeh0OnQ63SnH4r333qO8\nvBzwdibCwsLQ6bzN9Q9+8IPjtiIUIpRUVWV9aSvffqmQ/+4+TJ9bJSsmnGXTElg2LZHsOPOwr03Q\n6xQmJVi4dlYyV89MZGJMOL0uD8/vPsw3XtjPi7sP43T7Xyg73o21th+8C7AdDgcejwe3201vby9u\nt3ea22effUZJSQmqqtLS0sLPfvYzFi5cSERExAmvlZCQcFTH56KLLqKsrIzVq1fjdrt55ZVXKCoq\nYvHixTQ2NvLOO+9gt9sxGAxYrVbf7lInyxmLFy+mtLSUF198EZfLhdPpZOfOnRQVFeF0Onn55Zfp\n6OhAr9djs9mO2q0qLi6OTZs2DRrTYJI1EMNsPMxzHSqJ0eBCsQbCYDDwn//8h7Vr15Kbm8tdd93F\nP/7xD98iOkVRuPLKK3nwwQfJzc2loKCAxx57DIDOzk5uv/12srOzmT17NnFxcdx6662Ad6pPdnY2\nF198sW+KTmlp6aB1SUpK4owzzmD79u1cfvnlvsfT0tJ49tln+fOf/8yXv/xlZs6cyd/+9reT3jl6\n5plneP/998nLy+OMM87AYDDwhz/84YSv/dKXvsTkyZOZPHky+fn5gHf6wsDpsV/5yldYvnw5119/\nPQA7d+7koosuIiMjgxUrVnD//feTkZFxyrEoLS3l8ssvJyMjgyVLlvDtb3+bBQsWAN7Eq/U1EZIb\n/Bsr7V5Ney8/eauE+9dX0GR3kmgzcPlpCSw9LYEJ0eGnfN0pc8465fcmR5j46mkJLJ+RSGqkka4+\nN//cVsv3XjnAztrOU76u1gxHbhhtbX9eXt6gbX9eXh5/+tOfSEtL4+GHH+all14iLS3Nt4teRUUF\nV111lW/XqPDwcB5//PGT1um73/0ur7/+Ojk5OfzsZz8jJiaG559/nkcffZTc3FweffRR/vvf/xIT\nE4PH4+Hvf/87p512Grm5uWzevJk//elPwMlzhs1mY/Xq1bzyyitMnTqVqVOn8rvf/c53M+uFF15g\n9uzZTJw4kaefftpX10OHDhEREcHUqVMD+ncOhiGdRH3LLbeobW1tvuOwo6KimD59esiPm5eylIdS\nXrp0KS0tLSPy/Qb+IAXtHHcvZe2WXS4XN954Ixs2bKCsrOyEr09LS8NisbBq1SoKCgp87XNiYiJ3\n3HHHiGxRI7lh7JdVVaU9fgqPbamh8eAOTGE6LjrvS8xKtXFgp3cby4FOwMB0pFCUVVXlw48/YVdt\nF7oJ3gWnOT2lXDYlni9feN4X+vmDmRuk7ZdyMMvvvvsu7e3t3HPPPSd9fbBzw5A6ECtXrlRDOf9q\nNNiwYcOYudM0XLQWo9jY2KMWdw2nkx0tf6Ti4mI5cdQPidHnTvaZ2rFjB4sWLRqRDoTkBv+01u59\nEc12J//v4yq2HeoAIDfOzPk5MViMwTv8q3DHliGNQhzL5VHZcaiDrdUduFWIMOn50YIJnJsdE/A1\ngpkbAmn7/ZF2zz+J0eeCnRvkHAghjnHXXXeFugpCCKFJO2s6uW99Be0OF+FhOhZMjGJasi3U1fIr\nTKdwZkYUkxKtfFDcQnV7L/euq2BjRRs/PHtCQCdcS24Q4nNDGoH44IMP1IEhOCHEFxeMu1BCHEkL\nIxCSG8YeVVV5Yc9h/rW9Do8K6VEmFuXGEm0effchVVWloL6bT8rbcHlUYs1h3HVeJnPSIkesDtL2\ni5EmIxBCjBMX/3Nn0K713k2zg3YtIcT40t3n5o8fVbKpsh2AOak2FmRFoxulpz4risKMFBsZ0SbW\nFLVQ39nHz94p5frZyVw/Oxm9LrQ/l7T9YjSQcyCG2Vjc6zvYJEZjz4MPPsj3vve9EfleS5cu9e2o\nIbRBcoN/o6Xdq+vs5fb/FbGpsh1TmI5L8mNZmB0z7J2HQM6BGKpos4GrZiRyVkYkKvDsznp++k4J\nzUE+gG48Gem2/9lnnx30NaE4R2m8kBEIITRq4M6RVhaBffWrX6WwsJC+vj4yMzP56U9/ypIlS076\n+uHe910IMbwKG7r59XtltDlcxFrCWDIpjnirMdTVCiqdojAvI4rUSBPvHmxmd10Xt7xygHsWZTEj\nJTRrOwIdNRjJ3PCPf/yDxx57jKamJtLT03nuuefIzs4+4Wul7R8fhtSBkL2+/Rutu2yMJInR4LTQ\neQC4//77ycvLw2Aw8Nlnn3H55Zezfft2EhMTQ101kpKSQl0FcQTJDf5pvd37uLyVhz6spM+tkh5l\n4suT4zAbgrfLkj/B3IEpEBnR4Vw/O5l3DjZT097L3W8X87156SydGq/ZP4hHKjc888wz/Oc//+HF\nF18kLy+PyspKoqOjR+R7D5VW8udYJCdRi1Pm9qi02J2UNfews6aTj8taWVvczFsHmnh1bwMvFzTw\n2r5G3ixs4p2DzXxY2sr2Qx0UNdqp6+ilz6XNU0EfeOCBUFdBk6ZOnYrBYPCV3W43NTU1J319b28v\n3//+98nIyGDBggXs3r3b91x9fT033HAD+fn5zJkz56iDe3bs2MHixYvJysritNNO4+6778blcvme\nX79+PWeddRZZWVncfffdHLkRRHl5OZdddhkTJ04kPz+fm266KVg/vhDjxqt7G/jDBxX0uVUmJ1j4\n6tT4Ee08hIrVqGfZtATmpNpwq/Do5kOs/LjKl6vGY25QVZU//vGP3Hvvvb4/xjMzM4mKijrpe6Tt\nHx9kDcQwGy3zXAfT4XCxs7aT1QUN/PmTKu5+u5hvvLCPrzy1i2v+s5fvvXqAu98p4Q/rKvjjR1U8\nvKGaVZ/W8PiWGv6++RCPbKzmz59Ucd/6Cn7+bik/fP0gN7y4n0v/tZvlzxZw1QPP84cPynn6szrW\nl7ZQ2mynzx26zsVDDz0Usu99Ilqaw3nttdeSmprKxRdfzDnnnMPs2Scfal+zZg1XXHEFlZWVXHLJ\nJfzkJz8BvAnpuuuuY8aMGRQWFvLaa6/x2GOPsX79egD0ej333XcfZWVlrFmzho8//pgnnngCgJaW\nFm644QZ++ctfUlJSwsSJE9myZQuHDx8G4L777uOCCy6goqKCvXv38p3vfGeYIyJORHKDf1rMDaqq\n8vRndaz61Htj4Mz0CC7OjyVMP/L3GkdiDcSJ6BSFhdkxXDIpljCdwnvFLdzxVjHNdue4zA01NTXU\n1tayf/9+pk+fzpw5c/x2pEay7R9wsrZfS/lzrBnSFKaPPvqI7du3y2mjg5QLCgo0VR9/ZY9HJXXq\nXArqu3hn3UdUtjpQ06YB0FHq/aMgMmeWr2wK05EyeQ7hBh3tJbvQKwqpU+ei1ynUF36GqkLi5Dl4\nVKjZvx2XWyUidxYOp4e6ws/wHkME7eVtR10/TKdgPryfCdEmLj7/XKYl2ajcuw1FUYY9HgO0chL1\nAC2cdvm73/2O7OxsPvzwQzZu3HjUHNxjXz99+nQyMjJQFIXly5ezatUqiouLaW9vp7m5maVLl1JW\nVkZeXh4rVqzgX//6F+np6cycOfOo691www1s3LiRCy64gLfffpspU6Zw6aWXUlxczIUXXsijjz7q\ne31PTw/V1dXU1tbS3d1NbGyspuI3EuW0tDSAE542umjRIkaC5IbRlxs8HpVduom8eaCJrrJdzEi2\nMX/i+UBoTpKuLCoM+UnWy2fM5o39TWz7dBPX7dyKOSUnaPEOxknUA4azbamtrQXgrbfeYtOmTbS1\ntXHZZZdhMBi44447Tvh+afu1WQ52bpBzIATNdifb+0/o3FHTSXef+6jnDTqFOIuBWEsY0WYDseYw\nYq0GIkxhhA1huzuPqmLvc9PZ66a1x0lTt5OWHiftPW7aHK7jXh8dHsb0FBszU2ycnh5JaqTplL/3\nYLR2ErVWXXXVVdx0000sXrz4uOcefPBBKioqWLVqFQDV1dXMnj2bhoYG/ve//3HzzTdjs3kXKKqq\nisfj4eyzz+b555+ntLSUe+65h127dtHT04Pb7WbmzJm8+eabPPzww+zex+yXKQAAIABJREFUvZsn\nn3zS970WL17MihUr+PrXv05jYyP33nsva9euJTo6mu9///tcf/31IxMQjZBzIMQX5fKoPPhhBR+V\ntRGmU1iUE83kJO0fDjcS7H1u3ihsor6zD3dvD7+/dCpnZw59/v9oafsLCgo477zzeOutt5g3bx4A\njz76KFu2bOGZZ5457vXS9muXnAMhguJwZx8fl7fycXkbBxvtRz0XFa4nyWYkyWYkIyacWIthWLbs\n0ykKNlMYNlMYKcd0BvrcHhq7nNR19lLX0Ut9Zx9tDheflLfxSXkbAKmRJs5Ij+SsjEhmptgwhGCY\nfTxzuVyUl5d/4felpaUxceJEtm7desLn77zzTmbMmMETTzyBxWLhH//4B2+88QbgXSx96NCho15/\n5DqMhIQE/vKXvwDw6aefsmzZMhYsWMDEiRO/cD2FGA/63B7uW1fh3aZVr7A4P46sOHOoq6UZFqOe\nK6Yn8n5xCwcb4bdry7npzFSunJ6o2cXVwZSbm4vRePTOW6f6c0vbP7bIGohhpqV5rp29Lv63v5Ef\nvX6QFS/s4/+21nKw0U6YTiEz2sSCiVF8Y24y3zw9lSWT45mTHkm81RiS/b6Neh1pUSZOT4/ksqkJ\n3HRmKt+Ym8z5OdFkx4Rj1CvUdvTy+v5Gfv5uKVc/t5eHPqxgQ0WbZhdnnyotzOEsLi7m/fffx+Fw\n4HK5ePHFF/n0009ZsGBBwNcYGO2cO3cuNpuNRx55BIfDgdvtprCwkJ07vYcndXZ2EhERgcVioaio\niKeeesp3jYsvvpiDBw/y1ltv4Xa7+cc//kFDQ4NvDcTrr7/uG3KPiopCp9Oh00nHcqRJbvBPC7mh\nz+Xhd++Xs6mynfAwHZdO1k7nIVRrIE4kTKewOD+WQ+88gQr839Za/rbpEG7Pqc/gCIaRyA1ms5ll\ny5bxyCOP0NXVRU1NDU8//TSXXHJJwNcYzrZ/wMnafi3kz7FKMusY51FVdtR0cN+6cq75z17+tukQ\nBxrtGHQKuXFmLs6L4btnpfK1aYmcnh5JjNng/6IhoCgKMWYDM1IiuOy0BL47L42rZiQyJ81GjDmM\nrj4375e08rv3y1n+XAF/+qiSzw51nFIDf9dddw3DTzC6qarKgw8+yKRJk8jPz+fxxx/nySefZPr0\n6QFfY+CulU6n4/nnn6egoIDZs2eTn5/P7bffTmdnJwC///3veemll8jIyODHP/4xl19+ue8asbGx\nPPXUU/z2t78lNzeXiooK37A6wM6dO7nooovIyMhgxYoV3H///b55nkKIzzlcHn75XhlbqzswG3Rc\nNiWO9BhtdB60SFEU5mfFsmRSHHoF3ihs4tdry+hxuv2/eZR74IEHsFgsTJ06lSVLlrB8+XKuu+66\ngN8vbf/YJGsgxih7n5v3S1p4bV8jh9p7AVCA9CgTeQkWJidYxtSUn9YeJ8WNdoqbemg64hTRGHMY\nF+bGsjg/joyY8BDW8MRGyzxYMXrIGgjhj8Pl4ZdrStld14XVoOMrU+KPm0YqTq6mvZc3Chvpdank\nxJn5w+Ic4ixf7OabtP1ipMkaCDGoxu4+Xilo4J2Dzdid3qk8NqOe/AQL05KsxHzBRm60iDEbODMj\nijMzomjtcVJ4uJuDjXZae1y8VNDASwUNTEm0cMmkeM7Ljh4Xe5oLIcSxHC4Pv3qvv/Ng1LN0ShyJ\nEdJ5+CLSokxcPTOJ1/Y2Utrcw23/O8h9i3M1eZNKiOEiayCG2UjNc61uc7Dy40pueGE/q/c2Ynd6\nSI00cmFuLN88PYWFWdGa7TwEe65rjNnA2ROj+ebpKSyfkciURAsGvUJhg50/f1LFdc/v5dFNh6ho\n7Qnq9x0uMofTP4mRtkhu8C8UayB6XR5+/V4Zu2q7sBp1mu48aGkNxInEmA1cPSuJJJuBhi4nt79R\nxN76rhGtg7R7/kmMho+MQIxy1W0O/r2jjo/K2lDxTlPKiTUzO81GWtT4vhuiKAopkSZSIk2c7/ZQ\n3GRnd10XDV1OXt/fyOv7G5mZYuNrpyUwLyMK/RC2pBVCCC3rc3n49doydtZ2YjHouGxKvGY7D6OF\nxeDdoemdA82Utzq4++0Sfnr+RBZmDX2bVyG0TtZAjFK1Hb08u7OedSUteFTQK5CXYGFuWgTxVqP/\nC4xjjV197K7r4mCjHVf/Iuskm5GvTo1nyeR4rMaRm94k82BFsMkaCHGsPreH364tZ9uhDl/nIVnW\nPASNR1X5sLSVgvpuFOCW+el87bSEQd8jbb8YabIGYpxr7XHy3M563ipswq2CToEpiRbOmKDdHZS0\nJsFm5MK8WBZmRbPvcBe7ars43NXH41treXZnPXEdZdz/ra+QaBv+jthQOvBCnIh8psSRXB6Ve9dV\nsO2Qd7elS6XzcMpe+ecjLLvpR8c9rlMUzs+JIcIUxqbKdv6++RBN3X3ceEbqSbdBl99TMdKC/Zkb\n0gjE0qVLVavV6tsqKyoqiunTpw/pePexVi4oKOCWW24Z8vV6nG4eePYtPixrxZQ5AwWIaj7ApAQL\n88727sU/MGd0ypyzRlV54LFQff9Js8+kosXBmnUf0WR3EpkzC50CWfZSzs+JYfmXFx337xGsstls\nZu7cucDJj58feGykjrsfjeVjYxXq+oSynJqaitVqZdWqVRQUFPja58TERO64444RGYGQ3DByuWGw\n8vyzF3D/+grefP9DjHodKy5bRGpUuGba/sHKlUWFXHLNNzVTH4D7friCf28qGvT1+w938+qadXhU\n+NrF53PHlzLYsnkT8MXbfn/lgce00vZosSy5wVtWVZW0tLSg5oYhdSBWrlyp3njjjaf8/vFgw4YN\nvkbjVHhUlXUlrTyxrZbm/u1JJ8aEMy8jkqQxMn+1cMcWX0Mcaoe7+nj0qeeIn30hA78ZZ6RHcvXM\nJKYnW4N+8qjT6cTtdhMefvL1KsXFxb6GQJyYxMjL4XCg1+sxGI4fjRzJKUySG/wbam7wx+1R+dPH\nlXxQ0oopTOHSSaPrnAct5YUBK87O59+bivy+rrK1hzcLm3F5VGal2vj1hdnHTY0NpO33R9o9/yRG\n3pGH7u5uzGYzev3xU7RPNTfIGggNO9DQzapPD1HYYAcg0WZg3oRIsuJk3uRwWnF2Po+u28+Omk72\nHe72rZOYmmjlutlJnJEeGdSOxMCJnMHunIjxRVVV9Hr9Sf8gkTUQ44dHVfnLJ9W8W9SMUa/w5clx\nZI6izoNWBdqBAGjo6uO1fY30OD1kxYRz7yU5x61PlLZfDLeBv/HDw8NP2HkAWQMxprT1OHliWy1r\niloAsBr1nJEewYwUmzQ0IyQyPIzzcmI4KyOSXbWd7K7tYn9DN/esKSM3zsw1s5I4Z2L0See3fhFD\nuQMlhBBHUlWVRzcd4t2iZgw6hUvypfMQCok2o++siPJWB7f9r4h7L8lh4hH/FtL2i9FMzoEYZl9k\nr2+3R+XNwia+/XIha4pa0CswK8XGitlJzEyNGLOdBy3v92026JmfGc2NZ6SyIDMKs0FHSXMPf/ig\ngu+uPsD60lbcnuFdDBeK/eJHG4mRtkhu8G84PrOqqvL4lhreKGwiTKdwcX4sWXGjs/Og5bwQqKjw\nMJbPTCQ5wkhjt5P/740i9tR1Bu360u75JzEaPkPqQIjgKWmyc/sbRTyysZrOXjcTok1cPTORc3Ni\nMMmpySPq8ht/eNxjxjAdp0+I5MbTUzg3OxqrUU9lm4P711fwndWFvF/cMuwdCSGEOBlVVfnX9jpW\n721Ep8BFuTHkxst012A6UW7wx2zQc8W0BLJjw+nu83D3O6V8UNIyDLUTYmTJGogQ63G6eeazOl7d\n14hHBZtRz/yMSKYkBX/Brgget0elsKGbrdUddPa6AUiLNHHd7CQuyImVQ+mE5sgaiLHt2R11PLOj\nHp0Ci3JjmJpkC3WVxBE8qsonZW3sqvOeVv2t01O4ZmaS5HkRcrIGYhTaWt3OIxuraehyogDTk6yc\nPTGKcBlx0Dy9TmFaso0piVYONHaztaqDmo5e/vhRFc/tPMx1s5JYlCsdCSHE8Pvv7nqe2VGPApyf\nHS2dBw3SKQrn5sQQGR7Gx+VtPLW9jvrOPm5dMIEwyRNiFJI1EMPsRPPv2nqc3L++gnvWlNHQ5STR\nauCKaQlckBc7LjsPo3muq16ncFqSjRtOT+GivFgiTXpqO3r508dVfPvlQtYWNw95apPM4fRPYqQt\nkhv8C9ZndnVBA09uq0MBzsuOYVpKRFCuG2qjOS8MZnZaBF+ZHIdegXcONvPzd0vo7HWd0rWk3fNP\nYjR8ZA3ECFJVlfeLW7jp5ULWl7Zi0CnMmxDJ1bOSSIuW3RhGM52iMDXJyg2np3DxER2JP35UxU0v\nyxoJIUTwvbavkce21ADwpawoZqTKyMNokBtv4coZiZgNOnbVdnH7/4qo7egNdbWE+EKGtAbilltu\nUdva2uS00QDKDV193P1/r1HY0E1kzizSo0ykdRYRFW4I+emaUg5+2aOqrFn3MYWHu9BnzADAVL+P\nC3Nj+eHyJeh1iqY+n1Iee+VQnkQtuWH4yxsq2ljnSAMgs7uYSQlWTbR9Ug68nDZ1Lv/b30h5wXYs\nBh0Pf/8KpifbNPH5kvLYLWviJGpZKOefqqq8c7CZx7fUYHd6CA/TcVZGJDPlTAfNeuWfj7Dsph8F\n5VoeVeVAg51Pq9p9i63To0xcPzuZ87JjZI2EGDGyiHrseH1fI49uPgTAOZlRzJ0QGeIajQ/BzA0D\nel0e3jnYTGWrA71O4daz0/ny5Pigfg8hBnOquUHWQAyj+s5evrHyBf6yoRp7/2mU18xKYtYYPtPh\nVGhtruurT/4taNfyTW2am8KFeTFEmPQcau/lwQ8r+c7qQj4o8T+1SeZw+icx0hbJDf6d6md2vHQe\ntJYXILi5YYApTMfSqfHMSrXh9qj8ZUM1j26qxhXAlFdp9/yTGA0f2YVpGHhU74Fw/9xaS0NzD8kJ\nOuZnRnGabM06bg0stp6c4N21aUtVh68j8dzOeq6blcz5OTIiIYQ4uZcLGni8f83DWO48jDc6ReHc\n7BjirQbWlbTy+v4mKlsd/GJRFlHh8mea0CaZwhRkdR29/L9Pqtjdv9dzTqyZc7OjiZBGYNRYcXY+\n/95UNKzfw+1RfR2JgalNqZEmrpuVxAW5sbKtnwg6mcI0uj23s56nP6sDYOHEKOakS+dhpI1Ebqjr\n6OWNwiZ6nB4SrAZ+dWEWkxKsw/o9xfgWkilM4nMeVeW1fY3c/MoBdtd1YTHouCg3hkunxkvnQRzH\nt/3r3OO3f/3Wi/t560ATfW5PqKsphAgxVVV5alstT3/m3ar13Kxo6TyMYSn9N5KSbEYau538f28U\n886BplBXS4jjyBqIIKhp7+Unb5Xw982H6HV5yI0zc+2sJKYm2zQ5j1NrxnOM9Lojtn/9/9m79/im\n6vvx46+TNGmT9ELvhULpnftdBQSvCKJTvAAqOq9TJ8552eZ187vpvM55/QlsTp1MFHXg5mVDRXRg\nuUmBQqEg5dbS+wV6b5omOb8/0kYKpQltbm3fz8f6GKdJTj59e/J553M+t8woBoQEUd5g4dWsI9zy\nUR7/3l3Jt2vX+buYAU/GuQYWyQ2uuXPN2lWVv2wqZvmOcjQKXJgeyfjEvrHPgyv9OS+EBgcxb2wc\nYxJMWO0qL2cd4cV1BZitHW8qSb3nmsTIe+TWeA/Y7Cqf5FXy9y0ltNhUTHoN04dGMFx2Ae3Vrrrt\nHp+/p0ZRGBFnYliskf1VzWwurKWqsZXFG4uwHzlM+YBMLh8Ri0nf/zYaFKI/stpV/ry2gG8OHEOr\nwIz0SEZIbvErX+aGII3ChelRDAwLZs3+o3y57yh7K5r43YxkhkYafFYOIU5F5kB0U2GNmZfWFZJX\n0QhARoyBc1MGEBosbTLRc6qqcqC6mc1H6qhqbAXApNcwZ0QsV46KJdKo83MJRW8jcyB6j+ZWG0+t\nOcyWojr0WoVZmVGkRRv9XSzhJ5WNFv67p5oasxW9VuGX04YwKyNKFmURHtHd3CDfdk+Tza7yz9xy\n3t1WRqtNJVSvZVpyBMPjZJKT8BxFUUiPMZIWbaCwpoXNhbWU1ltYvqOcFbsquDgjmnlj4xgUHuzv\nogohPKjObOX/vjpIXkUjRp2GS4ZFM3hAiL+LJfwo1qRnwYR4vt1/jL2VTby4rpDsojrunTaEMLlp\nKfxE5kCchv1VTfzykx94e0sprTaV4bFGrp8Q32XjoT+P43SXxOjUFEWh6dAOrhkXzzVj40iODKHV\npvL53ipu+2cef1xziD1tvWD9mYxzDSz9LTd0R2fXbHGtmfs+3UdeRSPhwVquGBXTbxsPkhc60ms1\nXDwsmpkZjlX61h6sYd6zy9lWXOfvogU0yQ3e06Om69q1a8nOznZuhx0REcGYMWMCZrtuTx2fOeVs\nlm0v461/fYldhcEjJ3FO8gBaj+RyOLfr7eoL9u3p8Xb3ff24XaCUJ9CO29XszyETmD5xItlH6sje\nvIH/7IfvDo1nVLyJzJaDjIozce655wCB8/mRY/8cL1myhNzcXGf9HBcXx4wZM/CF/pIbenKcm5vb\n4fhAdTOf1sVT32JDU7yL0UkRxIUOAgKnLvLlseTOzo9HxptoPJjD9yX1HG2x8siqA4y1HeaSYdHM\nOP9cIDCubzkO3GNP5QaZA+HC9pJ6Xss6QnFdCwowKsHE9OQIgoNkMqvwr4YWG9tL6tlV1oDF5vgc\nx4fquXJULLOHRcuEa9GBzIEIXF/nH+Wl7wqx2lWGDghh9vAoQiTHiC7YVZXsono2FdaiqpAQpueB\n6UlM6CerdAnPkX0gPKymuZU/rS3g4f/up7iuhShjEFeOimFGepQ0Hvq4j998zd9FcEtosJZzUgbw\ns7MGcW5KBGHBWsobLPx1czHXL9/F6xuOUHCs2d/FFEKcgtWu8pdNRfxpbQFWu8roeBNzRsVI4yFA\nBVJu0CgKZw0J57px8UQbdZTVW3h41X5eWldIfYvV38UT/YDMgTiBXVVZ9UM1P1uxh6/zjxKkUThj\ncBgLxsWT1I2l02Qcp2uBFqN/vf26v4vQgav46LUaJiSGc8sZA7l8RAyDwvU0t9r5NK+KO1bu5cH/\n5PPdoRqs9u73NgY6GecaWPpibvC0VV//j0f+u5+Pd1WiUWD60AhmZEShkZV1gMDLCxCYuSEuVM+C\n8fFMTQpHo8AX+6r52T/38NW+auw9GGHSV0hu8B6Zvn+c/Kom/t/6I+ytbAJgSEQw56YMICZU7+eS\nCeGaRlFIjTaQGm2gqtHC9pJ69lU2s6O0gR2lDUQZgrg4M5pLhkeTECarNwnhL3sqGnkl6wjq4AhM\nei0XZUSSLGv7i27SahTOSoogPcbI6vyjlNVb+PO6Qv67t5pfThssSwALr5A5EDiWzXtnayn/2VOF\nCoTqtUweEsaohFBZZ7kfuvHsTN7dsM/fxfCIFqudvPIGdpY2UmN2dGsrwMTEMC7OjObsoRHog2Qk\nY38gcyD8z2ZX+XBHOf/YVopdhYFhei4eFk1EiNzL6w16Q25QVZW9FU18d7iG5lY7GgVmD4vmxokD\niZb9g0QnZB+IbrDaVT7Lq+TdbWU0WGxoFBgTH8rUoeGE6GQMquj9goMcw5vGDwqjpM7CjtJ6DlY3\ns7W4nq3F9YTqtZyfFsnMjCiGxxqlwSyEl1Q0WHj+fwXkljUAMDYhlHNSIgjSSgNeeI6iKIyIN5Ea\nbWBjQS07Sxv4795q1uw/xtzRscwfGy8LbAiP6JdzIFRVZVNhLXeu3MOSTcU0WGwMiQhm3tg4LkiP\n9GjjIRDHcQYaiVHXPBEfRVFIjAjm0uEx3H7WIM5LHUCMUUeDxcbne6q479N93PrPPby7rZTi2hYP\nlNq3ZJxrYOmtucEbVFXlq33V3PXxXnLLGjDptfxkeDQJdfuk8dAFyQuudRWj4CAN56dF8tOJCaRE\nhtBitfN+Tjm3fLSbj3aU09xq82FJ/Udyg/f0ux6I3eUNvPV9CbvKHZtvRRqCmDwknEy5+yraXHXb\nPf4ugleF6LSMHxTG+EFhVDZa2F3WwL6qZkrqWnh3WxnvbisjI8bAeamRnJsyQOZLCNFNJXUtvJpV\nyPYSR69DcmQIM9IjCQ0OYk+hnwsnTltvzA1RRh1zRsVSUtfCuoM1lDdYeHNLCR/tLGfumDjmjIyV\nHgnRLf1mDsSho828k13KxsJaAAw6DeMHhjIxMUzuAol+z66qHKlpIa+8gUNHzbQet2LTsFgj05Ij\nmDZ0AEP66a64fYHMgfAdi83Ox7sqWLatDItNxaDTMCUpnDEyr074kaqqFNaY2VhQS3lDKwBGnYZL\nh8dwxchY4sNkwZj+qLu5oUcNiIULF6o1NTUBvdtoca2ZvfpU1hfUUncghyCNwvTp0zhzcDiHcrOB\nwNhdUo7lOFCOM8adyeFjZtat+46yhlZMqeMAqDuQQ3yonstnns/kpAiO7duORqME1OddjrvebfTX\nv/61T7699obc4I3jadOmse5QDc+/9x+ONrUSnjaezBgD8bX7MOi0fv9sy7EcA+Rt3URFYyuVEZmU\n1FuoO5CDRoFLZ5zPnJEx1O7PQVGkbu+rx57KDT1qQLz44ovqbbfd1u3Xe4uqquwub+SjneVsKqwD\nIEijMDzWyFlDwgnz4YoXe7Ztdn5oReckRl3zZ3xabXYKjpnJr2qi4JiZFtuP9UVYsJZJiWFMGhzO\nxMQwYk3+u3uVlZXlrBxF53zZAxGoucGbcsscw2PzKhzDY6ONQUweEkFGbOdLaEq91zWJj2ueiFF5\ng4WtRXUcqG6mveM5MTyYS4ZFMzMjishevnKT5AbXZBUmHKsqfXeoho93VfBD214OQRqFEXEmzhgc\nRrgslSfEadFpNaTHGEmPMWKzq5TUtXCgupnDx5qpNdv438Ea/newBoCkASFMGBTGuIGhjBkYKktT\nij5PVVWyi+pZnlPmnFdn1GmYlBjG+MQw2RROBLz4UD2XDo+hocXKztIG8sobKa5r4c0tJbydXcLE\nxDDOT41kWvIAmSshOugTcyAqGix88UM1X/xQTVWTY1yfIUjD8DgjExPDCA2WLzJCeFpNcyuHjpo5\nfKyZ0jpLh3kTACmRIYxKCGVknIlR8SYSwvQy/tuPZA6E57RY7aw9eIxP8irJr2oGICRIw8g4Ry93\nsCwDLnopu6pScMzMztIGCmvMzl4JnUZh0uAwpiRFMHlIBNGm3t0zIX7U73ogzFY7mwtr+WrfUbKL\n6mj/6hJpCGJUvIkxCSb0QVKJi9P38ZuvcfXt9/q7GAFvgEHHhEQdExLDsNlVyuotFBxrpqi2hYpG\nC4eOmTl0zMzne6oAx2czM8bIsFgjmbFGMmOMDDBIEhK9x+FjzazaW83q/KM0WBzLYBp1GkYnmJg4\nKEwaDn1cf8gNGkUhJcpASpSB5lYb+6ua2FvZREmdhU2FdW3Dwo+QEWPgjLY9hkbGmwiWDUn7nR41\nIHJycvDlXSaz1c624jrWHqxhY0EtZqsdAK0CKVEGRsSZSIkKCai7nDKO07VAi9G/3n49oJJEoMWn\nM1qNY5+JxAjHkq9Wu0p5vYWiWjMldS1UNLRyrNnK5iN1bD5S53xdlDGI1CgDadFGkiNDSI4MYXBE\nyGknIxnnGlh8nRu86fCxZtYdrOG7QzUU1Jidv48P1TM81sCo+FB03fjy1Bs+1/4UiPHpb7nBoNMy\nZmAYYwaG0WixcbC6if3VzZTUWcivaia/qpnlO8rRtQ0VHxlvYkSciRFxgXNzSHKD9/SoAbF//35P\nlaNTqqpSXNdCdlE93x+pZUdpA63HTeKMD9WTGhXC6AQTRn1gdqYU7NsTcJVgoJEYda03xifohAaF\nqqrUmK2U11soqWuhsqGV6qZWjjZZOdpUT3ZRvfO1GgUSwvQkhocwuO0cg8KDSQjTExeqR9/Jssu5\nubmSJFzIyclhxowZPnkvb+cGb6o1W8kpqWd7ST3bi+sprbc4HwsJ0pASFcLoeBODInq2pHFv/Fz7\nksTHNV/GyKT/sTHRarNTVNtCwTEzRbUtVDe1srOsgZ1tu6xD2/ezaANpUQZSow0MHRDCwPBggjS+\nvcErucG17uaGHn3rbmxs7MnLTz6fxcaho83sq2piV1kju8sbONZs7fCcuFAdQweEMCLO1CtWB2hq\nqHP9pH5OYtS1vhAfRVGINOiINOgYHmcCHI2KWrOVygYLZQ2tHG1qpabZSq3ZSkmdhZI6C1uKTjgP\nEG3UEReqJ9akI8akIzZUz47D5ewsrSfK6HgPo04TUD2RgWDHjh0+ey9P5wZvUFWVY81WjtSYya9u\nJr+qiR8qmyip67gTe0iQhqGRIaRFG0iNMqD10BegvvC59iaJj2v+ipFOq3EOcwJobrVRUmehuNZM\nWb2FysZWyhsslDdY2FhQ63ydVoGB4cEMiQghIUxPQpie+DA98aF6oow6IkKCPL7wQG1tresn9XPd\nzQ0+vW1vs6vUma0ca7ZS0WihrN5CWX0LJXUtHDpqprzBctJrjDoNA8OCGTIgmPRoAyaZEC1En6Ao\nCgMMOgYYdGTE/vh7q12lttnKsWZHL8WxZiv1Ziv1FhsNLTaqmlqdiyW0Kz5Uw8H//HjXW6dRCA8J\nIiIkiPAQLWHBQYTqtYQFazHpHT9GnRajXoMhSEuITkNIkIYQnYZgrYbgIMePVkEaIr2QxWanocVG\nrdlKfYuVGrOVqsZWqhpbqWzLPUdqzDS12k96bZBGISFMz8AwPUMjDQwM18tqSkJ0waDTkhZtIC3a\n0aCwqyo1zVYqGhyfteqmVmqbHXV4UW0LRbUtnZ4nSKMQZQxiQIijMRFhCCIiWEtocBBhwVpC2+pu\ng06DQafFqNMQEqQlOEghOEhDkEaR+tqHevRtvKysjGe/PQw47ubYVUfyt9lVrHYVs9VOc6sds9VG\no8VOndlKV2s+aRXHtutRBh0JYXqSIoOJNOh69QVRWVrs7yIEPInf8Pg2AAAgAElEQVRR1/pbfII0\nCtEmHdEmHeknPGazqzRYbDS0WKk126hr+4JY2VhJQqieplYbza12Wu0q1U2OBkhPKIBeq6DTatBp\nFYI0CjqtglZx/Fvb/qMoaDQ4/l9R0GpAQUGjOCYl4vgfjpvXCm2/Qjn+jdr+z1V91xtqw7KyMp5r\nyw1d6SwfqKr64+9VsKlt+QWw21VsqorN7rgWWu12LDYVi9Xx/+3//a1291YXDA7SEBkSxABDELEm\nHYkRwcSY9B7rZehKf/tcny6Jj2uBGiONoji+yxl/7HEGx75CNW03h441W9vqbxuNrTaaLHbMVjsV\nDa1UNHSv3tYojptH+iANOo2j3t6xbicH0ve01dWOOlqrcdTT7fXz8fW10nbTqL1+Vrqos9v/3Rfq\n7O7oUQMiLS2Nsn+/7DweN24c48eP72GRLG0/bV3gzT08nZ9dOWMaA5sK/V2MgBZoMfr6668hgMoT\naPEJCLq2nzDH4di5Mxif2fldrZ5TgZPvVAe6nJycDl3TJpOpi2d7VlpaGqUezw3eYGv7Oe7aMZ/q\nuZ4ln+uuBWJ8JDf0XJIGMLX9eEXH+jpn3kWMT+3lXyQ9zFO5oUf7QAghhBBCCCH6F1m4VwghhBBC\nCOE2aUAIIYQQQggh3CYNCCGEEEIIIYTb3GpAKIoyW1GUvYqi7FMU5eFTPOc1RVHyFUXJURQlEGfL\neZWrGCmKcr2iKDvafrIURRnjj3L6izvXUNvzzlQUpVVRlKt9Wb5A4Obn7HxFUbYrirJLUZRvfV1G\nf3PjcxauKMqnbfVQrqIot/ihmH6jKMpbiqKUK4qys4vneKSulrzgmuQF1yQ3uCa5oWuSF1zzSm5Q\nVbXLHxyNjP3AUBzrnuQAw094ziXAf9r+PRnY5Oq8fenHzRhNASLa/j27P8XInfgc97w1wOfA1f4u\nd6DFCIgAdgOJbccx/i53AMboUeDZ9vgA1UCQv8vuwxhNB8YDO0/xuEfqaskLHotRv80L7sbouOdJ\nbpDc0N349Ou80PZ3ezw3uNMDcRaQr6pqgaqqrcAHwBUnPOcK4B8AqqpuBiIURYl349x9hcsYqaq6\nSVXV9i0RNwGJPi6jP7lzDQH8ElgBVPiycAHCnRhdD6xUVbUYQFXVKh+X0d/ciZGKc3FXwoBqVVWt\n9BOqqmYBx7p4iqfqaskLrklecE1yg2uSG7omecEN3sgN7jQgEoEjxx0XcXIld+Jzijt5Tl/mToyO\ndzuwyqslCiwu46MoyiDgSlVVl9B3913pijvXUCYQpSjKt4qibFEU5UaflS4wuBOj14GRiqKUADuA\n+3xUtt7CU3W15AXXJC+4JrnBNckNXZO84BmnXV/3aCM5cfoURbkAuBVHd5L40SvA8WMX+2OicCUI\nmAhciGMbno2KomxUVXW/f4sVUC4GtquqeqGiKGnAakVRxqqq2uDvgglxKpIXuiS5wTXJDV2TvOAF\n7jQgioGk444Ht/3uxOcMcfGcvsydGKEoyljgDWC2qqpddSX1Ne7E5wzgA8WxJ3wMcImiKK2qqn7q\nozL6mzsxKgKqVFU1A2ZFUdYB43CM/+wP3InRrcCzAKqqHlAU5RAwHMj2SQkDn6fqaskLrklecE1y\ng2uSG7omecEzTru+dmcI0xYgXVGUoYqi6IHrgBM/uJ8CNwEoijIFqFFVtdzdUvcBLmOkKEoSsBK4\nUVXVA34ooz+5jI+qqqltPyk4xrre3Y8SBLj3OfsEmK4oilZRFCOOiU57fFxOf3InRgXARQBt4zcz\ngYM+LaX/KZz6Lq2n6mrJC65JXnBNcoNrkhu6JnnBfR7NDS57IFRVtSmKcg/wFY4Gx1uqqu5RFOXn\njofVN1RV/a+iKJcqirIfaMTR2us33IkR8DgQBSxuu5PSqqrqWf4rte+4GZ8OL/F5If3Mzc/ZXkVR\nvgR2AjbgDVVV8/xYbJ9y8zp6CnjnuKXqHlJV9aifiuxziqK8D5wPRCuKUgj8HtDj4bpa8oJrkhdc\nk9zgmuSGrklecI83coOiqv3u8yiEEEIIIYToJtmJWgghhBBCCOE2aUAIIYQQQggh3CYNCCGEEEII\nIYTbpAEhhBBCCCGEcJs0IIQQQgghhBBukwaEEEIIIYQQwm3SgBBCCCGEEEK4TRoQQgghhBBCCLdJ\nA0IIIYQQQgjhNmlACCGEEEIIIdwmDQghhBBCCCGE26QBIYQQQgghhHCbNCCEEEIIIYQQbpMGhBBC\nCCGEEMJt0oAQQgghhBBCuE0aEEIIIYQQQgi3SQNCCCGEEEII4TZpQAghhBBCCCHcJg0IIYQQQggh\nhNukASGEEEIIIYRwmzQghBBCCCGEEG6TBoQQQgghhBDCbdKAEEIIIYQQQrhNGhBCCCGEEEIIt0kD\nQgghhBBCCOE2aUAIIYQQQggh3CYNCCGEEEIIIYTbpAEhhBBCCCGEcJs0IIQQQgghhBBukwaEEEII\nIYQQwm1BPXnxiy++qI4fP95TZemTcnJykBh1TWLUNYmPaxIj13Jycvj1r3+t+OK9JDe4Jtds1yQ+\nrkmMXJMYudbd3NCjBsSOHTu47bbbenKKPu+rr75i4sSJ/i5GQOsqRsW1Lby6vpCckgYA9FqF1GgD\nwRoNWg2gKBysbqbGbHU+fufkROaMjPVV8b1OriHXJEauLV261GfvJbnBNblmuxZo8VFVlVs+yqO0\n3gJAlDGIP12SQVJkiN/KFGgxCkQSI9e6mxt61IAQwpsOVDfx6KoD1JitBGsVRsabOGNwOEa9tsPz\npidHUFjTwrbiOgprWnh9QxGldS3cMTkRjeKTG65CCCH6sCO1LZTWWwgJ0hBtDKK4zsKvPt/Hs5ek\nkxFj9HfxhPC5Hs2BKCsr81Q5+qzCwkJ/FyHgdRaj3eUNPPif/dSYrQyOCOamMwZybmrkSY0HAEVR\nGBoZwlWj45iVEYVGgZW7KnlqzWFarHZf/AleJdeQaxKjwCK5wTW5ZrsWaPH5vrAWgCERwVw5Kpbk\nyBDqWmw89N/91LX1gPtaoMUoEEmMvKdHDYi0tDRPlaPPGjNmjL+LEPBOjNHWojoeWXWABouNlKgQ\n5oyMwag7ueHQmRHxJq4cFYteq5B1uIYH/5NPk8XmjWL7jFxDrkmMXBs3bpzP3ktyg2tyzXYt0OKz\n+UgdAEMiQwjSarhsRAxxJh2NFhu7yhv8UqZAi1Egkhi51t3coKiq2u03XbNmjSpjy4Qn/VDZyK8+\ny6fVrpIZY2RWZiRazem3c6sbW/n37koaLDamJUfwfzNSUGQ4k+jHtm3bxowZM3zyIZDcIPqShhYr\n85flYgfuOGsQhrYbWusP15BdVM+8MXHcOTnRv4UUopu6mxtkDoQIGPUtVp5ac5hWu8rwWCOzMqO6\n/aU/2qTj6tGxfLCjnPWHa/lgRzkLxid4uMTusdlsmM1mAGnECK9RVRWtVktIiP8mdQrRF20trsem\nwqBwvbPxABAfqgccQ247I3W/8Lf2ToKQkBC0WvdGcrirRw2InJwcmd3uQlZWFtOnT/d3MQJaVlYW\n06ZN48/rCilvsBAfqufC9MgeV7iRRh0XD4vms7wq3skuJS3awFlDIjxUavfYbDaam5sxmUzd/nvy\n8/PJyMjwcMn6FomRg9lsprW1FZ1O59dySG5wTXJD1wIpPpvb5j8MDu/YOE8IczQgDh01Y1fVDot2\neKLud0XqPdckRo5GRGNjIwaDwaONCNlITgSElbsq2VhQS0iQhpkZkei0nrk0U6MMTEkKRwWe+eYw\nxbVmj5zXXWaz2asJRIjjhYSEYLFY/F0MIfoMm11lS1E9AOkxhg6PhQYHYdJrMVvtlNS1dHhM6n4R\nKBRFwWQyOXvDPKVHPRCyOYdrgXIHJZBFZ07g6c/2AXBuSgTRJr1Hz3/WkHAqG1o5cLSZJ74+xKIr\nh3msgeKOniaQ/n73xB0So8Cyf/9+7r77bpKSkgCIiIhgzJgxzvowKysLoN8ftwuU8gTacSDE54fK\nJo7sziZUryFm2qUA7Nm2GYAREyeTEKpn+5aNrFhVyv3XXep8vdFodPbC5efnAz/WU3Lsu+OMjIyA\nKo8/jwcNGgTAkiVLyM3NddbPcXFxzJgxg9Mlk6iFX7VY7dy5cg+l9RZGJ5iYkR7llfexWO28n1NG\nrdnGzZMSuGHCQK+8z4mampowGmWNcOE7p7rmZBK1EKfv71tKWL6jnFHxJi7KODk/bTlSx4aCWi4Z\nFs0D5yQ5fy91vwg0ns4NPeqBePXVVzGZTHKXqYvj3NxcFi5cGDDlCbTjL/dV80P+UVLGnEl8zQ/s\n2aZhxMTJQMe7PD091gdpSGk6wLpDNSzTTOCclEgKd2V7/e/zxF2o9t8Fyl2MQDw+MVb+Lo8/jxMT\nHavBeOouU3fIHAjXAmmMfyAKlPi0L9+afIodp+Pb5kHsqWj0WZnayfh+1yRG3tOjHogXX3xRve22\n2zxYnL4nUCrBQFRca+bOlXupzt/OTZfPYGiU9+/WrM4/Sl55IyPjjLx0eabXd6r2xF0of1WAv/jF\nL0hMTOSxxx7z+XufLkkSPwqEHgjJDa5JbuhaIMSnqtHC9ct3o9Mq3Dk5kSDNyR+fFqudv2wqRquB\nT28e5xwe64seCG/Ve72p7ndFcsOPPJ0bejQQXOZAuObvCjBQqarKoo1FtNpVzph8tk8aDwDnpAzA\nqNOQV9HEf/dW++Q9e0oqP9faY3T55ZczaNAgkpKSSEpKYvLkyR2et3btWiZPnsyQIUO48sorKSoq\nOuU558yZw7Jly7xa7r5KcoNrkhu6Fgjxya9qBhzLtXbWeAAIDtIQaQjCZodDx3y7SIfkhh+dqu5v\nj5Gruv8Pf/gD6enpZGRk8MQTT5zyfY4cOUJ0dDR2u917f0wvIaswCb/4rm0DnpAgDdOTfbe0akiQ\nhvPTIgF4Y3MxVY2yYo0/2Wye3SVcURReeOEFCgsLKSwsZPPmzc7Hjh49ys0338zvfvc7Dhw4wLhx\n45C75EKIUymocTQgBoR0Pdq7fT+IPeW+H8bUWwVS3f/OO++watUqsrKy+O677/jiiy945513On0f\nVVVRFIWejN7pK3rUgMjJyfFUOfqsE1eTENBksfGXjcUAnJEYRlHeVp++f3q0gdQoA2arnSVt5Qhk\nx4/v97R9+/YxZ84cUlJSmDZtGl988UWHx6urq7n66qtJSkpizpw5He7aPPbYYwwbNoyhQ4dyzjnn\nsHfvXgAsFguPP/44Y8eOZcSIEfzmN7+hpcWxxOH69esZPXo0r732GiNGjOCXv/wlU6ZMYfXq1c7z\n2mw2MjMzyc3NBWDLli3Mnj2blJQUzjvvPNavX3/S33F8jE5VsX/22WeMGDGCyy+/HL1ez8MPP8zu\n3bvZv3//Sc99+umn2bhxIw8//DBJSUk88sgjAGzevJmLLrqIlJQULrroIr7//nvna95//30mTpxI\nUlISEydOZOXKlQAcOnSIyy+/nOTkZDIzM7n99ts7xP/qq68mLS2NyZMn8+9//9v52OrVq5k6dSpJ\nSUmMHj2aRYsWdfp3BSLJDa5JbuhaIMTn8FFHj0KkoesGRPt+ELllnW8o5y09yQ19pe4/Xmd1f35+\nvsu6/4MPPuAXv/gFCQkJJCQkcM8997B8+fJO3+Oyyy4DICUlhaSkJLKzs1FVlT//+c+MGzeO4cOH\n84tf/IK6OsfcmZaWFu666y7S09OdeaOqqgo4dc4AWLZsGVOmTCEtLY358+e7FX9fkx4I4XMf7Cin\nqqmVuFAdEwaH+fz9FUXhvNQBaDWOnpC8fnrXyGq1cv311zNjxgzy8/N57rnnuPPOOzlw4IDzOStW\nrOChhx7iwIEDjBo1ijvvvBOAb775hs2bN5OdnU1BQQFvv/02UVGOFUr+8Ic/cOjQIbKyssjOzqa0\ntJQXXnjBec6Kigpqa2vZuXMnL7/8MvPmzWPFihXOx9esWUN0dDRjxoyhpKSEBQsW8OCDD3Lo0CGe\nfPJJbr75Zo4ePXrKv+uPf/wjmZmZXHrppR0Szt69exk9erTz2Gg0kpKS0mnl+9vf/papU6fy/PPP\nU1hYyHPPPUdNTQ0LFizgrrvu4sCBAyxcuJDrrruOmpoampqaePTRR1mxYgWFhYV88cUXzvd65pln\nuPDCCzl8+DC7du3ijjvuABzjUefOncs111zD/v37eeutt3jwwQfZt8+xpPF9993HK6+8QmFhIRs2\nbODcc891/z+uEKLHCmocDYi40K6XFm+fSP1DZZPXy+QJUvd3rPtPfHz06NGn/FL+n//8B4CCggIK\nCws544wzeO+99/jwww/5/PPP2bZtG/X19c6bTsuXL6e+vp7du3dz8OBBXnrpJUJCQrrMGf/97395\n9dVXWbZsGfn5+UydOtV546mr+PuazIHwskAYxxlIqpta+deuCgDOHhqBRlGcqyb5UnhIEBMTwwFY\nvPFIQHdHemuca3Z2Nk1NTdx3330EBQVxzjnncPHFF3e4CzJr1iymTJmCTqfjd7/7HdnZ2ZSUlKDT\n6WhoaOCHH35AVVUyMjKIi4sD4N133+Xpp58mPDwck8nEfffd1+GcWq2WRx55BJ1OR3BwMHPnzmXV\nqlXOTW5WrlzJ3LlzAUcSmzVrlnP1oPPOO4/x48d3uGt1fIz+8Ic/sG3bNnbv3s1NN93EggULKCgo\nAKCxsZHw8PAOrwsLC6Ohwb27hl999RVpaWnMmzcPjUbD3LlzycjIcN6502q15OXlYTabiYuLY9iw\nYQDodDqOHDlCSUkJer3eOTb3yy+/ZOjQoVx33XUoisLo0aO5/PLL+eSTT5yv27t3L/X19YSHhzNm\nzBi3yhkIJDe4Jrmha/6Oj82uUtjWgIh10YCIMenRKFDeYKHJ4tmhOV3pbm7oS3V/u1PV/RkZGS7r\n/hMfDwsLo7Gx6xuLx39nWLlyJXfffTdDhgzBaDTyf//3f3z88cfY7XZ0Oh1Hjx7lwIEDKIrC2LFj\nCQ0Ndcajs5zxzjvvcP/995Oeno5Go+H+++9n165dFBUVdRl/X5MeCOFT720vo8WmkhIZwtBIg+sX\neNEZiWEYdRr2VTWz7lCNX8viD6Wlpc6NZdoNGTKE0tJS53H7kqAAJpOJAQMGUFZWxjnnnMPtt9/O\nQw89xLBhw/jVr35FQ0MDVVVVNDU1ccEFF5CamkpqairXXHNNh7tG0dHR6HQ653FKSgrDhg3jiy++\noLm5mVWrVjF//nzAMWHt3//+t/NcKSkpfP/995SXl3f6N02cOBGTyYROp+O6665j8uTJzoRjMpmo\nr6/v8Py6ujpnZe5KWVkZQ4YM6TReRqORt956i7fffpsRI0awYMEC5/CCJ554ArvdzsyZM5k2bRrv\nvfee82/Lzs7u8LetWLGCyspKAJYuXcrq1asZN24cc+bMYcuWLW6VMxCsWLGCu+++m+eee47nnnuO\nJUuWdBiSkpWVJcdyHNDHn67+llabSqhey8GdW5zLgoNjifDjj/Nzvkcp3uX4d1UTWVlZHe5g5+fn\ndxhu5O/j7du3Ex0d3eFxk8nkrPvr6uo6rNZTUlJCWFiYs+6/4ooruPfee511/44dO/j++++ddX9y\ncjLJycnOuj8/P5+ioiJn3d9enva6/5133iE3N9dZ9+fn55Obm+us+5OTkxk6dKiz7u/s7wsLC3PW\n/ZMmTWLMmDHOur+1tZUjR450eH5VVZWz7jcYDOTl5Tkf37VrFwaDocPzTxwudvxxQUEBGs2PX6db\nWlpobW2loqKCa6+9lnHjxnHjjTcyatQonnjiCfbu3UtxcbEzZwwbNow5c+Y4h1QdOHCAhx9+uENu\nUFWV0tLSU8b/dP77L1mypEP93N0hp7KMq5cFwlJ0gaK4toXbV+RhV+HacXHEhwUDjsrYH70QALvK\nGliz/xgxJh3vzB+JPsizbepAXsZ106ZN3HbbbR0qzjvvvJP09HQeeughfvGLX2CxWPjb3/4GQEND\nAykpKezYsaNDw6O6uppbb72VqVOn8sgjj5CUlMSWLVtISEg46T3Xr1/PXXfd5Rzj2m7JkiVs2LCB\nK6+8kr/+9a989dVXALzyyisUFBTw8ssvd/m3nCpG11xzDTNnzuSOO+5g6dKlfPDBB6xatQpw3HXK\nzMxk7dq1pKenn/TaK664gvnz5/PTn/4UgI8++og33niDr7/+2vmc2bNnc8stt3Ddddc5f9fS0sJT\nTz3Ftm3bnN3d7TZt2sTVV1/Nhg0b2Lp1K++//36HO3SdsdlsvPHGGyxevPikuHVGlnHtHSQ3dM3f\n8ck6XMOTXx9iSEQwV49xfYf32wPH2FnawC2TBnL9hISAXsa1L9X9p9Je959//vls2LCh07p/3bp1\npKWlMXv2bG644QZuvPFGwNGTsmzZMr788suTzltUVMT48eOpqKhwNhquuuoq5syZw6233grA/v37\nmT59OiUlJR0aFkVFRcyfP5977rmHG264wfn79pyxfft2Pv/8c+bNm8eCBQucvTGncnz8H330UZcx\nCahlXIU4HUu3lmBTITPW6Gw8+NvIeBPRRh1Vja38a3eFv4vjU5MmTcJgMPDaa69htVodG/t9+WWH\nSmv16tVs3rwZi8XCM888w5lnnsmgQYPYvn07W7duxWq1EhISQnBwMBqNBkVRuPHGG3nsscecE8VK\nSkr45ptvuizL1Vdfzbfffsvf//535s2b5/z9/Pnz+fLLL/nmm2+w2+2YzWbWr1/foZekXV1dHd98\n8w0tLS3YbDb++c9/smnTJmcX+GWXXcbevXv5/PPPaWlp4U9/+hOjR4/utPEAEBsb6xz+BDBz5kwO\nHjzIypUrsdlsfPzxx+zbt4+LL76YyspKVq1aRVNTEzqdDpPJhFarBeCTTz6hpKQEcGy2qdFo0Gg0\nXHzxxRw4cICPPvoIq9VKa2sr27dvZ9++fbS2trJixQrq6urQarWEhoY6zweOXpwNGzZ0GVMhRPcV\ntC3JOsDFBOp27Ssx7Sr37UTq7pC631H3p6WlAXDdddexePFiSktLKSkpYfHixVx//fWdljc6OhqN\nRsOhQ4c6/A1LliyhsLCQhoYGnnrqKa6++mo0Gg1ZWVnk5eVht9udPSQajabTnNHe2Lj11lt56aWX\nnL1YdXV1zqGtp4o/OOZb+HL4qMyB8DK5w+Swv6qJ/x2sIUijMDmp41hEf/U+AGgUhXNSBgDw3vZy\nappb/VaWU/HWHAidTsf777/P6tWrnXee/vKXvzgrVUVRmDdvHs8//zzp6enk5uby17/+FYD6+nru\nv/9+UlNTmTBhAtHR0fzyl78EHGNRU1NTmTVrFsnJycydO7fD5LzOxMfHc+aZZ5Kdnc1VV13l/H1i\nYiLLli3j5ZdfJiMjg3HjxvH666+ftAZ3RkYGra2tPPPMM2RmZpKRkcGbb77JsmXLSE1NBRwV/9Kl\nS/njH/9IWloaOTk5vPXWW6cs089//nM++eQT0tLSePTRR4mMjGT58uUsWrSI9PR0Fi1axAcffEBk\nZCR2u53FixczatQo0tPT2bhxI3/+858BR4U/c+ZMkpKSuPHGG3n22WdJSkoiNDSUlStX8vHHHzNy\n5EhGjhzJk08+SWur4xr88MMPmTBhAsnJySxdupQ33ngDcNzFCgsLY+TIkW7/t/Y1yQ2uSW7omr/j\nU3DMsYRrlFHn4pkO7ROpD1Q3e61MJ+pubuhLdT/QZd2fkZHhsu6/5ZZbmD17NtOnT+fcc8/lkksu\n4eabb+60vAaDgV/96ldccsklpKamsnXrVn76059yzTXX8JOf/IRJkyZhNBp57rnnACgvL+fWW28l\nOTmZs88+m+nTp3Pttdd2mTN+8pOfcP/993P77beTnJzM9OnTWbNmjcv4FxcXM2XKFNcXgIf0aAjT\nmjVr1IkTJ3qwOKKveuyL/WQX1TMmIZQL0yP9XZyT/Ht3JQXHzFw9Kpa7pg722Hl90Y0t+pd//vOf\n/PDDD/zud7/r9PFAGMIkuUH0dneu3MPhY2bmj41jULjrHnObXWXxxiLsKnx6yzjsFrPU/cKn5s2b\nx7PPPnvKhmVADWGStb5dC4S1rP0tt6yB7KJ6grUKk5NOXrb1+Mlo/nL2UMdmdp/uqaIywDaX8+Y+\nEH1Ff4rR/PnzT9l4CBSSG1yT3NA1f8bHalcpqnXsXxBjcq8HQqtRnMOdimp8syN1f6r3uqs/xWjF\nihU+3Z1c5kAIr1u2zTFmcVS8CZPevfGkvhYXqicjxoDVrrJsW5m/iyOEEMJPSmpbsNpVwoO16LXu\nf02KMjgaG4eO+W4YkxD+0qNvczLO1TV/j+P0t91lDWwvaSBYqzBpSHinz/HnHIjjTUmKYH9VM1/u\nq+bacfFudVv31Kw3t7v3xLWun/fV7RN6WJrey5d3XYRrkhtc6++5wRV/xudwjaMB4GoH6hNFGXVQ\n3czB6mamJXa9TLnbdb8ra7f367rfFckN3tOjBsSKFSt48803SUpKAhwrjIwZM8b5wW/vgpTj/nv8\nxuZiiMhkZLyJgtxs4McGQ/vQpUA5Lt+7jQHVdRyLHs7S7FLO0Rf1+O83Go20jwVv70ptr9A83bV6\nqvPLcf86bt+7Y8mSJeTm5jrr57i4OOeqJEKIUzt81DEEKcLg3vCldlFGx1eqQ0elB0L0fbIPhJf5\ney1rf8orb+T+z/ah1yrcPGkgRr220+f5cx+IE9WZrSzdWoqqwl/nDie5h5vdBfI+EN42fvx4Xnvt\nNc4991yvvs+RI0cYP348lZWVHdbc7q8CYRL1nDlzVJPJJDeXujjOzc1l4cKFAVOeQDv2Z3zufO2f\n7CxtYM7M8xk3KMztm1ExmRN4P6ccTfEunrl8lMubRz09bv9doNy8cOd4/fr1/OxnP+Ozzz7z+vt9\n/PHH7NixgyeeeCJg/n5/HicmJmI0Gju9ufTrX//6tHODNCC8rD83INpXXho/KJTzUk+98lIgNSDg\nxw2BpiSF8+SstB6dqzc1IKqqqnj00UfZsGEDTU1NjBgxgq5m5+EAACAASURBVD/+8Y9MmjQJcKwL\n/vLLL7Nnzx4MBgOzZs3i6aefxmQydXo+XzYgJkyY0GFjn/4sEBoQkhtc68+5wR3+jM/tK/ZQWGPm\n2nFxJJzGnkVWm51FG4vRKPDRNRmEh7m3y313eSo3uKr7169fzxVXXNGhXnnhhRe49tprO5ynpqaG\nM888k8zMzJM20Wx3qg3lvOH5559n586dvPfee15/r94goFZhknGurvXXBLGnopHsonr0WoUzBp+8\n8tLxAqnxAHDWkHCCNAqbCuvIr2ryd3F81vvQ2NjIxIkT+d///sfBgwe59tprue6662hqcsSgrq6O\n3/zmN+zZs4dNmzZRUlLC73//e5+UTfQukhtc66+5wV3+io/FZqeo1jGEKdrNPSDaBWk1RIRosav4\nZE8hT+UGV3U/wMCBAyksLHT+nNh4AMc+EMOHD/dImTwlPLzzuZei5+R2nfCK9pWMRsYF7spLp/Ll\nPxYxdqDjztHfs0v8XBrfGTp0KAsXLiQ2NhZFUbj55puxWCzs378fgLlz53LhhRcSEhJCeHg4N910\nE5s3d70E786dOznnnHNISUnh9ttvx2L5cYncL7/8kvPOO4+UlBQuueQS8vLynI+9+uqrTJo0iaSk\nJM4+++wOd7PsdjuPP/44GRkZTJo0ia+++qrDe77//vtMnDiRpKQkJk6cyMqVKz0RHiFEP1Bc24Jd\nhYiQIHSnsQJTu8i2eRNVjYG3KempuKr73bF582b27t17yh2cj6eqKosWLWLYsGGMGjWK999/3/mY\nxWLh8ccfZ+zYsYwYMYLf/OY3tLQ4ltStra1lwYIFZGZmkpaWxoIFCzrsTF1YWMjll1/O0KFDmTt3\nLkePHnU+1tLSwl133UV6ejopKSlcdNFFzh2zRffIPhBe1h/X+t5X1cSWojp0WoUzhnTd+wCBsQ/E\n8f719utMGhyGTqOQXVTP3opGv5bHX+tY5+bmYrVaSUlJ6fTx9evXu7zb9Mknn7By5UpycnLYtWuX\nM1Hs3LmTe++9l1deeYWDBw9yyy23cP311zt3YU5JSWHVqlUUFhby0EMPcdddd1FRUQHA0qVLWb16\nNevWreObb77h008/db5fU1MTjz76KCtWrKCwsJAvvviC0aNHeyIc4jRIbnCtP+aG0+Gv+Bw+5uh9\nON0VmNq191qU+6AB4a3c0FndX1VVxYgRI5g4cSK//e1vO/RO2O12HnnkEf70pz+5df6KigoaGhrI\ny8vjlVde4aGHHqKurg5w9GIcOnSIrKwssrOzKS0t5YUXXnC+zw033EBubi47d+7EYDDw0EMPOc97\nxx13MGHCBPbv389vfvMbli9f7jzv8uXLqa+vZ/fu3Rw8eJCXXnqJkJCQHseqP5MeCOFx72939D6M\niDP2ut6HdkadlnGDHL0Qb/ejXoh2dXV1LFy4kIcffpiwsJMbgd9++y0fffQRjz32WJfnueuuu4iL\niyMiIoLZs2eza9cuAP7xj39wyy23MGHCBBRF4dprryU4OJjsbMdKXXPmzCEuLg6AK6+8ktTUVLZt\n2wY4GiV33XUXAwcOJCIigvvvv7/De2q1WvLy8jCbzcTFxTFs2LAex0MI0T8UtO3hEBHS+aIfrkS2\nrcRU0dDisTL5Umd1f2ZmJmvXrmXPnj188skn7Nixg8cff9z5mr/+9a+ceeaZjB071q330Ov1PPjg\ng2i1WmbOnInJZHI2ht59912efvppwsPDMZlM3Hfffc5e5MjISC677DKCg4MxmUw88MADbNiwAYCi\noiJycnJ49NFH0el0TJ06ldmzZzvfU6fTcfToUQ4cOICiKIwdO5bQUO/OUenrZA6El/W3ca6Hjjaz\noaCWII3CpET3xh4G2hyIdhMTHb0QOSUN7C5r8Fs5fL0Ck9ls5oYbbuCss87i3nvvPenxLVu28POf\n/5ylS5eesneiXWxsrPPfBoOBxkZHb86RI0dYvHgxqamppKamkpKSQklJibM7+oMPPnAOb0pJSWHv\n3r1UV1cDUFpa6lyqFGDIkCHOfxuNRt566y3efvttRowYwYIFC/rVTqSBQnKDa/0tN5wuf8WnvQfi\ndOc/tGt/XXWj1WNlOhVP54ZT1f2xsbFkZmYCjvr2D3/4A5999hngqI/feOMNfvvb3wKO4UmuREZG\ndljwoj03VFVV0dTUxAUXXODMDddcc41zKFJzczMPPPAA48aNIzk5mcsuu4za2lpUVaWsrIwBAwZg\nMPy4cuKQIUOccyCuvfZaLrzwQn72s58xatQonnjiCWw2Ww8j1r/1ztvDImAtz3H0PgyPNRIe0rsv\nL4NOy4TEML4/Usfb2SW8eFmmv4vkdRaLhZ/+9KcMHjyYl1566aTHd+7cyY033siiRYt6lOATExP5\n1a9+xQMPPHDSY0VFRTzwwAN88sknnHXWWQCcd955zsSUkJBAcXGx8/lHjhzp8PoLLriACy64gJaW\nFp566inuv//+U64IIoQQxytoa0DEh+m79fr2ORD1LVbsdhWNxicLn/WYq7r/RHa7HYDt27dTUVHB\n1KlTUVWV5uZmzGYzI0eOZPfu3SiK+39/dHQ0RqORDRs2kJCQcNLjixYt4uDBg6xZs4aYmBh27drF\n+eefj6qqJCQkUFNTQ3Nzs7MRUVRU5GyoBAUF8eCDD/Lggw9SVFTE/PnzSU9P54YbbnC7fKIjmQPh\nZf1pnOuRGjNrD9agVWCSi5WXjhdocyCONyExDL1WIbeskZ2l9X4pg6/uoFutVm6++WaMRiOLFi06\n6fG8vDyuueYannvuOWbOnNmj97rpppv4+9//ztatWwHHKiCrV6+msbGRxsZGNBoN0dHR2O123nvv\nPfbs2eN87ZVXXskbb7xBSUkJNTU1vPbaa87HKisrWbVqFU1NTeh0OkwmE1pt94YiiO6T3OBaf8oN\n3eGP+LRY7ZTUtaAoEGXsXgMiOEhDqF6LTYW6Fu/2QngqN7iq+7OysigqcmysWlRUxJNPPsmll14K\nwMyZM8nJyWHt2rWsW7eORx99lLFjx7Ju3brTajwAKIrCjTfeyGOPPeac4FxSUsI333wDQENDAyEh\nIYSFhXHs2DGef/5552sHDx7M+PHjee6552htbWXTpk188cUXzjkQWVlZ5OXlYbfbMZlM6HQ6Wfa7\nhyR6wmM+2FGOCmTEGhlwmjt4BpKrbrvH+e+QIA0TEx2Nobe2lLjVPdtbff/996xevZpvv/2W5ORk\nkpKSSEpKYtOmTQAsXryY6upq7r33Xudj06ZNO+X5ukoe48eP55VXXuHhhx8mNTWVs846i+XLlwMw\nbNgw7r77bmbNmsXw4cPZu3cvU6ZMcb72pptu4sILL+Tcc8/lwgsv5PLLL3c+ZrfbWbx4MaNGjSI9\nPZ2NGzfy5z//uaehEUL0A4U1ZlQgMiSIoB70HLTPg6hu6h0rMbmq+3fu3MnFF1/MkCFDuPTSSxk9\nejTPPvss4JhbEBsb6/wJDw9Hp9MRExPj9vsfnyt+//vfk5qayqxZs0hOTmbu3LkcOHAAcMypa25u\nJiMjg9mzZ3PRRRd1OM/f/vY3srOzSUtL44UXXmDBggXOx8rLy7n11ltJTk7m7LPPZvr06Z0uRSvc\n16ON5NasWaO277Qo+rfS+hZu/cixDOf1ExK6PX40ELVY7byTXYrZaueZ2WmcMdj9daU9sZGcEKcj\nEDaSW7hwoVpTUyM7Uctxrzpujh/BC2sLCa3Yw9nJES53nj7V8fLPv2ZgVATzLprK5KQBAbMTsRz3\n7+OA2olaGhCi3cvfFbLqh2oyYwxcMtz9Ow+9RXZRHesP15IaZWDJVcPc7pqVBoTwtUBoQEhuEL3R\nm98X89HOCiYlhjE9ZUC3z7OztIHmpibOSo3lshGxrl8ghA8E1E7UMs7Vtf4wzrW83sJX+6pRwOWu\n050J5DkQ7cYNDMWo03DwaDMbC2t9+t6yipBrEqPAIrnBtf6QG3rCH/FxrsBk6lkPelTbEKajTb1j\nDkRfJjHynh4tk7N27Vqys7Olm7qL49zc3IAqjzeOt5KETYXwqj1U7Ssh9jS7fdudbjexL491Wg0J\ntfvIKW3grYhgpiRFsGH9epfxMRqNtN+J7W63Y7tA6QaV48A+bl/itrNu6hkzZiCE6Nzhtj0g4kN7\n2oDQUQzUmq2oqnrak4mF6A1kCJPokYoGC7d8lIfNrnLd+DjiQoP9XSSvsdpVlmaX0mCx8egFyVyQ\nFunyNTKESfiaDGES4vQ1Wmxc9Y+daBW4++zBaHr4pX/b4UrCTCZ+dtYgwoJ795Lmom8IqCFMQnyw\noxyrXSUt2tBnGg8fv/lap78P0ihMTnJMoP57dgk2u+vGd19etUkEJrnmhDh97fs/RBl1PW48AJj0\njq9XR3vJSkyi7/N0bpA5EF7Wl8e5VjRY+OKH7s99aBdocyD+9fbrp3xsRJyJiJAgyuotfLmv2uW5\ntFotZrO5R+WRMZyuSYwcrFZrQAyXkNzgWl/ODZ7g6/i0D18a4KENUFvsgK2VykbvNSCk3nNNYuRg\nNps9vieS9KuJbvuwrfchPdpAfFjf6H1wRatRmDo0gi9+qObv2aVckBaJQXfqD2VISAitra00NjYC\nXe+NcCr19fU0NTV1u8z9gcQI51jr9l1YhRDua59A3b6HQ0/ZNXrWFxwjxqBhRKTWKw17qfdc6+8x\nau910Ov16HSeXV6/R5+U8ePHe6ocfVb7hNq+prLRM70P8OOk5d4iM8bAtmIdFQ2tfLyrghsmDOzy\n+TqdrkcfXBlL7prEKLBIbnCtr+YGT/F1fNp7IGJM3duB+kSxJj21rQrfFDTz08kmj5zzRFLvuSYx\n8h7pgRDdsmxbGa12lbSo/tP70E5RFKYnD+DjXZV8uKOCnwyP6dU7bwvhaStWrODNN9+UFfrkuNcc\nb9t8EM2QMcSH6j2ygp/FZgcGU1rfwtp136HVKAH198px/z321Ap9PVqF6cUXX1Rvu+22br++P8jK\nyupzd5qKas3cvmIPANeO6/nKS3u2bQ6oXogbz87k3Q37XD7vk92VHD5mZs7IGO45e4jXytMXryFP\nkxi55stVmCQ3uCbXbNd8GZ9jza1c+94udFqFhVMSPTbc6J3sUmrNVpZcNYy0aM+vxifXkGsSI9dk\nFSbhM0uzS7GrkBlj7DMrLx3vqtvucet505IjAPh8TxXFtS3eLJIQQggvaV+BKdqg8+hchbi2/STy\nq/rvGHzRd/WoASHjXF3ray3f/Kom1h6qIUijMKVtSdOeCqTeB4Crb7/XrefFmPSMiDNiV+HNLcVe\nK09fu4a8QWIUWCQ3uCbXbNd8GZ/2CdQDDJ4d1R3bNp9iT4V3GhByDbkmMfIe6YEQp+Xv2SVA23Km\nMu6fqUMj0Gpg/eFadpY2+Ls4QgghTlP7BOpIDy3h2i62rQdiX6X0QIi+R/aB8LK+tNb3ztIGsovq\n0WsVJif1bOWl4wXaPhCnIyw4iDMHO3piXltf6NbmcqerL11D3iIxCiySG1yTa7ZrvozP4aOOHojY\nMM+swNSuvQfiSK0Zuxc2eJRryDWJkfdID4Rwi6qqvL3F0fswJiEUk14W8Go3KTGM8GAthTUtfLan\nyt/FEUII4SZVVZ09EHGhnm1AmPRaTHotFptKaZ3MkxN9i8yB8LK+Mv7u2wPHyKtoxKjTcGYP9304\nUaDNgThdQVoN56ZGAvBOdgnHmj2782hfuYa8SWIUWCQ3uCbXbNd8FZ/KxlaaWu0YdBqMOs/fU401\neW8itVxDrkmMvEd6IIRLza023vze0ftwxuBwgrvYebkv+PjN1077NalRIQyNDKGp1c5bbT01Qggh\nAptz/oMhyCu7Rbf3anhrIrUQ/tKjcSivvvoqJpNJNgvq4jg3N5eFCxcGTHm6c5wfkkpVUyvakl0E\nGyIhcQrQvc11Ojtu/52nztfT43+9/TpX337vab1eURQG1e1j98GjfMV4fjI8hup92z0S//bfBcr1\nEIjHJ8bK3+UJhGNPbRbUHTk5ObIDrAuyPn3XfBWf9vkPkSHeWRSkvQfiBy9MpJZryDWJkffIRnJe\n1tsv3tK6Fm5fuYdWm8pVo2JIijR4/D1660Zynck6XMPWonqGDghh8VXD0Gl73snX268hX5AYuebL\njeTmzJmjys2lvn9zqS/E54nVB1n1zVrGDQxlzqwLAM/enKo1W3ntw1UYgjR88+RNKIrisfK3/y4Q\n/nsF6rHcXHLv5tKvf/3r084NPWpArFmzRpW7TH3bE6sPsr6glswYA5cMj/F3cXyiJw2IVpud97aX\nUWu2ccOEeG6eNMjDpROie3zZgJDcIHoDu6pyzbJc6lps3DQxgUij53shVFXlr5uKabGpLF8wmmiT\nLH8uAovsRC08bntxPesLatFpFc5OHuDv4vQKOq2GmRlRACzPKWe/7EAqhBABqeCYmboWG6F6rcc3\nkWunKAqxbfMg9ldLPhB9h+wD4WXHd5/1Js2tNl5dXwjA+IGhRHh4g53j9eZ9IDqTGBHCuIGh2FX4\n09oCWm32Hp2vt15DviQxCiySG1yTa7ZrvohPbplj88+EML1XJlC3a58Hsaei0aPnlWvINYmR90gP\nhOjUO9mllNRZiDHpOGtIuL+L41NX3XZPj88xLTmC8BAth4+Z+SCn3AOlEkII4Um5pT82ILypvQfC\nGxOphfAX2QfCy3rjxM7csgb+vbsSjQIXpA4gyAMTgbsSSBOoAa6+/d4en0On1TAz3TGU6b2cMn6o\n7P6dp954DfmaxCiwSG5wTa7Zrnk7PqqqsrOtB2JoZIhX36u9B+Lg0WaPnleuIdckRt4jPRCiA7PV\nzovrClFxDF0aFOHdirUvGzwghPFtQ5me/PoQdWarv4skhBACKKpt4VizFaNOQ7QXJk8fL8qoQ6tR\nONZspb5F8oDoG2QOhJf1tvF372SXUFLXQoxRx9ShET55z742B+J401IGEB+qo7Kxlef/V4C9G6ue\n9bZryB8kRoFFcoNrcs12zdvx8dX8BwCNohDX1gvR/r6eINeQaxIj75EeCOG0rbiOf+1yDF063wdD\nl/qDII3CpcNjCA5S2FJUx4c7ZD6EEEL4207n/Idgn7xfcpRjD6W1B2t88n5CeFuPltaRca6u9Zbx\nd+X1Fp755jAqMHFQGIkDfDd0KdDmQHhaeEgQszOj+SSvineySxkeZ2LCoDC3X99briF/khgFlv37\n93P33XfLRnJubAQWSOUJtGNvxee7777j23WHIXE0SQOCPbpx3KmO7eZWYCjfH6ll3brv0GgUv8e3\nPxzLRnvubSQ3Y8YMTpdsJCewWO088Pk+8quaSYoI5orRsWi83KUbyD5+8zWPTKQ+0caCWr4/Ukeo\nXsurczIZ4sNGmhCykZwQDqX1Ldz8YR4hQRrunDzI7SFMPckNqqqydGsptWYbL12WweiE0G6dRwhP\n88tGcjLO1bXeMP7u9Q1F5Fc1ExGiZVZmtM8bD4E2B+Jfb7/ulfNOTgonOTKEBouN/9/evUfHWdd5\nHH9/Z3JrkqZpm5KmlxTaWou9clnkeFsugiJyQPaoiIKAuu56wV1dBXU5rp716O7C7sK66x4WVECR\nXVqRAoKAolgFLJeGtiS0aUvvt6Rt2uY6mXz3j5mWMSTzPEkmM5PM53XOnM7leX7znW+feb7zy/N7\nfs+NjzbT0t4Tar2xsA3lmnKUX1QbgmmbTW8085M6fetQzn8YSW0wM+YmhzE9vfXQsNtJpW0omHI0\nejTIvcD9oqmFxza2UhQxLnzTFCpKo7kOadyKmPG+hVOZPrGEA+0xbnx0s2ZmEhHJsuPnP9RWju71\nH/qbOzXRgfj9a22MZPSHSD4Y0TkQGuc6tse5/vfKx7j7hT1Uzl3OO0+upm1zA22M7jjQsfD4uNFq\n/9IlZ3L/y/tZ/8KzfGrzWu760ocpK4rkfHsYy481znX0xrkOh86PC3b8/0kGNpr5WZel6z/0N6Oq\nlLKiCAfaY+w43E39CN9f21Aw5Wj06ByIAvX8ziN84/EtxPqc5XWV/Pm8ybkOKW9c9bYF3POHjaP6\nHke7e/m/hv0c64mzZHoF37xgLpWlI+rPi6SlcyBEEhOGXPW/GyiJGp8+e+aQhuxmojY8vrGVxv0d\nXHNGHVeeNn1EbYlkgs6ByFP5OP7u5T3H+OYTic7D4toK3jW3Oqfx5Ns5ENkwsbSIDyyeRkVxhHV7\n2/niw5tobY8NuGw+bkP5RjnKL6oNwbTNpjda+Xm4qQWA2dVlOZks5Ph5EL/bOvLpXLUNBVOORo/O\ngSgw6/ce46bHN9MddxZOK+e8+ZNH/SI6Y80HrvtcVt5nSnkxH1pWS/WEIl471MX1q15l++GurLy3\niEih6eiJ83BjogOxdBizIGWiNtRPLiNqsPlgJ4c6Bv6jkchYoCFMBeTxja3cunoHsT5n/tQJXLQw\n+zMuyRt1xuKseqWFvUd7qCyJcsM5c3hrfXauAi6FQ0OYpNCtWLef25/bxYyqEj64tDZncTy44QCv\nHeriC++YzcULa3IWhwgMvzZo0HUBiPc5d67ZzYp1+wFYVFvBufOq1XnIExOKo1y+eBqPvtrK1oNd\n3PT4Fi59Sw2fPGsmpUU6SChjz4oVK7jjjjs0wYYe583jeJ/zs12Jc/2qDjTR+OJrOZuwo3jPBo7s\nOspv6iq5eGFNXuRHjwvncV5cSO6WW27x6667btjrF4LVq1fndBaAQx0xbn56O2t2HiFi8LY5kzhj\nVlXO4hlI44vPjfurUYfh7ry46yh/2NZGn8PJk8u48ZyT2d34gmaSCJDr79lYkM0jEKoNwbTNppfp\n/Dy56SD//NttTJlQxMdOn57TobvtPXF+uGY3cYfvXjSP02cOryZrGwqmHAXLyUnUkr/63Hm0qYVP\nrGhkzc4jTCiOcPHCmrzrPMjrzIwzZlXxoWW1TCpLnBfxmZ83sXL9fg51aqysiMhwuDv3v7wPgCXT\nK3N+3l9FSZSzksNU//Xp7XTG4jmNR2Q4dA7EOLTtUCe3/X7nibmu66tL+fO51Uwpz+5Fc2T4YvE+\nfrf1MOv3tuPAhOIIVyyr5bJF05hQrIv9ydDpHAgpVGt2HOHrv9xMRUmUa86soyiS++G78T7nvoZ9\ntLTHuHzxNP7q7Fm5DkkKlI5ACE372/nWk1v4y5VNrNt7jPLiCOfPq+ayRdPUeRiCn91xW65DoDga\n4bz5U/jo6dOZU11KZ6yPHz6/hyt/up7vP7uTXW2arUlEJEh7T5y7XtgDwKLa8hF1HjJZG6IR493z\np2DAA+sP0LS/PWNti2SDrgMxykZ7DuKOnji/bj7Ilx/ZxPWrNrL6tTYiBm85qZyPnjadxXUTc364\nNki+XQfigR98L9chnDC1vJg392zlA4unUVtZTHtPHw+sP8C19zdy46PNPNLUwkFNBai5vvOMakMw\nbbPpZSI/BztifPmRTWxs6aCyJMppMyaOqL1M14baiSWcPnMiDtz89DZi8b4hra9tKJhyNHpG1IFo\nbm7OVBzj1rp16zLanruz92g3T2xq5RtPbOGDP1nHd3+zjYY9xyiNGsvrKrn6jDouWDCV8pKxMdRl\n28bGXIeQ17ZtbKS+uowrlk/nI8trOfWkcqIGL+46yq2rd3DFveu5/sFXuefFPTy/8wjHuntzHXLW\nZfp7Nh5l80e9akMwbbPpjTQ/u49087cPbaS5tZPqsiIuW1RDWR4O/3xrfRWTyqJsP9zN1x7bzNaD\nnaHX1TYUTDkKNtzaMKJpXNvbdcgtSFtb27DX7e7tY/eRbna2dbOzrYtNLZ28sv8YBzte/4FowIyq\nEuZUl7G0rjIvd5BBOo4dyXUIeS01PydVlnDhgqm865RqNrV00Nzaya62bpoOdNB0oOPEcvXVZZwy\nuYxZ1WXMnlTKzEml1FSUUF1WRDQPxv9m2ki+Z4WioaEha++l2hBM22x6w83P/mM9PLe9jXte3Mvh\nrl5Oqijm/afWMLEsP2etL45GuHDBVFZtOEDDnmP89QNNXHJqDVedXkdVQMzahoIpR8GGWxtG/I3a\n2NIRvNBYlObcck++ePz88+OLuidec4c+T8yEtOdoN2t2HCHuTm+fE+9zeuJ99MSdnt4+unr76OiJ\n097TR3sszuHOXg51xjjU2Utb18B/SS4rilBbWczMSWW8eVp54E5Gxp+y4ihL6iaypG4isXgf2w51\nsf1wF/uO9tDSEWP74a4Br2odMZgyoZjqCUVMLI1SWVpEZUmUCcURyooilBVHKCuKUhw1iiNGcdQo\nikSIRqAoYkTMiFhixqgIyX8t0ZHFwDBSR8wdv3v8OSNN52UE/ZrWjtj43ReNUfr/SE/b7CCSBbW1\nI8arBxId0dRa29fnxN2J90FXbx9tXb0c6eqltTNGw+6jbDn4+n5v1qRSLl44Ne//sDajqpSPn1nH\nM9vaWL+3nQdfaeHRV1upry7j5MllnDx5AlMriiktSuynS4siRAxa2mM07W/HrN++dfz9jWjY9D0b\nPSP65bl3714+9/NXMxXLuLTlj400nrJ5WOtGDCaVFVFVVkRVaZTJE4qpry5lSnlx3p/XMBQH9uzK\ndQh5LSg/xdEI82vKmV9TDkBvn9PS3kNrR4yW9hiHO3s52h2noydOZ28fLR0xWsbZeRNbntlAQ732\nRemcmsX3Um0Ipm02vUR+Ng55veKoMauqlPrJZSyuraAoOjbmiplQHOW8+VNYWlfJb7ccZmdbN82t\nnTS3dgKHBlxny7MbeHnO0HNUSPQ9Czbc2jCiDsS8efNoX/ejE4+XLVvG8uXLR9LkuLM2ciHLlw9/\nqlyIJW8pwg+RHBMuO//t1HVsz3UYJzz55JOQR/EMJz+zo8DE5K0AjPx7Nv6sXbv2Tw5NV1RUZO29\nVRuCaZtNb/j5cRJFshO6B/7hPVzZqA11BkvmhVtW21Aw5eiNMlUbRnQdCBERERERKSxj49ieiIiI\niIjkBXUgREREREQktFAdCDN7r5k1mdlGM7thkGVuwJOTyAAACUhJREFUM7NNZrbWzApusGtQjszs\nSjNrSN5Wm9mSXMSZK2G2oeRyf2ZmMTO7PJvx5YOQ37NzzOwlM1tvZk9lO8ZcC/E9qzKzVcn90Doz\nuyYHYeaMmd1pZvvM7OU0y2RkX626EEx1IZhqQzDVhvRUF4KNSm1w97Q3Ep2MZmAOUAysBRb2W+Yi\n4JHk/bcCzwa1O55uIXN0NjApef+9hZSjMPlJWe5XwMPA5bmOO99yBEwCNgAzk49rch13Huboq8B3\njucHaAWKch17FnP0DmA58PIgr2dkX626kLEcFWxdCJujlOVUG1Qbhpufgq4Lyc+d8doQ5gjEWcAm\nd9/m7jHgPuDSfstcCtwN4O7PAZPMrDZE2+NFYI7c/Vl3P35Fk2eBmVmOMZfCbEMAnwdWAPuzGVye\nCJOjK4GV7r4LwN1bshxjroXJkfP63FMTgVZ3L5hLc7v7agab8zEhU/tq1YVgqgvBVBuCqTakp7oQ\nwmjUhjAdiJnAjpTHO3njTq7/MrsGWGY8C5OjVJ8EHh3ViPJLYH7MbAZwmbt/n8K8DE6YbWgBMMXM\nnjKzNWZ2Vdaiyw9hcvQ94C1mthtoAL6QpdjGikztq1UXgqkuBFNtCKbakJ7qQmYMeX+tSxhnmZmd\nC1xL4nCSvO7fgdSxi4VYKIIUAacD5wEVwDNm9oy7N+c2rLzyHuAldz/PzOYBT5jZUnc/luvARAaj\nupCWakMw1Yb0VBdGQZgOxC6gPuXxrORz/ZeZHbDMeBYmR5jZUuB24L3untkr3OS3MPk5E7jPEpfY\nrgEuMrOYu6/KUoy5FiZHO4EWd+8CuszsaWAZifGfhSBMjq4FvgPg7pvNbCuwEHg+KxHmv0ztq1UX\ngqkuBFNtCKbakJ7qQmYMeX8dZgjTGmC+mc0xsxLgCqD/F3cVcDWAmZ0NHHb3fWGjHgcCc2Rm9cBK\n4Cp335yDGHMpMD/uPjd5O4XEWNfPFFCBgHDfsweBd5hZ1MzKSZzo1JjlOHMpTI62Ae8GSI7fXABs\nyWqUuWcM/lfaTO2rVReCqS4EU20IptqQnupCeBmtDYFHINw9bmafAx4n0eG4090bzezTiZf9dnf/\nhZm9z8yagXYSvb2CESZHwE3AFOC/kn9Jibn7WbmLOntC5udPVsl6kDkW8nvWZGa/BF4G4sDt7v5K\nDsPOqpDb0T8CP0qZqu4r7n4wRyFnnZndC5wDTDWz7cA3gBIyvK9WXQimuhBMtSGYakN6qgvhjEZt\nMPeC+z6KiIiIiMgw6UrUIiIiIiISmjoQIiIiIiISmjoQIiIiIiISmjoQIiIiIiISmjoQIiIiIiIS\nmjoQIiIiIiISmjoQIiIiIiISmjoQIiIiIiISmjoQIiIiktfMbKuZnTca65rZejN710DLpr42msxs\ngZm9ZGZtySsr93992J9/iHH80My+NdrvI2NfUa4DEBEREckVd18c5jUz2wp8wt1/PQphfAX4tbuf\nNgpti2ScjkCIiIhIzphZNNcx5IE5wIZcByESljoQIiIiknHJYTc3mtkGM2s1sx+YWUnKa18xswbg\nmJlFzOxUM3vKzA6Z2Tozu6Rfk2eltHXn8baS7d1gZs1mdiQ57OiyIaw76PCg46+Z2d1APfBQ8j3+\nLnlb0W/528zs3wZpa+FAn8/MfgWcC/xnsu35g6T0NDNrSK7/036foc7MVpjZfjPbbGafD5MbMzvN\nzF5IDp26DyjrF/MNZrYzuW6jmZ07SGxSYNSBEBERkdFyJXABMA9YAPx9ymtXABcB1SR+j6wCHgOm\nAdcDPzGzNw3S1pv7tdUMvN3dq4BvAj82s9qQ6wZy96uB7cD73b3K3W8Gfgy8x8yq4MSRlA8Dd/Vf\n38yKgIcG+nzufj7wO+CzybabBwnjg8CFwCnAMuCaZNuWbPsloA44H/iCmV2QLjdmVgw8kIx3CnA/\n8BcpMS8APguckVz3PcBrQ8mbjF/qQIiIiMiAzGyRmV1nZjeb2aVm9ikz+/gQmvgPd9/t7oeBbwMf\nSXnt1uRr3cDZQIW7/5O797r7U8DD/ZYftC13X+nu+5L37wc2AWelWffKIXyGVJbynnuBp0n8sIdE\nZ+iAu68dYL0wny/Ire6+L/kZHgKWJ58/C6hx92+7e9zdXwPuINFBS5ebs4Eid78tud5KYE3K+8WB\nEmCxmRW5+3Z33zqEeGUcUwdCREREBjMLaABOdvcHgZ8AXx/C+jtT7m8DZgzy2gxgR791twEzw7Rl\nZlcnZzE6ZGaHgEVATZp160J/gvTuBj6WvP9R4J5Blgvz+YLsS7nfAVQm79cDM83sYPJ2CPgqcBKk\nzc0MYNcAMQHg7puBvwH+AdhnZveaWabyJmOcOhAiIiIyIHf/JYlhMw8nnzodaBlCE7NT7s8Bdqc2\nn3J/d79lIfHDOPUH7oBtmVk9cDvwGXef7O6TSZyQbEHrDpEP8NzPgaVmtgh4P4kO1kDCfL7h2gFs\ncfcpydtkd5/k7pcE5GYPiQ5i/5hOcPf73P2dJHIG8N0MxCvjgDoQIiIiks6FwG+T968C/gVOXDPg\nBwHrftbMZprZFOBrwH2DLPcc0JE8sbrIzM4h8YP8pyHaqgD6gJbkydjXAv2nZg0bRzr7gLmpTySH\nX60E7gWec/edA60Y8vMN1x+Bo8m2y8wsmhx6dibpc/MMEDOzzydjupyUYV+WuDbFucmTtXuAzmRb\nIupAiIiIyMDMrAKoBd5pZp8C1rj7A8mXZwOrA5q4F3icxIm8m0icfwD9/prv7jHgEuB9JI5wfA+4\nyt03pSw/YFvu3gjcAjwL7CUxRCc1rkHXHSCW/kcZUh9/B7gpOUzoiynP3wUsITGcaUAhP186g77u\n7n0kOiPLga3AfuB/gKp0uUnGdDlwLdBK4lyOlSlNl5I44nCAxBGUaSSGRolg7kHbrIiIiBSi5FSj\n57j7l/o9XwysBZa6e3yQdUfzwmt5w8xmA43AdHc/lut4RLJBRyBERETkDZJTqH4JqDGz6tTX3D3m\n7osG6zwUCjOLkMjRfeo8SCEpynUAIiIikn+Sw2vOGUkTGQolL5lZOYnzIraSmMJVpGBoCJOIiIiI\niISmIUwiIiIiIhKaOhAiIiIiIhKaOhAiIiIiIhKaOhAiIiIiIhKaOhAiIiIiIhKaOhAiIiIiIhKa\nOhAiIiIiIhKaOhAiIiIiIhLa/wNELXdUsJ1f3wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53fc284550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"\n", "The book uses a custom matplotlibrc file, which provides the unique styles for\n", "matplotlib plots. If executing this book, and you wish to use the book's\n", "styling, provided are two options:\n", " 1. Overwrite your own matplotlibrc file with the rc-file provided in the\n", " book's styles/ dir. See http://matplotlib.org/users/customizing.html\n", " 2. Also in the styles is bmh_matplotlibrc.json file. This can be used to\n", " update the styles in only this notebook. Try running the following code:\n", "\n", " import json\n", " s = json.load(open(\"../styles/bmh_matplotlibrc.json\"))\n", " matplotlib.rcParams.update(s)\n", "\n", "\"\"\"\n", "\n", "# The code below can be passed over, as it is currently not important, plus it\n", "# uses advanced topics we have not covered yet. LOOK AT PICTURE, MICHAEL!\n", "%matplotlib inline\n", "from IPython.core.pylabtools import figsize\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "figsize(11, 9)\n", "\n", "import scipy.stats as stats\n", "\n", "dist = stats.beta\n", "n_trials = [0, 1, 2, 3, 4, 5, 8, 15, 50, 500]\n", "data = stats.bernoulli.rvs(0.5, size=n_trials[-1])\n", "x = np.linspace(0, 1, 100)\n", "\n", "# For the already prepared, I'm using Binomial's conj. prior.\n", "for k, N in enumerate(n_trials):\n", " sx = plt.subplot(len(n_trials)/2, 2, k+1)\n", " plt.xlabel(\"$p$, probability of heads\") \\\n", " if k in [0, len(n_trials)-1] else None\n", " plt.setp(sx.get_yticklabels(), visible=False)\n", " heads = data[:N].sum()\n", " y = dist.pdf(x, 1 + heads, 1 + N - heads)\n", " plt.plot(x, y, label=\"observe %d tosses,\\n %d heads\" % (N, heads))\n", " plt.fill_between(x, 0, y, color=\"#348ABD\", alpha=0.4)\n", " plt.vlines(0.5, 0, 4, color=\"k\", linestyles=\"--\", lw=1)\n", "\n", " leg = plt.legend()\n", " leg.get_frame().set_alpha(0.4)\n", " plt.autoscale(tight=True)\n", "\n", "\n", "plt.suptitle(\"Bayesian updating of posterior probabilities\",\n", " y=1.02,\n", " fontsize=14)\n", "\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The posterior probabilities are represented by the curves, and our uncertainty is proportional to the width of the curve. As the plot above shows, as we start to observe data our posterior probabilities start to shift and move around. Eventually, as we observe more and more data (coin-flips), our probabilities will tighten closer and closer around the true value of $p=0.5$ (marked by a dashed line). \n", "\n", "Notice that the plots are not always *peaked* at 0.5. There is no reason it should be: recall we assumed we did not have a prior opinion of what $p$ is. In fact, if we observe quite extreme data, say 8 flips and only 1 observed heads, our distribution would look very biased *away* from lumping around 0.5 (with no prior opinion, how confident would you feel betting on a fair coin after observing 8 tails and 1 head?). As more data accumulates, we would see more and more probability being assigned at $p=0.5$, though never all of it.\n", "\n", "The next example is a simple demonstration of the mathematics of Bayesian inference. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Example: Bug, or just sweet, unintended feature?\n", "\n", "\n", "Let $A$ denote the event that our code has **no bugs** in it. Let $X$ denote the event that the code passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable, i.e. $P(A) = p$. \n", "\n", "We are interested in $P(A|X)$, i.e. the probability of no bugs, given our debugging tests $X$. To use the formula above, we need to compute some quantities.\n", "\n", "What is $P(X | A)$, i.e., the probability that the code passes $X$ tests *given* there are no bugs? Well, it is equal to 1, for a code with no bugs will pass all tests. \n", "\n", "$P(X)$ is a little bit trickier: The event $X$ can be divided into two possibilities, event $X$ occurring even though our code *indeed has* bugs (denoted $\\sim A\\;$, spoken *not $A$*), or event $X$ without bugs ($A$). $P(X)$ can be represented as:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\\begin{align}\n", "P(X ) & = P(X \\text{ and } A) + P(X \\text{ and } \\sim A) \\\\\\\\[5pt]\n", " & = P(X|A)P(A) + P(X | \\sim A)P(\\sim A)\\\\\\\\[5pt]\n", "& = P(X|A)p + P(X | \\sim A)(1-p)\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have already computed $P(X|A)$ above. On the other hand, $P(X | \\sim A)$ is subjective: our code can pass tests but still have a bug in it, though the probability there is a bug present is reduced. Note this is dependent on the number of tests performed, the degree of complication in the tests, etc. Let's be conservative and assign $P(X|\\sim A) = 0.5$. Then\n", "\n", "\\begin{align}\n", "P(A | X) & = \\frac{1\\cdot p}{ 1\\cdot p +0.5 (1-p) } \\\\\\\\\n", "& = \\frac{ 2 p}{1+p}\n", "\\end{align}\n", "This is the posterior probability. What does it look like as a function of our prior, $p \\in [0,1]$? " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAEiCAYAAACImnYKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecXPV57/HPs71XaVVWvYG6EKLLNIHBDRwHG0OuC8Q2\nNzZ2euwkN9e5ubkuN8HXxE7sEIMbDm5xAVcwxoDoQqwQqLddtZVW2tX2vs/948yK2SbNGc3ObPm+\nX695ac6ZM2cerR6WZ3/7nOeYuyMiIiIiIhNLWqoDEBERERGRxFOhLyIiIiIyAanQFxERERGZgFTo\ni4iIiIhMQCr0RUREREQmIBX6IiIiIiITkAp9EZE4mNl+M/ubVMcRzcw+bWa7Ux3HSMbi1ywVzOwq\nM+szs5mpjkVEJjYV+iIy7pjZTDPrNLNDZjaq38fM7G/NbP9ofkaCjeWbo6wD/l+qgxgjQv07mdl1\nZvaomZ0ws3oz+76ZTR2t4ERkYlChLyLj0R8CDwOngHec7WAzyzyHzzKSWDyfY6xjmrufdPf2VMcx\nTt0AfA+4HHgbsAb4l5RGJCJjngp9ERlXzMwICv1vAN8C7hrmmP1m9r/N7F/N7ATwVGR/vpndG/lN\nQKuZvWxmv3eGz/oA8A/A3EirRa+Z/c+oQ7LM7ItmdtLMas3sC4N/w2BmHzez7WbWbmY7zexvzCw9\n0bEO+szbzGxv5DMfNbO5Ua8Nae8xsysif785g86xJ3KOp8zsrZFjLo+8nhH5+x40sw4zO2Jm/3mW\nuAa07kS2/9fZvoaDztH/b3Gbmf0q8rXZbmZXRn7T83MzazGz181sfdT79prZpwadK8/MGs3sD87w\neVPN7OuR2Nojn/XBqNcvNbMnzawtstL+ncEr7ZEcOBiJ9ZfAnGE+50Iz+7WZNZvZcTP7r+h/D3f/\nS3e/3913uftzwK+AxSPFLSICKvRFZPx5K5AF/BL4NrAhuiCK8nHgGHApcEdk38+AlcC7geXAV4CH\nzOyaET7ru8DngUPANGAG8M+DPuMIcDFwd+Txgf4XzezvgT8DPgmcD/wx8BEg+oeFRMXabybwR8At\nwHqgCPivQccM9xuK0/vM7ELgQeA7wKrI3/mLg973ichn3A4sIvjNyvNniW04d3OGr+EZ/APwr8Bq\nYDvBv9U3gPsIVru3Ad+J+qHqPwh+QIx2G9AN/GC4DzCzHIIfvFZGjj0f+CjQGnl9GvBroIagLent\nwIro85nZzcAXCL6Gq4HvA/806HOWAb8DngHWAtcAPcCjZpY1TFyXAe8j+DcRERmZu+uhhx56jJsH\n8BPg/0Zt/wL4h0HH7AceG7TvaqANKBy0/37gR2f4vL8F9g2zfz/wk0H7fgF8J/I8l6AgfPOgY94H\nNIxSrJ8GeoH5UfsWA33ANVHH7Br0visi75sT2X4QeHLQMXdFjrk8sv1F4Dch/+32A38T69dwhHPM\njfx9Ph61b11k359E7VsTiXdZZLsC6ASujTrmWeALZ/isP4z8O8wY4fX/TVDkZ0TtWxWJZX1k+2ng\n24Pe90+R2GZGtr8O/OegY7Ij+XPToP1vBpqBD4/Wf2N66KHHxHloRV9Exg0zqyToT/5m1O5vA384\nTLvHi4O21xEUT0ci7RHNZtYM/AHBinQ8qgZtHyFY+YdgFT4X+K9Bn/fvQKGZlY9SrHXufvriYXff\nDZyIxBOrZQxdnX+O4HqFfl8HVkXae75iZu+y+K4vONPX8ExejXpeG/lz66B9RlDg4+7HgZ8CHwYw\nsxXAJQQr/SNZC2xz96MjvL4MeN7de/p3uPurQCNvfL2XEfxAEW3joO2LgN8b9G99giAHBrfnfBX4\nkrufKW4REQAyUh2AiEgIf0jQcviKmUUXnWkErSM/jdrXOui9aQQX765jYMEK0BVnPIPf57zREtn/\n5y3AcCMv66OeJyPWfn3DnHO4Av2MFyC7+xYzmwdcT9Bq8kXgf5vZJe7eEiKeM30Nz6R70HtG2hd9\nrq8CPzezMuBDwHPuvj1ErKMljeAH1s8y9N/m5KDtSoJWJRGRs1KhLyLjQqSwvxP4PwT92NH+lqD3\n/aeD3xdlE1AC5Lr7thAf3QWkn/WooV4HOoCF7v7rkO+NN1aAqWY2v39V38yWAFMi8QAcByrMzNy9\nvxi+cNA5tgGXDdp3GYOKf3dvI/ia/9TMPgscBa4Cfh4y5qRw99+aWQ3w34H/RnD9xJm8DNxhZjPd\n/cgwr78OfNDMMvpX9c1sNVDMG79d2EYwKecrUe9bz0CbgFXRv4k5g0uBAzEcJyKi1h0RGTfeCswC\n7nP3bdEPgoswbxjholwgKPKA3wA/MrObzWy+ma01s7vNbPBFmtH2A9Mj01XKzSw3lmDdvRX4DPAZ\nM/uomS0xs2VmdquZfe4s7403VoB24OuRKS7rCL42m939icjrTwB5BKvvC8zs3QQXmEb7AnBFZCLO\nYjO7iTeKYgcws78ws9sjf6d5BL9t6QF2ne1rk2L/QXAxdBrBhbFn8hBQDTxsZhvMbJ6ZXWtm74m8\n/mWCi52/YWbLI1N+vkVwfUN/u849wK1m9gkzW2RmdxD8kBHtM8BSM3vQzC6KfM41Fkwjmjfo2P8E\nrgz/1xaRyUiFvoiMFx8m6Ic+NMxrvyVocfhQZHuktpObgB8RFLLbCSbbvBXYe4bP/QnBFJWfE6yG\n/+VZPuM0d/9HggL5QwS96E8Df0Lww8PpwxIYKwQ97vcBPySYGNMC/H5UTLsIvpbvJVh1/iDw14Pi\n3kxwPcDtBL3wnwT+B0FbSUfksCbgTwn6z18FbgbeFbkmYCSD/67x3p/gjFODzrLv6wR/jwfdvWOY\n1994czDz/yrgNYKifxtBcZ8Tef04wcWxswius3iY4Gvx7qhz/AT4c4K82UIwveevBn3ODoJV/3yC\nsZmvE1zLkUPQwhVtCcFvDEREzsre+M1tCj7c7H6CcWTH3H3VCMf8C/AWgh7WD7r74Au3RERklJnZ\n+wmm/pS7e1Oq44mXmS0nKMZXu/trqY5HRGQ0pXpF/+sEd/sblpm9haC/dTHBaLevJiswEZHJzMz+\nPNIuNC/SqvI54Pvjtcg3s6zI1KbPAr9VkS8ik0FKC3133wg0nOGQmwn6HXH3F4DiyA1KRERkdK0C\nHiFoG/pHgu/FZ7s+YCy7jWDm/RyGXpMgIjIhjfWpO5XAwajtw5F9x1ITjojI5ODusdyddtxw928y\n8P4LIiITXqpbd0REREREZBSM9RX9w8DsqO1ZkX1D3HTTTd7R0cH06dMByM/PZ9GiRaxZswaAqqrg\nGl5ta7v/+ViJR9tje1v5ou1Yt/v3jZV4tD22t/v3jZV4tD12tvfs2UNra3AfxdraWhYuXMhXvvKV\nwTfTi0lKp+4ARGYEP+LuK4d57a3Ax9z9bWZ2KfBFd790uPO8//3v93vvvXdUY5WJ4XOf+xyf+tSn\nUh2GjBPKF4mVckXCUL5MLH3uHG/pouZUB9UNkcepDg6e6qCtuy/UuTLTjdnF2cwuyWFOSQ6bvvk5\nvvWtb8VV6Kd0Rd/M/hO4GiiP3K3w00AW4O5+n7v/wszeamZ7CMZr3jHSuWpra5MRskwANTU1qQ5B\nxhHli8RKuSJhKF/Gpz53apu7qG7oCIr6Ux1UN7RTc6qTzp5wBX1uZhpzSnKYXZLD3EhRP6ckh+mF\nWaSnvVHXbzqHq4tSWui7++0xHHN3MmIREREREYGgoD/W0vXG6nxDOwcaghX6zt5w3TCF2enM7S/o\nS98o6KfmZ2IW10J9zMZ6j37MbrhhxHH8IgPcfvtZf74UOU35IrFSrkgYypexwd2pa+3mQKSQ7y/s\na0510BFyhb4oO525pbnMLY2s0Ef+LM3NOKeCfvXq1XG/N+U9+ony+OOP+9q1a1MdhoiIiIiMMe5O\nQ3vP6YL+QH0HBxraqYmjh74kJyMo5iOr8/Mif5bkZo5K7Js3b2bDhg3jr0c/kaqqqlChL7HYuHEj\n69evT3UYMk4oXyRWyhUJQ/kyepo7e6hu6AgK+ob200V9U2dvqPMU52QwN9JuM7c0KOjnluZSnDN+\nyufxE6mIiIiISERHTx81pzo4UN8+oKg/0dYd6jz9PfRzI4V8f1FfOkor9Mmk1h0RERERGbN6+5yj\nzZ3sr+9gf307Bxra2V/fwZGmTsJUsbmZacwtyWFeaS7zyoL++XlluZSdYw/9aFPrjoiIiIiMew1t\n3eyrb2d/Q7BSv7+hnZqGcJNuMtOM2ZHe+XllkcK+NIeKgizSxnBBPxomTKGvHn2JlfoiJQzli8RK\nuSJhTPZ86ezpo7qhI1LUt7O/Plilb+zoifkcaQYzi7JPF/L9RX1lUfaAOfST2YQp9EVERERkbPHI\nPPr99ZGivr6dffXtHGnqpC9E301ZbgbzynKZX5rD/LJc5pflMqckh+yMtNELfgJQj76IiIiInLPW\nrt7T/fP9Rf3++vZQ4ytzMtKYFynm50UV9eNp0k2iqUdfRERERJLC3alt7mJvfTv7TgYr9Pvq26lt\n7or5HAZUFmefLuTnl+awoCyXaYWTr49+NE2YQl89+hKryd4XKeEoXyRWyhUJY7zkS3t3LwcivfT9\nRX3YVfrC7HQWlOWyIFLULyjLZU5pDjlquxl1E6bQFxEREZH4uDv1bT3srW9j78l29kaK+sONsY+w\nTDeYXZIzpKgvyxvb4ysnMvXoi4iIiEwivX3OocaO0wX93vrgzzATb4qy01lQnnu6qF9Ynsvskhyy\n0rVKn2jq0RcRERGRIdq7e9kXKeT3RrXedMU4lz7NoLIo+3RRvzDyZ3leplbpx4EJU+irR19iNV76\nImVsUL5IrJQrEsZo5EtDezd7T7az52Qbe0+0s+dke6i7x+Zlpg0o5heU5zK3NFe99OPYhCn0RURE\nRCaD/tn0e062s+dEW6S4b+dkW3fM55iSn8nCSFG/sDyPheW5TNfEmwlHPfoiIiIiY1R/P/3uE+3s\nPdnGnkj7TXNnb0zvT4tcIPtGUR8U9pN5Lv14ox59ERERkXGup8+pbmhn94mg/WZPpLjvjLGfPjvd\nmF+Wy6LyPBZOyWVReS7zSnN199hJLO5C38w+APwtcAL4Z3f/UcKiioN69CVW6qOVMJQvEivlioTx\nxJNPMXPZhQOK+v317XT3xVbUF2Sls7A8KOYXTcljUXkus4pzSE9T64284VxW9LOANcBa4H1mVubu\nX0tMWCIiIiITQ0dPH/tOtrP7RBt7Trax+0Q7WzftJX93YUzvL8/LPF3Q9xf30wqyNPVGzupcCv3j\n7t4GbAQ2mtmHExRTXNasWZPKj5dxRCtuEobyRWKlXBGAzp4+9tW3s6uujd0ngkf1qQ4GL9TnLxi+\nbplWkMXiKUH7zaIpuSwuz6M0LzMJkctEdC6F/pvM7H3Az4AngU4AMytx91OJCE5ERERkrOov6vsL\n+t0n2jjQMLSoH0llUfbpYn5RpLgv0kWykkDnkk3bgIeANwMPANPMbDUwBfhAAmILRT36Eiv10UoY\nyheJlXJlYuvq7WN/ZKV+14mg/eZAQ3tMRb0RTL5ZVJ7L4il5LJ6Sy/Edr3DdNReMetwyuZ1Lof8C\nMMvdPwt81szygWuBP09IZCIiIiIp0NvnVDd0sPNEG7vr2th5opX99R30xFDVGzCrOJvFU/JYMjWP\nxVPyWFiWS15W+oDjNu7VJBwZfQmfo29mi919d0JPGgPN0RcREZGw+tw53NjJzkhP/c66tphHWhpQ\n2V/UTwmK+kXlQ4t6kXMxpubop6LIFxERETkbd6eutZsdda3sqms7Xdy3dffF9P6ZRdksmZLLkshq\n/cLyPPJV1MsYFlehb2Y3ufvDg5+nknr0JVbqo5UwlC8SK+XK2NPU0cOuyCr9zrpWdta10dDeE9N7\np+Zncl6k9ab/z8LsxK2PKl8kGeLN2EuBh4d5LiIiIpJ0nT197DnZX9QHjyNNnTG9tyQng/OmBqv0\nSyJtOBppKRNBvIW+jfA8ZTRHX2KlFRQJQ/kisVKuJE+fOzWnOthx/I2V+v317cTQVk9eZhpLpuZx\n3pQ8zpuaz5KpeUzNz0z6zaeUL5IM8Rb6PsJzERERkYRqaOtmR10b24+3nu6vj6WvPiPNWFiey3lT\n8yKPfGYVZ5OmO8rKJJGIFf0xQT36Eiv1RUoYyheJlXIlMTp7+thzoo3tdW3sPN7Kjro2jrV0xfTe\n2cXZnFeRz/mRwn5+WS5Z6WNzjKXyRZJBt18TERGRlHB3jjR1sv14sFq//XhrzC04ZbkZp4v68yMt\nOJqAIzJQIlp3xgT16EustIIiYShfJFbKlbNr7eplZ10r24+3sSNS2Dd19p71fVnpxuIpeUFRX5HP\n+VPzqShIfl99IilfJBkmzMW4IiIiMnb0uXPwVMeA1frqho6YVgpnF2dHCvqgsJ9flktGmsoNkbDi\nLfT/Y4TnKaMefYmV+iIlDOWLxGqy50pLZ8+Aon5HXRutXWdfrS/MTmdpRf7pwv68qYmdVz9WTfZ8\nkeSI678kd9833HMRERGZ+NydQ42dbDveyrZjrWyLrNafTZrB/LJclk7NZ+m0PJZW5FNZlD2uW3BE\nxjJzT227vZndCHwRSAPud/fPD3q9CHgQmAOkA/e4+zcGn+fxxx93reiLiIgkXnt3L7vq2gYU9s0x\n9NYX52SwrCKf8yvyWFYRXDCbm6kLZkXC2Lx5Mxs2bIjrp+GU/m7MzNKALwMbgCPAS2b2U3ffEXXY\nx4DX3f0mM5sC7DSzB909tntYi4iISMzcneMt3Ww73nK6qN97sp2+s6wLphksLM9lWUU+SyOP6YVZ\nWq0XSaHQhb6ZFQCXA4uBIqAVqAWecffDIU93MbDb3asj5/4ucDMQXeg7UBh5XgicHK7IV4++xEp9\nkRKG8kViNV5zpbfP2Vffzmu1QWH/+rFWTrR1n/V9hdnpLKvIZ9m0fK3Wx2G85ouMLzEX+ma2DLgb\nyAK2EKzA7wBygTLgT82sBHjM3b8X42krgYNR24cIiv9oXwYeNrMjQAFwa6wxi4iIyEBtXb1sPx4U\n9K8fa2H78TY6es5+l9m5pTksq8hn+bRgtX5WsXrrRca6mAp9M7sVyAP+1N07z3LsRWb2SeBf3L09\nATHeALzi7tea2ULgMTNb5e4t0Qft2bOHj370o8yZMweA4uJiVq5cefqn5Y0bNwJoW9usX79+TMWj\n7bG9rXzR9njffuSxJzjQ0IHNWsHrx1rZ8tJz9DkULQzuP9O0twoYuJ2dkcall13O8mkFdNe8ypyS\nHK6/5oLT568+DrPHyN9P29qeaNtbt26lsbERgJqaGtatW8eGDRuIR0wX45rZHHevifmkZunAVHev\nPctxlwJ/7+43RrY/BXj0Bblm9jPgs+7+TGT7ceCT7r4p+ly6GFdERCa7PneqGzp4rbaF14618lpt\nC3WtZ2/DmZKfyfJp+ayYVsDyacHc+nTNrRcZE0b9YtxYinwze5O7Px05vpegb/9sXgIWmdlc4Cjw\nXuC2QcdUA9cBz5jZNGAJMGSkp3r0JVYbN6ovUmKnfJFYpSJXunv72H0i6K/fWtsS0zQcIxhxuXxa\nPium57N8WgEVBVnJCVhO0/cWSYaYCv1okUk5Mwj662dGPa4DLg1zLnfvNbO7gUd5Y7zmdjO7K3jZ\n7wP+EfiGmb0aedtfuXt92LhFRETGu7auXrYdD1bqX6ttZUddK129Z/7NfHZGGksr8lgeWa1fWpFP\nfpYumhWZDELN0Tezp4HLgC7gGMGqfTrwDLDa3a8djSBjodYdERGZaE61d/NabStbIyv2++rPPuay\nOCeDlZGV+pXTC1hQnkuG2nBExq1kztF/M/AJYJe7/xjAzD7g7t80M/3+SURE5BycaO3i1aMtkcK+\nlZpTZ7/b7IzCLFZML2DF9AJWTtedZkXkDaEK/cgUnc+b2QVm9hngfoI597j7xlGIL2bq0ZdYqS9S\nwlC+SKzC5oq7c7S5KyjqI8X90eauM77HgAXluayYVsCK6cHFs+X5mecYuaSCvrdIMoTu0Qdw91ci\nPfMfAy42swcJ2oDOfj9sERGRScjdqTnVwdb+VpyjLWe9MVVmmnHe1LzIin3QjqP+ehGJVage/WFP\nYLYAuANY4u4pu5mVevRFRGQs6R91+erRFl6tbeHVoy00dvSc8T3Z6cayafmsnB70159fkU92RlqS\nIhaRsSiZPfpDuPs+4O8i8+5FREQmpejCfkukFedshX1eZhrLpxWwakZQ2C+ekktmugp7EUmMcy70\no/xjAs8Vmnr0JVbqi5QwlC8ykv7CfsvRFl492syTTz1N+pxVZ3xPYXb66dX6VTMKWKAbU01a+t4i\nyZCwQt/dn0/UuURERMYad+dAVGH/6tEWmqJuTtXa3UfRoPcUZaezakYhq2cEhf3c0hzSNBFHRJLk\nrD36ZjYfuMTdvxvTCc3KgVvc/d8TEF/M1KMvIiKJ5O4cauxky9EWqo40syWGHvtghn2BCnsRSZhR\n7dF39/1mhpl9HjgIPAFs86ifEMwsH7gE2ACcBL4YTzAiIiKpVNvcSdWRNwr7k2eZilOck8GqGW8U\n9nNKVNiLyNgRU+uOu+8HPmlmnwBeBTCzHuBpoIfgLrlPAv/s7g2jFOsZqUdfYqW+SAlD+TKxnWjt\noupIC1uONlN1pIVjLWeeY9/firNmZmTFviTn9M2pNm7cyDzlisRI31skGcL26J8PrAIWAB8B7nb3\n6oRHJSIiMgqaOnrYcrSFVw43U3W0mUONnWc8Pi8zjVUzClgzM+izn1+WqxV7ERk3Qs3RN7O7+nvv\nzSwH+KC7f3W0ggtDPfoiIjJYR08fr9UGhf0rR5rZe7KdM/1fLycjjRXT81kzo5DVMwtYVJ6nqTgi\nklLJnKN/ulnR3TvMrCWeDxURERkNvX3Ozro2XjnSzCuHm9l+vJXuvpFL+8x0Y1lFPmtmFrJmRgFL\npuZpjr2ITBhhC/0PmFk38EzkRllnbmZMIvXoS6zUFylhKF/Gtv6Rl1VHmtl8uJmttS20dfeNeHya\nwZIpeVwws5A1lYUsr8gnK0F3nlWuSBjKF0mGsIV+C3Az8IVIwV9jZlOAXwFXu/sDiQ5QREQk2snW\nbjYfaWLz4WDVvr79zCMv55bksGZmIWsrC1k1o4D8rPQkRSoiklphe/TXufumyPNVwDWRx5VAtrvn\nj0qUMVCPvojIxNTe3cvW2hZePhys2lc3dJzx+Kn5maytLAzacWYWUp6XmaRIRUQSL2k9+v1FfuT5\nqwSjNu81szTgM/EEICIiEq23z9l9oo3NkcJ+2/FWes7QZ1+Ync6amYVcMLOQC2YWMLMo+/TISxGR\nySxs686w3L3PzB5KxLnipR59iZX6IiUM5UtyHG3u5OVDQWG/5WgzzZ29Ix6bmWYsm5bP2spCLqws\nYmF57piYjKNckTCUL5IMCSn0Adx9S6LOJSIiE1t7dy9VR1p4+XATmw41c6TpzPPs55fmsLaykLWV\nRayYnk9upvrsRUTOJlSP/limHn0RkbGrz519J9vZdLiJlw818/qxM7fjlOVlsLayiLWRi2jL1Gcv\nIpNUMufoi4iIxKShrZuXDzez6VAwIedUx8jTcbLTjVUzgqL+wlmFzC3JUZ+9iMg5mjCFvnr0JVbq\ni5QwlC+x6+7t4/Vjrbx8qIlNh4O70J7JgrIcLqwsYt2sIpZPzydrnN+oSrkiYShfJBkmTKEvIiLJ\nd7ylixcPNvHSoSaqjjTTfoabVRXnZEQuoC3kwllFGnspIjLKQvfom1kW8EFgDVAQ/Zq7vz9hkYWk\nHn0RkdHX1dvHa7UtvHQwuIi2+tTIM+3TDZZNK2DdrKCwX1SeS5racUREQkl2j/43gdXAI8CxeD5U\nRETGj9rmTl46vWrfQkfPyKv20wuzWDeriHWzClk9o1B3oRURSaF4Cv0bgfnufirRwZwL9ehLrNQX\nKWFMxnzp6unj1doWXjrUxEsHmzjUOPLoy8x0Y/WMAi6aFfTazyqevDermoy5IvFTvkgyxFPo1wDZ\niQ5ERERSp6416LV/saaJzUea6TzDqv3MoiwumlXERbOLWDWjkJyM8X0RrYjIRBVTj76ZXRu1eQHw\nbuBeBrXuuPtvExpdCOrRFxGJXW+fs+N4Ky8cbOLFg03sqx95Qk5WurF6RiEXzS7iollFVBZrrUdE\nJFmS0aN/f9RzBwz4zKBjHFgQTxAiIjL6mjp62HSoiRcONrHpUBPNnb0jHjuzKJuLI4X9qhkFZGvV\nXkRk3Imp0Hf3+f3Pzewv3f2fBh9jZn+eyMDCUo++xEp9kRLGeM4Xd2dffTsvHmzihZomdtS1MtLN\naDPSjJXTC7hkThGXzC6isjgnucFOAOM5VyT5lC+SDPH06P8dMKTQB/4WuOfcwhERkXPR1dNH1dFm\nnq9p4oWaRupau0c8tjwvk4tnF3Hx7CIumFlInibkiIhMKDEX+lF9+hlmdg1B+06/BUBzIgMLa82a\nNan8eBlHtIIiYYyHfKlv6+aFg008X9PI5sMjX0hrwNKKfC6aHazaLyzPnbQTckbDeMgVGTuUL5IM\nYVb0+/v0s4EHovY7UAt8PFFBiYjIyPpbcp6vCYr7nXVtIx5bkJXOulmFXDy7mItmF1Gcoxuii4hM\nFjF/x+/v0zezb6XyDrgjUY++xEp9kRLGWMmXrp4+thxt4fmaRl442MjxlpFbcmYVZ3PpnGIunVPE\n8mkFpKdp1T4ZxkquyPigfJFkCL20MxaLfBGRiaipo4fnaxp5vqaRTYeaR7wjbZrBimkFXDqniEvn\nFjNLF9KKiAixz9G/0t2fijy/dqTj4pmjb2Y3Al8E0oD73f3zwxxzNfD/gEygzt2vGXyM5uiLyERw\ntKmTZ6sbea66kdeOtYw4JSc/K52LZhVy6Zxi1s0qokgtOSIiE1Iy5uj/G7Ai8vz+EY4JPUffzNKA\nLwMbgCPAS2b2U3ffEXVMMfCvwJvd/bCZTQnzGSIiY5m7s/tEO89Wn+LZ6kYONHSMeOzMouxg1X5O\nMSumF5ChlhwRETmDWOfor4jafKe7b0nQ518M7Hb3agAz+y5wM7Aj6pjbgf9y98ORWE4MdyL16Eus\n1BcpYYx52WgbAAAgAElEQVRGvnT3Bv32z1Y38nx1Iyfahu+3N+D8ijwum1vM5XNKmF2SrSk5Y5i+\nt0gYyhdJhnh+1/uImeUDTwNPRh6veCw9QENVAgejtg8RFP/RlgCZZvYEUAD8i7t/O47PEhFJmdau\nXl482Miz1Y28dLCJtu7h++0z0421Mwu5bG4xl84ppiwvM8mRiojIRBHPxbhzzGwBcCVwFXA3UG5m\nG9397YkOkCDGtcC1QD7wnJk95+57og/SHH2JlVZQJIxzyZeG9m6eq27kmQONvHKkmZ4RGu4Ls9O5\nZHYRl88t4cJZheRm6sZV45G+t0gYyhdJhriu3nL3fWaWAWRFHjcCFXGc6jAwJ2p7VmRftEPACXfv\nADrM7ClgNTCg0P/hD3/I1772NebMCU5XXFzMypUrT/+HtHHjRgBta1vb2h7V7drmTh748aNsPdZC\nfen5ONC0twqAooXBgkTT3irK8jJ5x/VXc/mcYhr3VJGW1sT6+fNSHr+2ta1tbWs7tdtbt26lsbER\ngJqaGtatW8eGDRuIR0xTdwa8wex7wGUEF8/+DngKeNrdQ98Z18zSgZ0EF+MeBV4EbnP37VHHnA98\nieCHiWzgBeBWd98Wfa577rnH77zzzrAhyCS0caP6IiV2Z8sXd6f6VAfPHGjkmQOn2HOyfcRjF5Xn\ncvm8Eq6YW8y80hz1208w+t4iYShfJFbJmLoTbS3QB2yJPKriKfIB3L3XzO4GHuWN8Zrbzeyu4GW/\nz913mNmvgVeBXuC+wUW+iEgy9bmzs66NZw+c4pnqRg41dg57nAHLp+ezfl4Jl88tZnphdnIDFRGR\nSS30ij6Amc0g6NG/ElgP5AJPufuHEhte7DRHX0RGU2+f8/qxVp7ef4pnDpwacVJORppxwcxCrphX\nzGVziinVxbQiInIOkr2ij7sfNbOdwEyCvvprgLfEcy4RkbGqt895tbbldHHf0N4z7HE5GWlcPLuI\nK+YVc/HsYvKzdDGtiIikXuhC38weJljFbyYYrfkI8BfuvjvBsYWiOfoSK/VFypn09DlVR5p5en9w\nA6uDr286fRFttMLsdC6bU8wV80pYW1lIdkZaCqKVsUTfWyQM5YskQzwr+j8C/tjd9yc6GBGRVOjq\n7eOVw0Fx/1xNI82dvcMeV5qbwRVzS3jT/BJWzSggXXemFRGRMSyuHv2xSD36IhJGV08fmw43BcV9\ndeOIN7Aqz8tk/byguF8+LV/FvYiIJFXSe/RFRMajrt4+Xj7UzJP7Gni+ZuTivqIgkzfNK2H9/BKW\nVuSTpjGYIiIyDk2YQl89+hIr9UVOLt29fWw+3MyT+0/x7IFTIxb3MwqzeNP8YOV+yZS80zPulS8S\nK+WKhKF8kWSYMIW+iEi/nj7nlcPNPLW/gWcONNLSNXzPfWVRNlcuKOHK+SUsKMvVDaxERGRCUY++\niEwIvZFpOU/tP8XGA6dGvKB2RmEWVy0o5aoFKu5FRGTsS3mPvpk9AGwEvunuw//fVUQkwXr7nK21\nLTy5r4GNBxpp7Bh+zv20giyuWlDClQtKWVyu4l5ERCaHRLXuGHA78OfA8gSdMxT16Eus1Bc5vrk7\nO+ra+N3eBp7c30B92/DF/dT8TK5aUMqV80s4b2pe3MW98kVipVyRMJQvkgwJKfTd/Q4AM9O93kVk\nVOyvb+d3exv43b4GjjZ3DXvMlLxM3rSghKvml3J+RZ6m5YiIyKSmHn0RGbOONnXyu30NPLG3gQMN\nHcMeU5KTwVULSrhqQSnLpmkUpoiITCxJ7dE3swLgcmAxUAS0ArXAM+5+OJ4gRET6nWzr5qlIcb+j\nrm3YY/Kz0lk/r5irF5SyZmahbmIlIiIyjJgLfTNbBtwNZAFbgCPADiAXKAP+1MxKgMfc/XujEOsZ\nqUdfYqW+yLGnpbOHp/ef4ol9DWw50sJwv2fMTjcunVPM1QtLuWh2EVnpaUmJTfkisVKuSBjKF0mG\nmAp9M7sVyAP+1N07z3LsRWb2SeBf3L09ATGKyATU1dvHiweb+O2eel6oaaK7b2h5n26wblYRVy8s\n5bI5xeRlpacgUhERkfEpph59M5vj7jVmVuLup2I4Ph2Y6u61iQgyFurRFxn7+tx5rbaVx/fU8/T+\nU8PeyMqAVTMKuHphKW+aV0JRju7rJyIik9eo9+i7e03k6R8D/yuG43sJ+vZFRDjQ0M7jexp4Ym89\nx1u6hz1m8ZRcrllYxtULSpiSn5XkCEVERCaesE2uHzGzsuFeMLO3JSCeuFVVVaXy42Uc2bhxY6pD\nmBROtnbzw1eP8Uc/3sFH/msH39tybEiRP60gi9vWTONrv7+Uf33n+dyysmLMFfnKF4mVckXCUL5I\nMoT9nfhfAP/NzB5y97r+nWZ2FfBp4OeJDE5Expe2rl42HjjF43vqqRrhotrC7HSuml/KhkXBOEzd\npVZERGR0xDVH38w+BjwGXAV8HCgHTrr7qsSGFzv16IukRm+fU3Wkmcd21/PMgVN09g79npKZblw2\np5gNi8pYN6uQzCRNzBERERnvkjZHP9KesxWYA7wObAM+A/wQSFmRLyLJV93Qzm921/P4ngZOtA3t\nuzdg9cwCNiwqY/28EvI1MUdERCSpwrbufBvIBH4AXAosAV519x5gc4JjC0Vz9CVWml0cv8aOHp7Y\n28Bvdtez68TwN7OaV5rDdYvLuGZhKVPHWL99PJQvEivlioShfJFkCFvo/xa4y91PRrZfNrN3mVkO\nsC+W0ZsiMr509/bxwsEmHttdz4s1jQzTmUNxTgbXLirl+kVlLCzPVd+9iIjIGBCqR9/MLnL3l4bZ\n/07g0+5+QSKDC0M9+iKJ4+7sOtHGY7vreWJvA82dQ+fdZ6YZl84t5vrFZaybVURGmop7ERGRREta\nj/5wRX5k/08id88VkXGsoa2b3+yp59Fd9VSf6hj2mKUVeVy/uJyrFpRQmK2bWYmIiIxVify/9AMJ\nPFdo6tGXWKkvcqCePufFg438emc9LxxspG+YX/JVFGRy3aIyrltcxqzinOQHmULKF4mVckXCUL5I\nMiSs0Hf3xxJ1LhEZfQca2nl0Vz2/2V3PqY6eIa/nZKRx5fwSrl9cxsoZBaSp715ERGRciblH38z+\nCohlKc+Adnf/v+cSWFjq0Rc5u9auXp7Y28Cvd51kZ93wU3NWTM/nhiXlXDm/hNxMjcQUERFJpaT0\n6Ce7cBeRxOhzZ8vRFn698yQbD5yia5ixOeV5mbx5cRlvXlJG5SRrzREREZmoEnZ7SjN7U6LOFY+q\nqqpUfryMIxs3bkx1CElR19rFg5uP8oHvbeOTv9jDb/c2DCjyM9KMK+eX8I83LODB9y7njotmqsgf\nxmTJFzl3yhUJQ/kiyRC6R9/M0oAZQCUwM+pxHcFNtEQkRXr6nBdqGvnlzpNsOtQ07IW1C8pyuWFJ\nGdcuKqM4R1NzREREJqqwc/SfBi4DuoBjQC2QDjwDrHb3a0cjyFioR18msyNNnfxy50ke23WS+vah\nF9YWZqdz7cIyblhSxqIpeSmIUEREROKRtDn6wJuBTwC73P3HAGb2AXf/pplpRpRIEnX19PFM9Sl+\nufMkVUdahj3mgpmFvOW8ci6fW0xWRsI69URERGQcCPV/fndvd/fPAwfM7DNmthDwyGspbTZTj77E\narz3RR5oaOcrzx/itode47NPVA8p8svyMrht9TS++Z5lfP6ti7h6YamK/HMw3vNFkke5ImEoXyQZ\n4mrQdfdXzOxV4GPAxWb2IEEbUG9CoxMRANq7e3lq/yl+ueMk2463Dnk9zeCiWUW89fwpXDy7iPQ0\nzbwXERGZ7EL16A97ArMFwB3AEne/NSFRxUE9+jIR7a9v5+c7TvCb3fW0dfcNeX1aQRY3nlfOm5eU\nMTU/KwURioiIyGhKZo/+EO6+D/g7M/tZPO83sxuBLxK0Ed0faQ0a7riLgGeBW939R/HGKzLWdfX0\n8dT+U/x8xwlePzZ09T4jzbhsbjFvOa+ctZWFumOtiIiIDCuRjbv/GPYNkVGdXwZuAJYDt5nZ+SMc\n9zng1yOdSz36Equx2hd5qLGD+144zG0Pvcb/fbJ6SJE/qzibD188k+/ctpy/2zCfdbOKVOQnwVjN\nFxl7lCsShvJFkiFhQ7Td/fk43nYxsNvdqwHM7LvAzcCOQcd9HPghcNE5BSkyxvT0Oc9Wn+Ln20/w\nyjCTc9IN1s8r4W1Lp7B6RgGmwl5ERERidNZC38zmA5e4+3djOaGZlQO3uPu/x3B4JXAwavsQQfEf\nfb6ZwDvd/RozG/BatDVr1sQSngjr16d+Euyx5i5+sfMEv945/Nz7aQVZvPX8cm5cUk5pXmYKIpR+\nYyFfZHxQrkgYyhdJhrMW+u6+38wws88TFOVPANs86ipeM8sHLgE2ACcJeu4T5YvAJ6O2taQp41Jv\nn/PSoSZ+vv0ELx5sYvBl8GkGl8wu5m1Ly7mwUpNzRERE5NzE1Lrj7vuBT5rZJ4BXAcysB3ga6CG4\nS+6TwD+7e0OIzz8MzInanhXZF20d8F0LehamAG8xs253fzj6oHvvvZf8/HzmzAlOV1xczMqVK0//\nxNzfC6dtbUf3RSbj85o6erj3e7/kuepGemYuB6Bpb3BNSdHCNZTlZbC4Yx8Xzy7iHddfkPKvj7ZT\nmy/aHr/b/fvGSjzaHtvb/fvGSjzaHjvbW7dupbGxEYCamhrWrVvHhg0biEeo8Zpm9m/AvwILgI8A\nd/f318f14WbpwE6C3wQcBV4EbnP37SMc/3XgkeGm7txzzz1+5513xhuKTCIbN248/R/UaNpV18bD\n2+p4Yl8D3b1D/zu7sLKQty2dwqVzisnQ6v2Ylax8kfFPuSJhKF8kVskcr7nF3V8HXjezx4APAl+N\n54MB3L3XzO4GHuWN8Zrbzeyu4GW/b/BbRjqXevQlVqP5jbV/NOZPt9Wxs65tyOtF2encsKScty2d\nwsyi7FGLQxJH/yOWWClXJAzliyRD2EK/u/+Ju3eY2dAxISG5+6+A8wbtG/ZCXnfXkr2MScdbuvjZ\n9hP8cudJGjt6hry+eEouNy+bylULSsnOSORUWxEREZHhha04PmBm74vcDRegK9EBxUtz9CVW0f2R\n58Ld2Xy4ib9/bB/v/97rfHfLsQFFfmaacd2iUu69aQlfvvk83rykXEX+OJSofJGJT7kiYShfJBnC\nrui3EMy5/4KZdQM1ZjYF+BVwtbs/kOgARcaa1q5efrO7noe31XGwsXPI61PzM3n70inceF45pbka\njSkiIiKpEfZi3HXuvinyfBVwTeRxJZDt7vmjEmUMHn/8cV+7dm2qPl4mgcONnfx0Wx2P7jpJW3ff\nkNcvmFnITcuCi2s1GlNEREQSIWkX4/YX+ZHnrxKM2rzXzNKAz8QTgMhY5u5UHWnhx68f54WaobPv\n8zLTuH5xOe9YNoU5JTkpiVFERERkOAlpGHb3PuChRJwrXurRl1jF0hfZ0dPHL3ac4K4f7eCTv9zD\n84OK/DklOdx9+Sz+87YVfOzyWSryJzD10UqslCsShvJFkiFsj/6I3H1Los4lMho6e3qpbe7i4KkO\nqhvamV6YRXZG+oBj6lq7eHjbCX6x4wTNnb1DznHx7CLeuXwqF1YWEtzDTURERGRsCtWjP5apR19G\n0tHTy87jbfz49Tqeq27EAQMum1vM7y2fypKpueyr7+Anr9Xx9IFT9A36TyInI403Lynj5mVTma2V\nexEREUmiZN4wS2Rc6ejp5bFd9Xzp2UMD9jvwbHUjz1Y3UpGfyfHW7iHvnVaQxc3Lp3LjkjIKsvWf\nioiIiIwvE2aot3r0ZTg7j7cNKfKb9g7MlcFF/uoZBXz6uvl84z3LuGVlhYr8SU59tBIr5YqEoXyR\nZFAFIxNWZ08vP369LqZjDbhucSnvWlHBwvK80Q1MREREJAkSsqJvZg+Y2Z1mln72o0fHmjVrUvXR\nMkbVNnfxXHXjkP1FC4fmigPvWTVNRb4MsX79+lSHIOOEckXCUL5IMiSqdceA2wnm6oukXG+fDxmJ\neTadvRPjwnQRERERiKPQj9wcawB3v8PdrwNStqyuHn0BaO/u5cevHeeOH2zj/peODHvM4B59CH5S\nzU7XuEwZSn20EivlioShfJFkCNWjH2nNaTGzEnfvHPy6uw8dXSKSBCdau/jp63X8fMdJWrqGzr8/\nm8vnFjO9MGsUIhMRERFJjVCFvrv3mtkuoBwYfrk0RdSjPzntr2/nB1uP87u9DfQMGoBfmJ3OxbOK\neHxvw4D9w/Xo/96KqUNuniUC6qOV2ClXJAzliyRDPFN3vgP8zMzuBQ7BG23Q7v7bRAUmMhJ357Vj\nrXx/yzFeONg05PWZRdm8a8VUrl9chhksm5Y/ZMRmtE9cMYslU3URroiIiEws8RT6fxT58+8H7Xdg\nwTlFcw6qqqrQnXEntj53nq9p5PtbjrPteOuQ11dMy+f3V1Zw6Zxi0tPe6Le/fkkZc0tz+PFrdTxb\n3Ujj3iqKF67h8rnF/N6KqSyZmkeOVvNlBBs3btTKm8REuSJhKF8kGUIX+u4+fzQCERlJd28fv93b\nwA9ePU7NqY4BrxlBf/17Vk9jaUX+sO/PyUhn1YxCzpuaR21zF88+e5LLLz+f6YVZatcRERGRCcvc\nw48UNLPFwG1AJXAYeMjddyc4tlAef/xx14r+xNLW1csvdpzgR6/VcaJt4HXemWnGhkVlvHtVBbNL\nclIUoYiIiMjo2rx5Mxs2bIhrNGDoFX0zeweRPn2gGjgP2GRm73P3h+MJQiRaQ1s3P3m9jke2nxgy\nQScvM423nT+Fd62ooDw/M0URioiIiIx98dww6zPAze5+u7v/tbv/AXBzZH/KaI7++HekqZN/2XiQ\n933vdR7acmxAkV+am8GdF83gwfcu58OXVJ5Tka/ZxRKG8kVipVyRMJQvkgzxXIw7C3h60L6Nkf0i\noe2vb+e7W47x5L4GBk3IZGZRNu9eVcH1i8rIykjUjZxFREREJr7QPfpm9gTwK3f/fNS+vwLe6u5X\nJza82KlHf/zZVdfGf1bV8mx145DXlkzJ4z2rK7hibsmACToiIiIik0lSe/QJxms+YmZ/DBwEZgNt\nwDviCUAmn1ePtvBQVS0vH24e8traykJuXT2NNTMKMFOBLyIiIhKv0L0Q7r4DWAq8B7gn8udSd9+e\n4NhCUY/+2ObubDrUxJ/9bBd/8fPdQ4r8y+cW86Wbl/C5tyzigpmFo1rkqy9SwlC+SKyUKxKG8kWS\nIZ4Vfdy9h6AvX+SM+tx5trqRh6pq2X2ifcBraQZXLSjlvaunMb8sN0URioiIiExMMfXom9mV7v5U\n5Pm1Ix3n7r9NYGyhqEd/bOntc57c18BDW45R3TDwJlcZacZ1i8q4dXUFlcWagS8iIiIykmT06P8b\nsCLy/P4RjnFgQTxByMTR3dvHb3bX871Xj3GkqWvAa1npxlvOK+fdq6ZRUZCVoghFREREJoeYevTd\nfUXU5iJ3nz/MI6VFvnr0U6u7t4+fbT/BHT/Yxv/beHBAkZ+bmcZ7VlXw7VuX87HLZ6e8yFdfpISh\nfJFYKVckDOWLJEOoHn0zSwdazKzE3TtHKSYZR7p7+/j1rnq+u6WW4y3dA14rzE7n5mVTeefyqRTl\nxHU5iIiIiIjEKZ45+luAt7j7kdEJKT7q0U+urt4+Ht1Vz0NVtdS1Dizwi3MyuGVlBe9YOoW8rPQU\nRSgiIiIy/iV7jv53gJ+Z2b3AIYLefCC1F+NKcpytwH/PqgrevnQKuZkq8EVERERSKd4bZgH8/aD9\nKb0Yt6qqCq3oj56u3j5+vfMkD205xolBBX5JTgbvHkcF/saNG1m/fn2qw5BxQvkisVKuSBjKF0mG\n0IW+u88fjUBkbDpbgf+eVRW8bZwU+CIiIiKTSegefQAzux54L1Dh7u8wswuBYs3RnzjOWuCvnsbb\nl04hJyP0zZVFREREJEZJ7dE3s48Dfwx8DbglsrsD+BJweTxByNjR0+c8uusk33llaA++CnwRERGR\n8SOeau1PgOvc/XNAX2TfDuC8eAIwsxvNbIeZ7TKzTw7z+u1mtiXy2GhmK4c7j+bon5vePuc3u+v5\n0A+38cWNBwcU+aW5Gdx1SSXfeu9ybllZMe6LfM0uljCULxIr5YqEoXyRZIjnYtxC4GDkeX/fTybQ\nNfzhIzOzNODLwAbgCPCSmf3U3XdEHbYPuNLdG83sRuA/gEvjiFuG0efOMwca+dbLR6k+1THgtZKc\nDG5dPY23aQVfREREZNyJp9B/CvgU8H+i9n0CeCKOc10M7Hb3agAz+y5wM8FvCABw9+ejjn8eqBzu\nRGvWrInj4ycvd+elQ018Y9NR9pxsH/BaYXY6715Vwc3Lpk7Ii2w15UDCUL5IrJQrEobyRZIhnkL/\n48AjZvZhoNDMdgLNwNvjOFclb/x2AIK5/Bef4fgPAb+M43MkStWRZr6x6SjbjrcO2J+Xmca7VlTw\n+ysryNeNrkRERETGtXjGax41s4uAi4C5BIX6i+7ed+Z3nhszuwa4Axj2R+B7772X/Px85syZA0Bx\ncTErV648/RNzfy/cZN6ubujg1fS5vHKkhaa9wTUNRQvXkJ1urOg5wNWzS7nhwtVjJt7R2o7uixwL\n8Wh7bG8rX7Qd63b/vrESj7bH9nb/vrESj7bHzvbWrVtpbGwEoKamhnXr1rFhwwbiEXq8ppn9hbv/\n8zD7/8zdvxDyXJcCf+/uN0a2PwW4u39+0HGrgP8CbnT3vcOd65577vE777wzzMdPGntOtPHNl4/y\nwsGmAfsz04y3nj+F966ZRnleZoqiS76NG3WTEomd8kVipVyRMJQvEqtzGa8ZT6Hf5O5Fw+yvd/ey\nkOdKB3YSXIx7FHgRuM3dt0cdMwd4HHjfoH79ATRHf6hDjR18Y9NRntp/asD+NIMblpTzBxdMp6Ig\nK0XRiYiIiMjZJGWOvpldG3maHmmjif7ABQR9+qG4e6+Z3Q08SjDq8353325mdwUv+33A3wFlwL+Z\nmQHd7n6mPv5J72RbNw9uPsovd56kL+rnOAOuWVjK+9ZOp7I4J2XxiYiIiMjoi7nQB+6P/JkDPBC1\n34FjBBfphubuv2LQDH53//eo5x8GPny281RVVTHZV/Rbu3r5/pZj/Oi143T2DvxNzfp5xbxv7Qzm\nl+WmKLqxQ78ulTCULxIr5YqEoXyRZIi50Hf3+QBm9i13f//ohSRhdfX08fC2Oh7acozmzt4Br62Z\nWcAfXjST86bmpyg6EREREUmFeHr0rwEOuPt+M5sOfB7oBf7G3WtHIcaYTMYe/d4+5/E99Xzz5aMD\n7mQLsLA8lz+8aCYXVhYSdDyJiIiIyHiTlB79KP8G3BB53j9lpwe4D7gpniAkHHfn+ZomHth0hOqG\ngXeznV6YxR3rZnDVglLSVOCLiIiITFppcbyn0t1rzCyDoOD/CPBHwOUJjSykqqqqVH580rxe28Kf\n/Ww3n35s34Aivzgng49dNov7b1nKNQvLVOSfQfQMY5GzUb5IrJQrEobyRZIhnhX9JjObBqwAtrl7\ni5llAZNnEHsKHGho5+svHeW5msYB+3Mz07hlZQW/v6KCPN3NVkREREQi4in0vwS8BGQBfxLZdwWw\nI1FBxWPNmjWp/PhRU9/WzTdfPsqvdw0clZmRZrzt/CncfsE0SnP1M1YYmnIgYShfJFbKFQlD+SLJ\nELrQd/fPm9mPgd6ou9QeBj6U0MgmuY6ePn649Tjf33KMjp6+Aa9ds7CUD144gxlF2SmKTkRERETG\nunh69CGYnf8HZvbvZvY/Adx9a+LCCm+i9Oj3ufPorpPc+f1tfOvlowOK/LWVhfzbO8/jr6+ZpyL/\nHKgvUsJQvkislCsShvJFkiH0ir6ZvQP4DvAzoJrgZlcvmdn73P3hBMc3qbxypJn7XjjM3pPtA/bP\nK83hI5dUsm5WUYoiExEREZHxJp45+luBT7j7E1H7rga+7O4rEhte7MbzHP2aUx38xwuHeeFg04D9\npbkZfODCGdywpJz0NE3REREREZlskj1Hfxbw9KB9GyP7JYRT7d18e3MtP99xYsCFttnpxi2rpvHu\nlZqkIyIiIiLxiadHvwr480H7/iyyP2XGU49+V08f391Sywe/v41Htr9R5Btw/eIyHnjPMj5w4QwV\n+aNEfZEShvJFYqVckTCUL5IM8azofxR42Mz+GDgIzAbagHckMrCJqM+d3+1t4IFNRzje0j3gtdUz\nCrjrkkoWTclLUXQiIiIiMpGE7tEHiNwV91JgJnAEeMHdu8/8rtE11nv0tx9v5SvPHWJHXduA/bOL\ns/nwJZVcMrsI091sRURERCRKUnr0zSwP+B8Ed8TdDHzW3Tvj+dDJ5GRbNw+8dITHdtcP2F+ck8H7\n107nLedPIUMX2oqIiIhIgoXp0f9XgvacHcAtwD+PSkRxGms9+l29fXxvyzHu/MG2AUV+Zppx66oK\nvvGeZbxj2VQV+SmgvkgJQ/kisVKuSBjKF0mGMD36NwJr3f2omX0JeAr4+OiENX65O8/VNHLfC4c5\n0tQ14LXL5xbzkUsqmambXYmIiIjIKIu5R9/Mmty9KGq73t3LRi2ykMZCj/6Bhna++vxhNh9uHrB/\nbmkOf3RpJWsrdcMrEREREYldsuboZ5jZNQRTIIfbxt1/G08Q411TRw/f3lzLI9vrBszDL8xO5/1r\nZ/D2pVN0wysRERERSaowPfrHgQeA+yOPk4O2v5bw6EJIRY9+b5/zyLY67vzBNn667Y0iP83gpmVT\n+Pq7l3Hz8qkq8scY9UVKGMoXiZVyRcJQvkgyxLyi7+7zRjGOcafqSDNfff4Q++o7BuxfPaOAj142\ni/lluSmKTEREREQkzjn6Y1GyevSPt3Tx7y8c5un9pwbsn1aQxV2XVHLFvGLNwxcRERGRhEhWj/6k\n1t3bx49eq+PBV2rp7Ok7vT87I43b10zj91dUkJURphNKRERERGT0TJjKdDR79F853Mx//9EO7n/p\nyIhk3gUAAAtWSURBVIAi/9qFpXz93Uu5bc10FfnjiPoiJQzli8RKuSJhKF8kGbSifwYnWoM2nSf3\nDWzTmVeaw8evmM3K6QUpikxERERE5MzUoz+Mnj7nJ68d59uv1NLe/cYKfl5mGu+/cAY36Y62IiIi\nIpIE6tFPoC1Hmvnys4eoPjVwms41C0v5yCWVlOdlpigyEREREZHYTZjG8nPt0T/Z1s3nnjjAX/5i\nz4Aif25JDv/01kX89TXzVORPEOqLlDCULxIr5YqEoXyRZJj0K/q9fc5Pt9XxrZeP0hbVppObmcb7\nLpjOO1dUqE1HRERERMadSd2j/1ptC1965iD7Gwa26Vy1oIS7LqlkSn5WIkMUERGR/9/e/cdaXddx\nHH++uIjKFTFESeBiiqKiAioIEhqYpaJGc7PUDUvDkYE109GsXK25rK2a+SszTHPLaWFLskxdYyrO\nnymICSKigCC3gQh68wfguz/O9+q5l3Pu/Z4rnO853/N6bGz3fL+fz/e8D3vvfN/7ft/f8zGzirhH\nv0Jb3tvG3KfW8c/lGztsb+m/O7MntnDMkH4ZRWZmZmZmtnM0VI9+RPCvFW/yjXlLOxT5u/fuxYxx\ng7n57MNd5DcA90VaJZwvlpZzxSrhfLFqaJgr+uu2vM/1j63h32vf7rD9swf255IThrL/Xm7TMTMz\nM7P8yH2P/rYPgz8/38ofn1vPB9s//qwDm3dj9sShTDxwn2qGaWZmZmaWmnv0y3ixtY1rF67mtaKH\nbXsJpo3cj68ddwB9+zRlGJ2ZmZmZ2a6TeY++pNMkLZO0XNL3yoy5TtLLkhZJGlNqTHGP/jvvb+O6\nhWu47G/LOxT5h+y7J9d96TAuOWGoi/wG5r5Iq4TzxdJyrlglnC9WDZkW+pJ6ATcApwJHAudJOrzT\nmNOB4RFxKDATuLnUsVasWEFE8PDKTcyYt5T7lm2gvVFnj969mDl+CNdPO4wR+/XddR/I6sKSJUuy\nDsHqiPPF0nKuWCWcL5bWJ1kUNuvWneOBlyNiFYCku4BpwLKiMdOAOwAi4klJ/SUNiojW4gO1tbVx\n1YMreWrNlg5vML5lb2ZPbGFQPz9sawWbN2/OOgSrI84XS8u5YpVwvlhaixcv7vHcrAv9IcCaotev\nUyj+uxqzNtnW2mlchyJ/QN/ezDqhhUmf6Y/klW3NzMzMrLFkXejvNOvXr4ejQcCZRwzkonGDaXYf\nvpWwevXqrEOwOuJ8sbScK1YJ54tVQ9aF/lpgWNHrocm2zmNauhnD8OHDaVtyOwArlsDdL41mzJiS\nz+1agxs7dizPPvts1mFYnXC+WFrOFauE88XKWbRoUYd2nebm5h4fK9Pf0ZfUBLwEfB54A3gKOC8i\nlhaNmQrMiogzJE0Aro2ICZkEbGZmZmZWJzK9oh8R2yXNBh6k8AtAt0bEUkkzC7vjloj4h6SpklYA\nbcCFWcZsZmZmZlYPcrMyrpmZmZmZfSzzBbMqtbMW2LL86y5XJJ0vaXHyb6Gko7OI02pDmu+WZNw4\nSVslnV3N+Kx2pDwPTZb0nKQXJC2odoxWO1Kci/aWND+pWZZI+noGYVoNkHSrpFZJz3cxpqIat64K\n/Z25wJblW5pcAVYCJ0XEaOBq4HfVjdJqRcp8aR/3M+CB6kZotSLleag/cCNwZkQcBZxT9UCtJqT8\nbpkF/CcixgBTgF9KyvrHUiwbt1HIlZJ6UuPWVaFP0QJbEbEVaF9gq1iHBbaA/pIGVTdMqwHd5kpE\nPBER7SuWPEFhfQZrTGm+WwAuBeYB/61mcFZT0uTK+cA9EbEWICI2VDlGqx1p8iWAfsnf/YCNEbGt\nijFajYiIhcCmLoZUXOPWW6FfaoGtzsVZuQW2rLGkyZViM4D7d2lEVsu6zRdJg4EvR8RvKCzZYY0p\nzXfLCGCApAWSnpY0vWrRWa1Jky83ACMlrQMWA9+pUmxWfyqucX1ryBqepCkUfs1pUtaxWE27Fiju\nr3Wxb+X0Bo4FTgaagcclPR4RK7INy2rUqcBzEXGypOHAQ5JGRcQ7WQdm9a/eCv2dtsCW5V6aXEHS\nKOAW4LSI6Op2meVbmnwZC9wlScBA4HRJWyNifpVitNqQJldeBzZExHvAe5IeAUYDLvQbT5p8uRC4\nBiAiXpH0KnA48ExVIrR6UnGNW2+tO08Dh0g6UFIf4Fyg80l2PnABQLLA1lsR0VrdMK0GdJsrkoYB\n9wDTI+KVDGK02tFtvkTEwcm/gyj06X/LRX5DSnMeuheYJKlJUl9gPLAUa0Rp8mUVcApA0m89gsKP\nRVhjEuXvGFdc49bVFX0vsGVppckV4CpgAHBTcpV2a0Qcn13UlpWU+dJhStWDtJqQ8jy0TNIDwPPA\nduCWiHgxw7AtIym/W64Gbi/6ScU5EfFmRiFbhiTdCUwG9pW0GvgR0IdPUON6wSwzMzMzsxyqt9Yd\nMzMzMzNLwYW+mZmZmVkOudA3MzMzM8shF/pmZmZmZjnkQt/MzMzMLIdc6JuZmZmZ5ZALfTMzMzOz\nHHKhb2ZmZmaWQy70zcxsp5B0UNYxmJnZx1zom5nlgKQXJJ2U4fsfBIxPOXaYpK/u4pDMzBqeC30z\nsxok6TVJ/5O0RdIbkm6T1Lfc+Ig4KiIeqWaMnXwzIu5KMzAiVgN9JY3cxTGZmTU0F/pmZrUpgDMi\nYm/gWGAs8MPOgyQ19fQNKpkraaykv0t6WNJFkmZKulHSZEmjgDVdzN1T0qOdNt8JzO5h6GZmloIL\nfTOz2iWAiHgDuB84CkDSq5LmSFoMvCOpKdl2crL/CEkLJG2StETSWR8dcMe5qc4DEfEM8C4wNyJ+\nHxG/BW4C7gbOBBZ0Mf3bwAnF7xUR7wN9JO2V+n/DzMwq0jvrAMzMrGuSWoCpwLyizecCpwMbI2K7\npPaxvYH5wFzgC8CJwL2SjouIl0vM/bCCUD4HzCl6fTDwNjAOuKZM7McAy4EPgAOAtUW7FwMTgQeL\nxh8MXEzhjoaSze1/B/BERMyvIGYzs4blQt/MrHb9VdI2YDNwHx2L6V9HxLoScyYAzRHx8+T1Akn3\nAecBP+lmbllJe87WiFiZvN6DQkE+G7gsIqLEnCbgnIj4vqRWYAgdC/11wKEUFfrJ8a9MGdORFB4A\nHgk8CuwPfBARf6jks5mZ5ZULfTOz2jUtIsq1xLxeZvtgduyXX0WhyO5ublemAKslfQXoA+wFXBoR\nqyRdUWbOLODW5O/1SWzF3gJG9CCWdkMp3BWYGhFXJA8rLwJc6JuZ4ULfzKyWqYt9O1xBT6wDhnXa\nNgx4KcXcrkwB7oiIP5XYt63zhqQF53jgLUmTgCZ2LPT3BNpKzGtv3emwi06tOxHxgKQrKdztgMJD\nyxsq+VBmZnnmQt/MLF+eBNokzQF+BUyi8LDsj8tNkHQbEBFxUZn9vYCTgO+WOUSrpOaIKC7aLwQu\naH8GQNIYdiz0B1C40v+RSlp3El8E2uOeDvyigrlmZrnmX90xM6tNXV11L7UvACJiK3AWhYd3NwA3\nANOLHsQtNbcFWFjqjSSNBn4K7A5MLhPPwxSu3iNpQvJMwAiSOxLJFf3RwCmSTiyaNwp4rMwxuyWp\nGRgEnCjpYuDpiPhLT49nZpY3KvH8lJmZNQhJu1Hoax8VEdt7eIxPAVdExA8qnDc3Imb05D2T+WcB\nkyPi8p4ew8wsz3xF38ysgUXE1og4sqdFfnKMTcBGSfumnSNpHPBQT99T0qHA5cBASfv09DhmZnnm\nK/pmZvaJJX38FycLaXU3tonCHYCfdzfWzMx6zoW+mZlVlaRPA5sj4t2sYzEzyzMX+mZmZmZmOeQe\nfTMzMzOzHHKhb2ZmZmaWQy70zczMzMxyyIW+mZmZmVkOudA3MzMzM8shF/pmZmZmZjnkQt/MzMzM\nLIf+DyJv+65PsOkIAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53fc28cfd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 4)\n", "p = np.linspace(0, 1, 50)\n", "plt.plot(p, 2*p/(1+p), color=\"#348ABD\", lw=3)\n", "#plt.fill_between(p, 2*p/(1+p), alpha=.5, facecolor=[\"#A60628\"])\n", "plt.scatter(0.2, 2*(0.2)/1.2, s=140, c=\"#348ABD\")\n", "plt.xlim(0, 1)\n", "plt.ylim(0, 1)\n", "plt.xlabel(\"Prior, $P(A) = p$\")\n", "plt.ylabel(\"Posterior, $P(A|X)$, with $P(A) = p$\")\n", "plt.title(\"Are there bugs in my code?\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see the biggest gains if we observe the $X$ tests passed when the prior probability, $p$, is low. Let's settle on a specific value for the prior. I'm a strong programmer (I think), so I'm going to give myself a realistic prior of 0.20, that is, there is a 20% chance that I write code bug-free. To be more realistic, this prior should be a function of how complicated and large the code is, but let's pin it at 0.20. Then my updated belief that my code is bug-free is 0.33. \n", "\n", "Recall that the prior is a probability: $p$ is the prior probability that there *are no bugs*, so $1-p$ is the prior probability that there *are bugs*.\n", "\n", "Similarly, our posterior is also a probability, with $P(A | X)$ the probability there is no bug *given we saw all tests pass*, hence $1-P(A|X)$ is the probability there is a bug *given all tests passed*. What does our posterior probability look like? Below is a chart of both the prior and the posterior probabilities. \n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAELCAYAAABtS7hlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOXZ//HPRUAgqKEgm0BkR1EUgrigaG1apbbutAp1\n6aLFjVrFuj3110UfC1bForUu4NqKj0/ApbaCFn20sS7I5sK+BggIskQgLCFcvz/OmTgMWSYks2T4\nvl+vvJj7nPuc+5ozQ+bKPdc5x9wdERERERFJX41SHYCIiIiIiFRPSbuIiIiISJpT0i4iIiIikuaU\ntIuIiIiIpDkl7SIiIiIiaU5Ju4iIiIhImlPSLpIhzOwIM9tjZoNSHUttmdnbZvZ4quOobw35eZnZ\nMjO7o477iOs9GfYZXtXYqT6OZnaMmX1oZtvNbGkVfX5jZouSHZuIHDiUtIukGTN7Kkxi9phZmZkt\nN7O/mFmrGjYtAtoDHyYhzKSKSv4iP5vN7AMzO7cexzgl3Hdufe0TuAC4qR731xDFczOQ9kBBNev3\nOo5m9qaZPVnXwGrhXqAE6AUMrKafbnySQGb2hJm9leo4RFJFSbtIenoXaAccAYwELgSeqaqzmTXx\nwDp3L6/LwGbWuC7bJ5AD5xAkeCcC84BJZlZdElUbRj0lXWbWBMDdN7v71vrYV32wQLJ/71tNHcL3\n7a5q1tf5ONZRT+Add1/p7htSGEdS1ed7T0TqTkm7SHra5e7r3b3Y3f8O/AkYYmZNo2adh5vZP8xs\nK/D7ykoRzKxX2GdL+POqmXWPWn9FOJv/TTObaWY7gPzKAjKzYeHs9mYzW29mr5lZz6j1kfF/YGZ/\nN7NtZrbEzK6I2U+umU0xs1IzW2Fm18d5TAzYFCZ4C4CrgJ3AeVH7vjkcc6eZLTazG2LGPi98ntvM\nbFP4fI4zsyMI/lACWB4+j7eitrvEzGaF5RHLzOx+M8uOWv+2mY03s9+bWTGwIlz+f9FlHWbW2MxG\nm9mqMMbPzWxYTIx7zGykmf3NzDYDz1Z6MMJyjPB1WRLG9kb4XGL7/NDM5oXHq2c8xyrUPJzdLAlf\n8/+OiaHa90SUrmb2r/A1X2JmF1fynIdXsl308X08fPwUwXv0inC7cjM7LezzWCXbLjGz/6pm3+3N\n7IXw/VAa7mdAuO4IM9sDdAPuCsf6f1XtK+qYVPt6xPTf5xuecB+Lw328a2ZnW9T/7fB99ICZrTSz\nHWZWbGbP1xDXHjP7hZkVmNnW8D34i0r67PPeM7O2Zva0ma0zs6/M7N9mNjhquxrjifP/0BNm9msz\nW2NmG8zsmUgfM/sN8DPg9KjX/fLqnrNIxnF3/ehHP2n0AzwFvBGz7CagHGhBMPu+h6AcZljYjvyU\nA4PCbZoRJI9vAv2A/sBbwEKgcdjninCbD4DTgS5A6yriugL4XtjnOODlmH1F4loMXESQ6Pw3UAb0\niNrPTIISnuOBY4E3CEoPHq/mmET2PShm+Wbg3vDxdcA2gg/27sDPge3AT8L17QiS1lHh/noDlwBH\nE/xBcE54LPKAtkDLcLsfAxuA4eF2pwKzgWei4ng7fA6PAEcCR0ctfzyq3x+B9QTfnPQAbg/HPCOq\nz56wz7VAV6B7FcfkN8BWgj82+gMDwtfx45g+28I4BoZjtgiPVWlVxyrcdll4fH9LkOj/KBxv5H68\nJ1aFx7oncBewGzgu5jkPjxn7jpjj+3j4+FDgHWAi0CZ8rRqH+y8BsqO2ywd2Ae2qeW99SPCePDl8\nL7wAbARahe+LtgT/1+4JH2fX8fVYGLPdKeF7IDdsDwjbvwuP17nhMY3+v31TGNNgoFO4zS9q+L2y\nB/gyfF/1IPgGrww4p7r3HsHvkc+BF8Pn1Y3gfbsd6B1PPMT/f2gjcD9BGdK3w21+F65vAfwVKIx6\n3Zum+ve1fvSTzJ+UB6Af/ehn7x9iknagD0Ei/F7YjiRCd8Rst1diS5CQbQW+EdWnLUGydmnYjiTt\ng/YjzlbheCfHjH9DVJ9GwFfAVWH72+F43aP6HBbGFHfSHiYSvw339Z1wWRHwh5jtHgAWh4/7EZUc\nVTLGKZWtJ0ggfx6zbHAYT07YfhuYX8k+o5PN5sAOYERMn8nAv6Lae6o7FlH9fhPG2zVqWc9w+zOi\n+uwGOsZsW+2xinre78T0+W9gxX68J34b0+899k7Y4k7aw/abwJMx+zwIWAf8NGrZ88BL1cSbHx7D\n3jH7KQZ+XVU8dXw9akra/1rJcR/B3kn7g9HvmTj/v+4Bno5Z9rfosSp77xEk3EVAo5jl04AH4omH\n+P8PzYrp8wjh772w/QTwVm2et370k0k/Ko8RSU9nWFDOUgp8QpC0XxrTZ3oN++gDzHX3TZEF7r4O\nWEAwoxjt45oCMrN+ZjbZzJaa2VcEs/hOkJhFmxM13h6CRKpduOgo4Et3XxLV58swpni8YWZbCP4Y\nuRb4pbu/aWaHEMzw/Tum/ztAFzNrRnAc3wA+D5/HL8ysUw3P+bDw+T1gX5cYbQFeD597j6juM2qI\nvQfQpIoYY1+Pml7biPXuvizScPdFBLOp0fv7wt1XRxpxHquI92P6vAd0MrODw33F+574oJL9xD7n\nOvGgJv5pgrIpzKw1wQms1V11pg+wwYNyq+j9fLif8cXzetSkD/ser/fZ+9yAp4BjwxKav5jZhRZf\n/Xk8r0Pse+94oANQEvN/4FTCUqvq4qnl/6E57K2Yr393iBzw0vWEM5ED3QfA5QSza8XuvruSPtvq\naaxyr+YkQAAzaw5MJUj0fgx8Ea6aSzAzGS12X079nT/zY4JShs3uvrE2G4Z/QHzXzI4nmPG/CBht\nZkPd/Z9VbBaJ+xfA/1WyflXU43hejxpPyqzFvuJVn/uqUMv3RLI8BtxkZscQvMbrgCkpiqUye9j3\nPVBZsu3V7cTd55hZF+A7wBkEM913mdmJXvcTdmPfL40IXtPz2Tf20iri+VMkHmr3fyiRvztEGjz9\nZxBJT9vdfZm7F1WRsMfjc6CPRV0q0szaEdRyf1rLfR1FUMbyX+7+bjgz2Zr4k9CIucBhtvfJsIeF\nMcWj2N2Xxibs7r6F4MP/tJj+3wSWufuOqL4fu/todz+dYHb5J+GqSMKQFdV3HbASODIcN/an2j92\nYiwmqKmvLMbParGfaG3MrGukYWa9CF6nz6vaoDbHCjgpps8pwOowMazNeyJ2P4MI3gv7axdRr1NE\n+A3OWwQ1+j8DJrh7dQnw50BrMzsyssDMmhJcnai2/0eg5tdjHdDWzKKP0YCYfcwlqK+PdjIxiby7\nl7r7K+7+S4LzFY4iOC+lOpW9njW9Dh8T1LFvqeT9v7aKeI6PxFPP/4cqfd1FDhSaaRfJXM8D/w/4\nHzO7heCP9PsIPkBfrOW+VhAknL8ws/sJTlL7A8HMYdzcfZqZfQL8NbxyRRkwmn1n2PbHH4D7zGwx\nwYxePkEt8LUAZnZyuOwNYA3ByW7HEtTJQvAc9wBnm9mLwE53/wr4L2B8eDWNV8KY+wBD3P3qeINz\n9+1mNo5gBvJLglKAHxCcAPvt/XzO24GnzGwUQbI8Dpjp7m/XsF21xypKPwuuljKRIDH8BcHxgNq9\nJ35mZgsIEsDLCJLH62rxPGMtA75pZt0ITj4tifrj9nGCuvAsYEJ1O3H3t8xsOvC8BVcx+gq4E2gK\nPLofcdX0erwNZBO8B54kSNhjj/kDwEdm9rvweRzF19eodwiu/ENQOjKbYLZ7OMG5CwtriO/7ZnYd\nwTck3yV4/w2tYZu/Ab8E/mFmvw7HaAd8i6D87tU44qmX/0MEr/tQM+tD8M3Ollom/SINmmbaRRqm\nqmYPK5aHM6bfIUis3iFIGL4Cvlvb2XsPrk19KUFy+RnBzWZGsW+CVllcscvOI0i03gFeBf5BUPJS\nYxg1xPgXgj9SbieY2fwVcKu7Px12KSGYsYxc4WQ88Bxwd7j9unDb2wgSkJfD5X8FfkhwlZQPgY/C\ncaK/1q/x9Qj9F8EfCWMJZnKHAz9y9/+L93nGKCZIUgsIrlqylaDsp1pxHKtIHA8R1CN/TFDyMM7d\nx4X7qM174jaC2e85BFeh+ZG7z4npE7tNde37CWrF5xDMXkffcfVlgtf69eha/mqcB8wHXiN4fdsC\n3475Nife16Ta18PdFxLU3F9C8Pr/mOA1IKrPTIJjNJzgPIxbgV8T/BEQ+RbkK+BG4D9hn/OAC8Ma\n+ur8nuD1mkPwmvzK3V+t7nm6+06CGfyPgScJzj+ZRPBH3Ip44qnj/6FoEwhq7v9D8LpfEsc2IhnD\nqv/msJ4HMxtCUHvXiOBryzEx61sS/FLoTjBj8VN3r8tXqCIiGSm8bvWP3L1XqmNJJ+EJqCuBH7r7\na6mOpz6E1yOfQHA51q/2cx97CK4aVe313EUkfSVtpt2Cu/A9DJxFcLb6sOg6wtAdBJd8Oo7gUnTj\nkhWfiIg0XOENftoTXJZyVUNO2M1slJnlmVkXM/shQQnZi/ubsItIZkhmecwJwCJ3X+HuZQQ3sDgv\npk8fgpOICE9q6mJmbZIYo4iINEynEJSnfJvgyksN2bHA34F5BOVbzxKcWFsXyftaXUQSIpknonYk\n+MoyYhVBIh9tDsGdAt8zsxOAXILrCa9PSoQiIg2Eu/+O4K6ZArj7O2TIeVrufkUC9qmrrog0cOn2\nC2408A0zm0lwZYFZBNepFhERERE5YCVzpn01wcx5RKdwWYXw+sE/jbTNbBmwNHZH11xzjS9ZsoT2\n7dsD0KJFC3r06EG/fv0AmD17NoDaDaRdUFCg109ttdVWW+0G39bnmdr70waYM2cOa9cGtz4466yz\nGDVq1D73vEja1WPMLIvgUlH5BNdI/ggY5u7zovrkAKXuXmZmVwGnuPuPY/c1bdo0z8vLS0rcknij\nR4/mtttuS3UYIiIidaLPM6kPM2fOJD8/f5+kPWkz7e5eHt684g2+vuTjPDMbEaz2xwluIvFMeGmq\nz6n7iTfSABQVFaU6BBERkTrT55kkUlLviOruU4i5Xbm7Pxb1+IPY9SIiIiIiB7p0OxFVDkDDhw9P\ndQgiIiJ1ps8zSSQl7ZJyp556aqpDEBERqTN9nkkiJbU8Jhm2bt1KSUkJZvvU70uaKikpIScnJ9Vh\nJEVWVhZt27bV+1NEJAMVFhYqcZeEyaikfcOGDQAcfvjhSooakMMPPzzVISRNaWkp69ato127dqkO\nRURERBqQjCqP2blzJ61bt1bCLmkrOzub8nLdL0xEJBNpll0SKaOSdhERERGRTKSkXURERKQeFBYW\npjoEyWAZVdMe686pS5I21l1nda/3fX7wwQfccMMNfPjhh/W+b4AxY8awbNkyHn30UVatWsWgQYNY\nsWJFvZQXjRo1isMPP5xRo0bx3nvvMWLECD777LN6iDrxx0VEREQk3WR00g5QWlZOadmehO0/u0kj\nsptkJWTfJ510UsIT00iC3qlTp7ju5DZx4kSee+45/vnPf1bb7/777690nP3RunVrZsyYQZcuXYDk\nHBcREZHaUk27JNIBkLTvYcO2ssQN0KJJQpL28vJysrL2f7979uyhUaP6r35y9xoT8PoeWycWi4iI\nyIHugKlp790mu95/aqtfv348+OCDnHzyyXTv3p2RI0eya9cuAN577z2OOeYYxo0bx1FHHcXIkSMr\nlkUsXLiQc889l65du3LKKacwZcqUinXXXXcdN998MxdffDG5ubmV1tUVFRVxzjnncMQRR3DRRRex\ncePGinUrV66kdevW7NkTfCvx/PPPk5eXR25uLnl5eUyaNImFCxdy8803M336dHJzc+nWrVuVY193\n3XXcc889Fft3d8aOHUvPnj3p378/BQUFFevOPfdc/vrXv1a0J06cyNlnnw3A97//fdydwYMHk5ub\ny8svv1zr43LLLbdwySWXkJuby5lnnsmKFStq+cqJiIjUTDXtkkgHTNKeLgoKCpg8eTIzZ85k8eLF\n3HfffRXr1q1bR0lJCZ988gljx44Fvp5l3r17N8OHDyc/P59FixYxevRofv7zn7Nkydd1+5MmTeLm\nm2+mqKiIk046aZ+xr7rqKvr378/ixYu5+eabmThx4l7rI2OVlpZy++23U1BQQFFREVOmTOGYY46h\nV69e3H///QwcOJCioiKWLl1a6dgnnnjiPmOvW7eOTZs2MXfuXP785z9z44037hV7rEgsr732GhD8\nIiwqKuL888+v9XF56aWXuO2221i+fDldu3bl7rvvrnJcERERkXSkpD3JrrrqKjp06EBOTg433XQT\nkydPrliXlZXFbbfdRpMmTWjatOle202fPp3S0lJuuOEGGjduzODBgznrrLOYNGlSRZ+zzz6bgQMH\nAnDQQQfttf2qVauYPXs2t99+O02aNOHkk09myJAhVcaZlZXF3Llz2bFjB23btqV3797VPq/osWNj\nhyDJvuOOO2jSpAmDBg3iO9/5Di+//HK1+4zm7pUuj+e4fO9736Nfv340atSIoUOH8umnn8Y9roiI\nSLxU0y6JpKQ9yaLv/tm5c2fWrl1b0W7dujVNmjSpdLu1a9fuc+fQzp07s2bNmkr3Xdn2LVu2pHnz\n5nttX5ns7GwmTJjAk08+yVFHHcWwYcNYtGhR3M+rMi1btqRZs2Z7jR393PdXPMelbdu2FY+zs7PZ\ntm1bnccVERERSSYl7Um2evXqiscrV66kffv2Fe3qTrjs0KEDxcXFey1btWoVHTp0iGv79u3bs3nz\nZrZv377X9lU544wzmDx5MvPnz6dHjx7ceOON1Y5R08milY0dee7Z2dl7rVu3bl21+4oWz3ERERFJ\nBtW0SyIdMEn7gvWl9f6zPyZMmEBxcTGbNm1i7NixXHDBBXFtN2DAAJo3b864cePYvXs3hYWFTJ06\nlYsuuiiu7Tt16kS/fv0YPXo0ZWVlfPDBB3udsAlfl6CsX7+e119/ndLSUpo0aUKLFi0qrgbTpk0b\niouLKSur3RV53L1i7Pfff58333yzoj69b9++vPbaa2zfvp2lS5fudVIqQLt27Vi+fHml+63rcRER\nERFpCJJ6yUczGwI8SPDHwgR3HxOz/lDgr0AukAXc7+5P12XM7CaNoEXlJSf1IbtJ7f7uGTp0KBdd\ndBFffPEFZ599NqNGjYpruyZNmvD8889z880388ADD3D44Yfz6KOP0r17cFOneC6L+MQTT3DNNdfQ\nvXt3Bg4cyLBhwygpKalYH9nHnj17eOSRR7j22msxM/r27Vtxwuxpp53GkUceyZFHHklWVhYLFy6M\nK/527drRsmVL+vTpQ3Z2Ng888EBF7Ndccw0zZ87kyCOP5Oijj+YHP/gB77zzTsW2t9xyC9deey07\nduxg7NixHHbYYfV6XEREROqDatolkayqE/zqfSCzRsBCIB8oBqYDl7j7/Kg+twOHuvvtZnYYsABo\n5+67o/c1bdo0z8vL22eM4uLiveqb0+2OqP369WPcuHGcdtppSYhI0lXs+1REREQkYubMmeTn5+8z\n65jMmfYTgEXuvgLAzF4AzgPmR/Vx4JDw8SHAhtiEvTbiSaRFRERE6kNhYaFm2yVhkpm0dwRWRrVX\nESTy0R4GXjWzYuBg4OIkxZYUKtUQEUlPyfxmVjLX6rnFTN22RJOGkhBJrWmPw1nALHf/lpl1B940\ns2PdfWt0p4KCAsaPH09ubi4AOTk59O3bt+IOnelq1qxZqQ5B0kBJSQlLly6tmI2JXG1AbbXVTl0b\nOlBaVs7yTz8GoO2RQQnmuvkz1VY77vaO3eWsnjsDwqQ9Xd7faqd3O/K4qKgIgOOPP578/HxiJbOm\n/STgt+4+JGzfBnj0yahm9hrwB3d/L2xPA25194+j9xVvTbtIOtL7VCT93Dl1CV+WlrFhW+2ujCUS\nrXWLJhyW3UQz7VIn6VDTPh3oYWZHAGuAS4BhMX1WAN8G3jOzdkAvYGkSYxQRkQNc7zbZqQ5BGqAF\n60tZN38mh+WdmOpQJEMlLWl393Izux54g68v+TjPzEYEq/1x4G7gaTP7JNzsFnffmKwYRURERETS\nUVJr2t19CtA7ZtljUY/XENS1i4iIiDQokdp2kUQ4YO6IKiIiIiLSUKXb1WPq1YzLfpW0sQY898ek\njVXfxo4dy4oVK3jwwQcTsv9zzz2XH/7wh1x66aUUFBTwwgsvUFBQUC/7HjRoEPfddx+DBg1izJgx\nLFu2jEcffbRe9p3o4yIiIplFNe2SSBmdtAPs3rqN3VtKE7b/xodk0/jgFgnbf02uu+46OnbsyB13\n3LHf+7jxxhvrMaLqDR06lKFDh9bYL97n9Z///Gev9v5eC/+9995jxIgRfPbZZxXLknlcRERERKqT\n+Un7llJ2rl2fwBHapDRpr6vy8nKysrKSvm1d1ffY7q6bX4mISJ2opl0S6YCpac/p36fef2qrX79+\nPPjgg5x88sl0796dkSNHsmvXror1zzzzDMcffzw9evTg0ksvZe3atRXr7rjjDnr37s0RRxzB4MGD\nmT9/Ps888wwFBQU89NBD5Obm8qMf/QiAtWvXcsUVV9CrVy/y8vJ4/PHHK/YzZswYfvzjH3P11VfT\npUsXJk6cyJgxY7j66qsr+rz++usMGjSIbt26cd5557Fw4cK9nsO4ceMYPHgwnTt3Zs+ePfs8z7ff\nfpsTTzyRrl27cuuttxJ9L4CJEydy9tln79fzih27vLycfv368e6771bsb/v27fzsZz8jNzeXb33r\nW3z++ecV61q3bs3y5csr2tdddx333HMPpaWlXHzxxaxdu5bc3Fxyc3P54osvan1cHn74YQYPHkzX\nrl258sor93ptRUREROrigEna00VBQQGTJ09m5syZLF68mPvuuw+Ad999l7vvvpunn36aefPm0alT\nJ6688koA3nrrLT788EM+/vhjVqxYwZNPPkmrVq244oorGDp0KCNHjqSoqIi//e1vuDvDhw/n2GOP\nZd68ebz88ss89thjvP322xUxTJkyhfPPP5/ly5dXlKpEZpkXL17Mz3/+c0aPHs2iRYvIz89n+PDh\n7N69u2L7yZMn8+KLL7Js2TIaNdr7LbRx40auuOIK7rzzThYvXkyXLl348MMP9+oTGas2z6uysSub\naZ8yZQoXXHABy5Yt48ILL+TSSy+lvLx8r3FjZWdn8+KLL9K+fXuKioooKiqiXbt2tT4ur7zyCpMm\nTWL27Nl89tlnPP/885W/CUREJCNF7pAqkghK2pPsqquuokOHDuTk5HDTTTcxefJkIEjmL730Uo45\n5hiaNGnCnXfeyccff8yqVato0qQJW7duZcGCBbg7PXv2pG3btpXuf+bMmWzYsIFRo0aRlZVFbm4u\nl112WcU4AAMHDmTIkCEANGvWbK/tX375Zc4880xOO+00srKyGDlyJNu3b+ejjz6q6DNixAg6dOhA\n06ZN9xn/zTff5KijjuL73/8+WVlZXHPNNVXGWpvnFc/YAMcdd1zF2Ndddx07d+5k+vTpANTl7r/x\nHJerr76atm3bkpOTw5AhQ/aqjxcRERGpCyXtSRZ9+/rOnTtXlMCsXbuWzp07V6xr0aIF3/jGNygu\nLmbw4MFceeWV3HLLLfTu3ZubbrqJrVu3Vrr/lStXsmbNGrp160a3bt3o2rUrY8eO5csvv6zo07Fj\nxyrji43DzOjYsSNr1qyp9DlUtn3s/qsarzbPK56xY8cyMw4//PC9yoz2VzzHpU2bNhWPmzdvzrZt\n2+o8roiINByqaZdEUtKeZKtXr654vHLlStq3bw9A+/btWblyZcW6bdu2sXHjxook9aqrruKtt97i\n/fffZ/HixTz00EPAviUfHTt2pEuXLixdupSlS5eybNkyVqxYwcSJEyv6VHfCZWwckZijk+Xqtm/X\nrh2rVq2q8jnHivd5xTN27FjuTnFxMR06dACCMpjS0q+vJLRu3bq49xvPcRERERFJlAMmaS+ZNbfe\nf/bHhAkTKC4uZtOmTYwdO5YLLrgAgIsuuojnn3+ezz//nJ07d3LXXXcxcOBAOnXqxKxZs5gxYwa7\nd++mWbNmNG3atKKWvG3btqxYsaJi/wMGDODggw9m3Lhx7Nixg/LycubNm8esWbPiiu/888/nzTff\n5N///je7d+/moYceolmzZgwcODCu7c8880wWLFjAP/7xD8rLy3n00Uf3So6j1eZ5xWvOnDkVYz/y\nyCM0bdqU448/HoC+ffsyadIk9uzZw7/+9a+9LhfZpk0bNm3axFdffVXpfut6XEREJPOppl0SKeOT\n9saHZNO0fZuE/TQ+JLtW8QwdOpSLLrqIAQMG0K1bN0aNGgXA6aefzu23387ll1/O0UcfTVFREU88\n8QQAW7Zs4Ze//CXdunWjf//+tG7dmpEjRwJw6aWXMn/+fLp168bll19Oo0aNmDhxIp9++in9+/en\nV69e/PKXv2TLli1xxdejRw8effRRbrnlFnr27Mmbb77J888/T+PGwdVBa5qRbtWqFU899RS/+93v\n6NGjB8uXL+ekk06qtG9tnldVY8cu++53v8tLL71E165dKSgo4Lnnnqs4YfWee+7h9ddfp2vXrkye\nPJnvfe97Fdv17NmTCy+8kLy8PLp168YXX3xRr8dFREREpC6sLifnpcq0adM8L2/furHi4uK9yhXS\n7Y6okUsWnnbaaUmISNJV7PtURFLvzqlL+LK0jA3byujdpnaTMSIAC9aX0rpFEw7LbsJdZ3VPdTjS\ngM2cOZP8/Px9ZgMz+uZK8STSIiIiIiLpLuPLY9KJSihEREQyl2raJZEyeqY93cR7MqiIiIiISDTN\ntIuIiIjUA12nXRIpqUm7mQ0xs/lmttDMbq1k/c1mNsvMZprZp2a228xaJjNGEREREZF0k7Sk3cwa\nAQ8DZwFHA8PM7MjoPu5+n7v3d/c84Hbg/9x9c7xjNG3alA0bNtTpdvUiiVRaWlpxCUoREcksqmmX\nREpmTfsJwCJ3XwFgZi8A5wHzq+g/DJhYxbpKtW7dmq1bt1JcXKyTPhuQkpIScnJyUh1GUmRlZdG2\nbdtUhyEiIiINTDKT9o5A9H3gVxEk8vsws+bAEOC62g5y8MEHc/DBB+9XgJIauma5iIhkAtW0SyKl\n69VjzgFT2S1bAAAdYUlEQVQKqyqNKSgoYPz48eTm5gKQk5ND3759OfXUUwEoLCwEUFtttdVWW+24\n2tABgI2LZrF6fTM69hkAwOq5MwDUVjuu9rr5M9nZrDGEN1dKl/e32undjjwuKioC4Pjjjyc/P59Y\nSbsjqpmdBPzW3YeE7dsAd/cxlfSdDLzo7i9Utq+q7ogqDVNhYWHFG1hEJBV0R1SpqwXrSylf+Sl9\n8k7UHVGlTqq6I2oyrx4zHehhZkeY2UHAJcCrsZ3MLAc4HXglibGJiIiIiKStxskayN3Lzex64A2C\nPxYmuPs8MxsRrPbHw67nA1PdfXuyYpPU0iy7iIhkAtW0SyIlLWkHcPcpQO+YZY/FtJ8BnklmXCIi\nIiIi6Ux3RJWUiz4RQ0REpKHSddolkZS0i4iIiIikuaSWx4hURjXtIiLS0H17wsMc1LgRB71TyIy/\ntkh1ONKA2Y3DKl2upF1ERESkHjTesZ2Ddu1kx+7SVIciDVjzKpYraZeU03XaRUQkEyzdVEy/XY3Y\nuS0r1aFIA6akXURERCQJcvr3SXUI0kCVzJpb5TqdiCopp1l2ERHJBL2at0p1CJLBlLSLiIiIiKQ5\nJe2ScrpOu4iIZIKF2zemOgTJYEraRURERETSnJJ2STnVtIuISCZQTbskkpJ2EREREZE0p6RdUk41\n7SIikglU0y6JpKRdRERERCTNKWmXlFNNu4iIZALVtEsiKWkXEREREUlzSU3azWyImc03s4VmdmsV\nfb5pZrPM7DMzezuZ8UlqqKZdREQygWraJZEaJ2sgM2sEPAzkA8XAdDN7xd3nR/XJAf4MnOnuq83s\nsGTFJyIiIiKSrpI5034CsMjdV7h7GfACcF5Mn+HAJHdfDeDuXyYxPkkR1bSLiEgmUE27JFIyk/aO\nwMqo9qpwWbReQCsze9vMppvZZUmLTkREREQkTSWtPCZOjYE84FtAC+B9M3vf3RdHdyooKGD8+PHk\n5uYCkJOTQ9++fStmbCM10mo3jPZf/vIXvX5qq612StvQAYCNi2axen0zOvYZAMDquTMA1FY7rva0\nzcvpUdaoYkZyzoY1ABzXuoPaalfZjjxeW7qFXZs2c87s2eTn5xPL3H2fhYlgZicBv3X3IWH7NsDd\nfUxUn1uBZu7+u7A9Hnjd3SdF72vatGmel5eXlLgl8QoLC1UiIyIpdefUJXxZWsaGbWX0bpOd6nCk\nAeo8+l7Wrl9Gv12N6Hhi31SHIw1Uyay5tHz2LvLz8y12XTLLY6YDPczsCDM7CLgEeDWmzyvAqWaW\nZWbZwInAvCTGKCmghF1ERDKBatolkZJWHuPu5WZ2PfAGwR8LE9x9npmNCFb74+4+38ymAp8A5cDj\n7j43WTGKiIiIiKSjpNa0u/sUoHfMssdi2vcB9yUzLkktlceIiEgmWLh9I/1030pJEL2zRERERETS\nnJJ2STnNsouISCZQTbskkpJ2EREREZE0p6RdUu7r6ySLiIg0XAu3b0x1CJLB4k7azWysmfVLZDAi\nIiIiIrKv2sy0ZwFTzewzM7vVzDolKig5sKimXUREMoFq2iWR4k7a3f0XwOHAbUA/YJ6Z/cvMLjez\ngxMVoIiIiIjIga5WNe3uXu7ur7n7MOAkoA3wNLDWzMabWccExCgZTjXtIiKSCVTTLolUq6TdzA41\ns5+Z2dvAu8CHwGDgKGAr8Hr9hygiIiIicmCL+46oZlYAnEWQrD8KvOzuO6PW3wSU1HuEkvFU0y4i\nIpmgV/NWsGtzqsOQDBV30g58AFzv7msrW+nue8ysXf2EJSIiIiIiEbUpjxlcWcJuZpMjj929tF6i\nkgOKatpFRCQTqKZdEqk2SfsZVSz/Zj3EISIiIiIiVaixPMbMfh8+PCjqcUQ3YEW9RyUHFNW0i4hI\nJlBNuyRSPDXtncN/G0U9BnBgJfDbeo5JRERERESi1Ji0u/tPAMzsP+7+RF0GM7MhwIMEfwBMcPcx\nMetPB14BloaLJrv73XUZU9JfYWGhZttFRKTBW7h9I/1qdzVtkbhVm7SbWRd3Xx42p5lZt8r6ufvS\nypbH7KsR8DCQDxQD083sFXefH9P1XXc/t8bIRUREREQOEDXNtH8KHBI+XkxQEmMxfRzIimOsE4BF\n7r4CwMxeAM4DYpP22P1LhtMsu4iIZALVtEsiVfsdjrsfEvW4kbtnhf9G/8STsAN0JKiBj1gVLot1\nspnNNrN/mFmfOPctIiIiIpKx0q3wagaQ6+79CEppXk5xPJIEuk67iIhkAl2nXRKpppr2fxOUv1TL\n3U+LY6zVQG5Uu1O4LHo/W6Mev25mj5hZK3ff639BQUEB48ePJzc32F1OTg59+/atKLOIJIFqN4z2\np59+mlbxqK222gdeGzoAsHHRLFavb0bHPgMAWD13BoDaasfVXrnzK5qWNaooI5izYQ0Ax7XuoLba\nVbYjj9eWbmHXps2cM3s2+fn5xDL3qnNyM7uiypVR3P2ZmvqYWRawgOBE1DXAR8Awd58X1aedu38R\nPj4BeNHdu8Tua9q0aZ6XlxdPaCIiIjW6c+oSviwtY8O2Mnq3yU51ONIAdR59L4duLSG7ZDMdT+yb\n6nCkgSqZNZeWz95Ffn7+Pud4VjvTHk8yHi93Lzez64E3+PqSj/PMbESw2h8HhprZNUAZsB24uL7G\nFxERERFpqGoqj7nM3Z8LH/+0qn7u/mQ8g7n7FKB3zLLHoh7/GfhzPPuSzKHrtIuISCbQddolkWq6\n5OMw4Lnw8WVV9HEgrqRdRERERERqr6bymLOjHp+R+HDkQKRZdhERyQS6TrskUk0z7Xsxs5bA94DD\nCe5q+g9317tTRERERCSB4i68MrNvAcuBXwADgZHAcjPb95o0IrWg67SLiEgm0HXaJZFqM9P+MPBz\nd38xssDMfkBw4uiR9R2YiIiIiIgEanOK8+HApJhlLwHt6y8cORCppl1ERDJBr+atUh2CZLDaJO3P\nAdfFLLsGeLb+whERERERkVjVJu1m9m8ze9fM3gX6A/eb2Soz+9DMVgEPhMtF9ptq2kVEJBOopl0S\nqaaa9vEx7ScSFYiIiIiIiFSupuu0P5OsQOTApZp2ERHJBLpOuyRSba/T3g44ATgMsMhyd9cdUUVE\nREREEqQ212k/H1gC/B54jOA67Y8BlyUmNDlQqKZdREQygWraJZFqc/WYu4GfuHt/YFv478+BGQmJ\nTEREREREgNol7bnu/r8xy54BLq/HeOQApJp2ERHJBLpOuyRSbZL2dWFNO8ByMzsZ6A5k1X9YIiIi\nIiISUZuk/QkgMiU6FngbmAM8Ut9ByYFFNe0iIpIJVNMuiRR30u7uY9x9Uvj4WaAXMMDd74x3H2Y2\nxMzmm9lCM7u1mn4DzazMzC6Md98iIiIiIpmqtpd8zAJOAg4HioEParFtI+BhID/cdrqZveLu8yvp\nNxqYWpvYpOFSTbuIiGQCXaddEinupN3MjgVeBpoBq4BOwA4zu8Dd58SxixOARe6+ItzfC8B5wPyY\nfiOBAmBgvLGJiIiIiGSy2tS0Pwn8Gejo7icAHQlmzuO9sVJHYGVUe1W4rIKZHQ6c7+5/IermTZLZ\nVNMuIiKZQDXtkki1Sdp7AQ+6uwOE//4J6FmP8TwIRNe6K3EXERERkQNebWra/wmcC7wUtewc4B9x\nbr8ayI1qdwqXRTseeMHMDDgM+K6Zlbn7q9GdCgoKGD9+PLm5we5ycnLo27dvRW10ZOZW7YbRjixL\nl3jUVlvtA68NHQDYuGgWq9c3o2OfAQCsnhvcP1BtteNpA8zb9VVFGcGcDWsAOK51B7XVrrIdeby2\ndAu7Nm3mnNmzyc/PJ5aFE+eVMrPngEiH5gRJ+wyCMpfOwADgFXf/YZU7+XpfWcACghNR1wAfAcPc\nfV4V/Z8C/u7uk2PXTZs2zfPy8moaUkREJC53Tl3Cl6VlbNhWRu822akORxqgzqPv5dCtJWSXbKbj\niX1THY40UCWz5tLy2bvIz8/fp9qkppn2xTHtz6Iez6UWV3hx93Izux54g6AsZ4K7zzOzEcFqfzx2\nk3j3LQ1b9Cy7iIhIQ7Vw+0b61aryWCR+1Sbt7v67+hzM3acAvWOWPVZF35/W59giIiIiIg1Vba/T\n/k3gcoKrvqwGnnP3txMQlxxANMsuIiKZQNdpl0SK+zscM7sSeBFYC0wmqEufaGZXJSg2ERERERGh\ndpd8vAX4jrvf4e6Puft/AWeGy0X2m67TLiIimUDXaZdEqk3S3prg5NNoC4BW9ReOiIiIiIjEqk3S\nXgg8YGbZAGbWAvgj8J9EBCYHDtW0i4hIJujVXPOYkji1SdqvBo4FSszsC2AzcBwwIhGBiYiIiIhI\nIK6kPbxDaXOCGyN1JbgTald3P93dixMYnxwAVNMuIiKZQDXtkkhxXfLR3d3MPgUOcfdVwKrEhiUi\nIiIiIhG1KY+ZBfRKVCBy4FJNu4iIZALVtEsi1ebmSv8HTDGzp4GVgEdWuPuT9RuWiIiIiIhE1CZp\nPwVYBpwes9wBJe2y3woLCzXbLiIiDd7C7RvpV6siBpH41Zi0h5d4/DWwFZgJ3OPuOxMdmEgizbjs\nV6kOQTLIgOf+mOoQREQkw8Uz0/5n4HjgdeAigpspjUxkUHJgSdUs++6t29i9pTQlY0tmaHxINo0P\nbpHqMEQkTfRq3gp2bU51GJKh4knahwB57r7GzB4C3kVJu2SA3VtK2bl2farDkAatjZJ2ERFJiniS\n9hbuvgbA3VeaWU6CY5IDTKpr2nP690nZ2NJwlcyam+oQRCTNqKZdEimepL2xmZ0BWBVt3P2tRAQn\nIiIiIiLxJe3r2PvqMBti2g50i2cwMxsCPEhwffgJ7j4mZv25wF3AHqAMuNHd34tn39Jw6coxIiKS\nCVTTLolUY9Lu7l3qYyAzawQ8DOQDxcB0M3vF3edHdfuXu78a9u8LvAgcVR/ji4iIiIg0VMksvDoB\nWOTuK9y9DHgBOC+6g7tHX8rjYIIZd8lwhYWFqQ5BRESkzhZu35jqECSDJTNp70hwJ9WIVeGyvZjZ\n+WY2D/g78NMkxSYiIiIikrZqc0fUpHD3l4GXzexU4G7gO7F9CgoKGD9+PLm5uQDk5OTQt2/fitro\nyMyt2g2jHVmWzPEXblhD7/DtP2fDGgCOa91BbbXjbneBivb2JL9/1a7/NgSv78ZFs1i9vhkd+wwA\nYPXcGQBqqx1XG2Derq8qZiTT5feV2undjjxeW7qFXZs2c87s2eTn5xPL3H2fhYlgZicBv3X3IWH7\nNsBjT0aN2WYJMNDd9/q+adq0aZ6Xl5fQeCWzzbjsV+xYs56da9frko+yX0pmzaVp+zY069BGd0TN\nAHdOXcKXpWVs2FZG7zbZqQ5HGqDOo+/l0K0lZJdspuOJfVMdjjRQJbPm0vLZu8jPz7fYdcksj5kO\n9DCzI8zsIOAS4NXoDmbWPepxHnBQbMIumUc17SIikglU0y6JlLTyGHcvN7PrgTf4+pKP88xsRLDa\nHwcuMrPLgV3AduCHyYpPRERERCRdJbWm3d2nAL1jlj0W9fhe4N5kxiSpp+u0i4hIJtB12iWRdK9d\nEREREZE0p6RdUk417SIikglU0y6JpKRdRERERCTNKWmXlFNNu4iIZIJezVulOgTJYEraRURERETS\nnJJ2STnVtIuISCZQTbskkpJ2EREREZE0p6RdUk417SIikglU0y6JpKRdRERERCTNKWmXlFNNu4iI\nZALVtEsiKWkXEREREUlzStol5VTTLiIimUA17ZJIStpFRERERNKcknZJOdW0i4hIJlBNuySSknYR\nERERkTSnpF1STjXtIiKSCVTTLomU1KTdzIaY2XwzW2hmt1ayfriZzQl/Cs2sbzLjExERERFJR0lL\n2s2sEfAwcBZwNDDMzI6M6bYUOM3djwPuBp5IVnySOqppFxGRTKCadkmkZM60nwAscvcV7l4GvACc\nF93B3T9w95Kw+QHQMYnxiYiIiIikpcZJHKsjsDKqvYogka/KlcDrVa28c+qSegpLUq8DU5P8eh61\nfhsHbdnJQbvKyUnqyCIikql6NW8FuzanOgzJUMlM2uNmZmcAPwEqPUOxoKCAKZ+soMVhHQBo0vxg\nvpHbi7ZH5gGwbv5MALXVrrLtm7/gWG8CwJwNawA4rnUHtdWOu90FKtrbCwsrTqiOlHup3bDaELy+\nGxfNYvX6ZnTsMwCA1XNnAKitdlzthds30nTX1ooygXT5faV2ercjj9eWbmHXps2cM3s2+fn5xDJ3\n32dhIpjZScBv3X1I2L4NcHcfE9PvWGASMMTdK51+nTZtmo+e2yTRIUuSbFw0i1Y9+yd1zG9PeJhD\nt5aQXbKZjifqfGepvZJZc2navg3NOrRhwHN/THU4Ukd3Tl3Cl6VlbNhWRu822akORxqgzqPvZe36\nZfTb1UifK7LfSmbNpeWzd5Gfn2+x65I50z4d6GFmRwBrgEuAYdEdzCyXIGG/rKqEPZp+sWaG1eub\n0VGvpYiIiEiVkpa0u3u5mV0PvEFwAuwEd59nZiOC1f44cCfQCnjEzAwoc/fq6t4lA0S+VhQREWnI\nVNMuiZTUmnZ3nwL0jln2WNTjq4CrkhmTiIiIiEi60x1RJeUiJ/KIiIg0ZLpOuySSknYRERERkTSn\npF1STjXtIiKSCXo1b5XqECSDKWkXEREREUlzStol5VTTLiIimUA17ZJIStpFRERERNKcknZJOdW0\ni4hIJlBNuySSknYRERERkTSnpF1STjXtIiKSCVTTLomkpF1EREREJM0paZeUU027iIhkAtW0SyIp\naRcRERERSXNK2iXlVNMuIiKZQDXtkkhK2kVERERE0pySdkk51bSLiEgmUE27JJKSdhERERGRNJfU\npN3MhpjZfDNbaGa3VrK+t5n9x8x2mNlNyYxNUkc17SIikglU0y6J1DhZA5lZI+BhIB8oBqab2Svu\nPj+q2wZgJHB+suISEREREUl3yZxpPwFY5O4r3L0MeAE4L7qDu3/p7jOA3UmMS1JMNe0iIpIJVNMu\niZTMpL0jsDKqvSpcJiIiIiIi1UhaeUx9Kigo4LOZyyjpnAvAQdkH06ZL74oZ20iNtNoNoz37n88n\n/fXbtXUd/WkKwJwNawA4rnUHtdWOu90FKtrbCws59dRTASgsLARQu4G1IXh9Ny6axer1zdLm96Pa\nDas9bfNyepQ1qpiRTJffV2qndzvyeG3pFnZt2sw5s2eTn59PLHP3fRYmgpmdBPzW3YeE7dsAd/cx\nlfT9DbDF3R+obF/Tpk3z0XOb0LtNdkJjluRYPXdG0ktkOo++l0O3lpBdspmOJ/ZN6tiSGUpmzaVp\n+zY069CGAc/9MdXhSB3dOXUJX5aWsWFbmT5bZL90Hn0va9cvo9+uRvpckf1WMmsuLZ+9i/z8fItd\nl8zymOlADzM7wswOAi4BXq2m/z7BSmZSTbuIiGQC1bRLIiWtPMbdy83seuANgj8WJrj7PDMbEaz2\nx82sHfAxcAiwx8xuAPq4+9ZkxSkiIiIikm6SWtPu7lOA3jHLHot6/AXQOZkxSeqlojxGRESkvi3c\nvpF+um+lJIjeWSIiIiIiaU5Ju6ScZtlFRCQTqKZdEklJu4iIiIhImlPSLikXuc6tiIhIQ7Zw+8ZU\nhyAZTEm7iIiIiEiaU9IuKaeadhERyQSqaZdEUtIuIiIiIpLmlLRLyqmmXUREMoFq2iWRlLSLiIiI\niKQ5Je2ScqppFxGRTKCadkkkJe0iIiIiImlOSbuknGraRUQkE6imXRJJSbuIiIiISJpT0i4pp5p2\nERHJBKppl0RS0i4iIiIikuaSmrSb2RAzm29mC83s1ir6jDOzRWY228z6JTM+SQ3VtIuISCZQTbsk\nUtKSdjNrBDwMnAUcDQwzsyNj+nwX6O7uPYERwKPJik9SZ/3yBakOQUREpM5W7vwq1SFIBkvmTPsJ\nwCJ3X+HuZcALwHkxfc4DngVw9w+BHDNrl8QYJQV2lW5NdQgiIiJ1tn3P7lSHIBksmUl7R2BlVHtV\nuKy6Pqsr6SMiIiIickBpnOoA6mLB+tJUhyD1YOXKInKS/Fp2jnpcMmtuUscWkfSmzxbZH52BDWXb\nIUufK5IYyUzaVwO5Ue1O4bLYPp1r6MPs2bPpMGdORfu4446jXz+ds9pQzf7hd+jXpyy5g94/Irnj\nSUabOXNmqkOQOrqgTaojkAbv/hE0nn0inZSPSC3Nnj2bOdF57ezZ5Ofn79PP3D0pAZlZFrAAyAfW\nAB8Bw9x9XlSfs4Hr3P17ZnYS8KC7n5SUAEVERERE0lTSZtrdvdzMrgfeIKiln+Du88xsRLDaH3f3\nf5rZ2Wa2GNgG/CRZ8YmIiIiIpKukzbSLiIiIiMj+0R1RpYKZlZvZzPDGVh+HJUqJHvN8M9tjZr2i\nlp1uZn9P4JhHmNmwRO1fRERSI9mfY1HjfWpm/2NmzRI5XhUx5JjZNckeV5JPSbtE2+buee7eD7gD\nGJ2EMS8B/g3EJtGJ/AqoKzA8gfsXEZHUSPbnWGS8vkAZcHVsBzOzBMfwDeDaBI8haUBJu0SL/sWS\nA2yEfWe+zewhM7s8fHy2mc0zs+lm9qdIv3CbWeEMxAwza7HPYMGyU4CfsW/SnmNmr5nZfDN7JOzf\nyMyeMrNPzGyOmd0QLu9mZq+HMbwTmbUP+/7JzN4zs8VmdmG47z8Ap4ax3VD3wyYiImkiqZ9jMf4N\n9Ai/zZ1vZs+Y2adAJzP7jpn9J5z9/x8zyw7HGG1mn4XfDNwbLjvMzArM7MPw5+Rw+W/MbIKZvR1+\npl0fjvsHoFsY55g6H0FJWw36Ou1S75qb2UygOdAe+FbUun1mvs2sKfAocKq7F5nZ81H9RgHXuvv7\n4S+nHZWMdx4wxd0Xm9mXZtbf3WeF6wYCRwFFwNQw4V4OdHT3Y8PxDw37Pg6McPclZnYC8BeCqxQB\ntHf3U8zsKOBVYDJwGzDK3c+t3eEREZE0l+zPMQv30xj4LvB6uLwncJm7Tzez1sCvgXx3325mtwA3\nhRNS57v7keE+Ip9pfwIecPf/mFlnYCrQJ1zXG/gmwR8kC8zsLwSfaUe7e178h0kaIs20S7TS8Gu+\nowh++TxXQ/8jgSXuXhS2J0atew8Ya2YjgW+4+55Kth8GvBA+/h/2Lln5yN1XeHCm9ETgVGAp0DWc\nCTkL2BLOfAwC/tfMZgGPAe2i9vMyQHhp0bY1PB8REWnYkv05Fvkj4SNgBTAhXL7c3aeHj08iSLrf\nCz+nLie4b00JsN3MxpvZBcD2sP+3gYfDvq8CB0dm5oF/uPtud98AfMHen3eS4TTTLpVy9w/Cr+gO\nA3az9x940SfaVFqr5+5jzOw14HsEv6jOdPeFFRuZfYNgBuQYM3Mgi2B241eRXey7S99sZscBZxHU\nDf4AuBHYVM0Mw86aYhURkcyT6M+xUGns509Ywr4tZv9vuPuPYscIvx3OJ/g8uz58bMCJ7l4W0xf2\n/kzbg/K4A4pm2iVaxS8uMzuS4P2xgWD2oI+ZNTGzlnxderKAYOY7cqfbi6O27+bun7v7vcB0gtmM\naD8AnnX3ru7ezd2PAJaZ2anh+hPDusBG4X4Lw68Ys9z9JYKvGvPcfUu43dCosY+t4fltAQ6J+6iI\niEhDkczPsb3Gq2b5B8ApZtY93G+2mfUMvylu6e5TgJuAyGfXG0DF+VbhZFV19Jl2gNBfaBKtWfg1\nX+SXzeVhecoqM3sR+AxYBswEcPcdZnYtQc35VoJfapEZ8l+a2RlAOfA5X9f5RVwMxJ4wM4mgZOZ/\nCL5qfJigLnCau78UJuNPhYm8E9TxAVwK/MXMfk3wnn4B+IRKZuvDfz8B9oRfPT7t7n+K+wiJiEg6\nS+bnGFR9pbOK5e7+pZn9GJgY1tA7wcTTFuAV+/oykTeG/94A/NnM5hB8C/0ulV8dxsP9b7Tggguf\nAK+7+61VxCQNnG6uJHViZi3cfVv4+M/AQiXBIiLSUOhzTBoKlcdIXV0VXhLrc+BQghNBRUREGgp9\njkmDoJl2EREREZE0p5l2EREREZE0p6RdRERERCTNKWkXEREREUlzStpFRERERNKcknYRERERkTSn\npF1EREREJM39f/YawOkdCGYlAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53c6a13390>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 4)\n", "colours = [\"#348ABD\", \"#A60628\"]\n", "\n", "prior = [0.20, 0.80]\n", "posterior = [1./3, 2./3]\n", "plt.bar([0, .7], prior, alpha=0.70, width=0.25,\n", " color=colours[0], label=\"prior distribution\",\n", " lw=\"3\", edgecolor=colours[0])\n", "\n", "plt.bar([0+0.25, .7+0.25], posterior, alpha=0.7,\n", " width=0.25, color=colours[1],\n", " label=\"posterior distribution\",\n", " lw=\"3\", edgecolor=colours[1])\n", "\n", "plt.xticks([0.20, .95], [\"Bugs Absent\", \"Bugs Present\"])\n", "plt.title(\"Prior and Posterior probability of bugs present\")\n", "plt.ylabel(\"Probability\")\n", "plt.legend(loc=\"upper left\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that after we observed $X$ occur, the probability of bugs being absent increased. By increasing the number of tests, we can approach confidence (probability 1) that there are no bugs present.\n", "\n", "This was a very simple example of Bayesian inference and Bayes rule. Unfortunately, the mathematics necessary to perform more complicated Bayesian inference only becomes more difficult, except for artificially constructed cases. We will later see that this type of mathematical analysis is actually unnecessary. First we must broaden our modeling tools. The next section deals with *probability distributions*. If you are already familiar, feel free to skip (or at least skim), but for the less familiar the next section is essential." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_______\n", "\n", "## Probability Distributions\n", "\n", "\n", "**Let's quickly recall what a probability distribution is:** Let $Z$ be some random variable. Then associated with $Z$ is a *probability distribution function* that assigns probabilities to the different outcomes $Z$ can take. Graphically, a probability distribution is a curve where the probability of an outcome is proportional to the height of the curve. You can see examples in the first figure of this chapter. \n", "\n", "We can divide random variables into three classifications:\n", "\n", "- **$Z$ is discrete**: Discrete random variables may only assume values on a specified list. Things like populations, movie ratings, and number of votes are all discrete random variables. Discrete random variables become more clear when we contrast them with...\n", "\n", "- **$Z$ is continuous**: Continuous random variable can take on arbitrarily exact values. For example, temperature, speed, time, color are all modeled as continuous variables because you can progressively make the values more and more precise.\n", "\n", "- **$Z$ is mixed**: Mixed random variables assign probabilities to both discrete and continuous random variables, i.e. it is a combination of the above two categories. \n", "\n", "### Discrete Case\n", "If $Z$ is discrete, then its distribution is called a *probability mass function*, which measures the probability $Z$ takes on the value $k$, denoted $P(Z=k)$. Note that the probability mass function completely describes the random variable $Z$, that is, if we know the mass function, we know how $Z$ should behave. There are popular probability mass functions that consistently appear: we will introduce them as needed, but let's introduce the first very useful probability mass function. We say $Z$ is *Poisson*-distributed if:\n", "\n", "$$P(Z = k) =\\frac{ \\lambda^k e^{-\\lambda} }{k!}, \\; \\; k=0,1,2, \\dots $$\n", "\n", "$\\lambda$ is called a parameter of the distribution, and it controls the distribution's shape. For the Poisson distribution, $\\lambda$ can be any positive number. By increasing $\\lambda$, we add more probability to larger values, and conversely by decreasing $\\lambda$ we add more probability to smaller values. One can describe $\\lambda$ as the *intensity* of the Poisson distribution. \n", "\n", "Unlike $\\lambda$, which can be any positive number, the value $k$ in the above formula must be a non-negative integer, i.e., $k$ must take on values 0,1,2, and so on. This is very important, because if you wanted to model a population you could not make sense of populations with 4.25 or 5.612 members. \n", "\n", "If a random variable $Z$ has a Poisson mass distribution, we denote this by writing\n", "\n", "$$Z \\sim \\text{Poi}(\\lambda) $$\n", "\n", "One useful property of the Poisson distribution is that its expected value is equal to its parameter, i.e.:\n", "\n", "$$E\\large[ \\;Z\\; | \\; \\lambda \\;\\large] = \\lambda $$\n", "\n", "We will use this property often, so it's useful to remember. Below, we plot the probability mass distribution for different $\\lambda$ values. The first thing to notice is that by increasing $\\lambda$, we add more probability of larger values occurring. Second, notice that although the graph ends at 15, the distributions do not. They assign positive probability to every non-negative integer." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAEfCAYAAAA0i7JEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2YXHV99/H3N0+QB4KAkCCRICCIAiIGjMJt1fgAYoXe\namtoqdYWUARr5ebWYkUUq0ZvrYqoPKgVSwGNFsEqglFqow1GlsDyEAKEsAlkScjGhE02JNn93n+c\n2TCZzM6eszNnzvluPq/rypU983DmPWdnZ3975jdnzN0REREREZHRYUzRASIiIiIi0joa4IuIiIiI\njCIa4IuIiIiIjCIa4IuIiIiIjCIa4IuIiIiIjCIa4IuIiIiIjCIa4IuIiIiIjCIa4IuIiIiIjCIa\n4EupmNmvzeyqdqzHzL5rZrelXd5dmdnnzKzbzPrN7K9L0FOq70vZtk+tsm2vsjCzT5rZw0V35CHr\n93wkz5d5q/3+1Lv9ej97rfx53B1+dnaH+7i7Gld0gMRjZt8F3lNZ7AeeAH4OfNzdewoLy+5DNP4j\nd6fzzex2YKW7vy/vsLIwsxOBjwJvB+4ENrbxtofa3sN939omz+3Twp+z0myvEhqtH+U+Wr7n1d+f\n2ufjXX72cvh5HC3bUXZDGuDLSP0GeBcwHnglcA0wA/jT2gua2Xh339bevOG5+zPNnL+bOALod/ef\nFh0yqGTfl7y3T+qfs6GUbHulUtbnjLIb3G4Rv+fDqXOfdvnZM7OW/DwWtR3N7Bjgm8Bn3P3Wdt62\njD76y1RGaqu7r3X3J939FuCrwClmtkfl5d5rzOzTZvYk8DiAmY0zs8+b2Soze9bM7jezuXXWPaby\nMutaM9tgZlea2YTBM83sjZXbWGdmfzSzO8zshBGsp+FLk9XnV/amzgHeY2YDlZd/X2tm7zGz9Wa2\nZ811LzGzhxqse3AbXWZmT1XWcZklLqm8xLzGzD5Tc72G993MTjazhWa2sfLvbjN7U9rza+8/cG1l\nOw6YWX/l9DtqX843s4+b2WM19+9qM/snM1td6f2emU2qud4HK4+DLZXt8MNG27v2+1JZHvZxlban\n5joN1zvU9hliXWkfs7WG/DnLcN9rt9eQj4EUj5/htknm7Vx1vXrPGcNutzS3acnz0jcr61hnZt8A\n9qhZT9rHUeaf25p1/F2lY0LN6R81s8erltPe93rb7V9rvudpHn8Nny+HuC8XmNmDZtZnZg+Z2cVm\nNrbRdYZYT5rvT+3z8U4/e/VOS9uZYTumeaztaWZXVd2Xr5nZP1uK6WDu3glcDnxumO3VssdQnXXv\nMl3Lap7fK6cNt01T/66RfGiAL62yheTxNPiq0LuA5wNvAAZ/qD8H/C3Jy54vA/4N+Dcze33Nut4F\n7AucDJwJnMHOT3hTgCuAVwGvBpYBt5rZPhnXk8XfA/8N/ACYBhwI/A64ERio3BYAZmbA3wBXD7PO\nd5Bsr5OAfwA+DvwnMKnS/H+Ai83sLVXXGfK+V55cfwL8D3Ac8ArgUmBzpavh+XV8CPgwyfSQwfsM\nQ09rqD39HcA+wJ8AfwG8jeTlcyo9nyL5fnwdOJrkcXJX5eyhtnc9aR9XDXtGsN6htk89aR+zw6n9\nOUt734HGj4GUj480t5d1Ow+q95yRdrsNd5ufB/4M+KvKejYBH6xZR5bHUdaf22o/IHlF5vSa088i\nGaAOyvI8V7vdan8W06wr0/OlmV0KfIRkO7+E5Gf2HOCSqsu8tzLYPnio9VSk+f5Uq/ezV/fnMU1n\nRZrtCMM/1r5A8grbXwKzgV7gvCHWVc+PgQOHGYi3+jGUxo7+4bbpCH7XSB7cXf/0L9M/4LvAbVXL\nLwUeAX5bWf41sLTmOhNJBifn1pz+Y+CXVcu/BpYDVnXa2SRPDBOH6BkD9ABzs6ynzv0Ybvl24Dt1\nbv+rwG+qlt9Sua/Pb7ANfw101Jx2H3BPzWlLgC80WM+O+w48j+SX22uHuGzD84e4zntI9iLXtl9V\nc9rHgeU1l7m75jLfqHqMTKp8L/6hwW0Ptb13fF8yPq6G7KlzG2nXu8v2Sbldd3nMjuDnLG1j9fYa\n8jGQ4vEz7O1l3c4135+ljS4z1HZL+VjrA95Xc5nFwLIRPI5a8XN7PXBL1fKsyrZ/8Qju+y7brfax\nM9y6yPh8Wdlem4A316z3LGB91fIZwAPAgQ1ahv3+DPHzUO+5aafTMnSm2o4pH2tbgPfWXOZ/qu9L\nisf5POo89+X0GKp3H4d8fk+zTRnB7xr9a/0/7cGXkXq9mT1jZpuBe0kGHn9Zdf5dNZc/nGSPw3/X\nnP5fJHvLqv3eK88SFb8lebn2MAAzO8TMvm9mD5vZBmADMBWYmWU9LXQlcJKZHVlZ/jvgZnd/epjr\n3VOz3E2yLWtPO2BwodF9d/c/At8GbjOzn1Verj1i8LrDnZ+D2vv3JMmeNUi+53uQDOKbkeVx1ain\nmfUOK8Njtla9n7O/Gmljo8dAisdH2tvLsp2r1T5nZNlujW7zMGACySCr2sKqr5t5HA37c1vH94A3\nm9nzK8t/TfJ8VX3UmLT3fZftVivlurI8X76MZKD3o8rj8xkze4bkuXAvM9sPwN1vcveXuvvqBnlp\nvj8jlaqzYtjtWNHosTb4OLqz5jK19204/wb8uZlNbXCZVj6Gshh2mxbwu0bq0ABfRmoRcCzJy3N7\nuvsp7r6i6vxNda5jTdxe9XX/k+SNhueRvPT4cmAtyS+JLOtpCXd/gOSX4dlmtj/JERyuTHHV2jcR\n+hCnVf+cNrzv7n4OcDxwG8lLyPeZ2dlVrQ3PT2mAXbfj+DqX2zrMfWmVtN/TrD2tfKyM9DFb7+fs\nsWYaGz0GUjw+0tzeSL/v9Z4z0m634W4zTXfabTmSn9tatwHrgDPNbBzJVI9/rblM2vteb7vVGunj\nb6htMnjf3llZ1+C/o0ne/Jr1aGotf16uyNKZZjtCuseaM0KV3yF/S/IHx1kNLtrKx1C14Z7fU23T\nFv2ukSZogC8j1efuj7l7l7tvT3H5R4BngdfWnP46kpe4q51Qmcc+6CSSlz0fNbN9gaOAz7v77e6+\nlOQJt97esiHXk6K3nq3AUG8gu5Lk5eFzgFXuvmCEtzGktPfd3R9w96+4+1tJ9qKck+X8FNYAL6g5\n7ZUZ1/EAyePhzQ0u02h7D8ryuMqiZevN+Jit1ejnbMSNjR4DDc5rdHudKe5LJk1ut2qPVq73mprT\nT6r6Oq/HUV3uPgBcRzKAO5Vkr+qNg+e38L5nWVeW58v7K+cd5u7L6/zLMsBN8/0ZqVZ2pvEIyX15\ndc3ps9Nc2cxeQjLl5xLga8D7h7psjo+h4Z7fU2/TFvyukSboMJnSFu7eZ2ZfAy4zs6dJXuZ8F8mb\nkd5Yc/H9gCsqlz8M+DTwrco6tpDsgTjbzJaTvClqHvXfvDPkekZ4Nx4DXmdmh5K81LmhatA1H/gK\n8E/Ap0a4/uGsp8F9N7PDSObN3gKsBA4C/hfwhzTnZ/BL4Btm9k7gbpI9OSdX+lJx901m9iXg0sr3\n9HaS+aunuvvnKxdrtL0H15PlcZVai9fb8PvWzsZGj4HhHh95besGWrLd3H2zmX0L+IyZrQEeItlD\neiTwVOUy7b5vkLwZ8kKS54ufVqY1DGrlYybtulI/X1Z+fj8LfLbyN8EvScYTxwCvcPePpY1L8/0Z\nqVZ2pry9zWZ2Jc/dl2UkO35eyjD3xZI3c18K/Jm7bzSznwCXm9lr3H2oAwzk8Rhq+PyeZpu28HeN\nNEEDfMnDUHtFPk7yxpt/AfanMm/f3e+oue584BmSOZjjgRuAfwRwd6888XyN5Jfw48DFJE9ctQ1D\nrmeEvkTyMuQ9JIPR15Mcpxx3f9bMvk9y5IfvplhX5j1HKe77JuDFJG++2p/k5dufAhelPD+t75HM\nw/w6yUu915G80bj6UyOHvX/u/onKL8ELgC+T/AL5TdVFhtzeNdI+rrJKs95hZXjMjkTWxkaPgckN\nzkt7eyPdI7rL9TL+rA/nYyTzyQePMHIjyeP3XVWXyetxVJe7d5rZEpLpDZfUnNey+z7Mugavn/n5\n0t0/Y8khJc8H/h/JG2WXUTVNxMzeC3wHOMTduxpkpvn+jEiaTtJ/X9Nc7v+S3JfrSKa7XF+5rbpH\ntgIwsxeSHEnoNK98iJ27bzezL5McqanuAL9Fj6Fawz6/p9imrfpdI02w1r9CleHGzU4h2es5Bvi2\nu8+rOf/twGUkPyTbSI648dvKeStI9uoNANvc/cQ2povswsxuBMa5+zuKbhERKZqZfZrk8Jcvr0wp\n2S2Z2QKgx92b/oNFJK3C9uCb2RiSvxDnkLwLfbGZ/aQyT2zQL9395srljyE59utRlfMGgNe5e+pp\nASJ5MLPnkbyB6QySYyiLiAi8FThvdxrcm9nRJG8u/R+SPflnkbyX45QCs2Q3VOQUnROBh9198BPj\nbiD50IYdA3x3r54rNoVkUD/I0JuEpRzuJvmAmHmDrzCJiOzu3H1W0Q0FcOADJNNaxpCMac5w92YP\nCSySSZED/INI3nwxaBXJoH8nZjb4aXr7A6dVneXA7ZZ8HPVV7j7cp4aK5MLdX1R0g4iIFM/d72fX\no+iItF3p94B78kEZR5FMf/hM1VknufvxJC8BftDMTi4kUERERESkRIrcg/8EcHDV8ozKaXW5+0Iz\nO9TM9nX3Hq98Mp67rzWz/yDZ+7/LJ9994AMf8EcffZTp06cDMHnyZA4//HCOO+44AJYsWQLQcPmR\nRx7hne98Z+rLF70cqXf+/PmZvx/qTbc8+HVZetRb3HJtc9E9o6k30vOtevNdjvT7IVpvpOfbPHsf\neeQRNm1KPpOtu7ubt7zlLVx44YV1PyiusKPomNlYkuPdzgFWA78H5rr7g1WXOczdH618fTzwE3d/\noZlNAsa4e6+ZTSb5pLRPuftttbezYMECP/7445tq/fznP8/HPtbSw+XmKlJvpFaI1RupFdSbp0it\nEKs3UiuoN0+RWiFWb6RWaF9vR0cHc+bMqTvAL2wPvrv3m9n5JIPzwcNkPmhm5yZn+1XAO8zsr0k+\nfa0P+PPK1acB/2FmTnIfrqs3uG+Vrq5Gh+8tn0i9kVohVm+kVlBvniK1QqzeSK2g3jxFaoVYvZFa\noRy9hX7QlbvfSvJpddWnXVn19ReAL9S53mPAcbkHioiIiIgEM/bSSy8tuiFXjz322KUHHnhgU+vY\ne++9Ofjgg4e/YElE6o3UCrF6I7WCevMUqRVi9UZqBfXmKVIrxOqN1Art6129ejWHHnrop+qdV+gn\n2bZDK+bgi4iIiIiUSSnn4EeycOFCTj45zlE4I/VGaoVYvZFaQb15itQKsXojtYJ68xSpFdrT6+6s\nWbOG/v7+ptazYcMG9t577xZV5a+VvWPHjuWAAw7ArO44fkga4IuIiIhIy61Zs4a99tqLSZMmNbWe\nF7zgBS0qao9W9m7evJk1a9Ywbdq0TNfTFJ2S+MrC4t9xXc+HT44z501ERETK48knnww3OC+jobaj\npugEsWlrP73PNvcyVqtM2WMskyeMLTpDRERERDIaU3RABAsX7vIBubnofbafNZu2Nv3v/o5FTa+j\nXX9otGvbtkqk3kitoN48RWqFWL2RWkG9eYrUCvF6JRvtwS+hY6ZPaer6K9ZO5JAm1tHZ3dvU7YuI\niIhIcTQHvyS+srCLp55J9p43O8BvVmd3LwdMnsC0vSZoDr6IiIiMSPXc8Xa+1zDC2OV3v/sdxx9/\nPGZGR0cHr371q4e8rObgi4iIiEgp5f1ewzK8f/C+++7jxhtv5LLLLmt4ufPOO4+VK1ey//778+Uv\nf7nlHZqDn0K0eWorOhcXnZBatG0bqTdSK6g3T5FaIVZvpFZQb54itUIxva16r2Er3z945ZVXDjsY\nT+uKK67gC1/4AuvXrx/2sh/5yEe49957uf/++3nrW9/aktuvpj34IiIiItI2eUxFHun7B8855xxm\nzZrF+9//fvbff/+mGj74wQ+y77778tvf/nbYy44fP56DDjqoqdtrRAP8FCJ9Mh3AIcecUHRCatG2\nbaTeSK2g3jxFaoVYvZFaQb15itQK8XrzYma8853v5IYbbuCCCy7Y6bwVK1Zw7bXXYmYMvmd18Gsz\nY9asWZx66qkjut2Ojg7cnZ6eHg477LARr2coGuCLiIiIyG5r7ty5nHnmmbsM8A855BAuueSSXG7z\nrLPO4thjjwXgta99LSeddBJTp05t2fo1Bz+FaPPqNAc/P5F6I7WCevMUqRVi9UZqBfXmKVIrxOvN\n07p169iyZQsdHR1tu82jjz56x9fPe97zWv790B58EREREdktLViwgOXLl3PhhRdy3XXXUX1o9eop\nOtWanaLzwx/+kNtvv52rrroKgE2bNjF2bGuP/qPj4JeEjoMvIiIio0ntcfAHxzl5yTp2+dGPfkRn\nZyeXXnopvb29zJ49m7vuuos99thjxA3XX389Cxcu5Iorrthx2ooVK5g5c+aOPxQWLVrEwMAAr3nN\na9i0aRMnnXQSv/vd75g0aVLddeo4+CIiIiJSSlP2GAtMyHn96SxevJg77riDyy+/PLnulCmcdtpp\n/PjHP2bu3Lkjuv2rr76am266iSeeeIJ58+Zx3nnnsddee/He976Xr33tazvm3M+ePZsf/vCHfPOb\n36Srq4trrrlmyMH9SGmAn8LChQtDvdt8RefiMEfSibZtI/VGagX15ilSK8TqjdQK6s1TpFYopnfy\nhOI/iGrQCSecwAkn7DxWmjdvXlPrPPvsszn77LN3Of2OO+7Y5bR3vetdTd3WcDTAFxEREZFcacpv\ne2kOfkloDr6IiIiMJkPNHZdsRjIHX4fJFBEREREZRTTATyHasWJ1HPz8ROqN1ArqzVOkVojVG6kV\n1JunSK0Qr1eyKXSAb2anmNlSM1tmZh+tc/7bzeweM7vbzH5vZielva6IiIiIyO6osDn4ZjYGWAbM\nAZ4EFgPvdvelVZeZ5O6bK18fA/zA3Y9Kc91BmoOfnebgi4iISLM0B781os3BPxF42N0fd/dtwA3A\n6dUXGBzcV0wBBtJeV0RERERkd1TkAP8gYGXV8qrKaTsxszPM7EHgFuB9Wa7bKtHmqWkOfn4i9UZq\nBfXmKVIrxOqN1ArqzVOkVojXK9mU/jj47n4TcJOZnQx8BnhTluvPnz+fa665hoMPTqaa7L333hxz\nzDE7Ptxh8AHeaLmzszPT5UeyDEnf2oc6WLF24o4PqhocrGdZ7l7+UFPXX9vTxwHHz871/g4ud3Z2\n5rr+3b1Xy1quVpae0dTbjt8P6i1PT6PlaL8f2tG733777Zhact9FzX2IVBZHf3H0vTVz8Odhw4YN\nAHR1dTFr1izmzJlT9/JFzsGfDVzq7qdUlj8GuLsP+Qgws0eBE4Aj0l5Xc/Cz0xx8ERERaVb13PH7\nLprH9o29bN/Ym9vtjZs6hXFTpxQ+wL/33nv51a9+xYc//OEhLzN//ny6u7vp6OjgtNNO4x3veMeQ\nlx3JHPxxI+hulcXA4WY2E1gNvBuYW30BMzvM3R+tfH08MMHde8xs2OuKiIiISHls39hL36ru3NY/\nccZ0xk3NtpP0yiuvZM2aNXziE59oSYO789nPfpZGO5cfe+wxenp6OP/881m3bh2zZs3ihBNO2DHb\npBUKm4Pv7v3A+cBtwP3ADe7+oJmda2bnVC72DjO7z8w6gMuBP2903bxaa182LjvNwc9PpN5IraDe\nPEVqhVi9kVpBvXmK1ArF9u4z+7iW/xupc845h5tuuom1a9e25L7dfPPNO6YpDWXp0qVcfvnlAOy3\n334ceuih3H333S25/UFF7sHH3W8Fjqw57cqqr78AfCHtdUVERERE0jIz3vnOd3LDDTdwwQUX7HTe\nihUruPbaazEzBqe0D35tZsyaNYtTTz11x+V7enoYM2YM++23H5s3b2Yob3rTm7jxxht3LHd3d3Po\noYe29H4VOsCPYri/xMpm8A2zEUTbtpF6I7WCevMUqRVi9UZqBfXmKVIrxOvN09y5cznzzDN3GeAf\ncsghXHLJJanXc8stt/Ce97yH66+/vuHlxo0bx0tf+lIAfvGLX/CKV7yCY445Jnt4A4V+kq2IiIiI\nSJHWrVvHli1b6OjoGPE67rrrLmbNmpXpOhs3buT666/nW9/61ohvdyga4KcQbV6d5uDnJ1JvpFZQ\nb54itUKs3kitoN48RWqFeL15WbBgAR0dHVx44YVcd911O523YsUKPv3pT3PZZZft9G/wtJ///Oc7\nLnvXXXexYMECvvrVr3LLLbewaNGinc6v5/LLL+erX/0qU6ZMYeXKlQ0vm5Wm6IiIiIhI26xftKTo\nBAB+9KMf0dnZyaWXXkpvby+f+9zn+OxnP8see+wBZJuic8455+z4et68eZjZjvn5K1asYObMmZg9\nd0TLq6++mtNOO41nn32Wjo4OtmzZwgtf+MKW3TcN8FOINk9Nc/DzE6k3UiuoN0+RWiFWb6RWUG+e\nIrVCMb3jpk5h4ozpua4/rcWLF3PHHXfsOJrNlClTOO200/jxj3/M3LkjP/L6TTfdxM9//nPMjCOP\nPJLTTz+d9773vXzta1/j2GOPBWDRokX84z/+I8CON+zee++9I77NejTAFxEREZHcDX4QVRmccMIJ\nnHDCzjtE581r/tN2zzjjDM4444ydTrvjjjt2Wp49ezZPP/1007fViAb4KSxcuDDUX+YrOheH2Ysf\nbdtG6o3UCurNU6RWiNUbqRXUm6dIrdD+3qI/XXZ3ozfZioiIiIiMIjZ44P7RasGCBd7o44LL4isL\nu3jqma2s2bSVY6YX+/JVZ3cvB0yewLS9JvDhk1v3sckiIiKy+3jyySd5wQteUHRGeENtx46ODubM\nmWN1rqI9+CIiIiIio4kG+ClEO1asjoOfn0i9kVpBvXmK1AqxeiO1gnrzFKkV4vVKNhrgi4iIiEjL\njR07ls2bNxedEdrmzZsZO3Zs5utpDn5JaA6+iIiIjCbuzpo1a+jv7y86JayxY8dywAEH7PQhWYMa\nzcHXYTJFREREpOXMjGnTphWdsVvSFJ0Uos1T0xz8/ETqjdQK6s1TpFaI1RupFdSbp0itEKs3UiuU\no1cDfBERERGRUURz8EtCc/BFREREJC0dB19EREREZDehAX4KZZhLlYXm4OcnUm+kVlBvniK1Qqze\nSK2g3jxFaoVYvZFaoRy9GuCLiIiIiIwimoNfEpqDLyIiIiJpaQ6+iIiIiMhuQgP8FMowlyoLzcHP\nT6TeSK2g3jxFaoVYvZFaQb15itQKsXojtUI5egsd4JvZKWa21MyWmdlH65x/ppndU/m30MyOrTpv\nReX0u83s9+0tFxEREREpp8Lm4JvZGGAZMAd4ElgMvNvdl1ZdZjbwoLtvMLNTgEvdfXblvOXAK919\nfaPb0Rz87DQHX0RERKTcyjoH/0TgYXd/3N23ATcAp1dfwN0XufuGyuIi4KCqsw1NMRIRERER2cm4\nAm/7IGBl1fIqkkH/UP4O+HnVsgO3m1k/cJW7X936xMTChQs5+eST81p9y63oXMwhx5yQ6218ZWFX\nS9bT6ta8X3GI9FiI1ArqzVOkVojVG6kV1JunSK0QqzdSK5Sjt8gBfmpm9nrgb4DqrXWSu682s/1J\nBvoPuvsu72qYP38+11xzDQcfnAz89t57b4455pgdG37wjRCNljs7OzNdfiTLkPStfaiDFWsn7hj0\nDr5hNsty9/KHmrr+2p4+Djh+9rC9m7b2s+zu5O0PL3jpKwF48oG7Mi0//OADrN+8fcTXH1w+4hUn\nMnnC2Ny+P4PLnZ2dua5fy1rOY3lQWXpGU287fj+otzw9jZaj/X6I1qvl5Odhw4ZkYktXVxezZs1i\nzpw51FPkHPzZJHPqT6ksfwxwd59Xc7ljgR8Bp7j7o0Os65PAM+7+5drzNAc/uzRz8Kt7y0DvGRAR\nEZHdSaM5+OPaHVNlMXC4mc0EVgPvBuZWX8DMDiYZ3J9VPbg3s0nAGHfvNbPJwJuBT7WtXHZShj9I\nRERERCRR2JtU3b0fOB+4DbgfuMHdHzSzc83snMrFPgHsC3yj5nCY04CFZnY3yZtvb3H32/JqrX3Z\nuOwiHQc/UivEeixEagX15ilSK8TqjdQK6s1TpFaI1RupFcrRW+QefNz9VuDImtOurPr6bODsOtd7\nDDgu90ARERERkWBGNAffzCa6e18OPS2nOfjZZZ2DH6FXREREZDTJ4zj4S81sIuz4tNnXjTRORERE\nRERaZ6QD/Avcvc/MDgc2AfkedL1gZZhLlUWkee2RWiHWYyFSK6g3T5FaIVZvpFZQb54itUKs3kit\nUI7e1AN8M/uAmb24sniPmR0D/D/gVcCDecSJiIiIiEg2qefgm9kvgQ3Ai0gOcbkH8AN3/1l+ec3T\nHPzsNAdfREREpNxaNQf/HHd/BzAL+DawDPiImf3ezD7Xgk4REREREWlS6gG+uy+v/D/g7r9398+6\n+xuBPwFuyiuwDMowlyqLSPPaI7VCrMdCpFZQb54itUKs3kitoN48RWqFWL2RWqEcvU0fB79yuMw7\nW9AiIiIiIiJNGtFx8CPRHPzsNAdfREREpNzyOA6+iIiIiIiU0LADfDM7v+rrw/PNKacyzKXKItK8\n9kitEOuxEKkV1JunSK0QqzdSK6g3T5FaIVZvpFYoR2+aPfj/XPV1R14hIiIiIiLSvGHn4JvZ3cCv\ngPuBK4AP1rucu3+n5XUtsGDBAv/N5ucXnbHDaJnTHq1XREREZDRpNAc/zVF0/gL4v8BcYDxwVp3L\nOFDKAT7AU89sLTqBKXuMZfKEsUVniIiIiMgoN+wUHXdf5u5/5+5vAv7L3V9f598b2tA6Yms2bW3q\n3/0di5peR++z/W27v5HmtUdqhXLMq0srUiuoN0+RWiFWb6RWUG+eIrVCrN5IrVCO3kzHwXf3OWb2\nYpK9+QcBTwDXu/vDecS1UjPTSFasncghTVy/s7t3xNcVEREREcki02EyzexPgbuAlwA9wJHAH8zs\n7Tm0lcYhx5xQdEImkXojtQKcfPLJRSekFqkV1JunSK0QqzdSK6g3T5FaIVZvpFYoR2/WT7L9LHC6\nu/968ASRy4bHAAAgAElEQVQzex3wdeDmFnaJiIiIiMgIZP2gqxnAf9ectrBy+qgVbZ54pN5IrVCO\neXVpRWoF9eYpUivE6o3UCurNU6RWiNUbqRXK0Zt1gL8EuLDmtI9UThcRERERkYINexz8nS5s9hLg\nFmAysBJ4IbAZ+FN3fzCXwiYtWLDAr1i+Z6HHah+Nx5WP1isiIiIymjR7HPwd3H2pmR0FzAZeADwJ\n3Onu25rPFBERERGRZmWdooO7b3f3he7+g8r/o35wH22eeKTeSK1Qjnl1aUVqBfXmKVIrxOqN1Arq\nzVOkVojVG6kVytGbeYDfSmZ2ipktNbNlZvbROuefaWb3VP4tNLNj015XRERERGR3lGkOfktv2GwM\nsAyYQzLVZzHwbndfWnWZ2cCD7r7BzE4BLnX32WmuO0hz8LMbjb0iIiIio0mjOfhF7sE/EXjY3R+v\nTPO5ATi9+gLuvsjdN1QWF5F8em6q64qIiIiI7I6yfpLtv5jZcS267YNIjsQzaBXPDeDr+Tvg5yO8\nblOizROP1BupFcoxry6tSK2g3jxFaoVYvZFaQb15itQKsXojtUI5erN+ku1Y4Bdmthb4PnCdu69q\nfdbOzOz1wN8AmT/7d/78+fzhnhWsmzkTgD0n78X0Q4/kkGNOAJ4bYDZa7l7+UKbL1y6v7enjgONn\nA8990wc/xvi5B0EytWTtQx2sWDuxqduL1Nu9/KHMfSPpbdVyZ2dnruvXspbzWB5Ulp7R1NvZ2Vmq\nHvUWtxzt90O0Xi0nPw8bNiQTW7q6upg1axZz5syhnsxz8M1sLHAq8JfA24A7gWuBH7t7b4b1zCaZ\nU39KZfljgLv7vJrLHQv8CDjF3R/Ncl3QHPyRGI29IiIiIqNJS+fgu3u/u//U3eeSHA9/f+BfgW4z\nu8bM0k6VWQwcbmYzzWwC8G7g5uoLmNnBJIP7swYH92mvKyIiIiKyOxqX9QpmNhV4F/BXwODe9fOA\nLuBCknnyxw65ggp37zez84HbSP7Q+La7P2hm5yZn+1XAJ4B9gW+YmQHb3P3Eoa6b9b6ktaJz8Y4p\nIRFE6o3UCslLZIMvl+Xlvot2eSFqRO5e3cUrDmzdKxpHfzHfo9G2Y9u2UqTeSK0QqzdSK6g3T5Fa\nIVZvpFYoR2+mAb6ZzQfeAvwG+BZwk7s/W3X+R4ANQ1x9F+5+K3BkzWlXVn19NnB22uuKjBbbN/ay\nfWPqGW91be3pYUv/hKZbxk2dwripxU7DEhERkfSy7sFfBJzv7t31znT3ATOb1nxWuUTawwyxeiO1\nAm37i3z7xl76VtX9MUvtCKBvc3PrAJg4Y3pbBvhF7+3IKlJvpFaI1RupFdSbp0itEKs3UiuUozfz\nFJ16g3sz+4i7f7ly/uZWhIkI7DO7VUelHZn1i5YUevsiIiKSXdY32V4yxOn/1GxImUU7Vnuk3kit\nsOth/Mrs7tVdRSdkEmnbQqzeSK0QqzdSK6g3T5FaIVZvpFYoR2+qPfhm9obKl2Mrx6SvPiTPocAz\nrQ4TEREREZHs0k7R+Xbl/z2B71Sd7sBTwAWtjCqbaPPEI/VGaoVyzKtLq5VH0GmHSNsWYvVGaoVY\nvZFaQb15itQKsXojtUI5elMN8N39RQBmdq27/3W+SSKt1arDTrZa3oedFBERkd3TsHPwzey1VYv/\namZvqPcvx8bCRZsnHqm3Xa3bN/ayZVV30//uvHdJ0+to9vCXaWkOfr4i9UZqhVi9kVpBvXmK1Aqx\neiO1Qjl60+zB/wZwdOXrbw9xGSeZiy9SSq047CTAs5t66GvyOFHtOuykiIiI7J6GHeC7+9FVX78o\n35xyijZPPFJvu1ubPezka4e/SEPtPOyk5uDnK1JvpFaI1RupFdSbp0itEKs3UiuUozfrYTJFRERE\nRKTE0szBrzvnXnPwyytSb6RWiDWvPVIrlGPOYhaReiO1QqzeSK2g3jxFaoVYvZFaoRy9aebgDzXv\nvprm4IuIiIiIlECaOfi75bz7apHmtEOs3kitEGtee6RWKMecxSwi9UZqhVi9kVpBvXmK1AqxeiO1\nQjl6hx3gm9lr3f03la+HnIrj7r9qZZiIiIiIiGSX5k2236j6+ttD/Lum9WnlEW2eeKTeSK0Qa157\npFYox5zFLCL1RmqFWL2RWkG9eYrUCrF6I7VCOXp1mEwRERERkVFEh8lMIdo88Ui9kVoh1rz2SK1Q\njjmLWUTqjdQKsXojtYJ68xSpFWL1RmqFcvSmOYrODmY2Afgn4EzgQOBJ4Abgn919S+vzRKTs7rto\nXtEJuzj6ix8tOkFERKQwWffgfxN4A3ABcALwIeB17DxPf9SJNk88Um+kVog1r72drds39rJlVXdT\n/+68d0nT69i+sbdt97kMcyzTitQKsXojtYJ68xSpFWL1RmqFcvRm2oMPnAEc5u5/rCw/YGZ3Ao8A\n72tpmYiEsX1jL32ruptax7Obeujb3FzHxBnTGTd1SnMrERERCS7rAL8bmAT8seq0icDqlhWVULR5\n4pF6I7VCrHntRbTuM/u4EV/3tU3e9vpFS5pcQzZlmGOZVqRWiNUbqRXUm6dIrRCrN1IrlKM3zXHw\nq499/33gVjO7HFgFvBD4IHBtPnkiIiIiIpJFmjn41ce7PxfYC7iYZN79PwJTK6ePWtHmiUfqjdQK\nmoOfp2i9ZZhjmVakVojVG6kV1JunSK0QqzdSK5SjN81x8HM79r2ZnQJ8heQPjW+7+7ya848Evgsc\nD1zs7l+uOm8FsAEYALa5+4l5dYqIiIiIRJF1Dj5mNg04EXg+YIOnu/t3Mq5nDPB1YA7J4TYXm9lP\n3H1p1cXWkRyx54w6qxgAXufu67Pdg+yizROP1BupFTQHP0/ResswxzKtSK0QqzdSK6g3T5FaIVZv\npFYoR2/W4+CfAfwb8DDwMuB+4GhgIZBpgE/yR8LD7v54Zd03AKcDOwb47v408LSZva1eDvqgLhER\nERGRnWQdIH8G+Bt3fwWwqfL/OcBdI7jtg4CVVcurKqel5cDtZrbYzM4ewe2nFm2eeKTeSK0Qa554\npFaI11uGOZZpRWqFWL2RWkG9eYrUCrF6I7VCOXqzTtE52N1/WHPa90gOn/l/WpOU2knuvtrM9icZ\n6D/o7rts0fnz5/OHe1awbuZMAPacvBfTDz1yx9SQwQFmo+Xu5Q9lunzt8tqePg44fjbw3Dd98OWb\n5x4EyfSEtQ91sGLtxKZuL1Jv9/KHMvdl7X1sdRdHMQF4bhA5OB0k6/LD655q6vqdm3rYowdeNWN6\nW3qbXY7We09PNxPGbuVoGLJ3d1weVJae0dTb2dlZqh71Frfc2dlZqp7R1qvl5Odhw4YNAHR1dTFr\n1izmzJlDPebudc+oe2GzR0gG1k+Z2d3AecDTwCJ33y/1ipJ1zQYudfdTKssfA7z2jbaV8z4JPFP9\nJtu05y9YsMCvWL4nx0wv7sNvOrt7OWDyBKbtNYEPn1x/nvFXFnbx1DNbWbNpa6GtMPp677toHltW\nddO3qrup47S3wvpFS5g4Yzp7zpjO0V/8aN3LqHdk0rSKiIiMFh0dHcyZM8fqnZd1is7VwOA7B/4F\n+DVwD8khM7NaDBxuZjPNbALwbuDmBpffcQfMbJKZTal8PRl4M3DfCBpEREREREaVTAN8d5/n7j+q\nfH0tcATwSnf/RNYbdvd+4HzgNpI3697g7g+a2blmdg4kR+wxs5XAPwAfN7OuysB+GrCw8irCIuAW\nd78ta0Na0eaJR+qN1Aqx5olHaoV4vWWYY5lWpFaI1RupFdSbp0itEKs3UiuUozfrHPyduHtTv5Hd\n/VbgyJrTrqz6+imST8ut1QsUO3dBRERERKSEMu3BN7MJZvZpM3vYzDZV/r/MzPbMK7AMoh2rPVJv\npFaIdaz2SK0Qr7cMxzlOK1IrxOqN1ArqzVOkVojVG6kVytGbdQ/+N0n2uH8IeByYCVxMcnjL97U2\nTUREREREssr6JtszgLe5+8/d/QF3/znJh1PV+6TZUSPaPPFIvZFaIdY88UitEK+3DHMs04rUCrF6\nI7WCevMUqRVi9UZqhXL0Zh3gdwOTak6bCKxuTY6IiIiIiDRj2Ck6ZvaGqsXvA7ea2eUknzz7QuCD\nwLX55JVDtHnikXojtUKseeKRWiFebxnmWKYVqRVi9UZqBfXmKVIrxOqN1Arl6E0zB//bdU67uGb5\nXGCXD6gSEREREZH2GnaKjru/KMW/Q9sRW5Ro88Qj9UZqhVjzxCO1QrzeMsyxTCtSK8TqjdQK6s1T\npFaI1RupFcrRm/k4+Gb2YmAuyZFzngCud/eHWx0mIiIiIiLZZRrgm9mfAtcBPyU5TOaRwB/M7Cx3\nvzmHvlKINk+8Hb3TrryaqVsHmLG9n30njR/5egB+t6SplvGbtzFx3FgmThgDJ1/W1LqGE2meeKRW\niNdbhjmWaUVqhVi9kVpBvXmK1AqxeiO1Qjl6s+7B/yxwurv/evAEM3sd8HVg1A7wpb5xfZuY9Mwm\nxm8aW2jHpGf7GbvXZJiwV6EdIiIiImWQdYA/A/jvmtMWVk4ftVZ0Lg61F79dveM297FHzzrGj8t6\ntNXnLO1bz0sm7tNUx6TtA/SPHQN71x/gd3b3Mn59H+M3b2NVd29Tt7Vs3RMcsd9BI77+pM3b2La+\nj23jejm6qZLh3b26K9Re8Wi9CxcuLMVemjQitUKs3kitoN48RWqFWL2RWqEcvVkH+EuAC9n5iDkf\nqZwuu6nNLz1qxNfdsu4JNjcxYAYYc+/9w16mfwBsAPq2DjR1W89uG2hqHRMGkhYRERGRvGQd4J8H\n3Gxmfw+sJDkO/mbgT1sdViaR9t5DrN5m9oZn0T/gMDBA3/b+ptZz0NTpTa1j8sAA/QOONVWRTqS9\n4RCvt+i9M1lEaoVYvZFaQb15itQKsXojtUI5erMO8B8CjgJmAy8AngTudPdtrQ4TyUMzbwgWERER\niSD15GkzGwtsAsa6+0J3/0Hl/1E/uI92rPZIvcvWPVF0QiaReqMdVz5abxmOc5xWpFaI1RupFdSb\np0itEKs3UiuUozf1Hnx37zezZcB+JHvuRURCue+i1n3g9mOru3jeT37bknUd/cWPtmQ9IiIikH2K\nznXAT83sq8AqwAfPcPdftTKsTCLNaYdYve2ag98qkXqjzWlvV+/2jb1s39jc0ZQAjmICW1Z1N7WO\ncVOnMG7qlKZbhlOG+aBZROqN1ArqzVOkVojVG6kVytGbdYD/gcr/l9ac7sChTdeIiORs+8Ze+poc\nmLfKxBnT2zLAFxGR3UumAb67vyivkDLTcfDz0+xx5dstUm+048q3u3ef2cc1df1me9cvat/Rhctw\nTOYsIvVGagX15ilSK8TqjdQK5ejN9AlFZjbBzD5tZg+b2abK/5eZ2Z55BYqIiIiISHpZp+h8CzgC\n+BDwODATuBg4CHhfa9PKI8re8EGReqPsDR8UqTfS3ntQb56K3pOUVaTeSK2g3jxFaoVYvZFaoRy9\nWQf4pwOHufsfK8sPmNmdwCOM4gG+iIiIiEgUmaboAN3ApJrTJgKrW5NTTpGOKw+xeiMdVx5i9UY7\nrrx681OGYzJnEak3UiuoN0+RWiFWb6RWKEdv1gH+94FbzexsMzvVzM4BfgZca2ZvGPyXdmVmdoqZ\nLTWzZWa2y4GgzexIM/udmW0xs49kua6IiIiIyO4o6xSdcyv/X1xz+vsr/yDlITPNbAzwdWAOyQdn\nLTazn7j70qqLrQMuAM4YwXVbJtKcdojVG2lOO8TqjTRHHNSbpzLMB80iUm+kVlBvniK1QqzeSK1Q\njt4iD5N5IvCwuz8OYGY3kMzx3zFId/engafN7G1ZrysiIiIisjvKOkWnlQ4CVlYtr6qclvd1M4s0\npx1i9Uaa0w6xeiPNEQf15qkM80GziNQbqRXUm6dIrRCrN1IrlKM36xSdcObPn88f7lnBupkzAdhz\n8l5MP/TIHdNYBgfDjZa7lz+U6fK1y2t7+jjg+NnAc9/0wZdvnnsQJC/3r32ogxVrJzZ1e+3pTSzb\nsp6Bqg9/GhwAp11etWFtpsvXWx6zZT2Hsf+QvcvWPcGLGT/i9be0d8t6+p9xjjzwgCF7H1vdxVFM\nAJ4bRA5OB2n3cuemHvbogVfNmB6i956ebiaM3crRULf37tVdbO3p4YjK+WXvbdXyoLzWvzv3dnZ2\nlqpHvcUtd3Z2lqpntPVqOfl52LBhAwBdXV3MmjWLOXPmUI+5e90z8mZms4FL3f2UyvLHAHf3eXUu\n+0ngGXf/ctbrLliwwK9YvifHTC/u4+A7u3s5YPIEpu01gQ+fXH/e7lcWdvHUM1tZs2lroa2Qrvf6\nsz6Br17D2LVrGTj2ZW0u3NmYe++nf//9sQMPYO73L9vl/EitAPddNI8tq7rpW9Xd9KetNmv9oiVM\nnDGdPWdM5+gv1n8ve1l6I7VCul4REZGhdHR0MGfOHKt3XpFTdBYDh5vZTDObALwbuLnB5avvQNbr\nioiIiIjsFgob4Lt7P3A+cBtwP3CDuz9oZudWDr+JmU0zs5XAPwAfN7MuM5sy1HXzao00px1i9Uaa\n0w6xeiPNEQf15qkM80GziNQbqRXUm6dIrRCrN1IrlKO30Dn47n4rcGTNaVdWff0U8MK01xURERER\n2d0VOUUnjEjHlYdYvZGOKw+xeiMdpx3Um6cyHJM5i0i9kVpBvXmK1AqxeiO1Qjl6NcAXERERERlF\nNMBPIdKcdojVG2lOO8TqjTRHHNSbpzLMB80iUm+kVlBvniK1QqzeSK1Qjl4N8EVERERERhEN8FOI\nNKcdYvVGmtMOsXojzREH9eapDPNBs4jUG6kV1JunSK0QqzdSK5SjVwN8EREREZFRRAP8FCLNaYdY\nvZHmtEOs3khzxEG9eSrDfNAsIvVGagX15ilSK8TqjdQK5ejVAF9EREREZBTRAD+FSHPaIVZvpDnt\nEKs30hxxUG+eyjAfNItIvZFaQb15itQKsXojtUI5ejXAFxEREREZRTTATyHSnHaI1RtpTjvE6o00\nRxzUm6cyzAfNIlJvpFZQb54itUKs3kitUI5eDfBFREREREYRDfBTiDSnHWL1RprTDrF6I80RB/Xm\nqQzzQbOI1BupFdSbp0itEKs3UiuUo3dc0QEiIlLffRfNKzqhrqO/+NGiE0REpAHtwU8h0px2iNUb\naU47xOqNNEcc1DuU7Rt72bKqu6l/d967pOl1bFnVzfaNvW25z2WYv5pWpFZQb54itUKs3kitUI5e\n7cEXESmx7Rt76VvV3dQ6nt3UQ9/m5lsmzpjOuKlTml+RiIjkSgP8FCLNaYdYvZHmtEOs3khzxEG9\nw9ln9nEjvu5rW3D76xctacFa0inD/NW0IrWCevMUqRVi9UZqhXL0aoqOiIiIiMgoogF+CpHmtEOs\n3khz2iFWr+a05ytSb6RWKMf81bQitYJ68xSpFWL1RmqFcvRqik5JTLvyaqZuHWDG9n72nTS+qXVt\nWPcE03438pfTx2/exsRxY5k4YQycfFlTLSIiIiLSXhrgp9CuOe3j+jYx6ZlNjN80tqn1vIwJsHbt\niK8/6dl+xu41GSbs1VRHGpHmtEOsXs1pz1ek3kitUI75q2lFagX15ilSK8TqjdQK5ejVAL9Exm3u\nY4+edYwfV+zMqUnbB+gfOwb2zn+ALyIiIiKtpQF+Cis6F7f1yDSbX3pUU9dftu6JpvY0j7n3/qZu\nP4tmW9stUu/dq7tC7blVb34itUIyf7UMe8DSiNQK6s1TpFaI1RupFcrRW+iuYjM7xcyWmtkyM6v7\n0Yhm9jUze9jMlpjZK6pOX2Fm95jZ3Wb2+/ZVi4iIiIiUV2F78M1sDPB1YA7wJLDYzH7i7kurLnMq\ncJi7v9jMXgV8E5hdOXsAeJ27r8+7NdJx5SHWPPFIrRCrN9IeW1BvniK1Qjnmr6YVqRXUm6dIrRCr\nN1IrlKO3yD34JwIPu/vj7r4NuAE4veYypwPXArj7ncDeZjatcp6hw3yKiIiIiOykyAHyQcDKquVV\nldMaXeaJqss4cLuZLTazs3OrJNZx5SHWsdojtUKs3mjHPldvfiK1QjmOIZ1WpFZQb54itUKs3kit\nUI7eyG+yPcndV5vZ/iQD/QfdfZctOn/+fP5wzwrWzZwJwJ6T92L6oUfumHYzOHhvtNy9/KFMl69d\nXtvTxwHHJzOLBr/pgy/f1D4Ilm1Zz0DVGzkHB5RZlldtWNvU9cdsWc9h7N+W3lUb1mbuy9q7bN0T\nvJjxI15/S3u3rKf/GefIAw8Ysvex1V0cxQTguYHZ4BSLdi93buphjx541YzpIXrv6elmwtitHA11\ne+9e3cXWnh6OqJy/u/TS5PXT9rZqeVBe62/lcmdnZ6l61FvccmdnZ6l6RluvlpOfhw0bNgDQ1dXF\nrFmzmDNnDvWYu9c9I29mNhu41N1PqSx/DHB3n1d1mW8Bv3b3GyvLS4E/cfenatb1SeAZd/9y7e0s\nWLDAr1i+J8dMn5LjvWmss7uXAyZPYNpeE/jwyfXnwl5/1ifw1WsYu3YtA8e+rM2FOxtz7/30778/\nduABzP1+/Q+6itQbqRWS3vFr1zJ+7dNNH1GpWZMeeJBt+z+fbfvvP2TvfRfNY8uqbvpWdbPP7OPa\nXPic9YuWMHHGdPacMZ2jv1j3PfulaYXR2SsiIu3T0dHBnDlzrN55Re7BXwwcbmYzgdXAu4G5NZe5\nGfggcGPlD4I/uvtTZjYJGOPuvWY2GXgz8Kk2tovkqn8AbAD6tg4U2jFhIGkRERGROAqbg+/u/cD5\nwG3A/cAN7v6gmZ1rZudULvMz4DEzewS4EjivcvVpwEIzuxtYBNzi7rfl1ao5+PmJ1Art6+0fcLYP\nDNC3vX/E/x5Yu7Kp6/dt72f7wAD9A+15lS/aPPFIvZFaoRzzV9OK1ArqzVOkVojVG6kVytFb6Bx8\nd78VOLLmtCtrls+vc73HgGJfrxZpg30njR/xdZ/uG9fU9UVERCQmHWYyBR0HPz+RWiFWb6RWiHes\n9ki9kVqhHMeQTitSK6g3T5FaIVZvpFYoR68G+CIiIiIio0jkw2S2zYrOxaH24i+rOmxl2UVqhVi9\nkVohmSceaU9zpN52tN530bzhL5RSK3vzPuLPwoULS7G3Li315idSK8TqjdQK5ejVAF9ERFpi+8Ze\ntm/sbXo9W3t62NI/oal1jJs6hXFTizs8sohIkTTATyHS3nuINfc6UivE6o3UCvHmiUfqbVfr9o29\n9K3qbno9RwB9m5tbz8QZ09sywC96L11W6s1PpFaI1RupFcrRqwG+iIi0VBk+lEtEZHemN9mmoOPg\n5ydSK8TqjdQK8Y7VHqk3UivE6i3D8a6zUG9+IrVCrN5IrVCOXg3wRURERERGEQ3wU9Ac/PxEaoVY\nvZFaIdacdojVG6kVYvWWYa5tFurNT6RWiNUbqRXK0asBvoiIiIjIKKIBfgqag5+fSK0QqzdSK8Sa\ndw2xeiO1QqzeMsy1zUK9+YnUCrF6I7VCOXo1wBcRERERGUU0wE9Bc/DzE6kVYvVGaoVY864hVm+k\nVojVW4a5tlmoNz+RWiFWb6RWKEevBvgiIiIiIqOIPugqhRWdi0PtxV+27okwe28jtUKs3kitkMy7\njrTnNlJvpFZoT+99F81ryXpa3Xr0Fz/asnXVs3DhwlLsXUwrUm+kVojVG6kVytGrAb6IiOyWtm/s\nZfvG3qbWsbWnhy39E5puGTd1CuOmTml6PSIioAF+KpH23kOsudeRWiFWb6RWiDXvGmL1RmqF9vVu\n39hL36ruptZxBNC3ubl1AEycMb0tA/yi9ypmFak3UivE6o3UCuXo3S0G+Mdffy37Thpf2O2P37yN\niePGMnHCGDj5ssI6RPLQ2d3L+PV9jN+8jVXdze0NbcakzdvYtr6PbeN6ObqwColon9nHFXr76xct\nKfT2RWT02S3eZDupZx3j164d8b/lj97f1PUn9axjXN+mtt3fSMc/j9QKsXrb2do/ANsHoG/rwIj/\ndXavbOr62weSjnaJdKz2SK0QqzdSK5Tj+NxZROqN1AqxeiO1Qjl6d4s9+JN61jF+3Mj/lhnXt4Hx\nz478+pO2D9A/dgzsvdeI1yFSZv0DDgMD9G3vH/E6tvY3d/3JAwP0Dzg24jWIiIiMDrvFAB9g80uP\nGvF1DwY2N3HbY+69v4lrZxdp7nWkVojVW0RrM1Ph9p00s4Ul+Ys0rz1SK8TqjdQK5ZgbnEWk3kit\nEKs3UiuUo3e3GeCLiIhE1arDerZS3of0FJGRK3QOvpmdYmZLzWyZmdV9pjCzr5nZw2a2xMyOy3Ld\nVok07xpi9UZqhVi9kVohXm+kudeRWiFWbztbt2/sZcuq7qb+3XnvkqbX0eyhRbMow1zmtCK1Qqze\nSK1Qjt7CBvhmNgb4OvAW4GXAXDN7Sc1lTgUOc/cXA+cC30p73VZatWFtXqvORaTeSK0QqzdSK8Tr\nfXjdU0UnpBapFWL1trN18LCezfx7sGtF0+to5wC/s7OzbbfVrEitEKs3UiuUo7fIKTonAg+7++MA\nZnYDcDqwtOoypwPXArj7nWa2t5lNA16U4rot07d9ax6rzU2k3kitEKs3Uiu0p7eVh/Rc3vMMnU2s\no52H9ezd+mzOt9BakXqLaG3msJ4DHb3sc/zIr5/mkJ6tnE70cMdC7lu+sSXryntK0YYNG3Jdf6tF\n6o3UCuXoLXKAfxCwsmp5Fcmgf7jLHJTyuiIiu+gfAKsc0rMZ2/q9qXVMSHFYz1b9QbKmd2tTf4yA\nPmdAsmnFpwQPrmdLkx9GNtynBLfqD5I1Hb/lvnWt++NG73GQZkR7k+2Ij4DXzJFsetZ1MWbL5BFf\nP6tmj7oTqTdSK8TqbXcrxOgdPKTn5KUPNrWeZ9atZPK2kX/y6PZKy3BPaoN/kEy4b+S9659eyYSt\nzR2mdzvD/0Hyx75tbNq8jZ5fLW7qth5e8yiP/nGPptYxuW8b04e5TCt6W9EKsXrTtD791Ho2rWz+\nEzNoA3QAAAitSURBVH4fW/MUTwysHP6CDUx+4XSmD/Mpwd2r1/PHp//Y1O081LWKpeMfa2odAM97\n/vOYfuA+Q57/m3/7BU/8ovk53v+15JfMvL+5z+g56C0n89q/ekvDy7SitxWtMHxvtG3biLl7UwEj\nvmGz2cCl7n5KZfljgLv7vKrLfAv4tbvfWFleCvwJyRSdhtcd9KUvfcnvueeeHcsvf/nLOe64bC9P\nLlmyJPN1ihSpN1IrxOqN1ArqzVOkVojVG6kV1JunSK0QqzdSK+TXu2TJEmrHtBdeeGHd/URFDvDH\nAg8Bc4DVwO+Bue7+YNVl3gp80N1Pq/xB8BV3n53muiIiIiIiu6PCpui4e7+ZnQ/cRnI0n2+7+4Nm\ndm5ytl/l7j8zs7ea2SPAJuBvGl23oLsiIiIiIlIahe3BFxERERGR1iv0g67Krp0fptUKZvZtM3vK\nzO4tumU4ZjbDzH5lZvebWaeZfajopqGY2R5mdqeZ3V1p/WTRTWmY2Rgz6zCzm4tuGY6ZrTCzeyrb\n+PdF9zRSOVzvD83swcrj91VFNw3FzI6obNOOyv8bSv6z9g9mdp+Z3Wtm15nZhKKbGjGzv688J5Ty\nOaze7wQz28fMbjOzh8zsF2a2d5GNg4ZofWfl8dBvZscX2VdriN4vVJ4XlpjZj8xsapGNg4Zo/XTV\nc+6tZjbc+6bbptFYxswuNLMBM9u3iLZ6hti+nzSzVZXn3g4zO6XdXRrgD6HdH6bVIt8l6Y1gO/AR\nd38Z8Grgg2Xdvu7+LPB6d38FcBxwqplFOCzr3wMPFB2R0gDwOnd/hbuXfdt+FfiZux8FvBwo7fRA\nd19W2abHA68kmer4HwVn1WVmLwAuAI5392NJppC+u9iqoZnZy4C/BWaRPC+8zcwOLbZqF/V+J3wM\n+KW7Hwn8CvjHtlfVV6+1E/gz4L/anzOser23AS9z9+OAhyn3tv2Cu7+88nvtP4Ey7biqO5YxsxnA\nm4DH217U2FBjry+7+/GVf7e2O0oD/KHt+CAud98GDH6YVmm5+0JgfdEdabh7t7svqXzdSzJIOqjY\nqqG5++bKl3uQDDxKPbet8kT4VuCaoltSMgI8H1X2yP0vd/8ugLtvd/fWfApP/t4IPOruzR1zMF9j\ngclmNg6YBDxZcE8jRwF3uvuz7t4P/Ab43wU37WSI3wmnA9+rfP094Iy2Rg2hXqu7P+TuD9PEIbLz\nMkTvL9198GCyi4AZbQ+rY4jW6g8pmEyyk6UUGoxl/gW4qM05w2rQW+jjtvS/UAs01IdsSYuZ2SEk\ne8DuLLZkaJXpLncD3cDt7t7cgb7zN/hEWOo/RKo4cLuZLTazs4uOaeBFwNNm9t3Ky65XmdnEoqNS\n+gvg+qIjhuLuTwJfArqAJ4A/uvsvi61q6D7gf1WmvEwi+YP6hQU3pXGAuz8FyY4W4ICCe0ar9wE/\nLzqiETP7jJl1AWcClxTd04iZvR1Y6e6dRbdkcH5lutY1RUyF0wBfCmVmU4D5wN/X7FEoFXcfqLyU\nOQN4lZm9tOimoZjZacBTlVdIjBLu/arjpMo0kreSTNc6ueigIYwDjgeuqPRuJpnyUGpmNh54O/DD\noluGYmbPI9m7PBN4ATDFzM4stmpo7r4UmAfcDvwMuBvoLzRqZKLsBAjDzD4ObHP3fy+6pRF3/yd3\nPxi4jmR6XClVdqJczM7TiMr+e+0bwKGV6VrdwJfbHaAB/tCeAA6uWp5ROU1apPIy/Hzg++7+k6J7\n0qhMx/g10PY3zGRwEvB2M1tOssf29WZ2bcFNDbn76sr/a0nmiJd1Hv4qkr1If6gszycZ8JfdqcBd\nle1bVm8Elrt7T2XKy4+B1xTc1JC7f9fdZ7n764A/AssKTkrjKTObBlB5Y+WagntGFTN7L8mOitL+\ncVrHvwPvKDqigcOAQ4B7zOwxkvHYXWZW2lef3H2tP3eYyquBE9rdoAH+0BYDh5vZzMqRHN4NlP5o\nJMTZYwvwHeABd/9q0SGNmNnzB19eq+xJeBOwtNiqobn7xe5+sLsfSvK4/ZW7/3XRXUMxs0mVV3Iw\ns8nAm0mmP5ROZWrDSjM7onLSHGK8kXkuJZ6eU9EFzDazPc3MSLZtad/ADGBm+1f+P5jkzaBl3GNb\n+zvhZuC9la/fA5Rp50qj319l/L22U2/lSCkXAW+vHJyhTGpbD6867wzK97O2o9fd73P36e5+qLu/\niGRHyyvcvUx/nNZu3+qjEv1vCvidVtgHXZVdxA/TMrN/B14H7FeZV/fJwTcDlo2ZnQT8JdBZmdvu\nwMVFvNM8hQOB71WOrDQGuNHdf1Zw02gyDfgPM3OS56Tr3P22gpsa+RBwXWXay3IqH8BXVpX54W8E\nzim6pRF3/72ZzSeZ6rKt8v9VxVYN60eVw/VtA84r2xuu6/1OAD4P/NDM3kdyNJI/L67wOUO0rgcu\nB54P/NTMlrj7qcVVPmeI3ouBCSTvJwJY5O7nFRZZMUTraWZ2JMm0sseB9xdXuLMUYxmnRH/wDbF9\nX29mx5G8eXkFcG7bu/RBVyIiIiIio4em6IiIiIiIjCIa4IuIiIiIjCIa4IuIiIiIjCIa4IuIiIiI\njCIa4IuIiIiIjCIa4IuIiIiIjCIa4IvI/2/XDlEqjKIojO5jEcubgigigmByBGJ2AM7AcTgbo8H0\nrBa7RRAsdpPxWN4I/IUL918r3bjjx+ECABMR+AAAMBGBD8AiVXVcVduquhu9BQCBD8BC3f2R5DvJ\ndvQWAAQ+AAtV1V6So+5+H70FAIEPwHKXSV6r6rCqbqrqs6oORo8CWCuBD8BS10n2k2y6+zHJWXf/\nDN4EsFoCH4ClrpI8JLmvqhNxDzCWwAfgz3ZfcTbd/ZTkLcl5Vd0OngWwagIfgCUukjzv3i9JTpN8\njZsDQHX36A0AAMA/ccEHAICJCHwAAJiIwAcAgIkIfAAAmIjABwCAiQh8AACYiMAHAICJCHwAAJiI\nwAcAgIn8AmR7R+/mpLe2AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53c616fa58>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 4)\n", "\n", "import scipy.stats as stats\n", "a = np.arange(16)\n", "poi = stats.poisson\n", "lambda_ = [1.5, 4.25]\n", "colours = [\"#348ABD\", \"#A60628\"]\n", "\n", "plt.bar(a, poi.pmf(a, lambda_[0]), color=colours[0],\n", " label=\"$\\lambda = %.1f$\" % lambda_[0], alpha=0.60,\n", " edgecolor=colours[0], lw=\"3\")\n", "\n", "plt.bar(a, poi.pmf(a, lambda_[1]), color=colours[1],\n", " label=\"$\\lambda = %.1f$\" % lambda_[1], alpha=0.60,\n", " edgecolor=colours[1], lw=\"3\")\n", "\n", "plt.xticks(a + 0.4, a)\n", "plt.legend()\n", "plt.ylabel(\"probability of $k$\")\n", "plt.xlabel(\"$k$\")\n", "plt.title(\"Probability mass function of a Poisson random variable; differing \\\n", "$\\lambda$ values\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Continuous Case\n", "Instead of a probability mass function, a continuous random variable has a *probability density function*. This might seem like unnecessary nomenclature, but the density function and the mass function are very different creatures. An example of continuous random variable is a random variable with *exponential density*. The density function for an exponential random variable looks like this:\n", "\n", "$$f_Z(z | \\lambda) = \\lambda e^{-\\lambda z }, \\;\\; z\\ge 0$$\n", "\n", "Like a Poisson random variable, an exponential random variable can take on only non-negative values. But unlike a Poisson variable, the exponential can take on *any* non-negative values, including non-integral values such as 4.25 or 5.612401. This property makes it a poor choice for count data, which must be an integer, but a great choice for time data, temperature data (measured in Kelvins, of course), or any other precise *and positive* variable. The graph below shows two probability density functions with different $\\lambda$ values. \n", "\n", "When a random variable $Z$ has an exponential distribution with parameter $\\lambda$, we say *$Z$ is exponential* and write\n", "\n", "$$Z \\sim \\text{Exp}(\\lambda)$$\n", "\n", "Given a specific $\\lambda$, the expected value of an exponential random variable is equal to the inverse of $\\lambda$, that is:\n", "\n", "$$E[\\; Z \\;|\\; \\lambda \\;] = \\frac{1}{\\lambda}$$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAEfCAYAAADBdTn0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8lPW5///XNZNJICTsYRfCjiiIioqCC+KurXrEKtpa\na+u+HW1P7ebSo1+70l9ta6221lPbnuqp9thWbY+WqhVFRRHZQUAIECCQsAayzXx+f9yTYRgmySTM\nnZlJ3s/HI4/Mvcx9f+5r7plc+cx1f25zziEiIiIiIrkrkOkGiIiIiIjI4VFSLyIiIiKS45TUi4iI\niIjkOCX1IiIiIiI5Tkm9iIiIiEiOU1IvIiIiIpLjlNSLiIiIiOQ4JfUiIiIiIjlOSb34ysxeM7Mn\n2mM7ZvaUmb2S6rTfzOx+M/u4vfYX3aevx2hm3zGzLWYWNrNr/NpPK9rTrq9pS7ItPp1ZW86NbDuf\nGmXis6Q9tPE1avXfAj8le22S7T/ZZ0O6Pi+y9byV9peX6QZI5pnZU8Dno5NhYBPwN+CbzrmqjDWs\n9e6g+X9UD1puZq8CG5xz1/nYpva+ZbNvx2hmJwL3AJ8G3gV2H+42W7Hvpo6jpde83WQyPtH9N76P\nHWBxi/Y657q3Z1vaWxPnR9acG2nSEW//3lFeo8TXJvFz+JDPhjR/XnSUOMphUlIvjf4FXA6EgOOB\nXwFDgE8lrmhmIedcffs2r2XOuT2Hs7wj8PkYxwBh59yLPu6jVbLsNc2G+DS+j+OT+kiG2pJR7XVu\nZOvnYTZrjFmWvX/TJslxHfLZYGaH/XmRqTia2QTgMeAh59zf23Pf0jz9ZyeN6pxz25xz5c65vwKP\nAOeZWUH0685fmdl/mlk5sB7AzPLM7LtmttHMas1sqZnNSrLtQPRrxm1mtsvMHjez/MaFZnZWdB+V\nZrbTzF43sxPasJ1mv4KMXx7t1ZwBfN7MItGvP08zs8+b2Q4z65Lw3PvMbGUz2y4ws8ei7a80s58D\nBUnWu93MlpvZfjNbaWbfMLNg3PLXzOyXZvYtM9sc3dZvzKwwbp1pZjbXzHZHfz40s7Ojy/7Lj2OM\nbuvp6GsQMbNwdP7riV+Fm9k3zeyT1hxTdL1bo+dQjZltNbM/Nnccjcvs4BKrFs/JVNuT8Jxmt9tU\nfJrYVrPne1vaF6fxfVwR97M9ut1eZlZmZj+O21c/Mys3s4cS9v9kC++1tMX5cN8TzZznT5nXg59S\n3FNlTX8epuV1tRQ+S1I4Hxvb+KB576Ud0cdm3vt8i5lVxL/uTRzrl6LtyE+Yf4+ZrU81ts3ELPZ5\nlcp24jT7t6CJY2n2PEtFKq9NdL3EvzUHfTYkm9dCOwOtjGOq51oXM3si7nh+Ymb/z1oo9XLOLQZ+\nCnynNfET/ympl6bU4J0fjd/mXA70Bc4Ezo7O+w7wRbyv/o4Cfgf8zsymJ2zrcqA3MA24CriEgz8M\nioBHgZOAk4FVwN/NrFcrt9MadwJvAv8D9AcGAm8Dz+L1bF7euKKZGfAF4JfNbO+7wKXAZ6PHUA3c\nGr+CmT0A3I33leu4aBtuAO5L2NZlQC/gdOAK4KLoc4j+EfozMA+YBBwLPADsiz43/mvgdB7jHcC/\n45VnNW4rcX/xEuc3eUzR/X8b77X8GXA03jn2QQvHkUyq52Sz7WnDdpuKTzKpnO+tbV+LnHM7gKuB\nW8zswujs3wJrOPQcnEnz77W0xDkd7wmSnx/zGg87bhupfs6kItnnYbpe1xY/S0gt/pfhfX5PBe4C\nvgm8BBTiva5fAb5hZuc2c5z/g/ft7cUJ8z+Hl5Q2SuXYk8Us8XPCl78FqZxnZnZtNMEe2tR2SO21\nSZTssyHp50Uz7bw/4dhbiiOkdq59H+/b+KuBKcBe4JYmtpfoT8DAJv7pkkxxzumnk/8ATwGvxE2P\nB1YDb0WnXwNWJDynK17if2PC/D8B/4ibfg1YC1jcvOvxktCuTbQnAFQBs1qznSTH0dL0q8Cvk+z/\nEeBfcdPnRo+1bxPtLQT2A9clzJ8PrIqLVzVwTsI6nwN2JBznhwnr/DzuteiJ94fgtBRfy7QcY3Sd\nz+P1BJPQ3icS5n0TWNuKYyqMvo53NbPvpo4jdrytPCebbE+SfaS63UPik+L776DzvbXtS4hFPbAn\n4efPCevdC2wDfghUAkOSvKZNvtfSFed0vSeaOj8S3wstxT2V58S1Z0Vz67T1dSX1z5Jm4x/d14KE\n5UuAjxLmLQS+38Jx/AH4a9z0ZLzPoNGtPPZDYtbG16hVfwtacZ5dAiwDBjbRlhZfm6aOi+SfnQfN\na6GdVa2JYyvOtRrg2oT15iUeTzOvz/dI8rmsn8z9qKdeGk03sz1mtg9YhJfUXx23/IOE9Ufh9eC8\nmTD/Dbyeo3jvuegnQNRbeF9ZjgQws1Iz+62ZfWxmu4BdQHdgWGu2k0aPA1PNbGx0+kvAX1y0jCGJ\nkUA+B3oHG82Ne3wU3of289E47zGzPdF9FZtZn7h1P0rYTjlebw7OuZ3Ak8ArZvZy9GvwMa08Pmj9\nMR6uJo8JLzYFeInZ4WjNOdlcew5nuy1K8XxvTfvivQNMBI6J+7kxYZ2H8HpA78JLDDcm2U5z77V0\nxTkt74lUteJzJhWJn4fpel1T+SxJNf6J+9qC99meOK9f4rEk+A1wjpn1jU5fg3d+xEo0Ujz2Q2KW\nyKe/BSmdZ865F5xz451zm5toXiqvzeForp3d494PLcYxqqVzrfE8ejdhvcTja87vgM+YWYe+ED+X\n6EJZafQO3od1GCh3zjUkLK9O8hxLMi9V8c99CajA+9pvA1CH9yHdbI1kGtqQlHNumZm9BVxvZt/D\nG53ggsNsR+M/0DOBZPWK8aMM1SU2Ke75OOduMK8u+pzoz4NmdqtzrrnyoIM32LZjTCbCocceSrJe\ns8eURqmeD61tTzrPs1TO97bGa79z7pMW1hlE9MI9YGwL68azJh43p7njSNt7IkWH8zmTKNnnYbpe\n11Rim8o6iRfvuibmtRTHV/C+0bkqWkN+BYeWR6Vy7MlilsiPvwWtOc/auo90aKmdO6K/U4kjpH6u\nOdrAzErwSsA+wPs24dG2bEfSS0m9NEolGYi3GqgFTsP7yrLRGXhf88Y7wcwsrmdlKt7XfmvMrDdw\nJHC3c+5VADMbQvLeoya304p2x6sDmrpQ6nHgx3gfpBudc3Oa2c6a6LZOAZbHzZ8a93hptK0jnXP/\n18b2xjjnluHF/cdm9hhe3WWypD5dx9iUCrwkMd7xrdzGMrxz6RwOPXcaNXccjVpzTrZG2rbbyvM9\n7aLXTvwe+BBv9IpnzWyOc+6dhFVbeq+lIx7pfE80e374Hfc0bj+Vz5LmzsfFrdxfi5xzETP7PV7i\n9glez/mzjcvTdew+/i1I13mWymtzOFpsp/f2TZvVeMdzMrAibv6Ulp5oZuOAB/GS+rPxrutSUp8F\nlNRLmzjn9pvZT/B6ibfjfdV3Od5FN2clrN4HeDS6/kjgP4FfRLdRg1ffe72ZrcW7AOh7HLjwM6Xt\ntPEwPgHOMLMReF/z7or7huI5vIT3W8C3m9uIc26fmf0CeMjMKoCVeB92Y4Gt0XWqzexh4OHoB/M/\n8N5/E4BjnXNfS6XBZjYSr370r3g9WYOBU4H3/TzGZvwD+LmZzcRLFGfiXby2o9lnxYnGZjbwQPR8\neBWv3vN859x3UziOxu205pxMWZq3u4PUz/e2yDezQ8pSnHNbow+/hZc4TXTObTVv5KI/mNkxzrn4\ncbKbfa+lIx7pek9EHXJ+JCz3O+5p2X6KnyW+nOcteBr4Mt7nxIvRMsBG6Ypta7aT8t+CdJ1nqbw2\nh6OFdk5yzn39cPeRsL99ZvY4B45nFV6d/3iaOR7zLsZ+ALjUObfbzP4M/NTMTnHONTWAgbQTJfWS\niqa+nvsm3lf4/x9QQrQO3zn3esJzn8O7YG8uXmnGM8DXAZxzLpoQ/gTvj9N64Bt4H+aJbWhyO200\nG2+klY/wksjpeON845yrNbPf4o1s8FQK2/oaXk1n44gQz+KN5BIbYcY595B5w5DdhneR4n68D9L/\nittOS1+FVgOj8S5eK8H7WvxF4D/a4RiT+Q1eLejP8L4i/z3eRbjxd0ds8etd59y90T8stwM/wvsD\n/69UjiNBqudka6Wy3Ra1cL636WvwBKfi1c42MsBFvyofi5fUXxqX5H8Zr6fxCeDKuOe19F5LS5zT\n9J6A5OdH/H5S/ZxJxSHtSfPr2uJnCS3HPx3nUoxzbrGZLcS7RuO+hGVpOXY//xakcp6Z2bXAr4FS\n51xZE5tK5bVps2ba2drP51Tj/lW84/k9XinlH/BikjiKFQBmdgTeCEAXuuiNKZ1zDWb2I7xrdJTU\nZ5gdfK2JjzsyexJvSKWtzrmJSZZfxYHhlvYANztvLFSRjDCzZ4E859xlmW6LXzrDMUrrmNlrwMfO\nuRsy3RaR9mJm/4k3XOUxzrlOecM2ADObgzfaTlr+UZH21Z499U/h3azg6SaWr8Ubpm+XmZ2HVx/c\nYm2XSLqZWU+8cZIvwRsLuMPpDMcoItIKFwC3dKaE3syOBo7DG/GmAO+6iTOA8zLYLDkM7ZbUO+fm\nmlmTQ4clXKj1Dl6tsEgmfIh3Y5PvOefeynRjfNIZjlHapn2+vhXJIs65yZluQwY44Ga8kskA3gWz\nlzReqCy5J1tr6r8E/C3TjZDOyTk3PNNt8FtnOEZpG+ecvrkR6QScc0vxRr+RDiLrkvroldVfwBtB\nQ0REREREWpBVSb2ZTcQbheE851yTQ+LNnj3bTZo0qf0a1oksXLgQxdY/iq9/FFv/KLb+UWz9o9j6\nS/H1z8KFC/nyl7/c6hsTtHdSbzRxRzYzGwo8D3zOOdfszYQ++ugjrrvuOh+aJ6+88grHHXdcppvR\nYSm+/lFs/aPY+kex9Y9i6y/F1z+/+c1v2vS8dkvqzey/8a6q7mNmZcD9eONaO+fcE8C9eBfu/Tx6\n18N659yJyba1ZcuW9ml0J1RW1tTwvJIOiq9/FFv/KLb+UWz9o9j6S/HNPu05+s1VLSy/Hu9OmSIi\nIiIi0grBBx54INNtaLWKiooHjj322Ew3o0Pq0aMHQ4cOzXQzOizF1z+KrX8UW/8otv5RbP2l+Ppn\n8+bNnHLKKd9u7fPa7Y6y6TRnzhynOi4RERER6WgWLFjAjBkzsv5C2bRYuHChLs7wydy5c5k2TaOJ\n+kXx9Y9i6x/F1j+KrX8UW38456ioqKCyspKePXtmujk5yTlHjx49KCoqSut2czKpFxEREZH2V1FR\nQXFxMf379890U3KWc46qqipqa2vp06dP2rar8hsRERERSUl5eTmDBg3KdDM6hKZi2dbym0BaWiUi\nIiIiIhmTk0n9woULM92EDmvu3LmZbkKHpvj6R7H1j2LrH8XWP4qtdDY5mdSLiIiIiMgBOZnUT5o0\nKdNN6LA0UoC/FF//KLb+UWz9o9j6R7GV9vb2229TU1NDbW0t8+bNa/f9a/QbEREREZEkXn75ZVas\nWEEwGGTAgAFcccUVTa57yy23sGHDBkpKSvjRj37Ujq305GRPvWrq/aMaRH8pvv5RbP2j2PpHsfWP\nYtt5Pf744zz44IOHvZ3du3fzgx/8gLvvvps777yTJ598kqqqqibXv/vuu1m0aBFLly7lggsuOOz9\nt1ZOJvUiIiIiIsnccMMNvPDCC2zbtu2wtjNv3jzGjRsXmz766KN58803m1w/FAoxePBggsHgYe23\nrXKy/EY19f5RDaK/FF//KLb+UWz9o9j6R7Ftf+f86sO0bu+VLx3bpueZGTNnzuSZZ57h9ttvP2jZ\nunXrePrppzEzGu/V1PjYzJg8eTLnn38+4I0j36NHj9hze/Towdq1a5vc74IFC2I3lho5cmRsO+0l\nJ5N6EREREZGmzJo1i6uuuuqQpL60tJT77rsvpW3s3LmTgoKC2HQoFKK6urrJ9T/3uc8xceJEAE47\n7TSmTp1K9+7d29D6tsnJ8hvV1PtHNYj+Unz9o9j6R7H1j2LrH8W2c6usrKSmpoYFCxa0eRtFRUWx\n3nyAmpoaevbs2eT6Rx99dOxxz5492/0cVE+9iIiIiBy2tpbLpNucOXNYu3YtX/7yl/n973/Pcccd\nF1sWX34TL1n5TWlp6UEdyVVVVRxzzDFJ9/nHP/6RV199lSeeeAKA6urqdq+tt/j/QHLFnDlzXPwL\nJCIiIiL+Ky8vZ9CgQZluRpOef/55Fi9ezAMPPMDevXuZMmUKH3zwwUFlNKnat28f55xzTqzH/bTT\nTuP555+npKSEdevWMWzYsNg/B++88w6RSIRTTjmF6upqpk6dyttvv01hYWGT228qlgsWLGDGjBmW\n5CnNysnyGxERERGRePPnz+f111/ngQceALzymQsvvJA//elPbdpeYWEhd9xxBz/84Q/5wQ9+wO23\n305JSQkA1157LYsXL46tO2XKFDZt2sRjjz3GQw89xK9+9atmE3o/5GRP/ezZs911112X6WZ0SHPn\nztWIAT5SfP2j2PpHsfWPYusfxdYf2d5Tn0vUUy8iIiIiIgfJyZ561dSLiIiItD/11KePeupFRERE\nROQgOZnUa5x6/2hcX38pvv5RbP2j2PpHsfWPYiudTU4m9SIiIiIicoBq6kVEREQkJaqpTx/V1IuI\niIiIyEFyMqlXTb1/VIPoL8XXP4qtfxRb/yi2/lFspbPJyaReREREREQOaLeaejN7ErgI2Oqcm9jE\nOj8BzgeqgWudc0m75FVTLyIiItL+OmNN/ZIlS3j22Wd58MEHm13v5ZdfZsWKFQSDQQYMGMAVV1zR\n7PrprqnPa+0TDsNTwE+Bp5MtNLPzgZHOudFmdhLwC2BKO7ZPRERERHLc448/TkVFBffee+9hb+vR\nRx/l3XffpXv37s2ut3v3bn7wgx/w2muvAXDOOedw9tln07t378NuQ6rarfzGOTcX2NHMKhcTTfid\nc+8CPcysf7IVVVPvH9Ug+kvx9Y9i6x/F1j+KrX8U287rhhtu4IUXXmDbtm2Hva1bb72V888/v8X1\n5s2bx7hx42LTRx99NG+++eZh77812rOnviWDgQ1x05ui87YmW3nfuo0Ulg5pj3aJiIiISAv+PuCU\ntG7vvC1vt+l5ZsbMmTN55plnuP322w9atm7dOp5++mnMjMYS9MbHZsbkyZNTSuITlZeX06NHj9h0\njx49WLt2bZva31bZlNSnbNKkSbw38w5OeuHndB0yINPN6VCmTZuW6SZ0aIqvfxRb/yi2/lFs/aPY\ndm6zZs3iqquuOiSpLy0t5b777kv7/nbu3ElBQUFsOhQKUV1dnfb9NCebkvpNwBFx00Oi8w7x3HPP\nsfSTBQyafhFDrryQ3oMGMGHChNgbuPErN01rWtOa1rSmNa1pTadvuk+fPjlxoWxlZSU1NTUsWLCA\n9hhcpaioiB07DlSZ19TU0K9fv2afs2vXrlhv/ty5cykrKwNg8uTJzJgxo9VtaNc7yppZKfBX59yE\nJMsuAG51zl1oZlOAHzvnkl4oO3v2bDfoG78CoGjscE7806Pk9+npX8M7kblz58bevJJ+iq9/FFv/\nKLb+UWz9o9j6IxdGv5kzZw5r166lsLCQBQsWMHv27Niy+PKbeM2V3/zhD3/grbfe4mc/+1mT+3z1\n1Vd54YUXePTRRwG47bbbmD59OpdddlmTz8nZ0W/M7L+BM4A+ZlYG3A/kA84594Rz7mUzu8DMVuMN\nafmFZjcYCEAkwt6Vn/D+rLs44Y8/IdSj2OejEBEREZFs9fzzz7N48WIeeOAB9u7dy3e+8x0efvjh\nWGlMW8tvEjvB161bx7Bhw2L/HEydOpVvf/vbseWLFi3i/vvvP4wjab127alPlzlz5riuf3qD9U8+\nB9H295x8NJOf/TF53Qoz3DoRERGRjimbe+rnz5/P008/zU9/+tPYvHvuuYdJkyYxa9asNm3zl7/8\nJS+88AKbNm1i1qxZ3HLLLRQXF3PGGWfwk5/8hIkTD9x66X/+538oKyvDOUdpaSmXX355s9tOd099\nzib1gzbtpPLN99nw9Aux+b2nHsfxv5tNsGtBM88WERERkbbI5qQ+16Q7qW+3cerTqXGc+j6nTmbw\nlRfG5le9tYCFX/oGkbr6TDUt5zVeFCP+UHz9o9j6R7H1j2LrH8VWOpucTOrjlcw4mYGXnh2b3jZn\nHgtvvFeJvYiIiIh0GjldfhNv8/++ytaX34hN97/gdI55/EECoXa7FlhERESkQ1P5Tfqo/KYJAy45\ni5JzDgxdtfXlN/joxnuJ1DdksFUiIiIiIv7LyaS+saY+npkxaOa5lJw9NTZv68tv8NFN9ymxbwXV\nIPpL8fWPYusfxdY/iq1/FFvpbHIyqW+KmTHo8vMoOeuU2LytL72uxF5EREQkDYLBIPv27ct0M3Ka\nc47KysrY2Pnp0mFq6uM55yj/n7+x7R9vx+b1v2g6xzz2bdXYi4iIiLSRc46KigrC4XCmm5KznHP0\n6NGDoqKipMuz/o6y7cnMGPSZ83HOsX3OPAC2vvgai8yY+PMHlNiLiIiItIGZ0b9//0w3Q5LIyfKb\nZDX1icyMwVdcQN8ZJ8fmbfnrP71SHA132STVIPpL8fWPYusfxdY/iq1/FFt/Kb7ZJyeT+lQlS+y3\nvvQ6H37pm4RrajPYMhERERGR9OmQNfWJnHNsevblWCkOQJ/TT+C4p75HsLCLH00UEREREWm1Tj9O\nfXMae+z7nX9abF7lG/N5/+ov07C3OoMtExERERE5fDmZ1KdSU5/IzBh46dkMuHhGbN6OeR8y/4p/\np37XnnQ2L6epRs5fiq9/FFv/KLb+UWz9o9j6S/HNPjmZ1LeVmTHgoukMmnlubN6uD5Yy//I7qKva\nlcGWiYiIiIi0XaeoqU9m2z/fYdMfXoxNF40bwQl//AkFJb0Pt3kiIiIiIm2imvpWKjlzCkdccwmY\nF7O9K9by7sU3s3/D5gy3TERERESkdXIyqW9LTX0yfU6dzNDrLosl9vvWbuCdT9/E3pWfpGX7uUg1\ncv5SfP2j2PpHsfWPYusfxdZfim/2ycmkPp16T5lE6U2zsLwgALWbt/HuJTezc8GyDLdMRERERCQ1\nnbamPtGe5Wv45NHfE6mtAyBY2JXjfvM9+pw6Oa37ERERERFpimrqD1PxkSMZ9eXrCBYVAhDet5/3\nr/4yW156PbMNExERERFpQU4m9emqqU9UOHwIo7/6JUI9uwPg6upZeP232PjfL7bwzI5DNXL+Unz9\no9j6R7H1j2LrH8XWX4pv9snJpN5PXQb2Y/TXrqegXx9vRiTCkrsfZu3PfkculiqJiIiISMenmvom\n1O/ey9pHfsP+sgNDXA794kyO/M87sWDQ132LiIiISOekmvo0C3UvYtSXv0i3MaWxeWVPPsfCG+4l\nXFObuYaJiIiIiCTIyaTer5r6RMHCLoz898/T8/ijY/O2vvQ671/579Tt2N0ubWhvqpHzl+LrH8XW\nP4qtfxRb/yi2/lJ8s09OJvXtKRAKMeyGz1By1imxeTve+Yh3P30T+zduyWDLREREREQ8qqlvhYpX\n3qL8j3+LTRcM6Mvk//4RxeNHtXtbRERERKTjUU19O+h3zlSGXf+Z2IWytVu28+7FN1P55vsZbpmI\niIiIdGbtmtSb2XlmtsLMVpnZPUmWdzezv5jZQjNbbGbXJttOe9XUJ9PrxImMuPMaAl0LAGjYU837\ns+7qMGPZq0bOX4qvfxRb/yi2/lFs/aPY+kvxzT7tltSbWQD4GXAucBQwy8zGJax2K7DUOTcJmA7M\nNrO89mpjqoqPHMnor15PqGcxAK4hzJK7H2bl/3sMF4lkuHUiIiIi0tm0W029mU0B7nfOnR+d/hrg\nnHPfi1vna8AQ59xtZjYc+D/n3JjEbWWqpj5RXdUu1v70t9TEXTDb/6LpTPzpfQSjPfkiIiIiIqnK\nhZr6wcCGuOmN0XnxfgaMN7Ny4CPgznZqW5vk9+7B6Huup/uEsbF5W198jff+7VZqt1VlsGUiIiIi\n0plkW2nLucCHzrkzzWwk8KqZTXTO7Y1f6ZFHHiFQtZvBJf0AKO5ayJHDhnPikd548u8tXwLQLtPB\nLgVsO2sS24O1DF64DoB5H8zngzMu4/PPP0nxuBGxurNp06YBZPV0fI1cNrSno00rvv5NN87LlvZ0\npOnFixdz8803Z017OtL0Y489xoQJE7KmPR1pWp+3im+uTDc+LisrA2Dy5MnMmDGD1mrv8psHnHPn\nRaeTld+8CHzHOfdWdHoOcI9z7qDhZWbPnu0uKCltl3a3xrZ/vsOmZ16CaEzzirtxzBMPUjJ9SoZb\nlrq5c+fGTjZJP8XXP4qtfxRb/yi2/lFs/aX4+qet5TftmdQHgZXADGAz8B4wyzm3PG6dR4EK59y3\nzaw/8D5wjHPuoFqWbKmpT2bXopWsf+JZIrV13oxAgHEP3O4NhWmtfn1EREREpBPJ+pp651wYuA14\nBVgKPOOcW25mN5rZDdHVHgJOMbNFwKvAVxMT+mzXY+JYRt9zPaFe3b0ZkQgr7nuEJXc9fCDRFxER\nERFJo3Ydp94593fn3Fjn3Gjn3Hej8x53zj0RfbzZOXeuc25i9OcPybaTyXHqU9H1iIGM+cbNFI44\nIjZv0zMv8d7M27P+Atr4+i5JP8XXP4qtfxRb/yi2/lFs/aX4Zh/dUdYnoZ7FjPrKdfQ6+djYvJ3z\nFzPv3OvYtWhlBlsmIiIiIh1Nu9XUp1M219Qncs6x7dW3KX/u77ELaANdC5jw428x8OLWX9ksIiIi\nIh1X1tfUd1ZmRr9zpjLijs8R6NoFgMj+Wj668V5WfecXuHA4wy0UERERkVyXk0l9ttfUJ9P96DGM\n+caNFPTvG5u39pGn+eCzX6Fux+4MtuxgqpHzl+LrH8XWP4qtfxRb/yi2/lJ8s09OJvW5qsuAEkZ/\n40aKjx4dm7f9tXeZd+517F6yKoMtExEREZFcppr6DHCRCFv+PIetL78Rmxfoks9RP7iHwZefn8GW\niYiIiEgmqaY+h1ggwMBLz2b4rVcT6FIAQKSmjsW3P8iyr88mUlef4RaKiIiISC7JyaQ+F2vqk+kx\n6UjGfPMAVCRbAAAgAElEQVQmugzsF5tX9tTzvHfZbdRs2ZaRNqlGzl+Kr38UW/8otv5RbP2j2PpL\n8c0+OZnUdySNdfY9jj8qNm/n/MW8ffYXqJz7fgZbJiIiIiK5olU19WZ2iXPuhejjPs65St9a1oxc\nr6lPxjnHtlfeovz5/4uNZ08gwKivfJGRd16DBYOZbaCIiIiI+K69aurPM7OfRh/3N7NvtXaHkpyZ\n0e/caYy861ryirt5MyMRVn//l7x/1d3UbqvKbANFREREJGu1NqkPAMvN7BHn3DLgTB/a1KKOUlOf\nTPGRIxl73210G1Mam1f5xnzePvtaqt7x/7hVI+cvxdc/iq1/FFv/KLb+UWz9pfhmn9Ym9YOdcz8H\ntprZQ8D9PrSp0wv1LGbU3V+g/wWnx+bVbtnO/MtuZ+1Pf4uLRDLYOhERERHJNq2tqT/BOTc/+vjr\nwGLn3It+Na4pHbGmvim7F69i/a+fI7x3X2xeyYyTmfDIt8jv2yuDLRMRERGRdGuXmvrGhD76+DuA\nCr191n3CGMbeewuFI4+Izds2Zx5vzfg8lW9qdBwREREROcwhLZ1zb6erIa3RkWvqk8nv3ZPRX/kS\nJedMi82r3bqd+Z+5k1UP/4JIfUPa9qUaOX8pvv5RbP2j2PpHsfWPYusvxTf7aJz6HGF5QQZffh4j\n7rjmwOg4zrH2J0/z7sU3s299eWYbKCIiIiIZ06qa+mzRmWrqk6nftYeyXz/HnmVrYvPyirtx1A++\nysBLzs5gy0RERETkcLTXOPWSBUI9ihlx5+cZNPNcCHgvYcOeaj666X4W3/kQDXurM9xCEREREWlP\nKSX1ZvaVJubfnd7mpKaz1dQnY4EA/c49lTFfu4H8kt6x+ZuefZm3zvw8O979qE3bVY2cvxRf/yi2\n/lFs/aPY+kex9Zfim31S7am/r4n5uqNshhUOH8LYe2+h15RjYvP2l5Xz7qW3ehfR1tVnsHUiIiIi\n0h6arak3s8Y7xv4VuAiIr+8ZAdzrnBvmX/OS6+w19U3Z8d4iNv7+L4T31cTmdZ8whok/u5+iscMz\n2DIRERERSUVba+rzWlj+ZPR3F+DXcfMdsBW4vbU7FP/0OnEi3UYNpeypP7F3xVrAu3nV2+d+gTHf\nuoVh183EArqMQkRERKSjaTbDc84Nd84NB37f+Dj6M8I5d7Jz7i/t1M6DqKa+afm9ezLyrmsZdMUF\nWJ73P1ukpo4V3/ox7195F/s3bG72+aqR85fi6x/F1j+KrX8UW/8otv5SfLNPSt22zrlrzKy/mX3K\nzL5gZtc1/vjdQGk9CwTod9YpjPnWzXQZMiA2v/Jf85k7/XNs+N2fycWhTEVEREQkuZTGqTezS4Df\nAR8DRwFLgaOBuc656b62MAnV1KcuUt/Alj/PoeKVuRD3WvedfhJH/fBrdB3cP4OtExEREZF4fo9T\n/xDwBefcsUB19PcNwAet3aG0r0Aoj0Ezz2X0V6+noH/f2Pztr73LW2d8lo3//aJ67UVERERyXKpJ\n/VDn3B8T5v0GuCbN7UmJaupbr9uooYy971ZKzp4K5v3z17CnmiV3P8wHV3+Fms3bANXI+U3x9Y9i\n6x/F1j+KrX8UW38pvtkn1aS+wswa6zTWmdnJwEgg2Jqdmdl5ZrbCzFaZ2T1NrHOGmX1oZkvM7LXW\nbF+aF8gPMfgz5zPqP75Ifr8+sfnb/zmPuaddxYbfvoCLRDLYQhERERFpi1Rr6u8BVjvnnjeza4An\ngAgw2zl3b0o7MgsAq4AZQDkwH7jSObcibp0ewNvAOc65TWbW1zm3PXFbqqk/fJHaOsr/91W2//Od\ng2rte59yHEfN/hrdhg/JYOtEREREOidfa+qdc99zzj0fffw0MAY4PtWEPupE4GPn3HrnXD3wDHBx\nwjpXAc875zZF93VIQi/pESjIZ8iVFzLqK9cd1Gtf9fYC3pr+Wdb+7HdEGhoy2EIRERERSVWb7kTk\nnCtzzi1v5dMGAxvipjdG58UbA/Q2s9fMbL6ZfS7ZhlRTnz5FY4Yz7v7b6HfeqRAIsCxSTaSmjlUP\n/Zx3Lrie3UtWZbqJHYpqEP2j2PpHsfWPYusfxdZfim/2aemOsu0tDzgOOBPoBswzs3nOudXxK73x\nxhu8WfVXBpf0A6C4ayFHDhvOiUceDcB7y5cAaDrF6ffXrITxgzl68k2s+cWvWVZRCcD4RSuZd+4X\nqbroJAZffgGnnXUmcOCNPG3aNE1rOmumG2VLezrS9OLFi7OqPR1pevHixVnVHk1rWtOZ+fs1d+5c\nysrKAJg8eTIzZsygtVKqqU8HM5sCPOCcOy86/TXAOee+F7fOPUAX59y3o9O/Av7WWPrTSDX1/nHh\nMBWvvMWWv/4TV98Qm9/1iIGM/86XKTnrlAy2TkRERKRj83uc+nSYD4wys2Fmlg9cCfwlYZ0/A9PM\nLGhmhcBJQGvLfOQwWDBI//NPY9z9t1E0dnhs/v4Nm/ngs1/hwy9+g5ryigy2UEREREQSNZvUm9mA\ndO3IORcGbgNewbsj7TPOueVmdqOZ3RBdZwXwf8Ai4B3gCefcssRtqabeP42lOQX9+zLy7i9wxLWX\nEiwqjC3f+tLrvHnqVax74lldSNsGiaUikj6KrX8UW/8otv5RbP2l+GafvBaWrwK6N06Y2Z+cc//W\n1p055/4OjE2Y93jC9A+BH7Z1H5I+FgjQZ+rx9Jg4jvLn/4+qtxYAEK7ex4r7HqH8j39j/Pe+Ss/j\nxme4pSIiIiKdW7M19Wa2xzlXHDdd5Zzr3S4ta4Zq6jNj76pP2PC7v1AbvfssAGYMufpTjPn6TeT3\n6Zm5xomIiIh0AH7V1LfPVbSSE4rGDGfsfbcy8NKzsVD0Sx7n2Pi7v/Dm1Csoe+p5XDic2UaKiIiI\ndEItJfV5ZjbdzM40szMTp6Pz2p1q6v3TWFPflEBeHv0vOJ1x376D7hMOVFLV79zDsq/P5u1zr2PH\ne4v8bmbOUg2ifxRb/yi2/lFs/aPY+kvxzT4t1dRXAL+Om65MmHbAiHQ3SrJfQUlvRtzxOXZ9tIJN\nz75M3bYqAPYs+Zh3P30Tg2aex5h7b6FL/74ZbqmIiIhIx9du49Snk2rqs0ukvp5tr7zFlpfewNXX\nx+YHiwoZeefnGXb9Zwh2KchgC0VERERyg6/j1JvZ+OjQk183sxvMTMOdSEwgFKL/hWdw5IN30uP4\no2Lzw3v3ser/Pcbc065my4uvkYv/QIqIiIjkgpbGqTcz+zWwGPgG8GngW8AiM3vKzFr9X0Q6qKbe\nPy3V1Dcnv09Pht80i5F3f4EuA/vF5u8vK2fhl77Je5feyq5FK9PRzJylGkT/KLb+UWz9o9j6R7H1\nl+KbfVrqqb8BOAOY4pwb5pw72Tk3FDgZOBW40ef2SQ4qPnIkY++/lSFXfeqgG1fteGch8869jsV3\nPUzN1u0ZbKGIiIhIx9LSOPVzge86515Msuwi4OvOuak+ti8p1dTnjobq/Wx98TW2/fMdiERi84OF\nXRl+y1WU3jyLvG6FzWxBREREpPPwq6Z+PPBGE8veiC4XaVJet64MvuICbwjMY8bF5of37Wf1D5/k\nzZOvYMNvXyDS0JDBVoqIiIjktpaS+qBzbk+yBdH5KV1om26qqffP4dTUN6fLgL6MuO2zjLzrWroM\n7h+bX1tRydL/+D5vTb+GilfmdviLaVWD6B/F1j+KrX8UW/8otv5SfLNPS+PUh8xsOtDUVwAtPV/k\nIMXjRzH2vlupmvchW16YQ/3O3QBUf7yOBdd8lV5TJjH2vtvoeZy+BBIRERFJVUs19evwbjDVJOfc\n8DS3qUVz5sxxyz/ex/j8BgYEI2RmDB45XJHaOrbNmcfWv/2LSE3tQcv6X3A6o++5gaKx7X56iYiI\niGRMW2vqc/bmU19b4B1r70CEo/LrOSq/gfH59fQM5t7xdHYNe6rZ8uJrbH/9vYMupiUQYNBl5zLq\nP75E4dCBmWugiIiISDvx5UJZMys0s4fN7C9m9oCZZcVtQeNr6qsiAd6sKeAXu7txx/aefH17d367\nuysf1ISojqgLv7X8qqlvTl5xN4bMuogjH7yTnpOPPrAgEqH8j3/jzalXsOwbP6K2orLd25ZuqkH0\nj2LrH8XWP4qtfxRbfym+2aelmvhHgcnA34CZQB/gdr8blYpR7KeMAuoS/i/ZFA6yaX+QV/eD4SjN\nCzM+2os/Jr+BAuX5WaugXx9Kb7ySfeeVs/mFV9mz5GMAXH0DZb9+jk1/eJGhX7qc4bdcTX6v7hlu\nrYiIiEj2aKmmfjNwnHNus5kdAfwrEzX0iebMmeN2friJiIPN5LOOAtbRhU0un0gzBfZBHCNDDRyZ\n7/2MCjWQryQ/a+1d9Qmb//dVqleXHTQ/WFRI6fWfofTGKwn1VHIvIiIiHYcvNfVmtts51z1uuso5\n17uNbUybxqQ+UZ0zNpHP+miSv9WFcM0k+aGEJH9kqIGQkvys4pxjz5JVlP/pVWo2bjloWV5xN4bd\ncAWlN1xBqEdxhlooIiIikj5+3Xwqz8ymm9mZZnZm4nR0Xrtrapz6fHMMt1rOsN1caxXcaeX8G9s5\nnj30pf6Q9esxVtSH+N/qrjy8o5ibKnrynaoiXtjbhRV1edR1wmtuM1FT3xwzo/uEsYy99xaG3XAF\nBQNLYssa9lSzZvaveePEmaz+0VM07KnOYEtToxpE/yi2/lFs/aPY+kex9Zfim31aqqmvAH4dN12Z\nMO2AEeluVLp0MccYahhDDbCLahegjALKKGA9BVQROmj9eozl9SGW14eg+kBP/rh872dkSDX5mWKB\nAL1OmEDP449i5/zFbHnxNWq3bAegYdceVn//l6x/4hmGXX8Fw744U2U5IiIi0qnk7JCWycpvWmtP\nXJJfRgE7EpL8REEcI0JhxoXqGZvfwOhQA10zck9dcZEIO95bxJa/vkZdwqg4ecXdGHrdZZRefwX5\nfXtlqIUiIiIirdfpxqlPR1KfqDHJ3xBN8hN78hM1jq4zJr+BsaEGxuQ30D2Qe/HMZS4cZse7H7Hl\nxdep21Z10LJg1y4ccc0llN5yFV36981QC0VERERS51dNfVZqqqb+cBVbhKNsP+fZTm6wrdxKOZ+m\nkknspU+SmnyH8UlDHv+3rws/2VXEbdt6cs/27jy1u5C39uezPZx74c22mvqWWDBI71OO48gH72To\nF2dSMOBAzX14fw3rHn+Gf504k2Vf+yH71pdnsKUe1SD6R7H1j2LrH8XWP4qtvxTf7NNSTX2nVmwR\nxrOf8ewHoNoF2Eh+rDe/woUgYXSdzeEgm/cHeW2/d5+u3oEIY6K9+GNCDQzJCxNQXX7aWTBI7ymT\n6HXiRHZ9uIwtL74eGy0nUltH2X/9iQ2//TMDLp7B8FuvpvtRozPcYhEREZH0UfnNYahxxkYK2Eg+\nGyhgcwvj5AN0NceokJfgj9bFt75xzrF70Uq2vvQ6+z7ZeMjyvtOnMOL2z9Hr5ElYC6+ZiIiISHtR\nTX0WqI/eDGtDtCd/E/nUt1DhFMAxNC8cS/JHhxroHcy91yRbOefYu3wNW//+L/YuX3vI8h7HHcWI\n2z5Lv3OnYcFgBlooIiIicoBq6rNAyGCo1THV9nClbecuyrmWrZzFTsaxjyLChzwngrGuIY9X9nfh\n0V1F/Pv2nty1rTs/39mNV/YVsLY+SEM75vi5VlPfEjOjePwoRt19HWO+eTM9jj8K4t4muxYs5cPr\nvs6b02ZR9tTzNFTv97U9qkH0j2LrH8XWP4qtfxRbfym+2Uc19T4KGAygngHUMxlwDnYRjJXsbKSA\n7UlG2KmMBKmsDfJObT4A+TiGh7xe/FGhMKM0yk6bFJYOZvhNs6jdup2KV+ZS9faHuAbvH619n2xk\n2ddn8/H3f8kR11zC0OtmasQcERERyRntWn5jZucBP8b7huBJ59z3mljvBOBt4Arn3J8Sl2dr+U1b\n1DhjU7RUZyP5bE6hZAegXzDMqFADI0Pe7yPywuSpNLxV6nftYduceVS+8R7hfTUHLbNQHgMvPYfh\nN11J8fhRGWqhiIiIdDZZX1NvZgFgFTADKAfmA1c651YkWe9VYD/w646e1CcKO6ggxCbyKY/26O9O\n4QuVxt78EaEwI0MNjFJtfsrCNbVUvbWAbXPepm7bjkOW9556HMO+dDn9zlHdvYiIiPgrF2rqTwQ+\nds6td87VA88AFydZ73bgOaCiqQ1la019OgQNBlo9k62aT1sVt9gWbqWcS6jkBPYwmFqCSf4Rq8NY\nWR/ib/u68LNobf6d23rwyM5uvFhdwPK6PGoiLe+/o9XUpyLYpYCSGSdz5EN3UXrzLLqNHHrQ8qq3\nFvDhF77Ov6Z8hk8e+2/qd+5u875Ug+gfxdY/iq1/FFv/KLb+UnyzT3vW1A8GNsRNb8RL9GPMbBBw\niXNuupkdtKwzK7YI49jPuOh4+Q009uYXUE4+5eSzK8lLuSMS4IPafD6I1uYbjsF5EUbkNTAi2qs/\nRGU7MRYI0PO4o+h53FFUr9nAtlffYueHSyHi/RO1f8NmVn77Z6z+/q8YdPn5DPviTIrGDs9wq0VE\nRESy70LZHwP3xE0nTTdXr17NX+f/L/16e3cPLezSleGDh3H0yCMBWLJmOUCHnV6x1ps+IW75fheg\nx8hjKCefj9asoJIQhSOPBWD3Gu+bje4jJ7GxIciylYtj0/k4uqxfwKBgmDPGj2fE6Im8u2wRZnDi\nkUcDB3rvO930TVdSV7WTfzz3Ars/Wsm4Oq/0ZnF1JYv/63eMf/p/6X3KcWw5aQw9TzqG0844HTjQ\nezFt2rRDpqdNm9bsck1rOlunG2VLezrKdOO8bGlPR5rW563imyvTjY/LysoAmDx5MjNmzKC12rOm\nfgrwgHPuvOj01wAXf7GsmTUOJG5AX6AauME595f4bXXkmvp0iTjYTh6boz355eSz3YVwKdxoqdAi\nDA+Foz36YYaHGugVcIk3z+1UInX17HhvEdvmzIvdqTZeQf++DLn60xzx2U/TZVC/DLRQREREOoJc\nuFA2CKzEu1B2M/AeMMs5t7yJ9Z8C/prsQtnZs2e7UlfiZ3M7pDpnbCEUS/Q3J7kId/eahXQfOemQ\n5/YIRCjNa2B4KOz95DXQsxNeiOuco/rjdWyb8w67Fi6LleY0smCQfudO44jPX0qfUydjgYMvW4nv\nkZP0Umz9o9j6R7H1j2LrL8XXP21N6vNaXiU9nHNhM7sNeIUDQ1ouN7MbvcXuicSntFfbOot8cwyl\njqHUxebtdQE2RxP8LeSznORX0+6KBPioLp+PDjyVXoEIpaEGhueFKQ01UJoX7vCJvplRNGY4RWOG\nU7djN5VvzqfyX+/TsGsPAC4cZuvLb7D15TfoOmwQR3z20wy+4kIK+vXJcMtFRESkI2vXcerTReU3\n/mm8QVZjou8l+6GUxs6HaKKf10BpKOz95DXQs4OX7riGMLs+Ws72199j74q1hyy3vCD9zpnGkM9e\nTN/TT9CwmCIiItKkrC+/SScl9e3LOaiK1udvIcQW8tnqQtRbaol+j0CEYXlhhkV780tDYfoGIh0y\n0a/ZXMH2N+azY96Hh9zQCqDL4P4MufrTDL7iAroO7p+BFoqIiEg261RJvWrq/bNkzfLYKDvNiTio\nJI8tcYl+RSsS/ULzEv2hoTCl0YR/YDBCsIMk+pG6enZ+sITKN9+n+uP1sfnLItWMD3QDM/qcfgJD\nrryIfuedSrBLQQZb2zGovtM/iq1/FFv/KLb+Unz9k/U19dKxBAxKaKCEBiZE50U4ONHf2kyP/j4X\nYHl9gOX1odi8EI4j8sIMC4UZmtfA0LwwR+SF6dKet0hLk0B+iN4nH0vvk4+lZnMFlW9+QNXbH8Ke\nam8F56h8/T0qX3+PUM9iBl56DoOvvJDuE8diHfErDBEREfFVTvbUq/wmdzgHO8iLJfne7xA1pFZX\nbjj6ByMMjfbqD8tr4Ii8cE4OsRmpb2DXh8uonPsBe1esSXopePH4UQz6zPkM+rdzdHGtiIhIJ9Sp\nym+U1Oc252A3QbY29uZHE/09rfjiqMgiDA15PflDoz+Dc+juuHWVO6h6+0Oq3v6Quu07Dl0hEKDv\n6Scy6DPn0f/c0wgWdmn/RoqIiEi761RJvWrq/ZNqTb0f9rkAWwlREf3ZSj6VLi+lG2YBBHEMzItw\nRLQ3v/Enm3r131u+JHbnWgAXibD343VUzV3Azg+W4urrD3lOsKiQARdNZ9Dl59P75EmHjH0vHtV3\n+kex9Y9i6x/F1l+Kr39UUy85r9AiDKeW4dTG5tUD2+OS/MaEvy7JEJthjI0NQTY2BJkXN7+beeU7\nQ6I/R0R/Z0OtvgUCFI8dQfHYEQy56iJ2frCUqnkfUr1qXWyd8N59bHrmJTY98xJdBvVjwMVnMejf\nzqb46DGqvxcREREgR3vqVX7TuTWOpe/16h9I9He18n/UfsEDiX5jst8/GMmKEp7a7TvY8e5H7Ji3\nkNqt25Ou0230MAZeeg4DLz2bbsOHtHMLRURExA+dqvxGSb0kU+uMbYTYFk3ytxGiwoWoS3GYTfBK\neAblhRmcF/GS/Wji3zcYIZCBZN85x75PNrJj3kJ2zF9MuHpf0vV6TDqSAZecxYBPnanx70VERHJY\np0rqVVPvn0zW1PuhsVe/Mdlv/GlNrT5AfjTZHxK9IHdINPHv08qbaCXW1LeGawizZ/lqdry7iF0L\nlxOprUu6Xs8TJjDg02cy4FNn0mVA53mfqL7TP4qtfxRb/yi2/lJ8/aOaepEkzKAnYXoSZjQH7vDa\nAFRGE/zt5MWS/d1NvCXqMNY15LGu4eDlXcwxKOgl+o0/g6LJfrp79i0vSPcJY+k+YSzh2jp2L1rJ\njnc/Ys+SVbhwJLbezvmL2Tl/MSvu+wm9TprIgE/NoP+Fp3eqBF9ERKSzycmeepXfiF9qnMWS/Ypo\nwr+dEPtSHFe/UYE5BgYbk/wwg4IRBueF6edDGU9D9T52LVjGzvcXs2fFWu92v4nMvB78C8+g/wWn\n0/WIgelthIiIiKRFpyq/UVIv7W2fC8R69bfH9fCnehOtRiEcA/LCDAxGvGQ/mvAPyAuTn4Zkv2FP\nNTs/9BL8vSs+8eqPkug+cRz9LzqDAReeQbeRQw9/xyIiIpIWnSqpV029fzpaTb2fnINqAmwnRGU0\n2d8eTfb3N5Hs716zkO4jJx0y33CUBCOxZH9gMMzAaClPcaBt79H63XtjPfh7V61rMsEvGjucfuef\nRv9zT6X7pCNzdphM1Xf6R7H1j2LrH8XWX4qvf1RTL9LOzKCICEXUUho3tr5zsI9ALNGP/727iW05\njIpwkIpwkI/qQgctK7IIA/MiDAqGY738A/PClLQw/GaoexF9zziRvmecSMOeanYtXM7OBUvZu3zN\nQTX4e1d+wt6Vn7D2x7+hYGAJ/c89lX7nnUrvU44jkB9qegciIiKSNXKyp17lN5KrGmv2K8mjMtqr\nX0keu1o5Gg94w296vfthBuRFor37EQYEw3Rv5i66Dfv2s/ujFexasIzdSz/G1TckXS+vuBt9z5xC\nv7On0vfMk8nv3aO1hysiIiKt1KnKb5TUS0fT4KAqmuhXkkdV42+XR30rxtlvVGgRBkRr9Q/6HTz4\nTrrh2jr2LF3NroXL2b1oBeHq/ck3GAjQ64QJlJw9lX5nT6XbmNKcLdMRERHJZp0qqVdNvX9UU++v\n1sbXOdhNMJbwV0V79qvIY08bq+d6Brzkvn+0V39AMEL/vDAl1FO/poxdC5ez68Nl1FXubHIbXYcN\nouSsUyg582R6n3Icwa4FbWpLOqm+0z+KrX8UW/8otv5SfP2jmnqRDsgMehCmB2GGx9XtA9Q5oyqa\n4FcSYkf0cZXLa/YuujsjAXZGAqyoT9gXjl69ezPgnAn0Py/M4IpN9F2+jPyly2j4pAzi/v/fv76c\nsiefo+zJ5wh0yaf3KcdTMuNkSmZMobB0SDpDICIiIinIyZ56ld+INK1xVJ6qaBlPY+K/gzx2uDwi\nbSibKazezVEfL2XUysX0W7WCYG1t0+uOHErJ9JPoe8ZJ9Dr5WPK6dT2cwxEREelUOlX5jZJ6kbaJ\nxJXzNCb8O6I/u1wwpYt1Aw0NDFm3mtKPlzJ81TL6bNvS5LqWH6LXiRPpe/qJ9J1+EsXjR2GB1l8j\nICIi0ll0qqReNfX+UU29v7I5vmEHO6MJfmOyvzOFhL/7jkpKVy1l+KqlDF27klB9fdL1AMI9e2CT\nJ9F96vEMnn4SQ0YPJhRMT5Kv+k7/KLb+UWz9o9j6S/H1j2rqReSwBA360EAfDh3iMgzsivXqBw9K\n+Hf27M2ik05j0UmnEayvZ8i61QxbvZzS1cvpu7X84H3s3AX/eIO9/3iDld+GeX37sX3ceGqOmUD+\n8cfQb2BvBhTnM7B7AQOK8unZNU+j7IiIiKQgJ3vqVX4jkj0aS3p2xiX6O6LT9buqGbhmBaWrVzB0\n9QoK9+1tejtmVAw6gg3Dx7BhxBg2DRtJoFshA4ryGVCcz4DiAvoXe48HFufTvyifogL1S4iISMfS\nqcpvlNSL5AbnYD8BL9mPGHWbtxFa+wndV6+m7/pPyGtoulQnEgiwZfAwNgwfzYYRYykfOoKG/PyD\n1inKDzIgmuD3j/4eUFwQm1eYH/T7EEVERNKqUyX1qqn3TzbXfHcEiu8Brr6BhvUbqV1bBmvWEdpU\njjXzeRQOBtkyeBibSkexsXQU5UNHUNflwMg6u9cspPvISQc9p7gg6CX8Rfn0K85nQFE+/YoO/BNQ\nlB9UeU8KVDvrH8XWP4qtvxRf/6imXkRyioXyCI0qJTSqFDgNt78Gt24DkbXrcWvX47ZUHLR+MBxm\ncNlaBpet5cR/veKV6ww8go3DR7Fp2CiWukPvhrunNsye2v2srkx+p9zCUICSxqQ/9jsUe9yra4hg\nQEm/iIhkv5zsqVf5jUjH5/btw32ygciadbhPynAV21t8TvXAgWwbMYoNQ0eyZmApVb36enfwaqOg\nQf9peBQAABwPSURBVN9uXsLfryhEv275lMQl/iXd8ummEh8REUmjnOipN7PzgB8DAeBJ59z3EpZf\nBdwTndwD3OycW9yebRSR7GCFhdhRYwkcNRYAV73P68lfV4b7ZANu89ZDntNt82a6bd5M6Vtvcirg\neveifvxY9owaTeXwkWweeAQ7w8aumgZ27W+gPtJ8p0bYwda9dWzdW9fkOt3yg5R0a0zyQ5R0y6ek\nKPq7mzcvP09j84uIiL/arafezALAKmAGUA7MB650zq2IW2cKsNw5tyv6D8ADzrkpidtSTb1/VPPt\nL8U3fdz+Gtz6jV6Sv34jS9evZry1cPfaUB6BsaMITDiSwNHjqBs3hl1FPbwkv6aBXTXh2OPdNQ3s\nq4+kpa09uuR5CX9RPv26hejbLZ++jf8AdAvRp1uI/DSN1+8H1c76R7H1j2LrL8XXP7nQU38i8LFz\nbj2AmT0DXAzEknrn3Dtx678DDG7H9olIDrGuXbBxowiMGwVA3srF5OX38BL99Rtw6zdCbUIPe30D\nkSUriCyJfezQs38JvaPfCASOGkdg7EisS4G3ejjC7sZEv9ZL9L2EPxx7HE6hX6TxH4WmavvhQOLf\nN5r0l3QL0afQS/z7Rud3DanUR0REkmvPnvrLgHOdczdEpz8LnOicu6OJ9b8CjGlcP55q6kWkJS4S\nwW3dhivbhCvbRGTDJqjc0fITg0FsVCnBo8YSOHIMgfFjsGFDsOChCbVzjn31EXbXNLC71uvp3x3t\n5d9d6z3eUxsmXZ+yhaFArJe/b6HXw9+30PsnoPFxjy55urhXRCSH5UJPfcrMbDrwBUDf64hIm1gg\ngA3sDwP7w0nHAeD2VuM2lBMp2+gl+xs3Q0PCHXTDYdzKNTSsXAO87M0r7EpgzEgCR44mMH4MgSNH\nY4MGYGZ0yw/SLT/IQAqStiMSceytC7O7NtrDX9vAnpqDp/emmPjvq49QtrOGsp01Ta4TMOhdGE36\nC70e/t7Rx32i/wj0KQxpOE8RkQ6mPZP6TcDQuOkh0XkHMbOJwBPAec65pN1qjzzyCLvLq+jX26ur\nL+zSleGDh8VqlZesWQ6g6TZMNz7OlvZ0tGnF17/pxnnNrW9F3Via3wCjBnD0udNx4QhL3n8HV7Gd\n8XUBIhvKWba1DIDxgW4ALItUw95qxi/cT2ThEm8aGN+jP4GxI1neI4QdMZiJF34KGzyAJR+8C8CE\nyd7lQEsXxE33gMXvv0M34Ozo8sXvv4MrcJROOIE9tWEWzp/HvroIvUZPYndtmLWL3mNfXYTQ0AmE\nnTcePxAbkz9xeufqhewEtjexvHG6ZMyx9C4MUbd+Ed275DHphJPpXRhiy/IPKO4S5MzTT6N31xAf\nzZ/HkiVLuPnmmwGvjhaI1dJq+vCmH3vsMSZMmJA17elI042Ps6U9HW1a8U3fdOPjsjLv78/kyZOZ\nMWMGrdWe5TdBYCXehbKbgfeAWc655XHrDAXmAJ9LqK8/iC6U9Y8u5PSX4uufdMXW7a/BbSzHbdxM\nZNNmrzd/z97UnlzcjcCYUQTGjCAwdiSBMSOxoYOTlu60ul3RUp89tQ3R8fcPlPfsrQuzJ1ryU9OQ\nnot7G4WChtuwhDGTTqR3YR69C0P07hqiV2GIPoV5scc9VfbTJrrY0D+Krb8UX//kxB1loyPaPMKB\nIS2/a2Y3As4594SZ/RL4N2A9YEC9c+7ExO2opl5E2pPbtQe3aTORjZv5/9u7sxhLrrMO4P+vqu7a\ne/fMdE9Pz24jYpBsECSAJSCykJxEJAIhAUKK4AmxRkJCiAgpPMITIeQBIQICJBaJhyQSSViUSBFE\nOM7SjuNJQmxjG89M9/S+3qWWj4dzqm7d29vdqrur5/+TWlV16tw71cfHM99X9VWV3n8Avb8E1I4u\ngWlTKsF54pYp3/meO5Anb8O5ewtSLmdyrEEYYacZYqceYqcRmIDfJgG7jTBJCk56nGevHDE3+05X\nC5iqtIL96YqHqUqh1V4toFpwWPpDRHSEXAT1w8KgnojOkqoCG1vQB0uI7i9BHzzsLdB3HMjCPJwn\nb8N54jacJ29DnrwDuTxzKsGuqqIZaivIb5qA/7DtYQf/AFB0BVMVE+RPpZKASZsATFU8TFU8TFaY\nABDR4+exCupZfpMdlodki+ObnbMe2yTQf7iM6MES9OEy9MFy96U7gCnfuXsLzp1bkCduw7l705zV\nH6lmd+AnaAQRvvLCl7Dw1A9h157537UlP7up4L825LKfWMkVTCYBv4fJcsEG/CYBmEwlAGMlF07O\nEgCWMGSHY5stjm92LtTTb4iI8kZEgOlJyPRk8hZcwD5xxwb4+nAZ0dIjYHUdOOyEys4eosVXEC2+\n0v7dc1cgd27CuXMDzp1bcO7cgNy8njxPP0slz8F4ycPNqePLhUL7lJ+9VNAfr++lEoC9Zm9n/xuh\nnvhW31hcAjRV8TBRNgH/ZMXDZNn+2CRgwm5XeBWAiC6QXJ6pZ/kNEeWZNn3ooxXow0cm4F96BF16\ndPBlWcdxHMj8nAnwb9+Ac+s6nNs3zDP1M6rXH4a49CcO9PdSCUD6x7RFCDIo/4kVXMFk2Qb5Nvif\nKHuYiJOCeNvuZykQEZ0GnqknIsoJKRYgC/PAwnzSpqrA1jZ0acW8NGv5EaKlFWBlDYgOKW2JIujb\nDxC+/QD4YuphYSKQq1cgt2ygf3MBcvM6nFsLkInx7H+5E4gISp6g5DmYrhaO7ZtOANp/ota6bxKD\nPT9EI+gtAfBDxcqej5U9v6v+niMYL7tJsD9uz/iPl1tn/8dT+8ZLLgqu09MxERH1K5dB/eLiIm6B\nNfVZOOu65IuO45udvI+tiACTE5DJCeB7n0jaNQiha+s20F+BLq9CH60c/XZcVVPq82AZ0ZdebN83\nOQ7n5nXIzQU4Nxfg3Fgwj9ycn4V4R/9z8PJX/jt57v5p6iUBAEwJUDr43/cjuzSJwH7Hvl6vAgSR\nYn0/wPp+cHJnq1pwUkG+h4mym6yPlz289c2v4NlnnzVtTASGijXf2eL4nj+5DOqJiB4X4rmQ2cvA\nbPuJDPV96Moa9NEq9FG8XAXWNw6v1weAzW1Em68AL72CMN3uupBrc3BuXINcv2bO7l+fhyzMQy7P\nZPa7DZvrSBIcd6MZ2qC/GdnAv2Pdt4mAH6LWjPp6EtC+H2Hfb+LhzuGlVduvPcQnt15ta6sUHBv0\nu0nwP15yMXZgvbWfpUFExJp6IqILRIMAurZhAvxHq9DVNUQra8DKOhB0f4Y5USpBFq7CuT4PuT4P\nZ8EG+wtXIZemIc7jc1bZD6Mk0DfBethab4aoxW2p7dP6F9YRYKzkYazkJglBvJ1uHyu5GCvbZdFF\ntZi/JwYRXXSsqSciIojnHX5mP7I1+6tr5gz/yhp0dR26ugZsH/PYzUYD+tobCF974+C+YtEE/Nfm\nTKB/bQ7OtauQa3PmiT2Fk0tm8qTgOphwTTlNN1QV9cAkAjW/dRWgFm93JAOmvb9EIFJgqx5gqx4A\naHT9OUeA0aIJ/EdLblsSELfHbaNJm9kueY9PQkeUB7kM6llTn5281yWfdxzf7HBsjyeOAFMTkKkJ\n4Mk7bfu00TR1+6vrwKpZmu0NoF7HvWgPTzkjB7+02YS+/ibC1988uM9xIFdmIPNzkGtX4czPQq7O\nQeZn4czPAtNTF75cRERQKbioFFwAhyc4nfcrxIlAHODHwX8tFfS32mx7EMEP+7smECmw3Qix3QhP\n7tyh4ArGii5GS14S7MeBf7ptJN5XbCUGp/E4UdZ8Z4vje/7kMqgnIqLhkVIRMj8HzM8d2Kf7+3AX\nvwq3Mgld2wDW1qFrm9D1jePfoBtF5kk+SyvA117GgZCxWDRP6Zmfg3P1CuTqLGRuFnL1CpyrV4Cp\nyQsf9B+mPRHoXhAp6n581t8E++nkoB60koJ9P0TdjwZKBgDz9KD1WoD1Wu9lXY4gCfZHiibQHyl6\nNiFIt7UShZFiq53vGCA6iDX1RETUF63VWgH+2gZ0fRO6Ybe3dgb78lIJMnvZBPlzVyBzlyGzV0zb\n3GXI5ZkLV95zFsIovjIQ2uDfJgF+hFrQCv7ryb4wWR8gHxhYnBRUCzYJKLgY6UgGRgqOWcb7i+0/\nRVeYGNC5xJp6IiI6VVKpQBYqwMLVA/s0CICNrVSgb5cbW8DGJlA/oe670YC+9Tb0rbdxyFP6zfP4\nZ6Yhs5cgVy6ZYD9ezl6CXLkMmZ6EuL2d8X7cuI4kQW4vVBVBpEkikAT9QYRGKiGoBx37/QiNoL8n\nCaVFCuw0Quw0Qiwfc0vIcbzkd3dQtUF/NZUQVIsmGajaPnES0eprPuc6TAzofMhlUM+a+uywLjlb\nHN/scGyz08/YiucBl2eOfCSm1upJgK8bW9BN+7OxBWxunRz0q5qbflfXgFe+c3gf14VcnoZcvmTO\n7F+xCUCyPWMSg+LZnfE/q3cADEpEUHAFBddBP680i68Q1AMT5MfBfmcS0DiiTzfvGNh+bRHjd585\ncn8Qqb25uI9fIKXsOUmAbwJ/B5U4GSiY9mqqPe5T7ehbytmVA9bUnz+5DOqJiCjfpFKGVMrA/Oyh\n+7Veh25um7P9m1vQrW1gcxu6tQ3d3Dr+iT2xMGzV9R9nctwE+fbHuXwJMjMFuTRjkoKZaXOTMc/6\nD02/VwhiYaRtAX96Ga+/vlPFzNVRNDr2Ne32sMqH4u9dRx+PjE1xBCbAt4lAJUkCnKS9Yturncvi\nwXZeQXj8sKaeiIhyR4MQ2N4xQf7WNrBl1zfj7e3jb+TtleNApqcgl6bMk3suTZvAf2bKnO2fsW1T\nk5ByaXh/LmUmCCPUA0UzbCUCrR9FI+xoC9sTiUYQoXmWNxacoOAKqgXXXElIJQStpV33nAPtZS/V\nx3NRLjgoew4ThVPCmnoiInpsiOcC05OQ6ckj+6jv28B/B7q901rfsuvbO8Du3tFv4E2Lola5z0lG\nqibIn54ydf0zdjk9Zc7423UmAGfLcx2MugDQ/xUYVUXTBvvN0CYDQZQkBE2bHDSTtlbfut3fDE1y\n0E1JUS/8ULEVBtga4neWXEE5Dv49kwjEAX8lWZpEomz7lFOJQbxdTiUKTBaGJ5dBPWvqs8O65Gxx\nfLPDsc1OXsdWCgVgxpbPHEHDCNjdg+7sANu70O0d6PYusLML3WmtY7/W/R+8tw/d24e+dfIV5XuF\nAN935TrEBvvmXQKT5mdy3K5PQCYnTJmQl8t/ts/EadyvICIoeTKUF3GFkSaJQTNsXQmIE4IkQQjb\nk4XOpMK3SUIW1xAaoaIRmvsQTrpnoRdFV1KJQCvgL3mtwD+dBJhtt73PYZ/xHBRydq/CIPi3AxER\nPbbEdYCJMcjE2LH9NAiAnT3ozq5NAnbNetwWb+/tA9Ghz+s5XKMBvf8Qev9hd/3HRiCTJsiXqQlg\nYtwE/xPjtn3cBP8TE+Z3Gh15bAKavHMdQcVxURnCfdvx04nSAX/6qkDbMtUeJwRJIhEqfFt6NOwr\nCWnmWOKXoPlD/W5HgJLnoOSawD8d9JdSy/Z1QdlzbZu0Pu85KB7yuaIrcM7B/2esqSciIhoSjRSo\n16A7eyb4390zgf+u3d5rtfWcAPTDdYDxccjEmAn8J8ZMIjA+lrRhfBQybtowMWb2lYrZHhfljqrC\nDzVJBvzwkGTgkOTAj9LL9s/6oQ78eNPzoui2gv9SKjlItxU9B2XXQTHVXrQJQvJ5z0Fx9TXW1BMR\nEZ0lcQSoViHVKjB7fJmoqgL1OrBrynVM0N9a6u5eUsqDvf3eSoBiYWQfG7rZWzlGqQQZHwXGbZA/\nNmqC/7FR0z422mq3bTI2aq4MsEToQhIRFD1B0QMGuQ+hU/qqQhLot61HaEbaWg8VQby/o91PEgbz\nnX54ei9Ji6827Bx8f3bP/ugH+/tcLv/PY019dvJaO5sXHN/scGyzw7HNhojgmw/ewPfffceRz/NP\n0ygyT/RJBfq6X2st9+P2GnTfJgHNPksZGg3oSgNYWeu9NrtagYyOmGB/bMQG+6OQ0aoJ+sdGzf7R\nkdSyChmx60N6b0Be3wGQF8Ma39Y7D4CRISYLsSgyVwOaYWQD/VYiECcFB/ZFUVu/wH6Hn0oc4u0g\nyrY0qRe5DOqJiIgeN+I4wEjVPF2ny89oEAD7NRv011rrtbit3rFdM4nDIGVB8Z/xaLW/mzWLRWC0\nChkdsYF+FTJSBUZGzDLZVzVXRUYqZkzisRmpAtVK/8dPF4rjCErOcG5mPkp8tSEO9oN0omC3/SiV\nIISaWkZtn/NDBbDf13Gwpp6IiIgSqmrO8Ndq0P26KRHar0FrdaBWh9Zs4F+rd7Q1gEaju0eEnoZy\nyVw1sEG+xAlAtWpefNa2r9JaViqmXyXeLgOVskmqiDIWRYrxrTdYU09ERESDERGgVARKRfMozR5o\npECzaQL9er0V/Dcatq0B1BtAvQ6txcu6SQbifcNKCuz36fqmObZBvy8O7isVoGqXlbIJ/MtlSKVk\nEoFK2SQU8XqlBCnbz9ol4jcql8vmnQtEQ5DLoJ419dlh7Wy2OL7Z4dhmh2ObnYs2tuKICWjLJQh6\nSwgAe5XA91sBeb2RBPzxetLWaKb2N03iUDftaDZxL9rDU87I8H65OEHBkJKEmOeZwL9kEgCUbRJQ\nLpmXk7WtlyClUmuMyyWgZH7MejHV1rE+5CsNvGfh/MllUE9EREQXj4iYmvpi0Tx5p8/v0Ujhfedl\nFK7dNsG/TQLa1ptNqG1DowltNtvbU9vwg6H+nm2CANgJzGNQ4+PP4s8pFkxwb4N8lErm0aWd68US\npFQwyUCxYPoXzbbY70CpiOjN7yJExXxnsQiUCkDRrhcL9r9jgWVLp4g19URERETH0CgyVxAavgn6\nm01z30GcBPh23fdNQpDu6/umb9NvfS5u8/3zcw9CVjzPBvkFG/DbYL9YAAqmHYVCKxkoFICiZ94I\nXbCJSKqf6Ruve+3bxQLEtiX7km374zrn+oVsrKknIiIiyog4TlLmAqDvKwidVBUIw7ZAX+N13wf8\nwCQCfpC0mf1Bsh++bxIHPzCfT30Wge0XDP7s9L4F9jj2a21XIM4slRFJAn4UPIgXJwCeSUAKNqGw\n60kfz7V9CuY+iPg7PBfwPPN+hvg77I8UPLvf9Gv1cW0f2+a22tR1gXJ/v9qpBvUi8jyAjwJwAHxC\nVf/4kD4fA/AeAHsAfllVFzv7sKY+OxetvvO84fhmh2ObHY5tdji22cnD2IpIKwiEeQxnFueQNVIb\nXMeJQGAedxoH/HECEQSpZMAs1befC8JWWxDg3uYynipNtD4XBKZP5/p5Ez/dyb7D4bDk4syvnXzm\n43197NSCehFxAHwcwHMAHgB4UUQ+parfTvV5D4C7qvqkiLwLwJ8DOHAXxquvvopbdxnUZ+F/7795\n7v8SzDOOb3Y4ttnh2GaHY5sdjm2LOJKUwCRtA37nW1/8HJ7+8eeP7WOuREQmuA9TSUG8HrYnAZru\nF4ZJYqDxehgnC2Zd4+8OwqS/xt+ZfCZsX89BudPi4iKee+65nj93mmfq3wngu6r6JgCIyD8C+ACA\nb6f6fADA3wKAqr4gIhMiMquqy+kv2tvbA2Vjv97Ha8ipaxzf7HBss8OxzQ7HNjsc22x1M77mSoRr\nftLtWR1UFzSKTKLRFuwHQBiZhCD5SSUjbfui9j6RTSai6Mj9GnbsS/XVjm2EIV566aW+frfTDOqv\nAfi/1PbbMIH+cX3u27ZlEBERERENQBwHcBxT29657wyOp1MUhMC9L/T12Vw+Z2hpaemsD+HCerS+\nctaHcKFxfLPDsc0OxzY7HNvscGyzxfE9f07zTP19ADdS2wu2rbPP9RP64O7du/jUN/4j2X766afx\nzDPPDO9IH2M/LT+DyWeunfVhXFgc3+xwbLPDsc0OxzY7HNtscXyHZ3Fxsa3kZmSkv5emndpz6kXE\nBfAdmBtlHwL4MoBfVNVvpfq8F8BvqOr7RORHAHxUVfm6MiIiIiKiY5zamXpVDUXkNwH8G1qPtPyW\niPyq2a1/oaqfEZH3isirMI+0/JXTOj4iIiIiorzK5RtliYiIiIio5VzfKCsiz4vIt0Xkf0Tk947o\n8zER+a6ILIoIC+u7dNLYishPiMimiHzN/vzBWRxnHonIJ0RkWUS+cUwfzts+nDS2nLf9E5EFEfm8\niLwiIi+LyG8f0Y9zt0fdjC3nbn9EpCQiL4jI1+3YfuSIfpy3PepmbDlvByMijh23Tx+xv6d5e6pv\nlO3FMF9WRe26GVvri6r6/lM/wPz7awB/BvvOhU6ctwM5dmwtztv+BAB+R1UXRWQUwFdF5N/4d+5Q\nnDi2Fuduj1S1ISLvVtV9e+/ef4nIZ1X1y3Efztv+dDO2Fudt/z4E4B6A8c4d/czb83ymPnlZlar6\nAOKXVaW1vawKwISIzJ7uYeZSN2MLnI9HtuaOqv4ngI1junDe9qmLsQU4b/uiqkuqumjXdwF8C+Y9\nIWmcu33ocmwBzt2+qOq+XS3BnKzsrCvmvO1TF2MLcN72RUQWALwXwF8e0aXneXueg/rDXlbV+Zfg\nUS+rouN1M7YA8KP2ks+/iMhTp3NojwXO22xx3g5IRG4BeAbACx27OHcHdMzYApy7fbElDF8HsATg\n31X1xY4unLd96mJsAc7bfv0JgN/F4YkS0Me8Pc9BPZ2trwK4oarPwJTqfPKMj4eoG5y3A7LlIf8M\n4EP2rDINyQljy7nbJ1WNVPUHYN5t8y4GlsPTxdhy3vZBRN4HYNlewRMM6WrHeQ7qh/ayKjrgxLFV\n1d34spuqfhZAQUSmT+8QLzTO24xw3g5GRDyYoPPvVPVTh3Th3O3TSWPLuTs4Vd0G8AUAz3fs4rwd\n0FFjy3nbt2cBvF9EXgfwDwDeLSKd94r1PG/Pc1D/IoAnROSmiBQB/AKAzruDPw3ggwAg5mVVm6q6\nfLqHmUsnjm26bktE3gnz+NP10z3MXDsu8+a8HcyRY8t5O7C/AnBPVf/0iP2cu/07dmw5d/sjIpdE\nZMKuVwD8FIDOG5A5b/vQzdhy3vZHVT+sqjdU9Q5MDPZ5Vf1gR7ee5+25ffoNX1aVnW7GFsDPiciv\nAfAB1AD8/Nkdcb6IyN8D+EkAMyLyFoCPACiC83ZgJ40tOG/7JiLPAvglAC/bGloF8GEAN8G5O5Bu\nxhacu/26CuBv7FPdHAD/ZOcpY4XBnTi24LwdqkHnLV8+RURERESUc+e5/IaIiIiIiLrAoJ6IiIiI\nKOcY1BMRERER5RyDeiIiIiKinGNQT0RERESUcwzqiYiIiIhyjkE9EREREVHOMagnIiIiIso5BvVE\nRERERDnHoJ6IiIiIKOcY1BMRERER5Zx31gdARETnk4j8MIA/BHAfQATgc6r6yTM9KCIiOpSo6lkf\nAxERnWMi8usA3qGqv3XWx0JERIfjmXoiIjqSiHwYwCwDeiKi84019UREdCgR+X0AVVX9kIg8JSIz\nZ31MRER0OAb1RER0gIj8GICXAfyriHwewM+q6toZHxYRER2BNfVERERERDnHM/VERERERDnHoJ6I\niIiIKOcY1BMRERER5RyDeiIiIiKinGNQT0RERESUcwzqiYiIiIhyjkE9EREREVHOMagnIiIiIso5\nBvVERERERDn3/yYiCPS0Jy4rAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53c6873cc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a = np.linspace(0, 4, 100)\n", "expo = stats.expon\n", "lambda_ = [0.5, 1]\n", "\n", "for l, c in zip(lambda_, colours):\n", " plt.plot(a, expo.pdf(a, scale=1./l), lw=3,\n", " color=c, label=\"$\\lambda = %.1f$\" % l)\n", " plt.fill_between(a, expo.pdf(a, scale=1./l), color=c, alpha=.33)\n", "\n", "plt.legend()\n", "plt.ylabel(\"PDF at $z$\")\n", "plt.xlabel(\"$z$\")\n", "plt.ylim(0,1.2)\n", "plt.title(\"Probability density function of an Exponential random variable;\\\n", " differing $\\lambda$\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### But what is $\\lambda \\;$?\n", "\n", "\n", "**This question is what motivates statistics**. In the real world, $\\lambda$ is hidden from us. We see only $Z$, and must go backwards to try and determine $\\lambda$. The problem is difficult because there is no one-to-one mapping from $Z$ to $\\lambda$. Many different methods have been created to solve the problem of estimating $\\lambda$, but since $\\lambda$ is never actually observed, no one can say for certain which method is best! \n", "\n", "Bayesian inference is concerned with *beliefs* about what $\\lambda$ might be. Rather than try to guess $\\lambda$ exactly, we can only talk about what $\\lambda$ is likely to be by assigning a probability distribution to $\\lambda$.\n", "\n", "This might seem odd at first. After all, $\\lambda$ is fixed; it is not (necessarily) random! How can we assign probabilities to values of a non-random variable? Ah, we have fallen for our old, frequentist way of thinking. Recall that under Bayesian philosophy, we *can* assign probabilities if we interpret them as beliefs. And it is entirely acceptable to have *beliefs* about the parameter $\\lambda$. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "##### Example: Inferring behaviour from text-message data\n", "\n", "Let's try to model a more interesting example, one that concerns the rate at which a user sends and receives text messages:\n", "\n", "> You are given a series of daily text-message counts from a user of your system. The data, plotted over time, appears in the chart below. You are curious to know if the user's text-messaging habits have changed over time, either gradually or suddenly. How can you model this? (This is in fact my own text-message data. Judge my popularity as you wish.)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAEBCAYAAAAuDIB6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8nGV9///Xm92EECg7QsISRcSQEEMsEgQ8CBQr0NZC\ncWGJtf6gVlpQWexXcKuARUmrRRHEgGgFrIKKgiwi0WDAeGJkNWFJIBsIJCFAgOTz++O+J5lM5sy5\nTzIz19xz3s/HYx5n7nvu5Trvuc+ca+753NcoIjAzMzMzs86yUeoGmJmZmZnZutxRNzMzMzPrQO6o\nm5mZmZl1IHfUzczMzMw6kDvqZmZmZmYdyB11MzMzM7MO5I66WYeSdJWkW/tZ5hRJr67Htg+RtErS\nLuvfQmsGSSPz5+LtbdhXU573Isddvq+V7T7GJJ0v6U/t3Odgluf9SOp2mHUrd9TN2ijvfK/KOzCv\nSHpa0t2SPiFpSM3iHwP+vp9NRn5rtM8/Sfp0H+t2nTzfd2zA+n3ltcH62PZcYCfgt63YZx3NeN77\nPe6AXwM7R8R8AEkH5c/NiCbsvz9deWyn1OD5+xLwl21qwz9L+p2kZZKeknRhO/ZrlpI76mbt9yuy\njtkI4FDgO8BHgRmStq8sFBHLImJJkhaWkKRNU7dhfURmcUSsTN2WZoqI1yJicdUs4Q50x2vwd1T3\n+YuIFyPi2da2arUe4HxgNHAG8DFJH2nTvs2ScEfdrP1eiYinI2JhRNwfEd8ADgS2B1afIaotfVHm\nc5IWSVoq6XvANo12JOlOYC/g/Koz+dVnxN4s6S5JyyXdL+momvV3kPRtSYvzfd4t6eB+9rlOyY6k\nD0haVTX9ekk35J8ovCRptqSzqh7fRNIFkh7NH58l6Z9qtrlK0r9IulbS88DVfbTnPElzJL2c/x4/\nk7T5QPOSNCpv83OSnpV0i6S3VK37NUmPSdqqat63JD0oaUhf264tfama/ntJP86fmzmSTq5p6+6S\nbs3zeUzSRyTdKenyRs9Prr/n/fOSHsgfnyvpsurfq2q5Hkl/zNtwj6QxVY+tLrORNJLsDSrA4/n8\nO/Ll9pX08zzXF/L2vL9R4yW9NX8el+RnV++RdEDNMsfk2b+Q5zKq6rGtJV0j6QlJL0p6SNKZNetf\nJekXkj4s6fF8Xzeq6s10vty/SpqX7+cnkt6nmvKivL235G1dLOkH6ueTBUlbSvpGvvzLku6V9K6q\nx6dK+nqd9R6U9Nmq6X+Q9Puq4+QSVX16l2dzhaTPSpoPPFFnm42evwtUVWqkvPQoP34fyY+hH0oa\nJulv86yXSrpe0rCa/TRsa0T8bUT8JCIej4gbgNnAGxrlaFZ6EeGbb7616QZcBdzax2P/BTzX17Jk\nZ5CWAR8ARgEfB54j6/j3tb9tgEeBi4Ed8puAQ4BVwO+Bd5F1IL8FPA8Mz9fdArgfuA7YH9gTOBd4\nCdh7IL8j8H5gZdX0TcCtZGfGRuTtOaHq8W8DvWRn0EaSlQA9C5xatcwq4GngdGAPYK98/krgHfn9\nvwWWAEcDuwL7kZUUbT7AvHYAFgBfBd5M1jmYnO9/23zdzfM2fz+ffl+e1X79bHtk3ua358uNzH+3\n2cDf5bl/AXgVGFXV1l5gGvDW/Pf6af78Xd7guen3ec+XOw94e/7cHAY8AFxV9fjJeZvvAyYCbwF+\nDMyrZJvvayWwC9lJoffk0+Py333rfLmZZJ8q7Q3sDhwJHN3gd9gXeCFfp3Jcvhd4W/74+fnjNwNj\nyY6x+4C7qraxI/BJYEye9/uApcDJNcfx88C1+XP+tvz5m1K1zN/mz8tH8yxPAp6q/N75Mm8m+7v9\ndH7c7At8H3gI2KzB73l9vr/D82wuBVYAb8wf/zDwZ2DTqnUm5Puu/C2cki/zvvz3nJgfN9W/w51k\nfyP/A7wJ2LdOW9Tg+TsfeKRq2Ur+P85/14OBxcAtwE/yY+XtwELgi1Xr9dvWmjadnrf7Talez33z\nrR235A3wzbfBdKNxR/0j+T/C7eotS9YJ+mzNOtfToKOeL/Mn4NM18yodtmOr5u2Qz3tXPn0KWf30\nRjXr3g58eSC/I+t21Htr21T12O55Dm+smf//gN9XTa+iQac0X+Zf8w7RxgN4jurldT7wm5p5IutM\nf6xq3pvIOmX/kXciPlpg25WOeW1H/YyqZTYi60h+OJ9+V57RHlXLbAMsb5RJkee9j/WOA16qmq50\n1A+tmrd1/rufWrWv6g7rQfn0iJptPw+cNIDn55rq46DO4+cDrwB/UTXveOA1GneMLwVuqTmOFwKb\nVM37JPBU1fRUajqSwBdrfu+rgO/WLLN5/lwd00db9sqfkyNr5v8OuCK/Pxx4Efi7qse/Cvy6avox\n4J9qtnFwvu3KG/I7gYcK5N7X81evo/4KsE1Nu16teU4uBaYPpK1V8z9N1vk/oOhx45tvZb1tgpl1\nCuU/Y50Hso+IX092BrXaVODY9dxfkJ3NzCYiFktaSXa2EWA8sDOwRFL1epuRdRA2xKXANyQdDfwS\n+GlE3F21XwH3ae0db0L2z77avf3s5zqyM+hzlZXj3A78KCJeGGB7DwDGS1pWM38Lqj56j4iHJH2C\n7OzkzRHx1QHup1r1c7NK0mLWPDf7AM9ExGNVyzwn6eEC2+3veUfS35J9gjMK2IrsjcJmknaKiIVV\n27qnajvPS3qQ7CzqQPwncKWkU8mOhZsi4vcNlh8H/Kyfbc6Pteum57Pmk5En8+PqbOAEsk9atgA2\nBR6v2c5DEfFazXZ2rJp+M9kZ92q1f6MHAHvVOXY2p++yjTeTPU9318z/FfmFmxGxRNJNwAeBH0ja\nJP99PgUgaTuyN31flnRJ1TYqteajyDr+VP1slqci4rmq6YXAwprnZCHZ8zGgtuZlOOcDfxUR/f39\nm5WeO+pmneMtwJKI+HMb9/lKnXkbVf18gOxsqmqWadRRX1Vn+bUuUIuIb0v6GXAUWWnFzyT9X0Sc\nlO83yOr2X6rZTu2bmOUN2kFEzJe0d76PdwL/DlwkaUJEPNVo3RobAbcB/8y6v1vtBb+Hkp293U3S\nZhFRL+MiatcL1r6uaJ03dBuwbSrblvQ2sjc4X2BNedWBZOVIm23APuuKiM9L+g7ZsfBO4DxJF0XE\nhoy8Uy87WJPfx8k66v9K9unOMuBMshKp/rZT+/z39zxsRPYpwBfrrLuhf+tXA/8naVuys89Dycpq\nKvuF7I3qL+us+2TV/YZ/R+uh9g119DGv+rUGirX19fnPhzagfWal4YtJzTqApNeT1Wb+oN7jEbGM\nrPa1dqztiQU2/wqw8Xo06z6y+t9lEfFozW1hg/UWk9UlV3tr7UIRsSgipkTEKcCHgPdL2pI1Z/dG\n1tnvY7Xb6U9EvBoRt0bEOWS13EPI3nz0pV5e95GdKX6qTptWd7YkfQj4a+AdZGeiLy2w7fXxALC9\npD2q9r0N8MYmbPsg4OmIOD8i7o2I2cBufSy7elg+SVuTnem/v49lK53edX7/yC4O/HpEHE9W1nBa\ng/b9juzahQ1xMPDz/PibGRGPsn7ZPUD2JqZa7fR9ZNcpPFbn2OlrVKdKhrXDjL4D+GPV9C1k126c\nSHZm/SeVbUY24s48shru2v0+uh5vIPt8/jbUANs6k+xTivnNbodZJ3JH3az9NpO0o6SdJb1F0mnA\nb8g+Cj6vwXqXAGcoG0FllLJRUop0WB4DDpK0m6Rtq8pJas/u1bo2X/enkt6lbDSSCZLOkXRMg/Vu\nA94k6XRJe0r6R2rGg5f035L+Kn98X7KLJudGxAsRMYesrveb+e+6l6T9JJ0q6ZMFft/q/UyS9I/5\n+iPILsTdkqyD1Ze18srnfZWsg3KTpIl5FhOVjY7yl/m+Khf8nRER95B1nj4k6bh+tj1gEXEb8Afg\nO5LGKxtt5Wqys5b9neHt73l/mOxNwCRJe0g6ib47zhdLOljS6Hz/S4Hv9bGvJ8g+bTla0vaStpI0\nVNJXJR2mbBSb/cnOrPfV2YfsYtw3SPqustFU9pT03vyTgEaq2/IwcKikQyW9QdLnyC7EHKhLgH+Q\n9NH8OD2JrMMMa56H/wD2kfQdSQfkv+dhki6VtHu9jeZvHG4A/kfSEZL2ljSZ7M3ixVXLrSTL+zSy\nTwOm1GzqU2RDGJ6nbHSdN0o6TnVGiylgnedvPbbRSNG2VsqNtl93E2bdxx11s/Y7mOxs0BNkF3Kd\nSDbiy1sj4ukG603Ol/sy2agdbwM+U2B/55Nd6Pcw2dnuytnReh261fMiYgXZBYH3kY0M8jDZGf8D\nqDOEW9V6t5OVmJxLVlZwWJ12CvgKMIvso+7XsXbZwYfzx88j67TdRjaixpx6bW3gOeBUspwfICt1\n+HBE3NlgnbXykjQiP+N3INkoLz8g+9j9GrJRURZI2oysw3RzRFyZ53APcAHZG47X97XtPn6Xhs9N\n7jiy0TV+RTaKzs3AI8DLDX63frcdET8lK3v5AtmbgePJSkVqrSR7fr4BTCfrOB0dEdX7r97uYrJj\n4hyy4/9HZG8stgGuIHt+fkb2hrXP4Rkj4o9k5UXbkR07vycrW+lvHPrq3/tzwF15G35D9pxM7mf9\nem35IdkFpmeTZXUia471l/NlHiL7JGwo8HOy4/kbZHXxzzfY/IfIzphfQ/Z3dCDw7oio/dbVKWQX\nMT9PTe1+RHyH7Pl7N9kXak0n+8SiupSkUAlVH89f0xRsK2SfiL2RmnI6s26liA0pcxzgzqR/I3vx\nWUX2D/pU1tTUjSS7kOf4Bh8HmplZHXnZ0JPApyLia6nbM1gp++bZj0bEDqnbYmbl17Yz6sq+/OFf\ngHERsR/Zhawnkr07vy0i9gbuIHvHbmZmDUh6T14+tHvVBaCr8p/WBsq+mOtsSaOryrw+DnwzddvM\nrDu0u/RlY2CosmGkXkd2cdyxrKmrm0Lji7zMzCwzhGxowz+Slb4ATOynfMqaK8jKcG4jex7+Dfg8\n2Zj/ZmYbrN2lLx8jq3t8kewLUT4o6bmI2KZqmWcj4i/a1igzMzMzsw7UztKXrcnOno8kG7ptqKT3\nU+wiKjMzMzOzQaWdX3h0OPBo5ZvJJP2Q7Er4RZJ2jIhFknYiG5ViHcccc0y8/PLL7LTTTgAMHTqU\nUaNGMXbsWAB6e3sBPN3k6cq8TmnPYJm+4YYbfHwnmq499lO3Z7BMz549m/e+970d057BMu3j3cf7\nYJvuhP+vs2fPZvny7HvGFi5cyJFHHslZZ51Vd+jctpW+SJoAXEk2tNsKsnGS7yUb3uzZiLhI0tnA\nNvkXk6zlpJNOismTBzx6lm2gCy+8kHPOWefpsBZz7uk4+zScexrOPQ3nnk4nZj9jxgx6enrqdtTb\ndkY9IqZLuoFszNtX85+XA8OA6yRNIhub+fh66y9c2OiLEK1V5s6dm7oJg5JzT8fZp+Hc03DuaTj3\ndMqWfTtLX4iIz7DuF588S1YWY2ZmZmZmuY0vuOCC1G0oZPHixRfsv//+qZsx6AwfPpwRI0b0v6A1\nlXNPx9mn4dzTcO5pOPd0OjH7BQsWsOeee9b9pvG2Ds+4IW6//fYYN25c6maYmZmZmTVNoxr1dn/h\n0XqrvjLd2mfq1KmpmzAoOfd0nH0azj0N556Gc0+nbNmXpqNuZmZmZjaYuPTFzMzMzCyRrih9MTMz\nMzMbTErTUXeNehplq+XqFs49HWefhnNPw7mn4dzTKVv2pemom5mZmZkNJq5RNzMzMzNLxDXqZmZm\nZmYl02dHXdJGRW7taqhr1NMoWy1Xt3Du6Tj7NJx7Gs49DeeeTtmy36TBY68BRepiNm5SW8zMzMzM\nLNdnjbqkkVWT7wbeC3wReAIYCZwN/CAiLmt1I8E16mZmZmbWfRrVqPd5Rj0inqjcl3QmMD4ins9n\nPSLpPuA+oC0ddTMzMzOzwaRojflwYEjNvCH5/LZwjXoaZavl6hbOPR1nn4ZzT8O5p+Hc0ylb9o1q\n1KtNAW6TdCkwD9gN+Fg+38y6wIKlK1j8wit1H9thy83YeavN29wiMzOzwa3QOOr56C7/BPw9sAuw\nALgO+GZErCy0I+mNwPfJLlAVsCfw/4Br8vkjgceB4yNiSe36rlE3a62Z85fxiZtn133sS0ePYswu\nw9rcIjMzs+63XjXq1SJiFfD1/LZeIuIRYH9Y3fF/EvghcA5wW0RcLOls4Nx8npmZmZnZoFWoRl2Z\nD0u6XdIf8nnvkHT8eu73cGBORMwDjmVNCc0U4Lh6K7hGPY2y1XJ1C+eejrNPw7mn4dzTcO7plC37\noheTfhb4EPBNYEQ+70myIRrXxwnAd/P7O0bEIoCIWAjssJ7bNDMzMzPrGkUvJj0F2D8inpFUGY7x\nMbI68wGRtClwDGs6+bVF8nWL5mfPns3pp5/OiBHZ+4Thw4czevRoJk6cCKx5h+RpT3fDdGVeO/c/\n55kXge0BWDon+wRrq73GAtA7fRrLthvSMfm0cnrixIkd1Z7BNF3RKe0pOn3jLXfy/EuvMnbCgUD2\n9wKsnn581n1sO3TTjmmvj/fOmK7olPYMlunKvJTtmTVrFkuWZJdjzp07l/Hjx9PT00M9RS8mnQ/s\nGREvS3o2Iv5C0jDggYjYrd8NrL2tY4DTI+KofPpB4NCIWCRpJ+DOiNindj1fTGrWWr6Y1Gz9NPrb\nAf/9mFljjS4mLVr6cjPwZUmbQ1azDnwO+PF6tOdE4HtV0zeRnbEHOBm4sd5KrlFPo/adv7WHc0/H\n2afh3NNw7mk493TKln3RjvqZwM7AErIvOXqBbDjFAdWoSxpCdiHp/1XNvgh4l6SHgR7gwoFs08zM\nzMysG21SZKGIWAr8jaQdyS4mnZdf+DkgEbGmCHbNvGfJOu8NjR07dqC7syaorumy9nHu6Tj7NJx7\nGs49DeeeTtmyLzo846WSDoiIRRFx7/p00s3MzMzMrLiipS8CbpT0J0mfkbR3KxtVj2vU0yhbLVe3\ncO7pOPs0nHsazj0N555O2bIv1FGPiDOAXYHTgd2AeyT9TtKZrWycmZmZmdlgVfSMOhGxKiJ+ERGT\ngLcAfwa+1LKW1XCNehplq+XqFs49HWefhnNPw7mn4dzTKVv2hTvqkoZK+oCknwKPAK+RDadoZmZm\nZmZNVvRi0uuBRcA/AT8BRkbE0RHxnVY2rppr1NMoWy1Xt3Du6Tj7NJx7Gs49DeeeTtmyLzQ8I3Av\ncFZEzG1lY8zMzMzMLFN0HPWLW92Q/rhGPY2y1XJ1C+eejrNPw7mn4dzTcO7plC37Pjvqkh6MiH3y\n+/OAqLdcRIxoUdvMzMzMzAatRjXqH666/wHgg33c2sI16mmUrZarWzj3dJx9Gs49DeeehnNPp2zZ\n93lGPSKmVt2/qz3NMTMzMzMzKD7qy+aSviDpUUlL8nlHSPpoa5u3hmvU0yhbLVe3cO7pOPs0nHsa\nzj0N555O2bIvOo76V8i+5Oj9rKlVvx84rRWNMjMzMzMb7Ip21P8GeF9ETANWAUTEU8DrW9WwWq5R\nT6NstVzdwrmn4+zTcO5pOPc0nHs6Zcu+aEf9FWrq2SVtD/y56S0yMzMzM7PCHfXrgSmS9gCQtDPw\nVeB/B7IzScMlXS/pQUn3S3qbpG0k3SrpYUm3SBpeb13XqKdRtlqubuHc03H2aTj3NJx7Gs49nbJl\nX7Sjfh7wGDAL2Br4EzAf+OwA9zcZuDkfn30M8BBwDnBbROwN3AGcO8BtmpmZmZl1nUId9Yh4JSL+\nLSK2BHYEhuXTK4ruSNJWwMERcVW+zdciYglwLDAlX2wKcFy99V2jnkbZarm6hXNPx9mn4dzTcO5p\nOPd0ypZ90eEZT5K0H0BEPB0RIWmMpIF84dEewDOSrpI0Q9LlkoYAO0bEonzbC4EdBvpLmJmZmZl1\nmz6/8KjG54DaIvF5wE3ANQPY1zjgnyPiPklfISt7iZrlaqcBmD17NqeffjojRowAYPjw4YwePXp1\nrVHlHZKnPd0N05V57dz/nGdeBLYHYOmc7BOsrfbK/ux7p09j2XZDOiafVk5PnDixo9ozmKYrOqU9\nRad7p09j6ZynVv+9lOnvx8e7j/fBNl2Zl7I9s2bNYsmSJQDMnTuX8ePH09PTQz2KqNsvXnsh6Tlg\nu4hYWTVvY+DZiKh78WedbewITIuIPfPpiWQd9b2AQyNikaSdgDvzGva13H777TFu3LgiuzKz9TBz\n/jI+cfPsuo996ehRjNllWJtbZFYOjf52wH8/ZtbYjBkz6OnpUb3Hil5M+gDwdzXz/gZ4sGgj8vKW\neZLemM/qIfvSpJuAU/J5JwM31lvfNepp1L7zt/Zw7uk4+zScexrOPQ3nnk7Zst+k4HJnAzdLOgGY\nA4wi62gfPcD9fQy4VtKmwKPAqcDGwHWSJgFPAMcPcJtmZmZmZl2nUEc9IqZKGg2cCOwGTAfOiIh5\nA9lZRMwEDqjz0OH9retx1NOorumy9nHu6Tj7NJx7Gs49DeeeTtmyL3pGnYh4QtLFZKO0LGhhm8zM\nzMzMBr2iwzNuLem7wMvA7HzeMZI+38rGVXONehplq+XqFs49HWefhnNPw7mn4dzTKVv2RS8m/Tqw\nBBgJvJLPmwac0IpGmZmZmZkNdkVLX3qAXSLiVUkB2RcfSWrblxO5Rj2NdtdyLVi6gsUvvNLn4zts\nuRk7b7V5G1uURtlq6LqJs0/Duafh3NNw7umULfuiHfUlwHbA6tp0SSOqp82aYfELr/Q7HvFg6Kib\nmZmZFS19uQL4gaTDgI0kHQhMISuJaQvXqKdRtlqubuHc03H2aTj3NJx7Gs49nbJlX/SM+kXAS8DX\ngE2BbwHfACa3qF1mZmZmZoNavx11SRuTfWPo1yMiWcfcNepplK2Wq1s493ScfRrOPQ3nnoZzT6ds\n2fdb+hIRK4EvR8SKNrTHzMzMzMwoXqP+Y0nvaWlL+uEa9TTKVsvVLZx7Os4+DeeehnNPw7mnU7bs\ni9aobwHcIGkaMA+IygMRcVIrGmZmZmZmNpgV7aj/Mb8l4xr1NMpWy9UtnHs6zj4N556Gc0/DuadT\ntuwLddQj4jOtboiZmZn1z18MZzZ4FK1RT8416mmUrZarWzj3dJx9Gs69uMoXw/V1a9SJr+Xc03Du\n6ZQt+9J01M3MzMzMBpOiNepNIelxYAmwCng1IiZI2gb4PjASeBw4PiKW1K7rGvU0ylbL1S2cezrO\nPg3nnoZzT8O5p1O27Nt9Rn0VcGhE7B8RE/J55wC3RcTewB3AuW1uk5mZmZlZxynUUZd0oqR98vt7\nS/qVpDslvWmA+1OdfR4LTMnvTwGOq7eia9TTKFstV7dw7uk4+zScexrOPQ3nnk7Zsi96Rv3zwLP5\n/f8EpgN3Af8zwP0F8AtJ90r6x3zejhGxCCAiFgI7DHCbZmZmZmZdp2iN+vYRsUjSFsBE4L3Aq8Az\nA9zfQRGxQNL2wK2SHqbqy5NytdOAa9RTKVstV7dw7uk4+zScexrOPQ3nnk7Zsi/aUX9a0ihgNHBv\nRKyQNISslKWwiFiQ/3xa0o+ACcAiSTvmbwR2AhbXW/eGG27giiuuYMSIEQAMHz6c0aNHrw688lGG\np8s9PWzPMQAsnZOVOm2119i1pmFUR7W3m6bnPPMisD2wbv6906exbLshHdVeT3u6U6Z7p09j6Zyn\n1nm9atXfT7v352lPe7q507NmzWLJkmzclLlz5zJ+/Hh6enqoRxF1T2CvvZB0CjAZWAmcEBG/kHQM\ncGZEHNrvBrJtDAE2iogXJA0FbgU+A/QAz0bERZLOBraJiHNq17/kkkti0qRJRXZlTTR16tTVB1c7\nzJy/jE/cPLvPx7909CjG7DKsbe1Jpd25Q+PsB0vukCZ7K3fu7X7daub+ypx7mTn3dDox+xkzZtDT\n01P35PcmRTYQEd+WdF1+/8V89j3APwygHTsCP5QU+X6vjYhbJd0HXCdpEvAEcPwAtmlmZlYKjb5R\n1N8mamb1FOqoS9oIeLnqPsAzEbGq6I4i4jFgnULziHgWOLy/9V2jnkanvescLJx7Os4+jcGQe+Ub\nRev50tGjknTUB0Punci5p1O27IuO+vIa2cWja90krZD0mKRLJG3ZqkaamZmZmQ02RTvq/0L2ZURH\nAPsARwK3A58ETgPeDlzaigZWeBz1NCoXQVh7Ofd0nH0azj0N556Gc0+nbNkXKn0BzgTGRcSSfPqR\nvLb8dxGxl6RZwO9a0kIzMzMzs0Go6Bn1rYAhNfOGAMPz+wuB1zWrUfW4Rj2NstVydQvnno6zT8O5\np+Hc03Du6ZQt+6Jn1K8m+0bRycA8YFfgDGBK/vgRwMPNb56ZmZmZ2eBU9Iz6J4Cvkg3H+BXgfcDX\nyGrUAe4EDml666q4Rj2NstVydQvnno6zT8O5p+Hc03Du6ZQt+6LjqK8Cvp7f6j3+cjMbZWZmZmY2\n2BU6oy7pREn75PffKOkuSXdKelNrm7eGa9TTKFstV7dw7uk4+zScexrOPQ3nnk7Zsi9a+vJ54Nn8\n/iXAvcBdwP+0olFmZmZmZoNd0Y769hGxSNIWwETgU8BnqfNNo63iGvU0ylbL1S2cezrOPg3nnoZz\nT8O5p1O27IuO+vK0pFHAaODeiFghaQig1jXNzMzMzGzwKtpR/xzZFxqtBE7I5x0OzGxFo+pxjXoa\nZavl6hbOPR1nn4ZzT8O5p+Hc0ylb9kVHffm2pOvy+y/ms+8hG67RzMzMzMyarGiNeqWDvomkXSTt\nQtbJL7z+hnKNehplq+XqFs49HWefhnNPw7mn4dzTKVv2hc6oSzocuBzYveahADZucpvMzMzMzAa9\nomfErwT+A9gK2LTqtlmL2rUO16inUbZarm7h3NNx9mk49zScexrOPZ2yZV+0o74FcFVEvBARK6tv\nA92hpI0kzZB0Uz69jaRbJT0s6RZJwwe6TTMzMzOzblO0o/4V4JOSmjEc4xnAA1XT5wC3RcTewB3A\nufVWco16GmWr5eoWzj0dZ5+Gc0/Duafh3NMpW/ZFO+o/AD4MLJH0aPVtIDuTtCtwNHBF1exjgSn5\n/SnAcQPZppmZmZlZNyo6jvoNwN3A9cBLG7C/rwCfAKrLW3aMiEUAEbFQ0g71VnSNehplq+XqFs49\nHWefhnPtpaAVAAAfFElEQVRPw7mn4dzTKVv2RTvqewD7R8Sq9d2RpHcDiyKiV9KhDRaNejNvuOEG\nrrjiCkaMGAHA8OHDGT169OrAKx9leLrc08P2HAPA0jlZqdNWe41daxpGdVR7u2l6zjMvAtsD6+bf\nO30ay7Yb0lHt9bSnO2W6d/o0ls55ap3Xq9q/n0avb73Tn2bMcUc0dX+dko+nPe3ptadnzZrFkiVL\nAJg7dy7jx4+np6eHehRRt1+89kLSNcCUiLit34X73sZ/AB8AXgNeBwwDfgiMBw6NiEWSdgLujIh9\nate/5JJLYtKkSeu7e1tPU6dOXX1wtcPM+cv4xM2z+3z8S0ePYswuw9rWnlTanTs0zn6w5A5psrdy\n5170datZf2PNfJ0sc+5l5tzT6cTsZ8yYQU9PT93rQDcpuI3NgZsk3Q0sqn4gIk4qsoGIOA84D0DS\nIcBZEfFBSRcDpwAXAScDNxZsk5mZmZlZ1yraUb8/v7XChcB1kiYBTwDH11vINeppdNq7zsHCuafj\n7NNw7mk49zSc+8AsWLqCxS+8UvexHbbcjJ232rzwtsqWfaGOekR8ppk7jYi7gLvy+88Chzdz+2Zm\nZmbWHRa/8ErDsrGBdNTLpujwjKtJ+mkrGtIfj6OeRuUiCGsv556Os0/Duafh3NNw7umULfsBd9SB\ng5veCjMzMzMzW0vRGvVqzfh20gFzjXoaZavl6hbOPR1nn4ZzT8O5p+Hcm69RHTusqWUvW/br01H/\nSNNbYWZmZma2nhrVsUN5a9kLlb5IWj1kYkR8t2r+/7WiUfW4Rj2NstVydQvnno6zT8O5p+Hc03Du\n6ZQt+6I16of1Mf/QJrXDzMzMzMyqNCx9kfTZ/O5mVfcr9iQb97wtXKOeRtlqubqFc0/H2afh3NNw\n7mk493TKln1/Neq75T83qroPEMA84IIWtKnrFL3AwczMzNrP/6etUzXsqEfEqQCSfhMR32xPk+rr\n7e1l3LhxKZuw3sp8gcPUqVNL9+6zGzj3dJx9Gs49Deeeaff/aeeeTtmyL1qj/lLtDGXObXJ7zMzM\nzMyM4h318yV9X9I2AJL2BKYCR7esZTVco55Gmd51dhPnno6zT8O5p+Hc03Du6ZQt+6Id9bHAUuAP\nkj4H3Av8BDikVQ0zMzMzMxvMCnXUI2I5cB7wHPAp4CbgwohY1cK2rcXjqKdRtvFGu4VzT8fZp+Hc\n03DuaTj3dMqWfdEvPHo3MBO4E9gP2Bu4W9IeLWybmZmZmdmg1d/wjBVfB06OiF8ASJpIdmb9PmDb\nFrVtLa5RT6NstVzdwrmn4+zTcO5pOPc0nHs6Zcu+aEd9v4h4rjKRl7x8TtJPi+5I0ubAr4DN8v3e\nEBGfyS9Q/T4wEngcOD4ilhTdrpm1j8caNjMza5+iNerPSdpW0gclfRJA0i7A4qI7iogVwGERsT/Z\nxal/JWkCcA5wW0TsDdwB1B3y0TXqaZStlqtbdGrulbGG+7o16sSXRadm3+2cexrOPQ3nnk7Zsi90\nRl3SIcAPyEpdDgIuBt4AfBx4T9GdRcSL+d3N830HcCxrRo+ZAvySrPNuZmZmHaDRp2n+JK0c/ByW\nU9HSl0uBEyLidkmVEpjfAhMGsjNJGwG/A/YCvhYR90raMSIWAUTEQkk71FvXNepplK2Wq1s493Sc\nfRrOPY2iuTf65s5O/nbtTpXiePdzmCnba03RcdR3j4jb8/uR/3yF4h39bMWIVXnpy67ABEn7Vm1v\n9WID2aaZmZmZWTcq2tF+QNKREXFL1bzDgVnrs9OIWCrpl8BRwKLKWXVJO9FH3fvkyZMZOnQoI0aM\nAGD48OGMHj169TujSs1Rp04vnZPV2G+119i606nb19d0ZV679jdszzEN84JRHZVPq6Yvu+yyth/f\nc555EdgeWDf/3unTWLbdkEHx/NQe+6nbM1imZ82axWmnndYx7RnIdO/0aSyd81Sfr+9F/n56pz/N\nmOOOaOr+mnm8F3l96JTno9mvfwN9fjr1eC9y/C1YuoJb77gLgLETDgSy57cyvcOWmzHnD/e2pb2t\n+v+U4v9r7fSsWbNYsiQbN2Xu3LmMHz+enp4e6lFE/yewJf0l2TeR/hQ4HriarDb92Ii4t98NZNvY\nDng1IpZIeh1wC3AhWX36sxFxkaSzgW0iYp0a9UsuuSQmTZpUZFcdZ+b8ZX1+3ATZR05jdhnWxhYV\nN3Xq1NUHVzuUOatmanfu0Dj7Su6D4flJkb2VO/eifxdF/saaub8iiuberLZ3qna/tvk1fmCa2fZO\nfK2ZMWMGPT09qvfYJkU2EBH3SNoP+ADwLWAeMCEinhxAO3YGpuR16hsB34+ImyXdA1wnaRLwBNkb\ngXW4Rj2NTjuYW6ETL7AZDLl3KmefhnNPw7mn4dzTKVv2hTrqkj4eEf9JNtpL9fwzI+LLRbYREbOA\ncXXmP0tWRmOWhC+wMTMzs05U9GLST/cx/9+b1ZD+eBz1NKrrF619nHs6zj4N556Gc0/DuadTtuwb\nnlGX9M787saSDgOq62f2BJa1qmFmZmZmZoNZf6UvV+Y/tyCrTa8IYCHwL61oVD2uUU+jbLVc3cK5\np+Ps03DuaTj3NJx7OmXLvmFHPSL2AJB0dUSc1J4mmZml04kXF5uZlU2j11Lw62lRRUd9Sd5J7+3t\nZdy4da5FtRbrxGGMBgPnns6td9zFtc9sX/cxX1zcOj7m03DuaQyG3BsN1ADpXk/Lln3Ri0nNzMzM\nzKyNStNRd416GmV619lNnHs6lW/js/byMZ+Gc0/DuadTtuz77KhLOqbq/qbtaY6ZmZmZmUHjM+rf\nqbr/51Y3pD8eRz2Nso032i2cezq906elbsKg5GM+DeeehnNPp2zZN7qYdKGkjwIPAJvUGUcdgIi4\no1WNMzMzMzMbrBp11E8BPgucAWzG2uOoVwTZFx+1XJEa9WYOBeRhhTJlq+XqFs49nbETDuTaBiMV\nWGv4mE/Duafh3NMpW/Z9dtQj4jfA4QCSZkfEqLa1aj01cyigTh1WyMzMzMwGh0KjvlQ66ZJGSDpQ\n0m6tbda6XKOeRtlqubqFc0/HNepp+JhPw7mn4dzTKVv2hb7wSNJOwPeBA8kuLN1W0j3AP0TE/Ba2\nz8ysKVzOZmbtUOS1xqyoQh114OvATODoiFguaSjwH/n8Yxqu2SQeRz2NstVydQvn3nxFy9lco56G\nj/k0nHvzFXmtce7plC37oh31icDOEfEqQN5Z/yTwVMtaZh2h6FnIRsv5TOXA+eyvmW0ovy6bpbeh\nn7AU7ag/B7yZ7Kx6xd7A8wXXR9KuwNXAjsAq4JsR8V+StiErqxkJPA4cHxFLatfv7e1l3LhxRXdn\nTXLrHXdx7TPb9/l45SxkozMIvvB24Irmbs2X1aj3nb21xtSpU0t3pqvTFXlddu5pOPd02p19kU9Y\nGil0MSlwMXCbpAslnSbpQuAX+fyiXgPOjIh9yWrd/1nSm4BzgNsiYm/gDuDcAWzTzMzMzKwrFR31\n5ZvACcB2wHvyn++LiMuL7igiFkZEb37/BeBBYFfgWGBKvtgU4Lh667tGPY2xEw5M3YRBybmn4+zT\n8NnFNPba7wBmzl/W523B0hWpm9iVfLynU7bsi5a+VL6BtCnfQippd2AscA+wY0QsyvexUNIOzdiH\nmZmZNebvDDHrbIU76s0iaUvgBuCMiHhBUtQsUjsNwOTJkxk6dCgjRowAYPjw4YwePXr1O6OpU6cy\n55kXqdSWLp2Tjbu+1V5jV0/3Tn+aMccdsXp5YK31q6d7p09j6Zyn1lq/enu906exbLshfa5fO12v\nPdXT/a2farqSaV/th1GF8iq6v2F7jmmYV2V/zf59272//qZvuPoKli7ZumnHX5HpRn8/lf2len5a\n/ftVvz5UjuVGv9+Nt9zJ8y+9uvrse2Xs9cr047PuY9uhm3bU79/p07NmzeK0007rmPYMZLro/4tG\nfz+t+P9UZH+Njvfq1+8irw/tzn+v/Q5g8QuvrPP3V5k+4p2HrK7D72977e4//GbBnLYf70WPv2b1\nV5r5/6KZ/58uu+yydfqPzch3IMfDi/Nns/Kl5QBcOHU573rHgfT09FCPIur2i1tC0ibAT4CfRcTk\nfN6DwKERsSgfr/3OiNindt1LLrkkJk2a1HD7M+cv6/fMwJhdhhVqa6duq92m/OjWfi9qHLPLsIa/\nY6dn1ay2N1PR3JupSA5lPpaLtr1R9t2QQ6cq88V1RY+Hdr9OFtlfu1/jm6lT/08X2dayR2e2/Xhv\n92t8u7Y10La3+7WmSLtWLvwTPT09qvd4u8+ofwt4oNJJz90EnAJcBJwM3FhvRdeop1HmMaVTDHHY\nrOHQypx7Cs0chs7Zp9GpnfRuH+Kwmce7h5UtrlOP98GgbNkX/WbSj0fEf9aZf2ZEfLngNg4C3g/M\nkvR7shKX88g66NdJmgQ8ARxftPFmjaSovfQwlWk4d2sVH1vFud7drPmKDs/46T7m/3vRHUXEryNi\n44gYGxH7R8S4iPh5RDwbEYdHxN4RcURE1B2bvbe3t95sa7FKrZ+1l3NPx9mnUanrtPby8Z6Gj/d0\nypZ9wzPqkt6Z391Y0mFAdf3MnsCyVjXMzJrDH0ebWdl0e8mRWVH9lb5cmf/cgqy+vCKAhcC/tKJR\n9bhGPQ3X66bRzNz9cfTA+JhPo2x1o92iU4/3bi858vGeTtmyb9hRj4g9ACRdHREntadJZmaDhz/x\nMCuPZp3p99+9FVXoYtLqTrqkjWoeW9XsRtXT29vLuHHj2rErq5LVL/Y9dJe1hnNPp93Z+xOPTJmH\nZywzv9YMTLPO9N96x139Dos5GP7uUyjba02hi0kljZM0TdJy4NX89lr+08zMzMzMmqzoqC9TgDuB\n8WQXke4J7JH/bAvXqKdR+aY3ay/nno6zL27B0hXMnL+sz9uCpSsKb6tMZ7i6iY/3NJx7OmV7rSn6\nhUcjgU9FO7/G1MzMOprLdszMWqtoR/2HwBHALS1sS0OuUS+umRepuH4xDeeejrNvviIX4DWzbrTI\n/nwxX8bHexrOPZ2y1agX7ahvAfxQ0lSyYRlX82gwncdnucysk7R7qL0i+/PrpJmVQdEa9QeAi4Bf\nA3Nqbm3hGvU0XEeXhnNPx9mnUaYzXN3Ex3sazj2dsr3WFB2e8TOtboj5m9jMrPVc8mFm1lgnvU4W\n6qhLemdfj0XEHc1rTt8GQ416J34Tm+vo0nDu6XR79p1a8lG2utFu0e3He6dy7ukUea3ppNfJojXq\nV9ZMbw9sBjxJG4donDl/Wd35PgNk1p066axGSs7BzDqJKwAy7cihaOnLHtXTkjYG/h2o33NugbFj\nx3bc2ebBYOyEA7m2wbtKaw3nnklxVqMTs++kszut4rPpaXTi8T4YlD33TqwAKKqZrzXtyKHoxaRr\niYiVwBeAT25wC8zMzMzMbB1FS1/qeRewqujCkq4E/hpYFBH75fO2Ab5P9oVKjwPHR8SSeuv39vYC\n+29Ac219uI6u+YqUMRTN3R8/Np+P+TRco57GYDjeO/F1cjDk3qnK9lpT9GLSeUD1t5IOIRtb/fQB\n7Osq4L+Bq6vmnQPcFhEXSzobODefZ9a1ipQxNGNbnf7xo5lZO/h10sqs6Bn1D9RMLwceiYilRXcU\nEVMljayZfSxwSH5/CvBL+uiojx07lv+dUXRv3auZZwaKbKuZdXRFziQ3Y1vdcCa57PWLZebs0yjT\nGa5ukuJ47/bX7yL8OpNO2V5ril5MeheApI2AHcnKVwqXvTSwQ0QsyvexUNIOTdhmV2vmmYFO+rbA\nyj6bsS2fITEz61x+/TYrrmjpyzDga8AJwKbAq5L+F/hYXzXl6yn6emDy5Mk8On8Fm2+zEwAbv24o\nQ3YZxVZ7Zd9YOnXqVOY88yKVmq+lc3oBVj++dE4vvdOfZsxxR6xeHta8s6qd7p0+jaVznlpr/ert\n9U6fxrLthvS5fu10vfZUT/fX/sr+hu05ptDv16z9VZbpa3swqlBeRZ+fyre1tWt//eVV2V9/z29l\nulnPzw1XX8HSJVv3e/y1+3hotL/1yWtD8qzeXzOPh8q2NmR/zX59KLq/vfY7gMUvvJLXv6759sPe\n6dPY+nWbcuyRhxXaX4rnZ9asWZx22mkD2v/6vn43+/Wh6PNT9O+1Wf+fiuyv0fHeqteHDX1+2r2/\nVhwPsx+6H7Y7tND+2vF62un/L5q5v8suu4zRo0ev9/6acTy8OH82K19aDsCFU5fzrnccSE9PD/UU\nLX35b2AoMBp4guzizy8A/wWcXHAb9SyStGNELJK0E7C4rwUPOeQQFqzq+2LSiRMnMmz+stUfJVUC\nqdhqr7GMnTBqreVr1682dsKBbPXMmnf8tdsbO+FAxuwyrPD26rVnIO2v7K8ylnx/v1+z9jfnR7cW\n2l5/eQ30+em0/fX3/Famm/X8jHrTvvz2me37fDzV8dBof7Xba8Z00f112vHX7NeHovubOX9ZfqYy\nO3bWfLS+/VqfWLXjeB9I+5t1vAxkfymOh6J/r836/9Sprw8b+vy0e3+tOB4AfvtM39sbyPHQ7v9P\nKf5fNHN/1Z309dlfM46H6mXOOXoUKxf+ib4UHZ7xKOCDEfFIRKyIiEeAU/P5A6H8VnETcEp+/2Tg\nxr5WHDt2bF8PWQtVXlCsvZx7Os4+jbLVjXYLH+9pOPd0yvZaU/SM+stkp2ieqJq3HbCi6I4kfRc4\nFNhW0lzgfOBC4HpJk/JtH190e2bWuXyxmJmZ2YYr2lG/AviFpC+zpvTl34DLi+4oIt7Xx0OHF1nf\n46in4bFe0yh77mW+WKzs2ZdV2cY27hY+3tNw7umU7bWmaEf9C8B84H3ALvn9i4FvtahdLeWzfWZm\nZmbW6QrVqEfmWxFxeES8Of95ZUT0OUpLszWzRr1ytq/erdE434OR6+jScO7pOPs0ynSGq5v4eE/D\nuadTtteaQh11Sf8l6e01894u6dLWNMvMzMzMbHArWvpyIvDxmnm/A34E/GtTW9SHTq1R7/YyGtfR\npTEYcm/mN9U202DIvhPdeMud7D56fJ+Pd8PraRHt/p/i4z0N555Ot9aoB+uefd+4zrxBp8wXzZml\n1MxvqrXye/6lV/s9HgbD66n/p5hZtaId7buBz0vaCCD/eUE+vy08jnoarqPLLFi6gpnzl/V5W7C0\n8EilhTj3dJqZfaPjptnHTLO1u+0+5tNw7mk493TKdDYdip9RPwP4CbBA0hPACGAB8J5WNcyskxQ5\n++szXVarzGdHy9x2M7NuUXTUlyeBccCxwJeA44C35vPbIqtRt3bL6uis3Zx7Os4+DeeehnNPw7mn\nM3Xq1NRNGJCiZ9SJiFXAPfnNzMzMzKxU/rz8VWbOX1b3sU68aL00F4O6Rj0N19Gl4dzTcfZpOPc0\nnHsazj2d3UePL9V36RQ+o25mZmZm7dPtQ0Bb/0rTUe/UcdS7ncd6TcO5p+Ps03DuaTj3NIrm7ou6\nm69sx3xpSl/MzMzMzAaT0nTUXaOehuvo0nDu6Tj7NJx7Gs49DeeeTtmyL01H3czMzMxsMHGNujVU\ntlqubuHc03H2aRTJvdGFdeCL69aHj/c0mpm7/y4GpmzHfEd01CUdBVxKdob/yoi4qHaZ2bNnw57u\nqLfb7Ifuh+0OTd2MQce5p+Ps0yiSu78huPl8vKfRzNz9dzEwZTvmk5e+SNoI+CpwJLAvcKKkN9Uu\nt3z58nY3zYAXltX/UgBrLeeejrNPw7mn4dzTcO7plC375B11YALwp4h4IiJeBf4XODZxm8zMzMzM\nkuqEjvrrgXlV00/m89aycOHCtjXI1lj41Lz+F7Kmc+7pOPs0nHsazj0N555O2bJXRKRtgPR3wJER\n8U/59AeACRHxserlTjvttKgufxkzZoyHbGyD3t5e55yAc0/H2afh3NNw7mk493Q6Ifve3l5mzpy5\nenrMmDGcddZZqrdsJ3TU/xK4ICKOyqfPAaLeBaVmZmZmZoNFJ5S+3AuMkjRS0mbAPwA3JW6TmZmZ\nmVlSyYdnjIiVkj4K3Mqa4RkfTNwsMzMzM7OkOuGMOhHx84jYOyLeEBEXVj8m6ShJD0l6RNLZqdo4\nGEi6UtIiSX+omreNpFslPSzpFknDU7axG0naVdIdku6XNEvSx/L5zr6FJG0u6beSfp/nfn4+37m3\ngaSNJM2QdFM+7dzbQNLjkmbmx/30fJ6zbzFJwyVdL+nB/LX+bc69tSS9MT/OZ+Q/l0j6WNly74iO\nel+KjrFuTXMVWdbVzgFui4i9gTuAc9vequ73GnBmROwLHAj8c36cO/sWiogVwGERsT8wFvgrSRNw\n7u1yBvBA1bRzb49VwKERsX9ETMjnOfvWmwzcHBH7AGOAh3DuLRURj+TH+TjgrcBy4IeULPeO7qjj\nMdbbKiKmAs/VzD4WmJLfnwIc19ZGDQIRsTAievP7LwAPArvi7FsuIl7M725OVgoYOPeWk7QrcDRw\nRdVs594eYt3//c6+hSRtBRwcEVcBRMRrEbEE595OhwNzImIeJcu90zvqhcZYt5baISIWQdahBHZI\n3J6uJml3srO79wA7OvvWyssvfg8sBH4REffi3NvhK8AnyN4YVTj39gjgF5LulfSP+Txn31p7AM9I\nuiovw7hc0hCcezudAHw3v1+q3Du9o26dJ+14nl1M0pbADcAZ+Zn12qydfZNFxKq89GVXYIKkfXHu\nLSXp3cCi/FOkuuMG55x7axyUlwIcTVZmdzA+5lttE2Ac8LU8++Vk5RfOvQ0kbQocA1yfzypV7p3e\nUX8KGFE1vWs+z9pnkaQdASTtBCxO3J6uJGkTsk76NRFxYz7b2bdJRCwFfgkchXNvtYOAYyQ9CnwP\neKeka4CFzr31ImJB/vNp4EdkJaY+5lvrSWBeRNyXT/+ArOPu3Nvjr4DfRcQz+XSpcu/0jrrHWG8/\nsfZZrpuAU/L7JwM31q5gTfEt4IGImFw1z9m3kKTtKlf7S3od8C6y6wOcewtFxHkRMSIi9iR7Tb8j\nIj4I/Bjn3lKShuSf3CFpKHAEMAsf8y2Vl1nMk/TGfFYPcD/OvV1OJDspUFGq3JN/M2l/JB1FdrV0\nZYz1C/tZxdaTpO8ChwLbAouA88nOuFwP7AY8ARwfEc+namM3knQQ8Cuyf5iR384DpgPX4exbQtJo\nsguJNspv34+IL0j6C5x7W0g6BDgrIo5x7q0naQ+yUS+CrBzj2oi40Nm3nqQxZBdPbwo8CpwKbIxz\nb6n8WoAngD0jYlk+r1THe8d31M3MzMzMBqNOL30xMzMzMxuU3FE3MzMzM+tA7qibmZmZmXUgd9TN\nzMzMzDqQO+pmZmZmZh3IHXUzMzMzsw7kjrqZWQlIOlfS5W3c39R87Od6jx0iaV6L9/9bSfu0ch9m\nZp1uk9QNMDMzkLSM7ItoAIYCK4CV+byPRMQX29iWvwaWRsTMBou1+ks4vgR8Dnhvi/djZtaxfEbd\nzKwDRMSwiNgqIrYi+7a8d1fN+15/6zfZ/wdc0+Z91voxcJikHRK3w8wsGXfUzcw6j/LbmhnS+ZKu\nye+PlLRK0imS5kr6s6SPSBovaaakZyX9d836kyQ9kC/7M0kj6u5Y2hR4J3BX1bwtJH073+4fgQNq\n1jlb0mxJSyX9UdJxlW3l+9u3atntJS2XtG1++7Gk5/LlVu8zIlYAvwOOXL8IzczKzx11M7PyqC03\nmQCMAk4ALgXOI+tkvwU4XtLBAJKOBc4BjgO2B+4G+jpL/wZgZUTMr5p3AbBHfjsSOLlmndnAQfmn\nAZ8BviNpx4h4Nd/PB6qWPRG4LSL+DJwFzAO2BXbI21/tQaBunbyZ2WDgjrqZWTkF8NmIeCUibgOW\nA9+LiD/nney7gf3zZT8CfDEiHomIVcCFwFhJu9XZ7tbAspp5fw98PiKWRMRTwH+t1ZCIH0TEovz+\n9cCfyN5EAFwNvK9q8Q/m8wBeBXYG9oiIlRHx65r9LsvbY2Y2KLmjbmZWXour7r8ELKqZ3jK/PxKY\nnJeuPAv8mayj//o623wOGFYzbxfgyarpJ6oflHSSpN/nJSzPAfsC2wFExHRgeT5SzN7AXmT15wAX\nA3OAW/PSmbNr9jsMeL7+r25m1v3cUTcz637zyEaO+Yv8tk1EbBkR99RZdjYgSTtXzZsPVJ99H1m5\nk9e6Xw6cnm93G+B+1q6xn0J2Jv2DwA0R8QpARCyPiI9HxF7AMcCZkg6rWm8foNHIM2ZmXc0ddTOz\nclL/i6z2deA8SW8GkDRcUt1hD/O68tuAQ6pmXw+cK2lrSbsCH616bCiwCnhG0kaSTiWrka92LfA3\nwPtZU/aCpHdL2iufXAa8lm8LSZsDbwV+MYDf08ysq7ijbmbWeYqMUV67TJ/TEfEjsrr0/5X0PPAH\n4KgG274cOKlq+jPAXOAx4OdUdbYj4kHgEuAeYCFZ2cvUtRoS8SQwI7sb1Y+9AbgtH0P+18DXIqIy\n8ssxwJ0RsbBBO83MupoiWv2dFWZmVjaS7gY+2s+XHg1ke1cCT0XEpwsuPw34UEQ80Iz9m5mVkTvq\nZmbWUpJ2Jzujvn9EPNF4aTMzq3Dpi5mZtYykz5KV2lzsTrqZ2cD4jLqZmZmZWQfyGXUzMzMzsw7k\njrqZmZmZWQdyR93MzMzMrAO5o25mZmZm1oHcUTczMzMz60DuqJuZmZmZdaD/HznQjkjM7w2rAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53c60622e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 3.5)\n", "count_data = np.loadtxt(\"data/txtdata.csv\")\n", "n_count_data = len(count_data)\n", "plt.bar(np.arange(n_count_data), count_data, color=\"#348ABD\")\n", "plt.xlabel(\"Time (days)\")\n", "plt.ylabel(\"count of text-msgs received\")\n", "plt.title(\"Did the user's texting habits change over time?\")\n", "plt.xlim(0, n_count_data);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we start modeling, see what you can figure out just by looking at the chart above. Would you say there was a change in behaviour during this time period? \n", "\n", "How can we start to model this? Well, as we have conveniently already seen, a Poisson random variable is a very appropriate model for this type of *count* data. Denoting day $i$'s text-message count by $C_i$, \n", "\n", "$$ C_i \\sim \\text{Poisson}(\\lambda) $$\n", "\n", "We are not sure what the value of the $\\lambda$ parameter really is, however. Looking at the chart above, it appears that the rate might become higher late in the observation period, which is equivalent to saying that $\\lambda$ increases at some point during the observations. (Recall that a higher value of $\\lambda$ assigns more probability to larger outcomes. That is, there is a higher probability of many text messages having been sent on a given day.)\n", "\n", "How can we represent this observation mathematically? Let's assume that on some day during the observation period (call it $\\tau$), the parameter $\\lambda$ suddenly jumps to a higher value. So we really have two $\\lambda$ parameters: one for the period before $\\tau$, and one for the rest of the observation period. In the literature, a sudden transition like this would be called a *switchpoint*:\n", "\n", "$$\n", "\\lambda = \n", "\\begin{cases}\n", "\\lambda_1 & \\text{if } t \\lt \\tau \\cr\n", "\\lambda_2 & \\text{if } t \\ge \\tau\n", "\\end{cases}\n", "$$\n", "\n", "\n", "If, in reality, no sudden change occurred and indeed $\\lambda_1 = \\lambda_2$, then the $\\lambda$s posterior distributions should look about equal.\n", "\n", "We are interested in inferring the unknown $\\lambda$s. To use Bayesian inference, we need to assign prior probabilities to the different possible values of $\\lambda$. What would be good prior probability distributions for $\\lambda_1$ and $\\lambda_2$? Recall that $\\lambda$ can be any positive number. As we saw earlier, the *exponential* distribution provides a continuous density function for positive numbers, so it might be a good choice for modeling $\\lambda_i$. But recall that the exponential distribution takes a parameter of its own, so we'll need to include that parameter in our model. Let's call that parameter $\\alpha$.\n", "\n", "\\begin{align}\n", "&\\lambda_1 \\sim \\text{Exp}( \\alpha ) \\\\\\\n", "&\\lambda_2 \\sim \\text{Exp}( \\alpha )\n", "\\end{align}\n", "\n", "$\\alpha$ is called a *hyper-parameter* or *parent variable*. In literal terms, it is a parameter that influences other parameters. Our initial guess at $\\alpha$ does not influence the model too strongly, so we have some flexibility in our choice. A good rule of thumb is to set the exponential parameter equal to the inverse of the average of the count data. Since we're modeling $\\lambda$ using an exponential distribution, we can use the expected value identity shown earlier to get:\n", "\n", "$$\\frac{1}{N}\\sum_{i=0}^N \\;C_i \\approx E[\\; \\lambda \\; |\\; \\alpha ] = \\frac{1}{\\alpha}$$ \n", "\n", "An alternative, and something I encourage the reader to try, would be to have two priors: one for each $\\lambda_i$. Creating two exponential distributions with different $\\alpha$ values reflects our prior belief that the rate changed at some point during the observations.\n", "\n", "What about $\\tau$? Because of the noisiness of the data, it's difficult to pick out a priori when $\\tau$ might have occurred. Instead, we can assign a *uniform prior belief* to every possible day. This is equivalent to saying\n", "\n", "\\begin{align}\n", "& \\tau \\sim \\text{DiscreteUniform(1,70) }\\\\\\\\\n", "& \\Rightarrow P( \\tau = k ) = \\frac{1}{70}\n", "\\end{align}\n", "\n", "So after all this, what does our overall prior distribution for the unknown variables look like? Frankly, *it doesn't matter*. What we should understand is that it's an ugly, complicated mess involving symbols only a mathematician could love. And things will only get uglier the more complicated our models become. Regardless, all we really care about is the posterior distribution.\n", "\n", "We next turn to PyMC3, a Python library for performing Bayesian analysis that is undaunted by the mathematical monster we have created. \n", "\n", "\n", "Introducing our first hammer: PyMC3\n", "-----\n", "\n", "PyMC3 is a Python library for programming Bayesian analysis [3]. It is a fast, well-maintained library. The only unfortunate part is that its documentation is lacking in certain areas, especially those that bridge the gap between beginner and hacker. One of this book's main goals is to solve that problem, and also to demonstrate why PyMC3 is so cool.\n", "\n", "We will model the problem above using PyMC3. This type of programming is called *probabilistic programming*, an unfortunate misnomer that invokes ideas of randomly-generated code and has likely confused and frightened users away from this field. The code is not random; it is probabilistic in the sense that we create probability models using programming variables as the model's components. Model components are first-class primitives within the PyMC3 framework. \n", "\n", "B. Cronin [5] has a very motivating description of probabilistic programming:\n", "\n", "> Another way of thinking about this: unlike a traditional program, which only runs in the forward directions, a probabilistic program is run in both the forward and backward direction. It runs forward to compute the consequences of the assumptions it contains about the world (i.e., the model space it represents), but it also runs backward from the data to constrain the possible explanations. In practice, many probabilistic programming systems will cleverly interleave these forward and backward operations to efficiently home in on the best explanations.\n", "\n", "Because of the confusion engendered by the term *probabilistic programming*, I'll refrain from using it. Instead, I'll simply say *programming*, since that's what it really is. \n", "\n", "PyMC3 code is easy to read. The only novel thing should be the syntax. Simply remember that we are representing the model's components ($\\tau, \\lambda_1, \\lambda_2$ ) as variables." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Applied log-transform to lambda_1 and added transformed lambda_1_log_ to model.\n", "Applied log-transform to lambda_2 and added transformed lambda_2_log_ to model.\n" ] } ], "source": [ "import pymc3 as pm\n", "import theano.tensor as tt\n", "\n", "with pm.Model() as model:\n", " alpha = 1.0/count_data.mean() # Recall count_data is the\n", " # variable that holds our txt counts\n", " lambda_1 = pm.Exponential(\"lambda_1\", alpha)\n", " lambda_2 = pm.Exponential(\"lambda_2\", alpha)\n", " \n", " tau = pm.DiscreteUniform(\"tau\", lower=0, upper=n_count_data - 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the code above, we create the PyMC3 variables corresponding to $\\lambda_1$ and $\\lambda_2$. We assign them to PyMC3's *stochastic variables*, so-called because they are treated by the back end as random number generators." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with model:\n", " idx = np.arange(n_count_data) # Index\n", " lambda_ = pm.math.switch(tau > idx, lambda_1, lambda_2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This code creates a new function `lambda_`, but really we can think of it as a random variable: the random variable $\\lambda$ from above. The `switch()` function assigns `lambda_1` or `lambda_2` as the value of `lambda_`, depending on what side of `tau` we are on. The values of `lambda_` up until `tau` are `lambda_1` and the values afterwards are `lambda_2`.\n", "\n", "Note that because `lambda_1`, `lambda_2` and `tau` are random, `lambda_` will be random. We are **not** fixing any variables yet." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with model:\n", " observation = pm.Poisson(\"obs\", lambda_, observed=count_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The variable `observation` combines our data, `count_data`, with our proposed data-generation scheme, given by the variable `lambda_`, through the `observed` keyword. \n", "\n", "The code below will be explained in Chapter 3, but I show it here so you can see where our results come from. One can think of it as a *learning* step. The machinery being employed is called *Markov Chain Monte Carlo* (MCMC), which I also delay explaining until Chapter 3. This technique returns thousands of random variables from the posterior distributions of $\\lambda_1, \\lambda_2$ and $\\tau$. We can plot a histogram of the random variables to see what the posterior distributions look like. Below, we collect the samples (called *traces* in the MCMC literature) into histograms." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 10000/10000 [00:02<00:00, 4511.50it/s]\n" ] } ], "source": [ "### Mysterious code to be explained in Chapter 3.\n", "with model:\n", " step = pm.Metropolis()\n", " trace = pm.sample(10000, tune=5000,step=step)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lambda_1_samples = trace['lambda_1']\n", "lambda_2_samples = trace['lambda_2']\n", "tau_samples = trace['tau']" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvQAAAKACAYAAADzb+zBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VfWZ9/3vRRAU0LRqkWOQg2i1KAJaD6htM63aOh6K\nnbvSu7WdKfrQanXKM9re87TVHqbqOBWpLUqxts5UrQPc2Hash2GoNW2tBwSpBQRBAgREoyKIHBKu\n54+1AptNEhKSXHuvvT/v14uX+a291tq//c0yufbKtdY2dxcAAACAbOpW6AkAAAAAOHAU9AAAAECG\nUdADAAAAGUZBDwAAAGQYBT0AAACQYRT0ADLHzM4xs0YzGxD4nPPNbEZL405+rm+Z2Ut54+Vd8Vzp\n/u8xs8e6av+dzcy+b2Yb0mPgc+3Y7vNmtrMr59YV8o+HNm6z3+Mza993AC2joAfKXPpLfVf6b6eZ\nvWJm083s8E58jsfN7KedtT9Jf5DU393rOnGf7XWJpK+2ZUUzG5jme3Yb9/2vkk7LW9bhewyb2WfM\nbFczD31F0qc6uv8IZnaqpOslfVFSP0m/bGG9nc0U+65OyLEAmjseAGC37oWeAICi8HslBd1BksZK\nmilpkKS/LeSkmmNm3d29QdLGDu7HJJm7N1fg7pe7v9Wep1MbCsmcOW2VtPVA5nUg83D3zV3wXF1l\npKRGd/9NoSfS1QKOBwAlgjP0ACRph7u/5u517v5rSbdLOs/MekqSmY00s/8ys83pv1+Z2fCmjc3s\n0PRM/3oz22ZmtWZ2a/rYPZKqJV2enqVubDpTbWZ9zexnZrbRzN42syfN7Kyc/Z6TbvPx9LGtkv4h\nZ/mAnHVPM7MnzGyrmb1hZr8ws/flPP4tM1tuZn9nZkskbZd0THNhmFmVmT2S7mu1mV3VzDr5LTjj\nzawmfR1vm9nzZvbR9OHa9L+/S+e9Mt3mhubm1FKLjZldZmYvm9m7ZvaYmQ3Jf31565+ZPl+VmZ0j\n6d50edP34afp+Gf5rRdm9v+mz7XdzFaY2TV5j68ysxvNbKqZ1actMD8ws24567SWSbPM7HIzezF9\n3jVm9p2mfabH0r2SujW9hhb2sUrJ77d7mlvPzM4ws+fM7B0ze9bMxuU9PtzMZpnZm+mx9KiZfaCV\nOX/RzN4ysx55y683s9U54xlpllvTbL+Xu01Lx2j+99bMjjaz2Wa2Ln0NL5jZ/25mat0saU96zcw2\nmdld+XNs5rV8Ov0+vZt+j//NzHrlPN7u7ymArkdBD6A525T8fOhuZgdLelxSD0lnSTpbUh9Jj5hZ\n01/5vidptJIz+iMk/Z2kJelj10h6UtKDko6S1F/SH9P9zpfUS9K56fYPS3rMzI7Nm8+tkm6S9H5J\nv06X7T7TbGZHSXpUSeE8TtIFkj4g6T/z9jNA0mRJn5N0vKS1Lbz+uZLem77Wv5V0oaQxLawrM6uQ\n9JCkP6Wv42RJN2jPWdUxSs6OX6KkTeSUnNeQP6d1+a8vb+6XShov6TBJs/PWae6vAE3L/iCp6Y1J\n0/fhmrx1ml7PlyXdKOlf0jndIukmM/tC3r6vklQn6dT066skXZ7uY3+Z7MPMPiHpbkk/l3SCkpam\nL0v6VrrKVyRdK6kx5zU05xRJu9LX1y9vvYr0dV2dzmmjpF/mvGnoK6lG0gZJZ0r6oKSlkuab2REt\nPN+DSv66dVHe8s9qz5sok/SqpE9LOi6d2+clfT1vm7YcD30kzVPy/80HJN0l6afpm7Zcn5J0uJLj\nZaKkiyV9v4XXIDP7vKQfKWnxOS6df7Wk6enj7f6eAgji7vzjH//K+J+keyQ9ljM+XtIKSX9Ix/8g\naYuk9+as01fJL/H/nY7nSvppK8/xeP7jSoqZWknd8pbPk/SD9OtzlBRmE/PWOUdJUTcgHX8n3Vf3\nnHVOTLcdn46/JalB0sD95PE36b6H5yw7Mn29M3KWzW8aS3pPus3ZLexzYDqXs/OWNzundPlLeeNG\nSUNzlh2T7vPDzW2TLjsz3a4qHX9GSbvK/o6BWknfz1vnB5JW5IxXSZqbt87Dkn7RlkxayOn3ku7P\nW/YVSe80fW+VvGHY0YZ97ZT0ubxll6dzOiln2anpsmPS8Q2S/pi3nSn5f+IrrTzf/ZJ+nTMel7vf\nFra5VtKy9h4PLexrrqS78o7PlUpadpqWTUqP40Na+L6vknRF3n7PSo+zygP5nvKPf/yL+ccZegCS\n9GFLWmm2SnpBSfHS9Cf84yX91d3fbFrZ3TdKWqbkLKok/VjSp9I//U81s/PSM5KtGafkzOkm29PK\ns1nJ2cTcVhiX9Mx+9nW8pKc86a1vmuMLkjblzFGSXnX3dfkb53m/pNfd/eWcfb2u5PU2y5N++ruV\n/HXh4bTVYuR+nqc9c5Kk19x9Vc5zLpf0uvZ+fR1mZocquX7iybyHnpB0dPqXlSYL89apU3Lm/EAz\nOaGF5z1Y0vB9Vz8gruQYb1KnpGA/Kh2PkzQu75h8W9IQtdCilfq5pI+Z2ZHp+HOSnk6/T5IkM5tk\nZk+l7UmblZwtH5K3n/0eD2Z2iJndZGZ/SdudNks6v5l9Pe3uuWf2/yCpp5rJMp33EEk/yHvtv1WS\n2YgOHucAuhAFPQBJekrJGe3jJB3s7uflFo/74+6PSRqspPWmp6T/kDRvP0V9N0l/TZ/3pJx/71dy\nJjHXO22dy3501n724e5XKGmteUzJXxD+Ymb5r6Mr57RLSWGa66BO2ndLduSNXTm/VzqQSb79vTls\nj115RW7T191y/vvf2ve4PFbJ2fuWPCapXtLEtBXtf0n6WdODZvYpSXcoOZN/vpKWlW9r3+9RW46H\nW5W00HxL0ofS+f1WSVvc/rSUZdPr/4r2ft0nKnkjs1jq1O8pgE5EQQ9Akt5191XuXpt7ljv1oqTj\nLec2lmnP+rFKf8lLyRlZd/+lu0+W9Aklhcbx6cM7lPQu53pW0jBJm919Zd6/De2c/4uSTsvp6ZeZ\nnaSkTWBxi1s176+SjrS9L/o9UsnrbZW7/9Xdp7r7x5Wcybwifaip8M3PoD3eZ2ZDc+Y0Ukkr0Ivp\noo2S+ua9iRqbt48d6bYtFsie3PFmrZLrB3J9SNIqd9/Wnkm3kklzXmzhebdKenmftVvX3DHXFs8q\n+UvBumaOy/qWNvLkbkm/UNJ3fr6Saxxyb6l5lqQF7n67uz+f/gVo6L57apOzlLQ2zXb3xUpaZZo7\nU35K3vf6TCXXx+yTZfpXtzWSjmvmda909x0567bnewogAAU9gP25T0lrxy/N7GQzGyvpASW//B+U\nJDP7rpldYsndcI5R0q6zWXvu7rJK0lgzG2ZmR6SF9y/S5f9lZh81syFmdqqZfc3MLsx5/paKz9zl\ndygpoH5mZieY2XglFyM+4e5/bM+Ldfd5Sloy/sPMTjGz0Ur+4pB/NnrPRJK7otxkyV1lqszsdCVF\nV1Ox/bqS6xA+ZmZHmdl72jOn1LtK7toy1pK7svxMSYE4P3286QLj76Q5f0rSl/L20fRXl4vM7Egz\n693Cc31f0tWW3L1lhJldKelKJX+BaZM2ZNLS805IWzmOMbO/U3IW+tZm3mjuzyolrWT9W7mYtTl3\nKHkj8CtL7ugyJP3vd81sf/eCv1fJm6gbJf3G97616TJJo8zswvT7c42Si6QPxDIl38NTzOx4STOU\nXEyb7whJPzKz49ILjr8t6U53f7eF/f6zpK+Y2f9J/z8aaWYXm9md0gF/TwEEoKAH0Kr0jOxHldxC\n7wklhePbks7PKbK2KSlinpX0tJI7b5zne+5v/m9KitpFSs4kn+Hu25X8yf5ZST9VUqTMVnKHkt23\n+lPL92/fvTw9u/gxJb3fT0v6lZKi/EA/LOkiJf33T6T7+i9JC1p6fiVtEscoaadYpuTuOjVK7qSi\ntMXjS0ru/rO2mX21RZ2Swm2WkotHt0iasHsy7i8paVX6tJK/SnxeeXdQcfdnldyS9E4ld1z5YXNP\n5O7TJX0z3f5FSf8k6Xp3/1nuavuZb6uZtPC8v5X090r6zxcrOW7uUFKIttcUJcX1K9r/ZxbkH0un\nS3pNyfG4VNK/S6qStL7VnSRnyxcqaVX5ed7Dd6X7+amS7/8p2nP3nvb6RyX/j/yPkgvO12rfOzq5\nkmNls5Lc71NyLOffVSd3/v+h5Bj9hKQ/K/l/6Zvaczeodn9PAcSwvVsJAQAAAGQJZ+gBAACADKOg\nBwAAADKMgh4AAADIMAp6AAAAIMMo6AEAAIAMo6AHgBJmZqPMrMbMzsvi/gEA+8dtKwGgxJnZ/5L0\nNXc/OYv7BwC0jjP0AFD65kjqb2anZHT/AIBWUNADQIlz951KPrl0cv5jZja1i/f/RTP7spn9xMwq\n2rtvM/uOmb1gZq+k/5aY2YtmNqaj8waAUkHLDQCUATMbJelPkga4+9tmdpCSAvxqdz+ms/efLjtb\n0lvu/oKZ3Sqpzt1/0I59TpC01t3/bGZXS5rt7nUdnSsAlBrO0ANAiTOz90n6B0nPSfqslJxVd/dp\nktZ0xf5TQyV9Ov36ZUlD2rNfd5/t7n9Oh+Mp5gGgeRT0AFDCzOw4ST+W9E1J0yT9P4H7v1fSv6Rf\nj5M0/wCf4yhJ3TswTQAoaRT0AFCizOzDku6SdGXaBvOQpCPM7Iz9bDfWzP6mo/v3xBYzGyGpp7vP\nbc/+c3xSydl/AEAzKOgBoASZ2WBJN0ma4O5vSJK7N0j6gaR/3M/mn5F0W2fsP+3Vn6SkJafN+89z\nmqT/acf6AFBWuCgWAMqYmc139w83s/xyd/95J+z/HyQ96O6bzewSd/+/nbl/AABn6AGgbJnZlyWN\nMLOvm1m/nOU9JfXuhP1/VMmZ+JfNbKOkwztz/wCARNgZejO7W9IFkl519xNbWGeapPMlvSPp8+6+\nMGRyAIDdzOw0SX9x9y1Z3D8AlJvIM/T3SDq3pQfN7HxJw9P7IV8p6c6oiQEA9nD3p7qy2O7q/QNA\nuQkr6N29RtKbraxykZJbnCm973BleqsyAAAAAC0oph76gdr7A07WpcsAAAAAtKCYCnoAAAAA7VRM\nn7y3TtLgnPGgdNk+Jk+e7C+//LL69UtuytC7d2+NGDFCo0ePliQtXJhcS1uM46avi2U+5TCeNWtW\nZo6PUhmvWLFCl156adHMpxzGTcuKZT7lMObnOT/Py2HMz/OYn9+LFi3Shg0bJEnDhw/X9OnTTe0Q\neh96Mzta0q/dfVQzj31c0pfd/RPpHRCmuvtpze1n3rx5PmbMmC6da1e56aab9LWvfa3Q0ygrZB6P\nzOOReTwyj0fm8cg83jXXXKN77723XQV92Bl6M7tP0oeUfCx4raRvSeqh5NPBZ7j7w2b2cTNboeS2\nlV+ImhsAAACQVWEFvbtPbMM6V0XMpZBqa2sLPYWyQ+bxyDwemccj83hkHo/Ms4GLYoONGrVPtxG6\nGJnHI/N4ZB6PzOOReTwyj3fSSSe1e5vQHvrOkuUeegAAAKAlCxYsUHV1dXH20EfZsmWLNm3aJLN2\n5YASUFFRob59+/K9BwAAZaWkCvr6+npJ0oABAyjqytDWrVu1ceNGHXXU3h8wXFNTo/HjxxdoVuWJ\nzOOReTwyj0fm8cg8G0qqh3779u064ogjKObLVK9evdTY2FjoaQAAAIQqqR76uro6DRgwoAAzQrHg\nGAAAAFl2ID30JXWGHgAAACg3FPQoeTU1NYWeQtkh83hkHo/M45F5PDLPBgp6AAAAIMMo6CFJOuOM\nM/THP/6xy59nxYoVOuecczRkyBD95Cc/6fLnk8TV+QVA5vHIPB6ZxyPzeGSeDSV128rmbF1dp23r\nXu2y/R888Cj1GlLYizBHjx6tadOm6eyzzz7gfUQU85I0bdo0nXXWWXriiSdCng8AAKDUlXxBv23d\nq/rLP93cZfv/wL9eX/CCviMaGxtVUVERtu2aNWs0YcKE/a531113aePGjfrGN75xQHPLxT1045F5\nPDKPR+bxyDwemWcDLTfBRo8eralTp+r000/X8OHDdfXVV2vHjh2SpJdeekkXXnihhg4dqjPPPFOP\nPPLI7u1uv/12nXDCCaqqqtIHP/hBPfnkk5KkyZMna+3atZo4caKqqqr0wx/+UBs2bNDll1+ukSNH\nasyYMZoxY8Y+c2g6Uz548GA1NjZq9OjR+v3vfy9JWrZsWYvzyN92165d+7zGll7HxRdfrJqaGl13\n3XWqqqrSypUrW8zpiiuu0Ny5c/Xaa68dYNIAAADlgYK+AGbNmqU5c+ZowYIFWrFihW699VY1NDRo\n4sSJqq6u1vLly3XTTTfpiiuu0Msvv6wVK1Zo5syZmj9/vmprazV79mxVVVVJkqZPn65Bgwbp/vvv\nV21tra666ipNnDhRJ554opYsWaK5c+fqrrvu0vz58/eaw5w5c/Tggw9q1apVe51lb2ho0Gc+85lm\n59Hctt267X0ItfY65s6dq9NPP1233HKLamtrNWzYsBYzMjNdeumleuCBBzqcN2cW4pF5PDKPR+bx\nyDwemWcDBX0BTJo0Sf3791dlZaW++tWvas6cOXr22We1detWXXPNNerevbvOOussnXvuuZo9e7Yq\nKiq0c+dOLVmyRA0NDRo0aJCGDBmy1z6bPiDsueeeU319vaZMmaKKigpVVVXps5/9rGbPnr3X+lde\neaX69++vnj177rW8tXnsb9u2bt9Wl112me6///52bwcAAFBOKOgLIPeTTAcPHqwNGzZow4YN+3zC\n6eDBg7V+/XoNHTpU3/ve93TzzTfr2GOP1aRJk7Rhw4Zm97127VqtX79ew4YN07BhwzR06FDddttt\nqq+vb3EOudavX9/iPPa3bVu3b6v6+npt27ZNCxYskCS9/fbb+vWvf63bbrutXfvhHrrxyDwemccj\n83hkHo/Ms4GCvgDWrVu3++s1a9aoX79+6tev317LpaQ479+/vyRpwoQJevjhh7Vo0SJJ0re//e3d\n65nt+XTggQMH6uijj9bKlSu1cuVKrVq1SqtXr97nTHfuNrn69+/f6jxa27Zp+7q6ula3b4t58+Zp\nwYIFmjJlin7xi19Ikg477DCNHj1aO3fubNe+AAAAShkFfQHcfffdqqur05tvvqnbbrtNl1xyicaO\nHatevXpp2rRpamhoUE1NjR599FF98pOf1IoVK/Tkk09qx44d6tGjhw4++OC9iuq+ffvqlVdekSSN\nHTtWffr00bRp07Rt2zY1NjZqyZIlev7559s0t5bm0ZY70zRtf8ghhxzw9pI0e/ZsPfnkk5o0aZIu\nuugiPfLII9q+fXubt89H/188Mo9H5vHIPB6ZxyPzbKCgL4BLL71UEyZM0NixYzVs2DBNmTJFBx10\nkO677z49/vjjGjFihK677jrdeeedGjFihHbs2KEbb7xRxxxzjI4//njV19frm9/85u79XXvttbr1\n1ls1bNgwTZ8+Xffff78WL16sk08+WSNHjtS1116rzZs3716/uTPsTctamsfw4cNb3DZXR7d/5pln\n9Lvf/U433HCDJKlPnz664IILNGfOnP0HCwAAUIas6WLKLJk3b56PGTNmn+V1dXX79G8X2wdLdcaH\nQJWzNWvW6L777tP111/f7OPNHQPcQzcemccj83hkHo/M45F5vAULFqi6urr1M6B5Sv6DpXoNGZDp\nD37CHlu2bNFDDz2kRYsWacmSJXr/+99f6CkBAAAUXMmfoS82J598sm6//XbO0HeRLBwDAAAALeEM\nfQa09eJUAAAAoC24KBYlj3voxiPzeGQej8zjkXk8Ms+G0ILezM4zs6Vm9pKZ7XNVo5kdZma/MrOF\nZrbYzD4fOT8AAAAga8J66M2sm6SXJFVLqpP0jKRPu/vSnHW+Lukwd/+6mR0paZmko9y9IXdfWe6h\nR9fiGAAAAFl2ID30kWfoT5W03N1Xu/tOSQ9IuihvHZd0aPr1oZLq84t5AAAAAHtEFvQDJa3JGa9N\nl+W6Q9LxZlYnaZGka9rzBD179lR9fb2yeOcedNzWrVtVUVGxz3L6/+KReTwyj0fm8cg8HplnQ7Hd\n5eZcSc+7+0fMbLikx83sRHff0paNjzjiCG3ZskV1dXX7/UTSQtm0aZMqKysLPY2SVFFRob59+xZ6\nGgAAAKEiC/p1kqpyxoPSZbm+IOn7kuTuL5vZKknHSXo2d6VZs2Zp5syZqqpKdldZWalRo0Zp/Pjx\n6tOnjxYuXChJuz/ZrOndZTGMBwwYUFTzKYdx07JimU+5jJsUy3wYM+7s8fjx44tqPuUwblpWLPMp\nl3GTYplPqY2bvq6trZUkjRs3TtXV1WqPyItiK5Rc5Fotab2kpyVd5u5Lctb5kaSN7n6jmR2lpJA/\nyd3fyN1XSxfFAgAAAFlW1BfFunujpKskPSbpRUkPuPsSM7vSzK5IV/uupDPM7AVJj0u6Lr+Yz7r8\nd7voemQej8zjkXk8Mo9H5vHIPBu6Rz6Zuz8i6di8ZXflfL1eSR89AAAAgDYIa7npTLTcAAAAoBQV\ndcsNAAAAgM5HQR+MXrR4ZB6PzOOReTwyj0fm8cg8GyjoAQAAgAyjhx4AAAAoEvTQAwAAAGWGgj4Y\nvWjxyDwemccj83hkHo/M45F5NlDQAwAAABlGDz0AAABQJOihBwAAAMoMBX0wetHikXk8Mo9H5vHI\nPB6ZxyPzbKCgBwAAADKMHnoAAACgSNBDDwAAAJQZCvpg9KLFI/N4ZB6PzOOReTwyj0fm2UBBDwAA\nAGQYPfQAAABAkaCHHgAAACgzFPTB6EWLR+bxyDwemccj83hkHo/Ms4GCHgAAAMgweugBAACAIkEP\nPQAAAFBmKOiD0YsWj8zjkXk8Mo9H5vHIPB6ZZwMFPQAAAJBhoT30ZnaepKlK3kjc7e43N7POhyTd\nJukgSa+5+4fz16GHHgAAAKXoQHrou3fVZPKZWTdJd0iqllQn6Rkze8jdl+asUynpR5I+5u7rzOzI\nqPkBAAAAWRTZcnOqpOXuvtrdd0p6QNJFeetMlDTb3ddJkru/Hji/EPSixSPzeGQej8zjkXk8Mo9H\n5tkQdoZe0kBJa3LGa5UU+blGSjrIzOZL6iNpmrv/e9D8UOTcXd7Y2O7tdjU2aldDw+6xVVTIrF1/\nyQIAAChakQV9W3SXNEbSRyT1lvQnM/uTu6/IXWnWrFmaOXOmqqqqJEmVlZUaNWqUxo8fL2nPu8li\nHI8fP76o5pOl8Zmnn65l3/mx/vTcs5Kkk44cIEla9Hpdq+MVr9dpxb/erZOOHKCD+x2p1//mZFUc\n3LPgr6fUx02KZT6MGXf2mJ/n8eOmZcUyn3IZNymW+ZTauOnr2tpaSdK4ceNUXV2t9gi7KNbMTpN0\ng7ufl46/JslzL4w1s+slHezuN6bjmZJ+6+6zc/fFRbHlyRsb9fyk/09blq064H0cUtVfJ8/8F3Xv\nfUgnzgwAAKBzFPsHSz0jaYSZDTGzHpI+LelXees8JGm8mVWYWS9JH5S0JHCOXS7/3S663uJ33ij0\nFMoOx3k8Mo9H5vHIPB6ZZ0P3qCdy90Yzu0rSY9pz28olZnZl8rDPcPelZvaopBckNUqa4e5/jZoj\nAAAAkDWh96HvLLTclCdabgAAQKkr9pYbAAAAAJ2Mgj4YvWjx6KGPx3Eej8zjkXk8Mo9H5tlAQQ8A\nAABkGAV9sNx76SLGqN6HF3oKZYfjPB6ZxyPzeGQej8yzgYIeAAAAyDAK+mD0osWjhz4ex3k8Mo9H\n5vHIPB6ZZwMFPQAAAJBhYR8shUS59qI1vrtdW15aKd914J970O2gg9SwZWu7t6OHPl65HueFRObx\nyDwemccj82ygoEeIXTt2aOm3f6ztG14r9FQAAABKCi03wehFi0cPfTyO83hkHo/M45F5PDLPBgp6\nAAAAIMMo6IPRixaPHvp4HOfxyDwemccj83hkng0U9AAAAECGUdAHoxctHj308TjO45F5PDKPR+bx\nyDwbKOgBAACADKOgD0YvWjx66ONxnMcj83hkHo/M45F5NlDQAwAAABlGQR+MXrR49NDH4ziPR+bx\nyDwemccj82zgk2KxXzs3bdbbf3lJ2uUHvpNupsZ3tnbepAAAACBJMvcOFGkFMm/ePB8zZkyhp1E2\ntm14Tc999jo1bn230FPpsEOq+uvkmf+i7r0PKfRUAAAA9rFgwQJVV1dbe7ah5QYAAADIMFpugtXU\n1HDFeLDF77yx+043O9/arPo/PCvtOvD9WfcKvfeUUTqo8tBOmmHp4TiPR+bxyDwemccj82ygoEdZ\naXh7i5bd+KMO7aN75aEa+/ObO2lGAAAAHRPacmNm55nZUjN7ycyub2W9U8xsp5l9MnJ+EXiXG4/7\n0MfjOI9H5vHIPB6ZxyPzbAgr6M2sm6Q7JJ0r6QRJl5nZcS2sd5OkR6PmBgAAAGRV5Bn6UyUtd/fV\n7r5T0gOSLmpmvaslzZK0MXBuYbifazzuQx+P4zwemccj83hkHo/MsyGyoB8oaU3OeG26bDczGyDp\nYnefLqldt+sBAAAAylGx3bZyqqTc3vqSK+rpRYtHD308jvN4ZB6PzOOReTwyz4bIu9ysk1SVMx6U\nLss1TtIDZmaSjpR0vpntdPdf5a40a9YszZw5U1VVye4qKys1atSo3Qdd05+HGHfO+I9P/1kvbX5d\nx1f0lrSnhaWpUC638QubXtP2Pz+lD1/w8U7JlzFjxowZM2ZcvuOmr2trayVJ48aNU3V1tdoj7JNi\nzaxC0jJJ1ZLWS3pa0mXuvqSF9e+R9Gt3n5P/WJY/KbamJnv3c836J8Xm3oe+MzTdtrLn+zjz35Is\nHudZR+bxyDwemccj83gH8kmx3btqMvncvdHMrpL0mJJWn7vdfYmZXZk87DPyN4maGwAAAJBVYWfo\nO1OWz9BnUdbP0Hc2ztADAICuciBn6IvtolgAAAAA7UBBHyz3AgjE4D708TjO45F5PDKPR+bxyDwb\nKOgBAACADKOgD8aV4vG4D308jvN4ZB6PzOOReTwyzwYKegAAACDDKOiD0YsWjx76eBzn8cg8HpnH\nI/N4ZJ4NFPQAAABAhlHQB6MXLR499PE4zuOReTwyj0fm8cg8GyjoAQAAgAyjoA9GL1o8eujjcZzH\nI/N4ZB4UmnWHAAAgAElEQVSPzOOReTZQ0AMAAAAZRkEfjF60ePTQx+M4j0fm8cg8HpnHI/NsoKAH\nAAAAMoyCPhi9aPHooY/HcR6PzOOReTwyj0fm2UBBDwAAAGQYBX0wetHi0UMfj+M8HpnHI/N4ZB6P\nzLOBgh4AAADIMAr6YPSixaOHPh7HeTwyj0fm8cg8HplnAwU9AAAAkGEU9MHoRYtHD308jvN4ZB6P\nzOOReTwyzwYKegAAACDDKOiD0YsWjx76eBzn8cg8HpnHI/N4ZJ4NFPQAAABAhlHQB6MXLR499PE4\nzuOReTwyj0fm8cg8G7pHPpmZnSdpqpI3Ene7+815j0+UdH063CxpsrsvjpwjsF+7dqnx3W3aumZ9\nh3bT4/D3qHvvQzppUgAAoFyFFfRm1k3SHZKqJdVJesbMHnL3pTmrrZR0trtvSov/n0g6LWqOEWpq\nani3G2zxO2906ln6hs3v6NnLvtqxnXQznXLfbSVb0HOcxyPzeGQej8zjkXk2RLbcnCppubuvdved\nkh6QdFHuCu7+lLtvSodPSRoYOD8AAAAgcyIL+oGS1uSM16r1gv2Lkn7bpTMqAN7lxqOHPh7HeTwy\nj0fm8cg8HplnQ2gPfVuZ2YclfUESR1EHNbzzrna+tWn/K7bCG3bJfVcnzQgAAACdKbKgXyepKmc8\nKF22FzM7UdIMSee5+5vN7WjWrFmaOXOmqqqS3VVWVmrUqFG730U23TO1GMe593ONeL4dr7+hn13y\nD5KkUX2OkCQt3lLfrvELW16XdvnuM91N93XPyvhX9a9o6MGHFc18Fr/zRtJDr0QxHZ+dNV68eLEm\nT55cNPMph3HTsmKZTzmMo3+eM5amT5+emd/3pTLm53nMz++amhrV1tZKksaNG6fq6mq1h7l7uzY4\nUGZWIWmZkoti10t6WtJl7r4kZ50qSfMkfdbdn2ppX/PmzfMxY8Z08Yy7Rk1N7MUlW1ev07MTp4Q9\nXzHq7ItiO0V6Uewhg/sVeiZdIvo4B5kXApnHI/N4ZB5vwYIFqq6utvZs072rJpPP3RvN7CpJj2nP\nbSuXmNmVycM+Q9I3JB0u6cdmZpJ2uvupUXOMwP8U8YqumC8DHOfxyDwemccj83hkng1hBb0kufsj\nko7NW3ZXzteTJE2KnBMAAACQZXxSbLDcfinEaOphRxyO83hkHo/M45F5PDLPBgp6AAAAIMMo6IPR\nixaPHvp4HOfxyDwemccj83hkng0U9AAAAECGUdAHoxctHj308TjO45F5PDKPR+bxyDwbKOgBAACA\nDKOgD0YvWjx66ONxnMcj83hkHo/M45F5NlDQAwAAABlGQR+MXrR49NDH4ziPR+bxyDwemccj82yg\noAcAAAAyjII+GL1o8eihj8dxHo/M45F5PDKPR+bZQEEPAAAAZBgFfTB60eIVbQ+9FXoCXYfjPB6Z\nxyPzeGQej8yzoXuhJ4CWNWzdpsZ33+3YTrxz5oJOtsv16iNPqnvvQzq0m8PHj1Ovwf06aVIAACCL\nzD17Fd+8efN8zJgxhZ5Gl9u8dKVevO6WDu1jV0OjGjZt7qQZodicfM/3dejIoYWeBgAA6CQLFixQ\ndXV1u/6Ozxn6YuauHfVvFXoWAAAAKGL00AejFy1e0fbQlzCO83hkHo/M45F5PDLPBgp6AAAAIMMo\n6INxP9d43Ic+Hsd5PDKPR+bxyDwemWcDBT0AAACQYRT0wehFi0cPfTyO83hkHo/M45F5PDLPBgp6\nAAAAIMO4bWUwetHilXQPfeMubV2zvkO76H5ob/V4z2GdNKEEx3k8Mo9H5vHIPB6ZZwMFPZBhz3/x\nnzu8j5N+fEOnF/QAACBOaMuNmZ1nZkvN7CUzu76FdaaZ2XIzW2hmoyPnF4FetHj00O9P539aNMd5\nPDKPR+bxyDwemWdDWEFvZt0k3SHpXEknSLrMzI7LW+d8ScPd/RhJV0q6M2p+nW37xje0eenKff49\n89/zm13e3L+Gt7cU+mWUhFXb3i70FMrO4sWLCz2FskPm8cg8HpnHI/N4CxcubPc2kS03p0pa7u6r\nJcnMHpB0kaSlOetcJOleSXL3P5tZpZkd5e6vBs6zU2xds16Lv/KdfZa/9NoKPf/4iwWYUfl6Z1dD\noadQdjZt2lToKZQdMo9H5vHIPB6Zx1u0aFG7t4lsuRkoaU3OeG26rLV11jWzDgAAAIAUF8U2wxt3\nyX1Xh/bRe+ggve8jp+2z/O3/3tDscnQdMm9dxSGH6N11HfsjWMUhPfdqxX9l+QrtqH+rnfs4WNaj\nYz+SfEeDdr69uUP76NbjIO2o79gZqR7ve2/4hca1tbXNLt/xxlvyxgP/eWbdTAe95zBZRcUB76NU\ntZR5WzS88662v/p6h56/W4+DdMigfh3aR9Z0JHMcGDLPhsiCfp2kqpzxoHRZ/jqD97OOFi5cqJ//\n/Oe7xyeddJJGjy7C62cvOXufRdVDD9O7xTjXEkbmrXtpyxtSJ1+uceqZZ+gvq1d27k6zZHN9+FOO\nGzdOCxYs6Jqdr+6a3WZdl2beVhvrCvv8wYoi8zJD5l1v4cKFe7XZ9O7du937MPfOv8NFs09kViFp\nmaRqSeslPS3pMndfkrPOxyV92d0/YWanSZrq7pxaBQAAAFoQdobe3RvN7CpJjynp3b/b3ZeY2ZXJ\nwz7D3R82s4+b2QpJ70j6QtT8AAAAgCwKO0MPAAAAoPOFfrBUOTGzu83sVTN7IW/51Wa2xMwWm9lN\nhZpfKWouczM7ycz+ZGbPm9nTZjaukHMsNWY2yMz+x8xeTI/pr6TL32tmj5nZMjN71MwqCz3XUtFM\n5leny29Jf7YsNLPZZsbH/3aSlo7znMenmNkuMzu8UHMsNa1lzu/RrtHKz3N+j3YRM+tpZn9Os11s\nZt9Kl7f7dyhn6LuImY1Xcqnhve5+YrrsQ5L+j6SPu3uDmR3p7h27zQF2ayHzRyX9m7s/ln5w2XXu\n/uFCzrOUmFk/Sf3cfaGZ9ZH0nJLPk/iCpHp3vyX9VOj3uvvXCjnXUtFK5oMk/Y+770qLHHf3rxdy\nrqWipczdfamZDZI0U9Kxksa6Ox9N3QlaOc77id+jXaKZzJ+VdImkqeL3aJcxs17uvjW91vQPkr4i\naYLa+TuUM/RdxN1rJL2Zt3iypJvcvSFdhx9CnaiFzHdJanpn+x41c9ckHDh33+DuC9Ovt0haoqSw\nvEhS062ofi7p4sLMsPS0kPlAd/9v33O/3aeUfB/QCVrKPH34Nkn/VKi5lapWMuf3aBdpJvOlkgaI\n36Ndyt23pl/2VHJtq+sAfodS0McaKelsM3vKzObzZ6sQ/yjpVjOrlXSLJM5YdhEzO1rSaCXF5O5P\neHb3DZL6Fm5mpSsn8z/nPfT3kn4bPZ9ykJu5mV0oaY27Ly7opEpc3nHO79EAeZnze7QLmVk3M3te\n0gZJj7v7MzqA36EU9LG6K/mzyWmSrpP0YIHnUw4mS7rG3auU/FD6aYHnU5LSP8/OUpL1Fu31MVNS\nM2N0UDOZNy3/Z0k73f2+gk2uROVmLqlRSevHt3JXKcS8Slkzxzm/R7tYM5nze7QLufsudz9ZyV9V\nTzWzE3QAv0Mp6GOtkTRHktJ3YLvM7IjCTqnkXe7ucyXJ3WdJOrXA8yk5ZtZdyQ//f3f3h9LFr5rZ\nUenj/SRtLNT8SlELmcvMPi/p45ImFmhqJauZzIdLOlrSIjNbpeSX8XNmxl+jOkkLxzm/R7tQC5nz\nezSAu78t6XeSztMB/A6loO9apr3P2MyV9BFJMrORkg5y9/iPlCxt+ZmvM7NzJMnMqiW9VJBZlbaf\nSvqru9+es+xXkj6ffn25pIfyN0KH7JO5mZ2npJf7QnffXrCZla69Mnf3v7h7P3cf5u5DJa2VdLK7\n8+a18zT3s4Xfo12rucz5PdpFzOzIpjvYmNkhkj6q5HqRdv8O5S43XcTM7pP0IUlHSHpVyZ9l/13S\nPUr60rZLmuLuTxRqjqWmhcyXSZomqULSNklfcvfnCzXHUmNmZ0r6vaTFSv4k6EraEJ5W8qfwwZJW\nS/o7d3+rUPMsJS1k/s9KjvMekpqKm6fc/UsFmWSJaek4d/dHctZZKWkcd7npHK38bJmnpOjk92gn\nayXzt8Xv0S5hZqOUXPTaLf33S3f/XnoL3Hb9DqWgBwAAADKMlhsAAAAgwyjoAQAAgAyjoAcAAAAy\njIIeAAAAyDAKegAAACDDKOgBAACADKOgBwAAADKMgh4AcMDMbJWZfaTQ8wCAckZBDwAAAGQYBT0A\nlAgz+4qZ/Uuh5wEAiEVBDwCl44eS/s7M+rZ1AzO7zsz+M2/Z7WY2Nf36ejNbYWZvm9lfzOziVva1\ny8yG5YzvMbNv54z7m9ksM9toZi+b2dXtenUAgGZR0ANAiXB3l/QLSZ9rx2YPSDrfzHpLkpl1k/Sp\ndD+StELSme5+mKQbJf2HmR3V0hRaehIzM0m/lvS8pP6SqiVdY2YfbcdcAQDNoKAHgNLyc0mfb+vK\n7l4raYGkS9JF1ZLecfdn0sdnu/ur6df/KWm5pFNb2J218lSnSDrS3b/n7o3u/oqkmZI+3da5AgCa\nR0EPAKXlSEmHmNkpZlZpZp80s6/vZ5v7JV2Wfn2ZpPuaHjCzz5nZ82b2ppm9KemE9Dnaa4ikgWb2\nRvrvTUlfl9Tm9iAAQPMo6AGgRJjZuUrOnn9X0t+7+yZJz0k6aD+b/qekD5nZQCVn6u9L91claYak\nL7n7e939vZJeVMtn4rdK6pUz7pfz9RpJK9398PTfe9290t3/tn2vEgCQL6ygN7O7zexVM3uhlXWm\nmdlyM1toZqOj5gYAWWdml0n6iLvfoaRAv8DMerZlW3d/XdITku5RUnQvSx/qLWmXpNfNrJuZfUHS\nB1rZ1UJJE9N1z5N0Ts5jT0vanF6Ee7CZVZjZCWY2rl0vFACwj8gz9PdIOrelB83sfEnD3f0YSVdK\nujNqYgCQZWZ2mqS/cffrJcndt0iaq/b1p9+npH++6WJYufsSSf8m6SlJG5S029TkbZd7Iew1ki6U\n9KaS1p3/m7OvXZIukDRa0ipJGyX9RNJh7ZgjAKAZltwUIejJzIZI+rW7n9jMY3dKmu/uv0zHSyR9\nqOliLABA+6U/dz/v7jcWei4AgK5RTD30A5X0WDZZly4DABwAM+sj6VJJY83shELPBwDQNboXegIA\ngK6Rtt78W/oPAFCiiqmgXydpcM54ULpsH5MnT/aXX35Z/folN1Do3bu3RowYodGjk+toFy5cKElF\nOW76uljmUw7jWbNmZeb4KJXxihUrdOmllxbNfMph3LSsWOZTDmN+nvPzvBzG/DyP+fm9aNEibdiw\nQZI0fPhwTZ8+vbXP9dhHdA/90Up66Ec189jHJX3Z3T+RXuA11d1Pa24/8+bN8zFjxnTpXLvKTTfd\npK997WuFnkZZIfN4ZB6PzOOReTwyj0fm8a655hrde++97Srow87Qm9l9kj4k6Qgzq5X0LUk9lHxa\n+Qx3f9jMPm5mKyS9I+kLUXMDAAAAsiqsoHf3iW1Y56qIuRRSbW1toadQdsg8HpnHI/N4ZB6PzOOR\neTYU011uysKoUft0G6GLkXk8Mo9H5vHIPB6ZxyPzeCeddFK7twntoe8sWe6hBwAAAFqyYMECVVdX\nF2cPfZQtW7Zo06ZNMmtXDigBFRUV6tu3L997AABQVkqqoK+vr5ckDRgwgKKuDG3dulUbN27UUUcd\ntdfympoajR8/vkCzKk9kHo/M45F5PDKPR+bZUFI99Nu3b9cRRxxBMV+mevXqpcbGxkJPAwAAIFRJ\n9dDX1dVpwIABBZgRigXHAAAAyLID6aEvqTP0AAAAQLmhoEfJq6mpKfQUyg6ZxyPzeGQej8zjkXk2\nUNADAAAAGUZBD0nSGWecoT/+8Y9d/jwrVqzQOeecoyFDhugnP/lJlz+fJK7OLwAyj0fm8cg8HpnH\nI/NsKKnbVjbnrTe2avNb27ps/4e+52C95/BeXbb/thg9erSmTZums88++4D3EVHMS9K0adN01lln\n6Yknngh5PgAAgFJX8gX95re26bG5f+my/X/s4g8UvKDviMbGRlVUVIRtu2bNGk2YMGG/6911113a\nuHGjvvGNbxzQ3HJxD914ZB6PzOOReTwyj0fm2UDLTbDRo0dr6tSpOv300zV8+HBdffXV2rFjhyTp\npZde0oUXXqihQ4fqzDPP1COPPLJ7u9tvv10nnHCCqqqq9MEPflBPPvmkJGny5Mlau3atJk6cqKqq\nKv3whz/Uhg0bdPnll2vkyJEaM2aMZsyYsc8cms6UDx48WI2NjRo9erR+//vfS5KWLVvW4jzyt921\na9c+r7Gl13HxxRerpqZG1113naqqqrRy5coWc7riiis0d+5cvfbaaweYNAAAQHmgoC+AWbNmac6c\nOVqwYIFWrFihW2+9VQ0NDZo4caKqq6u1fPly3XTTTbriiiv08ssva8WKFZo5c6bmz5+v2tpazZ49\nW1VVVZKk6dOna9CgQbr//vtVW1urq666ShMnTtSJJ56oJUuWaO7cubrrrrs0f/78veYwZ84cPfjg\ng1q1atVeZ9kbGhr0mc98ptl5NLdtt257H0KtvY65c+fq9NNP1y233KLa2loNGzasxYzMTJdeeqke\neOCBDufNmYV4ZB6PzOOReTwyj0fm2UBBXwCTJk1S//79VVlZqa9+9auaM2eOnn32WW3dulXXXHON\nunfvrrPOOkvnnnuuZs+erYqKCu3cuVNLlixRQ0ODBg0apCFDhuy1z6YPCHvuuedUX1+vKVOmqKKi\nQlVVVfrsZz+r2bNn77X+lVdeqf79+6tnz557LW9tHvvbtq3bt9Vll12m+++/v93bAQAAlBMK+gLI\n/STTwYMHa8OGDdqwYcM+n3A6ePBgrV+/XkOHDtX3vvc93XzzzTr22GM1adIkbdiwodl9r127VuvX\nr9ewYcM0bNgwDR06VLfddpvq6+tbnEOu9evXtziP/W3b1u3bqr6+Xtu2bdOCBQskSStXrtRvfvMb\n3XLLLVq0aFGb98M9dOOReTwyj0fm8cg8HplnAwV9Aaxbt27312vWrFG/fv3Ur1+/vZZLSXHev39/\nSdKECRP08MMP7y5kv/3tb+9ez2zPpwMPHDhQRx99tFauXKmVK1dq1apVWr169T5nunO3ydW/f/9W\n59Hatk3b19XVtbp9W8ybN08LFizQlClT9Itf/EKS9Mgjj6h///6aPHmy7rjjjnbtDwAAoFRR0BfA\n3Xffrbq6Or355pu67bbbdMkll2js2LHq1auXpk2bpoaGBtXU1OjRRx/VJz/5Sa1YsUJPPvmkduzY\noR49eujggw/eq6ju27evXnnlFUnS2LFj1adPH02bNk3btm1TY2OjlixZoueff75Nc2tpHm25M03T\n9occcsgBby9Js2fP1pNPPqlJkybpoosu0qOPPqrt27frS1/6ksaOHau6urp9Wo5aQ/9fPDKPR+bx\nyDwemccj82ygoC+ASy+9VBMmTNDYsWM1bNgwTZkyRQcddJDuu+8+Pf744xoxYoSuu+463XnnnRox\nYoR27NihG2+8Ucccc4yOP/541dfX65vf/Obu/V177bW69dZbNWzYME2fPl3333+/Fi9erJNPPlkj\nR47Utddeq82bN+9ev7kz7E3LWprH8OHDW9w2V0e3f+aZZ/S73/1ON9xwgySpT58++sQnPqE5c+bs\nXufhhx/WV7/61Vb3AwAAUC6s6WLKLJk3b56PGTNmn+V1dXX79G8X2wdLdcaHQJWzRx55RGeeeaY2\nbty4+01CruaOAe6hG4/M45F5PDKPR+bxyDzeggULVF1d3foZ0Dwl/8FS7zm8V6Y/+Al7/OY3v9HU\nqVM1Y8YMnXnmmZoyZUqhpwQAAFBwJV/QF5v9tZygZRdccIEuuOCCdm/HmYV4ZB6PzOOReTwyj0fm\n2UBBH6ytF6cCAAAAbcFFsSh53EM3HpnHI/N4ZB6PzOOReTaEFvRmdp6ZLTWzl8zs+mYeP8zMfmVm\nC81ssZl9PnJ+AAAAQNaE3eXGzLpJeklStaQ6Sc9I+rS7L81Z5+uSDnP3r5vZkZKWSTrK3Rty99We\nu9ygvHAMAACALDuQu9xEnqE/VdJyd1/t7jslPSDporx1XNKh6deHSqrPL+YBAAAA7BFZ0A+UtCZn\nvDZdlusOScebWZ2kRZKuac8T9OzZU/X19crivfXRcVu3blVFRcU+y+n/i0fm8cg8HpnHI/N4ZJ4N\nxXaXm3MlPe/uHzGz4ZIeN7MT3X1LWzY+4ogjtGXLFtXV1RXt7SE3bdqkysrKQk+jJFVUVKhv376F\nngYAAECoyIJ+naSqnPGgdFmuL0j6viS5+8tmtkrScZKezV1p1qxZmjlzpqqqkt1VVlZq1KhRGj9+\nvPr06aOFCxdK2nPv1KZ3l8UwHjBgQFHNpxzGTcuKZT7lMm5SLPNhzLizx+PHjy+q+ZTDuGlZscyn\nXMZNimU+pTZu+rq2tlaSNG7cOFVXV6s9Ii+KrVBykWu1pPWSnpZ0mbsvyVnnR5I2uvuNZnaUkkL+\nJHd/I3dfLV0UCwAAAGRZUV8U6+6Nkq6S9JikFyU94O5LzOxKM7siXe27ks4wsxckPS7puvxiPuvy\n3+2i65F5PDKPR+bxyDwemccj82zoHvlk7v6IpGPzlt2V8/V6JX30AAAAANogrOWmM9FyAwAAgFJU\n1C03AAAAADofBX0wetHikXk8Mo9H5vHIPB6ZxyPzbKCgBwAAADKMHnoAAACgSNBDDwAAAJQZCvpg\n9KLFI/N4ZB6PzOOReTwyj0fm2UBBDwAAAGQYPfQAAABAkaCHHgAAACgzFPTB6EWLR+bxyDwemccj\n83hkHo/Ms4GCHgAAAMgweugBAACAIkEPPQAAAFBmKOiD0YsWj8zjkXk8Mo9H5vHIPB6ZZwMFPQAA\nAJBh9NADAAAARYIeegAAAKDMUNAHoxctHpnHI/N4ZB6PzOOReTwyzwYKegAAACDD6KEHAAAAigQ9\n9AAAAECZoaAPRi9aPDKPR+bxyDwemccj83hkng0U9AAAAECGhfbQm9l5kqYqeSNxt7vf3Mw6H5J0\nm6SDJL3m7h/OX4ceegAAAJSiA+mh795Vk8lnZt0k3SGpWlKdpGfM7CF3X5qzTqWkH0n6mLuvM7Mj\no+YHAAAAZFFky82pkpa7+2p33ynpAUkX5a0zUdJsd18nSe7+euD8QtCLFo/M45F5PDKPR+bxyDwe\nmWdDZEE/UNKanPHadFmukZION7P5ZvaMmX02bHYAAABABoW13LRRd0ljJH1EUm9JfzKzP7n7ityV\nZs2apZkzZ6qqqkqSVFlZqVGjRmn8+PGS9rybLMbx+PHji2o+5TBuWlYs8ymXcZNimQ9jxp095uc5\nP8/LZdykWOZTauOmr2trayVJ48aNU3V1tdoj7KJYMztN0g3ufl46/pokz70w1syul3Swu9+YjmdK\n+q27z87dFxfFAgAAoBQV+wdLPSNphJkNMbMekj4t6Vd56zwkabyZVZhZL0kflLQkcI5dLv/dLroe\nmccj83hkHo/M45F5PDLPhu5RT+TujWZ2laTHtOe2lUvM7MrkYZ/h7kvN7FFJL0hqlDTD3f8aNUcA\nAAAga0LvQ99ZaLkBAABAKSr2lhsAAAAAnYyCPhi9aPHIPB6ZxyPzeGQej8zjkXk2UNADAAAAGUYP\nPQAAAFAk6KEHAAAAygwFfTB60eKReTwyj0fm8cg8HpnHI/NsoKAHAAAAMoweegAAAKBI0EMPAAAA\nlBkK+mD0osUj83hkHo/M45F5PDKPR+bZQEEPAAAAZBg99AAAAECRoIceAAAAKDMU9MHoRYtH5vHI\nPB6ZxyPzeGQej8yzgYIeAAAAyDB66AEAAIAiQQ89AAAAUGYo6IPRixaPzOOReTwyj0fm8cg8Hpln\nQ/dCTwAAUDjursbGzmu9rKgwmbXrL8UAgA6ihx4AytiOHQ164uGl2rJ5e4f31eewg3XO+cepR4+K\nTpgZAJSnA+mh5ww9AJS5TW++q01vvtvh/TQ27OqE2QAA2ose+mD0osUj83hkHo/M45F5PDKPR+bZ\nQEEPAAAAZFhoQW9m55nZUjN7ycyub2W9U8xsp5l9MnJ+EcaPH1/oKZQdMo9H5vHIPB6ZxyPzeGSe\nDWEFvZl1k3SHpHMlnSDpMjM7roX1bpL0aNTcAAAAgKyKPEN/qqTl7r7a3XdKekDSRc2sd7WkWZI2\nBs4tDL1o8cg8HpnHI/N4ZB6PzOOReTZEFvQDJa3JGa9Nl+1mZgMkXezu0yVxI2MAAABgP4rttpVT\nJeX21pdcUU8vWjwyj0fm8Yoh8+3bGrRu9RvyTrh7pZnUb1ClDunVo+M76yLFkHm5IfN4ZJ4NkQX9\nOklVOeNB6bJc4yQ9YMnHDB4p6Xwz2+nuv8pdadasWZo5c6aqqpLdVVZWatSoUbsPuqY/DzFmzJgx\n49bHf/zDH7RsxXL1O2KkJOnlVxZLkoYfPard423v7tRPfvjgAW+fOx454iRNuHxcwfNhzJgx464e\nN31dW1srSRo3bpyqq6vVHmGfFGtmFZKWSaqWtF7S05Iuc/clLax/j6Rfu/uc/Mey/EmxNTU1u7+R\niEHm8ci8a23ZvE1/eXaddu3a8/P7hRef04knjG33vtxdy//6atF9KFRF926acPk4HVp5cKGn0iKO\n83hkHo/M4xX1J8W6e6OZXSXpMSW9+3e7+xIzuzJ52GfkbxI1NwDIEt8lLV28fq8ivPaV13VQQ10B\nZwUAKJSwM/SdKctn6AGgozZv2qbZP3+26M6qd6YsnKEHgK5wIGfo+aRYAAAAIMMo6IPlXgCBGGQe\nj8zjNV1Mijgc5/HIPB6ZZwMFPQAAAJBhFPTBuFI8HpnHI/N4Tbd9RByO83hkHo/Ms4GCHgAAAMgw\nCvpg9KLFI/N4ZB6v1Hro3V1b39mhjevf7pR/W9/Z0elz5DiPR+bxyDwbwu5DDwBAW+1qdP3mgYWd\ntkWbsugAACAASURBVL+LPnOyevXu0Wn7A4Biwhn6YPSixSPzeGQejx76eBzn8cg8HplnAwU9AAAA\nkGEU9MHoRYtH5vHIPF6p9dBnAcd5PDKPR+bZQEEPAAAAZBgFfTB60eKReTwyj0cPfTyO83hkHo/M\ns4GCHgAAAMgwCvpg9KLFI/N4ZB6PHvp4HOfxyDwemWcDBT0AAACQYRT0wehFi0fm8cg8Hj308TjO\n45F5PDLPBgp6AAAAIMMo6IPRixaPzOOReTx66ONxnMcj83hkng0U9AAAAECGUdAHoxctHpnHI/N4\n9NDH4ziPR+bxyDwbKOgBAACADKOgD0YvWjwyj0fm8eihj8dxHo/M45F5NlDQAwAAABlGQR+MXrR4\nZB6PzOPRQx+P4zwemccj82zoHvlkZnaepKlK3kjc7e435z0+UdL16XCzpMnuzt+RAWTe22++q/Vr\n3+qUfTU2unY17uqUfQEAsi+soDezbpLukFQtqU7SM2b2kLsvzVltpaSz3X1TWvz/RNJpUXOMUFNT\nw7vdYGQej8z3tX1Hg2oeX95l+3/5lcWcpQ/GcR6PzOOReTZEttycKmm5u692952SHpB0Ue4K7v6U\nu29Kh09JGhg4PwAAACBzIgv6gZLW5IzXqvWC/YuSftulMyoA3uXGI/N4ZB6Ps/PxOM7jkXk8Ms+G\n0B76tjKzD0v6giSOIgBAh1V05x4QAEpXZEG/TlJVznhQumwvZnaipBmSznP3N5vb0axZszRz5kxV\nVSW7q6ys1KhRo3a/i2y6Z2oxjnPv51oM8ymH8fTp0zNzfJTKePHixZo8eXLRzKcYxscec5KkPfeL\nbzqj3lnjpmX/f3t3Hy9lXed//PUBFG9YjyKroHC8wSTXJRGJTLGys5to5U20rpBm0SrrfUVpW7qW\n1a66korumqzWDytl82bTepha5qqnvEHhINkBQYXDAQ4lCoiKcvP5/XFdB4Zh5sw1w8x1fWd4Px+P\n82C+11xzzZvvXOc733PN57qmVtuv9/bvfrUbfXbqzbyX2gB4/6EjACpqD/vAIE79zFiN5xm0NZ5r\nPG/Edvftjo4OAEaNGkVLSwvlMHcv6wGVMrPewHyik2KXA88C4929PWedZuBR4Cx3f7rYth599FEf\nOXJkjRPXRmurTi5Jm/o8ferzbf1lxZs88LPZNdu+TopNzwmf+VsGH9hf+3kG1OfpU5+nb9asWbS0\ntFg5j+lTqzD53H2jmV0IPMKWy1a2m9mk6G6fBlwB9Af+y8wMWO/uo9PKmAb9UqRPfZ4+9Xn6NJlP\nn/bz9KnP06c+rw+pTegB3P0hYFjesltzbp8DnJNmJhERERGReqazhFKWWy8l6VCfp099nr7cWnpJ\nh/bz9KnP06c+rw+a0IuIiIiI1DFN6FOmWrT0qc/Tpz5Pn2ro06f9PH3q8/Spz+uDJvQiIiIiInVM\nE/qUqRYtferz9KnP06ca+vRpP0+f+jx96vP6oAm9iIiIiEgdS/WylaJatCyoz9PXKH2+/r0NbNiw\nqSrb6kVZ3xFSNtXQp69R9vN6oj5Pn/q8PmhCLyJSxJ+Xv8mTj7xUlW1trNIfBiIiIvlUcpMy1aKl\nT32evkbpc9/kvPXmu1X5WffO+ppmVQ19+hplP68n6vP0qc/rgyb0IiIiIiJ1TBP6lKkWLX3q8/Sp\nz9OnGvr0aT9Pn/o8ferz+qAJvYiIiIhIHdOEPmWqRUuf+jx96vP0qYY+Pe7w5qp1PPLQ73hz1brt\n+nn7rXez/u/UFY0t6VOf1wdd5UZERKQMv7n/RXr1Mha+Op9lL+28Xds67hOHMvT9+1QpmYjsqDSh\nT5lq0dKnPk+f+jx9qqFPj29yNm5yDhpy+PZfjtSrk2lHobElferz+qCSGxERERGROqYJfcpUi5Y+\n9Xn61OfpUw19+tTn6dPYkj71eX3QhF5EREREpI5pQp8y1aKlT32ePvV5+lRDnz71efo0tqRPfV4f\ndFKsiDSUde+sZ+PG7TxRsZtVZzMiIiK1pAl9ylpbW/XXbsrU5+nLss+Xdaziqd8trMq2tvsKJil6\nedFcHTFOmfo8fRrP06c+rw+a0ItIQ/FNzrp31mcdQyQRB955+72qbMt6GbvsslNVtiUi9cXc6+8i\nuI8++qiPHDky6xgiEqCX2//M//16XtYxRBLZaafe7NS3d1W2NfLDBzJs+MCqbEtEsjNr1ixaWlrK\nKvrUEXoREZGMrF+/kfXrN1ZlWxuqtB0RqT+pTujNbCxwA9HVdW5392sKrDMVOBF4C/iCu7elmbHW\nVIuWPvV5+srt8790vcmaN96pynMv71xVle3UG9Vzp099nj6N5+lTn9eH1Cb0ZtYLuBloAZYBM83s\nfnefl7POicBQd3+fmX0I+CFwdFoZ0zB37lz9YqRMfZ6+cvt8xdLVPPP4KzVM1PiWdr2qyWXKQuvz\neXOXs2b1uqps66/37cchf7NvVbZVTRrP06c+T19bWxstLS1lPSbNI/SjgQXuvhjAzGYApwC5xa6n\nAHcAuPszZtZkZvu6+4oUc9bU6tWrs46ww1Gf18b69RujM/oKeOP1Vax/L/nH/3V4Kk9w1r37VtYR\ndjih9fmqlW+zauXbVdnWoYcPDHJCr/E8ferz9M2ZM6fsx6Q5od8fWJLT7iSa5Pe0ztJ4WcNM6EUa\nRdvTHXS8srLgffP/uJwH7pqdeFtvvflutWKJiIjscHRSbMo6OjqyjrDDSbvPN2zYxJurqlMPvstu\nO7Fz3+r9mm7a6BQ9rF4GM2PAvv2KnoT39ro32G/Intv9PJLcQ0+u5W9G7Jd1jB1KI/f5rrvtXLXz\nUXbeuQ979t+NalxVb/GixWzcsIneffRF92nRvKU+pDmhXwo057QHx8vy1xlSYh3a2tqYPn365vYR\nRxzBiBEjqpe0hkaNGsWsWbOyjrFDUZ/XTt8ic/YTP308ffdck26YHZz6PH2N3OebgOV/fq1q21vc\nWZ3tfHD0B5nzQkNdKyN4eg+tvba2tq3KbHbfffeyt5HadejNrDcwn+ik2OXAs8B4d2/PWeck4AJ3\n/6SZHQ3c4O4NdVKsiIiIiEg1pXaE3t03mtmFwCNsuWxlu5lNiu72ae7+oJmdZGYLiS5b+cW08omI\niIiI1KO6/KZYERERERGJ6KySGjGz281shZm9kLf8IjNrN7O5ZnZ1VvkaUaE+N7MjzOwpM5ttZs+a\n2agsMzYaMxtsZr8zsxfjffriePleZvaImc03s4fNrCnrrI2iQJ9fFC+/Nh5b2szsXjPbI+usjaLY\nfp5z/2Qz22Rm/bPK2Gh66nO9j9ZGD+O53kdrxMz6mtkzcd/ONbMr4+Vlv4fqCH2NmNkYYC1wh7t/\nIF72MeCbwEnuvsHMBrh79c462sEV6fOHgSnu/kj8xWWXuvvxWeZsJGY2EBjo7m1m1g94nuj7JL4I\nrHT3a83sMmAvd/9GllkbRQ99Phj4nbtviic57u7/kmXWRlGsz919npkNBm4DhgFHufvrWWZtFD3s\n5wPR+2hNFOjz54DTgBvQ+2jNmNlu7v52fK7p74GLgXGU+R6qI/Q14u6twBt5i88Drnb3DfE6GoSq\nqEifbwK6/7LdkwJXTZLKuXuXu7fFt9cC7UQTy1OA7ktRTQdOzSZh4ynS5/u7+2/dfVO82tNEr4NU\nQbE+j+++Hvh6VtkaVQ99rvfRGinQ5/OA/dD7aE25e/e3wfUlOrfVqeA9VBP6dB0KfMTMnjazx/Sx\nVSq+AlxnZh3AtYCOWNaImR0IjCCaTG7+hmd37wL2yS5Z48rp82fy7poI/DrtPDuC3D43s5OBJe4+\nN9NQDS5vP9f7aAry+lzvozVkZr3MbDbQBfzG3WdSwXuoJvTp6kP0scnRwKXAzzPOsyM4D7jE3ZuJ\nBqUfZZynIcUfz95D1Ndr2fbbq1TbV2UF+rx7+beA9e5+Z2bhGlRunwMbiUo/rsxdJYtcjazAfq73\n0Ror0Od6H60hd9/k7kcSfao62swOp4L3UE3o07UEuA8g/gtsk5ntnW2khne2u/8CwN3vAUZnnKfh\nmFkfosH/J+5+f7x4hZntG98/EPhzVvkaUZE+x8y+AJwETMgoWsMq0OdDgQOBOWb2KtGb8fNmpk+j\nqqTIfq730Roq0ud6H02Bu68B/g8YSwXvoZrQ15ax9RGbXwAfBzCzQ4Gd3H1lFsEaWH6fLzWzjwKY\nWQvwUiapGtuPgD+5+405yx4AvhDfPhu4P/9Bsl226XMzG0tUy32yu7+bWbLGtVWfu/sf3X2gux/s\n7gcBncCR7q4/Xqun0Nii99HaKtTneh+tETMb0H0FGzPbFfh7ovNFyn4P1VVuasTM7gQ+BuwNrCD6\nWPYnwI+J6tLeBSa7++NZZWw0Rfp8PjAV6A2sA85399lZZWw0ZnYs8AQwl+gjQScqQ3iW6KPwIcBi\n4HR3X5VVzkZSpM+/RbSf7wx0T26edvfzMwnZYIrt5+7+UM46rwCjdJWb6uhhbHmUaNKp99Eq66HP\n16D30Zows+FEJ732in/+x92/H18Ct6z3UE3oRURERETqmEpuRERERETqmCb0IiIiIiJ1TBN6ERER\nEZE6pgm9iIiIiEgd04ReRERERKSOaUIvIiIiIlLHNKEXEREREaljmtCLiEjFzOxVM/t41jlERHZk\nmtCLiIiIiNQxTehFRBqEmV1sZv+WdQ4REUmXJvQiIo3jJuB0M9sn6QPM7FIzuztv2Y1mdkN8+zIz\nW2hma8zsj2Z2ag/b2mRmB+e0f2xmV+W0B5nZPWb2ZzN72cwuKut/JyIiBWlCLyLSINzdgZ8Bny/j\nYTOAE81sdwAz6wX8Q7wdgIXAse6+B/Ad4Kdmtm+xCMWexMwM+CUwGxgEtACXmNnfl5FVREQK0IRe\nRKSxTAe+kHRld+8AZgGnxYtagLfcfWZ8/73uviK+fTewABhdZHPWw1N9EBjg7t93943uvgi4DTgj\naVYRESmsT9YBRESkqgYAu5rZB4E3gOHxz6/cfVaRx9wFjAd+Gv97Z/cdZvZ54CvAgfGi3ePnKNcB\nwP5m9nr3pokOKj1RwbZERCSHJvQiIg3CzE4A3gd8D5gIzAf+APwWuBWYUOShdwPXmdn+REfqj463\n1wxMA45396fiZbMpfiT+bWC3nPZAYEl8ewnwirsPq+g/JyIiRankRkSkAZjZeODj7n4z0QT908At\n7v4sMBh4tdhj3f014HHgx0ST7vnxXbsDm4DXzKyXmX0R+NseYrQBE+J1xwIfzbnvWeDN+CTcXcys\nt5kdbmajKvsfi4hIN03oRUTqnJkdDfydu18G4O5rgf9lS336qcD3S2zmTqL6+e6TYXH3dmAK8DTQ\nBRwOtOY9LvdE2EuAk4lKfcbHGbq3tQn4FDCC6I+LPwP/DeyR8L8pIiJFWHRRBBERaURm9mng/4CB\n7r4g4zgiIlIDOkIvItKgzOw04ArgXuD0jOOIiEiN6Ai9iIiIiEgdq8ur3EyZMsVHjBiRdYyttLW1\noUw9Cy0PKFMSoeUBZUoqtEyh5QFlSiK0PKBMSYWWKbQ8EG6myZMn9/S9Htuoywn9nDlzmDhxYtYx\ntvLII48wcuTIrGNsJbRMoeUBZUoitDygTEmFlim0PKBMSYSWB5QpqdAyhZYHwsw0ffr0sh+jGnoR\nERERkTpWlxP6rq6urCNso6OjI+sI2wgtU2h5QJmSCC0PKFNSoWUKLQ8oUxKh5QFlSiq0TKHlgTAz\nVaIuJ/RDhw7NOsI2hg8fnnWEbYSWKbQ8oExJhJYHlCmp0DKFlgeUKYnQ8oAyJRVaptDyQJiZjjji\niLIfU5dXuXn00Uc9tHonEREREZHtNWvWLFpaWsI9KTb+KvAbiD4ZuN3dr8m7/2vA54i+eXAn4DBg\ngLuvSvoca9euZfXq1ZiV1Q9SZ9ydpqYm+vXrl3UUERERkUylNqE3s17AzURfLb4MmGlm97v7vO51\n3P064Lp4/U8BXy40mW9rayt4RvLKlSsB2G+//TShb3Duzuuvv867777L3nvvXfF2WltbGTNmTBWT\nbb/QMoWWB5QpqdAyhZYHlCmJ0PKAMiUVWqbQ8kCYmSqRZg39aGCBuy929/XADOCUHtYfD9xVzhN0\nT+40mW98Zsbee+/Nu+++m3UUERERkUylVkNvZuOAE9z93Lh9JjDa3S8usO6uQCcwtNAR+mI19MuW\nLWO//farenYJl15zERERaSSV1NCHepWbTwOt5dTOi4iIiIjsiNI8KXYp0JzTHhwvK+QMeii3ufHG\nG9l9991pbo4219TUxPDhwzn44IOrlVXqSGtrK8DmGrhy2t23K318Ldq33HILw4cPV54e2nPnzuW8\n884LJk+33H0q6zwh7t+h5QHt3/WYp5t+3+pv/w4tTyj7d/ft7mvijxo1ipaWFsqRZslNb2A+0Umx\ny4FngfHu3p63XhPwCjDY3d8ptK0pU6b4xIkTt1mu8osdz/a+5q2t4Z0ME1qm0PKAMiUVWqbQ8oAy\nJRFaHlCmpELLFFoeCDNTJSU3qV6HPr5s5Y1suWzl1WY2CXB3nxavczZRrf2EYttRDX31HXPMMVx3\n3XUcc8wxNX2ehQsX8qUvfYlFixZx+eWXc84552zX9vSai4iISCMJ/jr07v4QMCxv2a157enA9Go9\n54pVnby2pqtam9vGgD0Gsu+eg2u2/SRGjBjB1KlT+chHPlLxNv7whz9UMVFxU6dO5bjjjuPxxx9P\n5flEREREGl2qE/pqKXYd+kJeW9PFd2dMqlmWK864NfMJ/fbYuHEjvXv3Tu2xS5YsYdy4cRU9Xy2E\n+FFbaJlCywPKlFRomULLA8qURGh5QJmSCi1TaHkgzEyVCPUqNw1rxIgR3HDDDXz4wx9m6NChXHTR\nRbz33nsAvPTSS5x88skcdNBBHHvssTz00EObH3fjjTdy+OGH09zczIc+9CGefPJJAM477zw6OzuZ\nMGECzc3N3HTTTXR1dXH22Wdz6KGHMnLkSKZNm7ZNhu4j5UOGDGHjxo2MGDGCJ554AoD58+cXzZH/\n2E2bNm3zfyz2/zj11FNpbW3l0ksvpbm5mVdeeaW6nSsiIiKyA0q1hr5ayqmhf7HjuZofoT+8eVTi\n9UeMGEG/fv24++672W233TjjjDM47rjjuPTSSzn66KM566yzuOCCC3jqqaf43Oc+x2OPPYa7c9pp\np/Hoo4+yzz770NnZycaNGznggAM2b/Omm27iuOOOw91paWnhk5/8JF/+8pdZunQpp512Gtdddx3H\nH3/85vX33HNP7rrrLvr370/fvn03T9SPOeaYojmGDh1a8LG5NmzY0OPjTz75ZE4//XTOPPPMqvS/\nauhFRESkkTTSdegb2jnnnMOgQYNoamriq1/9Kvfddx/PPfccb7/9Npdccgl9+vThuOOO44QTTuDe\ne++ld+/erF+/nvb2djZs2MDgwYM3T+a7df9h9vzzz7Ny5UomT55M7969aW5u5qyzzuLee+/dav1J\nkyYxaNCgbSbkPeUo9dikj+/JmjVruOCCC5gwYQLHHnssEyZM4Oyzz2bdunWJHi8iIiKyo6nLCX1b\nW1vWEbZL7hHlIUOG0NXVRVdX1zZHmocMGcLy5cs56KCD+P73v88111zDsGHDOOecc+jqKnyib2dn\nJ8uXL+fggw/m4IMP5qCDDuL6669n5cqVRTPkWr58edEcpR6b9PE9eeGFF5g6dSrXXnstF110EXfe\neSfTp09nl112SfT4cuVeAzYUoWUKLQ8oU1KhZQotDyhTEqHlAWVKKrRMoeWBMDNVoi4n9PVu6dIt\n36e1ZMkSBg4cyMCBA7daDtHkfNCgQQCMGzeOBx98kDlz5gBw1VVXbV7PbMunMvvvvz8HHnggr7zy\nCq+88gqvvvoqixcv5q67tv6ertzH5Bo0aFCPOXp6bPfjly1b1uPjezJmzBh69+7NL3/5S4488shE\njxERERHZkdXlhH7EiBFZR9gut99+O8uWLeONN97g+uuv57TTTuOoo45it912Y+rUqWzYsIHW1lYe\nfvhhPvOZz7Bw4UKefPJJ3nvvPXbeeWd22WWXrSbV++yzD4sWLQLgqKOOol+/fkydOpV169axceNG\n2tvbmT17dqJsxXIkvTLNUUcdxa677lrx47s99thjDBs2rPSK2ynEM9tDyxRaHlCmpELLFFoeUKYk\nQssDypRUaJlCywNhZqpEXV62shwD9hjIFWfcWnrF7dh+uT772c8ybtw4VqxYwUknncTkyZPZaaed\nuPPOO/na177GD37wA/bbbz9++MMfcsghh/CnP/2J73znOyxYsICddtqJ0aNHc/3112/e3pe//GUu\nu+wyvv3tbzN58mTuuusuLr/8co488kjee+89DjnkEL71rW9tXr/QEfbuZcVyDB06tOhjc23v4wHW\nrl1bsxIbERERkUZTl1e5mTJlik+cOHGb5fVwxZNqfAmUbLG9r3mI158NLVNoeUCZkgotU2h5QJmS\nCC0PKFNSoWUKLQ+EmUlXuRERERER2cHU5RH6cq5DH5ojjzySG2+8UUfoq6QeXnMRERGRpCo5Qt/w\nNfShSXpyqoiIiIhIEnVZclPv16GXcIR4/dnQMoWWB5QpqdAyhZYHlCmJ0PKAMiUVWqbQ8kCYmSqR\n6oTezMaa2Twze8nMLiuyzsfMbLaZ/dHMHkszn4iIiIhIvUmtht7MegEvAS3AMmAmcIa7z8tZpwn4\nA/AJd19qZgPc/bX8bdVzDb1Ul15zERERaSShX+VmNLDA3Re7+3pgBnBK3joTgHvdfSlAocm8iIiI\niIhskeaEfn9gSU67M16W61Cgv5k9ZmYzzeysQhsqVkPft29fVq5cST1euUfK4+6sXLmSvn37btd2\nQqydCy1TaHlAmZIKLVNoeUCZkggtDyhTUqFlCi0PhJmpEqFd5aYPMBL4OLA78JSZPeXuC5M8eO+9\n92bt2rUsW7Ys0TeSVtPq1atpampK9TlLCS1TNfO4O01NTfTr168q2xMRERGpV2lO6JcCzTntwfGy\nXJ3Aa+6+DlhnZk8ARwBbTegXLlzI+eefT3NztLmmpiaGDx/OmDFj6Nev3+Yj+N3f/NX911et24cd\ndliqz6f29rfHjBkTVJ5uud9cpzyF27nZQsgTYju0/Tu0PN20f9dfnhDb2r/rL08o+3f37Y6ODgBG\njRpFS0sL5UjzpNjewHyik2KXA88C4929PWed9wM3AWOBvsAzwD+6+59yt1XspFgRERERkXoW9Emx\n7r4RuBB4BHgRmOHu7WY2yczOjdeZBzwMvAA8DUzLn8xDmNehz/8rLwShZQotDyhTEqHlAWVKKrRM\noeUBZUoitDygTEmFlim0PBBmpkr0SfPJ3P0hYFjeslvz2tcB16WZS0RERESkXqVWclNNKrkRERER\nkUYUdMmNiIiIiIhUX11O6FVDn0xomULLA8qURGh5QJmSCi1TaHlAmZIILQ8oU1KhZQotD4SZqRJ1\nOaEXEREREZGIauhFRERERAKhGnoRERERkR1MXU7oVUOfTGiZQssDypREaHlAmZIKLVNoeUCZkggt\nDyhTUqFlCi0PhJmpEnU5oRcRERERkYhq6EVEREREAqEaehERERGRHUxdTuhVQ59MaJlCywPKlERo\neUCZkgotU2h5QJmSCC0PKFNSoWUKLQ+EmakSdTmhFxERERGRiGroRUREREQCEXwNvZmNNbN5ZvaS\nmV1W4P6PmtkqM5sV/1yeZj4RERERkXqT2oTezHoBNwMnAIcD483s/QVWfcLdR8Y/3yu0LdXQJxNa\nptDygDIlEVoeUKakQssUWh5QpiRCywPKlFRomULLA2FmqkTiCb2Z7b2dzzUaWODui919PTADOKXQ\nU23n84iIiIiI7DAS19Cb2VvAb4GfAA+4+3tlPZHZOOAEdz83bp8JjHb3i3PW+ShwL9AJLAW+7u5/\nyt+WauhFREREpBFVUkPfp4x1DwTGA5cB08zsHuAOd6/mZxXPA83u/raZnQj8Ajg0f6V77rmH2267\njebmZgCampoYPnw4Y8aMAbZ8fKK22mqrrbbaaqutttoht7tvd3R0ADBq1ChaWlooR0VXuTGzYcBZ\nwOcAB34K3O7ui3t4zNHAt919bNz+BuDufk0Pj3kVOMrdX89dPmXKFJ84cWLZuWuptbV18wsUitAy\nhZYHlCmJ0PKAMiUVWqbQ8oAyJRFaHlCmpELLFFoeCDNTmle5GRj/7AG8DOwPzI4n6cXMBA4xswPM\nbGfgDOCB3BXMbN+c26OJ/uB4HRERERERKaicGvrDgTOBCcBbwHTgZ+7eGd9/IPCCu+/RwzbGAjcS\n/SFxu7tfbWaTiI7UTzOzC4DzgPXAO8BX3P2Z/O2ohl5EREREGlGta+ifAO4C/sHdn82/090XmdkN\nPW3A3R8ChuUtuzXn9n8C/1lGJhERERGRHVo5JTenufuF+ZP5uDQGAHf/16ol64GuQ59MaJlCywPK\nlERoeUCZkgotU2h5QJmSCC0PKFNSoWUKLQ+EmakS5Ryh/xVRzXy+h4D+1YkjIiLlWrGqk9fWdG2z\n/I21f8kgjYiIpK1kDX38Da8GrCKa0OfW9AwFfu/u+9QsYQGqoRcR2eLFjuf47oxJ2yy/4oxbObx5\nVAaJRESkUrWqod9AdGnK7tu5NgHfL+cJRURERESkepLU0B9EdCS+Ezg45+cgYA93/3bN0hWhGvpk\nQssUWh5QpiRCywPKlNTsmXOyjrCVEPtImUoLLQ8oU1KhZQotD4SZqRIlj9DnfFnUATXOIiIiIiIi\nZeqxht7Mprn7ufHtO4qt5+6fr0G2olRDLyKyhWroRUQaRy1q6F/Nuf1y+ZFERERERKSWeqyhd/d/\nz7n9nWI/tY+5NdXQJxNaptDygDIlEVoeUKakVENfmjKVFloeUKakQssUWh4IM1MlejxCb2YfT7IR\nd/9ddeKIiIiIiEg5StXQv1r0zi3c3Q+uXqTSVEMvIrKFauhFRBpH1Wvo3f2g7YskIiIiIiK16J9w\nDAAAG+dJREFUlOQ69FVjZmPNbJ6ZvWRml/Ww3gfNbL2ZfabQ/aqhTya0TKHlAWVKIrQ8oExJqYa+\nNGUqLbQ8oExJhZYptDwQZqZKlKqhb3f3w+LbS9jyjbFbcffmUk9kZr2Am4EWYBkw08zud/d5Bda7\nGng40f9ARERERGQHVqqGfoy7t8a3P1psPXd/vOQTmR0NXOnuJ8btb0QP9Wvy1rsEeA/4IPArd78v\nf1uqoRcR2UI19CIijaMWNfStObdLTtpL2B9YktPuBEbnrmBm+wGnuvvxZrbVfSIiIiIisq3ENfRm\ntrOZXWVmC8zsrfjf75rZLlXMcwOQW1tf8K8T1dAnE1qm0PKAMiURWh5QpqRUQ1+aMpUWWh5QpqRC\nyxRaHggzUyVKfVNsrluAYcDFwGLgAOCbREfeJyZ4/FIgt9Z+cLws1yhghpkZMAA40czWu/sDuSs9\n/vjjPPfcczQ3R5trampi+PDhjBkzBtjy4qTZnjt3bqbPX6jdTXnqqz137lzlKdHW79vW7UUr5m9+\n/tcXvwNA/wN2Dap/Qm1r/66/PLlCyRNqO7T9O7Q8oezf3bc7OjoAGDVqFC0tLZSjxxr6rVY0WwkM\ndfdVOcv6AwvdvX+Cx/cG5hOdFLsceBYY7+7tRdb/MfBL1dCLiPRMNfQiIo2j6jX0ebqA3YBVOct2\nJZqcl+TuG83sQuARolKf29293cwmRXf7tPyHlJFNRERERGSH1GMNvZl9vPsH+AnwkJmdY2Ynmtm5\nwIPAHUmfzN0fcvdh7v4+d786XnZrgck87j6x0NF5UA19UqFlCi0PKFMSoeUBZUpKNfSlKVNpoeUB\nZUoqtEyh5YEwM1Wi1BH62wss+2ZeexJwTYH1RERERESkxhLX0IdENfQiEooVqzp5bU3XNssH7DGQ\nffccnEoG1dCLiDSOWtfQi4hIntfWdBWdTKc1oRcRkR1bOdeh38PMfmBmz5vZYjPr6P6pZcBCVEOf\nTGiZQssDypREaHkgzEzdl4sMiWroS1Om0kLLA8qUVGiZQssDYWaqROIJPfBfwEjgKqA/cBHQAVxf\ng1wiIiIiIpJAOdeh/zNwmLuvNLNV7r6nme1PdK34VAvaVUMvIqEIoX49hAwiIlIdldTQl3OEvhew\nOr691syaiK5Bf0g5TygiIiIiItVTzoR+DvDR+PaTRCU4twAvVTtUKaqhTya0TKHlAWVKIrQ8EGYm\n1dCXFuLrpkylhZYHlCmp0DKFlgfCzFSJcib05wCL4tuXAOuAPYHPVzmTiIiIiIgkpOvQi4hshxDq\n10PIICIi1VHrGnrMbKKZ/cbMXoz//ZKZlfWEIiIiIiJSPeVch/5a4DLgPuDr8b9fA66pTbTiVEOf\nTGiZQssDypREaHkgzEyqoS8txNdNmUoLLQ8oU1KhZQotD4SZqRLlfFPsF4CR7t7ZvcDMfgXMAi6t\nci4REREREUmgnOvQv0w0oV+ds2xP4Hl3H5pwG2OBG4g+Gbjd3a/Ju/9k4LvAJmA98BV3/33+dlRD\nLyKhCKF+PYQMIiJSHZXU0Pd4hN7MDs5p3gDcZ2ZXA53AEKLSm0TfFGtmvYCbgRZgGTDTzO5393k5\nq/3W3R+I1x8O/Bw4LOH/RURERERkh1Oqhn4hsCD+90bgeOBh4EXgIaLJ+Y0Jn2s0sMDdF7v7emAG\ncEruCu7+dk6zH9GR+m2ohj6Z0DKFlgeUKYnQ8kCYmVRDX1qIr5sylRZaHlCmpELLFFoeCDNTJXo8\nQu/uZV0Fp4T9gSU57U6iSf5WzOxU4N+BvwY+WcXnFxERERFpOGVfh97Mmokm553uvqTU+jmPGwec\n4O7nxu0zgdHufnGR9ccAV7r73+ffpxp6EQlFCPXrIWQQEZHqqHoNfS4zG0RUJvNhYCWwt5k9DZzh\n7ssSbGIp0JzTHhwvK8jdW83sYDPr7+6v5953zz33cNttt9HcHG2uqamJ4cOHM2bMGGDLxydqq622\n2rVuz545h9cXv0P/A3YFti29SSPPohXzNz9f9/N358m6f9RWW2211e653X27o6MDgFGjRtHS0kI5\nyrnKzS+ADuBf3P0tM9sd+DfgIHc/OcHjewPzierulwPPAuPdvT1nnaHu/nJ8eyRwv7sPyd/WlClT\nfOLEiYlyp6W1tXXzCxSK0DKFlgeUKYnQ8kBYmbqPjudO6iGMI/SfGno+Z477UioZkgjpdeumTKWF\nlgeUKanQMoWWB8LMVNMj9MAYYFB8QivxpP5SejjKnsvdN5rZhcAjbLlsZbuZTYru9mnAODP7PPAe\n8A5wehn5RERERER2OOUcoV8AfNbd5+Qs+wBwn7sfUqN8BamGXkRCEUL9eggZRESkOmp9hP5a4Ldm\ndjuwGDgA+CJwRTlPKCIiIiIi1ZP4spTu/t/APwIDgE/H/06IS2VSpevQJxNaptDygDIlEVoeCDOT\nrkNfWoivmzKVFloeUKakQssUWh4IM1MlEh2hj09o/RFwrrv/rraRREREREQkqXJq6JcDzd0nxWZJ\nNfQiEooQ6tdDyCAiItVRSQ19Od8Eez3wHTPbqbxYIiIiIiJSK+VM6C8Cvg68aWZLzKyj+98aZStK\nNfTJhJYptDygTEmElgfCzKQa+tJCfN2UqbTQ8oAyJRVaptDyQJiZKlHOVW7OrFkKERERERGpSDk1\n9DsDlwPjgf2AZcAM4Pvuvq5mCQtQDb2IhCKE+vUQMoiISHXU+jr0twDDgIvZch36bwL7AxPLeVIR\nEREREamOcmroTwU+5e6/dvc/ufuvgVPi5alSDX0yoWUKLQ8oUxKh5YEwM6mGvrQQXzdlKi20PKBM\nSYWWKbQ8EGamSpQzoe8CdstbtiuwvHpxRERERESkHOXU0H8DmADcBHQCQ4ALgDuBmd3rpfHFU6qh\nF5FQhFC/HkIGERGpjlrX0He/W3wzb/k/xz8ADhxcTgAREREREalc4pIbdz8owU+Pk3kzG2tm88zs\nJTO7rMD9E8xsTvzTambDC21HNfTJhJYptDygTEmElgfCzKQa+tJCfN2UqbTQ8oAyJRVaptDyQJiZ\nKlFODf12MbNewM3ACcDhwHgze3/eaq8AH3H3I4DvAf+dVj4RERERkXqUuIZ+u5/I7GjgSnc/MW5/\nA3B3v6bI+nsCc919SP59qqEXkVCEUL8eQgYREamOSmroUztCT3S9+iU57c54WTH/BPy6polERERE\nROpcmhP6xMzseOCLwDZ19qAa+qRCyxRaHlCmJELLA2FmUg19aSG+bspUWmh5QJmSCi1TaHkgzEyV\nKOcqN9trKdCc0x4cL9uKmX0AmAaMdfc3Cm3o8ccf57nnnqO5OdpcU1MTw4cPZ8yYMcCWFyfN9ty5\nczN9/kLtbspTX+25c+cqT4l2SL9vs2fO2Woynz+xTyPPohXzt3n+/gfsGkT/hN7W/l1/eXKFkifU\ndmj7d2h5Qtm/u293dHQAMGrUKFpaWihHmjX0vYH5QAvRl1E9C4x39/acdZqBR4Gz3P3pYttSDb2I\nhCKE+vUQMoiISHXU+jr028XdN5rZhcAjRKU+t7t7u5lNiu72acAVQH/gv8zMgPXuPjqtjCIiIiIi\n9SbVGnp3f8jdh7n7+9z96njZrfFkHnc/x933dveR7n5kscm8auiTCS1TaHlAmZIILQ+EmUk19KWF\n+LopU2mh5QFlSiq0TKHlgTAzVSLIk2JFRERERCSZ1Groq0k19CISihDq10PIICIi1RH6dehFRERE\nRKTK6nJCrxr6ZELLFFoeUKYkQssDYWZSDX1pIb5uylRaaHlAmZIKLVNoeSDMTJWoywm9iIiIiIhE\nVEMvIrIdQqhfDyGDiIhUh2roRURERER2MHU5oVcNfTKhZQotDyhTEqHlgTAzqYa+tBBfN2UqLbQ8\noExJhZYptDwQZqZK1OWEXkREREREIqqhFxHZDiHUr4eQQUREqkM19CIiIiIiO5i6nNCrhj6Z0DKF\nlgeUKYnQ8kCYmVRDX1qIr5sylRZaHlCmpELLFFoeCDNTJepyQi8iIiIiIpFUa+jNbCxwA9EfEre7\n+zV59w8DfgyMBL7p7j8otB3V0ItIKEKoXw8hg4iIVEclNfR9ahUmn5n1Am4GWoBlwEwzu9/d5+Ws\nthK4CDg1rVwiIiIiIvUszZKb0cACd1/s7uuBGcApuSu4+2vu/jywoacNqYY+mdAyhZYHlCmJ0PJA\nmJlUQ19aiK+bMpUWWh5QpqRCyxRaHggzUyXSnNDvDyzJaXfGy0REREREpEKpldxU04gRI7KOsI0x\nY8ZkHWEboWUKLQ8oUxKh5FmxqpPX1nQBsFfzLrzY8RwAA/YYyL57Ds4yGgD9D9g16wjbOPKDR2Qd\nYSuh7Eu5lKm00PKAMiUVWqbQ8kCYmSqR5oR+KdCc0x4cLyvbPffcw2233UZzc7S5pqYmhg8fvvlF\n6f74RG211W6c9l7Nu/DdGZM2l7Z0T6A/NfR8Dtx3WGb5Zs+cw+uL39mcJ7/0Jo08i1bM3/x8+f0T\nyuunttpqq6124Xb37Y6ODgBGjRpFS0sL5UjtKjdm1huYT3RS7HLgWWC8u7cXWPdKYK27Tym0rSlT\npvjEiRNrGbdsra2tm1+gUISWKbQ8oExJhJIn90ouuRPorK/k0p0rN1PauYpd5eZTQ8/nzHFfSiVD\nEqHsS7mUqbTQ8oAyJRVaptDyQJiZgr7KjbtvNLMLgUfYctnKdjObFN3t08xsX+A54K+ATWZ2CfA3\n7r42rZwiIiIiIvUk1evQV4uuQy+y4wn1Wush5Aohg4iIVEclR+j1TbEiIiIiInWsLif0ug59MqFl\nCi0PKFMSoeWBMK/5HmImXYe+NGUqLbQ8oExJhZYptDwQZqZK1OWEXkREREREInU5odd16JMJLVNo\neUCZkggtD4R5zfcQM+k69KUpU2mh5QFlSiq0TKHlgTAzVaIuJ/QiIiIiIhKpywm9auiTCS1TaHlA\nmZIILQ+EWa8eYibV0JemTKWFlgeUKanQMoWWB8LMVIm6nNCLiIiIiEikLif0qqFPJrRMoeUBZUoi\ntDwQZr16iJlUQ1+aMpUWWh5QpqRCyxRaHggzUyXqckIvIiIiIiKRupzQq4Y+mdAyhZYHlCmJ0PJA\nmPXqIWZSDX1pylRaaHlAmZIKLVNoeSDMTJWoywm9iIiIiIhE+mQdoBKqoU8mtEyh5QFlKmTFqk5e\nW9O1ub1X8y6sWNXJvnsOzjDV1kKsVw8xk2roS1Om0kLLA8qUVGiZQssDYWaqRF1O6EWkdl5b08V3\nZ0zaatkVZ9wa1IReREREtki15MbMxprZPDN7ycwuK7LOVDNbYGZtZlbwULxq6JMJLVNoeUCZkgix\nNlyZklENfWnKVFpoeUCZkgotU2h5IMxMlUhtQm9mvYCbgROAw4HxZvb+vHVOBIa6+/uAScAPC21r\n4cKFNU5bvrlz52YdYRuhZQotDyhTEmtWvJt1hG0oUzIL5r+cdYSthLZvgzIlEVoeUKakQssUWh4I\nM1MlB67TPEI/Gljg7ovdfT0wAzglb51TgDsA3P0ZoMnM9s3f0FtvvVXrrGVbvXp11hG2EVqm0PKA\nMiWx4V3POsI2lCmZtW+uzTrCVkLbt0GZkggtDyhTUqFlCi0PhJlpzpzyP11Nc0K/P7Akp90ZL+tp\nnaUF1hERERERkVhdnhTb1dVVeqUUrVjVyQvts3mx47nNywbsMTDVkwjzr0wC8NLCeak9fzG5ubr7\nKO2+6UlHR0fWEbYRWqZ3Vq/POsI2lCmZ5ctWZB1hK6Ht26BMSYSWB5QpqdAyhZYHwsxUCXNP52Ni\nMzsa+La7j43b3wDc3a/JWeeHwGPu/j9xex7wUXff6l3pvPPO89yymyOOOCLzS1m2tbVlniFfaJlC\nywPKlERoeUCZkgotU2h5QJmSCC0PKFNSoWUKLQ+EkamtrW2rMpvdd9+dW265xcrZRpoT+t7AfKAF\nWA48C4x39/acdU4CLnD3T8Z/ANzg7kenElBEREREpA6lVnLj7hvN7ELgEaLa/dvdvd3MJkV3+zR3\nf9DMTjKzhcBbwBfTyiciIiIiUo9SO0IvIiIiIiLVl+oXS1XCzPqa2TNmNtvM5prZlfHyK82s08xm\nxT9js8wT33eRmbXHy69OI09PmcxsRk7/vGpmswLIdISZPRUvf9bMRgWQ5w9mNsfM7jezfmnkycvW\nK36NHojbe5nZI2Y238weNrOmjDLNzsn0WTP7o5ltNLORAeS5Nv5dazOze81sjwAyXRXvR7PN7CEz\nG5hRps37Us7yyWa2ycz6Z5Ant48yGbcLZNqqj7Iau/My5fZTZmN3kTwjshi3S2TKdOw2s0U5v+/P\nxssyHbuLZMp67C6UKbPxu0ieTMfuQply7ks+drt78D/AbvG/vYGnia5pfyXw1YDyfIyonKhPfN+A\nrDPl3X8dcHnGmT4EPAx8Il5+ItFJ0FnmeRYYEy//AnBVBvvTV4CfAg/E7WuAS+PblwFXB5BpGPA+\n4HfAyADy/B3QK759NfDvAWTql3PfRcAtWWeKlw0GHgJeBfpn3EeZjds9ZDo+y7G72OuWc18WY3d+\nH2U2bveQKdOxG3gF2CtvWaZjd5FMWY/dhTJlNn4XyZPp2F0oU7y8rLE7+CP0AO7+dnyzL1Hdf3ed\nUFlnANc4z3lEv7wb4nVeCyBTrtOBuzLOtCn+6T5qsSfRdw1kmed97t79vc+/BcallQfAzAYDJwG3\n5Sw+BZge354OnJp1Jnef7+4LyOB3rkie37r7prj5NNHAl3Wm3G9x2p1o/8o0U+x64OtpZimRJ5Nx\nG4pm+mcyHLt76KduqY7dRfJkNm73kOnQLMduov04fw6V6dhNgUxZjt2xQpmyHL8L5cl07KbwvgRl\njt11MaHv/qgN6AJ+4+4z47sujD+yuS3Nj7aK5DkU+IiZPW1mj6X9kWQPfYSZHQd0uXuq3wNfJNNX\ngOvMrAO4FviXjPO8aGYnx6ucTsoTQ7b8wub+Abavx5dqdfcuYJ8AMmWpVJ6JwK/TiwMUyWRm34v3\n7QnAv2adycxOAZa4exbfbV7sdctk3O4hU6Zjd5FMQGZjd6E8mY3bPWT6Y8ZjtwO/MbOZZvZP8bKs\nx+7cTOek/NzFlMqU9vhdME/GY/c2meJ9u6yxuy4m9O6+yd2PJPqFHW1mfwP8F3Cwu48gmqD9IMM8\nhxMd8d3Lo8tsXgr8PK08BTJ9KO6jbuNJ+eh8gUzd/XQecIm7NxO9SfwoozzdfTQRuMDMZhL9Zf5e\nWnnM7JPACndvo+ejJ6lNrAtkyuxoapI8ZvYtYL273xlCJne/PN63f0b00W1WmTCzXYkmXlfmrppV\nnlhm43YPmTIbuxP8vqU6dvfQR5mN2z1k+hIZjd2xY919JNEnBxfEf3zlj9VpHxTJzzQm5ecvpGim\nLMbvYnmyGrsLZDo/3pe+Sbljd5p1QlWqNbqCvBpM4ADghQzzTAYeJPoSrO7lC4G9s+4jonrxLmC/\nAF63ycAbectXZ91HOcveBzydYoZ/AzqI6ueWA2uBnwDtREd6AAYC7RlnuiPn/sdIsQ6zpzxEdbO/\nB/qmvO/02EfxOkOAuRlnujv+3X+FqAZzPbAI2CeQPkp13C6WKcuxu8T+nfrY3cOYlNm4nXBfSnXs\nLpDxyvj9LbOxu0imr+a0Ux27S2XKavzuqY/iZamO3UUyXV7J2J3ZC1vGf24A0BTf3hV4guivmIE5\n63wFuDPjPOcC34mXHwoszrqP4vZYsjmBqVg/vdj95kn0JWMzM87z1/GyXkQ1j19Iu6/i5/8oW072\nuha4LL6dyUmx+Zlylj0GHJV1nni/fpGM/mgukumQnOUXAT/POlPe8lcpcOJVyn2UybhdItOkrMbu\nnl63rMbuIn2UybhdIlNmYzewG/GJlESfDvwe+ATRSbGZjN3FMuXcn/rY3UM/ZTJ+95Ans7G71OsW\nL080dqf2xVLbYRAw3cx6Ef3i/o9HX0B1h5mNIDp5YRHRoJxlnp2AH5nZXOBd4PMp5SmaKb7vH8mg\n3KZYJjNbDdxo0TcHryP6QyjLPBeb2QVEH43e5+7/L6U8Pbka+LmZTQQWE9WHZsrMTgVuIvrD6Fdm\n1ubuJ2YY6SZgZ6K6Q4iOzp2fYR6Aq83sUKIxaTHRyZYhcTIuoQKuzWjc7smPyG7s7klWY3ch55LN\nuN2T8RmO3fsC/2tmTlSy9TN3f8TMniO7sbtYpizH7mKZFpDN+F0szz0Zjt0FM+Wtk2js1hdLiYiI\niIjUsbo4KVZERERERArThF5EREREpI5pQi8iIiIiUsc0oRcRERERqWOa0IuIiIiI1DFN6EVERERE\n6pgm9CIiIiIidUwTehERERGROqYJvYhIAzKzfzOzi+PbfzSzj1Rpuz82s6uqsa0i23/GzA6r1fZF\nRBpRn6wDiIhIdZnZAOAs4BAAd//bbBOV5T+A7wKfzTqIiEi90BF6EZHG8wXgQXd/N+sgFfglcLyZ\n7ZN1EBGReqEJvYhI4zkReLy7YWavmtnH89qTzWyOmb1hZneZ2c6FNmRmR5rZ82a22sxmALvk3X+Z\nmS00szVxac+p8fKvmdk9eetONbPrcx7XGT+u3cyOB4j/CHkeOKE6XSEi0vg0oRcRaTzDgfkl1vkH\n4BPAQcARREf1t2JmOwH/C0wH+gN3A+PyVlsIHOvuewDfAX5qZvsCPwVOMLM94m31Bv4RmG5mhwIX\nAEfFjzsBWJSzzfY4k4iIJKAJvYhInTCzPeKTUh8ws7nxv/eY2S55q+4JvFlicze6+wp3X0VU5jKi\nwDpHA33cfaq7b3T3e4GZuSu4+73uviK+fTewABjt7l3AE0R/OED0qcFf3L0N2AjsDPytmfVx9w53\nfzVns2/G/wcREUlAE3oRkfoxEvgn4ELgP9z9ZHf/rLuvy1vvDeCvSmxrRc7tt4F+BdbZD1iat2xx\nbsPMPm9ms+PSnTeAw4EB8d13AGfGtz8H/ATA3V8Gvgx8G1hhZnea2aCczf4VsKpEfhERiWlCLyJS\nJ9z9/9x9I/AZ8o6U53kBOLQKT7kc2D9vWXP3DTNrBqYB57v7Xu6+F/AiYPEqvwA+YGaHA58Cftb9\nWHef4e7HAQfEi67OeY7DgDlVyC8iskPQhF5EpP58wt3be7j/QeBjVXiep4ANZnaRmfUxs88Ao3Pu\n3x3YBLxmZr3M7IvA5ktkxie43gvcCTzj7p0AZnaomR0fn4j7HvBOvB3MrC9wFPCbKuQXEdkhaEIv\nIlJHzKwf0QS4J3cAJ8aTYwDPuz+/XZC7ryf6NOCLwEqievh7c+5vB6YATwNdROU2rXmbmU50ku4d\nOcv6Eh2R/wuwDPhr4F/i+04GHotr8EVEJAFzTzSui4hIHTGz7wF/dvepGecYQnTVmoHuvjbB+k8B\nX3L3P9U8nIhIg9CEXkREasLMegE/APq5+z9lnUdEpFH1yTqAiIg0HjPbjehKOq8SXbJSRERqREfo\nRURERETqmE6KFRERERGpY5rQi4iIiIjUMU3oRURERETqmCb0IiIiIiJ1TBN6EREREZE6pgm9iIiI\niEgd04ReRERERKSOaUIvIiIiIlLH/j+iN1eauGJfmQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53abe52dd8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 10)\n", "#histogram of the samples:\n", "\n", "ax = plt.subplot(311)\n", "ax.set_autoscaley_on(False)\n", "\n", "plt.hist(lambda_1_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", " label=\"posterior of $\\lambda_1$\", color=\"#A60628\", normed=True)\n", "plt.legend(loc=\"upper left\")\n", "plt.title(r\"\"\"Posterior distributions of the variables\n", " $\\lambda_1,\\;\\lambda_2,\\;\\tau$\"\"\")\n", "plt.xlim([15, 30])\n", "plt.xlabel(\"$\\lambda_1$ value\")\n", "\n", "ax = plt.subplot(312)\n", "ax.set_autoscaley_on(False)\n", "plt.hist(lambda_2_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", " label=\"posterior of $\\lambda_2$\", color=\"#7A68A6\", normed=True)\n", "plt.legend(loc=\"upper left\")\n", "plt.xlim([15, 30])\n", "plt.xlabel(\"$\\lambda_2$ value\")\n", "\n", "plt.subplot(313)\n", "w = 1.0 / tau_samples.shape[0] * np.ones_like(tau_samples)\n", "plt.hist(tau_samples, bins=n_count_data, alpha=1,\n", " label=r\"posterior of $\\tau$\",\n", " color=\"#467821\", weights=w, rwidth=2.)\n", "plt.xticks(np.arange(n_count_data))\n", "\n", "plt.legend(loc=\"upper left\")\n", "plt.ylim([0, .75])\n", "plt.xlim([35, len(count_data)-20])\n", "plt.xlabel(r\"$\\tau$ (in days)\")\n", "plt.ylabel(\"probability\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpretation\n", "\n", "Recall that Bayesian methodology returns a *distribution*. Hence we now have distributions to describe the unknown $\\lambda$s and $\\tau$. What have we gained? Immediately, we can see the uncertainty in our estimates: the wider the distribution, the less certain our posterior belief should be. We can also see what the plausible values for the parameters are: $\\lambda_1$ is around 18 and $\\lambda_2$ is around 23. The posterior distributions of the two $\\lambda$s are clearly distinct, indicating that it is indeed likely that there was a change in the user's text-message behaviour.\n", "\n", "What other observations can you make? If you look at the original data again, do these results seem reasonable? \n", "\n", "Notice also that the posterior distributions for the $\\lambda$s do not look like exponential distributions, even though our priors for these variables were exponential. In fact, the posterior distributions are not really of any form that we recognize from the original model. But that's OK! This is one of the benefits of taking a computational point of view. If we had instead done this analysis using mathematical approaches, we would have been stuck with an analytically intractable (and messy) distribution. Our use of a computational approach makes us indifferent to mathematical tractability.\n", "\n", "Our analysis also returned a distribution for $\\tau$. Its posterior distribution looks a little different from the other two because it is a discrete random variable, so it doesn't assign probabilities to intervals. We can see that near day 45, there was a 50% chance that the user's behaviour changed. Had no change occurred, or had the change been gradual over time, the posterior distribution of $\\tau$ would have been more spread out, reflecting that many days were plausible candidates for $\\tau$. By contrast, in the actual results we see that only three or four days make any sense as potential transition points. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Why would I want samples from the posterior, anyways?\n", "\n", "\n", "We will deal with this question for the remainder of the book, and it is an understatement to say that it will lead us to some amazing results. For now, let's end this chapter with one more example.\n", "\n", "We'll use the posterior samples to answer the following question: what is the expected number of texts at day $t, \\; 0 \\le t \\le 70$ ? Recall that the expected value of a Poisson variable is equal to its parameter $\\lambda$. Therefore, the question is equivalent to *what is the expected value of $\\lambda$ at time $t$*?\n", "\n", "In the code below, let $i$ index samples from the posterior distributions. Given a day $t$, we average over all possible $\\lambda_i$ for that day $t$, using $\\lambda_i = \\lambda_{1,i}$ if $t \\lt \\tau_i$ (that is, if the behaviour change has not yet occurred), else we use $\\lambda_i = \\lambda_{2,i}$. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAFVCAYAAAC5E8qbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FHX+x/HXBwhdQCNERQIJTaJIV4r8OI6uAgpSFRWx\nYEP0aCJ4nigHNlT0RO/sCCeCgh0QUA/EAhGNogKhhAgJJYJ0QvL9/TGTdRM2yQSTfDObz/Px2Ed2\nys589z2zu9+dfGZWjDEopZRSSimlSpYythuglFJKKaWUOpl21JVSSimllCqBtKOulFJKKaVUCaQd\ndaWUUkoppUog7agrpZRSSilVAmlHXSmllFJKqRJIO+pKqRJFRFaIyAu225EbEakrIpki0t52W4KJ\nyGki8o6I7BORDBGJtt0mFT6K63VZUl9fStmiHXWlSiARedn9sMpw/2bdfrfdtpxE5D4R2WK7HcWs\nJP4Axa3AxUB74Gxge84ZRKSDux8Veie+KJetSoQrgXuKaV0l8fWllBXlbDdAKZWrz4EBgASNy7TU\nlrwIpe+DVfKf5RQWKlLOGHPiFB/eEPjRGLM+r1VQdNuqNO4HVv3J/aVAjDH7imM9riJ5fSnlR3pE\nXamS67gxZrcxZlfQbQ+AiJwuIkki8mTWzCJSS0R2iMhD7nAn9wjn5SLylYgcEZEEEekcvBIRqS8i\n80XkNxFJE5HFInJBjnlaichHIrJfRA6IyJci0kZErgMeBLL+XZ0hIve7jyknIg+IyOagdd+cY7nR\nIvKxiBwWkW0ickd+oQQ9r64i8pmIHBKRH0WkZ9A8If99LiIbs9rnDmeKyB0i8l8ROei2ob+IVBOR\n2SLyu4gkiki/EE2JEZFP3LYnisigHOuqJSKviMgudzn/E5GOIZ7Hpe60w8CIXJ5zORGZJiLJInLM\nfb5DgqZvAW4AurjLXB5iGXVxvvwBbM05n4gMFpFv3W21RUQeF5HK7rQ897f8lh2iLdeJSLqI/EVE\nvnczXCEiZ4vI/4lIvLs9lorI2Tke201EVrqPSRaRl0TkjKDpce4+9Zu7jB9F5Oqg6TeKyHr3ee4V\nkU9F5Bx3Wg0Red3dDw6LyM8ick+O9YuITHW36353/rtEJL0w25lPZvEichTo4mVd7jyDRGSN+7z3\niMgHIlI9aPqdIvKTO/0XEZkoImWDpgdKX9wM94lI+RzrGC8i24KGvby3DBTndXlERFYCF+aWgVKl\nkjFGb3rTWwm7AS8DS/KZpyNwHLjMHV4M/A8o4w53wjkC/wvQC2gM/Ac4CES589QCdgLPAHE4R2Wf\nAnYDke4857uPmQ20AGKBq3DKLCoA/wS2ATXd5VV2H/cKsA6nM1EX578DacDwoOcQD3wFtMb5gF4C\n7AdeyON5Zz2vb4FuQH3gJWAfUN2dpy6QAbTP8diNwP1Bw5nADuAa93k9AxwGPgCudcc97T7/04OW\nnQkkA4PdzKYAJ4Bm7jwVgR+BeUGZ3QscARrneB7rgcvc5Z6Ty3N+1N0m/YAG7rIygM7u9Ejgv8Cn\n7naoEWIZAvR2H9fS3VY13GnXA3uBoW47LnG33ate9jf3FnLZuTyf69x5l7vbvjmwAaezvxxo4+4P\nPwFzgx73V+AQcJubaStgGfBp0Dzf4eyrjYF6QA/gUndaKyAduBqog7Nv35CVOxAFjAOauTkMBX4H\nrgta/j3uuKE4+95oYA/OF+tCaWc+mX3p7jv13O3uZV3D3W03ETgP57V+O3CGO/0BYAvQx33ePYGt\nwD+ClrEC93UJVHPXOSBHG38AphTgvaUFzuvmIXf6FcBmQrx29aa30nqz3gC96U1vJ99wOurpwIEc\nt0U55pvsfvA9htPROjdoWlZH8PqgcWWDP4DdD+gvcixTgE3AKHf4deDbPNp6H7A5x7h67odtoxDt\n/da939Wdp37Q9DNxOspeOup9g8bVcsd1c4ezOtNeOuqP51h/JvBk0Lga7rhLcyz7gRzLXoXbscXp\n+CbhfmkKmmcZ8ESO5zE0n32hEnAUuCXH+LeBT3LsM/l9uevgZh6dY/wW4OYc4zq67avucX8Luexc\n2pHV6WwaNG6MO6550LjRwK6g4RXA1BzLinbbeaE7vA+4Npf1XgH8BlQtwGvxSWBx0HByiG0/l+wd\n9T/Vznwyy7lPe1nXNuCpPPavQ0D3HOOHAb/lWM8LQcNzgfeChlu77WvgDj9A/u8ts4H/5Zjn9lDP\nU296K603rVFXquT6EueobnC95uEc8zyEc/TrbmCQMSY5x3TjLscZMCZDRL7GOZIIzodraxE5kONx\nFXGO3IJzhPSjAra9tdvuNSIS3P5yOF9AAJoAe4wxiUHt2yMiv3hYvsE5Ipn1uF0ikoFzRLSgvs+x\n/gwgIWjcPhE5jvNlINiXOYZX4RzdBOf5nw3sz/70KU/2bWiAb/JpXwMgAufodbDPgAn5PDZfInIm\nzpePJ0Tk8eBJbvsaAGvdcfntbzmXXQfnPwa4y5ptjLktaPiHoNlT3L8JOcZFiogYYwzOkfaLReTO\nHKsyOEdkv8f5EvGiiAzH+Q/Du8aYb935luJ8KdkqIktxjt6/bYzZ67ZXgPHAIOBcnNdBBM6XW0Sk\nGnAOzn+Bgq0G+gcN/9l25mVNjuE81yUiO3H+e7A0l+Wdj9NZX5BjXy0LlBeRyKx8cngVWCQiZxqn\nJO9a4GtjzCZ3upf3libAJzmmr0Rr1JUK0I66UiXXEWPMlnzmOQdohHMEqvEprKMMzgfl7Zz84bj/\nFJYXvFwDtMMp9whm/sRygx3PZb3wx0m3OZ9TRIjHpHsYZyjYOT1lcDqoV4RoQ84vW4c8LK8oOy5Z\nz2sUTocxp+DOeEH3tx04ZSRZgq9alOl2vrMYcL5M5hzHH18aygDTcf7Lk1OK+/iHRGQ2zheKvwIT\nRWS6MeZ+Y8whEWmFc/S/KzASeERE/up2ksfgdNRH45T+HMApdbk0x7ry24f/VDvzWG6GMSbnfp/f\nuqp4aCs45WwbQ0xPy+VxS3DLpUTkXzhfboLbXlTvLUqVKtpRV8qn3KN/b+DUaj8HvCkiy4wxwUd6\nBWgL/Ow+pixwEc7RMHCOzl0H/BqiA5BlLe5Ja7k4jnP0LedjAOoaYz7M5XHrgTNFpH7WUXX36G5j\n8j/KnJ/d7t9zskaISC2g9p9cbrC2wMdBw+354+jxGpzSgQPu0cY/YxNwDPi/oOUD/IXsR6S9yNrG\nge3l/jdiO3CeMeal3B7oYX8LtewMnJrjwrIGON8Yk+cyjTFbgVnALBEZj9MBv9+dZnCO2q4EHhCR\n9Tj15t/ilPt8bIzJen0gIo2Clvu7iOzA+QIavO3bFXY7CyC/dR0WkWSgO/B+iOk/4pRW1TfGLPa6\nUmNMpoi8gbOfb8GpW38zR7vye29Zj/O6CXYJevUgpQK0o65UyVVeRE4q5TDGpLp3J+H86/hCY0yq\ne0WGuSLSzBgTfORygoik4nyY/g2nDvs5d9ozOCfTvSvO1WK24/ybvCfwvtsJewT4UkTmAI/j1Pi2\nBLYbY75yl3uWiLTFOSJ32BiTKCIvA/92OyCrcY7stQJqGmMeMcYsE5HvgdkiMgrnKPY0Qh8pzynP\nI8zGmKMisgoY55bSROCUbRz1sGyvRrjLzuqUt8U5eghOh3Y08IGITMI5UTIK58jpemPMu16eh/tc\njojI08AUEdmDU/IzAOfkza4FbPM23Hp7EZkHHHP3lfuA/4jIPmARzraIA3oaY0a6j81vf8tt2YXp\nfmCxW6LzGs4R70Y4R4Nvx/lMmw4swNkvT8fZl38EEJE+OCdcfo7zZa41TonLj+7yfwGuEZG/AL/i\nlHNcRPajyo/jdPB/Ab4GLsc5qTm4c/mn2lmYmRhjjgH/AP4lIruA+Thfpv6Cc6JumohMBaa6pS+f\nuO1rCrQwxuRVXvUaznvKP3DeL4Iv4ejlvWUG8LU7/VXgAorvWu1K+YPtInm96U1vJ99wTgzMyHHL\ndP+egXME7xhBV4nAuQLLt8B/3eFO7vyX43Qmj+Acgf1rjnXVwfm3eao7zxacD+C6QfO0xvlX9wGc\nf1t/AbR2p5XDOSlsr7u++93xgnOEcD1OB3kXzglp/YOWG41zZPIwzsmXd+LUDed3MmkGOa6QgtPB\nvzZouIG7vgM4HbArcDrMwSeTZpDjZM6cy3HHHQZucO/XdR93tbv8w0AiTs128GNOB57F6aAcdf8u\n4I8rw4R8Hrk853LA1KBl/RBiffmeTOrON8ZdTjqwPGh8H5w6+4M4JzrGA5Pcafnub3ktO0QbriPo\n5Et33NU4pR3B4wa5GZUJGteBP64OdACnc/sETqlFBZwvSYnudknBOemxtvvYjjgn9Ka6038BxgYt\nuxrO1XP24XTkZ+J0QjcHzSPAwzj78+/AHJyr8OzP0fZTbqfXzLysK2ieIe72OuI+t/eAakHTb3C3\n+WGc1/Jqgk5gJpfXpfuYDODyENO8vLcMxPmCf8RdZ9bVg/RkUr3pzRjEmOL7D5N7zdb/4HxrzsR5\nY9iA8++yujgn7Aw0xmj9mlJ/koh0wvlwrWOM2WG7PUqFKxF5CecKNm1st0UpFV6K+wePngI+NMY0\nwTnB6GecqxZ8YoxpjNOpuLeY26RUONOrJyhViMT5UabbRKSJiDQWkTE41+F/wXbblFLhp9iOqLuX\ntfrWGFM/x/ifgU7GqXk8C+dHGs4rlkYpFcb0iLpShc89KflNnBruijgn+z5t8jgRVymlTlVxdtSb\n4RxxWI9zNH0NzslWvxpjTg+aL80Yc0bopSillFJKKVU6FGfpSzmcK0U8a4xpiXPt4AmcfBkmvSyT\nUkoppZQq9Yrz8ozJOJdzy/pVtQU4HfVUEYkKKn3ZFerBffr0MUePHuWss84CoEqVKjRo0IDmzZsD\nsG7dOgAdLuThrHElpT2lZXj+/Pm6f1sazrnv225PaRnetGkTV111VYlpT2kZ1v1d9/fSNlwSPl83\nbdrEoUPOb92lpKTQo0cP/va3v4U8p6y4r/ryGXCTMWaDiPwdqOxOSjPGTHevt3y6CXHd1muvvdY8\n9dRTxdZW5Zg2bRoTJvzpXylXBWQj9/Wph1i0fnfIaX3jahIXld8PHIYH3eft8HPueb12oGS/fvyc\nu59p7vaUxOzj4+Pp0qVLyI56cf/g0SjgDRGJwPm1uuE4P7wwT0RuwPnBjIGhHpiSklJsjVR/SEpK\nst2EUklzt0ezt0Nzt0Nzt0Nzt8dv2RdrR90Y8x0Q6jqzBf11PaWUUkoppcJacV9H/ZT16NHDdhNK\npaFDh9puQqmkuduj2duhuduhuduhudvjt+x901HPKsJXxeuSSy6x3YRSSXO3R7O3Q3O3Q3O3Q3O3\nx2/ZF3eN+ilbt24dLVu2PGm8MYZdu3aRkZFhoVXhb//+/VSvXt12M0odG7mXP55B56jM0NOOpLFj\nx/5ibY8tJWmfN8ZQvXp1qlatarspRW7lypW++wANB5q7HZq7PX7L3jcd9dzs2rWL0047jcqVK+c/\nsyqwc845x3YTSiVbuTewstaSpSTt88YY0tLSOHbsGJGRkbabo5RSqpj5vvQlIyNDO+lKqbAkIkRG\nRnLs2DHbTSlyfjrCFU40dzs0d3v8lr1vOupKKaWUUkqVJr7pqAf/eppSSqnwsnLlSttNKJU0dzs0\nd3v8lr1vOurKvunTpzNy5EjbzWDVqlVccMEF1tb//vvv07RpU6Kjo/nhhx+stUMVv4EDB/Lmm28W\n+nJvv/12pk6dWujLVUop5W++6ajr5Rn/vObNm/P555//qWWIhPyF22Jnsx1///vfeeyxx0hKSgr5\nhSEyMpKtW7cWyrr69OnD7NmzC2VZ6s+bN28egwYNst2MsOS3utFwobnbobnb47fsfdNRV6oonMpl\nPbdv307jxo1znV5SvsyUVnqpVqWUUuHCNx31gtaoH7ymW6HfCiolJYXrrruORo0a0bJlS1544YXA\ntEGDBjF58uTA8IgRIxg1ahQAc+fOpVevXowfP5569erRtm3bbEfCf//9d0aNGkVcXBwXXHABDz/8\nMMaYwPRXX32Vtm3bEh0dTfv27UlISODWW28lOTmZoUOHEh0dzcyZMwH45ptv6NmzJzExMXTq1IlV\nq1YFlpOUlETv3r2pW7cu/fv3Jy0tLdfnmlWO8uyzz9K4cWPOP/985syZE5ie88jw3LlzufTSSwPD\nkZGRvPTSS7Rp04a6desydepUtm7dSs+ePalXrx4jRozgxIkTgfmNMcyYMYOGDRvSokUL5s+fH5h2\n/PhxJk+ezIUXXkiTJk0YM2ZM4KoZWe18+umnadKkCXfeeedJz8UYw2OPPUazZs0477zzuP322zlw\n4ADHjx8nOjqazMxMOnbsSOvWrU967OWXX44xho4dOxIdHc3ChQsBWLx4MZ06dSImJoZevXqxfv16\nALZu3Ur9+vVJSEgAYOfOnTRq1IgvvviChx9+mNWrVzN+/Hiio6OZMGFCyOxvv/12xo4dy8CBA4mO\njubSSy9l165dTJw4kdjYWNq2bZutRCev/TI+Pp4uXbpQt25dmjRpEthHjx07xsiRI2nQoAExMTF0\n7dqVPXv2ADBnzpzA/taqVSteeeWVbO17+umniYuL4/zzz+f111/P9h+HvLZVWloaQ4YMISYmhvr1\n63P55ZeHfP7g7D8vvvgibdq0oU2bNgBs2LCBfv36Ub9+fS6++OLAtgA4evQokyZNolmzZsTExHDZ\nZZcF1pvXayJrPz5+/DgxMTH8/PPPgWl79+6ldu3a7N27N89tDvD999/TuXNn6taty4gRI0rFVV3y\n47e60XChuduhudvjt+x901H3G2MMQ4cO5cILL+Snn35i4cKFPP/886xYsQKAmTNn8tZbb7Fy5Ure\neust1q1bx7Rp0wKPX7t2LbGxsSQmJjJ+/HiuvfZa9u93fnDm9ttvp3z58sTHx/PZZ5/x6aef8tpr\nrwGwcOFCHn30UZ5//nmSkpKYM2cOp59+Os899xznnnsuc+fOJSkpiTvvvJOdO3cyZMgQxo4dy5Yt\nW3jwwQe57rrrAh3ym266iRYtWrBp0ybGjBnD3Llz83zOu3bt4uDBg6xfv54nn3yScePG8fvvv+c6\nf84jzytWrODTTz9lyZIlzJw5k7vvvpt///vfJCQksH79ehYsWJBtXb/99hvr16/n2Wef5e677yYx\nMRGABx54gC1btrBy5UrWrFnDzp07efTRR7M9dv/+/Xz//ffMmDHjpHa98cYbvPnmm7z//vvEx8dz\n4MABxo0bR/ny5UlKSsIYE1h2Tu+//z7gvBEkJSVxxRVX8P333zNq1CiefPJJNm/ezPXXX8/QoUNJ\nT0+nXr16PPDAA9xyyy0cOXKEO+64g6FDh9K+fXvuu+8+2rVrx/Tp00lKSsq2f+S0aNEiJk+ezKZN\nmyhfvjw9evSgRYsWJCYm0rt3b+677z4g//3y3nvvZeTIkWzbto21a9dyxRVXAM4XqwMHDvDjjz+y\nefNmnnjiCSpWrAhAzZo1mTdvHklJSTzzzDNMmjQp8MXjk08+YdasWSxcuJC1a9eyatWqbNs9r231\n7LPPUrt2bRITE9mwYQOTJk3K9fkDfPjhh3zyySesXr2aw4cP079/fwYOHMimTZt48cUXGTt2LBs2\nbABg8uTJJCQksGTJEjZv3swDDzxAmTJl8n1NZClfvjy9e/fOtk8uXLiQDh06EBkZmec2T09PZ9iw\nYQwePJjNmzfTt29f3nvvvTyfm1JKqdLJNx11v9Wox8fHs3fvXv72t79RtmxZoqOjGTZsWOCDvVat\nWjz22GPceuut3HfffTz33HPZrgdfs2ZNbrnlFsqWLcuVV15JgwYNWLJkCbt37+aTTz7h4YcfpmLF\nikRGRjJy5EjeeecdAGbPns2oUaNo1qwZAPXq1ePcc88NLDf4yPtbb71F9+7d6dKlCwCdOnWiefPm\nLF26lOTkZNatW8e9995LREQE7dq1o2fPnnk+5/LlyzN27FjKli1Lt27dqFKlChs3bvSc2ahRo6hS\npQqNGzemSZMmdO7cmTp16nDaaafRtWtXvv/++8C8IsLEiROJiIigffv2dOvWLXDE9PXXX+fhhx+m\nWrVqVKlShbvuuitbh6ps2bJMmDCBiIgIKlSocFI7FixYwG233UadOnWoXLky999/P2+//TaZmX/8\namdwjqEET3/ttde4/vrradGiBSLCoEGDqFChQqCjP2zYMGJjY+nWrRu7d+8OdKoL4rLLLqNp06aU\nL1+eyy67jIoVKzJgwABEhCuvvDLQcV67dm3I/fLtt98GICIigs2bN5OWlkblypVp1apVYHxaWhqJ\niYmICBdeeGHg1zK7detGdHQ0AO3ataNz586sXr0acL5ADB06lEaNGlGxYkXGjx+fLZu8tlW5cuVI\nTU1l27ZtlC1blrZt2+aZwT333EP16tWpUKECixcvpm7dugwePBgR4YILLqB3794sWrQIYwxz5szh\nn//8J1FRUYgIbdq0ISIiIs/XRE79+/cP5AYwf/58BgwYAOS9zdesWcOJEycCr+8+ffrQokWLAm7x\n8OO3utFwobnbobnb47fsff/LpCXV9u3b2blzJ7GxsYDTccvMzKR9+/aBeXr06MH48eNp0KABF110\nUbbHn3322dmG69Spw86dO9m+fTvp6ek0adIksFxjTKAz/uuvvxITE+O5jQsXLuTjjz8OLCsjI4P/\n+7//IyUlhRo1alCpUqVsbdixY0euyzv99NMpU+aP736VKlXi0KFDntoCzpeTLBUrVqRWrVrZhnfv\n3h0YrlGjRuCIblbbUlJS2LNnD4cPH6Zz586BaZmZmdk6h5GRkUREROTajp07d2b7clOnTh1OnDjB\nrl27OOusszw/nyzbt2/nzTff5N///jfg5HzixAl27twZmGfYsGFcffXVzJgxI8+2zZgxI/BfgIED\nB/LYY48BeWcXvB2Sk5Pz3C9nzpzJ1KlTufjii6lbty7jxo2je/fuDBo0iB07djBixAh+//13Bg4c\nyKRJkyhbtixLly7l0UcfJTExkczMTI4ePUpcXBzglNm0bNky0JbatWsH7ue3re68806mT59O//79\nERGuvfZa7rrrrlyzCf5F0e3bt7NmzZpszzMjI4PBgwezd+9ejh49Sr169U5aRl6viZw6duzI0aNH\niY+Pp2bNmvz444+Bcq78tnmo17dSSimVk2866uvWrcv2gZ+fqrNPPgJWnGrXrk29evX4+uuvc51n\nypQpNGrUiKSkJBYsWED//v0D04I7ceB0sC699FJq165NxYoVA0c2Q613y5YtIdeXc/7atWszaNCg\nkOUfycnJ7Nu3jyNHjgQ668nJydk64gVRuXJljhw5EhjetWvXKS0nS6i2xcXFERkZSeXKlfniiy9y\n7VTnd7Ln2WefTXJycmB4+/btREREZOv8FkTt2rW55557uPvuu0NOP3ToEBMnTuSaa65h+vTp9OnT\nh+rVq4ds6913353rcry2Ja/9MiYmJtC5fPfdd7n++utJTEykUqVKjB07lrFjx5KcnMyAAQNo0KAB\nAwYMYPjw4cyaNYtLL72UMmXKMGzYsEBnOyoqKtuXu+Bc89tWVatWZcqUKUyZMoWff/6Zvn370rJl\nSzp27Biy7cFZ1a5dmw4dOmT7T0oWYwyVKlVi69atgS8UwY/L7TWRU5kyZejbty/z58+nVq1adO/e\nnSpVqgSWk9s2/+KLL0K+vr1+wQ5XK1eu9N2RrnCguduhudvjt+x9U/riN61ataJq1ao8/fTTHD16\nlIyMDH766Se+/fZbwPmw/u9//8usWbN49tlnmTBhAikpKYHH79mzhxdeeIETJ06wcOFCNm7cSLdu\n3YiKiqJz585MnDiRAwcOYIxh69atfPHFF4BzZPaZZ57hu+++A2DLli2BzlHNmjWzXTZwwIABLF68\nmOXLlweOhK5atSpwRLl58+ZMmzaN9PR0vvzyy8BRxlPRtGlT3n//fY4cOcLmzZv/9CUHjTGBtq1e\nvZqlS5dyxRVXICIMGzaMiRMnBk523LFjB8uXL/e87H79+vHcc8+RlJTEwYMHeeihh+jXr5/nLylR\nUVHZcr722mt5+eWXWbt2LeB0zJcuXRo4yj1hwgRatmzJk08+Sbdu3bJ17mrWrMm2bds8tz03WR3n\n/PbLt956K3AyZLVq1RARypQpw8qVK1m/fj2ZmZlUqVKFiIgIypYty/Hjxzl+/DiRkZGUKVOGpUuX\nBurdAa644grmzJnDhg0bOHz4MI8//nigQ53ftlqyZEngS2fVqlUpV66c523Qo0cPEhMTmTdvHidO\nnCA9PZ1vv/2WjRs3IiIMHTqU++67j5SUFDIzM/nmm29IT0/P8zURSv/+/Vm4cCHz58/nqquuCozP\na5u3adOGcuXKBV7f7733HvHx8d42pFJKqVLFNx11v9WolylThrlz55KQkECLFi1o1KgRo0eP5sCB\nAxw4cIDbbruNRx55hKioKNq2bcuwYcO44447Ao9v1aoVmzdvpkGDBvzzn//k1VdfpUaNGgD861//\nIj09nXbt2hEbG8vw4cNJTU0FoG/fvtxzzz3cfPPNgfrjffv2Ac7R2Mcee4zY2NjAiXqzZ88OXD2l\nWbNmPPPMM4Fa7BdeeIE1a9ZQv359Hn30UYYMGVKgDIKPcN56662UK1eO8847jzvuuCNQyxtq3lDD\nOUVFRVGjRg3i4uIYOXIkTzzxBPXr1wecExRjY2Pp3r079erVo3///oETTb245pprGDhwIJdddhmt\nWrWicuXK2U7kzK9t48aN47bbbiM2NpZFixbRvHlznnzyScaPH09sbCwXXXRR4MTcjz76iBUrVgRK\nWB566CESEhICR4JvueUWFi1aRP369bn33ntDrs/L5SCz5slrvwRYtmwZ7du3Jzo6mvvuu48XX3yR\nChUqkJqayvDhw6lXrx7t27fnkksuYeDAgVStWpVp06YxfPhwYmNjeeedd+jVq1dgvV27duXmm2+m\nb9++2a7IUr58eSDvbZWYmMiVV15JdHQ0vXr1YsSIEXTo0MFTBlWrVmXBggW8/fbbxMXFERcXx4MP\nPsjx48dpKECqAAAgAElEQVQBePDBB4mLi6NLly7Ur1+fBx98kMzMzHxfEznXk7V/pKam0rVr18D4\nvLZ5REQEr732GnPmzKF+/fosWrSI3r1757sNw52fjnCFE83dDs3dHr9lL/mdFFdSLFu2zIQqfdmx\nY0e22tRwMHfuXGbPns0HH3xguylKFaoNGzZwySWXkJKScsplVKVROL7PhZP1qYdYtH53rtP7xtUk\nLqpKMbZIKeUn7qWRQx51880nZUGvo66UKhk++OADjh8/zr59+/jHP/5Bz549tZOuTuK3axuHC83d\nDs3dHr9lr5+WSqki9corr9CoUSNat25NuXLlAmU+SimllMqblr4opVQJp+9zJZuWviil/oywKH1R\nSimllFKqNPFNR11r1JVSKnz5rW40XGjudmju9vgte9901JVSSimllCpNfNNR99t11JVSSnnnt2sb\nhwvN3Q7N3R6/Ze+bjrpSSimllFKliW866uFWo3777bczdepU280okOnTpzNy5EjbzShxmjdvzuef\nf267GUr5mt/qRsOF5m6H5m6P37IvZ7sBRWHXwWPsOXSiyJZ/ZpVy1KpaociWX5Ll9nP1q1at4pZb\nbuGHH34olPVERkaydu1a6tWrVyjLU0oppZTyG9901AtSo77n0Ik8r2n7Z/WNq+mLjnpGRgZly5Yt\nlnUZY3LtxJ+KwlzWqSrO/JQq7fxWN2pTfgejCnIwSXO3Q3O3x2/Z+6b0xY82bNhAnz59iImJoUOH\nDnz88cfZpu/du5d+/foRHR1Nnz59SE5ODkybOHEijRs3pm7dunTs2JGff/4ZgOPHjzN58mQuvPBC\nmjRpwpgxYzh27BjgHNW+4IILePrpp2nSpAl33nknbdu2ZenSpYHlZmRk0KhRIxISEgD45ptv6Nmz\nJzExMXTq1IlVq1YF5k1KSqJ3797UrVuX/v37k5aWFvJ5Hj58mEGDBpGSkkJ0dDTR0dGkpqZijOHJ\nJ5+kVatWNGzYkBEjRrB//34A3nnnHVq0aMHBgwcBWLp0KXFxcaSlpXH55ZdjjKFjx45ER0ezcOFC\n0tLSGDJkCDExMdSvX5/LL78819wjIyN54YUXaNmyJY0aNeLvf/97tumzZ8+mbdu21K9fnwEDBmTL\nPTIykhdffJE2bdrQpk2bkMt/8803adasGQ0bNuSJJ57INi0+Pp4ePXoQExPD+eefz/jx4zlxwvlA\nHTduHJMnT842/9VXX82sWbNyfS5KKZVT1sGo3G5F+R9lpVTx8k1H3W816idOnGDo0KF06dKFjRs3\nMm3aNG6++WYSExMD88yfP59x48aRmJjI+eefz8033wzA8uXL+eqrr1izZg3btm3jpZde4owzzgDg\ngQceYMuWLaxcuZI1a9awc+dOHn300cAyd+3axf79+/n++++ZMWMGV111FfPnzw9MX7ZsGZGRkTRt\n2pQdO3YwZMgQxo4dy5YtW3jwwQe57rrrAh3ym266iRYtWrBp0ybGjBnD3LlzQz7XypUrM2/ePM46\n6yySkpJISkoiKiqK559/no8++ogPPviA9evXU6NGDcaMGQPAlVdeycUXX8yECRP47bffGD16NE89\n9RRnnHEG77//PuDUkSUlJXHFFVfw7LPPUrt2bRITE9mwYQOTJk3KM/8PP/yQTz/9lBUrVvDRRx8x\ne/bswPinnnqK2bNns3HjRtq1a8eNN9540mOXLVvG6tWrT1ruzz//zNixY3n++edZv349aWlp7Ny5\nMzC9bNmyTJ06lc2bN7N48WI+//xzXnzxRQAGDx7M22+/HZg3LS2Nzz//nAEDBuT5XJQqDfxWNxou\nNHc7NHd7/Ja9bzrqfrNmzRoOHz7MXXfdRbly5ejYsSM9evRgwYIFgXm6d+9O27ZtiYiIYNKkSaxZ\ns4YdO3YQERHBwYMH+eWXXzDG0LBhQ2rVqgXA66+/zsMPP0y1atWoUqUKd911V7Zlli1blgkTJhAR\nEUGFChXo378/H330EUePHgVgwYIF9O/fH3C+KHTv3p0uXboA0KlTJ5o3b87SpUtJTk5m3bp13Hvv\nvURERNCuXTt69uxZoAxeeeUVJk2axFlnnUVERARjx47l3XffJTMzE4BHHnmEzz//nN69e9OrVy+6\ndeuW7fHGmMD9cuXKkZqayrZt2yhbtixt27bNc9133XUX1apVo3bt2owcOTKQ0SuvvMLo0aNp0KAB\nZcqUYfTo0fzwww/Zjqrfc889VKtWjQoVTv7X8XvvvUePHj0C223ixInZynSaNWtGq1atEBHOPfdc\nrrvuusB/KVq2bEm1atX47LPPAHj77bfp0KEDkZGRBYlVKaWUUqWEbzrqfruO+s6dOznnnHOyjatT\np062o6+1a9cO3K9SpQo1atQgJSWFjh07cuONNzJu3DgaN27MPffcw8GDB9mzZw+HDx+mc+fOxMbG\nEhsby8CBA7OVpERGRhIREREYjomJoXHjxnz88cccOXKEjz76KHAEd/v27SxcuDCwrJiYGL7++mtS\nU1NJSUmhRo0aVKpUKVv7CyI5OZlhw4YFlt+uXTsiIiLYtWsXANWqVaNv3778/PPP3HbbbXkua9So\nUdSrV4/+/fvTqlUrnnrqqTznD86+Tp06pKSkBJ7zvffeG2hT/fr1EZFs2yXndguWkpKSbbtVrlw5\n8N8OgMTERIYMGUKTJk2oV68eDz/8cLbtM3jwYObNmwfAvHnzGDhwYJ7PQ6nSwm91o+FCc7dDc7fH\nb9n75mRSvzn77LPZsWNHtnHJyck0aNAgMPzrr78G7h88eJDffvuNs846C3DKTm666Sb27t3L8OHD\nmTlzJhMmTKBy5cp88cUXgflyCnUSZr9+/ViwYAEZGRmcd9551K1bF3C+KAwaNIgZM2ac9Jjk5GT2\n7dvHkSNHAp315ORkypQJ/d0u1Hpr167NzJkzueiii0I+JiEhgTfeeIP+/fszfvx43nrrrZDzgfNF\nZsqUKUyZMoWff/6Zvn370rJlSzp27Bhy/l9//ZXGjRsDTuc8K6/atWszZsyYwH8VvD6XLFFRUWzc\nuDEwfPjw4Wwd8TFjxnDhhRfy4osvUrlyZWbNmsV7770XmD5gwAAuueQSfvzxRzZu3Mhll12W67qU\nUkopVbr55oi632rUW7VqRaVKlXj66ac5ceIEK1euZPHixdk6iEuXLuWrr77i+PHjTJ06lTZt2nDO\nOefw7bffsnbtWk6cOEHFihWpUKECZcqUQUQYNmwYEydOZM+ePQDs2LGD5cuX59mWfv36sWLFCl5+\n+WWuuuqqwPgBAwawePFili9fTmZmJkePHmXVqlXs3LmTc889l+bNmzNt2jTS09P58ssvTzoZNljN\nmjX57bff+P333wPjrr/+eh566KFAWcmePXv46KOPADh69CgjR47k/vvvZ+bMmaSkpPDSSy8FHhsV\nFcXWrVsDw0uWLGHLli0AVK1alXLlyuX6pQFg5syZ7N+/n+TkZJ5//nn69esHwPDhw3niiScCJ+f+\n/vvvLFq0KM/8gvXp04fFixfz1VdfkZ6ezj//+c9sJToHDhzgtNNOo3LlymzYsIGXX3452+PPOecc\nmjdvzsiRI+ndu3fI8hqlSiO/1Y2GC83dDs3dHr9l75uOut9EREQwZ84cli5dSoMGDRg3bhyzZs2i\nfv36gHPU9qqrrmL69Ok0aNCAhIQEnn/+ecDp7I0ePZrY2FhatGhBZGQkd955J+CcTBobG0v37t0D\npSDBJ6iGEhUVRZs2bVizZg1XXnllYHzt2rWZPXs2M2bMoGHDhjRr1oxnnnkmUEP+wgsvsGbNGurX\nr8+jjz7KkCFDcl1Hw4YN6devHy1btiQ2NpbU1FRGjhxJr1696N+/P3Xr1qVnz57Ex8cDMGXKFOrU\nqcP1119P+fLlmTVrFlOnTg10xseNG8dtt91GbGwsixYtIjExkSuvvJLo6Gh69erFiBEj6NChQ67t\nufTSS+ncuTOdO3emZ8+eXHPNNQBcdtlljB49mhtvvJF69epxySWXsGzZssDj8rss5Hnnncejjz7K\nTTfdRFxcHGeccUa2UpkpU6bw1ltvER0dzT333JMt7yxDhgzhp59+YvDgwXmuSymllFKlmwQfDSzJ\nli1bZlq2bHnS+B07dpxUU6w/eFS6lfQfS1q9ejUjR47ku+++s90U5ROh3udUybE+9VCev93RN64m\ncVFVfLs+pVTRio+Pp0uXLiGPFIZljXqtqhW0I61KpPT0dGbNmsW1115ruylKKaWUKuGKtfRFRLaK\nyHci8q2IfO2OO11ElojILyKyWESqh3qs32rUlT0l4VdNQ9mwYQOxsbHs3r2bW265xXZzlCpR/FY3\nGi40dzs0d3v8ln1xH1HPBP5ijPktaNwE4BNjzCMiMh641x2n1CnJOtG2pGnUqBHbt2+33QyllFJK\n+URxn0wqIdbZF3jVvf8qcEWoB/rtOupKKaW889u1jcOF5m6H5m6P37Iv7o66AZaKyDcikvW77VHG\nmFQAY0wKUKuY26SUUkoppVSJU9ylLx2MMTtFpCawRER+wem8Bwt5GZqnnnqKKlWqEB0dDUD16tVp\n2rQpDRs25PDhw1SuXLloW66UUsXMGENaWho7d+5k8+bNgSNBWTWW4TSckJDArbfeWmLaU5Dh+K9X\nk7R1H9EXtAYg6Yc1AIHh+K9Xk3Z6xRK5vuB63ZKSZ2kY9vP+7vfh5557jqZNm1rf/vv37wcgKSmJ\n1q1b06VLF0KxdnlGEfk7cBC4EaduPVVEzgJWGGOa5Jz/8ccfNzfccMNJyzHGsGvXLjIyMoq8zaXR\n/v37qV495Pm9ReLw8Qz2HE7PdfqZlSOoXL5ssbXHluLOHfLOvrTkDnayz40xhurVq1O1alXbTSly\nK1eu9N2/pLP4+fKMfs7dzzR3e0pi9iXi8owiUhkoY4w5KCJVgO7AP4B3geuB6cB1QMificytRl1E\niIqKKoomKyj2azevTz3Eii15fQCdQYNScH1gG9fMziv70pI72Mle+a9uNFxo7nZo7vb4LfviLH2J\nAt4REeOu9w1jzBIRWQPME5EbgG3AwGJsk1JKKaWUUiVSsZ1MaozZYoxpboxpYYxpaoyZ5o5PM8Z0\nNcY0NsZ0N8bsC/V4vY66HX673mi40Nzt0ezt0Nzt0Nzt0Nzt8Vv2YfnLpEoppVRJs+vgMfYcOhFy\n2plVyukvaiulTuKbjrpeR90Ov9VyhQvN3R7N3o7SkPueQydyPQm0b1xNKx310pB7SaS52+O37Iv7\nOupKKaWUUkopD3zTUdcadTv8VssVLjR3ezR7OzR3OzR3OzR3e/yWvW866koppZRSSpUmvumoa426\nHX6r5QoXmrs9mr0dmrsdmrsdmrs9fsveNx11pZRSSimlShPfdNS1Rt0Ov9VyhQvN3R7N3g7N3Q7N\n3Q7N3R6/ZX9KHXURqSQiesFXpZRSSimlioinjrqIPCYiF7n3LwPSgN9EpHdRNi6Y1qjb4bdarnCh\nuduj2duhuduhuduhudvjt+y9HlG/GvjBvX8/cA3QB5haFI1SSimllFKqtPPaUa9sjDksIpFArDFm\ngTHmE6BuEbYtG61Rt8NvtVzhQnO3R7O3Q3O3Q3O3Q3O3x2/Zl/M43wYRuRpoACwFEJEzgSNF1TCl\nlFJKKaVKM68d9duAp4B04AZ3XA9gSVE0KhStUbfDb7Vc4UJzt0ezt0Nzt0Nzt0Nzt8dv2XvqqBtj\nvgHa5xj3BvBGUTRKKaWUUkqp0s7z5RlFpJuIvCgi77nDrUXkr0XXtOy0Rt0Ov9VyhQvN3R7N3g7N\n3Q7N3Q7N3R6/Ze/18ox3As8BG4H/c0cfAR4qonYppZRSSilVqnk9oj4a6GqMmQZkuuN+BhoXSatC\n0Bp1O/xWyxUuNHd7NHs7NHc7NHc7NHd7/Ja91476acB2975x/0YAxwu9RUoppZRSSinPHfXPgQk5\nxo0CVhRuc3KnNep2+K2WK1xo7vZo9nZo7nZo7nZo7vb4LXuvl2e8E3hPRG4CThORX4ADwOVF1jKl\nlFJKKaVKMa+XZ9wpIm2Ai4BonDKYr40xmXk/svBojbodfqvlCheauz2avR2aux2aux2auz1+y97r\nEXWMMQb4yr0ppZRSSimlipDXyzNuF5GkELeNIrJCRO4UEc+d/lOhNep2+K2WK1xo7vZo9nZo7nZo\n7nZo7vb4LXuvneungWvcv9txyl9uB94C0oC/AXWAcUXQRqWUUkoppUodrx3164FuxpgdWSNE5CNg\niTHmfBFZAXxCEXbUtUbdDr/VcoULzd0ezd4Ozd0Ozd0Ozd0ev2Xv9fKMZwMHc4w7BJzj3t8A1Cis\nRimllFJKKVXaee2ovwcsEpGuInKeiHQFFrjjAdoBW4ugfQFao26H32q5woXmbo9mb4fmbofmbofm\nbo/fsvfaUb8F52ovzwPfAi8A3wAj3embgcsKvXVKKaWUUkqVUl6vo34U55dJc/46adb0lMJsVCha\no26H32q5woXmbo9mb4fmbofmbofmbo/fsvd8SUURKQ80Bs4EJGu8MWZ5EbRLKaWUUkqpUs3rddQv\nAbYBnwFLgfnAYuA/Rde07LRG3Q6/1XKFC83dHs3eDs3dDs3dDs3dHr9l77VGfQbwiDHmDOCA+3cK\n8K8ia5lSSimllFKlmNeOeiPgqRzjpgF3F25zcqc16nb4rZYrXGju9mj2dmjudmjudmju9vgte68d\n9f1ANff+ThGJA04HqhZJq5RSSimllCrlvHbU3wYude+/BKwA1uLUqhcLrVG3w2+1XOFCc7dHs7dD\nc7dDc7dDc7fHb9l7vTzj6KD7j4nIl8BpOCeUKqWUUkoppQqZ1yPqOe0AfjLGZBb0gSJSRkTiReRd\nd/h0EVkiIr+IyGIRqR7qcVqjboffarnCheZuj2Zvh+Zuh+Zuh+Zuj9+y93p5xrki0t69Pxz4EfhR\nREacwjrvAtYHDU8APjHGNAaWA/eewjKVUkoppZQKK16PqHcB1rj37wG6AheRyy+V5kZEzsWpdQ++\n/npf4FX3/qvAFaEeqzXqdvitlitcaO72aPZ2aO52aO52aO72+C17r79MWt4Yc1xEagNnGGNWAYhI\nVAHXNwMYCwSXt0QZY1IBjDEpIlKrgMtUSimllFIq7HjtqK8TkXuBusAHAG6n/XevKxKRy4BUY8w6\nEflLHrOaUCO1Rt0Ov9VyhQvN3R7N3g7N3Q7N3Q7N3R6/Ze+1oz4C55dI03GOiAO0A94owLo6AH1E\n5FKgEnCaiLwOpIhIlDEmVUTOAnaFevD8+fP5z3/+Q3R0NADVq1enadOmgcCz/pWhw/4ePqNhCwCS\nfnAqraIvaJ1tmLheJaq94TS89bejULUBcHL+8V+vJu30iiWqvTqswyVlOP7r1SRt3XfS+1XO109e\n72/xB2sQ17troa6vpOSjwzqsw9mHExIS2L9/PwBJSUm0bt2aLl26EIoYE/IAdpESkU7A34wxfUTk\nEWCvMWa6iIwHTjfGnFT7/vjjj5sbbrih2Nta2q1cuTKwcxWH9amHWLR+d67T+8bVJC6qSrG1x5bi\nzh3yzr605A52slf+zt3r+1ZhvcYK833Sz7n7meZuT0nMPj4+ni5dukioaV6v+jJERJq49xuLyOci\nskJEziuE9k0DuonILzgnrU4rhGUqpZRSSinla+U8zvcQ0N69/xjwNXAQ+Bfw14Ku1BjzGfCZez8N\n5yoyedIadTtK2rfO0kJzt0ezt0Nzt0Nzt0Nzt8dv2XvtqNd0a8grApcAV+HUq+8pspYppZRSSqlS\nb9fBY+w5dCLktDOrlKNW1QrF3KLi4/U66rtFpAHQC/jGGHMMqAiErKcpCnoddTuyToJQxUtzt0ez\nt0Nzt0Nzt0NzL5g9h06waP3ukLfcOvC58Vv2Xo+oTwHWAhnAIHdcV+C7omiUUkoppZRSpZ2njrox\n5hURmefeP+yO/hIYXFQNy0lr1O3wWy1XuNDc7dHs7dDc7dDc7dDc7fFb9l5LX8C59nl/ERnnDpfD\n+xF5pZRSSimlVAF4vTxjJ+AX4Gpgsju6IfBcEbXrJFqjboffarnCheZuj2Zvh+Zuh+Zuh+Zuj9+y\n93pE/UlgkDGmJ5BVtf8VcFGRtEoppZRSSqlSzmtHvZ4xZpl7P+unTI9TjKUvWqNuh99qucKF5m6P\nZm+H5m6H5m6H5m6P37L32lFfLyI9cozrCiQUcnuUUkoppZRSeO+o/w14Q0ReBSqJyPPAK8DYompY\nTlqjboffarnCheZuj2Zvh+Zuh+Zuh+Zuj9+y93p5xi9FpBnOyaQvAduBi4wxyUXZOKWUUkoppfKT\n16+Xgn9/wdRzjbkx5lfgkSJsS560Rt0Ov9VyhQvN3R7N3g7N3Q7N3Q7NvfBl/XppbvrG1aRW1Qq+\ny95TR11EqgOjgBZA1eBpxpjuRdAupZRSSimlSjWvNepvAX8BlgNv5rgVC61Rt8NvtVzhQnO3R7O3\nQ3O3Q3O3Q3O3x2/Zey19aQucaYw5XpSNUUoppZRSSjm8HlFfCZxXlA3Jj9ao2+G3Wq5wobnbo9nb\nobnbobnbobnb47fsvR5Rvx74UES+AlKDJxhjHizsRimllFJKKVXaeT2i/jBQB4gCGgbdGhRRu06i\nNep2+K2WK1xo7vZo9nZo7nZo7nZo7vb4LXuvR9QHA42MMTuLsjFKKaWUUkoph9eO+mYgvSgbkh8/\n16j7+SL8fqvlCheauz2avR2aux2au6O4P6c1d3v8lr3XjvrrwLsiMpOTa9SXF3qrwozXi/ArpZRS\nqvjp57QqqbzWqN8OnA1MBV4Muv2niNp1Eq1Rt8NvtVzhQnO3R7O3Q3O3Q3O3Q3O3x2/ZezqiboyJ\nKeqGKKWUUkoppf7g9Yh6gIgMKYqG5MfPNep+5rdarnChuduj2duhuduhuduhudvjt+wL3FEHni/0\nViillFJKKaWyOZWOuhR6KzzQGnU7/FbLFS40d3s0ezs0dzs0dzs0d3v8lv2pdNT/V+itUEoppZRS\nSmXjqaMuIgOy7htjLg0af1VRNCoUrVG3w2+1XOFCc7dHs7dDc7dDc7dDc7fHb9l7PaL+Yi7jXyis\nhiillFJKKaX+kGdHXURiRSQWKCMiMVnD7q0rcLR4mqk16rb4rZYrXGju9mj2dmjudmjudmju9vgt\n+/yuo74JMDgnkCbmmJYC/KMoGqWUUkoppVRpl2dH3RhTBkBEPjPGdCqeJoWmNep2+K2WK1xo7vZo\n9nZo7nZo7nZo7vb4LXuvNer9Qo0UkfqF2BallFJKKaWUy2tHPUFEegWPEJFbga8Kv0mhaY26HX6r\n5QoXJTX3XQePsT71UK63XQeP2W7in1ZSsw93mrsdmrsdmrs9fss+vxr1LCOA/4jIIuAJYCZwDvDX\nomqYUqrk2XPoBIvW7851et+4mtSqWqEYW6SUUkqFL09H1I0xHwFNgUuAX4C9QBtjzPdF2LZstEbd\nDr/VcoULzd0ezd4Ozd0Ozd0Ozd0ev2Xv9QePqgKPAdWBGcClwPVF1yyllFJKKaVKN6816t8DEcCF\nxpgxOCUvd4rI+0XWshy0Rt0Ov9VyhQvN3R7N3g7N3Q7N3Q7N3R6/Ze+1Rn2CMWZe1oAxZp2ItAGm\nel2RiFQAPgfKu+udb4z5h4icDrwJ1AW2AgONMfu9LlcppZRSRWvXwWPsOXQi5LQzq5TTc1N8QLeh\nP3nqqGd10kWkDBBljNlpjDkK3ON1RcaYYyLS2RhzWETKAqtE5COgP/CJMeYRERkP3AtMyPl4rVG3\nw2+1XOFCc7dHs7dDc7fDa+55nUiuJ5EXnI39Xbehw2/vNV5r1GuIyBzgKM6vlSIifUTkoYKszBhz\n2L1bAedLggH6Aq+6418FrijIMpVSSimllApHXmvUZwH7ccpTjrvjVgODCrIyESkjIt8CKcBSY8w3\nOEfoUwGMMSlArVCP1Rp1O/xWyxUuNHd7NHs7NHc7NHc7NHd7/Ja91xr1LsA5xph0ETEAxpjdIhKy\nU50bY0wm0EJEqgHviMj5OEfVs80W6rGfffYZa9asITo6GoDq1avTtGnTwL8wsoIvqcNJP6wBIPqC\n1iGHbbcvt+EsxbW+Mxq2yDMv4nqVqHyKajghIaHY17/1t6NQtQFwcv7xX68m7fSKun10uMiGExIS\nSlR7CjIc//Vqkrbuy/X93cvrJ/5gDeJ6dy3U9RX3+0NJ2R6F/fwKun1K6v7uZf/bdfAYS1b8D4CW\nF7UDnO2bNXxmlXJsWPdNsbS3qD6fbHy+5hxOSEhg/37ndMykpCRat25Nly5dCEWMCdkvzj6TyCag\nozFmp4ikGWPOEJFoYIkx5rx8FxB6mZOBw8CNwF+MMakichawwhjTJOf8y5YtMy1btjyVVVm3PvVQ\nvj8SExdVpRhbVHJpVvbklX1W7rp9lDqZ19eFl9dYYa6vMBVW20uq0vDe5uf3eD+33Yv4+Hi6dOki\noaZ5LX35D7BARDoDZUSkHU49+SyvjRCRM0Wkunu/EtAN+Al4lz+uyX4dsMjrMpVSSimllApXXjvq\n03EuofgszvXUX8LpUD9VgHWdDawQkXXAV8BiY8yH7rK7icgvOCU200I9WGvU7chZAqOKh+Zuj2Zv\nh+Zuh+Zuh+Zuj9+yL+dxvihjzFPk6Ji7pSopXhZgjEkATqpdMcakAV09tkMppZRSSqlSwWtHfQNQ\nLcT49cAZhdec3Ol11O3IOvkhnJXEH4EoDbmXVJq9HZq7HZq7HZq7PX7L3mtH/aQCd/fKLZmF2xyl\nip/+CIRSSimlSqI8a9RFZLuIJAGVRCQp+AbsBBYWSyvRGnVb/FbLFS40d3s0ezs0dzs0dzs0d3v8\nln1+R9SvwTma/iEwLGi8AVKNMb8UVcOUUkoppZQqzfLsqBtjPgPn0orGmMPF06TQtEbdDr/VcoUL\nzd0ezd4Ozd0Ozd0Ozd0ev2Xv6fKMtjvpSimllFJKlTZer6Nundao2+G3Wq5wobnbo9nbobnbobnb\noQLd7XAAACAASURBVLnb47fsfdNRV0oppZRSqjTxTUdda9Tt8FstV7jQ3O3R7O3Q3O3Q3O3Q3O3x\nW/Zer6OOiCQYY5qKSEtjTHxRNkoppWwpiT+ApZRSfpPXeyno+6lXeXbUReQxIB74Fqjtjv6EYvo1\n0mDr1q2jZcuWxb3aUm/lypW++/YZDjR3e5as+B/bqzYIOU1/AKvo6D5vh+ZuR2nIPa8fEwR776d+\nyz6/0pcfgfbAy8BpIjITKCsiEUXeMqWUUkoppUqxPDvqxpiXjTF3GGPaAgeBL4BKQJKIxIvIv4uj\nkaA16rb46VtnONHc7Wl5UTvbTSiVdJ+3Q3O3Q3O3x2/Z51f6koRT+rIWKAssAP5ljDlbRGKAFkXf\nRKWUUkoppUqf/EpfmgCPAQeACsD3QEURGQiUM8a8XcTtC9DrqNvht+uNhgvN3Z74r1fbbkKppPu8\nHZq7HZq7PX7LPr/Sl0PGmJXGmCeBQ0BbIAPoDLwhIqnF0EallFJKKaVKnYJcR/1tY8w+IN0Yc6sx\n5iL+uBJMkdMadTv8VssVLjR3e7RG3Q7d5+3Q3O3Q3O3xW/aeO+rGmBvdu9cGjcv9AplKKaWUUkqp\nU1bgXyY1xrxXFA3Jj9ao2+G3Wq5wobnbozXqdug+b4fmbofmbo/fsi9wR10ppZRSSilV9HzTUdca\ndTv8VssVLjR3e7RG3Q7d5+3Q3O3Q3O3xW/a+6agrpZRSSilVmvimo6416nb4rZYrXGju9miNuh26\nz9uhuduhudvjt+xz/WVSEfkfYPJbgDHm/wq1RX/CroPH2HMo9wvRnFmlHLWqVij2ZSmllFJKKVVQ\nuXbUgf8E3a8P3AC8CmwDooHrgJeKrmnZealR33PoBIvW7851et+4mp4714W5LD/zWy1XuNDc7Wl5\nUTu25/HaV0VD93k7NHc7NHd7/JZ9rh11Y8yrWfdF5EughzHmx6Bxc3A66n8v0hYqpZRSSilVCnmt\nUW8CJOYYtwU4r3CbkzutUbfDb7Vc4UJzt0dr1O3Qfd4Ozd0Ozd0ev2WfV+lLsM+AV0RkMpAM1AEe\nAP5XRO1SSimlrMncmcyJ1SswR4/kO2+Nw+l02Hs49+mJlTlWOSLP+bLm8cLr+rxI35DIsaT1f2qd\nBVlfSVWYmXrhNffC5GUbFmYOxbWsgrbdRvYA5QeNQMqWLfDjvHbUrwf+BfzoPiYdeBsYXuA1niK9\njrodfqvlCheae+HzeoK41qjbUZL2+Yxtmzgy5W9wNPcP/WDVgJb5zJPuYb50b83zvD4v2gDpm+L/\n9Dq9rq+kKsxMvfCae2Hysg0LM4fiXFZB2m4je4DyA4cDRdRRN8akAYNFpAxQE9htjMks8NqUUsoS\nPUFceZH52x6OPjbZcyddKaWKkufrqIvIecB9wGRjTKaINBaRC4uuadlpjbodfqvlCheauz1ao25H\nSdjnzdEjHH38fsxve2w3pdis3nvAdhNKJc3dHr9l7+mIuogMwCl9WQAMBe4ATgOmAV2LrHVKKaVU\nMTCZGRx9bhqZWzdmG1/u4k6UiWmU52NTDx7nx9RDuU4/P6oKUVXL5zlf1jxeeF2fF+V++oXyTRr/\nqXUWZH0lVWFm6mVZ5bZv8ZR7YfKyDYs7h8JYVkHb7nWfL3RlTu03Rr3WqD8IdDXGfCcig9xx3wHN\nTmmtp0Br1O0oSXWjpYnmbo/WqNthe58//t8XyVj7RbZxZZtfTIXb70XK5F1XeiD1EN/msc9Ex9Wk\nTlSVPOfLmscLr+vzovPlnmYrtLaXVIWZqZdldbaQl5dtWNw5FMayCtp2r/t8SeG1o14L+N69b4L+\n5vvLpcrfvJ6Al9d8+iuuBae/jKtU8Ulf/gHpH76VbVyZ6Fgq3j4x3056Sabvy0rZ5+XzPC9eO+pr\ngWHAa0HjBgNfe3z8n7Zu3TpatszvfF5V2Jas+B/bqzbIdXrWCXh5nainJ+kVnNfcVeGL/3o15JG9\nKhorV660clT9xA/xHHvl6WzjpMYZVPzbFKRS5WJvT2Hy8r5sK/fSTnO3p7iz93Ihg7x47aiPApaI\nyAigisj/t3f/0XaV9Z3H39/8DkmIIZIg0PDTYEMhl4xkSClVuEARK9hOlwojRZ22DtrBKmNB66h1\ntAu0VmF0XGopC5hBAWem/Oh0IfJDe53QQK8HI4GQAIGA5F4xIU1uyM/7nT/OvvHcm3vP3Un22d/9\nnPN5rXUWd+9zzt7P/dzn7PNk8332tvuAhcD5Od8vIiJSKYMvPc/2Gz4Hgw0XMZs6jWlX/VcmzJ0X\n1zARkUyuynZ3f4r6XUi/DnwKuAk4xd3XNH1jgVSjHmPJ0mXRTehIyj2Oso9R9tnFwc2beO2vPwXb\nGiafmTHtimuYOM7k0Xais7oxlHuc1LLPe9WXG9z9SuCOEeu/6u5/lnMbR1MvnZkPDALfdvcbzGwO\ncDtwDLAOeJe7b87/K4iIiOTnO3ey/aufxX+xYdj6Ke/5Yya9+cygVsXQfBiRast7rZj3jbH+sv3Y\n127gY+5+MrAM+HB2bfZrgB+4+0nAg8AnRnuzrqMeQ9eUjqHc4yj7GGVdR93d2fGtLzG4ZvgtxCed\nfSGTL/yDUtpQJd9/6J+4a9Uvxnw0G8TLgavCfQM6VWrZNz2jbmYfGHpdw89Djgdy3xXC3TcAG7Kf\nt5rZk8DRwMXAW7KX3Qw8TH3wLiIiUhgfHGTnLV9j9yMPD1s/8eTTmHr5f8LMYhomIjKG8Upfhs6Y\nT2H42XMH+oDLD2SnZnYs0AU8Asx39z6oD+bNbNQZPKpRj6FrSsdQ7nGUfYxW14367t3s+OYX2b38\noWHr7chfY9qVn8Ym5b22QntRf4+RWp10O0kt+6ZHJnc/G8DMPu/unypih2Y2E/ge8JHszPrIa7Hr\n2uwiIlIY37Gd7Td8jj2PPzr8iVmzmf6fv4DNmBnTMBGRceQ9hfAjM1vo7k8PrTCzk4AF7n5/3p2Z\n2STqg/Rb3f2ubHWfmc139z4zOwLoH+29119/PTNmzGDBggUAzJ49m1NOOWXvv4x6enpYt2n73usf\nv/CzxwBY8Btv3rvcu/V1LHrHuXtfDwx7f+Ny74rlvLDu1WHvb9xe74rlbJwzbcz3j1werT2Ny+O9\nP2p5KNOx2s+it+XKK+/+DnvjaU3zGtpf0b9v2fsbb/n2m/+W/ulHFdb/8iw3+/wM7S/q79Pq36/x\n+DDUl5v9fvfc/xCbt+/Ze4WYobr2oeVnfrqCOdMnV+r3r/ryypUrueKKKwrfvg9s5YE/+yP8xXUs\nmzsLgOW/3ILNOpSz/+KvmTDvDQe9v7zfF80+P634fsqzv2b9vfH4nef4UHb/Wdh1Oq8M7N7n8ze0\nfP7ZZ+29Vvx42yt7/PDDF9e0pL83W87b/4oarxT5fVHk99M3vvGNfcaPrci7WX/of241O7ZtAWDl\nzo2c+1tn0N3dzWjMffwT2Ga2Bvhtd3+5Yd2RwMPunvs6VmZ2C/CKu3+sYd11wEZ3v87MrgbmuPs+\nNepf/vKX/QMfGFkmP9yqvoFxLyq/KOftaqu6rbL9j3t+MO6NdxbNn9H0d6x6VkW1vUh5cy9SnhxS\n7st5294s+3bIoapacROSwVc3sv2Ln2DwhWeHrbd5RzL9mmuZMO8Nhewnb38o+ziZZ39lH+OLVNXv\n6Tzb2rjmJ6WXYJR9jC9rW/vb9rJveJSnXdtfWk13d/eok2TyXvVlXuMgPfMycETO92NmZwL/HjjH\nzH5iZr1mdgFwHXCema0GuoFrR3u/atRj6JrSMZR7HGUfo/BBev/LvPa5j+4zSJ+w4Himf/orhQ3S\nU6f+HiO1Oul2klr2eUtfnjWzc9z9wYZ1bwWey7sjd/8xMHGMp8/Nux0REZFm9qx/ju3XXYO/unHY\n+gkLT2b6VZ9XTbqIJCPvQP2zwP82sxuBZ4ATgPdnj1LUajWWLFlS1u4k07ti+d66sNRE3Mij2T73\nZ38p5x6hqNxB2Ucp6n9H71m7ite+9CkY2DJs/cTFS5l25X/Bpk7br+0V2beqqMj+rpsn5Vd2+YX8\nSmrZ5xqou/tdZnY+8AHg7cB64Hfc/dHm7xSJ88rA7nHrwor+0mi2z1bsT+qUe2fznTsZfHY1e56s\nsfPeO2DH9mHPT/rNc5j6Jx8/oEswqm/lF3HMFWl3uY9a7r4CWNHCtjSlGvUYusZuDOUeR9nH2J8z\nXL79NfasfZI9T/2UPU/9lMFnnoJdu0Z97eTzLmLKZR/GJuSdktVZ1N9jpHRGt92kln2ugbqZTQU+\nDVwCzHX32dkZ9oXu/rVWNlBERDqH79qJbxuAbQP4tq31x8AAbNvKYP/P2fPUSgafexr27Bl3W5N/\n771M+f0/1B1HRSRZec+ofwU4ivpVW/4xW/dEtr6UgXqtVuNNt//3pq85Yvcgl+4Yuz5u1r2T2DYp\n31mVqm6rbOvW93HpYXPGfH6o7c1+x6rnXlTbx9vn/mwrb+5FytP2qvblItveLPuW5HAwg8gDeW+O\nS/IOvaZ++d7s9d743v24L13j/oa9zYe9Zvn6DZwxawrs2pl/22OZNJkpl/4JU85/58Fvq81pTkaM\n1Oqk20lq2ecdqP8ecKK7D5jZIIC7v2RmR7WuafsafOn5ps9PAeaOt42c+6rqtso2edMW5k7Y3vQ1\ng4z/O1Y596LanmefebeVN/ci5Wl7VftykW0fL/sq55AyH9gC02Yd8Ptt7uFMfNOp9ceppzNh7uEF\ntk7K1u6TeEXyyjtQ3znytWZ2OPDLwls0hq6uLnjwO2XtTjJDd/KTcin3OMo+xv7mbvOP/NXA/E2n\nMOHw3Lf1kAZVrVFv90m8KZ3RbTepZZ93oH4ncLOZfRTAzN4AfBX4bqsaJiIiHWjCBJgxC5s+A5sx\nAztkJhwyEztkBjbzUCYce2J9YD7n9dEtFRFpubwD9U9Sv4PoSuAQYA3wbeAvW9SufdRqNRZf++2m\nr3n2l6/x4DMbx3z+nBMO4/i503Ptr6rbKtudD/yYzbOOHfP5obY3+x2rnntRbR9vn/uzrby5H2yb\nGreVp+1V7ctFtr1Z9oXnkKdePO973fPXrOd5XfaaYRMxzQDLv4297xtjoWEbPf/Sy1nndMPUaZr8\nWSLVqMdIrU66naSWfd7rqO8EPgp8NCt5ecX9YL5hDszEo49t+vyuyQNs3Dj2l+OuIw5n4vwZufZV\n1W2Vbfdha9k4c+ypCENtb/Y7Vj33oto+3j73Z1t5cz/YNjVuK0/bq9qXi2x7s+yrnkPKJhz6LDat\nmicsRESi5L6Oupm9EXgXcCTwczO7w93XtKxlI+g66jGqWr/Y7pR7nLKz190c61I6w9VOdKzZP0VN\ncl3YdTqr+gbGfL5TPvcRUjvW5L2O+qXAt4B/AJ4HTgGuMbMPuvttLWyfiEhb090cRdJR1CRXfe4l\nr7wXPP48cKG7v9vd/9zd3wNcCPxV65o2XK1WK2tX0qB3xfLoJnQk5R5H2cfo6emJbkJHUn+Podzj\npHasyTtQnwWM7FWPACrCFBERERFpgbwD9b8B/srMpgGY2XTgC9n6UqhGPcaSpcuim9CRlHscZZ9f\n/9YdrOobGPPRv3VH7m2lVjfaLtTfYyj3OKkda/JOJv0QcATwETPbBMyhfo2tl83siqEXufuC4pso\nIiJVpDpbEZHWyntG/b3AucB51K/8cl62fNmIR8uoRj2G6uhiKPc4yj5GanWj7UL9PYZyj5PasSbv\nddR/ONp6M5vs7ruKbZKIiIiIiOQ6o25m95vZG0asOxV4rCWtGoVq1GOoji6Gco+j7GOkVjfaLtTf\nYyj3OKkda/LWqPcCj5vZnwJ3AlcDfw58slUNkwOnG6iISJUUdZOYIven46SIpCBv6cvVZnYvcAvw\nReDnwFJ3X9vKxjWq1WosWbKkrN0lrcgJXr0rlsPME4tqmuSk3OMo++LluUlMT09PYWe68uxPE2Hr\n1N9jKPc4RR5rypB3MinAccChwC+oXz99WktaJCIiIiIiuWvUv0e9zOUCdz8d+BbwIzP7eCsb10g1\n6jFURxdDucdR9jFSOsPVTtTfYyj3OKkda/KeUe8HTnP3RwHc/evAGcAftKphIiIiIiKdLG+N+odG\nWfe0mf1m8U0aXSfUqJc94SoP1dHFUO5x2j37qk6iTK1utF20e3+vKuUeJ8+xpkrHyaYDdTO7wd2v\nbFj+D+5+Y8NL7gD+Xasa12nyTIASETkYmkQpItJclY6T45W+vG/E8pdGLJ9XXFOaU416DNXRxVDu\ncZR9DJ1Nj6H+HkO5x0ntWDPeQN3GWRYRERERkRYYr0bdx1kuTa1WY9pRJ436nG5M0Tqqo4uh3Osi\n6gSrmH2V6iVbRTXqMarY3ztB6rlXcU5dXkUea8rIYbyB+iQzO5tfnUkfuTzxoFuwH1S/LdJZqlQn\nGEk5iEiVaE5dXRk5jFf60g/8HXBj9vjliOX+g25BTqpRj6E6uhjKPY6yj6Gz6THU32Mo9zipHWua\nnlF392NLaoeIiIiIiDTIe8OjcLVaLboJHal3xfLoJnQk5R5H2cfo6emJbkJHUn+PodzjpHasyXXD\nIxEpTp6JgUVsq+oTekREyqDjpKQsmYF6V1cX922ObkXnWbJ0GeubTGKT/ZdnYmDe3DWhp3jq8zFS\nqxttF53Q36t4nOyE3KsqtWNNMqUvIiIiIiKdJJmBumrUY6iOLoZyj6PsY6RWN9ou1N9jKPc4qR1r\nkhmoi4iIiIh0ktJq1M3sRuB3gT53PzVbNwe4HTgGWAe8y91HrURXjXpdkZNi8myryDo6TaLMT/WL\ncZR9jNTqRttFRH9v9+N3HjrOxEntWFPmZNKbgP8G3NKw7hrgB+7+RTO7GvhEtk7GUOSkmLIn2OSZ\nRFnEtjSJUkSkunT8FsmvtNIXd+8BNo1YfTFwc/bzzcA7x3q/atRjqI4uhnKPo+xjpFY32i7U32Mo\n9zipHWuia9TnuXsfgLtvAOYFt0dEREREpBKqdh11H+uJtWvX8k/3PszseUcCMPWQWcw77iQW/Mab\ngfq/kNZt2g4zTwTghZ89BrD3+Rd+9hi9W1/Honecu/f18KtapZHLvSuW88K6V4e9v3F7vSuWs3HO\ntDHfP3J5tPY0Lo/X/qH9HfbG03L9fkXtb6iObqztsehtufLK+/dZsnRZ0/YXvb/x8hra33h/36Hl\nov4+Q+vG639l94dm+zuQvA4mz8b9Fdkflixdxo/v+MeD2l/Rx4e8+1vYdTqvDOzee7Zu6PPUu2I5\ns6dN5B3nnZ1rfxF/n0YH23/KPj7k/fvk/bwW9f2UZ3/N+nurjg8H+/cpe3+t6A+NDrY/lP39FPF9\nUeT+hrZ5oPsroj/0P7eaHdu2ALBy50bO/a0z6O7uZjTmPubYuHBmdgxwT8Nk0ieBt7p7n5kdATzk\n7r8+2nsfeOABv2/zYaNu9+JFh7No/gxW9Q2MWwO9aP6MXG2N2Faz1xX1mqpvC6hk2/Nq9xyK/Fzk\nkXJfLvL4AOX3h6LaXvRn7GDbVfXjZB5Vbbu+64o/xhepijkU0eerfmzLs63tL62mu7vbRnu+7NIX\nyx5D7gbel/18OXDXWG9UjXoM1dHFUO5xlH2M1OpG24X6ewzlHie1Y01pA3Uzuw34f8BCM3vBzN4P\nXAucZ2arge5sWURERESk45V51ZdL3f1Id5/q7gvc/SZ33+Tu57r7Se5+vru/Otb7u7q6ymqqNBiq\ncZVyKfc4yj5Gatc2bhfq7zGUe5zUjjVVm0wqIm1ANzQRERE5eNGXZ8xNNeoxVEcXI/Xch25oMtqj\n2d1pqyD17FOVWt1ou1B/j6Hc46R2rElmoC4iIiIi0kmSGairRj2G6uhiKPc4yj5GanWj7UL9PYZy\nj5PasSaZgbqIiIiISCdJZqBeZI16/9YdrOobGPXRv3VHYftpB6qji6Hc4yj7GKnVjbYL9fcYyj1O\naseajrzqy9BEt9FcvOhwXZFCRERERMIlc0ZdNeoxVEcXQ7nHUfYxUqsbbRfq7zGUe5zUjjXJDNRF\nRERERDpJMqUvtVoNjjsnuhn7aPcbu/SuWA4zT4xuRsfphNybfXag/vmJ0AnZV9E99z/ECacuHfP5\ndjie5lH2d4r6ewzlHqenpyeps+rJDNSrSvXuIgem2WcH6p8f6Rybt+8Ztz90wvFU3yki0iiZ0hfV\nqMdQHV0M5R5H2cdQ7jGUewzlHiels+mQ0EBdRERERKSTJDNQL/I66pKfrvUaQ7nHUfYxlHsM5R5D\nucfRddRF2lCeiY+qHZWRUp5snnLbRUTaRTID9a6uLu7bHN2KzrNk6TLWN5ng1SnyTHwscuCi3OMU\nmX3KEwPLbrv6fAzlHkO5x1GNuoiIiIiIHLRkBuqqUY+hOroYyj2Oso+h3GMo9xjKPU5qNerJDNRF\nRERERDpJMgN1XUc9hq71GkO5x1H2MZR7DOUeQ7nHWdh1Oqv6BkZ99G/dEd28fSQzmVRERERE5GCk\nNsk/mTPqqlGPoTq6GMo9jrKPodxjKPcYyj1OatknM1AXEREREekkyQzUVaMeQ3V0MZR7HGUfQ7nH\nUO4x8ubev3VHUvXUKUitz6tGXURERKSCUqunluIlc0ZdNeoxUqvlahfKPY6yj6HcYyj3GMo9TmrZ\nJzNQFxERERHpJMkM1FWjHiO1Wq52odzjKPsYyj2Gco+h3OOkln0yA3URERERkU6SzEBdNeoxUqvl\nahfKPY6yj6HcYyj3GMo9TmrZJzNQFxERERHpJMkM1FWjHiO1Wq52odzjKPsYyj2Gco+h3OOkln0y\nA3URERERkU6SzA2ParUaHHdOdDM6Tu+K5TDzxOhmdBzlHkfZx8iTe//WHbwysHvM518/Y5JuALOf\n1N9jFJm7Phf7J7U+n8xAXUREOluzuzSC7tQonUmfi/aWTOmLatRjpFbL1S6UexxlH0O5x1DuMZR7\nnNSyT2agLiIiIiLSSSoxUDezC8zsKTN72syuHu01uo56jNSuN9oulHscZR9DucdQ7jGUe5zUsg8f\nqJvZBOBrwO8AJwOXmNmbRr5u7dq1ZTdNgDVPPhHdhI6k3OMo+xjKPYZyj6Hc46SWffhAHVgKrHH3\n5919F/Bd4OKRLxoYGCi9YQJbt/xrdBM6knKPo+xjKPcYyj2Gco+TWvZVGKgfBaxvWH4xWyciIiIi\n0rGqMFDPZcOGDdFN6Egvv7R+/BdJ4ZR7HGUfQ7nHUO4xlHuc1LI3d49tgNkZwGfd/YJs+RrA3f26\nxtddccUV3lj+snjxYl2ysQS1Wk05B1DucZR9DOUeQ7nHUO5xqpB9rVbj8ccf37u8ePFirrrqKhvt\ntVUYqE8EVgPdwMvACuASd38ytGEiIiIiIoHC70zq7nvM7E+B71MvxblRg3QRERER6XThZ9RFRERE\nRGRflZ9MmudmSFIMM7vRzPrM7KcN6+aY2ffNbLWZ3WdmsyPb2I7M7Ggze9DMnjCzlWZ2ZbZe2beQ\nmU01s382s59kuX8mW6/cS2BmE8ys18zuzpaVewnMbJ2ZPZ71+xXZOmXfYmY228zuNLMns2P9v1Xu\nrWVmC7N+3pv9d7OZXZla7pUeqOe9GZIU5ibqWTe6BviBu58EPAh8ovRWtb/dwMfc/WRgGfDhrJ8r\n+xZy9x3A2e5+GtAFvM3MlqLcy/IRYFXDsnIvxyDwVnc/zd2XZuuUfetdD/xfd/91YDHwFMq9pdz9\n6ayfLwH+DTAA/B8Sy73SA3Vy3gxJiuHuPcCmEasvBm7Ofr4ZeGepjeoA7r7B3WvZz1uBJ4GjUfYt\n5+7bsh+nUp+z4yj3ljOzo4ELgb9tWK3cy2Hs+92v7FvIzA4FznL3mwDcfbe7b0a5l+lc4Bl3X09i\nuVd9oK6bIcWb5+59UB9QAvOC29PWzOxY6md3HwHmK/vWysovfgJsAO5390dR7mX4CvBx6v8wGqLc\ny+HA/Wb2qJn9UbZO2bfWccArZnZTVobxLTM7BOVepncDt2U/J5V71QfqUj2afdwiZjYT+B7wkezM\n+sislX3B3H0wK305GlhqZiej3FvKzN4O9GX/F2nU6wZnlHtrnJmVAlxIvczuLNTnW20SsAT4epb9\nAPXyC+VeAjObDFwE3JmtSir3qg/UXwIWNCwfna2T8vSZ2XwAMzsC6A9uT1sys0nUB+m3uvtd2Wpl\nXxJ3/1fgYeAClHurnQlcZGbPAt8BzjGzW4ENyr313P3l7L+/AP6eeomp+nxrvQisd/fHsuX/RX3g\nrtzL8TbgX9z9lWw5qdyrPlB/FDjRzI4xsynAe4C7g9vU7ozhZ7nuBt6X/Xw5cNfIN0gh/g5Y5e7X\nN6xT9i1kZq8fmu1vZtOB86jPD1DuLeTun3T3Be5+PPVj+oPufhlwD8q9pczskOz/3GFmM4DzgZWo\nz7dUVmax3swWZqu6gSdQ7mW5hPpJgSFJ5V7566ib2QXUZ0sP3Qzp2uAmtS0zuw14KzAX6AM+Q/2M\ny53ArwHPA+9y91ej2tiOzOxM4EfUvzA9e3yS+l1670DZt4SZnUJ9ItGE7HG7u3/BzA5DuZfCzN4C\nXOXuFyn31jOz46hf9cKpl2P8T3e/Vtm3npktpj55ejLwLPB+YCLKvaWyuQDPA8e7+5ZsXVL9vfID\ndRERERGRTlT10hcRERERkY6kgbqIiIiISAVpoC4iIiIiUkEaqIuIiIiIVJAG6iIiIiIiFaSBuoiI\niIhIBWmgLiIiIiJSQRqoi4h0CDNbZ2bbzGyzmW00sx4z+6CZ2fjvFhGRsmmgLiLSORx4u7vPBo4B\nrgWuBm4MbZWIiIxKA3URkc5iAO6+xd3vBd4NXG5mi8zsQjPrzc64P29mn9n7JrN7zezDwzZk9riZ\nXVxu80VEOocG6iIiHczdHwVeBM4CtgKXZWfc3w78RzO7KHvpzcBlQ+8zs8XAkcA/lNtiEZHOoYG6\niIj8HDjM3X/k7k8AuPvPgO8Cb8leczfwRjM7IVt+L3C7u+8uvbUiIh1CA3URETkK2GhmS83sWtrk\nTwAAAS9JREFUQTPrN7NXgQ8Crwdw9x3A7cB7s8mnlwC3hrVYRKQDaKAuItLBzOx06iUsPcBtwN8D\nR7n764BvktW0Z26hfia9Gxhw938uubkiIh1FA3URkQ5kZrPM7HeB7wC3ZiUvM4FN7r7LzJYClza+\nx90fAQaBL6Oz6SIiLWfuHt0GEREpgZk9B8wDdlMfcK+iPuD+pru7mf0+8DfAHOCHwDrgde7+hw3b\n+Avgc8AJ7r6u1F9ARKTDaKAuIiK5mdllwB+7+29Ht0VEpN2p9EVERHIxs0OAD1GvXRcRkRbTQF1E\nRMZlZucD/cDL1OvaRUSkxVT6IiIiIiJSQTqjLiIiIiJSQRqoi4iIiIhUkAbqIiIiIiIVpIG6iIiI\niEgFaaAuIiIiIlJBGqiLiIiIiFTQ/wcvO0//8pTK2wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f53ab6616d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figsize(12.5, 5)\n", "# tau_samples, lambda_1_samples, lambda_2_samples contain\n", "# N samples from the corresponding posterior distribution\n", "N = tau_samples.shape[0]\n", "expected_texts_per_day = np.zeros(n_count_data)\n", "for day in range(0, n_count_data):\n", " # ix is a bool index of all tau samples corresponding to\n", " # the switchpoint occurring prior to value of 'day'\n", " ix = day < tau_samples\n", " # Each posterior sample corresponds to a value for tau.\n", " # for each day, that value of tau indicates whether we're \"before\"\n", " # (in the lambda1 \"regime\") or\n", " # \"after\" (in the lambda2 \"regime\") the switchpoint.\n", " # by taking the posterior sample of lambda1/2 accordingly, we can average\n", " # over all samples to get an expected value for lambda on that day.\n", " # As explained, the \"message count\" random variable is Poisson distributed,\n", " # and therefore lambda (the poisson parameter) is the expected value of\n", " # \"message count\".\n", " expected_texts_per_day[day] = (lambda_1_samples[ix].sum()\n", " + lambda_2_samples[~ix].sum()) / N\n", "\n", "\n", "plt.plot(range(n_count_data), expected_texts_per_day, lw=4, color=\"#E24A33\",\n", " label=\"expected number of text-messages received\")\n", "plt.xlim(0, n_count_data)\n", "plt.xlabel(\"Day\")\n", "plt.ylabel(\"Expected # text-messages\")\n", "plt.title(\"Expected number of text-messages received\")\n", "plt.ylim(0, 60)\n", "plt.bar(np.arange(len(count_data)), count_data, color=\"#348ABD\", alpha=0.65,\n", " label=\"observed texts per day\")\n", "\n", "plt.legend(loc=\"upper left\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our analysis shows strong support for believing the user's behavior did change ($\\lambda_1$ would have been close in value to $\\lambda_2$ had this not been true), and that the change was sudden rather than gradual (as demonstrated by $\\tau$'s strongly peaked posterior distribution). We can speculate what might have caused this: a cheaper text-message rate, a recent weather-to-text subscription, or perhaps a new relationship. (In fact, the 45th day corresponds to Christmas, and I moved away to Toronto the next month, leaving a girlfriend behind.)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Exercises\n", "\n", "1\\. Using `lambda_1_samples` and `lambda_2_samples`, what is the mean of the posterior distributions of $\\lambda_1$ and $\\lambda_2$?" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#type your code here." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\\. What is the expected percentage increase in text-message rates? `hint:` compute the mean of `lambda_1_samples/lambda_2_samples`. Note that this quantity is very different from `lambda_1_samples.mean()/lambda_2_samples.mean()`." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#type your code here." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3\\. What is the mean of $\\lambda_1$ **given** that we know $\\tau$ is less than 45. That is, suppose we have been given new information that the change in behaviour occurred prior to day 45. What is the expected value of $\\lambda_1$ now? (You do not need to redo the PyMC3 part. Just consider all instances where `tau_samples < 45`.)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#type your code here." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### References\n", "\n", "\n", "- [1] Gelman, Andrew. N.p.. Web. 22 Jan 2013. [N is never large enough](http://andrewgelman.com/2005/07/31/n_is_never_larg).\n", "- [2] Norvig, Peter. 2009. [The Unreasonable Effectiveness of Data](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf).\n", "- [3] Salvatier, J, Wiecki TV, and Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. *PeerJ Computer Science* 2:e55 <https://doi.org/10.7717/peerj-cs.55>\n", "- [4] Jimmy Lin and Alek Kolcz. Large-Scale Machine Learning at Twitter. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD 2012), pages 793-804, May 2012, Scottsdale, Arizona.\n", "- [5] Cronin, Beau. \"Why Probabilistic Programming Matters.\" 24 Mar 2013. Google, Online Posting to Google . Web. 24 Mar. 2013. <https://plus.google.com/u/0/107971134877020469960/posts/KpeRdJKR6Z1>." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style>\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunss.otf');\n", " }\n", " div.cell{\n", " width:800px;\n", " margin-left:16% !important;\n", " margin-right:auto;\n", " }\n", " h1 {\n", " font-family: Helvetica, serif;\n", " }\n", " h4{\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " }\n", " div.text_cell_render{\n", " font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n", " line-height: 145%;\n", " font-size: 130%;\n", " width:800px;\n", " margin-left:auto;\n", " margin-right:auto;\n", " }\n", " .CodeMirror{\n", " font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n", " }\n", " .prompt{\n", " display: None;\n", " }\n", " .text_cell_render h5 {\n", " font-weight: 300;\n", " font-size: 22pt;\n", " color: #4057A1;\n", " font-style: italic;\n", " margin-bottom: .5em;\n", " margin-top: 0.5em;\n", " display: block;\n", " }\n", " \n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " } \n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML at 0x10f034850>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import HTML\n", "def css_styling():\n", " styles = open(\"../styles/custom.css\", \"r\").read()\n", " return HTML(styles)\n", "css_styling()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [bayes]", "language": "python", "name": "Python [bayes]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
GoogleCloudPlatform/training-data-analyst
courses/machine_learning/deepdive2/image_understanding/solutions/Keras_Flowers_on_TPU.ipynb
1
2298241
null
apache-2.0
miykael/nipype_tutorial
notebooks/basic_iteration.ipynb
1
11605
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Iterables\n", "\n", "Some steps in a neuroimaging analysis are repetitive. Running the same preprocessing on multiple subjects or doing statistical inference on multiple files. To prevent the creation of multiple individual scripts, Nipype has as execution plugin for ``Workflow``, called **``iterables``**. \n", "\n", "<img src=\"../static/images/iterables.png\" width=\"240\">\n", "\n", "If you are interested in more advanced procedures, such as synchronizing multiple iterables or using conditional iterables, check out the `synchronize `and `intersource` section in the [`JoinNode`](basic_joinnodes.ipynb) notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Realistic example\n", "\n", "Let's assume we have a workflow with two nodes, node (A) does simple skull stripping, and is followed by a node (B) that does isometric smoothing. Now, let's say, that we are curious about the effect of different smoothing kernels. Therefore, we want to run the smoothing node with FWHM set to 2mm, 8mm, and 16mm." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from nipype import Node, Workflow\n", "from nipype.interfaces.fsl import BET, IsotropicSmooth\n", "\n", "# Initiate a skull stripping Node with BET\n", "skullstrip = Node(BET(mask=True,\n", " in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'),\n", " name=\"skullstrip\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a smoothing Node with IsotropicSmooth" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "isosmooth = Node(IsotropicSmooth(), name='iso_smooth')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, to use ``iterables`` and therefore smooth with different ``fwhm`` is as simple as that:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "isosmooth.iterables = (\"fwhm\", [4, 8, 16])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And to wrap it up. We need to create a workflow, connect the nodes and finally, can run the workflow in parallel." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create the workflow\n", "wf = Workflow(name=\"smoothflow\")\n", "wf.base_dir = \"/output\"\n", "wf.connect(skullstrip, 'out_file', isosmooth, 'in_file')\n", "\n", "# Run it in parallel (one core for each smoothing kernel)\n", "wf.run('MultiProc', plugin_args={'n_procs': 3})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note**, that ``iterables`` is set on a specific node (``isosmooth`` in this case), but ``Workflow`` is needed to expend the graph to three subgraphs with three different versions of the ``isosmooth`` node.\n", "\n", "If we visualize the graph with ``exec``, we can see where the parallelization actually takes place." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualize the detailed graph\n", "from IPython.display import Image\n", "wf.write_graph(graph2use='exec', format='png', simple_form=True)\n", "Image(filename='/output/smoothflow/graph_detailed.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you look at the structure in the workflow directory, you can also see, that for each smoothing, a specific folder was created, i.e. ``_fwhm_16``." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!tree /output/smoothflow -I '*txt|*pklz|report*|*.json|*js|*.dot|*.html'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, let's visualize the results!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from nilearn import plotting\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plotting.plot_anat(\n", " '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz', title='original',\n", " display_mode='z', dim=-1, cut_coords=(-50, -35, -20, -5), annotate=False);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plotting.plot_anat(\n", " '/output/smoothflow/skullstrip/sub-01_ses-test_T1w_brain.nii.gz', title='skullstripped',\n", " display_mode='z', dim=-1, cut_coords=(-50, -35, -20, -5), annotate=False);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plotting.plot_anat(\n", " '/output/smoothflow/_fwhm_4/iso_smooth/sub-01_ses-test_T1w_brain_smooth.nii.gz', title='FWHM=4',\n", " display_mode='z', dim=-0.5, cut_coords=(-50, -35, -20, -5), annotate=False);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plotting.plot_anat(\n", " '/output/smoothflow/_fwhm_8/iso_smooth/sub-01_ses-test_T1w_brain_smooth.nii.gz', title='FWHM=8',\n", " display_mode='z', dim=-0.5, cut_coords=(-50, -35, -20, -5), annotate=False);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plotting.plot_anat(\n", " '/output/smoothflow/_fwhm_16/iso_smooth/sub-01_ses-test_T1w_brain_smooth.nii.gz', title='FWHM=16',\n", " display_mode='z', dim=-0.5, cut_coords=(-50, -35, -20, -5), annotate=False);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ``IdentityInterface`` (special use case of ``iterables``)\n", "\n", "We often want to start our worflow from creating subgraphs, e.g. for running preprocessing for all subjects. We can easily do it with setting ``iterables`` on the ``IdentityInterface``. The ``IdentityInterface`` interface allows you to create ``Nodes`` that does simple identity mapping, i.e. ``Nodes`` that only work on parameters/strings.\n", "\n", "\n", "For example, you want to start your workflow by collecting anatomical files for 5 subjects." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# First, let's specify the list of subjects\n", "subject_list = ['01', '02', '03', '04', '05']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can create the IdentityInterface Node" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from nipype import IdentityInterface\n", "infosource = Node(IdentityInterface(fields=['subject_id']),\n", " name=\"infosource\")\n", "infosource.iterables = [('subject_id', subject_list)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's it. Now, we can connect the output fields of this ``infosource`` node to ``SelectFiles`` and ``DataSink`` nodes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from os.path import join as opj\n", "from nipype.interfaces.io import SelectFiles, DataSink\n", "\n", "anat_file = opj('sub-{subject_id}', 'ses-test', 'anat', 'sub-{subject_id}_ses-test_T1w.nii.gz')\n", "\n", "templates = {'anat': anat_file}\n", "\n", "selectfiles = Node(SelectFiles(templates,\n", " base_directory='/data/ds000114'),\n", " name=\"selectfiles\")\n", "\n", "# Datasink - creates output folder for important outputs\n", "datasink = Node(DataSink(base_directory=\"/output\",\n", " container=\"datasink\"),\n", " name=\"datasink\")\n", "\n", "wf_sub = Workflow(name=\"choosing_subjects\")\n", "wf_sub.connect(infosource, \"subject_id\", selectfiles, \"subject_id\")\n", "wf_sub.connect(selectfiles, \"anat\", datasink, \"anat_files\")\n", "wf_sub.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can check that five anatomicl images are in ``anat_files`` directory:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! ls -lh /output/datasink/anat_files/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This was just a simple example of using ``IdentityInterface``, but a complete example of preprocessing workflow you can find in [Preprocessing Example](example_preprocessing.ipynb))." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 1\n", "Create a workflow to calculate various powers of ``2`` using two nodes, one for ``IdentityInterface`` with ``iterables``, and one for ``Function`` interface to calculate the power of ``2``." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "solution2": "hidden", "solution2_first": true }, "outputs": [], "source": [ "# write your solution here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "solution2": "hidden" }, "outputs": [], "source": [ "# lets start from the Identity node\n", "from nipype import Function, Node, Workflow\n", "from nipype.interfaces.utility import IdentityInterface\n", "\n", "iden = Node(IdentityInterface(fields=['number']), name=\"identity\")\n", "iden.iterables = [(\"number\", range(8))]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "solution2": "hidden" }, "outputs": [], "source": [ "# the second node should use the Function interface\n", "def power_of_two(n):\n", " return 2**n\n", "\n", "# Create Node\n", "power = Node(Function(input_names=[\"n\"],\n", " output_names=[\"pow\"],\n", " function=power_of_two),\n", " name='power')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "solution2": "hidden" }, "outputs": [], "source": [ "#and now the workflow\n", "wf_ex1 = Workflow(name=\"exercise1\")\n", "wf_ex1.connect(iden, \"number\", power, \"n\")\n", "res_ex1 = wf_ex1.run()\n", "\n", "# we can print the results\n", "for i in range(8):\n", " print(list(res_ex1.nodes())[i].result.outputs)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
djvanhelmond/AdventofCode2015
Day 14/Day 14 Reindeer Olympics.ipynb
1
2723
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#!/usr/bin/env python3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class Deer:\n", " def __init__(self, name, flyspeed, flytime, resttime):\n", " self.name = name\n", " self.flyspeed = int(flyspeed)\n", " self.flytime = int(flytime)\n", " self.resttime = int(resttime)\n", " self.points = 0\n", " \n", " def distance(self, time):\n", " full = (time // (self.flytime + self.resttime)) * self.flyspeed * self.flytime\n", " rest = min(self.flytime, time % (self.flytime + self.resttime)) * self.flyspeed\n", " return (full+rest)\n", "\n", " def receive_award(self):\n", " self.points += 1 \n", "\n", " def tell_award(self):\n", " return(self.points)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Distance has the winning reindeer: 2660\n", "Points for the winning reindeer: 1256\n" ] } ], "source": [ "filename = './input'\n", "deers = []\n", "attime = 2503\n", "\n", "with open(filename) as f:\n", " for line in f:\n", " deer = name, _, _, speed, _, _, fly, _, _, _, _, _, _, rest, _ = line.split()\n", " deers.append(Deer(deer[0], deer[3], deer[6], deer[13]))\n", "\n", "print (\"Distance has the winning reindeer:\", max(i.distance(attime) for i in deers)) \n", "\n", "for n in range(1, attime):\n", " furthest = max(i.distance(n) for i in deers) \n", " for i in deers:\n", " if i.distance(n) == furthest:\n", " i.receive_award()\n", "\n", "print (\"Points for the winning reindeer: \", max(i.tell_award() for i in deers)) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
jamesfolberth/NGC_STEM_camp_AWS
notebooks/data8_notebooks/lab01/lab01.ipynb
2
34839
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 1: Expressions\n", "\n", "\n", "#### Today's lab\n", "\n", "In today's lab, you'll learn how to:\n", "\n", "1. navigate Jupyter notebooks (like this one);\n", "2. write and evaluate some basic *expressions* in Python, the computer language of the course;\n", "3. call *functions* to use code other people have written; and\n", "4. break down Python code into smaller parts to understand it.\n", "\n", "In the middle of the lab, you'll see how to run *automated tests* we've provided to check whether your code is working properly. When you're done, **follow the instructions at the end of this notebook** to run all the tests and submit your lab.\n", "\n", "This lab covers parts of [Chapter 3](http://www.inferentialthinking.com/chapters/03/programming-in-python.html) of the online textbook. You should read the book, but not right now. Instead, let's get started!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Jupyter notebooks\n", "This webpage is called a Jupyter notebook. A notebook is a place to write programs and view their results.\n", "\n", "## 1.1. Text cells\n", "In a notebook, each rectangle containing text or code is called a *cell*.\n", "\n", "Text cells (like this one) can be edited by double-clicking on them. They're written in a simple format called [Markdown](http://daringfireball.net/projects/markdown/syntax) to add formatting and section headings. You don't need to learn Markdown, but you might want to.\n", "\n", "After you edit a text cell, click the \"run cell\" button at the top that looks like ▶| to confirm any changes. (Try not to delete the instructions of the lab.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 1.1.1.** This paragraph is in its own text cell. Try editing it so that this sentence is the last sentence in the paragraph, and then click the \"run cell\" ▶| button . This sentence, for example, should be deleted. So should this one." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.2. Code cells\n", "Other cells contain code in the Python 3 language. Running a code cell will execute all of the code it contains.\n", "\n", "To run the code in a code cell, first click on that cell to activate it. It'll be highlighted with a little green or blue rectangle. Next, either press ▶| or hold down the `shift` key and press `return` or `enter`.\n", "\n", "Try running this cell:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Hello, World!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And this one:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"\\N{WAVING HAND SIGN}, \\N{EARTH GLOBE ASIA-AUSTRALIA}!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The fundamental building block of Python code is an expression. Cells can contain multiple lines with multiple expressions. When you run a cell, the lines of code are executed in the order in which they appear. Every `print` expression prints a line. Run the next cell and notice the order of the output." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"First this line is printed,\")\n", "print(\"and then this one.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 1.2.1.** Change the cell above so that it prints out:\n", "\n", " First this line,\n", " then the whole 🌏,\n", " and then this one.\n", "\n", "*Hint:* If you're stuck on the Earth symbol for more than a few minutes, try talking to a neighbor or a TA. That's a good idea for any lab problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.3. Writing Jupyter notebooks\n", "You can use Jupyter notebooks for your own projects or documents. When you make your own notebook, you'll need to create your own cells for text and code.\n", "\n", "To add a cell, click the + button in the menu bar. It'll start out as a text cell. You can change it to a code cell by clicking inside it so it's highlighted, clicking the drop-down box next to the restart (⟳) button in the menu bar, and choosing \"Code\".\n", "\n", "**Question 1.3.1.** Add a code cell below this one. Write code in it that prints out:\n", " \n", " A whole new cell! ♪🌏♪\n", "\n", "(That musical note symbol is like the Earth symbol. Its long-form name is `\\N{EIGHTH NOTE}`.)\n", "\n", "Run your cell to verify that it works." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.4. Errors\n", "Python is a language, and like natural human languages, it has rules. It differs from natural language in two important ways:\n", "1. The rules are *simple*. You can learn most of them in a few weeks and gain reasonable proficiency with the language in a semester.\n", "2. The rules are *rigid*. If you're proficient in a natural language, you can understand a non-proficient speaker, glossing over small mistakes. A computer running Python code is not smart enough to do that.\n", "\n", "Whenever you write code, you'll make mistakes. When you run a code cell that has errors, Python will sometimes produce error messages to tell you what you did wrong.\n", "\n", "Errors are okay; even experienced programmers make many errors. When you make an error, you just have to find the source of the problem, fix it, and move on.\n", "\n", "We have made an error in the next cell. Run it and see what happens." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"This line is missing something.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You should see something like this (minus our annotations):\n", "\n", "<img src=\"error.jpg\"/>\n", "\n", "The last line of the error output attempts to tell you what went wrong. The *syntax* of a language is its structure, and this `SyntaxError` tells you that you have created an illegal structure. \"`EOF`\" means \"end of file,\" so the message is saying Python expected you to write something more (in this case, a right parenthesis) before finishing the cell.\n", "\n", "There's a lot of terminology in programming languages, but you don't need to know it all in order to program effectively. If you see a cryptic message like this, you can often get by without deciphering it. (Of course, if you're frustrated, ask a neighbor or a TA for help.)\n", "\n", "Try to fix the code above so that you can run the cell and see the intended message instead of an error." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Numbers\n", "\n", "Quantitative information arises everywhere in data science. In addition to representing commands to print out lines, expressions can represent numbers and methods of combining numbers. The expression `3.2500` evaluates to the number 3.25. (Run the cell and see.)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "3.2500" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that we didn't have to `print`. When you run a notebook cell, if the last line has a value, then Jupyter helpfully prints out that value for you. However, it won't print out prior lines automatically." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "print(2)\n", "3\n", "4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Above, you should see that 4 is the value of the last expression, 2 is printed, but 3 is lost forever because it was neither printed nor last.\n", "\n", "You don't want to print everything all the time anyway. But if you feel sorry for 3, change the cell above to print it." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.1. Arithmetic\n", "The line in the next cell subtracts. Its value is what you'd expect. Run it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "3.25 - 1.5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Many basic arithmetic operations are built in to Python. The textbook section on [Expressions](http://www.inferentialthinking.com/chapters/03/1/expressions.html) describes all the arithmetic operators used in the course. The common operator that differs from typical math notation is `**`, which raises one number to the power of the other. So, `2**3` stands for $2^3$ and evaluates to 8. \n", "\n", "The order of operations is what you learned in elementary school, and Python also has parentheses. For example, compare the outputs of the cells below. Use parentheses for a happy new year!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "6*5-6*3**2*2**3/4*7" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "(6*5-(6*3))**2*((2**3)/4*7)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In standard math notation, the first expression is\n", "\n", "$$6 \\times 5 - 6 \\times 3^2 \\times \\frac{2^3}{4} \\times 7,$$\n", "\n", "while the second expression is\n", "\n", "$$(6 \\times 5 - (6 \\times 3))^2 \\times (\\frac{(2^3)}{4} \\times 7).$$\n", "\n", "**Question 2.1.1.** Write a Python expression in this next cell that's equal to $5 \\times (3 \\frac{10}{11}) - 51 \\frac{1}{3} + 2^{.5 \\times 22}$. That's five times three and ten elevenths, minus fifty-one and a third, plus two to the power of half 22. By \"$3 \\frac{10}{11}$\" we mean $3+\\frac{10}{11}$, not $3 \\times \\frac{10}{11}$.\n", "\n", "Replace the ellipses (`...`) with your expression. Try to use parentheses only when necessary.\n", "\n", "*Hint:* The correct output should start with a familiar number." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3. Names\n", "In natural language, we have terminology that lets us quickly reference very complicated concepts. We don't say, \"That's a large mammal with brown fur and sharp teeth!\" Instead, we just say, \"Bear!\"\n", "\n", "Similarly, an effective strategy for writing code is to define names for data as we compute it, like a lawyer would define terms for complex ideas at the start of a legal document.\n", "\n", "In Python, we do this with *assignment statements*. An assignment statement has a name on the left side of an `=` sign and an expression to be evaluated on the right." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ten = 3 * 2 + 4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When you run that cell, Python first evaluates the first line. It computes the value of the expression `3 * 2 + 4`, which is the number 10. Then it gives that value the name `ten`. At that point, the code in the cell is done running.\n", "\n", "After you run that cell, the value 10 is bound to the name `ten`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ten" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The statement `ten = 3 * 2 + 4` is not asserting that `ten` is already equal to `3 * 2 + 4`, as we might expect by analogy with math notation. Rather, that line of code changes what `ten` means; it now refers to the value 10, whereas before it meant nothing at all.\n", "\n", "If the designers of Python had been ruthlessly pedantic, they might have made us write\n", "\n", " define the name ten to hereafter have the value of 3 * 2 + 4 \n", "\n", "instead. You will probably appreciate the brevity of \"`=`\"! But keep in mind that this is the real meaning.\n", "\n", "**Question 3.1.** Try writing code that uses a name (like `foo` or `eleven`) that hasn't been assigned to anything. You'll see an error!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A common pattern in Jupyter notebooks is to assign a value to a name and then immediately evaluate the name in the last line in the cell so that the value is displayed as output. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "close_to_pi = 355/113\n", "close_to_pi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another common pattern is that a series of lines in a single cell will build up a complex computation in stages, naming the intermediate results." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bimonthly_salary = 840\n", "monthly_salary = 2 * bimonthly_salary\n", "number_of_months_in_a_year = 12\n", "yearly_salary = number_of_months_in_a_year * monthly_salary\n", "yearly_salary" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Names in Python can have letters (upper- and lower-case letters are both okay and count as different letters), underscores, and numbers. The first character can't be a number (otherwise a name might look like a number).\n", "\n", "Other than those rules, what you name something doesn't matter *to Python*. For example, this cell does the same thing as the above cell, except everything has a different name:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a = 840\n", "b = 2 * a\n", "c = 12\n", "d = c * b\n", "d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**However**, names are very important for making your code *readable* to yourself and others. The cell above is shorter, but it's totally useless without an explanation of what it does.\n", "\n", "According to a famous joke among computer scientists, naming things is one of the two hardest problems in computer science. (The other two are cache invalidation and \"off-by-one\" errors. And people say computer scientists have an odd sense of humor...)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 3.2.** Assign the name `seconds_in_a_decade` to the number of seconds between midnight January 1, 2010 and midnight January 1, 2020.\n", "\n", "*Hint:* If you're stuck, the next section shows you how to get hints." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Change the next line so that it computes the number of\n", "# seconds in a decade and assigns that number the name\n", "# seconds_in_a_decade.\n", "seconds_in_a_decade = ...\n", "\n", "# We've put this line in this cell so that it will print\n", "# the value you've given to seconds_in_a_decade when you\n", "# run it. You don't need to change this.\n", "seconds_in_a_decade" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.1. Checking your code\n", "Now that you know how to name things, you can start using the built-in *tests* to check whether your work is correct. Try not to change the contents of the test cells.\n", "\n", "Running the following cell will test whether you have assigned `seconds_in_a_decade` correctly in Question 3.2. If you haven't, this test will tell you the correct answer. Resist the urge to just copy it, and instead try to adjust your expression. (Sometimes the tests will give hints about what went wrong...)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Test cell; please do not change!\n", "from client.api.assignment import load_assignment \n", "tests = load_assignment('lab01.ok')\n", "_ = tests.grade('q32')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All labs will have tests like this one. To get credit for a lab, complete the notebook so that all tests pass, then run the final cell to submit your work. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.2. Comments\n", "You may have noticed this line in the cell above:\n", "\n", " # Test cell; please do not change!\n", "\n", "That is called a *comment*. It doesn't make anything happen in Python; Python ignores anything on a line after a #. Instead, it's there to communicate something about the code to you, the human reader. Comments are extremely useful.\n", "\n", "<img src=\"http://imgs.xkcd.com/comics/future_self.png\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.3. Application: A physics experiment\n", "\n", "On the Apollo 15 mission to the Moon, astronaut David Scott famously replicated Galileo's physics experiment in which he showed that gravity accelerates objects of different mass at the same rate. Because there is no air resistance for a falling object on the surface of the Moon, even two objects with very different masses and densities should fall at the same rate. David Scott compared a feather and a hammer.\n", "\n", "You can run the following cell to watch a video of the experiment." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import YouTubeVideo\n", "# The original URL is:\n", "# https://www.youtube.com/watch?v=U7db6ZeLR5s\n", "YouTubeVideo(\"U7db6ZeLR5s\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's the transcript of the video:\n", "\n", "**167:22:06 Scott**: Well, in my left hand, I have a feather; in my right hand, a hammer. And I guess one of the reasons we got here today was because of a gentleman named Galileo, a long time ago, who made a rather significant discovery about falling objects in gravity fields. And we thought where would be a better place to confirm his findings than on the Moon. And so we thought we'd try it here for you. The feather happens to be, appropriately, a falcon feather for our Falcon. And I'll drop the two of them here and, hopefully, they'll hit the ground at the same time. \n", "\n", "**167:22:43 Scott**: How about that!\n", "\n", "**167:22:45 Allen**: How about that! (Applause in Houston)\n", "\n", "**167:22:46 Scott**: Which proves that Mr. Galileo was correct in his findings." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Newton's Law.** Using this footage, we can also attempt to confirm another famous bit of physics: Newton's law of universal gravitation. Newton's laws predict that any object dropped near the surface of the Moon should fall\n", "\n", "$$\\frac{1}{2} G \\frac{M}{R^2} t^2 \\text{ meters}$$\n", "\n", "after $t$ seconds, where $G$ is a universal constant, $M$ is the moon's mass in kilograms, and $R$ is the moon's radius in meters. So if we know $G$, $M$, and $R$, then Newton's laws let us predict how far an object will fall over any amount of time.\n", "\n", "To verify the accuracy of this law, we will calculate the difference between the predicted distance the hammer drops and the actual distance. (If they are different, it might be because Newton's laws are wrong, or because our measurements are imprecise, or because there are other factors affecting the hammer for which we haven't accounted.)\n", "\n", "Someone studied the video and estimated that the hammer was dropped 113 cm from the surface. Counting frames in the video, the hammer falls for 1.2 seconds (36 frames)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 3.3.1.** Complete the code in the next cell to fill in the *data* from the experiment." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# t, the duration of the fall in the experiment, in seconds.\n", "# Fill this in.\n", "time = ...\n", "\n", "# The estimated distance the hammer actually fell, in meters.\n", "# Fill this in.\n", "estimated_distance_m = ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_ = tests.grade('q331')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 3.3.2.** Now, complete the code in the next cell to compute the difference between the predicted and estimated distances (in meters) that the hammer fell in this experiment.\n", "\n", "This just means translating the formula above ($\\frac{1}{2}G\\frac{M}{R^2}t^2$) into Python code. You'll have to replace each variable in the math formula with the name we gave that number in Python code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# First, we've written down the values of the 3 universal\n", "# constants that show up in Newton's formula.\n", "\n", "# G, the universal constant measuring the strength of gravity.\n", "gravity_constant = 6.674 * 10**-11\n", "\n", "# M, the moon's mass, in kilograms.\n", "moon_mass_kg = 7.34767309 * 10**22\n", "\n", "# R, the radius of the moon, in meters.\n", "moon_radius_m = 1.737 * 10**6\n", "\n", "# The distance the hammer should have fallen over the\n", "# duration of the fall, in meters, according to Newton's\n", "# law of gravity. The text above describes the formula\n", "# for this distance given by Newton's law.\n", "# **YOU FILL THIS PART IN.**\n", "predicted_distance_m = ...\n", "\n", "# Here we've computed the difference between the predicted\n", "# fall distance and the distance we actually measured.\n", "# If you've filled in the above code, this should just work.\n", "difference = predicted_distance_m - estimated_distance_m\n", "difference" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_ = tests.grade('q332')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Calling functions\n", "\n", "The most common way to combine or manipulate values in Python is by calling functions. Python comes with many built-in functions that perform common operations.\n", "\n", "For example, the `abs` function takes a single number as its argument and returns the absolute value of that number. The absolute value of a number is its distance from 0 on the number line, so `abs(5)` is 5 and `abs(-5)` is also 5." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "abs(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "abs(-5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4.1. Application: Computing walking distances\n", "Chunhua is on the corner of 7th Avenue and 42nd Street in Midtown Manhattan, and she wants to know far she'd have to walk to get to Gramercy School on the corner of 10th Avenue and 34th Street.\n", "\n", "She can't cut across blocks diagonally, since there are buildings in the way. She has to walk along the sidewalks. Using the map below, she sees she'd have to walk 3 avenues (long blocks) and 8 streets (short blocks). In terms of the given numbers, she computed 3 as the difference between 7 and 10, *in absolute value*, and 8 similarly. \n", "\n", "Chunhua also knows that blocks in Manhattan are all about 80m by 274m (avenues are farther apart than streets). So in total, she'd have to walk $(80 \\times |42 - 34| + 274 \\times |7 - 10|)$ meters to get to the park.\n", "\n", "<img src=\"map.jpg\"/>\n", "\n", "**Question 4.1.1.** Finish the line `num_avenues_away = ...` in the next cell so that the cell calculates the distance Chunhua must walk and gives it the name `manhattan_distance`. Everything else has been filled in for you. **Use the `abs` function.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Here's the number of streets away:\n", "num_streets_away = abs(42-34)\n", "\n", "# Compute the number of avenues away in a similar way:\n", "num_avenues_away = ...\n", "\n", "street_length_m = 80\n", "avenue_length_m = 274\n", "\n", "# Now we compute the total distance Chunhua must walk.\n", "manhattan_distance = street_length_m*num_streets_away + avenue_length_m*num_avenues_away\n", "\n", "# We've included this line so that you see the distance\n", "# you've computed when you run this cell. You don't need\n", "# to change it, but you can if you want.\n", "manhattan_distance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Be sure to run the next cell to test your code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_ = tests.grade('q411')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Multiple arguments\n", "Some functions take multiple arguments, separated by commas. For example, the built-in `max` function returns the maximum argument passed to it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "max(2, -3, 4, -5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 5. Understanding nested expressions\n", "Function calls and arithmetic expressions can themselves contain expressions. You saw an example in the last question:\n", "\n", " abs(42-34)\n", "\n", "has 2 number expressions in a subtraction expression in a function call expression. And you probably wrote something like `abs(7-10)` to compute `num_avenues_away`.\n", "\n", "Nested expressions can turn into complicated-looking code. However, the way in which complicated expressions break down is very regular.\n", "\n", "Suppose we are interested in heights that are very unusual. We'll say that a height is unusual to the extent that it's far away on the number line from the average human height. [An estimate](http://press.endocrine.org/doi/full/10.1210/jcem.86.9.7875?ck=nck&) of the average adult human height (averaging, we hope, over all humans on Earth today) is 1.688 meters.\n", "\n", "So if Aditya is 1.21 meters tall, then his height is $|1.21 - 1.688|$, or $.478$, meters away from the average. Here's a picture of that:\n", "\n", "<img src=\"numberline_0.png\">\n", "\n", "And here's how we'd write that in one line of Python code:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "abs(1.21 - 1.688)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's going on here? `abs` takes just one argument, so the stuff inside the parentheses is all part of that *single argument*. Specifically, the argument is the value of the expression `1.21 - 1.688`. The value of that expression is `-.478`. That value is the argument to `abs`. The absolute value of that is `.478`, so `.478` is the value of the full expression `abs(1.21 - 1.688)`.\n", "\n", "Picture simplifying the expression in several steps:\n", "\n", "1. `abs(1.21 - 1.688)`\n", "2. `abs(-.478)`\n", "3. `.478`\n", "\n", "In fact, that's basically what Python does to compute the value of the expression." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 5.1.** Say that Botan's height is 1.85 meters. In the next cell, use `abs` to compute the absolute value of the difference between Botan's height and the average human height. Give that value the name `botan_distance_from_average_m`.\n", "\n", "<img src=\"numberline_1.png\">" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Replace the ... with an expression to compute the absolute\n", "# value of the difference between Botan's height (1.85m) and\n", "# the average human height.\n", "botan_distance_from_average_m = ...\n", "\n", "# Again, we've written this here so that the distance you\n", "# compute will get printed when you run this cell.\n", "botan_distance_from_average_m" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_ = tests.grade('q51')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.1. More nesting\n", "Now say that we want to compute the most unusual height among Aditya's and Botan's heights. We'll use the function `max`, which (again) takes two numbers as arguments and returns the larger of the two arguments. Combining that with the `abs` function, we can compute the biggest distance from the average among the two heights:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Just read and run this cell.\n", "\n", "aditya_height_m = 1.21\n", "botan_height_m = 1.85\n", "average_adult_human_height_m = 1.688\n", "\n", "# The biggest distance from the average human height, among the two heights:\n", "biggest_distance_m = max(abs(aditya_height_m - average_adult_human_height_m), abs(botan_height_m - average_adult_human_height_m))\n", "\n", "# Print out our results in a nice readable format:\n", "print(\"The biggest distance from the average height among these two people is\", biggest_distance_m, \"meters.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The line where `biggest_distance_m` is computed looks complicated, but we can break it down into simpler components just like we did before.\n", "\n", "The basic recipe is repeated simplification of small parts of the expression:\n", "* We start with the simplest components whose values we know, like plain names or numbers. (Examples: `aditya_height_m` or `5`.)\n", "* **Find a simple-enough group of expressions:** We look for a group of simple expressions that are directly connected to each other in the code, for example by arithmetic or as arguments to a function call.\n", "* **Evaluate that group:** We evaluate the arithmetic expressions or function calls they're part of, and replace the whole group with whatever we compute. (Example: `aditya_height_m - average_adult_human_height_m` becomes `-.478`.)\n", "* **Repeat:** We continue this process, using the values of the glommed-together stuff as our new basic components. (Example: `abs(-.478)` becomes `.478`, and `max(.478, .162)` later becomes `.478`.)\n", "* We keep doing that until we've evaluated the whole expression.\n", "\n", "You can run the next cell to see a slideshow of that process." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import IFrame\n", "IFrame('https://docs.google.com/presentation/d/1urkX-nRsD8VJvcOnJsjmCy0Jpv752Ssn5Pphg2sMC-0/embed?start=false&loop=false&delayms=3000', 800, 600)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ok, your turn. \n", "\n", "**Question 5.1.1.** Given the heights of the last three U.S. Presidents, write an expression that computes the smallest difference between any of the three heights. Your expression shouldn't have any numbers in it, only function calls and the names `obama`, `clinton`, and `bush`. Give the value of your expression the name `min_height_difference`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# The three Presidents' heights, in meters:\n", "obama = 1.85\n", "clinton = 1.88\n", "bush = 1.82\n", "\n", "# We'd like to look at all 3 pairs of heights, compute the absolute\n", "# difference between each pair, and then find the smallest of those\n", "# 3 absolute differences. This is left to you! If you're stuck,\n", "# try computing the value for each step of the process (like the\n", "# difference between Obama's and Clinton's height) on a separate\n", "# line and giving it a name (like obama_clinton_height_diff).\n", "min_height_difference = ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_ = tests.grade('q511')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
jacobstein123/Flappy-Bird-Genetic-Algorithm
Misc data/LearningCurve.ipynb
1
2354
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open(\"output-10.31.15.txt\",'r') as output:\n", " a = output.read()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "b = a.split('\\n\\n')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import re\n", "averages = [re.search('(\\d+)$',b[i]).group() for i in xrange(len(b))]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from numpy import *\n", "from matplotlib.pyplot import *\n", "\n", "y = np.array([float(i) for i in averages])\n", "\n", "x = np.array([float(i) for i in range(len(y))])\n", "\n", "coefficients = polyfit(x, y,1)\n", "polynomial = poly1d(coefficients)\n", "xs = arange(-2.2, 2.6, 0.1)\n", "ys = polynomial(xs)\n", "\n", "plot(x, y, '.')\n", "plot(xs, ys)\n", "ylabel('y')\n", "xlabel('x')\n", "show()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Python27\\lib\\site-packages\\numpy\\lib\\polynomial.py:588: RankWarning: Polyfit may be poorly conditioned\n", " warnings.warn(msg, RankWarning)\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "z = np.polyfit(x, y, 2)\n", "p = np.poly1d(z)\n", "p30 = np.poly1d(np.polyfit(x, y, 30))\n", "xp = np.linspace(1, 600, len(averages))\n", "_ = plt.plot(x, y, '.', xp, p(xp), '-')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
fonnesbeck/scipy2015_tutorial
notebooks/1. Data Preparation.ipynb
6
297198
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style>\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf');\n", " }\n", " div.cell{\n", " width: 90%;\n", "/* margin-left:auto;*/\n", "/* margin-right:auto;*/\n", " }\n", " ul {\n", " line-height: 145%;\n", " font-size: 90%;\n", " }\n", " li {\n", " margin-bottom: 1em;\n", " }\n", " h1 {\n", " font-family: Helvetica, serif;\n", " }\n", " h4{\n", " margin-top: 12px;\n", " margin-bottom: 3px;\n", " }\n", " div.text_cell_render{\n", " font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n", " line-height: 145%;\n", " font-size: 130%;\n", " width: 90%;\n", " margin-left:auto;\n", " margin-right:auto;\n", " }\n", " .CodeMirror{\n", " font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n", " }\n", "/* .prompt{\n", " display: None;\n", " }*/\n", " .text_cell_render h5 {\n", " font-weight: 300;\n", " font-size: 16pt;\n", " color: #4057A1;\n", " font-style: italic;\n", " margin-bottom: 0.5em;\n", " margin-top: 0.5em;\n", " display: block;\n", " }\n", "\n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " }\n", "</style>\n", "<script>\n", " MathJax.Hub.Config({\n", " TeX: {\n", " extensions: [\"AMSmath.js\"]\n", " },\n", " tex2jax: {\n", " inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", " displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", " },\n", " displayAlign: 'center', // Change this to 'center' to center equations.\n", " \"HTML-CSS\": {\n", " styles: {'.MathJax_Display': {\"margin\": 4}}\n", " }\n", " });\n", "</script>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "import numpy as np\n", "\n", "from IPython.core.display import HTML\n", "def css_styling():\n", " styles = open(\"styles/custom.css\", \"r\").read()\n", " return HTML(styles)\n", "css_styling()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Preparation using pandas\n", "\n", "An initial step in statistical data analysis is the preparation of the data to be used in the analysis. In practice, ~~a little~~ ~~some~~ ~~much~~ the majority of the actual time spent on a statistical modeling project is typically devoted to importing, cleaning, validating and transforming the dataset.\n", "\n", "This section will introduce [pandas](http://pandas.pydata.org/), an important third-party Python package for data analysis, as a tool for data preparation, and provide some general advice for what should or should not be done to data before it is analyzed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction to pandas\n", "\n", "**pandas** is a Python package providing fast, flexible, and expressive data structures designed to work with *relational* or *labeled* data both. It is a fundamental high-level building block for doing practical, real world data analysis in Python. \n", "\n", "pandas is well suited for:\n", "\n", "- **Tabular** data with heterogeneously-typed columns, as you might find in an SQL table or Excel spreadsheet\n", "- Ordered and unordered (not necessarily fixed-frequency) **time series** data.\n", "- Arbitrary **matrix** data with row and column labels\n", "\n", "Virtually any statistical dataset, labeled or unlabeled, can be converted to a pandas data structure for cleaning, transformation, and analysis.\n", "\n", "\n", "### Key features\n", " \n", "- Easy handling of **missing data**\n", "- **Size mutability**: columns can be inserted and deleted from DataFrame and higher dimensional objects\n", "- Automatic and explicit **data alignment**: objects can be explicitly aligned to a set of labels, or the data can be aligned automatically\n", "- Powerful, flexible **group by functionality** to perform split-apply-combine operations on data sets\n", "- Intelligent label-based **slicing, fancy indexing, and subsetting** of large data sets\n", "- Intuitive **merging and joining** data sets\n", "- Flexible **reshaping and pivoting** of data sets\n", "- **Hierarchical labeling** of axes\n", "- Robust **IO tools** for loading data from flat files, Excel files, databases, and HDF5\n", "- **Time series functionality**: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Series\n", "\n", "A **Series** is a single vector of data (like a NumPy array) with an *index* that labels each element in the vector." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "dtype: int64" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts = pd.Series([632, 1638, 569, 115])\n", "counts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If an index is not specified, a default sequence of integers is assigned as the index. A NumPy array comprises the values of the `Series`, while the index is a pandas `Index` object." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 632, 1638, 569, 115])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts.values" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Int64Index([0, 1, 2, 3], dtype='int64')" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts.index" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can assign meaningful labels to the index, if they are available. These counts are of bacteria taxa constituting the microbiome of hospital patients, so using the taxon of each bacterium is a useful index." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Firmicutes 632\n", "Proteobacteria 1638\n", "Actinobacteria 569\n", "Bacteroidetes 115\n", "dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria = pd.Series([632, 1638, 569, 115], \n", " index=['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes'])\n", "\n", "bacteria" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These labels can be used to refer to the values in the `Series`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "569" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria['Actinobacteria']" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Proteobacteria 1638\n", "Actinobacteria 569\n", "dtype: int64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria[bacteria.index.str.endswith('bacteria')]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'Bacteroidetes' in bacteria" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the indexing operation preserved the association between the values and the corresponding indices.\n", "\n", "We can still use positional indexing if we wish." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "632" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can give both the array of values and the index meaningful labels themselves:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "phylum\n", "Firmicutes 632\n", "Proteobacteria 1638\n", "Actinobacteria 569\n", "Bacteroidetes 115\n", "Name: counts, dtype: int64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria.name = 'counts'\n", "bacteria.index.name = 'phylum'\n", "bacteria" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "NumPy's math functions and other operations can be applied to Series without losing the data structure." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "phylum\n", "Firmicutes 6.448889\n", "Proteobacteria 7.401231\n", "Actinobacteria 6.343880\n", "Bacteroidetes 4.744932\n", "Name: counts, dtype: float64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.log(bacteria)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also filter according to the values in the `Series`:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "phylum\n", "Proteobacteria 1638\n", "Name: counts, dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria[bacteria>1000]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A `Series` can be thought of as an ordered key-value store. In fact, we can create one from a `dict`:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bacteria_dict = {'Firmicutes': 632, 'Proteobacteria': 1638, 'Actinobacteria': 569, 'Bacteroidetes': 115}\n", "bact = pd.Series(bacteria_dict)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Actinobacteria 569\n", "Bacteroidetes 115\n", "Firmicutes 632\n", "Proteobacteria 1638\n", "dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bact" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the `Series` is created in key-sorted order.\n", "\n", "If we pass a custom index to `Series`, it will select the corresponding values from the dict, and treat indices without corrsponding values as missing. pandas uses the `NaN` (not a number) type for missing values." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Cyanobacteria NaN\n", "Firmicutes 632\n", "Proteobacteria 1638\n", "Actinobacteria 569\n", "dtype: float64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria2 = pd.Series(bacteria_dict, \n", " index=['Cyanobacteria','Firmicutes','Proteobacteria','Actinobacteria'])\n", "bacteria2" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Cyanobacteria True\n", "Firmicutes False\n", "Proteobacteria False\n", "Actinobacteria False\n", "dtype: bool" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria2.isnull()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Critically, the labels are used to **align data** when used in operations with other Series objects:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Actinobacteria 1138\n", "Bacteroidetes NaN\n", "Cyanobacteria NaN\n", "Firmicutes 1264\n", "Proteobacteria 3276\n", "dtype: float64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria + bacteria2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Contrast this with NumPy arrays, where arrays of the same length will combine values element-wise; adding Series combined values with the same label in the resulting series. Notice also that the missing values were propogated by addition." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### DataFrame\n", "\n", "Inevitably, we want to be able to store, view and manipulate data that is *multivariate*, where for every index there are multiple fields or columns of data, often of varying data type.\n", "\n", "A `DataFrame` is a tabular data structure, encapsulating multiple series like columns in a spreadsheet. Data are stored internally as a 2-dimensional object, but the `DataFrame` allows us to represent and manipulate higher-dimensional data." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value\n", "0 1 Firmicutes 632\n", "1 1 Proteobacteria 1638\n", "2 1 Actinobacteria 569\n", "3 1 Bacteroidetes 115\n", "4 2 Firmicutes 433\n", "5 2 Proteobacteria 1130\n", "6 2 Actinobacteria 754\n", "7 2 Bacteroidetes 555" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data = pd.DataFrame({'value':[632, 1638, 569, 115, 433, 1130, 754, 555],\n", " 'patient':[1, 1, 1, 1, 2, 2, 2, 2],\n", " 'phylum':['Firmicutes', 'Proteobacteria', 'Actinobacteria', \n", " 'Bacteroidetes', 'Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes']})\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice the `DataFrame` is sorted by column name. We can change the order by indexing them in the order we desire:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>patient</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " phylum value patient\n", "0 Firmicutes 632 1\n", "1 Proteobacteria 1638 1\n", "2 Actinobacteria 569 1\n", "3 Bacteroidetes 115 1\n", "4 Firmicutes 433 2\n", "5 Proteobacteria 1130 2\n", "6 Actinobacteria 754 2\n", "7 Bacteroidetes 555 2" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data[['phylum','value','patient']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A `DataFrame` has a second index, representing the columns:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['patient', 'phylum', 'value'], dtype='object')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we wish to access columns, we can do so either by dict-like indexing or by attribute:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "4 433\n", "5 1130\n", "6 754\n", "7 555\n", "Name: value, dtype: int64" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data['value']" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "4 433\n", "5 1130\n", "6 754\n", "7 555\n", "Name: value, dtype: int64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using the standard indexing syntax for a single column of data from a `DataFrame` returns the column as a `Series`." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "pandas.core.series.Series" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(bacteria_data['value'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Passing the column name as a list returns the column as a `DataFrame` instead." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>632</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1638</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>569</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>115</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>433</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1130</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>754</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " value\n", "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "4 433\n", "5 1130\n", "6 754\n", "7 555" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data[['value']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that indexing works differently with a `DataFrame` than with a `Series`, where in the latter, dict-like indexing retrieved a particular element (row). If we want access to a row in a `DataFrame`, we index its `ix` attribute." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "patient 1\n", "phylum Bacteroidetes\n", "value 115\n", "Name: 3, dtype: object" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.ix[3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since a row potentially contains different data types, the returned `Series` of values is of the generic `object` type." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we want to create a `DataFrame` row-wise rather than column-wise, we can do so with a dict of dicts:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bacteria_data = pd.DataFrame({0: {'patient': 1, 'phylum': 'Firmicutes', 'value': 632},\n", " 1: {'patient': 1, 'phylum': 'Proteobacteria', 'value': 1638},\n", " 2: {'patient': 1, 'phylum': 'Actinobacteria', 'value': 569},\n", " 3: {'patient': 1, 'phylum': 'Bacteroidetes', 'value': 115},\n", " 4: {'patient': 2, 'phylum': 'Firmicutes', 'value': 433},\n", " 5: {'patient': 2, 'phylum': 'Proteobacteria', 'value': 1130},\n", " 6: {'patient': 2, 'phylum': 'Actinobacteria', 'value': 754},\n", " 7: {'patient': 2, 'phylum': 'Bacteroidetes', 'value': 555}})" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " <th>6</th>\n", " <th>7</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>patient</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>phylum</th>\n", " <td>Firmicutes</td>\n", " <td>Proteobacteria</td>\n", " <td>Actinobacteria</td>\n", " <td>Bacteroidetes</td>\n", " <td>Firmicutes</td>\n", " <td>Proteobacteria</td>\n", " <td>Actinobacteria</td>\n", " <td>Bacteroidetes</td>\n", " </tr>\n", " <tr>\n", " <th>value</th>\n", " <td>632</td>\n", " <td>1638</td>\n", " <td>569</td>\n", " <td>115</td>\n", " <td>433</td>\n", " <td>1130</td>\n", " <td>754</td>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3 \\\n", "patient 1 1 1 1 \n", "phylum Firmicutes Proteobacteria Actinobacteria Bacteroidetes \n", "value 632 1638 569 115 \n", "\n", " 4 5 6 7 \n", "patient 2 2 2 2 \n", "phylum Firmicutes Proteobacteria Actinobacteria Bacteroidetes \n", "value 433 1130 754 555 " ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, we probably want this transposed:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value\n", "0 1 Firmicutes 632\n", "1 1 Proteobacteria 1638\n", "2 1 Actinobacteria 569\n", "3 1 Bacteroidetes 115\n", "4 2 Firmicutes 433\n", "5 2 Proteobacteria 1130\n", "6 2 Actinobacteria 754\n", "7 2 Bacteroidetes 555" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data = bacteria_data.T\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Views\n", "\n", "Its important to note that the `Series` returned when a `DataFrame` is indexed is merely a **view** on the DataFrame, and not a copy of the data itself. So you must be *cautious* when manipulating this data.\n", "\n", "For example, let's isolate a column of our dataset by assigning it as a `Series` to a variable." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "4 433\n", "5 1130\n", "6 754\n", "7 555\n", "Name: value, dtype: object" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vals = bacteria_data.value\n", "vals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, let's assign a new value to one of the elements of the `Series`." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 632\n", "1 1638\n", "2 569\n", "3 115\n", "4 433\n", "5 0\n", "6 754\n", "7 555\n", "Name: value, dtype: object" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vals[5] = 0\n", "vals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, we may not anticipate that the value in the original `DataFrame` has also been changed!" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value\n", "0 1 Firmicutes 632\n", "1 1 Proteobacteria 1638\n", "2 1 Actinobacteria 569\n", "3 1 Bacteroidetes 115\n", "4 2 Firmicutes 433\n", "5 2 Proteobacteria 0\n", "6 2 Actinobacteria 754\n", "7 2 Bacteroidetes 555" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can avoid this by working with a copy when modifying subsets of the original data." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value\n", "0 1 Firmicutes 632\n", "1 1 Proteobacteria 1638\n", "2 1 Actinobacteria 569\n", "3 1 Bacteroidetes 115\n", "4 2 Firmicutes 433\n", "5 2 Proteobacteria 0\n", "6 2 Actinobacteria 754\n", "7 2 Bacteroidetes 555" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vals = bacteria_data.value.copy()\n", "vals[5] = 1000\n", "\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, as we have seen, we can create or modify columns by assignment; let's put back the value we accidentally changed." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bacteria_data.value[5] = 1130" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or, we may wish to add a column representing the year the data were collected." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year\n", "0 1 Firmicutes 632 2013\n", "1 1 Proteobacteria 1638 2013\n", "2 1 Actinobacteria 569 2013\n", "3 1 Bacteroidetes 115 2013\n", "4 2 Firmicutes 433 2013\n", "5 2 Proteobacteria 1130 2013\n", "6 2 Actinobacteria 754 2013\n", "7 2 Bacteroidetes 555 2013" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data['year'] = 2013\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But note, we cannot use the attribute indexing method to add a new column:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year\n", "0 1 Firmicutes 632 2013\n", "1 1 Proteobacteria 1638 2013\n", "2 1 Actinobacteria 569 2013\n", "3 1 Bacteroidetes 115 2013\n", "4 2 Firmicutes 433 2013\n", "5 2 Proteobacteria 1130 2013\n", "6 2 Actinobacteria 754 2013\n", "7 2 Bacteroidetes 555 2013" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.treatment = 1\n", "bacteria_data" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.treatment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Auto-alignment\n", "\n", "When adding a column that is not a simple constant, we need to be a bit more careful. Due to pandas' auto-alignment behavior, specifying a `Series` as a new column causes its values to be added according to the `DataFrame`'s index:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 0\n", "1 0\n", "2 0\n", "3 0\n", "4 1\n", "5 1\n", "dtype: int64" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "treatment = pd.Series([0]*4 + [1]*2)\n", "\n", "treatment" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " <th>treatment</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year treatment\n", "0 1 Firmicutes 632 2013 0\n", "1 1 Proteobacteria 1638 2013 0\n", "2 1 Actinobacteria 569 2013 0\n", "3 1 Bacteroidetes 115 2013 0\n", "4 2 Firmicutes 433 2013 1\n", "5 2 Proteobacteria 1130 2013 1\n", "6 2 Actinobacteria 754 2013 NaN\n", "7 2 Bacteroidetes 555 2013 NaN" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data['treatment'] = treatment\n", "\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Other Python data structures (ones without an index) need to be the same length as the `DataFrame`:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ValueError", "evalue": "Length of values does not match length of index", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-40-56b358a0dde9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mmonth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'Jan'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Feb'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Mar'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Apr'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mbacteria_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'month'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmonth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/usr/local/lib/python3.4/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 2119\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2120\u001b[0m \u001b[0;31m# set column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2121\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2122\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2123\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_setitem_slice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.4/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_set_item\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 2196\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2197\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ensure_valid_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2198\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sanitize_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2199\u001b[0m \u001b[0mNDFrame\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2200\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.4/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_sanitize_column\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 2354\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2355\u001b[0m \u001b[0;31m# turn me into an ndarray\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2356\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_sanitize_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2357\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIndex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2358\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.4/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36m_sanitize_index\u001b[0;34m(data, index, copy)\u001b[0m\n\u001b[1;32m 2570\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2571\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2572\u001b[0;31m raise ValueError('Length of values does not match length of '\n\u001b[0m\u001b[1;32m 2573\u001b[0m 'index')\n\u001b[1;32m 2574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: Length of values does not match length of index" ] } ], "source": [ "month = ['Jan', 'Feb', 'Mar', 'Apr']\n", "bacteria_data['month'] = month" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " <th>treatment</th>\n", " <th>month</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " <td>Jan</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " <td>Jan</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year treatment month\n", "0 1 Firmicutes 632 2013 0 Jan\n", "1 1 Proteobacteria 1638 2013 0 Jan\n", "2 1 Actinobacteria 569 2013 0 Jan\n", "3 1 Bacteroidetes 115 2013 0 Jan\n", "4 2 Firmicutes 433 2013 1 Jan\n", "5 2 Proteobacteria 1130 2013 1 Jan\n", "6 2 Actinobacteria 754 2013 NaN Jan\n", "7 2 Bacteroidetes 555 2013 NaN Jan" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data['month'] = ['Jan']*len(bacteria_data)\n", "\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use `del` to remove columns, in the same way `dict` entries can be removed:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " <th>treatment</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year treatment\n", "0 1 Firmicutes 632 2013 0\n", "1 1 Proteobacteria 1638 2013 0\n", "2 1 Actinobacteria 569 2013 0\n", "3 1 Bacteroidetes 115 2013 0\n", "4 2 Firmicutes 433 2013 1\n", "5 2 Proteobacteria 1130 2013 1\n", "6 2 Actinobacteria 754 2013 NaN\n", "7 2 Bacteroidetes 555 2013 NaN" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "del bacteria_data['month']\n", "\n", "bacteria_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or employ the `drop` method." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>patient</th>\n", " <th>phylum</th>\n", " <th>value</th>\n", " <th>year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Firmicutes</td>\n", " <td>632</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Proteobacteria</td>\n", " <td>1638</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>Actinobacteria</td>\n", " <td>569</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>Bacteroidetes</td>\n", " <td>115</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>Firmicutes</td>\n", " <td>433</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2</td>\n", " <td>Proteobacteria</td>\n", " <td>1130</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>Actinobacteria</td>\n", " <td>754</td>\n", " <td>2013</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2</td>\n", " <td>Bacteroidetes</td>\n", " <td>555</td>\n", " <td>2013</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " patient phylum value year\n", "0 1 Firmicutes 632 2013\n", "1 1 Proteobacteria 1638 2013\n", "2 1 Actinobacteria 569 2013\n", "3 1 Bacteroidetes 115 2013\n", "4 2 Firmicutes 433 2013\n", "5 2 Proteobacteria 1130 2013\n", "6 2 Actinobacteria 754 2013\n", "7 2 Bacteroidetes 555 2013" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.drop('treatment', axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can extract the underlying data as a simple `ndarray` by accessing the `values` attribute:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[1, 'Firmicutes', 632, 2013, 0.0],\n", " [1, 'Proteobacteria', 1638, 2013, 0.0],\n", " [1, 'Actinobacteria', 569, 2013, 0.0],\n", " [1, 'Bacteroidetes', 115, 2013, 0.0],\n", " [2, 'Firmicutes', 433, 2013, 1.0],\n", " [2, 'Proteobacteria', 1130, 2013, 1.0],\n", " [2, 'Actinobacteria', 754, 2013, nan],\n", " [2, 'Bacteroidetes', 555, 2013, nan]], dtype=object)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that because of the mix of string, integer and float (and `NaN`) values, the dtype of the array is `object`. The dtype will automatically be chosen to be as general as needed to accomodate all the columns." ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(array([[ 0.4, 1. ],\n", " [-1. , 2. ],\n", " [ 4.5, 3. ]]), dtype('float64'))" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame({'foo': [1,2,3], 'bar':[0.4, -1.0, 4.5]})\n", "\n", "df.values, df.values.dtype" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "pandas uses a custom data structure to represent the **indices** of Series and DataFrames." ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Int64Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64')" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria_data.index" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Index objects are immutable:" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "ename": "TypeError", "evalue": "Indexes does not support mutable operations", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-47-d897e4dc5161>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbacteria_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m15\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/usr/local/lib/python3.4/site-packages/pandas/core/index.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1048\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Indexes does not support mutable operations\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1049\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1050\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: Indexes does not support mutable operations" ] } ], "source": [ "bacteria_data.index[0] = 15" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is so that Index objects can be shared between data structures without fear that they will be changed." ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "phylum\n", "Firmicutes NaN\n", "Proteobacteria 632\n", "Actinobacteria 1638\n", "Bacteroidetes 569\n", "dtype: float64" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bacteria2.index = bacteria.index\n", "\n", "bacteria2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Excercise: Indexing\n", "\n", "From the `bacteria_data` table above, create an index to return all rows for which the phylum name ends in \"bacteria\" and the value is greater than 1000." ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Write your answer here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Using pandas\n", "\n", "This section, we will import and clean up some of the datasets that we will be using later on in the tutorial. And in doing so, we will introduce the key functionality of pandas that is required to use the software effectively." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing data\n", "\n", "A key, but often under-appreciated, step in data analysis is importing the data that we wish to analyze. Though it is easy to load basic data structures into Python using built-in tools or those provided by packages like NumPy, it is non-trivial to import structured data well, and to easily convert this input into a robust data structure:\n", "\n", " genes = np.loadtxt(\"genes.csv\", delimiter=\",\", dtype=[('gene', '|S10'), ('value', '<f4')])\n", "\n", "pandas provides a convenient set of functions for importing tabular data in a number of formats directly into a `DataFrame` object. These functions include a slew of options to perform type inference, indexing, parsing, iterating and cleaning automatically as data are imported.\n", "\n", "### Delimited data\n", "\n", "The file `olympics.1996.txt` in the `data` directory contains counts of medals awarded at the 1996 Summer Olympic Games by country, along with the countries' respective population sizes. This data is stored in a tab-separated format.\n", "\n", "![olympics](images/_olympics.png)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tonga\t1\t96165\r\n", "Bahamas\t1\t281584\r\n", "Jamaica\t6\t2589043\r\n", "Cuba\t25\t10952046\r\n", "Australia\t41\t18348078\r\n", "Hungary\t21\t10273590\r\n", "Bulgaria\t15\t8181047\r\n", "Trinidad & Tobago\t2\t1196910\r\n", "New Zealand\t6\t3621200\r\n", "Norway\t7\t4381275\r\n" ] } ], "source": [ "!head ../data/olympics.1996.txt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This table can be read into a DataFrame using `read_table`. " ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>medals</th>\n", " <th>population</th>\n", " </tr>\n", " <tr>\n", " <th>country</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Tonga</th>\n", " <td>1</td>\n", " <td>96165</td>\n", " </tr>\n", " <tr>\n", " <th>Bahamas</th>\n", " <td>1</td>\n", " <td>281584</td>\n", " </tr>\n", " <tr>\n", " <th>Jamaica</th>\n", " <td>6</td>\n", " <td>2589043</td>\n", " </tr>\n", " <tr>\n", " <th>Cuba</th>\n", " <td>25</td>\n", " <td>10952046</td>\n", " </tr>\n", " <tr>\n", " <th>Australia</th>\n", " <td>41</td>\n", " <td>18348078</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " medals population\n", "country \n", "Tonga 1 96165\n", "Bahamas 1 281584\n", "Jamaica 6 2589043\n", "Cuba 25 10952046\n", "Australia 41 18348078" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "medals = pd.read_table('../data/olympics.1996.txt', sep='\\t',\n", " index_col=0,\n", " header=None, names=['country', 'medals', 'population'])\n", "medals.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is no header row in this dataset, so we specified this, and provided our own **header names**. If we did not specify `header=None` the function would have assumed the first row contained column names.\n", "\n", "The tab **separator** was passed to the `sep` argument as `\\t`.\n", "\n", "The `sep` argument can be customized as needed to accomodate arbitrary separators. For example, we can use a regular expression to define a variable amount of whitespace, which is unfortunately common in some datasets: \n", " \n", " sep='\\s+'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Scraping Data from the Web\n", "\n", "We would like to add another variable to this dataset. Along with population, a country's economic development may be a useful predictor of Olympic success. A very simple indicator of this might be OECD membership status. \n", "\n", "The [OECD website](http://www.oecd.org/about/membersandpartners/list-oecd-member-countries.htm) contains a table listing OECD member nations, along with its year of membership. We would like to import this table and extract the contries that were members as of the 1996 games." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `read_html` function accepts a URL argument, and will attempt to extract all the tables from that address, returning whatever it finds in a **list of `DataFrame`s**." ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[ 0\n", " 0 On 14 December 1960, 20 countries originally s...\n", " 1 Here is a list of the current Member countries...,\n", " 0 1 2 3\n", " 0 NaN Country Date NaN\n", " 1 NaN AUSTRALIA 7 June 1971 NaN\n", " 2 NaN AUSTRIA 29 September 1961 NaN\n", " 3 NaN BELGIUM 13 September 1961 NaN\n", " 4 NaN CANADA 10 April 1961 NaN\n", " 5 NaN CHILE 7 May 2010 NaN\n", " 6 NaN CZECH REPUBLIC 21 December 1995 NaN\n", " 7 NaN DENMARK 30 May 1961 NaN\n", " 8 NaN ESTONIA 9 December 2010 NaN\n", " 9 NaN FINLAND 28 January 1969 NaN\n", " 10 NaN FRANCE 7 August 1961 NaN\n", " 11 NaN GERMANY 27 September 1961 NaN\n", " 12 NaN GREECE 27 September 1961 NaN\n", " 13 NaN HUNGARY 7 May 1996 NaN\n", " 14 NaN ICELAND 5 June 1961 NaN\n", " 15 NaN IRELAND 17 August 1961 NaN\n", " 16 NaN ISRAEL 7 September 2010 NaN\n", " 17 NaN ITALY 29 March 1962 NaN\n", " 18 NaN JAPAN 28 April 1964 NaN\n", " 19 NaN KOREA 12 December 1996 NaN\n", " 20 NaN LUXEMBOURG 7 December 1961 NaN\n", " 21 NaN MEXICO 18 May 1994 NaN\n", " 22 NaN NETHERLANDS 13 November 1961 NaN\n", " 23 NaN NEW ZEALAND 29 May 1973 NaN\n", " 24 NaN NORWAY 4 July 1961 NaN\n", " 25 NaN POLAND 22 November 1996 NaN\n", " 26 NaN PORTUGAL 4 August 1961 NaN\n", " 27 NaN SLOVAK REPUBLIC 14 December 2000 NaN\n", " 28 NaN SLOVENIA 21 July 2010 NaN\n", " 29 NaN SPAIN 3 August 1961 NaN\n", " 30 NaN SWEDEN 28 September 1961 NaN\n", " 31 NaN SWITZERLAND 28 September 1961 NaN\n", " 32 NaN TURKEY 2 August 1961 NaN\n", " 33 NaN UNITED KINGDOM 2 May 1961 NaN\n", " 34 NaN UNITED STATES 12 April 1961 NaN\n", " 35 More on membership and enlargement NaN NaN NaN]" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oecd_site = 'http://www.oecd.org/about/membersandpartners/list-oecd-member-countries.htm'\n", "pd.read_html(oecd_site)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is typically some cleanup that is required of the returned data, such as the assignment of column names or conversion of types. \n", "\n", "The table of interest is at index 1, and we will extract two columns from the table. Otherwise, this table is pretty clean." ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Country</th>\n", " <th>Date</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>AUSTRALIA</td>\n", " <td>7 June 1971</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>AUSTRIA</td>\n", " <td>29 September 1961</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>BELGIUM</td>\n", " <td>13 September 1961</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>CANADA</td>\n", " <td>10 April 1961</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>CHILE</td>\n", " <td>7 May 2010</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Country Date\n", "0 AUSTRALIA 7 June 1971\n", "1 AUSTRIA 29 September 1961\n", "2 BELGIUM 13 September 1961\n", "3 CANADA 10 April 1961\n", "4 CHILE 7 May 2010" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oecd = pd.read_html(oecd_site, header=0)[1][[1,2]]\n", "oecd.head()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Country\n", "Australia 1971\n", "Austria 1961\n", "Belgium 1961\n", "Canada 1961\n", "Chile 2010\n", "Czech Republic 1995\n", "Denmark 1961\n", "Estonia 2010\n", "Finland 1969\n", "France 1961\n", "Germany 1961\n", "Greece 1961\n", "Hungary 1996\n", "Iceland 1961\n", "Ireland 1961\n", "Israel 2010\n", "Italy 1962\n", "Japan 1964\n", "Korea 1996\n", "Luxembourg 1961\n", "Mexico 1994\n", "Netherlands 1961\n", "New Zealand 1973\n", "Norway 1961\n", "Poland 1996\n", "Portugal 1961\n", "Slovak Republic 2000\n", "Slovenia 2010\n", "Spain 1961\n", "Sweden 1961\n", "Switzerland 1961\n", "Turkey 1961\n", "United Kingdom 1961\n", "United States 1961\n", "Name: year, dtype: float64" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oecd['year'] = pd.to_datetime(oecd.Date).apply(lambda x: x.year)\n", "oecd_year = oecd.set_index(oecd.Country.str.title())['year'].dropna()\n", "oecd_year" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can create an indicator (binary) variable for OECD status by checking if each country is in the index of countries with membership year less than 1997. \n", "\n", "The new `DataFrame` method `assign` is a convenient means for creating the new column from this operation." ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true }, "outputs": [], "source": [ "medals_data = medals.assign(oecd=medals.index.isin((oecd_year[oecd_year<1997]).index).astype(int))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the distribution of populations spans several orders of magnitude, we may wish to use the logarithm of the population size, which may be created similarly." ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [], "source": [ "medals_data = medals_data.assign(log_population=np.log(medals.population))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The NumPy `log` function will return a pandas `Series` (or `DataFrame` when applied to one) instead of a `ndarray`; all of NumPy's functions are compatible with pandas in this way." ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>medals</th>\n", " <th>population</th>\n", " <th>oecd</th>\n", " <th>log_population</th>\n", " </tr>\n", " <tr>\n", " <th>country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Tonga</th>\n", " <td>1</td>\n", " <td>96165</td>\n", " <td>0</td>\n", " <td>11.473821</td>\n", " </tr>\n", " <tr>\n", " <th>Bahamas</th>\n", " <td>1</td>\n", " <td>281584</td>\n", " <td>0</td>\n", " <td>12.548186</td>\n", " </tr>\n", " <tr>\n", " <th>Jamaica</th>\n", " <td>6</td>\n", " <td>2589043</td>\n", " <td>0</td>\n", " <td>14.766799</td>\n", " </tr>\n", " <tr>\n", " <th>Cuba</th>\n", " <td>25</td>\n", " <td>10952046</td>\n", " <td>0</td>\n", " <td>16.209037</td>\n", " </tr>\n", " <tr>\n", " <th>Australia</th>\n", " <td>41</td>\n", " <td>18348078</td>\n", " <td>1</td>\n", " <td>16.725035</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " medals population oecd log_population\n", "country \n", "Tonga 1 96165 0 11.473821\n", "Bahamas 1 281584 0 12.548186\n", "Jamaica 6 2589043 0 14.766799\n", "Cuba 25 10952046 0 16.209037\n", "Australia 41 18348078 1 16.725035" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "medals_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comma-separated Values (CSV)\n", "\n", "The most common form of delimited data is comma-separated values (CSV). Since CSV is so ubiquitous, the `read_csv` is available as a convenience function for `read_table`.\n", "\n", "Consider some more microbiome data." ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Taxon,Patient,Tissue,Stool\r\n", "Firmicutes,1,632,305\r\n", "Firmicutes,2,136,4182\r\n", "Firmicutes,3,1174,703\r\n", "Firmicutes,4,408,3946\r\n", "Firmicutes,5,831,8605\r\n", "Firmicutes,6,693,50\r\n", "Firmicutes,7,718,717\r\n", "Firmicutes,8,173,33\r\n", "Firmicutes,9,228,80\r\n", "Firmicutes,10,162,3196\r\n", "Firmicutes,11,372,32\r\n", "Firmicutes,12,4255,4361\r\n", "Firmicutes,13,107,1667\r\n", "Firmicutes,14,96,223\r\n", "Firmicutes,15,281,2377\r\n", "Proteobacteria,1,1638,3886\r\n", "Proteobacteria,2,2469,1821\r\n", "Proteobacteria,3,839,661\r\n", "Proteobacteria,4,4414,18\r\n", "Proteobacteria,5,12044,83\r\n", "Proteobacteria,6,2310,12\r\n", "Proteobacteria,7,3053,547\r\n", "Proteobacteria,8,395,2174\r\n", "Proteobacteria,9,2651,767\r\n", "Proteobacteria,10,1195,76\r\n", "Proteobacteria,11,6857,795\r\n", "Proteobacteria,12,483,666\r\n", "Proteobacteria,13,2950,3994\r\n", "Proteobacteria,14,1541,816\r\n", "Proteobacteria,15,1307,53\r\n", "Actinobacteria,1,569,648\r\n", "Actinobacteria,2,1590,4\r\n", "Actinobacteria,3,25,2\r\n", "Actinobacteria,4,259,300\r\n", "Actinobacteria,5,568,7\r\n", "Actinobacteria,6,1102,9\r\n", "Actinobacteria,7,678,377\r\n", "Actinobacteria,8,260,58\r\n", "Actinobacteria,9,424,233\r\n", "Actinobacteria,10,548,21\r\n", "Actinobacteria,11,201,83\r\n", "Actinobacteria,12,42,75\r\n", "Actinobacteria,13,109,59\r\n", "Actinobacteria,14,51,183\r\n", "Actinobacteria,15,310,204\r\n", "Bacteroidetes,1,115,380\r\n", "Bacteroidetes,2,67,0\r\n", "Bacteroidetes,3,0,0\r\n", "Bacteroidetes,4,85,5\r\n", "Bacteroidetes,5,143,7\r\n", "Bacteroidetes,6,678,2\r\n", "Bacteroidetes,7,4829,209\r\n", "Bacteroidetes,8,74,651\r\n", "Bacteroidetes,9,169,254\r\n", "Bacteroidetes,10,106,10\r\n", "Bacteroidetes,11,73,381\r\n", "Bacteroidetes,12,30,359\r\n", "Bacteroidetes,13,51,51\r\n", "Bacteroidetes,14,2473,2314\r\n", "Bacteroidetes,15,102,33\r\n", "Other,1,114,277\r\n", "Other,2,195,18\r\n", "Other,3,42,2\r\n", "Other,4,316,43\r\n", "Other,5,202,40\r\n", "Other,6,116,0\r\n", "Other,7,527,12\r\n", "Other,8,357,11\r\n", "Other,9,106,11\r\n", "Other,10,67,14\r\n", "Other,11,203,6\r\n", "Other,12,392,6\r\n", "Other,13,28,25\r\n", "Other,14,12,22\r\n", "Other,15,305,32" ] } ], "source": [ "!cat ../data/microbiome/microbiome.csv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This table can be read into a DataFrame using `read_csv`:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 1174 703\n", "3 Firmicutes 4 408 3946\n", "4 Firmicutes 5 831 8605" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb = pd.read_csv(\"../data/microbiome/microbiome.csv\")\n", "mb.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we have sections of data that we do not wish to import (for example, known bad data), we can populate the `skiprows` argument:" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " <td>718</td>\n", " <td>717</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " <td>173</td>\n", " <td>33</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 5 831 8605\n", "3 Firmicutes 7 718 717\n", "4 Firmicutes 8 173 33" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(\"../data/microbiome/microbiome.csv\", skiprows=[3,4,6]).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conversely, if we only want to import a small number of rows from, say, a very large data file we can use `nrows`:" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 1174 703\n", "3 Firmicutes 4 408 3946" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "few_recs = pd.read_csv(\"../data/microbiome/microbiome.csv\", nrows=4)\n", "\n", "few_recs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternately, if we want to process our data in reasonable chunks, the `chunksize` argument will return an iterable object that can be employed in a data processing loop. For example, our microbiome data are organized by bacterial phylum, with 15 patients represented in each:" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<pandas.io.parsers.TextFileReader at 0x10ff36898>" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_chunks = pd.read_csv(\"../data/microbiome/microbiome.csv\", chunksize=15)\n", "data_chunks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exercise: Calculating summary statistics\n", "\n", "Import the microbiome data, calculating the mean counts across all patients for each taxon, returning these values in a dictionary.\n", "\n", "*Hint: using `chunksize` makes this more efficent!*" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Write your answer here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Hierarchical Indices\n", "\n", "For a more useful index, we can specify the first two columns, which together provide a unique index to the data." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " <tr>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"5\" valign=\"top\">Firmicutes</th>\n", " <th>1</th>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Tissue Stool\n", "Taxon Patient \n", "Firmicutes 1 632 305\n", " 2 136 4182\n", " 3 1174 703\n", " 4 408 3946\n", " 5 831 8605" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb = pd.read_csv(\"../data/microbiome/microbiome.csv\", index_col=['Taxon','Patient'])\n", "mb.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is called a **hierarchical index**, which allows multiple dimensions of data to be represented in tabular form." ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "MultiIndex(levels=[['Actinobacteria', 'Bacteroidetes', 'Firmicutes', 'Other', 'Proteobacteria'], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]],\n", " labels=[[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]],\n", " names=['Taxon', 'Patient'])" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.index" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The corresponding index is a `MultiIndex` object that consists of a sequence of tuples, the elements of which is some combination of the three columns used to create the index. Where there are multiple repeated values, pandas does not print the repeats, making it easy to identify groups of values." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rows can be indexed by passing the appropriate tuple." ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Tissue 136\n", "Stool 4182\n", "Name: (Firmicutes, 2), dtype: int64" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.ix[('Firmicutes', 2)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With a hierachical index, we can select subsets of the data based on a *partial* index:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " <tr>\n", " <th>Patient</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2469</td>\n", " <td>1821</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>839</td>\n", " <td>661</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4414</td>\n", " <td>18</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>12044</td>\n", " <td>83</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2310</td>\n", " <td>12</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>3053</td>\n", " <td>547</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>395</td>\n", " <td>2174</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2651</td>\n", " <td>767</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>1195</td>\n", " <td>76</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>6857</td>\n", " <td>795</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>483</td>\n", " <td>666</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2950</td>\n", " <td>3994</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>1541</td>\n", " <td>816</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>1307</td>\n", " <td>53</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Tissue Stool\n", "Patient \n", "1 1638 3886\n", "2 2469 1821\n", "3 839 661\n", "4 4414 18\n", "5 12044 83\n", "6 2310 12\n", "7 3053 547\n", "8 395 2174\n", "9 2651 767\n", "10 1195 76\n", "11 6857 795\n", "12 483 666\n", "13 2950 3994\n", "14 1541 816\n", "15 1307 53" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.ix['Proteobacteria']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To extract arbitrary levels from a hierarchical row index, the **cross-section** method `xs` can be used." ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " <tr>\n", " <th>Taxon</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Firmicutes</th>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>Proteobacteria</th>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>Actinobacteria</th>\n", " <td>569</td>\n", " <td>648</td>\n", " </tr>\n", " <tr>\n", " <th>Bacteroidetes</th>\n", " <td>115</td>\n", " <td>380</td>\n", " </tr>\n", " <tr>\n", " <th>Other</th>\n", " <td>114</td>\n", " <td>277</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Tissue Stool\n", "Taxon \n", "Firmicutes 632 305\n", "Proteobacteria 1638 3886\n", "Actinobacteria 569 648\n", "Bacteroidetes 115 380\n", "Other 114 277" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.xs(1, level='Patient')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We may also reorder levels as we like." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " <tr>\n", " <th>Patient</th>\n", " <th>Taxon</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <th>Firmicutes</th>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <th>Firmicutes</th>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <th>Firmicutes</th>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <th>Firmicutes</th>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <th>Firmicutes</th>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Tissue Stool\n", "Patient Taxon \n", "1 Firmicutes 632 305\n", "2 Firmicutes 136 4182\n", "3 Firmicutes 1174 703\n", "4 Firmicutes 408 3946\n", "5 Firmicutes 831 8605" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.swaplevel('Patient', 'Taxon').head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Operations\n", "\n", "`DataFrame` and `Series` objects allow for several operations to take place either on a single object, or between two or more objects.\n", "\n", "For example, we can perform arithmetic on the elements of two objects, such as calculating the ratio of bacteria counts between locations:" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Taxon Patient\n", "Firmicutes 1 0.482595\n", " 2 30.750000\n", " 3 0.598807\n", " 4 9.671569\n", " 5 10.354994\n", " 6 0.072150\n", " 7 0.998607\n", " 8 0.190751\n", " 9 0.350877\n", " 10 19.728395\n", " 11 0.086022\n", " 12 1.024912\n", " 13 15.579439\n", " 14 2.322917\n", " 15 8.459075\n", "Proteobacteria 1 2.372405\n", " 2 0.737546\n", " 3 0.787843\n", " 4 0.004078\n", " 5 0.006891\n", " 6 0.005195\n", " 7 0.179168\n", " 8 5.503797\n", " 9 0.289325\n", " 10 0.063598\n", " 11 0.115940\n", " 12 1.378882\n", " 13 1.353898\n", " 14 0.529526\n", " 15 0.040551\n", " ... \n", "Bacteroidetes 1 3.304348\n", " 2 0.000000\n", " 3 NaN\n", " 4 0.058824\n", " 5 0.048951\n", " 6 0.002950\n", " 7 0.043280\n", " 8 8.797297\n", " 9 1.502959\n", " 10 0.094340\n", " 11 5.219178\n", " 12 11.966667\n", " 13 1.000000\n", " 14 0.935706\n", " 15 0.323529\n", "Other 1 2.429825\n", " 2 0.092308\n", " 3 0.047619\n", " 4 0.136076\n", " 5 0.198020\n", " 6 0.000000\n", " 7 0.022770\n", " 8 0.030812\n", " 9 0.103774\n", " 10 0.208955\n", " 11 0.029557\n", " 12 0.015306\n", " 13 0.892857\n", " 14 1.833333\n", " 15 0.104918\n", "dtype: float64" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb.Stool / mb.Tissue" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Microsoft Excel\n", "\n", "Since so much financial and scientific data ends up in Excel spreadsheets (regrettably), pandas' ability to directly import Excel spreadsheets is valuable. This support is contingent on having one or two dependencies (depending on what version of Excel file is being imported) installed: `xlrd` and `openpyxl` (these may be installed with either `pip` or `easy_install`).\n", "\n", "Importing Excel data to pandas is a two-step process. First, we create an `ExcelFile` object using the path of the file: " ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<pandas.io.excel.ExcelFile at 0x10fede358>" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb_file = pd.ExcelFile('../data/microbiome/MID1.xls')\n", "mb_file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, since modern spreadsheets consist of one or more \"sheets\", we parse the sheet with the data of interest:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Count</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Desulfuro...</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Desulfuro...</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Sulfoloba...</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Thermopro...</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Archaea \"Euryarchaeota\" \"Methanomicrobia\" Meth...</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Count\n", "0 Archaea \"Crenarchaeota\" Thermoprotei Desulfuro... 7\n", "1 Archaea \"Crenarchaeota\" Thermoprotei Desulfuro... 2\n", "2 Archaea \"Crenarchaeota\" Thermoprotei Sulfoloba... 3\n", "3 Archaea \"Crenarchaeota\" Thermoprotei Thermopro... 3\n", "4 Archaea \"Euryarchaeota\" \"Methanomicrobia\" Meth... 7" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb1 = mb_file.parse(\"Sheet 1\", header=None)\n", "mb1.columns = [\"Taxon\", \"Count\"]\n", "mb1.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is now a `read_excel` conveneince function in pandas that combines these steps into a single call:" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Acidiloba...</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Acidiloba...</td>\n", " <td>14</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Desulfuro...</td>\n", " <td>23</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Desulfuro...</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Archaea \"Crenarchaeota\" Thermoprotei Desulfuro...</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1\n", "0 Archaea \"Crenarchaeota\" Thermoprotei Acidiloba... 2\n", "1 Archaea \"Crenarchaeota\" Thermoprotei Acidiloba... 14\n", "2 Archaea \"Crenarchaeota\" Thermoprotei Desulfuro... 23\n", "3 Archaea \"Crenarchaeota\" Thermoprotei Desulfuro... 1\n", "4 Archaea \"Crenarchaeota\" Thermoprotei Desulfuro... 2" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mb2 = pd.read_excel('../data/microbiome/MID2.xls', sheetname='Sheet 1', header=None)\n", "mb2.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Relational Databases\n", "\n", "If you are fortunate, your data will be stored in a database (relational or non-relational) rather than in arbitrary text files or spreadsheet. Relational databases are particularly useful for storing large quantities of *structured* data, where fields are grouped together in tables according to their relationships with one another.\n", "\n", "pandas' `DataFrame` interacts with relational (*i.e.* SQL) databases, and even provides facilties for using SQL syntax on the `DataFrame` itself, which we will get to later. For now, let's work with a ubiquitous embedded database called **SQLite**, which comes bundled with Python. A SQLite database can be queried with the standard library's `sqlite3` module." ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import sqlite3\n", "\n", "query = '''\n", "CREATE TABLE samples\n", "(taxon VARCHAR(15), patient INTEGER, tissue INTEGER, stool INTEGER);\n", "'''" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This query string will create a table to hold some of our microbiome data, which we can execute after connecting to a database (which will be created, if it does not exist)." ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [], "source": [ "con = sqlite3.connect('microbiome.sqlite3')\n", "con.execute(query)\n", "con.commit()" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Taxon Firmicutes\n", "Patient 1\n", "Tissue 632\n", "Stool 305\n", "Name: 0, dtype: object" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "few_recs.ix[0]" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<sqlite3.Cursor at 0x10f5c16c0>" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "con.execute('INSERT INTO samples VALUES(\\'{}\\',{},{},{})'.format(*few_recs.ix[0]))" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<sqlite3.Cursor at 0x10f5c1730>" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "query = 'INSERT INTO samples VALUES(?, ?, ?, ?)'\n", "con.executemany(query, few_recs.values[1:])" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": true }, "outputs": [], "source": [ "con.commit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using `SELECT` queries, we can read from the database." ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[('Firmicutes', 1, 632, 305),\n", " ('Firmicutes', 2, 136, 4182),\n", " ('Firmicutes', 3, 1174, 703),\n", " ('Firmicutes', 4, 408, 3946)]" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cursor = con.execute('SELECT * FROM samples')\n", "rows = cursor.fetchall()\n", "\n", "rows" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These results can be passed directly to a `DataFrame`" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 1174 703\n", "3 Firmicutes 4 408 3946" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(rows)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To obtain the column names, we can obtain the table information from the database, via the special `PRAGMA` statement." ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(0, 'taxon', 'VARCHAR(15)', 0, None, 0),\n", " (1, 'patient', 'INTEGER', 0, None, 0),\n", " (2, 'tissue', 'INTEGER', 0, None, 0),\n", " (3, 'stool', 'INTEGER', 0, None, 0)]" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "table_info = con.execute('PRAGMA table_info(samples);').fetchall()\n", "\n", "table_info" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>taxon</th>\n", " <th>patient</th>\n", " <th>tissue</th>\n", " <th>stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " taxon patient tissue stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 1174 703\n", "3 Firmicutes 4 408 3946" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(rows, columns=np.transpose(table_info)[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A more direct approach is to pass the query to the `read_sql_query` functon, which returns a populated `DataFrame." ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>taxon</th>\n", " <th>patient</th>\n", " <th>tissue</th>\n", " <th>stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>1174</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " taxon patient tissue stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 1174 703\n", "3 Firmicutes 4 408 3946" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_sql_query('SELECT * FROM samples', con)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Correspondingly, we can append records into the database with `to_sql`." ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "collapsed": false }, "outputs": [], "source": [ "more_recs = pd.read_csv(\"../data/microbiome/microbiome_missing.csv\").head(20)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": false }, "outputs": [], "source": [ "more_recs.to_sql('samples', con, if_exists='append', index=False)" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[('Firmicutes', 1, 632, 305),\n", " ('Firmicutes', 2, 136, 4182),\n", " ('Firmicutes', 3, 1174, 703),\n", " ('Firmicutes', 4, 408, 3946),\n", " ('Firmicutes', 1, 632, 305),\n", " ('Firmicutes', 2, 136, 4182),\n", " ('Firmicutes', 3, None, 703),\n", " ('Firmicutes', 4, 408, 3946),\n", " ('Firmicutes', 5, 831, 8605),\n", " ('Firmicutes', 6, 693, 50),\n", " ('Firmicutes', 7, 718, 717),\n", " ('Firmicutes', 8, 173, 33),\n", " ('Firmicutes', 9, 228, None),\n", " ('Firmicutes', 10, 162, 3196),\n", " ('Firmicutes', 11, 372, -99999),\n", " ('Firmicutes', 12, 4255, 4361),\n", " ('Firmicutes', 13, 107, 1667),\n", " ('Firmicutes', 14, '?', 223),\n", " ('Firmicutes', 15, 281, 2377),\n", " ('Proteobacteria', 1, 1638, 3886),\n", " ('Proteobacteria', 2, 2469, 1821),\n", " ('Proteobacteria', 3, 839, 661),\n", " ('Proteobacteria', 4, 4414, 18),\n", " ('Proteobacteria', 5, 12044, 83)]" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cursor = con.execute('SELECT * FROM samples')\n", "cursor.fetchall()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are several other data formats that can be imported into Python and converted into DataFrames, with the help of buitl-in or third-party libraries. These include JSON, XML, HDF5, non-relational databases, and various web APIs." ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Get rid of the database we created\n", "!rm microbiome.sqlite3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2014 Ebola Outbreak Data\n", "\n", "The `../data/ebola` folder contains summarized reports of Ebola cases from three countries during the recent outbreak of the disease in West Africa. For each country, there are daily reports that contain various information about the outbreak in several cities in each country.\n", "\n", "![ebola](images/ebola.jpg)\n", "\n", "From these data files, use pandas to import them and create a single data frame that includes the **daily totals of new cases** for each country. \n", "\n", "We may use this compiled data for more advaned applications later in the course." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data are taken from [Caitlin Rivers' `ebola` GitHub repository](https://github.com/cmrivers/ebola), and are licenced for both commercial and non-commercial use. The tutorial repository contains a subset of this data from three countries (Sierra Leone, Liberia and Guinea) that we will use as an example. They reside in a nested subdirectory in the `data` directory." ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['LICENSE', 'guinea_data', 'liberia_data', 'sl_data']" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ebola_dirs = !ls ../data/ebola/\n", "ebola_dirs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Within each country directory, there are CSV files containing daily information regarding the state of the outbreak for that country. The first step is to efficiently import all the relevant files. \n", "\n", "Our approach will be to construct a dictionary containing a list of filenames to import. We can use the `glob` package to identify all the CSV files in each directory. This can all be placed within a **dictionary comprehension**." ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import glob\n", "\n", "filenames = {data_dir[:data_dir.find('_')]: glob.glob('../data/ebola/{0}/*.csv'.format(data_dir)) for data_dir in ebola_dirs[1:]}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We are now in a position to iterate over the dictionary and import the corresponding files. However, the data layout of the files across the dataset is partially inconsistent." ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>Kailahun</th>\n", " <th>Kenema</th>\n", " <th>Kono</th>\n", " <th>Kambia</th>\n", " <th>Koinadugu</th>\n", " <th>Bombali</th>\n", " <th>Tonkolili</th>\n", " <th>Port Loko</th>\n", " <th>Pujehun</th>\n", " <th>Bo</th>\n", " <th>Moyamba</th>\n", " <th>Bonthe</th>\n", " <th>Western area urban</th>\n", " <th>Western area rural</th>\n", " <th>National</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-08-12</td>\n", " <td>population</td>\n", " <td>465048</td>\n", " <td>653013</td>\n", " <td>325003</td>\n", " <td>341690</td>\n", " <td>335471</td>\n", " <td>494139</td>\n", " <td>434937</td>\n", " <td>557978</td>\n", " <td>335574</td>\n", " <td>654142</td>\n", " <td>278119</td>\n", " <td>168729</td>\n", " <td>1040888</td>\n", " <td>263619</td>\n", " <td>6348350</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014-08-12</td>\n", " <td>new_noncase</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-12</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>9</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2014-08-12</td>\n", " <td>new_probable</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-12</td>\n", " <td>new_confirmed</td>\n", " <td>0</td>\n", " <td>9</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>11</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date variable Kailahun Kenema Kono Kambia Koinadugu \\\n", "0 2014-08-12 population 465048 653013 325003 341690 335471 \n", "1 2014-08-12 new_noncase 0 3 0 0 0 \n", "2 2014-08-12 new_suspected 0 9 0 0 0 \n", "3 2014-08-12 new_probable 0 0 0 0 0 \n", "4 2014-08-12 new_confirmed 0 9 0 0 0 \n", "\n", " Bombali Tonkolili Port Loko Pujehun Bo Moyamba Bonthe \\\n", "0 494139 434937 557978 335574 654142 278119 168729 \n", "1 0 0 1 0 0 0 0 \n", "2 0 0 0 0 1 0 0 \n", "3 0 0 0 0 1 0 0 \n", "4 0 0 2 0 0 0 0 \n", "\n", " Western area urban Western area rural National \n", "0 1040888 263619 6348350 \n", "1 0 0 4 \n", "2 0 0 10 \n", "3 0 0 1 \n", "4 0 0 11 " ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv('../data/ebola/sl_data/2014-08-12-v77.csv').head()" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Date</th>\n", " <th>Description</th>\n", " <th>Totals</th>\n", " <th>Conakry</th>\n", " <th>Gueckedou</th>\n", " <th>Macenta</th>\n", " <th>Dabola</th>\n", " <th>Kissidougou</th>\n", " <th>Dinguiraye</th>\n", " <th>Telimele</th>\n", " <th>...</th>\n", " <th>Mzerekore</th>\n", " <th>Yomou</th>\n", " <th>Dubreka</th>\n", " <th>Forecariah</th>\n", " <th>Kerouane</th>\n", " <th>Coyah</th>\n", " <th>Dalaba</th>\n", " <th>Beyla</th>\n", " <th>Kindia</th>\n", " <th>Lola</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-09-02</td>\n", " <td>New cases of suspects</td>\n", " <td>11</td>\n", " <td>NaN</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014-09-02</td>\n", " <td>New cases of probables</td>\n", " <td>0</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-09-02</td>\n", " <td>New cases of confirmed</td>\n", " <td>14</td>\n", " <td>NaN</td>\n", " <td>4</td>\n", " <td>6</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2014-09-02</td>\n", " <td>Total new cases registered so far</td>\n", " <td>25</td>\n", " <td>0</td>\n", " <td>9</td>\n", " <td>12</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-09-02</td>\n", " <td>Total cases of suspects</td>\n", " <td>49</td>\n", " <td>15</td>\n", " <td>5</td>\n", " <td>17</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 24 columns</p>\n", "</div>" ], "text/plain": [ " Date Description Totals Conakry Gueckedou \\\n", "0 2014-09-02 New cases of suspects 11 NaN 5 \n", "1 2014-09-02 New cases of probables 0 NaN NaN \n", "2 2014-09-02 New cases of confirmed 14 NaN 4 \n", "3 2014-09-02 Total new cases registered so far 25 0 9 \n", "4 2014-09-02 Total cases of suspects 49 15 5 \n", "\n", " Macenta Dabola Kissidougou Dinguiraye Telimele ... Mzerekore Yomou Dubreka \\\n", "0 6 NaN NaN NaN NaN ... NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN ... NaN NaN NaN \n", "2 6 NaN NaN NaN NaN ... NaN NaN NaN \n", "3 12 0 0 0 0 ... 0 0 1 \n", "4 17 0 0 0 0 ... 0 1 1 \n", "\n", " Forecariah Kerouane Coyah Dalaba Beyla Kindia Lola \n", "0 NaN NaN NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN NaN NaN \n", "3 0 0 3 NaN NaN NaN NaN \n", "4 2 5 0 NaN NaN NaN NaN \n", "\n", "[5 rows x 24 columns]" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv('../data/ebola/guinea_data/2014-09-02.csv').head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clearly, we will need to develop row **masks** to extract the data we need across all files, without having to manually extract data from each file.\n", "\n", "Let's hack at one file to develop the mask." ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sample = pd.read_csv('../data/ebola/sl_data/2014-08-12-v77.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To prevent issues with capitalization, we will simply revert all labels to lower case." ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": true }, "outputs": [], "source": [ "lower_vars = sample.variable.str.lower()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since we are interested in extracting new cases only, we can use the **string accessor** attribute to look for key words that we would like to include or exclude." ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [], "source": [ "case_mask = (lower_vars.str.contains('new') \n", " & (lower_vars.str.contains('case') | lower_vars.str.contains('suspect')) \n", " & ~lower_vars.str.contains('non')\n", " & ~lower_vars.str.contains('total'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We could have instead used regular expressions to do the same thing.\n", "\n", "Finally, we are only interested in three columns." ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>National</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-12</td>\n", " <td>new_suspected</td>\n", " <td>10</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date variable National\n", "2 2014-08-12 new_suspected 10" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sample.loc[case_mask, ['date', 'variable', 'National']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now embed this operation in a loop over all the filenames in the database." ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false }, "outputs": [], "source": [ "datasets = []\n", "for country in filenames:\n", " \n", " country_files = filenames[country]\n", " for f in country_files:\n", " \n", " data = pd.read_csv(f)\n", " \n", " \n", " # Convert to lower case to avoid capitalization issues\n", " data.columns = data.columns.str.lower()\n", " # Column naming is inconsistent. These procedures deal with that.\n", " keep_columns = ['date']\n", " if 'description' in data.columns:\n", " keep_columns.append('description')\n", " else:\n", " keep_columns.append('variable')\n", " \n", " if 'totals' in data.columns:\n", " keep_columns.append('totals')\n", " else:\n", " keep_columns.append('national')\n", " \n", " # Index out the columns we need, and rename them\n", " keep_data = data[keep_columns]\n", " keep_data.columns = 'date', 'variable', 'totals'\n", " \n", " # Extract the rows we might want\n", " lower_vars = keep_data.variable.str.lower()\n", " # Of course we can also use regex to do this\n", " case_mask = (lower_vars.str.contains('new') \n", " & (lower_vars.str.contains('case') | lower_vars.str.contains('suspect') \n", " | lower_vars.str.contains('confirm')) \n", " & ~lower_vars.str.contains('non')\n", " & ~lower_vars.str.contains('total'))\n", " \n", " keep_data = keep_data[case_mask].dropna()\n", " \n", " # Convert data types\n", " keep_data['date'] = pd.to_datetime(keep_data.date)\n", " keep_data['totals'] = keep_data.totals.astype(int)\n", " \n", " # Assign country label and append to datasets list\n", " datasets.append(keep_data.assign(country=country))\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have a list populated with `DataFrame` objects for each day and country, we can call `concat` to concatenate them into a single `DataFrame`." ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>totals</th>\n", " <th>country</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-12</td>\n", " <td>new_suspected</td>\n", " <td>10</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-12</td>\n", " <td>new_confirmed</td>\n", " <td>11</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-13</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-13</td>\n", " <td>new_confirmed</td>\n", " <td>15</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-14</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>sl</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date variable totals country\n", "2 2014-08-12 new_suspected 10 sl\n", "4 2014-08-12 new_confirmed 11 sl\n", "2 2014-08-13 new_suspected 3 sl\n", "4 2014-08-13 new_confirmed 15 sl\n", "2 2014-08-14 new_suspected 0 sl" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data = pd.concat(datasets)\n", "all_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This works because the structure of each table was identical" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Manipulating indices\n", "\n", "Notice from above, however, that the index contains redundant integer index values. We can confirm this:" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data.index.is_unique" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can create a new unique index by calling the `reset_index` method on the new data frame after we import it, which will generate a new ordered, unique index." ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>totals</th>\n", " <th>country</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-08-12</td>\n", " <td>new_suspected</td>\n", " <td>10</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014-08-12</td>\n", " <td>new_confirmed</td>\n", " <td>11</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-13</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2014-08-13</td>\n", " <td>new_confirmed</td>\n", " <td>15</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-14</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>sl</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date variable totals country\n", "0 2014-08-12 new_suspected 10 sl\n", "1 2014-08-12 new_confirmed 11 sl\n", "2 2014-08-13 new_suspected 3 sl\n", "3 2014-08-13 new_confirmed 15 sl\n", "4 2014-08-14 new_suspected 0 sl" ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data = pd.concat(datasets).reset_index(drop=True)\n", "all_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Reindexing** allows users to manipulate the data labels in a DataFrame. It forces a DataFrame to conform to the new index, and optionally, fill in missing data if requested.\n", "\n", "A simple use of `reindex` is to alter the order of the rows. For example, records are currently ordered first by country then by day, since this is the order in which they were iterated over and imported. We might arbitrarily want to reverse the order, which is performed by passing the appropriate index values to `reindex`." ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>totals</th>\n", " <th>country</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>636</th>\n", " <td>2014-12-09</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2946</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>635</th>\n", " <td>2014-12-09</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1801</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>634</th>\n", " <td>2014-12-09</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3050</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>633</th>\n", " <td>2014-12-08</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2927</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>632</th>\n", " <td>2014-12-08</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1805</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>631</th>\n", " <td>2014-12-08</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3054</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>630</th>\n", " <td>2014-12-07</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2869</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>629</th>\n", " <td>2014-12-07</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1829</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>628</th>\n", " <td>2014-12-07</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3067</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>627</th>\n", " <td>2014-12-06</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2869</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>626</th>\n", " <td>2014-12-06</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1810</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>625</th>\n", " <td>2014-12-06</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3056</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>624</th>\n", " <td>2014-12-05</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2867</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>623</th>\n", " <td>2014-12-05</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1808</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>622</th>\n", " <td>2014-12-05</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3056</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>621</th>\n", " <td>2014-12-04</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>2867</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>620</th>\n", " <td>2014-12-04</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>1800</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>619</th>\n", " <td>2014-12-04</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>3054</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>618</th>\n", " <td>2014-12-02</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>9</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>617</th>\n", " <td>2014-12-02</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>10</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>616</th>\n", " <td>2014-12-02</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>18</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>615</th>\n", " <td>2014-12-02</td>\n", " <td>Newly Reported Cases in HCW</td>\n", " <td>1</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>614</th>\n", " <td>2014-12-01</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>1</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>613</th>\n", " <td>2014-12-01</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>9</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>612</th>\n", " <td>2014-12-01</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>25</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>611</th>\n", " <td>2014-11-30</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>10</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>610</th>\n", " <td>2014-11-30</td>\n", " <td>Newly Reported Cases in HCW</td>\n", " <td>1</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>609</th>\n", " <td>2014-11-29</td>\n", " <td>New case/s (confirmed)</td>\n", " <td>10</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>608</th>\n", " <td>2014-11-29</td>\n", " <td>New Case/s (Probable)</td>\n", " <td>4</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>607</th>\n", " <td>2014-11-29</td>\n", " <td>New Case/s (Suspected)</td>\n", " <td>7</td>\n", " <td>liberia</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>2014-08-27</td>\n", " <td>new_confirmed</td>\n", " <td>27</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>2014-08-27</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>2014-08-25</td>\n", " <td>new_confirmed</td>\n", " <td>20</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>2014-08-25</td>\n", " <td>new_suspected</td>\n", " <td>5</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>2014-08-24</td>\n", " <td>new_confirmed</td>\n", " <td>31</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>2014-08-24</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>2014-08-23</td>\n", " <td>new_confirmed</td>\n", " <td>23</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>2014-08-23</td>\n", " <td>new_suspected</td>\n", " <td>4</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>2014-08-22</td>\n", " <td>new_confirmed</td>\n", " <td>56</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>2014-08-22</td>\n", " <td>new_suspected</td>\n", " <td>1</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>2014-08-21</td>\n", " <td>new_confirmed</td>\n", " <td>9</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>2014-08-21</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>2014-08-20</td>\n", " <td>new_confirmed</td>\n", " <td>4</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>2014-08-20</td>\n", " <td>new_suspected</td>\n", " <td>1</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>2014-08-19</td>\n", " <td>new_confirmed</td>\n", " <td>9</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2014-08-19</td>\n", " <td>new_suspected</td>\n", " <td>16</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2014-08-18</td>\n", " <td>new_confirmed</td>\n", " <td>5</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2014-08-18</td>\n", " <td>new_suspected</td>\n", " <td>40</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>2014-08-17</td>\n", " <td>new_confirmed</td>\n", " <td>2</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>2014-08-17</td>\n", " <td>new_suspected</td>\n", " <td>1</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2014-08-16</td>\n", " <td>new_confirmed</td>\n", " <td>18</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2014-08-16</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2014-08-15</td>\n", " <td>new_confirmed</td>\n", " <td>10</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2014-08-15</td>\n", " <td>new_suspected</td>\n", " <td>6</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2014-08-14</td>\n", " <td>new_confirmed</td>\n", " <td>13</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-14</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2014-08-13</td>\n", " <td>new_confirmed</td>\n", " <td>15</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-13</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014-08-12</td>\n", " <td>new_confirmed</td>\n", " <td>11</td>\n", " <td>sl</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-08-12</td>\n", " <td>new_suspected</td>\n", " <td>10</td>\n", " <td>sl</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>637 rows × 4 columns</p>\n", "</div>" ], "text/plain": [ " date variable totals country\n", "636 2014-12-09 New case/s (confirmed) 2946 liberia\n", "635 2014-12-09 New Case/s (Probable) 1801 liberia\n", "634 2014-12-09 New Case/s (Suspected) 3050 liberia\n", "633 2014-12-08 New case/s (confirmed) 2927 liberia\n", "632 2014-12-08 New Case/s (Probable) 1805 liberia\n", "631 2014-12-08 New Case/s (Suspected) 3054 liberia\n", "630 2014-12-07 New case/s (confirmed) 2869 liberia\n", "629 2014-12-07 New Case/s (Probable) 1829 liberia\n", "628 2014-12-07 New Case/s (Suspected) 3067 liberia\n", "627 2014-12-06 New case/s (confirmed) 2869 liberia\n", "626 2014-12-06 New Case/s (Probable) 1810 liberia\n", "625 2014-12-06 New Case/s (Suspected) 3056 liberia\n", "624 2014-12-05 New case/s (confirmed) 2867 liberia\n", "623 2014-12-05 New Case/s (Probable) 1808 liberia\n", "622 2014-12-05 New Case/s (Suspected) 3056 liberia\n", "621 2014-12-04 New case/s (confirmed) 2867 liberia\n", "620 2014-12-04 New Case/s (Probable) 1800 liberia\n", "619 2014-12-04 New Case/s (Suspected) 3054 liberia\n", "618 2014-12-02 New case/s (confirmed) 9 liberia\n", "617 2014-12-02 New Case/s (Probable) 10 liberia\n", "616 2014-12-02 New Case/s (Suspected) 18 liberia\n", "615 2014-12-02 Newly Reported Cases in HCW 1 liberia\n", "614 2014-12-01 New case/s (confirmed) 1 liberia\n", "613 2014-12-01 New Case/s (Probable) 9 liberia\n", "612 2014-12-01 New Case/s (Suspected) 25 liberia\n", "611 2014-11-30 New case/s (confirmed) 10 liberia\n", "610 2014-11-30 Newly Reported Cases in HCW 1 liberia\n", "609 2014-11-29 New case/s (confirmed) 10 liberia\n", "608 2014-11-29 New Case/s (Probable) 4 liberia\n", "607 2014-11-29 New Case/s (Suspected) 7 liberia\n", ".. ... ... ... ...\n", "29 2014-08-27 new_confirmed 27 sl\n", "28 2014-08-27 new_suspected 3 sl\n", "27 2014-08-25 new_confirmed 20 sl\n", "26 2014-08-25 new_suspected 5 sl\n", "25 2014-08-24 new_confirmed 31 sl\n", "24 2014-08-24 new_suspected 0 sl\n", "23 2014-08-23 new_confirmed 23 sl\n", "22 2014-08-23 new_suspected 4 sl\n", "21 2014-08-22 new_confirmed 56 sl\n", "20 2014-08-22 new_suspected 1 sl\n", "19 2014-08-21 new_confirmed 9 sl\n", "18 2014-08-21 new_suspected 0 sl\n", "17 2014-08-20 new_confirmed 4 sl\n", "16 2014-08-20 new_suspected 1 sl\n", "15 2014-08-19 new_confirmed 9 sl\n", "14 2014-08-19 new_suspected 16 sl\n", "13 2014-08-18 new_confirmed 5 sl\n", "12 2014-08-18 new_suspected 40 sl\n", "11 2014-08-17 new_confirmed 2 sl\n", "10 2014-08-17 new_suspected 1 sl\n", "9 2014-08-16 new_confirmed 18 sl\n", "8 2014-08-16 new_suspected 3 sl\n", "7 2014-08-15 new_confirmed 10 sl\n", "6 2014-08-15 new_suspected 6 sl\n", "5 2014-08-14 new_confirmed 13 sl\n", "4 2014-08-14 new_suspected 0 sl\n", "3 2014-08-13 new_confirmed 15 sl\n", "2 2014-08-13 new_suspected 3 sl\n", "1 2014-08-12 new_confirmed 11 sl\n", "0 2014-08-12 new_suspected 10 sl\n", "\n", "[637 rows x 4 columns]" ] }, "execution_count": 101, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data.reindex(all_data.index[::-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the reindexing operation is not performed \"in-place\"; the original `DataFrame` remains as it was, and the method returns a copy of the `DataFrame` with the new index. This is a common trait for pandas, and is a Good Thing.\n", "\n", "We may also wish to reorder the columns this way." ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>country</th>\n", " <th>variable</th>\n", " <th>totals</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014-08-12</td>\n", " <td>sl</td>\n", " <td>new_suspected</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014-08-12</td>\n", " <td>sl</td>\n", " <td>new_confirmed</td>\n", " <td>11</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2014-08-13</td>\n", " <td>sl</td>\n", " <td>new_suspected</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2014-08-13</td>\n", " <td>sl</td>\n", " <td>new_confirmed</td>\n", " <td>15</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014-08-14</td>\n", " <td>sl</td>\n", " <td>new_suspected</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date country variable totals\n", "0 2014-08-12 sl new_suspected 10\n", "1 2014-08-12 sl new_confirmed 11\n", "2 2014-08-13 sl new_suspected 3\n", "3 2014-08-13 sl new_confirmed 15\n", "4 2014-08-14 sl new_suspected 0" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data.reindex(columns=['date', 'country', 'variable', 'totals']).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Group by operations\n", "\n", "One of pandas' most powerful features is the ability to perform operations on subgroups of a `DataFrame`. These so-called **group by** operations defines subunits of the dataset according to the values of one or more variabes in the `DataFrame`.\n", "\n", "For this data, we want to sum the new case counts by day and country; so we pass these two column names to the `groupby` method, then sum the `totals` column accross them." ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "country date \n", "guinea 2014-08-04 11\n", " 2014-08-26 28\n", " 2014-08-27 22\n", " 2014-08-30 24\n", " 2014-08-31 46\n", " 2014-09-02 25\n", " 2014-09-04 30\n", " 2014-09-07 18\n", " 2014-09-08 18\n", " 2014-09-09 16\n", "Name: totals, dtype: int64" ] }, "execution_count": 103, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_data_grouped = all_data.groupby(['country', 'date'])\n", "daily_cases = all_data_grouped['totals'].sum()\n", "daily_cases.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting series retains a hierarchical index from the group by operation. Hence, we can index out the counts for a given country on a particular day by indexing with the appropriate tuple." ] }, { "cell_type": "code", "execution_count": 104, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "liberia 78\n", "2014-09-02 00:00:00 78\n", "Name: totals, dtype: int64" ] }, "execution_count": 104, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_cases[('liberia', '2014-09-02')]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One issue with the data we have extracted is that there appear to be serious **outliers** in the Liberian counts. The values are much too large to be a daily count, even during a serious outbreak." ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "country date \n", "liberia 2014-12-09 7797\n", " 2014-12-08 7786\n", " 2014-12-07 7765\n", " 2014-12-06 7735\n", " 2014-12-05 7731\n", " 2014-12-04 7721\n", " 2014-10-17 167\n", "sl 2014-11-08 131\n", " 2014-11-20 130\n", " 2014-11-10 126\n", "Name: totals, dtype: int64" ] }, "execution_count": 105, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_cases.sort(ascending=False)\n", "daily_cases.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can filter these outliers using an appropriate threshold." ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "collapsed": false }, "outputs": [], "source": [ "daily_cases = daily_cases[daily_cases<200]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting\n", "\n", "pandas data structures have high-level methods for creating a variety of plots, which tends to be easier than generating the corresponding plot using matplotlib. \n", "\n", "For example, we may want to create a plot of the cumulative cases for each of the three countries. The easiest way to do this is to remove the hierarchical index, and create a `DataFrame` of three columns, which will result in three lines when plotted.\n", "\n", "First, call `unstack` to remove the hierarichical index:" ] }, { "cell_type": "code", "execution_count": 107, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>date</th>\n", " <th>2014-06-16 00:00:00</th>\n", " <th>2014-06-17 00:00:00</th>\n", " <th>2014-06-22 00:00:00</th>\n", " <th>2014-06-24 00:00:00</th>\n", " <th>2014-06-25 00:00:00</th>\n", " <th>2014-06-28 00:00:00</th>\n", " <th>2014-06-29 00:00:00</th>\n", " <th>2014-07-01 00:00:00</th>\n", " <th>2014-07-02 00:00:00</th>\n", " <th>2014-07-03 00:00:00</th>\n", " <th>...</th>\n", " <th>2014-11-24 00:00:00</th>\n", " <th>2014-11-26 00:00:00</th>\n", " <th>2014-11-27 00:00:00</th>\n", " <th>2014-11-28 00:00:00</th>\n", " <th>2014-11-29 00:00:00</th>\n", " <th>2014-11-30 00:00:00</th>\n", " <th>2014-12-01 00:00:00</th>\n", " <th>2014-12-02 00:00:00</th>\n", " <th>2014-12-04 00:00:00</th>\n", " <th>2014-12-05 00:00:00</th>\n", " </tr>\n", " <tr>\n", " <th>country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>guinea</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>liberia</th>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>14</td>\n", " <td>6</td>\n", " <td>9</td>\n", " <td>10</td>\n", " <td>3</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>...</td>\n", " <td>25</td>\n", " <td>31</td>\n", " <td>46</td>\n", " <td>7</td>\n", " <td>21</td>\n", " <td>11</td>\n", " <td>35</td>\n", " <td>38</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>sl</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>115</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>110</td>\n", " <td>88</td>\n", " <td>NaN</td>\n", " <td>86</td>\n", " <td>NaN</td>\n", " <td>41</td>\n", " <td>78</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>3 rows × 128 columns</p>\n", "</div>" ], "text/plain": [ "date 2014-06-16 2014-06-17 2014-06-22 2014-06-24 2014-06-25 \\\n", "country \n", "guinea NaN NaN NaN NaN NaN \n", "liberia 4 2 14 6 9 \n", "sl NaN NaN NaN NaN NaN \n", "\n", "date 2014-06-28 2014-06-29 2014-07-01 2014-07-02 2014-07-03 \\\n", "country \n", "guinea NaN NaN NaN NaN NaN \n", "liberia 10 3 4 4 4 \n", "sl NaN NaN NaN NaN NaN \n", "\n", "date ... 2014-11-24 2014-11-26 2014-11-27 2014-11-28 \\\n", "country ... \n", "guinea ... NaN NaN NaN NaN \n", "liberia ... 25 31 46 7 \n", "sl ... 115 NaN NaN 110 \n", "\n", "date 2014-11-29 2014-11-30 2014-12-01 2014-12-02 2014-12-04 \\\n", "country \n", "guinea NaN NaN NaN NaN NaN \n", "liberia 21 11 35 38 NaN \n", "sl 88 NaN 86 NaN 41 \n", "\n", "date 2014-12-05 \n", "country \n", "guinea NaN \n", "liberia NaN \n", "sl 78 \n", "\n", "[3 rows x 128 columns]" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_cases.unstack().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, transpose the resulting `DataFrame` to swap the rows and columns." ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>country</th>\n", " <th>guinea</th>\n", " <th>liberia</th>\n", " <th>sl</th>\n", " </tr>\n", " <tr>\n", " <th>date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2014-06-16</th>\n", " <td>NaN</td>\n", " <td>4</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-17</th>\n", " <td>NaN</td>\n", " <td>2</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-22</th>\n", " <td>NaN</td>\n", " <td>14</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-24</th>\n", " <td>NaN</td>\n", " <td>6</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-25</th>\n", " <td>NaN</td>\n", " <td>9</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "country guinea liberia sl\n", "date \n", "2014-06-16 NaN 4 NaN\n", "2014-06-17 NaN 2 NaN\n", "2014-06-22 NaN 14 NaN\n", "2014-06-24 NaN 6 NaN\n", "2014-06-25 NaN 9 NaN" ] }, "execution_count": 108, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_cases.unstack().T.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since we have missing values for some dates, we will assume that the counts for those days were zero (the actual counts for that day may have bee included in the next reporting day's data)." ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>country</th>\n", " <th>guinea</th>\n", " <th>liberia</th>\n", " <th>sl</th>\n", " </tr>\n", " <tr>\n", " <th>date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2014-06-16</th>\n", " <td>0</td>\n", " <td>4</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-17</th>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-22</th>\n", " <td>0</td>\n", " <td>14</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-24</th>\n", " <td>0</td>\n", " <td>6</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-25</th>\n", " <td>0</td>\n", " <td>9</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "country guinea liberia sl\n", "date \n", "2014-06-16 0 4 0\n", "2014-06-17 0 2 0\n", "2014-06-22 0 14 0\n", "2014-06-24 0 6 0\n", "2014-06-25 0 9 0" ] }, "execution_count": 109, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_cases.unstack().T.fillna(0).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, calculate the cumulative sum for all the columns, and generate a line plot, which we get by default." ] }, { "cell_type": "code", "execution_count": 110, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x110235dd8>" ] }, "execution_count": 110, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEQCAYAAABV+ASvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYFNX1v98zwDSLoLiguEUMEFpFDYrKvgy4xDUGouUS\n", "1yjtrhGNthsk7U9D0ESTdNRo1CSUS4zRuCIzATX6NbijNigqgijGjUVhGoa5vz9u9dgOs/VM7/e8\n", "z9PPTN26VXU/UzWnbp977zlijEFRFEUpTyoK3QBFURQld6iRVxRFKWPUyCuKopQxauQVRVHKGDXy\n", "iqIoZYwaeUVRlDKmVSMvIjuISI2IPC0iM4OyCSLyTFA2Pq1uVSbliqIoSm6R1ubJi4gP3GSMeT7Y\n", "FuBZoAoQ4EljzOhMy3MlSFEURfmGzi3tFJEKoH/KwAcMABYZY2qDOotFpD/2W0Gby40xi3OgR1EU\n", "RUmjRSMPbAN0FZEHgV7A74AVwCoRuQHbM18FbIU15pmUq5FXFEXJMa0Z+c+BlcCPgrr/AU4FtgAi\n", "WKMdD+pVZFjeJNXV1RpnQVEUpR1UVVVJ47IWjbwxpk5ElgF9jTHLRaQW2wMfEFQRrDtnceDaaXN5\n", "pg3NJSIy1hgzN5/XLCSu6QV3NLuiM4VLelvT2lwHubWePMDPgdtEpBdwnzFmnYhMB+YABpgGYIyp\n", "F5FpbS0vJlx5SFK4phfc0eyKzhQu6W2v1laNvDFmKfCDRmWzgdlN1H0KeKqt5YqiKEpu0cVQ2K9B\n", "hW5DPnFNL7ij2RWdKVzS216tauQVRVHKmFYXQ+Wb6upq09TAa3V1dUWvXr1uDIVCg4PBXCXLGGPq\n", "k8nkgtWrV19YVVVVX+j2KIrSdpqznW0ZeC0KevXqdeOgQYOm9OzZs7LQbSln1qxZM2LhwoUA5xe6\n", "LYqidJyS6RGHQqHBauBzT8+ePStDodDgQrcj27jiu3VFZwqX9Ja9T15dNPlD/9aKUj7oP7PiBK7M\n", "p3ZFZwqX9LZXqxr5PHPbbbcVugmKojiEGvk8c+uttxa6CU7iiu/WFZ0pXNJb9j75fDF//nyqqqoY\n", "N24cJ598MgB33XUXw4cPZ/jw4d/qiQ8dOrTJ3/faay8uvvhiDjjgAC6//PKG8pNOOom3336b8ePH\n", "88tf/rKh/K677iISiTBu3DjGjh3Lxo0befvttznmmGMa6owePZqvv/46F5IVRSljSmYKZb6YMmUK\n", "jz/+OH369AHg888/55ZbbuGZZ54BoKqqikMPPZTtt98emw/Fkv77l19+ySWXXML111/P3nvvzbXX\n", "XgtYY77ffvtRU1OzyXVXrFhBdXU1FRX2vTtw4EC+/PJLVq9ezbJlyxgwYAA9evTIme5yxxXfrSs6\n", "U7ikN2exa1zis88+Y7vttmsw8ADvvfce++67L506dQLggAMO4J133mH77benuYVk6efo1q3bt/Y1\n", "d8zEiRMbDHyK448/nnvuuYd3332X0047rd26FEVxF3XXpLH11lvz8ccf8+GHHzaU7brrrrz44ovU\n", "1dVRV1fHc889x8CBA4FvDPbatWu/5UpJN+SNjfqGDRuaNfSNmTx5Mn//+995+eWXGT58eLt1Ke74\n", "bl3RmcIlve3Vqj35Rtx6662ceOKJGGPo06cP9913H2eeeSajR9u0tKeeeip9+/YFYL/99mPq1Kn0\n", "6NGjWddN+u9ge+yHHHII/fr1Ix6Pt9iW7t27s8suuzS8VBRFUTKlZGLXLFiwYO7gwYPHFKJNhWTS\n", "pEnccsstbLXVVnm75oIFC+YNHjx4bN4uqChKh2nOdqq7pkiZN28eo0aNYty4cXk18IqilBZ+KNzN\n", "D4XnNLdf3TVFypgxYxpm9Cgdx5U0ca7oTOGS3ha03gh82txx2pNXFEUpUfxQ+DigCjizuTrak1ec\n", "wJXenis6U7ikN6XVD4W3B44FjgP6Aod5ycTq6urqJo9TI68oilLk+KHwdcCBQBdgR+BB4OfAv71k\n", "YmNLx6qRV5zAFd+tKzpTuKDXD4WPBCb9Y+NnM47utPV/gYVeMrGurcerkVcURSlS/FB4ayAO/Pjv\n", "Gz/rfH/dp69keg418ooTlHtvL4UrOlOUq14/FJ4BnAR0BW7xkolnvXaeS2fXFJiNGzdy2mmnsXFj\n", "i241RVEcwQ+Fq4BjgKFAf+CSjpxPe/IFplOnTtx+++2FbkbZ44LvFtzRmaLc9Pqh8GbAn4AzvWTi\n", "g/R97dWqPfkO8sYbbzBixAhGjhzJPvvswxFHHME777wDwLRp07jhhhsa6o4bN46XX365YfunP/0p\n", "o0aNomfPnpuct2fPntx2220cfPDBDBw4kOeff75h32effcakSZMa4s+/9NJLDfvWrFnDKaecwoEH\n", "HsigQYOIRqO5kK0oSm64CnjaSyYez9YJW+3Ji8ifgUHAOuBOY8zdIjIBuBowwDXGmJqgbhVwTVvL\n", "s8nQGdk55fyp4zOqf8UVV3DttdcyZswYqqqqOP/88xkwYECbjk0lIOnVq9cm+2pra+nTpw9PPPEE\n", "d955J/F4nGHDhgFw7rnncvrpp3PwwQezdOlSDj/8cF577TXAvhxmzpzJlltuybp16+jfvz/nnHNO\n", "Q1A1Vymn3l5LuKIzRTnp9UPhHYHTgD2a2p/LePIG+LExZhmA2LCK07CrrAR4EqgJyqe3tbw9jW2J\n", "TI1ztujevTsrV66krq6Or776im233TYr5+3WrRtHHnkkAP369WPlypUN++bMmcOKFSu4/vrrAVi/\n", "fj1ffvklvXv3BqBLly48+uijLFmyhK5du7JixQrnjbyilABXAbd5ycTH2TxpW4y88G23zgBgkTGm\n", "FkBEFotI/6BOm8uNMYuzKaRQ/OpXv2LIkCGEw2FOPvlk9tijyZdwVuncuTMPP/xwk26eBQsWcMIJ\n", "JxCJRNh7773Zeuut2xy/vpwpN99tc7iiM0Wp6fVD4c7ASKBTo11bAEcDzcYVb6/Wthj5NcAsEfkc\n", "uAjYClglIjdgXwCrgrKKDMubNfLpYlKB8l9//fVMteWFSy+9lHvvvZdx48Ztsq93794sX74cgE8+\n", "+YT33nuvyXM0ZYRbMsxHHnkkV111FTfeeGND3VTc+jlz5nDYYYcxZcoUFixYwPvvv5+xkV+5cuUW\n", "qd9Tf//G96PUtstNT3PbwN4iUjTtUb3f3n63ft0tO0ro4JBULARYbeq2AOglnVcCFx23fuGex3VA\n", "T5MYY9r0AfbGLqUdAPwZO3+zG3AndprPwEzKm7vOnDlzTFPlr7/++lxThFx77bVm4MCBZtSoUWb0\n", "6NHmuOOOM59++qkxxpiPPvrIDBs2zEyZMsVcdtllZt999zUvvfTSJufo2bNni2Vz5841hx9+eMP2\n", "mjVrzBlnnGGGDh1qRo0aZU455ZSGfR999JHZb7/9zLBhw8wpp5xifvSjH5lHHnkkI03B37rNz4Z+\n", "9KOf1j+zKgdtPqty0KezKgcNzMX5m7OdmUyhrAU2AO8Ghh5sz7y/MWaxiFRkUp7BdYuauXPn8uij\n", "j9K/f3/Wr1/PuHHjeOWVV5g4cSJ9+/blueeea6ibSujdmNWrV7dYNmbMGMaM+SZfymabbcYtt9zS\n", "5Ln69u3LCy+80F45iqLkjvOAx71k4u18XrQts2vuwUY6WwOcbYypF5FpwBzsoOw0gEzLy4V9992X\n", "448/nq5du2KMYfLkyUycOLHQzVIaUWq+2/biis4UpaLXD4V7Y418u5M158wnb4w5tomyp4CnOlpe\n", "DsRiMWKxWKGboShKkeKHwiHgH8DdXjLxTr6vr4uhFCcohd5eNnBFZ4pi1+uHwp2AvwCf0cHwBO3V\n", "qmENFEVRcsdVwHbAga3Ffc8V2pNXnKDxVMpyxRWdKYpZrx8KHwKcCkz2konajp6vvVq1J68oipJl\n", "/FB4V+zU8UleMvFJIduiPXnFCYrdd5stXNGZohj1+qHw5sAjwHQvmXg2W+dtr1Y18h1k5syZzUaS\n", "BHj77be55pprvlU2b948Dj/88Jy1qalrKoqSe/xQuAK4F6j2kok/FLo9oEa+w/zsZz/jmWeeaQgr\n", "0JiBAwc2aXCbq58NmrumyxSz7zabuKIzRRHqPQzoA1yY7RO3V6sa+RxRW1vLqFGj2HPPPTniiCM2\n", "2b9y5UpOOukk9ttvPw488EC++OKLhn0vv/wy48ePZ+zYsRx99NF8/vnnDfs++OADBg8ezFVXXcX+\n", "++/PhAkT2nzNa665hoMOOoghQ4Zw2GGHkUwms6xaUZznIuBXXjJRV+iGpCibgddoxM/KeWLx9mZS\n", "/DZdu3blmWeeYd68ecycOXOT/cuWLeP+++9n22235bLLLiMWizFz5kw2bNjAqaeeyuOPP07fvn15\n", "4IEHuOSSS76VPeqdd95hzz33ZPr06Rld85xzzmno4R911FE8+OCDHHvsJmvdypJi9N3mAld0pigm\n", "vX4ovA+wK/BALs7v/Dz5bBnnfDF48OCG2PPHHXcckUgEgIULF7J06VKOP/74hgBDoVDoW8cOHDiQ\n", "SZMmZXzN3r17M2/ePN5++23Wrl3Lxx9nNWy1ojiJHwpXYm3pz4CbvGRiQ4Gb9C3KxsiXMhs3bmww\n", "5J07d6Zfv37U1GQ3r8ratWsZM2YMRxxxBCNGjKB///4Y406c+VKJcdJRXNGZopB6/VBYgJ8CM7Hx\n", "4T8BzsrV9TTHa4HJ1GC+8MILLF26FIA777yTqqoqAL73ve+RTCZ58MEHmz13e4zzokWLqKys5Mor\n", "r2TIkCG88sorThl5RckmfijcFfgbcDYw1EsmunvJRD8vmVjZyqF5R418lqitrWX06NHceuutbaq/\n", "++67c9VVV7HffvuxfPlyLrzQDsZXVFTw0EMPcdtttzFixAhGjRrF73//+28d256ZOXvttRc777wz\n", "e+21FyeeeCJjx45lxYoVGZ+nVHGld+uKzhSF0BvMg38Caz8P8JKJhfm4bnu1SrH15qqrq01VVdUm\n", "VmzBggVzBw8ePKapY5TssmDBgnmDBw8eW+h2KEqxEfjfnwX+C5znJRP1BW5SA83ZTu3JK05QhPOp\n", "c4IrOlMUQO+l2IiS5+bbwGvsGkVRlBzih8K7YxN/DPGSieJygbSA9uQVJ3DFV+2KzhT50uuHwlsB\n", "fwWu9JKJZfm4ZmOcnyevKIqSTYIpkhXY9KdPAI8DTSdXLmK0J684gSu+ald0psiVXj8U7oIdYN0A\n", "vIedLnlJId006pNXFEXJHlcAK4FOpeR/bwo18ooTuOKrdkVnilzo9UPh/YApwN7FZOA1nryiKEoH\n", "8UPh0cBDwBQvmSiL4E5q5HNETU0No0aNYosttuDll18udHOcxxVftSs6U2RTrx8KnwbcD/zESyYe\n", "bK1+vlGffJExfvz4ho+iKMWLHwp3BmYAPwBGe8nEogI3KatoT76DLFmyhIMOOojRo0czcuRIHnjg\n", "26Gkiy1shKu44qt2RWeKjur1Q+FOwD3AHtg4NEVr4HM6T15EKoG3gV8ZY/4gIhOAqwEDXGOMqQnq\n", "VQHXtLU8m/ihcFbO4yUTGdW/6aabOOSQQ7jggguycn1FUfJDMA/+j8AWwKFeMlGWqdLa6q6ZArwE\n", "IDYE4jSgChDgSaAmKJ/e1vIsagAyN87ZYvLkyZx11lksWbKEo446irFjxxakHUrLuBJn3RWdKTqo\n", "91pgL6CqFAx8zuLJi0g34EDsiDPAAGCRMabWGLMOWCwi/dtRXhYMGzaMl156iUmTJnHzzTdz3nnn\n", "FbpJiqK0gh8KXwQcBfzASybWFLo9uaQtPfnzgN8B2wbbWwGrROQGbM98VVBWkWH54izqKBj19fVU\n", "VFQwcuRIOnfuzPnnn1/oJilN4Erv1hWdKdqj1w+FjwDOB0Z6ycRnWW9UjsjJPHkR6QWMMsY8kSoC\n", "Psf6sC4PPr2DskzLW7ru2PTfi3la2KxZsxg+fDijRo3ikksu4Xe/+90mdU4//fSGHK6lwMqVK7dI\n", "/d7476/bul3K251Exq41G2cAZ3vJxLJCtyfb202SShbd1Ac7pegpYBbwf8B8YE9sTIeuQHfg2aBu\n", "RSblzX3mzJljmip//fXX5xolLwR/6xafjVL7AGML3QbVWXi9syoHjZlVOWjhrMpBFYVue7a1Nmc7\n", "W3TXGGMeAx4L3hg/ATYzxrwuItOBOdjZMtOCuvUiMq2t5YqiKAXgQuA3xZTRKde0eTGUMebutN9n\n", "A7ObqPMUtuffpnJFyRfGEV+1KzpTZKLXD4UHACOA43LWoBzS3ntbMouhTPB9Rck9xhhnejmKG/ih\n", "8HbYGYLXesnE2kK3J5+UjJGvq6tbq3Y+9xhjqKurW1fodmSbYh68zyau6EzRFr1+KLwnMBfwvWTi\n", "xly3KVe0996WTOya2traG5cvXz50xx133KbQbSlnli9f/um6detmFroditIR/FA4BBwNnAX0A2Je\n", "MhEvbKsKQ8kY+eHDh8+ZP3/+b7/44ovxItKp0O0pR4wxG5PJZM2IESOyviK50Ljiq3ZFZwpjzFw/\n", "FB4I3AF0S9u1E/A6cCPwLy+Z2FCI9mWT9t7bkjHyAEOHDo0BsUK3Q1GU4sAPhXsC/8Qa+X+n7frc\n", "SyaWFKRRRUZJGflcIRrvo+xxRbMrOsEGGPvCbHhkS+nyjJdM/LrQ7ck1IjL28imz5mMXlG7C+El9\n", "mjxOjbyiKKXKxSEqtsHG1iprohFfJh988YHAfcD6TI5VI4+bfsxCtyHfuKLZFZ1+KDwW+FkP6bRf\n", "KUSQ7AjRiD8AuHnALkO2Aw6Kxb1XmqpXXV3d5PRDNfKKopQUgR/+b9g0fUsL3Z5cEI34g4CxwFDg\n", "SOA64LexuJfxALIaedzyY4J7esEdzY7o/CnwrJdMzC4XvdGIvxNwGPAdYCKwHTb3xivAVbG4t1xE\n", "xsbi3txMz61GXlGUksEPhSuBi4AjCt2WbBGN+BOBvwBPAO8AlwL/jsW9jdk4vxp53PFjpnBNL7ij\n", "2QGdxwNvecnEy1C6eqMRfxdgAnbQeBRwbGu9dCfmySuK4i6BL/4yoHSSM6QRjfjbYVOpHg/0wkbm\n", "fQw4Oxb3Ps3VddXI44wfswHX9II7mstVpx8K9wAexS54aliRXax6oxF/BDb7VBfsStydge0BHzgG\n", "eDUW9zIKBNherWrkFUUpSvxQuDNwPbALMBD4LxDxkomijVQYjfg9sTNhjgKmA//DzmtfCrwXi3tf\n", "57tNauQpXb9ee3FNL7ijuVx0+qGwADcD3wVuAWqBJxon+ygmvdGIPxK4Cxvxco9Y3Psym+dXn7yi\n", "KOXERcBwYJSXTKwudGNaIhrxNweuxUa9PDMW9x4ucJO+hRp5itevlytc0wvuaC4HnX4o3B87wDqk\n", "NQOfL73RiD8U+B3Wr96YXsA9wG7Z7r2noz55RVHKhV8Dvy6G1azRiB8GzsCmDLwIeLqJarW5nB3T\n", "UdTIU1x+vXzgml5wR3Op6/RD4SpgT+DYttTPVG804u+J/ZZwQBuqd8Zmz5sF7BWLeysyuVa2UZ+8\n", "oigljR8Kbw7EgZ95yURtJsdGI35frA9/WPAJA9JE1VrgBuBKoC0rSpdma+VpoVAjT3n4MTPBNb3g\n", "juZS1emHwhXA3cBTXjLxYGv1oxF/Z6Dbi2/M/sG+exw4HhgBPAc8D1wBvAHUNXHoV+0J8lUMqE9e\n", "UZRS5nJgK2ByS5WCsLvXAWOAz/cYMBJsir8fx+Je2SWgzwZq5Cl9P2amuKYX3NFcijqD2PBnA/t4\n", "yUSTCTGiEV+w0SevxQ7MnuCaUVefvKIoJYcfCvcB/gqc5CUTHzVVJxrxK7ALooYDI2Jxb1Eem1jy\n", "VBS6AcWAiIwtdBvyiWt6wR3NpaTTD4W/g41Hc7eXTMxuoWoM+B6wf2MDX0p6O0p7tbZq5EXklyJS\n", "IyJPiUi/oKxKRJ4RkadFZHxa3YzKFUVxEz8UnoCNRXMPEG2uXjTinwT8GDg6Fve+ylPzyopW3TXG\n", "mCsARGQEcKmIRLCBd6qwU5SeBGpERDIpz76U9lOKfsyO4JpecEdzKej0Q+F9sNEYJ3nJxLzm6kUj\n", "/nHYAGXjY3Hvs6bqlILebJEPn/z+wEJgALDIGFMLICKLRaQ/9ltBm8uNMYvb02BFUUoXPxTeGXgY\n", "OCNl4INB1QlAv7SqOwMnA1WxuPdWvttZTrTJyIvIPKAvMBIbFW6ViNyA7Zmvwk59qsiwvGiMfKnO\n", "LW4vrukFdzQXs04/FO6HTZRxfWoufDTiHwDMALYE/pNWvQ4YG4t7LdqJYtabbXI6T94YM0ZEhmIX\n", "K5wLbIHNziLYFWqfY415JuVtEpMabMjx9t7Y8KD5ul6ht13T20CxtCdX28DeIlI07Ultz6octAKY\n", "/Ub91w9cW7fs9Tci/tbA9XUbNxyx5MM3bu//ne9HY3FvY7noLeD93wQxpm3x90VkZ+w0pkOxQXom\n", "YA34bGPMSBGpyKS8uetUV1ebqqqqppYjK4pSgvih8N7A48DPvWTirqD3fj/wd+DqWNwr6lDCpUJz\n", "trPVnryI3AtsDawDzjHG1IvINOzXLgNMA8i0XFGU8scPhYdgDfzZb5x61aPRiH8JcDFwerHFXS9X\n", "2jK75pgmyp4CnupoebHgkl8P3NML7mguJp1BwLG/14W6XbTw+KnbY8fhngeGt+ZrbyvFpDfX5NQn\n", "ryiKkglB+r74ui23fffdo86ciTXuR8Ti3ksFbppzqJHHrbm24J5ecEdzseg0cOLGrj2q3jv0lCRw\n", "aK6Me7HozQcau0ZRlIITjfi9u69YevXOlV3P+WDCMYtMl8qJsbjXZEwaJT9o7Brcin8B7ukFdzQX\n", "Umc04nejfuO/tv/PI8ev33yrP6zrs+PgXBt4V+4rtF+r9uQVRekw0YhfgTF37zT3H9uEVn32qsAF\n", "sbhXX+h2KdqTB9zy64F7esEdzQXUOWnbl2oO6LUksV5gspdM5MXAu3JfQX3yiqIUkG3nP3Xllgtf\n", "6ipwkJdMrCx0e5Rv0J48bvn1wD294I7mfOv0Q+GKv/bY6+aeS9/Z7asdvju2ucQfucKV+wo5jCev\n", "KIrSFMFc+D/Ud6k8eMkhJz4+ZdE/3ix0m5RNUXcNbvn1wD294I7mfOkMDPzNwF6Lj44s3Rjqdnc+\n", "rtsYV+4rtF+r9uQVRWkP5wAjlkz0ztkY6rYP8EihG6Q0jRp53PLrgXt6wR3NudQZjfh9oxG/X3zQ\n", "pMONyNUfTDh21lc7DXgCmBqLe2tzdd2WcOW+gs6TVxQlR0Rt7PcZwFEVG5Krun/64Q7LRx7x5Zqd\n", "B/4ImBiLe68WuIlKC6iRxy2/HrinF9zRnC2d0YjfBzgPGAYMAf4M7LzbX66fAuw/dc51k7JxnY7i\n", "yn0FnSevKEoWiEb8zYALgo8P/Bp4ORb3PvFD4Z7YWPDjC9hEJUPUyONWTGpwTy+4o7kjOqMR/0xs\n", "Up9/A/vH4t67jaqcA1R7yUTRTJV05b6CxpNXFKUDRCP+BcAUrI99QeP9fig8GLgIGJXvtikdQ2fX\n", "4JZfD9zTC+5obo/OaMQ/EWvAD2zGwB8N1ADne8nEwg43Mou4cl9BffKKorSDaMT/CXAdMCEW95Y2\n", "3u+HwpOA3wIHe8mEZnUqQbQnj1tzbcE9veCO5kx0RiP+T4EYMD4W995qvN8PhUcDfwAOLVYD78p9\n", "BZ0nryhKBkQj/nlYF824ppJqBzNp7gc8L5nQefAljBp53PLrgXt6wR3NzemMRvwQcAYQBnoD+wFj\n", "YnHvg2ZOdQbwby+ZqM5FO7OFK/cVNHaNoijNEI34hwEJ4EDgTeBpYGRzBt4PhSuBC4Hr89ZIJWdo\n", "Tx635tqCe3rBHc3pOoPe+6+AI4DTYnGvpo2nOQ54y0smXslNK7OHK/cVdJ68oigB0YjfGWuorwJe\n", "A4bE4t6XbTnWD4V3Bq4EzsxdC5V8okYet/x64J5ecENzNOJ3unzKrL5Yl8wnwOmxuDe3pWOCuPC7\n", "ApsBOwK3ATcARe2LT+HCfU2Rs3nyIvJH4HuAAKcYY94XkSrgGsAA1xhjaoK6GZUritJxohG/JxDB\n", "rlhdAZwNVMfinmnpOD8U/kVw3DrgC6AO+KmXTDya2xYr+aRVI2+MmQIgIuOAqSJyNjAdqMIa/ieB\n", "GhGRTMqzL6X9uOTXA/f0Qvlqjkb8XbAJO94Ejrn2j8f1aItOPxQehHXJ7OMlE83NsCl6yvW+NkU+\n", "fPJrgPXAAGCRMaY2uPBiEemPnanT5nJjzCZzcxVFaZlgMHUSMBHbaZqIXbF6cyzumWv/eNzYtp4K\n", "+E0pG3ilbWRi5E/DLm/eClglIjdgH7JVQVlFhuXNGvn0N1ZqlVeut9OvnY/rFXrbNb2lvn35lFlP\n", "A6dv3Fh3Xe36r9/t0W3z24Dkcy8/9MLc/977ljGmwTXT2v/P+Iotdji983YHA2cXi772brdFb7ls\n", "G2PmtuXv0RhJezaaRUQOA/obY34jIgOBy7C+PAHiwC+xxrzN5c315Kurq01VVZW02ihFcYRoxN8K\n", "+AcQAs6Ixb3X23suPxTeCrgHeNZLJqZlqYlKEdCc7Wx1MZSI7AOMNcb8JihajHXZgDXaKddLpuVF\n", "g0vxL8A9vVC6mqMRvwtwH/AqMKI1A9+STj8UHo+dUrkA6+IpeUr1vraHXMauuR9YJiL/Bl43xpwv\n", "ItOBOdjZMtMAjDH1IjKtreWKorSJmUASuCgW9za29yR+KDwBmIWNRVMS0yOV7NAmd00+UXeNokA0\n", "4gvwC+CH2B78yvaeyw+FRwAPAkd7ycSzWWqiUmQ0Zzt1MZSiFBHRiD8R2BoYiw0iNraDBr4SuBM4\n", "XQ28m2iAMtzy64F7eqE0NEcj/uHAn7GxZuqxYYA/zeQcTeiMAO94ycTDWWlkkVEK9zVb5NInryhK\n", "jolG/N7YmWcntBaKoK34ofCW2PnwY7NxPqU0USOPW/EvwD29ULyaoxH/UKAvcDjwUEcNvDFmrh8K\n", "dweOBc4H7vOSiU2yPpULxXpfc0HOYtcoipJ9ohG/E3bmzCHAM8AS4IqOnNMPhbcHLgZ+AjwHXArM\n", "7lBDlZJHjTxuxb8A9/RCcWmORvxeWN/7VsABbQ0D3BJ+KPwD4I5l9cl5O1WE9vWSiSUdPWcpUEz3\n", "NdfkI3aaSiLUAAAcbklEQVSNoigZEvjad00r2hL4PTZI33GxuJds77mDMMHjgbOAocDkS+ve72SM\n", "WdL+Fivlhhp53PLrgXt6oTCag2Biz2ED+9UFxfXAtFjc+1sWLnEhdvbMTOBkL5lY42XhpKWES8+y\n", "+uQVpfi4BHgbOKq12O6Z4ofC3wUuB/b3kol3s3lupbzQefK4NdcW3NML+dccjfgDsLNbzs2BgRfg\n", "VuC6xgbetXvrkt72alUjryhZJghJcDNwXSzuLc3BJY4BegO/aa2ioqi7Brf8euCeXsi75sOBnbH5\n", "F7KKHwp3wYbwPsNLJuoa73ft3rqkV33yilIERCN+V+BGYEos7m3IwSVOA97zkomiSqGpFC/qrsEt\n", "vx64pxfyqvkCYEEs7j2V7RP7oXBP4CrsgGuTuHZvXdKrsWsUpcBEI35P4GfA6Gyf2w+Fe2ATdj/o\n", "JRMvZvv8SvmiPXnc8uuBe3ohb5rPBubE4l4imyf1Q+FtgIeB94FzW6rr2r11Sa/65BWlgEQj/mbY\n", "xUnjsnVOPxQOBee8GBsT/lIvmajP1vkVN9CePG759cA9vZBbzUGwsV8Dc2NxLysRH/1QeBzwOjAM\n", "GOYlExd7yUSr6f9cu7cu6VWfvKIUgCDYmA90BSZn45x+KDw2OOeZXjLxUDbOqbiL9uRxy68H7umF\n", "3GiORvzuwGPAcuDgWNz7oqPn9EPh3sBd2Fg0GRt41+6tS3rVJ68oeSQa8bsA9wPvYefEd9hXHoQr\n", "iAMPe8nEEx09n6KA9uQBt/x64J5eyInmmYAAp2XRwN8M9MMGNmsXrt1bl/SqT15R8kQ04v8QG7rg\n", "+9lY1RrMgf8tsBtwoJdMrOvoORUlhfbkccuvB+7phexpjkb8nYE/AsfG4t7Kjp7PD4WPARYC3YGD\n", "vGRiVUfO59q9dUmv+uQVJT9cBdwWi3svdPREfih8CnA18GMvmXi+wy1TlCZotScvIiNF5L8i8qu0\n", "sioReUZEnhaR8e0tLxZc8uuBe3ohO5qjEX8n4GhsALIO4YfChwH/Dzg4mwbetXvrkt5c+uRDwLXA\n", "8OBCAkwHqrADT08CNZmWt6exilJgLgZuj8W9zztyEj8U3h+byPswL5lYmJWWKUoztGrkjTHVIjIm\n", "rWgAsMgYUwsgIotFpD/2W0Gby40xi7Mtpr245NcD9/RCxzVHI/52wInA7h05jx8KDwT+iZ0H32GX\n", "T2Ncu7cu6c2nT34rYJWI3IDtma8KyioyLC8aI68oLRGN+FsAjwI3xeLex+05hx8KDwLOATzgEi+Z\n", "eDSLTVSUZmmPkf8c2AKbJT61eONzrDHPpLxZRGRs6q2V8kPleHtvY8xv8ni9Qm+7ppdUWVvrXz5l\n", "1v8BkxYvfXXwDtv2P6xbaLM5wLRMr18pFeMu77zTj79X0X0S8Ieb65ZHnq9f8z8vaFMO9F4AvFro\n", "v3cet53R2/hZbqp+U4gxrecYDtw1hxljpopIBfA0MAFrwGcbY0ZmWt7ctaqrq01VVZW02qgskv5S\n", "cQHX9EJmmqMRvwK4B9gBWAS8DVyfaUJuPxTeCRuioAtwopdMLMnk+Pbg2r11SW9rWpuzna325EXk\n", "UuAQYFsR6WWMOVNEpgNzAANMAzDG1IvItLaWFxOuPCQpXNMLbdccJOGeAWwLjI/FvWSm1wpWrx4H\n", "3ADcBFzXlgiS2cC1e+uS3pz55I0x1wPXNyqbDcxuou5TwCZpz5orV5RiIhrxtwf+AOxC+w383tjw\n", "BD2ws2fmZ7WRipIhuuIVt+bagnt6oXXN0Yi/G/AKsADYP9OIkn4ovI0fCv8JeAL4KzC0EAbetXvr\n", "kt5czpNXlLImmD3zT+CSWNy7K9Pj/VC4P/ab7cPAIC+Z6HC4A0XJFmrkccuvB+7pheY1RyN+Z+Av\n", "wOxMDXzge5+AHVy92ksmbutoOzuKa/fWJb0au0ZRMiQa8SuBWdjZLxe15Rg/FB6KHVQVYASwGXCG\n", "l0w8kqt2KkpHUJ88bvn1wD29sKnmIKvTP7H/A0fG4t76lo73Q2HxQ+FzsYuiPgeWYGeK7V5MBt61\n", "e+uSXvXJK0obCfKy/gtYCpwSi3t1LdX3Q+GRwHXYPK7DvGTi3dy3UlGygxp53PLrgXt6wWoOFjn9\n", "APgl8DxwdktZnfxQuDs24uQhwBXA3/I13729uHZvXdKrPnlFaYFoxO8BzMW6Z64H7mluBasfCm8N\n", "HImNOvkisIeXTKzOU1MVJauokcetpdHgnl6AL1d/cn/vXtsmgJOaMu5+KLwZNrfqgdg0fE9iA4n9\n", "K78t7Riu3VuX9LZXqxp5peyJRvwTenTbfA9gt2YM/I5YH30CuAx43ksmavPcTEXJCWrkccuvB27p\n", "jUb8QcCNlV26Vu1xx/Sv/Tum/wiYio2MmqIPNkvTr71kIqMgZMWGS/cW3NKrPnlFaUQwTfJ+4PI9\n", "7pheCTyHzXR2Fd/OZ/C1l0wsK0ATFSXnqJHHLb8elJ/eaMQ/BTi4cXnoi08Gbf7+m2u3ee3ZsRtM\n", "/fVdpOIi4G4vmWh2Rk0pM3RGzei1Hy0+o/v2/ZcWui35Yu1Hi3d2RW9rWq8b0nS5GnmlpIlG/BOA\n", "a7C+9IbpjX2fe2y/3m+/cjDwoMCLv6hb6r9Tv65oFi1li6EzagQIY2cCTTT1G+cAXxW2Vfmjvm7D\n", "OhzR216tauRxy68Hpak3iPM+EUhPONMNm3d1fCzuvQXgh8JbABcAxwBjvWTiFbA590qJoTNq+mMX\n", "X22Fnc45GujURNXtgHVYt9Rub/02siZvjSwKxhe6AXmkZa3V1dWxpsrVyCsFJxrxNwfOBipbqDYO\n", "m8jjXr7psa8BDo7FvbeCSJDnA8cDjwHDvWSipL7GB73yidiFVwOw4RPWYvWchzXmjfli/tTxH+St\n", "kUrJoUae8vNRt0Yx6Y1G/BA2hswX2FjuzXErcG/jEAR+KNzfv2P6fdiXwG3AYC+ZWN744GLS3Jih\n", "M2o6Y+fnXwlsDsSAe+dPHd9iuIWmKGaducAlvTpPXikZ0lwvPbA978+AY2Nxr80hA/xQuC8QBY4F\n", "ZgIne8nE2hw0NycMnVHTBftimgQcBXyA1XH//Knjizp0glJaqJGnNH3UHaGQeoP4MTdh47AngI+B\n", "i1oz8H4ovAtwFjAUG+Z3T+BOYDcvmfhfa9fNt+ahM2p6ArsHn15Yf/q+QBV2jr5gQyb8Hdh//tTx\n", "72fjuvosly86T14peqIRvzc2SfZu2BR7q1o7JjDuv8AGFvszNrhYPbDQSyY+zl1r287QGTV7AOcA\n", "g7HGuy92gVUCeBPrigKbPWoqsAIw7XHHKEqmqJHHLb8e5Edv4JI5ADga6IntvR6EDR9wUCzutTgL\n", "xA+FB2CnBU4Cfgf060iQsPZqHjqjphOwI9Z4h4EI357hI9gB0T9ic7sa4H/Ae4Vwu+izXL6oT17J\n", "OYHh7g30A3YNPv3SfnZNq94VOzvEB94F1gPnxeJeq64VPxQ+DzsIGcfmTP00izJaZeiMmi2w3xyO\n", "wLqVksAGbA/8T8DpQHovfLX2ypViRY08bvn1oGW9wWyX7/BtA57+uwDvAe8HP18HHgq2v0471Ubg\n", "4+bC+TZFkDP1IqzvfV8vmcja1MDGmofOqAkBh2PT96XojTXu+2PDEj8MTJ0/dXzJhDzQZ7l8UZ+8\n", "owS9677YqXehDD/dgW2w/uM+wA7Bz2V8Y8TfA+an/f5lJoa7OQKDPhy7aKlvcO3vAZ9gFzFl1bAO\n", "nVFTiQ19sAV2gdH5WD3pc+nXAX8Ajpo/dfzXm5xEUUoQNfKUhl8vGvE7YXvTg7C+4d3Sfq4DVmLd\n", "Cq1+Pv1iWZ9tttxpMXaJ9HtYH/InWHfEh62lw+sofii8B3AHtud8B/AsdpbNIuDTbESCDBYWnQr0\n", "B7rV160/oaJz5VvY3KzrgePnTx3/n45ep9gohWc5m7ikV33yJUTQ++6GHZDsDnTBrvZM//TFGvHU\n", "ZwDWGCeCz3NY/3AiFve+IAMK8Y/hh8Kpbwv7Y/OlXgrcmYtgYcH0xTuAXYB/ACuXP3nn1BVz7/lz\n", "tq+lKMVO3oy8iFRhA0kZ4BpjTE2+rt0aQf5Pwfpne2MX6XRt4hPCGufNsAY65fao5NtukK5pv3cL\n", "ztczOG6zYDuJ7UmvC35f3+jzKdaYP4xNV/d2LO5lJRBTvgx8MP3xEOyCp92xvfUVwAQvmXito+cP\n", "Bkh3wo4T7IqdQ5/6PACMmj91vE3+MdWNGCeu9GpTuKS3qH3yIiLAdOxCEMGmVsu6kY9G/G7YHu+u\n", "WB916tMr7WcvrJHtjjXAqR51b6xx/QIbEyUJ1KZ9kmk/1/CNgV4VHJdsVCf9Z6p+6vN1Jqs7SwU/\n", "FN4OOBQbTGs49m89G/uSesJLJjZk4zpDZ9SMxg7OHgx8iO04fIgdO7gZmD9/6vgV2biWopQ6+erJ\n", "DwAWGWNqAURksYj0N8YsbqpydNJ1V4hUdEWkG1R0F5HuSEVXge6IdBOkGyJBb1u6i0gPkO6dhQrq\n", "65dj6j8ymK9Mvfka6r8yxnyFqV9pTP1yTP06U79xrTFmvTEbk6a+fv2by17rN7DPrv9n6jdmxQg1\n", "QY/gs22q4MIJz+foUq3zytJX9v7+zt9/dUNlqHLN5r23ru3WfZv1oa59xJgtQrVru4RqaytDtesq\n", "K9fXdumSTFZWJmsru2xYX9l5/frKLnXrKztv2FDZecOGLp3rNlR2qqur7FS3obLzhg2hUOcuPT/b\n", "tu/ij3fq9/4H/cOz3x+w26emUycDDAGG3DCjw+91wYbi2x74DXDW/Knj2+SqcsV364rOFC7pba9W\n", "MSb32c5EZBjwY2yPS4Lie4wxLzSuW11dXdLp1xRFUQpFVVWVNC7LV0/+c+zUtQjWyMeDsk1oqpGK\n", "oihK+6jI03UWY102YI18s64aRVEUJXvkpSdvjKkXkWnAHKzLZlo+rqsoiuI6efHJK4qiKIUhX+4a\n", "RVEUpQCokVcURSljnDLyIrJ5oduQT0SkIvjpzIwlVzS79iyDO5qzrdMJIy+We4CrRWSrVFmBm5VT\n", "ROQ84EwRCRlHBl5c0Ozos+yE5lzpLHsjLyIVwT/8Kuwy+7EA5WoE0piIXR06rNANySNlrdnFZ9kV\n", "zbnUWdZGXkQkmL4ZwkZ6fBXYQUTCqf0FbWAOCHoDXbHx4J8B9hSR7VP7Ctq4HOGCZlefZRc051pn\n", "2Rl5ERktIieCfQuKSCdjTBL7h1uNDRq2t4j0LofegIh0F5F9UtvGUovtEXQKivdO7StAE7OOK5pd\n", "e5bBHc351FlWRl5E+gGXAxNFZEJQbESkC7AdcC+wHJsV6KLCtDJ7iMgOwGPAZSIyOCjrLCKdsQbv\n", "FuBt4BQROSfYX9K9H1c0u/Ysgzua862z3JKGbABuwL68JojIc8aYtUC9iKzGJpBYA3yA/SOWOp2B\n", "24B64EhggTGmDiAYuLkcm95vZ2BLKO2ebYArml17lsEdzXnVWdJGXkSmAHsArxtjbjXGfAh8KCLf\n", "AfYFJgF3Bz2514C12OBoPfh20umSQEQGAKOwel/ExlB/DBt6d08ROdAYMzuo/jJwGPBHbNz7TwvQ\n", "5A7jimbXnmVwR3PBdRpjSvKDzf5zPzY13p3AuUCvYF8IO9Pi/6XKGh0rhW5/O/Tujk2K8TNsIo6j\n", "gE7Bvh7AZOC6tPqb6C61jyuaXXuWXdJcDDpL2Se/P/aregKbQGIXYK+0AYx/Y9+Is8UGR2vABH/B\n", "EmMocLcxZiZwJTbz0p4AxpivgWrgcxG5VUTONsashm8WB5Uormh27VkGdzQXXGfJ/DOIyGUicpGI\n", "HBAUzQb6icgpwAnYNHvjjDGptHoTsWno7jfGXJ3/FncMERkmIlUisk1Q9D4wLBhsnIhNWzg07ZC+\n", "QfmWpKVWNMZkPVF2rnBFs2vPMrijuRh1Fn0UShHZFvgtNvfqXOCH2ITgHwAnAwOBK40xX4vIc8Bk\n", "Y8xyEdkd+NgY06b0cMWCiHTD6hsGPA3sgHVXJIGzsQOKdwOfALOAKmNMrYgcAqw3xlQXot0dwRXN\n", "rj3L4I7mYtZZ9AOvxphPRORyY8x70PDH7Iw1AM9gVzjuJiIfA29g35QYY94sUJM7ynrgv8aYSwFE\n", "5FKgP3ZQ8QWsb+81Y0xSRF4HtgY+NMY8njpB8FWwlBKFO6HZwWfZGc3FrLMk3DWpP1zAIKDSWN4E\n", "bgeOw84tfdYY02RawVJARMQYs9EY80CwXYlN/v2FMabOGDMPeAuIi8gLWF/ex43PU+zGLh3XNLvy\n", "LKfjiuZi1Vn0PfkUYmM71ANvAu8EZWKMeVJE5mG/the1L7Y10gdaRKSzMWZ98ObvlFZnhojsBPQ0\n", "xrxViHZmExc1u/AsN8YVzcWosyR68vCtwbStgUNF5K8EgaiMMbXl8ICkY4ypC3q1G4DVIjJVRIYE\n", "+5YZY94SS8ncw9ZwRXO5Pcsira8oLjfNzVGMOgs68Coi/bF/jPlt+bod1K/BDmzcaYypafmI4iPt\n", "Td+WulsAj2D9d/OAWCn+M7igWUR6ALXpz3HQg2vyH6wcnuVMKWXNjZ/hkrq3pnCLBI4AlgG3Artl\n", "cNxphWpzFjRXpP2+J9CjlfrbYhdS7FDotrdTr5C2oAPYvA3HlKRmbIiFE4Lfx7fxmJJ/lrEu3wpg\n", "Svq9LlPN3YBjSu3e5r0nn3ojis1+Ugl4wGfAv4wxa1o7Ll/tzBUisht21ds+wE+MMQubqde451BB\n", "EHAxPy3NHiKyM3ZVnwC3m2amPJayZhHpiQ2MtgQbW+cvxpgNzdQti2c5HRH5F3CbMebhZvaXtGYR\n", "OR44A7sAL2aa8TwUo868D7ym/gDGmFUAIvIGMAZ4D/i/1o4rZcQu6vkNdq73/4BmR9gbG7tS0d+E\n", "oT4FOAmYDnQFThaR/xljFjQ+tlQ0Bz5oadS+g4Cl2DnPd7R0fLHqaonGmsVG/bwQG2biOuCvBNMC\n", "m6JUNDd1b8VGh9wHOMMYs6il44tRZ14GsESkU+qniGwuImek9hnrr1qFnUPaqS2DOMWONMozKiJ7\n", "B7s6YWOurAUmBD9bpRgfnOZIMwJdgqLFwHeMMTXGmMewhnB8UKfZe13Mmo2lXkR2EpGjguIHjDH7\n", "A5uJyEiA4NtqSYY6Tiflfw40by0i2xkb+fOfwAEi8gNsR61bUL9kB8bTdG4ZjA8BdMf+v36Zqici\n", "vYKfRX9v83IzjDEbg57ZRmwIzZ+JSPry9CeB7wJ3AZeLzZBSsqR9WzFiMxQ9KCJ9jTGvAlcDBwIH\n", "AwNE5EoR6V8KD0tTpF7gaduHiM1TeV5gDJ4BHheRXwRV3gd6Q2nFIEl7cad+XoFdhZsyBKmX2p+A\n", "X4jIhcANItKjlHSmEJEKEfkeNDzHIiK/BB4CbhaRo4wx7wCXYt2uw4CDivkbWGukdcqux77AfiEi\n", "YwKvw1+A60Skq4hcjo0a2bMU7m1OjHzQw4kFBi7FPSJyYvAATAeuSO0wdrHAm8C7wO+NDdxTMohI\n", "HxEZEfye+tZyvYjsa4z5CBt9LqX3v8B3gJlAFDu76IzUP1LeG99ORKSfiFwJjEgr2wG7hPvn2Lgy\n", "twa7pmGTePwe+BE2VHBJICI/FZE7gEvErqqtF5EtsaGODzPG3AlgjFkf/LwPeBBr9C82NpBaKTIG\n", "uDNwy4ANtLW9MWYEcDMwQkTCxphFxph/YjU/W6C2tgsR+bGIXCEih0LDy+y7WBfUaMBgk2pvZoyZ\n", "ge3J34p9tk9taQyxqMjViC42HrIHhILtKqAmbf/jwMlp2xW5aksuP0BPbJD/t4Bd+WbWwXnYr/Bg\n", "BxyfA0YE2x72ZQZwFnBNoXVkqHl37MvqvEblo4EnAn012Pgdqb/HucDjhW57hjrHBfd2ADZG/aXY\n", "KIJh4IVGdbdI+71Un+Xewf9lONi+Abgg+L0KOzkiVfdPwHFp250L3f4MdHYLnt/7sK7Dh7GxkiqB\n", "vbDjg3dis4ztAHRLO7Z7oduf6SfrPfk0f9ztwYOxU+DTqwaWisgFwf6F2F4dUNw+2JYw9m3+IvbB\n", "OQU4Pii/CeghIoca+3S8hA1YBPAvoJOIzAUGY/+ZSokh2NkjN8E3316MMU9jszJ5xpjx2J7Pz4N9\n", "NwPbi8iYwjS5XewDvGmsW+Jq7CKtsdhxhvkicmngo74JiKUOKuFn+UtgM+AhETkd+1weITYOy8vA\n", "IhE5KahegZ0Vlzq2Lt/tbS/GmHVYz8HLxo4Jno39ZjbRGPMaVmtnY8yZwKnA9WnHtmkcrZjIupE3\n", "3/ijX8ROJzsU++CAjQl+dPBPMdsYc3i2r59P0twr87A9vdnAj8VmggE7bTAa+PDeIsjXaIz5Cvg9\n", "cJYxJmKCOOglxGvA4SJyiYj8DTuOMjnYdyXwpYjcDZyD7RmmOAf4KL9N7RBPY1/GWxtjPsEmWd4Z\n", "2Aj8CvtC+zPwkTHm7MI1M6ucie2QHIXNZtQV22P/EvgbNi9pDTZA3OzmT1P0nA/8UER2M8Yswyan\n", "GRXsuwh4T0QexXpxzitUI7NBTubJp0bjxcYbmYl1R7wV7NsLWGZKJIRoWwh8egdjs6x/H/tSuw37\n", "dfBAYKWxA5BFPTUwE4LeHVj/5Grs6r7djTFrglkJ/YwxrwR1m10dWMyISF9sDPDFxpgHg7KngSlp\n", "z3O3oGdYFgTfxE/Gxu3/BXAP9tvmZGPMHBHpDWwswY7JJohN9D7SGHOs2BXLNcAPjR1HIxg0L9Ux\n", "lQZyMvCa+ocO3pDLSBucM8a8Vk4GPqAGO0/6a2PMD7A9ge8A+xtj/pVm4BvPrS5ZjDGfBJ9XjY2+\n", "9zDQK9i3Ms3AV5SigQcwxnwMvA4cKCIHBAOuH2Dzx6bqlI2Bh4Zv4o8Bm2M7Kz/CPt+RYP+X5WDg\n", "AYwxvwO2FBsfaRtgbsrAB/tL3sBDDhdDiUhX4FrsQMa9ubpOMWCMWScid2IHbABeAV4xjVbFlaqx\n", "awkROQiYio2R/Unj/aX+UjM2emAldrXjIOyqzvcL3KycYoxZISKPYFd2TiZt7KwM+Q12TO0pvpkN\n", "VlbkcsVrZ2wv6DJTYlMi20klNt9oRWPjXubsClxujPlvoRuSK4wx/wrcNF+X0gBjB/knkExNpCj1\n", "l3VzGGMeE5GfAn8tVztV9On/SoVgYURpzJvNEeUy3qAo5YQa+SxTqoOMHcFFzYpSKqiRVxRFKWNK\n", "NpCQoiiK0jpq5BVFUcoYNfKKoihljBp5RVGUMkaNvKIEiEibp8CKyPnBgj9FKWrUyCvKN2Qy1ewC\n", "bMYgRSlq1MgrziIiQ0TkJRH5d5D1KJUZqKeI/FlEZovIQhGJpR3TVUSeAbYFHhGRp0Vkx0bnrBGR\n", "uSLyDxHZKu/CFCUNnSevOIuILADONcbMFZuXtcYYUxns29IY84WIdMPGj983CFiWOvY9YJ8gBG+q\n", "rAs2ZO0hxpiPReRHwA+MMaflU5eipJPL2DWKUrQE4ZB7GWPmAhhjnhWR2rQqG4IQ0rsAtcB2wMfp\n", "pwg+6QzCxpv/W5BrQICyjIeilA5q5BVXaTaInIjsiU3cHMcmCvmMTQ16U9QB7wdZsRSlKFCfvOIk\n", "QTC5T9ISsB/GNwOpVcAjxpg/YhOi9GNTI78O65dPzxC2CAiJyA9TlUopObtSnqhPXnGWIEvZ7Vh3\n", "zFxsYvJeQUaof2J7+wuxyVD+bIx5NO3Y87DJyZcA9xhjbg/KvwvcjE26UQ/cGySnUJSCoEZeURSl\n", "jFF3jaIoShmjRl5RFKWMUSOvKIpSxqiRVxRFKWPUyCuKopQxauQVRVHKGDXyiqIoZcz/B+fKZMeQ\n", "yZX+AAAAAElFTkSuQmCC\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x1102783c8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "daily_cases.unstack().T.fillna(0).cumsum().plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resampling\n", "\n", "An alternative to filling days without case reports with zeros is to aggregate the data at a coarser time scale. New cases are often reported by week; we can use the `resample` method to summarize the data into weekly values." ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>country</th>\n", " <th>guinea</th>\n", " <th>liberia</th>\n", " <th>sl</th>\n", " </tr>\n", " <tr>\n", " <th>date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2014-06-22</th>\n", " <td>NaN</td>\n", " <td>20</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-06-29</th>\n", " <td>NaN</td>\n", " <td>28</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-07-06</th>\n", " <td>NaN</td>\n", " <td>12</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-07-13</th>\n", " <td>NaN</td>\n", " <td>18</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-07-20</th>\n", " <td>NaN</td>\n", " <td>15</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-07-27</th>\n", " <td>NaN</td>\n", " <td>56</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-08-03</th>\n", " <td>NaN</td>\n", " <td>11</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-08-10</th>\n", " <td>11</td>\n", " <td>10</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014-08-17</th>\n", " <td>NaN</td>\n", " <td>106</td>\n", " <td>92</td>\n", " </tr>\n", " <tr>\n", " <th>2014-08-24</th>\n", " <td>NaN</td>\n", " <td>122</td>\n", " <td>199</td>\n", " </tr>\n", " <tr>\n", " <th>2014-08-31</th>\n", " <td>120</td>\n", " <td>94</td>\n", " <td>189</td>\n", " </tr>\n", " <tr>\n", " <th>2014-09-07</th>\n", " <td>73</td>\n", " <td>402</td>\n", " <td>141</td>\n", " </tr>\n", " <tr>\n", " <th>2014-09-14</th>\n", " <td>83</td>\n", " <td>436</td>\n", " <td>216</td>\n", " </tr>\n", " <tr>\n", " <th>2014-09-21</th>\n", " <td>55</td>\n", " <td>404</td>\n", " <td>301</td>\n", " </tr>\n", " <tr>\n", " <th>2014-09-28</th>\n", " <td>95</td>\n", " <td>275</td>\n", " <td>408</td>\n", " </tr>\n", " <tr>\n", " <th>2014-10-05</th>\n", " <td>51</td>\n", " <td>207</td>\n", " <td>368</td>\n", " </tr>\n", " <tr>\n", " <th>2014-10-12</th>\n", " <td>NaN</td>\n", " <td>248</td>\n", " <td>409</td>\n", " </tr>\n", " <tr>\n", " <th>2014-10-19</th>\n", " <td>NaN</td>\n", " <td>330</td>\n", " <td>496</td>\n", " </tr>\n", " <tr>\n", " <th>2014-10-26</th>\n", " <td>NaN</td>\n", " <td>220</td>\n", " <td>452</td>\n", " </tr>\n", " <tr>\n", " <th>2014-11-02</th>\n", " <td>NaN</td>\n", " <td>228</td>\n", " <td>499</td>\n", " </tr>\n", " <tr>\n", " <th>2014-11-09</th>\n", " <td>NaN</td>\n", " <td>54</td>\n", " <td>236</td>\n", " </tr>\n", " <tr>\n", " <th>2014-11-16</th>\n", " <td>NaN</td>\n", " <td>60</td>\n", " <td>449</td>\n", " </tr>\n", " <tr>\n", " <th>2014-11-23</th>\n", " <td>NaN</td>\n", " <td>120</td>\n", " <td>434</td>\n", " </tr>\n", " <tr>\n", " <th>2014-11-30</th>\n", " <td>NaN</td>\n", " <td>141</td>\n", " <td>313</td>\n", " </tr>\n", " <tr>\n", " <th>2014-12-07</th>\n", " <td>NaN</td>\n", " <td>73</td>\n", " <td>205</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "country guinea liberia sl\n", "date \n", "2014-06-22 NaN 20 NaN\n", "2014-06-29 NaN 28 NaN\n", "2014-07-06 NaN 12 NaN\n", "2014-07-13 NaN 18 NaN\n", "2014-07-20 NaN 15 NaN\n", "2014-07-27 NaN 56 NaN\n", "2014-08-03 NaN 11 NaN\n", "2014-08-10 11 10 NaN\n", "2014-08-17 NaN 106 92\n", "2014-08-24 NaN 122 199\n", "2014-08-31 120 94 189\n", "2014-09-07 73 402 141\n", "2014-09-14 83 436 216\n", "2014-09-21 55 404 301\n", "2014-09-28 95 275 408\n", "2014-10-05 51 207 368\n", "2014-10-12 NaN 248 409\n", "2014-10-19 NaN 330 496\n", "2014-10-26 NaN 220 452\n", "2014-11-02 NaN 228 499\n", "2014-11-09 NaN 54 236\n", "2014-11-16 NaN 60 449\n", "2014-11-23 NaN 120 434\n", "2014-11-30 NaN 141 313\n", "2014-12-07 NaN 73 205" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weekly_cases = daily_cases.unstack().T.resample('W', how='sum')\n", "weekly_cases" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x1103cf7f0>" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEaCAYAAAD3+OukAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFMX5+PHPsyCNqATUeGs8gDDeouDBvSveNxJt0XjG\n", "MIlnIpo4xq8Yx6hEEs/xiFeitrcxxhN2UTEYJWKi/jKIeMQjYoLhUmS46vdH9cKy7jH3Uf28X695\n", "sVPT21NP91JPd3V3lRhjUEopFU11la6AUkqpytEkoJRSEaZJQCmlIkyTgFJKRZgmAaWUijBNAkop\n", "FWGdJgER2VJEmkTkJRG5NizbX0SmhWX1LZZtyKVcKaVUZUlnzwmISABcb4x5JXwvwMtAAyDAc8aY\n", "YbmWlyogpZRS2eva0YciUgf0aU4Aob7AO8aYpeEyc0SkD/asIutyY8ycEsSjlFIqBx0mAeDbQHcR\n", "eRzoCdwIzAUWisgk7JH9QmAjbGOfS7kmAaWUqrDOksAXwAJgdLjsX4DTgF5AHNuop8Ll6nIsb1Nj\n", "Y6OOY6GUUnloaGiQXH+nwyRgjFkhIh8DmxtjPhWRpdgj+L7hIoLtLpoTdh1lXV7sQJRSKsryPYDO\n", "5hbRnwG3i8jLwMPGmK+By4EpwHPABABjzKrw56zKq4WIjKh0HUrJ9fjy4fo20fhULjrrDsIY8xFw\n", "SKuy54Hn21h2MjA523KllFKVFfmHxYwxL1S6DqXkenz5cH2baHwqF5FPAkopFWWddgdVkxkzZiQ8\n", "z6sXkS7FWueCBQt69erVa0Gx1ldtconPGLMyk8k0DRw4MFnqelWSiIxw+WhS41O5qJkkMH369P23\n", "2Wab87baaquNK10Xl33yySe7TJ8+/a/77bdfY6XropQqvZrpDurevfv5W265pSaAEttyyy2/3b17\n", "959Uuh6l5PpRpManclEzSaBr16497DBEqpREhK5du65b6XoopcqjZpKAaAYom/ABP2e5fp+5xqdy\n", "4fR/dqWUUh3TJFBmt99+e6WrEHmu9ylrfCoXmgTK7Lbbbqt0FZRSajVNAq3MmDGDhoYGRo4cySmn\n", "nALAPffcw3777cd+++231pH8wIED2/x5t91244ILLmCfffbh4osvXl1+8sknM3v2bOrr67niiitW\n", "l99zzz3E43FGjhzJiBEjWLlyJbNnz+a4445bvcywYcP46quvShFy5Ljep6zxqVzUzHMC5TJu3Die\n", "eeYZNtlkEwC++OILbr31VqZNmwZAQ0MDhx56KFtssQUtr1W3/Hn+/PlceOGFXH311ey+++5ceeWV\n", "gG3sBw0aRFNT0ze+d+7cuTQ2NlJXZ/Nyv379mD9/PosWLeLjjz+mb9++rLfeeiWLWykVTZoEWpg3\n", "bx6bbbbZ6gQA8P7777PXXnvRpYt9SHmfffbh3XffZYsttqC9qTlbrmPddde+27K93xk1atTqBNBs\n", "7NixPPDAA7z33nucfvrpecel1uZ6n7LGp3Kh3UEtbLzxxnz22Wd88sknq8u23357/va3v7FixQpW\n", "rFjB9OnT6devH7CmQV+yZMlaXTUtG/rWjf7y5cvbTQStjRkzhkceeYSZM2ey33775R2XUkq1R88E\n", "Wrnttts46aSTMMawySab8NBDD/HDH/6QYcOGAXDaaaex+eabAzBo0CDGjx/Peuut127XUOvHG0aN\n", "GsXBBx/MdtttRyqV6rAuPXr0YNttt12ddFRxuD72jMancmKMqarXlClTTFvlb7755gsmgkaPHm3m\n", "zZtX1u8Mt3XF/xZK9QJGVLoOGp/GV+xXe21nZy/tDqpSL774IkOHDmXkyJFstNFGla6OU4zjR5Ea\n", "n8qFdgdVqeHDh6++I0kppToSeLGBmzx9Y16/q2cCKnJcv89c44uOwIvtFHixJ4GH8l2HJgGllKox\n", "gRfbIvBitwNTgSagf77r0u4gFTmu9ylrfO4KvFhPYDzwI+B3wHf9THo+QGNjfvNAaRJQSqkqF3ix\n", "dYAzgV8AzwF7+Jn0R8VYtyYBFTmu32eu8bkj8GICjAauBD4ADvIz6b8X8zv0mkCFrVy5ktNPP52V\n", "K1dWuipKqSoSeLEhwHQgAfzYz6QPLHYCAD0TqLguXbpwxx13VLoakeL6UaTGV9sCL9YfuArYA7gE\n", "uM/PpFeV6vv0TKBAb7/9NoMHD2bIkCHsueeeHHHEEbz77rsATJgwgUmTJq1eduTIkcycOXP1+x/8\n", "4AcMHTqUDTbY4Bvr3WCDDbj99ts56KCD6NevH6+88srqz+bNm8exxx67eujp119/ffVnixcv5tRT\n", "T+WAAw6gf//+JBKJUoStlCqywIt5gRe7HpgGvIy96PuHUiYAcOhMYODEbw7PnI8Z4+tzWv6SSy7h\n", "yiuvZPjw4TQ0NHDuuefSt2/frH63eW6Cnj17fuOzpUuXsskmm/Dss89y9913k0ql2HfffQE4++yz\n", "OeOMMzjooIP46KOPOPzww/nHP/4B2ORx7bXXsuGGG/L111/Tp08fzjrrrNXjHSn3+5Q1vtoTeLFN\n", "gMeAz7GN///K9d3OJIFcG+9i6dGjBwsWLGDFihV8+eWXbLrppkVZ77rrrsuRRx4JwHbbbceCBQtW\n", "fzZlyhTmzp3L1VdfDcCyZcuYP38+vXv3BmCdddbhqaee4sMPP6R79+7MnTtXk4BSVSrwYrsAfwLu\n", "Ay4t9ZF/a84kgUq55pprGDBgALFYjFNOOYWdd9655N/ZtWtX/vSnP7XZjfTWW29x4oknEo/H2X33\n", "3dl4442bB91SIdeOIlvT+GpH4MUOA+4CzvUz6fsrUYdOrwmIyF0i8oqINInI98Oy/UVkmoi8JCL1\n", "LZZtyKXcBRdddBEPPvggL774IvF4fK3Pevfuzeeffw7A559/zvvvv9/mOtpqpDtquI888kguvfTS\n", "NpedMmUKhx12GOPGjaNnz5588MEHmgSUqjKBF5PAi10A3AocXqkEANmdCRjge8aYjwHEDpA/AWgA\n", "BPvgQlNYfnm25UWOo2J23nlnxo0bx6abboqIsNVWW3Hdddex8cYbM2bMGEaPHk08Hqd3795rzVjW\n", "Uus5B9ora/brX/+an/70pwwaNIju3bvTp08f7rzzTgCOP/54jjrqKKZOnUr//v0ZNmwYc+fOLU6w\n", "jnCxT7klja+6BV6sG3ALMADYt1gPfeUrmyQgrH3G0Bd4xxizFEBE5ohIn3CZrMuNMXOKGUilvPDC\n", "Czz11FP06dOHZcuWMXLkSN544w1GjRrF5ptvzvTp01cv2zzXcGuLFi3qsGz48OEMHz589fv111+f\n", "W2+9tc11bb755rz66qv5hqOUKqHAi30beBT4AhjiZ9JfVrhKWSWBxcD9IvIF8BNgI2ChiEzCJoiF\n", "YVldjuVOJIG99tqLsWPH0r17d4wxjBkzhlGjRlW6WqoDtXwUmQ2NrzoFXmxn7AXgB4BLyn0BuD2d\n", "JgFjzDkAIrI7MBG4EOgFxLGNegqb1epyLG9Xy9O95mFj33zzzRxDK49kMkkymax0NYpqwYIFvZp/\n", "bt7+rfeHvtf3+j779/d3698DuPv1VYtvv3bFp5ONMatK8X15yXYKMuxQpQ9hG/WXge5AD+Dl8POc\n", "ynOdIi2q00tWgk4vWdsvja96Xvd36y/3d+t//v3d+v/7/m799y3ld+U7vWSnZwIi8gCwObZb6MfG\n", "mFUiMgGYgr1oPCFMJjmVK6WUy8ILwDcDA7EXgP9V4Sq1KZvuoOPbKJsMTC60XKlKMDXap5wtja/y\n", "Ai+2MfYC8AJgcDVcAG6Pjh2klFJFFHixDbHj//wVOLqaEwBoElAR5PoctRpf5QRezAMeB57yM+mL\n", "quUOoI5oEijQtdde2+5IoACzZ8/msssuW6vsxRdf5PDDDy9Zndr6TqVUaYUTwPwOmIe9i7ImaBIo\n", "0E9/+lOmTZvW7hO+/fr1a7NB7uiJ4EK1953KqoU+5UJofBVzGdAPOKkWzgCaaRIokaVLlzJ06FB2\n", "3XVXjjjiiG98vmDBAk4++WQGDRrEAQccwP/+t2bk2JkzZ1JfX8+IESM45phj+OKLNY9V/Otf/2KX\n", "XXbh0ksvZe+992b//ffP+jsvu+wyDjzwQAYMGMBhhx1GJpMpctRKRVPgxU4GTgKO8DPpJZWuTy40\n", "CZRI9+7dmTZtGjfccEObn3/88cdcc801vPbaa+y5556rHzhbvnw5p512Gvfddx8vvPACY8eO5cIL\n", "1z6zfPfdd9l111159dVXmTJlStbfedZZZ/Hcc88xc+ZMunbtyuOPP16kaGtLNfcpF4PGV16BF6sH\n", "rgEO9TPpzytdn1w5M5R0Ih4UZT3JlF+U9XRml112WT33wAknnLB6BNJZs2bx0UcfMXbs2NUPc3ie\n", "t9bv9uvXj2OPPTbn7+zduzcvvvgis2fPZsmSJXz22WeFB6JUhAVebEcgAI7zM+l0peuTD2eSQLka\n", "71JYuXLl6oa+a9eubLfddjQ1FXeg1SVLljB8+HCOOOIIBg8eTJ8+fZqfvoycKu5TLgqNrzwCL7Yp\n", "8BQw3s+kX6hwdfKm3UFFkmuD+uqrr/LRR3YE2bvvvpuGhgYAvvvd75LJZNbqqmm97nwa73feeYdu\n", "3brxi1/8ggEDBvDGG29ENgkoVajAi/UAngTu8TPp31e6PoXQJFAkS5cuZdiwYdx2221ZLb/TTjtx\n", "6aWXMmjQID799FPOP/98AOrq6njiiSe4/fbbGTx4MEOHDuWmm25a63fzubNot912Y5tttmG33Xbj\n", "pJNOYsSIEZGdZ6Da+pSLTeMrrcCLdQHuBWbhwDA4znQHVdry5cvbLG89F0BzWUfdPTvssANPP/10\n", "m5995zvf6XRE1ba+s66ujiAoznUTpSJuItAbON7PpGv+dFqTgIqcaulTLhWNr3QCL/Zj4GBgPz+T\n", "XlapehSTJgGllMpCOCl8Ajsj2PxK16dY9JqAipxK9ymXmsZXfIEXGwDciR0Q7v1yf38paRJQSqkO\n", "BF5sa+y0kOP8TNq5Cbw1CajI0T7z2lbO+AIv1hP7LMBv/Ez6sXJ9bzlpElBKqTYEXqwrdkrdl4FJ\n", "Fa5OyWgSUJGjfea1rYzxXQsIcI4Lt4K2R+8OUkqpVgIvNg44ADs38IpK16eU9EygRJqamhg6dCi9\n", "evVi5syZla6OakH7zGtbqeMLRwW9DDjcz6QXlPK7qoEmgRKpr69n2rRpDBgwoNJVUUplKfBifbGj\n", "gh7vZ9JzKl2fctAkUKAPP/yQAw88kGHDhjFkyBAeffTRtT7XQdqqj/aZ17ZSxRd4sd7YQeEuqeVR\n", "QXPlzDWBwIsVZT1+Jrchwa+//noOPvhgzjvvvKJ8v1Kq/AIvtg72TqBn/Ez69krXp5ycSQK5Nt7F\n", "MmbMGH70ox/x4YcfctRRRzFixIiK1ENlT/vMa1uJ4vsNsBwYX4J1VzXtDirQvvvuy+uvv86xxx7L\n", "DTfcwDnnnFPpKimlchAOCjcS8F2/E6gtmgQKtGrVKurq6hgyZAjjx4/n1Vede6rcOdpnXtuKGV/g\n", "xUYBv8DeCbSwWOutJc50B1XK/fffz80330yXLl0QEW688cZvLHPGGWew9957k0qlKlBDpVRbAi/2\n", "XezkMGNcGxQuF5oECnTiiSdy4okntvv51KlTy1gblQ3tM69txYgv8GIbYu8EutjPpF8quFI1TLuD\n", "lFKREt4J9DDwJz+TvqPS9ak0TQIqcrTPvLYVEl/gxQS4AfgauKhYdaplWSUBEekmIh+KyI/C9/uL\n", "yDQReUlE6lss15BLuVJKldlZwBDgBD+TXlnpylSDbK8JjANeBxARASYADdgR9p4DmsLyy7Mtz7Wi\n", "xphVuf6Oyo/r21r7zGtbvvEFXuwg4GLs/MCLilqpGtbpmYCIrIsdTe+JsKgv8I4xZqkx5mtgjoj0\n", "yaM8J5lM5q3Fixc7MbFzNVu8ePGyTCbzVqXroVQxBV4sBvweeyfQB5WuTzXJ5kzgHOBGYNPw/UbA\n", "QhGZhD2yXxiW1eVYntPgTIsWLTp/1qxZeJ63i4gU7VrGggULevXq1cvZkQJzic8YsyqTyby1aNGi\n", "80tdr0oSkREuHy1rfGuE1wBOBa4CLvAz6ZdLWbda1GESEJGewFBjzNUicjK2Ef8C6AXEw/epsKwu\n", "x/KOvnf1Tm6+CBS+P7fV+9af5/P+PODvRVxftb3PJ75hVVT/UrzfHaim+mh8JYgv8GLfXWxWPFiH\n", "dF9PuhzgZ9J/r5L6l+x9PqSjUS5F5BDgfOC/wPZAF+B04GZgf2wD/7wxZkh4dP5StuXtfWdjY6Np\n", "aGiQfANSSkVb4MU84GfA2djrkTdF4SJwvm1nh2cCxpingacBROT7wPrGmDdF5HJgCmCwF4kxxqwS\n", "kQnZliulVLEFXmwYcCvwDrCHn0l/XOEqVb2snxg2xvy+xc/PA8+3scxkYHK25dVA+0+jx/VtEsX4\n", "wieArwEOAs72M+nHK1G3WqTDRiilalZ44fd4YBLwKLBTVAeCy1fkk4DLR0zgfnz5cH2bRCW+wItt\n", "h73RZAvgaD+T/msl61WrIp8ElFK1JRz753zgQmAiMMnPpJdXtla1K/JjBzXfYuUq1+PLh+vbxOX4\n", "Ai+2x9dmZRo7AsEgP5O+WhNAYSKfBJRStSHwYlsAT6fN1w8DB0V5DoBiinx3UFT6T9Uarm8TF+ML\n", "vFhX4H7g5onLP/5lpevjksgnAaVUTbgMOxH8lRWuR1VJxIMuQD9gQP2xm+S1jsgngSjeUx11rm8T\n", "1+ILvNiBwCnAAD+TXulafNlKxINuwI7AgPC1B7AbMBd4I9/1Rj4JKKWqV+DFtgTuBnw/k/5PhatT\n", "Nol4sC6wK2sa/AFADPgAmIlt9B8B/p5M+QvADhuRz3dFPgm4fkThenz5cH2buBJfeB0gwI7980Jz\n", "uSvxtZSIB3XAUOBEYF/sWG3vYBv8mcCdwJvJlP9Vsb878klAKVW1JgBLcfg6QCIebAd8HzgZWII9\n", "60kB/y+Z8jPlqEPkk4Dr/Yuux5cP17eJC/GFs4CdjL0OsNZMd7UeXyIerAeMxl7n2BV7tjMGmJlM\n", "+Xl16RQi8klAKVVdAi+2FfaI+HuuXAdIxAPBzm18CnAM8BfskPxPluuIvz2RTwK1fESRDdfjy4fr\n", "26SW42txHeB6P5N+qa1laim+RDzYBntGczKQwSa3HZMp/7NK1qulyCcBpVRV+SXwFXY6yJqUiAe9\n", "gcOxff17AA8APvC3SnT3dCbySaDW+xc743p8+XB9m9RqfIEXOxh7d8w3rgO0VI3xJeLBZsCR2K6e\n", "fYGpwG3An5Ipf2kl69aZyCcBpVTlBV5sa+AuYIyfSf+30vXJRiIebAscjW34dwaeAW4HRidT/pcV\n", "rFpOIp8Equ2Iothcjy8frm+TWosvHBr6AeC3fiY9rbPlKxlfIh7EsI3+McDWwJ+AXwGNlb7Am6/I\n", "JwGlVMX9EliInR6yqoR39QxgTcO/PvAY8BPgL8mUv6KC1SuKyCeBauxfLCbX48uH69ukluILvNih\n", "wAl0ch2gpVLEFzb2W2KHZmj52hGYj234v0+VXtwtROSTgFKqMsLrAHcAx/qZ9LxyfGciHnQFdgD6\n", "s3Zj3x/7xG46fP0TO2dxGvi3aw1/S5FPArVyxJQv1+PLh+vbpBbiC68DPAj8xs+kX87ldzuLLzyq\n", "3wzo2+rVHzsmz7+BWdgG/iXgViCdTPnzc4vCDZFPAkqpirga280yMZ9fDhv6TfhmQ98X6IM9qn83\n", "fM0BHsI2/LOTKf/rQivvksgngVrqP82H6/Hlw/VtUu3xBV7sVOzDVHtnex0AIBEPegKXZJYtOcrr\n", "1mMzYBlrGvl3sf327wJzmodXVp2LfBJQSpVP4MWGYM8ChvmZ9P+y+Z3wqP844Frgmb+9/fxvBg84\n", "6oGodt8UW+STQDUfMRWD6/Hlw/VtUq3xBV5sW+Bh4Pt+Jj0rm99JxIP+wE3ARsCxyZT/ih2BQRVL\n", "5JOAUqr0Ai+2PvbBqqv8TPrZzpZPxIMewCXAD7DPEdzswj351aiu0hWoNBEZUek6lJLr8eXD9W1S\n", "bfEFXqwOuBd4Fbi+s+UT8eAI7C2a2wK7JlP+9S0TQLXFV+v0TEApVWpXAL2x8wO0e799OMvW9dg7\n", "fE5LpvymMtUv0jo9ExCRK0SkSUQmi8h2YVmDiEwTkZdEpL7FsjmVV4Nq7T8tFtfjy4fr26Sa4gu8\n", "2InA8cBoP5Ne1tYyiXjgJeJBApgBTMce/bebAKopPhd0eiZgjLkEQEQGAxeJSBy4HGgABHgOaBIR\n", "yaW8+KEopapJ4MX2ASYB9e09EZyIB6OAG7EPbu2VTPkflq+GCnLrDtob+7BFX+AdY8xSABGZIyJ9\n", "sGcVWZcbY+YUM5B8Vfs91YVyPb58uL5NqiG+cEiIR4HT/Ez67dafJ+LBlthbPgcB5yRT/p+zXXc1\n", "xOeSrJKAiLwIbI6dI3MHYKGITMIe2S/E3r5Vl2N5VSQBpVRxBV5sPeAJ7NDQazXuiXjgAecB44EU\n", "tu9/SflrqZpldXeQMWY4MBb4PTAP6AVcHL56A1+Er1zK29Xy6r+IjCjl+3J/X7nfux5fPu9poRrq\n", "41J83aRu5Bdm+dPAW8CvW36eiAeHLl+eeW/xV/MPB/ZOpvxfXHnLCYNqKb5qf58PMSa7wfFEZBvs\n", "QEuHYgdd2h+bRJ43xgwRkbpcytv7nsbGRtPQ0CAFxKSUqpDAi00ARgEj/Uw6A5CIB/2A32B7Ec5L\n", "pvxOnxNQucu37ey0O0hEHgQ2Br4GzjLGrBKRCcAUwAATAHItrxYibvcvuh5fPlzfJpWKL/BixwGn\n", "AIP8TDqTiAcbYB/4Oh07+9bRyZTf5h1CuXB9/5VbNncHHddG2WRgcqHlSik3BF5sL+xdPqPePu3S\n", "/yTiwYnYMYImA7skU/5nFa2galfkHxZz/YjC9fjy4fo2KXd8gRfbAngcOPPt0y7tAvwFWAc74fpf\n", "i/19ru+/cot8ElBK5S/wYusCf1zh9fj9rLEXHAwcASSAu5IpP+tholXlRD4JuN6/6Hp8+XB9m5Qr\n", "vsCLiUFuXbrhJnXvHXnmD4D7gP6lHsvf9f1XbpFPAkqp/Cxfd/2zTdeuoz845OTXEBmRTPn/rHSd\n", "VO4iP4qo60cUrseXD9e3STniS+34vYNk5YpJnw4+/MFV3bo3lDMBuL7/yk3PBJRSObnimGuGbf2f\n", "j59c2GfX+y5+4uLTKl0fVZjInwkU+rRdtXM9vny4vk1KGV/ih/cdsvHbrzy/qss6U896456TS/U9\n", "HXF9/5WbngkopbKSiAc/2Cg949frf/r+R11WLDuy0vVRxRH5JOB6/6Lr8eXD9W1S7PjCid4vX/fz\n", "j0/Z7LXnV4oxh/mZ9NfF/I5cuL7/yi3ySUAp1b5EPOgG3N5l6ZKdtn/67pVizDg/k55d6Xqp4tFr\n", "Ao73L7oeXz5c3ybFii8RD74FPIUxvfsHkz4VY/7sZ9IPFWPdhXB9/5Vb5JOAUuqbwklfXgLe3enu\n", "K5rErNoS+GmFq6VKIPLdQa73L7oeXz5c3yaFxpeIB7sATwE37XTXL18QY54E9m4eGrrSXN9/5Rb5\n", "JKCUWiMRD+qBB4Dzdr7z8meBmcCZfib9QWVrpkol8t1Brvcvuh5fPlzfJvnGFw7//ADwvZ3vvPwB\n", "4B7gMT+T/mMRq1cw1/dfuemZgFIRF877exlwAjAymfL/X3Dn5eOxk0mNrmTdVOlFPgm43r/oenz5\n", "cH2b5BJfIh4MAu4CZmPn/Z0beLEhwAXAQD+TLngmsGJzff+VW+STgFJRlIgH3bFTvZ4CnAs8mEz5\n", "JvBi3wYC4DQ/k/6oglVUZaLXBBzvX3Q9vny4vk06iy8RD/YF/g5sD+yaTPkPhAmgDvgDcJ+fST9V\n", "+prmx/X9V256JqBURCTiQQ/gl9i+/3OSKf/hVov8HOiBnRxeRUTkk4Dr/Yuux5cP17dJW/El4sFQ\n", "4A7gdezR/39bfh54sQbgLGAvP5NeUY565sv1/VdukU8CSrksEQ/WA64ExgA/Tqb8x1svE3ixPbDX\n", "AY7zM+lPy1xFVWF6TcDx/kXX48uH69ukOb5EPBgBvAlsCOzSTgLog306+Ed+Jj21jNXMm+v7r9z0\n", "TEApx2zce8t1E/HgJuBIIJ5M+U+2tVzgxTYHngcu8zPpR8pZR1U9Ip8EXO9fdD2+fLi6TcJx/w85\n", "87iJNwIvYI/+57e1bODFegHPAXf4mfRt5atl4Vzdf5US+SSglAsS8WAA8Gtgc+zR/7PtLRt4sR7A\n", "k0AT9nqBijC9JuB4/6Lr8eXDpW2SiAffScSDe7H9+g8Bu1x5ywlL21s+8GLrAA8C/wJ+4mfSpjw1\n", "LR6X9l810DMBpWpQIh70wt7XfwZwE/bofzHAlbec0ObvhA+D/Q7oApzqZ9KrylNbVc0inwRc7190\n", "Pb581PI2Cad7HAckgD9j7/lf67bOtuILvJgA1wB9gVF+Jr289LUtjVref9Wo0yQgIrcA3wUEONUY\n", "84GINGBHHTTAZcaYpnDZnMqVUtkJL/qOBn4FzAH2T6b8t3JYxYXAQcAwP5P+qgRVVDWq0yRgjBkH\n", "ICIjgfEi8mPgcqABmxieA5pERHIpL34o+RGRES4fWbgeXz5qbZsk4sF+2Iu+PYAfJVP+5I6Wbx1f\n", "4MVOx549DPEz6f+Vsq7lUGv7r9rl0h20GFiGPZ18xxizFEBE5ohIH+xF5qzLjTFzihmIUq5JxIM+\n", "wFXA3tjxfO5NpvyVuawj8GJHAVcAw/VpYNWWXJLA6cB1wEbAQhGZhD2yXxiW1eVYXhVJwPUjCtfj\n", "y0e1b5NEPOiKbfTPAq4FTkqm/K+z/f3m+AIvNgK4DTjYz6RnF7+mlVHt+6/WZHWLqIgchj2anwV8\n", "AfQCLg5fvcOyXMs7+r4RLX/W9/o+Ku9jO+w9ZsnSxX8DhmBv93zlyltO2DvX9YXjAT303Mr5V56w\n", "bNYG1RKfvi/t+3yIMR3fJiwiewK+MeaC8H0d8BKwPzaJPG+MGZJreXvf19jYaBoaGqSQoHIh4nb/\n", "ouvx5aNat0kiHhyBPXK/Drg6mfLzuoWzoUvvsWd03WwicJafST9WzDpWg2rdf5WWb9uZTXfQw8DH\n", "IjIVeNPIFN6zAAAXOklEQVQYc66IXA5Mwd7tMwHAGLNKRCZkW66UssI5fq/BjvVzTDLlT893XYEX\n", "2+KkLptMBP7PxQSgii+bu4O2b6PseezAU63LJwPfuHOhvfJq4PoRhevx5aOatkkiHvQDHgDeB/Zo\n", "b6yfbARebEugyZO66/1M+vZi1bHaVNP+c0Hkh41QqlIS8eD7wF+wXUBjCkwAW2MHjbvDz6SvKk4N\n", "VRRE/olh1/sXXY8vH5XeJol4sAFwM7AnUJ/jQ1/fEHixbbHP3tzoZ9KTKh1fqbkeX7npmYBSZRSO\n", "9vk6sBQYWIQEsD32DOC3fiY9qfAaqqiJ/JmA60cUrseXj0psk3DYh3Ow9/+fnUz5DxS6zsCL9QUa\n", "gV/5mXSqudz1fe56fOUW+SSgVKkl4sHGwF3ApsDeyZT/fqHrDLzYd7EJYILLF4FV6UW+O6jQBy2q\n", "nevx5aOc2yTs/nkDSANDipQAdsReA7ikrQTg+j53Pb5y0zMBpUokEQ/6Yyd7OSuZ8h8txjoDL7Yz\n", "9vbsC/1M+t5irFNFW+STgOv9i67Hl49ybJNEPNgGO2Luz4qYAHYDnsXOCBa0t5zr+9z1+Mot8klA\n", "qWJLxINNsA9H/iaZ8u8pxjoDLzYAeBo428+kHy7GOpUCvSbgfP+i6/Hlo5TbJBEPvoU9Wn8wmfJ/\n", "W4x1Bl5sIPAMEM8mAbi+z12Pr9z0TECpIknEg3WBPwHTgf8rxjoDL7Yv8ARwup9JP1mMdSrVUuST\n", "gOv9i67Hl49SbJNEPFgHeAj4BDgnmfI7Hp43C4EXGwI8BpzsZ9LPZPt7ru9z1+Mrt8gnAaUKlYgH\n", "dcCd2EmTTsl3COiWwgTwODDWz6S/MVijUsWi1wQc7190Pb58FHObhE8C/xbYFvheMuUvL3Sd4V1A\n", "j5FnAnB9n7seX7npmYBShbkUGAqMTKb8JYWuLPBiO2DvAvqxngGocoh8EnC9f9H1+PJRrG2SiAfn\n", "AGOBocmUv6DQ9QVebHPsg2C/LOQ2UNf3uevxlVvkk4BS+UjEg5OA8dgE8Hmh6wu8WC/sraV3+Zn0\n", "LYWuT6ls6TUBx/sXXY8vH4Vuk0Q8OByYCByYTPkfFlqfwIv1AJ7EDgmdLHR9ru9z1+MrNz0TUCoH\n", "iXgwAnsn0KHJlP/PQtcXeLF1gAeBfwHn+5l0wbeWKpWLyJ8JuN6/6Hp8+ch3myTiwZ7YZwGOS6b8\n", "1wqtR+DF6oA7gC7AqX4mXfCtpeD+Pnc9vnLTMwGlshBOCP9n4Mxkym8qdH2BFxPg18AOwCg/ky74\n", "1lKl8hH5MwHX+xddjy8fuW6TcFKYp4FLkyn/j0Wqxs+AUcBhfiZd8K2lLbm+z12Pr9z0TECpDiTi\n", "QXfgj8DDyZRflBm8Ai92JvADYIifSc8vxjqVylfkk4Dr/Yuux5ePbLdJOBzEXcC/gUQxvjvwYqOB\n", "y4Dhfib972KsszXX97nr8ZVb5JOAUh24HDscRH2RxgOqB1LAgX4m/W6h61OqGPSagOP9i67Hl49s\n", "tkkiHpwK+MCRyZT/daHfGXixvbC3go7xM+k3Cl1fR1zf567HV256JqBUK4l4UA9cBQxPpvz/FLq+\n", "wIv1xz4MdoafSb9Y6PqUKqbIJwHX+xddjy8fHW2TRDyIAQ9gRwSdVeh3BV5sW+xwEBf7mfQTha4v\n", "G67vc9fjK7fIdwcp1SwRDzYFngLGJ1P+C4WuL/BiI4FXgIl+Jn1XoetTqhQ6TQIiMkREXhORa1qU\n", "NYjINBF5SUTq8y2vBq73L7oeXz7a2ibh1JBPAPcWOjl84MUk8GLnAgFwkp9J31TI+nLl+j53Pb5y\n", "y6Y7yAOuBPYDEBHB3jXRgJ1J6TmgKdfy4oahVP7CW0H/ALxHgXMDB15sXeAWYDdgXz+T/qDwGipV\n", "Op0mAWNMo4gMb1HUF3jHGLMUQETmiEgf7FlF1uXGmDnFDiYfrvcvuh5fPtrYJr8CNgX2L2Ru4MCL\n", "bY2dEnIOMNjPpL/Ku5IFcH2fux5fueVzYXgjYKGITMIe2S8My+pyLK+KJKCiLREPzgSOBvZNpvxM\n", "vusJvNgw7AXl3wC/1tFAVa3IJwl8AfQC4thGPRWW1eVY3i4RGdGc7Zv7/0r4/jzg72X8vnK/dz2+\n", "fN7vboz5bSIeHLBi5fKrJr98z9kz/9n4RT7r6yIy4uddtz56p7r1jgdOOmHZrGXAcN/ODVDR+Kpo\n", "e2t8ZXqfDzGm8wOWsDvoMGPMeBGpA14C9sc28M8bY4bkWt7edzU2NpqGhgbJN6BctUw4LnI9vnyI\n", "yIiLx90/D3ttanQy5U/LZz2BF+sO3AzsBRztZ9LvFbGaeXN9n7seX77ybTs7PRMQkYuAg4FNRaSn\n", "MeaHInI5MAUwwAQAY8wqEZmQbXm1cP2PyfX48nHxuPvfwd66eV4BCWAr4FHgI2A/P5P+sohVLIjr\n", "+9z1+MotmwvDVwNXtyp7HjshdutlJwOTsy1XqtwS8WA97NO7dyRT/v35rCPwYkOwk8tcD1yt/f+q\n", "lkX+YTHX7zl2Pb5cJOKBBzw2f9Hn/wGuyPX3w/v/xwGPAaf7mfRV1ZgAXN/nrsdXbpEfNkJFQyIe\n", "dAHuBb6685GLb1qaWZJT4x32/9+AfV5msI4CqlwR+STgev+i6/FlIxEPBLgV6A0ctjSzZGm2vxtO\n", "AzkamAj8FdjHz6QXl6SiReL6Pnc9vnKLfBJQbgsTwERgZ+zDYLkkgN2B3wIbAqf5mfTU0tRSqcrR\n", "awKO9y+6Hl8Wfg4cCBySTPlfQufbJPBi3w682K3YIU4eAAbUUgJwfZ+7Hl+56ZmAclYiHsSB04Ch\n", "yZT/v86WD7xYN+AsbOK4F+ivcwAr10U+Cbjev+h6fO1JxIMTsPMCD0um/M9aftZ6m4T9/ocAk7CD\n", "yA31M+mC5xKoFNf3uevxlVvkk4ByTyIeHIYdw6chmfLf72jZwIvFsI3/dsD5fib9dBmqqFTV0GsC\n", "jvcvuh5fa4l4MBy4CzgimfLfbmsZERkReLHegRe7DjukyXPALq4kANf3uevxlZueCShnJOLBnsDD\n", "wPHJlP9qW8sEXsy7uOvWR2AnfX8M2NHPpP9bxmoqVVUinwRc7190Pb5miXjQH/gzcGYy5Te2/Czs\n", "898DOAXwd65bbyYwys+k3yx7RcvA9X3uenzlFvkkoGpfIh58BzuW1UXJlP/H5vLAi20KjMU2/hsA\n", "dwODdLYvpdaIfBJwfVha1+MLJ4efDFybTPm/D2/zPBTb8A8H/gicA7zkZ9KrwP1tovGpXEQ+Caja\n", "lYgHvbAXde/f+c7LXwzuvPw6wAfS2KP+E6t9iAelKi3yScD1IwoX40vEg67Anl2/WnT9t9/8y8IN\n", "0zOOAk4F7sFO7t7h5C4ubhOAgROb1gd22Ouaxs86XbiGubr/KiXySUBVv7DRHwCMAEass3j+kE1f\n", "n7q8579m9ZCVKx4Re9Q/tbm7x1UDJzYJsCmwQxuv7bHXPd4HbgPeqVA1VY2JfBJwvX+xFuMLG/09\n", "gJHYhn8w8K/uX8z921Yv/bGLN/8/KwRuASb5mXSH81W3pdq3ycCJTV2BPcNX64Z+Cfap5ubXFOwI\n", "qe8Bn80YX29EZATjq26ag6Kp9v1XayKfBFTltWj0R4SvIcC/sJO1/27LaU/8rPe7/4gD38Me5Y71\n", "M+l5FalsCQyc2NSFNUlvJDbpfQi8CswBpmOP8N+bMb5+UYWqqRwV+STg+hFFtcYXTvN4EHas/kOA\n", "j7GN/p3AKcmU/99wHt+fA78DbscO6Fbwg12V3iYDJzbVAbthE95IYCjwb2AqcAfw/Rnj6/NOcpWO\n", "r9Rcj6/cIp8EVPkk4kFP7O2bo4FR2CPdR4GfJFP+3OblAi+2RXDn5Tdg7/G/A9v4/6cCVS6KsNHf\n", "iTVH+sOA/2KT3n3AD2aMr/+8YhVUkRb5JOB6/2Kl40vEg97AEdiGfzgwDdvw/zCZ8tfqzw+82ObA\n", "z4CTsOP/xPxMuuiNY6m2ycCJTesA2wL9gL4t/t0dWIg90n8Y+PGM8fX/Lvb3N6v0Pi811+Mrt8gn\n", "AVV8iXjwbeAo4FhgH6ARO1bPScmUv7D18oEX2wy4CDgZe5vnjn4mPbf1ctUgPKrfmrUb+eZ/t8F2\n", "68wG3sU+r/An4O0Z4+s/qUiFlepE5JOA60cU5YovEQ+2ZU1XzwDgWWw//jHJlP9VW78TeLHe2Mb/\n", "TOAPwE5+Jl3ye9yz3SbhXTq7YBPZvtiLtzsA81nT0M/GduvMBt6fMb4+U/wa50b/plUuIp8EVH4S\n", "8WBdbN/2wdgLvL2wDf9vgec7mss38GLrYYdy+CnwOLCrn0lX/Eh54MSmTVjT4O+LvUXzY+wE89Ow\n", "cxS8O2N8/ZcVq6RSRRb5JOB6/2Kx4gsnbO+LbfAPxt7G+Hdsw+8D/0im/A4f1gq82DrAGcAvgJeB\n", "wX4mXfaHmkRkxF7XNP4F2JW1G/2NsBerXwGuAl6dMb6+5qaX1L9plYvIJwHVvkQ8WB97N0tzw98N\n", "2+j/DvCTKX9BNusJvFgdcBzwS+z97kf4mfTfSlLpNoT34ffDdlMN2P3/HmsA+mDvxf8r9oLtlcCs\n", "GePrnX7qWKnWxJjqerKwsbHRNDQ0SKXrUcvCo/Z1gO6AF766tfjZ66R8Q2B/YBDwGrbhfwb4f8mU\n", "n/UfTDiO/0HAr4AM8HM/k24qPML2DZzY1A3YkbDBD1+7AnOBmS1er84YX/+Ni9RK1ap82049E6hC\n", "4RF4810n/bBHretjG+ju7fzb+ueV2IZ3afjvsvDf9l4tP18MXAdMTab8vEbhDLzYftjG/9vYCd//\n", "6GfSRT3iGDixaV1sA78Haxr8HYEPWNPYPwz8XRt8pdoW+SRQqf7FRDxovqf8u6xp7PuF73tjhwuY\n", "jR0I7EVgEWs36h3+29w/X+74Ai+2M5DENsz/B/zBz6RXFPt7Bk5s2hH4GzCLNQ3+XcCbM8bXt3k3\n", "UjPX+5Q1PpWLsiUBEWkALgMMcJkxpqTdAqUUdrd0B9YDerR4dfR+Pewoj9thG/vvAJ9iG/rZwFvA\n", "I+HPn3R2kbXaBF6sF/bs4SDsRdXj/Ey63TuEiuAdoHc13JKpVC0ryzUBERHs3SANgADPGWOGtbVs\n", "Ma4JJOJBF2yXyLrYxrr1q2V5c+O8fotXR+83wDbqGeyIji1fX7VR1rL8K2xXxWzgvWTKd6YBC7xY\n", "V+xtn7/zM2kd5EypMqv2awJ9gXeMMUsBRGSOiPQxxsxpa+HwSHt97C17rV8bt1O+Hmsa9q7YbpGW\n", "r6/bKFsKfNnitRiY1+LnL9v5eUky5a8sypZxRNjlM6nS9VBK5aZcSWAjYKGITMKeCSwMy9pMAtjG\n", "eQXwRavXvPDfOdj7uVt+9iVrGvZl2d7F4nr/ouvx5cP1baLxqVyUqzuoH3ZI4Dg2CaSAK9o6E2hs\n", "bKyue1aVUqpG5NMdVK4kUAe8hL33vA543hgzpORfrJRSqkNl6Q4yxqwSkQnYqfAMMKEc36uUUqpj\n", "VffEsFJKqfKpq3QFlFJKVY4mAaWUijBNAkopFWGRSgIicpeI7NjJMneKyAcicki56lUoEblHRB6o\n", "dD2qhYiMEpG/iEijiMQrXZ9SEJHjRGS6iEwTke9lsfwPylGvYhCR74jIfBFZL3w/VUR6VLpelSYi\n", "i0SkSUQeF5Gti7XeSCWBbBhjTsMORFYTRKR5CsQdRGSdStenSlwOHGyMaTDGpCpdmWITkZ7ABcAI\n", "7FAs54nIBp382pmlrleRGewERM0/K5hljKnH/n3fW6yVRjYJiMiMtn5uLipzdQoxEjsT1l+AA6D9\n", "2ETkVyLymoi8LCKTRWSbste2PN4EvheOWQWAiBwYHjm/LCLHtChPi8jvRORVEflFRWqbu72BZ40x\n", "y4wxy7C3Xu8tIgPDs5+pInJ388Iicg/QLzyKvKRCdc7VVOAwEelC+P9RRE4O9+H05jMbEenX8ixY\n", "RF5qPoNwkAAYY94APgkfwu3ob7vNv4fWojyUtGnn51pzDPBn7PwB3wOeov3YDgD2Ai4EPjTGfFSu\n", "SpbZOOAk4AkRuQKYAVyNnRJzKTBVRP4cNqDdgXOxY0tNE5HbjDGfV6je2doIO4RKs/9hx9S6GnsG\n", "9J+WCxtjThaR18KjyFqxCjv/9Bjs33Bv7H5tfsi0UUSeMsbMFpENwzOhrYDZxpgOhxKvYS3/L38E\n", "bCki79L+3/YttPH30FqUk0AtHe23KTzSPRjbAAiwT8sjpzbcjR3B9G3gtnLUsRKMffjl9yLyCOER\n", "JbaBeBK7bb4FbIkd0XVec6MhIjOBbYBqTwL/A3Zq8X4j4N/A3A7+w9fa37vBdss+Eb7fHphhjFkJ\n", "ICJ/xQ5M+W/gfuz0pdsDd5S/qhWxNXYo+o1p429bRBbT8d/DalHrDtoK+x8I1pxiNo/131ot/KcZ\n", "DLxojBljjDkWeB7bT9xebAcDOxtjjjbG1NwE6tkKhykB+/ddZ4z5L/BP4EhjzEhjzG7GmA/CZbYQ\n", "kd5h8hxA+4MaVpO/Ag0iso6IeNjrAs8Am4vIVu38zjotu8dqgTHma+B17H55DxgoIl3D62D7YQ9o\n", "wM4eNxrYwxjzSkUqWx7N/693BbYyxsxu72/bGDOPjv8eVnP+TEBEtsUeAdcBrxpj5oYfvSYiE7Fj\n", "/LfVHXSliPQ3xlxbjnrm6RjsUVCz+4GjaT+2OmCyiKzAHkHFjTF5TR9Z5X4tIntg470oLPs58KSI\n", "GOBTY8yJYfkC7BDYOwF/qIXkaIxZJCLXYWecWwX81hizWETOBP4QNvb/Mca0vGtoMvCMiHxgjKml\n", "O6ZuAM7H7qdbsGOQAdxpjPkMwBjzlYh8gp1lzmX9RKQJO8vg91uUt/e33dHfw2o6bEREiMi3gEuB\n", "8eFYTo8CVxtjXqtw1SpKRGYYYwZWuh5KVYrzZwJqtaXYqS1fCI8YJkc9AYT0KEhFmp4JKKVUhDl5\n", "YVhEbgnvjX1BRLYLyxrCpytfEpH6FssOCe+dv6aN9XQTkQ9F5EflrL9SSpWLk91BxphxACIyEhgv\n", "Ij/GPmW3eqJ7oClc3AOuxN5t0No47N0JSinlJCfPBFpYDCyjxUT34W1nc0SkD4AxphH4xh0hIrIu\n", "9uGqJ1p/ppRSrnDyTKCF04HryH2ie4BzgBuBTUtdSaWUqhRnzwRE5DDs0f8s4AugF3Bx+OodlrX3\n", "uz2BocaYZ5uLSlxdpZSqCCfPBERkT2CEMeaCsGgOtksIbIPexxjT+iygZUM/BPBE5H7so+hdRGSq\n", "Meafpay3UkqVm5O3iIrI+8DH2Kcp3zTGnCsiB2AfljLA5caYyeGyF2GHU9gUeMkY88NW6/o+sL4x\n", "5uZyxqCUUuXgZBJQSimVHWevCSillOqcJgGllIowTQJKKRVhmgSUUirCNAkopVSEaRJQSqkI0ySg\n", "VCiclzXbZc8Vke6lrI9S5aBJQKk1cnlo5jygR6kqolS5aBJQkSUiA0Tk9XDuiStYM5H3BiJyl4g8\n", "LyKzRCTZ4ne6i8g07BPmfw7np9iq1TqbwrksHhORjcoemFI50CeGVWSJyFvA2caYF0RkCNBkjOkW\n", "frahMeZ/4ZDic4C9mic2Dz9/H9iz5cT0IrIOMAM42BjzmYiMBg4xxpxezriUyoWTA8gp1RkR6QX0\n", "NMa8AGCMeVlElrZYZLmIHApsi52feTPgs5ar4Jujy/YHtgHuE5HmzzMlCUCpItEkoKJqZXsfiMiu\n", "wB+AFPB3YB7ZDSe+AvjAGFPf6ZJKVQm9JqAiyRizGPhcRAbD6vknmi/0NgB/NsbcAiwCtuObSeBr\n", "wgmHwqN+gHewQ5Af3bxQi8+Uqkp6TUBFlojsBtyB7e55ATjHGNNTRDYH/og9W5gF9ATuMsY81eJ3\n", "zwHOBj4EHjDG3BGW7wDcAHwLO5T5g8aYG8sVk1K50iSglFIRpt1BSikVYZoElFIqwjQJKKVUhGkS\n", "UEqpCNMkoJRSEaZJQCmlIkyTgFJKRZgmAaWUirD/D/Qa/Xi9TfJDAAAAAElFTkSuQmCC\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x110272048>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "weekly_cases.cumsum().plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Writing Data to Files\n", "\n", "As well as being able to read several data input formats, pandas can also export data to a variety of storage formats. We will bring your attention to just one of these, but the usage is similar across formats." ] }, { "cell_type": "code", "execution_count": 113, "metadata": { "collapsed": false }, "outputs": [], "source": [ "medals_data.to_csv(\"../data/medals.csv\", index=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `to_csv` method writes a `DataFrame` to a comma-separated values (csv) file. You can specify custom delimiters (via `sep` argument), how missing values are written (via `na_rep` argument), whether the index is writen (via `index` argument), whether the header is included (via `header` argument), among other options." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Missing data\n", "\n", "The occurence of missing data is so prevalent that it pays to use tools like pandas, which seamlessly integrates missing data handling so that it can be dealt with easily, and in the manner required by the analysis at hand.\n", "\n", "Missing data are represented in `Series` and `DataFrame` objects by the `NaN` floating point value. However, `None` is also treated as missing, since it is commonly used as such in other contexts (*e.g.* NumPy)." ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Taxon,Patient,Tissue,Stool\r\n", "Firmicutes,1,632,305\r\n", "Firmicutes,2,136,4182\r\n", "Firmicutes,3,,703\r\n", "Firmicutes,4,408,3946\r\n", "Firmicutes,5,831,8605\r\n", "Firmicutes,6,693,50\r\n", "Firmicutes,7,718,717\r\n", "Firmicutes,8,173,33\r\n", "Firmicutes,9,228,NA\r\n", "Firmicutes,10,162,3196\r\n", "Firmicutes,11,372,-99999\r\n", "Firmicutes,12,4255,4361\r\n", "Firmicutes,13,107,1667\r\n", "Firmicutes,14,?,223\r\n", "Firmicutes,15,281,2377\r\n", "Proteobacteria,1,1638,3886\r\n", "Proteobacteria,2,2469,1821\r\n", "Proteobacteria,3,839,661\r\n", "Proteobacteria,4,4414,18\r\n" ] } ], "source": [ "!head -n 20 ../data/microbiome/microbiome_missing.csv" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>NaN</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Firmicutes</td>\n", " <td>6</td>\n", " <td>693</td>\n", " <td>50</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " <td>718</td>\n", " <td>717</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " <td>173</td>\n", " <td>33</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Firmicutes</td>\n", " <td>9</td>\n", " <td>228</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Firmicutes</td>\n", " <td>10</td>\n", " <td>162</td>\n", " <td>3196</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Firmicutes</td>\n", " <td>11</td>\n", " <td>372</td>\n", " <td>-99999</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Firmicutes</td>\n", " <td>12</td>\n", " <td>4255</td>\n", " <td>4361</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Firmicutes</td>\n", " <td>13</td>\n", " <td>107</td>\n", " <td>1667</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Firmicutes</td>\n", " <td>14</td>\n", " <td>?</td>\n", " <td>223</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Firmicutes</td>\n", " <td>15</td>\n", " <td>281</td>\n", " <td>2377</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Proteobacteria</td>\n", " <td>1</td>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Proteobacteria</td>\n", " <td>2</td>\n", " <td>2469</td>\n", " <td>1821</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Proteobacteria</td>\n", " <td>3</td>\n", " <td>839</td>\n", " <td>661</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Proteobacteria</td>\n", " <td>4</td>\n", " <td>4414</td>\n", " <td>18</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Proteobacteria</td>\n", " <td>5</td>\n", " <td>12044</td>\n", " <td>83</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 NaN 703\n", "3 Firmicutes 4 408 3946\n", "4 Firmicutes 5 831 8605\n", "5 Firmicutes 6 693 50\n", "6 Firmicutes 7 718 717\n", "7 Firmicutes 8 173 33\n", "8 Firmicutes 9 228 NaN\n", "9 Firmicutes 10 162 3196\n", "10 Firmicutes 11 372 -99999\n", "11 Firmicutes 12 4255 4361\n", "12 Firmicutes 13 107 1667\n", "13 Firmicutes 14 ? 223\n", "14 Firmicutes 15 281 2377\n", "15 Proteobacteria 1 1638 3886\n", "16 Proteobacteria 2 2469 1821\n", "17 Proteobacteria 3 839 661\n", "18 Proteobacteria 4 4414 18\n", "19 Proteobacteria 5 12044 83" ] }, "execution_count": 115, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(\"../data/microbiome/microbiome_missing.csv\").head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Above, pandas recognized `NA` and an empty field as missing data." ] }, { "cell_type": "code", "execution_count": 116, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 False False False False\n", "1 False False False False\n", "2 False False True False\n", "3 False False False False\n", "4 False False False False\n", "5 False False False False\n", "6 False False False False\n", "7 False False False False\n", "8 False False False True\n", "9 False False False False\n", "10 False False False False\n", "11 False False False False\n", "12 False False False False\n", "13 False False False False\n", "14 False False False False\n", "15 False False False False\n", "16 False False False False\n", "17 False False False False\n", "18 False False False False\n", "19 False False False False" ] }, "execution_count": 116, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.isnull(pd.read_csv(\"../data/microbiome/microbiome_missing.csv\")).head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unfortunately, there will sometimes be inconsistency with the conventions for missing data. In this example, there is a question mark \"?\" and a large negative number where there should have been a positive integer. We can specify additional symbols with the `na_values` argument:\n", " " ] }, { "cell_type": "code", "execution_count": 117, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>NaN</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Firmicutes</td>\n", " <td>6</td>\n", " <td>693</td>\n", " <td>50</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " <td>718</td>\n", " <td>717</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " <td>173</td>\n", " <td>33</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Firmicutes</td>\n", " <td>9</td>\n", " <td>228</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Firmicutes</td>\n", " <td>10</td>\n", " <td>162</td>\n", " <td>3196</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Firmicutes</td>\n", " <td>11</td>\n", " <td>372</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Firmicutes</td>\n", " <td>12</td>\n", " <td>4255</td>\n", " <td>4361</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Firmicutes</td>\n", " <td>13</td>\n", " <td>107</td>\n", " <td>1667</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Firmicutes</td>\n", " <td>14</td>\n", " <td>NaN</td>\n", " <td>223</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Firmicutes</td>\n", " <td>15</td>\n", " <td>281</td>\n", " <td>2377</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Proteobacteria</td>\n", " <td>1</td>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Proteobacteria</td>\n", " <td>2</td>\n", " <td>2469</td>\n", " <td>1821</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Proteobacteria</td>\n", " <td>3</td>\n", " <td>839</td>\n", " <td>661</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Proteobacteria</td>\n", " <td>4</td>\n", " <td>4414</td>\n", " <td>18</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Proteobacteria</td>\n", " <td>5</td>\n", " <td>12044</td>\n", " <td>83</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 NaN 703\n", "3 Firmicutes 4 408 3946\n", "4 Firmicutes 5 831 8605\n", "5 Firmicutes 6 693 50\n", "6 Firmicutes 7 718 717\n", "7 Firmicutes 8 173 33\n", "8 Firmicutes 9 228 NaN\n", "9 Firmicutes 10 162 3196\n", "10 Firmicutes 11 372 NaN\n", "11 Firmicutes 12 4255 4361\n", "12 Firmicutes 13 107 1667\n", "13 Firmicutes 14 NaN 223\n", "14 Firmicutes 15 281 2377\n", "15 Proteobacteria 1 1638 3886\n", "16 Proteobacteria 2 2469 1821\n", "17 Proteobacteria 3 839 661\n", "18 Proteobacteria 4 4414 18\n", "19 Proteobacteria 5 12044 83" ] }, "execution_count": 117, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_sample = pd.read_csv(\"../data/microbiome/microbiome_missing.csv\", \n", " na_values=['?', -99999], nrows=20)\n", "\n", "missing_sample" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These can be specified on a column-wise basis using an appropriate dict as the argument for `na_values`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, `dropna` drops entire rows in which one or more values are missing." ] }, { "cell_type": "code", "execution_count": 118, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Firmicutes</td>\n", " <td>6</td>\n", " <td>693</td>\n", " <td>50</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " <td>718</td>\n", " <td>717</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " <td>173</td>\n", " <td>33</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Firmicutes</td>\n", " <td>10</td>\n", " <td>162</td>\n", " <td>3196</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Firmicutes</td>\n", " <td>12</td>\n", " <td>4255</td>\n", " <td>4361</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Firmicutes</td>\n", " <td>13</td>\n", " <td>107</td>\n", " <td>1667</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Firmicutes</td>\n", " <td>15</td>\n", " <td>281</td>\n", " <td>2377</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Proteobacteria</td>\n", " <td>1</td>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Proteobacteria</td>\n", " <td>2</td>\n", " <td>2469</td>\n", " <td>1821</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Proteobacteria</td>\n", " <td>3</td>\n", " <td>839</td>\n", " <td>661</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Proteobacteria</td>\n", " <td>4</td>\n", " <td>4414</td>\n", " <td>18</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Proteobacteria</td>\n", " <td>5</td>\n", " <td>12044</td>\n", " <td>83</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "3 Firmicutes 4 408 3946\n", "4 Firmicutes 5 831 8605\n", "5 Firmicutes 6 693 50\n", "6 Firmicutes 7 718 717\n", "7 Firmicutes 8 173 33\n", "9 Firmicutes 10 162 3196\n", "11 Firmicutes 12 4255 4361\n", "12 Firmicutes 13 107 1667\n", "14 Firmicutes 15 281 2377\n", "15 Proteobacteria 1 1638 3886\n", "16 Proteobacteria 2 2469 1821\n", "17 Proteobacteria 3 839 661\n", "18 Proteobacteria 4 4414 18\n", "19 Proteobacteria 5 12044 83" ] }, "execution_count": 118, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_sample.dropna()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we want to drop missing values column-wise instead of row-wise, we use `axis=1`." ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Firmicutes</td>\n", " <td>6</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Firmicutes</td>\n", " <td>9</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Firmicutes</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Firmicutes</td>\n", " <td>11</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Firmicutes</td>\n", " <td>12</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Firmicutes</td>\n", " <td>13</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Firmicutes</td>\n", " <td>14</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Firmicutes</td>\n", " <td>15</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Proteobacteria</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Proteobacteria</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Proteobacteria</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Proteobacteria</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Proteobacteria</td>\n", " <td>5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient\n", "0 Firmicutes 1\n", "1 Firmicutes 2\n", "2 Firmicutes 3\n", "3 Firmicutes 4\n", "4 Firmicutes 5\n", "5 Firmicutes 6\n", "6 Firmicutes 7\n", "7 Firmicutes 8\n", "8 Firmicutes 9\n", "9 Firmicutes 10\n", "10 Firmicutes 11\n", "11 Firmicutes 12\n", "12 Firmicutes 13\n", "13 Firmicutes 14\n", "14 Firmicutes 15\n", "15 Proteobacteria 1\n", "16 Proteobacteria 2\n", "17 Proteobacteria 3\n", "18 Proteobacteria 4\n", "19 Proteobacteria 5" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_sample.dropna(axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rather than omitting missing data from an analysis, in some cases it may be suitable to fill the missing value in, either with a default value (such as zero), a sentinel value, or a value that is either imputed or carried forward/backward from similar data points. We can do this programmatically in pandas with the `fillna` argument." ] }, { "cell_type": "code", "execution_count": 120, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Taxon</th>\n", " <th>Patient</th>\n", " <th>Tissue</th>\n", " <th>Stool</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Firmicutes</td>\n", " <td>1</td>\n", " <td>632</td>\n", " <td>305</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Firmicutes</td>\n", " <td>2</td>\n", " <td>136</td>\n", " <td>4182</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Firmicutes</td>\n", " <td>3</td>\n", " <td>-999</td>\n", " <td>703</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Firmicutes</td>\n", " <td>4</td>\n", " <td>408</td>\n", " <td>3946</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Firmicutes</td>\n", " <td>5</td>\n", " <td>831</td>\n", " <td>8605</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Firmicutes</td>\n", " <td>6</td>\n", " <td>693</td>\n", " <td>50</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Firmicutes</td>\n", " <td>7</td>\n", " <td>718</td>\n", " <td>717</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Firmicutes</td>\n", " <td>8</td>\n", " <td>173</td>\n", " <td>33</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Firmicutes</td>\n", " <td>9</td>\n", " <td>228</td>\n", " <td>-999</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Firmicutes</td>\n", " <td>10</td>\n", " <td>162</td>\n", " <td>3196</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Firmicutes</td>\n", " <td>11</td>\n", " <td>372</td>\n", " <td>-999</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Firmicutes</td>\n", " <td>12</td>\n", " <td>4255</td>\n", " <td>4361</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Firmicutes</td>\n", " <td>13</td>\n", " <td>107</td>\n", " <td>1667</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Firmicutes</td>\n", " <td>14</td>\n", " <td>-999</td>\n", " <td>223</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Firmicutes</td>\n", " <td>15</td>\n", " <td>281</td>\n", " <td>2377</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Proteobacteria</td>\n", " <td>1</td>\n", " <td>1638</td>\n", " <td>3886</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Proteobacteria</td>\n", " <td>2</td>\n", " <td>2469</td>\n", " <td>1821</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Proteobacteria</td>\n", " <td>3</td>\n", " <td>839</td>\n", " <td>661</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Proteobacteria</td>\n", " <td>4</td>\n", " <td>4414</td>\n", " <td>18</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Proteobacteria</td>\n", " <td>5</td>\n", " <td>12044</td>\n", " <td>83</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Taxon Patient Tissue Stool\n", "0 Firmicutes 1 632 305\n", "1 Firmicutes 2 136 4182\n", "2 Firmicutes 3 -999 703\n", "3 Firmicutes 4 408 3946\n", "4 Firmicutes 5 831 8605\n", "5 Firmicutes 6 693 50\n", "6 Firmicutes 7 718 717\n", "7 Firmicutes 8 173 33\n", "8 Firmicutes 9 228 -999\n", "9 Firmicutes 10 162 3196\n", "10 Firmicutes 11 372 -999\n", "11 Firmicutes 12 4255 4361\n", "12 Firmicutes 13 107 1667\n", "13 Firmicutes 14 -999 223\n", "14 Firmicutes 15 281 2377\n", "15 Proteobacteria 1 1638 3886\n", "16 Proteobacteria 2 2469 1821\n", "17 Proteobacteria 3 839 661\n", "18 Proteobacteria 4 4414 18\n", "19 Proteobacteria 5 12044 83" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_sample.fillna(-999)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sentinel values are useful in pandas because missing values are treated as floats, so it is impossible to use explicit missing values with integer columns. Using some large (positive or negative) integer as a sentinel value will allow the column to be integer typed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exercise: Mean imputation\n", "\n", "Fill the missing values in `missing_sample` with the mean count from the corresponding species across patients." ] }, { "cell_type": "code", "execution_count": 121, "metadata": { "collapsed": true }, "outputs": [], "source": [ "## Write your answer here " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
dikien/break-captcha
Step4_Generate_Clssifier_sknn_increase_units.ipynb
1
509346
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "from sklearn.grid_search import GridSearchCV\n", "from sklearn.cross_validation import train_test_split\n", "from sklearn.externals import joblib\n", "from sklearn.metrics import accuracy_score\n", "from sknn.mlp import Classifier, Layer\n", "from sknn import ae, mlp\n", "import numpy as np\n", "import pandas as pd\n", "from time import time" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pd.set_option('display.precision', 3) " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "escape time : 0.086 s\n", "the shape of training set 5400 rows, 784 columns\n", "the shape of test set 600 rows, 784 columns\n", "the range of training set : 0.0 ~ 0.999996\n", "the range of test set : 0.0 ~ 0.999996\n" ] } ], "source": [ "features = joblib.load(\"./mldata/features_1200.mat\")\n", "labels = joblib.load(\"./mldata/lables_1200.mat\")\n", "\n", "features = np.array(features, 'int16')\n", "labels = np.array(labels, 'int')\n", "\n", "t0 = time()\n", "def scale(X, eps = 0.001):\n", " # scale the data points s.t the columns of the feature space\n", " # (i.e the predictors) are within the range [0, 1]\n", " return (X - np.min(X, axis = 0)) / (np.max(X, axis = 0) + eps)\n", "\n", "features = features.astype(\"float32\")\n", "features = scale(features)\n", "\n", "print \"escape time : \", round(time()-t0, 3), \"s\"\n", "\n", "# scale the data to the range [0, 1] and then construct the training\n", "# and testing splits\n", "(trainX, testX, trainY, testY) = train_test_split(features, labels, test_size = 0.1)\n", "\n", "print \"the shape of training set %s rows, %s columns\" %(trainX.shape[0], trainX.shape[1])\n", "print \"the shape of test set %s rows, %s columns\" %(testX.shape[0], testX.shape[1])\n", "print \"the range of training set : %s ~ %s\" %(trainX.min(),trainX.max())\n", "print \"the range of test set : %s ~ %s\" %(testX.min(),testX.max())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.445\n", "escape time : 4.582 s\n", "the number of unit : 2\n", "accuracy score : 0.735\n", "escape time : 3.281 s\n", "the number of unit : 3\n", "accuracy score : 0.805\n", "escape time : 3.174 s\n", "the number of unit : 4\n", "accuracy score : 0.848333333333\n", "escape time : 3.781 s\n", "the number of unit : 5\n", "accuracy score : 0.878333333333\n", "escape time : 3.504 s\n", "the number of unit : 6\n", "accuracy score : 0.866666666667\n", "escape time : 3.462 s\n", "the number of unit : 7\n", "accuracy score : 0.885\n", "escape time : 3.5 s\n", "the number of unit : 8\n", "accuracy score : 0.885\n", "escape time : 3.37 s\n", "the number of unit : 9\n", "accuracy score : 0.893333333333\n", "escape time : 3.534 s\n", "the number of unit : 10\n", "accuracy score : 0.898333333333\n", "escape time : 3.081 s\n", "the number of unit : 11\n", "accuracy score : 0.89\n", "escape time : 3.434 s\n", "the number of unit : 12\n", "accuracy score : 0.885\n", "escape time : 3.725 s\n", "the number of unit : 13\n", "accuracy score : 0.905\n", "escape time : 3.9 s\n", "the number of unit : 14\n", "accuracy score : 0.903333333333\n", "escape time : 3.666 s\n", "the number of unit : 15\n", "accuracy score : 0.903333333333\n", "escape time : 3.359 s\n", "the number of unit : 16\n", "accuracy score : 0.901666666667\n", "escape time : 3.631 s\n", "the number of unit : 17\n", "accuracy score : 0.903333333333\n", "escape time : 3.329 s\n", "the number of unit : 18\n", "accuracy score : 0.903333333333\n", "escape time : 3.519 s\n", "the number of unit : 19\n", "accuracy score : 0.898333333333\n", "escape time : 3.735 s\n", "the number of unit : 20\n", "accuracy score : 0.908333333333\n", "escape time : 4.238 s\n", "the number of unit : 21\n", "accuracy score : 0.903333333333\n", "escape time : 3.542 s\n", "the number of unit : 22\n", "accuracy score : 0.906666666667\n", "escape time : 3.391 s\n", "the number of unit : 23\n", "accuracy score : 0.901666666667\n", "escape time : 4.013 s\n", "the number of unit : 24\n", "accuracy score : 0.915\n", "escape time : 3.652 s\n", "the number of unit : 25\n", "accuracy score : 0.9\n", "escape time : 3.506 s\n", "the number of unit : 26\n", "accuracy score : 0.903333333333\n", "escape time : 3.553 s\n", "the number of unit : 27\n", "accuracy score : 0.91\n", "escape time : 3.997 s\n", "the number of unit : 28\n", "accuracy score : 0.905\n", "escape time : 4.024 s\n", "the number of unit : 29\n", "accuracy score : 0.906666666667\n", "escape time : 3.387 s\n", "the number of unit : 30\n", "accuracy score : 0.896666666667\n", "escape time : 3.538 s\n", "the number of unit : 31\n", "accuracy score : 0.903333333333\n", "escape time : 3.362 s\n", "the number of unit : 32\n", "accuracy score : 0.901666666667\n", "escape time : 3.366 s\n", "the number of unit : 33\n", "accuracy score : 0.906666666667\n", "escape time : 3.523 s\n", "the number of unit : 34\n", "accuracy score : 0.901666666667\n", "escape time : 3.366 s\n", "the number of unit : 35\n", "accuracy score : 0.898333333333\n", "escape time : 3.337 s\n", "the number of unit : 36\n", "accuracy score : 0.903333333333\n", "escape time : 3.457 s\n", "the number of unit : 37\n", "accuracy score : 0.908333333333\n", "escape time : 3.41 s\n", "the number of unit : 38\n", "accuracy score : 0.906666666667\n", "escape time : 3.386 s\n", "the number of unit : 39\n", "accuracy score : 0.903333333333\n", "escape time : 3.632 s\n", "the number of unit : 40\n", "accuracy score : 0.901666666667\n", "escape time : 3.508 s\n", "the number of unit : 41\n", "accuracy score : 0.906666666667\n", "escape time : 3.481 s\n", "the number of unit : 42\n", "accuracy score : 0.908333333333\n", "escape time : 3.663 s\n", "the number of unit : 43\n", "accuracy score : 0.906666666667\n", "escape time : 3.585 s\n", "the number of unit : 44\n", "accuracy score : 0.905\n", "escape time : 3.444 s\n", "the number of unit : 45\n", "accuracy score : 0.906666666667\n", "escape time : 3.596 s\n", "the number of unit : 46\n", "accuracy score : 0.903333333333\n", "escape time : 3.508 s\n", "the number of unit : 47\n", "accuracy score : 0.903333333333\n", "escape time : 3.468 s\n", "the number of unit : 48\n", "accuracy score : 0.901666666667\n", "escape time : 3.653 s\n", "the number of unit : 49\n", "accuracy score : 0.903333333333\n", "escape time : 3.513 s\n", "the number of unit : 50\n", "accuracy score : 0.906666666667\n", "escape time : 3.793 s\n", "the number of unit : 51\n", "accuracy score : 0.895\n", "escape time : 3.861 s\n", "the number of unit : 52\n", "accuracy score : 0.906666666667\n", "escape time : 3.554 s\n", "the number of unit : 53\n", "accuracy score : 0.906666666667\n", "escape time : 3.582 s\n", "the number of unit : 54\n", "accuracy score : 0.908333333333\n", "escape time : 3.703 s\n", "the number of unit : 55\n", "accuracy score : 0.911666666667\n", "escape time : 3.656 s\n", "the number of unit : 56\n", "accuracy score : 0.905\n", "escape time : 3.63 s\n", "the number of unit : 57\n", "accuracy score : 0.903333333333\n", "escape time : 3.798 s\n", "the number of unit : 58\n", "accuracy score : 0.901666666667\n", "escape time : 3.677 s\n", "the number of unit : 59\n", "accuracy score : 0.911666666667\n", "escape time : 3.65 s\n", "the number of unit : 60\n", "accuracy score : 0.903333333333\n", "escape time : 3.869 s\n", "the number of unit : 61\n", "accuracy score : 0.91\n", "escape time : 3.694 s\n", "the number of unit : 62\n", "accuracy score : 0.906666666667\n", "escape time : 3.727 s\n", "the number of unit : 63\n", "accuracy score : 0.91\n", "escape time : 3.913 s\n", "the number of unit : 64\n", "accuracy score : 0.908333333333\n", "escape time : 3.709 s\n", "the number of unit : 65\n", "accuracy score : 0.908333333333\n", "escape time : 3.773 s\n", "the number of unit : 66\n", "accuracy score : 0.906666666667\n", "escape time : 3.93 s\n", "the number of unit : 67\n", "accuracy score : 0.906666666667\n", "escape time : 3.748 s\n", "the number of unit : 68\n", "accuracy score : 0.896666666667\n", "escape time : 3.818 s\n", "the number of unit : 69\n", "accuracy score : 0.903333333333\n", "escape time : 3.993 s\n", "the number of unit : 70\n", "accuracy score : 0.905\n", "escape time : 3.893 s\n", "the number of unit : 71\n", "accuracy score : 0.905\n", "escape time : 3.972 s\n", "the number of unit : 72\n", "accuracy score : 0.905\n", "escape time : 4.12 s\n", "the number of unit : 73\n", "accuracy score : 0.905\n", "escape time : 3.925 s\n", "the number of unit : 74\n", "accuracy score : 0.906666666667\n", "escape time : 3.987 s\n", "the number of unit : 75\n", "accuracy score : 0.908333333333\n", "escape time : 4.087 s\n", "the number of unit : 76\n", "accuracy score : 0.901666666667\n", "escape time : 3.948 s\n", "the number of unit : 77\n", "accuracy score : 0.901666666667\n", "escape time : 4.145 s\n", "the number of unit : 78\n", "accuracy score : 0.903333333333\n", "escape time : 4.244 s\n", "the number of unit : 79\n", "accuracy score : 0.901666666667\n", "escape time : 4.06 s\n", "the number of unit : 80\n", "accuracy score : 0.905\n", "escape time : 4.026 s\n", "the number of unit : 81\n", "accuracy score : 0.905\n", "escape time : 4.209 s\n", "the number of unit : 82\n", "accuracy score : 0.905\n", "escape time : 4.112 s\n", "the number of unit : 83\n", "accuracy score : 0.908333333333\n", "escape time : 4.094 s\n", "the number of unit : 84\n", "accuracy score : 0.906666666667\n", "escape time : 4.693 s\n", "the number of unit : 85\n", "accuracy score : 0.906666666667\n", "escape time : 4.552 s\n", "the number of unit : 86\n", "accuracy score : 0.905\n", "escape time : 4.573 s\n", "the number of unit : 87\n", "accuracy score : 0.901666666667\n", "escape time : 4.752 s\n", "the number of unit : 88\n", "accuracy score : 0.9\n", "escape time : 4.667 s\n", "the number of unit : 89\n", "accuracy score : 0.906666666667\n", "escape time : 4.626 s\n", "the number of unit : 90\n", "accuracy score : 0.901666666667\n", "escape time : 4.841 s\n", "the number of unit : 91\n", "accuracy score : 0.906666666667\n", "escape time : 4.695 s\n", "the number of unit : 92\n", "accuracy score : 0.905\n", "escape time : 4.707 s\n", "the number of unit : 93\n", "accuracy score : 0.905\n", "escape time : 4.859 s\n", "the number of unit : 94\n", "accuracy score : 0.905\n", "escape time : 4.722 s\n", "the number of unit : 95\n", "accuracy score : 0.906666666667\n", "escape time : 4.739 s\n", "the number of unit : 96\n", "accuracy score : 0.901666666667\n", "escape time : 4.883 s\n", "the number of unit : 97\n", "accuracy score : 0.908333333333\n", "escape time : 4.769 s\n", "the number of unit : 98\n", "accuracy score : 0.905\n", "escape time : 4.763 s\n", "the number of unit : 99\n", "accuracy score : 0.905\n", "escape time : 4.97 s\n", "the number of unit : 100\n", "accuracy score : 0.905\n", "escape time : 4.802 s\n", "the number of unit : 101\n", "accuracy score : 0.901666666667\n", "escape time : 4.786 s\n", "the number of unit : 102\n", "accuracy score : 0.905\n", "escape time : 5.006 s\n", "the number of unit : 103\n", "accuracy score : 0.908333333333\n", "escape time : 4.838 s\n", "the number of unit : 104\n", "accuracy score : 0.903333333333\n", "escape time : 4.842 s\n", "the number of unit : 105\n", "accuracy score : 0.905\n", "escape time : 5.045 s\n", "the number of unit : 106\n", "accuracy score : 0.905\n", "escape time : 4.882 s\n", "the number of unit : 107\n", "accuracy score : 0.905\n", "escape time : 4.934 s\n", "the number of unit : 108\n", "accuracy score : 0.908333333333\n", "escape time : 5.112 s\n", "the number of unit : 109\n", "accuracy score : 0.901666666667\n", "escape time : 4.951 s\n", "the number of unit : 110\n", "accuracy score : 0.903333333333\n", "escape time : 4.946 s\n", "the number of unit : 111\n", "accuracy score : 0.906666666667\n", "escape time : 5.153 s\n", "the number of unit : 112\n", "accuracy score : 0.906666666667\n", "escape time : 5.057 s\n", "the number of unit : 113\n", "accuracy score : 0.903333333333\n", "escape time : 5.012 s\n", "the number of unit : 114\n", "accuracy score : 0.906666666667\n", "escape time : 5.205 s\n", "the number of unit : 115\n", "accuracy score : 0.903333333333\n", "escape time : 5.068 s\n", "the number of unit : 116\n", "accuracy score : 0.908333333333\n", "escape time : 5.089 s\n", "the number of unit : 117\n", "accuracy score : 0.903333333333\n", "escape time : 5.182 s\n", "the number of unit : 118\n", "accuracy score : 0.908333333333\n", "escape time : 5.23 s\n", "the number of unit : 119\n", "accuracy score : 0.9\n", "escape time : 5.07 s\n", "the number of unit : 120\n", "accuracy score : 0.898333333333\n", "escape time : 5.312 s\n", "the number of unit : 121\n", "accuracy score : 0.903333333333\n", "escape time : 5.221 s\n", "the number of unit : 122\n", "accuracy score : 0.9\n", "escape time : 5.214 s\n", "the number of unit : 123\n", "accuracy score : 0.905\n", "escape time : 5.392 s\n", "the number of unit : 124\n", "accuracy score : 0.903333333333\n", "escape time : 5.16 s\n", "the number of unit : 125\n", "accuracy score : 0.901666666667\n", "escape time : 5.27 s\n", "the number of unit : 126\n", "accuracy score : 0.906666666667\n", "escape time : 5.344 s\n", "the number of unit : 127\n", "accuracy score : 0.901666666667\n", "escape time : 5.231 s\n", "the number of unit : 128\n", "accuracy score : 0.903333333333\n", "escape time : 7.395 s\n", "the number of unit : 129\n", "accuracy score : 0.906666666667\n", "escape time : 7.802 s\n", "the number of unit : 130\n", "accuracy score : 0.905\n", "escape time : 7.544 s\n", "the number of unit : 131\n", "accuracy score : 0.908333333333\n", "escape time : 7.747 s\n", "the number of unit : 132\n", "accuracy score : 0.906666666667\n", "escape time : 7.535 s\n", "the number of unit : 133\n", "accuracy score : 0.906666666667\n", "escape time : 7.633 s\n", "the number of unit : 134\n", "accuracy score : 0.905\n", "escape time : 7.568 s\n", "the number of unit : 135\n", "accuracy score : 0.903333333333\n", "escape time : 7.952 s\n", "the number of unit : 136\n", "accuracy score : 0.906666666667\n", "escape time : 7.635 s\n", "the number of unit : 137\n", "accuracy score : 0.91\n", "escape time : 7.6 s\n", "the number of unit : 138\n", "accuracy score : 0.908333333333\n", "escape time : 8.05 s\n", "the number of unit : 139\n", "accuracy score : 0.906666666667\n", "escape time : 7.63 s\n", "the number of unit : 140\n", "accuracy score : 0.9\n", "escape time : 7.425 s\n", "the number of unit : 141\n", "accuracy score : 0.901666666667\n", "escape time : 7.798 s\n", "the number of unit : 142\n", "accuracy score : 0.905\n", "escape time : 7.706 s\n", "the number of unit : 143\n", "accuracy score : 0.905\n", "escape time : 7.569 s\n", "the number of unit : 144\n", "accuracy score : 0.903333333333\n", "escape time : 7.718 s\n", "the number of unit : 145\n", "accuracy score : 0.908333333333\n", "escape time : 7.637 s\n", "the number of unit : 146\n", "accuracy score : 0.903333333333\n", "escape time : 7.599 s\n", "the number of unit : 147\n", "accuracy score : 0.911666666667\n", "escape time : 8.0 s\n", "the number of unit : 148\n", "accuracy score : 0.906666666667\n", "escape time : 7.878 s\n", "the number of unit : 149\n", "accuracy score : 0.905\n", "escape time : 7.689 s\n", "the number of unit : 150\n", "accuracy score : 0.903333333333\n", "escape time : 7.965 s\n", "the number of unit : 151\n", "accuracy score : 0.901666666667\n", "escape time : 7.795 s\n", "the number of unit : 152\n", "accuracy score : 0.901666666667\n", "escape time : 7.602 s\n", "the number of unit : 153\n", "accuracy score : 0.901666666667\n", "escape time : 7.799 s\n", "the number of unit : 154\n", "accuracy score : 0.903333333333\n", "escape time : 7.65 s\n", "the number of unit : 155\n", "accuracy score : 0.905\n", "escape time : 7.876 s\n", "the number of unit : 156\n", "accuracy score : 0.903333333333\n", "escape time : 7.971 s\n", "the number of unit : 157\n", "accuracy score : 0.906666666667\n", "escape time : 7.684 s\n", "the number of unit : 158\n", "accuracy score : 0.905\n", "escape time : 7.662 s\n", "the number of unit : 159\n", "accuracy score : 0.908333333333\n", "escape time : 8.007 s\n", "the number of unit : 160\n", "accuracy score : 0.906666666667\n", "escape time : 7.673 s\n", "the number of unit : 161\n", "accuracy score : 0.9\n", "escape time : 7.847 s\n", "the number of unit : 162\n", "accuracy score : 0.905\n", "escape time : 7.969 s\n", "the number of unit : 163\n", "accuracy score : 0.906666666667\n", "escape time : 7.851 s\n", "the number of unit : 164\n", "accuracy score : 0.906666666667\n", "escape time : 7.982 s\n", "the number of unit : 165\n", "accuracy score : 0.905\n", "escape time : 8.152 s\n", "the number of unit : 166\n", "accuracy score : 0.905\n", "escape time : 8.262 s\n", "the number of unit : 167\n", "accuracy score : 0.906666666667\n", "escape time : 7.92 s\n", "the number of unit : 168\n", "accuracy score : 0.906666666667\n", "escape time : 7.73 s\n", "the number of unit : 169\n", "accuracy score : 0.908333333333\n", "escape time : 8.103 s\n", "the number of unit : 170\n", "accuracy score : 0.903333333333\n", "escape time : 7.993 s\n", "the number of unit : 171\n", "accuracy score : 0.903333333333\n", "escape time : 8.615 s\n", "the number of unit : 172\n", "accuracy score : 0.905\n", "escape time : 8.199 s\n", "the number of unit : 173\n", "accuracy score : 0.903333333333\n", "escape time : 8.428 s\n", "the number of unit : 174\n", "accuracy score : 0.911666666667\n", "escape time : 8.489 s\n", "the number of unit : 175\n", "accuracy score : 0.906666666667\n", "escape time : 8.808 s\n", "the number of unit : 176\n", "accuracy score : 0.901666666667\n", "escape time : 8.119 s\n", "the number of unit : 177\n", "accuracy score : 0.905\n", "escape time : 8.846 s\n", "the number of unit : 178\n", "accuracy score : 0.906666666667\n", "escape time : 8.147 s\n", "the number of unit : 179\n", "accuracy score : 0.903333333333\n", "escape time : 8.763 s\n", "the number of unit : 180\n", "accuracy score : 0.906666666667\n", "escape time : 8.588 s\n", "the number of unit : 181\n", "accuracy score : 0.905\n", "escape time : 8.765 s\n", "the number of unit : 182\n", "accuracy score : 0.906666666667\n", "escape time : 8.41 s\n", "the number of unit : 183\n", "accuracy score : 0.91\n", "escape time : 8.704 s\n", "the number of unit : 184\n", "accuracy score : 0.906666666667\n", "escape time : 8.462 s\n", "the number of unit : 185\n", "accuracy score : 0.905\n", "escape time : 8.45 s\n", "the number of unit : 186\n", "accuracy score : 0.903333333333\n", "escape time : 8.768 s\n", "the number of unit : 187\n", "accuracy score : 0.906666666667\n", "escape time : 8.608 s\n", "the number of unit : 188\n", "accuracy score : 0.903333333333\n", "escape time : 8.149 s\n", "the number of unit : 189\n", "accuracy score : 0.906666666667\n", "escape time : 8.956 s\n", "the number of unit : 190\n", "accuracy score : 0.908333333333\n", "escape time : 8.766 s\n", "the number of unit : 191\n", "accuracy score : 0.901666666667\n", "escape time : 9.003 s\n", "the number of unit : 192\n", "accuracy score : 0.906666666667\n", "escape time : 9.247 s\n", "the number of unit : 193\n", "accuracy score : 0.901666666667\n", "escape time : 9.287 s\n", "the number of unit : 194\n", "accuracy score : 0.906666666667\n", "escape time : 9.038 s\n", "the number of unit : 195\n", "accuracy score : 0.901666666667\n", "escape time : 9.548 s\n", "the number of unit : 196\n", "accuracy score : 0.903333333333\n", "escape time : 8.314 s\n", "the number of unit : 197\n", "accuracy score : 0.906666666667\n", "escape time : 9.176 s\n", "the number of unit : 198\n", "accuracy score : 0.908333333333\n", "escape time : 7.847 s\n", "the number of unit : 199\n", "accuracy score : 0.903333333333\n", "escape time : 7.211 s\n", "the number of unit : 200\n", "accuracy score : 0.905\n", "escape time : 6.078 s\n", "the number of unit : 201\n", "accuracy score : 0.905\n", "escape time : 7.998 s\n", "the number of unit : 202\n", "accuracy score : 0.906666666667\n", "escape time : 9.1 s\n", "the number of unit : 203\n", "accuracy score : 0.906666666667\n", "escape time : 9.548 s\n", "the number of unit : 204\n", "accuracy score : 0.905\n", "escape time : 8.995 s\n", "the number of unit : 205\n", "accuracy score : 0.903333333333\n", "escape time : 9.712 s\n", "the number of unit : 206\n", "accuracy score : 0.903333333333\n", "escape time : 9.416 s\n", "the number of unit : 207\n", "accuracy score : 0.903333333333\n", "escape time : 9.721 s\n", "the number of unit : 208\n", "accuracy score : 0.905\n", "escape time : 8.113 s\n", "the number of unit : 209\n", "accuracy score : 0.905\n", "escape time : 9.789 s\n", "the number of unit : 210\n", "accuracy score : 0.903333333333\n", "escape time : 9.812 s\n", "the number of unit : 211\n", "accuracy score : 0.903333333333\n", "escape time : 9.727 s\n", "the number of unit : 212\n", "accuracy score : 0.906666666667\n", "escape time : 9.332 s\n", "the number of unit : 213\n", "accuracy score : 0.906666666667\n", "escape time : 9.996 s\n", "the number of unit : 214\n", "accuracy score : 0.906666666667\n", "escape time : 9.761 s\n", "the number of unit : 215\n", "accuracy score : 0.903333333333\n", "escape time : 9.83 s\n", "the number of unit : 216\n", "accuracy score : 0.91\n", "escape time : 9.603 s\n", "the number of unit : 217\n", "accuracy score : 0.906666666667\n", "escape time : 9.805 s\n", "the number of unit : 218\n", "accuracy score : 0.905\n", "escape time : 9.813 s\n", "the number of unit : 219\n", "accuracy score : 0.906666666667\n", "escape time : 9.978 s\n", "the number of unit : 220\n", "accuracy score : 0.905\n", "escape time : 9.608 s\n", "the number of unit : 221\n", "accuracy score : 0.906666666667\n", "escape time : 9.921 s\n", "the number of unit : 222\n", "accuracy score : 0.908333333333\n", "escape time : 10.014 s\n", "the number of unit : 223\n", "accuracy score : 0.901666666667\n", "escape time : 9.804 s\n", "the number of unit : 224\n", "accuracy score : 0.906666666667\n", "escape time : 9.639 s\n", "the number of unit : 225\n", "accuracy score : 0.901666666667\n", "escape time : 10.27 s\n", "the number of unit : 226\n", "accuracy score : 0.905\n", "escape time : 9.923 s\n", "the number of unit : 227\n", "accuracy score : 0.908333333333\n", "escape time : 10.097 s\n", "the number of unit : 228\n", "accuracy score : 0.901666666667\n", "escape time : 9.979 s\n", "the number of unit : 229\n", "accuracy score : 0.905\n", "escape time : 10.182 s\n", "the number of unit : 230\n", "accuracy score : 0.903333333333\n", "escape time : 10.029 s\n", "the number of unit : 231\n", "accuracy score : 0.903333333333\n", "escape time : 10.28 s\n", "the number of unit : 232\n", "accuracy score : 0.906666666667\n", "escape time : 9.88 s\n", "the number of unit : 233\n", "accuracy score : 0.908333333333\n", "escape time : 10.221 s\n", "the number of unit : 234\n", "accuracy score : 0.903333333333\n", "escape time : 10.147 s\n", "the number of unit : 235\n", "accuracy score : 0.901666666667\n", "escape time : 10.257 s\n", "the number of unit : 236\n", "accuracy score : 0.905\n", "escape time : 9.881 s\n", "the number of unit : 237\n", "accuracy score : 0.901666666667\n", "escape time : 10.4 s\n", "the number of unit : 238\n", "accuracy score : 0.908333333333\n", "escape time : 10.151 s\n", "the number of unit : 239\n", "accuracy score : 0.905\n", "escape time : 10.239 s\n", "the number of unit : 240\n", "accuracy score : 0.906666666667\n", "escape time : 10.247 s\n", "the number of unit : 241\n", "accuracy score : 0.908333333333\n", "escape time : 10.273 s\n", "the number of unit : 242\n", "accuracy score : 0.905\n", "escape time : 10.265 s\n", "the number of unit : 243\n", "accuracy score : 0.903333333333\n", "escape time : 10.393 s\n", "the number of unit : 244\n", "accuracy score : 0.905\n", "escape time : 10.196 s\n", "the number of unit : 245\n", "accuracy score : 0.906666666667\n", "escape time : 10.413 s\n", "the number of unit : 246\n", "accuracy score : 0.903333333333\n", "escape time : 10.391 s\n", "the number of unit : 247\n", "accuracy score : 0.906666666667\n", "escape time : 10.349 s\n", "the number of unit : 248\n", "accuracy score : 0.903333333333\n", "escape time : 10.122 s\n", "the number of unit : 249\n", "accuracy score : 0.903333333333\n", "escape time : 10.746 s\n", "the number of unit : 250\n", "accuracy score : 0.91\n", "escape time : 10.548 s\n", "the number of unit : 251\n", "accuracy score : 0.903333333333\n", "escape time : 11.168 s\n", "the number of unit : 252\n", "accuracy score : 0.906666666667\n", "escape time : 10.485 s\n", "the number of unit : 253\n", "accuracy score : 0.901666666667\n", "escape time : 10.669 s\n", "the number of unit : 254\n", "accuracy score : 0.906666666667\n", "escape time : 10.355 s\n", "the number of unit : 255\n", "accuracy score : 0.905\n", "escape time : 11.216 s\n", "the number of unit : 256\n", "accuracy score : 0.906666666667\n", "escape time : 10.431 s\n", "the number of unit : 257\n", "accuracy score : 0.903333333333\n", "escape time : 11.361 s\n", "the number of unit : 258\n", "accuracy score : 0.905\n", "escape time : 12.107 s\n", "the number of unit : 259\n", "accuracy score : 0.906666666667\n", "escape time : 12.259 s\n", "the number of unit : 260\n", "accuracy score : 0.905\n", "escape time : 11.806 s\n", "the number of unit : 261\n", "accuracy score : 0.908333333333\n", "escape time : 12.306 s\n", "the number of unit : 262\n", "accuracy score : 0.903333333333\n", "escape time : 12.083 s\n", "the number of unit : 263\n", "accuracy score : 0.908333333333\n", "escape time : 12.118 s\n", "the number of unit : 264\n", "accuracy score : 0.905\n", "escape time : 12.333 s\n", "the number of unit : 265\n", "accuracy score : 0.91\n", "escape time : 12.231 s\n", "the number of unit : 266\n", "accuracy score : 0.906666666667\n", "escape time : 12.165 s\n", "the number of unit : 267\n", "accuracy score : 0.906666666667\n", "escape time : 12.551 s\n", "the number of unit : 268\n", "accuracy score : 0.901666666667\n", "escape time : 11.975 s\n", "the number of unit : 269\n", "accuracy score : 0.906666666667\n", "escape time : 11.817 s\n", "the number of unit : 270\n", "accuracy score : 0.911666666667\n", "escape time : 12.048 s\n", "the number of unit : 271\n", "accuracy score : 0.903333333333\n", "escape time : 11.925 s\n", "the number of unit : 272\n", "accuracy score : 0.903333333333\n", "escape time : 11.912 s\n", "the number of unit : 273\n", "accuracy score : 0.908333333333\n", "escape time : 12.252 s\n", "the number of unit : 274\n", "accuracy score : 0.906666666667\n", "escape time : 12.016 s\n", "the number of unit : 275\n", "accuracy score : 0.901666666667\n", "escape time : 12.109 s\n", "the number of unit : 276\n", "accuracy score : 0.9\n", "escape time : 12.393 s\n", "the number of unit : 277\n", "accuracy score : 0.908333333333\n", "escape time : 12.185 s\n", "the number of unit : 278\n", "accuracy score : 0.905\n", "escape time : 11.987 s\n", "the number of unit : 279\n", "accuracy score : 0.901666666667\n", "escape time : 12.235 s\n", "the number of unit : 280\n", "accuracy score : 0.911666666667\n", "escape time : 12.086 s\n", "the number of unit : 281\n", "accuracy score : 0.905\n", "escape time : 12.114 s\n", "the number of unit : 282\n", "accuracy score : 0.906666666667\n", "escape time : 12.411 s\n", "the number of unit : 283\n", "accuracy score : 0.898333333333\n", "escape time : 12.19 s\n", "the number of unit : 284\n", "accuracy score : 0.906666666667\n", "escape time : 12.171 s\n", "the number of unit : 285\n", "accuracy score : 0.901666666667\n", "escape time : 12.368 s\n", "the number of unit : 286\n", "accuracy score : 0.905\n", "escape time : 12.126 s\n", "the number of unit : 287\n", "accuracy score : 0.903333333333\n", "escape time : 12.326 s\n", "the number of unit : 288\n", "accuracy score : 0.906666666667\n", "escape time : 12.178 s\n", "the number of unit : 289\n", "accuracy score : 0.906666666667\n", "escape time : 12.303 s\n", "the number of unit : 290\n", "accuracy score : 0.908333333333\n", "escape time : 12.155 s\n", "the number of unit : 291\n", "accuracy score : 0.908333333333\n", "escape time : 12.698 s\n", "the number of unit : 292\n", "accuracy score : 0.901666666667\n", "escape time : 12.186 s\n", "the number of unit : 293\n", "accuracy score : 0.906666666667\n", "escape time : 12.014 s\n", "the number of unit : 294\n", "accuracy score : 0.905\n", "escape time : 12.306 s\n", "the number of unit : 295\n", "accuracy score : 0.9\n", "escape time : 12.255 s\n", "the number of unit : 296\n", "accuracy score : 0.903333333333\n", "escape time : 12.083 s\n", "the number of unit : 297\n", "accuracy score : 0.901666666667\n", "escape time : 12.593 s\n", "the number of unit : 298\n", "accuracy score : 0.908333333333\n", "escape time : 11.659 s\n", "the number of unit : 299\n", "accuracy score : 0.905\n", "escape time : 12.16 s\n", "the number of unit : 300\n", "accuracy score : 0.905\n", "escape time : 12.201 s\n", "the number of unit : 301\n", "accuracy score : 0.903333333333\n", "escape time : 11.743 s\n", "the number of unit : 302\n", "accuracy score : 0.906666666667\n", "escape time : 11.794 s\n", "the number of unit : 303\n", "accuracy score : 0.91\n", "escape time : 12.204 s\n", "the number of unit : 304\n", "accuracy score : 0.908333333333\n", "escape time : 12.27 s\n", "the number of unit : 305\n", "accuracy score : 0.901666666667\n", "escape time : 11.567 s\n", "the number of unit : 306\n", "accuracy score : 0.903333333333\n", "escape time : 11.977 s\n", "the number of unit : 307\n", "accuracy score : 0.905\n", "escape time : 12.023 s\n", "the number of unit : 308\n", "accuracy score : 0.906666666667\n", "escape time : 11.773 s\n", "the number of unit : 309\n", "accuracy score : 0.906666666667\n", "escape time : 11.615 s\n", "the number of unit : 310\n", "accuracy score : 0.905\n", "escape time : 11.792 s\n", "the number of unit : 311\n", "accuracy score : 0.903333333333\n", "escape time : 11.485 s\n", "the number of unit : 312\n", "accuracy score : 0.905\n", "escape time : 12.04 s\n", "the number of unit : 313\n", "accuracy score : 0.905\n", "escape time : 11.412 s\n", "the number of unit : 314\n", "accuracy score : 0.903333333333\n", "escape time : 11.934 s\n", "the number of unit : 315\n", "accuracy score : 0.906666666667\n", "escape time : 11.744 s\n", "the number of unit : 316\n", "accuracy score : 0.908333333333\n", "escape time : 11.767 s\n", "the number of unit : 317\n", "accuracy score : 0.906666666667\n", "escape time : 11.528 s\n", "the number of unit : 318\n", "accuracy score : 0.905\n", "escape time : 11.575 s\n", "the number of unit : 319\n", "accuracy score : 0.905\n", "escape time : 11.444 s\n", "the number of unit : 320\n", "accuracy score : 0.908333333333\n", "escape time : 11.74 s\n", "the number of unit : 321\n", "accuracy score : 0.906666666667\n", "escape time : 11.769 s\n", "the number of unit : 322\n", "accuracy score : 0.901666666667\n", "escape time : 11.524 s\n", "the number of unit : 323\n", "accuracy score : 0.905\n", "escape time : 11.54 s\n", "the number of unit : 324\n", "accuracy score : 0.905\n", "escape time : 11.803 s\n", "the number of unit : 325\n", "accuracy score : 0.903333333333\n", "escape time : 11.458 s\n", "the number of unit : 326\n", "accuracy score : 0.91\n", "escape time : 11.419 s\n", "the number of unit : 327\n", "accuracy score : 0.903333333333\n", "escape time : 11.637 s\n", "the number of unit : 328\n", "accuracy score : 0.903333333333\n", "escape time : 11.917 s\n", "the number of unit : 329\n", "accuracy score : 0.903333333333\n", "escape time : 11.582 s\n", "the number of unit : 330\n", "accuracy score : 0.908333333333\n", "escape time : 11.611 s\n", "the number of unit : 331\n", "accuracy score : 0.905\n", "escape time : 11.498 s\n", "the number of unit : 332\n", "accuracy score : 0.906666666667\n", "escape time : 11.484 s\n", "the number of unit : 333\n", "accuracy score : 0.903333333333\n", "escape time : 11.458 s\n", "the number of unit : 334\n", "accuracy score : 0.903333333333\n", "escape time : 11.434 s\n", "the number of unit : 335\n", "accuracy score : 0.905\n", "escape time : 11.218 s\n", "the number of unit : 336\n", "accuracy score : 0.903333333333\n", "escape time : 11.468 s\n", "the number of unit : 337\n", "accuracy score : 0.905\n", "escape time : 11.26 s\n", "the number of unit : 338\n", "accuracy score : 0.905\n", "escape time : 11.668 s\n", "the number of unit : 339\n", "accuracy score : 0.905\n", "escape time : 11.626 s\n", "the number of unit : 340\n", "accuracy score : 0.905\n", "escape time : 11.537 s\n", "the number of unit : 341\n", "accuracy score : 0.908333333333\n", "escape time : 11.523 s\n", "the number of unit : 342\n", "accuracy score : 0.906666666667\n", "escape time : 10.857 s\n", "the number of unit : 343\n", "accuracy score : 0.903333333333\n", "escape time : 11.438 s\n", "the number of unit : 344\n", "accuracy score : 0.905\n", "escape time : 11.446 s\n", "the number of unit : 345\n", "accuracy score : 0.903333333333\n", "escape time : 11.241 s\n", "the number of unit : 346\n", "accuracy score : 0.905\n", "escape time : 11.318 s\n", "the number of unit : 347\n", "accuracy score : 0.901666666667\n", "escape time : 10.628 s\n", "the number of unit : 348\n", "accuracy score : 0.901666666667\n", "escape time : 11.64 s\n", "the number of unit : 349\n", "accuracy score : 0.905\n", "escape time : 10.938 s\n", "the number of unit : 350\n", "accuracy score : 0.905\n", "escape time : 10.486 s\n", "the number of unit : 351\n", "accuracy score : 0.905\n", "escape time : 10.385 s\n", "the number of unit : 352\n", "accuracy score : 0.906666666667\n", "escape time : 11.5 s\n", "the number of unit : 353\n", "accuracy score : 0.905\n", "escape time : 9.818 s\n", "the number of unit : 354\n", "accuracy score : 0.9\n", "escape time : 11.467 s\n", "the number of unit : 355\n", "accuracy score : 0.905\n", "escape time : 9.864 s\n", "the number of unit : 356\n", "accuracy score : 0.901666666667\n", "escape time : 9.985 s\n", "the number of unit : 357\n", "accuracy score : 0.908333333333\n", "escape time : 9.931 s\n", "the number of unit : 358\n", "accuracy score : 0.905\n", "escape time : 11.179 s\n", "the number of unit : 359\n", "accuracy score : 0.903333333333\n", "escape time : 10.471 s\n", "the number of unit : 360\n", "accuracy score : 0.903333333333\n", "escape time : 9.929 s\n", "the number of unit : 361\n", "accuracy score : 0.903333333333\n", "escape time : 9.894 s\n", "the number of unit : 362\n", "accuracy score : 0.901666666667\n", "escape time : 9.679 s\n", "the number of unit : 363\n", "accuracy score : 0.903333333333\n", "escape time : 10.729 s\n", "the number of unit : 364\n", "accuracy score : 0.905\n", "escape time : 9.476 s\n", "the number of unit : 365\n", "accuracy score : 0.903333333333\n", "escape time : 9.913 s\n", "the number of unit : 366\n", "accuracy score : 0.905\n", "escape time : 9.899 s\n", "the number of unit : 367\n", "accuracy score : 0.903333333333\n", "escape time : 9.866 s\n", "the number of unit : 368\n", "accuracy score : 0.905\n", "escape time : 9.646 s\n", "the number of unit : 369\n", "accuracy score : 0.906666666667\n", "escape time : 10.177 s\n", "the number of unit : 370\n", "accuracy score : 0.903333333333\n", "escape time : 10.032 s\n", "the number of unit : 371\n", "accuracy score : 0.905\n", "escape time : 9.791 s\n", "the number of unit : 372\n", "accuracy score : 0.905\n", "escape time : 9.681 s\n", "the number of unit : 373\n", "accuracy score : 0.905\n", "escape time : 10.041 s\n", "the number of unit : 374\n", "accuracy score : 0.903333333333\n", "escape time : 9.729 s\n", "the number of unit : 375\n", "accuracy score : 0.901666666667\n", "escape time : 10.175 s\n", "the number of unit : 376\n", "accuracy score : 0.901666666667\n", "escape time : 9.931 s\n", "the number of unit : 377\n", "accuracy score : 0.905\n", "escape time : 9.835 s\n", "the number of unit : 378\n", "accuracy score : 0.901666666667\n", "escape time : 10.045 s\n", "the number of unit : 379\n", "accuracy score : 0.905\n", "escape time : 9.867 s\n", "the number of unit : 380\n", "accuracy score : 0.908333333333\n", "escape time : 9.744 s\n", "the number of unit : 381\n", "accuracy score : 0.905\n", "escape time : 10.101 s\n", "the number of unit : 382\n", "accuracy score : 0.906666666667\n", "escape time : 9.899 s\n", "the number of unit : 383\n", "accuracy score : 0.901666666667\n", "escape time : 9.891 s\n", "the number of unit : 384\n", "accuracy score : 0.903333333333\n", "escape time : 9.999 s\n", "the number of unit : 385\n", "accuracy score : 0.905\n", "escape time : 9.933 s\n", "the number of unit : 386\n", "accuracy score : 0.905\n", "escape time : 9.864 s\n", "the number of unit : 387\n", "accuracy score : 0.901666666667\n", "escape time : 10.091 s\n", "the number of unit : 388\n", "accuracy score : 0.905\n", "escape time : 9.774 s\n", "the number of unit : 389\n", "accuracy score : 0.906666666667\n", "escape time : 9.934 s\n", "the number of unit : 390\n", "accuracy score : 0.905\n", "escape time : 10.004 s\n", "the number of unit : 391\n", "accuracy score : 0.905\n", "escape time : 10.062 s\n", "the number of unit : 392\n", "accuracy score : 0.906666666667\n", "escape time : 9.622 s\n", "the number of unit : 393\n", "accuracy score : 0.905\n", "escape time : 10.097 s\n", "the number of unit : 394\n", "accuracy score : 0.906666666667\n", "escape time : 9.929 s\n", "the number of unit : 395\n", "accuracy score : 0.905\n", "escape time : 9.921 s\n", "the number of unit : 396\n", "accuracy score : 0.903333333333\n", "escape time : 9.963 s\n", "the number of unit : 397\n", "accuracy score : 0.905\n", "escape time : 10.125 s\n", "the number of unit : 398\n", "accuracy score : 0.908333333333\n", "escape time : 9.844 s\n", "the number of unit : 399\n", "accuracy score : 0.903333333333\n", "escape time : 10.238 s\n", "the number of unit : 400\n", "accuracy score : 0.91\n", "escape time : 9.67 s\n", "the number of unit : 401\n", "accuracy score : 0.906666666667\n", "escape time : 9.978 s\n", "the number of unit : 402\n", "accuracy score : 0.906666666667\n", "escape time : 10.199 s\n", "the number of unit : 403\n", "accuracy score : 0.903333333333\n", "escape time : 10.061 s\n", "the number of unit : 404\n", "accuracy score : 0.903333333333\n", "escape time : 9.826 s\n", "the number of unit : 405\n", "accuracy score : 0.901666666667\n", "escape time : 10.254 s\n", "the number of unit : 406\n", "accuracy score : 0.905\n", "escape time : 10.001 s\n", "the number of unit : 407\n", "accuracy score : 0.908333333333\n", "escape time : 10.073 s\n", "the number of unit : 408\n", "accuracy score : 0.9\n", "escape time : 9.953 s\n", "the number of unit : 409\n", "accuracy score : 0.906666666667\n", "escape time : 10.075 s\n", "the number of unit : 410\n", "accuracy score : 0.905\n", "escape time : 10.071 s\n", "the number of unit : 411\n", "accuracy score : 0.906666666667\n", "escape time : 10.189 s\n", "the number of unit : 412\n", "accuracy score : 0.905\n", "escape time : 9.859 s\n", "the number of unit : 413\n", "accuracy score : 0.906666666667\n", "escape time : 10.125 s\n", "the number of unit : 414\n", "accuracy score : 0.901666666667\n", "escape time : 10.224 s\n", "the number of unit : 415\n", "accuracy score : 0.905\n", "escape time : 10.231 s\n", "the number of unit : 416\n", "accuracy score : 0.903333333333\n", "escape time : 9.892 s\n", "the number of unit : 417\n", "accuracy score : 0.9\n", "escape time : 10.264 s\n", "the number of unit : 418\n", "accuracy score : 0.905\n", "escape time : 10.132 s\n", "the number of unit : 419\n", "accuracy score : 0.906666666667\n", "escape time : 10.125 s\n", "the number of unit : 420\n", "accuracy score : 0.906666666667\n", "escape time : 10.188 s\n", "the number of unit : 421\n", "accuracy score : 0.903333333333\n", "escape time : 10.276 s\n", "the number of unit : 422\n", "accuracy score : 0.906666666667\n", "escape time : 10.136 s\n", "the number of unit : 423\n", "accuracy score : 0.903333333333\n", "escape time : 10.458 s\n", "the number of unit : 424\n", "accuracy score : 0.901666666667\n", "escape time : 9.997 s\n", "the number of unit : 425\n", "accuracy score : 0.903333333333\n", "escape time : 10.291 s\n", "the number of unit : 426\n", "accuracy score : 0.906666666667\n", "escape time : 10.444 s\n", "the number of unit : 427\n", "accuracy score : 0.905\n", "escape time : 10.252 s\n", "the number of unit : 428\n", "accuracy score : 0.903333333333\n", "escape time : 10.116 s\n", "the number of unit : 429\n", "accuracy score : 0.906666666667\n", "escape time : 10.466 s\n", "the number of unit : 430\n", "accuracy score : 0.901666666667\n", "escape time : 10.208 s\n", "the number of unit : 431\n", "accuracy score : 0.905\n", "escape time : 10.341 s\n", "the number of unit : 432\n", "accuracy score : 0.905\n", "escape time : 10.314 s\n", "the number of unit : 433\n", "accuracy score : 0.905\n", "escape time : 10.39 s\n", "the number of unit : 434\n", "accuracy score : 0.905\n", "escape time : 10.35 s\n", "the number of unit : 435\n", "accuracy score : 0.908333333333\n", "escape time : 10.477 s\n", "the number of unit : 436\n", "accuracy score : 0.905\n", "escape time : 10.184 s\n", "the number of unit : 437\n", "accuracy score : 0.905\n", "escape time : 10.422 s\n", "the number of unit : 438\n", "accuracy score : 0.901666666667\n", "escape time : 10.497 s\n", "the number of unit : 439\n", "accuracy score : 0.905\n", "escape time : 10.426 s\n", "the number of unit : 440\n", "accuracy score : 0.905\n", "escape time : 10.144 s\n", "the number of unit : 441\n", "accuracy score : 0.905\n", "escape time : 10.727 s\n", "the number of unit : 442\n", "accuracy score : 0.903333333333\n", "escape time : 10.475 s\n", "the number of unit : 443\n", "accuracy score : 0.906666666667\n", "escape time : 10.325 s\n", "the number of unit : 444\n", "accuracy score : 0.905\n", "escape time : 10.504 s\n", "the number of unit : 445\n", "accuracy score : 0.901666666667\n", "escape time : 10.521 s\n", "the number of unit : 446\n", "accuracy score : 0.905\n", "escape time : 10.42 s\n", "the number of unit : 447\n", "accuracy score : 0.908333333333\n", "escape time : 10.726 s\n", "the number of unit : 448\n", "accuracy score : 0.91\n", "escape time : 10.401 s\n", "the number of unit : 449\n", "accuracy score : 0.906666666667\n", "escape time : 10.472 s\n", "the number of unit : 450\n", "accuracy score : 0.906666666667\n", "escape time : 10.781 s\n", "the number of unit : 451\n", "accuracy score : 0.906666666667\n", "escape time : 10.412 s\n", "the number of unit : 452\n", "accuracy score : 0.9\n", "escape time : 10.401 s\n", "the number of unit : 453\n", "accuracy score : 0.901666666667\n", "escape time : 11.299 s\n", "the number of unit : 454\n", "accuracy score : 0.903333333333\n", "escape time : 12.064 s\n", "the number of unit : 455\n", "accuracy score : 0.906666666667\n", "escape time : 12.39 s\n", "the number of unit : 456\n", "accuracy score : 0.905\n", "escape time : 11.425 s\n", "the number of unit : 457\n", "accuracy score : 0.903333333333\n", "escape time : 11.464 s\n", "the number of unit : 458\n", "accuracy score : 0.905\n", "escape time : 13.146 s\n", "the number of unit : 459\n", "accuracy score : 0.908333333333\n", "escape time : 12.296 s\n", "the number of unit : 460\n", "accuracy score : 0.905\n", "escape time : 13.627 s\n", "the number of unit : 461\n", "accuracy score : 0.91\n", "escape time : 16.598 s\n", "the number of unit : 462\n", "accuracy score : 0.903333333333\n", "escape time : 14.749 s\n", "the number of unit : 463\n", "accuracy score : 0.903333333333\n", "escape time : 14.725 s\n", "the number of unit : 464\n", "accuracy score : 0.905\n", "escape time : 21.925 s\n", "the number of unit : 465\n", "accuracy score : 0.901666666667\n", "escape time : 19.215 s\n", "the number of unit : 466\n", "accuracy score : 0.901666666667\n", "escape time : 14.791 s\n", "the number of unit : 467\n", "accuracy score : 0.901666666667\n", "escape time : 14.321 s\n", "the number of unit : 468\n", "accuracy score : 0.903333333333\n", "escape time : 14.388 s\n", "the number of unit : 469\n", "accuracy score : 0.908333333333\n", "escape time : 14.697 s\n", "the number of unit : 470\n", "accuracy score : 0.903333333333\n", "escape time : 15.668 s\n", "the number of unit : 471\n", "accuracy score : 0.906666666667\n", "escape time : 15.879 s\n", "the number of unit : 472\n", "accuracy score : 0.901666666667\n", "escape time : 15.225 s\n", "the number of unit : 473\n", "accuracy score : 0.9\n", "escape time : 15.626 s\n", "the number of unit : 474\n", "accuracy score : 0.903333333333\n", "escape time : 15.818 s\n", "the number of unit : 475\n", "accuracy score : 0.903333333333\n", "escape time : 15.753 s\n", "the number of unit : 476\n", "accuracy score : 0.903333333333\n", "escape time : 15.597 s\n", "the number of unit : 477\n", "accuracy score : 0.903333333333\n", "escape time : 15.854 s\n", "the number of unit : 478\n", "accuracy score : 0.903333333333\n", "escape time : 15.658 s\n", "the number of unit : 479\n", "accuracy score : 0.903333333333\n", "escape time : 15.699 s\n", "the number of unit : 480\n", "accuracy score : 0.903333333333\n", "escape time : 15.741 s\n", "the number of unit : 481\n", "accuracy score : 0.903333333333\n", "escape time : 14.745 s\n", "the number of unit : 482\n", "accuracy score : 0.901666666667\n", "escape time : 13.833 s\n", "the number of unit : 483\n", "accuracy score : 0.905\n", "escape time : 13.648 s\n", "the number of unit : 484\n", "accuracy score : 0.91\n", "escape time : 13.576 s\n", "the number of unit : 485\n", "accuracy score : 0.908333333333\n", "escape time : 13.439 s\n", "the number of unit : 486\n", "accuracy score : 0.905\n", "escape time : 13.644 s\n", "the number of unit : 487\n", "accuracy score : 0.905\n", "escape time : 13.45 s\n", "the number of unit : 488\n", "accuracy score : 0.905\n", "escape time : 13.183 s\n", "the number of unit : 489\n", "accuracy score : 0.905\n", "escape time : 13.855 s\n", "the number of unit : 490\n", "accuracy score : 0.901666666667\n", "escape time : 13.45 s\n", "the number of unit : 491\n", "accuracy score : 0.903333333333\n", "escape time : 13.543 s\n", "the number of unit : 492\n", "accuracy score : 0.906666666667\n", "escape time : 13.913 s\n", "the number of unit : 493\n", "accuracy score : 0.908333333333\n", "escape time : 13.679 s\n", "the number of unit : 494\n", "accuracy score : 0.903333333333\n", "escape time : 13.745 s\n", "the number of unit : 495\n", "accuracy score : 0.906666666667\n", "escape time : 14.137 s\n", "the number of unit : 496\n", "accuracy score : 0.906666666667\n", "escape time : 13.729 s\n", "the number of unit : 497\n", "accuracy score : 0.905\n", "escape time : 13.788 s\n", "the number of unit : 498\n", "accuracy score : 0.905\n", "escape time : 14.382 s\n", "the number of unit : 499\n", "accuracy score : 0.906666666667\n", "escape time : 14.885 s\n", "the number of unit : 500\n", "accuracy score : 0.908333333333\n", "escape time : 15.041 s\n" ] } ], "source": [ "score1 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Rectifier\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score1.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.226666666667\n", "escape time : 4.472 s\n", "the number of unit : 2\n", "accuracy score : 0.473333333333\n", "escape time : 3.968 s\n", "the number of unit : 3\n", "accuracy score : 0.49\n", "escape time : 3.966 s\n", "the number of unit : 4\n", "accuracy score : 0.733333333333\n", "escape time : 4.07 s\n", "the number of unit : 5\n", "accuracy score : 0.768333333333\n", "escape time : 4.23 s\n", "the number of unit : 6\n", "accuracy score : 0.788333333333\n", "escape time : 4.16 s\n", "the number of unit : 7\n", "accuracy score : 0.896666666667\n", "escape time : 4.746 s\n", "the number of unit : 8\n", "accuracy score : 0.89\n", "escape time : 4.693 s\n", "the number of unit : 9\n", "accuracy score : 0.88\n", "escape time : 4.092 s\n", "the number of unit : 10\n", "accuracy score : 0.891666666667\n", "escape time : 4.14 s\n", "the number of unit : 11\n", "accuracy score : 0.886666666667\n", "escape time : 4.277 s\n", "the number of unit : 12\n", "accuracy score : 0.896666666667\n", "escape time : 4.411 s\n", "the number of unit : 13\n", "accuracy score : 0.888333333333\n", "escape time : 4.293 s\n", "the number of unit : 14\n", "accuracy score : 0.891666666667\n", "escape time : 4.701 s\n", "the number of unit : 15\n", "accuracy score : 0.898333333333\n", "escape time : 4.56 s\n", "the number of unit : 16\n", "accuracy score : 0.895\n", "escape time : 4.299 s\n", "the number of unit : 17\n", "accuracy score : 0.89\n", "escape time : 4.275 s\n", "the number of unit : 18\n", "accuracy score : 0.895\n", "escape time : 4.546 s\n", "the number of unit : 19\n", "accuracy score : 0.901666666667\n", "escape time : 4.453 s\n", "the number of unit : 20\n", "accuracy score : 0.893333333333\n", "escape time : 4.375 s\n", "the number of unit : 21\n", "accuracy score : 0.893333333333\n", "escape time : 4.394 s\n", "the number of unit : 22\n", "accuracy score : 0.898333333333\n", "escape time : 4.621 s\n", "the number of unit : 23\n", "accuracy score : 0.898333333333\n", "escape time : 4.356 s\n", "the number of unit : 24\n", "accuracy score : 0.895\n", "escape time : 4.465 s\n", "the number of unit : 25\n", "accuracy score : 0.898333333333\n", "escape time : 4.638 s\n", "the number of unit : 26\n", "accuracy score : 0.895\n", "escape time : 4.509 s\n", "the number of unit : 27\n", "accuracy score : 0.895\n", "escape time : 4.531 s\n", "the number of unit : 28\n", "accuracy score : 0.893333333333\n", "escape time : 4.601 s\n", "the number of unit : 29\n", "accuracy score : 0.896666666667\n", "escape time : 4.763 s\n", "the number of unit : 30\n", "accuracy score : 0.898333333333\n", "escape time : 4.55 s\n", "the number of unit : 31\n", "accuracy score : 0.896666666667\n", "escape time : 4.625 s\n", "the number of unit : 32\n", "accuracy score : 0.895\n", "escape time : 4.775 s\n", "the number of unit : 33\n", "accuracy score : 0.9\n", "escape time : 4.682 s\n", "the number of unit : 34\n", "accuracy score : 0.903333333333\n", "escape time : 4.648 s\n", "the number of unit : 35\n", "accuracy score : 0.9\n", "escape time : 4.862 s\n", "the number of unit : 36\n", "accuracy score : 0.901666666667\n", "escape time : 4.665 s\n", "the number of unit : 37\n", "accuracy score : 0.898333333333\n", "escape time : 4.702 s\n", "the number of unit : 38\n", "accuracy score : 0.896666666667\n", "escape time : 4.72 s\n", "the number of unit : 39\n", "accuracy score : 0.895\n", "escape time : 4.863 s\n", "the number of unit : 40\n", "accuracy score : 0.896666666667\n", "escape time : 4.774 s\n", "the number of unit : 41\n", "accuracy score : 0.9\n", "escape time : 4.771 s\n", "the number of unit : 42\n", "accuracy score : 0.903333333333\n", "escape time : 5.016 s\n", "the number of unit : 43\n", "accuracy score : 0.903333333333\n", "escape time : 4.876 s\n", "the number of unit : 44\n", "accuracy score : 0.9\n", "escape time : 4.889 s\n", "the number of unit : 45\n", "accuracy score : 0.901666666667\n", "escape time : 5.042 s\n", "the number of unit : 46\n", "accuracy score : 0.896666666667\n", "escape time : 4.884 s\n", "the number of unit : 47\n", "accuracy score : 0.895\n", "escape time : 4.926 s\n", "the number of unit : 48\n", "accuracy score : 0.901666666667\n", "escape time : 5.717 s\n", "the number of unit : 49\n", "accuracy score : 0.901666666667\n", "escape time : 5.119 s\n", "the number of unit : 50\n", "accuracy score : 0.91\n", "escape time : 5.489 s\n", "the number of unit : 51\n", "accuracy score : 0.9\n", "escape time : 5.373 s\n", "the number of unit : 52\n", "accuracy score : 0.9\n", "escape time : 5.451 s\n", "the number of unit : 53\n", "accuracy score : 0.906666666667\n", "escape time : 4.551 s\n", "the number of unit : 54\n", "accuracy score : 0.893333333333\n", "escape time : 4.299 s\n", "the number of unit : 55\n", "accuracy score : 0.9\n", "escape time : 4.61 s\n", "the number of unit : 56\n", "accuracy score : 0.898333333333\n", "escape time : 4.606 s\n", "the number of unit : 57\n", "accuracy score : 0.9\n", "escape time : 4.475 s\n", "the number of unit : 58\n", "accuracy score : 0.896666666667\n", "escape time : 4.557 s\n", "the number of unit : 59\n", "accuracy score : 0.901666666667\n", "escape time : 4.677 s\n", "the number of unit : 60\n", "accuracy score : 0.901666666667\n", "escape time : 4.372 s\n", "the number of unit : 61\n", "accuracy score : 0.895\n", "escape time : 4.464 s\n", "the number of unit : 62\n", "accuracy score : 0.895\n", "escape time : 4.652 s\n", "the number of unit : 63\n", "accuracy score : 0.896666666667\n", "escape time : 4.522 s\n", "the number of unit : 64\n", "accuracy score : 0.898333333333\n", "escape time : 4.541 s\n", "the number of unit : 65\n", "accuracy score : 0.901666666667\n", "escape time : 4.608 s\n", "the number of unit : 66\n", "accuracy score : 0.903333333333\n", "escape time : 4.641 s\n", "the number of unit : 67\n", "accuracy score : 0.896666666667\n", "escape time : 4.538 s\n", "the number of unit : 68\n", "accuracy score : 0.903333333333\n", "escape time : 4.571 s\n", "the number of unit : 69\n", "accuracy score : 0.901666666667\n", "escape time : 4.695 s\n", "the number of unit : 70\n", "accuracy score : 0.9\n", "escape time : 4.594 s\n", "the number of unit : 71\n", "accuracy score : 0.901666666667\n", "escape time : 4.627 s\n", "the number of unit : 72\n", "accuracy score : 0.903333333333\n", "escape time : 4.837 s\n", "the number of unit : 73\n", "accuracy score : 0.898333333333\n", "escape time : 4.79 s\n", "the number of unit : 74\n", "accuracy score : 0.898333333333\n", "escape time : 4.772 s\n", "the number of unit : 75\n", "accuracy score : 0.905\n", "escape time : 4.726 s\n", "the number of unit : 76\n", "accuracy score : 0.896666666667\n", "escape time : 5.009 s\n", "the number of unit : 77\n", "accuracy score : 0.9\n", "escape time : 4.801 s\n", "the number of unit : 78\n", "accuracy score : 0.896666666667\n", "escape time : 4.77 s\n", "the number of unit : 79\n", "accuracy score : 0.9\n", "escape time : 4.979 s\n", "the number of unit : 80\n", "accuracy score : 0.9\n", "escape time : 4.838 s\n", "the number of unit : 81\n", "accuracy score : 0.893333333333\n", "escape time : 4.809 s\n", "the number of unit : 82\n", "accuracy score : 0.896666666667\n", "escape time : 4.808 s\n", "the number of unit : 83\n", "accuracy score : 0.901666666667\n", "escape time : 5.003 s\n", "the number of unit : 84\n", "accuracy score : 0.905\n", "escape time : 4.842 s\n", "the number of unit : 85\n", "accuracy score : 0.9\n", "escape time : 4.888 s\n", "the number of unit : 86\n", "accuracy score : 0.898333333333\n", "escape time : 5.064 s\n", "the number of unit : 87\n", "accuracy score : 0.9\n", "escape time : 4.95 s\n", "the number of unit : 88\n", "accuracy score : 0.896666666667\n", "escape time : 4.987 s\n", "the number of unit : 89\n", "accuracy score : 0.9\n", "escape time : 5.247 s\n", "the number of unit : 90\n", "accuracy score : 0.898333333333\n", "escape time : 5.029 s\n", "the number of unit : 91\n", "accuracy score : 0.898333333333\n", "escape time : 4.961 s\n", "the number of unit : 92\n", "accuracy score : 0.896666666667\n", "escape time : 5.014 s\n", "the number of unit : 93\n", "accuracy score : 0.9\n", "escape time : 5.248 s\n", "the number of unit : 94\n", "accuracy score : 0.898333333333\n", "escape time : 5.049 s\n", "the number of unit : 95\n", "accuracy score : 0.898333333333\n", "escape time : 5.114 s\n", "the number of unit : 96\n", "accuracy score : 0.9\n", "escape time : 5.118 s\n", "the number of unit : 97\n", "accuracy score : 0.898333333333\n", "escape time : 5.092 s\n", "the number of unit : 98\n", "accuracy score : 0.901666666667\n", "escape time : 5.12 s\n", "the number of unit : 99\n", "accuracy score : 0.9\n", "escape time : 5.227 s\n", "the number of unit : 100\n", "accuracy score : 0.901666666667\n", "escape time : 5.155 s\n", "the number of unit : 101\n", "accuracy score : 0.903333333333\n", "escape time : 5.171 s\n", "the number of unit : 102\n", "accuracy score : 0.9\n", "escape time : 5.163 s\n", "the number of unit : 103\n", "accuracy score : 0.9\n", "escape time : 5.328 s\n", "the number of unit : 104\n", "accuracy score : 0.896666666667\n", "escape time : 5.146 s\n", "the number of unit : 105\n", "accuracy score : 0.903333333333\n", "escape time : 5.258 s\n", "the number of unit : 106\n", "accuracy score : 0.906666666667\n", "escape time : 5.383 s\n", "the number of unit : 107\n", "accuracy score : 0.901666666667\n", "escape time : 5.277 s\n", "the number of unit : 108\n", "accuracy score : 0.898333333333\n", "escape time : 5.355 s\n", "the number of unit : 109\n", "accuracy score : 0.901666666667\n", "escape time : 5.339 s\n", "the number of unit : 110\n", "accuracy score : 0.901666666667\n", "escape time : 5.583 s\n", "the number of unit : 111\n", "accuracy score : 0.9\n", "escape time : 5.338 s\n", "the number of unit : 112\n", "accuracy score : 0.898333333333\n", "escape time : 5.288 s\n", "the number of unit : 113\n", "accuracy score : 0.9\n", "escape time : 5.566 s\n", "the number of unit : 114\n", "accuracy score : 0.903333333333\n", "escape time : 5.387 s\n", "the number of unit : 115\n", "accuracy score : 0.905\n", "escape time : 5.531 s\n", "the number of unit : 116\n", "accuracy score : 0.9\n", "escape time : 5.578 s\n", "the number of unit : 117\n", "accuracy score : 0.895\n", "escape time : 5.473 s\n", "the number of unit : 118\n", "accuracy score : 0.898333333333\n", "escape time : 5.526 s\n", "the number of unit : 119\n", "accuracy score : 0.9\n", "escape time : 5.544 s\n", "the number of unit : 120\n", "accuracy score : 0.895\n", "escape time : 5.742 s\n", "the number of unit : 121\n", "accuracy score : 0.901666666667\n", "escape time : 5.579 s\n", "the number of unit : 122\n", "accuracy score : 0.901666666667\n", "escape time : 5.547 s\n", "the number of unit : 123\n", "accuracy score : 0.898333333333\n", "escape time : 5.709 s\n", "the number of unit : 124\n", "accuracy score : 0.9\n", "escape time : 5.668 s\n", "the number of unit : 125\n", "accuracy score : 0.895\n", "escape time : 5.537 s\n", "the number of unit : 126\n", "accuracy score : 0.898333333333\n", "escape time : 5.723 s\n", "the number of unit : 127\n", "accuracy score : 0.898333333333\n", "escape time : 5.673 s\n", "the number of unit : 128\n", "accuracy score : 0.898333333333\n", "escape time : 7.521 s\n", "the number of unit : 129\n", "accuracy score : 0.896666666667\n", "escape time : 7.427 s\n", "the number of unit : 130\n", "accuracy score : 0.895\n", "escape time : 7.523 s\n", "the number of unit : 131\n", "accuracy score : 0.901666666667\n", "escape time : 7.435 s\n", "the number of unit : 132\n", "accuracy score : 0.898333333333\n", "escape time : 7.434 s\n", "the number of unit : 133\n", "accuracy score : 0.9\n", "escape time : 7.771 s\n", "the number of unit : 134\n", "accuracy score : 0.898333333333\n", "escape time : 7.6 s\n", "the number of unit : 135\n", "accuracy score : 0.898333333333\n", "escape time : 7.5 s\n", "the number of unit : 136\n", "accuracy score : 0.898333333333\n", "escape time : 7.429 s\n", "the number of unit : 137\n", "accuracy score : 0.901666666667\n", "escape time : 7.748 s\n", "the number of unit : 138\n", "accuracy score : 0.901666666667\n", "escape time : 7.773 s\n", "the number of unit : 139\n", "accuracy score : 0.9\n", "escape time : 7.519 s\n", "the number of unit : 140\n", "accuracy score : 0.901666666667\n", "escape time : 7.769 s\n", "the number of unit : 141\n", "accuracy score : 0.896666666667\n", "escape time : 7.664 s\n", "the number of unit : 142\n", "accuracy score : 0.896666666667\n", "escape time : 7.659 s\n", "the number of unit : 143\n", "accuracy score : 0.896666666667\n", "escape time : 7.904 s\n", "the number of unit : 144\n", "accuracy score : 0.896666666667\n", "escape time : 7.519 s\n", "the number of unit : 145\n", "accuracy score : 0.9\n", "escape time : 7.705 s\n", "the number of unit : 146\n", "accuracy score : 0.9\n", "escape time : 7.601 s\n", "the number of unit : 147\n", "accuracy score : 0.9\n", "escape time : 7.805 s\n", "the number of unit : 148\n", "accuracy score : 0.9\n", "escape time : 7.619 s\n", "the number of unit : 149\n", "accuracy score : 0.901666666667\n", "escape time : 7.731 s\n", "the number of unit : 150\n", "accuracy score : 0.901666666667\n", "escape time : 8.004 s\n", "the number of unit : 151\n", "accuracy score : 0.895\n", "escape time : 7.623 s\n", "the number of unit : 152\n", "accuracy score : 0.898333333333\n", "escape time : 7.589 s\n", "the number of unit : 153\n", "accuracy score : 0.898333333333\n", "escape time : 7.838 s\n", "the number of unit : 154\n", "accuracy score : 0.9\n", "escape time : 7.904 s\n", "the number of unit : 155\n", "accuracy score : 0.898333333333\n", "escape time : 7.945 s\n", "the number of unit : 156\n", "accuracy score : 0.898333333333\n", "escape time : 7.621 s\n", "the number of unit : 157\n", "accuracy score : 0.898333333333\n", "escape time : 7.922 s\n", "the number of unit : 158\n", "accuracy score : 0.896666666667\n", "escape time : 7.906 s\n", "the number of unit : 159\n", "accuracy score : 0.896666666667\n", "escape time : 7.814 s\n", "the number of unit : 160\n", "accuracy score : 0.896666666667\n", "escape time : 8.008 s\n", "the number of unit : 161\n", "accuracy score : 0.898333333333\n", "escape time : 7.84 s\n", "the number of unit : 162\n", "accuracy score : 0.9\n", "escape time : 7.621 s\n", "the number of unit : 163\n", "accuracy score : 0.901666666667\n", "escape time : 8.148 s\n", "the number of unit : 164\n", "accuracy score : 0.9\n", "escape time : 8.021 s\n", "the number of unit : 165\n", "accuracy score : 0.9\n", "escape time : 7.922 s\n", "the number of unit : 166\n", "accuracy score : 0.898333333333\n", "escape time : 7.887 s\n", "the number of unit : 167\n", "accuracy score : 0.898333333333\n", "escape time : 8.365 s\n", "the number of unit : 168\n", "accuracy score : 0.895\n", "escape time : 7.957 s\n", "the number of unit : 169\n", "accuracy score : 0.9\n", "escape time : 8.326 s\n", "the number of unit : 170\n", "accuracy score : 0.9\n", "escape time : 8.279 s\n", "the number of unit : 171\n", "accuracy score : 0.9\n", "escape time : 8.544 s\n", "the number of unit : 172\n", "accuracy score : 0.896666666667\n", "escape time : 8.416 s\n", "the number of unit : 173\n", "accuracy score : 0.901666666667\n", "escape time : 8.387 s\n", "the number of unit : 174\n", "accuracy score : 0.896666666667\n", "escape time : 8.263 s\n", "the number of unit : 175\n", "accuracy score : 0.898333333333\n", "escape time : 8.273 s\n", "the number of unit : 176\n", "accuracy score : 0.898333333333\n", "escape time : 8.044 s\n", "the number of unit : 177\n", "accuracy score : 0.898333333333\n", "escape time : 8.639 s\n", "the number of unit : 178\n", "accuracy score : 0.9\n", "escape time : 8.274 s\n", "the number of unit : 179\n", "accuracy score : 0.903333333333\n", "escape time : 8.233 s\n", "the number of unit : 180\n", "accuracy score : 0.901666666667\n", "escape time : 7.838 s\n", "the number of unit : 181\n", "accuracy score : 0.898333333333\n", "escape time : 8.948 s\n", "the number of unit : 182\n", "accuracy score : 0.896666666667\n", "escape time : 8.485 s\n", "the number of unit : 183\n", "accuracy score : 0.9\n", "escape time : 8.62 s\n", "the number of unit : 184\n", "accuracy score : 0.898333333333\n", "escape time : 8.357 s\n", "the number of unit : 185\n", "accuracy score : 0.898333333333\n", "escape time : 8.806 s\n", "the number of unit : 186\n", "accuracy score : 0.903333333333\n", "escape time : 8.507 s\n", "the number of unit : 187\n", "accuracy score : 0.896666666667\n", "escape time : 8.773 s\n", "the number of unit : 188\n", "accuracy score : 0.898333333333\n", "escape time : 8.504 s\n", "the number of unit : 189\n", "accuracy score : 0.898333333333\n", "escape time : 8.535 s\n", "the number of unit : 190\n", "accuracy score : 0.901666666667\n", "escape time : 8.77 s\n", "the number of unit : 191\n", "accuracy score : 0.9\n", "escape time : 9.066 s\n", "the number of unit : 192\n", "accuracy score : 0.898333333333\n", "escape time : 8.386 s\n", "the number of unit : 193\n", "accuracy score : 0.898333333333\n", "escape time : 8.998 s\n", "the number of unit : 194\n", "accuracy score : 0.905\n", "escape time : 9.422 s\n", "the number of unit : 195\n", "accuracy score : 0.903333333333\n", "escape time : 8.997 s\n", "the number of unit : 196\n", "accuracy score : 0.898333333333\n", "escape time : 8.797 s\n", "the number of unit : 197\n", "accuracy score : 0.898333333333\n", "escape time : 9.533 s\n", "the number of unit : 198\n", "accuracy score : 0.9\n", "escape time : 9.232 s\n", "the number of unit : 199\n", "accuracy score : 0.901666666667\n", "escape time : 8.872 s\n", "the number of unit : 200\n", "accuracy score : 0.9\n", "escape time : 9.038 s\n", "the number of unit : 201\n", "accuracy score : 0.898333333333\n", "escape time : 9.178 s\n", "the number of unit : 202\n", "accuracy score : 0.9\n", "escape time : 9.185 s\n", "the number of unit : 203\n", "accuracy score : 0.898333333333\n", "escape time : 9.369 s\n", "the number of unit : 204\n", "accuracy score : 0.9\n", "escape time : 9.171 s\n", "the number of unit : 205\n", "accuracy score : 0.896666666667\n", "escape time : 9.445 s\n", "the number of unit : 206\n", "accuracy score : 0.9\n", "escape time : 9.449 s\n", "the number of unit : 207\n", "accuracy score : 0.898333333333\n", "escape time : 9.417 s\n", "the number of unit : 208\n", "accuracy score : 0.901666666667\n", "escape time : 9.232 s\n", "the number of unit : 209\n", "accuracy score : 0.9\n", "escape time : 9.418 s\n", "the number of unit : 210\n", "accuracy score : 0.896666666667\n", "escape time : 9.553 s\n", "the number of unit : 211\n", "accuracy score : 0.896666666667\n", "escape time : 9.79 s\n", "the number of unit : 212\n", "accuracy score : 0.901666666667\n", "escape time : 9.245 s\n", "the number of unit : 213\n", "accuracy score : 0.898333333333\n", "escape time : 9.542 s\n", "the number of unit : 214\n", "accuracy score : 0.898333333333\n", "escape time : 9.658 s\n", "the number of unit : 215\n", "accuracy score : 0.898333333333\n", "escape time : 9.434 s\n", "the number of unit : 216\n", "accuracy score : 0.898333333333\n", "escape time : 9.17 s\n", "the number of unit : 217\n", "accuracy score : 0.903333333333\n", "escape time : 9.603 s\n", "the number of unit : 218\n", "accuracy score : 0.896666666667\n", "escape time : 9.854 s\n", "the number of unit : 219\n", "accuracy score : 0.898333333333\n", "escape time : 9.496 s\n", "the number of unit : 220\n", "accuracy score : 0.898333333333\n", "escape time : 9.468 s\n", "the number of unit : 221\n", "accuracy score : 0.898333333333\n", "escape time : 9.918 s\n", "the number of unit : 222\n", "accuracy score : 0.9\n", "escape time : 9.658 s\n", "the number of unit : 223\n", "accuracy score : 0.896666666667\n", "escape time : 9.636 s\n", "the number of unit : 224\n", "accuracy score : 0.9\n", "escape time : 9.403 s\n", "the number of unit : 225\n", "accuracy score : 0.901666666667\n", "escape time : 9.782 s\n", "the number of unit : 226\n", "accuracy score : 0.9\n", "escape time : 9.923 s\n", "the number of unit : 227\n", "accuracy score : 0.9\n", "escape time : 9.754 s\n", "the number of unit : 228\n", "accuracy score : 0.895\n", "escape time : 9.852 s\n", "the number of unit : 229\n", "accuracy score : 0.9\n", "escape time : 9.703 s\n", "the number of unit : 230\n", "accuracy score : 0.901666666667\n", "escape time : 9.701 s\n", "the number of unit : 231\n", "accuracy score : 0.905\n", "escape time : 10.172 s\n", "the number of unit : 232\n", "accuracy score : 0.901666666667\n", "escape time : 9.616 s\n", "the number of unit : 233\n", "accuracy score : 0.901666666667\n", "escape time : 9.933 s\n", "the number of unit : 234\n", "accuracy score : 0.898333333333\n", "escape time : 10.027 s\n", "the number of unit : 235\n", "accuracy score : 0.905\n", "escape time : 10.293 s\n", "the number of unit : 236\n", "accuracy score : 0.903333333333\n", "escape time : 9.764 s\n", "the number of unit : 237\n", "accuracy score : 0.898333333333\n", "escape time : 10.072 s\n", "the number of unit : 238\n", "accuracy score : 0.898333333333\n", "escape time : 9.968 s\n", "the number of unit : 239\n", "accuracy score : 0.9\n", "escape time : 10.099 s\n", "the number of unit : 240\n", "accuracy score : 0.896666666667\n", "escape time : 9.686 s\n", "the number of unit : 241\n", "accuracy score : 0.9\n", "escape time : 10.112 s\n", "the number of unit : 242\n", "accuracy score : 0.898333333333\n", "escape time : 10.35 s\n", "the number of unit : 243\n", "accuracy score : 0.901666666667\n", "escape time : 10.272 s\n", "the number of unit : 244\n", "accuracy score : 0.898333333333\n", "escape time : 9.957 s\n", "the number of unit : 245\n", "accuracy score : 0.898333333333\n", "escape time : 10.625 s\n", "the number of unit : 246\n", "accuracy score : 0.903333333333\n", "escape time : 10.209 s\n", "the number of unit : 247\n", "accuracy score : 0.896666666667\n", "escape time : 10.428 s\n", "the number of unit : 248\n", "accuracy score : 0.901666666667\n", "escape time : 10.153 s\n", "the number of unit : 249\n", "accuracy score : 0.898333333333\n", "escape time : 10.56 s\n", "the number of unit : 250\n", "accuracy score : 0.903333333333\n", "escape time : 10.367 s\n", "the number of unit : 251\n", "accuracy score : 0.9\n", "escape time : 10.666 s\n", "the number of unit : 252\n", "accuracy score : 0.901666666667\n", "escape time : 10.291 s\n", "the number of unit : 253\n", "accuracy score : 0.895\n", "escape time : 10.659 s\n", "the number of unit : 254\n", "accuracy score : 0.9\n", "escape time : 10.527 s\n", "the number of unit : 255\n", "accuracy score : 0.898333333333\n", "escape time : 10.964 s\n", "the number of unit : 256\n", "accuracy score : 0.898333333333\n", "escape time : 10.313 s\n", "the number of unit : 257\n", "accuracy score : 0.9\n", "escape time : 11.046 s\n", "the number of unit : 258\n", "accuracy score : 0.9\n", "escape time : 10.978 s\n", "the number of unit : 259\n", "accuracy score : 0.898333333333\n", "escape time : 11.263 s\n", "the number of unit : 260\n", "accuracy score : 0.901666666667\n", "escape time : 10.848 s\n", "the number of unit : 261\n", "accuracy score : 0.9\n", "escape time : 11.059 s\n", "the number of unit : 262\n", "accuracy score : 0.9\n", "escape time : 11.336 s\n", "the number of unit : 263\n", "accuracy score : 0.896666666667\n", "escape time : 11.368 s\n", "the number of unit : 264\n", "accuracy score : 0.898333333333\n", "escape time : 11.462 s\n", "the number of unit : 265\n", "accuracy score : 0.9\n", "escape time : 11.665 s\n", "the number of unit : 266\n", "accuracy score : 0.9\n", "escape time : 11.304 s\n", "the number of unit : 267\n", "accuracy score : 0.898333333333\n", "escape time : 11.587 s\n", "the number of unit : 268\n", "accuracy score : 0.898333333333\n", "escape time : 11.014 s\n", "the number of unit : 269\n", "accuracy score : 0.9\n", "escape time : 11.38 s\n", "the number of unit : 270\n", "accuracy score : 0.896666666667\n", "escape time : 11.431 s\n", "the number of unit : 271\n", "accuracy score : 0.896666666667\n", "escape time : 11.553 s\n", "the number of unit : 272\n", "accuracy score : 0.901666666667\n", "escape time : 11.37 s\n", "the number of unit : 273\n", "accuracy score : 0.901666666667\n", "escape time : 11.461 s\n", "the number of unit : 274\n", "accuracy score : 0.903333333333\n", "escape time : 11.485 s\n", "the number of unit : 275\n", "accuracy score : 0.905\n", "escape time : 11.651 s\n", "the number of unit : 276\n", "accuracy score : 0.9\n", "escape time : 11.481 s\n", "the number of unit : 277\n", "accuracy score : 0.9\n", "escape time : 11.712 s\n", "the number of unit : 278\n", "accuracy score : 0.901666666667\n", "escape time : 11.352 s\n", "the number of unit : 279\n", "accuracy score : 0.903333333333\n", "escape time : 11.94 s\n", "the number of unit : 280\n", "accuracy score : 0.896666666667\n", "escape time : 11.537 s\n", "the number of unit : 281\n", "accuracy score : 0.901666666667\n", "escape time : 11.416 s\n", "the number of unit : 282\n", "accuracy score : 0.901666666667\n", "escape time : 11.561 s\n", "the number of unit : 283\n", "accuracy score : 0.896666666667\n", "escape time : 11.303 s\n", "the number of unit : 284\n", "accuracy score : 0.9\n", "escape time : 11.156 s\n", "the number of unit : 285\n", "accuracy score : 0.901666666667\n", "escape time : 11.446 s\n", "the number of unit : 286\n", "accuracy score : 0.901666666667\n", "escape time : 11.763 s\n", "the number of unit : 287\n", "accuracy score : 0.898333333333\n", "escape time : 11.336 s\n", "the number of unit : 288\n", "accuracy score : 0.896666666667\n", "escape time : 11.301 s\n", "the number of unit : 289\n", "accuracy score : 0.9\n", "escape time : 11.496 s\n", "the number of unit : 290\n", "accuracy score : 0.898333333333\n", "escape time : 11.288 s\n", "the number of unit : 291\n", "accuracy score : 0.901666666667\n", "escape time : 11.213 s\n", "the number of unit : 292\n", "accuracy score : 0.898333333333\n", "escape time : 11.714 s\n", "the number of unit : 293\n", "accuracy score : 0.898333333333\n", "escape time : 11.451 s\n", "the number of unit : 294\n", "accuracy score : 0.896666666667\n", "escape time : 11.475 s\n", "the number of unit : 295\n", "accuracy score : 0.898333333333\n", "escape time : 11.426 s\n", "the number of unit : 296\n", "accuracy score : 0.9\n", "escape time : 11.403 s\n", "the number of unit : 297\n", "accuracy score : 0.901666666667\n", "escape time : 11.339 s\n", "the number of unit : 298\n", "accuracy score : 0.898333333333\n", "escape time : 10.932 s\n", "the number of unit : 299\n", "accuracy score : 0.901666666667\n", "escape time : 11.406 s\n", "the number of unit : 300\n", "accuracy score : 0.9\n", "escape time : 11.398 s\n", "the number of unit : 301\n", "accuracy score : 0.901666666667\n", "escape time : 11.401 s\n", "the number of unit : 302\n", "accuracy score : 0.896666666667\n", "escape time : 11.748 s\n", "the number of unit : 303\n", "accuracy score : 0.901666666667\n", "escape time : 11.285 s\n", "the number of unit : 304\n", "accuracy score : 0.9\n", "escape time : 11.427 s\n", "the number of unit : 305\n", "accuracy score : 0.898333333333\n", "escape time : 11.456 s\n", "the number of unit : 306\n", "accuracy score : 0.9\n", "escape time : 11.764 s\n", "the number of unit : 307\n", "accuracy score : 0.898333333333\n", "escape time : 11.484 s\n", "the number of unit : 308\n", "accuracy score : 0.9\n", "escape time : 11.627 s\n", "the number of unit : 309\n", "accuracy score : 0.901666666667\n", "escape time : 11.603 s\n", "the number of unit : 310\n", "accuracy score : 0.896666666667\n", "escape time : 11.319 s\n", "the number of unit : 311\n", "accuracy score : 0.9\n", "escape time : 11.074 s\n", "the number of unit : 312\n", "accuracy score : 0.9\n", "escape time : 11.662 s\n", "the number of unit : 313\n", "accuracy score : 0.9\n", "escape time : 11.334 s\n", "the number of unit : 314\n", "accuracy score : 0.901666666667\n", "escape time : 11.48 s\n", "the number of unit : 315\n", "accuracy score : 0.9\n", "escape time : 10.894 s\n", "the number of unit : 316\n", "accuracy score : 0.898333333333\n", "escape time : 11.501 s\n", "the number of unit : 317\n", "accuracy score : 0.9\n", "escape time : 11.315 s\n", "the number of unit : 318\n", "accuracy score : 0.901666666667\n", "escape time : 11.308 s\n", "the number of unit : 319\n", "accuracy score : 0.898333333333\n", "escape time : 11.1 s\n", "the number of unit : 320\n", "accuracy score : 0.898333333333\n", "escape time : 11.493 s\n", "the number of unit : 321\n", "accuracy score : 0.9\n", "escape time : 11.171 s\n", "the number of unit : 322\n", "accuracy score : 0.898333333333\n", "escape time : 11.347 s\n", "the number of unit : 323\n", "accuracy score : 0.901666666667\n", "escape time : 11.648 s\n", "the number of unit : 324\n", "accuracy score : 0.903333333333\n", "escape time : 11.556 s\n", "the number of unit : 325\n", "accuracy score : 0.9\n", "escape time : 11.164 s\n", "the number of unit : 326\n", "accuracy score : 0.9\n", "escape time : 11.298 s\n", "the number of unit : 327\n", "accuracy score : 0.9\n", "escape time : 11.461 s\n", "the number of unit : 328\n", "accuracy score : 0.9\n", "escape time : 11.191 s\n", "the number of unit : 329\n", "accuracy score : 0.9\n", "escape time : 11.094 s\n", "the number of unit : 330\n", "accuracy score : 0.896666666667\n", "escape time : 11.253 s\n", "the number of unit : 331\n", "accuracy score : 0.901666666667\n", "escape time : 10.849 s\n", "the number of unit : 332\n", "accuracy score : 0.898333333333\n", "escape time : 10.905 s\n", "the number of unit : 333\n", "accuracy score : 0.9\n", "escape time : 11.161 s\n", "the number of unit : 334\n", "accuracy score : 0.898333333333\n", "escape time : 11.065 s\n", "the number of unit : 335\n", "accuracy score : 0.901666666667\n", "escape time : 10.772 s\n", "the number of unit : 336\n", "accuracy score : 0.896666666667\n", "escape time : 11.179 s\n", "the number of unit : 337\n", "accuracy score : 0.903333333333\n", "escape time : 10.797 s\n", "the number of unit : 338\n", "accuracy score : 0.898333333333\n", "escape time : 10.864 s\n", "the number of unit : 339\n", "accuracy score : 0.901666666667\n", "escape time : 11.126 s\n", "the number of unit : 340\n", "accuracy score : 0.903333333333\n", "escape time : 11.157 s\n", "the number of unit : 341\n", "accuracy score : 0.901666666667\n", "escape time : 10.977 s\n", "the number of unit : 342\n", "accuracy score : 0.903333333333\n", "escape time : 10.647 s\n", "the number of unit : 343\n", "accuracy score : 0.901666666667\n", "escape time : 10.881 s\n", "the number of unit : 344\n", "accuracy score : 0.898333333333\n", "escape time : 11.264 s\n", "the number of unit : 345\n", "accuracy score : 0.896666666667\n", "escape time : 10.583 s\n", "the number of unit : 346\n", "accuracy score : 0.903333333333\n", "escape time : 10.644 s\n", "the number of unit : 347\n", "accuracy score : 0.903333333333\n", "escape time : 10.875 s\n", "the number of unit : 348\n", "accuracy score : 0.901666666667\n", "escape time : 10.675 s\n", "the number of unit : 349\n", "accuracy score : 0.896666666667\n", "escape time : 11.117 s\n", "the number of unit : 350\n", "accuracy score : 0.898333333333\n", "escape time : 10.36 s\n", "the number of unit : 351\n", "accuracy score : 0.9\n", "escape time : 10.296 s\n", "the number of unit : 352\n", "accuracy score : 0.9\n", "escape time : 10.873 s\n", "the number of unit : 353\n", "accuracy score : 0.898333333333\n", "escape time : 10.347 s\n", "the number of unit : 354\n", "accuracy score : 0.9\n", "escape time : 10.972 s\n", "the number of unit : 355\n", "accuracy score : 0.898333333333\n", "escape time : 10.273 s\n", "the number of unit : 356\n", "accuracy score : 0.903333333333\n", "escape time : 10.059 s\n", "the number of unit : 357\n", "accuracy score : 0.898333333333\n", "escape time : 10.302 s\n", "the number of unit : 358\n", "accuracy score : 0.901666666667\n", "escape time : 10.049 s\n", "the number of unit : 359\n", "accuracy score : 0.901666666667\n", "escape time : 10.587 s\n", "the number of unit : 360\n", "accuracy score : 0.9\n", "escape time : 10.556 s\n", "the number of unit : 361\n", "accuracy score : 0.9\n", "escape time : 10.142 s\n", "the number of unit : 362\n", "accuracy score : 0.898333333333\n", "escape time : 9.991 s\n", "the number of unit : 363\n", "accuracy score : 0.896666666667\n", "escape time : 10.257 s\n", "the number of unit : 364\n", "accuracy score : 0.9\n", "escape time : 9.863 s\n", "the number of unit : 365\n", "accuracy score : 0.901666666667\n", "escape time : 10.079 s\n", "the number of unit : 366\n", "accuracy score : 0.898333333333\n", "escape time : 10.431 s\n", "the number of unit : 367\n", "accuracy score : 0.898333333333\n", "escape time : 10.069 s\n", "the number of unit : 368\n", "accuracy score : 0.896666666667\n", "escape time : 10.176 s\n", "the number of unit : 369\n", "accuracy score : 0.898333333333\n", "escape time : 10.129 s\n", "the number of unit : 370\n", "accuracy score : 0.901666666667\n", "escape time : 10.27 s\n", "the number of unit : 371\n", "accuracy score : 0.9\n", "escape time : 10.129 s\n", "the number of unit : 372\n", "accuracy score : 0.9\n", "escape time : 10.013 s\n", "the number of unit : 373\n", "accuracy score : 0.9\n", "escape time : 10.04 s\n", "the number of unit : 374\n", "accuracy score : 0.9\n", "escape time : 10.06 s\n", "the number of unit : 375\n", "accuracy score : 0.9\n", "escape time : 10.226 s\n", "the number of unit : 376\n", "accuracy score : 0.898333333333\n", "escape time : 9.834 s\n", "the number of unit : 377\n", "accuracy score : 0.896666666667\n", "escape time : 10.227 s\n", "the number of unit : 378\n", "accuracy score : 0.898333333333\n", "escape time : 10.021 s\n", "the number of unit : 379\n", "accuracy score : 0.9\n", "escape time : 10.135 s\n", "the number of unit : 380\n", "accuracy score : 0.898333333333\n", "escape time : 10.153 s\n", "the number of unit : 381\n", "accuracy score : 0.9\n", "escape time : 10.279 s\n", "the number of unit : 382\n", "accuracy score : 0.898333333333\n", "escape time : 10.002 s\n", "the number of unit : 383\n", "accuracy score : 0.898333333333\n", "escape time : 10.228 s\n", "the number of unit : 384\n", "accuracy score : 0.9\n", "escape time : 10.341 s\n", "the number of unit : 385\n", "accuracy score : 0.898333333333\n", "escape time : 10.321 s\n", "the number of unit : 386\n", "accuracy score : 0.896666666667\n", "escape time : 10.152 s\n", "the number of unit : 387\n", "accuracy score : 0.898333333333\n", "escape time : 10.35 s\n", "the number of unit : 388\n", "accuracy score : 0.896666666667\n", "escape time : 9.927 s\n", "the number of unit : 389\n", "accuracy score : 0.9\n", "escape time : 10.076 s\n", "the number of unit : 390\n", "accuracy score : 0.9\n", "escape time : 10.039 s\n", "the number of unit : 391\n", "accuracy score : 0.901666666667\n", "escape time : 10.311 s\n", "the number of unit : 392\n", "accuracy score : 0.9\n", "escape time : 10.03 s\n", "the number of unit : 393\n", "accuracy score : 0.9\n", "escape time : 10.305 s\n", "the number of unit : 394\n", "accuracy score : 0.9\n", "escape time : 10.324 s\n", "the number of unit : 395\n", "accuracy score : 0.898333333333\n", "escape time : 10.213 s\n", "the number of unit : 396\n", "accuracy score : 0.901666666667\n", "escape time : 9.99 s\n", "the number of unit : 397\n", "accuracy score : 0.9\n", "escape time : 10.384 s\n", "the number of unit : 398\n", "accuracy score : 0.9\n", "escape time : 10.245 s\n", "the number of unit : 399\n", "accuracy score : 0.896666666667\n", "escape time : 10.236 s\n", "the number of unit : 400\n", "accuracy score : 0.9\n", "escape time : 10.123 s\n", "the number of unit : 401\n", "accuracy score : 0.9\n", "escape time : 10.365 s\n", "the number of unit : 402\n", "accuracy score : 0.898333333333\n", "escape time : 10.247 s\n", "the number of unit : 403\n", "accuracy score : 0.901666666667\n", "escape time : 10.319 s\n", "the number of unit : 404\n", "accuracy score : 0.9\n", "escape time : 10.126 s\n", "the number of unit : 405\n", "accuracy score : 0.898333333333\n", "escape time : 10.26 s\n", "the number of unit : 406\n", "accuracy score : 0.9\n", "escape time : 10.246 s\n", "the number of unit : 407\n", "accuracy score : 0.9\n", "escape time : 10.601 s\n", "the number of unit : 408\n", "accuracy score : 0.9\n", "escape time : 10.109 s\n", "the number of unit : 409\n", "accuracy score : 0.901666666667\n", "escape time : 10.221 s\n", "the number of unit : 410\n", "accuracy score : 0.9\n", "escape time : 10.081 s\n", "the number of unit : 411\n", "accuracy score : 0.898333333333\n", "escape time : 10.484 s\n", "the number of unit : 412\n", "accuracy score : 0.898333333333\n", "escape time : 10.013 s\n", "the number of unit : 413\n", "accuracy score : 0.901666666667\n", "escape time : 10.368 s\n", "the number of unit : 414\n", "accuracy score : 0.898333333333\n", "escape time : 10.43 s\n", "the number of unit : 415\n", "accuracy score : 0.901666666667\n", "escape time : 10.336 s\n", "the number of unit : 416\n", "accuracy score : 0.9\n", "escape time : 10.16 s\n", "the number of unit : 417\n", "accuracy score : 0.898333333333\n", "escape time : 10.549 s\n", "the number of unit : 418\n", "accuracy score : 0.9\n", "escape time : 10.314 s\n", "the number of unit : 419\n", "accuracy score : 0.901666666667\n", "escape time : 10.422 s\n", "the number of unit : 420\n", "accuracy score : 0.9\n", "escape time : 10.168 s\n", "the number of unit : 421\n", "accuracy score : 0.906666666667\n", "escape time : 10.714 s\n", "the number of unit : 422\n", "accuracy score : 0.901666666667\n", "escape time : 10.335 s\n", "the number of unit : 423\n", "accuracy score : 0.903333333333\n", "escape time : 10.523 s\n", "the number of unit : 424\n", "accuracy score : 0.898333333333\n", "escape time : 10.233 s\n", "the number of unit : 425\n", "accuracy score : 0.901666666667\n", "escape time : 10.447 s\n", "the number of unit : 426\n", "accuracy score : 0.901666666667\n", "escape time : 10.592 s\n", "the number of unit : 427\n", "accuracy score : 0.903333333333\n", "escape time : 10.511 s\n", "the number of unit : 428\n", "accuracy score : 0.898333333333\n", "escape time : 10.56 s\n", "the number of unit : 429\n", "accuracy score : 0.896666666667\n", "escape time : 10.615 s\n", "the number of unit : 430\n", "accuracy score : 0.9\n", "escape time : 10.437 s\n", "the number of unit : 431\n", "accuracy score : 0.9\n", "escape time : 10.689 s\n", "the number of unit : 432\n", "accuracy score : 0.901666666667\n", "escape time : 10.336 s\n", "the number of unit : 433\n", "accuracy score : 0.903333333333\n", "escape time : 10.585 s\n", "the number of unit : 434\n", "accuracy score : 0.9\n", "escape time : 10.76 s\n", "the number of unit : 435\n", "accuracy score : 0.901666666667\n", "escape time : 10.658 s\n", "the number of unit : 436\n", "accuracy score : 0.903333333333\n", "escape time : 10.468 s\n", "the number of unit : 437\n", "accuracy score : 0.901666666667\n", "escape time : 10.645 s\n", "the number of unit : 438\n", "accuracy score : 0.898333333333\n", "escape time : 10.755 s\n", "the number of unit : 439\n", "accuracy score : 0.9\n", "escape time : 10.634 s\n", "the number of unit : 440\n", "accuracy score : 0.898333333333\n", "escape time : 10.479 s\n", "the number of unit : 441\n", "accuracy score : 0.9\n", "escape time : 10.881 s\n", "the number of unit : 442\n", "accuracy score : 0.9\n", "escape time : 10.694 s\n", "the number of unit : 443\n", "accuracy score : 0.901666666667\n", "escape time : 10.59 s\n", "the number of unit : 444\n", "accuracy score : 0.9\n", "escape time : 10.564 s\n", "the number of unit : 445\n", "accuracy score : 0.901666666667\n", "escape time : 10.909 s\n", "the number of unit : 446\n", "accuracy score : 0.903333333333\n", "escape time : 10.671 s\n", "the number of unit : 447\n", "accuracy score : 0.901666666667\n", "escape time : 10.739 s\n", "the number of unit : 448\n", "accuracy score : 0.898333333333\n", "escape time : 10.788 s\n", "the number of unit : 449\n", "accuracy score : 0.901666666667\n", "escape time : 10.744 s\n", "the number of unit : 450\n", "accuracy score : 0.898333333333\n", "escape time : 10.634 s\n", "the number of unit : 451\n", "accuracy score : 0.898333333333\n", "escape time : 11.031 s\n", "the number of unit : 452\n", "accuracy score : 0.898333333333\n", "escape time : 10.685 s\n", "the number of unit : 453\n", "accuracy score : 0.9\n", "escape time : 10.834 s\n", "the number of unit : 454\n", "accuracy score : 0.901666666667\n", "escape time : 10.65 s\n", "the number of unit : 455\n", "accuracy score : 0.898333333333\n", "escape time : 11.116 s\n", "the number of unit : 456\n", "accuracy score : 0.901666666667\n", "escape time : 10.634 s\n", "the number of unit : 457\n", "accuracy score : 0.898333333333\n", "escape time : 10.768 s\n", "the number of unit : 458\n", "accuracy score : 0.901666666667\n", "escape time : 11.038 s\n", "the number of unit : 459\n", "accuracy score : 0.898333333333\n", "escape time : 10.912 s\n", "the number of unit : 460\n", "accuracy score : 0.9\n", "escape time : 10.784 s\n", "the number of unit : 461\n", "accuracy score : 0.898333333333\n", "escape time : 11.287 s\n", "the number of unit : 462\n", "accuracy score : 0.901666666667\n", "escape time : 11.041 s\n", "the number of unit : 463\n", "accuracy score : 0.9\n", "escape time : 10.914 s\n", "the number of unit : 464\n", "accuracy score : 0.9\n", "escape time : 10.674 s\n", "the number of unit : 465\n", "accuracy score : 0.901666666667\n", "escape time : 11.213 s\n", "the number of unit : 466\n", "accuracy score : 0.901666666667\n", "escape time : 10.826 s\n", "the number of unit : 467\n", "accuracy score : 0.9\n", "escape time : 10.878 s\n", "the number of unit : 468\n", "accuracy score : 0.901666666667\n", "escape time : 11.061 s\n", "the number of unit : 469\n", "accuracy score : 0.901666666667\n", "escape time : 11.086 s\n", "the number of unit : 470\n", "accuracy score : 0.9\n", "escape time : 10.989 s\n", "the number of unit : 471\n", "accuracy score : 0.903333333333\n", "escape time : 11.096 s\n", "the number of unit : 472\n", "accuracy score : 0.901666666667\n", "escape time : 11.003 s\n", "the number of unit : 473\n", "accuracy score : 0.9\n", "escape time : 11.039 s\n", "the number of unit : 474\n", "accuracy score : 0.903333333333\n", "escape time : 11.005 s\n", "the number of unit : 475\n", "accuracy score : 0.9\n", "escape time : 11.263 s\n", "the number of unit : 476\n", "accuracy score : 0.901666666667\n", "escape time : 10.922 s\n", "the number of unit : 477\n", "accuracy score : 0.898333333333\n", "escape time : 11.085 s\n", "the number of unit : 478\n", "accuracy score : 0.9\n", "escape time : 11.24 s\n", "the number of unit : 479\n", "accuracy score : 0.896666666667\n", "escape time : 11.175 s\n", "the number of unit : 480\n", "accuracy score : 0.9\n", "escape time : 10.852 s\n", "the number of unit : 481\n", "accuracy score : 0.903333333333\n", "escape time : 11.181 s\n", "the number of unit : 482\n", "accuracy score : 0.9\n", "escape time : 11.424 s\n", "the number of unit : 483\n", "accuracy score : 0.901666666667\n", "escape time : 11.288 s\n", "the number of unit : 484\n", "accuracy score : 0.901666666667\n", "escape time : 11.102 s\n", "the number of unit : 485\n", "accuracy score : 0.903333333333\n", "escape time : 11.532 s\n", "the number of unit : 486\n", "accuracy score : 0.905\n", "escape time : 11.394 s\n", "the number of unit : 487\n", "accuracy score : 0.901666666667\n", "escape time : 11.241 s\n", "the number of unit : 488\n", "accuracy score : 0.9\n", "escape time : 11.258 s\n", "the number of unit : 489\n", "accuracy score : 0.901666666667\n", "escape time : 11.324 s\n", "the number of unit : 490\n", "accuracy score : 0.896666666667\n", "escape time : 11.225 s\n", "the number of unit : 491\n", "accuracy score : 0.9\n", "escape time : 11.231 s\n", "the number of unit : 492\n", "accuracy score : 0.901666666667\n", "escape time : 11.481 s\n", "the number of unit : 493\n", "accuracy score : 0.898333333333\n", "escape time : 11.415 s\n", "the number of unit : 494\n", "accuracy score : 0.896666666667\n", "escape time : 11.184 s\n", "the number of unit : 495\n", "accuracy score : 0.905\n", "escape time : 11.604 s\n", "the number of unit : 496\n", "accuracy score : 0.901666666667\n", "escape time : 11.163 s\n", "the number of unit : 497\n", "accuracy score : 0.901666666667\n", "escape time : 11.523 s\n", "the number of unit : 498\n", "accuracy score : 0.896666666667\n", "escape time : 11.433 s\n", "the number of unit : 499\n", "accuracy score : 0.9\n", "escape time : 11.687 s\n", "the number of unit : 500\n", "accuracy score : 0.901666666667\n", "escape time : 11.456 s\n" ] } ], "source": [ "score2 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Sigmoid\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score2.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.231666666667\n", "escape time : 3.155 s\n", "the number of unit : 2\n", "accuracy score : 0.49\n", "escape time : 3.209 s\n", "the number of unit : 3\n", "accuracy score : 0.796666666667\n", "escape time : 3.064 s\n", "the number of unit : 4\n", "accuracy score : 0.896666666667\n", "escape time : 3.079 s\n", "the number of unit : 5\n", "accuracy score : 0.898333333333\n", "escape time : 3.149 s\n", "the number of unit : 6\n", "accuracy score : 0.895\n", "escape time : 3.004 s\n", "the number of unit : 7\n", "accuracy score : 0.901666666667\n", "escape time : 3.073 s\n", "the number of unit : 8\n", "accuracy score : 0.906666666667\n", "escape time : 3.149 s\n", "the number of unit : 9\n", "accuracy score : 0.895\n", "escape time : 3.247 s\n", "the number of unit : 10\n", "accuracy score : 0.896666666667\n", "escape time : 3.108 s\n", "the number of unit : 11\n", "accuracy score : 0.891666666667\n", "escape time : 3.133 s\n", "the number of unit : 12\n", "accuracy score : 0.898333333333\n", "escape time : 3.307 s\n", "the number of unit : 13\n", "accuracy score : 0.895\n", "escape time : 3.089 s\n", "the number of unit : 14\n", "accuracy score : 0.893333333333\n", "escape time : 3.426 s\n", "the number of unit : 15\n", "accuracy score : 0.896666666667\n", "escape time : 3.602 s\n", "the number of unit : 16\n", "accuracy score : 0.905\n", "escape time : 3.414 s\n", "the number of unit : 17\n", "accuracy score : 0.9\n", "escape time : 3.402 s\n", "the number of unit : 18\n", "accuracy score : 0.898333333333\n", "escape time : 3.436 s\n", "the number of unit : 19\n", "accuracy score : 0.893333333333\n", "escape time : 3.579 s\n", "the number of unit : 20\n", "accuracy score : 0.898333333333\n", "escape time : 3.458 s\n", "the number of unit : 21\n", "accuracy score : 0.9\n", "escape time : 3.6 s\n", "the number of unit : 22\n", "accuracy score : 0.903333333333\n", "escape time : 3.639 s\n", "the number of unit : 23\n", "accuracy score : 0.895\n", "escape time : 3.561 s\n", "the number of unit : 24\n", "accuracy score : 0.906666666667\n", "escape time : 3.512 s\n", "the number of unit : 25\n", "accuracy score : 0.903333333333\n", "escape time : 3.592 s\n", "the number of unit : 26\n", "accuracy score : 0.896666666667\n", "escape time : 3.797 s\n", "the number of unit : 27\n", "accuracy score : 0.9\n", "escape time : 4.034 s\n", "the number of unit : 28\n", "accuracy score : 0.901666666667\n", "escape time : 3.632 s\n", "the number of unit : 29\n", "accuracy score : 0.903333333333\n", "escape time : 3.86 s\n", "the number of unit : 30\n", "accuracy score : 0.903333333333\n", "escape time : 3.73 s\n", "the number of unit : 31\n", "accuracy score : 0.9\n", "escape time : 3.635 s\n", "the number of unit : 32\n", "accuracy score : 0.901666666667\n", "escape time : 3.908 s\n", "the number of unit : 33\n", "accuracy score : 0.901666666667\n", "escape time : 3.69 s\n", "the number of unit : 34\n", "accuracy score : 0.9\n", "escape time : 3.741 s\n", "the number of unit : 35\n", "accuracy score : 0.9\n", "escape time : 3.766 s\n", "the number of unit : 36\n", "accuracy score : 0.898333333333\n", "escape time : 3.867 s\n", "the number of unit : 37\n", "accuracy score : 0.903333333333\n", "escape time : 3.806 s\n", "the number of unit : 38\n", "accuracy score : 0.901666666667\n", "escape time : 3.896 s\n", "the number of unit : 39\n", "accuracy score : 0.898333333333\n", "escape time : 3.954 s\n", "the number of unit : 40\n", "accuracy score : 0.9\n", "escape time : 3.83 s\n", "the number of unit : 41\n", "accuracy score : 0.898333333333\n", "escape time : 3.854 s\n", "the number of unit : 42\n", "accuracy score : 0.905\n", "escape time : 4.008 s\n", "the number of unit : 43\n", "accuracy score : 0.9\n", "escape time : 3.868 s\n", "the number of unit : 44\n", "accuracy score : 0.903333333333\n", "escape time : 4.018 s\n", "the number of unit : 45\n", "accuracy score : 0.9\n", "escape time : 3.937 s\n", "the number of unit : 46\n", "accuracy score : 0.903333333333\n", "escape time : 4.081 s\n", "the number of unit : 47\n", "accuracy score : 0.901666666667\n", "escape time : 4.008 s\n", "the number of unit : 48\n", "accuracy score : 0.903333333333\n", "escape time : 3.97 s\n", "the number of unit : 49\n", "accuracy score : 0.901666666667\n", "escape time : 4.203 s\n", "the number of unit : 50\n", "accuracy score : 0.9\n", "escape time : 4.025 s\n", "the number of unit : 51\n", "accuracy score : 0.9\n", "escape time : 4.056 s\n", "the number of unit : 52\n", "accuracy score : 0.898333333333\n", "escape time : 4.232 s\n", "the number of unit : 53\n", "accuracy score : 0.9\n", "escape time : 4.096 s\n", "the number of unit : 54\n", "accuracy score : 0.898333333333\n", "escape time : 4.066 s\n", "the number of unit : 55\n", "accuracy score : 0.901666666667\n", "escape time : 4.102 s\n", "the number of unit : 56\n", "accuracy score : 0.901666666667\n", "escape time : 4.509 s\n", "the number of unit : 57\n", "accuracy score : 0.896666666667\n", "escape time : 4.365 s\n", "the number of unit : 58\n", "accuracy score : 0.896666666667\n", "escape time : 4.2 s\n", "the number of unit : 59\n", "accuracy score : 0.905\n", "escape time : 4.351 s\n", "the number of unit : 60\n", "accuracy score : 0.898333333333\n", "escape time : 4.288 s\n", "the number of unit : 61\n", "accuracy score : 0.9\n", "escape time : 4.27 s\n", "the number of unit : 62\n", "accuracy score : 0.903333333333\n", "escape time : 4.448 s\n", "the number of unit : 63\n", "accuracy score : 0.901666666667\n", "escape time : 4.3 s\n", "the number of unit : 64\n", "accuracy score : 0.895\n", "escape time : 4.393 s\n", "the number of unit : 65\n", "accuracy score : 0.9\n", "escape time : 4.309 s\n", "the number of unit : 66\n", "accuracy score : 0.9\n", "escape time : 4.593 s\n", "the number of unit : 67\n", "accuracy score : 0.903333333333\n", "escape time : 4.452 s\n", "the number of unit : 68\n", "accuracy score : 0.9\n", "escape time : 4.464 s\n", "the number of unit : 69\n", "accuracy score : 0.903333333333\n", "escape time : 4.629 s\n", "the number of unit : 70\n", "accuracy score : 0.901666666667\n", "escape time : 4.44 s\n", "the number of unit : 71\n", "accuracy score : 0.901666666667\n", "escape time : 4.55 s\n", "the number of unit : 72\n", "accuracy score : 0.901666666667\n", "escape time : 4.644 s\n", "the number of unit : 73\n", "accuracy score : 0.898333333333\n", "escape time : 4.513 s\n", "the number of unit : 74\n", "accuracy score : 0.901666666667\n", "escape time : 4.527 s\n", "the number of unit : 75\n", "accuracy score : 0.896666666667\n", "escape time : 4.602 s\n", "the number of unit : 76\n", "accuracy score : 0.901666666667\n", "escape time : 4.807 s\n", "the number of unit : 77\n", "accuracy score : 0.9\n", "escape time : 4.588 s\n", "the number of unit : 78\n", "accuracy score : 0.898333333333\n", "escape time : 4.515 s\n", "the number of unit : 79\n", "accuracy score : 0.901666666667\n", "escape time : 4.875 s\n", "the number of unit : 80\n", "accuracy score : 0.903333333333\n", "escape time : 4.647 s\n", "the number of unit : 81\n", "accuracy score : 0.901666666667\n", "escape time : 4.672 s\n", "the number of unit : 82\n", "accuracy score : 0.901666666667\n", "escape time : 4.907 s\n", "the number of unit : 83\n", "accuracy score : 0.901666666667\n", "escape time : 4.715 s\n", "the number of unit : 84\n", "accuracy score : 0.901666666667\n", "escape time : 4.753 s\n", "the number of unit : 85\n", "accuracy score : 0.901666666667\n", "escape time : 4.794 s\n", "the number of unit : 86\n", "accuracy score : 0.901666666667\n", "escape time : 5.004 s\n", "the number of unit : 87\n", "accuracy score : 0.901666666667\n", "escape time : 4.849 s\n", "the number of unit : 88\n", "accuracy score : 0.9\n", "escape time : 4.856 s\n", "the number of unit : 89\n", "accuracy score : 0.906666666667\n", "escape time : 5.032 s\n", "the number of unit : 90\n", "accuracy score : 0.901666666667\n", "escape time : 4.89 s\n", "the number of unit : 91\n", "accuracy score : 0.903333333333\n", "escape time : 4.87 s\n", "the number of unit : 92\n", "accuracy score : 0.9\n", "escape time : 5.116 s\n", "the number of unit : 93\n", "accuracy score : 0.901666666667\n", "escape time : 4.953 s\n", "the number of unit : 94\n", "accuracy score : 0.901666666667\n", "escape time : 5.003 s\n", "the number of unit : 95\n", "accuracy score : 0.901666666667\n", "escape time : 4.888 s\n", "the number of unit : 96\n", "accuracy score : 0.898333333333\n", "escape time : 5.113 s\n", "the number of unit : 97\n", "accuracy score : 0.896666666667\n", "escape time : 4.943 s\n", "the number of unit : 98\n", "accuracy score : 0.898333333333\n", "escape time : 5.025 s\n", "the number of unit : 99\n", "accuracy score : 0.898333333333\n", "escape time : 5.231 s\n", "the number of unit : 100\n", "accuracy score : 0.901666666667\n", "escape time : 5.19 s\n", "the number of unit : 101\n", "accuracy score : 0.901666666667\n", "escape time : 5.134 s\n", "the number of unit : 102\n", "accuracy score : 0.9\n", "escape time : 5.215 s\n", "the number of unit : 103\n", "accuracy score : 0.905\n", "escape time : 5.136 s\n", "the number of unit : 104\n", "accuracy score : 0.896666666667\n", "escape time : 5.182 s\n", "the number of unit : 105\n", "accuracy score : 0.898333333333\n", "escape time : 5.126 s\n", "the number of unit : 106\n", "accuracy score : 0.896666666667\n", "escape time : 5.252 s\n", "the number of unit : 107\n", "accuracy score : 0.898333333333\n", "escape time : 5.205 s\n", "the number of unit : 108\n", "accuracy score : 0.901666666667\n", "escape time : 5.234 s\n", "the number of unit : 109\n", "accuracy score : 0.9\n", "escape time : 5.377 s\n", "the number of unit : 110\n", "accuracy score : 0.901666666667\n", "escape time : 5.303 s\n", "the number of unit : 111\n", "accuracy score : 0.898333333333\n", "escape time : 5.262 s\n", "the number of unit : 112\n", "accuracy score : 0.903333333333\n", "escape time : 5.443 s\n", "the number of unit : 113\n", "accuracy score : 0.898333333333\n", "escape time : 5.327 s\n", "the number of unit : 114\n", "accuracy score : 0.9\n", "escape time : 5.275 s\n", "the number of unit : 115\n", "accuracy score : 0.901666666667\n", "escape time : 5.439 s\n", "the number of unit : 116\n", "accuracy score : 0.901666666667\n", "escape time : 5.532 s\n", "the number of unit : 117\n", "accuracy score : 0.9\n", "escape time : 5.404 s\n", "the number of unit : 118\n", "accuracy score : 0.901666666667\n", "escape time : 5.356 s\n", "the number of unit : 119\n", "accuracy score : 0.9\n", "escape time : 5.602 s\n", "the number of unit : 120\n", "accuracy score : 0.903333333333\n", "escape time : 5.269 s\n", "the number of unit : 121\n", "accuracy score : 0.9\n", "escape time : 5.462 s\n", "the number of unit : 122\n", "accuracy score : 0.903333333333\n", "escape time : 5.635 s\n", "the number of unit : 123\n", "accuracy score : 0.9\n", "escape time : 5.524 s\n", "the number of unit : 124\n", "accuracy score : 0.898333333333\n", "escape time : 5.533 s\n", "the number of unit : 125\n", "accuracy score : 0.901666666667\n", "escape time : 5.465 s\n", "the number of unit : 126\n", "accuracy score : 0.9\n", "escape time : 5.655 s\n", "the number of unit : 127\n", "accuracy score : 0.898333333333\n", "escape time : 5.55 s\n", "the number of unit : 128\n", "accuracy score : 0.901666666667\n", "escape time : 7.3 s\n", "the number of unit : 129\n", "accuracy score : 0.9\n", "escape time : 7.655 s\n", "the number of unit : 130\n", "accuracy score : 0.901666666667\n", "escape time : 7.417 s\n", "the number of unit : 131\n", "accuracy score : 0.9\n", "escape time : 7.556 s\n", "the number of unit : 132\n", "accuracy score : 0.9\n", "escape time : 7.627 s\n", "the number of unit : 133\n", "accuracy score : 0.903333333333\n", "escape time : 7.678 s\n", "the number of unit : 134\n", "accuracy score : 0.9\n", "escape time : 7.697 s\n", "the number of unit : 135\n", "accuracy score : 0.9\n", "escape time : 7.468 s\n", "the number of unit : 136\n", "accuracy score : 0.901666666667\n", "escape time : 7.684 s\n", "the number of unit : 137\n", "accuracy score : 0.9\n", "escape time : 7.657 s\n", "the number of unit : 138\n", "accuracy score : 0.903333333333\n", "escape time : 7.911 s\n", "the number of unit : 139\n", "accuracy score : 0.9\n", "escape time : 8.077 s\n", "the number of unit : 140\n", "accuracy score : 0.901666666667\n", "escape time : 7.882 s\n", "the number of unit : 141\n", "accuracy score : 0.901666666667\n", "escape time : 7.559 s\n", "the number of unit : 142\n", "accuracy score : 0.901666666667\n", "escape time : 7.758 s\n", "the number of unit : 143\n", "accuracy score : 0.901666666667\n", "escape time : 7.552 s\n", "the number of unit : 144\n", "accuracy score : 0.9\n", "escape time : 7.655 s\n", "the number of unit : 145\n", "accuracy score : 0.901666666667\n", "escape time : 7.637 s\n", "the number of unit : 146\n", "accuracy score : 0.9\n", "escape time : 7.901 s\n", "the number of unit : 147\n", "accuracy score : 0.898333333333\n", "escape time : 7.687 s\n", "the number of unit : 148\n", "accuracy score : 0.901666666667\n", "escape time : 7.697 s\n", "the number of unit : 149\n", "accuracy score : 0.9\n", "escape time : 7.797 s\n", "the number of unit : 150\n", "accuracy score : 0.9\n", "escape time : 7.845 s\n", "the number of unit : 151\n", "accuracy score : 0.9\n", "escape time : 7.712 s\n", "the number of unit : 152\n", "accuracy score : 0.9\n", "escape time : 7.97 s\n", "the number of unit : 153\n", "accuracy score : 0.901666666667\n", "escape time : 8.084 s\n", "the number of unit : 154\n", "accuracy score : 0.901666666667\n", "escape time : 7.987 s\n", "the number of unit : 155\n", "accuracy score : 0.901666666667\n", "escape time : 7.809 s\n", "the number of unit : 156\n", "accuracy score : 0.9\n", "escape time : 8.258 s\n", "the number of unit : 157\n", "accuracy score : 0.898333333333\n", "escape time : 7.814 s\n", "the number of unit : 158\n", "accuracy score : 0.9\n", "escape time : 7.99 s\n", "the number of unit : 159\n", "accuracy score : 0.9\n", "escape time : 8.111 s\n", "the number of unit : 160\n", "accuracy score : 0.901666666667\n", "escape time : 8.103 s\n", "the number of unit : 161\n", "accuracy score : 0.901666666667\n", "escape time : 8.137 s\n", "the number of unit : 162\n", "accuracy score : 0.901666666667\n", "escape time : 7.986 s\n", "the number of unit : 163\n", "accuracy score : 0.901666666667\n", "escape time : 8.321 s\n", "the number of unit : 164\n", "accuracy score : 0.903333333333\n", "escape time : 7.843 s\n", "the number of unit : 165\n", "accuracy score : 0.9\n", "escape time : 8.087 s\n", "the number of unit : 166\n", "accuracy score : 0.9\n", "escape time : 8.327 s\n", "the number of unit : 167\n", "accuracy score : 0.9\n", "escape time : 8.231 s\n", "the number of unit : 168\n", "accuracy score : 0.901666666667\n", "escape time : 8.14 s\n", "the number of unit : 169\n", "accuracy score : 0.901666666667\n", "escape time : 8.442 s\n", "the number of unit : 170\n", "accuracy score : 0.901666666667\n", "escape time : 8.172 s\n", "the number of unit : 171\n", "accuracy score : 0.901666666667\n", "escape time : 8.718 s\n", "the number of unit : 172\n", "accuracy score : 0.9\n", "escape time : 8.188 s\n", "the number of unit : 173\n", "accuracy score : 0.901666666667\n", "escape time : 8.317 s\n", "the number of unit : 174\n", "accuracy score : 0.901666666667\n", "escape time : 8.576 s\n", "the number of unit : 175\n", "accuracy score : 0.9\n", "escape time : 8.623 s\n", "the number of unit : 176\n", "accuracy score : 0.901666666667\n", "escape time : 8.336 s\n", "the number of unit : 177\n", "accuracy score : 0.9\n", "escape time : 8.997 s\n", "the number of unit : 178\n", "accuracy score : 0.901666666667\n", "escape time : 8.785 s\n", "the number of unit : 179\n", "accuracy score : 0.9\n", "escape time : 8.719 s\n", "the number of unit : 180\n", "accuracy score : 0.905\n", "escape time : 8.174 s\n", "the number of unit : 181\n", "accuracy score : 0.901666666667\n", "escape time : 8.895 s\n", "the number of unit : 182\n", "accuracy score : 0.9\n", "escape time : 8.538 s\n", "the number of unit : 183\n", "accuracy score : 0.9\n", "escape time : 8.639 s\n", "the number of unit : 184\n", "accuracy score : 0.9\n", "escape time : 8.549 s\n", "the number of unit : 185\n", "accuracy score : 0.901666666667\n", "escape time : 8.425 s\n", "the number of unit : 186\n", "accuracy score : 0.901666666667\n", "escape time : 9.075 s\n", "the number of unit : 187\n", "accuracy score : 0.901666666667\n", "escape time : 8.888 s\n", "the number of unit : 188\n", "accuracy score : 0.9\n", "escape time : 8.101 s\n", "the number of unit : 189\n", "accuracy score : 0.901666666667\n", "escape time : 9.295 s\n", "the number of unit : 190\n", "accuracy score : 0.901666666667\n", "escape time : 8.958 s\n", "the number of unit : 191\n", "accuracy score : 0.901666666667\n", "escape time : 8.76 s\n", "the number of unit : 192\n", "accuracy score : 0.9\n", "escape time : 8.7 s\n", "the number of unit : 193\n", "accuracy score : 0.9\n", "escape time : 9.226 s\n", "the number of unit : 194\n", "accuracy score : 0.901666666667\n", "escape time : 8.784 s\n", "the number of unit : 195\n", "accuracy score : 0.901666666667\n", "escape time : 9.184 s\n", "the number of unit : 196\n", "accuracy score : 0.9\n", "escape time : 8.997 s\n", "the number of unit : 197\n", "accuracy score : 0.9\n", "escape time : 9.338 s\n", "the number of unit : 198\n", "accuracy score : 0.9\n", "escape time : 9.116 s\n", "the number of unit : 199\n", "accuracy score : 0.901666666667\n", "escape time : 9.408 s\n", "the number of unit : 200\n", "accuracy score : 0.901666666667\n", "escape time : 8.689 s\n", "the number of unit : 201\n", "accuracy score : 0.901666666667\n", "escape time : 9.311 s\n", "the number of unit : 202\n", "accuracy score : 0.901666666667\n", "escape time : 9.244 s\n", "the number of unit : 203\n", "accuracy score : 0.9\n", "escape time : 9.381 s\n", "the number of unit : 204\n", "accuracy score : 0.901666666667\n", "escape time : 9.161 s\n", "the number of unit : 205\n", "accuracy score : 0.9\n", "escape time : 9.644 s\n", "the number of unit : 206\n", "accuracy score : 0.901666666667\n", "escape time : 9.449 s\n", "the number of unit : 207\n", "accuracy score : 0.901666666667\n", "escape time : 9.442 s\n", "the number of unit : 208\n", "accuracy score : 0.901666666667\n", "escape time : 8.926 s\n", "the number of unit : 209\n", "accuracy score : 0.9\n", "escape time : 9.488 s\n", "the number of unit : 210\n", "accuracy score : 0.9\n", "escape time : 9.553 s\n", "the number of unit : 211\n", "accuracy score : 0.9\n", "escape time : 9.759 s\n", "the number of unit : 212\n", "accuracy score : 0.9\n", "escape time : 9.329 s\n", "the number of unit : 213\n", "accuracy score : 0.901666666667\n", "escape time : 9.837 s\n", "the number of unit : 214\n", "accuracy score : 0.901666666667\n", "escape time : 9.692 s\n", "the number of unit : 215\n", "accuracy score : 0.901666666667\n", "escape time : 9.38 s\n", "the number of unit : 216\n", "accuracy score : 0.9\n", "escape time : 9.455 s\n", "the number of unit : 217\n", "accuracy score : 0.901666666667\n", "escape time : 9.532 s\n", "the number of unit : 218\n", "accuracy score : 0.901666666667\n", "escape time : 9.647 s\n", "the number of unit : 219\n", "accuracy score : 0.9\n", "escape time : 9.944 s\n", "the number of unit : 220\n", "accuracy score : 0.901666666667\n", "escape time : 9.599 s\n", "the number of unit : 221\n", "accuracy score : 0.901666666667\n", "escape time : 10.458 s\n", "the number of unit : 222\n", "accuracy score : 0.9\n", "escape time : 10.447 s\n", "the number of unit : 223\n", "accuracy score : 0.9\n", "escape time : 9.772 s\n", "the number of unit : 224\n", "accuracy score : 0.901666666667\n", "escape time : 9.595 s\n", "the number of unit : 225\n", "accuracy score : 0.9\n", "escape time : 10.122 s\n", "the number of unit : 226\n", "accuracy score : 0.901666666667\n", "escape time : 9.959 s\n", "the number of unit : 227\n", "accuracy score : 0.9\n", "escape time : 9.963 s\n", "the number of unit : 228\n", "accuracy score : 0.901666666667\n", "escape time : 9.953 s\n", "the number of unit : 229\n", "accuracy score : 0.9\n", "escape time : 9.197 s\n", "the number of unit : 230\n", "accuracy score : 0.901666666667\n", "escape time : 8.953 s\n", "the number of unit : 231\n", "accuracy score : 0.903333333333\n", "escape time : 8.332 s\n", "the number of unit : 232\n", "accuracy score : 0.898333333333\n", "escape time : 7.937 s\n", "the number of unit : 233\n", "accuracy score : 0.901666666667\n", "escape time : 9.681 s\n", "the number of unit : 234\n", "accuracy score : 0.901666666667\n", "escape time : 15.165 s\n", "the number of unit : 235\n", "accuracy score : 0.901666666667\n", "escape time : 10.808 s\n", "the number of unit : 236\n", "accuracy score : 0.9\n", "escape time : 9.604 s\n", "the number of unit : 237\n", "accuracy score : 0.901666666667\n", "escape time : 10.187 s\n", "the number of unit : 238\n", "accuracy score : 0.9\n", "escape time : 9.626 s\n", "the number of unit : 239\n", "accuracy score : 0.901666666667\n", "escape time : 13.462 s\n", "the number of unit : 240\n", "accuracy score : 0.903333333333\n", "escape time : 12.413 s\n", "the number of unit : 241\n", "accuracy score : 0.9\n", "escape time : 10.246 s\n", "the number of unit : 242\n", "accuracy score : 0.901666666667\n", "escape time : 9.926 s\n", "the number of unit : 243\n", "accuracy score : 0.9\n", "escape time : 10.134 s\n", "the number of unit : 244\n", "accuracy score : 0.901666666667\n", "escape time : 9.982 s\n", "the number of unit : 245\n", "accuracy score : 0.9\n", "escape time : 11.119 s\n", "the number of unit : 246\n", "accuracy score : 0.901666666667\n", "escape time : 9.859 s\n", "the number of unit : 247\n", "accuracy score : 0.901666666667\n", "escape time : 9.864 s\n", "the number of unit : 248\n", "accuracy score : 0.901666666667\n", "escape time : 9.804 s\n", "the number of unit : 249\n", "accuracy score : 0.901666666667\n", "escape time : 10.089 s\n", "the number of unit : 250\n", "accuracy score : 0.901666666667\n", "escape time : 9.752 s\n", "the number of unit : 251\n", "accuracy score : 0.9\n", "escape time : 9.957 s\n", "the number of unit : 252\n", "accuracy score : 0.901666666667\n", "escape time : 9.524 s\n", "the number of unit : 253\n", "accuracy score : 0.9\n", "escape time : 9.774 s\n", "the number of unit : 254\n", "accuracy score : 0.9\n", "escape time : 9.668 s\n", "the number of unit : 255\n", "accuracy score : 0.9\n", "escape time : 9.5 s\n", "the number of unit : 256\n", "accuracy score : 0.9\n", "escape time : 10.292 s\n", "the number of unit : 257\n", "accuracy score : 0.9\n", "escape time : 13.541 s\n", "the number of unit : 258\n", "accuracy score : 0.901666666667\n", "escape time : 11.48 s\n", "the number of unit : 259\n", "accuracy score : 0.901666666667\n", "escape time : 11.394 s\n", "the number of unit : 260\n", "accuracy score : 0.9\n", "escape time : 10.47 s\n", "the number of unit : 261\n", "accuracy score : 0.901666666667\n", "escape time : 12.79 s\n", "the number of unit : 262\n", "accuracy score : 0.901666666667\n", "escape time : 10.197 s\n", "the number of unit : 263\n", "accuracy score : 0.901666666667\n", "escape time : 11.78 s\n", "the number of unit : 264\n", "accuracy score : 0.901666666667\n", "escape time : 11.083 s\n", "the number of unit : 265\n", "accuracy score : 0.901666666667\n", "escape time : 11.911 s\n", "the number of unit : 266\n", "accuracy score : 0.901666666667\n", "escape time : 11.623 s\n", "the number of unit : 267\n", "accuracy score : 0.901666666667\n", "escape time : 12.383 s\n", "the number of unit : 268\n", "accuracy score : 0.901666666667\n", "escape time : 11.611 s\n", "the number of unit : 269\n", "accuracy score : 0.9\n", "escape time : 12.185 s\n", "the number of unit : 270\n", "accuracy score : 0.901666666667\n", "escape time : 11.891 s\n", "the number of unit : 271\n", "accuracy score : 0.901666666667\n", "escape time : 12.327 s\n", "the number of unit : 272\n", "accuracy score : 0.901666666667\n", "escape time : 11.57 s\n", "the number of unit : 273\n", "accuracy score : 0.901666666667\n", "escape time : 11.728 s\n", "the number of unit : 274\n", "accuracy score : 0.901666666667\n", "escape time : 12.678 s\n", "the number of unit : 275\n", "accuracy score : 0.9\n", "escape time : 10.906 s\n", "the number of unit : 276\n", "accuracy score : 0.9\n", "escape time : 10.846 s\n", "the number of unit : 277\n", "accuracy score : 0.9\n", "escape time : 11.084 s\n", "the number of unit : 278\n", "accuracy score : 0.901666666667\n", "escape time : 11.041 s\n", "the number of unit : 279\n", "accuracy score : 0.9\n", "escape time : 11.533 s\n", "the number of unit : 280\n", "accuracy score : 0.9\n", "escape time : 10.346 s\n", "the number of unit : 281\n", "accuracy score : 0.9\n", "escape time : 11.05 s\n", "the number of unit : 282\n", "accuracy score : 0.901666666667\n", "escape time : 11.303 s\n", "the number of unit : 283\n", "accuracy score : 0.9\n", "escape time : 11.558 s\n", "the number of unit : 284\n", "accuracy score : 0.901666666667\n", "escape time : 11.163 s\n", "the number of unit : 285\n", "accuracy score : 0.9\n", "escape time : 12.39 s\n", "the number of unit : 286\n", "accuracy score : 0.9\n", "escape time : 11.943 s\n", "the number of unit : 287\n", "accuracy score : 0.9\n", "escape time : 11.263 s\n", "the number of unit : 288\n", "accuracy score : 0.901666666667\n", "escape time : 10.664 s\n", "the number of unit : 289\n", "accuracy score : 0.901666666667\n", "escape time : 11.628 s\n", "the number of unit : 290\n", "accuracy score : 0.901666666667\n", "escape time : 13.969 s\n", "the number of unit : 291\n", "accuracy score : 0.901666666667\n", "escape time : 12.94 s\n", "the number of unit : 292\n", "accuracy score : 0.9\n", "escape time : 11.217 s\n", "the number of unit : 293\n", "accuracy score : 0.901666666667\n", "escape time : 11.043 s\n", "the number of unit : 294\n", "accuracy score : 0.901666666667\n", "escape time : 10.674 s\n", "the number of unit : 295\n", "accuracy score : 0.901666666667\n", "escape time : 10.538 s\n", "the number of unit : 296\n", "accuracy score : 0.901666666667\n", "escape time : 10.639 s\n", "the number of unit : 297\n", "accuracy score : 0.901666666667\n", "escape time : 10.807 s\n", "the number of unit : 298\n", "accuracy score : 0.901666666667\n", "escape time : 10.834 s\n", "the number of unit : 299\n", "accuracy score : 0.901666666667\n", "escape time : 11.134 s\n", "the number of unit : 300\n", "accuracy score : 0.901666666667\n", "escape time : 11.268 s\n", "the number of unit : 301\n", "accuracy score : 0.901666666667\n", "escape time : 10.726 s\n", "the number of unit : 302\n", "accuracy score : 0.901666666667\n", "escape time : 11.34 s\n", "the number of unit : 303\n", "accuracy score : 0.901666666667\n", "escape time : 13.528 s\n", "the number of unit : 304\n", "accuracy score : 0.901666666667\n", "escape time : 10.96 s\n", "the number of unit : 305\n", "accuracy score : 0.901666666667\n", "escape time : 11.469 s\n", "the number of unit : 306\n", "accuracy score : 0.901666666667\n", "escape time : 10.969 s\n", "the number of unit : 307\n", "accuracy score : 0.901666666667\n", "escape time : 11.834 s\n", "the number of unit : 308\n", "accuracy score : 0.901666666667\n", "escape time : 12.625 s\n", "the number of unit : 309\n", "accuracy score : 0.901666666667\n", "escape time : 12.614 s\n", "the number of unit : 310\n", "accuracy score : 0.9\n", "escape time : 12.65 s\n", "the number of unit : 311\n", "accuracy score : 0.901666666667\n", "escape time : 12.035 s\n", "the number of unit : 312\n", "accuracy score : 0.901666666667\n", "escape time : 11.835 s\n", "the number of unit : 313\n", "accuracy score : 0.901666666667\n", "escape time : 12.15 s\n", "the number of unit : 314\n", "accuracy score : 0.901666666667\n", "escape time : 11.868 s\n", "the number of unit : 315\n", "accuracy score : 0.901666666667\n", "escape time : 12.049 s\n", "the number of unit : 316\n", "accuracy score : 0.901666666667\n", "escape time : 12.239 s\n", "the number of unit : 317\n", "accuracy score : 0.901666666667\n", "escape time : 11.92 s\n", "the number of unit : 318\n", "accuracy score : 0.901666666667\n", "escape time : 11.941 s\n", "the number of unit : 319\n", "accuracy score : 0.901666666667\n", "escape time : 12.377 s\n", "the number of unit : 320\n", "accuracy score : 0.901666666667\n", "escape time : 12.137 s\n", "the number of unit : 321\n", "accuracy score : 0.901666666667\n", "escape time : 12.324 s\n", "the number of unit : 322\n", "accuracy score : 0.901666666667\n", "escape time : 12.029 s\n", "the number of unit : 323\n", "accuracy score : 0.901666666667\n", "escape time : 12.582 s\n", "the number of unit : 324\n", "accuracy score : 0.901666666667\n", "escape time : 12.098 s\n", "the number of unit : 325\n", "accuracy score : 0.901666666667\n", "escape time : 12.135 s\n", "the number of unit : 326\n", "accuracy score : 0.901666666667\n", "escape time : 12.048 s\n", "the number of unit : 327\n", "accuracy score : 0.901666666667\n", "escape time : 12.06 s\n", "the number of unit : 328\n", "accuracy score : 0.901666666667\n", "escape time : 12.021 s\n", "the number of unit : 329\n", "accuracy score : 0.901666666667\n", "escape time : 11.818 s\n", "the number of unit : 330\n", "accuracy score : 0.901666666667\n", "escape time : 12.243 s\n", "the number of unit : 331\n", "accuracy score : 0.9\n", "escape time : 11.872 s\n", "the number of unit : 332\n", "accuracy score : 0.901666666667\n", "escape time : 12.119 s\n", "the number of unit : 333\n", "accuracy score : 0.901666666667\n", "escape time : 12.519 s\n", "the number of unit : 334\n", "accuracy score : 0.901666666667\n", "escape time : 12.313 s\n", "the number of unit : 335\n", "accuracy score : 0.901666666667\n", "escape time : 12.135 s\n", "the number of unit : 336\n", "accuracy score : 0.901666666667\n", "escape time : 12.308 s\n", "the number of unit : 337\n", "accuracy score : 0.901666666667\n", "escape time : 12.075 s\n", "the number of unit : 338\n", "accuracy score : 0.901666666667\n", "escape time : 12.073 s\n", "the number of unit : 339\n", "accuracy score : 0.901666666667\n", "escape time : 12.123 s\n", "the number of unit : 340\n", "accuracy score : 0.901666666667\n", "escape time : 12.461 s\n", "the number of unit : 341\n", "accuracy score : 0.901666666667\n", "escape time : 12.203 s\n", "the number of unit : 342\n", "accuracy score : 0.901666666667\n", "escape time : 12.497 s\n", "the number of unit : 343\n", "accuracy score : 0.901666666667\n", "escape time : 12.384 s\n", "the number of unit : 344\n", "accuracy score : 0.901666666667\n", "escape time : 12.072 s\n", "the number of unit : 345\n", "accuracy score : 0.901666666667\n", "escape time : 12.366 s\n", "the number of unit : 346\n", "accuracy score : 0.9\n", "escape time : 12.253 s\n", "the number of unit : 347\n", "accuracy score : 0.901666666667\n", "escape time : 12.279 s\n", "the number of unit : 348\n", "accuracy score : 0.901666666667\n", "escape time : 12.168 s\n", "the number of unit : 349\n", "accuracy score : 0.901666666667\n", "escape time : 11.966 s\n", "the number of unit : 350\n", "accuracy score : 0.901666666667\n", "escape time : 12.459 s\n", "the number of unit : 351\n", "accuracy score : 0.901666666667\n", "escape time : 12.127 s\n", "the number of unit : 352\n", "accuracy score : 0.901666666667\n", "escape time : 12.012 s\n", "the number of unit : 353\n", "accuracy score : 0.9\n", "escape time : 12.436 s\n", "the number of unit : 354\n", "accuracy score : 0.901666666667\n", "escape time : 12.242 s\n", "the number of unit : 355\n", "accuracy score : 0.901666666667\n", "escape time : 11.854 s\n", "the number of unit : 356\n", "accuracy score : 0.901666666667\n", "escape time : 12.269 s\n", "the number of unit : 357\n", "accuracy score : 0.901666666667\n", "escape time : 12.078 s\n", "the number of unit : 358\n", "accuracy score : 0.901666666667\n", "escape time : 12.579 s\n", "the number of unit : 359\n", "accuracy score : 0.901666666667\n", "escape time : 12.534 s\n", "the number of unit : 360\n", "accuracy score : 0.901666666667\n", "escape time : 13.955 s\n", "the number of unit : 361\n", "accuracy score : 0.901666666667\n", "escape time : 12.701 s\n", "the number of unit : 362\n", "accuracy score : 0.901666666667\n", "escape time : 12.242 s\n", "the number of unit : 363\n", "accuracy score : 0.901666666667\n", "escape time : 11.673 s\n", "the number of unit : 364\n", "accuracy score : 0.901666666667\n", "escape time : 13.023 s\n", "the number of unit : 365\n", "accuracy score : 0.901666666667\n", "escape time : 11.61 s\n", "the number of unit : 366\n", "accuracy score : 0.901666666667\n", "escape time : 11.736 s\n", "the number of unit : 367\n", "accuracy score : 0.901666666667\n", "escape time : 11.235 s\n", "the number of unit : 368\n", "accuracy score : 0.901666666667\n", "escape time : 11.774 s\n", "the number of unit : 369\n", "accuracy score : 0.901666666667\n", "escape time : 10.905 s\n", "the number of unit : 370\n", "accuracy score : 0.901666666667\n", "escape time : 11.477 s\n", "the number of unit : 371\n", "accuracy score : 0.901666666667\n", "escape time : 11.116 s\n", "the number of unit : 372\n", "accuracy score : 0.901666666667\n", "escape time : 11.477 s\n", "the number of unit : 373\n", "accuracy score : 0.901666666667\n", "escape time : 13.219 s\n", "the number of unit : 374\n", "accuracy score : 0.901666666667\n", "escape time : 12.408 s\n", "the number of unit : 375\n", "accuracy score : 0.901666666667\n", "escape time : 11.426 s\n", "the number of unit : 376\n", "accuracy score : 0.901666666667\n", "escape time : 11.286 s\n", "the number of unit : 377\n", "accuracy score : 0.901666666667\n", "escape time : 11.85 s\n", "the number of unit : 378\n", "accuracy score : 0.903333333333\n", "escape time : 11.893 s\n", "the number of unit : 379\n", "accuracy score : 0.901666666667\n", "escape time : 11.373 s\n", "the number of unit : 380\n", "accuracy score : 0.901666666667\n", "escape time : 10.411 s\n", "the number of unit : 381\n", "accuracy score : 0.901666666667\n", "escape time : 10.349 s\n", "the number of unit : 382\n", "accuracy score : 0.901666666667\n", "escape time : 10.079 s\n", "the number of unit : 383\n", "accuracy score : 0.901666666667\n", "escape time : 10.776 s\n", "the number of unit : 384\n", "accuracy score : 0.901666666667\n", "escape time : 11.282 s\n", "the number of unit : 385\n", "accuracy score : 0.901666666667\n", "escape time : 10.822 s\n", "the number of unit : 386\n", "accuracy score : 0.901666666667\n", "escape time : 11.327 s\n", "the number of unit : 387\n", "accuracy score : 0.901666666667\n", "escape time : 10.475 s\n", "the number of unit : 388\n", "accuracy score : 0.901666666667\n", "escape time : 10.249 s\n", "the number of unit : 389\n", "accuracy score : 0.901666666667\n", "escape time : 11.272 s\n", "the number of unit : 390\n", "accuracy score : 0.901666666667\n", "escape time : 10.584 s\n", "the number of unit : 391\n", "accuracy score : 0.901666666667\n", "escape time : 10.356 s\n", "the number of unit : 392\n", "accuracy score : 0.901666666667\n", "escape time : 11.315 s\n", "the number of unit : 393\n", "accuracy score : 0.901666666667\n", "escape time : 11.36 s\n", "the number of unit : 394\n", "accuracy score : 0.901666666667\n", "escape time : 12.264 s\n", "the number of unit : 395\n", "accuracy score : 0.901666666667\n", "escape time : 10.888 s\n", "the number of unit : 396\n", "accuracy score : 0.901666666667\n", "escape time : 12.127 s\n", "the number of unit : 397\n", "accuracy score : 0.901666666667\n", "escape time : 11.793 s\n", "the number of unit : 398\n", "accuracy score : 0.901666666667\n", "escape time : 10.478 s\n", "the number of unit : 399\n", "accuracy score : 0.901666666667\n", "escape time : 11.921 s\n", "the number of unit : 400\n", "accuracy score : 0.901666666667\n", "escape time : 10.865 s\n", "the number of unit : 401\n", "accuracy score : 0.901666666667\n", "escape time : 10.922 s\n", "the number of unit : 402\n", "accuracy score : 0.901666666667\n", "escape time : 11.14 s\n", "the number of unit : 403\n", "accuracy score : 0.901666666667\n", "escape time : 11.238 s\n", "the number of unit : 404\n", "accuracy score : 0.901666666667\n", "escape time : 10.996 s\n", "the number of unit : 405\n", "accuracy score : 0.901666666667\n", "escape time : 12.002 s\n", "the number of unit : 406\n", "accuracy score : 0.901666666667\n", "escape time : 13.606 s\n", "the number of unit : 407\n", "accuracy score : 0.901666666667\n", "escape time : 10.86 s\n", "the number of unit : 408\n", "accuracy score : 0.901666666667\n", "escape time : 11.32 s\n", "the number of unit : 409\n", "accuracy score : 0.901666666667\n", "escape time : 11.112 s\n", "the number of unit : 410\n", "accuracy score : 0.901666666667\n", "escape time : 10.605 s\n", "the number of unit : 411\n", "accuracy score : 0.901666666667\n", "escape time : 10.944 s\n", "the number of unit : 412\n", "accuracy score : 0.901666666667\n", "escape time : 10.283 s\n", "the number of unit : 413\n", "accuracy score : 0.901666666667\n", "escape time : 10.564 s\n", "the number of unit : 414\n", "accuracy score : 0.901666666667\n", "escape time : 10.243 s\n", "the number of unit : 415\n", "accuracy score : 0.901666666667\n", "escape time : 10.364 s\n", "the number of unit : 416\n", "accuracy score : 0.901666666667\n", "escape time : 10.093 s\n", "the number of unit : 417\n", "accuracy score : 0.901666666667\n", "escape time : 10.331 s\n", "the number of unit : 418\n", "accuracy score : 0.901666666667\n", "escape time : 10.329 s\n", "the number of unit : 419\n", "accuracy score : 0.901666666667\n", "escape time : 10.409 s\n", "the number of unit : 420\n", "accuracy score : 0.901666666667\n", "escape time : 10.413 s\n", "the number of unit : 421\n", "accuracy score : 0.903333333333\n", "escape time : 10.46 s\n", "the number of unit : 422\n", "accuracy score : 0.901666666667\n", "escape time : 10.331 s\n", "the number of unit : 423\n", "accuracy score : 0.901666666667\n", "escape time : 10.674 s\n", "the number of unit : 424\n", "accuracy score : 0.901666666667\n", "escape time : 10.141 s\n", "the number of unit : 425\n", "accuracy score : 0.901666666667\n", "escape time : 10.438 s\n", "the number of unit : 426\n", "accuracy score : 0.903333333333\n", "escape time : 10.571 s\n", "the number of unit : 427\n", "accuracy score : 0.901666666667\n", "escape time : 10.497 s\n", "the number of unit : 428\n", "accuracy score : 0.901666666667\n", "escape time : 10.411 s\n", "the number of unit : 429\n", "accuracy score : 0.901666666667\n", "escape time : 10.506 s\n", "the number of unit : 430\n", "accuracy score : 0.901666666667\n", "escape time : 10.408 s\n", "the number of unit : 431\n", "accuracy score : 0.901666666667\n", "escape time : 10.562 s\n", "the number of unit : 432\n", "accuracy score : 0.903333333333\n", "escape time : 10.192 s\n", "the number of unit : 433\n", "accuracy score : 0.901666666667\n", "escape time : 10.678 s\n", "the number of unit : 434\n", "accuracy score : 0.901666666667\n", "escape time : 10.51 s\n", "the number of unit : 435\n", "accuracy score : 0.901666666667\n", "escape time : 10.604 s\n", "the number of unit : 436\n", "accuracy score : 0.901666666667\n", "escape time : 10.165 s\n", "the number of unit : 437\n", "accuracy score : 0.901666666667\n", "escape time : 10.775 s\n", "the number of unit : 438\n", "accuracy score : 0.901666666667\n", "escape time : 10.212 s\n", "the number of unit : 439\n", "accuracy score : 0.901666666667\n", "escape time : 10.724 s\n", "the number of unit : 440\n", "accuracy score : 0.901666666667\n", "escape time : 10.414 s\n", "the number of unit : 441\n", "accuracy score : 0.901666666667\n", "escape time : 10.664 s\n", "the number of unit : 442\n", "accuracy score : 0.901666666667\n", "escape time : 10.338 s\n", "the number of unit : 443\n", "accuracy score : 0.901666666667\n", "escape time : 10.777 s\n", "the number of unit : 444\n", "accuracy score : 0.901666666667\n", "escape time : 10.234 s\n", "the number of unit : 445\n", "accuracy score : 0.901666666667\n", "escape time : 10.754 s\n", "the number of unit : 446\n", "accuracy score : 0.901666666667\n", "escape time : 10.557 s\n", "the number of unit : 447\n", "accuracy score : 0.901666666667\n", "escape time : 10.937 s\n", "the number of unit : 448\n", "accuracy score : 0.901666666667\n", "escape time : 10.601 s\n", "the number of unit : 449\n", "accuracy score : 0.901666666667\n", "escape time : 10.68 s\n", "the number of unit : 450\n", "accuracy score : 0.901666666667\n", "escape time : 10.68 s\n", "the number of unit : 451\n", "accuracy score : 0.901666666667\n", "escape time : 10.713 s\n", "the number of unit : 452\n", "accuracy score : 0.903333333333\n", "escape time : 10.311 s\n", "the number of unit : 453\n", "accuracy score : 0.901666666667\n", "escape time : 10.838 s\n", "the number of unit : 454\n", "accuracy score : 0.903333333333\n", "escape time : 10.532 s\n", "the number of unit : 455\n", "accuracy score : 0.903333333333\n", "escape time : 10.749 s\n", "the number of unit : 456\n", "accuracy score : 0.901666666667\n", "escape time : 10.918 s\n", "the number of unit : 457\n", "accuracy score : 0.901666666667\n", "escape time : 13.602 s\n", "the number of unit : 458\n", "accuracy score : 0.901666666667\n", "escape time : 13.77 s\n", "the number of unit : 459\n", "accuracy score : 0.901666666667\n", "escape time : 13.403 s\n", "the number of unit : 460\n", "accuracy score : 0.903333333333\n", "escape time : 13.606 s\n", "the number of unit : 461\n", "accuracy score : 0.903333333333\n", "escape time : 13.381 s\n", "the number of unit : 462\n", "accuracy score : 0.903333333333\n", "escape time : 13.225 s\n", "the number of unit : 463\n", "accuracy score : 0.903333333333\n", "escape time : 13.692 s\n", "the number of unit : 464\n", "accuracy score : 0.903333333333\n", "escape time : 13.298 s\n", "the number of unit : 465\n", "accuracy score : 0.903333333333\n", "escape time : 13.274 s\n", "the number of unit : 466\n", "accuracy score : 0.903333333333\n", "escape time : 13.505 s\n", "the number of unit : 467\n", "accuracy score : 0.903333333333\n", "escape time : 13.738 s\n", "the number of unit : 468\n", "accuracy score : 0.903333333333\n", "escape time : 13.345 s\n", "the number of unit : 469\n", "accuracy score : 0.903333333333\n", "escape time : 13.462 s\n", "the number of unit : 470\n", "accuracy score : 0.901666666667\n", "escape time : 13.554 s\n", "the number of unit : 471\n", "accuracy score : 0.901666666667\n", "escape time : 13.447 s\n", "the number of unit : 472\n", "accuracy score : 0.901666666667\n", "escape time : 13.386 s\n", "the number of unit : 473\n", "accuracy score : 0.903333333333\n", "escape time : 13.858 s\n", "the number of unit : 474\n", "accuracy score : 0.903333333333\n", "escape time : 13.573 s\n", "the number of unit : 475\n", "accuracy score : 0.903333333333\n", "escape time : 13.384 s\n", "the number of unit : 476\n", "accuracy score : 0.901666666667\n", "escape time : 13.668 s\n", "the number of unit : 477\n", "accuracy score : 0.903333333333\n", "escape time : 13.839 s\n", "the number of unit : 478\n", "accuracy score : 0.903333333333\n", "escape time : 13.567 s\n", "the number of unit : 479\n", "accuracy score : 0.903333333333\n", "escape time : 13.58 s\n", "the number of unit : 480\n", "accuracy score : 0.903333333333\n", "escape time : 13.604 s\n", "the number of unit : 481\n", "accuracy score : 0.903333333333\n", "escape time : 13.575 s\n", "the number of unit : 482\n", "accuracy score : 0.901666666667\n", "escape time : 13.683 s\n", "the number of unit : 483\n", "accuracy score : 0.903333333333\n", "escape time : 13.923 s\n", "the number of unit : 484\n", "accuracy score : 0.901666666667\n", "escape time : 13.797 s\n", "the number of unit : 485\n", "accuracy score : 0.901666666667\n", "escape time : 13.695 s\n", "the number of unit : 486\n", "accuracy score : 0.903333333333\n", "escape time : 13.733 s\n", "the number of unit : 487\n", "accuracy score : 0.903333333333\n", "escape time : 14.1 s\n", "the number of unit : 488\n", "accuracy score : 0.903333333333\n", "escape time : 13.823 s\n", "the number of unit : 489\n", "accuracy score : 0.903333333333\n", "escape time : 13.71 s\n", "the number of unit : 490\n", "accuracy score : 0.901666666667\n", "escape time : 13.944 s\n", "the number of unit : 491\n", "accuracy score : 0.901666666667\n", "escape time : 13.745 s\n", "the number of unit : 492\n", "accuracy score : 0.901666666667\n", "escape time : 13.813 s\n", "the number of unit : 493\n", "accuracy score : 0.903333333333\n", "escape time : 14.194 s\n", "the number of unit : 494\n", "accuracy score : 0.903333333333\n", "escape time : 13.812 s\n", "the number of unit : 495\n", "accuracy score : 0.903333333333\n", "escape time : 13.83 s\n", "the number of unit : 496\n", "accuracy score : 0.903333333333\n", "escape time : 13.829 s\n", "the number of unit : 497\n", "accuracy score : 0.903333333333\n", "escape time : 14.049 s\n", "the number of unit : 498\n", "accuracy score : 0.903333333333\n", "escape time : 13.99 s\n", "the number of unit : 499\n", "accuracy score : 0.903333333333\n", "escape time : 13.861 s\n", "the number of unit : 500\n", "accuracy score : 0.901666666667\n", "escape time : 14.308 s\n" ] } ], "source": [ "score3 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Tanh\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score3.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.601666666667\n", "escape time : 6.096 s\n", "the number of unit : 2\n", "accuracy score : 0.888333333333\n", "escape time : 4.043 s\n", "the number of unit : 3\n", "accuracy score : 0.891666666667\n", "escape time : 4.329 s\n", "the number of unit : 4\n", "accuracy score : 0.906666666667\n", "escape time : 3.976 s\n", "the number of unit : 5\n", "accuracy score : 0.903333333333\n", "escape time : 4.209 s\n", "the number of unit : 6\n", "accuracy score : 0.898333333333\n", "escape time : 4.147 s\n", "the number of unit : 7\n", "accuracy score : 0.896666666667\n", "escape time : 4.532 s\n", "the number of unit : 8\n", "accuracy score : 0.903333333333\n", "escape time : 4.092 s\n", "the number of unit : 9\n", "accuracy score : 0.9\n", "escape time : 4.222 s\n", "the number of unit : 10\n", "accuracy score : 0.906666666667\n", "escape time : 4.59 s\n", "the number of unit : 11\n", "accuracy score : 0.906666666667\n", "escape time : 4.396 s\n", "the number of unit : 12\n", "accuracy score : 0.901666666667\n", "escape time : 4.489 s\n", "the number of unit : 13\n", "accuracy score : 0.9\n", "escape time : 4.699 s\n", "the number of unit : 14\n", "accuracy score : 0.901666666667\n", "escape time : 4.617 s\n", "the number of unit : 15\n", "accuracy score : 0.905\n", "escape time : 4.707 s\n", "the number of unit : 16\n", "accuracy score : 0.903333333333\n", "escape time : 4.46 s\n", "the number of unit : 17\n", "accuracy score : 0.905\n", "escape time : 4.92 s\n", "the number of unit : 18\n", "accuracy score : 0.9\n", "escape time : 4.905 s\n", "the number of unit : 19\n", "accuracy score : 0.908333333333\n", "escape time : 4.806 s\n", "the number of unit : 20\n", "accuracy score : 0.903333333333\n", "escape time : 4.953 s\n", "the number of unit : 21\n", "accuracy score : 0.903333333333\n", "escape time : 4.716 s\n", "the number of unit : 22\n", "accuracy score : 0.905\n", "escape time : 5.084 s\n", "the number of unit : 23\n", "accuracy score : 0.9\n", "escape time : 4.911 s\n", "the number of unit : 24\n", "accuracy score : 0.908333333333\n", "escape time : 4.86 s\n", "the number of unit : 25\n", "accuracy score : 0.905\n", "escape time : 5.119 s\n", "the number of unit : 26\n", "accuracy score : 0.906666666667\n", "escape time : 5.052 s\n", "the number of unit : 27\n", "accuracy score : 0.906666666667\n", "escape time : 5.286 s\n", "the number of unit : 28\n", "accuracy score : 0.906666666667\n", "escape time : 5.124 s\n", "the number of unit : 29\n", "accuracy score : 0.905\n", "escape time : 5.254 s\n", "the number of unit : 30\n", "accuracy score : 0.9\n", "escape time : 5.42 s\n", "the number of unit : 31\n", "accuracy score : 0.901666666667\n", "escape time : 5.221 s\n", "the number of unit : 32\n", "accuracy score : 0.905\n", "escape time : 5.543 s\n", "the number of unit : 33\n", "accuracy score : 0.91\n", "escape time : 5.506 s\n", "the number of unit : 34\n", "accuracy score : 0.903333333333\n", "escape time : 5.559 s\n", "the number of unit : 35\n", "accuracy score : 0.906666666667\n", "escape time : 5.786 s\n", "the number of unit : 36\n", "accuracy score : 0.908333333333\n", "escape time : 5.656 s\n", "the number of unit : 37\n", "accuracy score : 0.903333333333\n", "escape time : 5.687 s\n", "the number of unit : 38\n", "accuracy score : 0.903333333333\n", "escape time : 5.747 s\n", "the number of unit : 39\n", "accuracy score : 0.905\n", "escape time : 5.906 s\n", "the number of unit : 40\n", "accuracy score : 0.903333333333\n", "escape time : 5.79 s\n", "the number of unit : 41\n", "accuracy score : 0.905\n", "escape time : 6.134 s\n", "the number of unit : 42\n", "accuracy score : 0.903333333333\n", "escape time : 6.293 s\n", "the number of unit : 43\n", "accuracy score : 0.901666666667\n", "escape time : 6.459 s\n", "the number of unit : 44\n", "accuracy score : 0.9\n", "escape time : 6.301 s\n", "the number of unit : 45\n", "accuracy score : 0.905\n", "escape time : 6.598 s\n", "the number of unit : 46\n", "accuracy score : 0.901666666667\n", "escape time : 6.541 s\n", "the number of unit : 47\n", "accuracy score : 0.901666666667\n", "escape time : 6.704 s\n", "the number of unit : 48\n", "accuracy score : 0.9\n", "escape time : 6.553 s\n", "the number of unit : 49\n", "accuracy score : 0.9\n", "escape time : 6.537 s\n", "the number of unit : 50\n", "accuracy score : 0.9\n", "escape time : 6.777 s\n", "the number of unit : 51\n", "accuracy score : 0.903333333333\n", "escape time : 6.565 s\n", "the number of unit : 52\n", "accuracy score : 0.903333333333\n", "escape time : 6.912 s\n", "the number of unit : 53\n", "accuracy score : 0.906666666667\n", "escape time : 6.903 s\n", "the number of unit : 54\n", "accuracy score : 0.901666666667\n", "escape time : 7.02 s\n", "the number of unit : 55\n", "accuracy score : 0.903333333333\n", "escape time : 6.976 s\n", "the number of unit : 56\n", "accuracy score : 0.903333333333\n", "escape time : 7.079 s\n", "the number of unit : 57\n", "accuracy score : 0.906666666667\n", "escape time : 7.231 s\n", "the number of unit : 58\n", "accuracy score : 0.903333333333\n", "escape time : 7.137 s\n", "the number of unit : 59\n", "accuracy score : 0.901666666667\n", "escape time : 7.441 s\n", "the number of unit : 60\n", "accuracy score : 0.905\n", "escape time : 7.195 s\n", "the number of unit : 61\n", "accuracy score : 0.905\n", "escape time : 7.507 s\n", "the number of unit : 62\n", "accuracy score : 0.908333333333\n", "escape time : 7.316 s\n", "the number of unit : 63\n", "accuracy score : 0.906666666667\n", "escape time : 7.643 s\n", "the number of unit : 64\n", "accuracy score : 0.901666666667\n", "escape time : 8.873 s\n", "the number of unit : 65\n", "accuracy score : 0.905\n", "escape time : 8.881 s\n", "the number of unit : 66\n", "accuracy score : 0.901666666667\n", "escape time : 8.94 s\n", "the number of unit : 67\n", "accuracy score : 0.903333333333\n", "escape time : 9.143 s\n", "the number of unit : 68\n", "accuracy score : 0.9\n", "escape time : 9.057 s\n", "the number of unit : 69\n", "accuracy score : 0.901666666667\n", "escape time : 9.395 s\n", "the number of unit : 70\n", "accuracy score : 0.901666666667\n", "escape time : 9.059 s\n", "the number of unit : 71\n", "accuracy score : 0.901666666667\n", "escape time : 9.196 s\n", "the number of unit : 72\n", "accuracy score : 0.903333333333\n", "escape time : 9.043 s\n", "the number of unit : 73\n", "accuracy score : 0.901666666667\n", "escape time : 9.506 s\n", "the number of unit : 74\n", "accuracy score : 0.905\n", "escape time : 9.586 s\n", "the number of unit : 75\n", "accuracy score : 0.898333333333\n", "escape time : 9.226 s\n", "the number of unit : 76\n", "accuracy score : 0.903333333333\n", "escape time : 9.682 s\n", "the number of unit : 77\n", "accuracy score : 0.9\n", "escape time : 10.029 s\n", "the number of unit : 78\n", "accuracy score : 0.906666666667\n", "escape time : 9.698 s\n", "the number of unit : 79\n", "accuracy score : 0.903333333333\n", "escape time : 9.748 s\n", "the number of unit : 80\n", "accuracy score : 0.905\n", "escape time : 9.86 s\n", "the number of unit : 81\n", "accuracy score : 0.905\n", "escape time : 10.23 s\n", "the number of unit : 82\n", "accuracy score : 0.901666666667\n", "escape time : 9.46 s\n", "the number of unit : 83\n", "accuracy score : 0.903333333333\n", "escape time : 10.072 s\n", "the number of unit : 84\n", "accuracy score : 0.901666666667\n", "escape time : 9.952 s\n", "the number of unit : 85\n", "accuracy score : 0.903333333333\n", "escape time : 10.179 s\n", "the number of unit : 86\n", "accuracy score : 0.901666666667\n", "escape time : 10.052 s\n", "the number of unit : 87\n", "accuracy score : 0.905\n", "escape time : 10.317 s\n", "the number of unit : 88\n", "accuracy score : 0.905\n", "escape time : 10.3 s\n", "the number of unit : 89\n", "accuracy score : 0.906666666667\n", "escape time : 10.637 s\n", "the number of unit : 90\n", "accuracy score : 0.903333333333\n", "escape time : 10.343 s\n", "the number of unit : 91\n", "accuracy score : 0.901666666667\n", "escape time : 10.915 s\n", "the number of unit : 92\n", "accuracy score : 0.903333333333\n", "escape time : 10.497 s\n", "the number of unit : 93\n", "accuracy score : 0.903333333333\n", "escape time : 10.797 s\n", "the number of unit : 94\n", "accuracy score : 0.901666666667\n", "escape time : 10.586 s\n", "the number of unit : 95\n", "accuracy score : 0.901666666667\n", "escape time : 10.867 s\n", "the number of unit : 96\n", "accuracy score : 0.9\n", "escape time : 10.823 s\n", "the number of unit : 97\n", "accuracy score : 0.901666666667\n", "escape time : 10.755 s\n", "the number of unit : 98\n", "accuracy score : 0.901666666667\n", "escape time : 11.061 s\n", "the number of unit : 99\n", "accuracy score : 0.9\n", "escape time : 10.998 s\n", "the number of unit : 100\n", "accuracy score : 0.903333333333\n", "escape time : 10.282 s\n", "the number of unit : 101\n", "accuracy score : 0.905\n", "escape time : 10.825 s\n", "the number of unit : 102\n", "accuracy score : 0.903333333333\n", "escape time : 11.271 s\n", "the number of unit : 103\n", "accuracy score : 0.901666666667\n", "escape time : 11.287 s\n", "the number of unit : 104\n", "accuracy score : 0.903333333333\n", "escape time : 11.224 s\n", "the number of unit : 105\n", "accuracy score : 0.898333333333\n", "escape time : 11.182 s\n", "the number of unit : 106\n", "accuracy score : 0.903333333333\n", "escape time : 11.27 s\n", "the number of unit : 107\n", "accuracy score : 0.901666666667\n", "escape time : 11.492 s\n", "the number of unit : 108\n", "accuracy score : 0.906666666667\n", "escape time : 11.315 s\n", "the number of unit : 109\n", "accuracy score : 0.903333333333\n", "escape time : 11.762 s\n", "the number of unit : 110\n", "accuracy score : 0.9\n", "escape time : 11.46 s\n", "the number of unit : 111\n", "accuracy score : 0.903333333333\n", "escape time : 11.614 s\n", "the number of unit : 112\n", "accuracy score : 0.903333333333\n", "escape time : 11.707 s\n", "the number of unit : 113\n", "accuracy score : 0.903333333333\n", "escape time : 11.795 s\n", "the number of unit : 114\n", "accuracy score : 0.901666666667\n", "escape time : 11.818 s\n", "the number of unit : 115\n", "accuracy score : 0.905\n", "escape time : 11.89 s\n", "the number of unit : 116\n", "accuracy score : 0.903333333333\n", "escape time : 11.669 s\n", "the number of unit : 117\n", "accuracy score : 0.903333333333\n", "escape time : 12.006 s\n", "the number of unit : 118\n", "accuracy score : 0.901666666667\n", "escape time : 11.856 s\n", "the number of unit : 119\n", "accuracy score : 0.901666666667\n", "escape time : 12.051 s\n", "the number of unit : 120\n", "accuracy score : 0.901666666667\n", "escape time : 12.353 s\n", "the number of unit : 121\n", "accuracy score : 0.905\n", "escape time : 12.12 s\n", "the number of unit : 122\n", "accuracy score : 0.898333333333\n", "escape time : 11.836 s\n", "the number of unit : 123\n", "accuracy score : 0.901666666667\n", "escape time : 12.074 s\n", "the number of unit : 124\n", "accuracy score : 0.901666666667\n", "escape time : 12.052 s\n", "the number of unit : 125\n", "accuracy score : 0.9\n", "escape time : 12.304 s\n", "the number of unit : 126\n", "accuracy score : 0.901666666667\n", "escape time : 12.578 s\n", "the number of unit : 127\n", "accuracy score : 0.9\n", "escape time : 12.448 s\n", "the number of unit : 128\n", "accuracy score : 0.9\n", "escape time : 12.283 s\n", "the number of unit : 129\n", "accuracy score : 0.901666666667\n", "escape time : 12.689 s\n", "the number of unit : 130\n", "accuracy score : 0.903333333333\n", "escape time : 12.501 s\n", "the number of unit : 131\n", "accuracy score : 0.905\n", "escape time : 13.34 s\n", "the number of unit : 132\n", "accuracy score : 0.9\n", "escape time : 13.409 s\n", "the number of unit : 133\n", "accuracy score : 0.901666666667\n", "escape time : 13.583 s\n", "the number of unit : 134\n", "accuracy score : 0.903333333333\n", "escape time : 13.364 s\n", "the number of unit : 135\n", "accuracy score : 0.898333333333\n", "escape time : 13.818 s\n", "the number of unit : 136\n", "accuracy score : 0.905\n", "escape time : 13.246 s\n", "the number of unit : 137\n", "accuracy score : 0.905\n", "escape time : 13.981 s\n", "the number of unit : 138\n", "accuracy score : 0.903333333333\n", "escape time : 13.891 s\n", "the number of unit : 139\n", "accuracy score : 0.903333333333\n", "escape time : 13.968 s\n", "the number of unit : 140\n", "accuracy score : 0.9\n", "escape time : 15.149 s\n", "the number of unit : 141\n", "accuracy score : 0.905\n", "escape time : 14.99 s\n", "the number of unit : 142\n", "accuracy score : 0.903333333333\n", "escape time : 13.916 s\n", "the number of unit : 143\n", "accuracy score : 0.9\n", "escape time : 13.921 s\n", "the number of unit : 144\n", "accuracy score : 0.903333333333\n", "escape time : 13.778 s\n", "the number of unit : 145\n", "accuracy score : 0.903333333333\n", "escape time : 13.86 s\n", "the number of unit : 146\n", "accuracy score : 0.903333333333\n", "escape time : 13.95 s\n", "the number of unit : 147\n", "accuracy score : 0.898333333333\n", "escape time : 13.844 s\n", "the number of unit : 148\n", "accuracy score : 0.903333333333\n", "escape time : 13.798 s\n", "the number of unit : 149\n", "accuracy score : 0.905\n", "escape time : 13.992 s\n", "the number of unit : 150\n", "accuracy score : 0.903333333333\n", "escape time : 14.127 s\n", "the number of unit : 151\n", "accuracy score : 0.905\n", "escape time : 14.099 s\n", "the number of unit : 152\n", "accuracy score : 0.9\n", "escape time : 14.268 s\n", "the number of unit : 153\n", "accuracy score : 0.901666666667\n", "escape time : 14.163 s\n", "the number of unit : 154\n", "accuracy score : 0.903333333333\n", "escape time : 14.144 s\n", "the number of unit : 155\n", "accuracy score : 0.905\n", "escape time : 14.437 s\n", "the number of unit : 156\n", "accuracy score : 0.9\n", "escape time : 14.282 s\n", "the number of unit : 157\n", "accuracy score : 0.901666666667\n", "escape time : 14.308 s\n", "the number of unit : 158\n", "accuracy score : 0.901666666667\n", "escape time : 14.44 s\n", "the number of unit : 159\n", "accuracy score : 0.905\n", "escape time : 14.61 s\n", "the number of unit : 160\n", "accuracy score : 0.901666666667\n", "escape time : 14.709 s\n", "the number of unit : 161\n", "accuracy score : 0.901666666667\n", "escape time : 14.621 s\n", "the number of unit : 162\n", "accuracy score : 0.903333333333\n", "escape time : 14.413 s\n", "the number of unit : 163\n", "accuracy score : 0.905\n", "escape time : 14.761 s\n", "the number of unit : 164\n", "accuracy score : 0.903333333333\n", "escape time : 14.503 s\n", "the number of unit : 165\n", "accuracy score : 0.9\n", "escape time : 15.008 s\n", "the number of unit : 166\n", "accuracy score : 0.901666666667\n", "escape time : 14.667 s\n", "the number of unit : 167\n", "accuracy score : 0.9\n", "escape time : 14.947 s\n", "the number of unit : 168\n", "accuracy score : 0.9\n", "escape time : 14.697 s\n", "the number of unit : 169\n", "accuracy score : 0.903333333333\n", "escape time : 14.923 s\n", "the number of unit : 170\n", "accuracy score : 0.9\n", "escape time : 14.843 s\n", "the number of unit : 171\n", "accuracy score : 0.9\n", "escape time : 14.955 s\n", "the number of unit : 172\n", "accuracy score : 0.903333333333\n", "escape time : 14.714 s\n", "the number of unit : 173\n", "accuracy score : 0.901666666667\n", "escape time : 15.07 s\n", "the number of unit : 174\n", "accuracy score : 0.901666666667\n", "escape time : 14.791 s\n", "the number of unit : 175\n", "accuracy score : 0.9\n", "escape time : 14.946 s\n", "the number of unit : 176\n", "accuracy score : 0.901666666667\n", "escape time : 14.891 s\n", "the number of unit : 177\n", "accuracy score : 0.903333333333\n", "escape time : 15.146 s\n", "the number of unit : 178\n", "accuracy score : 0.901666666667\n", "escape time : 14.983 s\n", "the number of unit : 179\n", "accuracy score : 0.903333333333\n", "escape time : 14.994 s\n", "the number of unit : 180\n", "accuracy score : 0.896666666667\n", "escape time : 15.032 s\n", "the number of unit : 181\n", "accuracy score : 0.9\n", "escape time : 15.08 s\n", "the number of unit : 182\n", "accuracy score : 0.9\n", "escape time : 14.758 s\n", "the number of unit : 183\n", "accuracy score : 0.9\n", "escape time : 15.119 s\n", "the number of unit : 184\n", "accuracy score : 0.903333333333\n", "escape time : 14.992 s\n", "the number of unit : 185\n", "accuracy score : 0.9\n", "escape time : 14.999 s\n", "the number of unit : 186\n", "accuracy score : 0.905\n", "escape time : 15.265 s\n", "the number of unit : 187\n", "accuracy score : 0.903333333333\n", "escape time : 15.192 s\n", "the number of unit : 188\n", "accuracy score : 0.9\n", "escape time : 15.134 s\n", "the number of unit : 189\n", "accuracy score : 0.9\n", "escape time : 15.083 s\n", "the number of unit : 190\n", "accuracy score : 0.903333333333\n", "escape time : 15.408 s\n", "the number of unit : 191\n", "accuracy score : 0.903333333333\n", "escape time : 14.962 s\n", "the number of unit : 192\n", "accuracy score : 0.905\n", "escape time : 15.296 s\n", "the number of unit : 193\n", "accuracy score : 0.906666666667\n", "escape time : 15.149 s\n", "the number of unit : 194\n", "accuracy score : 0.903333333333\n", "escape time : 15.416 s\n", "the number of unit : 195\n", "accuracy score : 0.903333333333\n", "escape time : 14.9 s\n", "the number of unit : 196\n", "accuracy score : 0.901666666667\n", "escape time : 15.386 s\n", "the number of unit : 197\n", "accuracy score : 0.898333333333\n", "escape time : 15.108 s\n", "the number of unit : 198\n", "accuracy score : 0.9\n", "escape time : 15.349 s\n", "the number of unit : 199\n", "accuracy score : 0.908333333333\n", "escape time : 15.136 s\n", "the number of unit : 200\n", "accuracy score : 0.903333333333\n", "escape time : 13.752 s\n", "the number of unit : 201\n", "accuracy score : 0.901666666667\n", "escape time : 15.172 s\n", "the number of unit : 202\n", "accuracy score : 0.901666666667\n", "escape time : 15.438 s\n", "the number of unit : 203\n", "accuracy score : 0.9\n", "escape time : 15.1 s\n", "the number of unit : 204\n", "accuracy score : 0.903333333333\n", "escape time : 15.373 s\n", "the number of unit : 205\n", "accuracy score : 0.903333333333\n", "escape time : 15.124 s\n", "the number of unit : 206\n", "accuracy score : 0.903333333333\n", "escape time : 15.28 s\n", "the number of unit : 207\n", "accuracy score : 0.9\n", "escape time : 15.249 s\n", "the number of unit : 208\n", "accuracy score : 0.901666666667\n", "escape time : 15.361 s\n", "the number of unit : 209\n", "accuracy score : 0.903333333333\n", "escape time : 15.332 s\n", "the number of unit : 210\n", "accuracy score : 0.905\n", "escape time : 15.152 s\n", "the number of unit : 211\n", "accuracy score : 0.901666666667\n", "escape time : 15.238 s\n", "the number of unit : 212\n", "accuracy score : 0.903333333333\n", "escape time : 15.215 s\n", "the number of unit : 213\n", "accuracy score : 0.9\n", "escape time : 15.168 s\n", "the number of unit : 214\n", "accuracy score : 0.9\n", "escape time : 15.431 s\n", "the number of unit : 215\n", "accuracy score : 0.9\n", "escape time : 15.389 s\n", "the number of unit : 216\n", "accuracy score : 0.898333333333\n", "escape time : 15.188 s\n", "the number of unit : 217\n", "accuracy score : 0.903333333333\n", "escape time : 15.41 s\n", "the number of unit : 218\n", "accuracy score : 0.9\n", "escape time : 15.381 s\n", "the number of unit : 219\n", "accuracy score : 0.901666666667\n", "escape time : 15.517 s\n", "the number of unit : 220\n", "accuracy score : 0.901666666667\n", "escape time : 15.355 s\n", "the number of unit : 221\n", "accuracy score : 0.901666666667\n", "escape time : 15.405 s\n", "the number of unit : 222\n", "accuracy score : 0.901666666667\n", "escape time : 15.614 s\n", "the number of unit : 223\n", "accuracy score : 0.901666666667\n", "escape time : 15.702 s\n", "the number of unit : 224\n", "accuracy score : 0.901666666667\n", "escape time : 16.132 s\n", "the number of unit : 225\n", "accuracy score : 0.901666666667\n", "escape time : 15.65 s\n", "the number of unit : 226\n", "accuracy score : 0.9\n", "escape time : 15.624 s\n", "the number of unit : 227\n", "accuracy score : 0.905\n", "escape time : 16.232 s\n", "the number of unit : 228\n", "accuracy score : 0.901666666667\n", "escape time : 13.688 s\n", "the number of unit : 229\n", "accuracy score : 0.9\n", "escape time : 16.682 s\n", "the number of unit : 230\n", "accuracy score : 0.901666666667\n", "escape time : 14.447 s\n", "the number of unit : 231\n", "accuracy score : 0.903333333333\n", "escape time : 14.196 s\n", "the number of unit : 232\n", "accuracy score : 0.895\n", "escape time : 14.223 s\n", "the number of unit : 233\n", "accuracy score : 0.898333333333\n", "escape time : 14.255 s\n", "the number of unit : 234\n", "accuracy score : 0.903333333333\n", "escape time : 14.298 s\n", "the number of unit : 235\n", "accuracy score : 0.903333333333\n", "escape time : 15.994 s\n", "the number of unit : 236\n", "accuracy score : 0.901666666667\n", "escape time : 16.343 s\n", "the number of unit : 237\n", "accuracy score : 0.903333333333\n", "escape time : 13.866 s\n", "the number of unit : 238\n", "accuracy score : 0.906666666667\n", "escape time : 14.849 s\n", "the number of unit : 239\n", "accuracy score : 0.901666666667\n", "escape time : 14.886 s\n", "the number of unit : 240\n", "accuracy score : 0.898333333333\n", "escape time : 13.075 s\n", "the number of unit : 241\n", "accuracy score : 0.9\n", "escape time : 13.839 s\n", "the number of unit : 242\n", "accuracy score : 0.898333333333\n", "escape time : 14.888 s\n", "the number of unit : 243\n", "accuracy score : 0.898333333333\n", "escape time : 14.152 s\n", "the number of unit : 244\n", "accuracy score : 0.903333333333\n", "escape time : 13.689 s\n", "the number of unit : 245\n", "accuracy score : 0.898333333333\n", "escape time : 13.627 s\n", "the number of unit : 246\n", "accuracy score : 0.9\n", "escape time : 14.013 s\n", "the number of unit : 247\n", "accuracy score : 0.903333333333\n", "escape time : 13.899 s\n", "the number of unit : 248\n", "accuracy score : 0.903333333333\n", "escape time : 16.416 s\n", "the number of unit : 249\n", "accuracy score : 0.903333333333\n", "escape time : 16.614 s\n", "the number of unit : 250\n", "accuracy score : 0.903333333333\n", "escape time : 16.72 s\n", "the number of unit : 251\n", "accuracy score : 0.901666666667\n", "escape time : 16.469 s\n", "the number of unit : 252\n", "accuracy score : 0.898333333333\n", "escape time : 16.705 s\n", "the number of unit : 253\n", "accuracy score : 0.903333333333\n", "escape time : 16.431 s\n", "the number of unit : 254\n", "accuracy score : 0.903333333333\n", "escape time : 17.009 s\n", "the number of unit : 255\n", "accuracy score : 0.901666666667\n", "escape time : 16.588 s\n", "the number of unit : 256\n", "accuracy score : 0.9\n", "escape time : 17.133 s\n", "the number of unit : 257\n", "accuracy score : 0.901666666667\n", "escape time : 16.946 s\n", "the number of unit : 258\n", "accuracy score : 0.903333333333\n", "escape time : 16.917 s\n", "the number of unit : 259\n", "accuracy score : 0.9\n", "escape time : 14.042 s\n", "the number of unit : 260\n", "accuracy score : 0.903333333333\n", "escape time : 14.142 s\n", "the number of unit : 261\n", "accuracy score : 0.901666666667\n", "escape time : 14.115 s\n", "the number of unit : 262\n", "accuracy score : 0.903333333333\n", "escape time : 14.098 s\n", "the number of unit : 263\n", "accuracy score : 0.898333333333\n", "escape time : 13.935 s\n", "the number of unit : 264\n", "accuracy score : 0.901666666667\n", "escape time : 14.576 s\n", "the number of unit : 265\n", "accuracy score : 0.901666666667\n", "escape time : 14.097 s\n", "the number of unit : 266\n", "accuracy score : 0.903333333333\n", "escape time : 16.527 s\n", "the number of unit : 267\n", "accuracy score : 0.903333333333\n", "escape time : 17.32 s\n", "the number of unit : 268\n", "accuracy score : 0.901666666667\n", "escape time : 17.569 s\n", "the number of unit : 269\n", "accuracy score : 0.9\n", "escape time : 17.635 s\n", "the number of unit : 270\n", "accuracy score : 0.901666666667\n", "escape time : 17.694 s\n", "the number of unit : 271\n", "accuracy score : 0.898333333333\n", "escape time : 16.542 s\n", "the number of unit : 272\n", "accuracy score : 0.898333333333\n", "escape time : 15.156 s\n", "the number of unit : 273\n", "accuracy score : 0.905\n", "escape time : 17.924 s\n", "the number of unit : 274\n", "accuracy score : 0.903333333333\n", "escape time : 18.238 s\n", "the number of unit : 275\n", "accuracy score : 0.903333333333\n", "escape time : 17.757 s\n", "the number of unit : 276\n", "accuracy score : 0.905\n", "escape time : 18.461 s\n", "the number of unit : 277\n", "accuracy score : 0.901666666667\n", "escape time : 18.214 s\n", "the number of unit : 278\n", "accuracy score : 0.903333333333\n", "escape time : 18.067 s\n", "the number of unit : 279\n", "accuracy score : 0.901666666667\n", "escape time : 18.03 s\n", "the number of unit : 280\n", "accuracy score : 0.903333333333\n", "escape time : 18.203 s\n", "the number of unit : 281\n", "accuracy score : 0.898333333333\n", "escape time : 18.2 s\n", "the number of unit : 282\n", "accuracy score : 0.898333333333\n", "escape time : 18.595 s\n", "the number of unit : 283\n", "accuracy score : 0.903333333333\n", "escape time : 18.639 s\n", "the number of unit : 284\n", "accuracy score : 0.9\n", "escape time : 18.529 s\n", "the number of unit : 285\n", "accuracy score : 0.9\n", "escape time : 18.248 s\n", "the number of unit : 286\n", "accuracy score : 0.901666666667\n", "escape time : 18.727 s\n", "the number of unit : 287\n", "accuracy score : 0.898333333333\n", "escape time : 18.541 s\n", "the number of unit : 288\n", "accuracy score : 0.898333333333\n", "escape time : 18.694 s\n", "the number of unit : 289\n", "accuracy score : 0.898333333333\n", "escape time : 18.811 s\n", "the number of unit : 290\n", "accuracy score : 0.903333333333\n", "escape time : 18.806 s\n", "the number of unit : 291\n", "accuracy score : 0.901666666667\n", "escape time : 18.94 s\n", "the number of unit : 292\n", "accuracy score : 0.903333333333\n", "escape time : 18.86 s\n", "the number of unit : 293\n", "accuracy score : 0.901666666667\n", "escape time : 18.713 s\n", "the number of unit : 294\n", "accuracy score : 0.903333333333\n", "escape time : 19.015 s\n", "the number of unit : 295\n", "accuracy score : 0.905\n", "escape time : 18.847 s\n", "the number of unit : 296\n", "accuracy score : 0.9\n", "escape time : 19.164 s\n", "the number of unit : 297\n", "accuracy score : 0.901666666667\n", "escape time : 18.862 s\n", "the number of unit : 298\n", "accuracy score : 0.903333333333\n", "escape time : 19.375 s\n", "the number of unit : 299\n", "accuracy score : 0.896666666667\n", "escape time : 18.897 s\n", "the number of unit : 300\n", "accuracy score : 0.903333333333\n", "escape time : 17.424 s\n", "the number of unit : 301\n", "accuracy score : 0.901666666667\n", "escape time : 19.239 s\n", "the number of unit : 302\n", "accuracy score : 0.903333333333\n", "escape time : 19.399 s\n", "the number of unit : 303\n", "accuracy score : 0.9\n", "escape time : 19.258 s\n", "the number of unit : 304\n", "accuracy score : 0.9\n", "escape time : 19.508 s\n", "the number of unit : 305\n", "accuracy score : 0.9\n", "escape time : 19.314 s\n", "the number of unit : 306\n", "accuracy score : 0.898333333333\n", "escape time : 19.89 s\n", "the number of unit : 307\n", "accuracy score : 0.9\n", "escape time : 19.496 s\n", "the number of unit : 308\n", "accuracy score : 0.9\n", "escape time : 19.636 s\n", "the number of unit : 309\n", "accuracy score : 0.901666666667\n", "escape time : 19.704 s\n", "the number of unit : 310\n", "accuracy score : 0.9\n", "escape time : 19.802 s\n", "the number of unit : 311\n", "accuracy score : 0.898333333333\n", "escape time : 19.731 s\n", "the number of unit : 312\n", "accuracy score : 0.901666666667\n", "escape time : 19.963 s\n", "the number of unit : 313\n", "accuracy score : 0.896666666667\n", "escape time : 19.832 s\n", "the number of unit : 314\n", "accuracy score : 0.903333333333\n", "escape time : 20.19 s\n", "the number of unit : 315\n", "accuracy score : 0.9\n", "escape time : 19.877 s\n", "the number of unit : 316\n", "accuracy score : 0.905\n", "escape time : 20.292 s\n", "the number of unit : 317\n", "accuracy score : 0.9\n", "escape time : 20.095 s\n", "the number of unit : 318\n", "accuracy score : 0.9\n", "escape time : 20.114 s\n", "the number of unit : 319\n", "accuracy score : 0.901666666667\n", "escape time : 19.913 s\n", "the number of unit : 320\n", "accuracy score : 0.901666666667\n", "escape time : 20.423 s\n", "the number of unit : 321\n", "accuracy score : 0.9\n", "escape time : 20.034 s\n", "the number of unit : 322\n", "accuracy score : 0.906666666667\n", "escape time : 20.489 s\n", "the number of unit : 323\n", "accuracy score : 0.901666666667\n", "escape time : 19.983 s\n", "the number of unit : 324\n", "accuracy score : 0.901666666667\n", "escape time : 20.502 s\n", "the number of unit : 325\n", "accuracy score : 0.896666666667\n", "escape time : 20.463 s\n", "the number of unit : 326\n", "accuracy score : 0.903333333333\n", "escape time : 20.578 s\n", "the number of unit : 327\n", "accuracy score : 0.896666666667\n", "escape time : 20.299 s\n", "the number of unit : 328\n", "accuracy score : 0.903333333333\n", "escape time : 20.906 s\n", "the number of unit : 329\n", "accuracy score : 0.9\n", "escape time : 20.492 s\n", "the number of unit : 330\n", "accuracy score : 0.903333333333\n", "escape time : 20.762 s\n", "the number of unit : 331\n", "accuracy score : 0.9\n", "escape time : 20.663 s\n", "the number of unit : 332\n", "accuracy score : 0.903333333333\n", "escape time : 21.142 s\n", "the number of unit : 333\n", "accuracy score : 0.901666666667\n", "escape time : 20.72 s\n", "the number of unit : 334\n", "accuracy score : 0.898333333333\n", "escape time : 20.753 s\n", "the number of unit : 335\n", "accuracy score : 0.898333333333\n", "escape time : 20.713 s\n", "the number of unit : 336\n", "accuracy score : 0.9\n", "escape time : 21.199 s\n", "the number of unit : 337\n", "accuracy score : 0.903333333333\n", "escape time : 21.43 s\n", "the number of unit : 338\n", "accuracy score : 0.903333333333\n", "escape time : 21.371 s\n", "the number of unit : 339\n", "accuracy score : 0.903333333333\n", "escape time : 20.756 s\n", "the number of unit : 340\n", "accuracy score : 0.9\n", "escape time : 21.102 s\n", "the number of unit : 341\n", "accuracy score : 0.898333333333\n", "escape time : 21.116 s\n", "the number of unit : 342\n", "accuracy score : 0.898333333333\n", "escape time : 21.264 s\n", "the number of unit : 343\n", "accuracy score : 0.9\n", "escape time : 20.982 s\n", "the number of unit : 344\n", "accuracy score : 0.901666666667\n", "escape time : 21.879 s\n", "the number of unit : 345\n", "accuracy score : 0.9\n", "escape time : 20.959 s\n", "the number of unit : 346\n", "accuracy score : 0.9\n", "escape time : 21.601 s\n", "the number of unit : 347\n", "accuracy score : 0.898333333333\n", "escape time : 21.858 s\n", "the number of unit : 348\n", "accuracy score : 0.896666666667\n", "escape time : 21.521 s\n", "the number of unit : 349\n", "accuracy score : 0.898333333333\n", "escape time : 21.475 s\n", "the number of unit : 350\n", "accuracy score : 0.901666666667\n", "escape time : 21.494 s\n", "the number of unit : 351\n", "accuracy score : 0.898333333333\n", "escape time : 21.35 s\n", "the number of unit : 352\n", "accuracy score : 0.9\n", "escape time : 21.771 s\n", "the number of unit : 353\n", "accuracy score : 0.9\n", "escape time : 21.627 s\n", "the number of unit : 354\n", "accuracy score : 0.9\n", "escape time : 21.765 s\n", "the number of unit : 355\n", "accuracy score : 0.9\n", "escape time : 21.711 s\n", "the number of unit : 356\n", "accuracy score : 0.898333333333\n", "escape time : 21.98 s\n", "the number of unit : 357\n", "accuracy score : 0.898333333333\n", "escape time : 22.257 s\n", "the number of unit : 358\n", "accuracy score : 0.898333333333\n", "escape time : 22.18 s\n", "the number of unit : 359\n", "accuracy score : 0.903333333333\n", "escape time : 20.917 s\n", "the number of unit : 360\n", "accuracy score : 0.901666666667\n", "escape time : 18.876 s\n", "the number of unit : 361\n", "accuracy score : 0.901666666667\n", "escape time : 19.934 s\n", "the number of unit : 362\n", "accuracy score : 0.9\n", "escape time : 20.699 s\n", "the number of unit : 363\n", "accuracy score : 0.901666666667\n", "escape time : 18.99 s\n", "the number of unit : 364\n", "accuracy score : 0.9\n", "escape time : 21.913 s\n", "the number of unit : 365\n", "accuracy score : 0.9\n", "escape time : 19.799 s\n", "the number of unit : 366\n", "accuracy score : 0.903333333333\n", "escape time : 19.73 s\n", "the number of unit : 367\n", "accuracy score : 0.901666666667\n", "escape time : 23.247 s\n", "the number of unit : 368\n", "accuracy score : 0.901666666667\n", "escape time : 21.164 s\n", "the number of unit : 369\n", "accuracy score : 0.9\n", "escape time : 23.52 s\n", "the number of unit : 370\n", "accuracy score : 0.898333333333\n", "escape time : 20.844 s\n", "the number of unit : 371\n", "accuracy score : 0.9\n", "escape time : 20.267 s\n", "the number of unit : 372\n", "accuracy score : 0.903333333333\n", "escape time : 20.804 s\n", "the number of unit : 373\n", "accuracy score : 0.901666666667\n", "escape time : 20.557 s\n", "the number of unit : 374\n", "accuracy score : 0.898333333333\n", "escape time : 20.623 s\n", "the number of unit : 375\n", "accuracy score : 0.898333333333\n", "escape time : 20.237 s\n", "the number of unit : 376\n", "accuracy score : 0.901666666667\n", "escape time : 20.498 s\n", "the number of unit : 377\n", "accuracy score : 0.901666666667\n", "escape time : 20.54 s\n", "the number of unit : 378\n", "accuracy score : 0.9\n", "escape time : 20.755 s\n", "the number of unit : 379\n", "accuracy score : 0.905\n", "escape time : 20.069 s\n", "the number of unit : 380\n", "accuracy score : 0.901666666667\n", "escape time : 20.163 s\n", "the number of unit : 381\n", "accuracy score : 0.901666666667\n", "escape time : 21.588 s\n", "the number of unit : 382\n", "accuracy score : 0.901666666667\n", "escape time : 20.913 s\n", "the number of unit : 383\n", "accuracy score : 0.898333333333\n", "escape time : 24.005 s\n", "the number of unit : 384\n", "accuracy score : 0.9\n", "escape time : 21.567 s\n", "the number of unit : 385\n", "accuracy score : 0.905\n", "escape time : 20.578 s\n", "the number of unit : 386\n", "accuracy score : 0.9\n", "escape time : 21.271 s\n", "the number of unit : 387\n", "accuracy score : 0.9\n", "escape time : 20.031 s\n", "the number of unit : 388\n", "accuracy score : 0.901666666667\n", "escape time : 20.708 s\n", "the number of unit : 389\n", "accuracy score : 0.9\n", "escape time : 19.978 s\n", "the number of unit : 390\n", "accuracy score : 0.9\n", "escape time : 20.822 s\n", "the number of unit : 391\n", "accuracy score : 0.901666666667\n", "escape time : 20.369 s\n", "the number of unit : 392\n", "accuracy score : 0.901666666667\n", "escape time : 19.96 s\n", "the number of unit : 393\n", "accuracy score : 0.903333333333\n", "escape time : 20.159 s\n", "the number of unit : 394\n", "accuracy score : 0.9\n", "escape time : 21.523 s\n", "the number of unit : 395\n", "accuracy score : 0.896666666667\n", "escape time : 21.675 s\n", "the number of unit : 396\n", "accuracy score : 0.901666666667\n", "escape time : 20.032 s\n", "the number of unit : 397\n", "accuracy score : 0.9\n", "escape time : 20.008 s\n", "the number of unit : 398\n", "accuracy score : 0.898333333333\n", "escape time : 20.294 s\n", "the number of unit : 399\n", "accuracy score : 0.903333333333\n", "escape time : 19.678 s\n", "the number of unit : 400\n", "accuracy score : 0.898333333333\n", "escape time : 19.975 s\n", "the number of unit : 401\n", "accuracy score : 0.901666666667\n", "escape time : 19.693 s\n", "the number of unit : 402\n", "accuracy score : 0.901666666667\n", "escape time : 19.984 s\n", "the number of unit : 403\n", "accuracy score : 0.903333333333\n", "escape time : 19.55 s\n", "the number of unit : 404\n", "accuracy score : 0.9\n", "escape time : 20.051 s\n", "the number of unit : 405\n", "accuracy score : 0.9\n", "escape time : 19.942 s\n", "the number of unit : 406\n", "accuracy score : 0.898333333333\n", "escape time : 20.101 s\n", "the number of unit : 407\n", "accuracy score : 0.901666666667\n", "escape time : 19.886 s\n", "the number of unit : 408\n", "accuracy score : 0.901666666667\n", "escape time : 20.429 s\n", "the number of unit : 409\n", "accuracy score : 0.896666666667\n", "escape time : 19.799 s\n", "the number of unit : 410\n", "accuracy score : 0.896666666667\n", "escape time : 20.116 s\n", "the number of unit : 411\n", "accuracy score : 0.9\n", "escape time : 19.92 s\n", "the number of unit : 412\n", "accuracy score : 0.898333333333\n", "escape time : 20.459 s\n", "the number of unit : 413\n", "accuracy score : 0.9\n", "escape time : 20.017 s\n", "the number of unit : 414\n", "accuracy score : 0.896666666667\n", "escape time : 20.45 s\n", "the number of unit : 415\n", "accuracy score : 0.9\n", "escape time : 20.15 s\n", "the number of unit : 416\n", "accuracy score : 0.898333333333\n", "escape time : 20.63 s\n", "the number of unit : 417\n", "accuracy score : 0.9\n", "escape time : 20.336 s\n", "the number of unit : 418\n", "accuracy score : 0.905\n", "escape time : 20.721 s\n", "the number of unit : 419\n", "accuracy score : 0.896666666667\n", "escape time : 20.109 s\n", "the number of unit : 420\n", "accuracy score : 0.903333333333\n", "escape time : 20.784 s\n", "the number of unit : 421\n", "accuracy score : 0.901666666667\n", "escape time : 20.755 s\n", "the number of unit : 422\n", "accuracy score : 0.9\n", "escape time : 20.948 s\n", "the number of unit : 423\n", "accuracy score : 0.903333333333\n", "escape time : 20.474 s\n", "the number of unit : 424\n", "accuracy score : 0.9\n", "escape time : 20.954 s\n", "the number of unit : 425\n", "accuracy score : 0.898333333333\n", "escape time : 20.709 s\n", "the number of unit : 426\n", "accuracy score : 0.901666666667\n", "escape time : 20.692 s\n", "the number of unit : 427\n", "accuracy score : 0.901666666667\n", "escape time : 20.447 s\n", "the number of unit : 428\n", "accuracy score : 0.9\n", "escape time : 20.894 s\n", "the number of unit : 429\n", "accuracy score : 0.901666666667\n", "escape time : 20.628 s\n", "the number of unit : 430\n", "accuracy score : 0.9\n", "escape time : 21.106 s\n", "the number of unit : 431\n", "accuracy score : 0.901666666667\n", "escape time : 20.718 s\n", "the number of unit : 432\n", "accuracy score : 0.9\n", "escape time : 21.234 s\n", "the number of unit : 433\n", "accuracy score : 0.9\n", "escape time : 20.806 s\n", "the number of unit : 434\n", "accuracy score : 0.9\n", "escape time : 21.121 s\n", "the number of unit : 435\n", "accuracy score : 0.901666666667\n", "escape time : 20.898 s\n", "the number of unit : 436\n", "accuracy score : 0.901666666667\n", "escape time : 21.308 s\n", "the number of unit : 437\n", "accuracy score : 0.896666666667\n", "escape time : 21.084 s\n", "the number of unit : 438\n", "accuracy score : 0.906666666667\n", "escape time : 21.253 s\n", "the number of unit : 439\n", "accuracy score : 0.898333333333\n", "escape time : 20.869 s\n", "the number of unit : 440\n", "accuracy score : 0.9\n", "escape time : 21.732 s\n", "the number of unit : 441\n", "accuracy score : 0.901666666667\n", "escape time : 21.053 s\n", "the number of unit : 442\n", "accuracy score : 0.903333333333\n", "escape time : 21.255 s\n", "the number of unit : 443\n", "accuracy score : 0.903333333333\n", "escape time : 20.885 s\n", "the number of unit : 444\n", "accuracy score : 0.898333333333\n", "escape time : 21.672 s\n", "the number of unit : 445\n", "accuracy score : 0.9\n", "escape time : 21.07 s\n", "the number of unit : 446\n", "accuracy score : 0.9\n", "escape time : 21.439 s\n", "the number of unit : 447\n", "accuracy score : 0.898333333333\n", "escape time : 21.273 s\n", "the number of unit : 448\n", "accuracy score : 0.903333333333\n", "escape time : 21.713 s\n", "the number of unit : 449\n", "accuracy score : 0.901666666667\n", "escape time : 21.37 s\n", "the number of unit : 450\n", "accuracy score : 0.901666666667\n", "escape time : 21.742 s\n", "the number of unit : 451\n", "accuracy score : 0.901666666667\n", "escape time : 21.261 s\n", "the number of unit : 452\n", "accuracy score : 0.9\n", "escape time : 21.79 s\n", "the number of unit : 453\n", "accuracy score : 0.9\n", "escape time : 21.353 s\n", "the number of unit : 454\n", "accuracy score : 0.9\n", "escape time : 22.411 s\n", "the number of unit : 455\n", "accuracy score : 0.903333333333\n", "escape time : 21.38 s\n", "the number of unit : 456\n", "accuracy score : 0.905\n", "escape time : 22.187 s\n", "the number of unit : 457\n", "accuracy score : 0.9\n", "escape time : 21.499 s\n", "the number of unit : 458\n", "accuracy score : 0.901666666667\n", "escape time : 22.141 s\n", "the number of unit : 459\n", "accuracy score : 0.901666666667\n", "escape time : 21.522 s\n", "the number of unit : 460\n", "accuracy score : 0.9\n", "escape time : 22.267 s\n", "the number of unit : 461\n", "accuracy score : 0.901666666667\n", "escape time : 21.63 s\n", "the number of unit : 462\n", "accuracy score : 0.898333333333\n", "escape time : 22.255 s\n", "the number of unit : 463\n", "accuracy score : 0.898333333333\n", "escape time : 21.552 s\n", "the number of unit : 464\n", "accuracy score : 0.9\n", "escape time : 22.357 s\n", "the number of unit : 465\n", "accuracy score : 0.903333333333\n", "escape time : 22.027 s\n", "the number of unit : 466\n", "accuracy score : 0.9\n", "escape time : 22.326 s\n", "the number of unit : 467\n", "accuracy score : 0.9\n", "escape time : 21.706 s\n", "the number of unit : 468\n", "accuracy score : 0.898333333333\n", "escape time : 22.433 s\n", "the number of unit : 469\n", "accuracy score : 0.903333333333\n", "escape time : 21.859 s\n", "the number of unit : 470\n", "accuracy score : 0.898333333333\n", "escape time : 22.427 s\n", "the number of unit : 471\n", "accuracy score : 0.9\n", "escape time : 21.827 s\n", "the number of unit : 472\n", "accuracy score : 0.9\n", "escape time : 22.469 s\n", "the number of unit : 473\n", "accuracy score : 0.896666666667\n", "escape time : 22.486 s\n", "the number of unit : 474\n", "accuracy score : 0.903333333333\n", "escape time : 22.48 s\n", "the number of unit : 475\n", "accuracy score : 0.9\n", "escape time : 22.091 s\n", "the number of unit : 476\n", "accuracy score : 0.896666666667\n", "escape time : 22.618 s\n", "the number of unit : 477\n", "accuracy score : 0.896666666667\n", "escape time : 22.709 s\n", "the number of unit : 478\n", "accuracy score : 0.903333333333\n", "escape time : 22.803 s\n", "the number of unit : 479\n", "accuracy score : 0.901666666667\n", "escape time : 22.158 s\n", "the number of unit : 480\n", "accuracy score : 0.898333333333\n", "escape time : 22.781 s\n", "the number of unit : 481\n", "accuracy score : 0.9\n", "escape time : 22.292 s\n", "the number of unit : 482\n", "accuracy score : 0.896666666667\n", "escape time : 22.904 s\n", "the number of unit : 483\n", "accuracy score : 0.9\n", "escape time : 22.142 s\n", "the number of unit : 484\n", "accuracy score : 0.9\n", "escape time : 22.893 s\n", "the number of unit : 485\n", "accuracy score : 0.898333333333\n", "escape time : 22.397 s\n", "the number of unit : 486\n", "accuracy score : 0.9\n", "escape time : 23.019 s\n", "the number of unit : 487\n", "accuracy score : 0.898333333333\n", "escape time : 22.446 s\n", "the number of unit : 488\n", "accuracy score : 0.903333333333\n", "escape time : 23.797 s\n", "the number of unit : 489\n", "accuracy score : 0.9\n", "escape time : 22.542 s\n", "the number of unit : 490\n", "accuracy score : 0.901666666667\n", "escape time : 23.118 s\n", "the number of unit : 491\n", "accuracy score : 0.9\n", "escape time : 22.367 s\n", "the number of unit : 492\n", "accuracy score : 0.896666666667\n", "escape time : 23.115 s\n", "the number of unit : 493\n", "accuracy score : 0.9\n", "escape time : 22.695 s\n", "the number of unit : 494\n", "accuracy score : 0.896666666667\n", "escape time : 23.193 s\n", "the number of unit : 495\n", "accuracy score : 0.903333333333\n", "escape time : 22.72 s\n", "the number of unit : 496\n", "accuracy score : 0.9\n", "escape time : 23.095 s\n", "the number of unit : 497\n", "accuracy score : 0.898333333333\n", "escape time : 22.751 s\n", "the number of unit : 498\n", "accuracy score : 0.901666666667\n", "escape time : 23.447 s\n", "the number of unit : 499\n", "accuracy score : 0.906666666667\n", "escape time : 22.733 s\n", "the number of unit : 500\n", "accuracy score : 0.898333333333\n", "escape time : 23.426 s\n" ] } ], "source": [ "score4 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Maxout\", units=n, pieces=2),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score4.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.62\n", "escape time : 2.788 s\n", "the number of unit : 2\n", "accuracy score : 0.878333333333\n", "escape time : 2.544 s\n", "the number of unit : 3\n", "accuracy score : 0.898333333333\n", "escape time : 2.546 s\n", "the number of unit : 4\n", "accuracy score : 0.896666666667\n", "escape time : 2.731 s\n", "the number of unit : 5\n", "accuracy score : 0.905\n", "escape time : 2.581 s\n", "the number of unit : 6\n", "accuracy score : 0.905\n", "escape time : 2.564 s\n", "the number of unit : 7\n", "accuracy score : 0.906666666667\n", "escape time : 2.571 s\n", "the number of unit : 8\n", "accuracy score : 0.906666666667\n", "escape time : 2.657 s\n", "the number of unit : 9\n", "accuracy score : 0.901666666667\n", "escape time : 2.786 s\n", "the number of unit : 10\n", "accuracy score : 0.903333333333\n", "escape time : 2.644 s\n", "the number of unit : 11\n", "accuracy score : 0.905\n", "escape time : 2.711 s\n", "the number of unit : 12\n", "accuracy score : 0.905\n", "escape time : 2.724 s\n", "the number of unit : 13\n", "accuracy score : 0.903333333333\n", "escape time : 2.926 s\n", "the number of unit : 14\n", "accuracy score : 0.906666666667\n", "escape time : 2.767 s\n", "the number of unit : 15\n", "accuracy score : 0.905\n", "escape time : 2.785 s\n", "the number of unit : 16\n", "accuracy score : 0.905\n", "escape time : 2.768 s\n", "the number of unit : 17\n", "accuracy score : 0.901666666667\n", "escape time : 2.767 s\n", "the number of unit : 18\n", "accuracy score : 0.906666666667\n", "escape time : 3.011 s\n", "the number of unit : 19\n", "accuracy score : 0.905\n", "escape time : 2.832 s\n", "the number of unit : 20\n", "accuracy score : 0.905\n", "escape time : 2.983 s\n", "the number of unit : 21\n", "accuracy score : 0.905\n", "escape time : 2.876 s\n", "the number of unit : 22\n", "accuracy score : 0.906666666667\n", "escape time : 2.878 s\n", "the number of unit : 23\n", "accuracy score : 0.905\n", "escape time : 3.049 s\n", "the number of unit : 24\n", "accuracy score : 0.905\n", "escape time : 2.877 s\n", "the number of unit : 25\n", "accuracy score : 0.906666666667\n", "escape time : 2.888 s\n", "the number of unit : 26\n", "accuracy score : 0.906666666667\n", "escape time : 2.886 s\n", "the number of unit : 27\n", "accuracy score : 0.903333333333\n", "escape time : 2.957 s\n", "the number of unit : 28\n", "accuracy score : 0.906666666667\n", "escape time : 2.947 s\n", "the number of unit : 29\n", "accuracy score : 0.903333333333\n", "escape time : 3.222 s\n", "the number of unit : 30\n", "accuracy score : 0.905\n", "escape time : 2.952 s\n", "the number of unit : 31\n", "accuracy score : 0.906666666667\n", "escape time : 2.986 s\n", "the number of unit : 32\n", "accuracy score : 0.903333333333\n", "escape time : 3.012 s\n", "the number of unit : 33\n", "accuracy score : 0.901666666667\n", "escape time : 3.017 s\n", "the number of unit : 34\n", "accuracy score : 0.906666666667\n", "escape time : 3.256 s\n", "the number of unit : 35\n", "accuracy score : 0.905\n", "escape time : 3.061 s\n", "the number of unit : 36\n", "accuracy score : 0.906666666667\n", "escape time : 3.076 s\n", "the number of unit : 37\n", "accuracy score : 0.905\n", "escape time : 3.087 s\n", "the number of unit : 38\n", "accuracy score : 0.905\n", "escape time : 3.076 s\n", "the number of unit : 39\n", "accuracy score : 0.905\n", "escape time : 3.398 s\n", "the number of unit : 40\n", "accuracy score : 0.906666666667\n", "escape time : 3.138 s\n", "the number of unit : 41\n", "accuracy score : 0.903333333333\n", "escape time : 3.152 s\n", "the number of unit : 42\n", "accuracy score : 0.905\n", "escape time : 3.152 s\n", "the number of unit : 43\n", "accuracy score : 0.905\n", "escape time : 3.127 s\n", "the number of unit : 44\n", "accuracy score : 0.905\n", "escape time : 3.421 s\n", "the number of unit : 45\n", "accuracy score : 0.906666666667\n", "escape time : 3.197 s\n", "the number of unit : 46\n", "accuracy score : 0.905\n", "escape time : 3.244 s\n", "the number of unit : 47\n", "accuracy score : 0.906666666667\n", "escape time : 3.214 s\n", "the number of unit : 48\n", "accuracy score : 0.906666666667\n", "escape time : 3.472 s\n", "the number of unit : 49\n", "accuracy score : 0.906666666667\n", "escape time : 3.286 s\n", "the number of unit : 50\n", "accuracy score : 0.906666666667\n", "escape time : 3.269 s\n", "the number of unit : 51\n", "accuracy score : 0.906666666667\n", "escape time : 3.294 s\n", "the number of unit : 52\n", "accuracy score : 0.906666666667\n", "escape time : 3.294 s\n", "the number of unit : 53\n", "accuracy score : 0.906666666667\n", "escape time : 3.521 s\n", "the number of unit : 54\n", "accuracy score : 0.905\n", "escape time : 3.426 s\n", "the number of unit : 55\n", "accuracy score : 0.905\n", "escape time : 3.413 s\n", "the number of unit : 56\n", "accuracy score : 0.906666666667\n", "escape time : 3.351 s\n", "the number of unit : 57\n", "accuracy score : 0.905\n", "escape time : 3.34 s\n", "the number of unit : 58\n", "accuracy score : 0.906666666667\n", "escape time : 3.597 s\n", "the number of unit : 59\n", "accuracy score : 0.905\n", "escape time : 3.431 s\n", "the number of unit : 60\n", "accuracy score : 0.906666666667\n", "escape time : 3.392 s\n", "the number of unit : 61\n", "accuracy score : 0.906666666667\n", "escape time : 3.42 s\n", "the number of unit : 62\n", "accuracy score : 0.906666666667\n", "escape time : 3.45 s\n", "the number of unit : 63\n", "accuracy score : 0.906666666667\n", "escape time : 3.453 s\n", "the number of unit : 64\n", "accuracy score : 0.906666666667\n", "escape time : 3.754 s\n", "the number of unit : 65\n", "accuracy score : 0.908333333333\n", "escape time : 3.484 s\n", "the number of unit : 66\n", "accuracy score : 0.905\n", "escape time : 3.533 s\n", "the number of unit : 67\n", "accuracy score : 0.905\n", "escape time : 3.552 s\n", "the number of unit : 68\n", "accuracy score : 0.906666666667\n", "escape time : 3.567 s\n", "the number of unit : 69\n", "accuracy score : 0.906666666667\n", "escape time : 3.764 s\n", "the number of unit : 70\n", "accuracy score : 0.906666666667\n", "escape time : 3.711 s\n", "the number of unit : 71\n", "accuracy score : 0.901666666667\n", "escape time : 3.634 s\n", "the number of unit : 72\n", "accuracy score : 0.906666666667\n", "escape time : 3.686 s\n", "the number of unit : 73\n", "accuracy score : 0.905\n", "escape time : 3.754 s\n", "the number of unit : 74\n", "accuracy score : 0.905\n", "escape time : 3.872 s\n", "the number of unit : 75\n", "accuracy score : 0.905\n", "escape time : 3.731 s\n", "the number of unit : 76\n", "accuracy score : 0.906666666667\n", "escape time : 3.747 s\n", "the number of unit : 77\n", "accuracy score : 0.905\n", "escape time : 3.694 s\n", "the number of unit : 78\n", "accuracy score : 0.906666666667\n", "escape time : 3.796 s\n", "the number of unit : 79\n", "accuracy score : 0.905\n", "escape time : 3.931 s\n", "the number of unit : 80\n", "accuracy score : 0.906666666667\n", "escape time : 3.787 s\n", "the number of unit : 81\n", "accuracy score : 0.903333333333\n", "escape time : 3.783 s\n", "the number of unit : 82\n", "accuracy score : 0.905\n", "escape time : 3.839 s\n", "the number of unit : 83\n", "accuracy score : 0.901666666667\n", "escape time : 4.048 s\n", "the number of unit : 84\n", "accuracy score : 0.906666666667\n", "escape time : 4.243 s\n", "the number of unit : 85\n", "accuracy score : 0.905\n", "escape time : 4.344 s\n", "the number of unit : 86\n", "accuracy score : 0.908333333333\n", "escape time : 4.298 s\n", "the number of unit : 87\n", "accuracy score : 0.906666666667\n", "escape time : 4.296 s\n", "the number of unit : 88\n", "accuracy score : 0.905\n", "escape time : 4.593 s\n", "the number of unit : 89\n", "accuracy score : 0.905\n", "escape time : 4.336 s\n", "the number of unit : 90\n", "accuracy score : 0.905\n", "escape time : 4.414 s\n", "the number of unit : 91\n", "accuracy score : 0.905\n", "escape time : 4.401 s\n", "the number of unit : 92\n", "accuracy score : 0.906666666667\n", "escape time : 4.4 s\n", "the number of unit : 93\n", "accuracy score : 0.903333333333\n", "escape time : 4.611 s\n", "the number of unit : 94\n", "accuracy score : 0.905\n", "escape time : 4.471 s\n", "the number of unit : 95\n", "accuracy score : 0.906666666667\n", "escape time : 4.496 s\n", "the number of unit : 96\n", "accuracy score : 0.905\n", "escape time : 4.41 s\n", "the number of unit : 97\n", "accuracy score : 0.906666666667\n", "escape time : 4.514 s\n", "the number of unit : 98\n", "accuracy score : 0.905\n", "escape time : 4.454 s\n", "the number of unit : 99\n", "accuracy score : 0.906666666667\n", "escape time : 4.696 s\n", "the number of unit : 100\n", "accuracy score : 0.906666666667\n", "escape time : 4.543 s\n", "the number of unit : 101\n", "accuracy score : 0.905\n", "escape time : 4.601 s\n", "the number of unit : 102\n", "accuracy score : 0.905\n", "escape time : 4.548 s\n", "the number of unit : 103\n", "accuracy score : 0.906666666667\n", "escape time : 4.593 s\n", "the number of unit : 104\n", "accuracy score : 0.906666666667\n", "escape time : 4.777 s\n", "the number of unit : 105\n", "accuracy score : 0.906666666667\n", "escape time : 4.656 s\n", "the number of unit : 106\n", "accuracy score : 0.905\n", "escape time : 4.592 s\n", "the number of unit : 107\n", "accuracy score : 0.906666666667\n", "escape time : 4.605 s\n", "the number of unit : 108\n", "accuracy score : 0.906666666667\n", "escape time : 4.623 s\n", "the number of unit : 109\n", "accuracy score : 0.905\n", "escape time : 4.885 s\n", "the number of unit : 110\n", "accuracy score : 0.906666666667\n", "escape time : 4.738 s\n", "the number of unit : 111\n", "accuracy score : 0.906666666667\n", "escape time : 4.734 s\n", "the number of unit : 112\n", "accuracy score : 0.906666666667\n", "escape time : 4.759 s\n", "the number of unit : 113\n", "accuracy score : 0.905\n", "escape time : 4.776 s\n", "the number of unit : 114\n", "accuracy score : 0.905\n", "escape time : 4.952 s\n", "the number of unit : 115\n", "accuracy score : 0.905\n", "escape time : 4.827 s\n", "the number of unit : 116\n", "accuracy score : 0.905\n", "escape time : 4.831 s\n", "the number of unit : 117\n", "accuracy score : 0.903333333333\n", "escape time : 4.802 s\n", "the number of unit : 118\n", "accuracy score : 0.905\n", "escape time : 5.007 s\n", "the number of unit : 119\n", "accuracy score : 0.906666666667\n", "escape time : 4.876 s\n", "the number of unit : 120\n", "accuracy score : 0.903333333333\n", "escape time : 4.938 s\n", "the number of unit : 121\n", "accuracy score : 0.905\n", "escape time : 4.826 s\n", "the number of unit : 122\n", "accuracy score : 0.906666666667\n", "escape time : 4.935 s\n", "the number of unit : 123\n", "accuracy score : 0.905\n", "escape time : 5.244 s\n", "the number of unit : 124\n", "accuracy score : 0.906666666667\n", "escape time : 4.935 s\n", "the number of unit : 125\n", "accuracy score : 0.905\n", "escape time : 4.928 s\n", "the number of unit : 126\n", "accuracy score : 0.905\n", "escape time : 5.049 s\n", "the number of unit : 127\n", "accuracy score : 0.903333333333\n", "escape time : 4.985 s\n", "the number of unit : 128\n", "accuracy score : 0.905\n", "escape time : 7.561 s\n", "the number of unit : 129\n", "accuracy score : 0.901666666667\n", "escape time : 7.423 s\n", "the number of unit : 130\n", "accuracy score : 0.903333333333\n", "escape time : 7.437 s\n", "the number of unit : 131\n", "accuracy score : 0.906666666667\n", "escape time : 7.334 s\n", "the number of unit : 132\n", "accuracy score : 0.905\n", "escape time : 7.151 s\n", "the number of unit : 133\n", "accuracy score : 0.901666666667\n", "escape time : 7.543 s\n", "the number of unit : 134\n", "accuracy score : 0.905\n", "escape time : 7.703 s\n", "the number of unit : 135\n", "accuracy score : 0.903333333333\n", "escape time : 7.654 s\n", "the number of unit : 136\n", "accuracy score : 0.903333333333\n", "escape time : 7.393 s\n", "the number of unit : 137\n", "accuracy score : 0.906666666667\n", "escape time : 7.586 s\n", "the number of unit : 138\n", "accuracy score : 0.906666666667\n", "escape time : 7.582 s\n", "the number of unit : 139\n", "accuracy score : 0.905\n", "escape time : 7.636 s\n", "the number of unit : 140\n", "accuracy score : 0.905\n", "escape time : 7.708 s\n", "the number of unit : 141\n", "accuracy score : 0.901666666667\n", "escape time : 7.536 s\n", "the number of unit : 142\n", "accuracy score : 0.905\n", "escape time : 7.695 s\n", "the number of unit : 143\n", "accuracy score : 0.905\n", "escape time : 7.565 s\n", "the number of unit : 144\n", "accuracy score : 0.905\n", "escape time : 7.648 s\n", "the number of unit : 145\n", "accuracy score : 0.906666666667\n", "escape time : 7.652 s\n", "the number of unit : 146\n", "accuracy score : 0.905\n", "escape time : 7.49 s\n", "the number of unit : 147\n", "accuracy score : 0.906666666667\n", "escape time : 7.478 s\n", "the number of unit : 148\n", "accuracy score : 0.905\n", "escape time : 7.698 s\n", "the number of unit : 149\n", "accuracy score : 0.905\n", "escape time : 7.751 s\n", "the number of unit : 150\n", "accuracy score : 0.905\n", "escape time : 7.765 s\n", "the number of unit : 151\n", "accuracy score : 0.903333333333\n", "escape time : 7.654 s\n", "the number of unit : 152\n", "accuracy score : 0.906666666667\n", "escape time : 7.945 s\n", "the number of unit : 153\n", "accuracy score : 0.903333333333\n", "escape time : 7.697 s\n", "the number of unit : 154\n", "accuracy score : 0.903333333333\n", "escape time : 7.599 s\n", "the number of unit : 155\n", "accuracy score : 0.906666666667\n", "escape time : 7.673 s\n", "the number of unit : 156\n", "accuracy score : 0.905\n", "escape time : 7.844 s\n", "the number of unit : 157\n", "accuracy score : 0.903333333333\n", "escape time : 7.816 s\n", "the number of unit : 158\n", "accuracy score : 0.903333333333\n", "escape time : 7.708 s\n", "the number of unit : 159\n", "accuracy score : 0.905\n", "escape time : 7.863 s\n", "the number of unit : 160\n", "accuracy score : 0.901666666667\n", "escape time : 7.57 s\n", "the number of unit : 161\n", "accuracy score : 0.906666666667\n", "escape time : 7.804 s\n", "the number of unit : 162\n", "accuracy score : 0.901666666667\n", "escape time : 8.096 s\n", "the number of unit : 163\n", "accuracy score : 0.905\n", "escape time : 8.006 s\n", "the number of unit : 164\n", "accuracy score : 0.906666666667\n", "escape time : 7.95 s\n", "the number of unit : 165\n", "accuracy score : 0.901666666667\n", "escape time : 8.031 s\n", "the number of unit : 166\n", "accuracy score : 0.901666666667\n", "escape time : 7.9 s\n", "the number of unit : 167\n", "accuracy score : 0.906666666667\n", "escape time : 7.577 s\n", "the number of unit : 168\n", "accuracy score : 0.905\n", "escape time : 7.859 s\n", "the number of unit : 169\n", "accuracy score : 0.906666666667\n", "escape time : 7.883 s\n", "the number of unit : 170\n", "accuracy score : 0.905\n", "escape time : 7.784 s\n", "the number of unit : 171\n", "accuracy score : 0.905\n", "escape time : 7.785 s\n", "the number of unit : 172\n", "accuracy score : 0.905\n", "escape time : 7.673 s\n", "the number of unit : 173\n", "accuracy score : 0.905\n", "escape time : 7.767 s\n", "the number of unit : 174\n", "accuracy score : 0.901666666667\n", "escape time : 7.905 s\n", "the number of unit : 175\n", "accuracy score : 0.906666666667\n", "escape time : 8.147 s\n", "the number of unit : 176\n", "accuracy score : 0.905\n", "escape time : 7.572 s\n", "the number of unit : 177\n", "accuracy score : 0.903333333333\n", "escape time : 7.937 s\n", "the number of unit : 178\n", "accuracy score : 0.905\n", "escape time : 7.938 s\n", "the number of unit : 179\n", "accuracy score : 0.903333333333\n", "escape time : 8.386 s\n", "the number of unit : 180\n", "accuracy score : 0.903333333333\n", "escape time : 7.752 s\n", "the number of unit : 181\n", "accuracy score : 0.903333333333\n", "escape time : 8.627 s\n", "the number of unit : 182\n", "accuracy score : 0.905\n", "escape time : 8.014 s\n", "the number of unit : 183\n", "accuracy score : 0.903333333333\n", "escape time : 8.256 s\n", "the number of unit : 184\n", "accuracy score : 0.905\n", "escape time : 8.113 s\n", "the number of unit : 185\n", "accuracy score : 0.905\n", "escape time : 8.38 s\n", "the number of unit : 186\n", "accuracy score : 0.905\n", "escape time : 8.093 s\n", "the number of unit : 187\n", "accuracy score : 0.906666666667\n", "escape time : 7.911 s\n", "the number of unit : 188\n", "accuracy score : 0.903333333333\n", "escape time : 8.367 s\n", "the number of unit : 189\n", "accuracy score : 0.905\n", "escape time : 8.687 s\n", "the number of unit : 190\n", "accuracy score : 0.906666666667\n", "escape time : 8.299 s\n", "the number of unit : 191\n", "accuracy score : 0.901666666667\n", "escape time : 8.562 s\n", "the number of unit : 192\n", "accuracy score : 0.903333333333\n", "escape time : 8.163 s\n", "the number of unit : 193\n", "accuracy score : 0.905\n", "escape time : 8.581 s\n", "the number of unit : 194\n", "accuracy score : 0.905\n", "escape time : 8.659 s\n", "the number of unit : 195\n", "accuracy score : 0.905\n", "escape time : 8.954 s\n", "the number of unit : 196\n", "accuracy score : 0.901666666667\n", "escape time : 8.516 s\n", "the number of unit : 197\n", "accuracy score : 0.903333333333\n", "escape time : 8.63 s\n", "the number of unit : 198\n", "accuracy score : 0.901666666667\n", "escape time : 8.917 s\n", "the number of unit : 199\n", "accuracy score : 0.906666666667\n", "escape time : 8.815 s\n", "the number of unit : 200\n", "accuracy score : 0.901666666667\n", "escape time : 8.018 s\n", "the number of unit : 201\n", "accuracy score : 0.905\n", "escape time : 8.916 s\n", "the number of unit : 202\n", "accuracy score : 0.905\n", "escape time : 8.873 s\n", "the number of unit : 203\n", "accuracy score : 0.903333333333\n", "escape time : 8.892 s\n", "the number of unit : 204\n", "accuracy score : 0.901666666667\n", "escape time : 8.945 s\n", "the number of unit : 205\n", "accuracy score : 0.903333333333\n", "escape time : 8.631 s\n", "the number of unit : 206\n", "accuracy score : 0.905\n", "escape time : 8.68 s\n", "the number of unit : 207\n", "accuracy score : 0.901666666667\n", "escape time : 8.871 s\n", "the number of unit : 208\n", "accuracy score : 0.905\n", "escape time : 8.518 s\n", "the number of unit : 209\n", "accuracy score : 0.903333333333\n", "escape time : 9.407 s\n", "the number of unit : 210\n", "accuracy score : 0.901666666667\n", "escape time : 9.222 s\n", "the number of unit : 211\n", "accuracy score : 0.906666666667\n", "escape time : 9.111 s\n", "the number of unit : 212\n", "accuracy score : 0.905\n", "escape time : 9.017 s\n", "the number of unit : 213\n", "accuracy score : 0.903333333333\n", "escape time : 9.09 s\n", "the number of unit : 214\n", "accuracy score : 0.9\n", "escape time : 9.603 s\n", "the number of unit : 215\n", "accuracy score : 0.901666666667\n", "escape time : 9.462 s\n", "the number of unit : 216\n", "accuracy score : 0.906666666667\n", "escape time : 8.907 s\n", "the number of unit : 217\n", "accuracy score : 0.905\n", "escape time : 9.581 s\n", "the number of unit : 218\n", "accuracy score : 0.906666666667\n", "escape time : 9.516 s\n", "the number of unit : 219\n", "accuracy score : 0.905\n", "escape time : 9.86 s\n", "the number of unit : 220\n", "accuracy score : 0.905\n", "escape time : 8.937 s\n", "the number of unit : 221\n", "accuracy score : 0.903333333333\n", "escape time : 9.47 s\n", "the number of unit : 222\n", "accuracy score : 0.901666666667\n", "escape time : 9.297 s\n", "the number of unit : 223\n", "accuracy score : 0.903333333333\n", "escape time : 9.82 s\n", "the number of unit : 224\n", "accuracy score : 0.903333333333\n", "escape time : 9.407 s\n", "the number of unit : 225\n", "accuracy score : 0.905\n", "escape time : 9.633 s\n", "the number of unit : 226\n", "accuracy score : 0.901666666667\n", "escape time : 9.563 s\n", "the number of unit : 227\n", "accuracy score : 0.905\n", "escape time : 9.594 s\n", "the number of unit : 228\n", "accuracy score : 0.905\n", "escape time : 9.778 s\n", "the number of unit : 229\n", "accuracy score : 0.903333333333\n", "escape time : 9.73 s\n", "the number of unit : 230\n", "accuracy score : 0.905\n", "escape time : 9.599 s\n", "the number of unit : 231\n", "accuracy score : 0.901666666667\n", "escape time : 9.369 s\n", "the number of unit : 232\n", "accuracy score : 0.901666666667\n", "escape time : 8.346 s\n", "the number of unit : 233\n", "accuracy score : 0.901666666667\n", "escape time : 7.736 s\n", "the number of unit : 234\n", "accuracy score : 0.901666666667\n", "escape time : 7.455 s\n", "the number of unit : 235\n", "accuracy score : 0.905\n", "escape time : 7.488 s\n", "the number of unit : 236\n", "accuracy score : 0.901666666667\n", "escape time : 7.132 s\n", "the number of unit : 237\n", "accuracy score : 0.903333333333\n", "escape time : 7.404 s\n", "the number of unit : 238\n", "accuracy score : 0.905\n", "escape time : 7.24 s\n", "the number of unit : 239\n", "accuracy score : 0.905\n", "escape time : 7.911 s\n", "the number of unit : 240\n", "accuracy score : 0.901666666667\n", "escape time : 7.227 s\n", "the number of unit : 241\n", "accuracy score : 0.905\n", "escape time : 7.827 s\n", "the number of unit : 242\n", "accuracy score : 0.901666666667\n", "escape time : 7.721 s\n", "the number of unit : 243\n", "accuracy score : 0.903333333333\n", "escape time : 7.975 s\n", "the number of unit : 244\n", "accuracy score : 0.901666666667\n", "escape time : 7.943 s\n", "the number of unit : 245\n", "accuracy score : 0.901666666667\n", "escape time : 8.003 s\n", "the number of unit : 246\n", "accuracy score : 0.903333333333\n", "escape time : 7.987 s\n", "the number of unit : 247\n", "accuracy score : 0.901666666667\n", "escape time : 8.113 s\n", "the number of unit : 248\n", "accuracy score : 0.901666666667\n", "escape time : 7.771 s\n", "the number of unit : 249\n", "accuracy score : 0.903333333333\n", "escape time : 8.446 s\n", "the number of unit : 250\n", "accuracy score : 0.903333333333\n", "escape time : 8.222 s\n", "the number of unit : 251\n", "accuracy score : 0.903333333333\n", "escape time : 8.344 s\n", "the number of unit : 252\n", "accuracy score : 0.903333333333\n", "escape time : 8.036 s\n", "the number of unit : 253\n", "accuracy score : 0.906666666667\n", "escape time : 8.351 s\n", "the number of unit : 254\n", "accuracy score : 0.905\n", "escape time : 8.304 s\n", "the number of unit : 255\n", "accuracy score : 0.903333333333\n", "escape time : 8.28 s\n", "the number of unit : 256\n", "accuracy score : 0.903333333333\n", "escape time : 8.251 s\n", "the number of unit : 257\n", "accuracy score : 0.903333333333\n", "escape time : 8.607 s\n", "the number of unit : 258\n", "accuracy score : 0.901666666667\n", "escape time : 8.536 s\n", "the number of unit : 259\n", "accuracy score : 0.901666666667\n", "escape time : 8.767 s\n", "the number of unit : 260\n", "accuracy score : 0.903333333333\n", "escape time : 8.433 s\n", "the number of unit : 261\n", "accuracy score : 0.903333333333\n", "escape time : 8.773 s\n", "the number of unit : 262\n", "accuracy score : 0.906666666667\n", "escape time : 9.172 s\n", "the number of unit : 263\n", "accuracy score : 0.901666666667\n", "escape time : 12.219 s\n", "the number of unit : 264\n", "accuracy score : 0.901666666667\n", "escape time : 11.678 s\n", "the number of unit : 265\n", "accuracy score : 0.903333333333\n", "escape time : 12.056 s\n", "the number of unit : 266\n", "accuracy score : 0.901666666667\n", "escape time : 11.891 s\n", "the number of unit : 267\n", "accuracy score : 0.905\n", "escape time : 11.941 s\n", "the number of unit : 268\n", "accuracy score : 0.905\n", "escape time : 12.054 s\n", "the number of unit : 269\n", "accuracy score : 0.901666666667\n", "escape time : 11.95 s\n", "the number of unit : 270\n", "accuracy score : 0.905\n", "escape time : 11.901 s\n", "the number of unit : 271\n", "accuracy score : 0.901666666667\n", "escape time : 12.089 s\n", "the number of unit : 272\n", "accuracy score : 0.901666666667\n", "escape time : 11.798 s\n", "the number of unit : 273\n", "accuracy score : 0.903333333333\n", "escape time : 11.942 s\n", "the number of unit : 274\n", "accuracy score : 0.903333333333\n", "escape time : 12.279 s\n", "the number of unit : 275\n", "accuracy score : 0.901666666667\n", "escape time : 11.085 s\n", "the number of unit : 276\n", "accuracy score : 0.901666666667\n", "escape time : 11.794 s\n", "the number of unit : 277\n", "accuracy score : 0.906666666667\n", "escape time : 11.884 s\n", "the number of unit : 278\n", "accuracy score : 0.906666666667\n", "escape time : 11.944 s\n", "the number of unit : 279\n", "accuracy score : 0.903333333333\n", "escape time : 12.333 s\n", "the number of unit : 280\n", "accuracy score : 0.905\n", "escape time : 11.783 s\n", "the number of unit : 281\n", "accuracy score : 0.903333333333\n", "escape time : 12.105 s\n", "the number of unit : 282\n", "accuracy score : 0.903333333333\n", "escape time : 11.426 s\n", "the number of unit : 283\n", "accuracy score : 0.901666666667\n", "escape time : 12.038 s\n", "the number of unit : 284\n", "accuracy score : 0.906666666667\n", "escape time : 11.737 s\n", "the number of unit : 285\n", "accuracy score : 0.901666666667\n", "escape time : 11.694 s\n", "the number of unit : 286\n", "accuracy score : 0.905\n", "escape time : 11.832 s\n", "the number of unit : 287\n", "accuracy score : 0.903333333333\n", "escape time : 12.298 s\n", "the number of unit : 288\n", "accuracy score : 0.903333333333\n", "escape time : 11.978 s\n", "the number of unit : 289\n", "accuracy score : 0.903333333333\n", "escape time : 11.838 s\n", "the number of unit : 290\n", "accuracy score : 0.903333333333\n", "escape time : 11.715 s\n", "the number of unit : 291\n", "accuracy score : 0.901666666667\n", "escape time : 11.556 s\n", "the number of unit : 292\n", "accuracy score : 0.903333333333\n", "escape time : 12.009 s\n", "the number of unit : 293\n", "accuracy score : 0.901666666667\n", "escape time : 11.603 s\n", "the number of unit : 294\n", "accuracy score : 0.906666666667\n", "escape time : 11.679 s\n", "the number of unit : 295\n", "accuracy score : 0.901666666667\n", "escape time : 11.45 s\n", "the number of unit : 296\n", "accuracy score : 0.901666666667\n", "escape time : 12.049 s\n", "the number of unit : 297\n", "accuracy score : 0.903333333333\n", "escape time : 11.445 s\n", "the number of unit : 298\n", "accuracy score : 0.901666666667\n", "escape time : 11.599 s\n", "the number of unit : 299\n", "accuracy score : 0.903333333333\n", "escape time : 11.517 s\n", "the number of unit : 300\n", "accuracy score : 0.901666666667\n", "escape time : 11.915 s\n", "the number of unit : 301\n", "accuracy score : 0.901666666667\n", "escape time : 11.583 s\n", "the number of unit : 302\n", "accuracy score : 0.903333333333\n", "escape time : 11.397 s\n", "the number of unit : 303\n", "accuracy score : 0.903333333333\n", "escape time : 11.821 s\n", "the number of unit : 304\n", "accuracy score : 0.906666666667\n", "escape time : 11.847 s\n", "the number of unit : 305\n", "accuracy score : 0.905\n", "escape time : 11.519 s\n", "the number of unit : 306\n", "accuracy score : 0.901666666667\n", "escape time : 11.131 s\n", "the number of unit : 307\n", "accuracy score : 0.901666666667\n", "escape time : 11.635 s\n", "the number of unit : 308\n", "accuracy score : 0.903333333333\n", "escape time : 11.28 s\n", "the number of unit : 309\n", "accuracy score : 0.901666666667\n", "escape time : 11.594 s\n", "the number of unit : 310\n", "accuracy score : 0.905\n", "escape time : 11.39 s\n", "the number of unit : 311\n", "accuracy score : 0.901666666667\n", "escape time : 11.691 s\n", "the number of unit : 312\n", "accuracy score : 0.901666666667\n", "escape time : 11.632 s\n", "the number of unit : 313\n", "accuracy score : 0.903333333333\n", "escape time : 11.722 s\n", "the number of unit : 314\n", "accuracy score : 0.903333333333\n", "escape time : 11.708 s\n", "the number of unit : 315\n", "accuracy score : 0.901666666667\n", "escape time : 10.613 s\n", "the number of unit : 316\n", "accuracy score : 0.905\n", "escape time : 10.988 s\n", "the number of unit : 317\n", "accuracy score : 0.901666666667\n", "escape time : 11.287 s\n", "the number of unit : 318\n", "accuracy score : 0.901666666667\n", "escape time : 10.589 s\n", "the number of unit : 319\n", "accuracy score : 0.906666666667\n", "escape time : 10.89 s\n", "the number of unit : 320\n", "accuracy score : 0.903333333333\n", "escape time : 11.439 s\n", "the number of unit : 321\n", "accuracy score : 0.905\n", "escape time : 11.052 s\n", "the number of unit : 322\n", "accuracy score : 0.901666666667\n", "escape time : 10.764 s\n", "the number of unit : 323\n", "accuracy score : 0.901666666667\n", "escape time : 10.531 s\n", "the number of unit : 324\n", "accuracy score : 0.903333333333\n", "escape time : 11.959 s\n", "the number of unit : 325\n", "accuracy score : 0.903333333333\n", "escape time : 10.912 s\n", "the number of unit : 326\n", "accuracy score : 0.901666666667\n", "escape time : 10.97 s\n", "the number of unit : 327\n", "accuracy score : 0.901666666667\n", "escape time : 10.499 s\n", "the number of unit : 328\n", "accuracy score : 0.905\n", "escape time : 11.246 s\n", "the number of unit : 329\n", "accuracy score : 0.901666666667\n", "escape time : 11.027 s\n", "the number of unit : 330\n", "accuracy score : 0.903333333333\n", "escape time : 10.113 s\n", "the number of unit : 331\n", "accuracy score : 0.905\n", "escape time : 10.22 s\n", "the number of unit : 332\n", "accuracy score : 0.901666666667\n", "escape time : 10.805 s\n", "the number of unit : 333\n", "accuracy score : 0.901666666667\n", "escape time : 9.847 s\n", "the number of unit : 334\n", "accuracy score : 0.901666666667\n", "escape time : 10.181 s\n", "the number of unit : 335\n", "accuracy score : 0.901666666667\n", "escape time : 10.151 s\n", "the number of unit : 336\n", "accuracy score : 0.903333333333\n", "escape time : 11.121 s\n", "the number of unit : 337\n", "accuracy score : 0.901666666667\n", "escape time : 9.657 s\n", "the number of unit : 338\n", "accuracy score : 0.903333333333\n", "escape time : 9.334 s\n", "the number of unit : 339\n", "accuracy score : 0.903333333333\n", "escape time : 9.848 s\n", "the number of unit : 340\n", "accuracy score : 0.901666666667\n", "escape time : 9.498 s\n", "the number of unit : 341\n", "accuracy score : 0.906666666667\n", "escape time : 9.491 s\n", "the number of unit : 342\n", "accuracy score : 0.901666666667\n", "escape time : 9.343 s\n", "the number of unit : 343\n", "accuracy score : 0.901666666667\n", "escape time : 9.268 s\n", "the number of unit : 344\n", "accuracy score : 0.903333333333\n", "escape time : 10.553 s\n", "the number of unit : 345\n", "accuracy score : 0.905\n", "escape time : 10.32 s\n", "the number of unit : 346\n", "accuracy score : 0.901666666667\n", "escape time : 9.494 s\n", "the number of unit : 347\n", "accuracy score : 0.903333333333\n", "escape time : 9.224 s\n", "the number of unit : 348\n", "accuracy score : 0.901666666667\n", "escape time : 8.959 s\n", "the number of unit : 349\n", "accuracy score : 0.903333333333\n", "escape time : 9.63 s\n", "the number of unit : 350\n", "accuracy score : 0.905\n", "escape time : 10.191 s\n", "the number of unit : 351\n", "accuracy score : 0.903333333333\n", "escape time : 9.823 s\n", "the number of unit : 352\n", "accuracy score : 0.905\n", "escape time : 9.112 s\n", "the number of unit : 353\n", "accuracy score : 0.901666666667\n", "escape time : 9.205 s\n", "the number of unit : 354\n", "accuracy score : 0.901666666667\n", "escape time : 9.589 s\n", "the number of unit : 355\n", "accuracy score : 0.905\n", "escape time : 9.337 s\n", "the number of unit : 356\n", "accuracy score : 0.901666666667\n", "escape time : 9.052 s\n", "the number of unit : 357\n", "accuracy score : 0.905\n", "escape time : 9.281 s\n", "the number of unit : 358\n", "accuracy score : 0.906666666667\n", "escape time : 9.098 s\n", "the number of unit : 359\n", "accuracy score : 0.905\n", "escape time : 9.764 s\n", "the number of unit : 360\n", "accuracy score : 0.901666666667\n", "escape time : 8.833 s\n", "the number of unit : 361\n", "accuracy score : 0.903333333333\n", "escape time : 9.413 s\n", "the number of unit : 362\n", "accuracy score : 0.905\n", "escape time : 9.301 s\n", "the number of unit : 363\n", "accuracy score : 0.903333333333\n", "escape time : 9.531 s\n", "the number of unit : 364\n", "accuracy score : 0.901666666667\n", "escape time : 9.221 s\n", "the number of unit : 365\n", "accuracy score : 0.903333333333\n", "escape time : 9.435 s\n", "the number of unit : 366\n", "accuracy score : 0.903333333333\n", "escape time : 9.202 s\n", "the number of unit : 367\n", "accuracy score : 0.903333333333\n", "escape time : 9.519 s\n", "the number of unit : 368\n", "accuracy score : 0.901666666667\n", "escape time : 9.39 s\n", "the number of unit : 369\n", "accuracy score : 0.903333333333\n", "escape time : 9.547 s\n", "the number of unit : 370\n", "accuracy score : 0.901666666667\n", "escape time : 9.157 s\n", "the number of unit : 371\n", "accuracy score : 0.901666666667\n", "escape time : 9.503 s\n", "the number of unit : 372\n", "accuracy score : 0.903333333333\n", "escape time : 9.216 s\n", "the number of unit : 373\n", "accuracy score : 0.906666666667\n", "escape time : 9.859 s\n", "the number of unit : 374\n", "accuracy score : 0.903333333333\n", "escape time : 9.456 s\n", "the number of unit : 375\n", "accuracy score : 0.903333333333\n", "escape time : 9.602 s\n", "the number of unit : 376\n", "accuracy score : 0.901666666667\n", "escape time : 9.009 s\n", "the number of unit : 377\n", "accuracy score : 0.903333333333\n", "escape time : 9.584 s\n", "the number of unit : 378\n", "accuracy score : 0.903333333333\n", "escape time : 9.532 s\n", "the number of unit : 379\n", "accuracy score : 0.903333333333\n", "escape time : 9.714 s\n", "the number of unit : 380\n", "accuracy score : 0.903333333333\n", "escape time : 9.299 s\n", "the number of unit : 381\n", "accuracy score : 0.903333333333\n", "escape time : 9.67 s\n", "the number of unit : 382\n", "accuracy score : 0.905\n", "escape time : 9.298 s\n", "the number of unit : 383\n", "accuracy score : 0.901666666667\n", "escape time : 9.611 s\n", "the number of unit : 384\n", "accuracy score : 0.905\n", "escape time : 9.65 s\n", "the number of unit : 385\n", "accuracy score : 0.905\n", "escape time : 9.61 s\n", "the number of unit : 386\n", "accuracy score : 0.901666666667\n", "escape time : 9.256 s\n", "the number of unit : 387\n", "accuracy score : 0.901666666667\n", "escape time : 9.625 s\n", "the number of unit : 388\n", "accuracy score : 0.901666666667\n", "escape time : 9.38 s\n", "the number of unit : 389\n", "accuracy score : 0.905\n", "escape time : 9.8 s\n", "the number of unit : 390\n", "accuracy score : 0.903333333333\n", "escape time : 9.516 s\n", "the number of unit : 391\n", "accuracy score : 0.903333333333\n", "escape time : 9.735 s\n", "the number of unit : 392\n", "accuracy score : 0.901666666667\n", "escape time : 9.01 s\n", "the number of unit : 393\n", "accuracy score : 0.901666666667\n", "escape time : 9.592 s\n", "the number of unit : 394\n", "accuracy score : 0.901666666667\n", "escape time : 9.803 s\n", "the number of unit : 395\n", "accuracy score : 0.901666666667\n", "escape time : 9.693 s\n", "the number of unit : 396\n", "accuracy score : 0.901666666667\n", "escape time : 9.231 s\n", "the number of unit : 397\n", "accuracy score : 0.901666666667\n", "escape time : 9.716 s\n", "the number of unit : 398\n", "accuracy score : 0.903333333333\n", "escape time : 9.793 s\n", "the number of unit : 399\n", "accuracy score : 0.901666666667\n", "escape time : 9.731 s\n", "the number of unit : 400\n", "accuracy score : 0.903333333333\n", "escape time : 9.223 s\n", "the number of unit : 401\n", "accuracy score : 0.901666666667\n", "escape time : 9.792 s\n", "the number of unit : 402\n", "accuracy score : 0.901666666667\n", "escape time : 9.712 s\n", "the number of unit : 403\n", "accuracy score : 0.901666666667\n", "escape time : 9.906 s\n", "the number of unit : 404\n", "accuracy score : 0.901666666667\n", "escape time : 9.616 s\n", "the number of unit : 405\n", "accuracy score : 0.905\n", "escape time : 9.841 s\n", "the number of unit : 406\n", "accuracy score : 0.901666666667\n", "escape time : 9.587 s\n", "the number of unit : 407\n", "accuracy score : 0.903333333333\n", "escape time : 9.85 s\n", "the number of unit : 408\n", "accuracy score : 0.901666666667\n", "escape time : 9.742 s\n", "the number of unit : 409\n", "accuracy score : 0.901666666667\n", "escape time : 9.84 s\n", "the number of unit : 410\n", "accuracy score : 0.901666666667\n", "escape time : 9.597 s\n", "the number of unit : 411\n", "accuracy score : 0.901666666667\n", "escape time : 9.887 s\n", "the number of unit : 412\n", "accuracy score : 0.901666666667\n", "escape time : 9.692 s\n", "the number of unit : 413\n", "accuracy score : 0.901666666667\n", "escape time : 9.846 s\n", "the number of unit : 414\n", "accuracy score : 0.901666666667\n", "escape time : 9.942 s\n", "the number of unit : 415\n", "accuracy score : 0.901666666667\n", "escape time : 9.917 s\n", "the number of unit : 416\n", "accuracy score : 0.901666666667\n", "escape time : 9.599 s\n", "the number of unit : 417\n", "accuracy score : 0.903333333333\n", "escape time : 9.957 s\n", "the number of unit : 418\n", "accuracy score : 0.903333333333\n", "escape time : 9.832 s\n", "the number of unit : 419\n", "accuracy score : 0.901666666667\n", "escape time : 10.146 s\n", "the number of unit : 420\n", "accuracy score : 0.905\n", "escape time : 9.705 s\n", "the number of unit : 421\n", "accuracy score : 0.905\n", "escape time : 10.065 s\n", "the number of unit : 422\n", "accuracy score : 0.901666666667\n", "escape time : 9.897 s\n", "the number of unit : 423\n", "accuracy score : 0.901666666667\n", "escape time : 9.951 s\n", "the number of unit : 424\n", "accuracy score : 0.901666666667\n", "escape time : 9.669 s\n", "the number of unit : 425\n", "accuracy score : 0.901666666667\n", "escape time : 9.998 s\n", "the number of unit : 426\n", "accuracy score : 0.903333333333\n", "escape time : 9.98 s\n", "the number of unit : 427\n", "accuracy score : 0.901666666667\n", "escape time : 10.009 s\n", "the number of unit : 428\n", "accuracy score : 0.901666666667\n", "escape time : 9.841 s\n", "the number of unit : 429\n", "accuracy score : 0.903333333333\n", "escape time : 10.304 s\n", "the number of unit : 430\n", "accuracy score : 0.901666666667\n", "escape time : 10.089 s\n", "the number of unit : 431\n", "accuracy score : 0.901666666667\n", "escape time : 10.12 s\n", "the number of unit : 432\n", "accuracy score : 0.903333333333\n", "escape time : 9.792 s\n", "the number of unit : 433\n", "accuracy score : 0.901666666667\n", "escape time : 10.239 s\n", "the number of unit : 434\n", "accuracy score : 0.903333333333\n", "escape time : 10.159 s\n", "the number of unit : 435\n", "accuracy score : 0.903333333333\n", "escape time : 10.18 s\n", "the number of unit : 436\n", "accuracy score : 0.901666666667\n", "escape time : 9.913 s\n", "the number of unit : 437\n", "accuracy score : 0.901666666667\n", "escape time : 10.225 s\n", "the number of unit : 438\n", "accuracy score : 0.901666666667\n", "escape time : 10.107 s\n", "the number of unit : 439\n", "accuracy score : 0.901666666667\n", "escape time : 10.303 s\n", "the number of unit : 440\n", "accuracy score : 0.903333333333\n", "escape time : 9.76 s\n", "the number of unit : 441\n", "accuracy score : 0.901666666667\n", "escape time : 10.16 s\n", "the number of unit : 442\n", "accuracy score : 0.901666666667\n", "escape time : 10.27 s\n", "the number of unit : 443\n", "accuracy score : 0.901666666667\n", "escape time : 10.357 s\n", "the number of unit : 444\n", "accuracy score : 0.901666666667\n", "escape time : 9.978 s\n", "the number of unit : 445\n", "accuracy score : 0.901666666667\n", "escape time : 10.258 s\n", "the number of unit : 446\n", "accuracy score : 0.901666666667\n", "escape time : 10.237 s\n", "the number of unit : 447\n", "accuracy score : 0.903333333333\n", "escape time : 10.278 s\n", "the number of unit : 448\n", "accuracy score : 0.901666666667\n", "escape time : 10.057 s\n", "the number of unit : 449\n", "accuracy score : 0.901666666667\n", "escape time : 10.571 s\n", "the number of unit : 450\n", "accuracy score : 0.901666666667\n", "escape time : 10.262 s\n", "the number of unit : 451\n", "accuracy score : 0.901666666667\n", "escape time : 10.275 s\n", "the number of unit : 452\n", "accuracy score : 0.901666666667\n", "escape time : 10.066 s\n", "the number of unit : 453\n", "accuracy score : 0.901666666667\n", "escape time : 10.387 s\n", "the number of unit : 454\n", "accuracy score : 0.901666666667\n", "escape time : 10.453 s\n", "the number of unit : 455\n", "accuracy score : 0.901666666667\n", "escape time : 10.411 s\n", "the number of unit : 456\n", "accuracy score : 0.901666666667\n", "escape time : 9.903 s\n", "the number of unit : 457\n", "accuracy score : 0.901666666667\n", "escape time : 10.371 s\n", "the number of unit : 458\n", "accuracy score : 0.903333333333\n", "escape time : 10.159 s\n", "the number of unit : 459\n", "accuracy score : 0.901666666667\n", "escape time : 10.655 s\n", "the number of unit : 460\n", "accuracy score : 0.901666666667\n", "escape time : 10.048 s\n", "the number of unit : 461\n", "accuracy score : 0.901666666667\n", "escape time : 10.544 s\n", "the number of unit : 462\n", "accuracy score : 0.901666666667\n", "escape time : 10.316 s\n", "the number of unit : 463\n", "accuracy score : 0.901666666667\n", "escape time : 10.45 s\n", "the number of unit : 464\n", "accuracy score : 0.901666666667\n", "escape time : 10.377 s\n", "the number of unit : 465\n", "accuracy score : 0.901666666667\n", "escape time : 10.548 s\n", "the number of unit : 466\n", "accuracy score : 0.901666666667\n", "escape time : 10.324 s\n", "the number of unit : 467\n", "accuracy score : 0.903333333333\n", "escape time : 10.392 s\n", "the number of unit : 468\n", "accuracy score : 0.901666666667\n", "escape time : 10.31 s\n", "the number of unit : 469\n", "accuracy score : 0.901666666667\n", "escape time : 10.71 s\n", "the number of unit : 470\n", "accuracy score : 0.901666666667\n", "escape time : 10.471 s\n", "the number of unit : 471\n", "accuracy score : 0.903333333333\n", "escape time : 10.603 s\n", "the number of unit : 472\n", "accuracy score : 0.903333333333\n", "escape time : 10.257 s\n", "the number of unit : 473\n", "accuracy score : 0.901666666667\n", "escape time : 10.839 s\n", "the number of unit : 474\n", "accuracy score : 0.901666666667\n", "escape time : 10.631 s\n", "the number of unit : 475\n", "accuracy score : 0.901666666667\n", "escape time : 10.627 s\n", "the number of unit : 476\n", "accuracy score : 0.903333333333\n", "escape time : 10.509 s\n", "the number of unit : 477\n", "accuracy score : 0.905\n", "escape time : 10.706 s\n", "the number of unit : 478\n", "accuracy score : 0.901666666667\n", "escape time : 10.79 s\n", "the number of unit : 479\n", "accuracy score : 0.901666666667\n", "escape time : 10.763 s\n", "the number of unit : 480\n", "accuracy score : 0.901666666667\n", "escape time : 10.248 s\n", "the number of unit : 481\n", "accuracy score : 0.901666666667\n", "escape time : 10.685 s\n", "the number of unit : 482\n", "accuracy score : 0.903333333333\n", "escape time : 10.473 s\n", "the number of unit : 483\n", "accuracy score : 0.905\n", "escape time : 10.734 s\n", "the number of unit : 484\n", "accuracy score : 0.901666666667\n", "escape time : 10.676 s\n", "the number of unit : 485\n", "accuracy score : 0.901666666667\n", "escape time : 11.077 s\n", "the number of unit : 486\n", "accuracy score : 0.903333333333\n", "escape time : 10.642 s\n", "the number of unit : 487\n", "accuracy score : 0.903333333333\n", "escape time : 11.03 s\n", "the number of unit : 488\n", "accuracy score : 0.901666666667\n", "escape time : 10.714 s\n", "the number of unit : 489\n", "accuracy score : 0.901666666667\n", "escape time : 11.068 s\n", "the number of unit : 490\n", "accuracy score : 0.901666666667\n", "escape time : 10.896 s\n", "the number of unit : 491\n", "accuracy score : 0.903333333333\n", "escape time : 10.91 s\n", "the number of unit : 492\n", "accuracy score : 0.903333333333\n", "escape time : 10.722 s\n", "the number of unit : 493\n", "accuracy score : 0.901666666667\n", "escape time : 10.928 s\n", "the number of unit : 494\n", "accuracy score : 0.901666666667\n", "escape time : 11.036 s\n", "the number of unit : 495\n", "accuracy score : 0.903333333333\n", "escape time : 11.248 s\n", "the number of unit : 496\n", "accuracy score : 0.901666666667\n", "escape time : 10.699 s\n", "the number of unit : 497\n", "accuracy score : 0.901666666667\n", "escape time : 10.954 s\n", "the number of unit : 498\n", "accuracy score : 0.901666666667\n", "escape time : 10.992 s\n", "the number of unit : 499\n", "accuracy score : 0.903333333333\n", "escape time : 11.434 s\n", "the number of unit : 500\n", "accuracy score : 0.903333333333\n", "escape time : 10.668 s\n" ] } ], "source": [ "score5 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Linear\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score5.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.135\n", "escape time : 2.826 s\n", "the number of unit : 2\n", "accuracy score : 0.26\n", "escape time : 2.617 s\n", "the number of unit : 3\n", "accuracy score : 0.343333333333\n", "escape time : 2.788 s\n", "the number of unit : 4\n", "accuracy score : 0.471666666667\n", "escape time : 2.61 s\n", "the number of unit : 5\n", "accuracy score : 0.451666666667\n", "escape time : 2.625 s\n", "the number of unit : 6\n", "accuracy score : 0.521666666667\n", "escape time : 2.636 s\n", "the number of unit : 7\n", "accuracy score : 0.478333333333\n", "escape time : 2.63 s\n", "the number of unit : 8\n", "accuracy score : 0.48\n", "escape time : 2.895 s\n", "the number of unit : 9\n", "accuracy score : 0.451666666667\n", "escape time : 2.689 s\n", "the number of unit : 10\n", "accuracy score : 0.378333333333\n", "escape time : 2.721 s\n", "the number of unit : 11\n", "accuracy score : 0.55\n", "escape time : 2.757 s\n", "the number of unit : 12\n", "accuracy score : 0.588333333333\n", "escape time : 2.742 s\n", "the number of unit : 13\n", "accuracy score : 0.495\n", "escape time : 3.0 s\n", "the number of unit : 14\n", "accuracy score : 0.651666666667\n", "escape time : 2.823 s\n", "the number of unit : 15\n", "accuracy score : 0.555\n", "escape time : 2.833 s\n", "the number of unit : 16\n", "accuracy score : 0.506666666667\n", "escape time : 2.816 s\n", "the number of unit : 17\n", "accuracy score : 0.426666666667\n", "escape time : 2.799 s\n", "the number of unit : 18\n", "accuracy score : 0.395\n", "escape time : 3.063 s\n", "the number of unit : 19\n", "accuracy score : 0.541666666667\n", "escape time : 2.889 s\n", "the number of unit : 20\n", "accuracy score : 0.428333333333\n", "escape time : 2.861 s\n", "the number of unit : 21\n", "accuracy score : 0.488333333333\n", "escape time : 2.847 s\n", "the number of unit : 22\n", "accuracy score : 0.47\n", "escape time : 3.163 s\n", "the number of unit : 23\n", "accuracy score : 0.475\n", "escape time : 2.931 s\n", "the number of unit : 24\n", "accuracy score : 0.583333333333\n", "escape time : 2.94 s\n", "the number of unit : 25\n", "accuracy score : 0.448333333333\n", "escape time : 2.953 s\n", "the number of unit : 26\n", "accuracy score : 0.355\n", "escape time : 2.999 s\n", "the number of unit : 27\n", "accuracy score : 0.59\n", "escape time : 3.181 s\n", "the number of unit : 28\n", "accuracy score : 0.23\n", "escape time : 3.012 s\n", "the number of unit : 29\n", "accuracy score : 0.446666666667\n", "escape time : 3.099 s\n", "the number of unit : 30\n", "accuracy score : 0.405\n", "escape time : 3.055 s\n", "the number of unit : 31\n", "accuracy score : 0.651666666667\n", "escape time : 3.042 s\n", "the number of unit : 32\n", "accuracy score : 0.626666666667\n", "escape time : 3.286 s\n", "the number of unit : 33\n", "accuracy score : 0.373333333333\n", "escape time : 3.115 s\n", "the number of unit : 34\n", "accuracy score : 0.446666666667\n", "escape time : 3.4 s\n", "the number of unit : 35\n", "accuracy score : 0.345\n", "escape time : 3.153 s\n", "the number of unit : 36\n", "accuracy score : 0.41\n", "escape time : 3.14 s\n", "the number of unit : 37\n", "accuracy score : 0.481666666667\n", "escape time : 3.336 s\n", "the number of unit : 38\n", "accuracy score : 0.401666666667\n", "escape time : 3.227 s\n", "the number of unit : 39\n", "accuracy score : 0.565\n", "escape time : 3.185 s\n", "the number of unit : 40\n", "accuracy score : 0.56\n", "escape time : 3.217 s\n", "the number of unit : 41\n", "accuracy score : 0.376666666667\n", "escape time : 3.424 s\n", "the number of unit : 42\n", "accuracy score : 0.335\n", "escape time : 3.292 s\n", "the number of unit : 43\n", "accuracy score : 0.336666666667\n", "escape time : 3.198 s\n", "the number of unit : 44\n", "accuracy score : 0.476666666667\n", "escape time : 3.253 s\n", "the number of unit : 45\n", "accuracy score : 0.375\n", "escape time : 3.28 s\n", "the number of unit : 46\n", "accuracy score : 0.4\n", "escape time : 3.529 s\n", "the number of unit : 47\n", "accuracy score : 0.303333333333\n", "escape time : 3.319 s\n", "the number of unit : 48\n", "accuracy score : 0.603333333333\n", "escape time : 3.331 s\n", "the number of unit : 49\n", "accuracy score : 0.491666666667\n", "escape time : 3.354 s\n", "the number of unit : 50\n", "accuracy score : 0.381666666667\n", "escape time : 3.375 s\n", "the number of unit : 51\n", "accuracy score : 0.345\n", "escape time : 3.586 s\n", "the number of unit : 52\n", "accuracy score : 0.406666666667\n", "escape time : 3.429 s\n", "the number of unit : 53\n", "accuracy score : 0.545\n", "escape time : 3.367 s\n", "the number of unit : 54\n", "accuracy score : 0.658333333333\n", "escape time : 3.416 s\n", "the number of unit : 55\n", "accuracy score : 0.543333333333\n", "escape time : 3.42 s\n", "the number of unit : 56\n", "accuracy score : 0.446666666667\n", "escape time : 3.671 s\n", "the number of unit : 57\n", "accuracy score : 0.378333333333\n", "escape time : 3.461 s\n", "the number of unit : 58\n", "accuracy score : 0.445\n", "escape time : 3.537 s\n", "the number of unit : 59\n", "accuracy score : 0.235\n", "escape time : 3.472 s\n", "the number of unit : 60\n", "accuracy score : 0.49\n", "escape time : 3.739 s\n", "the number of unit : 61\n", "accuracy score : 0.545\n", "escape time : 3.529 s\n", "the number of unit : 62\n", "accuracy score : 0.475\n", "escape time : 3.516 s\n", "the number of unit : 63\n", "accuracy score : 0.38\n", "escape time : 3.572 s\n", "the number of unit : 64\n", "accuracy score : 0.416666666667\n", "escape time : 3.594 s\n", "the number of unit : 65\n", "accuracy score : 0.443333333333\n", "escape time : 3.773 s\n", "the number of unit : 66\n", "accuracy score : 0.301666666667\n", "escape time : 3.614 s\n", "the number of unit : 67\n", "accuracy score : 0.376666666667\n", "escape time : 3.639 s\n", "the number of unit : 68\n", "accuracy score : 0.498333333333\n", "escape time : 3.644 s\n", "the number of unit : 69\n", "accuracy score : 0.305\n", "escape time : 3.648 s\n", "the number of unit : 70\n", "accuracy score : 0.331666666667\n", "escape time : 3.979 s\n", "the number of unit : 71\n", "accuracy score : 0.456666666667\n", "escape time : 3.755 s\n", "the number of unit : 72\n", "accuracy score : 0.383333333333\n", "escape time : 3.73 s\n", "the number of unit : 73\n", "accuracy score : 0.49\n", "escape time : 3.75 s\n", "the number of unit : 74\n", "accuracy score : 0.306666666667\n", "escape time : 3.707 s\n", "the number of unit : 75\n", "accuracy score : 0.406666666667\n", "escape time : 4.022 s\n", "the number of unit : 76\n", "accuracy score : 0.343333333333\n", "escape time : 3.836 s\n", "the number of unit : 77\n", "accuracy score : 0.466666666667\n", "escape time : 3.821 s\n", "the number of unit : 78\n", "accuracy score : 0.308333333333\n", "escape time : 3.794 s\n", "the number of unit : 79\n", "accuracy score : 0.378333333333\n", "escape time : 3.812 s\n", "the number of unit : 80\n", "accuracy score : 0.45\n", "escape time : 4.026 s\n", "the number of unit : 81\n", "accuracy score : 0.491666666667\n", "escape time : 3.854 s\n", "the number of unit : 82\n", "accuracy score : 0.476666666667\n", "escape time : 3.921 s\n", "the number of unit : 83\n", "accuracy score : 0.378333333333\n", "escape time : 3.951 s\n", "the number of unit : 84\n", "accuracy score : 0.371666666667\n", "escape time : 4.326 s\n", "the number of unit : 85\n", "accuracy score : 0.443333333333\n", "escape time : 4.561 s\n", "the number of unit : 86\n", "accuracy score : 0.375\n", "escape time : 4.387 s\n", "the number of unit : 87\n", "accuracy score : 0.45\n", "escape time : 4.403 s\n", "the number of unit : 88\n", "accuracy score : 0.35\n", "escape time : 4.376 s\n", "the number of unit : 89\n", "accuracy score : 0.406666666667\n", "escape time : 4.632 s\n", "the number of unit : 90\n", "accuracy score : 0.3\n", "escape time : 4.448 s\n", "the number of unit : 91\n", "accuracy score : 0.44\n", "escape time : 4.482 s\n", "the number of unit : 92\n", "accuracy score : 0.371666666667\n", "escape time : 4.504 s\n", "the number of unit : 93\n", "accuracy score : 0.448333333333\n", "escape time : 4.43 s\n", "the number of unit : 94\n", "accuracy score : 0.473333333333\n", "escape time : 4.673 s\n", "the number of unit : 95\n", "accuracy score : 0.403333333333\n", "escape time : 4.554 s\n", "the number of unit : 96\n", "accuracy score : 0.378333333333\n", "escape time : 4.501 s\n", "the number of unit : 97\n", "accuracy score : 0.306666666667\n", "escape time : 4.551 s\n", "the number of unit : 98\n", "accuracy score : 0.443333333333\n", "escape time : 4.812 s\n", "the number of unit : 99\n", "accuracy score : 0.348333333333\n", "escape time : 4.607 s\n", "the number of unit : 100\n", "accuracy score : 0.446666666667\n", "escape time : 4.631 s\n", "the number of unit : 101\n", "accuracy score : 0.345\n", "escape time : 4.612 s\n", "the number of unit : 102\n", "accuracy score : 0.441666666667\n", "escape time : 4.616 s\n", "the number of unit : 103\n", "accuracy score : 0.381666666667\n", "escape time : 4.844 s\n", "the number of unit : 104\n", "accuracy score : 0.341666666667\n", "escape time : 4.725 s\n", "the number of unit : 105\n", "accuracy score : 0.371666666667\n", "escape time : 4.677 s\n", "the number of unit : 106\n", "accuracy score : 0.493333333333\n", "escape time : 4.667 s\n", "the number of unit : 107\n", "accuracy score : 0.381666666667\n", "escape time : 4.759 s\n", "the number of unit : 108\n", "accuracy score : 0.308333333333\n", "escape time : 4.968 s\n", "the number of unit : 109\n", "accuracy score : 0.445\n", "escape time : 4.848 s\n", "the number of unit : 110\n", "accuracy score : 0.233333333333\n", "escape time : 4.853 s\n", "the number of unit : 111\n", "accuracy score : 0.475\n", "escape time : 4.778 s\n", "the number of unit : 112\n", "accuracy score : 0.475\n", "escape time : 5.025 s\n", "the number of unit : 113\n", "accuracy score : 0.493333333333\n", "escape time : 4.805 s\n", "the number of unit : 114\n", "accuracy score : 0.396666666667\n", "escape time : 4.858 s\n", "the number of unit : 115\n", "accuracy score : 0.381666666667\n", "escape time : 4.86 s\n", "the number of unit : 116\n", "accuracy score : 0.451666666667\n", "escape time : 4.936 s\n", "the number of unit : 117\n", "accuracy score : 0.373333333333\n", "escape time : 5.112 s\n", "the number of unit : 118\n", "accuracy score : 0.476666666667\n", "escape time : 4.89 s\n", "the number of unit : 119\n", "accuracy score : 0.345\n", "escape time : 5.008 s\n", "the number of unit : 120\n", "accuracy score : 0.35\n", "escape time : 4.972 s\n", "the number of unit : 121\n", "accuracy score : 0.475\n", "escape time : 4.994 s\n", "the number of unit : 122\n", "accuracy score : 0.475\n", "escape time : 5.206 s\n", "the number of unit : 123\n", "accuracy score : 0.446666666667\n", "escape time : 5.072 s\n", "the number of unit : 124\n", "accuracy score : 0.401666666667\n", "escape time : 5.09 s\n", "the number of unit : 125\n", "accuracy score : 0.448333333333\n", "escape time : 5.023 s\n", "the number of unit : 126\n", "accuracy score : 0.333333333333\n", "escape time : 5.251 s\n", "the number of unit : 127\n", "accuracy score : 0.305\n", "escape time : 5.106 s\n", "the number of unit : 128\n", "accuracy score : 0.303333333333\n", "escape time : 7.433 s\n", "the number of unit : 129\n", "accuracy score : 0.471666666667\n", "escape time : 7.587 s\n", "the number of unit : 130\n", "accuracy score : 0.441666666667\n", "escape time : 7.434 s\n", "the number of unit : 131\n", "accuracy score : 0.336666666667\n", "escape time : 7.729 s\n", "the number of unit : 132\n", "accuracy score : 0.555\n", "escape time : 7.544 s\n", "the number of unit : 133\n", "accuracy score : 0.53\n", "escape time : 7.653 s\n", "the number of unit : 134\n", "accuracy score : 0.443333333333\n", "escape time : 7.719 s\n", "the number of unit : 135\n", "accuracy score : 0.483333333333\n", "escape time : 7.533 s\n", "the number of unit : 136\n", "accuracy score : 0.233333333333\n", "escape time : 7.853 s\n", "the number of unit : 137\n", "accuracy score : 0.395\n", "escape time : 7.496 s\n", "the number of unit : 138\n", "accuracy score : 0.443333333333\n", "escape time : 7.529 s\n", "the number of unit : 139\n", "accuracy score : 0.306666666667\n", "escape time : 7.619 s\n", "the number of unit : 140\n", "accuracy score : 0.39\n", "escape time : 7.832 s\n", "the number of unit : 141\n", "accuracy score : 0.441666666667\n", "escape time : 7.732 s\n", "the number of unit : 142\n", "accuracy score : 0.445\n", "escape time : 7.778 s\n", "the number of unit : 143\n", "accuracy score : 0.448333333333\n", "escape time : 7.578 s\n", "the number of unit : 144\n", "accuracy score : 0.375\n", "escape time : 7.43 s\n", "the number of unit : 145\n", "accuracy score : 0.401666666667\n", "escape time : 7.873 s\n", "the number of unit : 146\n", "accuracy score : 0.353333333333\n", "escape time : 7.632 s\n", "the number of unit : 147\n", "accuracy score : 0.336666666667\n", "escape time : 7.873 s\n", "the number of unit : 148\n", "accuracy score : 0.383333333333\n", "escape time : 7.506 s\n", "the number of unit : 149\n", "accuracy score : 0.38\n", "escape time : 7.513 s\n", "the number of unit : 150\n", "accuracy score : 0.446666666667\n", "escape time : 7.794 s\n", "the number of unit : 151\n", "accuracy score : 0.446666666667\n", "escape time : 7.763 s\n", "the number of unit : 152\n", "accuracy score : 0.376666666667\n", "escape time : 7.733 s\n", "the number of unit : 153\n", "accuracy score : 0.445\n", "escape time : 7.53 s\n", "the number of unit : 154\n", "accuracy score : 0.381666666667\n", "escape time : 7.801 s\n", "the number of unit : 155\n", "accuracy score : 0.443333333333\n", "escape time : 7.926 s\n", "the number of unit : 156\n", "accuracy score : 0.548333333333\n", "escape time : 7.714 s\n", "the number of unit : 157\n", "accuracy score : 0.48\n", "escape time : 7.989 s\n", "the number of unit : 158\n", "accuracy score : 0.373333333333\n", "escape time : 7.765 s\n", "the number of unit : 159\n", "accuracy score : 0.233333333333\n", "escape time : 8.172 s\n", "the number of unit : 160\n", "accuracy score : 0.48\n", "escape time : 7.696 s\n", "the number of unit : 161\n", "accuracy score : 0.376666666667\n", "escape time : 7.774 s\n", "the number of unit : 162\n", "accuracy score : 0.336666666667\n", "escape time : 8.017 s\n", "the number of unit : 163\n", "accuracy score : 0.473333333333\n", "escape time : 7.665 s\n", "the number of unit : 164\n", "accuracy score : 0.473333333333\n", "escape time : 8.239 s\n", "the number of unit : 165\n", "accuracy score : 0.363333333333\n", "escape time : 8.136 s\n", "the number of unit : 166\n", "accuracy score : 0.346666666667\n", "escape time : 7.85 s\n", "the number of unit : 167\n", "accuracy score : 0.375\n", "escape time : 7.967 s\n", "the number of unit : 168\n", "accuracy score : 0.445\n", "escape time : 7.917 s\n", "the number of unit : 169\n", "accuracy score : 0.443333333333\n", "escape time : 8.284 s\n", "the number of unit : 170\n", "accuracy score : 0.333333333333\n", "escape time : 7.975 s\n", "the number of unit : 171\n", "accuracy score : 0.443333333333\n", "escape time : 8.48 s\n", "the number of unit : 172\n", "accuracy score : 0.375\n", "escape time : 7.809 s\n", "the number of unit : 173\n", "accuracy score : 0.446666666667\n", "escape time : 8.454 s\n", "the number of unit : 174\n", "accuracy score : 0.306666666667\n", "escape time : 7.994 s\n", "the number of unit : 175\n", "accuracy score : 0.373333333333\n", "escape time : 8.724 s\n", "the number of unit : 176\n", "accuracy score : 0.45\n", "escape time : 7.623 s\n", "the number of unit : 177\n", "accuracy score : 0.471666666667\n", "escape time : 8.106 s\n", "the number of unit : 178\n", "accuracy score : 0.388333333333\n", "escape time : 8.605 s\n", "the number of unit : 179\n", "accuracy score : 0.486666666667\n", "escape time : 8.547 s\n", "the number of unit : 180\n", "accuracy score : 0.443333333333\n", "escape time : 7.786 s\n", "the number of unit : 181\n", "accuracy score : 0.305\n", "escape time : 8.861 s\n", "the number of unit : 182\n", "accuracy score : 0.371666666667\n", "escape time : 8.155 s\n", "the number of unit : 183\n", "accuracy score : 0.305\n", "escape time : 8.555 s\n", "the number of unit : 184\n", "accuracy score : 0.4\n", "escape time : 8.168 s\n", "the number of unit : 185\n", "accuracy score : 0.305\n", "escape time : 8.871 s\n", "the number of unit : 186\n", "accuracy score : 0.45\n", "escape time : 8.888 s\n", "the number of unit : 187\n", "accuracy score : 0.376666666667\n", "escape time : 9.071 s\n", "the number of unit : 188\n", "accuracy score : 0.216666666667\n", "escape time : 8.795 s\n", "the number of unit : 189\n", "accuracy score : 0.303333333333\n", "escape time : 9.046 s\n", "the number of unit : 190\n", "accuracy score : 0.398333333333\n", "escape time : 8.636 s\n", "the number of unit : 191\n", "accuracy score : 0.416666666667\n", "escape time : 8.81 s\n", "the number of unit : 192\n", "accuracy score : 0.378333333333\n", "escape time : 8.604 s\n", "the number of unit : 193\n", "accuracy score : 0.333333333333\n", "escape time : 9.462 s\n", "the number of unit : 194\n", "accuracy score : 0.378333333333\n", "escape time : 8.776 s\n", "the number of unit : 195\n", "accuracy score : 0.446666666667\n", "escape time : 9.297 s\n", "the number of unit : 196\n", "accuracy score : 0.545\n", "escape time : 8.653 s\n", "the number of unit : 197\n", "accuracy score : 0.365\n", "escape time : 9.382 s\n", "the number of unit : 198\n", "accuracy score : 0.545\n", "escape time : 9.183 s\n", "the number of unit : 199\n", "accuracy score : 0.476666666667\n", "escape time : 9.326 s\n", "the number of unit : 200\n", "accuracy score : 0.33\n", "escape time : 9.126 s\n", "the number of unit : 201\n", "accuracy score : 0.275\n", "escape time : 9.435 s\n", "the number of unit : 202\n", "accuracy score : 0.443333333333\n", "escape time : 9.61 s\n", "the number of unit : 203\n", "accuracy score : 0.376666666667\n", "escape time : 9.494 s\n", "the number of unit : 204\n", "accuracy score : 0.373333333333\n", "escape time : 8.752 s\n", "the number of unit : 205\n", "accuracy score : 0.371666666667\n", "escape time : 9.631 s\n", "the number of unit : 206\n", "accuracy score : 0.306666666667\n", "escape time : 9.558 s\n", "the number of unit : 207\n", "accuracy score : 0.376666666667\n", "escape time : 9.921 s\n", "the number of unit : 208\n", "accuracy score : 0.231666666667\n", "escape time : 9.15 s\n", "the number of unit : 209\n", "accuracy score : 0.401666666667\n", "escape time : 9.413 s\n", "the number of unit : 210\n", "accuracy score : 0.408333333333\n", "escape time : 9.536 s\n", "the number of unit : 211\n", "accuracy score : 0.305\n", "escape time : 9.952 s\n", "the number of unit : 212\n", "accuracy score : 0.328333333333\n", "escape time : 9.397 s\n", "the number of unit : 213\n", "accuracy score : 0.371666666667\n", "escape time : 9.445 s\n", "the number of unit : 214\n", "accuracy score : 0.323333333333\n", "escape time : 9.457 s\n", "the number of unit : 215\n", "accuracy score : 0.233333333333\n", "escape time : 9.668 s\n", "the number of unit : 216\n", "accuracy score : 0.485\n", "escape time : 9.826 s\n", "the number of unit : 217\n", "accuracy score : 0.585\n", "escape time : 9.706 s\n", "the number of unit : 218\n", "accuracy score : 0.3\n", "escape time : 9.561 s\n", "the number of unit : 219\n", "accuracy score : 0.333333333333\n", "escape time : 9.872 s\n", "the number of unit : 220\n", "accuracy score : 0.441666666667\n", "escape time : 9.649 s\n", "the number of unit : 221\n", "accuracy score : 0.45\n", "escape time : 9.973 s\n", "the number of unit : 222\n", "accuracy score : 0.34\n", "escape time : 9.136 s\n", "the number of unit : 223\n", "accuracy score : 0.45\n", "escape time : 9.847 s\n", "the number of unit : 224\n", "accuracy score : 0.483333333333\n", "escape time : 9.676 s\n", "the number of unit : 225\n", "accuracy score : 0.361666666667\n", "escape time : 10.054 s\n", "the number of unit : 226\n", "accuracy score : 0.375\n", "escape time : 9.687 s\n", "the number of unit : 227\n", "accuracy score : 0.231666666667\n", "escape time : 9.868 s\n", "the number of unit : 228\n", "accuracy score : 0.378333333333\n", "escape time : 9.738 s\n", "the number of unit : 229\n", "accuracy score : 0.45\n", "escape time : 9.875 s\n", "the number of unit : 230\n", "accuracy score : 0.345\n", "escape time : 10.296 s\n", "the number of unit : 231\n", "accuracy score : 0.381666666667\n", "escape time : 10.189 s\n", "the number of unit : 232\n", "accuracy score : 0.475\n", "escape time : 9.689 s\n", "the number of unit : 233\n", "accuracy score : 0.376666666667\n", "escape time : 10.057 s\n", "the number of unit : 234\n", "accuracy score : 0.343333333333\n", "escape time : 10.004 s\n", "the number of unit : 235\n", "accuracy score : 0.346666666667\n", "escape time : 10.342 s\n", "the number of unit : 236\n", "accuracy score : 0.443333333333\n", "escape time : 9.914 s\n", "the number of unit : 237\n", "accuracy score : 0.378333333333\n", "escape time : 10.196 s\n", "the number of unit : 238\n", "accuracy score : 0.476666666667\n", "escape time : 10.177 s\n", "the number of unit : 239\n", "accuracy score : 0.376666666667\n", "escape time : 10.209 s\n", "the number of unit : 240\n", "accuracy score : 0.328333333333\n", "escape time : 10.018 s\n", "the number of unit : 241\n", "accuracy score : 0.378333333333\n", "escape time : 10.655 s\n", "the number of unit : 242\n", "accuracy score : 0.378333333333\n", "escape time : 10.332 s\n", "the number of unit : 243\n", "accuracy score : 0.301666666667\n", "escape time : 10.182 s\n", "the number of unit : 244\n", "accuracy score : 0.458333333333\n", "escape time : 10.173 s\n", "the number of unit : 245\n", "accuracy score : 0.411666666667\n", "escape time : 10.997 s\n", "the number of unit : 246\n", "accuracy score : 0.543333333333\n", "escape time : 10.185 s\n", "the number of unit : 247\n", "accuracy score : 0.333333333333\n", "escape time : 10.316 s\n", "the number of unit : 248\n", "accuracy score : 0.451666666667\n", "escape time : 10.096 s\n", "the number of unit : 249\n", "accuracy score : 0.476666666667\n", "escape time : 10.697 s\n", "the number of unit : 250\n", "accuracy score : 0.388333333333\n", "escape time : 10.725 s\n", "the number of unit : 251\n", "accuracy score : 0.373333333333\n", "escape time : 11.15 s\n", "the number of unit : 252\n", "accuracy score : 0.233333333333\n", "escape time : 10.266 s\n", "the number of unit : 253\n", "accuracy score : 0.35\n", "escape time : 10.846 s\n", "the number of unit : 254\n", "accuracy score : 0.303333333333\n", "escape time : 10.946 s\n", "the number of unit : 255\n", "accuracy score : 0.3\n", "escape time : 11.098 s\n", "the number of unit : 256\n", "accuracy score : 0.348333333333\n", "escape time : 10.568 s\n", "the number of unit : 257\n", "accuracy score : 0.231666666667\n", "escape time : 11.65 s\n", "the number of unit : 258\n", "accuracy score : 0.375\n", "escape time : 12.029 s\n", "the number of unit : 259\n", "accuracy score : 0.438333333333\n", "escape time : 12.129 s\n", "the number of unit : 260\n", "accuracy score : 0.375\n", "escape time : 11.957 s\n", "the number of unit : 261\n", "accuracy score : 0.416666666667\n", "escape time : 12.137 s\n", "the number of unit : 262\n", "accuracy score : 0.301666666667\n", "escape time : 12.047 s\n", "the number of unit : 263\n", "accuracy score : 0.301666666667\n", "escape time : 12.398 s\n", "the number of unit : 264\n", "accuracy score : 0.306666666667\n", "escape time : 12.035 s\n", "the number of unit : 265\n", "accuracy score : 0.381666666667\n", "escape time : 12.311 s\n", "the number of unit : 266\n", "accuracy score : 0.441666666667\n", "escape time : 12.116 s\n", "the number of unit : 267\n", "accuracy score : 0.305\n", "escape time : 12.413 s\n", "the number of unit : 268\n", "accuracy score : 0.548333333333\n", "escape time : 12.276 s\n", "the number of unit : 269\n", "accuracy score : 0.418333333333\n", "escape time : 12.408 s\n", "the number of unit : 270\n", "accuracy score : 0.233333333333\n", "escape time : 12.327 s\n", "the number of unit : 271\n", "accuracy score : 0.306666666667\n", "escape time : 12.299 s\n", "the number of unit : 272\n", "accuracy score : 0.475\n", "escape time : 12.185 s\n", "the number of unit : 273\n", "accuracy score : 0.333333333333\n", "escape time : 12.657 s\n", "the number of unit : 274\n", "accuracy score : 0.486666666667\n", "escape time : 12.351 s\n", "the number of unit : 275\n", "accuracy score : 0.336666666667\n", "escape time : 12.484 s\n", "the number of unit : 276\n", "accuracy score : 0.388333333333\n", "escape time : 12.237 s\n", "the number of unit : 277\n", "accuracy score : 0.38\n", "escape time : 12.646 s\n", "the number of unit : 278\n", "accuracy score : 0.301666666667\n", "escape time : 12.383 s\n", "the number of unit : 279\n", "accuracy score : 0.345\n", "escape time : 12.323 s\n", "the number of unit : 280\n", "accuracy score : 0.306666666667\n", "escape time : 12.244 s\n", "the number of unit : 281\n", "accuracy score : 0.3\n", "escape time : 12.451 s\n", "the number of unit : 282\n", "accuracy score : 0.348333333333\n", "escape time : 12.491 s\n", "the number of unit : 283\n", "accuracy score : 0.376666666667\n", "escape time : 12.429 s\n", "the number of unit : 284\n", "accuracy score : 0.23\n", "escape time : 12.314 s\n", "the number of unit : 285\n", "accuracy score : 0.356666666667\n", "escape time : 12.57 s\n", "the number of unit : 286\n", "accuracy score : 0.413333333333\n", "escape time : 12.427 s\n", "the number of unit : 287\n", "accuracy score : 0.54\n", "escape time : 12.823 s\n", "the number of unit : 288\n", "accuracy score : 0.445\n", "escape time : 12.313 s\n", "the number of unit : 289\n", "accuracy score : 0.346666666667\n", "escape time : 12.534 s\n", "the number of unit : 290\n", "accuracy score : 0.373333333333\n", "escape time : 12.588 s\n", "the number of unit : 291\n", "accuracy score : 0.478333333333\n", "escape time : 12.858 s\n", "the number of unit : 292\n", "accuracy score : 0.34\n", "escape time : 12.236 s\n", "the number of unit : 293\n", "accuracy score : 0.546666666667\n", "escape time : 12.712 s\n", "the number of unit : 294\n", "accuracy score : 0.473333333333\n", "escape time : 12.441 s\n", "the number of unit : 295\n", "accuracy score : 0.378333333333\n", "escape time : 12.739 s\n", "the number of unit : 296\n", "accuracy score : 0.375\n", "escape time : 12.64 s\n", "the number of unit : 297\n", "accuracy score : 0.45\n", "escape time : 12.788 s\n", "the number of unit : 298\n", "accuracy score : 0.231666666667\n", "escape time : 12.571 s\n", "the number of unit : 299\n", "accuracy score : 0.396666666667\n", "escape time : 12.403 s\n", "the number of unit : 300\n", "accuracy score : 0.373333333333\n", "escape time : 12.541 s\n", "the number of unit : 301\n", "accuracy score : 0.551666666667\n", "escape time : 12.099 s\n", "the number of unit : 302\n", "accuracy score : 0.238333333333\n", "escape time : 12.37 s\n", "the number of unit : 303\n", "accuracy score : 0.475\n", "escape time : 11.625 s\n", "the number of unit : 304\n", "accuracy score : 0.373333333333\n", "escape time : 12.404 s\n", "the number of unit : 305\n", "accuracy score : 0.341666666667\n", "escape time : 11.806 s\n", "the number of unit : 306\n", "accuracy score : 0.586666666667\n", "escape time : 12.461 s\n", "the number of unit : 307\n", "accuracy score : 0.335\n", "escape time : 12.151 s\n", "the number of unit : 308\n", "accuracy score : 0.373333333333\n", "escape time : 12.656 s\n", "the number of unit : 309\n", "accuracy score : 0.41\n", "escape time : 11.674 s\n", "the number of unit : 310\n", "accuracy score : 0.473333333333\n", "escape time : 11.914 s\n", "the number of unit : 311\n", "accuracy score : 0.301666666667\n", "escape time : 11.693 s\n", "the number of unit : 312\n", "accuracy score : 0.26\n", "escape time : 12.708 s\n", "the number of unit : 313\n", "accuracy score : 0.376666666667\n", "escape time : 11.863 s\n", "the number of unit : 314\n", "accuracy score : 0.3\n", "escape time : 12.109 s\n", "the number of unit : 315\n", "accuracy score : 0.303333333333\n", "escape time : 11.72 s\n", "the number of unit : 316\n", "accuracy score : 0.375\n", "escape time : 11.941 s\n", "the number of unit : 317\n", "accuracy score : 0.508333333333\n", "escape time : 11.629 s\n", "the number of unit : 318\n", "accuracy score : 0.543333333333\n", "escape time : 12.086 s\n", "the number of unit : 319\n", "accuracy score : 0.458333333333\n", "escape time : 11.858 s\n", "the number of unit : 320\n", "accuracy score : 0.401666666667\n", "escape time : 12.249 s\n", "the number of unit : 321\n", "accuracy score : 0.441666666667\n", "escape time : 11.632 s\n", "the number of unit : 322\n", "accuracy score : 0.373333333333\n", "escape time : 11.881 s\n", "the number of unit : 323\n", "accuracy score : 0.44\n", "escape time : 11.808 s\n", "the number of unit : 324\n", "accuracy score : 0.48\n", "escape time : 12.262 s\n", "the number of unit : 325\n", "accuracy score : 0.378333333333\n", "escape time : 11.76 s\n", "the number of unit : 326\n", "accuracy score : 0.348333333333\n", "escape time : 11.603 s\n", "the number of unit : 327\n", "accuracy score : 0.345\n", "escape time : 11.672 s\n", "the number of unit : 328\n", "accuracy score : 0.441666666667\n", "escape time : 12.051 s\n", "the number of unit : 329\n", "accuracy score : 0.56\n", "escape time : 12.038 s\n", "the number of unit : 330\n", "accuracy score : 0.23\n", "escape time : 11.757 s\n", "the number of unit : 331\n", "accuracy score : 0.371666666667\n", "escape time : 11.612 s\n", "the number of unit : 332\n", "accuracy score : 0.331666666667\n", "escape time : 11.634 s\n", "the number of unit : 333\n", "accuracy score : 0.23\n", "escape time : 11.305 s\n", "the number of unit : 334\n", "accuracy score : 0.335\n", "escape time : 11.986 s\n", "the number of unit : 335\n", "accuracy score : 0.373333333333\n", "escape time : 11.398 s\n", "the number of unit : 336\n", "accuracy score : 0.305\n", "escape time : 11.922 s\n", "the number of unit : 337\n", "accuracy score : 0.403333333333\n", "escape time : 11.257 s\n", "the number of unit : 338\n", "accuracy score : 0.585\n", "escape time : 11.187 s\n", "the number of unit : 339\n", "accuracy score : 0.375\n", "escape time : 11.562 s\n", "the number of unit : 340\n", "accuracy score : 0.543333333333\n", "escape time : 11.602 s\n", "the number of unit : 341\n", "accuracy score : 0.656666666667\n", "escape time : 11.494 s\n", "the number of unit : 342\n", "accuracy score : 0.348333333333\n", "escape time : 11.443 s\n", "the number of unit : 343\n", "accuracy score : 0.475\n", "escape time : 11.794 s\n", "the number of unit : 344\n", "accuracy score : 0.336666666667\n", "escape time : 11.681 s\n", "the number of unit : 345\n", "accuracy score : 0.305\n", "escape time : 11.517 s\n", "the number of unit : 346\n", "accuracy score : 0.441666666667\n", "escape time : 11.432 s\n", "the number of unit : 347\n", "accuracy score : 0.413333333333\n", "escape time : 11.441 s\n", "the number of unit : 348\n", "accuracy score : 0.443333333333\n", "escape time : 11.937 s\n", "the number of unit : 349\n", "accuracy score : 0.461666666667\n", "escape time : 11.016 s\n", "the number of unit : 350\n", "accuracy score : 0.348333333333\n", "escape time : 11.156 s\n", "the number of unit : 351\n", "accuracy score : 0.35\n", "escape time : 10.119 s\n", "the number of unit : 352\n", "accuracy score : 0.618333333333\n", "escape time : 11.554 s\n", "the number of unit : 353\n", "accuracy score : 0.541666666667\n", "escape time : 11.791 s\n", "the number of unit : 354\n", "accuracy score : 0.301666666667\n", "escape time : 11.522 s\n", "the number of unit : 355\n", "accuracy score : 0.481666666667\n", "escape time : 10.979 s\n", "the number of unit : 356\n", "accuracy score : 0.378333333333\n", "escape time : 10.333 s\n", "the number of unit : 357\n", "accuracy score : 0.353333333333\n", "escape time : 9.949 s\n", "the number of unit : 358\n", "accuracy score : 0.405\n", "escape time : 10.199 s\n", "the number of unit : 359\n", "accuracy score : 0.23\n", "escape time : 10.656 s\n", "the number of unit : 360\n", "accuracy score : 0.435\n", "escape time : 10.879 s\n", "the number of unit : 361\n", "accuracy score : 0.346666666667\n", "escape time : 10.368 s\n", "the number of unit : 362\n", "accuracy score : 0.39\n", "escape time : 9.949 s\n", "the number of unit : 363\n", "accuracy score : 0.275\n", "escape time : 10.029 s\n", "the number of unit : 364\n", "accuracy score : 0.348333333333\n", "escape time : 10.387 s\n", "the number of unit : 365\n", "accuracy score : 0.473333333333\n", "escape time : 9.916 s\n", "the number of unit : 366\n", "accuracy score : 0.346666666667\n", "escape time : 9.755 s\n", "the number of unit : 367\n", "accuracy score : 0.345\n", "escape time : 10.496 s\n", "the number of unit : 368\n", "accuracy score : 0.448333333333\n", "escape time : 10.094 s\n", "the number of unit : 369\n", "accuracy score : 0.3\n", "escape time : 9.679 s\n", "the number of unit : 370\n", "accuracy score : 0.555\n", "escape time : 9.684 s\n", "the number of unit : 371\n", "accuracy score : 0.433333333333\n", "escape time : 10.002 s\n", "the number of unit : 372\n", "accuracy score : 0.331666666667\n", "escape time : 9.905 s\n", "the number of unit : 373\n", "accuracy score : 0.303333333333\n", "escape time : 9.846 s\n", "the number of unit : 374\n", "accuracy score : 0.441666666667\n", "escape time : 9.693 s\n", "the number of unit : 375\n", "accuracy score : 0.376666666667\n", "escape time : 9.802 s\n", "the number of unit : 376\n", "accuracy score : 0.378333333333\n", "escape time : 9.662 s\n", "the number of unit : 377\n", "accuracy score : 0.445\n", "escape time : 9.935 s\n", "the number of unit : 378\n", "accuracy score : 0.443333333333\n", "escape time : 9.828 s\n", "the number of unit : 379\n", "accuracy score : 0.408333333333\n", "escape time : 9.925 s\n", "the number of unit : 380\n", "accuracy score : 0.343333333333\n", "escape time : 9.556 s\n", "the number of unit : 381\n", "accuracy score : 0.446666666667\n", "escape time : 10.245 s\n", "the number of unit : 382\n", "accuracy score : 0.478333333333\n", "escape time : 9.916 s\n", "the number of unit : 383\n", "accuracy score : 0.356666666667\n", "escape time : 10.012 s\n", "the number of unit : 384\n", "accuracy score : 0.303333333333\n", "escape time : 9.958 s\n", "the number of unit : 385\n", "accuracy score : 0.345\n", "escape time : 9.906 s\n", "the number of unit : 386\n", "accuracy score : 0.373333333333\n", "escape time : 9.987 s\n", "the number of unit : 387\n", "accuracy score : 0.331666666667\n", "escape time : 9.942 s\n", "the number of unit : 388\n", "accuracy score : 0.381666666667\n", "escape time : 9.715 s\n", "the number of unit : 389\n", "accuracy score : 0.475\n", "escape time : 10.051 s\n", "the number of unit : 390\n", "accuracy score : 0.23\n", "escape time : 9.792 s\n", "the number of unit : 391\n", "accuracy score : 0.378333333333\n", "escape time : 10.076 s\n", "the number of unit : 392\n", "accuracy score : 0.445\n", "escape time : 9.63 s\n", "the number of unit : 393\n", "accuracy score : 0.23\n", "escape time : 9.973 s\n", "the number of unit : 394\n", "accuracy score : 0.331666666667\n", "escape time : 9.841 s\n", "the number of unit : 395\n", "accuracy score : 0.445\n", "escape time : 9.86 s\n", "the number of unit : 396\n", "accuracy score : 0.375\n", "escape time : 9.921 s\n", "the number of unit : 397\n", "accuracy score : 0.476666666667\n", "escape time : 9.902 s\n", "the number of unit : 398\n", "accuracy score : 0.301666666667\n", "escape time : 9.717 s\n", "the number of unit : 399\n", "accuracy score : 0.3\n", "escape time : 10.051 s\n", "the number of unit : 400\n", "accuracy score : 0.44\n", "escape time : 9.982 s\n", "the number of unit : 401\n", "accuracy score : 0.23\n", "escape time : 10.026 s\n", "the number of unit : 402\n", "accuracy score : 0.301666666667\n", "escape time : 10.002 s\n", "the number of unit : 403\n", "accuracy score : 0.376666666667\n", "escape time : 10.025 s\n", "the number of unit : 404\n", "accuracy score : 0.328333333333\n", "escape time : 9.833 s\n", "the number of unit : 405\n", "accuracy score : 0.306666666667\n", "escape time : 10.342 s\n", "the number of unit : 406\n", "accuracy score : 0.476666666667\n", "escape time : 9.949 s\n", "the number of unit : 407\n", "accuracy score : 0.375\n", "escape time : 10.083 s\n", "the number of unit : 408\n", "accuracy score : 0.378333333333\n", "escape time : 9.665 s\n", "the number of unit : 409\n", "accuracy score : 0.375\n", "escape time : 10.017 s\n", "the number of unit : 410\n", "accuracy score : 0.335\n", "escape time : 10.183 s\n", "the number of unit : 411\n", "accuracy score : 0.33\n", "escape time : 10.0 s\n", "the number of unit : 412\n", "accuracy score : 0.303333333333\n", "escape time : 9.907 s\n", "the number of unit : 413\n", "accuracy score : 0.373333333333\n", "escape time : 10.038 s\n", "the number of unit : 414\n", "accuracy score : 0.51\n", "escape time : 10.233 s\n", "the number of unit : 415\n", "accuracy score : 0.325\n", "escape time : 10.182 s\n", "the number of unit : 416\n", "accuracy score : 0.345\n", "escape time : 9.862 s\n", "the number of unit : 417\n", "accuracy score : 0.445\n", "escape time : 10.169 s\n", "the number of unit : 418\n", "accuracy score : 0.375\n", "escape time : 10.067 s\n", "the number of unit : 419\n", "accuracy score : 0.461666666667\n", "escape time : 10.439 s\n", "the number of unit : 420\n", "accuracy score : 0.465\n", "escape time : 9.945 s\n", "the number of unit : 421\n", "accuracy score : 0.331666666667\n", "escape time : 10.287 s\n", "the number of unit : 422\n", "accuracy score : 0.32\n", "escape time : 10.082 s\n", "the number of unit : 423\n", "accuracy score : 0.338333333333\n", "escape time : 10.344 s\n", "the number of unit : 424\n", "accuracy score : 0.396666666667\n", "escape time : 10.234 s\n", "the number of unit : 425\n", "accuracy score : 0.345\n", "escape time : 10.2 s\n", "the number of unit : 426\n", "accuracy score : 0.338333333333\n", "escape time : 10.224 s\n", "the number of unit : 427\n", "accuracy score : 0.333333333333\n", "escape time : 10.286 s\n", "the number of unit : 428\n", "accuracy score : 0.378333333333\n", "escape time : 10.012 s\n", "the number of unit : 429\n", "accuracy score : 0.401666666667\n", "escape time : 10.629 s\n", "the number of unit : 430\n", "accuracy score : 0.446666666667\n", "escape time : 10.186 s\n", "the number of unit : 431\n", "accuracy score : 0.346666666667\n", "escape time : 10.444 s\n", "the number of unit : 432\n", "accuracy score : 0.346666666667\n", "escape time : 10.057 s\n", "the number of unit : 433\n", "accuracy score : 0.445\n", "escape time : 10.539 s\n", "the number of unit : 434\n", "accuracy score : 0.476666666667\n", "escape time : 10.368 s\n", "the number of unit : 435\n", "accuracy score : 0.545\n", "escape time : 10.252 s\n", "the number of unit : 436\n", "accuracy score : 0.445\n", "escape time : 10.146 s\n", "the number of unit : 437\n", "accuracy score : 0.446666666667\n", "escape time : 10.365 s\n", "the number of unit : 438\n", "accuracy score : 0.23\n", "escape time : 10.583 s\n", "the number of unit : 439\n", "accuracy score : 0.378333333333\n", "escape time : 10.535 s\n", "the number of unit : 440\n", "accuracy score : 0.4\n", "escape time : 10.125 s\n", "the number of unit : 441\n", "accuracy score : 0.415\n", "escape time : 10.356 s\n", "the number of unit : 442\n", "accuracy score : 0.305\n", "escape time : 10.405 s\n", "the number of unit : 443\n", "accuracy score : 0.298333333333\n", "escape time : 10.769 s\n", "the number of unit : 444\n", "accuracy score : 0.375\n", "escape time : 10.183 s\n", "the number of unit : 445\n", "accuracy score : 0.328333333333\n", "escape time : 10.631 s\n", "the number of unit : 446\n", "accuracy score : 0.233333333333\n", "escape time : 10.385 s\n", "the number of unit : 447\n", "accuracy score : 0.305\n", "escape time : 10.81 s\n", "the number of unit : 448\n", "accuracy score : 0.373333333333\n", "escape time : 10.417 s\n", "the number of unit : 449\n", "accuracy score : 0.345\n", "escape time : 10.513 s\n", "the number of unit : 450\n", "accuracy score : 0.23\n", "escape time : 10.525 s\n", "the number of unit : 451\n", "accuracy score : 0.303333333333\n", "escape time : 10.513 s\n", "the number of unit : 452\n", "accuracy score : 0.541666666667\n", "escape time : 10.594 s\n", "the number of unit : 453\n", "accuracy score : 0.373333333333\n", "escape time : 10.607 s\n", "the number of unit : 454\n", "accuracy score : 0.493333333333\n", "escape time : 10.628 s\n", "the number of unit : 455\n", "accuracy score : 0.448333333333\n", "escape time : 10.478 s\n", "the number of unit : 456\n", "accuracy score : 0.301666666667\n", "escape time : 10.43 s\n", "the number of unit : 457\n", "accuracy score : 0.375\n", "escape time : 10.877 s\n", "the number of unit : 458\n", "accuracy score : 0.23\n", "escape time : 10.655 s\n", "the number of unit : 459\n", "accuracy score : 0.373333333333\n", "escape time : 10.663 s\n", "the number of unit : 460\n", "accuracy score : 0.231666666667\n", "escape time : 10.377 s\n", "the number of unit : 461\n", "accuracy score : 0.348333333333\n", "escape time : 10.533 s\n", "the number of unit : 462\n", "accuracy score : 0.235\n", "escape time : 10.859 s\n", "the number of unit : 463\n", "accuracy score : 0.348333333333\n", "escape time : 10.771 s\n", "the number of unit : 464\n", "accuracy score : 0.446666666667\n", "escape time : 10.506 s\n", "the number of unit : 465\n", "accuracy score : 0.23\n", "escape time : 10.434 s\n", "the number of unit : 466\n", "accuracy score : 0.448333333333\n", "escape time : 10.999 s\n", "the number of unit : 467\n", "accuracy score : 0.378333333333\n", "escape time : 10.713 s\n", "the number of unit : 468\n", "accuracy score : 0.331666666667\n", "escape time : 10.711 s\n", "the number of unit : 469\n", "accuracy score : 0.203333333333\n", "escape time : 10.862 s\n", "the number of unit : 470\n", "accuracy score : 0.445\n", "escape time : 10.736 s\n", "the number of unit : 471\n", "accuracy score : 0.44\n", "escape time : 11.019 s\n", "the number of unit : 472\n", "accuracy score : 0.441666666667\n", "escape time : 10.623 s\n", "the number of unit : 473\n", "accuracy score : 0.348333333333\n", "escape time : 10.636 s\n", "the number of unit : 474\n", "accuracy score : 0.375\n", "escape time : 10.682 s\n", "the number of unit : 475\n", "accuracy score : 0.345\n", "escape time : 10.831 s\n", "the number of unit : 476\n", "accuracy score : 0.443333333333\n", "escape time : 11.079 s\n", "the number of unit : 477\n", "accuracy score : 0.348333333333\n", "escape time : 10.944 s\n", "the number of unit : 478\n", "accuracy score : 0.373333333333\n", "escape time : 10.669 s\n", "the number of unit : 479\n", "accuracy score : 0.303333333333\n", "escape time : 10.823 s\n", "the number of unit : 480\n", "accuracy score : 0.375\n", "escape time : 11.044 s\n", "the number of unit : 481\n", "accuracy score : 0.373333333333\n", "escape time : 10.802 s\n", "the number of unit : 482\n", "accuracy score : 0.475\n", "escape time : 11.094 s\n", "the number of unit : 483\n", "accuracy score : 0.475\n", "escape time : 11.167 s\n", "the number of unit : 484\n", "accuracy score : 0.376666666667\n", "escape time : 11.064 s\n", "the number of unit : 485\n", "accuracy score : 0.33\n", "escape time : 11.424 s\n", "the number of unit : 486\n", "accuracy score : 0.488333333333\n", "escape time : 11.159 s\n", "the number of unit : 487\n", "accuracy score : 0.376666666667\n", "escape time : 11.272 s\n", "the number of unit : 488\n", "accuracy score : 0.226666666667\n", "escape time : 10.858 s\n", "the number of unit : 489\n", "accuracy score : 0.45\n", "escape time : 11.089 s\n", "the number of unit : 490\n", "accuracy score : 0.376666666667\n", "escape time : 11.351 s\n", "the number of unit : 491\n", "accuracy score : 0.336666666667\n", "escape time : 10.968 s\n", "the number of unit : 492\n", "accuracy score : 0.448333333333\n", "escape time : 11.127 s\n", "the number of unit : 493\n", "accuracy score : 0.398333333333\n", "escape time : 11.129 s\n", "the number of unit : 494\n", "accuracy score : 0.373333333333\n", "escape time : 11.174 s\n", "the number of unit : 495\n", "accuracy score : 0.228333333333\n", "escape time : 11.542 s\n", "the number of unit : 496\n", "accuracy score : 0.446666666667\n", "escape time : 10.893 s\n", "the number of unit : 497\n", "accuracy score : 0.476666666667\n", "escape time : 11.389 s\n", "the number of unit : 498\n", "accuracy score : 0.38\n", "escape time : 11.362 s\n", "the number of unit : 499\n", "accuracy score : 0.375\n", "escape time : 11.58 s\n", "the number of unit : 500\n", "accuracy score : 0.298333333333\n", "escape time : 11.374 s\n" ] } ], "source": [ "score6 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Softmax\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score6.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the number of unit : 1\n", "accuracy score : 0.62\n", "escape time : 4.082 s\n", "the number of unit : 2\n", "accuracy score : 0.878333333333\n", "escape time : 2.631 s\n", "the number of unit : 3\n", "accuracy score : 0.898333333333\n", "escape time : 2.591 s\n", "the number of unit : 4\n", "accuracy score : 0.896666666667\n", "escape time : 2.837 s\n", "the number of unit : 5\n", "accuracy score : 0.905\n", "escape time : 2.777 s\n", "the number of unit : 6\n", "accuracy score : 0.905\n", "escape time : 2.631 s\n", "the number of unit : 7\n", "accuracy score : 0.906666666667\n", "escape time : 2.638 s\n", "the number of unit : 8\n", "accuracy score : 0.906666666667\n", "escape time : 2.869 s\n", "the number of unit : 9\n", "accuracy score : 0.901666666667\n", "escape time : 2.698 s\n", "the number of unit : 10\n", "accuracy score : 0.903333333333\n", "escape time : 2.665 s\n", "the number of unit : 11\n", "accuracy score : 0.905\n", "escape time : 2.706 s\n", "the number of unit : 12\n", "accuracy score : 0.905\n", "escape time : 2.766 s\n", "the number of unit : 13\n", "accuracy score : 0.903333333333\n", "escape time : 2.998 s\n", "the number of unit : 14\n", "accuracy score : 0.906666666667\n", "escape time : 2.824 s\n", "the number of unit : 15\n", "accuracy score : 0.905\n", "escape time : 2.847 s\n", "the number of unit : 16\n", "accuracy score : 0.905\n", "escape time : 2.787 s\n", "the number of unit : 17\n", "accuracy score : 0.901666666667\n", "escape time : 3.022 s\n", "the number of unit : 18\n", "accuracy score : 0.906666666667\n", "escape time : 2.884 s\n", "the number of unit : 19\n", "accuracy score : 0.905\n", "escape time : 2.862 s\n", "the number of unit : 20\n", "accuracy score : 0.905\n", "escape time : 2.833 s\n", "the number of unit : 21\n", "accuracy score : 0.905\n", "escape time : 2.853 s\n", "the number of unit : 22\n", "accuracy score : 0.906666666667\n", "escape time : 3.083 s\n", "the number of unit : 23\n", "accuracy score : 0.905\n", "escape time : 2.929 s\n", "the number of unit : 24\n", "accuracy score : 0.905\n", "escape time : 2.938 s\n", "the number of unit : 25\n", "accuracy score : 0.906666666667\n", "escape time : 2.98 s\n", "the number of unit : 26\n", "accuracy score : 0.906666666667\n", "escape time : 2.937 s\n", "the number of unit : 27\n", "accuracy score : 0.903333333333\n", "escape time : 3.207 s\n", "the number of unit : 28\n", "accuracy score : 0.906666666667\n", "escape time : 3.009 s\n", "the number of unit : 29\n", "accuracy score : 0.903333333333\n", "escape time : 3.089 s\n", "the number of unit : 30\n", "accuracy score : 0.905\n", "escape time : 3.059 s\n", "the number of unit : 31\n", "accuracy score : 0.906666666667\n", "escape time : 3.057 s\n", "the number of unit : 32\n", "accuracy score : 0.903333333333\n", "escape time : 3.308 s\n", "the number of unit : 33\n", "accuracy score : 0.901666666667\n", "escape time : 3.127 s\n", "the number of unit : 34\n", "accuracy score : 0.906666666667\n", "escape time : 3.093 s\n", "the number of unit : 35\n", "accuracy score : 0.905\n", "escape time : 3.145 s\n", "the number of unit : 36\n", "accuracy score : 0.906666666667\n", "escape time : 3.138 s\n", "the number of unit : 37\n", "accuracy score : 0.905\n", "escape time : 3.365 s\n", "the number of unit : 38\n", "accuracy score : 0.905\n", "escape time : 3.235 s\n", "the number of unit : 39\n", "accuracy score : 0.905\n", "escape time : 3.204 s\n", "the number of unit : 40\n", "accuracy score : 0.906666666667\n", "escape time : 3.235 s\n", "the number of unit : 41\n", "accuracy score : 0.903333333333\n", "escape time : 3.233 s\n", "the number of unit : 42\n", "accuracy score : 0.905\n", "escape time : 3.432 s\n", "the number of unit : 43\n", "accuracy score : 0.905\n", "escape time : 3.223 s\n", "the number of unit : 44\n", "accuracy score : 0.905\n", "escape time : 3.285 s\n", "the number of unit : 45\n", "accuracy score : 0.906666666667\n", "escape time : 3.293 s\n", "the number of unit : 46\n", "accuracy score : 0.905\n", "escape time : 3.252 s\n", "the number of unit : 47\n", "accuracy score : 0.906666666667\n", "escape time : 3.579 s\n", "the number of unit : 48\n", "accuracy score : 0.906666666667\n", "escape time : 3.347 s\n", "the number of unit : 49\n", "accuracy score : 0.906666666667\n", "escape time : 3.312 s\n", "the number of unit : 50\n", "accuracy score : 0.906666666667\n", "escape time : 3.314 s\n", "the number of unit : 51\n", "accuracy score : 0.906666666667\n", "escape time : 3.367 s\n", "the number of unit : 52\n", "accuracy score : 0.906666666667\n", "escape time : 3.59 s\n", "the number of unit : 53\n", "accuracy score : 0.906666666667\n", "escape time : 3.436 s\n", "the number of unit : 54\n", "accuracy score : 0.905\n", "escape time : 3.468 s\n", "the number of unit : 55\n", "accuracy score : 0.905\n", "escape time : 3.448 s\n", "the number of unit : 56\n", "accuracy score : 0.906666666667\n", "escape time : 3.422 s\n", "the number of unit : 57\n", "accuracy score : 0.905\n", "escape time : 3.678 s\n", "the number of unit : 58\n", "accuracy score : 0.906666666667\n", "escape time : 3.473 s\n", "the number of unit : 59\n", "accuracy score : 0.905\n", "escape time : 3.486 s\n", "the number of unit : 60\n", "accuracy score : 0.906666666667\n", "escape time : 3.495 s\n", "the number of unit : 61\n", "accuracy score : 0.906666666667\n", "escape time : 3.523 s\n", "the number of unit : 62\n", "accuracy score : 0.906666666667\n", "escape time : 3.748 s\n", "the number of unit : 63\n", "accuracy score : 0.906666666667\n", "escape time : 3.603 s\n", "the number of unit : 64\n", "accuracy score : 0.906666666667\n", "escape time : 3.586 s\n", "the number of unit : 65\n", "accuracy score : 0.908333333333\n", "escape time : 3.578 s\n", "the number of unit : 66\n", "accuracy score : 0.905\n", "escape time : 3.591 s\n", "the number of unit : 67\n", "accuracy score : 0.905\n", "escape time : 3.821 s\n", "the number of unit : 68\n", "accuracy score : 0.906666666667\n", "escape time : 3.7 s\n", "the number of unit : 69\n", "accuracy score : 0.906666666667\n", "escape time : 3.689 s\n", "the number of unit : 70\n", "accuracy score : 0.906666666667\n", "escape time : 3.665 s\n", "the number of unit : 71\n", "accuracy score : 0.901666666667\n", "escape time : 3.665 s\n", "the number of unit : 72\n", "accuracy score : 0.906666666667\n", "escape time : 3.943 s\n", "the number of unit : 73\n", "accuracy score : 0.905\n", "escape time : 3.77 s\n", "the number of unit : 74\n", "accuracy score : 0.905\n", "escape time : 3.743 s\n", "the number of unit : 75\n", "accuracy score : 0.905\n", "escape time : 3.764 s\n", "the number of unit : 76\n", "accuracy score : 0.906666666667\n", "escape time : 3.778 s\n", "the number of unit : 77\n", "accuracy score : 0.905\n", "escape time : 4.033 s\n", "the number of unit : 78\n", "accuracy score : 0.906666666667\n", "escape time : 3.887 s\n", "the number of unit : 79\n", "accuracy score : 0.905\n", "escape time : 3.859 s\n", "the number of unit : 80\n", "accuracy score : 0.906666666667\n", "escape time : 3.842 s\n", "the number of unit : 81\n", "accuracy score : 0.903333333333\n", "escape time : 3.909 s\n", "the number of unit : 82\n", "accuracy score : 0.905\n", "escape time : 4.042 s\n", "the number of unit : 83\n", "accuracy score : 0.901666666667\n", "escape time : 3.887 s\n", "the number of unit : 84\n", "accuracy score : 0.906666666667\n", "escape time : 4.336 s\n", "the number of unit : 85\n", "accuracy score : 0.905\n", "escape time : 4.348 s\n", "the number of unit : 86\n", "accuracy score : 0.908333333333\n", "escape time : 4.404 s\n", "the number of unit : 87\n", "accuracy score : 0.906666666667\n", "escape time : 4.613 s\n", "the number of unit : 88\n", "accuracy score : 0.905\n", "escape time : 4.392 s\n", "the number of unit : 89\n", "accuracy score : 0.905\n", "escape time : 4.429 s\n", "the number of unit : 90\n", "accuracy score : 0.905\n", "escape time : 4.438 s\n", "the number of unit : 91\n", "accuracy score : 0.905\n", "escape time : 4.454 s\n", "the number of unit : 92\n", "accuracy score : 0.906666666667\n", "escape time : 4.74 s\n", "the number of unit : 93\n", "accuracy score : 0.903333333333\n", "escape time : 4.486 s\n", "the number of unit : 94\n", "accuracy score : 0.905\n", "escape time : 4.508 s\n", "the number of unit : 95\n", "accuracy score : 0.906666666667\n", "escape time : 4.569 s\n", "the number of unit : 96\n", "accuracy score : 0.905\n", "escape time : 4.55 s\n", "the number of unit : 97\n", "accuracy score : 0.906666666667\n", "escape time : 4.817 s\n", "the number of unit : 98\n", "accuracy score : 0.905\n", "escape time : 4.519 s\n", "the number of unit : 99\n", "accuracy score : 0.906666666667\n", "escape time : 4.612 s\n", "the number of unit : 100\n", "accuracy score : 0.906666666667\n", "escape time : 4.598 s\n", "the number of unit : 101\n", "accuracy score : 0.905\n", "escape time : 4.603 s\n", "the number of unit : 102\n", "accuracy score : 0.905\n", "escape time : 4.85 s\n", "the number of unit : 103\n", "accuracy score : 0.906666666667\n", "escape time : 4.653 s\n", "the number of unit : 104\n", "accuracy score : 0.906666666667\n", "escape time : 4.667 s\n", "the number of unit : 105\n", "accuracy score : 0.906666666667\n", "escape time : 4.647 s\n", "the number of unit : 106\n", "accuracy score : 0.905\n", "escape time : 4.718 s\n", "the number of unit : 107\n", "accuracy score : 0.906666666667\n", "escape time : 4.927 s\n", "the number of unit : 108\n", "accuracy score : 0.906666666667\n", "escape time : 4.762 s\n", "the number of unit : 109\n", "accuracy score : 0.905\n", "escape time : 4.733 s\n", "the number of unit : 110\n", "accuracy score : 0.906666666667\n", "escape time : 4.72 s\n", "the number of unit : 111\n", "accuracy score : 0.906666666667\n", "escape time : 4.735 s\n", "the number of unit : 112\n", "accuracy score : 0.906666666667\n", "escape time : 5.022 s\n", "the number of unit : 113\n", "accuracy score : 0.905\n", "escape time : 4.805 s\n", "the number of unit : 114\n", "accuracy score : 0.905\n", "escape time : 4.852 s\n", "the number of unit : 115\n", "accuracy score : 0.905\n", "escape time : 4.884 s\n", "the number of unit : 116\n", "accuracy score : 0.905\n", "escape time : 4.829 s\n", "the number of unit : 117\n", "accuracy score : 0.903333333333\n", "escape time : 5.088 s\n", "the number of unit : 118\n", "accuracy score : 0.905\n", "escape time : 4.929 s\n", "the number of unit : 119\n", "accuracy score : 0.906666666667\n", "escape time : 4.968 s\n", "the number of unit : 120\n", "accuracy score : 0.903333333333\n", "escape time : 4.901 s\n", "the number of unit : 121\n", "accuracy score : 0.905\n", "escape time : 5.049 s\n", "the number of unit : 122\n", "accuracy score : 0.906666666667\n", "escape time : 5.199 s\n", "the number of unit : 123\n", "accuracy score : 0.905\n", "escape time : 4.964 s\n", "the number of unit : 124\n", "accuracy score : 0.906666666667\n", "escape time : 4.968 s\n", "the number of unit : 125\n", "accuracy score : 0.905\n", "escape time : 4.986 s\n", "the number of unit : 126\n", "accuracy score : 0.905\n", "escape time : 4.962 s\n", "the number of unit : 127\n", "accuracy score : 0.903333333333\n", "escape time : 5.259 s\n", "the number of unit : 128\n", "accuracy score : 0.905\n", "escape time : 7.4 s\n", "the number of unit : 129\n", "accuracy score : 0.901666666667\n", "escape time : 7.489 s\n", "the number of unit : 130\n", "accuracy score : 0.903333333333\n", "escape time : 7.42 s\n", "the number of unit : 131\n", "accuracy score : 0.906666666667\n", "escape time : 7.485 s\n", "the number of unit : 132\n", "accuracy score : 0.905\n", "escape time : 7.629 s\n", "the number of unit : 133\n", "accuracy score : 0.901666666667\n", "escape time : 7.554 s\n", "the number of unit : 134\n", "accuracy score : 0.905\n", "escape time : 7.475 s\n", "the number of unit : 135\n", "accuracy score : 0.903333333333\n", "escape time : 7.642 s\n", "the number of unit : 136\n", "accuracy score : 0.903333333333\n", "escape time : 7.555 s\n", "the number of unit : 137\n", "accuracy score : 0.906666666667\n", "escape time : 7.729 s\n", "the number of unit : 138\n", "accuracy score : 0.906666666667\n", "escape time : 7.385 s\n", "the number of unit : 139\n", "accuracy score : 0.905\n", "escape time : 7.531 s\n", "the number of unit : 140\n", "accuracy score : 0.905\n", "escape time : 7.402 s\n", "the number of unit : 141\n", "accuracy score : 0.901666666667\n", "escape time : 7.69 s\n", "the number of unit : 142\n", "accuracy score : 0.905\n", "escape time : 7.81 s\n", "the number of unit : 143\n", "accuracy score : 0.905\n", "escape time : 7.611 s\n", "the number of unit : 144\n", "accuracy score : 0.905\n", "escape time : 7.481 s\n", "the number of unit : 145\n", "accuracy score : 0.906666666667\n", "escape time : 7.532 s\n", "the number of unit : 146\n", "accuracy score : 0.905\n", "escape time : 7.563 s\n", "the number of unit : 147\n", "accuracy score : 0.906666666667\n", "escape time : 7.83 s\n", "the number of unit : 148\n", "accuracy score : 0.905\n", "escape time : 7.54 s\n", "the number of unit : 149\n", "accuracy score : 0.905\n", "escape time : 7.742 s\n", "the number of unit : 150\n", "accuracy score : 0.905\n", "escape time : 7.597 s\n", "the number of unit : 151\n", "accuracy score : 0.903333333333\n", "escape time : 7.664 s\n", "the number of unit : 152\n", "accuracy score : 0.906666666667\n", "escape time : 7.756 s\n", "the number of unit : 153\n", "accuracy score : 0.903333333333\n", "escape time : 7.785 s\n", "the number of unit : 154\n", "accuracy score : 0.903333333333\n", "escape time : 7.669 s\n", "the number of unit : 155\n", "accuracy score : 0.906666666667\n", "escape time : 7.78 s\n", "the number of unit : 156\n", "accuracy score : 0.905\n", "escape time : 7.491 s\n", "the number of unit : 157\n", "accuracy score : 0.903333333333\n", "escape time : 7.817 s\n", "the number of unit : 158\n", "accuracy score : 0.903333333333\n", "escape time : 7.635 s\n", "the number of unit : 159\n", "accuracy score : 0.905\n", "escape time : 7.534 s\n", "the number of unit : 160\n", "accuracy score : 0.901666666667\n", "escape time : 7.458 s\n", "the number of unit : 161\n", "accuracy score : 0.906666666667\n", "escape time : 7.777 s\n", "the number of unit : 162\n", "accuracy score : 0.901666666667\n", "escape time : 7.869 s\n", "the number of unit : 163\n", "accuracy score : 0.905\n", "escape time : 7.808 s\n", "the number of unit : 164\n", "accuracy score : 0.906666666667\n", "escape time : 7.576 s\n", "the number of unit : 165\n", "accuracy score : 0.901666666667\n", "escape time : 7.623 s\n", "the number of unit : 166\n", "accuracy score : 0.901666666667\n", "escape time : 7.857 s\n", "the number of unit : 167\n", "accuracy score : 0.906666666667\n", "escape time : 8.04 s\n", "the number of unit : 168\n", "accuracy score : 0.905\n", "escape time : 7.78 s\n", "the number of unit : 169\n", "accuracy score : 0.906666666667\n", "escape time : 7.566 s\n", "the number of unit : 170\n", "accuracy score : 0.905\n", "escape time : 7.71 s\n", "the number of unit : 171\n", "accuracy score : 0.905\n", "escape time : 7.74 s\n", "the number of unit : 172\n", "accuracy score : 0.905\n", "escape time : 7.181 s\n", "the number of unit : 173\n", "accuracy score : 0.905\n", "escape time : 8.308 s\n", "the number of unit : 174\n", "accuracy score : 0.901666666667\n", "escape time : 8.043 s\n", "the number of unit : 175\n", "accuracy score : 0.906666666667\n", "escape time : 8.078 s\n", "the number of unit : 176\n", "accuracy score : 0.905\n", "escape time : 7.766 s\n", "the number of unit : 177\n", "accuracy score : 0.903333333333\n", "escape time : 8.323 s\n", "the number of unit : 178\n", "accuracy score : 0.905\n", "escape time : 8.047 s\n", "the number of unit : 179\n", "accuracy score : 0.903333333333\n", "escape time : 7.83 s\n", "the number of unit : 180\n", "accuracy score : 0.903333333333\n", "escape time : 7.897 s\n", "the number of unit : 181\n", "accuracy score : 0.903333333333\n", "escape time : 8.277 s\n", "the number of unit : 182\n", "accuracy score : 0.905\n", "escape time : 8.303 s\n", "the number of unit : 183\n", "accuracy score : 0.903333333333\n", "escape time : 8.377 s\n", "the number of unit : 184\n", "accuracy score : 0.905\n", "escape time : 7.988 s\n", "the number of unit : 185\n", "accuracy score : 0.905\n", "escape time : 7.983 s\n", "the number of unit : 186\n", "accuracy score : 0.905\n", "escape time : 8.283 s\n", "the number of unit : 187\n", "accuracy score : 0.906666666667\n", "escape time : 8.579 s\n", "the number of unit : 188\n", "accuracy score : 0.903333333333\n", "escape time : 7.917 s\n", "the number of unit : 189\n", "accuracy score : 0.905\n", "escape time : 8.485 s\n", "the number of unit : 190\n", "accuracy score : 0.906666666667\n", "escape time : 8.484 s\n", "the number of unit : 191\n", "accuracy score : 0.901666666667\n", "escape time : 8.567 s\n", "the number of unit : 192\n", "accuracy score : 0.903333333333\n", "escape time : 8.135 s\n", "the number of unit : 193\n", "accuracy score : 0.905\n", "escape time : 8.771 s\n", "the number of unit : 194\n", "accuracy score : 0.905\n", "escape time : 8.867 s\n", "the number of unit : 195\n", "accuracy score : 0.905\n", "escape time : 8.733 s\n", "the number of unit : 196\n", "accuracy score : 0.901666666667\n", "escape time : 8.733 s\n", "the number of unit : 197\n", "accuracy score : 0.903333333333\n", "escape time : 8.959 s\n", "the number of unit : 198\n", "accuracy score : 0.901666666667\n", "escape time : 8.93 s\n", "the number of unit : 199\n", "accuracy score : 0.906666666667\n", "escape time : 9.315 s\n", "the number of unit : 200\n", "accuracy score : 0.901666666667\n", "escape time : 8.489 s\n", "the number of unit : 201\n", "accuracy score : 0.905\n", "escape time : 8.912 s\n", "the number of unit : 202\n", "accuracy score : 0.905\n", "escape time : 8.98 s\n", "the number of unit : 203\n", "accuracy score : 0.903333333333\n", "escape time : 9.008 s\n", "the number of unit : 204\n", "accuracy score : 0.901666666667\n", "escape time : 8.985 s\n", "the number of unit : 205\n", "accuracy score : 0.903333333333\n", "escape time : 9.289 s\n", "the number of unit : 206\n", "accuracy score : 0.905\n", "escape time : 8.749 s\n", "the number of unit : 207\n", "accuracy score : 0.901666666667\n", "escape time : 9.719 s\n", "the number of unit : 208\n", "accuracy score : 0.905\n", "escape time : 8.772 s\n", "the number of unit : 209\n", "accuracy score : 0.903333333333\n", "escape time : 9.333 s\n", "the number of unit : 210\n", "accuracy score : 0.901666666667\n", "escape time : 9.404 s\n", "the number of unit : 211\n", "accuracy score : 0.906666666667\n", "escape time : 9.497 s\n", "the number of unit : 212\n", "accuracy score : 0.905\n", "escape time : 8.838 s\n", "the number of unit : 213\n", "accuracy score : 0.903333333333\n", "escape time : 9.662 s\n", "the number of unit : 214\n", "accuracy score : 0.9\n", "escape time : 9.468 s\n", "the number of unit : 215\n", "accuracy score : 0.901666666667\n", "escape time : 9.546 s\n", "the number of unit : 216\n", "accuracy score : 0.906666666667\n", "escape time : 9.137 s\n", "the number of unit : 217\n", "accuracy score : 0.905\n", "escape time : 9.568 s\n", "the number of unit : 218\n", "accuracy score : 0.906666666667\n", "escape time : 9.421 s\n", "the number of unit : 219\n", "accuracy score : 0.905\n", "escape time : 9.709 s\n", "the number of unit : 220\n", "accuracy score : 0.905\n", "escape time : 9.449 s\n", "the number of unit : 221\n", "accuracy score : 0.903333333333\n", "escape time : 9.556 s\n", "the number of unit : 222\n", "accuracy score : 0.901666666667\n", "escape time : 9.812 s\n", "the number of unit : 223\n", "accuracy score : 0.903333333333\n", "escape time : 9.743 s\n", "the number of unit : 224\n", "accuracy score : 0.903333333333\n", "escape time : 9.376 s\n", "the number of unit : 225\n", "accuracy score : 0.905\n", "escape time : 9.683 s\n", "the number of unit : 226\n", "accuracy score : 0.901666666667\n", "escape time : 9.735 s\n", "the number of unit : 227\n", "accuracy score : 0.905\n", "escape time : 10.015 s\n", "the number of unit : 228\n", "accuracy score : 0.905\n", "escape time : 9.712 s\n", "the number of unit : 229\n", "accuracy score : 0.903333333333\n", "escape time : 9.898 s\n", "the number of unit : 230\n", "accuracy score : 0.905\n", "escape time : 9.709 s\n", "the number of unit : 231\n", "accuracy score : 0.901666666667\n", "escape time : 10.014 s\n", "the number of unit : 232\n", "accuracy score : 0.901666666667\n", "escape time : 9.931 s\n", "the number of unit : 233\n", "accuracy score : 0.901666666667\n", "escape time : 10.012 s\n", "the number of unit : 234\n", "accuracy score : 0.901666666667\n", "escape time : 9.863 s\n", "the number of unit : 235\n", "accuracy score : 0.905\n", "escape time : 10.184 s\n", "the number of unit : 236\n", "accuracy score : 0.901666666667\n", "escape time : 9.78 s\n", "the number of unit : 237\n", "accuracy score : 0.903333333333\n", "escape time : 10.337 s\n", "the number of unit : 238\n", "accuracy score : 0.905\n", "escape time : 10.062 s\n", "the number of unit : 239\n", "accuracy score : 0.905\n", "escape time : 10.19 s\n", "the number of unit : 240\n", "accuracy score : 0.901666666667\n", "escape time : 9.811 s\n", "the number of unit : 241\n", "accuracy score : 0.905\n", "escape time : 10.003 s\n", "the number of unit : 242\n", "accuracy score : 0.901666666667\n", "escape time : 10.267 s\n", "the number of unit : 243\n", "accuracy score : 0.903333333333\n", "escape time : 10.136 s\n", "the number of unit : 244\n", "accuracy score : 0.901666666667\n", "escape time : 10.105 s\n", "the number of unit : 245\n", "accuracy score : 0.901666666667\n", "escape time : 10.182 s\n", "the number of unit : 246\n", "accuracy score : 0.903333333333\n", "escape time : 10.2 s\n", "the number of unit : 247\n", "accuracy score : 0.901666666667\n", "escape time : 10.546 s\n", "the number of unit : 248\n", "accuracy score : 0.901666666667\n", "escape time : 9.987 s\n", "the number of unit : 249\n", "accuracy score : 0.903333333333\n", "escape time : 10.206 s\n", "the number of unit : 250\n", "accuracy score : 0.903333333333\n", "escape time : 9.967 s\n", "the number of unit : 251\n", "accuracy score : 0.903333333333\n", "escape time : 10.348 s\n", "the number of unit : 252\n", "accuracy score : 0.903333333333\n", "escape time : 10.364 s\n", "the number of unit : 253\n", "accuracy score : 0.906666666667\n", "escape time : 10.297 s\n", "the number of unit : 254\n", "accuracy score : 0.905\n", "escape time : 10.3 s\n", "the number of unit : 255\n", "accuracy score : 0.903333333333\n", "escape time : 10.924 s\n", "the number of unit : 256\n", "accuracy score : 0.903333333333\n", "escape time : 10.184 s\n", "the number of unit : 257\n", "accuracy score : 0.903333333333\n", "escape time : 11.653 s\n", "the number of unit : 258\n", "accuracy score : 0.901666666667\n", "escape time : 11.622 s\n", "the number of unit : 259\n", "accuracy score : 0.901666666667\n", "escape time : 11.902 s\n", "the number of unit : 260\n", "accuracy score : 0.903333333333\n", "escape time : 11.65 s\n", "the number of unit : 261\n", "accuracy score : 0.903333333333\n", "escape time : 12.027 s\n", "the number of unit : 262\n", "accuracy score : 0.906666666667\n", "escape time : 12.121 s\n", "the number of unit : 263\n", "accuracy score : 0.901666666667\n", "escape time : 11.985 s\n", "the number of unit : 264\n", "accuracy score : 0.901666666667\n", "escape time : 11.978 s\n", "the number of unit : 265\n", "accuracy score : 0.903333333333\n", "escape time : 11.959 s\n", "the number of unit : 266\n", "accuracy score : 0.901666666667\n", "escape time : 12.174 s\n", "the number of unit : 267\n", "accuracy score : 0.905\n", "escape time : 12.151 s\n", "the number of unit : 268\n", "accuracy score : 0.905\n", "escape time : 11.697 s\n", "the number of unit : 269\n", "accuracy score : 0.901666666667\n", "escape time : 11.626 s\n", "the number of unit : 270\n", "accuracy score : 0.905\n", "escape time : 11.96 s\n", "the number of unit : 271\n", "accuracy score : 0.901666666667\n", "escape time : 12.195 s\n", "the number of unit : 272\n", "accuracy score : 0.901666666667\n", "escape time : 12.113 s\n", "the number of unit : 273\n", "accuracy score : 0.903333333333\n", "escape time : 12.054 s\n", "the number of unit : 274\n", "accuracy score : 0.903333333333\n", "escape time : 11.718 s\n", "the number of unit : 275\n", "accuracy score : 0.901666666667\n", "escape time : 12.199 s\n", "the number of unit : 276\n", "accuracy score : 0.901666666667\n", "escape time : 12.024 s\n", "the number of unit : 277\n", "accuracy score : 0.906666666667\n", "escape time : 12.023 s\n", "the number of unit : 278\n", "accuracy score : 0.906666666667\n", "escape time : 11.639 s\n", "the number of unit : 279\n", "accuracy score : 0.903333333333\n", "escape time : 12.193 s\n", "the number of unit : 280\n", "accuracy score : 0.905\n", "escape time : 12.065 s\n", "the number of unit : 281\n", "accuracy score : 0.903333333333\n", "escape time : 12.314 s\n", "the number of unit : 282\n", "accuracy score : 0.903333333333\n", "escape time : 12.255 s\n", "the number of unit : 283\n", "accuracy score : 0.901666666667\n", "escape time : 12.314 s\n", "the number of unit : 284\n", "accuracy score : 0.906666666667\n", "escape time : 12.106 s\n", "the number of unit : 285\n", "accuracy score : 0.901666666667\n", "escape time : 11.705 s\n", "the number of unit : 286\n", "accuracy score : 0.905\n", "escape time : 11.994 s\n", "the number of unit : 287\n", "accuracy score : 0.903333333333\n", "escape time : 12.147 s\n", "the number of unit : 288\n", "accuracy score : 0.903333333333\n", "escape time : 11.581 s\n", "the number of unit : 289\n", "accuracy score : 0.903333333333\n", "escape time : 11.741 s\n", "the number of unit : 290\n", "accuracy score : 0.903333333333\n", "escape time : 12.419 s\n", "the number of unit : 291\n", "accuracy score : 0.901666666667\n", "escape time : 12.209 s\n", "the number of unit : 292\n", "accuracy score : 0.903333333333\n", "escape time : 11.992 s\n", "the number of unit : 293\n", "accuracy score : 0.901666666667\n", "escape time : 11.487 s\n", "the number of unit : 294\n", "accuracy score : 0.906666666667\n", "escape time : 12.183 s\n", "the number of unit : 295\n", "accuracy score : 0.901666666667\n", "escape time : 11.704 s\n", "the number of unit : 296\n", "accuracy score : 0.901666666667\n", "escape time : 12.193 s\n", "the number of unit : 297\n", "accuracy score : 0.903333333333\n", "escape time : 11.796 s\n", "the number of unit : 298\n", "accuracy score : 0.901666666667\n", "escape time : 11.595 s\n", "the number of unit : 299\n", "accuracy score : 0.903333333333\n", "escape time : 11.571 s\n", "the number of unit : 300\n", "accuracy score : 0.901666666667\n", "escape time : 11.863 s\n", "the number of unit : 301\n", "accuracy score : 0.901666666667\n", "escape time : 11.642 s\n", "the number of unit : 302\n", "accuracy score : 0.903333333333\n", "escape time : 11.795 s\n", "the number of unit : 303\n", "accuracy score : 0.903333333333\n", "escape time : 11.584 s\n", "the number of unit : 304\n", "accuracy score : 0.906666666667\n", "escape time : 11.575 s\n", "the number of unit : 305\n", "accuracy score : 0.905\n", "escape time : 11.785 s\n", "the number of unit : 306\n", "accuracy score : 0.901666666667\n", "escape time : 11.554 s\n", "the number of unit : 307\n", "accuracy score : 0.901666666667\n", "escape time : 11.914 s\n", "the number of unit : 308\n", "accuracy score : 0.903333333333\n", "escape time : 11.321 s\n", "the number of unit : 309\n", "accuracy score : 0.901666666667\n", "escape time : 11.297 s\n", "the number of unit : 310\n", "accuracy score : 0.905\n", "escape time : 11.449 s\n", "the number of unit : 311\n", "accuracy score : 0.901666666667\n", "escape time : 10.712 s\n", "the number of unit : 312\n", "accuracy score : 0.901666666667\n", "escape time : 11.832 s\n", "the number of unit : 313\n", "accuracy score : 0.903333333333\n", "escape time : 11.122 s\n", "the number of unit : 314\n", "accuracy score : 0.903333333333\n", "escape time : 11.073 s\n", "the number of unit : 315\n", "accuracy score : 0.901666666667\n", "escape time : 10.807 s\n", "the number of unit : 316\n", "accuracy score : 0.905\n", "escape time : 11.516 s\n", "the number of unit : 317\n", "accuracy score : 0.901666666667\n", "escape time : 11.426 s\n", "the number of unit : 318\n", "accuracy score : 0.901666666667\n", "escape time : 11.289 s\n", "the number of unit : 319\n", "accuracy score : 0.906666666667\n", "escape time : 11.434 s\n", "the number of unit : 320\n", "accuracy score : 0.903333333333\n", "escape time : 11.425 s\n", "the number of unit : 321\n", "accuracy score : 0.905\n", "escape time : 10.095 s\n", "the number of unit : 322\n", "accuracy score : 0.901666666667\n", "escape time : 11.483 s\n", "the number of unit : 323\n", "accuracy score : 0.901666666667\n", "escape time : 10.333 s\n", "the number of unit : 324\n", "accuracy score : 0.903333333333\n", "escape time : 11.181 s\n", "the number of unit : 325\n", "accuracy score : 0.903333333333\n", "escape time : 11.697 s\n", "the number of unit : 326\n", "accuracy score : 0.901666666667\n", "escape time : 10.032 s\n", "the number of unit : 327\n", "accuracy score : 0.901666666667\n", "escape time : 11.312 s\n", "the number of unit : 328\n", "accuracy score : 0.905\n", "escape time : 10.811 s\n", "the number of unit : 329\n", "accuracy score : 0.901666666667\n", "escape time : 11.281 s\n", "the number of unit : 330\n", "accuracy score : 0.903333333333\n", "escape time : 10.064 s\n", "the number of unit : 331\n", "accuracy score : 0.905\n", "escape time : 11.041 s\n", "the number of unit : 332\n", "accuracy score : 0.901666666667\n", "escape time : 11.389 s\n", "the number of unit : 333\n", "accuracy score : 0.901666666667\n", "escape time : 9.539 s\n", "the number of unit : 334\n", "accuracy score : 0.901666666667\n", "escape time : 10.033 s\n", "the number of unit : 335\n", "accuracy score : 0.901666666667\n", "escape time : 9.622 s\n", "the number of unit : 336\n", "accuracy score : 0.903333333333\n", "escape time : 11.125 s\n", "the number of unit : 337\n", "accuracy score : 0.901666666667\n", "escape time : 9.9 s\n", "the number of unit : 338\n", "accuracy score : 0.903333333333\n", "escape time : 10.034 s\n", "the number of unit : 339\n", "accuracy score : 0.903333333333\n", "escape time : 9.286 s\n", "the number of unit : 340\n", "accuracy score : 0.901666666667\n", "escape time : 9.196 s\n", "the number of unit : 341\n", "accuracy score : 0.906666666667\n", "escape time : 9.375 s\n", "the number of unit : 342\n", "accuracy score : 0.901666666667\n", "escape time : 11.119 s\n", "the number of unit : 343\n", "accuracy score : 0.901666666667\n", "escape time : 9.306 s\n", "the number of unit : 344\n", "accuracy score : 0.903333333333\n", "escape time : 9.516 s\n", "the number of unit : 345\n", "accuracy score : 0.905\n", "escape time : 9.344 s\n", "the number of unit : 346\n", "accuracy score : 0.901666666667\n", "escape time : 9.907 s\n", "the number of unit : 347\n", "accuracy score : 0.903333333333\n", "escape time : 9.663 s\n", "the number of unit : 348\n", "accuracy score : 0.901666666667\n", "escape time : 9.023 s\n", "the number of unit : 349\n", "accuracy score : 0.903333333333\n", "escape time : 10.306 s\n", "the number of unit : 350\n", "accuracy score : 0.905\n", "escape time : 9.281 s\n", "the number of unit : 351\n", "accuracy score : 0.903333333333\n", "escape time : 9.398 s\n", "the number of unit : 352\n", "accuracy score : 0.905\n", "escape time : 11.318 s\n", "the number of unit : 353\n", "accuracy score : 0.901666666667\n", "escape time : 9.567 s\n", "the number of unit : 354\n", "accuracy score : 0.901666666667\n", "escape time : 9.156 s\n", "the number of unit : 355\n", "accuracy score : 0.905\n", "escape time : 9.589 s\n", "the number of unit : 356\n", "accuracy score : 0.901666666667\n", "escape time : 9.078 s\n", "the number of unit : 357\n", "accuracy score : 0.905\n", "escape time : 9.525 s\n", "the number of unit : 358\n", "accuracy score : 0.906666666667\n", "escape time : 9.278 s\n", "the number of unit : 359\n", "accuracy score : 0.905\n", "escape time : 9.367 s\n", "the number of unit : 360\n", "accuracy score : 0.901666666667\n", "escape time : 9.187 s\n", "the number of unit : 361\n", "accuracy score : 0.903333333333\n", "escape time : 9.282 s\n", "the number of unit : 362\n", "accuracy score : 0.905\n", "escape time : 9.717 s\n", "the number of unit : 363\n", "accuracy score : 0.903333333333\n", "escape time : 9.319 s\n", "the number of unit : 364\n", "accuracy score : 0.901666666667\n", "escape time : 9.071 s\n", "the number of unit : 365\n", "accuracy score : 0.903333333333\n", "escape time : 9.435 s\n", "the number of unit : 366\n", "accuracy score : 0.903333333333\n", "escape time : 9.168 s\n", "the number of unit : 367\n", "accuracy score : 0.903333333333\n", "escape time : 9.651 s\n", "the number of unit : 368\n", "accuracy score : 0.901666666667\n", "escape time : 9.035 s\n", "the number of unit : 369\n", "accuracy score : 0.903333333333\n", "escape time : 9.429 s\n", "the number of unit : 370\n", "accuracy score : 0.901666666667\n", "escape time : 9.31 s\n", "the number of unit : 371\n", "accuracy score : 0.901666666667\n", "escape time : 9.566 s\n", "the number of unit : 372\n", "accuracy score : 0.903333333333\n", "escape time : 9.563 s\n", "the number of unit : 373\n", "accuracy score : 0.906666666667\n", "escape time : 9.632 s\n", "the number of unit : 374\n", "accuracy score : 0.903333333333\n", "escape time : 9.36 s\n", "the number of unit : 375\n", "accuracy score : 0.903333333333\n", "escape time : 9.658 s\n", "the number of unit : 376\n", "accuracy score : 0.901666666667\n", "escape time : 9.242 s\n", "the number of unit : 377\n", "accuracy score : 0.903333333333\n", "escape time : 9.577 s\n", "the number of unit : 378\n", "accuracy score : 0.903333333333\n", "escape time : 9.301 s\n", "the number of unit : 379\n", "accuracy score : 0.903333333333\n", "escape time : 9.721 s\n", "the number of unit : 380\n", "accuracy score : 0.903333333333\n", "escape time : 9.134 s\n", "the number of unit : 381\n", "accuracy score : 0.903333333333\n", "escape time : 9.621 s\n", "the number of unit : 382\n", "accuracy score : 0.905\n", "escape time : 9.808 s\n", "the number of unit : 383\n", "accuracy score : 0.901666666667\n", "escape time : 9.707 s\n", "the number of unit : 384\n", "accuracy score : 0.905\n", "escape time : 9.272 s\n", "the number of unit : 385\n", "accuracy score : 0.905\n", "escape time : 9.585 s\n", "the number of unit : 386\n", "accuracy score : 0.901666666667\n", "escape time : 9.354 s\n", "the number of unit : 387\n", "accuracy score : 0.901666666667\n", "escape time : 9.847 s\n", "the number of unit : 388\n", "accuracy score : 0.901666666667\n", "escape time : 9.287 s\n", "the number of unit : 389\n", "accuracy score : 0.905\n", "escape time : 9.631 s\n", "the number of unit : 390\n", "accuracy score : 0.903333333333\n", "escape time : 9.391 s\n", "the number of unit : 391\n", "accuracy score : 0.903333333333\n", "escape time : 9.79 s\n", "the number of unit : 392\n", "accuracy score : 0.901666666667\n", "escape time : 9.596 s\n", "the number of unit : 393\n", "accuracy score : 0.901666666667\n", "escape time : 9.728 s\n", "the number of unit : 394\n", "accuracy score : 0.901666666667\n", "escape time : 9.602 s\n", "the number of unit : 395\n", "accuracy score : 0.901666666667\n", "escape time : 9.566 s\n", "the number of unit : 396\n", "accuracy score : 0.901666666667\n", "escape time : 9.364 s\n", "the number of unit : 397\n", "accuracy score : 0.901666666667\n", "escape time : 9.847 s\n", "the number of unit : 398\n", "accuracy score : 0.903333333333\n", "escape time : 9.569 s\n", "the number of unit : 399\n", "accuracy score : 0.901666666667\n", "escape time : 9.732 s\n", "the number of unit : 400\n", "accuracy score : 0.903333333333\n", "escape time : 9.298 s\n", "the number of unit : 401\n", "accuracy score : 0.901666666667\n", "escape time : 9.646 s\n", "the number of unit : 402\n", "accuracy score : 0.901666666667\n", "escape time : 10.061 s\n", "the number of unit : 403\n", "accuracy score : 0.901666666667\n", "escape time : 9.75 s\n", "the number of unit : 404\n", "accuracy score : 0.901666666667\n", "escape time : 9.485 s\n", "the number of unit : 405\n", "accuracy score : 0.905\n", "escape time : 9.761 s\n", "the number of unit : 406\n", "accuracy score : 0.901666666667\n", "escape time : 9.634 s\n", "the number of unit : 407\n", "accuracy score : 0.903333333333\n", "escape time : 9.98 s\n", "the number of unit : 408\n", "accuracy score : 0.901666666667\n", "escape time : 9.471 s\n", "the number of unit : 409\n", "accuracy score : 0.901666666667\n", "escape time : 9.953 s\n", "the number of unit : 410\n", "accuracy score : 0.901666666667\n", "escape time : 9.738 s\n", "the number of unit : 411\n", "accuracy score : 0.901666666667\n", "escape time : 9.807 s\n", "the number of unit : 412\n", "accuracy score : 0.901666666667\n", "escape time : 10.079 s\n", "the number of unit : 413\n", "accuracy score : 0.901666666667\n", "escape time : 9.947 s\n", "the number of unit : 414\n", "accuracy score : 0.901666666667\n", "escape time : 9.882 s\n", "the number of unit : 415\n", "accuracy score : 0.901666666667\n", "escape time : 9.856 s\n", "the number of unit : 416\n", "accuracy score : 0.901666666667\n", "escape time : 9.555 s\n", "the number of unit : 417\n", "accuracy score : 0.903333333333\n", "escape time : 10.023 s\n", "the number of unit : 418\n", "accuracy score : 0.903333333333\n", "escape time : 9.905 s\n", "the number of unit : 419\n", "accuracy score : 0.901666666667\n", "escape time : 10.066 s\n", "the number of unit : 420\n", "accuracy score : 0.905\n", "escape time : 9.85 s\n", "the number of unit : 421\n", "accuracy score : 0.905\n", "escape time : 9.922 s\n", "the number of unit : 422\n", "accuracy score : 0.901666666667\n", "escape time : 10.272 s\n", "the number of unit : 423\n", "accuracy score : 0.901666666667\n", "escape time : 10.008 s\n", "the number of unit : 424\n", "accuracy score : 0.901666666667\n", "escape time : 9.65 s\n", "the number of unit : 425\n", "accuracy score : 0.901666666667\n", "escape time : 9.957 s\n", "the number of unit : 426\n", "accuracy score : 0.903333333333\n", "escape time : 10.084 s\n", "the number of unit : 427\n", "accuracy score : 0.901666666667\n", "escape time : 10.121 s\n", "the number of unit : 428\n", "accuracy score : 0.901666666667\n", "escape time : 9.999 s\n", "the number of unit : 429\n", "accuracy score : 0.903333333333\n", "escape time : 10.1 s\n", "the number of unit : 430\n", "accuracy score : 0.901666666667\n", "escape time : 9.95 s\n", "the number of unit : 431\n", "accuracy score : 0.901666666667\n", "escape time : 9.992 s\n", "the number of unit : 432\n", "accuracy score : 0.903333333333\n", "escape time : 10.207 s\n", "the number of unit : 433\n", "accuracy score : 0.901666666667\n", "escape time : 10.102 s\n", "the number of unit : 434\n", "accuracy score : 0.903333333333\n", "escape time : 10.067 s\n", "the number of unit : 435\n", "accuracy score : 0.903333333333\n", "escape time : 10.099 s\n", "the number of unit : 436\n", "accuracy score : 0.901666666667\n", "escape time : 9.858 s\n", "the number of unit : 437\n", "accuracy score : 0.901666666667\n", "escape time : 10.35 s\n", "the number of unit : 438\n", "accuracy score : 0.901666666667\n", "escape time : 10.145 s\n", "the number of unit : 439\n", "accuracy score : 0.901666666667\n", "escape time : 10.184 s\n", "the number of unit : 440\n", "accuracy score : 0.903333333333\n", "escape time : 9.975 s\n", "the number of unit : 441\n", "accuracy score : 0.901666666667\n", "escape time : 10.183 s\n", "the number of unit : 442\n", "accuracy score : 0.901666666667\n", "escape time : 10.55 s\n", "the number of unit : 443\n", "accuracy score : 0.901666666667\n", "escape time : 10.249 s\n", "the number of unit : 444\n", "accuracy score : 0.901666666667\n", "escape time : 9.978 s\n", "the number of unit : 445\n", "accuracy score : 0.901666666667\n", "escape time : 10.252 s\n", "the number of unit : 446\n", "accuracy score : 0.901666666667\n", "escape time : 10.213 s\n", "the number of unit : 447\n", "accuracy score : 0.903333333333\n", "escape time : 10.538 s\n", "the number of unit : 448\n", "accuracy score : 0.901666666667\n", "escape time : 10.018 s\n", "the number of unit : 449\n", "accuracy score : 0.901666666667\n", "escape time : 10.276 s\n", "the number of unit : 450\n", "accuracy score : 0.901666666667\n", "escape time : 10.456 s\n", "the number of unit : 451\n", "accuracy score : 0.901666666667\n", "escape time : 10.35 s\n", "the number of unit : 452\n", "accuracy score : 0.901666666667\n", "escape time : 10.496 s\n", "the number of unit : 453\n", "accuracy score : 0.901666666667\n", "escape time : 10.482 s\n", "the number of unit : 454\n", "accuracy score : 0.901666666667\n", "escape time : 10.391 s\n", "the number of unit : 455\n", "accuracy score : 0.901666666667\n", "escape time : 10.392 s\n", "the number of unit : 456\n", "accuracy score : 0.901666666667\n", "escape time : 10.268 s\n", "the number of unit : 457\n", "accuracy score : 0.901666666667\n", "escape time : 10.752 s\n", "the number of unit : 458\n", "accuracy score : 0.903333333333\n", "escape time : 10.567 s\n", "the number of unit : 459\n", "accuracy score : 0.901666666667\n", "escape time : 10.425 s\n", "the number of unit : 460\n", "accuracy score : 0.901666666667\n", "escape time : 10.247 s\n", "the number of unit : 461\n", "accuracy score : 0.901666666667\n", "escape time : 10.611 s\n", "the number of unit : 462\n", "accuracy score : 0.901666666667\n", "escape time : 10.733 s\n", "the number of unit : 463\n", "accuracy score : 0.901666666667\n", "escape time : 10.562 s\n", "the number of unit : 464\n", "accuracy score : 0.901666666667\n", "escape time : 10.199 s\n", "the number of unit : 465\n", "accuracy score : 0.901666666667\n", "escape time : 10.428 s\n", "the number of unit : 466\n", "accuracy score : 0.901666666667\n", "escape time : 10.622 s\n", "the number of unit : 467\n", "accuracy score : 0.903333333333\n", "escape time : 10.667 s\n", "the number of unit : 468\n", "accuracy score : 0.901666666667\n", "escape time : 10.561 s\n", "the number of unit : 469\n", "accuracy score : 0.901666666667\n", "escape time : 10.613 s\n", "the number of unit : 470\n", "accuracy score : 0.901666666667\n", "escape time : 10.554 s\n", "the number of unit : 471\n", "accuracy score : 0.903333333333\n", "escape time : 10.768 s\n", "the number of unit : 472\n", "accuracy score : 0.903333333333\n", "escape time : 10.633 s\n", "the number of unit : 473\n", "accuracy score : 0.901666666667\n", "escape time : 10.706 s\n", "the number of unit : 474\n", "accuracy score : 0.901666666667\n", "escape time : 10.678 s\n", "the number of unit : 475\n", "accuracy score : 0.901666666667\n", "escape time : 10.559 s\n", "the number of unit : 476\n", "accuracy score : 0.903333333333\n", "escape time : 10.533 s\n", "the number of unit : 477\n", "accuracy score : 0.905\n", "escape time : 11.056 s\n", "the number of unit : 478\n", "accuracy score : 0.901666666667\n", "escape time : 10.682 s\n", "the number of unit : 479\n", "accuracy score : 0.901666666667\n", "escape time : 10.779 s\n", "the number of unit : 480\n", "accuracy score : 0.901666666667\n", "escape time : 10.447 s\n", "the number of unit : 481\n", "accuracy score : 0.901666666667\n", "escape time : 10.753 s\n", "the number of unit : 482\n", "accuracy score : 0.903333333333\n", "escape time : 11.139 s\n", "the number of unit : 483\n", "accuracy score : 0.905\n", "escape time : 10.742 s\n", "the number of unit : 484\n", "accuracy score : 0.901666666667\n", "escape time : 11.038 s\n", "the number of unit : 485\n", "accuracy score : 0.901666666667\n", "escape time : 10.832 s\n", "the number of unit : 486\n", "accuracy score : 0.903333333333\n", "escape time : 10.838 s\n", "the number of unit : 487\n", "accuracy score : 0.903333333333\n", "escape time : 11.087 s\n", "the number of unit : 488\n", "accuracy score : 0.901666666667\n", "escape time : 10.597 s\n", "the number of unit : 489\n", "accuracy score : 0.901666666667\n", "escape time : 10.804 s\n", "the number of unit : 490\n", "accuracy score : 0.901666666667\n", "escape time : 11.104 s\n", "the number of unit : 491\n", "accuracy score : 0.903333333333\n", "escape time : 11.122 s\n", "the number of unit : 492\n", "accuracy score : 0.903333333333\n", "escape time : 10.995 s\n", "the number of unit : 493\n", "accuracy score : 0.901666666667\n", "escape time : 10.996 s\n", "the number of unit : 494\n", "accuracy score : 0.901666666667\n", "escape time : 10.995 s\n", "the number of unit : 495\n", "accuracy score : 0.903333333333\n", "escape time : 10.969 s\n", "the number of unit : 496\n", "accuracy score : 0.901666666667\n", "escape time : 10.532 s\n", "the number of unit : 497\n", "accuracy score : 0.901666666667\n", "escape time : 11.356 s\n", "the number of unit : 498\n", "accuracy score : 0.901666666667\n", "escape time : 11.249 s\n", "the number of unit : 499\n", "accuracy score : 0.903333333333\n", "escape time : 11.065 s\n", "the number of unit : 500\n", "accuracy score : 0.903333333333\n", "escape time : 10.791 s\n" ] } ], "source": [ "score7 = []\n", "for n in range(1, 501):\n", " nn = Classifier(\n", " layers=[\n", " Layer(\"Gaussian\", units=n),\n", " Layer(\"Softmax\")],\n", " verbose=1,\n", " learning_rate=0.009,\n", " n_iter=2,\n", " )\n", "\n", " t0 = time()\n", " nn.fit(trainX, trainY)\n", " preds = nn.predict(testX)\n", " print \"the number of unit : %s\" %n\n", " print \"accuracy score : %s\" %(accuracy_score(testY, preds))\n", " print \"escape time : \", round(time()-t0, 3), \"s\"\n", " score7.append(accuracy_score(testY, preds))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df = pd.DataFrame({'Rectifier' : score1,\n", " 'Sigmoid' : score2,\n", " 'Tanh' : score3,\n", " 'Maxout' : score4,\n", " 'Linear' : score5,\n", " 'Softmax' : score6,\n", " 'Gaussian' : score7}, index=range(1, 501))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Gaussian</th>\n", " <th>Linear</th>\n", " <th>Maxout</th>\n", " <th>Rectifier</th>\n", " <th>Sigmoid</th>\n", " <th>Softmax</th>\n", " <th>Tanh</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td> 0.62</td>\n", " <td> 0.62</td>\n", " <td> 0.60</td>\n", " <td> 0.45</td>\n", " <td> 0.23</td>\n", " <td> 0.14</td>\n", " <td> 0.23</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 0.88</td>\n", " <td> 0.88</td>\n", " <td> 0.89</td>\n", " <td> 0.73</td>\n", " <td> 0.47</td>\n", " <td> 0.26</td>\n", " <td> 0.49</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.89</td>\n", " <td> 0.81</td>\n", " <td> 0.49</td>\n", " <td> 0.34</td>\n", " <td> 0.80</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.91</td>\n", " <td> 0.85</td>\n", " <td> 0.73</td>\n", " <td> 0.47</td>\n", " <td> 0.90</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td> 0.91</td>\n", " <td> 0.91</td>\n", " <td> 0.90</td>\n", " <td> 0.88</td>\n", " <td> 0.77</td>\n", " <td> 0.45</td>\n", " <td> 0.90</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Gaussian Linear Maxout Rectifier Sigmoid Softmax Tanh\n", "1 0.62 0.62 0.60 0.45 0.23 0.14 0.23\n", "2 0.88 0.88 0.89 0.73 0.47 0.26 0.49\n", "3 0.90 0.90 0.89 0.81 0.49 0.34 0.80\n", "4 0.90 0.90 0.91 0.85 0.73 0.47 0.90\n", "5 0.91 0.91 0.90 0.88 0.77 0.45 0.90" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(5)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Gaussian</th>\n", " <th>Linear</th>\n", " <th>Maxout</th>\n", " <th>Rectifier</th>\n", " <th>Sigmoid</th>\n", " <th>Softmax</th>\n", " <th>Tanh</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " <td> 500.00</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.39</td>\n", " <td> 0.90</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td> 0.01</td>\n", " <td> 0.01</td>\n", " <td> 0.01</td>\n", " <td> 0.02</td>\n", " <td> 0.04</td>\n", " <td> 0.09</td>\n", " <td> 0.04</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td> 0.62</td>\n", " <td> 0.62</td>\n", " <td> 0.60</td>\n", " <td> 0.45</td>\n", " <td> 0.23</td>\n", " <td> 0.14</td>\n", " <td> 0.23</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.34</td>\n", " <td> 0.90</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.90</td>\n", " <td> 0.91</td>\n", " <td> 0.90</td>\n", " <td> 0.38</td>\n", " <td> 0.90</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td> 0.91</td>\n", " <td> 0.91</td>\n", " <td> 0.90</td>\n", " <td> 0.91</td>\n", " <td> 0.90</td>\n", " <td> 0.45</td>\n", " <td> 0.90</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td> 0.91</td>\n", " <td> 0.91</td>\n", " <td> 0.91</td>\n", " <td> 0.92</td>\n", " <td> 0.91</td>\n", " <td> 0.66</td>\n", " <td> 0.91</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Gaussian Linear Maxout Rectifier Sigmoid Softmax Tanh\n", "count 500.00 500.00 500.00 500.00 500.00 500.00 500.00\n", "mean 0.90 0.90 0.90 0.90 0.90 0.39 0.90\n", "std 0.01 0.01 0.01 0.02 0.04 0.09 0.04\n", "min 0.62 0.62 0.60 0.45 0.23 0.14 0.23\n", "25% 0.90 0.90 0.90 0.90 0.90 0.34 0.90\n", "50% 0.90 0.90 0.90 0.91 0.90 0.38 0.90\n", "75% 0.91 0.91 0.90 0.91 0.90 0.45 0.90\n", "max 0.91 0.91 0.91 0.92 0.91 0.66 0.91" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x10c726f90>" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGJCAYAAACXXXqWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FHX+x/HXZ3dTCUkg9N67FEEELASwAIqK5Ty7Yj3F\n", "s3fPgL23E5WzniJg17OAtASwAIo0pffeSS/bPr8/dnK/mAuQO5mwwc/z8eBBZmfmO99572Y/O/Od\n", "2YiqYowxxpgjh+dwd8AYY4wxh5YVd2OMMeYIY8XdGGOMOcJYcTfGGGOOMFbcjTHGmCOMFXdjjDHm\n", "CGPF3fwhich6ERno/HyviLx2uPt0qIlInoi0cKHdE0Rk+aFu12l7uIhscvrezY1t7Ge7F4nIN1W1\n", "PWPcJnafu/kjEpF1wJWqOuNw9+VQEJEs4F1VfcOFtsNAG1Vde6jbrmBba4CbVfULF7fRAlgL+FQ1\n", "7NZ2jDmc7MjdmMNERA7l75/bn9LF5fYREQGaAUvd3lbpJqtoO8ZUOSvu5g9PREaJyLvOzy1EJCwi\n", "l4rIBhHZJSL3lllWRORuEVktIrtF5H0RqVVm/ocisk1EskVkpoh0KjPvbRF5RUS+FpF8IL2Cvlwh\n", "IktFJFdE1ojINeXmnykiC0Ukx+nDqSLyCHAC8JJzOvtFZ9mwiLQSkWOdPkmZdoaLyCLn594i8oOI\n", "7BORrSLydxGJcebNclZZ5LR9noiki8imMm11FJEsZ/1fRGRYuX0eIyJfOvs0R0RaVbDfcUAe4HW2\n", "tarsPpRr7yHn53QR2Swit4rIDqfvl5dZNkFEnnGGYLJFZJaIxAOl+5Tt9KmPiFwuIrPLrNtPRH50\n", "1psnIn3LzMsSkQdF5Ftn/W9EJK38PhlzOFlxN6bio97jgHbAIOABEWnvPP5X4AzgRKAhsA8YU2a9\n", "r4A2QF3gZ+C9cu1eADykqknAdxVsdwdwmqomA1cAz4lID4gUYeCfwG2qmuL0Yb2q3gfMBm5Q1Zqq\n", "+tff7JzqXKDA2ZdSF5bpWxC4CUgD+jrLXe+se6KzTFen7Q/Ltu18CPgCmOzs843AeyLSrsxi5wOj\n", "gFrAauCR8jutqiVOJqXbaltBNhB5rso+X/WBZKARcCUwRkRSnHlPAz2cfaoN3AmEiXwQAkhR1WRV\n", "nVNun2oTeR6fd9Z7Fviq7Ic4Is/j5UA9IBa4fT/9NeawsOJuTMWnZ0c7BWcxsAgovbjrOuB+Vd2q\n", "qgFgNHBu6Sl2VX1bVQvKzOsmIjXLtPuZqv7gLFtSfqOq+rWqrnN+ngVM4f+L0ZXAG6o63Zm/VVVX\n", "HGQ/Sk0gUpBw+jPEeQxV/VlV56lqWFU3AP8A+h+grbL6ADVU9XFVDapqJvBl6bYcn6jqT6oaIvKB\n", "onsl296fsvsZAB5U1ZCqTgLygfbO83EFcJOqbnP2bY6q+jn46fjTgBWq+p6z3kRgOZEPdRD5cPGW\n", "qq5W1WLgg0OwT8YcUlbcjanY9jI/FwKlR5XNgU+dU9D7iIwPB4H6IuIVkced0+U5wDpnnTrO/wps\n", "4gBEZIhz6nqP0/5QIkfUAE2ANQdY/UDj7hOAs0UkFjgbmK+qm5xttnNOm29z+v1ImW0eTCP+c582\n", "OI+X9mlHmXlF/H+Wh8KechfFlT5XdYB4DpzX/jQCNpZ7rOw+wW9fH4d6n4z53ay4G/Pf2QgMVtVa\n", "Zf4lquo2Iqe6zwAGOafNWzrrVOrCLWfc+WPgSaCeqtYCvi6z/iYip/wrcsAL6lR1KZECNcTp5/gy\n", "s18h8iGljdPv+6j8e8NWoGnZ8XwiH4C2VHL9gykEEstMN6RyFw/uBoqpOK+Drb+FyD6UdSj3yRjX\n", "WXE35r/zKvCoiDQDEJG6IlJ6ujYJKAH2ikgN4NFy6x6syMc6/3YDYREZApxSZv4bwBUiMlBEPCLS\n", "uMy1ADuA1gdpfzxwM5HT/GXHzpOIXMxWKCIdgL+UW+9Abc8lUoDvFJEYEUkHTgcmOvN/7xXpC4GL\n", "nLMig4lcZ3BQztH8m8CzItLQWb+vc+ZiF5Gx9/3t0ySgnYhcICI+ETkf6EBkuKGUXWlvopoVd2P+\n", "8yKtAx3ZvQD8C5giIrnAD0BvZ947RI6OtwC/OPPKt7vftlU1j8gFex8Ae4mMW39eZv6POBfZAdlA\n", "FpFbx0r7da6I7BWR5/eziQlEiuN0Vd1b5vHbiRzN5xIZb59Yrp+jgH86QxHnlt0PZwx7GJEzAruA\n", "l4BLVHXlAfb5QPmWn3eT0/4+p4+f/hdt3Q4sAX4E9gCPEfluj0IiQw/fOXkdW26f9hD5gHIbkQ9a\n", "twOnl8us0s+rMYeDq19iIyJvErk4ZaeqHrWfZV4k8sZQCFyuqgtc65AxxhjzB+D2kftbwOD9zRSR\n", "oUTG+doC1xAZ+zPGGGPM7+BqcVfV2UROp+3PGUTu2y29FzdVROq72SdjjDHmSHe4x9wb89vbaDYT\n", "ud3HGGOMMf+jw13c4T+vOrULU4wxxpjfwXeYt78FaFpmugkV3EsqIlbwjTHG/KGo6v98y+XhLu7/\n", "AkYCE0WkD5CtqjsqWvD37KQ5OBEZpaqjDnc/jmSWsfss46phObvv9x7UulrcRWQCke+oruP8FakM\n", "IAZAVceq6tciMlREVhP5wxZXuNkfc0AtDncH/gBaHO4O/AG0ONwd+INocbg7YA7M1eKuqhdUYpmR\n", "bvbBGGOM+aOJhgvqTHR4+3B34A/g7cPdgT+Atw93B/4g3j7cHTAH5uo31B0qIqI25m6MMeaP4vfW\n", "PTtyNwA4f/DDuMgydp9lXDUs5+hnxd0YY4w5wthpeWOMMSbK2Gl5Y4wxxvyGFXcD2BhaVbCM3WcZ\n", "Vw3LOfpZcTfGGGOOMDbmbowxxkQZG3M3xhhjzG9YcTeAjaFVBcvYfZZx1bCco58Vd2OMMeYIY2Pu\n", "xhhjTJSxMXdjjDHG/IYVdwPYGFpVsIzdZxlXDcs5+llxN8YYY44wNuZujDHGRBkbczfGGGPMb1hx\n", "N4CNoVUFy9h9lnHVsJyjnxV3Y4wx5ghjY+7GGGNMlLExd2OMMcb8hhV3A9gYWlWwjN1nGVcNyzn6\n", "WXE3xhhjjjA25m6MMcZEGRtzN8YYY8xvWHE3gI2hVQXL2H2WcdWwnKOfFXdjjDHmCGNj7sYYY0yU\n", "sTF3Y4wxxvyGFXcD2BhaVbCM3WcZVw3LOfr94Yq7CF4RvhMh/nD3xRhjjHHDH664A82BfkDLqtiY\n", "CPVEGFZm+hQRmlXFtv8bqpp1uPtwMCL8WYQYF9sfJkKqW+1Xh4zdUJnnTYQRInh/77b+qBlXNcs5\n", "+rla3EVksIgsF5FVInJXBfNricinIrJIROaKSOdD3oesLK/8eWOiyL/3tSMxIYC2IvQU4Ylyy/sk\n", "K2uCZGXVkqwskXfnJomQ+Nt+k7zf7Y2WJ2S09Cjz0KvAOyLEOtOPAJeL8I40KxwmwmQRjjtQm842\n", "vSIkHGB+0oHWr2D5eBGk3GNSfhsHOsNR2oYIcf/FdqV8X512Phdh6AG20wiYAJxVye0cMA+nHzXK\n", "THuBd4CRB1j+NRFOrGBezP4yEMEjLQtqSFZWbEXzD0aEdiK8Xeb1W/p4jXLTUtFzVcFysaVFtBIZ\n", "vShCm0r0MaH0fxGGiPBwmXndiDxv/cr3p8zrpz7wBtD3INtpKEKt/cyLLzf9Jye3mgfrv7N8zbK/\n", "DxVlI8IYEVqVmd7v72OZZbzl3z8q61CfXXRep//zh2MRPM5zdpsI51Uwv8LX4KFU0XvUAZatLcIE\n", "EU6rxLIJIqSKMFEE336W+a/3TYSLRXhpf+uK4HMtM1V15R/gBVYDLYAYYCHQsdwyTwF/c35uD0zb\n", "T1uqqpCZ2Z/MzDhVRSFFoSeZma3IzLyFzMyGFa6bmXkvz/+8HPQJ0P7UKnnE+8UM9Vy45jWuXzWb\n", "czeGuXztPaBtnOXPJTNTmZp1LZmZn/DZ7J1IeDvosZG+6CWgJaCvgjYCPfXf2xqFlwe8edxTM4MY\n", "/wVcOX4h6ELQnzhp+6WM/+FoUD/oBlrnhfgmS7lpxTLQFaDbQe8Bbf+f+68NQGeCfun0sReZmfXK\n", "zL8cNB80A/R4Zxk5ecQrrw457bWGoMNBfc6yXUA7g34D+mCZjNNB7wOdByqMoicn3dmFnnuyaVow\n", "ADQe9C+gJ4G2dtr5FvQu0B2gHSp+7rQvaDKoF/Qc0NtAs51t9XaWeQQ0C3Qz6L3l1hfQRaBfge4G\n", "/b50XyrYljjbuM7JY5jzeDroTc7zlQB6LeiXoL+COneMaE+n/c2gMaB1QE8GbeHsw9WgW0BXg6Y6\n", "7ZwC2gx0CegYvKHejPvhAlrknw7qc/Z7KlesXU9m5odOxsNAR4Km7v93RweD3gJ6GehDoCFn+hjQ\n", "rs7zXQjaB/RkZ51nQD8u1859oMWgTf/9WPe942md9xnoFaBFoOc5yzZycmoL2hG0IaiCjgIdCloD\n", "9HRnXndnndNABzlZ3wC6C3Sx07cHnTZfd3Id7bwO80BPc9b/GPRxJxMFfdNpry5o1zL7MRT0787r\n", "ZpvT7sAy873O83aOk3F90J1EXuN/L7PMpaBXgsZUkHcO6CegKaAXgxbSKXsEmZldnWWaOn2835k+\n", "x9lmX9BuB3guXwTdBNrjwO+XeixolzLTbZ0+tTn4e622BO17kGXE2b+PnddtrQqW6eL0Q5znpDHo\n", "+aBxzvyXQL8A3QpTs53nPLHM+o+Bfkrk/aVTmTaG4/yelVn2RNC/cl3XoSRtOYv/f39qCJpeJpM6\n", "5da7l8j7ZQKZmT3IzGxUZl586bacfzOc/mwh8vtzMf//+94c9Djn5/rOazTTeY4HVJBNTef1fTzo\n", "KQd7Tpx1PETeL34AfaOC+fWJvN9+QuR3O/Ie1SovkZO3fV1a9/7Xf64U9kjH6QtMLjN9N3B3uWW+\n", "BI4vM70aqFtBW0pmppCZmU1mZqQgwSMhmE9m5odkZi4jM/Nt0FG0zT0r4cvJ799+3XWTmJT1CDMy\n", "ZzE1S2mdm88ty0OJ5yz31/r8cyUzUxm1pIj7f13DB99p4oVLs7hsrfD1zAU8vFiZllnCjMyveGNu\n", "CRet+4BrVmfzwXcPcuey4tFDR0xv5lv6ldTLD3D9Kn+ct+D483jf4x1+/pmMQrmx00Ku+C5AZqby\n", "2kenUqf4fsb9kMvkmdtvTnhiV/2/zA7zr9l5MmrxZ8zI3EFm5iW8+uPriH8y4h9bn211Qd8FnYEn\n", "OIM2ubt48Kv5HPt8ETUCqczIXMr0zOk8P38tzyzYSY3AXvq8OIrTr5mJhLcyasl4z9TpixImTdKj\n", "b31vu4dgkLjgcryhLNBcIm/AOc6LdQa99kzntkfmdK7/Y/btPLmXWmve4+4UPxdfmcuULOXBJfNB\n", "HyU+OJeEkt34SlZxx8t+rp1cQlww5PxCjEycNKkDMzJHxVF0MujDRIrbHiJv7CNBC+m3q4SnF3wk\n", "hJ6H4A4k/BRXrylg0sxM37PzzsQXyuGZBQN4fd7nJASy8IbeJiGQS2xQQW+h7645PLR4G+9/fzeZ\n", "mSNVFUasacFji5bRIeefoIU0LQjw9ILpEF5FTf/VjFyZJ5eu+ZbIB6jVoF+D3omEF4OegSf8sPOL\n", "/RKRDxk3IeENoLlD+Xzj9bxU7LxBH4Un/CSJgTU8sXANDQrDoL8i4X+QUrKDB34p5JusIM+9ofR/\n", "/n7QV0Df4/mfC5meGSbt45XOG9MHxIRW0zb3ePrsSgUdgS+UyYNLMvnbL7ch4Z2gz4EuI1IoL4Hg\n", "Ouf52ge6HHQc6M9O9lfSbd8e/rSxCPQuJPgXrj76E+ou2Qw6jlZzXuHmdp/RbNUTTPw+xBOLijwE\n", "lxMp8NtAR0B4a6Tt4GoSA2uoXXw/8f4VzvaV+OAneENB5/WzCU/4dQhvRsJh0F8gHIr8r+vwhvqS\n", "5J+EhL9y+nsx6Hc0y5/LkwsXc8rz2Xzw1GcM2FGAhHdB6Ask/KmzLzlI+DFnH290CsYO0MeJC9YH\n", "nYOEf8YTDvDw4n8xNWsYaDqEt0Veax/MBP0ST/hx0PagW4l8WPiGyAfD6UQ+lF4POh0JPwm6kzE/\n", "vUmX7HGgG53X7DX8dWUh/5q9FQnOgNDXEF4O+jPJ/iTQb5HwLxAugvBGIgV2LOhVxPk/p0ZgJr5Q\n", "FhLcigRHQmil8/q6Fl/BOzTPakKkmE5xXnM7nOf3ONBnIDSGSFGaQ2ywMWgSkYJVh8iHoBF4wuNA\n", "ryLyQWYX6JN4wjNAp4IOLfMh4VnPpasz+POG7c5rKgj6CG1ze/K3X9YRG3yTyIf2XU4/fgTdjIT9\n", "Th7ziBTyLRDeA+ElMPpB0Nl4wi+AxoH2cNbPIVJUS5zfGb+zvWtAXwNN4/pVz3Hcrt3E5kzx3Bsf\n", "ptcris9/m7N/UzwECyD0gtPWS6BvegjOiDwPuhtCU5DgIiZ+v4hRS2Y72/uahMB7eEOFoG8jwSuR\n", "4Dy67fUS+TD8HOj2RPK7gXqTJHueXLy2hEvWTQCdDPp5LMWhVPZ+lcaufzRlwzX1Zct9u5KTkxSS\n", "GrH5lnjyc0F3IyEFbbsjJaXGXam3NEhjV1I6M1Luj3ug/oPcX/9B7q9/R9oViaDDPQR/oveL9b1D\n", "r8lNbvnhwmT2zkwk/1Mi742fCaGXksjdXaP783mpnf4xoyY5O+L7bdhKZqb+3uLu2n3uInIucKqq\n", "Xu1MXwwcq6o3llnmESBBVW8Vkd7Ad0BvVV1Qri0lM7MusA7w91yxovd948bNf+Tii2vOb9cuH5Fj\n", "gLmc19fPVWtrpjXZFFc3aZtnda3mBOMlzDdJYU7Jp+22zbK2UUPvLRM/Kv7TlJlxJ2yZv/gLhp2b\n", "3TM89d6bR7Q46vPdu6ad3LXWyY/M2fnJC3UbMk4zTi3Jvunb67vUkvUJO/O1Zu3kvH17arba1/C4\n", "uZPCqaEU/+unD4u75v2vZeD0RcVNshfEnHNqj+JtF19dA00Ok5fpoe6gXR7x1aqxMGZ33s46aW06\n", "zfcVemLCLScXZsx6b8Qtg596at7UXr2GECoKNt65W9usXOO95qvPdUG9E3ZmHptcsKh3nzYhSdyG\n", "N1Q/YdU3IY0btrcoxVcnbVtBcMT8T2Nmde6+aUWrxglFccE6qXvXUZzUZm9JODHtold+mH3DoveO\n", "HzrmEU+vFSuCX/XtQ0KRv3Bw5s9fz/3o7AFb0uot5uqP5zOv29aY83Y/X2/tLE9Bk37BruvWyqzE\n", "msWkFuST0qBenV3eBbtTUns0n7LZv2l4E09sIOAr9hcHvbHiS923I7Snbltvkx+K1tX5KeT3DtnS\n", "ZkHbtr6Prh5dfG7HcbtbLsyOz6kdn7N7XYu044p+YP6b+onWKzmzJN4b8+aTT09/6KJLB65bcHSB\n", "99QtdY76dcqErc17X7rXlxpI27UnrzA2tVZqUf7m3f66KSUdAonhsMcrq2vc7G2X/XBwdfYeEus1\n", "pYGWHP1S7nsrLoy/0hcOFxcubugPJHpG03vv5RIXatXp/Vzf9u4J8Sm+bRtJ8DXpNWf9Fx/EnDv1\n", "5QX3vvNdvw6Pf921359PvWRf0pdPNM/3xBbED/pxwfSfvznrCzlpx+vrL5LiWjvX53XZtbVu5u33\n", "lnzLiaemZ45ejOr8xit3am7dUCt/TN38tEvbLKr/6FehRa07nRj/fVJO4fj4molPLPKU1KhD+M0m\n", "+3Rzww6SsWRT29lbCnPa18wb+uOcL35p3+y9BS3bTQtqTEJibkAHP7Bi25QHm4by8xrUpLY/hcSS\n", "/AtmT/n7iEd/ynuFv1w0c+zseZ7kzucP+XDnNSuOatC5Q+6aWl/UOWXHvuntR3WO/3n72pLYBjGX\n", "h9fmNIhr2fiWOkUN2n5YtPmio9JaZj25rc2OBlMnXjnyUgnmIzk5Gr+ubV5h72IWjxhR2HHzprvv\n", "48HWzw3se41nZDhcd+xrc2MG9Th1Tfc+8Z4gEo4N4Z2Tu6/f1JUbZt51XHe8uoclqTcwvtnpcXcu\n", "HN5j+7KZczu2ObbJjuwNu5Jqd/v43ozbPxyQ3vmbgT2O31Grdpv68/0efarDZxee9szc3e/0uHvR\n", "jYWxawbV9xXGJ8WF89eG8XXTGG+eX3N+SQjW7ZmfOunNRxqtPen2lae1T213V7Z/aa9sZfnxq+7a\n", "9N5nQ7pO2HHqU089kbouJ39nWsOG9Yt2bywKJTYRjwa6jV+pc0d2kLM/mjjl4/P+fEqdVdnh4hYx\n", "eybceeHf31/14o1+YlNasm7mLTGPf3DzVUP6TH31hb0DEqdd2qLV0qmfDTnqrMKGsf513eo36Lpm\n", "TdaIx19cteCEs+LaBNdtfPzMS+8OeYnp8Ov7BR2+2O6ffvM1Rd3G5Pu+/2u9eu2m5OxbeXZiXsy+\n", "nGXecHLfE+7IiWvu/+6XLamdm/7r5ab11BsfiCvM0TPGXVGQUpS3u7C4Yb2i7Fs2eVbXTv3qsrvq\n", "DdyW56v907l7Gu1tM9vXKnvHhQsmL76WsUnAzY1iVjTUQfd7+s/t+vInp/c65fvTB7Tu8nZRqMUv\n", "+zbnJ8alttix7ZeNbYo6fzOqb1LnD3KL+m+b+0HKd7n1dsSktvl0TJ+aSdklRX1uL6rT0r/++zkn\n", "tu7RZ+/P9b+5sr3v505tQmdMm/t+/K6wJzy+xbD1Jyd6595aO37A41u21Jrrqde6w8J3rpzz2U8v\n", "ntrn5A19Woan9ek35M4JE5+Peb92mzk9a5988/eZT9917+WXCBq6fsH4cR/3HtBzeq/u5w64a7e/\n", "0dKinLa1f/ly8jG9z6i1fHvKpblvPn7ivq1rV9G29jcN6qWv2HHusJq1f94Q3teR999r2aR24Y5N\n", "4iuM77t8TYOGK74OvHLF6Jizb121/Iy8T5pu71Uz5rtATEH81qHL8zfW7Z3WasOOp5Y+UOeF3sFQ\n", "7X09x346tP7wWpuW1vziwrG1UzYFA2NueP3JV647deDsM1r3SQjk555zweoif8/X6iUmrd067aLX\n", "c2ICxaETliz7LnFR4qDHpz/X/BfpsPeTK3s1/Ci9f2CP1OKUV+asaN5u65K/jR9/+qLWrWOO/nVV\n", "vEclfPvIaz17Umvquw8/FsiNTYjt+8bLDH8mM2dLs/GJF89qvmtleseG03r1kntGfRBuHNojg998\n", "RIZ8P4/Rr79JSZyfRaFe/i6eRXmPp5cU3vo9dRPCsXHHjn2LF597QT8NnZujS32FT8rt65JLPH1G\n", "3H2rr/XWLXrvu+MDZzz2uO+7o7p48k87Df0d97m7WdzPAQYfpLjXBF4AegBLgA7AVaq6uFxbSmZm\n", "P2fZOf2WLGmUXFR0/A+dOtVVkZ9yTjvtWJk282+UeB4kMbRo8dnXrq2bndP/7tsvz3+n+9FNPF+9\n", "lR2cMPmjbbVrX9J84sSElx56eUbn2TsHAi8fx/fDCyX+5ZSx0x+snbZDPrr9wbyUgkXeQCghYVab\n", "QhmyGq1TyMS0Inq8z/nr6jb7pFtMbLL8beTfGn57VBc+ve9eMq64YuGKxo27tly3JBDvS/PV3L3W\n", "m7T474H+230Fc064ovjx197w1ckr8J/c45JZZ7QKnn/8oh+1w/rVaxrl88W22rWvOe6BP228YfKc\n", "unvqt6/zz9OGS7E3lmabFoRTi4LBaybNkJlduxasbNEmNatHLxrv3k2jlZs3TRl9d4M7Bsb9cM/C\n", "2E13X3npwDZrF8ZvbNxa07L3BupvLfLdNfmbtIc7t11SI9gxNOuiYxj77NNdP+zXZcfnA87U+e3a\n", "NcyOjy2iYGkcKd28o994NXTJv74M/NqpY+zMbkcHnj33zNhwTGJOo5WTNk97eHynWUd18Vx35728\n", "l3F3yfmz53pGXH1SaOiKQCBt00xvt11J4VFXjIjbk5wS48n1BwrrJMbM6NGDBru35eyq3TBFPaJS\n", "IsVtd25MSCgpCb378IP+W665MP6LAWfKiC8/Lxw7/NzE07/7LvTZ3+73/tyQgo+HXlXj72efxccX\n", "Pbb8L2NuaFg7L6/GzJF/CTx1/jmeRy+7OnbkJ5/KRZ+/krcu2RPz/MVjwguPbp5441uv7Tpn/g87\n", "+o19t0uN4uK1Q+bOLbzj/fdr33HxDcnNV6+KHTx/DJO6tymZcNmYmp5wKNh2y9bAxnr1Yuru2RoK\n", "eX0SG/b6zpw1g6m9evlXN2sd33H9Br1r/LiS2Ud1iX/tjLPo9t2Y3IYxx8QtbNUslFTs14XtOtS4\n", "/4Wb2dT2pMKF7TrEbUlL8Tw/ekT4jF+LClfUTCpp5M+NXdisTeyljz4Re9K87zYtb9mmecYzN/gn\n", "nXL5joXtj0qb3+GoxAf++Vbo/nHvFZ1/3x18ln5K0q0T3uWKz9794b0zLovdHVfU46NT/yzd1q7d\n", "2HLr1pQfOndK3ZVcg4LEZE798ceSgvj47Dh/Ya1AOCFcI1QQ91OHDlIcF8fTL43x33TTTbG+UJD6\n", "e3fvHDx3TsrmunViQ/6d4fO+XRNY3L553O3jPyl89LILYj4/rs/m0+fOb/HnaVOCj1xyaezXfY/j\n", "/OlT9Ktje8tLo0fsi/UXxMVJTe8DNz0Rtyu1FsOmfZvffOfC3Y9edVeDsAff7RPG89gll3mHz8qS\n", "2JK80IK27Uu21m9Gau6+0Ak/zgje8Mn7q5/6870tJw08pk5+QgI3TXhz9Sf901vdPP4fG6+btCjl\n", "y2Yptb498bhAj237fN937KSLWjcOdFm/MeaXtkd5ttSpR9Od2/m5XTs6r17qnzfytm2X3PGXxDVN\n", "WiZ0WbcmadCClYEfO3dcM3Ds2lrXvXNpveIEn7TYsj6woVGzmAa7tmibDct1Y5MOJSU+SUjb58/r\n", "+/PckvVtWhUvaNum/rZ6TWL6L1wcyosjsLJZS19xbKwvEBPLsb8u3jm3c7e69XZvER8x+TlJKT5P\n", "KOi97p1nQ+PPuUq9gaL4ZW27Stq+3aHiuHgpjE/09FyxLLShQUPvgB9n71rctmPiHS/fFv/UdY+H\n", "j148K+acKR8UvnzJ3RKKTS547MVRm18595ImH590VlpyYVFg0PyfYi6bMC13T+KipFeuemL7wrZt\n", "6/1p8vsF++q0Tgrg9WXHUTJs+luxLbduKLrrrlfi2qxfpjkpdQNL2vaIU483nFiUiyfk9/Vf8NO2\n", "7FqNiuerQ3fmAAAgAElEQVS3b1+//w+TkHBJ/K/tjwnULMgLN9i1PdRo0y7v54PP9vnjY0qKPZ6Y\n", "+//57OZJxw2qvb1OQ1/DzXmhNa3q1Oi+ds22H9t3qRMSb0xxvFc6rvk1sLJ524SuK34ONd+2NW9a\n", "v5NrnD3ts+xX/nxd3SEzvyiYdczAOABvKOjpsWJJTtquNbVm9x4c7jNvWf6OxgkxW+o0jkvN3eUZ\n", "9eKtxZkDr9zSetP6oqwurbucnJlVOOPE4xNr78A/6eRTYvbVrimecIi6O9eu2djsqNbt1y4LoGGf\n", "J1Tg31OrfkFBjdq11RMTUPCpKL6iXf6j1m8uWdm8TXKdnOyiXbXr+ULgK0pI5JilS/ZsqVun5l2v\n", "3O9/8bLbk5ps26CF8fVLGu/bkv9Nv4F1Tpwzmb1pzfI21W+rOQVJKc2K54cXd+wqI167avu0s56s\n", "l1Mz1dto57biFS1ae8PeWB9L7lHi0hbT4spu+CVE0QoPgZwSGg6K77rsR6mT68+Jyd6UPPXY3hJO\n", "bhIe+tVzaMmOFZOGP9IIb9xWtnzeqPluT3Dw3Km1pw28NPuMeUtyfmnf8/uprbUriS06E5cmCcUB\n", "PeHHKaGmq6YG3hl+1WOB5NajEV8hmz8oofE5NFj+aWD7jW/Uj9bi3gcYpaqDnel7gLCqPnGAddYB\n", "R6lqfrnHlZYtZye3bdv0nDlzUiacd15KsH270Oy33p4xpXiwvLguee2jvie6fdTprc5Trx/XYfxt\n", "X234zMcDrwZr9BnXvdZpy3dt4+SVoV8mn4be+GuLHmNC67/JTfH2HvdLqBZwrTRhN8f2HteFtH1x\n", "aZNuWpDPMxdPOGbGoMTU8wZ4pmY3O53Cdz9kzymx1Ah56DTKz705Epv3xUuXcOzsN4Zn7mYtjdIu\n", "Zvizdw74PrdJ6pise67O+SzQoH5odb0COnQaTN4L35CQ2hCPR8nN30jh0np4ThKaphWxaFUuHfP8\n", "TH36WurlBwe23/vheYtyW//lPYbx5nsfcZms4+UpvXqW7D3pjLjt28eErvgw3zOrUWH+hLP4BXiZ\n", "lYxmHa9yKuOAT1hFw7b7pMGWbrqrMI4Uzyr8XbbjX3wC2aK0ueWjeoGYYIn31k052ctbd6k9bsWy\n", "eycEQ7GXDibYdzOj328zLM4vsVu+/uTj4ltPJXXdKj7z1+4ZfHPZ/AuePg5Jn0rxuDB3fziKWoNX\n", "cfasIG1b745NWdE1JbZjzdP/9au3wYDn//5EYk7PlgVzGuRuOmZecpfx3RNLzti9/Lk3uweO6f59\n", "YvulTVLjk+ts3Z3b67H2e+dNCPefsfidvg0Y6dGUax9o2uga8pYt4NT+nw9ZuOnouXvXXjn41xpz\n", "v8t4bWj65Ccfa/7Phf55ffhrkyb1109t7e2yYcPWZfhoOjy+Y9I/xq+KeSY5+O2v8Sz44qL4eki4\n", "O+/7H6YmyYP6H5deZ/P8YQt97YIrapSsotWulTS7KL/RF+MuC/j37d3VFe/RRUfLr1sW1ui4K6zS\n", "kmvXD/380n1rVg2su+yL3R1q+Wo02PBt6NOadWODuzZ/kdo5/ti0hL4N1qxdvoqft73QtxcPNM+m\n", "/rSV3FUUIO+o4eljFh53Y0zrMY+8/+uGnyfTg4doy/LWy1ocv5mNu4+LC9ee0Tp+I1vq1+w+Y8PY\n", "rl24o0U23/5UQKepPdqkBbq3jPXVPMrrXRejJavGLmzVOLVhuGh97fXZxByzkT3N6pI8vSWfDXqn\n", "1rJZx9bp3KjBqlMKUlqGQ7P8r+xo3NffZNiwB9Y2bBAIjj83u/O4vBs6Daf/wgaMzNvo27H92Fsb\n", "pjZL82fX7xLnnb/Q79v8qVeH3K3+VY8s4acFjQmxx9OWh6/aeEKHf3Q85c7jpjwRapuUX5KdUjd5\n", "zzZv9vbc7Z+uOq/tGTfM3Pb2P3fm5+V3a3MFwx9pxPyr9jAzbyL1OJu2NOle2G33sp15OSVdrm5P\n", "t6N246vRqP+AAWd3Saw/tF2b4nB+Ss4zi9Zx7cbOaX/96bb3/OGSvFDLNy6Pz00+7uvnNpXMvOm6\n", "ix/as2lvDKgQfiWn/s4NL9b+lXuWpbKKlom7SW5egy9z36JL/GjOfz2Ndx97jdwprUhOSGfIPY+x\n", "b8EV7O1al4K10CIwucaGSSvi8k66fW+9zvn07LkPT1wJL94ykVprr+eY3rOoO+BHvnroATxxJRzV\n", "Yhl5y3N5v8NYrrr6Azo3WU5cvc588NRnBJceXbvOzoYtS5rMm799VT063tiM486IYdtXHj588QOS\n", "Qun0HdifTn97kgULBlNYuBLfSxDfqG6TpS32bG7btyGtwttJbNqKbz8PkNg+v4X3J+++mBrZOdv3\n", "NaH+KR66HxWD+FZz5ZB7aRXswdC25xPI28nGmq0obvMJzSdfDLqLlamb6HBJL/oN3cAv973CtI0t\n", "OPHWa+jZM46fr8/lpx0LSK7Zg8bbVgOwNq4lne6oT/PQKlY8kcKOYzYQ3t2QlgUxND77G16b/gMF\n", "K7wMYx89Xr6PNYWdWPbDqww/uw95yzvyy3oPv2xYTbdZaeC5hm29b6RuixM58fw9TH/8CWqfM5qd\n", "y7/l5KGD8cR4mL8gG19sCj2OXkuwoDEf3pZNm6sCHN3xV+ZfczZzjruKLZMD3H7Lk9Q/eQtnn3sT\n", "ZyTdR6dwDeLSGjJ5w9ukDSlixOUb2DElgSvGrOahh8bRxiN443z89EMyyz7+mqP8r3PshESWrB/L\n", "mvVvcv75A9j8QRofvjqbVIbQ2htPWn8vv8Z/RcGKWFqvEWq0TuGnfXuI2duXPieuQgNH4T8nkZC/\n", "iCZ7bqDh6d/x4T9G0aLH6fQ6+iY0/He++PoT6jcYyjHH1CTnp0tZy5vk/uqhfaqf7ZPi0CviCHv2\n", "ckyvGoj3KebMuYRQqIB+/eqy7cunmTZtICwfyp/f34c3PolFS+Io2JrDki0PEet7hFVTY8n3b2Fp\n", "bpNoLe4+YAUwCNgKzAMuUNVlZZZJAYpU1S8iVwPHqerlFbSlZGY+dMfEiSOfHDt22vQePc498/qe\n", "suOacQ/V0OK/fctx+472fZdSQA2d3r7gnWO2cnm7G/mk0y5enf0mkz2KDL2YOxc04Iacx2h6/Ah8\n", "22qy/IGZJF0zjIfDHi5k/YlF1FoXQ8qm/sBfNUNfFkEy+gujB3CrJ8ydKng8yp+CozXz330bLUcD\n", "mcASzdDjnStud8RRfHHJqIRkCfOhehjof5CEbTV59ot2vHPvIF7JjWcD8MP182j90tc0EWgio+jH\n", "rPsGMuPhj1WZXbqNbn+RxFlv0W1OE7lw8CU63xeiYdDLbKAN8DCwGzhaMzQso6X0xTAK+BeRMyJ9\n", "gAuIXAmesOhlwl128qgHfgI+QrVYRNJVNeuJ4+WOo7fKCYPWs9yjukJG8ZZmaLj0ifjTecgHH6Ko\n", "qoyWVGAL8B4wFWUiQkOaX7arf9Y/PbNasEyFra32csba2rQB3gcaA/WBAgB8yYkEc8OaoYVlMu0G\n", "PEPkokwFHtEMnf5BerrnT1lZYWeZx4FriJz12Qj4gLj4AF2LY3gAiAN+Be4s13Yc8BBwC9BcM3Sr\n", "jJZrgTXAQGC288+vGeqXrKx0QsVd+HZIc+AbYKbTrxQidz6MBrZqhoZktPiAGM3QImdb8dTuHdYb\n", "5/oBxCsDNKSZMlo8QC3gMeCvzrbCMlquB84GbgeWgnOHRVK7YvJX9gdOdHIJOrm8ANytGbrX2d4k\n", "IFEztL9kZdVEdR8if2PmgMc1I/KLLqMlKZK952EIf0iPMctJ7hRm5gAvSe0C5K88BUgEPv7/dbyD\n", "Ify183rbARQ5/fWUvjZktLQGuRf0Hs3Qnc4+JgAB4A08cfE0OusyvXLiv5+LMs+JB3iOxsNHs2t2\n", "U/y7h2uGjgKQJxrXJZj/JHFpz1Kw7ldnu4nAlUA9YLRmaFDevtxLi8ufZvjwSdycvQU4XTP0CRkt\n", "HjplwNLROOvWBR6gbvqtdMpIB+poevqEcvsSD4Q0QwOlj0tW1u3A18AI4EFmDmgGnOs8/9D2Ni91\n", "jovlh7NHAU8CezRDVbKyBKgBFDBzQJrznI+if2YzAjl3suDGPPx7/8rxX+Ywc4D8+3e4f2YsgZwY\n", "YlJKND09UOa5exx4RzN0nvNaPgUYhrfGHRz/ZZ6mp0f2ISsrBvAwc8DxwEXAncAeJ3IviS3i9I51\n", "BTJa+gHXAXOBmpqhj//mucnKqo+G70c8N2l6elhGey8CwowKb2MUs8pk5qF/JpqeHpasrIuBEQTz\n", "H2TRbXPpOTYZDY9GPH9lV1aQpaOhf+aVwHJNT//3+5yz3xLZjiQAjwKfaIbOphzJyhpOOFiCxzep\n", "NLcy80TT0yPZLx0len1WWEZLLJHfJ79mqL/M646yr2VnP+KAgKanBytq0/n/WKCvpqc/L1lZt6I6\n", "hKJNt/DjZTcSU+t++n3SCPiTpqffJ1lZHiK/r2h6uspoqQ08RL9/jceXOJDNH3bBk7BcL3ouQ/4x\n", "zMe2L18gptYo7tu3MyqLO4CIDAGeJ/Jm+IaqPiYi1wKo6lgR6Qu8TWTHfwGuVNWcCtpRMjMnvvbU\n", "U4Ov+vrr7u92ZdilZ/P3rp/f+FzHhcec9Lped9T0doWamdRx31MLl9V6YAAvPH4CFwArvx5HOD5I\n", "o4GX0wy4MziaFal3E5cfxwzgUudfGDjB+X8YMLX0DfrffRgtfYA8zdBf/6N/o6UdkTfVhZH+chIw\n", "m1HSHJgFNNEMDZZb53Sg0ZNTmHjH93RHddZ/ne9oSQPWA4M0Q+f9t+sfCjJaTgQWAEXAiZqhM8rM\n", "OxrYrhm61ZlOBXprhk45BNutS6Q4//Q/rJsA9NMMnf57+xFNZLS0JPLhYiWAZGUNAmaVFoff0a6P\n", "cs+tMcZdv/e75avNH44hM3P7oiuvjOu6dm0HGUVb4FuWnrOc2Ny1d61eNGhB8zzvlNaeYJIWFOTH\n", "0Y7IkdntrffS7KS1lIztRR1gXenRyL/bLne0dcj7PlqSNOO3wwyHuP14zdBit9o3xhhT9f5IxX2s\n", "DhhwAdBcRtEd5St2d4whefNc4vKO5+crodOHOcTn/k0z9O/OqY8TNEM/P9z9rw5KT8sf7n4cySxj\n", "91nGVcNydt8f6a/CzSDyZTgBipMTyW26ldT1PmLzOhNI+JCVp5XwzrR7gZcANEP3WmE3xhjzR1Th\n", "1+xFqTDOBRGsHNaJGjuaUS+4jppFtYgpOp/lwy8DMsufdjeVY5/C3WcZu88yrhqWc/SrNkfuvmAQ\n", "IhfmBSlMa0hM4W5qbvsCWKQZqqq8rcqGw9tLY4wx5vCrNsU9saREgICg11OS3ABvIJ/IrVVvHuau\n", "HRHs7zO7zzJ2n2VcNSzn6FdtTssnFhd7NHLP7EsU1FuC15+nGfoD8MPh7psxxhgTTarVkbsikft1\n", "/Umd8BXlHeYuHVFsDM19lrH7LOOqYTlHv2pT3GsUFXnDeEIAeEJeYguyD3OXjDHGmKhUbYp7QkmJ\n", "J4jPKe4BiMux4n4I2Ria+yxj91nGVcNyjn7VprjXKC72hPCGgeX4iv3E5rv2rW/GGGNMdVZtLqhL\n", "8Ps9fmIVmEfPf/wLIeZw9+lIYmNo7rOM3WcZVw3LOfpVmyP3xOJibyBSz/dSd/k+IlfOG2OMMaac\n", "alPc4yNH7gLspfRraM0hY2No7rOM3WcZVw3LOfpVm+KeWFLiLSbeirsxxhhzENWmuMcGAt4S4jzA\n", "Hqy4H3I2huY+y9h9lnHVsJyjX7Up7gklJd4iErzYkbsxxhhzQNWmuMcFAp5i4q24u8TG0NxnGbvP\n", "Mq4alnP0qzbFPd7v9xaSGAPsw4q7McYYs1/VprjHBQJe58g9Fyvuh5yNobnPMnafZVw1LOfoV22K\n", "e7zf7y0iwQfkY8XdGGOM2a9qU9w9fmIDxAhQDMRixf2QsjE091nG7rOMq4blHP2qTXHXYm9CCG9A\n", "FcWO3I0xxpj9qjbFXUo8CWE8pQXdivshZmNo7rOM3WcZVw3LOfpVm+KuAU98GE+JMxkD+A9nf4wx\n", "xphoVW2Ku/glUZHSgm5H7oeYjaG5zzJ2n2VcNSzn6Fd9inuQ8kfuVtyNMcaYClSb4k5I4olcKQ9W\n", "3A85G0Nzn2XsPsu4aljO0a/aFHfnyN2KuzHGGHMQ1aa4e0MaBxQ5k1bcDzEbQ3OfZew+y7hqWM7R\n", "r9oUdwlhxd0YY4yphGpT3L2hcLyghc6kFfdDzMbQ3GcZu88yrhqWc/SrNsXdE9JYQQucSSvuxhhj\n", "zH5Um+LuDYdiPYTtyN0lNobmPsvYfZZx1bCco5+rxV1EBovIchFZJSJ3VTC/johMFpGFIvKLiFy+\n", "346GNNZDON+ZtOJujDHG7IdrxV1EvMBLwGCgE3CBiHQst9hIYIGqdgfSgWdExFdRe75wKMZH0Iq7\n", "S2wMzX2Wsfss46phOUc/N4/cewOrVXW9qgaAicCZ5ZbZBiQ7PycDe1Q1WFFj3nDYZ8XdGGOMOTg3\n", "i3tjYFOZ6c3OY2W9BnQWka3AIuCm/TXm06DPS8jG3F1iY2jus4zdZxlXDcs5+rlZ3LUSy9wLLFTV\n", "RkB3YIyI1KxoQZ8GPT6CVtyNMcaYg6hwfPsQ2QI0LTPdlMjRe1n9gEcAVHWNiKwD2gM/lW/suYLF\n", "CbsIn3quSENOxccU+pFBFvz/p8jScSCb/t+mS0VLf2zapv/baVXNiqb+HMnTpaKlP9V92pEOtOAQ\n", "ENXKHGD/Dw1HLoxbAQwCtgLzgAtUdVmZZZ4FclR1tIjUB+YDXVV1b7m2dFriCSWhwviLTh019Qug\n", "UDPUzQ8mxhhjzGEjIqqq8r+u79ppeefCuJHAN8BS4H1VXSYi14rItc5ijwK9RGQRMA24s3xhL+XV\n", "sDeJ/GLslLwrbAzNfZax+yzjqmE5Rz9Xj35VdRIwqdxjY8v8vBsYVpm2PGGVmuRZcTfGGGMOotp8\n", "Q51Hw5667CoB4oCSw92fI43dt+o+y9h9lnHVsJyjX/Up7mGVOuwuARoAOw53f4wxxphoVW2Ku0+D\n", "6iMUJnKvfPmr7s3vZGNo7rOM3WcZVw3LOfpVm+IeEw6GgdLivuUwd8cYY4yJWtWmuPs0qESKexOs\n", "uB9yNobmPsvYfZZx1bCco1/1Ke6ElMi33tlpeWOMMeYAqk1x9xAuPXK30/IusDE091nG7rOMq4bl\n", "HP2qTXH3Ro7crbgbY4wxB1Edi7uNubvAxtDcZxm7zzKuGpZz9KtWxX1XIgKkAHsOd3+MMcaYaFWd\n", "ijvzGlMDyNUMDR/u/hxpbAzNfZax+yzjqmE5R79qU9wF1eV1qAFkH+6+GGOMMdGs2hR3LyHdlEIS\n", "kHO4+3IksjE091nG7rOMq4blHP2qTXH3EGZnIjWxI3djjDHmgKpVcc+LIwkr7q6wMTT3Wcbus4yr\n", "huUc/apTcdfcOGpip+WNMcaYA6pOxV0KY+y0vFtsDM19lrH7LOOqYTlHv+pU3CnyWXE3xhhjDqZa\n", "FfcSn52Wd4uNobnPMnafZVw1LOfoV22Ku6AEPSRjR+7GGGPMAVWr4u73WnF3i42huc8ydp9lXDUs\n", "5+hXbYq7h7A4R+52Wt4YY4w5gGpT3AUVOy3vHhtDc59l7D7LuGpYztGvWhX3sFATyD3cfTHGGGOi\n", "WbUq7iEPMUDgcPflSGRjaO6zjN1nGVcNyzn6VZviDkhY8AChw90RY4wxJppVm+IuqIQEAexvubvA\n", "xtDcZxm7zzKuGpZz9KtWxd05crfibowxxhxAtSnugEcFL1bcXWFjaO6zjN1nGVcNyzn6VZviLig2\n", "5m6MMcYcXDUq7njstLx7bAzNfZax+yzjqmE5R79qU9wB1Iq7McYYc1DVprhrpKjbmLtLbAzNfZax\n", "+yzjqmE5Rz9Xi7uIDBaR5SKySkTuqmD+7SKywPm3RESCIpJaUVuKlPbXxtyNMcaYA3CtuIuIF3gJ\n", "GAx0Ai4QkY5ll1HVp1W1h6r2AO4BslR1f98dH3b6a0fuLrAxNPdZxu6zjKuG5Rz93Dxy7w2sVtX1\n", "qhoAJgJnHmD5C4EJ+5upiGLF3RhjjDkoN4t7Y2BTmenNzmP/QUQSgVOBjw/Qno25u8jG0NxnGbvP\n", "Mq4alnP0c7O463+x7DDg2wOcki9tz8bcjTHGmIPwudj2FqBpmemmRI7eK/JnDnBKHuAywj4yEWby\n", "gIySbGBh6afH0vEfm/5d091V9fko6s8RN136WLT050icLp/14e7PETxt7xcuvD8A6UALDgFR/W8O\n", "sP+LhkV8wApgELAVmAdcoKrLyi2XAqwFmqhq0X7a0gDegphRoUTN0Gpz+151IiLpdqrNXZax+yzj\n", "qmE5u09EVFXlf13ftSN3VQ2KyEjgGyJj5W+o6jIRudaZP9ZZ9Czgm/0V9jLC2Hi7a+wX1X2Wsfss\n", "46phOUc/147cDyURUT/e3NhRoXjN0LjD3R9jjDHGTb/3yL0aneIWxY7cXWP3rbrPMnafZVw1LOfo\n", "V22Ku9ppeWOMMaZSqk1xJ3IrnBV3l9gYmvssY/dZxlXDco5+1aa4O0fudo+7McYYcxDVprgjduTu\n", "JhtDc59l7D7LuGpYztGv2hR3tdPyxhhjTKVUm+KOFXdX2Ria+yxj91nGVcNyjn5ufv3sIeWMuUf/\n", "TfnGGGPMYVZ9jtzFboVzk42huc8ydp9lXDUs5+hXbYq7c8huxd0YY4w5CDstbwAbQ6sKlrH7LOOq\n", "YTlHv2pz5E6ksNt97sYYY8xBVJvirjbm7iobQ3OfZew+y7hqWM7Rr9oUd+xWOGOMMaZSqk1xV/uG\n", "OlfZGJr7LGP3WcZVw3KOftWmuIPamLsxxhhTCdWmuNuffHWXjaG5zzJ2n2VcNSzn6HfQ4i4in4jI\n", "aSJyWD8I2Gl5Y4wxpnIqU7BfAS4CVovI4yLS3uU+VciKu7tsDM19lrH7LOOqYTlHv4MWd1WdqqoX\n", "AkcD64HpIvK9iFwhIjFud7BsT7Axd2OMMeagKnWqXUTSgMuBq4CfgReBnsBU13pWjh25u8vG0Nxn\n", "GbvPMq4alnP0O+jXz4rIp0AH4F1gmKpuc2ZNFJH5bnauLLugzhhjjKmcyny3/IuqmlnRDFXteYj7\n", "s18qakfuLrIxNPdZxu6zjKuG5Rz9KnNavrOI1CqdEJFaInK9i32qkNp3yxtjjDGVUpnifrWq7iud\n", "cH6+xr0u7YeNubvKxtDcZxm7zzKuGpZz9KtMcfeUvcddRLxAFV4lH2Gn5Y0xxpjKqcyY+zdELp4b\n", "CwhwLTDZ1V5VIGx/OMZVNobmPsvYfZZx1bCco19livtdRE7D/8WZngq87lqP9sP5k6825m6MMcYc\n", "RGW+xCakqq+o6rnOv7GqWuVFVgWwI3fX2Bia+yxj91nGVcNyjn6Vuc+9HfAo0AlIcB5WVW3lZsfK\n", "sy+xMcYYYyqnMhfUvQW8CgSBAcA/gffc7FRFwr/5zxxqNobmPsvYfZZx1bCco19linuCqk4DRFXX\n", "q+oo4DR3u/WfwmL3uRtjjDGVUZniXuzc/rZaREaKyNlADZf79R/CdlreVTaG5j7L2H2WcdWwnKNf\n", "ZYr7TUAi8FegF3AxcFllGheRwSKyXERWichd+1kmXUQWiMgvIpK1v7bsgjpjjDGmcg54QZ1zxH6+\n", "qt4O5BH5y3CV4qz7EnASsAX4UUT+parLyiyTCowBTlXVzSJSZ3/tha24u8rG0NxnGbvPMq4alnP0\n", "O+CRu3PL2/EiIv9D272B1c44fQCYCJxZbpkLgY9VdbOzvd37a8zG3I0xxpjKqcxp+YXA5yJyiYic\n", "4/w7uxLrNQY2lZne7DxWVlugtohkishPInLJ/hqzW+HcZWNo7rOM3WcZVw3LOfpV5hvq4oG9wMBy\n", "j39ykPW0Em3HAEcDg4iM6/8gInNUdVX5BW/IpTWfkyijZBSQDSwsPTVU+kKz6d813R2Ipv4ccdOl\n", "oqU/Nm3Tv2Pa3i/ceX9IB1pwCIhqZWrw/9CwSB9glKoOdqbvAcKq+kSZZe4icqvdKGf6dWCyqn5U\n", "ri39tQ5zO49kpWbopa502BhjjIkSIqKq+r8MiQOV+4a6t8o9pACqOuIgq/4EtBWRFsBW4HzggnLL\n", "fA68JJGL7+KAY4FnK2rMuaDOxtyNMcaYg6jMmPtXwJfOv+lAClBwsJVUNQiMJPJX5ZYC76vqMhG5\n", "VkSudZZZTuQvzC0G5gKvqerSitqz+9zdZWNo7rOM3WcZVw3LOfod9Mi9glPk44HvKtO4qk4CJpV7\n", "bGy56aeBpw/Wlt0KZ4wxxlROZY7cy2sH1D3UHTkYK+7uKr24w7jHMnafZVw1LOfoV5kx93z+/8p3\n", "BXYQ+RvvVcrG3I0xxpjKqczfc09S1ZrOv2RVbauqH1dF58qyMXd32Ria+yxj91nGVcNyjn4HLe4i\n", "MlwiXxNbOp0qIme5263/ZKfljTHGmMqpzJj7KFXNLp1wfh7lWo/2IywIVtxdY2No7rOM3WcZVw3L\n", "OfpVprhXdBO991B35GDCHvtueWOMMaYyKlPc54vIsyLSWkTaiMhzwHy3O1ZeyE7Lu8rG0NxnGbvP\n", "Mq4alnP0q0xxvxEIAO8T+ctuxcANbnaqIjbmbowxxlROZb7EJp/DcOtbeXbk7i4bQ3OfZew+y7hq\n", "WM7RrzJXy08rd7V8bRH5xt1u/Se1+9yNMcaYSqnMafk65a6W3wvUd69LFbMjd3fZGJr7LGP3WcZV\n", "w3KOfpUp7iERaV464fyVtyovsuFIT624G2OMMQdx0DF34D5gtojMJHJb3InANa72qgJ25O4uG0Nz\n", "n2XsPsu4aljO0a8yF9RNFpFeRAr6QuAzoNDtjpUXsjF3Y4wxplIqc0Hd1UT+jvvtwG3AuxyGb6hT\n", "+4Y6V9kYmvssY/dZxlXDco5+lRlzvwnoDaxX1QFADyDH1V5VwE7LG2OMMZVTmeJerKpFACISr6rL\n", "gfbudus/heyCOlfZGJr7LGP3WcZVw3KOfpW5oG6TiNQiMtY+VUT2Aetd7VUFbMzd/F97dx9tR13f\n", "ezJbEzMAABhSSURBVPz9IeGhmIACQiGExoJPeLFYr/EBKwepNogS9d6WB1GLrEpRxGXVpbR6UVqr\n", "7W0rCNVSQUVqQVSkYEHABygqFdGAKAHNjQkPgYAYIYKap8/9Y+bgzuGcZOdk/+bM7PN5rXVW9uyZ\n", "PfPLJ1nnu2d+v/lNRET0p5/nub/K9irb7wPeC5wDNP7I1/S5l5U+tPKScXnJuBnJuf36OXN/1FRe\n", "ikmfe0RERH/66XNvhfXb5My9pPShlZeMy0vGzUjO7ded4p4+94iIiL50p7hntHxR6UMrLxmXl4yb\n", "kZzbrzPFPQPqIiIi+tOZ4r4+xb2o9KGVl4zLS8bNSM7t153iXrU0fe4RERGb0Z3inlvhikofWnnJ\n", "uLxk3Izk3H5dKu65LB8REdGHzhT3DSnuRaUPrbxkXF4ybkZybr/OFPd6Epv0uUdERGxGZ4r7hvS5\n", "F5U+tPKScXnJuBnJuf06U9wz/WxERER/ihZ3SQsk3Sbpx5LeNc76EUkPSlpU/7xnon2lz72s9KGV\n", "l4zLS8bNSM7tt0VPhdsSkmYAZwF/CNwNfEfSpbYXj9n0WttHbG5/9Wj59LlHRERsRskz9/nAEtvL\n", "bK8FLgQWjrOd+tlZ7nMvK31o5SXj8pJxM5Jz+5Us7nOAO3uW76rf62XgBZJulnS5pP0n2ln63CMi\n", "IvpT7LI8VeHenO8Bc20/Iukw4BLgKeNtmElsykofWnnJuLxk3Izk3H4li/vdwNye5blUZ++Psr26\n", "5/UVkj4qaRfbPxu7s0tvZm9u5Ri9T88Dfg7cNPofbPQSUZaznOUsZznLXVyujQDzGADZ/ZxgT2LH\n", "0kzgduBQYAVwA3B074A6SXsA99m2pPnARbbnjbMvv3UBt57xPE72qf5qkQZPc5JG8m28rGRcXjJu\n", "RnIuT5Jt9zUmbTzFztxtr5N0EnAlMAM41/ZiSSfU688G/jdwoqR1wCPAURPtL5flIyIi+lPszH2Q\n", "JPnEw7ntY8/hz32qr53q9kRERJS0tWfu3ZmhTswE1kx1OyIiItquM8X9F9uxG3DHVLdjWI0Z1BEF\n", "JOPyknEzknP7daa4r5nBjsA9U92OiIiItutMn/sxr2bFZ77gsZPgREREDJ1p0+e+/XpWTnUbIiIi\n", "uqAzxX3HtSnuJaUPrbxkXF4ybkZybr/OFPfZv+beqW5DREREF3SmuO/0a+6f6jYMs8w2VV4yLi8Z\n", "NyM5t19nirvMr6e6DREREV3QmeJusX6q2zDM0odWXjIuLxk3Izm3X5eKe+aVj4iI6EN3ijs5cy8p\n", "fWjlJePyknEzknP7daa4A+umugERERFd0Jninj73stKHVl4yLi8ZNyM5t193insuy0dERPSlO8U9\n", "Z+5FpQ+tvGRcXjJuRnJuv84U9w05c4+IiOhLZ4q7lQF1JaUPrbxkXF4ybkZybr8U94iIiCHTmeKe\n", "y/JlpQ+tvGRcXjJuRnJuv84U9wyoi4iI6E9nijuZxKao9KGVl4zLS8bNSM7t15ninjP3iIiI/nSm\n", "uKfPvaz0oZWXjMtLxs1Izu3XmeKe0fIRERH96UxxX7dNintJ6UMrLxmXl4ybkZzbrzPFnQyoi4iI\n", "6EtnivuGXJYvKn1o5SXj8pJxM5Jz+3WpuGdAXURERB9S3ANIH1oTknF5ybgZybn9OlPcgbVT3YCI\n", "iIgu6ExxX58z96LSh1ZeMi4vGTcjObdfZ4r7htwKFxER0ZeixV3SAkm3SfqxpHdtYrvnSFon6dUT\n", "bbM+o+WLSh9aecm4vGTcjOTcfsWKu6QZwFnAAmB/4GhJT59gu78Dvgxoov39amaKe0RERD9KnrnP\n", "B5bYXmZ7LXAhsHCc7d4CfB64f1M726AMqCspfWjlJePyknEzknP7zSy47znAnT3LdwHP7d1A0hyq\n", "gv9i4DmAJ9rZmhmPHVAnacLtowzbE15diYiIdihZ3PspvKcD77ZtSWITl+XXzBj/snyKzWBIGtnc\n", "t/F8mdo6/WQcWycZNyM5t1/J4n43MLdneS7V2XuvZwMXVnWd3YDDJK21fenYnf3n5/kHXajF9eLP\n", "gZtG140O7hj9z5blSS0fCGxy+1EtaW/nlpNflodoebO/L7I8qd8PI8A8BkB2mZMxSTOB24FDgRXA\n", "DcDRthdPsP0ngctsXzzOOr/gDez+zXN9/9j3c+benOQdEdGMrf19W+zM3fY6SScBVwIzgHNtL5Z0\n", "Qr3+7C3Z3+rtM6AuIiKiH0Xvc7d9he2n2t7P9gfr984er7DbPm68s/ZRK2bnVrhekk6R9PGe5VdJ\n", "ulPSQ5IOlPQDSS/agv2NFGloPCoZl5eMm5Gc269kn/tAPbAjG6a6Df2StAzYHVgPPAxcDbzZ9kOT\n", "3N8IcL7tR8cwjH5Z6vEPwJtsX1Yv/4/JHCsiIrqvM9PPQneKO9WdAi+3PRv4PeAA4D2lDiZJwD7A\n", "rZPdR8/gjs584eua0YyjnGTcjOTcfl0q7p18cIztlcBVwDMAJD1P0rckrZJ0k6SDR7eVtIukT0q6\n", "W9LPJF0saUfgCmAvSavry+57SnqfpPMlbQesphrXcLOkH9f7Wibp0Pq1JL1b0hJJP5X0WUlPqNfN\n", "k7RB0hskLQe+0mQ+ERExeF0q7l06cweqe/Yl7U01Be+3VU3a8yXgNNtPAN4BfEHSrvVnzgd2oJqu\n", "d3fgw7YfqT+/wvZs2zvZvod6HgHba2zPqj//TNtPrl97dBvgZOAI4EXAnsAq4J/HtPdPgKcBfzSo\n", "AGJj6acsLxk3Izm3X5cuwXapuAu4RNWkL7OA/wA+QFXML7f9ZQDbX5F0I3C4pKupivguth+s93Nd\n", "z/7GO0a/TgBOsr0CQNL7geWSju3Z5lO2f7kF+4yIiJbqTHH3qVt+Q77U1yx5mz+2t6iQQnXGvND2\n", "1+oR65dRTdjzO8AfS3pFz7Yzga9RTfLzs57CPkjzgC9K6v2CtA7Yo2f5cwWOGz3ST1leMm5Gcm6/\n", "zhT3yZhEUS7QBv+XpDOpnnx3JdWo9zeO3U7SnsAuknYep8CP9yVlS7643AEcZ/v6cY47bxL7i4iI\n", "FutSn3uXnU71lLxvAK+Q9FJJMyTtIGlE0py6H/0K4KOSHi9p25771FcCu0raqWefW/LF5V+Av5W0\n", "D4CkJ0o6Ysw2Bz/2YzFI6acsLxk3Izm3X4p7A2z/FDgP+AuqgW1/CdxHdUb9dn7z7/BaYC1wG1VB\n", "P7n+/G3ABcDSehT9nmw8YA42feZ9BnApcJWkh4Drqb5s9PPZiIjomGJzyw/SRHPsZq7zZiXviIhm\n", "bO3v25y5R0REDJkU9wDSh9aEZFxeMm5Gcm6/FPeIiIghkz736FvyjohoRvrcIyIiYiMp7gGkD60J\n", "ybi8ZNyM5Nx+Ke4RERFDJn3u0bfkHRHRjPS5d4yk10i6sm3HlXSNpOObbFNERJSR4l6IpBdK+pak\n", "n0t6QNI3JP1P25+x3fgz0/s47s5kGtqi0k9ZXjJuRnJuv6F+KtxUqR/w8iWq56hfBGwP/AHw66ls\n", "V0RETA85cy/jKYBtf9aVX9m+2vYtkv5U0nWjG9ZPiLu9PsP/Z0nXjl4er7f9pqR/krRK0hJJL5B0\n", "nKQ7JK2U9Lqefe0s6dOS7pO0TNJfSVLPvnqP+xJJt9XHPRN4kC170lxsoTwDu7xk3Izk3H4p7mXc\n", "DqyX9ClJCyQ9YbyNJO0GfA54F7BL/bnns/Hl8fnAzfX6C6iuBPw+sC9wLHCWpB3rbc8EZgNPonqE\n", "6+uA4yY47heonk63K/D/gIPIZfmIiKGQ4l6A7dXAC6mK5ceB+yT9h6Tdx2z6MuAHti+xvcH2R4B7\n", "x2zzE9vnubqt4SJgL+A022ttXw2sAfaTNAM4EjjF9sO2lwP/SPUY2bFGj3ux7fW2TwdWDeZvHxNJ\n", "P2V5ybgZybn9hrrPXe/XQM5EfeqW345QP4P9OABJTwX+DTgd6B2xvhdw15iPjl1e2fP6l/W+7x/z\n", "3ixgN2BbYHnPujuAOeM0b7zj3jfBXyUiIjpmqIv7ZIpyCbZvl3Qe8EY2Lu4rgFeMLtT943tP8jA/\n", "BdYC84DF9Xv78NgiPnrchWOOu/Mkjxt9Sj9lecm4Gcm5/XJZvgBJT5X0F5Lm1MtzgaOB68dsejlw\n", "gKSFkmYCbwZ+ezLHtL2e6rL9ByTNkvQ7wNuorhiMdTnwDEmvqo978mSPGxER7ZPiXsZq4LnAtyX9\n", "gqqofx94e73eALZ/Cvwx8PdUZ95PB27kN7fMmccOcttUV8NbgIeBpcB1wGeAT47dV89xP1Qfdz/g\n", "B1v+14wtkX7K8pJxM5Jz+2X62RaRtA1wJ3CM7WsbPvbI5i61DVveTesn49g6ybgZybm8rf19m+I+\n", "xSS9FLiBamDcO4ETgd+13boJb4Yh74iILsjc8t33fGAJcD9wOPDKNhb2iIjojhT3KWb7/bZ3s72T\n", "7efb/s5UtCN9aOUl4/KScTOSc/uluEdERAyZon3ukhZQTdwyAzjH9t+NWb8QOA3YUP+80/bXxtnP\n", "0Pa5d0nyjohoRmsH1NXTod4O/CFwN/Ad4Gjbi3u2eZzth+vXBwBftL3fOPtKcW+B5B0R0Yw2D6ib\n", "Dyyxvcz2WuBCemZFAxgt7LVZVPdcxxRIH1p5ybi8ZNyM5Nx+JYv7HKp7tkfdxTjznEt6paTFwBVU\n", "M6VFRETEVihZ3Pu63l8/Ee3pVHOsn1+wPZ029nnsg5YJKcpLxuUl42Yk5/Yr+eCYu4G5PctzGf8h\n", "JgDYvk7STEm72n5g7HpJnwKW1Ys/B27qWTdS7+Oaliz/kurLzXrgcVSPZd1QL78RuGcS+3/aVP99\n", "p/r4Wc5ylrM8rMu1EaqHf221kgPqZlINqDuU6ilkN/DYAXX7AkttW9LvA5+zve84++rsgDpJPwGO\n", "9zh3AWzhfv603s8fDKRhj91/pp8trJ+MY+sk42Yk5/K29vdtscvyttcBJ1E94vRW4LO2F0s6QdIJ\n", "9Wb/C7hF0iLgDOCoUu1pA0nzJV0vaZWkFZLOlLRtz/oNdT4/qrc5a5x9/F9JP5O0VNWthhERERvJ\n", "3PKF9Z6511cnZlI9+W0u1SDCs22fUW+7AfgScCzV89W/C7zW9pX1mfu/Us09/wngBOC9th8zSLHg\n", "36X1eUdEDIPWnrnHY9n+nu0bbG+wvZyqWB88ZrMP2X7I9p3A14EDe9Ytt32uq29knwb2lLR7M62P\n", "iIiuGO7iLnkgPwNrjp4i6UuS7pH0IPABYNcxm93b8/oRqgF5j1ln+5H65awBtW1kEPuJiSXj8pJx\n", "M5Jz+w13cbc1kJ/B+RjV+IP9bO8M/BXD/m8QERGNS2Fp1ixgNfCIpKdR9Z9viuqf4jLytbxkXF4y\n", "bkZybr8U92a9AzgGeIiqv/1CNp7sZ2wXgHve8wTrIyIiNpLR8gHkPvcm5N7g8pJxM5JzeRktHxER\n", "ERvJmXv0LXlHRDQjZ+4RERGxkRT3AHLfahOScXnJuBnJuf1S3CMiIoZM+tyjb8k7IqIZ6XOPiIiI\n", "jaS4B5A+tCYk4/KScTOSc/uluEdERAyZ9LkXIGkZsCewl+0Het5fBPweMM/2HVPQrvcB+9p+7SQ/\n", "38q8IyKGTfrc28nAUuDo0TckHQD8FpkPPiIiCktxL+ffgNf1LL8e+DT1U94kHS5pkaQHJd0h6dTR\n", "DSUdKWmppNn18mH1M+B3VeU9kpZJWinpPEk71duNSLqztxH1dodKWgCcAhwpaXV9FaF3u5ECGUSP\n", "ZFxeMm5Gcm6/FPdy/hvYSdLTJM0AjqQq+KN+ARxbP9f9cOBESQsBbH8W+BbwEUm7AucAx9eX+I+j\n", "+qIwAvwu1WNkz9pEO1zt0l8G/ha40PZs288a3F81IiLaJMW9rPOpzt5fAtwK3D26wva1tn9Yv76F\n", "6vGvB/d89s3Ai4GvA5favrx+/zXAP9peZvthqrPxoyT182854fPh84Sn8pJxecm4Gcm5/WZOdQNK\n", "0jXXDKR/2yMjkxnUYKrifh3wJHouyQNIei7wIeAZwHbA9sBFj37YflDS54G3Aa/u2e+ewPKe5Tuo\n", "/h33mEQbIyJiCA11cZ9kUR7c8e07JC0FDgPe0LNKwL8DHwH+yPYaSR8Gdnt0A+lAqkvw/w6cWe8D\n", "YAUwr2df+wDrgJXA3sCOPfuYATyxt0kTtTXPZy4vGZeXjJuRnNsvl+XLOx54se1fjnl/FrCqLuzz\n", "gWOoi6+kHaj650+h+lIwR9KJ9ecuAN4maZ6kWfymH30D8CNgB0kvk7Qt8B6qKwKj7gXmScrtbBER\n", "QyzFvTDbS21/r/et+udNwGmSHgLeS88leeCDwHLbZ9teAxwL/I2kfYFPUF3u/y+q2+0eAd5SH+vB\n", "er/nAHdRDdrrHT3/ufrPByTdOKad12z93zY2JRmXl4ybkZzbL5PYRN+Sd0REMzKJTQxE7lstLxmX\n", "l4ybkZzbL8U9IiJiyOSyfPQteUdENCOX5SMiImIjKe4BpA+tCcm4vGTcjOTcfinuERERQyZ97tG3\n", "5B0R0Yyt/X3b+elnJbX/20lERESDil+Wl7RA0m2SfizpXeOsf42kmyV9X9I3JT2z333bVn4G8wMc\n", "0ud2MUnppywvGTcjObdf0eJeP7jkLGABsD9wtKSnj9lsKfAi288E/hr415JtigkdONUNmAaScXnJ\n", "uBnJueVKn7nPB5a4evb4Wqpnli/s3cD29fWc6ADfpnqyWTTv8VPdgGkgGZeXjJuRnFuudHGfw8YP\n", "Lrmrfm8ixwOXF21RRETEkCs9oK7vwW6SDqF6vOlB5ZoTmzBvqhswDcyb6gZMA/OmugHTxLypbkBs\n", "Wunifjcwt2d5LtXZ+0bqQXQfBxbYXjXejjIqvjxJr5/qNgy7ZFxeMm5Gcm630sX9RuDJkuYBK4Aj\n", "gaN7N5C0D3AxcKztJePtJKO0IyIi+le0uNteJ+kk4EpgBnCu7cWSTqjXnw38H+AJwMckAay1Pb9k\n", "uyIiIoZZJ2aoi4iIiP5lbvlpQNInJK2UdEvPe7tIulrSjyRdJenxPetOqScduk3SS6em1d0iaa6k\n", "r0v6oaQfSDq5fj85D5CkHSR9W9JNkm6V9MH6/eQ8YJJmSFok6bJ6ORkPmKRl9QRuiyTdUL83kJxT\n", "3KeHT1JNJNTr3cDVtp8CfLVeRtL+VGMj9q8/81FJ+X+yeWuBt9l+BvA84M31hE3JeYBs/4pqNsUD\n", "gWcCh0h6Icm5hLcCt/Kbu56S8eAZGLH9rJ7u6IHknH+AacD2dcDYuxCOAM6rX58HvLJ+vRC4wPZa\n", "28uAJVSTEcUm2L7X9k31618Ai6nmdEjOA2b7kfrldlRjeVaRnAdK0t7Ay4BzgNEBzcm4jLEDxgeS\n", "c4r79LWH7ZX165XAHvXrvdj4dsXNTTwUY9R3hzyLasbF5DxgkraRdBNVnl+3/UOS86B9GHgnsKHn\n", "vWQ8eAa+IulGSX9WvzeQnDv/VLjYera9mXkEMuqyT5JmAV8A3mp7dX0HCJCcB8X2BuBASTsDV9YT\n", "YPWuT85bQdLLgftsL5roATHJeGAOsn2PpCcCV0u6rXfl1uScM/fpa6Wk3waQtCdwX/3+2ImH9q7f\n", "i82QtC1VYT/f9iX128m5kPqZFP8JPJvkPEgvAI6Q9BPgAuDFks4nGQ+c7XvqP+8Hvkh1mX0gOae4\n", "T1+XAqMzTL0euKTn/aMkbSfpScCTgRumoH2douoU/VzgVtun96xKzgMkabfR0cOSfgt4CbCI5Dww\n", "tv/S9lzbTwKOAr5m+7Uk44GStKOk2fXrxwEvBW5hQDnnsvw0IOkC4GBgN0l3Uk0c9CHgIknHA8uA\n", "PwGwfauki6hGya4D3uRMhtCPg4Bjge9LWlS/dwrJedD2BM6rRwlvQ3WV5Kt15sm5jNG88n95sPYA\n", "vlh33c0EPmP7Kkk3MoCcM4lNRETEkMll+YiIiCGT4h4RETFkUtwjIiKGTIp7RETEkElxj4iIGDIp\n", "7hEREUMmxT0i+iLp2ZLOqF8fLOn5U92miBhfJrGJiL7Y/i7w3XrxEGA1cP3UtSgiJpJJbCKmqfrp\n", "dZfZPqBefgfwOGCE6ol2hwCPB463/Y36ISJvB04C/htYD9wPvMX2NxpufkRsQs7cI2JU7zf9Gbaf\n", "K+kw4FSqOdyrjezlkv4FWG37n5puZERsXvrcI2I8F9d/fg+YN8E2muD9iJhiKe4R09c6Nv4dsEPP\n", "6zX1n+vJFb6Izklxj5i+VgK7S9pF0vbAy7fgs6uB2WWaFRFbK8U9YpqyvRY4jeqZ0FcBi0dXsXH/\n", "+3ivLwNeJWmRpINKtzUitkxGy0dERAyZnLlHREQMmRT3iIiIIZPiHhERMWRS3CMiIoZMintERMSQ\n", "SXGPiIgYMinuERERQybFPSIiYsj8fxo3T4wMW39pAAAAAElFTkSuQmCC\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x10c650f10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df[['Rectifier', 'Sigmoid', 'Tanh', 'Maxout']].plot(title='linear activation function', figsize=(8,6))\n", "plt.xlabel('unit')\n", "plt.ylabel('accuracy')" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x10c556f10>" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGJCAYAAACXXXqWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW1wH9H0qrYliy5925jm2aaKSZguikJAUIogQDh\n", "ASkkIQkJodjSggklvPRGCiUklJcAafSe0EtMMbYBgwsuGNu4W7aK7/tj5lqj0ezubJnVrnR+37ff\n", "7uzM3Llz5s6ce8q9I8YYFEVRFEXpOpR0dgUURVEURcktqtwVRVEUpYuhyl1RFEVRuhiq3BVFURSl\n", "i6HKXVEURVG6GKrcFUVRFKWLocpdUVIgIueKyH88y5tEZFTn1Sj3iMjlIvK7iMp+UETOjqDcKhH5\n", "p4isF5F7cl1+imPPFZFD8nlMRUmHss6ugKIUG8aY6s6uQzaIyHTgDmPMcPufMea6HJXdAIw1xuxU\n", "5saY43JRdgCfAwYAfYwxOyI6BiJyG/ChMWam/c8Ys1tUx1OUXKCWu6IUASKiHfGOjATejVKxK0qx\n", "ospd6TKIyGIR+Y6IvOG6au8WkQrP+gtE5D0RWSsifxeRwZ51O0TkIhF5V0TWicgvkhxnh4iMcX/f\n", "JiK/FJF/ichGEXnRrnPXTxSRx9xjLhCRUz3rjheROSKyQUSWiki9Z90o9zhfEpElwOMB9ah1j/ux\n", "iHziuqiHetb3EZFbRWS5u/4+EekBPAQMccMLG0VksIg0iMgd7n4PicjXfMd6Q0Q+6/7+qVvfDSLy\n", "qogc7P4/A7gcOM0te477/9Micr77W0TkKvdarRKR20WkxnfOXxSRJSKyWkSuSHAN4sBMz7G+5D0H\n", "X3klnnpcLSLPuuf9iIj09Wx/sIg8717/pSJyjohcAJwJfM89zt/dbReLyBHu7woR+Ykr5+Ui8mMR\n", "KXfXTReRZSLybfd8V4jIuUHnpCi5RJW70pUwwKnAMcBoYA/gXAARORz4gbt+MLAEuNu3//HAvu5+\n", "nxeRY0Ie9zSgAagDFgLXusfsCTwG/AnoD5wO/EpEJrn7bQbOMsb0do/9FRE50Vf2IcBE95z8lAB/\n", "AEa4n0bA2ym5A6gEJuO4r39sjNkKzABWGGOqjTE1xpiVOLKzc1HfCZxhCxGRyW75D7h/vQzs6Z7v\n", "ncBfRKTcGPMwjozvdsvey93eW/Z5wDnAdGAM0MtXZ4BpwATgCGCWiEz0n7gxpt53rFs8x0jGGTht\n", "YgBQDlzqnuNI4EHgp0A/YArwujHmd8CfgRvc49jr4z2nK4Gprkz2dH9f5TnmQKAGGAKcD/xSRHqH\n", "qKuiZIwqd6Wr8TNjzEfGmHXAP3Ee0gBfAP5gjHndGNOEY2EeKCIjPPteb4zZaIz5EHjKs28yDHCf\n", "MeZVY0wrjiKw+50ALDLG3G6M2WGMeR24D6eDgTHmGWPM2+7vt3A6G4f6ym8wxjQaY7Z3OLAxnxhj\n", "7jfGbDPGbMZRdocCuF6JGcCXjTEbjDEtxhibFCgB5yGe//8GTBERG5P/AnCvMabZPe6fjTHr3HP6\n", "EVAB7BJQThBfAP7XGLPYGLMF5zqcbq1rl7gxZrsx5k3gDRyFGYT/WMmOC861utUYs9AYsw34P9qu\n", "1ZnAY8aYe4wxra5s3whZ9pnA1caYNcaYNUAc8CYQNrvrW40xD+F06nYJKEdRcoYqd6Wr8ZHndyPQ\n", "0/1trXUAXMWyFhjq2d6771bPvqlY5TtmL/f3SGB/1827TkTW4SiCgQAisr+IPOW61dcDFwF9ac+H\n", "iQ4qIj1E5GbXRbwBeAboLSICDAc+McZsCHkOOzHGbMKx0q31fjpOp8Ue91IRmSdO6GMd0BvH2g1D\n", "u+sALMVJ7B3o+S/T6xAGf/uw12o48EGGZQ6h4zkN8Syv9eUFbPUcV1EiQZW70l1YAYyyC67LvC+w\n", "PMJjLgWeMcbUeT7Vxhgbz74Tx0oeZoypBX5Dx3symav5Ozju66mua/9Q2qzZD4E+Cdy/QWX6/7sL\n", "OENEDgQqjTFPAYjIp4DvAqcaY2qNMXXABtos21Su8XbXAcfd30L7DlJY/MfaDPTwLA9Ko6ylwNiQ\n", "x/ETdE4r0ji2ouQcVe5KV8cqnbuA80RkT3GS7H4AvGiMWZpkv1RuXm/5QTwATBCRs0Qk5n7288SQ\n", "ewHrjDFNIjIVx6pP5x3MvXCszw0i0gfYmZDnxtEfwonx17rHtuOyVwF9bSJbgvN4EMfzEKd9bkI1\n", "jjJeIyLlIjILJ55s+QgY5XoPgrgL+Jab7NaLtrh5soz3RGX5/38dOEREhrudmsvTKOtO4EgROVVE\n", "ykSkr4jYcMAqnPyARNwFXCUi/USkHzALJ99BUToNVe5KV2Zn0pMx5gmc7Op7cayq0TjuZu+2gfv6\n", "fvu39a/bud51bx/tHmc5sBK4DieRC+CrwNUistGtm38illSK/idAFbAGeB5HmXv3ORsn3rsAR0F9\n", "w63XAhyF9IE4WfSD/efh5iXch5PUdqenzIfdz7vAYpzOhbeD9Bf3e62IvBpQ51twFN+/cdzgW4Gv\n", "pzjnRHLw1/lxHBm+CbyCk3MReG38+7udvONwvCFrgTk4iZXgJC1OdkMr9wXUYzbwqnvcN93fs0PU\n", "X1EiQ4yJrt2JyC04WcAfG2N2T7DNz4BjcW7yc40xcyKrkKIoiqJ0A6K23G/FydgNRESOA8YZY8YD\n", "FwK/jrg+iqIoitLliVS5u0Nv1iXZ5DPA7e62LwG1IjIwyfaKoiiKoqSgs2PuQ2k/1GcZMKyT6qIo\n", "iqIoXYLOVu7QMXtVk08URVEUJQs6+2UUy3Emj7AMI2DcsYiowlcURVG6FcaYMMNxA+ls5f4P4GLg\n", "bhE5AFhvjAmczCKbk1RSIyINxpiGzq5HV0ZlHD0q4/ygco6ebI3aSJW7iNyFM2tWPxH5EGeSjRiA\n", "MeZmY8yDInKciCwEtuC8VELpHEZ1dgW6AaM6uwLdgFGdXYFuwqjOroCSnEiVuzHmjBDbXBxlHRRF\n", "URSlu1EICXVKYXBbZ1egG3BbZ1egG3BbZ1egm3BbZ1dASU6kM9TlChExGnNXFEVRugvZ6j213BUA\n", "RGR6Z9ehq6Myjh6VcX5QORc+qtwVRVEUpYuhbnlFURRFKTDULa8oiqIoSjtUuSuAxtDygco4elTG\n", "+UHlXPioclcURVGULobG3BVFURSlwNCYu6IoiqIo7VDlrgAaQ8sHKuPoURnnB5Vz4aPKXVEURVG6\n", "GBpzVxRFUZQCQ2PuiqIoiqK0Q5W7AmgMLR+ojKNHZZwfVM6Fjyp3RVEUReliaMxdURRFUQoMjbkr\n", "iqIoitIOVe4KoDG0fKAyjh6VcX5QORc+qtwVRVEUpYuhMXdFURRFKTA05q4oiqIoSjtUuSuAxtDy\n", "gco4elTG+UHlXPioclcURVGULobG3BVFURSlwNCYu6IoiqIo7VDlrgAaQ8sHKuPoURnnB5Vz4aPK\n", "XVEURVG6GJHG3EVkBvAToBT4vTHmBt/6OuAWYAywDfiSMebtgHI05q4oiqJ0Gwo25i4ipcAvgBnA\n", "ZOAMEZnk2+wK4L/GmD2BLwI/jao+hcx1cvmeP5ZvfSkXZd0o3zvyJrn0M7koS1EURSlOyiIseyqw\n", "0BizGEBE7gZOBOZ7tpkEXA9gjHlHREaJSH9jzOpEhV4v35/al7Vf3JdXz36fsW9+zvz1U7PlqqEV\n", "bN9jG5WvT+O5F99hl9vXUXd3LzYfPp73vvY2u15Zwo7KXXk7voxhzzRRvmIqr3xjLX3WLGL032rY\n", "uNsiRn97X179xwIm/mQjNfdP47kXVzL4jb6s3eVtdq03yPbJzLv2A8bcsZGaf5XRMqyW9ceOZtFx\n", "n9Bn8UQW7OevayNV219m6g/qWPepOtaNbybW2ExsSz/WjO3L2lq73QWs6FnCDn4uLbVjef/8YSwb\n", "0Ux569McesHe/PdHc9ntR9uoXDiSJd+K0dyznKaem6hePoiPJr/E/l9sJraoJ1umT2belaexYFQN\n", "G0vvkuUPL2PYLwFq2HjYGD446UUOOGAX3rnHW8ZwPpxSTlPsh/T46/GMqpnC68cLhoWMm1vDxoF9\n", "Wdt3HpOfmcC7B1ewPbaGfp+8zpTLWyndAOzYSo8na9h4+t7MufZZph05jOUzB7Bq70aq1rdS2rSY\n", "UddvpcfjpbQOvcrMXvwTueSC3Zh7+Svsd1ILZSsMsg0oOYR/z+3Jlp4vsf8NG+h9bwtlH/Zg65El\n", "7Kjelbfjn9Bn4WBW7j6fSbdsoecrTZS/N4iPLo3R3HsRY87cj5ffWs7QJy4wv/t6gzRIGS0j+vDJ\n", "OT3ZMnk5Q6/dl1fvf4vdr2yk6sVpPPfsSga/2Ze14+ey26wdlGwCWrfS44kDeWH+e4y/ZTX9ryul\n", "dcBMc80qgKtlVp1BtsZonhCjeURvNhw5isWffon9D5zIgr9uonrhl8wt5/9Arpgco3l0C2UfXW6u\n", "ew3gV/LVWT3ZusuVPPbXb3Jm41Z6PlZvGlrdeo5spXRlKa39rjKzl/+ffP7JRqo+XsToMxpMg/mh\n", "fHfG3vz315/Qd0mMpl7vMT6+lR6P15t4I4A911ZKV/Rg65HbqHxVMJWtlK2oNw2tdptSWgfNNNes\n", "vEZm9q9k275b6fF4CTv6zTTXrEx1I98glx26Py/96RX2u/C75ocP+ddfJ5fvsw+v3fMCB+5u6+Ue\n", "Z58t9HzEHtu/351y5gOTmH/wMxz67U1UP2i3+bl8/dI61k1bxOgLDbJ1lrl6i3/fX8tXrq6icfS5\n", "5razvf+LyHRjzNMAt8p5f+zNhvFz2W3GLHP1BrvNNTJzsL8+18jMwa2UfhSjefR+vPLoy0w9FCi5\n", "ysz+0H9su39c6itK2NEnmQx/IRdf1psNU882d5wCMFuuGtVC2ZIG02AA4lJfIZgegikzyLZZ5upN\n", "tvzfyJdvGMfCU19j3y9eZq5/9mqZ1dsgTVbGQcSloXQfXp3zHuP/91vmx7cHbTNbrhrZStmyGE2T\n", "BVN2ubluDsDVMqtaMJUzzTUJn78Wr5y9Mkm1n78eMZrHXGZueCqd/QqR2XLVyBbKltrrChCX+qoS\n", "dtSmK5dcEZlbXkQ+BxxjjLnAXT4L2N8Y83XPNtcCVcaYb4vIVOA5YKoxZo6vLGOMkdly1fBv8eOl\n", "7zF+0wsc+PPP8dfLH2bGfUfz6EktlJlKtpUsZNy6XmyuHMzKqjX0a/qEPpv7saYa4C12f30ES3ep\n", "ZFvsOab9di/mnLMbc+vWU7sjRrO8zpTFk5k34jX2mTuaReM3UrNlFQMX7c5bUwAWM2r5Prw2CmAt\n", "fZs302v7+4x9qw+fDH+L3W/cQUm7m66GjdOm8dwZn9Bn82r6L4vRXFlOU9Ua+i1cyeC77HbbqVjY\n", "jzVnHsoz5y5g4rsLGfezsbz/tQN4cY9VDGyM0VxSSmvJMoZ93EjVlmZijbWsH7iDktY9eHNoD7bK\n", "YkZt20DvLcsZ+u67TLj0U/znvoGsqgPYSo/mZmIto1hcs4CJqzdSs86WsYSRz2+nYk0Zj543mUGb\n", "X2bq9a2UbprE/Es3UrNiNf2fnsLrX5nLbvdsoeecoaw4ey/+eyBABdtLmyhvrWZT2XuMXz2RBQNW\n", "MrjxfcYuqGRbdYzmil14Z2gjVa2jWVR+B2f/+QieOH0h41YM58OBW+nR3IOtsY8ZsKGFsub3GP+v\n", "g3j+i31ZW/4e41ePZlG/rfRonctub/Zn9fAVDFmwK29PLaeptI51MYOwgxLzDrt8XMv66ioaYx8x\n", "aF05TbGxvF+3ieqWOtbFVtO/aSM12xqpalzGsLcmMf/ATVRvWU3/Jbsxd0+AajaVrWLg1h5sLa+i\n", "sXQLPVuGsaziSQ6f20LZ9oN5du+N1LTUsa5sLX2bt9KjqYWyHSNZUv0+Y9eNYnHtYxz1wLE8dMIn\n", "9Gnuz+ryeznlFsGUHsK/z+jH2vJ/0rP5SFpLlzNs0zMc8vX9eOXGPXlj0OtMWbErbw9+gOPvPZ4H\n", "TlnBkK2b6dX4OEdOPojnX+7NhtqN1GxsorxxMvPGbqZX86Mc/fVBfHTaKBbvNYn5/d5gzxUTeHdQ\n", "K6WmF5tLn+KwVz5r/jYV4M/yhX8cwyMn3MfJPz+OB78Wo1kWMPGjvZgz5F+c8EALZVuWMPKSajYd\n", "V0Xj5I8Y/L0RLPl9LesnA0xi/h4fMWjN7rw19AUOnNtMrHE5Q+/7hD6/Gcv7d+zJG0eMYGmPv3Dq\n", "bzdR/WoPtu46jecuGMRHVW+w54cH8sKIP/LF/91IzeNjeX/Wemrnr2Lgr7/Mb17+J5++99P885Qa\n", "Nsq/OeTD5Qz97z68dswIllYuY9g2wcjb7PoGQBPlm1Yw5E+1rD/0MJ76Qm82lP2Kr44bzMorN9D7\n", "ub6sPeY6Xvzn+Xxm6zgWXj6N5/Z5n7FrN9Nr0wscuP8Ilv68lNaKk7j/s7/iq8dVsm3SMJadtpr+\n", "z5/I37/xFIc9XkprxTE8cmgzMbOdih23ct6E/qz+Zn9W7/8BY35cTtPwi7j5h3dw9u/256Uv9GRL\n", "7E+cNXymuWbV1TKrbiRLf7GWPg8P58P/2U7Fuv145ZihLK/8Gd/YYyRLfvA5/nrC/Zz0WBPl69bS\n", "95GjeOznQ1hRtZ0K8x7jV73IAed+lV898jwHvb8rb496if1fmcrL+z3MjJs/wz++vI665oc49hsD\n", "WXVyJdvqGqlavZr+D1TROHElQ749mXlP7M+L0wBe4oDnljH01hEsvbCEHWUApbSWT+fpKa+y79K9\n", "+e9wwcitnHfhemp/fzhPLh/HwgEvsf9rixn1K3/n4KfyzS9XsH20YEoeYJ78w/znUoA/yPm/PY17\n", "LriTM38KyAqGXOJVcr4yvjaCpV9cTf8XjuPBi3uwteSffPruc8ztZwL8WL51bk+2TFnJkO8MYflP\n", "NlH94lZ6PDuCpTeupe+DI1ly0QZ6v7uUkefXm4bWq2VW9QiW/moVA39/mbnhGe+xfi1fmd1M7ONv\n", "mJ/9LJGeikt9bBjLfrGOukcuNTfd13F9Q+kQlv90E9UvfNv86M/XyeV7jue9nzdStfoDxpxlkG0j\n", "WXL7qfzl7Ic49t+nmr8cCnCTXPrZ43ngzhjNpXdxxrChLL++lvWTFjKu4XvmxkdvlO8dOY6FV2+g\n", "9ztLGfk/g1h5YyNV8y4xP/nDtXLlxAm8+5vP89dDs3HLR6ncTwFmpFDu1Tiu+L2At4CJwP8YY970\n", "lWWMMXKzXHTTHrx5zoHmhf4Ad8kZD0/juSPu56RvrKfut4NZcdMqBt4401yz8nY5988H8MIpd3N6\n", "db2JNwfV8QdyxeRqNh2znYolpbTWfsv8+Jbb5Zw7T+a+M27molOCLvYv5WszN1Lz0OXmuldzJKpA\n", "rpUrx53PH975E2edcqm56W9B2zRIgwxl+c9iNNcdyjOfv4Oz64KsHLe8MX1Ze+FHDLo80Y2XLg3S\n", "IANZdc16au9vJrZgMCuvX8GQ73kti7jUxwayajaw42zu+P79nPS3hYw7eRrPLayisedb7P77ajbt\n", "tphRX7dW0t1y+iN7MeeQ/+Pzw2aaa9YGHfuH8t1jy2ka1Urp5oGs+vwSRl7RQtmykSz59Q5KGnuy\n", "ZcQ4Fu77EYOWl9NU+TwH7XMet66uZX3pb/jyCd81P3zAJ59xZ3PH/H9xwrWf0OfW/qz+xkZqHh/K\n", "8q8BsoqBf6lg+6iN1Dz6fXP98+4+E/qy9ryPGHTFoTyzpA+f1D3CMSd+z9z45C/lazO/yB+vfp+x\n", "m3ZQYlYxcEWM5ornmLbLeN7722f523EPM+PFbVSuPYAXj36Q42YezwPXvMp+z89j0rEH8+z8OtbV\n", "DefD6pu5aPhVZvZyK/ORLLn1FO495yX2/2A5Q58vp6luf1466k7OHFXDxpMFEzuZ+26qorEEwCC8\n", "xP7z9uG1Sfdyysx11N3+Bf686C12f3s6T095h13WTWZe3RZ67lhHXdMQVlS+z9hN85j8H4DtVKxe\n", "ysjzq9h62DCWXVLCjtjBPHtEbzaUvs6Ujz5gzFObqJ7zJW65cRPVO9ZT27SKgev+w6cOP5fb5r7C\n", "fq8fwRP77KCUJzj8hXEs3GMcC3s+wjEvnWTuP+A38uXrNtD7wSGs+OYYPji4lvXV7zP23d5sGDCf\n", "SX+sYeMeAH1ZO34az41fyLhNrZTtWE2/VYfw7wkLGbd5FIt72fNootw8wRHPLmPYHZuovu807lk+\n", "lOUV85m0fhfeqX2Sw/97FI/tvZ7a1mc5+JmDefbQN9jzvX14bUIl20p+xwWnV7PpgIGsOvRIHt9r\n", "GcO2v8keLx3BE5+qYLs8xlGvHMET+93HyXcNZNXeB/H8Ls3ETAXb5R122TCJ+b2f5PC36lg3sDcb\n", "ei1i9HtH8vieC5i48TmmXXc2f7ruXcavm8iCuvs45c419P1njOZBh/PktWN5v8ejHD3nEP495XbO\n", "ueAS85M//EM+M2cKr+92Pydd0ovNe3yOey98lX2WrGLg20NZPmU35g7+mAHbhrGsajGjtjzA8Uf2\n", "4ZPTh7Hs6EN5ZtKjHP1yI1VrbFtfS98nTuHeGx/kuJtbKNt4Nnd8v4lys5yhjU8z/eoBfHzMYTw1\n", "vYQd7e65ZmJmA72bAVPL+vIyWgSgjBZ5mulzPsV/pqxi4LbBrKxspTTwmdFMzPybQ545gBc/NYe9\n", "3nyHXS6/gN89vMONEO+ghDX02zaMZVUfMryxP6sre7BV5jF53WTm1T3K0S+PYvHEMSyqaaHUlNMk\n", "7zF+4zgW1jQT2/lcK2EHa+nb3IOtpRVsTxh+LqNFljJiyzCW9dgREKUuo1WWM6RxAB9XCoYKtstT\n", "HPZGP9YM3ZW3++2gxKxk8PYnOGLWKdx7fTlNAlBKK/dz0p+GsvygaTw39n3Gbl7IuLeO4MkDWyg1\n", "ZbTIkxz+0mgWTR7L+9UrGLLNyrSSbfIMh847nocmZ5VrZoyJ5AMcADzsWb4cuCzFPouAXgH/m90Z\n", "vOh8Bm6bzvi3gUuA6fXUSwOzYsB0YLpn++nA9AZmxbzL/vWJlquoOiqd7aNaTqf+FZQf0dn1DXE+\n", "VXZZkKTnV0XVUbmQXwOzYoJMB6bHmVl3NVcNznV7sfKvp17851tPvVRRdVTQen97c+pbXwpMH86w\n", "k//FcXNv5NIZYY7vl1df+hw/mysmzOaKCQMZ8BlX3lX+7RuYVQVMH8Oo0+LM7N3ArNhExp9VRtnh\n", "yY5XQ82M2Vwxxrv+Gq4cHmdm7zLKDrftsYFZFcD0oQw56Wqu6m+MoYyywycy/qxk8iij7PAG6kuD\n", "1gsyvYqqoxqYFZvNFRPs9TXGcA1XDh3IgM94t6+hZsZYRp/uPd+xjD49zsyexhh60etoQWz7GGiP\n", "V0+9zOaKCRWUH2HbzzVcORSY3oteRxtjqKdeJjL+rImMP8svD/f5VOE/3170OjrR/XENV47yX097\n", "vsmuRxllh8/migm2/aTTXkYz8tSJjD/L2z687ceeX5yZ1XZ9HbXH2vWDGXSirX8D9aUeebTbfzZX\n", "TIgzs9oe38pjMINO9KzvbeXVQH1pnJl1Yxh1mv/6e8ofJ8j0oQw5yX+8BmZVxJnZM1l9bPsZyIDP\n", "JFpfRtnh/el3wmyumGCfH4JMn80V4/ztw+4/kAGf8bYPez9dzVX9JzL+rMEMOtFpj468Kig/oi99\n", "jq+j988rqPg/4DbA2HPO5BOl5V4GvAMcAawAXgbOMMbM92zTG2g0xjSJyAXANGPMuQFlmQ8Y1Qxw\n", "D6dNt5aTkjv8MTQl96iMo0dlnB9UztGTbbZ8ZAl1xpgWEbkYeARnKNwfjDHzReQid/3NOFn0t4mI\n", "AeYC5ycqbxAfxW7i0gFhkj0URVEUpTtTNHPLr6GP6WvW6qQ7iqIoSpenYMe555qPGJRw+IeiKIqi\n", "KG0UjXJfS9/1nV2HrozOFR09KuPoURnnB5Vz4VM0yn0ddas6uw6KoiiKUgwUjXLfRPWSzq5DV0Yz\n", "X6NHZRw9KuP8oHIufIpGuTdStayz66AoiqIoxUDRKPcdlDR1dh26MhpDix6VcfSojPODyrnwKRrl\n", "bpCWzq6DoiiKohQDRaPcwTfRsZJTNIYWPSrj6FEZ5weVc+FTNMrdIK2dXQdFURRFKQaKSbmrWz5C\n", "NIYWPSrj6FEZ5weVc+FTTMpdLXdFURRFCUHRKHdAlXuEaAwtelTG0aMyzg8q58KnaJS7QZo7uw6K\n", "oiiKUgwUk3JXyz1CNIYWPSrj6FEZ5weVc+FTTMpdE+oURVEUJQTFpNzVco8QjaFFj8o4elTG+UHl\n", "XPgUjXJHE+oURVEUJRRFo9w1oS5aNIYWPSrj6FEZ5weVc+FTTMpdLXdFURRFCUExKXe13CNEY2jR\n", "ozKOHpVxflA5Fz7FpNzVclcURVGUEBSNckcT6iJFY2jRozKOHpVxflA5Fz5Fo9zVLa8oiqIo4Sgm\n", "5a6We4RoDC16VMbRozLODyrnwqdolDugM9QpiqIoSgiKRrmrWz5aNIYWPSrj6FEZ5weVc+FTTMpd\n", "3fKKoiiKEoKiUe6o5R4pGkOLHpVx9KiM84PKufApGuVuNOauKIqiKKGIVLmLyAwRWSAi74nIZQHr\n", "+4nIwyLyuojMFZFzE5Wlr3yNFo2hRY/KOHpUxvlB5Vz4RKbcRaQU+AUwA5gMnCEik3ybXQzMMcZM\n", "AaYD/ysiZQmKVLe8oiiKooQgSst9KrDQGLPYGNMM3A2c6NtmJVDj/q4B1hpjAi10tdyjRWNo0aMy\n", "jh6VcX5QORc+iazkXDAU+NCzvAzY37fN74AnRWQFUA18PlFhmi2vKIqiKOGIUrmbENtcAbxujJku\n", "ImOBx0RkT2PMJv+G1/Kj2VfJD+a6i+vd/Z6GtviPLme1PMUY85MCqk+XW7b/FUp9uuKyX9adXZ8u\n", "vKzPiwieDzjh6VHkADEmjA7OoGCRA4AGY8wMd/lyYIcx5gbPNg8C1xpjnnOXnwAuM8a86ivLXMOV\n", "o64ys5dEUlkFEZmurrZoURlHj8o4P6ico0dEjDFGMt0/ypj7q8B4ERklIuXAacA/fNssAI4EEJGB\n", "wC7AB0GFGaQpwrp2e/RGjR6VcfSojPODyrnwicwtb4xpEZGLgUeAUuAPxpj5InKRu/5m4AfArSLy\n", "Bk5H43sFAZo1AAAgAElEQVTGmE8SFKkJdYqiKIoSgihj7hhjHgIe8v13s+f3GuDTocrSbPlIUTdb\n", "9KiMo0dlnB9UzoVP0cxQB6hbXlEURVFCUDTKXS33aNFeePSojKNHZZwfVM6FTzEpd7XcFUVRFCUE\n", "RaPcG0xDNGP2FEDnis4HKuPoURnnB5Vz4VM0yl1RFEVRlHBENolNLsl2ML+iKIqiFBOFPImNoiiK\n", "oiidgCp3BdAYWj5QGUePyjg/qJwLH1XuiqIoitLF0Ji7oiiKohQYGnNXFEVRFKUdqtwVQGNo+UBl\n", "HD0q4/ygci58VLkriqIoShdDY+6KoiiKUmBozF1RFEVRlHaoclcAjaHlA5Vx9KiM84PKufBR5a4o\n", "iqIoXQyNuSuKoihKgaExd0VRFEVR2qHKXQE0hpYPVMbRozLODyrnwkeVu6IoiqJ0MTTmriiKoigF\n", "hsbcFUVRFEVphyp3BdAYWj5QGUePyjg/qJwLH1XuiqIoitLF0Ji7oiiKohQYGnNXFEVRFKUdqtwV\n", "QGNo+UBlHD0q4/ygci58IlXuIjJDRBaIyHsiclnA+ktFZI77eUtEWkSkNso6KYqiKEpXJ7KYu4iU\n", "Au8ARwLLgVeAM4wx8xNsfwJwiTHmyIB1GnNXFEVRug2FHHOfCiw0xiw2xjQDdwMnJtn+TOCuCOuj\n", "KIqiKN2CKJX7UOBDz/Iy978OiEgP4Bjg3gjroyRBY2jRozKOHpVxflA5Fz5RKvd0/P2fBp41xqyP\n", "qjKKoiiK0l0oi7Ds5cBwz/JwHOs9iNNJ4ZIXkduAxe7ieuB1Y8zT7rrpALqc3bKlUOqjy7qc7rIx\n", "5ulCqk9XXrYUSn2KfdllOjCKHBBlQl0ZTkLdEcAK4GUCEupEpDfwATDMGNOYoCxNqFMURVG6DQWb\n", "UGeMaQEuBh4B5gH3GGPmi8hFInKRZ9PPAo8kUuxKftAYWvSojKNHZZwfVM6FT5RueYwxDwEP+f67\n", "2bd8O3B7lPVQFEVRlO6Ezi2vKIqiKAVGwbrlFUVRFEXpHFS5K4DG0PKByjh6VMb5QeVc+KhyVxRF\n", "UZQuhsbcFUVRFKXA0Ji7oiiKoijtUOWuABpDywcq4+hRGecHlXPho8pdURRFUboYGnNXFEVRlAJD\n", "Y+6KoiiKorRDlXuESFxKJC7TOrseYdAYWvSojKNHZZwfVM6Fjyr3aBkL/KmzK6EoSucgcTlI4vKl\n", "zq6H0v1Q5R4t5UCssysRBvtuYSU6VMbRU4Ay3hMoCu9dOhSgnBUfXU65S1welLj0zHDfuRKXk3NY\n", "nXL3oyhK96ScLvicVQqfrtjoDgJ6Z7jvrsDnc1iXGEViuWsMLXpUxtFTgDKO0QWfswUoZ8VHl2t0\n", "OO+oz8ZaHpCrilBEbnlFUSKhSyp3pfDpio2ukJR7jCJxy2sMLXpUxtFTgDLukm75ApSz4qPLNToc\n", "5V6Rxf45t9wlLjoBj6J0T9RyVzqFLtXoXCVaSnbWcv8cVQfaXPKlOSwzEjSGFj0q4+gpQBl3Scu9\n", "AOWs+Ohqjc4q0UyV+5pcVcTFKveicM0ripJz1HJXOoWu1ujK3O9M3fIfw04PQC6wSr3gk+o0hhY9\n", "KuPoKUAZd0nLvQDlrPjoao3OKvdMLeWt7nevHNQF1HJXlO6OWu5Kp9DVGl22lruVx+Ac1AWKyHLX\n", "GFr0qIyjpwBl3CWVewHKWfHR1RpdtjF3u3+PHNQF2pR6wSt3RVEioUu65ZXCp6s1umzd8iVAK7nL\n", "bi/3fRcsGkOLHpVx9BSgjLuk5V6AclZ8dLVGl61bvhRoJndyUctdUbo3oSx3ics+Epdd8lAfpZvQ\n", "VZV7NpZ7C7mz3ItGuWsMLXpUxtFTgDIOa7mfBXw24rrkjAKUs+KjLPUmRUW2yj3XlnvRuOUVRYmE\n", "sPd+CVAZZUWU7kWklruIzBCRBSLynohclmCb6SIyR0TmisjTWR4yF9ny3dItrzG06FEZR08Byjis\n", "5V5Uyr0A5az4iMxyF5FS4BfAkcBy4BUR+YcxZr5nm1rgl8AxxphlItIvy8Pmwi3fTO4T6gpeuSuK\n", "EgkxwITYrpQiUu5K4ROl5T4VWGiMWWyMaQbuBk70bXMmcK8xZhmAMSbb6V8LNaGu4N3yGkOLHpVx\n", "9BSgjMMOhSsqy70A5az4SJ3FKXKfiBwvIukqvKHAh57lZe5/XsYDfUTkKRF5VUTOTvMYfjrNcpe4\n", "/I/E5Uu+v9VyV5TuTZd0yyuFT5hG92vgC8BCEbleJPRwjTCuqBiwN3AccAwwU0TGhyw/iM5MqBsJ\n", "jPH9pzF3ZScq4+gpQBmHtdyLyi1fgHJWfKRsdMaYx4wxZ+Io4cXAEyLyvIicJyLJlNZyYLhneTiO\n", "9e7lQ+BRY0yjMWYt8G9gz6DCROQ2EWlwP5d43UJuUt50rHJ/nTEJ1qdadiz3R5mS7v78l9G4nQrP\n", "eqeT8VT65emyLutyl1iO8Q61qbbnLYbgKvcCq78u52nZ/TSIo+tuI0vEmNQGtoj0Bc7GGYu5ArgT\n", "OBjYzRgzPcE+ZcA7wBHuPi8DZ/gS6ibiJN0dgxMnfwk4zRgzz1eWMcakfFObxOVQ4Gngt6beXJTy\n", "xDruvxqnA9Ng6s0Dae57PVBh6s23PP/dgSOzL5h6c2e69cknIjJde+PRojKOnkKTscRlCfCRqTf7\n", "p9judmCAqTfH5qdm2VFocu6KhNV7iUiZLS8i9wMTgTuATxtjVrqr7haR1xLtZ4xpEZGLgUdwXE5/\n", "MMbMF5GL3PU3G2MWiMjDwJvADuB3fsWeJjZWnm3MPRO3fEnAcWNAE0XgllcUJRI05q50CmGGwv3M\n", "GPNU0ApjzD7JdjTGPAQ85PvvZt/yTcBNIeqRFInLZKDGXQyVLS9x2R/4ksfKtzH3TIbCldBRiZcD\n", "WyiCbHnthUePyjh6ClDGYZW7xtyVnBKm0e0qInV2QUTqROSrEdYpU34KHOX+DqtMBwAjPMtRWO5b\n", "UctdyQKJS4nEJdPhnd0eicvFEpcJeT6mVdRdciicUviEaXQXGGPW2QX394XRVSlj6oBe7u+kyl3i\n", "8jmJi+D0lr0y6LaWuzfBQ4mGLGR8DPCHHFaly5JAxscBk/JWh7j0BmxuUZd0y+vzovAJ1ejEM8Zd\n", "nJnnCtESrQV64ljKqayce3BuJL9yj8Jy30JhykspHrwdVyV9SsjvS7KqcK4ZdNGhcErhEybm/ghO\n", "8tzNgAAXAQ9HWqvMqAV64Cj3hJayxMUqdNuj9mYjluK8FS5T5R5kuReFW15jaNGThYzDKohuTwIZ\n", "+zvxUVMKlEpcStI4dlFZ7vq8KHzCKPfLcNzwX3GXHwN+H1mNMsB1sVvLfQvJLXeraMtIbLln6pYP\n", "stzXB/yvKOmgyj07rJLNF6Xuxz5rupxyVwqfMJPYtBpjfm2M+Zz7udkY05qPyqVBT5ybqQfQSHJl\n", "6p0SNlHMvdu55TWGFj1ZyFiVe0gSyDjflrs1HLqsctfnReETZm75CSLyVxGZJyKL3M8H+ahcGtj4\n", "lo25J1PuXst9ZyzOtf7BccvnOqGu4JW7UtCUk1/Ls6tRDJZ7KVDpeQ4pSlaEaXS3Ar/BUXqHAbcD\n", "f46yUhlQ636HSajzW+72ZirFmUinldxb7gXvltcYWvRozD16CiTmbi13e9+HtdyhCJ4VoM+LYiBM\n", "o6syxjyOM1XtYmNMA3B8tNVKG6vce5Bamdp17Sx397sVR8F36OVLXD4rcflsknLVcleiQpV7dnSG\n", "5Q5tRkY6yr1oXPNKYROm0W1zh78tFJGLReRkHAu5kPAq97BueX/MPZXlfiNwv5sBG0RRT2KjMbTo\n", "yULGFahyD0WBxNytcq/EeTtmWLe83afg0edF4ROm0X0TR2l+A9gX50Uo50RZqQzwK/dM3PJeyz1I\n", "Lo+734clKLeoJ7FRChq13LMjp5a7xKW3xOU3STaxo5CqgO2o5a50AkmHwrkW+2nGmEuBTcC5+ahU\n", "BtTSppQzdctbyz3QLe/5b2CCcos6W15jaNGjMffoyVPMfQCQ7O1tXit8W8hjF5Vy1+dF4ZO00blD\n", "3g4WKfgMzlpgtft7K8lvkERD4azlnsgtbztCiSyAIMu9aJR7PpG4fFXi8kZn16OI0Gz57Mj1DHWp\n", "ppS1z4pKwlvuWbnlJS5nSFy+ncm+StckTKN7Hfi7iJwtIqe4n5Ojrlia1AKr3N9bgBKJSyLr3T+J\n", "jT9bPpXlnky5+49ZNG75PMfQpgF75PF4BYGOc48eGSAnSFyu8v1th6blilTXozMs92HA6Az3TRuN\n", "uRc+YRpdJfAJcDhwgvv5dJSVyoAaYI37uxknhJBoLm6v5R6ULZ/Mcm8icSjDO/TFjpsvmoS6PPNx\n", "FIVKXD7tTi/c1ShK5S5x+ZTEpW9eDzqIgcAZvn/zbbl7lXs6MfcmnDh9JgR5DpVuTMrpZ40x5+ah\n", "Htli3d/gjMffBFTjdEr8eGPuQdnyiSz3MpwbNaxbvgyno7CdAMtd4jLU1JvlCcrKO3mOoUWi3IGb\n", "gYOAxRGVnxYSl6E44aJaU28+zkLGxZotfxnOVNV/y2WhEpepwNGm3szusPIUXqejrHJtuYd1y1eR\n", "nuWeKqSYjLy+0KuzYu4SlxjQx9SbVSk37uaEmaHuVt/nFhG5JR+VS4NSnBsD2iv3IBINhQtjuadS\n", "7l4lHsPxIjQTfNM9K3EZEfB/d2A9QATvKC8nc8snp0hcBgPPAzOAX2dZXF4sd4nLRIlLLuewiErh\n", "jAGmJjmmX1ahLXeJy3eSDHe1xGj/wqmgOkD6MfctZK7cu4vlfjTw286uRDEQptE9APzL/TwB9KbN\n", "Si4UymhvuW/GdctLXM6RuFzm2dafLR8Ucw+SSynOjZrI21ECxDzTR5bhKPYmgmPutSTugOSdPMfQ\n", "rHwH5bjcglHuOMMyK91PNRRFzP1g4LQclpe1wpG47CZx8YfYEr8e9Z/sR4aWu2sV3kTqeTyicss3\n", "UiSWeyfG3Ktx7q20kbjUSFxeyHF9CpYwbvm/epdF5E7guchqlBnJLPfBwBDPtmGy5TN1ywttr42N\n", "ud+BbnmcB0ihKKJ8Y2U4CFiSw3ILSblX0KZUsq1TvrLlbagqV5QS7s2TybgBx1L7u6/cYJmWBFrp\n", "YS13O19GJc4zJBGpOltlnu3CvojKvpEy005cd7Hcq8g8QbkXMD6HdSloMmlIE4D+ua5IlpSRWLmX\n", "0dFdbr8TjXPP1C3vLT+h5e5m8scoHEWU7xialeHgXBXoekwKSbmX47SBMtw6FcE4d9vhzRW5UDjl\n", "dJyUKrHlfjxzyTzmbl9AlSpcFNZyr8C5/8O65TN93bTdv8vH3HHupUzDebnobBYNKU9URDbjTKGI\n", "+70KJ1GmkEil3L2N3p9QFzRDXdBNYpV7Mre8Lb+RNsu9iY6N0br9imLCigiwssqZcqftWmbksosA\n", "a23nynIvRuWeC4UTo6Ollkym2cTc+7jf2Sp3+4xIR7mX4CTfZSp/tdxT062Ue8pGZ4zpZYypdj81\n", "xpjxxph781G5NPC75XfG3OlouSdyy6eaW97G3NO13IPc8la5F4qVme8YWs4td9pkXCgyrcBnuRfB\n", "3PK5dsvnQuH4719IZrk/yt4UjuWerlu+JeS2ifbvDjH3bJR7TqchLnTCZMufJCK1nuVakaRvR+sM\n", "klnuMRJb7kHj3JO55bcRznK3x01luReKIso3Ni8h0VwEmWCvcaHItFgt91weJxeWUox03PKSVczd\n", "Wu6pPGpRuOXtOPeicMt3Imq5hyRMo2swxqy3C+7vhshqlBnJEuqSxdwTvc8904Q6aN95sMq94C33\n", "Toi5byHz2FkQhWa5a8w9N9Zkem75o5hHsOWeS7d8OcmHwnnd8mEtdxtzLwrLvZNj7tlY7qrcPQQ1\n", "4k5zbUhcSiUu5/n+9g+F885Qlyrmno7l3mXd8nnGdsa6unIXPMo9y7Lycc8VU8w9kXVtPXL+7TvL\n", "LZ+O5d5CdpZ7wU9znQOytdwJMY9BlyDMSb4mIj8SkbEiMk5Efgy8FnXFkjAQ+LnvP6/l3kq4hLpE\n", "2fKpLPdcuOVtx6NgEuo6YZx7I11budtzKwfKJS6lRTDOvRBj7onc8lWeOSXaeIrdKayEumbYOZoj\n", "GUU1FK6IY+7QTaz3MA3p6ziN7h7gbpy489eirFQKqoCevjnE/TH3zYR3y4e13DNNqGvCebh7b261\n", "3LuH5Q5t55hNR65Y3fK5irkHWe723Q3tKQl0wadruecy5p7smeLfJ5uhcN0pWz6boXDe7y5NmEls\n", "NlNYQ9/sw7sadxpTOir37SS33FtIPkNdLmLuMaDF1JsdEhd7vGZ3XcEp906IuXc35V6VZcx9e9Y1\n", "Sk2hxtyDLHdwlHBTuzWH8i7ZWe5BnragOoV1y7fQptxbk+xjLfeiSKgr0pi7la1a7gAi8rgvW76P\n", "iDwSpnARmSEiC0TkPRHp0EEQkekiskFE5rgf/6sag7C96hrPf6U4N2UrHWPu/p5/OW1vaks0Q12m\n", "2fKGjpY7dHxgFJxyzzPdUrlnUVaxDoXLhcJJNBQOgmVaRsc8oXQs95WES6hL5mr3zlDnVe7JKCq3\n", "fLpIXHI11XQVHT2hYVG3vI9+vmz5T3Di3kkRkVLgFzgvzpgMnCEikwI2fcYYs5f76fiWp47YG7q3\n", "5z/vG9hSTWJj3yCX7K1wmSbUeZPnbMwdOibV9XT/664x9+6g3Ct831WZyNjz6uBidMvnIjs5kVse\n", "gu6fZ5lMdpb7R4Sz3G25QWTili8qyz2dtixx6Qe8mqND2/s7k3bVrdzyYRp8q4iMtAsiMgqnsaZi\n", "KrDQGLPYGNOME68/MWC7dHtg9uL6LXebvBZmEhtruXvd8l7LPejiW+9AMuW+jfCW+xoKRxHlG6vc\n", "c9m5KcRx7pC95Z5KkeSSQs2WT+SW7yjT7GLuPXBeEx0m5k7AcSyZWO5FNRQuTSrJ3cyR9ppn4prv\n", "VpZ7mJO8EviPiDyDowgPAS4Msd9Q4EPP8jJgf982BjhIRN4AlgOXGmPmpSg3SLnbMeXWcve+XSko\n", "5r6VzCz3ZG55m3AXZLn7x7r3osCUe55jaN0hW77c951pzN3unw9ro1Cz5f0Pcnt/dlTCB/G+Z73X\n", "dR5GaZbhGAZhLfdEhonXck/XLV8UlnuabTmXnUavck/37aTdKuYeJqHuYRHZF0ehvw78jbbktaS7\n", "htjmv8BwY8xWETnWLXtCin0SKXevW97r8g7Klk8Vc880oW6b51i2wwHBbvmCUu55Jiq3fCuFI9Nc\n", "We7lOPdSd7bcw7vlO45zt9uGkV+M9JR7IbnlC9lyt5M55QLrAcjEcle3vBcRuQDnPe6XAt8B7iDc\n", "DHXLgeGe5eE41vtOjDGbjDFb3d8PATER6UMAInKbiDTwR07nBeA59t25ciE9+SP7Yt3yP2I/PtjZ\n", "CGK8Ty9PjKicBcR4gxG4bnkRmc4j7IW13N9isDemJCLT+YAqXOXuJgK2X/8e1bhueRGZzlPsgXXL\n", "v0cZf+HgnfV9izHMRfDMOW7Lk7h8Rw6U7/jLz8PyJfk6Hm8wnDnU4T5Ec1E+T7A3sBE3tt0J8mtf\n", "n//ufLVkBYuAx5i68xqnV145H7CdD9oe3BHWP0aC9p3hcilQlun+O/MN5jG0XfuZwygWAQH3Dy8y\n", "gUV45xQoYRHwJkNDnv9mXmNCivZrj18SuP41xrrrHbf8B5TwSz6V7Ph8sNOFX5JRe5vLILf+Bfe8\n", "4P84iEU5a79VLKKV2zk0g/0dffdnpnX28yGwvTufBnF03W1kSZje1DeB/YAXjDGHichE4LoQ+70K\n", "jBcnRr8COA04w7uBiAwEPjbGGBGZCoibsNcBY8y5ABKXr+DE7lftXDmOFsbxHI5ybebbPI439j0W\n", "43EjlTORFcBqHPd4iTHmaYlLBXA0sIPdWWP+2uZ2ctcb3Els/C4pd30jTi+93F0eAkwEYDzrGc8b\n", "O3fYnc04Wbm72f09xe3JDJ41L7Q/vv94uV4WT/Jp1MdjT1bhJC4dlLP6x2UAsIEA93dnLEtcPuMu\n", "VjAaGM1CnsuovArGtM9PiKr+EpfvAKU5LK8EiGWxv/N8mszGdtvsxQr3V2WH/UsoZTTi+a+U0QB8\n", "HPJ4m9mHRvOPxPcfe7J659GC1u+z04hx3PJjaOJrvJDs+O7zpZkM5S9x+TLuM6/Qnhd8njl4QhhZ\n", "Hr+K0axnNP9Nd3+Jy5EAfIHXTL15J0f1yfXyzt8icg5ZEMZVtc0Y0+gerNIYswDYJdVOxpgW4GLg\n", "EWAecI8xZr6IXCQiF7mbfQ54S0ReB34CnB6iPskS6r4IzDX1pgUw7s2aKOYexVvhEiXUpeOWT2uq\n", "UYnLIWG3TYa/wUlcbpS4nBRwvM9KXH6W5eGicstvoIDd8lnE3Bvpnm5570xv/nIh6FpPZQntZeW9\n", "v1NRCG75bBLqSvI1tWoGMfdcueWrcO7zbBLqpks8e8u40Akj8A9FpA4nHv6YiKwDFocp3HW1P+T7\n", "72bP718CvwxdW4cqnIddh5i7qTdzPP/ZuHsZEJO49KLtPetbaJv1K5255VONc/fG3P0Jdf5s+bUE\n", "K6J2D1iJSy0w09Sb7/g3dGfpe0biMsjUm1X+9VkyBBgQ8P+eZP+q1lKiSajbQPtQUGfSIaEui3K2\n", "UZzKPds4sN03nZh7KSASFzH1xpBezN2+oyJb5Z7NOPdsJ2iJkZ8Jj9KhDBxPjqk3YUZaBeIaayU4\n", "HbBsYu5DwPXn5AmJS09gm6k3ySYyyikpG7wx5iRjzDpjTAMwE/g90JmvfK3EcckHWe5ettGm3MuB\n", "3wCn0tFyz+Vb4cJa7jESW5n+B+xgoIMF7WJlEDR/QFq0i5G11SPoBhpD9kq5hNxb7slkmhESl8ES\n", "l2My3N07zn07GY5zp81yz0cSUBST2LTrDEtchux0j6YmfeX+KuPsodzvUJa7G99PN1s+jOWezlC4\n", "bN/n7q1bpKTZlm2dsm1b1rALehlXGKyMqmivP/LB74Bj83nAtBqSMeZpY8w/jDFNqbeOjCqc+FnQ\n", "UDgv23BuLvs+9z444QTvULh0LfdU49zDDoUrwbEQwih3++rQIOxEPlkr9wT1CHpQjCb7t09Zy71c\n", "4jJS4pILhVyOm1CXg7Is04BvZbiv1y2/mews9+0kuFclLilDZGmQ68lygiz3TwFfTaM+EOyWDx4Z\n", "Ie3uZ7utdzkRdsSNNQqSYa9tmBnq0nHLZ/M+97wq9zQp831nilXuQa/RDoM3nFOdbMMI6JXvY+Yl\n", "PpNjqnAs996eMaz2xvTidcuD0xkYQ+KhcIGWu8RlksTlLJzhSE2kdsuHmcTGWq5BDxF/fCpZDD5n\n", "yj0ghpbMcs+Fcm/GkfWvcWYxzJYoYu7lZN7D76DcM4y5W1mJf8pNiUtf4KUM6xdEPmLu6QyLSma5\n", "byHo/tmH5e6vREo+Ed65MvJquXuuawtQKnH5vuvGTQevWz5yMoi5Q+4s9zDz/wfh9fjk23IPmkY5\n", "UopZuR8G/MX9L5VbHhxFaBWTd/pZ/wx1/htxKk6mfwuJXfZ2/7DTz5aS2JrzP2CTJaP0xul05MVy\n", "l7hU4sSrsnWnW8trO07YIRcPpHKcaYdjEpcSicvhEpc/ZVlmBTlU7hmWY9uloaOl2I/czvKXj0ls\n", "Mlbu7nU9grb7J1HM3R47aDnZsZoJUO4Slx9JXM4MqFcq5R425m4NC7vdV6Bt6F5IQlvuEpcDJC69\n", "U22XQ+z17s5ueX9id+QUq3J/GWfe+jHuf0GWu3XL24ZVS5tL2Tv9bKoZ6qpwXCrtlLvEpUricotn\n", "u6BJbJJZ7lsIfid1kFs+0U1RA4QavZCKVDF3t56H4SiYdjeWxOW3Epdq9+G7pzssLRlWuW/DeU9B\n", "LtqhdV83u3WvBfrmoMxMHwLemPsmMo+5JxvF0ZckDwyJS/+A/870DNPzs7PtSVyulLjsmUF9vbSL\n", "ubtzjKer3Jtpk+VI4DbaLPeOHaY5jHJ/VboKLB3LPVC54yRpettS2IQ6aDMYat3htkGU0N5rmImV\n", "5+1QpOJ6aBt3b3Gfab0CtkfispvE5cqdy762LHEZI3G5NsHxvN7MbMilW75C4hKZJS1xKZW4THG9\n", "axDymkpcfhF032ZCMSr3SpxM8x8D/V2lY60bL363fC1Ob7g/zhhr//SziWaoq8LJbrdvnPOWd7Jn\n", "O79bPlnM3euW9l/wdJR7b2ApbfPoJ8W9AcMmdZT76jYKZ8TEo3R8+H0aR6574MxieAvJsbLe7u6X\n", "C2uxHEfOVtaltFl8x0tcfiZxSTfLP1dueTtKIxOS5YL0Ifnwp1clLv6XPO2LM+IhCG/bO4HUs0Wm\n", "Yqfl7s778CLpKXeb4OYdeWDv22BviOys/xnAjfgsd4lLhcTl/IBj2fs1KObem/b3QhjL3T6PrOV+\n", "I3Bmgu3913hn202ExOXCnfMAtK9LmHaWqFN4Ic5040GMJ6BD4GEUcHiCdbmy3Otw5v7PVLn7py2O\n", "MgZ+MDAH+JG7HNZyP4X0vTaBFJVyl7g8jGN9N+JMQjMA90Zyh7148bvle+FYUH/FScjzWilCcsu9\n", "Jx3d8v6YtN8tn2z6Wa9yC6Pck7nlPw4oIxEzgC8FrUgQc/c2xkpgEXBJwPFsHXvgyK+DEnUfqi+6\n", "i1bW2+k4XWimeJW79crYep4OfJ3ESs1f174Slydw3fIZjh229bEehQ6TH4XE2y79D0drFSR6aNTQ\n", "8YUd/k6bF69bfjC5Cb94X+jTk/Qtd+/QtHLa7o/g0RZT+Mj91RN3kip32X6PIHiGzYRueToqd/s7\n", "meVuk46tcq8m8ctT/Pk+KZU7cANOWMZbBoRTIP0SbFdN4vBROyMjoC0nq3OuYu79cAy7XFjuEK1r\n", "vofvO0yHTXDOMScehaJS7jgzuu0GNJp6sxXnIveho9UO7bPl7djKq4A4ba5be/5e6z/Icrdu+RbP\n", "Or+bJd2Euh0EN1J/jN0/7r3Uo2x643RywjaGwYSP/QZ1XhJ1SOxDN4Yz7XCQW6kS2F/i0oP2MXfI\n", "jbTBGuIAACAASURBVOUeI4HlTuLErESMA6a42wuOokiXCtoUkO3EZEIqyx0SP9CDFHky5e5MP+s8\n", "ZAaRmyGP3vshaFKpZHjnpID2lvtWgs/D3/ku9f3fg+D2lswtX+s7VhjL3bZte+3ssygI+zyw1ziM\n", "jPyd71CWu3ttE1nudu6PIJIZGZDc7ZyrbPm+OJN/5Uq5R2m5++e5CHNNe7vb5WSIcLEpd3tjN7rL\n", "H+MoLH8yHbR3y9sX3fzK1JsPcW5ir5ViXWFhLHfbQO2D0FtG2KFwXsvVfyFTueWvAf7H/d0bpycb\n", "C2ldDiKBck8Qc/c2RlvnoExVr3JfAQwIyCWwcutHR+Wea8vdPqS8NxaEVyrDcM7R7p9JD9/mdlTi\n", "fedA+iRql5Dacq+g47Xynpcf2/ZqE+wbGk+4zOuStR3XdC1374PS1jF4EqQ3d05iZJWN33LvkeD4\n", "9n4NY7lbeSd7K5zfck+mHP0x9zCWu98ICOuWrybxMNcKEne02z2HAtpyMuUeaLm7Sa/pKNhsLXdv\n", "Qh1Ea7nbxG3blsLE3K1R1C0td9tIrHJfjZO9nchy9yr3JndaWnBuuHQtd/86v8JIZxIbe6xElnsy\n", "t3wdbY2yN87wL+uKTsVgwmdX+y13q5Db1dl9iNs62olkWujYK06m3HMZc7ezfPktd2+yYyqG48gp\n", "F8odks9smIqMLHe30xmkJMK45Qe5y9lYEFbxBVnu6Sj3RpxOtO2sJbfcpZ2SS2S5J1LuzeQm5h7k\n", "lvcm9zpVdRJQh9Dx2RNWufs735D6OWA7hEHlV5C55Z6szh1i7hKXfXFeSHZUkjL99MVR7mGGKyaq\n", "I+RPuW8iPcvdhlm6tXLf5n4ns9y92fJbaf+a2nQtdzte1e+Wh/bxt2SWu7cxpmu5l3gsYW+PvYY2\n", "5R6mQSR0y4eIuVvrwt9RKfNt34xzXfyueXtONoEuH5a7V7FsJVwHCBzLvZS2eFlOlHuGMXe/y9ZL\n", "Mre83y3o/T+V5W5zJrJR7n5lk6lyb6btmto2lthy3501nuMFWe5VBHcmA8e5uxnu3o4e7u9E76CA\n", "9pZ7Mrf8YcBddHz2JLXy3I6b0PH+bCG8AknUZkJZ7gFtOV3L/SvudzrTsWbrlvdb7lG75b3JoOlY\n", "7jlxy2cbA8k3fss9lXK3lrs/W9neBF7lnshCqvLs43fLQ3vlnsxy944rDWW5S1wO8JVvj+8du7+B\n", "tgfSJpIzCGcWtzAks9y9jc/bmbHnbJMd3/ds57XcvR0FW3a2lNOmCKwMvXVLFKMNYpj7bW/+TMYE\n", "2yx5yC7mbuWeaCgcJHaxer8t5f7/JC7DgFuJRrln65a3cXDbKbFKbSvB7z4IE3NPx3K3195vuSec\n", "NZCQljtObkcP0nfLB4WZSmn//ElEqjbjT0y25MJy9+7fI+C/VOQqoc5e36gtd+9Uxmq5pyCRcg/q\n", "/dmYu30QBFnu3l69P2PV4lfuiSx3m0QTxnL3Krcgy92W/TBO2MF7PO96r1s+VSZmKc6Y8kxj7u2S\n", "AD2eBL/byVru/gdvZ1ju3rqlY7nbuG2N7zvd+th2ug2c95pnUI7Xcvd3gjKx3INi7n1wXk9s74lc\n", "KHd/DNiWnUpJeLGdRXv/2HrbjlPH+r29s+5WuQfF3JMl1G2lfVZ7rfudjnL3JtR5lbv/Oo2hLTxo\n", "DYswyj3m+4Y2z2E2yj205Z6DmLv1hoa9JyG3lnsT+VHumVju3Uu5e4arQceYeyrL3a/c/Za7N+ae\n", "yHL3j3NPZLl7L6Y3Wz5l/NpTrq1XOW2WQ2nA+tDKHefGKCHLmLv7VqMdQJnE5XCciUXs9smUe1DM\n", "3YZX8hFzz9RyN+TGLZ/OQ8xLqoS6RGV7h4/56+X/rwznHG05Q3Aeorl2y9t6ZeqW9yr3VNny9mGa\n", "juVu3fJlnjHk9v6r8G2bSrn73fJBnRqr3L2Ghd9oCCKRcg/TzpK55bOJuYfJlvcr9y0J6pGIXA6F\n", "W0v0bvlMY+7dLlu+DKfxn0zbQ3MDToJZooS6Ks9vv+Xud8tna7n7e85eyz0ooS5MzD1Gm2IJstxr\n", "cBqQP8ntMomLP1FlMLCM7GPueI53CW0JMV7lvhpngqFBnjmybZ1DW+4Sl7o0psn0W+5e5V5G+6zr\n", "hLidyCHAShz5rsWn3N0x+w+EqI9tc9mMc+/Q6ZS4vC9xOQin7a/Cc50kLpdIXD5N+srddmRa3XI/\n", "JnvL3atsvA/WTNzyXsu9Eo/l7s7qNRGAXfnEs2/CmHuCmSGb3fkyttI2/DGXbnn/w93OmOn1ziS6\n", "bv66AsTcobGjaPMWhLHcTYLtQmfLZzjO3Xvd7bTM6bjlczUUrpSA+zoIiUt/iUumnXuv5b5TPhKX\n", "R91kygo3JGbpT+ZT63agmJR7DGgx9eZ+z4Q1jTgPpURD4ez49Gach7vFP879MPfjtUqvctelo9z9\n", "lnuqhLqgRlpO28PHPnTtPlYO9tg93PPydxL2oG1qXktf4EMClLvEZWaCh12QtwHaGqD3BQxBbvkb\n", "cF6z661/qGx5dx77p4CvBawbLnG5M2C+70RueZt1nfDBJ3H5gsRlnLuPwek01eA8TPw3d0+SZPl6\n", "RhC0c8sn2j4F7Sx3d+jQGJz8iUqcHArvee0BjKW9leslkXIX2tp4Jc75Z2u5N+HcS7YtQ/uJpVKR\n", "zHJv9CzvS8fwld9y97rlvct4trf36xbalHstbZa3pRznmqbjli8lseXuzZZPFE7x4lWWBwB/JLxb\n", "vh9O5zuRWz4by73EMzTYvw46Wu6bE9RjJxKXr0hcBrhTxfbAae9NwJESl2Qz5gXhPbf1JJm/QpwX\n", "hp0KXAGc5/k/0fBHP4Exd3f/o9z/jwZ+5dmnH85Q4m6XUGdvdC/baBum5seua8FpDN4OgFVOtrEd\n", "BRwPzHfLqsGZ7GY27ZV7GLd8UELdNpy5rhuAJbSfEKbC7RlOwJmu0IYf/G7BIOVe5ZZt4+CDcKwu\n", "f3Yv7n8bcB62pabetLrW3xzgam7kJep51LP9Tstd4vI28H3a5Gw7K95XJ3ot93U4SqaWtjBAIsvd\n", "0GaRHmbqzVPudtfjxIGDptbdDWd60VKJyyRgIe0t950JdR7FstON6/aWXwMuwJkuN4YzNWgTzoNv\n", "m/upxZne1+89sDdqqRum8FNOW7sD6+oVmU4DW4G3Tb3ZErBfEH7L/Qj3fxt+8OcS2GvfzgKUuNh3\n", "KwTF3O21aaYtdBPmveap6h2k2GweTBgSKfd2lru77Nwf8+nvvkbJm1DnHeXiTeTyXjvv82WLZ7ve\n", "OB08K0fbnraTfJy79drYa2ePgVtOLc69ajsJ1muYjnKPuXWwFncHt7zEZSzwLHCeqTcPu+e13r+d\n", "y07LXeLyT5ypaJe4+z+NRzmLyHSf9e41dhppz07vjcTldGAv2tzyqXTQhcA8nGfzelNvjMRlCc50\n", "t0cA/0mxvxdv58K+9jsR+wPH4DzLvJ2AHRKXkabeLLV/SFx2A1aZerPas12imLvXg1VF+2dLFc61\n", "6ZaWu1+5N9KmwP1so23yGZsoY7HKyaswhbYbsSdtvdB03fJBCXWNbjlDaIt9ey33GcDVtHdh2t/J\n", "3PL2IWfLOQX4Dm3D9wDHve3Z1psN/CPgIABGMFDicqO7vc1Itucy0pWJ3y3vfbuSV7lvdP+3E2bY\n", "+m+nfbb8XcADODd9DHhS4lImcdnPPZebCM4RqHL3tzK1Vqx9cYy1QGxHKUb7+F5/HM/Ct4GzcYbl\n", "WIvSTjqz3T2HdXScNtQr/yDsCy6s8vBa7jfgzDsdFm+4qIQ2j0EVbXkb3gd1Fe0Vof0+CqfD6lX8\n", "Fq9yt5Z7xspd4nIizpsUW+kYAkvXLe8dnmbP0x9z9w5v88fcS2jrtNhtvdvh2d6r3PcR50UptbSf\n", "BdJ2CpINhbNtHdo6OPZ/JC6/xcmU/4T2MXevhyCscrcWdTvLXeLyc7cDMRDn/viup9xEsW6v5T4M\n", "p/NRTVv4wNa/F5UdrqE3T8iP15sygLapjVNa7jj3oG2zjQCm3vwd590i6ebqeK9XI8nboVXEJbht\n", "xmO1/1Hicr1n2+8BJwbsHxRz92bsx2hvvNghnt1OuXtvPovXOvezHadhNtNRudtsef8QDXuD2Z6a\n", "VWBWsXstgHQsd6vc7UPIa7lW4Nx8Zb59vXF1fMe1CT/2weVVtlV4LHfXvb2QNqVl62LLcizv01mH\n", "87IQ/7Hsdzkd3fJe5e51y1uXtle5l7r/Wyur1dSbfwNvuufRy1POOBxrYQXBCrQHzoPRnm8P2kIU\n", "3pg7tD2U/MrArvPKzSp32wmqIdi68HpOgrDK3bbLbUDMtXTKkuwXhN9yt9nOPWlLIPRb7jE6xm6t\n", "pyWRWx7au+U3B2zXDonLydL21isvU4H9aK/cc+mWT2y5T9o51NPKoNQtI8hy9x/L65Y/ADgSpw3v\n", "tNxp8xDt9DgF4E2o8yp3e51OBfbGmarZKlTbYfA/V4IIUu5+y/1EnI5vFW25SXafRMrda/DYZ1WM\n", "NmPBrvsh398ZBrEkSwT0PgPs/RZWuVfTptybPP8n61wlwtsZCKvcvQaePV4FcJxn2yBvWBjLvfz/\n", "2XvzcEuust7/8/Y8pzMRkhCSTtIhiSEkIAmTElAvk1dwuggig6iI4vxTr49edx8UuKBcQBFEUUFR\n", "w+AAqIhMDYEQIJiRTN1JJ4FAhk56ns45fd7fH2u9u95ae1Xt2vvsffqc7vo+Tz99du3aVatWVa13\n", "fb/vsCgb90VUZYEMgYVk3Gcry3dl0Oizn6RXMrYXzA/+KwnsLc1z7z7MbkbXj7nbC5My91MoG/cc\n", "c09l+ZWEGvtKMUnoMe5x+wmEQa3auIe+WuW2Q/lallFm7na+Kua+luLFtP4yA+v996aGeHl/DeHF\n", "8G31WEkw7isoG3hbb8AzkGXxmF6+XkkxsNjgZUbRM/dF5FPo7PMwzH0Y4+5T4Uz29MbdDyw2aKR5\n", "7uazrDPugzL33wCelNm+Kv52ht6J9DDG3ee5Qy9zL4x7WeHKMXe/kEfuXBDGCjOMJmN7436I+jXa\n", "fUCdl+V92y4kTF7N517J3GVCjpMJsfRM+72/xh7mTvFcryRMIixtso65+2h5G6usD9e49q+m9xlu\n", "wtxzxr3fs2DM3SZVhjTwuQlS4143sbC+8MbdXDyvorfWRy62JZfnbv1r442P2D9mmXuVLG8dnqJO\n", "lofwIngjB8ULZsgZ95ws7411U+buo+VPwfm4KRv349zxrK1ePobCoJmx88bdfreeXuNeBOx9iSdR\n", "KBbdASKW/TSZvo6552R5n15VZdxtkFzr9jPjnisFCoVxT5m7d1H0Y+67qWbuZtyhnrn3M+4+W8Ly\n", "3BdTvTpYDtZX1k82OK+hXLTHnzsny9tkrM7nPmhAnfV7itXxt6Z2DSvL2zuU5rnnmHsYy27vGjHP\n", "lJow91SWP53iufDG3RhknXHPBdT5cy6hbNy96yUny/848Pvuc5VxTwN6BzXuKbP0EfDr8GPf1Zyf\n", "/LYJc7d70oi5x+qAdt9HYdz9/ernc/fM3d7zquJjuQnzsngOie7dlLnbGJ3K8oOk7NZioRn31Iib\n", "casqYuOZexPjbszdYDfA6qVXyfJm3D2L6sfc/UNSx9xTplFi7nFbpSzvjmPBOylzXxOPbkYSygOM\n", "v87U576C3oC6acqyvB3Lz0pzxn2NO4437nXMPTXuxtz9DNkzd28cLMq8irnbs5UbCJvK8n4yNArm\n", "vii2ZS/1srxnEv5eNmHuMzRn7lXGPWXuqSyfS0XLoUqWTwdBz9z95NsMZ87nXifL76dg7iZrp7J8\n", "P+OeY+7eKF8I3E8hqdelwtkz6j/bNdjzncrySynuzwPAqhjX0pS5W+U8a4etWBaOLT3XXmfcPXP3\n", "k8x+ee42tti9P+S+GwVzH1SWT0mZ3zd9V5bH/WxfG9N7ZHn3LtgY2cryFMatirmbcd8D3fxXgxmB\n", "GXp97oZ1hJtjA3VWlqdXZrfvU+Zu1bH8Q9LPuBs8c7cHzht3L8vbg+N/Z8bds+GCuT+lOwD4mtV+\n", "UPbMPSfLe5/7bsJgsIbyQGTG3efMp7K8Z+4HyLPj1OduMuEBykVsoMzcvSxvA3Y/5p6b4Q8VUDek\n", "z90P/J65r6aIJ2nC3JdlvkuvZ1BZ3vothRn3Kp+7XVc/eFk+VRwOEDJNjF2G4z2u637z58sx9yay\n", "vBnH2cjyJeYelbBFBGXgoXhO66sq5m5G0bfV/vfM3Uu6nrnvj9dgS9fWMvc4BnifO4T3uZg4PZVt\n", "yW/rZPk6n3udgbUxwRi8Z+65io39YC4aGCKgjiTLye1b5XO37J0VblsaUCeUn8ljkrlXBdRB3rjv\n", "IzzMU4Qo4b9IvrfB2w+OKXM/jvAQHKJXlq9i7v7Fa8Lcc7K8N/SGlLl7Wd7nnRsLXe72h2rmbi+Q\n", "/W8PnR3TX48NUlbadzllWd7ukTFLf/6msrwx9300l+WPBw5pR/0Eq465z1aW95OEHLIBdfFvzwSa\n", "IA2o87J8E+bu/1+VfGeoCqgbFXM3dgrVzDmHKuYORUxEaqz9ZBQK45763HMTNh9Q5yfLnrl7WX6Q\n", "JV+tTf68ZtxXUEzg0ngXO14/427M3St2qyiexUcI0nwT5m7Kl5fly8w9n21gx0jhCZGNU/aM1TF3\n", "G1tGJcv7+9LPuBvbzjH3nCyf87mbcfdjoVeQ7BimWrY+d4c6Wf4RwgM5rR09qB2dTL73L1+Vz92M\n", "+0GKl1Ti7HsY5t71NyaBcE2Ye1NZfhV5n/sJ5H3u4cG6gfPittXxHDYAVDF3e/F68txj7rcxKC+l\n", "Hoz/L3HH6sfcm8jyJ1G4Xep87ilzn60sPxBzjz73JQzuc/epcP1k+ZXxc06WX0cwSP2Y+0pG73NP\n", "+6xuUDfUGXdjUOWA0y2so1yBbSXNUuFS5m775mT52QTUpcbdmF2dz30UzH0HYRLcz7inxizvc/8q\n", "G5PfDsLc11DECNQZ2FEb90XuGP3WmsjJ8lXMvcrnbsbduztT5g6Fcbc+aWV56mX57TXfQTngxUfL\n", "Vxr3aJDtoeoXUFfF3D0DniQYJqu33VSWrzLudQF19cx9cfcBXEWZ6Vb53G1BDWMvXpYHSilJ9r3F\n", "P6ykuc+9irk/7K43Z9zt2TYDXsfcV1MMkmMLqIt/z4a52+DYVJZPo6/Tben1NJblnXRbJ8vnfO7D\n", "MPc0zx0K5csMgN1v87HXyfLevWZIA+qsravI+9z7pcLlAuq8OgdhjDLmPogs78cCb9wPAsuc9O8D\n", "TT1zr0pzXEavGmLt9TX5lwzhc7dxcxlhXLWaFLPxuQ+TCueN+6ABdTbRnoJutTnbt4q5H6LauFtf\n", "+Sqkx6Qs742lwV6cHHPfGb/rZ9z9A5Yeyxv3lGlWyfLeqE4DRCY7TeHz8oFWj6XIbx2EuafR8iYj\n", "psw9J8v3+twv6g5oZtzrmLtnTLjv+xl3G5C9ca9j7nUBdTbgrqJs3NOiKZ65W59YtT5rs+UA+361\n", "vs3N8HsC6mRCnhyrgdn2Ufnc04A6b9z7yfK+iIYNPvuglL5p16MUsrz5Q+sYhD1Dq2RCfjw5Xs7n\n", "vjj5XVPjbhPCKuZeruC4kUOUJ9kpc19F6Je6gDpfPdAWZ8rJ8oPmuVcxd5sIVRWxaSrLH3CfoZh8\n", "HSAw90pZ3pVMrmLuUKiWS3ky91JGv2h5Y+nLCO96E+PumXsuz30YWd7G/SY+9zQVbhGhPkc61vfz\n", "ufsUY++eSpn7MRtQ1+Nzj0zaMyT/3Qxhtlpl3P3L14+5m8/d79/D3KMRV5f64Ntr1fRS5n4aoRb7\n", "KGR5X+t9MOZePGBm3C3N0Mu7XpZPS7Kmxn2P+5213wZqP1Go8rn3C6jbTzG4m/RobfPMfQVBXfB5\n", "rSlz9wU+BvG5+7b9OvDD7vijipa3+IQ0Wt5S4boDZIyGtgF5GWVp3e7DAXqDkRYTJsPG3KG/cbcB\n", "azVwJeV8Xc/cc0oXNDPu9g6lee5QTBTT8sxNmPtueg1DTpaHUDRomIA6e37SaHn//nvm7l0vdh5D\n", "U1nefO6ebXufe50sb599AFlq3G2bj6Hw29N2G5ZQuOTsextTRyLLy4T8m0xIv/fKy/JNfe5pf/i4\n", "I/9MNPG5p+NSzue+MJi7iDxXRG4TkS0i8ts1+z1ZRKZF5EdqDpeT5aHwh+fwcMVvIC/L1zF3O0cd\n", "c4diRpcqDWaIUwb8aIqFHJYSHobUuE+6NuaMu88791WUbH8o8tw9Gy6Y++2cHreZz90Mh+1bJcsb\n", "BpHlccfKMffV9Gfu++P1G2Os8rmvoqh1UCXL+0ITOePel7kTSnSud9t7AuqGzHMfhLn7qNyUudv/\n", "NuD4AWQJYfAfxrifTDHpMKymLDV74+7P2Q+WTpTmuUOVcd/aDTSs87nnmHsaUEc8zglE5h7Z7SiY\n", "+4PAn2pH91OW5dMaG/54OeNuTNgmdWbcc8y9X0CdHb+Ouds5l/L1noWpmjD31Lg3leXt3mej5WVC\n", "TiasDdJv9bY0oG5YnzsUz6Tt24+5W4GhHHP3svz8D6gTkcXAOwl10y8EXiIiF1Ts92bgP6mOPoV6\n", "456T5SHMjPsx9zRavi6gzvaxwcryUr1xt4Elx9ztOvy+jyIYdzOOB93f/rf9ZHkz7oaUIdnLfwBY\n", "6VLewoO1qPtbY+4WyOQlJT8pOY7yLDYny/uKWcZA7fvZ+twPUF6gooq5m286HfD3xr/98T1zP0iR\n", "rtjE5342vcZ9oAp1MiHnx8V/PFLmXmfc/USsSpY3Y5ka908Bv+La3C+gzs5l7fXPq2fuVhuiKrq6\n", "DqsplxReRvn56Q2ok266k5/wTAGL48piUH6fDP7ZtWfpfsJ17qMc89DPuNcF1C0lZHb8ctzmZXk/\n", "jo1Clvf1H2pleXf8NPUrpyCaUpBec9pu/529R3aeg5QVlhzWUZ6EV+W5m12pM9YwGHPPGfeUuTcx\n", "7lZPxWcKQTVzXxABdZcBW1X1blWdIkh3aXF9gF8CPkIwcHWoMu5ZWT7i4ZrvPHM3g5u+YOupl+Vt\n", "jXB/0wdh7sbSU+OeMveDwGUyIb9AtSy/nLKxWSYT8maKwdeOY1K33fvwYG3sTqy8cZ+iHAziJyXH\n", "EeRKKPzSqXF/mN4YBD/o2f910fL9jHs6IKd57lXM3arZ+RWfUuae82nbfljbZELWEBhsFXMP93kT\n", "n6delr+VMNH1sIljLlo+Dajz7pYqWd7YRBqgtVc7+g2K+3IAKpfwhOK5sOdrGUD0yVoes68NMQxz\n", "X03hfjH25ldb88w9PM/ndLd79mrMfT3hmW0SULeXYgJoz4q1wWT5ulS4Q4BG92CaCufHsTQVDpzv\n", "Pa4Y2c+429+pLO+Z+y6KUq454+7dZz6gLsfcl/Ak7stcM5n9fdtysnw/n7uNIXU+dzPu/RjvbAPq\n", "UubuJ851srwFNaaxJ0sJ98VHyy8IWf50wvrhhm/FbV2IyOkEg//uuEmpRmosDXXMfRDj/gXgDqqZ\n", "ey6gzm5EytzN/+2Zpf3tjaS14UGKF9Wni1l/7AcuISxBCMVsMpcKZ1gG/BhBLjZ4n3sazGHGdRDm\n", "bsbd/NKpz91WvYJq417nc58mGJj0JbSXxeRGKDP3pdQzd7s3TYx7zi+YGlPr4xxzP5xkWWSj5WVC\n", "zop/3pZ8ZRPHXLR8P1neR0Xb4GNsImXuXpmCcpR6DvZcnBr/T9tQ5XP35+yHdDEgu3ZrZy9zL3zu\n", "Pcydwrj7SpOGNKBuF8X75dcsGESWt+OlzN2PSZYK52ts7CdMzi8EPk0z476E+oA6e+8HYe5VPndv\n", "pAymZA7ic28iy9uiPTmfu/V/U+Y+SEBdKc89Kp2moln7m8ryqylX54TiXjzCQpPlqTfUhrcD/1tV\n", "lTALrpPlewLqIuqYuwWs5GDpLDaLf0dcSzxn3LdTGDIbGIy5rwXOoZe5e+MLZebuJwJQzdz3uN+u\n", "olxn3k8efBGb3fG6lhEeKu/fPUghz3npDrZ1HzDvc0+Ne8rcd8TPNlh44/4dwlroqSyfM+6LCQbd\n", "mMdKYL8LmPxrmZBL3HWYzHWQothNlc/d1hfwM+2VFLKgr+2cyvI9A5BMyHn0GrKzCcYga9zjtmne\n", "wrMJ/Z7zuedULegtYrOU6lS4lRQDrDH3pj73YYz7JGV3ChSTJbvfo5TlbUJt7ez1ud/VNeY55n48\n", "xToRuQmbPbsPEuqxHyC8S96VYYN2XSqcvcepce/H3L1qspQQzLeavHG3DBt/H+sC6vZTFDHqx9y9\n", "cU/dg4G5X8eZye/rgsG8uzE17nXPgV9uN2fcB2XuaZ57E+a+iKI2RE9AnXNv9kuFm6Sc6mjM/RF6\n", "A+rmvSx/H3CG+3wGgb17PAm4UkS2EdbvfpeI/FD2aO/mtXyUC0Vkk4j8agxOAjjIjTzKfUZEroif\n", "Hwam3efu99zICRgj2soaPt19QA6zDWJxxWDcJ7iNCT7X/f5veQY3cCbhRvwwW3g/d3Zfgkk+wrPZ\n", "xlSU5ML5bnWs6k4WxfaEWeTVHM+2rnE8wBbWspknYEFpd7CEWzkdG8ju4Dj+m8dhPvcvsoGbOBMr\n", "7nIX+9nCesLAsNpdz0Hgfm7hIv6Mbn+wDbi/O7it4jNcyi2s637eBtzCqdjgcy2nsZVHY8b9DhZx\n", "M6fH9k+JyBW8nquBtwDLROQKruF8zMhuAyb4nm5/3sRp3MGpWOGhu5hkE9/bvb938jw+212OFu7k\n", "OP6aSzBGchdTXN+NeJ/kFk7jxq5KtIo7WcQHeCL2Yt3Gqfwn52Gz6qJ/wqTpas7gc5yLsa+trHHP\n", "z0f5b54f9w/39Bq+n9vYhhn3m9jAF3lsvN5pEbmCu1CWxUnhVk7oeR6v5Qnx47LkeV3M1ziT21iH\n", "+dw3cybbEIy5X8+GuH+Y3G3hOG7isUTjHp+/UzC2u4UlfJCnd/vz65zDtTymez+2AW/gqUTjnn1/\n", "Ps2TsVoS24CP8LRufxf9GQzWp7iU/3YBWNuY5F94ij9exfsbjPuXOJMbOQszTNuAt/B0TEHaed/Q\n", "agAAIABJREFUBnyVjXGgXcQdLOOuroFawc3d9ysw99tYy38Wq9mJyBXcwGMxo7uJx/CH/A6m2m3i\n", "mdzZHeCXcQMncgvHx/tRar9MyGK2sYhPcR72vtzMSWzrTiiWcgcr3PVOch3ncivrMcOxlZn4/q4B\n", "FnMdZ7LNqT1f4Xzu6sazLEve7+X8A0+Ln0Nq7L9yIZ9kI0HlmOYDXMrWIrtBRK7gI93nYRFf5JL4\n", "+8XJ8fcDi9nKWr7NKaXf38xpmOKQ3E/uYD23sbJ0vPB5mhhoWnH/Hw3cw808hq+zkWiYReQKPsv5\n", "FEGUF3FXwXhrjhcUlW3A+7g09l92f27nRCwVbhvwTn4gfj4sIldwR1eKX8o24I7uUszE992UtUm+\n", "zgVs6So+K9gG3NR9nh/hes6Pv1nOO3k5H+bRIvI+ZolxGvdrgY0icpaILANeDHzM76CqZ6vqBlXd\n", "QPC7v1ZVP5Y5FryW9/NCrlXVTar69pgzDHCQi/mm+4yqbo6ftwPT7nP3ey7mHsLLp5zLDN/PDfHr\n", "GTYAG9hLNO46o5t1pvv7w7ycr/EEHiTMgE9iI8o5TiL/MbbE3xfnu4Bvx49LOYdDsT1hFvk0rmZD\n", "d5Z8gI1McgVbMOZ+Hg9yQXd9cTiPQzyRhzDm/gxu4vHsILzMOzibHWzkMBZQE64n9BV8hwtZyi/y\n", "lW7fbgCeCgRjvYrv43Yu5H6MuW8ALmQ3Nvh8N9/gXNZiasZ5PMBFXQl+SlU362H9XPx9WMf8KdyN\n", "GfcNqOvPGR7PQ5yHxPOv52x2l+7vOZzEs11e7Tks5qf5LGbcz2Y3l7Cl2/8XspuLeZAwWK/mHPbx\n", "Mq7CWMj5HOK5XNP9vuifwNyfxk08i69jxvPc8AzF46/kiTwS9w8D7lPYzvlcjxn3x7OLZ3A9Jsur\n", "buZsDvKrXAMs5tz4TESo6ma+m2/F9ixLntdFPJmtnN/tX+EKvh7PH9p3CQ/E/UMWwEYO83h2En3u\n", "8fmz+uKTbGQnL+4+7/Ak7uO72Ro/HWYD8Lt8lmjcs+/P93MXYfIc+u7Husfzz1tQLn6AW3ii89Fu\n", "YD8/XJw/d/z4ORj3p3MzF3d9r/vZAPwW9nwdxwbgMu4B7uJsVnAeOzi7qwKu5CLui+0Jxv18tvNc\n", "bi5dzxN4CKtLobpZp7T7fKnqZs7pqiDLeQJ3cyEPEcfPpP3L2MAkP8D1djwu4n42dONSlnAeO9z+\n", "U1zKQ1zAdmwycC472Mg0tszqpXyHDa5oyuXcy9ndiP9lyfu9jJdyXfwcmPuLuIrncE28/klexhc5\n", "t3BlqupmfoybMNXwGXwz/n5xPP60O/4SzmWaF3Bj6ffh/T9A7/Mbxqvzud8dby/n8wBRdVLVzWxi\n", "i0zI15P+PA24m4vYxZO4n0iGVHUzz+ZGQpDkIs7lRM5ma+zfuudpEXCIDUzxSq6K/Zfdn8d146EW\n", "swF4HV+Pn2dUdTPnsR3ztW8AzitUhfi+2+R7kiexnY3swrKPNhDGiNDeb3NJtAdno7yOd/Dj7FXV\n", "VzJLjM24q+o08Drgk8AtwAdV9VYReY2IvGaIQw4TUPcp4L0V31lQzAzhJh+Gbn48BJnVZHkPL8ub\n", "RGiyGrGN6913vp12Hd5vA4GxWtnPKll+JdWyvPl1pin8hcb0Uln+OwQ/ac4/tYP6gDpr9xaCOyKV\n", "5VPJ0fu5vSzvYyTMd2bLjB5PEchk1w5l+dz73E1yTIvYWDnOVZRLmEI5oG6ZO58Fu6U+d99Xywl9\n", "fYiyj/sBinx5H1BXyPJFfEYuoK5K1vSpcDb795kePlDQ3DJVsvxO9/s6WX4qKY+cwyrMuAd4KdhH\n", "tOd87v3Kjhpy0fJelvc+90XAYyj83XZNOVk+F1CXG19y7h4fUJcbP02ONZcEcV+TgVOfey4Vzp6D\n", "NZRdGt7XbpMFu4++/HWVz/048lUNrd37yfvcd7nf2b1M3Sx1srz53E2W30VvnvtJuJisOJEJxj0v\n", "y5s77yTC++sLDVXBno0p8q4ZDx9QB0UQchpQl7q9/O99QJ1lCtmYYdHy91LErVhA3Uhk+SYv2NBQ\n", "1U8An0i2vadi31f1OdzAAXXa0Xuhp5KSwV5AM+7e1z5DGCRPo9e428Dg/X9pWlqdcU+jzqHwA1YZ\n", "9/2Egcsbd9sXigA3e4kXQXe95dS476FYqKbANmADO6n3uVs/3xr/3xu35aLlIV+xLzXu9pJaQNB6\n", "ykVE7BrXQpQ9Cx9ezrh7n/tBiklPGmRlxh3CvRaKqG4z7jm/oMUy7KUYBJcTjPvymG5lA6pJjwDT\n", "vJ9n8gog73P3AVEeNimaie22wcmuNU3x20W4v7k8913uN2m0fMm4x7/rjPtKihLPdnwIfbOLMOha\n", "KlwaLT+oce+JlteOzsiEpD73xfE5tnu9n8K4+4C6U8nHAKTji0+3TH3udcbdjL+PK7GJZm4CnKbC\n", "2XOwmrIhfZ5MyG2Ywlc27jZxNp/7NL0+9+OozgBZTpEimKbC7aaYgISx78auG8dgZKdftPxyCuPu\n", "27Ga8gT+hHg8v3pjzudu7l7/HlTBfO42URnEuJtbIU2FSwNWfbU/i1uxjB0LnrTjLaVs3BdMQN2o\n", "MUxAXR0OYbJ82XAR/7YBP2fcfUAdFIFM0Iy5p9Hy/Yy7FXOxCPpcKpw37r4C12qK4MaD2lELQnuU\n", "a5u11Zi7PZhVqXDbKJbCteNVsZI0Wt4XSoGCuZtRXUe570rGnTiRiszSDHzOuDdh7vY87SL0tQ+o\n", "e5CQ51zF3PdQjgw/RDAcVjGvN6BuaXfyszyznnmVcfepcGbcU+bujXsVc18e21eV554z7vspD7ge\n", "qygbd8/cd7lj+SyB7nMI/KZMyGsrjm0DpOVop9HyadaGnd/6dJLi/q9w13YCzQLqDN64W9Bqv2j5\n", "KuZuwWhVzN2nwlUx958Hnk0z5r6Lohy1Z+5Vxn0ZBTHIMXdTsaqYe9XzC72pcN64+8De1TGVEgKL\n", "/za9kyqDjRuPIWRlpc90DsMwd3v/rECYf/asXT5Qzs5jFUsnKSb5Vcz90e53CyIVbtSokuXrUuHq\n", "kJXlI2YoBqicLJ9j7l6uOY68cbe8eL8vhAHHDGlq3G2wtRfOWE/OuJuxs+pwxGPudb+FYLQe6/bZ\n", "G31qXpb3khK4CVB8aO+gbNxzzN2/cFWyvA2SZtwtat5g1+jL5B5w33n27s9Zx9xtEuWZu/kwbfJw\n", "m3b0OeSZu9Unzxn39ZRl+YK5v5SbKCYaaf5+1aw9Ze72e7vWVJEwppPWh/eyfL9UODv+ncC55LGK\n", "Ig0R8sY9TYWz+3qQEOH8kopj27VMa0en6WXu6btWKBHhOU4XbLL33ErJ9stzN1Qx97o8dzP+OVm+\n", "ynWVpsLZc7CGsiE92R0jZe5WcMmY+x4K5m6TX89cc8x9P0Weu7F4b9wL5h5iWjwGleUtmyDNsrDx\n", "5jSCcfeTqlwRG2PuXiWswmKKSUW/HHufCrePXuZuz5wpZOkqcf4d9Rk7XtVbRswGkAlZRTH5WOwm\n", "OUPjaDHuwzB3L8unzN1keWjG3IVmzN3WL/bMfYYip9tuvE0edhDiBkxiw32fugKMuZuUZbBa2iaR\n", "QvC7+0wGM/6pLF/F3CFI85YyVifLp8zdWI/BMzszxv4ltmtcIxOymjAxOcH1Rc7nnmPuU9ANSvI+\n", "dyiYe9qv4AaB7qIZvbK8vcypcS8z94JFHnC/NVTJmt7nnpPlq5h7rkKdl+WbMPdbKdKMUtik0e7V\n", "Mrfd3h0zcCbL274HCf30NJkQi1PIHd+Xga1i7usoJs1QLvdqFQ7tPffMPWWeObdfbtJoxrsqFc6M\n", "v7/3TZl7zrh75v4oCuOdMncvyy8h3IN1ANrRKcqTlCbMfS8FydhNM+ZeJ8sfIs/c/aQQCqXoNELG\n", "VR1zX0xg7sPI8k2Yuy0cY8Y9Ze424UxX2UuNuy+ktSIez1LhJglj2qMpE6BZs/ejwbjPRpb3NbtT\n", "qbiKuXvj7g24DSj7CDPsnHE36dfOtRe4LwbxmQH3zH2/dvR5FMF2dhzzi3nJcB0Fc/cBacYyTcqG\n", "XuO+J6a6PExgyNbXhyjnMfs+eish+yGV5ZsY9yrmfoBe5n6QMINfS289ezPubwM+H7fZS26ThVXQ\n", "Xa7X2tNEljf4QcCzjEGZ+xT/zuXx2m3S4VHFfIwteONeJcvbUq2LCM/DI+54xty7srxMyEaZkEsp\n", "G/cZmhl3zwh3Ux6kzZ3kmbvdDyiMO8AzK45v/nYoBjszap6522AZrnMbSvEueuZ+mHrm3k+WH8Tn\n", "nmPufhKUviN+VTjivkKYsPt4BWPu1g8+b9zL8maQjYFD+ToOE4pD+fbbZMrGlj0Uxni3+11oz81d\n", "P7HBlKcTMhM2Y+6pcffvljF3G2+ayPLG3L9Jc+Zu788MxSp3OXif+17Cc5Yyd+/+Spm73e+cz92O\n", "Z8/CdwiTGSOJ+wn3elY4Goz7l4CvDnE8e1jN4A0ry/vZOQRmcDq9xv0a4HM4BqwdfYRi8DTp3Wa4\n", "/nr9YGQMwBv3+93+NiDZw2VMyhus7YQgDhs8bTLwIGFA8cfyleO6jFs7+lXt6B3UM/emsryXbddQ\n", "Zu4HCPLw2vjvdgqjup8wAfqsdvT+5JzG3K3YCzj3RmQzNljsoZq5+4HQXmAzYD6g7hBFIRvzFZeZ\n", "+xKWEZ6f/cTIepmQU2VCfpJ6n7sxz+UUBt2uNTXu5m54FEWQnwX4XEWoxGiS4r8D/x3bbO0chLnb\n", "s7Y9aYNn7n4ybM+rDfQ+w4DYH6fLhLyUsnH3LMnqvENwDdnxwr3RUtS5+dxt24k45i4TcqlMyPfF\n", "ffvJ8vYseVl+EONu980HWUJelrcg1UdTZsnG9lLmbq5Jz9ytn74CEN0bU8BkMtE1rCE8v5a5YhJ9\n", "6nNfRjBCiwFkQn41VpA0ZeYlwGdlQtKiOwcpXAp7yAfUWTugeH69/O2Nu4+Wt6VzGzN31wdV7N0b\n", "9z2xfbXMPVnfPSfL2/03JcCY+3cINmMmtutK4Bf6XEtfLCTjnotmRTv6b9rRfxvieCad+XrOBguo\n", "g17jbpWelhBmltcmv98J3YIOvp2fBj5IwoC1ozaAWV6rzZ69oUxr1JeMkHb0nvjdkwkBGiZTQcEy\n", "vcHaTzCUhXEPvsrUuJuxJW23wyGqfe5NmHvK7FLjfg+hj82479GO2vd/Q1icyMP73HcTjIev8e5d\n", "Jjbg3hP/9TD3+LLZhM4Mr9U8t2sz4747ttEWvCinwj2HO+K2fwT+OEbWXwq8msFk+ZS5P0cmZDeF\n", "gZokSNDbKWTB5cCntKP/SPEMWzDaWtdH3rhvAc5yC6542OTydop0JShSGqE3Wt7L8hCUojT24GnA\n", "q+hl7sspJgjWp+8hDKwPYMb97JLbpx9z/z7AVqKskuXt/d9OMCSVAXVRBVkXv3+Y8Ez5fvCpeYZc\n", "QN00YcJ+DmVZHnpl+aUUhtwb9ymCKvK85Hr8s7NMJmSRTMjlhGdgF+WJthn3ewlBtBbUCRd10yD/\n", "gJCdsYRwHw7Etr/SndeOtzKe/16C5F4ny6+jmFT4WAeDjRs+PmiZTMgTZEI+aDvJhFwY6/NDOaAO\n", "Qj//sUzIC2VCnmzrKMT/7d8iwjOzloKgENvyCkKhLlPpnhZ959e4ft6PFQ8qVBo7nk0C7icYdzv2\n", "W4GfZZZYSMa9irkPCy/LQ9ngTEC36Exq3C3/fSmBOTw7bu/H3O0cqe/aUGfcfdtyzB2CoUM7+ifa\n", "0XdTPFyrYpu8VH+Q1LgHPEQwft64G3Ovavc7gRvJy/J+Nl0ny5sqMEUiy2tHfwv4u7h9LYXhQDv6\n", "HTexMXif+yOEAdkz99MoorwnCUzm9cDf0pti6I/588Az4ufVlNO5bMDfTTAglqrk2Zv53A8Dryf0\n", "/acpZvAlWV4m5G0uyCZNhUsD6oh94zMSrObBwxSrgdnguCfuv4bwbKyhbNwnAeIkagd5iXBp7Ltn\n", "U0yMoJAd7Vg5Wd7asZ1e4/6oeB2pcT8x9k8320I7elg7upZQAGt5vNYOxXNqMQeeuVtteXtefWpS\n", "+q5vJkzEILwbJ1Fm7pfGxZwMfw5cQVj17R7t6PPj9n7MPU2FO0xgcxvo9W+bQfcBdfvpleWntaNf\n", "jAqVwTIP7LxLCSt2/hNl5m4TMRuHbteOvoDiGYaymmCG75+0o6sIasFp0M16MOa+MvbNn2hH30W9\n", "LL+OcP/6yfI2kbGJwqnARrffH1KUdl5MUKP+NH6eJgSMngK8L/YFlNXGxbFf7Bq9LH8x8ASKd/Jf\n", "gacQCMVb4357CO+fTe7MPbaaQonbQXg27f7fQ6JoDYNj2bhXyvLa0XdQDCxVxt0eKhuovHFP07lw\n", "+5TkbQczbD6QZRDj/nPEF8pdHwTjfjvFJMSO4Y27+dyNuR9PeAC9LO+j/LvQjv4NYcZexdxTWb47\n", "OLtrM7na+sDP0EP7Cka8h3rYgLGYwufsmfvp8Trts2cy1q/pvZsGng9cHj9bbIQNTDbg7yHcgz1u\n", "sZiCuX+BSwiD7hRBvrycIsXRR0AD/HQ8VpoKl5PlDX4CtSO2wSY4Xvmy6osryBv39B7mpEt/PD+J\n", "S5l7KsubEYK8cTe/cirLn0J4zrwaYrBn6CCbuJ7i/bL7bO1YQnnhmGXu/Kk7Bu3oLdrR/3BtPZmy\n", "z/3x4Moih4nxespGyM5vE64q5u5VRGPu9hznjLuX5b0LyNxHVfFJ/nlfSphMHUdh3O1eHaJYYth+\n", "UzD3W3iUk+P9xBKKMRLXFlOQfN/0Y+62bHSVcbeJiD3zdj/9uu6rKNJ+FwGPaEffGz8boTJVztpi\n", "Y4b1vTHtVJa3c03GzycRCyXFyQvxGkyWn479YRPv4yneYVtF0VwoTdZmqcWxbNxTWT4dMOxBSo27\n", "RaEuIQzUdgxv3KGauVfJ29MUBtdemipZPg2oQzs6rR39Tqb9ywg+pvvcd1XM3WbujyEwFc/cqyYl\n", "ULykpXsU+8ZkrqpoefMl28NfZ9xLzL2mLUsomLttg17j7g2lRcXnGNxUPLcNWEIvczdZ/jEULp1y\n", "QN3inonGUsrpTrYamK2S56XAOlnet79r3OP2hwm+W/O1QujDR1MExA1j3L2M7Sdx5lO0Y6WyvO+T\n", "fszdR6pDf+PufdxQ3Gfrv/3aUR8Y1o+5exhz97L8UopnAoJht9Q8j9S453zuOeZu8L7kXLT8fgp/\n", "rY/OTuGZu72zJxPu/3Hkmbs3qmaciN9Z39kzbO2vWkQpZ9yrmPtaikA+n6Vg8JNGIwZm3Ne6/VZS\n", "KE+eedv12MTEBy5aHIMZ9x3kmTvub/t8AuXnyMYrb9wPEyYMQvFc+Cqn0KseDoxj2bjbCzqocfey\n", "vB+ovc8d6o17nSxvv/NRtb5tU/H3aVR5CgtYsWN7HKBIIYLC525BYecQBt6+zN21KcfcoRy9XuVz\n", "98w9J4t7476beqTM3bZZW84gDNT22Q92lu6SXsM0ob98tL69/FA27qe7Nt4JfKh7jKd31zMwX74F\n", "1nnmvoww0AnhHtf53P0AcwcJc4/bHyFIlX7CtCdu20ORoVBl3LupgAk8U0uD+swHmYuWt/sM9cbd\n", "p8JZ260eec64L4fuGgBVzN36xFiZN+49zD2BZ+4myy8nPhNRfu5n3O0Zq/K5exXxfrePN2x1zB0K\n", "4z4Ic4egElnxK/Njm3H341DorwvZSRFQaobPngcr5gTlzBHzuRv8s2VBqmbkjbn387n7Z97uZ2rc\n", "PXNPx9I1FIF+frJuaYF1zB33t31uatwtYNuYezq+HlPGPRtQNwsMy9xTWd6O1ZS5584FZX+zl2Ch\n", "uG5L3zIDVvcA+AE+FwW81rVxr/vNToJxN+ZuL1uV4mDtW05gD+nExR5cm9nnfO5m3O06U+ZuRu94\n", "mjH3pYRnO73++wkBbFXMfS1wwDFcf8yccU+Z+x6Ccd8DoB19UDv6Fnd8Xy3NrusEisHFfO4mK6bM\n", "PY2Wn6KsEviAOs/cT6U8qO6N2/ZSBDHWGfcqWd4rIjnjnouWt/ussY1Nfe5Qzdytb9LMlZS573Sf\n", "TYodlrnbsspmxCy1aT29z28dczdJ1pi3Bd955m4GHPKpcOZzh3J0doocczfDdzrVPnfP3L3P3f42\n", "9uuZu++XOubuo+UfIO9zz0XL54y73c+V0WUAZeOeY+6mOpiSA0Wf5gLqfLqiwU+4j6c8Ltt4ZSpW\n", "atzT7YZjyriPK6DOBvLUKA3L3JsY9yrmvpbiRfDG3X63k2KQOJQxpGn7/Rr0Hpb/bTKp+dwnKcpW\n", "mnE3pC+GR46R+O/MeDVh7ta+LuKgZwZpUJ+7bYMQ/X05eZ+7sfPcfbN7U2fcLaDOGFDvMb7GBZTv\n", "xX5CIE1JlqccxV5bxCamI15EMUBVMXc/MBpzN+PuDc5hegfgfj53L8sbAzaFqUqW30eRquaR87l7\n", "417F3JdBXF63eKc9c5+hnrn3M+45n7u/V/ZsDMrcTZb3E3/P3C3lyit6ZtxXuH1S5p4z7jnmbpK1\n", "GfdctHyvz/02TqRs3FPm7mV5Iyw55u5l+QdJZPno2tPMby0VzsZhux7vKiB+rmLuXpa3MQoKWR6K\n", "OI11ye+tLVY3ooq5+8l3dyIXj2muMps0tcZ9RDAjMyufu9t3FMbdArXSwJucce938/0An5Plbfsk\n", "BXO3QixQyPK59qeYoloK9LJ8FXO3WWsVcwcXrFbRBqC0qp8NUL5YzRaKQcTa5gc7k+NSmOH3/lUL\n", "bIRCMrR0tLxxX9QjvRlzT2X5lLmXjLsbEPzEJJ1A2X2skuVPoZwiOagsn05ubR8bzFPm7mX5aYqJ\n", "RbowjTF3b2ytPXU+d4vbgOL92u6+Nz+nXVPX5x4l9X6yfC5afjmhcuISmhn3KubuK1x65j5J8Uzk\n", "mLutGT5FL3PPvYtptPxyCsO3nmY+d8/cTZY39mvX5Zl7Kst3n8MkJmcVkbm7z35yt5Zyv9Yxdyje\n", "oX7M3RbnSX3uNk5ZdHuOuR8gpPU1Ye45Wd6rhi1zH+HxbgJ+mXrjbrWtPcYpy0O9LO+Nex3LsPZX\n", "yfIH3fZDBJ+7LXSwiyKXPH3Aqpi7MaEq5m6yvL2EaU2BlLnnjPsugr+8H3O3c9oMeRdl5g6Fzz2V\n", "5SHfr1OE62siy1PRxime1DVOhv0Uxt0zdxuYzOduxsmYO5QZvLHrqoC6HHNfQmFgodq41zF3f/60\n", "kI4x7CpZ3s7dZe4yIUtdf3SNigsU68fcDyc+d5uspsw9DahbBt3g2CpYiqpFOBtzh7LLZhjmbvtY\n", "2w4Tqq5ZjIYxdysEY6lwZtyn6TXu/Zj73rjfoygm9+ZzT2X5Xp/7+d2V4iAvyzcJqIPi2fHMfQ2w\n", "z03UrVJmatxtImJ96427+d3TgLqUuUMxMfZ1K3LGPWXuDxDGEu9zP57mPveUWLQBdaOAdnRSO7qZ\n", "fIU6KGbNKWpl+bjq2iGGY+6QN+7+pWlq3A9QrLfdj7mbb8vOsT3Zr25Sgmtn+uLad3WyfBotD/kH\n", "+27gu2hm3LsxABQTIoCt8f8q5g7VzB3KzP0Q+Wh5qGLuw/ncU1ne97VnVHWy/KMp35u97v8mzH2d\n", "TEgHQuBYjObvJ8ubwamT5UvGneCiwO2fGsFBmfsM4R3IMXefCtePtdsE4yGCfJ0ad0uBg/CM1Pnc\n", "02dgKvl/hjDReAR4XNzXmPt2iomyZc2YcfdGpwlz30dh3O29sJUwl9KMuVfJ8ruA45J1HHKyvB3T\n", "AijN527BdAYL7msaUGdtIp5zRVyXIhdQB06Wj6qBV2d8QF3K3B+gKBQ1SRhXSsw9ZmfYPbJ7ac9i\n", "y9wjRh1QZ6hj7nXGPQ0o8gZ7B4Mz9ybGfRBZ/rXAJ+PfuYA6234N8B3uKp3DmK1fmAbqfe4An8h8\n", "Z3JZVZ67D6irY+5bKBZG6QebCdsM2fr2zvh/VUAd5O+b7bPabTtIKEsrlH3uVLRxmhs5i15Z3nzu\n", "Xpb3PvdcKlyu7d4g5ph7KstDc+N+BvBL8fOrCYVBqmR5C6BKmXuVLO+N+0mE58+rEIZDBD90E5+7\n", "f6e305+59/O3G+6kMDLeuFttCCgMrsddBAOautsgTFo/Q1Fp0frMJhSeuVuZXy/T55h7E5/7XoIh\n", "PZnCuO9x11Wf5347x1OOlu+Oz86graY82evH3M24p1kxk8n/1pY6WX6tc7d8mzCJycnyULw7awiV\n", "+CxDwI+JKXO/B7iaovTtjcDX6PW5Q1Gt0pMOz9yPeeM+alneUGXc91Be0tJgPnc/+HhZHsIgtINe\n", "1DF3zxxnLctrR7dRMLT0Re8O6NrRFwHfZKaU654ad/u/irnb9bw5890gAXV1zN0k9aGZu3Z0P6G0\n", "qa9DPwhzt9/Y/j7qup8sP82iEruEell+kt5UOB8xnLbd9/Eed42PEJ6lze68vp05454G1K2kUBNO\n", "dW2uk+XN4PSV5WVC/lIm5ESKxW5yaZW/SjCEOebu1R/7bNdSx9wHNe6/HP+3cq/euK935y8ZMO3o\n", "+2OxJ+vLaffdVdrR79eO3u3ankrHywilq//OtfkR4B8I93BY5r6eYLTudttsMmFs2afC2XulSLcG\n", "PfTmuUNBgjxzX0HvxN3cPqsIcQYn0Vus6g+A36WeuacBdVbedZrwLpxMPqAOioqWawlxPd7nDkVA\n", "XVfWj2tr/DqhjO4e7egvEYx9KstDcY+8EW+Zu4N/yEaJmeR/ALSj36SoSObhmXuPLB/xTO3obZnf\n", "zpa5XwV8mWayvLXLH9tQClTSjj7MuZwXt+2kV5ZPq/CVEBnG+oprbiLL28DQj7nDYMY9Ze5oR9/n\n", "fHmptA3VPndD6kNbSZgkzVAYtTxzv6jcFgqmnguo+zZ55t5Elv9p4D/jd3cD7wV+z503J8v7ZzNl\n", "7quApXExEFs1sEqWt4A6m/xUyfK2XOwKQpW3s+Kxd1Cw6m47tKMfcIufVMnyqc99hjJzr0qF6yvL\n", "xzbcCKyOkrlSBAOaLP9A/JxzT0GeuafwgaX+2v6bwAytzQeAlwGX0Zy5f5lika29FBFPbTEyAAAg\n", "AElEQVTyOwkpoPacmZspTYUrDPR57Kcw3KksD0WuuzfuUE7xI/7GmPtmgivifNw7pB19j3b0jUmK\n", "qhl3H2eS+tzt3JaVUcXc7TdW7tlSTq3NeykWiUnHwDcB74h/H4jXnKvT0cTnPlLjnguUma9Yzggu\n", "OIMqnzva0dwgbcUjKmX5it/5c/TzuXeNRvK7j2tH98iE/AHN+iJlpYaUrfk2X0lhGJoyd7Sjuyq+\n", "SmX5HHO3tnglJMUgxn2KwCZM/qoaTJsG1PlBaw9BSrf2dtef145qXMAld/9zL7CPgDbjt4gw+7+P\n", "6lQ4CFG6PhuiK2VrR7vrCMS/f9Y3RDs6LRNykDBorXLHgHxAnZdffdGPKlk+x9zrZHkLSKs07g7b\n", "KdZ9MHj1B8rM/Y3xmL9Avr8GYe6m/tg5rIiRMXdb3Sv3/EKGuWfQleVdW81Pa/28kmIJ590yIWm0\n", "/Hoyfacd/aj7uI/AUndRLHls5/cV2lKf+zr33QqCypcG1EERVOej5aFYTMdg78VSwoTgX4DX0HuP\n", "U1j/p8wdgqqxzp3bJp9VAXUrk//NfXCYWLtDJsRKNpfGwBhjZbC/mzD3NFreT9z9sYbGQmLuNpsc\n", "Napk+SzshaI8+KSyfBWayPJ10fJ+Bj0y5g4QfZVoRx/Qjt6e7Gf93qiPEqTM3UuDUPSF97nnHux7\n", "Y3uqJhEe/iV6mOrnpst+nX+zzucOvcy9a9zd93lZ/lZOpZe5QyHLm7/8RKqZu7X3CldSOGXuTWDt\n", "bOJztwmAVQk02TzH3HM+d69MWLzILooCOqsIhsAWsqk07rHe+4uSzd2AusTnPqMdvV07+iBl5u5l\n", "eZNjBx1M/TtszN1YaR1zr0oZ9cfNMXe7LzYh8e9/Tpbv9xx45r6LQs1JmXsuoO4QW1gX/36QPHM3\n", "hdMXsYFe4z5NCPi0tRD+irD4Sr9J/GHK0fKeuVubvHG3e+3vm90Hz9ztf3t+bf898Xrqxnm7J/2Y\n", "uwV6+sDmY1qWbySdDYGBjHvEfwGvjIEj0MtGq9BPlrc1hqtkeW/smxj3NBLX0MPcK5Ay9yYTmFwb\n", "fCrcFykvB9mIuUfJ8ELtaC6WIYWxnRnCkozvqtjPM3f7XRPmbtsO0xskVMXcLc899blDYfyMnZ1M\n", "WLbX+9zTZyK9jlRN6oc9NA+oS4273c8mPnczpF6W/xvCyngHKdKUPHMf9Fr8MwT5d/orFAGVXpaH\n", "vJ+0H+wcuwmD/jr6y/K7CD7lQZm7D0ZdRm+JZi/LH6Jalvcw5m7Pq1/Jz2JI0gmj95svoih2lea5\n", "Q0jlu9i11a7p3qQdUwQp/i4A7ejVwBfoHzib87mbcTc1wYy7KR5VzD017pZi6O/FHsIzWjfOH0j+\n", "N1hAnVfvrgV+zLXjmJflx8HcK2X5yh909CXJpkma9WXWvx8xTSx9KhNymHLayGEKv2533wbnq2Lu\n", "JuMVPs3gq0xhD9hsmLutcb4YOByN9Lfc9znmnr3PLuioH6bc+eomA/8F+DiBKap97sZE9rhtZvh8\n", "e3+H4B9NMc3jSpXEcOey9CPzHZ5EIcv7pYkXU16615D6H5tgL0WuM+53H6b8LHtZfh3lxY3qZPlc\n", "tPy1wKboKtgb14m3QL31hHe8nyyfQ3fSrKqbZUJ+MNmOdvTn3P6eucPsjPvDhOfC8qGh2rhvp3rF\n", "Nn/clLnb/+auk2SflLmv6XMOCPf+NIIP/n7K1fwsI2AFMOV83QVz3wgUhvSJgCQVM98J/Afw9xTM\n", "FXqZ+yFCius2t+219FYuTOGfK++yWERh3P2zaEFzTWR5C0j0wY1m3OuMbpVx75HlY5/aRGcsPveF\n", "xNzH5XMfhrmnGFSWz51rirJvezFFYJsN+rjPg/jcSwN+fLAOpNszSGWmYZj7QxRVx3LnSwcvf75h\n", "kTK4LLSj92lHv5z8roq5W82AWlleO/rv2tF99CIX6ORdAOaLNeOek+Vx7fDXYS6FNIe6DrvJyPLa\n", "0du0oze7/VLmbj73Hlk+5ghbAJb3uRsD3Kkd9emS/j4bc99N4YJoei1+gug/V91/a5MZ936Ddt05\n", "fbCVuYyqSEhV3Ym0bTkDZMw9t/6BZ+4PU6wfXoe9hPdyF8HA/093HiiMe5p+ZszdKtRZbnc6xlxP\n", "MOTPJrxTEr+6jzJuAX6IyNzjb2/RjuYmyB5FEGVR5Mgz99Tnbsw9F1Dnfe2QZ+6T9JaITZEqnYZP\n", "Al+nHD/h0cryjNfnPozhMqTR8lXoF1DnjbsVzbDPh5J9B2HuuVn8Qb/dfO6ZfWB2zP1B6o17Y+Y+\n", "AFJ3RlPM2rjXYB93cjJ5nzsUA8ckgVHdSW9AHeTTM6FZsJbHa4HP099FM0VzWX45Yc0D717ysnx6\n", "P3LG3VhOv6hyj64sn8lzz2GUzH0fxaplfqWvHGyy3o+51xl3C2gj2cfa42s41GEfweDu0o6qCwzz\n", "gXmpcTfmfpCt3Rx2y0bI9fW9hCyIAwS/OtrRtF1fA87DGfeGOExZwfDxCLYgUSrLVzH3nCzvlSc7\n", "flpFLkWWuWtHP6wdvSqeb2nmGN4Xnx5raCwk4z7OgDrNrAQ2CEYRUOeN+zTwsCt9m2Pus5HloRlz\n", "H4XP/UGCXzX1dxlyPvc5Ye4ZTFEdULeLMOEa3rgLq8nL8lDkadsgdTt55l5l3G3gbWTctaM3JyWG\n", "q35nhhbKAXU5Wd4HennmbvJpeg7fbxZQt5fhjXv6flXd/2kKn/s0wzF3Gy+sNkET424TxEFT4ez/\n", "SfLrH3hZ/iG3rQ6+5Gx6figWFJpKvgskq8hzP0Dwr+fO9wBFUZfPAL+W2edr8f9tme/qkKo1nrnv\n", "oohNSKPlcwF1VbK8f++m6M/cqwLqDH6ilm6XZPsxxdzT9XxHBZM0Z4NBmXuVLO/LvT7gvrMX29BU\n", "lq8KqIOEuVf43M3vtNCYe9VL1OR3Vczd8mVTn7tJeP2wj7MrZfm9lJn7LpdaaIGBlbK8a2NVwF0d\n", "mhj3XLR8Ls/dB73mouVL9yP6aG1CNRLmnuS5V91/L8vvYXbM3Rt3M5T9mPtsZHnoffd9KtwgzB16\n", "s09mKAJ7c6u4hXt8TvceHSDE0FQZdwhpezu1o2/P7HNdPN9AzD2JP4Iyc99NmATlZPk6n3udLD80\n", "c8+cL30uc0rjMWXcJ2fJrqtQJSkNgnHI8v2M+9iZe+xvq5UPwzN3K/3Yz7jb96OS5Ydh7lUBdalx\n", "t/amAXVVyFULPEAY2Kx2gik0luN7iDDw+EGmTpYfxE9tGESWX0dg17bsaG5g9cdLo+Vz5zhI8M2O\n", "xLjH/weR5XfTu5JXE9TJ8v187sMG1Nnv6pj7g25bHXxFSg9TDoyl1/nc7X5/i3xf2xhWOVZpR/cA\n", "L6SokjcIfJ/kmLu1r06WtwI3kE+F889W6hdPUeVz9+ezdvfbfkwZ93EE08FojPsoAurqjPu4ZPl+\n", "PnfbbzbM3QfU1cny/kWdj8x9f/yXS4VrJstvK7WNeDx/H+w+W9CRpTXNUAQk7SQPM4ijNu6euZt7\n", "ZQWxuEfcXiquErflouWrjPu9lI27scbZ+tz7BdQto4iCni1zX0pzn/uwzN2OW+dz9yse1qGOuduz\n", "nd6DgrnfVarsVyfLQ/9S2R9PIu2bwrswvHHPMfecLD9NoZpBWZY3wpYy9yayfD/mnvO52/UYjinj\n", "Pg5JHgJzmk0wHTRn7nWDThotX8fcD9Ps5vcLqGtiCA66c83G595Elp9mNArNbJh7lc+9irk397kH\n", "pD53fx/sPueY+zoo1sDOYLbGveq4PhXutPh/bk3ygWV5d34z7sP63FOmPghzn60s75m7GZLZ+Nyb\n", "MPcmAXWjYO6pLO+Zu+W518nytr7BrIPDKuCNu1ePcj73Kua+l3qfuzfuKxiPLJ8z+vPbuIvIc0Xk\n", "NhHZIiK/nfn+hSJyg4hcJyJfF5Fn1xxuXMZ9zmT5aLRmKvZNA+pS4z6baPm+zL3C5w5lWX6YftpO\n", "CKpJC7gYvOzlJzizwTh97makB/e5byi1DQrmbttysrwxd7+WfFXb0+M3wUHKLDx3XFuNz4x7GjtQ\n", "F1DXRJZPmfugE5Wsz71mkpj63GeTCud97pOUla4U+ygK+VShkrnHezRDvSz/CL0ThKq2QG9AnWfu\n", "VdHyhzi7m644K1l+lkiZu6Uk7qHM3H0RmzSgzvaF/j73cQXULSyfu4gsJhQyeC5wIfASEbkg2e3T\n", "qvoEVb2UULXsL2oOeTTI8tD78hq8Yekny3+BkB/aD35Wm6JJtDzAxyiKLQzcTzHifxdBms/9Pg2o\n", "G8Ukrkr+6ocmPvdDFIZ9EJ+7DaaDyPKTFMz9eOrhjzEIfPWwHOwaH6aoaJaWUDVm5FUMz3yWQikI\n", "yuMQ4XpXEiaBZtz7lWn1yPnc+12TGXfzuY8ioM6Me3ayFycbDzNYKlzqypukhrnHPt7e5xzWbqhm\n", "7t7lkrbFasubG6ZKln/Q7T8OpMx9DUX/VEXLpxMnX+Y2lwrno+X7BdTZs1/1LFWl6C44Wf4yYKuq\n", "3q2qU4QFSV7od1AtFftYQ+GTymHBM/cI/8B4eNb6EMUayxDWXP//7IN29G0NijzYYGKGKMUEoUIb\n", "UO1zj8sa2kRjWPeFpbn0Y+7fBv7XkOfwGDbP/VcIVdRSPESoG35f/PtOislRU1l+b+wF36ZbCeuj\n", "+5f7AeCO+NkHMjZl7sNEy9dNCCyg7hGCcX+Ealn+fxEmnhD66RH6xyVYnflrKTP3ocrPOp97P+Nu\n", "ddP30FvOtQlMFfCy/CQhOLAqLgLCAkh1VRO9wYLegT83AZ2ifL0P0meSFycB+6n3udux07YcYltJ\n", "qbmJsJRyeg67t+Ni7l6hOEAwvkLB4nMBdTmfuyH1uQ8UUOcCkOdFQN04y8+eTpjRGb5FZglVEXkR\n", "Ydm8U4H/UXO8cc3+RpEK9yXK11qHKuZ+iDibTsvbakcPEGpjDwOrFlZCrCDVFHWBgE3wIuB15OtF\n", "d5l7fDk2D3kOj6GYe6xrndv+lvjnn8X/LwCQCTGG2a8ONmSYe1Q1vhCPA0F6faX7zTDGfVDmvp/6\n", "d2uaMGDeRFiK8xFCYRJ/noME1v3DEAqTakd/B0Am5HsJE/eqc+wjGMMPAE8iPK91KZw5pM9nlevL\n", "YAM1FOVvb2x4LoNn7iYHT2lHe8Y4D+3oFX2O213MKCK9tpzryjNtCM/prX3OA/CHFH5xfz4/WfBt\n", "sb/N576CkOZ2mFAQKYc3UC43PUp04xC0o4dkQm4CHh/b55n7UsrrWxgOUZ7c2FoDwxaxgbD2fF0t\n", "CjLHWHDMvVFQlKr+q6peQCh/+HeVO17JGSKyKf77Vc80ReSKWXye4U6WzOZ4bGI9m4oBvs/+h7me\n", "09LveRvfBH5/BNeTfv4cf8wl/fbHoef6Psf5kXXODNk/G9nEJ60oT09/bANu4JQRXS/cxAmeJY+4\n", "P/3nwNyv4+S+/ftWnmg+95723sFKtjFjPmL3fTDuf8uT+SpfAz5Yefw7uhG/Pcev+6wd3cnf87qa\n", "/afYBlyLAD8DXMU24E43dmziEv6dXweerh19pOf+buVE7iwGruT7V/IGhPfwTeDT2lHlDlbE+zfV\n", "r/0A/D1PtkwEVd3MV9jgs6Z79v9nLmALp8XjX8sNfJRNXSPf6P7zZc6JH/ezhfUxenyy6e9rPr+C\n", "P2S5+zzNNuANPCN+nuQGji9dz79xAtc6BrqJ29hE1wVadT7t6Ju0o5M94+FWlvAhnmjnc99/CPh7\n", "rkJxAXV9nq8/YhOXjen9O0z5ef8wAH/Bd3Mna6x9fJkzuZHzCMG6M27/twNvZxvlEjrbWM1VnENU\n", "gETkCq7nFKLPvc/1vpFNPKNmvICrOad0/97J5WwDvsEJEuzb+/gj/g+zxDiZ+33AGe7zGdTM4FT1\n", "KhFZIiInqmpvoY6f4Bva0U0Vv908i88znMMBv22Wx+t/vku4R/9lbs6nHf2fdKDp/rnPPKvLag6P\n", "ob0z0ejd23D//u19fNdnPTOG9nY/y4T8NrCGS7le/7X+fsqECFEl6mnveTyCZ/TF8YNxfzlXa0ev\n", "7HP87lrlA1/PHfoPNd9PswHYwBbt6JUyIR9jA79CoUTY/psrfn+Yc1mCUzeS5/NuOt0c57De+Hld\n", "WXuqSfv5SUxxCX14OVtwrL9n/x/hs8CbCYP9/yVBk/6TCbkwftzHxq7MP9n091Wfk/4AOMwG4Hf5\n", "bPw8xRO4S//Z/eZr+qfDni/z+TDnspdzucbOl3z/svgs/za2rvx4x8u69+8w7nmXCfkKcDs/x+cI\n", "alMw7k/lFkL52wPp8WRCHorjT4ENLGEDNxKWnrXFiJ5PLCg1i/YGt/TTuFU/6fZ5XffdeUA/FGyc\n", "TMhJbCq7sQfFOJn7tcBGETlLRJYBLyYEZ3UhIueIiMS/nwiQNewB81mWHwRVPvcjipS9J0hTjEaJ\n", "tNLUKDBstPww52kUUKcdVe6qjJSertg+SJbCsLJ80+OmUnnT81hcwiB+10HjB7rSdXyO+/ncdxGC\n", "6AaNT/BIZflBVrEbBNOUy2PnAupGidTn3hMcqB1VtqGEZ3+cbemHUnyCdvSAdvRDFDnvFksxRb4m\n", "P1Tfs5wsD7MbUxr73LWjdfFnjTA2466q0wQ/6ycJkd0fVNVbReQ1IvKauNuPAjeJyHXAO4CfqDnk\n", "fA6oGwTz0rj3wWx97pWIg5YyWqM0bJ77oBgkoA60MkPBD6Ye3ufepC1akwc/LKqM+iBpaoMGrA1r\n", "3JtGy+8mMLtRGPd9RB/tmCpopjE6VRkdozxfrXGPmCHEUoyzLf2QBh8aLKDOR8uvozrN1X6THsOP\n", "1aMgDIP43GeNsea5q+onVPVxqnquqr4pbnuPqr4n/v0WVb1IVS9V1e9R1a/VHO5oMu5zeb5GqMlz\n", "h/EydzvuyJn7kFWvBj1Pc+N+DjuoToOsGqSo+E2KqqyI2aI0+LkMjEEN7yDGfVB1IJfnXnnv48pk\n", "+xmdcbcUrHEgnfiNqhZEFexdzKXCFdjANMF+jGtcboKscY8TXD/5mCRkYuT6zX6fq9efY+6zGVOq\n", "jPhYyNNCqlA3n/PcB0HL3PPHH+Wx/UIa44QZ96YD+z6Gk+WbMvdxGPdc5PogEwmfqtQUs2XuTVxt\n", "u5mdQfarwi2Z5bHqkI4Xlks/LqTMveoeHCYs73skx7I6UnAIOI4ycx/EuOeK2MBomHvpGHHCXKXe\n", "DY2FZNzHWX72mGfufXzu/cp5zhbjYO5z0ceDFLGB2yvrq6d5yoZBfe7jZO7DGvdhmPugMmX3+XQ+\n", "935GZxej87kzy2PV4Ugw96pUuAIhG+FI+tvBpcJlMEmxZkCdLJ8uxqNue1pbHsbD3O27kU6UFpJx\n", "Hydzn8vZ50Jm7uNqd5XvbFiM/EWpwGGCb6+pz72qGtwomPucyPLuXIOy6kGZ+yA+7EF97jA6427X\n", "NU7mPl997vPBuFc985ME5m5FbPoxd+tTP1kbNXOvmyCMnJCMMxVu1OgZQEVkZAEssml0x2qATbJJ\n", "Ns3h+RohJi7UYats6t1HVfv+sA9GzdyrmPCoUVTsaoLzKxfYGFVA3TjYY06WzxZGqkCV7NnvN4Nc\n", "S8nnLhOykWbGfVmffergy5KmhWdGifTZmItoeT85yl/X2RziyAbTQb1xP0QoeW3MfTH1AXXWpxYg\n", "WRVQNy7mPvIxa0Ebd5i9YZEJ+QPgudrRJ8/mOAOc71bg77Sjb5yL840CMiFPBa4GztSO3lv6bjQT\n", "rIXK3Acz7qHsaNUAM4pUuKNJlh/KuMf/m6hxuwnMblgcKeO+j2YVEYfFYcquyjqf+3xn7lBeu6EJ\n", "c/cLQ81VKpx9d8z63NuAujGiYZ77OH3uow6om0vm3mxg/1M+DPxT5psqY2nHPZKyfFVA3Thl+UGO\n", "78/RNM8dRifLTzNe457K8q8EPjOmc0GDPHcA7mQx89u4+0Vc7Bp62ptZac9k+aqAunH63FvmPmK0\n", "qXD90frcq88DTZ/Nh9mnHc0Nlv1k+fnA3NMa4+OW5Qe5lmGY+0Ix7qVnQztat+jMKGDvYn0qXGD3\n", "R1qWr3PneYOeBs2lmKYsy8N4mXuVz70NqBsx2gp1NM5zb6Ple88DDY17TR/P51S4UcnyAwfUDbB/\n", "sfhQkec+buZu7qi5Zu7jRhotn++jc/ouODQXqIuWPwRMx/Us6mR5CPcwleVtpc+5Yu4jVxsXknEf\n", "J3Mfu7EVke8RkdtomXvV8UcdUDf/mHv9cUZh3OcqoG5e+dxdrrV/Tsed5z4DzMRz+5XsRo25mqga\n", "mkbLH+bIM/d+Pvc0k6GOuffzuQ+anll1nqpjHNM+9wUjy4vI3SLyfX6bql6lquczT5n7PPC5L0Tm\n", "3m8ALKGmj+vy3LVhSth8TYWbi2h5iAP9HOe5+745mph7f+O+lWXMD+Ze53M3g92PufvaAWkqnA+c\n", "tHMOi9a4V2DBGHeCZFc1IM9pXr2ILB7BYcbN3McRUHe0MPem/TIuWX62qXBzEVBn5xkkz/066K60\n", "NgxMvoa5jZYfNw4T5Ox6n7suiDz3lLkPKsuPK6BuTvLcF5JxH5fsNSc+97im7zfjuQ5Hdv8bInKD\n", "iOwUkStFZLnb/wdF5HoR2SEiXxKRx7vv/reIbBWR3SLyDRF5kfvulXH//yci2yFd8DWPI+xzH0dA\n", "3ULzuefaa36/pm2Zzz73OWHuTWrLA2hHr9NOeanUAXG0M3c7d/4+bGQP81uWP0TxzDUJqJuLVLi6\n", "YxzTAXXjMu5HKhVOgR8HngNsAC4mpLkgIpcCfwX8LHAC8B7gYyKyNB5jK/AMVV0HTAAfEJFT3Dku\n", "A+4kFHEYRT79QpTljxbm3vQ6xi3LD5sKl+YRN/3NMMZ9EJ/7bDFXxv1I+dzt7zqf+0Jh7k0C6qpk\n", "+Tagbg5wNBl3O9+fqOr9qroD+DhwSdz+c8B7VPVrGvC3hIH+qQCq+hFVvT/+/SFgC3C5O8e3VfXP\n", "VHVGVRu9gA1ryy+kgLp5x9xr+nhUsvw4A+pSn3uj++Xk3XGmwkE0tgPkuc8WcyXLH0nmbsGCvbij\n", "u5zqkUS/hWOaBtT5kr77gMPxuV3QAXULKc994IFLpNLv7RB2kU3V+6oy2/KqHj5I4363/QBwWvz7\n", "TODlIvJL7vulwKkAIvJy4NeAs+J3a4AT3b7fHGF7oWXudeeB2Q/sdQF181GWH8TnDoOzvKFlecKY\n", "NhdxLUczc/fy8XyvLV+3cMwwzH0f5eJRaUDdgilic1Qzd1Wk3z82ya+xSf6pdp/Roi5a3iYY9wJv\n", "UNXj3b81qvpBETkT+AvgF4ETVPV44GYotXPgkrBHeD33UbOTuWLudo5x5rnPx4C6QV0A3qfZ9Jyz\n", "9bmP+/7bMp1w9DL3auN5HjuZH8Z9FNHyqc/dT25G6XOvG0db4z4GjGsgWCYiK+wfhUpS97Kagf5L\n", "4OdF5DIJWC0iLxCRNYRFDRTYDiwSkVcBF42h/R6HoSSxjhrHOnNfCD73YVPhYO6Yux8854K5e1n+\n", "aMtzt78Xcp77QeiOW3Xt9cZ9P/XGfejnypW6rfK5H7MBdeMYuGB8xv0/CA+K/etQRObnbmI3fU5V\n", "v04Ipnsn8AjBp/7y+N0twFuBLxNk/YuAL+aOMwga5LmPc7BcyNHyk02XJu3jc6+S5Y80cx+VLD8X\n", "AXVz7XP3MRdHK3PPX9ftrGHhMHco57KnsMV/lLIsP2rmDtXveutzHwNGngqnqhuqvpMJ+WfgcLqP\n", "qk4knz8JfLLi+L8H/F7Fd+8H3j9om/tg3APMqJn7XOa5j2JQr1s4ZhCf+3ysUAdz63MHuIcw+R0n\n", "jmafe39ZXkuLrRwpNI2Wh3rjbs/bNNWyfF2O+iBojXsGC02Wr8JOxrtk41Bo4HNvmXv+PI3T4IbI\n", "cx+Euc/XVDg7xriN+wxh0rw5fv79AX8/KI6FaPlq5n4+j7CwmHtq7D1M9ZoCHiK4PO3442Duc+Jz\n", "b437HFeMA36GIWTzI4z9BFfAuPCPhNz9UWEr8A8jPF4VBjLuNajy2X6HEDzZ9BjjMDBTwP9N4i38\n", "SltN8C7gwQH2H8bFME4Dm8OxwNyrU+HmR557neJ3FbDOfe7H3E2Fu4tQJ8SOP8rys3auOclzb407\n", "fItyGtlYMcagtFlBRK6oYpba0cPA747r3NrRt434eNsZ72TEMJBxr+njfwY+l27Ujh4gFClqguwx\n", "ZosYT/A7yea3MdjCLo2qJDrcS4gzGQQvAu6se45HjAeBW+LfWwmMbxz4NnD7mI6dw10UKbrXAw9n\n", "97qePVzCvXPVqApspSLtVzt6VbLpv6m+R7cS+vnpyZK6d1OorKNIhbPjzIksL9osFuiIQkSUTZyh\n", "Hf1Wul1VR52qdkxi2EHxWL4HMiE/CvyhdvSCRvvPneE5ZtH28dzgWOtnmZC1BEP/ZO3otbM4zlbC\n", "JOKBZPuzgHu0o3d1t81ybG2Zewugr8+9RR4DBdS1fTx+tH08NzgG+3lUAXVPTtQBALSjI1fdFlIq\n", "XGvcW8w3jMrn3qJFi/mNkfjcc4Z9XGiNewugb557izwG9rmPryktoO3jucIx2M/jrtI5crTGvUWL\n", "4fEtQqBOixYtjmLEwNK5Kms9ErTGfZ5BRH5YRL4pIntE5JL+vxgNjkEf2qyhHf2GdvRXGu/f9vHY\n", "0fbx3OAY7ee5Ko41EozduIvIc0XkNhHZIiK/nfn+J0XkBhG5UUS+JCIX544T07EWDETkGSJytYjs\n", "FJGHReSLIvLdDX76x8AvqOpaYKeIzIjIQpqEtWjRosXRiLmuOTArjNVoiMhiQn305wIXAi8RkTRt\n", "6C7ge1X1YuAPaF60Y95CRNYB/wa8AzgeOJ2Qr1zrnxURAR5LkT/b/WoMzUzPfcW4z3Gso+3j8aPt\n", "47nBMdrPLXN3uAzYqqp3q+oUcCXwQr+Dqn5ZVXfFj18BHjPmNs0FzgNUVT+oAQdV9VOqelNc5e33\n", "RORuEXlARN4vIutEZDmwB1gM3CAiW4HPx+PtFJHdIvIUEXllVDj+n4jsEJGtIgyPR1QAAA1nSURB\n", "VPI0EXmViNwbj/lya0hcTe46EdkVv++4714sIneJyNr4+Xki8h0RmbOiPi1atGixQND63B1Op1xB\n", "6FtxWxVeTVhNbaHjduCwiLwvuiWOd9+9CngFcAVwNrAGeKeqHlLVNXGfi1X1XOB74+fjVHWdql4T\n", "P18G3ACcQCjd+iHgicA5wMuAd4rIqrjvXuBlqnoc8ALgtSLyQgBV/SBwNfAnwE3Ae4FXq2q+KlWL\n", "WeEY9VPOKdo+nhsco/38acIqnQsC4zbujcvficizgJ8GevzyCw2qugd4BuH6/xJ4UEQ+KiKnAD8J\n", "vDWqGfsIpT1/osKvXiXHb1PV92soL/gh4DTg9ao6paqfIhRWOTe25fOq+o34900E9eSZ7li/CDyb\n", "ULr0Y6p6NEyuWrRo0WKk0I7+lHZ03i36VYVxV6i7DzjDfT6DwN5LiEF0fwk8VzWf5C8i7yPU+oWw\n", "str17rsroJhNdv1Bm0ZUa3sTz8odv8HnV8XPP0Wozf424FRgnSvfeC/hPryIUB8c4HIReay73mfG\n", "UoSb4+eD7ve20tF3Afb9DPA9wI0icjnw58BZhMnCcuDz9ntV3SUi1wA/DvzIgNfXfh7gs22bL+05\n", "Gj+nfX2k23MUf75EVd8+j9qz4D9HXEEYq2eNsdaWF5ElBIn6+wiF+b8KvERVb3X7PBb4LEE6vqbi\n", "OKqZGrtV2+cjROR1wM8RFpz4J1V9d9x+HnAzsEJVZ0RkBjhXVe8SkTOBbcAS1bDgjIi8kiCdf0/8\n", "fC5wh6oucuf6JvBiVb1aRO4kyO7vVtVJEXkbcJKq/lTc9xJC/38dmFbV5w14XQvmHhxpuAlZizGh\n", "7eO5QdvP48dsx9axyvKqOg28DvgkIQL8g6p6q4i8RkReE3f7fUJE+bslBH59dZxtmguIyONE5NdF\n", "5PT4+QzgJcCXCT7yXxORs0RkDfBG4Eoz3gkeIrDwc2bRnDXAjmjYLwNeSnSXiMgK4AME18ALgNNF\n", "5LWzOFeLGrSD4fjR9vHcoO3n+Y+xLxyjqp8APpFse4/7+2cIa5wfTdgDXA78uoisJ7gRPg78JrCP\n", "4CP/ArAC+E/gl9xvu1KKqu4XkTcAX4oqyPPi96ncUie//ALwVhF5JyH6/kPAcfG7NwH32P0QkZcB\n", "nxOR/1LVOwe+6hYtWrRoMS+wYJZ8Xeiy/HzHsDJbew+ao5Uyx4+2j+cGbT+PH/Nalm/RokWLFi1a\n", "zD1a5t5iVmjvQYsWLVqMHi1zb9GiRYsWLVqU0Br3FkBPrmWLMaDt4/Gj7eO5QdvP8x+tcW/RokWL\n", "Fi2OMrQ+9xazQnsPWrRo0WL0aH3uLVq0aNGiRYsSWuPeAmh9aHOBto/Hj7aP5wZtP89/tMb9GIGI\n", "/IeEBWxatGjRosVRjtbnPkaIyE8Av0ZYsW0fYRGY99uiMUcD5vs9aNGiRYuFiNbnPk8hIr8BvB14\n", "M3CKqp4C/DzwdBFZdkQb16JFixYtjmq0xn0MEJHjgAngtar6z6q6D0BVr1fVl8UV2l4QV8HbJSL3\n", "ikjH/f6KuGyrP+bdIvLs+PdlInJt/O39IvLWuH2FiHxARLaLyA4R+aqInBy/2ywir45/nyMin437\n", "PRR/84LkXL8hIjeIyE4RuVJElo+73452tH7K8aPt47lB28/zH61xHw+eCiwHPlqzz17CGvbHEZZb\n", "fa2IvLBmf+8/eQfwtvjbs4EPxu2vANYBjwFOAF4DHHS/98d4A3AqcAFwBvDK5Fw/DjwH2ABcnHzf\n", "okWLFi3mMVrjPh6cBGz3a7SLyNWRTe8Xke9R1c+r6jcAVPUm4ErgmQ2PPwlsFJGTVHW/qn7VbT8R\n", "2KgB16nqnvTHqnqnqn5GVadUdTvwNnrXjP8TVb1fVXcQlqu9ZIDrb5FBu4rW+NH28dyg7ef5j6Pb\n", "uIvoSP4NjoeBk0Sk27+q+jRVPT5+JyJyuYh8TkQeFJGdBJZ9YsPjvxo4D7g1Su8mqf8d8EngShG5\n", "T0TeHNeBT7pFTolS+7dEZFf8XXru+93fB4A1DdvWokWLFi2OMI5u464qI/k3OL4MHAJeVPG9AP8A\n", "/CvwGFVdD/w5xf3YB6zq7iyyGDi5uCzdqqovVdWTCQF7HxGRlao6raqvV9XvAp4G/CDw8sz53wgc\n", "Bi6K0v5PAStrrmf+p1QsALR+yvGj7eO5QdvP8x9Ht3E/QlDVnYSAuneJyI+KyFoRWSQilwCr425r\n", "gB0xuO4y4KUURvQOYIWIPF9ElgK/R/DhAyAiL7NAOWBX/N2MiDxLRB4fJwN7gCmCEU+xhjCB2C0i\n", "pwO/2eeS2lS3Fi1atFhAaI37mKCqfwT8OvBbBIn7fgI7/y3gauAXgNeLyG7g/1AExaGqu+L37wW+\n", "RQi+89HzzwFuFpE9BH/5T6jqIeAU4MMEg38LsJkguaeYAJ4Y9/s48E8UgXfZy6Fl77NG66ccP9o+\n", "nhu0/Tz/0RaxaTErtPegRYsWLUaPtohNi5Gg9aGNH20fjx9tH88N2n6e/2iNe4sWLVq0aHGUoZXl\n", "W8wK7T1o0aJFi9GjleVbtGjRokWLFiW0xr0F0PrQ5gJtH48fbR/PDdp+nv9ojXuLFi1atGhxlKH1\n", "ubeYFdp70KJFixajx2zH1p664wsNMlzt9xYtWrRo0eKoxdhleRF5rojcJiJbROS3M9+fLyJfFpGD\n", "IvIbgxxbVaX9N5p/wLNm8dsWDdD6KcePto/nBm0/z3+M1bjHGufvBJ4LXAi8REQuSHZ7GPgl4I/H\n", "2ZYWfdEu6Tp+tH08frR9PDdo+3meY9zM/TJgq6rerapThDXLX+h3UNWHVPVawiInLY4c1h/pBhwD\n", "aPt4/Gj7eG7Q9vM8x7iN++mUFzz5VtzWokWLFi1atBgTxm3c22C3hYOzjnQDjgGcdaQbcAzgrCPd\n", "gGMEZx3pBrSox7ij5e8DznCfzyCw94HRRsWPHyLyiiPdhqMdbR+PH20fzw3afp7fGLdxvxbYKCJn\n", "Ad8GXgy8pGLfyqjrNiK7RYsWLVq0aI6xF7ERkecBbwcWA3+lqm8SkdcAqOp7ROTRwNeAdcAMsAe4\n", "UFX3jrVhLVq0aNGixVGKBVGhrkWLFi1atGjRHG1t+WMAIvLXIvKAiNzktp0gIp8SkTtE5L9EZL37\n", "7ndi0aHbROR/HJlWLyyIyBki8jkR+YaI3Cwivxy3t/08QojIChH5iohcLyK3iMib4va2n0cMEVks\n", "IteJyMfj57aPRwwRuVtEboz9/NW4bST93Br3YwN/Qygk5PG/gU+p6nnAZ+JnRORCQmzEhfE37xKR\n", "9jnpjyng11T1u4CnAL8YCza1/TxCqOpBQjXFS4CLgWeJyDNo+3kc+BXgFoqsp7aPRw8FrlDVS1X1\n", "srhtJP3c3oBjAKp6FbAj2fxDwPvj3+8HXhT/fiHwj6o6pap3A1sJxYha1EBV71fV6+Pfe4FbCTUd\n", "2n4eMVR1f/xzGSGWZwdtP48UIvIY4PnAeymCnds+Hg/SgPGR9HNr3I9dnKKqD8S/HwBO+f/bu3sQ\n", "O6owjOP/J34bgyJRiSiYwlJQUkjcIm5AQQiCjaRQLIKNKBZqoYUBKytNujQWEiQQ0IQEC+NXE/CD\n", "xBXFaKdiEZJUsl0+fC3mXLwbdt1ddjbLzv3/mpl75l44PFzue2fmzDlt/17mPq7oxEPL1J4OeQT4\n", "DnPuXZINSX6ky/PrqvoFc+7b+8AbdIOcR8y4fwV8keRUkhdbWy85r/tV4bRyVVWLzCPgqMslSnIb\n", "8DHwalXNJv/9KTfnflTVP8DDSW4HPksyfdVxc16BJLuA81U1s9ACMWbcm6mqOpvkLuDzJL+NH1xJ\n", "zp65T65z7TFEkmwBzrf2qyceuq+1aRFJbqAr7Aer6mhrNudVUlV/A58C2zDnPj0GPJ3kd+AQsDPJ\n", "Qcy4d1V1tm0vAEfoLrP3krPFfXIdA0YzTL0AHB1r353kxiRbgQeB79egf+tKulP0D4AzVbVv7JA5\n", "9yjJ5tHo4SS3AE8AM5hzb6rqraq6v6q2AruBr6rqecy4V0luTbKp7W8EngR+pqecvSw/AZIcAnYA\n", "m5P8BbwNvAscTrIH+AN4FqCqziQ5TDdK9jLwUjkZwlJMAc8BPyWZaW1vYs592wJ82EYJb6C7SvJl\n", "y9ycV8coL7/L/boHONJu3V0PfFRVJ5KcooecncRGkqSB8bK8JEkDY3GXJGlgLO6SJA2MxV2SpIGx\n", "uEuSNDAWd0mSBsbiLmlJkmxLsr/t70iyfa37JGl+TmIjaUmq6jRwur2cBmaBb9auR5IW4iQ20oRq\n", "q9cdr6qH2uvXgY3A43Qr2k0DdwB7qupkW0TkNeBl4FvgCnABeKWqTl7j7kv6H565SxoZ/6d/XVU9\n", "muQpYC/dHO7dm6r+THIAmK2q9651JyUtznvukubzSdv+ADywwHuyQLukNWZxlybXZeb+Btw8tn+x\n", "ba/gFT5p3bG4S5PrHHB3kjuT3ATsWsZnZ4FNq9MtSStlcZcmVFVdAt6hWxP6BPDr6BBz77/Pt38c\n", "eCbJTJKp1e6rpOVxtLwkSQPjmbskSQNjcZckaWAs7pIkDYzFXZKkgbG4S5I0MBZ3SZIGxuIuSdLA\n", "WNwlSRqYfwFGrKbwp2KrlgAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x11226fad0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df[['Linear', 'Softmax', 'Gaussian']].plot(title='nonlinear activation function', figsize=(8,6))\n", "plt.xlabel('unit')\n", "plt.ylabel('accuracy')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-2-clause
rnder/data-science-from-scratch
notebook/ch16_logistic_regression.ipynb
1
89285
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "# Ch.16 - Logistic Regression" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from collections import Counter\n", "from functools import partial, reduce\n", "from linear_algebra import dot, vector_add\n", "from gradient_descent import maximize_stochastic, maximize_batch\n", "from working_with_data import rescale\n", "from machine_learning import train_test_split\n", "from multiple_regression import estimate_beta, predict\n", "\n", "import math, random\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def logistic(x):\n", " return 1.0 / (1 + math.exp(-x))\n", "\n", "def logistic_prime(x):\n", " return logistic(x) * (1 - logistic(x))\n", "\n", "def logistic_log_likelihood_i(x_i, y_i, beta):\n", " if y_i == 1:\n", " return math.log(logistic(dot(x_i, beta)))\n", " else:\n", " return math.log(1 - logistic(dot(x_i, beta)))\n", "\n", "def logistic_log_likelihood(x, y, beta):\n", " return sum(logistic_log_likelihood_i(x_i, y_i, beta)\n", " for x_i, y_i in zip(x, y))\n", "\n", "def logistic_log_partial_ij(x_i, y_i, beta, j):\n", " \"\"\"here i is the index of the data point,\n", " j the index of the derivative\"\"\"\n", "\n", " return (y_i - logistic(dot(x_i, beta))) * x_i[j]\n", "\n", "def logistic_log_gradient_i(x_i, y_i, beta):\n", " \"\"\"the gradient of the log likelihood\n", " corresponding to the i-th data point\"\"\"\n", "\n", " return [logistic_log_partial_ij(x_i, y_i, beta, j)\n", " for j, _ in enumerate(beta)]\n", "\n", "def logistic_log_gradient(x, y, beta):\n", " return reduce(vector_add,\n", " [logistic_log_gradient_i(x_i, y_i, beta)\n", " for x_i, y_i in zip(x,y)])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# [experience, salary, paid_account]\n", "data = [(0.7,48000,1),(1.9,48000,0),(2.5,60000,1),(4.2,63000,0),(6,76000,0),(6.5,69000,0),(7.5,76000,0),(8.1,88000,0),(8.7,83000,1),(10,83000,1),(0.8,43000,0),(1.8,60000,0),(10,79000,1),(6.1,76000,0),(1.4,50000,0),(9.1,92000,0),(5.8,75000,0),(5.2,69000,0),(1,56000,0),(6,67000,0),(4.9,74000,0),(6.4,63000,1),(6.2,82000,0),(3.3,58000,0),(9.3,90000,1),(5.5,57000,1),(9.1,102000,0),(2.4,54000,0),(8.2,65000,1),(5.3,82000,0),(9.8,107000,0),(1.8,64000,0),(0.6,46000,1),(0.8,48000,0),(8.6,84000,1),(0.6,45000,0),(0.5,30000,1),(7.3,89000,0),(2.5,48000,1),(5.6,76000,0),(7.4,77000,0),(2.7,56000,0),(0.7,48000,0),(1.2,42000,0),(0.2,32000,1),(4.7,56000,1),(2.8,44000,1),(7.6,78000,0),(1.1,63000,0),(8,79000,1),(2.7,56000,0),(6,52000,1),(4.6,56000,0),(2.5,51000,0),(5.7,71000,0),(2.9,65000,0),(1.1,33000,1),(3,62000,0),(4,71000,0),(2.4,61000,0),(7.5,75000,0),(9.7,81000,1),(3.2,62000,0),(7.9,88000,0),(4.7,44000,1),(2.5,55000,0),(1.6,41000,0),(6.7,64000,1),(6.9,66000,1),(7.9,78000,1),(8.1,102000,0),(5.3,48000,1),(8.5,66000,1),(0.2,56000,0),(6,69000,0),(7.5,77000,0),(8,86000,0),(4.4,68000,0),(4.9,75000,0),(1.5,60000,0),(2.2,50000,0),(3.4,49000,1),(4.2,70000,0),(7.7,98000,0),(8.2,85000,0),(5.4,88000,0),(0.1,46000,0),(1.5,37000,0),(6.3,86000,0),(3.7,57000,0),(8.4,85000,0),(2,42000,0),(5.8,69000,1),(2.7,64000,0),(3.1,63000,0),(1.9,48000,0),(10,72000,1),(0.2,45000,0),(8.6,95000,0),(1.5,64000,0),(9.8,95000,0),(5.3,65000,0),(7.5,80000,0),(9.9,91000,0),(9.7,50000,1),(2.8,68000,0),(3.6,58000,0),(3.9,74000,0),(4.4,76000,0),(2.5,49000,0),(7.2,81000,0),(5.2,60000,1),(2.4,62000,0),(8.9,94000,0),(2.4,63000,0),(6.8,69000,1),(6.5,77000,0),(7,86000,0),(9.4,94000,0),(7.8,72000,1),(0.2,53000,0),(10,97000,0),(5.5,65000,0),(7.7,71000,1),(8.1,66000,1),(9.8,91000,0),(8,84000,0),(2.7,55000,0),(2.8,62000,0),(9.4,79000,0),(2.5,57000,0),(7.4,70000,1),(2.1,47000,0),(5.3,62000,1),(6.3,79000,0),(6.8,58000,1),(5.7,80000,0),(2.2,61000,0),(4.8,62000,0),(3.7,64000,0),(4.1,85000,0),(2.3,51000,0),(3.5,58000,0),(0.9,43000,0),(0.9,54000,0),(4.5,74000,0),(6.5,55000,1),(4.1,41000,1),(7.1,73000,0),(1.1,66000,0),(9.1,81000,1),(8,69000,1),(7.3,72000,1),(3.3,50000,0),(3.9,58000,0),(2.6,49000,0),(1.6,78000,0),(0.7,56000,0),(2.1,36000,1),(7.5,90000,0),(4.8,59000,1),(8.9,95000,0),(6.2,72000,0),(6.3,63000,0),(9.1,100000,0),(7.3,61000,1),(5.6,74000,0),(0.5,66000,0),(1.1,59000,0),(5.1,61000,0),(6.2,70000,0),(6.6,56000,1),(6.3,76000,0),(6.5,78000,0),(5.1,59000,0),(9.5,74000,1),(4.5,64000,0),(2,54000,0),(1,52000,0),(4,69000,0),(6.5,76000,0),(3,60000,0),(4.5,63000,0),(7.8,70000,0),(3.9,60000,1),(0.8,51000,0),(4.2,78000,0),(1.1,54000,0),(6.2,60000,0),(2.9,59000,0),(2.1,52000,0),(8.2,87000,0),(4.8,73000,0),(2.2,42000,1),(9.1,98000,0),(6.5,84000,0),(6.9,73000,0),(5.1,72000,0),(9.1,69000,1),(9.8,79000,1),]\n", "data = list(map(list, data)) # change tuples to lists\n", "\n", "x = [[1] + row[:2] for row in data] # each element is [1, experience, salary]\n", "y = [row[2] for row in data] # each element is paid_account" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "$paid acount = \\beta_0+\\beta_1 experience+\\beta_2 salary+\\epsilon$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "unpaid_salaries = [row[0] for row in data if row[2] == 0]\n", "unpaid_users = [row[1] for row in data if row[2] == 0]\n", "paid_salaries = [row[0] for row in data if row[2] == 1]\n", "paid_users = [row[1] for row in data if row[2] == 1]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEZCAYAAACjPJNSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYFdWZ/z9vA60NyDqNBsEGR41iRhEGNKOGxgwq8nPD\nRMQkKjJPJqLjNvFxyWg3xrhlcZnRqBEVTQAV4xIlgkYbx3EBFUUDKmpoF5RuERAisr6/P+rcpvpy\n966qe+ve9/M89XTdU1XnvHW7u976nvO+54iqYhiGYRhhU1VsAwzDMIzKwByOYRiGEQnmcAzDMIxI\nMIdjGIZhRII5HMMwDCMSzOEYhmEYkWAOxygLROQwEVma4fjdInJlRLZsE5E9o2grH0TkVBF5MsPx\nZ0XkzChtMioLczhGSSEiy0XkKxH5UkQ+dY6ia7brVPV5Vd0vChtzIG1ym4j8TUSOSCo7XUT+N3Sj\nVGeo6tGFXJvKYYtInXOu9hwxcsL+UIxSQ4FxqtoDGAb8M/BfxTUpb6SAa+KagR2o3SLSKcj6jNLC\nHI5RigiAqn4K/Bn4FoCInCEiS5z6eU9Eftx2gcgoEfnI9/kgEXlVRNaKyCxg57SNiewpIn8Rkc9F\npEVEfi8iPXzH/yYi/ykib4jIahGZKSLVvuMXicgKEflYRCbRgYewTzWcJiLNzp7LfMcbRORBEZnl\nvodXROQA3/GL3XfzpYi8JSIn+I61U1IiMkZElrp7+m8Kc5R+2y9238GXrt7RrlxE5BJnV6uzvVfS\n/Z4pIs3AX0RkJ/c7+NzZ9rKI1HbENqM0MIdjlCwiMhA4BnjNFa0EjnHqZxJwg4gM9V2i7rouwMPA\ndKAP8CBwUqamgKuB3YD9gAFAY9I53weOBAYDBwJnuLaOBi4EvgvsDfxr3jeamkN99V0hIt/0HTsO\nuB/oDcwEHvEpg/eAQ913NBX4vYjs6rs28R39A/AQcBnwD8D7rs2CEJF9gLOB4a7to4Dl7vC5zubD\ngf7AauDWpCq+A3zTXXc6sAuwO97v7yfAhkJtM0oHczhGKfKIiHwBPAc8C1wDoKp/VtXlbv9/gXl4\nD7Fkvg10VtWbVXWrqj4ELEzXmKq+r6p/UdUtqroKuAEYlXTaTaq6UlXXAH8CEo7u+8DdqrpUVTew\no6MqBAUaVXWTqi4G3sBzcgleVdWHVXUr8Bs89XaIu5eHVHWl238QWAaMTNHGWOCtRD2qeiPwWQds\n3gpUA98Skc6q+qGq/s0d+3fgZ6r6qapuBq4Evucb+1GgQVW/VtWNwGagL7CPeixS1fUdsM0oEToX\n2wDDSMHxqvpscqGIjAWuAPbBe1mqARanuP4bwCdJZc3pGhORfsBNeM6rO9AJ+CLptJW+/a9cG+C9\nsb+S1E6mrqktQJeksi54D9lM7XX3fW7rOlRVFZGPnR2IyGnABcAgd0o3PAWTTH9/Pcn15mH3NlXd\nBrwvIufjOdwhIjIXuFBVPwPqgIdFZJu7TvDu16+8Pvbt34unMmeJSE/g93gOa2sG+4wYYArHKEV2\neGC7MZPZwPVArar2xhvfSfVw/xSvO8bPHhnauxrYBuyvqr2AH6apNxWfAgN9n+vIPIbzIdudQYLB\nZHCIKWhrT0QE7+G8QkT2AO4Apqhqb/cd/ZX031HydzIwxXmZ7N6T9s5vlqoejvcdAFznu3asqvZx\nW29V7ebG6Nou99WzVVV/rqr7A/8CHAuclsE2IyaYwzHiQrXbPlfVbU7tHJnm3BeBLSLyHyLSWUTG\nk7pbKcEuwHpgnYjsDlyUh10PAGeIyH4ufPuKLOffD5yfGJMRkX8GzsQbi0mQzdkNF5ET3LjNBcDX\nwEt4amYb8LmIVLkAhm+lqeMJPCVygoh0EpHzaK84knkIGCci/+rq7g/8LGG3iOwjIqPdi8EmvDGX\nhKK5HbjaOUREpFZEjkt3vyJSLyLfcl1u6/HU0DaM2GMOxyg1UqoD14d/LvCgG985BXg0zbmbgfF4\ngQWr8MZZHsrQ5lRgOJAYn0k+N61iUdUngRuBZ4B3gb9kaAfgd8DdwJ9EZA1wD3Cpqj6Vob3kz48C\nE/AG338AnOhUwVLg13jO5zNgf+D5NHYnvpfrgM+BfwT+L8N9LgEmAtfifaf/h+fYE7k5O7ljrcAK\noBa41B27ydk8T0TWAi/Q/gUg+f52w1Oza/EU2rPAfelsM+KDhLkAm4hMA/4fsFJVD3Bl1+NJ5I14\nkTGTVPVLd+xSvLe9LcB5qjrPlR+N909dBUxT1etc+SBgFl4ky6vAj1R1i3vLuhfvIfI5MEFVPwzt\nRg0jIkSkAfhHVbUuJiN2hK1w7sYLc/QzD6+vfCheBM2lACIyBDgZLyx1LHCri9+vAv7H1bM/MFFE\n9nV1XQf8WlX3wXs7nezKJwNfqOreeI7q+pDuzzAMw8iRUB2Oqj6PJ/v9ZU+7qBbwpP8At38cMMuF\npi5nezjnSGCZqja7rpJZwPHumiPY3v0xHUgkuR3vPoMnzb8b5H0ZhmEY+VPssGj/YOnueH3CCT5x\nZUL7cM2PgZEi0hdY7XNeH7M9Mmn3xDWqulVE1ohIH1VNDnU1jFihqlOLbYNhFErRggZE5GfAZlWd\nmfXkDNUEfJ5hGIYREkVROCJyBt6UJf5Zcz+hfR7AAFcmtM8XGAB8oqqrRKSXiFQ5lZM431/XChc6\n2iOduhGRuE6aaBiGUVRUNa+X+SgUjuBTGC7i7CLgODeNRYLHgFNEpFpEBgN7AQvwpiTZy03yV037\ncNhn8EI7wZt/6VFfXae7/e+789KiqrHdGhoaim5DpdofZ9vN/uJvcbe/EEJVOCIyA6gH+orIh0AD\n3mSB1cBTXpI0L6nqFFVdIiIPAEvwEr2mqHdXW0XkHLzotkRY9NuuiUvwpr/4ObAImObKpwH3icgy\nvJyBU8K8T8MwDCM7oTocVT01RfHdGc6/BjdRY1L5k3gzySaX/w04OEX5RrwQa8MwDKNEsJkGYk59\nfX2xTegQcbY/zraD2V9s4m5/IYQ600AcEBGt9O/AMAwjX0QELcGgAcMwDMMwh2MYhmFEgzkcwzAM\nIxLM4RiGYRiRYA7HMAzDiARzOIZhGEYkmMMxDMMwIsEcjmEYhhEJ5nAMwzCMSDCHYxiGYUSCORzD\nMAwjEszhGIZhGJFgDscwDMOIBHM4hmEYRiSYwzEMwzAiwRyOYRiGEQnmcAzDMIxIMIdjGIZhRII5\nHMMwDCMSzOEYhmEYkWAOxzAMw4gEcziGYRgh09hYbAtKA1HVYttQVEREK/07MAwjXESg3B4zIoKq\nSj7XmMIxDMMIicZGz9mA97PSlY4pHFM4hmGEjCkcD1M4hmEYIdPQUGwLSgNTOKZwDMMw8sYUjmEY\nhlGymMMxDMMwIsEcjmEYhhEJ5nAMwzCMSDCHYxiGYUSCORzDMGJN2MmUlZ6sGSQWFm1h0YYRa8JO\nqizHpM0gKLmwaBGZJiIrRWSxr6y3iMwTkXdEZK6I9PQdu1lElonI6yIy1Fd+uoi86645zVc+TEQW\nu2M35tKGYRjlQdjTxti0NMETqsIRkcOA9cC9qnqAK7sOWKWq14vIxUBvVb1ERMYC56jqOBE5GLhJ\nVQ8Rkd7AK8AwQIBXgWGqulZEXnbXLBSROe6auenaSGOjKRzDiDGmcIpDySkcVX0eWJ1UfDww3e1P\nd58T5fe6614GeorIrsBRwDxVXauqa4B5wNEishuwi6oudNffC5yQpo1EuWEYZUbY08aMGhVu/ZVE\nMYIG+qnqSgBV/QzY1ZXvDnzkO+9jV5Zc/omv/OMU5wPsmtRGv4DvwTCMEiHsrq7588Otv5LoXGwD\ngHRiNS+pVmAbADT6/mLr6+upr68PsGnDMOJIYyNMnerti3hKqpLHcZqammhqaupQHaFHqYlIHfAn\n3xjOUqBeVVe6brFnVXU/EbnN7d/vznsbGAWMduf/xJXfBjwLzE9c68pPAUap6lnp2khjn43hGIaR\nFhvDSU3JjeE4hPZq5THgDLd/BvCor/w0ABE5BFjjusXmAmNEpKcLIBgDzHVdZWtFZKSIiLv20RRt\nnO4rNwzDyAtbWiA4wg6LngG8AOwjIh+KyCTgWjwH8g5whPuMqs4B/iYi7wG3A1Nc+Wrg53iRai8D\nU13wAMDZwDTgXWCZqj7pyq/ztfHdRBuGYcSLSu7CKkcs8dO61AyjZCmF7qxSsKEUKdUuNcMwjLwo\nhaTLKBJLKw1TOKZwDKNkKQV1EZYNpXBvHcEUjmEYZUUpDNgHbUMpqLdiYQrHFI5hGEXAFI5hGEaZ\nk01RhKE4UtVZCuotakzhmMIxjIoim7IIQ3nEXc2kwhSOYRhGGrKNnYQxtlLJ4zWpMIVjCscwKoqg\nFU5jY3ZHYgrHwxSOYRgVRdBjJ4kJPqNsM66YwzEMo6JIp0by7f7K5/xK70pLYF1q1qVmGIaPfLu/\nyrG7LBesS80wDKODJHd/ZVMn1l2WO6ZwTOEYhpGBSlUw2TCFYxiGERBBhjT7r63k8RxTOKZwDMPI\nQBAKx19HuSgmUziGYRgBkzxG09raysKFC2ltbc16bbJKqvQkUFM4pnAMoyTIJYGy2MyceT+TJ0+h\nunoQmzYtZ9q0W5k4cULW60zhuGsq/WFrDscwSoNSfxC3trZSV7cvGzY8CxwALKamZjTNzW9TW1ub\n8Vq/M42DY80F61IzDCMWJA+ix6Grafny5VRXD8JzNgAH0KVLHcuXL896rQUNeJjCMYVjGJGTSs2U\ns8IpR0zhGEYFEqc35kxqJtcEylSzPEdBbW0t06bdSk3NaHr0GEZNzWimTbu1Ip1NoZjCMYVjxJxS\nVwap6IjNyddGff+tra0sX76cQYMGVbSzMYVjGBVEXMY+UlHIdDDJ91tfv+P9R/Ed1NbWMmLEiIp2\nNoViCscUjhFz4qhwOkImhVNp30UxMYVjGBVIGJNHBrXaZRgk7jdRf0NDvNVeJWEKxxSOYexA0NO5\nhEEcI93KCVM4hmF0iCCUQthqI4hIN6M4mMIxhWMEQLlkjyeIq8JJ9Xsot99NqWAKxzCKRC7r2seJ\nIJRC2GojVf2pfg/+snwm3jSCxxyOYXSAch2sTnUf+d5blN9Fqt9DctlJJ71FXd2+jBnzE+rq9mXm\nzPujM9AAcuhSE5FjgSdUdVs0JkWLdakZQVAJg9Wldo+5Bg2IQEtL6mlpHnlkJgcddFDkOTXlkDwa\nVpfaBGCZiFwvIvsWZpphlDflPFhdaiou36CBhobUE29u2NCb8ePPjVztzJx5f8UqrZyCBkSkBzAR\nmAQocDcwU1XXhWte+JjCMYzciIPCSUeqiTehHngH+DSySTjLaQLQ0IIGVPVLYDYwC/gGcCLwmoj8\nR95WGoYRCGEojUx1lpqKy8ce/8Sb3bodCHwb+C1QSz7LDHSUjixxUA7kMoZzPHAGsBdwLzBdVVtE\npCuwRFUHhW1kmJjCMeJKGIqj1FRM0LS2trJo0SKOP34CX389n6hVhimc7JwI3KCq/6Sqv1TVFgBV\n/QqYXICdAIjIBSLylogsFpE/iEi1iAwSkZdE5F0RmSkind251SIyS0SWiciLIrKHr55LXflSETnS\nV360iLzt6rq4UDsNo9QIY0yl1MZpwqK2tpYjjzySu+66LadlBjoSRp3q2opf4kBV025AJ+DpTOcU\nsgH9gQ+Aavf5fuB09/P7ruy3wL+7/bOAW93+BGCW2x8CLAI6A4OA9wDBc6TvAXVAF+B1YN80tqhh\nxJEw/nTD/ndoaAi3/nxoaWnRBQsWaEtLS8rjM2bM0pqaPtqz5zCtqemjM2bMyrnubNdmazsOuGdn\nfs/+rCfAY0DPfCvOUmd/oBno7ZzFY8AYoAWocuccAvzZ7T8JHKzbnWCL278EuNhX75+Bg/3Xpjov\nyZZAfwmGERVhPLzDdghx+XdraWnRmpo+Cm+o18n4htbU9MnJQXTk2jhRiMPJpUvta+BNEZkmIjcn\nthyuS4uqrgB+DXwIfAKsBV4D1uj2fJ+Pgd3d/u7AR+7arcBaEenjL3d84sqSy/11GUZZkEu3V6kk\na+bSZVdK3XgdGdyv9MCATOTicJ4ALgeeA171bQUjIr2A4/G6vPoD3YCj86miI+0bRqVQKlPuNDZu\nD0ZQTe1c8rE17ClqBg0axKZNy/HCpwEWs3lzM4MGDSrg2iY2bnyf7t27t51TqVPsdM52gqpOD6Hd\nfwU+UNUvAETkYeBQoJeIVDmVMwBPseB+DgRWiEgnoIeqfiEiifIEiWsE2CNFeUoafX/99fX11NfX\nd+jmDKPYNDZuf4CLbF8zJp/rw1AcqUKZ87V15sz7mTx5CtXV3oN92rRbmThxQqB2Jgb3J08eTZcu\ndWze3Jx2cD/5u/Jfq9qTr7/+jKqqvRg+/DCmTbsVIHT7w6CpqYmmpqaOVZKtzw3YGy8HZwneQP8H\neM6iI2M4I4E3gZ3xnMM9wNl4QQMTdHvQwE/c/hS2Bw2cwo5BA9XAYLYHDXRie9BANV7QwH5pbAm2\nY9MwSohC/7yL8W+RS5tLlizRnXbqofBsJOMjuQzup7Pbs7XXDmM5O++8Y1kcx3cIaQznbvfw3wKM\nxsvFuS9/17YdVV2A58QWAW84J3EH3uD+hSLyLtAHmOYumQb8g4gsA85356GqS4AH8JzhHGCK+y62\nAucA84C/4jmopR2x2ciPUuqPj5JSu+98kzUzjbWEfW9+W1O1NXPm/Rx00L+wceNuwEl476fhjo/U\n1tYyYsSItMom07jU+vXr2XnnPfGP5VRVDaBTp12p1PGdXBI/X1XV4SLypqr+kyv7X1U9PBILQ8YS\nP8Oh3BMI01Eu913s1TST20o9Nc1o4CFqak4qauJkuu8lXZKn6raiJJ0GTViJnxtFpApvAs9zRORE\noF9BFhplT6UkECZTbvedrDaiurd0baWK/IK+7LTT8UVPnEynItMleeaadFqO5KJwRgBLgV7Az4Ge\nwPWq+lL45oWPKZxwKJc3/Xwp5/sO694Sg+7+wfdcFM5OO41i0aIX2G+//YI3KkBSLUVQqcsT2BLT\n5nBCoVKX9S3n+w7L4STq9def6ntMRKf5o8biEN1VrhTicDJFkv0JbwaAlFu+0QmlumFRakbIFGM6\nl1za9J+TfH7yMc8VeFtQ95Ncby71l8OUMOUCBUSppVU4IjIqi6Oan5dnK1FM4RhhU4xutlza9J+T\nfH6UQQOpFI5R+gQaNKCq8zNtHTfXMMqbQgfbO9Ill67N5PBm/zn+/fr6Ha8PO2hg1KjyCrgw0pNL\n0MDewDV4SZY7J8pVdc9wTYsGUzhG2OT75h7Em36+iqWYCieq+sOkHIIA8iWssOjAEz8NI87k+wae\nCJvNdl2QSmLUqOx1+sN5k0N7U4X6hrXiZ9xDymfOvJ+6un0ZM+Yn1NXty8yZ9xfbpJLFEj9N4Rh5\nUuibeK7XRaVwSo042JhMOa3gmS+W+GkYIdKRMZlcrgviTT9dHWGpkyCJg43J2FIE+WGJn6ZwjDwJ\nS+H4B+iDVjhRkiqHplzzk0zhBKxwVHWhqq5X1Y+BycAZ5eJsDKMQCn0Tz3ZdYor+IN70i6kWUq1r\n4y/Ldy2YUl47Jt30NdmcTSnfU6hkS9QBZgA98BZJexv4FLgo34SfUt2wxE+jyOSSWBlV8mhH2kl1\nH8ll48e/qTU1fbRnz2FaU9NHZ8yYlbHOGTNm5XV+scgnITUu95QNgkz8TCAir6vqUBH5ATAcuBh4\nVVUPyHhhTLAuNaNUyNQNFlUXWVjdeSLQ0pJf99PSpUs56KBD2LjxUaA+6/lxoJy64MIKGugiIl2A\nE4BHVXUzYE9oo+IJekwi3WqYHQkkCDqwIRfShVTnM8BejLVvoqDSgwxyUTjn4qmaN4BxeEs3/14t\nLNqocIq5PkxY14V5T+ne7h95ZCYHHXRQu5mUS3Xtm45iCicLqnqzqu6uqse4J/OHeL99w6hIirEq\nZpArd2YikTAaBskD7NXV32HLlk2cfPKl7RImU69901gSa990lEKDDMoFW57AFI5RIMVeFTMXEmMn\nuU67Uoj9+U7r0trayqJFizj++AkpV74EUiicA1iyZGnb2jdRTSUTVjvlMBVOoMsTVMqGRakZBTJq\n1Pb9sKbwTybfejNFheW7BEGqskIjrhYsWKA9ew5r12aPHgfpggUL2tVbXX3bDnZFFeVVLtFkYUEB\nUWpFf+AXezOHYxRKqj+dsP+c8qm/paVFa2r6KLzhHthvaE1Nn7bQ3XztTz6Wrf6O2JY4JxFqnGi7\nI23mQ1TtxJlCHE7aMRwRGZ9p64ASM4xYk+uEmFG1mY50EVGXXbYpL/vTtd2RiKtcxjJqa2sZMWIE\ntbW1bXZFFeVV6dFkYZFpAba7M1ynqnpmOCZFi43hlA9RT5+S63hHkHblM8aSLSKqoxFsQURcFTL+\nE0WUVzlFk4WFjeFYl1pFE/WvMtfxlCDtyncMJzEO0aPHQRnHcAptO1P9YRFVm8W4tzhBGDMNOE82\nDtif9guwXZmXZytRTOHEn8bG9nN1NTSUxkSRpWJXOhURlPIqRsRV3KPUyoFCFE4uiZ+3AV3xcm/u\nBL4HLFDVyYUaWkqYwykfSi0kOUEl2RX1AzrX9sxxBE9YU9v8i6qeBqxW1anAt4GBhRhoFJ9C32hL\nQTFko1TXUyk1u8JaYTPqlS9zbc9W5CwdclE4L6vqwSLyEjAeWAW8pap7R2Fg2FSawolqihSj9Any\ndxr1IHtHpsmxwf9gCEvhPC4ivYBfAq8By4FZ+ZtnFJOwV6ssJeJgYxCkWuQsH4JUXlGHEadqb8OG\n3owff27WaXIsvLl45DW1jYjsBOysqmvDMylaTOGEe10xiJOtHSH5Pot536WgcLwlDN4BPs04TY4p\nnGAIReGIyGmJDZgAHO/2jRgS1mqVpUAc1VghJN9nfX1x7tu/amXUk1L62+vW7UC8oeXfArX4VUyl\nT5ZZcmSLmwb+27f9DvgAmJ1v/HWpblgeTqBkyu0IY36xVHUWM+8lqrpUd7zPKP+U080zls/Kl0HQ\n0tKic+fO1Z137pXzNDlGMBDFXGpAL7yF2IruLILYzOEESz5zcYXVXpAP9iBtDvr+k+8zDIee6kFd\nivOMWZJm9ETlcLoAS/O9rlQ3czi5ke1hlmm24Y7OpJxu5uJ86iykzUJsDsLWUiDTrMzZZnouFqZi\noqUQh5NLWPSf2L6kdBUwBHhAVS8JrF+viFRa0ECh5Dognem8MAIWgrAryOvCuP9UhJ3IKAI1NX1T\nDraDDcQb4YVF/wr4tduuAb5TLs7GyE6+A/GZggvCWLXSX2eq48kD6vX1+dmQq83ZVgHN5TvMdbA/\nzERGv60bNqwiVTixDcQbhWIrfprCyYlihtx2RMUkypJ/hkVHFE4utkUVfpxJ4fiTKgtRWTbNTHkQ\nVlj0eBFZJiJrReRLEVknIl8WbmZbvT1F5EERWSoifxWRg0Wkt4jME5F3RGSuiPT0nX+zs+N1ERnq\nKz9dRN5115zmKx8mIovdsRs7am+lE1VYdKHKIPm85LK6umhChwtReLncZxBr0ORDQwN5rVeTKzbN\nTGWTyxjOe8Cxqro00IZF7gHmq+rdItIZ6AZcBqxS1etF5GKgt6peIiJjgXNUdZyIHAzcpKqHiEhv\n4BVgGCDAq8AwVV0rIi+7axaKyBx3zdwUdpjCKSEyqZQgri3lpNBc1FExEiyDUiM2zUx5EdYYzsoQ\nnE0P4HBVvRtAVbeoN3vB8cB0d9p09xn381537stATxHZFTgKmKeqa1V1DTAPOFpEdgN2UdWF7vp7\ngROCvAcjWHJRKRdd9Pe2RMNUpFIQyWUdVWr+ZMegyWW1zcsu28QNN1wbaYJlviomHTbNjJFL2PBN\nwP3ARLzJO8cD4/MNh0uq80DgZeBuvPnZ7sBbAmF10nlfuJ9/wpu1OlH+FJ6q+U/gMl/5fwEXAsPx\nHFGi/DDgsTS25BsNaGSgo4mfqX4dkD5EtyP25EuhNgQBaLu2b7vtjlBCgMMM2S7F/B2jcAgjD8c5\nheTtrnwbSqpzOLAZ+Gf3+QbgyoSD8Z23SlM7nKfN4ZQmHU38TPXA++lP1xf8oArq1xv2wzJTDklL\nS4t27nxtJA/qsP8dLEGzfCjE4WTtUlPVSSm2M7Ndl4WPgY9U9RX3+SHnQFa6rjJct1iLO/4J7dfg\nGeDKPgH2SFOe6vyUNDY2tm1NTU2F3lNZk22QPYiw4HTtnHzykry6YlJ1x3U0SCDM7qBsA+nLly+n\nU6deobSdIKp56CZOnEBz89s8/fTtNDe/zcSJE8JpyAicpqamds/KgsjmkfBmw7sMr9vrrsSWr2dL\nUe98YB+33wBc57aLXdklwLVu/xjgCbd/CPCS2+8NvA/09O33csdeAkbiBRPMAY5OY0eAPr98yfVr\nCmNqm3zVhb+dUlc4udTb0tLSdqwUFY5l+FcmhNSl9oJzBCcDJyW2fBtKUe+BwELgdeCPzmn0wesu\newcvAKCX7/z/Ad4D3sCLREuUnwEsA94FTvOVDwfedMduymBH4L+IciLIKWQ6Mj6QS1dMKlvzsSd5\nOp50NlRX3xZYd1C2aWKS7ynItlOR7++omONaRnEpxOHkEhb9uqoOzXhSjLGw6NwohXDiXEN0Cw2j\n9n9OV0drayv9+tXS0tIaSORWrqHCItDSkv7+i5FMaWHOlU2YK34eU6BNRplQCuvh1NbW8sQT2UN0\ns9mabT2ZdFPhNDZCv35e2/361QYyzpHrNDENDelDlIuVTGlhzka+5KJw1uElZW7EiywTPCnVI3zz\nwscUTrwIUmnlonA6koiaDb8qAQqeJiZqlZGwu3v37gwffpgpnAolFIWjqruoapWq1qhqD/e5LJxN\nuZLvm3e+UWPFIF0UVb6TcfrJlBQ6alT6qK0g1N5JJ73VTpU8/fQzBSVYRq0y/Gpq+PDDmDz5hzaJ\np5EzOU3e6aaQ2RvYOVGmqs+FaFdklKPCKdUp9YMg6qlqwqg/MQ4Ei+moMohS4aRr69VXn2f9+vU2\nGWeFEdbknf8GPAfMBaa6n42FGGiES765FEHlzkRJQl10dNmBfNsLCv84UBCqJKqlAlpbW5kzZw6d\nO9eRbPeOinwzAAAYpElEQVT69esDm/7GKG9yGcN5ExiBl/syVET2BaaqallkbJnCiZfCSSR1Jig1\n+3IhSIXjrzOsKLWZM+9n8uQpdO68O+vWvYeX4mZjNpVOWFFqX6vq166BnVT1beCbhRhoREO+b+VB\nLpoWNlOnFtuCjlNbW8v48W8FqkqCnGTTT2trK5MnT2HDhmdZt24xXufGIeyyy0E2ZmPkT7ZEHeBh\noBfeX9pzwKPAnHwTfkp1wxI/dyBV8l9YkzrmUm8igdOfADlqVH4JqaVIHDL0UyWmdu/+Lb3nnntK\n2m4jfAgj8dOPiIzCmxHgSVXdFKzrKw7l2KXWUcIMBc6lrUznxGl9m3LAkjuNdITVpdaGqs5X1cfK\nxdmUK4UO8OeyJk1QwQO5rnKZfE7Q69sYmYkqKMGoDPJSOOVIOSqcjr71l7LCMYIh3yCDYkydY5Q2\noSsco7QJSo34VUOijrCURKLeTLaaigmWQqbCCSsowagsTOGYwomsrlJop9KxMRkjKEzhGEAwiiCq\nxM9STTAtV2zCTaOYmMIpQ4VTKMlJlVBchZPKnlRlRu6YwjGCwhSO0SFSJVVGNX6Sqp1U9pRD4mcx\nsaiz6GhtbWXhwoW0trYW25TSId/EnXLbsMTPvFf1THV9kLakW7kz6ETPOCaLBkUckk7jTCWshErY\niZ/liHWpbafQ7rOwghTCDs/OtoqmYRRCpXRbWpea0SHy7T4LcsA/lyRP8NapSZwfRFv9+tVy+OGv\nRbpSplHeWGBGekzhVLjCCSKhL6ow7MQsyy0t3s+OtBnGjM1RYomYpYspnPSYwqlgEgmAiTf8k056\nq6B68lVGmdauSVfXSSe91baOTOJnR1TV8uXL2Wmn24njW2ghiZtGdFhgRnpM4VSowkn1FgYH0NLS\nGvo/Rr6KKAxb4/oWGle7K5FyV6GmcIycWb58Odu2XY3/DR889RBWnkuhq3Sm6hOvrr69Q2okrm+h\nNj4QH2w6oB0xhWMKh1JQOJkSOsN8q4/bW6gpHKNUMIVj5ETiIXvDDddSUzOa6urbqakZzfjxb0Xy\n0EpEmvnJlNAZphqJ21toXJWZYYApnLJROLlO+ZJYn766ehCbNnlOZ9iwoUV7w29sbO9sGhoyK504\nqZEwse/CKDaFKBxzOGXicHIZiC/l7hibLdow4oV1qVUg6VbpTEUpDzjbmjeGUf6YwilDhZNOLZSy\nwukocexiiqPNhpHAFE4Fkxj7yDTVTG1tLWPHzsevcMaOnR/7h10cEyHjaLNhdBRTOGWicPxkGw/x\nTxETd2cTR9UWR5sNIxlTOAaQfTyktraWhgZ2eLglFFGcFjgr5XGpdMTRZsMIAlM4ZahwCiWhjOIU\nMRZHtRBHmw0jGVM4RkEkj/0kfkatdApZITGOiZBxtNkwgsAUjimcNnJROLkmmOZKor7khNRp025l\n4sQJOdcTx4ivONpsGAks8bMAzOFsJ/Hwz+RUgu5uS6y6GecuJnMcRiUSuy41EakSkddE5DH3eZCI\nvCQi74rITBHp7MqrRWSWiCwTkRdFZA9fHZe68qUicqSv/GgRedvVdXH0dxc/MgUN5Lu6Zy7H/atu\nJs9cHZdBdAtvNozcKarCEZELgOFAD1U9TkTuB2ar6oMi8lvgdVW9XUTOAv5JVaeIyATgRFU9RUSG\nAH8ARgADgKeBvQEB3gW+C6wAFgKnqOrbKWwwhZMHuSqcfM6LWuEMGjSI5ubmwOutZOrq4vGCYARH\nrBSOiAwAjgHu9BUfATzk9qcDJ7j9491ngNnuPIDjgFmqukVVlwPLgJFuW6aqzaq6GZjl6jA6SLaQ\n63yVUCI8O8pB9ObmZlTVtgA3c+BGLhRN4YjIg8AvgJ7AfwKTgBdVdR93fAAwR1UPEJE3gaNUdYU7\ntgw4GJjqrpnhyu8E5uApnKNU9ceu/IfASFU9N4UdpnBCoJCxnqjGQtybWWj1VyL2nVYehSiczmEZ\nkwkRGQesVNXXRaTefyjXKoK0p9H3Gl5fX099rktRGmkpZDLO2tpaG3Q3jBKlqamJpqamDtVRFIUj\nIlcDPwS2ADXALsAjwJHAbqq6TUQOARpUdayIPOn2XxaRTsCnqtpPRC4BVFWvc/U+CTTgOaRGVT3a\nlbc7L8kWUzgVhr2NB499p5VHbMZwVPUyVd1DVfcETgGeUdUfAs8C33ennQ486vYfc59xx5/xlZ/i\notgGA3sBC/CCBPYSkToRqXZtPBb2fRmGYRjpKbWZBi4BLhSRd4E+wDRXPg34Bzd2c747D1VdAjwA\nLMEbu5miHluBc4B5wF/xAguWRnonhhExxxxzDPfdd1/KY83NzVRVVbFt27aIrTKM7Vjip3WpVRyV\n2P3T3NzMnnvuyebNm6mqCv49sxK/00onNl1qRvkSp5mm82XTpk2cddYF9OkzgP7992H69NRqwjCM\n1JjDMQJl6tT8rylk0s4w+OCDDzj88LHstttejBlzIitWrGh3/KKLLmf69L+yevVzfPrpdKZMuYyn\nn3663Tnbtm2jqamJ2bNn89FHHxVkx+DBg7n22mvZf//96du3L5MnT2bTpk2sWbOGY489ln79+tG3\nb1+OPfZYPvnkk7brRo8ezV133dVmx09/+lNqa2vZa6+9eOKJJwqyxTCCxByOEQj5JnwmKJWpYf7+\n979z6KFjeOGFI1i58gmamobwne+MZcuWLW3n/PGPj7Nhwy+BPYFv89VX5/Lww9sf5Nu2beO4407h\n2GPPZvLk37PffsMKDiOdMWMGTz31FO+//z7vvPMOV111FarKmWeeyUcffcSHH35I165dOeecc1Je\nf8cddzBnzhzeeOMNXnnlFWbPnl2QHYYRKMXOUC725n0FRlDk83W2tLRoTU0fhTfUSxN9Q2tq+mhL\nS0t4Bqpqqt/5888/rz16jHB2qMI27dZtsC5durTtnCFDDlF4uO2czp3P0ssvb2g7/sADD2i3biMV\nNrpz5mj//nvnbd+gQYP0jjvuaPs8Z84c3WuvvXY4b9GiRdqnT5+2z/X19Tpt2jRVVT3iiCP09ttv\nbzs2b948raqq0q1bt+ZtTy7Y/1Hl4X7neT1vi5L4aZQv+SR8Jla+3LBhx0k7o04A7datG1u3fg5s\nAqqBv7N165d069at7Zwbb7ySE074AV9//RKdO6+kV68mzjnn5bbjH330EZs3H+KuBziclpbCutUG\nDBjQtl9XV8eKFSv4+uuvOe+885g7dy5r1qxBVVm/fj2qikj7sdsVK1YwcODAdnUYRrGxLjUjUPIJ\nGhg0yFv7Bha7ksVs3tzMoEGDArcrGwceeCCHHTaUrl2PAX5Ft25HMn78Ce0e2mPGjOH//m8eDQ3d\nuPrqb/HWWwvo169f2/GRI0fSufPDwHJA6dTpRg44YGRB9vjHf5qbm+nfvz+/+tWvWLZsGQsXLmTN\nmjU899xzACmjw77xjW/sUIdhFBtTOEbRSEzaOXnyaLp0qWPz5uairXwpIjz++AP87ne/46233mX4\n8H/jjDPO2OG8oUOHMnTo0JR1HHbYYVx11UVcfPH+iHShrm4wDz/8aMpzs3HLLbcwbtw4ampquPrq\nq5kwYQLr16+npqaGHj168MUXX7SbkimZk08+mZtvvplx48bRtWtXrrtuh0k2DCN68u2DK7cN63su\nOi0tLbpgwYLQx24ShP0737hxo37++ee6bdu2gq4fNGiQXnvttTpkyBDt3bu3Tpo0STds2KArVqzQ\n+vp67d69u37zm9/UO+64o924zOjRo9vGcLZs2aIXXnih9u3bV/fcc0+99dZbbQzHCBQKGMOxxE9L\n/MxKua1oWepJioMHD2batGkcccQR2U8uEUr9OzWCxxI/jcAplbBlwzDijzmcMiPIJMrW1lYmT57C\nhg3Psnbtq2zY8CyTJ08peoJmuZMccWYY5YI5nDIiaDWSCFv2ln0Gf9iyER4ffPBBrLrTDCNXbAyn\nTMZwWltbqavblw0bnsVzEIupqRlNc/PbBY+7hFFnKWDjDcFj32nlYWM4FUwYaiQRtlxTM5oePYZR\nUzO6aGHLhmHEH1M4FaRwCo02syg1Ixv2nVYepnAqmGxqpCPjO7W1tYwYMaIsnI1hGMXDFE6ZKJwE\nqdRIuY7FFIq9jQePfaeVhykcI6UasWgzIxvXXHMNP/7xj9MeHzx4MM8880yEFhnliM2lVgG0nyTT\nUzjFmiTTKE0uvfTSYptgVACmcCoAizYzDKMUMIdTIUycOIHm5rd5+unbaW5+m4kTJxTbpFiTzzIM\n+VBVVcUHH3zQ9nnSpElcccUVAMyfP5+BAwfym9/8hl133ZXdd9+de+65p925Z511FkceeSQ9evRg\n9OjRfPjhh23Hzz//fPbYYw969uzJiBEjeP7559uOTZ06lR/96Edtn++77762ccCrr746nJs1Kg5z\nOBWERZvlRi7OZOrUjteRimzT2nz22WesW7eOFStWcOedd3L22Wezdu3atuMzZsygoaGBVatWceCB\nB/KDH/yg7djIkSNZvHgxq1ev5tRTT+X73/8+mzZt2qHtJUuWMGXKFP7whz+wYsUKVq1axSeffFLY\nDRmGD3M4hpFEJmfS2AgJnyCS3rFkc0jpyBbpVV1dzeWXX06nTp0YO3Ys3bt355133mk7Pm7cOA49\n9FC6dOnCL37xC1588cU2Z3HqqafSq1cvqqqquOCCC9i4cWO7axM89NBDHHvssW31/PznP7f53YxA\nMIdjGI5kZ5LKoTQ2QsInqKY+notDKpS+fftSVbX937Zr166sX7++7bN/hdJu3brRp08fVqxYAcCv\nfvUrhgwZQu/evenduzdffvkln3/++Q5tJC9P3bVrV/r27RvsjRgViTkcw3AkO5NUDiVBQ0NudeTr\ncLp27cpXX33V9vmzzz7L63r/stLr16/niy++oH///jz//PP88pe/ZPbs2axevZrVq1fTo0ePnJan\n/uqrr1i1alV+N2IYKTCHYxhJpHMmfsIKGjjooIOYMWMG27Zt48knn2T+/Pl5XT9nzhxeeOEFNm3a\nxOWXX863v/1tdt99d9atW0eXLl3o27cvmzZt4sorr2TdunUp6/je977H448/zgsvvMDmzZu54oor\nLKnTCARzOIaRRBDOJBenlYobb7yRxx57jN69ezNz5kxOPPHEjOcnj62ceuqpNDY20rdvXxYtWsTv\nf/97AI466iiOOuoo9tlnHwYPHkzXrl3bdZv5GTJkCLfccgsTJ06kf//+9O3blwEDBhR2Q4bhw6a2\nKbOpbYzslOs0LJMmTWLgwIFceeWVkbddrt+pkR6b2sYwDMMoWczhGEaZYKHLRqljXWrWpVZxWPdP\n8Nh3WnlYl5phGIZRspjDMQzDMCLBHI5hGIYRCbYejlFx1NXV2QB7wNTV1RXbBCMGFEXhiMgAEXlG\nRP4qIm+KyLmuvLeIzBORd0Rkroj09F1zs4gsE5HXRWSor/x0EXnXXXOar3yYiCx2x26M9g6NUmb5\n8uWoqm0BbrZ6rJELxepS2wJcqKr7A98GzhaRfYFLgKdV9ZvAM8ClACIyFvhHVd0b+HfgNlfeG7gC\nGAEcDDT4nNRvgcmqug+wj4gcFdndRUhTU1OxTegQcbY/zraD2V9s4m5/IRTF4ajqZ6r6uttfDywF\nBgDHA9PdadPdZ9zPe935LwM9RWRX4ChgnqquVdU1wDzgaBHZDdhFVRe66+8FTgj/zqIn7n+0cbY/\nzraD2V9s4m5/IRQ9aEBEBgFDgZeAXVV1JXhOCdjVnbY78JHvso9dWXL5J77yj1OcbxiGYRSJojoc\nEekOzAbOc0onOXMsXSaZjfgahmHEjWINMuJFyD2J52wSZUvxVA7AbsBSt38bMMF33tt46ucU4DZf\n+W3ABP+1rvwU4Ldp7FDbbLPNNtvy3/J97hczLPouYImq3uQreww4A7jO/XzUV342cL+IHAKsUdWV\nIjIX+IULFKgCxgCXqOoaEVkrIiOBhcBpwM2pjNA8p2YwDMMwCqMoc6mJyKHAc8CbbPeWlwELgAeA\ngUAzcLILBkBE/gc4Gvg7MElVX3PlZwA/c3Vcpar3uvLhwD3AzsAcVT0votszDMMwUlDxk3cahmEY\n0VD0KLVSQESuF5GlLqn0IRHpUWybsiEiR4vI2y6x9eJi25MP6RJ/44aIVInIayLyWLFtyRcR6Ski\nD7q/+7+KyMHFtikfROQCEXnLJXf/QUSqi21TJkRkmoisFJHFvrK0ie6lRhr7835umsPxmAfsr6pD\ngWW4hNNSRUSqgP/By0PaH5joEmfjQrrE37hxHrCk2EYUyE14Xc37AQfiBezEAhHpD/wHMExVD8AL\nQDqluFZl5W68/1c/KRPdS5RU9uf93DSHA6jq06q6zX18CS8JtZQZCSxT1WZV3QzMYnuSbMmTJvE3\nVnlSIjIAOAa4s9i25It7Ez1cVe8GUNUtqvplkc3Kl05ANxHpDHQFVhTZnoyo6vPA6qTi5ET3kk1O\nT2V/Ic9Nczg7cibw52IbkYV0ibCxw5f4+3JxLcmbG4CL8IJV4sZg4HMRudt1Cd4hIjXFNipXVHUF\n8GvgQ7xk7zWq+nRxrSqIfkmJ7v2KbE9HyOm5WTEOR0Secv29ie1N9/NY3zk/Azar6owimloxpEj8\njQUiMg5Y6VSaEL9E5M7AMOAWVR0GfIXXvRMLRKQXnjqoA/oD3UXk1OJaFQhxfHnJ67lZMcsTqOqY\nTMddePUxwBGRGNQxPgH28H0e4Mpig+sKmQ3cp6qPZju/xDgUOE5EjgFqgF1E5F5VPS3LdaXCx8BH\nqvqK+zwbiFPgyb8CH6jqFwAi8kfgX4C4vSiuFJFdXU7hbkBLsQ3Kl3yfmxWjcDIhIkfjdY8cp6ob\ni21PDiwE9hKROhedcwpecmycSJX4GwtU9TJV3UNV98T77p+JkbPBdeN8JCL7uKLvEq/ghw+BQ0Rk\nZ/EWNvou8Qh6SFbDiUR3gNPZnuheqrSzv5DnpuXhACKyDKgGVrmil1R1ShFNyor7Zd+E99IwTVWv\nLbJJOZMu8VdVnyyqYQUgIqOA/1TV44ptSz6IyIF4AQ9dgA/wkqnXFteq3BGRBjxnvxlYBPybC6Ap\nSURkBlAP9AVWAg3AI8CDpEh0LzXS2H8ZeT43zeEYhmEYkWBdaoZhGEYkmMMxDMMwIsEcjmEYhhEJ\n5nAMwzCMSDCHYxiGYUSCORzDMAwjEszhGEYZIyKPx2G5DaMysDwcwwgAEanyzZxbEoiIqP2DGyWE\nKRyjohCRqSJynu/zVSLyH27/pyKywC0o1eA752ERWegmfP03X/k6V9+LeFOtXOMWM3tdRK5P0XZX\nt5DVSyLyamLiWBE5X0Smuf1/cpPK7iwiDSJyr4j8xS3S5W97B1vdVEdLROQWEXkVGCgifxORPu74\nD0TkZTdD9G/dtDCJ+7jK1fWCiNS68n4i8kdXvkhEDslUj2FkRVVts61iNrwZhl91+wK8B/QGxgC3\n+8r/BBzmPvdyP3fGm46nt/u8DTjJ7fcB3va10yNF278ATnX7PYF38Cb/FKAJbz2UhcAh7pwGvGlb\nqvGmFPkQ2C2dre7etgIjfG1+4GzbF2/urk6u/Bbgh777OMbtX4c3zRB46yyd62tnl0z12GZbtq1i\nZos2DABVbRaRz91cYrsBr6nqahE5EhgjIq/hPVy7AXsDzwPni0hicawBrnwB3sqlf3Tla4ENInIn\n8ATweIrmjwSOFZGL3OdqYA9VfUdEJgGLgdtU9SXfNY+q6iZglYg8g7f43uFpbP0IWK6qC1O0/V28\nJQkWOkWyM/CZO7ZJVee4/VfxZmMGbwbgH7nvTYF1IpKqnpUp2jOMHTCHY1QidwKT8BzOXa5MgGtU\n9Xf+E93knEcAB6vqRhF5Fu8hC/C1exCjqltFZCTeg30icI7bT+YkVV2WonwfYB3e+i5+/GMw4vuc\nytY64O+pbxkBpqvqz1Ic2+Tb38r250Kq8Z9M9RhGRmwMx6hEHgGOBv4ZmOvK5gJnikg3ABHp78Yy\negKrnbPZFzjEV49/qvZueF1vTwIXAAemaHcucK7vmqHuZ0+8mb+/A/QVkZN81xwvItUi0hcYhdfl\nNi+Nre1sSvr8F+B7vvGZ3iIyMM01+K6Z4s6vctFuqerZI831htEOUzhGxaGqm51SWe1TKE85h/Ki\nGwNfB/wQeBL4iYi8jjfm8qK/Kt/+LsCjIpJQP+enaPoq4EYRWYz3svcBcBzwG+C/VfU9FxjwjIjM\nd9csAObgTWF/pXpLEX+WxtZt7KhKEve3VET+C5gnIlV4quZsvG64dJFs5wN3iMhkvO7Ds1T15TT1\nfJimDsNow8KijYrDPShfBb6nqu8X2550uOizdar6m2LbYhhBYF1qRkUhIvsBy4CnStnZGEY5YgrH\nMAzDiARTOIZhGEYkmMMxDMMwIsEcjmEYhhEJ5nAMwzCMSDCHYxiGYUSCORzDMAwjEv4/S59uLsjT\npUwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d2bc24fb70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(paid_salaries, paid_users, marker='o', label='paid')\n", "plt.scatter(unpaid_salaries, unpaid_users, marker='+', label='unpaid')\n", "plt.title(\"Paid and Unpaid Users\")\n", "plt.xlabel(\"years experience\")\n", "plt.ylabel(\"annual salary\")\n", "plt.legend(loc=8)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "linear regression:\n", "[0.25990975738309924, 0.4387570870053767, -0.4274411364799935]\n" ] } ], "source": [ "print(\"linear regression:\")\n", "\n", "rescaled_x = rescale(x)\n", "beta = estimate_beta(rescaled_x, y) # [0.26, 0.43, -0.43]\n", "print(beta)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEPCAYAAABsj5JaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG2BJREFUeJzt3X2UXHWd5/H3p9PppEnoTtoEwgTyMAQwI2ASx5DRWSlO\nUMIuK4PjCui4jOugZ8cszLruwh53Ds3OnDninLO7KqMMo+M4SjY6O4cHR9AopmQBY7KQEEISkwiN\nCU8dHmIkRmHid/+o253qSlV39a+r63Yln9c5ffo+/O7v/n51q+vT97EUEZiZmY1WW94NMDOz1uQA\nMTOzJA4QMzNL4gAxM7MkDhAzM0viADEzsyS5B4ikL0l6QdLWGvPfL+mx7OdBSec1u41mZnas3AME\n+DJwyTDznwTeERFvBv4c+JumtMrMzIbVnncDIuJBSfOHmb+hbHQDMHf8W2VmZiOZCHsgo/FHwH15\nN8LMzCbAHki9JF0EfAj43bzbYmZmLRIgks4HbgdWRcQrNcr4oV5mZgkiQinLTZRDWMp+jp0hzQP+\nEfhgRPxkuEoi4rj9uemmm3Jvg/vn/p2I/Tue+xYxtv+7c98DkbQGKABvkPRT4CagA4iIuB34U6AH\n+LwkAa9HxPK82mtmZiW5B0hEvH+E+dcC1zapOWZmVqeJcgjLRlAoFPJuwrhy/1rb8dy/47lvY6Wx\nHgObKCTF8dIXM7NmkUS0+El0MzNrMQ4QMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4Q\nMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAxM7MkDhAzM0viADEzsyQOEDMz\nS+IAMTOzJA4QMzNL4gAxM7MkuQeIpC9JekHS1mHKfFbSbklbJC1pZvvMzKy69rwbAHwZ+Bzw99Vm\nSroUODMizpJ0AXAbsKKJ7bMc7d+/n76+PhYsWMDs2bNrTq9VbiQ7duxg48aNLF++nMWLFw+pe/r0\n6bz66qtD6tyxYwd33nknAFdcccXgMuX1zJo1i7vvvpudO3dyxRVX0NPTM2SZWbNmsX79evbs2cOi\nRYuYO3cu9957L88++ywLFy5k5syZXHzxxYN1D7Rp/fr1vPDCC1x88cXMmjWrZn/379/P5s2bOXDg\nAAAzZsxg2rRp7Nmzh/b2djZv3kx3dzeTJk1i0aJFXHTRRYN1pL6Ore5E7feYRUTuP8B8YGuNebcB\nV5aN7wBOrVIu7PiyZs3a6Ozsie7uZdHZ2RNr1qytOn316uurlhvJ6tXXB3QGnB3QGatXXzdYd2fn\neQGd0dm5cLDOUvkpAScFnDm4TGU9pTJnZuUmH7PM0fmdAadW/J4ypO6B/k6aNG1IHW1tU6v2d82a\ntdHR0R2wqKzeKdnwwDqnZ7/PGqxrzZq1NV/v492J2u8B2Wdn2md36oKN/BkhQL4JvK1s/HvAsirl\nGvRy2kTQ398fnZ09AY8FRMBj0dnZE9u3b6+Yvj77MBxarr+/f9j6t2/ffsxy0BlTp86omNYTsD6b\nPjVgZsX8KVXqmRnQnw1PDaisc0bZ/J6sDwO/y5ftjAcffDBbd+V6OwO2D+lvtdesVG/3sK8XdEZH\nx/Sqr/dIr2Orq/U+O977XW4sATIRDmE1TG9v7+BwoVCgUCjk1hYbm76+Pjo6FnD48PnZlPOZPHk+\nGzdurJg+DTgDGFqur69v2EMRGzduPGY5mAuoYtr8bB2zgF8Bsyvmd2c/5dMWAH3AW7PyPRXz55XN\nH6j/9Ox3+bJzWbduXVbHyVXauhG4ZrC/AG1tlX06PWt3+et1epUyB2lrmzPq17HV1XqfHc/9LhaL\nFIvFxlSWmjyN/GF0h7B24kNYxz3vgXgPpBm8BzK2PZDcw6PUfhYAj9eY9y+Bb2XDK4ANNco16OW0\niWLg2HRX19Kq50AGpq9efV3VciNZvfq6KD8XMPQcyLlZoCwoOwdyXUBHHHsOZGg9Q8+BtB+zTNo5\nkJOi8hxItf4ePQdSXn/lOZBp2e9Fg3WVnwMZ7evY6k7Ufg8YS4CotHx+JK0BCsAbgBeAm4AOSp26\nPStzK7AKOAR8KCIerVJP5N0XazxfhXW0v74Ka/ycqP0GkEREKGnZ4+VD1wFiZjZ6YwmQ3G8kNDOz\n1uQAMTOzJA4QMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAxM7MkDhAzM0vi\nADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAx\nM7MkDhAzM0uSe4BIWiVpp6Rdkm6oMv8MSd+X9KikLZIuzaOdZmY2lCIiv5VLbcAuYCXwLLAJuCoi\ndpaV+Wvg0Yj4a0mLgXsjYmGVuiLPvpiZtSJJRIRSls17D2Q5sDsino6I14G1wOUVZX4NdGXDM4Bn\nmtg+MzOroT3n9c8F9paN76MUKuVuBtZJug44Cbi4SW0zM7Nh5B0g9bga+HJE/E9JK4CvAW+qVrC3\nt3dwuFAoUCgUmtE+M7OWUSwWKRaLDakr73MgK4DeiFiVjd8IRETcUlZmG3BJRDyTjf8EuCAiXqyo\ny+dAzMxGqZXPgWwCFkmaL6kDuAq4p6LM02SHrbKT6FMqw8PMzJov1wCJiCPAamAd8ASwNiJ2SLpZ\n0mVZsU8A10raAtwBXJNPa83MrFyuh7AayYewzMxGr5UPYZmZWYtygJiZWRIHiJmZJXGAmJlZEgeI\nmZklcYCYmVkSB4iZmSVxgJiZWRIHiJmZJXGAmJlZEgeImZklcYCYmVkSB4iZmSVxgJiZWRIHiJmZ\nJXGAmJlZEgeImZklcYCYmVkSB4iZmSVxgJiZWRIHiJmZJXGAmJlZEgeImZklyT1AJK2StFPSLkk3\n1CjzPklPSHpc0tea3UYzMzuWIiK/lUttwC5gJfAssAm4KiJ2lpVZBHwduCgiDkqaFREvVqkr8uyL\nmVkrkkREKGXZvPdAlgO7I+LpiHgdWAtcXlHmWuCvIuIgQLXwMDOz5ss7QOYCe8vG92XTyp0NnCPp\nQUkPS7qkaa0zM7Oa2vNuQB3agUXAO4B5wAOSzh3YIynX29s7OFwoFCgUCk1qoplZaygWixSLxYbU\nlfc5kBVAb0SsysZvBCIibikr8wVgQ0R8JRv/HnBDRDxSUZfPgZiZjVIrnwPZBCySNF9SB3AVcE9F\nmbuAiwAkzQLOAp5saivNzOwYuQZIRBwBVgPrgCeAtRGxQ9LNki7LynwHeEnSE8D9wCci4pXcGm1m\nZsAIh7Ak/RyoVkCUDjV1jVfDRsuHsMzMRm8sh7CGPYkeESenNcnMzI53o7oKS9IpwNSB8Yj4acNb\nZGZmLaGucyCS3i1pN/AU8AOgD7hvHNtlZmYTXL0n0f8MWAHsioiFlB498tC4tcrMzCa8egPk9Yh4\nCWiT1BYR64El49guMzOb4Oo9B3JA0nTgAeAOSf3AP49fs8zMbKKr6050SdOAX1K6fPcDQDdwR7ZX\nMiH4Ml4zs9Eby2W8uT7KpJEcIGZmozdu94GUraD8hsIOYDJwaCLdSGhmZs1VV4CU31AoSZS+s2P5\neDXKzMwmvuRDWJI2RMSKBrcnmQ9hmZmNXjMOYb2nbLQN+G2qPyPLzMxOEPVexvuvy4b/mdKd6JVf\nPWtmZieQegPkixEx5M5zSW8H+hvfJDMzawX13on+uTqnmZnZCWLYPRBJvwO8DZgt6eNls7qASePZ\nMDMzm9hGOoTVAUzPypV/N8hB4L3j1SgzM5v46n2UyfyIeLoJ7Unmy3jNzEZvLJfx1nsO5IuSZpSt\ncKak76Ss0MzMjg/1BsisiDgwMBIRrwCnjE+TzMysFdQbIL+WNG9gRNICfCOhmdkJrd77QD4JPCjp\nB5Qe6f4vgI+MW6vMzGzCq/tZWJJOoRQam4FOoD8iHhjHto2KT6KbmY3euJ9El/RHwP3AfwI+AXwV\n6E1ZYZW6V0naKWmXpBuGKff7kn4taVkj1mtmZmNT7zmQ64G3Ak9HxEXAUmD/WFcuqQ24FbgEeBNw\ntaQ3Vik3HbgO2DDWdZqZWWPUGyC/jIhfAkiaEhE7gXMasP7lwO6IeDoiXgfWUv0hjX8GfAr4VQPW\naWZmDVBvgOzL7gO5C/iupLuBZxuw/rnA3vL1ZNMGSVoKnB4R9zVgfWZm1iD1fiPhFdlgr6T1QDfw\n7XFrVSb79sP/AVxTPrlW+d7e3sHhQqFAoVAYr6aZmbWkYrFIsVhsSF3J30jYkJVLK4DeiFiVjd8I\nRETcko13AXuAVykFxxzgJeDdEfFoRV2+CsvMbJTGchVW3gEyCfgxsBJ4DtgIXB0RO2qUXw98PCI2\nV5nnADEzG6VmPAtrXETEEWA1sA54AlgbETsk3SzpsmqLMMwhLDMza55c90AayXsgZmaj17J7IGZm\n1rocIGZmlsQBYmZmSRwgZmaWxAFiZmZJHCBmZpbEAWJmZkkcIGZmlsQBYmZmSRwgZmaWxAFiZmZJ\nHCBmZpbEAWJmZkkcIGZmlsQBYmZmSRwgZmaWxAFiZmZJHCBmZpbEAWJmZkkcIGZmlsQBYmZmSRwg\nZmaWxAFiZmZJcg8QSask7ZS0S9INVeb/R0lPSNoi6buSzsijnWZmNlSuASKpDbgVuAR4E3C1pDdW\nFHsUeEtELAH+EfjL5rbSzMyqyXsPZDmwOyKejojXgbXA5eUFIuIHEfHLbHQDMLfJbTQzsyryDpC5\nwN6y8X0MHxAfBu4b1xaZmVld2vNuQL0k/QHwFuDCWmV6e3sHhwuFAoVCYdzbZWbWSorFIsVisSF1\nKSIaUlHSyqUVQG9ErMrGbwQiIm6pKHcx8BngHRHxUo26Is++mJm1IklEhFKWzfsQ1iZgkaT5kjqA\nq4B7ygtIWgrcBry7VniYmVnz5RogEXEEWA2sA54A1kbEDkk3S7osK/ZpYBrwD5I2S7orp+aamVmZ\nXA9hNZIPYZmZjV4rH8IyM7MW5QAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAxM7Mk\nDhAzM0viADEzsyQOEDMzS+IAMTOzJA4QMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS+IAMTOzJA4Q\nMzNL4gAxM7MkDhAzM0viADEzsyQOEDMzS5J7gEhaJWmnpF2Sbqgyv0PSWkm7Jf1Q0rw82mlmZkO1\n57lySW3ArcBK4Flgk6S7I2JnWbEPAy9HxFmSrgQ+DVzV/NaOn/3799PX18eCBQuYPXt2Q+oBatY5\n3PoG5k2fPp29e/cCsHTp0sH6XnvtNfbs2cOiRYs4dOjQ4PzZs2ezf/9+1q9fz8MPP8zzzz/PnDlz\nOPfcc+nq6gJgxowZnHHGGezdu5cDBw7wyCOP8NBDD3Haaacxd+5cfvGLX3Dw4EG6u7t5+eWX2bt3\nL0uWLOGyyy5j69atAFx44YUcOnSIbdu2sWnTJvr7+zly5Ajd3d0cPnyYBQsWsHjxYl588UW2bdvG\ntm3b6OnpYcWKFRw5coQ5c+bw8ssv87Of/YyFCxeyb98+du3aRXt7O7Nnz2blypVcfvnl7Nq1i3Xr\n1hER3Hnnnbz22mtceeWVzJ49m87OzsE+ARw8eJDDhw+zbNmywdekvJ8zZswYfI1G2k47duxg48aN\nLF++nFmzZjXkfWE2biIitx9gBXBf2fiNwA0VZb4NXJANTwL216grWtGaNWujs7MnuruXRWdnT6xZ\ns3bM9XR0dMfkydOr1jnc+gbmdXaeF9AZMCVgUUyaNC06Orqjo2NxNn1m9vvMgJNi8uTpsXr19dHe\nfnI2rTPg1ICTsjo6ysYnZ9OOLg/tVaZ1ZNMG6uuoGJ6TLdcZsKhsneXzO2NoeyrLnFljvZOyaWeV\nzT+tYl0DZSrXMyUrMyWr7+hrtGbN2iGv/+TJJ0dHR/fgtnjnOy/N6jg7YEq0t5885veF2Uiyz860\nz/DUBRvxA/w+cHvZ+B8An60o8zjwG2Xju4GeKnU17AVtlv7+/ujs7Al4LCACHovOzp7o7+8fcz2l\nD/n+IXUOt77adWzPfg9MX599yJWXmxEwtWJaT1Z2ZkB3VubOrFx3RX1Ts/mV6+4e7MPQ4RkB06q0\nY2CdXdlwtXnl7ars28B6p2Zl+rPx9VXq6wz4uyrTa9U7I6ZM6Sp7jfuj9utaOS/tfWFWj7EESK6H\nsBKp1oze3t7B4UKhQKFQaEJz0vX19dHRsYDDh8/PppzP5Mnz6evrG9Uhi2r1wAKgD3jrYJ1AzfVV\nm1eqYyOwMBsHmAacUTZ+PjAPeKVi2vys7ALgUDb9Z8ApwPSK+mYDPRXLDyxX6gPMLRueB+wD3lBj\nnadkv6vNK29XZd8G1rs/K9OXzR8oX15uLvBklem16p2HdIC2tpnZ+CaOfV1PrzEv7X1hVk2xWKRY\nLDamstTkacQPpUNY3y4br3YI6z6GHsLqr1FXwxK5WbwH4j0Q74FY3mjhQ1iTgD2U/i3sALYAiyvK\n/DHw+Wz4KmBtjboa+JI2z8Ax8a6upQ05B9LVtXTwHEi1Oodb39FzIOfG0eP5Z8akSSfVcQ7kuuwc\nyG/G8OdAqp3vmJSVGc05kFPj6HmIaudATo36zoFUW29bWb0D8+dE9XMgleuZUlZv7XMgXV1LY/Lk\n6dHR0T24Ld71roFzIGcFdER7+8ljfl+YjWQsAaLS8vmRtAr4DKVLir8UEZ+SdDOwKSL+SdIU4KvA\nUuAl4KqI6KtST+Tdl1S+CstXYfkqLMuLJCKi5qmBYZdt1Q/dSq0cIGZmeRlLgOR+I6GZmbUmB4iZ\nmSVxgJiZWRIHiJmZJXGAmJlZEgeImZklcYCYmVkSB4iZmSVxgJiZWRIHiJmZJXGAmJlZEgeImZkl\ncYCYmVkSB4iZmSVxgJiZWRIHiJmZJXGAmJlZEgeImZklcYCYmVkSB4iZmSVxgJiZWRIHiJmZJckt\nQCTNlLRO0o8lfUdSd5Uyb5b0sKTHJW2R9L482mpmZsfKcw/kRuB7EXEO8H3gv1Ypcwj4YEScB1wK\n/C9JXU1s44RRLBbzbsK4cv9a2/Hcv+O5b2OVZ4BcDnwlG/4K8HuVBSJiT0T8JBt+DugHZjethRPI\n8f4mdv9a2/Hcv+O5b2OVZ4CcEhEvAETE88ApwxWWtByYPBAoZmaWr/bxrFzSd4FTyycBAfy3KsVj\nmHpOA/4e+GBDG2hmZskUUfNze3xXLO0AChHxgqQ5wPqIWFyl3MlAEfjziLhzmPry6YiZWYuLCKUs\nN657ICO4B/hD4BbgGuDuygKSJgN3AV8ZLjwg/QUwM7M0ee6B9ADfAM4AngbeFxEHJL0F+GhEfETS\nB4C/BZ7g6OGvP4yIrbk02szMBuUWIGZm1tpa9k50Se+VtE3SEUnLhim3StJOSbsk3dDMNo5FPTda\nZuWOSHpU0mZJdzW7naM10vaQ1CFpraTdkn4oaV4e7UxVR/+ukdSfbbNHJf27PNqZQtKXJL0gqeYR\nAEmfzbbdFklLmtm+sRqpf5IulHSgbNtVuxhoQpJ0uqTvS3oiuzH7uhrlRrf9IqIlf4BzgLMo3YS4\nrEaZNmAPMB+YDGwB3ph32+vs3y3Af8mGbwA+VaPcwbzbOoo+jbg9gH8PfD4bvhJYm3e7G9y/a4DP\n5t3WxP79LrAE2Fpj/qXAt7LhC4ANebe5wf27ELgn73Ym9m0OsCQbng78uMp7c9Tbr2X3QCLixxGx\nm9K5kVqWA7sj4umIeB1YS+kGxlYw4o2WmVa6eKCe7VHe7/8DrGxi+8aq3vdbK22zQRHxIPDKMEUu\np3S5PRHxI6Bb0qnDlJ9Q6ugftO62ez4itmTDrwI7gLkVxUa9/Vo2QOo0F9hbNr6PY1+0iareGy2n\nSNqYPTNsoodjPdtjsExEHAEOZBdctIJ632/vyQ4RfEPS6c1pWlNU9v8ZWufvrV4rssPF35L0W3k3\nJoWkBZT2tH5UMWvU2y/Py3hHNMyNiJ+MiG/m06rGadCNlvMj4jlJC4HvS9oaEU81uKl5asn/+IZx\nD7AmIl6X9BFKe1uttJd1InuE0t/bLyRdSukWg7NzbtOoSJpOac/++mxPZEwmdIBExDvHWMUzQPlJ\n2NOzaRPCcP3LTuadGkdvtOyvUcdz2e+nJBWBpcBEDZB6tsc+Spd2PytpEtAVES83qX1jNWL/IqL8\nEMkXgU83oV3N8gylbTdgQv29jVX5B25E3Cfp85J6WuX9KamdUnh8NSKOue+OhO13vBzCqvVf6iZg\nkaT5kjqAqyj9B9gKBm60hNo3Ws7I+oWkWcDbgO3NamCCerbHNyn1F+DfULpIolWM2L/sn4EBlzOx\nt1c1ovbf2z3AvwWQtAI4MHAYtoXU7F/5+YDs2XxqlfDI/C2wPSI+U2P+6Ldf3lcHjOGqgt+jdLzu\nMPAccF82/TTgn8rKraJ0xcFu4Ma82z2K/vUA38vavg6YkU1/C3B7Nvw7wFZgM/AYpZssc2/7CP06\nZnsANwOXZcNTKN1guhvYACzIu80N7t9fANuybXY/cHbebR5F39YAzwK/An4KfAj4KPCRsjK3UroS\n7TFqXB05UX9G6h/wsbJt9zBwQd5tHkXf3g4coXRl4Gbg0ey9Oqbt5xsJzcwsyfFyCMvMzJrMAWJm\nZkkcIGZmlsQBYmZmSRwgZmaWxAFiZmZJHCBm40TSz7Pfp0n6xghlr5c0dZT1Xyip5R/pY63LAWI2\nCpJG8zcTUHrcTES8b4SyfwKclNAk38hluXGAmGWyR5DskPR3kh7LnpbbKekpSX8q6QHgvZJ+U9J9\nkjZJ+oGks7PlF2RPRf6RpP9eUe/j2XCbpL/MvtRni6SPSfoPwG8A6yXdn5V7V1bX/5P0dUknZdNX\nZW18AHhPs18js3IOELOhzgFui4g3AweBP6b0X/7hiHhHRHwDuB1YHRFvBf4z8IVs2c8AfxURFwDP\nV9Q7sKfwUUpfOHV+RCwB7oiIz1F6aF0hIlZKegPwSWBlRPw2pafAflzSlGzd/yoi3kHpS4LMcjOh\nn8ZrloOfRsSGbPgOYOCrP78OIGkapYdW/oOkgYfuTc5+v52jewVfBT5Vpf6VwBcie4ZQRBzIppc/\nxG8F8FvAQ9k6JgM/BN4IPBkRT2blvgZcm9hPszFzgJgNb2DP4VD2uw14JSKW1Sg7UH4s32MiYF1E\nfGDIROnNY6zXrKF8CMtsqHmSLsiG3w/83/KZEfFz4ClJ7x2YJun8bPAh4OpseMiHf5nvAh/NvusE\nSTOz6QeBrmx4A/B2SWdmZU6SdBawE5iffXkYZesyy4UDxGyoncA1kh4DuoHbqpT5APDh7CT4NuDd\n2fQ/AT4m6UfAyTXq/yKlryHYKmkzR0Pgb4BvS7o/Il6k9Cjx/52142HgnIj4FaVzKPdmJ9H7xthX\nszHx49zNMpLmU/oumfPybotZK/AeiNlQ/o/KrE7eAzEzsyTeAzEzsyQOEDMzS+IAMTOzJA4QMzNL\n4gAxM7MkDhAzM0vy/wHCQX6ltLpzdAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d2bc24f208>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "predictions = [predict(x_i, beta) for x_i in rescaled_x]\n", "\n", "plt.scatter(predictions, y)\n", "plt.xlabel(\"predicted\")\n", "plt.ylabel(\"actual\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEKCAYAAADkYmWmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHExJREFUeJzt3Xt8VOW97/HPj6uigChekNtWAXV7qVaK16NRFLG14q4V\nYVtFxW4tddfWej3trtHjrae+ZNdqRSsKUSvWFhU4RVBs8HiFiogigVglcq0GQZBrSH77j2ciQ5gk\nk2Qma9bM9/16rdesNfPMml/G+M3Ds9Z6lrk7IiIST22iLkBERJpPIS4iEmMKcRGRGFOIi4jEmEJc\nRCTGFOIiIjGmEJeMMrNPzOyMDOznITP7RTPe19vM1puZNeO9d5jZ52a2sqnvbYnm/qwiAKbzxCWT\nzOwTYLS7vxKnzzOz3sBioLe7r8lIcak/ZxRwpbv/r2x9hhQW9cRFgr5AZTYDPMEA9ZwkYxTikjVm\n1sHM/tvMVpjZcjMba2btk16/0cxWJl4bbWY1ZnZw4rXHzez2xPo+ZjbVzNaa2Rozm514vgToA0xN\nDKFcb2Z9E/tpk2jTzcweS9Swxswmp6hzMDATODCxn8fM7DQzW1an3ddDRWZ2q5k9Y2YTE+9538y+\nmdS2l5n9xcw+SwzR3G9mhwEPASea2QYz+6Luz5rY/qGZlZtZpZk9b2Y9kl6rMbOrzGyJmX1hZg+0\n9L+TxJtCXLLpl8Ag4GjgG4n1XwKY2VDgp8AZQD+giPp7qD8HlgH7APsB/xvA3S8FPgXOdfcu7n5v\non3yfp4EdgcOT7x3bN2du/ss4BxgZWI/V6TYTyrfBf4IdAWmAg8mfrY2wDTgE8IfmZ7AJHcvA64G\n3nT3zu6+d90dJv5I3AV8H+iR+Pkm1Wn2HeA4wnc63MyGNFKn5DGFuGTTvwO3ufuaxDDFbcAlidcu\nBB539zJ33wIUN7CfKkKgHeTu1e7+ep3XUx7ETPRgzwaucvf1iff+/xb8PHW95u4zPBxYeoLwxwrg\n+ES9N7r7Fnff5u5vpLnPfwfGu/t77l4F3ELoufdJanO3u29w92XA34BjMvPjSBwpxCWbDiT0JGtV\nJJ6rfS15uGIZ9YQx8BvgH8BMM/vIzG5K8/N7AV+4+/r0S26S1Unrm4DdEr3wXkCFu9c0Y58HEr4n\nANx9I7CG0Juv9c86n7tnMz5H8oRCXLJpJeGAYa2+iecAVhHCrlYf6hm+cPev3P16dz8EOA+4zsxO\nr325gc9fBuxtZl2aUftGoFPthpm1BfZN873LgD614/J1NDZEs9N3ZmZ7EIaRlqf52VJgFOKSTU8D\nvzSz7mbWHfgvwrADwJ+Ay83sMDPrRGKsPBUz+46ZHZLY3ABsB6oT2/8EDq77FgB3Xw1MB35vZnuZ\nWTszS/fUviWEnvU5ZtYuUV+HRt5T+y+JOYQ/UveYWScz62hmJyXV2yv5AG8dTxO+l6PNrCNhfPyt\nxNCJyC4U4pJpyT3NO4C/AwuA9xLrdwK4+4vA/YQx3SXAm4n3bE2xz/7Ay2a2AXgdeNDdX028djfw\nX4kzNa5LUcMlhNAvIwTotWn9EGEIZgwwntAL3kDjvWFPvLeGcNCzP2E4aRkwPNHmFWAhsNrMPkvx\nubMIf+wmAyuAg4ARdT+jgW0pMLrYR3JC4vS794GOzRxLFilI6olLZMzs/MS55N2AXwNTFOAiTaMQ\nlyhdBXwGlBNOIxwTbTki8aPhFBGRGFNPXEQkxtq15oeZmbr9IiLN4O4pL4Zr9Z64u2vJ4HLrrbdG\nXkM+Lfo+9Z3m4tIQDaeIiMSYQlxEJMYU4jFXVFQUdQl5Rd9n5uk7za5WPcXQzLw1P09EJB+YGZ4r\nBzZFRCRzFOIiIjGmEBcRiTGFuIhIjCnERURiTCEuIhJjCnERkRhTiIuIxFijIW5m483sn2a2oIE2\n95tZuZnNN7NjMluiiIjUJ52e+OPA2fW9aGbnAIe4e3/CnVrGZag2ERFpRKMh7u6vAWsbaDIMKEm0\nfRvoamb7Z6Y8ERFpSCZuCtETWJa0vSLx3D8zsG8RkXq5Q1UVbN++81JdvetSUxOW2nX3Hc/VLrXP\nuae31NZQdzu5vlSPdddT/VzpatU7+wAUFxd/vV5UVKQZzkTylDt89RV88QWsXRuWdetg/XrYsCE8\nfvUVbNwYHjdtgs2bdzxu3QpbtoRl27awbN0aHquqwlJTA+3aQfv20LZtWG/XLqynWtq02XUxC6+Z\nhaX2uXQXSL1dq+5zqV6ra82aUtasKU3re05rFkMz6wtMdfejU7w2Dvibuz+T2C4DTnP3XXrimsVQ\nJD9s2AAVFTuWFStg1aqwrF4Nn38OlZUhUPfeG7p1g732CkvXrtClC3TuDHvuCXvssWPp1Al23x12\n223HY8eOYenQISzt24elQ4cd4ZvvGprFMN2euCWWVKYAPwaeMbMTgHWpAlxE4sU9hPL774dl0SJY\nsgTKy0OI9+0LffqEx1694KSToEcPOOAA2HffsOy+e9Q/Rf5rtCduZn8EioB9COPctwIdAHf3RxJt\nHgCGAhuBy919Xj37Uk9cJEdt3AhvvAFvvQVvvw1z5oThiqOPDsu//isMGAD9+8OBBxZGDzhXNNQT\n100hRApUTU0I6hdfhFmz4N134dhj4cQT4fjjYdCg0MNWWEdPIS4iQDgzY9YsmDwZXngB9tkHvvMd\nGDwYTjkljElL7snEmLiIxNjixTBhApSUhHHriy6CV18NQyMSbwpxkTzlDi+9BPfeCwsWwA9+ADNm\nwJFHRl2ZZJJCXCTP1NTAn/4Ed98dhk+uvx6mTg2n6Un+UYiL5JFZs+Cmm8LByLvvhnPO0YHJfKcQ\nF8kDH38M11wTzuO+6y648EKFd6HQfOIiMVZdDWPHhtMBTz8dPvwQhg9XgBcS9cRFYmrxYhg1Klya\n/tZb0K9f1BVJFNQTF4mhZ58N53Vfeim88ooCvJCpJy4SI1VVcOON4UKdF1+E446LuiKJmkJcJCbW\nrYNhw8Lsf3//e5gdUETDKSIxsHIlnHpqmNtkyhQFuOygEBfJceXlYfx75MhwJkob/V8rSTScIpLD\nFi6Es86C22+HK6+MuhrJRQpxkRz18ccwdCj85jdw8cVRVyO5Sv8wE8lBK1eGHvgttyjApWEKcZEc\ns2YNDBkCo0fDmDFRVyO5TjeFEMkhVVVw5pkwcGCYQlaXzwvozj4isfGf/wmffBIu5mnbNupqJFfo\nzj4iMTBhQrhpw5w5CnBJn3riIjlgzhw491yYPRsOPzzqaiTXNNQT14FNkYitXRvm/37kEQW4NJ16\n4iIRGzkS9tsPfvvbqCuRXKUxcZEc9fTTMH8+zJsXdSUSV+qJi0Rk2bIwlez06ZpSVhqmMXGRHFNT\nA5dfDtdeqwCXllGIi0TgkUdg48ZwZ3qRltBwikgr++wzOPJImDULjjoq6mokDlo8nGJmQ82szMyW\nmNkufQcz621mr5jZPDObb2bntLRokXx1443h3pgKcMmERnviZtYGWAIMBlYCc4ER7l6W1OZhYJ67\nP2xmhwN/dfeDUuxLPXEpaK++GmYl/PDDcJs1kXS0tCc+CCh39wp3rwImAcPqtKkBuiTW9wJWNLdY\nkXxVVRVmJRw7VgEumZPOeeI9gWVJ28sJwZ7sNmCmmf0E6AScmZnyRPLH/fdDr15wwQVRVyL5JFMX\n+4wEHnf3sWZ2AvAkcESqhsXFxV+vFxUVUVRUlKESRHLXmjVw993w+uuaXlYaV1paSmlpaVpt0xkT\nPwEodvehie2bAXf3Xye1+QA4291XJLb/ARzv7pV19qUxcSlI118fTil86KGoK5E4aull93OBfmbW\nF1gFjCD0vJNVEIZQJiYObHasG+AihaqiAh5/PNz0WCTTGj2w6e7VwDXATGAhMMndF5nZbWZ2bqLZ\n9cAPzWw+8BQwKlsFi8TNr34FP/4xHHBA1JVIPtLFPiJZtGBBuOFxeTl06dJ4e5FUNHeKSERuvhl+\n8QsFuGSPpqIVyZI33wwX9Tz/fNSVSD5TT1wkS+64A265BTp0iLoSyWfqiYtkwTvvwHvvweTJUVci\n+U49cZEsuPNOuOEG6Ngx6kok3+nsFJEM++ADOPNM+Phj6NQp6mokH+jsFJFWdNddcN11CnBpHeqJ\ni2TQkiVw8smhF66ZCiVT1BMXaSX33huuzlSAS2tRT1wkQyoroX9/WLwY9tsv6mokn6gnLtIKxo0L\nc4UrwKU1qScukgFbt8JBB8HMmeEmyCKZpJ64SJZNmhTCWwEurU0hLtJC7uG+mdddF3UlUogU4iIt\nVFoK27bB2WdHXYkUIoW4SAuNHQs//anunSnR0IFNkRZYuhQGDoRPP9UVmpI9OrApkiWPPAKXXKIA\nl+ioJy7STNu2QZ8+MHs2HHpo1NVIPlNPXCQLJk+GI45QgEu0FOIizfTQQ3D11VFXIYVOwykizbBw\nYZgz/NNPoX37qKuRfKfhFJEMGzcOrrxSAS7RU09cpIk2boTevcM9NHv3jroaKQTqiYtk0DPPhBs/\nKMAlFyjERZpo/PgwlCKSCxTiIk2waFG49dq3vx11JSKBQlykCR57DC69VAc0JXekFeJmNtTMysxs\niZndVE+b4Wa20MzeN7MnM1umSPSqqqCkBK64IupKRHZo11gDM2sDPAAMBlYCc83sBXcvS2rTD7gJ\nONHd15tZ92wVLBKVadNgwABdoSm5JZ2e+CCg3N0r3L0KmAQMq9Pmh8CD7r4ewN0rM1umSPTGj4fR\no6OuQmRn6YR4T2BZ0vbyxHPJBgCHmtlrZvaGmWl6fMkrK1bA66/DhRdGXYnIzhodTmnCfvoBpwJ9\ngFfN7MjanrlI3E2cCMOHwx57RF2JyM7SCfEVhGCu1SvxXLLlwFvuXgMsNbMlQH/gnbo7Ky4u/nq9\nqKiIoqKiplUs0srcYcKEcFBTpDWUlpZSWlqaVttGL7s3s7bAYsKBzVXAHGCkuy9KanN24rnLEgc1\n3wGOcfe1dfaly+4ldt54Ay6/HMrKdAs2iUaLLrt392rgGmAmsBCY5O6LzOw2Mzs30WYGsMbMFgKz\ngOvrBrhIXE2cCJddpgCX3KQJsEQasHkz9OwJCxZAr15RVyOFShNgiTTTlClw3HEKcMldCnGRBkyY\nEIZSRHKVhlNE6rFyZbiH5ooVupu9REvDKSLN8NRT8L3vKcAltynERVJw33FWikguU4iLpPDuu7Bp\nE5xyStSViDRMIS6SQkkJXHKJzg2X3KcDmyJ1bN8ezg1/7TXo3z/qakR0YFOkSWbOhIMPVoBLPCjE\nReooKQm3YBOJAw2niCT58kvo0yfcDHmffaKuRiTQcIpImv78ZzjjDAW4xIdCXCTJE09oKEXiRcMp\nIglLl8LAgeEy+44do65GZAcNp4ik4amnwj00FeASJwpxEcJl9hpKkThSiIsAc+dCdTWccELUlYg0\njUJchNAL12X2Ekc6sCkFb9u2cOeet94KV2qK5Bod2BRpwIsvwoABCnCJJ4W4FDwd0JQ403CKFLR1\n66Bv33COeLduUVcjkpqGU0Tq8eyzMGSIAlziSyEuBa325g8icaXhFClYH30EJ58My5dD+/ZRVyNS\nPw2niKRQUgIjRyrAJd7UE5eCVFMTTil87jk49tioqxFpmHriInXMng1du8Ixx0RdiUjLpBXiZjbU\nzMrMbImZ3dRAuwvMrMbMvpm5EkUyb+JEGDVKl9lL/DU6nGJmbYAlwGBgJTAXGOHuZXXa7Qn8P6A9\ncI27z0uxLw2nSOS++ipcZr94Mey/f9TViDSupcMpg4Byd69w9ypgEjAsRbv/A9wDbG12pSKt4C9/\ngVNOUYBLfkgnxHsCy5K2lyee+5qZHQv0cvfpGaxNJCsmToTLLou6CpHMaNfSHZiZAfcBo5Kfbul+\nRbJh6VJYsAC++92oKxHJjHRCfAXQJ2m7V+K5Wp2BI4DSRKAfALxgZuelGhcvLi7+er2oqIiioqKm\nVy3STI8/Hs4N1y3YJJeVlpZSWlqaVtt0Dmy2BRYTDmyuAuYAI919UT3t/wZc5+7vpnhNBzYlMtXV\ncNBBMGWKTi2UeGnRgU13rwauAWYCC4FJ7r7IzG4zs3NTvQUNp0gOevll2HdfBbjkF12xKQVj+HAo\nKoIxY6KuRKRpGuqJK8SlIFRWQr9+4cDmXntFXY1I0+iyeyl4Tz4ZzkhRgEu+UYhL3nOHRx+F0aOj\nrkQk8xTikvfmzIEtW+C006KuRCTzFOKS9/7wB7jiCk12JflJBzYlr61bF84NLyvTXCkSXzqwKQWr\npATOPlsBLvlLIS55yx3GjYMf/SjqSkSyRyEueWv27DAOfuqpUVcikj0KcclbDz0EV1+tA5qS33Rg\nU/LS6tVw+OHhCs2uXaOuRqRldGBTCs5jj8H3v68Al/ynnrjkne3b4ZBD4Lnn4Ju6ZbfkAfXEpaBM\nngx9+yrApTAoxCXvjB0LP/tZ1FWItA6FuOSVN9+Ezz6D886LuhKR1qEQl7wydixcey20bRt1JSKt\nQwc2JW9UVIRx8KVLoXPnqKsRyRwd2JSC8LvfweWXK8ClsKgnLnlhwwb4l3+BefPCmSki+UQ9ccl7\n48bBWWcpwKXwqCcusbd5Mxx8MMyYAUcfHXU1IpmnnrjktUcfheOPV4BLYVJPXGJt61bo1y9cYj9w\nYNTViGSHeuKStyZOhCOPVIBL4VJPXGKrqgoOPRSeeAJOPjnqakSyRz1xyUtPPx3ORlGASyFTT1xi\nadu2cNOHRx+F00+PuhqR7FJPXPLOww/DgAEKcJG0QtzMhppZmZktMbObUrz+MzNbaGbzzewlM+ud\n+VJFgvXr4c474Z57oq5EJHqNhriZtQEeAM4GjgBGmtlhdZrNA45z92OAvwC/yXShIrXuvReGDIFv\nfCPqSkSi1y6NNoOAcnevADCzScAwoKy2gbvPTmr/FnBxJosUqbV6NTz4ILzzTtSViOSGdIZTegLL\nkraXJ56rz2hgekuKEqnP7bfDZZeFya5EJL2eeNrM7AfAccBp9bUpLi7+er2oqIiioqJMliB57IMP\n4Nlnoays8bYicVZaWkppaWlabRs9xdDMTgCK3X1oYvtmwN3913XanQn8FjjV3dfUsy+dYijN4g6n\nnQYjRsCYMVFXI9K6WnqK4Vygn5n1NbMOwAhgSp0POBYYB5xXX4CLtMQTT8CmTXDVVVFXIpJb0rrY\nx8yGEnrZbYDx7n6Pmd0GzHX3aWb2EnAksAowoMLdz0+xH/XEpcnWrg0X9kydCt/6VtTViLS+hnri\numJTcl7t8Mnvfx9tHSJRaSjEM3pgUyTT5swJ08x++GHUlYjkJl12Lzlr0yYYNQrGjoVu3aKuRiQ3\naThFctZPfgKVlfDHP0ZdiUi0NJwisTNzJjz/PLz3XtSViOQ2hbjknC++gNGjYcIEDaOINEbDKZJT\n3GH4cOjVK4yFi4iGUyRG7r0Xli4NF/eISOMU4pIzZswIve+334bddou6GpF4UIhLTvjHP+DSS8ME\nV711SxGRtOk8cYnchg1w/vnwq1/BqadGXY1IvOjApkRq82b49rfhsMPCZfWW8tCNSGHT3CmSk6qq\n4IILYI894MknoW3bqCsSyU26273knJoauOIKqK6GkhIFuEhz6cCmtLrt2+Hqq+HTT2H6dGjfPuqK\nROJLIS6tassWGDkSvvoKpk2DTp2irkgk3jScIq3myy9h6FDo2DEEeOfOUVckEn8KcWkVH38cTh88\n6qgwK2HHjlFXJJIfFOKSddOmwYknhgOZ998PbfRbJ5IxGhOXrKmuDhfwlJSEu/OcdFLUFYnkH4W4\nZMUHH4TpZLt0gXfegf32i7oikfykf9hKRm3bBsXFcPrpIcRnzFCAi2STeuKSEe7wwgtw883Qrx+8\n+26YE1xEskshLi325ptwww3hFML77oNzztEcKCKtRcMp0izu4WrLM86Aiy4KQyfz54fJrBTgIq1H\nPXFpknXrYNIkeOCBMN/JDTeE26l16BB1ZSKFSbMYSqO2bYNXXoGJE+Gvf4UhQ+A//gPOPFO9bpHW\noKlopcnWrYOXXw7nd0+fDoceChdfHOY92WefqKsTKSwKcWlUZSXMmQOvvgqzZkFZGZxyCgwbFpYe\nPaKuUKRwtTjEzWwo8N+EA6Hj3f3XdV7vAJQAxwGVwEXu/mmK/SjEI+YOy5bB+++HZcGCEN6ffw4D\nB4bgHjwYjj9e85uI5IoWhbiZtQGWAIOBlcBcYIS7lyW1+RFwlLuPMbOLgH9z9xEp9qUQzzL3cKrf\nypVQURHm7K6ogI8+gvLysHTuHCaiOuooOPpo+Na3wu3RNKeJSG5qKMTTOTtlEFDu7hWJnU0ChgFl\nSW2GAbcm1v8MPND8csU9HEzcuDHMu71hA6xfH5Yvv4S1a3cslZWhF11ZCatXw6pV4SYLPXpA377Q\np094PP98GDAA+veHrl2j/glFJFPSCfGewLKk7eWEYE/Zxt2rzWydme3t7l/U3dnUqeExuUPeUOe8\n9jX3Xdul2kfd9qmWVK/X1Oy8Xrtdu167VFfveEy1bN++Y6mq2nXZti0sW7eGZcuW8Lh5c1g2bQqP\nAHvuGe4/2aXLzku3bjuW/v2he3fYd99weXuPHuF9IlIYsnWeeL0nnv3858Vfr3fvXkT37kXhDQ2c\nqlb7mtmu7ZK3k9slt0+1JL/eps3O68nbbdvu2K5db9MmrCcvHTpAu3ZhvV270BuufUxeOnYMbdu3\nh91223nZffdwp5vdd9d51yKFrLS0lNLS0rTapjMmfgJQ7O5DE9s3A558cNPMpifavG1mbYFV7r7L\ntEcaExcRabqW3u1+LtDPzPomzkIZAUyp02YqMCqxfiHwSnOLFRGR9DU6nJIY474GmMmOUwwXmdlt\nwFx3nwaMB54ws3JgDSHoRUQky3Sxj4hIjmvpcIqIiOQohbiISIwpxEVEYkwhLiISYwpxEZEYU4iL\niMSYQlxEJMYU4iIiMaYQFxGJMYW4iEiMKcRjLt3pKiU9+j4zT99pdinEY07/g2SWvs/M03eaXQpx\nEZEYU4iLiMRYq09F22ofJiKSR+qbirZVQ1xERDJLwykiIjGmEBcRibFWCXEz+76ZfWBm1Wb2zTqv\n3WJm5Wa2yMyGtEY9+cTMbjWz5WY2L7EMjbqmuDKzoWZWZmZLzOymqOuJOzNbambvmdm7ZjYn6nry\nVaM3Ss6Q94F/Ax5OftLMDgeGA4cDvYCXzay/bsTZZPe5+31RFxFnZtYGeAAYDKwE5prZC+5eFm1l\nsVYDFLn72qgLyWet0hN398XuXg7UPbo6DJjk7tvdfSlQDgxqjZryTMqj1tIkg4Byd69w9ypgEuH3\nU5rP0JBt1kX9BfcEliVtr0g8J03zYzObb2aPmlnXqIuJqbq/i8vR72JLOTDDzOaa2Q+jLiZfZWw4\nxcxeAvZPforwH/EX7j41U59TiBr6boHfA7e7u5vZHcB9wOjWr1JkFye7+yoz2xd4ycwWuftrUReV\nbzIW4u5+VjPetgLonbTdK/GcJGnCd/sHQH8wm2cF0CdpW7+LLeTuqxKPn5vZc4QhK4V4hkUxnJI8\nfjsFGGFmHczsIKAfoKPYTWBmByRtfg/4IKpaYm4u0M/M+ppZB2AE4fdTmsHMOpnZnon1PYAh6Hcz\nK1rl7BQzOx/4HdAdmGZm8939HHf/0Mz+BHwIVAFjdGZKk/1fMzuGcCbAUuCqaMuJJ3evNrNrgJmE\nzs14d18UcVlxtj/wXGKqjXbAU+4+M+Ka8pIuuxcRibGoz04REZEWUIiLiMSYQlxEJMYU4iIiMaYQ\nFxGJMYW4iEiMKcRFRGJMIS4iEmP/A/dmR79haDlEAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d2bc23e7f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sig_x = np.arange(-10., 10., 0.2)\n", "sig_y = [logistic(_) for _ in sig_x]\n", "plt.plot(sig_x, sig_y)\n", "plt.margins(0, 0.1)\n", "plt.title(\"logistic function\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "$\n", "logistic(x) = \\frac{1.0} {1+e^-x}\\\\\n", "p(y_i|x_i\\beta) = f(x_i\\beta)^{y_i}(1-f(x_i\\beta))^{1-y_i} \\\\\n", "log L(\\beta|x_iy_i) = y_i log f(x_i\\beta) + (1 - y_i) log(1 - f(x_i\\beta))\n", "$" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "logistic regression:\n", "beta_batch [-1.906182482651773, 4.053083869373743, -3.8788953691426906]\n", "beta stochastic [-1.9033596650613738, 4.048485018705759, -3.8747571420402442]\n" ] } ], "source": [ "print(\"logistic regression:\")\n", "\n", "random.seed(0)\n", "x_train, x_test, y_train, y_test = train_test_split(rescaled_x, y, 0.33)\n", "\n", "# want to maximize log likelihood on the training data\n", "fn = partial(logistic_log_likelihood, x_train, y_train)\n", "gradient_fn = partial(logistic_log_gradient, x_train, y_train)\n", "\n", "# pick a random starting point\n", "beta_0 = [1, 1, 1]\n", "# beta_0 = [random.random() for _ in range(3)]\n", "\n", "# and maximize using gradient descent\n", "beta_hat = maximize_batch(fn, gradient_fn, beta_0)\n", "\n", "print(\"beta_batch\", beta_hat)\n", "\n", "# beta_0 = [1, 1, 1]\n", "beta_hat = maximize_stochastic(logistic_log_likelihood_i,\n", " logistic_log_gradient_i,\n", " x_train, y_train, beta_0)\n", "\n", "print(\"beta stochastic\", beta_hat)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Confusion Matrix\n", "$Accuracy(정확도) = \\frac{TP+TN} {TP+TN+FN+FP} \\\\\n", "Precision(정밀도) = \\frac{TP} {TP+FP} \\\\\n", "Recall(재현율) = \\frac{TP} {TP+FN} \\\\\n", "F1 Score = \\frac{2 * Recall * Precision} {Recall + Precision}$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "precision 0.9333333333333333\n", "recall 0.8235294117647058\n" ] } ], "source": [ "true_positives = true_negatives = false_positives = false_negatives = 0\n", "\n", "for x_i, y_i in zip(x_test, y_test):\n", " predict = logistic(dot(beta_hat, x_i))\n", "\n", " if y_i == 1 and predict >= 0.5: # TP: paid and we predict paid\n", " true_positives += 1\n", " elif y_i == 1: # FN: paid and we predict unpaid\n", " false_negatives += 1\n", " elif y_i == 0 and predict >= 0.5: # FP: unpaid and we predict paid\n", " false_positives += 1\n", " else: # TN: unpaid and we predict unpaid\n", " true_negatives += 1\n", " \n", "precision = true_positives / (true_positives + false_positives)\n", "recall = true_positives / (true_positives + false_negatives)\n", "\n", "print(\"precision\", precision)\n", "print(\"recall\", recall)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWZ//HPt5N00iwJRCIoS4IEEEEwQSBu0AhKYBDG\ncWNRcBlkZoy4jA44jj+CzgLjjI6KiiiDjhAjuIAbGtA0CBKJBsKWSEA6rCbNGkA2yfP745xKKkVV\nd9Xtrq6q5Pt+verVde89dc5zb1XXU/ecuygiMDMza1RXqwMwM7PO5ARiZmaFOIGYmVkhTiBmZlaI\nE4iZmRXiBGJmZoU4gWzkJB0n6ecFX3uzpANHOqZ2J+lnkt7V6jgaJelOSa/Pzz8h6dxRaPMgSXc3\nu512tCmve4kTSBsp/wIYKRExLyJm19H2+ZI+XfHavSLiqkbakzRV0lpJa/Ljj5JObTTuVoqIIyLi\n2yNdb97GT+ft8oCkBZJ2H+l2ACLiPyLi/XXG9Omhyg3V3DBfX4ikPkkPSRpXZ/nSZ3Mkv/c26RPp\nnECsGQKYFBETgbcBn5J0yEg3ImnMSNc5Cs7K22UHYDVwfrVCHbpuo0bSVOC1wFrgqHpfRvpsqllx\nbWqcQDqEpJMkrci/XC+R9KKyZW+UtFzSw5K+nH+ZvTcvO1HSr8vKfl7SKkmPSloq6WWSTgKOB/4p\n/zq+NJct7xLpkvTPkm7Pr10safvBQgaIiN8DtwCvKIvhRZK+J2m1pDskfbBs2QRJ38q/LG+R9PHy\nboIc0z9JWgo8nuMarL79cqyPSrpf0n/l+eMlfTtvz4cl/VbSlLxsYdn2k6R/kdQv6U+SvilpYl5W\n+kV7gqSVuf1/ruf9jIingHnAXrmu0yVdnGN6BDgxt31a3uYDkuZL2qps3d6V4xqobDfX9+2y6ddK\nuiav68occ633faj355v5/bkZ2K/WOkr6iqTPVsy7RNKH8/NTJd2T214m6eB6tl12AnAt8E3g3RVt\nTJD033nbPCLpKkkTgCtzkUdymwdU2U4b7KVIerekW3P52yUNuVe3SYkIP9rkAdwJvL7K/NcDA8A+\nwDjgi8CVedk2wKPA0aQfBKcATwPvzctPBK7Kz98ILAa2zNO7A9vm5+cDn64VD/BxYCkwPU+/HNi6\nSqxTgeeAMXl6FvA4cHSeFvA74JPAGGAacDvwhrz8TGAhMBF4cW7zroqYluRl4+uo7zfA8fn5ZsD+\n+fn7gUvL6pgBbJGXLSzbfu8FbsvrtRnwfeD/ytZ1LfA1oBvYG3gK2L3G+7tuGwNbABcCfXn69Py+\nvSlPjwc+lON/UX7fvwrMy8tfBjwGvCYv+2/gmbL36/SKONcAb8/baGtg72rve53vz5XAJGB74Kby\n96difV8HrCyb3gp4AtgW2A24i/Wfv52AnRv4X1kBnAzMzOs9pWzZl4FfAdvl9ZmVt1Hps6mysuu2\nU8XntytPHw5MK1ufJ4BX5OmDaq37pvLwHkhnOA44LyKWRsSzwCeAWZJ2In3Ab46ISyNibUR8EVhV\no55ngS2Bl0lSRPwhImqVrfQ+4JMRcTtARNwUEQ/XKCtgQNKfgWuAr0TEpXnZfsA2EfFvEfFcRPQD\n3wCOycvfBvxbRKyJiPtIybLSFyLivoh4uo76ngWmS3pBRPw5Iq4rm/8CYLdIro+Ix6u0dRzwuYhY\nGRF/Jm37Y7S+Hz2AuRHxTETcSEp4+9TaiMDHJT1ESkqbA+8pW3ZtRPwYIK/byaRtfn9+3z8NvDW3\n/RbgxxFxTV72KWr3xx8LXB4RF+Vt9HCOtZp63p9/jYhHI+Jeqr8/5HX4NRCSXptnvTWv4yrSl3Q3\nsJeksRFxV0TcWauucrm+nYCLImIJKcEdl5eJtE1PiYg/5fd2Ud5G66qop528DpflbVBanwWkRGK4\nC6tTvBhYWZqIiCeAh0i/AF8MVB4Jck+1SiJiIXA26RfaKknnSNqizhh2BP5YZ9kgfTlvDvwj0Ctp\nbF42Fdg+d4E8JOlh0pfyC/PyF1fEX+0ol/LlQ9X3XtKe1vLcTfVXef63gV8A83M3ylmqPu6wwbbP\nz8eSfkWXlCfhP5P2Lmr5bERMjogXR8RfV3xpVq7rVOCHpXUDbiUlvm2peN9zcnuwRps7AncMElNl\nm428PysrK6jwXVICg/Qlf2GO9w7gw8Bc0mdxnsq6ZYdwArCg7AfMd0h72pD2yMdT/2d1UJIOl3St\npAfztjg8t2E4gXSK+0j/2ABI2pz0BX0vcD/pC6LcDrUqioizI+KVpC6Q3UldUzD00SR3A7s0ELPy\nr7//IXXN/ENZPX/MX6KTI2LriJgUEW/Ky++riH+naqtREVfN+iLijog4LiKmAP8JfE9ST0T8JSI+\nExF7Aq8GjiR9MVXaYNvn589Sey9vOCrfg7uAwyvWbfOIuJ+K913SZqTPRDV3A9PrbLOe96f88zaV\nwX2HtNe0E3AAqQswNRwxPyJeV1bHmUPURR7LeDtwkNKY1v2kRLSPpJcDD5C6Eat9Vqt9xp8gdU2W\nlI8tdgPfI31upkTE1sBleBB+HSeQ9tOtNMBbeowh/RO+R9LeksYD/w4sioi7gJ+SugGOkjRG0hw2\n/HW8jqRXSto/7w08SfpHW5sXrwJeMkhc3wA+I2l6ruvlkrauUbbyH+xM4NT8D3kd8JjSQPiEHPOe\nkl6Zy14MfELSVkqD9B8YJCaGqk/S8ZJKvxgfJX2JrJXUK2mv3B30OCkpPFel/u8AH5E0Le+t/Rsw\nPyJK262ZXyZfA/49f/kiaYqk0hFH3wOOlPRqpcNYPz1ILBcCh0h6a94+kyWVutkq3/dG3p8dgDmD\nrUBE3EDaM/oG8POIWJPXZTdJB+fPxDOkz+Pa2jWt82bgL8AepK7CffLzq4ETIiJI4zqfUzoYoEvS\nrLyNBnIb5cnlBuBASTtKmgScVrasOz8eiIi1kg4njSNa5gTSfn5K6gZ5Mv89PSJ+Serj/gFpr2Nn\ncp90RDxI6pf+LOnX10tJg6BPV6l7IvB1UvfXnbl86SiZ84A9c7fFD/K88l9snwMuAhZIepT0hdBT\nYx02+KUXET/NbZ6Uv3iPJB2VdSfpUNav59ggfRHem5ctIH1hla9LZd1D1TcbuEXSGuDzwDvy+MJ2\npC/hR0lHiS0ELqjSxv+SuruuInUD/Zl0oELVeKpM17usmi+QBvpL2/w3wP4AEXErKbl+h7RX8CC1\nuy7vBo4APkZ6H64nDfhDxftex/Y8g7RndCfwc+D/6liPecAh5O6rbDzph8VAjn8KqausdPLrTTXq\nOgH434i4NyJWlx6krtnj8w+Cj5EG9xfn7XImaVD8SdIPgGvy+u4fEVeQutluzOV/XLbdHie91xfn\nLsRjSO+HZUoJu4UBSOeRPrCrImLvKsuPA0onoj0G/H1E1PpwbfLyIOI9wHERceVQ5dudpL8jfek3\ncoinmY2CdtgDOR84bJDlfwQOjIh9gH8l/RqyMkrngUzK3VufzLMXtTKmoiRtl7tlpHSW9j+S9rzM\nrM2MHbpIc0XE1UpnldZaXv5FuIh05JFt6FWkboJxpCN1js7dNJ2om9T3Pw14hNRF89VWBmRm1bW8\nCwvWXZbgx9W6sCrKfYx03L7PBjUza7GW74HUS+kyB+8hXf/GzMxarCMSiKS9gXOB2VHj7GdJrd+V\nMjPrQBFR6HD0dhhEh3T8etUVyMfAfx94Vz57taZog2vDFH2cfvrpLY/B8bc+DsffeY9Ojj1ieL+7\nW74HImke0Au8QNJdpIubdQMREeeSzn+YDHwlH6L6bETs36p4zcwsaXkCiYjjhlh+EnDSKIVjZmZ1\napcurE1eb29vq0MYFsffWo6/dTo59uFqi8N4R4Kk2FjWxcxstEgiOnwQ3czMOowTiJmZFeIEYmZm\nhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXiBGJmZoU4gZiZWSFOIGZm\nVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlZIyxOIpPMkrZJ0\n4yBlvihphaQbJL1iNOMzM7PqWp5AgPOBw2otlHQ4sEtE7AqcDJwzWoG1i4GBARYvXszAwECrQ2m5\nym3RadumkXhrlR0YGGDBggUsWLBg2OtdTzxDtdeK92Ak26xW18DAABdddBFf+tKXWLZsWVPa3ShE\nRMsfwFTgxhrLzgHeUTa9DNi2SrnYGM2bNz96eibHpEkzo6dncsybN7/VIbVM5baYM+dDHbVtGnkv\na5WdN29+jBu3ZcBmAdOju3tS4fWuJ56h2mvF53Mk26xW17x586OrqyegJ2DXgJ6YM+eUjfZ/MX93\nFvvuLvrCkXwMkUB+DLy6bPoKYGaVciO0OdvH6tWro6dncsDSgAhYGj09k2P16tWtDm3UPX9bLMz/\n4J2xbRp5L2uVvfXWW2PChK0Cth72etcTz+rVqwdtrxWfz5Fss1Zd3d1bPO+zBT0xfvzEjvm8NWI4\nCWTs6O3rNN/cuXPXPe/t7aW3t7dlsYyE/v5+urun8eSTe+c5ezNu3FT6+/uZMmVKS2Mbbc/fFpsD\nOwKdsW0aeS9rlb3uuusYM2Zb0rqvX9bVtUPD611PPP39/YO2B4z653Mk/yeq1dXVtQPPPbcKmET5\nOsMOSE/TKZ+3wfT19dHX1zcylRXNPCP5oLEurOVsIl1Y3gNZz3sg3gOpN+7h1uU9kM7rwpoG3FRj\n2RHAT/PzWcCiGuVGaHO2l1K/68SJMzaqftciKrfFnDmndNS2aeS9rFU2jUlskcckdhmRMZDB4hmq\nvVZ8PkeyzWp1pTGQCTmJTH/eGEinfN7qNZwEovT61pE0D+gFXgCsAk4HukkrdW4uczYwG3gCeE9E\nLKlST7R6XZplYGCA/v5+pk2b1nG7yyOtclt02rZpJN5aZQcGBrj++usBmDFjxrDWu554hmqvFe/B\nSLZZra6BgQEWLlzIqlWrOPTQQ9ljjz1GvN12IYmIUKHXbixfuhtzAjEza5bhJJB2OA/EzMw6kBOI\nmZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXiBGJmZoU4gZiZWSFOIGZmVogTiJmZFeIEYmZmhTiB\nmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXiBGJmZoU4gZiZWSFOIGZmVogT\niJmZFeIEYmZmhbQ8gUiaLWm5pNsknVpl+Y6SfiVpiaQbJB3eijjNzGxDiojWNS51AbcBhwD3AYuB\nYyJieVmZrwFLIuJrkvYAfhYRO1epK1q5LmZmnUgSEaEir231Hsj+wIqIWBkRzwLzgaMryqwFJubn\nWwH3jmJ8ZmZWw9gWt789cHfZ9D2kpFLuDGCBpFOAzYBDRyk2MzMbRKsTSD2OBc6PiM9LmgVcAOxZ\nreDcuXPXPe/t7aW3t3c04jMz6xh9fX309fWNSF2tHgOZBcyNiNl5+jQgIuKssjI3A4dFxL15+g7g\ngIh4oKIuj4GYmTWok8dAFgPTJU2V1A0cA/yoosxKcrdVHkQfX5k8zMxs9LU0gUTEc8AcYAFwCzA/\nIpZJOkPSkbnYx4CTJN0AXAic2JpozcysXEu7sEaSu7DMzBrXyV1YZmbWoZxAzMysECcQMzMrxAnE\nzMwKcQIxM7NCnEDMzKwQJxAzMytkyAQiaTdJv8yXFEHS3pL+pfmhmZlZO6tnD+TrwCeAZwEi4kbS\nJUfMzGwTVk8C2SwirquY95dmBGNmZp2jngTygKRdgACQ9Fbg/qZGZWZmbW/Ia2FJeglwLvBq4GHg\nTuCdEdHf9Oga4GthmZk1bjjXwqr7YoqSNge6IuKxIg01mxOImVnjhpNAhrwjoaStgBOAacBYKbUT\nEacUadDMzDYO9dzS9mfAIuAmYG1zwzEzs05RzxjIkoiYOUrxFOYuLDOzxjV1DETSR4DHgZ8AT5fm\nR8RDRRpsFicQM7PGNXUMBHgG+CzwSfKhvPnvS4o0aGZmG4d69kDuAA6IiAdGJ6RivAdiZta4Zt/S\n9hbgz0UqNzOzjVc9XVjPATdIWsiGYyA+jNfMbBNWTwK5JD/MzMzWqetMdEndwG558g8R8WxToyrA\nYyBmZo1r6hiIpF5gBfBl4CvAbZIOLNJYjfpnS1ou6TZJp9Yo83ZJt0i6SdIFI9W2mZkVV89RWL8H\njouIP+Tp3YDvRMS+w25c6gJuAw4B7gMWA8dExPKyMtOB7wIHR8QaSdtUOyLMeyBmZo1r9lFY40rJ\nAyAibgPGFWmsiv2BFRGxMneLzQeOrihzEvDliFiT22/rw4nNzDYV9SSQ30n6hqTe/Pg68LsRan97\n4O6y6XvyvHK7AbtLulrSbyQdNkJtm5nZMNRzFNbfAx8ASoft/po0FjJaxgLTgQOBnYCrJO1V2iMp\nN3fu3HXPe3t76e3tHaUQzcw6Q19fH319fSNSVz1jIJsDT0XEc3l6DDA+IoZ9cqGkWcDciJidp08D\nIiLOKivzVWBRRHwrT18BnBoRv6+oy2MgZmYNavYYyC+BnrLpHuCKIo1VsRiYLmlqPlT4GOBHFWUu\nAQ4GkLQNsCvwxxFq38zMCqongUyIiMdLE/n5ZiPReN6rmQMsIF0yZX5ELJN0hqQjc5lfAA9KuoWU\nzD4WEQ+PRPtmZlZcPV1Y1wAfjIgleXpf4OyIeNUoxFc3d2GZmTWu2Zdz/zBwsaT7AAHbkbqazMxs\nE1bPHsh40q1sd8+z/gB0RcTTtV81+rwHYmbWuGYPol8bEc9GxM358SxwbZHGzMxs41GzC0vSdqST\n+nokzSB1XwFMZIQG0c3MrHMNNgZyGPBuYAfgc2XzHwP+uYkxmZlZB6hnDOQtEfH9UYqnMI+BmJk1\nrtlHYe0lac/KmRHx6SINmpnZxqGeBPJ42fMJwJHAsuaEY2ZmnaKuOxJu8IJ0WO+lpetXtQt3YZmZ\nNa7Zh/FW2gzYpUhjZma28RiyC0vSTUDpp/0YYArg8Q8zs01cPUdhTS2b/AuwKiL+0tSoCnAXlplZ\n44bThVXXGIikfYDX5cmrIuLGIo01kxOImVnjmjoGIulDwIXAC/PjQkkfLNKYmZltPOrpwroReFVE\nPJGnNyddH2vvUYivbt4DMTNrXLOPwhLwXNn0c6y/LpaZmW2i6jmR8Hzgt5J+mKf/GjiveSGZmVkn\nqHcQfSbw2jz564i4vqlRFeAuLDOzxjX9KKxO4ARiZta40T4T3czMzAnEzMyKcQIxM7NCBrul7WOs\nvwbWBouAiIiJTYvKzMzaXs09kIjYMiImVnlsOZLJQ9JsScsl3Sbp1EHKvUXS2nxEmJmZtVg954EA\nIOmFpBtKARARdw23cUldwNnAIcB9wGJJl0bE8opyWwCnAIuG26aZmY2Meq6FdZSkFcCdwJVAP3DZ\nCLW/P7AiIlZGxLPAfODoKuU+A5wJPD1C7ZqZ2TDVM4j+GWAWcFtE7EzaW7hmhNrfHri7bPqePG8d\nSTOAHSJipJKWmZmNgHq6sJ6NiAcldUnqioiFks5qemSAJAGfA04sn12r/Ny5c9c97+3tpbe3t1mh\nmZl1pL6+Pvr6+kakrnquxnsF6fpX/wFsA6wG9ouIVw+7cWkWMLd0f3VJp5GO8DorT08EbgceJyWO\n7YAHgaMiYklFXT4T3cysQU29lEm+fPtTpC/w44FJwIUR8WCRBivqHgP8gdQtdj9wHXBsRCyrUX4h\n8NFq1+JyAjEza9xwEsiQXVil+4Bk3yrSyCB1PydpDrCANB5zXkQsk3QGsDgiflL5EnwpeTOztlDP\nHkj5CYXdwDjgiXY7kdB7IGZmjWv2HsiWZQ2JdJjt/kUaMzOzjUehy7lLWhQRs5oQT2HeAzEza1xT\n90Ak/U3ZZBfwSqpfI8vMzDYh9ZwH8qay538hnYle7WxxMzPbhNSTQL4RERuceS7pNaTzQczMbBNV\nz6VMvlTnPDMz24QMdj+QVwGvBqZI+mjZoonAmGYHZmZm7W2wLqxuYItcZsuy+WuAtzYzKDMza3/1\nnEg4NSJWjlI8hfkwXjOzxg3nMN56xkC+IWmrssa2lvSLIo2ZmdnGo54Esk1EPFKaiIiHgRc2LyQz\nM+sE9SSQtZJ2Kk1ImopPJDQz2+TVcx7IJ4GrJV1JuhLu64D3NzUqMzNre3VdC0vSNqTb2gIsiogH\nmhpVAR5ENzNrXFOvhZU9RzrzfALwstzgVUUaNDOzjUM9F1P8W+BDwA7ADaQ9kWuB1zc3NDMza2f1\nDKJ/CNgPWBkRBwMzgIGmRmVmZm2vngTyVEQ8BSBpfEQsB3ZvblhmZtbu6hkDuSefSHgJcLmkh4H7\nmhuWmZm1u4buSCjpIGAS8POIeKZpURXgo7DMzBo3nKOwCt3Sth05gZiZNa7Z18IyMzN7HicQMzMr\npOUJRNJsScsl3Sbp1CrLPyLpFkk3SLpc0o6tiNPMzDbU0gQiqQs4GzgM2BM4VtJLK4otAfaNiFcA\n3wc+O7pRmplZNa3eA9kfWBERKyPiWWA+cHR5gYi4snQeCrAI2H6UYzQzsypanUC2B+4um76HwRPE\n+4DLmhqRmZnVpd6LKbacpHcC+wIH1Sozd+7cdc97e3vp7e1telxmZp2kr6+Pvr6+EamrpeeBSJoF\nzI2I2Xn6NCAi4qyKcocCXwAOjIgHa9Tl80DMzBrUyeeBLAamS5oqqRs4BvhReQFJM4BzgKNqJQ8z\nMxt9LU0gEfEcMAdYANwCzI+IZZLOkHRkLvafwObAxZKul3RJi8I1M7MyvpSJmdkmrJO7sMzMrEM5\ngZiZWSFOIGZmVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlaI\nE4iZmRXiBGJmZoU4gZiZWSFOIGZmVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaF\nOIGYmVkhTiBmZlZIyxOIpNmSlku6TdKpVZZ3S5ovaYWkayXt1Io4zcxsQ2Nb2bikLuBs4BDgPmCx\npEsjYnlZsfcBD0XErpLeAfwncMzoR9tcy5Yt4/Of/zxLly5lt912Y+bMmaxcuZJnnnmGI444gu7u\nbh555BHWrFnDk08+ycyZM3niiScA2HHHHXn88cfZYostuPvuuzeYN23aNACuv/56AGbMmMGUKVPW\ntXnFFVew7bbbcvDBBwPQ39/PtGnTeOCBB7jiiit4+OGHWbNmDW9+85t5zWteU9e6DAwMrKun1NZg\n5crjLo+vkfoHa7N8Wfk6Tpkype5Yh7uurdLu8VmHi4iWPYBZwGVl06cBp1aU+TlwQH4+BhioUVd0\nqjlzPhQwJqAnYNeA8fmxWcAuef6YgK3z8xflv7vkMt0xbty2Za9Jy3t6Xh7d3ZOiq6snz58e3d2T\nYt68+bnN9XVI46O7e1JMmjQzxo7dMmBcRfvd8cY3Hj7kusybNz96eibHpEkzo6dncsybN3/Qcj09\nL8n1Tw/YLMaN26Lma2rVP1ib5cvGjdty3Tr29EyOOXNOqSvW4a5rq7R7fNYe8ndnse/woi8ciQfw\nFuDcsul3Al+sKHMT8OKy6RXA5Cp1jdgGHU233npr/rLuCVgasDpgUk4WSwMi/+0JmBCwMGByxbKt\ncvLYusbynjw/TY8fP6msvcjLBpsutTEhrr766prrsnr16ujp2bDtnp7JsXr16hrlqsW6dUyYsNXz\nXjNY/RMmbFW1zQ3Lr66xTRcOGutw17VV2j0+ax/DSSAt7cIqSLUWzJ07d93z3t5eent7RyGc4bnu\nuuuAHmBbYG9gMbAdsHmeJv/dHng6z59WsWwnYFUuU235Dnl+afoFpJ25UpnNgR0HmS618RALFiyo\n2ZXV399Pd/c0nnxy/evGjZtKf3//Bt0n68tVa2caY8Y88bzX1Kq/q2uHvF2e3yZQVn4xsPOg26Va\nrLXUu66t0u7xWev09fXR19c3MpUVzTwj8SB1Yf28bLpaF9ZlbNiFtbpGXSOWkUeT90C8B9IM7R6f\ntQ86uAtrDHA7MBXoBm4A9qgo8w/AV/LzY4D5NeoawU06uubMOSWgK9aPBXTnR+UYSOmLf7uoHAMZ\nO3ZK2Wu2jTQGslceA5mwrq71YyCnRLUxkIkTZ+QxkLExnDGQiRNn1DUGMmHCtA3iqHcMpLz+wdos\nXzZu3Bbr1rF8DGSoWIe7rq3S7vFZexhOAlF6fetImg18gXRI8XkRcaakM4DFEfETSeOBbwMzgAeB\nYyKiv0o90ep1GQ4fheWjsJqh3eOz1pNERNQcGhj0tZ38pVuu0xOImVkrDCeBtPxEQjMz60xOIGZm\nVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXiBGJm\nZoU4gZiZWSFOIGZmVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBm\nZlZIyxKIpK0lLZD0B0m/kDSpSpl9JP1G0k2SbpD09lbEamZmz9fKPZDTgCsiYnfgV8AnqpR5AnhX\nRLwcOBz4H0kTRzHGUdPX19fqEIbF8beW42+dTo59uFqZQI4GvpWffwv468oCEXF7RNyRn98PrAam\njFqEo6jTP4SOv7Ucf+t0cuzD1coE8sKIWAUQEX8CXjhYYUn7A+NKCcXMzFprbDMrl3Q5sG35LCCA\nf6lSPAap50XA/wHvGtEAzcysMEXU/N5ubsPSMqA3IlZJ2g5YGBF7VCm3JdAH/GtE/HCQ+lqzImZm\nHS4iVOR1Td0DGcKPgHcDZwEnApdWFpA0DrgE+NZgyQOKbwAzMyumlXsgk4GLgB2BlcDbI+IRSfsC\nJ0fE+yUdD/wvcAvru7/eHRE3tiRoMzNbp2UJxMzMOlvHnoneqSciSpotabmk2ySdWmV5t6T5klZI\nulbSTq2Is5Y64v+IpFvy9r5c0o6tiLOWoeIvK/cWSWslzRzN+AZTT+yS3p63/02SLhjtGAdTx2dn\nR0m/krQkf34Ob0WctUg6T9IqSTV7QCR9Mf/v3iDpFaMZ32CGil3ScZKW5sfVkl5eV8UR0ZEP0tjJ\nP+XnpwJyC+MrAAAIF0lEQVRnVikzHdglP38RcB8wsYUxdwG3A1OBccANwEsryvw98JX8/B3A/FZv\n6wbjPwiYkJ//XafFn8ttAVwJ/AaY2eq4G9j204Hflz7jwDatjrvB+L9G6r4G2AO4s9VxV8T3WuAV\nwI01lh8O/DQ/PwBY1OqYG4h9FjApP59db+wduwdCZ56IuD+wIiJWRsSzwHzSepQrX6/vAYeMYnxD\nGTL+iLgyIp7Kk4uA7Uc5xsHUs/0BPgOcCTw9msENoZ7YTwK+HBFrACLigVGOcTD1xL8WKF1pYivg\n3lGMb0gRcTXw8CBFjiadbkBE/BaYJGnbQcqPmqFij4hFEfFonqz7/7aTE0gnnoi4PXB32fQ9PP+N\nWlcmIp4DHskHHLSDeuIv9z7gsqZG1Jgh45c0A9ghItopbqhv2+8G7J67IH4j6bBRi25o9cR/BvAu\nSXcDPwE+OEqxjZTKdbyX9voBVa+/pc7/21Yexjskn4gIpHXuOJLeCexL6tLqCJIEfI50WPm62S0K\np4ixpG6sA4GdgKsk7VXaI+kAxwLnR8TnJc0CLgD2bHFMmxRJBwPvIXV5DamtE0hEvKHWsjwgtG2s\nPxFxdY1yW5J+zXwiIhY3KdR63Uv6xy7Zgefvpt9DOrT5PkljSP3ZD41SfEOpJ34kHUq6OOaBubui\nXQwV/5akL6y+nEy2Ay6VdFRELBm9MKuq97OzKCLWAv2SbgN2JY2LtFo98b8POAxSl4qkCZK2abOu\nuMHcS/rfLan6/9GuJO0NnAvMjojBuurW6eQurNKJiDACJyKOksXAdElTJXUDx5DWo9yPWf8L+G2k\nKxW3iyHjz11A5wBHRcSDLYhxMIPGHxFrIuKFEfGSiNiZ1Bf8pjZIHlDfZ+cS4GAASduQkscfRzXK\n2uqJfyVwKICkPYDxbZg8RO290h8BJwDkPahHSt3sbaJm7Ploz++Trn5efzd/q48OGMZRBZOBK4A/\nAAuArfL8fYFz8/PjSQOhS4Dr89+9Wxz37BzzCuC0PO8M4Mj8fDzpBMsVpC+waa3e1g3Gfzlwf9k2\nv6TVMTcSf0XZX9EmR2HVGzvw36QTb5cCb2t1zA1+dvYAriYdobUEOKTVMVfEP490JOfTwF2krp6T\ngfeXlTmbdLTZ0jb77AwaO/B14MGy/9vr6qnXJxKamVkhndyFZWZmLeQEYmZmhTiBmJlZIU4gZmZW\niBOImZkV4gRiZmaFOIHYJkPSY/nviyRdNETZD0ma0GD9B0n68XBiHKTuxxosf76kv6kyf19J/5Of\nnyjpi/n5yfnyM6X5241E3LZxa+tLmZgNRVJXpEt31CNg3ZWZh7o3zIeBbwNPDVGuahtFSFLUPjFr\nRE7YiojfU+XSJhHxtbLJdwM3A38aiTZt4+U9EGtL+ZIXyyR9M9/k5qLSHoGkOyV9StJVwFslvUTS\nZZIWS7pS0m653LR8VdrfSvp0Rd035eddkj6r9Tcd+4CkDwIvBhZK+mUu98Zc1+8kfVfSZnn+7Bzn\nVcDzfvHnMidKuiTHuEzS/yuL41ZJX5b0e2AHScdKujE/ztywGv2XpN8r3ajrBXnm30q6TtL1ki6u\n2Gt6g6SrlG7i9Fe5fNW9JEmnS/pHSW8BXglcoHRjpyMk/bCs3KGSftDQm2kbLScQa2e7A+dExD7A\nY8A/lC17MiIOjIiLSBeAmxMR+wEfB76ay3yBdH+MA3j+r+nSL/qTSTc52jsiXgFcGBFfIl0Erzci\nDslf1p8kXVrjlaRf8B+VND63/VcRcSDp4ou17Ee62uwM4G1af6fD3YFvRsS+wF9I9yHpJd38Zz9J\nR+VymwO/y+WuAubm+d+PiP0jYgawnHRBwpKpOa4jgXPyNajK171SRMT3gd8Bx0XEzIj4GekS8S/I\nZd4DnDfIetomxAnE2tldEbEoP7+ADS8x/V0ASZsDrwYulnQ96a52pVsAvIZ04yJI3VHVHAJ8rdR1\nFBGP5PnlF56bBbwMuCa3cQIp6bwU+GNElC5YONgtZC+PiEci3WzrB2Xr0h/rrxK9H7AwIh7K3XIX\nki7NDulmS6VxmwvyugHsnfcybgSOY8PLn1+U1+l24I4cb73KL7r3beCdSreNnkV73ePFWshjINZJ\nyn85P5H/dgEPR0S1e5dH2WuGc18PAQsi4vgNZkr7NFBv5a/+0vQTFfMbre980pWPb5Z0Ihvef6W8\nTVF8HOWbpKtEPw1c3MCYk23kvAdi7WwnSQfk58cBv64sEBGPAXdKemtpXr6vAcA1pG4jSFdmruZy\n4GSle68gaes8fw3rb6+6CHiNpF1ymc0k7UrqMpoqaedc7lhqe4OkrST1kG6/fE0p3LIy1wEHSpqc\n4zkW6MvLuoDSOh7P+m2xBfAnpVsXVK7j25TsAuxMuhJuPR5j/bqXDjq4j9SNd36dddgmwAnE2tly\n4ERJS0n3yD4nz6/8JX088L48CH4zUBo3+DDwAUm/Jd0sqppvkG5DemPuniolga8DP5f0y0j3pHgP\n8J0cy2+A3SPiadIYys/yIHr/IOtyNanraQnpV3zpHiPr1iXSrZlPIyWN60ljHj/Jix8H9pT0O9IY\nyWfy/E+REs8vgGVl7QUpYVwJ/BQ4OSKeGSS+ct8kjZksyeM8kLrT7o6IepOQbQJ8OXdrS5KmAj+J\niJe3Opbhyl1L+0bEKa2OpShJXwKWRIT3QGwdj4FYO/OvmzaQ93oeBz7a6lisvXgPxMzMCvEYiJmZ\nFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaF/H/CHI3xr5zq7wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d2bc2b4780>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "predictions = [logistic(dot(beta_hat, x_i)) for x_i in x_test]\n", "plt.scatter(predictions, y_test)\n", "plt.xlabel(\"predicted probability\")\n", "plt.ylabel(\"actual outcome\")\n", "plt.title(\"Logistic Regression Predicted vs. Actual\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Decision Boundary\n", "https://www.coursera.org/learn/machine-learning/lecture/WuL1H/decision-boundary" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEZCAYAAACjPJNSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcVNWZ978/xNYGZZ1Gg2iDrxqXxAWDS6KhMeP+qokm\nIiZRkcxMRGNWxyVjGo1xi5OobzRqxDUBNUajUUaIo+A4LhCjooKKURBF6RYBQRFQnvePe6q5FFXd\nVdV1a32+n8/99K1zz/KcW9X3uc85z3OOzAzHcRzHSZoe5RbAcRzHqQ9c4TiO4zglwRWO4ziOUxJc\n4TiO4zglwRWO4ziOUxJc4TiO4zglwRWO0yWSTpT0UIFlX5T05WLLVOlImiLp2+WWIx8knSvphhzy\nVV3f8kXSzZIuLLcctYY8Dqe2kPQGMM7MHilD2zcDC83sZ92spxl4A1gZkt4Drjezy7opYtUT7vGJ\nwMchaQHwAHCpmX1QNsGKQKxvqwEDXgV+bGaPlUmWbv+WnQ1xC8epVAzoa2Z9gG8A50v6SrEbkbRJ\nsessAZeZWV+gCRgL7Af8r6TG8opVFC4zsz6hf9cB90hSuYXKh2qTt5S4wqkjJP2LpHmS3pP0Z0mf\niV07RNLLkpZKukbSdEmnhmsnS/qfWN5fS1osabmk5yXtKulfgG8C/y7pA0n3hbxvSDoonPeQdJ6k\n10LZWZK26UxkADN7BngJ2DMmw2ck3S2pTdI/JH0vdm1zSbdKel/SS5LOkrQwdv0NSf8u6XlgZZCr\ns/pGBFmXS3pH0hUhfTNJt4f7uVTS05KawrVHY/dPkv5D0nxJ70q6RVKfcK1Z0jpJJ0laENo/L5fv\n08zWhHtzNDCQSPmkZD5V0hxJSyT9l6TtYtd2kzQtXHtH0jkhvVXS7ZXQt8AkYACwVSdtbRmujYx/\nxyEt/ttrlXRn+F18IOkFScNjefeS9Ez4ju8ANo9d6yfpL0H+JeF8m9j1RyVdJOlxSR8CP5b0tzRZ\nfiTp3jz6XpO4wqkTwj/excDXgc8AbwJ3hGv/BPwROJvowfUKsH9aFRbyHgIcAOwQ3kKPB5aY2e+A\nPwCXhzfUYzKI8WNgNHBYKHsq8FFnYoc29wN2A14LnwX8BXg29OUrwPclHRzKTQC2A4YCBwPfSskf\n4wTgcKBfuNZZfVcBVwaZ/w9wV0g/GegDbEP0YPwusCpDP8YCJwEjge2BLYHfpOX5ErAj8M/AzyR9\ntpP7sgFmthL4K3AggKRjgHOArxJZQf8DTA7Xtgh5p4S+7gD8d7y6SuibIsvzZOB1YHEnbV2TQfZs\nHEWkxPoSfd/XhLY2Be4FbiXq6x+B42LlegA3AdsS/a4+ytDHbwHfCTJdDQxN6+e3Qv11jSuc+uFE\nYKKZPW9ma4Fzgf3Cm+/hwItmdp+ZrTOzq1n/T57OWqJ/ql0lycxeMbNsedMZB/zUzF4DMLMXzGxp\nlrwC2iV9BPwvcK2Z3ReujQD+ycx+YWafmtl84EYiJQLRENwvzOwDM1tE9ABI5yozW2Rmq3Ooby2w\ng6SBZvaRmc2MpQ8EdrKIZ8PDP50TgV+Z2QIz+4jo3p8gKfX/Z8CEYLHMBp4H9sh2E7OwiOhhCfBv\nwCVm9qqZrQMuBfaUtC3wf4F3zOzK0N6HZjYrQ33l6ttZkt4HVgC/As639RPNmdoaHWurKx43s6mh\nvtuB3UP6/kBPM7s6fP9/AjruiZm9b2b3mtlqM/sQuARId4S5xcxeDv8/a4A7iZQMknYDmoEHc5Sz\nZnGFUz8MJppgBiD847xP9AY7GFiYlv+tTJWY2aNEb3fXAIslXRfemnNhW6I31lwwogdebyLLqEVS\nz3CtGdhG0ZDZ+5KWEj18BoXrg9PkT+8bade7qu9U4LPAy2Fo6ciQfjswFbhD0luSLlPmOaEN7n04\n70kYKgrElfZHQK73NMU2RN9nqj9XpfoDLCG6n9sQfQf/yKG+cvXtl2Y2wMx6AV8ArpB0aCdtbZrW\nVme8mybH5kFZfQZ4Oy1vRzuSGiVdH4bylgEzgH7B0k6R/hu7jUhBQqR47govenWNK5z6YRHRgwgA\nSb2JHuhvA+8QPYjiDMlWkZn9xsy+AOxK9CA+K3WpCxkWEg1J5YrC2/WVRJ5L42P1vB4eTAPMrL+Z\n9TWzo8L1RWnyb8fGxGXttD4z+4eZnWhmTcDlwN2SGs3sEzP7uZntBnyRyHo4KUNbG9z7cL6W7FZk\nXgSF/89AyptrIfBvaf3ZwsyeIsfvoBL6ZmZziKzblILvrK0PgV6pC0E5NuXY1DtEyjhO/DfzE6Ih\nwRFm1o/11k1c4Wzw2zezp4E1kg4kUjy35yhLTeMKpzZpCJO+qWMTojH8sZJ2l7QZ0XzOU2b2JpGp\n/zlJR0vaRNIZZHlrlPQFSfsEa2MVkXvuunB5MdHYejZuBH4uaYdQ1+cl9c+SN93T51LgbEkNwExg\nhaKJ/82DzLtJ+kLI+0fg3DDZuw1weicy0VV9kr4Z5rkAlhM9XNZJapH0ufCWvJLo4fdphvonAz+U\nNDQoh18Ad4Thrkx9zQlJDZL2Jpp/WALcEi5dB5wnadeQr6+kr4drDwBbSzozlN9C0j4Z6i5r34IM\nOxPNF76YQ1uvElksh4ff5n8ADV01Ef4+CXwi6XuSeko6Fojfky2IfusfSBpANEeYC7cTjQasMbMn\ncixT07jCqU0eJBoyWBX+tprZfwPnA/cQWTXDCHMUZraEaN7jl0QxLzsDfyOyKtLpA/yOaPjmjZD/\nl+HaRGC3MJRzT0iLv/n9imjCfZqk5UQKKJsrb/ob44OhzX8JD5j/S+S19gbQFmTqE7JfGPr4BjCN\nSAHF+5Jed1f1HQa8JOkD4NfA6DD3szVwN5ESegl4FPh9hjZuInr4PEY0nPURcGY2eTJ8Tuffw/17\nj0jJzAK+ZGarQn/+TKSg7whDQLNDH1IOBgcTeba9S/SgbsnQRjn79oGkFcBDRPOOqWDUrG1ZFIM0\nnug3+BbRHFDGYeF0WcJQ17FETgmp/4U/xfJdSWQ9vQc8QeRwkUufbgc+h1s3HSQa+ClpItE/8mIz\n2z2kXU7kLbKa6EczNvxYkHQu0Xj5J8D3zWxaSD+M6EvvQfQDvCykDyXytBoAPAN828w+CW/BtwF7\nE/1IRoc3eScHwtj0W8CJZjaj3PJ0F0nfJfoNjCq3LE79IGlzIqt/uJnlMm9W8yRt4dwMHJqWNg3Y\nzcz2BOYRTc4SzP/jgV2IvKauVUQPIrP0UCLX2DHB1Aa4DPhPM9sJWEbkBUX4+76Z7UikqC5PqH81\ng6I4nL5huO2nIfmpcspUKJK2lvTF8Pv5LJHTwT1dlXOcIjMemOXKZj2JKhwzexxYmpb2cGx89ynW\nT+4eTTQe+0lwS51HNI66DzAvuEKuJbJoUjEeB7He9L2VKO6AcD3l8343UVyF0zn7E1mcbUSTtMeE\nYaNqpAG4HvgAeJhojuO3ZZXIqSsULTH1PaKXHSfQs+ssiXIqISCNyEvkydi1t0Oa2NDl8C1gH0kD\ngaUx5fUW6z1NtkmVMbNPJS2TNMDM3sfJiJldAFxQbjmKQRg+/Xy55XDqFzMbVm4ZKpGyOQ1I+imw\n1swmd5m5k2qKnM9xHMdJiLJYOJJOAY4gGhJL8TYbxoIMCWliQ5/4IcDbZrYkuL32CFZOKn+8rkXB\nJbhPNutGki+X7TiOUwBmltfLfCksHBGzMILH2VnA0WlzBPcTLYnRIGkY0RpPM4lcPndQtBBgA5Er\nb2qJk0eIXBghWnfpvlhdJ4fzb4R8WTGzqj1aW1vLLkO9yl/Nsrv85T+qXf5CSNTCkTSJyMd/oKQ3\ngVbgPKJJ3b+GlSGeMrPxZjZH0l3AHKIgs/EW9erTEIg4jfVu0S+HJs4hijX4OdHCixND+kTgdknz\niPzqU2tiOY7jOGUiUYVjZidmSL65k/yXEC2Ml57+ENESKunpbwD7ZkhfTeRi7TiO41QIvtJAldPS\n0lJuEbpFNctfzbKDy19uql3+Qqj7LaYlWb3fA8dxnHyRhFWg04DjOI7juMJxHMdxSoMrHMdxHKck\nuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdx\nHKckuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdxHKckuMJxHMdxSoIr\nHMdxHKckuMJxHMdxSoIrHMdxHKckuMJxHMdJmAkTyi1BZSAzK7cMZUWS1fs9cBwnWSSotceMJMxM\n+ZRxC8dxHCchJkyIlA1Ef+vd0nELxy0cx3ESxi2cCLdwHMdxEqa1tdwSVAZu4biF4ziOkzdu4TiO\n4zgViyscx3EcpyS4wnEcx3FKgiscx3EcpyS4wnEcx3FKgiscx3GqmqSDKes9WLOYuFu0u0U7TlWT\ndFBlLQZtFoOKc4uWNFHSYkmzY2n9JU2T9IqkqZL6xq5dLWmepOck7RlLP1nSq6HMSbH04ZJmh2tX\n5tKG4zi1QdLLxviyNMUnUQtH0gHASuA2M9s9pF0GLDGzyyWdDfQ3s3MkHQ6cYWZHStoXuMrM9pPU\nH/gbMBwQ8Aww3MyWS3o6lJklaUooMzVbG1lkdAvHcaoYt3DKQ8VZOGb2OLA0LfkY4NZwfmv4nEq/\nLZR7GugraSvgUGCamS03s2XANOAwSVsDW5rZrFD+NuCrWdpIpTuOU2MkvWzMyJHJ1l9PlMNpYJCZ\nLQYws3eBrUL6NsDCWL63Qlp6+tux9Lcy5AfYKq2NQUXug+M4FULSQ10zZiRbfz3Rs9wCANmM1bxM\ntQLbAGBC7Bfb0tJCS0tLEZt2HKcamTABLrggOpciS6qe53GmT5/O9OnTu1VH4l5qkpqBv8TmcOYC\nLWa2OAyLPWpmu0i6LpzfGfK9DIwERoX83w3p1wGPAjNSZUP6CcBIMzstWxtZ5PM5HMdxsuJzOJmp\nuDmcgNjQWrkfOCWcnwLcF0s/CUDSfsCyMCw2FThYUt/gQHAwMDUMlS2XtI8khbL3ZWjj5Fi64zhO\nXvjWAsUjabfoScATwE6S3pQ0FriUSIG8AhwUPmNmU4A3JL0GXA+MD+lLgZ8Teao9DVwQnAcATgcm\nAq8C88zsoZB+WayNr6TacBynuqjnIaxaxAM/fUjNcSqWShjOqgQZKpFKHVJzHMfJi0oIuixFYGm9\n4RaOWziOU7FUgnWRlAyV0Lfu4BaO4zg1RSVM2Bdbhkqw3sqFWzhu4TiOUwbcwnEcx6lxurIokrA4\nMtVZCdZbqXELxy0cx6krurIskrA8qt2ayYRbOI7jOFnoau4kibmVep6vyYRbOG7hOE5dUWwLZ8KE\nrhWJWzgRbuE4jlNXFHvuJLXAZynbrFZc4TiOU1dks0byHf7KJ3+9D6Wl8CE1H1JzHCdGvsNftThc\nlgs+pOY4jtNN0oe/urJOfLgsd9zCcQvHcZxOqFcLpivcwnEcxykSxXRpjpet5/kct3DcwnEcpxOK\nYeHE66gVi8ktHMdxnCKTPkfT3t7OrFmzaG9v77JsupVU70GgbuG4heM4FUEuAZTlZvLkOxk3bjwN\nDUNZs2Y+Eydey5gxo7ss5xZOKFPvD1tXOI5TGVT6g7i9vZ3m5p1ZtepRYHdgNo2No1iw4GWampo6\nLRtXptWgWHPBh9Qcx6kK0ifRq2Goaf78+TQ0DCVSNgC7s+mmzcyfP7/Lsu40EOEWjls4jlNyMlkz\ntWzh1CJu4ThOHVJNb8ydWTO5BlBmWuW5FDQ1NTFx4rU0No6iT5/hNDaOYuLEa+tS2RSKWzhu4ThV\nTqVbBpnojszpZUvd//b2dubPn8/QoUPrWtm4heM4dUS1zH1kopDlYNL729Kycf9LcQ+ampoYMWJE\nXSubQnELxy0cp8qpRgunO3Rm4dTbvSgnbuE4Th2SxOKRxdrtMglS/U3V39pa3dZePeEWjls4jrMR\nxV7OJQmq0dOtlnALx3GcblEMSyFpa6MYnm5OeXALxy0cpwjUSvR4imq1cDJ9D7X23VQKbuE4TpnI\nZV/7aqIYlkLS1kam+jN9D/G0fBbedIqPKxzH6Qa1OlmdqR/59q2U9yLT95CedtxxL9LcvDMHH/xd\nmpt3ZvLkO0snoAPkMKQm6SjgQTNbVxqRSosPqTnFoB4mqyutj7k6DUjQ1pZ5WZo//3kye+21V8lj\namoheDSpIbXRwDxJl0vauTDRHKe2qeXJ6kqz4vJ1Gmhtzbzw5qpV/Tn22DNLbu1Mnnxn3VpaOTkN\nSOoDjAHGAgbcDEw2sxXJipc8buE4Tm5Ug4WTjUwLb0IL8ArwTskW4aylBUATcxowsw+Au4E7gM8A\nXwP+Lul7eUvpOE5RSMLS6KzOSrPi8pEnvvBm7957APsDvwWayGebge7SnS0OaoFc5nCOAU4BdgBu\nA241szZJvYA5ZjY0aSGTxC0cp1pJwuKoNCum2LS3t/Pss89yzDGj+fjjGZTaynALp2u+BvzazD5v\nZr80szYAM/sIGFeAnABI+qGkFyXNlvQHSQ2Shkp6StKrkiZL6hnyNki6Q9I8SU9K2i5Wz7khfa6k\nQ2Lph0l6OdR1dqFyOk6lkcScSqXN0yRFU1MThxxyCDfddF1O2wx0x406U9m63+LAzLIewCbAw53l\nKeQABgOvAw3h853AyeHvN0Lab4F/C+enAdeG89HAHeF8V+BZoCcwFHgNEJEifQ1oBjYFngN2ziKL\nOU41ksRPN+l/h9bWZOvPh7a2Nps5c6a1tbVlvD5p0h3W2DjA+vYdbo2NA2zSpDtyrrursl21XQ2E\nZ2d+z/4uM8D9QN98K+6izsHAAqB/UBb3AwcDbUCPkGc/4L/C+UPAvrZeCbaF83OAs2P1/hewb7xs\npnxpshT1S3CcUpHEwztphVAt/25tbW3W2DjA4HmLBhmft8bGATkpiO6UrSYKUTi5DKl9DLwgaaKk\nq1NHDuWyYmaLgP8E3gTeBpYDfweW2fp4n7eAbcL5NsDCUPZTYLmkAfH0wNshLT09Xpfj1AS5DHtV\nSrBmLkN2lTSM153J/Xp3DOiMXBTOg8D5wGPAM7GjYCT1A44hGvIaDPQGDsuniu607zj1QqUsuTNh\nwnpnBLPMyiUfWZNeombo0KGsWTOfyH0aYDZr1y5g6NChBZSdzurV/2CLLbboyFOvS+z07CqDmd2a\nQLv/DLxuZu8DSLoX+BLQT1KPYOUMIbJYCH+3BRZJ2gToY2bvS0qlp0iVEbBdhvSMTIj9+ltaWmhp\naelW5xyn3EyYsP4BLq3fMyaf8klYHJlcmfOVdfLkOxk3bjwNDdGDfeLEaxkzZnRR5UxN7o8bN4pN\nN21m7doFWSf30+9VvKxZXz7++F169NiBvfc+gIkTrwVIXP4kmD59OtOnT+9eJV2NuQE7EsXgzCGa\n6H+dSFl0Zw5nH+AFYHMi5XALcDqR08BoW+808N1wPp71TgMnsLHTQAMwjPVOA5uw3mmggchpYJcs\nshR3YNNxKohCf97l+LfIpc05c+bYZpv1MXi0JPMjuUzuZ5M7krXfRnM5m2++cVo1zu+Q0BzOzeHh\n/wkwiigW5/b8Vdt6zGwmkRJ7Fng+KIkbiCb3fyTpVWAAMDEUmQj8k6R5wA9CPsxsDnAXkTKcAowP\n9+JT4AxgGvASkYKa2x2ZnfyopPH4UlJp/c43WLOzuZak+xaXNVNbkyffyV57fZHVq7cGjiN6P012\nfqSpqYkRI0ZktWw6m5dauXIlm2++PfG5nB49hrDJJltRr/M7uQR+PmNme0t6wcw+H9L+x8wOLImE\nCeOBn8lQ6wGE2aiVfpd7N830tjIvTTMK+BONjceVNXAy233JFuRptq4sQafFJqnAz9WSehAt4HmG\npK8BgwqS0Kl56iWAMJ1a63e6tVGqvmVrK5PnFwxks82OKXvgZDYrMluQZ65Bp7VILhbOCGAu0A/4\nOdAXuNzMnkpevORxCycZauVNP19qud9J9S016R6ffM/Fwtlss5E8++wT7LLLLsUXqohk2oqgXrcn\n8C2mXeEkQr1u61vL/U5K4aTqjdef6T6mvNPiXmPV4N1VqxSicDrzJPsL0QoAGY98vRMq9cC91JyE\nKcdyLrm0Gc+Tnj/9WqQKoqNY/UmvN5f6a2FJmFqBArzUslo4kkZ2oahm5KXZKhS3cJykKccwWy5t\nxvOk5y+l00AmC8epfIrqNGBmMzo7ui+u49Q2hU62d2dILlub6e7N8Tzx85aWjcsn7TQwcmRtOVw4\n2cnFaWBH4BKiIMvNU+lmtn2yopUGt3CcpMn3zb0Yb/r5WizltHBKVX+S1IITQL4k5RZd9MBPx6lm\n8n0DT7nNdlWumJbEyJFd1xl350137c3k6pvUjp/V7lI+efKdNDfvzMEHf5fm5p2ZPPnOcotUsXjg\np1s4Tp4U+iaea7lSWTiVRjXImE4t7eCZLx746TgJ0p05mVzKFeNNP1sdSVknxaQaZEzHtyLIDw/8\ndAvHyZOkLJz4BH2xLZxSkimGplbjk9zCKbKFY2azzGylmb0FjANOqRVl4ziFUOibeFflUkv0F+NN\nv5zWQqZ9beJp+e4FU8l7x2RbvqYrZVPJfUqUrgJ1gElAH6JN0l4G3gHOyjfgp1IPPPDTKTO5BFaW\nKni0O+1k6kd62rHHvmCNjQOsb9/h1tg4wCZNuqPTOidNuiOv/OUin4DUaulTV1DMwM8Ukp4zsz0l\nfRPYGzgbeMbMdu+0YJXgQ2pOpdDZMFiphsiSGs6ToK0tv+GnuXPnstde+7F69X1AS5f5q4FaGoJL\nymlgU0mbAl8F7jOztYA/oZ26p9hzEtl2w+yOI0GxHRtyIZtLdT4T7OXY+6YU1LuTQS4WzplEVs3z\nwJFEWzf/3twt2qlzyrk/TFLlkuxTtrf7P/95MnvttdcGKylX6t433cUtnC4ws6vNbBszOyI8md8k\n+vYdpy4px66Yxdy5szNSAaNJkD7B3tDwZT75ZA3HH3/uBgGTmfe+mVARe990l0KdDGoF357ALRyn\nQMq9K2YupOZOcl12pRD5813Wpb29nWeffZZjjhmdcedLIIOFsztz5szt2PumVEvJJNVOLSyFU9Tt\nCerlwL3UnAIZOXL9eVJL+KeTb72deYXluwVBprRCPa5mzpxpffsO36DNPn32spkzZ25Qb0PDdRvJ\nVSovr1rxJksKCvBSK/sDv9yHKxynUDL9dJL+OeVTf1tbmzU2DjB4Pjywn7fGxgEdrrv5yp9+rav6\nuyNbKk/K1TjVdnfazIdStVPNFKJwss7hSDq2s6MblpjjVDW5LohZqjazkc0j6rzz1uQlf7a2u+Nx\nlctcRlNTEyNGjKCpqalDrlJ5edW7N1lSdLYB282dlDMzOzUZkUqLz+HUDqVePiXX+Y5iypXPHEtX\nHlHd9WArhsdVIfM/pfDyqiVvsqTwORwfUqtrSv1V5jqfUky58p3DSc1D9OmzV6dzOIW23Vn9SVGq\nNsvRt2qCJFYaCJrsSGA3NtyA7cK8NFuF4hZO9TNhwoZrdbW2VsZCkZUiVzYroliWVzk8rqrdS60W\nKMTCySXw8zqgF1HszY3A14GZZjauUEErCVc4tUOluSSnqCe5Sv2AzrU9VxzFJ6mlbb5oZicBS83s\nAmB/YNtCBHTKT6FvtJVgMXRFpe6nUmlyJbXDZql3vsy1Pd+Rs3LIxcJ52sz2lfQUcCywBHjRzHYs\nhYBJU28WTqmWSHEqn2J+p6WeZO/OMjk++V8ckrJwHpDUD/gl8HdgPnBH/uI55STp3SoriWqQsRhk\n2uQsH4ppeZXajThTe6tW9efYY8/scpkcd28uH3ktbSNpM2BzM1uenEilxS2cZMuVg2qStTuk97Oc\n/a4ECyfawuAV4J1Ol8lxC6c4JGLhSDopdQCjgWPCuVOFJLVbZSVQjdZYIaT3s6WlPP2O71pZ6kUp\n4+317r0H0dTyb4Em4lZMvS+WWXF05TcN/L/Y8TvgdeDufP2vK/XA43CKSmexHUmsL5apznLGvZSq\nLrON+1nKn3K2dcby2fmyGLS1tdnUqVNt88375bxMjlMcKMVaakA/oo3Yyq4sinG4wiku+azFlVR7\nxXywF1PmYvc/vZ9JKPRMD+pKXGfMgzRLT6kUzqbA3HzLVerhCic3unqYdbbacHdXUs62cnE+dRbS\nZiEyF0PWSqCzVZm7Wum5XLgVU1oKUTi5uEX/hfVbSvcAdgXuMrNzijauV0bqzWmgUHKdkO4sXxIO\nC8WQq5jlkuh/JpIOZJSgsXFgxsl28Il4Jzm36CuA/wzHJcCXa0XZOF2T70R8Z84FSexaGa8z0/X0\nCfWWlvxkyFXmrnYBzeUe5jrZn2QgY1zWVauWkMmd2CfinULxHT/dwsmJcrrcdseKSaWl/02K7lg4\nuchWKvfjziyceFBlIVaWLzNTGyTlFn2spHmSlkv6QNIKSR8ULmZHvX0l/VHSXEkvSdpXUn9J0yS9\nImmqpL6x/FcHOZ6TtGcs/WRJr4YyJ8XSh0uaHa5d2V15651SuUUXahmk50tPa24ujetwIRZeLv0s\nxh40+dDaSl771eSKLzNT3+Qyh/MacJSZzS1qw9ItwAwzu1lST6A3cB6wxMwul3Q20N/MzpF0OHCG\nmR0paV/gKjPbT1J/4G/AcEDAM8BwM1su6elQZpakKaHM1AxyuIVTQXRmpRSjbCUHheZiHZUjwLJY\n1ogvM1NbJDWHszgBZdMHONDMbgYws08sWr3gGODWkO3W8Jnw97aQ92mgr6StgEOBaWa23MyWAdOA\nwyRtDWxpZrNC+duArxazD05xycVKOeusDzsCDTORyYJIT+uupRYPdiw2uey2ed55a/j1ry8taYBl\nvlZMNnyZGScXt+GrgDuBMUSLdx4LHJuvO1xanXsATwM3E63PdgPRFghL0/K9H/7+hWjV6lT6X4ms\nmh8D58XS/wP4EbA3kSJKpR8A3J9Flny9AZ1O6G7gZ6avA7K76HZHnnwpVIZiALZB29ddd0MiLsBJ\numxXYvyOUzgkEYcTlEL6cVO+DaXVuTewFvhC+Pxr4MKUgonlW2KZFc7DrnAqk+4GfmZ64P3kJysL\nflAV6+tPesqvAAAbrElEQVRN+mHZWQxJW1ub9ex5aUke1En/O3iAZu1QiMLpckjNzMZmOE7tqlwX\nvAUsNLO/hc9/CgpkcRgqIwyLtYXrb7PhHjxDQtrbwHZZ0jPlz8iECRM6junTpxfap5qmq0n2YrgF\nZ2vn+OPn5DUUk2k4rrtOAkkOB3U1kT5//nw22aRfIm2nKNU6dGPGjGbBgpd5+OHrWbDgZcaMGZ1M\nQ07RmT59+gbPyoLoSiMRrYZ3HtGw102pI1/NlqHeGcBO4bwVuCwcZ4e0c4BLw/kRwIPhfD/gqXDe\nH/gH0Dd23i9cewrYh8iZYApwWBY5iqjza5dcb1MSS9vka13E26l0CyeXetva2jquVaKF4xH+9QkJ\nDak9ERTB8cBxqSPfhjLUuwcwC3gOuCcojQFEw2WvEDkA9Ivl/w3wGvA8kSdaKv0UYB7wKnBSLH1v\n4IVw7apO5Cj6F1FLFHMJme7MD+QyFJNJ1nzkSV+OJ5sMDQ3XFW04qKtlYtL7VMy2M5Hvd1TOeS2n\nvBSicHJxi37OzPbsNFMV427RuVEJ7sS5uugW6kYd/5ytjvb2dgYNaqKtrb0onlu5ugpL0NaWvf/l\nCKZ0N+f6JskdP48oUCanRqiE/XCampp48MGuXXS7krWr/WSyLYUzYQIMGhS1PWhQU1HmOXJdJqa1\nNbuLcrmCKd3N2cmXXCycFURBmauJPMtEZEr1SV685HELp7oopqWVi4XTnUDUrohbJUDBy8SU2spI\nyb3FFluw994HuIVTpyRi4ZjZlmbWw8wazaxP+FwTyqZWyffNO1+vsXKQzYsq38U443QWFDpyZHav\nrWJYe8cd9+IGVsnDDz9SUIBlqa2MuDW1994HMG7ct3wRTydnclq8MywhsyOweSrNzB5LUK6SUYsW\nTqUuqV8MSr1UTRL1p+aBYDbdtQxKaeFka+uZZx5n5cqVvhhnnZHU4p3fAR4DpgIXhL8TChHQSZZ8\nYymKFTtTSlLWRXe3Hci3vWIRnwcqhlVSqq0C2tvbmTJlCj17NpMu98qVK4u2/I1T2+Qyh/MCMIIo\n9mVPSTsDF5hZTURsuYVTXRZOKqgzRaXJlwvFtHDidSblpTZ58p2MGzeenj23YcWK14hC3HzOpt5J\nykvtYzP7ODSwmZm9DHy2EAGd0pDvW3kxN01LmgsuKLcE3aepqYljj32xqFZJMRfZjNPe3s64ceNZ\ntepRVqyYTTS4sR9bbrmXz9k4+dNVoA5wL9CP6Jf2GHAfMCXfgJ9KPfDAz43IFPyX1KKOudSbCuCM\nB0COHJlfQGolUg0R+pkCU7fY4nN2yy23VLTcTvKQROBnHEkjiVYEeMjM1hRX9ZWHWhxS6y5JugLn\n0lZneappf5tawIM7nWwkNaTWgZnNMLP7a0XZ1CqFTvDnsidNsZwHct3lMj1Psfe3cTqnVE4JTn2Q\nl4VTi9SihdPdt/5KtnCc4pCvk0E5ls5xKpvELRynsimWNRK3GlJ1JGVJpOrtTFa3YopLIUvhJOWU\n4NQXbuG4hVOyuiqhnXrH52ScYuEWjgMUxyIoVeBnpQaY1iq+4KZTTtzCqUELp1DSgyqhvBZOJnky\npTm54xaOUyzcwnG6RaagylLNn2RqJ5M8tRD4WU7c66x0tLe3M2vWLNrb28stSuWQb+BOrR144Gfe\nu3pmKl9MWbLt3FnsQM9qDBYtFtUQdFrN1MNOqCQd+FmL+JDaegodPkvKSSFp9+yudtF0nEKol2FL\nH1JzukW+w2fFnPDPJcgTon1qUvmL0dagQU0ceODfS7pTplPbuGNGdtzCqXMLpxgBfaVyw06tstzW\nFv3tTptJrNhcSjwQs3JxCyc7buHUMakAwNQb/nHHvVhQPflaRp3tXZOtruOOe7FjH5nU3+5YVfPn\nz2ezza6nGt9CCwncdEqHO2Zkxy2cOrVwMr2Fwe60tbUn/o+Rr0WUhKzV+hZarXLXI7VuhbqF4+TM\n/PnzWbfuYuJv+BBZD0nFuRS6S2emMfGGhuu7ZY1U61uozw9UD74c0Ma4heMWDpVg4XQW0JnkW321\nvYW6heNUCm7hODmResj++teX0tg4ioaG62lsHMWxx75YkodWytMsTmcBnUlaI9X2FlqtlpnjgFs4\nNWPh5LrkS2p/+oaGoaxZEymd4cP3LNsb/oQJGyqb1tbOLZ1qskaSxO+FU24KsXBc4dSIwsllIr6S\nh2N8tWjHqS58SK0OybZLZyYqecLZ97xxnNrHLZwatHCyWQuVbOF0l2ocYqpGmR0nhVs4dUxq7qOz\npWaampo4/PAZxC2cww+fUfUPu2oMhKxGmR2nu7iFUyMWTpyu5kPiS8RUu7KpRqutGmV2nHTcwnGA\nrudDmpqaaG1lo4dbyiKqpg3OKnleKhvVKLPjFAO3cGrQwimUlGVUTR5j1WgtVKPMjpOOWzhOQaTP\n/aT+ltrSKWSHxGoMhKxGmR2nGLiF4xZOB7lYOLkGmOZKqr70gNSJE69lzJjROddTjR5f1Siz46Tw\nwM8CcIWzntTDvzOlUuzhttSum9U8xOSKw6lHqm5ITVIPSX+XdH/4PFTSU5JelTRZUs+Q3iDpDknz\nJD0pabtYHeeG9LmSDomlHybp5VDX2aXvXfXRmdNAvrt75nI9vutm+srV1TKJ7u7NjpM7ZbVwJP0Q\n2BvoY2ZHS7oTuNvM/ijpt8BzZna9pNOAz5vZeEmjga+Z2QmSdgX+AIwAhgAPAzsCAl4FvgIsAmYB\nJ5jZyxlkcAsnD3K1cPLJV2oLZ+jQoSxYsKDo9dYzzc3V8YLgFI+qsnAkDQGOAG6MJR8E/Cmc3wp8\nNZwfEz4D3B3yARwN3GFmn5jZfGAesE845pnZAjNbC9wR6nC6SVcu1/laQin37FJOoi9YsAAz86OI\nhytwJxfKZuFI+iPwC6Av8GNgLPCkme0Urg8BppjZ7pJeAA41s0Xh2jxgX+CCUGZSSL8RmEJk4Rxq\nZv8a0r8F7GNmZ2aQwy2cBChkrqdUcyHhzSyx+usRv6f1RyEWTs+khOkMSUcCi83sOUkt8Uu5VlFM\neSbEXsNbWlpoyXUrSicrhSzG2dTU5JPujlOhTJ8+nenTp3erjrJYOJIuBr4FfAI0AlsCfwYOAbY2\ns3WS9gNazexwSQ+F86clbQK8Y2aDJJ0DmJldFup9CGglUkgTzOywkL5BvjRZ3MKpM/xtvPj4Pa0/\nqmYOx8zOM7PtzGx74ATgETP7FvAo8I2Q7WTgvnB+f/hMuP5ILP2E4MU2DNgBmEnkJLCDpGZJDaGN\n+5Pul+M4jpOdSltp4BzgR5JeBQYAE0P6ROCfwtzND0I+zGwOcBcwh2juZrxFfAqcAUwDXiJyLJhb\n0p44Tok54ogjuP322zNeW7BgAT169GDdunUllspx1uOBnz6kVnfU4/DPggUL2H777Vm7di09ehT/\nPbMe72m9UzVDak7tUk0rTefLmjVrOO20HzJgwBAGD96JW2/NbE04jpMZVzhOUbnggvzLFLJoZxK8\n/vrrHHjg4Wy99Q4cfPDXWLRo0QbXzzrrfG699SWWLn2Md965lfHjz+Phhx/eIM+6deuYPn06d999\nNwsXLixIjmHDhnHppZey2267MXDgQMaNG8eaNWtYtmwZRx11FIMGDWLgwIEcddRRvP322x3lRo0a\nxU033dQhx09+8hOamprYYYcdePDBBwuSxXGKiSscpyjkG/CZolKWhvnwww/50pcO5oknDmLx4geZ\nPn1Xvvzlw/nkk0868txzzwOsWvVLYHtgfz766EzuvXf9g3zdunUcffQJHHXU6Ywb93t22WV4wW6k\nkyZN4q9//Sv/+Mc/eOWVV7joooswM0499VQWLlzIm2++Sa9evTjjjDMylr/hhhuYMmUKzz//PH/7\n29+4++67C5LDcYpKuSOUy31Et8ApFvnczra2NmtsHGDwvEVhos9bY+MAa2trS05AM8v0nT/++OPW\np8+IIIcZrLPevYfZ3LlzO/Lsuut+Bvd25OnZ8zQ7//zWjut33XWX9e69j8HqkGeKDR68Y97yDR06\n1G644YaOz1OmTLEddthho3zPPvusDRgwoONzS0uLTZw40czMDjroILv++us7rk2bNs169Ohhn376\nad7y5IL/H9Uf4TvP63lblsBPp3bJJ+AztfPlqlUbL9pZ6gDQ3r178+mn7wFrgAbgQz799AN69+7d\nkefKKy/kq1/9Jh9//BQ9ey6mX7/pnHHG0x3XFy5cyNq1+4XyAAfS1lbYsNqQIUM6zpubm1m0aBEf\nf/wx3//+95k6dSrLli3DzFi5ciVmhrTh3O2iRYvYdtttN6jDccqND6k5RSUfp4GhQ6O9b2B2SJnN\n2rULGDp0aNHl6oo99tiDAw7Yk169jgCuoHfvQzj22K9u8NA++OCD+d//nUZra28uvvhzvPjiTAYN\nGtRxfZ999qFnz3uB+YCxySZXsvvu+xQkT3z+Z8GCBQwePJgrrriCefPmMWvWLJYtW8Zjjz0GkNE7\n7DOf+cxGdThOuXELxykbqUU7x40bxaabNrN27YKy7XwpiQceuIvf/e53vPjiq+y993c45ZRTNsq3\n5557sueee2as44ADDuCii87i7LN3Q9qU5uZh3HvvfRnzdsU111zDkUceSWNjIxdffDGjR49m5cqV\nNDY20qdPH95///0NlmRK5/jjj+fqq6/myCOPpFevXlx22UaLbDhO6cl3DK7WDnzsuey0tbXZzJkz\nE5+7SZH0d7569Wp77733bN26dQWVHzp0qF166aW26667Wv/+/W3s2LG2atUqW7RokbW0tNgWW2xh\nn/3sZ+2GG27YYF5m1KhRHXM4n3zyif3oRz+ygQMH2vbbb2/XXnutz+E4RYUC5nA88NMDP7uk1na0\nrPQgxWHDhjFx4kQOOuigrjNXCJV+T53i44GfTtGpFLdlx3GqH1c4NUYxgyjb29sZN248q1Y9yvLl\nz7Bq1aOMGze+7AGatU66x5nj1AqucGqIYlsjKbflaNtniLstO8nx+uuvV9VwmuPkis/h1MgcTnt7\nO83NO7Nq1aNECmI2jY2jWLDg5YLnXZKosxLw+Ybi4/e0/vA5nDomCWsk5bbc2DiKPn2G09g4qmxu\ny47jVD9u4dSRhVOot5l7qTld4fe0/nALp47pyhrpzvxOU1MTI0aMqAll4zhO+XALp0YsnBSZrJFa\nnYspFH8bLz5+T+sPt3CcjNaIe5s5XXHJJZfwr//6r1mvDxs2jEceeaSEEjm1iK+lVgdsuEhmZOGU\na5FMpzI599xzyy2CUwe4hVMHuLeZ4ziVgCucOmHMmNEsWPAyDz98PQsWvMyYMaPLLVJVk882DPnQ\no0cPXn/99Y7PY8eO5Wc/+xkAM2bMYNttt+VXv/oVW221Fdtssw233HLLBnlPO+00DjnkEPr06cOo\nUaN48803O67/4Ac/YLvttqNv376MGDGCxx9/vOPaBRdcwLe//e2Oz7fffnvHPODFF1+cTGedusMV\nTh3h3ma5kYsyueCC7teRia6WtXn33XdZsWIFixYt4sYbb+T0009n+fLlHdcnTZpEa2srS5YsYY89\n9uCb3/xmx7V99tmH2bNns3TpUk488US+8Y1vsGbNmo3anjNnDuPHj+cPf/gDixYtYsmSJbz99tuF\ndchxYrjCcZw0OlMmEyZASidI2RVLVwopG115ejU0NHD++eezySabcPjhh7PFFlvwyiuvdFw/8sgj\n+dKXvsSmm27KL37xC5588skOZXHiiSfSr18/evTowQ9/+ENWr169QdkUf/rTnzjqqKM66vn5z3/u\n67s5RcEVjuME0pVJJoUyYQKkdIJZ5uu5KKRCGThwID16rP+37dWrFytXruz4HN+htHfv3gwYMIBF\nixYBcMUVV7DrrrvSv39/+vfvzwcffMB77723URvp21P36tWLgQMHFrcjTl3iCsdxAunKJJNCSdHa\nmlsd+SqcXr168dFHH3V8fvfdd/MqH99WeuXKlbz//vsMHjyYxx9/nF/+8pfcfffdLF26lKVLl9Kn\nT5+ctqf+6KOPWLJkSX4dcZwMuMJxnDSyKZM4STkN7LXXXkyaNIl169bx0EMPMWPGjLzKT5kyhSee\neII1a9Zw/vnns//++7PNNtuwYsUKNt10UwYOHMiaNWu48MILWbFiRcY6vv71r/PAAw/wxBNPsHbt\nWn72s595UKdTFFzhOE4axVAmuSitTFx55ZXcf//99O/fn8mTJ/O1r32t0/zpcysnnngiEyZMYODA\ngTz77LP8/ve/B+DQQw/l0EMPZaeddmLYsGH06tVrg2GzOLvuuivXXHMNY8aMYfDgwQwcOJAhQ4YU\n1iHHieFL29TY0jZO19TqMixjx45l22235cILLyx527V6T53s+NI2juM4TsXiCsdxagR3XXYqHR9S\n8yG1usOHf4qP39P6w4fUHMdxnIrFFY7jOI5TElzhOI7jOCXB98Nx6o7m5mafYC8yzc3N5RbBqQLK\nYuFIGiLpEUkvSXpB0pkhvb+kaZJekTRVUt9YmaslzZP0nKQ9Y+knS3o1lDkplj5c0uxw7crS9tCp\nZObPn4+Z+VHEw3ePdXKhXENqnwA/MrPdgP2B0yXtDJwDPGxmnwUeAc4FkHQ48H/MbEfg34DrQnp/\n4GfACGBfoDWmpH4LjDOznYCdJB1ast6VkOnTp5dbhG5RzfJXs+zg8pebape/EMqicMzsXTN7Lpyv\nBOYCQ4BjgFtDtlvDZ8Lf20L+p4G+krYCDgWmmdlyM1sGTAMOk7Q1sKWZzQrlbwO+mnzPSk+1/2ir\nWf5qlh1c/nJT7fIXQtmdBiQNBfYEngK2MrPFECklYKuQbRtgYazYWyEtPf3tWPpbGfI7juM4ZaKs\nCkfSFsDdwPeDpZMeOZYtksxnfB3HcaqNck0yEnnIPUSkbFJpc4msHICtgbnh/DpgdCzfy0TWzwnA\ndbH064DR8bIh/QTgt1nkMD/88MMPP/I/8n3ul9Mt+iZgjpldFUu7HzgFuCz8vS+Wfjpwp6T9gGVm\ntljSVOAXwVGgB3AwcI6ZLZO0XNI+wCzgJODqTEJYnkszOI7jOIVRlrXUJH0JeAx4gfXa8jxgJnAX\nsC2wADg+OAMg6TfAYcCHwFgz+3tIPwX4aajjIjO7LaTvDdwCbA5MMbPvl6h7juM4TgbqfvFOx3Ec\npzSU3UutEpB0uaS5Iaj0T5L6lFumrpB0mKSXQ2Dr2eWWJx+yBf5WG5J6SPq7pPvLLUu+SOor6Y/h\nd/+SpH3LLVM+SPqhpBdDcPcfJDWUW6bOkDRR0mJJs2NpWQPdK40s8uf93HSFEzEN2M3M9gTmEQJO\nKxVJPYDfEMUh7QaMCYGz1UK2wN9q4/vAnHILUSBXEQ017wLsQeSwUxVIGgx8DxhuZrsTOSCdUF6p\nuuRmov/XOBkD3SuUTPLn/dx0hQOY2cNmti58fIooCLWS2QeYZ2YLzGwtcAfrg2QrniyBv1UVJyVp\nCHAEcGO5ZcmX8CZ6oJndDGBmn5jZB2UWK182AXpL6gn0AhaVWZ5OMbPHgaVpyemB7hUbnJ5J/kKe\nm65wNuZU4L/KLUQXZAuErTpigb9Pl1eSvPk1cBaRs0q1MQx4T9LNYUjwBkmN5RYqV8xsEfCfwJtE\nwd7LzOzh8kpVEIPSAt0HlVme7pDTc7NuFI6kv4bx3tTxQvh7VCzPT4G1ZjapjKLWDRkCf6sCSUcC\ni4OVJqovELknMBy4xsyGAx8RDe9UBZL6EVkHzcBgYAtJJ5ZXqqJQjS8veT0362Z7AjM7uLPrwb36\nCOCgkgjUPd4Gtot9HhLSqoYwFHI3cLuZ3ddV/grjS8DRko4AGoEtJd1mZid1Ua5SeAtYaGZ/C5/v\nBqrJ8eSfgdfN7H0ASfcAXwSq7UVxsaStQkzh1kBbuQXKl3yfm3Vj4XSGpMOIhkeONrPV5ZYnB2YB\nO0hqDt45JxAFx1YTmQJ/qwIzO8/MtjOz7Ynu/SNVpGwIwzgLJe0Ukr5CdTk/vAnsJ2lzRRsbfYXq\ncHpIt4ZTge4AJ7M+0L1S2UD+Qp6bHocDSJoHNABLQtJTZja+jCJ1SfiyryJ6aZhoZpeWWaScyRb4\na2YPlVWwApA0EvixmR1dblnyQdIeRA4PmwKvEwVTLy+vVLkjqZVI2a8FngW+ExxoKhJJk4AWYCCw\nGGgF/gz8kQyB7pVGFvnPI8/npiscx3EcpyT4kJrjOI5TElzhOI7jOCXBFY7jOI5TElzhOI7jOCXB\nFY7jOI5TElzhOI7jOCXBFY7j1DCSHqiG7Tac+sDjcBynCEjqEVs5tyKQJPN/cKeCcAvHqSskXSDp\n+7HPF0n6Xjj/iaSZYUOp1lieeyXNCgu+fieWviLU9yTRUiuXhM3MnpN0eYa2e4WNrJ6S9Exq4VhJ\nP5A0MZx/Piwqu7mkVkm3SfrvsElXvO2NZA1LHc2RdI2kZ4BtJb0haUC4/k1JT4cVon8bloVJ9eOi\nUNcTkppC+iBJ94T0ZyXt11k9jtMlZuaHH3VzEK0w/Ew4F/Aa0B84GLg+lv4X4IDwuV/4uznRcjz9\nw+d1wHHhfADwcqydPhna/gVwYjjvC7xCtPingOlE+6HMAvYLeVqJlm1pIFpS5E1g62yyhr59CoyI\ntfl6kG1norW7Ngnp1wDfivXjiHB+GdEyQxDts3RmrJ0tO6vHDz+6OupmtWjHATCzBZLeC2uJbQ38\n3cyWSjoEOFjS34kerr2BHYHHgR9ISm2ONSSkzyTaufSekL4cWCXpRuBB4IEMzR8CHCXprPC5AdjO\nzF6RNBaYDVxnZk/FytxnZmuAJZIeIdp878Assi4E5pvZrAxtf4VoS4JZwSLZHHg3XFtjZlPC+TNE\nqzFDtALwt8N9M2CFpEz1LM7QnuNshCscpx65ERhLpHBuCmkCLjGz38UzhsU5DwL2NbPVkh4lesgC\nfBwexJjZp5L2IXqwjwHOCOfpHGdm8zKk7wSsINrfJU58Dkaxz5lkbQY+zNxlBNxqZj/NcG1N7PxT\n1j8XMs3/dFaP43SKz+E49cifgcOALwBTQ9pU4FRJvQEkDQ5zGX2BpUHZ7AzsF6snvlR7b6Kht4eA\nHwJ7ZGh3KnBmrMye4W9fopW/vwwMlHRcrMwxkhokDQRGEg25Tcsi6wYypX3+b+DrsfmZ/pK2zVKG\nWJnxIX+P4O2WqZ7tspR3nA1wC8epO8xsbbBUlsYslL8GhfJkmANfAXwLeAj4rqTniOZcnoxXFTvf\nErhPUsr6+UGGpi8CrpQ0m+hl73XgaOBXwP8zs9eCY8AjkmaEMjOBKURL2F9o0VbE72aRdR0bWyWp\n/s2V9B/ANEk9iKya04mG4bJ5sv0AuEHSOKLhw9PM7Oks9byZpQ7H6cDdop26IzwonwG+bmb/KLc8\n2QjeZyvM7FfllsVxioEPqTl1haRdgHnAXytZ2ThOLeIWjuM4jlMS3MJxHMdxSoIrHMdxHKckuMJx\nHMdxSoIrHMdxHKckuMJxHMdxSoIrHMdxHKck/H9Baklf1AfI1QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d2bc3b9390>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(paid_salaries, paid_users, marker='o', label='paid')\n", "plt.scatter(unpaid_salaries, unpaid_users, marker='+', label='unpaid')\n", "plt.title(\"Logistic Regression Decision Boundary\")\n", "plt.xlabel(\"years experience\")\n", "plt.ylabel(\"annual salary\")\n", "plt.legend(loc=8)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
unlicense
wehlutyk/brainscopypaste
data/notebooks/Model(time=Time.discrete, source=Source.majority, past=Past.last_bin, durl=Durl.exclude_past, max_distance=1) - variation.ipynb
1
3551235
null
gpl-3.0
dhpollack/programming_notebooks
pymc-test.ipynb
1
226659
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pymc\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "disasters_array = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,\n", " 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,\n", " 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 0, 0,\n", " 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,\n", " 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,\n", " 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])\n", "\n", "switchpoint = pymc.DiscreteUniform('switchpoint', lower=0, upper=110, doc='Switchpoint[year]')\n", "early_mean = pymc.Exponential('early_mean', beta=1.)\n", "late_mean = pymc.Exponential('late_mean', beta=1.)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "@pymc.deterministic(plot=False)\n", "def rate(s=switchpoint, e=early_mean, l=late_mean):\n", " ''' Concatenate Poisson Means '''\n", " out = np.empty(len(disasters_array))\n", " out[:s] = e\n", " out[s:] = l\n", " return out" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "disasters = pymc.Poisson('disasters', mu=rate, value=disasters_array, observed=True)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'lower': 0, 'upper': 110}" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "switchpoint.parents" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'mu': <pymc.PyMCObjects.Deterministic 'rate' at 0x7fbd66579c88>}" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "disasters.parents" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{<pymc.distributions.new_dist_class.<locals>.new_class 'disasters' at 0x7fbd6659d198>}" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rate.children" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1,\n", " 4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3,\n", " 0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0,\n", " 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2,\n", " 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "disasters.value" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(63)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "switchpoint.value" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(0.10579268109853043)" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "early_mean.value" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(1.1865847805942225)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "late_mean.value" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 0.10579268, 0.10579268,\n", " 0.10579268, 0.10579268, 0.10579268, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478, 1.18658478, 1.18658478, 1.18658478, 1.18658478,\n", " 1.18658478])" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rate.value" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mymodel = [\n", " disasters_array,\n", " switchpoint,\n", " early_mean,\n", " late_mean,\n", " rate,\n", " disasters]\n", "\n", "\n", "M = pymc.MCMC(mymodel)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " [-----------------100%-----------------] 10000 of 10000 complete in 0.6 sec" ] } ], "source": [ "M.sample(iter=10000, burn=1000, thin=10)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 40, 87, 95, 65, 48, 64, 90, 109, 6, 103, 74, 31, 37,\n", " 25, 81, 24, 31, 90, 83, 23, 0, 90, 4, 12, 27, 96,\n", " 99, 4, 76, 27, 81, 104, 15, 51, 79, 65, 86, 58, 10,\n", " 102, 83, 35, 89, 65, 98, 37, 97, 39, 59, 32, 7, 23,\n", " 36, 85, 100, 109, 3, 71, 47, 80, 72, 79, 38, 107, 94,\n", " 14, 52, 86, 6, 90, 71, 7, 103, 100, 93, 71, 105, 72,\n", " 101, 2, 101, 32, 41, 30, 63, 63, 19, 104, 3, 106, 21,\n", " 26, 105, 2, 53, 46, 87, 84, 59, 89, 1, 95, 20, 95,\n", " 14, 107, 49, 73, 34, 22, 98, 96, 58, 47, 68, 41, 56,\n", " 50, 108, 56, 13, 66, 16, 20, 74, 26, 102, 46, 60, 40,\n", " 29, 23, 108, 68, 108, 50, 51, 64, 29, 38, 46, 103, 47,\n", " 91, 46, 107, 71, 93, 37, 104, 42, 48, 20, 10, 55, 44,\n", " 27, 3, 92, 6, 75, 41, 49, 4, 76, 35, 86, 61, 103,\n", " 108, 106, 21, 83, 56, 108, 74, 108, 76, 95, 31, 60, 99,\n", " 68, 29, 84, 17, 70, 30, 2, 39, 48, 41, 82, 68, 23,\n", " 38, 103, 68, 77, 81, 61, 0, 89, 30, 75, 10, 23, 96,\n", " 70, 31, 79, 35, 7, 47, 78, 103, 39, 72, 97, 67, 16,\n", " 22, 82, 30, 27, 20, 97, 55, 52, 46, 38, 83, 24, 62,\n", " 32, 86, 64, 1, 21, 4, 20, 23, 77, 4, 99, 71, 41,\n", " 96, 71, 53, 15, 18, 91, 28, 88, 17, 84, 103, 66, 34,\n", " 66, 5, 53, 42, 70, 62, 11, 43, 62, 3, 16, 11, 10,\n", " 109, 89, 25, 38, 35, 3, 102, 6, 68, 61, 82, 100, 108,\n", " 57, 20, 32, 100, 24, 88, 30, 69, 68, 62, 21, 76, 30,\n", " 31, 12, 17, 38, 9, 21, 24, 90, 48, 52, 4, 64, 108,\n", " 64, 7, 1, 54, 109, 70, 101, 49, 70, 65, 81, 75, 86,\n", " 20, 72, 74, 106, 93, 36, 54, 40, 40, 81, 23, 31, 21,\n", " 11, 3, 41, 39, 105, 0, 98, 2, 75, 94, 97, 77, 96,\n", " 4, 63, 20, 30, 81, 100, 7, 63, 13, 88, 0, 66, 63,\n", " 48, 15, 75, 104, 4, 74, 91, 50, 85, 59, 105, 73, 34,\n", " 28, 107, 50, 97, 99, 107, 85, 109, 50, 39, 15, 59, 31,\n", " 41, 5, 86, 23, 8, 31, 32, 71, 69, 81, 108, 51, 28,\n", " 2, 26, 17, 62, 20, 31, 53, 57, 39, 32, 102, 11, 28,\n", " 19, 102, 73, 11, 64, 110, 47, 9, 45, 18, 9, 29, 81,\n", " 41, 15, 33, 100, 81, 55, 69, 95, 16, 24, 68, 94, 49,\n", " 11, 110, 15, 94, 110, 79, 39, 42, 23, 70, 65, 9, 23,\n", " 87, 45, 109, 98, 96, 88, 26, 15, 8, 109, 83, 54, 63,\n", " 50, 73, 11, 2, 61, 94, 65, 107, 50, 78, 26, 42, 40,\n", " 109, 61, 80, 80, 32, 93, 94, 3, 46, 91, 8, 34, 6,\n", " 65, 49, 12, 31, 0, 7, 23, 66, 76, 89, 102, 69, 26,\n", " 69, 30, 46, 35, 28, 45, 87, 16, 57, 90, 106, 86, 1,\n", " 100, 105, 83, 72, 89, 94, 42, 1, 43, 6, 42, 44, 56,\n", " 11, 52, 36, 14, 11, 102, 97, 54, 71, 82, 3, 63, 87,\n", " 110, 107, 0, 79, 2, 16, 93, 42, 101, 58, 61, 72, 56,\n", " 15, 51, 16, 65, 108, 77, 9, 24, 108, 87, 2, 41, 85,\n", " 86, 32, 29, 105, 67, 54, 20, 9, 67, 107, 11, 96, 71,\n", " 86, 93, 13, 5, 101, 42, 45, 60, 82, 49, 39, 103, 89,\n", " 105, 90, 31, 60, 16, 31, 15, 2, 7, 65, 7, 86, 96,\n", " 54, 5, 110, 49, 88, 68, 73, 8, 51, 33, 34, 3, 40,\n", " 78, 19, 110, 71, 74, 12, 0, 6, 55, 55, 14, 94, 56,\n", " 70, 87, 67, 15, 63, 109, 79, 73, 45, 93, 81, 9, 46,\n", " 32, 35, 13, 99, 31, 3, 4, 107, 77, 10, 13, 102, 73,\n", " 93, 49, 5, 18, 4, 59, 43, 73, 55, 66, 71, 22, 76,\n", " 64, 73, 28, 64, 67, 53, 31, 68, 52, 17, 99, 92, 33,\n", " 44, 19, 97, 6, 65, 35, 109, 3, 51, 45, 66, 58, 76,\n", " 8, 27, 87, 57, 9, 21, 83, 65, 98, 40, 107, 0, 39,\n", " 57, 61, 19, 33, 18, 1, 26, 86, 107, 29, 33, 80, 53,\n", " 66, 52, 8, 64, 83, 8, 6, 59, 10, 38, 46, 94, 45,\n", " 58, 66, 16, 43, 98, 24, 17, 36, 105, 18, 65, 19, 94,\n", " 84, 102, 53, 62, 102, 65, 43, 67, 28, 57, 58, 92, 53,\n", " 75, 106, 110, 51, 12, 73, 24, 27, 6, 93, 56, 68, 49,\n", " 75, 29, 76, 10, 26, 99, 37, 33, 29, 82, 82, 101, 74,\n", " 53, 65, 94, 76, 93, 67, 97, 71, 104, 93, 24, 89, 97,\n", " 10, 42, 91, 63, 15, 79, 31, 47, 31, 83, 24, 11, 110,\n", " 31, 71, 47, 91, 93, 88, 36, 36, 37, 105, 81, 83, 3,\n", " 70, 83, 72, 42, 102, 68, 100, 97, 105, 105, 14, 108, 53,\n", " 71, 68, 45, 28, 65, 67, 84, 88, 110, 51, 80, 84, 56,\n", " 80, 108, 6, 5, 91, 79, 56, 90, 108, 54, 8, 71, 66,\n", " 110, 23, 24, 60, 44, 41, 34, 53, 22, 74, 84, 88, 0,\n", " 69, 73, 93, 37, 41, 22, 68, 90, 52, 69, 86, 34, 38,\n", " 96, 29, 30])" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M.trace('switchpoint')[:]" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/projects/anaconda3/lib/python3.5/site-packages/statsmodels/nonparametric/kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" ] }, { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7fbd65f84470>" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFoCAYAAADdImiaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt83Hd95/vXb2Y0mtFldPUlsS2bJM7XCSGBJAQTSllC\nNinN0m5aDrsHCt2yXR4FugXax57ClnNgu31AzrIFdrfcltMWCLCHdh/p2ZRSoCWUUEIgjuNccPx1\nHMfxRZatuzSam2bmd/74zUhj6SdbI1n6zW/m/Xw89JA0v9/MfPzTWPPW9+q4rouIiIjIUpGgCxAR\nEZHGpJAgIiIivhQSRERExJdCgoiIiPhSSBARERFfCgkiIiLiSyFBREREfCkkiIiIiC+FBBEREfGl\nkCAiIiK+YvXewRhzN/Bl4CFr7Vsvce7vAO8BtgNPAe+31h5cS6EiIiKyuepqSTDG/Dvg08DRVZz7\nJuAjwK8B24BvAt80xiTXUKeIiIhssnq7G7LAbcDzqzj3XcCfW2sPWGvzwCcAF3hTnc8pIiIiAagr\nJFhr/8RaO7vK028BFroWrLUucAh4ZT3PKSIiIsHYyIGLA8DkktsmgMENfE4RERG5TOoeuFgnZz13\ndl3XdZx1PYSIiEirWvcb6EaGhFG81oRaA8DTq30Ax3GYmclSKpUva2HNKhqNkEoldc3qpOtWP12z\ntdF1q5+u2dpUr9t6bWRIOIA3LuF+AGNMBLgZ+H/qeZBSqUyxqBdGPXTN1kbXrX66Zmuj61Y/XbNg\nXNYxCcaYZ40xt1e+/RzwDmPMqyrTHj8M5IC/uZzPKSIiIhujrpYEY0wWbxpjW+X7ewHXWttROeVa\noAvAWvsdY8yHgL8AtgCPAb9YmQ4pIiIiDa6ukGCtvWgHh7U2uuT7LwBfWENdIiIiEjDt3SAiIiK+\nFBJERETEl0KCiIiI+FJIEBEREV8KCSIiIuJLIUFERER8KSSIiIiIL4UEERER8aWQICIiIr4UEkRE\nRMSXQoKIiIj4UkgQERERXwoJIiIi4kshQURERHwpJIiIiIgvhQQRERHxpZAgIiIivmJBFyCX18TE\nJGeGRykWy77HtwwO0t7evslViYhIGCkkNJkf/vRpZvJJSmV32bH5+QJmdo7r9l0bQGUiIhI2CglN\npi0Wo7Mt5R8SCgVgfvOLEhGRUNKYBBEREfGlkCAiIiK+FBJERETEl0KCiIiI+FJIEBEREV8KCSIi\nIuJLIUFERER8KSSIiIiIL4UEERER8aWQICIiIr4UEkRERMSXQoKIiIj4UkgQERERXwoJIiIi4ksh\nQURERHwpJIiIiIgvhQQRERHxpZAgIiIivhQSRERExJdCgoiIiPhSSBARERFfCgkiIiLiSyFBRERE\nfCkkiIiIiC+FBBEREfGlkCAiIiK+FBJERETEl0KCiIiI+FJIEBEREV8KCSIiIuJLIUFERER8xeq9\ngzFmCPgssB+YBb5hrf2gz3kO8FHgHcAAcBz4mLX2L9ZTsIiIiGyOtbQkPACcAvYAdwL3GmPe73Pe\nu4F3Av8U6AH+APiqMeaGtZUqIiIim6mulgRjzK3AjcAd1to0kDbGfBJ4H/DpJaffDPyjtfZY5fu/\nMcaMV+7/zPrKFhERkY1Wb3fDzcAJa+1MzW0HAWOM6bTWztXc/jfAZ40xNwGHgTcCSeAH6ylYRERE\nNke9IWEAmFxy20Tl8yCwEBKstX9ljHk58ATgAhngHdbaM/U8YTSqsZWrVb1WkUgEKC87XsRlZnaa\nqanxFR+jv3+gcv/WUb1ueq2tnq7Z2ui61U/XbG0u1/Wqe+Ai4KzmJGPM2/EGLd6K171wJ/B1Y8xJ\na+3jq32yVCq5hhJbWyLR5nv7XHqCJ0+OkqbH93h6dppfvqOTgYEtG1lew9JrrX66Zmuj61Y/XbNg\n1BsSRvFaE2oN4LUUjC65/beBL1hrD1a+/5Yx5iHg7cCqQ8LMTJZSaflfxbJcNTnmcvOUy8uvWS5b\nIBrrIN7e5X//bIGpqTlisY4NrbPRRKMRUqmkXmt10DVbG123+umarU31uq1XvSHhADBkjOm31la7\nGW4DDltrM0trrHzUaq+3wFKpTLGoF0Y9yuUypbK77PZS2V3xmHc/l2LRbdnrrdda/XTN1kbXrX66\nZsGoq9PCWnsIeAy4zxjTbYzZB3wAb90EjDFHjDG3V05/EPhNY8zLjDFRY8xdwB3AX12+8kVERGSj\nrGVMwpuBLwIjwDTwOWvt5yvH9gLVtuyP4bUk/H/AFuAE8JvWWs1uEBERCYG6Q4K1dhi4Z4Vj0Zqv\ni8BHKh8iIiISMppTIiIiIr4UEkRERMSXQoKIiIj4UkgQERERXwoJIiIi4kshQURERHwpJIiIiIgv\nhQQRERHxpZAgIiIivhQSRERExJdCgoiIiPhSSBARERFfCgkiIiLiSyFBREREfCkkiIiIiC+FBBER\nEfGlkCAiIiK+FBJa2ORsnkeeHmF0Kht0KSIi0oAUElrUzFyB7/70FMfOTPMPTwwzXywHXZKIiDQY\nhYQWlM0X+fsDp8nPlxa+f+b4eMBViYhIo1FIaDGlMjz0+BnS2XkAOhMxAH52YpK5XCnI0kREpMEo\nJLSYs9MwPpMD4Iar+rnz1p04DpTLLs+8mA64OhERaSQKCS2mkg8YSCV4xd5BerrauW53HwBnJws8\nd2Y2wOpERKSRKCS0ENd1mct7X2/tS+I4DgA3Xj1AIh4F4IfPjAVVnoiINBiFhBaSm3epTmLoT7Uv\n3B5vi3L1jh4Ajg2nyRc0NkFERBQSWsr03OKb/0BP4oJju7Z2AlAsuRw+MbGpdYmISGNSSGgh0xkv\nJMSiDqnO+AXHBnuTxGNe98MTx9TlICIiCgktpRoS+rrbiVTGI1RFHIdtvV5weOrYGGXX3fT6RESk\nsSgktAjXdRdCwkAq4XvO9j5vnMJMZp4Xhmc2rTYREWlMCgktIpMvUih6rQP9K4SErb1tRCNeC8Mh\ndTmIiLQ8hYQWMTGTX/h66aDFqrZohKuv9AYwPqmQICLS8hQSWsT4tLeKkuNAz5JBi7WuH0oBcHp0\njjHtDiki0tIUElrERGWpxc44RCLOiuddVwkJoC4HEZFWp5DQIqr7NXS2X/y8vq44O7Z4XQ7Pvji5\n0WWJiEgDU0hoAZlckWzem9nQtXJPw4J9Q95eDkdPTWkqpIhIC1NIaAHVrga4dEsCwL6hXgDmckVO\nn9fOkCIirUohoQVMpb2ZDQ6QXEVLwrW7ehe+tienNqgqERFpdAoJLSCTKwKQiDtcZMzigu6OODsr\n4xKOnNS4BBGRVqWQ0AIy+UpIaFv9j9toXIKISMtTSGgBiy0Jq/9xa1yCiIgoJLSAuWpIaFtFX0OF\nxiWIiIhCQpMrl11y+fpbEro7FtdL0LgEEZHWpJDQ5LKFItURBfW0JADs26VxCSIirUwhoclVxyNA\nfS0JAEbjEkREWppCQpO7ICTUMbsB4NqhmnEJpzQuQUSk1SgkNLkLQ0J93Q2pjjhXDHQAcOz09GWt\nS0REGp9CQpOby80DkGyPXnT3x5Xs3dkDwHOnp3A1LkFEpKXEgi5ANla1JaGj/dI/6nK5zMTE+AW3\nbe+JAjCVLjA6lWFrX+flL1JERBqSQkKTq6622JFou+S5c+lpHj50jq1bCwu3pXOlha8P2WHu2r/3\n8hcpIiINSSGhyS20JCRiwKW7Czo6U6R6+xe+73ZdEvFpcoUSL57LbFSZIiLSgDQmoYm5rltXd4Mf\nx3HY2pcE4IWRuctWm4iINL663zmMMUPAZ4H9wCzwDWvtB1c41wCfB24DxoBPWWs/vfZypR65Qmlh\nESSvJWF+TY+ztTfJyXNpzk3myOTmV9V1ISIi4beWloQHgFPAHuBO4F5jzPuXnmSMSQDfAf4a6Ad+\nBXinMebaNVcrdamORwDoXMcb+5ZKS4ILPD88s96yREQkJOpqSTDG3ArcCNxhrU0DaWPMJ4H3AUtb\nCN4CTFlrP1n5/vHKfWWT1K6R0JGIMb/GIQX9qQQRB8quNxXyZVcNXKYKRUSkkdXbknAzcMJaW/vn\n5EG8noWlc+N+DnjGGPOnxphJY8xhY8xb11Os1CeTW+xeSK5xTAJANOLQ1+W1RGhRJRGR1lHvO8cA\nsHRLwInK50GgdmTbTuC1wG8C78VrWfiKMeZn1tonV/uE0ajGVq5W9VpFIhGgTDbvTV+Mt0VIxKPM\nRRwikQjRFRZVchyHaMTxPT6YamN8dp7jwzPgQKyJfi7V66bX2urpmq2Nrlv9dM3W5nJdr7X8ebna\nZfsc4HFr7Tcq33/FGPNbwP8GrDokpFLJOsuTRGX8QaFYBrxtnzs62plLxklkonR0tPveL5mME421\n+R6/YjCJPZOhUCwzmSly7VDfxv0DAqLXWv10zdZG161+umbBqDckjOK1JtQawBvTNrrk9hFg6TvJ\nCWB7PU84M5OlVCrXc5eWVU2Oudw85XKZ6XQegEQ8SiaTJ5ctkMuXyGTyvvfPZgtEY/ge72p3cPB+\n0I8fPsuW7vhG/TM2XTQaIZVK6rVWB12ztdF1q5+u2dpUr9t61RsSDgBDxph+a221m+E24LC1dumw\nuMPAu5fctgf423qesFQqUyzqhVGPcrlMqewyVxm4mGyPUSq7lMruwjE/rusunLdULOKwrS/ByGQO\ne3KKO2/ZtaH/hiDotVY/XbO10XWrn65ZMOrqtLDWHgIeA+4zxnQbY/YBH8BbNwFjzBFjzO2V078K\nDBpjPmSMSRhj/ne8gY9fvXzly0q8hZS8gYudicuzsObubd6OkM+dntZmTyIiLWAtIxveDOzA6054\nCPiStfbzlWN7gS4Aa+1Z4B68AYsTwEeAX7LWvrDeouXS5otliqXKQkrrmNlQVS6X2dLlPd7MXIGj\nLwwzNjZ2wUe5rJQvItJM6n73sNYO4735+x2LLvn+h8Ar1laarMeFaySsf4XEufQ0k7M5qi+Zv3t8\nmKEtiYXj6fQ0d+3fx+Dg4LqfS0REGoM2eGpStastdlym7oa+nm6S5wtk8yVm85ELNoISEZHmo4mn\nTSpbExKS7dGLnLl63mZP3riE81PZy/KYIiLSuBQSmlS+4C2k5ADtbZcnJIC32RPAdLqw8BwiItKc\nFBKaVK7yBt4ej+I4q13/6tKqmz0BjKo1QUSkqSkkNKncfCUkXMZWBID+7nZiUS90nJ9USBARaWYK\nCU2q2hWQiF/ekBCJOAz2eK0JGpcgItLcFBKaVK7gDVxsv8whAWBrpcthbDpHSWsjiIg0LYWEJrVR\nLQmwGBLKZZfxaf99IEREJPwUEprUwpiE+OVfCmOwN7GwFai6HEREmpdCQhMql10K8143QOIyD1wE\niMei9KW87aQ1eFFEpHkpJDSh/Pzi+gUbMSYBFtdLGJ3MarMnEZEmpZDQhHI1ixxtxJgEWByXkJ8v\nMT1X2JDnEBGRYCkkNKHqzAbYwJaEmkWV1OUgItKcFBKa0Ga0JHQk2uhKertLKiSIiDQnhYQmVLun\nwkYMXKyqtiYoJIiINCeFhCZUbUmIRR2i0Y37EVdDQjo7f0HrhYiINAeFhCZUHZOQ2IA1EmrVjksY\nny1e5EwREQkjhYQmVLsD5Ebq6YwTb/NeQuOz8xv6XCIisvkUEppQbgOXZK7lOM7CegkTCgkiIk1H\nIaEJLezbsIGDFquqXQ5Tc0WNSxARaTIKCU1os7ob4MJxCadGMxv+fCIisnkUEpqM67o1Axc3PiQM\n9CSIRLztnl4Ymdvw5xMRkc2jkNBk5osu5cpWCpvRkhCNRBjsSQBw4pxaEkREmolCQpPJFhY3W9ro\nKZBV1cGLJ89nKJbKm/KcIiKy8RQSmkxufvFNejMGLsLiuIRCscyp8+lNeU4REdl4CglNJltYDAmb\n0d0AsKVm8OJzp6c35TlFRGTjKSQ0mdwF3Q2bExLa26Kkkt5zPXd6alOeU0RENp5CQpOptiQ4DrTF\nNu/H29/t7Qj53OlpXNe9xNkiIhIGCglNJlcJCYl4FMdxNu15B1JeSJiZK3B+SrtCiog0A4WEJlPt\nbmjfpEGLVQOVlgSA505pXIKISDNQSGgy2YWWhM2Z/liVjEfo6ax2OWhcgohIM1BIaDLVKZCbNbOh\nynEc9mzrAOCoZjiIiDQFhYQmk60Zk7DZXrK9E4BzExmm0vlNf34REbm8FBKaTFBjEgCuvqJr4Wt7\nUl0OIiJhp5DQRIqlMoWiFxKCaEnY2ttOqjMOwJGTk5v+/CIicnkpJDSR2cz8wtebPSYBvHEJ+4Z6\nATjyokKCiEjYKSQ0kdlMYeHrIFoSAPYN9QFwbjLL5KzGJYiIhJlCQhNJ17YkBDAmAcBUWhJArQki\nImGnkNBE0tlguxsAtvd30NPljUt4VuMSRERCTSGhiVwQEgJqSXAch+sqXQ5qSRARCTeFhCZSDQnR\niEMsGtyPdt9uLySMTecYm9Y+DiIiYaWQ0ESqISGoroaqfTXjErRegohIeCkkNJFqSEgE1NVQtaU3\nSX+qHVCXg4hImCkkNJFqSIgH3JLgOA5mV2VcwslJXNcNtB4REVkbhYQm0igtCQD7dntdDuMzeUan\ncwFXIyIia6GQ0ESq6yQENbOhVnWGA6jLQUQkrBQSmkijDFwEGOxNMtiTALSPg4hIWCkkNImy6zKX\na5yWBFhcovnIixqXICISRgoJTSKbL1J9H26ElgRYHJcwlS5wflLrJYiIhI1CQpO4cLXFxvix7qsZ\nl6AlmkVEwqcx3k1k3Rph34al+lMJtvYmAQ1eFBEJo1i9dzDGDAGfBfYDs8A3rLUfvMR9dgDPAv/Z\nWvuHaylULm6uJiQ0whTIqn27ezk/leXIySlc18VxnKBLEhGRVVpLS8IDwClgD3AncK8x5v2XuM9/\nBYpreC5ZpUZsSYDFLoeZuQJnxzMBVyMiIvWoKyQYY24FbgR+31qbttY+D3wSeNdF7vOLwD7gm+sp\nVC4unV3MYPGGakmoWS9B4xJEREKl3paEm4ET1tqZmtsOAsYY07n0ZGNMAvhvwHuA0pqrlEuqdje0\ntzlEGqhJv7erne39HYDGJYiIhE29YxIGgKW/6ScqnweBuSXHPgL8yFr7A2PMv6q/PIgGuOVxmGTy\nXktCoi1CJBIBysvOiUYcIpEI0Yh/iHAch2jE8T1+sWMAkYhDLOYQiy3/eV2/p4+RiQxHTk4RiTZW\niIHF15hea6una7Y2um710zVbm8t1veoeuAis6je8MeZ64J3ADWt4jgWpVHI9d28ZhZK3SEJ7m0Mi\n0eZ7zlwyTiITpaOj3fd4MhknGmvzPX6xYwCFfJze3k76+pY1KHHbDVfy0MEzpLPzzORKvOTKntX+\nszaVXmv10zVbG123+umaBaPekDCK15pQawBwK8dqfRb4qLV26e11mZnJUiot/6tYLjQx7S1WlIhH\nyOXmKZeXX7NctkAuXyKTyfs+RjZbIBrD9/jFjgHMzeU4fvwkU1NLG5Ogw1kcL/G9R47yupu2LDun\nv3+g0gKy+aLRCKlUUq+1OuiarY2uW/10zdamet3Wq96QcAAYMsb0W2ur3Qy3AYettQtD1yvTJF8L\nXG+MqU557ALKxphfstbeutonLJXKFIt6YVzKbKYAQKLNoVwuUyovXwa5VHZXPAbgui6lsut7/GLH\nAGZnpnjoQI6tW/1DREdbmcx8hEefHcNx5y84lk5Pc9f+fQwODl7037jR9Fqrn67Z2ui61U/XLBh1\nhQRr7SFjzGPAfcaY3wN2AB8APgFgjDmC18XwY2DXkrt/Cm/q5H9ab9Gy3OLAxeD67To6U6R6+32P\nDXSPkZlwmZgt0pXqI7LC2AYREWkcaxmT8Gbgi8AIMA18zlr7+cqxvUCXtdYFhmvvZIzJADPW2vPr\nqFdWUJ0CmYg35ptvf6fDqQmX+VKZ8ZkcW3rVvygi0ujqDgnW2mHgnhWOrThB31r7G/U+l6zOfLFM\nft6bYZpokH0blurtcHDwBq+MjGcUEkREQqAx31GkLtUtosGb3dCIYlGHVNJ7uZ2d0MqLIiJhoJDQ\nBGqXZE7EG/dH2tfl1TY6qVHKIiJh0LjvKLJqF27u1JgtCQD9XV5vVKnsMjqVC7gaERG5FIWEJhCW\nloSejsjCrAZ1OYiINL7GfUeRVbsgJDTowEXwloXeWhmwODK+fNElERFpLI37jiKrVg0JsahDrHE2\ngPS1fcDb7GlsOse8FkYREWloCglNYK6yRkJnsg2nwTZPWuqKyo6QrgvnJtXlICLSyBQSmkC6MgWy\nK+m/sVMjGehJEIt6QWZkXCFBRKSRKSQ0gershjCEhEjEYVulNWFEgxdFRBqaQkITSIcoJABsr4SE\niZk8uUIp4GpERGQlCglNIGwh4YrK4EWAc2pNEBFpWAoJTWChu6EjHCGhr7udeGWqprocREQal0JC\nyLmuy1zOm93QlQhHSHAcZ6HLQYMXRUQal0JCyGXzJUplFwhPdwMsrpcwPVcgq3EJIiINSSEh5NI1\nO0CGpbsB4Ir+zoWvx6bnL3KmiIgERSEh5GYzhYWvuzviAVZSn1RnG8n2GACjMwoJIiKNSCEh5NKZ\nxTfY7hC1JDiOszDLYXS6gOu6AVckIiJLKSSEXO3mTmFqSYDF9RKyhTITs4VLnC0iIptNISHkZist\nCRHHoSMRC7ia+myvWS/h2HA6wEpERMSPQkLIzWa9v8C7kjEiDb6501JdybaFLhKFBBGRxqOQEHLV\nloSwdTVUVbscnh+e07gEEZEGo5AQctWBi2FaI6FWtcshnSsyPDYXcDUiIlJLISHkqt0NYZrZUKva\nkgDw7IuTAVYiIiJLKSSE3EJLQki7G5LtMVLJKKCQICLSaBQSQm5hTEJIuxsABnu8gHPk5BTlssYl\niIg0CoWEECuWymTylc2dQtrdALAl5dWezRd58dxswNWIiEiVQkKIVXd/hPCOSQAYSLVRnb35zAsT\nwRYjIiILFBJC7IJ9G5LhHJMAEI9F2L3VG8D49PPjAVcjIiJVCgkhFtZ9G/xcN5QC4Pnh6QuWmhYR\nkeAoJITYbM2baVjXSajat7MbANeFZ46rNUFEpBEoJIRY+oJtosMdErb3J+jrbgfgKXU5iIg0BIWE\nEKtOf2yPR2mLRQOuZn0cx+HGqwcAePr4uKZCiog0AIWEEKt2N4R5jYRaN17lhYS5XJHjZ2cCrkZE\nRBQSQqw6wC/sXQ1V1+3pIxb15kI+9fxYwNWIiIhCQohVp0B2hXj6Y61EPIbZ1QtoXIKISCNQSAix\ndKa5WhIAbrx6EICT59JMzuYDrkZEpLUpJIRYdUxC2Kc/1rrxmoGFrw/Y8wFWIiIiCgkh5bru4uZO\nTdSSsK2vgz3bvTUTfnL4XMDViIi0NoWEkMoVShRLZQC6Q7pN9Er2X78NgOPDM5yfzARcjYhI61JI\nCKnapYubZQpk1Suv20Zlvye1JoiIBEghIaRma/ZtCPM20X76utvZt7sPgEcPn8N1tbCSiEgQFBJC\nKp2tXZK5ubobAF5V6XI4O57h1Pl0wNWIiLSmWNAFyNpc0JIQ8u6GcrnMxMSF6yLsGYwQjTiUyi7f\nP3CCt7/xpUQi/pnWu//Eio/f39+/4n1FRGRlCgkhVQ0JEcehIxHuH+NcepqHD51j69bCBbdv6Wlj\nZLLAo8+O8sbbxtm6ZYvv/ScmJvjuo0fo6upZdiydnuau/fsYHBzckNpFRJpZuN9dWlh6YY2EGBHH\nucTZja+jM0Wqt/+C264dijEyeZZ8EZ49ObNiSADo6upZdn8REVkftcGGVHVJ5mYcj1C1a1s3He1e\njv3BU6MBVyMi0noUEkIq3YSrLS4VjThct8eb5XDiXIbnTk8FXJGISGtRSAipZlxt0c/eXT0LO0P+\n7aMnA65GRKS1KCSE1MK+DU3c3QAQj0V5ybYEAIeOjTE8NhdwRSIirUMhIaTS1TEJTdzdUHX19g6i\nEa814ds/VWuCiMhmUUgIoflimblcEWj+7gaARDzCLXu9sQk/fmaE06NaXElEZDPUPQXSGDMEfBbY\nD8wC37DWfnCFc38LeD9wJXAM+Ki19sG1lysA03P5ha/7utsDrGTz3PHyrTzx/BTzxTJf+bblg792\nc1NM/RQRaWRraUl4ADgF7AHuBO41xrx/6UnGmF8BPgb8K6AP+BPgL4wxe9ZYq1RMpRcXHertao2Q\n0N8d55desweAY2emefjJ4WALEhFpAXWFBGPMrcCNwO9ba9PW2ueBTwLv8jk9CXzIWvuotbZkrf0z\nvJaH/estutVNzS62JLRKSAC4+7YhdmzpBOB/fv95pucKl7iHiIisR70tCTcDJ6y1MzW3HQSMMaaz\n9kRr7destV+ofm+M6QW6gTNrLVY8U+nFkNDT1dyzG2rFohF+/e59AGTyRb7+d0e1Q6SIyAaqd0zC\nADC55LbqzjqDwMXmp30R+LG19of1PGE0qrGVS83UrJGQaF/8EVavlbeZUXnZ/aIRh0gksjBTYCnH\ncYhGHN/jFzu23uOXum8k4hCLOcRiEfbt6eP1r9jB9584w2NHznPTNYNcv7ONyAr3r73vSqrXTa+1\n1dM1Wxtdt/rpmq3N5bpea9m7oa7RYsaYGPBl4Drg9fU+WSqVrPcuTS9TKAEw2Jukr69z2fFEwn/G\nw1wyTiITpaPDv4simYwTjbX5Hr/YsfUev9R9C/k4vb2dC//W33rzTRw5NcXZsTnu/67lw+94Gclk\n3Pf+S+97MXqt1U/XbG103eqnaxaMekPCKF5rQq0BwK0cu4AxJgE8CCSA11prl7ZCXNLMTJZSaflf\nxa3s3LjXYNOdbGNycrHxppocc7l5yuXl1yyXLZDLl8hk8suOAWSzBaIxfI9f7Nh6j6/mvlNTc8Ri\nHQu3vfuXX8offukx8oUSn3ngCK/a20283f+xl953qWg0QiqV1GutDrpma6PrVj9ds7WpXrf1qjck\nHACGjDH91tpqN8NtwGFrbcbn/P8XyAH3WGvn11JgqVSmWNQLo9ZkZeBiT2fc99qUy2VK5eV99aWy\nu+IxANd1KZVd3+MXO7be45e6b7nsUiy6F/xbd27p4i2vv4av//1zjEzkePIF+Pm+5btA+t13JXqt\n1U/XbG0HWL8NAAAWxUlEQVR03eqnaxaMujotrLWHgMeA+4wx3caYfcAH8NZNwBhzxBhze+XrtwEv\nBd6y1oAg/qqzG1ppZoOfN9yyk1fsHQTgxPkcL5yducQ9RESkHmsZ2fBmYAcwAjwEfMla+/nKsb1A\ntfP3N4DdwIQxJmOMyVY+f2HZI8qq5edLZPLeaou9LbKQ0kocx+Gd91xHX5c3BuPRZ84xo2mRIiKX\nTd0DF621w8A9KxyL1nx95zrqkhVMp2vXSGid6Y8r6Uy08dbXD/HZv36e+VKZHz45zC/sHyIa0Uho\nEZH10m/SkGnF1RYvZfe2Tq4f8hqwxmfyPHF0LOCKRESag0JCyEylW3O1xUu55ookVw56MxgOn5jk\n/GQ24IpERMJPISFkqoMWHQdSnc2/A+RqOY7D7Tdsp62yaNIjT5+lqOlSIiLropAQMtXuhlRnXP3u\nS3Qk2njlvq2AtyrloefU7SAish56lwmZaneDuhr8Xb0jxY5Bb3zCsycmmZjV7FsRkbVay7LMEqBq\nSOhTSPDlOA77b9jGg/94gvlimYPPz3L3K1fudiiXy4yNjVMsZpiamqNYXL6gU39/f2U/DBGR1qKQ\nEDKTle4GTX9cWWel2+GRZ0ZI50p89/Fz/Po9W33PnZiY4Hs/tQxu2UI2W6C8ZNXHdHqau/bvY3Bw\ncDNKFxFpKAoJIaPuhtW5ekeKEyOzDI/N8fAzo/zcy6e5ekeP77mdXT309g0Qb8+vuDS0iEgrUhtq\niGTzRfKVHSBbabXFcrnMxMQ4Y2Njvh8TE+O4S97cHcfh1S/dRizq4LrwZ996lvliKaB/gYhIOKkl\nIUSmWnS1xbn0NA8fOsfWrf5LLo8Mn6SrZ4CeJRuUdibbuGF3J4eOpzk7nuF/fO8Y77jbbEbJIiJN\nQSEhRFp5tcWOzhSp3uW7PALMzqy8A/nuLQly8w5HTs3yD0+c4eorU7zmZVdsVJkiIk1F3Q0hotUW\n6+c4Dv/ydbsY7EkAcP93LKfOpwOuSkQkHBQSQqQaEqIRh64Orba4Wh2JGO+992XEohEKxTKfeeBp\n7RYpIrIKCgkhMjXrvbH1dMWJOE7A1YTL7u3d/Npd1wJwfirLfV87yMRMLuCqREQam0JCiGj64/r8\n/E1X8sb9QwCMTGT4+FcPMj6Tv8S9RERal0JCiCgkrN+bX3c1v/LzVwEwPpPjMw8+z8ikgoKIiB+F\nhBCpNo+30vTHy81xHP7Z7Xt42z/1uh7SuSKPPDvND544zXxRu0aKiNRSSAiJwnyJiUrT+La+joCr\nCb833LKT33nzjXQlvFnAzzw/zoM/OsHYVDbgykREGodCQkicn8xSXVNw+4BCwuXw8msG+d1fvZYr\n+r2WmZm5An/7k5M8eWxs2R4OIiKtSCEhJEYmMgtfb+tXSLhcupIx9pse7rh1F7FoBNeFJ4+N8+2f\nnNQ0SRFpeQoJIVENCbGow2AqEXA1zcVxHK7b088/f+0etvYlARibzvHXPzrBCyNZXFetCiLSmhQS\nQuJcJSRs7esgEtEaCRuhuyPOXbft4uZrB4k4UCq7PHkizf1//+LCxloiIq1EISEkqi0J29XVsKEi\njsMNVw3wi6/evTCL5JkXZ7jv6weZnNVUSRFpLQoJIVENCdv6kwFX0hr6UwnuefVudg54a1K8ODLL\nH33lgPZ9EJGWopAQArOZAnO5IgDbNf1x00SjEW65pps3vGIrAJOzeT721cd5+vh4wJWJiGwOhYQQ\nODexOHdf0x83l+M43H3Ldv71PdcRjTjkCyU+/ZdP8v2Dp4MuTURkw8WCLkAu7ezE3MLXmv4YjNe8\n7AoGexL8yQNPM5crcv93j/LiuVnufsUAbbGVs3Z/fz+RiLK4iISTQkIIVFsSOhMxupPaIjooZqiP\nf//2W/gvf/kU56eyPPzkWR4/MsKrTC+pjuX/ldLpae7av4/BwcEAqhURWT/9iRMCi4MWO3C0RXSg\nrhjo5MO/fiuv2Ou98c/lXX7wzBQnJ6Er1Ueqt3/ho6urJ+BqRUTWRyEhBM5p+mND6Uq28du/8jJ+\n+dVXLqyncNCO8s1HTiz8rEREmoFCQoMrl13OTXrdDRqP0Dgcx+E1Lx3kdTf0MdjjrYA5lS7wnZ+e\n4h+fOks2Xwy4QhGR9dOYhAY3PpOjWPK2ML5CIaFu5XKZiYmVpyxOTIyva9nlns4Yb9w/xLEz0zxu\nRynMlzk+PMOp82mu29nB/uu1pLOIhJdCQoPTxk7rM5ee5uFD59i61X+zppHhk/T0rW9goeM47N3Z\ny66tXRw8Osax09PMF8s8dSLN+IPHeOc97bzkitS6nkNEJAgKCQ3ugpDQp9UW16KjM0Wqt9/32OzM\n5GV7nkQ8xu03bGfvjh4ePXyOydk8Z8ay/NGXD/BPbt7Bv3j9NcTbopft+URENppCQoOrhoSBVLve\nYAJwse6KiYlx3PLy7oQtfUnuefVuDh05zdHhLIWiy/cPnuHZF8b5tTcMsbV3cRdPraMgIo1MIaHB\nDY96CympqyEYF+uuGBk+SVfPAD0MLDsWiThs6yqQuHKe07MdjEwWGJnM8akHjvLyq7rZNZjQOgoi\n0vAUEhpYYb7E88MzAFx1pebcB2Wl7orVdFX09qS47rqdHHlxisfteUplePzYLPlyG1dv0TgFEWls\naudsYM+fmV6Y2XDd7r6Aq5G1chyH6/b08Qv7h+hIeLn8meMT/PS5GQrFcsDViYisTCGhgT170vtL\nNRaNcM0O/dUZdoM93liF6roKZycKfO6bzzM5mw+4MhERfwoJDezZF72QsHdnD20xDVpsBsn2GHfd\ntos927sBvNkPXznAiyOzAVcmIrKcQkKDyuaLvDDsvXHsU1dDU4lFI7z2piswO7zBqJOzeT7+tcc5\neHQ04MpERC6kkNCgnjs9RbmyEqDGIzQfx3EwO5K86ZV9xKIOhfkyn3ngaf7ye4cZHR1lbGyMclnj\nFUQkWAoJDara1dAejy40TUtzmUtPMz4+yu37emhvc3CBv31shM88eJRvP/IsExMTQZcoIi1OIaFB\nVUOC2dVLLKofU7Pq6EyxZ9c27nn1S+jtigNwcjTPwRddzk/lAq5ORFqd3n0aUDo7z6lzaQD2Damr\noRV0dbTxC/uH2LGlE4CpuSL/5a+e4/tPnFnXBlQiIuuhxZQakD05SfVtQeMRWkc8FuWOm3dw+MQk\nB4+OMl9yuf87lh89fZa3vP4art3Vu6rH8ZaSvnhXhZaDFpHVUEhoQE88NwZAZyLGrm1dAVcjm8lx\nHF76kn5S8SKHT2U4N5Xn+PAM933tIC+/ZpA7btnB9bv7iUScFR9jYmKC7z56hK4u/1U6tRy0iKyW\nQkKDOT+Z4dGfnQPgFrOFiLPym4E0r57OGO+7dy9Pvpjjm4+cYC5X5NCxMQ4dG6Ovu51bzVb2XNHN\n0NYuBnoSRCMRolGHbL7Iuckc2VKSXCZGNl8kmy+SqXzOF0q45TLHRo+R6jrDlp4k2wc62D7Qwe5t\n3XQl2y5aV7WVIhZzKBYzTE3NUSxe2B2iVgqR5qGQ0GAe/NEJyq5LNOJwz6v3BF2OBKRcLjMzPckt\nVw1w3Y5r+YcnR/mJnSCbLzE5m+fvDpxaxaNMr3wkU4RzmWW393fH2TmY5NqhAa66soehbV10JBaD\nQ7WVIpXqJZmMk80WKNfshHmpVopLdYUoYIg0FoWEBnJ2fI4f/2wEgNfeeAVbepMBVyRBWbr7ZG8H\n3HlTH+emCpwczTE2XWA12z44DiTjMZLtUZLtMRLxGOn0DIViiUi0nblciWxh8YEmZgtMzBZ46oXF\ngJHqjLO9z2tx6G6H2fkE3bFOulJdxNvnKflsl72Si3WFqBtEpPEoJDSQB390AteFWNThn92+J+hy\nJGB+u0/29cO+q2B6cpzr9wySLrYxm5mnVCpTLLsk4lEipTzHh6cYHOwnEY/iLOmyOnNyDiea5Mod\nuwCYL5aZTucZm8kxPp1jdGKO2VyJ6qSKmbkCM3MFjp6uaZmw3u6kyfYoXcm2hY8oBbYOp3FjnfSn\n2on6tAp0dfX47qopIo2n7pBgjBkCPgvsB2aBb1hrP7jCub8DvAfYDjwFvN9ae3Dt5TavEyMz/PSw\nNxbhdTftoD+VCLgiaWSO49DXHWevz1/dY2NjjE+nSbav7r93WyzCYG+SwUrL1czUBLeabaSLcYbH\n5hiZyCx8jE1lqW04yOZLZPMlRmvWdDh0PA0cJ+I49KfaGexJLIQIx53n/GSGnnSURHuUrkQbnck2\n2mLqYhBpRGtpSXgAeAz4l8A24FvGmBFr7adrTzLGvAn4CHA38DTwPuCbxpirrbXZ9ZXdXH52YoLP\n/tUzuHi/sO+5fXfQJUmD8/r2x32PTUyM49bRBeD32OnZSfr7B+jf1c4Nu9oBbyru6NgYjz+fIdLe\nRb7oMjGdYTYzz2xmnnR2nvmaPpCy6zI2nWNs2m9RqLkLvkvEo3QlIpyfKXPVzhxXDnRy5WAn3R1t\ny1pCLlZ3I453qK3Lb8CnxmFII6srJBhjbgVuBO6w1qaBtDHmk3gB4NNLTn8X8OfW2gOV+36ict6b\ngL9Yb+HNoFx2efjJYb72d0cplV0ijsM77jb0drUHXZo0uKVjFmqNDJ+kq2eAHgY27LF3be2io6Od\nTCZ/wZiEsbExrtnZR5EEY9M5RqezTEznmMsVSWfnmc3kyeRKLI0wuUKJXKHE2OFxHjm8GH66km1c\nOdDBFYOdpDriJNtjtMejlMsupVKZ+VLZu2++xNTsHCfPTYETo1hyFz7KLuCW6Ui0EYtFiTgOkYhD\nIh6ls9KS0ZmILXzd3dFGqjNOT0ecVGecrmTbRaecrsR1XfLzJc6cHeWhx47R1t6JE3FItMcoFIpE\nHSjk07zx9n1s27ql7scX2Qz1tiTcDJywttIh6TkIGGNMp7W29s+DW4D/Uf3GWusaYw4Br6TFQ8Lx\n4Rl++NQwTxwdZSYzD3h9u++592W8dI/6amV1/MYsAMzOTAb22PFYhJ2DHSsOPhwbG+NHTw+T7Ool\nky8yly2SzhaYmZtnfCpNoQhTc/ML56ez8xw9PX3heIhLmve9NZ+eX/HYxTiOt2ZJT1c7PZXQEI04\nRCMRyq5bCTjFhaCTLxS9bphCkQsXy5zyffyHjzxNsj3mBZVkG6mOOKnO6uc4qY44nck2EvEo7W1e\nN02iLUp7PEosGsFxIOI4q25xaWRltxL+ii7FcplisYwLTGWLjI6lyeSK5ArzjE/OUCiWKcyXl30u\nuy6dHUnaYhFi0eqH4127uHfdEvFY5bN3LavfRyPOQoiMRFiYgl4quxRLZeKx6JoCY5jVGxIGgKW/\nJarte4Nc2Ia40rl1DV2ONtm+BWNTWT7+1ccv+OtrS2+SD/yLm9i5ZX0LJ1Wvldd0uXzoezTikMvO\nkV7hF302M0s0Gvc9frFj6z0e9GPH2gpMTY6TzxeX7bzYyHUHWdfszBSFfGzZNctmZpiZaScW8/9F\nOjMzQS47SzQaIQb0tHsfO3rbmOuJ8Mp9W+jo6uXcZJ5zk7nFj6k82XyJ3HyJ6tM5QDTqVN4wI8Qi\nLvlCkfZ4G21Rh1jlIxJxSM9OUyyWaE8kcV1wgWIZiiWYL7nk8iVKrkPJXf77xnUhnS2SzhY5Mzq3\n7PjlUF3Pwr9rZvUijjdeZTE4XPo+l1r1213W7rOK+6yit2vZ47qwjl6yJfwD2Xr1dbfzH/71baFo\n7b1c751OPevCG2M+BNxrrb2t5rargaPAVdbaF2tuz1fO/VbNbfcDRWvtb1yO4kVERGTj1Bs1RmFZ\nR+cAXjAfXeW55+t8ThEREQlAvSHhADBkjKntrLwNOGytXbp82wG8cQkAGGMieGMafrKWQkVERGRz\n1RUSrLWH8KY/3meM6TbG7AM+gLduAsaYI8aY2yunfw54hzHmVcaYJPBhIAf8zWWrXkRERDbMWkY2\nvBnYAYwADwFfstZ+vnJsL9AFYK39DvAhvJkM48AbgF+01ubXW7SIiIhsvLoGLoqIiEjraK75hSIi\nInLZKCSIiIiIL4UEERER8aWQICIiIr4UEkRERMSXQoKIiIj4qneDp01XWd3xU8BdePU+DLzPWns6\n0MIajDFmCG9Rq/3ALPANa+0Hg62q8VWu26eBn8fbIvDbeK+vmYveUQAwxnwK73rpD45VMMb8AfBe\noBv4MfBvave8kQsZY14O/DHear1Z4HvAB6y1Y4EW1mCMMXcDXwYesta+dcmxO4CPA/uAk8DHrbVf\nX+1jh+E/9peALcD1eIs1xYE/C7KgBvUAcArYA9wJ3GuMeX+gFYXDX+PtTroLbxnxlwL/OdCKQqLy\nC/zt4LNNoCxjjHkv8Fa8QHoFcBhvxVrxYYyJ4q3Q+wjee8BLga3AZ4Ksq9EYY/4d3h86R32ObQf+\nF94fkFuA9wNfNMbcvNrHb/iWBLw3vs9YaycBjDGfB/4y2JIaizHmVuBG4A5rbRpIG2M+CbwP78Uj\nPowxPXjLjH/IWpsFssaYLwP/NtjKGp8xxsFbev2PgT8KuJyw+F3gd621xyrfK8Rf3BWVj69aa4vA\npDHmAeD3gi2r4WTx9lD6r8DSPazfBlhr7Zcr33/PGPMg8JvAe1bz4A0fEqy1711y0xBwNohaGtjN\nwIklTeQHAWOM6bTWzgVUV0Oz1k7j/WepNQScCaCcsPktvF9OX0ch4ZKMMVcCLwEGjDE/A7YB3wfe\nrabzFZ0BngDeZYz5v4BO4FfxWv+kwlr7JwDGGL/Dt+C9F9Q6CLxltY8fhu6GBcaYPcAfAv8x4FIa\nzQAwueS2icrnwU2uJbQqLTK/jd70LsoYsw34KPDugEsJk52Vz28G7sBr+dsJ/PfAKmpw1loX73r9\nc2AG74/DKPDvg6wrZFZ6b1j1+0LgLQnGmLcB93Nhv6ZT+f43rLVfqZy3D/gO8OfW2i9tdp0h4ARd\nQJgZY14DPAj8H9ba7wddT4P7Y+BPrbXWGLM76GJCovr/8/+21p4DMMZ8BPiWMSZurS0EV1pjMsbE\n8VoNvgF8DG/zwM/htV79aoClhc263hsCDwnW2q8BX7vYOcaY2/AGsHzCWvufNqWwcBnFS4y1BvCC\n1ujmlxMuxpg34QXV91Zej7ICY8wbgNuBf1O5SeF0dUYqn6drbjuBd/22ApqttdwbgD3W2mrLQboS\nrA4ZY3qttVMB1hYWK703nF/tAzR8d4MxZi/wTbwBPwoI/g4AQ5XpolW3AYettZmAagoFY8zteDNo\nflUBYVXehvemdtIYMwo8DjjGmPPGmFX3c7ag03hN5i+vue0leNNuhwOpqPFFgYgxpvZ9KoFm09Tj\nAN64hFqvBH6y2gcIvCVhFT4D/Hdr7f1BF9KorLWHjDGPAfcZY34P2IE3teoTwVbW2CpTrL4I/L61\n9ntB1xMSHwA+XPP9Lrz5/jexvO9TKqy1JWPMnwJ/YIz5Id5aJv8ncL+1thxsdQ3rESAN/AdjzMeA\nDrzxCD9QK8KqfQ34qDHmnZWv3wC8EXjVah/Acd3GDWXGmJ3Ai0C1v85lcbzCXdbafwyqtkZTGT39\nReCf4DVpfs5aqwGeF2GM+TngB0CexddV9bOx1p4KsLxQqIxJOG6tjQZdS6Or9LH/Md5aCTHgfwL/\nVq19KzPGvALvmt2E9//0H/BalUcudr9WYozJ4v3OaqvcVARca21H5fjPAf8NbzGlE8AHrbX/a7WP\n39AhQURERILT8GMSREREJBgKCSIiIuJLIUFERER8KSSIiIiIL4UEERER8aWQICIiIr4UEkRERMSX\nQoKIiIj4UkgQERERXwoJIiIi4kshQURERHz9/xWuKyb4tHVpAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbd65f799b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "sns.distplot(M.trace('late_mean')[:])" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Plotting switchpoint\n", "Plotting early_mean\n", "Plotting late_mean\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAIDCAYAAADPBGVNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXmcHFW1+L+9zD6ZZLKRQICwSCWyb/JDdgKyCIgooCyC\n+ESf+BQF5AH6AgoCyq5ssoclEIISBAKGLYQA2ZPJWiH7nklmn56lt/r90bNU91R1V3VX7+frJ9Ld\ndevec2/dqjmnzrnnujRNQxAEQRAEQRAEodhxZ1sAQRAEQRAEQRCEXECMI0EQBEEQBEEQBMQ4EgRB\nEARBEARBAMQ4EgRBEARBEARBAMQ4EgRBEARBEARBAMQ4EgRBEARBEARBAMQ4EgRBEARBEARBAMQ4\nEgRBEARBEARBAMQ4EgRBEARBEARBAMQ4EgRBEARBEARBAMBr9wRFUc4CXgA+UlX1sphjpwB3AwcD\nu4FnVVW9S3f8V8AvgFFAHXC9qqoLkxdfEARBEORvkyAIguAMtjxHiqLcBDwErDY4tjfwNvAcMBT4\nAXCjoiiX9Rw/H5gIXAHs0VP2bUVRKlLpgCAIglDcyN8mQRAEwSnshtV1At8A1hoc2wN4SlXVp1RV\nDamqOg/4ADi55/i1wHOqqs5XVbUb+CugAecnJ7ogCIIgAPK3SRAEQXAIW8aRqqp/V1W1zeTYfFVV\nfxvz897Alp7PRwMLdeU1YDFwrB0ZBEEQBEGP/G0SBEEQnCJtCRkURfkfYH/giZ6fhgFNMcUageHp\nkkEQBEEQ9MjfJkEQBCEethMyWEFRlF8CdwDnqqq6W3fIlUq9mqZpLldKVQiCIAjJkfcPX/nbJBQT\n48ePZ9WqVYwbN46VK1dmWxxBSBeOP3wdN44URbkTuBo4VVXVOt2hXUTe0OkZBiy1WrfL5aK1tZNQ\nKJyynE7i8bipqakQ2WySy7JBbssnsiWHyJYcvbLlM8X4t8lJcnl+Ok2h9LWlpbXvv01NPsMyhdJX\nKxRLX4uln5C+v02OGkeKovyWSCag/6eq6paYw/OJxHa/2FPWDRwFPG2njVAoTDCYmxdbZEuOXJYN\ncls+kS05RLbiotj/NjlJsfQTCquvifpRSH1NRLH0tVj6mQ4cM44URdkfuB3jPz4AjwOTFUWZTGQf\niZuALuAdp2QQBEEQBD258LfphRf+gc/XTlVVNVddda1T1QqCIGScYnie2TKOFEXpJJLitKTn+3cB\nTVXVSuAyoBKYryhK7ykuYIOqquNVVX1fUZRbgCnACGAekbjvbkd6IgiCIBQluf636fjjTyIYDOL1\npmWZryAIQsYohueZrZ6pqmoa2Keq6p3AnQnOfxJ40k6bgiAIghCPXP/bdNBB49NVtSAIQkYphudZ\n2lJ5C4IgCIIgCIIg5BNiHAmCIAiCIAiCIJCmfY4EQRAEQYiwfHkdgUCAkpISDj74sGyLIwiCkDTF\n8DwT40gQBEEQ0siSJQvw+XxUVVUVrDIhCEJxUAzPMzGOBEEQBCGNXHbZj7MtgiAIgiMUw/NM1hwJ\ngiAIgiAIgiAgxpEgCIIgCIIgCAIgxpEgCIIgCIIgCAIga44EQRAEIa28/vrLdHT4qKys4uKLL8+2\nOIIgCElTDM8zMY4EQRAEIY187Wvj8Pu7KS0ty7YogiAIKVEMzzMxjgQhCTRNY9POdkYMKaeyvMSw\nTHcgxKadbbhwMXb0ILye3Ipi1TSN9dvbGD2skoqy9D4Ktjf4KC/1Ujuo/2G6q7kTgBFDKtLadrbY\n2dSBx+1i+ODU+9fq89Pa4WfMiGpb523Z1U5NZSk1VaUDjm3b7aOy3MuQ6sL9A5crHHHE0dkWQRAE\nwRGK4XkmxpEgJMHclfU8+dZyaipLeOhXJxmWue/VRazd2grAMeNG8osLD8mkiAmZVbed56evYsyI\nav74k2+krZ3N9e1MfHYuAI/99mTKS700tXVz8xNfAHD/dSdEGU2FQH1zJ7c8+SUAj/z6JKorjA1o\nKwRDYa7/22cA/O/lR3HQ3kMsnaduauLeVxbhcsGTN54aZZxv3NHGHc/PA+DxG06hrMSTtHyCIAiC\nUEjk1qtsC3T5g/xn7iY27mhLua7G1i6mf7mRxtYuByQTIKLIfbhgC6s2NiVdR0dXgPfmbGJLfbuD\nkhmzfnsr/5m7iW5/yNZ5L89YDUBrR8C0TK9hBDB/VT0A4bDGxwu3sGJDI60dfqbP2cjOxg6Dc1uY\nMW8zgaA9uezw/PRVQMS7kE5mzN/c93nD9sh9O2/lzr7fFq7eFVV+3bZW/jNvM90B5/o+d+VO5qzY\nmbigQ3y6eFvf5xUbGlOqS/98+vfnGyyfN+2z9QBoGjS3d0cde2/upr7P6b7+giAIgpBP5J3naPIH\nX/Hxwq0APPu/p6dU190vLaChtZuZi7dxz8+Pd0K8oufjhVuZ/OFXADxxwymUJvFG+oX3VOatqmfK\nx6lf40T86YX5AOxq6eLyMw9Ka1sAny7Zxov/iRhW++4xiI0725j68VqeiennXS8uAKDF5+f7px6Q\nFllKvG4CwTAQMWozGvbncvV91DQt6tCdkyLXpLG1ix9M+FrKTa3f3soT05YDMGpYJcfUVqVcZyK6\n/MG+z+Wl2X/MunXjHYsL82OCM2zYsI5gMIjX62Xs2P2zLY4gCELSFMPzLPt/tW3Saxg5QUNr5G1q\nfc/ah3Qwfc5GNu5o46qzx/Wt69je4GPis/MIhsLc/uNj2WePQZbre+uz9exo7KC8zMsni7Zy4Yn7\nccGJ+6VLfNvMXdX/dr7TH6K0xMPabS28PXsDZx+3D8o+tabnNrR08coHq1n01e5MiBrFJ4u2RhlH\n67e38u/PN3DJGQpjhjm3JmaBWt/3eePOiBdFMysMfFa3LW3GUWWZl5agHwBfZ4DBurUn81bVM6tu\nG13dIb4+tpYLT3L2AahXx836P3PxNkeMozVbW6I+H3PIninXmYjO7n6vV3mpgyFrmvlsCYXDvDBd\nZVBVCRefeiDhcH/ZDxZsYXdLF1d86yCmfrI2o140AWbO/ACfr52qqmrGjr022+IIgiAkTTE8z/LO\nOEonmqbhivOG1cr5+jraOwO8/vFaAAZXlfHDMyKK3v2vLSYYiryxv3PSfP5x02mW2m9s7eLNnlCZ\nXt78bD0nHb5nzqzZcBt4BO6aFPGCLFnbENcT9MS0Zazd1mp63ElivRWxw97rUVr81W4m/f4Mx9p1\nu+N7Z2LnQDzDKVUqy720+CLGUXuMcfT4m8v6Pq/Z2sI3xu/BnsP7PS527hXDUhasI83gQKr3qGE7\nsWPeMzdSaUfvOSotyYxHbubibXy2dDsAx44bSVh37L05kTC63vBOPQ4Pp2DAD394NZGJLoMtCEJ+\nUwzPs7xbc5Qulm9o5CcTX+bH1/43AI2NDXzxxey45zz77D946KG/ApG1JHdNWsAt//iSzu6IYuTX\nrZnYXN+/RqqxtT/+PxiKKGKLV6znrAsu6lvLYkR3IISvXiXYFb3eqssfxO/3M2PGe1a6mlb0CqX+\nzbUVMmUYdXQFueUfX/KTez/W/ZqZm9zjNm+nrcPPzU98wf2vLsqILJXl/e9G2jvN105BRLZe3vli\nA796eBbL1jXYbjNZY0/TNB56fQm/e/zzPoPOCdRNTfzq4Vn869N1AHT7Q/z+6TncOWk+oXA4wdnm\ndNlcw+YEOxr61641t/vTa1kLtigtLaW0tIzS0oFZAwVBEPKJYnieiXHUw/2vLobKPXHtfzEACxbM\n48svjY2jnU0dfQZQL0vX7Gb15mbqmzqZPmfTgHPiRMMA8NIn2xhzwv/w4YItpmX8gTBN62cR7GoZ\ncGz16lXMmPF+/EYygF73T9RnOwRDYbbsah/g8UmG6XM2Ut8UHUoZx2YxJFk5PB7zht78bD27W7pY\nvqE/mYXdZgLBMFstjpM+Q1mi5Ad6Q/eNmevwdQV5YMoSSzIZeSashNXpD9Q3dVK3toGG1m5e/3iN\npXYNZYn5fu8ri/B1BfsSHXy0aAvbGzpYv72NxV/ZN/560XuOUp6yVl07McWcuFcEQRAEodgoyLC6\n+vqd/PGPf6C5uZlQKMhFF13C2LH78cork3jwwUcBuPLKS2gtPYhhXzudkL+DDTPvY/SRl1O/fBob\nfrAfDz98H+GwRjisccMNN/P880/z7rv/JqS5CNcewX6HncEhldDR0cHNN9/A8hUr6WAwex7zI7q6\ng5x00rH89Ge/ZsPMVwkHOqmdcDVwFN3dXexY8jqdjRtwudwM2utI4HR21+9k7cf38bVz7uTZZ/9B\ne3sbW7ZsZv36dey9977ce+8DTJ0yiY7da9nue4mRh36PqhGRMD2fr53bbvsdnZ2d3HLLDVxyyWU8\n99xTVFVVsddee3HHHRN54olH+fDDGYRCIY444ihuvXUiAFu2bObOOyfS0tLM8OEjuO22Oxg1ahRf\nfbWaBx64h6amJgYPHsIdd9zNqFGjEo69UXiSEzzyRh3L1jVy+ZkHMeHoMSnV1RFj2AIZ8w7H8xx1\ndBnIZZMHpyxm1aZmrj5nHCcfHn9tjf7yJLpUyftQjBuNClkzaVz/a1BnnPkSeLniVpQA/UuPQCh5\n749+zVG2sNptCasTBEEQhH4K0nP0+uuvcuyxx/HSS1N46qlJ1NUt5utfP5g1ayJZ1FpbW6moqKSr\naSMAnU0bqRi6f5+CPHbsflx00SVMmHAWx0y4gvc/nsXHH3/Iyy9PRZnwW5rWz2bntk1s3e1jwYJ5\n3HzzbTzwxGRC3W346lf1KSXNTY2MPeW37HH4xdTNfBGAV199mXCgi/1Ou4m9T7iO1i3zWbx4IRCt\nMH7yyUfccsv/8dprb9LU1MDnn3/Gt877Ad7yGkYffWWfYQRQVVXNz3/+S4488ijuvvt+AFasWMZV\nV/0X119/I3V1dcyY8T6TJr3Gyy9PZdmyOj77bCYA9957JxdddAmTJ/+TU045jb///QE0TeP3v/8d\nl1xyGa+++i++971LuPPO/7M09nrdP+ygcbRsXSQdsj7sMBzWmL10O2u3DvSkmbGzqYNPFg1M6uH0\nOhYz3HZdVDZZtakZiKTpTpRO3ZbxqsHSdQ0sUHfFLbZ0XQPzBqxrSa7PevGiPJJJ1ZZMm/Hl/mpL\nM18s22E4z3vXFMbW6RTLNzRGjXMwFI5KH45m/fpKtrr08+67b/LGG5N59903sy2KIAhCShTD86wg\njaPa2lrmzPmCZcuWUlVVxZ/+dA9VVdWMGTOGjRs3sGxZHcceexzB7sjana6mjVQOG5iNa922Vl54\nT+Xvz0/jm988kZKSErwl5Yw99UbKakYxf1U9475+OEOHDsXj8VA6aBTBzn5F/dQJZwNQNeIgAv4O\ndu2qZ+7cLxm873EAeErKGTT6UObNmzNAfzzqqGOorR2K2+1m//0PZOfOHbq9eBIrPYMHD2HcuPEA\nHHbYYUyZ8i9KSkooKSlh3Livs23bVrq6uqirW8xpp00A4KKLLmHixLvYuHED3d3dnHZaJBHBmWee\nzerVKh0dvoTtRnuOEhZPiVl123jmnZXc9eKCqPVd8bjlyS8N5UpFPbRjZHjiKNxOh0H9ZfKiqLVC\nA9vTfU5Q17YGHw9OWcKj/1pqWmZnYwcPTlnC36bWsWK9cUhabzuuFIyddM4rvaETz2Du7A5y90sL\neertFXy5fEfcOo0SS6TC7pZO7n91MY+/uaxvD6Uvlu/AH4z270lUXe4wZEgtQ4cOY8gQ82yddrn3\n3ru4667bbZ/37LP/4Gc/+7Fjcuh5//13ufji7zhS15//fAe3336b6fHTTz+B+fPnOtKWIAjWScfz\nLNcoyLC6Sy+9nBXrd/O/t92GBz8/+tE1fO97l3DEEUezfPlSNm/exGGHHUHpjAX42+vpbNrIyEMu\nJOSP3gxx4842Ro6AcKCT6upqNE1jy6523J7+3e794f4hdLncQLhP2xs0qD9Ft7e0gra2Vpqbm/Ds\n3Z8a2l1SQUtLC7BH328L1Hr21qWP9ng8hMMhW5tiVldX933u7OzknnvuYvHihbjdbhoaGjjoIIX2\n9na8Xi8lJZH+uN1u3G437e1ttLa2cMUVkfVXmqZRUVFBU1MTlZXx94iJSsiQZu1s9rJ+pbSjO2i6\np9LOpg7enLWeEw41DwtMxXFkJ2dLuj1HsTS0djGo0njRpB1jbJ2FZBnrtveXWaTuYvRxewMW1hxZ\nECMqC2IqxkaC4TfzVsWi31R17sp6vnnI6DiVWhNt3bYWPnp7JacftRf7jKw2LKMBm3WbI9etbeDr\nY4eyfXdHTDlNjKMc4pvfPMXxOm++ud9wCIfDvP76ZC699HJL56bLU37WWedy1lnnWiprV+ZYPvoo\nfsKkXhYunE9VVTWKMi6pdgRBiCYdz7NcoyCNo4bWbrZ5jmDk8UdwiuLh2af/yHHHHc/hhx/JrFmf\nsGnTRn74wyspr92Hzsb1BDubKBu0Bx0NxjvFe0qraGlp7gtZCnZHG0hmtLf1Z5ULdndSUzOY2tqh\n7PL3KzIhfwe1tXuBzimzZZeP1taBhpAd40jP888/T2NjA5MmvUZJSQkTJ94CwODBgwkGg3R1dVFe\nXk4wGGT37t19bwReeul1222lKyFDKtw3eTENrV1x93ZJKbTIhnUUb82RYdUpDmKJ13yPnSg/Q4Jm\nHF/cb6KcRbej+5yheRXdfipp/XWfLZ5z+7PzAPh08da4Ke+NXkDow/j6ZbAYVidRdXnP6tWreOWV\nSUkbGtkgUzK/+urLfPObJ4pxJAiCZfI6rG7uSmNl95GH/0LH7sj6oi7XEAYNGozL5eKwww5n5crl\n+Hzt1NTUUD5kH1o2zaVs8MAF/gu/aiQUiGQ0qxo5jlmzZrK1vplwyM/mzx/D70ucyeqzWR8B4Ktf\nRWlFNcOHj+D440+gZfNcNE0jFOikfftS6kN7EQpFKzJNbd0D6usOhHC5PYQDAzet9Xi8+Hz9FpY/\nEOamx2bzz5lraWpqYt99x1JSUsLatWtYurSOTxdt5PbnF3DY4Ufx/vvvAvDOO2/x8MP3seeee1Fd\nXc2cOV8AsHnzJu65509R7S1Zs5vf/v0zZi6OXr+TSc+RVRpauxKWyZSC6Emwz5HTeONkx7Nj8Fgp\n+tpH/VnkzLw7fWF1Ub9pA47HthnVizTOK6ueIws1GX50AiOvW9AgbX5u3H2CEU1Njdx66018+9sT\nOPvsU/nNb65j27atvP32NH7ykyv7ys2fP5eTTjq271kMcN11P+WNN17rCztbuXI5P//5NTQ1NTFh\nwgksWhTZV27y5Jf4/vfP5+yzT+WGG37Fjh3bo2R48803uPDCczjzzJN49NGH+36/+OILmDLlFX7z\nm+uYMOEEfvjDi1i2rK7veH19PbfccgPnnXcGZ599GhMn3kpbz4vA6dPf5jvfOQuAHTu2c9JJxzJv\n3hyuueZyzjzzJP77v69hx44dpjIb8cwzT/aM02lMmfJK3+8nnXQsc+d+CcDnn3/GVVf9kDPPPJkL\nLzyHxx//G5qm8b//+1u++OIzHn74Pq6//he2r5MgCMWJbU1NUZSzFEXZoSjKKwbHTlcUZY6iKC2K\noixVFOWymOO/UhRllaIozYqifKooylGpCP/EtOWGv59y+rfZtXI6Gz65j38//39ccMF3qRg0nMrK\nKjweL1/7mgJA+eA96W7dQeWwA6LOb+3w06iNxle/ii1znqFi6FjOP/9CHvrjL9j46cMM3uc4ygf3\nZgLTqSo9H3uVvZKSUjbMfIAdS6Zy2ClXEgyFOf1bF+L2VrBx5v1s/vwxhux3Il81VlrqbyAYpnrU\nIWyb/yItm+dHHTvssMPZsmUzV1xxMS6Xi10tnTS0dvPmrPVceumlzJ49iyuuuJipU1/jsit/xrK5\n77NWXcL4E69g+vS3+cEPLmLGjPf49a9vAOD22//M888/zRVXXMzEibcwYcKZUe09PLWO5nY/L7yn\nRv2uDxvrDoQMjbx0kKptYzXMZFdzZ2S/KV1mOTthXk6G1QWCYRpa4ht+sXtNaZpGfXNnz4bFut8T\n9MFKD1tN9h9K2GMTZ1F0Jf217G7pSmkPonhErTmyca3qmzvZ3dzZN97RXUrNTImVwhWzYCsQDLGr\nOeaFiY2EDEL6qa/fyY4d26ivj7zQe+qpxxk8eDDTpr3PtGnvsddeY3jssYc56qhjWLduDd3dkft6\nyZJF7LvvWOrqFgMQCARYtWoFxxxzXF/d48cfzM03/57a2qF8+OFsjjzyaD799BMmT36Rv/zlQd5+\n+wNGjtyDP/7xD33nbN68kba2NqZO/Td//OM9vPrqS3z1Vf+z/LXXXuHaa3/Be+99wsknn8Ytt9xI\nuOee+93vfsOgQTVMnfo2kyf/k4aG3dx33591vY2esVOnvsp99z3CP//5Lp2dXbzyyguGMhuxYME8\nxozZm2nT3ufnP7+Oxx57hObm5qgywWCQiRNv5de/voEZMz7l0UefYubMj5g9+1PuuecBRo0azW9+\n8zseeugxm1dNEAQjYp9nhYitsDpFUW4CrgEG7FSqKMooYBrwS2AycBLwlqIoq1RVXagoyvnAROAs\nYCnwa+BtRVEOUFV1oCskBfYZeyD7nvQrAE48dDQbGju48bHPuekHR/DUUy8AEaXR5fbytXPv6juv\nctgBjD3lt7hdLsqH7M2BZ93ed+yyy37EmIPP4Pnpq/p+G3bQmZx/TsRV73LBqMMviZLjW2efz+f1\nYwEYPmYID7++hOUbmhh1+PcHyFxSWcuBZ/+pr149vWm3p322nhHjz2XE+IEx3aNGjebNN6f3j8FJ\nv+n7fMABB/Daa/8k2LNge+OONg5Ue9Y0lNTwxBPPDqhv//0P4PHHnxnweyL0ettdk8zfBjqCg7qf\nFdvo0yXboq5/nxg25LAbVheP2x6fzcoNjdz0gyMYP3aoYZlY2d6fu5kpH6/hjKPH2MxWZ3OwzYob\nuI7MDIkoL46uzM6mTh6eWsdvLzkiJVEMy5p5q+JQt7aBurWRN/tHHzSC6y461LROJ9DP1TAaf3ph\nPlt2RSdL0RDPUS4xffo0fL52qqqqueqqa2lvb2fw4CF4vV68Xi833nhLX9nhw0eyYsVyjjzyaJYs\nWcQFF3yXWbMi2UVXrFhGTc1g9t13bIL2/s0ZZ3yL/fc/EICf/ew6Fi/ufx57vSVceeXVABx//AlU\nVVWxadPGvheHJ554MuPHHwzAlVf+mMmTX2T58qWMHDmU1atV/vrXRygvL6e8vJzLL7+K2267iWDQ\neCuC7373YoYOHQbAN77x/1DVlZbHbfToPfvWME2YcBb3338vW7duYciQIX1l/H4/fn835eXlAOy1\n1xheffVfUfXIiwJBcI7Y51khYtdz1Al8A1hrcOxyQFVV9QVVVf2qqn4IvAX8V8/xa4HnVFWdr6pq\nN/BXIn+/z09OdHP0L8tdLljTk+r5ybf6PU1GMfq9GD1IP5i/Oe45Ueeb/K7f3DMZnHrAR73Jdjie\nzOmFvpb3/kmxXStnGxlGdom3Cazdy7uyJ1PZE28Ze1BhYGjjlJ4NVD9YsCXqPgmHYd6q+qjF/lGy\nmdTf3hlg9tLtcbPiGV2b6NAwY4PI9AT6U7vbJeHasqhbw/6cWrA6kurcyrXs7A4ye+n2qOQOVtBL\n5feHBhhGve1bnU+ZSmNfzFxwwff5wQ9+xAUXRF6MXXbZj5g16xMuvvg73Hff3Sxc2B8JcOSRR7Fs\nWR3BYJA1a77ivPMuZN26NQSDQerqFnP00ccmbG/r1i2MHr1X3/chQ4Zw6qkT+r6PGhWdQKSsrAy/\nv/8e3mefffs+V1dXU1VVza5du9myZQuDBtVQW9ufpWrMmL171qsap/kfPbp/v7Xy8nK6u63Pd/25\nZWVlAAQC0c+ayspKrr76v/jlL6/luut+yvPPP13Qb7QFIdvEPs8KEVvGkaqqf1dVtc3k8NHAwpjf\nFgLHGh1XVVUDFuuOO4Ze2YpeA9NfJhgy1xxiQ5EAXvngK/49e4PpObFK1wCFI0PrJOyWd1otcjoZ\n2z/+ba74O5kiORUF0c74J9o7x3qb/Y321mm0xiuubLpjs5du5/E3lzHx2bkmi/uNq3jkjTqeeWcl\nD7y2xJLciTAL9UstYYb1CxSOGldHqjR9qfHMOysjqegnzTc8bkZUuvwk2h1Qn63WhWSorR3K0KHD\nqa2NeHjHjRvP1Kn/5vrrb0TTNG699SYeeyyy7ufoo49l6dI6Vq5czn777U9lZSVjx+7PqlUrWbJk\nkSXjyOVyo2nmL/MSPe9Codi08BouF1EGlEGtSbUVD6vn/vjHP2XKlLc444yzWLJkEVdccQmrVq1I\nul1BEMyJfZ4VIk6uDh8GxLpGGoHhFo87hl4liM6e1n8kGGfNQsjAOAJoMVlTYcSnn86lunpQ4oI2\nMBErJY+S0y+NE/0xm/LxGkPj04y6tYkTX0D0n+Wl6xqY9N4qWuy8kXdg8f37czfxxsy1cRNR2M9W\nZ/x79H48Pb8ZjGu8sdbPm8Vrdvd99gesZz5bsyXild240+ydiTHm88Q4kUGmnBtmL1ZSqceMhT1e\npoZW6/NU02L2iIrTjEQS5S6tra14vV5OOOEkbrrpVu65536mTfsnENnjbvnyOhYvXshhh0VCRw8+\n+FDq6haxfPkyjj32uHhVA7DnnnuxadPGvu/Nzc28+upLhELWMp5u27YlStaODh8jR+7B3nvvTVtb\nK01N/X/KN25cT2lpKSNGjBhQT6a8kq2trQwfPpzvfvf7PPjgo5x66um89967GWlbEITCw+nUWYme\nhI4/Kb1e94B/+rfzbk9/FzWtv7xTUrrdLjye6PpcLhderzvq92T+SAzsl4kMnoFjEItHV0afFMDt\ndhmOYaJ/ZnImUv7fm7OJz5ZujxqfXtnijYNRe/ox9Xj6+/HglCV8sngbT729MvG17h0Hl8u0f4nk\n83jcbGvw8dpHa3jni43MW1lvWN7rdVNSYlxPpD8GB1zGc1xfuPcaug1C9lxu836Z6c5Gstudvxr9\n46afEr2y6ueJSzf2sfeS2e/6Y4n+6celd+4bXdPYOWXnHoitR4/ZPRbvHLOyLpcLb9RzxVgGt8dl\n2a9qZQz7rAgBAAAgAElEQVSNxl9Inv/+72t46aXn8fv9BINBli9fyl57RfYFGzFiJDU1g3nvvXc4\n/PAjATj00MOYPv1thg4dyvDhA42Q0tIyfL52du/eTXd3N9/+9gV88MF/WLlyOX6/n+ee+weffPIR\nHo95an89s2fP4quvVLq7u3nppecYOnQYX//6wRx66KGMHbsfTzzxN7q6uti1q54XXniWM88827Du\neC8JYmVOlmXLlnL55d/v8xQ1NTWyefMm9t47Mp5lZWVs3boFn884ZFgQBCEWJ/c52kXEO6RnGFCf\n4PjSVBqtrY3elPRvUxbznzn9b8wqyvv3I9J05QNatFbhdrv63rJXVpVbbr+ysoyamgrY3v/mvKzM\nS21tFQGdleU12aA0HrF9Kys33lvpD099ybnf3I+fXXSYaV01Nf2bylbr3lSXlZYMaCeWWYu38vJ7\nK7nmgkP4xtcHbqSqP7/cREY92xo7o87Ry2ZErHy93/VK4uAhldQOir5uKzY0JuxbLx63y7RsIvkG\nD6lk467+vau2N3ca1lVbW0V1VZlhHbW1VZSUDrwdXS5juTq6An2fvV4PtbVVdHYPXJ81aFC5ab/M\nMucNHjIwe6I3zn5JZvSOm37eVvfIU6Ubh/KK/jnY5df1wRUZl0VqPXc+N3dA/fGu7ewl23hx+gp+\nfN7BVFT0t9X7PDC6prHXoKbGfOza/eae59raqigjqzrmGrzwzgrmx2xDYDbHAfy6Z1VJiTtKdrPn\nSnVVmeXMiDWDKyzfJ0JyfPLJDLq7uygrK+fUU8/kj3+8h/vvv4dJk57D6/UybtzXmTjxzr7yRx11\nDO+88xaHHhp5ph9yyOFs3LiBiy662LD+Y445llGj9uTSS7/Dbbfdwemnn8G11/6CW265ka6uTg45\n5DBuv/3PhudGcEXN2W9/+wIee+wR6uoWM2LEHvz5z3/tO/6XvzzAX/96Lxdd9G0qKio4+eTT+PnP\nf2lca5yXKkYyJ8Ll6pez97+HHHIoV1/9E/7wh1toamqgpmYwEyZ8i+9+NzJW559/IU8//QTz58/h\n2WdfTtiGIAjxiX2eFSJOGkfzgatjfjsWmKM7fjTwIoCiKG7gKODpVBptaupfjFzf1BFlGAF0d/cr\nkYFgiE1bmxhUWUpjU/SO8m5X/6aYzc3Rx+LR2dFNa2t0sr3Wti6272yhvaO/7WASG7jq+wbQ2Rkw\nLBfW4O3Z6zn/m/tSUWZ8SVtbO/viyPXyBgLBAe3E8pcXI2si/vTMHCb9fuAfMP35gUDiBArd3QGa\nmnx4PBFFTy+bEbHy9X7Xr41pae6A4MAxTtS3XsKaZlo2kXzNTR34fP0GZ1dnwLCupiZf1HyMPeb3\nDxw7zUSuLr+ur+FIGaPkFc0tHTQ1lRq22e03npPNzQPb81u4rrH0jlu3zmhra+uKyKpL4NDZ4e/r\no14mTYuMy//9o3+PFz3xru09kyIbqt753Fx+eMbX+tvqMSqNrmlTk4/Orn65fO3dpm1s2d5i2nZT\nky8q7LGttSuqnqkffZWwL/rvLS36+zVMe3t/+vZuA4MYoN3XTShoLYFMa2snTWXxjd/ee1VIjkAg\ngN/vx+2OjPMBBxzIY4+Z/+m76aZbuemmW/u+19bW8umn0S8IerOYAgwePISXXpoSdfyiiy42NKau\nueZarrkmOsPUtGnvRX2vrR3Kgw8+aijbmDF7c//9jxgeO+ec8zjnnPOASNKHWJn1bRvJrEffP4DS\n0tKo+vSfv/e9S/ne9y41rOfSSy/Pq81xBSHXiX2eFSJOGkcvA7crinJNz+cJwDlAb4D048BkRVEm\nA3XATUAX8E4qjQZ1CkBji4FrPiYJw68emsXvf3QMpSUDQ1/oSdJgpjQaEQprA5Ss2Ut3sGj1bm74\nQX+q4WQ2RA3GKDeJ9nbxB0KUmIS/hELhvvr09WrawHbsyGRUXyI0TYs6Ry+blTZ7v2u69TTPT1/F\ndd+NTqFsJq8RLlymZRPJFwiGotb2BE3KB4NhzC5hMBiO6k8vZtfHrzO2Xa5IGb+BAR4MmsveaWCM\nAYZKtZ11Yn319IyDPrQm3PObvr5QuH8+xPbBzrwwQ99WryyhUJhtu6MNkmAwTFiXqCUc1gzb+GTx\nVibF7O8VW48W9dyJP396zzH7Hoq6v7TosTMx2kPBsOVnTihk3E/BOc48c+D2C4IgCPlIMTzPbAWS\nK4rSqShKB3AFcLHuO6qq7gLOA/4HaAbuBy5XVXV5z/H3gVuAKUADEePp3J603o7QbuBZiXXrh8Ia\ndzw/b4Cyp18DYZaQIR6xwQMd3UHem7PJdj1xcWiBtV5nWrJmN8FQmPbOAPNX1dsyDI1wOludVRao\nu6hb25CUEQqpL/h36+6k+Bni7MpnXF4/R3vDp+wmZOgyudbpXMfft82Ry+DHNNGbXjuW1z9aM+A3\nvShmcyKeYdRfkc4gS1x6QIZAdZO1tP+SkEFwHslfKAhCcWPLc6Sqaty4ClVVPwOOjHP8SeBJO23a\nwddlZBwZl61vig6F0ydxSOShsUpDa1fiQjZIpOxYVYb0b/I7uoO8+8VG5qv1bNnl4xvjR/Lz7xyS\ntIxOpaq2Qmx3H3p9Cb+4MHnZk5ZDi0mvnKRWauesKOOop20joz5WFI/b1VfOzBA2Et9+uvgkxyAN\nCn1vRr1YjMYrKgtgCkqiZvrFmOkxL1LufWURf7jqGPYbXTOgrP4ei/cywHKqe7GiBB2vvz4t2yII\ngiBklYJKQWTsOTIuu3xD/yaSLqIXp4fi7IE0oP447TQ6bRyl+Ir9P3M38Z95mwf8/uZn6/s2kpy7\nsn7AcT2rNzfHPZ7tDSUfe3NZUuelatTpb6R4jken1FB9OFXcVN4xim+8TWjjkezc6+gK8PHCrQnq\nNv+Wacz2WUp3Pf/6dN2A3+avMr4X9VM1fqr2hM1aYubirbz12XpnKitSfL522tvbJGOaIAh5TzE8\nz5xcc5R1jBakm7391esUbrcrxnPkjFbR0m59XyQrpKLsrFjfyKs9YUTfOXG/pOu55+WFPPu/p5se\nt2ZkOLURqoOtpLjHqFXPkVMKa/RmpeabwCYbZhhLstW8NGO1YT3Re/Xo1vlk2Ymhl8Uxh4reULJR\nqdcsfbZ+7OI1a7GteKW2N/h4oSeM8KrzM++VLRSmTn0Fn6+dqqpqrrrq2sQnCIIg5CjF8DzLK+Po\nxkc+jXvc6A2tma4eDuvfvLuiPUc2w+qWrNnN/a8uNpDH+HOypKKsbarvt/A316fP2s+y4ygKO16s\n1DxeWlS/Z9Vt58Axg5OpxjJ6A94VZ81R7JyxEipmZFAlGyY3d4WJ98MBA1nTNMc3ak1HhFmyzwGv\niZdPP3Zmxq9mp604BWPDj4XkOOOMcwiFQpb3GRIEQchViuF5llfGkbox/iJlQz3BRHfSh8653TFr\njmyE1QGGhlE6SBSeE0+BdVsMxUkVa8pqZtwDdvTm1Eyjgf1+7t1VJmVNlFlNMzFKoLM7OCBFe9T8\n7Q2rMzh/gDc1w5dnoEy9riPdLz0/dXYHbRlhGqlft1jiruHRNLotpuQ39UDZGNtez9HAEdTVnYGw\nOiF1ejd4FQRByHeK4XmWV8ZRMpi9oQ7FhCWlmq0uEySbkEHTtCgt0qlQKyPS4TlK1mthdRNMSE1u\nTbOxZsmkK6GwxqKvdg/4vcsf4roHP+Wc4/bh4tMOjCrfS7yEDE++tZyOrgCnHTXGmnwmItq9BIkM\n8NhkdR8u2MIrM1Zz9nH7WG4jMq/tXbhExnvUWqGYTj88tY6VCV7QmNSaxDnmxpH+B7Nh1jTNkbC6\n3HwSCoIgCEL6KKiEDEaYh9X1/9n3uF3Ri5xz9ZVrQuPIzCthLRTHCdKx5shc3AQKuB3PUYpWncvi\nnWQm8YbtbXHPi81mFooJCwVzg+TF//Sv+7HkOHIgrM7sBYNZNS/PWI3GwH42tJgnNen2O783T7x+\n1q1tIGBxPyB9NeEwrNjQSGuH31aSB6934KTa2dTB2m2tluRN5jYPaxqrNjbR3O7YDguCIAiCkFcU\nvufILKxOv2YjplDu2kYJwurMfte0mAXwzskUi1UjwQ7J711kw3OUVAsRNE2z7DkyU2btrnMLR3mO\nen6zME5WxHRifiSUJUoO87I3Pf656bGn317Br75/mD3B9K0aNBvtOUq66qgezZi/mZUbm6gs8/LQ\nr060XIe398LqBGls7ebVD7/q+x4/W51Fz5Gu3Oy67Tw3fRUuFzxzs3niFcEe8+Z9gd/fTWlpGcce\ne3y2xREEQUiaYnieFbxxZKb2xnqO9Nh6S25Vq05C0QoEw7w3dxP77lHNYQcMTz6sjmhDIZ1rjjK5\nz1Ei7MiSUlhd8qf212GzEuNNYK2cmbijTiQqCCdYt6f3ZCZrhCxeMzAM0Q5GLxvMva/Whdxc305n\nd/9ar95QvI7ugdk042HkOYol3iVPZlzf6EkpnqsviPKVbdu20NHRQWVlZbZFEQRBSIlieJ4VvHFk\npgqGY5TLZDNKWSWZPVOmz9nIm7PWA/DkjacmrCGeYueyUM4J0rHPUbxwwXjYWHJEtneFtx22pjM+\nEoXV2cU4650zYXW9ZMuGTtSs2XPATu8nPjvXRmlzTNcc6YibkCGJZ046nw3FzHe+c3G2RRAEQXCE\nYnieFe2ao+iEDDEHc0Q/WLS6/814IBhOaA2YHQ7HrFtPVYm+5+WFpsfsGSTWSFZce6m8k2sDsDVf\n4nn3EvGebj1O2GD+Wgqrs9COkTfC7uoe0zVHRr9l634zaDdsFlfnkIx2+vr4m8toaou/9sc8IYP1\ntpwKJRQEQRCEQqAgjKNgKIymaQRD1lU4Lc6aIzv1ZJJERkL8kCBdWF2Kcqze3Gx6LFnPUbwxTzpb\nna2EDEk1AdjTm83XhSU+d8rHa/o+G+1zZCXLoqU1R0b12A77iz/LojbNzdLbCDuGmnMy2qvn+emr\n4p7idEIGfX25+hwUBEEQhHSS92F1i7/azWNvLjP9Q26mrIdi1hzp9YjnphvvUWNYf0bDsawnZHDp\nvsdmPE5vWJ39c9Zta+XulxaYHk9WXHsJGVLL5W1FRi3O63z7YXX9893tdFid0Zojm0q9qSw9P1vM\nx5BeEmTl0+IXdarJuGza2RZ3eBLty2QX/Sn/89AsSksK4v2ZIAiCIFgm742jR96oi3vcNJW3Tglw\nu11J722UyRj9xAkZdAV01tGOBh87mzr6DmV/E9ho/ja1jm6/+eaayYai2dnnKBXPgGbxfE2L4zmy\n2abRPkdOzUXD6WE3IYMNp0MuRXKZRdI5Zhw5U00fZuOs2ZjRUZvK6j53B0KWN70V4vPCC//A52un\nqqqaq666NtviCIIgJE0xPM/y3jhKhKWEDC4XoSTVlll1260VdEArSjZb3a/u/yTqezo3ubVij8Ta\nT50Jsngla7jYstNSGBJNs3Z+OI51lErCA1ffmqPE51kxXo3C6uxOmWyFytnBOKzObJ1R9kL/4obO\nmU4oO6m8+z/n6P7Xec/xx59EMBjE6y34P7mCIGSJWybehT/sweVyUVLiIRAIpeUFfnW5G5cLtKZm\nbvjDPbrfPdxx202Ot5cNCv9JbSGsLpUMa2u2tiR9rl3s7HPkwmVaPtuLrpeta7BV3lTeBP1obO2m\nbq21dM+pDon1t/TG2NzmaIBxb0+KBHUbDrht68iQDTtaOeJrw6NvyyzNR6Nuxktw4EyjdssnuOfj\neFXtyrxqY1NcD66QPAcdND7bIgiCUOBsbwri3lO371BJetpp0n+p6v/YWv9ZehrMAgUfUG4tlTe5\nFdtjho2wunj2XrbT9Ta0dtPeGbBcPtlNYAEeej1+2GUvKW34GS9eLqacE/vogHFCBmueo8RlEm2O\nagWz4m/N3tAria5s7tx80WuOjNcfpVS/zZoSlY43b+zcN8FQmL9MXmS5vCAIgiAUKgXvOTJN5e2Q\n58gqTihXiZRfqyExuRA609zWzZBBZZEvdjafSRupNWJF6Q1reuMgtdaj1xxBi8/P399YaljW7vQ2\nTshgj8TGXvYm4aoNjbz47gpWbWoacCxKbLPPKWDbyNTinxNv/aCdVN4dXfY2qBUEQRCEQqXgjSMz\nBiiAabaPUnfWWFhibbERK2uOwj0bx9o1HNPhlIqVV9M0xw3a3hbCmqYLU7N4rsU+r9vWGqcOu56j\n6Gx1k95bZeop0PfH0j5HBvXYTeJhp3QmHZkuF9z0t1lxZDH2FqXivUwnpnLZFLfTL8ZROlm+vI5A\nIEBJSQkHH3xYtsURBEFImuElu/G4woQ0N7sDw7MtTlooeOPojZnrDH8foOylXfdJrYEuf4gvl++M\n34KuiXj6fTjBApcuf5A7nptHZbmXW6882o6YSa29SaSw3/Do7AHnOm3LahpM/3Ijb3+xgZ+ed3BS\n5yeiud18Q0+7uncoFH3C2jiGV9RcsJKQwUCWzfXtVkXrqcR+G7lALnhVY4knkhPjqKHR1S1rjdLJ\nkiUL8Pl8VFVViXEkCEJes0fpLkrdAfzhEjGOchVPkmm4o4yjDChEqSoxM+ZvTtxG1DfXgF96SeQF\n+HDBFnY2dQJQt9Ze8oSksOsF6rGOnFyromkar3+yFkicHn6gOFbjl8wPWfVM9HrN9Ncw0bl2vWxO\npHq3c21yy1DSeY70j4ishdXFP8Hs2tu6N7TICxEhfVx22Y+zLYIgCIIjLPcVfoKZvE/I4PUk14V0\nprM2ItXWuixkkbKakCFR1/Vt+QM206hlQNNNxwL+lML0NGthcfHktmqQ9JYaMH/jtG8/TNAB48iW\nbp5T1pEO5xcdJdXXuBu9Gv8eCNq7bzslS50gCIIgAAXgOfJ6XHRbT3zWRzhqbUEmXEfpb2Lh6l3s\ns8cgIH7YWSLDUG8o5KLi2nfpHBRtzIgqtu32JSeP1XJxCto11kNRnqP4MuhtI2trjmyJkhSa6Zd0\nE38EHFrCY4rttVsJk7AYF+i0ESanIZ4jQRBS479/czOt/vKstd/ZvJl/vvxs1toXCou8N45KvHnv\n/LKEFaX2rdkbOOqgEX0GkhmJFLSoLWjshgHZKz6gvXxEw9o4JZt1bEBjrmjjKJGnx23TOnLGc2Qj\nrC7l1tJDToTVkWDNkcm8sWXsaNY804IgCGa4S2so2+P4xAXTRDj8cdbaFgqPvDeOkg2ri3rjmpE3\n5ZlRAddubYkYR3GU4ERein9/vqH/iyWlX5c9Lg/Wbzlep9X1QvHC6mzV4YrKVpfoVPueo/SH1WkZ\nvv+SQSNyP70/bzMnHTbamTptjq2maUz+4CvT460dxm7zQMheWJ3dMDzBHq+//jIdHT4qK6u4+OLL\nsy2OIAhC0oyvUilxBQloXlb6lGyLkxYcNY4URTkCuB84CugEPgSuV1W1QVGU04G7gXHAJuBuVVVf\nSbXNZI2jTCtkKeubDqauthPaY8WoSzV7nP2uOX/xUrKNLJ7vhOeot45wjOcoXt32EzLYKm6bbG9C\nbBkN7npxAQDzV9U7UqXdkMUuf4iVGwfux5QIzcY11NAGZD8UnOVrXxuH399NaWlZtkURBEFIicZA\nLR5XiJDmybYoacMx40hRFA/wDvAscBYwCHgVeExRlF8D04BfApOBk4C3FEVZparqwlTaTdZmiF1q\nnW7PTqr6oJ1u/v2fS+MmUrDjGbBUVGcdZULF6pXJ0bZSuUBW4+rikMqao0RNu/WeI0upvNPrOYqd\nf7m0ri3dkmTKMLQznzQtet8swXmOOMLelgiCIAi5yk7/yGyLkHacXLAzuuffS6qqBlVVbQL+CRwJ\nXA6oqqq+oKqqX1XVD4G3gP9KtdGdjZ3JnZgvb69tsqOxk4Wrd8UtY8tzZKFopjfI3NXcSdBm2FAi\nUulBWNPY0ZR4HsZTjO0u1Ne/6U+kcNv2HDlhHMXNzBeznifl1qxjZyjSYbRl6l6xO5+C4jkSBEEQ\nBMDZsLqtwCLgWkVR/g+oAr4HvA0cDcR6iBYCl6TaaLLKRtQ2RxnRCzLjOrLyBtiecWQhrC5qLK2G\nh/WXs6u8/+GZuYzft9bZ65ZCXW/MXJfQIIVE3hRrbRmG1RF/3O16V51wItjxHOWQ4yiaXFvbZgO7\nz0XxHAmCIAhCBMc8R6qqasD3gQuBVmA74AFuBYYBsYHzjUBObK27ZVc7u5q70tpGykuOLJazsqeN\nHVmspgnINMmsw4hHKj2wYhglasOucmonrE5vfFoxlNId+qVpWpRXJldto3mqM+uM9GTKc2QvrE4T\nz1Ga2bBhHWvWrGbDhnXZFkUQBCElBntbqPU2M9jbkm1R0oaTa45KgX8DrwF/BqqBx4CXe4rkVMbm\njKsCSTTosrlWBMDjcGpzK+26PW68Pe263dbk9HrdeJJNptEnW0qnW64rVTmttGEVj9eF1+u2pWS7\nXa6+6+OycBu6LF7DeGiaZjpubrcbt7v/WCrj4rU53+PNT6/XHTU6Xy7fmaRUybXvJHZCAj0ee/NJ\nsM/MmR/g87VTVVXN2LHXZlscQRCEpNm3fAul7gD+cAl17YOzLU5acDKsbgIwVlXVW3u+tyuKcjuw\nGJhOxHukZxjg/KtZi2TaUnMnoWDrDZ3y8hJL51RYLGeVisrShGUGD66koiwylcostl9TU0FNTQWQ\nvMLolNEC4PWaZ13plTNVKivMx7K0zNq4DRlSRVmJJ2o+ebzuuBaGx+umtrYq8tmTeKwrLVzzRGiY\nj1vN4AqqqvqzdpWWJv8Y6u2XVSriXIPa2irHXy7EMmiQM3MpEfHmcyzVg8ptlRfs88MfXk3qeT0F\nQRCyz7L2cdkWIe04aRx5ALeiKG5VVXtjhMqJ/EX4ALg6pvyxwBwH27dFpt+UhpJIIBDS7T3S3W28\nn0ksAYd3uu/wdScs09Tko6vHOOrqtCZna2snrdWl1NRUmG5kmYhkxtQMf8B83FpbOx1pq73DfCx9\nFsYZoLnJR2mJh67ufnkDgVD8UDhNo6nJB1hbb9bWbk2WuGiRcTOisdGHr70/jLW7O/k529svq3R1\n+uPWFUrzfj/NLR1prb+Xri7rY9re1oWvw3xc8gVFUc4CXgA+UlX1sphjcbeSUBTlV8AvgFFAHZEt\nKFLKpKqntDT1Fw6CIAi5QJjCf5nm5GvSz4F24A5FUSoURRlGZL3RTOBFYF9FUa5RFKVMUZRzgXOA\nJx1s3xaZjiJJZh1HVKIDizqb00aflaxwgUCYYDDyz+pah2AwnLLB4eTamHjjGwpF+pYq4TjrOqxu\n2hnoHWdd+XA4/j5HQN/1sUIwGLJULh6apple30AgxCszVvd9t5tZTU9vv2L/mRGvrWAwnPaXJsE4\nKfYdbcfGvRUMhvN+E1hFUW4CHgJWGxwbRWQriceAEcD1wFOKohzVc/x8YCJwBbAHkSRCbyuKkhk3\nnyAIgpBTOJmQoZHI/kYnAFuApUAHcJmqqruB84D/AZqJbBR7uaqqy51q3y6Z3ogy9U1grTaUYjux\n1VmoL5mUx1FrmXIg0iQT8yFeC5YNhJ5ioZhNYOORjU1g4yef0Gjt0HsYi2e9Sy6m8tawv89WDtIJ\nfANYa3As0VYS1wLPqao6X1XVbuCvRIbl/AzILQiCIOQYTobVoarqIuB0k2OfEdnzKCfItCqQp7YR\nS9bsTtxmVKOZG9kcyeTtSCN2DRL9PkeJ9NroTWAT1+2IoRi3rzGbwGZ0o6MMtmVApvpq19hxet+w\nTKOq6t8BFEUxOpxoK4mjiWxO3luXpijKYiKh31OckO/dd9+ks7OTiooKzj33QieqFARByAoHVqzD\n6woS1Lys6dw/2+KkhfSuPs5lMm4dpdbg9gZrayuc9oAsW9+YljbrmzpYuHoXobCWbX01YzjhOer1\n0oUGbNRlfr6V9O5RsqRZgw/F1O9Ea9t2+1i8ZndC2ZvbHFhPlQLrt7dmpB1b11DTooztAiTRVhJp\n32piyJBahg4dxpAhtU5VKQiCkBW6wmV0hsvpCpclLpynOOo5yieSCQVLrb3UWL7B2r4+2cjIq2/S\navuP/msZAP6QZjvsy7DhFMnIuMVpJNZgSFSFfl+kcPyqo7CSytuJCKt499cAQzDF9oKhML9/OpLb\n5afnf53jDx5lWvaNmQn2mUnzPJj0vpreBnqwG1YXLPxNYBNN/JTf0cTLnnnyyaelWn3W6e2fk1lC\nc5VC7KvZtgdO9TXpv+NOoduywoxCvK5RZKhbW7r3Mj7gsr+9Rqqk61oWrXGUd3F1OUwqhsXUj9c4\nJ0gKZMJYdmTNUQ921hxFHc1QWF28Kpz2UnT5+xNIfDB/c1zjqFiwG1ZX4J6jXcTfSsLs+FI7jTiV\n8j/XKZZ+Qv73tXebDLfblXDbg1T7WlKS3QxmHk/iPvaS79fVDI/HnVVV0+v12N5eI1cpWuMo87ZR\nMrvAJtFONjxHhbCBZAa6EG+Y7BpHUWtEtPji270+qWSPs0Ks4p6qYaoPGyx8B4g17BhHGvm/5igB\n84m/lcR8IuuOXgRQFMUNHAU8bacRp1L+5yoej5uamoqC7ycUTl97n+XhsGa67YFTfQ0EUs9ymgqh\nkHkfeymU62pGKBTO6lqZYDBke3uNVOm9pk5TvMZRhvX5Xc1diQvFkoSMmQ4XhJiU43lqJ2VbbKvK\nbF9YnY2EDPprYsXediQfQzzPUYzAs5fuSKktfTRHylnXCmQBnC0DVyuIbHXxeBm4XVGUa3o+TyCy\nlcRxPccfByYrijKZyB5HNwFdwDt2GomX8r++fifhcAi328PIkXsk14scwamtDfKBQupron6k2tes\nvyTVNMvyF9J1jSJDXap0d+ByaWiai45wZf8BLfE8yxeK2DgqTGUg7zxHKZzraFczksrbvA1fl7XN\nc3vRv+m3F1ZnZc2RA2F1dtYcpUBY0+jUbSLrT/XtZYE8FootrE5RlE4iV6+k5/t3AU1V1UpVVXcp\ninIe8DfgUWADuq0kVFV9X1GUW4hkphsBzAPO7Unr7QjTp0/D52unqqqaq6661qlqBUEQMs6Blesp\ndYPNO1oAACAASURBVAfwh0uoaz842+KkhSI2jrItgQWSeYudFeNI37x9AQrkZX1i4gxN3doGW5Xo\nldkEyepsT3ZHjKM4Vfxn/uaU6+/lwdcWRyUrqW/uJODAJrb5jp1rqPX8L59RVTVuXEWirSRUVX2S\nNG5KfsEF30fTwrhcBboQXBCEokHtOAAXGoWca7h4jaN8UAaSEDGcjbC6VNtMNlmdgxZuRpLVOViH\nPrtYIuXWbljdpp3tyQlnkfmr6hMXsohRFscla6wamoWL3bC6fHgc5jO1tUOzLYIgCIIjdIfLsy1C\n2ine11iFqgxk2XOUr+OaCU+ik1ngBniO4p2juyhWsq3OWbEzGdGi28zAgNYOMt5jIZWMsnk6fQdg\nN3SxUPotCIIgCKlStMZRXigDeeKx1CvCdsdVw9reO9kkF9enDVhzFEfE7KxDS38bZqFjHndyj7Vc\nvM7JsnW39YxBGoXVd0EQBEFIhaINq8sLkspWl3kKQa2Kpxw61T8n9c+ofY6cqzavMPOOeDy5bWzn\nGglsa8EBPvlkBt3dXZSVlXPqqWdmWxxBEISk2bd8Mx5XkJDmZWPX3tkWJy2IcVRgfLJoa8bb/Hjh\nVjZsb+Xqc8cXppblUJ/++em6lOvoNeKiPUfW8zFkahfzTHgiTI0jd3J9LMSpa5mi7nz6CQQC+P1+\n3O7sbpQpCIKQKm5XGI8rjJap3OFZQIyjBAyrKaOh1bGMrvbIkxfg/5kXyT72tzfqOPyA4bbPz5C+\nHpd4unyuJe/QNI2gbs2RPxCyLH+mhjoTI2a2rCZZ4wjyJIul4+TaDC88zjzz3GyLIAiC4AjrO/fN\ntghpp2jXHFkni5p7nmks2xs6bKtZuaKMOpgJO61oDFxrs7ulK8qTNOCcAo21NPMceT1JPtZy6Dpn\nEk2TNUeCIAiC0IsYR0Le4qg+ly/KoUaU18g2GbL1M+GLMEvI0OkPGv4uCIIgCIKQCAmrS0AuhHzl\nE8nYGMmug3HUNop3TMutCMdQHC+REXqvQMbC6rKYGv2B15YkV1+Ruo4i2eqyLUVh4/O1o2kaLpeL\nqqrqbIsjCIKQNCWuAL25hgNaSbbFSQtiHAn5S4Y2gY3sA50b5pEGBO3uYZONVN5xjtVUldLq86fc\nRtjhtaCRcSpCK0Gy1aWdqVNfwedrp6qqmquuujbb4giCICTN+KrVlLoD+MMl1LUfnG1x0oIYR7lM\nbujj6UXTknbPOarQxbeOcudaaBo2HUfZUXzjWGSVZV5njCNxdziHjGVaOeOMcwiFQng8hZmt7uIr\nf0ppzZ5Za7/K08E/Hvlr1toXhGJifec+uHpeGxcqYhwlIKthdXmoryQVVpd0Y8meaFRV+vc5cop4\nyRcMyYLiGz9MMddGNDdwyqNmFw1NbKM0s9dehbkXSC+lNaMp2/uUrLXvafgia20LQrHRFhqUbRHS\njiRkEPIWRz0HiTxHOUJYM8/SZkZWktXFaVQ8Psb87rIjs9Z2sa63EgRBEIRYxHOUgKyuNclDj2W+\nKlmJ1hzlysW44dHZ/OgsxdY5elskY1dHgzkrdhofytEpkmgz3XSTqQ16B6Dl7jXJF1pbW2lt9dlO\nluIU1dWDsjd/BEEQCgwxjnKZYlFYkvyb7qjjKN4mqjl2HSa9r9oqr2XBOtLQePSfSw2PiefImGyp\ntnI1UufCn/45rkd37AgvXo+LYEhjwy5nU823Nmzjvt//jEMPPdzRegVBEIwYXboDjytESPOw3T8q\n2+KkBTGOEiEv4+xhU9NKxSfjrJdKVEQnySdjs58sC5bN/aZz9prkB1Vjjo97fFjlGkpcQQKal4aK\nAx1tO+RVCTudulEQBMGEQd72vufZ9swvk80IYhwlIKu2UR4aZknpWMlmqytSz5FdshJWF4ec9hxl\nUbSseY6KNYV5Blnd4axBJAiCkC2K4XkmCRlyGdFXMkbiNUf5i176TGWKi9dOrtpGuSpX+sn3GS4I\ngiAIzpEWz5GiKLcB1wGDgC+An6qqulFRlNOBu4FxwCbgblVVX0mHDI4hi1xt8eGCLRlry1FFP05V\nT/97BWNH5W/qymykzo7Xot1se0VDFp81xWsYCoIgCEI0jnuOFEW5DrgMOBkYDawAfqMoyihgGvAY\nMAK4HnhKUZSjnJahYCgSuyzpNUcZ2udogbqLN2auc66xDJNrqbxzdZ8jDbJ6z2U3rE4QBEEQBEiP\n5+i3wG9VVV3T8/16AEVRbgBUVVVf6Pn9Q0VR3gL+C/hFGuRwhKzaJ6K0xMXR4Snksc6xvuWq4+jG\nR2fT5Q9lrf1sOqlz1WAtFA6rXk6pO4A/XEJd+8HZFkcQBCFpiuF55qhxpCjKnsB+wDBFUZYDewAf\nETF+jgYWxpyyELjESRmcRqLqchcnFbpCVg31XrFM6cA7GztMj+WqIu7rcjbFcr7Q3N4t3qM0s6Vr\nT9yuMGFNlvkKgpDfFMPzzGnP0Zie/34fOB3wAG8ATwGVwOaY8o3AcIdlKBhchTvvohADNM1o4PVm\ndjL5A+YemJzOVpdFvJ7s3PCvfPBVVtotJhqDtdkWQRAEwRGK4XnmtHHUq+beq6rqTgBFUSYC04EZ\n5OEqmkwrlVFtZ0lZyiSaBp4c6Ofm+vZsi5A2NKC2tgoAjycHbkGxjQypri7PtgiCIAiCUPQ4bRzt\n6Plvi+63DUSMohJgWEz5YUC9wzI4SiiUPU0uGCqOjf2SzV4mWc+soWkaTU0+AIJZnM+9iOfImHZf\nd7ZFEARBEISix+lX9luAVuAI3W/7AX7gXeCYmPLHAnMclqFgEB0yPjI+1tA0CAbDBIPhnFjvkwMi\n5CThInkZUowML9nNHqX1DC/ZnW1RBEEQUqIYnmeOeo5UVQ0pivIMcJuiKLOANuAPwIvAJOAPiqJc\nA7wMTADOAY5zUganyYEgJMEE0bHzE/H4GSNr7wqXPUp39WV32h2QZbaCIOQvxfA8S0cq71uAUmBu\nT/1TgV+rqtqhKMp5wN+AR4mE212uquryNMgg5A2pKMqiZFshKowtB4YsB0TISVzyKqZgWe4bn20R\nBEEQHKEYnmeOG0eqqvqB/+n5F3vsM+BIp9tMK6KvpJ1kh1gcEBbRIuvXijVVtSAIgiAIglXS4TkS\nhMwgxpElNODulxaycUebJEPIZeRFjCAIgiBkHTGOEpBNfWXjjrYstp5BkhzkXEgukC+s396abRGE\nBIhtJAiCIAjZR4yjhOSuynL0QSNYsHpXtsVImWRHWEwjoaCQjAwFy/gqlRJXkIDmZaVPybY4giAI\nSVMMzzMxjvKYnNjQM0VScf6I40goJPL/bhbMaAzU4nGFCGmebIsiCIKQEsXwPBPjKAG5/DLXlcvC\nZQSxjoTCoehv5wJmp39ktkUQBEFwhGJ4njm9CayQQQpFmUrWyBPPkSAIgiAIguAkYhwlIJftj2Lf\nF0WMI6FQOP7gPbItgiAIgiAISFhdYnLY/igEz1FKW8CKdSTkOdUVJVx0yv4cN34PgrJxV8Ey2NuC\nG40wLlqCg7MtjiAIQtIUw/NMjKM8phCMo1QQVVLIFdwuV9QeUl6Pi2Ao8QwdMaScU4/YC4D2zkDa\n5BOyy77lWyh1B/CHS6hrL0xlQhCKmc2bN3HzHx9g0ODhWZPB762lPAPtFMPzTIyjBORy6Fouy2aH\nYjfyhPzH5SLGWh/wg9mZhh+FwmJZ+7hsiyAIQhppa2ujq+JAyod/PWsyZMIwguJ4nolxlMeIUSEI\nuUGy96IrzbZRZZmX0hI3Le1+8bRmkTCFm/JWEITiohieZ5KQIRE5bIAURCpv0diEAsTqrZnuO/hH\nZyvcf90J7Dm8Ks0tCYIgCEJhIMZRAnLZ/HDnsnB5wjfGF36+fiGH0XuO0vCyw+VyFcZLFEEQBEHI\nEBJWl8eI0mOfA8cMZs2Wlr7vI2srsyiNUDhErzGyememe91gb+3ioM0uB1asw+sKEtS8rOncP9vi\nCIIgJE0xPM/Ec5SAXLY/clk2O3T7Q4a/jx5WySWnHehoW7ET3ivuN8EBHFlzlIapWCjPiHynK1xG\nZ7icrnBZtkURBEFIiWJ4nonnKI8pFM/R0JpydjZ1Dvj91CP34sC9nE0TGTtmHk9hjKERVvOlCWkg\nR9YcFcozIt/Z0r1XtkUQBEFwhGJ4nuWd5+iQ/YZmuMXcVS4KQe/R0PCYeG9cON/H2Po87ry7BaxT\nAPMjX0h6P+I038QyBQRBEATBHnmnGe7vsCchn3EXgnWEuXfD5XI5viajuDxHhdu3XMfq2OtLpSsh\ngyAIgiAI1sm7sLpMLxFJp27hcqXwxrmAyOQYxF7PQl5zNHBjUiFjWA2rS/cesIU7vfOKSncHLpeG\nprnoCEsSGEEQ8pdieJ7lnXGUadKpW7hdLkJiHWGmwadngXqs5yjvnKdCTuLAfZyG+V7Atn9ecWDl\nekrdAfzhEuraD862OIIgCElTDM+zvDOOCiWUDHoV9YhSVVri5uiDRvDF8p02zk+TYBlE08w9R5lZ\nc1QAg2hCIcyPfCF2DltO5a27SOkJg5RJkAuoHQfgQkOT6yEIQp5TDM+z/DOOMh5Xl76q9V1JJjFA\nwa8pSYN2H2tcF7JxJPnq8ot0GLMFPb3ziO5webZFEARBcIRieJ5JTFEW0b81TkZJ1wpA8Y2suzIJ\nq8P5BeWxtWUrrK6yLP3vJUQxzh5Wp226vXu994/ZPSYIgiAIQjR5ZxxlOvtSOr0zemdRIWdNS4Sp\n2uZy3nEXO3+ylZAhI9O4eKdU3pD2SyRzQBAEQRBskbbX14qiPAj8WlVVd8/304G7gXHAJuBuVVVf\nsVtvxtdRpDNbna7yZJT0QngZHK8Prr7/c44Ba46yZJRmwsgv+LDLHOPkw0fz6ZLtPd/su47SElbn\nfJVCEuxbvhmPK0hI87Kxa+9siyMIgpA0xfA8S8vfTkVRjgCupMcpoCjKaGAa8BgwArgeeEpRlKPs\n1l1Ii8z1fYmsOSqgztnBLCGDy3n1fkC2uixtApsRh1WRTqdsoGnw7ePH2j4vap+jdFywQnpg5jFu\nVxiPK4zbFc62KIIgCClRDM8zxz1HiqK4gMeB+4E7e36+HFBVVX2h5/uHiqK8BfwX8As79Wc6W11a\nU3nrNORkPBiF4DmCOJvApqGtXMlWlxnPkZBJktqzyGXy2SbfOXE/pn22fsDvsu4sN1jfuW+2RRAE\nQXCEYniepSOs7udAJ/AK/cbRUcDCmHILgUvsVl5IL0IlIUME08XiacjlPSBbXbbWemWg2WSGbmRt\nBfVNnc4LUwQk4/nRn5PslKgo85gaR4IgFD7BYJCHH32CYDj6TX5be3vff+998BHDc90uF+XlJXR1\nBQin8Ma1obGRytqkTxeEnMJR40hRlD2A24GTYw4NAzbH/NYIDLfbhjvDYVCpeKquOOsgJs/4ilDY\n+IGjt4e8Hjd2u1YIez5pGqZavNfjxut19nrHpoIvLfE4Wr9lOXJ0zVH+z6jsoKFFzVWrl9ftdvWd\nZ/acSIQLl+l94vV68HrdGU9kIwhC5ujq6uTLVU0M2veEqN+DWknff9XuQ+JUkLoMlQfEqV8Q8gyn\nLY37gWdUVVUNjqX819nrcTNmVE2q1dhrMwXl+dJvjeecOOsQ9Gmky0q9lJbas1XLykuSFS2nMPOa\nVVWVMbimwtG2ymJSaA+trXK0fqtkYr+uZNpwZym1eSFQW1vZ99nq2JeWeqitraK2toqaJOe6ywW1\nJvO4pqac2tqqos6GmQuUuAKUuPyUuALZFkUQBCEliuF55pjnSFGUCcA3gZ/2/KT/a7yLiPdIzzCg\n3k4bD1x/MvUN7UnLmAzBYCjpc5uafHR1x5k8uhfFmqbh9wdt1d/VVRgTMxgyXtTX0dFNW5uzIV4B\nf/T19PkceGWWBJrOS5CurVqTqTNsci2EBGjQ0tI/V606gYKBEE1NPlvnDGhao6+OWNrbu2hq8hEK\nFUYIbr4yvmo1pe4A/nAJde0HZ1scQRCEpCmG55mTYXWXAyOBTYqiQMQr5VIUpZ6IR+mymPLHAnPs\nNLDfnoPZUd/mgKg2SEGnCAbDaHF0TX2ki9sFYZt6abgAFJ62Dj9tHX7DY+GwlgalLro+LVmNNFVi\nF+KnxTqyX2myIecnHTaaOSt34g8Ur3GlNyyt+mk0LfKcsHVSbB3o6hggkxZ5DhVK9pY8ZX3nPrjQ\n0CRwVRCEPKcYnmdOGke/AX6v+7438AVweE87tyiKcg3wMjABOAc4zm4jhRQ6H5XK2+O23bdUEzIM\nqymjobU7pTrSiSsNyY1j1/rkwrott8tFKA3KaybXmYysreDBX57IQ68v4astLRlrN1fQIKmHU7ov\nkaw1yg3aQoOyLYIgCIIjFMPzzDHjSFXVFqBPK1IUpQTQVFXd3vP9/7N333GO1fX+x18nZXrZ2dne\n+3eXZQtb6VIWRJpI73oRsaACcpWiKMgVUFRQr1gQFAUU20+wXe8VFAuIIOK6i34RqQssy/adnZ2d\nmSS/P05mJskkmZSTnMzk/Xw8FmaSk3M+OefkO99Pvu144EvAl4EXgHOstevzP1Jp/thPG9/ES68P\n7rJXyrpFoOjZ6orTVF9T0clRaebyTvm1AiarGyn11/raUEUkm36pxLdeiTGJiIhUslJM5Q2AtfZF\nIJjw+x+A/Up1vGKddPAsvvijtWU9ZupU3rMnt/LIuo2576DI7KjSK05O/3883GfFtByVvl+dH2+t\nmjtvFXK6E+/HUlyvSv+Mi4iIVJqSJUelMuz+2GeJN7Vb3ZuWTGLbri5+9siLOe262IpoOWZMK4rj\nfeNR6lv2q9tR6niz0hzDj+yoetOjQs53copc2PXK9irvO6ZKISbWbCToRIjEgrzWPcHvcEacnV0x\nLr/mJs/25zgO4XCQnp7IsBiv1xvpJVA/2u8wfBWrGTXkPVDK69rZ2UG4zni6z0pVDeXZsEuOinXk\nsik8+OSGwU9kqEOUsoKZmJyEAg6BgMPJh87OOTkqtiJa6Ymmg+N5kKnXsyLOQUIMjuNdflHOt9Z3\nXiu/GlE6Bd1LqQ2IHquI+1toDnUQdnrpiYV4Lf38M1KE2skHsq0UOx5Gq2U0lneVk4rTMHG/3O+B\nUlzXRvBnYZDyq4bybNglR8X+rc9UWfCjDpH4rW4h65AU3XJU4TUnxxlcdzzhoBk88McXithnSrc6\nn1rPnKSEaOAXTydnKONb6ztUVSdHCSc8149W4qXO9XJdetoSnn9tJ/f/4fmhY6rwz3i1eKZzjt8h\niIh4ohrKs2GXHBXrsP0m8+u/DG458qMOkVgvDwbyX3yz2Dp0pSdHkFxhnDy2iSVzxhSZHKX+7lNy\nlFiRLtkx8lfsDIjVnB0VcivtTVjbLNd7cfHsdiaMrs8tOco/pBHJGLMUd0mJZcAe4EHgUmvtFmPM\nEcCNwHzgJeBGa+29vgUrIiK+yr9G7rci/tp/9LzlNNVnak9Nv+NS1p1TJ2TIxdwprR4e37NdlYST\n0nTkeNDLLvXlvg27ytBy5OU1KWviFz9U0cnVCJHrme/qLnCR6RyvbaV/xsvBGBMEfg48AowFFuKu\nyXebMWYCcD9wW/y5S4HbjTHLfApXRER8NvySoyLU14YydqMqVSUi224TBwTm2q0uucJbXEW00idk\nSBddsQPMw6HkW96/lqP0Pw97VZwbBZyUTD4HewpMjnK+Z/rGghV4XeZNHVXYCyvLxPi/u621vdba\nbcCPcWdPPQew1tq7rLXd1toHgQeAC/0LV0RE/FRVyRHkP+aolBXXxLEloRy71SWlRlXRrc7bGMOh\nYNLv/rUcpW8t8jJZK2/DkSZkKORW7UroVleJTjp4JrMmDfuR3q8AfwUuMsY0GmPGAacAPwOWA0+m\nbP8ksNLLABY3rWdFy1MsbipgaT8RkQpSDeVZVY05cntpVU5CEInk33LkpYpvOXKcNGOEittnxUzl\nnSEGT7vVebernA2DWW9LJvHeyvXc7/Wg5SjrPRO/IIXeV6mTogxH1tqYMeZU4Ne43eYAfgtcjdul\n7uWUl2wFxngZw4auSQScKNFYab6PDAYDhEKl/a4zGAwk/T9RJf1dFZHSylieOZS8HEqVrjzyQlUl\nR5ClkpDx8dIV+tFoQnJUQKJSDbPVeb/PlNnqKmCdo9Idw5f0yIdjVor8z3fhY45y26wvWS00aU0d\n9zccGWNqgJ8C9wE3AE24Y4zuiW9S8ne4tbetZPuuHzWeT3/1RwQCPynZMYYSa5ri27FFpLwylWeh\nUJC2tpExoXnVJUeZKsOZvvkqabe6ApIjD4ccVfxgbYd06xJ5G3Sm3dXXhujuiSRdo1JJvPTR6MDP\ny81Yunui/P25LSWPoU/hlejiXj8SJN1LOd6mpb6/vNj7CGgVOBKYYa29Ov57hzHmWuAp4JdAe8r2\n7cCm8oVXnNqGUdBwmK8xBIfeRERGuN7eCNu27S7rMYPBAC0t9Z7vt6rGHDmOQ8ahPT78/e+NDNSE\nC2ka3G/umEETDOSj0luO0l0TryPO1LVwfFt9+bodJlyHxEk6QsEA+y8c78Vuy+aco+aV/6AVohzn\n+4CF7mrkuSYsxa4CX+lFRI6CQMAYk1hY1uHmjr8GVqRsvxJ4rEyxiYiMDDHo7Y2W9V8koR7tpeGX\nHBXdWpLnX/sSVg66exOSowIq4nW1IT538UEFH7/SKz4Og8cceX09Mp2DYCDNsT09bvpxRtGEymyx\nuVk5v/HvO9Lsyd5NNT/cJF1TSlN0nHv0vPixSrDzNBwcnn1lR3kOVjqPAB3AdcaYemNMO+54o4eB\n7wDTjTEXGGNqjTHHAm8BvuZlAGPCmxlfs4kx4c1e7lZEpOyqoTwbfslREdxuWn5HMaC7Z2C8Qe7d\n6pK3y7xu09AqfUIGUoY7lKLCmSlZdhynpC1rmXpgJX7R7zhFpjflvLyV9MHySTnOQL6nuehujiPg\nslprtwJvBg4CNgB/BzqBs621m4HjgQ8A23EXij3HWuvpNEzja95gUu1Gxte84eVuRUTKrhrKs6ob\nc5Rvy1Epv31va65l844uAMa1NRS8n6b6MB17evJ+XaV3qxsUnQfZbeqrM45Bc0p8fnKYvrvY4/s1\nE1+1Sm4NjGf2QyQnbc21+R0jz/LIi0V5a8NB9vYUOHFEhbDW/hU4IsNzf8Bd86hk1u9eUMrdi4iU\nTTWUZ1XVcpTaEpHyVPrHS1i/3HfmaNasmMIxq6axaNbovF/fF9qV5xS2mHulV56dNMlQuSIOpJlG\n3EuJu87UgOc4lTX3W2Nd5u9SKvtOqgxzpyR3OVwwvY0PnbE0v53ET3Sun91iW45isRiXnraY5WZs\ncTsSEREZJoZfclRELSzd7Gcll+VwPb1Rzl4zj9OPmFNUXJPGFDZ1Yo7rzvpo8PfkXly+aeOaABjT\nWpf5yE6pux0OPbVZIFBcduR1+O8/eZG3OyyRQsbvpTrv6OImlnjTkkmD7t4xrckz6rzvbfsyucDP\nbq7as9zjuYjFwExr45LTlngUkYiISGUbft3qSvRVuh/ffPeUaJaNXA2PliPv93vZGUt57OnXWZHl\n2/BAwCnp+UncdabDOI6Tc7eoxroQu7t6PYgss6zJYoXcSqceNpuWhhru/MU/ittRgdf+mrev4IWN\nuzh40UQe+OMLSc+lzhxXyBFyfc07j1tAW3MtLQ01BRxlQLGz3YmIiAw3wy85KkaFJQPdPcUlR8W+\nneEw5mhwy1HRU7jR2ljD0SunZt+sjN3qMidHue9vxfxxPPzUqymvz/8NZKsLZ7tfKuVOWrN8Cn9/\nbmvR+yn0/cyc2MLMiS3uPlLGHP371dRZ3wo/a0Nd2oMWTUz6vdAUR7mRNxY0WsJOLz2xEP/YbfwO\nR0SkYNVQnlVVclTKb2oL0dOb/yBnLyvsw2K2Op8SuIDjJM0m6LnElqMMd1lDbSjnymltePAyjF6f\nuYq/X/Dw81GCt5p6jQqJte815boSajnyxtaeNoJOhEhMy6WKyPBWDeVZVSVHhShl5TxxnaNceRlN\nhTccDUoanDKu3OM4sGdv6ZKjpFaYhB/nTGklEomxq7Obt6yezl//lXmqzMa6EO2tdeztifKmpZP4\n38dfTt7A45OVteWoYm4mx5OxVqVoVU1dsLmoY5TpfPvb8XfkeL17nN8hiIh4ohrKs6pKjrJWJ0pU\n2Uitzp986Cx+/LvngMKSIy/jrPRudekuWCRa3DfZub7jUp+bUHCgopyYWAQch6vOX0YshxhCoQDX\nX7iant4o23ftHfS81++g0m8X8G6cWineamojTGETopT3IqjlSEREqk1VJUeVILFrTY9ajrJKt6xR\nb5kmsSj1uUmcUS3duKq+x7LVTd1xUU582vF0AXv7JoZDtzqveNESlrqLwclR/sdI162ulK12yo1E\nRKTaVFdyVAGTbdXWJCZH/i6smG7K4yljG9nwxm4fohks3TUptuUo52OXODsKBhOSowIPNdTLCstl\nMp/fim9pxD2XXlw7b6a5T56RIZqSaRTXra7wl+ZDyZE3WkM7CBAjisOO3tahXyAiUqGqoTyr+JVu\nslm1YBxnHTk35+0LGbHidX0wnNCdqqBudR5KVzl786ppnH74HMaNqk/zCm+0NdfmtqHjDKqcjZyW\no4H7IFslOdtU3kNOB+71mKMs2Val5E2JrW7F7sdrg6byTnOMz37wEM+PWwx1q/PG9LoNzG54gel1\nG/wORUSkKNVQnnnecmSMmQbcChwK9AD/A1xird1pjDkCuBGYD7wE3GitvbfQYwUCDketnMp3H/yX\nB5GXRmrl1nHcWcg69/ZyxhFz8t+hh3W2TBXAY1ZP49XNu9m0fY93B0swurmWbWnGyKQaFJ0DU+ML\nuBasQmrxSa122UIaoltdNl5PXzEMljnyLA4vbpNB3epyeI2ZPjq3fecfTkbTxjXx0qaOtM8pN/LG\nuo75focgIuKJaijPStFy9FNgKzAVWA4sBD5rjJkA3A/cBowFLgVuN8YsK0EMaVVEvdiBm95zDHp4\ncAAAIABJREFUAB89bzmrF4wv4OW5vYlPXrCKz77vwKzbpOs61N8yU8pzleO+012vupoQJx86y9t4\n0vG4Uvipd61O+j2pW12BJzvbuKXMDxZueHSr82Z9qlK816gHXUL7xxx5FN9/nrmUo7Ks+eVN90KJ\nEuz/JyIynFVDeebpnz5jTCvwOHCVtXaPtfZV4C7cVqRzAGutvcta222tfRB4ALjQyxi8VkglJBQM\ncMzqae7r00xH3VQfZvbk1qIrONleP2VcE6Nb6rK/Pk3tuTcSiz/nv0zvb1xb6br89UkdH1Ks9pRr\nkZTYZDnZ2aJI7JqXbidlXefIx8RpzYop1NUE2W/umL5git6nF8lR6h4qsRVm3tRRrFownvEpn6nW\nphomj2lk4czcWrJERERGCk+71VlrdzA42ZkKvILbivRkynNPAqd7GUOhvKzbffmyQwetaeLVcRLH\nAjXUFnf50lV2+2bQ6+zqLWrf2Uxqb+Tfr+zM+3V90SZOgz1cpCZ6yVN5F7bPob7V9zpfqZy1jJJN\nHdvEFz54CKF4a1wpusR5wYvxO153lXQc91781Lv258LP/Kb/8ZvfeyABx6mqGQpFRESgxLPVGWNW\nAO8HTgSuAFJWqWQrMCb1ddkEgskD2UMZkpB0QqFAxu2DGSrchXQrqa8bOK2prw8GM8eQi+MPmsHW\nXV2MHVXPjEktGbfL5Rih4OCKTzQWIxQKsKOzu+AYh3LWUfPY1rGXdc9tzbpdKBRImdXNvd6JM/7l\nKxjI8Z7xeiKOcPIxE5PnxFYKx0m+dtkqp4FAoP++Daa5loUlM5lfk+2853xeSyAYDCR95jJ9lvNR\nyHsZ9Johxhylbp9L3KFwgIDjJN0/qfdM2lgyCIeCae+xupQvXrw4p9VsTv1zhJxeemMhnt1Thm7B\nIiIlUg3lWcmSI2PMQbjd5q6w1j5kjLkCD6qcjQ0DM53V1IRoa2vM+bWjRjXQ1pq+S1Zzc/ouaDU1\n+Z+ixJhq68KDjpNPzKnGjW3mk+85KK8YMmloGDxr3KK542hrayQcKk1f0oMWT2LqpFHcePEhnHD5\n/Vm3bWmuZ/y4gQTwgMWTaGtrZFRr4VON19fX5HRuwqHB131CewMbt3QWdNzRKcdsqK/p/zmUsPZV\nKBRMiq+hoYZMggGHlhb3fo4FB1+vQq6hkyUZy3beGhtri7qvi5F67Obm4qeib2nOv+tm6vtPTU5T\nfy/kfLWNaiQQcAjX9STtN3Vfqb+nm7a/b7t0yZFf13Kk6orWEnRCRGIjt4++iFSHaijPSpIcGWNO\nAL4DXGytvSf+8BtAe8qm7cCmfPa9u3NglrPu7l62bcu9IrRjxx4C0fRTQe/a1ZX28Z7u/NciSoxp\nb1dP0nORPGNOtWNHJ5HuniG3y+UYe/cm7+eco+cxY1wD27btptfjNZg+9vYVrP33Fo5ZPS3n97+r\nYw+dHbVcdsYSXtq4iyP3m8S2bbvZU0Sr1p493bmdm+7B3QrPOnIut3z/bwUdd/v25KQq8fxGE6Yn\n7+2NJMW3e3fmWf0CAYedO/cQiUTZkWb2v0iGez2baJbX7NyROTHs7Nxb1H1djNRj7+5I/1nOR7bz\nnsmg9586DX3K1P2p2weDgf5kN5Pt23fjOA67E8qVWCw2aF+pv2eaDKJvf6kKiU0y27B3st8hiIh4\nohrKs1JM5X0g8C3glPikC32eAN6RsvlK4LF89p9YkYzGYoMqHNlEItGM20cyrJ+TOE5g3pRWntmw\nY8jjJB4jdZhBTTgwZMwBx8k4IUC295AphkyS3tvUURy5bAqRSAzPp2oDZk1sYdbElpxjA4hG3Ou7\naGY7i2a297+2mObHWI73TLrxIcWMdUpdnynxPSQeKhZLPj+RSJZFWQNO//3Qk+49eXwZs8USjeb3\nWfRS6rGzxZnPPvPxtkNnDfn+Uz/ThZyv3t4ojuMQ6R3YV+o9k27fmcY7Zfq8+3UtRURE/Ob1bHVB\n4HbcrnQPpjx9DzDDGHOBMabWGHMs8Bbga17GUEonv2l20fuoz6GbXrkGQScO7k6dQKIihmFnCKKY\nJCXXMfHpktNiZrBLfSuJY4QKvdyZukplPGiRKnQ+hkFxeTKVd5632LH7Txv8YAnOV18rT6VeCxER\nkeHO65ajA3AXeP2iMeZLuF9JOvH/G+B44EvAl4EXgHOstevzOUAx3wlnq09kHLye8Hi6Qe/5qs9h\nhrlg0CFTrzYv60SJ3a7CKQlHJcxMlmlmLi+uw5DS3GixItapGTRbXdI03HmF0W+o6abLeQX9vF8G\nT5fvwT7zeD8nHzoreVr1DLxY50iGp4ZAJ44TIxZz6Iw2+B2OiEjBqqE883oq7z9A1lWhXgb28/KY\npeZ1la8uh5nWglkrZt5F1N0zkBzVhFOTI88OU7BMMRTTcpTr+0pXjfVy7aPUWfgyB5L5mIn7SNdt\nyvN1jirhpkgnJazEmesKlesd5jhw/IEz0j+X8rsXU3nL8DSn4XlqAj10R8Os7VjodzgiIgWrhvKs\npFN5l0KFVs9yllNylKVlJFP99D+Onc83f/HPvGJJHKeS2nKUSz1uhRnLE/aNvI7phVAZuh2mVmRP\nP3wOXn7xn7QIrAf7SKuAZCbrda/QD19qWNPHN3Pwools3rGHvT1Rnn8t/zW1cunaOmVsIxcctyDn\nfXqZGiVe2krNWWWA7ZyNQ4xYpX6IRERyVA3l2bBevCLfy1JI5cSPhTQLGXN0yOJJeb+mtWlgmuh5\n00YlPTfUt9yfeMdK3nZoaee3z3SqyrHmSurbXzKnvahudakSu2Fluydy7VZXl2Ysm9c5ZK7tmZPH\nlnka6EFjjhwuOG4BHzl7GbXhwu6VXD6n116wihkTMq81lroLL7vVeb0YrJTW3mgdXdF69kbTLxkh\nIjJcVEN5NqyTo3yrGn73ajlsv9ymPxyyRcAj40bVc/4xhhMPmsFBiyYmPTfUXFUNHnRdGkqmCmC6\nxWu9lpocZptBMJEDnHnEnCG7/uU6birbIROTxIa6EBeduA8LprfltN9C5DoO5/Izy9tzNluiUOhn\nPtNbPXjxRI5ZPY2L37ZvDt0Mk5/3s/xRhz4REZHcDLvkaDj/kV80c3RO22VLjrxsyYoBhy2dzEmH\nzBpU0UvXctTSMLCg7aimwQvIlksxY47SmTauachtHCe3yu3bDp3F0aumpZ+9LEHieyhkPSIYPAZo\n/30mcEqRMyoed8D0jM/lOhRuTGvdoJbIfO07K7fPCpSmW1mmRLAuHOT0w+ew3IzLe58xL0svNRyJ\niIiUxLBLjvLxnrcuZEqRXXw8nYUrx10Fssx8Va7uNOkSgWXzxnLJqYv5rwtXD5r6uxQyT8jg7Tn4\nz7P2Y+bE5qTHUt9/Li1H7z5xIcesHpwUnXTwzEGP1SScv0LX5Rmq9amQe/ewpZP5wCmL+M8zl6bZ\nX5ZjpdyXuczels6C6W28560Lee9b9y3o9V7J2CqUxylN3bSQXnVXnrOs2DAK2l68Nb3uZWbVP8/0\nupf9DkVEpCjVUJ6N6ORo1YLxOU2dDW7Fb83yKR4cM8s3yjlWjrJ2q/Oy5ShLPGlnP3MclswZw6Qx\nZR5TksLrMUdN9WFWzh+f9Fjqu3ccZ8gxI8vN2P4WocTEpL11cL/cxOQydYHYpDiyXKR0FfhiB+oH\nAg77zR3LuFH1g/edx81X6Fpdbz/G5PW5hcLHbGXfZ4bHi/gAFjJb3bypo9LGku6xM4+cC6Rv/RvO\nLe4jQcCJEnSiBBwtrisiw1s1lGfDbra6fCXWIYaqnJy1Zi6//suGjK8fyoLpbVx0YvK0hi2NA5Me\n5DJTHZRvzFE2lbAkS6ZKbzFTSufampJ6rzjO0FN5J8Y11FESu9X1FNpylOY+SQyxqLso3Yuz5ewp\nzxVyjT546mLGtVXGmgmZ4s/nbaVuW+iYo4DjEMny4r7DHL1yKqsWjKM1ocyRyvD8nszdVUVEhpNq\nKM9GRHLUt8ps+idzq804OEV3oWttrBlUqVqzfApP/WszzQ1h5uc4WD7rmKOiIsxdJazJ4meKmPru\nAwGHoYYG5XP7JLUc9WZpOcqyjyFbZzwejJPP3grpVddcHx56ozRKsbhqKcYxFfqZCgYcIoPeY/oA\n/RwLKCIiMhIM6+Sor3rgOE5FVObTqQkHufq85Xm9plwTMmSreqc7nakPlfqUl3P9lsHf8qe2HA19\njyUl1wk/pntZYstRYre6QW85yyHTJUcZQshbunwjny8PCvqiocCAs7boFXiTerHg7aJZ7fzp6deL\nDWXI61yZJZ+IiMjwNCLGHOVajyl5/uRRZT57i0C5JmQofZVryKSxjNnRUElJIIdudZn2l26WslzH\nHGUz9CKwBe0WIO81nVJbNgoZc1ToeJ5ythzlc0uefdQ8Dls6sP5YPvdPokroZivFCTs9hJ1uwk6P\n36GIiBSlGsqzEZ8clbVa4VEdrWxTeXv/hXtehupmWIprl+s+003IMG9q7tNTL5rd3v/z3CmDXxdO\nbDlKqNynJqXFdKsrpvUj34p8aoJXyLELDTdbrIVPyJBhzFEed2VTfZjzj5k/EEuBwaSbATE5Jql0\nCxqfYUnz0yxofMbvUEREilIN5dmw7lbXV9dwKzJD1zyyrjNSQTUMr2djK0S+lePGuhC7u3o9jaG8\n3eqyr/MUcGBieyMfPnOpOzg+Bp///t8y7m/GhBY+dPoSgsEAE0YPnmQglDgVesKhBo8tySzfFoUx\nrXWcvWYePZEoX/nJuqzb5tIac9h+k/ntX18BBo+bKmdrRykS+YyJpw/lxJtXTaO9pY5p4wemmy/n\nZ0OK9/yeaTjEiFXSHxoRkQJUQ3nmfy3cA9kqCmetcae3HdNax+jmwVMqexuIN7s54/A53uwojdmT\nW0qy3zmTW0uyX89lukZDzCzWlzwtmDGafWe2s++sdoay76x2FmRoHUvsVpeYtPemzlyXbSrvPBOQ\ngxdNZOncMaycP/QCprnkaNPGDyye2+tFt7ocX9KSMhtbObvVHbVialH7PTK+XMApb5qVcZujVrrH\nOPlQd5tQMMD+CyckTaFfrvXOxBu7Is3sjLSwK9I89MYiIhWsGsqzYd1ylDghQybTxjfzuYsPoqEu\nlLXC5klVw6M62pRxTXzu4oO4/Mt/HPRcMd8Y3/zeA3noyQ38+5WdQ26btr6Zx1f0TfVhOvYU1x/V\n0wV4++T4FtItAuuVtubapG51yS1HyS0w2cIdaqHVYmLOZaHdUCDzjHsFdavL8VN440X7c/Etv+v/\nvVzd6pbPG0tbc3GzwZ29Zi5rVkxJu45Un3OPnscRyyZn3SaJmpFEREQ8MyJajob6krqtuZbacG5r\nDFWKTJWwYr4xbm+tyzkLzGVChqzjYXI8zjXvXM2opvTrspSzypd6rNQumOnykIvftm//z8fuP/S8\n/2/ZfxqjW2q55NTFKS1HA/LpVjdU60wxdeYJoxtYNm/soMc/dMYSWptqOGvNXEKhgQP0piR1XrQc\nXX7mUlqbavoXN+2TukBsoS1Hbc21vO2QmWmfSxd+swfrBzmOw/i2hqyJfy7b5P3h0JR2IiIiORkR\nyVFVdTHxckKGbM/lOZBjUEUux5r5qn0m8IVLDuFNCbN6DewjrxByk3EWsuQnZqd0E0zbkmDGcccV\nh3PHFYdz6mGzhzz0aYfN4eb3Hsi08c3Uhgc+enOnDBwrktKtLttlyDv/yGsBU4f3n7xo0OP7zmzn\n8xcfxFErpia3HKXE7UVL28IZo/n8xQdx9MrsXdkK7VX32fcdyIyJ6buZBtJMwBEdaqGrMko6u3l+\nVlOTSym9iTUbmVL7ChNrNvodiohIUaqhPBsZyVEV5UbFyjWRLHaQez6XJPPMYP455dDkZCfz1M75\nLR7ct204FOT8YwwH7TuB0xPGmKW2wFSivvcQyrKQbaYef4csnjjkfod6LFXWlqM0Tx22bArvfuvC\n+NpVmWN594kLk1pwd3R0DxlLuRTT5fTC4xew/z7jefeJCz2MSLJpDnXQGtpFc6jD71BERIpSDeXZ\nCEmO8qsolGpSgnLU5os9xKJZo/t/ThxQn6rodY68OBclyHpzSQ7POGIODXXJ3657Oeaoz2FLJ/PO\n4/ehuWGgu1Zqy1E2Q3erK+0NGc6wkG02/3HsgozPFRptvvfq5ecs56BFfUla+tcGHLfb3ZXnLOt/\nbNuuvQVGWGJ5XudRTbVcdOJCVu8zvkQBSapnOuewfvd8nuks3WQ7IiLlUA3l2QhJjvLb/gOnLObs\nNXOTu82k2ccn3rEyvx2XoV9/sRVeM62N9560L5edvoTxbYOnmO6T7sv4fN5evslEuvptMe/0vDeb\nvLZPzDPSxlLCRCNx8oPUMUfZpp8PDzHle6lz9cS4e1KSo57eAlrASrDO0VCytRyBm0j02VXkBCOV\nQi3tIiIimQ275GjGhOb+NVTeEh8En2/FtaWhhjUrpqad9OCk+ADtZfPGMn3CyJymcOX8cSwaYirq\nnL6Nz7FSusIMHtifi2LqcIfvNznPg/lXYwxla4HJcoqT1kpKI/UtHbwoc5e2QiTGndriVUhyVOja\nSNm61Q01FizTK/vOXTgUYOo4t4X13KPmFRIesye5LdXveMv8IbYsncb6gZbQcizwLCIiMlwNu5G5\nNeEgt3zgYPbs7WVsfKpbL+q1fd2tTjhwBkvnjElaU6Qa5dKSk7hYbeog78RrclGhYxvKmK8kTpBQ\nEy7vdwZJScaglqMBxx0wnWDA4YE/vjDodWmlfDBGt3i7zlfiDJC1NcmzQRaSHNWECptRMtuQo3lT\nR3HjRftz1df/lH6DIVqOAK46dxlbdnQxeWzmbqjZfOTs/Xh96x4mjy1NmZLLx2T+tDaef20XAF3d\nkZLEISIiMhIMu5YjcNfQGZuwBkih40HStY44jsO08c1DVzxHuHTnJvWR8W317DtrNG3NtZx++MA3\n9I6TXGHLpUUg3SUs5yyEqxaMZ+q4JiaNacw6aUApBBO71WUZc9TeUpeUhIaHajlK+LmpPjxkHPl+\njiaPbWThjDZGt9Ry0iHJi5p29w5UwNesmEJ9bXDIlpN8ktK6hGRsqKm8x4/O3H00U7fFxHNRVxMq\nODECd/KNKeOaStY1M5eGoOMPnMHE9gamjG1Mmh1RymNx03pWtDzF4qb1fociIlKUaijPhl3LUTrq\nQ++9dPXNCSmVTMdx+NDpS4nGYkmVSffn/C7KxDQV2EKv6+iWzAt1jmlN33oSCga49j9Wxo9b3hsq\n8dyljp9JTVITu90NlRzlHUeeu3Mch8vP3G/Q9YfklqPD95vMmUfOHTL5yqfl6JJTF/Ppe/8KwJhR\nRbSIZWw5KnyXlai+NsR/XbiaGKWZXESy29A1iYATJRqr7i/dRGT4q4bybGQkRwkV8WP3n87Lmzo4\nZlX2tVGGm2XzxrJgelvZjpdYKZ8zuZWxo+o4cvmUtNumVraCASepcplLsnHE8im8+HoHj64vfN78\n2ZNaaKoPc/oRyTOoBAMOb1o6iWg0xrIs45/KnRTlzUluWfK6dbPQSnO61/X0DCRHteFgTvsO59Fy\nNG/qKI5eOZXOrl4O2tf7lr6RmEA4TlWtCFdRtvaWr+wWESmlaijPypocGWOmAbcB+wO7gPustVcW\nu9/EesxbD56Z8zfqS+aM4c//2ARAe4YWBT85jjv2Z/aklrQLcpZSYoPF1ectz+u1hy6dRENtqH9s\nTC5CwQDvOmEfXt2ymxc3umMjsiUrK8xYnrBvJD223IzjmNXT0m5/7tH5zV5XKeZOGZhRceaEFv7y\nzKb+39MlR7nW6dtb6tiysyv5tQVOiJBOT2SgW13qeKRgwCESjTFzYnP/OBjInpC0NNawc3d3/0Qi\njuNw5pFz844r9QuGTF3S8m1F85PXE22IiIhUs3K3HP0YeBw4ExgP/MIYs9Fae2sxO01upcj9dav3\nGU/X3l5Gt9TR2lgz9AuAGy7an7/YTfzo4efyjDJ/N7xrf56wmzh48aSSHytVIRNaffT85fzr5R0c\nvmwyAcehoS7MjDxn/Ms1sX3HW+Yzc2ILP/jtvwuIdPiYN3UUFx6/gFAwwPQJzTz2j9f7nxtqtrps\nrjp3GY+u35h0Hwc9bC1J7FaXOHEDwH9duNq9rxdN5LL//mNO+7v8jKWs/ffm/GchjPvUu1bz5DNv\ncPiy5NbPoabyrmRXn7uc517dwWEFnhMREREZrGzfjxpjVgCLgSustR3W2n8DnwcuKnbfhVZkAo7D\n4cumsGTOmIzbHLVyoHvelDFNTBjdwHEHzOifnnfx7OxTYhdjfPxYuSZufd3elngQUyGLwM6e1Mox\nq6dRGw4SDgU4euXU5LWkcpC4dk/q2jmJGurC/VO591k5f1x+AQ+hbwKBxMk/SqVvJrN0rSEH7juR\nVQvcBTuTxhwV0a1udEsdxx0wI+mxc9JMVX3WGjeebJMapHPBCfsC0FgXGtTC1X9fN2UeG5Zq6rgm\njjtgBg11Q08skc7E9kaOO2AGLYM+S+nv82GQGzFnSitHr5pGTbiwWf6kfMaENzO+ZhNjwpv9DkVE\npCjVUJ6Vs+VoGfCCtXZnwmNPAsYY02it3V3ojkv5Le/MiS1c/85VNNSFk7oH/edZ+/Hypg5CQYe1\n/94C4Hsl5cwj57BqwThmTGgpel/1tSFfpvxtbhio/EayJEfpeN018vBlk1k0bxxNNaX/DuHqc5fz\n6ubdzJqU/dr1Jo45StNylNg1LXH2t/raoe/N/ReOH/TYmuVTmDWxJe+p7fffdwLXvXMVo3JM7P0y\nnFuOZPgYX/MGNYEeuqNhNvdk/jJORKTSVUN5Vs7kqB3YlvLY1vj/xwAFJ0ceDpVIK900vrXhIHMm\ntxKLxZg9uZXNO/Zw6uHZF5wstWAgkDRGpRjvP3kRN3/3ryybV9gCroU644i5PP3CNiaMbhg0O142\n7VlmqCu0nus4DvOmtbFt2256C1i3Jx/1tSFmTx56iuXEONJ1QZw6ronZk1vYtG0Pp7xpNpFIjKee\n3cz7Thp6zFq6hMBxnJziSve6mRNbSn7evLRkdjvPbNjB/GmjRuSEDOKf9bsX+B2CiIgnqqE8K/eY\no6JrHME0XYmmjW/mtS2dgPtternXKLrunatobKqjc/fevFs7Sq1vIDvkN0Zl7tRR3Hb5m0p6Lvuu\nZeI1HdtWzxcvPSQ+413ut8vU8c0Z39+MiS0Fjc9JF5/fxo8e6OLX2liTNraPv2MlkWiMUDDA+05e\nRG8kmtN1LGYMU6JCz5tXx88mNbZRzQNJ9dJ5Y7nk9CV533ulis1PqdeiEmISEREpB6eQsSWFMMZc\nCFxlrZ2d8Ngq4BGgxVrbWZZARESkohhjzgd+ktLtetg44fL7y/OHVCQPv/76O+nq2EJdUztrLrrD\n73BkhAtu+gO3f/7jZT1mKBSgra3R828zy/l14BPANGPM6ITHVgFPKzESEalq04GfG2P+nzHmLGNM\nfoPcREREPFK25Mha+xTuNN43GWOajTHzgctw1z0SEZEqZa293lp7CPAeoAH4lTHmB8aYo30OzRML\nGi2Lm9azoNH6HYqISFGqoTwrd0fyU4HJwEbgIeBb1tqvljkGERGpMPEvzN4NvAP4N/Ad4HhjzLDv\nD7S1p43NPaPZ2jPyV5YXkZGtGsqzsk7IYK19FTiunMcUEZHKZox5EngR+C7wGWttV/ypB4wxv/Iv\nMm+83u3tGmwiIn6phvKs3LPViYiIpDoeWGKt/SWAMeZ04KfW2j3W2jf7G5qIiFQTzc8qIiJ+uw2Y\nl/B7C24rkoiISFkpORIREb+1W2u/0PeLtfYbQP6rD1eo1tAO2kLbaQ3t8DsUEZGiVEN5pm51IiLi\nt9eMMR/HndE0ABwCvOpvSN6ZXreBmkAP3dEwaztGTM4nIlWoGsozJUciIuK3c4G34449igB/Aa7x\nNSIPreuY73cIIiKeqIbyTN3qRETEb2HgdeAx3MQoBpzla0QeihLs/yciMpxVQ3k2LFqOjDHTcAfs\n7g/sAu6z1l5ZpmO/GbgLeMhae3bKc0cANwLzgZeAG6219yY8/0HgfcAEYC1wqbX2SQ9jmwbcChwK\n9AD/A1xird1ZAbEtAT4HrAD2AA8DH7TWbvI7tpQ4b8E9Z4H4777HZoyJAntxK4hO/P+3W2svqZD4\nPgpcDDQDjwLvsta+6GdsxphDgP/FPVd9AkDYWhv0+7wZY5bifh6W4X4eHowfY0sFxLYc+AywHLd8\nvdVa+7n4c+WK7UHgaeCVhMdiGbYVEREpmeHScvRj4GVgBrAGeJsx5tJSH9QY82Hc5OOZNM9NAO7H\nTdrGApcCtxtjlsWfPwH4BG53kfHAz4CfGWPqPQzxp8BWYCpuxWYh8Fm/YzPG1AC/wl3odyywb/w4\nX/E7tpQ4lwLnEa+EGWMmVkhsMWCetbbBWlsf//8llXDujDEXA2fjJuQTcSu0l/kdm7X29wnnqsFa\n2wBcB9znd2zGmCDwc+CR+PEXAuOA2yogtjbgl7hJ7gTgzcDFxphTyhzbHmvtBdbaaxL+fbzY9yci\nIpKvik+OjDErgMXAFdbaDmvtv4HPAxeV4fB7gFW4q7WnOgew1tq7rLXd1toHgQeAC+PPXwR801r7\nhLV2L3AzbqX3BC8CM8a04g5eviq+FsiruC1ch/odG9AAXA3cZK3tsdZuwU1w962A2AAwxjjAV3C/\nze9TEbHhthY5aR6vhPg+BFxtrX02/nm81Fp7aYXE1i/eqvoh4CMVENvE+L+7rbW91tptuJ+H/Sog\ntgOAJmvtx6y1Xdbap+PHeFeZY3vQGHOBMWaeMWZW37+i312FmFP/HPMbnmFO/XN+hyIiUpRqKM8q\nPjnC7YbygrV2Z8JjTwLGGNNYygNba//bWrsrw9PL43EkehJYme55a20MeCrh+WJj22GtvdBa+0bC\nw1Nxu6X4Hdt2a+2d1toouBcKeAdwn9+xJXgPbvJ7b8JjyyokNoBPG2NeNMZsM8Z8NX4RHKD6AAAg\nAElEQVSv+3rujDGTgJlAuzFmvTFmszHm+8aYMX7HlsYngW9YazdUQGyvAH8FLjLGNBpjxgGn4La0\n+B0bQCz+ZUGfbcBSyvt5OBK3FfdrwB3xf98oYD8VqStay55oHV3RWr9DEREpSjWUZ8NhzFE77h/r\nRFvj/x8D7C5vOP3acbv6JdqKG1Pf8+niHkMJxFvY3g+cCFxRCbHFv73/FxAEvg5ci9uFx9fYjDHj\n47EcmvJUpVzTR3HHz5wPzMJNKm+rgPimxP9/KnAE7nX9EXA7bmthJZw7jDEzgLcBcxKO7Vts1tqY\nMeZU4Ne4XdMAfovbunq/n7HhdvXrBK43xnwKmIQ7hqgtfuwN5YjNWnt4vPvhGGvt6/m+PheFjpXz\nwoa9k73cnYiIb6qhPBsOLUeQvotRJRgqrrLEbYw5CHeMzxXW2odyPHbJY7PWvmStrQVM/N93cjx2\nqWP7HHCHtdYWcOxynLeDrLXfjHdJtMCVuON8Qj7H17fvT1trX4935fwEbkIeowLOXdzFwI9TWlV9\niy0+Bu+nuEluKzAZ2AHc43ds1trtwFtxx3K+Bnw7/i9SztiMMafgzlL3YPz3zxpjzvBi3/H9FTRW\nTkREqs9waDl6A/cbykTtuJWxNwZvXjaZ4to0xPN/9zKI+KDo7wAXW2v7KlsVEVsfa+2/49/aPoI7\nMN232IwxRwIH4o6pgOTKXUWdtwQv4LbSRDMcv1zxbYz/P3FZ7Bdwz2HY59gSnYo73qiP39f1SGCG\ntfbq+O8dxphrcbug/dLn2LDWPoI7EygAxpiTcVuMynneLgVW4864CfAx3Na1+wrYVzofAj5krX02\n4XgYYy4nPq4q/viDxpi+cVXv8+jYIiIyjAyHlqMngGnGmNEJj60CnrbWdvoUE7hxLU95bCXuOh2D\nnjfGBHD78D+GR4wxBwLfAk5JSIx8j80Yc7gx5p8pD8fi//6MO723L7HhDjIfB7xkjHkD99tqxxiz\nCbdS52dsGGOWGmM+m/LwPkAX8Auf49sA7MQdj9JnJtBdAbH17XcJMA34v4SH/f6sBoFAfL996nA/\nD7/Gx/NmjKk1xpxvjGlKePho3C8ynihnbPFJHfqm747gXatUMWPlPNEQ6KQxuJuGgJ9/skREilcN\n5VnFtxxZa58yxjwO3BT/lm8ycBnuzEh+uge41hhzQfznI4G34H77Ce5MaN81xnwXd/2PD+NWcH/u\nxcHj/fNvx+1K92AlxYabcLQYYz6NO7anCbf71e/ix77cx9guw/1Wus9U3PEHS3A/D1f5GBu438pf\nFE/WbsWdvv6TuAPV7wY+4Vd81tqIMeYO4KPGmN/jrolzDW7L5beBa3w+d+DOALfFWtuR8Jjfn4dH\ngA7gOmPMDQzM5vgw7rnz7ZriJrafABYYYz4WP/45wMHAq/GYyxHbD40xPwNmG3ftsSPxbkKGYsbK\neWJOw/PUBHrojoZZ27HQy12LiJRVNZRnw6HlCNw/apNxu/U8BHzLWvvVUh/UGLPHGNOJu47HaQm/\nEx/PcDzwAWA77jiWc6y16+PP/wq4Cvg+sAX3j/2x8W9HvXAA7gDiL/bFlRBfnZ+xxWcWPAq3he8N\n3BaZ7cDZ1trNPse2w1r7at8/3HsqZq19zVr7sp+xxY/xKnAs7jiQzcAfcFtlrqiAe474/v8HtwXw\nX4DFXUS3EmIDd62ejYkP+B2btXYr7vpBB+G2vv0ddxKESvg8xIDTcD+vO4AvxI//t3KeN2vtF4BL\ncKde/y1wvLX2i8W9u37FjpUrmu2czboOg+2cXepDiYiUVMbyzIFQKFDWf8FgadIYJxbTIuQiIuIf\nY8w3GehS189ae4EH+54OPA8ss9Y+FX9sHvBP4De4S0W8M2H7j+B2VV6dbn/pnHD5/fpDKhXn119/\nJ10dW6hramfNRXf4HY6McLXbHuWHd97kx6E9/4Kr4rvViYjIiHd3ws9h3JZxr/4+JY6Veyr+WOJY\nufNTtk8cVyUiIjno7Y2wbVt5V9cJBgO0tNR7vl8lRyIi4qs04yb/xxjzS4/2XcxYORERyUUMenuj\nfkfhCSVHIiLiq3hykmgCAxMpeOEqoAZ3rFwI+CHuWLlOY8zxwJeAL+NOTd8/rsor0+teJuj0EomF\neLFrqpe7FhEpq2ooz5QciYiI3xL/wsZwu8Ed79XOrbXduBNLfCDNc3/AneWwZAJOlKATJcbI+FZV\nRKpXNZRnSo5ERMRvv2XwhAzT45MpYK39Xdkj8tDze6b7HYKIiCeqoTxTciQiIn67AlgIPI6bJB0A\nrMNdCiCGu0aaiIhIySk5EhERv/UAxlrbBWCMqQPus9ae529YIiJSbZQciYiI36aT/PcoAEzzKRbP\nhZ0e+tab7YmF/Q5HRKRg1VCeKTkSERG/3QL8zRizJf57O+DLaoKlsKDxGWoCPXRHw6ztWOh3OCIi\nBauG8kzJkYiI+MpaexdwlzGmHXe18y3W2tQJGoat5/dMwyFGzPuF3EVEyqoayrOA3wGIiEh1M8Yc\nbIz5E/CwtXYz8HFjzBF+x+WVXZFmdkZa2BVp9jsUEZGiVEN5puRIRET8dgNwHO7sdABfAT7lXzgi\nIlKtlByJiIjfeq21W4ivdWSt3cTgdY9ERERKTmOORETEb08YY74CTDLGXAIczwha22hizUaCToRI\nLMhr3RP8DkdEpGDVUJ4pORIREV9Zaz9ijDkMeAF3QoZrrbV/9DUoDzWHOgg7vfTEQrzW7Xc0IiKF\nq4byTMmRiIj4yhhzv7X2rcBv/Y6lFJ7pnON3CCIinqiG8kzJkYiI+G27MeZ24C9A/3eR1to7/QtJ\nRESqkSZkEBERXxhjTov/+BywATgNmBr/N8WvuEREpHqp5UhERPzyXuAH1trrAIwxv+n7WURExA9K\njkRExC+pS6yPyOm7FzetpybQQ3c0zNqOhX6HIyJSsGooz4ZVchSLxWJbt+4mGh2Rfz8LEgg4jB7d\niM7LYDo36em8ZKZzk14g4NDe3pSayHihKk7yhq5JBJwo0Zh6sovI8FYN5dmwSo4cxyEQcFRpSRAI\nODovGejcpKfzkpnOTXqBQCnyIgD2McZ8O/6zk/I71trzS3Xgctra2+Z3CCIinqiG8mxYJUciIjKi\nnJHy+zd8iUJERCROyZGIiPjCWvuw3zGIiIgkUnIkIiJSQmPCmwk6USKxAJt7xvgdjohIwaqhPFNy\nJCIiUkLja97on91ppFYmRKQ6VEN5puRIRESkhNbvXuB3CCIinqiG8mzkzsMnIiIiIiKSByVHIiIi\nIiIiKDkSEREREREBNOZIRESkpBY0WsJOLz2xEP/YbfwOR0SkYNVQnik5EhERKaGtPW0EnQiRWNDv\nUEREilIN5VnRyZEx5s3AXcBD1tqzh9j2g8D7gAnAWuBSa+2TxcYgIiJSqV7vHud3CCIinqiG8qyo\nMUfGmA8DtwLP5LDtCcAngHOB8cDPgJ8ZY+qLiUFERERERMQLxU7IsAdYBfw7h20vAr5prX3CWrsX\nuBmIAScUGYOIiIiIiEjRikqOrLX/ba3dlePmy4H+LnTW2hjwFLCymBhEREQqWWtoB22h7bSGdvgd\niohIUaqhPCvnhAztwLaUx7YCY8oYg4iISFlNr9tATaCH7miYtR2tfocjIlKwaijPyj1bnVPsDoJB\nLc2UqO986LwMpnOTns5LZjo36el8FGddx3y/QxAR8UQ1lGflTI7ewG09StQO/D3XHTiOw5/+9CdW\nr17taWAjQUuL5rXIROcmPZ2XzHRuxEtRRu6UtyJSXaqhPCtncvQE7rij7wAYYwLAMuAb+exk9+4u\ntm3b7X10w1QwGKClpZ6dO/cQiUT9Dqei6Nykp/OSmc5Nen3nRUREZKQraXJkjPkH8E5r7SPAV4Dv\nGmO+i7vG0YeBLuDn+ewzEonR26tKS6pIJKrzkoHOTXo6L5np3IiIiFSnYtc52mOM6cRdu+i0hN/7\nzAOaAKy1vwKuAr4PbAGOBI6NT+tdEf7xj/VcddXlAGzduoVHH/1j1u3vvPPr3HrrzZ4ce/PmN7jw\nwvOH3O6xxx5ly5bNnhxTRERKb079c8xveIY59c/5HYqISFGqoTwrquXIWpu1n4W1Npjy+9eArxVz\nzFJasGAhN974OQD+8pfHWbduLQcccFBZjj1mzFi+8Y1vD7ndfffdy0UXvY/2dk3yJyIyHHRFawk6\nISKxkd9XX0RGtmooz8o9W11ZbNr0Op/85DVs376dSKSXk08+nRkzZnLvvd/mllu+DMB5553OUUcd\nw/nnX8DOnTs599zTuPbaT3HrrTfzyU/exBe+8Fmi0RjRaIzLL7+Cb33rG/ziFz8lGAxy0kmncMYZ\n5wDQ2dnJ1Vd/mGee+SfTp8/khhtupra2lkMOWckll1zOT3/6E3bu3MmVV17D6tUHsHdvF7fccjNr\n1z5FIBDk6KPdGDZufI3zzjuD//u/33HnnV+no2MXGza8zPPPP8fUqdP59Kc/z733fpsnn3yca665\nko985GpWrhyYmCIajXLTTdezdu1T9PT0smbN0bz73RcDsH79Om6++Qa6u/cydeo0rrnmepqamnj8\n8ce47bYv0NPTQ1vbaK688homT57CDTdcR0tLK48//icuu+wj3HHH11i8eCkPP/wQn/70LUyePKX8\nF1VEZJjasHey3yGIiHiiGsqzETk/6w9+8D1WrlzN3Xd/n9tv/zZr1z7FPvss5Nln/wXAzp07qa9v\nYN06d6K89evXsmTJfjiOg+M4zJgxk5NPPp2jjz6Gyy+/gieffILf/OZB7rnnh9xxx9388If38dxz\nzwJuC9OHP3wV3//+/WzbtoVHH/1Dfxxbt27lrru+x1VXfZzPfOZTAHzve/fQ0bGLe+/9EV/72p38\n4hc/46mn3LVxHWdgpvPf/vYhrrrq49x330/Ytm0LjzzyB97+9ncyduw4PvWpTyclRgC/+c2DvPTS\ni9x774+48867+clPftT/fq+77qNcfvkV3Hvvj5g6dTrf+tY32LNnD9dd9zGuvvoT3H33DzjiiKO4\n6abr+/e3bt1avvnNe1m6dBkAL774Anff/QMlRiIiIiIyYo3I5KitrY3HHnuUdev+TmNjI9dffxON\njU1MmTKFF198gXXr1rJy5Wq2bt0CwN//vpb99luecX+PPfYoBx54MOFwmIaGBu6++/vMmjUHgGXL\nVtDWNppAIMDMmbPZtGlT/+uOOeZYAFat2p+Ojl288cYm/vznP/HWt54MQGNjE4cffiSPP/7YoGMm\n7nfWrDm8/vrG/udiscExHnnkUXzpS26PxebmZmbMmMmrr77Ciy++wN69e1m0aAkA73nP+3nPe97P\n00+vY+rUqcydawA47rgTWbv2KXp7ewFYuXI1gcDA7VGu7oUiIiIiIn4Zkd3qzjjjHHp7e7nxxuvo\n6Ojg/PMv4JRTTmfp0uWsX/93Xn75JRYvXsorr2zgpZfcZOmyyz7C9u3b0u5v166dSS0mtbV1/T83\nNjb2/xwMBolGI/2/Nze3JmzXxK5dO9m+fRvNzS0J2zTz6quvDjpmU1NTxv2ms3XrVm6++SaeffYZ\nAoEAmza9TiwWZdeunTQ3N/dvFwq5lzw1jpqaGmpqati1a+eg95Uaj4iI5K4h0InjxIjFHDqjDX6H\nIyJSsGooz0Zky1EwGOT88y/gnnt+yGc/+wXuvPNrbNjwMkuW7Mf69X9n3bq1LFy4iIULF/G3vz3F\nxo2vMXPmrIz7a20dxY4d2/t/37ZtK52dnRm379OXaAB0dHTQ0tJKW9toduzY0f/4jh07aGtrK/Cd\nDvjqV79Ma2sr99zzQ+6554fMnDm7P/bt2wdi37u3i82bN9PWNjrp8T179tDb20tr66iiYxERkQFz\nGp5nQeO/mNPwvN+hiIgUpRrKsxGZHN188w088cSfAZg+fSbNza04jsPixUv4xz/Ws3t3By0tLeyz\nz7488MD/w5gFg/YRCoXYtWsX4HYp+/3vH6arq4uuri7e974LeeWVl4eM46GH/g+ARx/9I6NGjWLM\nmLEccMBB/PSnPyEWi7Fr1y5++9sHOfDAg3N+b8FgKCnp6rNjx3ZmzpxFIBDgiSf+zKuvbqCrq4up\nU6fR3NzMn//8JwC+9a07uPfeu9hnn33ZuPE1/vWvZwD42c/uZ/nylUld6UREpHi2czbrOgy2c7bf\noYiIFKUayrMR2a3urW89mc985ga6uvYADieddHJ/t7hgMMSsWe4FnTfP8Nxzz3LssScM2sfKlav5\n3vfu4T//84N89rNf5IQTTuKcc06ltraWE088mblzDb///cNZ4wiHw7z97WeyY8cOPvax6wA49dQz\nufXWmzn33NMIBAKcfvpZLFiwkI0bX8vpvR166GF89KMf5tJLP8xb3nJ8/+Nnnnk2n/zktfzkJz/i\nkEMO47zz/oMvf/kLzJs3n+uv/zTXX38Nt9zS3T9bXV1dHdde+yluvPE6urt7GDduHFdc8bG0x0yc\nKEJERPKzN1o39EYiIsNANZRnTizd6P4K5ThO7H//9zcsXZp58oRKccghK/n5z39NS0vr0BsXIRQK\n0NbWyLZtu+ntjZb0WMONzk16Oi+Z6dykFz8v+pYkgxMuv3/4/CGVqvHrr7+Tro4t1DW1s+aiO/wO\nR0a44KY/cPvnP17WY5bqb5P6UImIiIiIiDBCu9VVAnVFExERgOl1LxN0eonEQrzYNdXvcEREClYN\n5ZmSoxL53e/+7HcIIiJSAQJOlKATJYa6aorI8FYN5ZmSIxERkRJ6fs90v0MQEfFENZRnGnMkIiIi\nIiKCkiMRERERERFA3epERERKKuz0ADHAoScW9jscEZGCVUN5puRIRESkhBY0PkNNoIfuaJi1HQv9\nDkdEpGDVUJ4pORIRESmh5/dMwyFGDC3xICLDWzWUZ0qORERESmhXpNnvEEREPFEN5ZkmZBARERER\nEUHJkYiIiIiICKBudSIiIiU1sWYjQSdCJBbkte4JfocjIlKwaijPlByJiIiUUHOog7DTS08sxGvd\nfkcjIlK4aijPlByJiIiU0DOdc/wOQUTEE9VQnmnMkYiIiIiICB60HBljpgG3AfsDu4D7rLVXptnO\nAa4FzgfageeAG6y13y82BhERERERkWJ50XL0Y+BlYAawBnibMebSNNu9F7gAOApoBT4K3G2M2deD\nGERERERERIpSVMuRMWYFsBg4wlrbAXQYYz4PXALcmrL5MuAP1tpn47//3BizJf76dcXEISIiUqkW\nN62nJtBDdzTM2o6FfocjIlKwaijPiu1Wtwx4wVq7M+GxJwFjjGm01u5OePznwG3GmCXA08BbgHrg\n4SJjEBERqVgbuiYRcKJEYxrmKyLDWzWUZ8UmR+3AtpTHtsb/PwboT46stf/PGLMU+CsQAzqB8621\nrxQZg4iISE6MMbcAl1hrA/HfjwBuBOYDLwE3Wmvv9fKYW3vbvNydiIhvqqE882IqbyeXjYwx5+FO\nxrACtxvdGuBeY8xL1tq/5HqwYNAhFBq52Wq+gsFA0v9lgM5NejovmencpDdSzkf8C7rzcL+gwxgz\nEbgfeD/wXeAQ4AFjzD+ttU/6FqiIiPim2OToDdzWo0TtuH943kh5/P3A1xL+4PzCGPMQ7h+qnJOj\nxsY62toaCwx35Gppqfc7hIqlc5OezktmOjcjT3zG1K8AnwP+K/7wOYC11t4V//1BY8wDwIXA+8of\npYiI+K3Y5OgJYJoxZrS1tq873SrgaWttZ8q2wfi/RLX5HnD37i62bds99IZVIhgM0NJSz86de4hE\non6HU1F0btLTeclM5ya9vvMyzL0H2APcy0BytAx3nGyiJ4HTvTzwmPBmgk6USCzA5p4xXu5aRKSs\nqqE8Kyo5stY+ZYx5HLjJGHM5MBm4DLgZwBjzT+ACa+0jwAPAhfFv5Z4GjgSOAD6TzzEjkRi9vaq0\npIpEojovGejcpKfzkpnOzchijBmPu87eoSlPteMuRZFoK+6YWc+Mr3mjf3ankVqZEJHqkLE8cyj7\nsJdSdfn2YszRqcDtwEZgB/AVa+1X48/NBZriP9+A23L0E2As8AJwobVWs9WJiEgpfQ64w1prjTHT\nU57LadxsMdbvXlDqQ4iIlEWm8iwUCo6YYS9FJ0fW2leB4zI8F0z4uRf4RPyfiIhIyRljjgQOBN4V\nfygxGco0bnZTGUITERkxensjZR/2Uqou3160HImIiFSqc4BxwEvGGIAA4BhjNuG2KJ2dsv1K4LGy\nRigiMtzFGDHd0ZUciYjISHYZ8LGE36cCjwJLcP8GXmWMuQC4B3cs7FuA1eUOUkREKoOSIxERGbGs\ntTtwx8MCYIwJAzFr7Wvx348HvgR8GXcs7DnW2vVexrCg0RJ2eumJhfjHbuPlrkVEyqoayjMlRyIi\nUjWstS+SsKyEtfYPwH6lPObWnjaCToRILHU1CxGR4aUayjMlRyIiIiX0evc4v0MQEfFENZRn5Z2Q\nXEREREREpEIpORIREREREUHd6kREREqqNbSDADGiOOzobfU7HBGRglVDeabkSEREpISm122gJtBD\ndzTM2o6RWZkQkepQDeWZkiMREZESWtcx3+8QREQ8UQ3lmZIjERGREooycqe8FZHqUg3lmSZkEBER\nERERQcmRiIiIiIgIoG51IiIiJTWn/jlCTi+9sRDP7pnldzgiIgWrhvJMyZGIiEgJdUVrCTohIrGR\n31dfREa2aijPlByJiIiU0Ia9k/0OQUTEE9VQnmnMkYiIiIiICEqOREREREREAHWrExERKamGQCeO\nEyMWc+iMNvgdjohIwaqhPFNyJCIiUkJzGp6nJtBDdzTM2o6FfocjIlKwaijPlByJiIiUkO2cjUOM\nGI7foYiIFKUayjMlRyIiIiW0N1rndwgiIp6ohvJMEzKIiIiIiIig5EhERERERARQtzoREZGSml73\nMkGnl0gsxItdU/0OR0SkYNVQnhWdHBljpgG3AfsDu4D7rLVXZtjWAF8FVgGbgVustbcWG4OIiEil\nCjhRgk6UGFG/QxERKUo1lGdedKv7MfAyMANYA7zNGHNp6kbGmDrgV8BPgdHAycAFxph5HsQgIiJS\nkZ7fM51/dc7m+T3T/Q5FRKQo1VCeFdVyZIxZASwGjrDWdgAdxpjPA5cAqS1CpwPbrbWfj//+l/hr\nRUREREREfFdsy9Ey4AVr7c6Ex57E7UHXmLLtwcA6Y8wdxphtxpinjTFnF3l8ERERERERTxQ75qgd\n2Jby2Nb4/8cAuxMenwIcAlwIXIzbkvRtY8x6a+3fcj1gMOgQCmmSvT7BYCDp/zJA5yY9nZfMdG7S\n0/koTtjpAWKAQ08s7Hc4IiIFq4byzIvZ6nJdItcB/mKtvS/++7eNMe8BTgNyTo4aG+toa0ttlJKW\nlnq/Q6hYOjfp6bxkpnMjXlrQ+Aw1gR66o2HWdiz0OxwRkYJVQ3lWbHL0Bm7rUaJ23JTyjZTHNwJt\nKY+9AEzI54C7d3exbdvuoTesEsFggJaWenbu3EMkMnJnDimEzk16Oi+Z6dyk13depDDP75mGQ4xY\nzt8liohUpmooz4pNjp4AphljRltr+7rTrQKettZ2pmz7NPDelMdmAL/M54CRSIzeXlVaUkUiUZ2X\nDHRu0tN5yUznRry0K9LsdwgiIp6ohvKsqI7k1tqngMeBm4wxzcaY+cBluOseYYz5pzHmwPjmdwNj\njDFXGWPqjDFn4U7ocHcxMYiIiIiIiHjBi1G2pwKTcbvNPQR8y1r71fhzc4EmAGvta8BxuBMxbAU+\nAZxorX3egxhERERERESKUvSEDNbaV3GTnnTPBVN+/z2wX7HHFBERGS4m1mwk6ESIxIK81p3XMFsR\nkYpSDeWZF7PViYiISAbNoQ7CTi89sRCvdfsdjYhI4aqhPFNyJCIiUkLPdM7xOwQREU9UQ3mmlf1E\nRERERERQciQiIiIiIgIoORIREREREQE05khERKSkFjetpybQQ3c0zNqOhX6HIyJSsGooz5QciYiI\nlNCGrkkEnCjRmDpriMjwVg3lmZIjERGREtra2+Z3CCIinqiG8mzkpn0iIiIiIiJ5UHIkIiIiIiKC\nutWJiIiU1JjwZoJOlEgswOaeMX6HIyJSsGooz5QciYiIlND4mjf6Z3caqZUJEakO1VCeKTkSEREp\nofW7F/gdgoiIJ6qhPNOYIxEREREREZQciYiIiIiIAEqOREREREREAI05EhERKakFjZaw00tPLMQ/\ndhu/wxERKVg1lGdKjkREREpoa08bQSdCJBb0OxQRkaJUQ3mm5EhERKSEXu8e53cIIiKeqIbyTGOO\nREREREREUHIkIiIiIiICqFudiIhISbWGdhAgRhSHHb2tfocjIlKwaijPlByJiIiU0PS6DdQEeuiO\nhlnbMTIrEyJSHaqhPFNyJCIiUkLrOub7HYKI/P/27j7Irvo87Pj37l0pkhaJ6sW8mCIRwDySaTCW\nhEydxEltJhnHxVNqJtOYtGO7DokNCZIpA3KSQtomJsUGJ3aAVHVsQomLp8OMHZzGM7anaVLbqYTK\nUCPpUYwlDMYYKVIltJLQvtz+ca7QZb3v9+6e3Xu+nxnNas85957nPPfe53eePS9XHVGFetZ2cxQR\nq4H7gauBl4FHM/OOCR5zAbAb+Hhm/rt2Y5Akaa4apntveSupWqpQzzpxQ4bHgOeAi4BrgOsiYvME\nj/lDYLAD65YkSZKkjmirOYqIjcAVwO2ZeSwznwHuBW4c5zG/AKwFHm9n3ZIkSZLUSe0eOVoP7M/M\noy3TdgIREX0jF46IRcCngA8DQ22uW5KkOe/Sxd9l7ZK9XLr4u2WHIkltqUI9a/eao5XA4RHTDjV/\nrgL6R8y7E/hfmflXEfG+6aywXq/R2+vXM51Wr/e85qfOMDejMy9jMzejMx/tOTn8Y9RrvQw1uv9c\nfUndrQr1rBN3q6tNZqGIeCPwAeAftbOyvr5FLF/+IwelKm/ZssVlhzBnmZvRmX3ry2MAABXfSURB\nVJexmRt10vOvXFB2CJLUEVWoZ+02Rwcojh61Wgk0mvNa3Q/clZkjp09Jf/9JDh8eeUCquur1HpYt\nW8zRoycYGhouO5w5xdyMzryMzdyM7nReJEnqdu02RzuA1RGxIjNPn063CdiVmcdPL9S83fdPA2+M\niNO37j4LGI6Id2fmxsmucGioweCgOy0jDQ0Nm5cxmJvRmZexmRtJkqqpreYoM5+MiO3A3RFxK3AB\nsAW4ByAi9lCcSvdN4MIRD7+P4hbg/7GdGCRJmsuW9BynVmvQaNQ4Pryk7HAkadqqUM86cc3R9cA2\n4EXgCPBAZj7YnPcG4KzMbAAvtD4oIo4DRzPzpQ7EIEnSnHTpkn0s7Bng1PACnjp2ednhSNK0VaGe\ntd0cZeYLwLvGmDfmrSwy8/3trluSpIk0T+3+JPA2YAD4S+CWzDwaEW8HPkbx/XvfAz6WmX/WyfXn\n8Uuo0aAxufsXSdKcVYV65v1ZJUnd7s8pvmbiQmADcDnw8Yg4D/gixQ2DXgdsBrZFxPpOrvyV4UWc\nHF7MK8OLOvm0kjTrqlDPbI4kSV0rIs4GtgNbM/NE82yHhyiOIt0AZGY+lJmnMvNrwJeAD5YXsSSp\nTJ245kiSpDkpM4/wo83OhcD3KY4i7Rwxbyfwi7MQmiRpDrI5kiRVRkRsBG4G3g3cTnHX1FaHgFWd\nXOeaRc9Rrw0y1Ojl2ZMjb9wqSfNHFeqZzZEkqRIi4icpTpu7PTO/HhG3w8xfVdxTG6ZeG6aB350l\naX4bs57VoLd3dq/WqddnZn02R5KkrhcR1wIPAzdl5iPNyQeAlSMWXQl09Csm9p1Y08mnk6TSjFXP\nenvrLF/eN8vRzAybI0lSV4uItwKfA97TvOnCaTuA941Y/Crgb2cnMknqDoODQxw+3D+r66zXe1i2\nbHHHn9fmSJLUtSKiTvFF5bePaIwAHgHuiogPNP//DuCdwFtmN0pJmucaMDjYHacO2xxJkrrZP6b4\ngtc/jIhPAQ2K64waQAD/FPgU8EfAfuCGzHy6kwEsqA28utqBxoJOPrUkzaoq1DObI0lS18rMvwHq\n4yzyHPDmmYxhXd9eFvYMcGp4AU8du3wmVyVJM6oK9czmSJKkGbTvxGpqNGjM/I3xJGlGVaGe2RxJ\nkjSDXh5aWnYIktQRVahns3tDckmSJEmao2yOJEmSJAlPq5MkaUadv/BF6rUhhhp1fnDqvLLDkaRp\nq0I9szmSJGkGLe09xoLaIAONXn5wquxoJGn6qlDPbI4kSZpBe49fWnYIktQRVahnXnMkSZIkSdgc\nSZIkSRJgcyRJkiRJgNccSZI0o64462kW9gxwangBTx27vOxwJGnaqlDPbI4kSZpBz598PT21YYYb\nnqwhaX6rQj2zOZIkaQYdGlxedgiS1BFVqGfd2/ZJkiRJ0hS0feQoIlYD9wNXAy8Dj2bmHWMs+2vA\nZuD1wHeAuzLzS+3GIEmSJEnt6sSRo8eA54CLgGuA6yJi88iFIuKfA78HvA9YDnwa+EJEXNSBGCRJ\nmpNWLTjIuQtfYtWCg2WHIkltqUI9a+vIUURsBK4A3p6Zx4BjEXEvcAvwyRGLLwa2Zua3mr//SUT8\nPsURp/3txCFJ0lx17sIDr97d6eDAqrLDkaRpq0I9a/e0uvXA/sw82jJtJxAR0ZeZ/acnZuYjrQ+M\niH8ALAW+32YMkiTNWU/3rys7BEnqiCrUs3abo5XA4RHTDjV/rgL6Gds24JuZ+ddTWWG9XqO31/tI\nnFav97zmp84wN6MzL2MzN6MzH5KkqujErbxrU1k4InqBh4B1wD+Z6sr6+haxfHnfVB/W9ZYtW1x2\nCHOWuRmdeRmbuZEkqZrabY4OUBw9arUSaDTnvUZELAK+BCwCfjozRx51mlB//0kOHx7vgFS11Os9\nLFu2mKNHTzA0NFx2OHOKuRmdeRmbuRnd6bxIktTt2m2OdgCrI2JFZp4+nW4TsCszj4+y/H8FTgLv\nysyB6axwaKjB4KA7LSMNDQ2blzGYm9GZl7GZG3XSur5kQW2QgUYvu/uj7HAkadqqUM/aOpE8M58E\ntgN3R8TSiFgLbKH43iMiYk9EvLX5/xuAy4FfnG5jJEnSfHNoYDkHB1ZwaKD7v1leUnerQj3rxDVH\n11PcXOFF4AjwQGY+2Jz3BuD0BULvB9YAhyICimuVGsDDmfmrHYhDkqQ554enzik7BEnqiCrUs7ab\no8x8AXjXGPPqLf+/pt11SZIkSdJM8f6skiRJkkRnTquTJEljOLv3CD00GKbGkcGzyw5HkqatCvXM\n5kiSpBm0ZtHzLOwZ4NTwAp461p07E5KqoQr1zOZIkqQZ9O1ja8sOQZI6ogr1zOZIkqQZNEx94oUk\naR6oQj3zhgySJEmShM2RJEmSJAGeVidJ0oy6dPF36a0NMtjo5TsnLi47HEmatirUM5sjSZJm0Mnh\nH6Ne62Wo0f3n6kvqblWoZzZHkiTNoOdfuaDsECSpI6pQz7r6mqMnntjOOecs45xzlvHEE9vLDkeS\nJEnSHNbVzZFmls2nJEmSuomn1UmSNIOW9BynVmvQaNQ4Pryk7HAkadqqUM88cqR5wyNVkuajS5fs\nY13f33Hpkn1lhyJJbalCPfPIkSRJMyiPX0KNBg1qZYciSW2pQj2zOZIkaQa9Mryo7BAkqSOqUM88\nrU6SJEmSsDmSJEmSJMDmSPOYN2iQNB+sWfQcFy/ex5pFz5UdiiS1pQr1zOZojrMBkPwcaH7rqQ1T\nrw3TUxsuOxRJaksV6pnNUUVMZedytndE3fEV+D5oZS66y74Ta/i745ew78SaskORpLZUoZ7ZHGlW\nzJedvfkS51xiziRJUrewORqFO3uazzr1/u2Gz0E3bIMkSZo9NkfqGHdEJelHLagNsKB2igW1gbJD\nkaS2VKGetd0cRcTqiHg8Ig5GxL6IuHucZX8jIvZExP+LiP8ZEevbXb+6W2vDtWfP7rLDUZvmawM9\n3bgn+7j5mhdNzrq+vbxp6S7W9e0tOxRJaksV6lknjhw9BjwHXARcA1wXEZtHLhQR1wJ3Ar8MnAs8\nDjweEYvbWbk7FZpvfM/OfTt2zGwzNFvmWjxVte/Eavb2X8y+E6vLDkWS2lKFetZWcxQRG4ErgNsz\n81hmPgPcC9w4yuI3Ap/NzB2Z+QpwD9AArm0nhrK58zH/zMRrNt5zdsN7ZM+e3fN+G6SyvDy0lKND\ny3h5aGnZoUhSW6pQz9o9crQe2J+ZR1um7QQiIvpGLLuhOQ+AzGwATwJXTWWFu3fvcidNmqYnntjO\nihVnUavV2LGjMzdrKON0x25oOMs22Yb+kUf+lBUrziopSkmSZldvm49fCRweMe1Q8+cqoH8Sy66a\n/Oo2sX//OcAmAPbsWfbq9DO/n+n3it9HnzeeqTxussvu2bObLVtuAuC++/6ItWvXdSSWer2HZcvg\n6NEehoam/zxjLfuVrxzine+85tW4gVe3Y/Pm2+jEazHZec8+e+4U1ncm33/wB/dz2WVr245lPFN7\nzrHj7oSR69uzJ0d9zXbvXsrQ0OTeB+Pl/kfnTe/zMhM5nNr7/sx7ZsuWyb+3x1/fzD5uIp3+3EmS\n1O1qjUZj2g+OiK3AdZm5qWXaJcBe4OLMfLZl+ivNZf+iZdrDwGBmvn9SwdaYfrCSpGlrNKiVHcNc\nde2tXxx3bDp/4YvUa0MMNer84NR5sxWWKu6r/+lfc/LY37PorJVcc+Nnyg5HXWKselZ/6W/Ydu+/\nndVYent7WL68r+NjU7t/sj5AcUSo1UqKa4kOTHLZl9qMQZKkOWtp7zHO7n2Zpb3Hyg5FktpShXrW\n7ml1O4DVEbEiM0+fTrcJ2JWZx0dZdgPwMEBE9FBcs/SfJ7uyb30L+vtPMjQ09h/pdu/exS23fBgo\nTqdat+6No87bsuU27rvvnleXA6b1uLGWm+g5xzOdbfj0px/gsssmd6reVLZpuia7DTO5vnq9Rl/f\nInbs2MnNN39oyuubKM6Z2MbJPq6d99rpvPT3n+Tb3356Vl6LTiw72eeA6X+WW3MzVp2Zbu7bec2m\nW9cm+56c6HWo12vAojHj0/j2Hr+07BAkqSOqUM/aao4y88mI2A7cHRG3AhcAWyjuREdE7AE+kJnf\nAB4APh8RnweeAm4DTgJfnuz63vIWOHx4iMHB4TGXufLKy/ilX/pqy5TBV/83NHQE+N8ArF79w1f/\nf9llR5pLnPn9yivPPK71OZ94Yjv33Tf6cq3PP9Fzjmfk84y1jtduw9FJP//I5/m5n1vB1q2j52y6\nxtuG8V6jTq6vONwKR48eHTOW6W7DRPMneux01znWchs2XDXpnJ7Oy+HDQ/zET3T+tZjK6zvdPI23\nvuLmAlP9/Lz2PTNenZnu57yd12wqn6etW39+1Ods5/3a2+v3hUuSqqHdI0cA1wPbgBeBI8ADmflg\nc94bgLMAMvMrzWuUvgC8DtgO/ELztt6zbu3adbz00pmb7HXijlcbNlzV8eecr0bmohtVYRvVPcZ7\nv/peliSp0HZzlJkvAO8aY159xO9/DPxxu+vsdpPdialy8zXSeDnbuNEdv7lqJnbK5+qO/lyNS5Ik\nndGJI0eV4g6OJGkqrjjraRb2DHBqeAFPHbu87HAkadqqUM9sjppsejQX+D6Uus/zJ19PT22Y4YbX\nbkma36pQz2yOJKkNs9HQ2jTPb4cGl5cdgiR1RBXqWfe2fZIkSZI0BZU6cjTbf331r72SJEnS/FGp\n5kiaLTbGc9PI1+WGG/5VidGoKlYtOEi9NsxQo4eDA6vKDkeSpq0K9czmSBrDXG5w5nJs3c7ca6rO\nXXjg1bs7devOhKRqqEI9szmSJFVaRKwG7geuBl4GHs3MOzr1/E/3r+vUU0lSqapQz7whgySp6h4D\nngMuAq4BrouIzaVGJEkqhc2RJKmyImIjcAVwe2Yey8xngHuBG8uNTJJUBpsjSVKVrQf2Z2brhWQ7\ngYiIvpJikiSVxGuO5rENG67i0KFjLF/ex+HD/QwODpcdkiTNNyuBwyOmHWr+XAX0t7uCdX3Jgtog\nA41edvdHu08nSaUZs57VoLd3do+51Oszs75ao9GYkSeWJGmui4itwHWZuall2iXAXuDizHy2tOAk\nSbPO0+okSVV2gOLoUauVQKM5T5JUITZHkqQq2wGsjogVLdM2Absy83hJMUmSSuJpdZKkSouIbwDf\nBm4FLgC+DNyTmQ+WGpgkadZ55EiSVHXXUzRFLwJfBz5nYyRJ1eSRI0mSJEnCI0eSJEmSBNgcSZIk\nSRJgcyRJkiRJgM2RJEmSJAE2R5IkSZIE2BxJkiRJEgC9ZQcwGRGxGrgfuBp4GXg0M+8oN6rZ18zD\nJ4G3AQPAXwK3ZObRiHg78DFgLfA94GOZ+WelBVuiiLiPIi89zd8rnZuI+E3gJmAp8E3gVzLzWfMS\nVwKfANYDJ4CvAZsz8++rlpuI+HngIeDrmfneEfPGzUVE/AbwYeA84CmKHO6crdjL0s3jUlXHmiqM\nHVUYD7q9tlelXk+wnT9DsZ2XAweBP8nM322Z39Z2zpcjR48BzwEXAdcA10XE5lIjKsefA4eAC4EN\nFG+Kj0fEecAXKQbq1wGbgW0Rsb6sQMvSLIr/Emg0fz+fCucmIm4C3kuxk3M+sAvYUvX3TETUgS8D\n36DY/suBc4D7q5abiLiNYkd47yjzxs1FRFwL3An8MnAu8DjweEQsnp3oS9XN41LlxpoqjB1VGA+6\nvbZXpV5PsJ0XUsT+WWAF8C+AfxMR723Ob3s753xzFBEbgSuA2zPzWGY+A9wL3FhuZLMrIs4GtgNb\nM/NEZr5A0VG/DbgByMx8KDNPZebXgC8BHywv4tkXETXgAYq/GJ1W9dx8BPhoZn6n+fnZnJmbMS/n\nN//9l8wczMzDFDu7b6Z6uTkBbAKeGWXeRLm4EfhsZu7IzFeAeyh2Lq+dhbhL083jUhXHmgqNHVUY\nD7q9tlelXo+3necC2zJzW2YOZeZ24KsUNQo6sJ1zvjmiOCy6PzOPtkzbCURE9JUU06zLzCOZ+cHM\nPNAy+ULg+xR/2Rt5uHAncNVsxTdH/BrFB6r1EPl6KpqbiHg98OPAyoh4OiIORsQXImIVvme+D/wf\n4MaI6IuIc4D3UPyFqVK5ycxPZ+bLY8yeKBevmZ+ZDeBJujRXLbp2XKroWNP1Y0eFxoOuru1Vqdfj\nbWez6fnIiMkXAs83/9/2ds6H5mglcHjEtEPNn6tmOZY5o/mXy5uB32XsHFUmPxFxLnAX8KERs6qc\nm3/Y/Hk98HaKv3RfCGyj2nk5XSyvB/4ZcBT4AVAHPkrFczPCRLmoaq4qMy51+1hTobGjEuNBxWt7\nJet1RPw6cDHwYHNS29s5H5ojgFrZAcwlEfGTwFcoTun4enNy1XP0CeAzmZmjzKtqbk5v9+9n5g+b\np8fcCbyb4hBzVfNCRCykuK7iUeBs4ALgCPBIc5HK5mYUE+Wiqrnq+u2uyFhTlbGjEuOBtb1a9Toi\nbgZ+B3h3Zh5smdXWds6Hu9UdoOgCW62k+DAf+NHFu1vzQrOHgZsy8/SHfawcvTSbsZUlIt4BvBX4\nleak1g9FlXPzYvPnkZZp+ynys4Dq5gXgHcBFmfnR5u/HIuIuikPv/51q56bVRJ+fseb/3xmOq2xd\nPy5VYayp2NhRlfGgyrW9UvU6Iv4D8D7gZzPzqZZZbW/nfDhytANYHRErWqZtAnZl5vGSYipFRLwV\n+BzwnpbBCoocbRix+FXA385SaGW7geJuNN+LiAPAE0AtIl6i+DBsHLF8VXLzPMVpBVe2TPtx4BTw\nF1Q3L1CcZtETEa01cBHFzu1XqXZuWk1UW14zv5nP9XR/rrp6XKrQWFOlsaMq40GVa3tl6nVEfITi\nLnVXj2iMoAPbOeePHGXmkxGxHbg7Im6lOES6heLuE5XRvD3lNorTG742YvYjwF0R8YHm/98BvBN4\ny+xGWZotwG+1/H4hxfc3vIniPb61irnJzKGI+AzwmxHx1xTfxfLbFH8N/lPgt6uYl6ZvAMeA34mI\n3wOWUJyT/lcU+bmzwrlpNVFteQD4fER8nuK7JG4DTlLcSrdrdfO4VLGxpjJjR4XGgyrX9krU64i4\nmOI6wasz8/lRFml7O2uNRqMDoc6s5l1WtgE/S3FI+IHM/PelBjXLIuKnKD7cr1AcBm+0/AxgDfAp\nii/+2g/ckZlfLCXYkkXEGuC7mVlv/v5TVDQ3zfOvP0Hx3Ra9wH8Dfj0zj1c5LwAR8WaK3LyJ4nP1\nP4CPZOaLVcpNRJygqCMLmpMGgUZmLmnOHzcXEfGrFDsfr6O4BfSHMnPXrG1ASbp1XKryWNPtY0dV\nxoNuru1VqdfjbWdE/BZFc3Sq5SE1ijuIrms+vq3tnBfNkSRJkiTNtPlwzZEkSZIkzTibI0mSJEnC\n5kiSJEmSAJsjSZIkSQJsjiRJkiQJsDmSJEmSJMDmSJIkSZIAmyNJkiRJAmyOJEmSJAmwOZIkSZIk\nwOZIkiRJkgD4/zwMoB4ZjeJgAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbd65f4ce10>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAIDCAYAAAAjcQBbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXecFOX9x99b7o4rHBxIs2EfFIOKJbZYsBtNjMYWJRqT\nmK6m68/EllhiiyXGjqgIKGDDBgZERJEmRRCG3stRru7dbZ3fH3tldm/L7M7M1u/79YLbnXnK53lm\ndvf5zvN9vo9D0zQEQRAEQRAEQRAKDWe2BQiCIAiCIAiCINiBGDuCIAiCIAiCIBQkYuwIgiAIgiAI\nglCQiLEjCIIgCIIgCEJBIsaOIAiCIAiCIAgFiRg7giAIgiAIgiAUJGLsCIIgCIIgCIJQkIixIwiC\nIAiCIAhCQSLGjiAIgiAIgiAIBYkYO4IgCIIgCIIgFCRuuytQFOV24DdAT2A28HNVVTfYXa8gCIJQ\n+CiK8m/gZlVVnYqinA58ArS1n3YAGjBSVdVJ7elvAn4NDASWALeoqvpV5pULgiAImcBWY0dRlN8A\nPwJOA7YD/wR+D9xiZ72CIAhC4aMoytHASMIGTQfrVVU9KE76i4E7gfOAr4GbgfcURTlYVdVWu/UK\ngiAImcfumZ0/AH9QVXV1+3sxcgRBEATTKIriAJ4GHiH8IM0INwIvqao6v72MhwgbPBcDb9ihUxAE\nQcgutq3ZURRlb+BAoK+iKMsURdmlKMoERVH2sqtOQRAEoWj4JdAKjI06Xq0oypuKouxUFGWToii/\n1507Fuh0WVNVVQMWAcfbrlYQBEHICnYGKNi3/e8PgRHAsPZjz9lYpyAIglDgKIoyALgL+FXUqUbC\n63AeBQYBNwB3Kopyffv5vkBdVJ49gDyEEwRBKFDsdGNztP/9l6qqOwAURbkT+EBRlFJVVX3JCtA0\nTXM4HMmSCYIgCNaTy1++jwAvqqqqKooyuOOgqqoLCT9c6+BjRVGeAX4CjG4/ZrpdufjbdPjhh7Ni\nxQqGDBnC8uXLsy1HEATBLlL+8rXT2Nne/rdBd2w9YZH9gc3JCnA4HDQ2thIMhqxXZwKXy0l1dblo\nS5Fc1ga5rc9ObV5/kKVrdzNkcA2VPUpySptZRFt6dGjLRRRFOQs4Gfh5+6FkP3zrgcvaX+8kPLuj\npy/hYAWGycXfpoaGxs6/dXUe0+Xl8v1pNdLWwqRY2los7YT0f5vsNHY2E3YpOJqwTzSE1/D4ga1G\nCwkGQwQCuXnxRFt65LI2yG19dmh77p1lzFtRy4GDevL369JfulBs/WYVuawtR7mG8AOzjYqiQNgd\n26EoSi3hoDhVqqo+o0t/BLC2/fV8wut2XgVQFMUJDAdeSFVELl83K3XlcjutRtpamBRLW4ulnelg\nm7GjqmpQUZQXgdsVRfkMaAL+DryqqqpcDUHIEeatqAVg3bamLCsRBEP8Hvib7v1+hPdwO4pwoIFn\nFEVZDcwAzgSuJxyeGsLR28YpijKO8NqePxPek+f9VATcfffdVFZWcd11N6bfCkHIIi+++AweT7Pc\nx0JRYHfo6duAUmBue10TCYf5FARBKCh21bficjmp6VmWbSkFjaqqDejcoxVFKQE0VVW3Ae8qinIL\n8B/CRtB24CZVVd9pzztFUZTbCIeZ7gfMAy5UVdWbioaLL74Yn0+e2Qn5y6mnno7X68Pttn1veUHI\nOrbe5e1BCH7X/k8QBKEg2d3Qxl+emQ3AEzd/h6ry1Nc+CemhquoGwKV7/wIJ3NJUVX0WeNZMncOH\nD6euziMuI0LeoiiHy/0rFA12hp4WBEEoCmZ9va3z9ZI1u7KoRBAEQRAEPWLsCIIgCIIgCIJQkIiz\npiAIgkk0Tcu2BCGDzJ49m0BAY8iQb2VbiiCkxdKli2lr81FSUsLQocOyLUcQbEWMHUEQBEFIgRkz\nZlBZWSXGjpC3LFy4gObmZiorK8XYEQoeMXYEQRAEIQVuu+02CVAg5DUjR94g969QNMiaHUEQio7t\ne1poafPbUrYDhy3lCoIgCIKQOmLsCIJQVKzcVM//Pfclf356NqGQrLURBEEQhEJGjB1BEIqKiTPW\nANDqDdDUas/sjiAIgiAIuYGs2REEQRCEFHj00UcpL6/ghz+8JttSBCEtxo9/FY/HQ0VFJZdfLvex\nUNiIsSMIgiAIKTB8+HCCQVmbJeQvhx12OG1tbZSWlmVbiiDYjhg7giAIgpACZ5xxhkRjE/Ka4cOP\nk/tXKBpkzY4gCEWFhvVBCSL2FJUH/oIgCIKQM4ixIwiCIAiCIAhCQSJubIIgCIKQAsuWLcPrDbLf\nfgdmW4ogpMW6dWvwev243W4OOOCgbMsRBFsRY0cQBEEQUmDixIlUVlZx3XU3ZluKIKTF9Okf4/E0\nU1lZxQEHyH0sFDZi7AiCIJhEluwUF7feeiv19S3ZliEIaTNy5A0EAkHkG0soBsTYaee+++7moIMO\n5qqrrs22lLR4//13+e53v5dtGYIgCAXPsmXLaGxsJRjMbjSr3r1r2H//wVnVIOQnpaWlOJ0SjU0o\nDsTYKQCCwSDPPvuUGDuCIAgZ4OaH/5dtCQD0CqzjpacezLYMQRCEnKYgjB1N03juuf8yY8Y0AoEg\nl1xyKddccx0AixZ9xeOPP4zX66WyspLbb7+bAw44kFGjnmPPnt0sX/4NV17ZtXvwf/7zGE6ng1//\n+mYAVq9exW23/ZEJE96NW/99993NgAED+eqr+WzcuIGRI3+Cx9PM1KkfUlXVk0cf/Q89e/Zk1aqV\nPProA9TV1dGrV2/uvvt+Bg4cSCgU4sEH72XJkkX4/QHOPvtcfvGL3wBw2mkncOutf+f118fS1NTI\nzTf/kdNPHxFR/1//+nvq6+u49trLeeGF0ZxyyvH87Ge/4PPPZ/HMM6OYMWMaL774LIFAgH79+nPn\nnf+kb9+98HrbuP/+f7Bs2VIqKir43e9+z3HHnUBjYwMPP/wAK1eqOJ0Obrnlz5xwwolWXzZByDri\nwCGkQ+9BSrYlAFBevyfbEgRBEHKeggg9/dFH7zN//hxGjx7HmDGv8/HHU1i4cAEADz/8AL/61U2M\nHTuJE088heee+29nvnnz5vDkk89y7rnndx4bMeJsPvlkWuf7WbM+5cwzz0qqYf78uTz++NPcffd9\nPPfcU+yzz36MG/cm5eXlzJz5CZqm8be//YUrrvgR48e/xWWXXcE//3kHADNmTGfjxg2MHTuJUaPG\n8Pbbk1i9ehUQNuR27qzl5ZfHcdNNf2DUqOe61f2nP91Gjx7ljBkzgaqqnoRCIaqqqnjmmVEEg0Ee\neOCf3HvvQ4wb9yYDBgxk7NhXABgz5mXKy8uZMOEd/v73e/jHP+4gFArxn/88Rk1NDePHv8mDDz7G\nPff8nba2tjSujCAUIWJBFTxDKlZySPnabMsQhLSZPPktJk0axwcfvJ1tKYJgOwVh7Mye/TkXX/wD\nysrKKCvrwbnnXsDnn38GwCuvjO+clRg27Ci2bt3Sme9b3zqKioqKiLKOOOJIwMHy5csA+OyzTznz\nzLOTajj++G/jdrs58MCD8Pl8nH76GQAMHnwgu3btZMOG9Xi93s6yzjnnfFauVGlp8TBixNk8+eSz\nAPTs2ZMDDjgwQuc554SNsUMPVdixY4ehPjnllO8A4HK5eP/9/3X6dQ8bdnRn2XPmzO7Uc8ghh/L6\n62/jdDqZPftzfvjDqwDYd9/9OOKIoSxYMM9QvYIgCIVOa6gHbaGyrNXfsnsNK9/7K6FQ4a65GDXq\nOX7xi5/EPf+jH13Ge++9k0FFhUVNTQ19+vSld++abEsRBNspCDe25uYmRo9+gTfeGIumafj9/k4D\n58MP32PSpDdoa2vF6/VSVVXVmU//Ws+ZZ57FtGkf069ffxobGzn88KFJNXQYTU5n2H4sK+vR/t5B\nKBSiubmJxsYGrr32ciA8Y1NeXk5dXR1er5dHH32Q1atX4nQ6qa3dgaZ1/Yh16HS5XIZ/3Coru9o2\nfvwYpk79kEAgQHNzM0OGHA5AU1NjRB/06BHW3NzcxF/+cgsulwtN02htbaWpqdFQvYJQnGjJk6RT\nqqbhcMhUUa6xoW3/bEsoChLd+2PHTjJUxsqVK2hsbOS4406wSlZBcOqpZxAIFK6xLAh6CsLY6dOn\nLyNGnMNFF30/4nht7Q4ee+whXnxxDPvvP5gvv/yCp59+Iml5Z511Ln/7218ZNGgQp59+pmUae/eu\nYcyYCd3O/etf/6RXr1689tpEnE4nN954vSV1AixZsohJk97g+edfpm/fvXj77YnMnv05AL1796ah\nob4z7fbt2+jXrz99++7Fww8/wT777GuZDkFIlz2NbcxfUcsJRwygd1X2nqZnmrdmruXTxVv53aXf\n4uB9emVbjiDkJe+//y7l5RVi7AhCEVMQbmwnn/wdpkz5AL/fj6ZpjBr1HIsWfUVDQwMVFZXss8++\neL1tfPTR+4bWnijKEFwuJ+PGjTHkwhaNpnV/yrv33vtQVVXFnDmzAdi0aSMPPPAPAOrr6znwwINw\nOp3Mnz+XrVs3x9UZq2y3200g4Mfn83U719BQT58+fenbdy8aGxv55JNptLV5ATjxxFOYMuVDADZs\nWM+NN16Pw+HgpJNOZfLksB9va2sr9913N/X19d3KFoRMcO+rCxg/fTWPjF9kTYH2TMJYzuQv1tPo\n8fHguIXZliJYQNPWxWyY+RirPvwb66b/i/oNczrPhYIBti+eyJqP/8Hqj+5g0xdP423a3nl+7bT7\n2b1qOuumP8COr9+KKPfmm3/NU089HnFs9OgX+NWvfppU08KFCzjvvNOZNWsml1/+Pc4993ReeOEZ\nVqxYzsiRV3HMMcdw661/IhgMAuHfnxdffJYrr7yEs88+lZ///Dq+/npxZ3lbtmzmj3+8ie9+9ywu\nuuhs7rrrdjyeZiD8MO073zmeefPmcMMN13DOOd/hV7+6ge3bt8fU1sHbb0/ikksu4JxzvhPRzssv\n/x7vvPMmAMuWLeUXv/gJ5557OhdddA7/+te9eL1eHnvsId56ayLjx4/hqqsuTdofgiAUJrYaO4qi\nhBRFaVUUpUX39/HkOVPjzDPP4qijjuH666/m2msvZ/v2bQwd+i0OPfQwjjnmWK688hJ+//vfcvnl\nVxMKhXj44fuTuoaceebZaJrG0KFHpqwnXtl33XUvo0e/wLXXXs6dd97GWWedA8CVV/6I8ePHMnLk\nFXz11XxGjvwJTz31OGvXrulWVqyy+/bdC0U5nB/84ALWr18XkeaEE06isrKKK6+8hLvu+j9+9rNf\nsnbtal599SWuvnokLpeLH/7wYu6441buuOMf7TNLv2br1i386EeX8fOf/5iDDz6E3r17p9wPgmAF\ndU1h43zLLk+WlRjDYXGEAr+4muQclS4PFU7jm4q21W9i++IJ9Dviuxxy/j8YePSV7Fr+Hq11GwCo\nWzODtvpNHHDGnzj43DsprerH9kWvR5TRtHUR+554IwO+9YOI4+effyHTpk2NOPbpp9M577wLjWlr\na2PBgnmMGTOBP/7xr7zyyihefvlF/vOfZ3nrrbeYPftzZs2aCcDrr7/GtGlTefTR//DRRzM4//zv\n8te//gGvN/xw7sEH76Vfv368++5Uxo6dxMaNGxg9+sWI+iZOHM/DDz/Bm29+QGtrG2PHvhxX26ZN\nG2hqamLixMncc88DjB8/hlWr1G7p/vnPO/j+9y9l6tRPeeWV8axZs4rJk9/illv+zFFHHcPVV49k\n/Pg3DfVHsVBbu53t27dSW2tsHbAg5DN2u7FpwGGqqm6ysxKHw8HPfvZLfvazX3Y7d9dd90a8jxdC\n+v/+786I9wMHDuo0RpKhz9urV29mzpzb+f73v/9L5+uDDjqEp5+O/OIHOPro4UyYELnQsiMctr6s\ngQMHMXXqp93yOxyOznLdbifLly+nrs5DIBCirKyMxx//b0T6yZO7fhj//vd7upXXs2dP7rnn/tiN\nFQRBKHIOr1yFL1TCkubk6zkBGjYtoGrAEVTsdSgA5X0OoGrQMBo3f0V5zWD6HDqCmoNOw+kuBaBq\n0DAaNi1A00I4HOFnkpX9h1BS0adb2WeccRaPPvogLpcLCP8ebNiwnhEjjHklaJrGZZddQVlZGaec\nchqapnHmmWfTq1cvamoqGTz4ADZv3giEXcKuvPKaThfnyy67gjfeGMvnn89ixIizeeih8LNMl8tF\ndXUvvv3tk1i6dElEfT/4weX06dMXgBNOOBFVXR5Xm9tdwsiR1wNw0kmnUFlZycaNGzj00MjQ3x6P\np3OdbJ8+fXnuudGG2l7MTJ78Nh5PM5WVVVx33Y3ZliMItmK3seMgDwOxtrR4mDTpde6996FsSxEE\nQRByjKXNCloKP23+lt207FpF8wfL2o+EfSkr+oUH7UFvE7VL36F1zzpCAW/4vBYK/2s3dkrKY8+u\nl5eXc9ppZzB5cviBmdvt5vjjv011tfF1Xv369QegtDRsbO21116d50pLSztdpLds2cLjjz/ME088\nEm6FBpoWorY27Iq2fPkynn32KdasWYXfHyAUCjJkyBERdQ0atHfn6x49euD1euPqGjhwUMT7srKy\nmO7aN974K+6//27Gj3+V4477Nhdc8F323/8Ao80vSi699Ar8/kCnMS0IhUwmAhT8S1GUk4GewATg\nD6qq5qw/yqxZn/LYYw9z1VXXsN9+4Yg7Xm8bN9xwbYR7mMvlJBgMMWzY0fzlL7dnS64gCCawavlO\njKV0QgHTFipPKb3TVULvwSfR/8jvxzy/7avXcLhKGXza73H3qKZl12o2f/l8ZKIEg9Lzz/8uH330\nPhA2ds4994LU9DmdCd93UFZWxm233cFpp53R7VxTUziK56WXXsEjjzxJeXk5L7zwDPPnz41Il0p0\nQaNpL7roEk47bQSffz6TmTNn8JOfXMPdd9/HqaeebriuYqOmpo9EYxOKBruNndnAVODHwEHAG8BT\nwPU215s2p556ercvyLKyHrz22sTO9263k5qayk5XMUEQBEGIR0lFH9oaNkcc87c24O7RE4fDSVv9\nZgYeczXuHtUA3dIm47jjTkDTNHr16oXL5bRtkL/PPvuyevXKCGNn+/ZtDBw4iA0b1tPa2spVV11D\neXnYGFy5ckVEfrvCqDc2NlBd3YsLLriICy64iJdeep733ntHjB1BEACbjR1VVU/Rv1UU5a/Au4qi\n/FxVVb+RMlyu3Jti7dAk2lIjl7VBbuvLlDa3O/XyM9lvqeqLqS1ihtaRVpujcTpTLzOVfrNCYyrk\n4mcgn+m1/wnUffo5DZvmU73PMXibdrB13kv0O+Jieu49DHd5DW11G6kacAQtu1bTsnMVAIG2xpjr\ndKJxOBz4/QH22msvAoEAZWX2hGj//vcv5dlnn+Lb3z6Zww8/gk8+mcYDD/yD116bwMCBA3E4HCxd\n+jXHHns87777Fnv27KGxsaFzf7hY0UTNsnNnLT/60Q+5774HOe64b+PxeFizZjX77hv2zCgrK2Pr\n1i00NTXRs2dPy+sXBCH3yfQ+O+sBF9Af2GIkQ3V1au4CmUS0pUcua4Pc1me3tpqayrTzZqLf0tWn\n16Y3HHr3qqCmuodpXT16lHS+rqrskZJOI/1m5roI1nNQ+TqCmpsNbfsZSl9a1Z9Bw3/EbnUKtUvf\nwl1WTc3Bp9Nz72EA9D/yEmq/nkTDxjlU9DuMQcOvYcvcUWz47HEOOOPPhmZEAgE/paUleL3d17Sk\nQqIIoBdd9H1qa3dw++1/xuPxMHjwAdx//8P07z8AgF/84rfcd99dOBxOfvCDH3Lnnf/kppt+ya9/\n/TPuuuteC2Z2HLoywn/79evPbbfdweOPP8KOHdupqKjkxBNP5oYbwovuL7zwe/zrX//g6qsvZfLk\nqbJJbzvTp0+ltbWVsrIenHGGsWBMgpCvOOx40gKgKMrRwLWqqv5Jd+xSYAxQqaqqkYq1xsZWgsHc\nchVzuZxUV5cj2lIjl7VBbuuzU9uP//m/ztev/C31faXs7jcz+mJpu/uleazZ0gDAEzd/h949zT8F\nnzB9NZO/WA/Ar39wJCcOHZiWNj1mr4sZ2rXJqDAOf/j7o1pAc7OudXBWdZTXz+apB8JrRocPH4rb\n7cLr9bF48YokOZNTTO7axdjW8ePfoKWlhR49yjnnHGNhyvONYrmuxdJO6Gxryr9Nds7s1AI3KopS\nCzwGHADcAzxr0NABIBgM5ezFE23pkcvaILf12a3NTNmZ6Ld0y4/QpnvAE7BIc0hXZiikpVSmkX7L\n1fuxWFnVcnC2JUSwa9cuyspK2bVrFxUVMgsoJOe8874r3ytC0WCbsaOq6lZFUS4E/gX8DWgDRre/\nFgRByDoSRU3Id159dTSvvfYywWCQhoaGTmNn+fJl/OY3NxLLa0vTYNCgQRGBdwRBEAoVuwMUzAJO\nSZpQEARBEISUGTnyekaOvJ6jjhoScfzww4cyffrnWVIlCIKQO2Q6QIEgCIIg5DUlDh/gwK+VJE0r\nCLmIx9OM3x/E4XBQWVmVbTmCYCti7AiWsG5bIwAHDqrOshJBEAR7OarnN/hCJSxpHpptKYKQFuPH\nj8Hjaaaysorrrrsx23IEwVbE2BFMs6OuhX+8PB+A+288kQF9KrKsSBCMYVU0Sln7U1ys9ByEhgSr\nE/KX8867EJ8vgMvlyrYUQbAdMXYE03y9Znfn6yVrdnOOGDtCDiN2iWCWxqDMYAv5zb777i/R2ISi\nQbbJFgRBEARBEAShIBFjRxAEwUJkh3ZBEARByB3EjU2wFHEREvIJWWuT/yiK8m/gZlVVne3vRwD3\nA0OAjcD9qqqO1aW/Cfg1MBBYAtyiqupXqdS5b9kWgpqLbb6BFrVCEDLLnDlf0NbWRmlpGccff1K2\n5QiCrcjMjmAaeZItCEI2UBTlaGAk7c9ZFEUZBLwD/BfoB9wCPK8oyvD28xcDdwLXAgOA94D3FEUp\nT6XeXu4merqbrWqGIGScLVs2sXHjBrZu3ZxtKYJgOzKzI5jGqohWgpBpNIvmIq0qRzCOoigO4Gng\nEeCf7YevAVRVVV9ufz9NUZR3gZ8Rns25EXhJVdX57WU8BNwMXAy8YbTuZZ4hyRMJQg5z6aVXSoAC\noWiQmR1BEIoXsVHymV8CrcBY3bHhQLRL2lfA8e2vj9WfV1VVAxbpzguCIAgFhszsCKYRNzZBEDKJ\noigDgLuA06JO9QU2RR3bA+ylO1+X4Hxe4XQ4cLu7P7OMdSxVXC5nxN9CRtpamBRLW4ulnZB+G8XY\nEQShaLFjYkdM/4zwCPCiqqqqoiiDo84luwQFc4ncbhc1NZUAOJ2Ozr8dx6ygujql5Ux5jbS1MCmW\nthZLO9NBjB3BFM2tfuYt35FtGUBYy/Y9LRy8d7XMNglCgaIoylnAycDP2w/pP+w7Cc/e6OkL1CY5\n/3UqGo6rXoQvVMKS5qGpZLOcQCBIXZ0HgFBI6/zbccwMLpeT6upyGhtbCQYLe21HMbb1kUceobm5\nmcrKKn76019mW5YtFMt1LZZ2QldbU0WMHcEU/xr7FVt2mv9htYK/vTCHRo+P685XOP3ofbItR8hR\n9PE0ZMlOXnIN0B/YqCgKhNeeOhRFqSU84/OjqPTHA3PaX88nvG7nVQBFUZyE1/m8kIqA9a37EdKy\n7zIS0rSYi8ytXHgeDIaKZiF7MbX1lFNOx+v14Xa7C77NxXJdi6Wd6SDGjmCKXDF0ABo9PgBe+3il\nGDtCZhGrKZP8Hvib7v1+wGzgKMK/abcpinID8BpwFnAB8O32tE8D4xRFGUd4j50/A23A+6kI2OWP\nnhwShPxCUQ6XgbFQNIixI1iLhKEW8gm5X/MOVVUbgIaO94qilACaqqrb2t9fBDwJPAWsB65RVXVZ\ne94piqLcRjjMdD9gHnChqqrejDZCEARByBh5Y+y0tAWYuXgrQw/sw379q7ItRxAEQcgBVFXdALh0\n72cBxyRI/yzwbAakCYIgCDlA3hg7r0xZwdzltfAJjLp1RLblFBXBUIjte1rZu29FXiz8l4f1glHk\nVhHSYUBpLUHNyS5/XkasFgSWLl1MW5uPkpIShg4dlm05gmAreWPszF1emzyRYAvPvL2MBSt3cuWI\nQzjvhP2zLadgaWrxEdKgV2VptqUIKSJGU3Gxd9l2fKESMXaEvGXhwgXt0dgqxdgRCp68MXaE7LFg\n5U4AXp++Wowdm2hp83PLk7PQNPj3b0+hV1VZtiUVLBGTk2KlCGmwsEkGh0J+M3LkDRKgQCgash87\nUxAE5qs7O93vZi7Zll0xBY64OQqCIAhC8SDGjiDkGLm/KqpwsMPuyYNlbYIgCIJQNIixIwiCIAiC\nIAhCQSLGjlDQtHoDvDVzLcvW7zFdVkjTWL+9kUBQ/JytYE9jGwvUnVntTy1PfdpCIY3a+tZsyyha\nhlUt4/BKNdsyBCFtxo9/lZdffo4JE17LthRBsJ2MGTuKovxbURQZJRY4uTZ0nDhjDZO/WM8j4xeZ\nLmvCJ6u5Z/R8Rr2/3AJlkeTroNsMf31mNk+99TXvfbE+21LME3X5Gjw+ZizcQqPHZ0t1z767jFuf\nmc3MxVttKV9IzC5/H/b4a7ItQxDS5rDDDufww4/k0EOHZFuKINhORowdRVGOBkaSe2NhocCZu3yH\nZWVNmbsJgC+/sa7MWBTLmo9gKPx18O7n67MrxAYeHreQV6aoPPqGeSM7FvNWhEPxj/5whS3lC4nZ\n6h3EDl//bMsQhLQZPvw4TjjhZI4++thsSxEE27Hd2FEUxQE8DTxid12CIOQ/mqbx7qx1fDxvU7al\npM2WXR4ANu5ozrKS2Oyqb+V/8zfR3OrPthRBEARBsJVM7LPzS6AVGAv8MwP1CYKQxyxQd/L2rHUA\nHLpfL1vrssd7MPen5v4+ai5eX5BFq3fxp6uOybYcQRAEQbANW40dRVEGAHcBp9lZjyAIhcOGHU2d\nr3fssXcRfrH61Xp9QQC+WV+XZSX5SY27nhAOGgL2GuOCYBfr1q3B6/Xjdrs54ICDsi1HEGzF7pmd\nR4AXVVVVFUUZnE4BLld3Tzu3O7tB5Do0xdKWCqGQxuTP19G3Vw9OHba3FdIs0xaPZH3vdDriprFb\nm55ODbpgiluMAAAgAElEQVQFMMm0p6LP6nvQ6XREvO4of8xUle27W7j5iqMMazNDOu2y4rrq63VF\n9UW8dOlq06+Jcrvi36+p4NDpdLmMabbqfjOrP1b+THxG85mDK9bjC5WwpFmMHSE/mT79YzyeZior\nqzjggBuzLUcQbMU2Y0dRlLOAk4Gftx9Ky7ejurq827Gamsr0hVlILG2pMHXOBiZ9uhaAb39rH/r3\nqbBCFmBeWzyS9X15eWnSNHZp68Dh6NKpHysbvW+M6LP6HqyoKOt83dGHW3Y2M7U9KMJHczfx4wuP\nsL3vzLTLjDZ9veXlpZ2vKyvL4qZLBb02/UC+Z3W5JdeyrKzrq7SqKjXNZu83s/pz5fs0n/iq8VvZ\nliAIphg58gYCgSD54HYrCGaxc2bnGqA/sFFRFAgHQ3AoilIL/FZV1TeMFNLY2Eowah+OujqPxVJT\nw+VyUl1dHlNbKnylixS2bnMdJQ7zTjVWaYtHsr5vbfXFTWO3tg40rUtnSNelybSnos/qe7Clxdv5\nurXVT12dh+21jZ3HNre7dtndd+m0y4rrqq+3ta1r0Xyzxxs3Xbra9BobG1upK3OlIzkCr1enudmY\nZqvuN7P3Yqz8HdqE2IQwf88IQjYpLS3F6ZTdQITiwE5j5/fA33Tv9wNmA0cBhh3Fg8EQgUDkBzL6\nfbaIpS0V9HurBALmyorGrLZ4JCszGNQMpLFHm57O8qP62AhG9FmtP6izykKhcP3BYNcxrf283X1n\npmwz2vT5NH1fBK357Ou12fG5C+k0669bRx1GtcUj0Xmz+nPl+1QQBEEQ7MA2Y0dV1QagoeO9oigl\ngKaq6ja76sw3ZPJYSEQR7jMKRK6pKdIuEARBEATBIjIRehoAVVU3gMz965GBnNCJ7mZwxNpVNM8s\n46YWH6VuF2WlJj/ydn9ITJavaRoOh6NoDdNiZUjFSgKam9WtEsVKyE8mT36LlpYWysvLufDCS7It\nRxBsJWPGjpCYWONbwVo6BqZ5SR4Npnc3tHHbc19SXVnCA784CXeBRvba09jGfWMWcOCgavpW99Cd\nMX+xNLGecprWUA+Cmjy7E/KXmpoaevQop6ysLHliQchzxNjREQiG2FnfyqC+Ep0on4k3TtSwboIk\nE4ZTvtpl73y+jkAwxJ5GL6s3NzBkcE23NPrBfKJmajZbeWZKH/u/Vexp9LKncScnDh1gmSYh99nQ\ntn+2JQiCKU499QxZrycUDYX5yDVN/v3GYm5/fg6zlmR+WZE8yDWHoSfhFvZxKAMXrBDuiXgGW0Tb\notLojchc7oOmFl/na71OKzTncLMFQRAEIa8QY0fH8g3hIHGjPliekfry9MF9ThIxdo43wLZwCBkI\nWjscTVpagd0soYiZncjGZbKpZtzF9FkL7PIIgiAIQsEgbmxCwZGJ2YBgUIMSe8ouhoFzhKEQ3eA8\n6YAI49lqzTK1k9NUujxomoOWkHUbQQtCJqmt3Y7PF8DpdNG/v7jhCoWNGDtCYWDEi83CAWQglNzX\nORAM4XI68jcogo3Em1F5f/Z6Pvxyo811W1+O9baOWDu5zOGVq/CFSljSPDTbUgQhLSZPfhuPp5nK\nyiquu+7GbMsRBFsRY0coCDI9OIzeODKahmYvd46ay169y7l95LFpGTyFMOCNGywixszON+v3MOnT\ntYby5wKR2nTrjDKuRMg0S5sVtHyZghSEGFx66RX4/QEcDlnNIBQ+YuxkE/mtzChWDpyDSWZ23py5\nlsYWP40tfjbuaGbwwJ7WVZ7jGLmtQzEiFGzZ6emWzg6DL2LTUhPFR0SUs/iznMtGngBtofJsSxAE\nU9TU9JFobELRICZ9NklzQFPX5GXijDVs2N5krZ48xtjg0LoRZLKZHa8/2PnaUOS2GD5R0Qv3C4mE\na3YiEtouJW300iKjseWwaEEQBEEoMsTYyUOemLiED77cwN2j52VbSl5h5Rh05uKt1hVWhOhnbLJp\n0n35zfb0M2tx3wiCIAiCkCPkpbFT7E9ON+yQGZ1s8+EcexfRQ2Gs2YlHon12ItLZXPeUuZtYvaUh\nzXIK9/oIiTmofB2De2zKtgxBSJvp06cyZcpkZsz4ONtSBMF28tPYybYAIefI8J6iKWHFmLjQXNq0\nBPvsZJrVm9MzdkIWbySqR+yo3MblCOF0yHoHIX/x+/34fD78fn+2pQiC7eRngAKNwljcXwhtiCJ7\nsxE5bO0UMfG63OjMTiZIFmwiPlqMV1YZKnKz5jKrWg7OtgRBMMV5531XAhQIRUNOz+z4AyG+Wb8H\nn26xNxS2e49gnnj3R7buGyORuiLH/taP/jfXNvPSB8vZmAEXSEPt1Yyt2cmEq1gwlF4d8i0kCIIg\nCLlPTs/sPDVxEdPmbWLYwX0jjouLR+6SLZekVAOeFRt3jJoLwGdLtjHq1hFZVhPpApbtPVdD6Ro7\ncSKwWWFUF/O9KgiCIAhWktPGzrR54QWgS9bsjjheiAOBQlnsnK3ZE7tnRgRr0Qz6sWXibkp7Zkdv\n4BTGx1cwSInDBzjwayXZliIIaeHxNOP3B3E4HFRWVmVbjiDYSk4bO/GRkUW+s2zdHmrrWjj96H1w\nOq01TvQGV+TTd0urMYwMhLsTY1uhOAntVmJwH6QYRNxbESdMybGqCMFGjur5Db5QCUuah2ZbiiCk\nxfjxY/B4mqmsrOK6627MthxBsJW8NHYKZfCYyzMQtXUtbNzRzNGH7mV52Z5WP4+8vggAl8vJaUft\nnVL+QDDEl8t2sF//KgYP7Bk+WCD3RC6iaRqOdH3N4nxYI9bs5Ksbm8U6Mle4YJaVnoPQcvj7WxCS\ncd55F+LzBXC5XNmWIgi2k5/GTrYFWEQuB1q49dkvAfjhGdZHHar3+DpfL1y5M2VjZ9qCzbw+fTUA\nL/z1TJyGR8u529+5asAvXbebF99bzoUnDuac4/dLml7TNNZuTR4EwWgMoHxxYyNizY5Q6DQGq7Mt\nQRBMse+++0s0NqFoyOlobHEpwNFE2k/ObWbyF+utL9TkyH7Goq26sjr+JC8zW7dN2pc2B+7zR19f\nTIPHx7hpqwyln/X1NjbvbE6azvAatQxYgekHKLDPwMnlByGCIAiCkE/kpbFTiAOBXA1QYLcJlo6R\np8/RcS/E6z598TnaxYbIUVu4G2OmrjSULmLNToLGZeKSWRGNjXivBUEQBEHIKvnpxlYgg4lcXrPT\nQcqD7Azs7ZlvBkw+aMw0uWTcp+vGpifdIAfxyKHuEWKwb9kWgpqLbb6B2ZYiCGkxZ84XtLW1UVpa\nxvHHn5RtOYJgK3lp7AiZxAaDzMKBXCqDwkwOsI3OWHn9QXbVt0bl7Z4uXwa/Ru+WbO6zE92VVrix\nRZafJxcrj1EU5SjgEeA4oBX4FLgZGAJ8ArS1J3UQvuQjVVWd1J73JuDXwEBgCXCLqqpfpVJ/L3cT\nfs3NNl/ytIKQi2zZsgmPp4WKiopsSxEE28lLYydfBn6FQMrj0BQzmB/oJnZjy164aWMV3/vKAjbv\nbObgvQtzwXO8XoiIxpYofwauXzDNSiyYEBLSQFGUUmAK8ARwAVANTAT+235svaqqB8XJezFwJ3Ae\n8DVhA+k9RVEOVlW1NVaeWCzzDDHVBkHINpdeeqUEKBCKBlmzI3TDVFhgDby+IPePWcCz7y6LOei3\n8urFHHDGM3xM1OMPBE3kjk/HYv41WxsTpsuXNTtGidxTNLuNS3dmR4/V+znJA52EVAD/Bzygqqpf\nVdXdwJvAkQby3gi8pKrqfFVVvcBDhL8aLrZNrSAIgpBVbJ3ZiedqoKrqDjPlykDAXsx274dzNrBq\ncwPQwLnH78eBg2yctdC6vTCQNnXMRKUrNEPFCowa1JlwPbTajS3XaPUG+N+CzRy+fw2H7Nsr23JM\no6pqPTCq472iKApwPTC+/VC1oihvAt8h7M72qKqq/24/dywwTleWpijKIuB44A371QuCIAiZxraZ\nHZ2rwXSgH+GnbgMIuxoUBP5AiJWb6gmG0pwKztFBsNlB3J4mb+drr8+eGZEOOqOx6Q/G6VczrZqx\ncGu3Y82tfuYu30GrN5Awb56MiTNKRDS27MkAjAUoiPUZj5zNSf8it/kCvPDeN0ydt0lfetrlRTNu\n2iremrmW+8YssKzMXEBRlP0VRfECy4A5wF1AI+F1OI8Cg4AbgDsVRbm+PVtfoC6qqD2A9bsnC4Ig\nCDmBnTM7Ha4Go1VVDQG725+2/dZswR0DC03TaPD46F1VZrbItPjvW1+zQN3J6UfvzXXnp+HDnaOD\nYLODc003eHQ6uw9lzRpT+sX/MYuKv1Ak7TpjaX5k/CI27GjimEP34neXDYurMVWyPfjPBHpX1Gzv\nMRUKaazcVM+uhlZOHDqw2ya1T05awqrNDdz+42MZUNO1mNeqfXbemrmOL5Zu54ul2zn5yIFUlZeY\nKK07s5Zss7S8XEFV1Y1AmaIoBwPPAWNUVb0GGKFL9rGiKM8APwFGtx8zfcMdV70IX6iEJc1DzRZl\nCqfDgdvd/ZllrGOp4nI5I/4WMsXY1lGjnqG5uZnKyip++tNfZlmVPRTLdS2WdkL6bbTN2DHgapA2\nHQOLlz5Ywayvt/Hzi47gpCMzHwJ0gboTgE8XbU3P2MlRzBo7qUTaMjvQ7dBqRLOZZsV6+L9hRxMA\nC1ftMlFyfPRVfrF0O+qGPfSvzo5hny7xrq7hPUUtUxIfT1uAB17rCsZ18pGDOl+3tAU6r+8rH6n8\n+epjkmpL9fOzbmtD52ufPwjlJba2O1/c74yiquoaRVFuB75QFOWm9jU8etYDl7W/3kl4dkdPX8LB\nCgyzvnU/Qlr2BxZut4uamkqg68GS0+noPGYF1dXllpWV6xRTW88991z8fj8lJSWW3i+5SLFc12Jp\nZzrYHo1NUZT9gVWAi/DTt7vMlul2OXG7ncz6OvzE8vn3vuE7R+9tttjIOhI8GYtlWabzJM2hy+Jq\nb1OqROexwsKP2DMkyhhJpjF6JqfE7erME0ubw5F63+kludzhJ5suVxydusPuJH2cqO+SDRCjy43c\n+LTrfKPHxytTVI48sA9nHLNPzLKcrnCbwuueuvjTE5/x2p3nJtRhhER9kM65RP3mjNPn+vuk4x5w\nxJgFjL6fUr1X4t1zeuqbu9wuv/xmB6cd3XVd9PdVmy9oqP6492IcbXqD3+12tt/PkXm+2VDHkQf2\niTlTmkqfuN3ObnsCxcqfy08IFUU5E3haVVX9Eyat/d+FiqJUqqr6jO7cEcDa9tfzCa/bebW9LCcw\nHHghFQ27/NH2UnYIBILU1XmArrVnoZDWecwMLpeT6upyGhtbCQYLO2pXMbZ18OBDOttqxf2SixTL\ndS2WdkJXW1PFdmMnlqsBcI2ZMqt7lVPTs0fEMaufTKRaXjr1l5V2uatU9eyRVhnx8pix8Nt0a1Ci\nx1bJNPYoL8Vd4up836tXebc8lZVdsxOlpe6U2+3WDcR69aqgZ0UpLl1f4ujSqR9IVvcqp6ZX8n6J\n1XfJJqCi21Ba2vXRuveV+Yz9xwX0rCjl6XeWMfebHcz9Zgc/GHFYzLLKy8uobfQy4ZPVhrSlSqL+\nTvcchLVFGyw9q2Lf11UNXQaGy+WkpqaSiorSbunKyyOPpfs51/ebO2ogrzcgnE5nRB3usq6NVFxu\nZ1T9OiNFd89HtyOZZmfU/VzTuzyiXoCHxy3kp98byiWnH9Itf7zya/e0sGjVzm5po38M8/Cp7gLC\nQQj+RfjhWRXhcNIzgXrgGUVRVgMzgDMJexSMbM/7NDBOUZRxhNf2/JlwEIP3MyffOkKaFjN8sJUh\nhYPBUNGEKJa2FibF0tZiaWc6ZGyfHQOuBoapr2+BqFDAVj+ZSFReLMsynfp9vi6jormpLa0yovNY\nYeHrF9xHR6pKprG11Ueb19/5vrm5q10d2pp1T9L9/kDK7da3q67OQ8Drp6lFNzjUunTqZ2Tq61tw\nJggmkajvksWgiG6D/toCjP1wOVeMOIRla3fHzdNBa6uPj79cH/OcFU9uEvW3/tyexra45/To+y16\nBqypOfZ93dDYtaWJ1v4kuqWl+w6N0cdSvVdiXdNAVP/pzTOfL/J+bG7tupeDgVDEuZDupvDrAnF4\nPMY0d2gL6L7LGhpacGmhyPu5nVGTl3H6sEHdjscr/5cPTMcf1da6Ok+39sfKn+7Ts0ygqmqjoijn\nAP8h7JbWTDgQzk9VVd2mKMrN7ef2A7YDN6mq+k573imKotxGOPJaP2AecGF7GGpBEAShALHN2Eni\namBq3+lAoLv1arU1GwiEqK1v5Z3P1nLS0IEceVBit4V06te7k6RrkcfLY8bCT5QvWZlaSCMU1CLe\nR+fRDxK1UOp9px9O+9vvBX+8+0GLPGakrlh9l8yNrVv6qPM+f5BAIBRRTjwtoZAWN0JYqtc1pGlM\n/GRNQq2xzn35zXaee/cbw/k6tMU6ZuTJcyAQighs0UEoaM3nXK8j+lLqZ/8Cwcj7Vd8mLeopul6u\nFvVZTkmzrpxge/3BYOzrn8pT/GhDpyNt3M9KHqGq6jLCszaxzr1AArc0VVWfBZ41U/+A0lqCmpNd\nfgniJuQnS5cupq3NR0lJCUOHDkueQRDyGDtnduK6Gqiq2mSm4Eytr/33G4vZsaeF2ct2MOrWEckz\nmCCX1gybWcCsEWnERUe2Cpeve5NGfIKILBnqNwv2nTSMlbHJZi/dzkdzN6acL9rQMYrDoHqj91gm\nul1fh5Ew1LFyWr3o394gAjn0ZZOn7F22HV+oRIwdIW9ZuHBBezS2SjF2hILHzmhssVwNpgE/NVt2\npqIJ7djTkpF6ILeGH2YH9nrXt1hrXSLCDpurKrU9RU21y1ynpFy3RTfEhu2mniuYJl4zUonYZzf6\n75NUNhiN2GeH2K/T1mRBGfHIpOFeqCxsksGhkN+MHHlDXs7qCkI62LpmJ5GrgRBFDk3tmDUm7R9M\n6ffZ6V6Z1QPPcD2pps+N65naTEXm0PdPotmgTHRjhAtausaOCZ1GsxqdNbOsQkEQBEEoAHI3vmgC\ncmQcWbCYHcSFkg0eTV4//UxA5z47BvJpJiqODtebKjFnuOKV6bBuPBpMFlkhBi1t/uSJTGLWldFK\n9Fqir3Oiy26HQdt5n9j4HWf2XhYEQRCEfCI/jZ0CfDSZSy0yq0XvCvTYhMWJE1vlw2T3rqIp5jWy\nWWomrnmqMztfr93NTY/PsklNF5EzOwnS2dFLCYpMaWZH/9rMOjddXrFDBEEQBMFaMhZ62lIKcECQ\nS00y+8Q6Itxzc/fAe2bbGrFhZxKt0Zt7post1ydRoRZVmKqx8+83khinFpFL3nWRa3aMR+GLd8qK\nGR9bwxPkUN/nK8OqluHX3Cz3KNmWIghpMX78q3g8HioqKrn8clNbHwpCzpOXxk5B/lZb1Kh3PlvL\nkrV7+MX3jqBP1MarhqWYWDyuaVpKA1nTAQpScmPLLTIxQxkvhHHGiFt97kQo0EuMDlCQ0B7VfVBW\nbKyPm+75ycvYf0BPzjth/+RaMmCJFOLMeKbZ5e9DUHMlTygIOcphhx1OW1sbpaVlyRMLQp5TMMaO\npmmGXIfilpmFx52Rsw7W1D/p07VAOHTwrdcMT6sM8wEKEue3sqs7+s1QmRm8xkb6MMGSHcvuh4wH\nKIj6CMZrR0Q0tkTlZSRAQdfrbv2VcM1OnONR72cv28HsZTs4ddggKnuUpC7KYmRmxzxbvd03dxWE\nfGL48OMkGptQNOTlmp1Yv9Zmf7+t+P1fuGonS9bsypoA/QB72+7UdpoH8LbvAh8ysYbA4XDE3Bwy\nEutGW8n0Ffu4LtZGnxnFgKtXomcUmb5+Kc3sxDnb6g3EPO7zx74WkWt/4tdr3fK2Yv9UCIIgCMVE\nXho7MX+rs2ztrNvWyJOTvuaxCUvYsrM509UDkUaK25XapX11qspvH5vJ4tW7IsSkqsuIG5sZN7ml\n63azsbarf1PRl8khnqEABYlmDSzSke3Q0/FqNzrezsTAPGH0wDQu0oRP1qRUf+R+PZlwYxMEQRCE\n4iE/jZ0Yx7IdTvWb9Xs6X6/e0pByfivkBwJdhThTtCI++WoLwZDG4xOXYHYuwE43tkdfj1pAr3W4\nsdkcjc0kHZcjUmYG1uxYbOys3FTPQ+MWslx3vyci/iJ+czoamr28P3u9NRv/6rR0Cz1tLJt1dMzs\nJHSfMxf5TSZ2zFPjrqeXO/XveUHIFdatW8Pq1StZv35ttqUIgu3k55odG36ts79o13z9AV0kKZcz\ne+uXkrmxWdnXqUjN9hWOJmE3WRWNzWI3tgde+wqA5RvqGHXriG7nu991sRsS6caW+r36+MQlrN/e\nxNufreP5v5jbtzh6U9FAMMTSdXs4aFB1xg0DI1fLjCQNZNGOBRxcsR5fqIQlzb2yLUUQ0mL69I/x\neJqprKzigANuzLYcQbCVvDR2gkGNaQs2Rxwz+/tdCL//AV3kLZfLjLFjTkcqbmxmScmNLccucib0\nBLPcZruM0fXbmwBrZq70RYRCGm9/to4PvtxAdWUpd1x3nOnyU8LmGcpUoyUKsfmq8VvZliAIphg5\n8gYCgSBZ39VZEDJAXho7U+Zu5POl2yOO5dJANt6T6pa2APPVWo48sA99qiPDQlshX/8U37qZndSF\nJbsWkWt2zH3R7tjTQkOzl716lZsqJxsYjeZlhmyHno67Zsdo/gzLDwY1PvhyAwCNnsg9ouyLkK11\ne2XX91kOfU3mNSEk7LSQ35SWluJ0SjQ2oTjIS2Mn2tCB3HNRisWL73/DwlW7qOzh5slbTos4Z4X+\ngM7YcZoydszpiF73sHJTPYft11tfg7kKdDw+cQkAPz4/9uZ+kRuQWlZtyjhiOXhlwNqxM0BBIBii\n0eOjf5+K+ImMRGNLUIcd6qPdKPVaouuLCB6QifvH0MSOSTdTsXgEQRCEIiIvAxTExGI3tsYWX+yE\nJli4KhyW2tMWIzStFQEKdE/xU43GFiHF5GAoeoDdsc6jq/yu18lMss07m5m2YDNtvtjhfDuYNn9z\nzOOZGtal02eJ7JB8iMb2yPhF/Om/X7BsXfxgBfEG5rkUjS1h/ZmIjpZi9EMzXaJpMrsjCIIgFBd5\nObMTC/ODksj8E2ekFj7WLFYMqnJlZie5G5vxCu54cS4Am2qbuf6CIfHLNKLLcK2po2mpuznFi1pn\nrRubfW4K6qZ6AJ6ctIRTh+8XO5GBmZ0OYnafyc7w+oO8/elq9ulTwQEDe8bRkqCADBsG9ht3Wg4E\nY8l/hlSsJKC5Wd16ULalCEJaTJ78Fi0tLZSXl3PhhZdkW44g2ErBzOxYHaCgvtlrrkADRAyOLZ7Z\ncZlYYGA2jHcoyfg6oniDMmcu3pq2ntgVW0vSGZQY7Ywrx8LH75neZyf6tjOyZiekaSxdt5vmVn+3\ndGbvxUkz1vDiu8u4Z/S8uGkSDf6zZRbYdavKzI41tIZ60BYqy7YMQUibmpoa+vTpS+/eNdmWIgi2\nUzgzO2aNnaj3qe5TY3X96aCf2TETjc0sSffZsaFOI0/E7RzjBUMhSlJ8dhBPs5U6rRzY1jXFeQCQ\nyB3PgLWzbXdL9/2TkuU3yKeLtiRNk4nNXY3SoSWhAWbGjY38WN+Y62xo2z/bEgTBFKeeegaBgAQo\nEIqDgpnZsfonPFVjxyzWR2Mzs2Yn9mujea10Y7MUG6sNpTGDkmjDzVRLa2kL8P7s9azf3hhdWsq6\n4vHHpz5PI1fs+o3O2GRis+DEbmzW1R/XuE1xzY652NPZXwclCIIgCJmkYIwd0z/fUQWYWfNiiQCj\nuXQDl4BuwG1Gv5kBZqoLrK3qZZu3J0lKOt5iVg46X5mygkmfruWe0fOB8Czfva/MZ3ej/e6YiTDb\nxPdnb7BGSAKy7cYWUX/X1I59dYmtIwiCIBQR4sbWkT9qBJCqrZDGMhRL0HT16d3Y1mxpIBAMpRWV\nzW6XPFvc2GwoM6X6k3RarHsikVGZ6jWYu7w24v3nX29jzdboWR57SGfBe6YmF2KF/O5GhgIUWGWQ\nm43GlonZskKn0uVB0xy0hBKEXReEHKa2djs+XwCn00X//gOyLUcQbKVwZnZM/oBHZ8/0zE4i+R9+\nuYE7R81lyy5PjIxdL/UBCppb/WlHlIvYAyWqGzbvbGbp2t0J9ojJdly0BLXaOMjrKHrLzmaWrEnQ\nPzHydDtuQf+0xApvnhGMfW5yyZUqEyHAAWrrWhj94QrWbGlIWqFd9lesbm/1ZuteyV8Or1zFIRXr\nsi1DENJm8uS3efPN8Xz44TvZliIItlM4xo7F5TkyvGYnERNmrGFTbTNPv7202zn9wDg6zPDUeZvS\nqi9RX97x4lwefWMxi9fsTjlvZ5qIRBb1c7b3Y9E0fP4gf39xLo9NWNy5p1KyPLFPdP5nC5tqm20r\nOxoj0diyT6IZNuuUPjR+ETMXb+XeVxfETWNo1iUqyR0vzmHjjiaDKrRuxt1v/z2TOd/sMJhfAFja\nrKC2HJxtGYKQNpdeegVXXfVjvve9H2ZbiiDYTuEYOxaPnkwFKEgja9xBoa5hW2PM7Nixw3vEjvJx\nypy5KE4oaCNjNRtGuobGiHYGKNCgTheu3G8gyk06eqwYfN85aq7pMoySSzM4RgIEJKPVG2DyF+sT\nz86kSoz6U+m1zTs9PPr6IuNVRTVYA559d1kKNQptoXK8oR7ZliEIaVNT04c+ffaipqZPtqUIgu0U\nzJqdVz5awXeG7c3Rh+6VVv7ubmwWiEqp/tjDG71rWjIbKtZT4XTW7eiLafMFU8obLiDZ6fhucvmK\npmmJI7LFaGeiTUUTTvoY0WMwXbbI2LoRXb9rpP4cIlrm2I9X8vnS7bxlVley+mJtutouPpabY2NL\n9z2K4pWf6/eGIAiCIFhJwczsLFy1iycmLTFRQnSAgshhUdIn1GkN3pIPvbz+LmMj1jqiZNWms6mk\nmafx2YrGZgQ7d47futuTckS2+MueMrSIxCISys0lP7Y4dSYMFBH1/vOl263TE6eOpOnNBhDJwXtI\nEHU0GuoAACAASURBVARBEOzC1pkdRVH2Bx4DTgP8wEfAzaqqZiZMVApE//5HGxapPBU2FAEquv44\nAxCvL5mx05Ux1qAtHcMlnTDK+vqSRmOzYbQVf8CamZHdo68v5p4bTkiaLtJF0Pggu+u4Ne0JhkKm\n9mIySjy92RhvhzQNZ6zPZkJjLbOzkB39ZVf/aJqWU66F+cpB5esIam42tO2XbSmCkBbTp0+ltbWV\nsrIenHHGOdmWIwi2YvdoZzKwB9gPOBYYCjxsc52WkPLMjkniDQrbks3s6F/H8v03tJZFiz6QPJMJ\nIop3wJZdHj5bstXQOhfL6rWBRDMEsQzg+Ou04tdhVRt8fuv7+n/zN3WP7NWuNxTSeGLiEp6ctIRQ\nKLcG3AmVZECmkTVyltWVgTqKAZcjhNMhu88L+Yvf78fn8+H3G3OBFYR8xraZHUVRegHzgNtUVW0F\nWhVFeRn4nV11mqHbmp1uxk6S/KYFxD4cMbMT69GyBQOX6CLM/IRrBkZT0Wf//sIcAHbWt3Lpafkb\n4SjVdSgJ1/jYjNcfpLzMuo+/p9XPKx+p3Y53tHDO8h0sWh2OUDdfrc3gPjs6LWlUmrUrZJfBK4aO\nJaySSGxCnnPeed8lYPMDRkHIFWwzdlRVbQB+FnV4f2CLXXVaiSNqziuVAUY67i7xivf6up6Ux9r6\nRz8jlK4bW3Qa25+6xyl/ytxNEcbOjEXGb5VsR2MDCKX4u5FO5GlNM+ZOmewa+vxpBJ5IgDdeee0y\nmjy+zkNNBhfTW022ot+lVl/738Sp0i+fBIExNC2nQu4LgiAIghVkLBqboijHAb8FLrKzHrc7Pc88\nlyvyR37LTk+38x1lu2JEN9O7mDmdjqQ63G5nRB5XnDx+3dP/WOW6XM7OY7FmfvTn4xI1TjWyoarD\nEbuvHU5HTGvP7XZ29pt+QBVRl9ZVZkOzt9tMQSrXtiOt3n1Mfw1j0aEv1vU1QqJxYue107fdFTuD\n09Hd2NbncSUZkIbvrcRtCIS0tD8rqdDRbqeuT51OR9pGRCzNRtth6LMQI08HVhoC+s9DZH2O9nOx\n63K7nbjitMFI21wuR9yyXW5n53dIup8BQRAEQcg1MmLsKIpyCvAu8BdVVT+xs66amsq08jlLIrti\n+Ya6iPe9elfQozR+d5WXl3a+rqwsS6qjpqaSMp0bUUWcPK6SLh0lbme3NL17V1DRoySsoaKUaKp7\nVVBd2f24Hn8g0tqprEy+f0RJiTum3h49SmIaXfq0PXR9VVZa0vla06Vr9nWfJknUp44oA60jrV5K\nVc8ecct4438rWb+tkV9dNowxH69k770queT0Q+LWF4vKqvj91qNHCTU1lRGzMlVx0vcoL6WsJfau\n9j17llNW4kqoo6amkvLykoRpyspL0/6sRONwxJ9tqqgM11OhuzfLy0vTNnZiad7R6GXI4Nh7RegN\nlF69Kygvc+N2Je4/PT17dl0jp4UGgL4desO04x5dEGNTWofDQU1NJSUtvm7nosuMR69eFcT4aAHw\n/pcb+fGFRyQtQ4AShw9w4NcSf84EIVfxeJrx+4M4HA4qK6uyLUcQbMV2Y0dRlIuBV4HfqKr6mt31\n1dV133jTCI2e2AMIfbkdxo7L5aS6ujzifKtuAOLxeJPqqKvz4NUt5vY0x86zJ+pYdJq6uha8Pdyd\n9UZTX+8h6EvsNhTt0tTU1JYwPYDfH2DPnuZux1tbfQRj+HP9d8Iirj1Pobq6nBZdX3l12jRN62xf\nQ2NrtzIS9WkoGFlnR1q9y05TY1vMMuqbvbz64XIAPtO5zg3dvzd79S7vlj4eDQ0tcc+1tfmpq/NE\nDPIbY7QRwn3ojXPNGhtbcSeZeaur89Damvia79rtoa66LGEaoySyW5rb7+vW1q5r3tLqTdnlr4NY\n1+/PT3zGrdcO54gDEm+OV1fnoa3MTSBo3IVPf42CFvq319V5Or9Hgrp7t7Gxlbo6D4/H2iRUC+dr\njnNtjXz31dV5aGzs/j0BMGHaKi4+aTAQ+ztO6OKont/gC5WwpHlotqUIQlqMHz8Gj6eZysoqrrvu\nxmzLEQRbsTv09MnAaOAyVVWn2VlXB+kuuEuWz+8P4XbGT6NfbP785G84aejAJOUFadOtxwkEQzE1\ntLRFPuGPThMIBAkEwk+Gg8Huo06/P3a50WkS1RELTYudLt6i+w+/3MDVZx/arrMrX/RAuaPMaOMl\nma7oWmOljdfHzXHWkNQ1eeldZdwgSBRNLhTSutUdL30oGH+D0mAgFHvxlo5AIEQoiTXR5g1Ytjg1\nkbETDIbbHdLdm6Ggltb+TxD/HpgyZyOH7du7uzbda78/RIkrlHDJiyMqTyDiXrVu/U68dgQC8T+v\nWpLzRq5novxGyxBgpecgtIzuEiYI1nLeeRfi8wVwpTDTLQj5ip3R2FzA88BfM2XomCH53jDW1vfy\nRypfLtuRNJ0+GlsghjGjPxIzQEGMMgPBEG6dS0502Gujg7pPFqYXayIXI1zFTJ5i+lSjq8Xr50Sl\naAZ2fDIUlCJpCmuIFVLdjvDHMSMVGtCSNE+Gb9ZM1Gfn5rrFQmOwOtsSBMEU++67vzzcEIoGO2d2\nTgKGAE8oivIkXftyaoCiquomG+tOnaSjDGvjI81cvNVQ9fp9dmIlijgUc5+dyIMzF2/l1SkqRxzQ\nh1suH4bD4ehWrNEx+5ipKxPriYd+o8ZU88Yt0sgA395BXiBBx8WMGh434pqWMBpbMu5/7StWb25I\nnMjCrkjYr3EjzqUnIBTSeGLSkm7Ho9dsxawzrWhsqeexGzMzTJqWm20SBEEQBLuwM/T0LKBg5kft\n3hIl3uBPH9I3lobIDQmTGEPAq1NUgiGNr9fupqnVT3VF98XipgZTaMn3JNKdtyrAVYo2VtTxeDMs\n9u6bY1dY46SGjg11xyst5nEtQYYkzF2xgyVrdnc7Hs/WMbvPztJ13euymmSf4W7pzdRFbm3oKgiC\nIAh2k7HQ05kilb0i5i7fwZS5m7j67EPZq1fyCGR26QhniH1Y78YW05hJUkR0Hv1aiY5TlhpyBsrS\nGxF6efrjdu33sau+lYmfruHbRwzgmEP7ddMQQYr9kuo6lETGUVxJFl0rKy+5AwOhpKMuZ7r1x9uj\nx0i49HTqfPuzdWnkshlz1o5gAfuWbSGoudjmS7w2UxBylTlzvqCtrY3S0jKOP/6kbMsRBFspuM0U\nUvktf+adZazb1sh9ry5IOoict3xHSk/uUx2UxkuuN3aSZUx5IBwnQ7xNB61CM6M5bqHGkv3nra+Z\nu7yWJyd93XksnpGSqrRYUegS8ebMtbHrTegVZk2HWfl0P9FsXtxZs3Trj5PNYWCxeK5OaEQ8sDCg\nce7y5Gv9Eq0Hs3uWuhjo5W6ip7t7NEpByBe2bNnExo0b2Lp1c7alCILtFOTMTrRv1NdrdzN+2iq+\nd8qBfPuIAWmV++rUlTgcDs44Zh9jOgwsJDeCXxcNKqYbm/51Aje2Vm+A8rLIy91RXrRxY2TAlc7i\n+ljlRwze9e5tBspJvV6NjTu6D1DiGrGpzuzECCCRiDVbG+NWa9VsUzysHvjHNXba/0ZfT4ttHZLs\noWqu0gySTGEwFGLs/1alXY4GCfshOniJEJtlniHZliAIprj00islQIFQNBSgsdP92L/fWAzAs+8u\nS9vYAZg6b1NcY6f7upe0q4lAb4jEMjDavAF6tW8aGs+N7ZUpKp8t3spvLv1Wt3OxtJpaN5CiG5tl\nbjUmOjz+zE5qZaYbTjlWzamfsaqGNMtLZu1EEc8dLV3iRWPTH+64PAnbHh17OhOkMLVj2KBO4AeZ\naHjjD+SHsaMoylHAI8BxQCvwKXCTqqq1iqKMAO4nHCBnI3C/qqpjdXlvAn4NDASWALeoqvpVhpsg\nCIIgZIjc/1VLkbSfGBvIaKsbW1x3n8Rl/u2FOQnL0IAZC7cQDGk8MbF7FKtY+Yxoj9cXiRZAL1mz\nmwUrdkTN7CR/bQQj6Z95d1nE+1Wb69m6K/4mjeOnraa2PvbGn7FItM9OKoT7x2L3L5vKCReWWoCC\nFRvr+Hh+msEY4+i2bI1Xgm6xaRlZSve9URfTeIZ6glsLAF8ePOlVFKUUmAJMB/oBRwIDgKcVRRkI\nvAP8t/3cLcDziqIMb897MXAncG17nveA9xRFkR1UBUEQCpQCnNmx77FsKmsyUtURf6ZEN7MTI1Ws\ngANGdYTizewYMB3iDbqmzN1EZY/Yt9XD4xYCcPZx++r0xS4/tkueuWvb0OyLeH//mMQPc9dta+TB\nsV/x0K9ONlR+ImOnY6CcK55U1ruxxb2QQKQxsnDVLmsrp3uAgpmLt8Zwz8yRzk9AIoUOBxj9Ckrk\nBpmoH/z+JGsEc4MK4P+A0aqqhoDdiqK8CfwWuAZQVVV9uT3tNEVR3gV+Rng250bgJVVV5wMoivIQ\ncDNwMfBGZpshCIIgZILCM3aMpktjNiPRPirp6kiWQV9lPI0hTcPpiB0RK6GO9pNPRu1bYmzNTvI0\n8ViyWh/O13hBd780zxY9idjT6DX8NF2/vspcnW3MjrPhbIeU+Stq+XTRFq4ccSj79q9KuQ6r9xxK\n0Yst/XriHNfbOmu2NDD6wxXd8xoRkwU3tojPbZK6jd6L8QzKkJb4ylt1D9uJqqr1wKiO94qiKMD1\nwOvAsUD0U4yvgCvaXx8LjNOVpSmKsgg4nhSMneOqF+ELlbCkeWg6TRCErPPii8/g8TRTWVnFddfd\nmG05gmArhWfsGBwMTP9qS2Q+AyMcvb98snqsmtkxsgdHR1CG2DM78etcubmeWV9vY/32pojjRgZU\nCcMmJ8mu3zsowdKCbmyszU70I6NP061yY4tn6Oj579tLAXhw3EKeuPk7KdeRqZmdTAVC0K/Z2bij\nKWaafJjZ2VHXwrwVtXHPGzV2nm6/P2KRcLY3j0K1KYqyP7CK8H5uzwF3AR8C0T6Se4C92l/3BeoS\nnDfE+tb9CGnZ9wJ3Ohy43d11xDqWKq72tVuuPFjDZZZibOtpp52B1+ujpKTEkvslFymW61os7YT0\n21iAxo6xdK99vDLlspO5jKWjI1kGI3WGQuByxg9QEI8X3lueipRIXQbc4+IRYeyk4MaWCDsH20YH\nmKmGnk6H6HbGW2+UvCALxNhXXMro3dji7bmTbY1GGDM18feSZtIY0bTEnwnrgmzYj6qqG4EyRVEO\nJmzsvNp+KtnqKtOrr3b5+5otwhLcbhc1NZVA133vdDo6j1lBdXXxLGcqpraecMKx2ZaQMYrluhZL\nO9OhaI2d7hmTJ9EPZqOTd49o1vX6wzkboly3jFW/blsjqzY3xK2j67jGtt0e3pm1Lsa5hNXGLc9M\nmqQzO0k2SoXcGphu3mlsRilxpCxrVrdb1S9W7qWkkSBghcWzKZO/6H6PQ2TwgLjGTh7M7CTCgfk9\ncjQS30MTZ6zhmnMOY580XCOzhaqqaxRFuR34Anif8OyNnr5Ax3TZzjjnvyYPCQSC1NV5gK7PYCik\ndR4zg8vlpLq6nMbGVoJ54N5ohv9n787jnKruPo5/ksyeYYZh33c5ILKIuIC4L7RWquJaLdLalrba\nqn18rLW2tXbVan3s5m7VuqBttSpaq1bUuisC4lIPuIAKIovAMJl9kuePmxkymWQmyUxyk8z3/Xop\nk5ube3/3Zia5v3vO+R0da37qLcfaW44Tdh9rsvIv2UnxcjCRV7W7mO3ywmn383976r2u9x9jcx3H\n0sTeZzAU4nd/i1Nprcs9p/aazhoxuuzil0gMWXRd+su/vJbQep3dFX/57U288d42ahuauxdMFp2X\nZPRUJbO6htgD6CO7sflyuGWnK93uZhaKXy0R4M0PPuNnty/nhgsP7d5+0sgYcxhwnbU2crKb1jzu\nFeCkqJfsC7SWrVyOM27njvC2vMBM4OZ0xpwuwVAo5lwpPTl/SktLsNfMx6JjzU+95Vh7y3GmIv+S\nnRSvBRK7wI/oUtbVuqHWf1O/OImeiyQEPPDs+x3WC4WIXyI5hf0nVHq6025s3d9X8t3YYi9PV7ng\nWDq7EN2yox6oz1wwXejJlp2m5iAvvLEx5nOZSjAS6sbW/TzBdd1930Jt/4uvrrsJefq9BlQYY67A\nGadTjlNO+j/AdcAFxpizgLuAI4DPA/uHX3sdsMQYswRnjp0Lcf4wH0kmgMFFm2kJednalNRQH5Gs\n8eabr1Nf74zZmTJlmtvhiKRV3o1mSmdXlcgtd6jmFuc13WlSjHUoDz2/LsZ6qXcpi2XHroYu1+l8\nn4nvNJkCBZ1vx/0r0YyM2cm6DTnujFH9LHI/6c45Pe1admJ/rGVrN7Zkwup2khrqflc4t1lrq4Gj\ngP1wuqW9AewATrfWbgWOBb4bXvZb4Axr7Vvh1z4GXIxTeW0bTjJ0jLW26w+9CMOKNzG4aEvPHJCI\nC1aufI1XX32R119PrOeCSC7Lv5adlF+Y2Cs//HQX44ZXdrl660VJU3Ni241dNjqx13Z28ZLK+Vj6\nwrqu99nJdX0yF2TZegGaik8/S3wC0lT11PnaurOeu55Yw9ihfXpke/FkrGUnIpuK240tgWA8eLIi\ncY6nu93YQhH/z2Xh5OWwOM89B+zdyWtvAG7ozv5X7tKdcMltCxeepS5P0mvkX7IT9T3+3sadsVeM\nfl2C299WXc+oIX24/v7YY2SiN9ic4N3+mPtPMKjOkot0JRM91ZoU7+Ktp7pZZTKXsh/tyNzOuimR\nhLZHZPANeGrlBgZWlnSrGpsbiU4ye+x+V7xQVnTHExERyZQ8THbaf5NfHzXfRDAYin0xlOAFQFlx\nAU+8+hFPvPJhu+XvRyVVrXEkfOckxv4TvSbprBxtui5ssi0Z6S0XcLl2nJkK9+W3P+XT7U7L2jfm\n7xk7liw6eTtrGnjhrU0cMG14Um9qT/zdZc9ZEBERSb88THbaP25oap9stASDeL2+jq9LcPvNwRDr\nPuk4aeHb69rPU9e6veYEx+y0rv/8G5/w7oadnHzohAQjciooxd9uei5temrywXgXb8le1PWWC7hc\nO85M5RetiQ7A9nhjzrKoG9sv73iNrTvree6NTUm9rtvd2ELZlfSJiIikWx4mO51/kTe3hCjsxlEv\nf2dzQhdDrWE88uL6xDYcChEMhrjlEWeiT28SZcRaX9NZHD2tp7YbN6lJtkBBb7mAy9XjzGBZvHgJ\nQaA+xQlY02DrTqcy3ydbAwyqSnDOAE8PdGND3dh6wrTyt2gKFfDfgHE7FJGU3HPPHQQCAcrK/Jx8\n8hluhyOSVnmX7ESLvsaKNxdKohfLz6zaSIGv6wu31u09u/qThLYbon01r0Rf13UcPbKZDuKWuk5S\n/NLT3d1uiB01jd3bSBbKtetUN8bAxEugr7h7JXvvMSDh1tZs1O3S02rZ6RFbm/rREurYQ0AkV0yc\nOJn6+nqKiordDkUk7fIu2Ym+GIj+Xu9s4sdENbck3rKTqFCofWw9dUGWzZWlIP5d+O7Gfefja3hq\n5YZubSMbPfrSek4/cqLbYSQuQ6Wn2+2yk1+dlWu3przdTM7ZFE9PdB/N7k+E3LCxYajbIYh0y8yZ\ns1SNTXqNPJxnp/Pn481709M3O1O5A9sTiVgHWX5lE+8ucyrJYqR8THQA/r38Y7dDSEoo6t9MePC5\nDzK4t8zqiZadbP9MEBER6Un5l+x08XxzhmbUu+zWV5OeZDIdyU5PVU1Ll/jd2LI7bjfl0rkJhULU\n1DXx6n8/dTuU7NUDpdoT31Uoq8YuiYiIpFvedWPr6kIwbstOD8dR29DMWx9s73rFtv2HaEmge1yy\neqpqWrqkq2Unn3XsqpndB3/lkpV8tLnG7TAS4vGQ8ZaPZG5IdPvPOQR3/3ttNzciVQU7COJhZ3Ol\n26GIpOSDD96joaGJgoICxowZ53Y4ImmVd8lOVxcqwRDYD2MkIWm4YEyqZSeUnsQksiRvNop3yMmf\niey+4O9J0b9Wq7oxDiXdQiFyJtFxS1KT8Ha3G1u3Xi2txpetozFYyOoaJTuSm5Yte4JAoAa/v5wx\nYxa7HY5IWqU12THGzANuB5ZZa09P575adXUxEAqGuOLulR2XpyEWTxLDsqOrsfWU2x59p8e32ZPi\nt+wkOc9OL7qKi/4dfyxqgtts0ovelpQlk8B0NoFwIuK1bEtyVlRPdTsEkW5ZuPAsmptbyGz5GBF3\npC3ZMcZcCJwFrEnXPmLpskBBJrt1JfEZEgqFMhtbloh3odf7zkTiolsAs/rytTdloSlK5u++uy07\nTUp2ekQQlZ2W3FZUVITXq88D6R3SWaCgDtgPeC+N++igq0uBLfHmh0nDNZkH6F9RkvD6vTLZifNZ\nm+3jUNwUfW66e7c/nbI3suyRVLLTybVJIn8zTSo1KyIivUzaWnastX8EMCazM0x39YVf39gS+3Vp\niGXD1gDbqusTWjcUIi0FCrJd3PdLBQriir42zuqKe1kcWixunMpkupZ19l4HQyF8XUwGpGRHRER6\nm7wrUODzeSko2N1gFf3dH+9iwefr+X6rf3868UathuYWPHlXCLxr0e9G63v30ZbkBrVn++SpPWnV\nu+0LEmRzruPx5lZ/8M5/j9JzLMm07HSWy3i8nnaffbEkmhj7fL3wwygJk8rW0Bwq4N06VbGS3LR0\n6T+ora2ltLSUY4453u1wRNIq75KdPn1KqKrytz32RF0dFBbFPuQ+fUrTGldXHnlhPYfMHOVqDG6I\nvhiuqvLz0ae7+NtTGe39mFP+/Mh/2z32erP3wrSkpNDtEHrMB59Up2W7iVZh9Ho8lJYVx32+oqKM\n0uLOP9ILixJ7Pyoq3P08zHZ1wRJaQhq3I7mrqqqKkpJSiovjf6aI5Iu8S3Z27Kxle+nuw4ruJlW9\nK3a3supq90s079hZ63YIGdfU1L5b4fbtAR597v2kt+Nm68aAyhK27kysu2I6NDXH7pqZDZY8bt0O\nISmudGNLMNkJhWBXnM8vgG2f1eDvIrncmeDnXHV1nRKeTqyv7303piS/zJ17KM3q1iq9RN4lOy3N\noU7/gBvijNnJhj/6xqbsvWhNl+jrvObmYM6NK3C7y0+zKmz1Dp7OP6caG1soLui8tSHe5180lagW\nEZF8kb39X1LUVZ/0pS+si7n83699lIZokpOOSUWzXXQlse27GnLu4r0gDeO9kpFqa0RVH3VfyDWd\nfb6t/3RXl6/PtRsJIiIi3ZXOeXbqcMafF4YfnwCErLVl6dpnIuJ1GXn+jU0ZjqSj5l6Y7ERfvF3w\np+cZPtAfZ+30Kir00tiU/MVggcstO6lWY/OXFLB9V0MPRyPp1NkNkavvfZ1vHTeF/SYPjruO5tnp\nGX5fgFDIQ23Q1a8zkZRt3ryJxsZmvF4fgwbF/8wQyQfpLD3tSofvrC7D24Ve2bIT45A3bAlkPhBg\n/z0H8+zrnyT9OrdbdjZvT228mdtJmiSnobGFFWu2dLrOzQ+/3Wmy88iL63s6rF5psn8tjcFCVtdM\ncTsUkZQsXfoAgUANfn85ixYtdjsckbTKuzE7rZVjt+9q4Np/vMGu2iZ340lCb5xUNNF5iDKhvLQo\npdcV5mjS0FWZYsk+r7+3rdPnlcBmxps1hlCaSpGLZMKCBafQ1NSMpzfOeSG9Tt4lO60tBfcuW8t7\nG9NTKjZdNCjYXam20LhdoCBVBTk2B450rVAJbEbUB1WpTnJbVVW/rCjMJJIJeffN2NqNLdWuPW7q\njS072cSX4sV/PrXsVPpTa92S7KBkR0REpL28/WZMx5e+t7Ppy3uAkh13eVNMdnwuj9lJVawk7fB9\nRrgQifSUXE28RURE0iXvvhlDoRAPPPs+az/e2ePbTvViOFG5VnI53/i8Xs47dQb+kgKGD0i8Ilyu\nXmDGKoihnm25TeOwMmNc6QeMLnF/ugKRVC1b9jiPPbaUp59+wu1QRNIu774Zm4MhHnp+XVq2ne47\n+A29cFLRbOLzejhyv9Fce8EhzJk6JOHX5eqg8Oraxg7L0t16KemVq4l3rvF5gng9ujkluaupqYnG\nxkaamnKniJNIqvKuQMHaj3akbdu+NF8IJjq7uaRHazLr8XjwJFFpye3S06mK1VLpUbKT04rUspMR\na2vHux2CSLfMm/cFFSiQXiPvvhnT1aoD6e/GppYdd0UWKEjmvU7370W6xEpscvRQum2PEZVuh9Aj\nAg3NvPXBZ26HISIikjXyLtlJp7R3Y1PLjqsik51kGjhytTUkVtSeXprtTBvf3+0QesSGLQF+e++q\nbm/nydc+7oFoRERE3KdkJwnpnpekXi07ropsoUlm7EqO5jpAx+PsrWN2Soryrkdvt9z+6Dtuh5DV\nCj2NFHo01kFyVyBQQ03NLgKBGrdDEUk7JTtJ6E53pUFVXU9Cp5Ydd0W27IRCiZcBz9UEIRgK4Y36\nBPB6YEBliTsBueRHZ85yOwTJMdP7vM1k/xq3wxBJ2T333Mlf/nITf//73W6HIpJ2up2ZhO5U3Upk\n3p96JTuuiuyOVlvfnMTr0hFN+gWD4QS+ZXdi5/F6+N4p07nkppddjCyzxg2r4L0NPV+qXvLXmsA4\nQkkUMRHJNvPmHUNjYzM+n8/tUETSTslOF8YNq2Dc0ArGDavgny99mPJ2Eqnk1phkN7aj9x3J469q\nrod0qKlLvItKro7ZCYZC7VqzwGml6lNW5FJE7gkm0ZInUt1S4XYIIt0yYsQoVWOTXkPd2LpQVODl\n9KMmcsCUId2qVOVLoFUomTE7g6pKGdi3665xkprkkp00BpJGoWCoQxc8j4cOCVA+az3+3prsnH38\nXm6HICIiklZKdrrw2a6Gtp+7U6kqkTE7G7YEEt5eMBiK2zXOX5JfDXYD+2Z+DEmiF7+L5++Z02N2\nYrXs5Gop7VS0vnXBYG4nO0P7l6X0ulFD+vRwJCIiItlFyU4XNm+va/u5O9eAIwb6eyCa3VqCobiz\npQ/u37P7clvGbrpH7OeEg8Yl9JKBVaU527ITDHUsuuH1eHpXy463tWWn43N77zEgw9GkLtX3omT2\nwAAAIABJREFUTF8AqRlRvIGhRZvcDkMkZS+//ALPP/80r776otuhiKRdzn/XnXvStIQG//eE7ozN\nqPD37DiIzlp2xg5Lvj95SZEGKYYisp3B/cr47oKpXb7G6/HgydGBysFgCF9UOTaPN7+7sVWWF7Hw\n6Iltj1tb5WJV3xtQWcqvFx+Qsdi6I+UbAvn7VqdVZcEu+hSoZK/krg0bPuLDD9ezcaPm1JL8l/PJ\nzowJA/j9eQdlZF/duYNfXNizyURLMERBnGTnzGP2THp73ak0l25uDaeIlQBOGF7ZYVnOtuwEQ7Rr\nziKcvOXqASXg/74zl0P2Ht72uDXXi9WNrSUYZHC/spzoFtqcYje8XE3U3fZWYBJraie4HYZIyhYs\nOJUvfWkRxx13stuhiKRd9l7hJuCrn58EOEUEMqE7FwZFPZzsBIMhimMc92Vf2y+lalo+X++76Nln\n4kBGDCxvexydVMW66L/wSzM6jI/I1TEuwVCoQ/et/lFz7Iwd2n5Mx+TRVekOK21aW6wi363OChQ0\nhisV/c+pM9hzTBUnHJxY18aelsiNiJYWVVUSERGJJaeTnYOmDwMyV/q3pRuDmGMlJt3REgrRr6Lj\nwH2f15NSS0NBjl6wd0cffxGzzMC4z8c6j4UFPoZHJEjOerl57qK7bh2293DGD3Narn761X05c55h\n3n6j2p4/cp8R9KsoTntcB00byp5jej6p+slX9u2wrPW9C8bIFerCcy2NHVrB/562N/PnjOFbx03p\n8bhaTRixu9Vwv8mD2n6eOq5fp6/zeGDiyL5pi0tERCSXZX//jAR5iO6Q0/Oi755edMZMrrhrRZev\nG1RVGrdl57i5Y3nwuQ+63Ma08f2Zt+9IrrxnVVsssZKdVLshdZXHnXzoeP729Htxn58wopJ3P07P\nxIwFaWp18gAlxbv/BKK7GiZ6HhPNE4sKvYwcWI7P6+GIWSO563FLdW3iJa57WkswxJSx/Xj+DWeg\n9elH7dH23KjBfRg1uA+vvrO5bVlhgZe6xtT3d8Q+I3jyta77h5906Hj6lBVx1uXLUt9ZlJkTBzJy\nkJOkRr6vuwsUdPwDCNR3fG9GDU5f9bLIgiOjB/fhmANGU1zk4+EX1rVbr39FCduq6wE483OGGRMG\n8M+X1qe0z1DaPzXTwxgzCrgGOBhoAv4FnA/MAJ4C6sOrtn41LLTW3hd+7bnA2cAQYDVwvrW26w9y\nERHJSTmT7Ewb35/V721re/yN+e3HpXi9nm61vEQ6cOqQtgvASE1RyU6i43C+u2Bq3GRiyph+7ZKd\nY+eM5uEXOl64FBX62s2r09wSp0CBJ7Uxx7EGaEeaM3Uo5WWF3PrPd2I+P3vPwWlLdhKZoygVHg8c\nMmMY/3l9I0UFXmZGtfJEl5QuLY7955JoUlRc6OOSM2e1PX7NbuaV/26Ou/7wgX5q65vZHlH+PFGH\nzhjG06s2drpOMASnHDaBpuYgk0dXdShWALSbdK4747r2mTiQ+XPGJJTsxDqfsyYNYvk78c9VV97b\nGPt3szVRjfX7X1PX3DG2lCPoWuTfczAUakusokObvdcQ6uqbKSzwcsj0YXg8HgpivHfRRg/pw/pN\nu3o0ZhctBV4FRgJVwAPAlcBdwDprbcw+h8aY+cClwDzgDeA84GFjzHhrbV2s18Qyq2IVjcFCVtek\nr6VPJJ1uueV6AoEa/P5yFi1a7HY4ImmVE93YLv3Kvnz3xPaVsfaMGjvQk9XEPrf/6JjLm6OTnQT3\nOXxgOUWFHU/1Fw8cgydqcVlxYdztxBqL0zpuqVUwGOowhiT63MXSVREAjwfmTh0adz6PdE5Tkq4u\ndh6Ph+JCHz//2n78eNGsDhfz0dfcR80aEWc7ie0vmYlKAY6dPYbfnnNg3OfjdfX6zbdms3Ce6XL7\nwWCIPmVFfOu4vThkxvCY60T+zhcUeBmaQlnzX35jf7553JSE2xBinc/ujsurre+YuMDuBCNWN7ba\nho7vVzrbQSKT6YaICYajW52KCryccfRETjl8QltiWFLc9WdRItUFc4ExphIn0bnYWltnrd0I3I7T\nytOVxcCt1trl1toGnAQpBMxPJoZ1dSP5uH5YkpGLZI+5cw/h0EOPYvbszBR4EnFT1ic7B00byugh\nfTqWyI26Itp30iB6Srxr1+aWjhcdiSoq6Hgx8sW5Yzu0HnRW+SlWcmVGte+rHx0jQN/yrsdZdNWy\n48E555NGxR9LcdHpezNzYscxMJNGdW88QWTxhAOmDO7WtiK1nnpPnK5/0cuOnTPGWR69XoL3+6NP\ncVclnjub2PSEg8Yye8qQDsuLC30M6FuKx+Pp8gbAkXGSt0iRyU6hz8tRs0Ym3MIzoLKE4+eOZWh/\nPwU+b8I3JGKdz+6Wl29qbp/NTBlTRYHPw7eO2wuIfa4HV3VM7KNvePSkyPFQdQ27k53o0GKdi/LS\n+DdJwCmlHqvbay6y1u601n7dWrslYvEoYEP45wpjzP3GmC3GmI+MMd+LWG8fYEXEtkLAKqDjgK5O\nbG3qz2fNuVusQ8SYyey551QmTpzsdigiaZfWbmzhftXXAgcAu4B7rbU/SGYb8SpdRV+bnnzYhC67\n7SQq3p366DE7yZSTjnWBEms3cefjiXPhG53ctMS4RZ3IxWlXd6xbt/GF2aN5auWGDs83NQcxo6rw\neDysWLOl3XPdnZ0+shvbxBF9eemtT7u1vVbRiWa0yKf7lBXGPY+pNjwtOHg8L0Ycy4WnzWgbkwVd\nJKAeT8y/jcjXzJ06lH930m3s83FaMCM1Rfx+Ffg8FBZ4ufybB/C/174Q9zUlRT6+u2Aqk8e0H1hf\nXOjjf06Zzur3trWL64yjJrJsxcd8sq229dA6iDeBbqK+fmz7bq/fO3UG9Q3NlJU4SUJ0sjNhRCWL\nolpNoWPS1JWzj9+L6RMG8M2rnu5y3WERrWb1jbtboqJ/D2J9RpTF6WLZqqSHq0FmE2PMLOAcnNaZ\napxxOFcDpwCHAX8zxmy31t4G9Ae2R23iMyB3ZpCN4PV4Yk5BEG9agmS0fu6mqxtxNtGx5qfecqy9\n5Tgh9WNM95id+3G6G5wGDAb+aYzZZK29JtENxBsPEX2hFz2eInIQb09pim7ZibqAOGLmCJ5cEfvi\nsjhGNzaPx9PhTvHgfrG7iX1h9ph2j/uH79JGtw7Euhvd1QD/Ap83ZkJSUVbI0P5+xg+vbDu/8e4O\nNzU7d6JjJXXdvRce2Y2tJ+cD6mqi18hWtrqG2N2gIPVqbP0rS/jNt2fzwpubmD5+AKOH9GlXsKKz\nXGdov7KYrRGRy048ZDxlJQVMGFHJsP5+fnjTSzQ2RbTUJHBBNGevIdz/zHsEQ3BAuCWpX0UJF542\ng111TYwZ0oeVa7dy77J3217zx/MPjnuTYq9x/RnSr6wt2Zk8uooj9hnBf17veKPC49l9DuLFesW3\nZnPZra9SG+f9+fPFh1PfAuVF3nbjj7weT1uiA7DfpEE8tWJ3Ev/DL+8Tc3vRb/XUcf154/1tMdcF\nqG1oTrhVakhEF9H6xohubFF/m31j/N529QUQq4re5yIq7eUqY8yBwEPARdbap8KLD49Y5QljzPXA\nV4Hbwstys3xiDAUFPqqqnCS59W/O6/W0LesJFRWlXa+UJ3Ss+am3HGtvOc5UpC3ZCd9tmwYcbq2t\nAWqMMVfjDAhNONmpj7iImTSqL+98uAOgywG5V549hydf+5i7nliTdOz+OF1CohOT6HE4nz9gVNxk\np7DAx+f2G8W/Xvmw3fLoC5nBVR1/WU84eByjhziDlS86fW+eWbWRL4S7VA3uV8a+kwbx6jub+c6C\nqTEv4DtLEE47Yg9m7DGAn936aofnhg8s58Iv7R33tZFaz1msO/Dz9h3Fux+/AcDU8QN4472tnHr4\nhHYXyPH0ryhpdyGXSF5x+MzhfLKtlnHDKnjkxY7FHmZMGMCuukaO3KfzblyVEd3/IlvQolOMxuYW\nUjWgspQvHji27XHk8cXrxjZjwgD2MQN5zW7p8FxkkY7iIh/HH7R7nPbV5xzId655Nqn4yksL+c3Z\nc/B6PO26SkW22nxhzph272VX8w5FHlfrqqOH9OGjzc6M9K3noLSooC2JiZcwDOxbSlVFMbVbYic7\nBT4vIwf42b490GlMppPumZFGR1VjO/nQ8Z0mO59+VpvQdgH6RJzfyM+96F+DyhjdUru6oXHGURM7\nLDvl8Als3ZnwmPysEy42cAdwjrX2rk5WXQecGP55C07rTqT+OMUKEja4aDMtIS9bm9xtEGpubmn7\n3W79LgkGQ13+vifC5/NSUVFKdXVd3s/j1BuP9bnnXqShoZGiokL22mu622GlRW95X3vLccLuY01W\nOlt2ZuJUxamOWLYCMMYYv7U2oU9j+9GOtp/PWTCVOx6zDB/gjzl+5cRDxnHfM++3DaI/ePrQlJKd\nyIuOyHEGkV1YCgu87ZKIvcb1i1utq9Uph0/giH1GcO0Db7bNnRE58/khM4bFbCUYGtHaY0ZVdbgw\n+/bxe/HtTvZbEJUsmJFO0njBaTOYEr5ojVWCdmDf2K04B+41hOffdKrVzTIDqW1o5qBpzmDdYQP9\njBjo5+Mtzts7fKCfmRMHcOFpMxjcvwwzbiDbtwdobg4SCsFfn4qf8FyycB8G9yvjloffbluWSMW9\n4+aOpU9ZEU3NQdZ+vJPiQl+7C9JzT5rW5TYgfjfFyC5DPq+Hik4mcY1M0BMR+f63XuR+/djJ3P4v\n2/b79+3jp+DxeGKWRh4Sp2UQaNeSkYzOji8VkW+hJ5ztnHr4BGpqmxg7rIKSIuf8jhpc3nbu9hgR\nf9xXIE7hh9IEBu0ny+PxMHPiwLaumtEJqS+qKuSs8FjCof3L2rrpxXLiIePalUGva4xfoCBWkZAp\nY/pR1aeY2vrmdsUNAL513JS4LbKFMcYS5gJjzByclpoTrbVPRiw/CRhgrb0+YvU9gffDPy/HGbdz\nR3h9L8531c3J7H9Y8SYag4WuJzvBUKhdi2WrWMtS1dIS7NHtZbPedKwrViynpqYGv9/PpEn5Ubwk\nnt7yvvaW40xFOpOdeH2jwekfnVCyE3nh4C8pbBtQHMvn9x/NuGGVjBrszKfR2Rf5wdOH8tzqTTHv\nnns8Hn505iyeWvlx3K4et/1kHi2NTZx82HjeeG8bX/ncJEqLC/jWcVN49vWNvLUu+tAd/StL+PGi\n3eWHI/vSt3ZNO+2IPbjnybVty7vqbhVLVZ/itpLFleVFjBpczoef1nDa4Xtw2MzhVAca210ARV6A\njhpczo6aRhYcPD7mtr905EQG9ytjzzH9GDesot1zXo+HS7+6L08u/5jV72/jzHkGj8fD5DH9OvQj\nP2rfEe2SnW/M35PX7BZWrNnC/DljGD/cmWRx/ymDeT1cdryqT/u72v6SAmbvNYR/L3da1FrnaAEn\nIf3BGTMBuj1nS2Tis+CQcbz5wTYG9S1l5KByBlSW8Mb721gebmmZP2cMaz7awdaddXxj/hQu+NPz\nCe9n8ugq/hH+edxQ59zO2WsoB00fxic7Gigg2PZ7XR3YPenNwL4lFBf6+GYnfx+ZEDkxZjyRf9O+\ncHLnLynskISecdREfnrrq5QWFzBxZCU/+cosGpuCXB6e26p/uGtWrBLRAIft3XUBhkiV/iJ2Brqe\nSGjC8Mq2ZKe8tBCvx0MwFGLy6CrOPXEa3776mbZ1x7S2yJ4xkwef+6BdV7kFh4xj8IByygq9TBnT\nj2AoRFGhl8amICdEtMhF3mQ5/+TpMW+IFBX6+NXiA2hpCbZrvTMj+7JPJxPnVvqLOGKfEazbVE1F\nWREr12519nNK9t7pNcb4gJtwuq49GfV0I3CVMeZd4GmcMTtfARaGn78OWGKMWYIztudCnDl5Hkkm\nhpW7ErthIpKtFi48SxfG0muke8xOt/pG+7wevnbsnkkNtpw6vn0PhcjJRi/96r5cfucK+lUUc9YX\n9uSsY/fkjfe2MbhfGR9vruH2R99hwSHjKSjwMnFUXyZGVREbPtDPhnCLRYW/iOqWFuYfOJb5Ed2Q\n5kwdypypQznzF/9uW9ZZ/BNH9WXOXkPYvquBY2aPpqDAyzGzR3P0fiO54cG3KC8tZPKYqoTHhbR2\n+frRolnc9/R7HDxjGEWFPn729f2pqW1qS5xKolqh5k4d2jYHys++vj+hUCjmvCsAFeVFHH9wzGks\nnOPFyzFzxnBMuKtddGyt/xbg5cvzJnLPv9eycN4kDpo+jFmTBvH+xmrMqL5tLVIHTh1KKOQkioOq\nytrGcnxj/p4cOG0oXo+H04+aSFNzMG7rWnGhj4amFr544Ji470esQX7fPG4K/3r5QxbOM22v61dR\nwtXfndtWoa6w0Me5J0+nrqGZ9Zt2MXFk33aV3vYc04931m/nf780o8vf5Umjq/jOgqn4fB7GRCSS\nPp+XKeP6t2umnjymH/941hnf879f2juhstBH7zeSx1/5iOMPGtsjg5hbY/vteQez7JX1HLXvyC63\nG9lNdMTg8rjrjx5awZVnz6Go0EdpSSETwq07PzhjJs+u3sjxB42jIDw/0itvO4Ue/vdLM/B6PLy3\nYSefP2B0UgM3/+e0GVzz19c5cOrQTo/hcweMYmeggSH9/QzqV8YV357NyrVbOHDqUPxlhW1dDL97\n4lQKw0lyv4oSvnrMZMYPq6So0MuMPQbgLy3q0PXg6u/M5bPqesYM3f3eTxhRyZsfOPeJRnZyvlqX\nt07wa0b1bTevEzgtSPc/8z6LPj+pbf3WQgyv2c1tyc6ETlrSssBsYBLwe2PMH3A+4ls/6g3O5KJ/\nxJmDZxNwrrX2QQBr7WPGmIuBvwIDccaUHhMuQy0iInnI01XJ4VQZY76OMw/C+Ihl+wEvABXW2sQ7\ns4uISN4wxpwJPBDVzTlnzL/gwXROuZSw0h0v8qfLLwFg+vRJfPLJRoYOHcbrr8ee/DkZBQVeqqr8\nbd2O85mONT/1lmPtLccJbceadENKOuvULQdGGWMi68/uB7ytREdEpFcbDTxijPmHMeZLxpieKx8m\nIiISIW3d2Ky1q4wxrwKXG2MuAIYD38OZsVpERHopa+3PgZ8bYwYDxwKPGWM+AW6y1j7ubnRdm1b+\nFk2hAv4bMG6HIpKSe+65g0AgQFmZn5NPPsPtcETSKt1jdk7CGUi6CdgJXBdVJUdERHohY8wknIk/\njwLeA+4DjjXGnGqt/ZqrwXVha1M/WkK5WclOBGDixMnU19dTVNSxlL1IvklrsmOt3Qh8IZ37EBGR\n3GKMWQGsB5YAv7HWts4A/ZAx5jH3IkvMxoahbocg0i0zZ87K+/EdIq3S3bIjIiIS7VhgurX2UQBj\nzCnAUmttnbV2nruhiYhIPklngQIREZFYrgUmRjyuwGnlERER6VFKdkREJNP6W2t/1/rAWnsz0PWM\ntFmiqmAHlQU73Q5DJGUffPAe7767hnXr3nc7FJG0Uzc2ERHJtE+MMT/BmdTTCxwEbHQ3pMSNL1tH\nY7CQ1TU5k5+JtLNs2RMEAjX4/eWMGbPY7XBE0krJjoiIZNqXgUU4Y3dagNeAH7saURJWVE91OwSR\nblm48Cyam1uApOdnFMk56sYmIiKZVgh8CryMk+iEgC+5GlESgvgIotLTkruKioooKiqmqKjI7VBE\n0i4rW3aMMaNwBrAeAOwC7rXW/iBD+54H3A4ss9aeHvXc4cCvgUnAh8CvrbV3Rzx/LnA2MARYDZxv\nrV3Rg7GNAq4BDgaagH8B51lrq7MgtunAb4FZQB3wDHCutXaz27FFxfl/OOfMG37semzGmCDQgHPB\n5wn/e5O19rwsie8S4BygD/Ai8A1r7Xo3YzPGHAQ8jnOuWnmBQmutz+3zZoyZgfP3MBPn7+HJ8D62\nZUFs+wC/AfbB+Xy9xlr72/BzmYrtSeBtYEPEslCcdUVERFKWrS079wMfAWOAI4ETjDHnp3unxpgL\ncZKJNTGeGwI8iJOEDQTOB24yxswMPz8fuBSne8Zg4GHgYWNMaQ+GuBT4DBiJc6EyBbjK7diMMUXA\nY8Cy8P73Cu/nOrdji4pzBrCQ8EWVMWZolsQWAiZaa8ustaXhf8/LhnNnjDkHOB0nwR6Kc4H6Pbdj\ns9Y+G3Guyqy1ZcBlwL1ux2aM8QGPAC+E9z8FGARcmwWxVQGP4iStQ4B5wDnGmBMzHFudtfYsa+2P\nI/77SXePT0REJFrWJTvGmFnANOAia22NtfY94GogEyPo6oD9cGbzjnYGYK21t1trG621TwIPAV8P\nP78YuNVau9xa2wBciXMRO78nAjPGVOIM5r04PBfFRpwWqIPdjg0oA34IXG6tbbLWbsNJWPfKgtgA\nMMZ4gOtw7ra3yorYcFpzYnWczob4/gf4obX23fDf4/nW2vOzJLY24VbP/wG+nwWxDQ3/d6e1ttla\nux3n72HvLIhtNlBurf2RtbbeWvt2eB/fyHBsTxpjzjLGTDTGjGv9r9tHlyGTytYwoVRVrCR3LV36\nD+67bwn//OcDbociknZZl+zgdPtYZ62tjli2AjDGGH86d2yt/aO1dlecp/cJxxFpBbBvrOettSFg\nVcTz3Y1tp7X269baLRGLR+J0A3E7th3W2j9ba4PgvFHAV4B73Y4twrdwktm7I5bNzJLYAK4wxqw3\nxmw3xlwf/l139dwZY4YBY4H+xpi3jDFbjTF/NcYMcDu2GH4G3Gyt/TgLYtsArAQWG2P8xphBwIk4\nLSFuxwYQCif/rbYDM8js38MROK2sNwC3hP+7OYXtuKIuWEJ9sNjtMERSVlVVRb9+/enbt8rtUETS\nLhvH7PTH+fKN9Fn43wFAILPhtOmP07Uu0mc4MbU+HyvuAaRBuAXsO8AXgYuyIbbw3fW1gA+4Efgp\nTpcZV2MzxgwOx3Jw1FPZ8p6+iDP+5ExgHE6SeG0WxDci/O9JwOE47+t9wE04rXnZcO4wxowBTgAm\nROzbtdistSFjzEnAv3G6ggE8jdP6+aCbseF0rasFfm6M+SUwDGcMTlV43x9nIjZr7WHh7n4DrLWf\nJvt6t62vH+V2CCLdMnfuoTQ3B90OQyQjsrFlB7K3FmJXcWUkbmPMgThjZC6y1i5LcN9pj81a+6G1\nthgw4f/uSHDf6Y7tt8At1lqbwr4zcd4OtNbeGu4CaIEf4IyTKXA5vtZtX2Gt/TTcdfJSnAQ7RBac\nu7BzgPujWj1diy08hm0pTtJaCQwHdgJ3uR2btXYHcBzOWMhPgL+E/2vJZGzGmBNxqrA9GX58lTHm\n1J7YtoiISKRsTHa24NxBjNQf5+JqS8fVMyZeXJsTfL5HhAcJP4JT6exP2RRbq/A4q0twSsk2uhmb\nMeYIYA7w8/CiyIu1rDpvEdbhtKIEu9h/uuPbFP43cqr4dTjnsNDl2CKdhDO2pJXb7+sRwBhr7Q/D\n45w24bQsngA0uxwb1toXrLUHWGv7WmsPxGmd+TiBffdkbOcD+7P7M/1HwPdS2I6IiEinsjHZWQ6M\nMsb0i1i2H/C2tbbWpZjAiWufqGX74swT0eF5Y4wXpw/8y/QQY8wc4DbgRGvtXRFPuRqbMeYwY8w7\nUYtD4f9ewSlH7UpsOIOuBwEfGmO24NxN9hhjNgNvuBwbxpgZxpirohbvCdQD/3Q5vo+BapzxHK3G\n4iSwbsfWut3pwCjgiYjFbv+t+gBveLutSnD+Hv6Ni+fNGFNsjDnTGFMesfhonO5tyzMZW7jIQWu5\n6Zya3dDvC1DmdfPrSKR7Nm/exKZNG9m8Oed6kYokLevG7FhrVxljXgUuN8ZcgNMF5Hs4lX/cdBfw\nU2PMWeGfjwA+j3N3EpxKX0uMMUtw5p+4EOeC9ZGe2Hm4f/tNOF3Xnsym2HASiApjzBU4d7DLcbo7\n/Se87wtcjO17OHeNW43EGSMzHef3/2IXYwPnrvjicPJ1DU659Z/hDNy+E7jUrfistS3GmFuAS4wx\nz+LMyfJjnO6JfwF+7PK5A6fC2TZrbU3EMrf/Hl4AaoDLjDG/Yne1wmdwzp1r7ylOonopMNkY86Pw\n/s8A5gIbwzFnIra/G2MeBsYbZ+6rI8ihAgWT/WtpDBayumaK26GIpGTp0gcIBGrw+8tZtCgTxW5F\n3JONLTvgdEsZjtONZhlwm7X2+nTv1BhTZ4ypxZlH4uSIx4THAxwLfBfYgTMO5Axr7Vvh5x8DLgb+\nCmzD+fI+Jnz3sifMxpno7/etcUXEV+JmbOHKeUfhtMBtwWkx2QGcbq3d6nJsO621G1v/w/mdCllr\nP7HWfuRmbOF9bASOwRlHsRV4DqfV5KIs+J0jvP1/4bTQrQUszqSs2RAbOHPFbIpc4HZs1trPcOav\nORCndewNnKIA2fD3EAJOxvl73Qn8Lrz/1zN53qy1vwPOwykV/jRwrLX29907usx5s8Zga8e7HYZI\nyhYsOIXTTjuTL37xJLdDEUk7TyikSatFRCRzjDG3srsLWxtr7VkuhJO0+Rc8mBVfnKU7XuRPl18C\nwPTpk/jkk40MHTqM11+P7lWcvIICL1VVfrZvD+R91S4da37qLcfaW44T2o416S7PWdeNTURE8t6d\nET8X4rRc6/tIRER6nL5cREQko2KMO/yXMeZRV4IREZG8pmRHREQyKlwEIdIQdk9im/XGlX5AS6iA\n9fUj3Q5FJCXLlj1OXV0dxcUlHHroUW6HI5JWSnZERCTTIrOEEE6J82NdiiVpPk+QEPndN17yW1NT\nE42NjXi9PrdDEUk7JTsiIpJpT9OxQMFoY8xoAGvtfzIeURLWqhKb5Lh5876Q94PZRVop2RERkUy7\nCJgCvIqT9MwG3sQpXR/CmaNLRESk25TsiIhIpjUBxlpbD2CMKQHutdYudDcsERHJN0p2REQk00bT\n/vvHC4xyKZakFXoaAQ9NoUK3QxFJSSBQQ1NTCx6PB7+/3O1wRNJKyY6IiGTa/wGvG2O2hR/3By53\nMZ6kTO/zNo3BQlbXTHE7FJGU3HPPnQQCNfj95SxatNjtcETSSsmOiIhklLX2duB2Y0ycF8ndAAAg\nAElEQVR/wANss9ZGFyzIWmsC4wiR9CTeIllj3rxjaGxsxudTNTbJf163AxARkd7FGDPXGPMS8Iy1\ndivwE2PM4W7Hlajqlgp2tfRxOwyRlI0YMYpRo8YwfLjmipL8p2RHREQy7VfAF3CqrwFcB/zSvXBE\nRCRfKdkREZFMa7bWbiM81461djMd590RERHpNo3ZERGRTFtujLkOGGaMOQ84lhyaW2dE8QZaQj4+\naRzidigiKXn55Reor6+nqKiYffed7XY4ImmlZEdERDLKWvt9Y8yhwDqcAgU/tdY+72pQSags2EVT\nqIBPGt2ORCQ1GzZ8RCBQS1lZmduhiKSdkh0REckoY8yD1trjgKfdjiUVbwUmuR2CSLcsWHAqzc1B\nt8MQyQglOyIikmk7jDE3Aa8Bbe0j1to/uxeSiIjkIxUoEBGRjDDGnBz+8X3gY+BkYGT4vxFuxSUi\nIvlLLTsiIpIp3wb+Zq29DMAY81TrzyIiIumgZEdERDLFE/U4pXLTxphRwDXAwUAT8C/gPGttdXhy\n0l8Dk4APgV9ba++OeO25wNnAEGA1cL61dkUy+59VsYrGYCGra6akEr6I62655XoCgRr8/nIWLVrs\ndjgiaZXVyU4oFAp99lmAYFDTL7Tyej306+dH56UjnZvYdF7i07mJzev10L9/eXRi0hN66iQvBV7F\n6f5WBTwAXGWM+QnwIPAdYAlwEPCQMeYda+0KY8x84FJgHvAGcB7wsDFmvLW2LtGdr6sbSTDkfi/w\n7YEQ3734VwDs2Lmr7d/WZd3hAQqLfDQ1tiT0ps2YNJqvLTqj2/uVzJg79xAaGhopKMjqy0CRHpHV\nv+Uejwev16OLkAher0fnJQ6dm9h0XuLTuYnN601HngPAnsaYv4R/9kQ9xlp7ZlcbMMZU4iQ6F4cT\nlDpjzO3Ad4EznM3Y28OrP2mMeQj4Ok5rzmLgVmvt8vC2rsRJeOYDf030ILY29U901bQqGT6HQPjn\nkPem8L9FBCoP6LmdlCa22voNK3tun5J2xkxWNTbpNbI62RERkbxyatTjm5PdgLV2J07yEmkksAHY\nB4jukrYCOCX88z44LT6t2woZY1YB+5JEsiMiIrlDyY6IiGSEtfaZnt6mMWYWTre1LwIXAR9FrfIZ\nMCD8c39geyfPi4hInlGyIyIiOckYcyDwEHCRtXaZMeYiOhZBiNbtPnqDizbTEvKytUk5UiuPBwoK\n3B/HlAqfz9vu33zWeoxvvbWahoZGiooK2Wuv6S5HlR695X3tLccJqR+jkh0REck54WIDdwDnWGvv\nCi/egtN6E6k/sLmL599IZt/DijfRGCxUshOhuKiQqiq/22F0S0VFggOU8sCqVa+xa9cu+vTpw0EH\nzXE7nLTqLe9rbznOVCjZERGRnGKMmQPcBpxorX0y4qnlwFeiVt8XeDni+X1wkiSMMV5gJkmOHVq5\na1rSMee7hsYmtm8PdL1iFvL5vFRUlFJdXUdLS34P2m891jPP/Frbsebq+9aV3vK+9pbjhN3Hmiwl\nOyIikjOMMT7gJpyua09GPX0X8FNjzFnhn48APg/sH37+OmCJMWYJzhw7FwL1wCOZiD2fhULkfHWv\nlpZgzh9DonSs+ae3HGcqlOyIiEgumY0zYejvjTF/wJm7xxP+1wDHAn8A/gSsA86w1r4FYK19zBhz\nMU7ltYE4JayPsdY2ZPogREQkM5TsiIhIzrDWPgf4OlnlI2DvTl5/A3BDT8clIiLZScmOiIhIEqaV\nv0VTqID/BozboYik5J577iAQCFBW5ufkk89wOxyRtFKyIyIikoStTf1oCXXWuCSS3SZOnEx9fT1F\nRcVuhyKSdkknO8aYecDtwDJr7eldrHsucDYwBGcw6PnW2ujZrUVERHLGxoahbocg0i0zZ87SYHbp\nNZKanccYcyFwDbAmgXXnA5cCXwYGAw8DDxtjVAhcRERERETSLtmpSOuA/YD3Elh3MXCrtXZ5uNLN\nlTjVcuYnuU8REREREZGkJZXsWGv/aK3dleDq+wBtXdastSFgFc4EbyIiIjmpqmAHlQU73Q5DJGUf\nfPAe7767hnXr3nc7FJG0S2eBgv7A9qhlnwED0rhPERGRtBpfto7GYCGrayrdDkUkJcuWPUEgUIPf\nX86YMYvdDkckrdJdjc3T3Q34fMn2tMtvredD56UjnZvYdF7i07mJTeejcyuqp7odgki3LFx4Fs3N\nLfTAZZpI1ktnsrMFp3UnUn/gjUQ34PF4eOmll9h///17NLB8UFGhOg/x6NzEpvMSn86NJCPY6Zym\nItmvqKgIr1fV2KR3SGeysxxn3M4dAMYYLzATuDmZjQQC9WzfHuj56HKUz+eloqKU6uo6Wlr0QRVJ\n5yY2nZf4dG5iaz0vIiIiua5Hkx1jzH+Br1lrXwCuA5YYY5bgzLFzIVAPPJLMNltaQqoFH0NLS1Dn\nJQ6dm9h0XuLTuREREclPSSU7xpg6nPLRheHHJwAha21ZeJWJQDmAtfYxY8zFwF+BgcCrwDHhMtRZ\n51e/uoxx48Zz2mlfdjsUERHJYpPK1tAcKuDdunFuhyKSkqVL/0FtbS2lpaUcc8zxbocjklZJJTvW\n2k77NVhrfVGPbwBuSCEuERGRrFQXLKElpHE7kruqqqooKSmluLjY7VBE0i7d1dgyIhQKceON1/L0\n00/S3NzC8ccv4IwzFgGwatUKfve7q2hoaMDv93PJJZcxZsxY/vznG/nss238979vc+qpZ7Rt649/\nvAav18PZZ58HwLvvruXiiy/gb397KO7+f/Wryxg8eAgrViznww/Xs3DhVwkEanj88UcpL+/D1Vf/\nkT59+rB27Rquvvpytm/fTmVlXy677NcMGTKEYDDIb37zS1avXkVTUzNHHnk03/zmOQAcfPB+/OAH\nP+bee+9m165qvve9/2XBgi92iOH++//G3/9+D8FgkLFjx3Hppb+kpKSE7du384tfXMrHH39IRUUl\n3//+Jeyxx0Q++WQjV1zxC7Zs2UxRURGLF5/N7NlzefTRh3nppefZtm0bc+YcRH19XbvzdPTRn+vJ\nt05EJOesrx/ldggi3TJ37qHquiu9Rl7UF/3Xvx5h+fKXue22Jdx557088cRjrFz5GgBXXXU53/72\nudx9930ccMCB3HjjtW2ve/XVl/nDH25odwF/+OFH8tRTT7Y9fu65ZzjssCO6jGH58lf43e+u47LL\nfsWNN/6J4cNHsmTJ/ZSWlvKf/zxFKBTiRz/6Pqeccjr33PMPTjzxFH7xi58A8PTTy/jww/Xcffd9\n/PnPd/LAA/fx7rtrASeR27JlM7ffvoRzz/0fbr65Y0PZZ59t48Ybr+X6629lyZL7qa2tZenSBwC4\n7rrfM23adO699wEWLfoal1/+cwB+85tfcuCBB3PXXX/nxz/+GT//+aXU1taGz8srXHrpLzj99IVx\nz5OIiIiISLbLi2TnxRefZ/78EyguLqa4uISjj/48zz//LAB/+cs97LffAQBMmzadjRs3tL1u6tTp\nlJWVtdvWnnvuBXj473/fAuDZZ5/hsMOO7DKGfffdn4KCAsaOHUdjYyOHHHIoAKNHj2Xr1i2sX7+O\nhoaGtm0dddTnWLPGUlsb4PDDj+QPf3CSmD59+jBmzNh2cR51lJNk7LGHYfPmTzvsu1+//jzyyL+p\nqKjA4/EwZcrUtte/9NILbfucO/dgrr32Jpqbm1mxYjnHHbcAgHHjJjB69GjefvvN8OPxDBw4qNPz\nJCIiIiKS7fKiG1tNzS5uu+1m/vrXuwmFQjQ1NbUlOI8++jD33fdX6uvraGhooLy8vO11kT9HOuyw\nI3jyyScYOHAQ1dXVTJ48pcsYWpMBr9fJH4uLS8KPPQSDQWpqdlFdvZMvf/lkwGmxKS0tZfv27TQ0\nNHD11b/h3XfX4PV62bz5U0Kh3c3LrXH6fL6Y5XFbWlq4/vo/8uKLzxEMBqmurubII48GYNeuavr0\n6dO2bnFxCZ99to2ioiKKiooi9tGHnTt3AuD3+9ttP955EhHpjfy+AKGQh9qgbgJJbtq8eRONjc14\nvT4GDRrsdjgiaZUXyU6/fv05/PCjOPbY49ot37z5U6655kpuueVORo0azUsvvcB11/2+y+0dccTR\n/OhHFzF06FAOOeSwHouxb98q7rzzbx2eu+KKX1BZWcldd/0dr9fL4sVfSWrbTz75OCtWLOfGG2+j\nrMzPddf9gYaGegAqK/uyY8cOqqr6AbBhw8cMGTKU5uZmGhrq25KynTt3UlVVxaefburegYqI5LnJ\n/rU0BgtZXdP1jTCRbLR06QMEAjX4/eUsWrTY7XBE0iovurHNmXMQjz32T5qamgiFQvz5zzeyatUK\ndu7cSVmZn+HDR9DQUM+//vUI9fX1XW7PmEn4fF6WLLkzoS5s0UKhUIdlw4YNp7y8nJdffhGAjz76\nsG38zI4dOxg7dhxer5fly19h48aPO4mz47Z37NjB0KFDKSvz8+mnm3jppefbXj979lwef/xRAF55\n5SV+9KPv4/P5mDVrPx56yBnXs3at5dNPPwl34RMRkc68WWOwtePdDkMkZQsWnMJpp53JF794ktuh\niKRdXrTsHHbYEbz//rt85StfAmDKlKlMmTKVwsJC9t57H0499XgGDRrMOeecz09/+kOuuurX9O8/\noIttHsnjjz/KlCnJJwAejyfm8p/+9JdceeWv+cMfrqaoqIhvf/u7AJx66un88peX8cAD93HQQYey\ncOFX+dOffscee5gY2+q47SOPPJrHH3+U008/kXHjxoeP8xJmzJjJ2Wefy2WXXcLJJx9H376V/PCH\nPwXgggsu5vLLf8YDD/ydkpJSLrvs15SUlCR9rCIivU19sNNZGESyXlVVP1Vjk17DE6sVIlt4PJ7Q\n448/xYwZ+2R83w8+eD8bNnzUVoI6WxQUeKmq8rN9e0AfVFF0bmLTeYlP5ya28HmJfddGmH/Bg1n3\nxfnvG79Gfc02Ssr7c+TiWzK+/xHBlfzshxdkfL89oTd9DuhY809vOU5I/bspL7qx9bTa2gD33Xcv\n8+ef4HYoIiIiIiKSorzoxtaTnnvuGa655ipOO+0MRo50Jo5raKjnrLO+HLN72rRpM/j+9y/JdJgi\nIuKScaUf0BIqYH39SLdDEUnJsmWPU1dXR3FxCYceepTb4YiklZKdKHPnHsLcuYe0W1ZcXMJdd/3d\npYhERCSb+DxBQuR3dxHJb01NTTQ2NuL1+twORSTtlOyIiIgkYa0qsUmOmzfvC3k/vkOklcbsiIiI\niIhIXlKyIyIiIiIieUnd2ERERJJQ6GkEPDSFCt0ORSQlgUANTU0teDwe/P5yt8MRSSslOyIiIkmY\n3udtGoOFrK6Z4nYoIim55547CQRq8PvLWbRosdvhiKSVkh0REZEkrAmMI4TmXJXcNW/eMTQ2NuPz\nqRqb5D8lOyIiIkmobqlwOwSRbhkxYpSqsUmvoQIFIiIiIiKSl5TsiIiIiIhIXlI3NhERkSSMKN5A\nS8jHJ41D3A5FJCUvv/wC9fX1FBUVs+++s90ORyStlOyIiIgkobJgF02hAj5pdDsSkdRs2PARgUAt\nZWVlbociknZKdkRERJLwVmCS2yGIdMuCBaeqQIH0GhqzIyIiIiIieSmplh1jzCjgWuAAYBdwr7X2\nBzHW8wA/Bc4E+gPvA7+y1v61uwGLiIiIiIgkItmWnfuBj4AxwJHACcaY82Os923gLOAooBK4BLjT\nGLNX6qGKiIiIiIgkLuGWHWPMLGAacLi1tgaoMcZcDZwHXBO1+kzgOWvtu+HHjxhjtoVf/2b3wxYR\nEXHHrIpVNAYLWV0zxe1QRFJyyy3XEwjU4PeXs2jRYrfDEUmrZLqxzQTWWWurI5atAIwxxm+tDUQs\nfwS41hgzHXgb+DxQCjzT3YBFRETctK5uJMGQhrxK7po79xAaGhopKFCdKsl/yfyW9we2Ry37LPzv\nAKAt2bHW/sMYMwNYCYSAWuBMa+2GbsQqIiICgDFmHnA7sMxae3rE8kOAp4D68CIPzvfQQmvtfeF1\nzgXOBoYAq4HzrbUrEt331qb+PXIMIm4xZrKqsUmvkWxK70lkJWPMQpziBLNwuq0dCdxtjPnQWvta\nMjv0+TwUFOgOWiufz9vuX9lN5yY2nZf4dG5iy/bzYYy5EGdc6Jo4q6yz1o6L89r5wKXAPOANnK7Y\nDxtjxltr69IRr4iIuCeZZGcLTutOpP44d8y2RC3/DnBDxJ2yfxpjlgELgaSSHb+/hKoqfzIv6RUq\nKkrdDiFr6dzEpvMSn85NzqkD9gN+DxQn+drFwK3W2uUAxpgrcRKe+YAqhoqI5Jlkkp3lwChjTD9r\nbWv3tf2At621tVHr+sL/RUr2CwmAQKCe7dsDXa/YS/h8XioqSqmurqOlRU3QkXRuYtN5iU/nJrbW\n85KtrLV/BDDGxFulwhhzP3AQTne2q621/xd+bh9gScS2QsaYVcC+JJjsDC7aTEvIy9amASkegYi7\n3nzzderrGyksLGTKlGluhyOSVgknO9baVcaYV4HLjTEXAMOB7wFXAhhj3gHOsta+ADwEfN0Y8xBO\ngYIjgMOB3yQbYEtLSP1KY2hpCeq8xKFzE5vOS3w6N3mlGmccztXAKcBhwN+MMduttbcRf/xpwpnL\nsOJNNAYLlexE8HjI2S7nvak7a+sxrlz5GjU1NZSXlzN9+gyXo0qP3vK+9pbjhNSPMdkxOycBNwGb\ngJ3Addba68PP7QGUh3/+FU7LzgPAQGAd8HVrraqxiYhI2lhrV+LcXGv1hDHmeuCrwG3hZQmNP41n\n5S7dCY9WXFSY813Os7k1s6ede+533Q4hY3rL+9pbjjMVSSU71tqNwBfiPOeL+LkZZwDopd2KTkRE\npPvWASeGf443/vSNTAaUbxoam3K2y3lv6s6qY80/veU4IfUu1iqwLiIiecMYcxIwIKLXAcCewPvh\nn5fjjNu5I7y+F2ceuZszGWe+CYXI+a6gvak7q441//SW40yFkh0REcknjcBVxph3gadxxux8Baca\nKMB1wBJjzBKcsT0X4hQxeCTjkYqISNop2RERkZxijKnDmfagMPz4BCBkrS2z1j5kjDkf+CMwEmeM\n6bnW2gcBrLWPGWMuxqm8NhB4FTjGWtuQ6P6nlb9FU6iA/wbiVoMTyWr33HMHgUCAsjI/J598htvh\niKSVkh0REckp1tpOO21ba2+mk25p1tobgBtS3f/Wpn60hKJnVxDJHRMnTqa+vp6iopRmBRHJKUp2\nREREkrCxYajbIYh0y8yZszS+Q3qN/C/KLSIiIiIivZKSHRERERERyUvqxiYiIpKEqoIdBPGws7nS\n7VBEUvLBB+/R0NBEQUEBY8aMczsckbRSsiMiIpKE8WXraAwWsrpGyY7kpmXLniAQqMHvL2fMmMVu\nhyOSVkp2REREkrCieqrbIYh0y8KFZ9Hc3AJ43A5FJO2U7IiIiCQhiMpOS24rKirC61U1NukdVKBA\nRERERETykpIdERERERHJS+rGJiIikoRJZWtoDhXwbp2qWEluWrr0H9TW1lJaWsoxxxzvdjgiaaVk\nR0REJAl1wRJaQhq3I7mrqqqKkpJSiouL3Q5FJO2U7IiIiCRhff0ot0MQ6Za5cw+luVkFCqR30Jgd\nERERERHJS0p2REREREQkL6kbm4iISBL8vgChkIfaYJnboYikZPPmTTQ2NuP1+hg0aLDb4YiklZId\nERGRJEz2r6UxWMjqmiluhyKSkqVLHyAQqMHvL2fRosVuhyOSVkp2REREkvBmjSGEx+0wRFK2YMEp\nNDU14/FoNIPkPyU7IiIiSagPlrodQtbZtXM71r7jdhgAjBw5irIydTHsTFVVP1Vjk15DyY6IiIh0\ny4bm0fzwT4+7HQbNTfUcN3sYZ535ZbdDEZEsoWRHREREuqV84Hi3QwCgqb4GQtVuhyEiWUTJjoiI\nSBLGlX5AS6iA9fUj3Q5FJCXLlj1OXV0dxcUlHHroUW6HI5JWSSU7xphRwLXAAcAu4F5r7Q/irGuA\n64H9gK3A/1lrr+leuCIiIu7yeYKE0HgHyV1NTU00Njbi9frcDkUk7ZJt2bkfeBU4DRgM/NMYsyk6\niTHGlACPAb8HPgfsBdxqjPmntXZN98MWERFxx9ra7OiyJZKqefO+oAIF0msknOwYY2YB04DDrbU1\nQI0x5mrgPCC6xeYUYIe19urw49fCrxUREREREcmIZAqszwTWWWsjR/6twOmx5o9ady7wpjHmFmPM\ndmPM28aY07sbrIiIiIiISKKS6cbWH9geteyz8L8DgEDE8hHAQcDXgXNwWnr+Yox5y1r7ejIB+nwe\nCgo06VUrn8/b7l/ZTecmNp2X+HRuYtP56FyhpxHw0BQqdDsUkZQEAjU0NbXg8Xjw+8vdDkckrZId\ns5PolNEe4DVr7b3hx38xxnwLOBlIKtnx+0uoqopuOJKKCk1qF4/Ozf+3d+9xctVlnsc/1dWXJNU0\n20lIuMYIwpMQjZAbXnAHEV+sYfA1IOOMIhtlNTMgI2EYFnDc1RlXgUUFRw0wyCgDyGV3UAFxvMUZ\nnQHZhBAjuTxRhiACIcG06XSlO91dXfvHqYairOquU93Vp+qc7/v1yqvS51L1nKdP1znP+f3O75Sn\nvFSm3EgYbzxkK4MjbWzuWxR1KCI1ueeeO8lm+8hkOlm1anXU4YjUVZhiZw9B606xWUC+MK/YLqC7\nZNpO4PAwwQFkswP09GTHXzAh0ukWurqm09vbTy6nmwuLKTflKS+VKTfljeZFytuRPZZ81df+RBrP\nmWeuZHBwmHRao7FJ/IUpdjYA88xspruPdl9bAWx19wMly24FLiqZNh/4btgAc7m8RgwpI5cbUV4q\nUG7KU14qU24kjN5cV9QhiEzI0UfP03eeJEbVHbPdfRPBsNPXmtkhZrYAuIzguTuY2XYze0th8TuB\n2WZ2tZlNM7P3EQxwcOfkhi8iIiIiIlJe2LtQzwOOIuimtg74urvfXJh3PNAJ4O4vAGcRDEywF/gk\n8G53f3oyghYRERERERlPqAEK3P15giKm3Lx0yc8/BU6uPTQREZHGc3THc+TyaV4YDH0bqkhDeOyx\nRxgYGKC9vYPly98cdTgidRV2NDYREZFEO7R1P0P5Vl4YjDoSkdo899yzZLMHmDFjRtShiNSdih0R\nEZEQtmQXRB2CyISce+6faIACSQw9OU5ERERERGJJxY6IiIiIiMSSih0REREREYkl3bMjIiISwrKu\nTQyOtLG5b1HUoYjU5Lbbbiab7SOT6WTVqtVRhyNSVyp2REREQtjZfwwjeXWMkOZ16ql/wMGDg7S2\n6jRQ4k97uYiISAgvDc2KOgSRCTFbqNHYJDF0aUpERERERGJJLTsiItJ0zOxM4HZgnbu/v2Te6cA1\nwALg18A17v6NovkfAy4GDgc2A2vcfeNUxS4iIlNHLTsiItJUzOwK4EZgR5l5hwPfBtYChwFrgFvN\nbElh/tnAJ4EPAHOBh4CHzGx6tZ8/t303s9temuhmiETmySd/zqZNj7Nly+aoQxGpOxU7IiLSbPqB\nFcBTZeadD7i73+7ug+7+I+AB4MOF+auBr7n7Bnc/CFwP5IGzq/3wIzt2Mbd9z4Q2QCRKTzzxOOvX\nP8rPf/541KGI1J26sYmISFNx9y8DmFm52UuB0i5pG4H3Fs2/u+i98ma2CVgO3FfN5z+xf3HIiEUa\nywUXXKgBCiQxVOyIiEiczAKeLZm2F5hdNL9njPnS5FrSKVpbq++4kk63vOo1zrSt8ZOU7YTat1HF\njoiIxE1qgvOlic2Y3k53dyb0el1dVd+21fS0rfGTlO2shYodERGJkz0ErTfFZgG7x5n/izrHJVPk\nQP8gPT3ZqpdPp1vo6ppOb28/uVy8u3ZpW+MnKdsJr2xrWCp2REQkTjYAHyyZthx4rGj+UuAOADNr\nAZYAX632AxZ3bmEo38q2bNl7hiRiI7l8Tfej5HIjibmP5a67biebzTJjRoY//uPzow6nrpLye03K\ndtZCxY6IiMTJXcCnzOzCwv/fAbwLOKUw/ybgbjO7m+AZO1cAA8B3qv2Al4ZmksunJzVokal0wgkL\nGRgYoL29I+pQROpOxY6IiDQVM+snGC66rfDzOUDe3We4+x4z+0PgS8BXgJ3A+e6+BcDdv2dmVxOM\nvHYYsB5YWRiGuirPHzxiMjdHZMotWbJMrQCSGCp2RESkqbj7mJ223f3fgJPHmH8LcMtkxyUiIo0n\n/uPUiYiIiIhIIqllR0REJITu1t8xQop9w4dGHYpITZ5++ikOHhyitbWV+fOPjTockbpSsSMiIhLC\ncTN2MjjSxuY+FTvSnNat+wHZbB+ZTCfz56+OOhyRulKxIyIiEsLG3jdEHYLIhFxwwYUMD+fQ83Ul\nCUIVO2Y2D1gLvAnYD9zr7leNs85RwDbgc+7+t7UGKiIi0ghG0LDT0tza29tpadFobJIMYQcouB94\nFpgPnAGcY2Zrxlnn74Dh8KGJiIiIiIjUrupix8yWAYuBK929z92fAr4AVOzsaWYrgQXAQxMNVERE\nREREJIwwLTtLgJ3u3ls0bSNgZpYpXdjMphE81O1iIDehKEVERBrEghk7eN30/4g6DJGaPfjgN/mn\nf7qbhx/+VtShiNRdmHt2ZgE9JdP2Fl5nA9mSeZ8E/t3d/9XMPlhbeJBOp2ht1eOARqXTLa96lVco\nN+UpL5UpN+UpH2PrH5lGLq/7dqR5dXd3M23adDo6OqIORaTuwo7GVtWwHWZ2InAh8PrQEZXIZKbR\n3f17DUeJ19U15gPEE025KU95qUy5kTCeGZgXdQgiE3LqqacxPKwBCiQZwhQ7ewhad4rNAvKFecXW\nAp9y99LpoWWzA/T0lDYaJVc63UJX13R6e/vJ5fRFVUy5KU95qUy5KW80LyIiIs0uTLGzAZhnZjPd\nfbT72gpgq7sfGF2oMDz124ATzWx0qOlOYMTM3u3uy8IEmMvldfWhjFxuRHmpQGAYPQ4AABjkSURB\nVLkpT3mpTLkRERGJp6qLHXffZGbrgWvN7HLgKOAy4HoAM9tO0HXtUeCYktVvIBiy+n9PRtAiIiJR\nyaSz5PMpDozMiDoUkZrs3r2LwcFhWlrSzJkzN+pwROoq7D075wG3AruAfcBN7n5zYd7xQKe754Hn\ni1cyswNAr7vvnmC8IiIikVqY+SWDI21s7lsUdSgiNXnwwW+RzfaRyXSyalXFJ4iIxEKoYsfdnwfO\nqjCv4tA07v6hkHGJiIg0pCf7jHx14/WINKRzz30vQ0PDpFIaeVHiL2zLjoiISKINjGjwBmlu3d0z\ndZ+iJIZKehERERERiSUVOyIiIiIiEkvqxiYiIhLCsdOfJpdv5ZmB0oFHRZrDunXfp7+/n46OaZx2\n2jujDkekrlTsiIiIhJBOjZBH9ztI8xoaGmJwcJCWlopjS4nEhoodERGREH554LioQxCZkDPPPEsD\nFEhi6J4dERERERGJJRU7IiIiIiISS+rGJiIiEkJbahBIMZRvizoUkZpks30MDeVIpVJkMp1RhyNS\nVyp2REREQnjjIVsZHGljc9+iqEMRqck999xJNttHJtPJqlWrow5HpK5U7IiIiISwI3sseVJRhyFS\nszPPXMng4DDptEZjk/hTsSMiIhJCb64r6hBEJuToo+dpNDZJDA1QICIiIiIisaRiR0REREREYknd\n2EREREI4uuM5cvk0LwweHnUoIjV57LFHGBgYoL29g+XL3xx1OCJ1pWJHREQkhENb9zOUb+WFwagj\nEanNc889SzZ7gBkzZkQdikjdqdgREREJYUt2QdQhiEzIuef+iQYokMTQPTsiIiIiIhJLKnZERERE\nRCSWVOyIiIiIiEgs6Z4dERGREJZ1bWJwpI3NfYuiDkWkJrfddjPZbB+ZTCerVq2OOhyRulKxIyIi\nEsLO/mMYyatjhDSvU0/9Aw4eHKS1VaeBEn/ay0VEREJ4aWhW1CFIBem2Dr7/77/gp0/8TdXrpIB0\nawu54RHykxjL/p4XufEzV3P00cdM4rtODrOFGo1NEkPFjoiIiMRCS7qNGceeGXq9XOE1NYmx5Eee\npL+/fxLfUURqEarYMbN5wFrgTcB+4F53v6rCsn8OrAGOBH4FfMrdH5hYuCIiIiIiItUJ27JzP7Ae\n+FNgLvCwme1y9xuLFzKzc4HPAisLy68C7jOzBe6+c8JRi4iIVGBmI8BBIE9wsT4P3Orul5rZ6cA1\nwALg18A17v6NMO8/t303uXwLLw3NnuTIRabGk0/+nIGBQdra2li0aHHU4YjUVdXFjpktAxYDp7t7\nH9BnZl8ALgVuLFl8OnC1u/+s8PM/mNl1BC1COycctYiISGV54AR3f7Z4opkdDnwbuAS4G3gb8ICZ\nbXf3jdW++ZEduxgcaVOxI03riScep6+vj0wmo2JHYi9My84SYKe79xZN2wiYmWXcPTs60d3vKl7R\nzP4TcAjw3ESCFRERqUKK8rdfnA+4u99e+PlHZvYA8GHg4mrf/In9OjmU5nbBBRdqgAJJjDDFziyg\np2Ta3sLrbCBLZbcCj7r7T0N8HgDpdIrWVg3xOSqdbnnVq7xCuSlPealMuSkvJvm4zszeAnQB9wKX\nA0sJLtIV2wi8d4pjExGRKRL2np1QA5WYWStwO7AQeHvIzwIgk5lGd3emllVjratretQhNCzlpjzl\npTLlJnYeBb4P/FfgWIJiZy3BRbtnS5bdS3DBTkREYihMsbOH4EBRbBZB3+g9pQub2TTgAWAa8DZ3\nL20Vqko2O0BPz1iNRsmSTrfQ1TWd3t5+cjk1QRdTbspTXipTbsobzUuzcve3Fv9oZlcBDwI/YXJH\nFxYZU6P1TklSa3ZStjUp2wm1b2OYYmcDMM/MZrr7aPe1FcBWdz9QZvl7gAHgLHcfqik6IJfLq19p\nGbnciPJSgXJTnvJSmXITezuBNDBC+Yt2u8O82eLOLQzlW9mWtcmJTmIplYJDD53RkL1T7rnnDvr6\n+ujs7GT16tVRh1NXzXzhJoykbGctqi523H2Tma0HrjWzy4GjgMuA6wHMbDtwobs/YmbnA4uAN0yk\n0BEREQnDzE4CPuDuf1U0+USCi28PAx8sWWU58FiYz3hpaCa5fHoiYUoC5POwb9+BhuqdMtpqe/zx\nCxgYGKC9vaOh4ptMSWm5T8p2Qu29DsLes3MewWADu4B9wE3ufnNh3vHA6OWLDwGvAfaaGbzynIM7\n3P3PQkcpIiJSnd3AajPbTfBYhPnA3wK3AHcCnzSzC4G7gHcA7wJOCfMBzx88YjLjlRhr1N4pJ520\n9OW4GjG+yZSUlvukbGctQhU77v48cFaFeemi/58xwbhERERCc/fnzWwlcB3wCYIWna8Dn3D3QTP7\nQ+BLwFcIured7+5bIgpXRETqLGzLjoiISENz938D3jrGvJOnNiIREYmKih0REZEQult/xwgp9g0f\nGnUoIjV5+umnOHhwiNbWVubPPzbqcETqSsWOiIhICMfN2MngSBub+1TsSHNat+4HZLN9ZDKdzJ8f\n79HYRFTsiIiIhLCx9w1RhyAyIRdccCHDwzn02ClJAhU7IiIiIYygYaelubW3t9PSopG7JBni/7hV\nERERERFJJBU7IiIiIiISS+rGJiIiEsKCGTsYzrfyq36NYiXN6cEHv8mBAweYPn06K1f+UdThiNSV\nih0REZEQ+kemkcvrvh1pXt3d3UybNp2Ojo6oQxGpOxU7IiIiITwzMC/qEEQm5NRTT2N4WAMUSDLo\nnh0REREREYklFTsiIiIiIhJL6sYmIiISQiadJZ9PcWBkRtShiNRk9+5dDA4O09KSZs6cuVGHI1JX\nKnZERERCWJj5JYMjbWzuWxR1KCI1efDBb5HN9pHJdLJq1eqowxGpKxU7IiIiITzZZ+RJRR2GSM3O\nPfe9DA0Nk0rpbgaJPxU7IiIiIQyMTI86BGkC0w49kk987h9JtURfGB/47U4euO+Ol3/u7p6p0dgk\nMVTsiAgAjz++nne96x0AfPe7P2Lp0uURRyQi0rw6MjPpeO3pUYdR8OOoAxCJjNovRaQhPP74eubM\n6WLOnC4ef3x91OGIiIhIDKhlR0REJIRjpz9NLt/KMwPHRB2KSE3Wrfs+/f39dHRM47TT3hl1OCJ1\npZYdkQrU0iAi5aRTI7SkdL+DNK+hoSEGBwcZGhqKOhSRulOxg05qpTFpvxRpTL88cBxP978m6jBE\nanbmmWdx9tnv4Z3vXBl1KCJ1p25sdVLrzd7NepN4s8YdR6W/i1NOOSXiiEREJEqp6XO4+MrPkEpB\nW2uaoeEc+Xw0sczqbOXT/+PKaD5cEknFjojIFNPFARGZStPnLGKg8P/+SCOBvT2PRhyBJI26sYlI\nU0tad796bG/ScjhRbalB2lK610GaV1tqSPuxJEaoYsfM5pnZQ2b2kpk9bWbXjrHsx8xsu5n9zsx+\nYmZLJh7u72ukg3RxLNu3b4s0FgmvkfYlkXrSvj4xbzxkKwszO6IOQ6RmCzM7tB9LYoRt2bkfeBaY\nD5wBnGNma0oXMrOzgU8CHwDmAg8BD5lZXR87vX37tqY8gKtImlwbNjTuidxYJ5m1noDG8cQ1Dn/L\nUxF3s+ap2e3IHsvT/fOiDkOkZk/3z9N+LIlRdbFjZsuAxcCV7t7n7k8BXwBWl1l8NfA1d9/g7geB\n64E8cPYkxDwpxiowmvHksTRmnThPPuVGRAB6c13szx0SdRgiNdufO0T7sSRGmJadJcBOd+8tmrYR\nMDPLlCy7tDAPAHfPA5sA3YUrkZqKgkVFUWVR5qaRfy+NHJuIiEgzCzMa2yygp2Ta3sLrbCBbxbKz\nQ0XHCrZtO4RcrnJNtn17F7ACgGeemfvy/4Ppta5H1e9T/1hevV463UJXF/T2tpDLlX+PydqG7du7\n2L7dueyyjwJwww1fYcGChVWtF8XYF6O52bbtECptw5o1V1SMc/wclv5cfhvHysVY+f392Gr9vFev\nV2mfCRP3ZKk2N7X+/YT9vYzm5rHHtnPppRcDY+/nE9m+sZejqvVK1w2TpzCfn0638E49VF1ERGIg\nla9yoHUzuxo4x91XFE07DtgBHOvuzxRNP1hY9uGiaXcAw+7+oaqDSxHRKPAiIsmWz5OKOoZGddHH\n1+Zz+TQvDB4edSgv++Hf/zcG+n7LtM5ZnLH6tqjDkQZ3RPsu0qkcUezH03se5SvX/XXdP6e1tYXu\n7gw9PVmGh0fq/nlRScp2wsvbGvrYFKZlZw9Bi02xWQT34uypctlfhIpORESkwRzaup+hfCsvDEYd\niUhtDmntoy01HMl+/Nu9PXz2+hvr/jmplhTTprUyMDBMfqT8tfMVS0/ijNNPq3ssEq0wxc4GYJ6Z\nzXT30e5rK4Ct7n6gzLJLgTsAzKyF4J6fr4YJ7mc/gw0bNnLJJRcB8MUvrgV4ubvJF7+4loULT6zq\nvbZt2zop69X6+bXGUrrs61+/iExmGtnsAE8+uaWm97nssiu44YbrQ29DmFyM9Xm1rlft9n35yzdx\nwgnVdUOqdb8I8z6T8Rm17odxyctkxVPpPUtzU+v+O1bM1a433vvU+7vrlfUeq+pzkmhLdkHUIYhM\nyI4Dr4vss2cct5JfjdGletLkgHEeI3TgkQ0qdhKg6mLH3TeZ2XrgWjO7HDgKuIxgpDXMbDtwobs/\nAtwE3G1mdwObgSuAAeA7YYI75RTo7e0F/h8AJ5ywrzDnlZ9POmm4qvfK5fZNynq1fn6tsZQue/LJ\nObq7oacnx+Bg9e9z0kkn8L73/RAIboa+4Yb65qJ42XnzXpyU9arPU2/d94sw7zMZn1Hrfhh1Xor3\nu8BwVfPqFU/l93x1bsb6ewmEzX3zfHcVryciItLswrTsAJwH3ArsAvYBN7n7zYV5xwOdAO7+vcI9\nPvcBhwHrgZWFYagjsXTpcnbv7h1/wSrWq+V9GkmtuZDGod+h1MvSpcvZu7cv6jBEREQmRahix92f\nB86qMC9d8vMtwC21hxZYtuzVJ3UallXKGT1BS8pNeklTj+Ku2n0mjhc8REREkiJsy45Mgsk6cZvq\nq/uln1dr4RnHVolG3aZai8BG3Z5moiIpvpZ1bWJwpI3NfYuiDkWkJos7t9DeMqT9WBKh6YodnYQ1\nh+LfU9Jb47TPisTLzv5jGMlP/bPERCbLbwaOpCU1ov1YEqHpih2JNxVJ5algSi797hvPS0OlT1YQ\naS57h7ujDkFkyqjYkbrTyZpI9PR3KCIiSaRip8E18glKI8cmIiIiIqJiRxqWiikRaURz23eTy7fw\n0tDsqEMRqcnstpdIp0a0H0siqNgREYkhXSyonyM7djE40qaTRGlac9v3vDwaW5L344MD/bz44q6o\nwwCgu3sm7e3tUYcRSyp2REQkUcxsHrAWeBOwH7jX3a+qdv0n9i+uV2giU2JLdmHUITSEZ/q6ueTT\n/xh1GAwPHWTlKcfwkQs/GHUosaRiR0REkuZ+YD3wp8Bc4GEz2+XuN0YblohMpc7DT4w6BACGB/sZ\nOPgbBgYGQq/b2trCwECagYGB2D1QPZVK0dHRMeH3UbEjiaauPiLJYmbLgMXA6e7eB/SZ2ReASwEV\nOyIy5dKt7fzLpl38ZM21oddNpVK0tKQYGcmTz+frEF109r/o/PM3757w+6jYERGRJFkC7HT34qsc\nGwEzs4y7ZyOKS0QSKtWS5tDXvi3qMBpOS354Ut5HxY6IiCTJLKCnZNrewutsYNxiZ3HnFobyrWzL\n2mTHJjIlFmacttSw9mNpbKmgm96odLpljIXHeJu4NXmJiIhUYmZXA+e4+4qiaccBO4Bj3f2ZyIIT\nEZFJV1uJJCIi0pz2ELTuFJsF5AvzREQkRlTsiIhIkmwA5pnZzKJpK4Ct7n4gophERKRO1I1NREQS\nxcweAZ4ELgeOAr4DXO/uN0camIiITDq17IiISNKcR1Dk7ALWAV9XoSMiEk9q2RERERERkVhSy46I\niIiIiMSSih0REREREYklFTsiIiIiIhJLKnZERERERCSWVOyIiIiIiEgsqdgREREREZFYao06gHLM\nbB6wFngTsB+4192vijaqqVfIw43AfwaGgH8GLnX3XjM7HbgGWAD8GrjG3b8RWbARMrMbCPLSUvg5\n0bkxs78GPgocAjwKfMTdn1Fe7CTg88ASoB/4EbDG3X+btNyY2ZnA7cA6d39/ybwxc2FmHwMuBg4H\nNhPkcONUxR6VpB2XxtpH4mSs42ykgdWBmb2R4DtwGcF34L8SbOuLkQZWR6XnB3FjZiPAQSAPpAqv\nt7r7pZEGVieVzm/GW69Rf/n3A88C84EzgHPMbE2kEUXjQWAvcAywFFgEfM7MDge+TXDgPQxYA9xq\nZkuiCjQqhRPYCwj+wDGzI0hwbszso8D7CQ7cRwBbgcuSvs+YWRr4DvAIwfYvAuYAa5OWGzO7guDk\nbkeZeWPmwszOBj4JfACYCzwEPGRm06cm+kgl5rg01j4SQ2WPs5FGVAdm1g58j+AhuocBryf4G14b\nZVz1VHp+EFN54AR3n+Hu0wuvcS10yp7fVLNuw7XsmNkyYDFwurv3AX1m9gXgUoIv30Qws0OB9cDV\n7t4P9JvZ7cBfAOcD7u63Fxb/kZk9AHyY4IprIphZCriJ4ErV/ypMTnpu/hL4S3f/VeHnNQBmdjnJ\nzssRhX93uvsw0GNm9wOXk7x9ph9YAfwd0FEyb7xcrAa+5u4bAMzseoLv5rOB+6Yg9kgk8Lg01j4S\nG+McZ+NmBvBx4OvuPgL8tvAdeEm0YdVHhfODOEoV/iVB2fObajRcsUPQxWRnSRPyRsDMLOPu2Yji\nmlLuvo/gBKPYMcBzBFefSruNbATeOwWhNZI/Jzgof4NXvsyWkNDcmNmRwGuBWWa2heCq3TqCk9Sk\n7zPPAU8Aq83sfwIZ4D0ELROJyo27fxnAzMrNHi8XS4G7i94rb2abgOXEuNghYcelcfaR2KhwnJ1H\n8H0RK+7+O+AfRn+24Jf7QeCeqGKqs3LnB3F1nZm9haBr1/8hKAhi9Z1U4fzmx8BF7v7SeOs3Yje2\nWUBPybS9hdfZUxxLwyhcWbwE+AyVc5SY/JjZXOBTwEUls5Kcm6MLr+cBpxNciT4GuJVk5wV3zxPk\n5Y+AXuAFIE1wpTPRuSkxXi6SmisdlxKg6Dgb25NjM5tnZgeBLcBjBMfRWBnj/CCOHgW+D7wOeDPB\nPYVfiTSi+ih3fnM08PfVrNyIxQ4kp0muKmb2VoK+tle6+7rC5KTn6PPAbe7uZeYlNTej232du7/o\n7s8T3F/xbl65eTGRCv3VHwTuBQ4FjgL2AXcVFklsbsoYLxdJzVVStzsRio6z/93dfxx1PPXi7r92\n9w7ACv/ujDikehjr/CBW3P2t7v41dx8qbO+VwPvNrC3q2CZZxfObwvF9TI1Y7OwhuIpWbBbBydqe\nqQ8nWoUbgr8DfMzdR6v1SjnaPZWxRcXM3gG8Bfh0YVLxSUiSc7Or8LqvaNpOgvy0kdy8ALwDmO/u\nH3f3PnffRXDl7xxgmGTnpth4fz9J/fvScSnGKhxnY83dnwL+GnifmZXu201rnPODJNhJ0GthTsRx\nTLaxzm/G3dZGLHY2APPMbGbRtBXAVnc/EFFMkSj0wfw68B53v6to1gaCvvPFlhM0SSfB+QQ796/N\nbA/wOJAys93ALwiG1SyWlNz8hqCL1klF014LDAIPk9y8QPDl32Jmxd950whOVn9IsnNTbLzvllfN\nL+RzCfHPlY5LMTXGcTZWzOztZra9ZHK+8G8wgpDqpeL5gZnF6j5MMzvJzEpHDjyRYCjq5yMIqZ4q\nnd8MUcW2pvL5xhuRz8weAZ4kGCnpKIIrLte7+82RBjaFCkPlbgZucPevlsw7DPglwcgUdxFctb4P\nOMXdt0x1rFOtMIJOpmjSMQT9Vo8iGHTjFyQ3N58n6Lb2XwieBXI/sI3g3pQk7zMzge3ALcBnCUYm\nug3oIrj5/lckLDdm9jWgo/gZKuN9txSevXI38C6C76crgAsBc/eDU7wJUyqJx6Vy+0icjHWcjRsz\n6yL4DryDoFW7k+A5StPd/e0Rhjapxjk/6HH3gUgCq4PCTfvbCe4xu5FgWPz7gR+4e1VDMjeTSuc3\n7v6R8dZt1GLnSIKbqk8jaLK6yd0/PeZKMWNmpxI88OsgrzwoavTVgNcAXyJ48N9O4Cp3/3YkwUbM\nzF4D/Ie7pws/n0pCc1Pou/p5grHoW4H/C/yFux9Icl4AzOxkgty8keDv6l8IRq3ZlaTcmFk/wffI\naJ/uYSDv7jMK88fMhZn9GUHxfBjBsL0XufvWKduAiCTpuDTePhIX4x1n3f3ZCMObdGa2CPgyQWtt\nH8GDlf/K3V+INLA6Kj0/iJvCPnwd8AZggKCV8hPuHqfWOmDs85vx1m3IYkdERERERGSiGvGeHRER\nERERkQlTsSMiIiIiIrGkYkdERERERGJJxY6IiIiIiMSSih0REREREYklFTsiIiIiIhJLKnZERERE\nRCSWVOyIiIiIiEgsqdgREREREZFYUrEjIiIiIiKxpGJHRERERERi6f8DKsc4z7ahwl0AAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbd62050dd8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAIDCAYAAAAjcQBbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XecFPX9+PHX3u718ygqYi+og2LBQmKPEflFjQZjiVH8\nqslX/SaWaIoxGhU1RoMGNLEXrBEVbBhBRVFQEBVF2gEjIP3gjnJ1b++2zPz+2CuzfbbMzuzd+/l4\n8GBvd2Y+7yl793nP5zOfj0vXdYQQQgghhBCitymyOwAhhBBCCCGEsIIkO0IIIYQQQoheSZIdIYQQ\nQgghRK8kyY4QQgghhBCiV5JkRwghhBBCCNErSbIjhBBCCCGE6JUk2RFCCCGEEEL0SpLsCCGEEEII\nIXolSXaEEEIIIYQQvZIkO0IIIYQQQoheyWPlxhVFOQa4HzgGaAEeUlV1vJVlCiGE6P0URfkrcC2w\nEzAPuEpV1XWKopwG3AcMBdYD96mqOsmw3u+Aa4DBwGLgRlVVF+Q7fiGEEPlhWcuOoigDgPcI/xEa\nDPwEuFZRlPOtKlMIIUTvpyjKtcAlwCnA7sAy4PeKogwGpgKPAbsCNwJPK4pydOd65wBjgUuB3YB3\ngXcVRSnP+04IIYTICytbdo4HqlRVva3z52WKojwAXAm8YWG5Qggherc/AH9QVXVV5883AiiK8kdA\nVVX1hc73ZyqK8g7hvzvXAFcDz6mq+nXn8g8ANwDnAJPzGL8QQog8sfqZHV1RFJfh50ZguMVlCiGE\n6KUURdkD2B/YWVGUGkVRtimKMllRlF0Id5mO7pK2ABjR+Tric1VVdWCh4XMhhBC9jJXJzudAG/A3\nRVHKFUUZAvwWGGhhmUIIIXq3vTr/vwA4DTgC2Bt4GtgZaIhafgewS+frVJ8LIYToZSzrxqaqaqOi\nKKOBCcB1QA3wHOE7a6bouq67XK7UCwohhMg1p/7y7YprnKqqdQCKoowl/Izoh6SOO+v9svpv0yGH\nHMKKFSsYOnQoy5cvt6wcIYQoQGn/8rV0NDZVVT8Hjuv6WVGU84BNZtd3uVw0N/sIhTQrwsuY211E\ndXW5xJYmJ8cGzo5PYsuMxJaZrtgcakvn/02G99YS/gNYTLj1xmhnoL7z9dYEny9JJwCr/zY1NTV3\n/9/Q4DW9XiFcUxJbeiS2zDk5PoktM5n+bbIs2VEUpRS4CHhTVdXWzrd/Qrh7m2mhkEYw6KyD3UVi\ny4yTYwNnxyexZUZi61U2As2En/9c2Pne/oAfmA5cFrX8CODLztdfE+5d8BKAoihFwNHAM+kGka/z\nlkkZTr6mJLbMSGyZc3J8Elt+WNmy4yc8xOchiqLcBowkPFToSRaWKYQQohdTVTWkKMpE4K+KonxG\neA632wknMC8CtyuK8mvgZcJ/d84Efti5+uPAK4qivEJ4jp2bgHZgWjox3HXXXVRWVnH55VfnYpeE\nRV544Sm83lY5V0L0cVY+s6MrinIh8BRwPbABGKOq6iKryhRCCNEn3AKUAF8R/jv2OnCDqqptiqKc\nDTwMPEq4e9sYVVVrAFRV/UBRlFsIDzO9KzAfOEtV1Y50Cj/nnHPw+3vHHc/e7PjjTyYYDOLxWNpj\nXwjhcFY/s7MAONbKMoQQQvQtqqr6Cd9Euz7OZ3OAo5Ks+yTwZDblH3300TQ0eHtNF4/e6uCDD7E7\nBCGEA1g9z44QQgghhBBC2EKSHSGEEEIIIUSvJB1ZhRBCiDTMmzePYFBn6NDD7Q5FJFFTs5hAIEBx\ncTHDhh1hdzhCCJtIsiOEEEKkYdasWVRWVkmy43CLFn2D1+ulsrJSkh0h+jBJdoQQQog03HLLLTJA\nQQG45JJf2R2CEMIB5JkdIYQQQgghRK8kyY4QQgghhBCiV5JkRwghhBBCCNEryTM7QgghRBomTJhA\neXkFF1wwxu5QRBJTprxMW5uXiopKLrxQzpUQfZUkO8JxQpqGryNEVXmx3aEIIUSMo48+mlDIZXcY\nIoWDDhqK399BSUmp3aEIIWwkyY5wFF3Xufelb1hf18odV4xg70FVdockhBARTj31VBmNrQAMH36M\n3SEIIRxAntkRjuJtD7JmcwshTef591bYHY4QQgghhChglrbsKIoyHBgPHA34gJnA71VV3WZluaJ3\n0HXd7hCEEEIIIUQBs6xlR1EUNzAN+BzYFRgGDAIetapMUfgkwRFCOF1NTQ1r1qy2OwyRwtq137Nq\n1XesXfu93aEIIWxkZTe23Tv//UdV1aCqqg3Am8BRFpYphBBCWOr111/n448/tDsMkcLs2R8xY8a7\nzJ79kd2hCCFsZGU3tk3At8DViqLcAVQC5wP/tbBMUeBcLhnhSAjhbH/5y19obGyzOwyRwsUXXwHo\ngPxdEaIvs6xlR1VVHbgAOBdoBjYDbuDWXJf17LNP8dBDD6Rcbtq0d3JddF6tX7+WpUsX2x2GpaQb\nmxDC6UpLSykpKbE7DJFCSUkJJSVyroTo6yxr2VEUpYRwK85rwL1AFfA4MIlwC48pbnfqfKyoyIXL\n5cLjSbzstm1bmTx5EqNHn2u26JQxmYktl+bMmY3b7WH48OEJl7ErNjPMxGY8h6nOaa4V+rGzi8SW\nmUKITQghhCh0VnZjGwnsp6pqV0tOq6IoY4GFiqL0V1W10cxGqqvLUy5TXl5CR0cxAwZUsnLlSm67\n7Taam5vxeDyMHTuWY489ljFjLmTjxo1ceeVlvPHGG3zxxReMGzcOr9fL3nvvzYMPPkh1dXXCMjZt\n2sRll13Gz3/+c9555x0qKyu54447mDBhAmvWrOHaa6/l4osvRtd1HnzwQT744AOCwSC//OUvueqq\nqwCYP38+f//732lvb6eqqopx48YxZMgQHnnkEZqbm1m3bh0rV65k//335/HHH4+4GzV37lxeeul5\nSktL8XggGAyydetWlixZwq9+9StGjhzJTTfdxOrVqwkGg/zqV79izJjwjNGffPIJDzzwAKFQiCOP\nPJL77rsPt9vN9OnTefTRR2lvb+eoo47i3nvvzcsdsGTn1F3SM5Go21PEgAGVlscTzcw1ZxeJLTMS\nmxBCCNE3WZnsuIEiRVGKVFXtmnmtjHAHWtOam32EQsknbvP5/LS3B2ho8HLvvf/gjDN+yrnnns+7\n777DXXfdzYsvvsIf//gXxo8fxzPPvMjGjfVcf/3vmDDh3xx22OE899wzjB17N3fccVfCMpqa2qir\nq2Ovvfbj9dencu21V/O3v93DE09MZOnSxdx55+2cccbPmDbtv3z22RxeeOEVdF3nqquu4IADFI4+\n+hhuv/0Obrzxj/zwh8fz9NNPMG7cA4wbNx6fz8/773/Ac8/9h/79+3PFFWOYNu0DTj31tO7yDz10\nOKeccipDhhzERRddyjPPPMmcOXN48cVXqaioYOLE5ykq8jB58ls0NNRz9tlnc+KJP6a4uJi//OUv\nPPvsf9hjjz249dY/M3Hi85xwwkmMHTuW559/mT322JP77vsb//rXI1x55f+lc3rS4nYXUV1dnvSc\ntrT5u1+HghoNDV7L4olmJj67SGyZkdgy0xWbiG/ixIkUF5dy5pmj7Q5FJDF9+tv4fD7Ky8s566zs\ne3UIIQqTlcnO50ArcJeiKPcCFYSf15lttlUHIBTSUs5SrWk6uq4TDGrcf/9DaFp4nWHDjqC29p8E\ng1p3ZSIY1FiwYAH77rsvQ4cOIxjUOPvsnzNmzAVJywmFdDRN44QTTiEU0hgyZAhFRcW4XG722ms/\ntm3bSjCoMXfuHM4++1zc7nALxahRZ/Lpp7M54oijeOGFVykqKiIY1DjssCOYPXsWwaCGpukcddQx\nVFf3R9Ng//2HUFu7OSYeXad73zRN57DDjqSkpIxgUOOXv/wfgsEgoZDGvvvuS79+/amtrWX79u3s\ntdc+DBo0mGBQ4/bb/4bb7Wbq1Df54Q9PYNCg3QkGNc455+fcf/+9XHHFVWZPTcaSnVPj+13nNN/M\nXHN2kdgyI7GJXNp1111xudyml3/22af48st5PPnkcxZGVVjee+9dnnjiYaZO/SDu53/4w3UMG3Y4\n//u/md+A699/AOXlFZSWlma8DSFE4bMs2VFVdYeiKD8hPKnoRqADmAX8xqoyAebO/YwXX3yWlpZm\nQqEQmhbbkNTa2sKqVau49NILgXCl2uPxEAwG8XgSH5LS0rLu0cLcbjfl5RVA+JmhrgfrW1tbeP75\nZ5g8eRK6rhMIBPjBD44Dwr/c33hjMu3tPjo6OqiqquretvG12+1G00Ip99W4zvr163j44Qls2rQR\nj8dNY2MDmqbT0tIcsVxxcXF3nF988Xn3MdA0rfszO8lobEIIp/vZz35GQ4M3rSTV7O+25uZmiost\nne/bQRIfkwkTHjG1hdraTXz33QpOPXVkzGcnnPCjjCMTQvQelv5GVVX1W+C0lAvmSDAYZOzYWxg/\n/hGOPHI469at5aqrLo9Zbuedd+HggxUeffTpnMcwcODOnHbaKM4+O7J7Q319HQ899AATJ/6HffbZ\nly+++JzHH/93zsqdMGEcRx99LA8++DADBlRy/PEnANC/f38aG3sa0travHR0+Bk4cGdOOOEkbr/9\n7pzFkAsyGpsQoi/75puvHHHjqVDMmvUxqro8brIjhBBg7aSieefz+QgGgwwZciChUIj//vdtgsEA\nmqbh8Xhoa/Oh6zrDhh1Gbe0mvv9+FQBLliziiSdS30VKVhHv+uyEE07mgw+mEwgE0HWdZ599ioUL\nF9DU1ERFRSV77rkXHR3tvP/+NNrb29PaP7fbQ2tra9zPmpubGDLkIADefvtt/P4O2tvbOfzw4WzZ\nUsuaNeEZpMeP/wcffvg+P/jBcSxY8DVbt9YDMGvWTF5//dW04hFCCJG+GTPe49JLf8GoUafwi1+M\n5u23Xwfgk08+4s47/0pRUREHHnggLle418DEiU9y0UXncvrpJ3HVVZezZMkiU+Vs2bKZk08ewbx5\nc7j00gs5/fSTuO++u9m0aSO//e2vGTXqZH73u99E/F15443Xupe97LKLmDNndvdnTU2N3HbbzZxz\nzv/jzDNP46abbqC+vq7785NPHsHs2Z9wzTVXMmrUyVx++S9ZufK7pDF++uksfvGL0Zx22oncc89Y\nQqFwr4brr/8/nnzyUQA2bFjPjTdewxln/JizzhrJbbf9mebmJl555T88+eQjzJo1k5EjT5SbZUKI\nuHpVsrPTTjtxwQW/5LLLLuI3v/k1J510CvvvP4SbbrqRAw88mOJiD6NHn4Gm6Ywdew/33HMnl176\nCx599F+cdtrpKbefrBtC12c//vFIjjzyKK644mIuvfRCtmzZzLBhh3PQQQdz1FHHcNFF5/L731/H\nhRdejKZp/POf95nu3nDCCScyefIrPPDAvTHrjBlzBePH/4NLL70Ir9fLT396DnfffRt+fwd33nkv\nt9zyJy6++DwAzjvvQnbddRA33PBH/vjH67n00l/w1luvc+KJp5iKw0rSjU0I4XQbNmygvn5LRutu\n3lzL3/9+Jzfe+Cc+/PBT/vKX23nwwQf4/vtV/PjHp3P55f+LpmmsWrUKXdd57bWXmTlzBhMmPML7\n78/ijDN+ys03/4GODvM3y95/fzpPPfU848c/wvTp/+W+++5m7Nh7mTx5KuvXr2PatKkAzJ79Mc8/\nP5GxY+9hxoxPufLK33LHHbd2JzSPPfZvfD4fr7/+Dm+9NR2Af/97QkRZr7zyErfeOpZ33/2IXXYZ\nxNNPP5YwrrY2L0uWLOKll17jySefZebMGcyd+1nMcg8+eD9HHDGc9977mMmTpxIKhXjhhWe5+OJL\n+clPzuLHPz6dmTPnxvz9qK+vY8uW2oiETAjR9/SKjsG//vXV3a+vu+5Grrvuxu6fJ058qfv1pElv\ndL8ePvxonn32P6bLGDx4d2bM6LnDdfvtt3f32e7Xrz+ffvoVEK6sX3nlb7jyythHk+688+8RP0+Z\nEn+S01tvHRv3/ZNPPjUiBqORI0cxcuQoPJ3DNTc0eLn++j8CcOyxP+DVV9+MWefUU0c6rulf7swJ\nIZzu2WefpbKyissvvzr1wlF2330Ppk2b2f0s5dFHH8uAAQNR1RUccMCBMctPm/YOF100hj333AuA\n88//BZMnT2Lu3DmmbtIBnH32aCoqKjnyyOFUVlYxYsQPGTx4MACHHDKMDRs2dJd19tmjOeggBYBT\nTjmVww8/ko8++oBLLrmMm266lWAwSGlpGRD+m/TSS5GDLpxxxlnstdfeAJx00im88spLJOL3+7ny\nyv+jtLSMgw5S2Hff/Vm/fm3Mci0tLZSWluJyuaiqquK++8ab2u/33puK19ua8bkSQvQOvSLZEb2T\nNPIIIZzot7/9La2tHRmv/+abk5k27R22b9+GpukEgwH8fn/cZTdt2sS//vVP/v3vcAVf10HXtbRa\nlgYN2q37dWlpCbvuOqj755KSEvz+js6yNjJ//pdMnjypuyzQ2X//A4DwQDiPPPIQy5fX4Pd3EAqF\n6Nevf0RZgwfv0f26rKyMjo7Ex6l///7diVM4tlICgUDMcr/+9VXcffcdvP/+NH7wg+MYNeoMhg49\nNOV+/+xnF6DrGi5Xr+rEIoRIkyQ7BpMmvci0ae9ENIXruo7L5eKuu+5jyJDYu24it4ztOtLII4Rw\nokGDBlFcnN5obF3effdtJk16kX/8YwJHHnkULpeL8877acLlS0tLueWWOzjllFMzjje6e1ei7sKl\npaX85jfXcdFFY2I+03Wdm2/+PcOHH81rr71FdXU/3n13Kk8//XjEckVF6SQW5u5oHX/8Sbz11nQ+\n/3wOc+bM5rrrruaaa27gvPMuTLregAED04hFCNFbSbJjcMkll3HJJZfZHUbfJgmOEKIXW758GUcc\ncRTDhx8NwPbt29i+fVvC5ffccy9WrfouItnZsmUzgwfvbqq8dJ6D3GOPvVi9elXEe3V1W9htt8Hs\n2LGdLVs2c/75F1Fd3Q8AVV1hetvZaG5uorq6H6eddjqnnXY67733Lq+++nLKZEcIIaCXDVAgCp8x\n15FubEKI3mbw4D1Yv34tLS0tbNmymX/9azyDB+/Otm1bAbqfTelqIRk9+jzefHMKNTVL0TSNmTM/\n5H/+5yLTD92n8xzk6NHnMXPmDObNm0MoFGLBgq+57LKLWLZsafcEnTU1i/H7/Xz44fusWqXS1uZN\ne2TRdHR0dPDLX57HjBnvEwqF6OhoR1VXsPfe4eeCSkpKqavbQmtra/dIbkIIYSQtO8KxpBubEMKJ\npkyZQlGRh1NOMTdAgNHPf34BCxcu4LzzzmL33ffgj3+8hRUranjmmScYOHBnTj75VB599F8ccMAB\n+HztnH32aOrr6/jrX2/C6/Wy7777cd99/4x4DieZ2JadxHeRRoz4IddeeyMTJjxAQ8N2dt99D266\n6VYOPfQwAP70p1t49NGHePrpJzj99J9w773/5JprruSii85l6tT3sx5N0+VydW+j6//S0lLuuWcc\njzzyEA88cC9lZWUceeRwbrzxzwCMGnUGs2Z9xAUXnMOLL74acVxmzfqQjo52SkvLOPXUUVnFJoQo\nXC6Hj36lpztLdT4YRzyT2MwzE1tTawe/f2QuAPsN3ok7rhjhqPjsIrFlRmLLTGds0raawH/+8x/d\n4ylh5MgzLdn+kUcOZfPmWnbffQ8WLTLfVawArqm8xvbhh9Npb/dRVlbOqFFnOSo2syS2zDk5Pokt\nM5n+bZKWHeEo0o1NCOF0l156qSMrAiJSsgRHCNF3SLIjHMvZjY5CCGGfhoYdnH/+OVE3hVy4XD3P\n6cycOdeW2IQQwkkk2RGOIgmOEEKkNmDAQD7+ODKZcXL3EyGEsIskO8KxpBubEMKJmpub8Xp9lJZW\n2B2KSMLrbe2eK6+yssrucIQQNrEs2VEU5WRgBpGPYRQBxaqquq0qVwghhLDSgw8+SGVlFZdffrXd\noYgkXn99El5vq5wrIfo4y5IdVVU/A8qN7ymKcgtwuFVlisLn8NEBhRCCMWPG4PMF7A5DpHD66WcS\nCoVwu+X+qhB9Wd66sSmKsg/wB2B4vsoUQgghcu3AAw+U52IKwJ577m13CEIIByjKY1l3A8+oqrop\nj2UKIYQQQggh+qi8tOwoirIf8HPgoHTXdbvzmY+Z0xWTxJYeM7EVGT5zuVx4PPnbj0I/dnaR2DJT\nCLEJIYQQhS5f3diuBd5UVbU+3RWrq8tTL2QTiS0zyWIL6D1DsLnd4WFU861Qj53dJLbMODk2Ed8H\nH3yArhdxzDHH2R2KSGL+/Hn4/R2UlJQyYsTxdocjhLBJvpKdCwg/r5O25mYfoZCz+kW73UVUV5dL\nbGkyE1tTk6/7dSik0dDgzVd4BX/s7CKxZaYQYhPxrV69mtLSMkl2HK62diNtbW1UVMgQ4UL0ZZYn\nO4qiHAnsA3yYyfqhkObYh0Altswki834vq7rtuxDoR47u0lsmXFybCK+a665RgYoKACjR19odwhC\nCAfIR8fso4Dtqqq25qEsUeBk4GkhhBBCCJEr+Uh2BgNb8lCO6AUk2RFCCCGEELlieTc2VVX/AfzD\n6nKEEEIIIYQQwihvk4oKYYoubTtCCGe76667qKys4vLLr7Y7FJHECy88hdfbKudKiD5Okh3hKJLq\nCCGc7pxzzsHvl8EJnO74408mGAzi8UhVR4i+TH4DCAdzpV5ECCHy7I7xrxAKhSzb/o7G5u7/L7t+\nbMRnwWCAn58+ggvP/7ll5fcWBx98iN0hCCEcQJId4Sx6wh+EEMIRXINPsvSPp8v9ItCKy12KZ88f\nRXymd7TR0LTNwtKFEKJ3ycdobEKYJumNEEIIIYTIFWnZEQ4m3diEEM6zW0k9Ib2IbYFd7A5FJFFT\ns5hAIEBxcTHDhh1hdzhCCJtIsiMcRY8YjU3aeYQQzrNH6Rb8WrEkOw63aNE3eL1eKisrJdkRog+T\nZEcIIYRIw7ctUnEuBJdc8iu7QxBCOIA8syMcTLqxCSGEEEKIzEmyIxxFl9HYhBBCCCFEjkiyIxxF\n0hshhBBCCJEr8syOcDDpxiaEcJ4jqmoI6B6WexW7QxFJTJnyMm1tXioqKrnwwjF2hyOEsInlyY6i\nKH8FrgV2AuYBV6mqus7qckWBktHYhBAOty0wkJDutjsMkcJBBw3F7++gpKTU7lCEEDayNNlRFOVa\n4BLgFGALcA/we+BGK8sVhUvSGyGE09V27G53CMKE4cOPsTsEIYQDWN2y8wfgD6qqrur8WZIckQbp\nxibsU7vNS3VlCVXlxXaHIoQQQogMWZbsKIqyB7A/sLOiKDXAbsAnwG9VVd1mVbmiwEnTjnAAdX0D\n4yZ9S2mxm0d+fzLuIhnLRQghhChEVv4F36vz/wuA04AjOt97ysIyRYGTXEc4wZuffg9ARyBEszdg\nczTCaQZ4GunnabI7DJHC2rXfs2rVd6xd+73doQghbGRlN7auPkjjVFWtA1AUZSwwXVGUElVV/WY2\n4nY7745qV0wSW3rMxOZ293Rdc7nA48nffhT6sbNLb4ytyNVzHXo8RZZch4Vw3ER8QyrW4teKWdza\nz+5QRBKzZ3+E19tKZWUV++13td3hCCFsYmWys6Xzf+Ptr7WEk6BBwEYzG6muLs9tVDkksaWn3R/k\nlRkqB+/Tn2OG7hZ3mUZfsPu1x1PEgAGV+QqvmxOPXReJLTPpxuY2JDf9+pUzoJ91++bk4ybiW9B8\nuN0hCBMuvvgKwv0F5PlPIfoyK5OdjUAzMBxY2Pne/kAAqDW7keZmH6GQlvvosuB2F1FdXS6xpWnK\nJ6v479y1ALzw15G4XLF/gJqafN2vg0GNhgZvvsJz9LGT2DKTaWzBYM+yzU0+irTc71chHDenUhRF\nAzroqcnqwNOqqt6gKMppwH3AUGA9cJ+qqpMM6/4OuAYYDCwGblRVdUE65WvIsNOFoKSkxO4QhBAO\nYFmyo6pqSFGUicBfFUX5DGgBbgdeUlXV9F/2UEiLqHg4icSWnq+W1XW/DgS1iK5CXYwx6zq27IMT\nj10XiS0z6camG+Z7Clq8X04+bg6mAwerqrrB+KaiKIOBqcB1wCvAycA7iqKsUFV1gaIo5wBjgZ8A\nS4AbgHcVRRmiqqoPIYQQvY7VHbNvAd4HvgJWAirhPy6ir5ORCIQQmXMRv2/SGEBVVfUFVVX9qqrO\nBN4Bruz8/GrgOVVVv1ZVtQN4gPBvo3PyEbQQQoj8s3Senc5BCK7v/CdEN136UYsCoUti7lTjFEU5\nAagGXgP+CBwDRHdJWwD8ovP1MYRbfABQVVVXFGUhMAKYbLbgoRXfEdQ9rPIdkEX4wmrTp7+Nz+ej\nvLycs8461+5whBA2kSF3RP4Yuq0lqkDq0uQjHEDScMebB8wADgSO6/z3GLAz0BC17A5gl87XqT43\nxaeV0a6VphmyyLf+/QcwcODO9O8/wO5QhBA2srRlRwghhMg1VVVPNP6oKMpfgP8Cn5I6V806l13X\nvk+2m8iK2x1/OPRCGM48n7GdcsqPTS0nxy0zTo4NnB2fxJaZTGOSZEfYImHLjjTsCCHStxZwAxrh\n1hujnYH6ztdbE3y+xMrgcq28vDjpsPxOHklPYsuMxJY5J8cnseWHJDvCJpLVCCHSpyjKcOBSVVX/\nZHj7UKAdmA5cEbXKCODLztdfE35u56XObRUBRwPPWBhyzvl8gbjD8hfCcOYSW3oktsw5OT6JLTOZ\nTosgyY7IG2PfEU1yHSFEZuqBqxVFqQceAvYD7gaeBP4DjFUU5dfAy8BI4Ezgh53rPg68oijKK4Tn\n2LmJcJI0LZ0AKt1edN1Fm1aR/d5kINVw5U4ezjyfsdXX16FpIYqK3AwaFH8iayM5bplxcmzg7Pgk\ntvxwXoc80TeY6MYWZxoeIUQfp6pqLXAWMBrYBswh3KJzs6qqW4GzCY8A2giMB8aoqlrTue4HhKdE\nmAxsJ5wMndU5DLVph1Su5MCKNbnZIWGZ996byptvvsp77021OxQhhI2kZUfYItGoa8b35fkdYRvJ\ntB1NVdU5wIlJPjsqybpPEm4FytjSVgVdxuxzvJ/97AJ0XcPlkvu6QvRlkuwIW0giI4QoVO1a73lw\ntzcbMGDcyrJUAAAgAElEQVSg3SEIIRygoG53NLR0MOvbTbT6AnaHIjJg6ma5dGMTDqNLZi6EEEIU\nrIJq2bn3pa/Z3tzBF8vq+MuYo+0OR2Qh8aSiqZcRQgghhBDCjIJKdrY3h58h/W5Do82RiOyZyHaE\ncABJukW0A8rXENI9rGvf2+5QRBKzZn1IR0c7paVlnHrqKLvDEULYpKC6sfV2zV4/909awJuffm93\nKJYzU3+UbmzCCRINpiH6LrdLo8jVO4Zk7c0CgQB+v59AQLq+C9GXFVTLTm/36syVrFjfyIr1jfz0\nuH0pLXHbHZJlEndjk9HYhP0i8my5DkWUlW1D7A5BmDBq1Fl2hyCEcABLkx1FUTSgg3B1wdX5/9Oq\nqt5gZbmFqnZ7z4zYoT4666YkOMJp5JIUQgghCpfVLTs6cLCqqhssLqfX6e1duMyMcNXbj4EoDJLs\nCCGEEIXL6mTHBTLzmoglFUhRMKS5UUQpdvkBFwG92O5QRBJebyu6ruNyuaisrLI7HCGETfLxzM44\nRVFOAHYCpgB/UFXVm2Id0Qu5DE01CZ/ZkYqlcBi5IkW0I3dahl8rZnHrMLtDEUm8/vokvN5WKiur\nuPzyq+0ORwhhE6uTnXnADOAy4ABgMvAocIXZDbjd8QeM83jsG0iuK6ZEseWCx1OU0T663UW0+gI8\n8uYShuxRzZnH7WtBdNlzu11x9894TF2u/J7nfJzXTElsmck0NmMXSrc7s+9iKlYdN03X2drgY9CA\n8ogbDOlw4rl0ku+8B6BLpwXHO/30MwmFQrjdvXewHyFEapYmO6qqnmj8UVGUm4F3FEW5SlVVU2NB\nVleXx31/wIDKHESYnUSxZcpYwejfv4KKssy6SDwyZSFfLavjq2V1nHfawZSVOmPQPbe7p3LQr18F\nA6rLYpap2uHrfu1xu205z7k+r7kksWUm3dg8xT2Vo+rqckuvw1wft4deXcDM+Rv4358dxrk/klHD\nrNAcqrY7BGHCnnvKPEhCiPwPPb0WcAODgE1mVmhu9hEKxc5n0NBgX084t7uI6uryhLFlyritxsY2\nOjJIUtzuIlZvaur+eev2VqrKndGvPBTq6RDU2NiGKxSKWaaluSfZCYZCeT3PVp3XXJDYMpNpbKFg\nz7JNTW1UeHJ/F9+q4zZzfng8mInvLOVHRwzOKjYhhBCi0FmW7CiKMhy4VFXVPxnePpTwUNS1ZrcT\nCmkEg7EVgXjv5Vui2DJlfFwlENAodme/7WAwtzHmSqK4jAmRrttznnN9XnNJYstMurEZnx2z+jtk\n5XFz6vkQQggh8sXKlp164GpFUeqBh4D9gLuBJ1VVlWd+44h8Nj/zQ1QIPckTDUQgF4ZwGhkzQ0Tb\nq3QTId3NZn9mLWciP+bPn4ff30FJSSkjRhxvdzhCCJtY9hSqqqq1wFnAaGAbMAeYDtxsVZm9SZ+t\nX0nNUjiAXIYimX6eFnbytNodhkihtnYj69evo7Z2o92hCCFsZPUABXOAE1MuKGL09spWb98/0XvI\npSqi1XiH2h2CMGH06AvtDkEI4QAyvmgvlOFos5YzhqUnqEJKxVI4jmTmQgghRMGSZMdR+lClKtGk\novmNQoi4jDcM5JoUQgghCpckOw5irFQleoC/t0i4d717t0UhkmtSCCGEKFjOmG1SxMimfuUydBhz\natLkzKiEiCXXqoh2bPVC/Foxi1uH2R2KSOKFF57C622lsrKKyy+/2u5whBA2kWTHqbLLdno249Ca\nWuKhpx0asOiznHrDQNhnrW9vNF06Rjjd8cefTDAYxOORqo4QfZn8BnASPe7LXG3SfpEjFMTnqID7\nji+X1TGvZgsXjzyI3QZW2B2OEI62LbCz3SEIEw4++BC7QxBCOIDcmnKqXN1Nduhd6VxE1dzmx9se\nyMGWxJPv1LB49XYemrLI7lAifLtyK6s2Ntkag0O/QkIIIYQwQZIdh+qVLTsGibux9Ug2gnaT188f\nHp7Lnx79HF9HMKex9WV1DT67Q+hWs2YHD7+xhHv/8w1NXr/d4RSk+yctYEO9TH4phBCi75Jkx6Gy\nuZsc0VvMQdmOmel/dJNd+T5ZsBFN1+kIhPh25dZsQxMONH9FXffr2m1e2+Io5OfIVqxv5P5JC+wO\no9fZraSeXYq32R2GSKGmZjELF35DTc1iu0MRQthIntlxECuqVE59uNqhYQkRo9CvVW+7tHzm2h6l\nW/BrxWwL7GJ3KCKJRYu+wev1UllZybBhR9gdjhDCJpLsOIhTExMrJN7Tnk+StQQZD5XLVJuREELk\nxrctUnEuBJdc8iu7QxBCOIB0Y3OoXCU+js2fEj2zY8GIdEJkw7HfISGEEEKklLdkR1GUBxVF0fJV\nXl/mcsmkokLkSiE/syOEEEL0dXlJdhRFGQ78D1LHNS1nI0/nZjO5lyAws6Oxid7PzjzdeMMgX18i\nXdcde3NCCCGEKFSWP7OjKIoLeBwYD9xjdXm9Ra7uJju16pQwLunGJuKwM/HNx3UYDGmMe3kBwZDO\nrf9zDMUe6WHsZEdU1RDQPSz3KnaHIpKYMuVl2tq8VFRUcuGFY+wORwhhk3z8Rf0N4AMm5aGs3iNn\nE+04J2UohO51QsTIw6X69Yp6Vtc2s66uhc8W1yZddmN9K18tr0PT5Dtkl22BgewIDLA7DJHCQQcN\n5ZBDDuOgg4baHYoQwkaWtuwoirIbcCdwipXl9BZW1P+z2aau66za1MTO1WUMrC7LXVDJyjQ5GptI\nj6brfPDlegZUl3LcoYPtDqeg5OOZnXZ/qPt1vElydV1n0artDKwu5c7n5gNw2U+CnHrUnpbHJmLV\nduxudwjChOHDj7E7BCGEA1jdjW08MFFVVVVRlH0z2YDbHb/xyWNjN4+umBLFlqsyMtnH6JiK3K6M\nj9U3aj3/mhKejO3ZW07Dk+X+Gh+DKCqKH1dRkStihUSxG5fLZh+N8nFeM5VtbJ8tqmXKrNUAHLLv\nQHbulzh5TfdYWnXcjOfYneE5zjS2yGs1s+9iKsbYIvc1trwvarbw2FtLI9775NtNnD5ib1NlZXpO\nhRBCiEJnWbKjKMpI4ATgqs63MrpRX11dHvf9AQMqMwsshxLFlim3u+cQVfcrz3gfjRW16urMt/Pe\nl+u7X5eUldCvqjSj7XQpKuqpQO20U/y4qqp6KuEeT1HC2MvKi7tfV1aW5vR6yPV5zaVMY1u9uaX7\ndYeW/PuT6bHM9XErKen59ZToejEr3dg8Hreh7DJLf99UV5dTUdnz3SorK44p77PFW2LWc7sTfz+i\nOeH3pRBCCGEHK1t2xgCDgPWKokD4+SCXoij1wHWqqk42s5HmZh+hUOyI1Q0N3hyGmh63u4jq6vKE\nsWUqFOrpLtPY2EZpBjdXo+/INjX5qCzO7C5tMNizb42NbWiB7GZi17Se7TU1+2hoKI5ZprW1PaL8\nROe53Rfofu31duTkerDqvOZCtrF1GLpGtbS0Jz1e6R5Lq46b32+M2ZfROc40NuO139ycWdnpxOZr\n6+h+3+cLxJQXiPPdC4USfz+iZXpORXwDPI1ouGgK9rM7FJHE2rXfEwwG8Xg87LffAXaHI4SwiZXJ\nzu+B2ww/7w3MA44EGsxuJBTSIioeXeK9lw/GB+sTxZbxtg2vg1ls2zgQQCCY+XaMz/sEs9hOvO0l\nPq96xAqJyjQ+nK2FEi+XiVyf11zKOLY0rttM9z3Xx814jkNZnuN0Y7Pyex4tFNIIGa9nLba8eM/e\n6Um+H9Gcej0XqiEVa/FrxSxulWTHyWbP/givt5XKyir22+9qu8MRQtjEsmRHVdUmoKnrZ0VRigFd\nVdXNVpVptcfeXsrazc3cfsUIa7qF6BaMu5zFCAUuC0cISByWuXhlHKrezynn2M6BA4Mhje9rmwlq\nkqw4yYLmw+0OQZhw8cVXEP5NIsPdCNGXWT7PThdVVdcB7pQLOlRjawdfr6gH4OUZKrdfebyl5eUs\n18nRdnItpyNcyd+x3slwiViZeKcRRt49O205XyyrszECEY9WuH/K+pSSkhK7QxBCOIAMuWOS8e5u\nU6s/D+XlqIrloM1EVFgTbFCm3xGOY+NFmSzRka+KEEIIkZokOyYZR0TWLKr8WLHVbGK18ma6VNT6\njqbWjoKeRLZwIxdCCCFE3rqxFTqXIdvJZbKjrm+gZu0OfvKDffpWraov7Wsf9tXyOp6YWsOJhw3m\nf88+1O5wHEt6YhaWoRXfEdQ9rPLJCF9ONn362/h8PsrLyznrrHPtDkcIYRNJdoAP52/A4ynix8lm\nIzeOJKblrqY+btK3AGxtbI94P2e92ByaVCR6Zseh4YoMPTG1BoC5S7cUbLKTj2tSrvvC4tPKCOny\n3I7T9e8/gPLyCkpLs5sjTghR2Pp8slOzZgevzFwJwD67VTFkj/hDiRq74Wg5THa6fLmsjkH9e+a1\ncFzlJ8dZU6LN2dXdKaRpePpor85C7mKWF52Hp6Glg2avn30H72RvPEnIucyPde372B2CMOGEE35k\ndwhCCAfom7U7g7Vbmrtfb9qaeOI9YxXCimQntsDcDBnd1eVu6Zrt3PXcfBau3JZZOBlH43zr61q4\n4V9zeLKzFaJXStJPSurHyenoBIIaf3x0Lnc9P58V60xPE2ZaRt3Y4s29k20gQgghRC/j6GRnwYp6\ngg6Zyd5YIbQq1zF27cp1ERNeW8S6uhb+/cbijNbPdYXYSXegH397KW0dQeYuMTcFlFOuyVzJ6TDg\nvZEO25p83T++/9V6G4NJQU6lEEIIEcHRyc7Yp+fx5uzv7Q4DiJpRPS8tOznaTDbbMdxuznVykrgb\nW/zy0/Hmp6u567n5ERXUZFp9AdPbXrWxiesf+ozn31ueWXAO5KC8M4JTkrB8R5HN+bBqpEgRqdLt\npaKoze4wRAr19XVs2VJLfb3MVSVEX+boZAfg3c/X2h0CENWyk4dkJ3eTijqn8uMy9K8zFVWGob/7\n+TrW1bXw7LTcJyQPTllERyDEp4vMtQIVgkKoH7vyPKuoKyLRz2vRogAcUrmSAyvW2B2GSOG996by\n5puv8t57U+0ORQhhoz4/QIFZxqTBqmQnV5Uql6FJxLGjuiXYYC6Ts7oGcy076fB1BHO+zXyLbqVz\nUpdCZ8rv8TGb18WLSs5lfixtVdBlwHDH+9nPLkDXNVwux9/XFUJYSJIdsyKe2clDy06OBijIpp4W\nkTTluMKXcGtZdmMzHrdsGwN0Xc97i4IdpH6cXL6PTzblybnMj3atPPVCwnYDBgy0OwQhhAPI7Q6T\njI+k52U0thxJlKR8uqiWPz/+OUu+325uO7keoCBnC0WtkqM4P1mwkd/96zO+Wt77+npHX75O6uro\nRPk4OrlKqiXZEUIIISJJsmOQtDUlzwMUWN397Pn3VrCtqZ0HJy8yt53chJNyg+bLib+ksdUtk+pj\n1zXw0ozv8LYHuyfF7E2iWyalgpxCAR0fSVyFEEKISJZ2Y1MU5UhgPHAs4ANmAzeoqlpwt8sjh54u\nnApFVn34I7rD5bobm4lsJ6NubBmFk7P1nSryOS5JdtIRfa06+Xg5Obbe5IDyNYR0D+va97Y7FJHE\nrFkf0tHRTmlpGaeeOsrucIQQNrGsZUdRlBLgA+BjYFfgMGA34DGryrRSPiYVNVZUnHaHNvcDFCR6\nW0+5TLTInCy7QOOtbde8Oo2tHTz1Tg1fLNuS0+1GHyKnXWvx5PvB+4g82/mHp5skO/nhdmkUuXrX\nfFu9USAQwO/3EwiYn15ACNH7WNmyUwHcCjyvqqoGbFcU5U3gOgvLTJvZvvLGylZ+Bihw2HZysxnL\ntte93YgNp980FK9S7Q+E8Ljz3+Nz4rTl1KzZwRfL6jjpiD2y2lbEhLXSspOW6MPjlDEr4o2qZ3Zu\nKZGdlW1D7A5BmDBq1Fl2hyCEcADLkh1VVRuBZ7t+VhRFAa4AXrWqTCvle56dbLgsmAw0F9sx0ysu\n20lFs01E461u1+letnaHJduNGaDAqdmOsZEvixDb2gN8uayOofv0p7KsOP0w8j0aW4brTZm1mve/\nXJ/TWIQQQohCZ/nQ04qi7AOsBNzAU8Cd6W7D44m9qx7vvUwUFbkMr4sSbrfI3bOc1tl7wZ3l3f5k\nlUy325XRPkbHVOSO3adUP3cx5hrxtpM2wwYT7Z/xfEDiY1BkyOiMsbmDPcu7XCavk6ixuqOPYaJY\nc3UNmtEVU6bXXMTxKorcn+htprtfZmNLd7su43czi+/D/S99zTcr6hmyZz/G/mqEubJdics2fV2Z\niK3rf7dhX91F5vbV5YpcLlmik+k5FUIIIQqd5cmOqqrrgVJFUYYQTnb+A4xJZxsDBlSaei8T5eUl\n3a8rKkoSbre5PdT9uqv1oLo6u7kWoluIjJW7nXYqz8k+VlWVxmwn1c9dPB539+vqncqyjsfYFayi\nMjYugMrKUkP5RQnLLDOct0rDtorb/N3vF7kTr29kzK80Pfa8VldX0H+nUqLl6hpMxEXPXf6umDK9\n5kpKe77qFRVRx95wniHz/UoVW7rbLSnpibmqKvPr75sV9QCs3tRkehue4p5jUllZGrFvxcWenJ77\n6upyKgzXfXl54t9DRrXbvGxt8XPwPgNSLmv1tdrXFLv8gIuAnn5Locgfr7e1e760ysoqu8MRQtgk\nb5OKqqq6WlGUvwKfK4ryO1VVzU3wAjQ0eE29lwmfr6dy3NbWkXC7jU1tMe81N/sIZfHwekiLXFcz\n/Nzc7KOhoSR6lZSi78i2tLTH7FOqn7vjM+xbU7OPhlJ33OXMCoV6krvWzri8vgD/fPVb9tilkqvO\nGYbX2xFRfqLY2g3nzevtOW8thmRHS7K+UcTAELpOc3Pkcw8NjV70YDBmvVxdgwnjMrxubvZRXV2e\n8TXn7+iJv6U18ppobO2IWDbd/XK7i0zFlu52/X5DzHGuY7OxZRJDMNBzc6O1tZ3m5p5flYFAMCfn\n3njc2gzXvc/nN739Pz/8Gc/dOjLlcpmeUxHfkTstw68Vs7h1mN2hiCRef30SXm8rlZVVXH751XaH\nI4SwiWXJjqIoPwYeV1V1qOFtvfOfP/5a8QWDsRWoeO9lwti6EtL0hNuN934opGUVR7JRvoLBzLdt\nHGY43nZS/dzF2M0uGMhuXyHyIflg57F7fdZqVm9qZvWmZs46bt+IY6Lric+H8dkczXAeAib3LUmQ\nMRX2QIJ9z9U1aEZXTJlec8bjFX1NBAKZH7PpX6zDH9S48tzDU8aWbty6Fnu9ZMvsNozXfigUeR3q\nem7PfSikRczdlez3UMy6JpfN57XaF3znPQA9o5m8RD6dfvqZhEIh3O7sbtQJIQqblS073wDViqKM\nI/ycThUwFvhUVdUWC8u1hBUPKSedwzRXZThsO9EbbGjpuaPd4Q8lWDiNzWYZaLwBDhz7AH8aoufZ\n0fVw6lmUxdBiq2ubeH3WagAOPWAXDt2nn+l1X5+1mk1bW/m/0cMoKzHxayjqFIQ0jYnvLqe81MOl\n/+9g06MqmuZKPC+REM2hartDECbsuafMgySEsHCeHVVVm4FRwA+ArcASoAG4xKoyM5Gve3Pzlm5h\n9sJNUe8mGQLYwqGnfR2xXbLCy0Y9Q5Tks2x1bS3m+Gc9KWjuK6aJR44rzEpwIKhx53PzufWpL+jw\nhzLej60NPd391tQ2mV5vW6OP6V+sY9Hq7fz387Wm1omeC2juki18sayOT77dxIr1jabLzgUrTru0\nEQghhBDWsPSZHVVVa4AfW1lGvmQzpPH6uhaefncZALv2L+fQ/QYCqVp2rGuT+f0jc2Lee+vT7/l4\nwUau/fnhDN039oHndHY/ENR46r81DNypjItPPyh+VJ3bixwmO/sczxhnJjf74+1nomRApzArqd+o\nW9lQ3wrAx99uZMTQQZltyHju0litzZBs1zeYnBcmqoCtjT3rNXvT6hWbNl2XuYiEEEKIQlWw44s2\nt/nROrvjWKluRxvTv1iXVYWqq2IJsGpjzx1wy0KPGl0smj8Q23//v5+vxdse5P5Xvs26+I++2cA3\n6lY+/HoD6+t6eiy6ItuKOt80dBfKQYKX7fUQb/2ETzvksQKcy+u8w/DwvT+gZbwfRRl29TLeOEjW\njc5sQ6fVk3zqRP6eccqkotn6ankdr85cmZPuo33NXqWb2L1ki91hiBTmz5/H3LmzmD9/nt2hCCFs\nlLfR2HLt2WnLqW/wUewp4vbLj83NDPdxalS3Pv0Fuk7EPBi5KiK6cm+sUGVTt42INJs6coaJSN2O\nnrvuXl8g7jLdLTtx3suGsSLtyqDdJV4IiVt2rG3bceHqPu65TIyj9ycXj66nE59xEEKziUP09vPa\n0pKDFsf0yrOmtG2NPspKPVSVFxMMaTwxtab7s1+OjN8CK+Lr52khoHvYbG2joshSbe1G2traqKio\nsDsUIYSNCjbZWby6Z+Tqr9V6jjt0cNbbfPEDlYWrtvG7C47ovuPcVe8IxWsiMSmyq1b8hMaqKnOu\nusOlU//S0+hLFv1x9i0z8d9vaOmg2FNEVXnyeTGi5z5Kts18Vriz6UaZjJ5FH62ctOyYvokQdWPA\n8HO8wQm2NvpY+v12Tjhid9NxJS05YnjyrDeZd7XbvNz2zJeUFBfx8A0nRyScy9busC+wAlXjHZp6\nIWG70aMvtDsEIYQDFGyyYxQ9dG46ardHzj+xePV21HUNHNL5XE0uRLcwBEMa7f5Q8i48uapRWTjQ\nQVbb6/zfWFE1W6H3dQRZtrYh/nbjbGNro4+bn5hHabGbh353EqXF6Q1DurXRx+CBsXcG81npzWVZ\n0QldLradXsuOuW5sSbef4kbB7RO/xB/QWJphRT66dbQA85sI0+atBcLdFtdtaWXvQcYJFgu7X56i\nKA8CN6iqWtT582nAfcBQYD1wn6qqkwzL/w64BhgMLAZuVFV1Qd4DF0IIkRcF+8xOLmiaztwlsf2u\nO3I9J0XUMzR/e+Frfv/wHDZta028TjbFRSQQudlmOi1ExiUT3bjvSkoyqVROeG0h39c2J9iu4YfO\njb//1Xog/KzKyg3JR+6KV2l/cPIiZn6zMd7SJqLNjVw+s2O8JlwuV8Z7YbzOPpq/njue+TLheTEy\n7ovpZCdmG8mX73ou7dvvtpnafvKy4z+zo+l6zMTAGbM43zC2oIU0zbKWwnxTFGU48D90XiKKouwO\nTAUeA3YFbgSeVhTl6M7PzyE8BcKlwG7Au8C7iqLIDKpCCNFL9elkp90ffwhmK+sdDc3tbKhvJaTp\nvDzju4jPIp7nyVldxOZubKlEj+hlYtXVURVq4yqZVOKMD+wniv3lD7+LeS9XiWTMdjWdb9StEfti\nDGvpmu384ZE5CRKwBBJ0pYz3s1nGRLbZ62ftlhb+/uLXKdeLTLZMFhb9zA6xyUcuRX8Xow9RSNO4\n89n53PzEPNra4/8eScQfCDHu5QU89uaSvA1fbnzmUNN6x4ALiqK4gMeB8Ya3xwCqqqovqKrqV1V1\nJvAOcGXn51cDz6mq+rWqqh3AA4RP9zl5DF0IIUQe9elkJ5CgBcfC+QkjKnrJKua5qgLlrC6VznYS\nLBt5HLpadiKznYzCjTimhvJMrOptD0RcB2mVb1E9deaCjTz61pKI94zXyoTXFtHY6o+bgJkRWZHX\nk14jIU3joSmL+Pfri2OfZ4pzgM0ckkye2YkdzMMQhg219SWrd7Bxays7mjuYMX99xGcNLR08MXUp\nXy6ri7vujPkbUDc08sWyOpZ3dbOzOOcpKur5VR/S9bS/Jw71G8AHTDK8dzQQ3SVtATCi8/Uxxs9V\nVdWBhYbPTTm2eiFHVNWkXlDY6oUXnuKxxybwwgtP2R2KEMJGveKZnUzrCf6E3dVy++c/YvZ6s9E6\noJtJ5EDRmXVjS1gR7RqNLU4ClC5jbOneKf94QeREr7qumz77Zo7J0jXb+eDL9Zx78gEM2bOfqe1O\nn7cu5r3vNjTSv39uRhRKp2Xny2V13YOBfK3W84NDduv+LJPR7gD0DJ7ZSXao04lixvwN7Nq/jKMO\n2jWNtaKvsfBzd12ib5o8/d8aVqxv5Kvl9fzw0N2I1tDa0f26vSPUuX1jWbkX3bIT8V0rwGxHUZTd\ngDuBU6I+2hnYEPXeDmAXw+fRD/wZPzdlrW9vNN2+e4VudxEeT2z57s5RSd25GJ00x+yI7aSTfkQg\nEKC4uDju8eoixy0zTo4NnB2fxJaZTGPqFclOphInO7kVPXFm9+voBXNVy8lBAhEtvW5shlCS5zqx\n9awM4o04pmmurmfxsL6ZZSe8tgiAmrXf8OxfTksntAjjX13InjNXcd//HZfZBhK0fkV9FKPZ2zN0\neMww4mlWknVdx+VymZ9nJ8l3Jd6zWWa8OnMlADdfchTKPrGT5yaKI+m5jip/xfrkz4WRYezZcEc8\ns6PHXPcFaDwwUVVVVVGUfaM+S3VUsz7q2wI7Z7uJrJSXFzNgQGXCz6urnfsIUj5jO+64Y9NaXo5b\nZpwcGzg7PoktPwom2Unnjn1I0xj/6kKCIZ0/X3JUwjl4AsH4k+nlaEqduPRENTiX9Xd3s5Fei4mJ\nZeNkO7quRx2SDObJicq00p0wMdfJTkYS7PamrZkPaJGs9WvTVm/04pbQCe9aRBcqkzdpYubZMexP\nus/MAIyb9C1/v+qH7L5z/ApjdKtmdAKfzamPl+tEPEOTxbYTiRigIBTdja2wmnYURRkJnABc1fmW\ncQe2Em69MdoZqE/x+RIKiM8XoKEh9nvrdhdRXV1Oc7OPUCg/N/PMktgyI7FlzsnxSWyZ6YotXYWT\n7KSx7Dfq1u67q3OWbObU4XvGXc6faMhqB/ztbzR0dclGVpOTZngczHRj66qsJqtome06l6hlp25H\nG9c++GlarVvpzUtkTbZjxeWXrPXryXcSP3sQ0SoZs810m9EIJ/WZdGOLHaGg28Rpyzlwr37sNiC9\nbn6fL93C+T8aknK51rZAzHM5kclJemcs3uAAee3GpuuRz1854PddmsYAg4D1iqJA+NlTl6Io9YRb\nfF367IwAACAASURBVC6JWn4E8GXn668JP7fzEoCiKEWEn/N5xvqwcycU0ggm6ZmQ6nM7SWyZkdgy\n5+T4JLb8KJhkJ5noSldbR8+dXl+Su77+QPy7/rkaTbZLoqGgk7ViPPPuco4YskvKSTBTsWNS0VRz\noERsL2rwhkySM+M+Ric2qRKduN2j0nyMRNP0NCbHTC2TB+51Xefxt5fS5PXzh4uGx8wlFDmZrfmD\nHNHCEZ1vpJ3rhA+u2W5sycqK/nnyx6u4/vwj0orHbNlTZq1OWna6pyvycZk42Y4FjPsa/cxO4eU6\n/B64zfDz3sA84EjCf9NuURTl18DLwEjgTOCHncs+DryiKMorhOfYuQloB6alE8BuJfWE9CK2BdJ6\n1EfkWU3N4u5ndoYNS+/3gxCi97A02VEUZR/gIcIPkQaA9wlP/pZ6Mo5omd5wT/KXvCNBy46ZuTMy\nrzCar3Ru3u7loL36my4nfnlprx5XOvubTpHGHCG6DNN3zLN4ZidmU7puuva3Yl0jxZ4iHp+6lJ+M\n2JtzTz4ATdfTaK3InZUbm/ha3QqEH8I/54T9Ij43HpdcPa4RMzpbCl0xhAzrme3GFrOtqKss3VjA\n/EhwuRd7N8B47QdDuc98Yp7ZKeChp1VVbQKaun5WFKUY0FVV3dz589nAw8CjwFpgjKqqNZ3rfqAo\nyi3AZMLz8MwHzuochtq0PUq34NeKJdlxuEWLvsHr9VJZWSnJjhB9mNUtO/8l/Mdkb2AA8DbwT8Jz\nHaQlrdHATHYxSfTMjpmKU/Qi7f4g3363jUP2G0D/qtLE6yXbdlRNPSeV5gzqTSFNw10UWQtNK9c0\nkXH0LBLZvcZo83Zzz5JEdAHKMttJZ3Xj8NDvzF1LkcvFjPkb+O25hzFs/4Exy2+sb2Wvzpnrv1xW\nR0WZh7VbWpi/vI7fjD6MPXZJ/MBxKsY5o5pb/TGfaxm27CST7la6itUy6MYW0wKXZSzhsjNYqau8\nLA6h8VdA1/4bN/fu52s5fthuCZ8nyoTbHZnsFP74BD1UVV0HuA0/zwGOSrL8k8CT2ZT5bYtUnAvB\nJZf8yu4QhBAOYNm4coqi9COc6NyiqqpPVdVa4AVihwo1Ja0Hx00ul2g0tpCZZEeLrDze9fzXPP3u\nMu4xTKrYlUwlGo0tYnu6TnNb5GhXuaiPZNKN7Y6JX8UkZZnGkmg9HZ1AMEStIaHRtMiKuLc9SJPX\nz6pNTTz61hLWbE7dIJjqOkl1arPp9vf2nDW0dQQZ/9rCuJ/f8exXbNnRRs2aHTz5Tg0PTl7EW59+\nz8atXh55M7vno1ONTpbNiHWJpN+aEl4+lEmyEztCQdTnaYZC5i070SGnfU8izrmKjv/591akG1ZS\nxuMcCGoR527N5paMWsaEEEKIQmBZy05nV4Mro97eB9gUZ/Gkshk+OVlFpCPhMzupyzN2dVu8ejt1\nO9oA2NEc7g3xyYKNTPpoJReddmBES09aD8tnuN/GZz50PfHkqYls3t7Gyo2Rw+em1Y0tomKdoLuM\nDve/8i2rN/UkMJoem2qo6xt4Ymr4Afpv1K1xh282lpHq+EZ/nqoSnWtzFm+Oez62dF4/mUrVczNR\n90nj821pl5nm9RmvG1umCUfss1YZdGNL9sshyUe6bj4p/nbl1pg5fYzrJirGl8V5ictQUCikxXwP\nvvluKyOGDsptmUIIIYQD5G3GIEVRjgWuA+5Jd91QKPks73EfMu+UrCqVaICCdFt23pj9fcznL834\njpCmM+mjlREVi8gWoeRl5OIOvK7DQ1MWpb1ezCHIsGUt0T7oEJHohJeNPc8lnsgH7VOXlyLZSXFu\nAyGN1Zuaki6TDW97IGVLQNa9FzvXD4Y0Zi3cxNotzQlbdj76emPGxaR7E6Jr6Yhndsw+lpXsS07k\nNfDpolpT28xkIIh0PfxGnBY74++nrm5sMUl4buMwbi8Q0mK239YeNYeSEEII0UvkZTQ2RVFOBN4B\n/qyq6idpb8AV2ec8WpHLFTE7svGh56IEM01D8qQm2WzLEK40d83kGvV4S8y6RRHDvibdbMx6qeKI\nFj27bFGRi+XroicMjxR3Ju4iV0RlsMgdG4um66ypbWavXasoLelJSox1yKIiFxo6a2pbIka5i1fR\nfH3WajZvj2zhKC+LvETjxdp1/hd8t5XJH6+Kv5OG2IzbiG5ZeGTyQlYkOF7pnItEy7a1BykriZ/A\nda2T7Dmz6PPrdofPk/EB9K7rZvoX63i9cySxY5Se1oVUSUrE8XFHHquI71mCZCHRvrvjXEOeJN/P\n6OsoVdldn5vtAubxJC47WauPywVFRcbjkng7xrh6NtDzUtPDv0dccVq4zF5v6f6O0PTYgSGi98GJ\nM2c7yRFVNQR0D8u9it2hiCSmTHmZtjYvFRWVXHjhGLvDEULYxPJkR1GUcwjPaXCtqqovZ7KNqp3K\nE1YQASoqSyNmk64o7+k2VllRknCmaZc7/jZLyxOv0yWk6fTrnNjIE7Wd6HXLK3riMVYikiVwAJVV\npSnjSOXtz2JbnaLFK6Oqqoxiw/DFlZVlMcu9PXs1E99ZirLvAP75u55HsYzrVVWV8dQ7y/lq2ZaI\ndcsrSmLKjE50AAZGzZ0SL9au8//Q5I9iPotWXh55TMvKIuNIlOgkKjvdZTuCGqVl8YcT71qnKMl1\nET2ZVr/+lbiLXFRW9rSSlZWFZ1ef9W1Pj1G38RpN0aIR8V0ynKfyqO9FRZxzGL1+RKz9KqgoK6ak\ntGf/K5J8P0tKe349RX/Hi0sif3XVrNnBuEnfMuYnQ+NuK56qysTfL09x4t83JSUeKiOOS/LZ7KM/\nM8au6zrV1eWUl0ceS1eRy/T1ZmY54zVXUuqhqqos4vPKzmOh6zorNzSy9247mSq7r9oWGEhIT93q\nLOx10EFD8fs7KClJPGiQEKL3s3ro6ROA54HzVVWdmel2tm9vpaIscaht3o6I2aTb2npGEW3z+ePO\nNA3Q3NIe9/3W1vaE63TRNL17dtlgKLI7XPS6ra095fgNo2alGmK2uTl1HNGi78hua4q/j0bxymhu\n8RE0jFbX0hIby8R3lgKgrmuI+My4j80tvphEByKPSTItUecoXqzR5z+Z5qhz6/PFjlyWSDrnItGy\njS3tdHTEn/yyax09SfNfc7Mv4uft21sp9hTRYjieHR1BGhq8ES04PkM3pVQzIic6Pm2+yOPckmDi\n24T73thGR6mHVm9PrG1tib+ffsNzK96o89bREdvtqub77dz6+Ny424qnvT1x2cEEXVwhfH17vT37\n3p5gNvsu0Z8Z90vXwufU+DsLIBjUTF9vZpZra/NHvG5qiryOfG3hc/vR1xt48X2VvQdV8djNI02V\n3xfVduxudwjChOHDj7E7BCGEA1iW7CiK4gaeBm7OJtGB8LC6xUm6aoQ0PWKWV2MSoUd9Fr3deAKB\n1LPGhjQd9M7louqm0etGxGboy5Xq+ZJgMLPZa9N9FCEQp2IX/ZxUMMVMusbPjN3VEq1jdtCE6Nji\nx2r+OAWDoahYzfcrTOdcJFpW0/SEyUzXOskui+hEpcMfxIUHLc41b+wOZxxmPdUzaRHHx7BdLRT9\nPYu/jwnPeUCj2K3FbCPR8sbvRyiqbDPP1aWkJzlPSU6CrkeWr+uJf8dAbBnGdUO6TiikEQpFP7OT\nfJvJtp9qmWBIIxCIjSkY1HjxfRWADfWtpsoWQgghnM7Klp3jgaHAvxVFeRg6p08P/6+oqrrB7IbC\niUUaJUeMAJa45u9POKmouQEKunsbpUguEg1QkGqfcjUfSirxSokebSq90dhSD8KQrPXCKHqxeNtL\n5yjlpJJsUrxjtnGrl70HJe8ilE6y2nU9xdsr43aMNwAyHWY4ZoyAdCcVjTP0dKLrQ13fwLyauph1\nEwaTgWQjwaWc0DaL8uONjGf1oIAR8yxp2Y1wKYQQQhQSK4eenoNhordszP7W3OhK8bS1B2hrD8bt\nBpeodcFMRSCk6XR1609VMYqYvT6Nhpp81cvjVcpjR7/KcNsJVgyZrGxFxxbv3KQ1B1Me63iJrqN5\nNbHd+jLVlThEjEDYeTlGz63SJa0kOsmlne71GW9S0USxjJv0bdx1u3+2eozwFHJVftd+ZXNzYdJH\n33HJ6QebKgc6h3iP2r7149L1LgM8jWi4aAr2szsUkcTatd8TDAbxeDzst98BdocjhLBJXkZjy9b7\nX61Pa3njn/G3PlvDjPkbuP+3J1Be6kHTddR1Dew1qCrhPDupnmmArops+hMiRtxhTVFhylvLTrzW\nkjTvNGu63jMbvInkzmzrQnTCMH9FvanlEolu2bHyCEd3TcqF6GuiZ38MrZld16Xh8lxX19L9Old3\n9VNtJ9H1G9G4mWkouejFlqyrWpICYicVTS9V0KISj84Co2Izv72Pvt7IcYcOTlFmZMueTCKanSEV\na/FrxSxulWTHyWbP/givt5XKyir22+9qu8MRQtikIJKdlHSdtvYAD05exG4DK9hr16qIj73tQb5e\nUc/JR+7BpwtrefEDld0GlFNVEX9ULDNdnUIhDTzdTTtJxa3cYH6enf/P3p3HyVGV+x//9DJrTyaZ\nTBYgK0nISQgkIYQlgbAjsi+CCChhM6JcBeXHRdQrci9X5SqKqIAgCMgim4JCEEEFlUWWEAIBToCQ\nQEhCVjKZnr27fn9Uz6Snp7unaqZnqjP5vl8vyHR3ddXTp7tn6qnznHOSSQcHh0jGHNcbtzRRHSuh\nJGMtmm5LcHIcJ+PejG26H+dRmmUGq1xr/HgtJ8tMlm7505tdtnEc7ydv/XmS1xclc5lvQ7bX4+CQ\ndJycJ+GNzbkH3/cmlkyZ609tK9nynvDnOlYhWjbv25PnMb8J2otvfcy+U0dm3UGuMkS/Fzq2NuSf\naCNzfa8ur11dO74sqtsz6BDEgzPOOIdtFfQisqMaMIsp/PnFD3lvdR3PvbGWD9KuYndI/a678wl3\nAO7HmxtpynHS5+XKd/rJQne/Rp0sJzdeOI7D+k8aueTn/+K/b3+503PfXrmZy258jh/evcjz/nLJ\nNlGD43S+gt1dk7Qm/JVJ5RrcnsnLe+Hgo6eoFwnI9+96xdf2PU128nUU2A86T42drYztiRc/5Du3\n/LvTbHpe1QzyPkVrd2258IWVnW63b734nQ3b7vPYRLctfKtTT2whej3z9+x091zvx7npkaW8tWJT\n1n1nSwC9HL9LPN08vnnrttnespWxiT9JIiQLU6Utfai0tJTS0jJKS7NPky8iO4YBkew4uCvTt0v/\nw97uNwvf5qrfvNTpvmzruoCPnp2UzJPTJe9t6HQ7/bzCzwlw0oGfP7SE+sZWPlxXz6a6bVP23vyn\npQC8vyZLYufTxdf/q8t92aLMd5LUaUyIh2N2N+12x768tJfjvTTr9/9Y3uOE591VW3xt7zfZackz\n3XG7H9zVObnN9VrWbmpgY132qaHzybeYZtc5AnK/vtsff6vr0x14Z9UnfLQh3uk+r55IK2ctSM9O\nWtslHYdV6+t79Nnwcs14yfKN22506unNvn2hc5H08s+k42iCAhER2WEMiGQHIJY2AUF9U9c1OKDz\nuAXIfYLcUVqS54Tg5bc/zvnYdQ8syXmczHKSfBzHYdX6bSeGufaT+Tr8Tj2d/eCdbzY2t3HFr57n\nqttfytor43Uq6XZep9X1mOt4nvihuTXBP5akT3jRNyd9q9bXc8fjb/t6zlOvrAL8lSG25ZmNrWcy\nPks5H8nfs/OP19Zk2bXD4nczLwR4jzw92S/MmJ1tP//+meV899YXuevJZV0fzNDl++Xh7cqcIKDj\n5yw9c5nbFJo7Zqfzfe2fuYL87hARESkiAyLZcRyIpa0QXt+YPdnxqn1geb7Tjbs6nch2Mxtb+roa\nnU4Q/Z3QdB77k/Zz5qD7QpwIZsT2t0Ufsf6TJj74uJ7X3t3YZfu2TmVs3e+/zeMVdE8nwz6vVPvt\noemJK299scuJfXc6eiR7MPV0oWTuLt/ge7+fM6fjfxn39YDXMsh80j8z7SV3T7/6EZA/LscpXM9L\nMunQ2NzWtYyt0HVs6cfM833J27MnHaZULmNSxfLuN5RALVz4MA89dC8LFz4cdCgiEqABMUFB0nGo\nKNv2UuKN2RcL9ap9WmSvV527Oz9IP4H0MtPbtudlngDl6iEq/FXgzF02pZVYtbQm+HvqpLBd5zI2\nD2N2PPfsFHbMTn/pr2i89EL2Fb/HzJYk9DRur2WQ3cXTk8eg82fcb3qQvu8f3/0KkXCIyWOG+Aug\nFz5aH+fZ17NPfx4Oh/p1LartVWOynISjMTvFbsiQGioqKikr8z4WUUQGngGR7LgnUdv+QPf2qm+u\n0pJcup2gIO3EqNOCit09L7O0JUfpWmZJSiHWAMlMHtJf45pNDTz63IpOj3cqY/PUs+PtPfIyfXMy\n2fMxCMU4dMHPyXOhT0z9JB9+D93Y3NZlGvmetn+he3Z889urlWf7RNLhrZWdJ57oy3xjxdqu4/yy\nrc0kua1sGht0COLB3LkHBx2CiBSBAZLsOAU9OUgU+Gp5+m6aWhJZ78/+vM4b5JrCumsPkP8YMyUd\np9NJd/o50IYtjV229z1BgceenVYPJ7UPPP0eWxt6V7pYFHrwviVSSWOherb87MXv9+MP/+ha9vPS\n2+t4fflGPnvoJGZMGtbN8bb9XIhkJ1f8yz78pNv9d/rOhUI4eab69npcv9t02r5AfYnhAVHYLCIi\nss2A+NPmOIUtY2rfV6F2mcw5Zie/vD07fVzGltme6Vd8s7V1p5NDT1NPe4vZ68QHfhaeLcbenJ7y\n2wvZnbz76ZJ8Z9841+fxtfe6jvXavLWZNRsb+NmDS7I8o7M33t/Use98SfCYEVU5H0uX63fGD+9e\nxDvdjOtKf4l/+MdyrrztJVrzTPWdnox4eav6+zOqnh0RERmoBkTPTqGnUm1PSJ59PcuMUlm8t7ou\n7+M9TUYyX1P67USnkrbCHC/fsdOnC852kuh/6mlvSUwhruBvd3yccCY6EvO+z3YyH8m1aa6EPhIJ\n0YOlfzps3trMEy9+SDQS4r2Pcn/nvEzhDb1LKDK/Y6vW1/Ps62s5ZK9ROZ7g77j9nY+3x+S1d2pH\nF4vEcZwQDcnKoEORPNat+5hkMkE4HGHEiJHdP0FEBqQBkew4juNtPRaP2k/W7vrLsrzbJR2HlVnq\n3zP19KSqLmNVdCfHCVOX2dh6drhO8vVAZettafU7G5vHJMbvlNYDgZ/TzY5eyD4qY8uXOOc6Zq77\no+EQXlb+yXfM+//+brfPL+SCtdm8vnwjry/v2kvV1JLg5w9l76FKP1K+HqCO7Xs01V3vhcNKdryY\nGnuHlmQJS+qnBR2K5PH4448Qj9cTi1Uxf/6CoMMRkYAMiGQn6RR2QK/XE8dk0uG91d1PY+y33Kfd\nA39/z9N+utxfgLZwHHL2MGQrR2pPSlpaE1kHQGfyWsbW1z07xVTS1l7q5OfieluBe3a2NrRyz5PL\nmDFpGNN2Hdrpo9R1JrXs+8iVKHs9ke7tS/H62Sr0JAAbtzTx6js5phtPO1ZDc/ezRfb357L9d55y\nHW/eqDc4vufhk/52wgmn4jhJQqEBUbEvIj3Up78BjDFHGWPWGmPu6cvjOAUuY/Oa7DiOt56HnKuk\n+wkK71fSC1LGlnR89Ra09+z85P7XaPRwMqeencKoi7ek1mkp3D6femUV1963uNv9ek6+U7xOItHb\n77LXz1ahx7p5mUwDoKHJS7Lj+Iqvt6+k/fnq2fGmKVlBc7I86DCkGzU1Qxk6dBg1NUODDkVEAtRn\nPTvGmMuA84D8tWAFkEw6JEOFL2Pr9riOQ4uHk/GcJy1+K1Vy9hD1ardZNbcmukyHm097UrLsw088\nbe/1hNRL++7Ibn/8bX7/zHt8er9xBd/3ex9t6by2k8cJCnozHXZjcxv3/a37UrV8vC5Y+9jzKxk9\nvIr9di9MLX8iz3TqDg72g82sWh/3lPQ5+Ovd6W3i1v5eRiO6Ai4iIgNLX/5lawT2Bd7rbsPe+uOz\nK/h9lmlteyrfSUu6ZNLxWH/f24hcuZKP99dkDNYuwPH8nnB6nUq6Y3vPs7H1YkT7dqanb1tdQytv\nrtxU0FgArn/odbbUbxs3lnlCnSup6c34oQeffo9/vLa6x88Hfwv3/uqPS3t1rHS5FuoE9/N+zT2v\ncveTy2j2MIGC4zi+ppPubUle+5jHEiU7IiIywPTZXzZr7S+std0P3ihCnsfsOA4trT3v2fF7fvLH\nZ1eQSCZ5+tWPOt1/w8NvsHnrtqHfhSzp88pvuZnXnp1/vOZtRryeeOrlD/nLS96nrC5mn2z1MvTf\nn7ZEstOU3plfi1zlWL1JdrIN/PfLayLdn5paui9dS+culOx9e68XaHJJOu7vqWhUyY4XEyreZ1z5\nh0GHId14+ukneeKJP/H0008GHYqIBGhATFBQaEkHT1NihUIhbyUzBSyDf3rxau7OMkvcyo+3Mrym\ngrdWbmbJuzkGSfehhM8Tpd6UOvVWOAzvr63jnqfeCSyGbMKhENFouEdrnaxaH+9+o14Khej0Hseb\nspdj9XT64p6+9t7qjxN8v9cfksn+TTzufnIZ/3p9jYbcexQJJXFQiW2xa21tpaWlhXA4EnQoIhIg\nJTtZhMIhWpzu/+zHYuWEPSw5XlpakvX+npzY5erpGFxdQU1NjB9c/ZTvfRZCJBphyBDva04EefW9\ntDTKxnpvg+X7U2lZlJqaGJEivbpeXlZCTU2s43ZjS/ZyrKpBPRu4HdRrf2154UsAMzk+v+sO+Po+\nlZeX+oyoq5Vrt1JaopNCL95pmBh0COLBkUceE3QIIlIEivOsKmAtLQneWdF9Oc2Wukbq492XDzU2\ntWS9vyelJ405rqav3xTn1oe7X4W+r2ytb2b9hnrP2wc5FqelpY3GhsKXffVWc3MbmzfHfY056U+/\ne3IZ87/3Z158/SM2b47zSV32Ntz0SUOP9v/QU5Y1G/q+hyrTtfcs6vNjxBuy/w7I5+N13quA67Y2\n+d5/Nl4XZBUREdleKNnJoi2RZN2m7k/Y2toSngYbJ3L0YnidijddruPd9PAbPPzP933vr1CaWxM0\neZhyul1fr5+Tz7Ovr+U3C98O7Pi5OEnHneih+IacAO5YsE1bm/nhXYtoa0uytTH7CfwVNz3fo/3f\n/njxvSeF0pMkYu1G70mjpmgXERHJTmVsWSSTDlvi3V+JdWdj87LOTuHOXhubi/PKa1tb0tcJVzEO\nIg9ac2uCxuY2Gn0OZu9vrW1JWloTnibnEFdPplD3sl5VuyDHwO2ISkItQIhWJ3uJshSHeLwex3EI\nhULEYlVBhyMiAenLdXYaca9Rl6Runww41lrvhegBSSQdPqn3kOx4XGfH77TMefdVpCVObYlk0ca2\nvXjujbU890bu6YuLSV0PyrJ2ZD1JdrwuUgq9mwFP/Jsx6E1akiUsqZ8WdCiSx4MP3kM8Xk8sVsX8\n+QuCDkdEAtJnyY61tqKv9t3XkkmHOi89O463sSd+Tlq2V4mkUzSvc/fxNby5wvuCqOLfbY+9FXQI\n/eJbn9+b79/1Sq/305Mxan56Sns79bT4syw+AUdz1xW9I444mkQiQSSiiTdEdmQqY8sikUyy8uPu\nBwcnkw7NHkp5CtmzU6zaEt5K+vpDaVR/2Pra2x98EnQIfS4cClFWWpjPUk9K/vwlO4Xt2Zk9ZXhB\n9zfQ1CWqgw5BPBg1akzQIYhIEVCyk8XGHLNMZfr3mx/T7GF8RbEkAX2pmMrYSop06mbZvpSVRggX\n6OJ9faP/yUj8/N4odBlb7eDttmNeRESkEyU7vfCHfywn4uFsqCf1+tubhMfJGvpDoa7Gy46tvDRC\nuFDZTg/4uXhQ6J6dIBZ3FRER6QtKdnrJy0lGS4BryvSXZR9+wg/u6vv1SryIletj3V9G1FSwbnNj\n0GH0ifLSCKEAT/r9XDzY5LE32isPayXv0EaXfUTCibCmZaegQ5E8XnrpeVpamiktLWOffeYEHY6I\nBER/0vpBq6bo7VcVZUp2cpmwS2HHGuw0tOgnV+ziiNmjmTW5+zEppSWFK2Prsm8PpZZL3tuQ87ET\nDhjf6fbzSws7i596dvIbHN3KoKj3RZQlGKtXr+KDD1ayevWqoEMRkQDprLAfNBdJedeOoiSiHD6X\nQpdlDa0uL+j+/Dp0r1H8/dWPfD1n+JAKjpsznkXL1ufdriQa7rOTfi+lrUvzzCh40rwJ/PHZFQWM\nqDMlO/ktjU8JOgTx4MQTTws6BBEpAjor9OmUgyb4fs7Hm7yvhC5d7Vxbyaf28T6rTsRHsrNz7fbX\nM9EbkQKfxHbXQ7HghN0LerxMPRmfFQ6FPE1iURoNB1rGFiRN8iEiIgOF/qJ1I7PsJ1ahFbP724kH\n7uqr/Coa8X6CWp7nZPnwWaMZO3Jgrbpd6J6d0pIwgypzfydGDOnbZLKsxH+yEwmHKC3p/ldfSSQc\n6AQFQdIkHyIiMlAM6GTnsFmjCr5PL7OvSWENG1zhq92jPnp2SvKsybPHhKGU9uBkOpsvfGoyY0b4\nT5xOmrdrl9c+e8qIHsdR6JP3kkiYmkFlOR/v644RL0lLpnA4RMTDCHy3jK0nUXXvKyft0Tc7LpCe\nJJEiIiLFaEAnO4fM7H2y42RMtuan1yBTvivgA42XAdhejRxa4enktJ2fxCjftuFwiPlHGc/7yufQ\nWaMZMcT/2iUnHLArV3x+7073DYmV9njt9kKPxSiJRhhUWVrQffrR054dL1rbkn1WxjZzt2F9st9C\nUbKT3+zqxUyvWhp0GNKNO+64mRtu+Al33HFz0KGISIAGdLJTWhphl2GxHj9/3MhBQOdsp7K85wnL\nwTNHMXr4wCqLyqW363586YRpANRWlxErL/HVIxHxkZA6mdlsmnAoxKgCvl89bZGyjN6LcDjU4x6a\nXXce1MMosiuJhhmUp7Qzmad9C6E0R8/cOUfnHkDute0GV5Xl7Jk6dK/eXUjx0/sYBJWx5beiHj3d\nDAAAIABJREFUcQyrmnYJOgzpxpw58zjkkCOZM2de0KGISICK+y9uN/bpppynojTCN8+axdg85UPp\nA3HDoRBTx9V03D7hgPFdenYqezGt8aCKEq46b5+82xw8c2D8Ae1tsrPv1BF886xZfOfs2YD3BGa2\nGU7URy9Qa56FG9vPib951izP+8s3gcVr7+aeSrhdtl6HzM9gT5OdUAg+vd9Y38/LJ+k4VOXosZw4\nqjrntOsnz9u118c+YM+diEazt8NBM3J/j7z27By175icPTtfyNPjN24nbwllZRGvB9WbHuwdwYbW\nWja11XS/oQRq8uSp7L77nkyePDXoUEQkQH2a7BhjxhpjHjXGbDDGvG+M+WGh9v2LSw7iy3nq3ved\nOoJBlaVUVZSw58TajvtH1nQuJTps1ihu+MZB3HjpwfzoK3MZnlZqVFoa6XI1Pt+A9u4MipV0Wxaz\nd8b6H9N2Hdrj42XyM/NYf6xV89lDJ3W6PWZEFScfNIH/Pn9fQqEQk8cMYXCVOx4kcxaxzPdh1uTh\nXHzqdM4/dndfV81b25I5x5y0v1eTxwxh8ujBnvY3d4/ciwx6SQDnTOv6/HhTa6fbkR4mO+ccPaVX\nY5C+esqeXSaKaGxqozpHGdtXTtoz54K6xx+wK7XVucf6ZDM4tu04n9pnDOcfu3uPyvK8POeS06az\nc23PeoWvPGcf5n+6+/LH3lw46WuaelpERAaKvu7Z+T3wITAeOAI42Rhzidcnf2q/cV3ui4RDXHLa\njJxXRQdXlXLZGXtx4YnbEqFk2knmZw6eyElpV5UrSqOUl0YpK4lQM6iMYYO3rRsyOFbapfYo30lA\ndzN3eRnbsFNGQpLsZQ9Ju1HDYllLbzKTK3AHT//iksJ1++daeHLGpNpOt7/1+b05fu74rKV+mT07\nmeu7hEMwY9Iwykojvq5Kt7YlufLc7L1t6QnFucd4uzLYm2QYoCTLgPvMUsxwKNSjKaQj4ZCnk9hw\nKMSxc7p+9/aaPJyJu3RO+hqa25iXpRdl0ujB1AwqoyXPgrpTxvq7Mp6eLLZ/RjbVNXfZrruem/b3\n9awjJ+dMuCaPGeIrtkwbtjR1u42Xnp1sFx12H9/7HoVzj5nCtRcdkDPh0kQsIiIyUPRZsmOMmQ1M\nBy631tZba98DfgIs8LqPr352ZqfbZx9l+OXXD2L6xNocz4BP7zu2UykadB43EAqFmDx6SOpn2C3j\npObI2WOYPrGWI2ePYfTwKpyMbCfX1fnj5o7j4lNn5H09+cY2gNuzMWxw556nfGNK/Cgvi3DAnjtT\nnVFydNEpe3a6/T8X7MfsKSOy9kDtO3UEV56Tvwwvm4tO2ZMzj9it4/auO1fzH6fs2eXKeb5xApnx\nXHjitE630xOT7npQZk7aNji8tS2Zs2ciPTEYmSNhy5RvIoVTD5nY7fPTJ3ZoT0QHVZYyIy3mnpax\nZSY6pdEwe6UGyn96323lbTWDyvjMwRP59eWH8q0v7M24kYO44Dg32cvsqTlwz52pHVzOD75yQKf7\nL0yNuco2ZfjJqVK/zMQeYLc8PWgtrduO3T7ZR7ZJP3Yf7/aGjh6evWdmYiqmw/cezY8y4m5XXuom\nARVlPUtevSS9Xnp2jp0zjusvnsdxc8dzyMxd2H/3kR092gfsmbsXMZd503fmsFmjOGCPnakZlHtM\nUthHKeiOaGTpOoaVdF+WKsFaunQJixe/wtKlS4IORUQC1Jd1FLOAFdbaurT7FgHGGBOz1sb97vCQ\nLD0Tg6tK2VLfAriDhg/fe3SXbZJpF5fDYZgyroZvf2FvKsujWU+4LzltW9KSmWtUx7KfGJ9ykHsi\nW1VRQn2jW3b0jc/O4Cf3v9axTSw1uUFZSYTm1Inb2Z823PlnC7jJRKby0ih7Tx7OK92s9g5w6ekz\nufa+xVkfK41GqCiLcvUX9+edDz/h4X+9zyFZxgeNGFKe5dlw6+WHdiQc/zV/Nv9zx8vdxtOuurKE\nfXcfyT1PvePG+bmZvkt42tJWnJ+7x05den8+c/C2RKKxuS3rPiaNGszgqlIuOG53vnztM0D2z1S7\nzBPB2WY4L1v3fTj/2Kk88eKHrFpfn/c5AONTYzg+vd9YzNghDKsuZ+mKTXy0Ic7jL3zQadtoJMzV\nF+zHkvc2cuD0nTvunzqupmPMT3fJTjgU4vTDJnHvX9/JiM19zujhMVatj3P+cbszc9IwPt7UQGlJ\nmD+/6MYyNNXbEQ6FmDRqcKeer7l77MQzi1cD7ud7dGo83IRR25KUEw/ctaPnbWh1Od8+e2+aWhLs\nNmowH66rZ9dUsrHT0M7fvUg4xIUn7sGlv3y2y2uqrS5n89ZtvTjt44T2230kb3+wmZpB5ew0tIIl\n723kjMPdxPriU2dw2Y3PddrPF4/bvaM00otIOMwPv7Q/3/zVC56fA3DoXqNZ+v4mdhpaydOp9gIY\nNricY1K9Zpm9k9nEyqNUVZRkHQt29lFTeGHpx77Gx80/ekq3vXul0XDBJ7IYaHYpW0tLsoQNrcU9\nq96O7rXXXiEejxOLxZg2bXrQ4YhIQPoy2akFNmfctyn17zDAd7KTzRVnzeJviz7iwOk755zpLL28\nbHiq52TiKG9jMDLX8agZVMaXTpxGfXOCxoYW/vCP5Zz1qckdj3/1M3vy0DPL+fS+Y9ljQi3Xfe1A\nfnzvYsaOrKI2VSL37S/szWMvrOTQvUYxaniMB/7+Hk0tbewzdWSX43/uiN0YNricrQ2tXP/ga7y/\nZmvOWDN7tOZMG8myDz9ha2Mrn0/FWFVRwl6Th7NXWvna8XPH86fnVrDXbsM6rTtz4oG78qdnV3Du\nMVM69azsunPnq/UH7LkTY0cM6nJy3S5WUUI4FOL6i+dRPbiCcDLZKXnxojntqn5F6qr7KQdN4MmX\nP+SC43bvNNYqW7ngqOExvvWFbVM4f+fs2axYW8e86bkHsmcmFOcdO5V9p45k6vgaYuUlvLNqS6dk\nZ+akYZSWRNh36ghefGsdAGNHVPFf891JFsKhUEcZ2Nw9diaRTOIk4a0PNrNyrfu+hkJu2Vpm6Vp6\nr5fjOJx+2CRu+dObnbaZtutQqitLOHq/cSxdsYlM7a/nis/vzfpPGhkzoopQKMToEVWd2veY/buW\nsLXbbfQQ/t/nZlJVUcLYkdtOiCvLS/jSCdN4f00dR2dMgpBe+pb+vZsxqZbRw2Nsibdw+ZmziJVH\nGVxVxv7TRvLC0o8ZNTzGITNH8cKbaznvmKn83z2vsiXuXthof4+jkTDnH7t7xz7n7rEtQawd3DWZ\nmJWlbLM7I2oq2bm2kjUbGzrdv8uwGKs3xNl9fA31ja188HF9R9lZZXmU/zzTndgiPdn5vy/P7fj5\n9MN347k31nbcHlpd1qUsL1cJKLiTq0weM4S3Vmb+ms3uyyft0SXRSf9eH7DnTowZXsX+e+xUsPWl\nBqpXt+rEeXtw5pnnBh2CiBSBvh4h2+vC72PmjGPh8ysBiGZZu2WX4VV8vpu1UObN3IW1mxuorixl\nfJaymnzOP253vpW6qvuN02cSjYY5aOYoqqsrqKtr5Kj9xnaqq586fijfGb9tUoGh1eV8/0v7d9rn\n+F2qO5WPXXPhHJpbEx2lUqccNIGFL6zkwpP26DjprR0c4YsnTOuIBdyyqCde/ICtDa0cvf84SjNK\nZ46eM44vnbQHLa2JjrKcbE45ZAJ7Tqxl/M6DOrXxZw6ZyHFzx2ctL/vPM/fi0edWcPJBEzCpsRcv\n23W8s2oLe+02jBE1FTzx4ocAHSdOtUMqOtqt3ReP353f/fUdPv8pk/X9bZde8jR11xqi0TAnHTSB\nE+ft2qXEbfqkWkpLwh3jRWbuNoxzjp7Saf+Txw5h8thtJYwzJg3rMlvarrtUd5rsoCpayv5pExCc\neeRkNm9tZvzOgzj5oAlEwiFCoRBfOWVPzm5oJVYRJRwK5ZyUIkqYMz81mdUb4nzvthdpakkwZVxN\n1nYYktYbMWZEFbOnjGBETSXrNjfw9srNHDJrFJNGDe441sefNHbZx6jhMaLRMIOipQzK6KGMRsP8\n74L9+WRrc6cJPbKZPqnz1exIqo0O2msUB6T1RnUnGg1z9YL9SSScTrMinnvMVGZMHMa0CUMZUlXG\nUankab9pI/lL6jM1tLos7+el3ddPn8ndTy5jr0nDOGnersSylJJ+6cRp/OqRbWumnHnk5C77/tqp\n07ki9d07/7ipRKNhvnnWLF57dwOzp4ygtS3J3xatYr9pO3V5bs2gso5eqfTHhg2p4I4rj2L+VU8A\n7u+X5pYE763ewj1PvkNleZQp42vylkYeM2ccb6/czNTxQznt0Ik0NLXxxvsbO/UY/uDCOYzKMQX/\n3D136mjTBSdM6/j8RIp8amwRERGvQoUaE5LJGHMBcIW1dmLaffsCzwHV1tqGnE8WEZEByxhzNvBw\nRpnzduP4Sx/p0wWknrr5fJrqN1JeVcsRC27t9FhrcwPzxmxgwXnndHleNBqmpibG5s1x373nfU2x\n9Yxi67lijk+x9UwqNt8dKX15+e5lYKwxJn3u5H2BN5XoiIjs0MYBjxlj/mCMOcMY0/PVn0VERPLo\nszI2a+1iY8xLwA+NMZcCo4CvAz/qq2OKiEjxs9b+D/A/xpiRwHHAE8aYNcAt1tq/BBtd96ZXLaXV\nifJWvPv1lCQ4DzxwNw0NcSorY5x22llBhyMiAenrMTunArcAa4EtwI3W2pv6+JgiIlLkjDFTgM8C\nRwLvAQ8BxxljTrfWnh9ocN3Y0DqUhKNJHIrdbrtNoaWlmdJSfwsYi8jA0qfJjrV2NXBsXx5DRES2\nL8aYRcBK4F7g/6y17auw/tEY80RwkXmzutn7RBwSnJkz9+5+IxEZ8Pq6Z0dERCTTccAMa+3jAMaY\nzwJ/stY2WmuPCjY0EREZSDS/qIiI9LcbgMlpt6txe3lEREQKSsmOiIj0t1pr7c/ab1hrfw14W+m5\nCNREP2FwdEvQYUg3VqxYzrvvLmPFiuVBhyIiAVIZm4iI9Lc1xpjvAi/hXnSbB6wONiTvJlauoCVZ\nwpL67SY/2yE988xTxOP1xGJVjB+/IOhwRCQgSnZERKS/fR6Yjzt2JwG8AvxXoBH5sKhuz6BDEA/O\nOOMcwAF8r0EoIgOIythERKS/lQAfA//GTXQc4IxAI/IhSYQkmnq62JWWllJaWkZpaWnQoYhIgIqy\nZ8cYMxZ3AOv+wFbgPmvtN/vp2EcBdwB/s9aemfHYYcAPgCnAB8APrLX3pD3+NeArwE7AEuASa+2i\nAsY2FrgOOAhoBf4MXGytrSuC2GYA1wKzgUbgGeBr1tp1QceWEedPcdssnLodeGzGmCTQzLZLkA7u\n4ooXF0l83wYuAgYBzwNftNauDDI2Y8w84C+4bdUuDJRYayNBt5sxZibu92EW7vfhr6ljbCyC2PYG\n/g/YG/f363XW2mtTj/VXbH8F3gQ+SrvPybGtiIhIjxVrz87vgQ+B8cARwMnGmEv6+qDGmMtwk4ll\nWR7bCXgENwkbDlwC3GKMmZV6/HjgStzyjJHAo8CjxpiKAob4J2ATMAb3RGUa8OOgYzPGlAJPAH9L\nHX+P1HFuDDq2jDhnAl8gdVJljNm5SGJzgMnW2kprbUXq34uLoe2MMRcBZ+Im2DvjnqB+PejYrLX/\nTGurSmttJXAVcF/QsRljIsBjwHOp408DRgA3FEFsNcDjuEnrTsBRwEXGmM/0c2yN1trzrLX/lfbf\nd3v7+kRERDIVXbJjjJkNTAcut9bWW2vfA34C9MfowkZgX9zVvDOdBVhr7R3W2hZr7V+BPwIXpB5f\nAPzGWvuytbYZ+BHuSezxhQjMGDMYdzDvFam1KFbj9kAdFHRsQCXwLeCH1tpWa+1G3IR1jyKIDQBj\nTAi4Efdqe7uiiA23NydbUXkxxPcN4FvW2ndT38dLrLWXFElsHVK9nt8A/rMIYts59d9d1to2a+1m\n3O/DXkUQ2xygylr7HWttk7X2zdQxvtjPsf3VGHOeMWayMWZC+3+9fnX9ZErlMiZVaIavYrdw4cM8\n9NC9LFz4cNChiEiAii7ZwS37WGGtrUu7bxFgjDGxvjywtfYX1tqtOR7eOxVHukXAPtket9Y6wOK0\nx3sb2xZr7QXW2vVpd4/BLQMJOrZPrLW3WWuT4L5RwDnAfUHHluZC3GT2nrT7ZhVJbADXGGNWGmM2\nG2NuSn3WA207Y8wuwK5ArTFmqTFmgzHmfmPMsKBjy+K/gV9ba1cVQWwfAa8CC4wxMWPMCOAzuD0h\nQccG4KSS/3abgZn07/fhcNxe1l8Bt6b++3UP9hOIxmQ5TcmyoMOQbgwZUsPQobUMGVITdCgiEqBi\nHLNTi/vHN92m1L/DgHj/htOhFre0Lt0m3JjaH88W9zD6QKoH7D+AE4DLiyG21NX1d4AIcDPwPdyS\nmUBjM8aMTMVyUMZDxfKePo87/uRsYAJuknhDEcQ3OvXvqcBhuO/rQ8AtuL15xdB2GGPGAycDk9KO\nHVhs1lrHGHMq8BRuKRjA07i9n48EGRtuaV0D8D/GmP8FdsEdg1OTOvaq/ojNWntoqtxvmLX2Y7/P\nD3qM4MqmsX5DlgDMnXtw0CGISBEoxp4dKN55IruLq1/iNsYcgDtG5nJr7d88HrvPY7PWfmCtLQNM\n6r/fejx2X8d2LXCrtdb24Nj90W4HWGt/kyoBtMA3ccfJRAOOr33f11hrP06VTl6Jm2B7mc+1v77H\nFwG/z+j1DCy21Bi2P+EmrYOBUcAW4O6gY7PWfgKciDsWcg1wZ+q/RH/GZoz5DO4sbH9N3f6xMeZ0\nj8/dLsYIiohIcSjGZGc97hXEdLW4J1fru27eb3LFtc7j4wWR+mP9GO5VzF8WU2ztUuOsvo07lWxL\nkLEZYw4H5gL/k7or/WStqNotzQrcXpRkN8fv6/jWpv5NXyp+BW4blgQcW7pTcceWtAv6fT0cGG+t\n/VZqnNNa3J7Fk4G2gGPDWvuctXZ/a+0Qa+0BuL0zqzwcu5CxXQLsx7bf6d8Bvu7xuUU/RlBERIpH\nMSY7LwNjjTFD0+7bF3jTWtsQUEzgxrV3xn374K4T0eVxY0wYtwb+3xSIMWYucDvwGWvt3WkPBRqb\nMeZQY8zbGXc7qf9exC01CSQ23JOfEcAHxpj1uFeTQ8aYdcDrAceGMWamMebHGXfvDjQBCwOObxVQ\nhzueo92uuAls0LG173cGMBZ4Mu3uoL+rESCc2m+7ctzvw1ME2G7GmDJjzNnGmKq0uz+FW972cn/G\nlko22qebTuCx16gYxgjGInEqw0H+ORIv1q37mLVrV7Nune9KSREZQIpuzI61drEx5iXgh8aYS3FL\nQL6OewUuSHcD3zPGnJf6+XDgaNyrk+DO9HWvMeZe3Drwy3BPWB8rxMFT9e234Jau/bWYYsNNIKqN\nMdfgXsGuwi0V+Ufq2JcGGNvXca8atxuDO0ZmBu7n/4oAYwP3qviCVPJ1He506/+NO3D7LuDKoOKz\n1iaMMbcC3zbG/BN3TZb/wi1PvBP4r4DbDtwZzjZaa+vT7gv6+/AcUA9cZYz5Ptt6Ip7BbbvA3lPc\nRPVKYKox5jup458FHAisTsXcH7E9aIx5FJho3LWvDsfnBAVBjhGcGnuHlmQJS+qn+Xma9LPHH3+E\neLyeWKyK+fP7Y0JXESlGRZfspJyKe2K/FreE5kZr7U19fVBjTCPulcaS1O2TAce663isN8YcB/wc\n+CVuOc9Z1tqlANbaJ4wxVwD349aKvwQck7p6WQhzcAfcXm+M+TmdF6A0QGCxWXdR0yOBX+CWpdTj\n1tOfb63dEGS7WWu3kFaGZYwpwX1P16RuB/meYq1dbYw5BrgGNylrwu29+461tiXo+IArgFLcHroo\n8CDuoqwNRRAbuIPM16bfEfR31Vq7ybiLE1+L2zvWjDtBwYVF8H1wjDGn4SYHX8VNDM6y1r4G/fd9\nsNb+LJXszMb9zP/UWvuBz318AJQZYyamXk+/jRF8o97gBDi0NBIJE412LcyIRMKd/i0mQcR2yimf\nJZlMEg5nb692areeKebYoLjjU2w909OYQo6jRatFRKT/GGN+w7YStg7W2vN6uL/9cXvUHgPWWWvP\nT3vsP3FLf/czxqzCXavst2mPLwRet9Ze7vV4x1/6SJ/+4Xzq5vNpqt9IeVUtRyy4tdNjrc0NHD11\nKxdfpJ4KEdkh+b7SVKw9OyIiMnDdlfZzCW7Ptae/R8aYQ3F7+6ek3Z0+RvDUjKdkG3f029S+2scd\nbTdr/AA0NrayeXPXVRgikTDV1RXU1TWSSCQDiCw3xdYziq3nijk+xdYz7bH5pWRHRET6VZZxh382\nxjzu8enFPEawXyQSSdracp+EdPd4kBRbzyi2nivm+BRb/1CyIyIi/SqVjKTbiW2L2OZVDGMEJ1S8\nT8KJsrJpjJ+nST97+uknaW5uoqysnEMOOTLocEQkIEp2RESkv6VnCQ7uFOfHeX1yKnk5NMdj/8Kd\npS/Xc3+FO9thj0VCSRwGxhXPgay1tZWWlhbC4UjQoYhIgJTsiIhIf3uarhMUjDPGjAOw1v6j3yPy\n4Z2GiUGHIB4ceeQxQYcgIkVAyY6IiPS3y4FpuGVkDu4EBW/glqU5uONvREREek3JjoiI9LdWwFhr\nmwCMMeXAfdbaLwQbloiIDDRKdkREpL+No/PfnzAwNqBYfCsJtQAhWp2SoEORPOLxehzHIRQKEYtV\nBR2OiAREyY6IiPS3nwKvGWM2pm7XAj8MMB5fZgx6k5ZkCUvqpwUdiuTx4IP3EI/XE4tVMX++FmEV\n2VEp2RERkX5lrb0DuMMYU4u7GvZGa23mhAVFa1l8Ao7/Rbylnx1xxNEkEgkiEc3GJrIjCwcdgIiI\n7FiMMQcaY14AnrHWbgC+a4w5LOi4vKpLVLM1MSjoMKQbo0aNYezY8YwapfWQRHZkSnZERKS/fR84\nFnf2NYAbgf8NLhwRERmolOyIiEh/a7PWbiS11o61dh1d190RERHpNY3ZERGR/vayMeZGYBdjzMXA\ncWxHa+uMLvuIhBNhTctOQYciebz00vO0tDRTWlrGPvvMCTocEQmIkh0REelX1tr/NMYcAqzAnaDg\ne9baZwMNyofB0a20OlHWtAQdieSzevUqGhoaqKysDDoUEQmQkh0REelXxphHrLUnAk8HHUtPLI1P\nCToE8eDEE08LOgQRKQJKdkREpL99Yoy5BXgF6OgfsdbeFlxIIiIyEGmCAhER6RfGmPZL7cuBVcBp\nwJjUf6ODiktERAYu9eyIiEh/+TLwgLX2KgBjzN/bfxYREekLSnZERKS/hDJub5fTTc+uXkxLsoQl\n9dOCDkXyuOOOm4nH64nFqpg/f0HQ4YhIQIo62XEcx9m0KU4yuV3+PewT4XCIoUNjqF26Uttkp3bJ\nTW2TXTgcora2KjMxKYQB0cgrGseQdFQFXuzmzJlHW1sb0WhRn+qISB8r6t8AoVCIcDikk5A04XBI\n7ZKD2iY7tUtuapvswuG+yHMA2N0Yc2fq51DGbay1Z/fVgQtpQ2tt0CGIB5MnTw06BBEpAkWd7IiI\nyIByesbtXwcShYiI7DCU7IiISL+w1j4TdAwiIrJjUbIjIiLiw8jSdSScMBtahwUdiuSxdOkSWltb\nKSkpYdq06UGHIyIBUbIjIiLiwy5la2lJlijZKXKvvfYK8XicWCymZEdkB6ZkR0RExIdXt+rEeXtw\n5pnnBh2CiBQBzZ0pIiIiIiIDkpIdEREREREZkJTsiIiIiIjIgKQxOyIiIj5Mr1pKqxPlrbgJOhTJ\n44EH7qahIU5lZYzTTjsr6HBEJCBKdkRERHzY0DqUhBMJOgzpxm67TaGlpZnS0rKgQxGRAPlOdowx\nRwF3AH+z1p7ZzbZfA74C7AQsAS6x1i7qSaAiIiLFYHXzzkGHIB7MnLl30CGISBHwNWbHGHMZcB2w\nzMO2xwNXAp8HRgKPAo8aYyp6EKeIiIiIiIgvficoaAT2Bd7zsO0C4DfW2pettc3AjwAHON7nMUVE\nRERERHzzlexYa39hrd3qcfO9gY6SNWutAywG9vFzTBERkWJSE/2EwdEtQYch3VixYjnvvruMFSuW\nBx2KiASoLycoqAU2Z9y3CRjWh8cUERHpUxMrV9CSLGFJ/eCgQ5E8nnnmKeLxemKxKsaPXxB0OCIS\nkL6ejS3U2x1EIloKKF17e6hdulLbZKd2yU1tk53aI79FdXsGHYJ4cMYZ5+BWz/f6VEREtmN9meys\nx+3dSVcLvO51B6FQiBdeeIH99tuvoIENBNXVmuchF7VNdmqX3NQ24kcSTTu9PSgtLQ06BBEpAn2Z\n7LyMO27ntwDGmDAwC/i1n53E401s3hwvfHTbqUgkTHV1BXV1jSQSyaDDKSpqm+zULrmpbbJrbxcR\nEZHtXUGTHWPMW8D51trngBuBe40x9+KusXMZ0AQ85mefiYRDW5tOQjIlEkm1Sw5qm+zULrmpbURE\nRAYmX8mOMaYRtwC2JHX7ZMCx1lamNpkMVAFYa58wxlwB3A8MB14CjklNQ11Qt912M3V1W7jkksvy\nbvfYY3/k2GNPKPThRURkBzKlchltTpR3GycEHYrksXDhwzQ2NlJRUcExx5wUdDgiEhBfyY61Nm9d\ng7U2knH7V8CvehBXwW3YsIH7779HyY6IiPRKY7KchKNxO8VuyJAaKioqKSsrCzoUEQlQX8/G1u+W\nL3+Pa665mvr6rUQiES699ApmzJjJJZd8mdWrV3PBBWfz61/fyaJFL/OLX/yUhoYGdtllNFdd9X0G\nDRqUc79r167hq1+9kGOOOY4nnlhIZWUl3/jG5dx00y/48MMPOPfcCzjppFNxHIebb76Bp5/+K21t\nCU466RTOOms+AIsXL+JnP/sxzc3NxGIxvv3tqxg/flduu+1m6uu3smrVh7z//nLGjBnHNdf8hJKS\nkk4xbNiwgauv/i6bNm2grS3BggVf4ZBDDgfg0Ucf5q677iQUggMPPJiLLroYgHvvvYtfZa/bAAAg\nAElEQVTHHnsEAGOmctll36K8vJzTTjuBY489gSef/DO33XYXn/rUwZx33gKef/5Zbrrptr54a0RE\nBoSVTWODDkE8mDv34KBDEJEiMODmF73xxus55pjjufvuB/nc5z7Pddf9HwCXXvpNxowZw69/fScN\nDXG+853LufTSK/jd7/7AjBkzuf76a7vd94YN65g4cTd+97s/UFkZ42c/u5af/vSXXHXV97nzzt8A\n8Oc/P8bLL/+b22+/l7vuuo8nn3yCV199BYAf//iHfPnLX+Oeex5i//0P4Oabb+jY99NP/40rrvgu\n9933MJs3b+S55/7V5fh33HEr06ZN4/HHH+fyy7/NNdf8LwCrVn3IrbfezM03385vf3s/S5Ys5tln\n/8nrr7/Gww8/yE03/Ya77nqAtrZW7r33tx37q6+v5+67H6SsrJxkMklV1SAlOiIiIiIyYAy4ZOdH\nP/oZxx/v1ubuuecM1qxZ3WWb115bzLhx45g2bQ8ATjjhFJ599p/d7juZTDJvnnulaPz4Cey11yxK\nSkoYN25XNm7cAMDzzz/L8cefTFlZGWVl5XzqU0d37PvOO3/HvvvuD8D06TNYvfqjjn3PmjWbmpqh\nhMNhJkyYxMcfr+1y/EsvvZwFC74CwIwZM4jH69m6dSsvv/xvZszYi+rqaqLRKNdffxNz5x7Iv//9\nPIcddiRVVVUAHHvsibz00r879jd37oGd9j9nzgHdtoGIiIiIyPZiwJWxPfvsP7nzztvYurWORCJB\nMul02aa+fivvvvsun//8aQA4jkM0GqWtrY1oNHeTlJWVEwq5i5NFImEqKtx5GcLhEI7jdOz79tt/\nzf3334PjOLS2tnYkOI8//igPPXQ/TU2NNDc3dyQhQKefI5EIyWSiy/HfeGMJt9xyA5s2bex4XY6T\nZOvWrVRVbSvBa69P/uSTzeyyy+iO+wcNGkRd3ZaO27HYtmNmxiAiItnFInEcJ0RDsrL7jSUw69Z9\nTDKZIByOMGLEyKDDEZGADKhkp62tjSuvvIJrr/0FM2bMZOXKFXzxi/O7bFdbO4zJkw2//OUtBY9h\n6NBaDjvsSI477sRO969b9zHXXfcjbr31LsaOHccLLzzHjTde72vfV199JRdc8CXOOOM01q7dxKGH\nuj0xgwcPYdky27FdXd0WQqEwNTVDOyU3W7ZsYciQml68OhERmRp7h5ZkCUvqpwUdiuTx+OOPEI/X\nE4tVMX/+gqDDEZGADKgytsbGRtra2pg4cRKJRII//elh2tpaSSaTRKNRGhoacRyHadP2YPXqj1i+\n/F0AXn/9NW666Rfd7r+99ybfY3PnzuOJJxbS2tqK4zjcdtvNLF68iC1btlBZGWPUqNE0Nzfx5z8/\nRlNTk6/Xt2XLFnbbbTIADzzwO6LRKE1NTey77xwWL17Exo0baGtr41vfuozFi19h//0P4O9/f4p4\nvJ5kMsljj/2xS+maiIj480a9wTZMDDoM6cYJJ5zK5z53NieccGrQoYhIgAZUz86gQYM49dTPcfbZ\np1NbO4yLLrqYV199hcsuu4Srr76GkpIoJ574ae6772GuvPJqrr76e7S0tFBVVcU3vvGf3e6/vYQt\n32OHHno4y5e/yznnnAHAtGl7Mm3anpSUlLDXXntz+uknMWLESC666BK+971v8eMf/4Da2mGeXt+5\n536RSy75D0aMGM5ZZ53DfvvN5etfv4i7736Qr37161x44XmUlJQwd+485s07BIDPfOZ0vvSlcwGY\nPn0mp576ufaIPb82ERHZpimZdxUGKRI1NUODDkFEikAoX29F0EKhkPOXv/ydmTP3DjqUohGNhqmp\nibF5c1wrvmdQ22SndslNbZNdql10BSSH4y99pE//cD518/k01W+kvKqWIxbc2umx1uYG5o3ZwILz\nzunyvGL+PCu2nlFsPVfM8Sm2nunp36YBVcYmIiIiIiLSbkCVsfXWPffcyWOP/bFTSZfjOIRCIa66\n6gdMnDgpwOhERKQYTKh4n4QTZWXTmKBDkTyefvpJmpubKCsr55BDjgw6HBEJiJKdNGeeeTZnnnl2\n0GGIiEgRi4SSOBRXeYd01draSktLC+FwJOhQRCRASnZERER8eEczsW0XjjzymKBDEJEioDE7IiIi\nIiIyICnZERERERGRAUllbCIiIj6UhFqAEK1OSb8fOxyO8My/nmf1xxu7PBYKhygrLaG5pRUn2Xez\nY48cXsuXLzinz/ZfKPF4fcckQ7FYVdDhiEhAlOyIiIj4MGPQm7QkS1hSP63fjx0pKSMy+XQ+yPag\nAzSnfu7DVZLWvP1s3+28gB588B7i8XpisSrmz18QdDgiEhAlOyIiIj4si0/A6ctsQgriiCOOJpFI\nEIloNjaRHZmSHRERER/qEtVBhyAejBqldZBERBMUiIiIiIjIAKVkR0REREREBiSVsYmIiPgwuuwj\nEk6ENS07BR2K5PHSS8/T0tJMaWkZ++wzJ+hwRCQgSnZERER8GBzdSqsTZU1L0JFIPqtXr6KhoYHK\nysqgQxGRACnZERER8WFpfErQIYgHJ554WtAhiEgR0JgdEREREREZkHz17BhjxgI3APsDW4H7rLXf\nzLJdCPgecDZQCywHvm+tvb+3AYuIiIiIiHjht2fn98CHwHjgCOBkY8wlWbb7MnAecCQwGPg2cJcx\nZo+ehyoiIiIiIuKd554dY8xsYDpwmLW2Hqg3xvwEuBi4LmPzWcC/rLXvpm4/ZozZmHr+G70PW0RE\nJBizqxfTkixhSf20oEORPO6442bi8XpisSrmz18QdDgiEhA/ZWyzgBXW2rq0+xYBxhgTs9bG0+5/\nDLjBGDMDeBM4GqgAnultwCIiIkFa0TiGpKMhr8Vuzpx5tLW1EY1qLiaRHZmf3wC1wOaM+zal/h0G\ndCQ71to/GGNmAq8CDtAAnG2t/agXsYqIiLSPH70OOAhoBf4MXGytrTPGHAb8AJgCfAD8wFp7T9pz\nvwZ8BdgJWAJcYq1d5Of4G1prC/I6pG9Nnjw16BBEpAj4vdwR8rKRMeYLuJMTzMYtWzsCuMcY84G1\n9hU/B4xEQkSjuoLWLhIJd/pXtlHbZKd2yU1tk9120B5/Al4CxgA1wMPAj40x3wUeAf4DuBeYB/zR\nGPO2tXaRMeZ44ErgKOB13DLsR40xE621jQG8DhER6WN+kp31uL076Wpxe27WZ9z/H8Cv0q6WLTTG\n/A34AuAr2YnFyqmpifl5yg6huroi6BCKltomO7VLbmqb7YcxZjBuonNFKkFpNMbcAXwVOAuw1to7\nUpv/1RjzR+AC3N6cBcBvrLUvp/b1I9yE53hAs4WKiAxAfpKdl4Gxxpih1tr28rV9gTettQ0Z20ZS\n/6Ur60mA8XgTmzfHu99wBxGJhKmurqCurpFEIhl0OEVFbZOd2iU3tU127e1SjKy1W3CTl3RjgI+A\nvXHHkqZbBHw29fPeuD0+7ftyjDGLgX3wkeyMLF1HwgmzoXWYz+ilPy1duoTW1lZKSkqYNm160OGI\nSEA8JzvW2sXGmJeAHxpjLgVGAV8HfgRgjHkbOM9a+xzwR+CC1BW1N4HDgcOA//MbYCLh0Namk5BM\niURS7ZKD2iY7tUtuapvtV2qm0P8ATgAux10eId0m3HGlkHvsqa+sZZeytbQkS3bYZCcU8l9eHkTJ\n6JIli6ivr6eqqooZM2bm3K6Yy1kVW88Vc3yKrWd6GpPfMTunArcAa4EtwI3W2ptSj+0GVKV+/j5u\nz87DwHBgBXCBtVazsYmISEEYYw7Avbh2ubX2b8aYy+l+bKmnsaf5vLp1x+4liEbDPS4v788ew699\n7au+ti/W3kxQbL1RzPEptv7hK9mx1q4Gjs3xWCTt5zbcQaBX9io6ERGRLFKTDfwWuMhae3fq7lxj\nS9d18/jrfRXnQNTWlvRdXl7MJaOKrWeKOTYo7vgUW8/0tMRak8+LiMh2xRgzF7gd+Iy19q9pD70M\nnJOx+T7Av9Me3xs3ScIYE8ZdQ+7XfRjugOM4PS8vL+aSUcXWM8UcGxR3fIqtfyjZERGR7YYxJoJb\nTn15RqIDcDfwPWPMeamfD8dd1Hq/1OM3AvcaY+7FXWPnMqAJdyFsEREZgJTsiIjI9mQO7oKh1xtj\nfo67/EEo9a8BjgN+DvwSd7zoWdbapQDW2ieMMVfgzrw2HHcK62Ostc1+AphetZRWJ8pbcVOYVyR9\n4oEH7qahIU5lZYzTTjsr6HBEJCBKdkREZLthrf0XXZc2SPchsFee5/8K+FVvYtjQOpSEky8EKQa7\n7TaFlpZmSkt7tPKFiAwQSnZERER8WN28c9AhiAczZ+4ddAgiUgSKbxJtERERERGRAlCyIyIiIiIi\nA5LK2ERERHyoiX5CkhBb2gYHHYrksWLFctra2ohGo4wfPyHocEQkIEp2REREfJhYuYKWZAlL6pXs\nFLNnnnmKeLyeWKyK8eMXBB2OiAREyY6IiIgPi+r2DDoE8eCMM85h28zkIrKjUrIjIiLiQzLvzNdS\nLEpLS4MOQUSKgCYoEBERERGRAUnJjoiIiIiIDEgqYxMREfFhSuUy2pwo7zZqhq9itnDhwzQ2NlJR\nUcExx5wUdDgiEhAlOyIiIj40JstJOBq3U+yGDKmhoqKSsrKyoEMRkQAp2REREfFhZdPYoEMQD+bO\nPTjoEESkCGjMjoiIiIiIDEhKdkREREREZEBSGZuIiIgPsUgcxwnRkKwMOhTJY926j0kmE4TDEUaM\nGBl0OCISECU7IiIiPkyNvUNLsoQl9dOCDkXyePzxR4jH64nFqpg/f0HQ4YhIQJTsiIiI+PBGvcEh\nFHQY0o0TTjgVx0kSCqliX2RHpmRHRETEh6ZkRdAhiAc1NUODDkFEioAud4iIiIiIyICkZEdERERE\nRAYklbGJiIj4MKHifRJOlJVNY4IORfJ4+uknaW5uoqysnEMOOTLocEQkIL6SHWPMWOAGYH9gK3Cf\ntfabObY1wE3AvsAG4KfW2ut6F66IiEiwIqEkDsmgw5ButLa20tLSQjgcCToUEQmQ356d3wMvAZ8D\nRgILjTFrM5MYY0w58ARwPfBpYA/gN8aYhdbaZb0PW0REJBjvNEwMOgTx4Mgjjwk6BBEpAp6THWPM\nbGA6cJi1th6oN8b8BLgYyOyx+SzwibX2J6nbr6SeKyIiIiIi0i/8TFAwC1hhra1Lu28RbsVaLGPb\nA4E3jDG3GmM2G2PeNMac2dtgRUREREREvPJTxlYLbM64b1Pq32FAPO3+0cA84ALgItyenjuNMUut\nta/5CTASCRGNatK4dpFIuNO/so3aJju1S25qm+zUHvmVhFqAEK1OSdChSB7xeD2O4xAKhYjFqoIO\nR0QC4nfMjtclo0PAK9ba+1K37zTGXAicBvhKdmKxcmpqMjuOpLpai9rlorbJTu2Sm9pG/Jgx6E1a\nkiUsqZ8WdCiSx4MP3kM8Xk8sVsX8+QuCDkdEAuIn2VmP27uTrhZwUo+lWwvUZNy3AtjJT3AA8XgT\nmzfHu99wBxGJhKmurqCurpFEQrMBpVPbZKd2yU1tk117u0h2y+ITcDxf+5OgHHHE0SQSCSIRzcYm\nsiPzk+y8DIw1xgy11raXr+0LvGmtbcjY9k3gyxn3jQce9xtgIuHQ1qaTkEyJRFLtkoPaJju1S25q\nG/GjLlEddAjiwahRWgdJRHxMUGCtXYw77fQPjTGDjDFTgK/jrruDMeZtY8zc1OZ3AcOMMVcYY8qN\nMWfgTnBwV2HDFxERERERyc7vKNRTgVG4ZWp/A2631t6Uemw3oArAWrsGOBZ3YoJNwJXACdba9wsR\ntIiIiIiISHd8TVBgrV2Nm8RkeyyScfufwF49D01ERKT4jC77iIQTYU2L72Go0o9eeul5WlqaKS0t\nY5995gQdjogExO9sbCIiIju0wdGttDpR1rQEHYnks3r1KhoaGqisrAw6FBEJkJIdERERH5bGpwQd\ngnhw4omnBR2CiBQBrRwnIiIiIiIDkpIdEREREREZkJTsiIiIiIjIgKQxOyIiIj7Mrl5MS7KEJfXT\ngg5F8rjjjpuJx+uJxaqYP39B0OGISECU7IiIiPiwonEMSUeFEcVuzpx5tLW1EY3qVEdkR6bfACIi\nIj5saK0NOgTxYPLkqUGHICJFQJemRERERERkQFKyIyIiIiIiA5LK2ERERHwYWbqOhBNmQ+uwoEOR\nPJYuXUJrayslJSVMmzY96HBEJCBKdkRERHzYpWwtLckSJTtF7rXXXiEejxOLxZTsiOzAlOyIiIj4\n8OpWnThvD84889ygQxCRIqAxOyIiIiIiMiAp2RERERERkQFJyY6IiIiIiAxIGrMjIiLiw/SqpbQ6\nUd6Km6BDkTweeOBuGhriVFbGOO20s4IOR0QComRHRETEhw2tQ0k4kaDDkG7sttsUWlqaKS0tCzoU\nEQmQkh0REREfVjfvHHQI4sHMmXsHHYKIFAGN2RERERERkQFJyY6IiIiIiAxIKmMTERHxoSb6CUlC\nbGkbHHQokseKFctpa2sjGo0yfvyEoMMRkYAo2REREfFhYuUKWpIlLKlXslPMnnnmKeLxemKxKsaP\nXxB0OCISECU7IiIiPiyq2zPoEMSDM844B3CAUMCRiEiQfCU7xpixwA3A/sBW4D5r7Te7ec4o4C3g\nx9ba/+5poCIiIsUgiaad3h6UlpYGHYKIFAG/ExT8HvgQGA8cAZxsjLmkm+dcD7T5D01ERERERKTn\nPCc7xpjZwHTgcmttvbX2PeAnQM5CWGPMMcAU4NHeBioiIiIiIuKHn56dWcAKa21d2n2LAGOMiWVu\nbIwpB34OfAVI9CpKERGRIjGlchmTKpYHHYZ0Y+HCh3nooXtZuPDhoEMRkQD5GbNTC2zOuG9T6t9h\nQDzjsSuBZ621zxhjzulZeBCJhIhGtRxQu0gk3Olf2UZtk53aJTe1TXZqj/wak+UkHI3bKXZDhtRQ\nUVFJWVlZ0KGISID8zsbmaUoTY8zuwHnAHr4jyhCLlVNT06XjaIdXXV0RdAhFS22TndolN7WN+LGy\naWzQIYgHc+ceHHQIIlIE/CQ763F7d9LV4s7ruD7j/huA71lrM+/3LR5vYvPmzE6jHVckEqa6uoK6\nukYSiWTQ4RQVtU12apfc1DbZtbeLiIjI9s5PsvMyMNYYM9Ra216+ti/wprW2oX2j1PTU84DdjTHt\nU01XAUljzAnW2tl+AkwkHNradBKSKZFIql1yUNtkp3bJTW0jIiIyMHlOdqz9/+3df5xcdX3v8dfs\n7Gazu8lCfpAAMWsKJR9iaoj5gUDrrQUsD/CCpWIfClrUaqxFJZHLBSq90ForFBXaIgGjVYpARS/3\ngkCKAqL0EfQmgZiaH5+gEkSSkAAhyf7I/piZ+8eZkGHY+XH21/fszPv5eOQx2Tlz5rzne2bmez5z\nzvke32Bma4HrzOwyYBawArgBwMy2Eh269iQwu2j2G4mGrP7HkQgtIiISSlu6i1wuRXe2NXQUKWP3\n7hfJZjM0NKSZMWNm6DgiEkjcc3YuAFYBu4B9wEp3vzU/7QRgkrvngB2FM5lZN7Df3XcPM6+IiEhQ\n89qeoS/bxMbO+aGjSBmrV99HV1cnbW2TuPjiklfJEJEaF6vYcfcdwLtLTCs5NI27fyRmLhERkZLM\n7CzgduAxd7+waNrpwBeJrvP2G+CL7n5XwfTPEF0W4WhgI7Dc3Z+qdtm/6DRy1Y3XIwGdd94F5HJZ\nUimNLihSz/QNICIi44qZXQ7cBGwbZNrRwH1EA+UcBSwHVpnZovz0c4kujfBBYCbRRa8fMLOqR2Q4\nmG2hNztxuC9DRtmUKVOZOnU6U6ZMDR1FRAJSsSMiIuNND9EAOb8aZNpFgLv77e7e5+6PAvcDH8tP\nXwZ8093XuXsv0XmnOeDcMcgtIiJjTMWOiIiMK+5+s7sfKDF5MVB8SNpTwNLBpufPM91QMF1ERGpI\n3AEKREREkmwa0eifhV4BphdM31tmekXHtTxLJtfIcweLBx6VJHn88R/S23uQ5uaJvPOd7wodR0QC\nUbEjIiK1ptLoAcMaXSCdypKjfq/LlEqlaGyMd2BIOt3wutuxkMkM0N/fT2NjY9m8IbJVS9mGLsn5\nlG1ohppJxY6IiNSSPUR7bwpNA3ZXmP5f1S7gme7jhxyuFjQ2NjBlStuQ5m1vr3ociGF7//v/LNbj\nxzJbXMo2dEnOp2xjQ8WOiIjUknXAh4vuWwr8rGD6YuAOADNrABYBXx+jfOPewECWvXu7Ys2TTjfQ\n3t7C/v09ZDLJ2iumbEOT5GyQ7HzKNjSHssWlYkdERGrJncC1ZvbR/P/PAM4G3p6fvhK428zuJrrG\nzuXAQeDBAFnHpVwux8DA0DaCMpnskOcdbco2NEnOBsnOp2xjQ8WOiIiMK2bWQzRcdFP+7/OBnLu3\nuvseM/vvwL8AXwW2Axe5+yYAd3/YzK4C7iG6Ds9a4Jz8MNRVaUr1ASn6c00j+KpkpHV1dZLL5Uil\nUrS1TQodR0QCUbEjIiLjiruXPY7B3f8TeFuZ6bcBtw11+SdN3kxftomNnfOH+hQyBr73vbvo6uqk\nrW0SF1+8LHQcEQlExY6IiEgM27qOIze8Ad1kDJx55tlkMhnS6XToKCISkIodERGRGPZn2kNHkCrM\nmqXrIIkIJG8QbRERERERkRGgYkdERERERGqSDmMTERGJ4U3NL5DJpdnZd3ToKFLG2rVP0tfXy4QJ\nzSxdemroOCISiIodERGRGI5oPEB/rpGdfaGThLG/u5/Pff5LseZJpaC5uZHe3gFyueEtv7+vl09/\n4s+Z/aby5+Ts2PFburu7aW1tHd4CRWRcU7EjIiISw6auE0NHCKql453sHMqMGUZkq2Pf3l/z/PPP\nVyx23vOe9w1/YSIy7umcHRERERERqUkqdkREREREpCap2BERERERkZqkc3ZERERiWNK+gb5sExs7\n54eOImXcfvvX6OrqpK1tEhdfvCx0HBEJRMWOiIhIDNt7ZpPN6cCIpDv11HcwMDBAY6M2dUTqmb4B\nREREYnipf1roCFKFuXPnhY4gIgmgn6ZERERERKQmxdqzY2YdwC3AKcAB4DvufmWJx/4lsBw4Fvgl\ncK273z+8uCIiIiIiItWJu2fnXuB5YA5wJnC+mS0vfpCZ/SnwD8CHgSnAzcA9ZjZnGFlFRESCmzlh\nN9ObXgodQyrYtGkjGzasZ9OmjaGjiEhAVe/ZMbMlwALgdHfvBDrN7CvApcBNRQ9vAa5y95/m//5X\nM7ueaI/Q9mGnFhERCeTY5l30ZZt4qX966ChSxs9/vp6uri7a2tqYP39B6DgiEkicw9gWAdvdfX/B\nfU8BZmZt7t516E53v7NwRjM7EpgMvDCcsCIiIqE9fUAbzuPBhRd+JHQEEUmAOMXONGBv0X2v5G+n\nA12Utgp40t2fiLE8ANLpFI2NGkfhkHS64XW3cpjaZnBql9LUNoNTe4iISK2IO/R0Ks6DzawRuB2Y\nB/xRzGUB0NY2kSlT2oYya01rb28JHSGx1DaDU7uUprYRERGpTXGKnT1Ee3cKTQNy+WmvY2YTgfuB\nicA73L14r1BVuroOsndvuZ1G9SWdbqC9vYX9+3vIZLKh4ySK2mZwapfS1DaDO9QuIiIi412cYmcd\n0GFmU9390OFrJwOb3b17kMf/O3AQeLe79w81YCaTY2BAGyHFMpms2qUEtc3g1C6lqW0kjgWTNtGf\na2RLl4WOImV897t30t3dRWtrG+9730Wh44hIIFUXO+6+wczWAteZ2WXALGAFcAOAmW0FPurua8zs\nImA+8NbhFDoiIiJJ81L/VDK5dOgYUsEJJ5xIX18vEyY0h44iIgHFPWfnAqLBBnYB+4CV7n5rftoJ\nwKGTaz4CvBl4xcwgOtcnB9zh7p8YbmgREZFQdvQeEzqCVGHhwsWhI4hIAsQqdtx9B/DuEtPSBf8/\nc5i5REREREREhkXji4qIiIiISE2KexibiIhIXZvS+CpZUuwbOCJ0FClj+/ZfMzAwQGNjI3PmHBc6\njogEomJHREQkhuNbt9OXbWJjp4qdJPvxjx+hq6uTtrZJzJmzLHQcEQlExY6IiEgMT+1/a+gIUoUP\nfODDRGMjxboeuojUGBU7IiIiMWTRsNPjwYQJE0JHEJEE0AAFIiIiIiJSk1TsiIiIiIhITdJhbCIi\nIjGc2LqNgVwjv+zRCF9J9tBD/5eenh5aWlo455w/CR1HRAJRsSMiIhJDT3YimZzO20m6I4+cQktL\nK83NzaGjiEhAKnZEpKL169dy9tlnALB69aMsXrw0cCKRcJ472BE6glThtNP+MHQEEUkAnbMjIiIi\nIiI1ScWOiIiIiIjUJB3GJiIiEkNbuotcLkV3tjV0FClj9+4XyWYzNDSkmTFjZug4IhKIih0REZEY\n5rU9Q1+2iY2d80NHkTJWr76Prq5O2tomcfHFy0LHEZFAVOyIiIjE8ItOI0cqdAyp4LzzLiCXy5JK\n6Yh9kXqmYkdERCSGg9mW0BGkClOmTA0dQUQSQD93iIiIiIhITVKxIyIiIiIiNUnFjohIgq1fv5YZ\nM9qZMaOd9evXho4jwHEtz/Lmic+HjiEVPP74D3n44e/z+OM/DB1FRAJSsSOSUNrIFUmmdCpLQyob\nOoZU0N/fT19fH/39/aGjiEhAGqBAREQkhme6jw8dQarwrnedEzqCiCSAih0RqUvr16/l7LPPAOAH\nP/gRCxcuDpxIRKqRbmzmrnv+D4/85Gcj8nwNDSmam5vo7e0nm81VNc+8ucfxvvPfMyLLF5HRpWJH\nRKTOFBZ6q1c/yuLFS98wLZerbqNPZKxNmjqLbmaxfaTeohmgO94s+59eq2JHZJwYd+fs6DwGGSu1\n+F6rxdckMtaaUn00pXQeSNI1pfq1rkQkXrFjZh1m9oCZvWRmz5rZdWUe+xkz22pmr5rZT8xs0fDj\n1h9tnIokiz6TctLkzcxr2xY6hlQwr22b1pWIxN6zcy/wPDAHOBM438yWFz/IzGacJg0AABAoSURB\nVM4FrgE+CMwEHgAeMDNddnoQY73xpI01SaLx+L7cunVLYjOPx/YcL7Z1HcezPR2hY0gFz/Z0aF2J\nSPXFjpktARYAV7h7p7v/CvgKsGyQhy8Dvunu69y9F7gByAHnxg24ZcvmmuiwR2LDY+vWLUydOolU\nKsW6dfGeo3D5W7duGdLyh7q88bLexiJzuWWMxvLXr187pPdMktefsklo+zPtHMhMDh1DKjiQmax1\nJSKx9uwsAra7+/6C+54CzMzaih67OD8NAHfPARuApciIqcUNqyS/piRnk8q0/kREROpPnNHYpgF7\ni+57JX87Heiq4rHTY6XjZLZvnwGcDMDWre2v3X/479EdY2Hr1i2sWHEJADfe+FVOPHHeEJ+nnVK5\nq5323HMzX/v/li2T80NkVtcWpZ5ntNqw3GsajfkA0ukG2tth//4GMpl4eQdfNhX+jt9u8d4HI7u8\nOO+Z0cgSJ2u8bEN9b0Fh22Qy8Z/njZ8lGFq20t8zxbm3bvWqvpPKzbd8+eUlcxbOJyIiMt6lqh1e\n1MyuAs5395ML7jse2AYc5+7PFdzfm3/sQwX33QEMuPtHqg6XQmOfiogEkMuRCp0hqT7517fkMrk0\nO/uOHpXnf+Rrf8HBzpeZOGkaZy77xqgsox4cM2EX6VSG0VhXU7vX8qW/u2JEn3MwjY0NTJnSxt69\nXQwMZEd9eXEkORskO5+yDU0+W+y+Kc7Ps3uI9tgUmkZ0Ls6eKh+7O1Y6ERGRhDmi8QCTGztDx5AK\nJjd2al2JSKzD2NYBHWY21d0PHb52MrDZ3Ysvx7WO6LydOwDMrIHonJ+vxwn3059CV9dBMpnqdvBs\n2bKZSy/9KwD+6Z9uYd68t1T12BUrLufGG294bT6gqueJs7xq56v0nOl0ira2iW9ol+L5qn0NcbKW\na6fiadW+pjjTyi2vcNrNN69k7tx5gz5PuZxDbZe463AklgfVtT2M/HsmznwjtYyhfrYqLa9U24xE\nljg5i59zNJYZRzqdAiaO6TLHk01dJ4aOIFXY1v27oSOISAJUXey4+wYzWwtcZ2aXAbOAFUQjrWFm\nW4GPuvsaYCVwt5ndDWwELgcOAg/GCff2t8PevZmqd6NlMvuA/wfA3Ln7WLhwoKrHdnS8+Lr5IpWf\nJ87yCi1cOJcPfOCRgnsOz1fpOaNdeG9sl+L5Fi9eWnIZcRRmXb9+LTfeOHg7FbdhYe5yr6nctOJ2\nik4qjx77x388lauuKnx98KEPPVaw63XwZZTLGcdQX9NQFT9npLrXVOo9U65947zvC7NUaotyjy1U\n7jNSTtzllWqbcs85Euuz0usbjWXG0dg47q43LSIiMqg4e3YALgBWAbuAfcBKd781P+0EYBKAuz+c\nP8fnHuAoYC1wTn4Y6sRbvHgpu3fvr/zAGlt2XIVZ6210q9DrKWTbF7/2Wl/3ode1iCRPb28PO3fu\nGPXlpNMNdHe38uqr3WQyh3+QSaVSHH30MaO+fJFaEKvYcfcdwLtLTEsX/X0bcNvQoyWfNoKkluj9\nLCJSnd2ZY/n0F7496stJERU2uVzudSM2Hdj9DHfc/AVmzJgx6hlExru4e3ZEYgu9EV3Pe6CSZqzf\nC6Hfe0M1XnPXiyXtG+jLNrGxc37oKFLGgkmbmNDQPyrrqm162POBUkC1o+mK1LuaKnbibCBoAzgZ\ntFFX21TcSC3a3jObbE7nNSXdbw8eS0Mqq3UlUudqqtipZ6E38kIvX8LRupd681J/8ZUVJIleGZgS\nOoKIJICKHRk36nmjutxrr+d2ERERESlHxY5UTRvVIiIiIjKeqNgRERGJYeaE3WRyDbzUPz10FClj\netNLpFNZrSuROqdiR+qK9k6JyHAd27yLvmyTNqATbuaEPa+NxqZ1JVK/VOyIiEhdMbMO4BbgFOAA\n8B13v7La+Z8+sGC0oskI2tQ1L3QEEUkAFTvo134RkTpzL7AWeD8wE3jIzHa5+01hY4lUp3HSDD53\n3UrS6XCbcYveMpurr/hUsOWLVEvFjsgIU/EsklxmtgRYAJzu7p1Ap5l9BbgUULEj40LLkR1k6SAb\nMMOGnz/Ifzz8CJ2dPWQyY3+B04kTJ3LaqaeO+XJl/FGxIyIi9WQRsN3dC3+ReAowM2tz965AuUTG\nlb2tS7ju7q3Blt+z62lOeeKnJac3pFI0T2yi92A/2dzIF2M5cpx71pksPEmHtSadih0REakn04C9\nRfe9kr+dDlQsdhZM2kR/rpEtXTbS2WQEzWtzmlIDWlejpPWImUGXP3nabH5dadfWKP50kc3088Sa\nJ1myeGHsedPphtfdDtWt37idTc+8MKznGExTYwP9A5X3Gx482M2lH7+Q35v/lhHPMJihtlcqNwrV\nroiISBKZ2VXA+e5+csF9xwPbgOPc/blg4UREZMQNr6QUEREZX/YQ7d0pNA3I5aeJiEgNUbEjIiL1\nZB3QYWZTC+47Gdjs7t2BMomIyCjRYWwiIlJXzGwN8AvgMmAW8CBwg7vfGjSYiIiMOO3ZERGRenMB\nUZGzC3gM+JYKHRGR2qQ9OyIiIiIiUpO0Z0dERERERGqSih0REREREalJKnZERERERKQmqdgRERER\nEZGapGJHRERERERqkoodERERERGpSY2hAwzGzDqAW4BTgAPAd9z9yrCpxl6+HW4C/hvQD/wHcKm7\n7zez04EvAicCvwG+6O53BQsbkJndSNQuDfm/67ptzOxzwCXAZOBJ4OPu/pzaxRYCXwYWAT3Ao8By\nd3+53trGzM4Cbgcec/cLi6aVbQsz+wzwV8DRwEaiNnxqrLKHkvR+qdw6Da1cXxY0GGBmJxF9Lywh\n+l74MVG2F4MGK1Lcz4VmZlmgF8gBqfztKne/NGiwvFL9YNhUYGbvAH5A1F6HNABN7p4Ok+qwEv3k\nCnd/KWgwwMwWA/8ILCb6Dr7J3b9czbyJ+NAM4l7geWAOcCZwvpktD5oojO8DrwCziVbufOBLZnY0\ncB9Rx3sUsBxYZWaLQgUNJf/B/BD5Lw4zO4Y6bhszuwS4kGij4hhgM7Ci3t8zZpYGHgTWEL3++cAM\n4JZ6axszu5xow3PbINPKtoWZnQtcA3wQmAk8ADxgZi1jkz6oxPZL5dZpQgzalwVNBJjZBOBhogvL\nHgX8HtH7+paQuYoV93MJkQPmunuru7fkb5NS6AzaDwYNlefuTxS0V6u7twJ/C3wndLYy/eRXQ+YC\nMLMpwGqiwvVo4CzgEjN7bzXzJ27PjpktARYAp7t7J9BpZl8BLiX6Mq8LZnYEsBa4yt17gB4zux34\nNHAR4O5+e/7hj5rZ/cDHiH5xrQtmlgJWEv0K8ff5u+u9bT4LfNbdf5n/ezmAmV1GfbfLMfl/33b3\nAWCvmd0LXEb9vWd6gJOBfwaai6ZVaotlwDfdfR2Amd1A9N18LnDPGGQPYhz0S+XWaVAV+rLQWoG/\nBr7l7lng5fz3wqfCxjqsRD+XBKn8vyQatB9Movxez88CC0NnoXw/GdqpwCR3vzr/9+Z8//Mx4H9X\nmjlxxQ7RrrPtRbu3nwLMzNrcvStQrjHl7vuIVmKh2cALRL+MFR828hTwZ2MQLUn+kqiTv4vDncAi\n6rRtzOxY4HeAaWa2iegXyseINlLr/T3zAvA0sMzM/hfQBryXaM9EXbWNu98MYGaDTa7UFouBuwue\nK2dmG4Cl1HCxQ8L7pQrrNKgSfVkH0WcyKHd/FfjXQ39b1IAfBv49VKZBDNbPJcX1ZnYa0aFi3yUq\nMIJ+Fkr0gz8CPpmEQ7EG8XfA1909+OeB0v3k94OmOixnZil3P7SH81WqLBKTeBjbNGBv0X2v5G+n\nj3GWxMj/svgp4AuUbqO6aR8zmwlcC3yyaFI9t82b8rcXAKcT/RI9G1hFfbcL+S/HC4A/AfYDO4E0\n0a+6dd02RSq1Rb22lfqlEVLQlyVmw93MOsysF9gE/IyobwmuTD+XBE8SnXvyu0S/up9CAg53YvB+\n8E3A14IlKsHM5gDnAzcGjgJU7CdDWwN0A583sxYzO57oczG1mpmTWOxAcneNBmFmv090XPEV7v5Y\n/u56b6MvA99wdx9kWr22zaHXfb27v+juO4jOrziPwyeR1qX8sfnfJzou+ghgFrAPuDP/kLptm0FU\naot6bat6fd0jpqAv+5/u/qPQeQ5x99+4ezNg+X/fDhzpkHL9XFDu/vvu/k1378/nuwK40MyaAkcr\n2Q/m+4EkuQS41913hw4CJfvJ/UR7FYPK74V9D9H5kjuBf8v/G6hm/iQexraH6Fe0QtOINtb2jH2c\nsPInBN8BXOLuhzbMSrVRIj4wo83MzgBOAz6ev6twI6Se22ZX/nZfwX3bidqnifptF4AzgDnufugX\nqk4zuxbYQHTSYz23TaFKn59S0/9rlHOFpn5pmEr0ZYni7r/Kj+K1xsw+4+4vh8pSoZ9Lou1EewFm\nEPYQxXL94Azgt2MdqIwLiM7XSYrB+slrgA1mdmS+4AjG3dcQ7UEEwMz+lCrfa0ncs7MO6DCzwl1T\nJwOb3b07UKYg8sfCfgt4b1HnsI7o2PlCS4l2v9eDi4i+tH5jZnuA9UDKzHYTbXQtKXp8vbTNb4l+\nhSk8hvV3gD7gIeq3XSDqhBvMrPA7byLRxuoj1HfbFKr03fK66fn2XETtt5X6pWEo05cFZWZ/ZGZb\ni+7O5f/1BYhUqGQ/Z2ZBzyc0s4VmVjya3luIhqLeESBSoVL9YD/hs70mP+R5B/DD0FkKlOsngzKz\nZjP7czObVHD3WUSHt1WUuD077r7BzNYC1+VHkJpFNGTgDWGTja38EICriA5de7Ro8p3AtWb20fz/\nzwDOBt4+timDWQFcXfD3bKLjh08iek9fVY9t4+4ZM/sG8Dkze4JoHPq/Ifo19d+Av6nHdslbA3QC\nf2tm/8DhUZh+TNQ+19Rx2xSq9N2yErjbzO4musbO5cBBouFKa5b6paGr0JeFth5oN7Pric6NmUR0\nyNNP3P1AyGCU7+eKzx8ba7uJTmLfTTQa4RyiE+1vKzh5PIhy/WB+xL2keBvwcn50x6Qo2U+G3qtD\n9OPDNcA8M7uaqG+6EPiDamZO5XLBC7Y3yI+msQp4J9GuyJXu/vmgocaYmf0B0YZYL4cv2HXo1oA3\nA/9CdOG/7cCV7n5fkLCBmdmbgV8fuiBXvu3qsm3yx9x+mehLoBH4HvBpd++u53YBMLO3EbXNSUSf\nq8eJRg/aVU9tY2Y9RN8jh46tHwBy+es9VPz8mNkniDrAo4iGFP6ku28esxcQSJL7pUrrNKRKfZm7\nPx8wHmY2H7iZaA9mJ9FFFP+Hu+8MmatYcT8XWn69Xg+8legHj28BV7t76D1iZfvBoMEKmNmVwIXu\nviB0lkLl+smQuQAsut7b14j6pueJfkC5v5p5E1nsiIiIiIiIDFcSz9kREREREREZNhU7IiIiIiJS\nk1TsiIiIiIhITVKxIyIiIiIiNUnFjoiIiIiI1CQVOyIiIiIiUpNU7IiIiIiISE1SsSMiIiIiIjVJ\nxY6IiIiIiNQkFTsiIiIiIlKTVOyIiIiIiEhN+v+R7fwom7dX4gAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbd61f5ce48>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pymc.Matplot.plot(M)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Anaconda (Python 3)", "language": "python", "name": "anaconda3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
c-martinez/w2vExample
index.ipynb
1
107442
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Download data from [google](https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing) or it's [mirror a](https://s3.amazonaws.com/mordecai-geo/GoogleNews-vectors-negative300.bin.gz)\n", "\n", "\n", "\n", "Make sure you have widget extensions installed:\n", "\n", "```jupyter nbextension enable --py --sys-prefix widgetsnbextension```" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import gensim\n", "from wordcloud import WordCloud\n", "from IPython.display import display, clear_output\n", "import ipywidgets as widgets" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "modelName = 'GoogleNews-vectors-negative300.bin'\n", "model = gensim.models.KeyedVectors.load_word2vec_format(modelName, binary=True)\n", "cloud = WordCloud()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# plot func\n", "fig, ax = plt.subplots()\n", "plt.close(fig)\n", "\n", "def drawWordCloud(seedWord):\n", " try:\n", " closestWords = model.most_similar(seedWord, topn=40)\n", " except:\n", " closestWords = [ ('?', 1) ]\n", " closestWords = { k:v for k,v in closestWords }\n", " cloud_im = cloud.generate_from_frequencies(closestWords)\n", " \n", " ax.clear()\n", " ax.imshow(cloud_im)\n", " ax.axis('off')\n", " display(fig)\n", "\n", "def on_input_change(change):\n", " clear_output(wait=True)\n", " drawWordCloud(change['new'])\n", "\n", "inputField = widgets.Text('Utrecht', description='Seed word')\n", "inputField.observe(on_input_change, names='value')" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# plot func\n", "fig2, ax2 = plt.subplots()\n", "plt.close(fig2)\n", "\n", "mya = ''\n", "mylike = ''\n", "myisto = ''\n", "\n", "def drawAnalogy(a=None,like=None,isTo=None):\n", " global mya\n", " global mylike\n", " global myisto\n", " \n", " a = mya if a is None else a\n", " like = mylike if like is None else like\n", " isTo = myisto if isTo is None else isTo\n", "\n", " mya = a\n", " mylike = like\n", " myisto = isTo\n", " \n", " print '%s : ? :: %s : %s'%(a, like, isTo)\n", " try:\n", " closestWords = model.most_similar(positive=[a,isTo], negative=[like], topn=40)\n", " except:\n", " closestWords = [ ('?',1) ]\n", " closestWords = { k:v for k,v in closestWords }\n", " cloud_im = cloud.generate_from_frequencies(closestWords)\n", " \n", " ax2.clear()\n", " ax2.imshow(cloud_im)\n", " ax2.axis('off')\n", " display(fig2) \n", "\n", "def on_input_change_a(change):\n", " clear_output(wait=True)\n", " drawAnalogy(a=change['new'])\n", "\n", "def on_input_change_like(change):\n", " clear_output(wait=True)\n", " drawAnalogy(like=change['new'])\n", "\n", "def on_input_change_isTo(change):\n", " clear_output(wait=True)\n", " drawAnalogy(isTo=change['new'])\n", "\n", "inputA = widgets.Text('King', description='a')\n", "inputA.observe(on_input_change_a, names='value')\n", "\n", "inputLike = widgets.Text('Man', description='like')\n", "inputLike.observe(on_input_change_like, names='value')\n", "\n", "inputIsTo = widgets.Text('Woman', description='is to')\n", "inputIsTo.observe(on_input_change_isTo, names='value')\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAADKCAYAAABDsfw/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYW8W9sN+jXlar7b0Xd697N5hiY3oJhBZICAkkN/0m\npEF6IJWQS/LdJCRAbiBACr0FDDYuGOPe2/bei8qqS+d8f8irXa2OtmptAfs+zz5ez8yZGa2k+c3M\nrwmSJDHNNNNMM81HE8W5nsA000wzzTTnjmkhMM0000zzEWZaCEwzzTTTfISZFgLTTDPNNB9hpoXA\nNNNMM81HmGkhMM0000zzEWZaCEwzzTTTfISZFgLTTDPNNB9hpoXANNNMM81HGNW5ngCAIAjTbsvT\nTDPNNONEkiRhsn3EhRAYoGSOnrVXJnH6gBODScGSCxNJSlPx6E9buelLmdgtfva/Y6enw0f1UScA\nC9aYuO7udJqqPXjdIj3tPl5/spv/uj+PP36vOdT3J7+VjSFBCcCfftDMpbemkl+u4y8/bgkb1+0S\nQ/1VHXay7OJEulq8nD7gZPfb1lB/665NZuUGM26XyPaX+zi43R7zv0dRzlpauw6Rk74Ih6uLrr5T\nEW1USh0FWSupbdlKce75iGKAls79+APuUJvC7NW0dR8mJ30RzR37yMtcSlv3YWYUbMTmaKOxfRfF\nOecREP34/S5UKj0tnfsRJT/pSTPxBzwoFSo6ZcYfLypBzSzNcjySiyrvgUn3B6AWNBiERKxid1h5\nkXou3YEW+kVLxDMCAhISC7TrOOLZjkpQ45O8CAikKXMxKEw0+E6SrswL/T7NIMUPP4jk9VL/zXvH\n1D7/h/ehSkkGGNdz00w9cSUEiufoeeJXbaH/t9Z7KJtv4PLbUvnj95ux9fq553eFvPiXrrDntr9s\nYctzvdz+zWzyy7QoVfLC8Z+/b8flEAEonWdAkiSUSiFs3AVrTKH+AHwekV1vWmX7e+ufPVQfdXHT\nVzKZuzwBtVrgnRf7mL3EyLaX+rj8tlRef7KHj30+I1S34cYURBG2Pt9LzXHXiH8PlVJHqrkUn88B\nSCSbCumzN0S0kxAHfkEAUs0ldPSeCNU3dewhO23Bmf5KUCl1ZCTPxunuRalQMaf4ampbtpKZMg+D\nPg2fz0GquYR+VycdvSeYV3otx2peGHGuYyVHVUazvwpLoBO1oCVfNROVoMEqdtETaKVEvYA2fw0u\nqZ9i9TwElLT5a0hT5qFTGOnw12NUmLGLvajRYhN7yVOX4xRtWMVuyjSLUKKkN9AeGq870Bz6/wDJ\nykz6RQseyYWAQIF6NjXew0hIuCUnBkwAYb9rBB2F6jmoBS1V3gOUqOejFFT0i1Za/dWhudvFvnH/\nXYoffjDs/1IggLe5BdfpSmw7dhKwxX6TcTbpee4FNHl5JF92ybmeyjTDiCshsPnZXhKSlHz2e7n8\nzz2NoXJRHGwz0tlHEOBvv2zjzvtyEAPyN0xup8glN6fitAewdPu583s5/OXHLaFx33kh/Au8602r\n7JwGuOkrmbz0WBdzlxnpavUhCPCfv3fzhQfyePLX7Vx5RxotNe5Q3Qt/7uSaz2ZgShn9T1/d9Hbo\nd6M+jZTEErSaxFBZR88xAqKXupbtCAjUtW4P1WWlzg9r19p1CEkKBP8/REAMpb7tXdnyWAkAOLMD\nl4JvqAIFSkFFpXcfACXqCroDzYBAgWo2DtGGW3IAAl2BJvp9FuZp1+AU7SQpMlCipCvQTLu/ngxl\nPgDWQBddgeAJ0Kgw0+qvpkg9N0IIZKtKkBA56dmNhES7v37Uuacqc/BJHiyBTkQC6BUmrIEuWvxV\nFKrmhOY+Ueq+ek/Y/5VGIxmfvYOkS9bjPH6Sjj8/NuG+zzXOYydwHjtx1oSAOj8LbVkBvoY2FInG\nYKEkoUpNwnW8+sz/QZVqxn2qDv3cMiRRRPL6EN0edHNKcR+vRpmYAEolgkqJOi8TX3MH/h4LCrUa\nT21TaDz9wlmoUsyIbi+O9w5iXLsYx7vyJ11VWjL+7j60pfl4appk25xN4koIrFhvZv7qBPZvs4WV\n/+fv3dz9o1yc9gDbXg4u0p/5fi6nDziwWwKcf3USxXP0+DzBxWXn6xZu/FJmRP83fTkLSZIwmJQ8\n/M0mxIDEf/+mIGLcgf6qDjspnKlDq1dEzGmAf/9vB5++Nwe/T6Kj0Uv1USd1wOmDTuwWP++80MfN\nX8kM1a1Yn4haLSCMc60IiH6aO/YiMUy4nYkCO7y8vefosHaB8Q04RbT6a5itWYFTstPkC79eavPX\nkK0qxSb20OavoUSzAJfYj03sOSMMgrgkO1rBAIICg8JErqqMBEUS/aKFLFUxZmUa1kDPiPOwBDox\nKZKRkEJ99AU6cEo2clSlGBQm+kVr6GqoX7QiIWJQmFCiwib2oEGLVtCTpMgIm3us9uwBh4Pe518i\n556voSspjlGvHw30c8tw7DxIwD74uUm8/Dxsb+zEfNUFWF/aAoBh6RxU6Sm4jlZiXLUA+6ZdJF65\nDuuLmzFffSGS34+gUGJ9dSvqnHRch06ReOlabG+Eb5jUOenYXt9Byqeuwd/ejbYkD29NE7o5pfha\nOlBlpOJr7UTyBzBtWIXl2U1oinLx1DRhXLUAQafFW9uMtrwQb0MrosOFtiSP/iiCJJbElRDY/baV\nPVusnNkocvqgk9MHg3f/v/lqA4JCCO3wB3QCAId3hn/tTux1cP9n67jo+pRQ2St/7aKvyx8x5m+/\nEdzdDx13aH8arYDPF7w2Gtrfwe22UH+//XqwD6VKIOAPzm9gnl0tXn7/7aZQ3ZFd/UgiBKKcVKLh\n9kTea38Q8Ukejni2I6BAQgzTC7gkB3W+Y6HrreOe90LtBjjm2RnRZ6V3f+j3rkBz6JmuM3LvhGcX\nOarSsGda/NWh352iPayP0969od97Aq1hz3X6GxERmalZxkHPO/gkD/O0azjm2Rk291jht8pvPoof\nfpD+PfvoeuofmFatIPWG6xCdLlynTtP11D/C2mrz8zBffCG60hJAwlVZjeWtzfjaOyL6HWhrqJiH\n6HCM2HY4CoOB7C9+Dk1ebsSpZizkfuvraHJzZJ8tfvhBvC2ttPzqobCyhu9+n5RrrsIwbw4KvR5f\nZxctv3gQ++b3Ma5ZhOh049wT3BAJajWpd34M64ubBzsWBNQ56Tj3HgUEVOnJ4VcPCBGHO/vm9zEs\nnx/qF0DQaDBduAJvYxvG8xbja2xH0GsJ9NlQpiThPl2Hv6MHlAp8jW0E+mwIqqCOUpWRivWlLSTf\neCne5g40JXnY39yJbk74Z3aqiCshACAoNUiiN6JckkAax8IZ8Ethi3m/deSdsBTlu+v1BMcMSKP3\nNyAA1lyeRHKGWrbO75s2hAKiLpbDyyeyqA5/RkSkN9AWpfX4EM/03eqvoUg9BxExpDSOtQAA0BUX\nAuCuq4uoUyYmkrThIpIuvQTnseNo8nJRJiaGtUlYvpT0W24800c9IJCwZBHGBRV0/u1JnEePy7bt\nP3gYVVJS1LbDURgNZH/x82hyc+h9+dUJvVb7rt2k3nBd9PrdeyPKsj5/F6rUFNzVNShNiehKizEu\nrECUPCAIKAy6UFvJ56PvqVdIuGgFzn3HzywqEpYXNmPasApECYXJSMDWj+miFfh7rSi0muFnb3Rz\nSsP6haCy2/7OboyrF4E/gOT3o5tRhOhwIQVEJPeZNS0gojSbUGenoy7MQVOUg+T2AOBtakNh0OOp\nasC4djGCRs1ZQZKkc/4DSCqDSVIZTFL6ogskYNw/s1aYpVkrzBIgFS8wRW23/Mr0qHUrr86QAGnV\ntRmjjjcwxkj9Tf9M/4z1p/jhB8PLBEEyLlwgFdz/Q6ng/h9K6oz0iPaFP/+plP/DeyV1WlqoXGka\n/OyrszKlood+KRX+4qeStiA/VK4tLJAKf3G/VPTrn0mq1JQxt40Y/1cPSICkMBqk3G99XSp++EEp\n8fy1o77O4X0N/CgMeqnoN7+QBKUy4m9R9NAvJaXRGNFX7re+Lil0ulBZ0vqLpOyvfFECIvsZz0/Q\nbD36j1IhGVcuCP1EbS9XPlLfCsW45hmL9TdunMX8Tjt+px17w+A9cdEsHVfdkcZVd6Sh0Y081dlr\nkpm9JmiCVrowaM2x8uoMADZ8OheASz+bhylFHVE2gEav4BM/KkWjU1A0P4GFF6dSMDeBiz+ZQ1KG\nhvWfygm1HRjDlKLmlu+Xcv09Ray8OoOLPznYZqwUP/QbVCkpoFCQdMkl5H7j6+HlQOLaNeR959vy\nz42BlGuuIfXaayOeHz7mWFClpASfjTMUgoos4wwEQUFR4mIAihKXUGxeSol5WahdYeKiiGeLzUsx\nqlNQCCpWZN2IQlCGnilNWnGmr8WYtZlkGErDynIT5pBtnMWM5LXkJMwO67/YvCTUR7F5KVnGckrM\nyzGokyhLWhk2h8y7PxP6yfqvu8i44zYArJu34usKN38FUBj0tD70O3zdg3UB++BpNfOuOxGUSlof\n+h2exkEFpKehkdbf/g5BoyHr83eNue1wAvZ+FHodhQ/8GOu2HdR99R5s2+WNC8aC6HTR8efHyLjj\n9rDytJtuoPPxvxFwOCKeafv9HxDdg+bQlre3oCsN6k+kwCT0YKNlXAyION4/HPqJ2l6ufKS+xdif\nJkcjboTAAF57b+j3+lNummo8nNzvxOse+Y/jtPpwWn1klejJn51AwdyEUJ21y8uqazLo6/AgCEHh\nMLQsNLZLJOCT8HklypeYMZhVKJUC/X0+ypeZcVj9rL4uI2wMQYBtz7TRdMqBzqik5qD8He6YEEUc\nhw+jzsiIqHJVVqFKTp5w18b58zDMn0eERnqEMaMSpylJU3X5qBVaJElEozRgVKfgCfTj8ffT7+ul\nKHEJZm0WAgI5CbMjntco9WQaSqm17iXTUEa/rxezNouA6Au1Sdbmolbowsr8oge9KhG7twuVoMHi\nGdQjaBQGChMXYvN0AqBW6HH4ekjTFTJcmd/x58dCP+1/+DPND/ySgM1OyrVXYV53XsR8Jb+fgL0/\n6t9DZTYH59cXqU/y9wUNLFTJSWNuG1nhJ/Ozn8bX3YPjwKGo8xgPrspq9HNnozAYABCUSowLKnCd\nkPdREV1u2fKzgW5mIQlrKmTrVOnRv6uGRTPR5GeiSkkk6arI91Vblifz1NQRNzoBlSG4s06euYSu\ng1tD5bXHXPTbRpfobz7WEvr9r9+pBKDxePALsufVLgQFEff+ggIEQWDZFekA7H61k/df7gyrl0Ro\nON4fUvQOlA0fo7XaiUIpRDVNHQsKnY7EVStxVVeHlQtKJcb583CdOj2hfrUF+QT6HSAG0Obn42kc\nNHWVGzPrvz6PJjMTb1sbXU8/E9pd5t7zDQStFse+/WH9F/36V3T/818kX3YpotNJy28eIvG8tZiW\nL0eTm0vT/Q/g7w0Kd315OcmXXw5IqNPTse/dR+9LL1H80G9ouv8BAPK/dx91X/8GAEqTibSbb0Jp\nMtHzr3/jaQ6af4ZORYKAOi2Num/cQ5erLjSnqr6dSEg4fIObigEHMaunHUFQkG2cGaqrt+6PWJQH\nsHqC5qX1tgNh/QyUlSatoMtZh83biYAAghDqu7Lv3VDbofMb2kc0fF3d9Dz7Atlf/SKmNauwbt0e\n3mCsu0ZZS7QzhcOnMFLbYaizMlG6ElHo9aTdfANdTz4ztvmMhCQhKJUkLF6I7d330M+ehcKgRzoH\nO+SR0M8tQZ2VijLZROLFy/A2d+Lv6sPfa0NbkkPixpVYX92JoFQgaDW4Tw/696hz09HNLKD3H28N\nXIejzklDYdQT6LGiLcnFU91MwpoK/N1WJJ8fTV4G7qomfG2RJ8LJEjdCILk8eIQ2ZBaGylKz1Hz8\ni5l0NHl58dHOqMrbsSD3rCSChMTe17oiK4c8M3RhH2kOkxEAud+8B0Glwl1VReeTfw8vFwQC/f20\n/fFPE+rbWFGB88QJJL8fY0VFmBAo+OlPIsZ0V9fQ/sc/kbRhA6nXXUvnE08C4Dh4CMvmzSStvzis\nf0GpRJ2RQdNP70eh1wNg2/Euth3vRlwbpd18E53/9zc8TU3k/+D79L700ohzT73uWhwHDhBwOEm7\n+WZaHgw6VTX/4pfB+muvwdbTG/Gc3AI7tEySRNocExOqw/uus+7HoDIP1knSqH2PJgAGGLjqGfC2\nHQ/+vj7UGemokpPxdXSG1Q2cKv0Wy5jbDkfy+2n+2a/I+txnSVi6BE9jE7ZtE78OGuxYwrh0MbZ3\n38O4eOHk+5Ph8m1fli1/fd3vx/R8wnkL8dQ0gyhi27wX8+WrQwu9t6E9+NPUQcqtlxDos4cJAYVW\nTf+7h8P6U+i16GcVYXllR8hqSJ2ZgtKcgPtkPQqjDtHtYSqIm+ugrsPb6Tq8nY49b4bKzCkqTux1\noE9QIIzXsP4DRsuvH6T9T39CnZkZdt3S8usHqf/Od7Fu30HGbbdNqG9DRQVJ6y8m+dKNGBaEH1/l\nxnQcPhz6Vz9jxmD50aBJnPNYpJVI//7g6UB0jewFLWg0SL7gVYqgGP3jp58xg5Srryb9phtR6MMt\nMpI2bEB0ubHt2DFqP1OJKPnp943slzBRNNlZABPyGB44ORrmzYmoGyhzVVaNuW0EokjAZqfjsb8h\nOp2kXHv1GTPUyeGqrEJXVIg6LRXDvDlhOop4wfr6e6izUhHdg5aM6px0tMU5SAERZVIC6px0vA3t\nuCvDnUxFjw9vcyeavAy0hVloirLRzSxEEkXUOeloCrPRFucM9q1UELA70c+eGl+RuDkJaEzJZK28\nHKVWT92rjwJQe8JF7YmRF5UPE+6aWloe/A153/0OXX9/KqxOUCpAMX5BmHzZpbhOnKTnxReB4M45\n+dJL6XvjDdkxXVVVGBcswPLWWxgXLsBVXRPqyzh/HpbNW9DPnBkxzsDCPhoBqxVBHVTON/7ox4Pl\nNhva/Dw02eGKdVdlJaLbTc+zz6FKTx+cy6JFWN5+O271ExMh8+7PhH4XlAr0M8pBocDT1Ez7/xv/\nKbDnuRdxVVaTccdtpFx5Oe7aOhAEdCXFSKJI1xNP0b//oGzboImoOaxtNPy9vTR89wckXbKe7K98\nIahMfuh3oXpdSRHq9HSUAycKpZKkSy9BdLvwNrXgrqkN66/jz49T8NMfkHvvt0CSaP/jX8b92qca\nb2M7PU/+J/R/6+vvhdX3Pr0JAF9r5C2D9dXgacnb3Enn/z4b/L1+0IS564/PAeCpG9QteaqbmSri\nRgioE5LoPbkbfXoegkKBJIrMXGTA65EorzCw5bnemNvYRzsSAjhbrWy77e9IgdjcRV769hdQqJUR\n5cOPn6LLRe9LL5F2U9BeO/ebQccZf08PXc8EnYDSbroJw+xZAOR87as0/uCHUcc1VlTQ88KLof87\nT5wk9bprQ0Jg+Jgtv34QXWkJBWt+iLejg+5nBu95jYsXk7B8BbYdO0a2vBAEsr/wXyh0wZ171l2f\npf3Rx/D39ODr7iHna18lYLcjulz0bXoLx8GD9L78CqnXXYdl01thffe88CJpN1xP3vfuw7ZtO9aO\noNNS+q23kLxxMATBwPWQHMsfvIa0ZQWydaf/souav++L/lpiQMFV85h3z4Wydd37mtjzjeD7Y5gb\nrqz2NDXjOHgY2/YdSL5IR8ex4Dx6jNZf/w/mDRcFhQrgOHgYy9tb8La0Rm1rXLQA0eGM2lYOy1ub\n0RbkBQ0QhmBef3HYaxOUylD4CFdlFe3/+0hYe8nvp3/vARLXrcVx6DCi08k0U4cgxcFOShAESVAq\nUelNJJUtoOvQNgA+fW8OCWYl/dYAf/3Z6B/C8TKSEAA48vO3aX4jNtEjxyoEPuwU/OTHdDz2OJ6G\nBlTJyeTe8w0a7vvelI5pKkll7WO3IMicpHz9Hrbe9Dd8/VN036pWsu6p29FnmiIrJXj3rn9gq5LX\nSX2USb3hOhLPW0P7I49GtQyaDJPVCcQLH6pQ0lIggOh1Y60ddMV+/pFOVGqBnvaxXTXEmtLblsZM\nCEw1ud/6pmx5y69+fZZnMjqSL3jXqSstkTVJjDX22h5a3jhJ3uWRd9vqBC3FNy+i8tH3p2Ts/Cvm\nyAsAoHVz5bQAkEGh1ZKwdDH+3l5cpyrP9XQ+9MSNENAmZ5Cx6EKcnU30HAver1l7JnYEjhXG/KRz\nOv54iMfFXo7uf/6L9Fs/gaBS4uvuofPJJ8/KuKcffZ/si8pR6iJd8YtvWEj9s4fxWmKvfyq9fals\nuegLUPnorlGfv2ijjr5ekYN7BxWQaelKus8ERpoxW43HI9FQG/ldufQqPW+84iI9Q4neIKBQQn2N\nnwVLNEgS1FX7sdtEMrOVdLQF+7vtMwm88bKL7q4As+aq6esVQ3WFJSrZcWJN8tVXoNDr6XvtjXPi\nPPVRI26EQMqsZfhd/WgSBz1gZy81olIJlMzT8+pfu8cddC0WZK0rpX1bzegNzwEzS67E6+unp6+K\n7IxFnK59lWRzMWqVHpVKT6Ixh87eE2jVJhJN+ZyufSWij/TU2aSayzhd9xplhZdQVf8GSYmFpCaV\nIUoiDmcnbo8FhUKF1+fA6Qq3U9aoE8hKn49GbaK6YROFuWvRa5M5XfcaOZlL8HhsJJuLcbq68fod\nZPhmU/f//opabUCpUOOzdqJQqCjJv5CW9n2YEwsIiF4yUuZwsuZlSvIvpLphE3ptMkmJQQerpMRC\nahrfRq9NJi9rOSeqRw917elx8PY1j3HB07ejTTWG1Sn1ai7696d5Y8MfJveGDEOpVaFLS4go9zu8\nbL3lCbzW8Qud//6umaOHvXR1BDh51Mfy1Vp0OoFH/zfceujG241csF7H1rfdfOIzRh7+hY2Pf8KI\nTiew4XI97a0Bjhzw8s0fmOnqDPD6iy462wd1Md/8gZm2lgAqNbz+ogtLr8iGy/QR48SS/B/cizIx\nEfvuPTR85/ujWpp9kDAsqUByuxHUagI2O1JARJ2ZhqDT4mvtQFOYh6+5DdHlRltaiLepNagb9QeQ\nAgHUOZl4axvxdcT+5Bg3JqJt779O267XaX9/UONeddhJa71nQlE3Y0XZJ5eN3ugcIYp+6pq2hpUp\nFGoCog+1yoDPP/glau2QV34qFRo8vv5QjH8gmHdAEOjsPkZGavAKxWJroCBnNWqVPuz5jNQ5aDVm\nTMYslIrgLnugP4Muhe6+01jtTRj0qXT1nMRqGzSX67XWAhKi6MfjDS4uDmcnyYlF2B1tiGL4NaAp\nIQeN2ojL3YdCUJFsLqG6YdOY/14Bt4/Kx3fL1ik0kfqayVJ4nbw3ae0zB8YlAK6+3sDdXzGhNwjs\nfs/D0hUaTh33UT5LjSRBbn7k3AuLVTzyOzvnXxRUzg+o/lRqgeQUBX6/hEYjsOVNN4IA3V0BSmeo\nWbhUwxXX6dnyppukZEWornyWWnacWNL0k59Rf8936Pn38x8qAQDgPHAU4/JFOA8dR1tahG5WGar0\nVPq370ZblA8SuE/XYFy6ANHlRlOYhzIlCU9tA0gSCoMe0TM1equ4OQkYMvJRqLXo03PpPrQdSRIR\nRejt8PHy4+fu3jSxLJ2M1cV0vlc3euNzSE9fFeVFG1EqtVTWvU6KuYQ+W32oPidzKdUNmwgEwj9I\nvdYacrRmjPp0rPYmygo3UNe0lbSUWThcXQhCcJ+QnhK0RhKH5SUw6NOorHsds6mAtJSg6agkBTDq\n0+m11FKctw6NxkR332lKC9dj0KXRawk/WRn16SQlFqBUaui11KJWGXC5e1EoVNgd7ZQWrqe1fT9d\nPSdISSrDH/Dg9fVj1KeRkTqX1o79EfOKRvPrJyi6fgGmktSIOkOOGWerfBa58aLUqSm5ZbFsXd2/\nD465ny1vutny5mBohPe2uXlvW/D/x494qa704XFL3Hjb4OmmvtbPr38y+Do2vRZcUP/1dwf//V0z\nP/mOhSs+ZqB0hor9uz0c3OtBFKGm0sc9/zXoeHdwnwek4I3M8SNejh+JjO47zRiRJLwtQc/zgNUG\ngoDSNHhKFBQCxpWL8Ta3otDr8dQ0oM4KmkQLSgVivwNdeQmOvbEJzzGUuLEO0prTMJdWoDaaadnx\nIiAxc5ERrU7gyK7o8VEmw2jWQQNYT3Ww83P/mtRYZ8M6SBAUYTt6ufrczME7aqer+8xufGgbZSgD\n2Vj6aG7fM+Y5jTY/gPKijdQ0biY7fSE2Ryv2/tawOQmCAiRpzB63cqQvL2DZr6+JKG/ZdJrDD4z9\nZDESpZ9Ywsy7V8vWnUsLlJxcJWsu0NHSHAgJk48icW0dpFBE6kLkyviQWQd5rN04O5vwu04yENCk\no8nDzV/JQp+gZPdbsdmhTQTzrEzSlxfQtScyvWQ8MdoCK0niqIv2SAJgrH1Em9No8wNoattNdsYi\n3G4L9v7WiDmNpY/RiPY+5qyfQc3T++iviwxDMR5UBg3FN8ufAhyN488/HEtaWwL8+6nIaJzTxBFy\nyvApVJDHjU5AEBT0N1fj7hn0nHM7Rd55oRdL99kzEY1mElr2yeVnbQ4fZdweCy3te+mxVE3pOJIY\neZIQFAIz7lwp03p8FH18AZpEnWzd6b+MbhE0zTRnk7gRAkq9kbwLrsdcMpgg3Zio5MKPpTBnWQLC\nWZpp39E2Dvzg9Yjy5PnZrPif6FmPpvlgseWGvxJwR24uss4vlb0qGisz7lwZVZC8/+XnaN8en5Zm\n03x0iZvrINHnpfdUePq4gQByeWVaBGH00LuxQGXU0PTacfrrekkoDk/Ykrooj+T5OfQdjb33ciwx\nlaRScstiDLlJ6DNNqAxqlDo1PrsbT48TZ5sNW1UXfUdb6d4Xf8G5zgaeHge1/zhI+R2RJ7z05QWk\nVOTQe2R877M6UUfRDQtk6zrfqxt3f+Mhc00xyRU5mIpTMeSY0Zh1qAwa/C4fXqsLZ7MFW20P1f+3\nh4Dn3PrfREOXlkDGmmLyr5iDLs2IyqhBoVERcPmw1/fibLZgr+2h90gr1spOJP+0D0EsiCMh4MHZ\n3oBSM3iMrj3hIn+GjsPv2icVpnk8qIwakKD6yb0s/MHGiPryTy1jzz0jhz8+F2iS9RReM5/cS2Zh\nyDXLtzHBOzRmAAAgAElEQVTr0Zj1mEpSyVwTjEjY/MZJ6v99GFv1+C2wLn7+zgib+9bNlRz6yZtR\nnohk/St3Rb062XL9X3F3j90ooPzTKyIWdXe3gy3XPy7bvvaZAxRcNTfiNQDMuGsV73/5uTGPDVBy\n06Lg52cYkihx6s/vyTwxedKW5FNwzXyy1sknJVebtKhNWox5SaSvLKLwmvm0vVNF/bOHsddNTeRT\nkFe8RlO6pi7Jp+yTy0hdkCubukBl1JA8N4vkuVmhsoDLR+eueg7++I3IB84hZZ9aNuKVYtXju6n6\n29h1ameDuLkOEpQqNIkppM5fE1a+d7ONrtazpxNQG7UAtL1ThaMpMqRBtEBk55JZn1/Dhf+4g/JP\nr4gqAKKRd+ls1j52M0vuvwJ9VuLoDwzBerozoiyxNG3MzxvzkqIKAICk2Znjmk9iWeTYcnMcYCS/\ngZSKHNKXj++9Lrpe/hTQ8sbJSSubh2OemcGq/72B5Q9dG1UAyKEyasi/ci5rH7+Fhd+7BG2yIabz\nGi9Lf3EVKx66ltSF8gIgGkq9muyLyqduYhNkJAFQ+ej7cScAII6EgDGriNS5q9CnDYYSzi3Rcue9\nOSw+Xz72ylSgMgQdniRRmvLokrEgdWEuJbcsRqmb3KEu87wSzn/iE+RfESV2vAzWU5ELrLFg7MlP\nkobs7OQwzxmnEChPjyiznu4Y8Znm109gr5XfEc/47Kpxja/UR4akEL2BqIJmosy8axWr/3QjyfOy\nJ9yHoBDI2TCT8574RAxnNj6SZmeSsaronI0fa4pvjJ4A5/Qj71H95N6o9eeSuBECXnsv7XveoHXn\nYGgDZ7+IpdtPRl7kEXuq0KYNXg1EsxRa/NPLz9Z0olJ621Iu3/ZlVjz8sZj1qdSqmP+ti6n47vox\n7coaXjoaUSYXqTMaxTdGJnwfStF1FWPuL3VhrmygtsaXjo34nCRK7Pj003TvjTQbNc/MGPP4c758\nvmz55usew90VGz8XpU7Nqv93PaW3LR3X33kkNIk6Lt/2ZWZ/YW1M+hsLppJULvnP51j9pxsn1c9U\nxHqaCAVXz+PyrV9m9hcj8wVD8Bqs5un9snXxQNzoBDIWX4Qkiii1OhrfehqAvs6gt/BYcgzHCtWw\n3Zy7sx9dRnj8l6zzSjEVp07pnepIFF5Xwcy7Rt6ltm+vofdQC45mCz67B5/NjS4jAV2akeSKHNIW\n50e9Osq7dDburv5RI2tO9kso57U7FKVeTUJRStSdelhfMldBrg77mOd48g/vct5fb40oz1k/g5ZN\nI6eK1KUZKbh6nmxdrEJUCwqBxT+9jOT5OVHb9Df00rmrHuvJDpxtNvwuH2qjBkOOmaS5WWSsKsKQ\nI/+eF9+0CK/NPeWnX02SnqU/vxKVQV53YqvqovdIKz6rGykgojJp0acnkH1hOYIqfM/atbshoo+z\nTd5ls5n39QujbppOPLxdviKOiBsh0HNsF6aCmfgcg3/NWOYYHivDo0zWPL2fuV9bF95ICEaHHI8C\nNFakVOQw58vyOw4AZ4uVmqf30/RqZApIR3NQxzGwqEXznAUou30ZfUfbpvSLNpbdbNKcrDEJgcQy\nuaug6PqA4UQbo/zTK2jdXDVicqHS25fJxh5ydcQu2Fr5HStIX14YtX73V5+n51CLbJ3lZAetmys5\n8fvtnPf4rVGF74zPrMRW2UXXnql7z+d/86II3VPfsTbq/32I7gPN+GzyXsxHH3yHtCV5pK8qIvuC\nctQmLZ276qdsnmMh95JZzP/WxfICQILj/7OVhhcjT8vxRtxcByXPXoY6IQm1cXCnci5yDCu04XKx\n6bXjeHoiPSyzLywf1/13rFj4w43BVJMyNL9+gu2fekpWAMjRtaeRmqeiH1Mrvn2xrLXLVNHxbm1E\n2ViVw4nl41MKyyHnN2DIMZMvk4dgAF1GQlQ9SlWMdAHmmRlRQ1JD0MopmgAIQ4Kdd/+ThheOyFYL\nCoEF39sworJ+MuRdNpvMteE5iPd++xV2ffFZ2rZWRxUAEHxvOnbWcezBd9j8scc49JM3p1RYjUbO\nxTOo+O56+Y2MBMceeucDIQAgjoRA644Xadn+PC3bnychL6j1rz3hQlBwVk1ElcOEgOgNUPuPAxHt\nBIVA2W3Rv5hThVxoYgh6oh755WZE3/iuzk7/+T1O/WmnbJ021Rg1CNqIc0yXn+NoWCsjF+2kOSMr\njwEElYKEwpSIcuupkZXCw6n9h3xgt7JPye/0IRhlVi4mlL22h5ZNMciIJcC8b1wY9dRU9fjuqO+f\nHKIvwPH/2UbtM5GfaQiaEc+aIv3A/HsuCvt/75FWut6vH3c/ojdA6+ZK/I5zF9BuwX0bogqAow9u\nofHlkXVR8UTcCIGhaJOCR/uZiwwsWJNA4Uw9G25KYdFZsBKS2/nW/esQpx+JtPPO3TiL+d+8KKJ8\nqqj49sWy5W9u/NOk7nJrnznA1lueQM4Xr+z2ZSNaPchF3czdOGvUMeUS9jT/J1IRbypJJWVh7oh9\n5a6fGbEQO1ut43aEq/rrbo7+ektEuS49gYv+/ekI65+K76yn4KpIXUDPoRZ2fPpp2dAU42XNn2/G\nPDMjojzg8rHl+scnbHJ46k87eefG/5N1HMu7bLbME5Nn4E7fa3Oz5Ya/jtsPIx5IX1nEpW9/QfY0\nLokSr1/w+zGfxOOFuBQCgwjs3mSjfIGBbS/2kZE79VcTCpX8n6ThxaOyx9W8S2dHTR8YS9QmLTkb\nZsrWyV1jjBdnq5WuvfLH65EWdcvJyN22nL3+cIbv8L02N+5OeSua0a6ETDK+CeO9ChogmsmoJklP\n8Q2DwtCQayb3Evn34/Q4duYjYZ6RjnlGpK4Dgp9Hd/fkAsG5Ouw0vSK/YMk50MWKE7/bHjOLqbNJ\n2rICltx/uezJTxIlDv/srXMwq8kTV0JAqdGhSUyh90TQKuX0QQc6g4LXn+zmlq9lcWD71GU1ChFF\n9+B3eql7NjKWt6BSUPqJJVM9K7IvmiH74Qu4YudIJ7cTh6DSdbiF1AByi63cojyc5LnhNu72M7l2\nPb3OiLajXQnFQh8wgCRKnPrju7J1xTcvQm0KOhOW37FCdjfYtrVaVjBOhJxLoghfCRplzHMnQjT9\nQN4YTnMTwd3ZT9vmD17e4NRFeSx54IroAuD+TbS+NbIVWbwSN0JAm5xBztprMBXMQhoSNnXbS31U\nHXZycLudrpapvwMcSQFd/+xh2XtIuQTmsSb7gjLZ8q59sQtvbTneHrUuNcqVjNxia8xLitCtDGe4\no5itujtqf0mjOI3JeSnLObKNla49jbJ+A+oELSVnQkTnrJ8RUS8FRCpjGCU0c3WxbHnfiXacbbaY\njDFgMRYx9nklsuWTpeGFIzG5JjubpCzIZekvrpL9TEsBkUM/foPWD6BgGyBuhACiiL3xVCjJ/HBy\nirVnZx4jGCH5HV7qnzscUS63O4glSp2K5Pny3qGdO2OX8czVYcfTF7kTBzDPlF+Irac7I77UgkIg\noTi6D4BSr44wUxyIXSSnHI6mDAfQZ5pQD7dmkeT7GQ8n//Cu7GJVdMMCNMl6WaVg06vHoy6qEyGa\nH0f3WbCPN8/KDJ16YknbtuqY9znVLPvlVbIe+ZJf5OCP3qBt69S/JnN6MDRIesH4DTVGI26EgMfa\njaU6coGNNyofk3egmvX5NbLlsaDg6nlRj6Gtb8d2B2Kr6pYtT1uWL1secPlofTvyGJy7Uf6+HKD4\nhoVhi2jQ2iOYP6BpnFYVuZdGXlvEwnLEXtvDlhv+GlGu1KlZ/+JnZZ859tDWSY05VuqjXOHEEkEh\nUHitfI7kidL5Xh3OlnOXHGq8GAuS2fDq3bLhQPZ991X+c/H/npXQ4On5izCac8guXYtaE3tdTdwI\nAY0pmYINn6D4ysEvmM4QTHSdnKHmrX/GNgDXZJCzqCi8dv6U2VebSuTv2F0d9nGbhI6GP4qHq2aE\nQGNyVy8jBZIbfhVkr+sJOWO5ux2yfhnRkHcSi82d/Hjm4e07eyEMRrKnnwjRBObwUOqTxRHnAmDo\nyU+TpGfZL6+SPQ2JvsBZzTne1XSQ1uodtNW8i6070pdmssSNx7A6IYnek7vRp+chKBRIoojeqOCK\nT6ahT1Dy9wfbRu/kLNH0yvGIuPFKvZqiGxdGD7UwiWtQfZa89ZEhO3HMeZIny0h3/HL2+CMphyP0\nAVXhYaytp7vIWB2+4xEUguz1jGzk0EnoA4bj6XGMyVKm6on4iw45VpxtNtm/oz4jtlZvfntsQmhM\nFX5nUBgqNEqW/OxK2RAbojfA/vtePavzMqUUkJCUh6BQYjTnULX/nzHtP25OAs7ORjyW7mAS8TOK\nYWOikoZKN1tfiJ9TAEDtM/tld+BFH1uAOkH+HnUyyjDdFJrrjRWlJroQsFV3R4RVUCdoZU1njfmR\n4aMHlMIDyN3nJxRF7kpVRg2G7PAvqiRKWKvGnxshGmOJAOpstX6gnIOGE+1koUuP7ecuVnGUpgq/\nwwsCLLjvkrDcBUM5/ZddZz3XuL23kZ6247RW76C58p2Y9x83QkAKBBC9bqy1g6ZvMxYaSUxWMWPh\nuV8Eh+LudtD8+omIcpVREzWm/EixZ0ZDnaSf8LMxYwSFecDjp78+UlDLnQaGm4aCzElA5mQhZyaa\nWJoWMS9HY19szWZHCDU9wOm/7PpAZ7nyRdmhq4yxVQwP7LTjFb/Dy6zPrYlqiQdQcuviCXvETwat\nPuhc6bLH7pQ7QNwIgaEmogNsea6XfVtsbH2x7xzOTJ6ap/bLfvGLPr5QNkKi6J/43f1Iu/B4QTbB\njMwVw/CrICkgRggBOTt7OYexyQaNGwsj+Q0MjNf2TlVMxzzbRPtsjmbm+2HD7/CMGiZFm2xgyQNX\nnKUZDWJIzECXkIZGF3vH1LgRAimzluF39aNJHDz2l8zRs/A8Ezd/NROF8uwEkBsrrg47227/e8Q1\nj9qk5YJnPhlhUjYZa5VoXszxhFywrJyLwm3plXo1+VfODStrfOlYhKLda3HRtiV8Yc27fE6ElUaO\njMdurJyohjLS8b97f9Ok9D3xjCR9SF9YFEYK0z0U88wMSm+degfRoThtnaTmzCMtf+QcHBMhbkR9\n267XIsrORY7h8eBstdL69mlyh3l2apL0FFw9n7p/DQYkm0xy74DHj0oVebrofK+e4w9vm3C/scRe\n24PoC4SZshrzkxBUitCJyVyeHmFf33dC3kHNcrI9LH2goBAwz8ig9/BgtEyTjPXKcP3CNKMTLTie\n6D17eTziEZ/dQ8umU7JXvDPuWoWttmdCAfAmgjEpB5e9C5Um9lfDcSMEDFmFSH4/hswCek/tQQoE\nP4AHt9nPalKZ8VL95D5y1s+MWNxKblkcJgTESQgBv8snG9hOqVXiao+N5+hkEX0B7LU9YcHOBJUC\nY15SSF8gl/4xmpey5UTklZB5VrgQGJ77ASYnbD+qqE3yps1+R3wrcqeS9u01HP/tVjy9TlkhICgE\nFv1gIzs//y8cjVN/XW3tqkap0qEzjpyIaSLEzT1DUtlC0hachzY5IyQAUrPU3Pr1LK75TDpC3Mw0\nHEdjH+0yHoPalHC7+oB74ouTp1s+2JbaHAcK4yHImWYOtepJHBYMzWtxyUYhhaCF0HCdy3gTz08z\nNjRmeSHg7ppcgLoPIp5eJwe+/zoHvv96KI5VRxSvfJVRw9KfXRnVIjCWuOxd9Pc1Ye2KvXdy3Cyt\nnfs30777DVrffSlUdi6SykyE6ifkE0gPvRqZzA7V1SEvBLTJcSYEZJy0TEOEgHnYScAS5SoIglcR\ntprwqx3zrGkhMBUYhmX6GuCDGOlzsmz/5N8jvIAP379J1voNgleeC3+4MWY5n+XInXEBueXryC1f\nR065fC7ryRA3QkChUpO96oowj+H60252vNLH0w+1x6VOYIBouYbX/f22UKTJyeTjjZacRJtqJGtd\n6YT7jTXNb5yKEHbZFwTv9c2zMiNMRuv+FRmVdSgNz4eHRzBkJ0YNZAd8oM00x0P6iuhpJieCXFgE\ngNYtH9ygaBNFzlzW7/Sy/VNPsecbL8r6+6QvL+Syd74UNbT4ZGmp3Iq1uwYEAUtH7N+TuBECAx7D\n/S3VCIrgtMorDMxfefZtcieCXL5TfVZi6IMxmZj/fcfbojqbjdWi4WwgBcQIxawhzxxU6srpA0bJ\n/CV3Uhh+pTQU2xhyEX+QiOZbEi2YYGwHD+b+jTUZCy4EIGfFFWQt3Ygxqxi10Uza3PDYW9qkDNLm\nrsaYWYgxq4jspRvRp+WSPm8txqziUF/JZYtIm7MKY1YRWUs3kjZnVVh/A/3Egu59TZz6Y/RcEfO/\nKZ/0KRYYzbm0VG6dkhuRuBECch7DHU0eVl+WxIoN8tEU44loV0Jlty9DUAj4J+HA5O1zRU2VmH1h\nuWz5uWL4lZBCrUSbasQk4zMwmlNXf1NfhJfpgHJZLqZLrGIGxQvRrsvSVxRN+di2mu4piYekUKlJ\nm7OK3sp9IIkYM/LxOawolOEWSkqNDp/DhjG7hITsEsSAj+TSRQS8Lgzpg8EMNQnJdJ/YRUJ2CUgi\n3Sd2hfU30E+sqPvXQVrelD+ZKzTKCF1grHDa2skpPx9Jiv1pN26EgJzHsNsp8s4LvVi6Y+cBOlVY\nTrTLpjM05JrJvnjGpBTDAO3b5KMV6tLiy5taTjlsyE6UNeccFSmyv4EQ1Ma8yPSUsYwZFA9Ei1Bp\nnpGOsSA5JmPI5WYGpixAmuj30X1iF+6+DkRfUMDrkjLQp+ZiSMtDl5KFPi2XhKxilFo9iCJ+Vz8K\npRpXTysKtRZHR32wXWo2Co2O1FnL8bv6ZfsL9RND5FKQDhAt8cxkCfg9tFZtp9/SMnrjcRI3JqLa\n5AwyFl2Is7MplFPAaFJy+qCT7MKzlEtgklT/bQ9pSyNDLpfdvjRq1q6x0vzGSWZ8dqXsByxacLVz\ngdxCrM9OHDG/wEhYTrSH/U0TClIQFAIGOSEQY2/hc03LptPM+tyaUG7eoRRdVxETH5HC6+bLjx1l\ntztZOg8Pxr7pPLI99HvDO8+EtXN1twSz/A1zWBMERWg33LDladLnn0/P6b1h7dyWzlB/zu7mqNkC\nJ4roC0QNLJg0J4t537iQI794O2bjaQ3J5Javw2FtRa0z0XDs9Zj1DXF0EhC9bvxOe5jH8MZbU1Gq\nBK67O/o9cDzRe6SV3V9/MaI8oTBl0vkGvBYX2z7xpGzdpZu/SNqygkn1Hyv6GyKtKFIX50UEjYsW\nr2Y4w5P4KDRKMteWRAhby8mOiPATH3S8Fhc77nxGVsAXfqyC5b+5dsSYTiMiwLJfX0PhdfI5A2KZ\nHGfCyHgsD78O6Tq6XbbdaP1Mls0fezzqQp932Wwue+dLpC2Rz8ExXtTaBKr2/xOvy4q7P/Z6r7gR\nAj6Hja5D2+jY82ao7NC7dj717Wyef+SDs8Pr2d9E3whpGieDq0M+x7KgEFj68ytHTAg/EYx5SaRU\nTF7xbMiONEG0nBzb38hrcUWkUjQWJEf0+WE7BQzQ39ArG6wQIG1pPjPvnpjSc+bdq0lfLr9x6Nkf\nea05TSTN/zlJ3b/lLdwEhcCiH10qG456vCQk5aLWGlGq9R9uxbDKYCJjycVkr74yVHZir4PHH2il\nvdFLxaoPhpUQBK+Fpopou12FWsmCezcw7+sXjCn+/UgUXjuf1X/8OOueup2sddEjKo4VuS+C5djY\nBaV1WEC5hILkiD6jKc4/DJz6086oaT9Lb13CnK+M3XZcUCmY85Xzo8a+EX0Bjv1260Sm+ZHk1B/e\nDcaPkkGdqGPpz66UrRsPtp4G0guW0NW0H48r9ie0uBECmoQk+luq8TntIRPRoZy1HMMxoGt3w5Tt\nTA/+6A28I2SWKrhmPhf+41OkVOSMSUElKAQMOWayLyhj7n9fwPlPfIK5/32BbOjmiSInlKLFDJJj\n+KkhbVlBRJ8f1pMABK/ODv90U1S9T9H1C8Z8HbjmkRujhjuHYG5lR1McXAV9QJBEiYM/eiOq53tC\nccrEr+zO4LS10Vq1HTHgp6899rqauFEMOzubSJ23Cldnc8hE9INM9RN7pyTkrKPZwr5vv8KK314n\nm/wagvfmK39/PQGPH8vxdlwddnw2N54+J0q9GpVejVKvRptsIH1FYcytGXx2T5gJZ4Q3pTSyt/Bw\nhscRkgvJEc2j88NC9/4mTj/yHrP+S163tPzBa3A0W+h8rw7LiQ6crVb8Du+ZxDuJJM3JImN1Mcb8\nSIX6AC2bTkU46E0zOj6bm333vsrqP3xcNoz8jDtXRs1NHg/EjRDIWXM1AEqNHntjUNoplEGrF0ki\nrnIMj4WOd2OfC3QAy4l23tz4RxIKkln0k8swRbG8UWpVpC7Om7J5RKPx5WOUfiJ6qN3m/5wYV2jt\n0ZyWml47HjfWUVNJ7T8OUPuPA1y+9cuyu0tjXhLFN44/1HDLplMc/dWWmOer/ijRX9fLpssekU33\nWvbJZRTfuJBdX3x2wlFuDYlZOG3t6E0ZMU8sEzfXQa07X6Z158soVGoEZVA2DfUYDsRx2IhoyFnK\nxLT/xj523v3PSWUtG42JxJQfzWkr1orzD5t/wGjs//5rI14JjgfRG+DwA29NC4AYIRdMEoIRb5f8\n7Eo0E8gSOGAimlN2HhmFSyc7xQjiRggM4OxqDkUR/SB5DMtR/eS+KR9D9AbYceczdLxbG7PdsCRK\ndO9v4tD9m6j8y65xPz/aohwtfPRE+TDrA+To2FHLjk8+Rcum05N6z7v2NLDjzqdjOLNpDv/8bew1\n8rt9faaJxT+5TNbvYyQ8zj7aanbSVrMz5j4CEEfXQQPY6o6TkFdOf3NVyGP4g0rb5kpmfHoFhtyp\nFWL99b3sv+81DDlmCq6eR9a60gmZpvlsbnoOt3Dy9zuimqOOBVeHHW+fC41MlFO/wxvTE1LA5cPR\nFH/pR6caT5+Tww9soubpfRTfsDAiY1s0Am4fHTtqqX/+yLj0MtOMjYDbx757X2PNn29EIxPqPWVB\nLnO/so5jD40vYbygUE5JyAgAIR5SyAmCEDaJ1HmrQ17Dickq+m2BuI4iGo/kXT6HpFmZGPLM6DNN\naMx6VEYNoteP3+Uj4PLhs3vo2t2Ao8mCvbYHe233R+Ju/cNI+soiUhfmYipNw5hnRmPWo9AoCbj9\nePucOFut2Gp6qH5i76SCGX7UKM1YS1nmOgA6bZUcbPj3WR1/4/z7ePPoA2QWLcPaXYfo9+B1D27Q\nJEmatONA3J0EhpKapebjX8yko8nLi492MkWC8ENJ8+snojoZfdBQCEpmZ1/C8db/nOupxC1d79eP\nmOpw47x78dsqxyUANs6/j257Lfvrnxm9cRyxcf59EWUTXcAbe/Zjc7WzuOimWExtwrj7ezClBM2A\nuxoPxLTvuNEJKLV61MagF2jviaA5VU+7j5P7HVQeckwLgI8wohSYlADYOO9eStLDPWvn5FzGxnn3\nTnZqE+KSud9hSWH4olKctpKN8+4lMzG2Xt8fRd48+gBvHn2AXkcjohTgzaMPTHgH7wu46LLHPpvX\neDEkBv12lKrY+0vFjRCQJJGkGUswl1Yw1P5t24t9HN/z0UtzN03scHr7KEpbgVIRacN9Lmi3niDV\nVIJOPRj6Ii9lES6vhU776XM4s2niFVtvA4bELAK+2FiFDSVuroNErwdL5X7SF16AISOf3pN7KCp2\n4PVIlFcY2PJcL37f9H01gGlRMcZZebQ/s2PSfWXdcl5M+olnOqynyEmeT0HqEuq6xm/tFGvqe/aQ\nnTSP3OQKajrfBcCgSeZU21sTMsk918zK3kCmeRZaVQJuv512ywkq2wfDLW+cfx+n2t4iN3kBRm0K\nHl8/bZbj1HTuQJQGTVPTTeUUp68i2RgZeO3Now/EfN4zsi4i0zwLndqEP+DF6e1jd83/jasPpUJN\nTtJ8spPmYtSmEpD8dFpPUdWxjYAYvHobeP1ur43SzPMwalOo79od8fqTjfnMyt5Agi4Dt9dKdefg\n91KhVBPwuhAUsV+y40YIaEzJmMsW0rrzZQSFgoT8may+TE2CWUm/NRAhAGZ+bjVqY3BnZ6/rpeGF\nj46nY/L5c1ElxiZGuqEsduEhYk1p+ppwpVzjs2H1G+fdG/xy+WyUZpz5cnXvpqbz3bAvlyAoqOva\nRUn6Ghp79oW+nMMpy1xHtnkOOnUi/oCbnv46jjS/DMCFs75Gm/UYp9reDo19oOHfdNmrgOCCMnTh\nGwmbq51eRyO5yQuo7dyJhIQ/4Ka5LzxiqkqpoyxjLZmJQxZY68mIcTbOu5cdlX9kdvYlJBvzkSSJ\nHkc9hxqfizqH8swLKElfzen2zdR37x7TvOVQKjQUpC6j1XKEfnc3Jl06Rekrqe7YFvYe5CZX0Oto\noLXvKJnmmZRkrEGUAtScWehykxcwL+9KOmynOFD/T3KTK8g0z6bVcjQkKGNNUdoKmnsP4vD0oFYZ\nZIXPaAiCkhlZF2FxNtPUe4BkYwGFaSsAgVNtb4Xa5SZXYNAk09x3mNa+o8zMvjjs9QMsKboFUfJT\n17ULAYGZ2YOZyoyJWTRXvkNG4bJJvWY54kYIIAh0H9mOOiEJX78Fe8NJnn9EhUot0NMu/6Wt+r89\n+J0+5n3jQlo3V1J221L6jrfRe6iVklsXIwgCllMdGHLM6DNMtL1ThRQQcXc7SFmY+8FUnAoCpkXF\nuGpiYN43BREJY0lj7wG6++vQqAzkJS+UbRP25bIcZWbWwJdrcOFQCEqaeg9SnL6K/JTFsoueQlBS\nkraKVssx+j1daFRG8pIXoFebcfms9Hs60asHQy74Ai4yEstDQsCgiR6OQY6Gnj0sKriB1IRibO4O\nmnoPEhDDvahXFN+OUZtGq+Uo/Z4uTLoMitJWRCywAMuKb6PX0UB15w50atOIV1+FqcsoTlvJ0eZX\naLUcjdpuLBSnr+R4y6u09A1uwvocTRSmraCu671QmUmXyXtVjwLQ2LOPdbO+RE7SvNAiWJy+CpfX\nwvOYnmsAACAASURBVOHG55Ekie7+Gs7TZ2PW5+D0TI2ZeE9/HSda35hUH/6Am62nHg5tLARBYG35\n58k0zwoTAiZdJvvrn6HbHowkUJy+Muz1Q/BUcbDuX/T01wPQajnK2hmfJz1/EWqdidwZF6BQyueD\nngxxIwSUGj1JZQtBEOjcvxkAY6KS1Ew1N305kz/c1yz7XMDtQ6lToVApOPmH4Bd/9hfWUvP0frwW\nFyU3L6ZzZx32uh4qvrueIz9/mwX3bohJ0odFr92H9f1Kan86qHQq+f7HMa+cwcErHgi1cTd0oU5J\noHfbcRRqFSkbFuC3Ojj1pUfxW4L6juJ7r8e8cgY9bxzE3dyDKtGAviid2vvDd79Ja2ahSU/E39dP\n0trZoXLLu8GkNUqjjrl//RJdL+8h4PRiXlZGQkUhXS/tofnPgx/KgWfVKQlh/Qz0JaiVlP/8Ngzl\nOfRtPYarvpPMm9aAKHH6a4/j7ZQPmBVLfAEXVlcwxWE0IaBUaHj7xIOh/6cmFFOSviZMCAiCElHy\ns6PyD5w/44uy/awsvYNNx38RVlbZvoULZ32Vd049TJvlODOz1gOQqM/i3ao/c8Gsr9DUexCbq41U\nY9G4XlunrZKTrW+yuPBGPH4H207/PqKNVp3AWyd+EXZFdKzlNVaV3sl71Y+GtZV7fjjegIsLZ32V\ng43PRbzWiVKcvoq3jv0yrKy57xDr5347TAj09A9mKhMlPxZnCxmJM0JlCkFJQPSFXqskSQQkP0oh\n9oveACqljo3z78MXcNHad5T67t24feNPRZlsLCA3uQKTLhO9JgmFEBmLq6e/LiQAgIjXD2BztYUE\nAIDDE8wd0NV0kMyiFXTU7yajIHo4lokSN0IgefYyBCFcT63RChTN0tFU5UajU+B1h5sIld+xHEkm\nGFnTayeY8dmVBFx+PD3hSuWM1cU0vHiUkluXUPP3qffoBdAVplP1rSfoPx4MOdt/vJHCr19N1o2r\nQwtz4uIS7IfqaPrDkJ2JzE59YLH39faHfh9KwOHm2CcfRjxjCtj14m5mP/J5zKtnhQmBgWdTLpwn\n20/GNcsxzs6j7ufPh+pte6uZ9Ye7yb59HQ2/eZkkVSYW/7kN4ezyhke8FEW/7JcQICD6qet+n+K0\nlbTbwqMxGjSpI1oL2d1dqJRa1EodGaZyqjt30O/uJMNUhtPbh0qpi/psNFosRyjLXIdObZKtd3mt\nEToCSRIxaCaQqhPQKPW0Wo5hccpvqKaSaFdwA9R372F2ziXMyb2M1r4j5CRXkKBNm/ROfSR21/wf\nKQlF5KcspiB1KXkpi3j7+K/G1UdR2kpmZl+M1dlCffdubK42ZmZdTEpCUVi70V4/gER0fdBAjmGf\ne+JOnNGIGyHQuiMyI1f9KTdJ6Wr6LYEIAXD6kfci2g/Q39DLsd+8gyCEp1088vPB3f/Z9Jb0NPeE\nBABA3zvHyLtrA4lLy+DMwuyq78RUUUTaFUvofeswotc/4YxI4hBbcEmUcNV2kLRm9ghPRJK8bi5+\niyNMQLibe/A095C4uASABFUyLtGOR5SPdX82GMuXayhNvQcoTluJKIbnfBYERlxw+j3BPA46dSJp\nplKqO3fQ3V9HmqmUDlvl+CdOcO52dydJhlz5BjG+rstInEFA9NHv6Qq7vpkMDk9v8Hs25LMqCApc\n3vF5cTf27EWt1FGWeT7Z5jn0e3o41PAsHbaptZbq7a+nt78eozaV5SW3j/v54vSVeHx29tQ+Gbqi\nUygmdnoZai0WVp6QRlJGOZ2N+0nLix4GfKLEjRCQI8GspOG0m77OCXg4ShMLfjYVeNrDd6uSKOHp\ntKIvGEyb2fCblym85xryv3ApObevo2fLUVqG7NzHQ+LSUvLu2oAqyYhCq0aYQKhobV4qCo2KRa9F\nOt4MbFicASup6lxaPVUTmue5ICD6qOt+H60qPEmRw9NLc+/BqLuxgOjD5bWg1yRh0mUC0NNfS1Hq\ncozaVFze2F+P6dXmmCywA3TZq2m1HKUi7xp8ATedExReQ2m3HCcnqYKWIUrt3KQK2q3jz6mdbMyn\np7+eff+fvfMOc+Mq9/9nNKqrtr16i727buvea2IndnpCOqQQwk0CoXPpcCG0Cxd+QG4uBAgtdFKI\nQ0J6dWzHJe72uq+9vXdJqy7N/P6QpZVW2l1J2x1/n0ePpDNnzrwzZ855z3lrzd9HTFeisLu76HMl\nnp5UIYg4ffYQA9BrMjDpkjO20CgNpOuL6bbXAQGLMYDUrHIaT79N2ZJbqT7676TaHgqTmgn4fTKb\nbk+lrd7D3res+H2TY1IfCoIYn+uFQCSTcrf0cOaLf8K4sITMa5aQdd0y+g7XYtmb2ASbffMqCu67\nnIZfvIy7tQefzUXBfZdjXFiSUDsAng4rbU/vHPR4t7cFkzIz4XYnGg3dB1lX/mBEWUvvMYoyllHX\ntS+iXFSoQwpbm6udLGMZ0vndR4+9AUn2k2Uso889+kHsVKI2xgQ7n1Zr4hMsBERJrZaTGLU5LCy8\nkf21T9Jjrx/yHL0mnfKcDVHlVW3vAAExzqaKr5CmL6TP1YFBm0V+6gLeOvGThOkz6/LoDNMdJItc\n8xxUyhR0KhMCAkUZy+l1NGJ1RoYkX1B4I33uDvySl9SUgigRjkIQ0WsyQit0jdJApnEGPr+bXkcT\nAJ19NeSa5zAn/0osjiZm5l1On6sdky4vYbol2c+i4luo7zqALEtMSw/owdzOHvLL1uOyd5NbspKm\nqm1JPJXBMamZgCE1QN7u1yyIosCSS40c3Db6MrFk4W7uJmVWPoJKRPb60U3PCYh4BsC0rBTDvCL6\njgUGXPqmBehKc2n/V7+VikKrQnJ5sR2pxXakFoD5T36Byg89HNWez+JAnRM7QFzuh9birG2n89VD\nAGinZWCYO7jp22DttP59O/kfvQxBKdLx78iJUaELWJ5oFXr8si/W6SOGUZvDmrL7IsqCMnu/5OXN\nJCaZIPySF4UicndU07mH4owVrC67D706A5Bx+2wcrHsGuzsQFbLFcpyFhTdxvOklIDBoq9reYXbe\nZo42Pp80PYPhrRM/pTR7PZfO+jQapQG3r48266mQmWqyqGp7h5qO3awq/QhKUcc7p/4vZr14bPMl\n2cfrx34YUXas8cVh2wn34NVrMqgouIYeRyMWRzOF6UtQCCI6dSpFGcvo7DvHwdqn47k1gNAupKHr\nwJD1jjb0i6DrgCP8K+K4JPuxudqxudoHfRZH6p8l3LC3ufdYVJ3h7j+IN45FKuvDLYfGIqNYEJMy\ngFwQaVlKZi3Wc+AdK17PxNM5ELl3rifvrkuwn2jEfqqJjM0L8HTZ0JVkR1gHuZt7UGUY6H6rEkFU\nBKyDevsC1kGWgDx94TNfxvJeFc76DmSXl5TZBfhtzkhF8XkUfe5aMq5YRO+uU/RV1qNKN9D8p0BU\nwpKv3Uza+jnU/fR5NPnpZFy9GG+njZTyvBBN4Vj80n+F2hEUCpSpKTT/aSuCUqT0ux/CuKgEy3tV\n2E82oso0YlpaSucL+2l/fi95mjJEQUmja+xe0Pc7TJcuwrrtMNryabiqAgpd47r52N6tRJWVircj\n/lSQxksWIggC1m3RydGDbQ5EotdIBmvK78fn97C3+i9RxxYW3USWsYw3jyfP9C9kXPAB5G64L4v9\nW23c980CHnto/C0ahkPb07sQlCLpGyowLZ1B/f+9hDo/jYL/uDyinqOqme7HKsm9az3aaRn07jxF\n8x/fCjEAgK43j2JaWkrq2tnIsoyn3cKpT/0u5nUbf/sGfqeH1NWzMK+YibOmDQgwgcZfvYrs9VH4\n2Wtx1XVQ//ALiAYtJV+9KWZb7c/vDbUjub24m7uBrcg+P+ceeoKs65eTftk8jHeux9tppe9ILdaD\nAVM3rUKPV3aP/EFeRExoy6ahKStAWVmNZkY+rqpGtLOKUOdnopmRT+rVK+l5YScKrQb8Egq9FlVu\nOt6WLkSzHl+nBeepfnGPblYhsiSjrmpEN28G7toWVNmp+DotqPIyMW9ahqexHb/VgcKgQ/b5Q9cQ\nlEpknw98UsS5Cq0Gy5sjs7JLUaeH5ODhUCo0mLS5uH32mEHhYmEsPIsvdEzqncCi9UYO77Dxka/m\n8beftk7J7GKLX/ovLLtPR9n7XwiYpp2NgIIG1xR0uhsDxBuQ7rUB4pPBkP3Adbhr27C8sY/Ua1fT\n+9Ju0m5cD0DvCzsxX7UyUHbdGhAVSE432tICXFUNiGYDkstD70v9YTLMm5aBIOCuaUZMM6LOy0RQ\niUguDwqtmu4t20i9djWu0/Xo5k6n96VdoWsIogLZL6EtK4g4t3vLyOXT86ZdR0HaQlotJ+nqq0FA\nQK9JJ8c8B43SyNGG5+K2Ags6771fcMHvBKbP1rH8MhOHttumJAMIYZJ75iYLm68LvZiYp+yFjIN1\n8cut44Hs8yN7fagLMtGU5KGZkYff0ocqKxXZL6FMNaAuyMTXawNBQJ2XgXXrIXTzZyA5ogONSR4v\ngkKBdnYxUp8TJAnJFbBqkVz93sra2cUgSRHX8DR1oi7IjHnuSHG86WXs7i5yzXPJygvo1FxeK119\nNdR37cfqvJj8ZiwxqXcCFwJieRVfKEhV5qATjbS4o0PtXnJdtNNNc+0uzh6L9gcZKfJ/9HV6nnge\n55HR3ZEU/Owhmr74vVFt8yIuYjRxwe8ELmLyIk9TNml2AbLThZgWaeWkKSsh9earQaGg7Ue/JPvz\n99P+yO8p/OUPaPhUfPLlwdqzvrIV55ET5H7zs7hOnUOVlw2yTMejfyL1pqtQzygCQUDqc9D52F9j\nnpvxHx+k6/GnAMj8+F10/mb8beNHG/nXzmPaTYuR/RL7Pv53lj92JwCG0iz6znWw78FAPuONr38O\n25k2BJXIvo//ncy1pRTesoTUefn0VjZx6IsB0em6LR/n3Vt+gzJFjeyX8Lt9bHzjc/Sd67fn3/fg\nPzCWZzPny1cgSxInfvwa9pou1j79ADtv/12oHXeHLYKW4LnhNHu67Bz5RvQiZeNbn2f3HX/A1W5D\nl2dm1V/uZevm2BZViUAQFSx++FYOfm50d5CJYtIygVgrySD8Pg87X/1mUu3qDFks3/DlQY9vf/Er\nSbU7GGJZ5FwIaHGfpVA7F0n2ISAM6fI+5lCKeGobUZdMw1MbMCBIu+MDtP/v75G9AVmyr6sHBAFf\ne2e/kjMBhLeX+83P4TxyAnVRAV2/fwJva/+kpF+9lPZHfo+3uS0kBox1rqehBWVWwBTV2zL6PgYT\ngRn3rmHX3Y8juQPPNjjpr9vy8dBvAK/Nxf5PP4lSH0iQ0rnzHJ07z7Fuy8dDDCAcJfes4uxj2wPn\nWl0RbQHMuG8tpx95C9kvUXrfWo5+899R/jqD0RJOs6iL7enrqO8mbXEhLa+dIG1JIX1nE3cqiwXZ\nL004A4BJzASGgqhMPjmI0Zx4uNiLiA2bP6ATmFAGAICAp7YBw4bVISagyski82N3AdD+8G/xdXYj\nmk24z9Yimo0BppAAwtvzdwdMJv1WWwQDAOj4xeOYrtqImGrC+vo2XMdOxzzXsfcQKSsWAzKO/RdG\nGHSPxUn6kiI6d1cPX1kApUGDzz60dZl5bh6O+qGjiOpLMrCcbAE5sNJPBOE0+52xlc+ebgfa3MBO\nU2XS4XMG9Cfhu43g7xn3rcU8Nw8EAa/FybHvvhizzFCWRcldKzBX5IfaWPmHe7CebsUwPZOufbVU\nP76LnI2zyL9+PqJWRc+hBs79bvTDak9JJjASGFOnjej8nNmpzL5yGs1Hu9EYVMxYn4s+Q8PRZ2sp\nvywfr9PHiZcb6Dhj4cpvLWHHr45jyNSiS9XQcqwbU14KK++dRWe1lZZj3XSes7Lkg6Wc29FKyaps\ntj96HLfNy/U/XI6gVKDP0FCzq42anW2s/OhMTr7aSNXW5giarv7OUhw9bgRBYNvPjzFjXS7ntrcM\ncgejBwEBlTA5snUB+Hv7I0B627vo+uNT+HsC4Rw89U2kffB6HAeOknr7dXT++q+DNyQIiCYDsrtf\nWRreniCedzSLoU/ztnTQ9fiTKAx68r7znzR96b9jnuu32BCUIqLZGNg1DAG9MZf8kv70mFWVzw77\nLMYa4TT1dp2jo/kIld9+gZmf2kDxncs58JmnBj1XZdSy7NE70GQa2PnB2GbQAGKKmtlf3MyZX2zt\nP9ekDYmZILDCV4iKUCgThTKxECnhNJ/5+VZsVdG7MkEhBPpaCKzehSEMPfKumMvhrzyLva4rVC9W\nWd/ZDo599yXWPv1A6NyU4nQOfWULXouTtU/eT/Xju2jfUUXb1tMICoE1T9x/kQmMBoypI9sJZM9O\nZdv/9XsFdtfZyK0IxPg4+mwNLcd7WfvgnMDEvaeN9tMWDJla1Holq+6bzYmX6znxSj2Vzwfsoq/8\n1hJe/d5Bbvh/K3H2RK6K9v+tityKNA4+cY75N5Zw6vWmKAYAUP1uK6ffbAr9t7UFwi9r9CpW3TcL\nhUrB8RfrmP+BEqwtDtR6Jfv/epZV983i5GsNZJQYMU/TY8pL4dRrjcy8vABZkjn2Qh1tJwd3FDKI\nadQ6RxaPfjThPNofTqHnH/8i82N3IXt9tD/8Wzx1jeg+/VG6//EvMu6/Y8h2cr/xaRQ6Lb3/6s9r\nHN6eu7oOy3OvxTw3+0sfR/b6EBQCtrd3DXmut6k1LrFUVv5C8opXhf5PBiYQTpMsS3Q0H8HZ1MuR\nbzyHuSJ/yHO9Nhf7P/UExXcMnSBFcnk59JUtzHvoWno+FwjAGEscJPmlUEZayXfeYilOg5dwmud9\n5zp23/V4zHr2ui5yNs6ir7qTzNUzoo4LigABR77xHMV3LkeToaf+6QN07a2NWRYL3h4HnvNRj4OB\nLwuum0/60mK8NhdKU+KRauPBlGUCgiAiy4mZqBlM+ZjSikd03crnatGa1Wz6ykJe/K99UcfXPTiH\nvX+JDszlsftw26K3m0HrLEEAr8uPWqcM1Buw2qh8rhaA636wPOq6Pk9khNUglt5VRleNDWuLAxA4\n+mwNuRVpGLJ1oWMgYMxN4dy2FjrOWrn2+8vY8cvjLL9nJimpQye1tvm6KdEtoNY5seKMlm+d9yaV\n+p+D+2wtbT/+Vei/1Oeg4RNfB6DhwcC3cdP6qLZsb+6g9QfRsfkHtgfQ9OVofU/bj34Z17nZX/wY\n3qZWep4cOiCYUqmlsGzjkHXGG4PRtOzXgRW6QlSw92N/G7aduif2seK3d1P9590U3rwYlVHL4p/e\nwqEvBTKiyZKMp8vO4a88izJFjc/hibkTqPzWv1nxm7uRJSmk2D39yNus/ONHkP0SJ3/y+qA0hNM8\n1Cq7fVsVpQ+s49zv3qXkrhUAtLx6nGW/vpO+cx14rQGT3FmfvwzJ60cQBIzl2XTtrY1ZNu3GhaQt\nKkRl0jLv29fR9V5NzICX+umZKE1aPL1O7LVdwz7TZDBpTUTDFcN+vwdZ8qNU9adUPLjj/+izNA08\nbUjkFa2kfMEt/e36PFH6heEUw+Ub8ylekUXz0W5OvNJA/oJ0civScFu9OHvdtJ3q5bIvLmDrw5Vc\n8c3F7PjVCYxZAXHQ2XdayJufFiEO6qiysuRDpZzb0UJfh4uV987EZfVQv7cDS4sjtBMo35hP/oJ0\nOs5YOPFKQwRN1/9oBdYWB85eD2e3tbD4thlU72ylq8bGugfn0Ntkp/V4D7Y2J7kVaWSWmTnwj7Os\ne3AOp15vJLPMTM3O1hAT6G2yo8/QUrW1mZpdg4sqirRz8eOn2XUmSi8wniaiFzIyc+cxd9k9EWWj\nbbyQKAbSdLFfJw6jYSI6JZiA22XB1ttAZu68UFlV5bO01O1J6DrlC24hr2hl6H9r/V5yi1ZE1Iln\ngAmKyDwFI0V4e4JCQBBAiuEcp9SIyJLM3GsiRVqVz9ehUCqQfLF3BEMdiwVRpUCW5Jg0hEMvppKl\nLoq5E7jIBEYHZfNvIr94dUTZRDOBgTRdSP1aeMuSqLKGLQcngJL48L7xE1CqdNh66iOYgNE8jURV\nnwP1AXZbcp6Io8kABrYnS4Pb2vjcfhCgdk+08mqoST4RBgDg9w5f36zMxuJrJ11OPGTuRcSPtMzy\niSYhCpORptHCZJ7wxwpTggmIopo+a6RCNFEFr0KhRG+MTPZgt469Bc2oQ+5X/E4kTMoMnFLAGkdA\ngUxijOYihodWl4ZOP7nyNUxGmi5iZIgvA8okgMveFbFy15vyElLy5hWvishh3NV2Ar/fM8QZFzEU\nGlwn8UguGlwnydVEW0tcxMgxfc41E01CFCYjTRcxMkyJnQCAqNJi66mPWM0bUwux9kSHoI2FgTsH\na08doji6Nu5KpRZjaiF6c37IEkmp0iIqtSDLSJIXu60Np70Tu7UFS3ctNktD0rmEE4VCVJGWNZO0\nzHL0pjx0KRmoNAZ8Xic+jwOPx4a1p576qjfx+8aHQSpEFWmZ5aRlzURvysNgLkChUI47TUqlltzi\nlRhM+aQYslCqUgJ9J2qQJC9ejwOP2xbqu8aaHWPcbwKpmdEJiiYS2pS0SUfTwDGXYshCm5IeMea8\nHgeW7poJGXMAGbkVEWNOVGmR/N6I99vSVU13+8Tk5Zg6TECpwdpbH6HITcTxa2BdW089ilFiAhqt\nmZkLbyc1cwaCMIizigCiQsSUVhyxg/G4bRzc8X94XNbY58WBWErYgcpDUall5eVfj7CwCkKl1qNS\n69GRhTl9BnnFq2iueZfG6h34vKMnepL8kSayJbOvIr94FUpVyoTQpNGaycidS0bOvCH7TlSIiEot\n2pT0UN9NK72UtsYDNNW8O6K+C8KcPgO9KRe9KQ+9MRe9MRdRGdtEd6iQKrGQjCJZqUoJ0BFG02A7\n7/ySNRHObGNFUziCfVdaccOwYy7Yd0F43DbaGg9Qc/LlpK8fqw8GGquISi1FZRtjmtOKojri/S4s\n3UB91ZujPubiwZRiAraeyHyo8YaAUCq1EXJMWZawWRpIz54zIppSM0opmL6OjJy5SYeLVmuMLN/4\nFepOv05j9Q4YgxAMqZllzF70oZgMIBaUSi1F5ZvIL1nDiQN/o7czOkpoeAC5c474lGk+X394Y3PG\nDIrKLovrvHhpSgQVyz4y4n4rLN1AfsmapPtuxpxrSTEFJnyNNnaaz/FGkKb0rFkTTUpMjNaYKyzd\ngNfdN6pjzmDqd5ILjjm11hT3+aP5fieCqcMERA32vrYI236dIRNRqcXvi46dHg5D6jRCLoWAwxZo\nR6FI7vYVoorFaz+N3jQ6ljGiqGbG3OtIMeZy5sjoBpTKLljCrEW3R+hD4oVSlcL8lfdTdfQZWhsi\ns0eFB5CLdxD5va7zNC1i1qIPJkzPcDTFg8nUd9NKLx0VGkYTk5EmGP1+A0Z9zBnMBcDYjbmxwpRh\nAip1CsgyzXW7KCzdcL5UIL94FQ3n3hny3IFb1caaQALnWGKIeCD5vZw9/jwLVz84aB2/z0VH81F8\nXiderwOFQoVKnUJu0YpBmU9u4TJyC5dyYPsjI7ZcSs0oZc6Su1BpDBHlsixh7anF2deJx9OHKKrQ\n6bMwZ8yIqSMRBAUzF95OYdnl7Nv644hjNl8Xvb6h496Ew+/3sGrzN1FrIldH4TS5nD2o1Clx0dTe\nfCRKxDQchus7v89Fn7UZZ18nPq8Tv9+LSp2C3pSLMbVoyL5rqtkxNS3OpgDiHXN91mZsPQ0RY05v\nysWcHtt4YTTHnDG1kNWbHxp2zEl+L6a04qTG3FhgyjCB4OAbKBIyxKEXMJqj9QGBNhMLNhUOS1c1\ntt6GkMJZlv30dlbT1Xacno4zOO1dxFoh15x8mdyilRSVX4ZKrY/RskDxzM2c2B+ddDsRzF91f5Ss\n9Nyx52lvPoTX44iqr1AoySteRfHMTTGZo06fEVVmUKbhlGy4pej2YqF8/s0IYc/c53VSd/r1pGnK\nKVhCS/17cV07HJauyCiXwb47e+xfg/YbBFb9Q/Vdov12YNvDQx5feukXkjpvJEiGpvamwzScfXus\nSAph4JgD6OmoGnbMARRMXz/mYw6IYgA+r5N9W388amNuLDBlmEBw8rD1RoZMGE4voNYY0Ogik584\n+joi2kwWjdXbmbPkLuy2Vo7s/FWEzHsw+P0emmp20NlaybwV/xHluwCQmVuBRpeK2zl48LbhMJAB\n9HScoal256D1JclHU827dLefZvnGwfMthMPht5ChKqDZHV9e14HPe987P8Hr7kuapvySNUkxgSDs\ntlZa6vbQ3ngw4b5beXl0PuFE+y1ZZ8Vkzxurtn1ex5jSFI7wMddSt4fm2l1xnTceY24gejrOcOrw\nkzEZAES+3/NX3Y9WlzZq104EU8ZPIDipuV0W3C5LqFybkjYIdw/AENOpLBi0bWS339lSyeGdv+TA\ntofjmkTC4Xb2cnzfnwaxBBBIzSgdEW3hsHTXcHz/n+Oq67R3IMuxHb/CFV8AkiyhVsSnbI5F01AM\nIB6a9Ka8KJriRbDfmmt3JdV349FvFxGN8DEXLwMIYiLGXDzvuNPewckDsQPuJft+J4IpxAT6FbtR\nu4EhvIfHMolMQNYXn59CLLgc3TRWb495zJwxOg5YPq+TE/v/nJDsvL0xtrWPMa0o4r9JmYFXdiOQ\nmJVGkKZEEC9N8WIk/QaMeb9NdeQvvCLwQxDIm385AOqUfguolLQ8tKYsVFoDhctuwJDVb36qzwyk\n55y25Fo0xky0puzAOekFqHTGUN+lpAWUxAPbSEkvCF1LodSg0hpDC77JOuYGzmlBJPt+J4IpwwTC\n0VQTGfI1PNb6QOSXrB5QMvEB88JRX/VWzPLRWJX4vE52v/G9Qbejg+H00X/GdMwaGGzP5u9GJagT\nyiw21jSNF+qr3oqpSLy4EwhA9nnJnrmGkpW3YGurpmjZB0ifvgR1ihlBVGLMLSeteAFeVx+y5Kev\nIzCx51VsxN5ZH3Lmctu6MOWWUbTsAxhzSqPaAKLaCK+XkpaLIbskYic5ln2X7PsNTNj7PSWZtmes\nOwAAIABJREFUQF9vY8T/oXYCA0VFQX3AZEe8Nv1DoavtBLKUWM4FAGQZuzU6ec1AmpJJKjPWNI0n\nBsazgomlZzJBliXc9m4EUYmnr5uehkoEwOu0kZKaB8hoDAEHLkEhkjUzsJDrbTpJ7twNYfqjADPo\naahEqUmJaiOI8DbC650nJoq+seq7pN9vmLD3e8oohsMxMOaPWmNEozVH6AoGw0DroskKpWrkWYQ6\nW5LP+uV2R3vBKpX9L2SepgyNIoUS3fyEGMFY0jTe8HmjV3uj0W8XAlpPbAPA0hQIheBxWLC11wSY\neVcDzt7WkLikYf+/Q5O+s7cVl6UdWZZoPPgSAO1nArL/vvbawK4zrI0gwttoPvJ6qF5wdzAQY9V3\nU/H9npJMIBYMqdNwtw7PBKy9U4MJkKCcPRZsA3ZMiSDo2BWO8EHS4j6LWZlFonSOJU3jDZ83VpL0\nkffbBYuwFflAeXn46nkww4SB5YO1Mdj54RirvpuK7/eUFAfFQryhpUeqEJwq8HmdeGKsLOKFJEXn\nvh1oTZWqyiFNlRu3Yng8aBpfTC790kUkgrHpu6n4fl84TCCWFdCA2CJ+nweHLX4P16kMR1904pnR\nRoenAYffGrdieDxouoiLuIjEMGXFQb1d5yK0+WlZ0dmOcgoiU8U11+6Ma6uYDAzmAjJy5pKWNTMU\nDnki4Xb2jGn7qcpsTMoszKps2j21k4KmZBHsu8KyjRPebxeRGIpnbp40Y26qYso+NVtvw7AmXbFy\nCIw2BEFBdsHipAOijRV8vlgyz9FDr68dl2Sny9sU9zljTVMiCPbbtBmXjGpQsosYe1zsu9HF1GUC\ncVj5RDGBUVYKm9KKKF9wa0w39IlGsmZq8SJFNJOnKUWSJWqchycFTYlgySWfn5T9dhFDYzKPuamK\nKcsEhpvQBUGMWCW4HN1xhymIB3lFKymbf+PgCS0GwOd14vU4cLt6kXwe/H43/vPfBdPXjxpd44UM\nVQHVjkOIgmqiSUkYeUUr455Egv3m8zrw+z2hvvO4bZjTp2Mwx5/YaDRReEU5jW+eJWNhHp2Hou3L\ng8hZUUjb3obQd1Q7m8tpeCO+2E8TjWTHnM/rwOvuixhzE9l3kw1Tlgl4XFbcLktkMg5BCJmhGUx5\nETJC6yj6B+QVraR8wS1D1rHbWgOeibZWXPaumJr/IKYiE3BJfZToFgBQ6zyakNfwRGK4vrPbWunp\nOIOttwG7rXVIQ4KyeTdO2ERiKDCTt346KbkGfHYPolaJqFGiLzBjb7TQvj9gqqg0qMlZWYioUZJe\nkYPslxB1KgwFJqy1PWjSdGQtKcDb5yZ9fi6Wqk4EUYHk9SP7JIzT0+k+1kZfw+gFVksG8Y65no4z\ntDbsG3bMTWTfTTZMWSYA0FyzMyLxdU7BEtoaDwCQNyCHQNP5HAKjgVgvo9/v4eSBv01YntDxRoen\nng4CjDVPU0aLe/wyISWLhWs+iTm9JKp8Kvadx+qi93QHuWuKcXc76Wu0kL08j/Z9jWQvKwgxgaa3\nz1F+5yKq/nGYws3lIATicLXursfV5SC9Igddlh5tRgpIMpJXwphnov61M6TNzUb2S6TOypxwJjAY\nAzi29/Ep1W+TEVOaCQwUCRlTC0NMIDynsCT5YrqJJ4PB/BGO7/vTuKaEu4jEYEwtjMkAQE6670Ya\ninwkOLflGAAH/2drqKznZMAEt/t4G9M2BRLCN719jqp/BHQ2scQ+Z586GvotKARkSQ6103Oind7T\nncj+sbGoixeD+wDJSTOAiey7yYYpzQT6ehuRZSnkUBF8WURRTYohu7+epWnUlJJZeQtilr/fGEAy\nOYYnEoP1W2vDgaT7bqgQ5hMJ2S/R+Gbi9yRL0SK9iWYAMHTfJYvJ2ncTgSntLOb3Rzp/6U15CIKI\nwVwQ4Wk3mqahppiryfcfWtxncUsOnH4rU8FzdrB+ax1BUhpVkulJLyIxXOy7scWUZgIQKRJSKJTn\nc8FGbh9HM2icLiU65dvAgHYJQZi6sWZs/i4QhCmhFB6s35I2GBCEizbq44SLfTe2mPJMoLkmMmVi\nfvFq8sJyCHhcVjpajg48LWmISk1UmcvRnXR7M+ZcOxJyJhQmMRMRMeGkMhOBwfstOQY2Y861Yx7m\nN3YGrIlFLJrGOsjZVOy7qYQpzwTsfW34wzxRM/PmR6wcRttBzBszBG1yL5RKrSe/eGDSm6mDXl8b\nXtkzJXYCo9lvwLj021RhApoxzo17ccyNLaY8E0CWsVn6w7cOfDlGO1RELIezCF+FBFA27wMoxKnn\nbBWEAnFKmIbC4P2m1hiTam88+s3jtsW+9gTGyIlF01jH7RnNvpvqY24sMPWZAIPn5wSwjTITGK2d\nRVH55WTlLxqVtiYKBmUaGsXUULAN1m/J9EFR+eUjJScuDKbLyiqYuPcmFk2iqB5Tmkar7y6EMTcW\nuDCYwBAKIpsl/gBn8WAwc0KNLjWu8wWFSPn8mymZdeVokjUhcPgtZKgKJpqMuDBYvxWVbZy0fWfp\nqY1ZPn32NUnvYEaKiaBpqL6LFxfKmBsLTGk/gSA6W49Fh5A4j4HZh0Z8rUHSx628/BuATE9HFd3t\np7DbWvH73KjUejRaM+aM6aRmlqHWmCLO83ociKJqSm5RDWI6ICMw+S2EOlsqqT75UpQiXqUxhPru\n3PEXsNta8XmdCIIClVpPdsGiQfvt6O7HWLzuM2PWd50tlTSc3UrhgMlOrTGwavO3ALBbW7B01+B2\n9qIQlYhKLSpVCmqtCVNaMaJSw/YXvzLuNHW0HEWW/BE0GVKnodWlJUzTYGNOpTFwyXU/jhhzPq8z\nlG52qDF3dPdjLL30Cwne/YWJC4IJQGA3oMmbPz7X6m0YxItRIC1rJmlZM+Nqx+9zcXzf4xTPvCLu\ncyYTen1t6MXUSc8Agmiu2UlW3oJB+6604oa42zq+73HstlYs3TVj2ncN57aRVbAI7SDKV70pb9zN\nHSeCptEec3Zb6/CV3ye4IMRBML65g4/v+zNu58hiqXg9do7s/i3Wnnp6OqdGFMdw5GnKyFaXhLyG\npwIkyTdqfRe0UR/rvvN5HZw88Lchg6GNNyaCptEecxfRjwuGCdh6opXDXo99TK7lcVs59O4vsHRV\nJ3W+pbuag9sfoe+8VVNPx5nRJG9cEO4xPBX8BIII9l2yCPZdEOPRd7beBo7s+jVul2XMrxUvxpum\n0R5zF9GPC4YJxOpc2xjuDjxuG0f3/JaqymdxOrriPu/UoSc4sus3EYPHbm0d1VwH44Wp5DEcDo/b\nlnC/OWxtE9p3tt4GDm5/hMZz2xI6zz+G2dyCNPl9roTOS5amZMecw9YW1W8Q2/T0/QhBlid+AAuC\nIAPkbb4VZInOPW9hLJ9H96Gd6HIL8btdiBotmowcHM11aDJyEAQBa1W/wihz5WWAQF/NKVIKpuNq\nb8LvtKPQ6sDvJ33Jejr3vYNCFJH8fiSXI3QNbXYBCpUaR1NNsjdAyawrMaeVoNGlolTpEJUafF4n\nbpcFl70LW28DPZ1V9I2ytdJEIk2Vi1mZRa0ztuJu0kMQSMsow5xZijmtBL0pD1GpQZb8+P0e3C4L\nHU2HJ12/ZeUvwpxegjG1EJXGgEqlQ1Ao8fvceN19uF0WHH3ttDXsx25rHbO82kEolVrSsmdH0KTV\npiLJ/giaOlsqQ3kaRkzT+b4rKr88YszJkh+HvWPEY05fWI7anIG7qxVHSy3mWUuwnB4+UOLAesbp\ncwGw1ZwYtm4ykGV5xNvwSaUYdjbVgEKBQq1Bl1uENqcOBAFdzjQ8li5kWUaXMw3r6SOgiNzEiNoU\n/E4HmowckCVkvx/DjDkAdO3fhs9uA8mPs7MFTXp2xDU06dl4ejqTJ1yWqT316khufdLgh8evBuDw\ni808/dUjQ9bVKgzjQdKYIHPjXBQ6Nc66TprbduIsb8Ne1UZKSSaS24e2IA1Ptx27opXc+5cgbfHg\nqO0g79YVtDyzl+yrF2I/14auID3Ujq4wHcnto3Nr/4DPv20lnk4b9qpWTIuKsZ9rI2V6Ns66TsyL\ni/F023HWdWI73kjaqjJEnTrUXvZVC2jZsg9HbUeoPd20dJzGdmw9daSWzsB2sglRq0L2SsjIpJRk\nYW8JBFX0mzyk5GaTUpSJ7VQzrsbkw5sMBZ/PRUfzYTqaI9OMFs7eTMOpN5g263K6mivR6TPweO3k\nTl9FS/Uu9KkFiKIKQVCg1WfgsLVj6w749ZQuupm2un1kFy2jt+00APrUArwuGw5bK163HY0xk9bm\ngyjVKXhcFhQKFUp1Ct0txzFnlWG3NCOIKnKnr6a1Zveg9AffeYBvVLwCcH7O6cbvDngrq02ppC9Y\ngy63EEdLHX5HH+q0LHx2K46WOjy9nWQtvyyq7eDkr8spQmUwoU7LonN/IPy3yhjQp2Utv4yOfW8n\n9exHA5OKCfSe6A8N2/TKE6HfzpaAWMfV1ogsSYFJu7cT8+zFoTpt218KZRUTBAWyLOFs7RcHte3o\nP+7ubo+4hqvtopwwGTj8lgnTB4QP3Ld/fZY3Hx1aQbv2nhKu/eqc0P9f/sBC0z92kXfTMmzHG1Eo\nxdAk7rO5kCWZ9pcPI4gKHNXtERMxQPsrR8i/fSWCUgy14+114LNFikb8DjcKrQoxRYOnqw/TvEKa\n//keeTctC10jSIM2Pw2FVhVqL9Z1xRQNpnmFIAg0P70HgMzLK+h86zh5tyynZcs+8m9fieVgLZLT\ng6hVIRq1SM7oIIcf/d1yytdkAvD3zx3k+JuDZ1EbiPI1mXz0d8sBOPdeF3/4j71RdcJX+05bO25H\nD5LfG4rln1mwEK/Lhtdjx9JZg8vevxCz9zaTU7wcu6UZrSEDCGQNbK3dQ37ZeqxdtXhcVjQ6M36f\nC4WoRqEQ8ftciCotHpcVU8Z0BEGg8czWgaTFBaVOj0+nJ3XucgSlCqVSRc/xvRgKZ4Lkh/P3J3kD\n4i2fow+VKbbFVErBdCS3A+TA/KVQqlEoVaRVrMDn6AuVOdvHfy6aVExgOMjS+Yfu8yJLEpZTh2LX\ni7XVnARir/HAZQ+WseTGAn56VWKy42RgVGYgydKE+wmsvquYHX+swW2P31olfFLUFWaQUppDz64z\n6IoysFe3oytMBwLx9FXpenSFGaAQ0M/IRl+aja4kC0+nDZW532Nak2PCXt0ecZ1gjH7jvGn4+lyh\nd3ggDVmb5yHqNfj7+plI8LrOhn75t3HeNGRJwtXcS94ty7Ed6580vN12Mi+vwNNpQxAVGOcX4m7p\nxWdxYJxfSNc7JyNoe+UnpyjbshZBIbDpMzM58XZ7zJwCsbDhY6Wh32/8PLZy3OvuI3f6ajzOXrKL\nltLX24ws+9Gb8zGkFuCwtOC0d6IzZCH5I/UEfr8HSfIh+X1Ifi9afUZE3CJTxnR8HgeyLBMUaQd/\n9x+T8HqcZBcto71+f1z3FURwtQ7gaK6NmD8cTTURqWyD6Dm+F0GhwDyrf3FqOXMYZJmug9uiznG2\nN8ZsZ7wxqXQCFzFyfPZf68idaQxtaxNFIuKgVGUOOtE4IfGDwncCAK89fJptfxjccmTgTiDW8ym4\ncw29e89hXjqd5qf29B+INVBjlOnLcjAvnY67rV8BGTHxDjXgB7mGoBBIXz+rv71tp/p3vOczgQ3X\njiAqBk0Oc8v357P05kAWvqe/doTDLwyfga9oURoP/n1V6P+Q71oCk5wgKMgoCCSQ6Ww6Mvx58T7P\nYWiIJQ6aKrjgdAIXMTIYMzXkzhy/cAKioEQvJhc8b7Sx9t7p7Pp7HV5X8hnkWp7ZiyYvlZZnBog2\nYk0gMcokr5+WZ/YOno1rqEltkGvIfjlqBR86HGvVHqOdobKDvf7zMyEmsOlT5Rx9uQXJP/Tku/Hj\n/buAYef3BBaZsizR2Xh4+IrxtB1+bBIsdCczLhgT0YuAq74wa/hKowrh/GficPjFwMrVkK7mCy9d\nMqK2JI8PZ13yOXVHcu5EwdbhxtYREMWkF6bwlTc2oNQMPi3c8fBiZl2SBQSY0M9v3DEudF7E2OGC\n2wl88fDtEf9/tujpIevPubaYa36wMqruLb++hJLVuQA88ZG3aT4Sv/VQ1sxU7nn6CgDq32vjnx8f\ne/m8SitSujpzzK8Tji5vI13eiVWq73+mgYpNOai0IubcsU1ucqHizUeruOm78wAw5WhZ+cEidv6l\nNqpeZomeeZtzQv+PvtJC29mLtvZTHRccExgtbHv4CMVP5SAoBNZ/dj5P3Re/hcGqB+aGfr/7y2Nj\nQR4AJUvTyJ9rZvmthWRN16MQ+1flA2XmAzGc7FMOEwmkFehYcFUeK+8owpChQfLJOCweWk/bePpr\nR3DZEgsfYM7RsuCaPFbfWYwhQ4PfK9HX5abhqIV/fuNo3MpJAJ9XYv+zjay+sxgAhSgMK85IhM5b\n/2cBGYUpCdH5ta2XYcoOZMOK9Zw3faacyx4sC/1/76l6nv/e8ah6wT60trn40WXJWbjEg/3PNrL6\nruKQKHHDA6UxmcCGB0oRFIF3TPLLvPnL+HVBokrBjQ9VMG1BKoZ0NVqTCpfNy/E32ji1rZ3T2zvi\n7vfgc5Fl+K95/c83fVoKC6/LY9nNhRgzNfg8fvq6PPQ2O3nj0Soajows7ASAOVfLfX9YQWZJIFH9\ncLqoqYALngkUr8yh7r34Td+C6KyycPzftcy7cTrTlmZRsjqX2t3DB51Kn26k/PJAeOVz25ppORq/\nZ2Oi+NhfVg1fKUm4HX4UosAl/zGDyz5ZhlIdJiJQgzpFR2qejq++uZHnv388JJYZCqJSYOMnylh/\n73RUWjFUrtQo0BiUZBTryZtj4tmHKuMesJoUJdv/UM2K24sQlQLzr8zlyMstCd/vaNLZeKyXuZfl\nRJUHUbwo0oywaNHQmbkaj41taAZZknnlp6f46G8DJp/6dHXMeguvyw/9PvR8E1118YVlWXJjAZs+\nXU5qXmTCJ32amhW3F7Li9kLazvbx8v87SdXO+HfcwfTcKq3IdV+fw7JbCiNSdis1CrRGFZklevTp\nan5xy87YDcWJjKIU7nt8Bal5OmRJ5rnvHmffM4PnMpkquOB1Aks/nHyEx3cf7feEXfeZeXGds+r+\nuaHV0s4x3AUAdDc4Ij5DHRuqbiy47T6u/docrvj8zEgGMAAag5Lbf7yQxR8YOq+AWify4V8u5bIH\nyyIm1oHIKTPwwB9XDjmJRlxfr8TS6uLwvwNeoRs+VhoxESSK0aCzsXLoSXva/Ehlek7Z0E53Y80E\nAKp2dlK1q38C1pmiw2OLysCD9Xsl3vr18LsAUSlw03fncesPFkQxgIHIKTNw72+Wc+n9MxKiW2tU\n8sCfVrL81sIh+/34G4kvBCPoKzfysb+uCt3Hk18+ckEwALjAdwLH/11LxQ0lbP7WMt74fmJ2wgD2\nThf2Thf6TC05c9O5d8uV/Pm21wfdtl7x0DLmXBsQS8iSTMeZkW8/h8JAX4BwEdBI/QSCg7F6bxd/\n++zBmCIflVbkuwcCuo/bfrgAc7aWd353LmZ739l/Rej34Reb2fJfR/H7op/jdw9cgUorcvcvllB/\nuIfH7toTVSccKWmByWrLtypRaUUWXJPHJ55cw68+uCu+Gw3DkhsLuPUHCyLoHMxMdig69zxRx+bP\nzkQQAgrrvu5IRy2NPjDsXn34NFd9YVaEGC8IdUqAAcky7HlifKJe/vGBfSGT0a++vZGfXrmNvq6A\n0jhodOBzS/z0qnewtg8d/2f+VXnc8bP+LF5d9Q5+dnXsdzJzup6PPractGk6rvzPWdQd6qH2QE9c\nND+0ZzMum5cnvniYyldHtgMcDN9+bzMaQ6DPXDYvf3rwAPWH46NvKuCC3gkcez4QC2judcXoUjVJ\ntbHzV/2r+YxSM3OuKYpZz5ibwtzrS0L/j79Qm9T1JhMsrS7++unYDADA6/JHWN+Vrs6IWS+4MwLo\nrLHz7LcqYzIAIIKJFC1Ko2Tp0KISUdn/CgfPnTbPTNmaxJXk4XL6IJ2DYSg6XTYfXbUBUUnebFPU\nuRCYTA89P3hMm7xZgfO66uy4bKObGGkovP7zM3icftQ6kQ0PBBYCOpOKlR8KvPd7nqwblgEAbP50\neei3zy3x508MvgjrrLHz50/sx+cJWFZd9YXZcdPrdfn5w337xowBlK/NDDEAW6eb397z3gXFAOAC\nZwKOroD3pVIjsvC20mFqx8ax52rorOrfjq95MLZYaPm9sxFVgcfp90rsfixa0TfVsPWxs8N64bZV\n9Scezy6NLdaYua5/Qt7+x+rQYI+F/VsirY0qNuUOeX0hbBXdeqaflo0fS7y/0wv7vX9HSmdQhJM/\nJzYTaK2yYet009vsjHk8f64pop3xgq3DzY4/BhZPKz5YhDlXy+q7itHolXgcfrb9Pj4laOZ0fej3\ne0/V01k7tP6gvbovJF4pWpQ6LPMPYtvvqmk6PjbPqGJTDvf8cikAPY1OfnP3noh37ELBBc0EVCn9\ncs1FHywLTdKJQJZktv1vv0jAPE0fs978m6aHflc+W421ZXi5+2SGLMkcjWN1Fa5fiCVHBigLM109\ntbU9Zp0gbB1uLK39oROGmwwGkwNPX55O8eL4JpJYGCmdDZUBUeDAnUDQaqj5pBXon+TTp6VE1Asy\nj8bKsRUpxsKOxwMTvVKt4KovzmbN3SUA7PpbLfbu6BhEwyEeowGAQ//u3xnNXJ8V1zl7nqxLmJ54\nsPiGAu54eDGiSkHb2T5+8+HdcenSpiIuaCag1itDcnl9ppbZV8cW5QyH2l2tEZZBSk20wjBY5nP7\n2fO76LCxUw0dtfa4TD89zn4P3cEUyEULA9ES7d2eKPl4LATl0BCwW08EZ3f3W2OFe7YmgtGgM6gc\nHrgTCDKm5hOB40EmULgwMkNbiAmM804AIvt04TV5pKQGmHtwh5AIfG6JllPWuOq2nLTi9wZ2XzOW\np8d1jqN39EVlC67O49YfzA/pan57z564RGBTFRe0YliXqubvd73JA69chz5Ty1XfW4GtzUl9Eiaj\nWz6xnSu/s5x5N07nY69fz++veRHPeVHJuk8Hcht77F5+f81LOC2Jr5YmG1pPj962N3dWwP5cn64e\n1n9hIIyZielyHr9/Lw/+fRVFi9KYuT6LOx9ZzD8+fwifO35P3tGgs+FoL03HLRRUmClalEr94cBi\nZP1HZ+D3yRw8rw9478l6rvz8TNZ9pIQjLwVWzPlzTOTNNtF80ho6b7zxx4/tC5mMQmCydVoTn3Bb\nq2xx+234fTKtZ2wUVJgH1aWMNYIK/3A4LeOnk5kIXNA7AYVSgd8rcfipfnO2ZSM0GfU6fejMapZ+\nOGAtoTGoWPShgEJx/1/PhBhA8WM/QaGNnsCKH/sJAGk3XUPxYz8hZVGkjkE06il69EfkfuXTUeVp\nt11P0aP/w7T/9xC5X/okhrUrkr6X4TBaDldATOuXscTW3/YrbYOyeq87+ZhCySK4Gwg6YSk1CvLm\nmGg5aQ0xJbfdR/u5PnJnmULhGvJCoqCJSyc50F4/Wbn7SMx1JwJBBhBuAXjF54eeM5TpRnI/fxvK\nNCNpN6wFIP32jZg3L0c7qwjzlSvQzizEuG4+5s3L0M0OSCQMK+dEtGNYOZfU61ZjWF1ByqIyDCvm\nRF1rLHBB7wSE82/gkX+eY+X9c1BqRKavzUu6PXuni/1/Ps3qBytY9uGZHH6iioW3l6ExqHBaPBz4\na2RIXeOGtVhejZ0swrp1J8ZNl2BYtxLH4X4LJP3q5QhKEesb/eZ0qtxscr7wIKLJiPXN7ShSdGhn\nlaGbN5u+ndFx3CcbHL1ejFkaWk5Z+eXtiZtuJorT2zpoOWUlb7YpNAkNpeQdiNGis6Gyl5UfKiKn\nPMAEcsuNiEqBukOR1iX1R3rJKTeSN9tEw5Fe8s4zjcZjE7MLGE0EzWHjhfa8JY69Z2J2006rl9cf\nOUPjMQv3/WEFWqOSDQ+UYutws/vvsfUP+uVz8LZ2oQ+btGWPF8sb+0i7cT2epg50c4oRVCLdz2wj\n9brVgaRYAxNjpQYMK/r2nCDn0zfR9otnx+5Gw3BB7wSCsc2cvW5OvFgXUZYs9v05kOVIrVex9lPz\nWXJ3YJWw7/GTeOyR20bT5ksRNLHFGf5eC44DR9BVhAV9EwSM61fi6+zCcSRgXSQolWQ9+BFEo4Gu\nvz1DzzMv0PWXp2n65v/Q9dd/juxmxgm2zoA81ZCpQfLLCX+SwTthu4H0aSl4nfHvBEaLzuBKPsgE\ngiKOgSaG9ee9jqdVBJzIssuMEedPZaQV6EJOZsNBVClIzQ84Y1nbJkYG/7/Xbue9p+ppOm7hL5/a\nH4pKe93X5jD/qtgLSIVOQ9eTb6PQadAU56IpyUVQqzBtXIzf0odo0IEkIbn6GVvaB9Zi3386oh37\nwTNoinJAlvHUjcy5LRFc0DuBcBz42xkW3DwDBNCZ1UnL7b3OfmXpwtv7FY+Hnoz2oJR9Powb1mB9\nLXbcF+ub29GvWBL6r51dhjIrk+6nn4fzyUf0yxehys2mb9c++t59L6xxGckR27xwsqH+cA/5c0wY\nMzWk5usGNYscTRx7o42OGjtZ0/Vccv+MhOzIR4vOjpqAWWTOedPZIBOoGyDnbzj/v2DeeSYwI2CB\n1n5u6gdnE1UK8ueaaTg6/K4mf64pZMFXe2BsUmEOh3CDgNoDPfzjPw/xkV8vQ1AI3P6jBTh6PJx7\nLzIUTM9zOyK+Ady1rf15DAbkM+h9cTey1w+ShHHt/FC5bWclbb96LtDWv0cW4iIRXNg7gTB011ip\n3RWw8Fl4e79TEAkEKwsi3G8gCF8MmbPlta2YNl2KoIkdi8VT34TrTHVIcGpcvwrJ4aRv575QnZQl\nAQ9W29vvDkvXaMrxRxNnd/UPmkVh8WfGErIks+28Q9fSGwvQGWObrw6G0aAzKFfWp6vRGpXkzwms\n8K1tkSkoO2oCk33BXBPqFDFkaTRZ+zNRLL4hvme5+Pr+0CPhISwmEuGB7USVgrt/viTXHix1AAAP\nrElEQVR+pXVw4o+Rz8Dy+j5kv4RtZ2XoM1F43zABgC2f2k7nWQtrPzWPivPevR5nYhEwAf5822sR\n/0++HFtWaHv7XayvvkXBf38dQR17Emr738fIeuBuzFddhm5hBc3f+xmyu38rrJ1Tjq+jE0/j8LbW\nZ3f3D5zSlbG9dycCJ97u39pe8bmZfPGVS4dNfjNtnpm195SM6LoHn2/i+e8fR1QpuPORxcPWDw8R\nEaRzOMRL56oPFQ8aKC44R+SUG1n3kekx60w1/PbDe0JMbNUdxXz59Q2D1s0o1vPl1zaw6o6AwvTP\nn9jPuT1jF3gxUfzX/Fd57eGA6EZjUPKZLWsHDbIXNyZRopv3FROAgFgI+gPL+RMwHUwGtu17QJYx\nXrI6dgVZRrewAuOla3DsP4K/d+AuQyDe9L1HX+kXeXz40aWs/+h0MopSUGoUKNUKMor1lCxNY+E1\nySvHk8Xef/YH28ooSuEzW9ay4vZCZqzIoKDCTPHiNGZvyOa2Hy7ga29v5JNPrRmV1fiBZ+PPd3D4\nxeYoOu/++ZJRoXNBnM983hVDe0hPFdQe7OG1R/pl3mkFOq7/xlxKV2ZgzNSg1CgwZGi47utz+dy/\n1pE2rT/A3OntHRNB8pDY9ofqiJDR9z62LBTfaarjfaMTCOLky3Vc+Z3lZM1MpWhlTkwxzmhC9nqx\nvv4Opis2YNu2O3YdtwcxzYz1ze1RxyS7HYVx6CiTQRx+oZkVtxVRtCgVdYrI1V+azdVfih2HZaTh\nlhPFC/99HEGA5bcWAoF4Qjd+O77IrCNBIlZBEE3n3MtzmHt5fBFNY8HW4caY1Z/20zOIgjooOg7W\nGwsnqPHGjsdrEEUFmz8XCKa3+q5iVt9VPOQ5sfIYTBa89vBpdCYVK24rpKDCzF2PLOEvn9w/aBys\nqYL33U7AHzYpLL17ZoSid6xg2747YPlzSez4/57GFmSfD09DdEAxT1MLCp0WVW72sNeR/DJ/+dR+\nzrw7+VZSfp/Mv759jKe/doSepuEVrh6nP6HY8kMhkQl1tOkc6PE7mAdwR3XfgHpT3zwUAoH2/vTx\nfcNmIOtucPDEFw7x0o9j51OeLHj+e8dDO+7ytZnc8t8LppwvxEC873YCEFDiKjUiM9blUfns2GcF\nkj39u4FE4aw8iW7uLIyXrKL76X8PW9/R6+VPH9/Pzd+bz7T5ZlLztKhTlPjcEh01fbSd7ZvQIFiH\nX2im8pUW5mzM4fJPlWHI0KAzq/B7JZxWHyfeaqP6vS6qdnUOG7wuXuz6ay2bPlM+fMUYdN7wrQqK\nFqYmTWdjZS9zNvYz8PpDsSNQ1h/ujQjANxHhIsYKVTs7+flN73LjtysoWpSGMVODxqDEZfVy4u02\nzuzo4OTW9imhCJclmX9+7QgLrg6I9xZdn09fl5uXf3JqgikbAWRZnvAPAan3qHy+ePj20GfOtcUx\n62SUmiPqBT/JXueaH66MOl782E+iykxXbIhZnvOFT8hFj/7PoNfSlJbIhY98Xy5+7Cdy+u03yGm3\n3SBnPfgRedpPvjNqz22wj4BCXm+6TdYodDGPX5l635jTMNRnk/keWUAI0ZpsOxN9HxP50WlSZUAu\nzF4hr5n/maTa2Lz8u7JOkyoLgijPKbk+qjxW/cLsFXKKJl3evPy7EeVD0Tjws3jm3bJS1MqLyu+U\nS/LWxaRlyax7hqRlsE9m6kz5kkVfkkWFWjbp8yNoFASFPCN/g7yq4sGkaA/ePxD1DBL5jMb8+74T\nBwF0nbPElSpytGHblpwXqvtcLS3f+xm27bsxXLIGw9oVqPJycBwee7MyGYkd1n/iluK3mVcLQ2eR\nGk348WEQA1Y3JnF8LaJKNPNj3utg5ZMd3dZqdGrz8BWHgCz7aWiLz4tdKSYWHDAWmjoO4PO7aOo4\nSHba3IhjQVrM+mlJtV2UvZK6lp34JQ9We6R1nixLtPUcR69NPG9FEEpRiyBM/BT8vhQHQcBKqGT1\n2Fli1D345agy2e2JWd728K+Hbc/X3Uv3P56l+x/j40o+EoiCGFinjAO8khuDmIbN341RTMfiHz99\nSJFmLm3emqh7Hax8MkMQRLLS5tBpCfhWrKr4BEfOPoHT3YtWncqSmXez69ijcbWlUMRnNdPbN/Iw\n0A53wKnM6elBp0mNOq5QiEhSckp2gy6bc02xw74oRQ3TspbSbatNqm0I3H+GqRSHa2LNYd+3TKB2\nZytd1VYyZkxMtMLJhM2p99LqqcYv+9GLqezrewkITGYF6pmYxAy2W5/CKQWUe3oxlYUpGxGFyNdn\nof4yUhRGVIIGCYl3rc8AoFXoWWW4gT6ph6P2bXhkJxvNd7LL9hyXmj7Idus/cUl9XGq6A7VCy0nH\nbko0FSgFNadde2nxxE5ZCaAQlCiFgA9G8BsgXZnHbN0qVIKGKtd+mj1nz9/rRznp2E2ZdnFU2+uM\nt0Rdc43xJlSCBhmJs66DoXZWGz+ATmFgueGa0L0G739geTgtMhLbrU9H0FKiqeCc+/CQ95loVNN4\n8I2KVwBYVfFJBEGBx2vnwOk/AdDceYis1DnUt+0mK20W7T3xKWxVyhSKc9dSea4/pMma+Z8lyBHf\n2v/9ULnLY4sZxeXyZd8K/Q6vHwt+vzf0rRqwswjS0tHbH9NrMFpi3otKj9fv4vJlD6EQRN7Y9+3Q\nsUsXf5Ueaw1Hz0WGbolFe/g1w8tdHhsZphkXmcBE4uDfzrD5oWUTTcaEQ4FIq7eWJfrNHLS/ESqv\nd5+g3n2CK1Pvi6g/R7eKVm811a4jEceO2AOrJp3CEGIYgfqrecf6BKXaRcxJWcUR+1bsfiu5qum0\neevIUZXQ6q3GKdnQKlJIEU28a9tCrmo6s3WrhpwcBRQoCTjuiGFMoM/fy0H7a7gkBxvNd4UmbwUK\nUkQTp5x7otqOdc1gG6nKHBbrN4Xa2W17nitT72Nf38uhew3e/8DycFpSlf3mpkFa3rVtYYPpjiHv\ncyyx5/ivcLp7KcpZzfzSW9l74ne0dB1lQelt1LftJjt1NmcaXh+2nVUVn8Tnd9JliTS22FX5c5zu\naGsnAdCooxdhw03O4RBFVejb6+/3xA6n5UxDv3PnYLTEgtfnQKlQs6vy56xb8J8Rxw6e/jPzZtzC\nwO1eLNqHun+npzfmMxhPXDBMwLR4BdZDe/nZosAqS1tYjDa/kJwbVtD51iv47X3k3X4PPTu34moK\nOASdPaKk9qM1WA/tI3PztWRfdwsdrzxH9jU30/ZCP4fP3Hwdvbu3IXncZF9/G7LPy98ekml/cQvG\nhcuQ3IGXL6V0JkqTGeuhQNgHw9wF9J04OijN+llzUag1OGvOhtp2nD2F32HH1dSA7PeTvv5yBFHE\nemQ/uqLp9O7dSfoll9P73s7Qsa5tr5N52dXIsoz18H7cLfE7SAXR5++O+B4KZjGbk47YPg+xkKYM\niN1avbWs1AR8A9q9teSqZvBe3wusMt6AjJ92bx1pyhwa3IGkPBZ/BxpFyqDthmiXepmtW0WHt9/R\na5Xxes4499Eq1aAWIleIwfZjtT3wmqliDq1SDV7ZHdVOvAinxStHBkYbipZwBFftYwlBUCCcVxN6\nfQ7q2/Ywb/pN2Byt2BzD+5UEmUkiMOiGN30eCuUFm6is3kJp/mXUtvSHVkmGloGoaniDihk3c6x6\nS9SxHlsde47/mrXzP0tl9Ra6rclZGXZZzlKYPXYh4ePBBcMEbEcPkHvTh+je/haern65sEKXgt9+\nflUaw6DXOG8xmuw8ZEnCduwwpoXLiCXMTb90Mwqtjr6TlejLZ+PpbEc3vQzb0QOkX7oZT1tLRHv2\nqpNocvMxzJobRdNQbStUKsxLV2FavAJXQy0+mwVvdyfpl2yiZ+dWNHnTkDwezEtWhI6JuhQUWh2d\nb7yIzxZfFqeRwOLvIFtdQo3rSMzjOoUxYifQ5Qso1XJV0+n2BZ5Tn9SL6Aswq05vIzmqGdS6B2eY\nQ8Hu72VBygaqw+hRCuoIGpJFsI0CdbSJqV/2Rd1rrPJwWgrU5Zxx7otqayKxquKTADjdPRyveS5U\n3mmpYlbRNRyrfmZE7Q8lgmnrOcGsokhRVyIiFUEQuXTRl+mynqOhffjnmog4qKXrKEZ9Hktn3Utn\n75mo416fk9P1rzK35APsPvbLhGkPItYzGE9cMExA9vvpePXfZF1zI61b/hEqlxx2RL0hwAhixOuw\nHTt0fidwHe7mRowVC4NmqxHo3vYGvj4b+R+6F29PNygUGGbPw3HuDF1vv0ruLXdiPbw/1B6Ao7oK\nUZcSRVMQgqhE9vki2u47WYnlwB70M+ei0Gjx9nYH6mx/C3drE5mbrqVn1zukrlgbOubt6abzrZdJ\nW3cZ9qqTOM6ejrpWohAQWGa4BtV5EctS/ZUcsL+OU7JxyrmHBSkbmaaeiUS0R+5i/SbckoN3bYEV\n1CnnHjaY7qBP6uWYI+AVbff34pUCq+JOXyOl2sUcd+yIaiseOCUbPtmNR+63YKpy7meRfhN+2RO1\n+k4EwTYaPKei2qlxH42611jl4bQ0eCafPfnWgz+MWS7LEh6fnd6+4XeW4fLyRMvf3P/dYeu/tf97\nMcsPnvnLiGkZHDJn6l/lTP2rg7bT2l1Ja3flkO3Hoj28rsfbF/EMxhtCrAlv3IkQhBETYZg9j5QZ\n5Tgb6rBVHgyJg5y150i/dDOSy4n9zAl8tv/fzv28Ng3GcRz/JGlt0VXcOqhj/rgIopv1sJNMQYfT\ng4Kg4MU/Ybf9NV71qCf9C7xsR0GY2FEP4jb3Azbn1sZ2S/p46BaRdVBQaOP3/YJekvKQXPJ+mubJ\njgrlCTWWvij+GWro5pSaG2vJxTg3Mqri7XtafvE8GXt4+qH8XF6SU7T9XVvz76RWS2efPFPt4wfl\nz19Uc21VcVhLxmusfFWuNCI/eyI5puRYr1xTfvSCskNFrb99reG7D5Kxo90f7dtBqyvyMxkV79zX\n3tammt+WVK9WVHr0VOtvXil7ZjDZV/+0oIGxsoJTBdUrC6p/7r8LDdKnNHhVpwfOqXrwf8CN8ZmO\n3zucBadR2s/JOffX65X/mwgcDNRxti/Pa39a3b1HxgsCFcq/3/MfViuKasevsvUy7Rl9x+1xLM/3\nj4wXNxty+909uuYFgVzcfufMyUuX/5jpH+7zgkByTq7Lc0ybycLjI9vmdvv/cdm0unV9VntRqPeL\nL7Ufhb0+HByDCACAYf8iAr1frgYA6BkiAACG9cXtIABAb/BLAAAMIwIAYBgRAADDiAAAGEYEAMAw\nIgAAhhEBADCMCACAYUQAAAwjAgBgGBEAAMOIAAAYRgQAwDAiAACGEQEAMIwIAIBhRAAADCMCAGAY\nEQAAw4gAABhGBADAMCIAAIYRAQAw7Be9hzYKGkGEBgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ff42b692d90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "drawWordCloud(seedWord='Utrecht')\n", "display(inputField)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "London : ? :: Paris : France\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAADKCAYAAABDsfw/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXV83PX9+J+fz7nmLu5pGqm7UmqUFmix4TIYw2EbjG3I\nlzFglDF+gw2YATMcNtylOKVG3SWpRBrXS87t8/vjmkuud5dcvKX37COPJm//vC/5vN7yEkGSJOLE\niRMnzomJONwDiBMnTpw4w0dcCMSJEyfOCUxcCMSJEyfOCUxcCMSJEyfOCUxcCMSJEyfOCUxcCMSJ\nEyfOCUxcCMSJEyfOCUxcCMSJEyfOCUxcCMSJEyfOCYx8uAcAIAhC3Gw5Tpw4cXqJJElCf9uI7wS6\n8PTe+SRlqYe83970ecoVWdzz1tSYx/r03vk8selkHls/h+KZpmD6k7vmYUpTkZKr4em980PKd7Dw\nh5n84vmJKFTxX5M4cb6vfK/+updck40xSTncwxhUvnqpiofO39yrOg+es4lfzlzDDx8oCqaJMoHJ\ni5Oi1hk718yMM1N58uZdeFz+Po83Tpw4xzbHxHFQb5hzfjpLrslGZ5KzZ3ULz961D4DrHx/DtKUp\nLLgsE59X4v6lGwC47dmJZBRoqSq18dyd+2hrcqM1yrnw/0Yy+iQzMrlA5R4rf7thZ0g/SVlqrnts\nDH+4ZEuPY1HrZJSsbw2O5Z63p/L0z3YjSXDLP8fzwFkbAfjb9rmseauO9AItzVVOnvu/QPm5F6Uz\nfVkKLruff/9qD7UH7FHH3ldkcoGaI+12cHifLWLZW/8zgefu3Mejl2/tc3/DxXzxnLA0q2Rhs/TN\noPQ3SzwNA6aIeZ/7X4u5ncXixRHT22nlO/+nfRpbJGaIp5JAZOHfTgsb/F/ixzdg/cU59jnuhMDF\nvy7gkcu2Ul/uIClTFUz/1y/2MG1pCo//eDtNVc5gesn6Vp64ejvLbs7l4nsK+Pcv93DJPQUIosB9\np2/A6/ZjTu9sx+eVGDPHzPm35/PSfaUxjaW61EbaCE0wfe3bdUxenITfB1s/bwymy5Ui8y/N4O83\n7eS6x8YEhYDD6uPe0zZwxg05XHJPAX++ZkfUsfeFe9+bhigTWH72xpB0S31koaLRy/H5js9rGiXh\nR2QKwQnH5+MMONEEgBsX2/yr4wLgBOS4Ow765J8V3Pz3sWQWaqkrc/RYftMnDQBsXtHImJPNAIyb\nn8iKf1fidQeOOVpqXcHyU09L5upHR/HXG3ZSvrM9prFceNfIkLGsf7+e8QsSmbgokc2fNobVqz3o\nQKWVBX/e8XUTAFs+ayR/orHbsfeFB8/ZxK2TV3HtH8eE5ZnTwo/PPnqqnKt+X9zn/uIcm2QLBRHT\nJSR2+NfgxB4xP873m+NQCFTy+wu2cNn9RVz5u55fVIJw5PK8yx26IApRV4ZtTW5e+/0Bzrs9H6GH\ne/eOsVSV2ELGYm3x4Gj3kZihpnK3Naye/6hVdkc3giDQNb5DpLH3h+xRurC0gmkJYWk7vm7G0e5l\n4Q8zB6bjOMNOAskUC1Mi5u2TttBCwxCPKM6xwnEnBAqmGHFavbzy21ImL0kOyXM5fCRnhx4HTD09\nUGba6cmUrG8FYNe3zZx2bTZyZeDxu9Y5tK2djR82cHBLG5feWxjTWNa+XRc2lnXv1LH9yAq/JyYu\nCmzRpyxJ5tD2zt1HpLH3h+r94XcAjnZvxLKvPnSAJddkkz06XHDEOb5QoWaiOAcxyp/7YWn/kIxD\nEGScPPk2lAr9kPTXHTnps1kyezkaVeT7nK4smb2cU2fdz6kz7wt+fZ8QjoXIYt9XOwFBgGNgek8o\nIl2wDvTlaleO9YvhMcJ0soSREfNcOPjO/xlunBHz+8PcKb9k0+5ncLj6v3jpbb+rtjwWU9kls5ez\nastjPY4x1nLDwUDYCRx3F8NDzX0fTI+YvvysjRHTO5h6ejKbV4TfBwwGfR1jnO83WcLIqALAj59t\n/tUhAkAh11CcdwaJxpFYHfVs2fsiAGqlkXEF5yPhZ+f+t3B7Akecp866n32HPmRk9imUVKygtnE7\nABOLLkajMjFt7NX4/T7WbPsLALMn3IxBlxHyQu1oIzdjDnKZKtiOUqFnXMEP0GlS8XjtfLfj6Yjl\nV25+tLNPdSIalYk5k24N9plozKd4xFLkMhUHKr+kpnHbgM1vV+GgUZmYO+WXfLbuvuA4dx98l8Ls\nRXx7RCh1zKNOk8K6HU8F5/HkybdR27SdZFMxO0pfx+4MnCAoFXpmjr8Bj9fOnoPv0WarHrCxdyUu\nBHqgLy/Sh7+aRXuLZ8iEQPxlHycSo4SpUfP2Shtpozm0/IhlgMDqbX9GKdd2ST+TlrZDwTI7SgM7\nHFGQoVEnsq/8Y0blLQ0Kge2lr7EkaTybdj8bsnpet+MplsxeHtJnRxtrtv2FtKTxwXZGjVhGbeN2\nahq3k2Qqilq+g+1HxrRk9vKgAACwOhrYsvclNCoTk0dd3mchMGfyz0O29V+sX95N6cA4derkoACA\nznnctOc5JhRdHJxHrToRr9dFffNuRo84k817XzhSfhmrtjxGkqmIcQXnsXb73/s09p6IC4FB4O5T\nvhvuIcQ5wVGhjnoHUCGVUi2VhaUnm4rYuPtZ/H4vTndbMD3RmM/+ys8AmJExJ6ROTeM2fD43KqWh\nz2PteDG3WauC7SQlFJBoHEFR7mkArNz8x4jle0KtSqAwZzEyUYGii2DrLWu2/rnXx0FHC5yu85iU\nEKqp1dgaUBcfkTk3mJaUUMD8qbcDMJjH9nEhECcqokZDyiWXojCb8Vos1D7znwFrO/c391Hxu+5X\nU3H6hojIRHFOxLxmqZ5SKZoRYOTjZSmoShee7/O5wtJ6S2cboS+6zXtfoN1WG3P5SEwsupjSik+x\n2uuZM+mWfo40EoE5kcnCVa39fk/Iz1I34xUQkQi3zO8q/AaLuBCIE5XsX/yKykf/gOTp/GXO+vkv\ncOwvRZmWBn6J2ueeQVNYiPmMpSBB80cf4jx0kJRLL6Phf/8FIO2KK6l76UV0EyZgXrwE1+HDQfXX\nSHWzf3UHrsoKlBkZ2PfupWXFJ8Py/McjWcJIxgiR74h8eNksfR217uqtTzAqbynmhHzcHivf7fgH\nAGu3/Y1xhecjILAuxiOJA5VfMnvCT3B52lmz7a8ICMyacDMAU0ZfidtrZ9f+t6LWX7Ptr4zJP5sE\nfTYSfr7d/KeY+50z6RbWbPsrAGXVqxiVt5Sy6lV4vAFbHgGBaWOvDhuLw9UStd1Ix0E79r/BjPHX\n4fW6qKhdh1/q3tCuYx71mtSweUxPnkiKeRTrd/4rZA7mT70DCT8VNWspr1kT0xz0lrh20BAx6s0H\nQn4u/eFD+J19dwMx0IhqJUUv3wPAvgvuByDvvt9Svvy3IeVGPvJHKh99BE9DfTAt+5e3U/Ovf4Ag\nkHHtdRx+/DES5i/AvivgikM/bTotn64g5867qH76KSSvl7z7H+DQXXdErDvyD49S/tCD+G02cu+5\nN2wM3XEiawclkMQ08ZSox0A7pLXUSZUxjynO0LBk9nK+3fIYzj5oH51w2kGiSon5zFnoZ41BlZ+O\nz2LH22rFsbcC64a92LcfHPoxaVRox+Vh3VjSbbm6f32IzKgl+ZJThmhk/UfyeRHkciRvpy2Br709\nRAAAyAwGfO0B+waZMWB8Zt2yGf2UqYCEbVvgbFTUavG1Bc6a/TZb1Lo+qzVYTvLHndfFgrIHW4BD\n0p64AOiBkyb9LGL62m1/G/S+B8getE8cN0JAbtKT8+DVKDMDBlSehlbkZgPyRAPqkRmo89OpGAYh\noJ8xioyfXxBcPUej9ZP1AMeVEHCUlGA8eS6Wb74OGj1E2jn62tqQGQPuLjpe6L72dgSZDJnRiLsu\ncK7rtzuQGQxIHg+iVhu17rGwOz3emCjOQYUmYl6jVM1BaWfEvDidDMXL/ljkuBECKVcuQZmZjOtQ\nLTV/eRNXRT0IAsqMRPSzxuCurO+5kUFAOzGyHvb3geaPPiLl0sswTJuO5PVS9ZcnIpZrfPcd0q68\nCgRoevedYLq7thaFr3MX0fzJR2Rcdz3Oiko8jY3d1o3TO0wkR0y3085O6btuLyXjDC8dtgXDxXFz\nJ1D0yj2IKiWHfvYX3DWxuWMASL50EfrpxSjSExHkMnztdlreX0vze6GXLDK9BvM5c9BPH4UiPeCs\nzVPTTMU9/wk7u0+/+RxU+RmoclMRFJHlaLSdQcfdQE93Aqr8dDJ+dh6KjCPjtthxlh6m6pH/hZXN\nuf8qKh98kcSzTyJh0RQUaWbsOw7R+OpXOPeHq9HpJhWQ+IO5qAsz8dS10PrZJixfbqH4f/d2O/be\nkHHjzbhra4b8xX6i3Ql0dw+wVfqWRqkm5jHEOf44oe4EPNXNqPLT0U0twv1hbEJAXZRF0kULkNwe\nnIdqkdxeFGlm1EXZYWVHPPFT5GYDPqsDZ2kVCALqEenk/elmDi9/AU9dF80BQcBVVourrJaEUwMG\nOZYvehfopTsEmYzs31yJqFLgqW7CZ3OizE5BP2sM2gn52HccCimvzE4h46fnYlw4GVdlPY59leim\nFqGdkE/53f/CdahTzc50+gzSbjgLAHd1I4JSQdoNZ6Edm4ff5UZUDUxQnpp/PDUg7cSJTk/3AHEB\nECcWjhsh0PrFJtKuO5OUKxYjeX20rtjQbXmZXkPWXZdh+WIz9c9+gt/Rqc/cca/QgahRITcbaHrr\nW5pe/QrJG1D1EhRyiv93L1l3X075Hf9A8gSONmqffDdYt0MIdE3rL5LPR/2/PsC6YR+Szx8cS/pP\nziHpwgVhQkCeaMBw8ngOP/QSts2BGAjZ9/0I3aQCks6fT/WfAitSZUYSqdcsBUmi5i9v07YycGGr\nm1pE1h2XICgV3Y5LVKnwu1yoCwuQJyfhqatDmZ6Ou6oaWYIR+45daCeOR2Y0IDMYcOzZhzIjkK/M\nzsJdW4vrYFmwPZlej89qRTt+LPadu9GOH4uo1+Opq0OQyYN9SB4vglKBTKcL9mHffmKfcQtHbAGi\n3QPEL4HjxMpx40XU8ulGrOv3BleuSRfMR5YQ3cOl6fQZyM0Gap96L0QAQGAFHFL2tOnYth2g8eXP\ngwIAQPJ4sW07gConNfiyHyra1+0JCoCOsTT+7yvUBZHdO7d8vD4oAACaXvsaAM2Y3GCa6fTpCHIZ\nbd/uCAoAANvmUlo+6tnK2e8KzKPcbMJ14CCuQ+W0r/0OdXHA26q6YCSCTEb7qrVIHg+q/BHB/PY1\n61Dl5oS0p50wDt2USciTA15U5SnJwXa79qGbOjlYt6OPE51RwpSo9wDttLJbWj/EI+ob736SzMr1\nqaSmDfxnqlAIwfbjROe4EQKSz0/VI/+j9qn38DRaSL78VAr++StSr12GqFGFlddNO+LfP4Y7D/3M\n0Vi+jBxGsu1IumHOuL4PfoDwNrZFfFYA63ehUcc6BJ28i6DUjs8HoH3d7vD6G/b12L/xlPloxo4G\nOgWCfsY0vK0W7Lv2YDx1IfYdu9DPnI6gUOBrawvmR0QQEDVq/HYH+pnTEdXqYLtd+3BXVeM6WBbS\nx4lMppAfNUCMBxfb/avx9SNCWEllRsjXvooMtpWk85+XErnqWh1a3cApNI4ZpyA9Q8bY8T0fShiN\nIlf8WIfBEFv/mVmyYPtxonPcHAcBIElYPg9cYubcdyXaCSMxL5uFbmoRFb/+Nz5Lp798ZVbkVVIk\nlNkpuMvrIua5KgLpqtwhXk2IIhm3nIcqLw2ZUYuoVnZ7XOOpDXUGJrm9wXY6UKQnAuCuCndsF3Ln\nEYW2r78NE6rWjZtBklCkpeLYsxfJ68W6YVNnuS7+tNtXrkY3dXJn3e82IPl8YeWAQBtHsG0KCOKu\nfZzIjBamRUyXkNgurcVB5NjRvaGm2keHobgggFojMG+BinkLVPz4Oh1XXNRE1eH+h6Lcs8uD3iCy\nfaunx7LzFqq470Ej337toj1KHIyuVFf5gu3Hic7xJQQ68Pup/O3zABhmjyHzjkvJ+8MNHLzp8WAR\nQRyg1UpP4cUGgYxbzsO4cDKlP3oYv63T1a+oVVP04t0R6/TK+jjC7igmo6xIu6ojaZ66ejx19eHl\nunwv+f3YNkfxWxPDji2kjxOUscKMiBfB1VLZgB4B3XRNC3t2hb+Yb7vDwE9u1fPOx8nMmBB54dQb\nzj0jNk+7ogh33tM7J3UejxRz+ycyx6cQ6IKrLPCLKDeFRityVzWhLsqKrY3yOlR5abgi2BqoctMC\nZSqG7uWjmz4KIEQAAChSe46C1B2euhZUI9JRZiaF7QYUyeFhJuMcW6QK2WQK+RHz9kpD40687GBg\nBS7KQhdHJZUZbNvi4aJzGsnNk/G/d5IxGgXq6/x885WLB+7pPBIcWSjnk69SQuovmddAeVnk1f39\nv0vg/Is0aLSBPj/7NrRucU6oFlRJZUZYG0eX6cqIfDkXXKzh5AUqRo9R0NLsZ9sWN/9+2sbmjaGL\nq5LKDPbs8vDS83au/LGWESPleL2wdbObv/ypna2be97RHGsc9/sk1YjAS9rTGHrubN18xI1DDCv5\n9rW7MC6KHH814Uj60WfuHXRoDA0kojqymqZ+Wv+Cv3doFelnjw3L002NB5Y/llGhieoYDgICYiiY\nMi3wu7lpffjOMy1dpKBQzhvvJ1NX46O6ykdGpowR+aFn8k0Nfh57pJ1n/xXbsVVyisjKrzvvilZ+\n7WLFR87g19F0tP3Om44e2xZFeOHVRG78mZ4xYxWU7vOg1wssPl3Ny28kMfvk8L/F/AI5Dz2SgMks\ncuiAF7kc5s5X8fIbSTE9z7HGcbMTSLv+TNrX7MK+uzx4dKAZk0fqNcsAaFu5PaR86yfrMS+dSdoN\nZ9HwwqchGkL6maOxrt8b/NnyxZag+mnj/7qoiMplaCeOxF3bjOXzyHYAror6qBo7fcVd2YAqPz0k\nTTe1iMQL5ver3dZPN2JaNpOE+ROxb9lP26odQGAeE8/tdD0sKlVkzT8fj70NZ2M1rSWhl+YylQaV\nKQV7XQXGEWNRmpJp3LoymJ+z+DIqP/8vxpHjUSemYdm/HVdrz4HMO+rFCUVAYLwwCwXRbThGCVNo\nlupw03/XzpFQKARu+pmOS6/Q0lDv56HftoWVSUmR8Zd/mHn7DQcPLw/kp2fISEkNXWtaLH6e/msg\nqtbV1/ccw/qWGwP3VR0r/AfvbYu6awCCbQP84ILIKrQd+P3w+KPtKBQCH77nwGaVSEgQ+es/zcye\no+QntxpYtzrULkmtFvj17RbeeNUOQGKSyLMvJzJmXPcq1scqx40QMJ0xE9MZM5G8PrzNbYhqJTJj\n4BfIvv0gzW+vCinva7NT9Yf/kfvQtRgXTMJVVovk8iAz61HlpIZYxUpuD566FhLPm0fCkum4ygLG\nVaoR6XgaLVQ9/Ap+V+Qz9+Z3V5P5y4sY8cRPA9o7aiUyk45DP+uMbmScPxF5kjFEsyf1x2fgs9rx\n2100vfVtSJtN76wi8xcXkrP8arwt7aiyklHlZ2D5cktwZ9IX3NWNNDy7gtTrlpHxiwtJunghks+P\nKjeV1s82op82CnmigcQxM2nevQ5bdWDnYCqajL2uAlPRFBq2fk3y5Pm4Whqw11XgsVlQmgKX8DK1\njvRZpwOgScnCPHo6XocVhcFE4rjZIAg071qH12ElecJcnM21WKsOkD7rdDy2KBpEccgTRmMWuldM\nUKBilDCVHdLaAenz3U/CFStK9np54tF2XnnBjsUSfockk0O7xR8UAAC1NT5qa/p/gTyYvP166I7B\nYvHz9yfamT0nifETI7/YOwQAQHOTn6f/ZuXPT5kHdZyDxXEjBPriysCxtyLmegd/EtkvTk+0r97J\nvtXdGy513aU0vvJFz22u2sG+I6v0o6n9e7gbhkjP6He6I6a3fPwdLR9Htgmo430AUqYsCGrt5Cy+\nDGdTNbJWDerkDCSfj9aSLSSMnBBWP2nCHBq3ryJtxhIcDVW0l+/F1VKHrfoQzsYavA4rOUsup2b1\n+4gKJZYD20mdsYTG7atwtzaSs+Sy6JNygmLAhEEIvQuSkBAi+J1ME3IwCSms9X+Ml/6dTZ97RmPY\nxfDd9xn5xZ0GbvmlgSsubmLzhvCF0UMPhO8QjnVkclh2loZFS1TMmqNCqxFQqQPzq9fHphiye+fx\nq7F23AiBOENH856NZC28AHdrI5LPi62mnNQZS/A57SgTkkkcOwt1UgbGphr0OcUoTcm4muuxHNhO\n2owl+L3hL6D02Uvxe91Y9oeG3Ouo42ppiFgvTjjr/J8wVVwY0VpYhZpiYTK7pe4t6vvCw8vbSEuX\nsexsNbf9ysCPLg1339JmGX5fZL0hMUnkmZcSGTtegccj8dZrDlpb/ahUAj++ruejqu8DcSEQJwyf\n00bFJy8giDIkf2BHUPHJi8Hva1a/HyzbVhZqeFb52X+RpMBRQfOudcH0w1+9gSAIwbyaNR8A4Gqu\nO1JHIpZwgSc6NVIZNtrZI21isjA3YplMIZ86KmmSwkMz9pdV37hYdraaMeO+H6+O/7vXyNjxCg4d\n8HLlJc3U1wV+x0eMlJ8wQuC41w6KM3h0vPSP/r7bOlI0ewMpal4gPS4AukNColTaxq4jtgCNUjV1\nUkXU8t1pEvUHlTrwv0IxnGFQBo5TFgfu6f7ymDUoAACys08cK+O4EIgT5xjHi4et0reUS6GuPfZJ\nW/AQWWFBjXZQxrJwUUAKlOwb+jNwlyuwUDAYB04AaY/YHjQ2hC5yFi2J7J7l+8j3Y0/XR1J/tBiZ\nNvBh1zz9YVi+TK/GZw3oIRtPHkvb2j3gD1+xdi13LKIuKMB16BCK1FQ0hUU4SktQZmZh3bYV3YSJ\niGo19p07kBkMaAqL8NlsWLdtRZ2fj/PAgWA7hlmzcVdXoUhOCearMjJxlJbgrutiPSqKqPPzEQQB\neVISnto6nOVlqEfk43c5Uefl4aquxlURfSUbJ0B38QTcuPjG/w5ThPkkCelh+XPEZazzr8DfBz9C\nTz9jDrqNAEgwCSQkBNaMLz9v54Hf9E2bSyaDa2/UYzAI6I2da9C77zNQV+vHavXz8vN2qqvCx3z3\nryw89jcTb32YTH2dj5pqPyML5UwbWxvS/m23G9AbxRAfQw/8PgGr1U97u8R7bzmC7f/fLy386a8m\nXnwtiZJ9XrRagewcGY8/0k59nW9QHNsda5zQQgCg4dVv8DtcyPQaEpfNQNSpceytpH1DCYlnzabh\nf1+jLsgg6dw5KDOSsO8qRz+jGJleQ/OH3+GuagqWM84dhzLdjCI5gbbVuzDMHgN+idavt+E8MHy+\n3VWZWbjKy9FNmEjLZ59iWrwYQRDRjRuH3GyibeVKTKeeCgi0fPYp5iWnBfJM5hAhYN+9C8OMGQgy\neTDf8u1KTIsXhwiBjjxkIu3ffYfk8aApLESRnIygUmHdtAmf1RphpHH6wh5pI3OFs8LStegpEMZT\nKm2LUKt7MjJDX34+H3zxmZP/vmhn5Vd9t0WQywVuvzvc/cOiJerg96u/dUcUAh+868Dvl7j6ej2j\nxsgxJ4p8tzZ0JySXC9z4M31Y3cuu7NwZbd/qCbb//jsOrFY/N99ioLBYzv4SL398uJ2P3ncwdryC\n05fFhcD3nuQL5yHTq6l77jOUWclUPf5WMK9tVUD103mgBldFPU1vr0by+fE0WtCOzcUwazSNr60M\nllMkJ+AorabpvXVk3HgmgihQ9+IXeJvbYx6PJi+f7OtviZpf+ptf9vFJu5zXSxI+hw2ZIRDbV/L7\nQQKJQL7P3pkXMrbiYnxWK4JCEZp/lN+fjjwBAU1REe7aWvTTpuGqrKRt9Wr006bhdzqDAehjJeXM\nH2A6qdNgLta5EBm8P2TZMfAn5MQeNS9XKKZOqqSN5qhljiaaiwVRJuD3hX7WxWfkUfJJecQ6HXld\ncbmksLKRykXjo/edfPR+YNc96ZIitr1aSvr4JGp3NgXbnzrdQvEZuWx+fm93TQX56nMXX30eLtg6\njNRCxhplbsrLvN26pjiWGf7f4B4o+t1jfaoX6wui8Y1v8bZYkZv1eJq60XHu8qIznjwO9+FGBDH8\nSsXbYg148BQE6l/+kuTzTsa6qRTr1gNhZYcSw6zZ+NrbMZ40B5/FgqBSY9+zC+Ock0mYOxdX1WFk\nRiPGk+YAAvY9uzAvOS2kDVGlCgSWcXuC+R3tdcW+ZzfmJafhqa9HptMj0+mwrFyJYfoMNEVFCIKA\nqO7eknMgkQ/ir3k0K14/MTjkG0AsNJFAuNsCAYGx4gzW+z/r95gEmQg+H+YRBrJnpNGwtwVtoors\nGam42j1kTEymoaQFQ7qO9lob5jwD488voOmgBa/Th1wtw9nqCtb1eyV8Hl9IuZqtAZ9WXfuw1tmx\n1jvImpZKQraelkNteF0+UscloU89TOrYRGp3NpEy2kzGxGS2v1Ya1DPImJRMcpGJHW/s79ezf585\n5oXAYJNyyQKQJBpeWxmSrsxIxLR4CradZVg3luI4UEPqVUtoX7MbZUYioloBfn9IuaMxLZ6CoJAR\nwa4nKu6mRho/eQ+ZVociJRWZVo8mL7LTsFixfNvl2Y5y2dz84QehhbvkN77xOvrJnRbKbWtC4zI3\nvPYqCAKCIISUs27dEsg7iqb33wt0IZN1upAeAuQMnjl/tLb7cg7fH3b7NzBLPC2ih1E9CYwQxnBQ\nGpg4DEqdAluDg8ypKfjcfg5vqOfkWyfRtN9C2thEFFoF2kQ1fp/EzrcOMPnyUeiS1dgaHdRsawzW\n3frSPvw+iZELs4PlOoRA1z46VvSGNC3Vm+tprQwcJTbsbcFa70CUB565+LRcmvaHLkgyp6Sw6bnI\nfr/iBDjmA8137ARsJXto/uKTmNt0Vn1/wut13Q315zjoeCeW46BoAdvX+j/BxsBasyaQzAxxUcQ8\nC01s8PdsHd5BXwPNd0VAZJa4BD2RPcK20cx6/+cxj6nbvkQB6SgliUhpsdaFwHFT4eJABLnSzwJ/\nv7G0N1DjOh45oQLN+x3279WLPc7QYhBM2KSBFQJGIbprb5fUswfLgUbCzx7/RqaLiyK6lTCSOHB9\nRXipxvpPCwezAAAgAElEQVSijVbO75MoWdE/jbH+jOtEJW4nEOeEwMDAO/fqrk0bsSsDDCQWmqiU\nSqPma+ldYJY433/iQiDOCUGSkDag7QkIEXXzO7DSOqD99YYD0s6oISbHijOGeDRxjnXiQiDO8UM/\ndvV6TAO6G0gU0iI6cOugVRq+sIY+vOyJEmnMRDI5QuEQj2j4EGQycu69p8dyukkTyX/iT8Gfc357\nL/mP/zEkbTA4ut/h4Li5ExgIOi5YS+/9VWdgmrx89BOnYJgwBVGlxu904GlpwlF2iLaN63A3xhZW\nUpGYRMKMk9DkF6BITEam1oQEeT+a1rUrafgw3C30YCHI5aQsPRdVVjYKc1JARdPvx1VThbP6MNYd\nW3CUH+q2jY7587tdHHjw1yBJwfnTjihAZjAiqtS4ag73ev4gMIcZl/0YucmMqFDibW/DVVVJ29aN\n2PbuQvL17KrAjQslkU3+M4V89knhut99IZMRUfNstOFi6O8EutIs1UXVSisUJtIgVXdrX3A0kV5U\nh277VV+HF4Ko0SD5fEjuXsTJPjKmrmMwzJ5F8qUXRxhX71cPlb99EESR/Mce7XXd440TSgh0oCsa\njenkBWgLOkMqSj4fgige0WvXo87Owzx3Ia1rvqHho3e7bS9pyTISFywGwO90YD9Qis/ajmHiVERN\n52pR8nho/vZLPE2NOCvLBuXZjkadlUvOzbeFpUs+H4JMhjp3BOrcEZhmBzxSOg9XUPl097EVRKWq\n2zlUZ+cF5w/ocQ6TTj2DxFNCbRIkvx+FyYzCnIh+/CRctdW0be7ZPfIu6TumCJEjsOUIhRgEExv9\nX/bYTncICKQJuVHzt/lX96v9gWKHtJYJwklh6TLkzBXPYre0gWqpe8HflYF66YcgCGTd+Sua33kP\n27btPZfvBu248LCpks9H5YO/71uD/qG19RguTkghkHb+pcj0gQsy277dtK5bhb10L4IookzPxHTS\nfIxTAl4YTSfNx7JpPe66yNaAytR0EuefCoC9dC81/3sBvytg0dj46YekX3IluuIxAAgKBc1frhjs\nxwvBWVWBo/wQmrx8mr5cgePQflw11fidgZWqee4pJJ6yBPGIe0h1dvSXW1c65rBj/pwVZfhdTgRR\nJPW8S4PzB4E5jCYENCMLQwRA8zef07Z5PZ7mJhAEFOYkDOMnkbRkGclLlvU4rmapDqdgj+pAzUQy\no4Vp7JU2xfScRyMgMFaIfq7eLNVhH6ZL4aOpkypJJ5cUIStifrEwmSapBhf983uVfNklaAoLkSUY\n8TscOA+VUf/McwDIE82Yl56BuqgIUaXE22rBvmsXLR98BEDe/3sIUaUi9eqrgu31RtjI9Hp8Vivy\npCR89tCdTe7y+5EZDCAIEdvMXX4/okaL8+BB7Dtjt6GQJyWR8ZObQp63+d338DY1k//En6h98mmM\n8+ehKS5C8nqpeuSPeFs77RdMS07FdNppYf12nSuZQY/kdtO2ek1wrgaL40YIGCZNwzBpWkxle9Kl\n7xAADR+8Teu6ztCOkt+Pq/owdW++gre1OfByEgQSZsym4YO3I7aVMGsOCAJ+t4ua114MCgAAv8tJ\n7WsvkX/HfYiq4fNK2PjJeyAIOCvKwvJaVn2Fo/wgOTfcGjAUi5GOOax+8d8h6ZLfHzp/0G27KWee\n16WyRNNnH4X87GlqoPmbzzHPOyUmK2MJiXJpL6OEqVHLZAsFlEhbem1BKyIyVphJeje7gAMDZJA1\nUOyVNmMWUiMatclRMFqYzjZpVYSa4cgTQ1VMvc0BVxSS00nj62/gbWpC1OlJOu/cYJm066/DXVND\n3b+fQRAFlNlZSF1CtVbe9wB5f/g9DS+9gn1H9xH6IqEuLMC2dRuawgLclYdh1sxgXsV9D0Q90tHP\nmEbzO+/hOlyFOn8EieeeE3Of/gjPm3LZpdT87UkAUq++itbPPqf5gw+R6fUkXXQBdf96JthvwqmL\nqHr0T2H9dp0rv8OOTKdDkZLS6znpLceNEBho2rdvDhEAR9P8zeckzDoZmVaHJm9k1HLa/MAlm710\nL35H+Dmw3+nAvn8v+nGT+j/oPuKs7N4vi7OyHPuBUrSFxd2WO5r27Zuj5nWdv2ioc0egSssI/ty2\nNfrqvPmrT0leem7U/K5USYfIFYrREO5IrIOTxKXsl3Z065O/K6lCFkXCpG7brJUqsDB8F8KRcOGg\nVNoWNb5AipAZ85F5zn2hF6wdq+umt7vs8hoasXzTaaEuqlRIbjfehgb8LheuilBbH78r4LNH8niC\n3/cGVU42tq3bUGZnYdsawRdVlCMd47y5VD/2ZwA89fUoMzMxLpgXU59+mw3H3iNuvY88b8pllwbz\nbVu3Yfny60Db1JF23TUh/bZ9vRJPfX1Yv0fPlbepOWy+BoMTVgi0rOz+XFjyenGUH0Q/ZkLAI2YU\n5AkBgyF3Y/Q//u7yjhXc9bW9FgLdzWHX+YuGfvS4kJ8tG9ZEKQltWzaSfPrZ3V62d+DHxx5pE1OF\nBVHLaNAxQZhNgTCeJqmGRmppkeqCuwMBAQVKcoVRpAgZ6KJY4XZln7SlxzLDQZV0kHQhDzORV5UK\nVHjo+QVc9ss7IqabFi9CO34c8qQkBJkMZDJsmwNzUf/c8yRdcD65v1tO09tvY9u6Db994C7NhSM7\nbEGhCHNk2B1Hr7Dd1dWx96mQk/HTm0OeV1B0vkpdZaGLLlHd6SFVkZJCa2Wn1XbXfrvOlaO0FPvO\nnbSvWcdgc9wIgfZtm6h9/eUBacu2Zyeu2p4/dG9rQJNEpokeoMNntSKq1Mh00Ve8cn301eNQoh83\nCVVmNqrUNGQ6PaJWG/hfrkCQ9+5XIZY57Ji/aBgmdh7ZuKoPRzyu6sBnt2HduxP92Ikxja9ZquML\n6XXGC7O6vcTVokcrFJFDUa98PHVFws8OaV1ML9LhYpP/K0YIoykUwudvgXgu26RVNEjdf55SlFW1\nu66e1s87FwTms84Mfu+qqKT68T8HfzYtWUzCKQso//W9nQ34/TEJ90g4S0pJu/5a2lb17jLe0xC6\nMFOkpsZcN+/3D1F2x13Bn81nnYlpcaf7EL8z+h2Lp6ERZXYW9l27wvo9eq4CfT0YOleDwHEjBAYS\nr23gfNk7K8tQJCWjKxqNIIphfyiCKKItGj1g/fUFhTmRpFOXYpgc251KLAzEHHbVnPLF0F6k47bu\nkJDYKX3XrRDoL1487JDW0SQd+26Ey6V9EYUAwGhhGi1SA148EfMBFMnJIT97juxwdRMn4KqoQJDJ\n0I4fh3HOSbR8EAjSlHTh+Tj2lQTOz1Vq1AUjcdeGxj72NDSimzwJV0UlolKJuyb2uXSWV5B69VU0\nvPQKyoxw471Inn4B2latRjdlMu7DVahyc9DPCD8ui1bXXVuLLMEY8ryx0rZqNUnn/wDb5i1h/Xad\nK7/ThTwhIWyuBoMTUghInt7pI3eHZcNaDJOnI08wkbzs3IDuf8e2VBBIXnoucmPPRwmDhbawmIzL\nrg65mPa2t+Gur8XX3o7H0oLkdqMtGo1mRPS7j6MZiDkUFZ1umP2e6C+fYJle6pFDQBDskTZSLEwe\ncN//FprY6V8X1Tr3WEM68i+SXyEVGoqFyeyWoqvhZv/m7pCfO+4E5ImJ5NxzN5Lfj2PPXmr+/mSw\njMxgIOmC85EZ9PgsFhx799HyUagjyKY33iTp4gvJ/r878Da3cPjhP8T8TD6LBce+krAFgun0JZgW\nnxo4JgJGPPYo3obGYNvWDRsD2kFqDc79+2l4+RXSb74xUHfxqZhOXxK1buPL/w173qw7YtNosm7Y\niNxsIuvO28P67TpXSBK+trbgvcVgckIKgYHEUX4Iy8Z1JEyfjWn2PLQji7Ht24XPZsM4dQbK1M7V\nSet3sWlhDBRykzlEAFjWr6F13be46+vCysr0+l4JgYHA7/EExxbTcZTYt/OaKukgjVINhcJE0oXc\niC/B3rJLWk+NVNbvdoaacmkfI4TIO9NMIZ9aKgKGZkfRndpmzV//HjWv/tnnexyTo3Q/hx/6fz2W\nizam2qf/CYDz4KFgWuuKz2hd8Vn0ypJExb2/jdhe6+df0Pp5dA+w7tpayu6MLBAjzVNImiSFja0j\nP5a5GgziQmAAaHj/TRKmzwZAmZqGMvUoPzWSRMuqr2n8LDyO8WBinndKyA6g/r03opYVxKEPo+d3\nOoLjk2l7Doze3d1MT7hwsEv6jgPSDrKEAvKFMb1uw4ePZqmWaspokKr6PJbh5KC0i1QhG20ULacx\nwnTWSSvwMfSB5LvSkyuFQTFcO0GJC4EBQDzycvLZrFQ9/09c1YeHeUQBEqbNDn5v27c7ekFBQDc2\nuhbPYNG+fQvmeacABKyMs3KiugsXFMpuNY1ixYmdA9IODkg7+t3WQPK5/7Uh6cePjzX+wTU+Ggji\nL/mhI+5AbgBIWRow+Gj46J1jRgAAIdG7ultF68dPQh4hpvBgY9sXalhlnBH9gs0wYVLwjDZOnDgD\nR1wIDAC6UQGfJe66wb/J7w2epobg98r0zIhllGkZpJ5z4VANKQRH2cEQB3MJU2dGLZu05MyoeXHi\nxOk7x40QEDVa1Fk5MX8NJR1qocmnn4UqIwtBETn4+FBj3dNphi8qlWF3FTK9gZwbf45Mo41JRXMw\naOzqU0gUSVq8FEViUsDVhCAgN5kxzZ6L3GDEZz8+tHDixDmeOG7uBHTFY4KO2GJhKGPxtm/fgmn2\nXLRFo8k92iZAkvC7nLibGrDvLwn1jXMUutHjUKWlI6o0iGp1wKWySh1SJvuan+BzOfA7nfhdTvxO\nJ9ad2yIabrWuXUnC9NlBq+a8W+/CZ7PibW9DptYELaGdh8upf+9Ncn8y9PGLbSV7aFn9DeaTA9a9\niQuXkLhwCZLfH9DhOaKr7Sg/RMuqr8j84TXRGxsmBLmMnN9dS9MbX2PbWDLcw+mRhNNnkHbDWQCU\nXHD/MI+mc/6U2cnUPPHGcTGHxW8+ABwb89dfjhshcKyiLSgO1wbqiiAgqjWos3JRZ+ViPnkhFU/+\nKaKapmnWyT0almlGhgcE8dltEYWA3+nk0KPLEZUqjNNmBbyFarTIRRGftR3LhrXUv/t6sLytZE+v\nBO1A0fjxuzR+/C6KpBQyLrsKRYIZQaHA096G63AFbVs2YCvZE3TUJyojO+Mrfv1+Gl74jJb3w91P\nmM89mZQfBRzaDdYfruQaXo2a4aLjhdjwwqe0vBtuuatIM5P7/27AU9NE5f3PIXkiz5Pk85+wczic\nCFIv/G0M2iAEYfgH0QeSTz8L87yAuXjjJ+/hOHQgYEnbEdhaFBCVqoBP/LETME6bBUDb5g3UvfXf\n4Rr295biNx+I+iIaCiEQKzKTntyHr6fpv1/QtrJ/PvT7wkDvBLoTAqJOTe7D16PMSubA1X/A1xZ7\nIJtjmWNlJyBJUr+NXuI7gT5imDA5KAD8Tgctq76OWtZdX4tt324EhQLDxKloI6zm45w46CaORJFq\nQtAMn3vxoUCQyci841KUWcn42mzfGwHwfeO4uRg+1jCd1Bm9KpaIVwCOg/sBkB1Rx5xw+X0Iokjx\nWT8d+AF2QWVMCn6v0BrJOflCRp8X+/l/8Tm3ADDq3J8P2JgKl97ApKt+T+HSGyhcesOAtXs8oJ04\ntJbZw0XqTWehnZCP5PZQ9ftXhns4caIQFwJ9RJXRqXLpihJ17Gg6XCN0BJ7xuuyYRgy+kVbWzLOC\n33vsbVSujm45HAlBGPhfk/0f/xNnax37P/4n+z/+54C3fyyjnVgwvAMYgiPgxPPnkbBoKkgSNY+/\ngbP02LGfiRNK/DhoABCVsamEdlz6epqbAPA6rCj1ndGa9On5pE1cBAI07VuPKX8iZV+9zIQf/pYd\nL/+WEadcgUypxu91I/m8lH39ComF0zAXTMbRXEv1hg/JnL4UlTEJv9dD+cpXyZp1NvqMQvIWXEb5\nN+H3EEf32VrWsyXt6B/chr2pGpUxmdIPn8SQWUTqxIUA1G39guzZ5+JoqUWu0WNvqKBmU88hNbNP\n+gGH175DzsnnU7n6LUb/4BchbbRXlfR6nLFQ/OYD4PdTevlDJF16CvqZo1EkJyBJEp7aFirv+Q9+\nR7iL6OQrlpB43tyQtLp/foBlReRdYfLlp6LMTkGZk4I8KbATTLvhrODZfAfRzpgFmUjC4mkY5k9E\nXZCJp8GCbdM+mt9ehc8SWXVWkWYm6aIFaCcVIDNo8VlslN/5DyT34F++Jl8eCLla/5+Psa7fG7lM\nL+ew62clKOUknj8P87JZwc/Kun4PLe+uifh5JSyehmHeBFR5acj0mojR7mxb91P14IshaYo0Mzm/\nuyY4f9aN+2h67etun11QKTCfORvDnHEoMpLwVDfRtnI7rR9/h+T1hZQtfvMBJK+P/T98iBF/vRWZ\nQYN9xyHqnnoPX5uNguf/D4C2r7bS8PyKQRHgcSHQR5q+XBEIckIgRKKzsgJnVUXIhyTTaNHkF5Aw\n46SgAPC2tVL17NNAwF9P3favMGYH8kYuuZr26sCRkXnkZKy1h5Br9DSVbEChNWCrL6NhV6gTOplS\nhcvSSNKomVRv+JCWg1tJHT+flgOBoB5V372PIbMoogCI1GcsL1dBlFPxbaebg+yTzmXPm38EYMwF\ntyNJUrC/0ef9MiYhULvlM5LHzKFh9xHNHlEMaSNl7Mm9HmfMiCIFz99F4/OfUvmbZ/BbHShSzSSe\nP4/Cl35N85sraXwl1KFY40uf0fhSpxOwjovCaHSt31G2uxdeEEEg6zdXoJtciN/houGFT6la/iKq\nggxSrzsT89lz8DS0cuimx0MfSa0k/8nb8Da3U/eP97FvOwCCQN4fb0KRHj1IUn+RJxrIe/Qm2tfu\nouaxN7p9aXWdw57mL8iRzwq/ROOLn7H/it8HP6ukixaSdNHCMEGadOkpJJ57MlUPv4J9+8FgetEr\nv0FQKSJfaKuVjPjzz5AnJwTqHZk/7dg8ch6Mrqac+8iNqAsy8ba0U//PD7Bt2Y9uWjFp159Jyo9P\nx77jEIcfeD5kXgS5jMIX7+bAtX8k7cazMMydgH7GKHxWB2U//TM5D12L+eyTUBdkUnnvM7HNUy+I\nC4E+0rpmJfrxk4OGaTk3/Ry/24W3tRXJ50WQK1CmhAeqqHn52ZA4xBA4pwdwWRqp+PY1fO5Avj59\nJJnTl1K/cyXZs39Aw541KDQGPI7OQOap4xew+41HMBcGArQ4mmsoX/kqYy+6i92vB1zfCrLozuGO\n7jMSgiAgyjt3Owq9CUGUIYgifq8Hv8cdzPd7PX1yRud12hBEEWfLEavro14esYyzP4gqJa1dXsju\nmiZqn3wX46Ip6GeNCRMCQ4VuSiG6yQFFgto/v4l1QyCsoWN3OVXLXyD/6V+gSDGF1TMunAxA9R9f\nxbmv0x/T4eUvkP+3W2EQ/AUKokjGLy9GZtLT/NaqQTt2ElVKDt//HPadh4DOz0qZk4q6KCusvGHu\nBFpXbAgRAACtKzZgPmcOCYumhAkB48LJyJMDLuBtG/cF021b9+Na/gIj/xH5Tk1dEDgmrn60c96t\n63bja7WS89C1aCfko59eHPwcO7BvP4Tf7qT53dUY5k4IxATfdxif1YH1uz0kZqegzE4O628giN8J\n9BHJ56PqmadC4uyKShXK1DRUGVnhAkCSaN+6MaKDtA6/+ofXvcuIU64g/9QfkTHtDOyNlegzCnC2\n1KFLzcPeUEnu/EvIP/VHFJx+LQDt1aXkzr0Qd3sg6Hfh0hsZufgqmks74/W2Hy6h8IzrATDmjCZ3\n7oUo9WZyTj4/rM9I1G79gqIzb6Z2S2DV5nM5yJ13MQWnXwdA1YYPyV98FSMXX0X1hr57Sg0KgAjE\nMs7+4NgTIQ7zkZeYIjX8JTtUGBcEYlO7DzeEvTi8rVZsmyIbVummj8J1sCZEAAB4Gy3Yth4YlLGa\nzpqNZkwuSBJpN52NIBuc14tjT3lQAASRJGxb90csr0gx4a5oCEt3VwbSIn2+uumjAHAdDL/v8zZa\nuh2f80B12Lw79lbgOhRoyzA/PN64qyJgN+Spae5MKwuU97YGrPlFnTqs3kAQ3wn0A7/LSe1rL9Hy\nzRckn/kDlClpyNRqBLkCv8eNu6EOd309zopDWPfsxGdtD6lf8kHAD/vO/z4IgK2+nAMr/h1SZvdr\nAT/rO//3O4Cw/IpVoZe8+z/+R9g4D6/rdM3QVrmXtsq9IfWObvNoWst2hBy/+NyOkOMla80BrDWd\nL5a9bz8W8fuj2fduaMAMubrTvXGkNnoaZ39w7IkecF5QDp/jOnVxNgDO/ZFdV3vqIofwVOWlYdsQ\n+SzeVVaDfsaogRlgF+QmPa0rNmDbXELW3T/EfN48mt/4ZsD7ifZZeVvaI6b7LLbgPUxX5CmBlb7P\nGh6xTpUXMADty4V2tM/KWVqFKj8j4m7F1xa41+l6n+E9olIr+Y7Eve5mR98f4kKgB/KeerTHMuU3\n30HVM08NwWiGhsTC0DCUzfs3RSk5cG3mL7oSt62VloNb+91XX4j2Ahlu5KaAYDQunBw84okFmUGD\nty3yhbGvfeACvXel5f21NDzXGTUs6eIF2Dbuw1U2sI4Ve/tZta/dhWnZLNrX7MRd1Rlb2HRGwGFh\n+5pdYXVkhkDo02hz2B2+KHW8Ry7wOz7TrkS6rD/6EnmwiAuBGDl813J8bcfmi2Kg6eml393qvq9t\nHvryxW7zY8HXZot4Pg6gzAhoYflaIzvK61htHWv42uzIkxNo/eg76v8TexwAn82JzBDZfbioHhwH\nh11fzoeXv0D2fT8i7083R7xY7w+9/awanv0EVX4GI/5yC5LHiyCX4be7aPzvl1g+3Rjicr0Dn82J\n3KSPOofdIU+IHLBHbtIBncc7XRlOlwlxIRDne4P7cCOasXkR8zRjRwDgqqyPmD8cCBHUFI/GUXIY\nQ3ICqpEZvWrbXVGPuiD82AE6jzoGE/u2A1g+20jCkukknjcX64a9OEuHLxqbdtwI2tfupvbxNyK+\n9I/GXVGP3KSPOofdEem4B0BdGDjacx0I9/M1nMSFwADTcXxUcdtvkFyd53uCSkXuE7+j/OY7wuqk\n/uQa6p98BkVGGqazTkNVNBJRo8a6diPNr7wZUlbUaTGeOh/txLHIkwOWwJYVX9H25bch/XWMxX24\nmpqHHkc3YwpJP7wQSfLjrqii7dOvcOwKvWiEwPl32i9uRpGWgqBQ4Gtrw1lygPYvvsV9+Nj65T0a\n29b9JF9+KvqZo0N00w0njUWZFdCssG0If+ahxu9wIWpUKNITeyzb9s02DHPGoRmdi37GqLDL4WjY\nNu4j5eozUBdmhZxRyxJ06KYV93nsvaHh+U/RTSlCnpxA+i3nU3brX4ek32g0v/ZVTAIAAvOnnTgS\ndWF4HA5Zgq7buqr8DDRjckPuLjRjclHlB+KNt3079P6iuiOuHXQMIEswoMrPJf3OW1AV5uOpqsFT\nVYM8IfwyK/PeX5Gw9FRkZhOu8kpc5ZWYzjmdzHtuCwqFrijSUzGft4zkay7HebAMn6UddXEBqT+7\nDsP80Ehe8iQzGXffhiI9BW9DI66DZQDoZ08n4+6BcxkxWFi+CGhqZdx2IUkXLUBdmIW6IJP0W84H\nwNvchuXLLcM5RAAcewOaIwmnTUM/czSCSoHMqA2+JLpi21SCbXMpABm3X0LKj89AkWpGlZeGbmoR\nSZcuYsTfbg2rZ/lqKwgCmXddim5aMYJCjqCQk33vlQhiv32OxYTf4aL27+8ABIXwcGKYOwGZURvR\nUOxoLF9tDRzbCELI/GnGjSD73iuj1rPvCGgtZdx+CfpZYxCUCvSzx5B5+yVAQEvI+l3kC/vhIr4T\nOAaQJyeRfN0VtL6/gvavV8ORIDWKtJSQcqJajSzBiOWTL7F8+Gnw4sh83pkYT1tI6k+upubhJ0Jc\n9QpyOfr5J1H32FM4SwN60roZU0i++jLMF51L+8q1wXKpN1+NIj2Vilt/jeTxBNvQjCkm+forUeXn\n4ToUQZXyGMHXag2c+aoUJF26iKRLF3XmWR1UP/JqRGvSvpB556WIWjWiVoXsiOpe8mWLMJ0xE7/d\nid/uwm93UvN4uIuOple/RDt+BKJKSeZdl4XkhVkMSxI1j71Oxq8uRjelEPPZJ2E+O3oYzg78dieS\ny4M80UjWr38YTPc2t1H9p9fJuvvyPjx177FvP4jl040knDYdzZi8oCquYc54DHPHI09OCM4fBObQ\nOH9icP5q//ZOVNfTvSXxgvkkXtDp80vyePG2WnHsqaDl/TUh6qB+u5Pax98g69c/DJk/CMxhNGoe\ne53s+65ElZ9B5p2XhuS5K+up+dNrQ+K2ozfEXUn3QMfxjrehEckfeZjVv30krHxvjoPynno05CUd\njfTbf0r716uxbQzXoNHNmBJY7ZccoO7xp0PGUvPwn3FXhKq6aSeNJ+Wmq4LjSfv5DahHF1H/t//g\n2BW+UlFmZ5J66/UcvjNGy844JwwqmY4C4wzUMgOllrW0ezo1cAQEkjUj0MlNlLVvQSGq0MrNWNzd\nawyla4uos+9H6ueVqXZSAVl3XUbT699g27YfX6stuMgS1EqUGYkk/3AJqvx03JX1lN329371N9TE\nXUkPIbV/fHJQtYM8DU09llFkpOGuiuysriNdmRV+gehtDtcl99SFXpAqswNnn6k/uzb6AI6BBUOc\nYw+Xz0a1bS9GZRrtnkbkoooi42yq7Htoc9fj8lrRyU2Igow8wxRsnhYs7loytMUkqrKpsZfQ7mmk\nwDgDmaCk0raDEYapaOUmWlxV2DwtjDROp9K6E6MyBY08AY3MQI29hGZX93r8KT8+A0GloPntbyPm\ne2qbEdVKMm6/JKY7mu8jcSFwjOB39OwOQVSrkFzuiHmSM7DrEDURrAq9EXSQ3Z6Qn0VtQC/auW9/\nyFFQnO8/MfvtOYpozu4UooqD7Rtx+UL15f2Sjxr7PtI0AS+qapmeva0rGWs+hTrHAVrdtfj8Htrc\n9d+Xcu8AACAASURBVFg9TRxq24SEn8KE2exrXc24xEXYPM1Y3HWUu7Yw1nxKj0KgQzW42zJ5gbsY\nb1P0Y57vM3EhMESIA2B16nc4EVSRdbyFIy//SMJEUCrBGXoWfnQ7fqcLUauh+fX38ETZbQwE00+7\nm42fPhyWrkvIZNT0y7G2HqZ0y+tI/qExlIkD7urGngv1Aoe3jTGmBTQ4D9HojG6JDeCTvIBAk7OS\niUmnY3HX0uAso6vmvFxQIOFHPOLwyOWzBev1hOtgDepROeimFWPffjDkfkEzOhfjgkkkLAkYMrb2\n5Mzve0pcCAw0fj+IIoJCHnInIEvsv+dGd3UtyuxMPDXh8YmVmenBMkcjT0kKO8pSpIf6NnJX1aAu\nGokqN3tQhYBaa2bC3JswmHPZ/MWjOO2Bo6qRE86hvaUCU0oR2YULqSwZHodtJyJlt/RPdVMl05Gp\nG41aZqDFVYWEdCQGhYBObiZTNwad3ES94xDZuvEYFEm0a0KPP+WiAqWoQSUG1C8t7npGmeZS6yjl\nsG0Xo03zqXWUopP3zo9T3T8/IPu+HwUudyUJn82J5PEiqhSI2iO7Zkmi5d3VtLy/FrMuhxZbJSZt\nNq32yLsMjTIBh7vTf1CmaTzVrTvJNE/A5mrGYu9Uyc0wjUOtMHCoYV2348wwjaOmNdxyeUiQJGnY\nvwiI/WPyK++pR6W8px6VZEZDTOVTrr9SynvqUSn1luuCaaqCEVLO47+T8p56NGofgkrVY9uCQiHl\nPfWoZPrBMkmQy4Lp5vOWSXlPPSplLb9LElTKsLHn/uX3kmbcqGC6buZUKe/JR6Tcvz7c2bZMJmXc\n/fOozyozGiRlTla/53PuuY9IMllgjLOW3t+Z/oNHJZUmQVJpzdJJZ/1OAqSTxt0sqZTGznlUGKQ5\n427uV/8alUk6bfpvh+z3Z0T6HEmp0IeN4ehyiUuXSfoJE6XEpcukpGVnSoap0yTD1GmSIik58PmI\nopQwb74EBP83zV8Q+H/hKcFypoWLgv8nzJ0nyY1GyXzqkmC9jrpd2zZMnSYlzJ03ZHMS6cuoTJGK\nE+ZIhQmzh3UcuUnTpfHZZ0k5SdOk4vRFUqZpvGTUpEt5yTMllcIgCYIo5SXPDKmTnThFGpt5hpST\nODWYl59yUvD/EcmBZ0rQZEqpxmIpPyXwc17yzJByHX30ZrwD8f6N7wRiJP32n8SkHWT55Es0E8ei\nGTuKtNtuRNRpUWZlYF27Ec340f0ag+Tx4G1sIuH0UzDMmx003lIXF+BtbqX+yWfD7gwkjwf71p2k\n/uw6HHtKkJtNwV1A86udjuUkn4/6vz9Dyo0/Iuv39+CpqsFntSHT6ZAZDchMRhr+/RLuyv5ZfXo8\nnXFmZXIVgiDSVQPE53EiygJHZ05XK0qZBheBs1qFXB2yAusTkT/CQSMnZSZ1Lbt7LOe327Hu2I4p\nMRGvxYKo0SC5XPjdgd2k5PcjNxhQpHbu4LxtbRimTsNrsQTL+axWDNNmICoUuC2tqEcWBPMAVJmZ\nqLIClqsd6YJKhbO8bKAeuU+0uRtoc4d7+hxqVAoD5Y3ryTRPpM1Rg1ymRhBE3F47ibocalp3o5KH\nuoXw+z34JR9+yYtJnYVRk47bayfTPBGZqECjNGFQp2HS5eD1OToWvgAh5Zyu9mAfkRAEEUkaePcm\ncSEQI/KU2Ixd3JVV1D32FAlnnRZ4OTc2/3/2zju8repuwO/VlixbtrxH7DiOV/YggyQQCGGPEPYe\nnYy27Lb064BSaGmBUqAFWtpSZtgzrASyE7KHMxzb8Yz31LK27veHYtmKJFu25Tghep8nT6x7zj3j\n6ur8zvgNOt9fjvHrtaTeNfxYuo2P/pXYRacRM2MKyrFet72G5Sswfr02+HmAXE77K29hr6gi4YqL\nEd0ebKXlGL5aje2Avxtit9FE05PPk3LbLSiyM5FnpiM6nLiNJux79mErLR92+43tVeTPvIa2+l24\nnFZyJ12Eucu77Jar4pC6HDjtXt8qVocBuUxNz96vTKrCdkQI6GNzmZS7FFF0c6hhNQ3tuwHISp5J\nTuqpyKRKyuq+orGjhBhVMlPGXY5UqqCxvddaMzNpOjmp85BJFQiClDW7n+CMaQ+wZvdTKGQaTp9y\nDyu2P8LCKfewZs9TqBRxTBp7KTHqZDbtfxGHs9cHzOKZv8HuNOFy2di036uiO2XclaiV8ZxScDMe\n0c2Gvc8BkK6fSnriZL82dq1ZDeD7H4nEp8rYQ/vnn3m/7xavZpd5106v4VOfQcW0bYvvmiCRIPYp\nw7Bure9ve33vVodx87cBdZ2slDetAuBg40rA69pDFEWM1ibfAFzetIr0+Am+exq79tHQtReA+k7v\n+2W0NiEg+E1wTLZmv2s1bVu8dRy5FmyQFyQStJnjicudhFSppnbF65Hv9GhvBR3v20En8r+e7aC+\nW0Sj/U+pjhcnzf+ROO/ix0S1NlkcP/Uyce6Fj4hFs24QJy+4XZww93ti4cxrRfBupaQkFIu6mEwx\nTpMhJusKxNy0BSLg22KJ12aLZ077ua/8gizv1keafqK4cOp9IiDOLLhRzE33bnfkpp/m2w5aNP1B\nUatOEQFRIshEQJxd9D1RrYwXs1PmiFPGXSkq5bHi7KLviYA4bfw14rh073bKlHFX+PWrp0yZVBVw\n/ejtn2BtjP6L/gv2L+vMK8XkaQvFlBlnBk2PbgdFCZNj4yYgHOzWLvZu6A0sX7H7fSp2vw+CQP60\nK9DEpnJo9/sAWO0G5FIV2rhkRERsDoNvO0it0DEt7ypAQC7r9fTYcGSmb7A0oJTHAqCLyaK09nMA\nWrsOkp/pjX9b1biOaeOvobXrII3tezB2N2KxtaGS60hNmMD+mk9QK+Ox2LzaM/rYsZQf9s4QE+OC\nB4t3uQdW9Q3WxihRgiEIAip9Km67LbodFOU7jihSvvMdv0s2Rxf62FzkMg2i6MEjc2GweM8kpoy7\ngnUlfyNGlcz8SXf67nF7eva/xRDV9P6IqprWU9e6jZSEIopzLmTzgZcwW1vRalKRSKRYbG2MSZmF\nxdp2pMTgZQ6WgdoYZWBkcjVjJp1HSu4c7N2dNJWvo+nQxtFuVsSp++ZtZKoYdHmTGbP42hHZDooK\ngSjD4oFnc5h/QaDa3tavjTz246oAI+PiOTejiU2lvmItLke3X1pbg793RYOlnsm5l7Fh73OIwIJJ\nP6G2ZTMAVU0bmD/pTupatuF09R8kZUvpv5madyUSQUZty2Y8otcGYVbhLcSok/F4XL4ZfEvXAU6b\nfBebD3ijmBVnX8D6Eq8K5ca9/2BS7qVo1Sls2h9eEKGK+lWcOuE27E4TG/aeWC4JIsFg349wSM8/\njezJF7Ljs0ep2vlBBFp5/CJIZbhsFjrLdqJJzx2ZOqK+g767hPJjFEk+PBQYL7WHh26pZNc6f/uE\nuRc8zIEt/8PQ1r+fpCgnPhPnaHn0jeDbZhD8/QiHSWf+BJulnYotbwZNT8yaQtaEc1DFJuHo7qLp\n0CYay3rDXJ565RPs+uJxJp35EyQyJaa2Kvav9YZlTc9fwJiJ51G16yPiU/NJSJ/Alg9/DYAqJpHM\n4rPQpYxHIpVjaq+mevcn2C0dvnI7G/ahS8nH43FhbK2kaucHOKwGpp5zH4bmcqp3fwzA2KkXo0st\nZPdXT/TbV5mmd7swbfZ5HF7tv1qOhO+gqCvpIXJuzl2oZN4vSC3rdfl8bvbPmJt2DfPTb+j3/kVZ\nXk0hmUSBVOh/QSYgYU7alX7X9Kosv89nZP0g4L6a2x+g5vYHfAJgRsol/dYTaWacHrjfLUhlOO2D\nD9k30sw6VRlwTRrGOvmbLSMfoCVcwm1LQbGcp55PGDD/7sp03vgwiQ++TOaWH3nVIldsSqUn1O2n\nq7zqqmt3eA0VtVqBf7+ZiErtHZeCff99GSg9FBpdGt2G0A7ocmdcxuEDK9j95RNUbn+P1NzZAXnG\nz7mOfWueZ++qZ2k6tMF3PTZpHJU73iN3+qWY2mtoq+t11uhyWnG77FRuf5eDG19GodYxftbVfuUa\n26rY8/XfOLjxf2jiUhk343IAWmu2k5g1hZ7zOX3mZNrrBg6lmjxtoe+f2zEyYUGP6+2g/maZ4SCK\nYLd6sHV7MBvcWIwu2ptc7NlkoqbURs1BG93mobknsDg7SVSNod68n0RVNofNXhUxp8fGt03L/ARD\nf+Tp5nCwM7hzK18/8LC5yX8GkB8/j81Nbw+qze3WWvSqTDps3n11vSqLDtvgA2mHS1J6oIsLQ2s5\nCalFdJsCrZ5Hk7seiOWGy/xXS+7IeDA+doS5ni474OTe2zsHFAKGLpHrLm1DpRL4ckMqL//TjCjC\n6YtUrFoReAB+212xPP6wEZvV25Ck9P5dpQR7P8JBIlP41IhPvbJ3Jr3pnfsBOLx/Be11XpVhm7mN\nuv1fBZRh6TzsEySWzl7bl66mUjoOl5A/53paqjajz5zsS3M5uqne1Wtb01i2lrxZ/u6iGw6uBsBK\nMw1la8mZciEAbbU7yJl8IbGJ2Zjaa1DG6P0ETCgaN36KNisf8+FyEgpmDJh/KBzXQmC4CAKoNBJU\nGgnxSTLAO9ubd74OANEDh/Z1s2u9mdeeGJyrBLvb4hvoFZJAp21W18DOqOKV6VicHb7PCcoMChLm\nIyCh0rCVFmslcYpkxulmE69MZ/Vh7z71pMSz0SlSmJmyBIDtLR8hIDAp8Wy0cj1Vxu00d1cE1Ndg\nKWV8/ByfEEjVjKfDdpj0mALGaCcjFeS02+oo69rgK9vbrkxW1v1jEE/HSzDjuoZDGyiafSNqbTJd\nLf52CkefCRwrHvlLPBMmy/nHy3ruuMX7fRRNlPOjn2i59/ZeD6zFE+X88iEdHrfIrdf4uz2I0Qqc\ne6Ga99/qZsYsBXf/Ig6pFK5f6j1Ufnt5Mps32MnLl3HHrR2E4q6fxzF1hhyJALdc7a3jsb/G86t7\nugB48h8JFBbLqaly0driISNTisnk4b47OpHKBH7/53gmTpbz/DMmVn5uY848JT97wDvjfuqPRrZv\nCe6AsD9S06XsL/HeZzF5SEuXBuSZNlNB1SEXZaXhOx8MZXw5EB6Xw2dQuPPzP6HPmEjO1It96bnT\nl5I7fanfPZuOCIUeTG3VQct2O+14PC48bicet8vPh5VEKiM9/3QSMiaijk1GkEiR9LNcdDksSOXe\nscFhNWJoqSBxzDRM7TVYuuqxmcPz2RSXU4z5cDma1Gw6y3aEdc9g+E4LgYEQJDB+sobxkzVccbt3\naVtbZuMf/3eY0h39b1kICJgd7aTHFGJ09lo6yiUq5qZdjcXZSUl74AyktwABq8tIYcJpHDZ7fYac\nkrqULnsT4CEnbhot1kqMjlZ2tS732+7Z276CJHUO21s+8ityb/sKwLs1FEwIOD02Wq3VJKu9B0xt\n1pojbVbj8jiweozkxE2nrGsD21s+IiOmGJlEEVBPuLz/z8B4vl2t5Xy7/LdDKm+43PNkNhNm9YYG\n/OHpBwD4zQNdzF+o9AkAgNJ9Tj8BAPDP1xI5bbr/NoRSKXDTD7SkZ0h4/Pdewf/iK4ns2eWgrzPW\nlFQJTz428MTgi0+tpGVISUnt3al96jEjN/9QiyjC80+b+Nfridz5vQ6+2ZLKotnNvhm9IMBvf+4V\nFut2prHy8yae+HuCr83rdqYFtD8c2lrdjMnxDhVyhcCbr1i49qYYn3NaiQTq69zc96s4Pni722d3\n9uWb7SxcEtpnVrD3IxwaytaQVbyY1uqt2MxtvlVBD41la6je/Um/ZXjcoYTVEcEU5Kx01pI/UP7t\nq9SXfgNA9uQLyCxaFJAvFAc3vswpF/8OU1sVBzf+L6x7YscUYKotJXZMAcbqgS3Ph0L0TOAosgtU\nPLosj4tuHthCuN1Wx7i4U+i09S4nvdtBb/UvAABEEbvbQpu12nep29lFSduXbG1+j20tH/Z7uwQp\nQh/9/3DVF9uttcQr00lQZvjqzo+fx662zzjQ2WtRmqjKJkaeQK1pd4iSvGxY3hX0+nsvtHBo78js\nYQ4FmVxgzjk6kjMVvn99kcsHPl9rbnJTUOS/xWG3i7zykpkvl/duj9TVuPjVvV18/9re1UK4BrlV\nFS4evLuT++/sFUBtrR7kcsgcI6WizBVSo0YXLxCnk5CcIsXQ5a2wtdlNcoqUlFQpbS1D2/oUALXa\n//k0N7mJ03mveTzQ2uJmwxo7l13Ta7Oxf6tlRN6PpvL1IHooWvB9YuIziUnwPx9LzZtPesHpqONS\n0ejSSc6ZOaR6jsZqbEKfNRmFOo608QtIHTdwhLe+uF12Ohr2Mmbiub7D5IEw1ZUhiiKmujJkau3A\nNwyBqBAIglQq8IPfZrL0hyn95nN6bLTaao64tR0a1cYdyCTeAWl/xyqmJl/ArNTLGa+bC0B27FSm\nJ1+EQqJiWvKFvvsaLKWcmn4t05MvDlpuKES8wsfhsfkER5OljFmpl1OUcBpmp3fgmpZ8AXGKZGam\nLPHbGjqap+6p5eU/NVBdasNhF3HYPPz5J9W8+pfBba/NPCsw4lokKZoRg0oT+nX/9EMrz/yr1/f8\ntTfH8PQLev76QgJLr/IObL/7eRf/94iO/ywLjOW8a7uD2+/2brs88msDT/49gX+/GZhvIP77ViL/\nXZbIX1/w94NfftBFfV3/g3hZqYtf/DaOF/6n5+k/e1cdf3zIwNMvJvDXFxL448NGv77FJ0j46wuh\nZ+q6eIE3P0ri9Q+TeeYJfy2eNV/bODpm+8v/NHPVdTFotb0Cw+/9sHko3WEZ0vvRF5fTyt7V/8Dt\nsjPpzDuJTyuiuY+NwMGNL5OYNZUpi+9h0qKfkDZ+/pDr6kvFlmUoNXqmn/8gcUm57F8TnppwX1pr\ntqOOG5wyQVxOMQCa1OxB1xcOx7WKaH8Hwx53eO2WSIenQXVpXv8z4SiRYf6Sx9nw0S9GrPzr703j\nyjv9f3wn0nd75XUadmx1cKh89E+r1alj0GTm0r7Du3Icc+GNOIydWBuqcRg7SJl7Dl37t2E8tNfv\nvr75jIf2oiuYiqEs8DtInHG6r+y+aLMLkKpjMBzcOTIdOwbEJecx8Yzb2PROeJMeffEs4vOn01W+\nk/iCmVR+9IJf+kkdXvKygvAOEbU6KUq1hKR0OeljlWTkKrny9lSEMNdAKo0EW/fQTbXHxk0PuFZt\nHPmXeLTqDUZ8cj5drV7nc0kZUwLSBYnkiP/5kWPaguPLPcNN348JuPbKv4OfQ/1nWSLlB12880Z3\n0PRj2ZZgGMp2Yyz3/h4zFl9Jw8p3SV90WYAQ6JtPnZpF0swzcFqMdNdXhSxbVzgNa1MtusLpWJvq\nvPemZKFMTMV4aB8pp3oFjtPYQcq880EUaVzd/1bqaKLPnISxNXwbGafZQOvO1QC07vhmRNp0wgqB\ncDEb3JgNbtqbnBzc6f0RvfGU93BMHSPhJ38aE9SisYe/ryjiB6ftZ6guO0Zr4B2teoNhaO996Ytm\n38CGj37p575BECQUnnL9iNV/6nk68qdqBs54DBnMIPu9awaOPz0cBtOWYBjL9yBVaUg/41I8riPa\nR0Hmp33zHf7iDWxtjf0KAAC5VoddoUaZlI61qQ5tTgFk51O/8h1S5pyNqXI/IOC222jbtoqkmWcM\nqy8jxawljwDQVLGefavD30Yy1ZUx5qxraNjwMWmzzsV0uDzoofVw+M4Lgf6wWjw8cVcNdpuHRZcF\nj0WamCaneGYM+7cefwZOJwp91ewcNlOAEyxR9PSjrTF8jrdVwHeBuPGTUcTp6W6sRpWciUSuwFRd\nir2tkfRFl9F1YHvAPakLLvTlA7A2H0aTMZbuhuqQZXc31JAy92zcNu8EzlxThsPQTuq88+go+Zb4\n4lOwNtehEtOJy5+CEI6F3yiw9aPfDOk+Xd4UnOYu3LZuPC4HgkSKGGEDlhP2TCCS+7nqGAlv7pkc\nMv3Np5t469njy7jpu8aYwsXUHVw5ImW/uLqY1DGBhkkn0pnA8YwgkyG63X1mqAKCVEJ8kb9xU9fB\nnUflA0EqDcjXuc8/1q8gkYaMOd03TZBKQRT9Yiic6OiLZ9NZth3R7UaXOwlLcw2u7t5D+pP6TCCS\nWC39vzTjJx9fWwnfRUZKAABBBUCUyCG6jp6ZiohuD+ba8gHyETRfQJ4QAuDoNPFodaXvAB0Htvj+\nNlTtRV88i44DW/u5Y/BEhUAYpOVEB5EoUQaHiNMU3EZgaPmijBRRIXCEA9ssFJ8SqCUBkJYd6Fzs\nWJE3Uc2002LJKVSRna8iLUeJQilgt4nYLG662lxsX2OifHc3B7ZbMHaMvgrhUBgJFVGpTCBz3Oh9\nd8MhLkHGudclkpWnJC1bQUKyHG28FKVKgtsl4rCLWIxuDO0uWuodrP+0i4M7LXS2npjf//GCPlXO\ntPmxFEzXkDlOSdoYBfo0OYhgt3kwdbrpaHay5qNO9mw001A9dO+86ZoCWm3VuDwOEpVjaLfXRbAn\n4RMVAkcwjODgGexs49P/tfHS70MHbdfESvnbZwUkZwRfhahjBNQxEhJS5OROUPuu15bb+PYrg08D\naqg880Uh2fmBPpEGQ8+eezC10L5ESkU0IVnGwksTGFuoZmyRiqzxKmT9WAIP10FhJM8UBAlMOCWG\nWYt0zDgjtt9nL5UJKFRe9efUMQoKpmlYcKFXw+3QPisbP+ti5TsdGNpH7p2O5PsxUgT7fj/8Vysv\n/6kh4LpEKjDvPB33P5MTsjyNVopG633mPRPGwxU2vlzWwYq32getSh4nTyZBkU6tpQSdIjWoEEiZ\neRYel4OugzuOxBWI+g4aMZSq0IOQsTPyP6b+PCyed10iN/08HU1soKOugcjO964YhisEIknR7BtH\npNxFl+sZW6RibJF30I/Tn5ivc0aukj+8noc+tX+vm+GQN1FN3kQ1196dxi1z9mE2fPf2yYdD7oRA\nwVV8Sgw/fiiTscXqIHf0T9Z4Fd//dQaX35bCq39p5Ot3w3MHAeD02CkzbSQ39hQSVVlUmrYF5GnZ\n/jXq5CySp5+BVBWD4dBuTLUHB93O/jgxfzUjQGxC6AHXOAIzqmBCICZOyn1P5zBj4XdNpVFk/Yc/\nD5kqCBLmL3l80KX+7M9jhtOoUWf66bEs/WEKU+ZF3ieMTC7wt88KeeJnNRzYHlVv7iG3z0AvCHDF\nHalcd3da2MajoYhPkvHTx8ew7pNOHPbwNC4buw8iIlJp2kqXI3B1AiBVqIhJy0GqiqG7qdovyEyk\niPoOOkJKZujD34qSyDtCS0zzry8hWcajb47/DgoAsFsN/aaPtJ3A8cjiq/T87r/jRkQA9JCYJufh\nV/OidhJ9iNPLfCuuOx8bw/X3Dl8A9OV3L+ehUIantdkTlArAE8IaNaFwJt3NtRxe9TYdB7bQWRq4\nWhguUSFwhP62EvZsHHwIvIGIT5IhlXlflrgEGY8uG8/YouHtsfbQbTq+tgC2fvnogHlqR1BF9Hhk\nw/KuY/I9KZQCP/97Dhm5J+YB+UjQ8ztbfFVwA9HhMHF2DHf+ceAVqoBAgiITAQkCEtI044Pmc5i7\n6G7xnhXE5U6MaFt7iG4HAdr40FtBH73UyrpPI6/CJghQOF3D/q0WXtkW/Mvds9HM7g0mKkqsNNfZ\n6Wpz4XSIxMRJSUiWkV2gIrdYzdIfpvjNZv75cOgD53D52Xmh9x0lUoG4BClxCTKe+aJw2HUBHC4b\nvF+U398ang+W3/533LDuHwmsFg8/Ofcg/1xTHPTwurPFyetPNVG5z0pNmQ23K3CLQRC85wlzztZx\n08/TQ9al0Ur5x8oiHr+zmk1f9L8qC5eB3o+scUpi9bJ+YwyPFt//dSZ3PxH8N//Cbw6zfbWJ1obA\n4DsSqUDeRDULLopnyfeTQ5a/cEkCE2bFcPuiUlzO4FtDIiJt9hpEvCuA0q7g0QU1qTnIlBpcNgvx\n+dMxVu0bqHuD5qQXAhKpwB1/CC25P3xpaIEvwiExTc6p5+oCrneb3Xz0UmtIK2Vjhwtjh4uagzbW\nfdLFhy+1MntxHGddrqdwuoYdqyO/cumLxy3S1eaiq23wZyUqjZ78GVcTm5AdEJVp/YeDcye9Y+3w\n+jnc+4dLR7OTtR93suhy74y0uc7B2o872fK1kYo93QO6iBFFqK+08/6LLWhipVx+WwpCPzsRl9ya\nHDEh0B8et0hteWD4yeOFYGrDbY1OXvzdYbZ+HTrwj8ctUr6nm/I93YwtUjF1fuhttuQMBWcsTWDl\n26EPio2O3rElWTWWVlt1QJ6mzZ8Tl1OMRKGifvW7IcsaDie1EFBpJNz52BhfuMmjEUVGVO965sI4\nZp7p/yJtXmngH786PCj1PmOHi5Vvd7Dy7Q70qfIR0WaKFLmTLkIilVG+8y1EUUSryyQtdy4l618Y\n+ObvIB/+q5WFlybw6A+r2LnONGRHha890cjhQzbufiK0z/lQdjAnO/s2m/nj7dWD0qT6/a1V3P1U\nNqddFNr55NlXJYYUAjpFKhpZPGqp9/evV2YGFQLazDx0eVNAEIjNLqRu5ZthtzFcTkohoNJIWHBh\nPNfdk9avWt6bT4+smuUZS/0Derz9XDNv/HV4dXY0H98HrHGJY9m/+X+YOryhLdvqd+OwGRhTsIjS\nra+NcuuOPbXlNm6dsz8ignv1B52Mn6wJKypeFC8Hd3bz8PeqcNgGJ33dbpG/P1jH+Mlq0nOCn7cU\nTteQkCwLOpHsdnWRrBpLY7c3zrY8SJxygPjx06hf8x4e18j9rr/zQkClkaCOkaCJlZKRqyQ7X8XV\nP01F0Y9dgOiBlx6pZ/kr4QWCjgTLX2kbUADoFp6BIJEgejx4urvpPliKRKlColEj1+uRKJU4mpoB\nEXVBIZ1ffXlsGj8IpHI1LodXZVEqU+J22Wlv2k928Xmj3LLhI8hkiC4X+jPPoWPVV+gXLsbR2oIs\nPh5BIqVr4xoSTl9Mx2pvGhIJjuYmJPHxsDEwiMpQWPZME4uv1PcbRS2KF7PBzeN3Vg9aAPRgNjly\ntwAAIABJREFU6/bw38ca+NWLuSHzTJkXy5qPOgOuOz12Kk3b8Ije1UedZW9AHgCHqZOY9FycR5zG\n2dqHHpEtFCesEBiutefR1FXY+PKNdj5/vT3oIdxIcsfiUhqqBjY/Fx0OREBQKDDv3oVu/oIjbmUF\nEEUM69aiO+10PLbjdz+2tW4n6bnzqCz5mMkLbqfu4AoSMyZjMQbXkz6R0M2ci72pHrfRiG7WPFyG\nLmwNdSQWFuO2WNDNno+9oc6XJlGqfOmRwtzl5pmf1/Lz58ZGrMzvKjfP2oc7zAiFodiy0sgn/23l\n4luDHxSfuTQhqBAAKI4/ndKudbhFF92u4MonppoDpJyymJZtXyPTxEaFQKQxdrgo291NRYmVZX8b\nPQvbcAQAgHHTRr/PXasCNWoM6yIzoxwp6sq+xuX02l3YuzsoPOUGuk1NlG1fNsotGz5dm9cDYK2p\n8qruHDnZbf7gLf+MfdKCpg+TgztGJgLZd43hCoAeynaHft6J/XgGsLpMxCvSsXuOxEpwBgYPSig8\nhY79W5Aq1WhSx2A+XN6vV9WhcFILgZJNZjZ9aeDgruiP5lhhs/S+6Ae2vDKKLRlh+lPtGeEYHp1t\nLkSRfjWFokSO6gOhV97xSaGHWKvbSJyidwURTAiIHjdKXRJupw1FXGLEBQCc5EJg/oXxzD/ieOuz\nV9tY81GnLwTlsaLlcKA+cpQow8HjFrGa3UPyPXWycPjQ0L1/Ho3ZEPpQvz+fZGppHDHyBCRIcInB\nD35btn9NQvFsFLF6mreMzBlf9PToCBfcmMTj7+bzj5VFnHZx/DGbRZ0sfl1UMb0aKypNAgsu/Ytf\nWt/PUYZPuP5rTlZKd0Tud2cxhT5YlitDD7GVpm2UdKxgT8cKHO7gk8+E4lm4uo207lqDMiGVMWdd\nO+z2Hs0JuxII1w2tIAF1jBSNVoI2XkZ2vopzr9EzYZY2qM+QjFwl9z2dw31P5+Cwi1w1YU+EW+7P\n568NLoj4rauv5tVz38Vld/td++8ZofeVJ11dSOEleXz1wFpMDeYhtzVKlO8KGz6LnBeA/rSL+ptM\npmsKUEm1iIi02mqC5lHE6nFajGSffR0ytZbq5f8ZbnMDOGGFQLiIHq8vnW6Tm7ZGJ9UHrKz9uBN9\nqpzTL4nnsh+lhPQbpFAKXHxLEp+8PHKqov0tJYNhajSj1ClxtfTOHMxN/c9q9r51kL1vHSQ2Y+Sc\nlUUZGTSxUjLHKUnJUqBPkZOQLCMpXY5KI0WhElCqJCjUEmJ1UhQqie9aj1+qKMFpbxxdexqtPJEU\n1TgEQUAURdpCCIGWbSvRpI+ldsUbSOQKUmadTcO6DyPalu+8EAhFR7OTD//Vysq3O7jxgXTOvTYx\naL5bf5VBdamNkm9HZgY9WH/v5kYLKp0SyyCEwPFAYvpEnHavrrNM4bVcTRnjDTAuV0a9XPYlu0DF\njIWxXHxrMokRiDEQJZCRDCIVDrna6ZR0rsAjupEKciYknEFJx4qAfG6HFdHlJP3UC5Eq1dSueD3i\nbTlphUAPZoOb5399OKQQkEgFHng2h9vOLKXbHPmT+cEKAVOTBWWcAgS44vULeff65T4hkHFKKvPu\nPQVVvJItz+2i7LP+HaSp9SqWvnweNoODdY99S+sBr4n7VW9fjDxGjkQmcHhzI6t+u7HfcsIhd9JF\nAdcKZkZ+f/NEJSVLweIr9ZxxaQIpWdGY1iON1TJE/xwRwoMbuaTX0rjHaOxoMhdejr2zBae5k/q1\n749IW056IdDD8lfauPCm4Ob2cXoZF9yUyLv/iLwzuVBeBkNhbvQKgZQJiZgazSQX6TE1eoVAZ6WB\nz+9ehaWlm5tXXjmgEJh//yzeuORDxszLYOFvT+Xda5cDsPLBdXQc6kKqkKJNi4y/mcE6hzuZSMlS\n8Pw3RUil0S2cY8Vgf3eRxulxkKOd3uezHYkgDRAGgiCg0qfittsQBAniUJ1L9UNUCBzhXw/X09Hs\n5MYHgrvkveG+dA7ttbJzlD1PNu5oJmNWGunTU/nyvjXMvWsG1au9/saXvnwe3z6zk8qVNajiB/Yf\nnzXX29e6jQ3Ubey12DU3Wyi8OI8Jl+fTcaiLNY98O6w2jys4H6lMicXcTEPtJr80mVyNWpOEyeDt\nQ98X/ei0o+/rMTo7EZErBO59OieoF9mBcDpEzAY3FqMbq8WNrduDod2FzeLBZvVg6/Zwxe0pI9Dq\n7w6eCBmKDZUyw4aAayqpFpvbf9u57pu3/T7ri2fRcWBrRNsSFQJ92Pq1MaQQAJhyqnbUhYCp0ULh\nRXls+ut2AOq3NPm2gxRaxaDOBw5vbgQBJBIBXU4cnZVeN8MOi5ODnxyi7WAHF79w9rCFAEDlwc/I\nn7CUFvluMrNPRSZTUVn+BVk58+m2tGEy1BEbl0lCUgGGziqMhjq/tHEF5yOTq6mv3Ui3pZWsnPlU\nV6wkOW0Kak0iSlU8rU176Oo4NOy2jjRSqcCDL+Yy4/SBz0Js3R4ObLNQXtJNTamNhmo7VfsHFn5R\nIRAlXKJCoA+15TY6W5wkpAQ/jCuaMfqueK0dNgQJ1G3yztzrvm1AOKKHtuW5nZzz59NxWJzYjV4j\nNEEicPELi1FoFUjkEmxddlY/tBFjvZkNf9nKDZ9djugRKXnjgE8I3PTlFbgdbhxmJ2se2RS8IYMk\nf8JS2lv2IZFI0cQkcWCPV6W1pXE3SSneoDomYz1mU6NvJdA3rb52E7qEXJJSJlBz6BtaGr0qwipV\nPCZDHYdr1pNfvOSEEAK3PJg+oAAQPfDoj7zupY+1L6soJxdRIXAU7c2hhYCuHxPwY8myyz7u/SCC\neMQNwf73y9n/frlfXtEj8vGPArUOwCtQXjv/vYDrr5wT+eAVpSVvMXHaDRi6arDbQgfuCEVK2hS6\nLa0IQYw7HHYTHrfTJwyPdy66JXRUKoCKkm6e+XkdtWXHryPAKMNHr8wiU1PkMyYIph10LDg+RrXj\niP6CucQlRB/XUMkvXoLxqL19tSaRtKxZxGjTSDQ30d5ayrjCC2htKsHpMPulqTWJSKQKRFH03Wfo\nGL3wkMOhP1m1eaWBp+6uxW4dXe2VKCNPuiaf/V2rcYuhx5yY9FwsjVVH/h5LZ9mOiLcjOqodhauf\npbdGG/WyMRQqyz4P+tna3U7lwc/80qrKvsDj8f4o+qZ1tPt7T+xJa28t9V0rLXknsg0fAbLGBw8e\nAl535k/8tAanY3jbP9FYAicG4XgRjcnMo7vZa0imy5tKd8vhiLcjKgSOImtc6B/pYEI+DobYucWY\nvj0AQNz8SchTdMgSdbS9swb9Jaci1arp/GwLjvo2Yk+dgHFdiTdfWgLyJB1NL346Iu0aDXoEwNGM\nhPfE0eCWXwZXPKirsPHTc0MHbx8MwWLoRjn+qDRt8/2drBobVAiYaksRPd5VYcP6j0akHVEh0AeN\nVkpaTmhDnZb6kTE1V+amoT2lgPb31iNLiqP7QB22Q5sRnS66Pt+KekIO2tmFtL/TjDzZq1IoS4rD\nVl5PxyfD19yJcuzIygs+ydi8YvDnJKHIzg89kYlyfBBujGGpQsWYs67x7SFGYwyPMJPmxvRrsNNY\nHTn3s31pe3MVUq2alO+fh726GdHhRHS5iVs4BVm8Fkd9G4IkcInv6jIjOo7vmMJR/NElBv/JNddF\n7t2aMj/qhuN4Jxpj+Djl1PPi+00fqeAzyTcsRqKUY9lRgUwfS/xir0+d7n01KNL1SFQK8Igo0vVo\nJo7FXhN5y+WTEYVKMuT4skNFqQo+yQgWjHwoCAJMmRd1FHi8E40xfBySOU7Jwkv6FwIlm0bGUKzt\nrdWILjeIIvol8+hYvhlnUwei24Np8wFv2hHqHnnN+8f2shFpy8mEViel4xgLAavFQ0xcYLCXSLmM\nmH9BfNTp3AmCTpFKp91r76OQqOkm0L21w9iOKimTnnXCSAiBqBrBEf6+oghJPz/Efz1cH9FoRH0R\nnS5fyMGOjzbiqG9DdHsHp74CIEpkOf/64E4DR5LDh4Lr/s9aFDfssq+8M5X7n8kZdjlRRp40dT6F\nugVMSjiLSQlnESsP7rdMk5KNrb0Ra0sdEpkMQRL5aHEn/UogTi/jjkez+s3T1eZixdsdx6hFUY4V\ni69K5K1nm4+pM7GKEiuF0wMtz2eeEYtcIQxZPfTUc3Vcd0/acJsX5RjRZC2n223A6Oh/a/dYxBg+\naVcCukQZS3+YwnNfFjL3nP6deL38p4ZjvnccZeRJSJZxzV3HduDcsyF4XIqEFDnn3xB8NhgO9/w1\nJxpY/gRDLR149dey/WuQSEY0xvBJsRKQKwQ0sVJiYqVk5Co5/4ZEpi2IDSv60tavjaz+oPMYtDLK\nSGG3elCqg893Lr8tBVOni4/+3XpM2tJfcKKbf5FObZmNXevDP3vSxku55ZcZKJRRCXCikaBIo9la\n0W+epGkLkcoVgEDSlNNo2PBxv/mHwgkrBN4vmxJ23v72+gfir/fWDvne7yJSmYBGK0UTKyEmtv/9\nyUlztFjNbixHQnuOlg/3r97q4OJbgs+yBcEbPe6URXE8fEvlgG3U6qToU+VMOCWGL94YXHxooN/A\nRFKZwG//k8v7L7by0b9bMXWF1hhKy1Zw/g1JnHttYoCFsMctUrnfyvjJmkG3b7j0vB/JGXI0Ybwf\nbY0Ous0euk3uUffxf6xxig6m6M/1uY8O5l7a47DhtprxuBwj1o4TVggMZ2APhz2bzDzx05oRiSZ2\nvJKSpeCfa4ojVt4f3sgb9D2X5u2OWP09/PuRegxtTm64P7Sb8MlztbxbGv7EAhiSEACvksEPf5cZ\nNE0iFbjijhSuuGNorqDferaZN59uQiYXBt2fgfjw0NSIljfY9+PVvzTy3gvfHfXoFushUtTjEJAg\nElwAih43qsQMRHePnUBkYwnASXwmEAqHXeT1p5p46OZKjJ2jG4c0SuR49/kW1n58fGzrLX+ljc9e\nbYt4ua890cibTzcBox85K8rAZGunYnUZMThaEAg+qTXXH0KQSJCqNJjrR8ZN+gm7Eog0HrfI2o+7\nWPZME021I7f0ijJ6PPfLOjxuOGNpwmg3hZceaUAUCRnSdLA8eXcN6z4J1DOPcvzi9NjpsDeQrslH\nKQ0eqyRx4qkcXvMeottN1hmXY6ze5/MlFCmiQgA4XGHj4VuraG2IDv7fZRx2kafvr2XPRjM/+8uY\nUW2Lxy3yr4fr2bvZzJ2PjUGrG7r+9671pqgAOAGpNu3A4bFid3cHhJXswWnuQpMyxuc2QqFLwt4Z\n2S2xk0YIiB5w2D3YrR4qSqzUlduoKrWyb7MlOvifZHzzfgexCVIuuDGJ1DGhHQb2x7ZVkXH4tukL\nA7vWmXj2yyKS0sO39HW7RLatNvL5q+0htYm6zW402sgbF0UZPqemXI3Z2Y7N3X84WIepA03aWADs\nhnbixk6kNcJCQOiJSjWaCIIw+o2IEmUUEKRSsu64m8b//QuXMXKeRIfTFqkmhurHfz8idaRNWURr\n6SaSi06lq2YvUqUa0eNBHZ+KpbUGiVyFx2kDBGIzxtPdXo8yVo/D3IW5ucpXTva8y2kv34rDYiA+\nZxKtBzYQm5aHMi4Rc0sNMcnZuOwW7IY2YjPG03pgY28bpp5Fc8kqlLFJvjrk6li6avz99yjjktBl\nFWFpq0OdkEZ3ewMafQZSpYbmklXDew7qfDQyr32SiAezsyOoF9GM+ZfQuOlTRI+HjAVLaNzwiS/8\nKoAoisPWkDlpVgJRQqNISUU373Q04wuQxcbhaGnCUrof49ZNoz4whYNEpSZ2+kxMO7fhsQ0/JOP4\nx57yvyCKiC4nbosFR2sz3QdL6dq4dtj1AMjiE1CmZ6JMz8Jl3D9gfolKDYgR6WeotowkUoWKuMx8\npAoVUoUSbeo4TA3lSJVq3E47EpkSt9OOIkaHs9uINnUcEqkMmSrWTwh0d9STmD+L2o3v+VwpyLXx\nmJoqsRu9A7+pchdqfRrO7sB3WKHVI1UofXXYDS1o08ZhbuqNVpcwdgpNe74hddJCmveuIW3Kmbid\njiNCanjolVk4PN0IR3Rz4hXpQYUAiMi1CXicdiRyBSMxaY8KgSNI5BLOe/lSpAopn9/0AS5rZDWD\nesr/6gcfR6zs6779AQBvzH1pyGXo5swj6aKlCFLvD0l0OlBmjkGZOQYEgY6VX0SkrSOJpqCI5Isv\no7usNKKDo8vQhej2qghL5Apkunhk8Qlo8osw7y/B1TV8bSNXVyf2xnpsh8OzR9EUFGGvrxsRIdDT\nFoly5OIRuOzddFbtQaHVo03NBdGDIJHgslmITcvDbmonNi0PuSYWl90Koge3M9Bnl8fl9KpPxqeg\nScxAk+h1/eJx2kkcfwoSqQJlXBLa1FxvOX2wdTUTl1mIRCr11WGoO0De4lupaKokZeLptOxbi83Q\nQuqkhTitRhLHz8RhMSCVq/xm4kNlf1d4K4mW7d+QNPU0JDIFbbvWQghV0uFw3AuBnoHOhwguu4vW\nXU00bDrMoY8P4rIO39d2TFos8Xl6AGKz4ugs799XkFwjJ2VGOg0b6xA9A38xPeWHU/axJHnJFQCY\nS3bRvuJznG2tqPPyiZ+/EOOWTaPcuvDQ5BeMSLmNr/wbe2O977NEoUA7aSrJl15J0vmX0PTm/4Zd\nh+h2U/fsk2Hn1+QXYK+vGzjjMWjLUGguWe33fw/d7Yd9Wi+W1iMCURB8jhUFiQT9uOm+/B2HdtBR\nsR2A6rXLfGUAtFf0RuyydjaCIPjfW7XL+4co+upQxadgOOwNVdp6YD0AXTV7EQSJd9Dv05Zjictm\noWmzdyIWm12ErbM54nUc90IAoONgG6KrV/pKVTLS52aRPjeLomsmsvL25ViaQpvjh4OlyUTXIe/g\nbKwdeAsk87Qc5j18Bm+f+b+whFBP+eGUfawQ5N5DUfOeXTQte8V33XqoHOuh8tFq1uAQBDTjC49J\nVR6HA+OOrcgSk9DNnX9M6vTjSF87V3997OseYYKqPfYZdEWPh47KnUMsXAx975E6PC4nraUbA9ri\nm/WP0tlp8tTTfX9rxxRgqi3tJ/fQOCGEwOp7v8TW7r+kS5mWxtzfLESbGcv0n81h/a+G98PwOD18\ndv37YedPm50xouUfC7STpyK6XLQu/yDse8Y/9hS2uhoOP/835PpEsm77GRKVGpfJSPfBA7R+/J5f\nfkGuQDd3Pvozz0aQy3GbjHRXVtC1fjWOpkDf6InnXIgmvxB5cjKCVIa724K9robG1/4bkDfrtp+h\nSMtAovAKs5z7fuWXXvGre8Pu12BwtrUiCIF2llm33+V7Lvqzz0eTl4/H6Qx4LorkFLLv+aXfvTVP\nPoazPbgBWfIll6HMyPL19eh+QmBf5YnJpF1zY1jPMeAMJEh5ffPaG+upe/ZJ4mbNRTd3AXK9Hltt\nDR0rv8BWVxP0vuMdh/n4MCQ8mr4GYvI4/YjUcdxrB1337Q94/8LXA4QAQOKEZM79zxIcJgfvnv2K\n3z3162tZc/9XLHjsLFKmp6HQKrC2ddP4bT1bHl/fW7dUwrUbvudXbn+z+zm/Oo2x541Hqgiuetd3\nf36wZQPE5cRTePVEUmeko82Kw95lw9Zhpa2kmYZNh6lf37t33LNVtvOZzYy7uBBtZiweh5u2vS2s\nunvgvfyc+x7EuH0rnatXDpi3h/GPPYXo8eBsbaG74iBty73Br2W6eKSxcdiP7G0LMhlj7rgHRVo6\nhs0baf3o3SMPRSB26gxSLr+Gwy8+68vv6/+suZj37MRj9+4DS9Rq0q+/FYD6l/4Rsk3Q/0A6GHrK\nq3v2Sd92kCCVIk9IRDt1OvpF51Dz1B8D6sr7wxO+59Kx4nM8DkfAcwlVX7htDzdv7IxZWPbtGdRz\n7Nv3/oQAAKJIy/tvY9y+GWmMlozv/RhleibmvbtpemP422RRvKiTMkg5ZTEt275GpokNWAmc9NpB\nKdO9boBbdgXOKNVJGhInppAyLY2uik7kMXLi8xJQJ/s71RI9HrY9sZG4nHgKrpwQVr3VX1SQd4l3\nC6JyebkvAMzR9JStjFeh1KkGLD9zQTan/fEsJHIpliYzbSXNqJNjiM9LIKEgEXVyjJ8QABDdHqb/\nbA6Gyk7aSlqIz0sgfW4WCQWJdJb179tGqo0NONzM/OGdqHN7fboEGwwEiQSPzeoTAOA9RHUZeg2W\n4mbMQpGWTndFmf/qQBQx7dqOIjWNhNPODNhXN2791u+zx2ql45uvSL/RX5geC8b89L6Aa46mRtpX\nfh50EA7nuRwrTDv8fcxE+jma9uzEuH0zAG6Lmc7VK0m79mbUOeMiUv4Lpad7XV8cmaT+ZMr6Ae6I\nDHnT43jgzWk8ccNuKrYZhlTGmTdkMu+yVMZM0PJ/Z22hvb73EF8qE3jos1P4zTnh+QBKKDyFjv1b\nkCrVaFLHYD5cHvGYAiekEJDIJRRcMZGpt83C0mRm+1PfBuTRZsay4NFFfHDRG76DW3mMHFXiUZ4V\nRSh716uaF44Q2PzYOgCfENj2xMbQM/s+ZYdT/oy75iCRS9n0+zVUfda7Jy/XKkg7JQNjTeBgIkgl\nrL73Sxo2eg8LZWoZpz9+NhNvmTbgFplErkB0+rfdY7PhsVmPqCKGxvBtoMfDvmgnTwPAvHtH0P1U\na1UlcTNm91tGD67OjhHVWAlZbx/tIGmMFolSiTwlFc24fDpXBV89DfRcRpNIPkfLvj1+nx2tXgMm\naUxw9wdD4XfnbfUbQIdDXKICY/vARqEzzk2mZHUHM85JGrIQWPVaPateq+eF0tMD0twuMWwBAMcm\nqMwJIQQuW359wLXOsnZ2P7+Vig9LcXYHDsKKWCWNmw77ae44LU6clqF9sccCdZL3B9QzoPfgNDuo\nW10d8r6++V1WFyUv7eC0Py4esD6P04kg838FGl/9N8r0zKCz4L44BtiOUKR5z0xSLr+GlMuvCZ4p\niHCInTqDmOKJKFLSkGq1CAoFEtnoxMw9WjtIFhdH/GlnEj9/IaqcXGw1VQH3DPRcjhWCRELqVdeP\n2HM8eiXkm0xIjk+flHJVeO2aujiR5+/Yx50vTOSdPx4arfNgHy3bvyaheHY0qEygdpCc+PF6ss4Y\nS9u+Vlp3NwW9r/yDyJ+kjyTN2xu8W0J/Wsyu57bQtndo5uHGWgPKhIFnfO5uC9LY2CHV4bF295su\nUXtXEvbGBkRHeLGZpTFaUq++AdHtxlZTha22Gre1G0EmJ35+4KzqWOMyGmlb/hGyOB2Ji8+j/t/P\nB+QZ6LkcC6QxWjJu/TGK1LQRe44ex+i4WimcE8+VD+YREy/D7RL59eItAMy7LI2zv5eFKkZK2ZYu\n/vuLgwD88K/FJGer0cR58//u/P5n4eZOJ/VlFrpaHORMjqV6j4nnSk7jrUcqOOuWTNRaGe/9uZIt\nn7ZQdGo8S+7OBUQyCmJwOUTum7MxZNl9t4luK+o1Nuzpk0or5ZNna9j8Ua8aaOLk+XhcDtpLNuCy\n9e9iYqicEEIgmHYQQPENUzj7xYto3tHI13csD0jvKD0+ZmXhsub+rxAkAmPOHMvUO2aROsPr/75p\nSz27nt9Kx4Hw+uO2uxEkA58Xda1fg/7MxRg2rfdte0QKW00V6tw8zHt20Lnmm7Duybn3QZqWvYp5\nj786nya/8LgQAj1YqypJPO/C0W5GSHLufRCJWh1wnnO8PcehYO92Y+pwYLO4/N7xuCQ5MoXA9i9a\neffxXqvff91zAIDETFVYW0tZhTE8t2cBAN9/oojfnLMVmVygcpeRdRc0kpSl4g8rZ7Pl0xZ+8FQx\nT924m4aKbjLGa7jrv/3Hbwi1TdTTJ7tVyq2PF/oJgbaS9cSPn0b6/IuxG9po2Ra+Eke4nBBCIBTN\nWxsASMgfGdWp0UD0iNR+XUXt11UU3zCF8ZcUkjY7k3NnprPm/hU0bIqcoZC5ZCfJFy8lfsEZdK6J\nrO65ec9O1Ll5xM2eh2HT+rBmjoJCgdsc6Awtpmhiv/eJLheCTDbgOUakiCksxtEcfPU50ogu14D9\nFBTBneIN9BxPBH7w12I+eKKK7V+0kpbXe773xT/rWPNmI9MWJ3LjHwp49ddlgy47qyjG7wD64S9m\nkVXk3aK1WbyTpL7bQ28+XME9r0yl/qAFhVrC/x48OKw+1ZdbeGj5KX5p+qJZ2Nob6di/hZGwFoYT\nPKiMIs77sktkJ3Q3QnLgtT18es277P33TgSphGk/Ce8gNVzcZq+BXeLZ56M/61zfoZ4iJXXYZRu3\nbcbeUI88QU/6TT8ISFekpqPMyva75mhpRjvJfzYVN2MWujnz+q3L0eIdkHVz+883XKTaWJIvuQxN\nYfGoHQA7Wpq8/exn793REmhVGs5zPBHQxMnoaPTO6Oct7X1P86bHYTO72PRBM9PODozRkJQ18Pbo\njHOT/T7vXdPB9HOSQ+SG82/L5rkf7eXpW/fw52t2sX/90GwNevrUtz89WBoqSZw8H3VSBrHZRUMq\nfyBO6JVA+lyvT/iuimNv6OF2uJEqpChiFRFxWxEK0SNSumwvk74/ndisoe3f94dx+xbiZs5Gf9a5\n6M86F4/djkSpHHa5ottN4//+RdoNt6IeN56c+/8Pt8WMVBODLC4OQa6g8ZWX6Hta0LX2G1KvvgF1\nbh4uQxfy5FTkCXraV3xG4tkXhKyra91qUq++gbiZc1CkpCFRqpDF6aj8faBR1WBIv+n7vdpBao3v\nnAPAtHNbqNsGJGHhIiRKNRKVConKOzglXbgEl8GAx27DY7Nh2rU9qG+inr5q8otxGTqD9rXnOWbf\n9cDAz1EiIXHx+X5tAa87kYHaMtI8/MWsABXRD56s4sfPTMBmdrN2Wa9q+JJ7c0kfp8Hp8ARdBfz4\n2QkYWx08dGHo723GOUl8/Ldq3+e9azq4+v9Ch8BsrbPyy7enY2x34HGJ2Cxufn/JNu7531TUR1x4\n//Sfk3jutr2019v8rt//2lRefvAgbXU2X5++eukwFoO/X7Goimg/FF49iaJrJwFQ/sHhTs2eAAAK\nRUlEQVSBY16/obITfVESeZcUUvLSjoiUOel706lfX+un3y+RSSi6ztvPgfT+h0LLe8voPrifuNnz\nUGZmIZErsNVWY62swLx/78AF9IPLZKT+xWfRTp5G0gVLkGVkITodOLu6cDQ1Yq30D5dn2r0D3bzT\nUKSkIovX42hpov3LTzHv2dWvEDDt3oHo8RC/YCHKjCzcFktELFdluvjeDx4PbrMJW10ths2hD//C\nIfHciwKuHb1VYz9cG3Tg7XlGyrQMpDExQftq2r0Dj91G6tU3DPgcBYmEhDPOCqin76ohVFtGkr4H\np31Z91Yj694KtAt66sb+Y1PfO3vg7+xoAXFgY2fAtfZ6m69t42fo+PO1u6ja7XUFo09XInpCtyXU\n9b59+ubVer+0Y6EiekJYDB+N6BGp31BLxfulQffIe+4Jx6/PJe9dhTYzLmR6fx46sxflUnTdZOLH\n63GaHRiquvjmp5+FXfbR5edfPoHM+WPQjUtApVcjuj2Y6000bqnn4LK9dLf4aweE8iIqU8u5atXN\nw/IuGgkKJquYNEvD+//pQJcg5arbEhEE+GxZF3kTVEydo2HNZ0aqSu3cdHcSbU0uPl/WFZAvfYyc\nA7uslJfYuOb2RGRygZUfGDh1cSwxsRIO7LCyY4OFm+9N5qv3DFTsjbyHTYCCU/Xo0lRs/aCBy35d\nxOd/q8BqcnH9nydRuq6d0vVtnHNHHh88WspVv5+A6BGp2W3AZnaxZ0WvpteC68ew/nXve9uTr9vg\nQqWV8uEfD3LZr4t456Heic2F9+T7pQkSAdEj8t4jpXjcIjlTddTsNgS0afvHjdTtM/q16d2HD5BZ\nHEvujHjWvhJoxTzz4nQsnQ6KFyaz75sWX38Bppyd4uvHlQ8V8/kzhzB3OPp9FvX7jdgsLvZ81eL3\n/ABmL81gy5G/+zJ7aYbvnp663nnoADc9OZl9q9uwdDp8/dr1eRNVO7q48YnJvHp/SYS+6fCYsiiR\nJXeNRSoXEASBlhorf79teBOno8k596Yjzus8NG/9CluH/1bfSWExPJSBbDD3fHz524Mqe9zV06h8\naxcZZ+VDjIKtT28FUcTj9iBTyRlz4QTM1R14XB5W3f81TrONtAXjqP6ghMzFBVibTXjcHuJyE3Hb\nXRTcOpvWrXV47C6cHil7/rsHt8PN2Msms/uPvYe1eddM59CyneReOZWaj/bicbjZ8uxOqt/3N9op\nuHU2tnYLy2/8iLFLJ2OsaMNhsJE4IxNjRTtxeYko9Rpat9YRNy4RW7uF5g1VpM7PxVLXReKMTMzV\nnWgydb5+jL1sMpXLdpE4LQNjRRuCVOJL1xUkY6xoQxTxlV323y0Bz23JzQl8+nonLfUu7no0lbpD\nDl58tJmf/D6NqlI7X71roL7aweXf1wfkK9tjY/FSHeOKlLQ1uWisdXDtHUm4XSJ/usc7iKSNkRMT\nKwkqAIL5xgnFQP6Gpp+fRvp4bdC0y39TzBfPHSImwauP31LdzfZPmzj7tlwmnJHM1/+sorWmV4W0\nb75YvYJdXzRzypKMAN10QcAvTThyz/jZCZRtCu2Rdu4VWcy+TPRr0/jZCVhN/bsyn3tFFp89U0F8\nqtLX3wPr2sgoivX1Q6OTY+4Ifdjf8yxmLcng23cPBzy/A+va2P5pE9c8OjHguSSPjfG7R6Pztr1H\nG6hvv864JYdZSzJ8AuNYsuebdvZ8E/nVeV9qV76B6HYhkSvJXHgZdSvfjHgdx70QON6o/qCE9DPH\no06N5dAbO8i7fgaiy4MglWBrs9Cxqx5LvQFBKvG5kxCOHFxrMnQoEtQ4TXbcdhcOkw2V3YV+ajoK\nrQpjVTu6whSqPyjBWOGvDipVyci5ZJLfNUEqBKx0RLdI7cf7KP7xPF95nXsbsbdZ0E9N59Dr3jb3\n/J175VQAYjJ12Nst2NssqFK0fv0wVrRhqmonLj8JXWEKDqPNl67J1KErTEGilPrKDoZKI6Hb7MHt\nFpHJvT9mu01EIoBKI9Bt8WDt9gTN19HqQiKARiulpd6Jwy6y7Pl2zrio94ykqc7Jy0+2MfO0GLav\n818xtXwwOEHfHzs/b2LrBw1cfH8+Co0Uq8mFgLed5nYHLruHyYtTsJlcSCQCbqeHL549hEYn59IH\nC3njl70zxb75AA7vMzL1nNSgrsn7ptm63UgkApMWpfgJAafN7demb989zISFyX5tmrQoha0fBc6+\n+/Ltu4dx2T1+/QUo/7bD1w9LlxOtXoG5wxFQb99n0VFvJTVPS3udNaA8gI//XBbwXI6+x9Llfcd7\nhGPffu35qpmDGzvCcud+IiJV9p5Dia7IxjjpISoEBknSjCzkWiUyjYIxFxTj6LTicbi90zUB36As\nuj1osxMA0OUnoytIxmX1zpxcFgfanASMh9pImJCGtdmErdmMTKugc28jotuDSu9vfu+2uaj5eC+5\nV04l+6KJGCta6TrYwrirplH59i5fvp46jIfafOXpp2TgNNlxdFrJOq8IqUKGtdlE1nlFOE12ss4r\nQhaj8OXzuD1+/VDpY9BmJyDTyOnc20hMdoIvveda7LhEX9l9mX+OltRMOcvf7OTW+5KxWT2s/czE\nmHG9aozrvzBxw0+TqKt08MXbXSHzrXzfwA13JdFY66C8xH/GP7ZAyWnnx3JgZ6A9ydH+iIbDzAvT\nyCyKZfsnjSz5RSFWo5O9q1qRygRWvFDJJb/wxjZ488F9eNwikxYlkzM1HoVaQum6NuKSlRScmkjl\ntk7yZiX48l10bz7gnfGfc3tu0Lp70v7545143CLXPz4JiVTwS+/bJiCgTdc+5j17mLw4BX2mmupd\nBnZ9Hqjuev5deWz9oMHX39oSA+n5sb5+NJabuez/CrGaXHz7bn3IZ/HO7w5w1e8nMG5GPGWb2v3K\nc3S7yZ+rp3Sd/4Rn+yeNvnssnQ42vFnHlQ8Vs/2TRlRamV+/Ni7z9wow9ZxUdn8VeZ/7o0XytIW+\nv92OwHc7Ehz3ZwLHK7lXTKX6/T1DmoHk3zSLlk3VJM/OpuL17b7rPXu9PX+nnznel9a4qiJoXf3l\nO7o80SOGfe3oOo7OF6rN/T0PQQBBAsHOtiRSED29cT5C5QOQyQRcrsB6ZHLB63TsGCFIBAQBPO7+\n65QpJbidYtjvilQuYcZFab7PpevaMLWFZ6EbbpuGUtfR/fB+TwIetzhgvVKZgDvIdyZIBCRSIWgb\n+t4jkQph9WmUYr+MGpE4E4gKgShRokQ5QYmEEPhuWllFiRIlSpSwiAqBKFGiRDmJOS62g6JEiRIl\nyugQXQlEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklM\nVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhEiRIlyklMVAhE\niRIlyklMVAhEiRIlyklMVAhEiRLl/9urAwEAAAAAQf7Wg1wSMSYBgDEJAIxJAGBMAgBjEgAYkwDA\nmAQAxiQAMBYApLw1txVoNwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ff3fa8d2450>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "drawAnalogy(a='King',like='Man',isTo='Woman')\n", "display(inputA)\n", "display(inputLike)\n", "display(inputIsTo)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "widgets": { "state": { "fe0593596316430a823391d613f32dc5": { "views": [ { "cell_index": 8 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
yigong/AY250
hw3/hw3-2.ipynb
1
4229
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib\n", "tp = [('date','i8'),('value','f8')]\n", "yahoo_data = np.loadtxt('yahoo_data.txt',dtype=tp, skiprows=1)\n", "google_data = np.loadtxt('google_data.txt',dtype=tp, skiprows=1)\n", "ny_data = np.loadtxt('ny_temps.txt',dtype=tp, skiprows=1)\n", "f0, ax0 = plt.subplots()\n", "ax2 = ax0.twinx()\n", "yahoo_line = ax0.plot(yahoo_data['date'], yahoo_data['value'], color = 'm', label = 'Yahoo! Stock Value',linewidth = 1.5)\n", "google_line = ax0.plot(google_data['date'], google_data['value'], color = 'b', label = 'Google Stock Value', linewidth = 1.5)\n", "ny_line = ax2.plot(ny_data['date'], ny_data['value'], color = 'r', label = 'NY Mon. High Temp', linestyle = '--', linewidth = 1.5)\n", "lines = yahoo_line+google_line+ny_line\n", "labels = [l.get_label() for l in lines]\n", "ax0.legend(lines,labels, 'center left',fontsize = 'medium', frameon = False)\n", "ax0.set_ylim(-20,780)\n", "ax0.set_xlim(48800,55600)\n", "ax0.set_ylabel('Value (Dollars)', fontsize = 'large')\n", "ax0.set_xlabel('Date (MJD)', fontsize = 'large')\n", "ax0.set_title('New York Temperature, Google, and Yahoo!', fontsize ='x-large')\n", "ax2.set_ylim(-150,100)\n", "ax2.set_ylabel('Temperature ($^\\circ$F)', fontsize = 'large')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Using matplotlib backend: MacOSX\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "ax0.plot?" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 49 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.close('all')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 59 }, { "cell_type": "code", "collapsed": false, "input": [ "ax0.set_xlabel?" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [ "[yahoo_line,google_line]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 33, "text": [ "[[<matplotlib.lines.Line2D at 0x109fbe4d0>],\n", " [<matplotlib.lines.Line2D at 0x109fde990>]]" ] } ], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "yahoo_line" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 34, "text": [ "[<matplotlib.lines.Line2D at 0x109fbe4d0>]" ] } ], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "a, = yahoo_line\n", "print a" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line2D(Yahoo! Stock Value)\n" ] } ], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "a" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 36, "text": [ "<matplotlib.lines.Line2D at 0x109fbe4d0>" ] } ], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
richardotis/pycalphad-fitting
Al-Ni/Al-Ni-L12-Results.ipynb
1
1788910
null
mit
tuanavu/coursera-university-of-washington
machine_learning/1_machine_learning_foundations/assignment/week3/Analyzing product sentiment.ipynb
1
557233
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Predicting sentiment from product reviews\n", "\n", "#Fire up GraphLab Create" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import graphlab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Read some product review data\n", "\n", "Loading reviews for a set of baby products. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO] This non-commercial license of GraphLab Create is assigned to [email protected] will expire on September 21, 2016. For commercial licensing options, visit https://dato.com/buy/.\n", "\n", "[INFO] Start server at: ipc:///tmp/graphlab_server-1152 - Server binary: C:\\Anaconda\\envs\\dato-env\\lib\\site-packages\\graphlab\\unity_server.exe - Server log: C:\\Users\\tvu\\AppData\\Local\\Temp\\graphlab_server_1443305107.log.0\n", "[INFO] GraphLab Server Version: 1.6.1\n" ] } ], "source": [ "products = graphlab.SFrame('amazon_baby.gl/')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Let's explore this data together\n", "\n", "Data includes the product name, the review text and the rating of the review. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">rating</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Planetwise Flannel Wipes</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">These flannel wipes are<br>OK, but in my opinion ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Planetwise Wipe Pouch</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">it came early and was not<br>disappointed. i love ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Annas Dream Full Quilt<br>with 2 Shams ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Very soft and comfortable<br>and warmer than it ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This is a product well<br>worth the purchase. I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">All of my kids have cried<br>non-stop when I tried to ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">When the Binky Fairy came<br>to our house, we didn't ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A Tale of Baby's Days<br>with Peter Rabbit ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Lovely book, it's bound<br>tightly so you may no ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Perfect for new parents.<br>We were able to keep ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A friend of mine pinned<br>this product on Pinte ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This has been an easy way<br>for my nanny to record ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " </tr>\n", "</table>\n", "[10 rows x 3 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\treview\tstr\n", "\trating\tfloat\n", "\n", "Rows: 10\n", "\n", "Data:\n", "+-------------------------------+-------------------------------+--------+\n", "| name | review | rating |\n", "+-------------------------------+-------------------------------+--------+\n", "| Planetwise Flannel Wipes | These flannel wipes are OK... | 3.0 |\n", "| Planetwise Wipe Pouch | it came early and was not ... | 5.0 |\n", "| Annas Dream Full Quilt wit... | Very soft and comfortable ... | 5.0 |\n", "| Stop Pacifier Sucking with... | This is a product well wor... | 5.0 |\n", "| Stop Pacifier Sucking with... | All of my kids have cried ... | 5.0 |\n", "| Stop Pacifier Sucking with... | When the Binky Fairy came ... | 5.0 |\n", "| A Tale of Baby's Days with... | Lovely book, it's bound ti... | 4.0 |\n", "| Baby Tracker&reg; - Daily ... | Perfect for new parents. W... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | A friend of mine pinned th... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | This has been an easy way ... | 4.0 |\n", "+-------------------------------+-------------------------------+--------+\n", "[10 rows x 3 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Build the word count vector for each review" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "products['word_count'] = graphlab.text_analytics.count_words(products['review'])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">rating</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">word_count</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Planetwise Flannel Wipes</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">These flannel wipes are<br>OK, but in my opinion ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 5L, 'stink': 1L,<br>'because': 1L, 'order ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Planetwise Wipe Pouch</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">it came early and was not<br>disappointed. i love ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 3L, 'love': 1L,<br>'it': 2L, 'highly': 1L, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Annas Dream Full Quilt<br>with 2 Shams ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Very soft and comfortable<br>and warmer than it ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'quilt': 1L,<br>'it': 1L, 'comfortable': ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This is a product well<br>worth the purchase. I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'ingenious': 1L, 'and':<br>3L, 'love': 2L, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">All of my kids have cried<br>non-stop when I tried to ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'parents!!':<br>1L, 'all': 2L, 'puppe ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">When the Binky Fairy came<br>to our house, we didn't ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'cute': 1L,<br>'help': 2L, 'doll': 1L, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A Tale of Baby's Days<br>with Peter Rabbit ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Lovely book, it's bound<br>tightly so you may no ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'shop': 1L, 'be': 1L,<br>'is': 1L, 'it': 1L, ' ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Perfect for new parents.<br>We were able to keep ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'feeding,': 1L, 'and':<br>2L, 'all': 1L, 'right': ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A friend of mine pinned<br>this product on Pinte ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1L, 'help': 1L,<br>'give': 1L, 'is': 1L, ...</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This has been an easy way<br>for my nanny to record ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'journal.': 1L, 'all':<br>1L, 'standarad': 1L, ...</td>\n", " </tr>\n", "</table>\n", "[10 rows x 4 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\treview\tstr\n", "\trating\tfloat\n", "\tword_count\tdict\n", "\n", "Rows: 10\n", "\n", "Data:\n", "+-------------------------------+-------------------------------+--------+\n", "| name | review | rating |\n", "+-------------------------------+-------------------------------+--------+\n", "| Planetwise Flannel Wipes | These flannel wipes are OK... | 3.0 |\n", "| Planetwise Wipe Pouch | it came early and was not ... | 5.0 |\n", "| Annas Dream Full Quilt wit... | Very soft and comfortable ... | 5.0 |\n", "| Stop Pacifier Sucking with... | This is a product well wor... | 5.0 |\n", "| Stop Pacifier Sucking with... | All of my kids have cried ... | 5.0 |\n", "| Stop Pacifier Sucking with... | When the Binky Fairy came ... | 5.0 |\n", "| A Tale of Baby's Days with... | Lovely book, it's bound ti... | 4.0 |\n", "| Baby Tracker&reg; - Daily ... | Perfect for new parents. W... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | A friend of mine pinned th... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | This has been an easy way ... | 4.0 |\n", "+-------------------------------+-------------------------------+--------+\n", "+-------------------------------+\n", "| word_count |\n", "+-------------------------------+\n", "| {'and': 5L, 'stink': 1L, '... |\n", "| {'and': 3L, 'love': 1L, 'i... |\n", "| {'and': 2L, 'quilt': 1L, '... |\n", "| {'ingenious': 1L, 'and': 3... |\n", "| {'and': 2L, 'parents!!': 1... |\n", "| {'and': 2L, 'cute': 1L, 'h... |\n", "| {'shop': 1L, 'be': 1L, 'is... |\n", "| {'feeding,': 1L, 'and': 2L... |\n", "| {'and': 1L, 'help': 1L, 'g... |\n", "| {'journal.': 1L, 'all': 1L... |\n", "+-------------------------------+\n", "[10 rows x 4 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "graphlab.canvas.set_target('ipynb')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", "}));\n", "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//dato.com/files/canvas/1.6.1/css/canvas.css\"\n", "}));\n", "\n", " (function(){\n", "\n", " var e = null;\n", " if (typeof element == 'undefined') {\n", " var scripts = document.getElementsByTagName('script');\n", " var thisScriptTag = scripts[scripts.length-1];\n", " var parentDiv = thisScriptTag.parentNode;\n", " e = document.createElement('div');\n", " parentDiv.appendChild(e);\n", " } else {\n", " e = element[0];\n", " }\n", "\n", " if (typeof requirejs !== 'undefined') {\n", " // disable load timeout; ipython_app.js is large and can take a while to load.\n", " requirejs.config({waitSeconds: 0});\n", " }\n", "\n", " require(['//dato.com/files/canvas/1.6.1/js/ipython_app.js'], function(IPythonApp){\n", " var app = new IPythonApp();\n", " app.attachView('sarray','Categorical', {\"ipython\": true, \"sketch\": {\"complete\": true, \"numeric\": false, \"num_unique\": 32395, \"num_undefined\": 284, \"progress\": 1.0, \"frequent_items\": {\"\": {\"frequency\": 35, \"value\": \"\"}, \"Safety 1st Adapter and Plug Cover\": {\"frequency\": 18, \"value\": \"Safety 1st Adapter ...\"}, \"Sassy Baby Disposable Diaper Sacks, 200-Count\": {\"frequency\": 98, \"value\": \"Sassy Baby ...\"}, \"Safety 1st High-Def Digital Monitor\": {\"frequency\": 39, \"value\": \"Safety 1st High- ...\"}, \"Toysmith Busy Zoo Activity Center\": {\"frequency\": 18, \"value\": \"Toysmith Busy Zoo ...\"}, \"CherryCreek Decals Cherry Blossom &amp; Birds Decorative Nursery/Room Wall Sticker Decals\": {\"frequency\": 32, \"value\": \"CherryCreek Decals ...\"}, \"Summer Infant Metal Expansion Gate, 6 Foot Wide Extra Tall Walk-Thru, Bronze\": {\"frequency\": 78, \"value\": \"Summer Infant ...\"}, \"aden + anais Classic Muslin Swaddle Blanket, Dino-Roar\": {\"frequency\": 19, \"value\": \"aden + anais ...\"}, \"Philips Avent DECT Baby Monitor with Temperature Sensor\": {\"frequency\": 28, \"value\": \"Philips Avent DECT ...\"}, \"Leachco Easy Teether XL Convertible Crib Rail Cover, Ivory\": {\"frequency\": 20, \"value\": \"Leachco Easy ...\"}, \"OXO Tot Feeding Spoon Set, Green\": {\"frequency\": 53, \"value\": \"OXO Tot Feeding ...\"}, \"Ikea PATRULL Non-Slip Bath Mat - Green Crocodile\": {\"frequency\": 28, \"value\": \"Ikea PATRULL Non- ...\"}, \"Medela Breastmilk Freezing &amp; Storage (*BPA Free) - 80ml Bottles in Retail Packaging #87061 (Pack of 12 Bottles)\": {\"frequency\": 32, \"value\": \"Medela Breastmilk ...\"}, \"Vital Baby Press 'n' Pop Mini Freezer Pots, Orange, 1 Ounce, 8 Pack\": {\"frequency\": 29, \"value\": \"Vital Baby Press ...\"}, \"Levana ClearVu Digital Video Baby Monitor with Color Changing Night Light (LV-TW301)\": {\"frequency\": 34, \"value\": \"Levana ClearVu ...\"}, \"The First Years Babypro Quick Serve Bottle Warmer, Colors May Vary\": {\"frequency\": 137, \"value\": \"The First Years ...\"}, \"Graco Nasal Clear Nasal Aspirator\": {\"frequency\": 89, \"value\": \"Graco Nasal Clear ...\"}, \"Sunshine Kids Cool Shade For Car Window, Black\": {\"frequency\": 22, \"value\": \"Sunshine Kids Cool ...\"}, \"BABYBJORN Baby Carrier Original, Blue Retro\": {\"frequency\": 25, \"value\": \"BABYBJORN Baby ...\"}, \"Bright Starts Rattle and Shake Barbell Rattle, Pretty in Pink\": {\"frequency\": 50, \"value\": \"Bright Starts ...\"}, \"Skip Hop Hug and Hide Activity Toy, Owl\": {\"frequency\": 47, \"value\": \"Skip Hop Hug and ...\"}, \"Safety 1st Oven Front Lock\": {\"frequency\": 72, \"value\": \"Safety 1st Oven ...\"}, \"Graco Secure Coverage Digital Baby Monitor with 1 Parent Unit\": {\"frequency\": 30, \"value\": \"Graco Secure ...\"}, \"Tilty Sippy Cup, Clear, 7 Ounce, 2 Pack\": {\"frequency\": 29, \"value\": \"Tilty Sippy Cup, ...\"}, \"NUK Hello Kitty Silicone Spout Active Cup, 10 Ounce\": {\"frequency\": 28, \"value\": \"NUK Hello Kitty ...\"}, \"25/pk - Enfamil Standard Flow Soft Disposable Nipples\": {\"frequency\": 21, \"value\": \"25/pk - Enfamil ...\"}, \"Ergobaby Swaddler Blanket Pink/Natural Small/Medium\": {\"frequency\": 21, \"value\": \"Ergobaby Swaddler ...\"}, \"Hudson Baby 2 Count Muslin Swaddle Blanket, Blue\": {\"frequency\": 28, \"value\": \"Hudson Baby 2 ...\"}, \"HABA Kringelring Rattle Clutching Toy\": {\"frequency\": 19, \"value\": \"HABA Kringelring ...\"}, \"Dr. Brown's 2 Pack Natural Flow Level 2 Standard Nipple\": {\"frequency\": 29, \"value\": \"Dr. Brown's 2 Pack ...\"}, \"Fisher-Price: Kick &amp; Play Bouncer\": {\"frequency\": 29, \"value\": \"Fisher-Price: Kick ...\"}, \"Honeysuckle Breast Milk Storage Bags, 75 Ct (3 Boxes of 25 pcs)\": {\"frequency\": 80, \"value\": \"Honeysuckle Breast ...\"}, \"WubbaNub Tabby Kitten\": {\"frequency\": 41, \"value\": \"WubbaNub Tabby ...\"}, \"Totseat - Stripe in Blue\": {\"frequency\": 32, \"value\": \"Totseat - Stripe ...\"}, \"Luvable Friends Flannel Receiving Blankets, Pink, 5 Pack\": {\"frequency\": 29, \"value\": \"Luvable Friends ...\"}, \"HALO SleepSack Applique Micro-Fleece Wearable Blanket, Blue, Medium\": {\"frequency\": 30, \"value\": \"HALO SleepSack ...\"}, \"Vulli 2 Pack Vanilla Flavored Ring Teethe, Colors May Vary\": {\"frequency\": 45, \"value\": \"Vulli 2 Pack ...\"}, \"BABYBJORN Baby Carrier Original, Black, Cotton\": {\"frequency\": 179, \"value\": \"BABYBJORN Baby ...\"}, \"Prince Lionheart Balance Bike\": {\"frequency\": 19, \"value\": \"Prince Lionheart ...\"}, \"Playtex Drop-Ins System Breast Milk Storage Kit\": {\"frequency\": 24, \"value\": \"Playtex Drop-Ins ...\"}, \"Graco Lauren Classic Crib, Espresso\": {\"frequency\": 54, \"value\": \"Graco Lauren ...\"}, \"Evenflo Big Kid DLX Booster Seat - Foxwood\": {\"frequency\": 20, \"value\": \"Evenflo Big Kid ...\"}, \"OsoCozy - Indian Cotton - Prefold Cloth Diapers Infant 4x8x4\": {\"frequency\": 37, \"value\": \"OsoCozy - Indian ...\"}, \"Sliding Closet Door Lock 2-Pack\": {\"frequency\": 39, \"value\": \"Sliding Closet ...\"}, \"Britax B-Agile Stroller Travel Bag\": {\"frequency\": 25, \"value\": \"Britax B-Agile ...\"}, \"Sunshine Kids Stroller Accessory Buggy Buddy\": {\"frequency\": 152, \"value\": \"Sunshine Kids ...\"}, \"Prince Lionheart bebePOD Flex Plus Baby Seat, Green/Kiwi\": {\"frequency\": 36, \"value\": \"Prince Lionheart ...\"}, \"Sleep Buddy ~ Sleep Training System for Toddlers &amp; Pre-schoolers\": {\"frequency\": 20, \"value\": \"Sleep Buddy ~ ...\"}, \"My Brest Friend Original Pillow, Bluebells\": {\"frequency\": 44, \"value\": \"My Brest Friend ...\"}, \"Neat Solutions 10 Pack Water Resistant Drooler Bib Set, Multi-color\": {\"frequency\": 32, \"value\": \"Neat Solutions 10 ...\"}, \"Delta Canton 4-in-1 Convertible Crib, Dark Cherry\": {\"frequency\": 58, \"value\": \"Delta Canton ...\"}, \"Crown Crafts The Original NoJo BabySling by Dr. Sears - Denim\": {\"frequency\": 19, \"value\": \"Crown Crafts The ...\"}, \"Cosco Alpha Omega Elite Convertible Car Seat\": {\"frequency\": 69, \"value\": \"Cosco Alpha Omega ...\"}, \"The First Year's Infant To Toddler Tub with Sling, Blue\": {\"frequency\": 230, \"value\": \"The First Year's ...\"}, \"Hard Rock Cloth Diaper &amp; Laundry Detergent - Motley Clean\": {\"frequency\": 23, \"value\": \"Hard Rock Cloth ...\"}, \"Planet Wise Hanging Wet/Dry Diaper Bag, Black\": {\"frequency\": 57, \"value\": \"Planet Wise ...\"}, \"Lamaze High-Contrast Discovery Shapes Activity Puzzle &amp; Crib Gallery\": {\"frequency\": 29, \"value\": \"Lamaze High- ...\"}, \"Yookidoo Flow 'N Fill Spout Bath Toy (9m+)\": {\"frequency\": 95, \"value\": \"Yookidoo Flow 'N ...\"}, \"Munchkin Mighty Grip Trainer Cup 2-Pack, 8 oz, Colors Vary\": {\"frequency\": 21, \"value\": \"Munchkin Mighty ...\"}, \"Medela 12 Volt Vehicle Lighter Adaptor\": {\"frequency\": 26, \"value\": \"Medela 12 Volt ...\"}, \"Leachco All Nighter - Total Body Pillow - Ivory\": {\"frequency\": 34, \"value\": \"Leachco All ...\"}, \"Summer Infant Elite DuoMat for Car Seat, Black\": {\"frequency\": 55, \"value\": \"Summer Infant ...\"}, \"Baby Banz Hearing Protector Earmuffs, Blue\": {\"frequency\": 66, \"value\": \"Baby Banz Hearing ...\"}, \"Britax Regent Youth Car Seat, Onyx\": {\"frequency\": 32, \"value\": \"Britax Regent ...\"}, \"green sprouts Toddler Water Bottle Cap Adapter, Clear\": {\"frequency\": 19, \"value\": \"green sprouts ...\"}, \"Edushape Edu-Tiles 36 Piece 6x6ft Play Mat, Letters &amp; Numbers Set\": {\"frequency\": 21, \"value\": \"Edushape Edu-Tiles ...\"}, \"Roving Cove 16-PIECE EXTRA DENSE Safe Corner Cushion - Value Pack - Oyster; Premium Childproofing Corner Guard - Child Safety Home Safety Furniture and Table Edge Corner Protectors\": {\"frequency\": 22, \"value\": \"Roving Cove ...\"}, \"Evenflo Triumph Advance LX Convertible Car Seat, Harbortown\": {\"frequency\": 46, \"value\": \"Evenflo Triumph ...\"}, \"Levana Safe N'See Digital Video Baby Monitor with Talk-to-Baby Intercom and Lullaby Control (LV-TW501)\": {\"frequency\": 45, \"value\": \"Levana Safe N'See ...\"}, \"Jeep Cling Sunshade, 2 Pack\": {\"frequency\": 37, \"value\": \"Jeep Cling ...\"}, \"FuzziBunz Perfect Size Cloth Diaper, Cotton Candy, Large 25-40+ lbs\": {\"frequency\": 29, \"value\": \"FuzziBunz Perfect ...\"}, \"Philips AVENT BPA Free Twin Electric Breast Pump\": {\"frequency\": 79, \"value\": \"Philips AVENT BPA ...\"}, \"Susen 1pc Fashion Cute Baby Kids Girls Boys Stretchy Warm Winter Panda Cap Hat Beanie (Hot Pink)\": {\"frequency\": 19, \"value\": \"Susen 1pc Fashion ...\"}, \"Uncle Goose Classic Embossed Alphabet Blocks ABC\": {\"frequency\": 45, \"value\": \"Uncle Goose ...\"}, \"BABYBJORN Travel Crib Light 2, Black\": {\"frequency\": 61, \"value\": \"BABYBJORN Travel ...\"}, \"Jolly Jumper Bumper Bonnet Toddler Head Cushion\": {\"frequency\": 19, \"value\": \"Jolly Jumper ...\"}, \"Fisher-Price: Flutterbye Dreams Lullabye Birdies Soother\": {\"frequency\": 34, \"value\": \"Fisher-Price: ...\"}, \"green sprouts Stacking Cup Set, Colors may vary\": {\"frequency\": 46, \"value\": \"green sprouts ...\"}, \"Naturepedic Waterproof Fitted Crib Pad, 28x52\": {\"frequency\": 19, \"value\": \"Naturepedic ...\"}, \"KidCo Baby Steps Food Mill, with Carrying Case , 1 food mill\": {\"frequency\": 19, \"value\": \"KidCo Baby Steps ...\"}, \"Itzbeen Pocket Nanny Baby Care Timer, Blue\": {\"frequency\": 176, \"value\": \"Itzbeen Pocket ...\"}, \"Gerber Graduates BPA Free 4 Pack Bunch-A-Bowls with Lids, Colors May Vary\": {\"frequency\": 41, \"value\": \"Gerber Graduates ...\"}, \"Safety 1st Cling Sunshade 21&quot; wide - 2 Pack\": {\"frequency\": 18, \"value\": \"Safety 1st Cling ...\"}, \"Nuby Silicone Teether with Bristles, Colors May Vary\": {\"frequency\": 38, \"value\": \"Nuby Silicone ...\"}, \"Dr. Brown's 2 Pack Natural Flow Level 3 Standard Nipple\": {\"frequency\": 23, \"value\": \"Dr. Brown's 2 Pack ...\"}, \"Fisher-Price Table Time Turtle Booster\": {\"frequency\": 30, \"value\": \"Fisher-Price Table ...\"}, \"The First Years Learning Curve First Keys Teether\": {\"frequency\": 22, \"value\": \"The First Years ...\"}, \"Bumkins Flushable Diaper Liner, Neutral, 100 Pack\": {\"frequency\": 74, \"value\": \"Bumkins Flushable ...\"}, \"VTech Communications Safe &amp; Sound Digital Audio Monitor with two Parent Units\": {\"frequency\": 139, \"value\": \"VTech ...\"}, \"Leachco Back 'N Belly Chic - Taupe\": {\"frequency\": 27, \"value\": \"Leachco Back 'N ...\"}, \"Philips AVENT BPA Free Microwave Steam Sterilizer\": {\"frequency\": 25, \"value\": \"Philips AVENT BPA ...\"}, \"DaVinci Kalani 3 Drawer Changer in Cherry\": {\"frequency\": 19, \"value\": \"DaVinci Kalani 3 ...\"}, \"Safety 1st Complete Air Protect 65 Convertible Car Seat, Great Lakes\": {\"frequency\": 34, \"value\": \"Safety 1st ...\"}, \"Infantino Union Ergonomic Carrier, Gray\": {\"frequency\": 35, \"value\": \"Infantino Union ...\"}, \"Britax B-Safe Base Kit, Black\": {\"frequency\": 37, \"value\": \"Britax B-Safe Base ...\"}, \"Baby Trend Universal Double Snap-N-Go Stroller Frame\": {\"frequency\": 26, \"value\": \"Baby Trend ...\"}, \"Graco SnugRide Click Connect 30/35Infant Car Seat Base, Silver\": {\"frequency\": 34, \"value\": \"Graco SnugRide ...\"}, \"Boba 3G Baby Carrier, Montenegro Black\": {\"frequency\": 45, \"value\": \"Boba 3G Baby ...\"}, \"Kanga Care Wet Bag, Crimson\": {\"frequency\": 35, \"value\": \"Kanga Care Wet ...\"}, \"Jeep Backpack Harness, Lion\": {\"frequency\": 24, \"value\": \"Jeep Backpack ...\"}, \"Philips AVENT BPA Free Classic Newborn Flow Nipple, 2-Pack\": {\"frequency\": 47, \"value\": \"Philips AVENT BPA ...\"}, \"Angel Dear Pair and a Spare 3 Piece Blanket Set, Frog\": {\"frequency\": 26, \"value\": \"Angel Dear Pair ...\"}, \"Munchkin Mozart Magic Cube\": {\"frequency\": 191, \"value\": \"Munchkin Mozart ...\"}, \"green sprouts 10 Pack Waterproof Absorbent Terry Bibs, Girls\": {\"frequency\": 60, \"value\": \"green sprouts 10 ...\"}, \"Graco Swing By Me Portable 2-in-1 Swing, Little Hoot\": {\"frequency\": 22, \"value\": \"Graco Swing By Me ...\"}, \"Bebe Au Lait Cotton Nursing Cover - Bali\": {\"frequency\": 139, \"value\": \"Bebe Au Lait ...\"}, \"Fisher-Price Papasan Cradle Swing - Nature's Touch N1973\": {\"frequency\": 128, \"value\": \"Fisher-Price ...\"}, \"Graco Secure Coverage Digital Baby Monitor with 2 Parent Units\": {\"frequency\": 33, \"value\": \"Graco Secure ...\"}, \"KidCo Magnet Lock Starter Set\": {\"frequency\": 42, \"value\": \"KidCo Magnet Lock ...\"}, \"Kel-Gar Snug Tub - Elephant\": {\"frequency\": 38, \"value\": \"Kel-Gar Snug Tub - ...\"}, \"Munchkin Auto Seat Protector\": {\"frequency\": 42, \"value\": \"Munchkin Auto Seat ...\"}, \"JJ Cole Essentials Blanket Sky/Lemon\": {\"frequency\": 128, \"value\": \"JJ Cole Essentials ...\"}, \"Aden by aden + anais Muslin Burpy Bib, Butterfly Patch\": {\"frequency\": 21, \"value\": \"Aden by aden + ...\"}, \"Dream On Me 3&quot; Portable Crib Mattress\": {\"frequency\": 66, \"value\": \"Dream On Me ...\"}, \"Alva Baby Cloth Diaper 4 layers Antibacterial Bamboo Viscose Inserts Super Water Absorbent 12pcs 12mb\": {\"frequency\": 21, \"value\": \"Alva Baby Cloth ...\"}, \"Summer Infant Day &amp; Night Baby Video Monitor with 5&quot; Screen - White\": {\"frequency\": 30, \"value\": \"Summer Infant Day ...\"}, \"Squatty Potty 7&quot; Toilet Stool-Elimination Aid - Natural Bathroom Relief Through A Toilet Stool\": {\"frequency\": 76, \"value\": \"Squatty Potty ...\"}, \"Kidsme Food Feeder Essential Set\": {\"frequency\": 25, \"value\": \"Kidsme Food Feeder ...\"}, \"Leachco Safer Bather Infant Bath Pad, Blue Fish\": {\"frequency\": 131, \"value\": \"Leachco Safer ...\"}, \"Munchkin XTRAGUARD 2 Count Dual Action Multi Use Latches\": {\"frequency\": 112, \"value\": \"Munchkin XTRAGUARD ...\"}, \"Munchie Mug - Top Rated Spill Resistant Snack Cup for Toddlers. Ages 1 to 4 years. Made in AMERICA. - BPA and phthalate free. FDA compliant materials. - Blue Top\": {\"frequency\": 64, \"value\": \"Munchie Mug - Top ...\"}, \"Regalo Extra Tall Top of Stair Gate, White\": {\"frequency\": 29, \"value\": \"Regalo Extra Tall ...\"}, \"Boon Frog Pod Bath Toy Scoop,Green\": {\"frequency\": 83, \"value\": \"Boon Frog Pod Bath ...\"}, \"Levana Oma Clip-On Portable Baby Movement Monitor with Audible Alarm, White/Orange\": {\"frequency\": 23, \"value\": \"Levana Oma Clip-On ...\"}, \"Sugar Booger &quot;Prehistoric Pals&quot; Feeding Collection Silverware Set\": {\"frequency\": 28, \"value\": \"Sugar Booger ...\"}, \"Gerber Graduates BPA Free 6 Pack Soft Bite Infant Spoon, Colors May Vary\": {\"frequency\": 26, \"value\": \"Gerber Graduates ...\"}, \"Todays Mom Cozy Comfort Pregnancy Pillow - Sky Blue\": {\"frequency\": 109, \"value\": \"Todays Mom Cozy ...\"}, \"Badger Basket 3 Pack Polka Dot Nesting Trapezoid Shape Folding Baskets, Pink\": {\"frequency\": 20, \"value\": \"Badger Basket 3 ...\"}, \"Disney Inflatable Bathtub, Pixar Cars\": {\"frequency\": 34, \"value\": \"Disney Inflatable ...\"}, \"Luvable Friends 12 Pack Washcloths, Blue\": {\"frequency\": 25, \"value\": \"Luvable Friends 12 ...\"}, \"KidCo GoPod Portable Activity Seat - Pistachio\": {\"frequency\": 56, \"value\": \"KidCo GoPod ...\"}, \"Gerber Graduates Kiddy Cutlery 3 Piece Spoon Set\": {\"frequency\": 20, \"value\": \"Gerber Graduates ...\"}, \"QuickZip Crib Zipper Sheet - Ecru\": {\"frequency\": 21, \"value\": \"QuickZip Crib ...\"}, \"Medela Calma Breastmilk Feeding Set, 5 Ounce\": {\"frequency\": 35, \"value\": \"Medela Calma ...\"}, \"Boppy Pregnancy Wedge with Cotton Slipcover\": {\"frequency\": 29, \"value\": \"Boppy Pregnancy ...\"}, \"Philips AVENT DECT Baby Monitor with Temperature Sensor and New ECO Mode\": {\"frequency\": 30, \"value\": \"Philips AVENT DECT ...\"}, \"Peg Perego Convertible Infant to Toddler Car Seat, Black\": {\"frequency\": 42, \"value\": \"Peg Perego ...\"}, \"Fisher-Price: Link-a-doos Open-Top Take-Along Swing\": {\"frequency\": 31, \"value\": \"Fisher-Price: ...\"}, \"Joovy Zoom 360 Swivel Wheel Jogging Stroller, Blue\": {\"frequency\": 49, \"value\": \"Joovy Zoom 360 ...\"}, \"Excellante' Wooden High Chair, Walnut (Packaging May Vary)\": {\"frequency\": 30, \"value\": \"Excellante' Wooden ...\"}, \"Balboa Baby Shopping Cart Cover, Diamond\": {\"frequency\": 33, \"value\": \"Balboa Baby ...\"}, \"MOBI MobiCam Ultra 900 MHz Monitoring System with SW Power\": {\"frequency\": 18, \"value\": \"MOBI MobiCam Ultra ...\"}, \"Philips AVENT Express Food and Bottle Warmer\": {\"frequency\": 55, \"value\": \"Philips AVENT ...\"}, \"Carters Super Soft Printed Changing Pad Cover, Blue\": {\"frequency\": 24, \"value\": \"Carters Super Soft ...\"}, \"Thermos FOOGO Phases Stainless Steel Sippy Cup, 7 Ounce, Blue/Yellow\": {\"frequency\": 36, \"value\": \"Thermos FOOGO ...\"}, \"Baby Briefcase Baby Paperwork Organizer, Mint/Periwinkle\": {\"frequency\": 22, \"value\": \"Baby Briefcase ...\"}, \"Medela Pump in style Advanced Power Adaptor 9207010 9V\": {\"frequency\": 20, \"value\": \"Medela Pump in ...\"}, \"Summer Infant Contoured Changing Pad Amazon Frustration Free Packaging\": {\"frequency\": 208, \"value\": \"Summer Infant ...\"}, \"UPPAbaby Vista Stroller, Red/Denny\": {\"frequency\": 24, \"value\": \"UPPAbaby Vista ...\"}, \"Serta Nightstar Extra Firm Crib Mattress\": {\"frequency\": 21, \"value\": \"Serta Nightstar ...\"}, \"Philips AVENT Isis On The Go Set\": {\"frequency\": 63, \"value\": \"Philips AVENT Isis ...\"}, \"*The Art of CureTM *SAFETY KNOTTED* - Mixed Colors - Certified Baltic Amber Baby Teething Necklace - w/The Art of CureTM Jewelry Pouch (SHIPS AND SOLD IN THE USA)\": {\"frequency\": 23, \"value\": \"*The Art of CureTM ...\"}, \"Fisher-Price Newborn Rock 'n Play Sleeper, Yellow\": {\"frequency\": 236, \"value\": \"Fisher-Price ...\"}, \"Dreamscapes Soother\": {\"frequency\": 27, \"value\": \"Dreamscapes ...\"}, \"Lamaze Garden Bug Wrist Rattle &amp; Foot Finder Set\": {\"frequency\": 55, \"value\": \"Lamaze Garden Bug ...\"}, \"North States Supergate Expandable Swing Gate\": {\"frequency\": 25, \"value\": \"North States ...\"}, \"4moms Cleanwater Infant Bath Tub with Digital Thermometer\": {\"frequency\": 18, \"value\": \"4moms Cleanwater ...\"}, \"Graco Sarah Classic Convertible Crib, White\": {\"frequency\": 36, \"value\": \"Graco Sarah ...\"}, \"Planet Wise Wet/Dry Diaper Bag, Black\": {\"frequency\": 43, \"value\": \"Planet Wise ...\"}, \"Skip Hop Pronto Changer Diaper Bag, Black\": {\"frequency\": 32, \"value\": \"Skip Hop Pronto ...\"}, \"BRICA Kick Mats (2 pack), Black\": {\"frequency\": 22, \"value\": \"BRICA Kick Mats (2 ...\"}, \"MAM 3 Pack Anti-Colic Bottle Boy, 8 Ounce, Colors May Vary\": {\"frequency\": 26, \"value\": \"MAM 3 Pack Anti- ...\"}, \"Munchkin 2 Pack Mighty Grip Straw Cup, 10 Ounce, Colors May Vary\": {\"frequency\": 33, \"value\": \"Munchkin 2 Pack ...\"}, \"Dr. Brown's Natural Flow Wide Neck Newborn Feeding Set\": {\"frequency\": 23, \"value\": \"Dr. Brown's ...\"}, \"Levana Oma+ Clip-On Portable Baby Movement Monitor with Vibration Alert and Audible Alarm, White/Purple\": {\"frequency\": 22, \"value\": \"Levana Oma+ Clip- ...\"}, \"Green Toys Twist Teether Toy, Colors May Vary\": {\"frequency\": 24, \"value\": \"Green Toys Twist ...\"}, \"Medela Easy Expression Hands-Free Bustier, White, Small\": {\"frequency\": 93, \"value\": \"Medela Easy ...\"}, \"Graco ComfortSport Convertible Car Seat, Zara\": {\"frequency\": 36, \"value\": \"Graco ComfortSport ...\"}, \"Medela PersonalFit Connectors\": {\"frequency\": 19, \"value\": \"Medela PersonalFit ...\"}, \"Beaba Babycook Baby Food Maker\": {\"frequency\": 71, \"value\": \"Beaba Babycook ...\"}, \"BOB Revolution SE Single Stroller, Navy\": {\"frequency\": 146, \"value\": \"BOB Revolution SE ...\"}, \"Mommy's Helper Inflatable Bath Tub Froggie Collection, White/Green, 6-18 Months\": {\"frequency\": 21, \"value\": \"Mommy's Helper ...\"}, \"Britax Car Seat Travel Bag, Black\": {\"frequency\": 37, \"value\": \"Britax Car Seat ...\"}, \"Fisher-Price 2-in-1 Portable Potty\": {\"frequency\": 26, \"value\": \"Fisher-Price ...\"}, \"Edushape Edu-Tiles 25 Piece Solid Play Mat with Edges &amp; Corners\": {\"frequency\": 25, \"value\": \"Edushape Edu-Tiles ...\"}, \"KidCo Spring Action Cabinet Lock 4-pack\": {\"frequency\": 44, \"value\": \"KidCo Spring ...\"}, \"Graco Blossom Booster Seat, Brown/Tan\": {\"frequency\": 58, \"value\": \"Graco Blossom ...\"}, \"WubbaNub Brown Puppy\": {\"frequency\": 44, \"value\": \"WubbaNub Brown ...\"}, \"Mommy's Helper Outlet Plugs 36 Pack\": {\"frequency\": 93, \"value\": \"Mommy's Helper ...\"}, \"ReSqueeze Reusable Food Pouch (4-pack)\": {\"frequency\": 28, \"value\": \"ReSqueeze Reusable ...\"}, \"Sassy First Sounds Book Set and Cube\": {\"frequency\": 21, \"value\": \"Sassy First Sounds ...\"}, \"Badger Basket Company Sleigh Style Changing Table with Hamper/3 Baskets in White\": {\"frequency\": 21, \"value\": \"Badger Basket ...\"}, \"WubbaNub Green Frog\": {\"frequency\": 25, \"value\": \"WubbaNub Green ...\"}, \"Little Partners Learning Tower - Natural\": {\"frequency\": 37, \"value\": \"Little Partners ...\"}, \"Stork Craft Venetian 4-in-1 Fixed Side Convertible Crib, Cherry\": {\"frequency\": 18, \"value\": \"Stork Craft ...\"}, \"Tiny Love Tummy Time Fun Activity Mat, Frog\": {\"frequency\": 21, \"value\": \"Tiny Love Tummy ...\"}, \"BRICA Fold N' Go Travel Bassinet\": {\"frequency\": 28, \"value\": \"BRICA Fold N' Go ...\"}, \"Munchkin Baby Food Grinder, Light Blue\": {\"frequency\": 30, \"value\": \"Munchkin Baby Food ...\"}, \"Nuby 10 Pack Hangers, Colors May Vary\": {\"frequency\": 20, \"value\": \"Nuby 10 Pack ...\"}, \"Slip-X Solutions Tub Tattoos: Clownfish\": {\"frequency\": 30, \"value\": \"Slip-X Solutions ...\"}, \"South Shore Savannah Collection Door Chest, Pure White\": {\"frequency\": 21, \"value\": \"South Shore ...\"}, \"Munchkin Easy-Close Metal Gate, White\": {\"frequency\": 46, \"value\": \"Munchkin Easy- ...\"}, \"Kushies Swim Diaper, Sail Boats Print, Medium\": {\"frequency\": 18, \"value\": \"Kushies Swim ...\"}, \"Skip Hop Grand Central Diaper Bag, Black\": {\"frequency\": 24, \"value\": \"Skip Hop Grand ...\"}, \"BRICA By-My-Side Safety Harness Backpack, Pink/Gray\": {\"frequency\": 32, \"value\": \"BRICA By-My-Side ...\"}, \"BEABA First Stage Spoon Multi-Pack - Multicolor - 4 pk\": {\"frequency\": 18, \"value\": \"BEABA First Stage ...\"}, \"Chicco Cortina KeyFit 30 Travel System in Adventure\": {\"frequency\": 46, \"value\": \"Chicco Cortina ...\"}, \"Mobi Tykelight GloMate Plus\": {\"frequency\": 18, \"value\": \"Mobi Tykelight ...\"}, \"Bummis Bio-Soft Liner, Small\": {\"frequency\": 76, \"value\": \"Bummis Bio-Soft ...\"}, \"Munchkin Two Snack Catchers, Colors May Vary\": {\"frequency\": 117, \"value\": \"Munchkin Two Snack ...\"}, \"Boon Squirt Baby Food Dispensing Spoon in Pink\": {\"frequency\": 34, \"value\": \"Boon Squirt Baby ...\"}, \"Dr. Sears Nibble Tray, Yellow/Green, 12 Months\": {\"frequency\": 21, \"value\": \"Dr. Sears Nibble ...\"}, \"Philips Avent Electric Steam Sterilizer\": {\"frequency\": 22, \"value\": \"Philips Avent ...\"}, \"Luvable Friends Fitted Pack N Play Sheet, White\": {\"frequency\": 22, \"value\": \"Luvable Friends ...\"}, \"3 Sprouts Storage Bin, Monkey\": {\"frequency\": 38, \"value\": \"3 Sprouts Storage ...\"}, \"Under The Nile Green Bean Toy\": {\"frequency\": 18, \"value\": \"Under The Nile ...\"}, \"Fisher-Price Infant-To-Toddler Rocker, Blue/Green\": {\"frequency\": 217, \"value\": \"Fisher-Price ...\"}, \"Chewbeads Necklace - Jane - Black\": {\"frequency\": 33, \"value\": \"Chewbeads Necklace ...\"}, \"North States Supergate Auto-Close Metal Gate\": {\"frequency\": 30, \"value\": \"North States ...\"}, \"NUK Toddler Tooth and Gum Cleanser, 1.4 Ounce, (Colors May Vary)\": {\"frequency\": 22, \"value\": \"NUK Toddler Tooth ...\"}, \"Medela New Pump in Style Original Breast Pump\": {\"frequency\": 21, \"value\": \"Medela New Pump in ...\"}, \"Motorola Digital Video Baby Monitor with 1.5 Inch Color LCD Screen\": {\"frequency\": 23, \"value\": \"Motorola Digital ...\"}, \"Thermos FUNtainer Bottle, Disney Cars, 12 Ounce\": {\"frequency\": 21, \"value\": \"Thermos FUNtainer ...\"}, \"Tiny Love Classic Mobile\": {\"frequency\": 38, \"value\": \"Tiny Love Classic ...\"}, \"Clevamama Splash and Wrap Baby Bath Towel (Cream)\": {\"frequency\": 25, \"value\": \"Clevamama Splash ...\"}, \"Baby Einstein Sea Dreams Soother\": {\"frequency\": 49, \"value\": \"Baby Einstein Sea ...\"}, \"Classic Connect Graco SnugRide Classic Connect Infant Car Seat Base, Silver\": {\"frequency\": 56, \"value\": \"Classic Connect ...\"}, \"Jolly Jumper Weathershield for Infant Car Seat\": {\"frequency\": 22, \"value\": \"Jolly Jumper ...\"}, \"Bunnies by the Bay Buddy Blanket, Skipit\": {\"frequency\": 24, \"value\": \"Bunnies by the Bay ...\"}, \"Inglesina 2011 Fast Table Chair, Marina\": {\"frequency\": 30, \"value\": \"Inglesina 2011 ...\"}, \"Philips AVENT BPA Free Freeflow Pacifier, 6-18 Months, Colors and Designs May Vary, 2-Count\": {\"frequency\": 21, \"value\": \"Philips AVENT BPA ...\"}, \"Mommy's Helper Step Up Non-Slip Stepstool Froggie Collection, Green\": {\"frequency\": 27, \"value\": \"Mommy's Helper ...\"}, \"Brica Baby In-Sight Mirror, Gray\": {\"frequency\": 80, \"value\": \"Brica Baby In- ...\"}, \"Vulli Chan Pie Gnon Natural Rubber Teether - Blue Chan\": {\"frequency\": 71, \"value\": \"Vulli Chan Pie ...\"}, \"Prince Lionheart Jumbo Toy Hammock ~ Set of 2\": {\"frequency\": 21, \"value\": \"Prince Lionheart ...\"}, \"Philips AVENT Newborn Starter Set\": {\"frequency\": 59, \"value\": \"Philips AVENT ...\"}, \"Kiddopotamus Tinydiner Placemat, Yellow\": {\"frequency\": 35, \"value\": \"Kiddopotamus ...\"}, \"Medela PersonalFit Breastshields (2/pack) - Large - 27mm\": {\"frequency\": 81, \"value\": \"Medela PersonalFit ...\"}, \"The First Years True Fit Convertible Car Seat, Monet\": {\"frequency\": 72, \"value\": \"The First Years ...\"}, \"MamaDoo Kids Foldable Play Yard Mattress Topper, Blue\": {\"frequency\": 37, \"value\": \"MamaDoo Kids ...\"}, \"Lamaze Soft Chime Garden Musical Toy\": {\"frequency\": 34, \"value\": \"Lamaze Soft Chime ...\"}, \"North States Supergate Extra Tall Easy Close Gate, Bronze\": {\"frequency\": 52, \"value\": \"North States ...\"}, \"Especially for Baby Bottle Warmer\": {\"frequency\": 18, \"value\": \"Especially for ...\"}, \"Evenflo SmartSteps Jump and Go, ABC123\": {\"frequency\": 39, \"value\": \"Evenflo SmartSteps ...\"}, \"Boogie Snatcher: Infant, Baby Nose Cleaning Tweezers. Cleans Your Infants Nose For Better Sleep!\": {\"frequency\": 22, \"value\": \"Boogie Snatcher: ...\"}, \"Evenflo Switch A Roo, Apple Book\": {\"frequency\": 20, \"value\": \"Evenflo Switch A ...\"}, \"Summer Infant Baby's Quiet Sounds Video Monitor\": {\"frequency\": 52, \"value\": \"Summer Infant ...\"}, \"Lamaze Early Development Toy, Captain Calamari\": {\"frequency\": 31, \"value\": \"Lamaze Early ...\"}, \"Playtex Drop-Ins Pre-Sterilized Soft Bottle Liners, 8-10 oz. 100 ea\": {\"frequency\": 51, \"value\": \"Playtex Drop-Ins ...\"}, \"Baby Teether Ball, Assorted Colors\": {\"frequency\": 45, \"value\": \"Baby Teether Ball, ...\"}, \"Lite-on-Shoulder Baby Sling\": {\"frequency\": 62, \"value\": \"Lite-on-Shoulder ...\"}, \"Diaper Dude Chicago Cubs Diaper Bag\": {\"frequency\": 91, \"value\": \"Diaper Dude ...\"}, \"Philips AVENT Basic Baby Monitor with DECT Technology\": {\"frequency\": 116, \"value\": \"Philips AVENT ...\"}, \"Summer Infant Deluxe Piddle Pad, Black\": {\"frequency\": 51, \"value\": \"Summer Infant ...\"}, \"Gerber Graduate BPA Free 2 Pack Fun Grips Spill Proof Cup, 7 Ounce, Colors May Vary\": {\"frequency\": 21, \"value\": \"Gerber Graduate ...\"}, \"The First Years Close and Secure Sleeper\": {\"frequency\": 61, \"value\": \"The First Years ...\"}, \"Dr. Brown's BPA Free Polypropylene Natural Flow Wide Neck Bottle, 8 Ounce, 3 Count\": {\"frequency\": 60, \"value\": \"Dr. Brown's BPA ...\"}, \"OXO Tot Baby Food Freezer Tray, White/Green\": {\"frequency\": 43, \"value\": \"OXO Tot Baby Food ...\"}, \"BRICA Seat Belt Adjuster, Gray\": {\"frequency\": 24, \"value\": \"BRICA Seat Belt ...\"}, \"Britax Boulevard 70 Convertible Car Seat, Silver Birch\": {\"frequency\": 26, \"value\": \"Britax Boulevard ...\"}, \"aden + anais Cozy Muslin Sleeping Bag, Alpha Bit, Small\": {\"frequency\": 34, \"value\": \"aden + anais Cozy ...\"}, \"Maxboost iPhone 5S/5 Case - Protective Snap-on Hard Case Slim Rugged Cover [Not compatible to Apple iPhone 6 Air 5c 4s 4 3gs, Screen Protector / Cable is not included] - Ultra Slim Profile Slimmer than coventional otterbox/lifeproof/kate Spade/speck/juicy couture/griffin/element/taktik Case\": {\"frequency\": 24, \"value\": \"Maxboost iPhone ...\"}, \"Kidco Safeway white G2000\": {\"frequency\": 37, \"value\": \"Kidco Safeway ...\"}, \"South Shore Savannah Collection Changing Table, Pure White\": {\"frequency\": 61, \"value\": \"South Shore ...\"}, \"green sprouts 10 Pack Waterproof Absorbent Terry Bibs , Boys\": {\"frequency\": 70, \"value\": \"green sprouts 10 ...\"}, \"Tiny Love Gymini Bouncer, Blue/Yellow\": {\"frequency\": 30, \"value\": \"Tiny Love Gymini ...\"}, \"Moonlight Slumber Little Dreamer Dual Firmness All Foam Crib Mattress\": {\"frequency\": 25, \"value\": \"Moonlight Slumber ...\"}, \"Boppy Noggin Nest Head Support, Brown Wheels\": {\"frequency\": 114, \"value\": \"Boppy Noggin Nest ...\"}, \"FuzziBunz Nursing Pads, White, 6 Pack\": {\"frequency\": 24, \"value\": \"FuzziBunz Nursing ...\"}, \"Sesame Street Elmo Car Seat Cover\": {\"frequency\": 19, \"value\": \"Sesame Street Elmo ...\"}, \"Summer Infant Baby Touch Boost Digital Color Video Monitor\": {\"frequency\": 19, \"value\": \"Summer Infant Baby ...\"}, \"Nuby 2-Pack 8 oz No Spill Cup with Super Spout (Color may vary)\": {\"frequency\": 25, \"value\": \"Nuby 2-Pack 8 oz ...\"}, \"Baby Trend Diaper Champ in Blue\": {\"frequency\": 41, \"value\": \"Baby Trend Diaper ...\"}, \"3 Sprouts Storage Caddy, Mouse\": {\"frequency\": 27, \"value\": \"3 Sprouts Storage ...\"}, \"North States Industries Supergate Extra Wide Swing Gate\": {\"frequency\": 56, \"value\": \"North States ...\"}, \"Maxboost iPhone 5S/5 Case - Protective Snap-on Hard Case Slim Rugged Cover [Not compatible to Apple iPhone 6 Air 5c 4s 4 3gs]\": {\"frequency\": 43, \"value\": \"Maxboost iPhone ...\"}, \"Clevamama Clevafeed\": {\"frequency\": 23, \"value\": \"Clevamama ...\"}, \"Joovy Caboose Ultralight Stroller, Blueberry\": {\"frequency\": 52, \"value\": \"Joovy Caboose ...\"}, \"Dr. Seuss Short Sleeve Bodysuit and Pants, Blue Cat, 3 Months\": {\"frequency\": 21, \"value\": \"Dr. Seuss Short ...\"}, \"The First Years True Fit C670 Premier Convertible Car Seat\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"Dreambaby Retractable Gate, White\": {\"frequency\": 31, \"value\": \"Dreambaby ...\"}, \"NUK Learner Cup BPA Free Silicone Spout, Single Pack, Colors May Vary\": {\"frequency\": 33, \"value\": \"NUK Learner Cup ...\"}, \"Skip Hop Wall Decals, Treetop Friends\": {\"frequency\": 18, \"value\": \"Skip Hop Wall ...\"}, \"Breast Pump Kit for Medela Pump in Style Advanced Breastpump. Include Replacement Tubing for Pump In Style, 2 One-piece Breastshields (Replace Medela Personalfit 24mm), 2 Valves, and 4 Membranes. Replace Medela Personalfit Connector and Breastshield. Suitable for Pump-in-style Released After July 2006.\": {\"frequency\": 30, \"value\": \"Breast Pump Kit ...\"}, \"Fisher-Price Ocean Wonders Aquarium Cradle Swing\": {\"frequency\": 178, \"value\": \"Fisher-Price Ocean ...\"}, \"Skip Hop Grab &amp; Go Stroller Organizer, Platinum\": {\"frequency\": 26, \"value\": \"Skip Hop Grab ...\"}, \"Playtex Drop-Ins Original BPA Free Nurser Newborn Starter Set\": {\"frequency\": 21, \"value\": \"Playtex Drop-Ins ...\"}, \"Evenflo Splash Mega Exersaucer\": {\"frequency\": 40, \"value\": \"Evenflo Splash ...\"}, \"Boon Flair Pedestal Highchair with Pneumatic Lift,White/Orang\": {\"frequency\": 53, \"value\": \"Boon Flair ...\"}, \"Fisher-Price Rainforest Open-Top Cradle Swing\": {\"frequency\": 63, \"value\": \"Fisher-Price ...\"}, \"Delta City Street Side by Side Stroller, Black\": {\"frequency\": 19, \"value\": \"Delta City Street ...\"}, \"Evenflo Classic Johnny Jump Up, Frogs\": {\"frequency\": 41, \"value\": \"Evenflo Classic ...\"}, \"DaVinci Emily 4-in-1 Convertible Crib with Toddler Rail, Cherry\": {\"frequency\": 95, \"value\": \"DaVinci Emily ...\"}, \"BFlowerYan Door Stop Finger Pinch Guard , Mixed Color [4pc-pack] (4xanimal)\": {\"frequency\": 22, \"value\": \"BFlowerYan Door ...\"}, \"BOB Infant Car Seat Adapter for Chicco Single Strollers\": {\"frequency\": 38, \"value\": \"BOB Infant Car ...\"}, \"NUK Replacement Silicone Spout, Clear\": {\"frequency\": 26, \"value\": \"NUK Replacement ...\"}, \"Sesame Street Potty Soft Seat, Elmo\": {\"frequency\": 44, \"value\": \"Sesame Street ...\"}, \"Baby Jogger Adjustable Belly Bar\": {\"frequency\": 20, \"value\": \"Baby Jogger ...\"}, \"Bunnies by the Bay Silly Buddy, Emmit\": {\"frequency\": 23, \"value\": \"Bunnies by the Bay ...\"}, \"The Safe Sippy 2 2-in-1 Sippy to Straw Bottle, Pink\": {\"frequency\": 35, \"value\": \"The Safe Sippy 2 ...\"}, \"Arm's Reach Co-Sleeper Mini Bassinet, Natural\": {\"frequency\": 20, \"value\": \"Arm's Reach Co- ...\"}, \"Skip Hop Versa Diaper Bag, Cream Links\": {\"frequency\": 63, \"value\": \"Skip Hop Versa ...\"}, \"Infantino Flip Front 2 Back Carrier, Black\": {\"frequency\": 22, \"value\": \"Infantino Flip ...\"}, \"Kiddyloo Toilet Seat Reducer (Blue/Green) - Toddler Potty Training Seat\": {\"frequency\": 22, \"value\": \"Kiddyloo Toilet ...\"}, \"Squatty Potty 9&quot; Toilet Stool-Elimination Aid - Natural Bathroom Relief Through A Toilet Stool\": {\"frequency\": 80, \"value\": \"Squatty Potty ...\"}, \"Born Free Trainer Cup, Blue\": {\"frequency\": 30, \"value\": \"Born Free Trainer ...\"}, \"Evenflo Comfort Select Auto-Cycling Breast Pump\": {\"frequency\": 25, \"value\": \"Evenflo Comfort ...\"}, \"Munchkin 'White Hot' Duck Bath Toy\": {\"frequency\": 32, \"value\": \"Munchkin 'White ...\"}, \"aden + anais Classic Muslin Swaddle Blanket 2 Pack, For The Birds\": {\"frequency\": 19, \"value\": \"aden + anais ...\"}, \"We Sell Mats Anti-Fatigue 6 Piece Interlocking EVA Foam Flooring Set\": {\"frequency\": 25, \"value\": \"We Sell Mats Anti- ...\"}, \"Carter's Easy Fit Printed Crib Fitted Sheet, Animal\": {\"frequency\": 47, \"value\": \"Carter's Easy Fit ...\"}, \"One Dozen (12) Rubber Duckie Ducky Duck Christmas Nativity Scene\": {\"frequency\": 18, \"value\": \"One Dozen (12) ...\"}, \"The First Years Carry Me Near Sleep System, Cream\": {\"frequency\": 52, \"value\": \"The First Years ...\"}, \"Britax Decathlon Convertible Car Seat, Tiffany\": {\"frequency\": 20, \"value\": \"Britax Decathlon ...\"}, \"Fisher-Price Space Saver High Chair, Scatterbug\": {\"frequency\": 34, \"value\": \"Fisher-Price Space ...\"}, \"Britax Pavilion 70-G3 Convertible Car Seat Seat, Biscotti\": {\"frequency\": 34, \"value\": \"Britax Pavilion ...\"}, \"The World of Eric Carle: The Very Hungry Caterpillar Teether Rattle by Kids Preferred\": {\"frequency\": 18, \"value\": \"The World of Eric ...\"}, \"Thermos FUNtainer Bottle, Disney Princess, 12 Ounce\": {\"frequency\": 30, \"value\": \"Thermos FUNtainer ...\"}, \"White Knob Lock - 2 Pieces\": {\"frequency\": 19, \"value\": \"White Knob Lock - ...\"}, \"Miracle Blanket Baby Swaddle Blanket, Pink\": {\"frequency\": 184, \"value\": \"Miracle Blanket ...\"}, \"myBaby Soundspa Lullaby Sound Machine and Projector\": {\"frequency\": 89, \"value\": \"myBaby Soundspa ...\"}, \"Graco Pack 'n Play Playard with Cuddle Cove Rocking Seat, Winslet\": {\"frequency\": 40, \"value\": \"Graco Pack 'n Play ...\"}, \"Bumkins Waterproof Superbib, Blue Fizz\": {\"frequency\": 49, \"value\": \"Bumkins Waterproof ...\"}, \"Munchkin 3 Count Stay Put Suction Bowl\": {\"frequency\": 127, \"value\": \"Munchkin 3 Count ...\"}, \"Sesame Street Table Topper Disposable Stick-on Placemats with Reusable Pop-up Travel Case, 50-Count\": {\"frequency\": 34, \"value\": \"Sesame Street ...\"}, \"NUK Infant Tooth and Gum Cleanser and Finger Toothbrush Set, 1.4 Ounce\": {\"frequency\": 32, \"value\": \"NUK Infant Tooth ...\"}, \"aden + anais Muslin Stroller Blanket, Jungle Jive\": {\"frequency\": 21, \"value\": \"aden + anais ...\"}, \"Prince Lionheart BoosterPOD, White Base/Lemon\": {\"frequency\": 56, \"value\": \"Prince Lionheart ...\"}, \"The First Years MiSwivel Feeding Seat, Dot to Dot\": {\"frequency\": 19, \"value\": \"The First Years ...\"}, \"3 Sprouts Storage Box, Dog\": {\"frequency\": 27, \"value\": \"3 Sprouts Storage ...\"}, \"Born Free 5 oz. BPA-Free Glass Bottle with ActiveFlow Venting Technology and Bonus Silicone Sleeve, 3-Pack\": {\"frequency\": 43, \"value\": \"Born Free 5 oz. ...\"}, \"Britax Child Cup Holder\": {\"frequency\": 58, \"value\": \"Britax Child Cup ...\"}, \"Vicks SpeedRead Digital Thermometer\": {\"frequency\": 21, \"value\": \"Vicks SpeedRead ...\"}, \"Tiny Love Follow Me Activity Toy, Fred\": {\"frequency\": 39, \"value\": \"Tiny Love Follow ...\"}, \"Milkies Milk-Saver Breast Milk Collector Storage BPA Free\": {\"frequency\": 79, \"value\": \"Milkies Milk-Saver ...\"}, \"Fitted Portable Crib Sheet in Yellow Duck Print\": {\"frequency\": 25, \"value\": \"Fitted Portable ...\"}, \"Disney Princess Castle Dreams 2-Piece Sheet Set\": {\"frequency\": 20, \"value\": \"Disney Princess ...\"}, \"Wow Cup for Kids - NEW Innovative 360 Spill Free Drinking Cup - BPA Free - 8 Ounce (Blue)\": {\"frequency\": 21, \"value\": \"Wow Cup for Kids - ...\"}, \"Skip Hop Zoo Lunchie Insulated Lunch Bag, Monkey\": {\"frequency\": 135, \"value\": \"Skip Hop Zoo ...\"}, \"Munchkin 36 Bath Letters and Numbers\": {\"frequency\": 51, \"value\": \"Munchkin 36 Bath ...\"}, \"Kidkusion Toddler Corner Kushions Off White - 4 Pack\": {\"frequency\": 50, \"value\": \"Kidkusion Toddler ...\"}, \"Nuk Replacement Spouts - 4 Pack Clear\": {\"frequency\": 22, \"value\": \"Nuk Replacement ...\"}, \"Pumpin' Pal Super Shields, Angled Pumping Flanges, the Best Flanges By Far in a Complete Set of All Sizes Mom Will Need\": {\"frequency\": 47, \"value\": \"Pumpin' Pal Super ...\"}, \"Trend Lab CribWrap Fleece Rail Cover for Long Rail, Brown, Wide\": {\"frequency\": 29, \"value\": \"Trend Lab CribWrap ...\"}, \"Dr. Brown's 4 oz Natural Flow Baby Bottle, 3 Pack\": {\"frequency\": 68, \"value\": \"Dr. Brown's 4 oz ...\"}, \"Summer Infant Secure Sight Digital Color Video Monitor\": {\"frequency\": 20, \"value\": \"Summer Infant ...\"}, \"OXO Tot On-The-Go Drying Rack and Bottle Brush, Green\": {\"frequency\": 33, \"value\": \"OXO Tot On-The-Go ...\"}, \"Munchkin 2 Pack Fresh Food Feeder, Colors May Vary\": {\"frequency\": 110, \"value\": \"Munchkin 2 Pack ...\"}, \"Baby Einstein Around The World Discovery Center\": {\"frequency\": 26, \"value\": \"Baby Einstein ...\"}, \"J.L. Childress Side Sling Stroller Cargo Net, Black\": {\"frequency\": 18, \"value\": \"J.L. Childress ...\"}, \"Gerber Graduates Kiddy Cutlery 3 Piece Fork Set\": {\"frequency\": 36, \"value\": \"Gerber Graduates ...\"}, \"HALO SleepSack 100% Cotton Wearable Blanket, Print Boy, Large\": {\"frequency\": 36, \"value\": \"HALO SleepSack ...\"}, \"aden + anais 2 Pack Muslin Burpy Bib, Princess Posie\": {\"frequency\": 53, \"value\": \"aden + anais 2 ...\"}, \"Fisher-Price Deluxe Newborn Rock N Play Sleeper, My Little Sweetie\": {\"frequency\": 25, \"value\": \"Fisher-Price ...\"}, \"Dreambaby Super Toy Hammock and Toy Chain\": {\"frequency\": 33, \"value\": \"Dreambaby Super ...\"}, \"Booginhead SippiGrip - Blue\": {\"frequency\": 18, \"value\": \"Booginhead ...\"}, \"JJ Cole Collections Diaper Caddy, Blue Stripe\": {\"frequency\": 46, \"value\": \"JJ Cole ...\"}, \"Evenflo Compact Fold High Chair, Marianna\": {\"frequency\": 31, \"value\": \"Evenflo Compact ...\"}, \"Fisher-Price Royal Stepstool Potty, Blue\": {\"frequency\": 20, \"value\": \"Fisher-Price Royal ...\"}, \"Munchkin Arm and Hammer Diaper Pail, White\": {\"frequency\": 68, \"value\": \"Munchkin Arm and ...\"}, \"The First Years Indigo Stroller, Red\": {\"frequency\": 27, \"value\": \"The First Years ...\"}, \"North States Pressure Mount Diamond Mesh Wood Gate\": {\"frequency\": 47, \"value\": \"North States ...\"}, \"BRICA By-My-Side Safety Harness Backpack, Blue\": {\"frequency\": 20, \"value\": \"BRICA By-My-Side ...\"}, \"Munchkin Twisty Figure 8 Teether\": {\"frequency\": 42, \"value\": \"Munchkin Twisty ...\"}, \"Graco RoomFor2 Stand and Ride Classic Connect Stroller, Metropolis\": {\"frequency\": 48, \"value\": \"Graco RoomFor2 ...\"}, \"Snoozy Organic 2 PACK Flannel Cotton Anti Allergy Waterproof Multi Use Pad, 18&quot; x 27&quot;\": {\"frequency\": 19, \"value\": \"Snoozy Organic 2 ...\"}, \"Diaper Dekor Plus Refills 2 Pack\": {\"frequency\": 51, \"value\": \"Diaper Dekor Plus ...\"}, \"Skip Hop Bento Diaper Tote Bag, Black\": {\"frequency\": 24, \"value\": \"Skip Hop Bento ...\"}, \"The Safe Sippy Cup, Blue\": {\"frequency\": 19, \"value\": \"The Safe Sippy ...\"}, \"Fisher-Price Newborn-to-Toddler Portable Rocker\": {\"frequency\": 23, \"value\": \"Fisher-Price ...\"}, \"Taggies Developmental Baby Doll\": {\"frequency\": 17, \"value\": \"Taggies ...\"}, \"5 Pack - Black Foam Microphone Windscreens (Lifetime Warranty, Bulk Packaging)\": {\"frequency\": 20, \"value\": \"5 Pack - Black ...\"}, \"Bumbo Floor Seat Cover, Dots\": {\"frequency\": 23, \"value\": \"Bumbo Floor Seat ...\"}, \"Boppy Changing Pad Liners 3-Pack - White\": {\"frequency\": 38, \"value\": \"Boppy Changing Pad ...\"}, \"Playtex Diaper Genie On The Go Dispenser\": {\"frequency\": 30, \"value\": \"Playtex Diaper ...\"}, \"Infant Optics DXR-5 2.4 GHz Digital Video Baby Monitor with Night Vision\": {\"frequency\": 561, \"value\": \"Infant Optics ...\"}, \"Fisher-Price On-the-Go Placemat\": {\"frequency\": 19, \"value\": \"Fisher-Price On- ...\"}, \"Hooter Hiders Nursing Cover - Aero\": {\"frequency\": 30, \"value\": \"Hooter Hiders ...\"}, \"KidCo Auto Close ConfigureGate - Black\": {\"frequency\": 30, \"value\": \"KidCo Auto Close ...\"}, \"Delta Universal 6 Drawer Dresser, Black Cherry\": {\"frequency\": 53, \"value\": \"Delta Universal 6 ...\"}, \"Trumpette Howdy Bouncy Rubber Cow, White\": {\"frequency\": 27, \"value\": \"Trumpette Howdy ...\"}, \"Summer Infant Multi-Use Deco Extra Tall Walk-Thru Gate, Bronze\": {\"frequency\": 219, \"value\": \"Summer Infant ...\"}, \"GroVia BioLiners One Size Unscented - 200 Count\": {\"frequency\": 51, \"value\": \"GroVia BioLiners ...\"}, \"The First Years 2 Pack 9 Ounce Insulated Sippy Cup, Disney Princess\": {\"frequency\": 51, \"value\": \"The First Years 2 ...\"}, \"Philips AVENT BPA Free Classic Polypropylene Essentials Gift Set\": {\"frequency\": 35, \"value\": \"Philips AVENT BPA ...\"}, \"Kushies Flushable Biodegradable Diaper Liners, 100 Sheets\": {\"frequency\": 33, \"value\": \"Kushies Flushable ...\"}, \"CHILL BABY Mustache Pacifier\": {\"frequency\": 34, \"value\": \"CHILL BABY ...\"}, \"Baby Brezza Formula Pro One Step Food Maker\": {\"frequency\": 23, \"value\": \"Baby Brezza ...\"}, \"OXO Tot Flip-In Hamper, Gray/Green\": {\"frequency\": 34, \"value\": \"OXO Tot Flip-In ...\"}, \"Medela Contact Nipple Shield, Small\": {\"frequency\": 20, \"value\": \"Medela Contact ...\"}, \"Munchkin Steam Guard Microwave Sterilizer\": {\"frequency\": 22, \"value\": \"Munchkin Steam ...\"}, \"Infantino Breathe Vented Carrier, Grey\": {\"frequency\": 36, \"value\": \"Infantino Breathe ...\"}, \"Sunshine Kids New Radian 80 Convertible Car Seat - SuperCool\": {\"frequency\": 19, \"value\": \"Sunshine Kids New ...\"}, \"American Baby Company 100% Cotton Value Jersey Knit Cradle Sheet, Blue\": {\"frequency\": 19, \"value\": \"American Baby ...\"}, \"Boon Grass Countertop Drying Rack, Green\": {\"frequency\": 124, \"value\": \"Boon Grass ...\"}, \"Evenflo 3 Pack Classic Glass Bottle, 4-Ounce\": {\"frequency\": 36, \"value\": \"Evenflo 3 Pack ...\"}, \"See Me Smile Infant Mirror Tan Bear\": {\"frequency\": 23, \"value\": \"See Me Smile ...\"}, \"Playtex Sip Ease Replacement Valve - 2 Pk\": {\"frequency\": 23, \"value\": \"Playtex Sip Ease ...\"}, \"Earlyears Lil Shopper Play Set\": {\"frequency\": 54, \"value\": \"Earlyears Lil ...\"}, \"Tiny Love Sweet Island Dreams Mobile\": {\"frequency\": 93, \"value\": \"Tiny Love Sweet ...\"}, \"Fisher-Price Ducky Fun 3-in-1 Potty\": {\"frequency\": 20, \"value\": \"Fisher-Price Ducky ...\"}, \"Bummis Super Brite Diaper Cover, Pink, 8-16 Pounds\": {\"frequency\": 23, \"value\": \"Bummis Super Brite ...\"}, \"The First Years Wave Stroller, Crimson Red\": {\"frequency\": 23, \"value\": \"The First Years ...\"}, \"Philips AVENT Isis iQ Duo Twin Electronic Breast Pump\": {\"frequency\": 24, \"value\": \"Philips AVENT Isis ...\"}, \"Dwinguler Eco-friendly Kids Play Mat - Safari Tour (Large)\": {\"frequency\": 25, \"value\": \"Dwinguler Eco- ...\"}, \"Bright Starts Comfort and Harmony Portable Swing, Florabella\": {\"frequency\": 57, \"value\": \"Bright Starts ...\"}, \"ERGObaby Organic Baby Carrier, Desert Bloom\": {\"frequency\": 48, \"value\": \"ERGObaby Organic ...\"}, \"Hudson Baby Plush Blanket with Satin Trim and Backing\": {\"frequency\": 35, \"value\": \"Hudson Baby Plush ...\"}, \"Infantino Twist and Fold Gym, Baby Animals\": {\"frequency\": 19, \"value\": \"Infantino Twist ...\"}, \"Britax Boulevard 70-G3 Convertible Car Seat Seat, Onyx\": {\"frequency\": 76, \"value\": \"Britax Boulevard ...\"}, \"Playtex Diaper Genie - First Refill Included\": {\"frequency\": 88, \"value\": \"Playtex Diaper ...\"}, \"Munchkin Bobble Bee Suction Toy\": {\"frequency\": 22, \"value\": \"Munchkin Bobble ...\"}, \"Safety 1st High-Def Digital Video Monitor\": {\"frequency\": 18, \"value\": \"Safety 1st High- ...\"}, \"North States Supergate Pressure Mount Clear Choice Wood Gate\": {\"frequency\": 40, \"value\": \"North States ...\"}, \"Basic Comfort Contoured Changing Pad by Summer Infant\": {\"frequency\": 20, \"value\": \"Basic Comfort ...\"}, \"Prince Lionheart 2 Count Faucet Extender, Gray/Pink\": {\"frequency\": 26, \"value\": \"Prince Lionheart 2 ...\"}, \"Gerber Plastic Pants, 18 Months, Fits 24-28 lbs. (4 pairs)\": {\"frequency\": 29, \"value\": \"Gerber Plastic ...\"}, \"American Baby Company 100% Cotton Percale Ruffle Crib Skirt, Celery\": {\"frequency\": 28, \"value\": \"American Baby ...\"}, \"Cosco Juvenile Funsport Play Yard, Kontiki\": {\"frequency\": 37, \"value\": \"Cosco Juvenile ...\"}, \"Graco Classic Ride 50 Convertible Car Seat, Boyton\": {\"frequency\": 25, \"value\": \"Graco Classic Ride ...\"}, \"Graco Pack 'n Play Element Playard, Metropolis\": {\"frequency\": 26, \"value\": \"Graco Pack 'n Play ...\"}, \"Mumi&amp;Bubi Solids Starter Kit, 42 x 1oz Cubes In Two Compact Baby Food Freezer Storage Trays, Plus Free e-Recipes\": {\"frequency\": 69, \"value\": \"Mumi&amp;Bubi ...\"}, \"The Shrunks Sleep Secure Inflatable Bed Rail\": {\"frequency\": 18, \"value\": \"The Shrunks Sleep ...\"}, \"Britax Marathon in Ashley Floral\": {\"frequency\": 19, \"value\": \"Britax Marathon in ...\"}, \"Baby Safe Ink Print Kit - Basic\": {\"frequency\": 29, \"value\": \"Baby Safe Ink ...\"}, \"Evenflo Portable BabySuite 300, Marianna\": {\"frequency\": 35, \"value\": \"Evenflo Portable ...\"}, \"Playtex 3 Pack VentAire Standard Bottles, 9 Ounce (Colors may vary)\": {\"frequency\": 98, \"value\": \"Playtex 3 Pack ...\"}, \"BabySmart Cooshee Booster Seat Classicwith Travel Bag, Onyx\": {\"frequency\": 33, \"value\": \"BabySmart Cooshee ...\"}, \"make my day Silicone Baby Bib, Purple\": {\"frequency\": 30, \"value\": \"make my day ...\"}, \"BOB Infant Car Seat Adapter For Single Strollers\": {\"frequency\": 27, \"value\": \"BOB Infant Car ...\"}, \"Fisher-Price Zen Collection High Chair\": {\"frequency\": 23, \"value\": \"Fisher-Price Zen ...\"}, \"Turtlemeter, the Baby Bath Floating Turtle Toy and Bath Tub Thermometer\": {\"frequency\": 81, \"value\": \"Turtlemeter, the ...\"}, \"Infantino Merry Monkey Gym\": {\"frequency\": 24, \"value\": \"Infantino Merry ...\"}, \"Jeep Protective Floor Mat\": {\"frequency\": 28, \"value\": \"Jeep Protective ...\"}, \"Graco Highback TurboBooster Car Seat, Spitfire\": {\"frequency\": 118, \"value\": \"Graco Highback ...\"}, \"Vital Baby Toddler Straw Cup, Orange, 10 Ounce\": {\"frequency\": 38, \"value\": \"Vital Baby Toddler ...\"}, \"Joovy Cool Essentials Parent Organizer\": {\"frequency\": 19, \"value\": \"Joovy Cool ...\"}, \"Lifefactory 2 Pack Multi Sensory Silicone Teether, Sky/Spring Green\": {\"frequency\": 72, \"value\": \"Lifefactory 2 Pack ...\"}, \"Gerber Birdseye 10 Count 3-Ply Prefold Cloth Diapers, White\": {\"frequency\": 25, \"value\": \"Gerber Birdseye 10 ...\"}, \"Playtex Baby Drop-Ins Premium Nurser Bottle Feeding Set\": {\"frequency\": 52, \"value\": \"Playtex Baby Drop- ...\"}, \"The Art of CureTM *SAFETY KNOTTED* Honey 1x1 - Certified Baltic Amber Baby Teething Necklace - w/The Art of CureTM Jewelry Pouch (SHIPS AND SOLD IN THE USA)\": {\"frequency\": 25, \"value\": \"The Art of CureTM ...\"}, \"Graco Ipo Stroller, Spitfire\": {\"frequency\": 34, \"value\": \"Graco Ipo ...\"}, \"Medela Pump in Style Advanced Backpack\": {\"frequency\": 58, \"value\": \"Medela Pump in ...\"}, \"DadGear Backpack Diaper Bag - Red Retro Stripe\": {\"frequency\": 40, \"value\": \"DadGear Backpack ...\"}, \"Jolly Jumper Arctic Sneak A Peek Infant Car Seat Cover Black\": {\"frequency\": 27, \"value\": \"Jolly Jumper ...\"}, \"KidCo Outlet Plug Cover\": {\"frequency\": 41, \"value\": \"KidCo Outlet Plug ...\"}, \"Dream On Me 3&quot; Foam Playard Mattress, White\": {\"frequency\": 21, \"value\": \"Dream On Me ...\"}, \"Neat Solutions Neat-Ware Table Topper, 60-Count\": {\"frequency\": 34, \"value\": \"Neat Solutions ...\"}, \"JJ Cole Bundleme Lite, Pink, Infant\": {\"frequency\": 17, \"value\": \"JJ Cole Bundleme ...\"}, \"Ju-Ju-Be Be Prepared Diaper Bag, Black/Silver\": {\"frequency\": 26, \"value\": \"Ju-Ju-Be Be ...\"}, \"Evenflo Exersaucer Mega Circus\": {\"frequency\": 32, \"value\": \"Evenflo Exersaucer ...\"}, \"OsoCozy Better Fit Unbleached Prefolds (Infant 4x8x4 Fits 6-16 lbs.) - Dozen\": {\"frequency\": 27, \"value\": \"OsoCozy Better Fit ...\"}, \"BreathableBaby Breathable Mesh Crib Liner, White\": {\"frequency\": 212, \"value\": \"BreathableBaby ...\"}, \"Avent Isis Manual Breast Pump\": {\"frequency\": 112, \"value\": \"Avent Isis Manual ...\"}, \"OXO Perfect Pull Wipes Dispenser, Pink\": {\"frequency\": 98, \"value\": \"OXO Perfect Pull ...\"}, \"25 mm One-Piece Breastshield w/ Valve and Membrane for Medela Breast Pumps; Set of 2; Made by Maymom\": {\"frequency\": 16, \"value\": \"25 mm One-Piece ...\"}, \"Graco Baby Einstein Discover and Play Entertainer\": {\"frequency\": 76, \"value\": \"Graco Baby ...\"}, \"Fisher Price - Aquarium Take-along Swing\": {\"frequency\": 32, \"value\": \"Fisher Price - ...\"}, \"Sealy Soybean Foam-Core Crib Mattress\": {\"frequency\": 52, \"value\": \"Sealy Soybean ...\"}, \"Under the Sea Tropical Fish Nursery/Kids Room Wall Art Sticker Decals\": {\"frequency\": 30, \"value\": \"Under the Sea ...\"}, \"Evenflo Triumph 65 DLX Seat, Lincoln\": {\"frequency\": 23, \"value\": \"Evenflo Triumph 65 ...\"}, \"Philips Avent BPA Free Classic Bottle to First Cup Trainer, 4+ Months, Clear\": {\"frequency\": 26, \"value\": \"Philips Avent BPA ...\"}, \"Graco Backless TurboBooster Seat, Galaxy\": {\"frequency\": 75, \"value\": \"Graco Backless ...\"}, \"Traffic Light Lamp\": {\"frequency\": 22, \"value\": \"Traffic Light Lamp\"}, \"TotShield Stove Guard for Free Standing Gas and Electric Stove\": {\"frequency\": 28, \"value\": \"TotShield Stove ...\"}, \"Mimijumi 8 Ounce Baby Bottle, Very Hungry\": {\"frequency\": 38, \"value\": \"Mimijumi 8 Ounce ...\"}, \"The First Years Compass B540 Booster Seat, Abstract O's\": {\"frequency\": 71, \"value\": \"The First Years ...\"}, \"Fisher-Price Cheer for Me Potty\": {\"frequency\": 30, \"value\": \"Fisher-Price Cheer ...\"}, \"Earlyears Roll n Swirl Ball Ramp\": {\"frequency\": 68, \"value\": \"Earlyears Roll n ...\"}, \"Baby Trend Single Snap N' Go Stroller\": {\"frequency\": 19, \"value\": \"Baby Trend Single ...\"}, \"Vulli Sophie the Giraffe Teether Set of 2\": {\"frequency\": 45, \"value\": \"Vulli Sophie the ...\"}, \"Medela Freestyle Breast Pump\": {\"frequency\": 74, \"value\": \"Medela Freestyle ...\"}, \"Chicco KeyFit &amp; KeyFit30 Infant Car Seat Base - Anthracite\": {\"frequency\": 56, \"value\": \"Chicco KeyFit ...\"}, \"Skip Hop Zoo Little Kid Luggage, Dog\": {\"frequency\": 48, \"value\": \"Skip Hop Zoo ...\"}, \"Munchkin Bottle and Nipple Brush, Colors May Vary\": {\"frequency\": 54, \"value\": \"Munchkin Bottle ...\"}, \"Joovy Caboose Stand On Tandem Stroller, Black\": {\"frequency\": 113, \"value\": \"Joovy Caboose ...\"}, \"Chicco NextFit Convertible Car Seat, Mystique\": {\"frequency\": 62, \"value\": \"Chicco NextFit ...\"}, \"Fresh Baby So Easy Baby Food and Breast Milk Trays\": {\"frequency\": 88, \"value\": \"Fresh Baby So Easy ...\"}, \"NUK Hello Kitty Silicone Spout Learner Cup, 5 Ounce\": {\"frequency\": 18, \"value\": \"NUK Hello Kitty ...\"}, \"Bummis Swimmi Cloth Diapers, Turtles, Small (9-15 lbs)\": {\"frequency\": 30, \"value\": \"Bummis Swimmi ...\"}, \"Jeep Wrangler Twin Sport All-Weather Stroller, Heat\": {\"frequency\": 21, \"value\": \"Jeep Wrangler Twin ...\"}, \"Munchkin Lazy Buoys Bathtub Toys\": {\"frequency\": 21, \"value\": \"Munchkin Lazy ...\"}, \"Fisher-Price Discover 'n Grow Jumperoo\": {\"frequency\": 33, \"value\": \"Fisher-Price ...\"}, \"Safety 1st 2 Pack Custom Fit All Purpose Strap\": {\"frequency\": 95, \"value\": \"Safety 1st 2 Pack ...\"}, \"Dream On Me 3&quot; Rounded Corner Playard Mattress, White/Brown\": {\"frequency\": 35, \"value\": \"Dream On Me ...\"}, \"Philips AVENT BPA Free Single Electric Breast Pump\": {\"frequency\": 24, \"value\": \"Philips AVENT BPA ...\"}, \"Angel Dear Blankie, Green Frog\": {\"frequency\": 123, \"value\": \"Angel Dear ...\"}, \"Britax Roundabout 55 Convertible Car Seat, Isabella\": {\"frequency\": 75, \"value\": \"Britax Roundabout ...\"}, \"Athena Nadia 3 in 1 Crib with Toddler Rail, Cherry\": {\"frequency\": 22, \"value\": \"Athena Nadia 3 in ...\"}, \"BABYBJORN Toilet Trainer - White/Red\": {\"frequency\": 139, \"value\": \"BABYBJORN Toilet ...\"}, \"Bright Starts Petals and Friends Activity Gym\": {\"frequency\": 31, \"value\": \"Bright Starts ...\"}, \"Summer Infant Rayshade Stroller Cover\": {\"frequency\": 27, \"value\": \"Summer Infant ...\"}, \"Bamboobies 2 Pair Ultra-Thin Regular Nursing Pads, Pale Pink\": {\"frequency\": 78, \"value\": \"Bamboobies 2 Pair ...\"}, \"Jeep Deluxe Stroller Weather Shield\": {\"frequency\": 27, \"value\": \"Jeep Deluxe ...\"}, \"Luvable Friends Infant Pillow Case, Traditional Blue Print\": {\"frequency\": 23, \"value\": \"Luvable Friends ...\"}, \"Graco Sweet Slumber Sound Machine, White\": {\"frequency\": 109, \"value\": \"Graco Sweet ...\"}, \"Similac SimplySmart Starter Set\": {\"frequency\": 19, \"value\": \"Similac ...\"}, \"Snuza Portable Baby Movement Monitor\": {\"frequency\": 57, \"value\": \"Snuza Portable ...\"}, \"Graco FastAction Fold Jogger Click Connect Stroller, Grapeade\": {\"frequency\": 32, \"value\": \"Graco FastAction ...\"}, \"Aquatopia Deluxe Safety Bath Thermometer Alarm, Green\": {\"frequency\": 62, \"value\": \"Aquatopia Deluxe ...\"}, \"Delta Portable Mini Crib, Cherry\": {\"frequency\": 24, \"value\": \"Delta Portable ...\"}, \"Similac SimplySmart Bottle, 4 Ounce\": {\"frequency\": 36, \"value\": \"Similac ...\"}, \"Aden + Anais Issie Security Blanket Set Declan Elephants\": {\"frequency\": 23, \"value\": \"Aden + Anais Issie ...\"}, \"Fisher-Price Portable Rocker, Newborn-to-Toddler\": {\"frequency\": 66, \"value\": \"Fisher-Price ...\"}, \"Kick Mats - Deluxe Car Seat Back Protectors 2 Pack - Keep Your Car Seats 100% Clean From All The Stains And Scuffmarks Left By The Kids With These Auto-Protective Seat Covers - Designed For Most Vehicles - Protect Your Investment - Lifetime Guarantee\": {\"frequency\": 91, \"value\": \"Kick Mats - Deluxe ...\"}, \"RECARO ProBOOSTER High Back Booster Car Seat, Riley\": {\"frequency\": 23, \"value\": \"RECARO ProBOOSTER ...\"}, \"DaVinci Alpha Mini Rocking Crib - Natural\": {\"frequency\": 34, \"value\": \"DaVinci Alpha Mini ...\"}, \"Jeep Jogging Stroller Weather Shield\": {\"frequency\": 26, \"value\": \"Jeep Jogging ...\"}, \"BABYBJORN Baby Carrier Active, White, Mesh\": {\"frequency\": 34, \"value\": \"BABYBJORN Baby ...\"}, \"Dream On Me Classic Toddler Bed, Cherry\": {\"frequency\": 44, \"value\": \"Dream On Me ...\"}, \"Graco LiteRider Classic Connect Stroller, Pasadena\": {\"frequency\": 41, \"value\": \"Graco LiteRider ...\"}, \"Combi All in One Activity Walker, Pink\": {\"frequency\": 62, \"value\": \"Combi All in One ...\"}, \"The First Years Lanolin Free Nipple Butter, 2 Ounce\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"Fisher-Price Stride to Ride Walker\": {\"frequency\": 31, \"value\": \"Fisher-Price ...\"}, \"Comotomo Silicone Baby Teether, Blue\": {\"frequency\": 54, \"value\": \"Comotomo Silicone ...\"}, \"Dream On Me, 3 in 1 Portable Convertible Crib, Cherry\": {\"frequency\": 23, \"value\": \"Dream On Me, 3 in ...\"}, \"Skip Hop Swipe Baby Wipes Case\": {\"frequency\": 38, \"value\": \"Skip Hop Swipe ...\"}, \"Philips AVENT Microwave Steam Sterilizer\": {\"frequency\": 24, \"value\": \"Philips AVENT ...\"}, \"PRIMO Folding Potty with Handles, White granite\": {\"frequency\": 99, \"value\": \"PRIMO Folding ...\"}, \"ULTRASCALE MBSC-55 Digital Baby Pet Scale\": {\"frequency\": 23, \"value\": \"ULTRASCALE MBSC-55 ...\"}, \"Sugar Booger Kiddie Play Back Pack, Prehistoric Pals\": {\"frequency\": 22, \"value\": \"Sugar Booger ...\"}, \"Jolly Jumper Bath Tub Toy Bag\": {\"frequency\": 54, \"value\": \"Jolly Jumper Bath ...\"}, \"MOBI Tykelight WallMate, Monkey\": {\"frequency\": 18, \"value\": \"MOBI Tykelight ...\"}, \"Fisher-Price Precious Planet Sky Blue High Chair\": {\"frequency\": 42, \"value\": \"Fisher-Price ...\"}, \"Graco Pack 'N Play Playard with Bassinet in Rise and Shine\": {\"frequency\": 199, \"value\": \"Graco Pack 'N Play ...\"}, \"Dappi Waterproof 100% Vinyl Diaper Pants, 3Pack, White, Newborn\": {\"frequency\": 53, \"value\": \"Dappi Waterproof ...\"}, \"Zoli Baby On-the-Go Snack/Formula Dispsenser - 2 oz\": {\"frequency\": 24, \"value\": \"Zoli Baby On-the- ...\"}, \"QuickZip Crib Sheet Set, White\": {\"frequency\": 19, \"value\": \"QuickZip Crib ...\"}, \"Carters Velour Playard Fitted Sheet, Ecru\": {\"frequency\": 53, \"value\": \"Carters Velour ...\"}, \"The First Years Spinning Drying Rack, White\": {\"frequency\": 136, \"value\": \"The First Years ...\"}, \"Prince Lionheart Premium Wipe Warmer\": {\"frequency\": 32, \"value\": \"Prince Lionheart ...\"}, \"Star Kids Snack and Play Travel Tray\": {\"frequency\": 116, \"value\": \"Star Kids Snack ...\"}, \"The First Years: Clear and Near 2.4 GHz Monitor\": {\"frequency\": 20, \"value\": \"The First Years: ...\"}, \"Chicco Keyfit Caddy Stroller Frame\": {\"frequency\": 38, \"value\": \"Chicco Keyfit ...\"}, \"Skip Hop Via Messenger Diaper Bag Black\": {\"frequency\": 21, \"value\": \"Skip Hop Via ...\"}, \"Medela Calma Breastmilk Feeding Nipple\": {\"frequency\": 18, \"value\": \"Medela Calma ...\"}, \"The First Years Everywhere Gate\": {\"frequency\": 56, \"value\": \"The First Years ...\"}, \"Boppy Pillow with Luxe Slipcover, Monkey\": {\"frequency\": 19, \"value\": \"Boppy Pillow with ...\"}, \"Munchkin 2 Pack Silicone Spoons, Colors May Vary\": {\"frequency\": 18, \"value\": \"Munchkin 2 Pack ...\"}, \"Wimmer Ferguson Wimmer Infant Stim Mobile To Go\": {\"frequency\": 29, \"value\": \"Wimmer Ferguson ...\"}, \"Snugli Front and Backpack Carrier\": {\"frequency\": 22, \"value\": \"Snugli Front and ...\"}, \"Prince Lionheart Warmies Wipes Warmer\": {\"frequency\": 30, \"value\": \"Prince Lionheart ...\"}, \"Zo-li Bot Straw Sippy Cup 6oz\": {\"frequency\": 152, \"value\": \"Zo-li Bot Straw ...\"}, \"Learning Curve True Fit Convertible Car Seat, Pink Butterfly\": {\"frequency\": 28, \"value\": \"Learning Curve ...\"}, \"Rumparooz Cloth Diaper Cover, White Snap\": {\"frequency\": 23, \"value\": \"Rumparooz Cloth ...\"}, \"Infantino Squeeze Pouches, 50-Count\": {\"frequency\": 23, \"value\": \"Infantino Squeeze ...\"}, \"KidCo Convertible Crib Bed Rail Finish: Natural\": {\"frequency\": 13, \"value\": \"KidCo Convertible ...\"}, \"OXO Tot Bottle Brush with Nipple Cleaner and Stand, Green\": {\"frequency\": 137, \"value\": \"OXO Tot Bottle ...\"}, \"Skip Hop Moby Bath Kneeler, Blue\": {\"frequency\": 23, \"value\": \"Skip Hop Moby Bath ...\"}, \"The First Years - Crib CD Player\": {\"frequency\": 39, \"value\": \"The First Years - ...\"}, \"OXO Tot Straw Cup, Aqua, 11 Ounce\": {\"frequency\": 36, \"value\": \"OXO Tot Straw Cup, ...\"}, \"BubbleBum Inflatable Car Booster Seat\": {\"frequency\": 79, \"value\": \"BubbleBum ...\"}, \"The First Years 2 Pack GumDrop Infant Pacifier, Blue/Green\": {\"frequency\": 19, \"value\": \"The First Years 2 ...\"}, \"Xpress Trainer Pro-All In One-Real Simple Potty Training Round/Standard Family Toilet Seat\": {\"frequency\": 22, \"value\": \"Xpress Trainer ...\"}, \"Summer Infant 3D lite Convenience Stroller, Black\": {\"frequency\": 28, \"value\": \"Summer Infant 3D ...\"}, \"Dr. Brown's BPA Free Polypropylene Natural Flow Standard Neck Bottle, 4 oz - 3-Pack\": {\"frequency\": 26, \"value\": \"Dr. Brown's BPA ...\"}, \"Arm's Reach Co-Sleeper Bassinet Leg Extension Kit, Natural\": {\"frequency\": 24, \"value\": \"Arm's Reach Co- ...\"}, \"Munchkin High Speed Bottle and Food Warmer with Pacifier Cleaning Basket\": {\"frequency\": 30, \"value\": \"Munchkin High ...\"}, \"KidCo Bath Toy Organizer Storage Basket\": {\"frequency\": 81, \"value\": \"KidCo Bath Toy ...\"}, \"Munchkin Sesame Street Toddler Fork and Spoon, Elmo\": {\"frequency\": 54, \"value\": \"Munchkin Sesame ...\"}, \"900 MHz Home Connection Monitor\": {\"frequency\": 27, \"value\": \"900 MHz Home ...\"}, \"Fisher-Price Rainforest Jumperoo\": {\"frequency\": 450, \"value\": \"Fisher-Price ...\"}, \"Lamaze Play &amp; Grow Rusty the Robot Take Along Toy\": {\"frequency\": 26, \"value\": \"Lamaze Play &amp; ...\"}, \"aden + anais Classic Muslin Swaddle Blanket 4 Pack, Blue and White (Previous Model)\": {\"frequency\": 20, \"value\": \"aden + anais ...\"}, \"Arm &amp; Hammer Secure Comfort Potty Seat, Colors May Vary\": {\"frequency\": 80, \"value\": \"Arm &amp; Hammer ...\"}, \"BabyKicks 3 Pack Joey-Bunz Premium, Small\": {\"frequency\": 19, \"value\": \"BabyKicks 3 Pack ...\"}, \"Munchkin Powdered Formula Dispenser, Colors May Vary\": {\"frequency\": 7, \"value\": \"Munchkin Powdered ...\"}, \"Tiny Love Gymini Move and Play Activity Gym, Animals\": {\"frequency\": 36, \"value\": \"Tiny Love Gymini ...\"}, \"Safety 1st 900 Mhz Sight And Sound Nursery Monitor System\": {\"frequency\": 39, \"value\": \"Safety 1st 900 Mhz ...\"}, \"Sassy Developmental Bath Toy, Catch and Count Net\": {\"frequency\": 29, \"value\": \"Sassy ...\"}, \"Fisher-Price Coco Sorbet Soothing Motions Glider\": {\"frequency\": 51, \"value\": \"Fisher-Price Coco ...\"}, \"Witch Hazel Distillate (Alcohol Free) 8 Ounces\": {\"frequency\": 22, \"value\": \"Witch Hazel ...\"}, \"Evenflo Journey 300 Stroller with Embrace 35 Car Seat, Koi\": {\"frequency\": 31, \"value\": \"Evenflo Journey ...\"}, \"American Baby Company 100% Organic Cotton Interlock Fitted Pack N Play Sheet, Natural\": {\"frequency\": 86, \"value\": \"American Baby ...\"}, \"Disney Soft Potty and Step Stool Combo Set, Pixar Cars\": {\"frequency\": 22, \"value\": \"Disney Soft Potty ...\"}, \"Dr. Brown's Natural Flow Cleaning Brush, 4 Pack\": {\"frequency\": 60, \"value\": \"Dr. Brown's ...\"}, \"FitBALL Seating Disc 15&quot; Iridescent Blue (Poly Bag)\": {\"frequency\": 19, \"value\": \"FitBALL Seating ...\"}, \"Badger Basket Baby Changing Table with Six Baskets, Black\": {\"frequency\": 40, \"value\": \"Badger Basket Baby ...\"}, \"Ikea Baby Bib Set with Sleaves-kladd Prickar\": {\"frequency\": 23, \"value\": \"Ikea Baby Bib Set ...\"}, \"Playtex Premium Nurser Newborn Gift Set\": {\"frequency\": 40, \"value\": \"Playtex Premium ...\"}, \"Comotomo 2 Pack Silicone Replacement Nipple, Clear, Variable Flow\": {\"frequency\": 18, \"value\": \"Comotomo 2 Pack ...\"}, \"Prince Lionheart bebePOD Flex Baby Seat, Mint\": {\"frequency\": 26, \"value\": \"Prince Lionheart ...\"}, \"Mary Meyer Wubbanub Plush Pacifier, Cutsie Caterpillar\": {\"frequency\": 123, \"value\": \"Mary Meyer ...\"}, \"Disney Cars Folding Potty Seat\": {\"frequency\": 19, \"value\": \"Disney Cars ...\"}, \"Fisher-Price Deluxe Newborn Rock 'N Play Sleeper, My Little Sweetie\": {\"frequency\": 23, \"value\": \"Fisher-Price ...\"}, \"Bright Starts Ingenuity Automatic Bouncer, Bella Vista\": {\"frequency\": 19, \"value\": \"Bright Starts ...\"}, \"4Moms Mamaroo Infant Seat, Orange\": {\"frequency\": 38, \"value\": \"4Moms Mamaroo ...\"}, \"Nuby 2 Count 2 Handle Cup with No Spill Super Spout, Colors May Vary\": {\"frequency\": 24, \"value\": \"Nuby 2 Count 2 ...\"}, \"Mary Meyer Christening Plush Rattle, Lamb\": {\"frequency\": 19, \"value\": \"Mary Meyer ...\"}, \"Chicco Lil Piano Splash Walker\": {\"frequency\": 33, \"value\": \"Chicco Lil Piano ...\"}, \"OXO Tot Plate, Green\": {\"frequency\": 19, \"value\": \"OXO Tot Plate, ...\"}, \"Summer Infant Custom Fit Walk-Thru Gate, Tan\": {\"frequency\": 22, \"value\": \"Summer Infant ...\"}, \"Prince Lionheart pottyPOD, Blue\": {\"frequency\": 22, \"value\": \"Prince Lionheart ...\"}, \"Hello Kitty diecut face shape Area Rug 30 X 25 inches\": {\"frequency\": 27, \"value\": \"Hello Kitty diecut ...\"}, \"Munchkin 6 Pack Soft-Tip Infant Spoon\": {\"frequency\": 169, \"value\": \"Munchkin 6 Pack ...\"}, \"Nojo Toddler Satin Pillow\": {\"frequency\": 22, \"value\": \"Nojo Toddler Satin ...\"}, \"Diono RadianR100 Convertible Car Seat, Dune\": {\"frequency\": 55, \"value\": \"Diono RadianR100 ...\"}, \"Evenflo Snugli Front &amp; Back Pack Carrier\": {\"frequency\": 19, \"value\": \"Evenflo Snugli ...\"}, \"BabyHawk Mei Tai Baby Carrier, Black/Lime Motifs\": {\"frequency\": 22, \"value\": \"BabyHawk Mei Tai ...\"}, \"Prince Lionheart Seat Neat, Black/Grey\": {\"frequency\": 19, \"value\": \"Prince Lionheart ...\"}, \"Lansinoh Soothies Gel Pads, 2 Count\": {\"frequency\": 25, \"value\": \"Lansinoh Soothies ...\"}, \"Chicco Cortina Keyfit 30 Travel System, Miro\": {\"frequency\": 23, \"value\": \"Chicco Cortina ...\"}, \"BABYBJORN Potty Chair - Red\": {\"frequency\": 232, \"value\": \"BABYBJORN Potty ...\"}, \"Baby Buddy Secure-A-Toy, Navy/Red\": {\"frequency\": 135, \"value\": \"Baby Buddy ...\"}, \"DEX Products Grab N Go Bottle Warmer BWC-01\": {\"frequency\": 19, \"value\": \"DEX Products Grab ...\"}, \"Kidkusion Hearth Kushion Taupe\": {\"frequency\": 32, \"value\": \"Kidkusion Hearth ...\"}, \"Fisher-Price Ocean Wonders Bath Center - Aquarium\": {\"frequency\": 50, \"value\": \"Fisher-Price Ocean ...\"}, \"dexbaby Safe Sleeper Convertible Crib Bed Rail, White\": {\"frequency\": 63, \"value\": \"dexbaby Safe ...\"}, \"Fisher-Price Precious Planet Kick and Play Piano\": {\"frequency\": 41, \"value\": \"Fisher-Price ...\"}, \"Parent Units Fridge Guard, White\": {\"frequency\": 34, \"value\": \"Parent Units ...\"}, \"Sensible Lines Milk Trays\": {\"frequency\": 18, \"value\": \"Sensible Lines ...\"}, \"Britax Second Seat for B-Ready Stroller, Red\": {\"frequency\": 18, \"value\": \"Britax Second Seat ...\"}, \"WallStickersUSA Contemporary Wall Sticker Decal, Tree Branches, Leaves, Lovebirds, and Hearts, X-Large\": {\"frequency\": 21, \"value\": \"WallStickersUSA ...\"}, \"Stork Craft Hoop Glider, Espresso/Beige\": {\"frequency\": 18, \"value\": \"Stork Craft Hoop ...\"}, \"Peter Potty Toddler Urinal\": {\"frequency\": 28, \"value\": \"Peter Potty ...\"}, \"Chicco Lullaby LX Playard, Adventure\": {\"frequency\": 32, \"value\": \"Chicco Lullaby LX ...\"}, \"Evenflo Big Kid Booster Car Seat - Silver Birch\": {\"frequency\": 22, \"value\": \"Evenflo Big Kid ...\"}, \"Dreambaby Extra Tall Swing Closed Security Gate, Black\": {\"frequency\": 21, \"value\": \"Dreambaby Extra ...\"}, \"Pearhead Babyprints Photo Frame\": {\"frequency\": 32, \"value\": \"Pearhead ...\"}, \"SOHO Designs Baby Walker - Learn how to walk assistant\": {\"frequency\": 21, \"value\": \"SOHO Designs Baby ...\"}, \"Playtex TrainingTime Soft Spout Cup, 6 Ounce, 2 Pack, Color May Vary\": {\"frequency\": 62, \"value\": \"Playtex ...\"}, \"Prince Lionheart Table Edge Guard with 4 Corners, Grey\": {\"frequency\": 84, \"value\": \"Prince Lionheart ...\"}, \"Kolcraft Pure Sleep Therapeutic 150 Crib Mattress\": {\"frequency\": 30, \"value\": \"Kolcraft Pure ...\"}, \"Graco TotBloc Pack 'N Play with Carry Bag, Bugs Quilt\": {\"frequency\": 139, \"value\": \"Graco TotBloc Pack ...\"}, \"Philips AVENT BPA Free Bottle Brush, Blue\": {\"frequency\": 52, \"value\": \"Philips AVENT BPA ...\"}, \"Constructive Eating 3 Piece Construction Worksite Utensil Set\": {\"frequency\": 37, \"value\": \"Constructive ...\"}, \"Boppy Pillow with Brocade Slipcover, Black and White\": {\"frequency\": 71, \"value\": \"Boppy Pillow with ...\"}, \"Chicco Smart Support Backpack, Red\": {\"frequency\": 38, \"value\": \"Chicco Smart ...\"}, \"Baby Care Play Mat - Pingko Friends (Large)\": {\"frequency\": 87, \"value\": \"Baby Care Play Mat ...\"}, \"NUK Disney Winnie the Pooh 10 Ounces Active Cup Silicone Spout, 12+ Months\": {\"frequency\": 32, \"value\": \"NUK Disney Winnie ...\"}, \"Summer Infant Swaddleme MicroFleece Adjustable Infant Wrap, Blue, Small/Medium\": {\"frequency\": 65, \"value\": \"Summer Infant ...\"}, \"Evenflo Amp Performance No Back Booster Car Seat, Green\": {\"frequency\": 24, \"value\": \"Evenflo Amp ...\"}, \"Graco SnugRide Classic Connect Infant Car Seat Base, Tan\": {\"frequency\": 19, \"value\": \"Graco SnugRide ...\"}, \"Fisher-Price Luv U Zoo Jumperoo\": {\"frequency\": 88, \"value\": \"Fisher-Price Luv U ...\"}, \"BRICA Seat Guardian Car Seat Protector\": {\"frequency\": 42, \"value\": \"BRICA Seat ...\"}, \"Dr. Brown's Drying Rack\": {\"frequency\": 22, \"value\": \"Dr. Brown's Drying ...\"}, \"Fisher-Price Precious Planet Blue Sky Jumperoo\": {\"frequency\": 37, \"value\": \"Fisher-Price ...\"}, \"Dreambaby Extra Tall Swing Close Gate with Extensions, White\": {\"frequency\": 83, \"value\": \"Dreambaby Extra ...\"}, \"Graco Stanton Convertible Crib, Classic Cherry\": {\"frequency\": 24, \"value\": \"Graco Stanton ...\"}, \"Safety 1st Magnetic Locking System\": {\"frequency\": 22, \"value\": \"Safety 1st ...\"}, \"Summer Infant SwaddlePod, Ivory, Newborn\": {\"frequency\": 25, \"value\": \"Summer Infant ...\"}, \"Britax 2 Pack EZ-Cling Sun Shades, Black\": {\"frequency\": 173, \"value\": \"Britax 2 Pack EZ- ...\"}, \"Peace of Mind Two 900 Mhz Baby Receivers, Monitor\": {\"frequency\": 32, \"value\": \"Peace of Mind Two ...\"}, \"My Pool Pal Reusable Swim Diaper, Pink, 2T\": {\"frequency\": 21, \"value\": \"My Pool Pal ...\"}, \"Britax Roundabout 55 Convertible Car Seat, Silverlake\": {\"frequency\": 22, \"value\": \"Britax Roundabout ...\"}, \"Mommy's Helper Cushie Traveler\": {\"frequency\": 50, \"value\": \"Mommy's Helper ...\"}, \"Stroller Hook Clips - Luxury Stroller Hook Clips For Bags Or Diaper Bags - Guaranteed To Last, Won't Break Like The Cheaper Plastic Ones - Carabiner Stroller Hook Clip Locks For Added Security Keeping Your Valuables Safe At All Times - Protect Your Investment - These Stroller Hook Clips Come With a Lifetime NO-Hassle Free Replacement Guarantee!\": {\"frequency\": 18, \"value\": \"Stroller Hook ...\"}, \"Dream On Me 3&quot; Extra Firm Portable Crib Mattress, White\": {\"frequency\": 33, \"value\": \"Dream On Me ...\"}, \"Sesame's Elmo Bath Mat 'splish Splash'\": {\"frequency\": 25, \"value\": \"Sesame's Elmo Bath ...\"}, \"Britax Back Seat Mirror\": {\"frequency\": 121, \"value\": \"Britax Back Seat ...\"}, \"Tiny Love Soothe 'n Groove Mobile, Blue\": {\"frequency\": 26, \"value\": \"Tiny Love Soothe ...\"}, \"Graco Pack 'n Play Playard with Newborn Napper Station DLX, Jacqueline\": {\"frequency\": 34, \"value\": \"Graco Pack 'n Play ...\"}, \"SoHo Pink with Black &amp; White Zebra Chenille Crib Nursery Bedding 10 pcs Set\": {\"frequency\": 19, \"value\": \"SoHo Pink with ...\"}, \"Puj Flyte - Compact Infant Bath (White)\": {\"frequency\": 25, \"value\": \"Puj Flyte - ...\"}, \"Munchkin Arm and Hammer Nursery Fresheners, 5 Pack, Lavender or Citrus\": {\"frequency\": 72, \"value\": \"Munchkin Arm and ...\"}, \"NoJo 2 Pack Dot Changing Table Cover - Ivory withSnow Dots\": {\"frequency\": 21, \"value\": \"NoJo 2 Pack Dot ...\"}, \"New Boba Wrap in Red with Matching Carrying Pouch : Infant Baby Carrier : Preemie - 18months (Previously Sleepy Wrap)\": {\"frequency\": 70, \"value\": \"New Boba Wrap in ...\"}, \"VTech Communications Safe &amp; Sound Digital Audio Monitor\": {\"frequency\": 233, \"value\": \"VTech ...\"}, \"Lamaze Musical Inchworm\": {\"frequency\": 68, \"value\": \"Lamaze Musical ...\"}, \"JJ Cole Car Seat Cover, Khaki\": {\"frequency\": 31, \"value\": \"JJ Cole Car Seat ...\"}, \"CTA Digital 2-in-1 iPotty with Activity Seat for iPad\": {\"frequency\": 57, \"value\": \"CTA Digital 2-in-1 ...\"}, \"Dundee Burp Cloths/Diapers - White\": {\"frequency\": 26, \"value\": \"Dundee Burp ...\"}, \"Graco Blossom 4-In-1 Seating System, Sapphire\": {\"frequency\": 80, \"value\": \"Graco Blossom ...\"}, \"Thirsties Diaper Cover, Celery, X-Small (6-12 lbs)\": {\"frequency\": 63, \"value\": \"Thirsties Diaper ...\"}, \"Lamaze Octotunes Musical Toy\": {\"frequency\": 24, \"value\": \"Lamaze Octotunes ...\"}, \"UPPAbaby G-Luxe Stroller, Black Jake\": {\"frequency\": 25, \"value\": \"UPPAbaby G-Luxe ...\"}, \"Baby Bath Tub Ring Seat New in Box By KETER - Blue Best Price\": {\"frequency\": 46, \"value\": \"Baby Bath Tub Ring ...\"}, \"Child Airplane Travel Harness - Cares Safety Restraint System - The Only FAA Approved Child Flying Safety Device\": {\"frequency\": 109, \"value\": \"Child Airplane ...\"}, \"Regalo Extra Wide 58 Inch WideSpan Walk Through Safety Gate, White\": {\"frequency\": 86, \"value\": \"Regalo Extra Wide ...\"}, \"Comotomo Baby Bottle, Green/Pink, 5 Ounce, 2-Count\": {\"frequency\": 47, \"value\": \"Comotomo Baby ...\"}, \"BOB Single Snack Tray, Black\": {\"frequency\": 25, \"value\": \"BOB Single Snack ...\"}, \"Badger Basket Lightweight Three Drawer Hamper/Storage Unit, Brown Dot\": {\"frequency\": 19, \"value\": \"Badger Basket ...\"}, \"Imse Vimse Flushable Liner - 200 count (Baby)\": {\"frequency\": 27, \"value\": \"Imse Vimse ...\"}, \"JJ Cole Original Infant Bundleme, Apple, Infant\": {\"frequency\": 60, \"value\": \"JJ Cole Original ...\"}, \"BRICA Infant Comfort Canopy Car Seat Cover\": {\"frequency\": 25, \"value\": \"BRICA Infant ...\"}, \"Boppy Luxe - Clouds\": {\"frequency\": 31, \"value\": \"Boppy Luxe - ...\"}, \"Munchkin Sprout Drying Rack\": {\"frequency\": 61, \"value\": \"Munchkin Sprout ...\"}, \"DaVinci Kalani 4-in-1 Convertible Crib with Toddler Rail, Cherry\": {\"frequency\": 116, \"value\": \"DaVinci Kalani ...\"}, \"Medi-Rub Foot Massager 2000 Plus\": {\"frequency\": 19, \"value\": \"Medi-Rub Foot ...\"}, \"Podee Baby Feeding System\": {\"frequency\": 24, \"value\": \"Podee Baby Feeding ...\"}, \"Leachco Snoogle Total Body Pillow\": {\"frequency\": 388, \"value\": \"Leachco Snoogle ...\"}, \"Electronic Digital Caliper 6&quot; with Extra large LCD Display Screen with Carrying Case\": {\"frequency\": 31, \"value\": \"Electronic Digital ...\"}, \"Snoogle Chic Total Body Pillow\": {\"frequency\": 45, \"value\": \"Snoogle Chic Total ...\"}, \"Stairway Gate Installation Kit (K12) by KidCo\": {\"frequency\": 36, \"value\": \"Stairway Gate ...\"}, \"Summer Infant Baby Touch Digital Color Video Monitor\": {\"frequency\": 132, \"value\": \"Summer Infant Baby ...\"}, \"Bugaboo Cup Holder\": {\"frequency\": 19, \"value\": \"Bugaboo Cup Holder\"}, \"Aden by aden + anais Muslin Sleeping Bag, Oh Boy, Small\": {\"frequency\": 49, \"value\": \"Aden by aden + ...\"}, \"JJ Cole Collections Strap Cover in Pink\": {\"frequency\": 28, \"value\": \"JJ Cole ...\"}, \"Infantino Compact 2-in-1 Shopping Cart Cover\": {\"frequency\": 49, \"value\": \"Infantino Compact ...\"}, \"Fisher-Price Laugh and Learn Jumperoo\": {\"frequency\": 57, \"value\": \"Fisher-Price Laugh ...\"}, \"Carters Easy Fit Jersey Crib Fitted Sheet, Pink\": {\"frequency\": 49, \"value\": \"Carters Easy Fit ...\"}, \"Safety 1st Bath Toy Bag\": {\"frequency\": 53, \"value\": \"Safety 1st Bath ...\"}, \"Goodbyn Bynto Food Container, Red\": {\"frequency\": 22, \"value\": \"Goodbyn Bynto Food ...\"}, \"Regalo My Cot Portable Toddler Bed, Pink\": {\"frequency\": 61, \"value\": \"Regalo My Cot ...\"}, \"Britax Pavilion 70-G3 Convertible Car Seat Seat, Onyx\": {\"frequency\": 28, \"value\": \"Britax Pavilion ...\"}, \"Lamaze Freddie The Firefly Musical Mobile\": {\"frequency\": 18, \"value\": \"Lamaze Freddie The ...\"}, \"Philips AVENT iQ24 Steam Sterilizer\": {\"frequency\": 28, \"value\": \"Philips AVENT iQ24 ...\"}, \"Fisher-Price Musical Mobile, Rainforest Peek-a-Boo Leaves\": {\"frequency\": 106, \"value\": \"Fisher-Price ...\"}, \"Playtex Playtex VentAire Advanced Standard Bottle Gift Set\": {\"frequency\": 67, \"value\": \"Playtex Playtex ...\"}, \"Medela Quick Clean Breastpump &amp; Accessory Wipes\": {\"frequency\": 23, \"value\": \"Medela Quick Clean ...\"}, \"BRICA Stay-In-Place Baby Mirror, Black\": {\"frequency\": 23, \"value\": \"BRICA Stay-In- ...\"}, \"Graco Highback Turbo Booster Seat, Megan\": {\"frequency\": 37, \"value\": \"Graco Highback ...\"}, \"Leachco Bath 'N Bumper - Cushioned Bath Tub - Blue Fish\": {\"frequency\": 20, \"value\": \"Leachco Bath 'N ...\"}, \"Britax B-Ready Stroller, Black\": {\"frequency\": 95, \"value\": \"Britax B-Ready ...\"}, \"Waterproof Baby Bibs with Snaps for Girls &amp; Boys, Gift Box 10 Pack, Solid Colors\": {\"frequency\": 66, \"value\": \"Waterproof Baby ...\"}, \"HALO SleepSack Micro-Fleece Wearable Blanket, Soft Pink, Small\": {\"frequency\": 124, \"value\": \"HALO SleepSack ...\"}, \"Baby Einstein Musical Motion Activity Jumper, Blue\": {\"frequency\": 98, \"value\": \"Baby Einstein ...\"}, \"Medela Spare Membranes for Breatpumps 6 Pack\": {\"frequency\": 21, \"value\": \"Medela Spare ...\"}, \"Munchkin Deluxe Bottle Brush, Colors May Vary\": {\"frequency\": 41, \"value\": \"Munchkin Deluxe ...\"}, \"Skip Hop Zoo Playspot\": {\"frequency\": 18, \"value\": \"Skip Hop Zoo ...\"}, \"Baby Jogger 2013 City Select Stroller with Second Seat - Onyx\": {\"frequency\": 18, \"value\": \"Baby Jogger 2013 ...\"}, \"Fuzzibunz One Size Diaper White, 7-35 Pounds\": {\"frequency\": 36, \"value\": \"Fuzzibunz One Size ...\"}, \"Bummis Fabulous Wet Diaper Bag, Green, Small\": {\"frequency\": 19, \"value\": \"Bummis Fabulous ...\"}, \"Lamaze Play &amp; Grow Mortimer the Moose Take Along Toy\": {\"frequency\": 60, \"value\": \"Lamaze Play &amp; ...\"}, \"Hudson Baby Organic Receiving Blanket, Pink\": {\"frequency\": 20, \"value\": \"Hudson Baby ...\"}, \"American Baby Company Jersey Knit Crib Sheet, Lavender\": {\"frequency\": 55, \"value\": \"American Baby ...\"}, \"Munchkin Lulla-Vibe Vibrating Mattress Pad\": {\"frequency\": 42, \"value\": \"Munchkin Lulla- ...\"}, \"My Brest Friend Twins Plus Deluxe Nursing Pillow, Green, 0-12 Months\": {\"frequency\": 22, \"value\": \"My Brest Friend ...\"}, \"JJ Cole Caprice Diaper Bag, Black with Cream Pattern\": {\"frequency\": 19, \"value\": \"JJ Cole Caprice ...\"}, \"OXO Tot 12 Piece Baby Block Set\": {\"frequency\": 18, \"value\": \"OXO Tot 12 Piece ...\"}, \"The First Years Star Teething Blanket\": {\"frequency\": 69, \"value\": \"The First Years ...\"}, \"Munchkin Traveling Flash Cards\": {\"frequency\": 37, \"value\": \"Munchkin Traveling ...\"}, \"Summer Infant Character Change Pad Cover, Butterfly Ladybug\": {\"frequency\": 53, \"value\": \"Summer Infant ...\"}, \"Fisher-Price My Little Lamb Deluxe Infant Seat\": {\"frequency\": 18, \"value\": \"Fisher-Price My ...\"}, \"WubbaNub (tm) DRAGON Pacifier!\": {\"frequency\": 30, \"value\": \"WubbaNub (tm) ...\"}, \"The First Years Breastflow Starter Set\": {\"frequency\": 58, \"value\": \"The First Years ...\"}, \"Baby Smart Cooshie Booster Seat - Blue\": {\"frequency\": 25, \"value\": \"Baby Smart Cooshie ...\"}, \"Pura Stainless Kiki Infant Bottle Stainless Steel, 11 Ounce, Natural\": {\"frequency\": 20, \"value\": \"Pura Stainless ...\"}, \"EZ Squeezees Refillable Food Pouches,sold in pack of 3. 3 pouches each\": {\"frequency\": 20, \"value\": \"EZ Squeezees ...\"}, \"The First Years Disney Pooh Soft Potty Seat\": {\"frequency\": 58, \"value\": \"The First Years ...\"}, \"Diono RadianRXT Convertible Car Seat, Plum\": {\"frequency\": 157, \"value\": \"Diono RadianRXT ...\"}, \"Fisher-Price Potty Training, Froggy\": {\"frequency\": 117, \"value\": \"Fisher-Price Potty ...\"}, \"Fisher-Price Rainforest Deluxe Auto Mirror\": {\"frequency\": 24, \"value\": \"Fisher-Price ...\"}, \"TUPPERWARE Shape O Ball Toy\": {\"frequency\": 29, \"value\": \"TUPPERWARE Shape O ...\"}, \"The Floppy Seat: Deluxe Shopping Cart Seat Cover with EZ Carry Storage Bag!\": {\"frequency\": 21, \"value\": \"The Floppy Seat: ...\"}, \"Sealy Baby Posturepedic Mattress\": {\"frequency\": 22, \"value\": \"Sealy Baby ...\"}, \"High Back Full Bucket Toddler Infant Swing Seat - Seat Only, Yellow with SSS logo Sticker\": {\"frequency\": 28, \"value\": \"High Back Full ...\"}, \"Colgate Classica I Foam Crib Mattress, White\": {\"frequency\": 33, \"value\": \"Colgate Classica I ...\"}, \"Spectra Dew 350 Advanced Double Electric Hospital Grade Breast Pump with Tote!\": {\"frequency\": 20, \"value\": \"Spectra Dew 350 ...\"}, \"Medela Pump &amp; Save Breastmilk Bags - 50 pack-5 oz\": {\"frequency\": 74, \"value\": \"Medela Pump &amp; ...\"}, \"mybaby HoMedics SoundSpa On-The-Go\": {\"frequency\": 57, \"value\": \"mybaby HoMedics ...\"}, \"Wimmer-Ferguson Infant Stim-Mobile\": {\"frequency\": 81, \"value\": \"Wimmer-Ferguson ...\"}, \"OsoCozy 6 Pack Prefolds Unbleached Cloth Diapers, Size 1\": {\"frequency\": 72, \"value\": \"OsoCozy 6 Pack ...\"}, \"Smart Mom Teething Bling Donut Shaped Pendant Necklace (Onyx)\": {\"frequency\": 36, \"value\": \"Smart Mom Teething ...\"}, \"Summer Infant Plush Pals Changing Pad Cover, Green/Brown (Monkey)\": {\"frequency\": 48, \"value\": \"Summer Infant ...\"}, \"Lamaze Early Development Toy, Sir Prance A Lot\": {\"frequency\": 25, \"value\": \"Lamaze Early ...\"}, \"Munchkin Star Fountain, Colors May Vary\": {\"frequency\": 24, \"value\": \"Munchkin Star ...\"}, \"Kaboost Portable Chair Booster, Green\": {\"frequency\": 29, \"value\": \"Kaboost Portable ...\"}, \"Contours Options 3 Wheeler Stroller II, Cinnamon\": {\"frequency\": 21, \"value\": \"Contours Options 3 ...\"}, \"JL Childress Crib Mobile Attachment Clamp, White\": {\"frequency\": 25, \"value\": \"JL Childress Crib ...\"}, \"Baby Einstein Count and Compose Piano\": {\"frequency\": 48, \"value\": \"Baby Einstein ...\"}, \"Munchkin Arm &amp; HammerDiaper Bag Refills, 72-Count\": {\"frequency\": 25, \"value\": \"Munchkin Arm &amp; ...\"}, \"Pognae Baby Carrier (Black)\": {\"frequency\": 23, \"value\": \"Pognae Baby ...\"}, \"Playtex Standard BPA Free Disposable Nurser Liners 4 oz - 100 Count\": {\"frequency\": 18, \"value\": \"Playtex Standard ...\"}, \"Proudbody Deluxe Pregnancy Belly Cast Kit\": {\"frequency\": 22, \"value\": \"Proudbody Deluxe ...\"}, \"aden + anais Classic Muslin Sleeping bag, Butterflies, Large\": {\"frequency\": 31, \"value\": \"aden + anais ...\"}, \"BABYBJORN Original Carrier - City Black\": {\"frequency\": 70, \"value\": \"BABYBJORN Original ...\"}, \"Exergen Temporal Artery Thermometer\": {\"frequency\": 33, \"value\": \"Exergen Temporal ...\"}, \"Dr. Brown's Natural Flow Newborn Feeding Set\": {\"frequency\": 29, \"value\": \"Dr. Brown's ...\"}, \"HALO SleepSack 100% Wearable Blanket Applique, Elephant, Small\": {\"frequency\": 20, \"value\": \"HALO SleepSack ...\"}, \"Dream On Me Classic 2 in 1 Convertible Stationary Side Crib, Cherry\": {\"frequency\": 38, \"value\": \"Dream On Me ...\"}, \"Graco Ready2Grow Classic Connect LX Stroller, Metropolis\": {\"frequency\": 37, \"value\": \"Graco Ready2Grow ...\"}, \"My Brest Friend Inflatable Travel Nursing Pillow in Green Paisley\": {\"frequency\": 21, \"value\": \"My Brest Friend ...\"}, \"Philips AVENT BPA Free Classic Polypropylene Bottle, Opaque, 4 Ounce, 2 Pack\": {\"frequency\": 69, \"value\": \"Philips AVENT BPA ...\"}, \"Britax Frontier 85 Combination Booster Car Seat, Red Rock\": {\"frequency\": 200, \"value\": \"Britax Frontier 85 ...\"}, \"GRACO Backless TurboBooster Car Seat, Groovy\": {\"frequency\": 21, \"value\": \"GRACO Backless ...\"}, \"Skip Hop Pacifier Pocket, Red\": {\"frequency\": 19, \"value\": \"Skip Hop Pacifier ...\"}, \"Summer Infant Multi Use Extra Tall Walk-Thru Gate, White\": {\"frequency\": 69, \"value\": \"Summer Infant ...\"}, \"Lambs &amp; Ivy Nap Mat, Pink Monkey\": {\"frequency\": 42, \"value\": \"Lambs &amp; Ivy ...\"}, \"Kalencom 2-in-1 Potette Plus Red\": {\"frequency\": 169, \"value\": \"Kalencom 2-in-1 ...\"}, \"Munchkin Five Multi Cups\": {\"frequency\": 42, \"value\": \"Munchkin Five ...\"}, \"Munchkin Nursery Projector and Sound System, White\": {\"frequency\": 242, \"value\": \"Munchkin Nursery ...\"}, \"Nuby 2-Pack 10 oz No-Spill Cup with Flexi Straw, Colors May Vary\": {\"frequency\": 27, \"value\": \"Nuby 2-Pack 10 oz ...\"}, \"Graco Tot Wheels V Mobile Entertainer Center\": {\"frequency\": 29, \"value\": \"Graco Tot Wheels V ...\"}, \"Graco Shelby Classic 4 in 1 Convertible Crib, Cappuccino\": {\"frequency\": 27, \"value\": \"Graco Shelby ...\"}, \"Fisher-Price Ipad Apptivity Seat, Newborn-to-Toddler\": {\"frequency\": 37, \"value\": \"Fisher-Price Ipad ...\"}, \"BooginHead PaciGrip Pacifier Holder, Peach Delight\": {\"frequency\": 18, \"value\": \"BooginHead ...\"}, \"babyletto Hudson 3 in 1 Convertible Crib with Toddler Rail, Espresso/White\": {\"frequency\": 23, \"value\": \"babyletto Hudson 3 ...\"}, \"Munchkin Wood and Steel Designer Gate, Dark Wood/Silver\": {\"frequency\": 37, \"value\": \"Munchkin Wood and ...\"}, \"Motorola MBP33 Wireless Video Baby Monitor with Infrared Night Vision and Zoom, 2.8 Inch\": {\"frequency\": 142, \"value\": \"Motorola MBP33 ...\"}, \"Sealy Sweet Pea 2-in-1 Maternity and Nursing Pillow, Cappuccino\": {\"frequency\": 27, \"value\": \"Sealy Sweet Pea ...\"}, \"Jeep Universal Stroller Hook, 2 Pack\": {\"frequency\": 25, \"value\": \"Jeep Universal ...\"}, \"Capri Stroller - Red Tech\": {\"frequency\": 18, \"value\": \"Capri Stroller - ...\"}, \"Bumkins Reusable Flannel Wipes, 12 Count, Natural\": {\"frequency\": 37, \"value\": \"Bumkins Reusable ...\"}, \"Summer Infant 3-Stage Super Seat\": {\"frequency\": 18, \"value\": \"Summer Infant ...\"}, \"Britax Parkway SG-2 Booster Car Seat, Pewter Dots\": {\"frequency\": 42, \"value\": \"Britax Parkway ...\"}, \"Graco Victoria Non Drop Side 5 In 1 Convertible Crib, White\": {\"frequency\": 23, \"value\": \"Graco Victoria Non ...\"}, \"Exergen Temporal Artery Thermometer MODEL# TAT-2000C\": {\"frequency\": 148, \"value\": \"Exergen Temporal ...\"}, \"Dream On Me 2 in 1 Portable Folding Stationary Side Crib, Cherry\": {\"frequency\": 21, \"value\": \"Dream On Me 2 in 1 ...\"}, \"Baby Merlin's Magic Sleepsuit 3-6 months - Blue Small\": {\"frequency\": 100, \"value\": \"Baby Merlin's ...\"}, \"Philips AVENT Translucent Orthodontic Infant Pacifier, Clear, 0-6 Months\": {\"frequency\": 26, \"value\": \"Philips AVENT ...\"}, \"Joovy Caboose Ultralight Stand On Tandem Stroller, Black\": {\"frequency\": 44, \"value\": \"Joovy Caboose ...\"}, \"Leachco Cuddle-U Nursing Pillow And More\": {\"frequency\": 64, \"value\": \"Leachco Cuddle-U ...\"}, \"Evenflo Position and Lock Wood Gate, Tan\": {\"frequency\": 18, \"value\": \"Evenflo Position ...\"}, \"Keekaroo Height Right High Chair, Infant Insert and Tray Combo, Natural/Cherry\": {\"frequency\": 31, \"value\": \"Keekaroo Height ...\"}, \"Spasilk 10 pack Soft Terry Washcloth, Blue\": {\"frequency\": 54, \"value\": \"Spasilk 10 pack ...\"}, \"Britax 2013 B-Agile Stroller, Granite\": {\"frequency\": 28, \"value\": \"Britax 2013 ...\"}, \"PottyCover - Disposable toilet seat covers. (6 individually packaged seat covers in each bag.)\": {\"frequency\": 54, \"value\": \"PottyCover - ...\"}, \"SoftShells Breast Shell Soothers - Sore Nipples\": {\"frequency\": 21, \"value\": \"SoftShells Breast ...\"}, \"Kushies 6 Pack Wash Cloth Set, White\": {\"frequency\": 19, \"value\": \"Kushies 6 Pack ...\"}, \"Ciao! Baby Portable Travel High Chair, Black\": {\"frequency\": 48, \"value\": \"Ciao! Baby ...\"}, \"Razbaby RaZ-berry Teether, Red\": {\"frequency\": 150, \"value\": \"Razbaby RaZ-berry ...\"}, \"The First Years Hands Free Gate Extension\": {\"frequency\": 23, \"value\": \"The First Years ...\"}, \"Medela Breastmilk Collection and Storage Bottles 8oz (250ml) - 2 Each\": {\"frequency\": 31, \"value\": \"Medela Breastmilk ...\"}, \"BABYBJORN Cover for Baby Carrier - City Black\": {\"frequency\": 26, \"value\": \"BABYBJORN Cover ...\"}, \"Comotomo Natural Feel Baby Bottle Single Pack, Pink, 8 Ounces\": {\"frequency\": 71, \"value\": \"Comotomo Natural ...\"}, \"Woombie Convertible Baby Swaddler (Big Baby 14-19 lbs, Little Monster)\": {\"frequency\": 29, \"value\": \"Woombie ...\"}, \"Sunshine Systems LEDGP14 GlowPanel 14 Watt LED Grow Light\": {\"frequency\": 20, \"value\": \"Sunshine Systems ...\"}, \"North States Superyard Play Yard, Grey, 6 Panel\": {\"frequency\": 281, \"value\": \"North States ...\"}, \"Tadpoles 36 Sq Ft ABC Floor Mat, Pink/Brown\": {\"frequency\": 35, \"value\": \"Tadpoles 36 Sq Ft ...\"}, \"Safety 1st Sleepy Baby Nail Clipper\": {\"frequency\": 36, \"value\": \"Safety 1st Sleepy ...\"}, \"Fisher-Price Booster Seat, Blue/Green/Gray\": {\"frequency\": 489, \"value\": \"Fisher-Price ...\"}, \"Bumkins Reusable Sandwich and Snack Bag, Bright Blue, Large\": {\"frequency\": 63, \"value\": \"Bumkins Reusable ...\"}, \"Sassy Bathtime Pals Squirt and Float Toys\": {\"frequency\": 93, \"value\": \"Sassy Bathtime ...\"}, \"Little Green Pouch - Reusable Food Pouch - 4pk\": {\"frequency\": 130, \"value\": \"Little Green Pouch ...\"}, \"Stork Craft Tuscany 4 in 1 Fixed Side Convertible Crib, White\": {\"frequency\": 81, \"value\": \"Stork Craft ...\"}, \"Elegant Baby Plush Microfiber Blankie - Pastel Blue\": {\"frequency\": 31, \"value\": \"Elegant Baby Plush ...\"}, \"Evenflo Big Kid High Back SI Car Seat Booster, Alexa\": {\"frequency\": 37, \"value\": \"Evenflo Big Kid ...\"}, \"Summer Infant Snuzzler, Ivory\": {\"frequency\": 115, \"value\": \"Summer Infant ...\"}, \"UPPAbaby Stroller Parent Organizer, Black\": {\"frequency\": 19, \"value\": \"UPPAbaby Stroller ...\"}, \"Munchkin Travel Bottle Warmer, Gray\": {\"frequency\": 26, \"value\": \"Munchkin Travel ...\"}, \"Boppy Infant and Toddler Head Support, Grey\": {\"frequency\": 28, \"value\": \"Boppy Infant and ...\"}, \"Heininger 1027 CommuteMate Seat Belt Strap Adjuster\": {\"frequency\": 32, \"value\": \"Heininger 1027 ...\"}, \"Lamaze Classic Discovery Book\": {\"frequency\": 19, \"value\": \"Lamaze Classic ...\"}, \"Baby Jogger City Mini GT Single Stroller, Shadow/Orange\": {\"frequency\": 49, \"value\": \"Baby Jogger City ...\"}, \"Chicco KeyFit 30 Infant Car Seat, Midori\": {\"frequency\": 117, \"value\": \"Chicco KeyFit 30 ...\"}, \"Leachco Podster Sling-Style Infant Seat Lounger, Sage Pin Dot\": {\"frequency\": 47, \"value\": \"Leachco Podster ...\"}, \"Dex Products Universal Safe Sleeper Bed Rail\": {\"frequency\": 27, \"value\": \"Dex Products ...\"}, \"Stork Craft Hoop Glider and Ottoman, White/Beige\": {\"frequency\": 66, \"value\": \"Stork Craft Hoop ...\"}, \"Mommy's Helper Toilet Seat Lid-Lok\": {\"frequency\": 96, \"value\": \"Mommy's Helper ...\"}, \"Fisher-Price Baby Papasan\": {\"frequency\": 71, \"value\": \"Fisher-Price Baby ...\"}, \"Dreambaby Pressure Mount Hallway Gate with Extensions, Black\": {\"frequency\": 33, \"value\": \"Dreambaby Pressure ...\"}, \"Summer Infant Day and Night Handheld Color Video Monitor with 1.8&quot; Screen - Silver\": {\"frequency\": 114, \"value\": \"Summer Infant Day ...\"}, \"Bumbo Step Stool, Pink\": {\"frequency\": 27, \"value\": \"Bumbo Step Stool, ...\"}, \"Prince Lionheart washPOD Bathe, Blue\": {\"frequency\": 22, \"value\": \"Prince Lionheart ...\"}, \"Nuby No Spill Flip-it Cup, 12 Ounce, Colors May Vary\": {\"frequency\": 34, \"value\": \"Nuby No Spill ...\"}, \"Northstate Superyard Playgate Light Gray\": {\"frequency\": 55, \"value\": \"Northstate ...\"}, \"Stork Craft Beatrice Combo Tower Chest, White\": {\"frequency\": 36, \"value\": \"Stork Craft ...\"}, \"Kolcraft Cozy Soft Portable Crib Mattress, Lily\": {\"frequency\": 36, \"value\": \"Kolcraft Cozy Soft ...\"}, \"Regalo Easy Open 50 Inch Super Wide Walk Thru Gate - White\": {\"frequency\": 238, \"value\": \"Regalo Easy Open ...\"}, \"KidCo Safeway Safety Gate, White\": {\"frequency\": 24, \"value\": \"KidCo Safeway ...\"}, \"The First Years American Red Cross Deluxe Nail Clipper with Magnifier\": {\"frequency\": 41, \"value\": \"The First Years ...\"}, \"Infantino Twist and Fold Activity Gym, Vintage Boy\": {\"frequency\": 77, \"value\": \"Infantino Twist ...\"}, \"Infant Optics DXR-8 Pan/Tilt/Zoom 3.5&quot; Video Baby Monitor With Interchangeable Optical Lens\": {\"frequency\": 41, \"value\": \"Infant Optics ...\"}, \"Fisher-Price Aquarium Take-Along Swing\": {\"frequency\": 33, \"value\": \"Fisher-Price ...\"}, \"Manhattan Toy Snuggle Pod, Peanut\": {\"frequency\": 51, \"value\": \"Manhattan Toy ...\"}, \"Diono Travel Pal Car Storage\": {\"frequency\": 19, \"value\": \"Diono Travel Pal ...\"}, \"Dr. Brown's Bottle Warmer\": {\"frequency\": 112, \"value\": \"Dr. Brown's Bottle ...\"}, \"Cool Gear Travel Potty\": {\"frequency\": 20, \"value\": \"Cool Gear Travel ...\"}, \"Baby Buddy: Baby's 1st Toothbrush\": {\"frequency\": 81, \"value\": \"Baby Buddy: Baby's ...\"}, \"Philips AVENT BPA Free Natural Medium Flow Nipples, 2-Pack\": {\"frequency\": 20, \"value\": \"Philips AVENT BPA ...\"}, \"Safety 1st Clear View Stove Knob Covers 5-Pack\": {\"frequency\": 74, \"value\": \"Safety 1st Clear ...\"}, \"Regalo My Cot Portable Bed, Royal Blue\": {\"frequency\": 206, \"value\": \"Regalo My Cot ...\"}, \"Playtex 3 Pack BPA Free VentAire Wide Bottles, 9 Ounce (Colors may vary)\": {\"frequency\": 78, \"value\": \"Playtex 3 Pack BPA ...\"}, \"Skip Hop Duo Deluxe, Black\": {\"frequency\": 106, \"value\": \"Skip Hop Duo ...\"}, \"Obersee Kid's All-in-One Pre-School Backpacks with Integrated Cooler, Rhinestone Angel Wings\": {\"frequency\": 35, \"value\": \"Obersee Kid's All- ...\"}, \"Dolly Come Ride with Me Seat\": {\"frequency\": 18, \"value\": \"Dolly Come Ride ...\"}, \"Ergobaby Performance Collection Charcoal Grey Carrier\": {\"frequency\": 21, \"value\": \"Ergobaby ...\"}, \"Sesame Street Inflatable Bathtub, Blue/White\": {\"frequency\": 19, \"value\": \"Sesame Street ...\"}, \"Baby Einstein Rattle and Teethe, Caterpillar, Colors May Vary\": {\"frequency\": 21, \"value\": \"Baby Einstein ...\"}, \"Skip Hop Tubby Bath Toy Organizer, Orange\": {\"frequency\": 35, \"value\": \"Skip Hop Tubby ...\"}, \"Frenchie Mini Couture Tuxedo Bib with 3D Applique, Black\": {\"frequency\": 20, \"value\": \"Frenchie Mini ...\"}, \"Primo Ducka Toilet Set Reducer (White)\": {\"frequency\": 25, \"value\": \"Primo Ducka Toilet ...\"}, \"myBaby SoundSpa Portable\": {\"frequency\": 39, \"value\": \"myBaby SoundSpa ...\"}, \"Bumbo Seat Play Tray, Ivory\": {\"frequency\": 44, \"value\": \"Bumbo Seat Play ...\"}, \"Philips AVENT 8 Ounce Natural Glass Bottle, 1-Pack\": {\"frequency\": 23, \"value\": \"Philips AVENT 8 ...\"}, \"Prince Lionheart Jumbo Toy Hammock\": {\"frequency\": 217, \"value\": \"Prince Lionheart ...\"}, \"Boon Water Bugs Floating Bath Toys with Net,Orange\": {\"frequency\": 48, \"value\": \"Boon Water Bugs ...\"}, \"DaVinci Parker 4 in 1 Crib with Toddler Rail, Pure White\": {\"frequency\": 39, \"value\": \"DaVinci Parker 4 ...\"}, \"Lamaze Symphony Motion Gym, Space\": {\"frequency\": 24, \"value\": \"Lamaze Symphony ...\"}, \"Graco SnugRider Infant Car Seat Stroller Frame\": {\"frequency\": 87, \"value\": \"Graco SnugRider ...\"}, \"Born Free 5 oz. BPA-Free High-Heat Resistant Classic Bottle with ActiveFlow Venting Technology, 3-Pack\": {\"frequency\": 22, \"value\": \"Born Free 5 oz. ...\"}, \"Summer Infant Tiny Diner, Pink\": {\"frequency\": 49, \"value\": \"Summer Infant Tiny ...\"}, \"Dr. Brown's 8 oz. Natural Flow Wide Neck Bottle, 3 Pack\": {\"frequency\": 38, \"value\": \"Dr. Brown's 8 oz. ...\"}, \"Playtex Insulator/Playtime Cup, 9 Ounce, 2 Pack, Colors May Vary\": {\"frequency\": 39, \"value\": \"Playtex ...\"}, \"Bumkins Junior Bib, Blue Fizz\": {\"frequency\": 49, \"value\": \"Bumkins Junior ...\"}, \"Tiny Love Symphony-in-Motion Remote Mobile\": {\"frequency\": 31, \"value\": \"Tiny Love ...\"}, \"Fisher-Price Sensory Selections Bouncer\": {\"frequency\": 18, \"value\": \"Fisher-Price ...\"}, \"Angelcare Bath Support, Blue\": {\"frequency\": 18, \"value\": \"Angelcare Bath ...\"}, \"Door Monkey, Childproof Door Lock &amp; Pinch Guard\": {\"frequency\": 145, \"value\": \"Door Monkey, ...\"}, \"Born Free Twin Pack Wide Neck Bottles, 5 Ounce\": {\"frequency\": 56, \"value\": \"Born Free Twin ...\"}, \"Boppy Water Resistant Protective Cover\": {\"frequency\": 20, \"value\": \"Boppy Water ...\"}, \"Boppy Prenatal Total Body Pillow\": {\"frequency\": 70, \"value\": \"Boppy Prenatal ...\"}, \"Dr. Brown's Natural Flow Standard Storage Travel Caps Replacement, 3 Pack\": {\"frequency\": 39, \"value\": \"Dr. Brown's ...\"}, \"Boppy Newborn Lounger, Geo\": {\"frequency\": 47, \"value\": \"Boppy Newborn ...\"}, \"JJ Cole Collections System Diaper Bag, Black Damask\": {\"frequency\": 29, \"value\": \"JJ Cole ...\"}, \"Baby Nasal Aspirator Vacuum Suction Pigeon (Made in Japan)\": {\"frequency\": 20, \"value\": \"Baby Nasal ...\"}, \"Starting Small Monkey Novelty Hamper in Brown, 18 x 11 x 24\": {\"frequency\": 64, \"value\": \"Starting Small ...\"}, \"Baby Aspen Sweet Tee Three Piece Golf Layette Set in Golf Cart Packaging\": {\"frequency\": 26, \"value\": \"Baby Aspen Sweet ...\"}, \"Lotus Travel Crib and Portable Baby Playard\": {\"frequency\": 44, \"value\": \"Lotus Travel Crib ...\"}, \"Baby Einstein Baby Neptune Activity Center\": {\"frequency\": 47, \"value\": \"Baby Einstein Baby ...\"}, \"Munchkin Click Lock Re-usable Sippy Cups, 10 Ounce, 8-Count\": {\"frequency\": 21, \"value\": \"Munchkin Click ...\"}, \"Summer Infant Metal Expansion Gate, 6 Foot Wide Extra Tall Walk-Thru\": {\"frequency\": 22, \"value\": \"Summer Infant ...\"}, \"Safety 1st Outlet Cover with Cord Shortener\": {\"frequency\": 21, \"value\": \"Safety 1st Outlet ...\"}, \"Thermos FOOGO Phases Straw Bottle, Blue/Yellow, 11 Ounce\": {\"frequency\": 66, \"value\": \"Thermos FOOGO ...\"}, \"Graco SnugRide Classic Connect 30/35 Infant Car Seat Base, Silver\": {\"frequency\": 24, \"value\": \"Graco SnugRide ...\"}, \"Graco Pack 'N Play with Newborn Napper Elite, Vance\": {\"frequency\": 25, \"value\": \"Graco Pack 'N Play ...\"}, \"Munchkin Click Lock 2 Count Sippy Cup, 9 ounce\": {\"frequency\": 36, \"value\": \"Munchkin Click ...\"}, \"North States Supergate Classic Plastic Gate Mounts 5 Different Ways\": {\"frequency\": 59, \"value\": \"North States ...\"}, \"Medela 5 oz Breastmilk Bottle Set (3 Bottles)\": {\"frequency\": 63, \"value\": \"Medela 5 oz ...\"}, \"Dr. Brown's 3-pack 8-ounce Standard Bottles\": {\"frequency\": 47, \"value\": \"Dr. Brown's 3-pack ...\"}, \"VTech Communications Safe &amp; Sounds Full Color Video and Audio Monitor\": {\"frequency\": 56, \"value\": \"VTech ...\"}, \"Bright Starts Bounce-A-Bout Activity Center, Neutral\": {\"frequency\": 18, \"value\": \"Bright Starts ...\"}, \"Safety 1st Safe-Glow Nursery Monitor 2 Receiver Set\": {\"frequency\": 58, \"value\": \"Safety 1st Safe- ...\"}, \"The First Years Take &amp; Toss Straw Cups, 10 Ounce, 4 Pack\": {\"frequency\": 31, \"value\": \"The First Years ...\"}, \"Vulli So'Pure Teether, Sophie the Giraffe\": {\"frequency\": 44, \"value\": \"Vulli So'Pure ...\"}, \"Philips Avent Double Electric Comfort Breast Pump\": {\"frequency\": 29, \"value\": \"Philips Avent ...\"}, \"BabyMoon Pod - For Head Support &amp; Neck Support (Blue)\": {\"frequency\": 38, \"value\": \"BabyMoon Pod - For ...\"}, \"Fisher-Price Step &amp; Play Piano\": {\"frequency\": 30, \"value\": \"Fisher-Price Step ...\"}, \"Ju-Ju-Be Be Quick Wristlet Bag, Black and Silver\": {\"frequency\": 23, \"value\": \"Ju-Ju-Be Be Quick ...\"}, \"BOB Revolution SE Duallie Stroller, Navy\": {\"frequency\": 40, \"value\": \"BOB Revolution SE ...\"}, \"bumGenius One-Size Hook &amp; Loop Closure Cloth Diaper 4.0 - Blossom\": {\"frequency\": 19, \"value\": \"bumGenius One-Size ...\"}, \"Elegant Baby 6 Piece Bath Squirties Gift Set in Vinyl Zip Bag, City\": {\"frequency\": 19, \"value\": \"Elegant Baby 6 ...\"}, \"Baby Einstein Caterpillar and Friends Play Gym\": {\"frequency\": 28, \"value\": \"Baby Einstein ...\"}, \"Diono RadianR120 Convertible Car Seat, Storm\": {\"frequency\": 20, \"value\": \"Diono RadianR120 ...\"}, \"Goldbug Animal 2 in 1 Harness, Cow\": {\"frequency\": 25, \"value\": \"Goldbug Animal 2 ...\"}, \"SugarBooger Vroom Jumbo Splat Mat\": {\"frequency\": 25, \"value\": \"SugarBooger Vroom ...\"}, \"Playtex DisneyInsulator Spout Cup, Finding Nemo, 9 Ounce, 2-Count\": {\"frequency\": 19, \"value\": \"Playtex ...\"}, \"Best Bottom Cloth Diaper Shell-Hook and Loop, Very Cherry\": {\"frequency\": 18, \"value\": \"Best Bottom Cloth ...\"}, \"Lansinoh Manual Breast Pump\": {\"frequency\": 58, \"value\": \"Lansinoh Manual ...\"}, \"Boppy Bare Naked Pillow\": {\"frequency\": 47, \"value\": \"Boppy Bare Naked ...\"}, \"Diaper Genie Essentials Diaper Disposal Pail withStarter Refill, 100-Count\": {\"frequency\": 19, \"value\": \"Diaper Genie ...\"}, \"American Baby Company Heavenly Soft Chenille Fitted Contoured Changing Pad Cover,Ecru\": {\"frequency\": 24, \"value\": \"American Baby ...\"}, \"Prince Lionheart Flexibath Foldable Bathtub, White\": {\"frequency\": 45, \"value\": \"Prince Lionheart ...\"}, \"Fisher-Price Zen Collection Cradle Swing\": {\"frequency\": 79, \"value\": \"Fisher-Price Zen ...\"}, \"Sticky Bellies -Sticky Bellies Monthly Milestone Stickers - Oh Sew Ready : Maternity : 12-40 Weeks\": {\"frequency\": 37, \"value\": \"Sticky Bellies ...\"}, \"The First Years Simple &amp; Secure Stair Gate\": {\"frequency\": 26, \"value\": \"The First Years ...\"}, \"Pigeon Nail Scissor (New Born Baby) Made in Japan\": {\"frequency\": 19, \"value\": \"Pigeon Nail ...\"}, \"Jolly Jumper Stroller Caddy - Stroller Handlebar Organizer\": {\"frequency\": 47, \"value\": \"Jolly Jumper ...\"}, \"Recaro Vivo High Back Booster Car Seat, Midnight Desert Micofiber\": {\"frequency\": 24, \"value\": \"Recaro Vivo High ...\"}, \"Baby B'Air Toddler Flight Vest - Red\": {\"frequency\": 18, \"value\": \"Baby B'Air Toddler ...\"}, \"Satsuma Designs Organic Wash Cloths and Wipes 5 Pack, White\": {\"frequency\": 22, \"value\": \"Satsuma Designs ...\"}, \"BABYBJORN Travel Crib Light , Blue\": {\"frequency\": 42, \"value\": \"BABYBJORN Travel ...\"}, \"Safety 1st Prograde Finger Pinch Preventer (Pack of 2)\": {\"frequency\": 27, \"value\": \"Safety 1st ...\"}, \"Udder Covers - Breast Feeding Nursing Cover (Caleb)\": {\"frequency\": 18, \"value\": \"Udder Covers - ...\"}, \"Bumkins Waterproof Sleeved Bib - On-The-Go\": {\"frequency\": 84, \"value\": \"Bumkins Waterproof ...\"}, \"Wubbanub Infant Plush Toy Pacifier - Monkey\": {\"frequency\": 85, \"value\": \"Wubbanub Infant ...\"}, \"Evenflo Soft And Wide Gate Taupe &amp; Chocolate\": {\"frequency\": 42, \"value\": \"Evenflo Soft And ...\"}, \"Sassy Look Photo Book\": {\"frequency\": 26, \"value\": \"Sassy Look Photo ...\"}, \"OsoCozy 6 Pack Birdseye Flat Unbleached Diapers\": {\"frequency\": 23, \"value\": \"OsoCozy 6 Pack ...\"}, \"Ulubulu Universal Pacifier Clip, Oliver Owl\": {\"frequency\": 36, \"value\": \"Ulubulu Universal ...\"}, \"JL Childress Gate Check Bag for Umbrella Strollers, Red\": {\"frequency\": 44, \"value\": \"JL Childress Gate ...\"}, \"Gerber Training Pants 3 Pack, Blue/White, 2T\": {\"frequency\": 25, \"value\": \"Gerber Training ...\"}, \"Redmon Fun and Fitness Exercise Equipment for Kids - Tread Mill\": {\"frequency\": 20, \"value\": \"Redmon Fun and ...\"}, \"Boon Glo Nightlight with Portable Balls,White\": {\"frequency\": 35, \"value\": \"Boon Glo ...\"}, \"Bright Starts Walk-A-Bout Walker, Cute Frog\": {\"frequency\": 63, \"value\": \"Bright Starts ...\"}, \"OXO Tot Roll Up Bib, Aqua\": {\"frequency\": 38, \"value\": \"OXO Tot Roll Up ...\"}, \"Neat Solutions Dora the Explorer Potty Topper Disposable Stick-in-Place Toilet Seat Covers, 10-Count\": {\"frequency\": 24, \"value\": \"Neat Solutions ...\"}, \"B.box Essential Sippy Cup in Blue - 6 Oz\": {\"frequency\": 29, \"value\": \"B.box Essential ...\"}, \"Ameda 4 Pack Breast Milk Storage Bottles, 4 Ounce\": {\"frequency\": 19, \"value\": \"Ameda 4 Pack ...\"}, \"Natursutten 2 Pack BPA Free Natural Rubber Pacifier, Butterfly Orthodontic, 0 - 6 Months\": {\"frequency\": 18, \"value\": \"Natursutten 2 Pack ...\"}, \"BABYBJORN Little Potty - Red\": {\"frequency\": 46, \"value\": \"BABYBJORN Little ...\"}, \"RayShade&reg; UV Protective Stroller Shade Improves Sun Protection for Strollers, Joggers and Prams Black\": {\"frequency\": 46, \"value\": \"RayShade&reg; UV ...\"}, \"Summer Infant Ultimate Crib Sheet, 52&quot; x 28&quot;\": {\"frequency\": 62, \"value\": \"Summer Infant ...\"}, \"COZY BABY NASAL ASPIRATOR - This Snot Sucker Cleans Away Baby's Blocked Nose FAST - Its The Best Nasal Suction Tool On The Market To Relieve Blocked Nasal Congestion Quick - No Filters - Washable And Reusable - Great Baby Shower Gift - 100% Money Back Guarantee.\": {\"frequency\": 21, \"value\": \"COZY BABY NASAL ...\"}, \"Baby Ddrops&reg; 400 IU 90 drops\": {\"frequency\": 56, \"value\": \"Baby Ddrops&reg; ...\"}, \"Pigeon Baby Nose Cleaning Tweezers Pigeon (Made in Japan)\": {\"frequency\": 24, \"value\": \"Pigeon Baby Nose ...\"}, \"Baby Banana Bendable Training Toothbrush, Toddler\": {\"frequency\": 30, \"value\": \"Baby Banana ...\"}, \"Serta Perfect Start Crib Mattress, White\": {\"frequency\": 15, \"value\": \"Serta Perfect ...\"}, \"RECARO Performance RIDE Convertible Car Seats, Vibe\": {\"frequency\": 36, \"value\": \"RECARO Performance ...\"}, \"Fantasy Furniture Roundy Rocking Chair Gingham, Pink\": {\"frequency\": 20, \"value\": \"Fantasy Furniture ...\"}, \"JJ Cole Urban Bundleme, Ice, Infant\": {\"frequency\": 84, \"value\": \"JJ Cole Urban ...\"}, \"Bumkins Waterproof Zippered Wet Bag, Blue Cat\": {\"frequency\": 39, \"value\": \"Bumkins Waterproof ...\"}, \"Britax Chaperone Infant Car Seat, Black\": {\"frequency\": 29, \"value\": \"Britax Chaperone ...\"}, \"(1) Cresci Products Window Wedge (2 Per Pack) WHITE color\": {\"frequency\": 28, \"value\": \"(1) Cresci ...\"}, \"[Award winning] Kidsme Food Feeder (Small size), Blue/Yellow\": {\"frequency\": 40, \"value\": \"[Award winning] ...\"}, \"OXO Tot On-the-Go Wipes Dispenser, Pink\": {\"frequency\": 57, \"value\": \"OXO Tot On-the-Go ...\"}, \"Britax Frontier 85 SICT Booster Seat, Cardinal\": {\"frequency\": 49, \"value\": \"Britax Frontier 85 ...\"}, \"Burlington Baby Wicker Hamper, White\": {\"frequency\": 23, \"value\": \"Burlington Baby ...\"}, \"Dreambaby Stroller Fan, White/Blue\": {\"frequency\": 107, \"value\": \"Dreambaby Stroller ...\"}, \"Multi-Purpose Reversible (Bright Colors or Neutral Charcoal) Foam Floor Mats (BIG Tiles 25&quot; x 25&quot; x .53&quot;!!!), Anti-fatigue Mat, for Business, Home, Basement, Workshop, Kitchen, Children's Rooms (Child Safe), Pool Area, Gym and Exercise, Gardens, Garage, Laundry Rooms, Etc.\": {\"frequency\": 19, \"value\": \"Multi-Purpose ...\"}, \"Prince Lionheart Multi-Purpose Toy Hammock\": {\"frequency\": 33, \"value\": \"Prince Lionheart ...\"}, \"Kids Preferred The World of Eric Carle The Very Hungry Caterpillar Toy, Wood Pull\": {\"frequency\": 19, \"value\": \"Kids Preferred The ...\"}, \"The First Years On-The-Go Booster Seat, Safari\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"HALO Early Walker SleepSack Micro Fleece Wearable Blanket, Blue, Large\": {\"frequency\": 19, \"value\": \"HALO Early Walker ...\"}, \"Britax Vehicle Seat Protector\": {\"frequency\": 37, \"value\": \"Britax Vehicle ...\"}, \"Neat Solutions Baby Einstein Biodegradable Table Topper Disposable Stick-on Placemat , 30-Count\": {\"frequency\": 28, \"value\": \"Neat Solutions ...\"}, \"Safety 1st Alpha Omega Elite Convertible Car Seat, Seaside Bay\": {\"frequency\": 25, \"value\": \"Safety 1st Alpha ...\"}, \"Pearhead Babyprints Desk Frame, Mahogany\": {\"frequency\": 24, \"value\": \"Pearhead ...\"}, \"OXO Tot Sippy Cup with Bonus Training Lid Set, Green, 7 Ounce\": {\"frequency\": 18, \"value\": \"OXO Tot Sippy Cup ...\"}, \"Fisher-Price Zen Collection Gliding Bassinet\": {\"frequency\": 21, \"value\": \"Fisher-Price Zen ...\"}, \"Jolly Jumper with Stand\": {\"frequency\": 26, \"value\": \"Jolly Jumper with ...\"}, \"Dream On Me 3&quot; Playard Mattress, White\": {\"frequency\": 106, \"value\": \"Dream On Me ...\"}, \"Tenergy T-1199BE Universal NiMH Battery Charger\": {\"frequency\": 30, \"value\": \"Tenergy T-1199BE ...\"}, \"MAM BPA Free 5 oz Bottle for Boy, 3-Pack ((Patterns and motifs may vary)\": {\"frequency\": 33, \"value\": \"MAM BPA Free 5 oz ...\"}, \"Evenflo Tribute Sport Convertible Car Seat, Daisy Doodle\": {\"frequency\": 33, \"value\": \"Evenflo Tribute ...\"}, \"Dr. Brown's Bottle Brush\": {\"frequency\": 58, \"value\": \"Dr. Brown's Bottle ...\"}, \"Dr. Brown's Double Electric Breast Pump\": {\"frequency\": 23, \"value\": \"Dr. Brown's Double ...\"}, \"Cloud b Gentle Giraffe On The Go Travel Sound Machine with Four Soothing Sounds\": {\"frequency\": 38, \"value\": \"Cloud b Gentle ...\"}, \"Munchkin Powdered Formula Dispenser Combo Pack, Colors May Vary\": {\"frequency\": 67, \"value\": \"Munchkin Powdered ...\"}, \"Evenflo Soft N Wide Gate\": {\"frequency\": 30, \"value\": \"Evenflo Soft N ...\"}, \"Sunshine Kids Easy View Back Seat Mirror\": {\"frequency\": 48, \"value\": \"Sunshine Kids Easy ...\"}, \"Infantino Plenty Feature Packed Cart &amp; Highchair Cover Mosaic Stripe\": {\"frequency\": 24, \"value\": \"Infantino Plenty ...\"}, \"Sassy Soft Sided Toy Organizer\": {\"frequency\": 24, \"value\": \"Sassy Soft Sided ...\"}, \"Stokke Tripp Trapp Highchair, Red\": {\"frequency\": 62, \"value\": \"Stokke Tripp Trapp ...\"}, \"Sealy Baby Firm Rest Crib Mattress\": {\"frequency\": 39, \"value\": \"Sealy Baby Firm ...\"}, \"Skip Hop Zoo Pack Little Kid Backpack, Dog\": {\"frequency\": 286, \"value\": \"Skip Hop Zoo Pack ...\"}, \"Medela Disposable Nursing Bra Pads, 60 Count\": {\"frequency\": 22, \"value\": \"Medela Disposable ...\"}, \"Clay Hanging Keepsake Kit (Makes 2 Plaques)\": {\"frequency\": 34, \"value\": \"Clay Hanging ...\"}, \"Podee Double Pack Feeding System\": {\"frequency\": 39, \"value\": \"Podee Double Pack ...\"}, \"bumGenius Diaper Sprayer\": {\"frequency\": 35, \"value\": \"bumGenius Diaper ...\"}, \"TL Care Organic Cotton Nursing Pads, Natural, 6 Count\": {\"frequency\": 134, \"value\": \"TL Care Organic ...\"}, \"Carters Easy Fit Jersey Bassinet Fitted Sheet, White\": {\"frequency\": 28, \"value\": \"Carters Easy Fit ...\"}, \"Delta Eclipse Changing Table, Black Cherry\": {\"frequency\": 32, \"value\": \"Delta Eclipse ...\"}, \"Graco SnugRide Classic Connect 30/35 Infant Car Seat Base, Tan\": {\"frequency\": 42, \"value\": \"Graco SnugRide ...\"}, \"North States Supergate Easy Close Metal Gate, White\": {\"frequency\": 171, \"value\": \"North States ...\"}, \"Bright Starts Clack and Slide Activity Ball\": {\"frequency\": 64, \"value\": \"Bright Starts ...\"}, \"Summer Infant Newborn-To-Toddler Bath Center &amp; Shower\": {\"frequency\": 54, \"value\": \"Summer Infant ...\"}, \"Philips Avent 3 Pack 9oz Bottles\": {\"frequency\": 191, \"value\": \"Philips Avent 3 ...\"}, \"OXO Tot Tub Drain Stopper, Blue\": {\"frequency\": 63, \"value\": \"OXO Tot Tub Drain ...\"}, \"Infantino Activity Triangle\": {\"frequency\": 66, \"value\": \"Infantino Activity ...\"}, \"Zoli Gummy Sticks Baby Gum Massagers, Green/Orange\": {\"frequency\": 95, \"value\": \"Zoli Gummy Sticks ...\"}, \"Bright Starts Bounce Bounce Baby Activity Zone\": {\"frequency\": 46, \"value\": \"Bright Starts ...\"}, \"Fisher-Price Rainforest Healthy Care High Chair\": {\"frequency\": 40, \"value\": \"Fisher-Price ...\"}, \"Fisher Price Nesting Action Vehicles\": {\"frequency\": 25, \"value\": \"Fisher Price ...\"}, \"Leachco Preggle Comfort Air-Flow Body Pillow, Ivory/Khaki\": {\"frequency\": 31, \"value\": \"Leachco Preggle ...\"}, \"DaVinci Sleepwell Twilight 6-Inch Ultra Firm Deluxe Crib Mattress\": {\"frequency\": 19, \"value\": \"DaVinci Sleepwell ...\"}, \"Dr. Brown's BPA Free Polypropylene Natural Flow Bottle Newborn Feeding Set\": {\"frequency\": 85, \"value\": \"Dr. Brown's BPA ...\"}, \"Chicco DJ Baby Walker, Splash\": {\"frequency\": 62, \"value\": \"Chicco DJ Baby ...\"}, \"Graco SnugRide Click Connect 35 Car Seat, Tangerine\": {\"frequency\": 33, \"value\": \"Graco SnugRide ...\"}, \"Baby Jogger City Elite Single Stroller, Black\": {\"frequency\": 19, \"value\": \"Baby Jogger City ...\"}, \"Mommy's Helper Contoured Cushie Step Up\": {\"frequency\": 114, \"value\": \"Mommy's Helper ...\"}, \"Mustachifier - The Gentleman Mustache Pacifier\": {\"frequency\": 44, \"value\": \"Mustachifier - The ...\"}, \"Evenflo ABC SmartSteps ExerSaucer\": {\"frequency\": 23, \"value\": \"Evenflo ABC ...\"}, \"C.R. Gibson Bound Keepsake Memory Book of Baby's First 5 Years, Lulu\": {\"frequency\": 59, \"value\": \"C.R. Gibson Bound ...\"}, \"Roundabout Convertible Car Seat - Grey Wicker\": {\"frequency\": 22, \"value\": \"Roundabout ...\"}, \"aden + anais Rayon from Bamboo Swaddle Blanket 3 Pack, Earthly\": {\"frequency\": 98, \"value\": \"aden + anais Rayon ...\"}, \"Balboa Baby Dr. Sears Adjustable Sling, Blue Plaid\": {\"frequency\": 19, \"value\": \"Balboa Baby Dr. ...\"}, \"Traveling Toddler Car Seat Travel Accessory\": {\"frequency\": 93, \"value\": \"Traveling Toddler ...\"}, \"KF Baby Finger Pinch Guard [Set of 5], with kilofly Refrigerator Magnet\": {\"frequency\": 26, \"value\": \"KF Baby Finger ...\"}, \"BRICA Deluxe Kick Mats (2 pack)\": {\"frequency\": 37, \"value\": \"BRICA Deluxe Kick ...\"}, \"Lansinoh Double Electric Breast Pump, BPA-free\": {\"frequency\": 29, \"value\": \"Lansinoh Double ...\"}, \"Evenflo ExerSaucer Triple Fun - Jungle\": {\"frequency\": 48, \"value\": \"Evenflo ExerSaucer ...\"}, \"Luvable Friends 4-Pack Flannel Receiving Blankets, Blue\": {\"frequency\": 44, \"value\": \"Luvable Friends ...\"}, \"Kid'Sleep Classic, Blue\": {\"frequency\": 78, \"value\": \"Kid'Sleep Classic, ...\"}, \"Boba Air Baby Carrier, Black\": {\"frequency\": 26, \"value\": \"Boba Air Baby ...\"}, \"Colorado Tote\": {\"frequency\": 21, \"value\": \"Colorado Tote\"}, \"Munchkin Baby Bath Ball, Colors May Vary\": {\"frequency\": 22, \"value\": \"Munchkin Baby Bath ...\"}, \"Summer Infant 8 Panel Playsafe Playard, Tan\": {\"frequency\": 19, \"value\": \"Summer Infant 8 ...\"}, \"Lil Rinser Splashguard in Purple\": {\"frequency\": 59, \"value\": \"Lil Rinser ...\"}, \"Summer Infant 2 Pack Cotton Knit Swaddleme, Safari (Small/Medium)\": {\"frequency\": 57, \"value\": \"Summer Infant 2 ...\"}, \"Dream On Me Double Twin Stroller, Pink\": {\"frequency\": 21, \"value\": \"Dream On Me Double ...\"}, \"Britax Baby Carrier, Black\": {\"frequency\": 19, \"value\": \"Britax Baby ...\"}, \"Saddle Style Soaker Mattress Pad - Will Absorb 6 Cups of Liquid - Made in America (34&quot; X 36&quot;)\": {\"frequency\": 27, \"value\": \"Saddle Style ...\"}, \"Lamaze Play &amp; Grow Freddie the Firefly Take Along Toy\": {\"frequency\": 194, \"value\": \"Lamaze Play &amp; ...\"}, \"Sassy Soft Swimmers Animal Characters Bath Toy, 3 Pack\": {\"frequency\": 29, \"value\": \"Sassy Soft ...\"}, \"Chewy Tubes Knobby Super Chew Red\": {\"frequency\": 27, \"value\": \"Chewy Tubes Knobby ...\"}, \"Skip Hop Dash Deluxe Charcoal\": {\"frequency\": 32, \"value\": \"Skip Hop Dash ...\"}, \"Bean B Clean Baby Scalp Massaging Brush for Cradle Cap\": {\"frequency\": 28, \"value\": \"Bean B Clean Baby ...\"}, \"aden + anais 3 Pack Muslin Snap Bib, Jungle Jam\": {\"frequency\": 54, \"value\": \"aden + anais 3 ...\"}, \"The First Years Disney Pixar Cars Rev and Go Potty System\": {\"frequency\": 59, \"value\": \"The First Years ...\"}, \"Jumpster Doorway Jumper - Jackpot\": {\"frequency\": 30, \"value\": \"Jumpster Doorway ...\"}, \"Britax Infant Car Seat Adapter Frame\": {\"frequency\": 20, \"value\": \"Britax Infant Car ...\"}, \"Kalencom Laminated Buckle Bag, Multi Paisley Watermelon\": {\"frequency\": 20, \"value\": \"Kalencom Laminated ...\"}, \"Regalo My Chair Portable Chair, Royal\": {\"frequency\": 33, \"value\": \"Regalo My Chair ...\"}, \"Baby Reusable Boy Pocket Cloth Diapers, 6 pcs + 6 Inserts\": {\"frequency\": 33, \"value\": \"Baby Reusable Boy ...\"}, \"BooginHead Squeez'Ems Reusable Food Pouches (4 Pouches)\": {\"frequency\": 28, \"value\": \"BooginHead ...\"}, \"LA Baby Countour Changing Pad 30&quot;, White\": {\"frequency\": 19, \"value\": \"LA Baby Countour ...\"}, \"Thudguard Baby Safety Helmet - Blue\": {\"frequency\": 26, \"value\": \"Thudguard Baby ...\"}, \"New Mommy Advice Cards -24ct- Party Supplies\": {\"frequency\": 18, \"value\": \"New Mommy Advice ...\"}, \"Bibimals Baby Bibs (Safari Pack) Button Latch Better for Long Hair - Funny Cool Cute 2 Pack of Bibs with Food Catcher Pocket Made From Waterproof Washable Silicone Plastic, Best for Use with Girl or Boy Infants and Babies - Your Baby Will Love These Silly Animal Face Bibs, Great Baby Shower Gift, Lifetime Guarantee - [Add These Bibs to Your Baby Registry Today]\": {\"frequency\": 18, \"value\": \"Bibimals Baby Bibs ...\"}, \"bumGenius Freetime All-In-One One-Size Snap Closure Cloth Diaper - White\": {\"frequency\": 23, \"value\": \"bumGenius Freetime ...\"}, \"Lamaze Early Development Toy, Marina the Mermaid\": {\"frequency\": 28, \"value\": \"Lamaze Early ...\"}, \"Bestever Baby Mat, Pink Bear\": {\"frequency\": 62, \"value\": \"Bestever Baby Mat, ...\"}, \"Graco Contempo Highchair, Forecaster\": {\"frequency\": 26, \"value\": \"Graco Contempo ...\"}, \"Think King Mighty Buggy Hook for Stroller, Wheelchair, Rollator, Walker, 2 Pack\": {\"frequency\": 39, \"value\": \"Think King Mighty ...\"}, \"Kair Air Cushioned Bath Visor, Blue\": {\"frequency\": 38, \"value\": \"Kair Air Cushioned ...\"}, \"The HERO Pocket Cloth Diaper (English Periwinkle) by Coqu&iacute; Baby\": {\"frequency\": 18, \"value\": \"The HERO Pocket ...\"}, \"The First Years Jet Stroller, Red/Black\": {\"frequency\": 284, \"value\": \"The First Years ...\"}, \"Ju-Ju-Be Paci Pod Pacifier Holder, Lilac Lace\": {\"frequency\": 27, \"value\": \"Ju-Ju-Be Paci Pod ...\"}, \"Kidco Y Spindle\": {\"frequency\": 33, \"value\": \"Kidco Y Spindle\"}, \"Lollaland Lollacup, Good Green\": {\"frequency\": 67, \"value\": \"Lollaland ...\"}, \"Medela Swing Breastpump\": {\"frequency\": 72, \"value\": \"Medela Swing ...\"}, \"Munchkin Gone Fishin' Bath Toy\": {\"frequency\": 26, \"value\": \"Munchkin Gone ...\"}, \"Philips AVENT Twin Pack Nipplette\": {\"frequency\": 28, \"value\": \"Philips AVENT Twin ...\"}, \"My Brest Friend Deluxe Pillow, Blue\": {\"frequency\": 19, \"value\": \"My Brest Friend ...\"}, \"Contours Options LT Tandem Stroller, Valencia Gold\": {\"frequency\": 29, \"value\": \"Contours Options ...\"}, \"Bright Starts Comfort and Harmony Bouncer, Vintage Garden\": {\"frequency\": 18, \"value\": \"Bright Starts ...\"}, \"Carters Keep Me Dry Water Resistant Flannel Crib Pad, White\": {\"frequency\": 28, \"value\": \"Carters Keep Me ...\"}, \"iBaby M3 Baby monitor for iPhone\": {\"frequency\": 30, \"value\": \"iBaby M3 Baby ...\"}, \"Safety 1st Exchangeable Tip 3 in 1 Thermometer\": {\"frequency\": 19, \"value\": \"Safety 1st ...\"}, \"Bright Starts Around We Go Activity Station, Tropical Fun\": {\"frequency\": 43, \"value\": \"Bright Starts ...\"}, \"WubbaNub Elephant\": {\"frequency\": 19, \"value\": \"WubbaNub Elephant\"}, \"Medela One-Piece Breastshield w/ Valve and Membrane\": {\"frequency\": 20, \"value\": \"Medela One-Piece ...\"}, \"South Shore Angel 4 Drawer Chest, Espresso\": {\"frequency\": 18, \"value\": \"South Shore Angel ...\"}, \"BRICA Super Scoop Bath Toy Organizer\": {\"frequency\": 111, \"value\": \"BRICA Super Scoop ...\"}, \"One Step Ahead Secure Transitions Inflatable Baby Tub\": {\"frequency\": 38, \"value\": \"One Step Ahead ...\"}, \"Britax Parkway SGL Booster Seat, Cardinal\": {\"frequency\": 62, \"value\": \"Britax Parkway SGL ...\"}, \"Medela Freestyle Spare Parts Kit\": {\"frequency\": 19, \"value\": \"Medela Freestyle ...\"}, \"Woolzies 3 XL Wool Dryer Balls ,Natural Fabric Softener\": {\"frequency\": 33, \"value\": \"Woolzies 3 XL Wool ...\"}, \"American Baby Company Waterproof Quilted Cotton Portable/Mini Crib Mattress Pad Cover, White\": {\"frequency\": 83, \"value\": \"American Baby ...\"}, \"Munchkin Deluxe Dishwasher Basket, Colors May Vary\": {\"frequency\": 63, \"value\": \"Munchkin Deluxe ...\"}, \"Fisher-Price Space Saver High Chair, Pink\": {\"frequency\": 79, \"value\": \"Fisher-Price Space ...\"}, \"Levana Lila Digital Baby Video Monitor with Night Vision and Talk to Baby Intercom 32000 (White)\": {\"frequency\": 18, \"value\": \"Levana Lila ...\"}, \"Boon Benders Adaptable Utensils, Blue Raspberry/Tangerine\": {\"frequency\": 20, \"value\": \"Boon Benders ...\"}, \"Contours Options 3 Wheel Stroller, Berkley\": {\"frequency\": 24, \"value\": \"Contours Options 3 ...\"}, \"Mam Nipples Slow Flow, 0+ months, 2 pack\": {\"frequency\": 27, \"value\": \"Mam Nipples Slow ...\"}, \"Munchkin Baby Care Cart\": {\"frequency\": 20, \"value\": \"Munchkin Baby Care ...\"}, \"Baby Safe Disposable Feeder (Pack of One)\": {\"frequency\": 33, \"value\": \"Baby Safe ...\"}, \"Cloud b Sleep Sheep On The Go Travel Sound Machine with Four Soothing Sounds\": {\"frequency\": 105, \"value\": \"Cloud b Sleep ...\"}, \"Stroller Hook - 2 Pack of Multi Purpose Hooks - Hanger for Baby Diaper Bags, Groceries, Clothing, Purse - Great Accessory for Mommy when Jogging, Walking or Shopping - Best 100% Money Back Guarantee\": {\"frequency\": 24, \"value\": \"Stroller Hook - 2 ...\"}, \"DaVinci Emily 3-Drawer Changer Dresser, Ebony\": {\"frequency\": 19, \"value\": \"DaVinci Emily ...\"}, \"Medela Supplemental Nursing System\": {\"frequency\": 20, \"value\": \"Medela ...\"}, \"Joovy Scooter X2 Double Stroller, Greenie\": {\"frequency\": 38, \"value\": \"Joovy Scooter X2 ...\"}, \"Medela Breast Pump Accessory Set\": {\"frequency\": 30, \"value\": \"Medela Breast Pump ...\"}, \"Happi Tummi Removable Waistband - Blue\": {\"frequency\": 42, \"value\": \"Happi Tummi ...\"}, \"Trend Lab Dr. Seuss Wall Clock, ABC\": {\"frequency\": 19, \"value\": \"Trend Lab Dr. ...\"}, \"HALO Big Kids SleepSack Lightweight Knit Wearable Blanket, Pink, 2-3T\": {\"frequency\": 19, \"value\": \"HALO Big Kids ...\"}, \"Fisher-Price Royal Potty\": {\"frequency\": 34, \"value\": \"Fisher-Price Royal ...\"}, \"Prince Lionheart Ever-Fresh Replacement Pillows for Ultimate Wipes Warmer\": {\"frequency\": 30, \"value\": \"Prince Lionheart ...\"}, \"Thirsties 3 Pack Boys Fab Doublers Soft Cotton Velour, Ocean Blue/Meadow/White, Large\": {\"frequency\": 29, \"value\": \"Thirsties 3 Pack ...\"}, \"Boon Stem Grass and Lawn Drying Rack Accessory,Yellow\": {\"frequency\": 37, \"value\": \"Boon Stem Grass ...\"}, \"The First Years Take and Toss 28-Piece Feeding Variety Pack\": {\"frequency\": 24, \"value\": \"The First Years ...\"}, \"Yookidoo Stack 'N' Spray Tub Fountain\": {\"frequency\": 51, \"value\": \"Yookidoo Stack 'N' ...\"}, \"The Mommy Hook, Black with Black Pad\": {\"frequency\": 53, \"value\": \"The Mommy Hook, ...\"}, \"The Original Woombie Baby Cocoon Swaddle (Big Baby (14-19 lbs), Aqua Stripe)\": {\"frequency\": 52, \"value\": \"The Original ...\"}, \"NUK Disney Winnie the Pooh 5 Ounces Learner Cup Silicone Spout, 6+ Months\": {\"frequency\": 24, \"value\": \"NUK Disney Winnie ...\"}, \"My Brest Friend Deluxe Pillow, Light Green\": {\"frequency\": 38, \"value\": \"My Brest Friend ...\"}, \"American Baby Company Organic Cotton Quilted Waterproof Sheet Saver, Natural\": {\"frequency\": 18, \"value\": \"American Baby ...\"}, \"Philips AVENT Soothie Pacifier, 0-3 Months, 2-Pack, Pink/Purple\": {\"frequency\": 128, \"value\": \"Philips AVENT ...\"}, \"phil&amp;teds Traveller Crib, Black\": {\"frequency\": 21, \"value\": \"phil&amp;teds ...\"}, \"HALO SleepSack Micro-Fleece Swaddle, Soft Pink, Newborn\": {\"frequency\": 83, \"value\": \"HALO SleepSack ...\"}, \"Kidkusion Kid Safe Banister Guard\": {\"frequency\": 28, \"value\": \"Kidkusion Kid Safe ...\"}, \"Maxi Cosi Pria 70 Convertible Car Seat, Sweet Cerise\": {\"frequency\": 36, \"value\": \"Maxi Cosi Pria 70 ...\"}, \"Skip Hop Zoo Straw Bottle, Ladybug, 12 Ounce\": {\"frequency\": 59, \"value\": \"Skip Hop Zoo Straw ...\"}, \"Summer Infant Slumber Buddies, Frog\": {\"frequency\": 26, \"value\": \"Summer Infant ...\"}, \"Munchkin Dora the Explorer Bath Squirters\": {\"frequency\": 24, \"value\": \"Munchkin Dora the ...\"}, \"Medela Contact Nipple Shield - Standard Size (24mm)\": {\"frequency\": 22, \"value\": \"Medela Contact ...\"}, \"EZ-Freeze Cereal on the Go (Colors May Vary)\": {\"frequency\": 27, \"value\": \"EZ-Freeze Cereal ...\"}, \"Friendly Toys, Little Playzone with Electronic Sound and Lights\": {\"frequency\": 79, \"value\": \"Friendly Toys, ...\"}, \"Safety 1st Easy Saver Diaper Pail\": {\"frequency\": 24, \"value\": \"Safety 1st Easy ...\"}, \"Combi Flare Lightweight Stroller in Mandarin\": {\"frequency\": 29, \"value\": \"Combi Flare ...\"}, \"Fisher-Price Healthy Care Booster Seat, Green/Blue\": {\"frequency\": 67, \"value\": \"Fisher-Price ...\"}, \"green sprouts Wooden Brush and Comb Set, Natural\": {\"frequency\": 24, \"value\": \"green sprouts ...\"}, \"OXO Tot On-the-Go Feeding Spoon, Green\": {\"frequency\": 20, \"value\": \"OXO Tot On-the-Go ...\"}, \"Evenflo Top of Stair Gate\": {\"frequency\": 50, \"value\": \"Evenflo Top of ...\"}, \"Fisher-Price Cradle 'N Swing, My Little Snugabunny\": {\"frequency\": 278, \"value\": \"Fisher-Price ...\"}, \"Summer Infant Complete Coverage Color Video Monitor Set with 7&quot; LCD Screen and 1.8&quot; Handheld Unit\": {\"frequency\": 35, \"value\": \"Summer Infant ...\"}, \"Munchkin Caterpillar Spillers Stacking Cups\": {\"frequency\": 27, \"value\": \"Munchkin ...\"}, \"HALO Early Walker SleepSack Lightweight Knit Wearable Blanket, Blue, Large\": {\"frequency\": 29, \"value\": \"HALO Early Walker ...\"}, \"KidCo S353 Door Lever Lock White\": {\"frequency\": 18, \"value\": \"KidCo S353 Door ...\"}, \"Lily's Home Starry Night Projector and Sound Shooter. With 6 Lullabies and 4 Nature Sounds. Large LCD Alarm Clock\": {\"frequency\": 31, \"value\": \"Lily's Home Starry ...\"}, \"Sassy Baby Food Nurser, Colors May Vary\": {\"frequency\": 36, \"value\": \"Sassy Baby Food ...\"}, \"Boppy Cottony Cute 2-Sided Slipcover, Polka Stripe Green\": {\"frequency\": 23, \"value\": \"Boppy Cottony Cute ...\"}, \"Infant Bucket Seat Liner Color: Pink\": {\"frequency\": 21, \"value\": \"Infant Bucket Seat ...\"}, \"Safety 1st Whale and Baby Spout Guard\": {\"frequency\": 27, \"value\": \"Safety 1st Whale ...\"}, \"NUK Ultra Thin Breast Pads, Pack of 2, White, 120-Count\": {\"frequency\": 39, \"value\": \"NUK Ultra Thin ...\"}, \"Carters Super Soft Dot Changing Pad Cover, Chocolate\": {\"frequency\": 47, \"value\": \"Carters Super Soft ...\"}, \"Babe Ease Original Clean Shopper, Blue Zoo\": {\"frequency\": 20, \"value\": \"Babe Ease Original ...\"}, \"FunBites Hearts - Cuts kids' food into fun-shaped bite-sized pieces . . . Great for picky eaters and bento!\": {\"frequency\": 20, \"value\": \"FunBites Hearts - ...\"}, \"Britax Car Seat Travel Cart, Black\": {\"frequency\": 28, \"value\": \"Britax Car Seat ...\"}, \"Dr. Brown's Microwave Steam Sterilizer\": {\"frequency\": 24, \"value\": \"Dr. Brown's ...\"}, \"Baby Brezza Temperature Control Kettle, White/Grey\": {\"frequency\": 30, \"value\": \"Baby Brezza ...\"}, \"BRICA Day &amp; Night Light Musical Auto Mirror for in Car Safety, Grey\": {\"frequency\": 20, \"value\": \"BRICA Day &amp; ...\"}, \"Steribottle Ready to Use Disposable Baby Bottles, 10-Count\": {\"frequency\": 23, \"value\": \"Steribottle Ready ...\"}, \"Bumbo Floor Seat, Aqua\": {\"frequency\": 51, \"value\": \"Bumbo Floor Seat, ...\"}, \"Joovy Nook Highchair, White Leatherette\": {\"frequency\": 22, \"value\": \"Joovy Nook ...\"}, \"Diaper Dekor Plus 2-Pack Refill Biodegradable\": {\"frequency\": 20, \"value\": \"Diaper Dekor Plus ...\"}, \"Safety 1st Wide Doorways Fabric Gate, Natural\": {\"frequency\": 20, \"value\": \"Safety 1st Wide ...\"}, \"Lansinoh mOmma Feeding Bottle, 5 Ounce\": {\"frequency\": 66, \"value\": \"Lansinoh mOmma ...\"}, \"Woombie Air Ventilated Baby Swaddle ~ Choose Size/Color (Big Baby 14-19 lbs, Love Print)\": {\"frequency\": 21, \"value\": \"Woombie Air ...\"}, \"Regalo Top of Stair Gate, White\": {\"frequency\": 22, \"value\": \"Regalo Top of ...\"}, \"Prince Lionheart Soft Booster Seat in Green\": {\"frequency\": 81, \"value\": \"Prince Lionheart ...\"}, \"Playtex Embrace Breast Pump System\": {\"frequency\": 22, \"value\": \"Playtex Embrace ...\"}, \"Spasilk 100% Cotton Hooded Terry Bath Towel with 4 Washcloths, Beige\": {\"frequency\": 26, \"value\": \"Spasilk 100% ...\"}, \"WubbaNub Pink Bear\": {\"frequency\": 18, \"value\": \"WubbaNub Pink Bear\"}, \"The First Years Clean Air Diaper Disposal System\": {\"frequency\": 29, \"value\": \"The First Years ...\"}, \"Aden and Anais UpAwaySwddleBlnkts\": {\"frequency\": 188, \"value\": \"Aden and Anais ...\"}, \"Leachco Back 'N Belly Contoured Body Pillow, Ivory\": {\"frequency\": 283, \"value\": \"Leachco Back 'N ...\"}, \"The First Years 2 Pack GumDrop Newborn Pacifier, Blue/Green\": {\"frequency\": 20, \"value\": \"The First Years 2 ...\"}, \"Safety 1st Alpha Omega Elite Convertible Car Seat, Lamont\": {\"frequency\": 46, \"value\": \"Safety 1st Alpha ...\"}, \"Fisher-Price Deluxe Jumperoo\": {\"frequency\": 77, \"value\": \"Fisher-Price ...\"}, \"BabyPlus Prenatal Education System\": {\"frequency\": 41, \"value\": \"BabyPlus Prenatal ...\"}, \"Lorex BB2411 2.4&quot; Sweet Peek Video Baby Monitor with IR Night Vision and Zoom, White\": {\"frequency\": 29, \"value\": \"Lorex BB2411 ...\"}, \"Mommy's Helper Kid Keeper\": {\"frequency\": 21, \"value\": \"Mommy's Helper Kid ...\"}, \"Summer Infant SwaddleMe Adjustable Infant Wrap, 3-Pack, Mom &amp; Baby\": {\"frequency\": 77, \"value\": \"Summer Infant ...\"}, \"KidCo Angle-Mount Safeway Gate\": {\"frequency\": 24, \"value\": \"KidCo Angle-Mount ...\"}, \"BABYBJORN Soft Bib 2 Pack - Red/Blue\": {\"frequency\": 129, \"value\": \"BABYBJORN Soft Bib ...\"}, \"Foscam FBM3501 Digital Video Baby Monitor - 2.4 Ghz with Pan/Tilt, Nightvision and Two-Way Audio/Video Camera with 3.5-Inch LCD (White/Gray)\": {\"frequency\": 66, \"value\": \"Foscam FBM3501 ...\"}, \"Metal Wall Decor Butterfly Sculpture 29x15\": {\"frequency\": 20, \"value\": \"Metal Wall Decor ...\"}, \"Jeep Liberty Renegade Walker, Storm\": {\"frequency\": 22, \"value\": \"Jeep Liberty ...\"}, \"JJ Cole Satchel Diaper Bag, Green Arbor\": {\"frequency\": 51, \"value\": \"JJ Cole Satchel ...\"}, \"Diaper Dekor Plus Diaper Disposal System\": {\"frequency\": 126, \"value\": \"Diaper Dekor Plus ...\"}, \"Prince Lionheart Fireplace Guard with Two Corners\": {\"frequency\": 20, \"value\": \"Prince Lionheart ...\"}, \"Sassy Developmental Sensory Ball Set - Inspires Touch\": {\"frequency\": 28, \"value\": \"Sassy ...\"}, \"Ameda Purely Yours Breast Pump\": {\"frequency\": 68, \"value\": \"Ameda Purely Yours ...\"}, \"Thirsties Duo Wrap Diaper Cover with Hook and Loop, Aqua, Size 1\": {\"frequency\": 18, \"value\": \"Thirsties Duo Wrap ...\"}, \"Plug 'N Outlet Cover\": {\"frequency\": 19, \"value\": \"Plug 'N Outlet ...\"}, \"Safety 1st 2 Count Side By Side Cabinet Lock\": {\"frequency\": 30, \"value\": \"Safety 1st 2 Count ...\"}, \"RECARO ProSPORT Combination Harness To Booster Car Seat, Blue Opal\": {\"frequency\": 77, \"value\": \"RECARO ProSPORT ...\"}, \"Munchkin Feeding Set, 15 Pack\": {\"frequency\": 36, \"value\": \"Munchkin Feeding ...\"}, \"The Shrunks Indoor Toddler Inflatable Travel Bed\": {\"frequency\": 93, \"value\": \"The Shrunks Indoor ...\"}, \"Prince Lionheart Corner Guards, Chocolate Brown\": {\"frequency\": 56, \"value\": \"Prince Lionheart ...\"}, \"Regalo Easy Step Extra Wide Walk Thru Gate, White\": {\"frequency\": 18, \"value\": \"Regalo Easy Step ...\"}, \"Davinci Jenny Lind 3-in-1 Convertible Crib, Cherry\": {\"frequency\": 43, \"value\": \"Davinci Jenny Lind ...\"}, \"9V Auto Adapter Car Vehicle Lighter adapter for Medela Pump-in-Style Replaces Part # 67174 Retail Packaging\": {\"frequency\": 22, \"value\": \"9V Auto Adapter ...\"}, \"Evenflo Exersaucer Triple Fun Active Learning Center, Life in The Amazon\": {\"frequency\": 30, \"value\": \"Evenflo Exersaucer ...\"}, \"Tiny Love Symphony in Motion Farm Animal Mobile (Styles May Vary)\": {\"frequency\": 24, \"value\": \"Tiny Love Symphony ...\"}, \"Fisher-Price My Little Snugabunny Newborn Rock n' Play Sleeper\": {\"frequency\": 68, \"value\": \"Fisher-Price My ...\"}, \"The Art of CureTM *SAFETY KNOTTED* Raw Butterscotch - Certified Baltic Amber Baby Teething Necklace - w/The Art of Cure Jewelry Pouch (SHIPS AND SOLD IN USA)\": {\"frequency\": 23, \"value\": \"The Art of CureTM ...\"}, \"My Little Seat Infant Seats, Blue Fish\": {\"frequency\": 19, \"value\": \"My Little Seat ...\"}, \"Baby Einstein Take Along Tunes\": {\"frequency\": 547, \"value\": \"Baby Einstein Take ...\"}, \"Gerber 12-Pack Flatfold Birdseye Cloth Diapers - White\": {\"frequency\": 23, \"value\": \"Gerber 12-Pack ...\"}, \"Fisher-Price Healthy Care Booster Seat, Yellow and Orange\": {\"frequency\": 20, \"value\": \"Fisher-Price ...\"}, \"Levana LV-TW502 Safe N' See Advanced 3.5-Inch Digital Video Wireless Baby Monitor with Talk to Baby Intercom and Remote Controlled Lullabies\": {\"frequency\": 22, \"value\": \"Levana LV-TW502 ...\"}, \"Graco 4 Gallon Cool Mist Humidifier\": {\"frequency\": 33, \"value\": \"Graco 4 Gallon ...\"}, \"Hook 'n' Stroll Stroller Accessory, Black\": {\"frequency\": 37, \"value\": \"Hook 'n' Stroll ...\"}, \"Susen Safe Shampoo Shower Bathing Protect Soft Cap Hat for Baby Children Kids (Blue)\": {\"frequency\": 61, \"value\": \"Susen Safe Shampoo ...\"}, \"Fisher-Price Baby Papasan Infant Seat Nature's Wonder\": {\"frequency\": 23, \"value\": \"Fisher-Price Baby ...\"}, \"Kiinde Kozii\": {\"frequency\": 68, \"value\": \"Kiinde Kozii\"}, \"Nuby 2 Handle Flip n' Sip Straw Cup, 8 Ounce, 12 Months +, Colors May Vary\": {\"frequency\": 34, \"value\": \"Nuby 2 Handle Flip ...\"}, \"Safety 1st On-the-Go Fold-Up Booster Seat\": {\"frequency\": 32, \"value\": \"Safety 1st On-the- ...\"}, \"Boon Flo Water Deflector and Protective Faucet Cover with Bubble Bath Dispenser,Green\": {\"frequency\": 57, \"value\": \"Boon Flo Water ...\"}, \"*The Art of CureTM *SAFETY KNOTTED* Lemon - Certified Baltic Amber Baby Teething Necklace w/&quot;THE ART OF CURETM&quot; Jewelry Pouch (SHIPS AND SOLD IN USA)\": {\"frequency\": 21, \"value\": \"*The Art of CureTM ...\"}, \"Rockin' Green Classic Rock Lavender Mint Revival 45oz\": {\"frequency\": 37, \"value\": \"Rockin' Green ...\"}, \"Safety 1st Alpha Elite Convertible Car Seat, Dolce Latte\": {\"frequency\": 23, \"value\": \"Safety 1st Alpha ...\"}, \"Evenflo Chase LX - Aqua Optical\": {\"frequency\": 28, \"value\": \"Evenflo Chase LX - ...\"}, \"Booginhead SippiGrip, Black\": {\"frequency\": 18, \"value\": \"Booginhead ...\"}, \"bumGenius One-Size Cloth Diaper Twilight\": {\"frequency\": 34, \"value\": \"bumGenius One-Size ...\"}, \"BabyKicks 3 Pack Joey-Bunz, Small\": {\"frequency\": 31, \"value\": \"BabyKicks 3 Pack ...\"}, \"Summer Infant Deluxe PiddlePad\": {\"frequency\": 42, \"value\": \"Summer Infant ...\"}, \"Clek Olli Booster Seat Blacktop\": {\"frequency\": 19, \"value\": \"Clek Olli Booster ...\"}, \"Pearhead Babyprints Keepsake, Year-Round\": {\"frequency\": 36, \"value\": \"Pearhead ...\"}, \"Regalo Extra Tall Widespan Gate, White\": {\"frequency\": 27, \"value\": \"Regalo Extra Tall ...\"}, \"Britax Marathon 70 Convertible Car Seat (Previous Version), Onyx\": {\"frequency\": 65, \"value\": \"Britax Marathon 70 ...\"}, \"OXO Tot Divided Feeding Dish, Aqua\": {\"frequency\": 28, \"value\": \"OXO Tot Divided ...\"}, \"KidCo BabySteps Electric Food Mill - White\": {\"frequency\": 35, \"value\": \"KidCo BabySteps ...\"}, \"Natursutten BPA-Free Natural Rubber Pacifier, Orthodontic, 0-6 Months\": {\"frequency\": 34, \"value\": \"Natursutten BPA- ...\"}, \"Jeep Cherokee Sport Stroller, Brick Red\": {\"frequency\": 92, \"value\": \"Jeep Cherokee ...\"}, \"Mother's Touch Deluxe Baby Bather\": {\"frequency\": 20, \"value\": \"Mother's Touch ...\"}, \"Evenflo Snugli Comfort Vent Carrier\": {\"frequency\": 22, \"value\": \"Evenflo Snugli ...\"}, \"Graco DuoDiner LX Highchair, Metropolis\": {\"frequency\": 22, \"value\": \"Graco DuoDiner LX ...\"}, \"Regalo Easy Step Extra Tall Walk Thru Gate - White\": {\"frequency\": 101, \"value\": \"Regalo Easy Step ...\"}, \"Dream On Me 4 in 1 Aden Convertible Mini Crib, Natural\": {\"frequency\": 25, \"value\": \"Dream On Me 4 in 1 ...\"}, \"Luvable Friends 6 Pack Washcloths, Blue\": {\"frequency\": 27, \"value\": \"Luvable Friends 6 ...\"}, \"South Shore Savannah Collection 4-Drawer Chest, White\": {\"frequency\": 22, \"value\": \"South Shore ...\"}, \"Skip Hop Zoo Safety Harness, Monkey\": {\"frequency\": 32, \"value\": \"Skip Hop Zoo ...\"}, \"Snap 'N Go Infant Car Seat Carrier\": {\"frequency\": 46, \"value\": \"Snap 'N Go Infant ...\"}, \"DEX Products Sound Sleeper SS-01\": {\"frequency\": 103, \"value\": \"DEX Products Sound ...\"}, \"Prince Lionheart Faucet Extender, Gumball Green\": {\"frequency\": 31, \"value\": \"Prince Lionheart ...\"}, \"OXO Tot Bottle Brush with Nipple Cleaner, Orange\": {\"frequency\": 25, \"value\": \"OXO Tot Bottle ...\"}, \"Philips AVENT Range BPA-Free Front Teeth Teether, Classic\": {\"frequency\": 24, \"value\": \"Philips AVENT ...\"}, \"Combi Activity Walker Black\": {\"frequency\": 18, \"value\": \"Combi Activity ...\"}, \"Status Veneto Glider and Nursing Ottoman, White/Beige\": {\"frequency\": 24, \"value\": \"Status Veneto ...\"}, \"Odorless Diaper Pail by Safety 1st\": {\"frequency\": 28, \"value\": \"Odorless Diaper ...\"}, \"Prince Lionheart Ultimate Wipes Warmer\": {\"frequency\": 152, \"value\": \"Prince Lionheart ...\"}, \"Munchkin Arm and Hammer Bag Refill, 36 Bags\": {\"frequency\": 25, \"value\": \"Munchkin Arm and ...\"}, \"BABYBJORN Safe Step - Blue\": {\"frequency\": 85, \"value\": \"BABYBJORN Safe ...\"}, \"Fisher-Price Space Saver Swing and Seat, Discover'N Grow\": {\"frequency\": 57, \"value\": \"Fisher-Price Space ...\"}, \"Baby Einstein Octoplush\": {\"frequency\": 57, \"value\": \"Baby Einstein ...\"}, \"FISHER PRICE SINGING STAR GYM\": {\"frequency\": 37, \"value\": \"FISHER PRICE ...\"}, \"Munchkin 3 Piece Silly Sandwich Cutter Set\": {\"frequency\": 22, \"value\": \"Munchkin 3 Piece ...\"}, \"Britax Frontier Booster Car Seat\": {\"frequency\": 22, \"value\": \"Britax Frontier ...\"}, \"Summer Infant Best View Handheld Color Video Monitor with 2.5&quot; Screen\": {\"frequency\": 57, \"value\": \"Summer Infant Best ...\"}, \"Medela 9 Volt Vehicle Lighter Adaptor\": {\"frequency\": 22, \"value\": \"Medela 9 Volt ...\"}, \"Safety 1st Magnetic Locking System Complete\": {\"frequency\": 81, \"value\": \"Safety 1st ...\"}, \"BABYBJORN Baby Carrier Miracle, Black/Silver, Cotton Mix\": {\"frequency\": 50, \"value\": \"BABYBJORN Baby ...\"}, \"Safety 1st Crystal Clear Audio Monitor, White\": {\"frequency\": 21, \"value\": \"Safety 1st Crystal ...\"}, \"Graco SnugRide 32 Infant Car Seat, Zurich\": {\"frequency\": 25, \"value\": \"Graco SnugRide 32 ...\"}, \"Baby K'tan Breeze Baby Carrier, White, Large\": {\"frequency\": 29, \"value\": \"Baby K'tan Breeze ...\"}, \"Cloud B Tranquil Turtle - Aqua\": {\"frequency\": 71, \"value\": \"Cloud B Tranquil ...\"}, \"Munchkin 4 Pack Re-Usable Twist Tight Spill Proof Cup, 10 Ounce, Colors May Vary\": {\"frequency\": 23, \"value\": \"Munchkin 4 Pack ...\"}, \"Prince Lionheart Dresser Top Diaper Depot\": {\"frequency\": 24, \"value\": \"Prince Lionheart ...\"}, \"Britax Boulevard 70 CS Convertible Car Seat (Previous Version), Waverly\": {\"frequency\": 24, \"value\": \"Britax Boulevard ...\"}, \"Tiny Love Take-Along Arch, Sunny Stroll\": {\"frequency\": 241, \"value\": \"Tiny Love Take- ...\"}, \"Sassy Illumination Station\": {\"frequency\": 20, \"value\": \"Sassy Illumination ...\"}, \"phil&amp;teds Lobster Highchair, Red\": {\"frequency\": 31, \"value\": \"phil&amp;teds ...\"}, \"PRIMO EuroBath, Pearl White\": {\"frequency\": 182, \"value\": \"PRIMO EuroBath, ...\"}, \"Infantino Sync Comfort Wrap Carrier Black/Red\": {\"frequency\": 22, \"value\": \"Infantino Sync ...\"}, \"Fisher-Price Cradle 'N Swing, Luv U Zoo\": {\"frequency\": 48, \"value\": \"Fisher-Price ...\"}, \"Regalo Hide Away Extra Long Bed Rail, White\": {\"frequency\": 81, \"value\": \"Regalo Hide Away ...\"}, \"Chicco Caddy Hook On Chair, Red\": {\"frequency\": 52, \"value\": \"Chicco Caddy Hook ...\"}, \"Nuby Super Spout 2 Pack No Spill Replacement Spouts, Clear\": {\"frequency\": 19, \"value\": \"Nuby Super Spout 2 ...\"}, \"Elegant Baby 8 Piece Bath Squirties Gift Set in Vinyl Zip Bag, Sea\": {\"frequency\": 18, \"value\": \"Elegant Baby 8 ...\"}, \"Guava Kids Unisex Baby Guava Mitts - Bubbles/Lime - Small/Medium\": {\"frequency\": 69, \"value\": \"Guava Kids Unisex ...\"}, \"Stork Craft Beatrice 5 Drawer Chest, White\": {\"frequency\": 40, \"value\": \"Stork Craft ...\"}, \"Graco Baby SnugGlider Infant Car Seat Swing Frame\": {\"frequency\": 30, \"value\": \"Graco Baby ...\"}, \"NUK/Gerber Seal N Go Disposible Liner, 50-Count\": {\"frequency\": 43, \"value\": \"NUK/Gerber Seal N ...\"}, \"Baby Trend Diaper Champ\": {\"frequency\": 333, \"value\": \"Baby Trend Diaper ...\"}, \"Philips AVENT BPA Free Nighttime Infant Pacifier, 0-6 Months, Colors May Vary, 2-Count\": {\"frequency\": 20, \"value\": \"Philips AVENT BPA ...\"}, \"Britax B-Nimble Stroller, Red\": {\"frequency\": 24, \"value\": \"Britax B-Nimble ...\"}, \"Sesame Street Construction Zone 4 Piece Toddler Set\": {\"frequency\": 27, \"value\": \"Sesame Street ...\"}, \"Nuby Paci Cradle Pacifier Box, Colors may vary\": {\"frequency\": 24, \"value\": \"Nuby Paci Cradle ...\"}, \"Philips Avent Express Baby Food and Bottle Warmer\": {\"frequency\": 36, \"value\": \"Philips Avent ...\"}, \"Mommy's Helper Safe-er-Grip Foot Rest\": {\"frequency\": 65, \"value\": \"Mommy's Helper ...\"}, \"Summer Infant Comfy Bath Sponge\": {\"frequency\": 38, \"value\": \"Summer Infant ...\"}, \"HALO SleepSack Big Kids Micro-Fleece Wearable Blanket, Red, 2T- 3T\": {\"frequency\": 46, \"value\": \"HALO SleepSack Big ...\"}, \"Vullie Sophie Giraffe and Pie Pink - Natural Rubber and Food Paint Details Set of 2\": {\"frequency\": 19, \"value\": \"Vullie Sophie ...\"}, \"Summer Infant Swaddleme Pure Love Adjustable Infant Wrap, Alligator\": {\"frequency\": 33, \"value\": \"Summer Infant ...\"}, \"Stork Craft Rocking Horse, Oak\": {\"frequency\": 33, \"value\": \"Stork Craft ...\"}, \"Samsung Wireless Video Security Monitoring System\": {\"frequency\": 39, \"value\": \"Samsung Wireless ...\"}, \"Summer Infant Step-By-Step Potty Trainer and Step Stool, Blue/ Green\": {\"frequency\": 24, \"value\": \"Summer Infant ...\"}, \"Joovy Kooper Umbrella Stroller, Yellow\": {\"frequency\": 26, \"value\": \"Joovy Kooper ...\"}, \"Soothing Dreams Monistor with Remote Control, Fisher-Price\": {\"frequency\": 39, \"value\": \"Soothing Dreams ...\"}, \"BreathableBaby Breathable Bumper for Portable and Cradle Cribs, White\": {\"frequency\": 27, \"value\": \"BreathableBaby ...\"}, \"Vital Baby Unbelievabowl Set, Orange\": {\"frequency\": 18, \"value\": \"Vital Baby ...\"}, \"Lamaze Cloth Book, Panda's Pals\": {\"frequency\": 137, \"value\": \"Lamaze Cloth Book, ...\"}, \"Badger Basket Elegance Round Baby Bassinet, White with Ecru Waffle\": {\"frequency\": 21, \"value\": \"Badger Basket ...\"}, \"Britax Head and Body Support Pillow, Iron/Gray\": {\"frequency\": 38, \"value\": \"Britax Head and ...\"}, \"Regalo 192-Inch Super Wide Gate and Play Yard\": {\"frequency\": 54, \"value\": \"Regalo 192-Inch ...\"}, \"BRICA Baby In-Sight Auto Mirror for in Car Safety\": {\"frequency\": 25, \"value\": \"BRICA Baby In- ...\"}, \"Kidkusion Jumbo Edge Kushion, Black\": {\"frequency\": 19, \"value\": \"Kidkusion Jumbo ...\"}, \"Harmony Kids Standard Rocker, Hot Pink\": {\"frequency\": 97, \"value\": \"Harmony Kids ...\"}, \"Fisher-Price Rainforest Bouncer\": {\"frequency\": 86, \"value\": \"Fisher-Price ...\"}, \"Prince Lionheart Versa Formula Mixer\": {\"frequency\": 25, \"value\": \"Prince Lionheart ...\"}, \"Joovy Scooter Single Stroller Greenie\": {\"frequency\": 17, \"value\": \"Joovy Scooter ...\"}, \"Philips AVENT Digital Screen Baby Monitor with DECT Technology\": {\"frequency\": 36, \"value\": \"Philips AVENT ...\"}, \"NUK 2 Pack Replacement valves Spill Proof Cup, Colors May Vary\": {\"frequency\": 23, \"value\": \"NUK 2 Pack ...\"}, \"Graco My Ride 65 LX Convertible Car Seat, Rane\": {\"frequency\": 84, \"value\": \"Graco My Ride 65 ...\"}, \"Bummis Reusable Fleece Liners\": {\"frequency\": 27, \"value\": \"Bummis Reusable ...\"}, \"Keep-it-Kleen Pacifier - Adam Airplane\": {\"frequency\": 27, \"value\": \"Keep-it-Kleen ...\"}, \"Fantasy Furniture Roundy Chair Gingham, Pink\": {\"frequency\": 29, \"value\": \"Fantasy Furniture ...\"}, \"Jolly Jumper Sneak a Peek Sneak-a-Peek Infant Carseat Cover Deluxe - Black\": {\"frequency\": 43, \"value\": \"Jolly Jumper Sneak ...\"}, \"Westminster Hand Boilers (Colors May Vary)\": {\"frequency\": 32, \"value\": \"Westminster Hand ...\"}, \"Summer Infant Bibbity, Pink\": {\"frequency\": 24, \"value\": \"Summer Infant ...\"}, \"Philips Avent Manual Comfort Breast Pump\": {\"frequency\": 23, \"value\": \"Philips Avent ...\"}, \"Maymom Breast Pump Kit for Medela Pump in Style Pump; 2 Breastshields (Compare to Medela Personalfit 24 mm Shield with Personal Fit Connector), 4 Valves, 6 Membranes, &amp; 2 Replacement Tubing for Pump in Style Advanced Sold After July 2006; Replacement Parts for Medela Breast Shield, Medela Tubing, Medela Valves and Medela Membranes\": {\"frequency\": 28, \"value\": \"Maymom Breast Pump ...\"}, \"Fisher-Price Adorable Animals Baby's Bouncer\": {\"frequency\": 42, \"value\": \"Fisher-Price ...\"}, \"Safety 1st Deluxe 4-in-1 Bath Station\": {\"frequency\": 154, \"value\": \"Safety 1st Deluxe ...\"}, \"The First Years 3-in-1 Kickin Coaster Seat, Green/Yellow\": {\"frequency\": 20, \"value\": \"The First Years ...\"}, \"Primo 4-In-1 Soft Seat Toilet Trainer and Step Stool White with Pastel Blue Seat\": {\"frequency\": 45, \"value\": \"Primo 4-In-1 Soft ...\"}, \"Graco Ready2Grow Classic Connect Stroller, Forecaster\": {\"frequency\": 25, \"value\": \"Graco Ready2Grow ...\"}, \"Sunshine Kids Mighty Tite Seat Belt Tightener\": {\"frequency\": 34, \"value\": \"Sunshine Kids ...\"}, \"Boon Dive Bath Tub Appliques\": {\"frequency\": 19, \"value\": \"Boon Dive Bath Tub ...\"}, \"Fisher-Price Ocean Wonders Aquarium Bouncer\": {\"frequency\": 93, \"value\": \"Fisher-Price Ocean ...\"}, \"Itzy Ritzy Travel Happens Sealed Wet Bag, Avocado Damask\": {\"frequency\": 27, \"value\": \"Itzy Ritzy Travel ...\"}, \"C.R. Gibson Memory Book, Baby Bots\": {\"frequency\": 29, \"value\": \"C.R. Gibson Memory ...\"}, \"Lansinoh TheraPearl 3-in-1 Breast Therapy\": {\"frequency\": 19, \"value\": \"Lansinoh ...\"}, \"Shermag Glider Rocker Combo, Pecan with Oatmeal\": {\"frequency\": 42, \"value\": \"Shermag Glider ...\"}, \"Mommys Helper Juice Box Buddies Holder for Juice Bags and Boxes, Colors May Vary\": {\"frequency\": 19, \"value\": \"Mommys Helper ...\"}, \"Sassy: Baby Food Nursers 4oz - 2pk(Green) [Baby Product]\": {\"frequency\": 28, \"value\": \"Sassy: Baby Food ...\"}, \"Leachco Snoogle Loop Contoured Fit Body Pillow, Ivory\": {\"frequency\": 34, \"value\": \"Leachco Snoogle ...\"}, \"Boppy Prenatal Sleep Wedge\": {\"frequency\": 53, \"value\": \"Boppy Prenatal ...\"}, \"Englacha Plastic Board Rider, Black\": {\"frequency\": 20, \"value\": \"Englacha Plastic ...\"}, \"Kiddopotamus Cradler Adjustable Head Support for Newborns to Toddlers, Ivory Teddy Bears\": {\"frequency\": 21, \"value\": \"Kiddopotamus ...\"}, \"Dr. Brown's Soft Spout Training Cup, 6 Ounce, Colors May Vary\": {\"frequency\": 24, \"value\": \"Dr. Brown's Soft ...\"}, \"TYKE TOTER Front Mount Child Bicycle Seat (Age 2-5 yrs., Weight Limit 45 Lbs.)\": {\"frequency\": 26, \"value\": \"TYKE TOTER Front ...\"}, \"Summer Infant Snuzzler, Black Velboa\": {\"frequency\": 30, \"value\": \"Summer Infant ...\"}, \"Safety 1st Sound 'n Lights Activity Walker\": {\"frequency\": 21, \"value\": \"Safety 1st Sound ...\"}, \"*SPECIAL PROMOTION*The Art of CureTM *SAFETY KNOTTED* Honey - Certified Baltic Amber Baby Teething Necklace w/The Art of CureTM Jewelry Pouch (SHIPS AND SOLD IN USA)\": {\"frequency\": 63, \"value\": \"*SPECIAL ...\"}, \"Maxboost Fusion Snap-on iPhone 5S/5 Case - Navy Blue (Fit Fusion Battery Case for iPhone 5S/5)\": {\"frequency\": 37, \"value\": \"Maxboost Fusion ...\"}, \"ERGObaby Original Baby Carrier, Galaxy Grey\": {\"frequency\": 35, \"value\": \"ERGObaby Original ...\"}, \"Baby Jogger 2011 City Mini Double Stroller, Black/Black\": {\"frequency\": 20, \"value\": \"Baby Jogger 2011 ...\"}, \"PumpEase Classic Collection hands-free pumping bra - Verry Cherry - M\": {\"frequency\": 86, \"value\": \"PumpEase Classic ...\"}, \"Graco DuoGlider LX Stroller in Fortune\": {\"frequency\": 24, \"value\": \"Graco DuoGlider LX ...\"}, \"Safety 1st Heavenly Dreams White Crib Mattress\": {\"frequency\": 159, \"value\": \"Safety 1st ...\"}, \"Baby Buddy Natural Bath Sponge, Natural\": {\"frequency\": 19, \"value\": \"Baby Buddy Natural ...\"}, \"KidCo Door Knob Lock ** 5 PACK ** (WHITE)\": {\"frequency\": 28, \"value\": \"KidCo Door Knob ...\"}, \"Cardinal Gates Patio Door Guardian, White\": {\"frequency\": 21, \"value\": \"Cardinal Gates ...\"}, \"Sony 900 MHz BabyCall Nursery Monitor with Receivers\": {\"frequency\": 53, \"value\": \"Sony 900 MHz ...\"}, \"Jeep Shopping Cart and High Chair Cover\": {\"frequency\": 20, \"value\": \"Jeep Shopping Cart ...\"}, \"Thirsties Hemp Inserts 2 Pack, Small 6-18 Lbs\": {\"frequency\": 57, \"value\": \"Thirsties Hemp ...\"}, \"Mommy's Helper Car Seat Sun Shade\": {\"frequency\": 45, \"value\": \"Mommy's Helper Car ...\"}, \"Safety 1st Space Saver Fold-Up Bath Tub\": {\"frequency\": 40, \"value\": \"Safety 1st Space ...\"}, \"Fisher-Price Comfy Time Bouncer\": {\"frequency\": 64, \"value\": \"Fisher-Price Comfy ...\"}, \"Baby Chef Ultimate Baby Food Maker\": {\"frequency\": 28, \"value\": \"Baby Chef Ultimate ...\"}, \"BRICA Cover Guard Car Seat Travel Tote\": {\"frequency\": 18, \"value\": \"BRICA Cover Guard ...\"}, \"Prince Lionheart 2 Stage Seatsaver, Black\": {\"frequency\": 86, \"value\": \"Prince Lionheart 2 ...\"}, \"Baby Einstein Neptune Ocean Adventure Gym\": {\"frequency\": 54, \"value\": \"Baby Einstein ...\"}, \"green sprouts Silicone Freezer Tray, Green\": {\"frequency\": 26, \"value\": \"green sprouts ...\"}, \"North States Supergate Ergo Safety Gate, Ivory\": {\"frequency\": 23, \"value\": \"North States ...\"}, \"Philips AVENT BPA Free Natural Polypropylene Bottle, 9 Ounce, 1 Pack\": {\"frequency\": 60, \"value\": \"Philips AVENT BPA ...\"}, \"Baby Trend High Chair Palm Tree\": {\"frequency\": 18, \"value\": \"Baby Trend High ...\"}, \"Sassy Fascination Station\": {\"frequency\": 38, \"value\": \"Sassy Fascination ...\"}, \"We Sell Mats 36 Sq Ft Alphabet and Number Floor Mat\": {\"frequency\": 47, \"value\": \"We Sell Mats 36 Sq ...\"}, \"Graco Glider LX Gliding Swing, Peyton\": {\"frequency\": 37, \"value\": \"Graco Glider LX ...\"}, \"Skip Hop ZOOtensils Fork and Spoon, Ladybug\": {\"frequency\": 35, \"value\": \"Skip Hop ...\"}, \"Puj Snug - Ultra Soft Spout Cover (Aqua)\": {\"frequency\": 42, \"value\": \"Puj Snug - Ultra ...\"}, \"Neat Solutions 8 Pack Multi-Color Solid Knit Terry Feeder Bib, Boy\": {\"frequency\": 21, \"value\": \"Neat Solutions 8 ...\"}, \"Stork Craft Aspen 5 Drawer Chest, Black\": {\"frequency\": 19, \"value\": \"Stork Craft Aspen ...\"}, \"Dexbaby Safe Lift Universal Crib Wedge, White\": {\"frequency\": 36, \"value\": \"Dexbaby Safe Lift ...\"}, \"Kushies 5 Pack Reusable Ultra Diapers for Infants\": {\"frequency\": 20, \"value\": \"Kushies 5 Pack ...\"}, \"The First Years Ignite Stroller\": {\"frequency\": 218, \"value\": \"The First Years ...\"}, \"Tiny Love Super Mat\": {\"frequency\": 42, \"value\": \"Tiny Love Super ...\"}, \"Summer Infant Secure Surround Playsafe Playard\": {\"frequency\": 18, \"value\": \"Summer Infant ...\"}, \"Safety 1st Vantage High Back Booster Car Seat, Nitron\": {\"frequency\": 24, \"value\": \"Safety 1st Vantage ...\"}, \"Safety 1st Power Strip Cover\": {\"frequency\": 18, \"value\": \"Safety 1st Power ...\"}, \"Baby Starters Plush Snuggle Buddy, Blue Monkey\": {\"frequency\": 44, \"value\": \"Baby Starters ...\"}, \"ERGObaby Heart2Heart Infant Insert, Natural\": {\"frequency\": 47, \"value\": \"ERGObaby ...\"}, \"Luvable Friends Flannel Fitted Crib Sheet, Yellow Circle\": {\"frequency\": 24, \"value\": \"Luvable Friends ...\"}, \"BRICA Roll 'n Go Car Seat Transporter\": {\"frequency\": 36, \"value\": \"BRICA Roll 'n Go ...\"}, \"Kidkusion Toddler Edge Kushions Black\": {\"frequency\": 52, \"value\": \"Kidkusion Toddler ...\"}, \"Sliding Door Locks\": {\"frequency\": 25, \"value\": \"Sliding Door Locks\"}, \"Stork Craft Portofino 4-in-1 Fixed Side Convertible Crib and Changer, Espresso\": {\"frequency\": 55, \"value\": \"Stork Craft ...\"}, \"The Original Tummy Tub Baby Bath - Clear\": {\"frequency\": 23, \"value\": \"The Original Tummy ...\"}, \"Safety 1st Perfect Fit Gate\": {\"frequency\": 25, \"value\": \"Safety 1st Perfect ...\"}, \"The First Years Deluxe Fold and Go Diapering Kit, Black/Gray\": {\"frequency\": 22, \"value\": \"The First Years ...\"}, \"Munchkin Light My Way Nightlight\": {\"frequency\": 20, \"value\": \"Munchkin Light My ...\"}, \"Philips AVENT 11 Ounce BPA Free Classic Polypropylene Bottle, 1-Pack\": {\"frequency\": 23, \"value\": \"Philips AVENT 11 ...\"}, \"North States 3 in 1 Metal Superyard 2 Panel Extension, Taupe\": {\"frequency\": 22, \"value\": \"North States 3 in ...\"}, \"HALO SleepSack 100% Cotton Swaddle, Soft Pink, Newborn\": {\"frequency\": 99, \"value\": \"HALO SleepSack ...\"}, \"Piyo Piyo Yellow Baby Nail Scissors\": {\"frequency\": 102, \"value\": \"Piyo Piyo Yellow ...\"}, \"Disney 4 Piece Toddler Bedding Set, Taking The Race\": {\"frequency\": 33, \"value\": \"Disney 4 Piece ...\"}, \"Graco Lauren Dressing Table, White\": {\"frequency\": 39, \"value\": \"Graco Lauren ...\"}, \"Carters Wrap Me Up Receiving Blanket, 4 Pack, Green\": {\"frequency\": 31, \"value\": \"Carters Wrap Me Up ...\"}, \"Jeep Overland Limited Jogging Stroller with Front Fixed Wheel, Fierce\": {\"frequency\": 45, \"value\": \"Jeep Overland ...\"}, \"Jeep Car Seat Travel Bag\": {\"frequency\": 78, \"value\": \"Jeep Car Seat ...\"}, \"OXO Tot Seedling Youth Booster Seat, Green\": {\"frequency\": 43, \"value\": \"OXO Tot Seedling ...\"}, \"Prince Lionheart weePOD, Green\": {\"frequency\": 28, \"value\": \"Prince Lionheart ...\"}, \"Earlyears Fill n Fun Water Mat Toy\": {\"frequency\": 42, \"value\": \"Earlyears Fill n ...\"}, \"Safety 1st Crystal Clear Baby Monitor, White\": {\"frequency\": 62, \"value\": \"Safety 1st Crystal ...\"}, \"Ameda Purely Yours Breast Pump - Carry All\": {\"frequency\": 65, \"value\": \"Ameda Purely Yours ...\"}, \"Medela Nursing Stool\": {\"frequency\": 23, \"value\": \"Medela Nursing ...\"}, \"Summer Infant Sure and Secure Double Bedrail, Blue\": {\"frequency\": 34, \"value\": \"Summer Infant Sure ...\"}, \"Tadpoles Playmat Set, Modern/Multi\": {\"frequency\": 49, \"value\": \"Tadpoles Playmat ...\"}, \"The First Years Stack N Count Cups\": {\"frequency\": 42, \"value\": \"The First Years ...\"}, \"Philips AVENT BPA Free Contemporary Freeflow Pacifier, 0-6 Months, 2-Pack, Colors and Designs May Vary\": {\"frequency\": 38, \"value\": \"Philips AVENT BPA ...\"}, \"Carters Easy Fit Sateen Crib Fitted Sheet, Ecru\": {\"frequency\": 31, \"value\": \"Carters Easy Fit ...\"}, \"Fantasy Furniture Roundy Chair with Microsuede Ottoman, Hot Pink\": {\"frequency\": 21, \"value\": \"Fantasy Furniture ...\"}, \"Baby Aspen Let The Fin Begin Terry Shark Robe, Blue, 0-9 Months\": {\"frequency\": 24, \"value\": \"Baby Aspen Let The ...\"}, \"Boba Classic Baby Carrier, Dusk\": {\"frequency\": 27, \"value\": \"Boba Classic Baby ...\"}, \"Philips AVENT 9 Ounce BPA Free Natural Drinking Cup, 1-Pack, Red\": {\"frequency\": 61, \"value\": \"Philips AVENT 9 ...\"}, \"Professional Clinical Large LCD Non-contact Infrared Thermometer - Forehead (Fahrenheit Readings)\": {\"frequency\": 32, \"value\": \"Professional ...\"}, \"Chicco Ct0.6 Capri Lightweight Stroller, Red\": {\"frequency\": 18, \"value\": \"Chicco Ct0.6 Capri ...\"}, \"Graco Contempo Highchair, Rittenhouse\": {\"frequency\": 23, \"value\": \"Graco Contempo ...\"}, \"Moby Wrap UV SPF 50+ 100% Cotton Baby Carrier, Sand\": {\"frequency\": 35, \"value\": \"Moby Wrap UV SPF ...\"}, \"Fisher-Price 2-in-1 Projection Mobile, Precious Planet\": {\"frequency\": 153, \"value\": \"Fisher-Price ...\"}, \"Peg-Perego Prima Pappa Best High Chair, Paloma\": {\"frequency\": 22, \"value\": \"Peg-Perego Prima ...\"}, \"Playtex Lil' Gripper/Anytime 9 Ounce Straw Cup, 2 Count, Colors May Vary\": {\"frequency\": 23, \"value\": \"Playtex Lil' ...\"}, \"Munchkin Five Sea Squirts\": {\"frequency\": 42, \"value\": \"Munchkin Five Sea ...\"}, \"Medela Value Pack Bpa-free Feeding Gift Set : New Wide Base Nipple\": {\"frequency\": 22, \"value\": \"Medela Value Pack ...\"}, \"Ocean Wonders Musical Aquarium Crib Attachment\": {\"frequency\": 71, \"value\": \"Ocean Wonders ...\"}, \"Luvable Friends 3 Pack Assorted Sippy Cups &amp; Lids, Pink Assorted\": {\"frequency\": 25, \"value\": \"Luvable Friends 3 ...\"}, \"Kidco Auto Close HearthGate Black Pet Gate\": {\"frequency\": 22, \"value\": \"Kidco Auto Close ...\"}, \"5 Piece Dark Gray Suit with Shirt, Vest, and Tie - Size 10\": {\"frequency\": 32, \"value\": \"5 Piece Dark Gray ...\"}, \"Quick Clean Breastpump Accessory Wipes 24 Pack\": {\"frequency\": 36, \"value\": \"Quick Clean ...\"}, \"babyletto Modo 3 in 1 Crib with Toddler Rail, Espresso\": {\"frequency\": 23, \"value\": \"babyletto Modo 3 ...\"}, \"Fisher-Price Space Saver High Chair - Tan\": {\"frequency\": 36, \"value\": \"Fisher-Price Space ...\"}, \"Summer Infant Duomat\": {\"frequency\": 19, \"value\": \"Summer Infant ...\"}, \"Gerber Birdseye 10 Count Flatfold Cloth Diapers, White\": {\"frequency\": 45, \"value\": \"Gerber Birdseye 10 ...\"}, \"Philips AVENT BPA Free Classic Polypropylene Bottle, Pink, 9 Ounce, 3 Pack\": {\"frequency\": 23, \"value\": \"Philips AVENT BPA ...\"}, \"Playtex Diaper Genie Elite Diaper Disposal Pail, White\": {\"frequency\": 147, \"value\": \"Playtex Diaper ...\"}, \"NTM-910YIC - Sony Baby Call Nursery Monitor\": {\"frequency\": 284, \"value\": \"NTM-910YIC - Sony ...\"}, \"Animal Planet's Big Tub of Dinosaurs\": {\"frequency\": 44, \"value\": \"Animal Planet's ...\"}, \"Baby Trend Expedition LX Travel System, Millennium\": {\"frequency\": 30, \"value\": \"Baby Trend ...\"}, \"KidCo Center Gateway - White\": {\"frequency\": 28, \"value\": \"KidCo Center ...\"}, \"Britax Advocate 70 CS Click &amp; Safe Convertible Car Seat (Previous Version), Onyx\": {\"frequency\": 34, \"value\": \"Britax Advocate 70 ...\"}, \"Sugarbooger Classic Lunch Sack, Dia De Los Muertos\": {\"frequency\": 23, \"value\": \"Sugarbooger ...\"}, \"NUK Fill &amp; Freeze Pops\": {\"frequency\": 20, \"value\": \"NUK Fill &amp; ...\"}, \"Best Bottom Cloth Diapers - Snap - Orange Sherbet\": {\"frequency\": 36, \"value\": \"Best Bottom Cloth ...\"}, \"Upspring Baby Walking Wings Learning To Walk Assistant Blue\": {\"frequency\": 21, \"value\": \"Upspring Baby ...\"}, \"Fisher-Price Papasan Cradle Swing, Butterfly Garden\": {\"frequency\": 193, \"value\": \"Fisher-Price ...\"}, \"Baby Brezza One Step Baby Food Maker, White/Grey\": {\"frequency\": 47, \"value\": \"Baby Brezza One ...\"}, \"Kushies &quot;On the Go&quot; 2 Pack Wet Bag, Green (Patterns and Colors May Vary)\": {\"frequency\": 36, \"value\": \"Kushies &quot;On ...\"}, \"Kinderglo Portable Fun and Safe Rechargeable Night Light, Quarter Moon\": {\"frequency\": 53, \"value\": \"Kinderglo Portable ...\"}, \"Motorola Digital Audio Baby Monitor\": {\"frequency\": 20, \"value\": \"Motorola Digital ...\"}, \"Trend Lab Storage Caddy, Ultrasuede Brown/Pink\": {\"frequency\": 36, \"value\": \"Trend Lab Storage ...\"}, \"Re-Play Divided Plates, Aqua, Green, Orange, 3-Count\": {\"frequency\": 50, \"value\": \"Re-Play Divided ...\"}, \"Ju-Ju-Be B.F.F. Diaper Bag, Black/Silver\": {\"frequency\": 33, \"value\": \"Ju-Ju-Be B.F.F. ...\"}, \"&quot;A Little Pillow Company&quot; Hypoallergenic TODDLER PILLOW in White - 13&quot;x18&quot; (Ages 2 - 4)\": {\"frequency\": 32, \"value\": \"&quot;A Little ...\"}, \"Mustela 2-In-1 Hair &amp; Body Shampoo 6.76 ounces\": {\"frequency\": 19, \"value\": \"Mustela 2-In-1 ...\"}, \"MAM Love and Affection 2 Pack Pacifier Clips, Colors May Vary\": {\"frequency\": 18, \"value\": \"MAM Love and ...\"}, \"Kalencom Potette Plus Liners - 30 Liners\": {\"frequency\": 35, \"value\": \"Kalencom Potette ...\"}, \"Ikea 36 Pcs Kalas Kids Plastic BPA Free Flatware, Bowl, Plate, Tumbler Set, Colorful\": {\"frequency\": 36, \"value\": \"Ikea 36 Pcs Kalas ...\"}, \"Sassy No Scratch Bottle Brush, Colors May Vary\": {\"frequency\": 18, \"value\": \"Sassy No Scratch ...\"}, \"Baby Einstein Musical Motion Activity Jumper\": {\"frequency\": 17, \"value\": \"Baby Einstein ...\"}, \"Razbaby RaZberry Teether - Red/Blue 2-Pack\": {\"frequency\": 16, \"value\": \"Razbaby RaZberry ...\"}, \"The First Years Newborn to Toddler Reclining Feeding Seat\": {\"frequency\": 53, \"value\": \"The First Years ...\"}, \"Samsung SEW-3037W Wireless Pan Tilt Video Baby Monitor Infrared Night Vision and Zoom, 3.5 inch\": {\"frequency\": 122, \"value\": \"Samsung SEW-3037W ...\"}, \"Philips AVENT Washable Nursing Pads, 6-Count\": {\"frequency\": 59, \"value\": \"Philips AVENT ...\"}, \"My Brest Friend Pillow, Sunburst\": {\"frequency\": 74, \"value\": \"My Brest Friend ...\"}, \"Dr. Brown's 3 Pack BPA Free Polypropylene Bottle, 8 oz\": {\"frequency\": 68, \"value\": \"Dr. Brown's 3 Pack ...\"}, \"Dr. Brown's Natural Flow Standard Glass Bottles, 4 Ounce, 2-Count\": {\"frequency\": 31, \"value\": \"Dr. Brown's ...\"}, \"Nursery Fresh Refill for Diaper Genie 4 Pack, 1,088 Count\": {\"frequency\": 38, \"value\": \"Nursery Fresh ...\"}, \"HALO SleepSack Micro-Fleece Early Walker Wearable Blanket, Baby Blue, Large\": {\"frequency\": 77, \"value\": \"HALO SleepSack ...\"}, \"Jolly Jumper Auto Seat Back Protector - 2 Pack\": {\"frequency\": 23, \"value\": \"Jolly Jumper Auto ...\"}, \"Infantino Swift Classic Carrier Black\": {\"frequency\": 107, \"value\": \"Infantino Swift ...\"}, \"DaVinci Elizabeth II Convertible Toddler Bed in White\": {\"frequency\": 19, \"value\": \"DaVinci Elizabeth ...\"}, \"P'Kolino Little Sofa Lounge, Red\": {\"frequency\": 20, \"value\": \"P'Kolino Little ...\"}, \"Fisher-Price Rainforest Peek-a-Boo Soother, Waterfall\": {\"frequency\": 24, \"value\": \"Fisher-Price ...\"}, \"Animals Alphabet Baby Nursery Peel &amp; Stick Wall Art Sticker Decals for Boys and Girls\": {\"frequency\": 43, \"value\": \"Animals Alphabet ...\"}, \"Summer Infant Little Looster\": {\"frequency\": 39, \"value\": \"Summer Infant ...\"}, \"Sesame Street Framed Friends Green Folding Travel Potty Seat\": {\"frequency\": 24, \"value\": \"Sesame Street ...\"}, \"Fisher-Price Luv U Zoo EZ Clean High Chair\": {\"frequency\": 73, \"value\": \"Fisher-Price Luv U ...\"}, \"3 Packs of NUK Replacement Silicone Spout, Clear\": {\"frequency\": 22, \"value\": \"3 Packs of NUK ...\"}, \"Withings Smart Baby Monitor, White\": {\"frequency\": 48, \"value\": \"Withings Smart ...\"}, \"Juvenile Solutions Baby Cubes (2 oz/Pack of 8)\": {\"frequency\": 24, \"value\": \"Juvenile Solutions ...\"}, \"Munchkin Easy-Close Extra Tall and Wide Metal Gate, Dark Grey\": {\"frequency\": 30, \"value\": \"Munchkin Easy- ...\"}, \"Philips AVENT BPA Free Bottle, 4 Ounce, Dual Pack\": {\"frequency\": 37, \"value\": \"Philips AVENT BPA ...\"}, \"Cosco Flat-Fold High Chair, Zambia\": {\"frequency\": 22, \"value\": \"Cosco Flat-Fold ...\"}, \"The First Years Microwave Sterilizer\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"HALO SleepSack Micro Fleece Wearable Blanket, Print Boy, Small\": {\"frequency\": 36, \"value\": \"HALO SleepSack ...\"}, \"Beaba Multiportion Freezer Tray - Orange\": {\"frequency\": 40, \"value\": \"Beaba Multiportion ...\"}, \"Chicco Capri Lightweight Stroller, Tangerine\": {\"frequency\": 60, \"value\": \"Chicco Capri ...\"}, \"Stork Craft Beatrice 4 Drawer Chest, White\": {\"frequency\": 30, \"value\": \"Stork Craft ...\"}, \"Baby Einstein Baby Neptune Ocean Orchestra Musical Toy\": {\"frequency\": 20, \"value\": \"Baby Einstein Baby ...\"}, \"BRICA Fold N' Go Travel Booster Seat, Gray/Black/Green\": {\"frequency\": 43, \"value\": \"BRICA Fold N' Go ...\"}, \"Evenflo Summit Easy Walk-Thru Gate\": {\"frequency\": 38, \"value\": \"Evenflo Summit ...\"}, \"Dream Collection Doll Feeding Time Set with Pacifier\": {\"frequency\": 21, \"value\": \"Dream Collection ...\"}, \"MobiCam Audio Video Baby Monitoring System\": {\"frequency\": 35, \"value\": \"MobiCam Audio ...\"}, \"2 Tubing for Medela Pump in Style and New Pump in Style Advanced Breast Pump - BPA Free, Steam Heat Tolerant; Replacement for Medela Part # 87212, 8007156, 8007212; Made by Maymom (One Pack)\": {\"frequency\": 22, \"value\": \"2 Tubing for ...\"}, \"Kiddopotamus SwaddleMe 100% Cotton Knit, Small, Sage\": {\"frequency\": 18, \"value\": \"Kiddopotamus ...\"}, \"Spray Pal - Cloth Diaper Sprayer Splatter Shield\": {\"frequency\": 29, \"value\": \"Spray Pal - Cloth ...\"}, \"The First Years Breastflow Milk Storage Organizer\": {\"frequency\": 75, \"value\": \"The First Years ...\"}, \"Jeep Cherokee Sport Stroller, Siren\": {\"frequency\": 30, \"value\": \"Jeep Cherokee ...\"}, \"The First Years True Choice P400 Premium Digital Monitor, 2 Parent Unit\": {\"frequency\": 33, \"value\": \"The First Years ...\"}, \"Cozy Car Seat Microfiber and Fleece Cover- Pink\": {\"frequency\": 28, \"value\": \"Cozy Car Seat ...\"}, \"Dappi Waterproof 100% Nylon Diaper Pants, 2 Pack, White, Small\": {\"frequency\": 46, \"value\": \"Dappi Waterproof ...\"}, \"Digital Connect Digital Baby Monitor - 1 Parent Unit\": {\"frequency\": 25, \"value\": \"Digital Connect ...\"}, \"ERGObaby Original Doll Carrier, Galaxy Grey\": {\"frequency\": 34, \"value\": \"ERGObaby Original ...\"}, \"Carters Quilted Woven Playard Fitted Sheet, Animal\": {\"frequency\": 31, \"value\": \"Carters Quilted ...\"}, \"Disney Mickey Mouse Space Adventures 4 Piece Toddler Set, Blue\": {\"frequency\": 22, \"value\": \"Disney Mickey ...\"}, \"Playtex Diaper Genie Essentials Diaper Disposal Pail\": {\"frequency\": 38, \"value\": \"Playtex Diaper ...\"}, \"Regalo Easy Step Walk Thru Gate, White\": {\"frequency\": 375, \"value\": \"Regalo Easy Step ...\"}, \"Skip Hop Reversible Plush Blanket, Alphabet Zoo\": {\"frequency\": 22, \"value\": \"Skip Hop ...\"}, \"C.R. Gibson First Year Calendar, Alex\": {\"frequency\": 22, \"value\": \"C.R. Gibson First ...\"}, \"Lifefactory 9-Ounce Glass Bottle, Raspberry\": {\"frequency\": 27, \"value\": \"Lifefactory ...\"}, \"Levana Wireless Audio Baby Monitor with Sound Indicator LEDs (LV-TW100)\": {\"frequency\": 26, \"value\": \"Levana Wireless ...\"}, \"Sassy Rattlin Rings, Blue/Black\": {\"frequency\": 36, \"value\": \"Sassy Rattlin ...\"}, \"Lamaze Tug &amp; Play Activity Knot Take Along Toy\": {\"frequency\": 18, \"value\": \"Lamaze Tug &amp; ...\"}, \"Lamaze High-Contrast Panda Rattle\": {\"frequency\": 23, \"value\": \"Lamaze High- ...\"}, \"2 in 1 Professional Clinical RY230 Large LCD Non-contact Infrared Thermometer - Forehead and Surface\": {\"frequency\": 45, \"value\": \"2 in 1 ...\"}, \"C.R. Gibson Thank You Notes, 10 Boxed, Alligator\": {\"frequency\": 18, \"value\": \"C.R. Gibson Thank ...\"}, \"[Award Winning] Kidsme Food Feeder (Large size)\": {\"frequency\": 52, \"value\": \"[Award Winning] ...\"}, \"Kidco Anti-Tip TV Strap - 2 Pack\": {\"frequency\": 20, \"value\": \"Kidco Anti-Tip TV ...\"}, \"Snappi Cloth Diaper Fasteners - Pack of 5 (2 Mint Green, 2 White, 1 Blue)\": {\"frequency\": 26, \"value\": \"Snappi Cloth ...\"}, \"3 Pack Snack Trap (colors may vary)\": {\"frequency\": 37, \"value\": \"3 Pack Snack Trap ...\"}, \"Summer Infant By Your Side Sleeper Portable Bedding\": {\"frequency\": 29, \"value\": \"Summer Infant By ...\"}, \"Mommy's Helper Slide-Lok Bi-Fold Door Lock\": {\"frequency\": 76, \"value\": \"Mommy's Helper ...\"}, \"Britax Marathon G4 Convertible Car Seat, Cowmooflage\": {\"frequency\": 32, \"value\": \"Britax Marathon G4 ...\"}, \"Playtex Lil' Gripper/TrainingTime Straw Trainer Cup, 6 Ounce , Colors May Vary\": {\"frequency\": 46, \"value\": \"Playtex Lil' Gripp ...\"}, \"Diono Radian Travel Bag, Black\": {\"frequency\": 23, \"value\": \"Diono Radian ...\"}, \"Rhino Toys Oball Rattle, Colors May Vary\": {\"frequency\": 23, \"value\": \"Rhino Toys Oball ...\"}, \"UPPAbaby 2013 G-lite Stroller, Denny Red\": {\"frequency\": 18, \"value\": \"UPPAbaby 2013 ...\"}, \"NUK Active Silicone Spout Learning Cup, Ladybug, 10-Ounce\": {\"frequency\": 27, \"value\": \"NUK Active ...\"}, \"Rumparooz Reusable Cloth Pocket Diaper, Ladder 6, Aplix\": {\"frequency\": 28, \"value\": \"Rumparooz Reusable ...\"}, \"Evenflo Home D&eacute;cor Wood Gate, Natural Oak\": {\"frequency\": 19, \"value\": \"Evenflo Home ...\"}, \"Thirsties Duo Wrap Snap, Ocean Blue, Size One (6-18 lbs)\": {\"frequency\": 150, \"value\": \"Thirsties Duo Wrap ...\"}, \"Cosco High Back Booster, Ava\": {\"frequency\": 19, \"value\": \"Cosco High Back ...\"}, \"Trend Lab Fleece CribWrap Rail Covers for Crib Sides (Set of 2), Pink, Wide\": {\"frequency\": 30, \"value\": \"Trend Lab Fleece ...\"}, \"GumDrop Pacifier Full-Term Natural Scent Orange 5 Pack\": {\"frequency\": 21, \"value\": \"GumDrop Pacifier ...\"}, \"JJ Cole Original Infant Bundle Me, Graphite\": {\"frequency\": 42, \"value\": \"JJ Cole Original ...\"}, \"Evenflo Crosstown Soft Portable Travel Gate\": {\"frequency\": 46, \"value\": \"Evenflo Crosstown ...\"}, \"Baby's My First Photo Album of Family &amp; Friends\": {\"frequency\": 55, \"value\": \"Baby's My First ...\"}, \"Safety 1st Alpha Elite 65 Infant Car Seat, Rachel\": {\"frequency\": 20, \"value\": \"Safety 1st Alpha ...\"}, \"Trend Lab Caterpillar Blooming Bouquet Burp Cloths, Set of 4\": {\"frequency\": 30, \"value\": \"Trend Lab ...\"}, \"Pourty Easy-to-Pour Potty, Blue\": {\"frequency\": 30, \"value\": \"Pourty Easy-to- ...\"}, \"Graco Charleston Non-Drop Classic Crib, Cherry\": {\"frequency\": 21, \"value\": \"Graco Charleston ...\"}, \"The First Years Compass Pathway B570 Adjustable Booster Seat, Black and Khaki\": {\"frequency\": 27, \"value\": \"The First Years ...\"}, \"Graco Affix Backless Youth Booster Seat with Latch System, Sailor\": {\"frequency\": 45, \"value\": \"Graco Affix ...\"}, \"The First Years Breastflow Mipump Single Electric Breast Pump\": {\"frequency\": 23, \"value\": \"The First Years ...\"}, \"Arm's Reach Mini Co-Sleeper Bassinet - Natural\": {\"frequency\": 26, \"value\": \"Arm's Reach Mini ...\"}, \"Eddie Bauer Velboa Play Yard Sheet, Ecru\": {\"frequency\": 23, \"value\": \"Eddie Bauer Velboa ...\"}, \"Philips AVENT BPA Free ISIS iQ Duo Twin Electric Breast Pump, White\": {\"frequency\": 20, \"value\": \"Philips AVENT BPA ...\"}, \"Carters Super Soft Bumper, Pink\": {\"frequency\": 58, \"value\": \"Carters Super Soft ...\"}, \"The First Years Massaging Action Teether\": {\"frequency\": 39, \"value\": \"The First Years ...\"}, \"Itzy Ritzy Snack HappensSnack Mini Reusable Snack Bag, Social Circle Pink, 2-Count\": {\"frequency\": 41, \"value\": \"Itzy Ritzy Snack ...\"}, \"BOB Sport Utility Single Stroller, Blue\": {\"frequency\": 20, \"value\": \"BOB Sport Utility ...\"}, \"Levana Jena Digital Baby Video Monitor with 8 Hour Rechargeable Battery and Talk to Baby Intercom\": {\"frequency\": 115, \"value\": \"Levana Jena ...\"}, \"Lilly Gold Sit 'n Stroll 5-in-1 Combination Car Seat/Stroller\": {\"frequency\": 19, \"value\": \"Lilly Gold Sit 'n ...\"}, \"Munchkin Mighty Grip Flip Straw Cups 2-Pack, 10- Ounce (Colors Vary)\": {\"frequency\": 34, \"value\": \"Munchkin Mighty ...\"}, \"Boon Squirt Silicone Baby Food Dispensing Spoon,Green\": {\"frequency\": 23, \"value\": \"Boon Squirt ...\"}, \"Eddie Bauer Car Seat Travel Bag\": {\"frequency\": 23, \"value\": \"Eddie Bauer Car ...\"}, \"Fisher-Price Deluxe Bouncer, My Little Snugabunny\": {\"frequency\": 112, \"value\": \"Fisher-Price ...\"}, \"Medela Single Deluxe Battery/Electric Breastpump\": {\"frequency\": 35, \"value\": \"Medela Single ...\"}, \"Philips AVENT 3-in-1 Electric Steam Sterilizer\": {\"frequency\": 76, \"value\": \"Philips AVENT ...\"}, \"BRICA Corner Bath Basket Toy Organizer\": {\"frequency\": 36, \"value\": \"BRICA Corner Bath ...\"}, \"Graco Bumper Jumper in Little Jungle\": {\"frequency\": 141, \"value\": \"Graco Bumper ...\"}, \"Bright Starts Start Your Senses Sensory Giraffe\": {\"frequency\": 20, \"value\": \"Bright Starts ...\"}, \"Infantino Cloud Cart Cover, Numbers\": {\"frequency\": 25, \"value\": \"Infantino Cloud ...\"}, \"BABYBJORN Smart Potty - Red\": {\"frequency\": 68, \"value\": \"BABYBJORN Smart ...\"}, \"Playtex Nurser With Drop-Ins Liner, 4 Ounce, Colors May Vary, 3-Count\": {\"frequency\": 51, \"value\": \"Playtex Nurser ...\"}, \"aden + anais Muslin Dream Blanket, For The Birds - Owl\": {\"frequency\": 53, \"value\": \"aden + anais ...\"}, \"Em's 4 Bubs Hearing Protection Baby Earmuffs Size 0-18 Months (Black)\": {\"frequency\": 30, \"value\": \"Em's 4 Bubs ...\"}, \"Summer Infant Mother's Touch Deluxe Baby Bather, Blue\": {\"frequency\": 18, \"value\": \"Summer Infant ...\"}, \"Baby Trend Activity Walker\": {\"frequency\": 21, \"value\": \"Baby Trend ...\"}, \"Fisher-Price Cradle n Swing, My Little Lamb\": {\"frequency\": 88, \"value\": \"Fisher-Price ...\"}, \"Baby Einstein Press and Play Pal Toy, Neptune\": {\"frequency\": 47, \"value\": \"Baby Einstein ...\"}, \"Munchkin 2 Pack Mighty Grip Spill-Proof Cup, 10 Ounce, Colors May Vary\": {\"frequency\": 18, \"value\": \"Munchkin 2 Pack ...\"}, \"Philips AVENT Comfort Breast Shell Set, 2-Pack\": {\"frequency\": 34, \"value\": \"Philips AVENT ...\"}, \"Nosefrida Baby Nasal Aspirator with 4 filters and 20 Additional Filters\": {\"frequency\": 167, \"value\": \"Nosefrida Baby ...\"}, \"Motorola MBP36 Remote Wireless Video Baby Monitor with 3.5-Inch Color LCD Screen, Infrared Night Vision and Remote Camera Pan, Tilt, and Zoom\": {\"frequency\": 201, \"value\": \"Motorola MBP36 ...\"}, \"Baby Jogger City Select Single Stroller, Onyx\": {\"frequency\": 26, \"value\": \"Baby Jogger City ...\"}, \"Boon Lawn Countertop Drying Rack, Green\": {\"frequency\": 61, \"value\": \"Boon Lawn ...\"}, \"North States Superyard 3 in 1 Wood Gate\": {\"frequency\": 40, \"value\": \"North States ...\"}, \"Safety 1st OnBoard 35 Adjustable Infant Car Seat Base, Black\": {\"frequency\": 39, \"value\": \"Safety 1st OnBoard ...\"}, \"Baby Jogger 2012 City Mini Single Stroller, Green/Gray\": {\"frequency\": 42, \"value\": \"Baby Jogger 2012 ...\"}, \"CribWrap Crib Wrap 3PC Rail Cover Set By Trend Lab - 1- 51&quot; Front Rail Cover &amp; 2- 27&quot; Side Rail Covers &amp; Bonus Cloud B Plush Rattle, Blue Fleece\": {\"frequency\": 18, \"value\": \"CribWrap Crib Wrap ...\"}, \"Cosco Scenera Convertible Car Seat Black\": {\"frequency\": 36, \"value\": \"Cosco Scenera ...\"}, \"Fresh N Freeze 2 oz. Reusable Baby Food Containers 12-Pack\": {\"frequency\": 60, \"value\": \"Fresh N Freeze 2 ...\"}, \"Kiddopotamus Snuzzler Complete Head and Body Support, Ivory Fleece &amp; Navy Trim\": {\"frequency\": 19, \"value\": \"Kiddopotamus ...\"}, \"Mommy's Helper Door Knob Safety Cover\": {\"frequency\": 18, \"value\": \"Mommy's Helper ...\"}, \"WubbaNub Giraffe\": {\"frequency\": 99, \"value\": \"WubbaNub Giraffe\"}, \"The First Years John Deere Massaging Corn Teether\": {\"frequency\": 28, \"value\": \"The First Years ...\"}, \"bumGenius Elemental One-Size Diaper - White\": {\"frequency\": 19, \"value\": \"bumGenius ...\"}, \"Medela Pump in Style Advanced Breast Pump with Shoulder Bag\": {\"frequency\": 18, \"value\": \"Medela Pump in ...\"}, \"Nuby 3-D Snack Keeper, Monster\": {\"frequency\": 40, \"value\": \"Nuby 3-D Snack ...\"}, \"Medela Pump in Style Advanced Double Breast Pump\": {\"frequency\": 36, \"value\": \"Medela Pump in ...\"}, \"Badger Basket Company Natural Baby Moses Basket with Hood - Blue Gingham Bedding\": {\"frequency\": 18, \"value\": \"Badger Basket ...\"}, \"Baby Deedee Sleep Nest Lite Baby Sleeping Bag, Heather Gray Lime, Small (0-6 Months)\": {\"frequency\": 18, \"value\": \"Baby Deedee Sleep ...\"}, \"Summer Infant Deluxe Comfort Booster- Tan\": {\"frequency\": 82, \"value\": \"Summer Infant ...\"}, \"Re-Play 3 Count Bowls, Pink, Green, Orange\": {\"frequency\": 19, \"value\": \"Re-Play 3 Count ...\"}, \"Squooshi Reusable Food Pouch, Small Lion/Bluebird, 2.5 Ounce, 4-Count\": {\"frequency\": 18, \"value\": \"Squooshi Reusable ...\"}, \"Mommys Helper Safe Plate Electrical Outlet Covers Standard, White\": {\"frequency\": 46, \"value\": \"Mommys Helper Safe ...\"}, \"Skip Hop Treetop Friends Activity Gym\": {\"frequency\": 49, \"value\": \"Skip Hop Treetop ...\"}, \"Philips AVENT BPA Free Infant Bottle Starter Set\": {\"frequency\": 21, \"value\": \"Philips AVENT BPA ...\"}, \"Kiddopotamus SwaddleMe Microfleece, Small, Blue\": {\"frequency\": 78, \"value\": \"Kiddopotamus ...\"}, \"Lambs &amp; Ivy Basket, Espresso\": {\"frequency\": 25, \"value\": \"Lambs &amp; Ivy ...\"}, \"Summer Infant Changing Pad Cover, Who Loves You Owl\": {\"frequency\": 19, \"value\": \"Summer Infant ...\"}, \"American Baby Company Heavenly Soft Chenille Crib Sheet, Ecru\": {\"frequency\": 28, \"value\": \"American Baby ...\"}, \"Simple Wishes Hands-Free Breastpump Bra, Pink, XS-L\": {\"frequency\": 562, \"value\": \"Simple Wishes ...\"}, \"Supergate Extra-Wide Gate, Ivory\": {\"frequency\": 33, \"value\": \"Supergate Extra- ...\"}, \"One Direction Life-size Stand-up Cutout- Niall\": {\"frequency\": 43, \"value\": \"One Direction ...\"}, \"Playtex BPA Free VentAire Wide Bottle Newborn Starter Set (Packaging may vary)\": {\"frequency\": 50, \"value\": \"Playtex BPA Free ...\"}, \"Levana BABYVIEW20 Interference Free Digital Wireless Video Baby Monitor with Night Light Lullaby Camera\": {\"frequency\": 94, \"value\": \"Levana BABYVIEW20 ...\"}, \"Prince Lionheart Wheely Bug, Ladybug, Large\": {\"frequency\": 85, \"value\": \"Prince Lionheart ...\"}, \"Dr. Brown's Formula Mixing Pitcher\": {\"frequency\": 149, \"value\": \"Dr. Brown's ...\"}, \"PBnJ baby Paci Holder, Big Pink/Purple Dots\": {\"frequency\": 21, \"value\": \"PBnJ baby Paci ...\"}, \"Magic Bumpers Portable Child Safety Bed Guard Rail 48 Inch - Set of Two\": {\"frequency\": 40, \"value\": \"Magic Bumpers ...\"}, \"Graco 1 Second Ear Thermometer\": {\"frequency\": 24, \"value\": \"Graco 1 Second Ear ...\"}, \"The First Years miPump Double Electric Breast Pump\": {\"frequency\": 52, \"value\": \"The First Years ...\"}, \"Maxi-Cosi Pria 70 with Tiny Fit Convertible Car Seat\": {\"frequency\": 27, \"value\": \"Maxi-Cosi Pria 70 ...\"}, \"Inglesina 2013 Fast Table Chair, Liquirizia\": {\"frequency\": 136, \"value\": \"Inglesina 2013 ...\"}, \"Regalo Hide Away Double Sided Bed Rail - White\": {\"frequency\": 61, \"value\": \"Regalo Hide Away ...\"}, \"Britax Boulevard G4 Convertible Car Seat, Onyx\": {\"frequency\": 18, \"value\": \"Britax Boulevard ...\"}, \"Cloud B Twilight Ladybug - Pink\": {\"frequency\": 50, \"value\": \"Cloud B Twilight ...\"}, \"Dream On Me Classic Sleigh Toddler Bed, White\": {\"frequency\": 55, \"value\": \"Dream On Me ...\"}, \"Thirsties 6 Pack Fab Wipes, Boy\": {\"frequency\": 38, \"value\": \"Thirsties 6 Pack ...\"}, \"Kinderglo Portable Fun and Safe Rechargeable Night Light, Elephant\": {\"frequency\": 28, \"value\": \"Kinderglo Portable ...\"}, \"Snoogle Chic Jersey - Snoogle Replacement Cover with Zipper for Easy Use - Heather Gray\": {\"frequency\": 32, \"value\": \"Snoogle Chic ...\"}, \"Sassy Spin Shine Rattle Developmental Toy\": {\"frequency\": 29, \"value\": \"Sassy Spin Shine ...\"}, \"The First Years 3 Pack Disney Princess Take &amp; Toss Straw Cup\": {\"frequency\": 18, \"value\": \"The First Years 3 ...\"}, \"Britax Pinnacle 90 Booster Car Seat, Broadway\": {\"frequency\": 46, \"value\": \"Britax Pinnacle 90 ...\"}, \"Nuby 5 Count Splish Splash Stacking Bath Cups\": {\"frequency\": 18, \"value\": \"Nuby 5 Count ...\"}, \"Sassy Wonder Wheel\": {\"frequency\": 116, \"value\": \"Sassy Wonder Wheel\"}, \"DEX Products Pregnancy Pillow PP-01\": {\"frequency\": 35, \"value\": \"DEX Products ...\"}, \"Britax Pioneer 70 Harness-2-Booster Car Seat, Kiwi\": {\"frequency\": 31, \"value\": \"Britax Pioneer 70 ...\"}, \"Prince Lionheart Diaper Depot Clear\": {\"frequency\": 46, \"value\": \"Prince Lionheart ...\"}, \"OXO Tot Training Cup, Aqua, 7 Ounce\": {\"frequency\": 21, \"value\": \"OXO Tot Training ...\"}, \"Giant Peel &amp; Stick Nursery Decal - Forest Animals &amp; Flowers Tree for Boys &amp; Girls (Tree Assembles 4.7 Feet Tall)\": {\"frequency\": 30, \"value\": \"Giant Peel &amp; ...\"}, \"Evenflo Big Kid AMP No Back Booster Car Seat, Red\": {\"frequency\": 25, \"value\": \"Evenflo Big Kid ...\"}, \"Sound N Lights Monitor with Dual Receivers\": {\"frequency\": 53, \"value\": \"Sound N Lights ...\"}, \"Aqueduck Faucet Extender, Pink\": {\"frequency\": 143, \"value\": \"Aqueduck Faucet ...\"}, \"Safety 1st Swing Shut Toilet Lock\": {\"frequency\": 21, \"value\": \"Safety 1st Swing ...\"}, \"Sunshine Kids Radian65 Convertible Car Seat - Champagne\": {\"frequency\": 20, \"value\": \"Sunshine Kids ...\"}, \"Mobi TykeLight Portable GloMate\": {\"frequency\": 50, \"value\": \"Mobi TykeLight ...\"}, \"Contours Options Tandem II Stroller, Tangerine\": {\"frequency\": 20, \"value\": \"Contours Options ...\"}, \"Luvable Friends Fitted Knit Crib Sheet, White\": {\"frequency\": 45, \"value\": \"Luvable Friends ...\"}, \"Joovy Tricycoo Tricycle, Greenie\": {\"frequency\": 24, \"value\": \"Joovy Tricycoo ...\"}, \"Brica Day and Night Light Musical Mirror, Gray\": {\"frequency\": 20, \"value\": \"Brica Day and ...\"}, \"Skip Hop Bath Spout Cover, Moby\": {\"frequency\": 155, \"value\": \"Skip Hop Bath ...\"}, \"Graco Sweetpeace Newborn Soothing Center, 2008\": {\"frequency\": 40, \"value\": \"Graco Sweetpeace ...\"}, \"Kidkusion Gummi Crib Rail\": {\"frequency\": 66, \"value\": \"Kidkusion Gummi ...\"}, \"Britax Marathon 70 Convertible Car Seat, Cowmooflage\": {\"frequency\": 42, \"value\": \"Britax Marathon 70 ...\"}, \"Graco Digital Deluxe iMonitor Baby Monitor\": {\"frequency\": 26, \"value\": \"Graco Digital ...\"}, \"Sassy Go Go Bugs, Styles May Vary\": {\"frequency\": 24, \"value\": \"Sassy Go Go Bugs, ...\"}, \"Cloth Diaper Sprayer--styles may vary\": {\"frequency\": 33, \"value\": \"Cloth Diaper ...\"}, \"Joovy Spoon Walker, Greenie\": {\"frequency\": 34, \"value\": \"Joovy Spoon ...\"}, \"Sleepy Wrap Classic Wrap Baby Carrier, Dark Pink, 0-18 Months\": {\"frequency\": 49, \"value\": \"Sleepy Wrap ...\"}, \"BRICA Stretch-to-Fit Window Shade\": {\"frequency\": 47, \"value\": \"BRICA Stretch-to- ...\"}, \"Boppy Travel Pillow, Mama Dot/Basket Green\": {\"frequency\": 24, \"value\": \"Boppy Travel ...\"}, \"OXO Tot Fork and Spoon Set, Green\": {\"frequency\": 54, \"value\": \"OXO Tot Fork and ...\"}, \"JJ Cole Bundleme Shearling Baby Hat, 0 - 6 Months\": {\"frequency\": 21, \"value\": \"JJ Cole Bundleme ...\"}, \"HALO SleepSack Plush Dot Velboa Wearable Blanket, Cream, Medium\": {\"frequency\": 18, \"value\": \"HALO SleepSack ...\"}, \"Summer Infant Secure Surround Play Safe Play Yard, Tan\": {\"frequency\": 71, \"value\": \"Summer Infant ...\"}, \"eWonderWorld Rainbow (6 Colors) foam Wonder Mats: Extra Thick 36 Pieces 12&quot; X 12&quot; X ~9/16&quot;\": {\"frequency\": 18, \"value\": \"eWonderWorld ...\"}, \"Lamaze Play &amp; Grow Jacques the Peacock Take Along Toy\": {\"frequency\": 107, \"value\": \"Lamaze Play &amp; ...\"}, \"The First Years Mickey Mouse 4 Piece Feeding Set\": {\"frequency\": 28, \"value\": \"The First Years ...\"}, \"Fisher-Price Potty Training, Learn-to-Flush\": {\"frequency\": 34, \"value\": \"Fisher-Price Potty ...\"}, \"Night &amp; Day Bottle Warmer\": {\"frequency\": 24, \"value\": \"Night &amp; Day ...\"}, \"Kushies Deluxe Flannel Change Pad, Yellow with Brown Dots\": {\"frequency\": 63, \"value\": \"Kushies Deluxe ...\"}, \"Britax B-Safe Infant Car Seat, Black\": {\"frequency\": 56, \"value\": \"Britax B-Safe ...\"}, \"Graco SnugRider Elite Stroller &amp; Car Seat Carrier\": {\"frequency\": 41, \"value\": \"Graco SnugRider ...\"}, \"Philips AVENT BPA Free Classic Bottle Sealing Discs\": {\"frequency\": 23, \"value\": \"Philips AVENT BPA ...\"}, \"ThumbGuard LG (7-15 yrs.)\": {\"frequency\": 31, \"value\": \"ThumbGuard LG ...\"}, \"Philips AVENT Disposable Nursing Pads, 100-Count\": {\"frequency\": 22, \"value\": \"Philips AVENT ...\"}, \"Graco Backless TurboBooster Car Seat, Jeweled Princess\": {\"frequency\": 37, \"value\": \"Graco Backless ...\"}, \"Safety 1st OnSide Air Protect Convertible Car Seat, Adeline Black\": {\"frequency\": 37, \"value\": \"Safety 1st OnSide ...\"}, \"Safety Leash for Pedometer - 6 units. Help Prevent Pedometor loss\": {\"frequency\": 33, \"value\": \"Safety Leash for ...\"}, \"Razbaby Raz-Berry silicone Teethers Double Pack Both Colors in One Package.\": {\"frequency\": 23, \"value\": \"Razbaby Raz-Berry ...\"}, \"Dex Products Safe Sleeper Bed Rail Ultra\": {\"frequency\": 36, \"value\": \"Dex Products Safe ...\"}, \"Philips Avent DECT Baby Monitor with Temperature Sensor and Night Mode\": {\"frequency\": 18, \"value\": \"Philips Avent DECT ...\"}, \"Lansinoh mOmma Bottle with NaturalWave Nipple, 8 Ounce\": {\"frequency\": 21, \"value\": \"Lansinoh mOmma ...\"}, \"North States Supergate Top-Notch Gate\": {\"frequency\": 39, \"value\": \"North States ...\"}, \"Thirsties Duo Wrap, Honeydew, Size Two (18-40 lbs)\": {\"frequency\": 56, \"value\": \"Thirsties Duo ...\"}, \"ZoLi BOT XL Straw Sippy Cup (Green) - 9 oz.\": {\"frequency\": 28, \"value\": \"ZoLi BOT XL Straw ...\"}, \"BooginHead Pacifier Holder, Pink Polka Dot\": {\"frequency\": 139, \"value\": \"BooginHead ...\"}, \"Orbelle 3-6T Toddler Bed, Natural\": {\"frequency\": 69, \"value\": \"Orbelle 3-6T ...\"}, \"Graco Jump N Jive Doorway Jumper with Interactive Musical Mat\": {\"frequency\": 18, \"value\": \"Graco Jump N Jive ...\"}, \"Lamaze Wrist Rattles\": {\"frequency\": 26, \"value\": \"Lamaze Wrist ...\"}, \"BRICA Deluxe Snack Pod Stroller Drink and Snack Holder, Gray\": {\"frequency\": 20, \"value\": \"BRICA Deluxe Snack ...\"}, \"Ergobaby Waist Extensions Baby Carrier Accessories\": {\"frequency\": 19, \"value\": \"Ergobaby Waist ...\"}, \"Munchkin Diaper Duty Organizer, Colors May Vary\": {\"frequency\": 22, \"value\": \"Munchkin Diaper ...\"}, \"Aquatopia Deluxe Safety Easy Bath Kneeler, Blue\": {\"frequency\": 21, \"value\": \"Aquatopia Deluxe ...\"}, \"Recaro Vivo High Back Booster, Carbon\": {\"frequency\": 26, \"value\": \"Recaro Vivo High ...\"}, \"Sunshine Kids Radian XTSL Convertible Car Seat, Bentley\": {\"frequency\": 29, \"value\": \"Sunshine Kids ...\"}, \"OsoCozy Flannel Baby Wipes - 15 pack (White)\": {\"frequency\": 51, \"value\": \"OsoCozy Flannel ...\"}, \"Summer Infant SwaddlePod 2-Pack, Hungry Caterpillar, Newborn\": {\"frequency\": 30, \"value\": \"Summer Infant ...\"}, \"Fisher-Price Kick and Play Piano Gym, Pink\": {\"frequency\": 37, \"value\": \"Fisher-Price Kick ...\"}, \"Safety 1st Simple Step Diaper Pail\": {\"frequency\": 55, \"value\": \"Safety 1st Simple ...\"}, \"Food Mill - BabySteps Kid Co 1 Pk\": {\"frequency\": 36, \"value\": \"Food Mill - ...\"}, \"Bamboobies Super-Soft Washable Nursing Pads - All Pale Pink\": {\"frequency\": 31, \"value\": \"Bamboobies Super- ...\"}, \"Graco Pack 'N Play Playard with Reversible Napper and Changer, Roman\": {\"frequency\": 48, \"value\": \"Graco Pack 'N Play ...\"}, \"Lifefactory Glass Baby Bottle with Silicone Sleeve, Raspberry, 9 Ounce\": {\"frequency\": 55, \"value\": \"Lifefactory Glass ...\"}, \"Boon Naked Collapsible Baby Bathtub, Blue/White\": {\"frequency\": 18, \"value\": \"Boon Naked ...\"}, \"Cardinal Gates Door Guardian, Brass\": {\"frequency\": 33, \"value\": \"Cardinal Gates ...\"}, \"OXO Tot Straw and Sippy Cup Top Cleaning Set, Orange\": {\"frequency\": 48, \"value\": \"OXO Tot Straw and ...\"}, \"Stork Craft Aspen Combo Dresser Chest, Natural\": {\"frequency\": 70, \"value\": \"Stork Craft Aspen ...\"}, \"Disney 4 Piece Minnie's Fluttery Friends Toddler Bedding Set, Lavender\": {\"frequency\": 30, \"value\": \"Disney 4 Piece ...\"}, \"Eddie Bauer Harness Buddy, Monkey\": {\"frequency\": 25, \"value\": \"Eddie Bauer ...\"}, \"Britax Advocate 70-G3 Convertible Car Seat, Onyx\": {\"frequency\": 75, \"value\": \"Britax Advocate ...\"}, \"Boon Animal Bag Stuffed Animal Storage, Blue Raspberry\": {\"frequency\": 38, \"value\": \"Boon Animal Bag ...\"}, \"Mommy's Helper Contoured Cushie Tushie Potty Seat\": {\"frequency\": 23, \"value\": \"Mommy's Helper ...\"}, \"Sunshine Kids Ultra Mat - Gray\": {\"frequency\": 23, \"value\": \"Sunshine Kids ...\"}, \"Arm's Reach Natural Original Co-Sleeper\": {\"frequency\": 35, \"value\": \"Arm's Reach ...\"}, \"Snuza Baby Monitor, Hero\": {\"frequency\": 57, \"value\": \"Snuza Baby ...\"}, \"Graco Ultra Clear 49MHZ Baby Monitor\": {\"frequency\": 26, \"value\": \"Graco Ultra Clear ...\"}, \"Angel Dear Cuddle Twin Set, Brown Puppy\": {\"frequency\": 25, \"value\": \"Angel Dear Cuddle ...\"}, \"Yummi Pouch (Set of 6)\": {\"frequency\": 66, \"value\": \"Yummi Pouch (Set ...\"}, \"Tortle Repositioning Beanie - FDA cleared to Prevent and Treat Flat Head Syndrome - Whimisical Blue Elephant - MD\": {\"frequency\": 18, \"value\": \"Tortle ...\"}, \"OXO Tot Sprout Chair, Orange/Birch\": {\"frequency\": 44, \"value\": \"OXO Tot Sprout ...\"}, \"BEABA Babycook PRO - Sorbet\": {\"frequency\": 18, \"value\": \"BEABA Babycook PRO ...\"}, \"American Baby Company Celery Stripe 100% Cotton Percale Crib Sheet\": {\"frequency\": 27, \"value\": \"American Baby ...\"}, \"BABYBJORN Comfort Carrier - Gray, Organic\": {\"frequency\": 24, \"value\": \"BABYBJORN Comfort ...\"}, \"L'ovedbaby 4-in-1 Nursing Shawl Out-on-the-Town Brown\": {\"frequency\": 22, \"value\": \"L'ovedbaby 4-in-1 ...\"}, \"Kalencom On the Go Potty, Blue\": {\"frequency\": 36, \"value\": \"Kalencom On the Go ...\"}, \"The Ultimate Baby Wrap in Navy\": {\"frequency\": 22, \"value\": \"The Ultimate Baby ...\"}, \"Planet Wise Wet Diaper Bag, Black, Small\": {\"frequency\": 160, \"value\": \"Planet Wise Wet ...\"}, \"Milkscreen: Home Test to Detect Alcohol in Breast Milk 8 Test Strips\": {\"frequency\": 23, \"value\": \"Milkscreen: Home ...\"}, \"Thirsties Duo All in One Snap, Blackbird, Size One (6-18 lbs)\": {\"frequency\": 27, \"value\": \"Thirsties Duo All ...\"}, \"Evenflo Jenny Jump Up Jumper, Pink/Gray/White\": {\"frequency\": 21, \"value\": \"Evenflo Jenny Jump ...\"}, \"Noodlehead Travel Buddies Neck Pillow - Dog\": {\"frequency\": 26, \"value\": \"Noodlehead Travel ...\"}, \"Joovy Room&sup2; Portable Playard, Red\": {\"frequency\": 64, \"value\": \"Joovy Room&sup2; ...\"}, \"Luvable Friends Fitted Crib Sheet, Construction\": {\"frequency\": 27, \"value\": \"Luvable Friends ...\"}, \"Summer Infant Deluxe Day &amp; Night Handheld Color Video Monitor with 2.5&quot; Screen - Pink\": {\"frequency\": 73, \"value\": \"Summer Infant ...\"}, \"Tiny Love Take Along Mobile, Animal Friends\": {\"frequency\": 133, \"value\": \"Tiny Love Take ...\"}, \"Econobum One Size Cloth Diapers Trial Pack (White)\": {\"frequency\": 29, \"value\": \"Econobum One Size ...\"}, \"The First Years Sounds For Silence Nursery Sound Machine\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"OXO Tot Dishwasher Basket, Orange\": {\"frequency\": 23, \"value\": \"OXO Tot Dishwasher ...\"}, \"Munchkin High Capacity Drying Rack, White\": {\"frequency\": 22, \"value\": \"Munchkin High ...\"}, \"Skip Hop Studio Diaper Bag, Black Dot\": {\"frequency\": 82, \"value\": \"Skip Hop Studio ...\"}, \"Beco Gemini Baby Carrier - Paige\": {\"frequency\": 80, \"value\": \"Beco Gemini Baby ...\"}, \"Safety 1st Go Hybrid Convertible Booster, Waterloo\": {\"frequency\": 20, \"value\": \"Safety 1st Go ...\"}, \"Graco Pack N Play Playard with Bassinet, Pasadena\": {\"frequency\": 65, \"value\": \"Graco Pack N Play ...\"}, \"Sassy Crib and Floor Mirror\": {\"frequency\": 100, \"value\": \"Sassy Crib and ...\"}, \"Evenflo Compact Fold High Chair, Covington\": {\"frequency\": 18, \"value\": \"Evenflo Compact ...\"}, \"Munchkin Steam Guard Microwave Sterilizer Bags, 6 Pack, White\": {\"frequency\": 38, \"value\": \"Munchkin Steam ...\"}, \"American Baby Company Quilted Fitted Waterproof Fitted Cradle Mattress Pad Cover\": {\"frequency\": 19, \"value\": \"American Baby ...\"}, \"Kinderglo Portable Fun and Safe Rechargeable Night Light, Hippo\": {\"frequency\": 24, \"value\": \"Kinderglo Portable ...\"}, \"Britax Stroller Organizer, Black\": {\"frequency\": 97, \"value\": \"Britax Stroller ...\"}, \"Carters Easy Fit Velour Plush Crib Fitted Sheet, Chocolate\": {\"frequency\": 122, \"value\": \"Carters Easy Fit ...\"}, \"The First Years Night and Day Bottle Warmer System\": {\"frequency\": 47, \"value\": \"The First Years ...\"}, \"Evenflo Portable Ultrasaucer\": {\"frequency\": 61, \"value\": \"Evenflo Portable ...\"}, \"Thermos Foogo Leak-Proof Stainless Steel 10-Ounce Food Jar, Pink\": {\"frequency\": 226, \"value\": \"Thermos Foogo ...\"}, \"HALO SleepSack 100% Cotton Wearable Blanket, Soft Pink, Small\": {\"frequency\": 121, \"value\": \"HALO SleepSack ...\"}, \"Potty Time Potty Watch - Blue\": {\"frequency\": 108, \"value\": \"Potty Time Potty ...\"}, \"Custom Fit KidCo Configure Gate - White\": {\"frequency\": 33, \"value\": \"Custom Fit KidCo ...\"}, \"Luvable Friends Geometric Print Fitted Knit Crib Sheet, Blue\": {\"frequency\": 20, \"value\": \"Luvable Friends ...\"}, \"Evenflo SimpleStep Pressure Gate Taupe\": {\"frequency\": 28, \"value\": \"Evenflo SimpleStep ...\"}, \"Growing Up Green Wood Step Stool, Natural\": {\"frequency\": 45, \"value\": \"Growing Up Green ...\"}, \"American Baby Company 100% Cotton Value Jersey Knit Fitted Portable/Mini Sheet, Celery\": {\"frequency\": 125, \"value\": \"American Baby ...\"}, \"Vulli Sophie the Giraffe Teether\": {\"frequency\": 785, \"value\": \"Vulli Sophie the ...\"}, \"Ba Baby Bottle Holder, Pink\": {\"frequency\": 16, \"value\": \"Ba Baby Bottle ...\"}, \"DaVinci Sleigh Toddler Bed - Honey Oak\": {\"frequency\": 30, \"value\": \"DaVinci Sleigh ...\"}, \"Disney Cars Step Stool\": {\"frequency\": 34, \"value\": \"Disney Cars Step ...\"}, \"Safety 1st Kirby Inflatable Tub\": {\"frequency\": 44, \"value\": \"Safety 1st Kirby ...\"}, \"Mobi Mobicam Digital Wireless Video Monitor\": {\"frequency\": 20, \"value\": \"Mobi Mobicam ...\"}, \"TL Care Organic Cotton Mittens, Natural, 0-3 Months\": {\"frequency\": 32, \"value\": \"TL Care Organic ...\"}, \"Graco Silhouette Pack 'N Play Playard, Carlisle\": {\"frequency\": 19, \"value\": \"Graco Silhouette ...\"}, \"Arms Reach Co-Sleeper brand Mini Co-Sleeper Bassinet - Natural\": {\"frequency\": 24, \"value\": \"Arms Reach Co- ...\"}, \"Hand Held Scalp Head Massager - Set of Three ( Colors May Vary )\": {\"frequency\": 181, \"value\": \"Hand Held Scalp ...\"}, \"Samsung SEW-3036WN Wireless Video Baby Monitor IR Night Vision Zoom 3.5 inch\": {\"frequency\": 46, \"value\": \"Samsung SEW-3036WN ...\"}, \"Sugar Booger &quot;Yee Haw&quot; Feeding Collection Divided Suction Plate\": {\"frequency\": 23, \"value\": \"Sugar Booger ...\"}, \"Summer Infant CushyStraps, Pink\": {\"frequency\": 45, \"value\": \"Summer Infant ...\"}, \"Fisher-Price Rainforest Waterfall Peek-a-Boo Soother\": {\"frequency\": 37, \"value\": \"Fisher-Price ...\"}, \"Safety 1st Lock Release Fridge Latch\": {\"frequency\": 21, \"value\": \"Safety 1st Lock ...\"}, \"Sunshine Kids Seat Belt Pillow, Grey\": {\"frequency\": 23, \"value\": \"Sunshine Kids Seat ...\"}, \"Philips AVENT Day Disposable Breast Pads, 60-Count\": {\"frequency\": 30, \"value\": \"Philips AVENT Day ...\"}, \"The First Years Hands Free Gate\": {\"frequency\": 181, \"value\": \"The First Years ...\"}, \"BABYBJORN Baby Carrier Active, Black/Red\": {\"frequency\": 41, \"value\": \"BABYBJORN Baby ...\"}, \"Pikibu I-See-You Car Family Mirror, Black\": {\"frequency\": 32, \"value\": \"Pikibu I-See-You ...\"}, \"Medela 150 Ml Storage Bottle Case of 10 BPA FREE\": {\"frequency\": 21, \"value\": \"Medela 150 Ml ...\"}, \"Baby Jogger 2011 City Mini Single Stroller, Black/Black\": {\"frequency\": 24, \"value\": \"Baby Jogger 2011 ...\"}, \"Fisher-Price Discover 'n Grow Storybook Projection Soother\": {\"frequency\": 27, \"value\": \"Fisher-Price ...\"}, \"Summer Infant Quickchange Portable Changing Pad, Black\": {\"frequency\": 26, \"value\": \"Summer Infant ...\"}, \"Evenflo Tribute 5 Convertible Car Seat, Ella\": {\"frequency\": 109, \"value\": \"Evenflo Tribute 5 ...\"}, \"Sesame Street Bath Tub Faucet Cover - Elmo\": {\"frequency\": 26, \"value\": \"Sesame Street Bath ...\"}, \"North States Supergate Extra Wide Wire Mesh Gate\": {\"frequency\": 46, \"value\": \"North States ...\"}, \"Child to Cherish Handprints Tower Of Time Kit in Pink\": {\"frequency\": 20, \"value\": \"Child to Cherish ...\"}, \"Safety 1st Sit Booster Seat, Green\": {\"frequency\": 18, \"value\": \"Safety 1st Sit ...\"}, \"Bright Starts Lots of Links- Solid Colors\": {\"frequency\": 70, \"value\": \"Bright Starts Lots ...\"}, \"Moby Wrap Original 100% Cotton Baby Carrier, Red\": {\"frequency\": 200, \"value\": \"Moby Wrap Original ...\"}, \"Medela Pump in Style Advanced Breast Pump with On the Go Tote\": {\"frequency\": 89, \"value\": \"Medela Pump in ...\"}, \"EvenFlo SmartSteps Exersaucer Entertainer\": {\"frequency\": 38, \"value\": \"EvenFlo SmartSteps ...\"}, \"Skip Hop Zoo Bib, Dog\": {\"frequency\": 26, \"value\": \"Skip Hop Zoo Bib, ...\"}, \"BabyComfyNose Nasal Aspirator (Blue)\": {\"frequency\": 96, \"value\": \"BabyComfyNose ...\"}, \"EveryDay Willow Wool Dryer Balls Gift Set of 3, Natural\": {\"frequency\": 21, \"value\": \"EveryDay Willow ...\"}, \"Prince Lionheart weePOD Basix, Ash Grey\": {\"frequency\": 55, \"value\": \"Prince Lionheart ...\"}, \"Fisher-Price Private Connection Monitor with Dual Receivers - White and Grey\": {\"frequency\": 26, \"value\": \"Fisher-Price ...\"}, \"Evenflo 6 Pack Classic Glass Bottle, 8-Ounce\": {\"frequency\": 42, \"value\": \"Evenflo 6 Pack ...\"}, \"The First Years 3 Pack Breastflow Bottle, 9 Ounce\": {\"frequency\": 52, \"value\": \"The First Years 3 ...\"}, \"Dreambaby Sliding Locks, 3 Pack\": {\"frequency\": 31, \"value\": \"Dreambaby Sliding ...\"}, \"Supergate Deluxe D&eacute;cor Metal Gate, Espresso\": {\"frequency\": 98, \"value\": \"Supergate Deluxe ...\"}, \"Sassy Pop n' Push Car\": {\"frequency\": 67, \"value\": \"Sassy Pop n' Push ...\"}, \"Baby K'tan Baby Carrier, Black, X-Large\": {\"frequency\": 112, \"value\": \"Baby K'tan Baby ...\"}, \"Redmon Bongo Buckets\": {\"frequency\": 22, \"value\": \"Redmon Bongo ...\"}, \"ProGradeTM Lever Handle Lock by Safety 1st\": {\"frequency\": 22, \"value\": \"ProGradeTM Lever ...\"}, \"Flingshot Flying Monkey\": {\"frequency\": 39, \"value\": \"Flingshot Flying ...\"}, \"Skip Hop Dunks Stacking Bath Toy, Blue, Green, Yellow\": {\"frequency\": 23, \"value\": \"Skip Hop Dunks ...\"}, \"Bumkins Waterproof Starterbib, Blue Fizz\": {\"frequency\": 24, \"value\": \"Bumkins Waterproof ...\"}, \"Tenergy 8 pcs C Size 5000 mAh high capacity high rate NiMH Rechargeable batteries\": {\"frequency\": 22, \"value\": \"Tenergy 8 pcs C ...\"}, \"Protect-a-Bub Single Compact Sunshade, Black\": {\"frequency\": 19, \"value\": \"Protect-a-Bub ...\"}, \"OXO Tot 4-Piece Feeding Set, Green\": {\"frequency\": 27, \"value\": \"OXO Tot 4-Piece ...\"}, \"Goldbug Animal 2 in 1 Harness, Horse\": {\"frequency\": 55, \"value\": \"Goldbug Animal 2 ...\"}, \"BABYBJORN Soft Bib, Red\": {\"frequency\": 109, \"value\": \"BABYBJORN Soft ...\"}, \"Dexbaby Nursery Organizer, White\": {\"frequency\": 41, \"value\": \"Dexbaby Nursery ...\"}, \"Wee Gallery Art Cards for Baby, Sea Collection\": {\"frequency\": 41, \"value\": \"Wee Gallery Art ...\"}, \"Fisher-Price Kick and Play Piano Gym, Discover 'N Grow\": {\"frequency\": 184, \"value\": \"Fisher-Price Kick ...\"}, \"Fisher-Price Booster Seat, Rainforest\": {\"frequency\": 82, \"value\": \"Fisher-Price ...\"}, \"Motorola Blink1 Wi-Fi Video Camera for Remote Viewing with iPhone and Android Smartphones and Tablets, Red\": {\"frequency\": 22, \"value\": \"Motorola Blink1 ...\"}, \"GumDrop Pacifier Full-Term Natural Scent Blue 5 Pack\": {\"frequency\": 22, \"value\": \"GumDrop Pacifier ...\"}, \"Fisher-Price Newborn Rock 'n Play Sleeper, Rainforest Friends\": {\"frequency\": 23, \"value\": \"Fisher-Price ...\"}, \"Blooming Bath Baby Bath - Hot Pink\": {\"frequency\": 36, \"value\": \"Blooming Bath Baby ...\"}, \"MOBI Digital Ultra Thermometer\": {\"frequency\": 23, \"value\": \"MOBI Digital Ultra ...\"}, \"timi &amp; leslie Charlie 7-Piece Diaper Bag Set, Light Brown\": {\"frequency\": 25, \"value\": \"timi &amp; leslie ...\"}, \"Carter's First Year Calendar, Laguna\": {\"frequency\": 26, \"value\": \"Carter's First ...\"}, \"Kidswitch Light Switch Extender- 3 Pack\": {\"frequency\": 70, \"value\": \"Kidswitch Light ...\"}, \"Cardinal Gates Stairway Special Gate, Black\": {\"frequency\": 27, \"value\": \"Cardinal Gates ...\"}, \"Mountain Buggy Duet Double Buggy Stroller, Black/Flint\": {\"frequency\": 18, \"value\": \"Mountain Buggy ...\"}, \"Econobum Full Kit\": {\"frequency\": 21, \"value\": \"Econobum Full Kit\"}, \"Itzy Ritzy Snack Happens Reusable Snack Bag, Rodeo Drive\": {\"frequency\": 110, \"value\": \"Itzy Ritzy Snack ...\"}, \"Gund Baby Lena Lamb Musical Toy, Jesus Loves Me\": {\"frequency\": 25, \"value\": \"Gund Baby Lena ...\"}, \"Luvable Friends 6-Pack Flannel Receiving Blankets, Blue\": {\"frequency\": 39, \"value\": \"Luvable Friends ...\"}, \"Tommee Tippee Travel Bottle and Food Warmer\": {\"frequency\": 41, \"value\": \"Tommee Tippee ...\"}, \"Seventh Generation Chlorine Free Baby Wipes Refill 350ct.\": {\"frequency\": 125, \"value\": \"Seventh Generation ...\"}, \"Summer Infant 3-Stage Superseat Highchair, Green\": {\"frequency\": 108, \"value\": \"Summer Infant ...\"}, \"4Moms 2014 Mamaroo Classic- Classic Black\": {\"frequency\": 50, \"value\": \"4Moms 2014 Mamaroo ...\"}, \"Prince Lionheart Backseat Kick Mat, Black\": {\"frequency\": 20, \"value\": \"Prince Lionheart ...\"}, \"PRIMO Infant Bath Seat (White)\": {\"frequency\": 33, \"value\": \"PRIMO Infant Bath ...\"}, \"OXO Tot Baby Blocks Freezer Storage Containers 2 Ounce, Set 6, Clear\": {\"frequency\": 93, \"value\": \"OXO Tot Baby ...\"}, \"Britax 2012 B-Agile Stroller, Red\": {\"frequency\": 81, \"value\": \"Britax 2012 ...\"}, \"Sassy Ring O' Links Rattle Developmental Toy\": {\"frequency\": 50, \"value\": \"Sassy Ring O' ...\"}, \"Munchkin Deluxe Drying Rack\": {\"frequency\": 22, \"value\": \"Munchkin Deluxe ...\"}, \"Evenflo Bounce and Learn Bee Exersaucer\": {\"frequency\": 66, \"value\": \"Evenflo Bounce and ...\"}, \"NUK Gerber Graduates Rest Easy Spoons, 5-Count\": {\"frequency\": 18, \"value\": \"NUK Gerber ...\"}, \"Bumkins Waterproof Zippered Wet/Dry Bag, Blue Owl\": {\"frequency\": 26, \"value\": \"Bumkins Waterproof ...\"}, \"Badger Basket Three Basket Set, Pink\": {\"frequency\": 24, \"value\": \"Badger Basket ...\"}, \"Skip Hop 20 Piece 70&quot;x56&quot; PlaySpot Floor Mat, Blue/Gold\": {\"frequency\": 39, \"value\": \"Skip Hop 20 Piece ...\"}, \"Crown Crafts The Original NoJo BabySling by Dr. Sears in Black Chambray\": {\"frequency\": 29, \"value\": \"Crown Crafts The ...\"}, \"Susen Safe Shampoo Shower Bathing Protect Soft Cap Hat for Baby Children Kids (Pink)\": {\"frequency\": 25, \"value\": \"Susen Safe Shampoo ...\"}, \"Britax Boulevard Convertible Car Seat, Onyx\": {\"frequency\": 21, \"value\": \"Britax Boulevard ...\"}, \"Graco Affix Highback Booster Seat with Latch System, Atomic\": {\"frequency\": 43, \"value\": \"Graco Affix ...\"}, \"Tiny Love Musical Nature Stroll Toy Bar\": {\"frequency\": 44, \"value\": \"Tiny Love Musical ...\"}, \"Motorola Additional Camera for Motorola MBP36 Baby Monitor, Brown with White\": {\"frequency\": 36, \"value\": \"Motorola ...\"}, \"Inclined to Sleep\": {\"frequency\": 37, \"value\": \"Inclined to Sleep\"}, \"Britax B-Agile and B-Safe Travel System, Red\": {\"frequency\": 24, \"value\": \"Britax B-Agile and ...\"}, \"Evenflo AMP Graphics No Back Car Seat Booster, Retro Flowers\": {\"frequency\": 30, \"value\": \"Evenflo AMP ...\"}, \"Cloud b Twilight Constellation Night Light, Turtle\": {\"frequency\": 520, \"value\": \"Cloud b Twilight ...\"}, \"The First Years Sure Comfort Newborn to Toddler Tub\": {\"frequency\": 19, \"value\": \"The First Years ...\"}, \"Simple Wishes Honeysuckle Breastmilk Storage Bags, 25-Count\": {\"frequency\": 51, \"value\": \"Simple Wishes ...\"}, \"The First Years True Fit SI C680 Car Seat, Naturalization\": {\"frequency\": 18, \"value\": \"The First Years ...\"}, \"6 Ounce Portable Reusable Resealable and Refillable Food Pouch for Baby Food (6-Pack) By Precious Tummies. Great for Applesauce, Juices, Smoothies, Yogurt, Puree, and More. Perfect Accessory For Meals on the Go and Lunch Box Snacks. Double Reinforced Top Zipper Leak Guard To Prevent Leaks.\": {\"frequency\": 27, \"value\": \"6 Ounce Portable ...\"}, \"GumDrop Pacifier Full-Term Natural Scent Pink 5 Pack\": {\"frequency\": 28, \"value\": \"GumDrop Pacifier ...\"}, \"LA Baby 4 Sided Changing Pad 32&quot;, White\": {\"frequency\": 37, \"value\": \"LA Baby 4 Sided ...\"}, \"Cloud b Twilight Constellation Night Light, Sea Turtle\": {\"frequency\": 138, \"value\": \"Cloud b Twilight ...\"}, \"Snuza Hero Baby Movement Monitor\": {\"frequency\": 54, \"value\": \"Snuza Hero Baby ...\"}, \"Britax Kick Mats (2-Pack, Black)\": {\"frequency\": 91, \"value\": \"Britax Kick Mats ...\"}, \"Philips AVENT Digital Video Baby Monitor\": {\"frequency\": 27, \"value\": \"Philips AVENT ...\"}, \"Bright Starts Grab and Stack Blocks\": {\"frequency\": 77, \"value\": \"Bright Starts Grab ...\"}, \"Nosefrida Nasal Aspirator with addtional 20 Hygiene Filters\": {\"frequency\": 30, \"value\": \"Nosefrida Nasal ...\"}, \"Infant Optics Add-On Camera for DXR-5 2.4 Ghz Video Monitor (DXR-871)\": {\"frequency\": 22, \"value\": \"Infant Optics Add- ...\"}, \"KidCo Angle Mount Safeway - Black\": {\"frequency\": 29, \"value\": \"KidCo Angle Mount ...\"}, \"Graco DuoGlider Classic Connect Stroller, Dragonfly\": {\"frequency\": 30, \"value\": \"Graco DuoGlider ...\"}, \"Ring Snuggies ~ Ring Sizer / Assorted Sizes Adjuster Set of Six Per Pack\": {\"frequency\": 40, \"value\": \"Ring Snuggies ~ ...\"}, \"JJ Cole Mode Diaper Tote Bag, Cocoa Tree\": {\"frequency\": 19, \"value\": \"JJ Cole Mode ...\"}, \"Natursutten BPA-Free Natural Rubber Pacifier, Rounded, 12 Months\": {\"frequency\": 24, \"value\": \"Natursutten BPA- ...\"}, \"Simmons Kids Beautyrest Beginnings Sleepy Whispers Ultra Deluxe 2 n 1 Crib and Toddler Mattress, Neutral\": {\"frequency\": 25, \"value\": \"Simmons Kids ...\"}, \"Baby Einstein Bendy Ball\": {\"frequency\": 159, \"value\": \"Baby Einstein ...\"}, \"Leachco Snoogle Mini Compact Side Sleeper, Sage/White dot\": {\"frequency\": 55, \"value\": \"Leachco Snoogle ...\"}, \"Summer Infant SwaddleMe Organic Adjustable Infant Wrap, Ivory, Large\": {\"frequency\": 24, \"value\": \"Summer Infant ...\"}, \"Britax B-Agile Stroller Child Tray\": {\"frequency\": 40, \"value\": \"Britax B-Agile ...\"}, \"Two Peas in a Pod - Ceramic Salt &amp; Pepper Shakers in Ivy Print Gift Box\": {\"frequency\": 21, \"value\": \"Two Peas in a Pod ...\"}, \"Contours Lite Stroller, Tangerine\": {\"frequency\": 86, \"value\": \"Contours Lite ...\"}, \"BABYBJORN BabySitter Wooden Toy\": {\"frequency\": 27, \"value\": \"BABYBJORN ...\"}, \"DaVinci Emily Mini Crib - White\": {\"frequency\": 29, \"value\": \"DaVinci Emily Mini ...\"}, \"Balboa Baby Nursing Cover, Blue Plaid\": {\"frequency\": 22, \"value\": \"Balboa Baby ...\"}, \"KidGear The Teethifier II\": {\"frequency\": 22, \"value\": \"KidGear The ...\"}, \"Britax Roundabout 55 Convertible Car Seat (Previous Version), Onyx\": {\"frequency\": 36, \"value\": \"Britax Roundabout ...\"}, \"Safety 1st Grip N' Twist Door Knob Cover, 4-Count\": {\"frequency\": 23, \"value\": \"Safety 1st Grip N' ...\"}, \"The First Years 4 Pack Take And Toss Spill Proof Cups, 10 Ounce, Colors May Vary\": {\"frequency\": 23, \"value\": \"The First Years 4 ...\"}, \"The First Years Soft Grip Trainer Seat, Blue\": {\"frequency\": 23, \"value\": \"The First Years ...\"}, \"Diono Ultra Mat Full-Size Seat Protector, Black\": {\"frequency\": 19, \"value\": \"Diono Ultra Mat ...\"}, \"Luvable Friends 12 Washcloths With Bonus Toy, Blue\": {\"frequency\": 23, \"value\": \"Luvable Friends 12 ...\"}, \"Evenflo 6 Pack Classic Glass Bottle, 4-Ounce\": {\"frequency\": 28, \"value\": \"Evenflo 6 Pack ...\"}, \"Nosefrida Hygiene Filters\": {\"frequency\": 27, \"value\": \"Nosefrida Hygiene ...\"}, \"Nuk Clear Replacement Spouts - 6 PACK Clear\": {\"frequency\": 24, \"value\": \"Nuk Clear ...\"}, \"Fisher-Price Newborn Rock n' Play Sleeper, Yellow\": {\"frequency\": 27, \"value\": \"Fisher-Price ...\"}, \"Maxboost Fusion Snap-on iPhone 5S/5 Case - Red (Fit Fusion Battery Case for iPhone 5S/5)\": {\"frequency\": 20, \"value\": \"Maxboost Fusion ...\"}, \"Chicco 360 Hook on High Chair, Midori\": {\"frequency\": 45, \"value\": \"Chicco 360 Hook on ...\"}, \"Britax Boulevard 70 CS Convertible Car Seat, Biscotti\": {\"frequency\": 34, \"value\": \"Britax Boulevard ...\"}, \"Lansinoh mOmma Straw Cup with Dual Handles, Orange\": {\"frequency\": 26, \"value\": \"Lansinoh mOmma ...\"}, \"Baby Deedee Sleep Nest Baby Sleeping Bag, Dream Blue, Small (0-6 Months)\": {\"frequency\": 70, \"value\": \"Baby Deedee Sleep ...\"}, \"Mommy's Helper Power Strip Safety Cover\": {\"frequency\": 18, \"value\": \"Mommy's Helper ...\"}, \"NUK Gerber GraduatesFun Grips Hard Spout Sippy Cups, Boy, 10 Ounce, 4-Count\": {\"frequency\": 23, \"value\": \"NUK Gerber ...\"}, \"Tommee Tippee Bottle, 9 Ounce, 3 Count\": {\"frequency\": 30, \"value\": \"Tommee Tippee ...\"}, \"Evenflo AMP High Back Car Seat Booster, Pink Angles\": {\"frequency\": 82, \"value\": \"Evenflo AMP High ...\"}, \"Bright Starts Around We Go Activity Station, Doodle Bugs\": {\"frequency\": 83, \"value\": \"Bright Starts ...\"}, \"Baby Einstein Lights &amp; Melodies Mirror\": {\"frequency\": 18, \"value\": \"Baby Einstein ...\"}, \"Kushies Waterproof Bib with Sleeves, Blue Circle, Infant\": {\"frequency\": 24, \"value\": \"Kushies Waterproof ...\"}, \"Proudbody My Little Prints Baby-Safe Ink Pad, Blue\": {\"frequency\": 55, \"value\": \"Proudbody My ...\"}, \"WubbaNub Lamb\": {\"frequency\": 49, \"value\": \"WubbaNub Lamb\"}, \"Mommys Helper Cushie Traveler Folding Padded Potty Seat with Carry Bag, White with Frog Design\": {\"frequency\": 18, \"value\": \"Mommys Helper ...\"}, \"BOB Infant Car Seat Adapter for Graco Single Strollers\": {\"frequency\": 19, \"value\": \"BOB Infant Car ...\"}, \"Philips AVENT BPA Free Classic Infant Starter Gift Set\": {\"frequency\": 69, \"value\": \"Philips AVENT BPA ...\"}, \"Leachco Prop 'R Shopper - Shopping Cart Cover - Sage Pin Dot\": {\"frequency\": 39, \"value\": \"Leachco Prop 'R ...\"}, \"Baby Food Containers- Sprout Cups - Reusable Stackable Storage Cups (12 Pack) with Tray and Dry-erase Marker - 100% BPA Free (2 Oz)\": {\"frequency\": 31, \"value\": \"Baby Food ...\"}, \"Britax Parkway SGL Belt-Positioning Booster Seat, Cub Pink\": {\"frequency\": 36, \"value\": \"Britax Parkway SGL ...\"}, \"Safety 1St Comfy Cushy 3-in-1 Potty\": {\"frequency\": 32, \"value\": \"Safety 1St Comfy ...\"}, \"Baby Jogger Car Seat Adapter for City Mini / City Elite\": {\"frequency\": 18, \"value\": \"Baby Jogger Car ...\"}, \"Medela Breastmilk Bottle Spare Parts\": {\"frequency\": 31, \"value\": \"Medela Breastmilk ...\"}, \"Merino Kids Baby Sleep Sack For Babies 0-2 Years, Banbury\": {\"frequency\": 20, \"value\": \"Merino Kids Baby ...\"}, \"Zo-li Buzz B. Baby Nail Trimmer\": {\"frequency\": 35, \"value\": \"Zo-li Buzz B. Baby ...\"}, \"Stork Craft Rochester Stages Crib with Drawer\": {\"frequency\": 22, \"value\": \"Stork Craft ...\"}, \"Tiny Love 3 in 1 Rocker Napper, Brown\": {\"frequency\": 60, \"value\": \"Tiny Love 3 in 1 ...\"}, \"Snappi Cloth Diaper Fasteners - Pack of 3 (Mint color mix)\": {\"frequency\": 30, \"value\": \"Snappi Cloth ...\"}, \"Summer Infant, Ultimate Training Pad - Twin Mattress, 38&quot; x 28&quot;\": {\"frequency\": 22, \"value\": \"Summer Infant, ...\"}, \"Maxboost Fusion Snap-on iPhone 5S/5 Case - Grey (Fit Fusion Battery Case for iPhone 5S/5)\": {\"frequency\": 22, \"value\": \"Maxboost Fusion ...\"}, \"Motorola MBP26 Wireless 2.4 GHz Video Baby Monitor with 2.4&quot; Color LCD Screen, Infrared Night Vision and Remote Camera Pan and Tilt\": {\"frequency\": 32, \"value\": \"Motorola MBP26 ...\"}, \"Gerber Graduates BPA Free 2 Pack Fun Grips spill Proof Cup, 10 Ounce, Colors May Vary\": {\"frequency\": 45, \"value\": \"Gerber Graduates ...\"}, \"Carter's Bound Keepsake Memory Book of Baby's First 5 Years, Laguna\": {\"frequency\": 38, \"value\": \"Carter's Bound ...\"}, \"LA Baby 4 Sided Changing Pad 30&quot;, White\": {\"frequency\": 31, \"value\": \"LA Baby 4 Sided ...\"}, \"Born Free Tru-Temp Bottle Warming System\": {\"frequency\": 18, \"value\": \"Born Free Tru-Temp ...\"}, \"Nuby 2 Pack Nurtur Care Infa Feeder Set, 4 Ounce, Colors May Vary\": {\"frequency\": 35, \"value\": \"Nuby 2 Pack Nurtur ...\"}, \"Munchkin White Hot Inflatable Duck Tub\": {\"frequency\": 79, \"value\": \"Munchkin White Hot ...\"}, \"Planet Wise Reusable Diaper Pail Liner, Avocado\": {\"frequency\": 104, \"value\": \"Planet Wise ...\"}, \"Fisher Price Fisher Price Fastfinder Deluxe Messenger Bag\": {\"frequency\": 22, \"value\": \"Fisher Price ...\"}, \"Summer Infant Lil' Loo Potty, Pink\": {\"frequency\": 65, \"value\": \"Summer Infant Lil' ...\"}, \"Pearhead Babyprints Keepsake Wall Frame, White\": {\"frequency\": 25, \"value\": \"Pearhead ...\"}, \"Baby Vac Nasal Aspirator 2012 Model\": {\"frequency\": 31, \"value\": \"Baby Vac Nasal ...\"}, \"BOB Handlebar Console, Duallie\": {\"frequency\": 20, \"value\": \"BOB Handlebar ...\"}, \"Angelcare Baby Sound Monitor, White\": {\"frequency\": 85, \"value\": \"Angelcare Baby ...\"}, \"Fisher-Price Precious Planet Whale of a Tub\": {\"frequency\": 65, \"value\": \"Fisher-Price ...\"}, \"Sesame Street Elmo Adventure Potty Chair\": {\"frequency\": 31, \"value\": \"Sesame Street Elmo ...\"}, \"Munchkin Click Lock 2 Count Flip Straw Cup, 9 ounce\": {\"frequency\": 21, \"value\": \"Munchkin Click ...\"}, \"3 Sprouts Laundry Hamper, Deer\": {\"frequency\": 29, \"value\": \"3 Sprouts Laundry ...\"}, \"Britax Marathon 70-G3 Convertible Car Seat, Onyx\": {\"frequency\": 174, \"value\": \"Britax Marathon ...\"}, \"Safety 1st Tubside Bath Seat\": {\"frequency\": 53, \"value\": \"Safety 1st Tubside ...\"}, \"RECARO ProRIDE Convertible Car Seat, Misty\": {\"frequency\": 156, \"value\": \"RECARO ProRIDE ...\"}, \"Baby Einstein Musical Motion Activity Jumper, Green\": {\"frequency\": 23, \"value\": \"Baby Einstein ...\"}, \"Munchkin Dora The Explorer Toddler Dining Set\": {\"frequency\": 60, \"value\": \"Munchkin Dora The ...\"}, \"Thermos Ice Mat, 9 Cube\": {\"frequency\": 30, \"value\": \"Thermos Ice Mat, 9 ...\"}, \"Playtex Diaper Genie Twist- Away Pail System\": {\"frequency\": 81, \"value\": \"Playtex Diaper ...\"}, \"babyletto Madison Swivel Glider, Mocha\": {\"frequency\": 25, \"value\": \"babyletto Madison ...\"}, \"The First Years 1 Pack Breastflow Bottle, 9 Ounce\": {\"frequency\": 26, \"value\": \"The First Years 1 ...\"}, \"Munchkin Travel Booster Seat\": {\"frequency\": 35, \"value\": \"Munchkin Travel ...\"}, \"Kissa's Pail Liner, White\": {\"frequency\": 49, \"value\": \"Kissa's Pail ...\"}, \"Summer Infant Tiny Diner for Highchairs, Blue\": {\"frequency\": 46, \"value\": \"Summer Infant Tiny ...\"}, \"Munchkin Click Lock Fresh Food Freezer Pops\": {\"frequency\": 20, \"value\": \"Munchkin Click ...\"}, \"Summer Infant Metal Expansion Gate, 6 Foot Wide Walk-Thru, Neutral finish\": {\"frequency\": 59, \"value\": \"Summer Infant ...\"}, \"Philips AVENT BPA Free Standard Breast Pump Conversion Kit\": {\"frequency\": 23, \"value\": \"Philips AVENT BPA ...\"}, \"Safety 1st Sounds n Lights Discovery Walker, Dino\": {\"frequency\": 32, \"value\": \"Safety 1st Sounds ...\"}, \"Britax B-Agile Stroller Adult Cup Holder\": {\"frequency\": 19, \"value\": \"Britax B-Agile ...\"}, \"Aden By aden + anais Muslin Swaddle Blanket 4 Pack, Oh My!\": {\"frequency\": 131, \"value\": \"Aden By aden + ...\"}, \"Britax Frontier 90 Booster Car Seat, Zebra\": {\"frequency\": 108, \"value\": \"Britax Frontier 90 ...\"}, \"Diono Radian Angle Adjuster\": {\"frequency\": 47, \"value\": \"Diono Radian Angle ...\"}, \"Summer Infant Best View Handheld Color Video Monitor, Sliver/White\": {\"frequency\": 37, \"value\": \"Summer Infant Best ...\"}, \"Boon Fluid -No-Spill Toddler Cup in Orange/Blue\": {\"frequency\": 27, \"value\": \"Boon Fluid -No- ...\"}, \"Summer Infant Ultra Plush Change Pad Cover, Blue\": {\"frequency\": 104, \"value\": \"Summer Infant ...\"}, \"Philips Avent Express Microwave Sterilizer\": {\"frequency\": 67, \"value\": \"Philips Avent ...\"}, \"Today's Mom Cozy Cuddler Pregnancy Pillow - White\": {\"frequency\": 22, \"value\": \"Today's Mom Cozy ...\"}, \"Bumkins 3 Pack Waterproof SuperBib\": {\"frequency\": 186, \"value\": \"Bumkins 3 Pack ...\"}, \"Fisher-Price Luv U Zoo Snuggle Cub Soother Mobile\": {\"frequency\": 21, \"value\": \"Fisher-Price Luv U ...\"}, \"Carters Easy Fit Jersey Portable Crib Fitted Sheet, Pink\": {\"frequency\": 27, \"value\": \"Carters Easy Fit ...\"}, \"Boppy Cottony Cute Slipcover, Emily's Garden\": {\"frequency\": 45, \"value\": \"Boppy Cottony Cute ...\"}, \"North States Supergate Stairway Gate\": {\"frequency\": 18, \"value\": \"North States ...\"}, \"Sunshine Kids Dry Seat Pad, Grey\": {\"frequency\": 28, \"value\": \"Sunshine Kids Dry ...\"}, \"Nuby Icybite Hard/Soft Teething Keys\": {\"frequency\": 26, \"value\": \"Nuby Icybite ...\"}, \"Infantino Sash Mei Tai Carrier Black/Gray\": {\"frequency\": 66, \"value\": \"Infantino Sash Mei ...\"}, \"BRICA goPad Diaper Changer\": {\"frequency\": 24, \"value\": \"BRICA goPad Diaper ...\"}, \"Replacement Tubing (Retail Pack of 2) for Medela Pump in Style and New Pump in Style Advanced Breast Pump - 100% BPA FREE\": {\"frequency\": 86, \"value\": \"Replacement Tubing ...\"}, \"Simple Wishes D Lite Hands Free Breastpump Bra, Soft Pink, Large to Plus Size\": {\"frequency\": 53, \"value\": \"Simple Wishes D ...\"}, \"JL Childress Wheelie Car Seat Travel Bag, Black\": {\"frequency\": 47, \"value\": \"JL Childress ...\"}, \"babyletto Mercer 3-in-1 Convertible Crib with Toddler Rail, Two Tone\": {\"frequency\": 21, \"value\": \"babyletto Mercer ...\"}, \"aden + anais Classic Muslin Crib Sheet, Up, Up &amp; Away Elephant\": {\"frequency\": 18, \"value\": \"aden + anais ...\"}, \"Babiators Unisex-Baby Infant Ops Junior Sunglasses, Black, Small\": {\"frequency\": 61, \"value\": \"Babiators Unisex- ...\"}, \"Bright Starts License to Drool Teether\": {\"frequency\": 33, \"value\": \"Bright Starts ...\"}, \"Edushape 4&quot; Sensory Balls, Set of 4, Solid\": {\"frequency\": 27, \"value\": \"Edushape 4&quot; ...\"}, \"Kiddopotamus Dreamsie Sleeper with Sleeves Microfleece Large, Ivory\": {\"frequency\": 21, \"value\": \"Kiddopotamus ...\"}, \"American Baby Company 100% Cotton Percale Fitted Portable/Mini Crib Sheet, Pink Dots\": {\"frequency\": 22, \"value\": \"American Baby ...\"}, \"Aquaus Toilet Bidet Handle / Diaper Sprayer with ** BONUS ** Rockin' Green Laundry Detergent and Tooth Tissue sample\": {\"frequency\": 20, \"value\": \"Aquaus Toilet ...\"}, \"Munchkin Cleaning Brush Set\": {\"frequency\": 33, \"value\": \"Munchkin Cleaning ...\"}, \"Cloud b Tranquil Turtle Night Light, Ocean\": {\"frequency\": 20, \"value\": \"Cloud b Tranquil ...\"}, \"OsoCozy Chinese Prefold Diapers, Infant 4x6x4\": {\"frequency\": 18, \"value\": \"OsoCozy Chinese ...\"}, \"Wubbanub Infant Pacifiers (Pink Kitty)\": {\"frequency\": 20, \"value\": \"Wubbanub Infant ...\"}, \"Bummis Super Whisper Wrap, White, 30 Pounds\": {\"frequency\": 20, \"value\": \"Bummis Super ...\"}, \"RECARO Performance SPORT Combination Harness to Booster, Vibe\": {\"frequency\": 34, \"value\": \"RECARO Performance ...\"}, \"JJ Cole Premaxx Sling Carrier - New Edition Red Orange\": {\"frequency\": 19, \"value\": \"JJ Cole Premaxx ...\"}, \"Baby Bottle Labels, Self-laminating - Great for Daycare\": {\"frequency\": 36, \"value\": \"Baby Bottle ...\"}, \"Dream On Me 3&quot; Foam Graco Pack 'n Play Mattress\": {\"frequency\": 87, \"value\": \"Dream On Me ...\"}, \"Munchkin Arm &amp; Hammer Diaper Pail withRefill Bags, 10-Count\": {\"frequency\": 26, \"value\": \"Munchkin Arm &amp; ...\"}, \"my best friend Inflatable breast feeding pillow\": {\"frequency\": 19, \"value\": \"my best friend ...\"}, \"Safety 1st Soothing Mist Ultrasonic Humidifier\": {\"frequency\": 63, \"value\": \"Safety 1st ...\"}, \"Baby Einstein Seek &amp; Discover Activity Gym\": {\"frequency\": 68, \"value\": \"Baby Einstein Seek ...\"}, \"Superyard Colorplay Ultimate Playard\": {\"frequency\": 20, \"value\": \"Superyard ...\"}, \"Fisher-Price Luv U Zoo Crib 'N Go Projector Soother\": {\"frequency\": 41, \"value\": \"Fisher-Price Luv U ...\"}, \"Thermos FOOGO Phases Stainless Steel Straw Bottle, Pink/Purple, 10 Ounce\": {\"frequency\": 151, \"value\": \"Thermos FOOGO ...\"}, \"Stork Craft Tuscany Glider and Ottoman, Cherry/Beige\": {\"frequency\": 66, \"value\": \"Stork Craft ...\"}, \"Dr. Brown's Gia Nursing Pillow\": {\"frequency\": 20, \"value\": \"Dr. Brown's Gia ...\"}, \"The Art of CureTM *SAFETY KNOTTED* Raw Multicolored- Certified Baltic Amber Baby Teething Necklace - w/The Art of Cure Jewelry Pouch (SHIPS AND SOLD IN THE USA)\": {\"frequency\": 18, \"value\": \"The Art of CureTM ...\"}, \"Hotslings Adjustable Pouch Baby Sling, Graham Cracker, Large\": {\"frequency\": 19, \"value\": \"Hotslings ...\"}, \"Sassy 2 Count Grow Up Cup, Purple/Orange, 9 Ounce\": {\"frequency\": 25, \"value\": \"Sassy 2 Count Grow ...\"}, \"Britax Boulevard 70 Convertible Car Seat (Previous Version), Onyx\": {\"frequency\": 36, \"value\": \"Britax Boulevard ...\"}, \"Cloud b Sound Machine Soother, Sleep Sheep\": {\"frequency\": 176, \"value\": \"Cloud b Sound ...\"}, \"Soft Gear My Booster Seat, Mint\": {\"frequency\": 28, \"value\": \"Soft Gear My ...\"}, \"Carters Keep Me Dry Flannel Lap Pads, Ecru, 3 Pack\": {\"frequency\": 63, \"value\": \"Carters Keep Me ...\"}, \"bumGenius One-Size Snap Closure Cloth Diaper 4.0 - Bubble\": {\"frequency\": 70, \"value\": \"bumGenius One-Size ...\"}, \"Wonderworld Peek-a-boo Ball\": {\"frequency\": 19, \"value\": \"Wonderworld ...\"}, \"UPPAbaby G-Luxe Stroller, Jake/Black\": {\"frequency\": 18, \"value\": \"UPPAbaby G-Luxe ...\"}, \"Postpartum Support Girdle Belt w/zipper Support Belly Band Medical-Grade Compression Bellefit\": {\"frequency\": 36, \"value\": \"Postpartum Support ...\"}, \"Cuisinart BFM-1000 Baby Food Maker and Bottle Warmer\": {\"frequency\": 28, \"value\": \"Cuisinart BFM-1000 ...\"}, \"JJ Cole Original Infant Bundleme, Khaki\": {\"frequency\": 19, \"value\": \"JJ Cole Original ...\"}, \"Fisher-Price Ocean Wonders Projector Soother\": {\"frequency\": 19, \"value\": \"Fisher-Price Ocean ...\"}, \"BRICA Baby In-Sight Magical Firefly Auto Mirror for in Car Safety\": {\"frequency\": 27, \"value\": \"BRICA Baby In- ...\"}, \"Nuby 2 Pack Replacement Silicone Spouts\": {\"frequency\": 18, \"value\": \"Nuby 2 Pack ...\"}, \"Baby Einstein Music and Discovery Travel Mirror\": {\"frequency\": 18, \"value\": \"Baby Einstein ...\"}, \"Chicco Liteway Stroller, Fuego\": {\"frequency\": 42, \"value\": \"Chicco Liteway ...\"}, \"CherryCreek Decals Giant Spring Flower Garden &amp; Tree Baby/Nursery Wall Sticker Decals for Boys and Girls (Tree 4.4 Feet Tall)\": {\"frequency\": 22, \"value\": \"CherryCreek Decals ...\"}, \"Dr. Brown's Standard Dishwashing Basket, Polypropylene\": {\"frequency\": 22, \"value\": \"Dr. Brown's ...\"}, \"Boon Frog Pod Suction Cup Bracket\": {\"frequency\": 20, \"value\": \"Boon Frog Pod ...\"}, \"Cradle Mattress - 18 X 36 X 2&quot; Thick\": {\"frequency\": 18, \"value\": \"Cradle Mattress - ...\"}, \"Evenflo Big Kid Booster Car Seat - Mercury\": {\"frequency\": 18, \"value\": \"Evenflo Big Kid ...\"}, \"Graco SimpleSwitch Highchair and Booster, Pasadena\": {\"frequency\": 56, \"value\": \"Graco SimpleSwitch ...\"}, \"Carters Keep Me Dry Flannel Bassinet Pad, Green/Yellow\": {\"frequency\": 55, \"value\": \"Carters Keep Me ...\"}, \"Graco DuetSoothe Swing + Rocker, Winslet\": {\"frequency\": 18, \"value\": \"Graco DuetSoothe ...\"}, \"aden + anais 3 Pack Muslin Washcloths, Water Baby\": {\"frequency\": 20, \"value\": \"aden + anais 3 ...\"}, \"green sprouts Warming Plate, Sage\": {\"frequency\": 27, \"value\": \"green sprouts ...\"}, \"Fisher-Price Rainforest Melodies and Lights Deluxe Gym\": {\"frequency\": 232, \"value\": \"Fisher-Price ...\"}, \"Maxi-Cosi Priori Convertible Car Seat, Gipsy\": {\"frequency\": 20, \"value\": \"Maxi-Cosi Priori ...\"}, \"Baby Trend Diaper Champ Deluxe, Blue\": {\"frequency\": 35, \"value\": \"Baby Trend Diaper ...\"}, \"NUK Mash &amp; Serve Bowl\": {\"frequency\": 105, \"value\": \"NUK Mash &amp; ...\"}, \"Medela Harmony Manual Breast Pump\": {\"frequency\": 126, \"value\": \"Medela Harmony ...\"}, \"GroVia Cloth Wipes, 12 count\": {\"frequency\": 45, \"value\": \"GroVia Cloth ...\"}, \"Bellybuds&reg; | Baby-Bump Sound System\": {\"frequency\": 23, \"value\": \"Bellybuds&reg; | ...\"}, \"Evenflo Single Breast Pump\": {\"frequency\": 25, \"value\": \"Evenflo Single ...\"}, \"C.R. Gibson Keepsake Chest, Jack\": {\"frequency\": 21, \"value\": \"C.R. Gibson ...\"}, \"Graco Nautilus 3-in-1 Car Seat, Matrix\": {\"frequency\": 419, \"value\": \"Graco Nautilus ...\"}, \"Ameda Purely Yours Ultra Breast Pump\": {\"frequency\": 21, \"value\": \"Ameda Purely Yours ...\"}, \"Baby Banana Bendable Training Toothbrush, Infant\": {\"frequency\": 158, \"value\": \"Baby Banana ...\"}, \"Keekaroo Height Right High Chair with Tray, Natural\": {\"frequency\": 39, \"value\": \"Keekaroo Height ...\"}, \"Regalo Easy Diner Portable Hook-On High Chair\": {\"frequency\": 114, \"value\": \"Regalo Easy Diner ...\"}, \"Britax Advocate 70 CS Convertible Car Seat, Zebra\": {\"frequency\": 22, \"value\": \"Britax Advocate 70 ...\"}, \"Munchkin Arm &amp; Hammer Disposable Changing Pad - 10 Pack\": {\"frequency\": 40, \"value\": \"Munchkin Arm &amp; ...\"}, \"Munchkin Warm Glow Wipe Warmer and Diaper Bag Dispenser Set (Colors may vary)\": {\"frequency\": 19, \"value\": \"Munchkin Warm Glow ...\"}, \"ERGObaby Original Baby Carrier, Camel\": {\"frequency\": 134, \"value\": \"ERGObaby Original ...\"}, \"BRICA Bath Kneeler\": {\"frequency\": 19, \"value\": \"BRICA Bath Kneeler\"}, \"Celebration Candles 1-21 Year Numbered Birthday Candle, Pink\": {\"frequency\": 21, \"value\": \"Celebration ...\"}, \"Infantino Squeeze Station\": {\"frequency\": 28, \"value\": \"Infantino Squeeze ...\"}}, \"size\": 183531}, \"selected_variable\": {\"name\": [\"<SArray>\"], \"dtype\": \"str\", \"view_component\": \"Categorical\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 183531}, \"type\": \"SArray\", \"view_components\": [\"Categorical\"]}, \"histogram\": null}, e);\n", " });\n", " })();\n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "products['name'].show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#Examining the reviews for most-sold product: 'Vulli Sophie the Giraffe Teether'" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "giraffe_reviews = products[products['name'] == 'Vulli Sophie the Giraffe Teether']" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "785" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(giraffe_reviews)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", "}));\n", "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//dato.com/files/canvas/1.6.1/css/canvas.css\"\n", "}));\n", "\n", " (function(){\n", "\n", " var e = null;\n", " if (typeof element == 'undefined') {\n", " var scripts = document.getElementsByTagName('script');\n", " var thisScriptTag = scripts[scripts.length-1];\n", " var parentDiv = thisScriptTag.parentNode;\n", " e = document.createElement('div');\n", " parentDiv.appendChild(e);\n", " } else {\n", " e = element[0];\n", " }\n", "\n", " if (typeof requirejs !== 'undefined') {\n", " // disable load timeout; ipython_app.js is large and can take a while to load.\n", " requirejs.config({waitSeconds: 0});\n", " }\n", "\n", " require(['//dato.com/files/canvas/1.6.1/js/ipython_app.js'], function(IPythonApp){\n", " var app = new IPythonApp();\n", " app.attachView('sarray','Categorical', {\"ipython\": true, \"sketch\": {\"std\": 1.226576304850189, \"complete\": true, \"min\": 1.0, \"max\": 5.0, \"quantile\": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], \"median\": 5.0, \"numeric\": true, \"num_unique\": 5, \"num_undefined\": 0, \"var\": 1.504489431619944, \"progress\": 1.0, \"size\": 785, \"frequent_items\": {\"1.0\": {\"frequency\": 56, \"value\": 1.0}, \"2.0\": {\"frequency\": 37, \"value\": 2.0}, \"3.0\": {\"frequency\": 62, \"value\": 3.0}, \"4.0\": {\"frequency\": 95, \"value\": 4.0}, \"5.0\": {\"frequency\": 535, \"value\": 5.0}}, \"mean\": 4.294267515923567}, \"selected_variable\": {\"name\": [\"<SArray>\"], \"dtype\": \"float\", \"view_component\": \"Categorical\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 785}, \"type\": \"SArray\", \"view_components\": [\"Numeric\", \"Categorical\"]}, \"histogram\": {\"progress\": 1.0, \"histogram\": {\"max\": 5.0439843750025, \"bins\": [56, 0, 0, 37, 0, 0, 62, 0, 95, 0, 0, 535], \"min\": 0.9534375000025004}, \"min\": 1.0, \"complete\": 1, \"max\": 5.0}}, e);\n", " });\n", " })();\n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "giraffe_reviews['rating'].show(view='Categorical')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Build a sentiment classifier" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", "}));\n", "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//dato.com/files/canvas/1.6.1/css/canvas.css\"\n", "}));\n", "\n", " (function(){\n", "\n", " var e = null;\n", " if (typeof element == 'undefined') {\n", " var scripts = document.getElementsByTagName('script');\n", " var thisScriptTag = scripts[scripts.length-1];\n", " var parentDiv = thisScriptTag.parentNode;\n", " e = document.createElement('div');\n", " parentDiv.appendChild(e);\n", " } else {\n", " e = element[0];\n", " }\n", "\n", " if (typeof requirejs !== 'undefined') {\n", " // disable load timeout; ipython_app.js is large and can take a while to load.\n", " requirejs.config({waitSeconds: 0});\n", " }\n", "\n", " require(['//dato.com/files/canvas/1.6.1/js/ipython_app.js'], function(IPythonApp){\n", " var app = new IPythonApp();\n", " app.attachView('sarray','Categorical', {\"ipython\": true, \"sketch\": {\"std\": 1.2850135559617413, \"complete\": true, \"min\": 1.0, \"max\": 5.0, \"quantile\": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], \"median\": 5.0, \"numeric\": true, \"num_unique\": 5, \"num_undefined\": 0, \"var\": 1.6512598390054394, \"progress\": 1.0, \"size\": 183531, \"frequent_items\": {\"1.0\": {\"frequency\": 15183, \"value\": 1.0}, \"2.0\": {\"frequency\": 11310, \"value\": 2.0}, \"3.0\": {\"frequency\": 16779, \"value\": 3.0}, \"4.0\": {\"frequency\": 33205, \"value\": 4.0}, \"5.0\": {\"frequency\": 107054, \"value\": 5.0}}, \"mean\": 4.1204483166331505}, \"selected_variable\": {\"name\": [\"<SArray>\"], \"dtype\": \"float\", \"view_component\": \"Categorical\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 183531}, \"type\": \"SArray\", \"view_components\": [\"Numeric\", \"Categorical\"]}, \"histogram\": {\"progress\": 1.0, \"histogram\": {\"max\": 5.024, \"bins\": [15183, 0, 0, 11310, 0, 16779, 0, 0, 33205, 0, 0, 107054], \"min\": 0.992}, \"min\": 1.0, \"complete\": 1, \"max\": 5.0}}, e);\n", " });\n", " })();\n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "products['rating'].show(view='Categorical')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Define what's a positive and a negative sentiment\n", "\n", "We will ignore all reviews with rating = 3, since they tend to have a neutral sentiment. Reviews with a rating of 4 or higher will be considered positive, while the ones with rating of 2 or lower will have a negative sentiment. " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#ignore all 3* reviews\n", "products = products[products['rating'] != 3]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#positive sentiment = 4* or 5* reviews\n", "products['sentiment'] = products['rating'] >=4" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">rating</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">word_count</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">sentiment</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Planetwise Wipe Pouch</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">it came early and was not<br>disappointed. i love ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 3L, 'love': 1L,<br>'it': 2L, 'highly': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Annas Dream Full Quilt<br>with 2 Shams ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Very soft and comfortable<br>and warmer than it ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'quilt': 1L,<br>'it': 1L, 'comfortable': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This is a product well<br>worth the purchase. I ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'ingenious': 1L, 'and':<br>3L, 'love': 2L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">All of my kids have cried<br>non-stop when I tried to ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'parents!!':<br>1L, 'all': 2L, 'puppe ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Stop Pacifier Sucking<br>without tears with ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">When the Binky Fairy came<br>to our house, we didn't ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'cute': 1L,<br>'help': 2L, 'doll': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A Tale of Baby's Days<br>with Peter Rabbit ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Lovely book, it's bound<br>tightly so you may no ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'shop': 1L, 'be': 1L,<br>'is': 1L, 'it': 1L, ' ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Perfect for new parents.<br>We were able to keep ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'feeding,': 1L, 'and':<br>2L, 'all': 1L, 'right': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">A friend of mine pinned<br>this product on Pinte ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1L, 'help': 1L,<br>'give': 1L, 'is': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">This has been an easy way<br>for my nanny to record ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'journal.': 1L, 'all':<br>1L, 'standarad': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Baby Tracker&amp;reg; - Daily<br>Childcare Journal, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I love this journal and<br>our nanny uses it ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'all': 1L, 'forget': 1L,<br>'just': 1L, \"daughter ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " </tr>\n", "</table>\n", "[10 rows x 5 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\treview\tstr\n", "\trating\tfloat\n", "\tword_count\tdict\n", "\tsentiment\tint\n", "\n", "Rows: 10\n", "\n", "Data:\n", "+-------------------------------+-------------------------------+--------+\n", "| name | review | rating |\n", "+-------------------------------+-------------------------------+--------+\n", "| Planetwise Wipe Pouch | it came early and was not ... | 5.0 |\n", "| Annas Dream Full Quilt wit... | Very soft and comfortable ... | 5.0 |\n", "| Stop Pacifier Sucking with... | This is a product well wor... | 5.0 |\n", "| Stop Pacifier Sucking with... | All of my kids have cried ... | 5.0 |\n", "| Stop Pacifier Sucking with... | When the Binky Fairy came ... | 5.0 |\n", "| A Tale of Baby's Days with... | Lovely book, it's bound ti... | 4.0 |\n", "| Baby Tracker&reg; - Daily ... | Perfect for new parents. W... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | A friend of mine pinned th... | 5.0 |\n", "| Baby Tracker&reg; - Daily ... | This has been an easy way ... | 4.0 |\n", "| Baby Tracker&reg; - Daily ... | I love this journal and ou... | 4.0 |\n", "+-------------------------------+-------------------------------+--------+\n", "+-------------------------------+-----------+\n", "| word_count | sentiment |\n", "+-------------------------------+-----------+\n", "| {'and': 3L, 'love': 1L, 'i... | 1 |\n", "| {'and': 2L, 'quilt': 1L, '... | 1 |\n", "| {'ingenious': 1L, 'and': 3... | 1 |\n", "| {'and': 2L, 'parents!!': 1... | 1 |\n", "| {'and': 2L, 'cute': 1L, 'h... | 1 |\n", "| {'shop': 1L, 'be': 1L, 'is... | 1 |\n", "| {'feeding,': 1L, 'and': 2L... | 1 |\n", "| {'and': 1L, 'help': 1L, 'g... | 1 |\n", "| {'journal.': 1L, 'all': 1L... | 1 |\n", "| {'all': 1L, 'forget': 1L, ... | 1 |\n", "+-------------------------------+-----------+\n", "[10 rows x 5 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Let's train the sentiment classifier" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "train_data,test_data = products.random_split(.8, seed=0)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Logistic regression:\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: Number of examples : 133448\n", "PROGRESS: Number of classes : 2\n", "PROGRESS: Number of feature columns : 1\n", "PROGRESS: Number of unpacked features : 219217\n", "PROGRESS: Number of coefficients : 219218\n", "PROGRESS: Starting L-BFGS\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+\n", "PROGRESS: | Iteration | Passes | Step size | Elapsed Time | Training-accuracy | Validation-accuracy |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+\n", "PROGRESS: | 1 | 5 | 0.000002 | 2.856285 | 0.841481 | 0.839989 |\n", "PROGRESS: | 2 | 9 | 3.000000 | 4.544454 | 0.947425 | 0.894877 |\n", "PROGRESS: | 3 | 10 | 3.000000 | 5.191519 | 0.923768 | 0.866232 |\n", "PROGRESS: | 4 | 11 | 3.000000 | 5.837583 | 0.971779 | 0.912743 |\n", "PROGRESS: | 5 | 12 | 3.000000 | 6.466646 | 0.975511 | 0.908900 |\n", "PROGRESS: | 6 | 13 | 3.000000 | 7.091709 | 0.899991 | 0.825967 |\n", "PROGRESS: | 10 | 18 | 1.000000 | 9.989999 | 0.988715 | 0.916256 |\n", "PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+\n" ] } ], "source": [ "sentiment_model = graphlab.logistic_classifier.create(train_data,\n", " target='sentiment',\n", " features=['word_count'],\n", " validation_set=test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Evaluate the sentiment model" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'roc_curve': Columns:\n", " \tthreshold\tfloat\n", " \tfpr\tfloat\n", " \ttpr\tfloat\n", " \tp\tint\n", " \tn\tint\n", " \n", " Rows: 1001\n", " \n", " Data:\n", " +------------------+----------------+------------------+-------+------+\n", " | threshold | fpr | tpr | p | n |\n", " +------------------+----------------+------------------+-------+------+\n", " | 0.0 | 0.222284749578 | 0.00424817935171 | 28012 | 5331 |\n", " | 0.0010000000475 | 0.777715250422 | 0.995751820648 | 28012 | 5331 |\n", " | 0.00200000009499 | 0.737760270118 | 0.994609453092 | 28012 | 5331 |\n", " | 0.00300000002608 | 0.715062839992 | 0.993966871341 | 28012 | 5331 |\n", " | 0.00400000018999 | 0.699493528419 | 0.993467085535 | 28012 | 5331 |\n", " | 0.00499999988824 | 0.688238604389 | 0.993074396687 | 28012 | 5331 |\n", " | 0.00600000005215 | 0.678484336897 | 0.992574610881 | 28012 | 5331 |\n", " | 0.00700000021607 | 0.667979741137 | 0.99221762102 | 28012 | 5331 |\n", " | 0.00800000037998 | 0.657662727443 | 0.991967728117 | 28012 | 5331 |\n", " | 0.00899999961257 | 0.650347026824 | 0.991646437241 | 28012 | 5331 |\n", " +------------------+----------------+------------------+-------+------+\n", " [1001 rows x 5 columns]\n", " Note: Only the head of the SFrame is printed.\n", " You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.}" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sentiment_model.evaluate(test_data, metric='roc_curve')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", "}));\n", "$(\"head\").append($(\"<link/>\").attr({\n", " rel: \"stylesheet\",\n", " type: \"text/css\",\n", " href: \"//dato.com/files/canvas/1.6.1/css/canvas.css\"\n", "}));\n", "\n", " (function(){\n", "\n", " var e = null;\n", " if (typeof element == 'undefined') {\n", " var scripts = document.getElementsByTagName('script');\n", " var thisScriptTag = scripts[scripts.length-1];\n", " var parentDiv = thisScriptTag.parentNode;\n", " e = document.createElement('div');\n", " parentDiv.appendChild(e);\n", " } else {\n", " e = element[0];\n", " }\n", "\n", " if (typeof requirejs !== 'undefined') {\n", " // disable load timeout; ipython_app.js is large and can take a while to load.\n", " requirejs.config({waitSeconds: 0});\n", " }\n", "\n", " require(['//dato.com/files/canvas/1.6.1/js/ipython_app.js'], function(IPythonApp){\n", " var app = new IPythonApp();\n", " app.attachView('model','Evaluation', {\"comparison\": null, \"selected_variable\": {\"comparison\": null, \"name\": [\"sentiment_model\"], \"view_file\": \"model\", \"view_component\": \"Evaluation\", \"view_params\": {\"model_type\": \"regression\", \"view\": \"Evaluation\"}, \"view_components\": [\"Summary\", \"Evaluation\", \"Comparison\"], \"model_type\": \"regression\", \"attributes\": {\"section_titles\": [\"Schema\", \"Hyperparameters\", \"Training Summary\", \"Settings\", \"Highest Positive Coefficients\", \"Lowest Negative Coefficients\"], \"sections\": [[[\"Number of coefficients\", 219218], [\"Number of examples\", 133448], [\"Number of classes\", 2], [\"Number of feature columns\", 1], [\"Number of unpacked features\", 219217]], [[\"L1 penalty\", 0.0], [\"L2 penalty\", 0.01]], [[\"Solver\", \"auto\"], [\"Solver iterations\", 10], [\"Solver status\", \"TERMINATED: Iteration limit reached.\"], [\"Training time (sec)\", 10.29]], [[\"Log-likelihood\", 4956.6901]], [[\"word_count[pinkjeep]\", 13.5701], [\"word_count[(http://www.amazon.com/review/rhgg6qp7tdnhb/ref=cm_cr_pr_cmt?ie=utf8&asin;=b00318cla0&nodeid;)]\", 12.3088], [\"word_count[label/box.]\", 11.1774], [\"word_count[product.***]\", 11.064], [\"word_count[direct-pumping]\", 11.0531]], [[\"word_count[it.update:after]\", -18.3631], [\"word_count[5months.]\", -16.0906], [\"word_count[oldest.if]\", -15.9315], [\"word_count[maxima.]\", -15.8084], [\"word_count[(160.00)]\", -15.4512]]]}, \"evaluations\": [[\"test_data\", {\"roc_curve\": [{\"threshold\": 0.0, \"p\": 28012, \"fpr\": 0.22228474957794034, \"tpr\": 0.004248179351706412, \"n\": 5331}, {\"threshold\": 0.0010000000474974513, \"p\": 28012, \"fpr\": 0.7777152504220597, \"tpr\": 0.9957518206482936, \"n\": 5331}, {\"threshold\": 0.0020000000949949026, \"p\": 28012, \"fpr\": 0.7377602701181767, \"tpr\": 0.9946094530915321, \"n\": 5331}, {\"threshold\": 0.003000000026077032, \"p\": 28012, \"fpr\": 0.7150628399924968, \"tpr\": 0.9939668713408539, \"n\": 5331}, {\"threshold\": 0.004000000189989805, \"p\": 28012, \"fpr\": 0.6994935284186832, \"tpr\": 0.9934670855347708, \"n\": 5331}, {\"threshold\": 0.004999999888241291, \"p\": 28012, \"fpr\": 0.6882386043894204, \"tpr\": 0.993074396687134, \"n\": 5331}, {\"threshold\": 0.006000000052154064, \"p\": 28012, \"fpr\": 0.6784843368973926, \"tpr\": 0.9925746108810509, \"n\": 5331}, {\"threshold\": 0.007000000216066837, \"p\": 28012, \"fpr\": 0.6679797411367473, \"tpr\": 0.992217621019563, \"n\": 5331}, {\"threshold\": 0.00800000037997961, \"p\": 28012, \"fpr\": 0.6576627274432564, \"tpr\": 0.9919677281165215, \"n\": 5331}, {\"threshold\": 0.008999999612569809, \"p\": 28012, \"fpr\": 0.6503470268242356, \"tpr\": 0.9916464372411824, \"n\": 5331}, {\"threshold\": 0.009999999776482582, \"p\": 28012, \"fpr\": 0.6417182517351341, \"tpr\": 0.9913965443381408, \"n\": 5331}, {\"threshold\": 0.010999999940395355, \"p\": 28012, \"fpr\": 0.634777715250422, \"tpr\": 0.9911109524489504, \"n\": 5331}, {\"threshold\": 0.012000000104308128, \"p\": 28012, \"fpr\": 0.6293378353029451, \"tpr\": 0.9907539625874625, \"n\": 5331}, {\"threshold\": 0.013000000268220901, \"p\": 28012, \"fpr\": 0.6225848808853873, \"tpr\": 0.990504069684421, \"n\": 5331}, {\"threshold\": 0.014000000432133675, \"p\": 28012, \"fpr\": 0.6177077471393735, \"tpr\": 0.9902541767813794, \"n\": 5331}, {\"threshold\": 0.014999999664723873, \"p\": 28012, \"fpr\": 0.6109547927218157, \"tpr\": 0.9899685848921891, \"n\": 5331}, {\"threshold\": 0.01600000075995922, \"p\": 28012, \"fpr\": 0.6062652410429563, \"tpr\": 0.9896115950307012, \"n\": 5331}, {\"threshold\": 0.017000000923871994, \"p\": 28012, \"fpr\": 0.6025135996998687, \"tpr\": 0.9893617021276596, \"n\": 5331}, {\"threshold\": 0.017999999225139618, \"p\": 28012, \"fpr\": 0.5976364659538548, \"tpr\": 0.9892189061830644, \"n\": 5331}, {\"threshold\": 0.01899999938905239, \"p\": 28012, \"fpr\": 0.5927593322078409, \"tpr\": 0.9890404112523205, \"n\": 5331}, {\"threshold\": 0.019999999552965164, \"p\": 28012, \"fpr\": 0.5882573625961358, \"tpr\": 0.9888262173354276, \"n\": 5331}, {\"threshold\": 0.020999999716877937, \"p\": 28012, \"fpr\": 0.5845057212530482, \"tpr\": 0.9887191203769813, \"n\": 5331}, {\"threshold\": 0.02199999988079071, \"p\": 28012, \"fpr\": 0.5816919902457325, \"tpr\": 0.9884692274739397, \"n\": 5331}, {\"threshold\": 0.023000000044703484, \"p\": 28012, \"fpr\": 0.5796285875070343, \"tpr\": 0.9883621305154934, \"n\": 5331}, {\"threshold\": 0.024000000208616257, \"p\": 28012, \"fpr\": 0.5753141999624836, \"tpr\": 0.9881836355847494, \"n\": 5331}, {\"threshold\": 0.02500000037252903, \"p\": 28012, \"fpr\": 0.5721253048208591, \"tpr\": 0.9880051406540055, \"n\": 5331}, {\"threshold\": 0.026000000536441803, \"p\": 28012, \"fpr\": 0.5685612455449259, \"tpr\": 0.987898043695559, \"n\": 5331}, {\"threshold\": 0.027000000700354576, \"p\": 28012, \"fpr\": 0.5653723504033015, \"tpr\": 0.9876481507925174, \"n\": 5331}, {\"threshold\": 0.02800000086426735, \"p\": 28012, \"fpr\": 0.5625586193959857, \"tpr\": 0.9874696558617735, \"n\": 5331}, {\"threshold\": 0.028999999165534973, \"p\": 28012, \"fpr\": 0.5589945601200526, \"tpr\": 0.9873268599171784, \"n\": 5331}, {\"threshold\": 0.029999999329447746, \"p\": 28012, \"fpr\": 0.5550553367098106, \"tpr\": 0.9870769670141368, \"n\": 5331}, {\"threshold\": 0.03099999949336052, \"p\": 28012, \"fpr\": 0.5535546801725755, \"tpr\": 0.9869698700556904, \"n\": 5331}, {\"threshold\": 0.03200000151991844, \"p\": 28012, \"fpr\": 0.5498030388294879, \"tpr\": 0.9867199771526489, \"n\": 5331}, {\"threshold\": 0.032999999821186066, \"p\": 28012, \"fpr\": 0.5456762333520916, \"tpr\": 0.9865771812080537, \"n\": 5331}, {\"threshold\": 0.03400000184774399, \"p\": 28012, \"fpr\": 0.5438004126805477, \"tpr\": 0.9864343852634585, \"n\": 5331}, {\"threshold\": 0.03500000014901161, \"p\": 28012, \"fpr\": 0.5419245920090039, \"tpr\": 0.9863986862773098, \"n\": 5331}, {\"threshold\": 0.035999998450279236, \"p\": 28012, \"fpr\": 0.5398611892703058, \"tpr\": 0.9862915893188633, \"n\": 5331}, {\"threshold\": 0.03700000047683716, \"p\": 28012, \"fpr\": 0.5374226223972988, \"tpr\": 0.9862201913465658, \"n\": 5331}, {\"threshold\": 0.03799999877810478, \"p\": 28012, \"fpr\": 0.5342337272556743, \"tpr\": 0.9858632014850778, \"n\": 5331}, {\"threshold\": 0.039000000804662704, \"p\": 28012, \"fpr\": 0.533108234852748, \"tpr\": 0.9856490075681851, \"n\": 5331}, {\"threshold\": 0.03999999910593033, \"p\": 28012, \"fpr\": 0.5317951603826674, \"tpr\": 0.9855419106097387, \"n\": 5331}, {\"threshold\": 0.04100000113248825, \"p\": 28012, \"fpr\": 0.5295441755768149, \"tpr\": 0.9854705126374411, \"n\": 5331}, {\"threshold\": 0.041999999433755875, \"p\": 28012, \"fpr\": 0.5265428625023447, \"tpr\": 0.9852920177066972, \"n\": 5331}, {\"threshold\": 0.0430000014603138, \"p\": 28012, \"fpr\": 0.5254173700994185, \"tpr\": 0.9850778237898044, \"n\": 5331}, {\"threshold\": 0.04399999976158142, \"p\": 28012, \"fpr\": 0.5229788032264115, \"tpr\": 0.984970726831358, \"n\": 5331}, {\"threshold\": 0.04500000178813934, \"p\": 28012, \"fpr\": 0.5218533108234853, \"tpr\": 0.9848279308867628, \"n\": 5331}, {\"threshold\": 0.04600000008940697, \"p\": 28012, \"fpr\": 0.5190395798161695, \"tpr\": 0.984792231900614, \"n\": 5331}, {\"threshold\": 0.04699999839067459, \"p\": 28012, \"fpr\": 0.5171637591446258, \"tpr\": 0.9845780379837212, \"n\": 5331}, {\"threshold\": 0.04800000041723251, \"p\": 28012, \"fpr\": 0.5149127743387732, \"tpr\": 0.9843638440668285, \"n\": 5331}, {\"threshold\": 0.04899999871850014, \"p\": 28012, \"fpr\": 0.5137872819358469, \"tpr\": 0.9842210481222333, \"n\": 5331}, {\"threshold\": 0.05000000074505806, \"p\": 28012, \"fpr\": 0.5119114612643031, \"tpr\": 0.9840782521776381, \"n\": 5331}, {\"threshold\": 0.050999999046325684, \"p\": 28012, \"fpr\": 0.5087225661226786, \"tpr\": 0.9838283592745966, \"n\": 5331}, {\"threshold\": 0.052000001072883606, \"p\": 28012, \"fpr\": 0.5060964171825173, \"tpr\": 0.9836855633300015, \"n\": 5331}, {\"threshold\": 0.05299999937415123, \"p\": 28012, \"fpr\": 0.5044081785781279, \"tpr\": 0.9836498643438526, \"n\": 5331}, {\"threshold\": 0.05400000140070915, \"p\": 28012, \"fpr\": 0.5023447758394297, \"tpr\": 0.9834713694131086, \"n\": 5331}, {\"threshold\": 0.054999999701976776, \"p\": 28012, \"fpr\": 0.5012192834365035, \"tpr\": 0.983399971440811, \"n\": 5331}, {\"threshold\": 0.0560000017285347, \"p\": 28012, \"fpr\": 0.4989682986306509, \"tpr\": 0.9833285734685135, \"n\": 5331}, {\"threshold\": 0.05700000002980232, \"p\": 28012, \"fpr\": 0.49690489589195275, \"tpr\": 0.9831143795516207, \"n\": 5331}, {\"threshold\": 0.057999998331069946, \"p\": 28012, \"fpr\": 0.4946539110861002, \"tpr\": 0.9829715836070255, \"n\": 5331}, {\"threshold\": 0.05900000035762787, \"p\": 28012, \"fpr\": 0.4935284186831739, \"tpr\": 0.9828287876624304, \"n\": 5331}, {\"threshold\": 0.05999999865889549, \"p\": 28012, \"fpr\": 0.49108985181016696, \"tpr\": 0.9827930886762816, \"n\": 5331}, {\"threshold\": 0.061000000685453415, \"p\": 28012, \"fpr\": 0.48902644907146875, \"tpr\": 0.9826502927316865, \"n\": 5331}, {\"threshold\": 0.06199999898672104, \"p\": 28012, \"fpr\": 0.48715062839992496, \"tpr\": 0.9826145937455376, \"n\": 5331}, {\"threshold\": 0.06300000101327896, \"p\": 28012, \"fpr\": 0.4858375539298443, \"tpr\": 0.98254319577324, \"n\": 5331}, {\"threshold\": 0.06400000303983688, \"p\": 28012, \"fpr\": 0.48471206152691804, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06499999761581421, \"p\": 28012, \"fpr\": 0.48339898705683737, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06599999964237213, \"p\": 28012, \"fpr\": 0.48283624085537424, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06700000166893005, \"p\": 28012, \"fpr\": 0.4820859125867567, \"tpr\": 0.9823290018563473, \"n\": 5331}, {\"threshold\": 0.06800000369548798, \"p\": 28012, \"fpr\": 0.48096042018383045, \"tpr\": 0.9821505069256034, \"n\": 5331}, {\"threshold\": 0.0689999982714653, \"p\": 28012, \"fpr\": 0.47983492778090414, \"tpr\": 0.9821148079394545, \"n\": 5331}, {\"threshold\": 0.07000000029802322, \"p\": 28012, \"fpr\": 0.4790845995122866, \"tpr\": 0.9820434099671569, \"n\": 5331}, {\"threshold\": 0.07100000232458115, \"p\": 28012, \"fpr\": 0.477771525042206, \"tpr\": 0.9820077109810081, \"n\": 5331}, {\"threshold\": 0.07199999690055847, \"p\": 28012, \"fpr\": 0.4764584505721253, \"tpr\": 0.9820077109810081, \"n\": 5331}, {\"threshold\": 0.0729999989271164, \"p\": 28012, \"fpr\": 0.47458262990058153, \"tpr\": 0.9819720119948594, \"n\": 5331}, {\"threshold\": 0.07400000095367432, \"p\": 28012, \"fpr\": 0.47308197336334645, \"tpr\": 0.9818649150364129, \"n\": 5331}, {\"threshold\": 0.07500000298023224, \"p\": 28012, \"fpr\": 0.47120615269180266, \"tpr\": 0.9817578180779666, \"n\": 5331}, {\"threshold\": 0.07599999755620956, \"p\": 28012, \"fpr\": 0.47026824235603076, \"tpr\": 0.9815793231472226, \"n\": 5331}, {\"threshold\": 0.07699999958276749, \"p\": 28012, \"fpr\": 0.4689551678859501, \"tpr\": 0.981507925174925, \"n\": 5331}, {\"threshold\": 0.07800000160932541, \"p\": 28012, \"fpr\": 0.4680172575501782, \"tpr\": 0.9812223332857347, \"n\": 5331}, {\"threshold\": 0.07900000363588333, \"p\": 28012, \"fpr\": 0.4670793472144063, \"tpr\": 0.9812223332857347, \"n\": 5331}, {\"threshold\": 0.07999999821186066, \"p\": 28012, \"fpr\": 0.4661414368786344, \"tpr\": 0.9811152363272883, \"n\": 5331}, {\"threshold\": 0.08100000023841858, \"p\": 28012, \"fpr\": 0.46539110861001687, \"tpr\": 0.9810795373411395, \"n\": 5331}, {\"threshold\": 0.0820000022649765, \"p\": 28012, \"fpr\": 0.46389045207278184, \"tpr\": 0.9810438383549908, \"n\": 5331}, {\"threshold\": 0.08299999684095383, \"p\": 28012, \"fpr\": 0.4623897955355468, \"tpr\": 0.980829644438098, \"n\": 5331}, {\"threshold\": 0.08399999886751175, \"p\": 28012, \"fpr\": 0.46107672106546616, \"tpr\": 0.9807582464658003, \"n\": 5331}, {\"threshold\": 0.08500000089406967, \"p\": 28012, \"fpr\": 0.45901331832676795, \"tpr\": 0.9807582464658003, \"n\": 5331}, {\"threshold\": 0.0860000029206276, \"p\": 28012, \"fpr\": 0.45807540799099605, \"tpr\": 0.9807225474796516, \"n\": 5331}, {\"threshold\": 0.08699999749660492, \"p\": 28012, \"fpr\": 0.45657475145376103, \"tpr\": 0.980651149507354, \"n\": 5331}, {\"threshold\": 0.08799999952316284, \"p\": 28012, \"fpr\": 0.455074094916526, \"tpr\": 0.9804369555904612, \"n\": 5331}, {\"threshold\": 0.08900000154972076, \"p\": 28012, \"fpr\": 0.4545113487150628, \"tpr\": 0.9802584606597172, \"n\": 5331}, {\"threshold\": 0.09000000357627869, \"p\": 28012, \"fpr\": 0.4535734383792909, \"tpr\": 0.9801870626874197, \"n\": 5331}, {\"threshold\": 0.09099999815225601, \"p\": 28012, \"fpr\": 0.45263552804351903, \"tpr\": 0.9801513637012709, \"n\": 5331}, {\"threshold\": 0.09200000017881393, \"p\": 28012, \"fpr\": 0.4515100356405928, \"tpr\": 0.9801513637012709, \"n\": 5331}, {\"threshold\": 0.09300000220537186, \"p\": 28012, \"fpr\": 0.4501969611705121, \"tpr\": 0.9799728687705269, \"n\": 5331}, {\"threshold\": 0.09399999678134918, \"p\": 28012, \"fpr\": 0.44944663290189457, \"tpr\": 0.9799014707982293, \"n\": 5331}, {\"threshold\": 0.0949999988079071, \"p\": 28012, \"fpr\": 0.4485087225661227, \"tpr\": 0.979794373839783, \"n\": 5331}, {\"threshold\": 0.09600000083446503, \"p\": 28012, \"fpr\": 0.4475708122303508, \"tpr\": 0.9796872768813366, \"n\": 5331}, {\"threshold\": 0.09700000286102295, \"p\": 28012, \"fpr\": 0.44682048396173324, \"tpr\": 0.9796515778951878, \"n\": 5331}, {\"threshold\": 0.09799999743700027, \"p\": 28012, \"fpr\": 0.44607015569311576, \"tpr\": 0.979437383978295, \"n\": 5331}, {\"threshold\": 0.0989999994635582, \"p\": 28012, \"fpr\": 0.44513224535734386, \"tpr\": 0.9792231900614022, \"n\": 5331}, {\"threshold\": 0.10000000149011612, \"p\": 28012, \"fpr\": 0.44419433502157196, \"tpr\": 0.9791517920891046, \"n\": 5331}, {\"threshold\": 0.10100000351667404, \"p\": 28012, \"fpr\": 0.4423185143500281, \"tpr\": 0.979080394116807, \"n\": 5331}, {\"threshold\": 0.10199999809265137, \"p\": 28012, \"fpr\": 0.4408178578127931, \"tpr\": 0.9789732971583607, \"n\": 5331}, {\"threshold\": 0.10300000011920929, \"p\": 28012, \"fpr\": 0.44006752954417555, \"tpr\": 0.9789375981722119, \"n\": 5331}, {\"threshold\": 0.10400000214576721, \"p\": 28012, \"fpr\": 0.4389420371412493, \"tpr\": 0.978759103241468, \"n\": 5331}, {\"threshold\": 0.10499999672174454, \"p\": 28012, \"fpr\": 0.4385668730069405, \"tpr\": 0.978580608310724, \"n\": 5331}, {\"threshold\": 0.10599999874830246, \"p\": 28012, \"fpr\": 0.4368786344025511, \"tpr\": 0.9784378123661288, \"n\": 5331}, {\"threshold\": 0.10700000077486038, \"p\": 28012, \"fpr\": 0.43575314199962484, \"tpr\": 0.97840211337998, \"n\": 5331}, {\"threshold\": 0.1080000028014183, \"p\": 28012, \"fpr\": 0.4351903957981617, \"tpr\": 0.9783307154076825, \"n\": 5331}, {\"threshold\": 0.10899999737739563, \"p\": 28012, \"fpr\": 0.4340649033952354, \"tpr\": 0.9781522204769385, \"n\": 5331}, {\"threshold\": 0.10999999940395355, \"p\": 28012, \"fpr\": 0.4333145751266179, \"tpr\": 0.978045123518492, \"n\": 5331}, {\"threshold\": 0.11100000143051147, \"p\": 28012, \"fpr\": 0.43181391858938284, \"tpr\": 0.978045123518492, \"n\": 5331}, {\"threshold\": 0.1120000034570694, \"p\": 28012, \"fpr\": 0.4312511723879197, \"tpr\": 0.977902327573897, \"n\": 5331}, {\"threshold\": 0.11299999803304672, \"p\": 28012, \"fpr\": 0.4305008441193022, \"tpr\": 0.9777595316293017, \"n\": 5331}, {\"threshold\": 0.11400000005960464, \"p\": 28012, \"fpr\": 0.4297505158506847, \"tpr\": 0.9777238326431529, \"n\": 5331}, {\"threshold\": 0.11500000208616257, \"p\": 28012, \"fpr\": 0.4282498593134496, \"tpr\": 0.9776167356847065, \"n\": 5331}, {\"threshold\": 0.11599999666213989, \"p\": 28012, \"fpr\": 0.4273119489776777, \"tpr\": 0.9775810366985578, \"n\": 5331}, {\"threshold\": 0.11699999868869781, \"p\": 28012, \"fpr\": 0.4267492027762146, \"tpr\": 0.9774739397401114, \"n\": 5331}, {\"threshold\": 0.11800000071525574, \"p\": 28012, \"fpr\": 0.42656162070906023, \"tpr\": 0.9774025417678138, \"n\": 5331}, {\"threshold\": 0.11900000274181366, \"p\": 28012, \"fpr\": 0.4258112924404427, \"tpr\": 0.977366842781665, \"n\": 5331}, {\"threshold\": 0.11999999731779099, \"p\": 28012, \"fpr\": 0.42506096417182515, \"tpr\": 0.9772954448093674, \"n\": 5331}, {\"threshold\": 0.12099999934434891, \"p\": 28012, \"fpr\": 0.424498217970362, \"tpr\": 0.9770455519063259, \"n\": 5331}, {\"threshold\": 0.12200000137090683, \"p\": 28012, \"fpr\": 0.424498217970362, \"tpr\": 0.9769384549478795, \"n\": 5331}, {\"threshold\": 0.12300000339746475, \"p\": 28012, \"fpr\": 0.42431063590320767, \"tpr\": 0.9768670569755818, \"n\": 5331}, {\"threshold\": 0.12399999797344208, \"p\": 28012, \"fpr\": 0.42318514350028136, \"tpr\": 0.9767599600171355, \"n\": 5331}, {\"threshold\": 0.125, \"p\": 28012, \"fpr\": 0.42262239729881823, \"tpr\": 0.9767242610309868, \"n\": 5331}, {\"threshold\": 0.12600000202655792, \"p\": 28012, \"fpr\": 0.42168448696304633, \"tpr\": 0.9767242610309868, \"n\": 5331}, {\"threshold\": 0.12700000405311584, \"p\": 28012, \"fpr\": 0.4209341586944288, \"tpr\": 0.9765457661002428, \"n\": 5331}, {\"threshold\": 0.12800000607967377, \"p\": 28012, \"fpr\": 0.4201838304258113, \"tpr\": 0.9765100671140939, \"n\": 5331}, {\"threshold\": 0.1289999932050705, \"p\": 28012, \"fpr\": 0.41962108422434813, \"tpr\": 0.97633157218335, \"n\": 5331}, {\"threshold\": 0.12999999523162842, \"p\": 28012, \"fpr\": 0.4184955918214219, \"tpr\": 0.9761173782664573, \"n\": 5331}, {\"threshold\": 0.13099999725818634, \"p\": 28012, \"fpr\": 0.41793284561995875, \"tpr\": 0.9760459802941597, \"n\": 5331}, {\"threshold\": 0.13199999928474426, \"p\": 28012, \"fpr\": 0.4166197711498781, \"tpr\": 0.9759031843495645, \"n\": 5331}, {\"threshold\": 0.13300000131130219, \"p\": 28012, \"fpr\": 0.41605702494841496, \"tpr\": 0.9758317863772669, \"n\": 5331}, {\"threshold\": 0.1340000033378601, \"p\": 28012, \"fpr\": 0.41493153254548865, \"tpr\": 0.9757246894188205, \"n\": 5331}, {\"threshold\": 0.13500000536441803, \"p\": 28012, \"fpr\": 0.4132432939410992, \"tpr\": 0.9756175924603742, \"n\": 5331}, {\"threshold\": 0.13600000739097595, \"p\": 28012, \"fpr\": 0.4124929656724817, \"tpr\": 0.9756175924603742, \"n\": 5331}, {\"threshold\": 0.13699999451637268, \"p\": 28012, \"fpr\": 0.4113674732695554, \"tpr\": 0.9753320005711837, \"n\": 5331}, {\"threshold\": 0.1379999965429306, \"p\": 28012, \"fpr\": 0.4108047270680923, \"tpr\": 0.975296301585035, \"n\": 5331}, {\"threshold\": 0.13899999856948853, \"p\": 28012, \"fpr\": 0.4098668167323204, \"tpr\": 0.9752249036127374, \"n\": 5331}, {\"threshold\": 0.14000000059604645, \"p\": 28012, \"fpr\": 0.40967923466516604, \"tpr\": 0.9751892046265886, \"n\": 5331}, {\"threshold\": 0.14100000262260437, \"p\": 28012, \"fpr\": 0.4094916525980116, \"tpr\": 0.9751535056404398, \"n\": 5331}, {\"threshold\": 0.1420000046491623, \"p\": 28012, \"fpr\": 0.4087413243293941, \"tpr\": 0.975117806654291, \"n\": 5331}, {\"threshold\": 0.14300000667572021, \"p\": 28012, \"fpr\": 0.4078034139936222, \"tpr\": 0.9750821076681422, \"n\": 5331}, {\"threshold\": 0.14399999380111694, \"p\": 28012, \"fpr\": 0.4074282498593135, \"tpr\": 0.9750821076681422, \"n\": 5331}, {\"threshold\": 0.14499999582767487, \"p\": 28012, \"fpr\": 0.40574001125492404, \"tpr\": 0.9750464086819934, \"n\": 5331}, {\"threshold\": 0.1459999978542328, \"p\": 28012, \"fpr\": 0.4049896829863065, \"tpr\": 0.9749750107096958, \"n\": 5331}, {\"threshold\": 0.1469999998807907, \"p\": 28012, \"fpr\": 0.40386419058338024, \"tpr\": 0.9749036127373982, \"n\": 5331}, {\"threshold\": 0.14800000190734863, \"p\": 28012, \"fpr\": 0.40367660851622583, \"tpr\": 0.9747965157789519, \"n\": 5331}, {\"threshold\": 0.14900000393390656, \"p\": 28012, \"fpr\": 0.4031138623147627, \"tpr\": 0.9747608167928031, \"n\": 5331}, {\"threshold\": 0.15000000596046448, \"p\": 28012, \"fpr\": 0.4025511161132996, \"tpr\": 0.9747251178066543, \"n\": 5331}, {\"threshold\": 0.1509999930858612, \"p\": 28012, \"fpr\": 0.40142562371037327, \"tpr\": 0.9746894188205055, \"n\": 5331}, {\"threshold\": 0.15199999511241913, \"p\": 28012, \"fpr\": 0.40142562371037327, \"tpr\": 0.9746180208482079, \"n\": 5331}, {\"threshold\": 0.15299999713897705, \"p\": 28012, \"fpr\": 0.40086287750891014, \"tpr\": 0.974439525917464, \"n\": 5331}, {\"threshold\": 0.15399999916553497, \"p\": 28012, \"fpr\": 0.3997373851059839, \"tpr\": 0.9743324289590176, \"n\": 5331}, {\"threshold\": 0.1550000011920929, \"p\": 28012, \"fpr\": 0.3993622209716751, \"tpr\": 0.9741896330144224, \"n\": 5331}, {\"threshold\": 0.15600000321865082, \"p\": 28012, \"fpr\": 0.398799474770212, \"tpr\": 0.9741182350421248, \"n\": 5331}, {\"threshold\": 0.15700000524520874, \"p\": 28012, \"fpr\": 0.3986118927030576, \"tpr\": 0.9740111380836785, \"n\": 5331}, {\"threshold\": 0.15800000727176666, \"p\": 28012, \"fpr\": 0.39786156443444004, \"tpr\": 0.9739397401113808, \"n\": 5331}, {\"threshold\": 0.1589999943971634, \"p\": 28012, \"fpr\": 0.3976739823672857, \"tpr\": 0.973904041125232, \"n\": 5331}, {\"threshold\": 0.1599999964237213, \"p\": 28012, \"fpr\": 0.39711123616582256, \"tpr\": 0.973904041125232, \"n\": 5331}, {\"threshold\": 0.16099999845027924, \"p\": 28012, \"fpr\": 0.396360907897205, \"tpr\": 0.9738326431529345, \"n\": 5331}, {\"threshold\": 0.16200000047683716, \"p\": 28012, \"fpr\": 0.3957981616957419, \"tpr\": 0.9737612451806369, \"n\": 5331}, {\"threshold\": 0.16300000250339508, \"p\": 28012, \"fpr\": 0.39523541549427876, \"tpr\": 0.973725546194488, \"n\": 5331}, {\"threshold\": 0.164000004529953, \"p\": 28012, \"fpr\": 0.39429750515850687, \"tpr\": 0.973725546194488, \"n\": 5331}, {\"threshold\": 0.16500000655651093, \"p\": 28012, \"fpr\": 0.3935471768898893, \"tpr\": 0.9735827502498929, \"n\": 5331}, {\"threshold\": 0.16599999368190765, \"p\": 28012, \"fpr\": 0.39317201275558056, \"tpr\": 0.9735113522775953, \"n\": 5331}, {\"threshold\": 0.16699999570846558, \"p\": 28012, \"fpr\": 0.3927968486212718, \"tpr\": 0.973404255319149, \"n\": 5331}, {\"threshold\": 0.1679999977350235, \"p\": 28012, \"fpr\": 0.39260926655411743, \"tpr\": 0.9732971583607025, \"n\": 5331}, {\"threshold\": 0.16899999976158142, \"p\": 28012, \"fpr\": 0.3918589382854999, \"tpr\": 0.9731543624161074, \"n\": 5331}, {\"threshold\": 0.17000000178813934, \"p\": 28012, \"fpr\": 0.3905458638154192, \"tpr\": 0.973047265457661, \"n\": 5331}, {\"threshold\": 0.17100000381469727, \"p\": 28012, \"fpr\": 0.38942037141249297, \"tpr\": 0.973047265457661, \"n\": 5331}, {\"threshold\": 0.1720000058412552, \"p\": 28012, \"fpr\": 0.3890452072781842, \"tpr\": 0.9729401684992146, \"n\": 5331}, {\"threshold\": 0.17299999296665192, \"p\": 28012, \"fpr\": 0.3881072969424123, \"tpr\": 0.9729401684992146, \"n\": 5331}, {\"threshold\": 0.17399999499320984, \"p\": 28012, \"fpr\": 0.38791971487525795, \"tpr\": 0.972868770526917, \"n\": 5331}, {\"threshold\": 0.17499999701976776, \"p\": 28012, \"fpr\": 0.38773213280810354, \"tpr\": 0.9727259745823219, \"n\": 5331}, {\"threshold\": 0.17599999904632568, \"p\": 28012, \"fpr\": 0.3871693866066404, \"tpr\": 0.9726545766100243, \"n\": 5331}, {\"threshold\": 0.1770000010728836, \"p\": 28012, \"fpr\": 0.3856687300694054, \"tpr\": 0.9725831786377267, \"n\": 5331}, {\"threshold\": 0.17800000309944153, \"p\": 28012, \"fpr\": 0.38491840180078785, \"tpr\": 0.9724760816792803, \"n\": 5331}, {\"threshold\": 0.17900000512599945, \"p\": 28012, \"fpr\": 0.3845432376664791, \"tpr\": 0.9723689847208339, \"n\": 5331}, {\"threshold\": 0.18000000715255737, \"p\": 28012, \"fpr\": 0.3836053273307072, \"tpr\": 0.9722618877623875, \"n\": 5331}, {\"threshold\": 0.1809999942779541, \"p\": 28012, \"fpr\": 0.38304258112924405, \"tpr\": 0.9721904897900899, \"n\": 5331}, {\"threshold\": 0.18199999630451202, \"p\": 28012, \"fpr\": 0.3822922528606265, \"tpr\": 0.9719762958731972, \"n\": 5331}, {\"threshold\": 0.18299999833106995, \"p\": 28012, \"fpr\": 0.38154192459200903, \"tpr\": 0.971833499928602, \"n\": 5331}, {\"threshold\": 0.18400000035762787, \"p\": 28012, \"fpr\": 0.38116676045770026, \"tpr\": 0.9716907039840068, \"n\": 5331}, {\"threshold\": 0.1850000023841858, \"p\": 28012, \"fpr\": 0.3806040142562371, \"tpr\": 0.9716550049978581, \"n\": 5331}, {\"threshold\": 0.1860000044107437, \"p\": 28012, \"fpr\": 0.3796661039204652, \"tpr\": 0.9716193060117093, \"n\": 5331}, {\"threshold\": 0.18700000643730164, \"p\": 28012, \"fpr\": 0.3787281935846933, \"tpr\": 0.9714408110809652, \"n\": 5331}, {\"threshold\": 0.18799999356269836, \"p\": 28012, \"fpr\": 0.3787281935846933, \"tpr\": 0.9714051120948165, \"n\": 5331}, {\"threshold\": 0.1889999955892563, \"p\": 28012, \"fpr\": 0.37835302945038457, \"tpr\": 0.9713337141225189, \"n\": 5331}, {\"threshold\": 0.1899999976158142, \"p\": 28012, \"fpr\": 0.3779778653160758, \"tpr\": 0.9711909181779238, \"n\": 5331}, {\"threshold\": 0.19099999964237213, \"p\": 28012, \"fpr\": 0.3774151191146126, \"tpr\": 0.9711195202056262, \"n\": 5331}, {\"threshold\": 0.19200000166893005, \"p\": 28012, \"fpr\": 0.37722753704745826, \"tpr\": 0.9710124232471797, \"n\": 5331}, {\"threshold\": 0.19300000369548798, \"p\": 28012, \"fpr\": 0.37666479084599513, \"tpr\": 0.9709410252748822, \"n\": 5331}, {\"threshold\": 0.1940000057220459, \"p\": 28012, \"fpr\": 0.37628962671168636, \"tpr\": 0.9708696273025846, \"n\": 5331}, {\"threshold\": 0.19499999284744263, \"p\": 28012, \"fpr\": 0.3759144625773776, \"tpr\": 0.970798229330287, \"n\": 5331}, {\"threshold\": 0.19599999487400055, \"p\": 28012, \"fpr\": 0.3755392984430688, \"tpr\": 0.9707268313579894, \"n\": 5331}, {\"threshold\": 0.19699999690055847, \"p\": 28012, \"fpr\": 0.37535171637591447, \"tpr\": 0.9706911323718407, \"n\": 5331}, {\"threshold\": 0.1979999989271164, \"p\": 28012, \"fpr\": 0.37516413430876006, \"tpr\": 0.9706554333856918, \"n\": 5331}, {\"threshold\": 0.19900000095367432, \"p\": 28012, \"fpr\": 0.37478897017445134, \"tpr\": 0.9705483364272455, \"n\": 5331}, {\"threshold\": 0.20000000298023224, \"p\": 28012, \"fpr\": 0.3740386419058338, \"tpr\": 0.9705126374410967, \"n\": 5331}, {\"threshold\": 0.20100000500679016, \"p\": 28012, \"fpr\": 0.3734758957043707, \"tpr\": 0.9704769384549479, \"n\": 5331}, {\"threshold\": 0.20200000703334808, \"p\": 28012, \"fpr\": 0.3731007315700619, \"tpr\": 0.9704055404826503, \"n\": 5331}, {\"threshold\": 0.2029999941587448, \"p\": 28012, \"fpr\": 0.3731007315700619, \"tpr\": 0.9703698414965015, \"n\": 5331}, {\"threshold\": 0.20399999618530273, \"p\": 28012, \"fpr\": 0.3725379853685988, \"tpr\": 0.9701913465657576, \"n\": 5331}, {\"threshold\": 0.20499999821186066, \"p\": 28012, \"fpr\": 0.37141249296567247, \"tpr\": 0.9700485506211624, \"n\": 5331}, {\"threshold\": 0.20600000023841858, \"p\": 28012, \"fpr\": 0.3704745826299006, \"tpr\": 0.9699771526488647, \"n\": 5331}, {\"threshold\": 0.2070000022649765, \"p\": 28012, \"fpr\": 0.3700994184955918, \"tpr\": 0.9699771526488647, \"n\": 5331}, {\"threshold\": 0.20800000429153442, \"p\": 28012, \"fpr\": 0.3697242543612831, \"tpr\": 0.9698700556904184, \"n\": 5331}, {\"threshold\": 0.20900000631809235, \"p\": 28012, \"fpr\": 0.36878634402551114, \"tpr\": 0.9697986577181208, \"n\": 5331}, {\"threshold\": 0.20999999344348907, \"p\": 28012, \"fpr\": 0.3674732695554305, \"tpr\": 0.9697272597458232, \"n\": 5331}, {\"threshold\": 0.210999995470047, \"p\": 28012, \"fpr\": 0.36709810542112176, \"tpr\": 0.9696201627873768, \"n\": 5331}, {\"threshold\": 0.21199999749660492, \"p\": 28012, \"fpr\": 0.36691052335396734, \"tpr\": 0.969405968870484, \"n\": 5331}, {\"threshold\": 0.21299999952316284, \"p\": 28012, \"fpr\": 0.3663477771525042, \"tpr\": 0.9693702698843353, \"n\": 5331}, {\"threshold\": 0.21400000154972076, \"p\": 28012, \"fpr\": 0.36597261301819545, \"tpr\": 0.9692631729258889, \"n\": 5331}, {\"threshold\": 0.2150000035762787, \"p\": 28012, \"fpr\": 0.3654098668167323, \"tpr\": 0.9692274739397401, \"n\": 5331}, {\"threshold\": 0.2160000056028366, \"p\": 28012, \"fpr\": 0.3644719564809604, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21699999272823334, \"p\": 28012, \"fpr\": 0.36409679234665165, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21799999475479126, \"p\": 28012, \"fpr\": 0.3629712999437254, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21899999678134918, \"p\": 28012, \"fpr\": 0.36222097167510786, \"tpr\": 0.969084677995145, \"n\": 5331}, {\"threshold\": 0.2199999988079071, \"p\": 28012, \"fpr\": 0.36128306133933596, \"tpr\": 0.9690489790089961, \"n\": 5331}, {\"threshold\": 0.22100000083446503, \"p\": 28012, \"fpr\": 0.36072031513787284, \"tpr\": 0.9689418820505498, \"n\": 5331}, {\"threshold\": 0.22200000286102295, \"p\": 28012, \"fpr\": 0.3605327330707184, \"tpr\": 0.9689418820505498, \"n\": 5331}, {\"threshold\": 0.22300000488758087, \"p\": 28012, \"fpr\": 0.36015756893640966, \"tpr\": 0.968727688133657, \"n\": 5331}, {\"threshold\": 0.2240000069141388, \"p\": 28012, \"fpr\": 0.35921965860063776, \"tpr\": 0.9686562901613595, \"n\": 5331}, {\"threshold\": 0.22499999403953552, \"p\": 28012, \"fpr\": 0.3584693303320203, \"tpr\": 0.9686205911752106, \"n\": 5331}, {\"threshold\": 0.22599999606609344, \"p\": 28012, \"fpr\": 0.3579065841305571, \"tpr\": 0.9685134942167642, \"n\": 5331}, {\"threshold\": 0.22699999809265137, \"p\": 28012, \"fpr\": 0.35771900206340274, \"tpr\": 0.9682993002998714, \"n\": 5331}, {\"threshold\": 0.2280000001192093, \"p\": 28012, \"fpr\": 0.3571562558619396, \"tpr\": 0.9681922033414251, \"n\": 5331}, {\"threshold\": 0.2290000021457672, \"p\": 28012, \"fpr\": 0.35640592759332207, \"tpr\": 0.9681565043552763, \"n\": 5331}, {\"threshold\": 0.23000000417232513, \"p\": 28012, \"fpr\": 0.3560307634590133, \"tpr\": 0.9681208053691275, \"n\": 5331}, {\"threshold\": 0.23100000619888306, \"p\": 28012, \"fpr\": 0.3552804351903958, \"tpr\": 0.9680137084106811, \"n\": 5331}, {\"threshold\": 0.23199999332427979, \"p\": 28012, \"fpr\": 0.3543425248546239, \"tpr\": 0.9679423104383835, \"n\": 5331}, {\"threshold\": 0.2329999953508377, \"p\": 28012, \"fpr\": 0.35396736072031515, \"tpr\": 0.9678709124660859, \"n\": 5331}, {\"threshold\": 0.23399999737739563, \"p\": 28012, \"fpr\": 0.3535921965860064, \"tpr\": 0.9678352134799372, \"n\": 5331}, {\"threshold\": 0.23499999940395355, \"p\": 28012, \"fpr\": 0.353404614518852, \"tpr\": 0.9678352134799372, \"n\": 5331}, {\"threshold\": 0.23600000143051147, \"p\": 28012, \"fpr\": 0.35246670418308007, \"tpr\": 0.9677995144937884, \"n\": 5331}, {\"threshold\": 0.2370000034570694, \"p\": 28012, \"fpr\": 0.35209154004877136, \"tpr\": 0.9677638155076396, \"n\": 5331}, {\"threshold\": 0.23800000548362732, \"p\": 28012, \"fpr\": 0.35115362971299946, \"tpr\": 0.9677281165214908, \"n\": 5331}, {\"threshold\": 0.23899999260902405, \"p\": 28012, \"fpr\": 0.3505908835115363, \"tpr\": 0.967692417535342, \"n\": 5331}, {\"threshold\": 0.23999999463558197, \"p\": 28012, \"fpr\": 0.3504033014443819, \"tpr\": 0.9674068256461517, \"n\": 5331}, {\"threshold\": 0.2409999966621399, \"p\": 28012, \"fpr\": 0.3496529731757644, \"tpr\": 0.9672640297015564, \"n\": 5331}, {\"threshold\": 0.24199999868869781, \"p\": 28012, \"fpr\": 0.34946539110861, \"tpr\": 0.9671926317292588, \"n\": 5331}, {\"threshold\": 0.24300000071525574, \"p\": 28012, \"fpr\": 0.34909022697430125, \"tpr\": 0.9670855347708125, \"n\": 5331}, {\"threshold\": 0.24400000274181366, \"p\": 28012, \"fpr\": 0.3487150628399925, \"tpr\": 0.9670141367985149, \"n\": 5331}, {\"threshold\": 0.24500000476837158, \"p\": 28012, \"fpr\": 0.3477771525042206, \"tpr\": 0.9669070398400685, \"n\": 5331}, {\"threshold\": 0.2460000067949295, \"p\": 28012, \"fpr\": 0.3470268242356031, \"tpr\": 0.9668356418677709, \"n\": 5331}, {\"threshold\": 0.24699999392032623, \"p\": 28012, \"fpr\": 0.3470268242356031, \"tpr\": 0.9667642438954733, \"n\": 5331}, {\"threshold\": 0.24799999594688416, \"p\": 28012, \"fpr\": 0.34665166010129433, \"tpr\": 0.9667285449093246, \"n\": 5331}, {\"threshold\": 0.24899999797344208, \"p\": 28012, \"fpr\": 0.34627649596698556, \"tpr\": 0.966657146937027, \"n\": 5331}, {\"threshold\": 0.25, \"p\": 28012, \"fpr\": 0.3459013318326768, \"tpr\": 0.9666214479508782, \"n\": 5331}, {\"threshold\": 0.25099998712539673, \"p\": 28012, \"fpr\": 0.345526167698368, \"tpr\": 0.9665857489647294, \"n\": 5331}, {\"threshold\": 0.25200000405311584, \"p\": 28012, \"fpr\": 0.34533858563121367, \"tpr\": 0.966478652006283, \"n\": 5331}, {\"threshold\": 0.2529999911785126, \"p\": 28012, \"fpr\": 0.3449634214969049, \"tpr\": 0.9664072540339854, \"n\": 5331}, {\"threshold\": 0.2540000081062317, \"p\": 28012, \"fpr\": 0.34458825736259613, \"tpr\": 0.9663715550478367, \"n\": 5331}, {\"threshold\": 0.2549999952316284, \"p\": 28012, \"fpr\": 0.34421309322828736, \"tpr\": 0.9663358560616878, \"n\": 5331}, {\"threshold\": 0.25600001215934753, \"p\": 28012, \"fpr\": 0.3434627649596699, \"tpr\": 0.9662644580893902, \"n\": 5331}, {\"threshold\": 0.25699999928474426, \"p\": 28012, \"fpr\": 0.3430876008253611, \"tpr\": 0.9662287591032415, \"n\": 5331}, {\"threshold\": 0.257999986410141, \"p\": 28012, \"fpr\": 0.3429000187582067, \"tpr\": 0.9661573611309439, \"n\": 5331}, {\"threshold\": 0.2590000033378601, \"p\": 28012, \"fpr\": 0.34177452635528044, \"tpr\": 0.9661216621447951, \"n\": 5331}, {\"threshold\": 0.25999999046325684, \"p\": 28012, \"fpr\": 0.3415869442881261, \"tpr\": 0.9660502641724975, \"n\": 5331}, {\"threshold\": 0.26100000739097595, \"p\": 28012, \"fpr\": 0.3415869442881261, \"tpr\": 0.9659788662001999, \"n\": 5331}, {\"threshold\": 0.2619999945163727, \"p\": 28012, \"fpr\": 0.3412117801538173, \"tpr\": 0.9659788662001999, \"n\": 5331}, {\"threshold\": 0.2630000114440918, \"p\": 28012, \"fpr\": 0.34064903395235413, \"tpr\": 0.9659074682279023, \"n\": 5331}, {\"threshold\": 0.2639999985694885, \"p\": 28012, \"fpr\": 0.3402738698180454, \"tpr\": 0.9658360702556047, \"n\": 5331}, {\"threshold\": 0.26499998569488525, \"p\": 28012, \"fpr\": 0.33971112361658223, \"tpr\": 0.965800371269456, \"n\": 5331}, {\"threshold\": 0.26600000262260437, \"p\": 28012, \"fpr\": 0.3395235415494279, \"tpr\": 0.9656575753248607, \"n\": 5331}, {\"threshold\": 0.2669999897480011, \"p\": 28012, \"fpr\": 0.338585631213656, \"tpr\": 0.965621876338712, \"n\": 5331}, {\"threshold\": 0.2680000066757202, \"p\": 28012, \"fpr\": 0.3382104670793472, \"tpr\": 0.9655147793802656, \"n\": 5331}, {\"threshold\": 0.26899999380111694, \"p\": 28012, \"fpr\": 0.33783530294503844, \"tpr\": 0.965443381407968, \"n\": 5331}, {\"threshold\": 0.27000001072883606, \"p\": 28012, \"fpr\": 0.3376477208778841, \"tpr\": 0.965443381407968, \"n\": 5331}, {\"threshold\": 0.2709999978542328, \"p\": 28012, \"fpr\": 0.33746013881072967, \"tpr\": 0.9653005854633728, \"n\": 5331}, {\"threshold\": 0.2720000147819519, \"p\": 28012, \"fpr\": 0.3365222284749578, \"tpr\": 0.9653005854633728, \"n\": 5331}, {\"threshold\": 0.27300000190734863, \"p\": 28012, \"fpr\": 0.33595948227349465, \"tpr\": 0.9652648864772241, \"n\": 5331}, {\"threshold\": 0.27399998903274536, \"p\": 28012, \"fpr\": 0.3353967360720315, \"tpr\": 0.9651934885049265, \"n\": 5331}, {\"threshold\": 0.2750000059604645, \"p\": 28012, \"fpr\": 0.3348339898705684, \"tpr\": 0.9650863915464801, \"n\": 5331}, {\"threshold\": 0.2759999930858612, \"p\": 28012, \"fpr\": 0.3344588257362596, \"tpr\": 0.9650506925603313, \"n\": 5331}, {\"threshold\": 0.2770000100135803, \"p\": 28012, \"fpr\": 0.33408366160195085, \"tpr\": 0.9650506925603313, \"n\": 5331}, {\"threshold\": 0.27799999713897705, \"p\": 28012, \"fpr\": 0.3337084974676421, \"tpr\": 0.9650149935741825, \"n\": 5331}, {\"threshold\": 0.27900001406669617, \"p\": 28012, \"fpr\": 0.33314575126617896, \"tpr\": 0.9649792945880337, \"n\": 5331}, {\"threshold\": 0.2800000011920929, \"p\": 28012, \"fpr\": 0.3329581691990246, \"tpr\": 0.9649792945880337, \"n\": 5331}, {\"threshold\": 0.2809999883174896, \"p\": 28012, \"fpr\": 0.33258300506471583, \"tpr\": 0.9648721976295873, \"n\": 5331}, {\"threshold\": 0.28200000524520874, \"p\": 28012, \"fpr\": 0.33258300506471583, \"tpr\": 0.9648364986434386, \"n\": 5331}, {\"threshold\": 0.28299999237060547, \"p\": 28012, \"fpr\": 0.33164509472894393, \"tpr\": 0.9647294016849921, \"n\": 5331}, {\"threshold\": 0.2840000092983246, \"p\": 28012, \"fpr\": 0.33126993059463516, \"tpr\": 0.9646223047265458, \"n\": 5331}, {\"threshold\": 0.2849999964237213, \"p\": 28012, \"fpr\": 0.33070718439317204, \"tpr\": 0.9645152077680994, \"n\": 5331}, {\"threshold\": 0.28600001335144043, \"p\": 28012, \"fpr\": 0.3305196023260176, \"tpr\": 0.9644795087819505, \"n\": 5331}, {\"threshold\": 0.28700000047683716, \"p\": 28012, \"fpr\": 0.3299568561245545, \"tpr\": 0.9643367128373554, \"n\": 5331}, {\"threshold\": 0.2879999876022339, \"p\": 28012, \"fpr\": 0.32939410992309137, \"tpr\": 0.964229615878909, \"n\": 5331}, {\"threshold\": 0.289000004529953, \"p\": 28012, \"fpr\": 0.3290189457887826, \"tpr\": 0.9641225189204626, \"n\": 5331}, {\"threshold\": 0.28999999165534973, \"p\": 28012, \"fpr\": 0.32864378165447383, \"tpr\": 0.9639797229758675, \"n\": 5331}, {\"threshold\": 0.29100000858306885, \"p\": 28012, \"fpr\": 0.3280810354530107, \"tpr\": 0.9639083250035699, \"n\": 5331}, {\"threshold\": 0.2919999957084656, \"p\": 28012, \"fpr\": 0.32770587131870194, \"tpr\": 0.9638012280451235, \"n\": 5331}, {\"threshold\": 0.2930000126361847, \"p\": 28012, \"fpr\": 0.3271431251172388, \"tpr\": 0.9636941310866771, \"n\": 5331}, {\"threshold\": 0.2939999997615814, \"p\": 28012, \"fpr\": 0.3271431251172388, \"tpr\": 0.9635513351420819, \"n\": 5331}, {\"threshold\": 0.29499998688697815, \"p\": 28012, \"fpr\": 0.3269555430500844, \"tpr\": 0.9634442381836356, \"n\": 5331}, {\"threshold\": 0.29600000381469727, \"p\": 28012, \"fpr\": 0.32639279684862127, \"tpr\": 0.9634085391974868, \"n\": 5331}, {\"threshold\": 0.296999990940094, \"p\": 28012, \"fpr\": 0.32564246858000373, \"tpr\": 0.9633371412251892, \"n\": 5331}, {\"threshold\": 0.2980000078678131, \"p\": 28012, \"fpr\": 0.3254548865128494, \"tpr\": 0.9632300442667429, \"n\": 5331}, {\"threshold\": 0.29899999499320984, \"p\": 28012, \"fpr\": 0.32489214031138625, \"tpr\": 0.963194345280594, \"n\": 5331}, {\"threshold\": 0.30000001192092896, \"p\": 28012, \"fpr\": 0.32470455824423183, \"tpr\": 0.9630515493359989, \"n\": 5331}, {\"threshold\": 0.3009999990463257, \"p\": 28012, \"fpr\": 0.32395422997561435, \"tpr\": 0.9629801513637013, \"n\": 5331}, {\"threshold\": 0.3019999861717224, \"p\": 28012, \"fpr\": 0.32376664790845994, \"tpr\": 0.9628730544052548, \"n\": 5331}, {\"threshold\": 0.30300000309944153, \"p\": 28012, \"fpr\": 0.3232039017069968, \"tpr\": 0.9628730544052548, \"n\": 5331}, {\"threshold\": 0.30399999022483826, \"p\": 28012, \"fpr\": 0.3226411555055337, \"tpr\": 0.9628016564329573, \"n\": 5331}, {\"threshold\": 0.3050000071525574, \"p\": 28012, \"fpr\": 0.32207840930407056, \"tpr\": 0.9627302584606597, \"n\": 5331}, {\"threshold\": 0.3059999942779541, \"p\": 28012, \"fpr\": 0.3215156631026074, \"tpr\": 0.9626231615022134, \"n\": 5331}, {\"threshold\": 0.3070000112056732, \"p\": 28012, \"fpr\": 0.3215156631026074, \"tpr\": 0.9625517635299158, \"n\": 5331}, {\"threshold\": 0.30799999833106995, \"p\": 28012, \"fpr\": 0.3211404989682986, \"tpr\": 0.9625517635299158, \"n\": 5331}, {\"threshold\": 0.3089999854564667, \"p\": 28012, \"fpr\": 0.3202025886325267, \"tpr\": 0.9625160645437669, \"n\": 5331}, {\"threshold\": 0.3100000023841858, \"p\": 28012, \"fpr\": 0.32001500656537235, \"tpr\": 0.962337569613023, \"n\": 5331}, {\"threshold\": 0.3109999895095825, \"p\": 28012, \"fpr\": 0.3192646782967548, \"tpr\": 0.962337569613023, \"n\": 5331}, {\"threshold\": 0.31200000643730164, \"p\": 28012, \"fpr\": 0.31907709622960045, \"tpr\": 0.9622304726545766, \"n\": 5331}, {\"threshold\": 0.31299999356269836, \"p\": 28012, \"fpr\": 0.3187019320952917, \"tpr\": 0.9621233756961303, \"n\": 5331}, {\"threshold\": 0.3140000104904175, \"p\": 28012, \"fpr\": 0.31813918589382856, \"tpr\": 0.9620876767099814, \"n\": 5331}, {\"threshold\": 0.3149999976158142, \"p\": 28012, \"fpr\": 0.31701369349090225, \"tpr\": 0.9620519777238327, \"n\": 5331}, {\"threshold\": 0.3160000145435333, \"p\": 28012, \"fpr\": 0.31663852935659353, \"tpr\": 0.9619091817792375, \"n\": 5331}, {\"threshold\": 0.31700000166893005, \"p\": 28012, \"fpr\": 0.315888201087976, \"tpr\": 0.9617306868484935, \"n\": 5331}, {\"threshold\": 0.3179999887943268, \"p\": 28012, \"fpr\": 0.3157006190208216, \"tpr\": 0.9616592888761959, \"n\": 5331}, {\"threshold\": 0.3190000057220459, \"p\": 28012, \"fpr\": 0.31532545488651287, \"tpr\": 0.9615521919177495, \"n\": 5331}, {\"threshold\": 0.3199999928474426, \"p\": 28012, \"fpr\": 0.31513787281935846, \"tpr\": 0.9614807939454519, \"n\": 5331}, {\"threshold\": 0.32100000977516174, \"p\": 28012, \"fpr\": 0.3149502907522041, \"tpr\": 0.9614093959731543, \"n\": 5331}, {\"threshold\": 0.32199999690055847, \"p\": 28012, \"fpr\": 0.31457512661789533, \"tpr\": 0.9611952020562616, \"n\": 5331}, {\"threshold\": 0.3230000138282776, \"p\": 28012, \"fpr\": 0.31438754455074097, \"tpr\": 0.9611952020562616, \"n\": 5331}, {\"threshold\": 0.3240000009536743, \"p\": 28012, \"fpr\": 0.31419996248358656, \"tpr\": 0.961123804083964, \"n\": 5331}, {\"threshold\": 0.32499998807907104, \"p\": 28012, \"fpr\": 0.3138247983492778, \"tpr\": 0.9610524061116664, \"n\": 5331}, {\"threshold\": 0.32600000500679016, \"p\": 28012, \"fpr\": 0.3134496342149691, \"tpr\": 0.9609453091532201, \"n\": 5331}, {\"threshold\": 0.3269999921321869, \"p\": 28012, \"fpr\": 0.3130744700806603, \"tpr\": 0.9609096101670712, \"n\": 5331}, {\"threshold\": 0.328000009059906, \"p\": 28012, \"fpr\": 0.311948977677734, \"tpr\": 0.9608382121947737, \"n\": 5331}, {\"threshold\": 0.32899999618530273, \"p\": 28012, \"fpr\": 0.3111986494091165, \"tpr\": 0.9608025132086249, \"n\": 5331}, {\"threshold\": 0.33000001311302185, \"p\": 28012, \"fpr\": 0.310448321140499, \"tpr\": 0.9607668142224761, \"n\": 5331}, {\"threshold\": 0.3310000002384186, \"p\": 28012, \"fpr\": 0.3100731570061902, \"tpr\": 0.9607311152363273, \"n\": 5331}, {\"threshold\": 0.3319999873638153, \"p\": 28012, \"fpr\": 0.30988557493903585, \"tpr\": 0.9606240182778809, \"n\": 5331}, {\"threshold\": 0.3330000042915344, \"p\": 28012, \"fpr\": 0.30969799287188143, \"tpr\": 0.9605526203055833, \"n\": 5331}, {\"threshold\": 0.33399999141693115, \"p\": 28012, \"fpr\": 0.30876008253610954, \"tpr\": 0.9605526203055833, \"n\": 5331}, {\"threshold\": 0.33500000834465027, \"p\": 28012, \"fpr\": 0.30838491840180077, \"tpr\": 0.9605169213194346, \"n\": 5331}, {\"threshold\": 0.335999995470047, \"p\": 28012, \"fpr\": 0.30782217220033764, \"tpr\": 0.9605169213194346, \"n\": 5331}, {\"threshold\": 0.3370000123977661, \"p\": 28012, \"fpr\": 0.30744700806602887, \"tpr\": 0.9603741253748393, \"n\": 5331}, {\"threshold\": 0.33799999952316284, \"p\": 28012, \"fpr\": 0.3070718439317201, \"tpr\": 0.960267028416393, \"n\": 5331}, {\"threshold\": 0.33899998664855957, \"p\": 28012, \"fpr\": 0.3066966797974114, \"tpr\": 0.9602313294302441, \"n\": 5331}, {\"threshold\": 0.3400000035762787, \"p\": 28012, \"fpr\": 0.3057587694616395, \"tpr\": 0.960088533485649, \"n\": 5331}, {\"threshold\": 0.3409999907016754, \"p\": 28012, \"fpr\": 0.3055711873944851, \"tpr\": 0.9600171355133514, \"n\": 5331}, {\"threshold\": 0.34200000762939453, \"p\": 28012, \"fpr\": 0.3048208591258676, \"tpr\": 0.9599100385549051, \"n\": 5331}, {\"threshold\": 0.34299999475479126, \"p\": 28012, \"fpr\": 0.3048208591258676, \"tpr\": 0.9598029415964586, \"n\": 5331}, {\"threshold\": 0.3440000116825104, \"p\": 28012, \"fpr\": 0.3046332770587132, \"tpr\": 0.9595887476795659, \"n\": 5331}, {\"threshold\": 0.3449999988079071, \"p\": 28012, \"fpr\": 0.30407053085725005, \"tpr\": 0.9595173497072683, \"n\": 5331}, {\"threshold\": 0.34599998593330383, \"p\": 28012, \"fpr\": 0.30388294879009564, \"tpr\": 0.9594816507211196, \"n\": 5331}, {\"threshold\": 0.34700000286102295, \"p\": 28012, \"fpr\": 0.30313262052147816, \"tpr\": 0.9593388547765244, \"n\": 5331}, {\"threshold\": 0.3479999899864197, \"p\": 28012, \"fpr\": 0.30294503845432375, \"tpr\": 0.9593031557903755, \"n\": 5331}, {\"threshold\": 0.3490000069141388, \"p\": 28012, \"fpr\": 0.3027574563871694, \"tpr\": 0.9591960588319292, \"n\": 5331}, {\"threshold\": 0.3499999940395355, \"p\": 28012, \"fpr\": 0.3027574563871694, \"tpr\": 0.9591246608596316, \"n\": 5331}, {\"threshold\": 0.35100001096725464, \"p\": 28012, \"fpr\": 0.3018195460513975, \"tpr\": 0.959053262887334, \"n\": 5331}, {\"threshold\": 0.35199999809265137, \"p\": 28012, \"fpr\": 0.3016319639842431, \"tpr\": 0.9590175639011852, \"n\": 5331}, {\"threshold\": 0.3529999852180481, \"p\": 28012, \"fpr\": 0.30106921778277995, \"tpr\": 0.95887476795659, \"n\": 5331}, {\"threshold\": 0.3540000021457672, \"p\": 28012, \"fpr\": 0.3008816357156256, \"tpr\": 0.9588033699842925, \"n\": 5331}, {\"threshold\": 0.35499998927116394, \"p\": 28012, \"fpr\": 0.3008816357156256, \"tpr\": 0.9586605740396973, \"n\": 5331}, {\"threshold\": 0.35600000619888306, \"p\": 28012, \"fpr\": 0.3006940536484712, \"tpr\": 0.9586605740396973, \"n\": 5331}, {\"threshold\": 0.3569999933242798, \"p\": 28012, \"fpr\": 0.30013130744700806, \"tpr\": 0.9585534770812509, \"n\": 5331}, {\"threshold\": 0.3580000102519989, \"p\": 28012, \"fpr\": 0.2999437253798537, \"tpr\": 0.9584820791089533, \"n\": 5331}, {\"threshold\": 0.35899999737739563, \"p\": 28012, \"fpr\": 0.2999437253798537, \"tpr\": 0.9583749821505069, \"n\": 5331}, {\"threshold\": 0.36000001430511475, \"p\": 28012, \"fpr\": 0.29919339711123616, \"tpr\": 0.9583392831643581, \"n\": 5331}, {\"threshold\": 0.3610000014305115, \"p\": 28012, \"fpr\": 0.2990058150440818, \"tpr\": 0.9582321862059118, \"n\": 5331}, {\"threshold\": 0.3619999885559082, \"p\": 28012, \"fpr\": 0.2988182329769274, \"tpr\": 0.9581607882336142, \"n\": 5331}, {\"threshold\": 0.3630000054836273, \"p\": 28012, \"fpr\": 0.2984430688426186, \"tpr\": 0.9580536912751678, \"n\": 5331}, {\"threshold\": 0.36399999260902405, \"p\": 28012, \"fpr\": 0.2984430688426186, \"tpr\": 0.9580536912751678, \"n\": 5331}, {\"threshold\": 0.36500000953674316, \"p\": 28012, \"fpr\": 0.2980679047083099, \"tpr\": 0.9579822933028702, \"n\": 5331}, {\"threshold\": 0.3659999966621399, \"p\": 28012, \"fpr\": 0.29769274057400114, \"tpr\": 0.9579108953305726, \"n\": 5331}, {\"threshold\": 0.367000013589859, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9578751963444239, \"n\": 5331}, {\"threshold\": 0.36800000071525574, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9576967014136798, \"n\": 5331}, {\"threshold\": 0.36899998784065247, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9575182064829358, \"n\": 5331}, {\"threshold\": 0.3700000047683716, \"p\": 28012, \"fpr\": 0.297129994372538, \"tpr\": 0.9574825074967871, \"n\": 5331}, {\"threshold\": 0.3709999918937683, \"p\": 28012, \"fpr\": 0.297129994372538, \"tpr\": 0.9573754105383407, \"n\": 5331}, {\"threshold\": 0.3720000088214874, \"p\": 28012, \"fpr\": 0.2969424123053836, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.37299999594688416, \"p\": 28012, \"fpr\": 0.29637966610392047, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.37400001287460327, \"p\": 28012, \"fpr\": 0.2960045019696117, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.375, \"p\": 28012, \"fpr\": 0.29581691990245734, \"tpr\": 0.9571969156075968, \"n\": 5331}, {\"threshold\": 0.37599998712539673, \"p\": 28012, \"fpr\": 0.29525417370099416, \"tpr\": 0.9571969156075968, \"n\": 5331}, {\"threshold\": 0.37700000405311584, \"p\": 28012, \"fpr\": 0.2950665916338398, \"tpr\": 0.9571255176352992, \"n\": 5331}, {\"threshold\": 0.3779999911785126, \"p\": 28012, \"fpr\": 0.29469142749953103, \"tpr\": 0.9568399257461088, \"n\": 5331}, {\"threshold\": 0.3790000081062317, \"p\": 28012, \"fpr\": 0.2941286812980679, \"tpr\": 0.95680422675996, \"n\": 5331}, {\"threshold\": 0.3799999952316284, \"p\": 28012, \"fpr\": 0.29394109923091355, \"tpr\": 0.9566614308153648, \"n\": 5331}, {\"threshold\": 0.38100001215934753, \"p\": 28012, \"fpr\": 0.29337835302945037, \"tpr\": 0.9565900328430672, \"n\": 5331}, {\"threshold\": 0.38199999928474426, \"p\": 28012, \"fpr\": 0.2926280247608329, \"tpr\": 0.9564829358846209, \"n\": 5331}, {\"threshold\": 0.382999986410141, \"p\": 28012, \"fpr\": 0.29244044269367847, \"tpr\": 0.9563044409538769, \"n\": 5331}, {\"threshold\": 0.3840000033378601, \"p\": 28012, \"fpr\": 0.2922528606265241, \"tpr\": 0.9561973439954305, \"n\": 5331}, {\"threshold\": 0.38499999046325684, \"p\": 28012, \"fpr\": 0.2922528606265241, \"tpr\": 0.9560902470369842, \"n\": 5331}, {\"threshold\": 0.38600000739097595, \"p\": 28012, \"fpr\": 0.2911273682235978, \"tpr\": 0.9560545480508353, \"n\": 5331}, {\"threshold\": 0.3869999945163727, \"p\": 28012, \"fpr\": 0.2907522040892891, \"tpr\": 0.9560545480508353, \"n\": 5331}, {\"threshold\": 0.3880000114440918, \"p\": 28012, \"fpr\": 0.28981429375351714, \"tpr\": 0.9559117521062401, \"n\": 5331}, {\"threshold\": 0.3889999985694885, \"p\": 28012, \"fpr\": 0.28906396548489965, \"tpr\": 0.9558403541339426, \"n\": 5331}, {\"threshold\": 0.38999998569488525, \"p\": 28012, \"fpr\": 0.28887638341774524, \"tpr\": 0.955768956161645, \"n\": 5331}, {\"threshold\": 0.39100000262260437, \"p\": 28012, \"fpr\": 0.2883136372162821, \"tpr\": 0.9556975581893474, \"n\": 5331}, {\"threshold\": 0.3919999897480011, \"p\": 28012, \"fpr\": 0.28793847308197335, \"tpr\": 0.9555904612309011, \"n\": 5331}, {\"threshold\": 0.3930000066757202, \"p\": 28012, \"fpr\": 0.28718814481335586, \"tpr\": 0.9553762673140083, \"n\": 5331}, {\"threshold\": 0.39399999380111694, \"p\": 28012, \"fpr\": 0.2868129806790471, \"tpr\": 0.9553405683278595, \"n\": 5331}, {\"threshold\": 0.39500001072883606, \"p\": 28012, \"fpr\": 0.2866253986118927, \"tpr\": 0.9551977723832643, \"n\": 5331}, {\"threshold\": 0.3959999978542328, \"p\": 28012, \"fpr\": 0.28625023447758396, \"tpr\": 0.9551263744109667, \"n\": 5331}, {\"threshold\": 0.3970000147819519, \"p\": 28012, \"fpr\": 0.2856874882761208, \"tpr\": 0.9550549764386691, \"n\": 5331}, {\"threshold\": 0.39800000190734863, \"p\": 28012, \"fpr\": 0.28531232414181207, \"tpr\": 0.9550549764386691, \"n\": 5331}, {\"threshold\": 0.39899998903274536, \"p\": 28012, \"fpr\": 0.28531232414181207, \"tpr\": 0.9549835784663716, \"n\": 5331}, {\"threshold\": 0.4000000059604645, \"p\": 28012, \"fpr\": 0.2847495779403489, \"tpr\": 0.9548764815079251, \"n\": 5331}, {\"threshold\": 0.4009999930858612, \"p\": 28012, \"fpr\": 0.283811667604577, \"tpr\": 0.9548050835356275, \"n\": 5331}, {\"threshold\": 0.4020000100135803, \"p\": 28012, \"fpr\": 0.2834365034702682, \"tpr\": 0.9545908896187348, \"n\": 5331}, {\"threshold\": 0.40299999713897705, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9545194916464372, \"n\": 5331}, {\"threshold\": 0.40400001406669617, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9544837926602885, \"n\": 5331}, {\"threshold\": 0.4050000011920929, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9544837926602885, \"n\": 5331}, {\"threshold\": 0.4059999883174896, \"p\": 28012, \"fpr\": 0.28268617520165074, \"tpr\": 0.9544480936741396, \"n\": 5331}, {\"threshold\": 0.40700000524520874, \"p\": 28012, \"fpr\": 0.2824985931344963, \"tpr\": 0.9544480936741396, \"n\": 5331}, {\"threshold\": 0.40799999237060547, \"p\": 28012, \"fpr\": 0.2819358469330332, \"tpr\": 0.954376695701842, \"n\": 5331}, {\"threshold\": 0.4090000092983246, \"p\": 28012, \"fpr\": 0.2815606827987244, \"tpr\": 0.9543052977295445, \"n\": 5331}, {\"threshold\": 0.4099999964237213, \"p\": 28012, \"fpr\": 0.28137310073157007, \"tpr\": 0.9543052977295445, \"n\": 5331}, {\"threshold\": 0.41100001335144043, \"p\": 28012, \"fpr\": 0.28118551866441566, \"tpr\": 0.954055404826503, \"n\": 5331}, {\"threshold\": 0.41200000047683716, \"p\": 28012, \"fpr\": 0.28062277246295253, \"tpr\": 0.9540197058403541, \"n\": 5331}, {\"threshold\": 0.4129999876022339, \"p\": 28012, \"fpr\": 0.28024760832864376, \"tpr\": 0.9540197058403541, \"n\": 5331}, {\"threshold\": 0.414000004529953, \"p\": 28012, \"fpr\": 0.27968486212718063, \"tpr\": 0.9539483078680565, \"n\": 5331}, {\"threshold\": 0.41499999165534973, \"p\": 28012, \"fpr\": 0.27968486212718063, \"tpr\": 0.9539126088819078, \"n\": 5331}, {\"threshold\": 0.41600000858306885, \"p\": 28012, \"fpr\": 0.27930969799287186, \"tpr\": 0.9538412109096102, \"n\": 5331}, {\"threshold\": 0.4169999957084656, \"p\": 28012, \"fpr\": 0.27874695179140874, \"tpr\": 0.9538055119234614, \"n\": 5331}, {\"threshold\": 0.4180000126361847, \"p\": 28012, \"fpr\": 0.27874695179140874, \"tpr\": 0.953698414965015, \"n\": 5331}, {\"threshold\": 0.4189999997615814, \"p\": 28012, \"fpr\": 0.27837178765709997, \"tpr\": 0.9535913180065686, \"n\": 5331}, {\"threshold\": 0.41999998688697815, \"p\": 28012, \"fpr\": 0.27837178765709997, \"tpr\": 0.9535556190204199, \"n\": 5331}, {\"threshold\": 0.42100000381469727, \"p\": 28012, \"fpr\": 0.2779966235227912, \"tpr\": 0.9534842210481222, \"n\": 5331}, {\"threshold\": 0.421999990940094, \"p\": 28012, \"fpr\": 0.27780904145563684, \"tpr\": 0.9533771240896759, \"n\": 5331}, {\"threshold\": 0.4230000078678131, \"p\": 28012, \"fpr\": 0.2776214593884825, \"tpr\": 0.9532343281450807, \"n\": 5331}, {\"threshold\": 0.42399999499320984, \"p\": 28012, \"fpr\": 0.2776214593884825, \"tpr\": 0.9531272311866343, \"n\": 5331}, {\"threshold\": 0.42500001192092896, \"p\": 28012, \"fpr\": 0.27743387732132807, \"tpr\": 0.9530915322004855, \"n\": 5331}, {\"threshold\": 0.4259999990463257, \"p\": 28012, \"fpr\": 0.27687113111986494, \"tpr\": 0.9530915322004855, \"n\": 5331}, {\"threshold\": 0.4269999861717224, \"p\": 28012, \"fpr\": 0.2763083849184018, \"tpr\": 0.9530558332143367, \"n\": 5331}, {\"threshold\": 0.42800000309944153, \"p\": 28012, \"fpr\": 0.2753704745826299, \"tpr\": 0.9528773382835928, \"n\": 5331}, {\"threshold\": 0.42899999022483826, \"p\": 28012, \"fpr\": 0.27480772838116674, \"tpr\": 0.9527345423389976, \"n\": 5331}, {\"threshold\": 0.4300000071525574, \"p\": 28012, \"fpr\": 0.2742449821797036, \"tpr\": 0.9526631443667, \"n\": 5331}, {\"threshold\": 0.4309999942779541, \"p\": 28012, \"fpr\": 0.27386981804539484, \"tpr\": 0.9525917463944024, \"n\": 5331}, {\"threshold\": 0.4320000112056732, \"p\": 28012, \"fpr\": 0.27311948977677736, \"tpr\": 0.9525203484221048, \"n\": 5331}, {\"threshold\": 0.43299999833106995, \"p\": 28012, \"fpr\": 0.2727443256424686, \"tpr\": 0.9524489504498073, \"n\": 5331}, {\"threshold\": 0.4339999854564667, \"p\": 28012, \"fpr\": 0.2725567435753142, \"tpr\": 0.9524132514636584, \"n\": 5331}, {\"threshold\": 0.4350000023841858, \"p\": 28012, \"fpr\": 0.27218157944100546, \"tpr\": 0.9524132514636584, \"n\": 5331}, {\"threshold\": 0.4359999895095825, \"p\": 28012, \"fpr\": 0.27218157944100546, \"tpr\": 0.952306154505212, \"n\": 5331}, {\"threshold\": 0.43700000643730164, \"p\": 28012, \"fpr\": 0.2718064153066967, \"tpr\": 0.9521990575467657, \"n\": 5331}, {\"threshold\": 0.43799999356269836, \"p\": 28012, \"fpr\": 0.27124366910523356, \"tpr\": 0.9521633585606168, \"n\": 5331}, {\"threshold\": 0.4390000104904175, \"p\": 28012, \"fpr\": 0.27124366910523356, \"tpr\": 0.9521276595744681, \"n\": 5331}, {\"threshold\": 0.4399999976158142, \"p\": 28012, \"fpr\": 0.2706809229037704, \"tpr\": 0.9519848636298729, \"n\": 5331}, {\"threshold\": 0.4410000145435333, \"p\": 28012, \"fpr\": 0.2706809229037704, \"tpr\": 0.9518777666714265, \"n\": 5331}, {\"threshold\": 0.44200000166893005, \"p\": 28012, \"fpr\": 0.270493340836616, \"tpr\": 0.9517349707268313, \"n\": 5331}, {\"threshold\": 0.4429999887943268, \"p\": 28012, \"fpr\": 0.2703057587694616, \"tpr\": 0.9516992717406826, \"n\": 5331}, {\"threshold\": 0.4440000057220459, \"p\": 28012, \"fpr\": 0.2693678484336897, \"tpr\": 0.9516992717406826, \"n\": 5331}, {\"threshold\": 0.4449999928474426, \"p\": 28012, \"fpr\": 0.2688051022322266, \"tpr\": 0.9515921747822362, \"n\": 5331}, {\"threshold\": 0.44600000977516174, \"p\": 28012, \"fpr\": 0.2684299380979178, \"tpr\": 0.9514850778237898, \"n\": 5331}, {\"threshold\": 0.44699999690055847, \"p\": 28012, \"fpr\": 0.2680547739636091, \"tpr\": 0.951449378837641, \"n\": 5331}, {\"threshold\": 0.4480000138282776, \"p\": 28012, \"fpr\": 0.2678671918964547, \"tpr\": 0.9512708839068971, \"n\": 5331}, {\"threshold\": 0.4490000009536743, \"p\": 28012, \"fpr\": 0.26767960982930034, \"tpr\": 0.9511280879623019, \"n\": 5331}, {\"threshold\": 0.44999998807907104, \"p\": 28012, \"fpr\": 0.26711686362783715, \"tpr\": 0.9510566899900043, \"n\": 5331}, {\"threshold\": 0.45100000500679016, \"p\": 28012, \"fpr\": 0.26636653535921967, \"tpr\": 0.9509495930315579, \"n\": 5331}, {\"threshold\": 0.4519999921321869, \"p\": 28012, \"fpr\": 0.26636653535921967, \"tpr\": 0.9508067970869627, \"n\": 5331}, {\"threshold\": 0.453000009059906, \"p\": 28012, \"fpr\": 0.26580378915775654, \"tpr\": 0.950771098100814, \"n\": 5331}, {\"threshold\": 0.45399999618530273, \"p\": 28012, \"fpr\": 0.26561620709060213, \"tpr\": 0.9507353991146651, \"n\": 5331}, {\"threshold\": 0.45500001311302185, \"p\": 28012, \"fpr\": 0.2654286250234478, \"tpr\": 0.9506640011423676, \"n\": 5331}, {\"threshold\": 0.4560000002384186, \"p\": 28012, \"fpr\": 0.26524104295629336, \"tpr\": 0.9505212051977724, \"n\": 5331}, {\"threshold\": 0.4569999873638153, \"p\": 28012, \"fpr\": 0.265053460889139, \"tpr\": 0.9503427102670284, \"n\": 5331}, {\"threshold\": 0.4580000042915344, \"p\": 28012, \"fpr\": 0.2648658788219846, \"tpr\": 0.9501642153362845, \"n\": 5331}, {\"threshold\": 0.45899999141693115, \"p\": 28012, \"fpr\": 0.2648658788219846, \"tpr\": 0.950057118377838, \"n\": 5331}, {\"threshold\": 0.46000000834465027, \"p\": 28012, \"fpr\": 0.2644907146876759, \"tpr\": 0.9498786234470941, \"n\": 5331}, {\"threshold\": 0.460999995470047, \"p\": 28012, \"fpr\": 0.26430313262052146, \"tpr\": 0.9498072254747966, \"n\": 5331}, {\"threshold\": 0.4620000123977661, \"p\": 28012, \"fpr\": 0.26374038641905834, \"tpr\": 0.949557332571755, \"n\": 5331}, {\"threshold\": 0.46299999952316284, \"p\": 28012, \"fpr\": 0.26336522228474957, \"tpr\": 0.9494859345994574, \"n\": 5331}, {\"threshold\": 0.46399998664855957, \"p\": 28012, \"fpr\": 0.2631776402175952, \"tpr\": 0.9494145366271598, \"n\": 5331}, {\"threshold\": 0.4650000035762787, \"p\": 28012, \"fpr\": 0.2629900581504408, \"tpr\": 0.9492717406825646, \"n\": 5331}, {\"threshold\": 0.4659999907016754, \"p\": 28012, \"fpr\": 0.26280247608328644, \"tpr\": 0.9492360416964158, \"n\": 5331}, {\"threshold\": 0.46700000762939453, \"p\": 28012, \"fpr\": 0.26242731194897767, \"tpr\": 0.9491646437241182, \"n\": 5331}, {\"threshold\": 0.46799999475479126, \"p\": 28012, \"fpr\": 0.2622397298818233, \"tpr\": 0.9489861487933743, \"n\": 5331}, {\"threshold\": 0.4690000116825104, \"p\": 28012, \"fpr\": 0.2614894016132058, \"tpr\": 0.9489504498072254, \"n\": 5331}, {\"threshold\": 0.4699999988079071, \"p\": 28012, \"fpr\": 0.26073907334458823, \"tpr\": 0.9489504498072254, \"n\": 5331}, {\"threshold\": 0.47099998593330383, \"p\": 28012, \"fpr\": 0.26073907334458823, \"tpr\": 0.9489147508210767, \"n\": 5331}, {\"threshold\": 0.47200000286102295, \"p\": 28012, \"fpr\": 0.2601763271431251, \"tpr\": 0.9487362558903327, \"n\": 5331}, {\"threshold\": 0.4729999899864197, \"p\": 28012, \"fpr\": 0.25998874507597075, \"tpr\": 0.9485934599457375, \"n\": 5331}, {\"threshold\": 0.4740000069141388, \"p\": 28012, \"fpr\": 0.25905083474019885, \"tpr\": 0.9485577609595888, \"n\": 5331}, {\"threshold\": 0.4749999940395355, \"p\": 28012, \"fpr\": 0.25886325267304444, \"tpr\": 0.9485220619734399, \"n\": 5331}, {\"threshold\": 0.47600001096725464, \"p\": 28012, \"fpr\": 0.25886325267304444, \"tpr\": 0.948343567042696, \"n\": 5331}, {\"threshold\": 0.47699999809265137, \"p\": 28012, \"fpr\": 0.2586756706058901, \"tpr\": 0.9482364700842496, \"n\": 5331}, {\"threshold\": 0.4779999852180481, \"p\": 28012, \"fpr\": 0.25792534233727255, \"tpr\": 0.948165072111952, \"n\": 5331}, {\"threshold\": 0.4790000021457672, \"p\": 28012, \"fpr\": 0.25792534233727255, \"tpr\": 0.9480936741396544, \"n\": 5331}, {\"threshold\": 0.47999998927116394, \"p\": 28012, \"fpr\": 0.2575501782029638, \"tpr\": 0.9479508781950593, \"n\": 5331}, {\"threshold\": 0.48100000619888306, \"p\": 28012, \"fpr\": 0.25698743200150065, \"tpr\": 0.9478794802227617, \"n\": 5331}, {\"threshold\": 0.4819999933242798, \"p\": 28012, \"fpr\": 0.2562371037328831, \"tpr\": 0.9478437812366128, \"n\": 5331}, {\"threshold\": 0.4830000102519989, \"p\": 28012, \"fpr\": 0.25604952166572875, \"tpr\": 0.9477723832643153, \"n\": 5331}, {\"threshold\": 0.48399999737739563, \"p\": 28012, \"fpr\": 0.25567435753142, \"tpr\": 0.9475581893474225, \"n\": 5331}, {\"threshold\": 0.48500001430511475, \"p\": 28012, \"fpr\": 0.2552991933971112, \"tpr\": 0.9474867913751249, \"n\": 5331}, {\"threshold\": 0.4860000014305115, \"p\": 28012, \"fpr\": 0.2552991933971112, \"tpr\": 0.9473439954305298, \"n\": 5331}, {\"threshold\": 0.4869999885559082, \"p\": 28012, \"fpr\": 0.25511161132995686, \"tpr\": 0.9471655004997858, \"n\": 5331}, {\"threshold\": 0.4880000054836273, \"p\": 28012, \"fpr\": 0.25454886512849373, \"tpr\": 0.947129801513637, \"n\": 5331}, {\"threshold\": 0.48899999260902405, \"p\": 28012, \"fpr\": 0.25454886512849373, \"tpr\": 0.9470227045551907, \"n\": 5331}, {\"threshold\": 0.49000000953674316, \"p\": 28012, \"fpr\": 0.2537985368598762, \"tpr\": 0.9469513065828931, \"n\": 5331}, {\"threshold\": 0.4909999966621399, \"p\": 28012, \"fpr\": 0.2534233727255674, \"tpr\": 0.9469156075967442, \"n\": 5331}, {\"threshold\": 0.492000013589859, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9468085106382979, \"n\": 5331}, {\"threshold\": 0.49300000071525574, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9467371126660002, \"n\": 5331}, {\"threshold\": 0.49399998784065247, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9465943167214051, \"n\": 5331}, {\"threshold\": 0.4950000047683716, \"p\": 28012, \"fpr\": 0.25304820859125865, \"tpr\": 0.9464872197629587, \"n\": 5331}, {\"threshold\": 0.4959999918937683, \"p\": 28012, \"fpr\": 0.25304820859125865, \"tpr\": 0.9463087248322147, \"n\": 5331}, {\"threshold\": 0.4970000088214874, \"p\": 28012, \"fpr\": 0.2528606265241043, \"tpr\": 0.9461302299014708, \"n\": 5331}, {\"threshold\": 0.49799999594688416, \"p\": 28012, \"fpr\": 0.25267304445694994, \"tpr\": 0.9459874339568757, \"n\": 5331}, {\"threshold\": 0.49900001287460327, \"p\": 28012, \"fpr\": 0.25267304445694994, \"tpr\": 0.9458089390261316, \"n\": 5331}, {\"threshold\": 0.5, \"p\": 28012, \"fpr\": 0.25211029825548675, \"tpr\": 0.9456304440953877, \"n\": 5331}, {\"threshold\": 0.5009999871253967, \"p\": 28012, \"fpr\": 0.25173513412117804, \"tpr\": 0.94555904612309, \"n\": 5331}, {\"threshold\": 0.5019999742507935, \"p\": 28012, \"fpr\": 0.25135996998686927, \"tpr\": 0.9455233471369413, \"n\": 5331}, {\"threshold\": 0.503000020980835, \"p\": 28012, \"fpr\": 0.25079722378540614, \"tpr\": 0.945416250178495, \"n\": 5331}, {\"threshold\": 0.5040000081062317, \"p\": 28012, \"fpr\": 0.2504220596510974, \"tpr\": 0.9452734542338997, \"n\": 5331}, {\"threshold\": 0.5049999952316284, \"p\": 28012, \"fpr\": 0.2504220596510974, \"tpr\": 0.9451306582893045, \"n\": 5331}, {\"threshold\": 0.5059999823570251, \"p\": 28012, \"fpr\": 0.24967173138247983, \"tpr\": 0.9450235613308582, \"n\": 5331}, {\"threshold\": 0.5070000290870667, \"p\": 28012, \"fpr\": 0.24929656724817106, \"tpr\": 0.9449164643724118, \"n\": 5331}, {\"threshold\": 0.5080000162124634, \"p\": 28012, \"fpr\": 0.24929656724817106, \"tpr\": 0.9447736684278166, \"n\": 5331}, {\"threshold\": 0.5090000033378601, \"p\": 28012, \"fpr\": 0.24892140311386232, \"tpr\": 0.9446665714693703, \"n\": 5331}, {\"threshold\": 0.5099999904632568, \"p\": 28012, \"fpr\": 0.24817107484524478, \"tpr\": 0.9446308724832215, \"n\": 5331}, {\"threshold\": 0.5109999775886536, \"p\": 28012, \"fpr\": 0.24760832864378166, \"tpr\": 0.9444523775524775, \"n\": 5331}, {\"threshold\": 0.5120000243186951, \"p\": 28012, \"fpr\": 0.24742074657662727, \"tpr\": 0.9444166785663287, \"n\": 5331}, {\"threshold\": 0.5130000114440918, \"p\": 28012, \"fpr\": 0.2470455824423185, \"tpr\": 0.9443452805940311, \"n\": 5331}, {\"threshold\": 0.5139999985694885, \"p\": 28012, \"fpr\": 0.2470455824423185, \"tpr\": 0.9441667856632872, \"n\": 5331}, {\"threshold\": 0.5149999856948853, \"p\": 28012, \"fpr\": 0.2461076721065466, \"tpr\": 0.9441310866771384, \"n\": 5331}, {\"threshold\": 0.515999972820282, \"p\": 28012, \"fpr\": 0.24592009003939225, \"tpr\": 0.9440953876909896, \"n\": 5331}, {\"threshold\": 0.5170000195503235, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439882907325432, \"n\": 5331}, {\"threshold\": 0.5180000066757202, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439882907325432, \"n\": 5331}, {\"threshold\": 0.5189999938011169, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439168927602456, \"n\": 5331}, {\"threshold\": 0.5199999809265137, \"p\": 28012, \"fpr\": 0.2453573438379291, \"tpr\": 0.9438811937740968, \"n\": 5331}, {\"threshold\": 0.5210000276565552, \"p\": 28012, \"fpr\": 0.24498217970362032, \"tpr\": 0.9438097958017992, \"n\": 5331}, {\"threshold\": 0.5220000147819519, \"p\": 28012, \"fpr\": 0.2444194335021572, \"tpr\": 0.9436313008710553, \"n\": 5331}, {\"threshold\": 0.5230000019073486, \"p\": 28012, \"fpr\": 0.24404426936784843, \"tpr\": 0.9435242039126088, \"n\": 5331}, {\"threshold\": 0.5239999890327454, \"p\": 28012, \"fpr\": 0.24329394109923091, \"tpr\": 0.9434171069541625, \"n\": 5331}, {\"threshold\": 0.5249999761581421, \"p\": 28012, \"fpr\": 0.24273119489776776, \"tpr\": 0.9432743110095674, \"n\": 5331}, {\"threshold\": 0.5260000228881836, \"p\": 28012, \"fpr\": 0.24235603076345902, \"tpr\": 0.9431672140511209, \"n\": 5331}, {\"threshold\": 0.5270000100135803, \"p\": 28012, \"fpr\": 0.24216844869630463, \"tpr\": 0.9430244181065258, \"n\": 5331}, {\"threshold\": 0.527999997138977, \"p\": 28012, \"fpr\": 0.24141812042768712, \"tpr\": 0.9429173211480794, \"n\": 5331}, {\"threshold\": 0.5289999842643738, \"p\": 28012, \"fpr\": 0.24085537422622397, \"tpr\": 0.942810224189633, \"n\": 5331}, {\"threshold\": 0.5299999713897705, \"p\": 28012, \"fpr\": 0.24048021009191523, \"tpr\": 0.9427745252034843, \"n\": 5331}, {\"threshold\": 0.531000018119812, \"p\": 28012, \"fpr\": 0.24048021009191523, \"tpr\": 0.942631729258889, \"n\": 5331}, {\"threshold\": 0.5320000052452087, \"p\": 28012, \"fpr\": 0.24010504595760646, \"tpr\": 0.942631729258889, \"n\": 5331}, {\"threshold\": 0.5329999923706055, \"p\": 28012, \"fpr\": 0.23991746389045207, \"tpr\": 0.9425960302727403, \"n\": 5331}, {\"threshold\": 0.5339999794960022, \"p\": 28012, \"fpr\": 0.2395422997561433, \"tpr\": 0.9425246323004427, \"n\": 5331}, {\"threshold\": 0.5350000262260437, \"p\": 28012, \"fpr\": 0.2387919714875258, \"tpr\": 0.9423461373696987, \"n\": 5331}, {\"threshold\": 0.5360000133514404, \"p\": 28012, \"fpr\": 0.2386043894203714, \"tpr\": 0.9422747393974011, \"n\": 5331}, {\"threshold\": 0.5370000004768372, \"p\": 28012, \"fpr\": 0.23841680735321702, \"tpr\": 0.9422390404112523, \"n\": 5331}, {\"threshold\": 0.5379999876022339, \"p\": 28012, \"fpr\": 0.23841680735321702, \"tpr\": 0.9420962444666572, \"n\": 5331}, {\"threshold\": 0.5389999747276306, \"p\": 28012, \"fpr\": 0.23822922528606266, \"tpr\": 0.9419891475082107, \"n\": 5331}, {\"threshold\": 0.5400000214576721, \"p\": 28012, \"fpr\": 0.23804164321890828, \"tpr\": 0.941953448522062, \"n\": 5331}, {\"threshold\": 0.5410000085830688, \"p\": 28012, \"fpr\": 0.2378540611517539, \"tpr\": 0.9419177495359132, \"n\": 5331}, {\"threshold\": 0.5419999957084656, \"p\": 28012, \"fpr\": 0.2378540611517539, \"tpr\": 0.941774953591318, \"n\": 5331}, {\"threshold\": 0.5429999828338623, \"p\": 28012, \"fpr\": 0.23747889701744512, \"tpr\": 0.9417392546051692, \"n\": 5331}, {\"threshold\": 0.5440000295639038, \"p\": 28012, \"fpr\": 0.236916150815982, \"tpr\": 0.9416678566328717, \"n\": 5331}, {\"threshold\": 0.5450000166893005, \"p\": 28012, \"fpr\": 0.236916150815982, \"tpr\": 0.9416321576467228, \"n\": 5331}, {\"threshold\": 0.5460000038146973, \"p\": 28012, \"fpr\": 0.23616582254736448, \"tpr\": 0.9415250606882765, \"n\": 5331}, {\"threshold\": 0.546999990940094, \"p\": 28012, \"fpr\": 0.2359782404802101, \"tpr\": 0.9414536627159789, \"n\": 5331}, {\"threshold\": 0.5479999780654907, \"p\": 28012, \"fpr\": 0.23579065841305571, \"tpr\": 0.9413822647436813, \"n\": 5331}, {\"threshold\": 0.5490000247955322, \"p\": 28012, \"fpr\": 0.23522791221159256, \"tpr\": 0.9412037698129373, \"n\": 5331}, {\"threshold\": 0.550000011920929, \"p\": 28012, \"fpr\": 0.23485274807728382, \"tpr\": 0.9411323718406397, \"n\": 5331}, {\"threshold\": 0.5509999990463257, \"p\": 28012, \"fpr\": 0.23447758394297505, \"tpr\": 0.9410252748821933, \"n\": 5331}, {\"threshold\": 0.5519999861717224, \"p\": 28012, \"fpr\": 0.23447758394297505, \"tpr\": 0.9409538769098957, \"n\": 5331}, {\"threshold\": 0.5529999732971191, \"p\": 28012, \"fpr\": 0.23410241980866628, \"tpr\": 0.9408824789375981, \"n\": 5331}, {\"threshold\": 0.5540000200271606, \"p\": 28012, \"fpr\": 0.23335209154004877, \"tpr\": 0.9408110809653006, \"n\": 5331}, {\"threshold\": 0.5550000071525574, \"p\": 28012, \"fpr\": 0.23297692740574, \"tpr\": 0.9407039840068542, \"n\": 5331}, {\"threshold\": 0.5559999942779541, \"p\": 28012, \"fpr\": 0.23241418120427687, \"tpr\": 0.9404897900899615, \"n\": 5331}, {\"threshold\": 0.5569999814033508, \"p\": 28012, \"fpr\": 0.2320390170699681, \"tpr\": 0.9403469941453663, \"n\": 5331}, {\"threshold\": 0.5580000281333923, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9403469941453663, \"n\": 5331}, {\"threshold\": 0.5590000152587891, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9402041982007711, \"n\": 5331}, {\"threshold\": 0.5600000023841858, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9402041982007711, \"n\": 5331}, {\"threshold\": 0.5609999895095825, \"p\": 28012, \"fpr\": 0.2312886888013506, \"tpr\": 0.9399900042838784, \"n\": 5331}, {\"threshold\": 0.5619999766349792, \"p\": 28012, \"fpr\": 0.23072594259988746, \"tpr\": 0.9398472083392831, \"n\": 5331}, {\"threshold\": 0.5630000233650208, \"p\": 28012, \"fpr\": 0.2303507784655787, \"tpr\": 0.9397401113808368, \"n\": 5331}, {\"threshold\": 0.5640000104904175, \"p\": 28012, \"fpr\": 0.2301631963984243, \"tpr\": 0.9396687134085392, \"n\": 5331}, {\"threshold\": 0.5649999976158142, \"p\": 28012, \"fpr\": 0.22978803226411554, \"tpr\": 0.9394902184777952, \"n\": 5331}, {\"threshold\": 0.5659999847412109, \"p\": 28012, \"fpr\": 0.22960045019696118, \"tpr\": 0.9393831215193489, \"n\": 5331}, {\"threshold\": 0.5669999718666077, \"p\": 28012, \"fpr\": 0.2294128681298068, \"tpr\": 0.9393831215193489, \"n\": 5331}, {\"threshold\": 0.5680000185966492, \"p\": 28012, \"fpr\": 0.22885012192834364, \"tpr\": 0.9393474225332, \"n\": 5331}, {\"threshold\": 0.5690000057220459, \"p\": 28012, \"fpr\": 0.2284749577940349, \"tpr\": 0.9392046265886049, \"n\": 5331}, {\"threshold\": 0.5699999928474426, \"p\": 28012, \"fpr\": 0.22828737572688051, \"tpr\": 0.9390975296301585, \"n\": 5331}, {\"threshold\": 0.5709999799728394, \"p\": 28012, \"fpr\": 0.22828737572688051, \"tpr\": 0.9390261316578609, \"n\": 5331}, {\"threshold\": 0.5720000267028809, \"p\": 28012, \"fpr\": 0.22772462952541736, \"tpr\": 0.9389547336855634, \"n\": 5331}, {\"threshold\": 0.5730000138282776, \"p\": 28012, \"fpr\": 0.22772462952541736, \"tpr\": 0.9388833357132658, \"n\": 5331}, {\"threshold\": 0.5740000009536743, \"p\": 28012, \"fpr\": 0.227537047458263, \"tpr\": 0.9387405397686706, \"n\": 5331}, {\"threshold\": 0.574999988079071, \"p\": 28012, \"fpr\": 0.22678671918964546, \"tpr\": 0.938669141796373, \"n\": 5331}, {\"threshold\": 0.5759999752044678, \"p\": 28012, \"fpr\": 0.22641155505533672, \"tpr\": 0.938490646865629, \"n\": 5331}, {\"threshold\": 0.5770000219345093, \"p\": 28012, \"fpr\": 0.22584880885387357, \"tpr\": 0.9383835499071826, \"n\": 5331}, {\"threshold\": 0.578000009059906, \"p\": 28012, \"fpr\": 0.2254736447195648, \"tpr\": 0.9383478509210338, \"n\": 5331}, {\"threshold\": 0.5789999961853027, \"p\": 28012, \"fpr\": 0.22528606265241044, \"tpr\": 0.9381693559902898, \"n\": 5331}, {\"threshold\": 0.5799999833106995, \"p\": 28012, \"fpr\": 0.22528606265241044, \"tpr\": 0.9380622590318435, \"n\": 5331}, {\"threshold\": 0.5809999704360962, \"p\": 28012, \"fpr\": 0.2245357343837929, \"tpr\": 0.9379551620733971, \"n\": 5331}, {\"threshold\": 0.5820000171661377, \"p\": 28012, \"fpr\": 0.223597824048021, \"tpr\": 0.9378123661288019, \"n\": 5331}, {\"threshold\": 0.5830000042915344, \"p\": 28012, \"fpr\": 0.22341024198086662, \"tpr\": 0.9377409681565043, \"n\": 5331}, {\"threshold\": 0.5839999914169312, \"p\": 28012, \"fpr\": 0.22322265991371226, \"tpr\": 0.9377052691703556, \"n\": 5331}, {\"threshold\": 0.5849999785423279, \"p\": 28012, \"fpr\": 0.2228474957794035, \"tpr\": 0.937633871198058, \"n\": 5331}, {\"threshold\": 0.5860000252723694, \"p\": 28012, \"fpr\": 0.2226599137122491, \"tpr\": 0.9375624732257604, \"n\": 5331}, {\"threshold\": 0.5870000123977661, \"p\": 28012, \"fpr\": 0.22228474957794034, \"tpr\": 0.9375267742396116, \"n\": 5331}, {\"threshold\": 0.5879999995231628, \"p\": 28012, \"fpr\": 0.22209716751078598, \"tpr\": 0.9374910752534628, \"n\": 5331}, {\"threshold\": 0.5889999866485596, \"p\": 28012, \"fpr\": 0.2217220033764772, \"tpr\": 0.9374196772811653, \"n\": 5331}, {\"threshold\": 0.5899999737739563, \"p\": 28012, \"fpr\": 0.22134683924216844, \"tpr\": 0.9372411823504212, \"n\": 5331}, {\"threshold\": 0.5910000205039978, \"p\": 28012, \"fpr\": 0.22115925717501406, \"tpr\": 0.9372411823504212, \"n\": 5331}, {\"threshold\": 0.5920000076293945, \"p\": 28012, \"fpr\": 0.2209716751078597, \"tpr\": 0.9372054833642725, \"n\": 5331}, {\"threshold\": 0.5929999947547913, \"p\": 28012, \"fpr\": 0.22059651097355093, \"tpr\": 0.9370983864058261, \"n\": 5331}, {\"threshold\": 0.593999981880188, \"p\": 28012, \"fpr\": 0.22003376477208778, \"tpr\": 0.9370269884335285, \"n\": 5331}, {\"threshold\": 0.5950000286102295, \"p\": 28012, \"fpr\": 0.21928343650347026, \"tpr\": 0.9368484935027845, \"n\": 5331}, {\"threshold\": 0.5960000157356262, \"p\": 28012, \"fpr\": 0.21872069030200714, \"tpr\": 0.9367770955304869, \"n\": 5331}, {\"threshold\": 0.597000002861023, \"p\": 28012, \"fpr\": 0.21834552616769837, \"tpr\": 0.9366699985720406, \"n\": 5331}, {\"threshold\": 0.5979999899864197, \"p\": 28012, \"fpr\": 0.21778277996623524, \"tpr\": 0.936598600599743, \"n\": 5331}, {\"threshold\": 0.5989999771118164, \"p\": 28012, \"fpr\": 0.21740761583192647, \"tpr\": 0.9365272026274454, \"n\": 5331}, {\"threshold\": 0.6000000238418579, \"p\": 28012, \"fpr\": 0.2170324516976177, \"tpr\": 0.9364558046551478, \"n\": 5331}, {\"threshold\": 0.6010000109672546, \"p\": 28012, \"fpr\": 0.21665728756330896, \"tpr\": 0.9363130087105527, \"n\": 5331}, {\"threshold\": 0.6019999980926514, \"p\": 28012, \"fpr\": 0.21590695929469142, \"tpr\": 0.9362416107382551, \"n\": 5331}, {\"threshold\": 0.6029999852180481, \"p\": 28012, \"fpr\": 0.2151566310260739, \"tpr\": 0.9361702127659575, \"n\": 5331}, {\"threshold\": 0.6039999723434448, \"p\": 28012, \"fpr\": 0.21459388482461078, \"tpr\": 0.9361345137798086, \"n\": 5331}, {\"threshold\": 0.6050000190734863, \"p\": 28012, \"fpr\": 0.21403113862314763, \"tpr\": 0.9359560188490647, \"n\": 5331}, {\"threshold\": 0.6060000061988831, \"p\": 28012, \"fpr\": 0.21365597448883886, \"tpr\": 0.9357775239183207, \"n\": 5331}, {\"threshold\": 0.6069999933242798, \"p\": 28012, \"fpr\": 0.21365597448883886, \"tpr\": 0.9356704269598743, \"n\": 5331}, {\"threshold\": 0.6079999804496765, \"p\": 28012, \"fpr\": 0.21328081035453011, \"tpr\": 0.935563330001428, \"n\": 5331}, {\"threshold\": 0.609000027179718, \"p\": 28012, \"fpr\": 0.21309322828737573, \"tpr\": 0.9354205340568328, \"n\": 5331}, {\"threshold\": 0.6100000143051147, \"p\": 28012, \"fpr\": 0.21309322828737573, \"tpr\": 0.9354205340568328, \"n\": 5331}, {\"threshold\": 0.6110000014305115, \"p\": 28012, \"fpr\": 0.21290564622022135, \"tpr\": 0.9353134370983864, \"n\": 5331}, {\"threshold\": 0.6119999885559082, \"p\": 28012, \"fpr\": 0.21271806415306696, \"tpr\": 0.93520634013994, \"n\": 5331}, {\"threshold\": 0.6129999756813049, \"p\": 28012, \"fpr\": 0.21253048208591258, \"tpr\": 0.9350635441953449, \"n\": 5331}, {\"threshold\": 0.6140000224113464, \"p\": 28012, \"fpr\": 0.21234290001875822, \"tpr\": 0.9349564472368985, \"n\": 5331}, {\"threshold\": 0.6150000095367432, \"p\": 28012, \"fpr\": 0.21215531795160383, \"tpr\": 0.9348136512923033, \"n\": 5331}, {\"threshold\": 0.6159999966621399, \"p\": 28012, \"fpr\": 0.21196773588444945, \"tpr\": 0.9346351563615594, \"n\": 5331}, {\"threshold\": 0.6169999837875366, \"p\": 28012, \"fpr\": 0.21178015381729506, \"tpr\": 0.9344209624446665, \"n\": 5331}, {\"threshold\": 0.6179999709129333, \"p\": 28012, \"fpr\": 0.21178015381729506, \"tpr\": 0.9342067685277738, \"n\": 5331}, {\"threshold\": 0.6190000176429749, \"p\": 28012, \"fpr\": 0.21159257175014068, \"tpr\": 0.9340282735970299, \"n\": 5331}, {\"threshold\": 0.6200000047683716, \"p\": 28012, \"fpr\": 0.21159257175014068, \"tpr\": 0.9339568756247323, \"n\": 5331}, {\"threshold\": 0.6209999918937683, \"p\": 28012, \"fpr\": 0.21121740761583194, \"tpr\": 0.9337426817078395, \"n\": 5331}, {\"threshold\": 0.621999979019165, \"p\": 28012, \"fpr\": 0.21084224348152317, \"tpr\": 0.9335641867770955, \"n\": 5331}, {\"threshold\": 0.6230000257492065, \"p\": 28012, \"fpr\": 0.21065466141436878, \"tpr\": 0.9334927888047979, \"n\": 5331}, {\"threshold\": 0.6240000128746033, \"p\": 28012, \"fpr\": 0.21009191521290566, \"tpr\": 0.9333856918463516, \"n\": 5331}, {\"threshold\": 0.625, \"p\": 28012, \"fpr\": 0.2095291690114425, \"tpr\": 0.9332785948879052, \"n\": 5331}, {\"threshold\": 0.6259999871253967, \"p\": 28012, \"fpr\": 0.2095291690114425, \"tpr\": 0.9331714979294587, \"n\": 5331}, {\"threshold\": 0.6269999742507935, \"p\": 28012, \"fpr\": 0.20915400487713376, \"tpr\": 0.9330644009710124, \"n\": 5331}, {\"threshold\": 0.628000020980835, \"p\": 28012, \"fpr\": 0.208778840742825, \"tpr\": 0.9328145080679708, \"n\": 5331}, {\"threshold\": 0.6290000081062317, \"p\": 28012, \"fpr\": 0.20821609454136183, \"tpr\": 0.9326003141510781, \"n\": 5331}, {\"threshold\": 0.6299999952316284, \"p\": 28012, \"fpr\": 0.20802851247420748, \"tpr\": 0.9323861202341853, \"n\": 5331}, {\"threshold\": 0.6309999823570251, \"p\": 28012, \"fpr\": 0.2078409304070531, \"tpr\": 0.9320648293588462, \"n\": 5331}, {\"threshold\": 0.6320000290870667, \"p\": 28012, \"fpr\": 0.2076533483398987, \"tpr\": 0.9319934313865487, \"n\": 5331}, {\"threshold\": 0.6330000162124634, \"p\": 28012, \"fpr\": 0.20727818420558994, \"tpr\": 0.9318863344281022, \"n\": 5331}, {\"threshold\": 0.6340000033378601, \"p\": 28012, \"fpr\": 0.20709060213843555, \"tpr\": 0.9317792374696559, \"n\": 5331}, {\"threshold\": 0.6349999904632568, \"p\": 28012, \"fpr\": 0.2069030200712812, \"tpr\": 0.9316007425389119, \"n\": 5331}, {\"threshold\": 0.6359999775886536, \"p\": 28012, \"fpr\": 0.2067154380041268, \"tpr\": 0.9314222476081679, \"n\": 5331}, {\"threshold\": 0.6370000243186951, \"p\": 28012, \"fpr\": 0.20596510973550927, \"tpr\": 0.9313508496358703, \"n\": 5331}, {\"threshold\": 0.6380000114440918, \"p\": 28012, \"fpr\": 0.20577752766835491, \"tpr\": 0.9312794516635727, \"n\": 5331}, {\"threshold\": 0.6389999985694885, \"p\": 28012, \"fpr\": 0.20558994560120053, \"tpr\": 0.93106525774668, \"n\": 5331}, {\"threshold\": 0.6399999856948853, \"p\": 28012, \"fpr\": 0.20558994560120053, \"tpr\": 0.9309938597743824, \"n\": 5331}, {\"threshold\": 0.640999972820282, \"p\": 28012, \"fpr\": 0.20502719939973738, \"tpr\": 0.9308510638297872, \"n\": 5331}, {\"threshold\": 0.6420000195503235, \"p\": 28012, \"fpr\": 0.20446445319827425, \"tpr\": 0.9307439668713409, \"n\": 5331}, {\"threshold\": 0.6430000066757202, \"p\": 28012, \"fpr\": 0.20408928906396548, \"tpr\": 0.9306725688990433, \"n\": 5331}, {\"threshold\": 0.6439999938011169, \"p\": 28012, \"fpr\": 0.20371412492965674, \"tpr\": 0.9306011709267457, \"n\": 5331}, {\"threshold\": 0.6449999809265137, \"p\": 28012, \"fpr\": 0.20371412492965674, \"tpr\": 0.9304940739682993, \"n\": 5331}, {\"threshold\": 0.6460000276565552, \"p\": 28012, \"fpr\": 0.20352654286250235, \"tpr\": 0.930386977009853, \"n\": 5331}, {\"threshold\": 0.6470000147819519, \"p\": 28012, \"fpr\": 0.20352654286250235, \"tpr\": 0.9302798800514065, \"n\": 5331}, {\"threshold\": 0.6480000019073486, \"p\": 28012, \"fpr\": 0.20333896079534797, \"tpr\": 0.9302441810652577, \"n\": 5331}, {\"threshold\": 0.6489999890327454, \"p\": 28012, \"fpr\": 0.2029637966610392, \"tpr\": 0.9299942881622162, \"n\": 5331}, {\"threshold\": 0.6499999761581421, \"p\": 28012, \"fpr\": 0.2027762145938848, \"tpr\": 0.9297443952591746, \"n\": 5331}, {\"threshold\": 0.6510000228881836, \"p\": 28012, \"fpr\": 0.20165072219095853, \"tpr\": 0.9295659003284307, \"n\": 5331}, {\"threshold\": 0.6520000100135803, \"p\": 28012, \"fpr\": 0.20165072219095853, \"tpr\": 0.9293517064115379, \"n\": 5331}, {\"threshold\": 0.652999997138977, \"p\": 28012, \"fpr\": 0.20146314012380417, \"tpr\": 0.9292446094530915, \"n\": 5331}, {\"threshold\": 0.6539999842643738, \"p\": 28012, \"fpr\": 0.2012755580566498, \"tpr\": 0.9291375124946452, \"n\": 5331}, {\"threshold\": 0.6549999713897705, \"p\": 28012, \"fpr\": 0.20052522978803228, \"tpr\": 0.92899471655005, \"n\": 5331}, {\"threshold\": 0.656000018119812, \"p\": 28012, \"fpr\": 0.2001500656537235, \"tpr\": 0.9288519206054549, \"n\": 5331}, {\"threshold\": 0.6570000052452087, \"p\": 28012, \"fpr\": 0.19977490151941474, \"tpr\": 0.9287091246608596, \"n\": 5331}, {\"threshold\": 0.6579999923706055, \"p\": 28012, \"fpr\": 0.1992121553179516, \"tpr\": 0.9285663287162644, \"n\": 5331}, {\"threshold\": 0.6589999794960022, \"p\": 28012, \"fpr\": 0.19902457325079723, \"tpr\": 0.9284235327716693, \"n\": 5331}, {\"threshold\": 0.6600000262260437, \"p\": 28012, \"fpr\": 0.19883699118364284, \"tpr\": 0.9283878337855205, \"n\": 5331}, {\"threshold\": 0.6610000133514404, \"p\": 28012, \"fpr\": 0.19846182704933407, \"tpr\": 0.9281736398686278, \"n\": 5331}, {\"threshold\": 0.6620000004768372, \"p\": 28012, \"fpr\": 0.19846182704933407, \"tpr\": 0.9280308439240326, \"n\": 5331}, {\"threshold\": 0.6629999876022339, \"p\": 28012, \"fpr\": 0.19808666291502533, \"tpr\": 0.9278523489932886, \"n\": 5331}, {\"threshold\": 0.6639999747276306, \"p\": 28012, \"fpr\": 0.19808666291502533, \"tpr\": 0.9277452520348423, \"n\": 5331}, {\"threshold\": 0.6650000214576721, \"p\": 28012, \"fpr\": 0.19789908084787095, \"tpr\": 0.9275310581179494, \"n\": 5331}, {\"threshold\": 0.6660000085830688, \"p\": 28012, \"fpr\": 0.19714875257925343, \"tpr\": 0.9273882621733542, \"n\": 5331}, {\"threshold\": 0.6669999957084656, \"p\": 28012, \"fpr\": 0.19677358844494466, \"tpr\": 0.9272454662287591, \"n\": 5331}, {\"threshold\": 0.6679999828338623, \"p\": 28012, \"fpr\": 0.1963984243106359, \"tpr\": 0.9270312723118663, \"n\": 5331}, {\"threshold\": 0.6690000295639038, \"p\": 28012, \"fpr\": 0.19602326017632715, \"tpr\": 0.9269598743395687, \"n\": 5331}, {\"threshold\": 0.6700000166893005, \"p\": 28012, \"fpr\": 0.19583567810917277, \"tpr\": 0.9268170783949736, \"n\": 5331}, {\"threshold\": 0.6710000038146973, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9267099814365272, \"n\": 5331}, {\"threshold\": 0.671999990940094, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9266028844780808, \"n\": 5331}, {\"threshold\": 0.6729999780654907, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9264957875196345, \"n\": 5331}, {\"threshold\": 0.6740000247955322, \"p\": 28012, \"fpr\": 0.19471018570624649, \"tpr\": 0.9262458946165929, \"n\": 5331}, {\"threshold\": 0.675000011920929, \"p\": 28012, \"fpr\": 0.19020821609454136, \"tpr\": 0.9211766385834642, \"n\": 5331}, {\"threshold\": 0.6759999990463257, \"p\": 28012, \"fpr\": 0.18964546989307823, \"tpr\": 0.9209624446665715, \"n\": 5331}, {\"threshold\": 0.6769999861717224, \"p\": 28012, \"fpr\": 0.1888951416244607, \"tpr\": 0.9207482507496787, \"n\": 5331}, {\"threshold\": 0.6779999732971191, \"p\": 28012, \"fpr\": 0.18851997749015195, \"tpr\": 0.9206411537912323, \"n\": 5331}, {\"threshold\": 0.6790000200271606, \"p\": 28012, \"fpr\": 0.18833239542299757, \"tpr\": 0.9204983578466371, \"n\": 5331}, {\"threshold\": 0.6800000071525574, \"p\": 28012, \"fpr\": 0.18814481335584318, \"tpr\": 0.9202841639297444, \"n\": 5331}, {\"threshold\": 0.6809999942779541, \"p\": 28012, \"fpr\": 0.1879572312886888, \"tpr\": 0.9202484649435956, \"n\": 5331}, {\"threshold\": 0.6819999814033508, \"p\": 28012, \"fpr\": 0.18758206715438003, \"tpr\": 0.9201056689990005, \"n\": 5331}, {\"threshold\": 0.6830000281333923, \"p\": 28012, \"fpr\": 0.18739448508722567, \"tpr\": 0.919998572040554, \"n\": 5331}, {\"threshold\": 0.6840000152587891, \"p\": 28012, \"fpr\": 0.1862689926842994, \"tpr\": 0.9198914750821077, \"n\": 5331}, {\"threshold\": 0.6850000023841858, \"p\": 28012, \"fpr\": 0.186081410617145, \"tpr\": 0.9197486791375125, \"n\": 5331}, {\"threshold\": 0.6859999895095825, \"p\": 28012, \"fpr\": 0.18589382854999062, \"tpr\": 0.9195701842067685, \"n\": 5331}, {\"threshold\": 0.6869999766349792, \"p\": 28012, \"fpr\": 0.1853310823485275, \"tpr\": 0.9194987862344709, \"n\": 5331}, {\"threshold\": 0.6880000233650208, \"p\": 28012, \"fpr\": 0.1842055899456012, \"tpr\": 0.9192845923175782, \"n\": 5331}, {\"threshold\": 0.6890000104904175, \"p\": 28012, \"fpr\": 0.18345526167698367, \"tpr\": 0.9190703984006854, \"n\": 5331}, {\"threshold\": 0.6899999976158142, \"p\": 28012, \"fpr\": 0.18345526167698367, \"tpr\": 0.9188919034699414, \"n\": 5331}, {\"threshold\": 0.6909999847412109, \"p\": 28012, \"fpr\": 0.18270493340836616, \"tpr\": 0.9187491075253463, \"n\": 5331}, {\"threshold\": 0.6919999718666077, \"p\": 28012, \"fpr\": 0.18270493340836616, \"tpr\": 0.9185706125946023, \"n\": 5331}, {\"threshold\": 0.6930000185966492, \"p\": 28012, \"fpr\": 0.18251735134121178, \"tpr\": 0.9183207196915607, \"n\": 5331}, {\"threshold\": 0.6940000057220459, \"p\": 28012, \"fpr\": 0.18195460513974865, \"tpr\": 0.9181422247608167, \"n\": 5331}, {\"threshold\": 0.6949999928474426, \"p\": 28012, \"fpr\": 0.1813918589382855, \"tpr\": 0.9179637298300728, \"n\": 5331}, {\"threshold\": 0.6959999799728394, \"p\": 28012, \"fpr\": 0.1804539486025136, \"tpr\": 0.917928030843924, \"n\": 5331}, {\"threshold\": 0.6970000267028809, \"p\": 28012, \"fpr\": 0.1802663665353592, \"tpr\": 0.9176067399685849, \"n\": 5331}, {\"threshold\": 0.6980000138282776, \"p\": 28012, \"fpr\": 0.1802663665353592, \"tpr\": 0.9174639440239897, \"n\": 5331}, {\"threshold\": 0.6990000009536743, \"p\": 28012, \"fpr\": 0.17989120240105047, \"tpr\": 0.9173925460516922, \"n\": 5331}, {\"threshold\": 0.699999988079071, \"p\": 28012, \"fpr\": 0.17989120240105047, \"tpr\": 0.9172854490932457, \"n\": 5331}, {\"threshold\": 0.7009999752044678, \"p\": 28012, \"fpr\": 0.17895329206527855, \"tpr\": 0.9172140511209481, \"n\": 5331}, {\"threshold\": 0.7020000219345093, \"p\": 28012, \"fpr\": 0.17895329206527855, \"tpr\": 0.9169641582179067, \"n\": 5331}, {\"threshold\": 0.703000009059906, \"p\": 28012, \"fpr\": 0.1785781279309698, \"tpr\": 0.9168213622733115, \"n\": 5331}, {\"threshold\": 0.7039999961853027, \"p\": 28012, \"fpr\": 0.17839054586381542, \"tpr\": 0.9167856632871626, \"n\": 5331}, {\"threshold\": 0.7049999833106995, \"p\": 28012, \"fpr\": 0.17745263552804352, \"tpr\": 0.9166785663287162, \"n\": 5331}, {\"threshold\": 0.7059999704360962, \"p\": 28012, \"fpr\": 0.17707747139373475, \"tpr\": 0.9163929744395259, \"n\": 5331}, {\"threshold\": 0.7070000171661377, \"p\": 28012, \"fpr\": 0.17595197899080847, \"tpr\": 0.9161073825503355, \"n\": 5331}, {\"threshold\": 0.7080000042915344, \"p\": 28012, \"fpr\": 0.1757643969236541, \"tpr\": 0.9159288876195916, \"n\": 5331}, {\"threshold\": 0.7089999914169312, \"p\": 28012, \"fpr\": 0.17538923278934535, \"tpr\": 0.9156432957304013, \"n\": 5331}, {\"threshold\": 0.7099999785423279, \"p\": 28012, \"fpr\": 0.17426374038641906, \"tpr\": 0.9153934028273597, \"n\": 5331}, {\"threshold\": 0.7110000252723694, \"p\": 28012, \"fpr\": 0.17407615831926468, \"tpr\": 0.9152149078966157, \"n\": 5331}, {\"threshold\": 0.7120000123977661, \"p\": 28012, \"fpr\": 0.17407615831926468, \"tpr\": 0.9149650149935742, \"n\": 5331}, {\"threshold\": 0.7129999995231628, \"p\": 28012, \"fpr\": 0.1737009941849559, \"tpr\": 0.914643724118235, \"n\": 5331}, {\"threshold\": 0.7139999866485596, \"p\": 28012, \"fpr\": 0.172763083849184, \"tpr\": 0.9144652291874911, \"n\": 5331}, {\"threshold\": 0.7149999737739563, \"p\": 28012, \"fpr\": 0.17238791971487527, \"tpr\": 0.9142867342567471, \"n\": 5331}, {\"threshold\": 0.7160000205039978, \"p\": 28012, \"fpr\": 0.17220033764772089, \"tpr\": 0.9140725403398543, \"n\": 5331}, {\"threshold\": 0.7170000076293945, \"p\": 28012, \"fpr\": 0.17182517351341212, \"tpr\": 0.9138226474368127, \"n\": 5331}, {\"threshold\": 0.7179999947547913, \"p\": 28012, \"fpr\": 0.171262427311949, \"tpr\": 0.9136798514922176, \"n\": 5331}, {\"threshold\": 0.718999981880188, \"p\": 28012, \"fpr\": 0.17088726317764022, \"tpr\": 0.91360845351992, \"n\": 5331}, {\"threshold\": 0.7200000286102295, \"p\": 28012, \"fpr\": 0.17069968111048583, \"tpr\": 0.9135727545337713, \"n\": 5331}, {\"threshold\": 0.7210000157356262, \"p\": 28012, \"fpr\": 0.17032451697617706, \"tpr\": 0.9133585606168785, \"n\": 5331}, {\"threshold\": 0.722000002861023, \"p\": 28012, \"fpr\": 0.16938660664040517, \"tpr\": 0.9130372697415393, \"n\": 5331}, {\"threshold\": 0.7229999899864197, \"p\": 28012, \"fpr\": 0.16919902457325078, \"tpr\": 0.9128587748107954, \"n\": 5331}, {\"threshold\": 0.7239999771118164, \"p\": 28012, \"fpr\": 0.16919902457325078, \"tpr\": 0.9126802798800514, \"n\": 5331}, {\"threshold\": 0.7250000238418579, \"p\": 28012, \"fpr\": 0.16882386043894204, \"tpr\": 0.9125374839354562, \"n\": 5331}, {\"threshold\": 0.7260000109672546, \"p\": 28012, \"fpr\": 0.16844869630463327, \"tpr\": 0.9122161930601171, \"n\": 5331}, {\"threshold\": 0.7269999980926514, \"p\": 28012, \"fpr\": 0.1682611142374789, \"tpr\": 0.9119663001570756, \"n\": 5331}, {\"threshold\": 0.7279999852180481, \"p\": 28012, \"fpr\": 0.16807353217032453, \"tpr\": 0.911894902184778, \"n\": 5331}, {\"threshold\": 0.7289999723434448, \"p\": 28012, \"fpr\": 0.16788595010317015, \"tpr\": 0.9117521062401828, \"n\": 5331}, {\"threshold\": 0.7300000190734863, \"p\": 28012, \"fpr\": 0.16751078596886138, \"tpr\": 0.9116093102955876, \"n\": 5331}, {\"threshold\": 0.7310000061988831, \"p\": 28012, \"fpr\": 0.16694803976739825, \"tpr\": 0.9113237184063973, \"n\": 5331}, {\"threshold\": 0.7319999933242798, \"p\": 28012, \"fpr\": 0.1661977114987807, \"tpr\": 0.911180922461802, \"n\": 5331}, {\"threshold\": 0.7329999804496765, \"p\": 28012, \"fpr\": 0.16601012943162632, \"tpr\": 0.9108239326003141, \"n\": 5331}, {\"threshold\": 0.734000027179718, \"p\": 28012, \"fpr\": 0.16582254736447197, \"tpr\": 0.9106454376695702, \"n\": 5331}, {\"threshold\": 0.7350000143051147, \"p\": 28012, \"fpr\": 0.16563496529731758, \"tpr\": 0.910502641724975, \"n\": 5331}, {\"threshold\": 0.7360000014305115, \"p\": 28012, \"fpr\": 0.1654473832301632, \"tpr\": 0.9102527488219334, \"n\": 5331}, {\"threshold\": 0.7369999885559082, \"p\": 28012, \"fpr\": 0.1654473832301632, \"tpr\": 0.9101099528773383, \"n\": 5331}, {\"threshold\": 0.7379999756813049, \"p\": 28012, \"fpr\": 0.16488463702870004, \"tpr\": 0.9099314579465944, \"n\": 5331}, {\"threshold\": 0.7390000224113464, \"p\": 28012, \"fpr\": 0.16432189082723692, \"tpr\": 0.9096458660574039, \"n\": 5331}, {\"threshold\": 0.7400000095367432, \"p\": 28012, \"fpr\": 0.16394672669292815, \"tpr\": 0.9095387690989576, \"n\": 5331}, {\"threshold\": 0.7409999966621399, \"p\": 28012, \"fpr\": 0.16319639842431063, \"tpr\": 0.9093959731543624, \"n\": 5331}, {\"threshold\": 0.7419999837875366, \"p\": 28012, \"fpr\": 0.16300881635715625, \"tpr\": 0.9091817792374697, \"n\": 5331}, {\"threshold\": 0.7429999709129333, \"p\": 28012, \"fpr\": 0.16244607015569312, \"tpr\": 0.9090389832928745, \"n\": 5331}, {\"threshold\": 0.7440000176429749, \"p\": 28012, \"fpr\": 0.16188332395422997, \"tpr\": 0.9087890903898329, \"n\": 5331}, {\"threshold\": 0.7450000047683716, \"p\": 28012, \"fpr\": 0.16169574188707558, \"tpr\": 0.908610595459089, \"n\": 5331}, {\"threshold\": 0.7459999918937683, \"p\": 28012, \"fpr\": 0.16150815981992123, \"tpr\": 0.9082893045837498, \"n\": 5331}, {\"threshold\": 0.746999979019165, \"p\": 28012, \"fpr\": 0.16113299568561246, \"tpr\": 0.9081822076253034, \"n\": 5331}, {\"threshold\": 0.7480000257492065, \"p\": 28012, \"fpr\": 0.16094541361845807, \"tpr\": 0.9078252177638155, \"n\": 5331}, {\"threshold\": 0.7490000128746033, \"p\": 28012, \"fpr\": 0.1607578315513037, \"tpr\": 0.9075039268884764, \"n\": 5331}, {\"threshold\": 0.75, \"p\": 28012, \"fpr\": 0.16038266741699495, \"tpr\": 0.9072897329715837, \"n\": 5331}, {\"threshold\": 0.7509999871253967, \"p\": 28012, \"fpr\": 0.15906959294691428, \"tpr\": 0.9071469370269885, \"n\": 5331}, {\"threshold\": 0.7519999742507935, \"p\": 28012, \"fpr\": 0.1588820108797599, \"tpr\": 0.9069327431100956, \"n\": 5331}, {\"threshold\": 0.753000020980835, \"p\": 28012, \"fpr\": 0.1577565184768336, \"tpr\": 0.9066828502070541, \"n\": 5331}, {\"threshold\": 0.7540000081062317, \"p\": 28012, \"fpr\": 0.15756893640967923, \"tpr\": 0.9066114522347566, \"n\": 5331}, {\"threshold\": 0.7549999952316284, \"p\": 28012, \"fpr\": 0.15756893640967923, \"tpr\": 0.9064329573040125, \"n\": 5331}, {\"threshold\": 0.7559999823570251, \"p\": 28012, \"fpr\": 0.15719377227537049, \"tpr\": 0.9062187633871198, \"n\": 5331}, {\"threshold\": 0.7570000290870667, \"p\": 28012, \"fpr\": 0.1570061902082161, \"tpr\": 0.9058617735256319, \"n\": 5331}, {\"threshold\": 0.7580000162124634, \"p\": 28012, \"fpr\": 0.15625586193959856, \"tpr\": 0.9056118806225903, \"n\": 5331}, {\"threshold\": 0.7590000033378601, \"p\": 28012, \"fpr\": 0.15569311573813543, \"tpr\": 0.905147793802656, \"n\": 5331}, {\"threshold\": 0.7599999904632568, \"p\": 28012, \"fpr\": 0.15550553367098105, \"tpr\": 0.9048979008996144, \"n\": 5331}, {\"threshold\": 0.7609999775886536, \"p\": 28012, \"fpr\": 0.1551303695366723, \"tpr\": 0.9046123090104241, \"n\": 5331}, {\"threshold\": 0.7620000243186951, \"p\": 28012, \"fpr\": 0.15475520540236354, \"tpr\": 0.9042553191489362, \"n\": 5331}, {\"threshold\": 0.7630000114440918, \"p\": 28012, \"fpr\": 0.15419245920090038, \"tpr\": 0.9041482221904897, \"n\": 5331}, {\"threshold\": 0.7639999985694885, \"p\": 28012, \"fpr\": 0.15381729506659164, \"tpr\": 0.9037198343567042, \"n\": 5331}, {\"threshold\": 0.7649999856948853, \"p\": 28012, \"fpr\": 0.15344213093228287, \"tpr\": 0.9034699414536627, \"n\": 5331}, {\"threshold\": 0.765999972820282, \"p\": 28012, \"fpr\": 0.15287938473081975, \"tpr\": 0.9033271455090676, \"n\": 5331}, {\"threshold\": 0.7670000195503235, \"p\": 28012, \"fpr\": 0.15269180266366536, \"tpr\": 0.9030058546337284, \"n\": 5331}, {\"threshold\": 0.7680000066757202, \"p\": 28012, \"fpr\": 0.15250422059651098, \"tpr\": 0.9028630586891332, \"n\": 5331}, {\"threshold\": 0.7689999938011169, \"p\": 28012, \"fpr\": 0.1521290564622022, \"tpr\": 0.9025417678137941, \"n\": 5331}, {\"threshold\": 0.7699999809265137, \"p\": 28012, \"fpr\": 0.1521290564622022, \"tpr\": 0.9023632728830501, \"n\": 5331}, {\"threshold\": 0.7710000276565552, \"p\": 28012, \"fpr\": 0.15175389232789346, \"tpr\": 0.9020062830215622, \"n\": 5331}, {\"threshold\": 0.7720000147819519, \"p\": 28012, \"fpr\": 0.15156631026073908, \"tpr\": 0.901684992146223, \"n\": 5331}, {\"threshold\": 0.7730000019073486, \"p\": 28012, \"fpr\": 0.15100356405927592, \"tpr\": 0.9013994002570327, \"n\": 5331}, {\"threshold\": 0.7739999890327454, \"p\": 28012, \"fpr\": 0.1504408178578128, \"tpr\": 0.90118520634014, \"n\": 5331}, {\"threshold\": 0.7749999761581421, \"p\": 28012, \"fpr\": 0.15006565372350403, \"tpr\": 0.9010424103955448, \"n\": 5331}, {\"threshold\": 0.7760000228881836, \"p\": 28012, \"fpr\": 0.1495029075220409, \"tpr\": 0.9010067114093959, \"n\": 5331}, {\"threshold\": 0.7770000100135803, \"p\": 28012, \"fpr\": 0.14875257925342336, \"tpr\": 0.9007568185063545, \"n\": 5331}, {\"threshold\": 0.777999997138977, \"p\": 28012, \"fpr\": 0.148564997186269, \"tpr\": 0.9005069256033129, \"n\": 5331}, {\"threshold\": 0.7789999842643738, \"p\": 28012, \"fpr\": 0.14800225098480585, \"tpr\": 0.9001142367556761, \"n\": 5331}, {\"threshold\": 0.7799999713897705, \"p\": 28012, \"fpr\": 0.14800225098480585, \"tpr\": 0.8998286448664858, \"n\": 5331}, {\"threshold\": 0.781000018119812, \"p\": 28012, \"fpr\": 0.14781466891765146, \"tpr\": 0.8997215479080394, \"n\": 5331}, {\"threshold\": 0.7820000052452087, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8993645580465515, \"n\": 5331}, {\"threshold\": 0.7829999923706055, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8991503641296588, \"n\": 5331}, {\"threshold\": 0.7839999794960022, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8988647722404683, \"n\": 5331}, {\"threshold\": 0.7850000262260437, \"p\": 28012, \"fpr\": 0.14687675858187957, \"tpr\": 0.8986148793374268, \"n\": 5331}, {\"threshold\": 0.7860000133514404, \"p\": 28012, \"fpr\": 0.14687675858187957, \"tpr\": 0.8983649864343852, \"n\": 5331}, {\"threshold\": 0.7870000004768372, \"p\": 28012, \"fpr\": 0.14612643031326206, \"tpr\": 0.8980436955590462, \"n\": 5331}, {\"threshold\": 0.7879999876022339, \"p\": 28012, \"fpr\": 0.1457512661789533, \"tpr\": 0.8978652006283021, \"n\": 5331}, {\"threshold\": 0.7889999747276306, \"p\": 28012, \"fpr\": 0.1448133558431814, \"tpr\": 0.8976153077252605, \"n\": 5331}, {\"threshold\": 0.7900000214576721, \"p\": 28012, \"fpr\": 0.1448133558431814, \"tpr\": 0.8973654148222191, \"n\": 5331}, {\"threshold\": 0.7910000085830688, \"p\": 28012, \"fpr\": 0.144625773776027, \"tpr\": 0.8971155219191775, \"n\": 5331}, {\"threshold\": 0.7919999957084656, \"p\": 28012, \"fpr\": 0.14406302757456388, \"tpr\": 0.896865629016136, \"n\": 5331}, {\"threshold\": 0.7929999828338623, \"p\": 28012, \"fpr\": 0.1436878634402551, \"tpr\": 0.8966157361130944, \"n\": 5331}, {\"threshold\": 0.7940000295639038, \"p\": 28012, \"fpr\": 0.14312511723879198, \"tpr\": 0.896330144223904, \"n\": 5331}, {\"threshold\": 0.7950000166893005, \"p\": 28012, \"fpr\": 0.1427499531044832, \"tpr\": 0.8960802513208624, \"n\": 5331}, {\"threshold\": 0.7960000038146973, \"p\": 28012, \"fpr\": 0.1419996248358657, \"tpr\": 0.8957946594316721, \"n\": 5331}, {\"threshold\": 0.796999990940094, \"p\": 28012, \"fpr\": 0.14143687863440255, \"tpr\": 0.8955804655147794, \"n\": 5331}, {\"threshold\": 0.7979999780654907, \"p\": 28012, \"fpr\": 0.1410617145000938, \"tpr\": 0.8953305726117379, \"n\": 5331}, {\"threshold\": 0.7990000247955322, \"p\": 28012, \"fpr\": 0.14049896829863065, \"tpr\": 0.8950806797086963, \"n\": 5331}, {\"threshold\": 0.800000011920929, \"p\": 28012, \"fpr\": 0.14031138623147626, \"tpr\": 0.8950449807225475, \"n\": 5331}, {\"threshold\": 0.8009999990463257, \"p\": 28012, \"fpr\": 0.13993622209716752, \"tpr\": 0.8947236898472083, \"n\": 5331}, {\"threshold\": 0.8019999861717224, \"p\": 28012, \"fpr\": 0.13937347589570437, \"tpr\": 0.8944023989718692, \"n\": 5331}, {\"threshold\": 0.8029999732971191, \"p\": 28012, \"fpr\": 0.1389983117613956, \"tpr\": 0.8940454091103812, \"n\": 5331}, {\"threshold\": 0.8040000200271606, \"p\": 28012, \"fpr\": 0.1389983117613956, \"tpr\": 0.8936170212765957, \"n\": 5331}, {\"threshold\": 0.8050000071525574, \"p\": 28012, \"fpr\": 0.1382479834927781, \"tpr\": 0.8932600314151078, \"n\": 5331}, {\"threshold\": 0.8059999942779541, \"p\": 28012, \"fpr\": 0.1382479834927781, \"tpr\": 0.8930815364843638, \"n\": 5331}, {\"threshold\": 0.8069999814033508, \"p\": 28012, \"fpr\": 0.1380604014256237, \"tpr\": 0.8928673425674711, \"n\": 5331}, {\"threshold\": 0.8080000281333923, \"p\": 28012, \"fpr\": 0.13768523729131496, \"tpr\": 0.8926888476367271, \"n\": 5331}, {\"threshold\": 0.8090000152587891, \"p\": 28012, \"fpr\": 0.1371224910898518, \"tpr\": 0.8921533628444952, \"n\": 5331}, {\"threshold\": 0.8100000023841858, \"p\": 28012, \"fpr\": 0.13693490902269742, \"tpr\": 0.8917606739968585, \"n\": 5331}, {\"threshold\": 0.8109999895095825, \"p\": 28012, \"fpr\": 0.13674732695554306, \"tpr\": 0.8914393831215194, \"n\": 5331}, {\"threshold\": 0.8119999766349792, \"p\": 28012, \"fpr\": 0.1363721628212343, \"tpr\": 0.8912965871769242, \"n\": 5331}, {\"threshold\": 0.8130000233650208, \"p\": 28012, \"fpr\": 0.1361845807540799, \"tpr\": 0.8910823932600315, \"n\": 5331}, {\"threshold\": 0.8140000104904175, \"p\": 28012, \"fpr\": 0.1361845807540799, \"tpr\": 0.8906897044123947, \"n\": 5331}, {\"threshold\": 0.8149999976158142, \"p\": 28012, \"fpr\": 0.13562183455261678, \"tpr\": 0.8902970155647579, \"n\": 5331}, {\"threshold\": 0.8159999847412109, \"p\": 28012, \"fpr\": 0.1354342524854624, \"tpr\": 0.8901899186063116, \"n\": 5331}, {\"threshold\": 0.8169999718666077, \"p\": 28012, \"fpr\": 0.1344963421496905, \"tpr\": 0.8898686277309724, \"n\": 5331}, {\"threshold\": 0.8180000185966492, \"p\": 28012, \"fpr\": 0.1344963421496905, \"tpr\": 0.8896544338140797, \"n\": 5331}, {\"threshold\": 0.8190000057220459, \"p\": 28012, \"fpr\": 0.13430876008253612, \"tpr\": 0.8893331429387406, \"n\": 5331}, {\"threshold\": 0.8199999928474426, \"p\": 28012, \"fpr\": 0.13430876008253612, \"tpr\": 0.8887619591603598, \"n\": 5331}, {\"threshold\": 0.8209999799728394, \"p\": 28012, \"fpr\": 0.13355843181391858, \"tpr\": 0.8884049692988719, \"n\": 5331}, {\"threshold\": 0.8220000267028809, \"p\": 28012, \"fpr\": 0.13355843181391858, \"tpr\": 0.8879765814650864, \"n\": 5331}, {\"threshold\": 0.8230000138282776, \"p\": 28012, \"fpr\": 0.13337084974676422, \"tpr\": 0.8875838926174496, \"n\": 5331}, {\"threshold\": 0.8240000009536743, \"p\": 28012, \"fpr\": 0.13299568561245545, \"tpr\": 0.8872626017421106, \"n\": 5331}, {\"threshold\": 0.824999988079071, \"p\": 28012, \"fpr\": 0.13205777527668355, \"tpr\": 0.8868699128944738, \"n\": 5331}, {\"threshold\": 0.8259999752044678, \"p\": 28012, \"fpr\": 0.1314950290752204, \"tpr\": 0.8863701270883907, \"n\": 5331}, {\"threshold\": 0.8270000219345093, \"p\": 28012, \"fpr\": 0.13111986494091166, \"tpr\": 0.8859774382407539, \"n\": 5331}, {\"threshold\": 0.828000009059906, \"p\": 28012, \"fpr\": 0.1305571187394485, \"tpr\": 0.8857275453377124, \"n\": 5331}, {\"threshold\": 0.8289999961853027, \"p\": 28012, \"fpr\": 0.13018195460513976, \"tpr\": 0.8855133514208197, \"n\": 5331}, {\"threshold\": 0.8299999833106995, \"p\": 28012, \"fpr\": 0.12999437253798538, \"tpr\": 0.8851206625731829, \"n\": 5331}, {\"threshold\": 0.8309999704360962, \"p\": 28012, \"fpr\": 0.1286812980679047, \"tpr\": 0.8849778666285878, \"n\": 5331}, {\"threshold\": 0.8320000171661377, \"p\": 28012, \"fpr\": 0.12830613393359594, \"tpr\": 0.8845137798086534, \"n\": 5331}, {\"threshold\": 0.8330000042915344, \"p\": 28012, \"fpr\": 0.12755580566497843, \"tpr\": 0.8841210909610167, \"n\": 5331}, {\"threshold\": 0.8339999914169312, \"p\": 28012, \"fpr\": 0.12718064153066966, \"tpr\": 0.8836570041410824, \"n\": 5331}, {\"threshold\": 0.8349999785423279, \"p\": 28012, \"fpr\": 0.12643031326205215, \"tpr\": 0.8833357132657432, \"n\": 5331}, {\"threshold\": 0.8360000252723694, \"p\": 28012, \"fpr\": 0.12567998499343463, \"tpr\": 0.882871626445809, \"n\": 5331}, {\"threshold\": 0.8370000123977661, \"p\": 28012, \"fpr\": 0.12530482085912586, \"tpr\": 0.8826217335427674, \"n\": 5331}, {\"threshold\": 0.8379999995231628, \"p\": 28012, \"fpr\": 0.12492965672481711, \"tpr\": 0.8824432386120235, \"n\": 5331}, {\"threshold\": 0.8389999866485596, \"p\": 28012, \"fpr\": 0.12492965672481711, \"tpr\": 0.8819077538197915, \"n\": 5331}, {\"threshold\": 0.8399999737739563, \"p\": 28012, \"fpr\": 0.12417932845619958, \"tpr\": 0.881300871055262, \"n\": 5331}, {\"threshold\": 0.8410000205039978, \"p\": 28012, \"fpr\": 0.12380416432189083, \"tpr\": 0.8810866771383693, \"n\": 5331}, {\"threshold\": 0.8420000076293945, \"p\": 28012, \"fpr\": 0.12324141812042769, \"tpr\": 0.8804797943738398, \"n\": 5331}, {\"threshold\": 0.8429999947547913, \"p\": 28012, \"fpr\": 0.1230538360532733, \"tpr\": 0.8799800085677567, \"n\": 5331}, {\"threshold\": 0.843999981880188, \"p\": 28012, \"fpr\": 0.1221159257175014, \"tpr\": 0.8793017278309296, \"n\": 5331}, {\"threshold\": 0.8450000286102295, \"p\": 28012, \"fpr\": 0.12136559744888388, \"tpr\": 0.8790875339140368, \"n\": 5331}, {\"threshold\": 0.8460000157356262, \"p\": 28012, \"fpr\": 0.12117801538172951, \"tpr\": 0.8788019420248465, \"n\": 5331}, {\"threshold\": 0.847000002861023, \"p\": 28012, \"fpr\": 0.12099043331457512, \"tpr\": 0.8784806511495074, \"n\": 5331}, {\"threshold\": 0.8479999899864197, \"p\": 28012, \"fpr\": 0.12005252297880323, \"tpr\": 0.8782307582464658, \"n\": 5331}, {\"threshold\": 0.8489999771118164, \"p\": 28012, \"fpr\": 0.11986494091164884, \"tpr\": 0.8778023704126803, \"n\": 5331}, {\"threshold\": 0.8500000238418579, \"p\": 28012, \"fpr\": 0.11967735884449447, \"tpr\": 0.8774453805511924, \"n\": 5331}, {\"threshold\": 0.8510000109672546, \"p\": 28012, \"fpr\": 0.11948977677734009, \"tpr\": 0.8770526917035556, \"n\": 5331}, {\"threshold\": 0.8519999980926514, \"p\": 28012, \"fpr\": 0.1193021947101857, \"tpr\": 0.8765886048836213, \"n\": 5331}, {\"threshold\": 0.8529999852180481, \"p\": 28012, \"fpr\": 0.11855186644156819, \"tpr\": 0.8761602170498358, \"n\": 5331}, {\"threshold\": 0.8539999723434448, \"p\": 28012, \"fpr\": 0.11817670230725942, \"tpr\": 0.875767528202199, \"n\": 5331}, {\"threshold\": 0.8550000190734863, \"p\": 28012, \"fpr\": 0.11761395610579628, \"tpr\": 0.8750535484792232, \"n\": 5331}, {\"threshold\": 0.8560000061988831, \"p\": 28012, \"fpr\": 0.11742637403864191, \"tpr\": 0.8744823647008425, \"n\": 5331}, {\"threshold\": 0.8569999933242798, \"p\": 28012, \"fpr\": 0.11723879197148752, \"tpr\": 0.874232471797801, \"n\": 5331}, {\"threshold\": 0.8579999804496765, \"p\": 28012, \"fpr\": 0.11648846370287, \"tpr\": 0.8738397829501642, \"n\": 5331}, {\"threshold\": 0.859000027179718, \"p\": 28012, \"fpr\": 0.11648846370287, \"tpr\": 0.8732685991717836, \"n\": 5331}, {\"threshold\": 0.8600000143051147, \"p\": 28012, \"fpr\": 0.11630088163571563, \"tpr\": 0.8728045123518492, \"n\": 5331}, {\"threshold\": 0.8610000014305115, \"p\": 28012, \"fpr\": 0.11573813543425249, \"tpr\": 0.8725546194488076, \"n\": 5331}, {\"threshold\": 0.8619999885559082, \"p\": 28012, \"fpr\": 0.1155505533670981, \"tpr\": 0.872161930601171, \"n\": 5331}, {\"threshold\": 0.8629999756813049, \"p\": 28012, \"fpr\": 0.11536297129994373, \"tpr\": 0.8717692417535342, \"n\": 5331}, {\"threshold\": 0.8640000224113464, \"p\": 28012, \"fpr\": 0.1146126430313262, \"tpr\": 0.871447950878195, \"n\": 5331}, {\"threshold\": 0.8650000095367432, \"p\": 28012, \"fpr\": 0.11348715062839992, \"tpr\": 0.8708767670998143, \"n\": 5331}, {\"threshold\": 0.8659999966621399, \"p\": 28012, \"fpr\": 0.11292440442693678, \"tpr\": 0.8701627873768385, \"n\": 5331}, {\"threshold\": 0.8669999837875366, \"p\": 28012, \"fpr\": 0.11236165822547364, \"tpr\": 0.8698057975153506, \"n\": 5331}, {\"threshold\": 0.8679999709129333, \"p\": 28012, \"fpr\": 0.11217407615831926, \"tpr\": 0.8692703127231186, \"n\": 5331}, {\"threshold\": 0.8690000176429749, \"p\": 28012, \"fpr\": 0.1117989120240105, \"tpr\": 0.8689847208339283, \"n\": 5331}, {\"threshold\": 0.8700000047683716, \"p\": 28012, \"fpr\": 0.11104858375539299, \"tpr\": 0.8684492360416964, \"n\": 5331}, {\"threshold\": 0.8709999918937683, \"p\": 28012, \"fpr\": 0.11067341962108422, \"tpr\": 0.8681993431386549, \"n\": 5331}, {\"threshold\": 0.871999979019165, \"p\": 28012, \"fpr\": 0.10973550928531232, \"tpr\": 0.8677352563187205, \"n\": 5331}, {\"threshold\": 0.8730000257492065, \"p\": 28012, \"fpr\": 0.10917276308384918, \"tpr\": 0.8670926745680423, \"n\": 5331}, {\"threshold\": 0.8740000128746033, \"p\": 28012, \"fpr\": 0.10879759894954043, \"tpr\": 0.8667356847065544, \"n\": 5331}, {\"threshold\": 0.875, \"p\": 28012, \"fpr\": 0.10823485274807729, \"tpr\": 0.8661645009281737, \"n\": 5331}, {\"threshold\": 0.8759999871253967, \"p\": 28012, \"fpr\": 0.10748452447945976, \"tpr\": 0.8658432100528345, \"n\": 5331}, {\"threshold\": 0.8769999742507935, \"p\": 28012, \"fpr\": 0.10673419621084225, \"tpr\": 0.8652006283021563, \"n\": 5331}, {\"threshold\": 0.878000020980835, \"p\": 28012, \"fpr\": 0.10579628587507034, \"tpr\": 0.8647008424960732, \"n\": 5331}, {\"threshold\": 0.8790000081062317, \"p\": 28012, \"fpr\": 0.10542112174076158, \"tpr\": 0.86420105668999, \"n\": 5331}, {\"threshold\": 0.8799999952316284, \"p\": 28012, \"fpr\": 0.1052335396736072, \"tpr\": 0.8634156789947165, \"n\": 5331}, {\"threshold\": 0.8809999823570251, \"p\": 28012, \"fpr\": 0.10485837553929844, \"tpr\": 0.8626660002855919, \"n\": 5331}, {\"threshold\": 0.8820000290870667, \"p\": 28012, \"fpr\": 0.1042956293378353, \"tpr\": 0.8620948165072112, \"n\": 5331}, {\"threshold\": 0.8830000162124634, \"p\": 28012, \"fpr\": 0.10392046520352655, \"tpr\": 0.8614879337426817, \"n\": 5331}, {\"threshold\": 0.8840000033378601, \"p\": 28012, \"fpr\": 0.10298255486775464, \"tpr\": 0.860738255033557, \"n\": 5331}, {\"threshold\": 0.8849999904632568, \"p\": 28012, \"fpr\": 0.10260739073344588, \"tpr\": 0.859881479365986, \"n\": 5331}, {\"threshold\": 0.8859999775886536, \"p\": 28012, \"fpr\": 0.10241980866629151, \"tpr\": 0.8594887905183493, \"n\": 5331}, {\"threshold\": 0.8870000243186951, \"p\": 28012, \"fpr\": 0.10204464453198274, \"tpr\": 0.8587034128230758, \"n\": 5331}, {\"threshold\": 0.8880000114440918, \"p\": 28012, \"fpr\": 0.10166948039767398, \"tpr\": 0.8580251320862488, \"n\": 5331}, {\"threshold\": 0.8889999985694885, \"p\": 28012, \"fpr\": 0.10129431626336523, \"tpr\": 0.8575967442524632, \"n\": 5331}, {\"threshold\": 0.8899999856948853, \"p\": 28012, \"fpr\": 0.09979365972613018, \"tpr\": 0.8569898614879338, \"n\": 5331}, {\"threshold\": 0.890999972820282, \"p\": 28012, \"fpr\": 0.09941849559182142, \"tpr\": 0.8560616878480651, \"n\": 5331}, {\"threshold\": 0.8920000195503235, \"p\": 28012, \"fpr\": 0.0986681673232039, \"tpr\": 0.8554191060973868, \"n\": 5331}, {\"threshold\": 0.8930000066757202, \"p\": 28012, \"fpr\": 0.09829300318889514, \"tpr\": 0.854705126374411, \"n\": 5331}, {\"threshold\": 0.8939999938011169, \"p\": 28012, \"fpr\": 0.09735509285312324, \"tpr\": 0.8537769527345423, \"n\": 5331}, {\"threshold\": 0.8949999809265137, \"p\": 28012, \"fpr\": 0.09697992871881449, \"tpr\": 0.8530986719977153, \"n\": 5331}, {\"threshold\": 0.8960000276565552, \"p\": 28012, \"fpr\": 0.09697992871881449, \"tpr\": 0.852277595316293, \"n\": 5331}, {\"threshold\": 0.8970000147819519, \"p\": 28012, \"fpr\": 0.0967923466516601, \"tpr\": 0.8515636155933172, \"n\": 5331}, {\"threshold\": 0.8980000019073486, \"p\": 28012, \"fpr\": 0.09641718251735135, \"tpr\": 0.8509567328287877, \"n\": 5331}, {\"threshold\": 0.8989999890327454, \"p\": 28012, \"fpr\": 0.0958544363158882, \"tpr\": 0.8501713551335142, \"n\": 5331}, {\"threshold\": 0.8999999761581421, \"p\": 28012, \"fpr\": 0.09547927218157944, \"tpr\": 0.8494930743966871, \"n\": 5331}, {\"threshold\": 0.9010000228881836, \"p\": 28012, \"fpr\": 0.09454136184580754, \"tpr\": 0.84881479365986, \"n\": 5331}, {\"threshold\": 0.9020000100135803, \"p\": 28012, \"fpr\": 0.09435377977865315, \"tpr\": 0.8481365129230329, \"n\": 5331}, {\"threshold\": 0.902999997138977, \"p\": 28012, \"fpr\": 0.09379103357719001, \"tpr\": 0.8478152220476939, \"n\": 5331}, {\"threshold\": 0.9039999842643738, \"p\": 28012, \"fpr\": 0.09360345151003564, \"tpr\": 0.8469941453662716, \"n\": 5331}, {\"threshold\": 0.9049999713897705, \"p\": 28012, \"fpr\": 0.09266554117426375, \"tpr\": 0.8464229615878909, \"n\": 5331}, {\"threshold\": 0.906000018119812, \"p\": 28012, \"fpr\": 0.09154004877133746, \"tpr\": 0.8454947879480222, \"n\": 5331}, {\"threshold\": 0.9070000052452087, \"p\": 28012, \"fpr\": 0.09078972050271994, \"tpr\": 0.8446380122804512, \"n\": 5331}, {\"threshold\": 0.9079999923706055, \"p\": 28012, \"fpr\": 0.08985181016694804, \"tpr\": 0.8436027416821362, \"n\": 5331}, {\"threshold\": 0.9089999794960022, \"p\": 28012, \"fpr\": 0.08966422809979366, \"tpr\": 0.8425317720976724, \"n\": 5331}, {\"threshold\": 0.9100000262260437, \"p\": 28012, \"fpr\": 0.08947664603263927, \"tpr\": 0.8416749964301014, \"n\": 5331}, {\"threshold\": 0.9110000133514404, \"p\": 28012, \"fpr\": 0.08872631776402176, \"tpr\": 0.8407468227902327, \"n\": 5331}, {\"threshold\": 0.9120000004768372, \"p\": 28012, \"fpr\": 0.08853873569686738, \"tpr\": 0.8400685420534056, \"n\": 5331}, {\"threshold\": 0.9129999876022339, \"p\": 28012, \"fpr\": 0.08816357156255862, \"tpr\": 0.8393545623304298, \"n\": 5331}, {\"threshold\": 0.9139999747276306, \"p\": 28012, \"fpr\": 0.08816357156255862, \"tpr\": 0.8386762815936027, \"n\": 5331}, {\"threshold\": 0.9150000214576721, \"p\": 28012, \"fpr\": 0.08778840742824986, \"tpr\": 0.8375696130229902, \"n\": 5331}, {\"threshold\": 0.9160000085830688, \"p\": 28012, \"fpr\": 0.08722566122678672, \"tpr\": 0.8366771383692703, \"n\": 5331}, {\"threshold\": 0.9169999957084656, \"p\": 28012, \"fpr\": 0.0864753329581692, \"tpr\": 0.8352848779094674, \"n\": 5331}, {\"threshold\": 0.9179999828338623, \"p\": 28012, \"fpr\": 0.0864753329581692, \"tpr\": 0.8339997144081108, \"n\": 5331}, {\"threshold\": 0.9190000295639038, \"p\": 28012, \"fpr\": 0.08591258675670606, \"tpr\": 0.8331072397543909, \"n\": 5331}, {\"threshold\": 0.9200000166893005, \"p\": 28012, \"fpr\": 0.08516225848808853, \"tpr\": 0.8316792803084393, \"n\": 5331}, {\"threshold\": 0.9210000038146973, \"p\": 28012, \"fpr\": 0.08478709435377978, \"tpr\": 0.8306797086962731, \"n\": 5331}, {\"threshold\": 0.921999990940094, \"p\": 28012, \"fpr\": 0.08384918401800788, \"tpr\": 0.8295373411395116, \"n\": 5331}, {\"threshold\": 0.9229999780654907, \"p\": 28012, \"fpr\": 0.08309885574939035, \"tpr\": 0.8283949735827503, \"n\": 5331}, {\"threshold\": 0.9240000247955322, \"p\": 28012, \"fpr\": 0.0827236916150816, \"tpr\": 0.8274667999428816, \"n\": 5331}, {\"threshold\": 0.925000011920929, \"p\": 28012, \"fpr\": 0.08234852748077284, \"tpr\": 0.8266814222476082, \"n\": 5331}, {\"threshold\": 0.9259999990463257, \"p\": 28012, \"fpr\": 0.08141061714500093, \"tpr\": 0.8253605597601028, \"n\": 5331}, {\"threshold\": 0.9269999861717224, \"p\": 28012, \"fpr\": 0.08141061714500093, \"tpr\": 0.8241824932171926, \"n\": 5331}, {\"threshold\": 0.9279999732971191, \"p\": 28012, \"fpr\": 0.08122303507784656, \"tpr\": 0.8232186205911752, \"n\": 5331}, {\"threshold\": 0.9290000200271606, \"p\": 28012, \"fpr\": 0.08047270680922904, \"tpr\": 0.8218620591175211, \"n\": 5331}, {\"threshold\": 0.9300000071525574, \"p\": 28012, \"fpr\": 0.07972237854061152, \"tpr\": 0.8206482935884621, \"n\": 5331}, {\"threshold\": 0.9309999942779541, \"p\": 28012, \"fpr\": 0.07859688613768524, \"tpr\": 0.8190775381979152, \"n\": 5331}, {\"threshold\": 0.9319999814033508, \"p\": 28012, \"fpr\": 0.07840930407053086, \"tpr\": 0.8176852777381123, \"n\": 5331}, {\"threshold\": 0.9330000281333923, \"p\": 28012, \"fpr\": 0.07840930407053086, \"tpr\": 0.8165072111952021, \"n\": 5331}, {\"threshold\": 0.9340000152587891, \"p\": 28012, \"fpr\": 0.07822172200337647, \"tpr\": 0.814972154790804, \"n\": 5331}, {\"threshold\": 0.9350000023841858, \"p\": 28012, \"fpr\": 0.0780341399362221, \"tpr\": 0.8134370983864059, \"n\": 5331}, {\"threshold\": 0.9359999895095825, \"p\": 28012, \"fpr\": 0.07747139373475896, \"tpr\": 0.8122233328573468, \"n\": 5331}, {\"threshold\": 0.9369999766349792, \"p\": 28012, \"fpr\": 0.07690864753329582, \"tpr\": 0.8111166642867342, \"n\": 5331}, {\"threshold\": 0.9380000233650208, \"p\": 28012, \"fpr\": 0.07653348339898705, \"tpr\": 0.8096530058546337, \"n\": 5331}, {\"threshold\": 0.9390000104904175, \"p\": 28012, \"fpr\": 0.07597073719752391, \"tpr\": 0.8081536484363844, \"n\": 5331}, {\"threshold\": 0.9399999976158142, \"p\": 28012, \"fpr\": 0.0752204089289064, \"tpr\": 0.806333000142796, \"n\": 5331}, {\"threshold\": 0.9409999847412109, \"p\": 28012, \"fpr\": 0.07465766272744326, \"tpr\": 0.8050121376552906, \"n\": 5331}, {\"threshold\": 0.9419999718666077, \"p\": 28012, \"fpr\": 0.07390733445882573, \"tpr\": 0.8035841782093388, \"n\": 5331}, {\"threshold\": 0.9430000185966492, \"p\": 28012, \"fpr\": 0.07371975239167136, \"tpr\": 0.8020491218049407, \"n\": 5331}, {\"threshold\": 0.9440000057220459, \"p\": 28012, \"fpr\": 0.07296942412305384, \"tpr\": 0.8006211623589891, \"n\": 5331}, {\"threshold\": 0.9449999928474426, \"p\": 28012, \"fpr\": 0.07259425998874508, \"tpr\": 0.7990147079822933, \"n\": 5331}, {\"threshold\": 0.9459999799728394, \"p\": 28012, \"fpr\": 0.07221909585443631, \"tpr\": 0.7971583607025561, \"n\": 5331}, {\"threshold\": 0.9470000267028809, \"p\": 28012, \"fpr\": 0.07128118551866441, \"tpr\": 0.7954805083535628, \"n\": 5331}, {\"threshold\": 0.9480000138282776, \"p\": 28012, \"fpr\": 0.07071843931720127, \"tpr\": 0.7940882478937599, \"n\": 5331}, {\"threshold\": 0.9490000009536743, \"p\": 28012, \"fpr\": 0.06921778277996624, \"tpr\": 0.7924460945309153, \"n\": 5331}, {\"threshold\": 0.949999988079071, \"p\": 28012, \"fpr\": 0.06790470830988557, \"tpr\": 0.7899828644866486, \"n\": 5331}, {\"threshold\": 0.9509999752044678, \"p\": 28012, \"fpr\": 0.06715438004126806, \"tpr\": 0.7884478080822505, \"n\": 5331}, {\"threshold\": 0.9520000219345093, \"p\": 28012, \"fpr\": 0.06640405177265053, \"tpr\": 0.7868770526917036, \"n\": 5331}, {\"threshold\": 0.953000009059906, \"p\": 28012, \"fpr\": 0.06565372350403302, \"tpr\": 0.7845209196058832, \"n\": 5331}, {\"threshold\": 0.9539999961853027, \"p\": 28012, \"fpr\": 0.06509097730256988, \"tpr\": 0.7821290875339141, \"n\": 5331}, {\"threshold\": 0.9549999833106995, \"p\": 28012, \"fpr\": 0.06434064903395235, \"tpr\": 0.7799871483649864, \"n\": 5331}, {\"threshold\": 0.9559999704360962, \"p\": 28012, \"fpr\": 0.0639654848996436, \"tpr\": 0.7783806939882907, \"n\": 5331}, {\"threshold\": 0.9570000171661377, \"p\": 28012, \"fpr\": 0.06283999249671732, \"tpr\": 0.7761673568470655, \"n\": 5331}, {\"threshold\": 0.9580000042915344, \"p\": 28012, \"fpr\": 0.06208966422809979, \"tpr\": 0.7742396115950307, \"n\": 5331}, {\"threshold\": 0.9589999914169312, \"p\": 28012, \"fpr\": 0.061151753892327895, \"tpr\": 0.7714907896615736, \"n\": 5331}, {\"threshold\": 0.9599999785423279, \"p\": 28012, \"fpr\": 0.06077658975801913, \"tpr\": 0.7690989575896044, \"n\": 5331}, {\"threshold\": 0.9610000252723694, \"p\": 28012, \"fpr\": 0.06021384355655599, \"tpr\": 0.7665643295730401, \"n\": 5331}, {\"threshold\": 0.9620000123977661, \"p\": 28012, \"fpr\": 0.05890076908647533, \"tpr\": 0.7644223904041125, \"n\": 5331}, {\"threshold\": 0.9629999995231628, \"p\": 28012, \"fpr\": 0.05833802288501219, \"tpr\": 0.7614593745537627, \"n\": 5331}, {\"threshold\": 0.9639999866485596, \"p\": 28012, \"fpr\": 0.057400112549240295, \"tpr\": 0.7582464658003712, \"n\": 5331}, {\"threshold\": 0.9649999737739563, \"p\": 28012, \"fpr\": 0.05646220221346839, \"tpr\": 0.7557832357561045, \"n\": 5331}, {\"threshold\": 0.9660000205039978, \"p\": 28012, \"fpr\": 0.05571187394485087, \"tpr\": 0.7528202199057547, \"n\": 5331}, {\"threshold\": 0.9670000076293945, \"p\": 28012, \"fpr\": 0.054961545676233355, \"tpr\": 0.7497858060831072, \"n\": 5331}, {\"threshold\": 0.9679999947547913, \"p\": 28012, \"fpr\": 0.054398799474770214, \"tpr\": 0.7462516064543767, \"n\": 5331}, {\"threshold\": 0.968999981880188, \"p\": 28012, \"fpr\": 0.05402363534046145, \"tpr\": 0.7431100956732829, \"n\": 5331}, {\"threshold\": 0.9700000286102295, \"p\": 28012, \"fpr\": 0.05271056087038079, \"tpr\": 0.7394331000999571, \"n\": 5331}, {\"threshold\": 0.9710000157356262, \"p\": 28012, \"fpr\": 0.05177265053460889, \"tpr\": 0.7363629872911609, \"n\": 5331}, {\"threshold\": 0.972000002861023, \"p\": 28012, \"fpr\": 0.05083474019883699, \"tpr\": 0.7323290018563473, \"n\": 5331}, {\"threshold\": 0.9729999899864197, \"p\": 28012, \"fpr\": 0.05027199399737385, \"tpr\": 0.7288662001999143, \"n\": 5331}, {\"threshold\": 0.9739999771118164, \"p\": 28012, \"fpr\": 0.04914650159444757, \"tpr\": 0.724439525917464, \"n\": 5331}, {\"threshold\": 0.9750000238418579, \"p\": 28012, \"fpr\": 0.04802100919152129, \"tpr\": 0.7200128516350136, \"n\": 5331}, {\"threshold\": 0.9760000109672546, \"p\": 28012, \"fpr\": 0.04633277058713187, \"tpr\": 0.7155504783664144, \"n\": 5331}, {\"threshold\": 0.9769999980926514, \"p\": 28012, \"fpr\": 0.04520727818420559, \"tpr\": 0.7109453091532201, \"n\": 5331}, {\"threshold\": 0.9779999852180481, \"p\": 28012, \"fpr\": 0.04426936784843369, \"tpr\": 0.7065900328430672, \"n\": 5331}, {\"threshold\": 0.9789999723434448, \"p\": 28012, \"fpr\": 0.04389420371412493, \"tpr\": 0.7015921747822362, \"n\": 5331}, {\"threshold\": 0.9800000190734863, \"p\": 28012, \"fpr\": 0.04333145751266179, \"tpr\": 0.6956661430815365, \"n\": 5331}, {\"threshold\": 0.9810000061988831, \"p\": 28012, \"fpr\": 0.042581129244044266, \"tpr\": 0.6899186063115808, \"n\": 5331}, {\"threshold\": 0.9819999933242798, \"p\": 28012, \"fpr\": 0.04126805477396361, \"tpr\": 0.6833499928602028, \"n\": 5331}, {\"threshold\": 0.9829999804496765, \"p\": 28012, \"fpr\": 0.03920465203526543, \"tpr\": 0.6774596601456518, \"n\": 5331}, {\"threshold\": 0.984000027179718, \"p\": 28012, \"fpr\": 0.037703995498030385, \"tpr\": 0.6702127659574468, \"n\": 5331}, {\"threshold\": 0.9850000143051147, \"p\": 28012, \"fpr\": 0.036953667229412866, \"tpr\": 0.6626802798800514, \"n\": 5331}, {\"threshold\": 0.9860000014305115, \"p\": 28012, \"fpr\": 0.03564059275933221, \"tpr\": 0.6543981150935313, \"n\": 5331}, {\"threshold\": 0.9869999885559082, \"p\": 28012, \"fpr\": 0.03470268242356031, \"tpr\": 0.6451520776809938, \"n\": 5331}, {\"threshold\": 0.9879999756813049, \"p\": 28012, \"fpr\": 0.033389607953479644, \"tpr\": 0.6358703412823076, \"n\": 5331}, {\"threshold\": 0.9890000224113464, \"p\": 28012, \"fpr\": 0.031513787281935844, \"tpr\": 0.6260174211052406, \"n\": 5331}, {\"threshold\": 0.9900000095367432, \"p\": 28012, \"fpr\": 0.028887638341774526, \"tpr\": 0.6144866485791803, \"n\": 5331}, {\"threshold\": 0.9909999966621399, \"p\": 28012, \"fpr\": 0.027574563871693866, \"tpr\": 0.602277595316293, \"n\": 5331}, {\"threshold\": 0.9919999837875366, \"p\": 28012, \"fpr\": 0.026261489401613207, \"tpr\": 0.5882121947736684, \"n\": 5331}, {\"threshold\": 0.9929999709129333, \"p\": 28012, \"fpr\": 0.024385668730069407, \"tpr\": 0.5730044266742824, \"n\": 5331}, {\"threshold\": 0.9940000176429749, \"p\": 28012, \"fpr\": 0.022697430125679985, \"tpr\": 0.5558689133228616, \"n\": 5331}, {\"threshold\": 0.9950000047683716, \"p\": 28012, \"fpr\": 0.021571937722753703, \"tpr\": 0.5334856490075682, \"n\": 5331}, {\"threshold\": 0.9959999918937683, \"p\": 28012, \"fpr\": 0.020071281185518663, \"tpr\": 0.5063544195344852, \"n\": 5331}, {\"threshold\": 0.996999979019165, \"p\": 28012, \"fpr\": 0.017820296379666103, \"tpr\": 0.47311866342995856, \"n\": 5331}, {\"threshold\": 0.9980000257492065, \"p\": 28012, \"fpr\": 0.014818983305196024, \"tpr\": 0.4284949307439669, \"n\": 5331}, {\"threshold\": 0.9990000128746033, \"p\": 28012, \"fpr\": 0.010879759894954042, \"tpr\": 0.3593816935599029, \"n\": 5331}, {\"threshold\": 1.0, \"p\": 28012, \"fpr\": 0.0, \"tpr\": 0.0, \"n\": 5331}]}]], \"type\": \"Model\"}, \"ipython\": true, \"view_params\": {\"model_type\": \"regression\", \"view\": \"Evaluation\"}, \"model_type\": \"regression\", \"attributes\": {\"section_titles\": [\"Schema\", \"Hyperparameters\", \"Training Summary\", \"Settings\", \"Highest Positive Coefficients\", \"Lowest Negative Coefficients\"], \"sections\": [[[\"Number of coefficients\", 219218], [\"Number of examples\", 133448], [\"Number of classes\", 2], [\"Number of feature columns\", 1], [\"Number of unpacked features\", 219217]], [[\"L1 penalty\", 0.0], [\"L2 penalty\", 0.01]], [[\"Solver\", \"auto\"], [\"Solver iterations\", 10], [\"Solver status\", \"TERMINATED: Iteration limit reached.\"], [\"Training time (sec)\", 10.29]], [[\"Log-likelihood\", 4956.6901]], [[\"word_count[pinkjeep]\", 13.5701], [\"word_count[(http://www.amazon.com/review/rhgg6qp7tdnhb/ref=cm_cr_pr_cmt?ie=utf8&asin;=b00318cla0&nodeid;)]\", 12.3088], [\"word_count[label/box.]\", 11.1774], [\"word_count[product.***]\", 11.064], [\"word_count[direct-pumping]\", 11.0531]], [[\"word_count[it.update:after]\", -18.3631], [\"word_count[5months.]\", -16.0906], [\"word_count[oldest.if]\", -15.9315], [\"word_count[maxima.]\", -15.8084], [\"word_count[(160.00)]\", -15.4512]]]}, \"evaluations\": [[\"test_data\", {\"roc_curve\": [{\"threshold\": 0.0, \"p\": 28012, \"fpr\": 0.22228474957794034, \"tpr\": 0.004248179351706412, \"n\": 5331}, {\"threshold\": 0.0010000000474974513, \"p\": 28012, \"fpr\": 0.7777152504220597, \"tpr\": 0.9957518206482936, \"n\": 5331}, {\"threshold\": 0.0020000000949949026, \"p\": 28012, \"fpr\": 0.7377602701181767, \"tpr\": 0.9946094530915321, \"n\": 5331}, {\"threshold\": 0.003000000026077032, \"p\": 28012, \"fpr\": 0.7150628399924968, \"tpr\": 0.9939668713408539, \"n\": 5331}, {\"threshold\": 0.004000000189989805, \"p\": 28012, \"fpr\": 0.6994935284186832, \"tpr\": 0.9934670855347708, \"n\": 5331}, {\"threshold\": 0.004999999888241291, \"p\": 28012, \"fpr\": 0.6882386043894204, \"tpr\": 0.993074396687134, \"n\": 5331}, {\"threshold\": 0.006000000052154064, \"p\": 28012, \"fpr\": 0.6784843368973926, \"tpr\": 0.9925746108810509, \"n\": 5331}, {\"threshold\": 0.007000000216066837, \"p\": 28012, \"fpr\": 0.6679797411367473, \"tpr\": 0.992217621019563, \"n\": 5331}, {\"threshold\": 0.00800000037997961, \"p\": 28012, \"fpr\": 0.6576627274432564, \"tpr\": 0.9919677281165215, \"n\": 5331}, {\"threshold\": 0.008999999612569809, \"p\": 28012, \"fpr\": 0.6503470268242356, \"tpr\": 0.9916464372411824, \"n\": 5331}, {\"threshold\": 0.009999999776482582, \"p\": 28012, \"fpr\": 0.6417182517351341, \"tpr\": 0.9913965443381408, \"n\": 5331}, {\"threshold\": 0.010999999940395355, \"p\": 28012, \"fpr\": 0.634777715250422, \"tpr\": 0.9911109524489504, \"n\": 5331}, {\"threshold\": 0.012000000104308128, \"p\": 28012, \"fpr\": 0.6293378353029451, \"tpr\": 0.9907539625874625, \"n\": 5331}, {\"threshold\": 0.013000000268220901, \"p\": 28012, \"fpr\": 0.6225848808853873, \"tpr\": 0.990504069684421, \"n\": 5331}, {\"threshold\": 0.014000000432133675, \"p\": 28012, \"fpr\": 0.6177077471393735, \"tpr\": 0.9902541767813794, \"n\": 5331}, {\"threshold\": 0.014999999664723873, \"p\": 28012, \"fpr\": 0.6109547927218157, \"tpr\": 0.9899685848921891, \"n\": 5331}, {\"threshold\": 0.01600000075995922, \"p\": 28012, \"fpr\": 0.6062652410429563, \"tpr\": 0.9896115950307012, \"n\": 5331}, {\"threshold\": 0.017000000923871994, \"p\": 28012, \"fpr\": 0.6025135996998687, \"tpr\": 0.9893617021276596, \"n\": 5331}, {\"threshold\": 0.017999999225139618, \"p\": 28012, \"fpr\": 0.5976364659538548, \"tpr\": 0.9892189061830644, \"n\": 5331}, {\"threshold\": 0.01899999938905239, \"p\": 28012, \"fpr\": 0.5927593322078409, \"tpr\": 0.9890404112523205, \"n\": 5331}, {\"threshold\": 0.019999999552965164, \"p\": 28012, \"fpr\": 0.5882573625961358, \"tpr\": 0.9888262173354276, \"n\": 5331}, {\"threshold\": 0.020999999716877937, \"p\": 28012, \"fpr\": 0.5845057212530482, \"tpr\": 0.9887191203769813, \"n\": 5331}, {\"threshold\": 0.02199999988079071, \"p\": 28012, \"fpr\": 0.5816919902457325, \"tpr\": 0.9884692274739397, \"n\": 5331}, {\"threshold\": 0.023000000044703484, \"p\": 28012, \"fpr\": 0.5796285875070343, \"tpr\": 0.9883621305154934, \"n\": 5331}, {\"threshold\": 0.024000000208616257, \"p\": 28012, \"fpr\": 0.5753141999624836, \"tpr\": 0.9881836355847494, \"n\": 5331}, {\"threshold\": 0.02500000037252903, \"p\": 28012, \"fpr\": 0.5721253048208591, \"tpr\": 0.9880051406540055, \"n\": 5331}, {\"threshold\": 0.026000000536441803, \"p\": 28012, \"fpr\": 0.5685612455449259, \"tpr\": 0.987898043695559, \"n\": 5331}, {\"threshold\": 0.027000000700354576, \"p\": 28012, \"fpr\": 0.5653723504033015, \"tpr\": 0.9876481507925174, \"n\": 5331}, {\"threshold\": 0.02800000086426735, \"p\": 28012, \"fpr\": 0.5625586193959857, \"tpr\": 0.9874696558617735, \"n\": 5331}, {\"threshold\": 0.028999999165534973, \"p\": 28012, \"fpr\": 0.5589945601200526, \"tpr\": 0.9873268599171784, \"n\": 5331}, {\"threshold\": 0.029999999329447746, \"p\": 28012, \"fpr\": 0.5550553367098106, \"tpr\": 0.9870769670141368, \"n\": 5331}, {\"threshold\": 0.03099999949336052, \"p\": 28012, \"fpr\": 0.5535546801725755, \"tpr\": 0.9869698700556904, \"n\": 5331}, {\"threshold\": 0.03200000151991844, \"p\": 28012, \"fpr\": 0.5498030388294879, \"tpr\": 0.9867199771526489, \"n\": 5331}, {\"threshold\": 0.032999999821186066, \"p\": 28012, \"fpr\": 0.5456762333520916, \"tpr\": 0.9865771812080537, \"n\": 5331}, {\"threshold\": 0.03400000184774399, \"p\": 28012, \"fpr\": 0.5438004126805477, \"tpr\": 0.9864343852634585, \"n\": 5331}, {\"threshold\": 0.03500000014901161, \"p\": 28012, \"fpr\": 0.5419245920090039, \"tpr\": 0.9863986862773098, \"n\": 5331}, {\"threshold\": 0.035999998450279236, \"p\": 28012, \"fpr\": 0.5398611892703058, \"tpr\": 0.9862915893188633, \"n\": 5331}, {\"threshold\": 0.03700000047683716, \"p\": 28012, \"fpr\": 0.5374226223972988, \"tpr\": 0.9862201913465658, \"n\": 5331}, {\"threshold\": 0.03799999877810478, \"p\": 28012, \"fpr\": 0.5342337272556743, \"tpr\": 0.9858632014850778, \"n\": 5331}, {\"threshold\": 0.039000000804662704, \"p\": 28012, \"fpr\": 0.533108234852748, \"tpr\": 0.9856490075681851, \"n\": 5331}, {\"threshold\": 0.03999999910593033, \"p\": 28012, \"fpr\": 0.5317951603826674, \"tpr\": 0.9855419106097387, \"n\": 5331}, {\"threshold\": 0.04100000113248825, \"p\": 28012, \"fpr\": 0.5295441755768149, \"tpr\": 0.9854705126374411, \"n\": 5331}, {\"threshold\": 0.041999999433755875, \"p\": 28012, \"fpr\": 0.5265428625023447, \"tpr\": 0.9852920177066972, \"n\": 5331}, {\"threshold\": 0.0430000014603138, \"p\": 28012, \"fpr\": 0.5254173700994185, \"tpr\": 0.9850778237898044, \"n\": 5331}, {\"threshold\": 0.04399999976158142, \"p\": 28012, \"fpr\": 0.5229788032264115, \"tpr\": 0.984970726831358, \"n\": 5331}, {\"threshold\": 0.04500000178813934, \"p\": 28012, \"fpr\": 0.5218533108234853, \"tpr\": 0.9848279308867628, \"n\": 5331}, {\"threshold\": 0.04600000008940697, \"p\": 28012, \"fpr\": 0.5190395798161695, \"tpr\": 0.984792231900614, \"n\": 5331}, {\"threshold\": 0.04699999839067459, \"p\": 28012, \"fpr\": 0.5171637591446258, \"tpr\": 0.9845780379837212, \"n\": 5331}, {\"threshold\": 0.04800000041723251, \"p\": 28012, \"fpr\": 0.5149127743387732, \"tpr\": 0.9843638440668285, \"n\": 5331}, {\"threshold\": 0.04899999871850014, \"p\": 28012, \"fpr\": 0.5137872819358469, \"tpr\": 0.9842210481222333, \"n\": 5331}, {\"threshold\": 0.05000000074505806, \"p\": 28012, \"fpr\": 0.5119114612643031, \"tpr\": 0.9840782521776381, \"n\": 5331}, {\"threshold\": 0.050999999046325684, \"p\": 28012, \"fpr\": 0.5087225661226786, \"tpr\": 0.9838283592745966, \"n\": 5331}, {\"threshold\": 0.052000001072883606, \"p\": 28012, \"fpr\": 0.5060964171825173, \"tpr\": 0.9836855633300015, \"n\": 5331}, {\"threshold\": 0.05299999937415123, \"p\": 28012, \"fpr\": 0.5044081785781279, \"tpr\": 0.9836498643438526, \"n\": 5331}, {\"threshold\": 0.05400000140070915, \"p\": 28012, \"fpr\": 0.5023447758394297, \"tpr\": 0.9834713694131086, \"n\": 5331}, {\"threshold\": 0.054999999701976776, \"p\": 28012, \"fpr\": 0.5012192834365035, \"tpr\": 0.983399971440811, \"n\": 5331}, {\"threshold\": 0.0560000017285347, \"p\": 28012, \"fpr\": 0.4989682986306509, \"tpr\": 0.9833285734685135, \"n\": 5331}, {\"threshold\": 0.05700000002980232, \"p\": 28012, \"fpr\": 0.49690489589195275, \"tpr\": 0.9831143795516207, \"n\": 5331}, {\"threshold\": 0.057999998331069946, \"p\": 28012, \"fpr\": 0.4946539110861002, \"tpr\": 0.9829715836070255, \"n\": 5331}, {\"threshold\": 0.05900000035762787, \"p\": 28012, \"fpr\": 0.4935284186831739, \"tpr\": 0.9828287876624304, \"n\": 5331}, {\"threshold\": 0.05999999865889549, \"p\": 28012, \"fpr\": 0.49108985181016696, \"tpr\": 0.9827930886762816, \"n\": 5331}, {\"threshold\": 0.061000000685453415, \"p\": 28012, \"fpr\": 0.48902644907146875, \"tpr\": 0.9826502927316865, \"n\": 5331}, {\"threshold\": 0.06199999898672104, \"p\": 28012, \"fpr\": 0.48715062839992496, \"tpr\": 0.9826145937455376, \"n\": 5331}, {\"threshold\": 0.06300000101327896, \"p\": 28012, \"fpr\": 0.4858375539298443, \"tpr\": 0.98254319577324, \"n\": 5331}, {\"threshold\": 0.06400000303983688, \"p\": 28012, \"fpr\": 0.48471206152691804, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06499999761581421, \"p\": 28012, \"fpr\": 0.48339898705683737, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06599999964237213, \"p\": 28012, \"fpr\": 0.48283624085537424, \"tpr\": 0.9824003998286449, \"n\": 5331}, {\"threshold\": 0.06700000166893005, \"p\": 28012, \"fpr\": 0.4820859125867567, \"tpr\": 0.9823290018563473, \"n\": 5331}, {\"threshold\": 0.06800000369548798, \"p\": 28012, \"fpr\": 0.48096042018383045, \"tpr\": 0.9821505069256034, \"n\": 5331}, {\"threshold\": 0.0689999982714653, \"p\": 28012, \"fpr\": 0.47983492778090414, \"tpr\": 0.9821148079394545, \"n\": 5331}, {\"threshold\": 0.07000000029802322, \"p\": 28012, \"fpr\": 0.4790845995122866, \"tpr\": 0.9820434099671569, \"n\": 5331}, {\"threshold\": 0.07100000232458115, \"p\": 28012, \"fpr\": 0.477771525042206, \"tpr\": 0.9820077109810081, \"n\": 5331}, {\"threshold\": 0.07199999690055847, \"p\": 28012, \"fpr\": 0.4764584505721253, \"tpr\": 0.9820077109810081, \"n\": 5331}, {\"threshold\": 0.0729999989271164, \"p\": 28012, \"fpr\": 0.47458262990058153, \"tpr\": 0.9819720119948594, \"n\": 5331}, {\"threshold\": 0.07400000095367432, \"p\": 28012, \"fpr\": 0.47308197336334645, \"tpr\": 0.9818649150364129, \"n\": 5331}, {\"threshold\": 0.07500000298023224, \"p\": 28012, \"fpr\": 0.47120615269180266, \"tpr\": 0.9817578180779666, \"n\": 5331}, {\"threshold\": 0.07599999755620956, \"p\": 28012, \"fpr\": 0.47026824235603076, \"tpr\": 0.9815793231472226, \"n\": 5331}, {\"threshold\": 0.07699999958276749, \"p\": 28012, \"fpr\": 0.4689551678859501, \"tpr\": 0.981507925174925, \"n\": 5331}, {\"threshold\": 0.07800000160932541, \"p\": 28012, \"fpr\": 0.4680172575501782, \"tpr\": 0.9812223332857347, \"n\": 5331}, {\"threshold\": 0.07900000363588333, \"p\": 28012, \"fpr\": 0.4670793472144063, \"tpr\": 0.9812223332857347, \"n\": 5331}, {\"threshold\": 0.07999999821186066, \"p\": 28012, \"fpr\": 0.4661414368786344, \"tpr\": 0.9811152363272883, \"n\": 5331}, {\"threshold\": 0.08100000023841858, \"p\": 28012, \"fpr\": 0.46539110861001687, \"tpr\": 0.9810795373411395, \"n\": 5331}, {\"threshold\": 0.0820000022649765, \"p\": 28012, \"fpr\": 0.46389045207278184, \"tpr\": 0.9810438383549908, \"n\": 5331}, {\"threshold\": 0.08299999684095383, \"p\": 28012, \"fpr\": 0.4623897955355468, \"tpr\": 0.980829644438098, \"n\": 5331}, {\"threshold\": 0.08399999886751175, \"p\": 28012, \"fpr\": 0.46107672106546616, \"tpr\": 0.9807582464658003, \"n\": 5331}, {\"threshold\": 0.08500000089406967, \"p\": 28012, \"fpr\": 0.45901331832676795, \"tpr\": 0.9807582464658003, \"n\": 5331}, {\"threshold\": 0.0860000029206276, \"p\": 28012, \"fpr\": 0.45807540799099605, \"tpr\": 0.9807225474796516, \"n\": 5331}, {\"threshold\": 0.08699999749660492, \"p\": 28012, \"fpr\": 0.45657475145376103, \"tpr\": 0.980651149507354, \"n\": 5331}, {\"threshold\": 0.08799999952316284, \"p\": 28012, \"fpr\": 0.455074094916526, \"tpr\": 0.9804369555904612, \"n\": 5331}, {\"threshold\": 0.08900000154972076, \"p\": 28012, \"fpr\": 0.4545113487150628, \"tpr\": 0.9802584606597172, \"n\": 5331}, {\"threshold\": 0.09000000357627869, \"p\": 28012, \"fpr\": 0.4535734383792909, \"tpr\": 0.9801870626874197, \"n\": 5331}, {\"threshold\": 0.09099999815225601, \"p\": 28012, \"fpr\": 0.45263552804351903, \"tpr\": 0.9801513637012709, \"n\": 5331}, {\"threshold\": 0.09200000017881393, \"p\": 28012, \"fpr\": 0.4515100356405928, \"tpr\": 0.9801513637012709, \"n\": 5331}, {\"threshold\": 0.09300000220537186, \"p\": 28012, \"fpr\": 0.4501969611705121, \"tpr\": 0.9799728687705269, \"n\": 5331}, {\"threshold\": 0.09399999678134918, \"p\": 28012, \"fpr\": 0.44944663290189457, \"tpr\": 0.9799014707982293, \"n\": 5331}, {\"threshold\": 0.0949999988079071, \"p\": 28012, \"fpr\": 0.4485087225661227, \"tpr\": 0.979794373839783, \"n\": 5331}, {\"threshold\": 0.09600000083446503, \"p\": 28012, \"fpr\": 0.4475708122303508, \"tpr\": 0.9796872768813366, \"n\": 5331}, {\"threshold\": 0.09700000286102295, \"p\": 28012, \"fpr\": 0.44682048396173324, \"tpr\": 0.9796515778951878, \"n\": 5331}, {\"threshold\": 0.09799999743700027, \"p\": 28012, \"fpr\": 0.44607015569311576, \"tpr\": 0.979437383978295, \"n\": 5331}, {\"threshold\": 0.0989999994635582, \"p\": 28012, \"fpr\": 0.44513224535734386, \"tpr\": 0.9792231900614022, \"n\": 5331}, {\"threshold\": 0.10000000149011612, \"p\": 28012, \"fpr\": 0.44419433502157196, \"tpr\": 0.9791517920891046, \"n\": 5331}, {\"threshold\": 0.10100000351667404, \"p\": 28012, \"fpr\": 0.4423185143500281, \"tpr\": 0.979080394116807, \"n\": 5331}, {\"threshold\": 0.10199999809265137, \"p\": 28012, \"fpr\": 0.4408178578127931, \"tpr\": 0.9789732971583607, \"n\": 5331}, {\"threshold\": 0.10300000011920929, \"p\": 28012, \"fpr\": 0.44006752954417555, \"tpr\": 0.9789375981722119, \"n\": 5331}, {\"threshold\": 0.10400000214576721, \"p\": 28012, \"fpr\": 0.4389420371412493, \"tpr\": 0.978759103241468, \"n\": 5331}, {\"threshold\": 0.10499999672174454, \"p\": 28012, \"fpr\": 0.4385668730069405, \"tpr\": 0.978580608310724, \"n\": 5331}, {\"threshold\": 0.10599999874830246, \"p\": 28012, \"fpr\": 0.4368786344025511, \"tpr\": 0.9784378123661288, \"n\": 5331}, {\"threshold\": 0.10700000077486038, \"p\": 28012, \"fpr\": 0.43575314199962484, \"tpr\": 0.97840211337998, \"n\": 5331}, {\"threshold\": 0.1080000028014183, \"p\": 28012, \"fpr\": 0.4351903957981617, \"tpr\": 0.9783307154076825, \"n\": 5331}, {\"threshold\": 0.10899999737739563, \"p\": 28012, \"fpr\": 0.4340649033952354, \"tpr\": 0.9781522204769385, \"n\": 5331}, {\"threshold\": 0.10999999940395355, \"p\": 28012, \"fpr\": 0.4333145751266179, \"tpr\": 0.978045123518492, \"n\": 5331}, {\"threshold\": 0.11100000143051147, \"p\": 28012, \"fpr\": 0.43181391858938284, \"tpr\": 0.978045123518492, \"n\": 5331}, {\"threshold\": 0.1120000034570694, \"p\": 28012, \"fpr\": 0.4312511723879197, \"tpr\": 0.977902327573897, \"n\": 5331}, {\"threshold\": 0.11299999803304672, \"p\": 28012, \"fpr\": 0.4305008441193022, \"tpr\": 0.9777595316293017, \"n\": 5331}, {\"threshold\": 0.11400000005960464, \"p\": 28012, \"fpr\": 0.4297505158506847, \"tpr\": 0.9777238326431529, \"n\": 5331}, {\"threshold\": 0.11500000208616257, \"p\": 28012, \"fpr\": 0.4282498593134496, \"tpr\": 0.9776167356847065, \"n\": 5331}, {\"threshold\": 0.11599999666213989, \"p\": 28012, \"fpr\": 0.4273119489776777, \"tpr\": 0.9775810366985578, \"n\": 5331}, {\"threshold\": 0.11699999868869781, \"p\": 28012, \"fpr\": 0.4267492027762146, \"tpr\": 0.9774739397401114, \"n\": 5331}, {\"threshold\": 0.11800000071525574, \"p\": 28012, \"fpr\": 0.42656162070906023, \"tpr\": 0.9774025417678138, \"n\": 5331}, {\"threshold\": 0.11900000274181366, \"p\": 28012, \"fpr\": 0.4258112924404427, \"tpr\": 0.977366842781665, \"n\": 5331}, {\"threshold\": 0.11999999731779099, \"p\": 28012, \"fpr\": 0.42506096417182515, \"tpr\": 0.9772954448093674, \"n\": 5331}, {\"threshold\": 0.12099999934434891, \"p\": 28012, \"fpr\": 0.424498217970362, \"tpr\": 0.9770455519063259, \"n\": 5331}, {\"threshold\": 0.12200000137090683, \"p\": 28012, \"fpr\": 0.424498217970362, \"tpr\": 0.9769384549478795, \"n\": 5331}, {\"threshold\": 0.12300000339746475, \"p\": 28012, \"fpr\": 0.42431063590320767, \"tpr\": 0.9768670569755818, \"n\": 5331}, {\"threshold\": 0.12399999797344208, \"p\": 28012, \"fpr\": 0.42318514350028136, \"tpr\": 0.9767599600171355, \"n\": 5331}, {\"threshold\": 0.125, \"p\": 28012, \"fpr\": 0.42262239729881823, \"tpr\": 0.9767242610309868, \"n\": 5331}, {\"threshold\": 0.12600000202655792, \"p\": 28012, \"fpr\": 0.42168448696304633, \"tpr\": 0.9767242610309868, \"n\": 5331}, {\"threshold\": 0.12700000405311584, \"p\": 28012, \"fpr\": 0.4209341586944288, \"tpr\": 0.9765457661002428, \"n\": 5331}, {\"threshold\": 0.12800000607967377, \"p\": 28012, \"fpr\": 0.4201838304258113, \"tpr\": 0.9765100671140939, \"n\": 5331}, {\"threshold\": 0.1289999932050705, \"p\": 28012, \"fpr\": 0.41962108422434813, \"tpr\": 0.97633157218335, \"n\": 5331}, {\"threshold\": 0.12999999523162842, \"p\": 28012, \"fpr\": 0.4184955918214219, \"tpr\": 0.9761173782664573, \"n\": 5331}, {\"threshold\": 0.13099999725818634, \"p\": 28012, \"fpr\": 0.41793284561995875, \"tpr\": 0.9760459802941597, \"n\": 5331}, {\"threshold\": 0.13199999928474426, \"p\": 28012, \"fpr\": 0.4166197711498781, \"tpr\": 0.9759031843495645, \"n\": 5331}, {\"threshold\": 0.13300000131130219, \"p\": 28012, \"fpr\": 0.41605702494841496, \"tpr\": 0.9758317863772669, \"n\": 5331}, {\"threshold\": 0.1340000033378601, \"p\": 28012, \"fpr\": 0.41493153254548865, \"tpr\": 0.9757246894188205, \"n\": 5331}, {\"threshold\": 0.13500000536441803, \"p\": 28012, \"fpr\": 0.4132432939410992, \"tpr\": 0.9756175924603742, \"n\": 5331}, {\"threshold\": 0.13600000739097595, \"p\": 28012, \"fpr\": 0.4124929656724817, \"tpr\": 0.9756175924603742, \"n\": 5331}, {\"threshold\": 0.13699999451637268, \"p\": 28012, \"fpr\": 0.4113674732695554, \"tpr\": 0.9753320005711837, \"n\": 5331}, {\"threshold\": 0.1379999965429306, \"p\": 28012, \"fpr\": 0.4108047270680923, \"tpr\": 0.975296301585035, \"n\": 5331}, {\"threshold\": 0.13899999856948853, \"p\": 28012, \"fpr\": 0.4098668167323204, \"tpr\": 0.9752249036127374, \"n\": 5331}, {\"threshold\": 0.14000000059604645, \"p\": 28012, \"fpr\": 0.40967923466516604, \"tpr\": 0.9751892046265886, \"n\": 5331}, {\"threshold\": 0.14100000262260437, \"p\": 28012, \"fpr\": 0.4094916525980116, \"tpr\": 0.9751535056404398, \"n\": 5331}, {\"threshold\": 0.1420000046491623, \"p\": 28012, \"fpr\": 0.4087413243293941, \"tpr\": 0.975117806654291, \"n\": 5331}, {\"threshold\": 0.14300000667572021, \"p\": 28012, \"fpr\": 0.4078034139936222, \"tpr\": 0.9750821076681422, \"n\": 5331}, {\"threshold\": 0.14399999380111694, \"p\": 28012, \"fpr\": 0.4074282498593135, \"tpr\": 0.9750821076681422, \"n\": 5331}, {\"threshold\": 0.14499999582767487, \"p\": 28012, \"fpr\": 0.40574001125492404, \"tpr\": 0.9750464086819934, \"n\": 5331}, {\"threshold\": 0.1459999978542328, \"p\": 28012, \"fpr\": 0.4049896829863065, \"tpr\": 0.9749750107096958, \"n\": 5331}, {\"threshold\": 0.1469999998807907, \"p\": 28012, \"fpr\": 0.40386419058338024, \"tpr\": 0.9749036127373982, \"n\": 5331}, {\"threshold\": 0.14800000190734863, \"p\": 28012, \"fpr\": 0.40367660851622583, \"tpr\": 0.9747965157789519, \"n\": 5331}, {\"threshold\": 0.14900000393390656, \"p\": 28012, \"fpr\": 0.4031138623147627, \"tpr\": 0.9747608167928031, \"n\": 5331}, {\"threshold\": 0.15000000596046448, \"p\": 28012, \"fpr\": 0.4025511161132996, \"tpr\": 0.9747251178066543, \"n\": 5331}, {\"threshold\": 0.1509999930858612, \"p\": 28012, \"fpr\": 0.40142562371037327, \"tpr\": 0.9746894188205055, \"n\": 5331}, {\"threshold\": 0.15199999511241913, \"p\": 28012, \"fpr\": 0.40142562371037327, \"tpr\": 0.9746180208482079, \"n\": 5331}, {\"threshold\": 0.15299999713897705, \"p\": 28012, \"fpr\": 0.40086287750891014, \"tpr\": 0.974439525917464, \"n\": 5331}, {\"threshold\": 0.15399999916553497, \"p\": 28012, \"fpr\": 0.3997373851059839, \"tpr\": 0.9743324289590176, \"n\": 5331}, {\"threshold\": 0.1550000011920929, \"p\": 28012, \"fpr\": 0.3993622209716751, \"tpr\": 0.9741896330144224, \"n\": 5331}, {\"threshold\": 0.15600000321865082, \"p\": 28012, \"fpr\": 0.398799474770212, \"tpr\": 0.9741182350421248, \"n\": 5331}, {\"threshold\": 0.15700000524520874, \"p\": 28012, \"fpr\": 0.3986118927030576, \"tpr\": 0.9740111380836785, \"n\": 5331}, {\"threshold\": 0.15800000727176666, \"p\": 28012, \"fpr\": 0.39786156443444004, \"tpr\": 0.9739397401113808, \"n\": 5331}, {\"threshold\": 0.1589999943971634, \"p\": 28012, \"fpr\": 0.3976739823672857, \"tpr\": 0.973904041125232, \"n\": 5331}, {\"threshold\": 0.1599999964237213, \"p\": 28012, \"fpr\": 0.39711123616582256, \"tpr\": 0.973904041125232, \"n\": 5331}, {\"threshold\": 0.16099999845027924, \"p\": 28012, \"fpr\": 0.396360907897205, \"tpr\": 0.9738326431529345, \"n\": 5331}, {\"threshold\": 0.16200000047683716, \"p\": 28012, \"fpr\": 0.3957981616957419, \"tpr\": 0.9737612451806369, \"n\": 5331}, {\"threshold\": 0.16300000250339508, \"p\": 28012, \"fpr\": 0.39523541549427876, \"tpr\": 0.973725546194488, \"n\": 5331}, {\"threshold\": 0.164000004529953, \"p\": 28012, \"fpr\": 0.39429750515850687, \"tpr\": 0.973725546194488, \"n\": 5331}, {\"threshold\": 0.16500000655651093, \"p\": 28012, \"fpr\": 0.3935471768898893, \"tpr\": 0.9735827502498929, \"n\": 5331}, {\"threshold\": 0.16599999368190765, \"p\": 28012, \"fpr\": 0.39317201275558056, \"tpr\": 0.9735113522775953, \"n\": 5331}, {\"threshold\": 0.16699999570846558, \"p\": 28012, \"fpr\": 0.3927968486212718, \"tpr\": 0.973404255319149, \"n\": 5331}, {\"threshold\": 0.1679999977350235, \"p\": 28012, \"fpr\": 0.39260926655411743, \"tpr\": 0.9732971583607025, \"n\": 5331}, {\"threshold\": 0.16899999976158142, \"p\": 28012, \"fpr\": 0.3918589382854999, \"tpr\": 0.9731543624161074, \"n\": 5331}, {\"threshold\": 0.17000000178813934, \"p\": 28012, \"fpr\": 0.3905458638154192, \"tpr\": 0.973047265457661, \"n\": 5331}, {\"threshold\": 0.17100000381469727, \"p\": 28012, \"fpr\": 0.38942037141249297, \"tpr\": 0.973047265457661, \"n\": 5331}, {\"threshold\": 0.1720000058412552, \"p\": 28012, \"fpr\": 0.3890452072781842, \"tpr\": 0.9729401684992146, \"n\": 5331}, {\"threshold\": 0.17299999296665192, \"p\": 28012, \"fpr\": 0.3881072969424123, \"tpr\": 0.9729401684992146, \"n\": 5331}, {\"threshold\": 0.17399999499320984, \"p\": 28012, \"fpr\": 0.38791971487525795, \"tpr\": 0.972868770526917, \"n\": 5331}, {\"threshold\": 0.17499999701976776, \"p\": 28012, \"fpr\": 0.38773213280810354, \"tpr\": 0.9727259745823219, \"n\": 5331}, {\"threshold\": 0.17599999904632568, \"p\": 28012, \"fpr\": 0.3871693866066404, \"tpr\": 0.9726545766100243, \"n\": 5331}, {\"threshold\": 0.1770000010728836, \"p\": 28012, \"fpr\": 0.3856687300694054, \"tpr\": 0.9725831786377267, \"n\": 5331}, {\"threshold\": 0.17800000309944153, \"p\": 28012, \"fpr\": 0.38491840180078785, \"tpr\": 0.9724760816792803, \"n\": 5331}, {\"threshold\": 0.17900000512599945, \"p\": 28012, \"fpr\": 0.3845432376664791, \"tpr\": 0.9723689847208339, \"n\": 5331}, {\"threshold\": 0.18000000715255737, \"p\": 28012, \"fpr\": 0.3836053273307072, \"tpr\": 0.9722618877623875, \"n\": 5331}, {\"threshold\": 0.1809999942779541, \"p\": 28012, \"fpr\": 0.38304258112924405, \"tpr\": 0.9721904897900899, \"n\": 5331}, {\"threshold\": 0.18199999630451202, \"p\": 28012, \"fpr\": 0.3822922528606265, \"tpr\": 0.9719762958731972, \"n\": 5331}, {\"threshold\": 0.18299999833106995, \"p\": 28012, \"fpr\": 0.38154192459200903, \"tpr\": 0.971833499928602, \"n\": 5331}, {\"threshold\": 0.18400000035762787, \"p\": 28012, \"fpr\": 0.38116676045770026, \"tpr\": 0.9716907039840068, \"n\": 5331}, {\"threshold\": 0.1850000023841858, \"p\": 28012, \"fpr\": 0.3806040142562371, \"tpr\": 0.9716550049978581, \"n\": 5331}, {\"threshold\": 0.1860000044107437, \"p\": 28012, \"fpr\": 0.3796661039204652, \"tpr\": 0.9716193060117093, \"n\": 5331}, {\"threshold\": 0.18700000643730164, \"p\": 28012, \"fpr\": 0.3787281935846933, \"tpr\": 0.9714408110809652, \"n\": 5331}, {\"threshold\": 0.18799999356269836, \"p\": 28012, \"fpr\": 0.3787281935846933, \"tpr\": 0.9714051120948165, \"n\": 5331}, {\"threshold\": 0.1889999955892563, \"p\": 28012, \"fpr\": 0.37835302945038457, \"tpr\": 0.9713337141225189, \"n\": 5331}, {\"threshold\": 0.1899999976158142, \"p\": 28012, \"fpr\": 0.3779778653160758, \"tpr\": 0.9711909181779238, \"n\": 5331}, {\"threshold\": 0.19099999964237213, \"p\": 28012, \"fpr\": 0.3774151191146126, \"tpr\": 0.9711195202056262, \"n\": 5331}, {\"threshold\": 0.19200000166893005, \"p\": 28012, \"fpr\": 0.37722753704745826, \"tpr\": 0.9710124232471797, \"n\": 5331}, {\"threshold\": 0.19300000369548798, \"p\": 28012, \"fpr\": 0.37666479084599513, \"tpr\": 0.9709410252748822, \"n\": 5331}, {\"threshold\": 0.1940000057220459, \"p\": 28012, \"fpr\": 0.37628962671168636, \"tpr\": 0.9708696273025846, \"n\": 5331}, {\"threshold\": 0.19499999284744263, \"p\": 28012, \"fpr\": 0.3759144625773776, \"tpr\": 0.970798229330287, \"n\": 5331}, {\"threshold\": 0.19599999487400055, \"p\": 28012, \"fpr\": 0.3755392984430688, \"tpr\": 0.9707268313579894, \"n\": 5331}, {\"threshold\": 0.19699999690055847, \"p\": 28012, \"fpr\": 0.37535171637591447, \"tpr\": 0.9706911323718407, \"n\": 5331}, {\"threshold\": 0.1979999989271164, \"p\": 28012, \"fpr\": 0.37516413430876006, \"tpr\": 0.9706554333856918, \"n\": 5331}, {\"threshold\": 0.19900000095367432, \"p\": 28012, \"fpr\": 0.37478897017445134, \"tpr\": 0.9705483364272455, \"n\": 5331}, {\"threshold\": 0.20000000298023224, \"p\": 28012, \"fpr\": 0.3740386419058338, \"tpr\": 0.9705126374410967, \"n\": 5331}, {\"threshold\": 0.20100000500679016, \"p\": 28012, \"fpr\": 0.3734758957043707, \"tpr\": 0.9704769384549479, \"n\": 5331}, {\"threshold\": 0.20200000703334808, \"p\": 28012, \"fpr\": 0.3731007315700619, \"tpr\": 0.9704055404826503, \"n\": 5331}, {\"threshold\": 0.2029999941587448, \"p\": 28012, \"fpr\": 0.3731007315700619, \"tpr\": 0.9703698414965015, \"n\": 5331}, {\"threshold\": 0.20399999618530273, \"p\": 28012, \"fpr\": 0.3725379853685988, \"tpr\": 0.9701913465657576, \"n\": 5331}, {\"threshold\": 0.20499999821186066, \"p\": 28012, \"fpr\": 0.37141249296567247, \"tpr\": 0.9700485506211624, \"n\": 5331}, {\"threshold\": 0.20600000023841858, \"p\": 28012, \"fpr\": 0.3704745826299006, \"tpr\": 0.9699771526488647, \"n\": 5331}, {\"threshold\": 0.2070000022649765, \"p\": 28012, \"fpr\": 0.3700994184955918, \"tpr\": 0.9699771526488647, \"n\": 5331}, {\"threshold\": 0.20800000429153442, \"p\": 28012, \"fpr\": 0.3697242543612831, \"tpr\": 0.9698700556904184, \"n\": 5331}, {\"threshold\": 0.20900000631809235, \"p\": 28012, \"fpr\": 0.36878634402551114, \"tpr\": 0.9697986577181208, \"n\": 5331}, {\"threshold\": 0.20999999344348907, \"p\": 28012, \"fpr\": 0.3674732695554305, \"tpr\": 0.9697272597458232, \"n\": 5331}, {\"threshold\": 0.210999995470047, \"p\": 28012, \"fpr\": 0.36709810542112176, \"tpr\": 0.9696201627873768, \"n\": 5331}, {\"threshold\": 0.21199999749660492, \"p\": 28012, \"fpr\": 0.36691052335396734, \"tpr\": 0.969405968870484, \"n\": 5331}, {\"threshold\": 0.21299999952316284, \"p\": 28012, \"fpr\": 0.3663477771525042, \"tpr\": 0.9693702698843353, \"n\": 5331}, {\"threshold\": 0.21400000154972076, \"p\": 28012, \"fpr\": 0.36597261301819545, \"tpr\": 0.9692631729258889, \"n\": 5331}, {\"threshold\": 0.2150000035762787, \"p\": 28012, \"fpr\": 0.3654098668167323, \"tpr\": 0.9692274739397401, \"n\": 5331}, {\"threshold\": 0.2160000056028366, \"p\": 28012, \"fpr\": 0.3644719564809604, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21699999272823334, \"p\": 28012, \"fpr\": 0.36409679234665165, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21799999475479126, \"p\": 28012, \"fpr\": 0.3629712999437254, \"tpr\": 0.9691560759674426, \"n\": 5331}, {\"threshold\": 0.21899999678134918, \"p\": 28012, \"fpr\": 0.36222097167510786, \"tpr\": 0.969084677995145, \"n\": 5331}, {\"threshold\": 0.2199999988079071, \"p\": 28012, \"fpr\": 0.36128306133933596, \"tpr\": 0.9690489790089961, \"n\": 5331}, {\"threshold\": 0.22100000083446503, \"p\": 28012, \"fpr\": 0.36072031513787284, \"tpr\": 0.9689418820505498, \"n\": 5331}, {\"threshold\": 0.22200000286102295, \"p\": 28012, \"fpr\": 0.3605327330707184, \"tpr\": 0.9689418820505498, \"n\": 5331}, {\"threshold\": 0.22300000488758087, \"p\": 28012, \"fpr\": 0.36015756893640966, \"tpr\": 0.968727688133657, \"n\": 5331}, {\"threshold\": 0.2240000069141388, \"p\": 28012, \"fpr\": 0.35921965860063776, \"tpr\": 0.9686562901613595, \"n\": 5331}, {\"threshold\": 0.22499999403953552, \"p\": 28012, \"fpr\": 0.3584693303320203, \"tpr\": 0.9686205911752106, \"n\": 5331}, {\"threshold\": 0.22599999606609344, \"p\": 28012, \"fpr\": 0.3579065841305571, \"tpr\": 0.9685134942167642, \"n\": 5331}, {\"threshold\": 0.22699999809265137, \"p\": 28012, \"fpr\": 0.35771900206340274, \"tpr\": 0.9682993002998714, \"n\": 5331}, {\"threshold\": 0.2280000001192093, \"p\": 28012, \"fpr\": 0.3571562558619396, \"tpr\": 0.9681922033414251, \"n\": 5331}, {\"threshold\": 0.2290000021457672, \"p\": 28012, \"fpr\": 0.35640592759332207, \"tpr\": 0.9681565043552763, \"n\": 5331}, {\"threshold\": 0.23000000417232513, \"p\": 28012, \"fpr\": 0.3560307634590133, \"tpr\": 0.9681208053691275, \"n\": 5331}, {\"threshold\": 0.23100000619888306, \"p\": 28012, \"fpr\": 0.3552804351903958, \"tpr\": 0.9680137084106811, \"n\": 5331}, {\"threshold\": 0.23199999332427979, \"p\": 28012, \"fpr\": 0.3543425248546239, \"tpr\": 0.9679423104383835, \"n\": 5331}, {\"threshold\": 0.2329999953508377, \"p\": 28012, \"fpr\": 0.35396736072031515, \"tpr\": 0.9678709124660859, \"n\": 5331}, {\"threshold\": 0.23399999737739563, \"p\": 28012, \"fpr\": 0.3535921965860064, \"tpr\": 0.9678352134799372, \"n\": 5331}, {\"threshold\": 0.23499999940395355, \"p\": 28012, \"fpr\": 0.353404614518852, \"tpr\": 0.9678352134799372, \"n\": 5331}, {\"threshold\": 0.23600000143051147, \"p\": 28012, \"fpr\": 0.35246670418308007, \"tpr\": 0.9677995144937884, \"n\": 5331}, {\"threshold\": 0.2370000034570694, \"p\": 28012, \"fpr\": 0.35209154004877136, \"tpr\": 0.9677638155076396, \"n\": 5331}, {\"threshold\": 0.23800000548362732, \"p\": 28012, \"fpr\": 0.35115362971299946, \"tpr\": 0.9677281165214908, \"n\": 5331}, {\"threshold\": 0.23899999260902405, \"p\": 28012, \"fpr\": 0.3505908835115363, \"tpr\": 0.967692417535342, \"n\": 5331}, {\"threshold\": 0.23999999463558197, \"p\": 28012, \"fpr\": 0.3504033014443819, \"tpr\": 0.9674068256461517, \"n\": 5331}, {\"threshold\": 0.2409999966621399, \"p\": 28012, \"fpr\": 0.3496529731757644, \"tpr\": 0.9672640297015564, \"n\": 5331}, {\"threshold\": 0.24199999868869781, \"p\": 28012, \"fpr\": 0.34946539110861, \"tpr\": 0.9671926317292588, \"n\": 5331}, {\"threshold\": 0.24300000071525574, \"p\": 28012, \"fpr\": 0.34909022697430125, \"tpr\": 0.9670855347708125, \"n\": 5331}, {\"threshold\": 0.24400000274181366, \"p\": 28012, \"fpr\": 0.3487150628399925, \"tpr\": 0.9670141367985149, \"n\": 5331}, {\"threshold\": 0.24500000476837158, \"p\": 28012, \"fpr\": 0.3477771525042206, \"tpr\": 0.9669070398400685, \"n\": 5331}, {\"threshold\": 0.2460000067949295, \"p\": 28012, \"fpr\": 0.3470268242356031, \"tpr\": 0.9668356418677709, \"n\": 5331}, {\"threshold\": 0.24699999392032623, \"p\": 28012, \"fpr\": 0.3470268242356031, \"tpr\": 0.9667642438954733, \"n\": 5331}, {\"threshold\": 0.24799999594688416, \"p\": 28012, \"fpr\": 0.34665166010129433, \"tpr\": 0.9667285449093246, \"n\": 5331}, {\"threshold\": 0.24899999797344208, \"p\": 28012, \"fpr\": 0.34627649596698556, \"tpr\": 0.966657146937027, \"n\": 5331}, {\"threshold\": 0.25, \"p\": 28012, \"fpr\": 0.3459013318326768, \"tpr\": 0.9666214479508782, \"n\": 5331}, {\"threshold\": 0.25099998712539673, \"p\": 28012, \"fpr\": 0.345526167698368, \"tpr\": 0.9665857489647294, \"n\": 5331}, {\"threshold\": 0.25200000405311584, \"p\": 28012, \"fpr\": 0.34533858563121367, \"tpr\": 0.966478652006283, \"n\": 5331}, {\"threshold\": 0.2529999911785126, \"p\": 28012, \"fpr\": 0.3449634214969049, \"tpr\": 0.9664072540339854, \"n\": 5331}, {\"threshold\": 0.2540000081062317, \"p\": 28012, \"fpr\": 0.34458825736259613, \"tpr\": 0.9663715550478367, \"n\": 5331}, {\"threshold\": 0.2549999952316284, \"p\": 28012, \"fpr\": 0.34421309322828736, \"tpr\": 0.9663358560616878, \"n\": 5331}, {\"threshold\": 0.25600001215934753, \"p\": 28012, \"fpr\": 0.3434627649596699, \"tpr\": 0.9662644580893902, \"n\": 5331}, {\"threshold\": 0.25699999928474426, \"p\": 28012, \"fpr\": 0.3430876008253611, \"tpr\": 0.9662287591032415, \"n\": 5331}, {\"threshold\": 0.257999986410141, \"p\": 28012, \"fpr\": 0.3429000187582067, \"tpr\": 0.9661573611309439, \"n\": 5331}, {\"threshold\": 0.2590000033378601, \"p\": 28012, \"fpr\": 0.34177452635528044, \"tpr\": 0.9661216621447951, \"n\": 5331}, {\"threshold\": 0.25999999046325684, \"p\": 28012, \"fpr\": 0.3415869442881261, \"tpr\": 0.9660502641724975, \"n\": 5331}, {\"threshold\": 0.26100000739097595, \"p\": 28012, \"fpr\": 0.3415869442881261, \"tpr\": 0.9659788662001999, \"n\": 5331}, {\"threshold\": 0.2619999945163727, \"p\": 28012, \"fpr\": 0.3412117801538173, \"tpr\": 0.9659788662001999, \"n\": 5331}, {\"threshold\": 0.2630000114440918, \"p\": 28012, \"fpr\": 0.34064903395235413, \"tpr\": 0.9659074682279023, \"n\": 5331}, {\"threshold\": 0.2639999985694885, \"p\": 28012, \"fpr\": 0.3402738698180454, \"tpr\": 0.9658360702556047, \"n\": 5331}, {\"threshold\": 0.26499998569488525, \"p\": 28012, \"fpr\": 0.33971112361658223, \"tpr\": 0.965800371269456, \"n\": 5331}, {\"threshold\": 0.26600000262260437, \"p\": 28012, \"fpr\": 0.3395235415494279, \"tpr\": 0.9656575753248607, \"n\": 5331}, {\"threshold\": 0.2669999897480011, \"p\": 28012, \"fpr\": 0.338585631213656, \"tpr\": 0.965621876338712, \"n\": 5331}, {\"threshold\": 0.2680000066757202, \"p\": 28012, \"fpr\": 0.3382104670793472, \"tpr\": 0.9655147793802656, \"n\": 5331}, {\"threshold\": 0.26899999380111694, \"p\": 28012, \"fpr\": 0.33783530294503844, \"tpr\": 0.965443381407968, \"n\": 5331}, {\"threshold\": 0.27000001072883606, \"p\": 28012, \"fpr\": 0.3376477208778841, \"tpr\": 0.965443381407968, \"n\": 5331}, {\"threshold\": 0.2709999978542328, \"p\": 28012, \"fpr\": 0.33746013881072967, \"tpr\": 0.9653005854633728, \"n\": 5331}, {\"threshold\": 0.2720000147819519, \"p\": 28012, \"fpr\": 0.3365222284749578, \"tpr\": 0.9653005854633728, \"n\": 5331}, {\"threshold\": 0.27300000190734863, \"p\": 28012, \"fpr\": 0.33595948227349465, \"tpr\": 0.9652648864772241, \"n\": 5331}, {\"threshold\": 0.27399998903274536, \"p\": 28012, \"fpr\": 0.3353967360720315, \"tpr\": 0.9651934885049265, \"n\": 5331}, {\"threshold\": 0.2750000059604645, \"p\": 28012, \"fpr\": 0.3348339898705684, \"tpr\": 0.9650863915464801, \"n\": 5331}, {\"threshold\": 0.2759999930858612, \"p\": 28012, \"fpr\": 0.3344588257362596, \"tpr\": 0.9650506925603313, \"n\": 5331}, {\"threshold\": 0.2770000100135803, \"p\": 28012, \"fpr\": 0.33408366160195085, \"tpr\": 0.9650506925603313, \"n\": 5331}, {\"threshold\": 0.27799999713897705, \"p\": 28012, \"fpr\": 0.3337084974676421, \"tpr\": 0.9650149935741825, \"n\": 5331}, {\"threshold\": 0.27900001406669617, \"p\": 28012, \"fpr\": 0.33314575126617896, \"tpr\": 0.9649792945880337, \"n\": 5331}, {\"threshold\": 0.2800000011920929, \"p\": 28012, \"fpr\": 0.3329581691990246, \"tpr\": 0.9649792945880337, \"n\": 5331}, {\"threshold\": 0.2809999883174896, \"p\": 28012, \"fpr\": 0.33258300506471583, \"tpr\": 0.9648721976295873, \"n\": 5331}, {\"threshold\": 0.28200000524520874, \"p\": 28012, \"fpr\": 0.33258300506471583, \"tpr\": 0.9648364986434386, \"n\": 5331}, {\"threshold\": 0.28299999237060547, \"p\": 28012, \"fpr\": 0.33164509472894393, \"tpr\": 0.9647294016849921, \"n\": 5331}, {\"threshold\": 0.2840000092983246, \"p\": 28012, \"fpr\": 0.33126993059463516, \"tpr\": 0.9646223047265458, \"n\": 5331}, {\"threshold\": 0.2849999964237213, \"p\": 28012, \"fpr\": 0.33070718439317204, \"tpr\": 0.9645152077680994, \"n\": 5331}, {\"threshold\": 0.28600001335144043, \"p\": 28012, \"fpr\": 0.3305196023260176, \"tpr\": 0.9644795087819505, \"n\": 5331}, {\"threshold\": 0.28700000047683716, \"p\": 28012, \"fpr\": 0.3299568561245545, \"tpr\": 0.9643367128373554, \"n\": 5331}, {\"threshold\": 0.2879999876022339, \"p\": 28012, \"fpr\": 0.32939410992309137, \"tpr\": 0.964229615878909, \"n\": 5331}, {\"threshold\": 0.289000004529953, \"p\": 28012, \"fpr\": 0.3290189457887826, \"tpr\": 0.9641225189204626, \"n\": 5331}, {\"threshold\": 0.28999999165534973, \"p\": 28012, \"fpr\": 0.32864378165447383, \"tpr\": 0.9639797229758675, \"n\": 5331}, {\"threshold\": 0.29100000858306885, \"p\": 28012, \"fpr\": 0.3280810354530107, \"tpr\": 0.9639083250035699, \"n\": 5331}, {\"threshold\": 0.2919999957084656, \"p\": 28012, \"fpr\": 0.32770587131870194, \"tpr\": 0.9638012280451235, \"n\": 5331}, {\"threshold\": 0.2930000126361847, \"p\": 28012, \"fpr\": 0.3271431251172388, \"tpr\": 0.9636941310866771, \"n\": 5331}, {\"threshold\": 0.2939999997615814, \"p\": 28012, \"fpr\": 0.3271431251172388, \"tpr\": 0.9635513351420819, \"n\": 5331}, {\"threshold\": 0.29499998688697815, \"p\": 28012, \"fpr\": 0.3269555430500844, \"tpr\": 0.9634442381836356, \"n\": 5331}, {\"threshold\": 0.29600000381469727, \"p\": 28012, \"fpr\": 0.32639279684862127, \"tpr\": 0.9634085391974868, \"n\": 5331}, {\"threshold\": 0.296999990940094, \"p\": 28012, \"fpr\": 0.32564246858000373, \"tpr\": 0.9633371412251892, \"n\": 5331}, {\"threshold\": 0.2980000078678131, \"p\": 28012, \"fpr\": 0.3254548865128494, \"tpr\": 0.9632300442667429, \"n\": 5331}, {\"threshold\": 0.29899999499320984, \"p\": 28012, \"fpr\": 0.32489214031138625, \"tpr\": 0.963194345280594, \"n\": 5331}, {\"threshold\": 0.30000001192092896, \"p\": 28012, \"fpr\": 0.32470455824423183, \"tpr\": 0.9630515493359989, \"n\": 5331}, {\"threshold\": 0.3009999990463257, \"p\": 28012, \"fpr\": 0.32395422997561435, \"tpr\": 0.9629801513637013, \"n\": 5331}, {\"threshold\": 0.3019999861717224, \"p\": 28012, \"fpr\": 0.32376664790845994, \"tpr\": 0.9628730544052548, \"n\": 5331}, {\"threshold\": 0.30300000309944153, \"p\": 28012, \"fpr\": 0.3232039017069968, \"tpr\": 0.9628730544052548, \"n\": 5331}, {\"threshold\": 0.30399999022483826, \"p\": 28012, \"fpr\": 0.3226411555055337, \"tpr\": 0.9628016564329573, \"n\": 5331}, {\"threshold\": 0.3050000071525574, \"p\": 28012, \"fpr\": 0.32207840930407056, \"tpr\": 0.9627302584606597, \"n\": 5331}, {\"threshold\": 0.3059999942779541, \"p\": 28012, \"fpr\": 0.3215156631026074, \"tpr\": 0.9626231615022134, \"n\": 5331}, {\"threshold\": 0.3070000112056732, \"p\": 28012, \"fpr\": 0.3215156631026074, \"tpr\": 0.9625517635299158, \"n\": 5331}, {\"threshold\": 0.30799999833106995, \"p\": 28012, \"fpr\": 0.3211404989682986, \"tpr\": 0.9625517635299158, \"n\": 5331}, {\"threshold\": 0.3089999854564667, \"p\": 28012, \"fpr\": 0.3202025886325267, \"tpr\": 0.9625160645437669, \"n\": 5331}, {\"threshold\": 0.3100000023841858, \"p\": 28012, \"fpr\": 0.32001500656537235, \"tpr\": 0.962337569613023, \"n\": 5331}, {\"threshold\": 0.3109999895095825, \"p\": 28012, \"fpr\": 0.3192646782967548, \"tpr\": 0.962337569613023, \"n\": 5331}, {\"threshold\": 0.31200000643730164, \"p\": 28012, \"fpr\": 0.31907709622960045, \"tpr\": 0.9622304726545766, \"n\": 5331}, {\"threshold\": 0.31299999356269836, \"p\": 28012, \"fpr\": 0.3187019320952917, \"tpr\": 0.9621233756961303, \"n\": 5331}, {\"threshold\": 0.3140000104904175, \"p\": 28012, \"fpr\": 0.31813918589382856, \"tpr\": 0.9620876767099814, \"n\": 5331}, {\"threshold\": 0.3149999976158142, \"p\": 28012, \"fpr\": 0.31701369349090225, \"tpr\": 0.9620519777238327, \"n\": 5331}, {\"threshold\": 0.3160000145435333, \"p\": 28012, \"fpr\": 0.31663852935659353, \"tpr\": 0.9619091817792375, \"n\": 5331}, {\"threshold\": 0.31700000166893005, \"p\": 28012, \"fpr\": 0.315888201087976, \"tpr\": 0.9617306868484935, \"n\": 5331}, {\"threshold\": 0.3179999887943268, \"p\": 28012, \"fpr\": 0.3157006190208216, \"tpr\": 0.9616592888761959, \"n\": 5331}, {\"threshold\": 0.3190000057220459, \"p\": 28012, \"fpr\": 0.31532545488651287, \"tpr\": 0.9615521919177495, \"n\": 5331}, {\"threshold\": 0.3199999928474426, \"p\": 28012, \"fpr\": 0.31513787281935846, \"tpr\": 0.9614807939454519, \"n\": 5331}, {\"threshold\": 0.32100000977516174, \"p\": 28012, \"fpr\": 0.3149502907522041, \"tpr\": 0.9614093959731543, \"n\": 5331}, {\"threshold\": 0.32199999690055847, \"p\": 28012, \"fpr\": 0.31457512661789533, \"tpr\": 0.9611952020562616, \"n\": 5331}, {\"threshold\": 0.3230000138282776, \"p\": 28012, \"fpr\": 0.31438754455074097, \"tpr\": 0.9611952020562616, \"n\": 5331}, {\"threshold\": 0.3240000009536743, \"p\": 28012, \"fpr\": 0.31419996248358656, \"tpr\": 0.961123804083964, \"n\": 5331}, {\"threshold\": 0.32499998807907104, \"p\": 28012, \"fpr\": 0.3138247983492778, \"tpr\": 0.9610524061116664, \"n\": 5331}, {\"threshold\": 0.32600000500679016, \"p\": 28012, \"fpr\": 0.3134496342149691, \"tpr\": 0.9609453091532201, \"n\": 5331}, {\"threshold\": 0.3269999921321869, \"p\": 28012, \"fpr\": 0.3130744700806603, \"tpr\": 0.9609096101670712, \"n\": 5331}, {\"threshold\": 0.328000009059906, \"p\": 28012, \"fpr\": 0.311948977677734, \"tpr\": 0.9608382121947737, \"n\": 5331}, {\"threshold\": 0.32899999618530273, \"p\": 28012, \"fpr\": 0.3111986494091165, \"tpr\": 0.9608025132086249, \"n\": 5331}, {\"threshold\": 0.33000001311302185, \"p\": 28012, \"fpr\": 0.310448321140499, \"tpr\": 0.9607668142224761, \"n\": 5331}, {\"threshold\": 0.3310000002384186, \"p\": 28012, \"fpr\": 0.3100731570061902, \"tpr\": 0.9607311152363273, \"n\": 5331}, {\"threshold\": 0.3319999873638153, \"p\": 28012, \"fpr\": 0.30988557493903585, \"tpr\": 0.9606240182778809, \"n\": 5331}, {\"threshold\": 0.3330000042915344, \"p\": 28012, \"fpr\": 0.30969799287188143, \"tpr\": 0.9605526203055833, \"n\": 5331}, {\"threshold\": 0.33399999141693115, \"p\": 28012, \"fpr\": 0.30876008253610954, \"tpr\": 0.9605526203055833, \"n\": 5331}, {\"threshold\": 0.33500000834465027, \"p\": 28012, \"fpr\": 0.30838491840180077, \"tpr\": 0.9605169213194346, \"n\": 5331}, {\"threshold\": 0.335999995470047, \"p\": 28012, \"fpr\": 0.30782217220033764, \"tpr\": 0.9605169213194346, \"n\": 5331}, {\"threshold\": 0.3370000123977661, \"p\": 28012, \"fpr\": 0.30744700806602887, \"tpr\": 0.9603741253748393, \"n\": 5331}, {\"threshold\": 0.33799999952316284, \"p\": 28012, \"fpr\": 0.3070718439317201, \"tpr\": 0.960267028416393, \"n\": 5331}, {\"threshold\": 0.33899998664855957, \"p\": 28012, \"fpr\": 0.3066966797974114, \"tpr\": 0.9602313294302441, \"n\": 5331}, {\"threshold\": 0.3400000035762787, \"p\": 28012, \"fpr\": 0.3057587694616395, \"tpr\": 0.960088533485649, \"n\": 5331}, {\"threshold\": 0.3409999907016754, \"p\": 28012, \"fpr\": 0.3055711873944851, \"tpr\": 0.9600171355133514, \"n\": 5331}, {\"threshold\": 0.34200000762939453, \"p\": 28012, \"fpr\": 0.3048208591258676, \"tpr\": 0.9599100385549051, \"n\": 5331}, {\"threshold\": 0.34299999475479126, \"p\": 28012, \"fpr\": 0.3048208591258676, \"tpr\": 0.9598029415964586, \"n\": 5331}, {\"threshold\": 0.3440000116825104, \"p\": 28012, \"fpr\": 0.3046332770587132, \"tpr\": 0.9595887476795659, \"n\": 5331}, {\"threshold\": 0.3449999988079071, \"p\": 28012, \"fpr\": 0.30407053085725005, \"tpr\": 0.9595173497072683, \"n\": 5331}, {\"threshold\": 0.34599998593330383, \"p\": 28012, \"fpr\": 0.30388294879009564, \"tpr\": 0.9594816507211196, \"n\": 5331}, {\"threshold\": 0.34700000286102295, \"p\": 28012, \"fpr\": 0.30313262052147816, \"tpr\": 0.9593388547765244, \"n\": 5331}, {\"threshold\": 0.3479999899864197, \"p\": 28012, \"fpr\": 0.30294503845432375, \"tpr\": 0.9593031557903755, \"n\": 5331}, {\"threshold\": 0.3490000069141388, \"p\": 28012, \"fpr\": 0.3027574563871694, \"tpr\": 0.9591960588319292, \"n\": 5331}, {\"threshold\": 0.3499999940395355, \"p\": 28012, \"fpr\": 0.3027574563871694, \"tpr\": 0.9591246608596316, \"n\": 5331}, {\"threshold\": 0.35100001096725464, \"p\": 28012, \"fpr\": 0.3018195460513975, \"tpr\": 0.959053262887334, \"n\": 5331}, {\"threshold\": 0.35199999809265137, \"p\": 28012, \"fpr\": 0.3016319639842431, \"tpr\": 0.9590175639011852, \"n\": 5331}, {\"threshold\": 0.3529999852180481, \"p\": 28012, \"fpr\": 0.30106921778277995, \"tpr\": 0.95887476795659, \"n\": 5331}, {\"threshold\": 0.3540000021457672, \"p\": 28012, \"fpr\": 0.3008816357156256, \"tpr\": 0.9588033699842925, \"n\": 5331}, {\"threshold\": 0.35499998927116394, \"p\": 28012, \"fpr\": 0.3008816357156256, \"tpr\": 0.9586605740396973, \"n\": 5331}, {\"threshold\": 0.35600000619888306, \"p\": 28012, \"fpr\": 0.3006940536484712, \"tpr\": 0.9586605740396973, \"n\": 5331}, {\"threshold\": 0.3569999933242798, \"p\": 28012, \"fpr\": 0.30013130744700806, \"tpr\": 0.9585534770812509, \"n\": 5331}, {\"threshold\": 0.3580000102519989, \"p\": 28012, \"fpr\": 0.2999437253798537, \"tpr\": 0.9584820791089533, \"n\": 5331}, {\"threshold\": 0.35899999737739563, \"p\": 28012, \"fpr\": 0.2999437253798537, \"tpr\": 0.9583749821505069, \"n\": 5331}, {\"threshold\": 0.36000001430511475, \"p\": 28012, \"fpr\": 0.29919339711123616, \"tpr\": 0.9583392831643581, \"n\": 5331}, {\"threshold\": 0.3610000014305115, \"p\": 28012, \"fpr\": 0.2990058150440818, \"tpr\": 0.9582321862059118, \"n\": 5331}, {\"threshold\": 0.3619999885559082, \"p\": 28012, \"fpr\": 0.2988182329769274, \"tpr\": 0.9581607882336142, \"n\": 5331}, {\"threshold\": 0.3630000054836273, \"p\": 28012, \"fpr\": 0.2984430688426186, \"tpr\": 0.9580536912751678, \"n\": 5331}, {\"threshold\": 0.36399999260902405, \"p\": 28012, \"fpr\": 0.2984430688426186, \"tpr\": 0.9580536912751678, \"n\": 5331}, {\"threshold\": 0.36500000953674316, \"p\": 28012, \"fpr\": 0.2980679047083099, \"tpr\": 0.9579822933028702, \"n\": 5331}, {\"threshold\": 0.3659999966621399, \"p\": 28012, \"fpr\": 0.29769274057400114, \"tpr\": 0.9579108953305726, \"n\": 5331}, {\"threshold\": 0.367000013589859, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9578751963444239, \"n\": 5331}, {\"threshold\": 0.36800000071525574, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9576967014136798, \"n\": 5331}, {\"threshold\": 0.36899998784065247, \"p\": 28012, \"fpr\": 0.29731757643969237, \"tpr\": 0.9575182064829358, \"n\": 5331}, {\"threshold\": 0.3700000047683716, \"p\": 28012, \"fpr\": 0.297129994372538, \"tpr\": 0.9574825074967871, \"n\": 5331}, {\"threshold\": 0.3709999918937683, \"p\": 28012, \"fpr\": 0.297129994372538, \"tpr\": 0.9573754105383407, \"n\": 5331}, {\"threshold\": 0.3720000088214874, \"p\": 28012, \"fpr\": 0.2969424123053836, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.37299999594688416, \"p\": 28012, \"fpr\": 0.29637966610392047, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.37400001287460327, \"p\": 28012, \"fpr\": 0.2960045019696117, \"tpr\": 0.9573040125660431, \"n\": 5331}, {\"threshold\": 0.375, \"p\": 28012, \"fpr\": 0.29581691990245734, \"tpr\": 0.9571969156075968, \"n\": 5331}, {\"threshold\": 0.37599998712539673, \"p\": 28012, \"fpr\": 0.29525417370099416, \"tpr\": 0.9571969156075968, \"n\": 5331}, {\"threshold\": 0.37700000405311584, \"p\": 28012, \"fpr\": 0.2950665916338398, \"tpr\": 0.9571255176352992, \"n\": 5331}, {\"threshold\": 0.3779999911785126, \"p\": 28012, \"fpr\": 0.29469142749953103, \"tpr\": 0.9568399257461088, \"n\": 5331}, {\"threshold\": 0.3790000081062317, \"p\": 28012, \"fpr\": 0.2941286812980679, \"tpr\": 0.95680422675996, \"n\": 5331}, {\"threshold\": 0.3799999952316284, \"p\": 28012, \"fpr\": 0.29394109923091355, \"tpr\": 0.9566614308153648, \"n\": 5331}, {\"threshold\": 0.38100001215934753, \"p\": 28012, \"fpr\": 0.29337835302945037, \"tpr\": 0.9565900328430672, \"n\": 5331}, {\"threshold\": 0.38199999928474426, \"p\": 28012, \"fpr\": 0.2926280247608329, \"tpr\": 0.9564829358846209, \"n\": 5331}, {\"threshold\": 0.382999986410141, \"p\": 28012, \"fpr\": 0.29244044269367847, \"tpr\": 0.9563044409538769, \"n\": 5331}, {\"threshold\": 0.3840000033378601, \"p\": 28012, \"fpr\": 0.2922528606265241, \"tpr\": 0.9561973439954305, \"n\": 5331}, {\"threshold\": 0.38499999046325684, \"p\": 28012, \"fpr\": 0.2922528606265241, \"tpr\": 0.9560902470369842, \"n\": 5331}, {\"threshold\": 0.38600000739097595, \"p\": 28012, \"fpr\": 0.2911273682235978, \"tpr\": 0.9560545480508353, \"n\": 5331}, {\"threshold\": 0.3869999945163727, \"p\": 28012, \"fpr\": 0.2907522040892891, \"tpr\": 0.9560545480508353, \"n\": 5331}, {\"threshold\": 0.3880000114440918, \"p\": 28012, \"fpr\": 0.28981429375351714, \"tpr\": 0.9559117521062401, \"n\": 5331}, {\"threshold\": 0.3889999985694885, \"p\": 28012, \"fpr\": 0.28906396548489965, \"tpr\": 0.9558403541339426, \"n\": 5331}, {\"threshold\": 0.38999998569488525, \"p\": 28012, \"fpr\": 0.28887638341774524, \"tpr\": 0.955768956161645, \"n\": 5331}, {\"threshold\": 0.39100000262260437, \"p\": 28012, \"fpr\": 0.2883136372162821, \"tpr\": 0.9556975581893474, \"n\": 5331}, {\"threshold\": 0.3919999897480011, \"p\": 28012, \"fpr\": 0.28793847308197335, \"tpr\": 0.9555904612309011, \"n\": 5331}, {\"threshold\": 0.3930000066757202, \"p\": 28012, \"fpr\": 0.28718814481335586, \"tpr\": 0.9553762673140083, \"n\": 5331}, {\"threshold\": 0.39399999380111694, \"p\": 28012, \"fpr\": 0.2868129806790471, \"tpr\": 0.9553405683278595, \"n\": 5331}, {\"threshold\": 0.39500001072883606, \"p\": 28012, \"fpr\": 0.2866253986118927, \"tpr\": 0.9551977723832643, \"n\": 5331}, {\"threshold\": 0.3959999978542328, \"p\": 28012, \"fpr\": 0.28625023447758396, \"tpr\": 0.9551263744109667, \"n\": 5331}, {\"threshold\": 0.3970000147819519, \"p\": 28012, \"fpr\": 0.2856874882761208, \"tpr\": 0.9550549764386691, \"n\": 5331}, {\"threshold\": 0.39800000190734863, \"p\": 28012, \"fpr\": 0.28531232414181207, \"tpr\": 0.9550549764386691, \"n\": 5331}, {\"threshold\": 0.39899998903274536, \"p\": 28012, \"fpr\": 0.28531232414181207, \"tpr\": 0.9549835784663716, \"n\": 5331}, {\"threshold\": 0.4000000059604645, \"p\": 28012, \"fpr\": 0.2847495779403489, \"tpr\": 0.9548764815079251, \"n\": 5331}, {\"threshold\": 0.4009999930858612, \"p\": 28012, \"fpr\": 0.283811667604577, \"tpr\": 0.9548050835356275, \"n\": 5331}, {\"threshold\": 0.4020000100135803, \"p\": 28012, \"fpr\": 0.2834365034702682, \"tpr\": 0.9545908896187348, \"n\": 5331}, {\"threshold\": 0.40299999713897705, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9545194916464372, \"n\": 5331}, {\"threshold\": 0.40400001406669617, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9544837926602885, \"n\": 5331}, {\"threshold\": 0.4050000011920929, \"p\": 28012, \"fpr\": 0.2828737572688051, \"tpr\": 0.9544837926602885, \"n\": 5331}, {\"threshold\": 0.4059999883174896, \"p\": 28012, \"fpr\": 0.28268617520165074, \"tpr\": 0.9544480936741396, \"n\": 5331}, {\"threshold\": 0.40700000524520874, \"p\": 28012, \"fpr\": 0.2824985931344963, \"tpr\": 0.9544480936741396, \"n\": 5331}, {\"threshold\": 0.40799999237060547, \"p\": 28012, \"fpr\": 0.2819358469330332, \"tpr\": 0.954376695701842, \"n\": 5331}, {\"threshold\": 0.4090000092983246, \"p\": 28012, \"fpr\": 0.2815606827987244, \"tpr\": 0.9543052977295445, \"n\": 5331}, {\"threshold\": 0.4099999964237213, \"p\": 28012, \"fpr\": 0.28137310073157007, \"tpr\": 0.9543052977295445, \"n\": 5331}, {\"threshold\": 0.41100001335144043, \"p\": 28012, \"fpr\": 0.28118551866441566, \"tpr\": 0.954055404826503, \"n\": 5331}, {\"threshold\": 0.41200000047683716, \"p\": 28012, \"fpr\": 0.28062277246295253, \"tpr\": 0.9540197058403541, \"n\": 5331}, {\"threshold\": 0.4129999876022339, \"p\": 28012, \"fpr\": 0.28024760832864376, \"tpr\": 0.9540197058403541, \"n\": 5331}, {\"threshold\": 0.414000004529953, \"p\": 28012, \"fpr\": 0.27968486212718063, \"tpr\": 0.9539483078680565, \"n\": 5331}, {\"threshold\": 0.41499999165534973, \"p\": 28012, \"fpr\": 0.27968486212718063, \"tpr\": 0.9539126088819078, \"n\": 5331}, {\"threshold\": 0.41600000858306885, \"p\": 28012, \"fpr\": 0.27930969799287186, \"tpr\": 0.9538412109096102, \"n\": 5331}, {\"threshold\": 0.4169999957084656, \"p\": 28012, \"fpr\": 0.27874695179140874, \"tpr\": 0.9538055119234614, \"n\": 5331}, {\"threshold\": 0.4180000126361847, \"p\": 28012, \"fpr\": 0.27874695179140874, \"tpr\": 0.953698414965015, \"n\": 5331}, {\"threshold\": 0.4189999997615814, \"p\": 28012, \"fpr\": 0.27837178765709997, \"tpr\": 0.9535913180065686, \"n\": 5331}, {\"threshold\": 0.41999998688697815, \"p\": 28012, \"fpr\": 0.27837178765709997, \"tpr\": 0.9535556190204199, \"n\": 5331}, {\"threshold\": 0.42100000381469727, \"p\": 28012, \"fpr\": 0.2779966235227912, \"tpr\": 0.9534842210481222, \"n\": 5331}, {\"threshold\": 0.421999990940094, \"p\": 28012, \"fpr\": 0.27780904145563684, \"tpr\": 0.9533771240896759, \"n\": 5331}, {\"threshold\": 0.4230000078678131, \"p\": 28012, \"fpr\": 0.2776214593884825, \"tpr\": 0.9532343281450807, \"n\": 5331}, {\"threshold\": 0.42399999499320984, \"p\": 28012, \"fpr\": 0.2776214593884825, \"tpr\": 0.9531272311866343, \"n\": 5331}, {\"threshold\": 0.42500001192092896, \"p\": 28012, \"fpr\": 0.27743387732132807, \"tpr\": 0.9530915322004855, \"n\": 5331}, {\"threshold\": 0.4259999990463257, \"p\": 28012, \"fpr\": 0.27687113111986494, \"tpr\": 0.9530915322004855, \"n\": 5331}, {\"threshold\": 0.4269999861717224, \"p\": 28012, \"fpr\": 0.2763083849184018, \"tpr\": 0.9530558332143367, \"n\": 5331}, {\"threshold\": 0.42800000309944153, \"p\": 28012, \"fpr\": 0.2753704745826299, \"tpr\": 0.9528773382835928, \"n\": 5331}, {\"threshold\": 0.42899999022483826, \"p\": 28012, \"fpr\": 0.27480772838116674, \"tpr\": 0.9527345423389976, \"n\": 5331}, {\"threshold\": 0.4300000071525574, \"p\": 28012, \"fpr\": 0.2742449821797036, \"tpr\": 0.9526631443667, \"n\": 5331}, {\"threshold\": 0.4309999942779541, \"p\": 28012, \"fpr\": 0.27386981804539484, \"tpr\": 0.9525917463944024, \"n\": 5331}, {\"threshold\": 0.4320000112056732, \"p\": 28012, \"fpr\": 0.27311948977677736, \"tpr\": 0.9525203484221048, \"n\": 5331}, {\"threshold\": 0.43299999833106995, \"p\": 28012, \"fpr\": 0.2727443256424686, \"tpr\": 0.9524489504498073, \"n\": 5331}, {\"threshold\": 0.4339999854564667, \"p\": 28012, \"fpr\": 0.2725567435753142, \"tpr\": 0.9524132514636584, \"n\": 5331}, {\"threshold\": 0.4350000023841858, \"p\": 28012, \"fpr\": 0.27218157944100546, \"tpr\": 0.9524132514636584, \"n\": 5331}, {\"threshold\": 0.4359999895095825, \"p\": 28012, \"fpr\": 0.27218157944100546, \"tpr\": 0.952306154505212, \"n\": 5331}, {\"threshold\": 0.43700000643730164, \"p\": 28012, \"fpr\": 0.2718064153066967, \"tpr\": 0.9521990575467657, \"n\": 5331}, {\"threshold\": 0.43799999356269836, \"p\": 28012, \"fpr\": 0.27124366910523356, \"tpr\": 0.9521633585606168, \"n\": 5331}, {\"threshold\": 0.4390000104904175, \"p\": 28012, \"fpr\": 0.27124366910523356, \"tpr\": 0.9521276595744681, \"n\": 5331}, {\"threshold\": 0.4399999976158142, \"p\": 28012, \"fpr\": 0.2706809229037704, \"tpr\": 0.9519848636298729, \"n\": 5331}, {\"threshold\": 0.4410000145435333, \"p\": 28012, \"fpr\": 0.2706809229037704, \"tpr\": 0.9518777666714265, \"n\": 5331}, {\"threshold\": 0.44200000166893005, \"p\": 28012, \"fpr\": 0.270493340836616, \"tpr\": 0.9517349707268313, \"n\": 5331}, {\"threshold\": 0.4429999887943268, \"p\": 28012, \"fpr\": 0.2703057587694616, \"tpr\": 0.9516992717406826, \"n\": 5331}, {\"threshold\": 0.4440000057220459, \"p\": 28012, \"fpr\": 0.2693678484336897, \"tpr\": 0.9516992717406826, \"n\": 5331}, {\"threshold\": 0.4449999928474426, \"p\": 28012, \"fpr\": 0.2688051022322266, \"tpr\": 0.9515921747822362, \"n\": 5331}, {\"threshold\": 0.44600000977516174, \"p\": 28012, \"fpr\": 0.2684299380979178, \"tpr\": 0.9514850778237898, \"n\": 5331}, {\"threshold\": 0.44699999690055847, \"p\": 28012, \"fpr\": 0.2680547739636091, \"tpr\": 0.951449378837641, \"n\": 5331}, {\"threshold\": 0.4480000138282776, \"p\": 28012, \"fpr\": 0.2678671918964547, \"tpr\": 0.9512708839068971, \"n\": 5331}, {\"threshold\": 0.4490000009536743, \"p\": 28012, \"fpr\": 0.26767960982930034, \"tpr\": 0.9511280879623019, \"n\": 5331}, {\"threshold\": 0.44999998807907104, \"p\": 28012, \"fpr\": 0.26711686362783715, \"tpr\": 0.9510566899900043, \"n\": 5331}, {\"threshold\": 0.45100000500679016, \"p\": 28012, \"fpr\": 0.26636653535921967, \"tpr\": 0.9509495930315579, \"n\": 5331}, {\"threshold\": 0.4519999921321869, \"p\": 28012, \"fpr\": 0.26636653535921967, \"tpr\": 0.9508067970869627, \"n\": 5331}, {\"threshold\": 0.453000009059906, \"p\": 28012, \"fpr\": 0.26580378915775654, \"tpr\": 0.950771098100814, \"n\": 5331}, {\"threshold\": 0.45399999618530273, \"p\": 28012, \"fpr\": 0.26561620709060213, \"tpr\": 0.9507353991146651, \"n\": 5331}, {\"threshold\": 0.45500001311302185, \"p\": 28012, \"fpr\": 0.2654286250234478, \"tpr\": 0.9506640011423676, \"n\": 5331}, {\"threshold\": 0.4560000002384186, \"p\": 28012, \"fpr\": 0.26524104295629336, \"tpr\": 0.9505212051977724, \"n\": 5331}, {\"threshold\": 0.4569999873638153, \"p\": 28012, \"fpr\": 0.265053460889139, \"tpr\": 0.9503427102670284, \"n\": 5331}, {\"threshold\": 0.4580000042915344, \"p\": 28012, \"fpr\": 0.2648658788219846, \"tpr\": 0.9501642153362845, \"n\": 5331}, {\"threshold\": 0.45899999141693115, \"p\": 28012, \"fpr\": 0.2648658788219846, \"tpr\": 0.950057118377838, \"n\": 5331}, {\"threshold\": 0.46000000834465027, \"p\": 28012, \"fpr\": 0.2644907146876759, \"tpr\": 0.9498786234470941, \"n\": 5331}, {\"threshold\": 0.460999995470047, \"p\": 28012, \"fpr\": 0.26430313262052146, \"tpr\": 0.9498072254747966, \"n\": 5331}, {\"threshold\": 0.4620000123977661, \"p\": 28012, \"fpr\": 0.26374038641905834, \"tpr\": 0.949557332571755, \"n\": 5331}, {\"threshold\": 0.46299999952316284, \"p\": 28012, \"fpr\": 0.26336522228474957, \"tpr\": 0.9494859345994574, \"n\": 5331}, {\"threshold\": 0.46399998664855957, \"p\": 28012, \"fpr\": 0.2631776402175952, \"tpr\": 0.9494145366271598, \"n\": 5331}, {\"threshold\": 0.4650000035762787, \"p\": 28012, \"fpr\": 0.2629900581504408, \"tpr\": 0.9492717406825646, \"n\": 5331}, {\"threshold\": 0.4659999907016754, \"p\": 28012, \"fpr\": 0.26280247608328644, \"tpr\": 0.9492360416964158, \"n\": 5331}, {\"threshold\": 0.46700000762939453, \"p\": 28012, \"fpr\": 0.26242731194897767, \"tpr\": 0.9491646437241182, \"n\": 5331}, {\"threshold\": 0.46799999475479126, \"p\": 28012, \"fpr\": 0.2622397298818233, \"tpr\": 0.9489861487933743, \"n\": 5331}, {\"threshold\": 0.4690000116825104, \"p\": 28012, \"fpr\": 0.2614894016132058, \"tpr\": 0.9489504498072254, \"n\": 5331}, {\"threshold\": 0.4699999988079071, \"p\": 28012, \"fpr\": 0.26073907334458823, \"tpr\": 0.9489504498072254, \"n\": 5331}, {\"threshold\": 0.47099998593330383, \"p\": 28012, \"fpr\": 0.26073907334458823, \"tpr\": 0.9489147508210767, \"n\": 5331}, {\"threshold\": 0.47200000286102295, \"p\": 28012, \"fpr\": 0.2601763271431251, \"tpr\": 0.9487362558903327, \"n\": 5331}, {\"threshold\": 0.4729999899864197, \"p\": 28012, \"fpr\": 0.25998874507597075, \"tpr\": 0.9485934599457375, \"n\": 5331}, {\"threshold\": 0.4740000069141388, \"p\": 28012, \"fpr\": 0.25905083474019885, \"tpr\": 0.9485577609595888, \"n\": 5331}, {\"threshold\": 0.4749999940395355, \"p\": 28012, \"fpr\": 0.25886325267304444, \"tpr\": 0.9485220619734399, \"n\": 5331}, {\"threshold\": 0.47600001096725464, \"p\": 28012, \"fpr\": 0.25886325267304444, \"tpr\": 0.948343567042696, \"n\": 5331}, {\"threshold\": 0.47699999809265137, \"p\": 28012, \"fpr\": 0.2586756706058901, \"tpr\": 0.9482364700842496, \"n\": 5331}, {\"threshold\": 0.4779999852180481, \"p\": 28012, \"fpr\": 0.25792534233727255, \"tpr\": 0.948165072111952, \"n\": 5331}, {\"threshold\": 0.4790000021457672, \"p\": 28012, \"fpr\": 0.25792534233727255, \"tpr\": 0.9480936741396544, \"n\": 5331}, {\"threshold\": 0.47999998927116394, \"p\": 28012, \"fpr\": 0.2575501782029638, \"tpr\": 0.9479508781950593, \"n\": 5331}, {\"threshold\": 0.48100000619888306, \"p\": 28012, \"fpr\": 0.25698743200150065, \"tpr\": 0.9478794802227617, \"n\": 5331}, {\"threshold\": 0.4819999933242798, \"p\": 28012, \"fpr\": 0.2562371037328831, \"tpr\": 0.9478437812366128, \"n\": 5331}, {\"threshold\": 0.4830000102519989, \"p\": 28012, \"fpr\": 0.25604952166572875, \"tpr\": 0.9477723832643153, \"n\": 5331}, {\"threshold\": 0.48399999737739563, \"p\": 28012, \"fpr\": 0.25567435753142, \"tpr\": 0.9475581893474225, \"n\": 5331}, {\"threshold\": 0.48500001430511475, \"p\": 28012, \"fpr\": 0.2552991933971112, \"tpr\": 0.9474867913751249, \"n\": 5331}, {\"threshold\": 0.4860000014305115, \"p\": 28012, \"fpr\": 0.2552991933971112, \"tpr\": 0.9473439954305298, \"n\": 5331}, {\"threshold\": 0.4869999885559082, \"p\": 28012, \"fpr\": 0.25511161132995686, \"tpr\": 0.9471655004997858, \"n\": 5331}, {\"threshold\": 0.4880000054836273, \"p\": 28012, \"fpr\": 0.25454886512849373, \"tpr\": 0.947129801513637, \"n\": 5331}, {\"threshold\": 0.48899999260902405, \"p\": 28012, \"fpr\": 0.25454886512849373, \"tpr\": 0.9470227045551907, \"n\": 5331}, {\"threshold\": 0.49000000953674316, \"p\": 28012, \"fpr\": 0.2537985368598762, \"tpr\": 0.9469513065828931, \"n\": 5331}, {\"threshold\": 0.4909999966621399, \"p\": 28012, \"fpr\": 0.2534233727255674, \"tpr\": 0.9469156075967442, \"n\": 5331}, {\"threshold\": 0.492000013589859, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9468085106382979, \"n\": 5331}, {\"threshold\": 0.49300000071525574, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9467371126660002, \"n\": 5331}, {\"threshold\": 0.49399998784065247, \"p\": 28012, \"fpr\": 0.25323579065841306, \"tpr\": 0.9465943167214051, \"n\": 5331}, {\"threshold\": 0.4950000047683716, \"p\": 28012, \"fpr\": 0.25304820859125865, \"tpr\": 0.9464872197629587, \"n\": 5331}, {\"threshold\": 0.4959999918937683, \"p\": 28012, \"fpr\": 0.25304820859125865, \"tpr\": 0.9463087248322147, \"n\": 5331}, {\"threshold\": 0.4970000088214874, \"p\": 28012, \"fpr\": 0.2528606265241043, \"tpr\": 0.9461302299014708, \"n\": 5331}, {\"threshold\": 0.49799999594688416, \"p\": 28012, \"fpr\": 0.25267304445694994, \"tpr\": 0.9459874339568757, \"n\": 5331}, {\"threshold\": 0.49900001287460327, \"p\": 28012, \"fpr\": 0.25267304445694994, \"tpr\": 0.9458089390261316, \"n\": 5331}, {\"threshold\": 0.5, \"p\": 28012, \"fpr\": 0.25211029825548675, \"tpr\": 0.9456304440953877, \"n\": 5331}, {\"threshold\": 0.5009999871253967, \"p\": 28012, \"fpr\": 0.25173513412117804, \"tpr\": 0.94555904612309, \"n\": 5331}, {\"threshold\": 0.5019999742507935, \"p\": 28012, \"fpr\": 0.25135996998686927, \"tpr\": 0.9455233471369413, \"n\": 5331}, {\"threshold\": 0.503000020980835, \"p\": 28012, \"fpr\": 0.25079722378540614, \"tpr\": 0.945416250178495, \"n\": 5331}, {\"threshold\": 0.5040000081062317, \"p\": 28012, \"fpr\": 0.2504220596510974, \"tpr\": 0.9452734542338997, \"n\": 5331}, {\"threshold\": 0.5049999952316284, \"p\": 28012, \"fpr\": 0.2504220596510974, \"tpr\": 0.9451306582893045, \"n\": 5331}, {\"threshold\": 0.5059999823570251, \"p\": 28012, \"fpr\": 0.24967173138247983, \"tpr\": 0.9450235613308582, \"n\": 5331}, {\"threshold\": 0.5070000290870667, \"p\": 28012, \"fpr\": 0.24929656724817106, \"tpr\": 0.9449164643724118, \"n\": 5331}, {\"threshold\": 0.5080000162124634, \"p\": 28012, \"fpr\": 0.24929656724817106, \"tpr\": 0.9447736684278166, \"n\": 5331}, {\"threshold\": 0.5090000033378601, \"p\": 28012, \"fpr\": 0.24892140311386232, \"tpr\": 0.9446665714693703, \"n\": 5331}, {\"threshold\": 0.5099999904632568, \"p\": 28012, \"fpr\": 0.24817107484524478, \"tpr\": 0.9446308724832215, \"n\": 5331}, {\"threshold\": 0.5109999775886536, \"p\": 28012, \"fpr\": 0.24760832864378166, \"tpr\": 0.9444523775524775, \"n\": 5331}, {\"threshold\": 0.5120000243186951, \"p\": 28012, \"fpr\": 0.24742074657662727, \"tpr\": 0.9444166785663287, \"n\": 5331}, {\"threshold\": 0.5130000114440918, \"p\": 28012, \"fpr\": 0.2470455824423185, \"tpr\": 0.9443452805940311, \"n\": 5331}, {\"threshold\": 0.5139999985694885, \"p\": 28012, \"fpr\": 0.2470455824423185, \"tpr\": 0.9441667856632872, \"n\": 5331}, {\"threshold\": 0.5149999856948853, \"p\": 28012, \"fpr\": 0.2461076721065466, \"tpr\": 0.9441310866771384, \"n\": 5331}, {\"threshold\": 0.515999972820282, \"p\": 28012, \"fpr\": 0.24592009003939225, \"tpr\": 0.9440953876909896, \"n\": 5331}, {\"threshold\": 0.5170000195503235, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439882907325432, \"n\": 5331}, {\"threshold\": 0.5180000066757202, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439882907325432, \"n\": 5331}, {\"threshold\": 0.5189999938011169, \"p\": 28012, \"fpr\": 0.24554492590508348, \"tpr\": 0.9439168927602456, \"n\": 5331}, {\"threshold\": 0.5199999809265137, \"p\": 28012, \"fpr\": 0.2453573438379291, \"tpr\": 0.9438811937740968, \"n\": 5331}, {\"threshold\": 0.5210000276565552, \"p\": 28012, \"fpr\": 0.24498217970362032, \"tpr\": 0.9438097958017992, \"n\": 5331}, {\"threshold\": 0.5220000147819519, \"p\": 28012, \"fpr\": 0.2444194335021572, \"tpr\": 0.9436313008710553, \"n\": 5331}, {\"threshold\": 0.5230000019073486, \"p\": 28012, \"fpr\": 0.24404426936784843, \"tpr\": 0.9435242039126088, \"n\": 5331}, {\"threshold\": 0.5239999890327454, \"p\": 28012, \"fpr\": 0.24329394109923091, \"tpr\": 0.9434171069541625, \"n\": 5331}, {\"threshold\": 0.5249999761581421, \"p\": 28012, \"fpr\": 0.24273119489776776, \"tpr\": 0.9432743110095674, \"n\": 5331}, {\"threshold\": 0.5260000228881836, \"p\": 28012, \"fpr\": 0.24235603076345902, \"tpr\": 0.9431672140511209, \"n\": 5331}, {\"threshold\": 0.5270000100135803, \"p\": 28012, \"fpr\": 0.24216844869630463, \"tpr\": 0.9430244181065258, \"n\": 5331}, {\"threshold\": 0.527999997138977, \"p\": 28012, \"fpr\": 0.24141812042768712, \"tpr\": 0.9429173211480794, \"n\": 5331}, {\"threshold\": 0.5289999842643738, \"p\": 28012, \"fpr\": 0.24085537422622397, \"tpr\": 0.942810224189633, \"n\": 5331}, {\"threshold\": 0.5299999713897705, \"p\": 28012, \"fpr\": 0.24048021009191523, \"tpr\": 0.9427745252034843, \"n\": 5331}, {\"threshold\": 0.531000018119812, \"p\": 28012, \"fpr\": 0.24048021009191523, \"tpr\": 0.942631729258889, \"n\": 5331}, {\"threshold\": 0.5320000052452087, \"p\": 28012, \"fpr\": 0.24010504595760646, \"tpr\": 0.942631729258889, \"n\": 5331}, {\"threshold\": 0.5329999923706055, \"p\": 28012, \"fpr\": 0.23991746389045207, \"tpr\": 0.9425960302727403, \"n\": 5331}, {\"threshold\": 0.5339999794960022, \"p\": 28012, \"fpr\": 0.2395422997561433, \"tpr\": 0.9425246323004427, \"n\": 5331}, {\"threshold\": 0.5350000262260437, \"p\": 28012, \"fpr\": 0.2387919714875258, \"tpr\": 0.9423461373696987, \"n\": 5331}, {\"threshold\": 0.5360000133514404, \"p\": 28012, \"fpr\": 0.2386043894203714, \"tpr\": 0.9422747393974011, \"n\": 5331}, {\"threshold\": 0.5370000004768372, \"p\": 28012, \"fpr\": 0.23841680735321702, \"tpr\": 0.9422390404112523, \"n\": 5331}, {\"threshold\": 0.5379999876022339, \"p\": 28012, \"fpr\": 0.23841680735321702, \"tpr\": 0.9420962444666572, \"n\": 5331}, {\"threshold\": 0.5389999747276306, \"p\": 28012, \"fpr\": 0.23822922528606266, \"tpr\": 0.9419891475082107, \"n\": 5331}, {\"threshold\": 0.5400000214576721, \"p\": 28012, \"fpr\": 0.23804164321890828, \"tpr\": 0.941953448522062, \"n\": 5331}, {\"threshold\": 0.5410000085830688, \"p\": 28012, \"fpr\": 0.2378540611517539, \"tpr\": 0.9419177495359132, \"n\": 5331}, {\"threshold\": 0.5419999957084656, \"p\": 28012, \"fpr\": 0.2378540611517539, \"tpr\": 0.941774953591318, \"n\": 5331}, {\"threshold\": 0.5429999828338623, \"p\": 28012, \"fpr\": 0.23747889701744512, \"tpr\": 0.9417392546051692, \"n\": 5331}, {\"threshold\": 0.5440000295639038, \"p\": 28012, \"fpr\": 0.236916150815982, \"tpr\": 0.9416678566328717, \"n\": 5331}, {\"threshold\": 0.5450000166893005, \"p\": 28012, \"fpr\": 0.236916150815982, \"tpr\": 0.9416321576467228, \"n\": 5331}, {\"threshold\": 0.5460000038146973, \"p\": 28012, \"fpr\": 0.23616582254736448, \"tpr\": 0.9415250606882765, \"n\": 5331}, {\"threshold\": 0.546999990940094, \"p\": 28012, \"fpr\": 0.2359782404802101, \"tpr\": 0.9414536627159789, \"n\": 5331}, {\"threshold\": 0.5479999780654907, \"p\": 28012, \"fpr\": 0.23579065841305571, \"tpr\": 0.9413822647436813, \"n\": 5331}, {\"threshold\": 0.5490000247955322, \"p\": 28012, \"fpr\": 0.23522791221159256, \"tpr\": 0.9412037698129373, \"n\": 5331}, {\"threshold\": 0.550000011920929, \"p\": 28012, \"fpr\": 0.23485274807728382, \"tpr\": 0.9411323718406397, \"n\": 5331}, {\"threshold\": 0.5509999990463257, \"p\": 28012, \"fpr\": 0.23447758394297505, \"tpr\": 0.9410252748821933, \"n\": 5331}, {\"threshold\": 0.5519999861717224, \"p\": 28012, \"fpr\": 0.23447758394297505, \"tpr\": 0.9409538769098957, \"n\": 5331}, {\"threshold\": 0.5529999732971191, \"p\": 28012, \"fpr\": 0.23410241980866628, \"tpr\": 0.9408824789375981, \"n\": 5331}, {\"threshold\": 0.5540000200271606, \"p\": 28012, \"fpr\": 0.23335209154004877, \"tpr\": 0.9408110809653006, \"n\": 5331}, {\"threshold\": 0.5550000071525574, \"p\": 28012, \"fpr\": 0.23297692740574, \"tpr\": 0.9407039840068542, \"n\": 5331}, {\"threshold\": 0.5559999942779541, \"p\": 28012, \"fpr\": 0.23241418120427687, \"tpr\": 0.9404897900899615, \"n\": 5331}, {\"threshold\": 0.5569999814033508, \"p\": 28012, \"fpr\": 0.2320390170699681, \"tpr\": 0.9403469941453663, \"n\": 5331}, {\"threshold\": 0.5580000281333923, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9403469941453663, \"n\": 5331}, {\"threshold\": 0.5590000152587891, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9402041982007711, \"n\": 5331}, {\"threshold\": 0.5600000023841858, \"p\": 28012, \"fpr\": 0.23147627086850497, \"tpr\": 0.9402041982007711, \"n\": 5331}, {\"threshold\": 0.5609999895095825, \"p\": 28012, \"fpr\": 0.2312886888013506, \"tpr\": 0.9399900042838784, \"n\": 5331}, {\"threshold\": 0.5619999766349792, \"p\": 28012, \"fpr\": 0.23072594259988746, \"tpr\": 0.9398472083392831, \"n\": 5331}, {\"threshold\": 0.5630000233650208, \"p\": 28012, \"fpr\": 0.2303507784655787, \"tpr\": 0.9397401113808368, \"n\": 5331}, {\"threshold\": 0.5640000104904175, \"p\": 28012, \"fpr\": 0.2301631963984243, \"tpr\": 0.9396687134085392, \"n\": 5331}, {\"threshold\": 0.5649999976158142, \"p\": 28012, \"fpr\": 0.22978803226411554, \"tpr\": 0.9394902184777952, \"n\": 5331}, {\"threshold\": 0.5659999847412109, \"p\": 28012, \"fpr\": 0.22960045019696118, \"tpr\": 0.9393831215193489, \"n\": 5331}, {\"threshold\": 0.5669999718666077, \"p\": 28012, \"fpr\": 0.2294128681298068, \"tpr\": 0.9393831215193489, \"n\": 5331}, {\"threshold\": 0.5680000185966492, \"p\": 28012, \"fpr\": 0.22885012192834364, \"tpr\": 0.9393474225332, \"n\": 5331}, {\"threshold\": 0.5690000057220459, \"p\": 28012, \"fpr\": 0.2284749577940349, \"tpr\": 0.9392046265886049, \"n\": 5331}, {\"threshold\": 0.5699999928474426, \"p\": 28012, \"fpr\": 0.22828737572688051, \"tpr\": 0.9390975296301585, \"n\": 5331}, {\"threshold\": 0.5709999799728394, \"p\": 28012, \"fpr\": 0.22828737572688051, \"tpr\": 0.9390261316578609, \"n\": 5331}, {\"threshold\": 0.5720000267028809, \"p\": 28012, \"fpr\": 0.22772462952541736, \"tpr\": 0.9389547336855634, \"n\": 5331}, {\"threshold\": 0.5730000138282776, \"p\": 28012, \"fpr\": 0.22772462952541736, \"tpr\": 0.9388833357132658, \"n\": 5331}, {\"threshold\": 0.5740000009536743, \"p\": 28012, \"fpr\": 0.227537047458263, \"tpr\": 0.9387405397686706, \"n\": 5331}, {\"threshold\": 0.574999988079071, \"p\": 28012, \"fpr\": 0.22678671918964546, \"tpr\": 0.938669141796373, \"n\": 5331}, {\"threshold\": 0.5759999752044678, \"p\": 28012, \"fpr\": 0.22641155505533672, \"tpr\": 0.938490646865629, \"n\": 5331}, {\"threshold\": 0.5770000219345093, \"p\": 28012, \"fpr\": 0.22584880885387357, \"tpr\": 0.9383835499071826, \"n\": 5331}, {\"threshold\": 0.578000009059906, \"p\": 28012, \"fpr\": 0.2254736447195648, \"tpr\": 0.9383478509210338, \"n\": 5331}, {\"threshold\": 0.5789999961853027, \"p\": 28012, \"fpr\": 0.22528606265241044, \"tpr\": 0.9381693559902898, \"n\": 5331}, {\"threshold\": 0.5799999833106995, \"p\": 28012, \"fpr\": 0.22528606265241044, \"tpr\": 0.9380622590318435, \"n\": 5331}, {\"threshold\": 0.5809999704360962, \"p\": 28012, \"fpr\": 0.2245357343837929, \"tpr\": 0.9379551620733971, \"n\": 5331}, {\"threshold\": 0.5820000171661377, \"p\": 28012, \"fpr\": 0.223597824048021, \"tpr\": 0.9378123661288019, \"n\": 5331}, {\"threshold\": 0.5830000042915344, \"p\": 28012, \"fpr\": 0.22341024198086662, \"tpr\": 0.9377409681565043, \"n\": 5331}, {\"threshold\": 0.5839999914169312, \"p\": 28012, \"fpr\": 0.22322265991371226, \"tpr\": 0.9377052691703556, \"n\": 5331}, {\"threshold\": 0.5849999785423279, \"p\": 28012, \"fpr\": 0.2228474957794035, \"tpr\": 0.937633871198058, \"n\": 5331}, {\"threshold\": 0.5860000252723694, \"p\": 28012, \"fpr\": 0.2226599137122491, \"tpr\": 0.9375624732257604, \"n\": 5331}, {\"threshold\": 0.5870000123977661, \"p\": 28012, \"fpr\": 0.22228474957794034, \"tpr\": 0.9375267742396116, \"n\": 5331}, {\"threshold\": 0.5879999995231628, \"p\": 28012, \"fpr\": 0.22209716751078598, \"tpr\": 0.9374910752534628, \"n\": 5331}, {\"threshold\": 0.5889999866485596, \"p\": 28012, \"fpr\": 0.2217220033764772, \"tpr\": 0.9374196772811653, \"n\": 5331}, {\"threshold\": 0.5899999737739563, \"p\": 28012, \"fpr\": 0.22134683924216844, \"tpr\": 0.9372411823504212, \"n\": 5331}, {\"threshold\": 0.5910000205039978, \"p\": 28012, \"fpr\": 0.22115925717501406, \"tpr\": 0.9372411823504212, \"n\": 5331}, {\"threshold\": 0.5920000076293945, \"p\": 28012, \"fpr\": 0.2209716751078597, \"tpr\": 0.9372054833642725, \"n\": 5331}, {\"threshold\": 0.5929999947547913, \"p\": 28012, \"fpr\": 0.22059651097355093, \"tpr\": 0.9370983864058261, \"n\": 5331}, {\"threshold\": 0.593999981880188, \"p\": 28012, \"fpr\": 0.22003376477208778, \"tpr\": 0.9370269884335285, \"n\": 5331}, {\"threshold\": 0.5950000286102295, \"p\": 28012, \"fpr\": 0.21928343650347026, \"tpr\": 0.9368484935027845, \"n\": 5331}, {\"threshold\": 0.5960000157356262, \"p\": 28012, \"fpr\": 0.21872069030200714, \"tpr\": 0.9367770955304869, \"n\": 5331}, {\"threshold\": 0.597000002861023, \"p\": 28012, \"fpr\": 0.21834552616769837, \"tpr\": 0.9366699985720406, \"n\": 5331}, {\"threshold\": 0.5979999899864197, \"p\": 28012, \"fpr\": 0.21778277996623524, \"tpr\": 0.936598600599743, \"n\": 5331}, {\"threshold\": 0.5989999771118164, \"p\": 28012, \"fpr\": 0.21740761583192647, \"tpr\": 0.9365272026274454, \"n\": 5331}, {\"threshold\": 0.6000000238418579, \"p\": 28012, \"fpr\": 0.2170324516976177, \"tpr\": 0.9364558046551478, \"n\": 5331}, {\"threshold\": 0.6010000109672546, \"p\": 28012, \"fpr\": 0.21665728756330896, \"tpr\": 0.9363130087105527, \"n\": 5331}, {\"threshold\": 0.6019999980926514, \"p\": 28012, \"fpr\": 0.21590695929469142, \"tpr\": 0.9362416107382551, \"n\": 5331}, {\"threshold\": 0.6029999852180481, \"p\": 28012, \"fpr\": 0.2151566310260739, \"tpr\": 0.9361702127659575, \"n\": 5331}, {\"threshold\": 0.6039999723434448, \"p\": 28012, \"fpr\": 0.21459388482461078, \"tpr\": 0.9361345137798086, \"n\": 5331}, {\"threshold\": 0.6050000190734863, \"p\": 28012, \"fpr\": 0.21403113862314763, \"tpr\": 0.9359560188490647, \"n\": 5331}, {\"threshold\": 0.6060000061988831, \"p\": 28012, \"fpr\": 0.21365597448883886, \"tpr\": 0.9357775239183207, \"n\": 5331}, {\"threshold\": 0.6069999933242798, \"p\": 28012, \"fpr\": 0.21365597448883886, \"tpr\": 0.9356704269598743, \"n\": 5331}, {\"threshold\": 0.6079999804496765, \"p\": 28012, \"fpr\": 0.21328081035453011, \"tpr\": 0.935563330001428, \"n\": 5331}, {\"threshold\": 0.609000027179718, \"p\": 28012, \"fpr\": 0.21309322828737573, \"tpr\": 0.9354205340568328, \"n\": 5331}, {\"threshold\": 0.6100000143051147, \"p\": 28012, \"fpr\": 0.21309322828737573, \"tpr\": 0.9354205340568328, \"n\": 5331}, {\"threshold\": 0.6110000014305115, \"p\": 28012, \"fpr\": 0.21290564622022135, \"tpr\": 0.9353134370983864, \"n\": 5331}, {\"threshold\": 0.6119999885559082, \"p\": 28012, \"fpr\": 0.21271806415306696, \"tpr\": 0.93520634013994, \"n\": 5331}, {\"threshold\": 0.6129999756813049, \"p\": 28012, \"fpr\": 0.21253048208591258, \"tpr\": 0.9350635441953449, \"n\": 5331}, {\"threshold\": 0.6140000224113464, \"p\": 28012, \"fpr\": 0.21234290001875822, \"tpr\": 0.9349564472368985, \"n\": 5331}, {\"threshold\": 0.6150000095367432, \"p\": 28012, \"fpr\": 0.21215531795160383, \"tpr\": 0.9348136512923033, \"n\": 5331}, {\"threshold\": 0.6159999966621399, \"p\": 28012, \"fpr\": 0.21196773588444945, \"tpr\": 0.9346351563615594, \"n\": 5331}, {\"threshold\": 0.6169999837875366, \"p\": 28012, \"fpr\": 0.21178015381729506, \"tpr\": 0.9344209624446665, \"n\": 5331}, {\"threshold\": 0.6179999709129333, \"p\": 28012, \"fpr\": 0.21178015381729506, \"tpr\": 0.9342067685277738, \"n\": 5331}, {\"threshold\": 0.6190000176429749, \"p\": 28012, \"fpr\": 0.21159257175014068, \"tpr\": 0.9340282735970299, \"n\": 5331}, {\"threshold\": 0.6200000047683716, \"p\": 28012, \"fpr\": 0.21159257175014068, \"tpr\": 0.9339568756247323, \"n\": 5331}, {\"threshold\": 0.6209999918937683, \"p\": 28012, \"fpr\": 0.21121740761583194, \"tpr\": 0.9337426817078395, \"n\": 5331}, {\"threshold\": 0.621999979019165, \"p\": 28012, \"fpr\": 0.21084224348152317, \"tpr\": 0.9335641867770955, \"n\": 5331}, {\"threshold\": 0.6230000257492065, \"p\": 28012, \"fpr\": 0.21065466141436878, \"tpr\": 0.9334927888047979, \"n\": 5331}, {\"threshold\": 0.6240000128746033, \"p\": 28012, \"fpr\": 0.21009191521290566, \"tpr\": 0.9333856918463516, \"n\": 5331}, {\"threshold\": 0.625, \"p\": 28012, \"fpr\": 0.2095291690114425, \"tpr\": 0.9332785948879052, \"n\": 5331}, {\"threshold\": 0.6259999871253967, \"p\": 28012, \"fpr\": 0.2095291690114425, \"tpr\": 0.9331714979294587, \"n\": 5331}, {\"threshold\": 0.6269999742507935, \"p\": 28012, \"fpr\": 0.20915400487713376, \"tpr\": 0.9330644009710124, \"n\": 5331}, {\"threshold\": 0.628000020980835, \"p\": 28012, \"fpr\": 0.208778840742825, \"tpr\": 0.9328145080679708, \"n\": 5331}, {\"threshold\": 0.6290000081062317, \"p\": 28012, \"fpr\": 0.20821609454136183, \"tpr\": 0.9326003141510781, \"n\": 5331}, {\"threshold\": 0.6299999952316284, \"p\": 28012, \"fpr\": 0.20802851247420748, \"tpr\": 0.9323861202341853, \"n\": 5331}, {\"threshold\": 0.6309999823570251, \"p\": 28012, \"fpr\": 0.2078409304070531, \"tpr\": 0.9320648293588462, \"n\": 5331}, {\"threshold\": 0.6320000290870667, \"p\": 28012, \"fpr\": 0.2076533483398987, \"tpr\": 0.9319934313865487, \"n\": 5331}, {\"threshold\": 0.6330000162124634, \"p\": 28012, \"fpr\": 0.20727818420558994, \"tpr\": 0.9318863344281022, \"n\": 5331}, {\"threshold\": 0.6340000033378601, \"p\": 28012, \"fpr\": 0.20709060213843555, \"tpr\": 0.9317792374696559, \"n\": 5331}, {\"threshold\": 0.6349999904632568, \"p\": 28012, \"fpr\": 0.2069030200712812, \"tpr\": 0.9316007425389119, \"n\": 5331}, {\"threshold\": 0.6359999775886536, \"p\": 28012, \"fpr\": 0.2067154380041268, \"tpr\": 0.9314222476081679, \"n\": 5331}, {\"threshold\": 0.6370000243186951, \"p\": 28012, \"fpr\": 0.20596510973550927, \"tpr\": 0.9313508496358703, \"n\": 5331}, {\"threshold\": 0.6380000114440918, \"p\": 28012, \"fpr\": 0.20577752766835491, \"tpr\": 0.9312794516635727, \"n\": 5331}, {\"threshold\": 0.6389999985694885, \"p\": 28012, \"fpr\": 0.20558994560120053, \"tpr\": 0.93106525774668, \"n\": 5331}, {\"threshold\": 0.6399999856948853, \"p\": 28012, \"fpr\": 0.20558994560120053, \"tpr\": 0.9309938597743824, \"n\": 5331}, {\"threshold\": 0.640999972820282, \"p\": 28012, \"fpr\": 0.20502719939973738, \"tpr\": 0.9308510638297872, \"n\": 5331}, {\"threshold\": 0.6420000195503235, \"p\": 28012, \"fpr\": 0.20446445319827425, \"tpr\": 0.9307439668713409, \"n\": 5331}, {\"threshold\": 0.6430000066757202, \"p\": 28012, \"fpr\": 0.20408928906396548, \"tpr\": 0.9306725688990433, \"n\": 5331}, {\"threshold\": 0.6439999938011169, \"p\": 28012, \"fpr\": 0.20371412492965674, \"tpr\": 0.9306011709267457, \"n\": 5331}, {\"threshold\": 0.6449999809265137, \"p\": 28012, \"fpr\": 0.20371412492965674, \"tpr\": 0.9304940739682993, \"n\": 5331}, {\"threshold\": 0.6460000276565552, \"p\": 28012, \"fpr\": 0.20352654286250235, \"tpr\": 0.930386977009853, \"n\": 5331}, {\"threshold\": 0.6470000147819519, \"p\": 28012, \"fpr\": 0.20352654286250235, \"tpr\": 0.9302798800514065, \"n\": 5331}, {\"threshold\": 0.6480000019073486, \"p\": 28012, \"fpr\": 0.20333896079534797, \"tpr\": 0.9302441810652577, \"n\": 5331}, {\"threshold\": 0.6489999890327454, \"p\": 28012, \"fpr\": 0.2029637966610392, \"tpr\": 0.9299942881622162, \"n\": 5331}, {\"threshold\": 0.6499999761581421, \"p\": 28012, \"fpr\": 0.2027762145938848, \"tpr\": 0.9297443952591746, \"n\": 5331}, {\"threshold\": 0.6510000228881836, \"p\": 28012, \"fpr\": 0.20165072219095853, \"tpr\": 0.9295659003284307, \"n\": 5331}, {\"threshold\": 0.6520000100135803, \"p\": 28012, \"fpr\": 0.20165072219095853, \"tpr\": 0.9293517064115379, \"n\": 5331}, {\"threshold\": 0.652999997138977, \"p\": 28012, \"fpr\": 0.20146314012380417, \"tpr\": 0.9292446094530915, \"n\": 5331}, {\"threshold\": 0.6539999842643738, \"p\": 28012, \"fpr\": 0.2012755580566498, \"tpr\": 0.9291375124946452, \"n\": 5331}, {\"threshold\": 0.6549999713897705, \"p\": 28012, \"fpr\": 0.20052522978803228, \"tpr\": 0.92899471655005, \"n\": 5331}, {\"threshold\": 0.656000018119812, \"p\": 28012, \"fpr\": 0.2001500656537235, \"tpr\": 0.9288519206054549, \"n\": 5331}, {\"threshold\": 0.6570000052452087, \"p\": 28012, \"fpr\": 0.19977490151941474, \"tpr\": 0.9287091246608596, \"n\": 5331}, {\"threshold\": 0.6579999923706055, \"p\": 28012, \"fpr\": 0.1992121553179516, \"tpr\": 0.9285663287162644, \"n\": 5331}, {\"threshold\": 0.6589999794960022, \"p\": 28012, \"fpr\": 0.19902457325079723, \"tpr\": 0.9284235327716693, \"n\": 5331}, {\"threshold\": 0.6600000262260437, \"p\": 28012, \"fpr\": 0.19883699118364284, \"tpr\": 0.9283878337855205, \"n\": 5331}, {\"threshold\": 0.6610000133514404, \"p\": 28012, \"fpr\": 0.19846182704933407, \"tpr\": 0.9281736398686278, \"n\": 5331}, {\"threshold\": 0.6620000004768372, \"p\": 28012, \"fpr\": 0.19846182704933407, \"tpr\": 0.9280308439240326, \"n\": 5331}, {\"threshold\": 0.6629999876022339, \"p\": 28012, \"fpr\": 0.19808666291502533, \"tpr\": 0.9278523489932886, \"n\": 5331}, {\"threshold\": 0.6639999747276306, \"p\": 28012, \"fpr\": 0.19808666291502533, \"tpr\": 0.9277452520348423, \"n\": 5331}, {\"threshold\": 0.6650000214576721, \"p\": 28012, \"fpr\": 0.19789908084787095, \"tpr\": 0.9275310581179494, \"n\": 5331}, {\"threshold\": 0.6660000085830688, \"p\": 28012, \"fpr\": 0.19714875257925343, \"tpr\": 0.9273882621733542, \"n\": 5331}, {\"threshold\": 0.6669999957084656, \"p\": 28012, \"fpr\": 0.19677358844494466, \"tpr\": 0.9272454662287591, \"n\": 5331}, {\"threshold\": 0.6679999828338623, \"p\": 28012, \"fpr\": 0.1963984243106359, \"tpr\": 0.9270312723118663, \"n\": 5331}, {\"threshold\": 0.6690000295639038, \"p\": 28012, \"fpr\": 0.19602326017632715, \"tpr\": 0.9269598743395687, \"n\": 5331}, {\"threshold\": 0.6700000166893005, \"p\": 28012, \"fpr\": 0.19583567810917277, \"tpr\": 0.9268170783949736, \"n\": 5331}, {\"threshold\": 0.6710000038146973, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9267099814365272, \"n\": 5331}, {\"threshold\": 0.671999990940094, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9266028844780808, \"n\": 5331}, {\"threshold\": 0.6729999780654907, \"p\": 28012, \"fpr\": 0.19564809604201838, \"tpr\": 0.9264957875196345, \"n\": 5331}, {\"threshold\": 0.6740000247955322, \"p\": 28012, \"fpr\": 0.19471018570624649, \"tpr\": 0.9262458946165929, \"n\": 5331}, {\"threshold\": 0.675000011920929, \"p\": 28012, \"fpr\": 0.19020821609454136, \"tpr\": 0.9211766385834642, \"n\": 5331}, {\"threshold\": 0.6759999990463257, \"p\": 28012, \"fpr\": 0.18964546989307823, \"tpr\": 0.9209624446665715, \"n\": 5331}, {\"threshold\": 0.6769999861717224, \"p\": 28012, \"fpr\": 0.1888951416244607, \"tpr\": 0.9207482507496787, \"n\": 5331}, {\"threshold\": 0.6779999732971191, \"p\": 28012, \"fpr\": 0.18851997749015195, \"tpr\": 0.9206411537912323, \"n\": 5331}, {\"threshold\": 0.6790000200271606, \"p\": 28012, \"fpr\": 0.18833239542299757, \"tpr\": 0.9204983578466371, \"n\": 5331}, {\"threshold\": 0.6800000071525574, \"p\": 28012, \"fpr\": 0.18814481335584318, \"tpr\": 0.9202841639297444, \"n\": 5331}, {\"threshold\": 0.6809999942779541, \"p\": 28012, \"fpr\": 0.1879572312886888, \"tpr\": 0.9202484649435956, \"n\": 5331}, {\"threshold\": 0.6819999814033508, \"p\": 28012, \"fpr\": 0.18758206715438003, \"tpr\": 0.9201056689990005, \"n\": 5331}, {\"threshold\": 0.6830000281333923, \"p\": 28012, \"fpr\": 0.18739448508722567, \"tpr\": 0.919998572040554, \"n\": 5331}, {\"threshold\": 0.6840000152587891, \"p\": 28012, \"fpr\": 0.1862689926842994, \"tpr\": 0.9198914750821077, \"n\": 5331}, {\"threshold\": 0.6850000023841858, \"p\": 28012, \"fpr\": 0.186081410617145, \"tpr\": 0.9197486791375125, \"n\": 5331}, {\"threshold\": 0.6859999895095825, \"p\": 28012, \"fpr\": 0.18589382854999062, \"tpr\": 0.9195701842067685, \"n\": 5331}, {\"threshold\": 0.6869999766349792, \"p\": 28012, \"fpr\": 0.1853310823485275, \"tpr\": 0.9194987862344709, \"n\": 5331}, {\"threshold\": 0.6880000233650208, \"p\": 28012, \"fpr\": 0.1842055899456012, \"tpr\": 0.9192845923175782, \"n\": 5331}, {\"threshold\": 0.6890000104904175, \"p\": 28012, \"fpr\": 0.18345526167698367, \"tpr\": 0.9190703984006854, \"n\": 5331}, {\"threshold\": 0.6899999976158142, \"p\": 28012, \"fpr\": 0.18345526167698367, \"tpr\": 0.9188919034699414, \"n\": 5331}, {\"threshold\": 0.6909999847412109, \"p\": 28012, \"fpr\": 0.18270493340836616, \"tpr\": 0.9187491075253463, \"n\": 5331}, {\"threshold\": 0.6919999718666077, \"p\": 28012, \"fpr\": 0.18270493340836616, \"tpr\": 0.9185706125946023, \"n\": 5331}, {\"threshold\": 0.6930000185966492, \"p\": 28012, \"fpr\": 0.18251735134121178, \"tpr\": 0.9183207196915607, \"n\": 5331}, {\"threshold\": 0.6940000057220459, \"p\": 28012, \"fpr\": 0.18195460513974865, \"tpr\": 0.9181422247608167, \"n\": 5331}, {\"threshold\": 0.6949999928474426, \"p\": 28012, \"fpr\": 0.1813918589382855, \"tpr\": 0.9179637298300728, \"n\": 5331}, {\"threshold\": 0.6959999799728394, \"p\": 28012, \"fpr\": 0.1804539486025136, \"tpr\": 0.917928030843924, \"n\": 5331}, {\"threshold\": 0.6970000267028809, \"p\": 28012, \"fpr\": 0.1802663665353592, \"tpr\": 0.9176067399685849, \"n\": 5331}, {\"threshold\": 0.6980000138282776, \"p\": 28012, \"fpr\": 0.1802663665353592, \"tpr\": 0.9174639440239897, \"n\": 5331}, {\"threshold\": 0.6990000009536743, \"p\": 28012, \"fpr\": 0.17989120240105047, \"tpr\": 0.9173925460516922, \"n\": 5331}, {\"threshold\": 0.699999988079071, \"p\": 28012, \"fpr\": 0.17989120240105047, \"tpr\": 0.9172854490932457, \"n\": 5331}, {\"threshold\": 0.7009999752044678, \"p\": 28012, \"fpr\": 0.17895329206527855, \"tpr\": 0.9172140511209481, \"n\": 5331}, {\"threshold\": 0.7020000219345093, \"p\": 28012, \"fpr\": 0.17895329206527855, \"tpr\": 0.9169641582179067, \"n\": 5331}, {\"threshold\": 0.703000009059906, \"p\": 28012, \"fpr\": 0.1785781279309698, \"tpr\": 0.9168213622733115, \"n\": 5331}, {\"threshold\": 0.7039999961853027, \"p\": 28012, \"fpr\": 0.17839054586381542, \"tpr\": 0.9167856632871626, \"n\": 5331}, {\"threshold\": 0.7049999833106995, \"p\": 28012, \"fpr\": 0.17745263552804352, \"tpr\": 0.9166785663287162, \"n\": 5331}, {\"threshold\": 0.7059999704360962, \"p\": 28012, \"fpr\": 0.17707747139373475, \"tpr\": 0.9163929744395259, \"n\": 5331}, {\"threshold\": 0.7070000171661377, \"p\": 28012, \"fpr\": 0.17595197899080847, \"tpr\": 0.9161073825503355, \"n\": 5331}, {\"threshold\": 0.7080000042915344, \"p\": 28012, \"fpr\": 0.1757643969236541, \"tpr\": 0.9159288876195916, \"n\": 5331}, {\"threshold\": 0.7089999914169312, \"p\": 28012, \"fpr\": 0.17538923278934535, \"tpr\": 0.9156432957304013, \"n\": 5331}, {\"threshold\": 0.7099999785423279, \"p\": 28012, \"fpr\": 0.17426374038641906, \"tpr\": 0.9153934028273597, \"n\": 5331}, {\"threshold\": 0.7110000252723694, \"p\": 28012, \"fpr\": 0.17407615831926468, \"tpr\": 0.9152149078966157, \"n\": 5331}, {\"threshold\": 0.7120000123977661, \"p\": 28012, \"fpr\": 0.17407615831926468, \"tpr\": 0.9149650149935742, \"n\": 5331}, {\"threshold\": 0.7129999995231628, \"p\": 28012, \"fpr\": 0.1737009941849559, \"tpr\": 0.914643724118235, \"n\": 5331}, {\"threshold\": 0.7139999866485596, \"p\": 28012, \"fpr\": 0.172763083849184, \"tpr\": 0.9144652291874911, \"n\": 5331}, {\"threshold\": 0.7149999737739563, \"p\": 28012, \"fpr\": 0.17238791971487527, \"tpr\": 0.9142867342567471, \"n\": 5331}, {\"threshold\": 0.7160000205039978, \"p\": 28012, \"fpr\": 0.17220033764772089, \"tpr\": 0.9140725403398543, \"n\": 5331}, {\"threshold\": 0.7170000076293945, \"p\": 28012, \"fpr\": 0.17182517351341212, \"tpr\": 0.9138226474368127, \"n\": 5331}, {\"threshold\": 0.7179999947547913, \"p\": 28012, \"fpr\": 0.171262427311949, \"tpr\": 0.9136798514922176, \"n\": 5331}, {\"threshold\": 0.718999981880188, \"p\": 28012, \"fpr\": 0.17088726317764022, \"tpr\": 0.91360845351992, \"n\": 5331}, {\"threshold\": 0.7200000286102295, \"p\": 28012, \"fpr\": 0.17069968111048583, \"tpr\": 0.9135727545337713, \"n\": 5331}, {\"threshold\": 0.7210000157356262, \"p\": 28012, \"fpr\": 0.17032451697617706, \"tpr\": 0.9133585606168785, \"n\": 5331}, {\"threshold\": 0.722000002861023, \"p\": 28012, \"fpr\": 0.16938660664040517, \"tpr\": 0.9130372697415393, \"n\": 5331}, {\"threshold\": 0.7229999899864197, \"p\": 28012, \"fpr\": 0.16919902457325078, \"tpr\": 0.9128587748107954, \"n\": 5331}, {\"threshold\": 0.7239999771118164, \"p\": 28012, \"fpr\": 0.16919902457325078, \"tpr\": 0.9126802798800514, \"n\": 5331}, {\"threshold\": 0.7250000238418579, \"p\": 28012, \"fpr\": 0.16882386043894204, \"tpr\": 0.9125374839354562, \"n\": 5331}, {\"threshold\": 0.7260000109672546, \"p\": 28012, \"fpr\": 0.16844869630463327, \"tpr\": 0.9122161930601171, \"n\": 5331}, {\"threshold\": 0.7269999980926514, \"p\": 28012, \"fpr\": 0.1682611142374789, \"tpr\": 0.9119663001570756, \"n\": 5331}, {\"threshold\": 0.7279999852180481, \"p\": 28012, \"fpr\": 0.16807353217032453, \"tpr\": 0.911894902184778, \"n\": 5331}, {\"threshold\": 0.7289999723434448, \"p\": 28012, \"fpr\": 0.16788595010317015, \"tpr\": 0.9117521062401828, \"n\": 5331}, {\"threshold\": 0.7300000190734863, \"p\": 28012, \"fpr\": 0.16751078596886138, \"tpr\": 0.9116093102955876, \"n\": 5331}, {\"threshold\": 0.7310000061988831, \"p\": 28012, \"fpr\": 0.16694803976739825, \"tpr\": 0.9113237184063973, \"n\": 5331}, {\"threshold\": 0.7319999933242798, \"p\": 28012, \"fpr\": 0.1661977114987807, \"tpr\": 0.911180922461802, \"n\": 5331}, {\"threshold\": 0.7329999804496765, \"p\": 28012, \"fpr\": 0.16601012943162632, \"tpr\": 0.9108239326003141, \"n\": 5331}, {\"threshold\": 0.734000027179718, \"p\": 28012, \"fpr\": 0.16582254736447197, \"tpr\": 0.9106454376695702, \"n\": 5331}, {\"threshold\": 0.7350000143051147, \"p\": 28012, \"fpr\": 0.16563496529731758, \"tpr\": 0.910502641724975, \"n\": 5331}, {\"threshold\": 0.7360000014305115, \"p\": 28012, \"fpr\": 0.1654473832301632, \"tpr\": 0.9102527488219334, \"n\": 5331}, {\"threshold\": 0.7369999885559082, \"p\": 28012, \"fpr\": 0.1654473832301632, \"tpr\": 0.9101099528773383, \"n\": 5331}, {\"threshold\": 0.7379999756813049, \"p\": 28012, \"fpr\": 0.16488463702870004, \"tpr\": 0.9099314579465944, \"n\": 5331}, {\"threshold\": 0.7390000224113464, \"p\": 28012, \"fpr\": 0.16432189082723692, \"tpr\": 0.9096458660574039, \"n\": 5331}, {\"threshold\": 0.7400000095367432, \"p\": 28012, \"fpr\": 0.16394672669292815, \"tpr\": 0.9095387690989576, \"n\": 5331}, {\"threshold\": 0.7409999966621399, \"p\": 28012, \"fpr\": 0.16319639842431063, \"tpr\": 0.9093959731543624, \"n\": 5331}, {\"threshold\": 0.7419999837875366, \"p\": 28012, \"fpr\": 0.16300881635715625, \"tpr\": 0.9091817792374697, \"n\": 5331}, {\"threshold\": 0.7429999709129333, \"p\": 28012, \"fpr\": 0.16244607015569312, \"tpr\": 0.9090389832928745, \"n\": 5331}, {\"threshold\": 0.7440000176429749, \"p\": 28012, \"fpr\": 0.16188332395422997, \"tpr\": 0.9087890903898329, \"n\": 5331}, {\"threshold\": 0.7450000047683716, \"p\": 28012, \"fpr\": 0.16169574188707558, \"tpr\": 0.908610595459089, \"n\": 5331}, {\"threshold\": 0.7459999918937683, \"p\": 28012, \"fpr\": 0.16150815981992123, \"tpr\": 0.9082893045837498, \"n\": 5331}, {\"threshold\": 0.746999979019165, \"p\": 28012, \"fpr\": 0.16113299568561246, \"tpr\": 0.9081822076253034, \"n\": 5331}, {\"threshold\": 0.7480000257492065, \"p\": 28012, \"fpr\": 0.16094541361845807, \"tpr\": 0.9078252177638155, \"n\": 5331}, {\"threshold\": 0.7490000128746033, \"p\": 28012, \"fpr\": 0.1607578315513037, \"tpr\": 0.9075039268884764, \"n\": 5331}, {\"threshold\": 0.75, \"p\": 28012, \"fpr\": 0.16038266741699495, \"tpr\": 0.9072897329715837, \"n\": 5331}, {\"threshold\": 0.7509999871253967, \"p\": 28012, \"fpr\": 0.15906959294691428, \"tpr\": 0.9071469370269885, \"n\": 5331}, {\"threshold\": 0.7519999742507935, \"p\": 28012, \"fpr\": 0.1588820108797599, \"tpr\": 0.9069327431100956, \"n\": 5331}, {\"threshold\": 0.753000020980835, \"p\": 28012, \"fpr\": 0.1577565184768336, \"tpr\": 0.9066828502070541, \"n\": 5331}, {\"threshold\": 0.7540000081062317, \"p\": 28012, \"fpr\": 0.15756893640967923, \"tpr\": 0.9066114522347566, \"n\": 5331}, {\"threshold\": 0.7549999952316284, \"p\": 28012, \"fpr\": 0.15756893640967923, \"tpr\": 0.9064329573040125, \"n\": 5331}, {\"threshold\": 0.7559999823570251, \"p\": 28012, \"fpr\": 0.15719377227537049, \"tpr\": 0.9062187633871198, \"n\": 5331}, {\"threshold\": 0.7570000290870667, \"p\": 28012, \"fpr\": 0.1570061902082161, \"tpr\": 0.9058617735256319, \"n\": 5331}, {\"threshold\": 0.7580000162124634, \"p\": 28012, \"fpr\": 0.15625586193959856, \"tpr\": 0.9056118806225903, \"n\": 5331}, {\"threshold\": 0.7590000033378601, \"p\": 28012, \"fpr\": 0.15569311573813543, \"tpr\": 0.905147793802656, \"n\": 5331}, {\"threshold\": 0.7599999904632568, \"p\": 28012, \"fpr\": 0.15550553367098105, \"tpr\": 0.9048979008996144, \"n\": 5331}, {\"threshold\": 0.7609999775886536, \"p\": 28012, \"fpr\": 0.1551303695366723, \"tpr\": 0.9046123090104241, \"n\": 5331}, {\"threshold\": 0.7620000243186951, \"p\": 28012, \"fpr\": 0.15475520540236354, \"tpr\": 0.9042553191489362, \"n\": 5331}, {\"threshold\": 0.7630000114440918, \"p\": 28012, \"fpr\": 0.15419245920090038, \"tpr\": 0.9041482221904897, \"n\": 5331}, {\"threshold\": 0.7639999985694885, \"p\": 28012, \"fpr\": 0.15381729506659164, \"tpr\": 0.9037198343567042, \"n\": 5331}, {\"threshold\": 0.7649999856948853, \"p\": 28012, \"fpr\": 0.15344213093228287, \"tpr\": 0.9034699414536627, \"n\": 5331}, {\"threshold\": 0.765999972820282, \"p\": 28012, \"fpr\": 0.15287938473081975, \"tpr\": 0.9033271455090676, \"n\": 5331}, {\"threshold\": 0.7670000195503235, \"p\": 28012, \"fpr\": 0.15269180266366536, \"tpr\": 0.9030058546337284, \"n\": 5331}, {\"threshold\": 0.7680000066757202, \"p\": 28012, \"fpr\": 0.15250422059651098, \"tpr\": 0.9028630586891332, \"n\": 5331}, {\"threshold\": 0.7689999938011169, \"p\": 28012, \"fpr\": 0.1521290564622022, \"tpr\": 0.9025417678137941, \"n\": 5331}, {\"threshold\": 0.7699999809265137, \"p\": 28012, \"fpr\": 0.1521290564622022, \"tpr\": 0.9023632728830501, \"n\": 5331}, {\"threshold\": 0.7710000276565552, \"p\": 28012, \"fpr\": 0.15175389232789346, \"tpr\": 0.9020062830215622, \"n\": 5331}, {\"threshold\": 0.7720000147819519, \"p\": 28012, \"fpr\": 0.15156631026073908, \"tpr\": 0.901684992146223, \"n\": 5331}, {\"threshold\": 0.7730000019073486, \"p\": 28012, \"fpr\": 0.15100356405927592, \"tpr\": 0.9013994002570327, \"n\": 5331}, {\"threshold\": 0.7739999890327454, \"p\": 28012, \"fpr\": 0.1504408178578128, \"tpr\": 0.90118520634014, \"n\": 5331}, {\"threshold\": 0.7749999761581421, \"p\": 28012, \"fpr\": 0.15006565372350403, \"tpr\": 0.9010424103955448, \"n\": 5331}, {\"threshold\": 0.7760000228881836, \"p\": 28012, \"fpr\": 0.1495029075220409, \"tpr\": 0.9010067114093959, \"n\": 5331}, {\"threshold\": 0.7770000100135803, \"p\": 28012, \"fpr\": 0.14875257925342336, \"tpr\": 0.9007568185063545, \"n\": 5331}, {\"threshold\": 0.777999997138977, \"p\": 28012, \"fpr\": 0.148564997186269, \"tpr\": 0.9005069256033129, \"n\": 5331}, {\"threshold\": 0.7789999842643738, \"p\": 28012, \"fpr\": 0.14800225098480585, \"tpr\": 0.9001142367556761, \"n\": 5331}, {\"threshold\": 0.7799999713897705, \"p\": 28012, \"fpr\": 0.14800225098480585, \"tpr\": 0.8998286448664858, \"n\": 5331}, {\"threshold\": 0.781000018119812, \"p\": 28012, \"fpr\": 0.14781466891765146, \"tpr\": 0.8997215479080394, \"n\": 5331}, {\"threshold\": 0.7820000052452087, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8993645580465515, \"n\": 5331}, {\"threshold\": 0.7829999923706055, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8991503641296588, \"n\": 5331}, {\"threshold\": 0.7839999794960022, \"p\": 28012, \"fpr\": 0.14725192271618834, \"tpr\": 0.8988647722404683, \"n\": 5331}, {\"threshold\": 0.7850000262260437, \"p\": 28012, \"fpr\": 0.14687675858187957, \"tpr\": 0.8986148793374268, \"n\": 5331}, {\"threshold\": 0.7860000133514404, \"p\": 28012, \"fpr\": 0.14687675858187957, \"tpr\": 0.8983649864343852, \"n\": 5331}, {\"threshold\": 0.7870000004768372, \"p\": 28012, \"fpr\": 0.14612643031326206, \"tpr\": 0.8980436955590462, \"n\": 5331}, {\"threshold\": 0.7879999876022339, \"p\": 28012, \"fpr\": 0.1457512661789533, \"tpr\": 0.8978652006283021, \"n\": 5331}, {\"threshold\": 0.7889999747276306, \"p\": 28012, \"fpr\": 0.1448133558431814, \"tpr\": 0.8976153077252605, \"n\": 5331}, {\"threshold\": 0.7900000214576721, \"p\": 28012, \"fpr\": 0.1448133558431814, \"tpr\": 0.8973654148222191, \"n\": 5331}, {\"threshold\": 0.7910000085830688, \"p\": 28012, \"fpr\": 0.144625773776027, \"tpr\": 0.8971155219191775, \"n\": 5331}, {\"threshold\": 0.7919999957084656, \"p\": 28012, \"fpr\": 0.14406302757456388, \"tpr\": 0.896865629016136, \"n\": 5331}, {\"threshold\": 0.7929999828338623, \"p\": 28012, \"fpr\": 0.1436878634402551, \"tpr\": 0.8966157361130944, \"n\": 5331}, {\"threshold\": 0.7940000295639038, \"p\": 28012, \"fpr\": 0.14312511723879198, \"tpr\": 0.896330144223904, \"n\": 5331}, {\"threshold\": 0.7950000166893005, \"p\": 28012, \"fpr\": 0.1427499531044832, \"tpr\": 0.8960802513208624, \"n\": 5331}, {\"threshold\": 0.7960000038146973, \"p\": 28012, \"fpr\": 0.1419996248358657, \"tpr\": 0.8957946594316721, \"n\": 5331}, {\"threshold\": 0.796999990940094, \"p\": 28012, \"fpr\": 0.14143687863440255, \"tpr\": 0.8955804655147794, \"n\": 5331}, {\"threshold\": 0.7979999780654907, \"p\": 28012, \"fpr\": 0.1410617145000938, \"tpr\": 0.8953305726117379, \"n\": 5331}, {\"threshold\": 0.7990000247955322, \"p\": 28012, \"fpr\": 0.14049896829863065, \"tpr\": 0.8950806797086963, \"n\": 5331}, {\"threshold\": 0.800000011920929, \"p\": 28012, \"fpr\": 0.14031138623147626, \"tpr\": 0.8950449807225475, \"n\": 5331}, {\"threshold\": 0.8009999990463257, \"p\": 28012, \"fpr\": 0.13993622209716752, \"tpr\": 0.8947236898472083, \"n\": 5331}, {\"threshold\": 0.8019999861717224, \"p\": 28012, \"fpr\": 0.13937347589570437, \"tpr\": 0.8944023989718692, \"n\": 5331}, {\"threshold\": 0.8029999732971191, \"p\": 28012, \"fpr\": 0.1389983117613956, \"tpr\": 0.8940454091103812, \"n\": 5331}, {\"threshold\": 0.8040000200271606, \"p\": 28012, \"fpr\": 0.1389983117613956, \"tpr\": 0.8936170212765957, \"n\": 5331}, {\"threshold\": 0.8050000071525574, \"p\": 28012, \"fpr\": 0.1382479834927781, \"tpr\": 0.8932600314151078, \"n\": 5331}, {\"threshold\": 0.8059999942779541, \"p\": 28012, \"fpr\": 0.1382479834927781, \"tpr\": 0.8930815364843638, \"n\": 5331}, {\"threshold\": 0.8069999814033508, \"p\": 28012, \"fpr\": 0.1380604014256237, \"tpr\": 0.8928673425674711, \"n\": 5331}, {\"threshold\": 0.8080000281333923, \"p\": 28012, \"fpr\": 0.13768523729131496, \"tpr\": 0.8926888476367271, \"n\": 5331}, {\"threshold\": 0.8090000152587891, \"p\": 28012, \"fpr\": 0.1371224910898518, \"tpr\": 0.8921533628444952, \"n\": 5331}, {\"threshold\": 0.8100000023841858, \"p\": 28012, \"fpr\": 0.13693490902269742, \"tpr\": 0.8917606739968585, \"n\": 5331}, {\"threshold\": 0.8109999895095825, \"p\": 28012, \"fpr\": 0.13674732695554306, \"tpr\": 0.8914393831215194, \"n\": 5331}, {\"threshold\": 0.8119999766349792, \"p\": 28012, \"fpr\": 0.1363721628212343, \"tpr\": 0.8912965871769242, \"n\": 5331}, {\"threshold\": 0.8130000233650208, \"p\": 28012, \"fpr\": 0.1361845807540799, \"tpr\": 0.8910823932600315, \"n\": 5331}, {\"threshold\": 0.8140000104904175, \"p\": 28012, \"fpr\": 0.1361845807540799, \"tpr\": 0.8906897044123947, \"n\": 5331}, {\"threshold\": 0.8149999976158142, \"p\": 28012, \"fpr\": 0.13562183455261678, \"tpr\": 0.8902970155647579, \"n\": 5331}, {\"threshold\": 0.8159999847412109, \"p\": 28012, \"fpr\": 0.1354342524854624, \"tpr\": 0.8901899186063116, \"n\": 5331}, {\"threshold\": 0.8169999718666077, \"p\": 28012, \"fpr\": 0.1344963421496905, \"tpr\": 0.8898686277309724, \"n\": 5331}, {\"threshold\": 0.8180000185966492, \"p\": 28012, \"fpr\": 0.1344963421496905, \"tpr\": 0.8896544338140797, \"n\": 5331}, {\"threshold\": 0.8190000057220459, \"p\": 28012, \"fpr\": 0.13430876008253612, \"tpr\": 0.8893331429387406, \"n\": 5331}, {\"threshold\": 0.8199999928474426, \"p\": 28012, \"fpr\": 0.13430876008253612, \"tpr\": 0.8887619591603598, \"n\": 5331}, {\"threshold\": 0.8209999799728394, \"p\": 28012, \"fpr\": 0.13355843181391858, \"tpr\": 0.8884049692988719, \"n\": 5331}, {\"threshold\": 0.8220000267028809, \"p\": 28012, \"fpr\": 0.13355843181391858, \"tpr\": 0.8879765814650864, \"n\": 5331}, {\"threshold\": 0.8230000138282776, \"p\": 28012, \"fpr\": 0.13337084974676422, \"tpr\": 0.8875838926174496, \"n\": 5331}, {\"threshold\": 0.8240000009536743, \"p\": 28012, \"fpr\": 0.13299568561245545, \"tpr\": 0.8872626017421106, \"n\": 5331}, {\"threshold\": 0.824999988079071, \"p\": 28012, \"fpr\": 0.13205777527668355, \"tpr\": 0.8868699128944738, \"n\": 5331}, {\"threshold\": 0.8259999752044678, \"p\": 28012, \"fpr\": 0.1314950290752204, \"tpr\": 0.8863701270883907, \"n\": 5331}, {\"threshold\": 0.8270000219345093, \"p\": 28012, \"fpr\": 0.13111986494091166, \"tpr\": 0.8859774382407539, \"n\": 5331}, {\"threshold\": 0.828000009059906, \"p\": 28012, \"fpr\": 0.1305571187394485, \"tpr\": 0.8857275453377124, \"n\": 5331}, {\"threshold\": 0.8289999961853027, \"p\": 28012, \"fpr\": 0.13018195460513976, \"tpr\": 0.8855133514208197, \"n\": 5331}, {\"threshold\": 0.8299999833106995, \"p\": 28012, \"fpr\": 0.12999437253798538, \"tpr\": 0.8851206625731829, \"n\": 5331}, {\"threshold\": 0.8309999704360962, \"p\": 28012, \"fpr\": 0.1286812980679047, \"tpr\": 0.8849778666285878, \"n\": 5331}, {\"threshold\": 0.8320000171661377, \"p\": 28012, \"fpr\": 0.12830613393359594, \"tpr\": 0.8845137798086534, \"n\": 5331}, {\"threshold\": 0.8330000042915344, \"p\": 28012, \"fpr\": 0.12755580566497843, \"tpr\": 0.8841210909610167, \"n\": 5331}, {\"threshold\": 0.8339999914169312, \"p\": 28012, \"fpr\": 0.12718064153066966, \"tpr\": 0.8836570041410824, \"n\": 5331}, {\"threshold\": 0.8349999785423279, \"p\": 28012, \"fpr\": 0.12643031326205215, \"tpr\": 0.8833357132657432, \"n\": 5331}, {\"threshold\": 0.8360000252723694, \"p\": 28012, \"fpr\": 0.12567998499343463, \"tpr\": 0.882871626445809, \"n\": 5331}, {\"threshold\": 0.8370000123977661, \"p\": 28012, \"fpr\": 0.12530482085912586, \"tpr\": 0.8826217335427674, \"n\": 5331}, {\"threshold\": 0.8379999995231628, \"p\": 28012, \"fpr\": 0.12492965672481711, \"tpr\": 0.8824432386120235, \"n\": 5331}, {\"threshold\": 0.8389999866485596, \"p\": 28012, \"fpr\": 0.12492965672481711, \"tpr\": 0.8819077538197915, \"n\": 5331}, {\"threshold\": 0.8399999737739563, \"p\": 28012, \"fpr\": 0.12417932845619958, \"tpr\": 0.881300871055262, \"n\": 5331}, {\"threshold\": 0.8410000205039978, \"p\": 28012, \"fpr\": 0.12380416432189083, \"tpr\": 0.8810866771383693, \"n\": 5331}, {\"threshold\": 0.8420000076293945, \"p\": 28012, \"fpr\": 0.12324141812042769, \"tpr\": 0.8804797943738398, \"n\": 5331}, {\"threshold\": 0.8429999947547913, \"p\": 28012, \"fpr\": 0.1230538360532733, \"tpr\": 0.8799800085677567, \"n\": 5331}, {\"threshold\": 0.843999981880188, \"p\": 28012, \"fpr\": 0.1221159257175014, \"tpr\": 0.8793017278309296, \"n\": 5331}, {\"threshold\": 0.8450000286102295, \"p\": 28012, \"fpr\": 0.12136559744888388, \"tpr\": 0.8790875339140368, \"n\": 5331}, {\"threshold\": 0.8460000157356262, \"p\": 28012, \"fpr\": 0.12117801538172951, \"tpr\": 0.8788019420248465, \"n\": 5331}, {\"threshold\": 0.847000002861023, \"p\": 28012, \"fpr\": 0.12099043331457512, \"tpr\": 0.8784806511495074, \"n\": 5331}, {\"threshold\": 0.8479999899864197, \"p\": 28012, \"fpr\": 0.12005252297880323, \"tpr\": 0.8782307582464658, \"n\": 5331}, {\"threshold\": 0.8489999771118164, \"p\": 28012, \"fpr\": 0.11986494091164884, \"tpr\": 0.8778023704126803, \"n\": 5331}, {\"threshold\": 0.8500000238418579, \"p\": 28012, \"fpr\": 0.11967735884449447, \"tpr\": 0.8774453805511924, \"n\": 5331}, {\"threshold\": 0.8510000109672546, \"p\": 28012, \"fpr\": 0.11948977677734009, \"tpr\": 0.8770526917035556, \"n\": 5331}, {\"threshold\": 0.8519999980926514, \"p\": 28012, \"fpr\": 0.1193021947101857, \"tpr\": 0.8765886048836213, \"n\": 5331}, {\"threshold\": 0.8529999852180481, \"p\": 28012, \"fpr\": 0.11855186644156819, \"tpr\": 0.8761602170498358, \"n\": 5331}, {\"threshold\": 0.8539999723434448, \"p\": 28012, \"fpr\": 0.11817670230725942, \"tpr\": 0.875767528202199, \"n\": 5331}, {\"threshold\": 0.8550000190734863, \"p\": 28012, \"fpr\": 0.11761395610579628, \"tpr\": 0.8750535484792232, \"n\": 5331}, {\"threshold\": 0.8560000061988831, \"p\": 28012, \"fpr\": 0.11742637403864191, \"tpr\": 0.8744823647008425, \"n\": 5331}, {\"threshold\": 0.8569999933242798, \"p\": 28012, \"fpr\": 0.11723879197148752, \"tpr\": 0.874232471797801, \"n\": 5331}, {\"threshold\": 0.8579999804496765, \"p\": 28012, \"fpr\": 0.11648846370287, \"tpr\": 0.8738397829501642, \"n\": 5331}, {\"threshold\": 0.859000027179718, \"p\": 28012, \"fpr\": 0.11648846370287, \"tpr\": 0.8732685991717836, \"n\": 5331}, {\"threshold\": 0.8600000143051147, \"p\": 28012, \"fpr\": 0.11630088163571563, \"tpr\": 0.8728045123518492, \"n\": 5331}, {\"threshold\": 0.8610000014305115, \"p\": 28012, \"fpr\": 0.11573813543425249, \"tpr\": 0.8725546194488076, \"n\": 5331}, {\"threshold\": 0.8619999885559082, \"p\": 28012, \"fpr\": 0.1155505533670981, \"tpr\": 0.872161930601171, \"n\": 5331}, {\"threshold\": 0.8629999756813049, \"p\": 28012, \"fpr\": 0.11536297129994373, \"tpr\": 0.8717692417535342, \"n\": 5331}, {\"threshold\": 0.8640000224113464, \"p\": 28012, \"fpr\": 0.1146126430313262, \"tpr\": 0.871447950878195, \"n\": 5331}, {\"threshold\": 0.8650000095367432, \"p\": 28012, \"fpr\": 0.11348715062839992, \"tpr\": 0.8708767670998143, \"n\": 5331}, {\"threshold\": 0.8659999966621399, \"p\": 28012, \"fpr\": 0.11292440442693678, \"tpr\": 0.8701627873768385, \"n\": 5331}, {\"threshold\": 0.8669999837875366, \"p\": 28012, \"fpr\": 0.11236165822547364, \"tpr\": 0.8698057975153506, \"n\": 5331}, {\"threshold\": 0.8679999709129333, \"p\": 28012, \"fpr\": 0.11217407615831926, \"tpr\": 0.8692703127231186, \"n\": 5331}, {\"threshold\": 0.8690000176429749, \"p\": 28012, \"fpr\": 0.1117989120240105, \"tpr\": 0.8689847208339283, \"n\": 5331}, {\"threshold\": 0.8700000047683716, \"p\": 28012, \"fpr\": 0.11104858375539299, \"tpr\": 0.8684492360416964, \"n\": 5331}, {\"threshold\": 0.8709999918937683, \"p\": 28012, \"fpr\": 0.11067341962108422, \"tpr\": 0.8681993431386549, \"n\": 5331}, {\"threshold\": 0.871999979019165, \"p\": 28012, \"fpr\": 0.10973550928531232, \"tpr\": 0.8677352563187205, \"n\": 5331}, {\"threshold\": 0.8730000257492065, \"p\": 28012, \"fpr\": 0.10917276308384918, \"tpr\": 0.8670926745680423, \"n\": 5331}, {\"threshold\": 0.8740000128746033, \"p\": 28012, \"fpr\": 0.10879759894954043, \"tpr\": 0.8667356847065544, \"n\": 5331}, {\"threshold\": 0.875, \"p\": 28012, \"fpr\": 0.10823485274807729, \"tpr\": 0.8661645009281737, \"n\": 5331}, {\"threshold\": 0.8759999871253967, \"p\": 28012, \"fpr\": 0.10748452447945976, \"tpr\": 0.8658432100528345, \"n\": 5331}, {\"threshold\": 0.8769999742507935, \"p\": 28012, \"fpr\": 0.10673419621084225, \"tpr\": 0.8652006283021563, \"n\": 5331}, {\"threshold\": 0.878000020980835, \"p\": 28012, \"fpr\": 0.10579628587507034, \"tpr\": 0.8647008424960732, \"n\": 5331}, {\"threshold\": 0.8790000081062317, \"p\": 28012, \"fpr\": 0.10542112174076158, \"tpr\": 0.86420105668999, \"n\": 5331}, {\"threshold\": 0.8799999952316284, \"p\": 28012, \"fpr\": 0.1052335396736072, \"tpr\": 0.8634156789947165, \"n\": 5331}, {\"threshold\": 0.8809999823570251, \"p\": 28012, \"fpr\": 0.10485837553929844, \"tpr\": 0.8626660002855919, \"n\": 5331}, {\"threshold\": 0.8820000290870667, \"p\": 28012, \"fpr\": 0.1042956293378353, \"tpr\": 0.8620948165072112, \"n\": 5331}, {\"threshold\": 0.8830000162124634, \"p\": 28012, \"fpr\": 0.10392046520352655, \"tpr\": 0.8614879337426817, \"n\": 5331}, {\"threshold\": 0.8840000033378601, \"p\": 28012, \"fpr\": 0.10298255486775464, \"tpr\": 0.860738255033557, \"n\": 5331}, {\"threshold\": 0.8849999904632568, \"p\": 28012, \"fpr\": 0.10260739073344588, \"tpr\": 0.859881479365986, \"n\": 5331}, {\"threshold\": 0.8859999775886536, \"p\": 28012, \"fpr\": 0.10241980866629151, \"tpr\": 0.8594887905183493, \"n\": 5331}, {\"threshold\": 0.8870000243186951, \"p\": 28012, \"fpr\": 0.10204464453198274, \"tpr\": 0.8587034128230758, \"n\": 5331}, {\"threshold\": 0.8880000114440918, \"p\": 28012, \"fpr\": 0.10166948039767398, \"tpr\": 0.8580251320862488, \"n\": 5331}, {\"threshold\": 0.8889999985694885, \"p\": 28012, \"fpr\": 0.10129431626336523, \"tpr\": 0.8575967442524632, \"n\": 5331}, {\"threshold\": 0.8899999856948853, \"p\": 28012, \"fpr\": 0.09979365972613018, \"tpr\": 0.8569898614879338, \"n\": 5331}, {\"threshold\": 0.890999972820282, \"p\": 28012, \"fpr\": 0.09941849559182142, \"tpr\": 0.8560616878480651, \"n\": 5331}, {\"threshold\": 0.8920000195503235, \"p\": 28012, \"fpr\": 0.0986681673232039, \"tpr\": 0.8554191060973868, \"n\": 5331}, {\"threshold\": 0.8930000066757202, \"p\": 28012, \"fpr\": 0.09829300318889514, \"tpr\": 0.854705126374411, \"n\": 5331}, {\"threshold\": 0.8939999938011169, \"p\": 28012, \"fpr\": 0.09735509285312324, \"tpr\": 0.8537769527345423, \"n\": 5331}, {\"threshold\": 0.8949999809265137, \"p\": 28012, \"fpr\": 0.09697992871881449, \"tpr\": 0.8530986719977153, \"n\": 5331}, {\"threshold\": 0.8960000276565552, \"p\": 28012, \"fpr\": 0.09697992871881449, \"tpr\": 0.852277595316293, \"n\": 5331}, {\"threshold\": 0.8970000147819519, \"p\": 28012, \"fpr\": 0.0967923466516601, \"tpr\": 0.8515636155933172, \"n\": 5331}, {\"threshold\": 0.8980000019073486, \"p\": 28012, \"fpr\": 0.09641718251735135, \"tpr\": 0.8509567328287877, \"n\": 5331}, {\"threshold\": 0.8989999890327454, \"p\": 28012, \"fpr\": 0.0958544363158882, \"tpr\": 0.8501713551335142, \"n\": 5331}, {\"threshold\": 0.8999999761581421, \"p\": 28012, \"fpr\": 0.09547927218157944, \"tpr\": 0.8494930743966871, \"n\": 5331}, {\"threshold\": 0.9010000228881836, \"p\": 28012, \"fpr\": 0.09454136184580754, \"tpr\": 0.84881479365986, \"n\": 5331}, {\"threshold\": 0.9020000100135803, \"p\": 28012, \"fpr\": 0.09435377977865315, \"tpr\": 0.8481365129230329, \"n\": 5331}, {\"threshold\": 0.902999997138977, \"p\": 28012, \"fpr\": 0.09379103357719001, \"tpr\": 0.8478152220476939, \"n\": 5331}, {\"threshold\": 0.9039999842643738, \"p\": 28012, \"fpr\": 0.09360345151003564, \"tpr\": 0.8469941453662716, \"n\": 5331}, {\"threshold\": 0.9049999713897705, \"p\": 28012, \"fpr\": 0.09266554117426375, \"tpr\": 0.8464229615878909, \"n\": 5331}, {\"threshold\": 0.906000018119812, \"p\": 28012, \"fpr\": 0.09154004877133746, \"tpr\": 0.8454947879480222, \"n\": 5331}, {\"threshold\": 0.9070000052452087, \"p\": 28012, \"fpr\": 0.09078972050271994, \"tpr\": 0.8446380122804512, \"n\": 5331}, {\"threshold\": 0.9079999923706055, \"p\": 28012, \"fpr\": 0.08985181016694804, \"tpr\": 0.8436027416821362, \"n\": 5331}, {\"threshold\": 0.9089999794960022, \"p\": 28012, \"fpr\": 0.08966422809979366, \"tpr\": 0.8425317720976724, \"n\": 5331}, {\"threshold\": 0.9100000262260437, \"p\": 28012, \"fpr\": 0.08947664603263927, \"tpr\": 0.8416749964301014, \"n\": 5331}, {\"threshold\": 0.9110000133514404, \"p\": 28012, \"fpr\": 0.08872631776402176, \"tpr\": 0.8407468227902327, \"n\": 5331}, {\"threshold\": 0.9120000004768372, \"p\": 28012, \"fpr\": 0.08853873569686738, \"tpr\": 0.8400685420534056, \"n\": 5331}, {\"threshold\": 0.9129999876022339, \"p\": 28012, \"fpr\": 0.08816357156255862, \"tpr\": 0.8393545623304298, \"n\": 5331}, {\"threshold\": 0.9139999747276306, \"p\": 28012, \"fpr\": 0.08816357156255862, \"tpr\": 0.8386762815936027, \"n\": 5331}, {\"threshold\": 0.9150000214576721, \"p\": 28012, \"fpr\": 0.08778840742824986, \"tpr\": 0.8375696130229902, \"n\": 5331}, {\"threshold\": 0.9160000085830688, \"p\": 28012, \"fpr\": 0.08722566122678672, \"tpr\": 0.8366771383692703, \"n\": 5331}, {\"threshold\": 0.9169999957084656, \"p\": 28012, \"fpr\": 0.0864753329581692, \"tpr\": 0.8352848779094674, \"n\": 5331}, {\"threshold\": 0.9179999828338623, \"p\": 28012, \"fpr\": 0.0864753329581692, \"tpr\": 0.8339997144081108, \"n\": 5331}, {\"threshold\": 0.9190000295639038, \"p\": 28012, \"fpr\": 0.08591258675670606, \"tpr\": 0.8331072397543909, \"n\": 5331}, {\"threshold\": 0.9200000166893005, \"p\": 28012, \"fpr\": 0.08516225848808853, \"tpr\": 0.8316792803084393, \"n\": 5331}, {\"threshold\": 0.9210000038146973, \"p\": 28012, \"fpr\": 0.08478709435377978, \"tpr\": 0.8306797086962731, \"n\": 5331}, {\"threshold\": 0.921999990940094, \"p\": 28012, \"fpr\": 0.08384918401800788, \"tpr\": 0.8295373411395116, \"n\": 5331}, {\"threshold\": 0.9229999780654907, \"p\": 28012, \"fpr\": 0.08309885574939035, \"tpr\": 0.8283949735827503, \"n\": 5331}, {\"threshold\": 0.9240000247955322, \"p\": 28012, \"fpr\": 0.0827236916150816, \"tpr\": 0.8274667999428816, \"n\": 5331}, {\"threshold\": 0.925000011920929, \"p\": 28012, \"fpr\": 0.08234852748077284, \"tpr\": 0.8266814222476082, \"n\": 5331}, {\"threshold\": 0.9259999990463257, \"p\": 28012, \"fpr\": 0.08141061714500093, \"tpr\": 0.8253605597601028, \"n\": 5331}, {\"threshold\": 0.9269999861717224, \"p\": 28012, \"fpr\": 0.08141061714500093, \"tpr\": 0.8241824932171926, \"n\": 5331}, {\"threshold\": 0.9279999732971191, \"p\": 28012, \"fpr\": 0.08122303507784656, \"tpr\": 0.8232186205911752, \"n\": 5331}, {\"threshold\": 0.9290000200271606, \"p\": 28012, \"fpr\": 0.08047270680922904, \"tpr\": 0.8218620591175211, \"n\": 5331}, {\"threshold\": 0.9300000071525574, \"p\": 28012, \"fpr\": 0.07972237854061152, \"tpr\": 0.8206482935884621, \"n\": 5331}, {\"threshold\": 0.9309999942779541, \"p\": 28012, \"fpr\": 0.07859688613768524, \"tpr\": 0.8190775381979152, \"n\": 5331}, {\"threshold\": 0.9319999814033508, \"p\": 28012, \"fpr\": 0.07840930407053086, \"tpr\": 0.8176852777381123, \"n\": 5331}, {\"threshold\": 0.9330000281333923, \"p\": 28012, \"fpr\": 0.07840930407053086, \"tpr\": 0.8165072111952021, \"n\": 5331}, {\"threshold\": 0.9340000152587891, \"p\": 28012, \"fpr\": 0.07822172200337647, \"tpr\": 0.814972154790804, \"n\": 5331}, {\"threshold\": 0.9350000023841858, \"p\": 28012, \"fpr\": 0.0780341399362221, \"tpr\": 0.8134370983864059, \"n\": 5331}, {\"threshold\": 0.9359999895095825, \"p\": 28012, \"fpr\": 0.07747139373475896, \"tpr\": 0.8122233328573468, \"n\": 5331}, {\"threshold\": 0.9369999766349792, \"p\": 28012, \"fpr\": 0.07690864753329582, \"tpr\": 0.8111166642867342, \"n\": 5331}, {\"threshold\": 0.9380000233650208, \"p\": 28012, \"fpr\": 0.07653348339898705, \"tpr\": 0.8096530058546337, \"n\": 5331}, {\"threshold\": 0.9390000104904175, \"p\": 28012, \"fpr\": 0.07597073719752391, \"tpr\": 0.8081536484363844, \"n\": 5331}, {\"threshold\": 0.9399999976158142, \"p\": 28012, \"fpr\": 0.0752204089289064, \"tpr\": 0.806333000142796, \"n\": 5331}, {\"threshold\": 0.9409999847412109, \"p\": 28012, \"fpr\": 0.07465766272744326, \"tpr\": 0.8050121376552906, \"n\": 5331}, {\"threshold\": 0.9419999718666077, \"p\": 28012, \"fpr\": 0.07390733445882573, \"tpr\": 0.8035841782093388, \"n\": 5331}, {\"threshold\": 0.9430000185966492, \"p\": 28012, \"fpr\": 0.07371975239167136, \"tpr\": 0.8020491218049407, \"n\": 5331}, {\"threshold\": 0.9440000057220459, \"p\": 28012, \"fpr\": 0.07296942412305384, \"tpr\": 0.8006211623589891, \"n\": 5331}, {\"threshold\": 0.9449999928474426, \"p\": 28012, \"fpr\": 0.07259425998874508, \"tpr\": 0.7990147079822933, \"n\": 5331}, {\"threshold\": 0.9459999799728394, \"p\": 28012, \"fpr\": 0.07221909585443631, \"tpr\": 0.7971583607025561, \"n\": 5331}, {\"threshold\": 0.9470000267028809, \"p\": 28012, \"fpr\": 0.07128118551866441, \"tpr\": 0.7954805083535628, \"n\": 5331}, {\"threshold\": 0.9480000138282776, \"p\": 28012, \"fpr\": 0.07071843931720127, \"tpr\": 0.7940882478937599, \"n\": 5331}, {\"threshold\": 0.9490000009536743, \"p\": 28012, \"fpr\": 0.06921778277996624, \"tpr\": 0.7924460945309153, \"n\": 5331}, {\"threshold\": 0.949999988079071, \"p\": 28012, \"fpr\": 0.06790470830988557, \"tpr\": 0.7899828644866486, \"n\": 5331}, {\"threshold\": 0.9509999752044678, \"p\": 28012, \"fpr\": 0.06715438004126806, \"tpr\": 0.7884478080822505, \"n\": 5331}, {\"threshold\": 0.9520000219345093, \"p\": 28012, \"fpr\": 0.06640405177265053, \"tpr\": 0.7868770526917036, \"n\": 5331}, {\"threshold\": 0.953000009059906, \"p\": 28012, \"fpr\": 0.06565372350403302, \"tpr\": 0.7845209196058832, \"n\": 5331}, {\"threshold\": 0.9539999961853027, \"p\": 28012, \"fpr\": 0.06509097730256988, \"tpr\": 0.7821290875339141, \"n\": 5331}, {\"threshold\": 0.9549999833106995, \"p\": 28012, \"fpr\": 0.06434064903395235, \"tpr\": 0.7799871483649864, \"n\": 5331}, {\"threshold\": 0.9559999704360962, \"p\": 28012, \"fpr\": 0.0639654848996436, \"tpr\": 0.7783806939882907, \"n\": 5331}, {\"threshold\": 0.9570000171661377, \"p\": 28012, \"fpr\": 0.06283999249671732, \"tpr\": 0.7761673568470655, \"n\": 5331}, {\"threshold\": 0.9580000042915344, \"p\": 28012, \"fpr\": 0.06208966422809979, \"tpr\": 0.7742396115950307, \"n\": 5331}, {\"threshold\": 0.9589999914169312, \"p\": 28012, \"fpr\": 0.061151753892327895, \"tpr\": 0.7714907896615736, \"n\": 5331}, {\"threshold\": 0.9599999785423279, \"p\": 28012, \"fpr\": 0.06077658975801913, \"tpr\": 0.7690989575896044, \"n\": 5331}, {\"threshold\": 0.9610000252723694, \"p\": 28012, \"fpr\": 0.06021384355655599, \"tpr\": 0.7665643295730401, \"n\": 5331}, {\"threshold\": 0.9620000123977661, \"p\": 28012, \"fpr\": 0.05890076908647533, \"tpr\": 0.7644223904041125, \"n\": 5331}, {\"threshold\": 0.9629999995231628, \"p\": 28012, \"fpr\": 0.05833802288501219, \"tpr\": 0.7614593745537627, \"n\": 5331}, {\"threshold\": 0.9639999866485596, \"p\": 28012, \"fpr\": 0.057400112549240295, \"tpr\": 0.7582464658003712, \"n\": 5331}, {\"threshold\": 0.9649999737739563, \"p\": 28012, \"fpr\": 0.05646220221346839, \"tpr\": 0.7557832357561045, \"n\": 5331}, {\"threshold\": 0.9660000205039978, \"p\": 28012, \"fpr\": 0.05571187394485087, \"tpr\": 0.7528202199057547, \"n\": 5331}, {\"threshold\": 0.9670000076293945, \"p\": 28012, \"fpr\": 0.054961545676233355, \"tpr\": 0.7497858060831072, \"n\": 5331}, {\"threshold\": 0.9679999947547913, \"p\": 28012, \"fpr\": 0.054398799474770214, \"tpr\": 0.7462516064543767, \"n\": 5331}, {\"threshold\": 0.968999981880188, \"p\": 28012, \"fpr\": 0.05402363534046145, \"tpr\": 0.7431100956732829, \"n\": 5331}, {\"threshold\": 0.9700000286102295, \"p\": 28012, \"fpr\": 0.05271056087038079, \"tpr\": 0.7394331000999571, \"n\": 5331}, {\"threshold\": 0.9710000157356262, \"p\": 28012, \"fpr\": 0.05177265053460889, \"tpr\": 0.7363629872911609, \"n\": 5331}, {\"threshold\": 0.972000002861023, \"p\": 28012, \"fpr\": 0.05083474019883699, \"tpr\": 0.7323290018563473, \"n\": 5331}, {\"threshold\": 0.9729999899864197, \"p\": 28012, \"fpr\": 0.05027199399737385, \"tpr\": 0.7288662001999143, \"n\": 5331}, {\"threshold\": 0.9739999771118164, \"p\": 28012, \"fpr\": 0.04914650159444757, \"tpr\": 0.724439525917464, \"n\": 5331}, {\"threshold\": 0.9750000238418579, \"p\": 28012, \"fpr\": 0.04802100919152129, \"tpr\": 0.7200128516350136, \"n\": 5331}, {\"threshold\": 0.9760000109672546, \"p\": 28012, \"fpr\": 0.04633277058713187, \"tpr\": 0.7155504783664144, \"n\": 5331}, {\"threshold\": 0.9769999980926514, \"p\": 28012, \"fpr\": 0.04520727818420559, \"tpr\": 0.7109453091532201, \"n\": 5331}, {\"threshold\": 0.9779999852180481, \"p\": 28012, \"fpr\": 0.04426936784843369, \"tpr\": 0.7065900328430672, \"n\": 5331}, {\"threshold\": 0.9789999723434448, \"p\": 28012, \"fpr\": 0.04389420371412493, \"tpr\": 0.7015921747822362, \"n\": 5331}, {\"threshold\": 0.9800000190734863, \"p\": 28012, \"fpr\": 0.04333145751266179, \"tpr\": 0.6956661430815365, \"n\": 5331}, {\"threshold\": 0.9810000061988831, \"p\": 28012, \"fpr\": 0.042581129244044266, \"tpr\": 0.6899186063115808, \"n\": 5331}, {\"threshold\": 0.9819999933242798, \"p\": 28012, \"fpr\": 0.04126805477396361, \"tpr\": 0.6833499928602028, \"n\": 5331}, {\"threshold\": 0.9829999804496765, \"p\": 28012, \"fpr\": 0.03920465203526543, \"tpr\": 0.6774596601456518, \"n\": 5331}, {\"threshold\": 0.984000027179718, \"p\": 28012, \"fpr\": 0.037703995498030385, \"tpr\": 0.6702127659574468, \"n\": 5331}, {\"threshold\": 0.9850000143051147, \"p\": 28012, \"fpr\": 0.036953667229412866, \"tpr\": 0.6626802798800514, \"n\": 5331}, {\"threshold\": 0.9860000014305115, \"p\": 28012, \"fpr\": 0.03564059275933221, \"tpr\": 0.6543981150935313, \"n\": 5331}, {\"threshold\": 0.9869999885559082, \"p\": 28012, \"fpr\": 0.03470268242356031, \"tpr\": 0.6451520776809938, \"n\": 5331}, {\"threshold\": 0.9879999756813049, \"p\": 28012, \"fpr\": 0.033389607953479644, \"tpr\": 0.6358703412823076, \"n\": 5331}, {\"threshold\": 0.9890000224113464, \"p\": 28012, \"fpr\": 0.031513787281935844, \"tpr\": 0.6260174211052406, \"n\": 5331}, {\"threshold\": 0.9900000095367432, \"p\": 28012, \"fpr\": 0.028887638341774526, \"tpr\": 0.6144866485791803, \"n\": 5331}, {\"threshold\": 0.9909999966621399, \"p\": 28012, \"fpr\": 0.027574563871693866, \"tpr\": 0.602277595316293, \"n\": 5331}, {\"threshold\": 0.9919999837875366, \"p\": 28012, \"fpr\": 0.026261489401613207, \"tpr\": 0.5882121947736684, \"n\": 5331}, {\"threshold\": 0.9929999709129333, \"p\": 28012, \"fpr\": 0.024385668730069407, \"tpr\": 0.5730044266742824, \"n\": 5331}, {\"threshold\": 0.9940000176429749, \"p\": 28012, \"fpr\": 0.022697430125679985, \"tpr\": 0.5558689133228616, \"n\": 5331}, {\"threshold\": 0.9950000047683716, \"p\": 28012, \"fpr\": 0.021571937722753703, \"tpr\": 0.5334856490075682, \"n\": 5331}, {\"threshold\": 0.9959999918937683, \"p\": 28012, \"fpr\": 0.020071281185518663, \"tpr\": 0.5063544195344852, \"n\": 5331}, {\"threshold\": 0.996999979019165, \"p\": 28012, \"fpr\": 0.017820296379666103, \"tpr\": 0.47311866342995856, \"n\": 5331}, {\"threshold\": 0.9980000257492065, \"p\": 28012, \"fpr\": 0.014818983305196024, \"tpr\": 0.4284949307439669, \"n\": 5331}, {\"threshold\": 0.9990000128746033, \"p\": 28012, \"fpr\": 0.010879759894954042, \"tpr\": 0.3593816935599029, \"n\": 5331}, {\"threshold\": 1.0, \"p\": 28012, \"fpr\": 0.0, \"tpr\": 0.0, \"n\": 5331}]}]]}, e);\n", " });\n", " })();\n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sentiment_model.show(view='Evaluation')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Applying the learned model to understand sentiment for Giraffe" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "giraffe_reviews['predicted_sentiment'] = sentiment_model.predict(giraffe_reviews, output_type='probability')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">rating</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">word_count</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">predicted_sentiment</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">He likes chewing on all<br>the parts especially the ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1L, 'all': 1L,<br>'because': 1L, 'it': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999513023521</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My son loves this toy and<br>fits great in the diaper ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 1L, 'right': 1L,<br>'help': 1L, 'just': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999320678306</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">There really should be a<br>large warning on the ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'all': 1L,<br>'latex.': 1L, 'being': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.013558811687</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">All the moms in my moms'<br>group got Sophie for ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'one!': 1L,<br>'all': 1L, 'love': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.995769474148</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I was a little skeptical<br>on whether Sophie was ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 3L, 'all': 1L,<br>'old': 1L, 'her.': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.662374415673</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I have been reading about<br>Sophie and was going ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 6L, 'seven': 1L,<br>'already': 1L, 'love': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999997148186</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My neice loves her sophie<br>and has spent hours ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 4L, 'drooling,':<br>1L, 'love': 1L, 'her.': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.989190989536</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">What a friendly face!<br>And those mesmerizing ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 3L, 'chew': 1L,<br>\"don't\": 1L, 'is': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999563518413</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">We got this just for my<br>son to chew on instea ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'chew': 2L, 'because':<br>1L, 'just': 2L, 'what': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.970160542725</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My baby seems to like<br>this toy, but I could ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 2L, 'already':<br>1L, 'in': 1L, 'some': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.195367644588</td>\n", " </tr>\n", "</table>\n", "[10 rows x 5 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\treview\tstr\n", "\trating\tfloat\n", "\tword_count\tdict\n", "\tpredicted_sentiment\tfloat\n", "\n", "Rows: 10\n", "\n", "Data:\n", "+-------------------------------+-------------------------------+--------+\n", "| name | review | rating |\n", "+-------------------------------+-------------------------------+--------+\n", "| Vulli Sophie the Giraffe T... | He likes chewing on all th... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | My son loves this toy and ... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | There really should be a l... | 1.0 |\n", "| Vulli Sophie the Giraffe T... | All the moms in my moms' g... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | I was a little skeptical o... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | I have been reading about ... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | My neice loves her sophie ... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | What a friendly face! And... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | We got this just for my so... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | My baby seems to like this... | 3.0 |\n", "+-------------------------------+-------------------------------+--------+\n", "+-------------------------------+---------------------+\n", "| word_count | predicted_sentiment |\n", "+-------------------------------+---------------------+\n", "| {'and': 1L, 'all': 1L, 'be... | 0.999513023521 |\n", "| {'and': 1L, 'right': 1L, '... | 0.999320678306 |\n", "| {'and': 2L, 'all': 1L, 'la... | 0.013558811687 |\n", "| {'and': 2L, 'one!': 1L, 'a... | 0.995769474148 |\n", "| {'and': 3L, 'all': 1L, 'ol... | 0.662374415673 |\n", "| {'and': 6L, 'seven': 1L, '... | 0.999997148186 |\n", "| {'and': 4L, 'drooling,': 1... | 0.989190989536 |\n", "| {'and': 3L, 'chew': 1L, \"d... | 0.999563518413 |\n", "| {'chew': 2L, 'because': 1L... | 0.970160542725 |\n", "| {'and': 2L, 'already': 1L,... | 0.195367644588 |\n", "+-------------------------------+---------------------+\n", "[10 rows x 5 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Sort the reviews based on the predicted sentiment and explore" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "giraffe_reviews = giraffe_reviews.sort('predicted_sentiment', ascending=False)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">review</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">rating</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">word_count</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">predicted_sentiment</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Sophie, oh Sophie, your<br>time has come. My ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'giggles': 1L, 'all':<br>1L, \"violet's\": 2L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1.0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I'm not sure why Sophie<br>is such a hit with the ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'peace': 1L, 'month':<br>1L, 'bright': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999999703</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">I'll be honest...I bought<br>this toy because all the ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'all': 2L, 'pops': 1L,<br>'existence.': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999999392</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">We got this little<br>giraffe as a gift from a ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'all': 2L, \"don't\": 1L,<br>'(literally).so': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.99999999919</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">As a mother of 16month<br>old twins; I bought ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'cute': 1L, 'all': 1L,<br>'reviews.': 2L, 'just': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999998657</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Sophie the Giraffe is the<br>perfect teething toy. ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'just': 2L, 'both': 1L,<br>'month': 1L, 'ears,': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999997108</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Sophie la giraffe is<br>absolutely the best toy ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 5L, 'the': 1L,<br>'all': 1L, 'old': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999995589</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My 5-mos old son took to<br>this immediately. The ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'just': 1L, 'shape': 2L,<br>'mutt': 1L, '\"dog': 1L, ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999995573</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">My nephews and my four<br>kids all had Sophie in ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'and': 4L, 'chew': 1L,<br>'all': 1L, 'perfect;': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999989527</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Vulli Sophie the Giraffe<br>Teether ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">Never thought I'd see my<br>son French kissing a ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5.0</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">{'giggles': 1L, 'all':<br>1L, 'out,': 1L, 'over': ...</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.999999985069</td>\n", " </tr>\n", "</table>\n", "[10 rows x 5 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\treview\tstr\n", "\trating\tfloat\n", "\tword_count\tdict\n", "\tpredicted_sentiment\tfloat\n", "\n", "Rows: 10\n", "\n", "Data:\n", "+-------------------------------+-------------------------------+--------+\n", "| name | review | rating |\n", "+-------------------------------+-------------------------------+--------+\n", "| Vulli Sophie the Giraffe T... | Sophie, oh Sophie, your ti... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | I'm not sure why Sophie is... | 4.0 |\n", "| Vulli Sophie the Giraffe T... | I'll be honest...I bought ... | 4.0 |\n", "| Vulli Sophie the Giraffe T... | We got this little giraffe... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | As a mother of 16month old... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | Sophie the Giraffe is the ... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | Sophie la giraffe is absol... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | My 5-mos old son took to t... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | My nephews and my four kid... | 5.0 |\n", "| Vulli Sophie the Giraffe T... | Never thought I'd see my s... | 5.0 |\n", "+-------------------------------+-------------------------------+--------+\n", "+-------------------------------+---------------------+\n", "| word_count | predicted_sentiment |\n", "+-------------------------------+---------------------+\n", "| {'giggles': 1L, 'all': 1L,... | 1.0 |\n", "| {'peace': 1L, 'month': 1L,... | 0.999999999703 |\n", "| {'all': 2L, 'pops': 1L, 'e... | 0.999999999392 |\n", "| {'all': 2L, \"don't\": 1L, '... | 0.99999999919 |\n", "| {'cute': 1L, 'all': 1L, 'r... | 0.999999998657 |\n", "| {'just': 2L, 'both': 1L, '... | 0.999999997108 |\n", "| {'and': 5L, 'the': 1L, 'al... | 0.999999995589 |\n", "| {'just': 1L, 'shape': 2L, ... | 0.999999995573 |\n", "| {'and': 4L, 'chew': 1L, 'a... | 0.999999989527 |\n", "| {'giggles': 1L, 'all': 1L,... | 0.999999985069 |\n", "+-------------------------------+---------------------+\n", "[10 rows x 5 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Most positive reviews for the giraffe" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"Sophie, oh Sophie, your time has come. My granddaughter, Violet is 5 months old and starting to teeth. What joy little Sophie brings to Violet. Sophie is made of a very pliable rubber that is sturdy but not tough. It is quite easy for Violet to twist Sophie into unheard of positions to get Sophie into her mouth. The little nose and hooves fit perfectly into small mouths, and the drooling has purpose. The paint on Sophie is food quality.Sophie was born in 1961 in France. The maker had wondered why there was nothing available for babies and made Sophie from the finest rubber, phthalate-free on St Sophie's Day, thus the name was born. Since that time millions of Sophie's populate the world. She is soft and for babies little hands easy to grasp. Violet especially loves the bumpy head and horns of Sophie. Sophie has a long neck that easy to grasp and twist. She has lovely, sizable spots that attract Violet's attention. Sophie has happy little squeaks that bring squeals of delight from Violet. She is able to make Sophie squeak and that brings much joy. Sophie's smooth skin is soothing to Violet's little gums. Sophie is 7 inches tall and is the exact correct size for babies to hold and love.As you well know the first thing babies grasp, goes into their mouths- how wonderful to have a toy that stimulates all of the senses and helps with the issue of teething. Sophie is small enough to fit into any size pocket or bag. Sophie is the perfect find for babies from a few months to a year old. How wonderful to hear the giggles and laughs that emanate from babies who find Sophie irresistible. Viva La Sophie!Highly Recommended. prisrob 12-11-09\"" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews[0]['review']" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"I'm not sure why Sophie is such a hit with the little ones, but my 7 month old baby girl is one of her adoring fans. The rubber is softer and more pleasant to handle, and my daughter has enjoyed chewing on her legs and the nubs on her head even before she started teething. She also loves the squeak that Sophie makes when you squeeze her. Not sure what it is but if Sophie is amongst a pile of her other toys, my daughter will more often than not reach for Sophie. And I have the peace of mind of knowing that only edible and safe paints and materials have been used to make Sophie, as opposed to Bright Starts and other baby toys made in China. Now that the research is out on phthalates and other toxic substances in baby toys, I think it's more important than ever to find good quality toys that are also safe for our babies to handle and put in their mouths. Sophie is a must-have for every new mom in my opinion. Even if your kid is one of the few that can take or leave her, it's worth a try. Vulli, the makers of Sophie, also make natural rubber teething rings that my daughter loves as well.\"" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews[1]['review']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Show most negative reviews for giraffe" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"My son (now 2.5) LOVED his Sophie, and I bought one for every baby shower I've gone to. Now, my daughter (6 months) just today nearly choked on it and I will never give it to her again. Had I not been within hearing range it could have been fatal. The strange sound she was making caught my attention and when I went to her and found the front curved leg shoved well down her throat and her face a purply/blue I panicked. I pulled it out and she vomited all over the carpet before screaming her head off. I can't believe how my opinion of this toy has changed from a must-have to a must-not-use. Please don't disregard any of the choking hazard comments, they are not over exaggerated!\"" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews[-1]['review']" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"This children's toy is nostalgic and very cute. However, there is a distinct rubber smell and a very odd taste, yes I tried it, that my baby did not enjoy. Also, if it is soiled it is extremely difficult to clean as the rubber is a kind of porus material and does not clean well. The final thing is the squeaking device inside which stopped working after the first couple of days. I returned this item feeling I had overpaid for a toy that was defective and did not meet my expectations. Please do not be swayed by the cute packaging and hype surounding it as I was. One more thing, I was given a full refund from Amazon without any problem.\"" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "giraffe_reviews[-2]['review']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
NSLS-II-HXN/PyXRF
examples/Spectrum_plot_with_given_area.ipynb
3
662072
{ "cells": [ { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib notebook\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import h5py" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fpath = '/Users/lili/Research/Experiment/SRX_Aakriti/2015_11_13_22_26_pyxrf.h5'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with h5py.File(fpath, 'r') as f:\n", " d = f['xrfmap/detsum/counts'][:]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(10, 10, 4096)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 3D fluorescence data\n", "# shape is [number of row, number of col, number of points in spectrum]\n", "d.shape" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# x axis as energy in kev\n", "x = np.arange(4096)\n", "x = 0.01*x # approximately transfer channel number to kev\n", "\n", "# choose two areas \n", "d1 = d[0:5,0:5,:] # define y position from 0 to 5, x from 0 to 5, top left area\n", "d2 = d[5:10,5:10,:] # define y position from 5 to 10, choose x from 5 to 10, bottom right area \n", "\n", "# sum spectrum in those two areas\n", "y1 = np.sum(d1, axis=(0,1)) # sum along axis 0 and 1 to get summed 1D spectrum curve\n", "y2 = np.sum(d2, axis=(0,1))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x1199167d0>" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# compare spectrum in those two areas\n", "fig, ax = plt.subplots()\n", "ax.plot(x, y1, label='area1')\n", "ax.plot(x, y2, label='area2')\n", "ax.legend()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x11a344210>" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# log plot\n", "fig, ax = plt.subplots()\n", "ax.semilogy(x, y1, label='area1')\n", "ax.semilogy(x, y2, label='area2')\n", "ax.legend()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(1, 13)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# log plot and zoom in\n", "fig, ax = plt.subplots()\n", "ax.semilogy(x, y1, label='area1')\n", "ax.semilogy(x, y2, label='area2')\n", "ax.legend()\n", "ax.set_xlim([1,13])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x11236d410>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# choose a roi to plot 2D image, like Fe\n", "d_fe = d[:, :, 610:660]\n", "fe = np.sum(d_fe, axis=(2)) # sum along axis 2\n", "fig, ax = plt.subplots()\n", "ax.imshow(fe)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:pyxrf]", "language": "python", "name": "conda-env-pyxrf-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
leewujung/trex_fish
Compare E_max, total energy, and SI for all runs.ipynb
1
614936
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "run_num_all = [79,87,94,103,115,124,131];\n", "ping_num{1} = 4:9:877; % run 79\n", "ping_num{2} = 2:2:1000; % run 87\n", "ping_num{3} = 3:3:899; % run 94\n", "ping_num{4} = 3:5:911; % run 103\n", "ping_num{5} = 2:2:926; % run 115\n", "ping_num{6} = 2:2:973; % run 124\n", "ping_num{7} = 2:2:1000; % run 131" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "run_num_all =\n", "\n", " 79 87 94 103 115 124 131\n", "\n" ] } ], "source": [ "run_num_all" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "ping_num =\n", "\n", " 1×7 cell array\n", "\n", " Columns 1 through 4\n", "\n", " [1×98 double] [1×500 double] [1×299 double] [1×182 double]\n", "\n", " Columns 5 through 7\n", "\n", " [1×463 double] [1×486 double] [1×500 double]\n", "\n" ] } ], "source": [ "ping_num" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIVBDMWC33u9wAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMC1GZWItMjAxNyAyMDo1MToyMrhroXQAACAA\nSURBVHic7N13XFNX/zjwQ0iAMMMOQ4ygiCxFHGgd1KI4i7jroPpoq1j6UGqtVVvcbf3ZVv2qVVqs\nVdQ6QHBVi1ZxTwQlICAjjJBAwgzhJuQm+f1xfW7TMEQEMvy8X/5xc+76HIL3wzn33HMNlEolAgAA\nADSNoukAAAAAAIQgIQEAANASkJAAAABoBUhIAAAAtAIkJAAAAFoBEhIAAACtAAkJAACAVoCEBAAA\nQCtAQgIAAKAVICEBAADQCpCQAAAAaAVISAAAALQCJCQAAABaARISAAAArQAJCQAAgFaAhAQAAEAr\nQEICAACgFSAhAQAA0AqQkAAAAGgFSEgAAAC0AiQkAAAAWoGq6QAA0El37twpLy83NjaePn26pmMB\nQE8YKJVKTccAwJtycXERiURtrS0uLra1tW1n9xs3bpw+fRoh9MMPP5iYmHTkjDNmzEhOTrazsxMI\nBK8bLQCgVdBCAvpAJBK1k5BeKTs7e9++fQih77//vuuCAgC8HkhIQB+cP39eJpMhhB48ePD1118j\nhKZNm/bf//6XWGthYUEs5OTkZGdn4zjOZDLHjh1LoVAQQpmZmfn5+cQGaWlpJiYm1tbWgYGBCoXi\n3r17AoEAwzAqlcpisYYOHfpaUeXm5mZlZeE47ubm9s4775Dlz549q6qqMjY2Hj16dGZmZl5enrW1\n9YQJEzqxe3p6en5+/pgxY1xcXJqbm//880+ZTDZy5Eh7e/ubN28ihAYMGCAQCIRCoZmZ2YgRI4gj\n4DielpZGrHVxcXmtSgHQjZQA6JGLFy8Sv9iffPKJarlQKAwNDVX9zXdzc7t586ZSqZwyZYraf4qQ\nkBClUhkREaFWHhAQwOfziQOGh4cjhOzs7FoNo6amRu2wAwcOLC0tVds3MjKS3CA0NPR1d//000+J\ntcnJyYWFhSwWi/hIo9GIBh9CKD4+fuPGjQghQ0NDMvhTp04Rax8+fNiVP30A3gyMsgNvhQULFvz1\n118IoY8//njz5s0ODg6lpaVhYWGVlZWjR48ODAwkNps5c+a8efOCg4MRQo6OjjExMcePHz916lRs\nbCyNRsvIyIiNje3I6RYtWnTx4kUzM7MdO3YcOXLEzc3t6dOnkyZNUt1GKBQmJSUtXry4X79+CKG/\n/vrr6tWrr7X7nj17goODx40bR6FQ5syZw+FwEELz589fsWLFV199RW65cuVKGo0ml8t///13ouTM\nmTMIIR8fn9dt8wHQvTSdEQHoSq22kJ4/f04URkREECUnTpwgSr7//nulUkm2J0QikerR5HJ5VlbW\npUuXLl68GBQUhBBydnYmVrXTQiJP9+233xIlSUlJRMm1a9fIfRFC2dnZSqXy7t27xMc9e/a81u6n\nTp1qq4JxcXFESXx8vFKpXLx4MULI3d1dqVRKpVIajYYQ+vHHH9/8Bw5AF4J7SED/5eTkEAsTJ04k\nFsLCwogFNpvd1l4HDhz48ssv1cZKdGToBHm6devWrVu3TnVVeXk5uWxhYeHt7Y0Q8vPzI0pyc3M7\nvruZmdns2bOJZfIeGHkjatSoUao7RkVF/f7770VFRTdu3KioqJDJZIaGhosWLXplXQDoSZCQgP4j\nBi8ghHAcJxbEYjGxQKW2/l8gJyeHuMETHBxMdHlt3779/v37r3W64OBgNzc31VWqH42Njd9kdzqd\nTi6TtaivrycW1AajBwYGBgUF3b9/Pz4+nqj75MmT7e3tO1IdAHoMJCSg/4YPH04s/P7770Sz4Nix\nY0QJMfCMzAEVFRWenp7of40VhFBMTMz7778vkUhiYmI6eDryxoyfn9///d//keWPHj0ib1Z17e5j\nxowxNDSUy+Xx8fERERHm5ubx8fFq20RFRd2/f//kyZPExxUrVnSwOgD0GBjUAPSfk5MT0dy5du3a\niBEjZsyY8fnnnyOE3N3diaF0ZMvD39/f3t7+888/J9ISQujLL79cuXLlyJEjuVxuB0/n4uJCnG7P\nnj0TJ05cuXLlhx9+6O/vP2zYMLKJ1rW7m5ubEzXKyMiwsbExNTW9du2a2jYffPCBq6urTCaTyWTO\nzs5k7yUAWkTTN7EA6EptDfuWy+Xr1q1T7eaaNGlSRUUFuUFMTAz5uNKyZcuUSuWOHTsMDQ2Jkujo\naGIogYWFBbF9+8O+lUplbGyslZUVeTo6nT579my5XN5yX/K+lGrMHd+d9PXXX1tbWxsbG0+bNu3S\npUvEjr/99hu5ATH+GyG0Zs2aTv10AeheMHUQeIsoFIr8/Pzq6uqhQ4caGRm9cvumpiaio8zc3Lxz\nZywoKCgrK/Py8nJycurW3Wtra62trcmPu3btIvoY//rrL3KkQ2pqKvEwVl5eHtkEBEB7QEICQB+k\npKSsWrUqODiYTqdXVVURU/MNGzbswYMHCKHc3Nzk5OSEhITnz59Pmzbt3Llzmo4XgFZoeFCDQqF4\n8uQJl8vFcXzmzJlqa69fv56amorjuJ+f39y5c4lRSY8fPyYeACQMHTq0d+/ePRkzAFrI3t6ex+P9\n9ttvxEcajbZgwYIffviB+Hjt2jViBHn//v3379+vsSgBaJeGW0hff/315cuXPTw8cnJysrKyVFfF\nxcUdPnx45cqVVlZW8fHxlpaWCQkJxC4PHz4MCAggNps7d+7gwYM1EDoA2qeoqKioqMjBwcHX15cc\nOogQKisry8vLc3Bw8Pf312B4ALRPwwlJJpPRaLQbN25ERUWpJaRx48YtW7Zs/vz5CKGioqJJkyZl\nZGSYmpoSU2du3bpVMxEDAADoHhoe9k1MYdIqZ2dn8ulFYrpl8kFCqVR669at7OzsnggRAABAj9De\nB2M3bty4du3aoqIiGo2WlZW1fft2cgzulStXuFxudna2o6PjL7/8Qk5yDAAAQHdpb0Li8XjEPChm\nZmYYhpGPJUZHRxP9dTKZLCYmJioq6sKFC60ewdvbm3zuhEaj6c3YBw6Ho5c5WF/rhfS3alAv7VdS\nUkK8KgwhhGEYOVOiltLsY1CEtLQ0X19f1RK5XB4QEJCSkkJ8rKqqGjBgAJvNVtuRzWZ7eno2NTW1\netjBgwd3R7QaN2fOHE2H0C30tV5K/a0a1Eu3aP8lUUunDpJKpWKxmHwY0N7e3sjIqKysTG2z5uZm\n1Pb8mAAAAHSIhhOSQqGQyWRyuRwhRMyyRZTT6XQmk5mamkp8vHHjBoZhxLPl5Mtj6urq9u7d6+/v\n387ICAAAALpCw22Ly5cvk5Mo+/r6IoTYbDaRYHbu3Llq1aozZ84wGIzq6uoNGza4u7sjhFavXt3Q\n0GBiYiIWiwcPHrx37962Dq6vLSdbW1tNh9At9LVeSH+rBvXSLdp/SdT2qYMEAoFIJGKxWKpP+clk\nMjab7evr237baO7cueRk+/qEz+czmUxNR9H19LVeSH+rBvXSLdp/SdT2hGlvb9/yNWI0Go2cqQEA\nAIB+0NJBDQAAAN42kJAAAABoBUhIAAAAtAIkJAAAAFoBEhIAAACtAAkJAACAVoCEBAAAQCtAQgIA\nAKAVICEBAADQCpCQAAAAaAVISAAAALQCJCQAAABaARISAAAArQAJCQAAgFaAhAQAAEAraPh9SAqF\n4smTJ1wuF8fxmTNnqq29fv16amoqjuN+fn5z5841NjYmyl+8eHHs2DEMw8aPHx8SEtLjUQMAAOh6\nGm4hxcbGrlix4vjx4xs3blRbFRcXt379eh8fnzFjxiQlJS1btowoz8vLmzVrlqOj4+DBgzdt2nTk\nyJGeDhoAAEA30HALacOGDVu3br1x40ZUVJTaqpMnT0ZFRc2fPx8h5OPjM2nSpKamJlNT059++mn+\n/PmRkZEIISaTGR0dvWDBAkNDQw1EDwAAoOtouIVEo9HaWuXs7CwWi4llDMOoVCrRZXf79u2goCCi\nfPTo0c3NzXfv3u2BUAEAAHQrDbeQ2rFx48a1a9cWFRXRaLSsrKzt27cbGhpiGIbjOIvFIrahUCim\npqYikUijkQIAOimFLTChUkxoFFcrE6aFkbkxdHW81bQ3IfF4vPr6eoSQmZkZhmFcLhchpFQqEUL2\n9vbkZlQqVS6Xt3oEDoczd+5cYtnW1jY2Nrbbg+4RAoFA0yF0C32tF9Lfqr1hvXbdE3Lqmkf0Mq0S\n41JcyW/EcYUSVyiluDI22LGXVZvdJ91Nn76vzZs3V1dXE8scDkejsbyaliYkhUIRHR29YcOGsLAw\nhNB//vOfsWPHjho1ytPTEyGUk5MzZMgQYkuJREKn01s9CIvFOnnyZI/F3JOYTKamQ+gW+lovpL9V\n63S9dt0sMzCin1ji23JVHYYvOfH81zledmYay0l68339/PPP5DL5B7rW0tLnkKRSqVgsdnJyIj7a\n29sbGRmVlZXRaDRnZ2cej0eUCwQCDMP69u2ruUgBAB2SyW1slL7szNh6hVMpat4yyb3VLRl06p4Z\nnouO55Dbg7eEhhOSQqGQyWREn5tMJpPJZEQ5nU5nMpmpqanExxs3bmAYRjSPwsPD4+PjpVIpQigu\nLi4gIIC8pQQA0E6Z3MbIpNy1fxYuOfF80q9PpXLFd1M8qBSDtrZ3tTJeM85t0fGcngwSaJyGu+wu\nX74cExNDLPv6+iKE2Gw2MfRu586dq1atOnPmDIPBqK6u3rBhg7u7O0IoMjIyPz9/2LBh5ubmVlZW\ncXFxGowfADWPy0RDelmoFfrszbvzX0svB1ONhKQNTmZW/rHQl2Vj0vFdgj2s+Q3Nnybn7wn37L7A\ngFbRcEKaPHny5MmTW101ePDg69evCwQCkUjEYrEolJeNORqNtnfv3oaGhvr6+l69evVgsAC8womM\nyk+T84vXj1QdLfa4TPRRoO3ai4WnP/Rtp02g3zi1ktfKRoR5AY4Xn1dnchsHuZh3R1RA22jpPSSS\nvb29u7s7mY1IlpaWkI2AVqnD8KRngj8W+pzIrFQt332r7D+DbT55x2X1+QJNxfaGcIUy/kGFBFd0\nbve0wtqx7ozO7bs+hLXtKqdz+wKdo+0JCQBdse0qZ8sk9xBPmzvF9bhCSRSW10vNjQ0tjSkhnjYI\nobTCWo3G2BmcGsm0g89KaiWLjuW0k5MSn1UJxbJWVx1Lr5wX4Ni5s3s5mLJsTC7kCDu3O9AtkJCA\n/iPTQ/d5XCaiUgyIu0Sh/W2OpvOJ8rh73A+HvBws+t0Uj21XS+owvLuD6YTIpLy9t8vVflC4Qvn9\ntZLV5wt+neO1ZaL7mnG9IxPzWo3/dnHd7pvlm1KLl5x4vvd2OV/UTK5qlMqFYhmD3vm7A+tDWD+m\nlZGx3S6uM1h1rdPNNaDNICEB/VReL41/ULH6fEH4oayhux4VCLHuOxeuUG67ylkfwiI+zhrocDGn\nGlco6zCczRMH9bYkyk2olB1T+84+wl50PGf1+YIDd7ldNay5DsPZfHGnd8/kNtqZ0ezMaNMOPkth\nCxBCbL74+2sl4w9kmhsZnv7Q19XKGCE0pJfFlknuH53KbdkSOviA9+scrz3hnr/O8XJlGKuO2E58\nVrUgsJPNIwKDTg3qbUk0kq7m1/yYVrYzrN/V/Jo3OSbQTlr6YCwAnZbJbdx9qwxXKGf624e848qy\nMeGLmj86lbtlonsX3hvn1EgOPqwwNDCobGxm88QbJrDIgQxUikFgL4sUtoBTI1k+wll1r0Eu5leW\nD5LgigIhlskVzT7C3jLRnRyVhyuUX10oxBXKL951I3JAR/BFzR8kZPNF0oT5Pi0H+BGOpvNxhTLY\nw7rlyAJcodyUWnxo3gAGnTproMOum2Xv/pwxpJdFmK/dF8FuaqMwXK2MiSeEzi/1J1cVCLE6DCda\nh1SKwXRfezsz2kenc3+d7WVubHgysyp5iV8H69KWNeN6hx/KEoplTysaE+Z7C8WyuHvcqd52b3hY\noG0gIYGewxc1My2M1AobpXITGqVLhp/dL2nYdpXjyzTbMsld9YLOtDBKmO+95MTzDRP6kDmpUSpX\nmzmtUSpf+2ehrSmNZWPi5WBGhCoUyxqbcfIjeaJvLhdtmejOtDBiWhqZUNV7GqLecV10PAdXKD8b\n08rQGxMqxZdp5ss0m+ptF3P2xUBn88/G9LqQI/wxrSzcz26gs/m2qxx+Q/OCQMeQfjbtd3bxRc1L\nTjzfM8PT1cp49hH2d5M91HLSiYzKuHsV7/WzHtLL4vdHvMJqDCG0ZaI7mZkO3OV+OJRJnIVKMfgi\n2O2LYLd2zsi0MJoywPbAXW7UKFeiZN+d8jXjeqtuM6oPg0qhLDqeszOsH8vGpOXP53Ux6NQp3rbl\ndVJiCLi5sWGBEMMVyrd21KK+goQEekj8g4qDDyqCPay3THInryOZ3MZFx7P72pl+8o6Lr2V7uxcI\nscOPebmVTUuHOwX1tmp5mU58VvVXbs0fC31anaCTQaf+scgn/FAWg06VyBS4QmlubGhnRls+wsWX\naYYQelwm2pRavCq4l6uVSYGw6XFZA9ExRZwo7l4Fy9pkVbCbnRntwF3ug9KG5MV+7cwEam5saEKj\nDHQ2b/+KyaBTD80bsOtmmdPG24uHOiUv8SNON9bDulEqT3xWteTEcxMa5cMhTC8Hs7TC2huFdXxR\nswmVwrQ0eq+ftZeD2erzBYfmDSCS5ekIX6LJNcjFnFMjuV1cd/gRP8zX7o9FPsQGE71siZ9kZFLe\nh0OY8wIcOTWS9HIRmVo6KGqU66Rfnwb3tbZDqA7DC4RYy5ZZUG/LT95x6bPt7pXlg17r4G1RS5PD\ne1s+LhOR3aGdgyuUH53K3TChTyeGpIPuYEBMV6qX5s6dq5dz2fH5fJ2baGvXzbKSWsmOaX2PpvPv\nFNfvn9WfSjFIYQsOPuAdmjfA3NjwaDr/bGbFJ2P7hHjaqF7E6zD8wD3u3y9qmRZGS4c79bUzvZAt\nvPi82pVh/A7LaqKXLTHdWfyDipJayYYJfV7rT+YCIbb9WgnV0IBKMaBSDNaHsNqZPI3NFx98UJFb\n1RTmY7dipMtrVf9NvjIiE98vaXivn/W8QY7EpZMvar6cW/2gtGHLRHfVmOswfHxchi/TvLe1SXBf\nRlBvq1ZbJ7hC+c2lImMq5WlFI9G66kRUq88X7J9kf+ApFtyXEexh3epmnBqJK8O4O9ox5fXS3TfL\ndkzr/LRhRBUGOpub0Chf/buFp4v/xTpC+y+JkJB0T0/+b3lcJrr6oqblvYSOwxXKT5PzBzqZkxfx\nxGdVx9Ir+9rRcYXyuyke5BWzvIJ3gaNIyhK8w7JaPNSpsVm++2aZBFd8OIQZ3NdaLYA6DE8rrP37\nRa1QLGuUykP727zun/mkAiFWIGwiWg+vJMEVneiA0s4L3NX8GjZf3GqnYkesvVjY2xS/WCQ9v9S/\nawProA+OZv+x0KdleR2Gf3A0O2G+d1t/XuAK5YG73OxKMZHOZx9mn/7wX3O8auf39ea0/5IIXXag\nFRJccSKj8ixb6OVg6sM0m32YTdwMINfmVjapDRBolMo/Op27aqybWu/Np8n5Y90Zqo+hzPJ3YFnT\n0wpr1TphqBSDFSNdVox0uV/SsCm12IRGiR7Ti+hPa4lBp073tZ/ua48QqsPwNxlV3NeO3teu9Qnj\nW3rz2yHaI8TThng6qnM2hPahr0nbP7N/F4b0WuzMaOX10pbNuxMZlcPdLGcfZu+Z4dnq78/vj3h1\nGK4aeef+zgBdDhISQAghTo0kMinP3MiQuC+CK5Sh/W0S5nsTH6d6232anP9eP2sGnXoxp1oolrky\njMvrpOtDWET6eVwm2n6t5JNRLmv/LFS9r77xr+K5gxxa9ucM6WXR1ngwhFBQb8vXujfwJtkIdJoJ\nlfJ0padnbydNBTB3kEPi06qWLbyz2cLzS/1XjJQtOfE8erRry7bvWbZQdeDfe/2sL+dWE3/cdNCF\nHGFQbyu1Ftjt4rr7JQ3tDwkB7YP/ybpBgiu2XeVEj+7VshdCgiuIO9jp5aLlQS6qDZe0wtp9t7kM\nOjXQ1YJlY9LqWABcodx6hZMnaPp1jldb9xIYdGrCfO8Dd7l1CN8Q2ofYrA7DN6UWH37MI/60JG4F\nDXK2WHQ8h7ivvvUKp68dva27C0APOJhRNdiwGNWHse8OV63wfknDcDdLKsWAaWF0fqk/MdZRdYD4\n0XT+lAG2qj3AswY6rD5f0PGEtPGv4n13ylcFu6ndeTr4gJdZIYKE9CYgIekACa74ICE70NVi2sGn\n303x8PpfJ4RQLNt2lXO7uC6ot1Vof5vo0b3i7nG3XZV+OJSJENp3hzukl8WeGZ5CsYxTg+VWNe27\nw40e7araS5P4rOpkRtXS4U4bQ/u8Mgy1O/kMOnVnWL/cqiZODUb+EUqkrkXHc1g2Jj6OZgsD9bAj\nHmgPcyNDteH7++6UfzfFg1imUgz+WOgz+zBbtTVz+DH/0kcDVQ9iZ0arw/CODCIXimUfncqd4m3L\n2zjqg4TslmsHOVsIxTINvldQ10FC0nZENlo63Gmqt91nY3qtvlBghppXjLU6/JiHy5Wrgt12hvUj\nN94Z1q8Ow+MfVCCEyJu6TAsjoic9apTrD2ml++5w98/qXyBs2pTKmTvI4Y9FPm8yCMrLwVTtrQpE\nTop/UPG6Q9EAeF1TvG1/f8Qjx7OU10tNqBS1hv7O6f0iE/OIFvyJjMrQ/jYtf+G9HEwLhFj77wfh\n1EiWnHi+M6wf0QlBNTRQzT33SxoCXS2C+zISn1bBb37nKfXXnDlzNB3Cm8Jk8nkJ7OsFNaqFh27l\nLzv5vKxO0rljPq8UB+1+tCIxt9NH6CY8Hk/TIXQXfa2axuuFyeTB+56cflpJfPz6UuE9Tn3Lze5x\n6r+6UCCTK0IOZIgkeMsNbhXVfvc3h/zYar2izuTxGqTkx0vPhfvvlJMfP0vJL67GlErlvAR2Z2vT\n7bT/kggDS7RXgRD7ICF7+QhntdswE/tatHO/55W8HEzv/XfI/pn9O30EALSECZVyZcWgO8X1kUl5\ndRieyW1sdThMUG9LYyplyYnnUwbYtvo486g+jDvF9e2c6HGZyMOWrjpbR4inzcXn1eRHTs3LFz75\nOJplchs7XyWEEEJ8UfPb+bZcDXfZKRSKJ0+ecLlcHMdnzpypuio5OZl4tTkpLCyMRqM9fvyYw+GQ\nhUOHDu3d+1+3FnULMVVloKuFr5PZIGcL8inCA3e5dzj1v87xgv5oANpBpRjsDOv3+yOe08bb+2e1\nOQZ9Y2ifEf/3uJ1B6iwbEzKptLT9WknCAm+183o5mBKzYWVyGwc6vxxMNNHLNoUteMNZE1OyBO/1\nextHA2k4IcXGxl6+fNnDwyMnJ0ctIWVkZEilUmK5pKQkPz8/PDwcIZSSkvLw4cOAgABilbu7u04n\npF/neDVK5QVC7HJeddIzAadGQqUY4Arl8hHOh+YNgKm6AOiIxUOdQjxtWs6UqOref4e0s3a4m+Xj\n8gYiIVWJcaQy7+Lvj3gz/e1bjid8r5/1iYzKz8b0OviwInr0y9HnQ3pZfHO56A3n2bv4vPrQvAGd\n3l13aTghbdiwYevWrTdu3IiKilJbtXnzZnJ5+fLlM2bMMDR82dYeNmzY1q1bey7KbmZubDjIxVz1\nT6qW834CANr3hl3QE71s3/35yY3COjZP7GaBFIYNDDp1zbjedma0B6UNrTatJnrZHnzAixrlWl4n\nVX22OrS/ze3iuk4/8NAoleMK5dvZNaLhhESjvfqHLhAIbt26dfr0abJEKpXeunXLxsbGx6eViUP0\nAGQjAHqYnRltx7S+g1wsmBZGxNRBnBpJ3D3u5dzqQ/O829rLy9E0/n6FWvfadF/7uHtcMiGV10sL\nhE0FQiy9XPTJO65tTT5Cul9S385j4/pNB4Z9JyYmenh4qOaeK1eucLnc7OxsR0fHX375hcViaS46\nAICeUJvTgWVjsmWi+/oQVjsP/77Xz3rawWcZnw9T2/FxuWjJiefEjERMC6Pe1iZMS6Ox7ozDj3iv\nnBD2r7yaMN+39FVPOpCQkpKSIiIiyI/R0dFEf51MJouJiYmKirpw4UKrO3I4nLlz5xLLtra2sbGx\nPRBtDxAIBJoOoVvoa72Q/lYN6uVlhka4mprj9Xz+vwbp7ZvoYEoz+PdtJDlCaP/tGj6fr3YQqVxp\nbPjPlg85NdGBZny+pFOxq9u8eXN19cvRgKrDwbSTtiekhw8f8ni8999/nyyxt385wweNRouMjJwx\nYwaGYXR6K5NjslgsLZ/attP0cipipL/1QvpbNahX6spWtmxrZzfbGqqFrer9obTC2sjEvOdrgoiP\nBULM09HS1bnLZgj8+eefyWXyD3Stpe3PISUnJ4eGhjIYjFbXNjc3I4SoVG1PqwAAgBAa68G4kCNU\nLTnLFk71tkthv2yTXc6tDvXq/BTsuk7DCUmhUMhkMuJ5I5lMJpPJVNc2NTWdO3du1qxZqoV3794l\nFurq6vbu3evv79+RkREAAKBxIf1s/sqrIT/iCmUmt/G7KR5n2cLyeilC6OLzatWpYN82Gm5bXL58\nOSYmhlj29fVFCLHZbDLBnDlzxs7ObuTIkaq7rF69uqGhwcTERCwWDx48eO/evT0cMwAAdA7LxoTf\n0Ex+vJpfE+plQ6UYfDfFY+3Fwv2z+ktkb/WbmTSckCZPnjx58uS21i5cuHDhwoVqhXfu3JHJZGw2\n29fXF9pGAADd4uVoSk4JcTKzasOEPgghpoXRWA/G7MPssR6t3554S+hkKqbRaAEBAZCNAAA6Z+4g\nB+I2UqNUXl4vJScrWjzU6Wp+TYjn2zhjEEknExIAAOiooN5Wf7+oRQjdL6mf6fevtwJi24NH9YEW\nEgAAgB5B3CKqw/CkLMF0v9d4b/rbABISAAD0qND+Nldf1DRK5e3PBvsWgoQEAAA9arqf/erzBW/n\nCybaBwkJAAB6FNPCiFMjmeXvoOlAtA4kJAAA6Gm1W8fApP4tQUICAICexqDDhGetgIQEAABAK0BC\nAgAAoBUgIQEAANAKkJAAAABoBUhIAAAAtAIkJAAAAFoBEhIAAACtAAkJAACASVeBNgAAIABJREFU\nVtDww1kKheLJkydcLhfH8ZkzZ6quSk5OJl5tTgoLCyPegfTixYtjx45hGDZ+/PiQkJAejRgAAED3\n0HALKTY2dsWKFcePH9+4caPaqoyMjEf/k5iY+O2331IoFIRQXl7erFmzHB0dBw8evGnTpiNHjrR1\ncA6H052xa8zmzZs1HUK30Nd6If2tGtRLt2j/JVHDLaQNGzZs3br1xo0bUVFRaqtUfyeWL18+Y8YM\nQ0NDhNBPP/00f/78yMhIhBCTyYyOjl6wYAGxSg2O490Zu8ZUV1drOoRuoa/1QvpbNaiXbtH+S6KG\nW0gdeQ25QCC4detWeHg48fH27dtBQUHE8ujRo5ubm+/evduNIQIAAOgROjCoITEx0cPDw8fHByGE\nYRiO4ywWi1hFoVBMTU1FIpEm4wMAANAVdGDG2aSkpIiICGJZqVQihOzt/3nvL5VKVRv7QMIwLDAw\nkFim0Wi9e/fu5kh7CIfDmTt3rqaj6Hr6Wi+kv1WDemm/kpISmUxGLGMYptlgXknbE9LDhw95PN77\n779PfCS6+HJycoYMGUKUSCQSOp3e6r45OTk9EyQAAIA3p+1ddsnJyaGhoQwGg/hIo9GcnZ15PB7x\nUSAQYBjWt29fzQUIAACga2g4ISkUCplMRvS5yWQysmlJaGpqOnfu3KxZs1QLw8PD4+PjpVIpQigu\nLi4gIIC8pQQAAEB3abjL7vLlyzExMcSyr68vQojNZpND786cOWNnZzdy5EjVXSIjI/Pz84cNG2Zu\nbm5lZRUXF9fDMQMAAOgOBsQwAZ3T0NBQX1/fq1cvTQcCAACga+hqQgIAAKBntH1QAwAAgLcEJCQA\nAABaQdufQ+qgFy9eXLlypbi42MzM7P333x88eLDqKt2dGryterVTX92l099UO/Tyy1L15MmToqKi\nsWPHqj6xrtPkcvmpU6cyMzNpNNq4cePGjRun6Yi6xvXr11NTU3Ec9/Pzmzt3rrGxsaYjUqcnLaT5\n8+cXFxcPHz6cRqMtWrQoOTmZKO/41ODaqa16tVWuu3T9m2qH/n1ZqgQCwZdffrl+/fqSkhJNx9I1\nZDLZggULzpw54+fn17t377Nnz2o6oq4RFxe3fv16Hx+fMWPGJCUlLVu2TNMRtUapF+rr68nlPXv2\njB8/nlj++OOPv//+e2I5LS1t4MCBOI5rIL7OaqtebZXrLl3/ptqhf1+Wqo8//jglJcXT0/PRo0ea\njqVr7Nu3Lzw8XC6XazqQLvbuu+8eO3aMWC4sLPT09BSLxZoNqSU9aSFZWlqSy/b29uQDtro+NXhb\n9WqrXHfp+jfVDv37skjnz59HCE2ePFnTgXSlM2fOLFq0iHjJQF1dnabD6TLOzs5isZhYxjCMSqVq\nYZedntxDIslksoSEBOLls/o0NbhqvTpSrlv06Ztqh358WaSampqdO3f+8ccfmg6kK8nl8rKystTU\n1F27drm7uz98+PDzzz9funSppuPqAhs3bly7dm1RURGNRsvKytq+fXurr5HTLH1LSKtWrbK1tSVe\n36d8nanBtZxqvTpSrlv06Ztqh358WaRNmzYtW7bM0dFRn9p8CoUCIcTn869evUqj0R4/frxgwYJ3\n333X3d1d06G9KR6PV19fjxAyMzPDMIzL5Wo6olboVUL64osvqqqqfvvtNyLzv9bU4NpMrV6vLNc5\nevNNtUNvvizCw4cPHz9+PGPGjBs3bhB/OmRkZDAYDF2f6djQ0NDQ0HDmzJnE7+SQIUMsLS2zs7N1\nPSEpFIro6OgNGzaEhYUhhP7zn/+MHTt21KhRxHvmtIf+JKQ1a9YUFhYePnzY1NSUKNGPqcFb1qv9\ncl2kH99UO/TpyyJQKBRfX9/jx4+j/7Uq/v77bzMzM13/1igUioeHh2rrXKkXc9lIpVKxWOzk5ER8\ntLe3NzIyKisrg4TULb7++uusrKzDhw/T6XSiA4H4A4eYGnzChAnGxsa6ODV4W/Vqq1x36fo31Q79\n+7IQQkOGDCGbszKZzNfX94svviBLdNqMGTNOnz49e/ZsU1PT69evNzU1DRo0SNNBvSk6nc5kMlNT\nU4cNG4YQunHjBoZhnp6emo5LnZ7MZde/f3/Vj0ZGRllZWQghmUwWExNz69Ytcmpw3ZqPta16tVWu\nu3T9m2qH/n1ZaoiEdOzYMf1ISAihtWvX/vnnnwwGQyQSbd26VT+GET558mTVqlX19fUMBqO6unrN\nmjXz58/XdFDq9CQhtQ+mBtcV8E0BLSGTyTgcjoeHB4WiJ8/GEAQCgUgkYrFY2lmvtyIhAQAA0H7a\nmCQBAAC8hSAhAQAA0AqQkAAAAGgFSEgAAAC0gp48hwSAFrpz5055ebmxsfH06dO151BaciIAWoJR\ndkCXLF++nJzN88mTJ+S8AOnp6e+++y6x/PHHH//www+aie/fZsyYkZycbGdnJxAItOdQWnIiAFqC\nLjugSyQSieh/Dhw4QJbv3buXLJdIJBqMEADQadBlB3TVgQMHtm7damJiIhAIjh071nIDhUJx7949\nYmY8KpXKYrGGDh2KEMrPzy8tLUUIBQUFmZubI4SKioqKiooQQoGBgdbW1q2eLjc3NysrC8dxNze3\nd955R21tWVlZenq6VCo1NjYeN26c6juQCJmZmXl5edbW1hMmTFAtz8nJyc7OxnGcyWSOHTv2tR5X\nbDWkzMxMoVBobGw8evRo8udw7do1hBCLxSLblO1XBwDN0ODLAQF4XREREcTv7bhx4xBC+/btUyqV\nGzduRAgR0xgjhD755BO1jUkBAQF8Pv/FixcWFhYIocWLFyuVyvr6ejc3N4RQcHBwqyetqamZMmWK\n6nEGDhxYWlpKrK2vr1d7xZGDgwOxKjw8HCFkZ2en+sqJ0NBQYq1QKAwNDVXd0c3N7ebNm63GQB7q\nlSFt3boVIWRoaMjn84mNyZemX7ly5ZXVUTsRAD0JEhLQJWSOuXjxIkLIz89PLpe7uroihIhGgGpC\nWr16dUxMzPHjx0+dOhUbG0tMafrxxx8rlUpimmriOAsXLiSyCHkFV0Ncvs3MzHbs2HHkyBEie/n4\n+BBrp02bRhxq1KhRu3fv/vTTT8lVxMWdOPjixYv79eunmhjIbPTxxx9v3rzZwcEBIWRtbd1qGGp5\nop2QKioqiDdc7Ny5U3VfFovVkepAQgIaBAkJ6BIyISmVSuIVNcuWLUMIDRs2jHzDLJmQlEqlXC7P\nysq6dOnSxYsXiVekOzs7E6uIHckOOiJJtPT8+XNig2+//ZYoSUpKIkquXbtGriXbPUqlUiqVEgtk\nQsrOzlYqleRL2ffs2UPuGBERQWx84sQJouT7779vGYZqnmg/JOX/cmRgYKBSqayvrycy8datWzuy\nLyQkoEEwqAHoKqIfLD4+HiG0cuXKlhscOHCAwWD4+flNmjRpypQp9+/fRwiReWvPnj39+vWrra1F\nCK1evTokJKTVs+Tk5BAL69atMzAwMDAwIDvoysvLybWLFi0idzEyMlI9goWFhbe3N0LIz8+PKMnN\nzSV3nDhxIrFAdjmy2ez2K95+SAihFStWIITS09Nzc3NPnz4tk8kMDQ2JBPzKfQHQIBjUAHTVihUr\nYmNjMQxjMpmLFi1qampSXZuTk0NkrODg4JUrV9JotO3btxM5iZCbm8vhcIjlP//8c/PmzSYmJi3P\nQo4yCA4OJnq3SG5ubkQ+QwiJxeK24jQ2Nm7nsDiOqx2BSn3F/8r2Q0IITZw40dXVtby8PCEhgWiW\nTZ482dHRsSP7AqBJmm6iAfAaVLvslEplTEyMnZ0d0Rml1mVH9kSdPXtWqVRiGEa88c/CwoLYmLij\nM2rUKGKAw7Jly1o9I9lu+PTTT1XLHz58KJfLyRs2AwcOxDCMWNXWAAHVCCsqKojlcePGEWt3795N\nlMTFxbUMQ/VQ7YdELH/99dcIIWdnZ2LLS5cudaQ6LWMGoCdBQgK6RC0hqVJLSORL8Pr37x8ZGRkQ\nEEDcSiESEvFqMmIEwW+//UZsmZyc3OpJyTFyoaGhkZGRERERROcbca8oOjqaWOvm5jZ79uxJkya1\nHGXXaoTkYYOCgsLDw4nE5u7uTiY2VWqHaj8kpVJJNv4QQq6urh2vDiQkoEGQkIAu6XhCUiqVO3bs\nIK7yCKHo6GjiUmthYUHcdkIIJSUlEVvOnj2byE9k40ZNbGyslZUVeYmn0+mzZ88mmyObN29WfXpp\n4MCBRHn7CUkul69bt45Op5M7Tpo0qaKiotUAWuaJ9kNSKpXEyHiE0MaNGzteHUhIQINg6iCgz5qa\nmh49ehQYGEg8APuGCgoKysrKvLy8nJycWq4tKioqKSkJDAxs+VRsOxQKRX5+fnV19dChQ9VGQ7x5\nSN23LwDdARISAAAAraDto+yuX7+empqK47ifn9/cuXPJAUsvXrw4duwYhmHjx49va8AuAAAAHaLV\nzyHFxcWtX7/ex8dnzJgxSUlJxIMUCKG8vLxZs2Y5OjoOHjx406ZNR44c0WycAAAA3pxWd9mNGzdu\n2bJlxICooqKiSZMmZWRkmJqaLl++3N3dfc2aNQihGzduREdHp6enk7evAQAA6CKtbiE5OzuTTwsS\nEzYTXXa3b98mpoFBCI0ePbq5uZmclAUAAICO0up7SBs3bly7dm1RURGNRsvKytq+fbuhoSGGYTiO\nEw85IoQoFIqpqSk5oBYAAICO0uqExOPx6uvrEUJmZmYYhnG5XIQQ0cdob29PbkalUuVyecvdvb29\nyYc8aDRa7969eyLo7sfhcMh8rE/0tV5If6sG9dJ+JSUlMpmMWMYwjJzMUEtp9jGodsjl8oCAgJSU\nFOJjVVXVgAED2Gx2c3Ozp6fno0ePyC0HDhzY6lTNgwcP7qFYe9acOXM0HUK30Nd6KfW3alAv3aL9\nl0TtvYcklUrFYjH5yJ69vb2RkVFZWRmNRnN2dubxeEQ58T5Q8j2YAAAAdJT2JiQ6nc5kMlNTU4mP\nN27cwDDM09MTIRQeHh4fHy+VShFCcXFxAQEBetO+BgCAt5ZW30PauXPnqlWrzpw5w2AwqqurN2zY\nQLyTLTIyMj8/f9iwYebm5lZWVnFxcZqOFAAAwJvS6oQ0ePDg69evCwQCkUjEYrHIV7nQaLS9e/c2\nNDTU19f36tWrrd1f+V4ZHWVra6vpELqFvtYL6W/VoF66RfsviVr9YOwbmjt37smTJzUdRdfj8/lM\nJlPTUXQ9fa0X0t+qQb10i/ZfErX3HhIAAIC3CiQkAAAAWgESEgAAAK0ACQkAAIBWgIQEAABAK0BC\nAgAAoBUgIQEA3i64QpnJbezyw/JFzWmFtV1+2LcKJCQAwNtlU2rxB0fZHxzNvl/S0IWH/TGtNDIx\nrw7Du/CYbxtISACAt8j9kgahWPZ8TdDOsH4HH1S8+3NGeb30dQ/it+PBiYxKtcICIZa8xH/tn4Vd\nFOnbSKtnkkhOTlZ70VFYWBiNRnv8+DGHwyELhw4dqjfvOgIAvLnvr5VIZIp6Cc4XNS8Y7DjV244o\nxxXKTanFpyN8EUJMC6Nf53hdzq3+Ma10Z1i/jh+8QIiNcmckPRPMC3AkC++XNPg6mXk5mLpYGic+\nq5rl70CU80XNvz/ifTUOLlAdotUJKSMjg5jSGyFUUlKSn58fHh6OEEpJSXn48GFAQACxyt3dHRIS\nAICw62aZnRktpJ8Ng041Nzb85lLRX3k13032IJajR7uaGxuSG0/0st19q7wOwxn0fy6G4mZFeb3U\n1cq41ePvvlW2YUKfmLMvCoRYX7uXrwA9+KBifQgLIfTVe73DD2UF9bZytTJOYQuSngnGejAWHc/Z\nE+6peopXEopldma0TlRfp2l1Qtq8eTO5vHz58hkzZhgavvxNGjZs2NatWzUUFwBAK/BFzUfT+V8E\nu5ElnBrJ04rGQ/MGkCXfTfG4X9Iw6denof1tEEITvdQnTv3kHZft10q+m+JBlnx0rry2uTzj82Et\nz/i4TORiZcy0MFrzbu/dt8r2hHsihHCFsg7DWTYmCCEqxWDLRPfV5wsYdKqPo9mheQOoFINRfRiR\nSXkbJvTxcjDtSL3SCmsfl4lU6/WW0I17SAKB4NatW0TziCCVSm/dupWdna3BqAAAmrX7ZtnJzMr4\nBxVkyabU4i2T3NU2C+pteX6pP65Qbgjt0/IgU73tMisaycEIic+qBjvR14ew9t4ub7nxvjvlUe+4\nIoQGuZiX10mJvRKfVoV62ZDbDHIxf4dl9ck7rlGjXKkUA4SQl4Npwnzvby4VpbAFHanXWbaQ7GZ8\nq+hGQkpMTPTw8PDx8SFLrly5sn///vnz50+YMEH1fhIA4C0hwRWZFY2PPhv6oKSByElH0/nD3Sxb\n7Wpj0KkbQ/uYUFu/4n04hHngHhchxBc177vN/TTIbpa/Q0mtRG0Yd+Kzqpn+9mSP30x/+8RnVQih\nk5n/3DQiRI1y9WWaqZZQKQZ/LPLZd4crFMvUzq42MA9XKPmi5g62pfSMbrx+IiQkJCIiIiIigvgo\nEAjs7e0RQjKZLCYmhsPhXLhwoeVew4cPJ98ka2trGxsb21Pxdi+y+npGX+uF9Ldqmq3Xb09qzIwo\nc30ZCKEv/uK5WtKyqyT7p7kQjZLXNfd06a/vu0b/yV0/1tFKXm9vb48rlJHnudsnONnQDcXNipTc\n+tulTXsmO5PHxxXKiDNlm8cxj2TWbB7XoddVFNQ077on2DXpn4Os/5t/k9N4fYkHWZJegT3kNkUO\n7Zp3Mm3evLm6uppY5nA4Dx486JLDdhel1nvw4IG3t3dtbW2ra9lstqenZ1NTU8tVc+bM6ebQNIPH\n42k6hG6hr/VSdqBqV/KqeyaSrqXZr2xq/FOZXEF+nJfAfiFo5TrQQYceVvj+v/t/POErVepVXI2F\nHMiYl8BeeCz79NNKTCZX22vnjdKp8U8vPRd2/EQbLhedflpJLH/3N+fQw4qvLxWezxaQG6xIzC2r\nk3S6Iu3Q/kuiDnTZJScnh4aGMhiMVtc2NzcjXXgTIpDgCoNV11r2V4Cr+TXj4zKJzp+3Fq5QNkrl\nr97uf9IKawNdLVQbQ38s9CHHvHXCwkDmKHeG6khuhBDLxmT/zP57wj0T5nvP8ndo2eM3L8DxQo4w\nxNMGddhX7/Xed5tbh+HfXysxoVIWD3WKHt1r962X96twhZLf0NzWAD+9p+3X8aampnPnzv3666+q\nhXfv3h05ciRCqK6ubu/evf7+/jTaWzc+UuekZAmm+9onPq1aMdJF07G0adrBZ4fmDejh4bZx9ype\nrB0RmZTnyzR/O+8cIIRWny9IK6y1MzNiWZv0dzBFCBVWYxKZog7DD80b0HLA9I9pZQnzvbswACrF\nYP/M/i3L209yTAsj0bdjX6uT0IRK2RnWr8+2u1smukeNckUI2ZnRQvvbXMgRTvW2u11cN9aj9T++\n3wba3kI6c+aMnZ0dkX5Iq1ev9vPzGzp06MiRI6VS6d69ezUVXo/BFco+2+6O3vvkwF0ur/E15ibR\nnolMjj2p3D+r/x1OfaePgCuUBUKsC0NScyFHKMEV265yuu8ULaUV1jItjfra0RPme68+XyDBFWob\nNErlKWzB7494XXI6XKEMP5TViXbqtIPP+KLmLomhpaPpfBcr44zPh11ZPmjHtL7BHtYh/Wx2TO17\naN6AHdP6LjnxXC3gTG6jK8P4tR7r6T6qTzV10CAX8/NL/YlsRIga5fpjWhlC6Fh65cJAPXx7egdp\ne0JauHDhjRs31Arv3Lnz5MmTX3755enTp0ePHnV0dGx1X92y9QqHUyNpa+2Bu9zvJnucX+pvZ05b\ndbli0fGcllcuNWmFtYuO50w7+GzawWe5VU2dCKm8XrrrZtnq8wVvngYu51aP9WAwLYxMqJR2qtm+\nXTfLAn56uOtmGa7410ic3Kom1QuWUCz7Ia106K5HV/NrOn7wOgzffq30dIRveZ20E3PJtC+7SqoW\nMynu3ssHKpkWRkuHO31zqYgoz+Q2fn+tJPxQVmRSXh2G3ymu7+CI4fbFnH3h5WD60alctUv81fya\n28V1bQW58a/iMF+7mLMv1DYQNysKhNjt4rrLudWv9dNWlVZY+1deDfnMDYNOHdLLYpCLOXGh72tH\n3xnW76NTueSvTXm99JvLRUuHOXfudFpiVJ9/NYNMqJQPhzJPZFRKcMVb+DwsSSv+xOgEGo1GztSg\n6yS4IjIxb7ib5erzBVO8bRcPdWq5wcXn1eeX+lMpBrP8HUY5KHLFxuGHsvaEe5L9CYnPqo6lVxJ/\nM+IKZXmddKwHY2dYPzszWoEQ236txMOOHvWOa0f+msvkNl7Oq35Q0mBnRlsQ6DiqD+PHG6X8huYF\ngY7BHtad+99y8AFvzwxPhNDS4c4HH1ZsmfjPkyIpbAGuUA5ytjBv9wgSXHExp7p265j4+xWzD7P3\nz+qPEEp8WpX0TODKMG6UyokMTaUYMC2MFgQ6rhjhMvsIG1coWz4I2aptVzmrgnsx6NQd0/quvVjY\nVd1BBUJs9fkCvFm68Wb1quBe033/NSYtk9toZ0ZjWhgRH6f72h9N5wftTvdzMuttbRLiafNFsBvR\nHbR4qNNHp3KZFsZBvS3J3fmiZnLfjjhwl0ulGHw3xSOT27jkxPPTH/qaUCnErx+uUPowzX5MK2PQ\nqaH9bWYNdCC7oS7nVktxxbLhzkwLo9XnC8hZdu6XNGz6kzvcXYoQcmUYn8ysKq+XtvztbR+nRrLv\nNlf1OdaWWDYmh+YNmH2EzbQw4oua+9rRl49wHtLL4rVOpP0WBjJpq6//OsdL04Fokm4M++6cuXPn\nnjx5UtNRvEJ5vfTTM/lrxvUmLjS/P+LdKa7fMa2vanfED2mlXg6m5INyfD6fyWSW10sjE/OWDneS\nyBSHH/ND+9uQT+G16nZxXdIzga0pbWEgk3iknFMj+f0Rr7AaI/dqlMoZdCpxKRzS6193jBul8vgH\nFdx6KfGXdaNUviDQUe3y2pa0wtq0grqN/3smMfxQ1ukPfYmDFwixbVc5Yb526eUidnmtuSk9enSv\nVq81318rYVmbEPecc6uaFh3P9mWah/a3mept11aWleCKRcdyZvrbq92pbulxmejHG6V/LHz5oNun\nyfnLR7ioPUfyuvii5pizL8yNDDeE9qFitSZWdtuvleRWNa0K7kX+dTz7MHvn9H4dvIONK5QfJGTv\nmNaXZWPyuEwUd49bh+GuDOMtE91VfwK5VU1sfqOwUVZYjSGElo9wIf5qyeQ2br9ekjDfm/jJEx9n\n+tvvu81dM86NTNuNUvmJzMobhXWrxroNcjFn88Wb/io+NG8AcYqYsy/CfO2CPazvlzQcfFDxVZCl\nh9s/LZUPjmarThzXKiL/SXAFMUCgUSrfP6t/R/7KqcNwcjaE7kb8F+uBE6m5XVw3yNmiE32AHaQD\nl0RND/PrRto/xlGpVC47+ZzXIFUteV4pnpfAvsepJz6W1UlCDmSoDm8lx6RiMvm8BPaeW2Wqa9vH\na5BuSS1eeCw7eN+Tz1LyOz3aWCTBieMUV2Ov3HjW71m1TTLy45bU4usFNeQqcoQrj8erbZJ9ce7F\n4j9y1A5b2yQbtSe949UkyeSKhceyv75U+Ki0oa3dZXLFqD3pqgNty+okC49lv+65SJhM/t3fnMV/\n5GSUi4gS1WHEGy4XzUtgb7hcdOm58LOU/Nc6cm2TLGj3o3kJ7C2pxYLGZqVS+ai0Yfpvz67kVcvk\niuSsqnkJ7KgzeclZVbeKankN0rI6yVcXCohfklF70oldSBnlohWJuS2HMiuVSl6DdOGx7K8uFATv\ne6K6FyaTT41/uuFy0RfnXmAyudqwb+IXkhx7fem5cOIvmX884ZM/eZlcMTX+qeoQZ+2kr08gaP8l\nEVpI2kiCKz49k+/DNIsa5RqZmLd0uPO/Omre+M83onerrafWO45oBCCEwnzspvvZt3rA3KqmH9NK\nVTsiyuul31wqOjRvwNF0Pq5Qkp08ZL04NZJvLhd52NK/Hs8i/pz/NDl/ygDbDna+tXS/pOFybvXT\nikYqxeC9ftZ97ehejmZ2ZrS0gtr7JQ1PKxpn+tur3Ulefb5gpr+D6o+9fXUYLhTLCoRNbL64sBpb\nMNhR9SZBy68sk9sYd5+7PoT1ugN8+aJmEypFtQGNK5Rbr3DucOpn+tnPC3BseatfgiuOpvODPaxf\nd1T0/ZIGKsVArcHKqZGcyKwkpq9uWS+hWDb7MDuotyWbL36vn/W8AMfEp1V/v6hdFdyLZUNfcuL5\nmnfdXmuQtEZoqoXU3bT/kggJSXudyKjcd4fLoFPPL/VXLde2/y0SXHE5t/osW1iH4Rsm9Bnk8s/N\noDoM/+Bo9v6Z/dV6WmYfZm8I7bP7Ztn+Wf3JjkG1el3NryFu+DMtjSIT85KX+L15qHUYnlvVxKnB\ncquauPXS9/pZD3KxaHWkdR2GT/o1k0qhIISoFAOWjYmHLd3XyWyQs4VaXfii5tmH2V4OpkxLIzMj\nw6DelsEe1mpH07avrKu0Wq8CIVYgbFL966FRKt92lXMhR5i8xP9NHhXqMfr6fWn/JVFXBzW8DeYF\nOLJs6K9111ojTKiU6b72033tiXs2q4LdiIZFo1S+6HjOd5M9Wvb7j/VgDN35iLdxVDs3vUI8bYJ6\nWy058TytsLZLshFCiEGnBvW27Ei7h0Gn3vvvEPJjo1ReIMSuvqg5ll4Z2MuCHGtQh+FLTjw/NG+A\nTlxne0ZfO7raT8Pc2PC7KR6q02m3pJRJ8Woejcnq3uCAdoOEpNU63mWkDUyolD8W+cScfSEUN4d4\n2nx0OletwURaPNSprx39lc+RmBsbnv7QN5Pb2OpBepK5seEgF3MijAs5wg8Ssr+b4oErlJ8m5/86\n26tn7rTrt6pDG5pLc2kOvaynf2Ls9laPNHubaftzSEC3UCkGe8I9/35RO3pv+qqxbm2NzTU3Nuz4\nDSGNZyM1U73t9s/qv/1ayezDWYfmDYBs1BFyUQ0neoxS3vpj2g3XT5pYaF5BAAAgAElEQVSwvHtt\nTbGds6o2ZR/3uw8VEnEPRwi0ASQk0PV2hvU7v3Sg/j0pQrIzo/06x+tRzNC3ds6x1yW6fZbuNazu\n0qGWq6SluVjuI6sJEQghGpPF/O8ey+DZ1Sf+X4/HCDRPq7vskpOT5fJ/zbcYFhZGTFv34sWLY8eO\nYRg2fvz4kJAQDQUI2qT9t77e3JsPU3x7YDn3mP/dU33qR3HGdbOAd8lyhbih5vRPjp/sVN3YYsTU\nhrTT0tJc6Lt722j1/6iMjIxH/5OYmPjtt99SKBSEUF5e3qxZsxwdHQcPHrxp06YjR45oOlIAup7e\ndFvJRTUGJmYGNGO7BevqryTgdS/nNZfkp1f8+JHdgnUUE/VnkB2WbhUc/LrVoynl+IsPWnnxK9AD\nWt1C2rx5M7m8fPnyGTNmGBoaIoR++umn+fPnR0ZGIoSYTGZ0dPSCBQuIVQDoHIW4oWh5oHt8pup1\nWSERFyzsx9p908ilrwZj6xL1V49bjp5BLDss3SY4+LWp3yhxZpqRS1/mJ7uotq3MNkRz6GU2NLTu\n0iHGpCVqq2qSdtMceuF1VVSGQ8sdgU7T6hYSSSAQ3Lp1Kzw8nPh4+/btoKAgYnn06NHNzc13797V\nXHQAvJG61CPmI6bWpOxTLaxJ2Wcf8U1D2ilNRdWFsNxHdJ8RxDLV1okxZRnFzMopZr/dgnWtZiOC\n9dSPGh9dlov+NWdrM7egmVtgMzNaWvi0e4MGmqAbCSkxMdHDw8PHxwchhGEYjuPku8kpFIqpqalI\nJNJkfAD8j+Q1L5QKcUNTZprjih0ybgGW+5AolPE5Ml6x9fuR0tK8tkamaRtZVVnr5XyOkRPLwPCf\nzhi61zCLd8IMaK8eD2IzM5q3M5LMSUo5XnVwvd0Ha4zdvJq5BV0SNtAqWt1lR0pKSoqIiCCWiakl\n7O3/mdaTSqWqjX0gcDicuXPnEsu2traxsbHdH2lPEAi64DUEXUVRXaGo5FC9R75601d5rXrJizIp\nNs4GXdFpoxCUKeoqqf2GvHrTV0ZVmoMdWmvYf7jJ7C9VL8HtVE36Z5zhO7MqBUI0/XNe/Jf0qJ8N\nDKnYwViTmV/w+Xy5mw/3xrku+fF2B7Je+IvHTbs/Nl25t2Wo0nO/0gJD+Xx+Z05g624wfilny0Lj\nkAiqf3Dz5XiDgNBqZKKUNDTzy6WdO2YHaNV/sTe0efPm6upqYpnD4Wg0lg7Q8Fx6HfDgwQNvb+/a\n2lriY3Nzs6en56NHj8gNBg4ceOXKlZY7av9Mgp2jPTM/yrHGkrVTiyKHybHGV26saJaUrJ3azpav\nVa+SLyeWfxvRXFmqWigpeS4tf9HxgyiVyobbKWWb5nBi3u1IFV6JH7dG0SwRs+9wty8hYsMbqsVP\nb3IOblTgspbby7HGstiZ5Kqasz/X/vlbw+0UwR/biRK8obripxVvHlg3Ib+ysk1zZMKK8m8jJCXP\n1bYp/zbiDc+iwGXVZ/YQ3zhZ2K0/Fu35L9a1tP+SqAMtpOTk5NDQUAbj5VSVNBrN2dmZx3v5Ak2B\nQIBhWN++On/jVxcJj33rsHSrjM+pSdlnN+/LV25s3Ku/6M5Zq/fmv+F5ZXyOiedgm5nRVb98ZR8R\nS8w3U3fpUOP9iwgh57WHW47aakkpx4UJWxBCLuuPYdn3hMe+dVi67U2iwnIfGjl7GNCMTX1GmrB8\nK39ZI68TGFramPQfiqhG9akJLe/P1547YDVxMdmWsn4/kvPZuwpxLWvPHaLE0MLGwJCqlEk70sHV\nDt6PH9OYLLsF697kIAghvJpXk7IXy77Xa0sKxezlNCINN5NMvUdQbZ2c/run8sAXDh9/b2jxcvpU\nKSfb2K2V94K/FgNDqk14lMWIqQYmb+n73d8e2n4Pqamp6dy5c7NmzVItDA8Pj4+Pl0qlCKG4uLiA\ngADylhLoMTXJe036DTbxGGjxTlhzaa6Uk93OxqJ7FyimlvZLNonTr775qRtuJlkGz6EyHJif7BIe\n+1acfoX73YcUM0uX2BP2SzYJDm1Qve8iunO25IvxTdn/GvYiLc3l71ppOjDYfvEmA0Oqqf9ohFDj\nw8stzyXjc4qjRgqPfduBqM4wQl92LFPMLJ1i9rtuSnRa9Yv11I+MJywRP7mqNoxbIRFjuQ/Nh01U\nLbRfvMHhP9tUE6rpoGDR7ZRX/1DaJuNzlHJcWprX1nekkIhLvhgvunNWrVwpk8qqyoh/0tJcwe8b\nBEc2WwbPcVyxg/d/nxI/ZIVEXJ+awJj6EVFru0XfVP3ylUIilpbmNj68TGz/JsGTaEyW6rA6Q0sb\ntfEOQB9ouon2CgkJCWPGjFErbG5u/uSTT/z9/UeOHDlp0qTS0tJW99X+9mnndK4/Qcy+w1kVomiW\nvHpTFfLG+obbKfU3EsVPb4rZd8TsO5JidnNlad3VY2S3klKplAkrVLue1EjLX5RvnU+sFZ78Qcy+\n0+pmHayXolmi2nUjxxoFR7fJaivJEtGDS9Vn9iiJrp7TOyvj18kb64Unf+Dt/UxS8hwryOTtjhIc\n3SYTVqjVtHR9mLyxXrWw4XZK+db5zbziqkOxdVePqVWq+vROsspY3uOasz+3FTOPx8PyHlcdilUt\nrDq8ueHu+Y7Ul7t9ySs3awfRk/aye7DFL4C8sb782wgx+07FTyvqr50gyyUlz8tiZwqObqs6vJm3\n97PK+HWq3XHipzf5cWt4PJ7g6LbGx6mqB2x6/qDih4+qz+xpuHu+ZQ9eV6n763DT8wfddHDostMU\nbU9I7aivr28rFRG0/6ffOZ343yJvrC/bNEfMvsP/eVVbaUPRLFG9rIvZdyrj1/F2R9Wc/6X+2gny\nX835X4Qnf6g+s0ftODXnf1G7ZL88NdZYuj6smVdMRsLbHfUm9RI/vdnOpZ9QdXiz6MGl0vVhNed/\nUa1g1eHNdX8dbut2UePj1KrDm/GGaizvccPtFO72JdWnd5JXcP7Pq0QPLhHLdX8d5setqf3zt/Jv\nI4iqVfy04pW3xyp+WkHe4qo5/4tqbK+ozqHY5spSBS6rv3aCsyqk6vDmVjdr5hU33E7h/7xKUsz+\nV6X+lwhFDy6pJcXmytKy2JlYQebLOsatIaKqv3aibNMcvKG99zc2PrlW/OPKN79F1DlYQWbtn791\n08EhIWmKDtxDaoulpaWlpS5Nhq1BgmPf2kfEGrN8FOIGYcIW+8WbyFWS/PTGR3/JqsoMjEwMzSzl\n4gaEkFIiNu7tzZi4pONPZTImLSlbN02BiS1GTCUeLlGIG+qvn2x6mmY7ZxX5WgGKmSUypOLVvHYe\nQGlfw60zr7xfZbdgLXfbApuZ0aqz1BjQjO0jvmlnL7PA8U3Z92uSdtMcWTQmy2HpNtUgHSN/4O+L\nQQg1pJ0y9Rvt+PH3CCHzEVMq9682MDSke4945Y0ruwXrhAlbnFb9IjiyxYjZm5i9rSPMg6Zwty2g\nOfSyGD2j19aU+qvHqw6uJzobEUIKcUPV7xuUErFRr/4m/QbbzIyuSdlnwvK2mhChkIjrUo86f/HL\ny+MMmyh58USccZ0+YJgk/4mUwxan/+34yU6aQ6+Xdfz4e8GRLcVRIy1GTXdZe6T9G1dmAe8Ks+7b\nBYd3sBZdy8ilb/3ff2jk1KD7wAv6dE+rbw+T5KfXXTlqGTyb7jVMdcAxQqjp2a2mrFvkDe2axF0G\nJmaWY2eKM66L068aufQ19R9t4jHwDW+bI4SUclxa+LTh1hmFuEEubjAwNLQav8jUf7RaPFJOdkPa\nKSIpKuV43cVfpWX5SI438UqMjIwQQkQaoDFZRi596V7DVLMCXs0Tnvh/zH9PfdZjlDJp1aENNu+v\nUHttT+25/VYTItpJSORXVnVwPZZ9z27RN6qZsiOant2iDxhGfkcNN5OaMtMcP9nZlHm99lyczcxo\n4jYYqeFmkuTFEwNDqtnQUFOff4ZiK+U4f9dKiqkljckyZvnQPQPJsQkkWVUZmaLap9kX2fH/71Pm\nf/d0y5HhBX0aosMtpLcKXs0T3UmxeGd6y4YFlvuw7tIhqq2z7cxo0b0Ltefi6P0CTAPeNWb5GBhS\nFRJx/ZUE5mc/k9vbzPqMtzNS8uKJxTthzP/uUcsWb8LAkGriGWjiGYgQkotqyKFWaoxZPrKqMqUc\nby7LExzZzJi4xDxoqoEhVSgzUL0KyKrKsOy7NSl7m7kFpn6jGZOWUEzMRHdSLINnd1XAr8uAZkw0\njNRYvx/ZwSPYLVgn43OMWT6ve2q1fGM5ZibFxKx4+RDzEVOcv/ytZVKxHDPT2M2r7tIh1WyEEDIw\npDqt+qX9c3UwGwGEkFImLYjwYu28Dq8W7BKQkDSs9sKvuLBcLm6Q11VZjV9kFhiiliEkhU8b0k4p\nxA1mgSGVB74wZvkohr6PmEyFRCy6mdSUdZvGZDks20Zc/W3CoxBCTdl3m57dqk9NUCrkMl6xY+QP\nasd0itnf3fVqKxsRzIeG/nMxJRsW/37Okebw/9u777imrvYB4IcMsiBsCCqCgGgFB0PcddRVtXWg\nYqH6arW2WFtfqq2v42er9W21tta+rlJt63ix7lFnwVYtTkQcDNkEAjICIYOQcTN+f1zf2xggIARy\nE57vhz9uTm5unsOFPDnnnnuOD90zmjs2GiEkvXas4tuljqNmNWTddZ76bodF3eEoTE4bslGTHCIn\nsweMMtEsY/gFe8V9Y5b3Iic7OkOnlLdmiH/HqU+94v7Wp8JDm3gf7bRsJLYBEpKFsYLCKKFj7egM\nO3uGJOmw+OJ+p4nzHYZOVfGzZCmnFU9THUe86Rq1Ah/w6jhiurLwccXRr8u0Kpqzp8PQqbyPdjbu\namMHDzf6Xkw2jq9GMYPCW3+Bijs2mjs2WvrXKWbAADM26axdF/8EZPgFq0tz8Ba5pdSnXvFc8m9W\n8PDao18bXpoFbQP/2xZm+O/kNnelTimXJB169vViVt/B3DFz3ef/n9HnLzNgIGvx19bewW1HpbVh\nEmvuq1EdEQywUoxewcrCJxZMSJraCjt7JtXRleroqsi6XZ96xSFysh5TSa4eqTm61WfjKaPWMFbJ\nV5XmUDhcmrMnhclp87geG0b2G2O7GgqT4/JmXPc1B11nLscvAlk6IgBIiuHTV/2s86ZYVfGzBOtn\nGJZIrx1zeu0tfNvlzTjZrXPVP6179vU7NDfvXrtu1/z6teEN2npMVf7VAp1coqkW1Kdeefb1O8q8\nB50WvLWAzzsAgFWicLhaaedN1iA6s4v1SiTeDMJLFPkPXWYuJ3bwWrpVWfiYFTwM/x7pEP6a9Ppx\nYqKs2uPfukatIFr53LFzq/Z+0n3NwU6L3ypACwkAYK06rQuhIeu2ffdA99i1spTT+Iq3ipxUoyua\nFA7X8CYHp4kL6lN/J3bGKvmGfc40Z09Gzz6Np2vq4sjeQtJqtcePH3/06BGdTh83bty4ceMQQmlp\naYbzqA8ePNjX19diIQIALMUcM8+2hvjift4HOxBCHgs31h7f7rV0i/jyL55LWpiN13PRxprErzwX\nb67ev677+kSjZ93mrizbGM0JH9/FB6cYInVCwjBs/vz5Wq12+vTpCoXi3LlzeEI6e/ZsampqaGgo\nvpu/vz8kJAC6IIZPkKo0hxkwsEPfRZJ0iNVvGH6zF83N257nK7t1Dum0pu9tQAjReX5UR9fS1a+7\nx65tvOC6HZ3h/Poi8YV9rrP/2VGhWxtSJ6R9+/ap1eqTJ09SKMZdi5GRkZs3b7ZIVAAAkrD36asu\nL+jQhKTHVLJbv3XfcJQocZ76bsHbvZu8Rboxt7kfU5hsozndCY4jppdtiuaKYxqnq66J1Anp9OnT\nH3zwgVAozMvL69+/P7EkEkJIpVKlpKS4urri65oDALogZuDAZ1vfMfv9AHqtRl1eoBFXa8VC6fXj\nhmtWIYTsqLRee+9ROU6tORSFyXGbu9LEDu7zPq34ZinduxdCiObmTXVwsff2ozq62vfs2wW78sib\nkLRarUAgSEpK2rFjh7+/f2pq6scff7x48WL82eTk5PLy8qysLC8vrx9//BHWQwKgC6I6ujq99lbN\n0a9bnG+39TTiauWBtSJnN4ZvP3tvP/f5/8fo2ddoHzM2aJhB4T6bn693pamt0MpE6opiDT/Lzp5p\nrkk9rAh5J1fFMCwkJKRfv37Hjx+n0+lpaWmxsbGXL1/29/cXCoUeHh74PvHx8Xw+/8KFC42PMGTI\nECJRubm5bdiwoTPj7zhE9W2MrdYL2W7VSFIv1aUEiocPffCU9h8Ke3gVu3O2YfQ/3IMHt/9oZLBp\n06ba2lp8m8/n37t3z7LxmEbeFhKVSqVSqVFRUXQ6HSEUERHB5XKzsrL8/f2J/wE6nR4XFzdr1iyF\nQsFisYyO4OfnR/KpbdvM2mdqaI6t1gvZbtVIUa93Pqv8z4fOfQa2Z9YGPaYSHtrEYnJ6/F9iVW0d\nKeplDnv2/D2xcnR0tAUjaQ3yJiQKhRIQEKDVaomSJhtzarUaIUSjkbciAICO5rl0S+V/PnSaMN9o\nXY+6C/tURU844eM5g8Y2nhMdp9dqpNePyx9cdXnzfVbfyE6JFzSN1J/js2bNOnHixJw5c9hs9rVr\n1xoaGgYNGoQQun379vDhwxFCYrF4165dAwYMwFtRAICuicLk8D7aWf3TekX2HdcZyykcLlYtqEn8\nkjNojHvsWvmja8JDm/SYCiGkU8rt6AxNbYUdlUbn+dHcvJX56eyBY7xX/ggzdVkcqU/AokWL8vLy\nhg0b5uzsLJPJvvnmGx8fH4TQJ598IpVKmUymXC4PCwvbtWuXpSMFAFgYhcnhffCd/EHys6/fse/Z\nRyeXur+1Gl+myOm1GGIKH0MacTVWyXeZ+m5zjSfQyUidkBBCX3311aZNm/h8fkBAAHE30q1btzAM\ny8zMDAkJgbYRAIDACZ/ACh7e8CSl8dJijdGcPeEGIFIhe0JCCNHp9N69ezcuJGZqAAAAAoXJae5G\nVEByMLkqAAAAUoCEBAAAgBQgIQEAACAFSEgAAABIARISAAAAUoCEBAAAgBQgIQEAACAFSEgAAABI\nARISAAAAUiB7QtJqtb/++uvq1avXr1//559/EuX5+fmff/756tWrr1692txr+Xx+Z4TY6TZt2mTp\nEDqErdYL2W7VoF7WhfwfiaROSBiGxcbGnj59un///r6+vufOncPLc3NzZ8+e7eXlFRYWtnHjxkOH\nDjX5co1G04nBdh5iuS0bY6v1QrZbNaiXdSH/RyKp57Lbt2+fWq0+efIkMa0qbvv27TExMXFxcQgh\nHo+3YsWK2NhYKpVqoTABAACYAalbSKdPn54/f75QKExJSRGLxUT5zZs3hw4dim+PGjVKrVbfvn3b\nQjECAAAwD/ImJK1WKxAIkpKS5s6d+/PPP48YMeKnn35CCCkUCo1G4+fnh+9GoVDYbLZMJrNkrAAA\nANqNvF12Op0OIVRZWXn16lU6nZ6WlhYbGzt27Fh8rXsPDw9iTxqNZrjSOUGhUISHh+PbdDrd19e3\nUwLvcHw+Pzo62tJRmJ+t1gvZbtWgXuRXUlKCYRi+rVAoLBtMi8ibkKhUKpVKjYqKwpfgi4iI4HK5\nWVlZ+KKx2dnZERER+J5KpZLFYjU+QnZ2dmcGDAAAoD3I22VHoVACAgIMmz56vR4hRKfTu3XrVlFR\ngRcKhUKFQhEYGGiZKAEAAJgJeRMSQmjWrFknTpxoaGhACF27dq2hoWHQoEEIoZkzZ+7fv1+lUiGE\nEhISQkNDiUtKAAAArBR5u+wQQosWLcrLyxs2bJizs7NMJvvmm2/w/rq4uLi8vLzIyEgHBwcnJ6eE\nhARLRwoAAKC97PB+MDLDMIzP5wcEBBjdjSSVSiUSCZ6iAAAAWDsrSEgAAAC6AlJfQwIAANB1QEIC\nAABACqQe1NB6+fn5ycnJxcXFHA7nzTffDAsLM3wqMTFRoVBMmDBh/PjxFgyyDZqrl4n6Wi+rPlMm\n2OTJMpSenl5UVDR69GjD29WtmlarPX78+KNHj+h0+rhx48aNG2fpiMzj2rVrSUlJGo2mf//+0dHR\nDAbD0hEZs5EWUkxMTHFx8ZAhQ+h0+vz588+cOYOXt3JecNJqrl7NlVsvaz9TJtjeyTIkFAo//fTT\ndevWlZSUWDoW82hukQFrl5CQsG7duuDg4FdfffXUqVNLliyxdERN0dsEiURCbO/cuXPChAn49tKl\nS7ds2YJvX79+feDAgRqNxgLxtVVz9Wqu3HpZ+5kywfZOlqGlS5eePXs2KCjo/v37lo7FPHbv3j1z\n5kytVmvpQMxs7NixiYmJ+HZhYWFQUJBcLrdsSI3ZSAuJy+US2x4eHsTcTdY+L3hz9Wqu3HpZ+5ky\nwfZOFuH8+fMIoSlTplg6EHNqbpEBa9etWze5XI5vKxQKGo1Gwi47G7mGRMAw7PDhw1FRUci25gU3\nrFdryq2LLZ0pE2zjZBFEItF3333366+/WjoQcyIWGdixY4e/v39qaurHH3+8ePFiS8dlBp9//vma\nNWuKiorodHpGRsbWrVtJuIacrSWklStXurm54Wv36fV61Lp5wcnPsF6tKbcutnSmTLCNk0XYuHHj\nkiVLvLy8bKnN19wiA/7+/pYOrb0qKiokEglCiMPhKBSK8vJyS0fUBJtKSKtWraqurv7555/xzI9P\nE96aecFJzqheLZZbHZs5UybYzMnCpaampqWlzZo168aNG/hXh4cPHzo7O1v7NMfNLTJg7QlJp9Ot\nWLHis88+mz59OkLonXfeGT169MiRI4ODgy0d2gtsJyGtXr26sLDw4MGDbDYbL7GNecEb18t0uTWy\njTNlgi2dLByFQgkJCTly5Aj6X6vijz/+4HA41n7WmltkwNqpVCq5XO7t7Y0/9PDwsLe3FwgEkJA6\nxPr16zMyMg4ePMhisfAOBPwLDj4v+MSJExkMhjXOC95cvZort17WfqZMsL2ThRCKiIggmrMYhoWE\nhKxatYoosWr4IgNz5sxhs9mGiwxYNRaLxePxkpKSIiMjEUI3btxQKBRBQUGWjsuYjcxl16dPH8OH\n9vb2GRkZCCEMw+Lj41NSUoh5wa1rMtbm6tVcufWy9jNlgu2dLCN4QkpMTLSNhIQQWrNmzaVLl/BF\nBjZv3mwbwwjT09NXrlwpkUicnZ1ra2tXr14dExNj6aCM2UhCMg3mBbcWcKYASTS3yIC1EwqFMpnM\nz8+PnPXqEgkJAAAA+ZExSQIAAOiCICEBAAAgBUhIAAAASAESEgAAAFKAhAQAAIAUbOTGWGAzGhoa\ndDodk8mk0Vr1x3nr1q2ysjIGgzFjxoy2vaPREUw/bP/xzas9B1er1fjiTIMHD7b2qXGAjbDk2hcA\nGPjyyy89PT2Jv0wXF5d58+a1+KqZM2cihNzd3VvzFtevX//ggw8++OADhULR3BFMP2z/8c2rPQev\nqanBf9X79+83e2AAtAG0kAApfPXVV2vXrkUIUalUNputVqvr6upas7jqkCFDEEKOjo6teZesrKzd\nu3cjhLZs2dK2I1j2+I116MEB6GSQkAApHD58GCEUGhp68+ZNfAbS7OzsU6dOGe4jEAgePHigUqkY\nDMa4cePwhe9ef/318PBwYqmxJ0+eVFdXMxiMUaNGPXr0KDc318XFZeLEiQihR48e5eXl4btdv36d\nyWS6uLiEh4cbHcE0nU53584dfPpXGo3m5+c3ePBg/KmXOn52dnZWVpZGo+HxeKNHjyZumzcRf5Na\nX32cUqm8cuWKSqUaOnSog4NDk8fMycnJyMjQaDQ9e/YcMWIEXpiXl1daWooQIl5YVFRUVFSEEAoP\nD3dxcWnNbw+AFli6iQaAXq/XOzk5IYSGDh1q2NlFkEgkRuvaeXp64k8118NmuOzQpEmT9Hr91KlT\njf74x48fb+IITT5csGCB0UFCQ0MrKytbf/yamppJkyYZ7tazZ8+//vqrxfib1Prq6/V6Pp/fo0cP\nvJBOp3/33Xf4NtFlJxKJjGoxcODA0tJSvV6fn5+Pt8MWLlyIn5GePXsihMaMGfNyZxqA5sEoO0AK\n+Ofg3bt3uVzua6+99vHHH1+7do149u2338ZbSyNHjvz+++8//PBDw9X8GqupqTl16tTChQt79+6N\nEPr999+vXr06atSo8PBwfIeoqKh58+aNGTPmZeP08vKKj48/cuTI8ePHN2zYQKfTHz58uGHDBoRQ\nK48fGxv7+++/I4SWLl26adMmT0/P0tLS6dOnV1VVmY6/9UE29/J58+aVlZUhhGJiYt5//308bEPz\n58+/ePEih8PZtm3boUOHevbs+fjx49dffx0hFBgYmJCQgBA6cODApUuXPvjgg9LSUk9Pz6NHj7Y+\nMABaYOmMCIBer9c/e/aM+DQnREZGikSip0+f4g8NGwoqlQrfaLKJgBDKysrS6/W3b9/GH+7cuVOv\n1+MXeBBCMpmMONTLDmrQarUZGRmXL1++ePHi0KFDEULdunXDn2rx+ERdFixYgD9LfKBv2bKlxfgb\na3318/Pz8e23334b3xlPMOh/LSQiti+//BLfgegy/fPPP/GSJUuWIISIDrrk5OTWnFwAWgmuIQFS\n8Pb2TktLu3Xr1p9//nnv3r2kpCQMw1JTU7dv3x4aGorvM3/+fGJ/e3t7E0dzdHTs168fQqh///54\nSU5Ojlni/OGHHz799FOZTGZYaPTQhOzsbHxj8uTJ+Aa+gidCKDMzk9itnfE3+XK8hw0hRFxSwrNp\n49jWrl2LDzAh4O0qhNDOnTtv3LiB57ZPPvlk/PjxrY8KgBZBQgIkMmLECPwqekFBAd7dVFBQQLSc\n5HJ5K4/TyhEKLys7Oxu/NjNmzJhly5bR6fStW7fevXu39UcgBi9oNBp8g6iU4X1X7Yy/yZcTb40v\n8Ioa5VFihzFjxhDZC0c8zMnJ4fP5+PalS5c2bdrEZDLbEyoAhuAaEiCFdevWHTt2jPiYrq+vxzfs\n7e2HDBlCpVIRQnv27FEqlXi5QCBow7sQn7nPnj1rw8uJZkp8fKjcE0AAACAASURBVPycOXMmT55c\nWVn5UsfHR2kjhA4cOIBvJCYm4hvDhg1rQ0itR4wGJN76zz//bHKH/v37HzSwfPnyUaNGIYTq6+vn\nzp2LYdjIkSMdHR2zsrI+/PDDDo0ZdDWQkAAppKamzps3j8lkent79+rVi1h7dOHChd7e3suXL0cI\nPX78uE+fPnPnzp0yZUrbFiclvukPGDDAw8Pj448/fqmXE0s+f/rpp8uWLRs+fHh5eflLHd/b2xtv\nY/3555/Dhg2bNWsWvo+/v3/j8Xvm5eXlNWfOHITQ9evXIyIiJk+evHXrVsMdunfvjse2c+fOyZMn\nL1u27B//+MeAAQMiIyPxLwrvvfdefn6+i4vLyZMnv//+e4TQ/v37z54926Fhgy4FEhIghaioqP79\n+2u12srKSj6fr9VqeTze/v37x44dixDasWPHpk2bXFxcSktLT5w4cfnyZW9v7za8y5QpU+Lj4x0d\nHVUqVU1NTeuv/eBCQkK2bdtGpVJzc3P37t376quvTps27WWPv2vXrrVr17JYrLt37545c0ar1b7+\n+us3b97shL6vhIQE/KrPgwcPMjIyGg+Q27Nnz4YNG5ycnH7//fe9e/ceOnSooKBgzpw5NBrtp59+\nOnLkCEJo//79Xl5eixYtwtPbO++807bWKgCNwYqxgER0Ol1OTs6zZ8+Cg4ObTDlFRUUlJSXh4eH4\nXbEW0dDQcP/+/fDw8OZuLG0NnU6Xl5dXW1s7ePBg0wM0zE4gENTW1g4YMMDEItYFBQUCgaBv375t\nS/wAtA0kJAAAAKRA6lF2+fn5ycnJxcXFHA7nzTffDAsLM3wqMTFRoVBMmDABxp4CAIANIPU1pJiY\nmOLi4iFDhtDp9Pnz5xNTbebm5s6ePdvLyyssLGzjxo2HDh2ybJwAAADaj9RddlKplLhUsGvXrt9+\n+y0pKQkh9N577/n7+69evRohdOPGjRUrVjx48AAfGQwAAMBKkbqFZHjh2sPDA8MwfPvmzZvETeaj\nRo1Sq9XEFCkAAACsFKkTEgHDsMOHD+PzPSsUCo1G4+fnhz9FoVDYbPbLjt8FAABANqQe1EBYuXKl\nm5sbftce3sdoONkzjUbTarWNX9WvXz8Wi4Vv0+l0X1/fTgm2w/H5fCIf2xJbrRey3apBvUyoYnSn\n69SumBAhlOfQP6g+wwyRvbySkhKib0mhUBAzFpKUZed2bY2VK1dGR0fL5XL8oVqtDgoKun//PrHD\nwIEDm5x1OCwsrJNC7Fxz5861dAgdwlbrpbfdqpG/XgpMq8C0L/sqs9Rr4a/ZMqUG315+OldYr27/\nMduJ/B+JZO+yW716dWFh4Y8//oivIooQotPp3bp1q6iowB/ia3cGBgZaLkYAAEnNOZi54y8LTCRR\nr9IqNToHxvORViP8nG4Wizs/DKtD6oS0fv36jIyMH3/8kcViYRhGNDxnzpy5f/9+lUqFEEpISAgN\nDbXJfgMAQDtVylRKTNf573s2Uzg92J14GOHDfVAG17lbRuprSCdOnEAIjRw5En9ob2+fkZGBEIqL\ni8vLy4uMjHRwcHByciLWGTNiOJ+/LXFzc7N0CB3CVuuFbLdq5K8Xk0YtrFW87KvaX69jj6pP/COE\neOjnyuSLlO08ZvuR/yOR1PHl5uY2WU6n03ft2iWVSiUSiY+PT3Mvt9VmU+OVp22DrdYL2W7VSF6v\nGjk2qLuDWKF52Re2s15X80QjejkxaX/3P9Eodu05oLmQ/yOR1F12pnG5XBPZCADQxd0tkYzwc+r8\nZPB9Stn7w7obFdIodm1IjV2NFSckAAAw4UaheKS/M0JIqXnhMlK9Snv0YVUHvenVPNGQnlxnlnHn\n05Ce3MzK+g56U5sBCQkAYJvSBLIeToxgHqeg5oXLSDeLxW/9N6uD3vT7lLLlI3s0Lu/rxc6pbuig\nN7UZkJAAADZIrNAw6RSEUF9PdmbFC02TNIFsqC+3XtXE3fTtdPRh1aQ+ro2bRwihvp6cXEhILYGE\nBACwQXyRcoSfE0Korycnq0pu+FRhrSI2jHe3RGL2Nz2YVrlwcNNLGvIc7cskKrO/o42BhAQAsEE3\ni8VjAp0RQoHurDLxC5lAo9PPHuh5LqvGvO94Jad26ituxM2wjdEodhodeVdXIANISAAAG3SjUNzX\nk4NvG6YBpUZHo9jxHO1r5Jh508PFp7Uz+nuY2IEkdyORGSQkAIANKpMo3Tl0fJtGsSMG2mVWyIN5\nHITQaH9n8/baVUrVPZwYJnYY2M2hlRMIaXT6k0+qzRSXNYGEBACwNTnVDUTzCCHUw5lRKVXj23dL\nJCN7OSOERvo73yw2W0JSanQ0ags3PE3r5/57rqg1R6uUqc9lmrlH0SqQeqYGnU6Xnp5eXl6u0Wjw\nxZBwaWlpfD6feDh48GCbWVoCANB+j8plowOciYdOTFqNHPNzZSKEHpTJlgzthhAK4XH+fZVvrne8\nWSQe0pNreh8mjUKj2NXIMaLp1pzMinq8GdfVkDohbdiw4cqVKwEBAdnZ2YYJ6ezZs6mpqaGhofhD\nf39/SEgAAEJWlXzqK3/PbRrC4+RUyyN8HBFCSo2OmNSH52hfKVPzHO1f9vgzf8mIGuDxdjiPKLlR\nJI4e5NXiC6MHef73QeU/X21hihm+SDmom8PLRmUDSN1l99lnn6WlpS1btqzxU5GRkVv/JywsrPNj\nAwCQ1t0S6aDuf3+gh3g7PH72/FYkw5mEogZ4nHzclks1OdXyP/LrDEsyK+R9PdktvnBaP3ejFzbp\ncUV9D2dmGwKzdqROSHR6sw1blUqVkpKSldVRt1sDAKwUPnbOcG7THk4M/B6gnOqGADcWUd7cqhA5\nNSrTcwu5c+zFCo3hID0HBrWVk+b19Wx5yoZKqbo16c32kDohmZCcnLx3796YmJiJEycaXk8CAHRx\nfJEy0J1lVIhni7slkqG+f1/pYdIoSo2u8eDv09kSE5eXMivlfT3Zr/V2uZD9fNxBmkDWx6O1+WNq\nPzfihc2pkWMkmSC8k5H6GlJzVqxYsXnzZoQQhmHx8fHLly+/cOFC4934fH50dDS+7ebmRvKp8ltP\nKBRaOoQOYav1QrZbNXLW6/dsyUBXVFlZaViox1SFpc9S8qpXDvcwfCrUnXI6tfBVvxcu2ORUyjxY\ndKMjEH5LFw1yp07uSVmdXDrUXYsQOpNeM6QHu7n9jfTloC+zq+YF0ZtLOSqt3p2pb+XRWrRp06ba\n2lp8m/zf3a0yIXl4PL/7jE6nx8XFzZo1S6FQsFjG34n8/PyOHTvW6dF1Bh6P1/JOVshW64Vst2ok\nrFfOHeniyG483gs5ZpCvWkblqu3E/Xq9sDDEm2Hcow+r5hrUQqPTcznlPu5cDculyfuKhJhswYie\nPZwYLJaY5ujmzqFni4Qb3+jV+jbNuL4qvoqFjz5vLE0gC/RyMtcvds+ePcQ28QWdtKy1y46gVquR\nNayECADoHJVSdYi38ZhpnqN9mURpeGEJ19eTnVX5wkx3aQJZH3fG6ADnm0VN38T6qLweT1T4kLl6\nlZZJp7xUD9u0fu4Xs2ube7ZMouzTJS8gIZInJJ1Oh2GYVqtFCGEYhmEYXn779m18QywW79q1a8CA\nASaGPwAAuhQa1a5xeuA52t8qlvC4TYzw9nNl1sgx4uG5TOFwH85QX6cbTSUksUJDTOaND5l79EzW\n4h1IRkJ4nJvFkuamEcqskDe+BtZFkDohXblyJSQkJC4uTq1Wh4SEhISE4Dnpk08+6d+//+DBg4cP\nH65SqXbt2mXpSAEApFAmUTVuBiGEBnV3PJspDPZq4m7T13q7XM37ewIFfp1yII/Jc7TPqWpoPN6h\noEYxopeTwWEdfrpXYTjEvJUOx/RbdPSp0UJNuJI65VBfp8blXQGpe7qmTJkyZcqUxuW3bt3CMCwz\nMzMkJATaRgAAQmZF/cCmbil159Bzqhua/KAfH+QadzJ3XqgXQqhepSVGuAW6swpqFEbDr68X1o0J\ncCEeTn3Ffdh/0vbO7vOycfq5Mg/H9lt09OmvbwcbTdxQr9Y2mVO7AmutNp1ODw0NhWwEADDUXNZB\nCPEc7fHZg4zgq0LgjaHMSvnUV9zw8kl9XdMEUqOdbxVLDPvThvpyv5js37b80cOJsW1a4JyDmYYd\nhujFW3e7GmtNSAAA0Ni9UmlIM7PAVXw+srlXDenJvV5QhxA6lymc1u/5nEMRPbiN50KlUeyMFoRd\nP8GvzdEO6u6w7Y3ANRcLiRKlRmdiRSWbBwkJAGBT2vCBPqO/B557Hj2rJxpAfq5Mo2XOK2Vqsw83\niPBxrFdridUx0gTSgd5dcRY7HCQkAICN0Oj0DvZtaV7gs6zWq7RGE63yuPaG4w6uF9QN8X25AXWt\nMT3YnZi7gS9SNjkUsIuAhAQAsBGZFfI238ET4MY6cL/CcNEKhNBof2fDAXiPn9WH8MzffDGccTWr\nUt5lh9ghSEgAAJtBLL7XBkN9uf++yjdKBkazr3ZElx1CyIFBVWI6vNeubcth2AxSD/sGAIDWy6qS\nG65R9FLGBLpUyozn2A50Zz16JvvhdnmlTC1RasQKjTnCbAI+4+rsAZ4ddHxrAQkJAGAj6lXaNg9R\nY9Io+WuGNS7/ZV4//NqSA4Pa4kqvbTYjxCPuZO60fu5GQ8C7GkhIAAAbQYxVa5smu+OaG0RuXjSK\nHZNOyayQN3mnVNdB6oSk0+nS09PLy8s1Go3hEuYIofz8/MTERIVCMWHChPHjx1sqQgAASVwvrLPq\nKeBiw3gbk4qJ23K7JlIPatiwYcP7779/5MiRzz//3LA8Nzd39uzZXl5eYWFhGzduPHTokIUCBABY\nklKj23/vWZpAJlZo0gSyJicNshZDfbkXsmu68phvRPKE9Nlnn6WlpS1btsyofPv27TExMXFxcdHR\n0Zs3b96+fTs+IzgAoEvJrJAfe1R9NV+05lLhwfsV1j5g+u1wXl/PzughJC1Sd9k1N1XdzZs3Y2Ji\n8O1Ro0ap1erbt2+PGjWqE0MDAFheQU3DilE9iMl+rN3hmH6WDsHCSN1CapJCodBoNH5+fvhDCoXC\nZrNlMpnJFwEAbFBBjSLQvYuuZWeTSN1CapJer0cGq5gjhGg0WpNddnw+n1iy183NbcOGDZ0TYUcT\nCoWWDqFD2Gq9kO1WzeL1qq6TKqS0Sp3xnNztZPF6mdGmTZtqa5+vTsvn8y0aS8usLyHh/XjZ2dkR\nERF4iVKpZLGaGF3j5+d37NixTg2us/B4bbz7j+RstV7Idqtm2XrJdHX9/bt3xHoNNnO+9uzZQ2wT\nX9BJy/q67Oh0erdu3SoqKvCHQqFQoVAEBgZaNioAQOdTanRdefUg20PqhKTT6TAMw7vjMAzD1y9H\nCM2cOXP//v0qlQohlJCQEBoaSlxSAgB0HZCNbAypu+yuXLkSHx+Pb4eEhCCEMjMz6XR6XFxcXl5e\nZGSkg4ODk5NTQkKCRcMEAFhApUzdw4lh6SiAOZE6IU2ZMmXKlCmNy+l0+q5du6RSqUQi8fHx6fzA\nAAAWV6/Sctq0+hEgLVInJNO4XC6Xa/7FsgAAVqGgpqGLz/xme0h9DQkAAJqTU90ANyHZGEhIAACr\nVFir6NvW9WEBOUFCAgBYJbFC48yy4osOoDFISAAAqwRjvm0PJCQAgFXS6PSWDgGYGSQkAID1qVdp\nob/O9kBCAgBYn4IaRYCbFa8PC5oECclqKDU6S4cAAFkU1DZY9YLloElW2eZNS0sznEd98ODBvr6+\nlgunMyg1ul6bb0/r575yTE9nSwcDzO5uiXSoL9zl/RIKahQzQjxa3g9YFatMSGfPnk1NTQ0NDcUf\n+vv723xCOpsh/GpqwLR+7t9eL80sq3tvFM1mVskEZRLVsP+kHY7p93Z4Zyx5kCaQRfg4dsIbdSi5\nWuvAgHmDbI21dtlFRkZu/Z+wsDBLh9PhEtOrZg/wdOfQv5oa8O3kbjcKxYuOPq2RY8QOZRLVySfV\nRq9SanTvHs8RKzSdG2xHuVsi9f78pqWjML8LWTUn/hHyfYogp7qho99LrNAM3nGfL1J29Bt1tEqp\nmudob+kogJlZa0JSqVQpKSlZWVmWDsRs7pZID9yvwH+u5okMn7qSUzs6wJn4PshlULa9EbhilM/8\nI9lHH1adzRS+9d+sjb8XX8yunZDwiEg/fJHy9R8fD+zm8Mn5gs6uTMc49aQ6xNuhEz61O9kf+XXj\ne7ueWND/wzN59aom1j42o29vlP4y75WEO+Ud+i7tpMhJ1Wtb+BYFKyHZJGtNSMnJyXv37o2JiZk4\ncSL51+Vt0dU80U/3nvm5MvGf71PKDJs7P92raNyZM6i7w/nFA3KqG8rEqp0zg/bN7fvLvFe+mOw/\n51DmzWLx1TxR/Ln8w7H9lo/sEczj/PdBZedWqEPwRcrvpvf+v8tFRuUXsms6+nO845RJVDyuvTOL\n5ufKXD22Z9yp3I67vaZGjqUJZG+H8zIr5aS9iUddXiBYP0P21ynTu0E2skl2ej1J/y5NEAqFHh4e\nCCEMw+Lj4/l8/oULFxrvNmTIEGLhPjc3tw0bNnRmkK13rbj+alH9xrFexP+YXK2LOVn65XjvYE/G\nbYH8dmnDqhF/X78lqt8klVa/8sozJyZ17ShPjv3zLxzvnitbOcKjrzupF48xXa8CkfpUtnj1SM91\nf1RODXIc7sPBy/fer73Ol7Npdm5s2twQpzBvVns+qoJ35V6I7dXLxcx9QSaqtvd+7UAek6jOP688\nq1fpvhzP8+SY//ruN7eEw3uyh/twDj2q83Gij+3l0M4Dmj5lbaDXahT7VjGjViqPfMFavseO+vcv\nAc+g+Mmtlmv2PxCtfdXTjG9tyOz1sqBNmzbV1tbi23w+/969e5aNpwV6K5eZmRkUFNTQ0ND4qblz\n53Z+PC/rTEb1+ydzMK3OqLyuARuzO71Cqpp9IKOuATN8qqKi4mXfpa4BG//DQwWmbVes7ZOcWzvo\n23tGddHr9URUpuv1rwsFT6vker2+uFYx+0AGXniHLxmzOx0/gkCs/OxK0cidD8bsTp93OPOLpOLG\n72XaicdV8w5n/vNs3ku9qjVMVO3txCyjs49Xau+tssZ/Fe1R14DN+PkJvq3AtMtP57b/mI8LBNcK\nRPgPfnbaqfrgJtm9y3q9XnT+R+nt84ZPRXyX+v7JHHw7X9jwRVJx+9+uOW34F7MK5P9ItNYuO4Ja\nrUYI0WhWOVwQIVRQo9g5M6jxl3pnFm3nrKDQb1OZdEr770h3ZtHWjfed+UvG1TyRWfpqKmXq1u+c\nWSmfczDzbon0qykBu26WGT3bf9u9b66XtniQMokKn9rZz5XpwKCmCWSVMvUn5wt+nR/MpFEQQj2c\nGJ9P6pWyPOzastBtbwQO6u6w6OjTuyXSVgap0em//6tsb1SfNIGs0zoA+SKlM4tmdPaH+nKT3x9U\nr9YO3nF/0dGn+M+EhEeGY1iIl5s+vuFLfrhTvuLVHvg2k0ZxZtHKJKrWh3o2U2j0l1Mjx9ZdreSL\nlGkC2fUC8cxfnrRzrIT8QTLN2d0hcjJCyHnSAknyYeKpLX+WrBzd05lJu5BdgxDiixSwEpJtsnRG\nbItbt27hG3V1de+8887s2bOb3I38XwdalJxbW1yrMCps89e3ugZs27WSyT8++u5G6cu2HgiYVrfq\nt/wxu9P/eTZPptS0uP/6y4WzD2TkC583Yaftf1whVRHPnsmo3ne3/O3ErMtPawzrNePnJ4YtleJa\nxarf8g0fzvj5yZjd6fdLpS2Guu1aSWuaGvvulu9MEej1+l9Sn227VtLi/i+luVP2RVKx6SoQMirq\nx+xOJ/4YMK3usytFgV/exmNu7GGZbMbPT6btfzzvcObhtIp8YQPRPMLdL5US1axrwOYdztx3t7y5\nd39YJuu75c7sAxnCejVeUlyrmHc4M6uozPCA0/Y/bk1dmqQsznz2zbs6zd9/lrUnvqtP/1Ov16cU\n1X12paji++WSB3/M+PlJhVS191bZHb6kze/VImghWYpVJqThw4eHhIRERES88sorsbGxlZWVTe5G\n/t9+27T/v+VMRvWY3enbrpU0l5aE9eqnVfJrBaLzWcITj6sEYiVefocvGbnzQXJurV6vT86tHf/D\nQ9MdNd/dKP3uRqlhyR2+hOh4UWDaGT8/wbQ6TKsb/8PD29kleOHsAxm/ple+fzKH+NBp/ME9+cdH\nzX0WG7n8tGbyj4/+eTbvYZmsucxUIVURXZqYVjdmd3r7u8sUmLbF3sh5hzNbf8DiWsWY3ekPy2TF\ntYrxPzw88bhKr9fvvVW2/HSuYbQCsfKfZ/PeP5mDJ34Fpj2TUR3xXerlpzVGB8R7C68ViEbufHCH\nLzmcVjH7QEaTCXL8Dw/rGrCnVfIxu9OvFYjw3j9hvdqoXv+6UNC2PKGuKhVsiNJIaw0LtYr6si8X\niGSKJQdSn+1YLjq359n29wVi5ewDGf+6UGD4tcbsICFZilUOakAIYRiWmZkZEhJCp9Ob2yc6OvrY\nsWOdGVXnqKys5PHaewelRqc/+bg64c6zkf5OAW4ssUIjVmiq6tV8kbJepXVgUEN4HDcOHZ+d5V6J\ntEyiEis0TBpl56ygHk7PB0dUytQfns6LGuAxL9Sr8Vv890Hl42f1294INCp/679Z294I7OHE2JzM\nHxPoPLKXM0KoTKKKPfQ4ccHARUefrhvvOybApV6lnXMo83BMP3cOfeYvGWcW9W9PfXOqGxLTK9ME\nskl9XJeP7GHUS/bhmbzoQZ54JAihzcn8vl7s2QPadc38wzN5aQLp9BCP5SN61NcJ8VNWI8cqZWo/\nF6YDg8oXKXffKmv8+zFBrNAM+08aQujXt0MGdX8+JOF6Yd3um+X/GMy7Vyrli5RMGmXFqz4hPE6L\nR/vhdnnC3fKIHtwvXvfH7+lRanQ/3C7Hz5o75/l/1oH7FUwaBT/F9Srt/CPZBTUN5xcP9HNlGv0p\nKjW6mb9knFgQYvqW1ZNPqv1cWMTNuRpxdfWP//JcuoXm/PwXvjmZX1ircOfQh2YezJDS56MHPd77\nkuEXLDz0heOIN++inmP3PNR/O671v7eXZZZ/MRKygo9ES2fEDkT+rwNtY8avb5hWl1JUR1yXzqio\nb8PAh1W/5TdurJzPEq6/XNhkO+NplXzJsacZFfVGwwfOpRU6r7th+BU7X9jwdmLW0yr5Z1eKXjaq\n5pzJqDbsQlRg2l9Snxn1NdU1YO3pfdLr9fdLpXjMv6ZXTtv/eMGh9CXHnr6dmPX+yZz1lwvnHc6c\nfSAj4rvUh2Wylz2yYcOLUFyr2JkiaNy7a5pMqWncbNLr9Q/LZGN2p2dU1Ov1eoFYueTYU6MdiIZ1\n4z/F81lC0ycL0+qm7X88Znc6fhBtvUSwca66oph4dsmxp2cyqvG3LhZUF29ZrFXU48+qK4orvl+u\n1+s7tL9ODy0ky7HWFlJrWMHXgTYh4de3HX8J6lXa9RP8EEJlEtW310sdGNTPJvZqbgT2/CPZmZX1\n1+LCDMdrNFmvH26Xf3ujdN/cvmMCXMwVbY0c+78rRQihghqFO4c+Pdh9cl83o5EjcadyV4zyadsK\n2RqdftHRp/vm9sVHWyCEfn/EH9KnhxUtl1ApU797PGd6iPuDMtnqsb7NjSBo8pQtOvo0mMdh0iiF\ntYrMSvneqD6B7iydUl732w8IodRSKY9rT7Gze5JVMC6Aq6+r8Hr/G7qnD0KoXqX98EzePwbzTJzr\nyt3xblEr6Dw/s1W1yXd5mX8x6V+nuK9GdWg85kL+j0Sr+Q8BZPbPV30O3K9493iOM4vGpFNWjPIx\nPQjqi8n+F7JrWvMB/f7w7rf4EqIzzSzcOfS9UX0yK+WB7iwiZxh5b2j3N356PNTXCSGk0ekd7Kka\nnZ5GsRMrNFP7ub0dziNyLd75OdLfmejJ3JzMjw3zMjzyQB7TirIRQojnaH9+8YC4U7kBbqyXHc/2\n1dSAm8Vidw59TKALjWIXdyr3/OIBkkNfMP36qdx7PRZVjB7Rg8LkFAbqvpeyv/6wD/6q64V1314X\nbHsj0PSXAJc33hNf+cVj4ca2182slIWPaxK/pDA5+OBA0E7W9E8CyGzhYO9B3RwD3VmtmfLSz5W5\nfGSPVh75cEy/9oXWNNNXWQZ1d8hfM6xxuVKjO/qw6o2fnozwc4rwcTz1RFgjx0b0cvrkfIGDPfWL\n1/0rpWqJUjO5r1tHxNzJ9kb1acOreI72hpffVo722bznWDzPw2nigk/OF6x4K5LtxEAIzQpAKefy\njz6sqpFjF5/WjvBzOhzTr8W0zejZF6sW6JRyCrPli2SdoO63H3puvVxz6AvWK5FUR1dLh2P1ICEB\nsyEus9swJo2ycLD3wsHe1wvr7pZIP5vUi2gY5VQ3rLlYmFlZn7I8/KWOqddq6u9edBg61XBiApsx\n0YfuWHLyhz5fT6+UeznaE78uhNBXUwPiz+VP6uN6fvGA1s+v4Tx1iSTpkMubcR0Tb7OUeQ/Eyf/l\nffAdUaIqzaF796I5e7q8+X7Nr197Ld3SySHZHqv8B9DpdOnp6eXl5RqNJirKOnpvgY0ZE+BidKmj\nryf7l3mvvOxxdEp51d5VFI6TsvCJe+yaFybLqa2guXmbIVaLEh7aFL5sw4EH2PwjWSkfvJCqmTRK\nGxph7ODhouPbWcHDmQEDzRdmCyRJhxqy7tDcukn+OOL0WgxeKDr1veeSfyOEGH7BVK6rip/F8Atu\n8VDq8gIVP6vhSYpr1Ar84hkgWGVC2rBhw5UrVwICArKzsyEhWZa6vACrFjB6BRNjdjsHVi3QykT2\nvF4UDhcPQ1Wa05BxU4+pXGd8YN/977HUKn6WVipiBQ8jYfsDH/HsNu9TRs++0mvHqn74xGvpFjs6\nQ4+pahK/VBY8tu8e6DZ3ZevTUn3qldqjX7MHjXWLWoH/ZnA6pdyOSrOjvzCZoV6r0cpE7Txxeq1G\nxc+SP7iq4mex+4/ivhpl+L6SP47Y+/RhBgzc6avLqWowM2rztQAAEaJJREFU1wpG3dYcrNodzx0z\nhxM+wSwHNAE/FxQ2l/fRTjsqreLbpQyfPsygcKyST3PxJLrpXGd8ULV3lVfcN8q89IaMFMXTVPaA\nUa5RK4i/Oo24uvI/H9Lcutl7+TICBrpGrRAe+Mx56hJ28PCOroIVscpRdhiG0en0GzduLF++PCMj\no7ndyD+kpG1IMspOJ5fWnvpeU/uM2TtMI6rU1D6zo9LoPD+GX7B990C6p0/jjz8VP4tIIY21vl7i\ny7/I068ye4dhwjKsotjOnsHuN4zePZAdMlwrFUmSD6sr+A7hr2GiSlVxFjNggB2Fqsi9z+ozmDs+\nhuroquJnqQofN2TdsbN/frme6ujKCX+NFRRuFDNCSI+p1BXFFCanNV9mNbUVmtpnmLBMXV6AVfL1\nWg3NrZt99wCZHbPbkPFGGUL+8Jos5bTHwo3EkeUPkiXXjjtETpIk/dd56hLHYdM04mrxxf323QK4\nY6NNv7XszgVJ8mFmwEDXqBWKrNt1vyVwBk9yfn1Rw5MUefpVrVRE4TjpMRXSauyYHJ1MpFOrdHIJ\nzcUTUag6ZQOV64oQ0kpFeqUcPyDNzRu9mMK1UhGFybazZyKtBlFpWnG1mmLPZDKZAQPYg8bae/eS\n3bkgv/+7HZ1Bc/PWiIVIq2H49XOe+m5HfBXQY6qqvavYg8Z0xAi3Zw/+4tTy1ZUlWnG1Vi51nryQ\nEzr2+ftqNeWb5vHi94hOfe8atcIwnTc8San6cbXjsGmOo2YxevaV/HFE9tdp17kfs4OHi87skj+4\n6rnk34ZNKL1WU3v0awqb6/Lm+53zbYn8H4lWmZBwkJBeih5TaaUiE9+1tTKRTiGnsDhNXpvFn9Up\n5VqZSFMtUJVkq0pz3Od9ygz6uxNGr9WoBbmq4kxF/kOtuFqv1VLsGVRnD71Wq6mtQAjRnD0wocCO\nSmP1GcwIGGhn//zTX1MtwIRl0tJ8FovVZGys3qGs4OF0Tx+tVFT1479YfQeb/h/WKeX1dy4weoXY\n+/QhdmvIui2+uN+OSmP4D2D4BbOCwokMgVULGjJSFDn39WolkaX0aqUdlYaoNPyXhlUUU7mu7P6j\nKBwuzdnTjs5AOq26ohir5GNVfL1Wo1M20Jw96B49aB4+NBdPOs9Pp5Rraiu04mpRca69qOz5Zz2V\nplcrKUwOK3iYQ+Rko4vz0quJ6upS11kfGZY3PEkRnd2FtAYz7FGpdA8fqounVirS1FZQOVyap4/r\njA+IV+m1GukfR2R3LzoOneowbJrhOdXUVlA43DYPCtCIq/VqFZXrSmFymvxTxKoFekxl2EjtOMJD\nX2hlItcZH9B5fu3/TNdrNQ2PromT/otxPTzHzLLvHthk8xGr5D/75l32gFc9Fvyf6QPqlPLqH/+l\nLHzsNGG+86QFjb/uIIRkt85Jrx+nOntqxdV6tQohROW6UhxdnSfOb00H4Esh/0eitSak/Pz8bdu2\npaSk7Ny5c/z48U3uQ/7fPvrffxS+jX8a0pw9EJVmR6FqZSKdsgEhROVwKeznH500Zw9pg5Lr6KCp\nrdCIhRqhAP90sGv0+aKTSyhMDn4oRKXZUakUJgf/3mr0zVcnlyCEKBwnE3FSHV0pTDZCiObmbUdn\n2PP8GAEDW/MRoBFXUzlORv+KKn6WqjQH/W8RNpqnD93Dp1ZHbzLR6jGV4mmqsvCxWpCLVQu84r7p\nnA+7xjTiakXWHb1aqREL9ZjKjs6ge/rYdw+k8/xMf74TH9x6rUaPqcwyQgzvtKR7+lhwcBcZGuuq\n0hzZ7d9UhY+ZvcPoHj30uufffhBCugapVi5FCFGYbPy3hP8ZU5098S9DOrlUJ5do5VKsiq+TS/WY\nij1ojEPkZKFcbbpe9alXGH7BHXcFSCOupjA5Zh9JSP6PRKtMSLm5uXPnzp00adLFixddXV3ffffd\nBQsWNN4tJCQkOPj5Vwwyr4dkSK/VIJkIXy7Tjsm24zgjhJCiXtfwfNZqvbRm3w97lixZQuG6I5o9\nxckd0V5YvEcvrtZrNXYOznaMttzUaUFr16798ssvLR1Fh7DVqpGqXtrSbL3qhdWEKWwuYr4w8lMn\neqYXVyNVg05aa8dxtmOw7Ljudg7OVI+eiPX3nqSqVzsZroeUlZWVmZlp2XhMI91l3tbYvn17TEzM\n0KFDL1++vHnz5hUrVsTGxlKpxtdLGQwGyb8ONKOFG3Se7vipx6hpzT5t6W+sbSaXyy3+dbuD2GrV\nyFWvVkUS1pojkate7bNnzx5iOzz85W5I6HxWuR7SzZs3hw4dim+PGjVKrVbfvn3bsiEBAABoJ+tL\nSAqFQqPR9OjRQ6vVIoS0Wi2bzZbJZJaOCwAAQLtY3zWkhoaG0NBQo8KtW7fOmDHDqLBfv37EqC06\nne7r69sZ8XU8Pp/v5+dn6SjMz1brhWy3alAv8ispKcGw5wsHKxSK7Oxsy8ZjmvVdQ8IXQEpMTIyI\niMBLBg0a5ODQxKQ1JP/VAwAAMGR9XXZ0Or1bt24VFc9HdgqFQoVCERhomXHAAAAAzMX6EhJCaObM\nmfv371epVAihhISE0NBQm2lfAwBAl2V9XXYIobi4uLy8vMjISAcHBycnp4SEBEtHBAAAoL2sb1AD\nQSqVSiQSHx+YLhcAAGyBFSckAAAAtsQqryEBAACwPZCQAAAAkIJVDmpoLD8/Pzk5ubi4mMPhvPnm\nm2FhYYZPJSYmKhSKCRMmNDcvOGk1Vy8T9bVeVn2mTLDJk2UoPT29qKho9OjRHh4elo7FPLRa7fHj\nxx89ekSn08eNGzdu3DhLR2Qe165dS0pK0mg0/fv3j46OZjCaWA7DsmykhRQTE1NcXDxkyBA6nT5/\n/vwzZ87g5bm5ubNnz/by8goLC9u4ceOhQ4csG+fLaq5ezZVbL2s/UybY3skyJBQKP/3003Xr1pWU\nlFg6FvPAMCw2Nvb06dP9+/f39fU9d+6cpSMyj4SEhHXr1gUHB7/66qunTp1asmSJpSNqit4mSCQS\nYnvnzp0TJkzAt5cuXbplyxZ8+/r16wMHDtRoNBaIr62aq1dz5dbL2s+UCbZ3sgwtXbr07NmzQUFB\n9+/ft3Qs5rF79+6ZM2dqtVpLB2JmY8eOTUxMxLcLCwuDgoLkcrllQ2rMRlpIXO7fi0N7eHgQczdZ\n+7zgzdWruXLrZe1nygTbO1mE8+fPI4SmTJli6UDM6fTp0/PnzxcKhSkpKWKx2NLhmE23bt3k8ufr\n0ysUChqNRsIuOxu5hkTAMOzw4cNRUVHof/OCE5M4UCgU650X3LBerSm3LrZ0pkywjZNFEIlE3333\n3a+//mrpQMxJq9UKBIKkpKQdO3b4+/unpqZ+/PHHixcvtnRcZvD555+vWbOmqKiITqdnZGRs3bq1\n8RpyFmdrCWnlypVubm5xcXEIIb1ejxAyvNBKo9HwRSusjmG9WlNuXWzpTJlgGyeLsHHjxiVLlnh5\nedlSm0+n0yGEKisrr169SqfT09LSYmNjx44d6+/vb+nQ2quiokIikSCEOByOQqEoLy+3dERNsKmE\ntGrVqurq6p9//hnP/Pi84NnZ2cS84EqlkliQwooY1avFcqtjM2fKBJs5WbjU1NS0tLRZs2bduHED\n/+rw8OFDZ2dna5/mmEqlUqnUqKgo/G8yIiKCy+VmZWVZe0LS6XQrVqz47LPPpk+fjhB65513Ro8e\nPXLkyODgYEuH9gLbSUirV68uLCw8ePAgm83GS2xjXvDG9TJdbo1s40yZYEsnC0ehUEJCQo4cOYL+\n16r4448/OByOtZ81CoUSEBBg2DrX28RcNiqVSi6Xe3t74w89PDzs7e0FAgEkpA6xfv36jIyMgwcP\nslgsvAMB/4KDzws+ceJEBoNhjfOCN1ev5sqtl7WfKRNs72QhhCIiIojmLIZhISEhq1atIkqs2qxZ\ns06cODFnzhw2m33t2rWGhoZBgwZZOqj2YrFYPB4vKSkpMjISIXTjxg2FQhEUFGTpuIzZyFx2ffr0\nMXxob2+fkZGBEMIwLD4+PiUlhZgX3LomY22uXs2VWy9rP1Mm2N7JMoInJMM1M63dmjVrLl265Ozs\nLJPJNm/ebBvDCNPT01euXCmRSJydnWtra1evXh0TE2PpoIzZSEIyDeYFtxZwpgBJYBjG5/MDAgIo\nFBu5NwYnFAplMpmfnx8569UlEhIAAADyI2OSBAAA0AVBQgIAAEAKkJAAAACQAiQkAAAApAAJCQAA\nAClAQgIAAEAKkJAAsBiVSnX16tVLly6ZvlVWJBJdunTJluYwBaBJkJBAl7B161ZivSXCmjVrLDj3\ntlarnTlz5jfffNNiQioqKoqPjycWswHAVtnIXHYAmIZPLtm4UKlUWiQehNCNGzf4fH5aWprNzLgK\nQDtBQgLgb6mpqdXV1Ww2e/To0cQ6Ebm5uVQqlZjHWiqVZmZmDhkyhEqlFhQUaLXaPn363Lx5UywW\nT5o0qcmJUxsfNj8/PyMjw87O7tGjRwihkJAQw4VlEUI6ne769etKpbJfv36ND1hRUZGVlaVWq93c\n3IYMGYIXCgSCqqoqownlbt++3bt3b8O1pgAgLUhIACCEkEgkWrJkSVFR0ZAhQ7Kzs2k02r59+/Ak\ntHPnTg6Hs3XrVnzPzMzMRYsWPXz4kM1m79u3TywWSyQSkUjEYDD69OnTu3fv1hw2MTHx4sWLGo1m\n9erVCKHvv/8+LCzM8FUxMTFisXjgwIGbN28eN26c4TFPnjy5cePGyMhIGo2G55sDBw5wudyqqqrY\n2NikpCRfX198z3v37i1atCgpKalDf3UAmAskJNBV6HS6kydPGpYIBAIHBwd8e+vWrXV1dX/++aer\nq6tKpVq0aNFHH3106dKlFg97/fr1f//737Nnz0b/WxnIUHOH/fzzzyMjI1evXp2SktL4mF999RWF\nQklKSuJyuQ0NDXPnzjV8dvjw4Y8ePcJbWlKpdN68eQcOHPjoo48iIiICAgJOnz4dHx+P73nixInI\nyEgiPwFAcjCoAXQVer0++UWVlZX4Uzqd7vz58wsXLnR1dUUIMRiMZcuWFRYWZmVltXjYXr164dkI\nIWQ0g3LbDqvT6S5duvTOO+/gnXhsNvu9994z3KFbt25UKhXDsPz8/Ly8PF9fX+KA0dHRx44dw/Mi\nPjYvNja2db8eACwPWkigq6BSqQkJCYYlH3/8cV1dHUKotrZWq9UaLgkYHh6OEKqoqGhxSU0Ta6S2\n7bC1tbUajYbH4xElnp6ehjs8ffp07dq1ubm5HA6HSqXK5XLiutGcOXO2b9+elJQ0efLkM2fOuLi4\nTJw40XT8AJAHtJAAQAwGA73Y4Ybf9NPONWPadlgWi4VeXDnb6A6kDz/8sG/fvhkZGffv3797925U\nVBTxFJvNnjlz5q+//ooQOnbs2OzZs8m57A0ATYI/VgCQg4MDh8N5+vQpUXLz5k2EUEBAAELI3t7e\ncMh4VVWVWQ7bHDabzeFwCgoKiJLS0lJiG8MwgUAwefJkYhBgSUmJ4cujo6Pv3r178uTJkpISoi8R\nAKsACQkARKFQYmJifv7554cPHyKEBALB9u3bR44ciQ8HGDhw4I0bN/DrNEVFRbt37zbLYU286q23\n3tq3b19+fj5CiM/nG/Y0UqlUFxeX5ORkvOF16NCh1NRUw5e/8sorgwYN+uKLL0aOHAlr7wLrAteQ\nAEAIofj4eJFIFBsba29vr1AoRo4cuW3bNvypmJiY69evz5o1y97e3t3dfcGCBVu2bGn/YU346KOP\nSkpKpk2bxmKx2Gz2/Pnzd+zYgT9FoVA2b968atWqc+fOIYSGDh06bdq06upqw5fPnTt37dq10dHR\nL1F/AEgAljAH4G8Yhj18+DAoKMjZ2dnoqZKSkoaGhldeecW8hzWhpqYGH/7Q+DqQVqt98OBBYGAg\nPn7PyN69e48cOXLjxg24gASsCyQkAGyKUCicNWvWW2+9tWzZMkvHAsDLgS9QANiORYsW4deoFi9e\nbOlYAHhp0EICwHaoVCoKhdLkfHoAkB8kJAAAAKQAXXYAAABIARISAAAAUoCEBAAAgBT+H7HGa5Zb\ngpTlAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "iR=1;\n", "A(iR) = summarize_run_fcn(run_num_all(iR),ping_num{iR},1);" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "A = \n", "\n", " struct with fields:\n", "\n", " energy_in_bnd: [98×1 double]\n", " si_W1: [98×1 double]\n", " si_W2: [98×1 double]\n", " max_W1: [98×1 double]\n", " max_W2: [98×1 double]\n", " ping_time: [98×1 double]\n", "\n" ] } ], "source": [ "A" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIVBDMqJBKScAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMC1GZWItMjAxNyAyMDo1MTo0Mu4xBvIAACAA\nSURBVHic7J17QBNX9vgPeYckECBAQJAoiChBBVHxjX7t+qq1aq2tVddubSsu1lrXdX0sosu2+tOt\nbaW2um4ftlptxcdWq9Wub60PVJSAqMhDXhECJCRhkswk+f1xcUzDWx4Z6f38NXPvzJ2Tycw9c889\n9xw3u90OGAwGg8G4GparBcBgMBgMBgArJAwGg8EwBKyQMBgMBsMIsELCYDAYDCPACgmDwWAwjAAr\nJAwGg8EwAqyQMBgMBsMIsELCYDAYDCPACgmDwWAwjAArJAwGg8EwAqyQMBgMBsMIsELCYDAYDCPA\nCgmDwWAwjAArJAwGg8EwAqyQMBgMBsMIsELCYDAYDCPACgmDwWAwjAArJAwGg8EwAqyQMBgMBsMI\nsELCYDAYDCPACgmDwWAwjIDjagEwmGeSixcvFhcX8/n8F1980dWyYDBdBDe73e5qGTCYttKtWze9\nXt9YbX5+vo+PTxOnnz179ocffgCAzZs3CwSCllxx+vTpBw8elMlkFRUVrZUWg8E0CB4hYboCer2+\nCYXULFlZWZ9++ikAbNiwof2EwmAwrQMrJExX4McffyRJEgCuXLmyZs0aAJgyZco777yDaiUSCdrI\nzs7OysqiKEoul48ePZrFYgFARkbGvXv30AFnzpwRCAReXl4DBw602Wy//vprRUUFQRAcDkehUAwa\nNKhVUuXk5GRmZlIU1b179+HDh9Plt2/fLi8v5/P5I0eOzMjIuHv3rpeX1x/+8IenOP369ev37t0b\nNWpUt27dLBbLTz/9RJLksGHDfH19z507BwB9+vSpqKjQaDQikWjo0KGoBYqizpw5g2q7devWqh+F\nwXQgdgymC3H06FH0YP/5z392LNdoNOPHj3d88rt3737u3Dm73T558mSnl2LcuHF2u33evHlO5dHR\n0Wq1GjU4bdo0AJDJZA2KUVVV5dRs//79Hz586HRuQkICfcD48eNbe/rixYtR7cGDBx88eKBQKNAu\nl8tFAz4A2LlzZ3JyMgCw2Wxa+O+//x7VXr16tT3vPgbTNrCXHeZ3wWuvvfbzzz8DwFtvvbV+/Xo/\nP7+HDx9OnTr10aNHI0eOHDhwIDpsxowZr7zySnx8PAD4+/svXbp0z54933//fVJSEpfLvXnzZlJS\nUksuN3fu3KNHj4pEok2bNu3atat79+63bt2aOHGi4zEajSYtLW3+/Pm9evUCgJ9//vmXX35p1elb\nt26Nj48fO3Ysi8V6+eWXCwoKAGD27NkLFy7829/+Rh+5aNEiLpdrtVq/+uorVHLgwAEAiIyMbO2Y\nD4PpWFytETGY9qTBEdKdO3dQ4bx581DJ3r17UcmGDRvsdjs9ntDr9Y6tWa3WzMzMY8eOHT16NC4u\nDgACAwNRVRMjJPpy77//PipJS0tDJadOnaLPBYCsrCy73X7p0iW0u3Xr1lad/v333zf2A7dv345K\ndu7cabfb58+fDwA9e/a02+1ms5nL5QLAv/71r7bfcAymHcFzSJiuT3Z2NtqYMGEC2pg6dSraUKlU\njZ31+eef//Wvf3XylWiJ6wR9uVWrVq1atcqxqri4mN6WSCR9+/YFgKioKFSSk5PT8tNFItHMmTPR\nNj0HRk9EjRgxwvHExMTEr776Ki8v7+zZs6WlpSRJstnsuXPnNvtbMJjOBCskTNcHOS8AAEVRaMNo\nNKINDqfhVyA7OxtN8MTHxyOT18aNGy9fvtyqy8XHx3fv3t2xynGXz+e35XShUEhv079Cp9OhDSdn\n9IEDB8bFxV2+fHnnzp3ot0+aNMnX17clPweD6TSwQsJ0fYYMGYI2vvrqKzQs2L17NypBjme0Digt\nLQ0PD4fHgxUAWLp06QsvvGAymZYuXdrCy9ETM1FRUZ988gldfu3aNXqyqn1PHzVqFJvNtlqtO3fu\nnDdvnlgs3rlzp9MxiYmJly9f3rdvH9pduHBhC38OBtNpYKcGTNcnICAADXdOnTo1dOjQ6dOnv/fe\newDQs2dP5EpHjzz69evn6+v73nvvIbUEAH/9618XLVo0bNiwkpKSFl6uW7du6HJbt26dMGHCokWL\n/vjHP/br12/w4MH0EK19TxeLxegX3bx509vb293d/dSpU07HvPrqq0FBQSRJkiQZGBhIWy8xGAbh\n6kksDKY9aczt22q1rlq1ytHMNXHixNLSUvqApUuX0suVFixYYLfbN23axGazUcmSJUuQK4FEIkHH\nN+32bbfbk5KSPD096csJhcKZM2dardb659LzUo4yt/x0mjVr1nh5efH5/ClTphw7dgyd+MUXX9AH\nIP9vAFixYsVT3V0MpmPBoYMwvyNsNtu9e/cqKysHDRrE4/GaPb62thYZysRi8dNdMTc3t6ioKCIi\nIiAgoENPr66u9vLyonc/+ugjZGP8+eefaU+HEydOoMVYd+/epYeAGAxzwAoJg+kKHDp0aNmyZfHx\n8UKhsLy8HIXmGzx48JUrVwAgJyfn4MGD33zzzZ07d6ZMmfLf//7X1fJiMA3gYqcGm81248aNkpIS\niqJmzJjhVHv69Onjx4+z2ezp06fHxsaiwvT0dLQAEDFo0KCQkJBOExiDYSa+vr5lZWVffPEF2uVy\nua+99trmzZvR7qlTp5AHee/evT/77DOXSYnBNImLR0hr1qw5fvx4aGhodnZ2ZmamY1Vqaup3332X\nmJhotVq3bdu2YsUKtHZkzZo1V69ejY6ORofNmjUrJibGBaJjMMwjLy8vLy/Pz89PqVTSroMAUFRU\ndPfuXT8/v379+rlQPAymaVyskEiS5HK5Z8+eTUxMdFRIVqu1X79+H3/88bhx4wDgxx9//H//7/+d\nP38eAFDozJSUFFfJjMFgMJiOwMVu3yiESX2ys7Mpiho2bBjajYuLKy8vv3XrFto1m83nz5/Pysrq\nJCkxGAwG0/EwdGEscgFSqVSDBw8GADR4qqysRLUnT54sKSnJysry9/ffsWMHHeQYg8FgMM8uDFVI\nfD7/hRdeWL9+/bJly+x2++bNmzkcjs1mA4AlS5Ygex1JkkuXLk1MTDxy5EiDjfTt25ded8Llchno\n+1BQUNAJ2tTqxgYAtt36FOd2joRtgfkSwrMgJJaw7TBTwsLCQpQqDAAIgqAjJTIUl66CquPMmTNK\npdKp0GKxbNu2beHChYsXL7527VqfPn3OnDnjdIxKpQoPD6+trW2w2ZiYmA4Rt/14+eWXO+Eqz++8\n9cH/Cp7u3M6RsC0wX0L7syAklrDtMF9C5neJDB0hAQCXy6XTl126dInL5ToFMAYAi8UCjcfH/D3T\n64Nfv5kdGRfiAQAFVcSQ7h6ulgiDwWCawcVODTabjSRJq9UKACjKFl2Vl5eHbHSlpaUpKSlvvvkm\niuNCJ4/RarWpqan9+vVrzDPi90yuhjBRdTY6g8Uq92g+KgEGg8G4FhePLY4fP04HUVYqlQCgUqmQ\ngklLS9u1a5dAIKitrZ0/f35iYiI6bPny5TU1NQKBwGg0xsTEpKamNtY480dOPj4+Hde4VFCnp+US\nnsZINn1wY3SohO0C8yWEZ0FILGHbYb6EzO8SGR06iCTJ3Nzc8PBwOsYlXa5SqZRKZdNjo1mzZtHB\n9pmJWq2Wy+Xt0pTGSGoJKkxW58ThtuzU6UXR8aFeABC16UpciKeWoH74o9KFEnYQzJcQngUhsYRt\nh/kSMr9LZHT6CS6X26dPHydthMqjo6Oxpc6Rzy+V9Prg1warDBaribLtv13eySJhMBhMq2C0QsK0\nHMr2m5GugPPkn6Wsdg7LrdMlwmAwmNaBFVIXwUnlOOontd7S6eJgMBhMq8EKqYsg5rMddZKYz9YS\nFL3tIqEwGAymFWCF1EXQEpTjqEgq5CCFNO3LTHobg/k9g98C5oMVEtOJ2nTlcmFNTnlts0cqvAX0\ntom0oY1DqgoTacOvIgbjteac01Rr8PqLrhIG0yBYITEdldq48uiDvTcfNX2Y1W6XCusWGeSU1wq4\nT/5ZE2XrQPkwGGYz6KNrKrURbe+9+cjx46xYZ37qJXqYjgArJCZSUGUa9NE1epfDdrM2t1xMXfPE\nc6HPxssAQFC23TfUAKAlKK2pQ966if++hbUdplV8fqnkeE5lR7T87XW10wAIACibPb1IrzFaCqpM\n8aFec/dkJ6TddTzAUSHtv13+9+N5HSEbpoVghcREtASVXqRvVV9P2ewRfiItQV3I16KSq4U1c3Zn\nIztegya79CL9V9fK2iLn8ZzKnEfN2xIxXZX9t8ubHbs7kZZZ8b/71d9eV6cX6dtXmLl7sguqTACw\n8ugDuvDb6+rn+8pyNcS319VTlTL7v8YazFZ0GEKtN9PbqjLjhTxd+0qFaRWuj2WXnp5++PDhtLS0\n+rWnT59esWLFqlWr0tPTHcvv37+fnJy8YsWKX375pbMk7VS0JlLhLTiTW412Kaud7dbMQiKNkeSw\n3LzWnDuTqx3QTSzgsDS1JAAo5eLGTsko1a87kV+/nFZpLUFjxD7lzwzpRXraeOWIxkjmVj3N//jp\nhZKPzxe16hQOy02tt8zdk308p7K1yqxZinUmymbfcKqQVjmfXixePU5xMV/39+N5cgkPAD6YHEo/\n9nIJz9G0AAB0BEiMS3CxQkpKSlq4cOGePXuSk5OdqlJTU9esWTNgwIC+ffu+8847hw8fRuV37959\n6aWX/P39Y2Ji1q1bt2vXrs4WuuMxkba4EM9inbn5Qx8j5rMNZisAVNaS8aFeGiNpIm1hMndU2KCh\nXCbiNlg+MvVGS65I2exhMmF9b4tvr6tbLjamM9l4qvDjcw3oj/23ymfvL2x5O27LTqENetqyVWgJ\n6pVo/weVxKvfZqVeKH6KFpxao4VR11hyymvjQjy2/1oCAJTNLuZx5BJeRqn+uzmRr0T7A4BSLkKn\nfHWtTMxnGyy/0UDYBO1aXKyQ1q5dm56evmjRIqdyq9X62WefrVu37tVXX50zZ87KlSs3b96Mqj78\n8MPZs2cnJCTMmjUrJSXlww8/RMHCuxIaI9nb172wuu4rj7LZm51DEnBYSLtoCSrUR6gxkpTVvnpc\nyHdzI98dFYzUEgAkpN39/FIJ2jaYrY4BHVqFb9L5C/lapVyc9cj5i3vuHmZnAPsdEyYTFlSb6pcL\nuCwz1XxMSxNl0xhJ9Pyg2RrKZq8/beME0l4myna5sAadUlBFDFd4olhWiw/eewq3gqWH7yf/nA8A\nBrPVa805VBgmE356sWToJ+l/jA0o1pm/ulam1lsi/N3lHryMEoNM9CTSmMZIqvWW1/fekUv4jiMk\nM2V76jcC0y64+O43Fo8uOzuboqhhw4ah3bi4uPLy8lu3bgHAhQsX4uLiUPnIkSMtFgudkKLLoNZb\nlAGiYq358W7zQyXKZi/W1fU1jt+tcglvy9ReAIBeyFwNUVJjpk9p7PVr9jsxSMofs+3mHwfJNYYG\nehPsZc5MinVmx37ZEXYLYku9+X3Oq99mIaeAYq3ZRNlkIq6A0/yya4PZmqshhn6SDgAclptKbZQK\nOQazFcUCfgqFZDBbzz7QwmNL9ZkH1RojOaKH9EK+1mC2xgZ7FGvNr++9k/PIGOkvQg+5wltInx4m\nEyI9FOHnXllbd3UtQan1FvTkH8nWYO87l8DQz4Hw8HAAUKlUaDczMxMAKisrCYKgKIrOE8xisdzd\n3fX6dp4ddTkGsxXZuxGUrfk5JADgsNxQgAbk812sMzn2PmI++8yDamQ0p2z2plWOk2GdBmkag9ka\n5Cm4v3Loi0pfE2VLvVCsJajNZx7uv11erDOHyYRnHlS38JdiOhONkQzy5DtO6SPUekugB7fZsY6W\noAqqCLS98qcHSw/f1xKU44MKv3UoUOstH50rAgDJqrPIhgaPY1yFydwBIMJPBAAqtcHR8Nvjn5cy\nSgxNS9LNk4++0tR6y7ujgvdllGsJylPAAYDqlFGxwRI0FXT0TiWdCcxxlV6oj/ByoQ61Q388ea05\nl6shwnzcAWDKf26feVB9JFvTtBiYdoeh6TH4fP4LL7ywfv36ZcuW2e32zZs3czgcm82GkmX4+vrS\nR3I4nMZMdgUFBbNmzULbPj4+SUlJnSB5q6ioqKC3Z/3wcN/M7mi7SKNjd2cTBKFWqwHAarUaDAa0\nTVNjtnnw674ncjRmLw71/czg1Cua0/m6VcOkCYN8PrtWaTHq1Oq6983Nbhuz7eYohTgmQDD/mwwj\naYtXiMRcuJlbHCDmODYLAAWljwQWvpOERost7OOcsuV9czTmHhIQUzq1WufNsy4+eC+Qb76Yq92r\ns2weH6j05d3ML4+TdZId1VFCxsIQIc1mcz9v98M3CmYppY7lD8u14Z5wVvUw0o/fxOmUxVxD1I0b\nHmmNmSVkLx+B3QaOT+aGU4VLBorQ9vVSYunhOveBCq0BAP5xNNtsNgMA26TLXRJxtaTWk+O18sd7\n3kLO4dkKdGRBlelekVrOdnbGcbyH5dU1YLMWl5bllxpDxdbvVLp/HMsZ00N89a1eJp1GrYNstWHx\nENlH54pm9OKr1ephwSJN+RMHChnH/M3VRwBgt9RqDSZa/gv52mHBIrS77VzB6XxD2fK+Lbmx9SVk\nDuvXr6+srPOzLygocKkszcNQhQQA77///s6dO7///nsul7t+/fp58+ZxuVxk4svOzo6NjUWHmUwm\noVDYYAsKhYLhyT8AgE6gcq4gm962sasD/P24fINcLgfIZrPZQpHIKdVKwLJTxMZ4ZI44XlQ2KkIe\nHeYX/IDkF5sG9Q4e1Dv4s2unvL295XIvAADI9nTnQbWFxeYKhCKhjbxVrhse5j4ugnVXz40O86eb\nNaHPZ6HH4xOfSIiWj8j8/C9kFo7tGyCX+wJAdAh54E5NLUskdjfPj/A/U0JOjgr43/3qzkwMw/Ak\nNIiWCJmrIeiMVh2BSFg+LbZnQtrdJb8VhoDqHr5sPcsd/aeNEeSjPZ5bZ40ggSPku5HAlYq46Kcd\nUlWg/FtiL18UPtGT0ALkc1hulM0uFAqlQkPSKbXCWyDms6NCuwk4rNDuECzXHv73LYVM7HB/skst\n/AZvF11IQHVcD28QeVdarbE9PeS+3hojOX9IIH1kuF/RCwOC3hsXjgZGF9/9TWvxLI+EIyUAwBWI\nKDcralYuyVXrLTwer+6l4/LEfHZrHy0GPorbtm2jt+kPdMbCUJMdAHC53ISEhM8+++yTTz6xWCxc\nLnfEiBFcLjcwMLCsrG71TEVFBUEQYWFhrhW13TGYrUFSPh0slbLaG7Sh0ZNMt0oNyNTAYbk1FmSI\nNk2g4N8ctpvBbJ3cx+digfPCC7mER1kbsN6kF+nRko6LBbrn+8pQYeKIoJNvR+/LKI+Ui57vK/v0\nYnGQJ1/AYTnafxzNOO1Iuy9kcTmNZbRqI8ibQGMkBRyWmM8W89lOzt8myvZ8uMf14if302C2orMa\nI1dTOzXSt5a0CrgsE2VTqY3Tvsw8kq3hsNwGfXQN2dzQMxAX4gkAWoKSibhKuaigyqR/fzQ9eSmX\n8A1mK21b1hjJ+FCvR3oL7YaDqG9mDPESaAlKYyTlEt6LSt8FDtoIAK69O2hcuLejmc6RCD93AJAK\nOehumCjbzK9VQVI+AHDYbmhu1WCmnGTAdAKuX4dEkiSyuZEkSZJPJhLz8vJsNhsAlJaWpqSkvPnm\nmyhT37Rp03bu3IkG/tu3b4+OjqanlJ516E4cTdXS5eglqX887cVQrDUjWzltMUfIRE92HRukbHa0\nPilM5o76Do2RpDuRMJm7k8f5/tvlF/K1Fwt0r8X4T/vy9qwBfnRrHJZbbLDkSLZmQm8fhbdAYySl\nQm5vP/df7lXRp2849RuX4latc2oCx2AWjCWnvHbal5mulWHoJ+k55bUFVSbUQY/uKS3W/qZ/1xjJ\nHl68I9ka9DVjMFvXncgfmXrdqR30EIr57Ag/d7XeMmeg/KHW1M2D/9G5oqhNV4692X/xwXtxIZ45\n5bUF1cSU/9z+3/1qAEAzmrma2n+/HHF6UcwHk0Md20RTUPTjlFNunNzXZ8Opwin/uU0foyWoHv+8\ndOiOTq23PLc9A0ki5rNzNbVZaqPTM99yfn0n9pVof8pq33vz0f7b5UGeAiQPepsKqkxP59SOaQsu\nVkjHjx9XKpUJCQkWi0WpVCqVSlonpaWl9e/ff9CgQc8999yYMWMSExNReUJCQnBw8ODBg4cPH37p\n0qVNmza5Tvx2AykAOnFRs9PLCDToWXn0AfpOhHoOS2LeEw8ouYQPj6OA0wqPw3JDG+tO5E/8d8bn\nl0oS0u5KhRxagC9uVJko28qjD36+W7V1Wvgr0f4vKn3Reg4a1MKAbmIA+PGNfmEyYeLwoK/TfzPj\n5eh318J1To2x80opvdSJ+a5QlM1+SNWiqQWnZ6C9UOstcSEe//ylIFdT282TDwByD57TVaQCDgDE\nh3otPnjveE6lZNVZyvYkqSOtUNFZQZ589KGj8BZcfidWGSA6rKo4vSh6QoSPlqD+r5fX/EEBGSWG\nI9kaFMVjaqRsy9ReaLmPTMT929gQx0uL+ewvX+kDAL/cq1p88N7GUw+f7yt7UenrGIwx9ULxybcH\n/Fpcu/jAvYwSfUaJgcNyi/Bz//lulcJb8HSO2vZ/jY3wc5dLeGI+e19G+YQIH6mQU50yKsiTfyFf\nGyZzF3BZ2AW883HxHZ80adLd30I7gi9fvvzGjRu7du26ffv28uXL6VO4XG5qaur58+f37t37008/\nBQcHu0j29gSZyFprIkDd8YZThS1RYOgNV+vNYj5bKuRwWG4lOjPnsbdvroaQe/D+d786V1M7MEhC\nL4Fa/T/1kWzN6nGKf0zoiaY3PpgcWv9Ftf9rLNp4vq9MJuKiKQS13kIb62jN0fIOtzHf8Qca4tOL\ndaspne7YtC8zmWbHa/o/dQy/VlBFiPnsdlexF/K1bw/tFikXfXqxBFnPOCw3p6toTRQAbJnaK8iT\nf7mwRikXXS7UoZHHIVXFmQfVyMSHVJRcwqctbDIRN8hTcLmwhg4IMiHC598vRyA7sEptAAAxnz0u\n3LtBIzBi/qCA8b29p32VaTBb3x4aGOHnfvD1KPSMJaTd/ehc0ZWHNfFhXuvHyvffLv9gcihykAuT\nue+8XPrHQQFtvD9SISen3Ehvjw6VbjxV+H+9vJj/rdMlYfQnAJfL7dOnD7LUOeHh4dE1VBENh+VG\nG1LQm4+s83QIhoaOrzOs0Sn4nu8rQ6uO6o5xWF2ChlBIHwg4rG6e/FwNQfvsyiW8m+8N/uGPSnWN\nhY7ggPpKjYFE7rmton+geNCWaxmlBuQ7S1sX6bwYTZNRYojadKXBKo2RlEv4aDzhqIkn/vvW8ZxK\nF4Yy+vvxvPpTHcj/mLLZ61cBwNw92aoyIwBcyNd+fU0dG+ShrjEjLd4ua7k0RjLtdsXzfWWJw4Mu\n5GuRyU4m4hnMVvpbgbLZaW3RP1B85WHNawPllwtrkGf20ezKg69HHc+pnPZlJofl9s3svvDbhW5o\n6gWpKPu/xsaFeHBYbkGe/HdHBdMjKjGPXawzozF6gzzfV2YwW798pQ89N4mG6SjunKeQw2G58dlu\nm6aEzR8UgLQdOgDNBrUFdBUxj40epXHh3iq1EcmDM1t2PoxWSL8f1HpLkLSuk9UYSfTC+4t5jurB\niQg/95LHMz30F6tSLnp31BM97bhGhLbAqPUW9PFroqxP/CYe9+wmyib34CEViGYU1HpLY6spmyA+\n1KtYZ94ytdd/rpRxWG60TkWmG6dVUAaz1WnkpDWRjvNYy4/kbr9cQrcwJMQDfSY7LhlGToCdE/ol\nvUhff84/5WRBenHDjgCn8w09/tnA8m2pkKNSG9Ck+s4rpVOVsle/zdpwqnDoJ+kByRfaLmfw+ouj\ne0rRmFUm4qLnQcBhPTJYNpwqzNUQXmvO/f1YHv3vyyW8y4W6l/r5wWM7npagRvSQXimsOaSqKNaZ\n5gyUR/i7h/o8cQWUS3h3VsQ5XffLV/q8PbQb0qkCLgv17E1YwKRCDj3IRoR4CXLKaymb/aMXe6VO\nC0eFf4nvTj9Lcgnv+b4yx5nRp8NE2oKkfKmQU2uxAgCH5Xbszf7I1v0U32GYNoIVEiMwUVaZiIve\nNHoFe9MESQV0GK5cTcOedb/xjHi8rTFa0DJbRx3geCQtSUEV4cFnlejMT/HaD+gmzlw+JMLP/XKh\nLkwmpMcHGqNFwGHlagjHgz//tcQp4JCWoBw/w1VlRjokhIDDGhAo3nezXOEtoHtS1PdF+Ls7tdxB\nbDxVmJCWAwAogA1NsdbsOJxVqY05j2plIm5j9iqFt+DKwxp1jWVcuDcADOgmPvl29L9fjjCYrc/3\nlbVwKrExNEbypf5+C4d1Q7sV60eiDTGfjWZ3/vlLwfnEgYdUFf/Xq87Ff0A3iZagFN6COyviBFxW\nroaQibnIb5tu9rMZvdc8p3C8UIPDFKR+/jY2JMhT8BQfNMoAUUaJHjXi5Fwwvrc3Gnb/+Ea/1jZb\nnw8mh558O1rqzvEQ1I2HJkT4IPs29rLrfLBCYgRaghoQKEEjnoJqgv4C1RjJxl5mFHPhsQmuedsC\nGhVRVjtywHWcNG4MldrYw4tXrDM/hSOTgMNSyus+MCP8RI8MdcpPXWORe/ByNbVuy06hbg7FOqNN\nbSgphqOPk4myeblzCqpMyL2Yw3ILk7nvv13+otI3vUh/5F6NwWxFPRRltetMFACgKDUdh5jPpp1B\naNtakCe/RGce+kn6q99mTfnPbY2RjNp0JeuR0UTZSmvIBu0/YT7uxVpzsc7U29c9PtRLLuEP6CZe\nMCTw13dipUJOQZWpLYa7X+5VDVd41i+XibjIgmqibEq5KKe89kVl3fIjpFqQy4CAw1p88N6fhwfB\n4y8exxUF1Smjmr46em4/mBxK+1636ikK83Hf/mtppLyBMcqCuMAf3+jf8qaaRibiykRcCY/DZj15\nI9BQ0kkRNmZ3xbQjWCExAi1BdfPkI+1SrDWjN4HDctMSZGOWd42RFHBZaEqmYOPC1wAAIABJREFU\nJZ/SyO6n1lvUNRapkCOX8OjpHBNlcxwDSQV1UWRMpC3Yg6clyLa4G6n1FoW3YP+t8jHbbqJryUTc\ni/m6IE8+nX2g0kjSPe+r36rSbldU1pJ0d5CrITwFHBSjaOKOjLXjeyi8Be+OCu4fKN59Q/3ljeqZ\nu1Rz92SHyYQCLgsp6cuFNR0aT8/RL4DupEb0lGqMZISfaO/NR5TNrlIb4kO9kBg3yginEDsIZEm7\nkK+LDZacXhRNDzXEfHZvP/dinclrzbnUC8VNxH03UTanD/mMEkPKyQIAyHpkRAOv+qBxZHpRDQDc\nXzkUeUg6MaOf79tDA9FXRbHOrJSLHC/UrEt0fQXcqqcoTCa8kK9FxkMnOCy3uBCPljfVEkQ8FlnP\n2Ov0G9OL9FGbG57XxLQXWCExAspmR+EmKZv9f/erUSBINHvU2AgJxbtDUyYtMamZSFuQJx9FsXN0\ncADkJvD46/XHN/oFSfnIaleiM/eTC9ruiOwv4X0wORR5WJhI2x9jA766VrZ1evjH54vQshK13oJ6\nK8pmH9FDKuaz1TUWqYC74VThziulGqPFX8yjbPaf71bdXzU0yJPPYbltmdoLBe4DAC1BAoDCW4iM\nS/tvlU+I8MkorXO3M1G2Kf+5Xd/77nJhjeMQrVWgdIgpJws4LDd6HstE2gxmK4ftdu3dQQIOK71I\nHxfioVIbwmTCHI1pQKCkfjsaI/nGkMCVRx/U/+xAAUCDPPmLD95DmgNpPnoV1+YzD2d+rUq9UDxz\nV13IR2Q/vJCvRWlPi7XmxlaGAgBav4wu5FhOz+VMiPChR06db7xCq52akL99uVVqyK4Xt95gtjp+\n1qA39Ona1xjJphcaYxBYITECdY1FKRdpjOTlQp2WoNAXK/Kya+ZEvXlED+mMfg1EfHF0t/v1nVhw\ncLrj/Da2s2MCQOS3LZfwinVmymYPlHCbcNhtCT++0W9Cb58Xlb5BnnwA0BhJZYBIYyRjgz1+fSf2\nj7HyceHetIGuWGsOkvLRKCdIyr+Yrzus0uzLKA+S8j+YFCrg/GZpiEzEpax2nZlCSxopqz3IU6Al\nqFulhtXjQnIe1RrM1v23yzNKDCbKhlyQHRn6Sbrm8chMsuqsY0BY36TzjkeiY0yUzWvNubqxI2Ur\n1pr+fjwvTCZECttE2eifEBss0RjJLLVxSIiHxkDSuhYAvrpW5pil12C2xoV4/G1siDLA2TYlE3Gz\nHhlfjPL9bk6klqBUaiNyixiZeqOgypT8c/6tUoNab7mYr6M/WdadyHfs9Qxma9NfKkHSlnb3d1bE\nbZ0eHhvcgE5tAic/hdZS31ei4/hwaq/dcyKdCgVcFp3bAtrg9zhm283FB+91tBm5a4AVEiOgbHYO\n200q5FwurHljSEB940YTRrn/6+WVOCKofrmju11ciAfdYwJAkKeAtiAhtec0pTRV6bv7hhoAAiSc\nVuUJrM/zfWVIv9IZdKQC7q/vxKKBzpyB8j8P76Y1kahbV6kN/QPFaOhjIm1yCe/toYEZJXqFl0Dh\nLag/iY1kE/PZ+vdHn1w44MtX+gi4rJzy2gGBkqxHxoxS/cyvVcU6U1yIR4PftlqCouOXOwZn0hhJ\n2iKXXqTvs/EyAHx7Xa2Ui9FIi7LaDRbr/ZVDN00Jq7OF1ljkEl6EvzuabpFLeAVVpgGBkmKdOcJP\n9Hq0NzJhHVZpDqoq6FuBfKY/mBxaX3MovIWHMisi/UVyD57GSO7LeETrgzGf3bherP/2unpZfDBa\ndYuMn+PCvb9OL9MYyTCZMFdDoMYb49hbAw6+HtX8/wcAAGEyYXyo17V3B7Xw+GcOmYjrNFKsThnl\n9Mw0kUz2l3tVjpkGi3Vmp09J9P+20Uvl9wBWSIxAZ6LQzM2tUgO9xhAZoFB/hyIsAMDOK6V0hj0A\nMJHOuqQx0AACbTs6NcglvGKtyckwGBficSa3fQL80KB38pHBIhVyHOcApEJOroZAyjKnvFbhJUTb\nKrWht5+7XMK/XFgj92i0by3TUygiGcq+MaS7x+VCHVq8hSbJ1DWW0T2ldyvqJuQdE9rmamppT0Va\n7xbrzBF+7siJHAA0xjrPkevF+tXjQj69WKwxkpTNnr96WJhMqPAWokXEGiPZzZPPZ7NoTSbgstBI\ndOu08Nf6eclEXPQz+wWIX997Z/mPuWq9pYkRTJAnX6U2ysRcqYCrM1E5j2oHBEo0RnJChI+Yxz74\netTJtwegZWe5mtpXv82ibHaFl8BgtmapjQMCJd/dfDS5j08Tfwdtsusc2jha6nykQg69eK5ZLuTr\n0m4/iccRvP4iHToLfWuil5deOIhpDKyQGAHychZwWByW2xOvJAlPXWMZGCQpShruL+alF9VsOFV4\nq9Twr7MP6RObmGRygl5gW50ySirkiHlPJmyLG3LsDpLyTZSNz27nJ0RLUE4GQ6mAazBbkeK5XqxH\n/r6xwRITZRNwWMiW1eBvlAq4AGC02Hzcn9QGSfnoU5ey2QuqTXIJL+uRcURPqbrGsvzH3IwSA/Iv\nR4u91HoL8u5TykWF1SZ0f9Q1llkD/I/eqVNIxTozGk0Wa83jwr1zNbVHsjX0jD2a5zOYrQXVBLp0\nfJgXAFwu1A1XeCIrZV3oawHneE7l8B6ek/vIvr2uVqmNyLukiXv1jwk9BwRKpELOhTydwlsg9+Bl\nlOgHBIozlw/hsNzGhXtzWG7vjgpGZjq0vGxyH5/9t8tXj1Ok3S5HkjTI/EEBOFBbs6BvC3qc1LTt\n2mn047jsDz0G0AFxoboeLn4obTbbjRs3SkpKKIqaMWOGU+3p06dPnDhBUVRUVNSsWbP4fD4ApKen\nO2b1GDRoUEhICHQJDBar43CHw3bTmSgRjx3kyVd4C/75S+GZB9Xvjgp2fPQdY4410/jjleeoJ3Ls\n4htclN7b1333DfV8ZTuvDUSmLccS5E8h4LCGfpI+oodUwGE931c2o5/f6FBpbLAH+opv0EUN/RBv\nIdvxt7zUz492zXqgIQCgoMok4LAu5GvPPLAfUlWEyYQ55bUCDisuxBNZtwBA7sFPvVCcqyGOvdk/\np9wYF+Jxq9RwPKdyQoTP3fLaMJk7muXisNy+mR35nyulT4SX8AqqCMmqswuHdXs7rtuAbmIU6O/F\nKF8nDzeZiPvpxeJjbw5QeAvW/qGHVMhJL6pBOeUaAy33MVG2XE3tG0MCCqpMGaUG/3q34rs5kV+n\nq3MeGdlubhMifABgQDdxxrLBTbSMwsdhmmZED6mAU6MxkmI++9vr6iy1kVYt9XF6DWndoyWoUB+h\nSm3gsNwMZpxJuRlcPEJKSkpauHDhnj17kpOTnaq2b9++evXqyMjIUaNGpaWlLViwAJUfOnRox44d\n1x5D5556pkH5Jiib3emJp+0/Srn4zINq1NU6BW5o4aeuTMwdGNTApHRj8dNigyXFWrO3kE2vrGw7\nF/K1cg+e06uLlM3B16OqU0b9++UIAPhgcmhssIT2g2hwhozGam/AwxgABBxWQbUpTOZOpxY99uYA\npVz8SrR/n42Xj2RrFN4C3eM5JKmA848JPSUCdlpmea6GkEv4W6eHv/l9DjoxNlgyc1fmrAF+ABAm\nE+7NeOSoIP88PCguxOPzSyWOkxBbp4U7uSYHSfmxwR5o+Js8vseAbuL6iT8aRMBhqfUWuYQn9+Dd\nKjUo6y3NeSXaf0CguKDaJOCypEJOZ/oCdG2+md33pf5+yEI7d0/2kWwNpyWZ3h+HDEfbuZpauQdP\nXWMZ0E187G7Vo0ZyMWMQLlZIa9euTU9PX7RoUf2qffv2JSYmzpkzZ8qUKVu2bLl69Wptbd00wODB\ngzc+JiYmpnNF7hBQ+O1cTW2Il7PjE+pt0TACzfY7DgiQv3hLLvHZjN7J43vQu/RZyN5V/9NP4S2M\nD/MK9uR+NqN3q39PQ6BcTW8PDWzsAKmQ0+Ca/62PI8c4N8h2A4AqouGYY8N7eO69+Yiy2VB4tH9M\n6Dmgm/jg61FvDA48+HrU4oP3XovxL9aZURLugmpizXMKpb/4z/vv/Xy3UhkgCvLkT4jwQf/LPyb0\nnDXAHw0+AKCgyjS+95PRz5yB8vOJA6GhlTeOvKj0RYHgEEGegl/uVTXtd0BD2ezKADGH5ZZRokdL\nApwIlQmz1EakJtse3g1Dw3ZzG/TRNeQ50pjL61fXyjgsN0eXB4W3wGixAsDyH3PpF1Yu4X945qEI\nx8drEhcrJDq2d30CAwONxrqVAQRBcDgcZLIDALPZfP78+aysrM4QsRORibiOCy+QU8Pjp5n3zey+\nMhFXS1C0bwIANJi4ryU4qjHHsN80Srno2Jvtth4eALp58tt3UhcpUfoWOTF/UACKxLP2Dz0AYM1z\nCjQyU3gLnu8re3dU8IgeUgAwmK0KbwFyf0j6gyJ31dAvX+mLjoyUizJK9Cj1Doqihlr+8pU+TtMz\nHJbb/ZVDGxSysfIgKR8ttWnhj0WJElRqY4M6DDmG4HQJ7Y5MxBVwWBfz68K5KryE9c0Jr++9Qy+J\nAwAtQUX4iZDJbvOZh8jkqzVRYTLhd3MiccDWpmHuxGZycvLKlSvz8vK4XG5mZubGjRvpsN8nT54s\nKSnJysry9/ffsWPHs56gb+6ebPSYOrnVyiW/6cHnDJTnavJzNbWOafcom91xt1kcdQzt+NQ58d8A\nwGixOjpT0DQbh6ZpGptFu/lew/MoaF0tAAg4rAeVhMJbSAcDdFQSSrkoo9RQv/H5DaU8aCz8YGPl\nAg6rMV1VH3Qk0rsNap0IP9GFfO2SkU3ZNjFPAfJHRa5DBVUmFAW8/gfQrVIDvbRZYySDpHVvLofl\ntuFU4T8m9qSsdjGf7ZRIDFMf5iqksrIynU4HACKRiCCIkpI6X+clS5akpKQAAEmSS5cuTUxMPHLk\nSIMtFBQU0DnkfXx8kpKSOkXwVlBRUQEA315Xj+khVqvVTrXVOtJiseh0OrW6rk80GAw6whLmxSks\nKbNYLARhN3ApQsdRQ0uTAA2QgtOF7JZai8Vi1uvU6gaGL0jCdsFgMBTXkPZavlrtvCQeANQtmk9x\n5vwbYSP/k8s21ajVTxNkrJeHPS27UukveFRjqn//Pe3kj5nqSF9+/arW0sbbKAZQq3VmvQnA+e9D\nyAC0BFWr16rVTzlibsc/uoNwiYQ8yqglKJbVzHWzlxkoG2kqVpcLLM6fgARBWCwkkvDXB3opi7pP\nEGq1elh3kQePpSl/dGxuDz8Rp+0P0lOwfv16eqLd0R2MmTBUIdlstiVLlqxdu3bq1KkA8Kc//Wn0\n6NEjRoyIjIz09a2LSsDlchMSEqZPn04QhFDYwHeoQqHYt29fp8rdemR+/gDZdhZXLpc7VZl4Jh5P\n4+npSVeFBVjtWTX9g73tQi8eTy0UCswstq+vr7wNEVZ6yO01OYbe3eWNNVJfsKdDLCaEpKmN0joh\nlwNAbh9F4NM5MY+NFK04WfaHvn4h1bb6P1Muhxtf580dHNQud6DtjWhZtQB5jbeT3TckQN6COPGN\n0V5/dMfR+RL6EVqAwuf6BuzKqAYAHl848j+5aOEEineFJpa4fAGP5+br6yuXy0+dqV4xNkRVVSiX\ny3v6ViOHRhfe2m3bttHb9Ac6Y2Go0dlsNhuNxoCAOtuIr68vj8crKipyOsxisQAAh8NQtdoS0NC+\nQcsyh+2mNf3GYC3gsuicSchugNzz2iiDWm9p4epaBhLmzXvqJTWxwZI7K+Ka8L2mU7wzgQg/d/37\noxurLUoa3mmR334/SIVccFgjsSy++6YpYSi0/JhtNz7/tWTvzUdyCU+lNtDHaIwksvq2fEkGhsbF\n3ZDNZiNJ0mq1AgBJkiRZ1/8KhUK5XH7ixAm0e/bsWYIgwsPDAeDSpbpEZ1qtNjU1tV+/fk14RjAf\ntBq8wWn5IE9+RslvIrDVJTrjsjRGC63D2v7Qa4xkgwt92hentDrtxfk3wtpyeoSfe2PefQBwf+XQ\nBgNOu4ompsRRKKbOFOb3gMJL8M3svvFhXmg+MsLP/aV+fkfvVFI2e7HObCJtSw/fRx4N6K+hA+fL\nJbyMEsNT5G35nePiscXx48eXLl2KtpVKJQCoVCqkYLZs2bJs2bIDBw5IpdLKysq1a9f27NkTAJYv\nX15TUyMQCIxGY0xMTGpqqgvlbzvIaaeFcRtpjzt62V3bu/hOW7EfJOUfvaNh4FBswZDABUMadkZ/\nisxymK6EmM+eM1AOAHSGDoW3QF1jKagyKeWio3c0a//QQ+EtWHeiLk8jHX2jmyc/V1NLxyzGtBAX\nK6RJkyZNmjSpwaqYmJjTp09XVFTo9XqFQsF6nD7r4sWLJEmqVCqlUvlMj40QKGhQCxNvO30CC7is\ntmf96cyAj2iBZ6ddDoPpCOQevGKdaUA3ybfX1W8P5dNxJndlVG+5nIucMKVCzpWHNb198Zqw1sG4\nz1UnfH19e/bsyWL9Rk4ulxsdHd0FtBGghAstDnOJViDRti9/Me+p1yHRGMzW+NBGg55hMBgnIv1F\nF/J0vX3dkQs4rZCultSq9RZPIQcemzEYaA9gOPh+uZi7FbWxwR6tGujQqxzahTkD5fXTOmAwGCfQ\nSmoAiPB3v/Kwpn5MSKPFRpfIRLyc8gaWN2CaBiskF2MibU3PRTsG9emIDy6UtaHdm8VguhjnE+ui\nlMklvIwS/eOwv3wUdd5gttZSdngcm1EZIMooMWADdWvBCsmV1JhtMjGXw3ZrQtM4Ti/Rz3eJztx2\nb+9OhsNya2PyWQyGCUT4iYp1ZrkHb0A3cZCUj4ZKZx5UDw1yh8ehNNBXJjbZtZZneAVPF+B6ae1w\nhWeuhsh5VNvYMU6xs+6vHIrynHZrPBI+M3F0DsRgnl1oo5xjbCoOy21qhIfC30sZIKYL0eAJ03Kw\nAnclR+/p40I8zU262DnlUQ6TCVFSOACQCjkov9wzAYfdIeuQMBiXIOY9XgjIdgOAsuQRPbx4C4d1\no80YYTIhHiG1FjxCciU5GlOYTEjZ7I311Ki2sdOlQg6dgRuDwXQmtM28sYmilgfPxdBgheQyinVm\nhZQHAD4ibmOrUzOXD6lfKOCyHJOvYDCYTqY6ZRTti4QDZLQjWCG5DI2B9BayASBxeFCDGQ2gkVwD\neDIGg3EtTl+QdCYXTBtxsUKy2Ww3btwoKSmhKGrGjBlOtadPnz5x4gRFUVFRUbNmzaIT9N2/f3/3\n7t0EQTz33HPjxo3rdKnbB43R0lvGBwAxn91ax2sUO6tYa36G/ErxhyQGg2kaF8+5JSUlLVy4cM+e\nPcnJyU5V27dvX716dWRk5KhRo9LS0hYsWIDK7969+9JLL/n7+8fExKxbt27Xrl2dLXQ7kashgj2e\n0gkH5UWmbHYB55lZQuSY6BaDwWDq4+IR0tq1a1NSUs6ePZuYmOhUtW/fvsTExNmzZwNAZGTkxIkT\na2tr3d3dP/zww9mzZyckJACAXC5fsmTJa6+9RieTfYZQ6y0R3Z5SIYXJhFlqY6iPUK1vz6TgGAwG\n40JcPEJqIh5dYGCg0VgXe4MgCA6Hg0x2Fy5ciIuLQ+UjR460WCx0QopnixKdOcz7KQ1uS0YGi3hs\nrYnCQRYwGEyXgblODcnJyStXrszLy+NyuZmZmRs3bmSz2QRBUBSlUCjQMSwWy93dXa9vaQJvRtGW\n/F2JI4IAIPnnfDGPuf8gBoPBtArmdmdlZWU6nQ4ARCIRQRAlJSUAYLfbAYDOYg4AHA4H5ferT0FB\nAZ2y18fHJykpqcOFbg0EQVRUtCl5xPju7BiZp1qtbi+R6lNRUdFuTelIAGh3adtRwo6D+UJiCdsO\nMyVcv359ZWUl2i4oKHCpLM3DUIVks9mWLFmydu3aqVOnAsCf/vSn0aNHjxgxAiWNzc7Ojo2NRUea\nTCahUNhgIwqFYt++fZ0mc2sRCqt9fb3kcvlTt9CGU1t1lfa5jIlnArjfXq050hFttjvMFxJL2HYY\nKOG2bdvobfoDnbEwNLKF2Ww2Go0BAXWrc3x9fXk8XlFREZfLDQwMLCsrQ+UVFRUEQYSFtSmJNaZz\nwNlXMRhM07hYIdlsNpIkkc2NJEmSrAskKhQK5XL5iRMn0O7Zs2cJgkDDo2nTpu3cudNsNgPA9u3b\no6Oj6SmlZwiD2fp780f4vf1eDAbTWlxssjt+/PjSpUvRtlKpBACVSoVc77Zs2bJs2bIDBw5IpdLK\nysq1a9f27NkTABISEu7duzd48GCxWOzp6bl9+3YXyv/UaIykjzseMWAwGMwTXKyQJk2aNGnSpAar\nYmJiTp8+XVFRodfrFQoFncWcy+WmpqbW1NTodLrg4OBOFLY9EXBZEyJ8ABrNOtElwVY7DAbTBAx1\naqDx9fV19Kmj8fDw8PDw6Hx52gu5hCeX8NTq35dCqlg/0tUiYDAY5sJQpwYMBoPB/N7ACgmDwWAw\njAArJAwGg8EwAqyQMBgMBsMIsELCYDAYDCPACgmDwWAwjAArJAwGg8EwAqyQMBgMBsMIXLww1maz\n3bhxo6SkhKKoGTNmOFYdPHjQKa/E1KlTuVxuenq6YxD1QYMGhYSEdI60GAwGg+k4XDxCSkpKWrhw\n4Z49e5KTk52qbt68ee0x+/fvf//991H0oEOHDu3YsYOuolN91If5yT/Wr1/vahGaAUvYLjBfSCxh\n22G+hMzvEl08Qlq7dm1KSsrZs2cTExOdqhz/3bfffnv69Olsdl246MGDB6ekpDTbOEW1Kf1dJ9CE\nNmUIWMJ2gflCYgnbDvMlZH6X6OIREgrs3TQVFRXnz5+fNm0aXWI2m8+fP5+VldWRomEwGAymU2F6\ncFUA2L9/f2hoaGRkJF1y8uTJkpKSrKwsf3//HTt2PIv5kDAYDAbjhJvdbne1DIBMdpmZmQ3Wjhs3\nbt68efPmzUO7FRUVKP43SZJLly4tKCg4cuRIgyf27duXzm7O5XIZ6PtQUFDAcG2KJWwXmC8klrDt\nMFPCwsJCOvEpQRDZ2dmuladpmD5Cunr1allZ2QsvvECX0NkouFxuQkLC9OnTCYKgFY8jDL/1GAwG\ng3GE6euQDh48OH78eKlU2mCtxWIBAA6H6WoVg8FgMM3iYoVks9lIkkTrjUiSpIeWiNra2v/+978v\nvfSSY+GlS5fQhlarTU1N7devX0s8IzAYDAbDcFw8tjh+/PjSpUvRtlKpBACVSkUrmAMHDshksmHD\nhjmesnz58pqaGoFAYDQaY2JiUlNTO1lmDAaDwXQEjHBqaC0kSapUKqVSicdGGAwG02V4JhUSBoPB\nYLoeTHdqwGAwGMzvBKyQMBgMBsMIuojDdBNRw61W6/fff5+RkcHlcseOHTt27FimSXj69OkTJ05Q\nFBUVFTVr1iw+n+8SCe/fv3/y5Mn8/HyRSPTCCy/ExMQ4Vu3evZsgiOeee27cuHEuEa9ZCRurYgIM\nuYGNwfC758iNGzfy8vJGjx5Nr0dkDgzpapqAIV1NE3SREVJjUcNJknzttdcOHDgQFRUVEhJy+PBh\nFwnYqITbt29fvXp1ZGTkqFGj0tLSFixY4CIBYfbs2fn5+UOGDOFyuXPnzj148CAqv3v37ksvveTv\n7x8TE7Nu3bpdu3YxTcKmq1wOc25gYzD57jlSUVHx17/+dfXq1YWFha6WxRnmdDWNwZyupinsXQKL\nxWK328+cOaNUKh3LP/3002nTplmtVhfJ9YTGJBwzZszu3bvR9oMHD8LDw41Gowvks9t1Oh29vXXr\n1ueeew5tv/XWWxs2bEDbZ86c6d+/P0VRLpCvcQmbrnI5zLmBjcHku+fIW2+9dejQofDw8GvXrrla\nFmeY09U0BnO6miboIiOkxvy/Dxw4MHfuXBQvXKvVdrJUjjQmYWBgoNFoRNsEQXA4HFeNoz08POht\nX19fepHyhQsX4uLi0PbIkSMtFgu9NrmTaUzCpqtcDnNuYGMw+e7R/PjjjwAwadIkVwvSMMzpahqD\nOV1NE3SROaQGsVqtRUVFJ06c+Oijj3r27Hn16tX33nvvjTfecLVcvyE5OXnlypV5eXlcLjczM3Pj\nxo102idXQZLkN998gya6CIKgKIoOGclisdzd3fV6vSvl+62ELa9yCcy8gY3BtLtHU1VVtWXLlu++\n+87VgjQM7mrai66skGw2GwCo1epffvkF5T5/7bXXxowZ07NnT1eL9oSysjKdTgcAIpGIIIiSkhJX\nSwTLli3z8fFJSEgAALvdDg4BbQGAw+E4pZbvfBwlbHmVS2DmDWwMpt09mnXr1i1YsMDf35+Zozfc\n1bQXXVkhsdlsNps9Y8YMZC6LjY318PDIyspizlNis9mWLFmydu3aqVOnAsCf/vSn0aNHjxgxwjH5\nUyfzl7/8pby8/IsvvkBfT+jWZWdnx8bGogNMJlODsdVdJWELq1wFA29gYzDw7iGuXr2anp4+ffr0\ns2fPIl1+8+ZNqVQaFhbmatHqwF1Ne9GVFRKLxQoNDXX8GrUzLCyF2Ww2Go0BAQFo19fXl8fjFRUV\nueopWbFixYMHD77++mt3d3dUwuVyAwMDy8rK0G5FRQVBEC7sCOpL2JIqF8K0G9gYzLx7CBaLpVQq\n9+zZA4/HIv/73/9EIhFzbiPuatqLLuLU0FjU8OnTp//www+1tbUAcPr06dra2gEDBjBHQqFQKJfL\nT5w4gY45e/YsQRDh4eEukXDNmjWZmZk7duwQCoWO93DatGk7d+40m80AsH379ujoaFdlIWtMwqar\nXA5zbmBjMPnuAUBsbOz2x2zbtg0A/vKXv8yePdvVcv0G5nQ1DcKorqYJukgsu59++omOGo6go4av\nXLnyp59+kkqler0+JSXFVV46jUl448aNZcuW6XQ6qVRaWVm5YsUKV71pvXv3dtzl8Xgohy/KzHv+\n/HmxWOzp6bl9+/bg4GBGSdh0lcthzg1sDCbfPSdIklQqlbt376ZNoMyBIV1NYzCnq2mCLqKQmoYk\nyYKCgtDQUBaLoSPCiooKvV6vUCgYK2FNTY1Op2NaT/oMgW/g7wHc1bSbrJOvAAAgAElEQVSR34VC\nwmAwGAzzYaKSxGAwGMzvEKyQMBgMBsMIsELCYDAYDCPACgmDwWAwjKArL4zFYFzLxYsXi4uL+Xz+\niy++yJymGHIhDKY+2MsO8yzx9ttv0xE2b9y4Qa/Vv379+pgxY9D2W2+9tXnzZtfI91umT59+8OBB\nmUxWUVHBnKYYciEMpj7YZId5ljCZTPrHfP7553R5amoqXW4ymVwoIQaDeWqwyQ7zrPL555+npKQI\nBIKKiordu3fXP8Bms/36668ofByHw1EoFIMGDQKAe/fuPXz4EADi4uLEYjEA5OXl5eXlAcDAgQO9\nvLwavFxOTk5mZiZFUd27dx8+fLhTbVFR0fXr181mM5/PHzt2rGOGIURGRsbdu3e9vLz+8Ic/OJZn\nZ2dnZWVRFCWXy0ePHt2q5YoNipSRkaHRaPh8/siRI+n7cOrUKQBQKBT0mLLpn4PBuAbX5QbEYFrN\nvHnz0HM7duxYAPj000/tdjvKCo/CGAPAn//8Z6eDaaKjo9Vq9f379yUSCQDMnz/fbrfrdLru3bsD\nQHx8fIMXraqqmjx5smM7/fv3f/jwIarV6XROCYT8/PxQ1bRp0wBAJpM5JnQYP348qtVoNOPHj3c8\nsXv37ufOnWtQBrqpZkVKSUkBADabrVar0cF0SvKTJ082+3OcLoTBdCZYIWGeJWgdc/ToUQCIioqy\nWq1BQUEAgAYBjgpp+fLlS5cu3bNnz/fff5+UlIRiG7711lt2ux2FjkbtzJkzB2kRugd3AnXfIpFo\n06ZNu3btQtorMjIS1U6ZMgU1NWLEiI8//njx4sV0FercUePz58/v1auXo2KgtdFbb721fv16Pz8/\nAPDy8mpQDCc90YRIpaWlKH/Eli1bHM9VKBQt+TlYIWFcCFZImGcJWiHZ7XaUbGbBggUAMHjwYDoN\nK62Q7Ha71WrNzMw8duzY0aNHUR7xwMBAVIVOpA10SEnU586dO+iA999/H5WkpaWhklOnTtG19LjH\nbrebzWa0QSukrKwsu91OZy7funUrfeK8efPQwXv37kUlGzZsqC+Go55oWiT7Yx05cOBAu92u0+mQ\nJk5JSWnJuVghYVwIdmrAPKsgO9jOnTsBYNGiRfUP+Pzzz6VSaVRU1MSJEydPnnz58mUAoPXW1q1b\ne/XqVV1dDQDLly8fN25cg1fJzs5GG6tWrXJzc3Nzc6MNdMXFxXTt3Llz6VN4PJ5jCxKJpG/fvgAQ\nFRWFSnJycugTJ0yYgDZok6NKpWr6hzctEgAsXLgQAK5fv56Tk/PDDz+QJMlms5ECbvZcDMaFYKcG\nzLPKwoULk5KSCIKQy+Vz585FqWhosrOzkcaKj49ftGgRl8vduHEj0kmInJycgoICtP3TTz+tX79e\nIBDUvwrtZRAfH4+sWzTdu3dH+gwAjEZjY3Ly+fwmmqUoyqkFDqeZt7JpkQBgwoQJQUFBxcXF33zz\nDRqWTZo0yd/fvyXnYjCuxNVDNAymFTia7Ox2+9KlS2UyGTJGOZnsaEvU4cOH7XY7QRAoLZ5EIkEH\noxmdESNGIAeHBQsWNHhFetywePFix/KrV69arVZ6wqZ///4EQaCqxhwEHCUsLS1F22PHjkW1H3/8\nMSrZvn17fTEcm2paJLS9Zs0aAAgMDERHHjt2rCU/p77MGExnghUS5lnCSSE54qSQHHP3JSQkREdH\no6kUpJBQajLkQfDFF1+gIw8ePNjgRWkfufHjxyckJMybNw8Z39Bc0ZIlS1Bt9+7dZ86cOXHixPpe\ndg1KSDcbFxc3bdo0pNh69uxJKzZHnJpqWiS73U4P/gAgKCio5T8HKySMC8EKCfMs0XKFZLfbN23a\nhHp5AFiyZAnqaiUSCZp2AoC0tDR05MyZM5F+ogc3TiQlJXl6etJdvFAonDlzJj0cWb9+vePqpf79\n+6PyphWS1WpdtWqVUCikT5w4cWJpaWmDAtTXE02LZLfbkWc8ACQnJ7f852CFhHEhOHQQpitTW1t7\n7dq1gQMHogWwbSQ3N7eoqCgiIiIgIKB+bV5eXmFh4cCBA+uvim0Cm8127969ysrKQYMGOXlDtF2k\njjsXg+kIsELCYDAYDCNgupfd6dOnT5w4QVFUVFTUrFmzkMNSenq6o4l80KBBISEhLhMRg8FgMO0B\noxXS9u3bv/7660WLFnl6eu7cufPkyZPffPMNABw6dOjq1avR0dHosJ49e2KFhMFgMM86jFZI+/bt\nS0xMRA5RkZGREydOrK2tdXd3B4DBgwejmF0YDAaD6RowOlJDYGAgvVoQBWym1xiazebz589nZWW5\nTjoMBoPBtCeMHiElJyevXLkyLy+Py+VmZmZu3LiR9uI9efJkSUlJVlaWv7//jh070JpHDAaDwTy7\nMFohlZWV6XQ6ABCJRARBlJSUoPIlS5Ygex1JkkuXLk1MTDxy5Ej90/v27Usv8uByuQycZyooKGC4\nKsUStgvMFxJL2HaYKWFhYSFJkmibIAg6mCFDcfVCqEaxWq3R0dGHDh1Cu+Xl5X369FGpVE6HqVSq\n8PDw2tra+i3ExMR0uJRt4+WXX3a1CM2AJWwXmC8klrDtMF9C5neJzJ1DMpvNRqORXrLn6+vL4/GK\nioqcDrNYLNCCeJQYDAaDYTjMVUhCoVAul584cQLtnj17liCI8PBwAKDzymi12tTU1H79+qEwZZgG\nKagyaYykq6XAYDCYZmD0wGLLli3Lli07cOCAVCqtrKxcu3Ytysm2fPnympoagUBgNBpjYmJSU1Nd\nLSnjOJKtGdFDKhVyAOD1vXdGh0qTx/dwtVAYDAbTFIxWSDExMadPn66oqNDr9QqFgk7lcvHiRZIk\nVSqVUqlsYmzEfDuej49PB7U85T+3Ty+Kjg/1AgCN0SITcbUEhfRTq+g4CdsL5ksIz4KQWMK2w3wJ\nmd8lduVYdrNmzdq3b5+rpWgKtVotl8vbpalcDZFRqn+pnx/a5S4/fXpR9IgeUgAYs+2mmM8+kq2x\n/2usCyXsIJgvITwLQmIJ2w7zJWR+l8jcOSRMq/g6vWzm109SX1M2O2Wr+9TQmkgBB//RGAyG6eB+\nqovAdnNz3BXz61YQuy079XTGOgwGg+lkcD/VRbDa7Y7DIDGPfbPEsP3XUgAwmK3Yyw6DwTAfPEJi\nOrkaoiWHsd3cBNwn/6aAy7pfQey9+QgATJRNS1AdJR8Gg8G0E1ghMZ1eH/zaYPn+2+WOu1a7XS55\nkm/UYLbawR4k5QOAibSp9WZUnpB29/NLJR0mLAaDwTw9WCE9q8z8WkW7LQCAusYiEz1RSGI+22C2\ninkcAYdF2ewGsxWVF1SZCqtNaPuXe1Urjz7oTJkxriW9SK9SG10tBQbTKFghPQOYKFuD5cVaM71t\nsFhpk51wxRm5hFesNZfVmOUePABQ6y2oirLZOWw3+pQNpwo7UG4Mw1j504Ovr5W5WgoGQX+oYRgC\nVkjPAAn77zoZ6BCOrgqU1S4TcYPXX9QYSRNlM1G2Yp3JYrUFeQoAgB5LUVY77Y9nMFsFHFb9T+ac\n8toO+RkYVxPkyS/WmZs/rkujJSjaMCBZddbJ3+fMg2qspVwIVkhMxFyQpVo8lnZnOJ5TmfOoASVh\nsDxxVRDz2RyWW7HO/NW1MoW3QF1jMZE2grRRtrrRlUzEBQCpkKMz1Z1F2eyfvdR72pe3nZrts/Fy\nu/8iDBNQ6y0cllvzx7WmwRY63ThxubCmHcVoFbkagjYMyETc4zmVdJWWoMZsu1nw2KaN6XyYrpBO\nnz69cuXK5cuX79q1y2x+8nF3//795OTkFStW/PLLLy4Urx1xW3bqyQ6LzSvLmbkrE+1pCcpxugjB\nYbnRvnN7bz6ibHa13iLgsD4+V7RsdHcAKNaZ58bKX4uRK+UiAAiTCQHAYLGiJUoaI6klqAg/UYSf\nCDVSrDNnlBg69DdiXAuaUGzHBp/7/ObyH3NbdUpBlalYZx76STpls7tkClNLPBkSjeghvfLwiWq8\nXKgL8uRrjJbOlwqDYLRC2r59++rVqyMjI0eNGpWWlrZgwQJUfvfu3Zdeesnf3z8mJmbdunW7du1y\nrZztjq22BgDodUUmyobGN46g8HQAkKsh0m5XfDA5NFdTGx/mVawzKwNE6PhV/6dIHBGUuXwIPJ5G\nQia7Q6oK36TzlbWkXMKjDRSv770zd08WMungdUtdDxS8Qy7h0X8u/UHz7XX16v+pAeBCvrYlBivH\nVQTNrrl2MhK++q1q46lCAFDrLS6ZwnSURyrkOE7EqvWW+DAvjZEsqDLtvfnIMfQJpnNgtELat29f\nYmLinDlzpkyZsmXLlqtXr9bW1gLAhx9+OHv27ISEhFmzZqWkpHz44YdWa5cy+9qtFACg6R9E/YVE\nAi4L9R29PvhVYySDPPkm0jY1UlaxfmR8qBdSQo5LZZGtBpnsLubrJkT4ILMJ8nG4XFijlIuCpAIT\naQOskLoW6Fsko8Qgl/D8JTzaw8Vrzblindlgtl55WHO9tBYARqbeaIkbnteac/R2swopeP3F1AvF\n9K6Awy6oMgHA5UIdALgtO9W+g7ZmMZE2qZBD2ezLf8ylA5og1HpLb193LUH1+OelTy+WNDhxi+lQ\nGK2QAgMDjca614MgCA6Hw+fzAeDChQtxcXGofOTIkRaLhc6Q1JVArw3arv/SqmssjwwWx9ovX+nz\nYpSv41iKdqgDgLgQT7dlp8R8tpag1HrLkO4eBVUEh+2Gjv/XmYd/Hh4U4eeuUhtkIi69bgnTmfzG\nbNtOLD18P2rTlQv52uM5lbMG+A0IFKcXPTFSTdyR8eq3WbkaoocXH5UYzE2toTaY6zwzkeengMvW\nEtTxnMq/H89DBwQkX3A65UWl79kH2mKdecy2m6ikWGcKkwkPqzTIjOw4RukE1HrLiB7SXA2x+cxD\nH3cuWiCBqgqrTQpvAZJHzGfjCJCdD6NDByUnJ69cuTIvL4/L5WZmZm7cuJHNZhMEQVEUnbuexWK5\nu7vr9XqXStpWnEYkjyqqAaCbJ79Ya5YKOVqCMlqch4AyEVddY0Ffu0ipTPj/7J15fBNl+sCfzJFM\nMrmaq+lFW1qg0nJj5RZQFBdWFPh5IOqyuiq7rMi6eKyuB167iscq3rfrAYqCgisKyikgN9hCKS1N\nz6S5mjuZzJHfH28ZQpoWaIEWyfePfqaTyeSdyeR93ucuSqx+n62RidtIQ2rwMHk6KsDw6G+2RoY+\nWinDCw1yvYL89qBreI6a43+zNeAvNCzuyK8LL1m4qsoT5h64LNfmj/5sac2MNqukZbagUoYbaClN\nYEgLt/mjfZ7Zdv/E3ADD3zMuJ/5UEU5YvKHu8R9qAOCpdRYNRVycrar3MhZ35I2tjU9M7g1xCQYi\nnjBnoMkGD7OhugUAPBG2ojl016islzbVzxxoqnKGnUE2T0fBuaLRyxSZFFXOEAAQmMRAk2W24KQ3\n9xYa5GaV7M4RWcv22ccXpFXYg6kKkOeeHn3HrVar1+sFAJqmw+FwY2MjAKB+GUajUTyMIIikJjuL\nxXL99dejbb1e/8gjj5yLQZ8ODocDbdR7WQCw2Wzo379/tvNhUs1Ggg02u0oq8YSh3ukTX0Xo5RJ/\nMLSjsoHAJE0twYRXEfE7w+EwADS0BPUyAQcAJmDzR202WyjM2Gy2cDhss9lUksi2Gte0Ik15nb1E\nHY0fYY+lh4+w3su+vdv11wF40le/POidVqSOj3xraLKewUA4a4DTSXkIug9ZvTkaqdPeDELsiNVj\ns9me3mTXyyU2P9S6Qv31RLGGX7q9Wi3D6prdVc7w57sb11b7b+h7gufyvT3uF7fYR+XQW+uDK/Zb\nQ2zs9qG6KjtzsMGVqyFqG60MF4O4p87HCFvrg9FolJMKdVa7WobtPFyfJoUIJ4xMl1x3e+HW+uAR\nO3WkoTmbPMFO+NCPtqcuS+zj0N4XXdMSzU+TJn0pKf5gaLCBXrG3wUQTBoIJA/vdgfoAw+9rDAAE\n3vidaU2F61+TzH//vmWQmZLc+5N1Yf/4y5lcqGrvzD3zUVy0aJHL1RpJaLFYunUsJ6fnCiRBEObP\nn//oo49OmzYNAP74xz9eeumlY8aMQV3MDx48OHz4cHRkJBKRy+Vtz5CXl9fDm38AAGqg4sFCAEco\njUErJ5CFnWZ9fTL1nIyiZSQAixq6x7/xogyXJ8wJMlWRSSGVkskasRyM23kwQ6cC8HiYmJfDR+Sq\n8zLSAOrNZnMvg8tsNsvlLWazeViYuue7piUzs/Y1BsT39vAWLyDewx5Z1NzC+N7efWTRxP5Jb+O8\n5w5eVpJTZFJAq931INA6c5xe2wk4IRZhBeQdWbfbNqHIbDabl8/RUiSGikuRshagda/8cnBwlhKA\naYkIY/umlxqE+T84eqXJwxhloEk/JwEAs9lcZgtma2ToxgpkZPffLnnw22qoD5IkWWMP9O9lPOKT\n1PjZG4ZlHQnKtHISALQGEzJ2VdV45qyomD3M7Alzdo5acGnuI5vcGloOEOidlT48RzXyIhhW0FLR\nHFKmGUV3zvID9vf2uN+9aXDbSzObzQtXVY3O19h8UYrE/nBxBgBkPPfTaTX6ImXuQfnpS3ZWvDqz\naOZAU4U9NOmNvQCQp6Ms7khuVgYnHLpyYK+/f2/N0Sn32yLiF2ep9c1ZUdHxZ/XAH8trr70mbosL\n9B5LzzWSMgwTDAYzMjLQv0ajUSqV1tfXkySZmZlptbYmnDscjnA4XFhY2H0jPQMgnw2ymaypcI3M\nopy4lgw6xQPa+pAoAouwgjPIUiQW4U4S01Hz0CgNRUBrtDebrpSKy3CKwBq8DKryMCZfG3t+YolZ\n2Xgepk+mPbzp/z4sO3ulcWz+aFt71EkR88Daw+IOi7YyApN0PSvzja2NYibZ94fdqEljno4SSx0a\naLLCHgSAIhO97e7hEU4oNMh1cjzCCoUGxeqDzmtKjLvq/ej4Ca/tWX2w9TkMRnmlDPdEOABAy6YS\nsxIAAgw/uUi/q8Ff5Qxla2Q2XxQNgMAwACAwiVklbfQy4wu1lxZoUd6P6OmkCPzf62v/76MyAFh9\n0GnzR9/c1jRzoCnhPoh3fvGGuggr/FLn+7rMCckshB2DfkclZmWFPYTGUGRSNHgZs0oq5j8AAMqU\nSBhDQgREirNBzxVISCf44Ycf0L8bN24Mh8NIPbr22mvfeecdlJb05ptvDhkyRHQpnb+YVVLkKN5v\nDVyZGZPKKQMZcwbZIhP931n92x6PfD8NHqbQoKCIJD+V92+4SNzO01HNgSha5zqDrFKGiyF8BCax\nuMPxoRAGmjxfouycQbamJQrHaqKvO+JGvoHT4tr3fz2VwxZ8fQS5T+IZ8NwvCXve2NoYnyuKZsBy\nO5P/VJK4myKTYnutL+3hTRX2kM0XzdbKuh5O4glzYmRzlTPU1j3Tz6j49qALACgCG5GrLjHTSK68\nfV3RX0Zn7WsMTCsxcEJsRK4GAAoN8sOO1ltqaYmYVVICkyC/5gMTc7O1sn1N/qJ0RYmZ/rrMYWmJ\nFKXTnjBXYQ8FGB6tkww0WWymN1S3mFWyBybm7r23FABQRSsAMKukFncELY/+uqJyztJDEVYYlKnc\n1XA88uKDnVYUK4Ee3fjgdRQUeoqU2YLkwvXFZhr9EMSfwLa7h4/I1ZiU0s3zhgJAy5PjAAAF+EDc\nWrC9/KR1lW5nkO1cgnCKBHquQAKAF1988ccffxw6dOjEiRPvvvvuRx99tHfv3gAwd+7cnJyc0tLS\n0aNHb9269bnnnuvukXYVZIJAk1GA4TPVUnPvPkrOG2B4rZyYPczc1q+Alm+1LZFpxYYx+Zq250QG\njfjj0bzjDLJmlVQsfJelkTmDbEJ/PzgW8eVjBADghFh85G7P4Y2tjfd81wQAu+p9FIEFGF4pPe1l\n7Moyh+Ten5DLvQOSzn1ltmDCOvrB/1XHh7E5g6xWTjT5o0ilSMBASw87QoUG+Yc7rbvqfaLBNp4A\nw59WYLRot6xyhgdnJXF4lGTQb2xrhGMa+a8LL0FvKTIpLu+rg2PRMdlamcUdKTErtxz1ogwBJAOq\nnCH0ID0zpYAiMKWUuH9CLvr3wW+rB2cq1x1xG2hS9Y+Nu+r9AEBL8cFZyl31fqRhFJkUn80uFgPY\nkGRCAaXZGspAkwaazNNR8fP7xmrPDUPSq9zRCntwcKaKE2IyArO4w3BqGtLCVVVIb7a4wyVm+vI+\nutaPPqYyjshVa+VEKMojbRLdjUP3j6AIjCKwky7OJr25b8mWhj99XnHSkaQ4KT1aIA0dOnT9+vXf\nf//9O++8s3fv3lmzZqH9JEkuWbJk8+bNS5cu/d///peTk9PxeXo+EU7Ij7mke/+H/o2xjKxXkUHC\nxBdFBYCRL+9q+94bhqQ/M6XgpB8RYHgDTRaZFAGGN6tk8b0q2v7kRONhv5crAOCDnda/rqhse84J\nr+1tr/DrWSVeBgRZHgA2HvUMzlJma0+7Vpt4h0VJsHRv85AXdrSVAUUmRdJVcMKcWGiQi7VnJr25\n75daXwfiJFsrs7jD4wvS/vVT7fMb624rzfzygCMh5yzj8S2n1TFEfPuaCteV/XRtDxieo0YLnaTf\nXcuT49Dqpzid/mCntdhMm9XSmz8tX37AjvabVTIUro3YPG8oUsLGF6Q5Fo2dVmJYuKpq/tgcAKh2\nhQGAIrEiE43UGvSWG4aki2+nCOzIgyOHZas+3m2jSCxbI6tyhgZnqfY3HS8a4glzNw1N328L2/zR\nbK2ME2LNgdaNkxqrAWDJlgYkvSzuyCvT+w7PUQHAznsujjfBxf8cRLbNHz5zkElciERYob1AcFeI\nTRn0zgg9WiAhjEZj7969MSxxqGq1+jcgikSuY7YZli4EAAKTcB4H1e9isulQbUsE/VTQXLC91rf6\noBMlgiAj22mtnbO1skP3jwAAg5IEAOSeVcrwBg+T8IOscoYITLLg6yPvtfwHAH480jIiV932hBuq\nW86NpeKgLSjO8vsaA6p/bETZVABAkzgAWNyRPJ1cKcVP1wcjTjeiDvqzxTsiV7NwVVWCzuQMsqJh\nE5WvFffHH5atoaqdYQCocobXVbo9YU5LEe4wn3TCoghseI6awCXWx8ZY3BGlDL93fM6SLQ0LV1WJ\nfqCEhr+rDzo7/tI5IYZcIIcdIVEbSPhQAJg50HRpgbbtq0g/aHlyXFG64utyR6FB/tns4huGpMeX\nLWhvAAaaHJOvXTFnwLwx2f+d1R9pimaVNP4ZbkuhQT5vTPaHO20GmtTTJEViJWY6XlOMcMLgLNV+\nW9jmi065SN/gYSKsUGJWNngYjo8RmKRjJQaZoD/ebfvP5vpCgwLtRGIp/qrjk/YQ2RpZno4Sv2ib\nP9q2YAoiwPBJH7xUe5fT5TwQSBcCDR5GkCoAoMIeyk2jAIDKL8Gaq5wBVkZgAECRGJr6f6nzPfht\ndYBpneBOPUT4yn66KRfpAWDmQFN8fpKBJhuPBTWIVDnD15QYK+yh0b6dnBCjCAwFULXF5jsX4Q93\nfXn4xY31aHtDdcsfLs5Yurc547EtWjnhDnOcEFNKcYrADLS0094vUbUKMPydI7JWljn++lVl0gMA\n4K9fVd7433I0Lycs0gNRHpUc/c/m+leu7YvybNxhXksliQBs8DIvTuvz4rQ+ZpWUE2JaOTG+IG13\ng98T5rK1FCfEVP/YCCeu33//7oH27FQXv7QTAMRvU3xI2rLt7uGvz+z3wMTc9u6GVk4Umeh9jQHk\n6n9icu/3b7gIxSMQmKRAnySoVeSaEqNWTmRrZTbf8XHeNSqrg7cQmITAJQGGv2tk1qrbBgFAkUnh\nDLILvj7y2d5mvYLM1sh8jPD9YTfqOQkAuWkUCjMpMik6Tq3VygmbP/rtIVeVM5xUEwIAHJPIkmk/\nuERy0b+3r6t0i6cSBY/k3p/aW409udaCvqP42kgfpBp/nAIpgdT9fLDTygkxHQSitL7BE0EGEEKf\nQUkEcXpNV0pXljkMNGlxR4bnqPY1tSYCn7qGdNeoLOQb+OLWkoSXkMiJ3/PZzcW3XZKBTOrop4Uk\n32Pf18T/rrI1sralkQMML8ZlxXPzpwfbG9u+xkB7P1dUBLbQIDcdW5x6wtylBdqn1llG5KoPO0Iy\nQrKu0o1uGkVizGmaENHVZWtkYupxgOEHZylrHho1OEuFNKFd9f4qZxh5FNB6mRNiDd5I0rg4ApM8\nekX+v3+q3dcYGJylrHKGitIVe5rCSUPSlVKcwCTizUfHEJiEE2J5aZTNHw0wPIFJbP5ohBNQQ3oA\naBu4gcaAfDaBaKuzsANG5KpPupRBc7donUtQDpDnvwMoAkciHF3U6zP6dXx8kUnhDEaVMhx97qBM\n5b5G/wc7rZ/uaR5fqAWAf4wzrT7oLDQo0Fecp6OqnKEAw2drqaThBmKsSqFBUdsSibCCY9HY9q76\nqCtc0ZwkPhMNvsIeyln089dlTnHFgwzgKFgRACKcEK9g/XPN0TLrcZMjesbmLD20cFXVAWuqQWJH\npARS9zNn6SFXiM1mbDbTwAp7qMhEC0GvhGxdCU79YhYAaOUEKkCHwurQBESRWFJX+WlBEViVM5ww\n3VxTYpxcpEdBR6hqA/rEny3eX+p8Q17YAQDba31aOVHeJsz6nV+abvy4vO3APt7dmi/Zti7frgbf\nP787mnR4xkc2L93bHGEFz7GuGY1eZkSupsHLXN5XZ/NFKQJbuKrqL6OzAcAcV6jtFEH6TZ5ObvNF\nP9hptfmj4gdp5USVM7y91nvxSztRwcACvVysK2NxRz7ebSvJoMVFw/ZaH7pLw3NUG6pbhueosjVU\ng5fRUqQ7zKP4gjJbcNp7rf0+ULxD/GDQdMkJsQgn5KZRG6pa0L8MJyxcVSVK9IReJAGGR4oUAn1f\nbW9yJ6h5aJS4PbW/Af07f1z25CL9SVO+RF3kFJPDLuuTNr4gTfx3eI5641HP8Bz16oNOJF9NNGF9\nbEy2Roa+4hKzssoZrnaFB2cqk37pK8scAOCpOWxWt1YQbs/gBihRcfEAACAASURBVAA3D8+YPy6J\n/R+95etyZ4OXqbAHCw1y9HWj8Ffxc22+aEJxE3GlGGD4jMe2oJ/DmgpXpvo0cngvQFICqZtBP5UA\nw6sI8ID8oNU3OEspBH0AADgBAGpPLQAUmRTrjrhH52ksLWFkggAAs0p60jSXk2JWSxu8kbYGdJG6\nxialDBd/1c4Au68xsKbCNfLlXWZ1a+UhVLnZGWTLbMGN1Z7h2eqEKOd4+RRfmhNBYBJRDCTFEWRR\n40FUsjpPRxWZFHoFWeUKobke5dmcVBqhrgdt9+fpKE6ILdvX/KfPK8RF9KBMpc3HiApQIMqZ1VLk\nHkf+7Qe/rTbQUvGEI1/etXB1FZqIq5zhfkYFmosLDfJ6XzTA8A1eZs7SgywfE1fZCcNQSgkAMKul\nZdZASQa9u8E/e5gZAMpsQZsvOnuYmRNiw3NUjT4GABZ8fQRZhOINRygwOsDwAxbv6HpKU0LIOPr3\nmhJjUodiAh08UUm5psQYH5uDDHHItiz6e0Qhxwkxg5J8/IeaxRvq+pkUHUSy2BdOuLS3lsAkCUbp\nBEbmqm+MC7UQMdAkRWDrKt0vTuvjCXP9TIoGbwQNAFUKb89LZHFH0JqgzBYco49ufe8lAGjwMh0I\nxRSQEkjdjtielVarnRJl75ofKQIDHAcACYZjMR4AOI8daUUUiTV4mEEZyuORP10OcstLk1vcEbOq\n3eoAjc0tyIiv+sfGNMchafMRAHh+Y/3MgSaURAIAu+p9P9d4jY9sHvDcL1f20626beDtl2Q2eBk0\nWV/19v7ttV70U0yYO2z+KGrClNTFAgAo7wQAUPscFOxHEdih+0do5YQzwLpCHJqnZASWNDLb4o6I\nPXu21/oShJa44PWEOQBJhBNEgVRokDd4WwMdlTJ8X2NgeLZ6X1NrborNH0WJO6KnZEy+9o2tjWji\ne31Gv8v76pBA6mdSLJpo1soJizs8uUjfz6QQ1Zd4l8aRB0cWpSsAIF0pDUR5s0q2rtI95SL9truH\nV9iDVxbpCExS5Qwj186Cr4+8tKneG+YAYHutF6m56H5GOOHKIt1tpRknDWQ/qxwXHp2ti4ie7f/O\n6p/Uzpatkf19fC8AGJOvdZ3oOETfjniGqeZIJByO1JQBAO93t672Tg2KxCKcUPPQqOE5KuSv2t3g\nX33QafMzJWa6OdDaQcPmZ8TMqgYvMyJXbfNHPWEuT0d9uMs632wt3v1uoUF+RtTW3zYpgdTNVNiD\n6PemkOJf95nTx7IeACQkBQB4mon32AHA9vJf5duWAoCBJjkhRpFYeXPQQJMEJnEGuprBmqejCg3y\nDoJWLc5gtlaGBvn7yveLLT8QmKTMGkA9aikS44SYM8jeOz5n7Z2DY89PvGtUllKGX5KrLrMG0h7e\n9Nj3NWsqXL/U+ZB7HJm8Agw/6c19APDO9qY5yw5COw0vnEEWObeRr0VDEWVxJvjWGhME1s+kEHe2\n/c1X2INLtjSIcijhAKRGRFhhWonBQJOFBvm+xlb/nFkls/mjh+2hR6/Iv/2STAAwq6XN/igcyw2a\n2t+QraFQB94tNR6lDK9/ZPSjV+QDwF2jskTvy9/H95pcqFLK8Ap7KF0p1VAEWmU3eCPxjvRCg5w6\nFsDS4GFQpNz4wrQRueoqZzhbI8vSyBo8kWyNDAVGfvenQZ4IZ/NHn1pnmTcmu8IeNKukb25rvLS3\n9vZLMh+4LHfb3cPb+07PAeiB+XXhJWN6J4nlOxWUUpwTYkhHTMpzvy90LBqbrZWhVR36Zhu8DLlw\nPVqaoLWOxHZ0TkbLv/cvcHz0hG3JAs8Pp9E+DaWc5+kolEU7viBt8fq63797wBlk9TSJHhXk2RUd\ngU+ts9w01OwKsQCQlyZf+atjgE4SxqgiE52QGpiiLSmB1M2g1IomTwjHcWcwSirVnMsara8AAAmG\nR5goAITLt8l81i9uLUErbpSsR0vxLI3sjKQBHXlwZHay+mloLWltaBy6+r5AlCcwCYfJ2FBg3pjs\nF6f1sfmjZpW0yKTQPLTx5xqvWSVDaZWIErPS4o6ML0hD8/Xqg04UH2Vxh5UyfM1hF4pcMqulSMNI\nuBBPmFtZ5qiwB8fka6tdYeRWOewI3TkyUwx5QmtSe5DLS6MAgMAkEY430GTbU2nlRMZjW5CmJUYE\nPLnWgo5Etdr+cHHGf2f1v36w6bZLMtEBRSbF7nq/zR997Mr8hy7Pe3hSnmgVJHBJzUOjzCqpWNVi\n7JI9WjmRrZG1F8elV5C1LZFCg9yskqLpkhNiSdf+HB/jhJhShv+68BLxbNlaatyPD5fZgho58dns\n4i9uLRlfmIb6yN0/MXdQphJFjS/Z0oBmcIrA4rOFuosSM93pJg65adRJXaTIpKaU4b9/94D5oR+d\nQXbhqqo/aGtDGz5TyvD/fLMzps/iHPVjcuQA0PLN66ytBvjTUFNECxtasSlleIQTRuSqUQlzpJUm\nZHQFGH7emGy0ZDHQpM0f1TiPNJDmYdmq+OIpKZKSEkjdzO4Gf4lZmYcH8DRTgOFNWVnNbz2gv+E+\nAMAUajXvh2P9+kavfdj0nxlpgj+TCKJJvNHLnNV0PD7oBQB/OKI89NOzE00r5gxwxShdzD+txHDD\nkHStnPBEOCMtDUWFCnsoYd4pMil+tnjRDxIZlNABNn90cKbql1ofRWA2f1TsQIMydsW3b6/1/t+H\nZTZ/dFCmcle9r8RMa+XE9lrvNSVGcxu3sIGWAkC2VmbzR3PTqLITA5nE9JEqZ1h0SgPAP9ccXVPh\nsvmjBC4Rb+P4grTHrsyPfzsSHgaaRO0VUFhdhBVagyFxCSfE0LyZ1GAoqikEJimzBgsNCq2c2F7r\nQ+Hgba8FnbPt11pkUmQfXd/sj4pLB4rADDT5c433rlFZeTrqlzrfmHztf2f17yEZmtbn73DclcQr\nc+oMz1HF17wQaVtFd02Fa/VB58aGu99a9v1lfdL+Uvkiu+u7EjO9o8atHnQpU3+Y97TW4Y42VsWE\n03CtaeXEc78vhDjJdOTBkRSBI2GDnqWEJ1+MTLH5mUsLtGvvHCy4rYEY0UO+lx5OjxZIK1asWH4i\nLMsCwK5du+J31tZ2QyPkMwXqyGKK2iUY/uvCSwqK+zOWMvW4GQCA02q5EGFpAwCEyrf5t62GhkOv\n2l80LbsPLfZP12/cCViVscnpBwDMaysxKzkJbuA8yOGUl0ZZ3JG/XZqzBV5tqjzILRgcKj8eyKCV\nExuqWnLTqAgroGkX/YBdIfbWi82LN9TNHGTKeGzLvsaAgZYyvICCpgCgwcusq3Qj7aHBwwzOVFnc\nkdw0anSeBikBO++5GH0EMqcUm2RinzdUe6bCHjQ+snl7rS/CCdtrfeW2YEmGEgC213pH5GpEl8/k\nIv2rPzc2+6NmlVQ00yVQZgskyIxBmcrttV5xckE60/Zab7ZGFmjTswoARP+/WS3d1+Q30GS2VvbU\nOsvYJbt/PNKSNALt7+N7WR8dE7/ngYm5aJrbYWkRE3EAAJXWJTBJtoayuCOX9FJ3YOA6x/i3rVZE\nvV05Ayqa13b/yjJHQgWK+yfmzhuTfUjaq/+Wl0spT3PeWL8/VGhQ4GxIasjgfW4h6AUAWV4xALCO\n0yiCZaBJ5KkSKTTISzLoamdYfAbaC6lAau7lfXWcx+GTKLoeY3Ih0KMF0t69e3ceY/ny5U8//TSq\n17By5cq33npLfEns9nHesbspPChTqZUTfMBDaI0EJpFl5HOu4xk5AYbnKCUARCp3k6YcALgoWkeq\n9SjxIl0p7UTptlOHc1t5pX6w/1eqYBBTvd+slrY6OSQCAASiPLKWGGu39Yk2CEFfgrsY9zabqFgg\nyo/J1+79WyktxQMMX+UMTy7SZ2tkz/2+8OFJeWsqXEUmhc0XLTTI0UUt/vfLkqevRsWYy21BlCo/\nIlcTPxEjkDlr3a0F8WtPg5KscobHF6S9+0vTlqOekS/v2lDdQhEYgUl+qfMV6OWHHaEIJyC/1EOX\n5760qd5AS9uzfA7OUqFsYpGp/Q3v7jjesghtvPpz44hcTceZPUgF1MqJbA3FCbEnruptoMlrSoxt\njySwRA1JDD+rt1jy0o4b4rbXeu8cmQkASH3sOJDs3BDcvda59NnWf5J1KTt1xhemJXWDEZgEZciJ\nPDAx94nJvUcNLHxO/nvqicuDucM8PHZJL/V1faSE1ijBiaitNv+1X4y3nJmOaOlKaYOXQSGRFIHF\nx/5Z3BGkS6H6EWgbI2USnLjk1w/OyKf/tulx/WPiWbRokbh95513Tp8+Hcdbf6ilpaVPPvlkN43r\njGHxRAdnGwMMzwZaJFQBAOC0RtarCL0qoWgF18DSBjXOs/Z6aVYha69nJKSBizQEGANNVrvCSVfl\nZ4oYzxGUYkDLUXrY76LNtXJn3ayR+Z9sjBglAQDl9DSnPVALMIDQZwyKVgOAEAmivxhFA8D/mP9I\na6e+7huXl0YNzlKivBCbL5qtkdU/MhoAbhpqfnKt5U8fjrv3qjX9TIofj7QAwBDCmRWqXWoPmdXS\nCCegNXKejlLK6ITpKUFB1MoJT5id3E+/cFXVQ5fnbaz2LNtnr39kNIFJ/vR5RZFJsbrc+f4NF315\nwL7lqOepdbVjemtQ4ksH4U+fzS5O2FNokBca5Jq4mMD/zuq/8lfHNQOMHReJGJOvdSwaC8e8Ebcf\n81SdFtEoGy+YrY+NQUsEVJz0DHb26zThI3sjlbsBQIITnMfelVMRmCRpJ1n2uQnx/zqXPivvM0Q7\nbFKEprZSxWlT/yQUjqrZ9v0VOxZnjZmMdCPe7yZNOUSaKXfx2pZv3+nceEQPUKFB/u6OJmTCRX5T\nFFWx5BfXL1YbKsjECTGUPIve8rssgd/+tveHAs0Vt3Tu0y8Qun9JdSo4HI7Nmzdfe+214h6GYTZv\n3lxeXt6No+o69V7WrJYBgJL1EVoTAMjyinNf+Am9iqt1vUK1rsxB+a/9or1qDkqVTRP8uFyBXKYa\nijjbLelIU6/SyCHV6GlsY5V/22rV6GlTxg8nmUDV7D4579x6actWIRJUFI8y8h4A4Oz1AFA1u49l\n/rhQ+ValWq30N3FCLKmnBAAKDXLUm85ic43J136w0zrpzX20DBMw6ZYaj9if5pVr+2rlBIFJEtJf\nDNETNONAlM/TyZUyvMSsHJ6tRkHSKMqAE2JmtazBy4zI1bwyve+uBv+G6hZRqGjaiThvjycm9443\n45hV0rtGZZlVUhQXd1IMNDk46ySVFNqC/IjpnDte6iR4L9qLp2Dt9fUPX3PSj/BvW31cueksrLUG\nPcmEPuO0wgc6B+exc/Z6zw8fs/Z6ANh293DjHx4fXpQ7MNYk2fq5EPTiWhPgBFNTBgASUoasdp1D\njJEbkauxuCMELrlrVNaq2wa+cm1ftN/H8GL3EAKTRFiBInDOZSX0GbTBrB43I1yxs0tXewFwfgik\n5cuXFxQUFBcff5jWrl37+uuvz5o164orruj5fXnb47CLQfX2ZUEHrk6sgynBCXmMEQADANNtT4ma\nB67W7f1b6fiCtBuGpD839Sx2JuQ9Dqk+HQCkWYVCJMgcPUD1GWo0pLG2GllesWrcjBjPsfYGQp8x\ne5hZXlTKh/wAoBo51fyXF92fv4DTaiHoFROtEJwQQyto9/KXWj56DBV7BX9Libk17z1dLSdUmgp7\nyHbMgT9vTHb8GWIsE2MZAKibOxzpGcG961tWvz1vdPYrwQ84l/UN+/NFwcM2fzReEA7OVK66baBS\nhiulBIrkRkIl9vxEPhZrr9VNFxGCvliySXnv30pP91S8xwFp5vtbPvNvW33CR0SCvL817LA9n6IQ\n8oUrdgCA94ePgrvXtvcRzNEDkUM7TndgCUikFLpkIRzkTyfjp3NwLqus90DDjfd51nwgIWVoyVJo\nkI99bY32qjnRpmoizWT6w+O9nll90lOdOkhvM6ukqB6SWOa43MGIWpFWTlS7wgaajPEcrjWhW4Ge\n2xQd0KNNdiJffvnlLbccV3Xnz5+P7HUsyy5YsGDevHmrVyd54CwWi9iyV6/XP/LImbEgn0F8wQgE\n3XwkQDJ+V5DBbLb4VwWeMAm+GKez2WwAEA2HYzgJAGGJ1IwHAAAE0KrBduK7ziCsozkYI1SzH7PZ\nbFHAIRJpdjg5hd67caWk95DY7+4Mv3FP43uPSi+7mW04GiMo9tBOZt3nLE551FlRXCoBHGKYWoZx\nXqfNplDEIuUWq5YU6v5xtfq5TeHDewSPnS3fAwAQdAdaHACglmGSkBcjyMN3F03+79EJOVKbzQbh\nAMiPqxTh9x/EsvqSgyYAwKJh4HA4mJ3r+LqDWOU+weeyrv8yUvYz329ElX3ALYNbb931FymMCnyY\njrPZbLEQ+2ujp0SnFe9bIBAIMuzZuI2+eUOVDy7Fsvq69m6CIScp/tYxQnMtLleWtFS5yncE84+b\nLqNr3uHqDirueAEAGL/XZksy5XH1NQBgs9nCB7YCy8izBrQ9xuFwqBmWj0Y7fR/YLcu5hkpgQhKF\nymazxSSYz97EoEd34zI8px/e+4Su5MwP70svu1mCn+oU5HA4Tvi47d8QF/+Orz4Uw+UMpQ/uWosP\nHB8/+Ciliax5J3rx1Zg/BHB8VRQRoKmyDFMbOneZiNU35TvtzfF7eqtiX+wL0lKMjwRsNhvORfY3\nR4SBCoenkeUE1laL5xQBE7E2Npz6JZ8RFi1aJHrZe/7a/TwQSDt27LBarVdffbW4x2hsdQWTJDl3\n7tzp06eHw2G5PDHrIi8vb9myZeduoKfJki0Nh9y82WwOH2SMUtycV4jRJ5ikBK2qH1sPaaPMZjMA\nNKUZOEksUrlbqVTqzecimMojIyX5F2VPnA4ADTwjyysxms1Rfmjt23/PfOBD2mxuGXqpLK9EMXCs\nvXIr5xICZZskfqd63Ay92dxs7hUu30oPm1RS9+ucL55Jn1ln0sdaYpKL9QIA+BaOo/oOi7XYAo9O\nBQCFwJjN5memMLOHmSUfrYReRVm5ma/NlA3OUqVTsSM3Ds17dSsmUyBbUAMbkgGHH9nO9ioy0JSE\n1uJSgsFxXCKY//mx7aU/y7L7KKJ+W5Dvk6k3m9MB4A9xt0trEPbbquaN05qP7dSowrk6ztzOLeVc\nVtfnz6fPXXzq98259FlpZoFq9DQfgJaUKMxm37v3GN7cTeg7nxcZch2V5Bf7m6qUSqUhbqh2PszT\nSrPZDHAw3Wgwm5WR6v2hvet1M+85/l67JgRg0qqcafpoY1V7V0rIyIhU2t6rSWHqKoSQT15UCgDN\nDkvMXiPL6Qc4oajZFTVmyQnMaDYDQNX/XtdecYth1GQA4P1uCUZ4fvjI980rmVfc2PTsLaKN+qSI\nYwtX7LCt+4Cs+5Uy5ajHTpeazc0XlcZCLfGDD/QZaF3NZvZNLCXszsilpRJZssuMNlZJs07J5DDl\nxHc/MDG4YGLuog3NTJjPMunMZpNWHfE3Mn1zM0MBSzSjV6DWQMjlICX1OEeas9s561nhtddeE7fF\nBXqP5Tww2a1YseLKK6/UapPne0ejUQAgiPNAsibws8X7+fV5AMDxMT3jSpBGAIBRtJrzO6Otdpj0\nuYsNN9wHAKeVSNEVOLcVyFarV8aC1/Uz5gMARqtjPKcYOBYA0q6eizYAQAj6Cj+swChaguEAQOX1\n5zx2WV7/f7o/dJhKkFnJ4o6osNbB8x47CoIAAAIEAHhgYm62RoZFQzE2AgCTi/RmldTz/Uf0kAnW\nZ//U/Prf0cESkhKC3tDBbcoRU1hXE3BR3ucWWAajaLT2xGg1U73/hSszURPuBCgC44RYQiJwB+EA\nnKvJ++OnaDu4e6393YdOet+YmvLg7nW+Hz9Vj5vBuZpiPCfRmgI71pz0jR0gBH1EmgkAkJe+Laih\nOACE9q5PcAVxHjtpyuE9DtZmIfSZSQ1H4Xfva8/CxnnsLavfbnzm1oT9VbP72N+63/nx0+hf1maJ\nRYJ4molzWa3P3yFEgnxcUEPsWMSd7eW/Oj552vnJ0wAQqSlj6io6Efvg//nrnMe/VI2dHtyxBkWf\nGuc8brjln/HHKEsnF7xf1va9hD6D97nb7o/xnGV+J7XYZ6YUaOWEdWF/QOVUXNZMurXIdywSxCgF\n62oCAMKcxwU8nfuIC4SeLpBCodA333wzc+bM+J1bt7bmu3g8niVLlgwcOJAkz7+ShRSBFepa+zeH\nYsnHb6DJwZmtlSVxlY405wEAigs/rZJcnYNzWTFtuvjpSGQSWpPxln8mmB0wWhPjOYxWRxur8DQT\nAJBZhULQR5pyerNNsosnozG7QmwB1Zp7z9rrkUCSULSBP/4rlVA0oTU1PDoTAFibJdpUrR5/HVNb\njtOa0IHNAIDTatZmIY05pDHbt+GL0Kvz0NyHPhcwXIiEwpW7rz78btIYLQTKpT1+pe138Yifpr0/\nfpZ0LgMAIehj6ioAgPPY0So7sPtHzRU3cx6H64sXyP6jwxU7YjyH/GedgLXVSDMLACBhAKy9gTDm\nAMAzUwrEmC5cdaI/kufkxaMiNWWxKCNNz+VcVs9378c7t4Sgj927rj0PB1O937X02eDutWhVwdrr\n0bcZ4znO3UwVDkKPokQq44NeCYYT+gxcpSNNOaJziyoYJG7HogzbWIV2co76tld0KvAeB6HPoIdM\nyH3hJxTsg1E0UqDjQT7XBCRSirXVJD3n6Q4jKQQmOXrnMKN1Pyrix/vcuNYUYxlCazRcd6+8cPBJ\nz3Ah09MF0ldffWUwGEaNGhW/c+HChQMGDLj44otHjRrFMMySJUu6a3hnhDwdZTQn/pYQVMhV0Pt4\nQFe8GKi6tSg+Y+mME+M5zmXFjElq8qddPbftTtEehWZDXKVTjZxKFQzq9e/v+hbkMpZylJlhhAA9\nbFL6Hf9CB1N9h0kAiFjr8pm118ciwRjPhcq3MpbymnmjOJeVHnZ59iPLTLc95V65BMUshcq3KkdM\nAYBYJMgf3cd5HHzQi8kUACDL6cd77IUfVnTsQI6PTuRjiZ2w48UG77GLyitG0RIpBXGBFSLBA5tq\n/zZRCPo4l5XQmaP1hxUDxhC6jNC+De7lL+G9LoqxTGjf+rp//L6DUXVAqHy7cuRU021PiV+6c+mz\nrVqjcELcBFN7kMw4odhETOCVF18Z2rdBQtGEKYepq7C/+xBjOR6hGty3nugzPNpYdYKUOqa/SkgK\nbTN1FULQ1/zqgpZVbwAAVXQx57ax9vqqW4uEoA8wQgj6CK0x/Y5/KUdO5VrssSjT/PrfLfPHCZEQ\n8Fxw73rOZQUc5zx21ehp+hvuY+or4XQkAe93+7et5jx2tDLrHLjWyCX7RP5YgHinz4xAaeNqsrU8\nI39MtU1FNJwKPV0gzZ49e+PGjQk7f/755z179rz11lv79+//+OOP09O7VKGk25na3zAgI3kcsAQn\n4qebeCcERqvRkvxswPvd/p+/RpP+qaC75i/GOY8DQIxl0PQt61WUce9bElJGFQwi9Bmso6Gw8n/7\nGv1pQkA14neaK27JvO+97MeXy4tKMYpWxBgAiPGc/e0HjH94nHNZ6WGTkFWH99gxilYMHItOy3ns\nuMbY69/fKQaOxdU6rsUuobXqsdPRVAgAMYFHEcAAYJk/LmmQGwDEZ/PgEglKchSJFxsxgcdIivPY\nGUu5LK8/2tn4zC22JffEvyV8cJvmilsi1fujjVWyXkU5T6/SXjUHV+uYugrVyKlYVt8YywiRxMZ6\npwjnskqzCnGVTnvVHHFRwrfYQ+VbcVrd1tQmPTZfo2hvvsUu61UUObInxkaogkHula8qSyf7NnzO\n2izosOC+DcTA8dHGIyjUM8ZzTc/+senZP7Z+useOtJCGR2d6vnsvxnNosSLvNzzvpQ1IsPF+N67W\nCZGghKIBAJPKWJslVL4Vk9M5T6403vJPzmNvWfmq46NFwPPRxirV6Gn0kAnh8q2EPoNzNcUPnqlL\nXEywNgv6Hq2L73B+8rQQ9GGKk/e/aA9Sn4kuPFK5+4SVh98twYlOqGsJoJw2HRl7cVofAODcNlxr\nxFU6wnBOXUfnKT1dILUHSZJDhgw5Hy11CJTFHQt6OhYquNbI2k+odNLr6VVoQ5rVJ3xw21kanuOj\nJzxrPtBcPusUjxcNJhKcwOlEzw1pzOHs9bovHw5EeSnwaNZTlk5WFI8CAFyt6yOPOD56ou7+q3Qz\n5hP6DNZRrygeET60QzVyaqR6v3genNaED+0g0kxUwSAJTkgomnNbFQve1V41BwBwrQkA5MUjWxU4\nnos2Vnl/+K/49ua3HmhZ/TYAxJ6fGO80mj3M/MRVJ6gU8fAtdll+Me9zM3UV0qxCCYbHeE4I+oSQ\nD+JygaONVYrikaytJtpUTZpykEMLo2je79ZOuR3PH4hRNFN/GDk8EhAiwcqZmaJ4aEuM5zBKEf8v\nALCOemlWn7YHYwq1hJShOT1csaP+4Wtavn0HMDz3hZ+yH1lGaE2Ryt3pcxd7vnvf++Onjo+ecK9Y\nwtnr8dz+QtCHBE/LN29oJt0cizKNT91ke3UB77GTphw0coGLYnKatVmYugppei5pzmsdjKuJNGYD\nAHoMMIUaLSB0M+bjKp28qDT7kWXZjy9HNwQAkIpDGnPgRNVBCPpq/zaRqSlrWHQ9U1cROrA5tG99\nzbxRgR1r2N3fK0dMkWb1Ye31SW/jKUIYs4VIkLXXOz56ovmtB2IsIwR9lTMzAUBeVHqmrA69pCHU\ntZ332AmtKXfx2rSpfzojZ/5tc74KpPMdT5jTUAS7f33t3ya2t4oHgLwX1ydIBarvMLRBGrPjrS5n\nnF5PrxK71p46+a/90jZOSXQneMKc1NcsibPsa6+4Wfd/f/ujvon3u3v9+zsUr0XoM6VZhfmv/6Kd\ncnu8cUaW2z9yZI8053gzbNZeD1hr8Q6kOiiKRxlv+ScA8H43PWxS+OA236YvGUs5MgZGjuxpO+ZC\ngzx/6XzPd+8nvSLO61AMGBOtP8zZ66VZfXC1jrGUx3gOyMfbnAAAIABJREFUWSarb70oUr3f+cnT\n+uvupfoMjdpqOXs9YTxhLYxuCK41MjXlhC5JoB3vc8t6FblXLEHTYpIxuK2icqwe/3/+TV8CAEbR\npCkb+dVE0LNEmvOi1ppWl4/NwvvdyGoEABitLvywAlfper+zL9pYFa2vCOz8XpZfLDFkwzHrGWMp\nVwwcm7Hg9Yx7Xqd6D/Ss+SDGc4QuQ5pVGK2rAIyIRZlofYUsvwQAOJcVV+mEoA8JJIlUBgD66+7N\ne2F9n89qErxZ9LDL0QoMrVoIfQZpzIk3oAUPbKKHTGAdDaEDm3m/u+nZP9rff1R//d9Zm4U7tI0e\ndrkExxlL+SnGwiVFghMxlnF98YJ53kvK0slciz14YBO6EDKrsIvVJWLPTxyeo8Io+qya03/DpARS\n96CVEzMHmfi6Q4ab/uH85Jn2DpOQsvakghDyxaI9zipN6DOSDphrsQOAJ8zJCYhXoUhznmrk1NCB\nzeqx00VjVK+nV9HDJqGVdf6S4wVbqYtK/T9/fXxuRdYhjQEA8pdslRePjP/EWJSRZhXGeM728l9r\n/z4psH01RqsTjGbHk0wFLnJkDzLgIBe9uEoQgj6q7zDO1RRtqib0GYATdfdfFWMZCUVXzsxUjpji\n2/A573PLi0pJUw7vscd4LiHiA03KGK3hHPWkKaetL4H3uxWDJ/g2fRm/U3ThoMFIjsld1bgZoV+3\nMHUVVJ+hptueynr4kxPus8uKq3WE1shU7T96+2AAQDNs/JciBqdEKvcoBoyJVO5WjpiC8nIkUhk6\ngwQnCH0GRqtVY6ax9npcrZdfVJr3n02BHWs0l91I6DM8P/xXXCvILyplLOW41qS5bJYocTFa3fZJ\noIdMSJ+7WHPFLbjWCADpf3kx68GPXJ8/7/r8eaSpROsPq8dfF6k+gKt0vMchv6gU2feiTdWxgIc0\n5Uh7FbE2S1dMdgBA6DKY6v2kOQ9TqDm31bfhC3rIhFgkSGiNZ8TTQ/Udes5CYX9jpARS92CgySKT\nIuaxp119V7h8a2JY1CmAq3RoNXpeoL1qTkyuAgDO40g6m5yKm1pRPAqt7tG/rRuEFL09QQxEG6uk\nWQUxlqH6DkPqBWuzYFJZjOeO3jlMiARZm8X6/B2AIimiTPpfXnR99TLvdyPn9vEVLk5IswqZ+krW\nXi8hZfI+QxTFo6KNVZyjPu3queZ5LwmR0PFZDCcSFu/5r/2CNmJRhi6dTJhykGyOjwLnfW5pVgFV\nMEiWVxzjOfeKJdVzSqpm9zl+2rgqpegy/Zu/UpZOhmMVrEXpxXvsElKGa03R5poYz8nyijt4tDiP\nXTF4Qq+nV1F9hoqDDFfskGYevwRcpaOHTWJqygAnAKDw4yPK0snaKbezNgtaEOQv2SovujjaWIWr\ndelzF3dsTJOQMs1ls9Lv+Be6CglOYLQ666FPoo1VgR1rqm4tcq9YohwxxfPt262CUGvCaLU0syDa\nWCWRyQGA0BjjFyWdQzdjfuZ97wGANCPP8dETqhG/i/Ec53FQBQP5li5pSMcuk0LPD2MpR7GRKU6R\nlEDqVpiQBCdIc16CX/eUwAnAjk/BHXggAjvWdDra+EyhuWwWPuTKez3LvD98hMmTBOOeYtJofLZW\nxxnvfNArIWVMTbksp1/+kq1RW20sysj7jwzuXse5rJHq/c7P/k2acjiXtebPlwCOS3BCmlmIAiIk\nOAFxK9zWuEG1DgDoYZPS//IitJqq0iSkLG3K7aqx09GR5r+8qL/u3vhhiBO08ZZ/Gm64D1em+bes\nECLBpmf/KEoRzlFPGnNynlypLJ0crT/MHD2Q9/Km9Dv+Fdi1FgC8P34a3LOO0J9gzYtU7hElnxD0\nVs3uU/u3iazNIrAMCrmO1lcCgPyi0g7CxjIWvC7NKqT6DkN3EimjvM+dUMUq68EPRaUWCSGqYJCo\nuZLmPFxrYizlUnO7friOoYdMkEgp1lqTu3it+e5XJDiBq3Rpv78LeekKP6wAAHnfobKpfwYAzeWz\n1BOu64QxOR7SlIMWQBitYWrKZPklhD6Tc9sIY84Z0WzwY0+p98dPVeNmdP2EFw4pgdRtcC6rRK0H\nAHrY5bI4v8hpIVqWauaNas8X5fn2neC+Dad1TtFAdCYhZc14a0R4wiuqkVM7UU+lbfW/eGT5JYTW\nJESCGK1BTn6MVqsnXOf6/HkAaFn5Kuto0P7udt/6ZXBsniWN2f6fv7G+9GdpViErLhF4DgDCh34R\nk1pIU475Ly9GG6tQXJ8sr1g1cuopjllZOpmxlLtXvirrVSSGO3Oe1kqGmELt+vx5zaSbcZVONfqa\n0K9bqm4tan797+FDOwA//o1ISFn8v8gHg4K5fRu+wCgFRqtZly138VrlxZMBoO/y5Msd1ehp8bed\nNOfhWiPntkrbPI18m2zceI0Wp9XRxqq2md2njiynr+vL/yD7LQD0fmcfacqJjx40/uFxlIEgIWWm\n257q9AclQGhNMZaR5vTDKAWSxF032fF+N4iRkB5HV+IvLkBSAqnbiPEckDIAUI+bEV/o5VThOVyt\nQ5MaWtdz7XQew2g1WmyK+Let9v/8dbsn9jjwrplEkiJRG4qitdmPL2/7Usa9b3XmhKSsA0Nfr6dX\nKQaOzbj3Lc1lNwIA52pC1WnV469TjZ4WKtuaftdz8r5DnUufpQoGIQMLrtaFDmyKVO6W5vRDN1aI\nBNHkkvefTea7XxFPrp5wPa7SwekLUdKUo750pnv5S6qx00X/OetoQBeC0+rAjjXIGYbRaiHoRQ6t\nhARPIeSLF+qcq0mCE7JeRRJS5lu/jNBnElqTEGiR5RWTphx6yAnNGjpGghOh8m1JQgY61BvoYZP6\nfJYk1fTUUY6YGmOZhMv0rV8mL7q4K6c9KRJKAQASnCB0GSDwhNaUNEXptOB9bkKfETuW9H0GRnkh\nkRJI3Qbntkra5JafOnzQh6t0MZ4LV+xo+tet8qLS0IFNCWFa1ufv8G9b3TZvw7fhi/aCygCA89gJ\nTZLGcV0HB4FMlmnbaeJDHpJCD5mApldF/5FpU24HgLSpf9JdOy/GMshalfXgh8oRU1DIOK41IsmE\n0RohEjx6++BI5R7s2JyVcGbOY29bGuBUkBePQnZaVAQoxnNC0IvmYll+iem2p8TPYh0NKDKeddTH\nR4JgKh1VMPD4SFxWFJ2I/CJowGxzLQCQ5rysh06IeugY9WU3Rip3t73YzPve1Yy/roM3dt2GhgYf\nT++3dmsuO9XEg85BaE3mv7wIAITWKEQjnThD2xRpy/xxGCGVkDLOY8e7oDVemJx/JeB+M8R4DlPp\nT35cO+C0mtCZhZCPtdYwdRWm255i6g+jl4RIMHRgs7J0cqhsKwpnSkCCd2SREyLB+KyXM4VShosV\nGc498TooUi/QtEsPm6QYPAFlMhFaE/K4UHn9+RY7H/Q6Plqkbn8i7thm2B4YRfdZVhcq38pU76f6\nDotU7qYHj0cvyfKK4xv2ROsqjHMe1994X/3D18QvKcQ6FyKGmx7EaA0AGG/5J/I2IdfL6aIoHoXq\nJSZAD5vUibOdFihGI55ORPp0AvWE6wEgarPwqMrcafZwsr38V1xrjLciSkgZnmYiBZ6p3t/FaMAL\nkB4tkFasWMGf2AV52rRpKBn2yJEjn3zySTgcnjRp0uWXX95NA+wSsUgQBQ51EpzAaTUf9HIua/rc\nxaoRU+sfnQEALavf5pwNnu/eT7/rudZIARxPcNVitKYDW7kQ9GFtklu7jlRB9+LOQAhT1yH0GWga\nQkhwAgkn0dyPqXShX7eox83w/vhp0hCM1sO6MN1gFO346InAju/JjHzjiVVBRaRZhdKswqSpS/H0\nenqVrGAQugSxqlOnPTqdsR6f/9CDJxCGTAA4dTOsc+mzhMbIB71icQd2+zd1O1alTf2T5rJZLavf\nDv26pa03LkXH9GiBtHfvXoZpnTdra2srKytR09jDhw9fd911d911l06ne/zxx5uamuK7JZ0v8D63\npCtNWZAPyedmHQ1p0+ZKSBnrqMdVOscHjwIAVTDI9uoCaVahEPRhFB2LS2oBgPiYhapbixJW00LQ\nS5wFTyyu0hl5T9s6Dt0CMtQkINqdSFNOpHq/dvIfdNfO68BN1ZXgY2TuQymr7akCvf79HRwLQO9A\nGxNzpVN0GvlFpfKLTq9rIlNTHg565SWjWGsNSj6LBT2Ryt2qEb8DAFytC2z/lh56Xq6Vu5EeLZAW\nLVokbt95553Tp0/HcRwAXnjhhVmzZs2dOxcAzGbz/Pnzb7rpJrxDM1QPhA/6QNP5Bjmcx45rTWzl\nnpjAo5lUCPrUE673rV/W57Ma64tzMVtrnnzS2l+tL0WCbauGcy6r/KJLOj2wDuiVJutKLNY5QFk6\nmeo9EFfpOJcV15qSlpFFFH5Y0RXHCTKlRhurdDPmd3wkUnOTFq5OceY5ZZMdrtYFd6/VXHajBMOD\nu9c5PnhUUjwWjhXmUBSPsr3817Nh+v5tc34ENTgcjs2bNyP1CAC2bNkyYsQItD127NhoNCo2pDiP\nEEI+sbnDaSHNLHAufRZ4ntCaOO/xoCBZXrEst7+ydLKElGXe956y9CpMTieNBY8JPOBEtLHKf2J1\nABStJ3BROBth3wAxf8vZOO0ZJPO+93Qz7yFNOYrBE6Qd5up2UbJKcCJ/ydbsR5apRk/rynlSnGFw\nAgBsL//VufTZo3cOE4I+7w8ftT1KCPqQ6JLllxD6jOC+DaQ5j930ORyLrCP0Gb2eXpW02GCKDjg/\nBNLy5csLCgqKi4sBIBwOcxyXl5eHXsIwTKFQ+P3+7hxfp+D9bpSHdLrorp3XWiFGn8E2VomrMFTA\nUYxWwigFpkwTQr726u171rxvf/dhtI36ztX8+RIh6ONb7GfFsIYTwomWw55M1oMfnm1TGGnOUwwc\ne44bWqc4FfzbVnP2es5lZeormt96IP6l2r9NREUl+KCP0JqQn8//80rdjPkxnuv19CqqYBA6kuo7\nrIfbA3og58eP4csvvxS9RLFYDOK6mAMAQRAJsQ8Ii8UituzV6/WPPPLI2R/paRBucQV8QYnN1pn3\nBvyAEzabLVi5R3rlbbZkJ2EkUj7gk2BS4GPg88QfEw6HASDmao5JMACw2Wy+797nJ8/F1IaG1e/z\nbrvdHwJ/CAAcjjPTtQwAOIkMfdaZOiHiDI7w7NH1QZ7x+5ZAz7+N52aE4XDYZrPFCDIcDEhwwlm2\nA88srPvqdemoawGAO7Ah6rI5d66Tz34s+PFj6iV7ml0tAiMIQZ9Pkw0AHnUWePwAPWh9vGjRIpfL\nhbYtFku3juXknAcCaceOHVar9eqrr0b/oii7gwcPDh8+HO2JRCJyeZJwtby8vGXLlp2zcZ4uNrlc\nbjSazeZOvLfO3SjtVWQ2mytdTYbCEkWyk7jVmohbJpFIJJQcAOI/yCaXC0GvhFb6uag0qzDdaPAB\nGClcMvhSibuejYbiD+7cCNsSculCZ+5s8ZyNc55xujJI9SPLkn7FZ5aefxvPwQhtcrnZbA5rDJij\nljBmE/XlGYuWN7++UD9mas2fL1GWTtb//o7Anh+z73iKG3EFaTYDgKBSVAGYs3vBkj098B6+9tpr\n4ra4QO+xnAcmuxUrVlx55ZVarRb9S5JkZmam1dpa+9LhcITD4cLCzpejP99prxQ/nmaKRYISio5F\nI9HGqqrZJ5izWZsFectJU060sQoAUAFpIeQ7jwxrFwiKgWO7ewgXEJzLSmhNXIud1Gf6f/6a0JrS\nptzu/ORpQmviXFZZwaBI5e74KiEYrT5pgnaKU6SnC6RQKPTNN9/MnDkzfue11177zjvvoIjwN998\nc8iQIaJL6QJBjO/KX7K1vbKkEgyPSSQAwDoaoo1HhEgwvkdLtLGK6nex+e5XZAWDwuXbMFodObKH\nNOdxLfazFNCFdS2ZP0WKc0PowCbFwLG8351533u939kHAIqBYwPbv9XfeF+vf38nzUhSQ7YrLdVT\nxNPTTXZfffWVwWAYNWpU/M65c+dWVlaWlpYqlUqNRvPmm2921/C6C97vRmkTJ/0lEPqMaF2FEPRp\nr5rDWMoIfQaKu4vxHJVfQprzXJ8/z/vd8qJLwuXblKWTYwLfle5nHYB3oU5SihTnBkJrDFfsVI2b\nDgAYrcagNSqh4MNDaBVImvMKPz7SnUP8TdPTNaTZs2dv3LgxYSdJkkuWLNm8efPSpUv/97//5eRc\ncPV0cZXupEkwqBwDrlAhxUgxYCxTdxgA6hZeEYtGchevba3Ar1BH6w/jtDpUvlWaVci5muLrpKVI\ncUGhGDze++Onsl5FCftRT3px+5yP60Khp2tIHaBWq9XqCzSqkvPYEwp4twWj1cBzuErHeeyaK26h\nCgaFK3aioqIZC14XD8NpdfjQjqyHP9FOuV1CyniP42zUDYJjza1TpOjJoDK1uEqnu3Zed4/lQuQ8\nFkjnPadZxjHx3b52G6+1IpEI4SAqOYPKcTLV+4/cmJ/QTkYipTiPXazpab7nNfnZyb/pXG3sFCnO\nJShhGQAMN/2ju8dyIZISSOclhNYkdtNpD85pZSzl8V1lQ+VbDTf9Q3P5CSX9CX1GfHHPU+811wl6\nPb3q7J08RYozQipCoRtJCaTuo2sp+ictzk8PHGv60zOkKSe+o4Fq9LQE55O8qBSZKc4BqTKgKVKk\n6ICUQOoeOI8dV+k63R1IiAQ7buIJALjWqL3yVgDIXbwW7en9zr6U3SxFihQ9lp4eZfdbJRZlulIJ\nmDTlCNF2Gxq1R0oapUiRoieT0pC6CYGXdKGitvnuVzrosJciRYoU5yMpgdQ9cB473oX2bhhFQyoZ\nIkWKFL8tUgKpe6AKBkmzCsPBaHcPJEWKFCl6CikfUvcgIWUnDZNLkSJFiguKni6QeJ7/7LPP7r//\n/ocffvinn35CO3ft2rU8jtra2qTv7fnNP+J7tPdMUiM8I/T8QaZG2HV6/gh7/pTYo012LMvefPPN\nPM9PmzYtHA5//fXXEydOBICVK1fu2LFjyJAh6LDevXvn5ua2fTvHdakUwjlAbJzVY0mN8IzQ8weZ\nGmHX6fkj7PlTYo8WSG+//XY0Gl2+fDmGJWpypaWlTz75ZLeMKkWKFClSnA16tMnuq6++uvnmmx0O\nx+bNmz0eT/xLDMNs3ry5vLy8u8aWIkWKFCnOLD1XIPE8X19f/8MPP1x33XXvvffe6NGj3333XfHV\ntWvXvv7667Nmzbriiit6vmE0RYoUKVKcFEksFuvuMSSHZdmSkpL+/ft//vnnJEnu2rXrpptu+u67\n73r37u1wOIxGIzpmwYIFFotl9erVbc/Qv39/uVyOtkmSTOpn6l4sFksP73WbGuEZoecPMjXCrtMz\nR1hbW8uyLNoOh8MHDx7s3vF0TM/1IeE4juP4jBkzSJIEgOHDh6vV6vLy8t69eyNpBAAkSc6dO3f6\n9OnhcFiUPSI9/NanSJEiRYp4eq7JDsOwgoICnj9eQjSpMheNRgGAIHquZE2RIkWKFKdCzxVIADB9\n+vQvvvgiFAoBwPr160Oh0ODBgwFg69at6ACPx7NkyZKBAwciLSpFihQpUpy/9GjFYs6cOZWVlSNH\njtRqtX6/f/HixTk5OQCwcOFCn89HUVQwGBw6dOiSJUu6e6QpUqRIkaKr9NygBhGWZS0WS0FBQXw2\nEsuyZWVlJSUlKd0oRYoUKX4bnAcCKUWKFClSXAj0aB9SihQpUqS4cEgJpBQpUqRI0SPo0UENp44g\nCHv27GlsbOQ4bsaMGfEv8Tz/+eef79u3jyTJiRMnovKsPWqE69ev/+GHHziOGzBgwPXXXy+Tybpl\nhEeOHFm7dm1NTQ1N01dfffXQoUPjX/rkk0/C4fCkSZMuv/zybhneSUfY3ks9gR5yA9ujh9+9ePbs\n2XP06NFLL71UTEbsOfSQqaYDeshU0wG/EQ3pkUceueuuuz799NPHHnssfj/LsjfddNNXX301YMCA\n3Nzcr7/+upsG2O4I33zzzYceeqi4uHjcuHFffvnl7bff3k0DhFmzZtXU1FxyySUkSd58880rVqxA\n+w8fPjxz5sz09PShQ4c+/vjjH330UU8bYccvdTs95wa2R0++e/E4HI777rvvoYceaq/jTDfSc6aa\n9ug5U01HxH4TRKPRWCy2YcOGkpKS+P2vvvrqtddey/N8N43rOO2NcMKECZ988gnarq6u7tu3bzAY\n7IbxxWJer1fcfuWVVyZNmoS277jjjn/9619oe8OGDYMG/T97Zx4fRZUt/lNbd/Xe6XSSygIEiMho\nRJBFUFTcZpRxfg6uPEZndJzRweU5uAxPx0FlHJfnc5knLijzcNxGZ/SJzw0VERUEIQgYiCEECFlI\nJel0ek3tVb8/bqeo9JaFQDpQ3z/6U13L7VO3q+6599xzzzlVluVhkC+zhNkPDTu5U4GZyOXaM3Lj\njTeuWrVqwoQJW7ZsGW5ZksmdpiYTudPUZOEYGSFlcv7OEi/8KJNJwpKSkng8jrY5jiNJcrjG0W63\nW98uKCjQ41+tX79+5syZaPuss84SRVFfmHyUySRh9kPDTu5UYCZyufZ03n//fQCYO3fucAuSntxp\najKRO01NFo6ROaS06PHCn3766XHjxm3evPmOO+644YYbhluuXjzwwAP33HPPvn37KIqqrq5+7LHH\nCIIYXpEkSXr11VfRRBfHcbIs6yEjcRy32+3RaHQ45estYf8PDQu5WYGZyLXa0wkGg0899dQ//vGP\n4RYkPWZTM1QcywpJVVUAYFl2zZo1erzwc889d9y4ccMt2iFaW1vD4TAAOBwOjuNaWlqGWyK48847\n8/PzFy5cCD3xA40TyCRJGgMMDgtGCft/aFjIzQrMRK7Vns6DDz74m9/8pqioKDdHb2ZTM1Qcywop\nS7zw4RYtgaqqt99++/3333/ppZcCwK9//etzzjln9uzZJ5988nCJdNddd7W3t//P//wP6j2hqqup\nqZk2bRo6gef51MDqwyhhPw8NFzlYgZnIwdpDbN68uaqq6rLLLvvyyy+RLt+2bZvX662oqBhu0RKY\nTc1QcSwrpH7GCx9GBEGIx+PFxcXoa0FBgcViaWpqGq6nZPHixXv37v373/9ut9vRHoqiSkpKWltb\n0deOjg6O44axIUiVsD+HhpFcq8BM5GbtIXAcr6ysfOONN6BnLPL55587HI7cqUazqRkqjhGnBlVV\nJUlCD4QkSfq4PlO88ByR0GazMQzz6aefonO+/PJLjuMmTJgwLBLed9991dXVL774os1mM9bhvHnz\nVqxYIQgCACxfvnzKlCnDlYUsk4TZDw07uVOBmcjl2gOAadOmLe/hueeeA4C77rprwYIFwy1XL3Kn\nqUlLTjU1WThGYtl99NFHixYtMu7ZuXMnGj7fc889H330EYoX/tBDDw2Xl04mCb/77rs777wzHA57\nvd7Ozs7FixcP15t24oknGr9aLJbq6mroScv79ddfO51Oj8ezfPlyFHM9dyTMfmjYyZ0KzEQu114S\nKJH066+/rptAc4ccaWoykTtNTRaOEYWUnbTxwnOKjo6OaDRaXl6esxJGIpFwOJxrLekIwqzA4wGz\nqTlMjguFZGJiYmKS++SikjQxMTExOQ4xFZKJiYmJSU5gKiQTExMTk5zAVEgmJiYmJjmBqZBMTExM\nTHKCYzlSg8lIpLu7W1VVmqZJsl8P54YNG5qbm61W689//vPB/WJSCdm/Hn75Q8vhFC6KIkp9NH36\n9NwJcmNyXDOMqS9MTIw8/PDDhYWF+pOZl5c3f/78Pq+aN28eAPj9/v78xLp162655ZZbbrmF47hM\nJWT/evjlDy2HU3ggEEBVvWLFiiEXzMRkEJgjJJOc4JFHHrn33nsBgCAIu90uimJXV1d/Upeefvrp\nAOByufrzK7t27Xr22WcB4NFHHx1cCcNbfipHtHATk6OMqZBMcoJXX30VAKZMmbJ+/XoU37Ompuad\nd94xntPU1LR161ZBEKxW63nnnYfSyl188cVTp07VU419//337e3tVqv1rLPO2r59++7du/Py8n78\n4x8DwPbt2+vq6tBp69ato2k6Ly9v6tSpSSVkR1XVjRs3ohipJEmWl5dPnz4dHRpQ+TU1Nbt27ZJl\nmWGYc845R182n0X+tPT/9hE8z69evVoQhJkzZzqdzrRl1tbWVldXy7I8evToM888E+2sq6trbGwE\nAP3Cffv27du3DwCmTp2al5fXn9ozMemD4R6imZhomqZ5PB4AmDlzptHYpRMOh5OyxhUWFqJDmSxs\nxqQ+P/nJTzRN++lPf5r08F9wwQVZSkj79Ze//GVSIVOmTGFZtv/lBwKBn/zkJ8bTRo8e/dVXX/Up\nf1r6f/uapjU0NJSVlaGdFEU99dRTaFs32QWDwaS7OPXUUxsbGzVN27NnDxqHXXfddegfGT16NADM\nmTNnYP+0iUlmTC87k5wAtYObNm1yu93nn3/+HXfc8cUXX+hHr7nmGjRamj179l//+tfbbrvNmPIu\nlUAg8M4771x33XUnnHACAHzyySdr1qw566yzpk6dik64/PLL58+fP2fOnIHKWVRUtGjRojfeeOOf\n//znkiVLKIratm3bkiVLAKCf5f/iF7/45JNPAODGG29cunRpYWFhY2PjpZde2tbWll3+/guZ6fL5\n8+c3NzcDwIIFC373u98hsY1ce+21H374ocPhePzxx1955ZXRo0fv2LHj4osvBoCKiorly5cDwMsv\nv/zRRx/dcsstjY2NhYWFb775Zv8FMzHpg+HWiCYmmqZpBw8e1FtznRkzZgSDwR9++AF9NQ4UBEFA\nG2mHCACwa9cuTdO++eYb9PWZZ57RNA1N8ABANBrVixqoU4OiKNXV1R9//PGHH344c+ZMACgpKUGH\n+ixfv5df/vKX6KjeoD/66KN9yp9K/29/z549aPuaa65BJyMFAz0jJF22hx9+GJ2gm0zXrl2L9vzm\nN78BAN1A99lnn/XnzzUx6SfmHJJJTlBcXFxVVbXP/LdaAAAgAElEQVRhw4a1a9d+++23n376qSRJ\nmzdvfvLJJ6dMmYLOufbaa/XzLRZLltJcLtdJJ50EAKeccgraU1tbOyRyvvDCC3/4wx+i0ahxZ9LX\nLNTU1KCNiy66CG2gDJ4AsHPnTv20w5Q/7eXIwgYA+pQS0qapst17773IwUQHjasA4Jlnnvnyyy+R\nbrv77rsvuOCC/ktlYtInpkIyySHOPPNMNIteX1+PzE319fX6yCkej/eznH56KAyUmpoaNDczZ86c\nm2++maKoxx57bNOmTf0vQXdekGUZbeg3ZVx3dZjyp71c/2mUdBVS9Kh+wpw5c3TthdC/1tbWNjQ0\noO2PPvpo6dKlNE0fjqgmJkbMOSSTnOCPf/zjW2+9pTfTsVgMbVgsltNPP50gCAB47rnneJ5H+5ua\nmgbxK3qbe/DgwUFcrg9TFi1adOWVV1500UUsyw6ofOSlDQAvv/wy2nj99dfRxqxZswYhUv/RvQH1\nn167dm3aE0455ZS/G7j11lvPOussAIjFYldddZUkSbNnz3a5XLt27brtttuOqMwmxxumQjLJCTZv\n3jx//nyapouLi8eOHavnA73uuuuKi4tvvfVWANixY8eJJ5541VVXzZ07d3AJQ/We/qRJkwoKCu64\n444BXa6nfP7DH/5w8803n3HGGS0tLQMqv7i4GI2x1q5dO2vWrMsuuwydM27cuFT/vaGlqKjoyiuv\nBIB169ZNmzbtoosueuyxx4wnlJaWItmeeeaZiy666Oabb/7Vr341adKkGTNmoI7CTTfdtGfPnry8\nvLfffvuvf/0rAKxYsWLVqlVHVGyT4wpTIZnkBJdffvkpp5yiKArLsg0NDYqiMAyzYsWKc889FwCe\nfvrppUuX5uXlNTY2/utf//r444+Li4sH8Stz585dtGiRy+USBCEQCPR/7gdRWVn5+OOPEwSxe/fu\n559//uyzz77kkksGWv6yZcvuvfdem822adOmd999V1GUiy++eP369UfB9rV8+XI067N169bq6upU\nB7nnnntuyZIlHo/nk08+ef7551955ZX6+vorr7ySJMm//e1vb7zxBgCsWLGiqKjo+uuvR+rt17/+\n9eBGqyYmqZgZY01yCFVVa2trDx48ePLJJ6dVOfv27Ttw4MDUqVPRqthhobu7e8uWLVOnTs20sLQ/\nqKpaV1fX2dk5ffr07A4aQ05TU1NnZ+ekSZOyJLGur69vamqaOHHi4BS/icngMBWSiYmJiUlOkNNe\ndnv27Pnss8/279/vcDj+3//7f6eddprx0Ouvv85x3IUXXmj6npqYmJgcA+T0HNKCBQv2799/+umn\nUxR17bXX6qE2d+/efcUVVxQVFZ122mkPPvjgK6+8MrxympiYmJgcPjltsotEIvpUwbJly/7v//7v\n008/BYCbbrpp3LhxixcvBoAvv/zy9ttv37p1K/IMNjExMTEZoeT0CMk4cV1QUCBJEtpev369vsj8\nrLPOEkVRD5FiYmJiYjJCyWmFpCNJ0quvvoriPXMcJ8tyeXk5OoTjuN1uH6j/romJiYlJrpHTTg06\nd955Z35+Plq1h2yMxmDPJEkqipJ61UknnWSz2dA2RVFjxow5KsIOgIaGBl2zTtXYrRhj/LSDNEaL\n/IDlp732e8+Msd17XFLXUZMwN8l9CWEkCGlKePjkpoQHDhzQbUscx+kRC3OU4Y3t2h/uvPPOq6++\nOh6Po6+iKE6YMGHLli36CaeeemraqMOnnXbaURJxsFx11VX6duuy3yd9im2Ngbf+Sz8hvPZN47Wz\nn6n6oj54NCXMTXJfQi1nhOyIiV3dkv514qMb9e0ckTALpoSHT+43ibluslu8ePHevXtffPFFlEUU\nACiKKikpaW1tRV9R7s6Kiorhk/EowT67aLhFMBnZXP/mDy9sPBTrqLa9exiFyU3qAxwvq8MtxfFL\nTiuk++67r7q6+sUXX7TZbJIk6QPPefPmrVixQhAEAFi+fPmUKVNycKQ8aDQlEWAUI0iV7+b37hhe\neUyOGWKCwktma5uNEx7ZWNUUGW4pjl9yeg7pX//6FwDMnj0bfbVYLNXV1QCwcOHCurq6GTNmOJ1O\nj8ej5xlLwhjPPzfJz08zP6SEOpRQOwAQ3gIlGmxcfPGEtwcTmnpISCthTpH7EkLOCBmIi0qGZR45\nImEWjpqEsjrIlTC5X4e53yTmtHy7d+9Ou5+iqGXLlkUikXA4PGrUqEyX5/6wKTWHNOFwa4qsiQIA\nYMShf0eThKQzLSQe4uQshW9viV3/Vs22O2YMrYS5Ru5LCDkjpN+RHDSPjYqMywI5I2EWclbCECd7\nbSTksIQ6ud8k5rTJLjtutzuLNhpxaHwcAHB7+pihcld70h4LgWVXSCFe2t4SA4B1e7t2sokscAvf\n2f3CNy1ZrjI5tiEwzPjVtOClMtA6ybvvqyMkyXHICFZIxzJDEXWCxBNNz4OfNLy9I6HPatu62ah4\n+IWbmJiYDDmmQsoVMNqBNjpevl8JdRx+gan2GQAgCSzTLILJMU9MzDakNkHQlNkqDhtm1eccsc2r\nhcZEqmxQZEg3gaTzp9X7Mh0KxBMjIVnVwnyiJWJcFjbSa4Q09i9m1KV+wcvqSHcI5iVVHzebmOQg\npkLKCYwqB+8ZKgGA3NkK6SaQdB76rCHTIeQsFOJkEsf0ZoiNioz70MiJjYoNQX7wch9PXP/mDyN9\n+s3vsAzahcwkC2atDhWmQsoJlEiQcCTcGYwKqT+TSehlWL8/lFY5oRlXhyVRjqxoxmntmNAr5FJ9\ngBug4McRbETM7kVictxizssOFaZCygk0Rdb965R4WN9P5pf0eS16GdbUdWUx32W+tpcx8IRHNg60\nBJMRRIiXkvaYXfshQVbMahwaTIWUc5B5hak7lWgw0/noZRjcTKzRwzUQT26tTIwwbktbbGR3hGOC\nkuTSktQjCXGyqaJMhhFTIeUEKDRDxqPRoMrHs5dAkxn/St27IRWjqWFNXdBpNZMcHuK1razxa0xQ\nnJaRXT+My5rU7UhSP3n3fVXVdLxncjENs8NITkdqUFX1u+++a2lpkWUZJUNCVFVVNTQ06F+nT5+e\ng6klBoTa49SA4YSmyOOWb00cUGQASKuNMAwztiapbxFyqZJVTVY1occ9zGsjdY87AAjEpTKPFW3X\nB7iJhfYhuZ1jg2vfqLlmKqN/jQmKY4QrpHIf3eeqT15Ok8nluMJUSMNITiukJUuWrF69evz48TU1\nNUaFtGrVqs2bN0+ZMgV9HTdu3EhXSABAuHwAQOYXYwRJ5hejncjLTkdsqbeUJuKaOyiiOSQAQCAu\nlfvo1AIDcYlxWZrDAuOyhnqUkKxqRsdf47vX2S2VedKUY3LMEOJkv4MabimOEdAagCyWCZNBkNO1\nef/991dVVd18882ph2bMmPFYD6eddtrRl21o0fg4TmcenfSkH2y4/ezUg2i1o9NKJL0bsqqRREL3\nBGLSjx7bBCnd/JawUO5L5DDUQ3KZHKskOVUCwPKNB5etbzbuocmRPQo8atgWr1tTFxyEJ5FJFnJa\nIVFUxt6cIAhff/31rl27jqY8Rw4lktFnAQD2HTgU7TvTIlm/g8rU+Y2JciAupU1+I6uaOW90bHP3\n+/Xr9mZMK/zmtrZ3vu8VFsQ02fUfp5XIshDQZBDktELKwmefffb8888vWLDgxz/+sXE+6RgAhfpG\nYBYrAHxec8hwl2mRbExQmsPpdVVzSNCHSqkwLnOxZL8YoV52/7WucV19CG2njoBRqG+TQUDimO7t\nHRNNLT40jEgTze233/7QQw8BgCRJixYtuvXWWz/44IPU0xoaGq6++mq0nZ+fn4PB4Ts6Ep1TKRzG\nnN5ulpXCYTnUzrIJ/y7R6gKAzhgf7Dmzo6MDVykA4Hk+FtPcVryhNcA6hIa2LgDQLwSAcDisKAoA\nBOKSKIroqCiKsVhMP43jOACo3tdS7CTRtrEEo4Q5yxGSsDUmQ+/a0CShSxKS6qefHM1qbI3JTWFx\nRmnCAuy24uFoFIltBYnjJOMtYJoqiiLLsrqEwWCQdWQMVTWMHLU6DIfDLNtHgKWIoBa7yI17EjVZ\n18T6wZGbL8vSpUs7OzvRdu733UekQiooKEAbFEUtXLjwsssu4zjOZrMlnVZeXv7WW28ddekGBsMw\nABC201RxmZ1hIh4P17MTAFgLFaJ9GIa5cVnML5Y7WwsKCqhCBgBoOuB0OnyOKFidDMM4nZzX1qVf\nCACeJo0gggASAKgYiX7LbmNtDod+ms3WBQB5Pj/jo9G2sQSjhLnMkZCQD/IAdcaSM9VPPzlq1fjC\nJ/sf/LRBe+I89DUi1HhcLvTrnSJb5rEaJKlpjcknFiWOMgwDUOPz+Rgm7+iIOlCOSh3WeDyePn+I\nD/IE0aCQiTZHr7QcfFmee+45fVvvoOcsI9Vkp4P6/rmfCTE7meaQhMbaNrq4SAmBIqN8fWp3xvzK\nSU7bgbiETDSMy6KvfyzzWJFvno5ptMmC0QuxOSyUea3DKMyg0f0qzYAC/SHpBcmE6ZJ6JMhphaSq\nqiRJyO4kSZIkJdb0ffNNIkB1KBRatmzZpEmTsrg/jAg0Nb0NWu2OyECI8qFm0RhYSIe6+4utzVES\nx2OCsulABAA+qAkc6OK9NAUAZV5rllkiq8E3D61bGvRdHH2qmqIf1GXU0IeDHpr20J7eYQBzlqSJ\nIprE0zpPZgrMkRQM/vDhZRUlihwpZHoFGoL8ovf26F/NuOlHgpxWSKtXr66srFy4cKEoipWVlZWV\nlUgn3X333aeccsr06dPPOOMMQRCWLVs23JIOAYTDk+lQn2sdZFVrCHLNYf6/1jWe+9x3APCzv32/\nvSUWE2WnlUjrX5d0Odpg3JaRFSbyg5rAyu8yupANjt/+s7aqKZoUUwcAaAoXRkL6idT2FOkeWdWM\ngd51F/Ck84c8xcamA+EpT24e2jKHheYw//RXTcMtxTFOTlu65s6dO3fu3NT9GzZskCRp586dlZWV\nI31shJBDHZmSl2Mk0S1mbCP8Dgo1N7Xt3Wh5rNGNOxCX/A6qIcinLkDRcVqJ5jD/xJeNAEBgmGnV\nWbMneOZYT7mPTuoCM66Roa2T/mtdwbBRMW3Pxpi170isAWAj6X93xJGU8XKEel3mOCP1QaEoasqU\nKceGNgLD6iLMkjBM/2n1vg9qAgDAOYvs2CHrSiJDkqpZSVyQVaeFRA0Q47LMHOMBgyXB2J5mMcSh\n1UsvfNMyElfFkjgmKIfbo5/+9BbjV13xHLUZI/RHHyEMoaG6U0c/JI4huy7iCMVxGOmJDRHGlwhp\ndzOX2JAzUhXSsQrhTTgQrq7tfP27NoyyAkChFlF7gjSHPlzR9cFLzSGhwm8zdthDvEziWJiX9bDf\nfear5mXVGCM8rdJS9n9/GHdzNAhyh7sEJCmcqNdGhTkZTaUcnQjoP/tbvyqZr9va90kp+J3Uhobw\nxS/teGxt41OXnmA8RJP4UVC6RjvhiMYYpBgtH+4zMKDJQDEVUo5SnmdbXdu5l6c1TXMQWlewC9n0\n+L07uJo0WYtigiKrmocmda851JhmmXpFBj3ocb4KxCUSx5ISEMSfuG4o72qokVWtwD4EA7t5K6v1\n3i7y7OBllXFZ+lTqQ0UWm6pO470/G0TJvKQ2BLnVtZ2My5LkUcm4LUlNan/EGCjNIeGYD6BX29a9\nfn8odf+8ldVHX5gRjamQcgPdqzue8Bkr99EhTiZigQ5w0kJYjUd0rwe8ZyMmKGVeqx69O8TJbTER\nxSKjSZyNiF4bWeFPHyJve0ts+lNbCAyjSRyNtGgSZ9yWKU9uXlMXbH3iRqGx9kje8JAxJM5Oq3Z2\nNHQlsuXq03Je29FrRodwKJY0D8S4Ej6WSXYzXlb9Dgr99Vf+fSfaGeLkIe/1y6o2guaQaHLArit+\nB/XEl41/+nh/6qFVO3NxqWwuM2IelGMSaduajlf+DAByqB0Z69Qer27UQtkJjcdpnHZ0SyoAUIWj\nAIDsMesF4tL4fFuIk1Eb5HdQvJSwwjFuCy+rIU7WO8VJU0T3fLSXxDFF09CZ10xlnpk3ATXuzWEh\nuvEDJXRcvEtpcw3IqoZipR9lYY5ECnmSwNA9onGw7tnPRgWnhQQAmsLf/j4Rj6qy2MFGxWXrmzOF\noRoEbFQcwtIWvrP7hW9ahqq0JAJxCdVAf07WV1M4rYSZ2HCoMBXScKI07Oze/gUAgKKgEZKRPffM\nwjAMAChVEg1T91RBWdKZRpNIpmY0SSH5HdSfLx7noUkAYCNiuY829qxxh/tP/9hgPH9EOJgNAl0h\nGccoJI6h0ecgCvztP2v79LPPxJCkkE8yu5V5rOge9V5L0mjM+GAgB4fb3q3b3jKANH2ZQvcieEnV\nHSsOn6qmyJF7FGOCgpR0WoxjRzYijsmjtx+MoteNJvEsaTBN+o+pkIYTLdSG0iDp6F52AFDhTwQm\nUZz5qiIDQFNEAgDk6WAk1WyV3ZCFuv/XTS++a85o5KhmXPLJSyooyrbwISW3bm9X8QPr+39fI5HU\nbLBGJ/j+N4Irvj1obJuqmqJj//JNn1cdhaRwSL9aSTzJKJfWWjggQ+ib29rmrczolxHm5Ux240EQ\niEtHM14Gdudafdv4DPCyinotyCBBEliSU7jJ4DAV0nCiCRxGO9A2evR1LzsjpK9QCrYDQIvWa62S\nPuWOopgY4yzocU30mQOjHX91beeJPXGGyjz0ztZ40uollY8L2KEXrJ/BVIaF9iGafTE6HIY4OS4q\nXhupt0ED0sckfqiomCj3xzk4xB9xdz6k81KDcSCl2x7vpRGNtdEnvKxmWcCURdcOIplQbsZHaA4J\nuSnYiMNUSMOKKmt8HABwR0LT0ONPLXvwbf24TQhjmkLYXRgfBQAF6/Xa631b1ByUpsSpC8QlvTs8\nbZRbN+Y0BPnyvITGoil8JxszGv06uyWMIBm5U9+Ty+tIhCOwktdpJQJxaXKpE7XdWaYHCpZ8nbrT\nmFIoiwnoaEKTOGoxy7zW5nAvBRkT5YmF9oZQryHggFwbvDYyu1NGWvUWE5RBJBMicezo+OIPiLRP\nyBDOnB0/5LRCUlW1qqrqvffee+edd5IO7dmz54EHHli8ePGaNWuGRbahQRJRtnKtJycsTjv+3FC0\nk42jrxzpcEoR3FdiY2s1RWYJHxhW0TaHBGTCRppma3NUt/IhFSUrmv6qGN/ktpjIuBN2D8Z1yPcX\njaJigoIGavr5udz7s2ZO9TRoklq9na3xTGcG4lJ2V+lhyXenp7SPCQp6Erw2MpOcgbhU4beH+cRR\n5GP23IaWcQ/3bWlEGHMNG21cevlp1dvg9ApyDhzEhYMgrYRpO2c0iaf+0WbQk0GQ0wppyZIlv/vd\n7954440HHnjAuH/37t1XXHFFUVHRaaed9uCDD77yyivDJODhosmiEo8AABonId7c3rauPhGfTcEI\ncOZ5ixh7qBm52AGAHOpAZhC/g+JlVVc5bFS4tNIPAGxUrGQcAMC4LemjxQiKrrrA0JVDaxjZqIg8\nLFATpvLxTFFncoHCI9A80RSuN98xQfnZ33ZkOTmp2XJaCWPT30/nqyFsvNpiot5kB+JSvp0CgJtm\nlf70pPwk8fTTJhbad7UnngFkpWyNiv1fkxTmZWO4hyRigpJWhQzON4GX1MPsHtUHuFMe/zbTUaPt\nUa8BNirqYVWTgs+iN9FrI412WpNBk9OVeP/991dVVd18881J+5988skFCxYsXLjw6quvfuihh558\n8klFGZEZGzGb06iKEDSJ62Z3UhEJgsRsHgAAgpR7THZoyuH2s0e1RUUSx0gCmzM+74uFp100MR8A\n2IhY1ONr53cm2oKkNy1JwaCRFmpbUX/WpXajPJhKJBjm5GNmvX0Seq5P41RHkTORRZeXVDSLfsEE\nX/rrU5AVbRB9/36ad/RlallAMqPtNXuCTiuhPXHeAz8Z+/PKAjB42TWHhIlFdrRxzngvMtnp/7KV\nxE9iHP0UPnuAcKeVSJ1huu3duiTLoZFU93cUwx6GwtszEJd0C0QqeketIcgv35jwL+clFYVV1Yee\nvKTq5gQkVSY1GRMUNR6JbV59mGIfJ+S0QsoUqm79+vUzZ85E22eddZYoinpCihGGlHi7UKpyhNdG\n6vHZnFIEADx+v3605ayb9MbrP84b88hPxwMA47J8cfMUp5VAbwUbTZjyQpxc5LSgXG2op5wJZOXX\nu4QYZXVr3bq3GBsVj9XsL/o9Js29N4d5p4VkoyIbFX9yYn6F35ZpIi1pv3FIlMlalUT/owimTT6S\nhWc3NP/+7FFpD8lqIpuGrGpOK4HE1rsp3WK/+niJFU6qluUWYoKSOthatr45ywgs1f191n9XoY3D\nXxyWvQS0EAIA1u8PPbr2ANpGupONiuV5CXWlRzkp99GZTIjNYb7MYw3EJb5h58H//PVhin2ckNMK\nKS0cx8myXF5ejr7iOG6326PRASybyEE0+6EcnX6HRZ+0+PP0//5u3CV5TLF+9JaDlR//0Gm8Fnmg\nGvfsZOOoq6s3su/fMAlt6Ev50oqh96wxdwEAYOKhxSVGE1/uEBeHZmSctFDG76BkRUMNDS8rjMtS\n5LRkGgckJaowzskVLPm6qinqtBIRQX15S2umX0et+ZFYXuOlqaRnw++woH95t2HlEE0SvV00rXUd\n3Vayb8tY3n1fgSEVZCaShozosWwOCeU++kePbervzRiuPRySRmapBSJNiWpjcqkzEJf04TL0DKll\nVSOJHnVuISHdO6Wfo4Q6cLq/w83jnJxwARoQmqaBIYs5AJAkmbY719DQoKfszc/PX7JkydGRsP+g\n9E4sy4Y4EW0AgAOXm8KSFSiWZRssJYpGtXUEAIDjOACgcdA0NRgMaiKPzm8LxR0UjrbRadsP8OeX\n4QDwl/OZqUUYy7LTfLDuh9ianY1+i7yD5SsLaf18hBKPsKxwZhG8ctmoldu6unnRh3Ft+/cVA3R0\ndHAcCIqWdEku0BSISJJ0OIIFg3EAwEANh8MsiwEAx3EKjzWHhY6OjlgsVtsoCooWi0miKHJcmkoI\nBoOs45BOonCtvjXIsonmqbEj5KKw9XWtN6wOXzQqfROvKMrBjq4mtww9z0AmOjo6cLWPOTOO40a7\nSVSOKIpJBXJhie0Mv/DF7kfXtiyZU4R2Eny4gJI21TahZwwDNS4q0W4huzCJiA8sG+f4Qlrd23jQ\nYcFTbwHldDbubApLANDeFfFYYAfb3XywNdXeZTy/NiCgewcAXj70TyHu+qT1v35SDP2mPRDXy68N\nCOeu3Nt690noUENAiMViB7u6WZbdc7ATACyg7m9mgxERCUxjcl0T6wdHLBYLBlUAUBQF3aAVJCSh\nTjAYxzS1ta2dCHZqtINlWVnVjr5/0NKlSzs7E13YhoaGo/zrA2XkKSRkx6upqZk2bRraw/O8zZam\n/15eXv7WW28dVeEGSDdFWSwWhmGiXBcAkK58v4OirEGcBJvNxjBMRDqQ2ACwCNEA4bFQhNQNPp/v\n9Op/MsxNADDG3xWISwzDoDJttq7msDClogyg7t65J+m/5XRyn+yP33B66frmfaMLvfr5AABQY3V5\nGMbLMDALYG3TD9BMjrFKisUOAAX5PpuNawvyvS/JCWy2LoqSGIYpWPL1P645uc+ZHuzOtciAqeOL\ndwEcIAjC4/GgG7TZusaX+AEOFjOFtv0S7bTRAF0Kj5OSy2H3Fxb1blNqfD4fwxwa4HrsjU6nk2GY\nHz22adool4RbO7oV1eoCCKdWIHbn2ujD5xDEPpGwFRQUAOzJUskRgIKCAqqwj3/BZusaZwNUjsXS\nmlSgbBNs+6W/7eiUHj+3OSQsXdcGAAUFBRVMXLa6bLY4ABAEDyABTqYKc8+He5GVGHrmvXiL12Fr\nH+V3EU4foLBVva/yudplVWMYBtk2aRLnLTzAni6ZjMsYAMh0XpkvySBcYyykKhggcczqzmcYpty3\nz+FyG4++/n3Na7+akr1OeskT7wI4gEr4y8a6iYV2vbTaeJfTqVosMsMwFM29f8OkDfvD/7kpfGqJ\nkybxqEoxeZZGznL1Ez/88YJyn8+Lnpxxha5vmuIuh72gIM8oGB7oOLk4Llhc+eMmNofaQ7j7Zyt3\n7LlnVv9FHRKee+45fVvvoOcsI89kR1FUSUlJa2vCANLR0cFxXEVFxfBKNTgwd35iQ1Ggx1ZgbO9i\nBpOUxPMiRrlpUpQ1AKj46EFNSVgbjFZsp5VgI2lmyP0OavXuzjkVebr5W2fPPbOmjXIbzxQ1jMAx\nRdVwt1/qPJiDKz+SCMSlz/cMPnWs09LLNQ4ZoBiXhY2IqLpIHAvExdSVXtB7yU4gLun+ZozLesuZ\nZQDgtBI+W8Z1o1km2AeH7njJRsVUVxR0U8hGd2in2+KzEbVt3cgHD80k2VJCVwCAPq0CALKi0SRe\n2x7Xqy7thFlMUBiXJSYo81ZWv7aVhZ5ZNzYqTi5xpZ6farrcycYnlzqRYzqJY0O4TDsmKBMLk41p\n6N9vi4mVjNNhId7+vn1vJze51NkcEpxWYndHdz89J0OcnIim39mKO9xr6oLPX37iUEl+rJLTCklV\nVUmSkDlOkiRk4AKAefPmrVixQhAEAFi+fPmUKVP0KaURhNzZCj1BgMTef4TfQaGH3msj9YZDVjQS\nxwISRmmJNxbFP03yM24I8pXFTgBI6ouhQKvIhS/J4l/htxmd7jw02Wn1+6C7LcwDZUE/QR6B5T5D\ngtuKA8Dssd5+RiZN25qgmZWXt7QaW0OUjAMt5UEhaJ1WIpYya2W8BJ0cFxVeVkkCQ7n+vDayNZp+\n5gPpOWPUoky6Hy0+U0Ltfd4gUqIAwEtqajwk41wRegxWzv8RTeIVPuuGhnC+nWoO84zLCgB5GfJ6\n6JfLqlbuo9E4KW3NGAnEpfpAN9JYaNaNlxLxHZJmcVK12oEuvsJvT7sCehD5Mvpcw4uqBQUzRGGK\nZFXz2ihZ1cbn21LF63vyT5EJh+fLvaE5FaTgTAMAACAASURBVHl9nHnck9MKafXq1ZWVlQsXLhRF\nsbKysrKyEumkhQsXjho1asaMGWeeeeY333zz+OOPD7ekg0Ef3wCA5MgHw5vptZGoGxji5FKPFQCe\nuvT/NIJwW7BtEdtoPIaWrag9LuPGd8xrI2+aVQIpbghzKrwr5/8IDB23TJT7aE5SPVq3pTuRyZQm\n8SGMjzm0eOhEm9vP9NtJzYdxAdD1b/6wqrqDjYrTRrmr7z4dAJAadlpIEsd4SfU7qOwxNNEKsEBc\nYiNimceK1jNlCQVd7qN3snG/w9LZnZg5T21hd7LxQFySu9qpwlGq1K/Bgd5oZnLWRw8Aanmvm14M\nAKM8FHrkaJJA+7vi6ZWo/rCxUaGScaKvxprJdLNJMyj6dlLYpFTFFuLkk4sc7XEpEJeQskwVpv8c\nGs/JKlI/Rj9J/dUwLnja3hJlXBY2KkwstFc1JXveo0fIeNfYnWtr27tlVfM7qBAnK9EgANAUnssL\nzHOEnJ5Dmjt37ty5c1P3UxS1bNmySCQSDodHjUrv1TpSILwFcqhdI0inldDfTMZlqW3vZcmJEXYs\nr7gs2AUAFhJno+JoADnUbimt0HuaiFcXnATpmD3Wq28nvdVJlHmtAUktooi28NBnQxhaQpyM7qT/\nq/eTlqAi/UQSmKJp00a5drTGUP4etLJYVjShJzQAGxX1RTwoPJ1xoPnaVvaaqQwvK1YSBwBeVlHn\nmo0KqcMUHcZl/fZABIVRYKNCWq0//aktvz971NLp/XV3LvNakZAhTjbGzNVJHSIDAIljeqwBdDTT\nCEnXdshf/EAXr6s93X3u4pe2/7A4sTADHY2JSoXfbuwNZJrhR4rNeDQQlxi3BYCLCcoQtulsRPQ7\nKDYiNgT5iT2hHUkce3lL69QylzHcUUxUkGc8yjThtZFtMRG9RPpyiCTBYoLCRsQTC+0hTlb5bsAJ\nMz9Ff8jpEVJ23G73SNdGQFoAQG5vgt7LIxwWIqkj77QS4WhMIxMBmxMPt6IAwPiBO2RnX4rhpSlB\nVlXSYuxL5mb6iUMriAfbTqGaRDMrTgvJRsSkymGjIklgqHzdOnrbu3VXvlId4mTdAnbtGzUAoF/O\nRoUip8VpIQNxiabw1qicdgDnd1D1gW6kAHQv4STKfXRS7zv7HZE4lliFxidPFiIypXpCsQZq2+N6\ntKG05RufBK+NZCMiTeKoZvQeVW0vn3LcaSV2tsbOGeeNi8qmAxHkCk/iWJ6dQioh9VeME0V+B0WT\nOOpJDCjqa3bqA91j8uhSjzXJcf+HxTN3tSW6g+h/D8Slk4scIU4u89DNYYGXVH1hbOrfiuLwxkRZ\n16mPfFJH5ZfkbKyTnMKso+EEc3p9824NvP5IXFTKPLTevJb7aPT66e/qmDxa7upQnMiyJ13/5g8a\nTiJTwK1nlr101cT+/+jGf5+W3bpV5rUGuyVQZaeVwDyFmij0c4HnMHKYU1xIrzithHHSTi9WT/5N\nkwSqB72xnjnGY2w62aiIQmME4pLTSiCLDeOydkvpI7B5bWRM7NXrv/KV6lQ3B/RgRIU0QSWyk/aP\njomytadxROEb9EoAgDKvFc3GxQQlEJeMXgxocKAPpFB+yNr2OOOy6GPHVHUOAPl2asfBGFrTs/Cd\n2r99e9DvoMq8VlFWSQJDFrNH1x6Y9d9V9QEOrU9KkplxWTq6FTaa0PcNQf5wekio/J1svJJxGiPD\nIjUzsdDeEOTR/4WGuSjNhF7tvXyILESSjkSCGW2JfiWc+25BOYKpkIYTDCes5SdriizafdB7DinE\ny2CIAjCtzBUVFLuFAICfnJg/Z3xety1PE3kAcFqJAS1fnznGnf0Ev4OKiwqtyRwn4oWj0UT6EPZM\nh5wQJ/e/+5mlNU+NxRCIS4G4hIIzARpI9aR7R7P0SSOzECdX5Nu3H4y+832Hbn8jcWxHG59JQr+D\nQh4T6MyqpmiSkyRSWge6+M6eRi3ZC0BWjcOmQxHYIunj2eiRvwHg3etP0ffLqqZo2qsLTkZzkCjV\n7D0f7oWeGLJIIQXikq6xGLclEJeshlujKdwYIl3vx2w/GEPWLeSbg7xFREUrcFi2NkcfXXvgng/3\n1ge4t79vT024zksqSWCyqum68Lf/qn12Q3Pa+uwTpBtkVUNuPn4HFYhJ+iGkbGrb4+PzMxoe9IRM\n00a59OFmR08hfgdVyThigqJomt9B7WLjRU5Ll4wPwv/iOCR3W5ljHqPHlEpaAWDRe3v0Vz1p4mFi\nkeMAeCmHGwAoAvv4xlPddlrr3xT3IHH7GTmx0E8fIuQmIU7We7J9WupTMw8ZVUVSW4/C1+pfkQcd\nAJR6rA1B/sLl29F+vf8b5mWvjfz4t5Pf3NbGuK2odXNaCVnRMiVwQ/YfNBRO5LXqPdrzOyybDoTn\nLvuGJfKkWBhSpv2T4yDwiVvgZTXtv/aL05hpo9L4WzutBC+pEwvtP68suGJSIU3iui1r+tNbnv6q\nKRCXyjx0ICad8MjG2vbuvZ1cUv5ZZLFEV+kjGMZlKffRq2s7K4sdANDQxcdEhXFZnFaiLSqEOGlV\ndQdSexMLHTsOxmRVK/PQ+k+juERemooIibGpIKvIxAopYRf6Q0xQyjx0c0hoi4mM21Luo3VR7Q1b\nUOU3BPkknyC0LqLHmJkYIW35/XTo6QF83xpDOy85yf/MZROQY8vEQkd9gCt3qJ1kXj+dbo5zTIU0\nbOgeU3EgQVUmFtlDnIyavwq/PZGJsqcnW+ax/sb+m86Z16CvNIlr3WE51JGu4KFBKhxX0L4LNe+6\nGAvf2f3CNy1H7kcHRyAuFTktAHDCIxs3HRhYtDcwWGDKPNakQRJN4jFBNp6J2t+2mKjPKoFhUIIi\nsTIui/bEeZWMAx1FWiHTLJffYUGzR80hIRFtPWVOhY2IeWrsAMV0dnSCIf5e4kdjvRQS47KgIQgv\nqU5rmnmgW2eXoSC8SZR5rHrT/K9fVQIAmiRD9xUXlZgoV/ht6JyFb+9+6LMGpGXLvFbGZWWjIi+r\nNEkgpa6PjawkrucmBoAKvw25hNAkvifAdXGy/qMkjtEk3hwSjMNxNiqWea1eGxnmFTYinlriZKNi\niJP1yD1pazU7SNkgA12Zh26LJQSo/MdNyFWhacmZyEVb70agDmKmOTkAsFsMw0SSQH0jv4NatbPD\nLUWEHM4ollOYCmn4WdVMYiEWNamorZk2ylV91+kAgGY10Gmzx3qT+u9qd9+xnwcNMeH0UoHlJFXV\nDq07YSOiPt+bCySWjIgJlwFZ1QaxahI1bchxg5dUo2mFjYqoSUpdK4OawoYgpzdnkCE5AuO2GNPa\nXv/mD0lHUY6fQFxKBJDuPQDiZZWX1X8/q6zEbUXtWtJ8Hhrz6aqUxDHGbXlhY0vqCujsXD6p4NQS\np/7VaSWqmqKzx3p3snG/gyIJDJmnFO2QDkDNNFIkSCp0GoljDcFeLpqP/6wCAGrb47pvAklgd5wz\n6p7zy2VVu3V2mdGSXOax6v+CrGgEhtEULiqafo9oMNf/W8sCmufTv6K/oMxjRRv6r+jjm66Hzk47\n7jy3Ik/oST9W5rWiWvLaSJrESbtTNBVS/zAV0nCCu/PrA5xD47sxa5iXAaAhyKPHXV8zqCukL26e\nct2MQzG7CIdH6UcygkETyR9XGvxBoD166rbmkIBcoo/cj/afp79qeuizBtR2N4cSDtM9/sHZSHL7\nRtZR5E/sd1AoV6x+tMxjveH0YuhpeZP47KbJj/x0vJ7uIRCXiHTDoPoAZ/zNl7e0GsdhXhsZ4uSf\nnOj7trEnw0LvERJ6HuadUqD7cyfN57MRsdxHG6/iJfWeD/fuaosPyNB60cT8u+aM1r/m26nObukX\nU4s+qAmgVjsQk05mHEjlG+2K+myZrGplHisvqWVea3NY2N4SG/uXXmH4N/77NLTAi5dUL01eN734\nD+eOBoBn5k2gyUQNt8XEMXm0/i8gtcq4LCjJeo93yeCnZMK8TFO4XofIkxvQQvUUyrxWFCpJV+3o\nfWwI8vpMEqLIaWmPyWg8hyyK6Cc6lp7loxQMw3LZ6J075ETjcvxCWqqaInGMJiX+0kr/ZzdNbg4J\n1t4tvtGz2bhOhfAWgtJfb6skQh+v7PrgpSwnnH9C3kknlJOqeEB2yrEI9LyQqOHuZ0yEI8qG/eEN\nDeGEL2I0kQA3ey5tFFMgKfNQIC6hMA3ISVePkYF46aqJyA8taV6HjYrzpxTNHuetZJwAEBNlv4O6\n+/36tHMz5Xn0LTPy0W/ZFq+DHpXTHBbKvNYbZpRcPqmgzGNtCHL6OE+/9to3anhJ7XrobACwEHi8\n7rsL3MkRkhq6+MklLmM3/4OawMwx7je3tR3OvAXjslQ1ReaMz/v2QGRioSMQl3a1xSeXuozaFKl/\nksAYt+Xbxshb29vLvFY0t4Q8ESDDGoOXrpp4w+klAEDiWNJsTdJiI334Cz3ebtCPwBBZQDlZjAle\n/Q7qZ3/7Hi1U92DJsdv/47wxSSV4bWRDF2cUcs89s7w2MsgpaDyHnDb1yPqYqnSLijU3enI5jllH\nw8zW5mjUVWIRo36HhSQwQUm2+WTyCrMw5Wn7dP2hu/rr2KYPs5wwypvI8tIRigIXoSncYSEABcqL\niqnpao40b3/frqdoA4B5K6tRZxwAZFXb28mV59GQEpIuCVnRsvRSdStc0qoUxLQy98e/PVX/6rWR\n/7jmZONg0Wkl1u8PpU0+9MhPx/9iUh4A1Ac4Y2uOGq9po1xXTCqcWORoDgnorzfm1EDB31CvHMNg\n3K53f85tRPe4pi64bm8XOn9qmSsQF+etrG4OC4zLsnL+Sf+4pvIf15yc6Wb7Q7mPrmqKIu8DNiqi\ntEaVjANpU2SR6zFw0TSJr67tXFMXJDAsEJdmjvEsfGf3ztYYZPDPnD3Wq+shFOOKpvCYKNMUjhwK\n0k4OBeISyvWgR0UaqFmy6/+en3BwQ7mPDnGH9Nz2lugHNYEIr0BPBrIkkpZV6DmTEIzbUuG3eW1k\na0zSB16y2uthU8FcFdsvRqRCqqqqetvAgQMH+r4m91AiQQDYfjC26+SrPpxyu9NCeGmqtq07u9EJ\ndZYBAIjBR9nQJEFTMzfcna1kfjEA+Obd2mXNBwA0vwW9I6ENiOawgKay0/JBTcC43iWVP328772d\nhzw4Vu3sqGqKoJauxEWtqu5AjUufq5Eq/PbUnahFQ580hacdVTithO4IcNu7dfp+NCZDYUazxxHw\nO6jmMD+x0J600BXBuCzNYUFWtYmF9qRBnr4I2u50AkCePTEKvOejvY+tbQQANiLOHONuDgurdnbU\ntsU9NnLmGHe5j54/pSh7bWSnwm9Ha7MurfTXtsVJHNMHlyiQkn5makCgqWWuP180bkCDGMZlQc4p\nDUGOcVv0iHxJKicRrlRNpOVFwQP7b76Lb/28KLS33EdvbY7qKSt3svEKv23Gf61XMSLtvOxvTi9J\n2qP/IklgSCszLsviT1svXL4NSUjiWJJUpsmuP4xIhbRq1aoXX3xxSw96to+RRTwSBcoqK1qe19OO\neQDAayPRMsMsV+lTSnLnQW2wJjtNkXEqY/QgTZExnAAA/y/u3es7NR6N6YdCnDy4JX5v72hPmk4w\n0hwS/p45fx2ki2LQHBbQ2HF6acLvCxncsq+XTFIYr21lH/x0P9JA+rxCn8tOl61v1gOaoag/zWFh\ncqkru6p2Wonatu4754y+ZiqjO0br/zUSbEwefcWphQCw6UAk1ON+llg3E2pXSycCAG1NLKA+FHVX\n1fwOC9rZ0MWjweLho49grphUuO3OGWxUuP/H5QAQiIuVxQ69nv/jvDHG2RSvjUTGT8Zt2XEwllIq\nQNaVcCSO+Z2Ul6Y2NIQLlnwNPSoHHc2Uj3FAz6SsajRJ7GyN63puzz2zKvx2vxJuIf2om5idpKh0\nibQaFC6rmi4tWuekn8OJai6v5MsdcjqWXRZmzJjx0EMPDbcUh8Ut/7v7wXmTEp6+URFNbjd08eW+\n/oUCUhRssIMk0lvYT3OfYPNobYn1UigYZYgbjEKSVS3t/IpOJjWwbH3ztFHupF7wtFGuqqYoahQq\nixLVxbgtob1yJucrvX03qo33dgaMEjothKxocrqo0n1KizzNUs88NKIFaIkI00a5kG8IAPCyktRI\nXTGpsNxH/9truy5+afvjP6uoZJzlvp4VOYqc56BlAMZr+/iHzs5uicRx40x7S1gAgB0HY5dPKoCh\nxu+gNv77NP1rmYfe3hJDt6anR9KeOO+2d+uQfQ+tIEbuD6kdLGNRqT8UE5TJpU6nhUiN7IfiXxzW\nnRCEJikoVuSllX60D0W799iIdtwjdx7ss4y9AU4fLsuKhmyYXpoKcoceUX0xtRxqJ7wFyoHB50Y5\nrhipSlsQhK+//nrXrl3DLchh8UOXjDy72IjgtZGo2TU6dGV3aRv0CAmIRNih9MUa1ttiVjsWYiER\npEDQQxUMlJigoAD+aY9m6Tze9m7dur1dRnfqECfPHOP5+LenotKKneTvzigFADSZnGnBR959X/Gy\nkhQ5zXgvd54z+s45oxh3HzeIdICxS45ckPVJ7CT0ES0yc3lth3KKZ7JhouhwW5ujbFS44ASfLg/6\n6QIrnDHW89pWdicb04uiKXwnGy/zWNfUBQubqgKvP5zlFvpPUjJDBN8TbTY12N0z8yZMLnE1h3iS\nwFCYPhhgjI8Qn4iM/q9fVc4c44HEOPKQZkqdMRpoGEMLgfkdVG17t/Hl8tpIAsNYwpfFlK0b7h75\n6fhn5k1IOopCRtEkjoqVVc1LkwCgiQLKX549y7sJYqQqpM8+++z5559fsGDBj3/849zPy5uJXe38\n6aPd+XYK9fuM4bN0sjzHgx4hKZEgRifnJdORDSEkCuyk2DuopW7Zz/4TSZ54iqahSYKMP5rZ3kXi\nGBo+6iXn2ynj0k497xlanplFqpMZh/5Da+qCeh8ZACr8ttljvZeeXPDUpSdkKaE5LCTlpS3zWjc0\nhP0OypjkMJVSjxUNHcq8VnQvOw7G0maogx5f8Nr27qllrqSpiDzqUEQ7Niom7GMuS0xQ/E4qxMlM\nYFfkq3eySHKYeG1klmdycqmztr2bJonSVxe6OuoynZaxcJrU9UQielZPGFPoPTD12sj6AMdLaoXf\n3v/JKjUewbWEVc04Wcu4LAU2nKOcSlfGjFO6awPqRCYdRQNBtBgWUDKtnpAZRF4hDCQC4fHMiFTa\nt99+O7LXSZK0aNGiW2+99YMPPkg9raGhQU/Zm5+fv2TJkqMqZVZkVfPS+NaW+CyC3x6L7Qt0syyL\nDgXa2/TTeFlt7gixbK9eIcdxLMtKtEuThNa9tZjDCwNEpGyahqFfjN53keuh1b1ka2MVXpRYFgC6\nu7sFUSJkLh4Vm8QYx3ExQZnot+7Ye/Dkwmw5LE54vKb17kOJMPa3hQscRNPBNvCk8Ynq7AqJsqLX\ngBGfjYhGo7iqROOJKtrTHCugFJZlNUno5oWOjoSzQywWE0WR47SkcrYe5B7+qn1cnqW2sT0WEwEA\nnfDsVy2PXVh8NwClCh3RROFlFFxRQRpL0ELtwmcr6SsXo6+haHc+TTx9cYl+zqk+eKEq9PwlZYUO\nZ9pbAICOjo5YDJqCMYzrCofD4TCwfuWbvZ2LT3exbMx4Gi1SqiK5Kag60NUWiv9+lt9hwVmWlcKJ\nCBTR1kbWEbtkgvuDugjIYvW+Ficusiy7rSWy5Jyiq0/xxj5bpyjpKzMLejX2SVuEt6qCXo2pOCw4\nH+3y7dnkyJ8O9tJgMMg6+l6tLAm8IMoXlmFnXFGGSvaQyo1vbG+Nyj8tJ2mRkgQeSI1lWY7jAODB\nswvve/+HMjflIZW6JtYPGTtYRmSrg450oPKVeIRlE4LZQXDygV+cOT4aCYsDqbqLx9FgqApZ1SLh\nLpYVOY7rigksyyoHD8jd3Cg3hcvxgf4pQ8LSpUv1Wfbc77uPSIVUUJCwklMUtXDhwssuu4zjOJst\neeqlvLz8rbfeOurS9YvmsHCSS/46bD91fMmWjoMWMsIwDAAA1PRsIGqcTmfvPcDabIVeV7vbCwD5\nLge/59vY5tXFi57P9Fud/3zCUlrhOvNSYwmyxYKKjYTak8qP/CDBqHFuhgGAPHeAp5yjCvMumph/\n9/v1NpsNIFTmc2i0i2EODRQagnx9oFsfOsiqlnQjlLWr1O+weXwMk6bh4Kp5N00liYGwW/ZiFrvF\nIlJWK+nKB4A2SZp9gpdhXBNL+M/3NxcUFKALy4vkT/Z122y2pHKa9rXsC0mFTktIo51OCwAwDLNq\nZ4fTbpswpgSgtiTfkxdU0/46AIhKrOHLt8pvewp9PedEwe+gjG5Xc3D3wg9aiosKU2NUG/F3CGEh\nMqa0eHyY+mR3sJ6jTxuTl/RfK7SHYdzjCrrW7e16Zt7Ebxsjc6eM3Tm2hPHRQbmbnjC1GcBmoXiN\nnOi3d/1y8qL39mA2b6lfZRgmz7a3MN87prQ4VFQaJAhjyXJna+c7fy268dEs4gFAnhiSO1sdU87N\nflqRu4m2O7oeOjtjfooHCmgK36fKCoYDQElhAcP0Ec8XAChrl9XCjR99qGJdjq6XtrQCwLu/nUri\n2NiCjvfqYgzD2GxdADBpfJltS9TppG0S7/P5GKZfyVhbbA6iG1VOzfiyIqbnL8MsvNtCeMvGSkHW\nn+FJSMsfLjp08ltXxq7+VyMSZpQ/9u3BdoZhujv3CYUl558YYmZV9L/YIeS5557Tt/UOes4yUk12\nOqIoAgBJjjDNSuLYZD/RjdPIhqPbkZJW4XltZFoTPPIFwmm7ysc1ReZqNxuPaoostTcBQHzbFxLb\nIDbtTjpBiQQJtw8ANEnA7dl8DQodpCSJAMC4LChCMwBMLnEmWcY+qAn822uJ+TxeVtHqmSSS0q1G\nvngr9PHK+gC3fn9IVjU9SnTyVU4KxeYhcezBT/fPW1l9oItHTf/scR6jGJkWS37bGJlTkYdhsDfA\nlfvoMC/LqjZvZXUmx+Ukkibb/uO8MUlOwCi3W58RIpyWRBp4p5VYtr75iXVNujM9YuO/T0NZAUkc\nkxXtkpP8f75oHIlj6GblcAdmsQKAHGpn3JZStxXpg6rmCBKgOZwIV6HGwyhRlo7Kx8OfvpJdPACI\nbfqwa9WzfZ4GAIqmZbHaoVxHAJCnRCeXOvsZ2iP1Odf3oNK6eCXVUGaMY5QWsaXe+FWTDs3bMW6L\nxDaAwUaNUdZBr+0DgLPLnQCAQk4gHxm0n3D0rY9NECNSIX3zTcKBOBQKLVu2bNKkSRQ1gMVxuQDj\nskwqdo7yWAAgJih6S6r7LCGa/nRm2rWWCMLlS+ubwO3auP/m0wGg7YW7ohs/UOJh3OExnqDxcTSH\npESCOO1MulxTFX2RE4ljUasPV0QAqGQcO9kYABS5LIG4hCI066D5odW1nS9803L9mz9U+G2BuGSM\nxIraWeiZXop8/b/RDe+tqQte/NIOACjz0LXt3alhFKaVuZHm4GWVxDE0e4/M9ChKQp+g5BQuK4HS\nDdQHOJQ+DnnrXnKSP/vl/fEcmVhoT212w5+/oW9H75wdiEu3nFkGPc1rfaA7yf1s5hg3anBLPdak\negAAle+mmHLfFb8nXL6V839017mjAUBWtc/3dOnTaUjhaapCeHs52qU+JG3P35V6XxhO9OdmGZc1\naWVoWnCnjwB12x0zJpf2628ak0cnrRJLUthuK37TzNKkS2rbuvXnKi0Ntx/ycqy7ogSzOlDf44ub\np9Akvv/WM9R4ZN9vJl89Hr/yBJrwFvZH1Owk4iv2vNTKkYyAfOwxIhXS3Xfffcopp0yfPv2MM84Q\nBGHZsmXDLdFgwDF45+rEeCjTanOnlcjSwSRcPlAUUGSV7xXwVG+AMMqKRkJpUGRArW1Klmulq53s\neTOLXWRUhHGfPAIA54z3oqa8knGgHDb6mEYPQHDxSzu2NkcBYGKhI8TJC9/ZjQZVaHljIC7pgR4w\ngsQIkqZwL02izDFPrGsctXQDGLJI1Ae4qWWJARzjsqza2XHTrJI1dUG90owOxMhlIGnqGAX6RNtV\nzZEKv/2DmsDbO9qhx43i/RsmZareRG1EghhBZm+p9XTdOnJna9vzd+l/hCZ0/+kMD4oUh3JM8LI6\nUA9m0lvon/8HJRrUXbkAoMxjNYSEpwFAU5WkvCSpwoc/fyO1oUy9MC3/+lXlrbPL+jxNE+KM0vea\nHp1bzyxLCi1BU7hxHLZ4diFyp4Qepc64LOv3h04stGf3ZDHefvcP39ooHADmjM9D/w76LOWay23S\nkAxl0BNY6rEiNamJPNJz7LOLhsr78RhmRCqkDRs2fPfddy+++OKOHTtee+21oqLDWpE+7PgdFPJw\nHSiE2yeH2pV4hOzds9PfQIwgQZExgkzyHcId7sQ5qoIRyc+ApipAHGorQ7S/sPr/xJZ63YusstiJ\ntELBkq+rmqIAEOblMo91JxtnXJaGIP/ZTZMvn1TQHOZpEl+9uxMSYcupECejcDIhTv6gNhThZTYq\nTii0N4eEqaMORWOb8uTmdfVdABATZLSuxe+gzj8hryHIX3KSH1moEMYllryk0iThtBJG09+mA+Ez\nx3qQOkQBMa+YVHigi4cM8VJT0fg44S1Azbcajxz8z1/3eUl82xf7bprqPvfq+LYv9J1JKy7rA1ym\nOac+/JgN5rhXF5yEomgjUAUqXe2W0l7TFUqoA6OsSWoJdWKEhl3d33+N9miqgmVeLq1jVIdZsJRW\n4NoAQlyjBLvGPch1MFVt6x72l5zsR89G9iXJuurFCFKLdVE9D3z7ij96zl/A791BuHzoHMJb2J+F\nsVnoeuhs/ZlEalJTFdzmwCirxscPxx54nDAiFRIAUBQ1ZcqUEWepS8v8KUWDCztGeAtAkdXuSJL/\nt9YzYNIUGQhSEwXkeKqDESRmoQFADrXjNremyHzd1rQ/UeignJFmAOBqN/sd1GbH35cQ68o8VrRE\ncdoo9982HwQANiLOHuf9+5bWS07yqy2hGAAAIABJREFUbzoQrvDb0ZqqymIHMtAh12Q2Km46ECn3\n0VVNkbE+WyNHHOjiLyQPNAT5Mo8VLVsBAF5S39re/vRXTWjQs7M1NrHIPnust9xH0ySeOhxBeG1k\niJfKfTRaeYpW+bzzfcfssd6YoOTZE8tE/nhBeVVT5KWrJr76i5PSlpMKTjtQ8x18/wWhYVfTfT/P\nPmAKrX557LJvCn75p/jWNaA3/Y21upxow7i8xsjggjNNLnWikjVJSLbQijzh8CQNiSR2PwAE/vGf\nercdw4ksq3AGisrHC5TQ4ZRAk7isatGHz0najyJqA0CZx4rMlZlWQyMFoI+EnDMuCl7zFE3imiKr\n8Qioiuvsy6Ib3nNMOZff+/3hiKqD/gKVj4tiYmiO7A2kt0Bqb0qyZJikMlIV0jGA3NmKDdZmrUSD\nhMtHuHxyqEOTBH1RkRqPAIAc6kBr8aj8ErmzFQhCjfdKW4e6gZoiq/EwZqWVUEfjvT/Tj6rdEaKn\nRXNY8Bepc7rmP8rXfQcAxVj8lhMVAJBVbc74PBLHUOsvq9o547zbD8ZOLXHKqoYi8G9viZXn2Q50\n8fUBjo2KJIEpmra1OXrRxPwPf+j0el2CrAVi0mWrbw4Fg0hdlXmsfLDtcmXrim8PPruhORCXvDaK\njYo3zSr12sj9fzwjbW0IDYdW3jgsRG17fF1915QnN6+u7XRaiWmjXLys6NkN/E6qOSw4LdlsoUlV\nTU+YippvqaXeNnEGV7s5y8RA5z+fcE49n2LKCZcPI0iVjyuRIJ5fIvXMrusKKZOdNnWEJHe2kvq0\nENFrpoer3YzufdsdMxLBfnr3Ttr/9sfYlk8w2q7ycSUaRG0i7nCj7I645ZBSVPnuPmujT6T2Jr5u\na/jzN+jxp15/UmIIqMYjzUsH7N+VyU+kti0+pic80se/PRV1j1JPqw9wGjIPxMNSe1PjPZfEnMWz\nvi4grVYl1MHVbaVPnE64fPGtaxxTL1BC7XJnK2bJbOIeCPXXnFDMbkPbqiwCTqh8NxDkoBcOHj+Y\nCmnY0NTBx/5R+ThO28m8QiXaJYc6cNre9uJ/AED9rxJr9xK2F4LQVAUUJbWt0fh48J2/tj1/N0bZ\nkvr7SjyC2xNmh2InufqxG2bMWyAHE9YGXeapZa6GIDex0P7o5wdQEvH1+0IozyaJY4zL6tnyz5ly\nXXNIOOGRjYG4iOaQQpx8zjhv4MP/8eKShcAa2E4AcEaanFYyEJcq/PY7//CXm3c9et304mmj3Hs7\nuQq/jV9yamoUGSPxbV90rXr2wuXnP7/j5vFcAxsVG7p4EscWvbcHWbR4WS3xWD67aTL0uAsaGzs0\ntMpc1d30uElyqENTZN2iFVy1LDV/R/DdZUo0KDbtdp+/AO2xT57D7fpGCbXjxRVyuAMAkFvXyvk/\nyuI2PbHIfsWkXj0VJRokXAm3ZktphdHyE9v0YfTr/+11vSJjlFWfDQqveSO+7QvntAsP3HVh4LWH\nD9x1odTeZJswVbdNYZQVmRaVaNDClGeqh37S+sSNwVXPtj1/lyYJak++ruD7Lwj7d/VngspIJtNl\nc1iYVnbIVFvhtxtzJOqc8MhGTRKs5Scv/d/vPl23UWIbGsmC+VOKSk74kRxqF/busE04jXB4NEV2\nzvyp1N6kqQrpLVRCGRfGDoixWCfy5pDbmwi3T+48SBWUYZTVHCRlx1RIIw8lEmy+/woweNkpoQ6j\nX6/c2Yo6eqS3UOlqR6G7jZD5xRhllTqa5VA74XBlCSMEAH4HhREkaosxi1Xl4gCgPXEeCox9MuP4\n0+p9q3Z2oEw5+gSP00qct/3ZCQe/QVMOzSEhEQ+bwOZPKfpT8O+WaJsvz/36ln8DnMRiITShEoiL\ns8blY1bHyvk/Qudrn6/ce31lalsW3fBe6xM3om21O6KKvOek08f92+2lu9778O3/Xbtxx1zL/nKf\nDQ2DvDQlKxpaJoWaOX3ABIkcfb10g2rIfIic1qSOZn7Pd9ZxkzCLBQBCH69Myt/R+tTC0OqVwv5d\nKh/XdbZ90lnd1euVeIQ8cYbU3szVbt5/6xkAcN304iRtZPTLv2JSIcogrqPEw4Qr0XMnPQVSR5N+\nSGpvIn29/1+CJL0FSGmhpwIjSO/c3zC3Ph3+/A332ZeH1/6DLBglsQ36bbb85ReR389UIkHkAB14\n8z+Ns19JSO1NuimscfHFkS/eQmsMEJbRE5Gq4+u+0wfuUut+78XX83t36KcJDYlFAkhDpyXpTzFi\njGbCuC3GsCClf1pb1RRFXjZCV5ultMKvxaTqrwBg1aY9N80q8RYUiC313dXrrWMryfxix9QLMYIk\n3L6Em4844IzDqeC044x8FXncSO1NOO1QQh0YQZL5xWKP5dYkLaZCGnlwuwxhsxUZALwXXec++3L0\nkmuSoEkCVThKjUeAIDVVSdMpI0gA+P/t3Xlck0feAPDJTRII4QiXoiCngoKooNajWA/apVaOisJq\nRdQW61ErL6xoVay20rVV13VdtOu1BdcVra6VuqAV6lFFDi2g3FfEQCIhBHI+eZL3j9GnEQxa6jYP\nON8/+ITn4pdJmHnmeeb5DTwZpFkLNHV3AQA6mbg62gUAoFd00rg9B1nAWoZmZUvUIDO9bD98beiS\nCc6q9NexP4eqP/Qfp6mmUykwAZqTFVNIE1hRNDK1bsFYR+Hm1wAAjxSYrwOn83IWw8lN21gh0EoA\nAIDBcsKlTlZML63QiccayZAxHV21LbUyla72kUpT/7NlcBis8uBPTXOltqVWUXxJ1yFWVxfLVwV1\nF17EWhu5oyc7hC1yVremPjq29VpCQuXe6fzHSRCMZ2ODjIdcw+w7xmuJjiYAAO8Qs0cG69pFXdfP\nsUcGA73BYsQYAADdxoGo0LsLL7Lc/BxX7Oy+fZEu+GWYPp3vgImFWGsjhWdnUCt0HWIAQOflrB5d\nUp1MLNw0r7vwqXwZTxW+TEKMSGa5+xlX4lQLbu8bP3S+ADYtbQf/RGGy9GoFhcli+02yCV9uG7FK\nmr2H7TW283JW5+VMAICqstAl+TB7UZqq8hasjrXNldLTe2GQeJcUvqiOdoEvJEe3iP+xEQAgObLF\nZt6HipLL8BkDZcUNyfFP6XyBtqXWIWHHkE2ZxEM/eJfUwisIEzUAAAyYRtcuakqaBYfFN6yarDPR\nKRnKZx1ZMLL38vBR9sZXO/G7l1dUfPHJxXoAgGh34sam3dcaZDBjYZtExnT1cVY0UeSPMvw35FuM\n9neypNs5P8r8jDthDjzHGrLhGACA8iS7I4X5/GEdzwXPYOBreHYC3yM/LJ45zLevPV95A7JB0uv1\nRUVF586dO336f5izi7RGfH2HOF+GTYv17MUst1FdNy9QuTxNQ7lOJrbwCsKe5C3W95rpHJdLOaOn\nwLNgGpenk0moXJ5OLARwmgOFnNpr/CuNZwuHSOifdFbGu1otmeAMAABNZTQDrlcrEvweX9nvzD2u\nKL1SwxzK0XR6lmWHPLgIeyrdGtxKI207kCRYvBkAoKstoQ8bRefZOuFS2fdH9kv2nB5Z52zoZA7x\nbFw7bf00579PphgwjeWEOeq6u7p2Eaz42v/1xaPMz3QyMXfczM7LJyzeTYEPPzKc3AEAbL6dwwgv\ny+CwYoZH5Ml34Xt3smJZMKjqurvESXrvxzAxsRAWCGy/iTYDXsnRttRSGBYWHgEGHGe5+wMAdB3i\n2vd84fG7rp+zCV/O9g2RfX/EcsIc48NaTY0U/2Mj1daZ5e6nuP1fmpVt24Ek3ZPaCtKJhbzQGMWd\nfFOfuEGrJipKpqsvJnnwOEjscSLwX7bENBQqjeHkjokaYCUII6RZ2dL5DoIlaRQGy2ZuIo3v4PlN\njUZYS+MLHBN3ccfNpLmN1ivkcIA7lWvNDXy9JmZYx3eH6uL95fn/VlbcAACoa0r0CjnVgqtrFxkw\nDa6QW00K7/rpO/h3FcWXO/5zgCEYindJmUM8WW5+dDsXdXWxvOAUne/AHOKprv8ZAND6l9UPtsU4\nrz+oKL4EW1ZNw7NTJNtzGfALhrU2GneRzyeMkRz/VFlxA557qSpvUx41nb3wQ/0P54GljYW1vffJ\nVa1n9vs6cFL+dfsHhb3/w2saa5dcbnDY7NftuQyY6p7/Zrzx32INHwVPF/qfsNj4aMN8iYFF8IPD\n5VIql0e3c6aaziGJgAHaIG3evPmDDz7IysraunWruWMxA6oFl8rmwn9RGpfXXfg9AIAucFWWXmF7\nj2tOfVv581XOmKlwiBeAg/EA0MnExL0HGpfHC43x/KYGAEDl8jDJA5arr7LiJ9YwX9X9wmf+UYaT\nu/jgn+h8AdWCA4wygusV8uaUN9U1JVQL7ny7xymzuosvy384EWwPrJmUMarKkY2X4JZxQY6zdeWO\nibssg8NswpcDAFyTvx62/ayL7pGi5FL76lOPMj+j0OhYuwgAMLouh/HZHzCxkOHs3vqX1S074uh8\nBwOmMeC4urqEM2oSa5iP4s4Vum8I/814pzX72CODAQBMVx9l+Q2X5MNDGFo9x6a7OE9RnHdikd9H\n01xlF75uO5AEI7Rj6om34GnPDhGA1r+sfvTPTzXNlbCUerQZ6upiq4lvAQCcVu+1W5gMANBJRQwn\nt9r3fBXFefCSJmzFOWOmGu9oNSncO/shzX0M08Wj66fvOP6TAQCq+7dEX64gAtC2NlpOmKNrF/VI\nqAEpK24o790kRvbTbRzwDnHtH706/nOgblmA1dRIeFLSdiCp83KWVtRAs3FgDvGU5X1TvyzQNmIV\nLzQGPJ2HV7D4E+7YUKoFVyusZPsGW78RS6HRqXYuVC4P0GjdNy9wRk3kBocBACRHtwxNy247kPRg\nSzQvNKa78L+17/mqqostJ/6hce003rRIAACFweKFxmiaKzWN5QAAup3ziIxi+FlYTXyrOfVtoMcF\n8WkMB1ddu0jXLqJa2Wpbatkjg+3jUsX/2Mga5tvjqh3RJyM0rJrcXZQHAHj0ry8AADqZWFVZKD74\np5btcQ+/WKoovaL/6JsveTcvHj2YN/r9h3O3ZAUkK9vFXzZ/HqSpTrvVbZixRDAjuvaRCt5QZA7x\n9PympuftW2LEwZNR9QZc1+9R2nAwC3gy+AgAMDQt235BSv+O9koZkA3Sli1bioqKVq5cae5A+o+Y\nBK9/9CoF/MbbL/rE8YNdAADL4DB13V2mqy8AgOHkZuEVpKq8DTfGu6QA17VsW9B+ei8AQNNcCatO\neLJGtxuiballufvJLh7h/2FZ656Vxtf6janr7trHpTIErl0/fVez0F3TXGnANF03vxMs/gSOndUK\nq7DWxvplgSx3P9uotW6eng4BE1/rKtFYOqirimvf8106XOVZn8cZPRUAIFiS5vlNDcPJjW7nPNQC\nBwAseM3T8YNdDit2ahrKbeYmth38k2DxJ+q6uyw3P8fEXWy/SfywJS3b4zijp+BdUt7MWBrfAY5U\ndEjYwZsWBf/zKTQarFmClBWC8KUdZ/e3fP6evuqmBZ2KK+RwRIB00zj5uf31K8aJvlyhaaz44zin\nJDzPbmGyzdvvq2tKFKVXeNOi1A3lzalvP/xiKRygyAuNYXk8nsKcznfgvxmPy6X2caleJxokxz9l\nPBkL4J390NRAFevZi71ONBhwHds3WFVT2vXTd+q6u7DmxVobGQ6uWGuDcNM8rLWxYWWI6Kv3YfFK\ns/c8/GKp/MpJos9KYbD0Sjndzlly/NMRGcXcsaEGtaI62kWvlCt/vqqq+IluLaDbOcNx/KwRY5w+\n3G3qW0Tj8iyDw4hfPY9V0rjW0tN7LYPfZA3z9c5+SOc7sH2Dh+/Kc9v7o33cBlXFDes3YoduyrKZ\n+4FDwnaYHdHrRAPbd8KDbTH2camCJWksjwB4hxIAwBkzbVj697zQBfCjsX5jYcPKEP7sRcPSv4d9\nJlwutfANVpRcgl/m7sKL6uriunh/VcVP8h9P69pFot2JnZezOGOmYi21Blwnzd6jrLihbam1fv1d\n3tRI56SDNm9/YBuxKnK82yg7+nRbzXun6sJ87ab4u8UowkXRX4QpC6cFegfGr586bVJN6iTinfbu\npnDGTLWevQgAAJ/AE325ou3v/9e4dlo/miVVZSFd4Eqh0fUKufT0XqvX5gIAWMN8e191QHobkMMQ\nB8HjR7hMQrNx6PfVASqXBy/FUGh0q0nh8IXHkXJdu8iAqR0SdgD42Gz7Q5jNge07ARMLdRIhAEB6\neq9txCriUAzHYerqYtt5HzJdPHmvz+f4TYY33ntgDvGw8BoLABAs3iw5vs153YGmj2dYvfaOAdM4\nrdkn3DSPNcxX01zZsGqy/YJk2+iPAACOibsMmAY4eXg5u0sykhxX7GxcO80+LpUYZEHUC9PtMQrD\nCgAAM3u6//UGjWdrF7WWYsGxnBhOteBavxELAMDEQs7YUAuPANi7giezFNZT+Wb4f1hu9do8AADb\nbzJnzFSGYChziGfH+QxcLjVgauu579e/P45u50znO3DHz7J+Y2HHf/6OK+RUCw5nQbLGqrJl2wKd\nTOy4YmfH2f2csaH2C5LhYXtU6w4JO2TfH2EN86UwWG57f3zxD45Co7P9JysKL/LfjBdummf9Rqzd\n/PXqmhLbqLWcMVM5Y6Y2pYQN3XzSgKkfbIk2YBri/p/xs88WPhM4ga/TbR9f/1HdLxQs/sRmbqLy\n56ttf0+CJyhOH+5mjwyBLYHxx21syCcneiyx8JlgPWsRUXWO+PoOAIDl9vghOZcNxyg0Ojwmd9ws\nYi+O32Tnjw5YeARYPGmzH79ZBst4CXfcLK+TzcYbuG4/CwBQlt8Q7V5pH7cBPnQ8dPPJrpsXuq6f\n5b+5VPnz1a7r51ySD3ddP4fhp20jVskvn2C6+nDHhsKoiP6o4x832klFYVdZ412tAodYRgc42HMZ\n3ZOr9sO57amUvgdqEsHT7Vz0Cjm8TqBXK7qunxP/Y6PjB7vgfxmAE1hweXqFnGLBkZ7eyx03U/nz\nVatJ4eq6u+r7xQ8eVil/vsoLjbHwmaC4cwWXS40LCnk+w8BUXV29fPlyX1/fvLw8U9vMnz//9wzp\nV9E8qJFdyhSJRP3bXXxsm+SbHX1vI792tj4xuDUjpS4hAC6p/3BS04Zw+bWzxDbV810NBkPdiiBt\nWzOx8MFni4nXfUSoFTU0rp/Z+cO/4N96dHKXwWBQlF/HuztN7aKTtz9zOdbRpqoq6vvtPFP7qd0v\nUoZ6HSY5kd6akWIwGNQN5eqm+1VRzs/csirKGetow1Xd4mPbsI62Po75cNdyvVb9gnESQeq1alzV\nDV9UL3BrSg57uGu5VtQA1yrv3xIf2Uzs1XXre+X9W21fp5qKlohZ86CGeN2/kuz3V/GlUNz9Eb6L\njpzDBoOhKTms/dRu4eYoyYn0qihnvQ578Nnihr+u12vVnQXZVVHOL17yv5Zo7ypF+XXRXz+qinJ+\nsD22KTmsLiGgKspZcfdH+bWzon1ra5f4NSWH1ScGN298B3408Kf4yOba1VOropzFx7bJb5xXlF+v\ninLuLsr9H8XZP2SuEiGK4Xnpckmoqqpq/vz5c+bMuXDhgq2t7fLlyxcvXtx7M39/fz+/xyd3ZJsP\nCUpNTf3ss/9VeisDrjMoZBS9Xlt4gTU7/vk7PMv/NMKXon8RGmTiZz6VjNffoY0IfBlxPcVUkNob\n39KcPWjuz8un97CW5mJ68gJVN2A/TmBqkIkplnxAf07q8ReP8Hdj0Ch7dHZ7ICLEm+/Rhr1olo1f\nCyu9pMraxonfqZcIaa4+FCs7oMcB21L115UUvgPNfyoz5G3d7RzGuDD1d/st3k3RtzVSHd2w0kuM\nsTNTU1O3xYbRRk6Gl20NClk/5ip76YznQ6qoqCgvLzdvPM9h7haxP1asWLFz5878/Hx/f//8/PyA\ngACdTtd7s6CgoN8/tl+F/CcsKMKXgvxBoggJ7Wf26XVYj4V6rbr3wh7IX4bkrxIH5KCGa9euTZz4\nOKHZ1KlTtVotMSEFgiDIb2Ebsar3yBQKg4US//wOBl6DpFKpdDrd0KFDcRwHAOA4zuFwurq6zB0X\ngiAI8psMvHtISqVy7NixPRamp6fPmzevx8JRo0YR85ozGIzhw4cDkmlsbHRzczN3FH1BEb4U5A8S\nRfjbkTPCpqYmDHucqlGlUt27d8+88fRt4HVC4ZjvzMzM8eMfT84WGBhoafmMWSlJXvQIgiCIsYF3\nyY7BYLi4uIhEj59Wk0gkKpXK09P0GCQEQRBkIBh4DRIAICIi4uuvv9ZoNACAjIyMsWPHkrCnjCAI\ngvwqA++SHQAgMTGxuro6ODjY0tLS2to6IyPD3BEhCIIgv9XAG9RAkMvlnZ2drq6uz98UQRAEIb0B\n3CAhCIIgg8mAvIeEIAiCDD6oQUIQBEFIYUAOauhNr9eXlJS0tLTodLqoqCjjVTiO//vf/75z5w6D\nwZgxY8aMGTPIFuGVK1dyc3N1Ot3o0aNjYmJYrJcwiXI/1NTU5OXlNTQ0cLncuXPnBgUFGa/KzMxU\nqVSzZs2aOXOmWcJ7boSmVpEBSQrQFJKXnrGSkpL6+vrp06cLBAJzx9ITSaqaPpCkqunDIOkhmZpD\nFsOwuLi4M2fOjB49evjw4efOnTNTgCYjzMjI2Lhxo5+f37Rp006fPr1s2TIzBQhiY2MbGhpCQkIY\nDMaiRYu+/fZbuLyqqio6OtrR0TEoKCgtLe348eNki7DvVWZHngI0hcylZ0wikSQnJ2/cuLGpqcnc\nsfREnqrGFPJUNX0xc3LXl0Sr1RoMBpj/23j5/v37IyIicBw3U1y/MBVhaGhoZmYmfF1XV+ft7a1Q\nKMwQn8HQ2fnLPEb79u2bNWsWfA1zq8PXfeRW/x2YirDvVWZHngI0hcylZ2zFihVnz5719va+ffu2\nuWPpiTxVjSnkqWr6MEh6SKbmkD1z5syiRYskEsnVq1dlMtnvHJUxUxG6uLgoFI9nBVWpVHQ63Vz9\naB7vlymWBQIBkf+KPLnVTUXY9yqzI08BmkLm0iOcP38eAPDWW2+ZO5BnI09VYwp5qpo+DJJ7SM+E\n47hQKMzNzd2zZ8+IESMKCws//vjjhIQEc8f1lK1bt27YsKG+vp7BYJSVlaWnp9NoNPOGhGHYP//5\nT3ijC+ZWJxJhUKlUMuRWN47wxVeZBTkL0BSylR5BKpXu3r37xImec66TBKpqXpbB3CDp9XoAQGtr\n66VLlxgMRlFRUVxcXGho6IgRI8wd2i9EIlFnZycAgMvlqlSqlpYWc0cE1q9fb2dnl5iYCAAwGAwA\nAOMbyHQ6HU78YUbGEb74KrMgZwGaQrbSI6SlpS1btszR0ZGcvTdU1bwsg7lBotFoNBotKioKXi4b\nP348j8erqKggz7dEr9evXbt2y5Yt77zzDgBg6dKl06dPnzJlCjHz+u8vKSlJLBYfPnwYnj3Bort3\n7x6RW12tVhOTepAhwhdcZS4kLEBTSFh6UGFhYVFRUWRkZEFBAWzLS0tL+Xw+eVIqo6rmZRnMDRKV\nSvXw8DA+GzWQLC2FRqNRKBTOzs7wV4FAwGQyhUKhub4lKSkpdXV1x44d43A4cAnZcqv3jvBFVpkR\n2QrQFHKWHkSlUv39/bOyssCTvsjly5e5XC55ihFVNS/LIBnUoNfrMQyDXwgMw4h+fWRk5KlTp5RK\nJQDgypUrSqUyMDCQPBGy2WwnJ6fc3Fy4TUFBgUql8vb2NkuEmzZtKisrO3jwIJvNNi5D8uRWNxVh\n36vMjjwFaAqZSw8AMH78+Iwn/va3vwEAkpKSYmNjzR3XU8hT1TwTqaqaPgySXHY5OTnr1q0zXlJe\nXg67zxs2bMjJyeHz+V1dXdu3bzfXKB1TEZaUlKxfv76zs5PP57e3t6ekpJjrP83Hx8f4VyaTWVZW\nBgDAMGzdunVXr14lcqubK6GtqQj7XmV25ClAU8hcej1gGObv7288Pyd5kKSqMYU8VU0fBkmD1DcM\nwxobGz08PKhUkvYIJRJJV1eXm5sbaSNEudV/I1SArwJU1fxGr0SDhCAIgpAfGRtJBEEQ5BWEGiQE\nQRCEFFCDhCAIgpACapAQBEEQUkANEoIgCEIKqEFCEARBSAE1SAhiNhqN5tKlSzk5OX0/iCqVSnNy\ncsiWQAFBXjrUICGvhPT0dGJSIsKGDRvMmNkax/GIiIhdu3Y9t0Gqr69ft24dMZkNggxWgzm5KoIQ\nYHLJ3gvVarVZ4gEAFBQUNDY2FhUVkTCfKYKYBWqQEOQXhYWFYrGYw+FMnz6dmIWhqqqKRqMRuaXl\ncnl5eXlISAiNRqutrcVx3MfH59q1azKZbM6cOc+cGrj3YWtqasrKyigUyp07dwAA/v7+xtO2AgD0\nen1+fr5arR41alTvA4pEooqKCq1Wa2dnFxISAhcKhcK2trYeSd5u3Ljh5eVlPCETgpAWapAQBAAA\npFLpsmXL6uvrQ0JC7t27R6fTDx06BBuhffv2cbnc9PR0uGV5eXl8fHxpaSmHwzl06JBMJuvs7JRK\npSwWy8fHx8vL60UOm5mZeeHCBZ1Ol5KSAgDYu3dvUFCQ8V6xsbEymSwgIGD79u0zZswwPmZ2dnZa\nWlpwcDCdToftzdGjR3k8XltbW1xcXG5u7vDhw+GWt27dio+PJ3I8IwjJoQYJeVXo9frs7GzjJUKh\n0NLSEr5OT0/v6Oj44YcfbG1tNRpNfHz8mjVrcnJynnvY/Pz8HTt2REdHgyez9RgzdditW7cGBwen\npKRcvXq19zE///xzKpWam5vL4/GUSuX8+fON106ePPnOnTuwpyWXyxcsWHD06NE1a9aMHz/ew8Pj\nzJkzRF75U6dOBQcHE+0TgpAcGtSAvCoMBkPe01pbW+EqvV5//vz5JUuW2NraAgBYLNbKlSvr6uoq\nKiqee1h3d3fYGgEAemRQ7t9h9Xp9Tk7O0qVL4UU8Dofz/vvvG2/g4uJCo9EwDKupqamurh4+fDhx\nwJiYmJMnT8J2EY7Ni4uLe7FTK4Y5AAACpElEQVTiQRDzQz0k5FVBo9EyMjKMl3z88ccdHR0AgPb2\ndhzHjefNGzduHABAJBI9d0rNPuYt7d9h29vbdTqdk5MTscTBwcF4g/v376emplZVVXG5XBqNplAo\niPtG77777ldffZWbmxsWFvbtt9/a2NjMnj277/gRhDxQDwlBAIvFAk9fcIMP/fzGOWP6d1g2mw2e\nngO7xxNIq1ev9vX1LSsru3379s2bN6OioohVHA4nIiLixIkTAICTJ09GR0eTc9obBHkm9GVFEGBp\nacnlcu/fv08suXbtGgDAw8MDAMBkMo2HjLe1tb2Uw5rC4XC4XG5tbS2xpLm5mXiNYZhQKAwLCyMG\nATY1NRnvHhMTc/Pmzezs7KamJuJaIoIMCKhBQhBApVJjY2MPHz5cWloKABAKhV999dWUKVPgcICA\ngICCggJ4n6a+vn7//v0v5bB97LVw4cJDhw7V1NQAABobG42vNNJoNBsbm7y8PNjxOn78eGFhofHu\nI0eODAwM/PTTT6dMmYImqEUGFnQPCUEAAGDdunVSqTQuLo7JZKpUqilTpvz5z3+Gq2JjY/Pz8yMj\nI5lMpr29/eLFi3fu3PnbD9uHNWvWNDU1hYeHs9lsDoezaNGiPXv2wFVUKnX79u1JSUnnzp0DAEyc\nODE8PFwsFhvvPn/+/NTU1JiYmF/x/hGEBNAU5gjyCwzDSktLvb29+Xx+j1VNTU1KpXLkyJEv97B9\nePToERz+0Ps+EI7jxcXFnp6ecPxeDwcOHMjKyiooKEA3kJCBBTVICDKoSCSSyMjIhQsXrly50tyx\nIMivg06gEGTwiI+Ph/eoEhISzB0LgvxqqIeEIIOHRqOhUqnPzKeHIOSHGiQEQRCEFNAlOwRBEIQU\nUIOEIAiCkAJqkBAEQRBS+H/SAK4OG8rfigAAAABJRU5ErkJggg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "iR=2;\n", "A(iR) = summarize_run_fcn(run_num_all(iR),ping_num{iR},1);" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "clear A" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "A(1) = summarize_run_fcn(run_num_all(1),ping_num{1},0);\n", "for iR=2:length(run_num_all)\n", " A(iR) = summarize_run_fcn(run_num_all(iR),ping_num{iR},0);\n", "end" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "A = \n", "\n", " 1×7 struct array with fields:\n", "\n", " energy_in_bnd\n", " si_W1\n", " si_W2\n", " max_W1\n", " max_W2\n", " ping_time\n", "\n" ] } ], "source": [ "A" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIVBQUiohfhAAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMC1GZWItMjAxNyAyMTowNTozNKnmJpMAACAA\nSURBVHic7J13WBTX+sff3dne6bDSqyBVUBTEgr1xNWo0scXEFk1MNPGnicaSxMQbE70xMdHo1WvB\nEjEaVFRUQBAUAanS+8JSF7bXmZ3fH2M2BJGYe28iuZnP4+MzO+fMOe8Uznfe97wzQ8FxHEhISEhI\nSJ431OdtAAkJCQkJCQApSCQkJCQkAwRSkEhISEhIBgSkIJGQkJCQDAhIQSIhISEhGRCQgkRCQkJC\nMiAgBYmEhISEZEBAChIJCQkJyYCAFCQSEhISkgEBKUgkJCQkJAMCUpBISEhISAYEpCCRkJCQkAwI\nSEEiISEhIRkQkIJEQkJCQjIgIAWJhISEhGRAQAoSCQkJCcmAgBQkEhISEpIBASlIJCQkJCQDAlKQ\nSEhISEgGBKQgkZCQkJAMCEhBIiEhISEZEJCCREJCQkIyICAFiYSEhIRkQEAKEgkJCQnJgIAUJBIS\nEhKSAQEpSCQkJCQkAwLa8+3ebDY/fPiwubkZRdE5c+b0LKqqqrp582ZdXR2Xy42Lixs6dGjPovj4\neJ1ON3HixAkTJvzhVpOQkJCQ/Pd5zh7Stm3bVq9effr06R07dvQqevnll+vq6iIjI+l0+uLFiy9e\nvEisr6iomDt3roODw9ChQ3fu3HnixIk/2mgSEhISkt8BCo7jz7F7k8lEp9Pv3LnzxhtvFBcX9yxS\nKpUCgYBY/vrrrxMTE5OTkwFg1apVnp6emzZtAoA7d+689dZbeXl5CIL88caTkJCQkPwXec4eEp1O\nf1qRRY0AwM7OzmQyEct3794dMWIEsRwTE2M0GrOysn5XI0lISEhI/gD+BEkNJpPp5MmTxAyTTqdD\nUdTd3Z0oolKpHA5HpVI9T/tISEhISP4bPOekhmfhnXfesbGxef311wGACDDa2dlZSmk0GoZhfW4Y\nEBDA4XCIZQaD4eXl9fsb2x81NTXP3YaekPb0z0CzBwaeSaQ9/TMQ7KmpqTEajcSyVqstLS19vvb8\nCvgAIC0tLTAwsM+id955Z/78+RqNhvhpNBp9fX1zcnIsFUJCQm7evNnntuHh4f91U/8TFi1a9LxN\n+AWkPf0z0OzBB55JpD39M9DsGWhD4pMMaA9p06ZNNTU1x48ftzg6dDpdLBa3tLQQPzs6OnQ6nbe3\n9/OzkYSEhITkv8NznkMym80mk4mIuZlMJkvmAgBs3bq1uLj4u+++Y7PZPYtmz5595MgRg8EAAIcO\nHQoLC7NMKZGQkJCQ/Hl5zh7S9evX169fTywHBgYCQElJCZF6d/78eQAYNWoUUcpgMIi88Ndff72y\nsnL48OE8Hk8oFB46dOhpjfeTwvdc6Dn1NRAg7emfgWYPDDyTSHv6Z6DZM9CGxCd5zs8h/dsolUqF\nQuHi4tJPncWLF588efIPM4mEhIRkIDPwh8QBPYfUDwKBoOeDSiQkJCQkf3b+BM8hkZCQkJD8FSAF\niYSEhIRkQEAKEgkJCQnJgIAUJBISEhKSAQEpSCQkJCQkAwJSkEhISEhIBgSkIJGQkJCQDAhIQSIh\nISEhGRCQgvQ/DqrR9lOatnT9H2YJCckAB9VoE6NmP28r/tKQgvS/jKFLfsY9CgDyP97fciebWMhY\nudlSQZKUihkMz80+EpKBhLpRqqiqU0ukFUfOPm9b/qKQgvSnp+DTAzj6+BOFRoVKVSexFKkbpQBg\n6JIrquqqjid0lVSoah+XVv7rPLFVd3EFAKgl0j/abhKSAUDLney8HfuIZeKvoPXO/Qfv7X6uRv11\nIQXpz4q8rDphyAQAKN57WNPSVn/xetrS9ee8Yy4Nn2mpo5W2uUwbl7JwHUPAj/x8S/5H++lCPtNG\nZFSosjfuKv/nWZvQAGWdBAAuDp2mlkgNXXKjQgUATcnpkqTU3894SVKqVtpm6JKnLlz3LPULPj3w\n+xlD8lcAR7E+w3FtWbllh04Ry/KyapvQAExvJOr/ofaRAAApSH9GcBRTVNV15hXp2juJNfq2zsrj\nCZKkVJ6LuGdNeXl12NZ1NqEBAMC0FrFsRPaRoXx3l0dfHfN9ZV7u1j2uMyZUx1+UFZTyXMT1P1zP\nenNb2aF4AGhNzy7ac/DfsA0zGJ7mbOEo1lVSQSw/eG93w+VbHblFHblFlf86b6lT+NnBJ0OIOIoV\n7z1s2fbJUllBKarRquokuVv3PM0wVKPtKqloSk7vJ0R5Y8aypuT0p5WS/E7kbt/bmVskK/jFp7XV\nEmnpgePE1aiVtj1tW1SjfUbl0LV3KqrqnlyPYxidywEAHMWkqVlCHw9VvcR70Qt5O/ZKUzJRjbb2\n/NUnrwptS3tXUdmz9Evym/izvu37r4xRqUp/baNosLfI3zthyAQal1N/6YZN6JDY+P1JExcCQHt2\nvl14cPKs5RQaErB2ybCPNhKjcPQ3uwBAK227MWPZ9NRzPkvnCn3chT4eaUvXu82c0JaVZ1SqTEpV\ne3a+rl3mPHVce3a+fWQYAKAa7Rn3qJnpCdemLvlb1kWO2IGwRFZQ2pScHvJ/q2vPX21JzYr+ZlfL\nneyMlZtfqs+yWHt7/tpR3+5iCPh1F69nrtmyqCWPQkOsA/1a07NRjTY2fn/JV8dsI4LZ9jZUGq1o\nz0Geq9hrQRyxbXt2fsGnBwLWLHGeNPrhjr0j9m3nuYgxgwHTGxlCPlGh6uQPXUVl8rJqAOCIHaQp\nWREfvyuOjbYYkLt1D2YwYnoDqtHRhfxH+485jo40G43BG1c1JN7ynDcdAIwK1a25q5jWVqkL1/mv\nWggAoe+tpXE5f8Tp/AtTvPcw10UsuXJLllfcnp2/uKMAAAo/Oyjy96o6nkDMeramZ+u75FOvnVBL\npI/2H4vcs4XYtqukQujjfjlm7oh9253GRPbTS/7H+7XSNrqQDwA4ilFoSK8KZhTrKqnozC2yCR2C\nMBkt6dlTr53IWLk5683tHvOmS5JSRP7e3SUVQRtWWDaR5T8yKlXWwf7/3QNCQgrSnw+mtchjzrTy\n705zXcXysmq+h0v5P89OTDhE43J07Z1Ma9GNGcuCNqyQFZR6L56NMJkAQKP9PLZyxA6zHyYBgLXQ\nDwBcpo0r3neYaS3ymDutLTO3/uKNskPxoe+t9VoQd3vBWutAv7Ct64jAWu4He0LfW9uUnC4eH81z\nEacuXGdGMQDAUawuIYnO5VSf+uHe+g9tQgOIWStde6d14GBpSub3fmOHfbyx8Vpq5J4ttQlXZYWl\nqjrJ4JUvN9/MCFz3asTHG9NffRdhMlGN1n/VwubkjOK9h93iJjpEhcsKSsXjolIXrhu5b5tdZFjp\nNyf47i6t6dlNyekvN2Vrpe3NNzN8l86xDvYvPXCCI3bwWhCna+8s3nekLSuvIfEmncsZffRzRVU9\nZjCgGu20m6cBwKhQpS1dz7K2yv9of0t6Np3LabqZIS+v5nu4tmfnT7t5Ov/jL+2Gh/0YNdstbkJX\nccWkS0dKDxy3ChycsXLTnKIbybNWuM0YH7B2KQC0Zea2ZubqO2ThO9abNFq2ve3zuBz+lKAarRnF\npClZ8vJq70UvlB44zra3JdSi9JsTqEY7+cqxcfH7s9/d1ZKeTdwVaaVtlf86TwgSZjAkTXw5fMcG\nTUubUansvy9FVR0RPOCIHdQSKdNaRNzNEMjLqh2jI66Om88Q8iP3bGl/UEA4ZDiKOY2JVFbV8YID\nJD/eaLmTXfDpgclXjhXtOci2t609f3V+dcbveYT+opCC9KfEZ/ELbnETL8fMBQCExcRRzCE6AgD4\nHi5GhYrO5ZQeOBG8cVXgW68+S2t+ry1g29uIY6M9500/aRc66dIR+8gwCg2ZmZ6Qu3XPvfUfdpVU\n2IQGUBCa28wJ2Rt3ZW/cNfb4vqbkdM9504V+Xqecwr0WxDmOjmy6ljb66J7Sb05+7zeWaFkcG02h\nITiKlR46Nf7cNwIP1yux89n2NuPi9/M9XHxfmQcAPBfx4JULRf7e1oF+AJA08WVVnaQpOV1eVi0v\nq5714LL7C1MQJoNtb6usqpOXVbdl5gJAxsrNWmkb38PVNiyIQkMsd69se9vGxFtB65eH79iglkjv\nrtliHxnmMXfao/3HiAoMIX/SpSO156/eX//htJvx16YuQTXa6G92WQf6lX5zwiY0YELCIQAQ+Xth\nOn1XcUXhZweL9x3GUWxCwqGCT7+hc9mSa2mq+qba81d9X5lXeuA4AAi83csPxYd9sI4jdrCPDEM1\nWoTJfPJO/HfCqFD1HGEvDZ8568HlnhWIqcHa81ebrqVOTz33LG3Wnr9K+I6/2l2vn8/IlXHzASD0\nvbUZKzc7RIWXHjjuMW9647UUnssg4qjahQdTaAhDyMdRjMbloBqtulFKoSFlh+K7CksHTYwJ2bha\n3yGjIjRMbzR0yb/3G0s4WACAarRGhcrix+MoNvth0uWYuV4vxaUtXa+qlUy+cozGZavqJM6TRhsV\nKqNS5b9qYdmheIfoCNuI4IA1S4gNhX5edReS8gOGR61/3Zh6R1ZQWpeQ1FVcYRNKm1+d8W/sNcmv\nQgrSnxKmtYhpLZp2M/7RV8eMChURiwOAyVeOGRUqo0Klb5dZ/iB/FUuIDACiv9lFaBtB6Htrf4ya\nvaglz6hUEf3qu+TWgX5312wJ3rjaJjTAedJopzEjAMAmNMAyhCFMJtvelu/hkr1xl114sDg2ymHk\nUKGPBwBMuxlvCbhZ6Dn2jT76uSQpVVUv8V+5ENMbKDTEMjEW/c0uOpeTPGs5R+yAMJm6dpltRPCT\n4/7cR7csy7lb9/ivfNk60C/mu1/kTdmPCPOYN13k740ZDEQUEQCivvrQUsFt5kQAAArVbDDMSDnX\nkp7tNCayM6/IMSaS5yqWl9dMTDh4beqSgLVLESYj/6P9mMFA5NNH7tlS/t1pprUIMxj4Hq5hH6zj\nuYj7HLXVEmmvOb9nQS2Rln5zYvinmwHAqFChGu2FkMkvVqTlbd8b9dWHRJqloqpO6OPRcifbOsgv\nbcl6Cg1R1UnsI8NsI4INXXKmtairpEJZVec+e4qlWcsgjqNYd3l15potTwpS5b/Oe86bfs47xjrQ\nb9rN00alioIg57xj5j66xba3RTVaGpdDdN3/LqAarXXgYL6ni9vMidhXRutAP7a97dCt624vWMN1\nGRS4blnIxlXEGXGdOcEuMlTfJqs5kyhNzWLb23ZkF+i7uuXlNV4L4or2HBT6uGsk0qqTPzCE/JY7\n2UTsrnjfkZIvj449vs9l2jgAYAj5PBcxqtH6vTpfWVVHRZCkiS8zrUWoRhf97cdse9uOvKLgjaua\nktN7+rjR334MAIV7DqkiJ7NXLJUdPQUAWmkbqtE5T4wh1eh3ghSkPzEif2+O2EHX3kn4FvBYCZhs\ne9tfHRSeRq9hiMblzCm8AQBMa9HjTgd7iwZ7ERMtBETShIXHQzlRFOIPAD2D7wiTSUQRnwbPRdyz\n8Z4Q48W0m6czVm6m0pDxZw/wPfv7hj0ABKxdahsR3GcvI/dtA4BFLXn9bG45GiJ/7147AgA0Lid8\nx3oA4Hu4uEwdlzTx5aANK/I/2u/32vzivUe8Xorzmj8zZf7agDWL763/cOS+bd6LXgAAeVl16Tcn\nHEdHZq7ZErxxte8rc4nR/Ix7lDg2OnzHeqKvGzOWuc6c8OShaL6RXnHkbN35qxMvHbm/fifT2sp7\n0Qt52/fWJlz1mDvdqFQ6jYlsy8x9tP9Y/cUbIn+vyD1bb8xYxvd0sR8eShfyO3KLnCeNrj2bKElK\nJQQJ1WiL9x0xKlSV/zpvExqga5dppW00LsfQJS/ee9hj7vTsjR/Ly2omXvwue+Mu4rrqKqnIWrdN\nI20jgmnSlKy2zFxtS9uEhEOJUbPnV2d05hW1ZxeEvreWsLng0wPOE2OUdZKW1CxMb7QND3SbPYm4\nToibIeIeguPkIE3JJM4LAdG+UaE65x0DP12EJoVKK23jiO0pCGLGMGlKFkfsEJd1MevN7SJ/L7a9\nrbysOi7rYs57u9P9RwynKBtpvPo6HQDQuRzRYO/27Pz51RnnvGO8F72Q+frWwJ3vNFy+6Rg9rJdb\nSVylZoNBxxPyaBQi+xQAxp7YaxM6pJ9rhuQ/4TkLktlsfvjwYXNzM4qic+bM6VVaVVUVHx+v0+km\nTpw4YcKEX13/F8QhKpzjaP9H9thzvPhV/Fct+j0evKVxOTYh/sTA3T+EYPwbGM24GQcWQumnjiV3\ngxhVZ2YkUBEasWyRrgkJBy+ETAaAe+s/lKbcswr0NaMYZ5Bj7tY9wRtXF+052JaV25lbHLxxFQAg\nLEbxviMcsQNDwBPHRnXmFTdcvmkdOLjin2fl5dUTEg5JklKbbmY4REd05hYnTXx56NZ1AWuX4ih2\n1jtmyuVjeTv2UaiUsK3rMt/4wGPu9IC1S0oPnLAJDXi5KZswRi2RFn12UHItrS0zxyrIT15WrZZI\n01/dOGLftsw1W16sSGMI+JjBkL1xF13IvzZlsfOk0Y/2HxuxbzsAZKx6j+/uXPHPcwiT6TFvOs/F\nqfb8VetAP/vIsObkDDOGYnpj7fmrAECIBxG6JHym7pKKmrOJfA8XfbuM7+EiuZY26dKRJ49n0IYV\nlnBZTxhC/tRrJ8q+O+06c7xosHfu1s8V1fUIk2nokjMEfGLmj21vG7RhecU/z3kvmi3w8RD6eDAE\ngru51cLKe912g+q60IUbVrDtbWlcDo5iDCGfiLmN3LetSYtdchi52FoEANUqjIWAMwexXAMAYBQI\nOw04ANiEBrhMHdszX8aCHsOfvFQ0KM6l9Xf9kDzJcxakbdu2Xb9+3cvLq7S0tJcgVVRUvPjii6tX\nr7a2tt65c6dUKl2yZEk/6/+aiGOjIfZ5G/F0KDSkZz7Ff4vfJIr/HvF1+moluivsN0RmnvT89BjO\nETuEvre2u6RS4OPuMnWcWtKc/urGl+qzQjevUUukQh93ABi6dd21qUucb/44JtC5YPcBrrNT9sZd\nsx8mqWolkuup6a9uDHzrVYGPR+FnB4v2HAx9b23QhhWl1+/iBmPA32IBgEJDCGmM3LNF1y6zGx6q\nlbb7LJotKyj1W76gpz08F7E0JSto/fKR+7YRiYUUGu3FilQal2PxBWk0jiUC3JOxxz43dCsyX99i\nExrAc3HyfWVewacHOvKKiaij69SxIn/v1IXrrAP9ukoqiABpY1Kq57zp1fGXQt5bax3o15lbdG/D\nhxyxA9dVbAm03u80efMRWyYVAPgeT/V3bSOCY37ydDliB317JwC4zpxQvPcwABARAvvIsKw3txXv\nPUxcHmYMDfxqt7xZYnj3PQzHCXdNNNiLeJmWJeamNOEmLo9YPlWrE9ApGwK4LTpzsdxUJkexqLEa\nO0cMx5nWorBdm5yGhxA1H3aZhlrTAQDDYW+phkGFNwZzGzSYJw8BgKtNBpnRnNCg/yCYN8yG3v9l\nQ/IL8OeK0WjEcTwtLS0wMLBX0cqVK3fv3k0sp6WlhYSEoCjaz/onWbRo0e9lN8lvp1xhet4m9EGH\nHuvQY0+u/6FBN+9ON2p+/FOqxXSWH8+GVIvNTOkillG93mx6fJXmf/J1vRq9227oWflBfu3MlC6J\nBiXsab2bYymqqZR8kCuXVTecDxivbeto02E4jr+RrThdq1UYzRJN3xf/s2Ax6Tehl3Ub5Epi+YRt\nSM33V3qWVhz7/oRtCI7j8sraE7YhDz/6MnXJ2z0roHo9qtdbfs5J677XYcRxXKrFalR92GM5hhZK\nD54iuiBQ1jb2bFxeWauXdeM4fuNvrx2cuuqEbciR1Ip3c5USDXqrxXC2TvePUrWlfpsOy5MZLV18\nVqLeXawmOn03VzkzpeuGVD8zpet0rfarMs2uIhVRraDLSFQ4XqO9ItH/2Kh/N1eZ2mog2jlfr5uZ\n0vX6fcWmPGXPvgYCA39IfM4PxtLpT719uHv37ogRI4jlmJgYo9GYlZXVz3qSAc7GPFW30fy8rXiM\n0oS36Mxxqd3HqnXxtTpiZafB/GqWglhWoXi0Hf16s6Fdb77datyYpzxeq9NjeK92NCj+xDoAgK/L\ntZckensWtV1vBgANlfFdnUGP4avuKy5MXfp9vf5Cg/5Era5ahSVKDOfq9d9qrT8K5a3JVv69RPNR\nkbrQM4hoJ7PD+HYTt0BpfsR3nFp4U863Xn5PkdCgBwAliu95pPn8kQYAqlXYk7b9Ks+SB6hBezfb\nM236pfqsXpOOPoteICYdhT4eizsK1I1S++GhPSv0mkTk0ihKkxkAvqnQnqjR9WlDrz1j29v0/NnT\nr0KYTKGPB9NapEHxVt8gfML4ts0f6O2cWnTY9/X6L8s0rTqsTo0BQFqbsdNgXn5P0aQxA0CpAtVj\nOKPHcIhQIHGclRv38SGiI9CgefwEblqrEaFAhRJNaNA3arEQa5obF7naZHDmIEoTrkLxEbb0ICsa\nnUrRk297+I0M0Dc16HQ6FEXd3d2Jn1QqlcPhqFSqp61/XnaS9EN8nY4Yji00aZ+PIH1bqS1VoLVq\n7H6nCQAwHN7OUa66r7BiUOvUmNKE6zFcj+FlCrTTYCZsVhrxJV5sHYYvv6f4skwjoFNFdOqGXNXe\nUs1HReocmenvJRqjGV+WpbjfaSR6KVWgiRIDAByp1rbosFI5usqX8329/ttK7YZcJRuhHKvRdRvx\nwm7Tch/25kAeB6Fkdxpvthji63RfRPBDrOjLvTl1amysAyNfhv69RBOX2p3SYgwQ0sY7MpKlxpcy\n5KdqdQDQYTB/NVzQojXzaBSjGTLajRvzlGfq9RgOShMOAA+7TMktv23qbmmmokX3+OwQIoTh0G00\nv5QhJ9rskyefHabQkJ7pnTHf7Sae2eqTYjmKUECmN+fITCFWNC6NktxiSGjQVyjRnkJI3MdYzGNa\nW/XZ2tfl2g8K1ADwsMvUpjcnTF1CmTldPWGyFqhKE57WZmQhlE4DbsOkAsDeUs3lJgOXRsnuNLpx\nkc0PVbdbjMRcEQHRnRWDCgB6MwholBad+e8lGgDQY3ButEhApwDAtWaDMweJtKNXKNG3/DnfVmiL\nu02bAnnWDKrJjNMH6Pg6cBmgWXY4jgOAnZ2dZQ2NRsMw7Gnr+2ykpqZm8eLFxLKdnd3evXt/R4tJ\nfonRjJ+r13vxaXQqYDjUqTEujbIlX/V+EK9SiSqN+DJvtg7DbZnUahXmwUMQSt8zw/8hFUq024jn\ndJpEdEqFElOazN585HCldpYLK86F2aTFAKBUge4t1VQosWE29FU+nCoVas9iYDhuxaDOdWM1a7FV\nvhylCbdnUacOYi66KwcAXwGNToVqFebMoVYqMTNujLFnFHaZLjQaHnaZ/ATIEi/2xjxViBUtu8ME\nAB+F8p3Y1DXZykUe7CPVWmKYm+vGAoCFHmylCSdGtzgX5pRBDAaVAgAaFJ8yiOHERmyYVAzHq1WY\nymTOkZlOjRKxEAAAPwEiM+B7I/gvpsvfD+Lld5mSpYZvK7WnRokSJQYNihd2oat8OZsfqnYP5RPt\n94nShLfoMIQCV5v1dSpsVxj/pQz5nnD+BwVqMZsKAMVyU7g1vUlr9ub39qiMZhyhUP7tk/bPKu1k\nMTOn05TVYdo9lH+mXhdfq1/uw96Yp9o9lF/YZRpmyyAsRCjmVfcVh0YIndjUO4iNcPL4J1sjNLhB\ngx2s0M52ZQHAWAdGrsxU0IUSFQKENC6NYjLjGhQPENKSpYY4Z2Zik2G8E6NFZy6Ro2Yct/nJqSVU\nkFAUpdGsRygIBdQoTuw1g0qxZ1FnuTAQCiAUCBLRdoTw/AS0BR6UT4rVCAWcuVS5CRnv2F9C6R/D\nhg0bOjo6iOWamprna8yvMkAFiQjllZaWRkQ8fiZGr9ez2eynre+zES8vr5MnT/4h9pL0pkSORtsx\nyhRofpcps91oy6TOcmHF1+k+KVZvCuRelhhO1enSWo17wvkbcpV7wvlKE/5Rkfr70SIMh7RWI5UC\nlUp0uQ+nZ55SgwZ7O0eZMMYKoQCGg2UcbNGZndi/uBdt0ZkLukxTBzG/LNOyEDg4QjD3jnxDAFeH\n4m/nKJUmfLUfB+BxPpWATv26XPuWP/dYtXaWK/9MnT6r3VQifzyKveXPBXicbiegU/ZGCOxZVAGd\nUq3CbrYYgqzozVrsYqM+UERr0Zm5NIonH5ntytJhOAAwqJQ3Bv/sQ3wTKQCAEXa9w9Q91YJQIwDg\n0ighVo9rIhRKgJD2j2GCnlu95PH4sp86iBlqRRthS1+aqZg6iLmtQOXERiJt6UXdaHydboQd/Uy9\nbpUPBwCqVVi30dxrmp2Q2JfcWdmdplo1RqSWFXShegwXMagMqjm+Vk94Bl8NFzhzEJMZZyGUUgV6\ntcnQrjdH2tLHOjKIrIReFHabuo34WAcG9JWHRrQ/350VbEWjUoBLo4joVHsWNcae4cRGztTpLE7S\n91VlWfJBAJDZbpzrxvrBbLvs758AwAcF6g+CuQwqRYP+7IvcbTdG2NKzOkzvB/H8BDSlCb/YaNgT\nzq9VYbkykx7DnblIhRL1E9JKFWikHeNMvT7GnjHLhfX3Eg1CgbEOzNs9nEvi1iG/C2UicG60KL5O\n32kwE+dob8TPp4OFUIgcBzcucmiEEACi7RjRdownj8kfT88bccsN+oBl4AqSWCxuaWkhfnZ0dOh0\nOm9v76etf36WkvTBt5Xaa82Gt/y5X5ZpWAgl1IpGp1Lmu7NmODPb9GZPHmIyw4UG/XIfzt5SzftB\nvL2lmhadebozM73d+HW5NkhEc2Ijt1uNtizqQg82AOwt1aS1GQFgkhNzdlr3+0G8+FpdrCMjzoUF\nAKvuK3YP5QcIH1/MDRrsUqO+VIFWKlEBnbJ7KB8AiApKE+7MRYJEv7jsBXTKmRgRl0YZ78gAAA2K\nL/dhV6v6drstXoIHD7nWbNgQwLVjUf0EtJ2Faj6dejxaSJT24+rZs/7LcZzXfR9r3jeRAoQCOTKT\n0ohPHcR04yGbH6rOxIgOVWpzZCY9hp+p0zuxqT0FiTiqnjzkJQ/29w16JzY1AQVc6wAAIABJREFU\no91ky6Seb9AfjxZqUDyz3SQ3mfUYPm0Q82aLoVqJOXOQF91ZFxr0CAU0KC4zml/NUuwJ539UpD40\nQsilUVp0ZisGhYVQEhoMZQr0erMh1onxdbn24liruXe6z8SImrRmDMc3P1RNGcQEAD8B5Uz2Zr8R\ne2Y4MyOtNQpdmzPHPkdm2hsh+L5ex4GOLPmgIE5NjcHzcuUdZ6AHiYZ3Gc2LMlqVKFNmwK0Y8FKG\n/MhIIQC4cZE8mWm2K+tKk2apu/Fu9bXhni8bzbifgOYnoOV3mVqVdSECblqrA91UDuBJJMVZMai2\nTOqmQC6PRmEhlEOVaM/DuyuMvyVfBQAMKsWGQW3WYrrfPl1H8ow8/+eQMAwjYm4mkwl6pDnMnj37\nyJEjkyZNYjKZhw4dCgsLI6aOnraeZODgyKIu9GAHiWjfjxY1ac1ZHcYKBQoAXBqFGALGOjCIG2dC\nA643IxuH8OxZ1EV35fYsKobDG4M5y7zZnxSrC7tNp2p1nnza0SihGYcqFZrcYvikWC2gUy406o/V\n6KLtGKt8ODelBj8BzWTGu434l2WaahV2JkZUrULpPzkchFwJ6JReakTQ0w/bEcID+PlhlKdBxGpc\nuQixR6PsGRj+i3EqcVzfUx2/H8RexNg/vjEPENKOjBRyaZQX3VnHqnU5MlOAkIbhcK5ez0YocS7M\nzA7jQ5nJIqIYDtH2jOvNhnlurG8rtVYMqhUD5rsjALDKBwDggwK1DZPabTSvz1XuDOEfqtSOsKMn\nNOj9BLSNeSoAuNZsyJWZShXoW/5chALjnRgOLCoPr/q63HXqIObbOUoMhytNhvg67VgHJoaDN58G\nAN0aaXHzLTOOMajwrztzbbguS6P2Hw6XcVj8RrWWbUi3RksD7CYUa70cWOxPaoOWeNJSm1uomvvW\nYDpeQFsaugAANj9UAYCIQa1WoTZMKoNK6ejOSn70zSjvhWdiRHkNieFucSyEYjApW5rPphnfddL+\n8I/hswEiAKC6/YG96wjCyctrSEQgikujhf7kngaJaAljRHPvyAHAnk39oEA9QFyf/0mesyBdv359\n/frHjy4GBgYCQElJCaFJr7/+emVl5fDhw3k8nlAoPHToEFHtaetJBg5EBJ/Am4+UyqmCfqd3CQ0A\nACc2NdaRSYTLuDSKExtJlBje9ufy6VQirtVtfNzOqVGi+DqdKxdp1GDTnZl7S9Et+So6lVKmQMc7\nMT4J47OQn0NevxMXx/4sOb1ihgMEwhtz5iAfBPOUJrxJi11vNgDAwy5TnRrtNOBEyIuo7MZFwqzp\nCQ36jUO4fappjAMdoVDGOzKISRSlyRwoos1xFSEUqFJh7XrzQ5lpuQ/HaMY3P1RxaZTFVqcCGbz8\nhqvBmI2iRjp28MG7aEdmu7u7/BUp/xgAVdl5BhyXNnWX2vBcGmVFpS1pY3yXuVoHfXptMooZ/Z1G\nSw07FnuGVFcnzPT7IqPp26l26OUudkH1dQn1jc+GRX5572CW/j2rJj0AdBrMAODMpRZ244V1xz8Z\n7H/07tYh4nFGVFvfnn0+d3u4W5wtw1BAcbBlMyfzG6ksvkwtMZg0AMGXcjd4iU7QqMyjmWtlaonW\n4Violc+mQK5lxxlUChHz9OQhXBqFmHok+T2g4PiAdj+VSqVCoXBx6f3E3NPW92Tx4sXkHNJAAMOB\nmHh4lsp6DNdhOBG7v99p+qRY3XNw1GN4XpdJbsCnO/c9XfxBgXqwEFno0fe0IomFzQ9V3gJkuXfv\nNLmek3P9o8dwOvUXGQ0ag5zLFAFAp8GsNbQl5r4bOGh8iMuUnLpLgYPG77+9AGNF+jlG1zZ8KWQ7\nLIk5mlV5yEHgdb1k/99CNl94+OGcodsCnSew6fw2ZXVFa1ZG1YlszvmLY62ILs7nbv9b6KasmnPX\nS/Zr6UH7404Udqk/KDSJ6CA3PTYg1t6Q0s4cql3sKnSbP2zXd+kr2pTVAMBn2bhaB9/rxDr4/7fL\nv+Ho3bUvDd9d3ZGNYaYfVfOWOWZ1a1siPed+k7okdvCKu9oxTKbLlmDBE3sMAJDZYfy6XHsmRvTb\nDvfAYOAPiQN0DsmCQCAQCPq4Mp62nuSPIafuoqtNkIOg9+xdY1cxm8634ohpyM9hDdxspAEAPFOg\ng4VQLNI1wpZuCShZSqPtGLUdud+k7h83eLm/0+hem28cwu01nupMKjZ9QL8K04xjVMqvRAjvVseP\n8n78XrvjWW9NDFjjKPQmtiI233wh7IMZqYQePAvvB/EYfTl1z54yZzlN3Vopjcrks2w+ujLujdj4\nkuZbDBo7s/r0lCHrhnnMBoBJQ9YAwHvTrqv0sq9TFi6N+hKh0px4DnOGbtt8IWxexM5wtzhfxygh\n+3G+uIPAW6FrV+llF6dZWeyZF7ETANxtQgFgRfgSABjE5VgZ/tUNs3nQrgZ7ACiSJAJz3pzQt7UG\nOZcpGuYxy9U6mEZlKHRtepNK7BJ4sIbtaRuxcvRhd9uwvIZENoMfHxsMELz5QlheQyIA2PHdvNme\npXIUnoIzByHyF0h+Dwa6IJH8t2it6LD3tqEi/2lkqbo9247vfjF/lxVX7GkXMWfoNgAwotq71fEO\nAu9zOVuZNDaNylw55rBKL3O2CqBSkHM5WwZZBYz1W0a0YES1hEgwfu2tQihmlMnzrewji5tvcRki\nB4E3ajY8kqZeL/mKTecfz3prmMdsZ1EADWGEOE9BtTgVoQo4jwcLlV528t76NeNO7Ewc/eqoA972\nkU8O+kZUy6BxylrSuUwrV+ugntIlLW0TBzzr69LblNUCtsO/J3t3q+MrW7NeHXWgWysFAC5DxKBx\nzDimM6pkGomzVUBK2eH0qpNGVOtpG4Gajedzt3GZVvtvL7DiiAMHxdZ3FjDpXNRs9Hca/dGVcctj\nDtrx3YVsh6TifdOC+nuPXz+J4L0482BzqMs0a674yfuP41lvTQtaf+Hhh+42ocHOk/ksm69TFk4J\nXOduE+pqHTzI6hdv3RWyHYRsh3kRO3veRswf9nGIyxSitGdlB4GXv9PoJ9XRhucKAEGDJgCALZO6\nK3LEmgIYIyyc6Tt+Q9aj4e5xdxofEqUAYJFwscgPADAcgmzNNITqaRcBAK+OOmBploYwUMw4acga\nX4fogqbej+L2xI2LbBzCfWoxyX8GKUh/CfQqw7Hl54dM9Jm2aRyN+e+fdJVediRjtbtt2LTg9VcK\nP9ebVGq9bGnUlx9fnWhEtQDwzqSLXyTPXj/xfFLRvuLmW4tH7h0iHqfQtdnxPQDgXM7WMNdpPxbs\ndhR481g24W5xdnz3nuN4UvG+UJdpxPDRrZUeyVgtU0sAQMh2YNDYCl27GUfD3eJ2xKW//0MEAFS3\nZav1Mqm8okNVr7lrXZ/fuGzb69aDrAAgp/6HVmUNcdt79O7aV0cdYCBsPsu2WyuVqSUGVOtuG3Y8\na92mKVczq087WwW4WgftTBxNOBknjn1WHa9zeK96StCbYit/rUFuw+svOLzv5jxv+8ho75ef9NgI\nLLGsJyloTLLiiOs78y88/JBKoQGAq01QTt1FKgUx4xhxKJaM3KszqQ6nr9CZVADwStR+KhWx4ohL\npXeCnCfTqHRCupq6HyUV75PKK8b6LUuvPDHBf9WvSj6BzqTSm1RWHLHlLJe3pNvwXL5LX+FqHdTY\nVVwoueFuG7Z81MGejm9ZS3pZS7qLdSAAlLVkpFUcC3OdPn/Yx/33Fe4W1/NnmOt0ANCrDCz+L2Kw\nQrbD0qgvn9ycz7IhXCUCZ6uAhR76cY5z7VnUeY51sZ6j6h9NBcjvs2uE8tQUx49nZW+9FDnSawGb\nzp8iNkc9kZpP8seA7Nix43nb8Htx8eLFF1544XlbMSBIP/Jg1CsRjn72WSfzfEd7AoBeZfg3lEmt\nlw11m3Gr9ODSqC9vl32HmU1mHKvtyAl1marQtW2eelXAtgt3j7PluXWqG1qVVa2KKj7LTqZubFVU\nmsyGezXncut/DHOZ1iwv1xkVOfWXECrdzSYEAFDMeLc6Pr3qZKe6wUHgzWfZXi/Z7+80Riovnxm8\nMV+StHXGLSuOkx3PfcqQNxEqPb3qZKTHHDeb4EfSlMUj9+U3JtUY0nQBJcV3iij26itFewok10f5\nLEwq3jdEPK5DVS9TS26XH1Zru+89TCyqS6GycBadV9R0M7XiqIjjxGVYuduGPqj/oVleRn3kngGf\n2XtbN1Fyqtrvl0pTK9uyGDROWsXRU/ffmRCwmjgUKGZEzYYGWeE3aUtoRm6btqpQct1J5GfPf/zh\njyuFn1txxXSEgeP4jsRRsf4rKBQqACQV7xOw7Q6kLKYjTK1RTqFQHzZeeVD3w+Qha+dG7JCpG+/X\nfr806ssCSdLikXszq0+r9LIXh33kIPC8XrJ/e1z61MB1HIaQUHE7vruQbc9n2ToIPNl0/mjfJeWt\nGTE+i9R6mYPQm8+0EXGcnjyJTd2lArYdihnP520PHBTbpqw+m7PlZum3N0u/He4xR62X7b42tar9\nXrO8jEXnsxmCacHrOQyhh+1QM45ZcR+LlsYg3397AQDUdOQsi/7Kiiv2to+05boMsur9Ve+y21V2\nnja9jfiJwqtlt7/Oyvjng6GzAhE60iWRs4WsJ6upOzVXdqX4j/dWd2rOL7mnk+sE9jyOFRsAAkU0\nIr0wwCGUjVAsJ+i3Ejt4BR1hAgCfTunzsar/AQb+kDjQkxr+Ewb+DN7vQZdE/uPOm0sPzSGic+c2\nXqEzaDKJfMWJBQBwaVty7NqoivTa5H3p72Ws+Q8jeJsvhC2N+rJFURE7eEWvosau4vO522IHLz+X\ns3W07xIGwkbNxmjvhWYcpVJoxzLXLh65l0Xnf5+ztV1VR6UgI73ml0rTOlT1QYMm1MvynUR+MrVk\n5ejDRGtZNWejvBY80f8vSNicFPfx2J2XYn0EMS/H7vz46sT5wz6u68ibFrxepe/8+7XpTBqHrrV6\n0eXLloqObrfcQt33GoPcju/eoar3to+sbs8e5jHb2y4yJeEaFlDfqW6gANVR5O1sNWRa0PorhZ9T\nqYhaLxvuMUfSVeJpFy6VV1S3ZyNUWrT3yyfm37B7p3Zs2KLKtiwqBaFTmTNC3t18IWys37LKtiwD\nqpWpJRP8V3naRRQ1Jdd05LhaB1OpSE7dRQBYN/4slym6lP/JeP9VzlYB8FMgsVsrJVwWha6tVzjr\nWWjqLi1oTBrjt4zP6i0Gmy+EfTwru6r9/pkH7/FZNkwax8U6yIojvl6yf9KQNTQqU8h2sOO777+9\n4MO/ZVp8rDZldUr5kULJjZeG786oOuFqHRwgHmvFEZtxzI7v/jQzGvObz7575f9ur+qz1IyZT665\nuPib2dWZ9R113U6D7U6uufjSvpnEPVPihzdRAzbrw0n6hh/P/93MtWJ7RblJCqShMwM4Iva1z+94\nDncduSjsadewsk0NAAIH3m89dP/DDPwhkRSk/zWS96Xz7XltFZ1TNo7JPltAY9Cil4ZbSqWlbbkJ\nRd3NypELw5pL28atHvmf9EUMbT3DOATqTg3Hiv1YEXO2jvSa72od1GcLZS3par3M1SZo3815W6bf\nIkbPNmV1l0bqKPS+ubNgyHjvIZN8f9US1IBe2ZUy68NJuYU3Wu4YZq6L61VBoWtjUrkXN6e8tC9O\n3alJ+jbJNPHBvIidDBpHpZfdKjtIpzI97MKt5AFflU6bO2y7LcXn3tnciWvG9gzWoZjxu/TljV3F\nDBqHCFHGDl4R5bD06t9Tzaj5pX1x53O3N3YV2fJc40I3Hb27tkNVPy9iZ079JRqVYdKjsnqFFc8p\nKDwio+rEjOCNnnYRLYoKX4eo33LIf4FRa7oX/3DkwqEMTh8hpr9fmy7kOMwIftee786gcRS6tgt5\nH04asvZczpZIz7nZtQkrRx+hIYzs2gRiek9nUmVUnahuyybWF0puhLhM7tlgYsHfNcZumVpix/eo\nqyl3y14ybG6wd7R7PxZe2XXbqDNNeXcMR9RH3mPpzSqNXDdsXjAAHFt+nopQX9oXd3H7jbCZAeIA\nh8u7bo9cOPT2gUys+8H4/1vtEen1xeQj1i6i1469SGxefL2i5EbF37ZP7LPxb+efGjTEIW7bxCeL\n/rL8CYbE5/mq8d+Zgf+u9f86Jr3p1JuXcBxvKW//cWfyqTcvYWjvbyt8Nv5QXY4Ex/Ebe++k//OB\nZb1OqcdxXNWhrrnf8IzdXS3a22uNolX1jxlHv1t8JutUXv/b1uVIiB6fRsWdmtsHMq9+mtLntr3W\nSAqllh5Pv/0jjuOqDvXpt3/818qEomvlxPqqu3WWOhc/uKHq+MWnAR4lV55++8eDL8UXl2ZhZhTH\n8SOvnMNx3KAx9qy2KSGU2OvM6jOXC/YYTJq6HEnuheJrn6U1P2pV67s7VY23y747kLK4ubt8b/Jc\nHMcNJo1c2XH0te9ljd0XP7jRzy7rlPqa+w1tVZ391Ol1HI68cu7rOcefdiQ3JYQS/5K+St6UEPrl\nrfmbEkKLmm7u+DGmVHqnV2ViTw0mTT89tivrNiWE4jh+ftNVWWP3d4vP9FNZ06298P61R8mVj5Ir\n+6xw+eNbluuzLKW64sKnOI6b9KbTb//4+aTvJIVSHMdNshx5yiRDc5L64bv1l16XNfzi4Mgau0+/\n/aOmW9vdrOh5QqUP713++Faf1/9fmYE/JJJzSP8L5Cc+snGxQuhIYVKZg4+to68dz5brN8YreOpg\nCrV3olL0knCRWAAAXiPdmopaM4/nauW6+6ceFiaV5yYUSx+11eU2BU7yNenRkuRKR1+7vjp8jI9D\nbwcr83huzLJh41aPvLX/rlvYoD7nAwDghy3Xc38oNmqNHhF9JwuYMfO1z+/EfTChKKk8YIJPzyK5\nVPnt/FM+Ue4Ch5+zIWqyG63EQmtXEQC0lLU9uln58NKjCW+Oilo8tOFhc+73RQwOPe277AlvRtNZ\ndAAQOPBufZ1ZnlJdfKOio1bGt+Hm/VAy4/1YjwgXz8F+xGRPU5FU6Cj4es5xvh3Xye/xZ3k97SI8\nbMO5TJGLdaCvYxRCpT+6WeUS4uQx3OXOd9mhU4I4DKEJM6RVHJs9dMtIrxcBAKHSixOrPSJcXMMG\nFSaVBT7d4Tsw9ySTwyhMKg+eOrifw24hN6FowpvRjj62TSVtYv8+Phw82ndJasVRT+PEMsEZF9bQ\nqeFrIz3n+TqMLGm+Fev/eMrEclQ/iz3kEuRk597fGecyRcQkTemtqvA5QbL6LqEjn5jLeZKCy2XO\ngY4uIU7F1yt6OlLKNjWTx8hPfGTtIrJcYDbONGrtcpbXSoTB9B/nRWn9R+ALi4BCNTb9yHCcYJLd\nwzGtwG0og9IEZj2mLEd4HgDAFrJcgp0u7bhZm90oKWgZPM4LAMy61uTPk0a/Ph0ANDKtrYf1sxzM\nvwIDf0j835y7+0tRnVn/4Gxh2qF7epXh4cVHQVP8nn3b6KXhUzeOZXDok9aPXnxg9rIjc1/YNWX8\n2qh7p/IvbLlWlVGXvC/djD3rNyNQA9pW3ekc7AQAM7eMv7o7tc9tG/Obbdyt3ry4tD63yag19Swy\nY+Zb++8CQGtFx6AABypCZfGZWvkvPpPz4FzBsiPzbu6/Ky1tu7X/7qGXT2cez2subh0UaI0pSgFg\n+ItB3m4/LNo/2dHPjopQIxeEjl09oqW8I3jaYEtsRxzgMH/PjLm7p83fM8PJz/785qQpG8dwRGxH\nv5+HY6GT4PiqC28lLtOrDEm7UwlTPe0iek2ZtJS1OfrZERrfJZEDgIt1UM+UazNmLk+rGRzrBQBc\nERs1oJb1xP+V6bVmzKxXGQQOvNi1UWw+8xmPuVyqFDjwvKPd6x409lmBQeP4lS9fNH3HpIC1DiVT\nPO0iiNjpG7HxPZMbzZj5zPrEpYfmVGc1PEu/TUUtDr52AOAb41mT3XfXxF77jvbg2XIV7arOuq5z\nG6/oVYac80Xfzj+VvC+9LlsyZKIP4Bhx1jBVJZXtiMruAwAFbfYPyDK138FUlaaOdIZ4Gm7sAszA\n8lhqkt3XVX6trzls6UgkFrz82dCX9sVRaZT63CYAKL+dT2Mi1i6ikOn+OQlFvQ7ms1/PJH88pCD9\n6anMqFtxcoGsUX5y7cVxq0f81jwFkVgQFjeEmPsltnX0sytPqwmLGzJ39zTX0EFXdt0+vupC5vG8\nXuJxaVsyMW9sofDqz96MrYd19JLwK7tuP/n3X5RUHhY3BABC4wLyEx/1LLp3Kj/zeJ5cqqxIr/WM\ndAUAz+GuNfcbcWM32p0PAEatSdYoF4uLwyYxS29VDZ0duOr0y7KGrsKrZTRDvuLOdIMkgWW46OIj\n15f/lH+MYwKRMnppODFX8SSDx3m9fm7Rk/MQHhHOUUvCebbckQuHDp0deGHLtfZq2ZObG7Qm4riN\neDks60SeUWvqrtLScwLzfijJOJqTsDnp8OKzAeN9iDpO/g6NBVJiw2PLE85uSDz62vkb+zJq7zc2\n5je7RzgDgJ2XTWddd5+m9kSvMlARKvGPxqD1km1LHb7KgyPgRA95EZPTUAOaeTxP3anpVa0+t2no\n7EDPSFeikYTNSU1FLf10LSlucQl2AgD3COfm4taeRZbGH92ssuy1GTVf3J4cMs3/wNwTaplmU9pq\nvj0vdm0UGNv19fHKjBcwdY1Z28Tyft0ovWY2dGCKUvbgd7TlX6hz1rB83wIKwhDPpFmFAgXhDd3H\nH/EvoDL1dScAxwwN5wBAcXusWds0Yd2om/vv/rDlev6VxomrxADA4jMDJ/te2XVb2aauzqwHALlU\nmXKA/J7nwIV8DulPjCY/lRs2btrmcdqijKiwplptGDGI/+dY5o0Hj/MiwiCV6bXnNyfZuIiYfAbP\nhluZUcfmMyvSay2jvBkzl96uWrj/b5ZGPCNdzaj5yq7bM7aMpyJUZZtarzLwbDlGrYnQv5Dp/ufe\nvRK54PEXRZuKWrqb5C/tm5mf+Kg2WzJmRSQA2PMTb1/wlWTdUElKzKIZWrk+ZlmEqfOop1Opj58v\n13kkAExaZvIaPhqVpyNcN135FxSGtSD6vKk1WX4rhhe+H+3O11V+bTXlYT/7i2kaNHlvUugCpstc\nhvMsTF2D8Lxcwwa5hg0ySq+hXbmOgR/M2z0t8cNbPjEePX1Qo9bE/UnJnIOdipLKk3an2nnZuIWJ\nUSM2aIjDyIVhPdPrHbxtJMUtnpGu9blNQ2cPIYS5taLjfnw+x4o1eJQ1ALiFietyJfbefaRKE8/r\noAbUjOGN+c0ekY8DngETvAuvlo1cOLT0ZtX5zUnvZaxRyzQPzhaaMbPfWC+ijsdw10vbk3UqQ31e\nU8/TBAClt6pGL48EAJFYUJ1Z31HXlXEs56V9cUatSVra1lLRHrkgtOeNTltFp+WsmTGzXKoUiQXl\nqTV5F0uYHDoVoeo6a7paWa9///jTfNM3x7L4TMTc+NbZCJpVGI5qRy4cCgCKlBcoDCth7C1d9UEK\nlcl0mQMAitTJuLFbMDqR7fuGpUeGeGpPg5nuL+vKvgBUoy37jOk2HwBMsvtsp2mvHRzVnjyX6zmP\naT2cqBkWN4SKUFMOZGnkuvq8JmWbesrGMf1cCSTPF1KQ/kyg8vaOY9ud1n9L/GzetdA3QYqbDNrS\ne5RHqS7N+2B11e/Ute9oT9/Rnp11XWqZVtGmCp422G+05/XP0wCgPLXG2kXUXNoaONm3l3/mHe2u\nkesOzD1p721jJRYAQP6PpX/b/jjxiYpQhQ78LolcJBacWXuYa+8+acNoFp95dXcqEW0DAGr711T8\ns5CxGh6lAVNvEI5ORISemnwDKi8CCqIt/4ImDDI2HHMVcdEuYPm+QaHQGM6zAIDhPItmF63KWkSh\nC+jWw3Bjt67ya86Q94F43Y6mgcp1AwBT530wG/TVByk0rtnYbWxNNjRfRrvzRZPumVpTGE6TDI3n\nAADTNNA4zrM+nJRyIKvgcmngZF+PCBeBAy/t0D2X0MeP5hjq46dtWmBqv0O3DwUKIr8VQ4MgXLkQ\n7KItB0Q8xOHBuUIAuBf/cN7uaZimAeG6OfrZ6VT65kfNYa6vQkSFOMDh4cVHtdmN2WcLPCNdvSJd\nOTxN6aVTNZVBeqWBxqSZUSODjdTnta84uQAAcLPBc/igoqTy6sz67HMFrx178fCSM05+9sPnh5Sn\n1fiN9iS69o/1qnvQuHD/36oz6xM2J8WujbJ2EQEAakBVnRriFsE3xuPwkrOrTr9ccqPiXvzD+twm\n7yh3BptxbHlC9JJwe1GWddhidacGNaKWEz1q2bCUA1mKNlVoXMD8PdMJ9W27NEpNm08s62uPcm1G\nIJwA1b3tZn2HcGxSd9IQ67g6s7aJbhfNCdoJALhJiWMGROCHCANYHksMDedowl+85aEXDMdJCNdd\nkToZEQbgJiXdfgymKNOpa7HufAa1DW06SvWeb6kcMt0/ZLo/AGQez7Nxt+ozJY9kgEAK0gDCrFFS\nuf29oA9tl6gyfyQECVN1AYD08xW6R/cwVRfLK8Ss7x2K+fcwtiYzHCf1WWTrYd1zitioNZkxc+aJ\nPI6I1VrR8dblZU9uEjLd32+0p+U5/Enrf/Eug+Bpgwt+LBaJ6cEBp/xe/ED3cCYn9haLz7Rxffxe\nAwpdMGujjaHhFo47Y6pKVF6MCANwHBWOTkQEfuqcNbr2O4Lo82ZNvSI9jj/iXz0bpzLtOAGbaNYR\npvY7ijvTcEM3IvSnWYXpKr7ETSqE78P2f0dffZDKdmT7/x+VaWc2dCDCALQjE7Mfo0ydTLcfoyl4\nlxPwvrEtRXF7LH/Ev2jWwyasG4Ua0PrcptyEooZ8qcXLAQBN0VYA0FV8SbOLplmFsb1X0+3HaIq3\n03sIEhWhyiTyM+sT3cPFVOiW3x5LuG6Ozi3lqVoam4nKi2hWYVVZ9dqu9hc+nVef21R48a6qQ+7A\nS5u1/U0mjwcAmvyNuNnA+mQvjUHBNA2qu/NYnstm7VxxcN6BKcsUzsGnF3EIAAAgAElEQVTz5uya\nautuRWPSiPk8Ao6IPf3VWipC9R3tKXDg3z2Wo+rUWokFVIRKhAoBQOyNhcUFiAMcrF1EF7Zcn7d7\nGoNDN2ubhoyLKUspTzyYG7VMeOe0duq7PzsZjn52L+ya0uukc8VDOHgBABjqT+P6dm35F5zB7+CY\ngcqyQ+VFAICpKrWPPmF5Pr5gcFTDHDQTfnq3E+H09A/C90V4Xgjf1yS7T7eJ1NceozCsEIEfzSoM\n7c6nMPpIZOj5/APJwIQUpIGCsbm6cdNU71O9XZz6t0a7f5lOLJs6mizr9ZV5AGBsriKUifgfACrn\nir1PVVFZXADoOPGR3ZIPntEAIk6FG7vVD1ZZx9U9yyYOvnb5P5Z6RDjHro3SynVPm77q9VaYnjgH\nOyXvPsHnKyYvtNIUbMZNSn3didcOjqEJHgejEL4vpq4BhAkoSrMKw1SVmKaBQuMiwgAAYPm+oSv/\ngkLjIMIA65nVT7ZPd4gFAMagmQBAsx6mzllpak9nOE1lOE0ytt1WP1hFYVhxQ3YTlakcZ2ITOgDT\nbT6FymQPfodCF5j1rXT7Mar7ryBcN8G4GwgdbFQveK2+DTDEKE3C1CyE5wU4hvC8dFVfc4J2mjX1\nYDYwPV8FCkJBeu/78qNxqqwFOI6pczgsz1d1NYf1Vd8O8eA5vjmE5f26OncNx3/T2KlFHj5ZTPYL\ng8d52asmMMbMpNu+aqp4nxG2x6xtojCscH0rQtWaOvJV919heSwxybIZrnOXvpdDQbgA0DM1A0e1\nFBpHV/YFle+hK/+C4RCLCAMc/eyIB3TkUmVVZr0lCKlImTBt9T7ilFnCeqr7r9AdYv2HOgeMjDv5\n9r0x8wyDAn56zAvH4Ik3BJo6MmlWobjZYOq8jyqKOP6bgMpU3V/Kcl+IdufrKr5kea1QZb/GDf6Y\nbv9Y2PiR/3zaFdIPwthb+prDhroT7MHv8O3HmA0d+uqDNNsRaHc+5dnemUQy0CCTGp4DuMmAm37+\nTLKhsdys1xD/6t7o/ZiksfnncVZfU0R3dK9dHqpMv9D86VIqi0uhPb6lwI0/N4jJOwAAlbV0J37b\n8sXKnq1p8m7qyh/0aZW+5rCp876p4+4z7YLZAABip5LED2+GzPBGu/N7RkIwRSlufDwtr8p+De3K\nBRxT3p2nuv/KL3qs+tbYct3OGR0cVkW3H4Mbu4WjE9HufLTpKKFtuNlAoXHR7nyE58kN2skdus/U\nfkdbtIXt9xbRAk0U1MsrehqMQTOpbEem20JMXsQQTwUKwnCcxHCa+rTQEIXKBAAKXQAA7MHvsDyW\nWE0tZPm+YaiPNzYmsNwXqh6sVN1fSqFx1dmvmXWt+rrjTJc5Zl0rzSaC5fM6y2uFZaQ2Sq8ZW5Mt\nLZvabjM9lgiiz/NHHGe6zddXfcvyfFUYvtXBLpsxaKZowl197VFnSiKNHtudNERb8hHNKszYfJnp\nNp9uP9pQdwJTlNJEQYxBM4zNl40t10STH3CCdjIcJxobExCel6UXs64VU5RqCv8hvxWtureIgjA0\nD9/hhe/X15/ouZsi8f+zd+YBUZRvHH93Z/Y+WGBZbgRBREERJPBE8UrzKJIkr8oyCzVNzcyw8so0\n+0FeFaWZGKWJ9w0qCKKioCKIXMt9Ltfe58zO74+xjbjCUnat9/PXzDvvzHzn3Xff533e95l3+M+9\nMphmFGuLv9VVJaK2o7QlB3BZPmGQ//5L44DAAAAGyVW6w6hXP6gSMn42NFw2NFwBBN56IRCT5uKq\nCk3B/wiDXJm1WJ7+sjpvI90lnOnxurZoB6FrpdCtKSibP+oI3eUllu/HRnU1w30uBWHTRGMIHKtc\n82hyqGRePwLHfr8nVr/zPUwq+cuflYLyDU03UesAxGogTTQGUBAKld7D7hTEAoEekhmo3/meUaty\njk4gd5sSvjCqZLazPwQAGOrLO+bHFS2ah7eMKpmm4BYFQQ1SSeuJPQw3HwAABWU6LIk1atWSfdFU\nJseokgMAMKmkbud7DNf+dm9sUN48CwDQ15TU/W+R1cT5ioyTdDcflk9wx7uwB21Q3nwDUBCacBjZ\nrQa/969xRRGVYUehWwMACKNOU7hDV3HIevIdK8Mua8cFjKbNKnG+1bhL8rQZ7EEbjKoK9cNtFISD\nq8ptppfg8nxD000AAN1pCoXK0NecxuQPqXRrhlukrvIwQNlTNx0wqqspND7LZxUAgBsYq8xaTBjk\nytvvEJgKtRulLf6WN3wu6b5QUDbHfyuV0d27Mt3A6BPZdjioJ0NDJsiQB8WNeQSm5o86wuoPCExF\n4AhNWakp+B8AgDXwQ8RqYDttNLsx+vokCspR3VmB2g7jhezT15zhBGwnixfhetLsRrL9PgEAqB9u\nMyoJhIMAwEX4Yar7DaI3f1bcmMdwWUbgNKNKrsqqp9BP0BwHqXMooje2t14IZLi8RN4OtX1OlvI8\nf/Qxbel+g+SqvgYjiBSD5JyupJk/6nvUTk93nk53CaeyXfQNV4y6RgqNr3n4PypzkDrvZ+up8ar7\n61gDPlRcm4s1CpXZMlXObIYbExWOQHgcuuMUhlukoSWLyrSjUBkEJqeJxqgffkllOqjzNlKZDljz\nTaOm3iC5iivFrP7vIzxvwqgjzTnb9xNcUfSnMqQyrMZdAgBYhV0EABjqy7XiHMKg04pzKDSGLOmg\nYMoCAICu/IH6wXVd2QNV4wV9rZg/bjZZ2ztCsxvJDfjKtMsduqujxwZ5hoAGyQzg8hbj7x6S+n46\nlclGOHzSlgAAjFoVOeAGACATDZKquv8tYvYLFL2xHpM2Mtx8UDsXCoK2HN+tSD/GD4sEAEj2RdOd\nvUpe90EFInnaMZZ3oDIrmT14NJVjhSta6vescI5OaPzpMwqCYo1VnaqiUBnc4H3akm8BBcEVhUZV\nBWo3Unox2HryHUXmWzS7keTQluruaobrTKOmDhA4jcNfuLkYUBCa/Tijph5QGfJrr9BEY5ieb9Ps\nx2tLvtVXn2C4RuCKIgrCQG2CUMHgltNerP7LDU03jZp6tv9WmnAYAKBdI053eUkr/gGxDtBXJlIZ\nQgCAyY/hh5560r9G5xA4hjXX0UTt39tleLwGKFyy1aPQ+BUfhFq/+AKuTLSeVkChMqii9hFcJhPI\ncIvU5G8xauqpbBfS8QIAAArCG/7zoztq3qzb8R7N1hGX6+2XbJMlHyT09tzA71rOnJBfSm/kBDPd\n/QCdwsZPyM7rraeuwJqnElohexAAACA8byrLARUMxqWYXLxAnoLzJ3lQEAOV7aqrrqze/FmfmH4M\nN5+iCCf3r39WZS/D1dXAaACUegK/pXl4WHr+NjdwoPSiDhjrAW6tyUOUGdXc4bXWL4xV3JhnPa1A\nU7iD7b8VV7RwhmwHFFR+LZwXso8wyAmjTnVnBSIYzOy7gMDVCM8b/O5cAgAQq4FIt7EJusoChpuP\n4tqJ+j0r7KO+Ut9LJXCMZucsv5poO2uVLPmg8tYFAADN3h3h26CCR2/+tp1qpbJd6GwX0wXJPhPk\n2QUO2ZkB098Ja66r3hipvp9O5fC1pfcBAAw3H6z5j1dAcJWM4e5rkFQxPP01BbcYHn7c4Mk0B3cK\nggIAKMgfnUGagzvCtyEvLkuK541+2VBfTnftT3d015U9YA8ejdo6AirC8PQ3arqMfaCgbJbPKgrd\nRp37ma7ysDpnHd1pivzaK6h1AADA0HCl9YwPoCA00RiE08fQdJMmGmNouEyzCaI7TVHceosmHGYz\nvYQXso/Z902E04cmHKm6H013jSAMcm3pj6hgMKAgvBG/MvtFMVwjsJbbpDVqh7YoW1cq0xTtptmF\nUtkugMB5w3/uvqFpNwTaKVhzXduCBQAQONburD+No4pzyhaHEAZdu1ARusOk8iURWHOdaShVU1BL\nd5hkaoW7AhUMojDs1Pc/YXi8Zko0jaAa6ss1+TdcNx3njX7ZdvaHNJErd9jU1lPflb+/QHP/DgDA\nqJJzh00VTFzVelKPWDtI9q1rPfFTU8IXBI41xm/SlT8QTLwBKEjL0Wx9lT/Th6GvKlPdk3ECFitv\nnuUEhDXuW0c+iK5KbdRMF0xIV97W4IrzFEpfbfFOKtq/Ys1ko4KFNRs84rLctp133XiK0HEU1+t4\nI37VleTRnF+t37Vb8v1HVLYLleUgmHgDUNn6umaE64krSpr2X6Q7R9TF7id1FkU4dV8Upl9EefOs\n7asfNsZvEr76IW/YNCqb3/jTZ8qbZ5W3LvBDZypvXXBYtgsAINkX3bBnxe+lfavk9R4tYwF5FoEe\nkhkgcJzckF7Y77blNCZtNEiqtMV3bCLep1ARrLmOgqAIz4a0W3RnL3XuNZqtIyYQUWh/avX4YZGc\noY9CqD12X69YOQ4AQA7Ek0McCN8G4VrryvNodi4AADI8r37ne+IFfi4bEjUPbgimLJCe38/0DmR6\n+psui3A9MWmu9QsPWs/5CibeMOoaKSibwNTytBm8kH2kcUIFg9V5GzlDtmrL4lHb58iuMRlBYAK1\neY7KdEQ4fXgh+3BVOelVkEaI7jSFfLOEtApUJkeeclidf9NhSWxj/CYKgrKHAtQmgDf8Z0BF/rKt\nr4uNInAcGDFyFFRXWYBLG9mDR7fN05SwxahVOX34oymlYc+KdinFsz36Ha6kIKiusoC0E9LzP6pz\nr5kGV000//Y/2eVfSAdUX13GjPyeNGbkDyRPOUy6re1geS8lDHKE08eUIr3wE93Zi+UTLNn/md0b\nGygIyg1+FLHG9PSXGvYCAAySKu/EWkXGSWa/QJrIlUL7WZN/gzSuDHdfVfYlnTinKinePuorRGDH\nG/kizcEdV91rPYYJ53zBCZhTv3OLy4ZEbfGdipXj2INHN/70GdZc1/DtB6gNyh6EsH3X1m57Uzhv\nLW/ki/qakqaDmygIigpEqECkLbpjqC/nBE1u/nWTobGK4e5n1OtM3knzkZiWxK/7xmUT+sWY9DuD\npMpQX26oLyfNHoFjZJ+pIzWfz3WOTiBwrOKDiZygidzgybVfvmkdvpSCoKJFW1m+w6Xn9jmu+p5C\nY7jvSEMFIodlu+p3vofaPAoXNM0ztaXig4lUJocmciUNGOTZxdI9pJSUlLVr165evTo+Pl6n+6MD\nW1xcvH79+jVr1ly6dMmM8h4XAseMKrlRJUMFdgAAXWUh03soN3gyauuoK3/AHjSK2S9QK84pWzqi\n6dC2oggnQ305w91XV/6A5uzVd++9dldDeDZ05z8+4kll84Wvfujy6WEKglJoDI/d11GBCLEW6WvE\nCO+PKFiWz3O4oqVi5bjW098ZtarG+I3aojugzfQVwvXUluJGjdYq7CKV5YAKBiFcT1QwiGY/kWY/\njnRWKAw7XFFEQVyswlJJa2Q15ixpq8jHNEiqqCwHcsIAUBByvp00P3U7lmqKssic5ctDJfvWlS0O\nUd1L1VcW6CoLUGsRhc5oitcBHFBQ9l9aIwCAUSXHmmtVd1PI3YY9K5oStpQtHdF66lsAANlEUpgc\nTNpIZqj54nUAgFacY+oZAABwRQvCs2k6uEl560LFynFNv36J8Gy04vvtOgEAAG7wZMKIu24+QXPw\n0BZlOyyJrd/5nmRvtHiBHzkbX79nBXlfAseq1r1kmpxHeN6oTdAjkd9+AACgMjlYqwSTSlCBXduf\nksR6xrucoRNtZ60CAPBGvkiOH3ICwoRzP3ZYtqtPzBXHFd/Wfvmm9Yx3XLec1hbfqf4sguXzHM3B\nvSlehysJq0mvAQA89+cx3Hysxs/x+CbTeW289fR33Xek8cMicRmQnjcw3Mei1r50Zy8KgjLcfNqa\nXo9vM123nG7ctw7h21iNn8MbOUMw+Y2mQ9v0NSWyy7/oy/Pdtp1v+O4DRcZJ/piZ2qJsfuhMZVay\nQVJF5fDx34vaBFm7jCq56m6KVpxTHOlmO2uVw5JYAIDXz8W/e/wob/g0XN7CGz4NAEB39qJy+PzQ\nmf0OV2rFOZJ90biiRfPgBvjdLMnTjjYd+hIAoCt/oBXn6H+vwASOkT99ybx+5K8AAGg984NRLQcQ\ny8aiDVJcXFx0dLSvr29oaOjRo0cXLlxIphcWFkZERNjb2wcGBm7YsCE+Pr7761gOmgc3ypeHAgAo\nCKorf0B3dCfTUWsROQTEGhDcfOhL9uDR2qI7TE9/Q30ZKrDTFmWjVn89je+6+YRNxPs0kWu/w5UA\nAJqDOwCAyuYrb11oOyfMHz+nb1y2c3QCd9g09f1025nLNQW3dOUPypaOEC/wUz+43vjTV9o8G1VW\nMsLzVmUnq++nK26cafj2g8YfbjUlbCEvgrA9rcZeFr/pj7VqcEVLS+LXbZXoyh+ULQ7pqLD5SEzD\n9x8ZFS2agmyDpMqoknMCwhTXTrAHjSYnt2s2vmr3xgZdZQGFxtDX/SlWyjQupxXn6CoL2h7CVTJy\no/XMD/W7lgMEdd1y2n1Hmir7MgCgZF6/4kg3ecphtu9wsllUZSdXfxahrymhMh8FB9d++Wbr2b2i\nRVsBFa398s2+e+8RBh2VxTE0VhMGnfp+es3n82TJjyZ7KAjqsCSW5RPMfe55AADd2Ys9aJTy1gVe\n6ExZ0kF52lEKgrae+rZkXj/lrQuGxir5pV+MKnnL8d1ky1gU4YQrWmSXfzFIqgAV0TzMrNnyGnfY\n1I7FxXD3dV57gDRInRx186E7e9m9sYE9JIzh5mP3xgbHFd8yPP3pzl62s1Z5HSjoeAqFxrCe9jbd\n2YsTOJ7AMazRSEFQt23n2/rHbTNTmRybV1Yy+wXazlrFD53JCQjDpY3y9GMN337ADZnC9PS3XxJr\nPeNd1MZBdS+VP3ZWy9EdtV++yRkc2jY0lKRs6QgCx2SXE2zCl7Yc3WE9I4qMXwAAmGZMyZt2jF+g\nIKi+qlB6fn/FBxNbju+mO3uRv6PmwQ1N3nVFxkkyjym/puBWY/wmAIBRq1LeulAc6aa4cabxp88k\n333YaUlCLAeLNkiHDx9eunTpvHnzpk+fHhsbe+vWLbVaDQCIiYmZM2dOVFRUZGTk5s2bY2Ji8DZd\nXUtGnZuO8G1QW0dm/+cq107jj5tNppMTtgjPhsrkEDgmfPVDrTiHHRCmKbiN2joBAMj5ob8BJyCM\nyuIggj/sGQVBUVtHTkAYauMgvbCfHRCmyDhZ8cFEAABpEnTlD9gBYeqcNOWtC62n4uTpx3Sl99lD\nxrptO2+QVGkKbokX+NV8/lrFypdRW0dc0aItyWk69KXixpmW47sBAEURTmQsRtvRFbKF0uRdN6pk\nhBHXFWdXfTy9bOkIlk+w594cq0nzDfXlusoCm5nLUVtHXN7C9huhE+e0fZDarxY1JWxR3U1pPvSl\n9MJPZKJWnAMAQDhWWHOd9bS3ZckHafZ9yGekICgisFPcOMMZOpHh7ksYdNxhU+VpR41aFcsnWCvO\n6RNzxahVAwCaDn2Jy1u0RdmsAcHC2R+6bEgkfw7h/E8cl+2i0Bjy1N/sFm7WluUBALDmOtrvrgx7\n8GiP3dcBAAwPX1zRYjV+dtOhbX1irti+srL1VJzThz/qKvLZg0PVudfqvo6SXtivKbhVFxvF9B4q\nu/QLAKByzRSGu69o4RaGa3+239/8KpL1tLdNbTFv5IvkaJvtrFXdv2FNs3UEAJhMQjfwhk+zCf9j\nCR+rifNbEr92XnuAFzoTAIAKRPzQmYhApBXnkCNmgikLrKe/I0/9TSvOkacd1ZU/KF04hLQfzYe+\n1NeIbWYuV91N4Yd2uea000c/dUwkcMw5OqHPV8mEQWczc3n58tCmhC1YSx3dzacuNgqQoUA0BgDA\nUF9ev/M9tu8IrLmO5RNcv/M9x1XfNyVsQW0dWf6df2AeYjlY9BySk5OTSvVoSlmj0aAoymAwAADX\nrl2bM2cOmT569Gi9Xn/9+vXRo0d3eSHLAJNKdOUPEIEdai3iDZ+mrxWbOoOPvBkmB5AjGDQGAIDZ\nd3DL/XSAIAAAuutjrOHdFiqT4/FNZqeHUGuR+n46I9rXdfOJqnUvoQIRy3e4fdRXNZvn0uxcjCpZ\n7ZdvWo2fYx/1R1it9Yx3K9dMsZ4RpcpOxqQSm4j3AY6rc6/xhk8jp50NjdUIz0Z6YT9q66ivKaE7\ne7Uc3cEfO6t8eajz2gNML3/51aO2s1ap7qXS3fpzhoxl+QRTOXzU1pGUyhv1IgCAbHTkacc0xXdZ\n/QLYg0MVN85oCjJV2cmKG2fYviOMv7tElWumCKYsoHL4uKKFO2yq3RsbCBwTTHnjkdqpCys/nu6x\n+zrNwZ2c/JBe+EmVfYkf+rLV5hMAAFwqUdw405L4NT8skhw+AgCwfUcAAJzXHmAPCaMgqKG+HLVz\npdu7y1MOK2+c4QZPZrg/WpqBgqDkD8dw9+MMncj09Cf9EkN9OTsgjOnp3/DtB7azVgmWxAIA9DUl\n5ctDHVd9zxs+rWrdS5yhE3kjZ/BDZwIATPNGvQbD07/PV8mmB+k5LN/hAACyZEyJqK2job4ctXOh\nObhzAsIAALrvVpMvGNGdvWxnrZRe2M8bPq3l+G5yiq7fr4/9npDorc/Zg0eTN2X7jnDZkCg9u5fQ\n68jJURKy06YpynZY8rWuPE9TcIvu7CWYupA3fFrd/xaR1eBx7wvpZSzaIK1fv37t2rWlpaU0Gi03\nN3fbtm0Igmg0GgzD3N3dyTxUKpXNZisUCrMq7RGypIO2r35YFxvFHjgctXW0X7S102ykWWL7jqA5\nuGuLsmn/zEPqBkRgx3D3pSAoyye4z1fJioyTdCdPKpNjNX42wrfhDJ2oK89v9x9mevrbzlrFGTK2\n9dS37jvSdJUFWHMt1ljluOp78v8vXuAnnPtx66nvrJ5/jYwaoIlc5WlHAQB1sYtdt5yWpRzmDp/K\n8h2ONdeRjRf43UFsu0oF3dnLqGgxalUqRYvy9kWWz3P2i7bVxUbh8hYqh4/LWxq+/0iWFG/3xgaE\nbyNJ+ch0ETIe5JFa76FuW04/MvYcPgDA9pWVDXtW2C3YQGYQvvaJLOmgw7JdpEVsiylaxDRPThh0\njusSqDQGo8MAF2rr6Lz2gGmXGzyZtDG4ooUzdILpiUhrBAAwquWcIWNJa2QWKAj6N6wReaJpyscE\nw83Hbdv5tol9Yq4YVfKWE7upbD5v5Eslr/s4RyfYzFzeVaTDX2Jy5qwmvYYI7Ni2joq0Y+oH17nD\nppIv1WkKblFojNKFQ1BbR/slsTQHD03+DcRaRBa4w7JdaBvTBbFYLNog1dXVyWQyAACHw9FoNDU1\nNQAAgiAAAHZ2f4xBoSja6ZCdWCyeP38+uW1nZxcTE9MbortAV1kgTztqM3N52zGfdrS1Oi4bEgEA\nbtvOo7aObltOm17CeIKwfUf0+SqZ3Ga4+5paKFOEmNPaAx1bENtZq8hZerqzFyaV6H6PpSbbhX6/\nlhE41pSwhRs4npxYctmQqBPn6GtKGuM3Mdx8SB8CFYjaTRW4bj5h2vbYfR3h2Ti8/w1h0NV++SYq\nEFnPiAIAtBzf7bjiW3Juv3xFmO2sVYLnX6PQGNyhE0te92k7LGmC6f2n5ctoIleyYE0lQPpD3WAq\nFtOCTD3HYUls2zeZyMYRAIDwbHD1M9CF6pSOhYDwbNpGzTzKxuEL535MbpOO0RO5u6kbJ5z3MZVj\nJZiygLRVRRFOVA4fk0pwRQvCt6EyOY3xG4Wz15CZzWj7zc7KlSsbGx/FmIjFYvOK+WvM/cnaLsFx\nPCAg4MSJE+SuRCIZMGBAXl6eXq/39va+ffu2Kae/v39ycnLHK1jU93prv3pbkXmeIIiiWa6qnLSO\nGYpmufa6qL9P8VwvgiBUeRkVH05uPrar3dHCmY76ujJc86dvhONK2d+4kabknq66uGN64UxHTWFW\n292/cXFzoSm5p614aG4V/yrI2qUpuUfWBCNmKJzpaGhtMLcuy8KimsROsdygBp1Op1KpHB0fjaXY\n2dnR6fSqqioajebk5FRX96hj3tjYqNFovLw69zksCCpCDuN4fJPJGtDJyj1kaNyzAjm8hgpEuvIH\nnQ7+IAK7dl3p7qfZu4Lp6d8xHhoAwAkIY3j4mXafVAe8d2B6+ne1Fg7k70HWLlO4IAVBbcKXPo1x\nBchTxXINEovFcnBwSEp6tCrl1atXNRqNt7c3ACA8PHzv3r3ka0lxcXEBAQGmKSXLhDDorCY9GjxE\nbR07vtryjEKhMQgc6zgB43Wg4HFHtx4X5+iEtsX4bJlzyNPDFO9uGjCEPENYdL8yNjZ21apVx44d\nEwgEzc3Nn332Wd++fQEAUVFRRUVFwcHBXC7XysoqLi7O3Er/AgqN8ZdzFc8iFDoDAIBat++H/j1n\nCAL558C690xj0QYpMDAwJSWlsbFRoVC4u7tTqY/8ORqNtnv3brlcLpPJXF3bL38J6TVMr0+ZWwjk\nv8W9GuWKk8VeQtZID6tpA4VCDq2bzHn1Kq3BGOTKI3eH78x6vr/t+uc9ekUp5PGwaINEYmdn1zam\nzgSfz+fzYW/IzDxbkzeQZwKpBhOwHtWrVHHrjrRqAQvVYkYuHZk52K5eoT+b33z6rcEAgEvFLW//\nVvDrfF8mSgUAJN6XjPIQOPDopkuVt2gXHMrXGow3lgVxGcihuw0TvG2GOHPf/q1geajrpaKWo/cb\nhzhzl4x08RF1+U2/8hatuw3zKT80BIBnwiBBLBk4eQN5styrUc7+OW+Ct82qMW43K2RXS6Ume1Mt\n053IbWxQ6n+d74tSKQCAl/zshBxaVGLh/lcHbE4ur2jV7susWzXGdYK3Dfjdkfp1nl+9QrfiZPH2\n6V77btWdfmswE6UKObQdaVWRQ0RLR7mUNGm2XakQsNDt073Iy5Y0aRx4dC4DAQAUSNT7Mmu3T7f4\nsKl/BdAgQSCgWqYraVKP9Xwmv6bzVWrlvKEObd0CS6ZJZehmhE2pwzckld1+/zmpFnvvWFFIH/6u\ncG/SSAAAXKwYS0e1f791lIegpElj92l69AT3H2b5YEZixcnibZc0QSYAACAASURBVCmVDjw6E6Ue\ned1PyKF5CVklTRrXTRkpUYGkbRvlIRjlISCv4CNi7391wKG7DbMPPvhhls/XaVWXi1vdbZg/zPJh\notT/pVbGvtjv6RQGpD0UgiDMreFpMX/+/IMHD5pbBeRP1Cv0HZvOt38r0GLGEDf+BG+bTkdO6hX6\nmxUyHxGnm3EVE00qQ7VU52PPJpuev0SLGWcffFCv0CW/E0B2irvnp9t1Xc1bVMt0WoPRS8jqeMjE\n12lVcTdq0pcO7X7moyup7R7q5+z6q2KpFjPODbSf7GMLAKhX6Eua1FlVCh8Rm0zpIVuvVAS58Ejf\nAgDQpDIIWKjJGJB8cqF0fD/rdpa7XqEXsNC/LG3SVNTL9W0LuUCietHP7v1QVyZK1WLGt38rWDOu\nj5/DY4doVst0LlZ/Ebx6s0I+rE93g/x59aq3f3sYPcF9so/tzQrZnoyake5WQg7t1QD7x9VjmVh+\nkwgNEqSXuFej3JFeJdVgmJEIceO/EexItiBrz4r7WDMneNuUt2hOPmgCAIzxFFRLdWcfNnPpiFKP\naw1GIYf2op+wvEX7oF4l5NKGuvD8HLiY0VjSpBE3axAKRYcZq2W6aqkOMxIOPLqAhTapDCiV4sCn\n27JpXkLWBG+bTn0IzEi8ciDvneFOLgLmgdt15MjM6tMl5S1aFwHD05bVzkauPStuUhm0mFFrMDJp\nVMxIAAC0BqMWMwo5NAcePa9eJeTQNk3u2+msw9dpVQCAsZ7Wq8+UHH9jUE/sHwAgr151oaA5p1ZJ\nPtRQF16QK29YH6usKvnJB02kD7HsePH9OqUdh+YlZHkKWe7WzJsV8sJG9abJfUua1Aey6sf3s44Y\nLOIykGqZ7maFTKnDq6U6IYcW4S9S6vC158TP97cRN2sKGtReQlZ5qxbDCSaNCgBAqZTIIaIhzry3\nfyt40U94VSz1tGW9H+r63Y2aq2KpA4+OGQmlDl8e6kIaKqkGY9KopH2SarC9mbVKHV4j00k12DvD\nnUwGz8TP2fVxN2qFHBqTRn09yOGxjOhT5efs+j0Z1TeWBZlbyBPD8ptEaJAgvcTXaVXTBgpJ7+Fm\nhXxfZi05Uy1goZsm9zVl02LGn27VuQgYYz2tO22vpRos8b4ks0Lex5oZ5Mpz4DGkWgNKpTjwGO42\nzHY9eqUOb1IZ8uqVZx82V0t1XkKWsxUjYrCItBaYkXj7t4KhLjxyIGjtWfEYT0Hcjdq3QhynDRQ2\nqQwFEtXZ/OYCidpLyJob6HCvVlEt1a2b6E7qxHCiU4Wk6TV5My4CBoYTpPP0op9w3lAHAECquHXt\nWfHMwSLSjLkImOQGeYXyFu1Pt+t0mLG8VavU4aTvOMSZy0SpmJEokKjv1SgyK+VKHf7DLJ92j9yW\nmxXyPRnVI92tyC7/yQdNSh3uwKP3F7GFHJqQQ5NqMPI6m6b0JfsH1TJdXp1ylIfA9GjlLdpD9xoy\nK+RfTPUkbfN312tOPmhaPtrFZDwwI7EhqexaqQwzEn6OnHq5XsBCBSy0Wqp7Z7iTl5ANAHDg03vo\ns0KeEpbfJEKDBDEbTSrDpaKW3hwPaVIZylu0O9KrhByavxP3wO36t0IcSQsBANBixoD/3dr/6sCO\nAzs3K+QHsupI1+dxb1ot0wEAHHj0dpajvEVb3qoBANTL9dUy3YN6lVSD+Ttxm9UGzEi8FezkImA8\nKzNDJFINxmUg5GPWK/RNKsPfGHyDPD0sv0mEBgnyXySrSnGtTPrGc46m8GJLADMSZ/KbvIRs2I5D\nngaW3yRa0L8RAuk1glx5pjclLQeUSnnJ768/DQyB/FuBQ7oQCAQCsQigQYJAIBCIRQANEgQCgUAs\nAmiQIBAIBGIRQIMEgUAgEIsAGiQIBAKBWATQIEEgEAjEIoAGCQKBQCAWATRIEAgEArEIoEGCQCAQ\niEVg6UsH4Tj+22+/3bt3j0ajjRs3bty4cWR6cXFxQkKCRqOZOHHihAkTzCsSAoFAIP8ci/aQDAbD\n3Llzjx07NmjQoD59+pw8eZJMLywsjIiIsLe3DwwM3LBhQ3x8fKenl5SU9KLYv2blypXmlvAnoJ7u\nsTQ9wPIkQT3dY2l6LK1J7IhFe0g//PCDXq9PTEykUv9kOGNiYubMmRMVFQUAcHBwWL58+dy5cxGk\n/ZdpDAZD72ntAY2NjeaW8Cegnu6xND3A8iRBPd1jaXosrUnsiEV7SMeOHZs/f35jY2N6erpUKjWl\nX7t2bdiwYeT26NGj9Xr99evXzaQRAoFAIE8GyzVIOI5XVVUlJSXNmjXrxx9/HDly5L59+wAAGo0G\nwzB3d3cyG5VKZbPZCoXCnFohEAgE8o+x3A/0GQwGPz+/gQMH/vbbbzQaLSsra+7cuefPn3dwcAgI\nCLh79y6bzSZzDhs2LDo6evr06e2uMHDgQFMeOp3u6enZqw/QAbFYbHYNbYF6usfS9ADLkwT1dI8l\n6BGLxXq9ntxWq9X5+fnm1dM9ljuHhCAIgiAzZ86k0WgAgKCgID6f/+DBA1dXVwBAfn5+UFAQmVOr\n1bJYrI5XsPCih0AgEEhbLHfIjkqlenp64jhuSiGdORqN5uTkVFdXRyY2NjZqNBovLy/zqIRAIBDI\nE8JyDRIA4OWXXz5y5IharQYApKSkqNXqIUOGAADCw8P37t2r0+kAAHFxcQEBAaYpJQgEAoE8o1ju\nkB0AYMGCBUVFRcOHDxcIBAqF4quvviLH66KiooqKioKDg7lcrpWVVVxcnLmVQiAQCOSfYrlBDSYM\nBkN5ebmnp2e7t5HkcrlMJiNNFAQCgUCedZ4BgwSBQCCQ/wIWPYcEgUAgkP8O0CBBIBAIxCKw6KCG\nnmM0Gu/cuVNTU4Nh2MyZM9se6mq9cHPpSUlJSUpKwjBs0KBBkZGRDAajF/QUFxcnJyeXlZVxOJwZ\nM2YEBga2PdT766Z3r6erQ2bRY+LOnTulpaVjxoyxs7Mzrx6zVOluJJmlSufk5Fy5cqW2thZF0TFj\nxkyePLmt1N6v0l3pMUt97kaPid6szz3nX+Ihffrpp+++++4vv/yyfv36tuldrRduLj1xcXHR0dG+\nvr6hoaFHjx5duHBh7+iZM2dOWVlZSEgIjUabP3/+8ePHyfQerpvea3q6P2QWPSSNjY0ffvhhdHR0\nRUWFefWYq0p3JclcVfrKlSutra0hISEikWjjxo2bN28m081VpbvSY5b63I0ekl6uz48B8a9Ar9cT\nBJGamurn59c2fc+ePeHh4TiOW4iesLCwhIQEclssFnt7e6tUql7QI5PJTNu7du2aOHEiub1o0aKt\nW7eS26mpqf7+/hiGmVFP94fMoodk0aJFJ06c8Pb2vn37tnn1mKtKdyXJXFW6LadPnx44cCC5ba4q\n3ZUes9TnbvSQ9HJ97jn/Eg+JXF6oI12tF24uPU5OTiqVitzWaDQoivbO+Aafzzdt29nZmVahN9e6\n6V3p6f6QWfQAAE6fPg0AeOGFF3pByV/qMVeV7kqSuap0W1QqlUgkIrct4VMAbfWYpT53oweYoz73\nnH/JHFKnmNYL//rrr/v27Xvr1q2VK1e+9dZbZpS0fv36tWvXlpaW0mi03Nzcbdu2dfyM01PFYDAc\nPHiQnNayhHXT2+rp+aHe1NPS0hIbG/vrr7/2poyu9FhClW4nyYxVOjc39/DhwwqFoqqqKiYmBpi7\nSnfU05ber8+d6jFvff5L/iUeUqcYjUYAQH19/aVLl/bv33/gwIEvv/yytLTUjJLq6upkMhkAgMPh\naDSampqaXhawatUqW1tb8tuGBEEAANpOaaIo2nbxwF7W0/NDvalnw4YNCxcutLe3700ZXemxhCrd\nTpIZq7RAIBgyZIhIJGpoaLh//z4wd5XuqKctvV+fO9Vj3vr815h7zPBJ0m7OBsfxAQMGHDx40JQS\nFBR06tQpM+oJCAg4ceIEuSuRSAYMGJCXl9drelatWhUZGWka4tfr9e0Gkf39/ZOTk82lp4eHelNP\nZmbmiBEjUlNTU1NTL1++7O3t/f333xcXF5tLj9mrdDtJZq/SJPfv3/f29pZIJGav0u30mFLMUp87\n6jFvfe4J/+Yhu67WCzcXOp1OpVI5OjqSu3Z2dnQ6vaqqytfXtxfuvmbNGrFYfODAAdM3osy7bnpH\nPT051Mt6qFSqn5/fL7/8An73Ti5fvszhcHqhlLrSY8Yq3VGSeau0CfLnKCsrCw4OtoRPAZj0kL6a\nWepzp3rMWJ97irkt4pMBx3G9Xn/58mU/Pz+9Xk8GuREE8eOPP06dOpXsmFy5cmXAgAGVlZVm1BMa\nGrpp0yZyOzU11dvbWywW94Ke6OjoKVOmkF3Itnp27NgxY8YMrVZLEMSmTZsiIyN7QUw3ero/ZBY9\nJjr2vs2ix1xVuitJ5qrSGRkZ5AaGYRs2bBgxYgQZeWiuKt2VHrPU5270mOjN+txz/iVr2Z07d27F\nihVtU/Ly8shQt7Vr1547d45cL3zz5s29E1vSlZ47d+6sWrVKJpMJBILm5uY1a9bMmTOnF/T079+/\n7S6dTs/NzQUAGAyGFStWpKenm9ZN753FarvS0/0hs+gxQX7COCEhwfRlSHPpMUuV7kqSuar0pEmT\n6urqmEymWq328PD44osvBg0aBMxXpbvSY5b63I0eE71Zn3vOv8QgdU9X64Wbi8bGRoVC4e7ubiF6\n4LrpzxywSgMADAZDUVGRl5dXx0Bzs1TpbvSYBUvT0xP+EwYJAoFAIJaPRXSvIBAIBAKBBgkCgUAg\nFgE0SBAIBAKxCKBBgkAgEIhFAA0SBAKBQCwCaJAgEAgEYhFAgwSBQCAQiwAaJAgEAoFYBNAgQSAQ\nCMQiMPNq30aj8c6dOzU1NRiGtft0VXFxcXJycllZGYfDmTFjRmBgYNtDCQkJGo1m4sSJEyZM6HXV\nEAgEAnnymNlD+vTTT999991ffvll/fr17Q7NmTOnrKwsJCSERqPNnz//+PHjZHphYWFERIS9vX1g\nYOCGDRvi4+N7WzQEAoFAngJmXsvOYDDQaLSrV68uXbq03SK4crnc9Dn63bt3nzp1KikpCQDwzjvv\n9O3bd82aNQCAq1evLl++PDs7u5c/BA6BQCCQJ46ZPSTyCxGdYrJGAAA7OzuDwUBuX7t2bdiwYeT2\n6NGj9Xr99evXn6pICAQCgfQCz0BQg8FgOHjwIDnDpNFoMAxzd3cnD1GpVDabrVAozKkPAoFAIE+C\nZ+AT5qtWrbK1tY2KigK/f7CZ/DAwCYqibb/o3JaBAweavhlMp9M9PT2fvtjuEIvFZtfQFqineyxN\nD7A8SVBP91iCHrFYrNfryW21Wp2fn29ePX+BWb9X+4jU1FQ/P79OD61atSoyMpL8YDPR2Wd3/f39\nk5OTOz136NChT1zqP2HevHnmlvAnoJ7usTQ9hOVJgnq6x9L0WFqT2BGL9pDWrFkjFosPHDhgcnRo\nNJqTk1NdXR2529jYqNFovLy8zKcRAoFAIE8GM88hGY1Gg8FAjrkZDAZT5AIAYN26dbm5ud9//z2L\nxWp7KDw8fO/evTqdDgAQFxcXEBBgmlKCQCAQyLOLmT2kCxcurFixgtz28/MDAOTl5ZGhd0eOHAEA\njBo1ijxKp9PJuPCoqKiioqLg4GAul2tlZRUXF9fVxbsJ4TMLbae+LAGop3ssTQ+wPElQT/dYmh5L\naxI7Yub3kP42crlcJpO5urp2k2f+/PkHDx7sNUkQCARiyVh+k2jRc0jdwOfz276oBIFAIJBnnWfg\nPSQIBAKB/BeABgkCgUAgFgE0SBAIBAKxCKBBgkAgEIhFAA0SBAKBQCwCaJAgEAgEYhFAgwSBQCAQ\niwAaJAgEAoFYBNAgQSAQCMQigAYJAoFAIBYBNEgQCAQCsQigQYJAIBCIRQANEgQCgUAsAmiQIBAI\nBGIRQIMEgUAgEIsAGiQIBALpkhIFrsKeya+YPotAgwSBQCBdsjJLXqrEza3ivwI0SJA/kbn6c9O2\nXqYwo5J/AoHBFgTyZGAiFOgh9RpmNkhGozErK+vkyZNHjx7teLS4uHj9+vVr1qy5dOlST9Ih/4TS\nI2d1LdKin47gOh0AIGvd9rS3Puh9GU1Z9xVlVY91CqZSm7YzV3+evuijI77j1bUNPb9C3o4fH+uO\nPUTXIm2rDfIsYjASdNhv7y3MXNKffvrpu++++8svv6xfv77docLCwoiICHt7+8DAwA0bNsTHx3ef\nDvknXJy2IGNxdPmpJJTDbs0tLD9+QVpQ0jaDqWEtPXL2aQjIWBxduPdQdVLa+SmvnQierpE0dZqt\n5Odj6Ys+AgCoaxsaMrJyvvwubeGHp0dHEBjekld4cdoCWXFZ+fELuhbpieAZSS8tbMjIIp9O1yLt\neLXSI2erk9IIDL+7eWd1UlrbQwSGk4a5HZhK3XP363Lk4ntf7OkmQ0teYc+v1pOc2Z/9ryUnv4cX\n/M+ikTT13PvHCUCjUp6qHogJMxukzz77LCsra/HixR0PxcTEzJkzJyoqKjIycvPmzTExMTiOd5MO\n+SdIMu8CAKrPp/Z9ZWrhj4fTF33E7+dhxHCyEdTLFL+6jwAAKMqqMhZHYyp17ZUMdW3DieDp5LkV\np5PJ62gkTaTBeFwas+7fWrs1Ze4yAIDtkIGXIt7N2/Fj3dXM8uMXAAC1VzLIbM05DxVllQCAqnMp\nSS8trD6f0nTrHsplX1scfTYsUpJ5VxQS4DIpdHb59T4zJtCteFnrtl+KeEfXIm1rGOquZv7WfyyB\n4WWJ5zJXf/6z41CUw06Zu6xw76G6q5m1VzJKj5y9t3VPRtS6tgoL9x4CAJwJi6y5kgEAwHU6AsO7\nd4BQDltWXN7pIb1MUfLzsbNhkfKySrKQb6zY2NbYayRN4kOnTLu5MT9cmbsMAEBgeDfOn6K0quzo\nhfaJj+lxPhY9dAEtavj34rQFbcv2L5EbjE9PDKQtqHlvT6PRujp07dq1OXPmkNujR4/W6/XXr18f\nPXp0V+m9IfdfSvO9fJTDxlRqhq3NwMWvpb6+IvTH7SyRUKzVn58yP/iLj8SHTwMAcJ1OfOhUwLpl\nR/2fp/N5CJPBdrKvOpdSfuJi1bkUrqtzytxlw2I/LT9+QV5cZjcsIPiLj8SHTnm+OsN0I71MQbfi\ndaqB7WSvKKsKv3Ou7MhZa7/+LpNCL0W8U3Hioqy4vM/0iZcjl4hCAqwH9TdiuNO4kXk7fiRwHAAQ\n8MkydUNjcfwxKopY9fMI2vyB/cgghMEg78UUCb1fj8ha95XtkIGSzLsXpy1g2ApwrV5VVTto5dtH\nfMf3m/8yrtOpaxsmndgrGOBZ9FPi5VcXExhuO2Rg8718UUgA6aixREIAwK21Wz1nz2DYWufG7q1J\nTi/66YjtkIECH6/BH75L47AZNgJFWZURw3Cd3sav/7mJc4RBgxEGg+vm9DAuofzERaNWNyY+tvhA\nIq7V2Q8f2nQ3r+7qTQDAqRHh3m+84rNoTmPmXQCAurah7Og54dDBqqoajaTZysv9+rLPPCJekGTe\no1vxHsYlZK+P4Tjaj9i10X5kUNsCTJm7jN/PQ9cqI4zlBIZTUIT8yTKi1lWcTp5Xl02mtEPXItXL\nFGwnEVloyqparqsTAEBRVsXzcCXz4DodebQjJT8fy14fG1mS3ulRjaQp9fWVfWe+YD2o/+XIJdNS\nDpuuaS4O2g2JLEln2FrLS8p7eAoToWjx7qou5AliZoPUFRqNBsMwd3d3cpdKpbLZbIVC0VW6uXT+\nO6i9kjFw8WsN17NGfbMZADA9LZFMF4UEVCel5WyPq72S4fnqjF9cQlxfCBuz7yteX1fH0GGHvUaP\n+n7r2bBIl0mhvssWZK7e7LNoTsbi6BnXj3PdnO5u2pm+6KPy4xes/frb+PUHADRkZCW9tHDQyreH\nrF2St+NHwQAvUUhA2z/59LRErqvToJVvk7uDVryd9NJChMFIemkh28leknlXknmXbFivv/dp7ZXr\nM3Musp3sAQCS63d8ly2w6ufR9qH6vR5Bt+KJQgKYov1UBmPEzo08D1cCxyU378qKy/q+MlUvU/h/\n+G7bUwa8M3fAO3Ob7+XbDhl4Y8XGhmu3Ul9fiTDonq/OsB8ZRLfi/eo+Yuj6FQiDQUGRmTkXDSr1\nlcglOV/s0UiaHEaHPNi1n/QDvOa9LAwa7Dg6xMrTHWHSb67+fFzCTkVp1fHAF8invvflt9L84jnV\nmYrSqtOhEUU/HWnJKxxzIObUiPCwhJ1TzsfjOj1p4U4ET5+QGJcb+4P9iCCOk6g44cSL108wbAQZ\ni6Mffp/gGTmDJbKtupAq/vWURtJkVVY1LPZTeXFZaeJZAsOkBeKHcQlD1i6x8vGsTkqjoAhpaO9u\n3jk9LTE35oeBS167MndZU9Z9tpO9XqZgiWyVVbWvPLisrKw9N3HO9LTEGys3UhFEknk3siT93uad\nThNGujw/FgDQkldo1c89f088ymHrZYqmrPvCoMG4TkdFUFynU1bWVp1PkWTeYzvZj/rm86x128tP\nXHz+zP6UucumpyVSUET6sCTrk+0TEuOeWo3uHHLYtup8yoBFc/K/iVfXNpD1p3v4NIou48a5bV+9\ndOs0AEBd26CsqqXzeYIBXk9d8X8PCzVIBEEAAOzs7EwpKIriON5VeqcXEYvF8+fPJ7ft7OxiYmKe\nomILANfpTg0PD79z7nFPbMrOHXsglvLn1pnEZVIo2Y4wbAU8D9d7X+yhoEif6RMBAFPOx9v49Z/f\neA8AUHc18/72754/s78mOZ00DINWvl188BjPw/VsWGT4nXNcV6eq8ykAgNyYH9ymT6hNuV529BzC\noLNEwqDNq0uPnDXIFO3+4fx+7gCAqSmH8mL3+i5b4DIpVFFWRXbzg7d+9Kv7CFNrMmLXxk6V/14s\nehqHZTtkILnr+kKYKwgDAPh39rwAADLn8NhPqy+mOY8fSUGR9EUfSQvEIdujua5OwqDBbTNPTTlM\n47ApKJIyd9nQ9Suqk9MD1i07NSJ80Mq3XV8IAwBgKrXTuJFsJ3swDvRf+Cp5FoHhzfceIAyGYIBX\nZEk6FUVQDhsAEFmSTlpocpfn4UoaXccxIeSJXvNe/r1wPOh87tW3PrD28fJfu8Rt2gSUw6KiKM/D\nlevqlLM9riHjtqKsyvuNV/yWvSnJvHtn807H0BByRBQAcNBuCABAfOiU19zwoetXcF2d9DIFOeB5\nZe4yKoKIQgJurNw4YucGq34edVczT40I91k0u/TwWcexw5uycpNeWmg7ZKCsuJzr5uQePvnqW6vH\nH9qT9tZqg0rNtBG05BX2mT7R89XpDdezeR6uDqEhWeu22/j191k0537MD75LXlNW1Upu3uu08J8q\nZ8IiAQBliWfDEnbKisvPhEUOj/2M/Jm6R3bkpJ2bE7l91P95AIDXvJeHx376VNU+KVauXNnY2Ehu\ni8Vi84r5awgLIDU11c/Pr22KXq/39va+ffu2KcXf3z85Obmr9E4vO2/evKck2DJRVNbEC/0f9yx1\nQ2PG0k+6yXD8uWnkhkGpqr92u9M8mFbbcPNOx/SCH36NF/qXHTtffirp5gebU157v+zY+cTBkx7s\n/onMUH4q6eyE2QcdAhMHT+p4ejePo5PKu9HclqsLPri7ZXcPM3eKtKj0zNhZ2ubWHuZvvJ0jLSr9\nJ3fsIa35xQalqmP6Ye8xZcfON+cWtEs3KFXxQv/cr/fVX7stL61suHkH02rb5cG0Wkyrrb92u3D/\nb+0ONdy8c9h7zMUX31JU1jTnFkiLSskf6O6W3RemvqFuaCQI4tKsxdKi0raXVTc0kj+3vLQyXuhf\nefZKwQ+/mipVL3At6uPW/OLyU0mnRs+8uuCDM2NnkemYVnst6uPm3IKzE2YbDVhXp799teHn+WtS\nXnufIIiDDoHxQv94of/VBR/0kvoniuU3iRbqIdFoNCcnp7q6OnK3sbFRo9F4eXl1lW4+pRbEYwU6\nm8BUGpa9sJsM5EgFAADlsNvNW5hAGAxRSEDHdO83XnF9Iez6sk8ZtjbDYz4hO/7u4ZNNGfpMn0jn\n8wkccxo3suPpM64f70pVzwf0R367uYc5u8Kqn8fUlMM9z9/Oi3p6dDVq9PKdc2RRtwPlsKenJZrO\n6nRGh5wush8Z1PG3FoUE+K9+1+OVqXQrHnAFAADSPx6ydokpz/jD7aMKWSLhwCWvk7d76dbp7PUx\nLJHQxs+nR0/4t2g7AaaRNLXkFZ4OjQAATDqxt/neAzJ+B/z+pC33HhAYXpp4tu1kJ4n0YUnq6yvc\n5r4NxowGaZcAADQOmxyV7XRCDvLPMf97SAaDgRxzMxgMBoPBdCg8PHzv3r06nQ4AEBcXFxAQQE4d\ndZUOUZRVtZ18VlbVkkHPt9Zu7eYsjaQJZbOekiQKirCd7Cckxo2O+6LTJhIA4DgmpFNrBABoNy30\n90AYjK7m5P+tdFXUoGsb1kP6L3z1n8zt8zxceR5usuIyvVx+cdqCGys2/sPou6x126UP//R+grKq\nlgz+bL6XfzlyCabSuL/0vOsLYd5vvEL2mRAG3ZSZYSOoOp86fNfGssSzsuKy/D0HyHB/ZVXt5cgl\nyqpaZVWt1b07+kH+BIYTGO4yKZQcEn+s6H9IzzGzh3ThwoUVK1aQ235+fgCAvLw8MvQuKiqqqKgo\nODiYy+VaWVnFxT2aAu0q/T+I9GEJy17IsBGQu8rKWutB/U0xUWVHzpYlnpt44ofCvYfkxWUCHy+B\nj6dpEsIEOZvd29L/jeAEMBgJJtL5OysqjOCgz8brLHIDwac9LalD168AAJT8fMwuJMAgU9zf/l3Q\n5tV/+2oP4xLsRwSRVpas+SU/H7cfGUQGVQIANJImlsh27IFYMr/tEF+veeGm06uYVsqkhLCEnUM+\nWlKTlJa9PtZ2iK+qtiFjcTQAwGZQf76Hm7y1Wc6zZtgICvYdoiAIx9G+7ytTXaeMqzx7uc+Lk/5J\nUUA6YmYP6YUXXij8M6ZAcBqNtnv37vT09EOHDp07d87V3H5miwAAIABJREFU1bX79P8O0oclZLzQ\nva17Ls18B/z+koe8pFzg46WRNAMAZMVlRgxHGPSGjCy2k33d1cyHcQna5j9eDj0bFkm+QaIoq6KZ\nL551RkqrFn8y67JUqHAtTpQq8Sbdo7dGqtX46uw/OuAqjJBon/ALJU06oxYnVBihwojUBv0n95Qd\nn6ZEgYentq7OVlSr8d0Far2RuN1sSKzQzkhplRv+lFuFESbx5GW7ufXtZsPlen1MvuoJPk6FCpcb\niHnX/qgndRpjWxnv3JSZHrBJZ9QbO1d4vFKbUKbp5kZe81626uchDBqsrKr9J64GSyRUVtXKistS\n5i77xSWkKeu+urahz7QJNcmPItG1TS1tq7f9yCBTGCcA4OKwqdSrlwEAwqDBubF7XV8Iq0vLJM9l\nO9krK2tVtQ06H18AwIhdG+9v/47tZE9BkZHffO42fXxX1mhGSuvffhyIpa+JwefzOzU5XaX/FzDi\nePZnMRmLozWSZo6bU86X350aEa6RNFFRhG7Fy/lij/RhyakR4bpWKQBAWiB2mRRK+kzaxmYAQPO9\n/IaMrJa8wvqMLEC+r2NjbcbHqdU8aoLlhkctO7mrwoj94s4btcQKbbX6T60YToD3bsnzZdiGHOXF\nWt2MlNbV2YrFmXItTpQoHuX8uUwTk6+62WRoe2JMvgongBYncqVY23RSzIyUVpwAuVKsnZkxGdGv\nHqj2Fmv2FqvfuSnb8VAVZEuLyVfly7B516Q5rYaEMs2sNOn+EvUng7kf+HJi8lVuHGTeNdmm+8r4\nUg0AYHGmrE5jlGiNM1JaSxT43mL1m9dlSXW6pDrdrDTp7HRpRqO+3a3J8qlQ4ZvuKytVeE4rli/D\nVmcr6jR/x9ZmNOrJQs6XYVqc2F2gfu+WHABgWk70nZuy2enSm00GLU7IDUSdxlgkx3KlmN5IvHtT\nXijHybIiDXOFCi9V4iUKfL9Yc7hcm9Gor1DhSXXtF7zQ4n/YXWHgoNLEv7P2R9W5FAAA3YpXn5Z5\n9fWV1Ulp7uGTq5PT1XUNTuNH1l5+9CZ1S04Bz8Ot0ytUqHA/F2s5+mi82n5k0KhvPq9LyyQwfMr5\neIeRQbhOxxnojYWEkP0Yho3ANBrRFe16GJDHxUKDGiDdYOPXvyEja+Di10qPnB2ydon40CmOm1ND\nRpbLlLE2fj73vthzKeLdQSvfzo35wWncSFVVbf83I4VDBxEYVpd2C1Ops9fHNGRkDY/9tHDfYUyl\nLks86zm7/XTuP0eiNYqYf3R3mnRGIYMantq6fSifT6MUyrGbjYbVvhwyZ18uAgCIyVf14yOHy7WJ\nYwR0KqVEgR2v1N5pNuwK5rfqjfkyLKvJ0KQjogdxjlZq+XSKCxsx3UtuIMba0/eXaKL6s78tfLR2\nwDAhbYEXe3eBasVATmajgYVQtgbytuQqvXiIkEFNl+gdWUhqgz5fhgkZ1CadsR8P1eDEen+uFif2\nFqv5dAoAoFCORd9VhLsxpzoztj9QubCpZUrckYXojYQWJ3AC6IyECiN2BfNVGOHCRi7X6z+6o1jq\nw95VoJZojT+OsEpv0Afa0AAAMUF8AMBoexppdytU+O4C9Y6HKkcWdYozY2WWfKQdPW6YVYEMi334\nyO85Uq49Uq7loJSBAvRVd9ahck1SrX7jEO41id6RRS1V4HojcbZat7Afa/sDpQojPh7E7cNBbjcb\nAm1o1xv1SgMx1JbW9ocg2Zanmu7KGGiFlivxQhm246GKiVKOVhgdWdR5fZmp9fr3b8sj+jDH2NOn\nODPO1+gOlWkOlYEKFT7JkREv1jBRChUAvZHIazWoMOJohVZuMAoZ1AoVzkEppGnk0yjb8lSjRfR0\niX53gVrEpH48iHu0Qrval7OrQJ0u0Y+1py/uz/ZauiBp8Wd0Ptf1hXE9qVfkm7w8D9fU11eE3zln\nPzKo6KcjM64fT5m7zPPV6RWnL+NaPc/DtSWvkO1kz3ayV9c1dDrppTcSh8q0L7kxfi3TkinksJ6V\nl7vAx1MYNDhnexzD3XXvG58CALhKIwCAai/6yxkvsrugxbscuYV0DzRIzyThd84RGG7EcQAAgeFc\nV6fK05cDN6zgujoNj/1UI2lm2AhyY37AVGpgKxAGDSbjvm6s2Fh7JYN8z8bjlalGDEc57OfP7CdX\nIniC7HioypViI0X0WX2YKowQMalvXpfxaRScAA1a/EINRvaapXpjXy6yJVf54wir74vUd1oMQgYV\nAHChRj/MjrY+RwkAqFDhH2bLS5VGNw51tIgOAB6Tr+rPR4tkeKtO26I31qqNOa2GKc6Myc6M3QXq\n52xpiA+biVD68RCyUXjNk/XRHcUwO9pCLzYAINyNebFOl9uC5cswAMCmIdwBVmjEVWncMKt8GZZa\nr/+2SJ1Uq8MJwEQoLmwkoVQzTEg7Xqm9XKeb6swY78gQMakzUloj+jAzJPq4YVZfP1Q7sijWdKo1\nHQAAxjvQPbiIwUhItMZvQvhCBjXcjdm2cEw5+/PRUBG9VIl/dEdxfKz1TDcmlQKEDKoji86lUWwZ\nVCcWlYlQcAK06o2nq3Wrs+UTHRlbA3nv3JQBAKa6MHJasP0jrMjHfM6WNlCAfvVAxUQoWpw4WqGV\naI1NOuNYe7qeIFQGMMKONsWZocWJ8zW6UiW26b5hhgvjcLl2mJBWpzFuDeTtLVHntGD+1rScViyi\nD9ODi7x/W/7JYG6U96MQiRIF7sFFwlNbfxxhxUUpGY2GHQ9VfTgIOdK4ciCnUIYH2qIclIITgIVQ\nWvXG9TnKKc6MmW5MuYF4/7Z8oBV6qkpHp4L1/tzkWv3qbIXcQDi8MNsh/WQ7g6Ssqq29nMHzcFOU\nVXq/8QqZiOt0RT8dKT9xMSxhJ8phX5y2YOyBWLoVz6qfx/T0RCqCliX+8RLetJTDtSk3rr27NuSr\n6I5VNLlW78ah9uej7RZONb3TFvJVdJmGmE1jjndkbM1TAgB+eX1N/ERHAECdxihiUju1OK16IwCg\nQWvsw4FheH8HCkH8a33M+fPnHzx40Nwqni6YSq2RNBfuO/QwLoGMwTVxNixSMMBr8Op3TSGwSS8t\n7P9WJI3DFoUEdBOI9c+502Lwt6ZdrtftLlD34SBePERuIG43GwAAIiZ1iDVNgxN3WgwqjFjvz81s\nMpyv0YW7MY9Xavk0ynQXphonjlc+6rdGebNb9UZXDjJaRAcAaHHiZpNhhB1tW56qTmOsVuN8GuWT\nwdzV2QrSr+pUjxYnaFSKqQWZkdK6fABnvAO9VW+0plPJlONjrckMZ6t1AwTo+7flWwN5dCrlgFiz\nfAC7UoU7shBrOoVs/UmHj7waOY/S7tateuPrGbJTYT0aC02X6Mmn6zkSrTG5TpdUqz8w0qrdITIk\nIbFCO8OVUa02bslVMqgUTx5yvdEwwApVGIxePDRfhq335/5WrrVmUDIkhkBblLTWOAHatrPv3JTF\nBPHbxWLktBr8rR9N9F6u1493oJOF0FXhm2jSGelUyrxr0inoxikDXjvZ6F0kU+wKsduapxmyctHA\nxa+5h0+uOJ2cF7OX5+GGcljSghKGjTWu001MjCPDrM9NnKOsrO0zYyLHxZHtZE+34plefyY5HRrB\ndrQff3jPX670s7dEPdONaU2nbstTrfHjAADiitXv9PvjT7H9gcrfBkUolPEO9Oi7is8DeDNSWn8d\nLeCglBkprZuGcE2F0JaMRv21BgNZEu/5sC3NT7L8JhEapH8D5EKfT9XG/D0Ol2sj3Zl3WgwubESD\nE4fKtBmN+uNjrXGC0OIAANA2mqtJZ3zvlnxXMF/IoJIjfq9nyJYPYJPjXe1YmSUXMqiz3FlevMfu\nipI9/bZtxdMIgVudrdg+9ClGi+TLsFa9caTdX1uyHQ9Vzmwkog9TbySkeqLdCN5+sWa0iN5pMap0\nUrVeasdzfyKCm5VV1hynQpn216uTjATm7bnhQq1xqZf8XGvIeyzs4odfckcOs68uldy8q5crPF6Z\n2pCR5TolTODjWZZ4zi54SG3Kde/XI9zDJ5cfv3BjxcaXbp3q6NlLH5bQrXjkEh5kj8dPgFp39vWI\nHQ9VywdwAAB7S9Qj7Oh8GmVxpvxUmLWpJsxKk2px4psQvgsbWZ+jnO3BXJ2t2BXM78NByA7N0Qrt\nNyH8tte83WwokmM8lLq3RO3Iokq0xg98OT35gXoNy28S4ZDdvwGEwQAW+aZNpDsTAGCyKGv8OABw\nAAAIhdKxlRAyqL+OfjRpTDaacf9n77zDoyjeBz6312su5ZK79J6QQhISQiihNykBDEgJIKCioKKI\nCBoVgqIoIKIgvSq9Seg1IYEQIBVISLv0dr3Xbb8/Nt8jBoiA/iDqfR4enrvZ2dl3NnvzzrxlNoHX\nfuf/kuYMM6w7krdsWVJWsg/jTuXmQO6C55Dq0cH3/yMg+/9VGwEAwhye9sdLjLwAABpEcmV07Ons\ngI5ZaAp9gzPHCwBwU3ywtCVzwZCDzySYCdadvbcuucfDnXU0JsnlB1vya9OFDoH+LnFDu73tzg/Z\nnv1OT17g6eKaJvbCGyEjJF+sgBYt6HPtIGqxEFMrxGAktg10H9xXeqvQ99WRxMavbn3jfMYOtWmj\nvdWmUR50YsHaPsuKMPnOC2a94kHPllrZFFJ6g2V5FIc4agsVSfZmHK4zezLJZBJAcTA1W02sa/05\nZDPaprwdaaRqHRrlSFVYsByplU0hPVAjUjN2T41o4bY5QZUOXf/A4EKHlkRwtlcBEZPMo0J5crhL\nKaSuT1ePsrPzX4ZBJrVfxxTVn71T+zsAQGVojuCoWlt2fXV6EIbb8xP/TgwW9eoLbUEuVtREgWgS\nbRWGowbLY14o1YFGVenFkl8kmqo7NSck2iqVsVlnVgAAqmV5pc0ZbDq/t//keuVdX5eYQNdeX4zJ\nmBDzGYaj3tj53TXkAV5S3a49pP9t6wcAoLBZhKWOMM0R2ggAwHR1ITw9RATB0TpzveEPz0C1Hk3K\nUBExL2Id2mhE1z8wbqkwFqvaAizNKM783xTEkQYZYLxGj4bwKEQFQleRSeDHnjzCDsmjQWIdGsGn\nLC/WH6g1AwBy5dYPurE2lRu/u2+40mptNKIf5WlRHPzYkydiQj2cqCIWhOK4yvqvtT/9P2FXSHb+\nMWA4CpHIAACFoYEY6Th0l3rFXStiBAAgFgSxIH/SBAAAACti1Jgkts9/r0orrD+z+docBLXeqj76\n3I3IdLXXq/b9jVI9JaXNmXtyFgAAFPoGnVnRqqnyF8StuzTpYsnGr07/+SakKmNzVuWeanlelNcI\nqa72u3Ojy1qyAAASrXhU5EI3XmBPvwnzB+31dooEALDpfF+XmPmD9pKs1d01I52o5o4R7k+gQNmm\nV6Zmq7UwzqaQJP8LeT/XZMmVw1U6BAAwWEgDALSY0DNNllU9uC0mjAqRTtSb5RbsnhoRtrNbNhpR\nLYyFOFCKVUiUI3VCpkplxXjUhxW4FFK5FhkkpBHxHQYEd6RBgVzKqh7c7b0d8uTw4VpzlCN1vFdb\n9MryKA6PQsJw8Hfl2P13sCskO38zZp0FAKDQ/8lL4axGGEM7S51RNvxhSq4yNtMoLJWhOditT1lL\n9uZrs5N7fDky4v1mTfmXJ/siqPXi3vNrR2xvvNu2z+GenA86NKjQN5hgHQCgsP7shqspGI7ea7q8\n+kJSeWtbzkqjqrSw/gwAoFqWR9R8DhT6hlp5Yau26kThSgCAFTES+vIpG0RQKwDgXtOl08VriJKS\n5oxaeWFJc0aO+OC+3MUIaq2W5T2fbI/FYFF/d250rbxwe/Y7N6oO1CvvcRnOW7Pe+unKZG+nyJER\nC5YlZWWW73Jgutm68KTVks4sHx727sWSX3r5TTx7d91g3/lFdRe+PTsys3xXrE/Sm4mbHz3F2yly\nbv9tU+NXEVMEK4ZX69EzjRZbotKjELY4Ikhy+nW1Iw16oEGmX1ejODhYa86RWvPkMADgFQ86AGBm\nAPNMo4Uw0vpzyFdbrXvFpgot4t/ObJvsw5gXwnKlQwUKuIcTBQBQb0D59Idrcx8Ouc6AOtOhVzzo\nRwfwf+zJ+zmeJ2JCPCrJlQEtiWBX6VBHGokwUBNAJFKHCBE7T4Pdh2Tn2aiQ5IgcQrgM56yKvf2D\nZ3Y4mp6/pnAu1Wm0rinq2LKkLCaVCwBQGZutiJFGYTmy2qwuGZtvlmWIE1JiYpLCH72EQt/ARFzW\nj90VnOg/4qNEFz8nE6z77tzoKK8RKmPzyIgFB24vBQBwGM4BgridN95jUrln762745De7auB+y4s\nm+j2FgkiPWjJQlArhUw7cHvppNgVOeKD5+//FOk5dGr8KolW7OkYXt56Y1/uYgDAnpwPPB3D5vbf\nVlR/trjxvL4JPtOcFl731oyPHvMi487BcFRlbBFwfVXGZgCACdYdz1+B4WhKwuq09P6fjjrvwHTL\nqtjrzPES8gId2e7Ego+4q15OkUaLevWFpFXJhXqz0oHpdv7+TxiOVklvyfUNVsTIZTgDAI4VrChp\nzlgx7obtihiGUsgPHRUGi1pvkXPoLjuuv+PAdHu9z3pb+aMRChiOHri99NWoL3/NWvL6wLUCri+G\noUwaFyKRq2V5In4IAIBJ5c7o/YPGJKmW5Um0VZEew9ZenPD1+FvtLwoAsCJGrUnaO2ByN1F/R5a7\nytjcvI1f269kIveXyPEhndw0T8cwBLVItFUoDqp06NICHQCAT2e7/M/7ooXxKh1SrkGGudMJGxqK\nA6IaAKDFhDYaUTaFVGdABwppLUYUxnDCD0QExW3v7QAAcGVA1Xp0qi+jRo9W69BRHg+droSbJ5BH\nrqtEJ3gzUBysf2Bc1eOhCzDKkcKjtlmPaRCJSJtrz8wA5qOLISuGM8j2Gf+zQV6+fPnLluH/ixMn\nTrz6aset2+w8E9IqBZ1NgyhtvysMR3+8/JqQF2Cyaq+UbUVQa6Xk5q2ao1y6c3nrDSti/L14JWWA\nWOVWBADoJkykkpk0CuPwnc9PFa8hAVKwsA8AQC83nKn8dvLSKXmH7wcnBJGpf/h5I6j16zNDPKRD\nPMKE/sns2zvLZV43LpzdL2D71xpuIZh1XPTScPeBeXUnQzlDPN1CMsp3zOzzo8miZ9yIjRzUvUKV\nndO0t7D+bLT3qJNF31hgY2714fy6U/ebLuMAd2C66dTqB7U3+4VP3XtzoYDra7Sqh4fPZ9McyyTX\nb4oPWRFTpe4aAMCNHC7gehcrTgESyYHZ2WvcENQKQWQAgExXe7Lw26KGc2w6n0HlOLDcjuQtY9J4\nDAq7tCWDy3BJL/ouSNj7WP6KwvrTOeIDSkNThMdgDEevVew5krdMbWwWy+6w6Y6RHkOvV+2X6+uE\nvKAc8UGtWbb0lXPxfhMyy3dZEZMbzx9GzVqTNNC1FwDgWsWe7Mpfo71esQmzKXPWvaYrGI6GuQ8q\nbrxQKy/IrT4S4z162cm+N8WHGDSuM9v7etWvcl29CdaeLFo1IGQWtdGjYJF1zPzRdBqTRmGQSBAA\nwJHtTiW3jdquXD8Ug3den6+3qMpbr3s6hrMQFyee6Ldbizwdw1g0BwBA6ol4Nt0xznc8h+4EQeTB\n3d4S36if9+5XmVtuRY9+zLSjPTjA6xV3m/EeAIAiFRLCozDIJF8OBQcAA+BovfmXciOMgUot6ssh\nn2+2DBbSTze2bQDxTjBrfgjLgODbK02vBzBRHKiteKIbDfwvFp+IWEnyYjQY0Mm+TCOCn2y0zAns\nGJLKo5LKtehgIa1Kh9Ya0NfaLXfIJNKrf0wm64Ani+z7Ry2FAyCgk+cGd63A164/JNpXSHYAYkFu\nHSyuyK72CHfr/2YvBvfh5PHAwvTopLABb7W9IC6/Nh1BrYfufM6kchcMPbj6fJI7P8RgUVe05nAY\nzjJdbVj5/IGz+16q2lApvbn52hwB13ds1GKIRF4w5OChO5+fvbcOAKCpQmT8ggct2UUxP/E3CkYu\nHkA0rjFJ2DTHcskNd35IumTxjPgNm0omhAhn5N//FWLTg6+/+8WqNeuuJHMZzpYWkuuZlPxzrZEb\nEb+MdxQIyd9rKNmjOdIjFvd1KGnKkvHvTO75tQnWEYY7jUmyKrmwpDlDeoZ2z3yaZgriBPjN6bfR\n3yXu56spg0Pfkulq116cMCku7cHF2l5xI3gB5HWXJumKqnvGDb9WvisxaMbma3OWvHLGkeWOoNZ7\nTZdCRf2rZXkVkhyFvsFoVZPvhGr9CkWuAVwH/jev5pU0Z6QXrZo/aK/Bon4zcXOzulyirQri96tQ\nZR258+XU+G+tiOnA7aVMKvfQnc+rZXkCru/knl8brOrS0zUYxPhOPn549Nw3EzdDJHJS9JLC+jNc\nhjOxPPpiTAabzv/q9KDM8l31ynvx1Deyr1/BBMrLvC0yYw0FojtzPEOEfXr6TiAWMWUt2QNDZh+4\n8cVnx+MAAN5Okefv/3S6eA2FTIv0GMbWikdGLHDnh2QcvxmTFF58piz21YgnPSQCrh8AYG7/bd+d\nH50c++Wm4+/RYL7WqdyZ44VhKIxZaBSWxiSxrfnkYrWTF59Cp3hHe7SWy4QhgkfbNOssxMNGI7N0\nZsXYIDqx7pnuz1j/wJivgNVWHADAp5HIJBDtRGk0YOUaJMqRmiuzAgAYaM2CyOB+bnQAQASfEudM\nDeFRQniUJ3luPgpjAwCGiB4f9kaDSF9FcwAAw91pA4V/NTQukk+J5NtH12fGnof0XwdDsUMfn44Z\n2y0wWlNV7Hj/QvnEVaOIQ8VnHkBkqOlea48JEa6BzgAAK2I8krdsfEyqRFvlL4hbeixm4bAj9xov\nezt39+CHGfTa25srx6QOyREfTC/6LsJtqLtL8MWSX/oETEGORN3u8Wk3UX+proZRH9B34MgLleuc\nOZ5NreJxbt/eBlsnxHx26M7nFIhmsKrnD9y7a/FuavJ9BpWt0cmkR7nIyNsTSXvIFHJMUjiGYnve\nPjZp1SipWHFkydmxqUNuHSpy9ub3mRHr4udkNcLn12QmfTmM6EJh/Znsyl9f7fGlp2MYhmL7FpxM\n+WkchmCnV14dv+IPm2NWy/Ks9x1lNcrEOT0BAKcK1uKnuyd9OexI3rJ65d3JPVceuL1UyAukUVgV\nkhsAAApE93QMGx+TevPOqavS9UNdFxVUnv9kzm9Pus9psevHpA4BsdUx3qMhElmirXJme+/OWYBg\n1qnx3zow3RAL8uu7J2Zvn0QI+WgLJlhHmECJP0SNpGj/pbSwoF4WBc6ju8XFDzbDuoslGyfFrRBw\nfQ0WNZvOBwCUXqrMPZejhmpjpwR7+QSx6fx6xT1/QRwR2E2w5+1jyStHHks9//qW5E4eFVs4OIZi\ne1bs4I+XtuxnNvbePzTsbQBAoGsCEa1AcGNPvld3oXeMh7xGee9C+aB3endoTS837HrrKMeZJfBz\nCk70uw6tndNvY1KGakuCg4gJAQCsGD7xmvrneJ4Wxt0YkDMdKlDCP5QavormLi3QJbpSaypmLRu2\n3mYH/is0qkp/L1wZ7NZ3ePgz22n/QXT9IdGuw//rZG7O7Tmxe2BfX33e/NBBvxhUpjtH7vac1B2x\nIGWZ4kmrRoX09z+Wem7ymjEQGaJRWCkJqwEA/oI4AMA7A3a68QLdwtqSP8rONHpFuwMAEvwn0asC\naHpe+Wkxq4cAqvJ0Cxb0FX+LadUab4lIPKzHWyN6BI1Q6BvVutZdlxaTqaTtDz5zCeXN7vdTSXMG\nrIAcgV/KgA+JZmVhkrW3R/YYF7Fj9mGfGI/iMw96TIjguLA5LuyFZ9+gsag8N862mQfHpA4BANBY\nVKsRNqpNe94+5hbo0m92woIhoy+uy8quT48a1S10YABEhiAyFJzod23bLdvKDwDA0fjlZhcQjQAA\nxvZYdOjAaQDAuOglFsTEZTgvHpFOBL/FeI1m0R0GhsxBUAuNwtKcdeozbubQhOmKdD5iQSj0x/ym\n9HJDz0ndG4qaw1wiIB8yAMCNFwgAaO/nby2XuQW6AAAc3XnKBrWTV8d9PG3aCABAo7DqDiMTw9d1\nSwg0yq25+ws8R4SVZYjf7LWDxqICAAhtBAAoPFU6beWU1nJZU4nEPy7WdmkbGIpZTTDHhe0d4159\nq96/V8etSDEUO5563ivavdeUaKKkIqsmOrZPTEx4YUOJFomKD4hvLxtBywNJ7+kxAAAXPyepWGFU\nm8S59eHDgiAyRCyMcvcXpvw0zsmLr5cbTiy7CE0jm2Bd+70taBDpt3789qnTPZ2pRKbaTH8mwPUt\nSJXBon4ahUSEinRwerXdn/ozlx9s4TJcGlWljarSkuaM6QmrWTS+7QbaeZHYfW4vGRxFYOmfBKT9\nP6GXGy6uy6IyqYF9fQEAJJoTZpHFvhohEyusRjj/xP1ek6MhMkRjURNn97y6MQdDMaP6D9tv+7rE\nAAAwFCvLEB9afFpSIQvp7w8AgEjkyMToo0vPxk+OmuT2M1Pq0/f12LGfjGTrPGMbFzv7tg06zhzP\nAFHce4P2zem7cVLYquCyN1rvqXIXq/a8fSywj4/tKgIvt1XJhRAZmrx6zJ63j+mk+qjR3YhDxODr\n2V2UmvMe9D8HMt+dt+vNIyk/je//ZnzGlpuIBVHUqyNGhBxafDpyZJt3PWxYkKpBU3zmQX1hU2u5\nzGqEr2y8MXxhf6idF9rZiy+tUtAoLEm+rupGLQBAwPWdEJM6JurjwaFvQSQyjcJqLZfRmcykhIUA\ngNCBAVU5dY+91eJb9b6xniMXD7h/oeJJf47KnNrgRD8AQNjQoPKs6s7/dlYjrKhXRw4Po5BpPDeO\nol5t1lkOLEzP3HKzfbX6wiaBnyODS/eN82y83wIAKEwvsRr/sN95c4nEI8wNANBzYvdbB/+w+xQA\nQC83HFh4KmFaDNeZfWjxaSIwsixD3G1QIAAganS30kMtV76/vWnyb8SzQfzfeLeFQqPYbqYwWHDi\ny4t1+Y0HFp5KX3Fp/dhdl3+6bjXChNLluLA9I4UFC16FAAAgAElEQVTBrMEVrTkdrv6k1zIledET\nXSwAAKP1z7OjAAB7by68XrWvfXy/waI+Ubgyq2JvlfR2lOfISbFpRLlEW3VTfMie3PaysK+QXjLW\npqq6jwYHH21+8Zc+tfLK6KWDeW5tues04TBdznRO/NaYsX63DhQ05xyOGTgCAE8AgGd3Ue3t8vRl\n5yBMYoJdKWTEPdKbziZFDvGicl32vrkzMDF0QtoIClkN0ekAAFRXQWV6phUtxEytEDOk24A2NTB0\nQb+02PUd7FFCL3cA3IE3uHWoWNWgmb19klai57vzwCPw3Dhv759GoT3moSU0E0HEiJDQgQFEv5y9\n+EeWno0a1S1sWFBQX9/27rGkZUPPrsrQy42aFm15VnXKT+PbHwUA+MZ6bpt5wD3Mzb+Xd31Rs2d3\nEVGhLEMc3N+PGG2vbb81bEE/on5If/+L67JCBwUAAPRyQ9b22w13WwAAk74bJc6pG/FhD7IpF7Yi\nGIrh5gYy+6HGJdZV1bcaiCWId4z7jb35vVN6/KGHOFqTV3/wo3PjvhwW2o9752BxTFI4ZpGRIDqJ\nyhP4OWVuzp26Lun+hfKKrOrg/v5Es9e23x77vzUfk0uX1yhPr7yKWNCeE8PVLQYWn0ljUSuya3xj\nPQEAHBe2sze/uVRCoVEgMonlyGRw6adWXnll8QBCc+gUhqsbcwQBzjQWlUbTmioOMYPfG7agH0SB\n+r/Z68iSszQWFUNxZy9+S7l06rqHW8gTK1GzeFvl1SyXvt+MSR1ydlVGwrSH77z3i/Oqr7I0UQqj\nvEa077TBoi5uPO/Icu8m6q8yNtcr7tkqaIwSN16gxiixVdaYJA5MN4NFrTA0KO+bDrbO9yDFvDn+\nByaVa0VNZlj32fE4f0EcncIywbp6xV0MR72dI3kMN8JMNzj0LQaVozA05IgPJkUvefQZs/MCsCuk\nlwyqU/6NrW2a/NuMjRM4LuynrG/TRgAAqusADlNkLF5Kl+cW/f5e0qJ4a/0xmtsQQCIDHA1znc3o\nNdNcu4+bsEddsFYmcddKws998Vvk5NnO/KLo6BIaq5/6UhLEEJFojhDNCbPIGAFv6W5Od0qqAQAA\nHDXcWwYxhEsy32mvPAjM1TvJbN8ZGyfgmAXVlAr8w0jQH+pgFhmiKqQJh7P4D/e5MT74ntXtEwAA\nqquAmJ4kSltEU3v/eb/ZPTdN/m3ymjEAgA76BiJDNgPd4Hf7dDiKI8bAPl6pOe8RX+U1yhNfXnhl\n8cDC9BJNs676Vv3IxQPqC5u5zmybbY3BpcNNR9LTUIgMaaSmQe8kjFo6yKg2nV2VAVsQsvakvvxH\nZ68tiupG8oOBDkMyD32aO3TBUBqL+uu7J7wiRVajlegdRIboLGpheomDG/fMqox+s+NiksJ1BUuv\nrOG/vf/dyhu1+99PV7fo558crM0cDDGENNFw/14j9rx9bPhHid4x7pmbcwtPlXKd2S3lsgFvxttU\ne3Ci/8aJv847NP3Cuixf6NVD+5ZwBU4CPyf5/XO9k2focmdxE3b3mRG7bebB8GFBTAempkVbeaN2\n9NJBtg72mhK9680jTB69V+RCRLbcXLGBwo/07xECMYUAgJSfxhHmyqobtb2mhDI4FAAAjlkAAIgi\nD2J5IqrC4OFjcOQ8RH7LducJ3MPc7l8ob3YrvVV9VKar7R0w2ZnjpdA3rLs8EUGtvi4xTmz3/LpT\nWRV7b9ccVZskU+NXlbZkRnoMudd0+WTxqiUjz1oR4+oLSd5OkfXKe1FeI4plF1Jifsy6fObHS5MG\nhMxydwi513QZAGCwqAVc30ppLoaj37yaJ9FW0yht4XM279HAkNnAzkvCHtTwktHdOCndnhqw6/5f\nbwqxIOtG74ydEDH43T5/Wlkr0efuLxi+sH/H8uxXaR5jNAWr3JIfWFsuWhqOkqg8TC+mug4wVWyg\nOMZAdAE7epXh/gqIyrt5TJN73ufDQ9G4/AQz8B1L82lmyAckiA4AsDadMhQuJjEEDv3TSTRHU/mP\nZLavVXqNwo9k+L2OqAopTnEPL3p9EsQQcOJ+MZWtRfViVFPKSzxBoj10J5gqNpgrNjiOKUMNdRBT\nSILoAEeVpwIdRxaQaI7KdD92zGpEfgtiCpmhi4hTcKsKRy3EWAkAADhqrt7J8J8DSH8Iz8VMrSQq\nj0Rh4ZgFoBYSlYcZG03l61G9mO49meY13lp/lO6bAgCQVikyttz0jfXsNSW6+lb9naN3m0skb+ya\nzHPj4IgRM7cAHNVkjFBZR8ImPHTGQ+dQYXpJza36YWMPQSxPhSm5qVwVwn+j+P4si97SKu0Om4xT\n1wzQSLFWsSXUbw87ZjUAAEOx4jMPJOXyfrPjSi5XVmTXGJrv9Rymjp3/AwBAcmm+Rg75j3zD2vg7\nKzJNe30SM2aHqgUmAk8I5DVKs87i2V0EADCV/4iZW+mhX9+7UB6TFH5xXVZDzoWeA4pcvCAZeZUX\neQ4J1QAynR2ZBiA6TTTcdotwxGhT8wAAzNiIw1pEVWiu2w9ReThiwCwyiC7g9v6NROUhyjwyL4xE\nYSHKPMO9ZWSmJ7vHOnPVFktTOkR3oTiEAQBYEV9qspIAanEYdKHDH+J46nmfudaylmwRP1hvVloQ\nY35d+tT4Vafvrh4VubCw/qxEK9aYJHQKq6fvhFpFYaOqdFJcmsrQfKf2d8LfEyYaePnBll7+E2PQ\n1xtKmhJf73V06dnxXw87e/+HvoHTCsovurp6uvNDiCyxvyUU4h9H1x8S7XlILxmLuNhcVcQfNp1E\n/qur1YrsGs9IUW1+Y+iAgA7JPY+pfL3GyZPv4ufUoZzuM5nC787ySybR+GRuEN1zHE00kswNogmH\nM3xTEG0pDqvpvimYvsbaetk72j2iP+7YfQYsvwnLrjGD5kO0tgbJ3EBEXczwnqTNmQbLsiEqlxE0\njyrob208bm06bSz5mkRzglju1qbfEWUeCaIBQEJ1FZhFzolZS3GMgiWXUW0ZwKwQww1HzeaqTRSn\nWFPFetwssTYex0zNEENort5Fcx+NmZoxcyvcepEqSEQNNTTRSAAAoio0FC5CDTX6W29Q3Ybo896D\nFbmIqhBAZIpDGA5rSRAFkCCAo+rLiTiiJ3ODdNnjEU0JxBAY7n6BqovJvGBUcw9ieevz3qV7TSRR\neWwnVsTwYBf6CRzRMXRbe7y+oPf0WDqHhltVltp9xrufkyAq3SOJLN/K9xLSvV4FOIrqqyC6syjE\n1T+4mMwLprkNxhu/u5fJ0KnpOiU1MakiOKo6tKcer1vJdrCIgtjWhqNkXiiZ5UmCSG6+pKD+YTQW\nzTNCGDbY25l5zidUQ/ccBwAAqjNOof1hyWWqU08yLxSiuyDS8/ygAai2DGIITBUbKI5RDLqSw26F\nmO6w9BosycAMNQzfCa7eCETj8wXapnuNAz9bTqXoedivzIDXASBxe+1AdeWopgTR3Mf0NSQShKgL\ndTnTKA4RZJYHADgOawwFHxrL1gKAs7t/ZSxdRXUbRAIkZvACc+2vFF6Y5tooCjeAROGYytZxe++G\nGEJz5S+YqYnhN4MR8BbNYyzVbRAgQQzfFBKJbLz3BYnCIfNCMFMricoBANQVNPWI7xcXPNrPJXbX\njfd7+o2f3XeD0CGwf/BMkUNwjPfoxKDpoaL+Dcq7yXHLq9cx+vlPj4nvG+jWq5ffq55OET39JoS4\n9a2W589IWFuYXhKSGMBxYSvq1WQIio955c6espvf1EXFJXgH+4E/hof8p+j6Q2JXXyFlZGRcvHgR\nQZDIyMjJkyfT6W12lcrKyn379plMpmHDhg0dOvSx53bl6UDFRPegQ/UkMkV59EfMYiQ7CBzHvPUX\n20xfcWnogn71hc2KenXf12M7r3x+9bUgypWAhSue6RL6vPmI+h5/aDYsz9XlTG0zxwFgrtxkqtzg\nOKqk4wk4iqMWgFlsyx0c1qrO93AcWQBLrloaf6d7T8QsSrrPZIChhrup7OhVxAJLme7HDF1kbTiK\nGuqorgPo3pPJbB8cRyn8SEIMqttgWHYDt6pQTSmn1w5tVhJ/xG3j/a84sT/pcmdBdAHE9jFXbaLw\nuyPacopDGMTyZEWm6W+/ze21Q3dzOsQQ4gBgxkZmyIew/Ia18QSv7xFd7iyKYwwzdJG5ahMsz6V7\njkf11RDbB2AWZugiHLOYKzchqiLMUEui8sjcEAAAZmrELEoAAInCBgDwEo8jyjxzzV52zGr97bdR\nXTl/6HVEVWiu3smJ/RmQyNbWi0eXngvqI/T3PMwfcByiC4gliDYrCZAonLhfDMVLuQm7catKdb4H\nJ+4XHNbSfSaba/ZCdIGlbh83YQ9qbLTUH2L4z1ZfiOclHqc4xgAADMVLydxgc/Uuhs8044Pv2VGr\nYEUuphfT/Wai6nvM8M9gSYalZjcsv8WK+AKR36L7zaQK+gIcxUwtEFPUfrFiuPs5xSHS2nIOAEDI\ng6gKydxgMi+E6tKXzAsGAEB0gbXpFMUxBpAoEFMIS66aa/cx/GaayteTqDxWxBdkTgAAwCzeBkuv\ncXs/EgqPo6i23Fi2lhXxpebKQJpwODPsk9KLZQjZO2ZcJACg8xXMgYXpMUnhhekl7d1UZp0FsSCE\nsfrAwnTikLRKcffsA61ELwpz7TUl+tDHpwP7+Ma+GgH9VzdQ6MpDYht4F2bz5s29e/f+9ddf09PT\nk5KSpk+fTpSXlZV17979l19+OXjwYL9+/fbs2fPY0231uxpWSX15sshQnIXjuGT7Z4hW0fTdbESr\nUJ785bnbtBisR5acIT5vn3VIJ9N3Xv/IkjPlySIMgZ/pKoi2HFbcwXEcNUtNVVtt5ZhFiahLnlHk\nzkANDUSzqLFFd2suhprbH9Xdmacv+Ngqu6k46YtZNTiOExX0RUssjenGsnU2aTGLUnWpH44hRImx\nbB2suKO9+TqGmhFd1UP5YUPb/xiC47hVet1cexBWFihO+qLGFl3e+ziOWxrTFSd9NVkTNNkTUWML\nrCywSq/bbgWiLUeNLTbxdHfmWWU3DXe/NJat0xctscmPWTWKk75W2U3tjSnte4RZlMSlLQ0nTNV7\nzPVH1JcHKM9212RP1OW9ry9agmOISbxDmzvH+GAN8SfQ5s6xNYvoa4lboTjpayxbp735uiZ7ouba\nWO2NKba+a3PnoIYGU/UeS2P6n95/TfZEw70Vtq+Wlgv64lRbU0/CJN6B6Gs7qWB8cMv2WZs7R3Ux\nATW2ILoqXd77rUeCjn5y+E8FU9SrLq3PxnH8ZNpFk9ZM/MNxfPfcowc/PrV77lFxbt3JtIu2+st7\n/Fh5vQY1tf0cbh8uLjpd+qdX+bfSZYdEG11aIQ0aNGjfvn3EZ7FYHBwcbDAYcByfO3fuqlWriPLM\nzMyoqCgEecxPpcvefc3Vg4oj62oWJMLy5pb17+E43rL+PeODW+XJIs3Vg8/X5t1zZXfPlRGfG4qb\n93948uqmnJ1vHL60Phs2d9Q6mlYdoZCsLTVECWY1N//wznP254WjL04lBvT2SgXHceODNeqrwwnt\n8lhQs1R5tru+4OOnvJDipC+O4/qCj62tV7Q3ppjrj7QfpjsTL3cOjuNW6XX11eEdxnGizU5QZ47S\nXBsLKwu0OSkdDiG6KtX5no9VDKhZiuO4VXaT+IBZNZaGE4i2/E+lfSwYbOgwCfjrwCpJebIIs5qV\np7bqC66aqoqUp9rmNKrzPZVnux/5aHf7ZxU2wyiCdmgka8fthuJmHMcrr9fk/Ja/d/7x3XOPZu24\nnbk1F8dxg8r4y2u/Fpy83/4UxZF1/6Bn+/+VLjsk2ujSUXbu7u4Gg4H4bDKZKBQKYbK7fv36tGnT\niPLExESr1ZqTk5OYmPjSBH1GrJI6VmQ/Rrd46Y5UIgmJRKUTH1o3LtTlnqV7hzCCepB5TszQ+Kds\nszK7JunLNtOlZ3eRgxtXFOI66J3e9YVNxz4/PzZ1iC0+7dbBorIM8SuLB6qXAmNJjuS9PsFHm433\nc3Q3TrrN/Q5iP4y3NouL6d6hZnHx04vxYmD4TAMUNgCAMA3ZoAqHU1z6tvfDdwCiCxwGXwbY02aZ\nOAzJBADQPMagugpW96/JnADg9WfnAMDq9gkgURqXTeQkjOa/cqHDUZud80lwYn8CAJA5AY8au8ic\nAP6I2489C6ILAABUlwTiK4nKo3mOf9IlGj4f77nsEIn6xLc6dnIPnxIcRWo/6O/+8Tbj/RxdTrr3\nN6cQaQPE5unzLmkzD1tq26y7hKWaFZkGMItPU01FVk3YsCAAAIZiO2Yfdvbmv7pyZPGZB1xnNpEt\nV1/UTGyl4Z/g/eu7J97eP43nyjmWep7IJWDxmfMOTe8gif7OBXpA1F/sjp0XQ5dWSMuXL//000+r\nq6upVOq9e/e+++47MplsMpkQBPH19SXqQBDEYrF0uud8WcBLwSIudhz9JsTiNS6bGHSoHgBAdnS1\n1JYCABjBsYb8S4b8SzSPQKqrl0fqU70Ux6g2QWSo/R4Bo5a2vb3GO8aD48I+lnre0Z3XZ2ZsXWGT\nolY145cJmFpiEPoqDnzP6p5obarSXj3gkvKZqSKfJvKDFc1ktgOJSq9f8orHp3uavn09+GizpbaE\nRKVThb7Nq14XLdoKMZ4YWW4ozEDVUt6gycTXuo8GC974mhX+54F/Tw/ZIeyx5YSHqXOIgftpL8T2\nAQBQXQdQXQc8/VkkKg8AYK69z+j2zIocbq2lCgM6qYAoWsg8p050SSeYym5Lt6f6rLlkKruNKFqo\nQt/naORPURxeywjoThX6MYNjVembUYOW7hsu3ZFKcw8UpHymPrOdJvJzfXNl60/vMwKicNhCotJp\n7q/gsNY/NO33HYUQBTLpzEXppaOXDlI1a9eN2tFnZqyqQVOWKRYFYs5eDsRVSJg+rWgh8bnzHY8g\nBhs3G6qmB/n8cJXq+hQTCjsvjy6tkFpaWjQaDQCAzWabTKampiYAAI7jAACB4OGwQqFQUPQxc16x\nWDxjxgzis0Ag+OGHH16E0E8BZjKQuU4AgMDfKongOqqTUHcj3SN1H90vXH/zjHRHqrWpiu4d+jSt\n3TtfXpld033UEys7efFnbJzQXCopOHHfrLOMWjoIIkMWWQOzWy9jYYZg5petP73PSRjN7TtOdWqz\nurUWUUkBAIzgWKcJ72muHIDYPFPZ7daf3meGxqMGrakiX31ul8PQaSSIQiynELVUlb6FP3JW08oU\nj0/3qk5tBihqU0iwtAHVPsy1QhQtFGeR7avy6I9OEz+sfjtWMCuN23tMy7p5zNB4RCNDtUpO7BDd\njXThgp+f5xa3AzNo2y/7OgdHERKZor99nkQms2OHWWpL6L5/slP1k6AKvFQnNwEUcUn5zFYo2brU\nbe6qh5eDLQAi2wIsUZ2y5r0+QYfqm1e97pLy2WMvXftBf/dP9zyHgled3ma4c4Hi6Ep8tdSXEQrJ\nkH+JHTusfU1T2W1GUA8ctnQy7XgUs7iYRKXjsAWWNWJGrW7rUre5q4iWzRX58n3f6m+ecf90D9ug\nZQT3YIbG+/1yS31ul6XmPiM4FgBAovLoLCxmONWkMwMAhi3o59ld5Nld5Im/5jD4MolEkVbWFe1e\nGT1+AKr3woyNutxZDkMy2+cX28AsMmvzOYbfTEDob74AljYwgnvoso45TfzwWe/bP52PPvpIJpMR\nn8Vi8csV5k/pugoJw7APPvhg2bJl48aNAwDMmTNnwIAB/fr1Cw4OBgCUlpbGxbUlspjNZiaT+WgL\nAQEBXTCkBDNobSOy7QdPFfoZS3IEb3xN4btyeo+GJbWq09uIWTBmNnQ+LohCBBiK+Sd03IKsA+5h\nbu5hD1+jYK4q5iaMcpu7ikSlk/mujknvkMgU9bldPmsu0X3DNVf2033DaR6BVdODXKZ80vD5eN6g\nycJ319V/NtZhSIr6/C75vm8Es9IIewvcWqtK36RK3wQAqHmvDwCA1b3NfIqjCM0j0Fx+hxEQReY5\nWevLGldMoXl3Ywb3cBw/H1G0yA9+b20W030jLHWlEIOtu3HSLC7mD58BUWiq9C3GkhxOwmhO/Mjn\nu9UEVa+HBv5WCTHYisNryVwn/isd0x4xswGgKMTm6W+fb/5+jtvcVbJ93/D6J5P5rvVLXvFMO0r3\nDoUY7GdalOCwhSbys9SWmCsK2hdqLu5tr5Ca18xlhvZ0mtCWfosoWgAAltoSa0uN8sQG4YKfEVmj\nbR2DmQ2SjQtx2IKbDR0uZyjMsIiLUaNOMPML8D+t37hsIixrdHtnNSO4h7miQLZ7GSM4lsxgV0x0\nJ5EpxLWMJTnEChgA0LJ2Lma1GPIvAQBcUj4zVxa4f7LzKftrvJutOLyW4iwy3s32WXOJ4ixCtUpC\n0wAAGMGxwoW/KI+tZwREMdpZz2gegYaiTFs1TsyaIOsb3F47qt+Kdft+NwAiHNaSIDosvYZqHlCr\ndybOmQdQle7mdMzUSmb7IPJczNSC6cUQy7P9EhZRFZqrigiFZKm9T/cK0eeecf9kh7mi8Cm782+i\n/UTcNkHvsnRdhWSxWAwGg0jUNnYLBAIajdbQ0BAeHu7u7t7S0vZiUJlMZjKZAgMDn9xSV4GYDsOK\n5kftBsQITmY7AAAofFfBrDTV6W04igAAqqYHBe4p62SO7+Ln9Gg6USegOqXm8n5jUSb/833EIOvx\n6R7iUMCu+8TSzWFIm4uOERDlNPFD/Z0LFL4AAOA49m0yz4kV2Y/uFy7dupTq6sUK7wNLGzjxI8l8\nV0yntDZVWerLcKsF1SnNVcWaS79yE1+V7V6mvrCXmHF7ff27takKYrAUB74HALjNW2MsynSZ+knT\ntzOVR39kxw4z5F/i9k8mkSnyg9/7/HBVtuNzQ/5ll+mfEYIBAMziYkanLgEcReo+Guy7Pov4Sqx4\nWOF9rA3lmNXCf2V207ev27oMAFAc/F6fd8lnzSX9nQteX/+uPLExYHtx5VQ/9bldwgU/azOP6LKO\neaTus2lZAsxsQLXKJ5mAJFuXOoycxQiKMZbkEiWVU/1cZ6cBABC1lMJvW6bgZoO5sgAAYMi/RKIy\nzOJipwnvNX8/h9W9P4lKb1oxBZY1CGalMbvFo1ql8veNsKIFRxFrUxUrepD63C5T6U3HpHcofFfl\nsfWmstsAAGtDmcOwGS1r5/pvL0L0arKDU/P3c9gxg8h8AW/QZHNFvvuirbK9LP3t89Idqdrs45hB\nw+qe2LhiMolMMVXkYwatw/CZDN8wxbH1NI+HvykcRfS3z3N7j7E2VVGFvjhs0WYd48QOw8yG1o0L\nnZMXaK4c6OCU6rC0pfBdXd9Y2eEuMQKilL9vwGGL+sJeqqsXJ34kCfI0PVjLilXpby+miWJx1MKK\n+tr0YC3EFLFjVlMcYyCGiMwNJlF5EFOozX4VAEBm+1BcEqiuA3BYiyNGVC+21KYrD5/gD/sBAGBt\nqqJ5h+Iowgzt1WEhaKcL0nUVEpPJFAqFFy9ejI+PBwBcu3bNZDIRy6MJEyZs3759+PDhdDp9y5Yt\nMTExNpdSV0a+7xtTRQErvDfN/TFOAsGsNDL/oR3Sb0OOZOsSAADE5ulyT9s0xF/HkHfJVHrT/ZOd\nj075bYO+De/vzgEABLPTiFUat/cY2yGq0K/5+zne35yyNosFs9JsQ7Ns9zLd9ZMta+ayY4cQ5erz\nuzw/32+8m6U+v5vuG05YouQHvsdhi9u8NQ5DpiFqKaJo8duQQxX6imdHEOO193fn6N6hZJ6T5sp+\niMm21JRgsMV90db6Ja8E7ikj7gxm0CJqKc0j0FyR37gyxXVWGqfvOEynsjZVEcKYK/Idk94xFmXC\nrbWO49+V7/tGsuljQ/4lbcYh9fndFGcRiUqn+4a7pHwm2fQxiUxhhsZ7fNrm+PHfkk9xFrX+9D7d\nN9x4L7uDQtLfPN26cSGJTPH66gQjOBZRSzGDtv0gzgrvwwrvQxF4yfd9wwzr7TB0mnTXMkZAFNxa\nS3QQUbTQA6Lg1hr1+d2q01tRtQwzGzxS9zkmvUOi0uHWWljaQHEWSTZ9jJkNcGut04T3uH2Smlam\nIGq5fN+3FL4Lf+RsQ/5lS305oY2orl44isj2ruAkjJb/9o3rnBWs8D4VE93bbLBBMbjVTHEWOb+2\niJMwGoctvP4PXS+GwgxE0WIxaN3mrsJhi+rMdsxs1GYd48SPhFtrtVnHtRmHMKNWsulj0cJNLevm\ncWKHws1iS02J+6Ktks0fQyzec7i1IDYPYrAb0yY7DJ+h/H0jmefU8uNO1zdnY4YEVBFF69EXs8ho\nwuEAAGKLEOIsuk+bNZgZ8gHZIQyR3UBUhYbipZihDjU2AhzBESuqaTMtGEtyRcNndj6ls9N16NKJ\nsQUFBYsWLdJoNHw+X6FQLFmyhAiug2F44cKF2dnZHA7HwcFhy5YtXl6Pmah2tSywxhWT3T/ZWTU9\nyDPt6NP4AFp/el+44OfGFZPp3qGCWWkAANXpbfwRMx/95RtLciw1JU+ZWivZutRp/Lt/3btLWJAg\nFk9zZX+HzWErJroTpr9OTkd1SsygtdmjbJnCHao1rUyhOIm0mYe5/ZMRRTMzNB4zG1G1VJt1TPju\nOvm+bynOInpAlP7made5q6wNFRRXT9xkkO5IJVrTXNxL8w5VHF4Lt9b6/nzDVHKz+fs5RFCAcMHP\nmEGrubJftHATDluUJzbwBr5muy1way0hm/zg946j36x5r4/w3R9bN37ombqPMDFJNn3s/Noi5e8b\nAADW+nISg40ZNM5TP8GtFu3VA0T7RFMt6+YBDBUu+JlEpatOb5PtXsZ/ZTbFQQCxHSAGy9osJpaP\nOGwBABBauf0d0GYdwwxaZnhvmsgPMxuUx9ajWiVmNrS3p2kzDrVuXEjoaQw2Q1SGbN83hG3Q2lRV\n/9kYbsIY17mrnsktZBYXK4+th9gOiKKZzHZwGDZDvu8bum84LGtgRw90GD6zccUU/shZvP7JrT+9\nTxX6Or+26Clbbg+iluJWC9XVS7LpY23WMc9IAkUAACAASURBVPePt+pvnaV5h1nqSoXvrnvKRoht\nokh0R8zYCNGcdDcuqk5tcXtntbHkJpnNcxg+8zkE+1fS1YbEx/Cy487/HKlUKhaLUbRjRoJGo6mv\nr+/kxC4VdA+rJK1bluA4DsubMetTZXg0pL0GqySy31bWp47DcVyy/bOKKb7qy/sav5mJ4zhq0mMI\njOo10l1fKo7/XPfpmPbnlieLntRs03ez/1JP2qG9/nvNgkTF8Z87lNvSm54e2W8rH1tuldTDKonm\n2lEMgQ33b5Qni1CT3nD/hnTXl+XJIktjpfrCnoa014gkX1glqVmQWJ4sqlmQaCrPa9nwYfOat1CT\n3lz3wFzTlpuCWc2aa0crXvN6JvEQjaIyJVBxZJ3y1FbMajbXPbCltlSmBBL9xaxm8RtR5cmi8mQR\nkV5G0PrLIumetuwl9eV9RAXZbyvLk0WwSqI6v6fukxGd3IFHKU8WyQ+t6VAofiPqSfWND27B8uan\n7Wo7UJO+duGg9tnT2pxTxOP3t6M6u1N+aA2GwDUfDjBVFbVs+PBphdRr2ufbmqqKypNFylNblae2\n2tOPOtClhsTH0nVNdjYEAkH7mDobPB6Px/vHLMPh1lqa0AcA0D7GrHNIVAZutRDrIbi11lxRIFq4\nSbZ7GSxtqJnfC5Y2kLlO/BEzVae3CWZ+gVvNthMJ5xMRUEuEsbU/9Nc3zbNBxC91sGUBAJ4jnrh9\nKNofmnL1AgAQxiVWeB9iKcYK78MMjkUULTSPQJpHoMPwmZhBSyJTKHxXwljHjh3W/P0brO6J+tvn\nRYu2to9XJFHpFL4rifFseTZknlPgb5U4bKmc6qf6fSPNO0S0cBNxKPC3yoctu3p5f3dOcWw91m4T\nd7d5a4i/CACAFZkofHcdM7wP1dWLN/A1Ct+VP2Imb0ByJ3fgUfy3F0FUxqOFT6r/3GlkEIPt88PV\n9iXc3mPam23/RmzBJlQXz859hO2pmOjOjh0Gt9Z4ph0FKNq68UPMoHWbu4rbP7n5+zkU5//iDqr/\naP4BCunfAdxSQ/N6qjBuGyQyWXHkB5p7ANXVS77vG+GCn2kegeoz27l9x8HSBq+vfled2kyk06I6\nFYn2cIRC1TIAgKXmvurMdt2Nk44T3jNXFlCcRIb8y+yYQRTB35aKAVHpOGx51PP0AiBR6aJFWx9K\n8j8PgWjhJojFYwbHqs9sc3t3nWu7kDYbzPDePqsvPd9F+a/Mxgxa5ymfPLbX3t+cAgCQ2Ty49Q/Z\nr7ZJANXVi+ra5gKxOZyeKboaAGCLifhX4pH6MB245r0+DL8Ih5GzDHcuOI5/l+g4DluMd7NIVIbu\nxkmIwUZkDYJZaS1r5prFxSQaHTNovb45RSJT2NEDX8qTaeevYFdILwhLQ4VjzKBnOsX9k50183ux\nwhJoHoHN388hxl/PtKO2Ci4zvmhcPonMdTI9uE3mOtnCz6xNVWSuU8uP8wl1ZREXN3w+XjArTbZ7\nmXDBz3Sv4L+rU2S+KwCAzOtCP3tu37a3/xEZx49dDpLIlOd2oT0aKvYodP/uz5e4ascGCSJjBi3c\nWosZtNaWGoqze/P3bziOftOQf9naVIWopSQqneEX4Zl2lOrqBbF4TStT/Lfka67sd5rwHvFHd0ya\n97I7YeeZ+Y/uevviQXXK55jYololicFmxwx6bEYIiUzBEYQTP9JUdhuRNdQveYUwWGmzj9O9Q2Fp\ng8enezjxIzWZR6hCX9XvG0ULNykOfm9L+/jrkGh08OwT/H893N5jns/Db8cGxVmk/H0Dr38yqlNy\n+45zmfqJ11cnTGW36b5hgtlpgllp7JhBokVbGQFRZK4TiUwJ3FNGBBDapwL/aOwrpC4NZjYQIWFP\nSg7FEQtv0GuaK/spAi/H8e8qf9+IKJpxq8V17ioy24HiLEINWiJaDzcb2NGDWtbNax+a/Bf5d9uO\n7LxEHIbPqH4z2mfNJRKDbUscbr887eDKskd1/zuwK6QXRPugg2cC6nTGhxk0hJnO49M9OIq0/vS+\n+yc72bFDbaYqVngf0cJNNkMWERn8N9I+w9SOnb8LCt+VCGBxe5wX0M6/FbtCekG0Dzp4ejjxI8k8\n504q+P1yCwBA/HRJZErQgZoOJguKs8imjcD/w0TSnv1u5+nRW9ANNxr7+Tkk+DhQINLLFsdOl8Pu\nQ3oR4LCFP3LWc5zo/snOZwqhthvQ7XQR8hp0zCWZuXVaW0mZ1Dhh971AF2Zeg27CrntrMutfonh2\nuib2FdKLgESlP31qhR07z8TpUvnAAEcOnQwAMCPYF+eqV499yVs7Ihi+9lr9vcW9Fp+qCnRhhriy\nbtRo1CZk15Rung50AMCH/b2WX6j54nz1VyP9bWfN2F/q68RoX2Lnv4Z9hWTnv0JRk/5vbE1ugFt1\n1mc65X6rAcGebaeuNZn1eQ2dvevr6F3plpvNsw8+aNVZzQg2Y19pq8769aXaZ7rKX+RyhXJzTlP7\nkq8v1SZ3FwS6ME/Mjuzr5xDowtw0MeTE7EhCGxEsH+HnwKBM/a3kcoVSb0HfOlzWy5vXeWft/Oux\nr5Ds/PtRm5C3Dpe16qwJPrxvRwd08F4Q47gZwU7MjnxKxwaC4a9sKzLD2PhIQUoP4fUa9b58yegw\n548Htr0E5H6rIdSVRbSmNiGXK5X78iUubKrahGx7LZTPfPi7a9RYzDAW6PKY96f8mNWgt6CnS+Vp\nF2sYFAgA0Kgx/zwhJM6LS1S4XKE8U6o4MTuyUW2ZtOe+xgx/MypgTJjLjP2lRU36aA/O0/SlVml+\n/0TFr9PC2kvVoQsd6h+9K5XorKlDfflMSl6Dbn12Y7QH563DZavHBnLo5MwqlVhhWj7Cj6g/PuKJ\nb0T8eKB3ldz0W37r4tNV68YFDQxwLG7Wq01IB0ns/Hfo0pur/kX+ATsJ2nlG1mTW77jVvGtKWILP\nw+gMtQkpkxoBAEIurVZlOnZXVtSk9+TTiUEcwfAqufHb0QEDAxw3XG8slxlXjw20HcqsUq3Pbvwg\n0VNvRcukxqWDH/PCt0fZcL0RAPBeP8/LFcp9BZLRYc7jIwSnS+XH7soGBPBP3pd78ulqEwIAkBtg\nM4wldxdMjxW6sKm1SvPCk5Wv9xQyKFCZ1JjfqAMA6C3oiBCn6bHCvEbtlpvNQi4tpYdQbrCeeaD4\neUKwrY98JkVtQibtvf/tqIA4L+7uOy0XypXbJoUSxro6lVmuh2O9uACAVp116q8l214LzRSrGtWW\njwd6E3UQDL/fYmjUmMukxvERgkAXZq3SPO9Y+du93ddnNa4eG0iourwGXdrFGgTD9RZ0yWBvPpOy\n506r3AATekLIpY0Oc5Yb4PVZjQk+vPuthm2vhQq5tDKp8a3DZS5sqpBHSx3q234x9PTsvtNihrF3\n+ng8x7l2/pSuPyTaFZKdl4wZwe63GFzYVF+ntkBEBMOJNUerztrXzyHanRPqyuYzKYtPVfXy4Y2P\nECw+VUWBSHwmpVFjAQC4sKkBzkwGBWrVWYVcWpwXL0LEJlTOo2y/1XyoSMqhkRlUCADg6UBfNNBb\nyKUBAN4/UfFGvDsAYF9Ba16Djs+k8JkUuQHWW9BAF2aUO0fIo40McW7VWd8/UXFiduSjl2jUWH6/\nJ5sS4+bCpgIA9BYUwfAO8325Ad5wvZHor833c75M8d3V+tFhzhO7u+qt6KEiSZXc9Ou0sEcXKGoT\n8sq2olBXdkoPt6HBT9wj42ChZMftluRIgSefvvFG04AAvsGKFjXpA12YIQIWn0nJb9TprahcD2+a\nGEIs3WbsL3VhUwmBFw3w9nVimBFsTUa9xoy83dvjsWu4g4WS8ZGCJ93q50BugD89I9722rNtsvWU\n7L7TMqvn0+4k+a+k6w+JdoVk5wWx+FQVMbjrrWicF9eBQalTmYmVTZwnV21G1CbEDGMcOpkCkQKc\nmeMjBRwauahZV9SkVxhhuQF+u7f7wABHorX7rQY+k/J80/AnYUawsTvuRrtzJke72cxiBI0aS6vW\ner1GfU2szhSrCj+Kt6nPF48ZwZ5VB2SKVS5sWgcTnBnBEBQnNGLXYeyOu0dej/gblRzB7jstVypV\nZhgjFHBeg45BhSKEbZuMIBjeqLZ48un/7mD0rj8k2m21dl4QttAvBMMvVygRDB8a5BTqxup86PF1\nYjzWCWEbSv5GGBTo0tvRjz3k6UD3dKDHeXE/7P+3bU373DzHYG1T5B3b6XoDQLQHJ7dO81iBn4la\npbn3T3nbXgsdE+bSqrNeE6t3TelGONsAAHFe3Cq56Y1eojFhLmoTMvW3klBXlt6CVslNNtOlnRdP\n13se7fzboUCkkaGdZfva+S+THOm6JbfpLyqkMqnx/RMVNxfEbbnZVNSkr1OZV48NpEAkXydGxvwY\nW7V5x8qP3ZXVKs02JYRg+Iz9pe3X4nZeJHaFZMeOnS5EtAcns0p1vkzxrLMWBMNPl8pbtdYmreV6\ntebAjHAhl/bt6IA1mfWxnlzCq9eBTckhu++0rBsnsPn5KBBp15RuE3bd++JcDeE2E3JphOfyr3fN\nzp9iV0h27NjpWtz5sOe8Y+XXxOrUob42F5fahBD+xUfrt+qsv+W3XhOrhwQ5Rntw+vnzlwzysZ1o\ni8V/LI+GOTAo0Lm3ogivEtG4PQz9hWG/0Xbs2OlacOjkX6eFHb0rnbD7XqgrK9yNfateq7egFDIJ\nQXG5AebQyYSSIBKN+UxKcqTgw/5ef2NIAmHfAwC8xOiV/yB2hWTHjp2uyMTurhO7u7bqrLl1mm9H\nBxCh+Xb+3XT1rYNQFD1w4MCSJUs+//zzq1ev2sorKyuXL1++ZMmSy5cvP+ncqqqqFyLj0/LRRx+9\nbBH+gF2ezulq8oCuJ9ILkEfIpY2PEDylNvoP3p9noqsNiY/SpRUSDMMpKSnHjx+PjIz08fE5efIk\nUV5eXj5x4kQ3N7cePXqkpaXt3bv3Sae/QGH/HJlM9rJF+AN2eTqnq8kDup5Idnk6p6vJ09WGxEfp\n0ia7bdu2Wa3Wo0ePQtAfFOcPP/wwbdq0efPmAQCEQuEHH3yQkpJCJnet/D47duzYsfNMdOkV0vHj\nx2fMmCGTybKzs9Vqta38+vXrCQkJxOfExESr1ZqTk/OSZLRjx44dO38PXVchoSja0NBw8eLF1157\nbefOnX379t2xYwcAwGQyIQji6+tLVIMgiMVi6XT2Xevt2LFj559N193LDobhiIiIsLCww4cPU6nU\nvLy8lJSUc+fOCYXCmJiYwsJCFotF1ExISEhNTR07dmyHFsLCwmx1aDRaQEDAC+3AI4jF4pcuQ3vs\n8nROV5MHdD2R7PJ0TleQRywWW61tL+4yGo2lpaUvV57O6bo+JDKZTCaTk5OTqVQqACAuLo7H45WU\nlHh5eQEASktL4+LiiJpms5nJfMxWxF381tuxY8eOnfZ0XZMdBEEBAQEoitpKiMUclUp1d3dvaWkh\nCmUymclkCgx8ye9stmPHjh07f5Guq5AAAK+++uqRI0eMRiMAICMjw2g0RkdHAwAmTJiwfft2i8UC\nANiyZUtMTIzNpWTHjh07dv6hdF2THQBg9uzZFRUVvXv35vP5Op1uzZo1hL1u3rx5FRUV8fHxHA7H\nwcFhy5YtL1tSO3bs2LHzV+m6QQ02YBiura0NCAjokI2k1Wo1Gg2houzYsWPHzj+df4BCsmPHjh07\n/wW6tA/Jjh07duz8d7ArJDt27Nix0yXo0kENTw+GYQUFBU1NTQiCJCcntz+Eoujhw4eLioqoVOrg\nwYMHDx78cuXJyMi4ePEigiCRkZGTJ0+m0+kvQJ7KyspLly7V1NSw2eykpKQePXq0P7Rv3z6TyTRs\n2LChQ4e+AGH+VJ4nHXop8tgoKCiorq4eMGCAQPD//vLQzuV5KY90JyK9lEe6uLj46tWrzc3NFApl\nwIABI0eObC/qi3+knyTPS3meO5HHxot8np+ef8kK6csvv3znnXf279+/fPny9uVP2i/8ZcmzZcuW\n1NTU8PDw/v37Hzt27M0333wx8kybNq2mpqZXr15UKnXGjBknTpwgyp9y3/QXJk/nh16KPAQymeyT\nTz5JTU2tq6t7ufK8rEf6SSK9rEf66tWrKpWqV69erq6uK1as+Prrr4nyl/VIP0mel/I8dyIPwQt+\nnp8B/F+B1WrFcTwzMzPi/9g78/AmqvWPv8lk35q0WdrQvaUbLW1poVAW2XeqCAKygwiCCj+2C14Q\nRUBRFARlFUFAFC4gWLDsUAotlFJa6E73NU26JM2eyUzm98dgqNBWrtdL6jWfh4dn5pyTme+cOZ33\nLO85Jzy8dfjOnTvHjx+P43gn0TNo0KCjR4+Sx6WlpUFBQQaD4QXoaWlpsR9/9dVXw4YNI4/nz5+/\nefNm8jg5OTkyMhLDMAfq6TjKIXpI5s+ff+bMmaCgoIyMDMfqcVSRbk+So4p0a86ePRsWFkYeO6pI\nt6fHIeW5Az0kL7g8Pz//Iy0kcnmhZ2lvvXBH6ZHL5QaDgTw2mUw0Gu3F9G8IBAL7sUQisW+L4qh1\n09vT03GUQ/QAwNmzZwFg9OjRL0DJ7+pxVJFuT5KjinRrDAaDVColjzvDVgCt9TikPHegBxxRnp+f\n/5ExpDaxrxf+5Zdf+vv73717d9myZW+88YYDJX344YfvvfdeWVkZnU7Pycn59NNPX/A2Tlar9ciR\nI+SwVmdYN721nuePepF6mpubt23b9uOPP75IGe3p6QxF+ilJDizSOTk5x48f1+l01dXVW7duBUcX\n6Wf1tObFl+c29Ti2PP8u/yMtpDax2WwAUF9ff+XKlYMHDx46dOizzz4rKytzoCSFQtHS0gIAXC7X\nZDLV1ta+YAHLly93c3Mj9zYkCAIAWg9p0mi01osHvmA9zx/1IvWsX79+3rx5MpnsRcpoT09nKNJP\nSXJgkRYKhVFRUVKpVKlUPnz4EBxdpJ/V05oXX57b1OPY8vz7OLrP8M/kqTEbHMdDQ0OPHDliD4mN\njU1MTHSgnujo6DNnzpCnKpUqNDQ0Nzf3helZvnz55MmT7V38KIo+1YkcGRl5+fJlR+l5zqgXqSc9\nPT0+Pj45OTk5Ofnq1atBQUH79u0rLi52lB6HF+mnJDm8SJM8fPgwKChIpVI5vEg/pcce4pDy/Kwe\nx5bn5+F/ucuuvfXCHYXFYjEYDB4eHuSpRCJhMBjV1dXdunV7AXdftWpVaWnpoUOH7HtEOXbd9Gf1\nPE/UC9ZDpVLDw8N/+OEH+LV1cvXqVS6X+wJyqT09DizSz0pybJG2Q76O8vLyXr16dYatAOx6yLaa\nQ8pzm3ocWJ6fF0dbxD8HHMdRFL169Wp4eDiKoqSTG0EQBw4cGDNmDFkxuXbtWmhoaFVVlQP1DBgw\nYMOGDeRxcnJyUFBQaWnpC9CzZs2aUaNGkVXI1nq2b9+ekJBgNpsJgtiwYcPkyZNfgJgO9HQc5RA9\ndp6tfTtEj6OKdHuSHFWkU1NTyQMMw9avXx8fH096HjqqSLenxyHluQM9dl5keX5+/kfWsktKSlq6\ndGnrkNzcXNLV7b333ktKSiLXC9+4ceOL8S1pT8/9+/eXL1/e0tIiFAqbmppWrVo1derUF6AnODi4\n9SmDwcjJyQEAq9W6dOnSmzdv2tdNfzGL1banp+Moh+ixQ25hfPToUfvOkI7S45Ai3Z4kRxXp4cOH\nKxQKFotlNBr9/Pw++eSTiIgIcFyRbk+PQ8pzB3rsvMjy/Pz8jxikjmlvvXBH0dDQoNPpfH19O4ke\n57rpfzmcRRoArFbro0ePAgMDn3U0d0iR7kCPQ+hsep6Hv4VBcuLEiRMnnZ9OUb1y4sSJEydOnAbJ\niRMnTpx0CpwGyYkTJ06cdAqcBsmJEydOnHQKnAbJiRMnTpx0CpwGyYkTJ06cdAqcBsmJEydOnHQK\nnAbJiRMnTpx0Chy8uGoHG853HHX06FGTyTRs2LChQ4c6QrgTJ06cOPmTcXALqYMN59uLKioqmjhx\nokwm69Gjx/r16w8fPuwg7U6cOHHi5M/EwUsHabVa+xa/X3/9dWJi4qVLlzqOWrBggb+//6pVqwDg\nxo0bS5YsyczMfMH7rjpx4sSJkz8dB7eQOthwvr2oW7du9e7dmzzu378/iqJpaWkvRKwTJ06cOPkv\n0lmcGjrYcL51lMlkwjDM19eXjKJSqRwOR6fTvUipTpw4ceLkv0Fn2TG2gw3nW0eRHYzkPowkNBqt\n9QaarQkLC7Nv0chgMAICAv583f8OpaWlDtfQGqeejulseqDzSfo76LF6RyAaBVXb2En0/AENKIqS\nx0ajMT8/37F6fgeHbg/4mA42nH8q6tldDiMjIy9fvtzmZWNiYv4bav8w06dPd7SE3+DU0zGdTQ/R\n+ST9HfRseqhLUf7BbV47W/50tk/iszi+hdTBhvPPRtHpdLlcrlAoyNOGhgaTydSJNoR34sTJ/xwW\n3Llp3AvCwWNIa9euzcnJ2bdvH5vNtlqtrZ0a2osaP378/v37LRYLAOzduzc6Oto+pOTEiRMnfy4U\nChicBulF4eAW0okTJwCgX79+5GnrDefbi1q4cOGjR4969erF4/FcXFz27t3rAN1OnDj5e2C1UTgI\nxdEq/i442CAVFRX9u1F0Ov3rr7/WarUtLS1eXl4dXJxOp/+n+v5UWvtidAacejqms+mBzifp76DH\nRhDUP2qPOlv+dLZP4rM4eGLsf5UZM2YcOXLE0SqcOHHyF+bDB/p4KX24B9PRQv4EOv8nsbPMQ3Li\nxImTzona8j9ba+9sOA2SEydOnHSE7X+3G6mz4TRITpw4cdIudOc38gXizGwnTpw4aRea08PuBeI0\nSE6cOHHSEWaboxX8bXAaJCcOw9KsOd1jtKNVOHHyNJjB2PpUizot0gvCaZCcOAxdWZW+ug63WH43\npUn1vEtboi3/0dLvBIZ3rKdo/zF9dd1/cgsnnZmsjTtKjyX+9FQ9Cf39IurkT8FpkJyArrz64tg5\nAJD9yc7SY4lk4KPvThBY28uo/+cY65S4xWJQKGV9YysTr/xu+pPdhlYnXW8zSl9dp0rPsh8fD+xf\nnXQdt1gszZrn16Ovrjs7YOL1aYuPBfb/0Tf+VOSIyrOX4bfmLWvjDgDI/HCbMvUeGVLy/U8356/u\n4LK52w/YEzvphCQr0danJlVj7vYDuPnpwuM6dLCxTvlipf1NcRqkvwttVvyPSKIszZozvcap0rPQ\nFp0iJV1TWAoAudsPFB86+WDLHnvKluJyACj5/qf2Giv/lgFIGjatMvGKrqw66r23FdfTAIDAcMWN\n9Pau7Dl8QPX5JwaptZ24u/Lj9JWbCAxvzi063WP0qPOHHx06eWXCW1cmLHjKoBrrlLry6ppLKWcH\nTKxOum6sUypT7zXee4i26NJXbAqdP1VTUPJ6Rdord8+OvnxUU1B6Y87y0zGjAeB4YH9LsyZ3+wG0\nRSeKCNYUlrYUlxfsPWqoU2kKS1pnSMrcla3vmL/rcNnJpGefSFdeTWD4L4MmV5y+8PyZ5uRPZ2u+\noUz/pJCYVE3PpkEoFFwidb6pF4PjV/t28h+CtugYLvyO0zz4bE/5yV9euXv25vzVcVvWMFz4P/rG\nv3o/CQAqEy+TaVTpWRx3qbFOmf3JTgLHR1/+oeZSysWxc0IWTDXWqe6t3RLz4dLMD7cNOrrDc/gA\n+5Uxg5HG5eTvPFR+Mumlw9vQFl3K3BW9Nq+uOH2x1+bVNO6TFdzRFt2j706EL5kLABy5NHXRGgCY\nmHeFJRXrq+uKD53M3X4g7O1ZPdYuptAQu6SM1Zubc4t6fbK66UE+aWBMqsZTkSPG309S3ckicNxj\nUB8AuPve5ubcosklNxkufGlcVNXZK90Wz/kpZvSIcwd5XvLr0xZ3Wzwna8MOppsQMxhHnD14Z+lH\n5SeTAADVaikILXbjCpeufoHTXwUAnpccACL/8VbxkZ+4XdzPj5pJ43KKj/zk0tXveGB/vp9X/s5D\n6txC3Iw25xZRacgvg6ZELJ1namhSpWeRFk4c2/3RdyfUeY9cuvoZqmsBwFin5MhlAJC6aI24R0TJ\nD2foAl74snkl35+xNGlEEcGu4cEUGoIw/xeWA3gWk6qR5Sqyv1ZNQUnWxh2Dju5wrCoA4NIohQqt\nOxcl3461RQcAT9Vj6FQw+/hb1C2Okfg3w2mQ/vIcD+w/ueRmxekLjZk5sRtXPmWcTKpGOpejr6j2\nSRimKShRpt4jrQLCZDzYsoctFeftOOgWFWZSNaUuWtN92ZslxxIBoP++zQDgNXqQrG9s0rCpuvJq\nAMj8cBsANGbmsKXilLkrxt9Pqk66nrZ43eSSm+q8R3QX/ukeozlymbFOeXXy2wCgSs+S9e0ZOn9q\n+spNI84drLmUkrVxh/9rY6wGI8OFP/DQNlFEMFsq9ps4OmvDDkuzOnbjyntrt/i+MiJ95cYR5w4i\nTGb+rsP99m3WlVfz/bxwiyVv56Gqc1c0BaUAUJ10/d7aLR4vxQ05tsuGY7nbD/bft5l89vDFc4Pf\nmMJw4QtDAu9/sI3sfKtPvfda3hUal0NaUBuO0bmcvrs2dZCxXWe8Sh4obqRfmbhgxLmDxjpl0bfH\nx14/Thra5twigZ/X/Y079DWK/J2HACBo9mvpKzfFbVlTceaipVnjEuiHarW3l35UnXSt/75PhaEB\nTdn5DfceuveN1VfXeY8aDAApc1eSqgCA7+flOXyALD721qI1r1ekNWXnu0WFAUBLcXnV2SsRy94k\nm7md327VXEoBAHvF5eLYOW5R3UyqxuFn9gOAIiW94d5DR+oDAIBKAx4hpKkPfnfm8JGpNekA0FJc\nTuNyzM0au+08WGqqNOD+riKT8o9s0Ofk38VpkP6q6KvrMlZvJquZlmaNrqJGU1hyPLD/jIbs1smu\nT1ss69sTAPwnjys6cFwaF63Oe2RSNUp7R1f8dMH/tTEFe49y5DL/18aIe0R4Dh8gH9afLRXbf85w\n4b9y9+ypyBG42eI1enCP9xcnz1yqnhATIQAAIABJREFUKSwRhgbmbP2m7lqa7/iRytR7FASRxHaP\nXPmWDcNduvoqUtJNysZub89KW7wua+MOVKvL/HCbMjVj1PnDtxatAYBen6wWhj7exco1PNhr1MDG\nzJzQBdNkfWOrk64b61SXXnkTYTI8BsS5dPVz6eoHAASGnx0wsfvKt5qy8+WD+2oKS5muwui1Syg0\nBKEhkf94y66ZQkNIyyQMDaS78Iee3EulIbk7DpJWhPxfGBJYdy31ObNaEhsRt2WNNC4aAHzHj7SH\nu4YHk88CAIHTXrn/4TZxTETA5HFFB47HfLis9Hhi2KKZliZNzaWU1/Ku3l66Xpl6b8S5g2mL13Vb\nPJfv5wUAPuOGDTm+89Ghk70+WU22dB8dOpn54dag2a+VHktMe3fddEVmfeq9KxMXAABDwC85epol\nFQ88vPU5bRKB4U3ZeW5R3Ww49vxmjMDwG2+sGHhoWwcJ7J/sKxMXDDq646mL111Pq7+RbjdIbKmY\n6SasOH2hpbjcpatfQ3q2x0u99dV1ZGMUAEyqxtIfE8nWMwDgFgtmMDFdhc8p+Dkhazb2U4XJ5sFB\nUBtB+7U326RqYrkKbSjK9ZCRIaerzB4alVXmQZidY0gvBEfvEPhfpLNt1/hnYVQ2pP3f+pIffz4s\njiQI4rA4si75TvrqT06EDTksjiQDSWxW7MqkRceDXspY8xlBECe7D0995/07KzbmfPltyY8/EwSB\nmc2G2vrrM/8v+9PdHdzRqjfoqmoNtfUEQWR/urv64g2bFcv+dHdDxgOjsuGwODLr46/b/GHGms9+\n7vPK5QnzMz/c2piVRxBEypurMLO5vRvZrNjxoJcefrGPIAiLRvtU1JVJiwiC0JZVpa/+JLH/hOfN\nr7aovXqrdUa9ADCzWVtW9bvJzE3qYwH9lHfuHxZHpr7z/omwIRdffuPCmNm3Fv7zsDiy/Kfzyjv3\nf4oeVXv1Fpn+zoqNxUdO2bO08OC/6lPvkcdGZcPFl9842qXXnRUbL0+YTxCEzYq1mfm6qtrGrLy6\n5DsWjdaobNCWVbXOnMPiSKOygTy2WbGf+7xyWBxJvh2jsuEHnz5kWSIIwqo3NGQ8qEi8dH3m/6Wv\n/qT64g2CIAy19anvvE8QREPGg9M9x1o02htzVlyb+u5hcWTRwX8RBEGWydZ3zPr46yPuPSoSL+Xv\n+b69jHqezGyNVW946o2fqDDlaay7V319xL1H8ZFT1RdvpL7zftr/rb8yadH1mf9nVDbYrNj4pNrD\n4sjPNh29NvVd+w9vLfxn/a2MZ+7wF6DzfxKdLaS/HixXkVnVWHctzaWrH9qio3E5RoXS2qJ71m1B\nW17lFhXWb/cmc5MaAF7NTLLhWGXildRFayaX3AQAhMnkyGVkB10H0Lgc3q+jQfa2iP1g6Mm9bKlb\nmz+kC/g2DBt68smeVR3fi0JDWG4iskP/qb5HCg0ZcnwnAPD9vCJXvoWsZXSsuWNYUjF5lxcGwmS2\nrp63B9NVOLnkJm6xjDp/mO/vTY7DPfhsD89b3u3dOTxvOY3LSbh9+uLYOVkbdsj6xj767gTfz6v6\nfLKgq19V4mWEzWSJXXu8v4Tv752342D44jlcL3nKGys1BSWJ8eNbisvDl8yNXru4ObdIW1zuO35k\n472HRQeOl534BQDcosI4cpmmoKT7yrcAgMBwg0JZuPcoz0v+cMveuC1rUhet6fbunJbicoTJLNh7\nNPIfb5V8f7rfrk0lR0/Xp6TXp97DzRbcgpLdjzMass8OmJizbT/CZPTZ9gEAiCKCI5a9eSpyRNR7\nb9enpPfdtan28k20RWesVymS77hFheEWC9qiy1j9KarVvpZ39dIr8zQFJSFvTCFbY6Qee6PqTK9x\nT3UGdACB4dry6tYhCpPtWj063pt1xYzSuZzKs1ddI4Ixg0kcE67OLfQeO7QpO//2ik19A8MBgIJa\nydLYlJ2fPGspbrYAQWBGY5dhA9q+n5M/itMg/fWg0BD3AXF5Ow7y/byOB/bnecn1VXUUBEFbdAiT\niVssScOmDjy0jSOX1d9Il8XHMl2FZO8H2bvl/9oYz+EDWn/u/8MxCY+X4jqI5ft5/1tXG3P9GBX5\nnWL5n3fmuIYHT3hw8T+8yH+CwmTzYLfr44owmeLY7vbT1h2SZOzAQ9twC1px+kJC2mm2VFx6LJHv\n5xX8xuSqxMuB01/9ZdBkvr8Xx0MmH9wXAMalnGy895AcxTk3aHJ10nWmq1BTWFJ7+WZl4pXAGeMn\nPLh4973N6pwiUXhI2KKZaYvX+YwbduONFbgZrbuWGv/VR+rcooz3Nten3iNHWUIXTGu4m/XLoMks\nqTh88dyayzd5Xh72ATncYjHWqQCA4yELXzxH1jfWLjtgSoJbZBjDhR+6YBoA+I0f+XP8Kz4JwxTJ\nd3xfGdFSXGFWNbaUlIctmsl0FTIEfI+X4h5s2RM0ayJHLmvIfHhx7JzWRkhfXVeVeNk7YRjPS04O\nDbaZmbjFkvbuB5rCEvI4Ze7KAQe25LdQJvmyEAqwmxo4chmBY/qqOgoNEYWH5Gzb7zl8QM2lFF5s\nlPhhYdG4yZQhww1f3PzBM67/vs3GOmXEsjdztn5DusA4+XNxGqS/JK7hwSHzp1ZfSAYAhgs/Z9s3\noy//oM4tMqmaTCpLU3Z+0YHj0WsX11y+OXDG+Gd//rteeX8W3d6eiVtQAHigtuoxoreY8bt7b3b+\nEfv2yNFg5Tp8iAeDS6NcUlj6ShgmnBAzqWacaLTYPDkIANxptDKooDTZdj8y/thfmFhtHtmFyUYo\ndCrFnjNaKyGgUwBAjdpEjLaNFtm8i1j2JnlKft8BIOztWQAQ/f5ir9GDWuckad44cpmlWTPk+K60\nxet6b1tXdfbqxLwrZGEYeGhbU3a+MDQAN6Pi2O42s0VTWBI4/dVvcxp9QkT+E8fUJd8OXzrvZLeh\nk4qSaVw2geEtxRWkz0Wfbetaa7O3BckW7VPYxw4BgEJDdOXV4h4RMxqyVelZDXey9DWKoSf3kKOY\nI84dLDvxS/rKTZZmTdyWNa2d30yqRr6fl6agJPPDbVxvuaVJkzRsansNppyt+zlymTq3iOkq/MEz\nDgDqrqY1BvYY4MUHAEKl4vt50bmcqqTrEUvnebwUN7nkJoHhF8fNEc6ZhlxM1o/0cnPhkz0QuvIq\nABDHRIS9PYscU3Ty5+I0SH9JZH1jZX1jH27ZCwAsqVgE4BoePOb68ZPdhgKAa3iwpqAkedZSWXyM\no77vKrNtV5Fxuj87W0dF9OaDpSYA8OGa6VQY2YXZYLZN82P/4YsXaTEPNkJ+tTvG/nH/d0FtBAAw\nfm+v0Kv1aJgLjWzr3KhHU1ToqSrzOyGcfY9MpTr8fK1lsi+LSaUcLjON6sJ8I5C9v9ioMtuGezAX\ndOVkNFkzmqwqs+2BGhshZx4tNy3oykFtxOU6dEkYR8SgzrvdkjhI9EuNRWHG5wT8Zh/tMj3OoAKD\nSlGabRHCp/+KW3tePMXrFWk0LmdcykkA8Bk3rHUUaV0QJtPVJRh+tWE/NyKxelukiN5laD8AePLR\nZz5OX2PEAYA0t2SGsBCIcaVTKb+fewAQt2WNKCKYvHvpsbOWZnVrnxq/8SN9EoamvfsBABjqlPDr\nUhqYweTS1Y+crErncvTVtW1evESHS1nUpuz8wUd35O88FLtxZc7Wb4ShgcmzlmKjRyujAjyWvmEw\nWsoya6KnjMYMRteIYPKHFBoStmhmpXdXArWMCJOlE0DWqzSFpWOuH+d5yVvPfHDyJ+KcGPsXJu7z\nNdK4aCoNGXP9OBnSfeWCoSf3Dj6+M/6rj6JWv213W3rBFGmxebdb7jdba4x4eqP1fjNGhlcacJXZ\ndqzcfLzCXKTFKg34ljxDo8V2p9Fq/63C9HjdsIOlJjP+m31oHqitD9RWAFh9X1eiw+zhTyWzo7US\n029ptFbi2QSNFhsZpjLbVG2tnXmw1HS4zGQ/NWAEAODE43+kuQKA/cXG7GYrALyfrW+02Mw4YcKJ\nm0r0jUB2pR7fEMVTmmzHKszvd+dV6vF/ZOq68mlSFvWdEM4wOeOqAmVQKaFCmh4j0hvRzT34e4uN\nB0tN/WT0U5XmrfkGhAIJ19V7i42J1ZYLtRYAqDHiCdfVWivxdaHhhhK9qrBsLzDUGPHptzTt5MHT\ntNevZc9J+3XIRxYxqAdLTAqTrdKAkyGt2f3IuChdu/eR6XytZVZqy00Ver/JeqEWfT9bv/ye7mo9\nSmre8FCvMtvsmdaaoNmvkcNCCJOpKSyRD4pvHUvOzaLSEACwNGsYLvyCvd/fmLtSX1UnjokwqZoY\nLnyTqklXVu0WFWafoXxEEqVMvZf27roND/X3C2rdosLIUSjP4QMksd25clnMh0tpSUnVp88DgFno\naujTN2zRTAC44hVpX7tBsGDuPrdIAIjqIoBfJ4YbFUrX8OAX1sHwN8RpkP7CBExJIGupdoJmv+bx\nUhxbKma6Clv3jbxIcALWZOkBYLgHc2u+AQAEdIoHm0pW8LVWYpwnE6HAykzdumy9Hw956472YInx\nYKlpTZYuvwVbcKcFtRFq1Ha+1nJV8WRll5sqNLke/b7MjNoIDzaiMD6xIpNSNFrr0x+7Mj3+aa4+\nQkj7utCw4I6WTFCkfWzG5qa1pDWgZpw4VGrakmd49ikQCuRrsDuNVtRG3G+2zrvdsiZLNz5ZnVht\n3l9ifPeuNuG6WmGyRQhp95qs+0uMD9RW8nstZlJVZpsnF8lvwTzYyDshnAPxLj3d6Jt78D3YSD8Z\nfX8fFwBgUClLQjkTfFjDPZj/GiDcGisIc6H92F94IN5lqh9bQKfGiel0KgUA/HnIhiheuR5ffV93\nsMS0JJT74QNdiQ7XY0SThdCgxJkqS18pY1aqhjQJ9rfQaPn3lgRVo7ZJKZr8FoysJbx+U3O6yjzE\ngxHsQltwp+Xdu9rUBvR0lflwmUlrJW6qUJwAtcU2xJ0xsgujVId/1UvwrwqzBrX1FtMBALURyfVo\nY5Np75a0jCbrvNstBS2Y/VXea9TufJj51N2DTxwMmv1am9p05dX5uw4LuvrpaxS4xWJSNXK95EaF\nisbloC26xvs5vbd9kLH6UwAgMJzhws/dcRAzmFAbAc3N+cDbX2IEAKarkCUVm1SNoQumkynPj5o5\nbmikbdkypqvw9Yq0YgM8aH5cNzpaZurpRvceN4wjl4oYFACgu/BxM/qUMANGqFEbAGitxPna33gV\nkXn1b70CJw7usisuLr58+XJ5eTmXy01ISOjRo8dTsUePHjWZTMOGDRs6dOjvhv8NodA6XaeruqIZ\ngHqorwuXRklRoZt78D/PM0S50l+SMVbf1wHAeG9WpCtdg9q4NEqwgDbRh4UTUKTF4sT0ddn63mL6\nxBsaBpWyKpx7odZyp9HKp1MkLGpyPborTpDRZD1cZvJgU0t0GAATAMgafY0Rp96vrMquHbigD4ND\nV5ltu4uMRVpsZTfuljzDhije9FsaHy6iRm0RQvqKbtxAPrK9wOjBpgoZVCmLqkZtF2otE3xYyUo0\niorVpldUUfkKF8GnufpAPo1BhXdCOLuLjBN9WAdLTeO9WZui+Q/U2Or7uuFyxkM1llhtmenPHujO\nsBEgZVHNOFFnsgGAkEFhUCn2YaBV4dzWGSVmUsXM39QIuTQKl0YBgHdCOAAQIaJnNln9+UikiB4u\npF+tt5yttgxxZwxxZyhMtoMlRjqVsiSUsyXPcKivy5wA9vYCY4kO7+lGqFEiR2M9Wmb24yFiJtWP\nj8QSFraMf7DEODOALWJQ9xYb+0sZYS5PCs/2AkORFhfQKWeqzBlNVjmHuimavyZLtytO4MFGhHTK\nMDnzbI2lRIsJGdQteQYXAr9Ya7HY4J8RPADoK2EAwEdRPDVK+POQMZ5MAEistsx9aKTFh5KPU6zF\nfyw3zwxg7y6oFyPNTYa6WHf/c3X0BUFsTw5yVYGmNaBbYwXPliiWVFx24hdjndK9b2zd1VS+n7dZ\n1Sgf3LfmfDIAqHOLmK4i1/BgUXhQ2Ylf3PvG+r02ptcnq2/OX82lUVS1TY1c4ZVqy8Qrl208HsdD\nqiksodAQ45SpI6YPIzBcGBp4qR4AgMblsBG9+deBKtQGH0by4MAWAIACAwC0uMlip4wDgGQlilCg\nv5Qx73bLSDnzcJlpXiBHwKB8W2Ia1YWZ2oCmN1gzmqxcGqW3hP7H/5D+ljj4czZ16tSBAwfGxcUV\nFRXNmDFj48aN48c/HoQvKiqaNGnSW2+95erqun79+rq6upkzZ3YQ/vdEPiie5+nhaBVP0Dcavhp/\naH/SG0IGFQD+NUAIAFI2tUyHk5/aJaFcAPDnIQCI/VcIBciPI5UCE3xY4UL6cDmDhVD2PjL2ltBf\n92UvuNNyIN6FQaUMlDG0KBHIpyXXox/n6BEKpdFiixDSLtdZrhOiwXJr4g+Plk0J+bbYuCyMy0KA\nS6MsC+NGiujzAjkJXswGhf5yo/VAiTFOzNgayyLvflOFrsnSC+iUX2pb+FZsDwbTaAxlVcvnfd3p\nbBppKRlUSlc+jUujjJQzpSwqAAxxZ/hwEW8uNU+jf9WbNdGHZX8cFkIhB66eZxClAwL5SCAfsWfR\ncA/mcI/HI4IebCqXRmm0EP2ljHAhjfR9WBXOfT9bPylFEyGkoTbg0ihWG1Gmx6p01pOXi5r6dBUx\nqAjFjFAhRYkarITdIL2frY+X0FMbrAOkjEsKy0x/dnqjdYov+1BvCoZVIxTf1/3YAJBcj0aKaEIm\n1ZVJsHZcpfvLPBO6txYsYlBFrbzxg8rrllWr6+r1A/vHKUwVK4tl032RQ8WabvB9EMtynzF1X7EZ\nN2G7TmVEmg3Nbw7m0trusJH2iro5f/WQ4zvlg/uiLbqb81frKmpoPI7VYGS5CmsupcR/9REABExJ\neHToJFsqZkseT0JwpxOmR6WWqF4AcLKZlpyunWKwWg1GADAvelsa+rh+gCgfN5G5NIq9W7K1NwlC\noShXv18WGv36MD8AyGi03lShp6vMKrOtwWL7sqdg3yOjJwcJF9JQG5FUYynW4V35CGoDwzMNdycd\n42CDdPXqVYHgcZ3IxcVl9+7ddoO0devWqVOnLly4EADc3d2XLFkybdo0BEHaC3fUIzgWj5fiOva6\nfsE0Vqj7TOvxy+br03a8bA+c4M0yYISIQVkVziWr0u1BGrBgAQ0Abh7IYPn6RnMYXBrl+35P/LwT\nvJgAEMhHDBgRLKBprQRqI+amtYwrKj0bEhhkbThcaloVzrP7MgyUMey/enAiu/qn3NQPJn/Z80lN\nPF7C8OMhnhykSIudm34kYOPEVFTG1anYeqOrSChlPRZM2iFuqw1ESWthwInKbAXq4cXgPKkOt+cd\n9ycyryuHbB22vteGKJ7KbCOlPlBbPdiImA67vrhd2CdsHAO1uPENGKG12uYEsq8p0NX3de+EcEi7\nNaoLc/cjY7Qb7ZLCMtHnsX3NLD/2oObi8uGnyYt/EMmzEY+f+ic+c/KogLRvU2BTuw4UWbduDn97\nCOW8/tLdAw90pwbzvKtKLL1FYd1CBgXJ4stzdcrG4r4pJbrxI/RfXSzT4e35wcuHxOMWC+nCznDh\nU2mIsU7JlrppCkvkg/s25xaRvdNsqdhQXWdUKMlZcWiLLnjUQMugIZyhI8ACANBosaU04l0R1lPX\nbz1sRr7febdbZKwnYgQMimnkyBoVujJTu7e3i9VGbIrmHys3iZnURrPNh4uIGFQTTiAU2F1knOTL\nihTRt+YbFCbbsz3JTjrGwWNIdmsEABKJxGp9Mrh969at3r17k8f9+/dHUTQtLa2DcCedgeqHiqiE\nMHmYtCrrieMTOYbEQih2a/Tgl4KsxDyzrt1tZvSNhuyz+cNvPaDeK2szgScHIe2WgE4RM6mJg0QS\nhfpfA4SDa2r/4dOuAx5qtL5xcNJLFzN8uL9pn5FOYjK90SdMtqI7f0uMYHRTg6ZO+zyPvCGSL0vK\nPL7yXH1RQ+tr+vN+U0m6eSAjKzFP39jGeFVrMAvWXP1c66ZzaRS0Rv3pwD1fjT+EGp/84Uh//ZJG\niuhSFrW+qCFCRNvM0PbSNL8TwvHgUAd7MId7MIfJmREi2qJ07azUFi6Gr4/Z3ud4ip/F3Nr2q40K\nLlN0rfAbDEcBwJ/3pMVmw23uwRIrisEzmKw6ADBYNHkBu7Prkq4x/nmrYd87g4++9dKB0RFL08tO\nBkrjACBGzOSwfZSiRIxBXJ3iEcMwUAisTlNUo85/6oIIk/nK3bP2U5ZU3FJcTtAoxjqlx4Be8Ot6\nuKTngjq3SBIXrbUSpTrcGhKq8/YlXJ/M2pazEdRGmHGi9fwDhAJX61HSeJBb8anMNmErM28vTQiF\nAgAGjIgQ0jZF84d5MAwYgVBAyqaqzLYiLSZgUCNFdADwYFOttja8aZx0TGcZgbBarUeOHJkwYQJ5\najKZMAzz9fUlT6lUKofD0el07YW3ec3S0tIZM2aQxxKJZOvWrf/VR3AgBI4RVguVxf39pP9l1DUa\nVy9h13hfRVGDd3SXNtPoGw0PkwoZHDpXyA4a4N9mGq1KHzzAL2RgQEla5fPfnYVQZEGS+qIG/7i2\nZ+OadRaxn2tXDoVAMWA+XfirHyq6RLgDAEIB73CZorDd67SGRyWk7vzBb8ffPZ7tHiyxh7duhAFA\nTY7CP8474+TDQW/1ae9SjeXNJ1Yn8cTcGTvbmD32LFqVfuTKl8w6i6qk0bN72z23WqVe4uvq202a\nvOdO5JjQmf6Pve2HuDMAIFxIqzHYikrVPd+OpzERTYFS7imwEfj2K1P6BU41ohpft6hLebu8XbuT\nVsQOjUEDADafadSYOMInHvw2Av/8YgIAGCyarvVTHrienxX3dcH3TS5sGQD4S2LfH3udSkFIAeEm\nyg9sFyl6XGO6l/3onlr4z8u6bJXJYhCumOz+KNRjAAAkXFf/FF3D94vArToqwqBQmS6BPqXHfj51\n/yOqC8tz+IDWE5y15dU8DGf6+9aZbMYWrU+wb/2sOdivVoFLozwcEMLu6aO1EsLfVlm2FxhGdWGy\nEEqbbRoWQmmy2ADAj4e0NjFajPDhIQDgzqKmorZJPuzWg0b/WX/tn8ayZcsaGh5XlUpLSx0r5nfp\nLAZp+fLlbm5uZEccABAEAQASyZM/bxqNhuN4e+FtXjMgIODIkSP/RdGOpu6zufJ/HACA5lPbrQ01\n7m+3uxrm82AuP0xluzPch/8nF8EsOINDlwaKs88+Xc+101ihDhkYENDb+/7p3PYMUm2e0iNU5uol\nVBQ91wZ3Ntxmw20AIPETNZSrO07cJdyjJqfeN9bzqfCG0ia7BRL7uVZlP9fOsI3lalmQRCgXGNXm\nDuRxRey4KVFn1l3q4FKn1lyYtXfC8RXnWgearDo6lUlD2ujqbChvloeLdQqaUWNa93PfVSN/4TKf\nXsOiLl8ZlRDGEbKVJW2sVx0pokeKgHOu3CvWy6g2qeu0AHCt4Jvh3RbdKDoYKO0d4tFfqS19UHOx\ntUFqrtYIZDwAoIWqKwsqmiT35S7BDbqKBl3Fg5oLY7uv8BVHN+dYtHRjyMBFbDr/vjoJAKwNqQTa\nzO0y7om2HEWkW0JW4553w3YXXis39+6RVDuiEnB6c725bMnSYSd+SH8PaPsSkyffB34kYhvbdQo7\nZDlLKiYwvElfFZQ4m8bltHZkp0RGxr03/807LZM8DS76xi6y7rkEmH61Ma50E1XEo4iIQrUmOf+L\noeI3U0t+YDH4VcbpvcV0tcUGACIGhfSa07TatlzAoKpRmweb6smhNrXyXZwT8NgSi5hUA0aQ3cJ2\nrDZgd4KRhNYVcXsFvdPSKdy+V6xYoVKpdu/ebR8KotPpAJCf/+SjZjab2Wx2e+EvVq/DIKwWS0We\n/VR/9/GmYTazEdeotL/ORvpDl8bRmjNo7Tms+R5hfa6uqmex4TaCgmE4yuDQO+iOq36o8Oru4eol\nNGradYptUWhFcgFPzMUsbXQKPUtzlcbNVwQAPDG3RdG2fqPGxOIzAUAW6KYoUj2boDZf6RnhTh67\negmVJW1s1/YsWqWO/DqTFrFNVCVNbj6uHacBABqTxhGyMfQ3FayT9z748e7qa4Xf1KjzDRZNnabo\n3IPPk3K2Hc9YqyhW7CwaV+96J7XqexQz/nT/I4Pl6e4+TZ1WKBeQF2/vvk0VarGvSN5NpihQYjha\n1ZzTTT5o/oD9g0PmebtGzIrfrjc3Hb2zkuyLA4DG8mb3IMmlvF0p1E8uVH18v/LsvpQ3c2qv+Eli\nlg0/He09hlXzkyKnXBYoZtP5AECYq4HAtXlHzWUHW9+3PL26e2zP5cNPizxE9UUNPjwkTEjb38el\nrxiPC1p2JX/vuMgVAHAXZ87u9taP3MRKnfrS/fVUrgsA0CgszPYbJ+yr9eiuEXM1TK6ISc2orVTG\nsCg93Hx4SKMZQ2wtANCszWchSIjQLbX6oTvft0adh+Km1JIfRbrNcwI5fhxTdpNWxKSWq8ug1cAS\nAHBpFK2V2NvbhUqhkBOBSRhUCum3ImJQ7FODSQa6MxcGdzTly0mbON4grVq1qrS0dN++fRzOk/dH\np9PlcrlCoSBPGxoaTCZTYGBge+EO0O0IzKUPKlc8nl1PWJ988W2GFiqLW79z6R+/NAXh9dr7KFVz\ncnXSsbc+AQBLxVFVQX7h9dKnTIvBotlxdUpFY1Zy0cH0spOto1QlTblRWzMrE49nrGVw6K0HNlpD\ndusBAGq0tveBVpY0SQPFAMB/PpukbzKSVsHVS9je2E9jebMsSAIA7sESZVEbzQXUaG391UaNT086\naRNFUYMsUNxeLIajNgLXKnUi+eMevBZDg41oo03fUK1k+1syyk8zuupu5/2EYsYmfTWKGWkIQ8L3\nLWvIzK5K2nBu0JmsTU2G6qL6NLNVl+Pz9YQe60oMKYSSv3JEIo/l9tP9jz49P+ZWyVG78QAAKkIF\nAK6Q/WxOksnUdVqemCuUC8xGmfhhAAAgAElEQVS4fl/KvBifBACgIQx7s6xOU8RniYvKfjDmbgCA\nFqU+ndiTV3d9KmKgKKnvDD46r/+euf12dpMPIi2Qpeq4MjdXxLqOKi7pbr2GgPrA1E9+/FxecN+n\nPDXr1mfv4GYNZsGUJY2u3kIAYPGZdCYtzIW2MIgjZVF7uAc11JccN/2zkdIdAGIC37uvkWIU1tcq\na2HFqaQvUwHA0kApNTxpkaCYcXuBAQASa8zBXKwCFWPDh6Yit4R0qgEzB2vGA0AXntBT1C1cGpCj\nQb3dulc0ZaOY2YqZ9OpLOWV7eoqMNDT3Vv7WD/PdAKD1dGkB/bH3nZhF/fCBnv5MZ1ywgLYl5jez\nZT3Y1NZe9U6eEwdn2dq1a3Nycg4dOsRms0mPBrINBADjx4/fv3//8OHDmUzm3r17o6OjyaGj9sL/\n6hA4hjUpEK4LldvGVAwSXNv87LH2+nFT4V2E79rx9XMuFPnFevLE7Y4zpZ+sVja8/uqXQ69+/Gld\n9sOKi5erSkp8Bo4r3FIKAGPXDKagZfmZa28SrDpN0aG0JSarLtp7TJh8UI0672bxET7LTVlTKWMG\nX8rfabBo6KFX2FlvDYmfQaUgp7M2yQQB8QFTUMwIAGp6cQve1QWTSgLcNHVa0jjZsSqvUegC1IiS\nTms8MUdV2iRxyzMVfSkYkEimsRF4fUvJNylvfpCQQoY0VWkEcnZFY5avOBoAdOYmAMi+mdHVO8Y+\nrtNUrRF1ETTpq6lUpImfqzPHJOVsm9xzY2ZlIoch7ELtweMoMHUWTRRtbbxDF/d2kfFtuI3QFyIu\nv5l9/BTqGo3YTwQAXK7qRvYRry6hDbqKEI/+x27MHhyx9FDG2mjvscYyFvg1EnWjEBZlb/IbXpKw\n13ttBoC8uus/3l09MnyxGdVdKdgLYSA2vlkQ9k1jRUBe86VadT4NYWA4Sj7mJ0kj4wOmjAx/l0Hj\n2Ah82+WJTFwU45vQ02/8yaQkN57X+Og1m34ZGtFlGACcvPdBQtQqFHvcBm3SV5eEHsrMpgRFRJQ1\n3IvxSfj0/Bg3nletOn9B34OovLrFpPwkaaQwsFuMtG+oR//WD4i35K8a9J2JytqcNDSYzmTWZxSg\n6OTg99yZBLV8v9sZfyoFad2hR2BGultvS1OBKXcbO+gdTtSnCT29cV0xjU7c/amq4vxHVubgw7O3\n4BTp0IUDzQWbbJYGXswOxNpy/8i3yYfUY9e9Kunmdhr6Cy0XchSDARiYYOyPFRY/SqWIHiQ2ZRx7\nb/4/gid/c69ObQwdp1V4Czyu5O9JLfkB+D8L6JSqlmZCf6WZeJmR4UqJoeeUf6W3vspnufXlXGfw\nhgBAoIuAYASHil0eFj5ehL6n3/gGXbmEn+utWxsV+ukPSgCA1oNJUtZvKu6tG0kd806I44d1/1o4\n2CCdOHECAPr160eeMhiMnJwc8njhwoWPHj3q1asXj8dzcXHZu3dvx+F/UWxmg+bcN64T/89S+qDq\nn+MAIOhku0MXuOZxR5NVVV23eRYAGLKuKfesJHCMFRDZ5sVJTwetUp92ODP3YlHk6NCQwQFkldnO\nzQMZVdl13lHyhA9HUBFq31nRR5b8KA/vM/ZdFduPh/B7lKRWfPPaOjf/rpXZ4f03VsZye2Qnx8ze\nOPvjc4ML65I5LNelQ0+qjXU/HFsz8fWAz6vu9OII7xo1V+u3u1W4RLn3qVXnp5edrFXnZ1aeTQiZ\nVxC0v+L6se5eIwJCxpRn1DxuLdWexSX9GQjDkL0a8ZhMY/rbCLxElW4Lqz5RvN+7FhPrFT3LDzO9\nJl4s3F9Qe02pr5SyxF9cGj84ZN69ku8ZDZFRwd4/3tiyeUIWzjAdSplXo6sAgIjv3jONvibiykdH\nLFXkq/z6um++ONRfEqv0rE3OxZtbCjMrEzMqzgCB+2mLSnufvHL/arDXGLxgi2jIdYGMd+rGSpn2\nnF4yqG+P9eSw/OOMtTTgulK6uHedpuhu8DqvWtRk1VVL95SXWnhluIuoO0Kllhvqf05fOd3NPwsz\nVuI3gtjxN4oOuge91IUWHSSLSS46aCOwS3m7Fg06rDbUyQHtoU+QNNwc+PJsSVVfTE+RxOE0hOkp\nCmvQVQCB29DmxUOOUakIg8YhUDUF4JWINfcflJAv0v5C/SWxUd6jvV0jvF27n8r86JEyTRgW+EnS\nly0mJbDhUs0Xyc10tbHuxL0PAGD+S9+gmPHs7S+xUOuJe+uC2WF4i7SbzpVBe9JXgZktd75cETNl\nOEJlrgqbXaO8bjPWwq2hXj3SzQ92M8Pf57rUmepzQHujpVmka7Lx/Ae74AfuXIsJGqyhCWho3Xmm\nz5sIk0ZjhgJAzwRR+bvpXX84nbl2DdNywFWVSOv6T6vqgs1qQLMT7xSHzd1Qf/dONauhuNy1l7/h\njQcZcvDvnt9ik2LNWL3VEjiAoqlh4LXHsn9W8xcBwHfpm+jWkmba+IH+MzIbwIeLVOopPakNbLRg\n2luj7h2TxI8L5jCEVOppJo2zt9iiRQk3JtVACPhMXkLkKjrC/OLS+Ak91q0+FZ1Te8WN5zXMOzQP\npT9QW1v799sd61kIAEDTcy+B0cGC7k7axMEGqaioqL0oOp3+9ddfa7XalpYWLy+v3w3/i2KpyGs8\n9hm/3ytkz/jvJK4uoku9iid78wdMsFQVAoBy1zICxwAA+9VW2QxaexurZHpX0rxd25k2bu0QeZjs\n5pZj3x26SdB5Zp359W0Jrl7CazvTAMA+bchmNvC8+4cKt/VcMJctJSyVx5m+Uz3lqWMnXWTJNUWS\nBjzdt6pMKhHICi5WmnHL292m06u+x2tO6+tjfSmhPDfXsaZuhLQ/5O0BG+V85mdaDsVF1LtGnZ9Z\neVYKtsTC/aGa/gXCm3RrS5rlc0aNf9eUfyqD/yHKXLzV6upFQYHt4V6aJQvsmVNz5WHNxTz9dbbV\nTYE1ISgjLXPrQFVGM3BUuiqR0lWS42VxCz+uWxvbwHsoqCko1AdT8VLV7RL/r4gyCEWiwrrzT8En\nVBWVRSEa1CU6VzCU+03rvSWiy9Bzh967VfnDEqTldr2vP9bMQkXXq4+H+rvxmaIDufsENInx2lSm\nkCJv8rnD8NOp7qkffN7da4SPwL9UXcCksWSluywmJbXnnuMZ6wLLpx2nrR0l7+PpEur3UNkzwe+B\nUXcyc8PLPiMk3uNl5fsCIpb965v3h0q+N3lN3qv+dohhQzes7HLdJUwQNgYxSBpvCJXXCJuFkuIR\n9PpLxpwP5B7jMvZlRA+eShN5AICE74ups7Q3X6XL1lDYwURYjPbWaxSGiCnY4elW33w2UDTyPtlB\nyuDQyYaXIeu63K/b3H47L80bd31k2YiAd6K9Rijy1cU3KgkDfcD8XoTAUJ221KaiIRg3xvKWqen7\nMPerylN1Klls7em7iuuXTRjDzQfpOnbW1e3n0n4e5h5pkLlnm8Rf+PlIKHRB/qV6XH1JNDoPqEj4\nmGtH3vpOIHOjs8C7h6j45tfVpe4B/T2jEl6q2bRRMJBetXosv+/LbpOW28yGui/m82LGVi4b7Go2\neH182VKe13j0iNu0Cfq0z3p1T5XO6Y1w3fsMOHdyuwTm9PIp984IDODTiJIGc3B5eZWLuzsiyUdf\n4mJ3eYzHvjD1yKgB4qrbmklDiJ8BgCBwzEYJ4QRIbmR2GRZ/S2uV8H3tfz6uDGqxFkUocCDeRcyk\nAgQDANn6HBg8J7no4IQe69x4XiKGAQDov5kY+/iAXMeB9btL1jv5o3T2Xk6BQNB6rtLvhv/lwJoU\nbpOW626fYwX1eJ7EuKGFwDHCbAAAutSLLvHy/PCk8eFN9dk9AGAzaEtmhQQeKqRyBaSJUmYVZV2p\nZ3Do8jAZAPijZ0OGBkpmr9cq9UcXnxHI+CEDA2JeDbe3papWjbKZDeFDRmJ5V2z8sUCl6++to7nI\n8XsqZPD5yEG9v1ouGzQ/LHpA7bld9yAe+A3XGPIxxurL1/e1vLLEheU/t5//XLWxrsWiu1Vy1D85\n4HacUmLIFOh8Qm1uynu+3SXuQfJ8L3m/OBYDZ3XdXnwnEySXb737stfLwbWXQRgtEcekPDos8vxS\nd6/y3Zj3NYprDfv7w8IzC3h9zv8oPT3hRK+qAUO1I7sNkQrGheC131OQXsm5Q1DJJ4skASy6y+X7\nH3jT4lwaBg5/w0bleHJV2nM/c6VmDzpHgbiYAwYHhsviLZXHB4QbGT97nsmZ7uZWo2JN0zVYlmwd\n4+LBoVCZfQHMZQeyC3abWD3v7pZ59R5q0OTYoh/eN1Yf1xSRE/mlHBmb7q5Jnj2Wyqow8FZFL6PV\nJ1H7rb1RXMOP7B9bd87fUi3osrj6geHunS5xvJNMl/4uLy2hF3z2Tvez6UdvYt5ZgwQemPoap/fX\naNUpTvj7FBrX9H2qJGawIX28wK9LY0GZ+sIiybTHM1KtqhuC/j+1XFukT0Pk733O9JtJoM2qrLsu\nzAx+3LfaW68JMGl9nswryrtw3fzyexpffiEjIYGgo7jGbUZ9cEAsw3L//9xw+fVbPvFDb59dV9Fr\nUEHK0e4y2fs2jJL/IPjVUTcEAxIxbT/9nfpi9TRdYVmU/92sB/GlOaebNYErr0z6dto2oSRIVX/q\nzcNTilLKXANc+PFzSG1Bw0f5dsMM5uiGVb26fl5OoOOKZ4V5jTpnyL6ONbE1v5joEldT4d1HE+Xu\ni78SDptOc5PXfDSZrCfRoqX6jIvWWkSfdZAdxMa1PE7IqzbTUZnbrXH7t8ROfjOVzaA1GYwuvF4D\nXKtqBZEPi/cHRLobrnFpMeTdayjxBDcANPBD8zAA0LZc0cEQS6mpW0Q4maC1V7qMTdWgj9cbtP9N\nkYNeI8MXJxcd5LPEAIBQIFJEXxPxm9420mdhoIzBQuDT3N+ZTObkD9PZDdL/JI3HPiPMBsns9QCA\n1pbw+77c9K8v7AaJwDFKqx3q6ne86774KwAgrBYCx+XLv9He/MmqKJfMXm/MuUWYDYwugYwugQ3f\nfUChM0tmhQAArmsumRXi8/llTrf4pM2Xx2x6XRr4eG4glcXF1CoAEMh4C49Pt9+ldE645wfHKVSE\nHdJLMnMdlSuo/WRGw+EN0jc2aS4k8fv2oLnFA9xF+EGzPyiRj1iqz1w6eJJn/bHJlr4HLp0aR2MG\nxPTYIwh4vP+NiCMfFDJPwJb2f3niBz8Pr84MWDLGne0mZc5Zmrj+il//LpSyt7m9S4CCRD04lqn5\n18I++3fenud7ubdYkKA2g7BpRL/xZb6hsxl5H8zxHVw24aFP7w8FkgGvhpq++4DWgrAHv5Es7Pcx\nAJhMhayuC8f2YoacuiR286cyRK9wJNyRn9ifK2zcd/KwdIGnP+AWgsANWSv0Tck0lzB+xIfDY0QE\nZgSbhcIQPfWCmN5TesqGIBzPSFaga0I51nwv48zAgj3Xpi1bbhIXGlqKungl+Et71TxUXN1+NbzH\nfZqqmdf7OwqVaTZUU2gcRDw+75R77bHUHuPDXaW6799nyqO6Ii5hFCqTqVzWWOjNencuzTU2/3Jx\noMCX12t4VmJexAh/K5bNEPkwRt7X319KiDhUZlXLlYWCAR+bHn1tVd1gB72rLOtWaaDXHrmis0ar\nlVxVXtakVQRdNpjH8ZQTFWXnv7x/iE+YmMJY5s3brwgumDksbV51VCT3kqXqEU2yisnBx0ZME/Xd\n4RZSnbgraCB/tyiYbykuH/bRRc15a8mMHnQ3V5ZGWVCEvb1lIEXhKkVSMu6JRh9YzhNzR4w/i2Vo\npTsuHlpwytVb+PrWca2zi9FlHFGRR3PzMD5MsZmN0tkfKD6eTvfwky8/QGVxGN4hqm/X0t19Gw9v\n8P70PCCIKGGh/bfcqIGKbQtdRlIQjjdWryNsDFOeKUiYnX49bs6IYI+fbulswm5ScBVHmBoMDal3\n/ARuMwf/49sStDcbZHe//zlweplWBgAaGwcAtBYrMKExu2HQsngAkIfKNHVau0Hi0igdLzjLoj92\nTBAxKE81g3bFCQAAoYCA7uyF+y/iNEgOwKooR2tLHh/XV9DdfSkMFtnoAQCsSUGXPumK1Kackr29\nDa0tsZQ+4Pcezene35h/G60tEY19E2yYNuUnMhmBYxTqY8dT3a0zdKlXy9UfrCEJLoV50kC3pn99\nQXf3pSA0oCI2s5FMZn6UiQilyj0rKAhN9PJC5e4VjC6B7m9/Sfb4yeZ/1nRqu+bCQZ/PL1d/MNFl\n4GtYY4ilLo/LNgEFMRVlUYi0Pv2/2/URc+pnURJDquv4lNbPyGUKBwTNBIDgLn2CesS7+j2e6fnK\nR8MBABXtAAoCAD1c6Ej+u/cOH549fkHInl/3RSXGorVXGJ4jCP/pQEE8ayL54j0UhkgSKHp91Qye\nG0sgnkImZAf/H3kQOGF/e7ktDHgy3s4OWU5BmDTR463VKDQOQBu+uRQax9ZIKL6Y2uW9BwBAc43t\nMxciEgalHcksz0A4ohivOfKS4orci49iLNs9gyZijUkUKhMATDrLT2suNFVr+s/pOXRxPypCNWTR\n+CIFdOkKAASBUQgjwhLSRNGPUspuHsxIP5ZFY9JoTNq9kzk0BlK2IEYwYAJd9ojKiNR6/Mi6O58g\nRjPchzNjE6/tSq+4JosdXYA3F/gNHWouvq8OoOq+Oeg+aBOV489FatOvRk/7/CXb6VFgg25zsk0P\nbfy+XeMHXUbruugbEJthG1pbgmlwU/7bsvmbxwb+iNZbDHcbAECdaGN26S2ZPkN/94LP/E/fszFZ\nfCbAy8Wv+/UZGs+zluvv3hXzYqzdrJp1vQfP+kke25WKGc2VxYod77KDYhCBqw218GKGiMbMM2Qn\nW8rzuqw9Khr7Zuv8lM3fDAAU+mOnOMnM9+1RvF4jEYErQzKL2TWu+eSuxuldhSNn23K0s+YZ0aLb\nb5+eCQDea49W0D0MGEFFKGNqa2LE/scqdSaC0tfjRDbaP13n8+RqFL0GAG1RcSTeAODmJSzPqCH7\nBqBVz1ubLBp0mJzFhVAoKnO7bgv+PIRcT9bJfwOnQXIATw0XURAa4BjpNUeXeoHt6T8GS0VezQcT\naW4eHsv3AQDTKxhwDAAodFZr52+am4e1voLm5qE8/69jmVOG4sVaniXAo56wWkx5t7EmhaW6iEDN\ndmtX9c9x3JhhktnraSIpwnd1feVtCkKzfzVobh7i1/8BABQ602vDabLRVv91b0Aw3bWJdHcG3aM2\n5pXwLt1kLkR59dqPXce/01qzfShrWu8tAFC+KM53ewp5cUtFAV3yEgDgumbD4XfLTP8U6TUekseG\nwVR415Sb1njss6CTdWTbhdt9I5X52FOuvfUInhO6uDf8WgloHa76do30jU2tQzCNyvjwJtbUbG3K\n5XSLBwCemDt86QAAyJsUkn9hG4VCjXO/bMXc9bcy6O5jjQ9vYhrVtB0Tnr6jbLBPFw5d6gsADNlg\nCkvCkWGH3joDAHP2v2bWm/VNRnmorDgpTZF8XdhrBoXBNJfnJiyblF+gy7k8hnPHwukS2Fx1JC7B\n1z8qx2vmZtxIq/9yCRXHeBV5BACmUTUe3oBW5C3c8LYhZYdVI2d0CbTpbqHVNuGYM1QGV/3LAWPO\nLc/1J0mF3OhBVe+NBQDAcQAIOllXNi+KFdSD3/dlft+XAcC+0Fvg4UJMrapcOUwwYAK3x2tur/cX\njr5vyE6ml1dWbdtJ5Yl8t103lz5Q7V/DCY/XJp9wm/KPiiUDPNeffHbFEHuhahP/vY/3oTBkjheN\nfdNcku2/P5swG8vfiXdLWKhO3G1tqEZ8+wDA5M/Hku4bI7swDVYiuNu5Tx6unapdz1U0GzxcAcCP\nGloDIGHWktUdeTfZo5vl9huFC2mbu3NufJP+0pttLP/o7RpBHoiYlBpju2q5NAq5v4aT/wZOg+QA\ncI2KJpICAK5rBoQGALZfm0eIUGptqmv9uUT4rtb6ClZA5P+3d+8BTdX//8Df2zm7wzYuG+M+5Kqg\niBCIF5QU07TMNOmDUR/L/Gj5+xrSJ/PjJ5X0U2Zm+SkzzPKjhmZpeUnzLualNDEvYBMYIANBxm0b\nY/ft98fb1uQmlu4c7fX4a5zN8dx8c17n/T7v8z7tJadxLXHuOxwW4y1/6nab2c7RG4Q/lcU/uzzl\n+2XqNmSMH2O0aZu5fZN9n37NVK24Nu9hQUK6qarE2tLAIEhbawMnJAb/6877EedUcucQovekL+x6\njbm2vHHLPOEokbm23C9C3vbTacLTu73ktPHXs95TXtEXHdJfKNQe+yriizKEUMvutcL0TEuDylxb\nzpHHOiymG5+8KkjKEAwY3rTjv0GLtg1+902OqNGkCmq/dAIRRNtPe1u/34C/k5bdn3g9Posjn3Z3\nv//KOUMiNipa9n7K5PLx8FHr9xs8Bo9v2Z3PDoyQPPtG7dvP4Vc27/7EUl+JC5ITX+r9UMg5tizU\npOLoqxX+uevMKkVjwVsOi8kzdYJReZEjj3V+meyAcc5/iD/IlOUIX6HF5rNYLLunFxshxP9lTeLf\nZggS0hFCBkUiLyZ5aDKK8y+5se51LiueP2m45vCH3s++QYj6ESKEEOKGx/tMzTUoflb96zFB4mjZ\nKx+r3njCrtcGLtjIH5BmqlZY6hczOUKEkHjcdPEjzyKE+ANuTuYO++i0vuhQ7dvP4c9ubW3osmAw\nWByWNDhio8K5hReT3LxjtblaEbryEH4BLyY5dOUhu15b8VKy38vvy1f/wA784xcFyl5+3yN5XPXr\nj5JiKUIoYqPCoDjTsnuttakuzIPIHyzi85gOi8mgODsqJhl/o0y21zPiq+xfSjb6T7Qhon5XI5qM\nUmf+E7+hOEDYcl2DH+OTSYbjZWGdVujooM3qgFkLVIGCRAG7XsuSyR0WU83iKcKH/4YQYgpENr0W\nIcSWye3636/rdNispJfUrtcw2BzUqWYQnt6kT8DvL3YwDtc+Lfe7McD7VJ+MlWmfPMeY8gGpqTDX\nV5IiCUKIExIjGpXF6TNA/8sxhJBn2uS2H29Zpea28O6GEx5fvyaHwXzh2qsZ8tU/WJuuC0dMrn3z\nafH4F6+9mmGqKiHFUlxi2y+daN3/Pxy7Yf1CJk/Ajx/Ji0lq+2lv2097Jc8u4g8YHrdkJUKoev44\nQ8mPlgYV/oeeQydqj32lObiZweKIRmfZtM3m2vK692ZGbqt2zVP33kz/3HXqTUtJsS/h6S1Mz8Tb\ntce2OR/j/pDdqG/eucbnqXm4F6h8Ps5hs4pGZSGErK0NnqkTNPv/Z6oqNikv8vsPs6pV5rpKhJC5\nWkEIvfEbeqZNxoWZExLD5PIbt67os/6C5O95DIIUJKR7PT5bc3CT9ocdN9a+Svr498kvUm9aKhz5\nVOve9d6T55pVCvWmpbjURW6rZvNZ1+Y9LHvl45Y9+chmFY76Gy/6IVyNEEK8m3tbRPr4I4SMyovB\ny3aKx07HPyKE8DlFdmAEN2qQIHEUrpcOYzuDIBlcAYPF4YbHBy/biV/MIEhEdPwzZwdGsmRy59CZ\no1OnvDu8fqksaXCHAsYUCHHd+jPVCCGE/8vsxjbn2+KxBP2FQnZwtH/qBISQUXlR9e8nnJdGEJ5R\njzZtYWdmJLE0HnwZITw1TTvCr1+c8z39o6Ulaz4RhgZtWFw67vXRdb/eSHwyruMvvlWYB2Hp7fcB\n7jIoSNRgB0e3fPcpLzYVj7YTAqH5uhIhxJH3M1crDEJvh9lkqlZ4pk7gyGOtrWomV+B6rIoJ0zM9\nUicghA7/9+SA5ZfPzc+JFhfFDeAblY0MguSS+rDRsc27T1gbVEzuzQExv9krHTbr9RUvMAiCGznI\n2TO7IwyCjNxayWBxCE9vm67ZXKuUzlzuMXg83pNaGlSVL6WQYqm1qU5zaHPQom2Vc4aIx01v/X5D\nn/yiin8k+ueu881+w2Fsx2N63PB4PCHQpm32fuJlz2FPOGxWBotT+VJK2EenGwve0hxGulO72IER\ngsTR+l+O8fom4yu3HDar7sfvfGrLjaVFdqPeVFXikTqByRWYqkrq1+SwQ2LwtVmVc4aEfXymdd96\nU7VC9a/HfJ5+TTzuedJbxh8wvHnHartRb/j1LDcyQb1pqX/OWiZfWPufafLVP1TNTfOZmus5dGJj\nwVuNBW+Z6yo1R7Yy2BzZ/33I5Ap8puZ6T5rDuHVHL0jMqPhHYujKQy171zd99Z6xtIgtC20vOa07\ntUuQONojdYK28GtuVGJZZkj4hmIGi9P89SprS4O1tcHaciNg/obO3zNTIGIKhCFvfcdgcZzVCLns\n90mxFHcmEEKR26ptumYmv1dTT1kyedhHN9fI95u5nCOP7eV/fYeB2Xuhz6cXnI+5kYPCPj5T+VKK\n9uhWz9QJCCF8kYMTg+1trt3Di5jlee5M29kDoke8EUIOi6lqblrYx2cQQhlzU9c/coDBaXwy9LOK\nX/sHDwxAtzPGnzOGRrcY+2uBgkQBBlfA9pfXvv1cn/U3//aYfKGloSQobzsvJrn8mUjHlyuE6Zm6\nkzs9kscignTYbXajvssVHJhcQXuroexUVd1VdXND+LiAHxhEUuTWm+PmTIGQFEvM15X8gSN//+0E\n6TV+Rs2bmcKRU53jdXf8EVi4x8Y3lp7XXzjGIEjncT0eVxSOzqp7f7ZH8iMsmVw8brrv0/PZARGk\njz+DxeHHDWEQJMPl4+C9qt1iJLykzuHKkHe+Z8nk7ODo1r3rra0NnJAYj+Sxtf+Zho/Qm/d84jX+\nRW5Uor7oEJMnMJadRwhVzR0uGvOcUXE2cGFB46al/IEjuVGD+AOG17yZyY8dErRom/6XYzc+eVX2\n8gd4/IopECmf64uYRNjaM/yB6SyfAISQ95RX8B5fNCqL9PG3aZvNqDzgtc9bdq8lfQKatq4gpcGo\nq/MipI9/2EenWTI5LzKhceuKwH8XNHz2b/GYbNdJZdbWhqatKzSHt7ADI7wnz21Y93pw3g5bW0uX\nK7VzIwfJVx1zLUU9ux8ct+MAABfLSURBVO1qHV0SjaHv/S0ZBMmSBnumTnDYrMbSIou6pmH9QtcX\nsKQjxBk/Mkgva9P3Nl2zw2je5v+5uW68pUHlsFnt7VpLXeW4bGnLgU1cLmdkWqtwZAZVnwX0BhQk\nt7Ib9ZrDWwihN0sWxh8w3Hl4y+QLbdpmUixlEKR43POc4CjtiW+Q3YbsNiaXb22q6+E9i74pTp+V\nGpMerqkdgRSRBsXPeDs7MILw9GYwCYPyIh6bcuIPGB64sECQkO6R3O3d1Xqp/fIJ36df67CRQZDe\nT7zM/G07ni8gHjcdIeQslp3Z9VpOcLTzR9y/EY3J1l8olEzPEwxMRwQR9vEZljTYYTGZ6yobNy/1\nm/Vuy841TL7QYbOGrjzEINimmqsEXyhISBckpF9f8bxNo/ab+Y7dqMc1RpCQLhqVxYu9eQMIv5nL\n/WYub97+gWtXA38crwkvEmIJQsg59oXrSsve9b5Df7/3YAe4mpI+/tyoRLYszFhahCeYOZFiqeTZ\nRdfmjxWPyWYHRgTlbUe/Dc11xiDI3lejB5h/7rry52Lazu4XpmfadM0IIYfFhA8IGCSfQfIr/pHI\n5ApuzhViEPqiwxx5rKmqRPWvxxw2a1DeduO+FT5P5TlsXS+uCOgDCpJbGZUX1f9bjI/Bgxb9vjg3\nIfQ2KM7ivzHJs28YlReNyou8mGRDaRFHHtt29kB385TsNnvN5bqhzyUihESB3igwy1l75Kt/QHjq\nXYOq87Gz84zFn8HgCkzVCvHY6R22dzjT0xthH52unDOElHZceoMUS0Pe+v3mbLgnwWBxOCExgQsL\ncAZLtQIhxA6OZhAkOzjS+WKPhx6pX5Pjm/2G69iaz9TcDr/Ce8ornfPgq8Q6cw3THUFihiDx5pF4\n59EwpkBIiqV0uHnVfcSu1/rNXH5j3esIIU5ITOWcIXjIsWXXWs+0ydamOtLH/2Y/26A1KJSiUVnm\n2nKP5LGChx7hxw4JeWsPJzye0elcGqAb+B9yK5PyIkKISXa8tw3r1h0xKZba9Vp2SLRN20wIhCbl\nRc9hXR+VMwnmYwtHdVibzhWDK7DUV/WwYOufQQi9HRYTnnDxJ+GzGs5uSu/hLsj1Fc933t0I0zNJ\naTCFu6HuliUMytsOO8c7Ivl7nnBUFiGWXl/xvOyVj22t6satKwhPr8YvV+hO7+bFJBsUZ7nh8Uyu\n3FKrEY95hh0c07r/fwwWR5g2GSHEjUqk+hOAXoGrjt3KWPYLkyvoPA7DCb7lXA5+ASc42tpYw+AK\n7EZ9Dyere1jAGyFECH+fe3YvWJvq/kAV6VKHa4PuCL5RYWcdZmzTBFSjO+U14UUGQeIRZpY0mD9g\nuFWtMlWV4Lkt/jlrEUJMgejGx980bNjKCY9nSYMt9ZUM6Ibeb6AguY+pqoQQS+xGPdFpD457MB0K\nFVMgMlUrcC+EFEvQH8KPHfIn7yTbg5s7ViYN7osJ/hoiNirwaCevX6ru1C5OaD9BYoZzar7vtAXo\ntzkyDovJ8YcmkQIKQUFyE4fNqt70pu/T8xFCTF7XB26uB85R268TYgm+Jslhs/ZmLXD3w3/5BC2z\ngQeSc/CZHRKNEPJMnSB59g18hjXs4zPC9Ex8OTZCyOepec7ZK+B+AUMHbmKuLWfJwpgCYeCCjV1e\nP9j5MiNSLDUqL+L5CH9mOOseYhLIZR8BgNvwY4c4aw9CKChvOz4R65wtwo1KhFNH9x0oSG5iKPnR\nc+jjCCHn/KsOOu/Wcd3C3aY/dokJAA8w15mK9DxZCO4UDNm5ibHiEu/Oj9fCNxSzZHIGi4PXvqMb\nPHYPAAB3BfSQ3MRhNva85nGXcMeoh4tJqQUX0wAA7iLoIbmDw2ISjcmmOsU9ATOYAQB3C8V7E7vd\nfv78+draWqvVOnlyx3vJHDt27ODBg1artX///pmZmRzOzR5GWVlZQUGBwWDIyMgYPXq021PfMQaL\n86COcf+BRRkAAKBLFPeQFi1aNGvWrC1btixZsqTDU/n5+QsXLoyNjU1LS9uxY8eMGTPw9qtXr06Z\nMsXPz2/QoEF5eXmbNm1yd2gAAAD3AMU9pMWLFy9btuz48eNz5nRc1n7btm1z5szJyspCCMXGxo4b\nN669vZ3P569atSorK2v27NkIIZlMNnfu3GnTphEEXJsJAAD3N4p7SCxWtzcDDggI0OtvXmhtMBhI\nksRDdidPnhw8eDDePnz4cLPZfPr0aTdEBQAAcE/R94z0kiVLFixYUFFRwWKxLl++/M477xAEYTAY\nrFarXC7Hr2EymXw+X6fTUZoUAHAb51S64vq2IBGHJBhiLkvMI2VCNpeESVXgFvQtSHV1dRqNBiEk\nEAgMBkNtbS1CyOFwIIQkkt8XdiNJ0mbr+obDSqUyO/vm3DaJRLJq1ap7HhqAe6nNZPPg3B+j020m\n28rCapknmyQYpyo1XBYzWnLztsWthramdss5lW7yAMkziTIoS/fUvHnz1Go1fqxUKqkNc1s0LUh2\nu33u3LmLFy+eOHEiQuj5558fMWLEsGHDoqKiEEJXrlxJSkrCrzQajTwer8s3CQ8P37x5s9syA3B3\nFSpbXvxKsXhM2DOJMoTQ4dLmpzYVTxkgffexCDGPgr/cNpNt/9WmgQGeEb63/MVZ7Y42k61DpOwt\nVybG+co82fU68+IxYXJvbuc3/KKoPuOTC2+P7zMsTHxvo/+FuR6IOw/QaYumBclkMun1en//m6tf\nSyQSNputUqliY2MDAgLq6m7eQVWtVhsMhoiILpaGA8DNqpqNJytbq5qNtVpTY5slJVQ4IyWgy8pR\nozH5Clhd9gyK6/XnVFqE0I5L6ghf3uV/puTsKmsz2eTe3B2X1Ko3hhbX6//ft6VWuyNIxAn14o6N\n8cHlYb+iSW+xxft7Bok53fU59iuaqpqNzyTKXLtZioZ2RYPeV8CSeXKcleZwaXPewSoPDpEU7Mkh\nmMomQ6PeIuaRQ+Wi945X12vNoyK9Zg0JJJmMNpPtqU3FvgIWyWQ06i3j+/o8kyjLO1g5vp/P3x+6\nze1un0mUPREnyd5y5WSlRswl9/7ahBDa88KAXn3d4EFE/XVINpsNj7lZLBb02zQHHo8nk8kOHjyY\nnJyMEDp+/LjBYMDdo0mTJq1fv37MmDEcDic/Pz8hIcF5SgkAhFCj3tJqsHY4iu+O1e4oLG/ZeK5e\n0aCfPEA6Mtzrp2uaA1ebxTySZDKiJfykYM+kYGGrwXpOpS2q0VU1G6taDL4CttybG+snCBJzEEIH\nrjbXtJriZIKUUOGUeGmQiOPBIfYrml78SkESDC7JtNodCKFoCV9jtFY1Gz04RL3ObLTYEUIyIRsh\n1GayBYk5jW0WXw9WSojQV8B697GIGCkfIbR2cvTyo9f2/tq0dko0yWQMDhUODu1ntTtqWk3lje1r\nTtXUtJq4LObAAA8Rj/zylxu1WpPRYm8z2bgsJv6AXJLZZrJZ7Y6UUGGQiDP9y199PVhcktmotyCE\nxDwy3IdXVKOr15ob9RaZkG21OXwFrGMvJZBMhqKhvdVgneHNlXneclfJD35QPfbZpbcfDX9jf0Xu\niODRUd4IIaPV/uUvN4avKZoYK5mREtCb79+DQ3w7vf8np2sjfHnfTu//RVH9Rydr5gwLcn1NeaOh\n8/9mvc68X9G05lRN7oiQpxP8evO7AP0x8FkZquzbty8nJ8d1S3FxMa5J58+fz83N1Wg0YrG4qalp\n/vz5eAq4xWLJyck5ceKEh4eHSCTKz88PDu5432ssOzsbhuzoz2p37Fc0Rfjy8f4XIdSot9S0mup1\nJqvdESMV+ApYjXpLcX0b3mt7sMmkYE/8SqPVXlynP1zWXKTS4b28mEfiXaeioR0PE7WZbG0mW2KQ\nZ4wf/1SlprhezyWZE+N8B4eKNv5cV6MxjYr0eiJO4itgnaxsPXC1OSVEODrKG++vz6m0F663XWsx\n+nmwk4I9I3z5uNgghGo0pqpmQ3mjodVgHRYmdkbq4WMqGtq5JLPLSmm02hv1Fpknm2Qy7uJ32516\nnZlkMnwFXcxxrdeZ67XmgYEet32Tcypdzq6yDydF9ebFvffiV4qFo+XOIb4lBypvtJnrteYYKT93\nZAjO/N2VxoLzN8b39ZnQz3fShsubp/ULEnW9Lld5o+GLovrBocKxMT7O9395aNDdzXy/oP8ukeKC\ndFtqtVqn08nlcibzllEIrVar0Wi6K0UY/b/9v5TOJ+QVDe3fXWk8rmwdES5u0lsUDe0kk0ESjCAR\nx8+TjetKUY3uQm1bnL8gMcgTn5BoNVhPVWrazDYPNiHmkdFS/uhI7y73L7g+4fGr4np9cV3b4FCR\n3JtrtTu+/OXGcWXr3LTgOBksx0cvjXrLUxuLH4nxfiJOsvqEKiVEiIf+zql07x2vHioXNeotTe2W\n9ydG4uJd3mjI2VX27fT+HWr5OZVuwT5lUpDnqEiv/xy+tnZKdIyU/0VRfcH5G0aLfWt2bIc+Xw+6\n7KLdj+i/S6R7Qfoz6P/t/6UsOVCpbDIghFoNVtzXCRJxHonxHhYmdk+3ANwvrHbHd1caPztT94/U\ngAn9fF2fOlzaXN5omDUk0HXjzmL1jkvq+ACPWo3Jg0OkhAgVDe3Hla2fTo3BVadeZ5604dLSsX1W\nn6j5+rm4eq35xa8V3/69v/MIyfXYpYOfrmn3/tq4dGyfe/Zx3Yf+u0QoSACA+95P17QeHCJIxGnU\nW366pmkz2WYMDnA90LlQ25b633Nl/0rFg3sXattydpW5zv0jmYxPp8bgx4XKFrkXD3em/7a5ZPO0\nfg/G3HT67xJpOssOAAB6b3Dozftbinlkl8NrAwM9DO+MdP3x2EsJri9YcqByZ7H6iTiJoqH9n3vK\nY6SCxCDPWo3p5WGBD0Y1ui9AQQIAAPTvDPm4Ty/GyTymf3ll6zNxEb68k5WtrQbryHAvqqP9hUBB\nAgAARDIZ706IiHz7xx//Lwn3sYaFieGKXTeDggQAAAghNDDQo2VZGiWrYAAMxkYBAOAmqEbUgoIE\nAACAFqAgAQAAoAUoSAAAAGgBChIAAABagIIEAACAFqAgAQAAoAUoSAAAAGgBChIAAABagIIEAACA\nFqAgAQAAoAUoSAAAAGgBChIAAABaoHglQbvdfv78+draWqvVOnny5A7P2my2r7766sKFCywW6+GH\nH3744Yfx9rKysoKCAoPBkJGRMXr0aLenBgAAcPdR3ENatGjRrFmztmzZsmTJkg5PWSyWadOmffPN\nN/379w8NDd21axfefvXq1SlTpvj5+Q0aNCgvL2/Tpk3dvXl5efm9S/4HzJs3j+oIt4A8PaNbHkS/\nSJCnZ3TLQ7ddYmcU95AWL168bNmy48ePz5kzp8NTn376qdls3r59O5N5S9VctWpVVlbW7NmzEUIy\nmWzu3LnTpk0jCKLzm1sslnuX/A9Qq9VUR7gF5OkZ3fIg+kWCPD2jWx667RI7o7iHxGKxunvqm2++\nyc7OVqvVJ06caG1tdW4/efLk4MGD8ePhw4ebzebTp0/f86AAAADuMZpOarDZbCqV6uDBg1OnTv38\n88+HDh362WefIYQMBoPVapXL5fhlTCaTz+frdDoqswIAALgbaHp7RLvdjhCqr68/fPgwi8U6d+7c\ntGnT0tPTZTIZQkgikThfSZKkzWbr8k3a29uTkpLwYzabHR4efu+D90SpVGZnZ1ObwRXk6Rnd8iD6\nRYI8PaNDHqVSaTab8eP29nZqw9wWTQsSQRAEQUyePBmP6SUlJQmFwpKSkuDgYITQlStXnJXGaDTy\neLwu3+TKlStuCwwAAOBPoumQHZPJDA8Pd+36OBwOhBCLxQoICKirq8Mb1Wq1wWCIiIigJiUAAIC7\nh+KCZLfbLRYLLjwWi8V1EsiTTz759ddf4z7msWPH2tvbBw4ciBCaNGnS+vXrTSYTQig/Pz8hIcF5\nSgkAAMD9i+Ihu/379+fk5ODHcXFxCKHi4mI8TDd9+vTS0tLU1FSxWKzT6VauXInH62bPnl1aWpqc\nnOzh4SESifLz8ynMDwAA4G5h4KEw2rJYLFVVVeHh4R2uRtJqtRqNBpcoAAAADwC6FyQAAAB/ETSd\n1AAAAOCvBgoSAAAAWqDpdUh3qodVw7tbMpyqPMeOHTt48KDVau3fv39mZiaHw3FDnrKyskOHDlVW\nVgoEgscff3zQoEGuT7l/6fSe83T3FCV5nM6fP19RUTFixAjX67IpyUNJk+4hEiVN+uLFi0ePHr1+\n/TpJkiNGjBg7dqxrVPc36e7yUNKee8jj5M723HsPSA+pu1XDu1synKo8+fn5CxcujI2NTUtL27Fj\nx4wZM9yTJysrq7KyMiUlhcViZWdnf/vtt3h775dOd0+enp+iJA+mVqtfe+21hQsXXrt2jdo8VDXp\n7iJR1aSPHj3a0tKSkpIilUrffPPNZcuW4e1UNenu8lDSnnvIg7m5Pd8BxwPBbDY7HI7CwsK4uDjX\n7WvWrJk0aZLNZqNJnvT09IKCAvxYqVRGRUXp9Xo35NFoNM7HH374YUZGBn48c+bM5cuX48eFhYXx\n8fFWq5XCPD0/RUkebObMmTt37oyKivr555+pzUNVk+4uElVN2tWePXv69euHH1PVpLvLQ0l77iEP\n5ub23HsPSA+pu1XDu1synKo8AQEBer0ePzYYDCRJumd8QygUOh9LJBLnBchULZ3eXZ6en6IkD0Jo\nz549CKFHH33UDUlum4eqJt1dJKqatCu9Xi+VSvFjOtwNwDUPJe25hzyIivbcew/IOaQuOZcM/+CD\nD/r06XP27Nl58+a98MILFEZasmTJggULKioqWCzW5cuX33nnnS7v5HTvWCyWzZs349NadFg63TVP\n759yZ57m5ub3339/69at7ozRXR46NOkOkShs0pcvX962bZtOp1OpVKtWrUJUN+nOeVy5vz13mYfa\n9nxbD0gPqUuuS4Zv2LBh48aNK1asqKiooDBSXV2dRqNBCAkEAoPBUFtb6+YAubm5Pj4++PaGDocD\n9XrpdDfk6f1T7syTl5c3Y8YMPz8/d8boLg8dmnSHSBQ2abFYPHDgQKlUeuPGjUuXLiGqm3TnPK7c\n3567zENte749qscM76YO52xsNlvfvn03b97s3JKUlLR7924K8yQkJOzcuRP/2NDQ0Ldv3+LiYrfl\nyc3NzczMdA7xm83mDoPI8fHxhw4doipPL59yZ54zZ84MGTKksLCwsLDwyJEjUVFR69atKysroyoP\n5U26QyTKmzR26dKlqKiohoYGypt0hzzOLZS05855qG3PvfEgD9l1t2Q4VUwmk16v9/f3xz9KJBI2\nm61SqWJjY93w2+fPn69UKjdu3Mjn8/EWapdO75ynN0+5OQ+TyYyLi9uyZQv6rXdy5MgRgUDghm+p\nuzwUNunOkaht0k74v6OysjI5OZkOdwNw5sF9NUrac5d5KGzPvUV1Rbw7bDab2Ww+cuRIXFyc2WzG\nk9wcDsfnn38+fvx4fGBy9OjRvn37VldXU5gnLS1t6dKl+HFhYWFUVJRSqXRDnoULF44bNw4fQrrm\nWb169eOPP240Gh0Ox9KlSzMzM90Qpoc8PT9FSR6nzkfflOShqkl3F4mqJn3q1Cn8wGq15uXlDRky\nBM88pKpJd5eHkvbcQx4nd7bn3ntA1rLbt2+fc9VwzLlq+IIFC/bt24eXDF+2bJl75pZ0l+f8+fO5\nubkajUYsFjc1Nc2fPz8rK8sNeaKjo11/ZLPZly9fRghZLJacnJwTJ044l053z3q13eXp+SlK8jhZ\nLJa4uLiCggLnzSGpykNJk+4uElVNesyYMXV1dVwut729PSws7O233+7fvz+irkl3l4eS9txDHid3\ntufee0AKUs+6WzKcKmq1WqfTyeVymuSBpdPvO9CkEUIWi6W0tDQiIqLzRHNKmnQPeShBtzy98Zco\nSAAAAOiPFodXAAAAABQkAAAAtAAFCQAAAC1AQQIAAEALUJAAAADQAhQkAAAAtAAFCQAAAC1AQQIA\nAEALUJAAAADQAhQkAAAAtAAFCQAAAC1AQQIAAEALUJAAAADQAhQkAAAAtAAFCQAAAC1AQQIAAEAL\nUJAAAADQAhQkAAAAtAAFCQAAAC1AQQIAAEALUJAAAADQAhQkAAAAtAAFCQAAAC1AQQIAAEALUJAA\nAADQAhQkAAAAtPD/AUh1mhF/rHzZAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figure\n", "for iR=1:length(run_num_all)\n", " subplot(311)\n", " plot(A(iR).ping_time,10*log10(A(iR).max_W1)+5*(iR-1))\n", " hold on\n", " ylim([60 120])\n", " subplot(312)\n", " plot(A(iR).ping_time,10*log10(A(iR).max_W2)+5*(iR-1))\n", " hold on\n", " ylim([60 120])\n", " subplot(313)\n", " plot(A(iR).ping_time,10*log10(A(iR).energy_in_bnd)+5*(iR-1))\n", " hold on\n", " ylim([160 220])\n", "end" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIVBQwOQQ02qgAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMC1GZWItMjAxNyAyMToxMjoxNDtnVRgAACAA\nSURBVHic7J15mBxVuf/f2qu6epvepmefSSbJJJmEJGRjXwQBlatcUbi4AF7AKxdFfoCKoqAXRUTA\ne40LiiKbEgQB2QMhkEASsi+TySSzz/RM9/S+Vdde9fvj9HQ6k0kIkKWD9Xny5Omurj79TlX3ec/7\nnu95D2aaJlhYWFhYWBxv8ONtgIWFhYWFBYDlkCwsLCwsKgTLIVlYWFhYVASWQ7KwsLCwqAgsh2Rh\nYWFhURFYDsnCwsLCoiKwHJKFhYWFRUVgOSQLCwsLi4rAckgWFhYWFhWB5ZAsLCwsLCoCyyFZWFhY\nWFQElkOysLCwsKgILIdkYWFhYVERWA7JwsLCwqIisByShYWFhUVFYDkkCwsLC4uKwHJIFhYWFhYV\ngeWQLCwsLCwqAsshWVhYWFhUBJZDsrCwsLCoCCyHZGFhYWFREVgOycLCwsKiIrAckoWFhYVFRWA5\nJAsLCwuLisBySBYWFhYWFYHlkCwsLCwsKgLyeBvwPqxatWrFihWaps2ZM+eyyy5jGAYANm3aNDAw\nUDpn0aJFTU1Nx81ECwsLC4sjQUU7pAcffPCRRx65/vrrXS7XQw899Prrrz/22GMA8Nxzz23YsGH+\n/PnotClTplgOycLCwuJEp6Id0vLly2+44YYrrrgCAGbPnn3RRRcVCgWbzQYAixcvvuuuu463gRYW\nFhYWR4yKnkOqra0VBAE9FkWRJEmUsgMAWZbXrFmza9eu42edhYWFhcWRpKIjpDvvvPO2227r6+uj\nKGrnzp333HMPQRDopddff31kZGTXrl3V1dV/+MMfmpubj6ulFhYWFhYflYp2SOFwOJPJAADP86Io\njoyMoOM33ngjytepqnrTTTfdcMMNL7744oFvnzVrFsdx6DFFUcd9nmlgYKCiHKdlz6GpNHug8kyy\n7Dk0lWDP4OCgqqrosSiKnZ2dx9ee98GsVHRdnz9//nPPPYeeRqPRmTNndnR0TDito6Nj+vTphULh\nwBYWLFhw1K38IHzxi1883ibsh2XPoak0e8zKM8my59BUmj2V1iUeSOXOIcmyLAhCTU0Neur3+2ma\nHh4ennCaoigAQJIVHepZWFhYWLwvleuQOI4LBoMrVqxAT99++21RFKdPnw4Aa9euRQfT6fSyZcvm\nzp1LUdRxM9TCwsLC4khQ0YHFAw88cPPNN//jH/9wu92JROKOO+6YMmUKANx6663ZbJZlWUEQFixY\nsGzZsknfXmlhk9frPUotxwU1LWqtPq5C7PlwWPa8L5VmkmXPoak0eyqtSzwQzDTN423D+xCLxXK5\nXHNzM47vi+dUVe3o6Ghvbz9EbHTZZZctX778mNh4WEQikWAweDRavvO1/rd706uun18h9nw4LHve\nl0ozybLn0FSaPZXWJR5I5absSvj9/ilTppR7IwCgKGr+/Pn/4pk67OY3j7cJFhYWFkeME8AhWbwv\nY3kl6KTTona8DbGwsLD48FgO6URCM8yBpHTgcR9PxQW16vbVx94kCwsLiyOF5ZBOJNYPZlp+uvbA\n4wSGaXqlzwVaWFhYHBrLIZ1ISKox6fGMpLm5StfPWFhYWBwaqxc74Vn0q42bhnPnTfccb0MsLCws\nPhJWhHQiQRJY6XEoI6MHm4ZzcPDgycLiRGfvpbXH2wSLY4TlkE4k4oJaeowmjUrK77igHB+bLCws\nLI4QlkM6kcjL+sFeInHsYC9ZWFhYnBBYDqlS6IoWLnl45wd9l8dWnAVkqeKtfLEzfiTNsrA4rpi6\nVvrf4mOP5ZAqhUhOfq4jduDx217qLT0uX/oaykgAMMVrQ09L2byL/7TjKFppYXFs0dOx0v8WH3ss\nh1Qp2OnJFY8/f3Ow9DgtaqXUnGaYAMCSk2Tq0EsA8JW/VvZmXBYHoSculm7ivzh6LomzvC5ktETY\nVOXjbY7F0cVySJWCjz+sunz1bgY9mLRkAyKULv5uH98c+eiGWRx7pt297tWuxPG2oiLQhQzh9uu5\n5MjdX40/8bPjbY7F0cVySCcSIxk56KABYNNw7uondwMARxEHOxkpIA6hg7CoZP7VIqS4oE7ub3Sd\nCjSYksBOPamwY81htiZ2bTiSxlkcKyyHVFkcWtegGWZa1KbdvS6SkwHAx1N55aD+Ji6oJI5tCmWP\nvJUWR59yif/HmJIGx/+jNcln921slhY15JK1dJSua9XSMdPQCYfnMLN2mZV/OxrWWhxtLIdUKURy\nCgBMqmsoIWkGAPTERZSvszOErBbH0aG0XO9iJpx/+fzqm57vLj9y20u9Vh6v8iFxLJL9l1hYhjQ4\nB4aDVbev7omLAAC6Rjg8eipqSoJt3tnKSM/7tmkI1iDsRMVySMefm57v3jaSl7T3z61Fssq8OgcA\nbB/NA4Cmm9i4pkEzzFIdh9LPe6qXc7P7TU291Zsq/s4tKpigg04UjkCEtOydUKmix+EwkJSO5dxV\nKZ+MRmPlx29OL0ev6rkkFWzW8ylT10hvjZ5Nvm+zupAh3f6jYbDF0cZySMeBr/y1s1z/1hUtPLh+\n5H3fFckpmmGiTM620Rw6SJPY59r9bQFb+ZlIEY7+L682BAAsedA5J4sKQdKMZg93RHa3+uazez/Q\nJOKrXYlvPrv31a5EV7Tw0T/9fSmlJTXddBoFADAkAR2/LvNCXtEAQC/kqECDnk2aqkwFGpSRHql3\nu7D59UO3jFETswUWJwSWQzoOhNJySQgHAPUu5tD5GRTxdEWFz8/1xwWl1cehX7JmmAyBP3v1nN3f\nXTrhLbe+0PPgulESx0riPezmN+96fSAtqVZNhwonklVafdyBWaxNw7mu+AfWPR++Y5t297r73h5i\nSfzqJ3c/seWY5nXzij6vyoDx9UZoLIXKM8ZHR836mWp02NQ1pqFNGe3JrHgsveLxY2mexTGj0qt9\nr1q1asWKFZqmzZkz57LLLmOY4sCnu7v7iSeeEEXx/PPPP++8846vkR8UksDKa6FqhnnozSNCabkj\nkg+l5VYfF8+rrT7bwgZHtYNe2Z0qH//a6X3Rzy/fGrp0biDopFd2pwAgklPag/xgStJ0819NvnXC\nERdUH0+VslgDSYml8KCDvu3l3hYHnN3edMr/bVr3rYWHaKEjIrT6OJbEAeAQqeC4oOZlvdnDoqc9\ncbHVx6VFDSll8rJuZ45uPI3GVWlRiwuKn6cBQE2MUsFmXZEBIJZI/2p1AbYPt4+qbQSJszzOOw0h\nq6WjTHP7odo1LGXpiUpFR0gPPvjgD37wg9mzZ5955pnPPPPMNddcg47v2bPn0ksvra6uXrBgwY9/\n/ONHH330+Nr5QdF084OGKZc8vPPdgYydIUgCu3JR8N6LW285u/Hzc/1Ibofw8XSpfRRFlT5l03D2\nP5fUaobp42nd/Pg7JJT5OXGpczGle/fNZ/fe99YQlH1t1g++z6T9nHvfWz+YAQASP9TOje/0pyfs\n95gWNTdH2mnirtcHJshhjgYoKRfJKa91JZdWyRLjAl0HgMxYGACI1MhNz3dLGEUSGOH2YwQJABjF\nqJEBPR09RLNaOoqztkOcYFGxVLRDWr58+Q033PDlL3/54osvfuCBBzZs2FAoFADg/vvvv+KKK77x\njW9cdtlld9111/3336/rH88xUflkbySnsCRxeou7PWhHR0gcmxDuoDpDoYwcdDDlvuq1PcnL51ej\nWaiPvXzL1LWeL087Np/1y7eG3tc9HCYDSQm7+c1ITumKCuUpOxLH3uhOfuGRDpbCk6J+OCIFlsRR\nCF7vZkIZuSNSdM+/Wj1cfpqbI90cGRfUkpCBxDEfT6PF18dMd94VFX7+5qCbNhL2Oi0dBQBB0TWK\nk5L7vA5Gs6icXfU3ftl4zyt67lDSBlPXCMcR2x5sd3i1qOaOVGsWh6aiHVJtba0gFH9LoiiSJIlS\ndu+8887SpcVZkzPOOENRlLVrJ9nY+2MA6lZQCkXTTR9PPXbFrIUNDvQqGs+Wn4/qDG0fzbcFbMiZ\noRPighp00KgD+rim7LR0NPn0r2B8HuLYlOP88Yr+5dvGjkhT7/Snr1lS+5eN4XcHMqe3uO0MgVT+\nbo4MpeXnOmLoy1CKeA42OYTd/KZmmCSObR3Jo3XTc+59D30Zbnq+G7VZaqHZw6ZF7aI/bkdH0DcN\nhdqHWTrkoxDJKtMcZvK9FQAww28bs9UjER2Tiyruulh/9xR1NIU70qIGulZagUQ4PBM0C2pk4OgZ\n+cjaG8PpPUevfYtyKtoh3XnnnStWrLjtttt+9KMf3X777ffccw9BEKIoaprW3NyMzsFx3Gaz5XIn\n0hDGzhAoWXGYoL2OBlLihERfWtQmqLoBoN7FdESEJU3OtKj5eAo5JDSdgI58XB2SGhmIP/kLANAS\noxhBygO7jsGH2mniSNXC6ImLXzq5eldEQOOMajuNlC8oiNEME3kI5Ife2Jucf/+GCREPjAupNcN8\ncN3od17sOXOqCx3piRdVc+XxcVrU6l1sUUGgGSyJ52V9Xp29I5yHA/SZRwNJM85iIqe/cisA0EJC\nNfEn391z6ws997zRJwSmX7Lz16+MfqeLbkyLGuEOlL9xwvLY/htOLR9/WOuQTlwqWtQQDoczmQwA\n8DwviuLIyAgAmKYJAH7/vnUGJElOmrIbGBi47LLL0GOv1/ujH/3oWBh9cGKx8UWvmpIXlUgkAgA1\n93Ze1u4GgGQyCQABnuwdGuXp4kAhllHRSx6OKMhaKhlnlX23LJ/PK0qxHQCwEzoAYGCEkgKjCQCg\nCBlRFHuHRg1VigxsIg0QRT2c19Bb9tlTGXxEe7RYFAAikYja3UHMWBzdvpbmqz98c6a+e/j9N/Io\nKBoH+27BR6FrNHV1O5sviJJqRCKRKkLe0jNi1+yxdB6dwICqavLuoQgAhKKJcEa+6fnuy6fvNyI5\n6bd70YN3+5LhvLY4GBgYSwV48r3ucCsnAUB4LMoqxbnGTCbD49pwJA4Am/aG/DwxnDG+vdA+u8q8\n9vlQKitM+LsExSh9MxEf8ZYlUulqvOgpsUJ61N5ED23vCqer9JzGOgHAwIg+qmZDb3SqxNYzjpI9\nsm5OsC3c24U7fcgedXQIAApH4qYgksmkTf8wrVXCT+wnP/lJIlFMyQ4MDBxXW96fynVIhmHceOON\nd9xxx2c/+1kA+NrXvnbWWWedfvrp06dPB4DOzs6FC4tCI0mSOI47sIXm5ubly5cfS5vfl2AwCAB5\nPRx02dBjgE6KYe0MYXO4AQZnBR2E3RMcFz5JtETiPTaHe4ovtX4wO2dKXXmQ5HZKOKmW2glW2QGy\nBEFIBkyrrwYY9ng8HKeYtqqWgEzvOLfJtkygpjiN0lug9KBCOEx7MiseJf0N/Pxzyg9muzfrzbg7\nO1JQcuR5/yF1bwl8hL8u+c+Wz61/OPOzkw58ac697228aREKOj18X86gjshlpJhkU12N3ZY62W8L\nBoOzs3QoIzfct7vVV/xut1S7HMD25kkA0Cgepe4mfPS50xMkjj2+OZJTTQCYGvQOpaUpPjkkksFg\nEKBTph3BYBUAfOGRjlYfV+XkMyZH4lge5wmCAFCb6mquqas5e1bDT98YKG/8528O7ooIj10xa4LZ\nB/7tf9kYvmpRzeH8yeJO6WRbbo99xh/PdzcWTNHTbIZ28xyrmlLd0k9cEF7wH+ed3PF2uGNjIjb3\nor/f0g7FbcN2rHJ7A24HzvKGkMV5ZxbA77RTwSCyJ+tyYTTr+FA35cp3M4+c5ppwkHN8+Ft83H9i\nv/3tb0uPSwP0iqVyU3ayLAuCUFNT/Gb7/X6apoeHhymKqq2tDYfD6HgsFhNFsbW19fhZ+uFB2bOO\nSL7aTm8azsFkIt15dfZITkEzzBNSdpOm/iTVQLrh0hGkbsBt9VPMjWdNdZef/G+rUkfsjzma5De8\nGr7vun1PN68s7HxnwjlmIWI7iRr9xX+mX32YnXpSaUm/qWtqdGJq69AYcgwAsrIx6asdEaGU+Dri\nEy1//GLbLec0AkC9mw2lZc0wUc7NzhAulmx2U+8OZHw8tTmUKzmqUEYupWFZEkeeEhnmtpEZSWsP\n2suXoKIHT++I9sTFqV5uJCOf3uK+7+39LlGp8RLLt42hlg+k5s53AGDmPevRU1T293AYycoN8shT\njnPmK72UJpkUTZo6SxE+PYNzfB9V21xd9A2l/SfTotYVLWAUg3QrPVe2Ff+u/XV3xIet1JBSJt50\nHCMkS9RwrKhch8RxXDAYXLFiBXr69ttvi6KIwqNLLrnkoYcekmUZAB588MH58+eXppROLDrCQr2L\nQVMFxVKS+0/wpEUN7ZMUdEyy8rx8DmnjtxcVd0ii8PIVJCUVA+lZeN2s6FWLasqntSuQxzdH7nyt\nf8K+t1LfjvyGV0tPMYIAY6InNkEDIOn6Vi0RpgINhNODOqnCjjXDP/zcB7JBjb596BNK/Xte1j/K\nQuM7X+t/ekcUisJIGso8SlvA1psQASCSUx6+fGZe1lt9XJuffWNv0s2RHWEBfW5cUOfft+Gd/nSp\nTSQZRwqIWdV8R0QIOunSq6GMjE62M0RHJB900JGcsrDBccEMz4QNTfKyXi4K13Sz5BUmgBQTqLjD\nB5pRu+lv51Sl+jdjDW4pDgALW3wyRl2y7sftaj9H4VDmF0sXGV0lLR0DAHmoq9RU+RyS9mF38zvQ\nGyFc3EfI/Vp8ECrXIQHAAw88sHLlygULFpx77rnf+ta37rjjjilTpgDAN77xjYaGhsWLF5922mlr\n16699957j7elHwySKMq1B1Jis4cDABLH0PKgoIPZTwclFSsyTNoXsBRecjwLGxzojWhojH639S52\nxOGJC2q9LYdzNQBgGnL5+tkKZGV3qjchTtj3FsOJ8h4H511aauJKFKOQ05IkVUsBAEYx9kUXjt59\npZaOGpKgJcLPdcQOoc9Wo8Mjd1859P2LUU0adexNgV/IEzIAqJGBA/cy6IkX3thbjMA+ikjk3YEM\nKkvYEc7PDvITXi2NUVAGjCXxAE9qhtnqs8G4Ii4v6+gfjK+oRW8paSwjWdlrowAgklNQt37Gsi3o\njW6OrHczkZzC08SlcwPz6uzlnz6QKtbwPee3WzcN59wcNUHXhwoBo9KIJT90+GLxgaRUoF36nvUp\nzEFIaS0da2xs7KdqZo6sPkXs8NU1/tepdSSOkbpB6kZ5hAQA1df93PvFm0u6FYxizPGVZ33XzDPk\nD1n3SJ3MHxmmjmMV/ZP5OFHRDmnBggWrVq167bXXHnrooa1bt15xxRXoOEVRy5YtW7NmzZNPPvny\nyy83NDQcXzs/NGlR+/xc/41nNASddCSrPHbFrE/P9JavH0KE0vKkyxtvOK3+j19sKz1FeaTyHoHE\nMQnD87LuJdI4XUV6l4Yj28nAEVuicQTJy3pUKC6TLC9bnl21HAAwisF5Z+mgqUhaIhx79H/QU+Rs\nTFMx1ak4M9z6SBcA2Oae4f70NcrQHnWkhwo0PLF57JFN4fJP/OGrfaXt4dXYsLD59cTIkJYIg6kD\ngELVeqncsndCTz1wT/LZ30ywNi1q5z+4DQCCDuaIqBa3jebn1ToOccLSJidSY3ffdsq8WntaVCXV\nQAK8oJNGK43yss7TRCmY+N65TT6e6ogI8+rsdoboCOdbfRxyVOPbDRN2mtw2kgOAZg+79f8tLv/E\nUnUrlsJve7m33s2Ux4IvdsbRVimorOIEPyRsfv3QS4UAoOWna4e4xub/XR0hPTaly1TlWUHbVV/7\n0j+mXOU0CoATv/v8DB9P/3c4evJoopQaRUM00ltD+euV0eLtA5c/GY0W/7R0VD9gsPKheWbLT45U\nUxaHQ0U7JITf758yZQqOTzTV6XSeoK6otOQ+klOWNrluP78ZLXGtdzOTRkIjGbm0UWw5doZAkdCE\nxkuPhfER7T/lpiGynfItfXwQTJL8xjN7St2oUhkq8GXvhm55LQxozydp30g88pubAOXoyoSUGM1i\nBJn65+9QUk779bW//tuKaCoGRgBwueS6SHdAS4zq+RTpqYHxwbVpyNl3vgAAL3bGSyVE0YRTv+pQ\nRnvl8AqAWnR815iAqYp5QN0HlExDDR6RKqiDKenAaRsSx0rrzNZ9ayFaf4acSqvPFskp7UF7XFDq\nXexY2QLqkue444IW9OD0FvcPzmu+5C87fTy9J1oAgIv/tMPHU3FBQTWKSnH2t8/c94NCqbxITgk6\naE03J0wgbRvJz6uzRwVtICmVFsblZR3FbeEHrhd3TwwrY4/+z9gfvlcqNt/q4wgco2tbls34MxlY\nbQgZnOPtjdOfrft3ACCcHgBoC9jm2Ei3uJ+36zvtm6ZWwFheDfej8g1DGfWHL3d/+4kNRmwYAAxJ\noLy1H+j6I1DKblDQ3xorXs+N/c9+iHYsPjQngEP6GJMRtVIlsZKHODAYQuscu2875dCtIUFEeW9O\njnciDsi9KUwh7FMLOmYnzN+vHYnklNUDeQC4+u97/7IxPGmDxxJNNzNScf2vtH/qxJAEQyqYqqxG\nBtACFFMSUAZP2rsFAKZku/jhrZmCDAAYuS/xRXprdCGrhAfIqkCpZ5f7H9WSm4ofOn7N5cFOKtDQ\nR9Wo+azc82bskd+nNLuHyrtZklLyGL3faMDOEF3RgpsjW366Ft0aU90vGThhAuxwSIuanSH2Xrpf\nN1rvZib1dqe1uK5cFCRxrNXHbRvNt9fwv1o9/PjmSGmhdPnis+7bTiFxrN7F/PqS6W0B26bh7Okt\n7le7EnFBHUhJKPIoxR8PfHZfhYtmD/vpmT60gKkrKgQddHksmCioS5tcA2klI2lurvj2SE5Ba+aA\nIA5cmKzFhpWhrml3rxv9xdcA4Pw6bEFbo7j319vyzYbsMYQs4fC4OVLRTADA2eJ9xAkMGCKUlgu7\nf4GOkJgudi8jnB49HUMrZBO4kxEzZ+15QnzsDgBQRnoAJwAgI45puvJG5+/f6Pz94dwFNIW0JaHe\n33lil546cbEc0vEBRUKlqWwoy5BEcspNz3cfuGvRgSPoCaBk181nNaKn7UG+ykYCwPbRvB+L5QwO\nMMIGEho1v9WTuuzvQwDwdm/6wKaQbupY4ubIrKzDZDpDtPUA3TCj/4ZTpd7tAGAosp5L2uaeoUaH\n5aGu1e5TTjX7eUJkpy0g3b5fvjWEpklIb40y2qvnkrqQCTrpuKCaalYde5Ouu3jCR2iJMNM8u8rI\niam4IYRMyXxxT4HH5bSkYRRd6hwRF87wvtgZv7DNmxa1tKie1uJKvbKfOhxNgPVdM+99S+ppuklg\nGACQOHbgXqgz/PsKspUv9rxmSe3n2v1ujmyqYt/uTZ9UY79qUc27A5lNoWypMEfp5NLX5qpFNXdc\n0ILqrqIjJfHLpFnH/h+c+uWTg6/tSaIGvTyFFBDo1bSozfDbooKGdoYcSIk+nip9LsG7SmGlsP37\nE1rOb3g1L+tuTMFY3iiM/P7r14JBmWaxZc0wpz89uu/kROHmc5tITJG6f/fEt54nhPDDo2cbwgAG\nUWWkh25sA4ACRleRqgoEmAaUFW741etfCKV29cU398U3H+wWxHIDT6y/tfyIk7Z6xeOGdemPD8gP\nSZPNomqG+avVw5JmlEQKXVHhMOXF50333HlBC3q889YlWdUEgLSoYWD6OCqlGAWT5SiCJ+SObctP\nCrIAQE+mcZiwYdrR4+dvDqJyR9lkysORML4r7gRKuik07iacHmWkxzbrFLlvh9S9ZXftGaShmirm\nueQGqrZ1WyhD4pikGTjLq5F+OthMemszmezFex9Wx95kmq7AKKepFVDdCkMSTF0zFUmrmV6nxWXW\npSb2dCjNOMHU8oakGjatYCj7uQrUiV+5MHjHJ1vSonbp3AAAPLJu77Jn393f5ujY7245dAUjlsJl\nzdAMkyXxA2UapahO6t0+cOOZE17devPiz8zydUUFn516+PKZv187cu1TXeUbjhxIvYu5+9NT7/hk\ny1WLasoreR8s69jq49YPZlEUmJG0k9xmV3Sfiw066Gi++MaBpNTq41DRBwAgHB50y0wlJQ/+DXnT\n8kuxKZSdQWdJb42hJHHG//arS3GbBACO904V1f1GJCRNkDjWgPcAwN7VfdmdO7bnm22zfzS8891k\nVMNZm5aO7qabXVKKAB0wHOedpXGAYsiKvt/ALtozcfvBjJjYPlq8cYZpAoByQIoiJx27TQv/xbEc\n0vHhYNrrUr3Up7dHue++BQA+O4V0UAdramWk6DyQyMo05KWu4jbPom4CAAYmmGaLnejP6wpQhmHM\nsw98PriypYoBABs7eTGho6cO/8xD2zcOFRd2/Om90YyoLXsndOmjF+CmHsrI9S524kcbOgCQVfuK\nx6Biz1RNixIZ0FPRtC2Ywh08IwMAzvglYay9hue++9arXYnCjjX8ogtIt5/MJS4c/LshhgnXrFHJ\noYxsQpFi+L7rks/8L0azqoEJlDO29CuGlAgzDWnN8e3MI5oisUoO9g9QQhn54ctntgV4O0OEMjJK\nusbS0U8+8QVT10ZeeBid777oaqqm5X+/f9shruQMPBnJKZGcUlJml/fabo5sD/K7v7sUI8jydTam\nrpmqXO9i2mv4gWQx7Yb2xAo66EPvGfG9c5uaPaydIcoVCodWrmuGeelJgdnV/OL/PasjvM8hLWxw\n7knsc9XtQXta1FCgj/NOo5AFAENJGQUsveJRGM/C2cyico/BDAwnTDVrYuyOrU10wG4aMqamqshi\nZQqp+3fy4HLaRpu6ad4/GMP+PTjNEd2RGJNdOBdc/ax7QJhNugOmIos4g4FOmjpGkATvAgCCd412\njmk5Ii9nedotyMU0wG8ufbTvvSEAeOJbz6dHswCwLh3odf0JvZpSTACgD6iZpBkfeBsqiw+H5ZCO\nD0gRh2aAAcnhNB0Ago5iBbPSJhHvGxv97+5iH3HvZ1ovm1edS/e/NO/u8hO+avspZipeBk8pZhWl\nkSB7qfz/2B6hWdpGYK1eLpJVwuLETvPoFQXvihY6x4qdTtDBRHLKN5/dCwBa8eo+fAAAIABJREFU\nJh7JKvPq7Ej3VUJNjGqJ0WL9Zl0HANzmbFm21r700zjFaJlYhnb30PU2VQQAwBncVJqq2O+d2/Ta\nnqR98YX2xRfijM0lRABAy43gtOfuNULkN/9VZ6TcHEl6ahJP3ef6xH9gwalj9YueS3qygZn11d6W\n+K5adax6cH2O9Ziq1HNlW8knabp51aKaZg9bujUG4EpuGAD0dEx45Ad1WkyJ9BMOj2Ppp5PR6KRX\nErv5TQC4/pUvAUBa1FxsMRjSEvvm805vce+8dUlbwKYLmfL3hu+7bux3t8D4LFFzx7NqdBjtGnyY\nBei8tn0a7hf+c+6lJwUOdma9i4kL6mNXzLq0BQOAUDz7Ymf8tF9vGU5LrT4uWdBLRfaCThqt5PXx\nlOYKoj9Ez49ghEfsXAcAQJAq4D6jeOubIEV6azCczMcLAIA5bHqmc8umfztrd1HMbSgpJfxKPi7s\neqPb1pS+47lm1qbomVy/GAAAIL2UR3+nJ2GqsgwUAATEMOb0Ird3x5p4diyP2UTVcOE4YZgamigN\nzvB3vtENAHtX92myBgAaMCpeLKagm3D0C/hZHArLIR0fWAovr6eA5LkwnsMBgEhWYUk8LqhojuHQ\noBzDf51a16mSX95eDQBIuwwADsg9Kt8q2ebyJJaSjZxpc9DG5dNiAICRwBJgZ0nNML++PjNB2nA4\n4rFQRp48w2aYE1ZZllPjpGvGhd3NHnbTcBaN0Fk1P7Ll3aaqAyIkpJdDgrrEKAAYhSwVbMYIkvTW\nGEJ2RCJG/O2gAgAQtvoaKnbL2Y13f3pqXFBrv/NnjCCJqoAz2SvSLj0zjNFVY6KTCrpaUrvysm4a\nesuytVzb4uSsC4xPfbM/ISR1ekrb9DNiW1bVnHZu5NW+miVo0K1E+pExJSVkSXiWxBpppR8ARvbu\nXsXN/1r2ZTUyQHprcJvTZsoHu5KlYAip3bRkGA4oG4ooVZ1AGJKgl0Vs2j9+gVZKnSrt8m1YjkQx\nqbsmpvj2u55lIdFnZvnKdfYHO9NUZADQYsMDSWntQPqUZhcAnDfV/uTWMZ4mQmnZxZIZSQOAtgCv\n6SYQJAAIG5/GaAfh8PSMxAFA082FDgEArllSOwNPUV4vEDZDNwAAJ/OGMNi7d0aVXMyPmVoWAJzV\n9nh/kmuISzlWwfPZXAHngpphyjLXNTJ/ZLhOzyVThIMlcUpXgWLQwOWu1wdAjQGAqMo5KeFgfVc/\nufum57vtPl5IF5N4+UQBACRdw83ikVRhzEVVhOj0XxbLIR1TOiLCOb/dCgBBB52X9VJHgMorAEC9\ni32rN9XsYSXNCDrprrECTLbNBAAMCvqV7xYHzinFiErGmqjy9KAEAFTgLD27BwDiQs5npvoljmYc\nTgqLyQZBsF5GuXiKCgA2UtAM02VnBEUHgK8t7ypvHy34KLFtJD/n3vcm2NDwk3cndTybhnNzfjnx\nZHT86R1R3YCkoAJAoqDhFDmQkpY2uQBgBp6c+djX0Egf9p+ZN3WNLKv3bI5P6pCBBjU6nFf0vLMe\nbDgAYGzQSxZFbsgTXPynHSvTjln9rw5WLzCkgiEJ04QQXhOYk9+lGSboGhVsBoC8otkZos0lDIlu\nzlWlEniU87eObeyuPQV5jlKEVNKhlPJsMuY25CQApHp27WJa/EbGEDJfWiltyDAeXOlJ7LdOs+T4\n5WQUADBD13Szae0f1Ogw6Q6UR0j7/l5JwAiy5KtMRSbGpe2tPo5weJThPQBwnbOX3vsOCpIm3YM4\n/sTP0IPDr3jk5si8rAGAno5ybYuD8U7kj+ucDAB8bqbrc+1+AMhImo+nUMrOzhC6aULxooUAKNJb\n84W7nwEARTerecIg6DoeDLkAeIbgmwtpEQAIN6llOnmfnx4fjpi6THmXmJoAACLNpTU+nxVVBVgK\nf/uJrdGeZKFg0wqsqWs64F4jr2IYAJQkkcntfwYdj+bGhtMSSkrvUhmHl1cKaj6+L/GoGxI2rqd4\nZfffVa2QHy8Z9RGnjjT9Y77x2NHAckjHlI5wvjQtHMkpzP5rO3w8jSTF82odpXpCLIVP6pCiklGq\ndGKYsDIs/3ZPseOj6z6jJjcBgCbFT+MGaI8Lx6CKxkcLhovlTK2YM+FphTKNgL0ojmIYEuWR9l45\nu21acFN6vzClKyp0RQsHzjZNWt8MudsDj/9pw+jyrVHVMEYlQ9LNvWkl5fOLkjLfjysYNSPXBQCn\nt7gBgMSxvKwroRdIHwm6fm/rdaYq47zTNHRTlUuVynDGhiRVMsG9RC5ZuTe1O66T4/0Lsu3Fzvjn\n1/IthQHF36JIYnbVUzeM/D3vqw4qMWx8r+ueuIgkZ/O8+VDBETj7kgfbZxXc219b8O2wzpu6rpLc\nmi0TS7Shv9HUCjksSGhpEycyo4Mp3AEAY1071opeFae8Zr4UIWnpnerYm1c/uRu9MTo6IlG8XU5F\nckrdmgf1dJSZehIKAQGgVB5C2rvZVGWmebYSLoZoGEHq4zKBzqtr6LppSEFwUStvw9SlTa4JS1xL\nJJ9dVrwyBykCdODGDZ+YVvX1RkFLhLV0jG5sqy6EUATWwIumVmAI7O9XtkNZkYiMpDWzaoHkUYQE\nDNa5q237nsBMdQh0TcKoubw44pxZH3pPjQwQVTTONykFFQAwCjPkGMVx9V6bVhhTCiqGkeFIez6e\nAYAtELTLmgmA6VjQwSQGUjiBA4DNpmjRYQDQdbVKSpiFLF1XLGspiU5M4FTd6E2IscEUALDe4nop\nTdGd1cWyFIm+hI4XK+YRBKOIcmiwWOBRM2Se2a/246Ss7X3y2a0/PfD47c8tMcwPUEjJAiyHdIzJ\nK3qpL5A0fcKyVjtNoGGmmyNDGam5ioOy8fihUU2QxtVBdPUn9PROANALQ8A26bpBERiBQVoxAKds\nkE8YThYHhjFtmKkbxZyMzcbQNLktlAIhVe2zh6T9HNJLuxMLGxzUrasO/OiuaAGVLXhfUP6nzsWu\nltjOjEbhGABcn33+33f+Oks6fdlBGM9ZBR20pBnCztvZGbyWjvbYmw1JwClWT0UH+oclrHhNqGAz\nSuWxmCQb1N+2jf307bybKM5gl6boAGANNzfbskQTs3ouebnrh+8MJ18h506LrEf95rS714XSso+n\n6myFoTxnszsyht3ExH+4z0+LWnKwJ+ycCmP92VXLy/NvyOGZShKz1fG4ILNucqQri9sAILFj3WeX\nTI9kFYO2obHFbS/15jddr8bXA0BkLDFTHZQHOgXWO9ixXXvgKwAgD++lAvWGVAAANTo8fHux/t7Q\n9y/W0jEq0FBSMxNuP04zAKBGBvpvPJVwegwhAwBqNEQFW1gSn1AE6PDpubJtglT9wjbvuRt+mV21\n3BAybPOsKhDfG8oCwMnpH+Y37it3i9ZRPbl17JdvDdm0fIHgi7fSyG1eXa9i3CnSLpx3pumqalpb\nvfGT08Nrnef+B+gCThVDPcPAckmMczD+luDWp9/86anLgGBWPx5NhAwAeEpcUFWQnXZR1Eg7Q6ia\nceMLVwOAzS5F+ntTpvvWqmtXN1wMYh63FRvMxGnAYDiVAQC5LEilbVQhLdrcnJSTAUDM7AvxaYI1\nTdM0TJ7EdBNyUoIm3n8r9P7Y5gnB0Jtdf1zb+yQAxIS+D3D1LSyHdIwpZeRJHBtISqWczwSZE1qE\n2Oxh5YMLtMpnX3UTUrKhm+BjcADA6CrTkMHUkwXBxvllSUXlGMKiwTEcJw/FyClOGiNAUzSDoHC0\nKzZJ4vNOarxnbRgACDDSsgkAc+5979qnuubfvyEtav+5pLa0jLectKiVCrshDqYaR74WBWTrQvn+\njAIAN50W9GgpBafqpJDCurVUNC1qPjsVyck46zckCiV/CvYA3TjDNPQfvNy9O1bsRHCWxyjGzZGg\nJgFgMCWxnIPDi6ktFFaia3tN4Dv0lNmaimnp2BBd66T0wsLPNYc3wvhEzsrulGhiTizSJ1YDQEF2\napjW6uNIAivoWHDhmdWdL0d+c1Na1EgcG7n7SgBo9nAonkNgFINnIoTbPxiY/0L1xae1uCTNoHAM\nZUTf2PQm2GdipA0A5Pu/fGfiL/nubSFvuz/bf6q0CwCSQohpmBH7yx3ywK7Ctv0cv2no3KxTlJEe\nANASYdJbi7KIWnKP70uMqUilSSaMOKjErjgJl47CuHJ9UpShrkmP60KW9Na4jAL6tjDOVsIxA4/+\ns3RnYVyZOd8uZig35a9Xo8OmIjm8hAbMObnt7LlfCqtMm9gPAI7UIBmcUogNrU3sjiaH3LXOfJqW\nC3hVvbumfd7gxhAA/OP/qvveG/rxtpsAwMAwN4GxLInT+hJDTYxmSJoAAJLRX9m45YwNZhacq+o/\nAwADPRAT66aS2K4NXgwzE0LSQdBAaGRZKC/lZLuPF3MSABg0jeaQpJyc0zhGzhbSUhNPrOx+6bmt\nP/XaGwDAMCYGOuWbmstagaP2K/uUKoQ7R98CgNHcsdgl8uOE5ZCOKZJqoGF1nYsZSEqlRFy9a7+O\nfkbAhqRZh1gPhCSqiLhsoOydkyq6Kcq7ROr7s6ob0wL+tCAXdAwAvtTCuinClMbSbNs0BzVG1BcK\nCkbgb+xNaprBMJTNxuwZzQCAh6Nk1QCAhQ3Oh94b3TaSP2uq+5oltW2B4hLR217qvfhPO9BynwlL\nWdd39/qG7gjQ+wnDEKG0zFK4myVx0/z5ysHd0QJtGimTAoYfwTw1ajxfN9coZNOiFnQwkmqAaZbc\n7q6EPKazpio75WTBVizHZ2s/tfHuF90sFcrIGlMTKWgK7nJgxbxTXFDzsl6alPIxeVWh1Ug/7/Hp\nuvbMdUs0MY8ipIUNjqd3RJ+MQIby/vyShQAgmiQJ8D8XTal3MX866//sl3zbJsT4k88HgKCTFja/\nbqpyq49bc8MCU83ilNMwcWBsvJT65efa7Od9dV3dBehGEwwzkJSqbl/99bo3crXXi4rkNAqZ2vYR\nwqsnwsnauTdOL3rER6f2UHWttd/5kzLSU9i1jp1+cum6yb3bbXPPkLq3AICeS5Ke4Ibq1LbBl7Xs\nCADY5s7GeZchCThrQwHWgYz87CvJvz9AODwowXWwOSSMYuThidt169kERjNGIUs3tLmU1G9e/9Qr\nF9E0SLb2H+LZ9VCWANx56xIA8BPSmMESDs/elbuiIRvrYuMh4e993wpDba8WoOIjAMAl+/9w/ap1\nz+Re7XkqJY6yDkbKa5LksPts1TNbujbidg/l8HLn/vepAIDSa7W4WdPYOKa5zN+tSewYHdAAAHKS\nc55vCABOG4gSqg4Aezvx3fJp9aqiSjhuEJGs4mF8pl2i6eJvzdvgzsUFh5cHAE3WZJwmzAwARHvi\nuukmQS+Iqg/vezfcPZreE3C0GBiVkvYbb6UKoz/+Z1EzIqq5Kr42VRgdy/Y88PoX0EEH44vlBrz2\nBlnNT3qdLQ6G5ZCOKZGc4uPpoJP28dR7Q9kJfqhEvYuRNKO8bveBibsJy/dUw4QyL8U0f0mNvm0q\nySobaZomUupd0she1sy69OE9anC6k0gSAbOQzusYACiycpaxV1N1njQAwM6Q6ribeeXak2I/OeOW\nsxuRGV3RAvfdt7qihRc740ubXJGcjNI1HRHhnf40mDq15QoTYxY6J0lWuDkyL+uybpiG4eKoV7tT\n1aTRzdZhirCHqiNMfeW8rw7//OozxB1BB51PdeNcA8ETydgYAIzqXMpgtHQMVxWB86EGMYphmmcD\ngN2MM41LGtpb6l1MVi528Zd4V490Pt5eY0e1CYJMVpQZwzR9PEViOpg6rxdw1gYAbo7aeesS2QRD\nyU5vmAIAqkEpYKDJMJXkSJp66qxfkm4/yAKjSQAgD3UZQrbvmnnK2F6Wc4kyxU2bxupiMFjt5si0\npAYddM/IVwEgLqint7in+t1RqC/kxqbxqki7nrWf+bzvwulBpyvVBwBG6ywAwAiS9DegLdiZhhml\n+qRqdJgKNJi6bsoFXcgQvDPMS6HIJj09Qvm/QPpCpNuvp2OHqGdqFHLq2CBV04Imn9CK7HXfWjjh\nNCrQoMZCEw7quSTOu4xCFud4jOUBoJkb15tgaG8UGlUMag/yuZ+dNYXIxsBOOD0rnxjq2DF1jyz3\nb05G7NyWlXvNN+y5jm0AIGSJhjm1Qgpo0pY2DN90v2a/NJac76p2+Fo8qoRXtVPr69q5z8wFgJtf\nuxYApGjeM/PUIdUDACDrt77Qk6qrShW8zVXxHEOeMTDGCLJRyLJ2apdj4XQa+9R1GVyhwzmRFfYT\nLjJ2JtabwEnM0My/fuu5bDgDANmxvLPagWkyDemMDiMDP4yacwDA52ga4X+4S2h8dutPyyeKDIyK\nSgYA9ETfq3XNwDFCN/SxbHH9n6TmXFzAwfp083Brn1sgLId0TBnLK5phsCTu5siuqDBpyVQACDoZ\nAED7EaDh54RZ6KhkpBWDJ4vxg2GaLIH97Qx3gMVhvEYkv+ABwX2ak8L+8W+Nt8zeV/yGx5QB2dlk\nJxrVoTppM01gM6YHZcXgeJrjSEbOAoAJoOpF6faFbd5yefqm4aydIdD0DIrwUMmDe94cvPWFHqkQ\neyL32YTjk9UHREhZ1ST9bs0wNd00AVqr7aGs6ie1fq6eMs004QCA94KnJCV1ijrq5khK6CI9J2EM\nK6RTBBgvNX9xefNX9sYKDdnuZLC9vGWcpQnQGdZJkjiJY+MruGAe9R4z+vCFUynU8zoZ/S+N3ymM\njS5scDpc9YYYpinSVGTq1lV2mmgV/spqCUGRcGa/vd1QgjHooHv98+mGGWakz5ENcW2L1chA6qU/\nBq77eWbl3wBgRKxyV9sAgLLZ3RyZFjWSwDQ9ThnqvRe33ntxq5enUhK+rj963Sw6QbjWcHPvGm2c\nO6NFS4xSgQYhWAUAuMtHeWuRSyC9NWp0GM2o7WJGMIqxzTndGBtAVpkEQWqmKSVJ91xTThHOKj2b\nAF2HAwpDoGJLhMMtdm9BZpdeWtrknHAyXdd6YKlspqFNS4T1bJJweJAMhx6fMjHzaTTn1BUtoNGV\nzZTo3NiI6aD89aomR6OekGkCwNY6z54NIQDQDBoARgstbedMLQiEpstPuM/vmTvlsfyc0B5oXlgP\nAIv/zaHW5nbPnn5Xl/S9Z+bHx2VvNW3+LFP8KgYd9MAnZxkmTuBG2GEDgACD4zZnThB5MHxGkqxy\nYwA2LKmMjIFC/eXymQCAB3Nhzzv5eME/1ZtPCLWzg1Q+BwBrH90cixUAo3EwREFl9GEcjF7XIwTB\na7hXNumCnB7LFouLZwpjCtF09zt/AgBFK5AELWuF0iZ+K3b9dm3vky6uGscIQTkxNsCsHCyHdEzJ\nyzpLEoB+TklpUomaed+5+2rGTDaHFJeN69/LGgAlhxSXTQIDnsRo0GB8Wxec8WtMPUtg031cVVl5\nrnln/XpPDgIsPgeTT8LXumiipqZKlhWVcfIU/uVZlPNsCsPAMGHKz9ZN+GgvT20fzbcFeDQxMyHz\nI2nG5miuZ+o39hTq22wj6GDs0f8p7Fp752v9u1c8I/P2TcPZejdD6HqQSdgJKSDGTcZG5ONZrJhY\n89/xD7eR99ooWu4h7K0YperZRL2RS3Let6Lk7t7QtEwn2IqZkEse3tmT0/mWWr5pdpdWDwA/OK/5\nnGlVAGAqKYy0LRf/a578BydH/vGaRd8enNvtmNNpb6m206fNnGUoqUjVdFlVNcN0c6QhRryUGstn\n0DTPBEgcS4saWRXQ01FXbsR55r8XdqxRRnr4k88zpQTLVhkqRrqdAEDwLkk1SBzT9TQAmPaqk2u5\nGVUazbhCGbmGFS4KSD2GB91i3mHXEmGubXGhLhCIK2kljjGknt2L807c5hz+/sWRZd+mgs1rljgB\ngK5rNWLDejpGuAMioRv5tF6IElVNhHM6biPUWIhw+4vatnH0XDJ056dSL81nZ75tCFnKX4+8XdDB\nTFqdAWd5NFNVTlFuTpAAQNqdAOCQx0O33euLM1uGSeJYdtXyvq+fTPRtfrCPveqFqIylGqaOBs+q\n8c0Gcao/0xUFgJzqBoCUFPTWU6rCGKbulTMKz+ysCSy9sh1p5y78zjmh6ilcPAsAOfr0720p9vXB\nGfvGCkEHbdrZzPSWpOSlOWXNlACrG0AQJKNzhulSC1RVlaHh7WMpk5cxkcmndgHALu+jffBWeE+U\ndTCGbmA4BrRmAsM46GHJZAoRDheIWqTzpGWiYUibamIsjWk0acsUxtBHC0pax+yi1Pe9Z+ZnxDEX\nV82QtpyUQDNJyAkJSjonfeAauxaWQzqmlGTTdma/jmPCJHMpQTfpIn8fg58RoFKy6WPwb27IAkBU\n1H0sDgAZZV+KICoZk22iBCiKquEICXPSWuKmWeypDfZCXjCcNqcuApUmqzGOIvKizJQZiTY7Z1x8\nV6zQ6uNQzmdReqMqpENpuc7Hmz53PK9K+TAArB81naSCvGnqn7+T9m6597XdL+feA4C4oAYdNGYY\nU8idZ/AjVZlBkqRUuljuk8KwJF9dpeeWNjldStcgNvftqs+Kmt6K52w8O5JReFPK2vxX4reg85/r\niK0eEfWCxNZN363VAMBX1mXT3FQAUMZWqp5P/H5P47Pwb0/25QTA7/a/NDv0zlun/78cY9uktRn5\n3tebv9h55sJpng7NMHszWRtf+47zv1EppisX1fA4YZj6SfYeAFi991FRidB1rdn+3T5SoepatXRM\nT8cwgsRIXQJ7Km8DKg8AaPMLEsd4MgoAJo5ribAuDKpsw0BS0kif0xBG8P6vz7/x9vObCXcAAKr/\n+wFlVrsnrXXFXl7z4nyhqpdweKhAAyoRtGkOCwA5KUE4PXo+FSr0YTTD0y5VSPfi8ddH38DZIOEg\n1OgwzrsmREj5dS8yU1rkASfp+RzOYezUuajq0rw6u3rvOeVnSns3CxufBZLAOX5C6s+QBNMoxl4c\naABA48UvFoZjoGtMZvSuxENBJ51+/XH/V3+kRgZkE3+j16yis96moVOmB2Z9Nas7WWdWbJxfp519\nmztoFz1z3QFl2iJDx124lBd4GwC8mf0lapawT805fJqNAQCRnGknsXl19tvWXC/um1KESE7Jy3rX\nhWcNKFOr6cy19StnE+8BgKwZpqZTBUnxuqDAAG6O1V6edS8oyF0AQEh2mqTz46K7QVhD13tMwE3d\n1AEwXQLQXbVOAMAxIsDiYzKLG3nJoHGcKEnAE/lhHa8ijQQAGIaOY4So5iQ1p5s6ADCkDQBInHaw\nvkl+fhaHxHJIx4F6NzOvzv7KtftKRE8INdDotXztEdqcrRzFMAkMBgUdABKyiW7kiLzvLdesm0RW\ngLihzYZEeluydVihTzdhli3kdYisljZ0QU+bGJiYqtf57MhTohxgT05flSU64pKPp/KKBgCNe194\nPM7SueinpPUZnA466YKUAYCmLU8GSAF501v+e5dBUH49E7E7AIAlcZ4mWFIVTX6+2jVXH62zkyk+\nyJjqjKbHXTSkDZI3JZbCaRA3R4knXV/PyLoDFEpTHTxdp8UVXz1AsRSFw8Guj8lqOmcSDAB8soa5\neqotiQVQVW+i+tyBpIRzwURmNKWYzUZXjKhrbGgeBGqDdpI88sK5ru8NJtZP83SQOPYD5fs+lojK\n5gvD0rNDUnMVGySZlDD6I/d3nGbkjd0PEubOhU9E8dggl4tQ3lr/V3/o+fyNAIAzdC2hfA068bL8\nK4ljOSms6D7V786vfzH2yG0s694cyhXIUCjTRVTtVOGMO86vRydjBJmWY76EtjH00iZ2+iN2U6yy\nk94aAFAjA5t9KQDISXG6rjWV6nwk+yjh8GAknZPiCUIdTO3BSB63McpoL+WvL0VIuXUvxp/8hdi1\n0X3B5fJwH1VzElXtYVray2vilZAHdoX/75ty+P+RDp1fcF6ho2zn8nSUaWzTU1HUsqlrccKtp6JK\nuA8AQDN1Ie3IR76Qf4vMjDHNs51nf7Hp3tcBwAQMs+m4ZPD2ak0R6qo4APC3VGVTBuviJMNp5ncr\n5yzUwCflC7iNAgAdVAD44bb8yojS5GjWaLKKxkViRp2N2Pr/Fg+axH+sSSv4fkM3zDDyGfZkZ18P\n+JLPQtJ2smLzmpJGyYJin2LkGHAW0lWnDLXc8pZwFgCAyMiQz8cFb4NbFdW9Ncs9U6pxELNjecEE\ngkziBI6VxY44mBioMc29VrqEHg+d83LCAAaD4uCPJBgH60sIwz57AwDQBAcADtbnYL2qPrFmv8Wh\nsRzSsSOc11BpBgLDWBK/sM176PPdHIn6fQCYsO84TWCl6IcnsaxqeFkcAAgwASBUKOoRypV45Xyy\npth3vhyfL4eeIzCYykV25hrdTKQLm/P9xhdERf3ZRS1Vdgrtfi3pAABjkr7IS+Y0zMtTZ3Y9AQAR\nzzQAwId36hQ1GsluGs6t6k2Arp3X/5RD1cTh7ehTIirh0zMSWR/MDZrZWL2b8ZtDA/p0zcZgfZtr\nfR7pk1/fXDX/hqV+N41nFUPDiBo7KajEw6t26RieUYycyRiqrmJYnRZL+ptVk9IynQCwcFognMiT\nWrFruKHN1uokZNwhDz9NuubUuZ0A4LJXxwSBIzBTE6ocTkJTFRMrYA5Y8OBLVX+lxb4mPmKDMADk\nlAIAhArGw71iWtHsOJEUBrOGo53awlEOURM6kqYQGeLzEdJfT9e12uaeAQCYjaKGe1owFaN1/1U/\nBoAvnxx85qqgqotpuQpoMr3iMcpnZwnnK7vG3pWjbxhrk/JijqnPiGNoG7qMOBZO7/Gktbiu2dgq\nh6bH6AIVaPB96fuZfLFwQ0Ycw1leVUUAGNPGMIoyVLkAMku7MTYIeAHNRZVusTrSI3asBYIkfU66\n5iSCcdd+9/do96ADGf3F1xrueg4AMI7i558Tvu+6zIpH0UtaIkz6G8xx3bOpyhHCo8ZCUtdGqXe7\nLoGW3OPJDskYVdi1Nom3YQSJ887+H5xqlzWFZ+lEmucDshht9XF/WDLnORf2AAAgAElEQVS9ZXFj\neE8MJ3C7j9eFwT8XFseprwZ8BBA4AKCU1/aU2pFSg6DPvPsfjTwBgKN8M9KRFsZ/CAJJAwApKzu4\nxa/G572cmqfnsRFskWBrYKd68/2Qw4ImgM2FE6YOAAZrBwCCIOxs1ZLL5wVafYNbRwFANzUAeGd6\n82qRxGS8tBGoZijVLK4YOGkkBpXaiOotVWgV5LSGFSMkAHCwXpKgY7kBEqcBoKBkvnvRS5ohi0pO\n1q19lT4YlkM6dmweLSxpcoYyBy3ydiAHq3DqprC0YgiaCQA8iWViW3BTBQAXXgCAO7fn0TywNGnO\nbhwXS+zMN4KhxXLJVAFPFkDNMGEiGKMbXETero1+s/YpdCaKkIbyepOdJEn8JHzs6/Gn/vbl2SFf\nW9AU3Mk+xVZlGEZv6wobDWBCN9/qlCRm2efR8pTnzSkUy+jg9pvpWWTcx1OAYymZ6/cuYoY6mtxc\ntulkfMEZcm1dvY0o6KYOOCWP2TLpT2nbzsv89bHz7nl266gqq3Y7F3c1pvx1PyP/uPbRLWlRa/Rw\nQdAIwwSA6XQWAHwMntTtUvfvtaarUdwpmSRPqJpWAFM/rcX1ys4oANA4ti2RBIB+bEmQiRuUVkfl\nchq0pT6tGOYngnRYZp2kIzH27ovCBQa8yTNuAs+fPbWqm6r2mHmsbKoG5zg9Oea7/Ds4w1V95loA\nsDPEn1d/LiV0FFQONxNMY5vogt933v5U5MemaUqg5MwGDKoi2R6c5d8+xfWH1deGUp32vA4AgJE0\njkWxJOHweC65Ic+aAGDP61kxCgAKrgPAhtiKz5z0HUlMySQOGIGRPBDmurdJwu03lfFv175SQ9nA\nNb/B2KBRCAEAqsuH0HNJpHEgPTUYkQYADNepYHPr492FncUNsfRsknBUmZKAnBlucy6YXqtG+6jG\n2fEnfmbq/5+97wyTozqzPvdW7uqcJ89Io5yFhBBBZJFFNiYYDA4EE5xYB7zGBtvrtGYXYzC2d71g\n4yXZYLDBBkyWQIBQACUUZqRJPaHDdKx47/ejekYBITDGXvw9Os/8qKmqvn27uqve+6ZzZPBKJTuY\nEaLVNc/ee1s9h98eVe+/cLrerN0z68ZkOKTzXFyX0BAKxPVCf/HQiw867YZj3fK2OUFuCzGFWL1V\nV0HJc0EEgoEaSwQVuVCNK/smcrzu0UuNWFTwqbamGl3pUdtX4iqADY9vq/SNdpwwtfXYzHObPi6l\n5VgTCfoYAFEiAFJz2nU1cvKXjzbFQu+GPgCOa8qoDMhydqAomSUC7t00HslCxREJXIdTgVg7eV0h\n04UQCc1tCrYAGDWGAITUZMXMR/RGy6maTlWVAo5rOczySZH93IAH8HZ8qA3SQw899OCesG0bwGuv\nvbb7zh07dvxfz/Q9YajsxPV9az3sE35Z9OQY3n6IElJxeNnhALIm60VL2B0EMMo0mRIAr+dsjKWL\n3gle1M4346uOax110HExu1ahgVGqAdDMkSa2dYc023u8ebfoQI1NC4myLKbW/2Gr0DwxrluyLtm1\nSKlHVPXz5qV717yU0yZqlGSpP7Jzhxghnkb4yti8SNQPoEF2GiRj6pu/ZFxt84nd6lReGEpGI1mL\nEUIAaCLJm3z16V/Xan2RStaQA5NqrwM4dGrTx+fHFVn80pJfbA4f1OWb/Zf/zo1UbFUR5qS1N/uL\ns7b+8Nr2CgBVIJbWumri/3z8JeOtCst/a0nRZpLeZhW3cLu4oCX45PohABS1Tbmybq9Zm1NEooUD\n5OiYVbbrPJsL4lLRjTBl/s+zS09ZNK2L9Ef0Vm3al69b0vz40m9uTNerpV2Oolnhkmhldo7rpu/6\njqjbV0zXFh6XvvbHVZ8AzpJtfgYAxGZhkPCvXvr8+v5ntrWrllP95BE/bTzlKgC6HNa0YEEZ0xlK\nMJkqWsPEfLXfca2a6ABY/Zc3MRgy3CpUTRF9VEt/r+fBdb5WmwaJPPZrcZ26uq5bJaKPCAozhwEQ\nVfeaarP3//von+/O3PZZAEIwag+/aA8rVJfgtRururlzU++N57ilnJRscYs5z5ljRlVvn2b1viGF\nWu1MNwk2sWp2um5NmH+wV25nVW3vz9g2omg1Jz5FFMioJUxJ+Aa+cXgw5XdMp4l+KtkZY9XeClRb\njHHRKdqcwqZEABBT6IjJQkL9Nhnn9dkd0ZYwtx0qiwCyohgyrIosAXB9krV9JD63sfOQQeYOiE0+\ncEshNQCMFQAUrJomBwD822MnXvL4kQDKDtV41ohZFqsSbsti3lt+WVxWBSKL9evpQtwmXbq97H7v\nzcrK2jGb7YVwBgGMVgd1OSwKSsnIqlJgpNzjMFOTAqoUAOB9ogN47/hQG6TVq1e/OoYHH3zwO9/5\njudQP/zwwz/72c/GD2Wz/xzyWbmamw4o2G+f/DhmpnVvgb/PejaBQKLEa4N1OUokHGb9ACwuhGUC\nYGfFPTYtXz9D38fQu83H2wj6U4oe1cEW5rd4ew7Ru5X8SmZbm+XQQI3dsLrkvakqkB+fOVnMbH21\n7+Sbt9qEUMJcTkVDC8kCeXreJ3rVmen+dZyjZoS3TVj005X1iJOqCIrbnY4FJVW+SzmYOM5Nk2v/\nVrqu854tukgqNpdl6fy0PTEguJxb4dQPhlo26ws5ITKpAVjSGT1nRlxRRVHbRYpz9JefEkThNOvm\n6fSlRr4DRAEQlEiZJldUW+dHxW+sLVNRABDwhZTI7MAh/9McUl64ev4vFwXe7PnzW4U+v/3y7Alz\n1ybuDGEoGohVHAHAPYcHpofELfas9fSoHE/fu/nenHJOdy0OYEPP1ZpVqobrQuN/yZifXN7zVf1L\n9lCuzv3KXQD9hc0hLVUyshU7KAh5quplAVO2GtU2WaJCUaz1FV0qtJ674Juv73gUQMnIdiYXxS/4\nUkJUTaeqCwIjHMCqHY9kw2Krb1I62PnKYyu/9vCiSlgHwMuqUbB8iXZLEEynSpWEwxn3Ga4aJ1To\nvfEcAHYu4zH+cWOYKgmqNnC3CkDQg85wL3ed7P3/7nlRTnZACCeH+v5k9/vg1vOO+vxjh//nRqcw\n9LPhn8hNndx1qCgD4LZBVB20JsQ6hUAUQojbOafiSJLf48Fb/9Rb3zv6p7+94fGnf7JCUuviFKbD\nvDod0etONXrc8jYXQkSm4CQgmgAoETynRBPIkMEUgQAQCHHJHkLJ//2JuQDyFhMct2RxAMMRX2Ks\nlueB1hA1HcEtMagAbGgymAwDgOCOELguszzKVE0KZMs9oiBbjAowBV6uJZMALCQ8uhOba3GVGowQ\n1ACEaAVAf6W2KmdXmQTAdWsAHGbJoi+gxipWYWr6iO7s6nFK1r3oGw7gveBDbZBuuumm740hFAqd\nddZZwhgzysEHHzx+aP78+f+383yPGK46Xp33e+FafuP6Rbvbrb1smCYQmcIL2dVPMLvHt3WR7Ciz\nt+uM7YWZSe2W0ycBsBhUgfz8I1PPO/9M71CH2O2W3urrs9vL67wFowA+YnKZotCz1Zx8mCXGAZiy\nbrnMdJjKHYHABwsAr7jlGrnx7D/dMuXnL3XXi7/9kYjmbopFeFtM7Q1MyEopmtkep/Vbt6vslsu1\naTpf2qCUawUAslVelTyjqgQFzuKjO5kvrItEEoXy+Edulj+SKyms4DfeWBTcstdHsxgkSiIyfTVr\nM5e51TVvFeuxrMM7wjGfqJHRvgqLSMaIE6khFvcHNEWvulQUZOZkIzLNscR6PrUR/SUzl9Gv2uHM\nGezvj0QOsUl2la8KoGIWDAcmiWdom9GzxQ7EDTk+PPI6gE2Z52c0Hm051Ww16bKhilnYaZUXnvej\njFTUqeyCG47SEmk5qG3ZWfO/fty0y72JMWP48pZDtg6tTEg+kSobB55/4LUb41oDKC2ZWaNqAMhr\nDgA66t+6ottJpF3OlXqYixK/US1xIivV9SucWrHEioIeGk8aUS3NagMApFS7ne03veYkPciMilMY\nEsPh24e2YPaxRK2fH1h8avPX7/MffOII8o4iOYUhIZIEkLrih+ETP05EUCXU8IWfCXNP4q557/3J\ntW8GPJrtgQ1DjunEWsOyT5rVrt1wXLsq0pBkzW0K1N66zeNckJtOM7b9fFSZLFMCTnTFAhCR2fiv\nF0AqogKIKARjtNmenGs0pAKwGcIy8qZDOF8wMxlwGSPgqjUh0gUgzTdWfR0AGImAmRWm6vbrjMga\nH7Lg97wWWfSN1gZjeqvDLEHQBDbKJJm6RplEm3UBgECYRFG2IbIiAEI4gCc3/UKmMJh6+SQfpYIm\nBYZLXQBEqjiuOTGxoCf3pmeHKBVs94Cs31+ND7VBGsfw8PALL7xw5plnju8xTfOFF15Yv/6fiSrK\ndPg4ed0+sZehiuvSeAvqXji2Qf7iDN2LpMmEAdDKa7hd9BETgCaQvqoblt7FIM1IKp9d0gJAF0nF\n4XFdCvgUAN/J/6bNfpPbxa+ecUaC9XrafUlWthmPyNQa6bu5+QImeUtdIpnlWiilcFtjtb707Kan\nX7fM4OpTb2aAxIanNNTvSZdGRJ5PBiTZLs/gXd/vvcHu2yr4G704Ulimb23JAGDmcCbXA4AzS5F9\ntj+GWuWLvz39uCYVACEk5K8/MQfmz9x2xdKo2SfOePDyWcWQWOXKLpm1oESKNl8YkzYWnL7ntm3q\n+XXJxqodjzy7+Zdj1zatKsmUppVZAEBD65EyJRan6WCn9/g7Snt0qtjXwrq8ZXsR0RuPbG9OHEPo\nUNWXAvD1x84X4HAIAJZPPPVb643V5cy9q78NIF8dSAUnjtYGR61I2Rj431e+vLK4M52eW1RZQFQB\nWG69kUtXwhP58fXvgzuEiIlA+3x/8sSZ1z646kYATUsuUeSUbNfX2sN8BIBfii+/a1V+R5G4QmUH\nv+9Xt8ftqBoZXPPohuKODFX1p9+4/ffBNW4xJ4Z3Ne5wK19xuJRsrqz6S2XNs2I46bE2MKNCJAcA\nO/gUKZna/RfiCXOYuuwWhr2hpGSLGE4SiQihRinZQqKdrNprO9SxuNI+wxfWul7rWfq5JcdcdeiX\nnrmitaMusHLEhHDYerO26d+5U73gSz3a1C/8x+DcdXSRj5RcOcJpDUBYFm34n9lyb7W6EYA9WgOQ\nN7nARhl3MFahU+HEjAeLNvdLFEBYEaZNSoiyYMX81vX3Tjn4XgBS+RVDaQEQUGMuh83QVvqiKXaq\nxHAgdwtnuByUCKPGkK6EHWaPkg6FbQWQahYPDb5w8QQNAIOo77ak80iscjVDIERE7ZRmhTHXp4Tr\nXp0cYNyVRZ/jmhWrAIAx12EH5Cf+avxzGKQHH3xw4sSJM2bMGN/z5JNP3nHHHRdccMHSpUu7u7v/\n76b2V2Cg7Kgi9bif94m3h/JK3zlyZlofvumIvfarAonItGBxAG3CIACRUCf3WpUrAMoOL9pcfc/i\nl5+cpB2S2GULFSY45fWCf2ITikFrZOdwNwDXsWMKpQQjJgBYET+AghX2VbOPHPVlvyLMGeySKZu6\n4kVb8hnJMACX+APq2BxkWWRZTWA1yU8kKjiiPdwrxmd4mfZvzPH3ffUQAKzaWyIRALZtGXLEFNW8\n4VME20uMMcZnN/oVWKJpuyFVrJjb1/lX3v+WrsejUomPxes3F51mH71+hi7f+ueBmksdh3AzIhoD\nhbdW7XgEQMnIxn0KlRpFnisjBUDnlZhCE2IpEegYrQ0CiLFVn9aeFcZKew2xc0LtuawTZpDKZv6a\nRz6xJfybnFmvoTIln8VApDBjBoCqWVClQMnIHtTUBiAgh85sWBDSUgKnIgQAqkgNm3G7CKDUXQr8\n+Cxu5ZmRIWriC0sfUqkQUML/euozoiDH/C2xV0/Y8eVWOAKAnJPx33niBN8hAEq5cq7A2BOzNtt/\ntrcllLn81QfWjR76mZXn3TY0ulW2RTvb79WOe3jKPuSS5aNK+0wiCLVNr2gzFls9m6mqu4VhISCp\nglKwRr0peaiYhVEdAJ7+rxXMqNQVewEAkWUXUzUO4NHvZ/KDFhVI6ODjYh/5QrQ1PLQ1O+/06aIi\nCqQkqPWUPpEjVuZJdcJl9uBf0o2bBb1tjbhkhxtdsfUuBlHieQApTagwdXVmu9/dBkBuNS7/zQUW\n4+M5pG0jqwE8z+SecxdXHBaS66QkqUnx0+6+cOFJc8en99Pu33G1CYAqR/ySX0EeAIcQ5utHecs6\nc1HeYqIgV82C5y1RIgisAkBURZUanotGwG0OgxEAHwv8hzcyU6YGJSKTCgBKhQmJBeOldx6aItP7\nC5u9o4y7hrO3nMcB7B/7UPH6EOK3v/3txRdfPP7vdddd961vfQuAbduf+9znrr766j/84Q9vf1V3\nd/d5553nbcdisa9//ev/mNm+E4hrZzIZh3GY5Uwm8/YT9rmzfqi0j50BQc4yAqcKoFarVXtXJKWZ\nChd0SrI2carFTKawj5eNYXh42Nvw7vhM/d5RxEoOcjH3xJNk4WJ9U++muDHFWFdhccuomblSviYD\nMJu9uARbuvxHa86YbxLpmRtXHDVje35SZ02RAFBwTuSQWDXAbFDuU6kzOpwdHIxNmshKhutz+rZR\nPrHS/yYzG8bnQ8nrFXISgBK0mFveqcay22NEIj+/9H+b5qZaOyb7uG1CDitONRpSB/Kc85pRe+Tn\nzUec8ERmeFi1JAA5U5krFUe2ZPpWdO8839FGq0HnjRP15wzDFqFmMplCrZ/Zrumwk9o/+ZdtQsv6\nh9b29GQ62SlywGV6LpfzuZlKrVTizJGSltAUFd2cIwQGH+lRZxO4hLNY8hpidW3OpgAJgM0Uy7RG\nqVqzKj19XeVq0a4SAPec1fLEFr2S39jRsHRocLhCrVbX3wVEFbJ1IJd//HC36RObnyDhAB/q2wi7\nQKtWMZMRXa3as4HLiZMmf1lxEqbRQ7noE8IeO4U9lPSnQgDSs2KF7UMpn+6oRT6c9s+MF+PFByqf\n2BB9eln57oFhvz2yoURUpVoqZTIAulnTRI2N2ATHXiYeC/ORH7tdb7BirjA8KPptXfD35QYaS0Ol\nTOZ36796+KR/68/+/tm+OwCsfXZt0JiqVbg09vukyQlGLsedTO+akUJCYJyUytWenUP+lHbRXcuK\nxmgxM0rKb1I3UsxkAIgWJcUXnMk/FDZew7UJmUwmJEuvGFOm+l4aAizTBNApmK+ZCcHZmfYn36xg\nINfTEJ2a3VmU3GHD8GcymVe7Hob+L7VqDUD3cOHgKKezomtNFEvFgMK9L2IcZrUPgGO4rhC0nPoS\nULc3ZMhHAOzIDHOhfd2ouiAYcpkt8HpcjlpZ05T7B/oACLziVsslixOgVqu5zAXgcr/EHMZqmUzG\ndV2jZraFD8pkMjprOX/OrZlMxsfTllPNZDLEVkcrwyllxn5u6n8MbrrppvEs+4d/7f5PYJBeeeWV\ngYGBZcuWje9JJOqBCEmSrrzyyrPOOqtWq2mattcL29vb77vvvn/cRN8NNnak02lgQ3tDPJ1+ez3o\nhnQ6/VcNWNiUB5AnEXBo/jB3srcvjv6p39046iwftogWTKf3Td46jn2848Z8tKHZNURe4PpofzNq\nj6Hx20NfW6Gd3dj40aYGpc/OAyi3xAA4giLaVdm1Rv0pn8uLpUB6btgK6wDiVSNkfQLCZTGRZRxa\nDkVK/eE3hh+9IHmGKW7aONKe3rKyOd7OKt3qbnPw57MqMU1oBpEVPdK6feOOp6auvTwU640MrBk5\nvK1dfWMEHW2poNrHQBgTJEFX9ddflhYforY0przM+QNpAFj7x40AKKWEMzYq14b7edSIB5vT6bQx\nMtBiBJ7NIGzFAIR7u+ikwpqBFw+OXhhrTAfD/nQqHetp9LV8XMwGtrJfLU0oTwyY4UCYI8CIT0RX\nWWyZrb+1oUYA+Hlmg7V42KL/wz8d1eYJupWOdkSjUQDJiBA2N/YLYnL2lSBCRbIT0AFYoOlYSPaf\nJIQSpeF8st0f9fPXfj9KWGpyUlVDjRZTiwPuE5d237Di1Det/mRnzO6fGZjCBpRVADrntR91yeLf\nrLsmJztTFk94S66JtjYxeFBv7HXvMqqEgvKagqZY+OatKz89J9FXdask3BiQkyGLqgkQIRuOFkcH\n1YZ2H7eUZDQ4FDaQXeuWj02ndy5f/bVt8lWJsQpyypcPniYuN465uv5N1Yo1uWmGoKcBCIKtBpRA\nMPBfZz84b9mMSXMmeudYvS+T4HQpmQZQ2lGDFoo1T8mv69PazlTT6YZMeW3ejoh9cCCIBlwcP7nj\n2dyIjxdnNnTseO2C0Myb04l0YGiEES0aUAPxOusBU30C66vQyMGpZDczglk7FAqpCgHGeLVlmxGN\n6hEAnU3TYGxxC/U4ecgXyzFLciu2nhoWDtpMTzkhfB8vM04lr3JBlUgy3KKFCIAJ5n9cOP2hF17O\ni3xY0zSj6gegSkqZC2FaTafTHG4slLrwsDrjahNaAIRih/9uPdLpdHQ0kbBbT+z87F97U3/guP32\n28e3xxfoH1r8E4TsHnrooRNOOCEc3rd0o2VZAETxw25Zv/Vk96r+fUsDvG/8fHHosLiQ9qkPHRUR\nQ7Oc3GuyIJ7SrFw3zXdUSvZys38tTmlWiKTU1h+qdJxkbHl9RkI3IYRKjaeR24/Vi7kH/wMA5dwI\nBwDYspLPBVtHtmTv31ir8q5toclLZiq5cmZjb8dbPXIl7xDB+2rOfOKn7VF169BKGi6vv3/zM1Pv\n3WnMEoKT3Vrf7u/uFjd/O3LfGaGMzx292Nd13Ev/C2DHaCcAo2Q0PLlWe3odAFUgQtkgjHOXUYGq\nfmn75o69CNGZywDkLUYCQ3RzixfrV+XA+v5nfvHiVarsB/CTc+4GIGQMQ80CWPXii82R6R4FmRfM\nKVjs8km+YxpkAFL8sGy14hJdcEsmEwMSH7EkACG2o9oYBOcAcuLCW565/HXrlJVrfwegsvr6w+Z/\n68R5XwcRAMy22hsqLgC/LJZNlwi61nm5FJlCJZWbw8/dPfT47eUty7u5EFz1u43/den9AMrZCoCP\n/eTMEz92qvvwPLpqMgB/XPeFtSPalx3XMXvuaTO6gjfNXKilglGk6m1A3DAA/O+yiKNaAF4ZNv/Y\na9pUdexa4cnF9vCLAIRA1MkPCXrIyQ0QWqNUsZzak7ntAGyaAPDs5l9Sb8EarAajQtequpTtVSuL\n3MpTub6ienLSpYIkefOUfbvcFGYXyZj4HtyqFD8MQPi4F5WOSwBEZAIgIPIGjZpOFYBMicX1ko3W\ncNtFB13NuPuHtT8smWWR5zXCKg63SSIiuWrERybZvcVer8RUF4nL+e4N4CyVzyrnPJbteGzrR6ek\nZut6q8jqcQJdDjhcUEn12YFqibQBCGkpgeWBemBZkARV8ltOFUCp1usFiglnAGzOARCQrMl8QhnA\nQW3LJqcO3ev20aTATacvB7Bk8sUXHfKDve+uA3g3fNgNUrVafeSRR84555zdd65YUac2KRQKt912\n2+zZsyXp3evW/m9RsdxnLp0IQKTE2W+/6ntHXKGqKBApKBAIgYn1zkcCVSCfn64fEn8/1+TyST4A\nbmFIbZ/uFIb90xcBgBwGbS2/dsfIvd+HIvhHK9X21vSTawOv9bzSe/TEWia+YjMA0xAb50zv/Mmf\nVm0dahjaSQr+KgsGSd+Ml35U1J/3+j+e7f7FwJKXAQxOC60YeJHVBr75yBLvEQDghd9FSTYoUpsS\n15+ebJA4gPy9leGu3OyTp/WvHyyNVABEZMJU2dEV1XXL2UrjjIah0eheH6Q4WA43BgGQaD99c0LJ\nzJaMkYASz4xudVwj/2r/bKX+LdBRrSoNtcfn8ViJOwBgVW3O+XP/+cq/zvaf2KRMCYp3HhKSUsde\nKj8YsFacOPOyKUEprukFWzzPf4ePdZcn6Ra8xINbE6dvrKafVq8e9F3hP/jOWHROe3ye90ZHKoeF\nhs1lyYPPm5s8ol2DoADQAgoRFKOYmzQfn/jJjNGB4suPqs/fvQ1AuDG4+fntw905f1xPdsbtIUF6\n7BBOqRXRAUz0Ny7sWKwGlLK0cNbByYjiZ03DDm8EUBq1uF4FMCLli/KS3nJJIBCoJMAB4Ja3ARCC\nUTCXqHph84rvb7lPkQPj6gl8TJCXF1QZPgCMql1LbwVgMd5bdf9cnjxubFZMOFtrDOX7igCM0XJl\n7Zfdyg4ArLKD+urcSP5D/kft/DQAIkfGuWvvXxKWRd+dh4RCvK5UYkGtkHizjwbUeL7S/+LWe06N\nr2+sfFfCaFehD4SWHSpQcJZXxXr1vy6SrMFqDo/ItJ5tipaCSsCEyjhVRSqLPntMR1xDmXBHI9UV\nIyzDpxG4lAqM+g2uHj/lHACEkoAa8+q2PSY6b13CuDtOIe9ySEQAsHTGVRMSe+t3APDaeykR5H2x\n9B7A/vFhN0i/+93v4vH4oYfusRK5/vrrZ82atXDhwkMPPdQ0zdtuu+3/anrvHSMVuyVU7yt6772x\n7wpZIB6liuCfqE39wgczqCCa3euViXOsnZvEWMO3f3UslRXRf7xb/LMLhauiNFLqePquhsdWd7yx\ntuoETG1X66KoKgAYIUSyiSNJ1UK1NiAmVw5OGYr4GgGUnEH13z8az8+vNIkrtt4Pt1qzS94j4D+W\nn/Tmy4mhPv3kcPenh77Ss7H2/JqpAJLtZKQ71962slqojWaMf+1+WCAQq1Z5Qsrfmx3uyjdMTdzX\ntcQomZ4otQfmsmAqAEBo2kqK2lb76amxo5wKyQ73Ayj8Zccn5SqAKyf7AkjVhOyE+AIeKhtDvGaX\n7jjv19V8bcPj21SBEMbcmt2gUSL6OrH1v06+7qz2hqun+kISAAQkQcOIS+pXwGe/ISnTQZQSU4vy\nkk+t3IOVg6i6PbBjXmLyFYc2HdVY9JyMWsnkkCojWT3MYq3+5Xeteu3RKgAq0GhL+E8/eG6kKwfA\nH/NVC7Xmeenjf3Hev2xxAHDmYIzYjaodnxmaHZoNpb8NwFA+SOTB8JYAACAASURBVAajMxJLc5Ud\nvf5vbC9VKg53iag5A2bqTCe/prfqbvS1eR2y/72oYDC7r9hVs+qJSofWrTsdjNoFCtHNn/iwI1dG\nK3bR5gB+WVsKYPvKnc75zwBwA9rQtiyA4sBWwddWXftle+RlbhfHhTwIVbBbi6jL68smzxm94shf\n3nmIdwE544oqEEqEfHUg4mvkrCSyvE+w73rtFocGXcByOaWaw+pftDefos2bfdQlfgAbOkVICYWU\nayyVDsoeI+r1E44FADsnu0OK4LUxuITXuNgksILF6OTEnKXO7QAivsZ8pR+7TBEAlIwR71HpwiP0\n219q9gD+FnzYDdJFF1303HPP7bVz+fLlr7/++s9+9rO1a9f++te/TqVS+3zthwqZkuVV+hoO20vc\nyEP+W0vex7BhiXiLNyJHtMlX/42T9CAEotx15HQHMypSrLHxxAupLyjGO6x+wTnxKr+uuEXj2tkb\nAbguEaibCNazd5//0asArrzvIgBKRKWm4oKIcLlmJsoLTp1Tp+gO+gTCqUDE0ZF8YVgBUDJGPE1o\nxxYkTfe7g0l7Z6Za55xONDlW1Y53hFnziHX9vRMOn28xEMsSbDfSO1IcLMXaopTzfzvi9js++uvi\nYD2XYNfsUMoPgHCTFHUO9qcrN2VeGV2z7gUArCw5pgNgEatZIwRAS3QmVy1WFQ2rVMDO7Gg/gBvn\n3rL8rlUPfPkxb0wxMtfJr/a2A0oEgE8ORp1XGdEm3/oHkdUUtrWj5byOgFh1iU3TRZsvH7YA9K4b\nACDowfAp1zErD4AZwzWlHYAWUEZ6nJ9eK1JSVSMpAJbB9YgAoGFqAoBnZUVFBLDkmgWxiXGPEYqb\nw1RJeBxRA9QTFXRYX4Iyu+hGtT8c9SK7rKtsJoXhPjOki8SmulJ6k6VOYtXeFwatB6tJANrUhQCi\nVji86YwaaQDgjm7watkBcEuE6LipHOsYAPCxV8rjS6lM1bzjuZvNiTUAM06fWR6p+GOaUy1vjl3m\nX3inseU2zt6xmnTIYB45vTLmQzRoFIBAGKd1pu18tb8xPKVqFgBUKhuH1MvyyplxqQbARf33lq/W\no4gFmy2Ky0VpCYChgGLyIGGlibOOUEXqMSbE5v0QgGMOcW6LVDk1lTW5TLh701sTBIwC0EWSCNcY\ndwNqPF8dwBh1kHd5q1ahwv0ATPgBuNhf88YB/C34sBukd4IkSfPmzfvwR+rGMV7SfeLUWFjdx7R3\n5/b+q6C95/Lu9wivw9HjwhHCidhHvhD7yBeoHqq+WS6N9stinmlyTO8DUCsKApxqQZt+/CQARNIx\nJlpDfBWpEBXcQpX7RVtjDnPGVN2iTZRacpH0yW6wZ6tPFOSaXfIePXLSHh2RHt3xhEHIo+bnz739\nWADJlgIAbcJFJ3/nYK5asUlzKg7nlC578pW29nChv6hHtInZEgDXcN/402YA6za8sJk/7qU0pAeO\nqn+uoh4IxVisKP5pUTSWLGUroiL+52m/9J71zZEZyvKDSiNlALUL/jhMNwDwx/XBt4atqgWgOFi+\n8xrHGnjCGy2piQBcoyjbtuz2+fLdjEiHtx1fdTUvQQLgog6tt8IAfPuXbwAIHn2ef/4JcE0A5YEt\nH+8+pjxS8YW14ogBgAYpocq8ZTMci132wwhzWahhbzoiX0TLmsxLn3Bm/mKw5bOvFpMqHeRRAJpv\nWs1PFTYUDhjppU0DPLmukjgmNsxBay7XRMGo9q43a0QKMmYyQQEQOvYCANSVNpZmbaSfAvD89p0j\n6sUAZnZfTrNBrlmp2TsACFAx5pEAeHVgfe/cj+b10wCEpgSWPn5l7pNzIm0T/3VtlUhBKXWM1f/Y\ni1vvuefl63eff9HmLseIyRIqxVh0axx+ahoIAwj5Ut0jq1PBTm+/6A5ZQhMABVWXQ3AzDATA9uHX\nvBMKJj+lWalKcwH4pJIo+KbZt1bLBQAhbddq1XVqKnVsLh4ezWOMlEh2hgD4RZIt72yPzQ2osWxl\nJ+peEQAIvOxVcgOQqTDRz/xkGAfw98E/q0H6p4NHMwrg8U/Nmdvk3//J7x2VDygd9U6gap18SAwn\nnaHM4mu/q8XbAIDWefUlauRfzR5x6cJwQqR6/eanhLF4P3epoyVFXiWWDIBufCx05+m0qyHVoRvD\nzFRyGot0odYcnlY2sv+9/DNBQRWb7KorDlQG7gsEAdi+HIC4/nR9DgGmK+GaXfKeyNNOnnr+LcuO\nuGxhvnH1uubQ+bcsK2Ur3at6yyOVB39wf1/bnwJJ/6SNt37my0vrH4YRp+aKKon1LVQ0BYDnJImy\ncFzfjwNqLLrlMHtQWtn1oPTYIu8VsipV8rVIY8gxneJgKddXYbVeb+0fUOIArALtewvT+q/jfoOD\nuKP6a1lnQVwC0Dn6sQWau7PiVhzet2yhNyCRgs88oO3clrv1KyYAx3K1sFoeqQK4de4VOZo646al\nADRfdu13L6p0pHaXpAMgSxWLQaW4fEWWW/kq085uVaeHxCFbV2AtnPzFWY3hAC058dDIlGiC5XrZ\n5MVxCqCr7C4KmwOssnznc4J/omGWBEq6StM9P6BKa76aZUgTN0Sf/m2+oSLNpcwpd/MADUJgr4X/\nJaN/LijMBFC2641Zbwxtg+0DcwCs7fn95lJlS7rz7B9c4B1V2i/UZ387V+71ukTHcfnLo0/0m1mT\npVQKYDx36CGhp3WtTsuUr/anghNLZjagxhy3Hktk3HU5OA2WHTmmUAB+kWwtuRMDQtkYFFlWk4Ix\n35BMMVjc6nIBABEjdKwATyRU5WVKhUJlG4Co+eCUoOgIEQASxeyWEw5qWyaLPsupYcxDAkB5eXyG\nPlr72rRqCD173ycH8AHhgEH6B2Gf4rB/OwwHH7hJ2p0QehxeiyWRlGPS8keOapZbbj5/5q0AIspQ\nad1g4/TUNfctlqLTvJNj2uAbuJe4quYMmiaRaj6jmHtrtZpMpaRfHx9qihnDxPRng077G+1rzpj+\n6Z35N7LlHnWwQYwKzzR8LUb43Gg7ADuQ+9TdHw1HR3mktHrnH1/c+ptEoGP5lntqjl2ZXAtMzgA4\n7trDf//mt1dO96WnJBaeO9uqWs//4pW5Z00lNSWQ1AOjmzUCf1zXf3EeAN9gx1dOeuJzj33CMd1s\n9y55ac8ktMxuyG4bLRnZcHbGrM3XARBkapTMSEto+d2rfn7xvQDkxtOsnocBiILcYd3GChYiJcpE\nHqwAyPaPLopLR6Xk66bpsttX3Tz0wpD1cI8BYEfBAkCk4POVuZ/fgcKkRpnzX3Sb/mQQgBX2Abjs\npfKQwXwhhRJXMO1Nfr8X//Rw6mej0uplma0PEGtwwKRueZsgSGe2qqc0K4OW3EIHCm6scZIVV0wr\n3FDR5aBAbCKHA22LpXuPSslHpAMmQSwwebQyixi9ZZeuGDzFy5dk2XynJcIhTK79cCdpBaCYvaVh\na9MpV8hyelQ5OqecxuQpAJZ3/QlAiuYGDJW6lFgKgJeHt4wMb0yruyhFnhzEw/z0ipX3eHSuXpn9\n7O/PBdCiOSuG7bzJ+rLLb/3LR9U92d4Y9QlUBSALPgABNea4lkiVcrlOyFJjlIIJYsB0TC8ukFb5\njor7ypZbGXdFnudCGkANYQCnTk8DoDTqNb0C8HkNrUTw3PF05fbzO9Sg9TyAoEQP77wwEWgHUDH3\n0B2/5ND/3P1fr2/6AP5OOGCQ/kEY95A+WEQUsn+NifeBcQK0zrs2vX3nSU3KsulhANQwAfym5Win\nYgFg1V6qtwNg3G307wRgb/f5jF/Htt0qsFxllPzpjtGjrz7lnMt+1zitwc3LquRrndihFqNBwoZL\n3QBy64OV2iiAvm2hqBoBUDAyzbMbmi9c75y48r5XvzZY3BpQYk9tvDNbq4TUzcPlzePTu+OsVLgx\neOoNx1KBjg6W1AZGhiJD5luEonF66pqHLmFDGgBuE10NAQjEfZ4Rwm7FylSgakC5ZMrP4QrVTSoA\nWZOYy9rmNb18z2oAoiLKDUutvofB3WqhppV/VxrOhh8/6ZS2r/DZ2ya+evP8QuH6GbpMybHpeprh\nnCBbM1ADcM3qujfLLG4Rwpr92obe502xpCtfeeEqUAogItPlQ9aXnr2cmcNzG0l1+Hlw9ysvXAWA\n28WpU5+xFjxpRo905RSAx/phQgXQoAldZbdVKuXKg0wMTE5Ma5TCjuxXLItxN6SlJvuGL+swVD0d\nDiRMBH56eVeu5qQFACgZI4bQ0dX0jf7OpgnFK5utTR/dfiEAUSxmqywvJSdOv3dhTGo0763IzQB6\nSzkAU4SdhpuwfSmf6Oi8wgm1jZFsedt4VDZrsKczZsUs7Mytu2vFdTurNKecdf4Lhd7c64zzvirz\no7+/sJnuqbZnuNwzM14lQkCNl4yRgBrLVuoeic1Io2pIxGGcfe3hRQAKlpM1Wa26GYDo5m0SARAQ\nAcDjchSEXeFxOTJT80XLrsI4u7jhDQDzo5LqbP7+HHP3sLco7KEapewWV5QEDkCX992CcgB/Ow4Y\npH8Q3guh6vsAHSOj/ADBbVNpn4GxNNI4omfuKpoYFwTqV6RUR8nseZCZw+O9KSd23g8AjHD/KBp7\nBTUe7whPXjKhfUHzzCseCbZOFTa0fePsZ0865hMdL59Ga7lcqWcma4tLk0u1EW8GMX8LdstaN02q\nFxB7xbiawBjfg015dkPd3lORKs12BSO0O/WqdAenDgA1oDCXBVP+Ura+WA4k/cPdOQDBlJ8KlLns\nxrm3+OO+yUd0OL0BX1grj1QwVlDQvqDZsZxoSzg9JeFYXG45u7LuhlW/XQfAypS/cM8XDj76KB6s\nLjmmsbptxKrauZ4CAOnhw0VFVJ9Y19dXjzhlTQZA8NH2SqXcktD6cwAGg/6iJHndxM0+2ldlIEK/\nE07TnSCkuv47akABUHvrNrXzChC5RCIuJwB+pX5pTd4BEJRIb9WdGZWH8n15oX1WPDrixNK6SJjg\n0BglQkhNVq18zS6FFblougDMmls2DACvP72K0VnR8vNlWVKdza7DzWoNgMD6bSUxT8z+dic7IiUf\nEyypvAlAdkAEYDI5ZudswU99cV0cdRBTU0eCWyVzBMA31pbfLDhtuiAJSsnIbhx4XiK8oJw4JSgK\nrCBRUnO5ZRUxFvYcx0fa1U9OqhcszGs9RRRkh1mioFTMwvWtLwIIYuekgOuSIMYYVznnLofAKwBE\nPuQI8bktDfJuT7URk4l8V8pHpDaDOFob7NAKVx1dFyFMqQxvw7hgOYDLDv8JAIGAEh1vS30dwAeI\nAwbpH4FMyXrfNQv7R6tfmBn+gEdW2me0/fDJt++PX/jV8W3qq9uqIb961ue320PPu+Vtnoc0rgEj\nqeJ3z15Nq5pfaw5PUi689XQqUCJHgqlQ+4Jm70ynqvzgnO1Fc8RXTk+YOo2nswBAeRRNC1ffPJ5Y\nTramLzn0P0+d88WG0GQAZTPHwb2GytHaYGt0VnmM83+kK9fV/PCqHY+Q7U2SKAstuxIAoizmdtZT\nGuMmxxfWCv3FSqEGwDHd9JTkwMZBAIX+oqxLgiR4JQ83rLj6ukcvbZnVUBwqKy3niNEFXnspLL9X\n6T5v6rEVd6RSqD1164v3ffEPAMQNnVbV8jFWidUN55adxUdufgoxuaFvcDjZ5In+FjT1ky+NRqdJ\nABo0oWgzi/FhFopZW6X4YUSOVDd+3+y+p6K0SfFDALgcFuMyJZ0B4fPTd8mLNCcmj9bKg0JjWCZ9\nyrxoNC1UiV9NApBF36tdD3/zkSUKihYNDC+Z8YY0i5czR11xyKrcGz36NefE651AIvMXBL6IrSCo\nbbnqlCmJyI8WBOdExOMXfNFRIpJbNkkEQO/rZYwyEaZAxJpLQcVNgy8DKJg1AK/n7E1FR6WOF5Gz\naSLivAQgLJYtoZlzq2L0jzXr7PH8mRIU50Tq67bzFn6r/ksjAoCwqqWqPz1U+WOHz/ZeRYkAUj9Z\nYKMAZDboCh0Wq3jaWp7ZdjnOmPslAD9aUP/FEkK9jqvW6Ky3/8jHMV4EDyAVnAh4gi+m6XzA7e0H\nsDsOGKR/BPyycPnipr/HyIcl5PM79uZM+geAqrqnjspAIAUBcLs43vOYCnZGfI3n3nwGAO228wUi\n7c58LCripb8419tOtIeSbRxAdTDui2gNi/2UCK6/9qOPG5K8R+RkWsOSwzsv9II81cJjur3Ocqr/\n/eJnBovbWqOzR2tD3mlW1eaSDeArv7nhq2c8fu3pvxwfoWNh87nfO9nbln1ScbA8/fhJh158kFEy\nRVkAkO8fDab8w115r4EpkNIjzaGTvnjk+AhNs9I96wZunHtLyTmGOQ4AMtZqc/qSz54x7wYAw125\naGsYABXpqw++sfn57ZwQAD7OXu4qviaoVIW7ua81t1Oo2QCqggiAnDpZgtWqCxWH37Khen/1cL+b\nEQRJnnQ1VdOrh4Y/0XPy+DSun6HPDIsyJQtj9SfyshYl5AtJvAI5OSkgDrv+ZFQ3TR5RfQAOalu2\nuuePAARWsBEtt8VPD1GpXBYa7UqirWPl+mOaWqcTG4BaSzjUd0hgRHEGJv7syY9OTXQGhIhMIzId\nllrUWsZWgrI76sLQRgwTPiJGCStCaDDtAoDBSp0P0WawnWo4OBfAqQtuE8wVc+j9Gh9mxG9a2W3D\nq71GIp/y7rGv9tjcm05frsvhmHG/6VRve/pCv2DYzJ7TcmLAP9M7R+BZxlyB5WwaLNkkrEgAalwx\nXJ41mSaqADoDAgCXCTKlezGi7hPjRQ0yrfvl103zLQ71Va2C884V7QfwN+KAQfpHwK8IC1r+v1Lr\nkpItiY9/E0BZEQHIqWPsoV3tYp87/oEvnfTHaZPrpWWuaL6TWJke8deKLOokRnv8uj+Yre5Mhzo5\no4pO5p42XRF9jLs/f+HygBrb/VUx4/6A9WJ3ds1bgyt68+vntp48HtyzarYuxAD4gj7sVvX7hT9/\n6uQvHd04vf5vIKYzl533g1PnnDLt+qc+Xc5WAVhVG4BRMkMp/zUPXZKaEmub39w8exdh9qTD2ret\n2AHgx2feheBhAKQxgySLPl0JM4fpEa2arwEQZeGt57d7fVHUYb7lm5+TA5vmTSrHIsbw6IXlwaOv\nORRAn8nmRKTXzeZLjO8sa1EArMnbBqNRXzCikId2GmsC53+ncgkAi/FPb1QAzI9KAtkjVPvJTl+D\nRiVfc59VX53EfOJIwRgdKALQlfCyOV8OqDHCrZIrOmHfYqfSbuov8z491CE/vVVS4989KgnALgmG\npPgjwaj5YHDjHqxOfoXCMmw5SXjFnmBIWQBgCMLuc6VOgRcdGvvOlnYftbyyNAW5sN52/QmPaFqH\nyIrHpuXR8nqbpsHKqpL2FhDKfmNfIlUsp0rpLsoDxt2aXdIkX8Go6HLY5YLFHACU21uHVkps2OSB\nqssUygFEZXr/DuNHGyrjVfgACGEcxLBLu5eDvx2UCJ3JeqWlQIjnpflFolInX+l/L/bsAN4fDhik\nA/ibwAjRJUFKL6Vqwz5PEGVBcBSv7/XtkALhcKJ2hnh44XVfNJmo2aVEoD3YnLjuweNb5zXZrvlq\n10ODxa3j5Vi+sXzyt85YuXVoZSLQvnXolcbwlPEBL7/ngmhqbxohAMGU3wu+1ceJ7HIr/XHdKJlT\nj544d9l0ANVCLdQQjHdEj7zu4MMuOWj3QdSAQoX6LbPxmW2B547ReXL3EyJNwUq+XhDvkel5ZXLU\ndQHM+ZdfTX/0lZ6Wqc6AJQca0yG5TRcmBcU5EdHiNMozALaX3flRqR+NenR6zeX37zDu3lZb1qKc\n06burDAAqXoP6T4u5mXzF5zYVKfTjciUlU1ztL6Wn9NywuKJ51WsQpUnlGrmwYHrlDcGBmIHEUGb\n1d41TqkgO0EHhs8XaI3O8oopxnHDLH8De9rSEv6qpHGbb7cB1OATYNk0LruDHcXP+KjN7W7C3Q41\nb9hlJiRi/paKwykvT04dOpRbzohUc3hQ8fXlN+DdFL4Daqy/sNnLM3lnfnrJzwFIVHA59ymhsFg2\nxyr7Hlr9bQCEUIBS4NwF3wRQtDgASuoXi1KBwGWgNbu0/7ee13rKJ4/4qbdd261oyCeHn9p45wGh\no78fDhikA/ibIBJGCIjoCx3z1D5POOismR6n3D5x+GWHn3bpm/HoW1bN9YyESBVRC+sNMwDoSqRk\njBzcfpYXxMdua2pRkAHMajo+X+mnRPCeLyUj20WfoSL97tmr9z/teHv0/Ft28cfPPGHyvGUz5pwy\nDUChv+gJm+4T2Z4CgGRnbKQr59s6PZ7cwwwHkv7iUBlAeaSS7IwDSE9JnPH7FwXwRSdNOewjc445\ndyYjhDiOVbOOSMo/Pjh45WTfOW0qALXxZADnt2teYj+amHt2q3rnIcHeqhuTqU8gOyouxu7YT07y\nXTllb/eiQaNLG+pxzqBE/CE1TPeowBzaPlxC3N/2q7zVH1RFl5g0fNCpF7xM1LpB8jVIlprT5fBV\nR9/tFVOMIyiRiakMJ4JYspLVhaJNADCo89tOa9XlgH8S5WWBj/qVGBX00yN/Yc4opxqAEYNpKKRD\nnYZjUm6bjMZ8gaFSN8ZKVPYDxt29KvEABASDueVEoKNVs3uNPSbJaXBH4IcByTmobVnR5gM1d3c/\nMqDE8xb1FMp3XyHtVX3uMGvcf2rThXEHixIiCXVikf1P+wDeNw4YpAP4mzBN76Xavn0jD0s/tyTR\nmnTeQc6ZClRSXElxP3X3RyVNBBDSUuOr15IxMmoMLew4c1rDPniVEoF2nxLyAvrZSs8ja7732Bu3\neCvld4Xsk6YePXH836OvWDz+r2M6qc53fFA6ptM6r+n0rx8PoNBfjLXskQURZZEKBEA5W/WF606Y\nRrgjSVrUd+L1R849vB3AJ7530qRD2/caOTzxIgDLWpSITAHEfbqXvAHQ5hciCu0qOyfF3WUtKoCk\nWn+w7hOqQMIyufVTMw9auaHQX8/rLOo417l7YdR8tO2VllhlWnJK1Hatw1L+0DFPjXtI7dMncNXa\nq+55HBLhS3Yus03aMCV55mcW+1hvhcsAvjIneeGk1oPaloWqD3YEQ7ooWk6NuUM+KQxg2GD/dtpD\nlAinTzttEn1aRCWuRb2W2PderkapOB62dZjNwSO+xin+QsB6cffTRtAOQKUcHgsqJRVnl0mmhLaS\nFZ+frs9oPHo8RQRgr3iyLKh87OiPDw42+wQAU8XlDVo9+fSudvQA3jcOGKQD+JswyZcRtHep12Dc\nofSdSwG5y5kznqoRBckYW70G1Dhj7u7Fwbs/K7+w9KH22LwTZ14LIKa3bBt+bbC4tTkyff+ZiXdF\nekoi2vKOyfZqoTZhUcv4bL36hXG0zG6Yf+ZM2ScPbB5qnlUXwjnzphN+vCBwWrMCwOOY6FzUGu/Y\nI644Pyol1T1uxvGgXJsuBCUqU3SV3Ikaey9V/vcvCcuUCAQ7X+y684LfeDapb2WO5ANLB4rp0hxu\niEP664fL957QuEdFTHNDJ4DG0JR9Djur6bhO5Uh9Y/+cVv/kw9pm1K41uRZRaFAi85oOO3fBN28/\n+StHNoRsTtb3P1OoZbKWV+dW7y46ftJpJyQLU/HAhRPjZ8//Ot5bQ49IFQCt0VmfX/oQgObIdFlQ\nOeSQlgqLRkv561O1ugJeQI2fodxFeY2IIQARmdiMY0zqwoOMSlKlH1v8o1lNx73TO2py0HaNvXZ+\n/4hT4wqd1XzcUVMufdc5H8D7xgGDdADvH/FWYaqvj8j7yNnsjoASH4+5vR3MHB7XKfju2asZc0Va\n7yqVRa03v8GLztWH2rO6oTky/aC2ZQDOXfDNzx3/wBVH/rfpVH3yPpgm3juuvO+i3XV99oJRMkVZ\nBHDGTUtFRdzLdLUvaF584Xw9rPWs6Z+yZIK3Uw0ozSEpIu/vXvvGHL9nqzz84KBda/YfHxzsDAgx\nhW4puX7hr2uCZi6rFmq3nPxfAO659veiIlaeiTdNS2srFvXQl3b3EgB86aQ/tsZmi4K8+wXfHYsm\nnHPw7GviT73hKZvIgo+BSnvax7BMKw4fLnUb1S0rhqyKw63dmnwMuxySqC6ShR1n4r1V2UX0OplQ\nnfThmHsmxqa4RA2oMc9WHaE96p1AiSDBmFw44/B4nQLcyx55skbe2/2N9QiUCIlA+2j1AFnD3wsH\nDNIBvH98+ieNjUqeyG9Xv90DCzvOPHPeDe9xzKkNS46YXJerD2lJac+H4/6fBbLoU0Qf4/voc/yg\nwFzmmat5y2b868pr9mm61ICS3VlIdsaOuGzh24+OSS3sD1OCezuUEZkaLm9T3ycrh9d0NXlJR++6\ngWAyUBtgEPbOnUR8jZQI3zpj5X7GSU7ctSD43PEP2FzYSweyYLGITC885AcXL/7Bq1l7w6hjv4PY\nyo3Lnn+n2su9ZrXXHl0ijAQwtjop1vagOqXc9sj0DZczvsdbK6LPOtBF9OHGAYN0AO8fRNCn6X37\nzyG9K7iVI+JuDZ6R6ePhlJCWypb3ILJMhTo/tvhHMxqPfqfR/gF9i9VCbf8nKAG5nK1SgR537eFv\nP+pJLfy1SKr0zkNCfy2xe3pKwh/XMUY54ZmTltkNxcHyqNu3/9LnfUJUxHF6PS8DtGhPHUiLoeby\nWU3HNer+wxLyW0Wntpsb1hKdtaD9DG/7vVgjvM0n9rB7XeX4N77XQiRv8bBMAexL7OX9gxLhQB/S\n3w8HDNIBvH9QNTE30C2MBdzeH/wLblcn7Dsunwh07FUvrkmBGY1Hf2zxj95pNF2JMP53oQ304Jju\neOX3O8Ef05nzAXtpAnk/luzK+y4ySma0Jbzj/7F3noFRlFsfP1O212Sz6T0hBBJaCF1AUURFUa4o\nXhB7w/Kici3IVcCCV72KXbFeQBS9FAVFpCO9BxJCejbJJrvJbrbvTp95P0xcIiUgJbt65/dpdp4p\n/509O+cp5znP4RYAoPz0iDsHxueaAIDlCRw7n3RWnROQeIlm4AAAIABJREFUv5xDhzvERJQYJKtQ\nAEhVY88UakrdbJzixAH90sadNj7lj6LplKpYgI5HzXC/qyjQvCD2kup/80g4qjjVl4SX6QqDIJgg\ndNUS9f+WFkTionNJ8tlI/I/QkaegyykdZ0UWP/pMRSZN2oVc+VLwxNp7T4qHPhVcgXVeuzaysBSb\nNSjVUdue3Duh91W56QM6IlBQDON5rutzz0q8/OQX9wizfIT5RC+rjxF6G8+/1nvaNcJj5IgAAvwW\n4cL8FsBJMh1pojq3/DI0WLhZGV6evDOX5U49aY9WHtNFO5sXOCmX3aVDckgS5w+CnuXVfIFoFEZx\nLuS5M3nQy/ilVNXFFKUwuBw/a7ded5IxMHXX4oPFk/qGvdHIewZlDx3ZDeHLSgzoM4whnQun/fVl\nKCLOhz1pcqvstwhMcX+cAs3T4zN6negN9hKt59JLiSJouNV1KnJcLTtD0IfEhSM5JInzB1GcJZzh\nwjltHbkLTh0D7350cZqzH9SNpPROsFc6cMWJ1/dpB7cuBbdmqrqYL3XeEBwPp6zvp5IbhE5xg/8q\nuiTJujTyCw3Vk+iCqHZIq1at4rjf9SrceOON4rLl1dXVS5cuJQhi7NixV111xikFEpcUBFUIiRPO\nftz/GF1EjXc/2jiNOFlKpVN2/92Hxl3CR5Fk7Dlt2Fvbq5eMyrvj16rFAs91HWCpUcQEaXcXB4gw\nHN1Fp5xOGdfFHCaJCySqgxoOHz68/zeWL18+f/58FEUBoLKyctKkSQkJCUVFRfPmzVu8ePFpT7dY\nLN0q92y8+OKLkZbwOy6KHtPgd85+0Lnxl3k+WpNm2NSiiytG5DwkPbXxARRDH/x6SvqAi992jOxP\nJka4CLzQO+lycc+BvSVdHI+j8vASgl3A8lQXc6vNusypQ984R4XRZtLR9ko8lahuIXX+OR988MG/\n/e1vGIYBwFtvvTVlypTp06cDQGJi4owZM6ZOnSoWdYZlL2G01XnQ3h5dwTmSnq45bz36BO01T50x\nUuNCOG9J4TTnF5eI/GQqDFGgJ2rSDE/qlHFPjVv9y7H3rUf2dzG8Y9KmXdXrwbNeX46rae7iDAFG\nm0lH2yvxVKK6hRTG4XBs37594sSJ4scdO3YMHTpU3B45ciRN07t27YqcOgkJie4DR4GHToESgoCi\nmEmbppCdJfjNoEq4qvdDZ72+AlefmjpIonv4czik5cuX5+TkFBQUAABBECzLZmZmikUoiqrVar//\n9KsbSEhI/MUg2K7C9rqYNC0R/SBdTwGLEq666qo77rjjjjvuAIBQKDRgwIDDhw+r1R0VoqFDh86e\nPfuGG2446azevXurVB25I2UyWUZGRndqPhWLxRL2o9GApKdrok0PRJ+kiOjhjQlsnyvk25eJH+MG\n2V1HzDyN6XM8bTaXMpR9gdfXpvtRGeerPXuevbMSDb9XQ0MDwzDiNkEQ5eXlkdXTNVE9hiSyb98+\nm802YUJHNJcYZVdeXl5c3BEQTJJk2PF0JsofvYSExPnz6MRIK5C4+PwJuuxWrVo1btw4o7GjwiKT\nyZKTk202m/jR4XAQBJGbmxs5gRISEhISF4Fod0ihUGj16tWTJk3qvHPixImfffYZRVEAsHDhwgED\nBkS8XSwhISEhcYFEe5fdypUr4+Lihg8f3nnn9OnTq6qqBg8erNVqDQbDwoULIyVPQkJCQuJi8ecI\najgtPp/P6/WmpUVd/k0JCQkJifPgT+yQJCQkJCT+SkT7GJKEhISExP8IkkOSkJCQkIgKoj2o4Rzh\nef7QoUPNzc0sy958882diziO++6770pKSmQy2ZgxY8aMGRNZPVu2bFm/fj3Lsn369Jk8ebJCcWmX\nFBKprq7esGFDfX29RqOZMGFCUVFR56Luz5vetZ4zFUVET5hDhw7V1dWNHj3abDafWtqdeiJi0l1I\niohJHzlyZPPmzS0tLTiOjx49+pprrukstftN+kx6ImLPXegJ0532fO78RVpIL7zwwkMPPfT111/P\nnTu3836GYaZOnbpy5co+ffpkZGT88MMPkdWzcOHC2bNnFxQUjBo1asWKFffdd1/36JkyZUp9ff2Q\nIUNkMtm0adNWrVol7j/HvOndpqfroojoEXE4HE8//fTs2bMbGhoiqydSJn0mSZEy6c2bN7vd7iFD\nhsTHx7/44osvv/yyuD9SJn0mPRGx5y70iHSzPf8BhL8ENE0LgrB169bCwsLO+z/44IOJEydyHBcl\neq644oqlS5eK27W1tXl5ecFgsBv0eL3e8PZ77703duxYcfuBBx7417/+JW5v3bq1X79+LMtGUE/X\nRRHRI/LAAw98//33eXl5+/fvj6yeSJn0mSRFyqQ7s2bNmt69e4vbkTLpM+mJiD13oUekm+353PmL\ntJDEfEKnsnLlymnTponJwj2e7lvn8Ux6kpOTg8GguE0QBI7j3dO/odfrw9tmszmc2ypSedPPpKfr\noojoAYA1a9YAwHXXXdcNSs6qJ1ImfSZJkTLpzgSDwfj4eHE7GpYC6KwnIvbchR6IhD2fO3+RMaTT\nwnFcU1PT+vXr33777ezs7H379j355JP33ntvBCXNnTt31qxZdXV1MpmstLT0tddeO3UZp0sKwzBL\nliwRh7WiIW96Zz3nXtSdelwu14IFC7755pvulHEmPdFg0idJiqBJl5aWfvvtt36/v6mp6a233oJI\nm/SpejrT/fZ8Wj2Rteez8hdpIZ0WnucBwG63b9y48csvv1y0aNHrr79eV1cXQUk2m83r9QKARqMh\nCKK5ubmbBcycOdNkMolrGwqCAACdhzRxHD9pzfju1HPuRd2pZ968effdd19CwiVZ4O6P6okGkz5J\nUgRN2mg09u/fPz4+vrW19ejRoxBpkz5VT2e6355Pqyey9nx2It1neDE5acyG47hevXotWbIkvKe4\nuHj16tUR1DNgwIDvv/9e/NjW1tarV6+ysrJu0zNz5szJkyeHu/hpmj6pE7lfv34bNmyIlJ5zLOpO\nPXv37h0+fPjWrVu3bt26adOmvLy8Tz75pLq6OlJ6Im7SJ0mKuEmLHD16NC8vr62tLeImfZKe8J6I\n2POpeiJrz+fCX7nLDkXRnJyczvUjIaJpKSiKCgaDSUlJ4kez2SyXy5uamsSFBy81zzzzTG1t7aJF\ni8LrSEU2b/qpes6lqJv1oChaWFj49ddfw2+tk02bNmk0mm54SmfSE0GTPlVSZE06jPhz1NfXDx48\nOBqWAgjrEdtqEbHn0+qJoD2fK5H2iBcHjuNomt60aVNhYSFN02KQmyAIX3zxxfjx48WKyebNm3v1\n6tXY2BhBPaNGjXrppZfE7a1bt+bl5dXW1naDntmzZ1977bViFbKznnfeeWfChAkkSQqC8NJLL02e\nPLkbxHShp+uiiOgJc2rtOyJ6ImXSZ5IUKZPeuXOnuMGy7Lx584YPHy5GHkbKpM+kJyL23IWeMN1p\nz+fOXySX3dq1a5944onOe8rKysRQt1mzZq1du9ZoNPr9/pdffrl7YkvOpOfQoUMzZ870er1Go7G9\nvf2ZZ56ZMmVKN+jp2bNn549yuby0tBQAGIZ54okntm/fHs6b3j3Jas+kp+uiiOgJwzBMYWHh0qVL\nwytDRkpPREz6TJIiZdJXX321zWZTKpWhUCgrK+vVV1/t06cPRM6kz6QnIvbchZ4w3WnP585fxCF1\nDcMwFoslJycHRaMiiMPhcPj9/szMzCjRI+VN/9MhmTQAMAxTVVWVm5t7aqB5REy6Cz0RIdr0nAv/\nEw5JQkJCQiL6iYrqlYSEhISEhOSQJCQkJCSiAskhSUhISEhEBZJDkpCQkJCICiSHJCEhISERFUgO\nSUJCQkIiKpAckoSEhIREVCA5JAkJCQmJqEBySBISEhISUYHkkCQkJCQkogLJIUlISEhIRAWSQ5KQ\nkJCQiAokhyQhISEhERVIDklCQkJCIir4Ky9h3r9//5PWpIosNTU1UbRUsKTnbESbHog+SZKerok2\nPaWlpSUlJZFW0SURXrH2UlJUVBRpCb/j1ltvjbSE3yHp6Zpo0yNEnyRJT9dEm55oeyWeitRlJyEh\nISERFUgOSUJCQkIiKvgrOyQcj64RMpPJFGkJv0PS0zXRpgeiT5Kkp2uiTU+0vRJPBREEIdIaLhWT\nJ0/+9ttvI63iBHa7PTExMdIqTiDp6Zpo0wPRJ0nS0zXRpifaXomn8lduIUlISEhI/ImQHJKEhISE\nRFQgOSQJCQkJiahAckgSEhISElGB5JAkJCQkJKICySFJSEhISEQFkkOSkJCQkIgKon2e1JYtW9av\nX8+ybJ8+fSZPnqxQKMT91dXVS5cuJQhi7NixV111VWRFXggVbaEnfqj++f5+kRYiISEhEWGiuoW0\ncOHC2bNnFxQUjBo1asWKFffdd5+4v7KyctKkSQkJCUVFRfPmzVu8eHFkdV4ILC+sq2iPtAoJCQmJ\nyBPVLaRvv/320UcfnTJlCgAUFBRce+21oVBIrVa/9dZbU6ZMmT59OgAkJibOmDFj6tSpGIZFWu/5\nQDJ8pCVISEhIRAVR3UJKTk4OBoPiNkEQOI6LXXY7duwYOnSouH/kyJE0Te/atStiKi+MAM1GWoKE\nhIREVBDVLaS5c+fOmjWrrq5OJpOVlpa+9tprGIYRBMGybGZmpngMiqJqtdrv90dUqYSEhITEhRLV\nDslms3m9XgDQaDQEQTQ3NwOAmA3WbDaHD8NxnOO4U0+3WCyTJ08Wt00m0wsvvNAdos+Mw+E4dWeT\n3a+Ro3a7PUr0RBBJz1mJNkn/C3r+c+jecT2eStLlR4meP8qLL77Y3t4xSm2xWCKq5exEr0PieX7G\njBlz5sy58cYbAeCee+4ZPXr0ZZddlpeXBwDl5eXFxcXikSRJqlSqU6+QmZkZbaltT039yzUJZq08\nUimBoyoVMUh6zoFok/SX1+MhWgxGbaL5PC8b8efz4YcfhrfDFfSoJXrHkCiKCgaDSUlJ4kez2SyX\ny5uammQyWXJyss1mE/c7HA6CIKJq4fo/Csv9ZVcAkZCQkDh3otchqVSqxMTE9evXix+3bdtGEITY\nPJo4ceJnn31GURQALFy4cMCAAeEhpT8jOIZEWoKEhMTpwTE5y9ORVvG/QvR22QHAggULZs6cuXLl\nSqPR2N7ePmfOnOzsbACYPn16VVXV4MGDtVqtwWBYuHBhpJWePx6CzY/X2P10ok4eaS0SEhIngyK4\nn3RGWsX/ClHtkIqKirZs2eJwOPx+f2ZmJop2tOdkMtn777/v8/m8Xm9aWlpkRZ4fE78sXXV3HwDw\nEGxunMrqoSSHJCERhdBsSKeMi7SK/xWit8sujNlszs7ODnujMHq9/k/qjQDg+zIHy3cMHY3INGyt\ndXe/hqQ3yrv/phISfzpwVKosdhN/Aof0V8XiIgGAYvnLso1HWgKRFSMwVPDwlshqkJCQ+B9HckgR\nwBlkAMDiIgDA7qdTDQocRUiW39Pgi5QkRKbw71odqbtLSEhIgOSQIkJFW7A4TWf3/y50p8wWHPbu\ngW5WEqBOM6FYQuISgczc3P03DVDcSf81iahFckgRwOqhitP0v1S6wntYXlDKIvBbiG01ER8pOSeJ\nS0jY2AIUJw6gkmx3ZBaetbZ22tfScOmfA8khRQCLmxzfy4SjyIGmjhR8HoJ1BmkAGPT2/u5UEg6s\ncAaZ/5Y6BU7K9CpxqRCb4x6CTXtp5/s7rB/vau7zxt7uuS+Onv9UP5VMRzBSqsxuQnJIEcBLsHEa\n+biesWX2wI56DwDEaWRiUdhFdQ92PzXxy1IAsHooB2bkPJFPvfWX4ak1NRurXGc/7q+Lh2ABIEBx\nT/xQDQBWLwkANU4CAJ74ofrNbY1WD9UNMiwu8kLmVFBsiJQcUnchOaQIIE6DTTUqnlpTc33vjikO\n4h8VAHTPbbv20yM/ljsvqXMS20YWF/l9mQMA7H6KQBRM6ESwH9VYwQd9LC+I0YASf5TP9rbsqPdG\nWsXp6YaxnADFxfzzV5YXnvih+uNdzQDAex1XmimLm8iPV4PoJ/TdEU5t91NG1flPuOQFqSu7+5Ac\nUgQgWR7HkFSD0hlk7h2SDABKGSrWFo0qPEBx6yra39lunbW29tJpsPvpJC1+0OoXezPK7EF3Sr/m\nD2bywY5Iv4Ynx4z7x8KKtlDWKx1rTQkcGy49d6xeqnuGCgTaLdARmM51JqIzYCRcveg8fHgesO22\nwL51XRzgDDJGFT59eWVFW2hohgEA0C2LXit/tsZJ5MaptQqM5YXiVP2FaDhH4jRysa0mEf1IDikC\n2H10ok4uVg/F2mKCVs4JAgBo5dhvx1BG5SXMo8FyAo4hy4+03VRo9hBsZVsoof/w9uJJoWO7mLYm\nzu/i49LNvEcc2QIA35ZvQ0e3W568Yu4v9YzdAgCc3yVu2N58gG23AQDdXAMAVi91/NuFVGOFwLFk\n7ZGsl3ftaeiOhgJR+bZ/z53dcKNzJNwNK+Lf/WPjczeI22TVwT96NYGhBKajg8v946fOpfMBQHzI\n536RrbXucPXiAv2ld9PXLa/fc9oikuVZXnAGmRkj0+I0MouLyE9QV7SFGIbl4rOsjVYA8M8fDQBa\nRXes8ixWuWRPnec0OxT5Uy5F/SdFckgRgOUFHEWUOPrq+JzwcKvVQ706PkesSwKAh2AD9CWsYgdo\nLl6DW73UkAx9jZNwBpmb+5obsITdO/fUPzzk5yWL2gZP7ctZy2xBUaH9gyeqahs4n+uNX45bZo51\n/GeOf8cP1pen8GSQaqxwLH4RACwzRrlXf3TgmUkHtv/q+u9bRMW+xmeuDcdNMG1NZO2R04oRGOrU\nF6vA/7EBBkQeg8hjmbZtf/hZXDxaP3k2vB2gObGSIcI6msJ+KOyZTuU/+22n3W9bML31o38AQJk9\nGDi+z7/7RwCwzplknTPp3Gc0hye67W96oL2tTdx2LH5J4FixbnGOuH/8FFWqT1sUoLikuTvu/64i\nQLMZWuKFscnbHx1oVOK9XtuD2GuZ4bfh9QdFPyS8OUarwC51O5JkeaUMtftplhfOLx+KlDeoO5Ec\nUiR5dkyGuKFVYBYXOTRD/820gk9vzQcAq/fSZrdzBukkrQwA+idrfyx3phoViTpFnSI9ds9XAMA2\nVx00FucY0G21Hq0CE71F9dplXl3KrdTu2vFzOZ8LVaoFhqIbK7SDrxFbSC1ZowKHNgy/tnJt39tR\nXay4EwBIhgeAltfvEev1IsEjz3L+KnF75TP3l3zxbwD4scxusbWTLL+j3uP+MX/TkY6JWaFjuxz/\nmXPSV7DMGCVuUJZjPBnkSbu2aAFZv/hSPbJzwLt+cbgdU5io2VHnDb8EWY9TkVkAAJzfBQCM3cK0\nNZ10OssLdy87DgB7Gnwnvak5n4sngwDQ5429rfJ4TGMAAE3x2JRZi4OHNp6jvG21nsuyjACg50O0\n5Zi40736o+DBjfWPDj/3r+n4zxyBplCNntmx/KReXIubfGhYSqpRsWi/fXjwJf74vMxY5U2K2tGp\nMj/NyZNzL1O0PTg0RTw4x6SqaAud+33PA7E3whmki9N0Jc3nkw9FaiF1J5JDigriNDKrl8RRBEeR\n3LjTLDZ4KdDI0et7x12WbVy4u3lIuj43TnXExeu4kPbyyfnVP+4O6NJilDHVW5Q4WlN2rDJ5RH/f\n0RokvljuPKDpDRjOttswXSzTbnOb8/c3+ji/a48DhAcXbAhe9YhpoSonx799JW6MTzUo7H6aaqzQ\nDr4GflvYl6h6nw82MM49vV7bAwB0ayPp9wLAhx9/FZg57IMXX3706+3N2ED+2PNcsBEAyKpD7h8/\nPUm/2EMIAA3/GEtWHRLYECKPQWQXOizBug8f/2lC+eIruJaaPzTQIr6aA/vWeX7+EgACFLe11i0G\nmAEA3VSBx8TjT27giSAAOJfOb//vWyddITx/c9i7B9ZVtncuQjAc1XS0nnHCg2r0omNDNXrOd5ZY\nPp4Msp62v391DEcRsZbTjJv5mgNExT5xeM+7YQmmRcKN1K4zhoiPnajcLzOnUWs/ERvHAOAMMs4g\nY/WQGTHKe3Y8VbLjV1RhJiuOO766P37l8+9WPEN5Pea8wmFIU07jVvGUOI3MQ1zQUNY54gwyV/WI\nPWYPdsO9JC4EySF1N2J/3Uk7tQrM6qFSDcrOO08ahLi4OIPM+Dzdmnv7KnHU7qev7x2Ho8ieBu+h\nsXP1g8ehPPd/I1NTHv63zF79Yt2/9r7xZG3yUADgBCEH2iuDik3V7oPH63FTMlV3NKAyOwTVkFnf\nNeHxNy7ctNUeu5m4BjNywcNbZImZcTImQHGho9tVBcNkKbn9n1523O6jnPu0gz8n3ccq2kIegm3H\nY9iAFwD6UjXPDXx/mFB3S3p7k5D3vesypnUjAHB+t9i8OAmx0QAAnN9FlO1t/egfCHLywNtjqzra\nYae2SE7C6qWeX1dHVi9r+9lu4Jq56oOpz28OVpxr+gzaXo9q9O7VH7d/9yYA5MapAcCo7PgRUaUG\n08WaOa/YhEKUGra9ZWOVK1xtFxiKmH0VAJAsn6iTl9l+9/bkgifG4TCvDTiOdbfhpqSuJZXZgwGK\nc614p/mNB5YdbhVHd/Y0+MoUWeatHzW/ekeZ1VstT2Nse2P+JvfUHhejLoe9e2BPg++0nYcCQwUP\nbtAOvoZ1t+GmZKzHQJ4Mip54wJv7bvj8yLZaT36wUq5SPuRdLcdQEIbz5B7t4GuIx5a8q5uQalQg\nGBZu7Cbq5Bb3aWI4L2KzyeolU42KAMX1jFdbvecTZa6S6/xk+9mPk7gYSA6pu7H76VSj4qSdiTp5\nOBTtsizj7v8rht+mcVwiPASrkXf8+rv/r1iMi7W4yOKbpynziuKmPndZljEtVvOh4aaR//4uHTyO\n2PzYSY9r2KAKWJLhG0gZ4rZjGj1lOeaLy+YQNIV1HJdn9NE0VYeSvHwMFqMDAGVuv35omzPIhEp3\nqPIHVxf8bX7Lu4988G1w8xYEV7f7vADw8e7muFgDwtJBmk9hHU2IUZY/dISidpdN3cTmkp5KAOCJ\nXYoMmcCxzqXzxZaB6IrEiVOoUkM31wgcAxiOyGN4ygEArlXvu5a/DQDv77CyvMCTwfqHh7yxofqk\n5+Bc9jplOQYAVGPF5o2//mtTg9d2IMluDfEG0l7WA3U1/3PCWR+md9PXtgXT6eYaZWYhWXtElpQF\nAOIjFVdf5MkgqotVZPbuxTSI+gWa5IO+91fvxZ8qci57PbBvHdPWJNhrFQhv9VD58ZradqLzLTB9\nLOdz3f+DFQBoRCFLzGQdTbLYRADATclrfz308a7m6SsqO5+CzNzc5429B6w+xm4JUCwAxGlkLC+M\ne/vXIKKsufJp7eBr3XXlG1QDBYEEgL3z7mt8dMj9n20HgJ+OOz/faxOlhvHv/rFpziSy9qhu5N8o\nyzFUqebdrcoeRVRTxZ4G36ajtywYQL79a1N6zfr4+/81emg/Ax/ggj7e51Vk9B7YO/vrV6fjKJL8\n9Be6YdeLV9Yq8NNORer12p4LDAIMT6LwEKxBiTuDTGasMitW2fVZp4Wg/SzXHfOlJEBySN0Py52m\nhZQfrwlv4ygyNEMPv00VCv+1Li61TiLtt1kg4u0AYMmU3rlxKtwYHzvxUXHPQ6kb8rSuGUUf8Sn5\ncbc9TSqNBKosafH3y0kWQj6qsUKelm8jcR+qGUweL1HkJitdjaSJwU0CbVflDxaSekytXqhft2A7\nl3qwhdhBJbiLJ91IbCAp+dEj5RYqaWpv+psdFdkZydXO0BOLd8nV2jJb0GiOTxKaDztVgq5XSc0x\nAMCMDizW7VzyEqpQt7x2j3/3j0T5m6qeCqatiW23KTILyMrtsrgcgQyi8hgx+DtUup1qqqyalJzI\nuuo/erb9u7cOp1zpOrafce7x7bgl/Bx8G79u3Prj3iq77c0HzPuWvjFW19DgZ5PzA5S8xmaf3EMG\nAL+U2cKdaYF966jGCqJi3++eJscSFfs4n0sz8EoAQGUKZ5ARf2Wxi4ysOiSk5JODJk71byCt1Zgu\nlm6ukcWn3Vn5bkXfv7uWv03WHaUsx3h1zM3x/o1VLjGPlN1P/3tro3gH3BgfxNQ/VvniNDIKUygy\nC4iK/YhMAQCagVceXP3dKxst4nQfv9e3/GhbWJq73UWECCduHJqht/vogam6XKGN1sUfyr0JMvvB\nzu98MiNmUALAvZmz3ou//Qqi5PKcmIrWUCwQtXcXhgcCASCwazWmixUYSp6Si6oQRCFDlGpVXhFx\nfN+iAzYAKEDbQ/MvU4Vcsvi0rBvu4BxNjN2iGXyNdvC1OIqkGjrqYXRs3+DhLZzflaiTe8nT17ou\nMPtcj1d3ixvOICP2NCTqFB/e3PNCrinRDUgOqbsR+xBO2in+Z06bzi7817q4VLSF0gwnugQFNsS0\nbr59YOL80t8N/L6Ss4y2r4ffvGNmelI659zycNHwvtlKwpX89BemW58kWT43O30w0kzIDUkKdxtt\nKPWYeMKe9vL3P/nj8ZQ8jbP2Sf9lg97e/1N5e/GwIRM1ZVjxFOeiOce8KU+2/utB53IkZ+BG/bDb\nj793NG4Qywu6jDw9tD9qW/6FaQcni3PZLIhMgyqVVP2x2EmPx9/3Clm5n/UclGfJWU8b46xU9elP\ntRxAtVmA4agmkwta3vv0W0wXy5MhABhNHxW2LCGt1cd7ThiKbqEavnbRGoHt6BRS5hXVlh75v3dW\nxIy/jybJm1pe8jj1xrx+Lh/qFpgCHRfUmF/4aGWZreOxtH70D/eahU3/vCkcvAAAjMuOm5KZVot2\n6PUAgGr0yw63ju9t2n4lKbolylI25hehmdVUydLcxw7I4tOA54jj+xpThq9JnZTx1ma6sYJurgkU\nX3trTOvSQ62JOrkOqB/LnU+tqQEAzu9CNXqbrXVgsorlBRYweUpu4MDG4yGcsixVZOVnBWoJghhI\nVX110G67N/+xz3917Vgzj1yRYlBsXbRwge4mL4OTmvtVAAAgAElEQVSMN/lNwZa547JuS2NcoD1o\n9f99p0xfuk6eP/jQ0DuceEFxjH23kD4jpmZe5ZyeR5aOq18WN/U5MZwPANh2mywxE9PH4qYkTGPQ\nX47jsYfRhMy55Sr7no0Be7MsPo3zuUIlW5Q9BgCAPDGB8xGA4rgpF/DftTA+eaHR8tazrhXv4O6g\nz3v68Sqr5/ynY3fumgs7pEvaAS5xsZAcUnfD8gKGnD6z1pnC6i5urmKrl+rzxt4hGb8b/Ccq3iQt\nSwOHntjj7OgqCbLCHgeFxxazrgNKvMNOMnWoWiBTDQp5XHIM6bz1J09dAGV5ISM9JRv1Ol4cOW1A\nbJBTAADN8d+XOfYhGVfM++ih+JnjBmQCwI56T3r/QQgEkobfvDP12ivXvJpeaJ6Qp48Zdt1avF9/\nqvrhuyYBQEJ2D9RX9RM3hDq6LanuyIefvcTg8XhMfOytTwLAwaCa81oEToMqjXRTRWDf3fJUH4KD\nPLEncCyqNPtKN2Tv+ZgP+Rh7PaLW305s52Rqr9ORXTQ4A6lU5c9s2nbM8/MrTFuTdc4kVf4gngw+\noTyE9RktAGgVtmtmf4NhGOKjM9O1g6HxiHlYFt8aDl7HTUkCGcSN8fZ9m2sa21zL365/eAiq+kTV\nk+B9Nll8WtrL3wsct7fRd0XwQPwX94lnkbVHWzQZn+9raZLF860NuCmJaWvKfOfXkvxJPIop0vMP\n24nyPTsTM9YX6T6fFr9uqBl5fOX4eb/Up2ixaV+Xey1VTnWyi0HH5+nxgNOlMOGmJLqpYnnJAY91\no2fHBA0E8wKVX9tffPvL7wFgMG63Hto1lindc39eT/9xqyHPEtNb46qfv/d+PuiLJVsdmqTvyxzf\nzLol58uy66++TIe4trtyeqiszbg5wbofvfWfyc4yMwRiJjxElO+2vfmAd/3ilxetlyfnWMc9a77j\nBdyU1I5nkukjWwt6/lTtryq4+ZE9M43X3EU1VYZKd6j7XwEAXKBWZupFWcowbTbnKT3JCFdYHuZ8\nrk9vXvzoytt99eXXfnpEbN6Jg17we6fyR2G5E9H2rX46Uae4qdAsOaQ/BZJD6j6WHnX/e2ujGId6\namn/FG3nj8KbY8QNHEUONF3MdZJ21HlSjcrHR51YbJdp3Ywq4nRDPsc0GQAg/p13Ouj3KwJ4zACB\no6b0jxmdYwQAzucSu4lQjUHOER1ph3x0jCkWQUCrwOQYAgAsL2yqcmyqdi+4sYd4ixkj024fmAgA\nKoVc3a9Ypk2sShw6feBXinhN6iOv4yjiIVjvK3sLshIBAJEpAEJT77gTAFR1jrtSth5iB8mSBioy\nEpxBZsQX9YiyEZgsVJ5P25fK0y5HlawsTlPGZQOGv9+c/j55+cLbVyY/u4httwn9ru4RqjlY/GBd\n5pjkWJ1CSWHq1GqnmXUfqJl7m+3aZ48U3La3+OHClm0lpCGJqMN0GlRhRjUGNMDFmTCoL2k29Ogj\n99Y4CYFjm1+ZisfE+3f/GDPhwaZ133z7wuPHIAGGTaLtcgAtZmgCAFX+YEyjx1EksHmZZuDYRJ18\n997DQblhQfHB74/a21TJvL1WlpjFk8E2Xhm2hPTmfb+QKUd9CZ66XlOyrff00QDAl+h3axVfO4PM\n0u9+euyoDldp4jV4KusIqeOP8gkAcHtRcEbVnV/Yrq7Tma4K7Jsfc/sNgZ0OddKVcqvf6wO9WbZt\n0Y64Ac8bnizOPzi06rvymP7unz7tI/cWXzbin2MzE3XyOI3s+t5xQ1KQHnlXZsksAJD7VXXxkGIK\nZDKeRjA89uYZrLut+tdfbOUlnqQ+gz46tuK499pPj1TK09bCQ4Tjl//e2WebYehrYxYbx9/P2OuJ\n4/vkKbkAwIesyp7jdCNuQuWxXOBEzpGQh8gblZ1ZnEoEWJlC2I5cf/DNf97WQ/bd5kMA0OeNvfub\n/Ik6+YWkuROT5onUOIncONWqu/uc99UkuhPJIXUf5Q7q25LWIy2B03bNHX5y8GnPyo9XX9wclHY/\n/eCw5HCjBwBIy1Jl7gOP7/c1maYAgJvmAeC4h+0pb8P0eXjMgId6O8Sce/KUXGVOPwAIhwiTLE9x\nvCwh3Tj+PhA4ABDeHFPRFozVad+9IVW8y5e39cppuP/zyxu+vK0XACgyM1BVoodgqz0cbuzDBWrF\nkX8xyOLGkbl7nIw8JXfYkAGxN894Jf5ZdRy/gx48YaVyyoffOoOMkuUQTZD1KOXJ45Q9CCHzIUAw\n4soJ13/tcQYZOyVrl8cDQDuLmu943t3veoTnfkkavz1rYmasigf0uo8Pyb2ULTHzMe29Tx/CPt9r\ne+zWMc89sP+HMqflhruVPW8DAESucNBalYJi3W2rAql9UGdrgKaba8JTUFX5g+0JA/JMilG7E44Z\nk5iWgCx+giw5Rizl/K4Eb60ivadDHnNHUUzb16+VDbjjRtmHt2fVmdKywOcQIzKcQcakkQHAZ3tb\nni3+8KuEWzjAWGU8H7CzLhsA9IlXGVx1SRos1VtdhqZo4hKTBE8c5wuqYtZVtANAdpyw7J7Lr+2b\n26SMuyWwdey0u8fh9dvRHj2F1habXWeMEdoanLExG4jraqF3Alm2t+ffiYp9KbT9ieuLXromO2wA\nfMjaO390htojflTi6Cid1wXqdz7a9+tqb9rL37cIhumhdYvqMBxFnAFmXUV7aoy+tJUMCPqwfSIY\nHjq63XTb0wiGAwBPu2QJPcx3PI/pe/O0GwA2f7CLDjF0iEnINaX1TfrPd3mJKa0cod2yb8R416aP\nSx60eUIA0OIlOw+pngfh5iwA4ChyIYnsJLoZySF1H16SWzKl4F+bG/7QjNc4jfzidtm1h5jO3RcC\n40NVSTYSqQtwNs4IADTbcTuW9sriR8uTr2Ucv4p7zHc8nzD93wCgyh9MvLAFAJxB2u6jU4pHxU58\nlAtaMG0OADiDjMGQIka7AcBdg5IAgLZ+L26IkdnvTcx7dXyOLPFqxr4p1aDQ6ZQqBe6keN6gm18a\nwI3xAKAuGL5XPagpkPtzi7rEn1kks2y3+P4eryMZ+aGjdT40t2WL9qoNmjnkDK1ny7yJQ3+AHjjh\nt8qzAOCeXV7HsKm1MQW8XB3gEKuXStVQToixHTvkxIy1LvbWm64oTtPtafBqlTgA/Htr4zDDIUXK\neAAwjp1WMXiGUiVQlmPVtCbPgNh9NGU5hhriBQSXxafJ0/MP9biJmvIqAHAqlrh2zg21/X9q6/hZ\nMWN8cfVK4zV3v9nvH1sqGtsNWYsqOcE0ak6fw/16pAGAMqevIj3fGaTjNDKjCr//u4qjhJYhHa2U\nQcgp5kJuurlGnpLr2/ItIlfevulRm7HH9FHZKfmFCds/y2Oa6vDkY61B811PY6p4AOiZlk1pFQqB\nGVGYFUu0Xnf15TlavofjcIxOCQCzhlAOIcsjxOmvvuW5h25OmbU44ZEFpzEzvWFUpircLk+Ii4lV\n41v3NJVsqunx6u6PMh88NOn9t3a1XpNvcgaZZLk7KzH5x3KnVzBxgdqKtqD40s9dVKEZcAUAhDwE\nH2wQjQFVJfL+WgDY9uley4EmX6tfppKZMmMAACEoQkhEaBTobwDgno+3vDo+p9IRyo1TBS8gTYmH\nYI0q3O6nSZa/8OxEJm0ay0vr+3UTkkPqPhwhTsxc94dWZ8ExpD10YmWz0x5T4yTEZSzOBTG7Zfgj\n3fKzPGHMg3u8AOBjBAz4VvvBby0kJwDG06jCjGlz+JA1fPziOgIAEAzv17fnl7f1Wnqw9bO9LeI3\n4kkHqkoUD4s1JgmUg3Ud4ENWxrlHljgWVSVy3hPrpGXGKu8alIQb+zCuAzzluHJExso2rDHY8QXb\nZR19fVYvtczwcUVr6O1bBmt2Jx/YbHEO72mpN5V7hdc/alrUb35MfGwNpVfw7QSu2DvoDspp5wAD\ngDik/ckDviN+xP7Sfi41cSi6AidqinoPuU7XRqPyslDmPb082mRzUb8MHyMAQOVzxQakHVWnAgBu\nSnr+nokozgPAwdlXalGm2kk4bS07KLPf58v6cC+q1DS4yUn94vc/PkhNlM0qzbt3SFKCFhenlFYT\nymR3JW5KUqOC21K1xzzSE/AqdWkIrtYqgwCwRDFq/13LPAQrl2MJWnmaUWH1Uumq9kYqTt13JBek\nOHeTuu9IgaFSZi1qemBJ+m0z5o7L6nnjNHNc7P2yklZNGo4imgE5eGwxAGC6nDev1/+kHhqnkf37\n5mWBnkOz//Fh0y3/piv3K3sUDY5rryAzKCRWP2y0TqtGZArR2XcGQXEAQJVmnrADAOmnYm56ZNy0\nu9ONSl+Ifema7IdSt5jSTFo5lqiT17YTG27X6OIK4zSy7JR8LlA7dWCi6JBQjR4AXE2e1y7/WGBD\nCN5hZrZqYk7/BQCw9P9++OHFjVqTZsCEgssmErwhDwlxABDwowKgSNB9eU5MW4DuGa++kLBvD8Hm\nxqmcQWZjlWtgqu68ryMiwxTSPKRuQ3JI3QTJ8rEqDACuyos1qs5pfFV0P3EaWXhCku65baf9o351\n0C6GY50LJw1iMc6d4nsNANpIPk8rtLYeWVpPoDzJoB05I1Bl4ldVrQAQZIXlDb8Lf+rcPcIHG1Bl\nEgBoFVhCUiHrORosnRMsnUM3rZAnXafIvoes+xIABOH3kb48Fdh7rxzjdnmwuUcCAIAhQh2aLxbm\nx6sVOEqy/NAMA6/UsiyJ8HxVezyVmF9/z5hqfX+dChME+Cb0N0aGAwDqsQGAZesPBbLmYdjhAN2e\nqFOo+IBSi7Lecnny0FuZA1kJhm3unnTzjwFAc5N01hCHIfCPoxwWf3lY1CEXsxO/AgBy41SITDks\nTbNv76FKReaOjKvbyI4ZY0oczY1T+fy29PjEuwYlZcXHrq9w9Hptz4rjXhaVA4AZIf0gq8aS8jSt\nmCZDnnJToewQAHy+r+WWRWWf77Utc8lMOkWiTrH90SKNjH54VH5+VgpwCjZo1RRdhWr0mC72ziFp\n1/eOIzlhfzujHTlR7ahxU4L4w8niRwMAqjALtPtJ86NI+bPm1HQhJQ9Vam649W+xNz2iGXCFwFM/\nHXebEwpZ7+lXTRUYH2BqAMBNQ1nXfpZiXx35oWbAFar8wblavJURLsuQX67ecCXySdMLI1IMih31\nniyNB1Em7n98UHZaEesueXZMRniwEABIPwUAvk7v8EDAFJuq18SgAyYUOOtdKI4AQHZvy5Bpw0k/\npU/QfvnBzT7ahNIhcfQo87wmDIVxBpn8eI3FRaw46hBHLk/i/YrQz80UAGws/3j9sQ+7vhrFXtrk\nRhKdkRxSN2H30QoMAYAND/YvTjunWpszyLC8oJVjnWfIrqtoP3VmEo4iJy3xcI4rzwqMD8HV4XQ7\nNoKLVamO02kAYAaHCu9wnD7j5d81ywHARvAAQP/mhFYFlCUt/sXTCm0ELzA+pnWzR9X7o6qQf/5o\npSaZqHxHmX23Ku9RunUTqkrENBkCF+QJO6o6kV+AYPyaogW6oYtkHM385tpG6H3/DY2oC3A+Rvjm\nnv7/HJu5ZErvzFglxcRzsWqVzZOtjWVlGgDQ1zswHAuF6G9kj+9wcgCgc9T1sX5yb9peVpmtiu0X\nQmULapk+8kYy/kqq8Vt5xuVGCFEZhYp+V3L+Sg0mVPu5uUcCSgwBgKOq6xuCXKWPBYB1zdROYTiC\nIgCAG82zE+raSZa77rG1+beVe1n4bfkGowp3h1hxDRFGpbe3fVvRFtIIZLOpFwAISj2V1odkuXR9\n4KCnHtPlaPnmWaYHSpoDtw9M3GmxAACDIIDAZVnGpILBO2AYALDtNG3ZpRlwRcJ7J2Y77W9nXisL\nogmZyU9/safBW5CoEThKwBR0p9cl1bRcgfitZMef2nD1HbKENARV+OePvnNk/86RBZ3hQ1ZMnQoA\nmDaH9R0PeUh2zCGxyETRPiUe07ZI1XMGpstjnHvEprAQrMN0OQAgKJL4kFVgQ5RlKQCUrqv85onV\ndIiJy4oNtJ9ozVO0Jj6hjiWpCbP63vf5+DhuDgCYk9x9x/cHAFyOA0CjOS9bFtAqMDfB5prUnSs6\nf4gAxTW4yZ5mtdjRfdoBpBo/G2QFADjYsAbHLnL0XZ3jXFN7SJyK5JC6jyTdHxtc1Sowu59O1MvF\n0ABk5ubCRM3eRl/nmUll9iAyczPLC+EUNSJdLO7X+S8aKntJmX1P2MFUeNgBJnwvFGMIUEQrhZvE\niLuQfpB4QCvJxSlQG8E/vt+3x8kIAB6SK6Nk84/6gqVzVAXPuXidWPdE5LEC41OkTsRjBsRc0/GC\nk8WNoK2rUHlMWMC81aNAHovIY8x6HQBcl0DrBI/B9+vTqdWP7/d9WRN6/VgIR5HvfAocRWI0aj5O\nK3cFEnMLdfmDAQAPkSiO9Y5TUlSHz65w8pynZUxMaRutWXWsrR1LsJG8EqEJVR7nLUdQReqcby29\nxwf8pJBwDUF6SE4AgOl5spewl7Z6418rC75WFrxzp7chyClQNPODtQCAmxHflvm/3PLuhKJ0BAQf\nLWytdQ9KN5Cc4PY25qQXFCZqAMCDK7SqVZmxyq/Spm3o+zAAmAxaRWzCdT1ZP/L2GsvPqMLcRtWs\n1I4CgKfGJV42ZiQAuFkIMgIAmGL0jMwMAIYrp5tuvavcy049eOKdvsfB9IvBAUBePM4Up9NiFIJr\nDlpWL979JAAIPLXnsT54bLGccbjoE1UTLlCLabN/sjEAAFwIAGj7eoH5XdAmT7sReQwA4KZi3l8b\naA9yI8rEIqKdGJtvWnAnSyLDt//Uj6z9NOCbePyZoTzlQBVmAKB4aOfVodI5ofL5AuNT6RQVW2pD\nbkIZR7QqtB9N/urw6mMAQDBZ6gHFFCEjLYtj0U9NPfoRVe+LLi13RGZ8rgkAUvIHPDbIFKeRtQWY\nzFjlH+rW7px87/syx/s7rEMz9F2EAgVYAUMAAFAU4/mLnG78k1/vv7gX/J8iqh3SqlWrlv8ehuno\nsKqurp47d+4zzzyzceO5pjqOLFYveabpR2ciTiNjOQFDEGeQEbvv8uM14tpCYlroMnswHCxn959r\nJF64LYW1/EeWNBbT5dkIPkaOYggMMstT1VhIUD6a0tSX2aZVaq0hjuYFDwMAQLf8bGnaNziG2tZK\nE5zwk5VKUYBCJTdgRIj0aApfeKnGJFY819uobe147IR6+H2mZFnClVTTCqSTQwIAL9EKAAqZGgCm\nMO8MjI/JVJHpcenT89Q2gid/m1NS6mHbirJzHF6EYjw9R/GmdADIcLof1FAKGXZrv3gAeL0f1Zjc\nKtc0u7CslgCL8sFs3wM5ahqV6YKC4tPUtcsq9llRg0dhtLV6PwuN14U63rwaorpHjG5MksIa4pwU\n31OP2QieQtSAEAJPyVNsust7AECqQclSzG6r/7MjrgO4/qt64p3j/qKCfu5Qi5dopVEZirDvJsmn\nba306w3HHRTDcRocuSKf0hhuliW/s6t22Q6iKkGLvHjF/Hf3fKZmSgHgIK2Yd0sfANBBsJ1h9jdt\n+ZAcHQgRK6t9g2IRmhfeOR60hjg5CpwATRS6zEJmF6SPyYE36jYQjD9EewAAQRXp+oDMPALnfD76\nRNuC85a71P2X1hMAgCjMABDY9yDTvqfz8xcoh9jRiqCKda3Na776LlyEyzGsaCeNcBW/1uxcXIIq\nzQDAcB1zhI/bft3WzjwWeAaRx2gHvkdZloY8HgAIeojaaxb+yK1xWtxrFIbtbbTP0O/zgsvVRhUf\ntKCaDHXBc0TFm5g6AwCmfTDRaXGrdGBMjTcxbgCocYaMKvwcW0ji6OmwdzsaJbYAa/fTdw1Kyk/Q\neAMumXByeu8JW9ycAHEK1M8KBONX4Gpe6I7VIyXOkagOiDx8+DBFdbxnGxoaqqqqJk6cCACVlZW3\n3nrrQw89FBsbO2/evJaWljvuuCOiSs8Oywvxmj/2tMM9dSwvWNzkS9dkPz4qTUyPLa42trXWPTYv\nFgC0CuxMq7JWtIXESIrwpcIDSAhplSc+CwA+RlBiEGSRGflqAFhaUI21b2W5EmOm/rF9vrtzVF/W\nEhqUC4Sc7UiPG4MfPGZ/fHqe+qOq0GAD+BiBD9VlG3qWhXSHXP6RCfLeBvyAk8EQ5PIE+fzSwHN9\nTsyvQlWJXKBWfP2dhFhjxRD0yUIjwAMAoArRnSY4wuzD/mSdNndNRUaQXt3vqjQtktvsunpYqtru\nbtAph8TJHJXjcPa9fol7NrWM5GJKaLY+y3hIEWhQMRZEHVvmYXop3asdnq9tPgBQtri3OpK+KzSi\nGlVZzfL4+h/k/Z4ZGiub0UvzzvHg3bnqPU4vhyrf3nnv9NQhqvyZ9ppvAECvlrUHqP0kiqOKGBzZ\n42BQf8nRgFDT8IYcxX1orl4+plZjxfwhVsHM/7Y8t7elibIt81/ViD0CJISOvtoU+9Pgy1UNxJUs\nmqhjdoZkfQDAy7BPrxxpMj1vDcKRVr8pRvtU6wQNN4dGk8vS/kFysKKBBACBC+2tWrUev3VGL43V\nuZ/kaByTBykPADQxxNNHjAB39pC1JvAhH6PWyxAAcDjLH/WMTlVjAICgCj5kBQQTIxdEjrUebbPX\nXpY2QPx41M1x2o0AsHNVeVqmAcXR4/qN8BQcKpEBIPKka6HmF0/7AT2CA8A3+2YZkt8D0Kp7PwMI\nFip/LVhZnpobc2zXNrgMACB+ZM52VN4zxFchCrMcmbz8Lk0sgiA4IJhu2Fdi/AgAOOtd6YVyAee4\ngBsA6mf/gYUwery6+65BSTcVmkmWV+Lo4IXVLC9UzxqWqJM/id+5FbsLYNBJp7hpPlWNuSmeZPwG\nVYJYH7pYXNyr/Q8S1S2kF1988bXfMBgMf/vb3zAMA4C33nprypQp06dPnzx58ssvv/zWW29xXDQu\nF90Zu48OJzM9R8IOSSlDDzT5itN0WgVm9VKXZRnjNLI3bsi1uMhwdOypfeXi6aIDOyHDT5/aGdJG\n8vFKLNxxpzX2YGzrMX1erg57ZYBOjHxLUMuP6SeziqSM4nkTY63ZlmcAIBXzFg/K2ccVxGk02+z0\nCLO8zM38PUv5XB9tgBVsBB/O+wAADUHuvt1eRebUcCSeSDiE6ZVMl7rw+RMFTHOVj0KRjnlRANCS\natYgvAkVWvmy47aW8SpWrZPTIYbkhFwdggqMn3SGGK1CFuL4FoFsR3iiZ1yxgwjJlHHPFGpzhV8m\nZ2D5apuK58aVWmLkqDJ++Avrhun9w/Uy8CsSAODKRPm/inRJKhQAaMy4Xb/uodALhwMePmY4hghV\nAR4ABmPbi0z4l8MNC4caVKj685aCg9zfj7TsXBe8eY/2n7tje9J9HUqhXs60tsszE+QyOyWfplhT\nFCtL67mYBBUAOJV3BvH+JvK7Hp4pALC7jayIWT0AdjeSRg3qnZp46Jqql3T0DhV3fHG1Y4hZVuPn\nElUY2m7fgkxcbP4kQ41U+igACFEeOa4qbd76sa0VAHpqhRsSiBSuVhwGK/fQq4JF03uqB8XJfIyA\nKM1U47do1v3V7U4AYFo3Czy1pLL2c++oN3fFH3S0Hat3l6R9zfVs5HnDa8akA/8t0RckoYBYdO+0\nWOsFFCU1vXEEsVW8R6XdAgAsR8kQFEOA5ig/2a7If4JOGpVyXaG1pY5HZDyiOnp54qDaNWuPba51\nEE/30X5tYxFUAQjG8Fybur84CxsAZv5yf99xcT4vzwV9ACBGNJxLl53YbeAh2BFZhv/ss31f5jCr\nMfEKbO3Hyx2jjbLfdRuIre02ks8zYCQH3lBrgj6n61sQjJ8XuHqv96Oqcwpt4IVofxFFOVHtkMI4\nHI7t27eLzSMA2LFjx9ChQ8XtkSNH0jS9a9euyKk7J0iWF/8tf+QUbl1Fu1KGphoUP5W3Z8aqAEBc\nM2lohuEfl6cvmdJbhiEAEKA40f3Q1u9B4MThXA/Bnhr+wHJCov7kWVDNIe7KJPmEtI4Me4g8hgvU\nYvreABAjR6whfmK6sjAGf+NYUGyy3N2vT8bQBQCQSWylKWaGclmSEqvxs31j8P3tjFGOAsAgk+yn\n5t/F47VTfBvJb4v9B6bNefKA75CL+U1Sx1vjSMtnu+tX/fP7IR0ygBMAC7D84/v9MXK0twEHAJbm\nEvPNSupwizpBKfCmNGOgPZj3zk9m2m7SplnaS64vvHJKfw4A8lreM1HLBuSMZwCJUSmLYwSEcl+b\nPiaXWjCLbFXXt306TL/l050AcNC96njy5NfWTdi5dsu7t3za24DX7LTcH7OynQqmBV64L1f4+Ohh\np6YwA3PMLw1co3PewM8Zo3xfiSHHmn6yYCOTkNJUvKZvv5/1MhQACDyxZvLtRjIUb56rbr2nR8Jw\nAZBrlYcfzVeXeeVvGr+cndt6VTxNYWmDMidgQgAA2igsj5i92fl9QIi9t3CYw19/LLkKANRMaV1I\nVb7p9QSSJFq8w6rWpW8rWVj3U/va/1ppVZ3+k2q/oFPGfVnjq9N/AgAcgo3O6pnCHKmtXHGwzf1L\nbd16ekiSCtPhiJvmncp+pGWpNe622f67vUTr8pIdwZrPfbxexvv34zHzymSzLAAA+I+jFYF+ALCn\nov6H3IQ645KQrA819mjjvB4fHy1JQYUymnpz+yNHmn7xqycRPCdDkX2WVUv3PlXN45vx93fHvE0U\n1rcrp1j077vkXqLlGI8FhBSlgi5V/1ZlWlWx7pF9pMNvET/qE7SxqXHAnmb1vOkrKmf9VFtmD9Y4\nCZYX/Dt/6LyysNVL4Shi9ZK5capFB2wTvywV7RNHEdZdktrvYaP8dxYoxvfbCD5JhQVYweG3mDRp\ndJdBdK/8dFV7oNHGxv7aemIqko8RxK5piYvOn8MhLV++PCcnp6CgAAAIgmBZNjMzUyxCUVStVvv9\nZxzDjxLENPh/6JRvbi9cuKc5USdPNSq21rrFmmP9P4evubfvN7cXAMA1+SZxMVbqt/66wKEnuKBF\n3Gn30+Hwh//st/1Y7hz27gGrlzxVhpPkL545BeQAACAASURBVE+Q35d7omcPVSXiMQMAIEmF1fjZ\nYpOspx5PUqE2oqMCqMSQnno8h93HHlzW3xyrlyM+RhgRL/cxggpDAKD0lXWrm6iR8fK/b+8IHHBS\nPAB8XC0AQIDhPzi8/YibAQCC8f/2iFqc/gaWo8VqpgYNAkCi6wEAuDVDaVzyUi/rh63DV8akaVX+\n46xSHaPEtXEaf1tAY3G0tTR5jyBl1s39UkeH6DYUwVCBeXjUp3kJI3hcQ3BCafOG1h+UOxcfMGnT\nWh2W2DRjo7Vk8w9rEafeFjp2sGH1kOxJu4MLW277EACWPLLKbjsSFNQapiQdbyDxHjUeq4G3Gdj9\ng1TvbJdlNjl2ri557YeSV0cwczLRnZn4sUo/1ssgB4DC5nWMIoai5UDKAcB8iLm5YT2C4GseWfHZ\nMEOaXlek8kwvyOxjxHOb/4sKgfGqxdfT9z9kDKbINVerltiWtozJv4/BWABQ4aqbuLcJ31Gq7u/V\ny//RuI0xEz8DxP64qNzFG9QYVxLq+SP3uqAoKNQQ8cwul/MHW6ApKf/eUOzoV4+xh70yAIiRhWIU\n6OJa4smGQWvgprfrjQDw8Za7vpE/ZgmCwNEChw6Ar43HqgCgr2Lvtc//n7L3BBnv0N+fcJtq3STd\nV73RtVrLnZgst9rvTE+/ycYKpcb1O5sONCgeDPAoyQlvWcexHLWloQSDNLnh1sphL9NossZfysqy\nKVUrAhwd3/7FzkflgnfhrrkA4Aq5eUDf2zxV/N1pNoTKzRzh6bzSoDiG9PGuZvmq+Xvr23u8urvM\nFrQtmB46up3lhcdWVR2Z1qfwXzuHZhjy4zWFido9Db5nx2S0BVlxFWY+RN8yqKAo7jQOyU5wSSqU\n5ISVNkNKbN+w+Z2Kn2yPUSf7yXZCMCQoO16Vzx7yP3vI/33T6XO/iu5NaiedN1E9hhRmxYoV4VEi\nQRAAwGw2h0txHD9tl53FYpk8ebK4bTKZXnjhhUuv9IxYHZ5eMt5ut5/90N9QArQHKK/XG4eDM8h4\nnG0AgAMECAAAsT7Z5ArgKFLS6NLggt1un6ndvMC638rLNHJ08e568Tr7K5vuXlb96Y2pexp8La1O\nGcva7XaEC9A0iHpoErfbf/+37LOKJAHsdgDgBAXtbe+hEK6PRb+x47Vl9Uq9HJNjd4RcLGgnxe9m\n8JlCwO2m5aH21jgGKHdbfSBEcGufN/Uv4dVBFq9qbqu2fWFV3ocKAo/Ivju4hPAnBLHcLytciHKk\nzdkMXCtN437CxVIIAFRZjhhVya1OK0C6jHdkKZhDdTtJoRWXb2ezSQT3KaudkAKkQPgIb2NpC3ZT\naVWFErHFBnMa1z9VHrjZ21t3XeUagR+j97NkkFRZ2474W5fhlcPblI6EEbm17ZVxPbI+238PWpSD\nHerpOprNPvpDcdLf96LLEae+sbaJz7D7KMdQ9v/ZO+/4KKq1jz9Tt5dkN8lm0zYdQiAJBEJv0mwg\nFxSQdhEb16teLheBVy8CYkWxXNSLvVwQUQQsiNQoTSDUFNKz6Ztkk+xm++6U948JyxqSEBGzi873\n81EmZ9pvZ87MM+c5z3nOfRZw1DdVowD7y0+MVEXIWt8KRdTzMj5888TUorJtSkK6MP7ur6s/Z9yA\ngHNyEG134n1LzHkRInsrxsptgyPvafuy0t1Q70gy63Nq6mrrcI+ial9+0ICwRxRGzD7qQVxRajt1\nwtVACIdGY9UiTH7s4zMD5iQBANEUPEZA2CtGuI4DKAWW/j+35mH2oaUDrHcU6y5JmVoR5ihhMxNE\njr9qpaGYfXP9s7HBI3NKm/uFzzpYeSZOPqjQGRxtWVGmn2wnRrU5sPtD6t5qfBScDAAcE23Fgdrm\nnq5wbwk3HNHERJG7zkHypypMtqNxcJMjKgStrxUoXDJWCaKJqokfjSIGNTWckSWqDLFG12EQgYWc\nQ9prK8xVQUyBG9PUWAqqVC9Z1YvDkBY3EhwpYNDvDuD3IE5tuZAqp2WjJ0YsPW0pqDBW1tZVm+wm\nANBIk8+VZKMI9tmFx+6RfWxustFpA2sObMdTRwOAx+XkKudc0/c7y2ZJEHhl18+rg7VNZw7vKmbP\n/pQvcjTHuZoezYwdrZPa7K0AMDYCewHg8UESQ+FRtq7BbjBgdovF54k72IQB4OUtdpfQPFRs/bgt\no7rVQ4K8q6fS5KiLlg/qo5qw3aiNQD1v7J93T/+XC8wCAQp1Jo/BYL56lxpzOQCUVuXJBWEA0NTU\n1PPn/Xdi3bp1zc3tXnG9Xu9XLdfmJjBIp06dqq+vnzq1fZ40giAAoKCgIDOzfTin0+kUiTqZ9lun\n033++ee9prN7aNwSq5VoNJ0M0+sGDCtXKBQaGQlQ1+m+KFabGYXr2yiNTIzKgiyIQMrqKcHE/uHS\n78vapxxtZsUAQOGSCUnB5XYiPTJIo1Ex9ppmmSZEowEAssWm0XSdPexSa3p0GIZAtMBjrbV+uyp7\n4mMj+4yPf3vKZ3/dNvWe1vnBuswWM0VXWTQaTdSUVyPOPP70oyuoOackpEErTQejPf9o4wXB9jbR\n7axIqxPZajwejFAmtcy4K/GN55xry9073iglFbhHAU6E9ABA9QV90rQ0xFgNABhjjnY9V2w8gQxm\nEnIeqGg7JVhIEYWSkKrvLbFCkVjdLMh39D+Xd4Ttl5aVZ9Wb9Xb043FBE/oqwSDGpBpNCFrT2kqU\ne05SZINbQAhjwiMvCnNqh38PAGxSDZRGIg4BI3QG4+FJx/5RKv7us3//z7NgXxMNGEtolck2tj6C\nZPXIiFr7rqyoCf0jxxNhETTLDA1KvGguDYsbhdV/oZSHrOuvBoC+CsfntSqMZnRhSvAwacjMI63n\nJUoNMDYAqD1uTBsb++ZLRwF2jZxFjly4UNZywGG3ODzWDx7X3vfuAy4Hfgx2azSaIbnrSrJrD5sc\nAPkAymG31hns0UULdpE7xuUZWt3/+lHUdnRo3N2lLRmzI+WRQAVHhI2zPZysGf6/n5fbm+w0Npl1\nNAISI/Wc9iADhdSOiVLWXYdNqhq6Ly6au6vBSM1Fu260oIVmpCKx6IkDD39++qmGttJ5qfKfirbX\nMn1MSPr5mlkzB63tGx6aoKFtp1qrWlTfvfSt+d+jtXkll9IT79LJv6xSjGNX5nimmQUTR8hY/MjO\n79KmA8Dsvn1Tn45npc5XWojRsSO2N4r7RGd+feztWtmzxc4CVBAeRKESRLaneL3F2Rwi06lDVI2A\nRt6xqO6l+zQT7gEAkajVirdP2d5oaNwYVJlRdKxe1SfvaG5bGPIfyy4AmHOsYerrcZcDTQsnp+vq\nNUKNRmOr3+sSRwVrNJZKjywshAv1bPOw310yAYATJSPCVTr314/pVNXIIAqxdfVUOo31QQ71hJSH\nv80+SOOCurZ8jUYDl1oRBJFLRRqN6upd7FiNiJCFhIQEiduP+Wsf+RvOW29dGfnr/UAPWG4Cl93O\nnTsnT56sVCq5PwmC0Gq19fXt84Y1NTU5HI6EhAT/CewRJgclF1zn1e4+s0OkQlhjdlnd1NBXDgAA\nl+ZHKsApuj2gjutJulBvzYyU5Rts3NEYpwGI9icKu1b/MbdBXwW+MVPudng8bqqxtFmqltSWqT+o\nHJ+7t0hHshv6i7kh+nteOOyZc4D4bMKe0pesbjsANDY7aVRhwg0Iy0QKWvKdGRJPAwDsOv3YGGzj\nyUZrMMmaKcLqNlK0WyZU/Xjwm5rWgp+KNgNAiExntlUlOG4ZXLC2ar8F0YftqX/mnvl/Cyv76rzl\nq09P/NMxfX968LSwW9lx0yc99Ze9yaPj6Dpx3XFbTEbEuwu2MTTDooi9WYReimZoxmFxhsuSKNKm\nJCKJb4exGIMVRt+1bhIA5H9TWXmoBTud3DpjO3ohHgBYlpELQ09WfJEapLAT/U2m0+rQUURYe7a3\nyaPeXzLhK0AwiUAZImvvn8/dW6TPqRl2+Fx/sxEAvnvmqD6nBhVHllTNis6I+PbZgyajWKJgAODo\n5+4jn3sE0bM0CYu5fVvqPTW5Bl1mJEMzjBOzmxzjH2mPN5v078enjQDy5VlQETrynuGRBXfhqEBM\nKpKsj1j25H229GsAGJ20IEyecN/IN0trz9qJeJPj+zmeLQBwofjH7LxPLtTsPbH/x6b/HAKAMCp7\nRNsSZeuylJbxxtbvFTEiLhnB1PQVIxLuHRhMzO9/x9jolAUJSpvLJBOqASBGgollJJF9CflLplkw\nZazN9pzKPU6rYBDpA4PeG594Z5v8H4aHvwpp0gLA1+OChqoJqVoiE6rWTPtpbOyoSeEClTQKBycF\nomz9cZU0kkCBZqjIoH4rbv1OJlRL1RIEQVGJHCHbOzI1MvJohSkuiLCjwkt6QzJpUdSdP+kOqZPE\nDDWfImh3rSQGAIQ4as8/7q4tbV0/2ltd6dZyTJkAACgZzDjb2yg2U3GkGIuTtvfjWpzNqarIKhvt\nYhjOmXw1DEsrRGHcMhe1+MxFKwA4adbRRVArAIgFSi70kec6CHSDZLfbv/7665kzZ/oWTp8+/b33\n3uMiwjdv3pyRkeHtUgpYrm/kudPDCHF0aIzc8tyYrrZRinCriza0ubXi9uGBhja3UogbbZ7c5Vmv\nTks8U2NJ1UjO11qyYuRHK0xcXxRjr2EF4QDQ6maEeHcWacOg9rwSJIroSJYUEW67p/pi/ej7h1z6\n9lLtlowvV+659H3RrpkfXvju0uC7B5T9XEVumo6WapNEE/QNe1HW6pDSNhiucB+ItD7VX3RJhDrE\nBV9wx5wUP4aRTKQs2ZHscQCoNxf1C51Ip5X9kLeJ22BM4l+bCx3mRvPwBYPmvDoVbZXd2W9lP+04\n4EY1sjQADE+bUWO9IJeECGUCoUxAueiai/WZMwdEp2vXDnqdaLEKTsqnzpsLAKmTk3csP9gmLYuT\nZ6HnEv81dC8wSMbUfgBgLqMAAG0IllX1V+mHAsCctDdaPomyuUy3Jox5rl/d+qk/9I+cwKl6YcY5\nESELkekAYNbgZwfrpgPAua/z97xweNkPDwRVG5U2DwCY6trWnl8aHKU89ObxpFGxAFBfArEp7a6e\n2vxGTJ6sipqmOHKLPExadryy+mJ9TEZEW4MVxdDxjwwfdd/gR3cuBABUHBk0chMACOWCCY+NlFSm\nIGtm2t1mCU4gv3wzKgSa+PyFABDXYBod9Rf19gVGqhRziSJlA1hdA5NWBgCDhUdaqaLME/8AAKUt\nkRQKgiRaABARskExUwFAJY26PSpsVCgJADJh+1eLVCUmT5UVZiZpLpbH6oKsRluEmFCXHaq5WB8h\nRhcmqlAPbTHaPhul7FB/IsXY3/uIUQRbO+m1caFgcLgACw8iUQITAECQWAsAKIbSNMEyLm5GWpam\nhp1/p6zZMT3MfkA06H+3CJMFNgBIjgoNGThSZ7ygSHHLEsQAUP3UXbXr55oPfuYbZcq4GnF5JABg\n8iSWarv/hLnR0nQxZ8O0CCZL3f5tR9EuAU4AQCvo7jtupjt7Oi3OZhTFnDSLI26uH/R0c3skTqu9\npZMdACzOZoUorNVex6e/uz4C3SB99dVXarV6+PBfDE1YsmRJVFTUkCFDRowYcfz48Q0bNvhLXs/5\nVSPPvXCZGgCgq6TFNjczIlYBADVm14RYNwCggpAX912IVArmDdJwyaQNFnd6hKzG5IpUCPUtTq7Z\nxHjaWFwJAB4G5N0apGT5lUc9e/PPbY1WS6O1Wd8akxHRpm8Re2htSljlmRqGZvJ+KI4ZFHnnU7fI\nMA0A5H/Y2Fr30iOxDbkaIR4yK7UsXOo5/WP+C48lg7iJBQCkVdY/YkKqKkxC0BtGjAAAm8ukZGKU\n/7u3rOnUw2M+iDcvpC0Yun0kerSfUCboMy4e3MSIPrMAIHFspEIeDACrbturVSQ/POYDESEDgKFz\nM6IztACgy4yc+8a0lImJCV+eUB3KHXz3gFH3De4/JRnFECfZnJI09LaV44SyK1P3lh2tGvNA1pTl\nY1Y99tHiFx7EqyMOLy/qlzJkcOVKlTTKst+FI0IU6XgX2hqsezf8CACmura2BisAyMOkKbcknvxf\nHgAwNAMAIfGqQdP7Z81Ov23lOENJc1gslTbWAQCkmCw8XPbjuyeV9en9JiQBQEhssEgpzN9fotTK\nxzyQhWKoOjZ41H1XRtIs2v4XFEP1OTUA0GZvRhHMbfcIZVcyv1mN9iCt4mWs1fmGJig8yFIEsYpM\nnJbSbpYVuJnMYq3ptepngoQlyZWn6lRvL5mdstHqapYJOvE+AcCsweu5FhKnFnVRNIZKv7KEJ4fo\nz9QAgO6d2ta6tknhgpEiBgDKT1ZJuq5LJIpMjpRRaJhIoCZRwDHS93rarTLGYcCUoa6qwrbs7Un5\nO7IP/TRO3HRENMBj0FOmxuCZ/5h026THF88MXbxeOkCYOCwFAByFp4jQKG+7ioOyVeLq/sDFi1rK\nGp3MU+esbwo3CEw/w+XQBourWSZQA4CLlUtwpNnleWXfdN+DrNyRYbQbW5jQShstYxvsNMv9BG4t\njnQetkAxrhCZbl/+m//9cVFX14GnGwK9D2nevHnz5s3rUEgQxKZNm9ra2sxmc1RUVKc7/klgWfBm\nouwbTJ0FaMT63hJSvnLCuPZp0XG0sNG2eIg2XiXynTqddbeA8FfPWhadrj3ywekf3z2JC/Apy8e0\n1bflhwcrG60ojvabmHjmq7w5r94pVoqGzx+079WfHGUCABiq7LfX/GaKbnrTWQtEAgAY9mChRRPj\nIuee2H4K7odlqWpIvRsA7sv86IOcv0KLpP+UsNMf3RV5R38BXd1Y3oxYhU6EkYdJAYBzrwEAS3ow\nTDwoZirnVNGp24d2KrXyRe/dXXWuFgBwAR6iCy7YX8KtmvDYSACY9fIdQflVOm3/uNkYAIx5IAsA\nVo7f/+ozn459eCiKocBlKPjolpnfTdZGaHet3mesaNm74cfk0XHBUUoAKD2mTxiha2uwfrb0a1Nd\nm9PiUmhlezf8OPjuAf8++SgAjFg4SB4m3WLbvvjDewCg/5Tk/lOSAaDv+IRXp7x/+6xTtz1274Vs\nc5+x8T++e7KuoOG2leOyZqdzIgv2l5zZlTd56RUHFCfbF6lagpNY4eEjoUNlDaXGIK08d2/RxT2F\nIpkgc2Z/hVaWMEIHAGKlaPmBB6VqydNvTivYV0ru+cvQeem0ufV0YyXyxbDHsxdx9rhuR9GoxPmd\n3u6M6Nt9TioGgB1jgz4fHhWdEXHskzOv3/mhVC1u1rd+uXKPVCXRZUaGxAZ3X3+CSFQqTW9xgUqA\nxsjTj5VuBQAUwRiWBkzIOOoFuhTr6R88taWKV47Oe2JxvCaxSjnSdv55UdIg9ewnuIOIUuW0dSG3\nLB4wimqu99S2ZxZmXXbLsd2srQUP0gIAKghpbSnuK/VcsioBINTyo1E62kGzAEDRbhwjMcTjhKBR\nYcQ5o8kbhu5lbz1WAkkrZaxCwNKouw0giKQbnCgAsNDlEA7OuluczQcK/psSdGf3F4SnA4HeQuoG\nuVx+E1mj604WeU24LHat60crBRSw7Mwv7H9Lp7wzHmnkpL7F+dRE3ZrJsRoZmaBuj/5gXEaWVAFc\nGXbaEzTJoQCwdM/i6HQtV1IeLLUabSiGDrit713rJomVIgCg3BQAIA5B6Jd/fXncf4ec6bO4b7y9\nEhFeTAWAg68fD45Snt9ajrUpKNeVYSWnXi0DAKhVD5mVdtuC6ZcOlwGDVp6pjc6IcFpcnKng3GsA\n4PRYSFx8d+baTnVGZ0RwCxiJAcDguwd4V6EYOmXA373f5lw/jTJIrUkO4U4BAFK1hNsSABwW59EP\nc+548hZDYRMA1BU0fPrIzoL9Ja9MfhcAFn94T9LoWH1OzYiFg0qO6XFB+xde/ynJWXEzvTI45KFS\nhmFCR60Uxi4cdd/g5NGxdQUNABCefCVkNGVi4vw3p3Pp3Trw+DftH93LDzz4yJcLsogHg/bexdBM\nfVFjwcGS6HQtKSbeX7Q9LEGNYuiSz+d5f4g2PpzEBEKZAMMwBRMlVUumPj3B2zpcPvlrX8PTFSiG\ncm21WRvuAICUCYkt1SZZmKS52kSKiZPbzvcZF3/Hk7d0f5AgElErBroZFkMgOngA16hViMIYibU2\nuuBw2TbxgFGe+grV7CfCwzVov9Fyqu3w03cpJ873ncPJXbNLlPh3xlEPAHjKLQDAxYsbtzzn+Pip\nhndW7CSnYbJgAMCk8XaHMYk+w+0oC+orcxX66qFZkAjDNHhjWVvHGY+CxNpWWxXDIpVWWkjpuUnC\n4iXs8n4SAKAZ5/N7plz9AynarRCFNVurRYTswKXNdW3517ywPL4EegvpD8P1ueyuyfk6S58wMQAo\nRbgbEThd1C0ZQ0PYt70bWF302PgrueNKVg1rX6JdgJAA4GaA6LE2eZh0wmMjlVr5ws0zuJJhkxLn\n3J/eZ1w8AOigPRkMl7958N0D+oyN/+6FwzKVBAAQkzST/Gv+lvPTXp0anaF9cex/B989YOfqH+5+\n8faPH9ox59WpliZ7wp4naiWNI+cP7j8lefO9W3UjZtoKpJMez9xyrraDEouzOTp4AFwLsVIkD5Ne\n80UJANwb3Iv3B4bEBufvLxn78NB3F2yru9RgNzlCE1QH3zqeNDqurcGijg2Oy4rO/u/Pty4fKwv9\nxST00zOevPosq478jbMEXLsnZWJiwf4Szsxfk+AopTdAmRQTE5eM+3LlnohUdfodKUKZgGtBkmJC\nHioFAI2PkZs37gX0FoxdhqMYytBM33Hxap+mjEra068637ZaTEbEsLkD0+cnfzx7V8otiel3pvh6\nDrtCiCFBJHq62TMwGG9FkuaO/JQrx0isXncmxTMIV4aGL22vvQ+sXNG+28x/+B4EEYR4Z1oyRQ1R\nTZW7fvrSuP0x2noa7ErxsKnfapY8CPDq/rubKdFkzEYoBwHAUDWhTZp77OfPpbjOeygMAYEwTujJ\nz2tOkwFWsL8kdqyGM5OMZBRYQIyxJg9DQlubhwkSKBnWxXmwXbTb5WhgWNrX67jp0FwUwaakPsaw\ntEIUCgCVpjOZMKmHl5cHeIMU+EjJ7u7RHSnqK5ORowRJ4s9OTnTlCoClS63Q4KTvSFG/09CJe8F3\nUqKgXxP+59ulAQCbF3ZiFcL7hIxYOGjS0tEAYDc5uFfwbSvHue0eeznKWa+155fuf/3o2d35uXuL\nyk9W5e4tEkjJkXMztzy2GxfguAB/dNdCq9EuXyk11bVdfYoJKQ+FyGKvqXbw3QPSbu/b81/nJS4r\nmnv7R6drMRJTauXLDzz447snL2w5lzQ6ViAih8xOM9W2AUB8VvSeFw4rtfJhcwde87C+vVZwubVx\nfQhlgoF3pUpVYt/m1CQfX58XiUAJAHA52oBrxf5GlFr5lOVjDAYDLsBU0coObcFuWBAvmhsn/KTM\n8cxFa5wUW5EqkQiURks1aVFTQa3X3N2baJymBQDwhD3m6bSEflGJnqaP8LRZiOJTvaq9furtRIX8\n9XTrAoV64NdDgvTGc0dKzovCp1pqrqQvEeJIg0Nud5RHuWR1RNpqqzj6uzkbpn1baaNP0A+FwId2\nGnFSrFYk1zMOtSy+maEIFACAoZ0IYHWmosigFO/RUAQztJVxBh7HBApRqIPqpOrydMNN7LL7kyAk\nurtH3yweAADsK+NpW6UZ1agEKI4iqCiStpadb/Hs8JlMr0O+E24ecQDw/AZf4qojf+u0PC4r2vtm\nZGgGwRAAyJqd7vWJcYx7eOgTBx/K+fJiXFb0xT2XmkpakkbHed/RKIZyX/2dvkAHxUyNDu5RHxgp\n/k0T3iSNjhv3cHuzMmNqP6VWzlAMKSa0KWEpExMBQB0b7HUk9jIpExOjB/bUEvxOPLrzr1wUSQ+R\nE0gQiba62cf7iu/RCffVuWta8s9XfydpimPpjpmuroax13BJ8JxUHABgwH5wYpUhGEWEiCj5H9B3\nUVmwOgSzOmm2Qv4mAFDRf5WK5fvy36pqyd2b94YHlQSL5XA5pYIcR2rMTGNxITTlU+4ot1LsQcO+\nrnb+43QbAIxKWqC+/K1GgAvwcBbYD7JnAICQLlKE3FvaeHJv3hvcBlUtuRJB0Lppx7hOTQEuxjHB\nDZ/b4g8Pb5ACmgS1qKtpywHAzbDecFXGUQ+EIlKCAQARMsJj/FmEsm6Pi4spmvmjafmZtoP1HR3l\nANDqvn6D1OF7v1P6jksIv+ySSru9jzcqAQBwAS6UCcIS1JSbnvHsrUnjYwCAe8v7QooJrpfe78jD\npI/uXJgyITFheIxvue+P+rNBiokO3xk9YU2adEQIOTCYqLXTY/vcl1t7MEow0O2+drJHxl7DpQlH\nBcEAQAOCsna7tYIrZEKnW4znwgn7l/m7uO2dgADAocJ3a00FADBWQz6UJIbL2X0IFDEBWpNnsDVV\n0UwQAFCoqrqqPS7fSrcnTQcAlK5DRBnNloomiz6lZbyEKQ4OGl3aeDK76EMu+dBbhxf4pvoWk0o3\nZedzCP1aeIPUG1hddFdx291TsmrY0Bh5V2tXn7d+V9OemZSxVbYgoUoStVEsHpRBm3Kb648InaWV\nOU8BgJthPQzYLo9ZYRwG30mJfmUW8l/HX56dwvnoAECqllzdmBh9/5Ax9w+Rh0mH3Z/R1UHmvzm9\nq1W9T9rtfZNGx/lbxR8EmoWE0Cw3ZdepBrXYr/36pm2VqEQHAKi4/ZuAQlVgziVUWUVtFCCYU31r\nsMB+vOoIt9bhsbfa6oKYuJKaHBIXqwVoggyzOJuFhMxpcQ2To3PzigAgMsXqQFMwl5MBaaPRflkb\n66BZIY4oRGH9iOPZlmEW6wVulc10YHyo2+42SQTK6pbc9sLL42EfHvPB5bN3kl6Ipxt4g9QbWN30\noMgeTVveExqd7dPWSXDkpLG90UOZcylcSaLA+eXc9XtQlrKIUizKsSrcBQBGF6O8bHmc+k/W2xZy\nU4a7aVb5u1qkayFVSwKkAcTT+5AoqPhH5QAAIABJREFUoAj2woxzIpnI6SIZ15Xkb+667z0Nhzps\nzzjaJ1xHpbFMpDGIdTAIUVW5d7MxY/kZS6MbYcXRQlLoQtrja5rcBOupxUtiKMpNYO157t2UXSZU\nvb/o89z3TkCVMXVSMhBWpyhS1FJPucNsLgoAhIgNAJpdbKgARRGUYRwinAhXJHqPgKPkLX0fumPA\nvz44+sjOc8/6Tq2kU2cIcDGJi2nWAzy/Bt4g9QYaGfnXwZ3MSnd95JoobsIbDGkPkKNZLmoO805K\nW5/2hVI7BkMQg3hYLF3guzvVkgO0K88mbqMQADD9mrBvHp7fCYlSRFMkl/iKw6X/xFnxCQAw9por\nhoqhudx0LhvrWbSHRQUoFtoYumhfAy3BkTwL1epyq3CjG2s3SBaXw+lpQVoUbszicFs491qrvc7R\n5EExtLXObDXaEZIOEmtdYo2s9QLNaJsVOQCAAQsAboYNEqAoijVZ9DiKyAVX8lBIBMp+2nEZ0beP\nTV4kwMWRQSmzBq/3rhWTit/5gv0x4Q3SzUeoEG1wMgBgo9ggEqmx09Oz28OTVALESrFtHnZlcbiF\nQgHAxWAqyeUYWTcDAI7iTaKUJwDASv8ukeg8PD1HLUQbnQwASNUSmhF4DRJtKUal8Qght9Reatw3\n03bmMe8uXBwBlzhRQLk8DFyCIQCQLMdPGQ43WBsEdDWFtke9B0uja1svES0hAAB1ymd2Tvj0xc0n\nvz1x7tMKQ1ETjqPyUMml+iNRwakA0Df8NC4QsoC9lOYKxaq5I2AIKERhDrel1Y31C+s7NnkRiYvX\n33UyTN6eP3NK6mOttjohIeswnIvPaHcd8Abp5iNchJ5rpuYdNTlolmbhtNEDAEZarBaiNpp9Ltda\nY6dJFGl0MjTLmjxscHAfWftsFUCbCyrFYy6aUSGGNLoBAJgeJFfl4fmdyAgmDta7AECqklBujLaW\nceUew0FB1Aw8Yt6uJzadzlmMBWUU7/360yXbETIou+hDACinMQCwIHaXcBiBOnHEE0QiKCJgaMpm\nLnHg7daCYaMbWo6SbjkAAI0QTmWDMufS6TxwCMY/MhzBUaVWMTb5r5kxUx/X7sGVZkQiRcEahFtF\nOOOkYcMg2fAQEkcFrfY6JYnQIJnU75GlE7/AsY6zXHbA7jYL8BsQXv9ngzdINx9qAXqsyd1fSdTY\nGRGOFLfRqTJ3qzg9RID2VeBOms1tpcaGkQVmKlyEuWlWLhApRBIdUmN1213VO7a6b99c7OivxO00\nAgCtLjbIr31IPH9mUhR4lY2hWZCHSd0ulmo+6Wn88bsTjxnqD+DKAa/PPltbleRhI0WJfzfmflt6\novbk9+0Rm6/ZhQwiRaliM5IYQp+kWKLgo1NWl8xmdeWfPMEgUgBAWY+tEUNZDykUAADQONascAtb\ngKCgWTLmgaxRi4YMnNZvfJ8HSFwcLFI2W6tF0j6REkVVcy6LyCU4kizHMaR97DCJIm6GRRGMSwjr\ny9XRdGJSgWPXjkHl6QD/JropiRRjI8MIJ80qCaTVzbCUsxWPChOhI0LIOTrRrmpnahBe72C4ps8t\n4eSzA5WvZorN9cc9zT+ThLjGTqcq8TYKAKDeQQuvJwCQh+fGMDiEOGV0AwBGIjXuvuv2P3mk7og1\n9gFAMLvJ4bAwLrsHwcWM+j6cgJx9Drjsr3NjGpw1A0BbyykEaFyJuVppykPHDdIBAIkisWK8rsCY\nRT+qCJMBAOLGEUogkkhYmROlBQAQlqRW6drDTRWiMIfHEiEmpaSsyaonCJV3amXOINEs25UvweI0\nOrueeZan5/AG6abkrSy5nEABgEARF+UExtUCIVyAQ6gIjZNi4SIUALh4BS5fCyaNJ0JG4wPf4h6q\nGCl2uBVbc8E6RkPyLSQePxIiQMutNAAAi259xeER2gCApcldq/dxg9KcFtfHD+3QO3IomjX20zSJ\nFr5+3xcA4MCTSLoaACzOggTTvQNtVeDBEJYRkTIAeCtLfrtOohmXlLuhLDYrCjFJIbo1RtMvSKNM\nHBe5+sDKDjK4fBZLU8QZUn2R4XisQqG6/FxwyYTGhpFqYedPyv2j/jup3y8GiaMoZnEab+BV+pPA\nv4luVhJl2P/1l2IIOF0OwlHRyARxo8oHq4hnM2QqAQoA0l/OBXCwkXmuNFiIIQCQqsT/HedZkyad\nFM47Fnj8iVqAcsO3Q2KDJy7PAgCUxS/+dP7c1/lJYxNQCZnxb1n1+A/ywt6n+1S1SmVt5Hh1ihpl\nHXYsTUznaWyvhpuHiZyOkD4o4iakConF1QwAEhyxetgCK7Nw452Jw3VPTttLC2yjb50sE6utaP3V\nM4lIBWoAIFFEKpDY3a2LE6TTo69k53thxrk5sSJujqirIXGxN8bBi0QQlBI64cZdpz8FvEG6WRFi\nyFA1QaKIVByk0o4styEqwRXzwxmnAjMV+stvulwTBQDJcpxEkSD890pAzsPTc8JFaJubBQCJWiiK\nYlEEQ2my3AaW/y7KSYpi31rY5mq04nVJ6hFMXB0jRhhEmPZIOklXtQnGC6nSu2WJLW8kihvi6kKz\nwYMTJAkAKQpcgiMjQ8kZMcKEETqpWiJVSxSiMK0yOVyR1Gn8m+RySLcAE1N0JzlNfhUqSXR0cP+U\n0Im/8Th/Nvjkqjc3t4STw0OJXdWu5laKvCppd6ubSVH+4hYviBMFCdBbNNeIEeLh6U3cDAsAIbKY\nWnOlBe+vqG+wR8c6EdRFI80uGpVgOEbKJCp2whBza6KQrmlwSGSen8OpPSjrmDhm/uA9bT/UvlRn\nKmJdCrlAkqIY+3CSDADUAnRh3JVQt1W37QUArSK51V7XqYwXZpwDAIale54BvSvSoianRU32Zmfn\n6SG8Qbq5EWII54IzujqOb302Q0aikCC7coufSZemBf2mTKM8PL8HFVb6dLMnXJH8Q+2ZaumzzSF1\nGFFOth0o8URRaGibo1EhCkNRrAHSSKVICfYKq0tMXYgUNCfEzQQApVZuLm2IDEqpHBYdKhGMTlrQ\nzbkig/pxfUJdkRF9W2oE72rzD7xB+iMwRyeco+s4G01/Zceby1sjnsBkbpxoR6VzeVJsDWUWoHpr\nSN9YkSqIRKqac12MoRFtabZWp+oWK20NsyJKdtcSeSZaxDQrRGHeSafmZm0gMLIm3z4t+hrTMuEY\n+fTUn7rZgMTF5OX5lnh6Gb4P6Y+At53Ew3MzcouGjJVhtZ4wkqljyAQAQDBVlVNBuM4NC7aetcbO\nGry+lRjfV9JSYyqIV6oa3EFyzOnrWJMIlCQunhNGxUn5QQw3MbxB4uHh8T+pSvy1Sw6p59TiBMmG\nQbIVqdLJWpGIOr8kc05G7JwPDKMMTnSUNuZ0xc7EYB0N2Kj4v8wYuNrfqnluMLzLjoeHx/8MVhEv\n5tnWj12jlUu4klk6YU0xiyGwKF50T4xQgiMAw+4b+SYl1ABYnB6rfwXz/B7wBomHh8f/kCiyYZBM\nKw/yLVw2aSe3ILk8oi4pbDgAjGWW2dy/YppanpsF3iDx8PAEBMnynr6O/j5mk4u69nznPDcdvEHi\n4eG5yeAD4f6o8EENPDw8PDwBAW+QeHh4eHgCgkA3SDRNf/bZZytWrHjqqacOHTrkLS8pKVmzZs2K\nFSsOHDjQ1b56vb43JPaYdevW+VvCL+D1dE+g6YHAk8Tr6Z5A0xNor8SrCWiD5PF45s6d+9VXX/Xv\n3z8mJmb37t1ceVFR0cyZM8PCwgYOHLh27dpPPvmk090piupFsdemubnZ3xJ+Aa+newJNDwSeJF5P\n9wSankB7JV5NQAc1vPvuu263+8svv0TRXxjOjRs33nvvvUuWLAEAjUbz+OOPz507F8P4Edo8PDw8\nNzEB3UL66quv5s+f39TUdOTIEZPpSsb4o0ePDh06lFseNWqU2+0+fvy4nzTy8PDw8NwYAtcg0TRd\nXV29b9++e+6554MPPhgxYsT7778PAA6Hg6IonU7HbYaiqFgstlj4+YN5eHh4bm4C12XHMAwAGAyG\nAwcOEASRk5Mzd+7ccePGaTQaAAgJCfFuieM4TdNXH8HhcAwaNIhbJggiJiamV4R3iV6vnzVrln81\n+MLr6Z5A0wOBJ4nX0z2BoKeystLj8XDLDkegjyYOXIOEYRiGYTNmzCAIAgAyMzPlcnl+fn5UVBQA\nFBQUZGZmcls6nU6RSHT1EQoKCnpTMA8PDw/PbyFwXXYoisbHx/s2fViWBQCCILRabX19PVfY1NTk\ncDgSEjpOaM/Dw8PDc3MRuAYJAP7yl7988cUXdrsdAA4fPmy329PT0wFg+vTp7733nsvlAoDNmzdn\nZGR4u5R4eHh4eG5SAtdlBwCLFi0qLi4eNmyYUqm0WCwvv/wy569bsmRJcXHxkCFDpFKpQqHYvHmz\nv5Xy8PDw8PxWEM4PFsh4PB69Xh8fH99hNFJbW5vZbOZMFA8PDw/Pzc5NYJB4eHh4eP4MBHQfEg8P\nDw/PnwfeIPHw8PDwBAQBHdTQcxiGOXv2bG1tLUVRM2bM8F1F0/T27dvPnz9PEMT48ePHjx/vXz2H\nDx/et28fRVH9+/efNWuWQCDoBT0lJSX79++vqKiQSCRTp04dOHCg76otW7Y4HI6JEydOmDChF8Rc\nU09Xq/yix8vZs2fLy8vHjBnjOyjbL3r8UqW7keSXKn3hwoVDhw7V1dXhOD5mzJgpU6b4Su39Kt2V\nHr/U5270eOnN+txz/iAtpNWrVz/88MNbt25ds2aNb3lX+cL9pWfz5s1PPvlkv379Ro8evWPHjvvv\nv7939Nx7770VFRVZWVkEQcyfP3/nzp1ceQ/zpveanu5X+UUPR1NT0xNPPPHkk09WVlb6V4+/qnRX\nkvxVpQ8dOtTa2pqVlRUaGrpu3br169dz5f6q0l3p8Ut97kYPRy/X518B+4fA7XazLJudnZ2amupb\n/uabb06fPp2m6QDRM27cuC1btnDLZWVlSUlJNputF/SYzWbv8n/+85+JEydyyw8++OALL7zALWdn\nZ6elpVEU5Uc93a/yix6OBx98cNeuXUlJSadPn/avHn9V6a4k+atK+/LNN9+kpKRwy/6q0l3p8Ut9\n7kYPRy/X557zB2khcemFrqarfOH+0qPVam02G7fscDhwHO8d/4ZcLvcuh4SEeHNb+Stveld6ul/l\nFz0A8M033wDAbbfd1gtKrqnHX1W6K0n+qtK+2Gy20NBQbjkQpgLw1eOX+tyNHvBHfe45f5A+pE7x\n5gt/7bXX4uLiTp069c9//nPx4sV+lLRmzZpVq1aVl5cTBJGbm/viiy/28jROHo/n008/5bq1AiFv\nuq+enq/qTT0tLS2vvvrqZ5991psyutITCFW6gyQ/Vunc3NzPP//cYrFUV1dv3LgR/F2lr9bjS+/X\n5071+Lc+X5M/SAupU3zzhX/44Ycff/zxSy+9VF5e7kdJ9fX1ZrMZACQSicPhqK2t7WUBy5YtU6lU\n3NyGLMtCz/Km946enq/qTT1r1669//77w8LCelNGV3oCoUp3kOTHKq1UKtPT00NDQxsaGi5evAj+\nrtJX6/Gl9+tzp3r8W5+vjb99hjeSDn02NE337dv3008/9ZZkZmZ+/fXXftSTkZGxa9cu7s/Gxsa+\nffvm5eX1mp5ly5bNmjXL6+J3u90dnMhpaWn79+/3l54erupNPSdPnhw+fHh2dnZ2dvbBgweTkpLe\neeedkpISf+nxe5XuIMnvVZrj4sWLSUlJjY2Nfq/SHfR4S/xSn6/W49/63BP+yC67rvKF+wuXy2Wz\n2cLDw7k/Q0JCSJKsrq7u169fL5x9xYoVZWVlH3/8sVgs5kr8mzf9aj09WdXLelAUTU1N3bp1K1xu\nnRw8eFAikfTCVepKjx+r9NWS/FulvXC3o6KiYsiQIYEwFYBXD9dW80t97lSPH+tzT/G3Rbwx0DTt\ndrsPHjyYmprqdru5IDeWZT/44IPbb7+d+zA5dOhQ3759q6qq/Khn9OjRzzzzDLecnZ2dlJRUVlbW\nC3qefPLJW2+9lfuE9NXz+uuvT5061el0siz7zDPPzJo1qxfEdKOn+1V+0ePl6q9vv+jxV5XuSpK/\nqvSxY8e4BYqi1q5dO3z4cC7y0F9Vuis9fqnP3ejx0pv1uef8QXLZ7dmzZ+nSpb4leXl5XKjbqlWr\n9uzZw+ULX79+fe/ElnSl5+zZs8uWLTObzUqlsrm5ecWKFffee28v6ElOTvb9kyTJ3NxcAPB4PEuX\nLj1y5Ig3b3rvJKvtSk/3q/yix4vH40lNTd2yZYt3Zkh/6fFLle5Kkr+q9KRJk+rr64VCod1uj42N\nff755/v37w/+q9Jd6fFLfe5Gj5ferM895w9ikLqnq3zh/qKpqcliseh0ugDRw+dNv+ngqzQAeDye\n4uLihISEqwPN/VKlu9HjFwJNT0/4UxgkHh4eHp7AJyA+r3h4eHh4eHiDxMPDw8MTEPAGiYeHh4cn\nIOANEg8PDw9PQMAbJB4eHh6egIA3SDw8PDw8AQFvkHh4eHh4AgLeIPHw8PDwBAS8QeLh4eHhCQh4\ng8TDw8PDExDwBomHh4eHJyDgDRIPDw8PT0DAGyQeHh4enoDgjzxjbHp6eocpQPxLaWlpAM3MyOu5\nFoGmBwJP0p9Bj1BjoSxCykYEiJ7fQm5u7vnz5/2tolv8PEHg78nAgQP9LeEX3HPPPTf2gCVNdm7h\nP0eqZ3+a53c9vxFezzUJNEl/Bj2fHP/H+eq917dvoF2fQHslXg3vsruJSXz+BLdQ1GSnaH5eKx4e\nnpsb3iDx8PDw8AQEvEG6mbC66G3nGq4uF+Kok2Kmf5jb+5J4eHh4bhR/ZIOE44EVsqFSqX7jEc7X\nWeb8L59bppgrPjqjzaOWELvymnpZz42F13NNAk3Sn0EPy3L/XQ+Bdn0C7ZV4NX9kg6TT6fwt4Res\nXr36Bh7NYHH7/ulrn3rIjdXz2+H1XJNAk/Rn0EMxbopxX3u7zgi06xNor8SrCXSDyeOLyUF5l32j\nGJwUY3XR/lDEw8PDc8P4I7eQbi6cFHO+1uprcq7GaPNcXTj4tdPbzjU4KeZ3k8bDc4P5ubItp9ri\nW/JtgdFfYngCB94gBQo/V5ozNp4Keuqnnm/PLXAPNh/2zXNTwHWCbjlreHRnka/b+c73L/pPFE+g\n4GeDxDBMTk7O7t27d+zYcfXaw4cPr1ix4v/+7/9ycnJ8y0tKStasWbNixYoDBw70ltLfixqzixtO\nJMSxa29scmlkJAB8W2DkHuwnvi3DUQQATM5OGk/XjXeEE8+fh/lbCzqN4bxuVn1X1qGk1OjgTmFy\nUFYXPe6ts1zfZ4cO0cJG+63vXriBSnhuFvxskFavXv3www9v3bp1zZo1HVZt2rTpqaeeSk9PT0lJ\neeyxx3bv3s2VFxUVzZw5MywsbODAgWvXrv3kk096W/QNpcbkKjU6DBY3Z2m6x+amjTbP0t0lJ6va\nuJINhyu5R7pTXx+y7ND1qSo1OngfoB/p3nPbc4a9kXO0wtTDjb+80PjdpWZk2SGDxX0dMTIdqDG7\nXjhUCQCJz5/gNFAMO39r/l2pIXd/nPe/M4bc5VnP3x7PGS2nhwEfj7TB4tpb2PwbBfDcjPjZID39\n9NM5OTl/+9vfOpTTNP3222+vXbt2zpw58+bNW7Vq1csvv8yt2rhx47333rtkyZJZs2atX79+48aN\nNH0T9+dbXdSUPqq8emun/UMdMFjcqeGS136q1rc4AUCIo5OSf11c6aM7izcdrel+mxqzSyrAztda\nfQt7/l7j+e0EPfXTgeKWDoVLd5e8dqJHHS0PbC8sbLQDwPla66+KdskubZ3SRxW+5ujyb0o7VICe\nw52xxuTi/qQYdvOJOq4kQS2enBx8vs6y/6F0ALgrNeTnyjYnxXAdSN5HgI/Q+dPiZ4NEEJ2nLCwo\nKKAoavjw4dyfQ4cObWxsvHDhAgAcPXp06NChXPmoUaPcbvfx48d7R+3vgcHizoqW61udVve1P4o5\nRwcAcG46pQh3U0zTulErx8d4t/G2iriv7A6fuvoWZ1mzo5tThKw+8u/vy+9KDdG3/GKzUZvO8m2m\n3uR8XUd74KSYI5W27vf6ubLt1ncvvHeyzmBxAYBaQtSYXV1tvO1cA+f45Zop3MbT+qkB4LWfqh/d\nWfyrBHMVz+qiZf/3I8WwNWYnjiLE8sMJajGOIo/uLNa3OnTBQrWUMNo8E5KCub3UEmJvYfOjO4uV\nIrzG5OQKjTaPEOe7t/+MBOhdT0pKAoC8vDzuz9zcXABobm52OBwURXmj6VEUFYvFFouli8PcBFAM\nm6AWVbY6e7i9rzOHsxBqCfH87fFOD+N9hrltuP97P1S9p+verihF+Pk6y+Ks8MJGe43ZxcX+cauy\nS1t7+qt4fhtDY+QnK9s6FEpJzEVf45tg2Bs5nLPraLl527mGBLXYt2pxDWuOGrOr1Oj4udK8dHfJ\nC4cqKYZVSwkAGJsQxG2gCxb6VpX/Hq/t5ryc2XNSTI3ZpRTh2841FDbY1RIiUimYnBxMMeymozU7\nLjalaaUaGelbh3XBwjM1FgDoEyrmepK+LTC+f7JeLSEAAFl2yOqif7v/kOdmIUDHIQkEgqlTp65b\nt27ZsmUsy7788ss4jjMMw7IsAISEhHi3xHG8K5edXq+fNWsWt6xSqfw+SK2pqT2Twv4yi4tm70iS\nA0BhTfMdyfJv600ZqvanzmAw+O7V5mLkgnZLgzHuZ8aFfnWpzdBqnRgvq7O43W43t73B4g6X4txX\naklV/ZB3Sk49mBgqwU8U1QhjpVcOR7ktVobbxasHAIa/V7p/QZwAR/oEE+9OiwRwPX7BsHZfxe57\nddO26vfOj+ujFhwpqk9X3sjQiQ746gkE/KWHYliGoiiPq7iyznvrAaDa2EYAXVNXz7WPu2dLTq3N\nw/QLEVY1mb01KnZDwYW/JYVKcABI21TURy3Utzhf+6kaAJ7+Jh9jaQBQMm1bZ0avPmQwmm2iFdn1\ny1O4fZfsKLpDh3Y4tfcS6VvcwSLs4MVKm5v+5zD1y4fKcRR5anSITkkO0pIHL9lig8hNR2vuihdQ\nNkcftcArKVxA7S1tBYDBGjKvymiIgG2n649WmPqFtm8j+78fvx9pTh82rCeX7ve4ZW6Xu7W1xSAw\nXHvTXtHza1m3bl1zc3uHnF6v96uWaxOgBgkAnnvuuffee2/79u0EQaxbt27BggUEQXAuvoKCgszM\nTG4zp9MpEok6PYJOp/v88897T3EP0Gg0APD1D8Y8g/X+0UkAgJC2hCiN6KItODgYoBIA1KFhvo99\n+LJD7CvjAcBgcUepLQ+PSzS4K34sMx3+W8aaHyp+LDNxxwQoaLK3G2ZErAQAWqiY1Ed9qpGdM0xz\nRQHeQAjIy7uAd6GitSDXhFQ322cMjOAKFZK6CDlzugl2Lur/39OGmRnh52ut3u1/1+sTOFxTz668\npnStTBcsvIEnrTG7kjStY+KVX1dQ/xob7S1HiObxCaSRlaVrpF3vXcD942QQBwUquYRBQKPRvJxd\nNTY+CABOGdF5MaFCHLV7Ctsuf13gKPLcT40AcEeKWqPRzNHAnGEJ/TechMtXgGtaWXFFn1Bxh/Nx\nGxTaWm9LCWmihVaK7h+jCFcrIxWCKX3aOzgzY+0zBgpHxiq53S+lXvEw/yVTsWL/CQCI0wTVml1K\ndWiCxgEXW0NkYo1Gw/2cuC2PaKbXVf3fnYqxdysmLej+6t3wKiStUKBCz3Uf1u9V+q233vIuez/Q\nA5YAddkBAEEQS5Ysefvtt9944w23200QxMiRIwmC0Gq19fX13DZNTU0OhyOgpsDqCVY3LSTar/zV\n8XUdnGxeSo32fhoJt+ykaACQCjDfnievZyOnug0Asstax8QruWAEq4vm3C8dHCYAYLR5jlaY7koN\ncX64yvX9O/MGtT8/Pz0ycPqAkAPFLXelhmSXtYZJSakA83ZILP+mdNG2S96D/MaosLs/zgu0qCqT\ng9pbem1X8JxP839tCsFuGPfWOX2LU9/i0MjIvw4O/6HoF3ENRpsnLUx4oKTFe6Nl//ej7wa+3UX6\nFufd6aFcT9KmozVr91X8e2+5EEcf2F54tNz0vzMGIYF6g62Hxiievz1eiKPfLB7gPUKewaYLFnLb\n5Bms6RHS6R9e9PWezflffouDLjU6So0OimZ1wcIak6us2RGpEN6fpfVaIwB4Zkrc/Vla9f7XGt5Z\n2eEnJ6hFAHBHinpojMJgcYesPlLX5gYAXbCQG2Cnpk0AwDht7toSp77gOq/sbwBBEYbhgyx6Cf+P\nQ/J4PJzPzePxeDxXPELl5eUMwwBAXV3d+vXrH3jgAQzDAGD69Onvvfeey+UCgM2bN2dkZAR+gqYO\nRCoE3jgi7xPeTZSdk2J25TUdrTDrgtq/xHEUBQC1hPDdSylqb+9eqLdOSArON9hwFJGSOADc+u4F\nzoT49iF9nmfKqbYkPn/ixUNVr05LDGKsw5RO38YZjiKZUXIA2HBnQmq45MkJumcP6LlVeQZbYWN7\nB3thoz3qmWPXdym4TvUvLzZyUWGBQ6nRsWhn9TU3U4rwZvsNc2MaLK5Hdxbn1duSQ8U4ikQqBL5r\ncRTpEyL89/flu/KaMjae2pXXxNUiimH/vbccrhocvWx09JLhEVIBtnZfxel/DFaK8NRwCQAcrTDP\n31oAAEab5+lJsRoZmRklWzk+xvHiWN/dZ2eEzRuk+fJC49LdJa9kV68YF1PYaM+rb7/pu/Ka1BJi\n2taKRdsuzflfnsHiHhOnvFBnNVjcmVGyTn+dx6B36fOvLi9ZNeybxQOGxshzqttwFGlzep6eFJsc\nKv62wIijSH93BSUP8xj0mETBeroM0OgAbekYo8hzU+Bng7R3797U1NQlS5a43e7U1NTU1FSvTdqx\nY0daWtrgwYMnTpw4bty4v//971z5kiVLoqKihgwZMmLEiOPHj2/YsMF/8q8fbwCC1zJxCx3eQRyG\nNveSL4s+P9+gkQsAQEigUkH6ZjPwAAAgAElEQVQno2g5g6SWEDnVbWPilNwBuc5hqQA7WmHStzj1\nLU5uzAcA/OP7us0nai+tGPrN4gG6YOEAXUi8lHEWn/Ee8NVpia9OSwSA+7O0Y+ODUjWSwgb7R6fr\nH9he6GvYvLF/3fDzVV30AOCkmG3nGvIMNk4hV0gxrMHiJpYf7v6AN5arW3hcG7RTpn+Y6/3taglh\nclA3JP4wp9oyMlY5LVW9ZEdRulYGAEIC9T2y08OESnDL82PeP1mvkQmW7i4BACfFvPZT9fr9equL\n5loz3isZEyycMSA0XiUS4mifUPG0fuoJicHsK+PfPFYDAFISA4A1k2NxFFEIO3Hdfzav39yBmkd3\nFlMMu+HOhNkZYSceyzxaYdpb2Byy+sjWsw3PTIn7XPJNaUn50BjFhTqrUkTsLWq+JTEIAKpW3GrP\nb499dVV9aXjjUZamAIBQhV99Iq6RBACFjfaZA0INFvf9Q7V3pKhfPFR5V2pIBGVs1g2jWhvx4HCE\nELiqCntyMZs+eaZnV50nsPCzQbrtttuKfok3EHz58uVnz5795JNPLl68uHz5cu8uBEFs2rTpyJEj\n27Zt27NnT1RUlJ+0Xz8Uw3pddt4SbgHHEKu746uQawbVmFzcS+TvIyI/nN0XAKwumivxRSrADG3u\nzCgZ95K1ummri9bIyHP/HDJ3UFip0c6djjuj0ebxOgxDFqymmutr1s329at06MTuEyZ+8VClweIW\n4lf6t7t5d3sZ9kaO96W/t7CFe3XqW5wTkoI5Z533aJuO1kz877nfNbCq1Ngx8P3qjE2cgG3nGrjR\nnb7syms6X2utMbuQZYcohs2rt4lWZK/5oeK3JL85UNxy9ye5T0+OvT9LCwDpEVIACJOSohXZRytM\nLxyq/Oh0PScJRxGnh9HISH2LUy0hakyuYxXmt2ckL9lRNOyNnHfv6fPFglTumNwlTdVIHhkZCQCz\nM8Kevz0eAL5/IH3l+Bivf69DlgRf+oSKn54U+5/pSVyjJ1lF1lZWnq+zfji7ry5IpBTh0qOf/nQr\nm6aVbjvXoJYQVhc9Oz0MADyN1VRjNQDQpjz7hdXWU3utp/bSNjPd1gIAVHN9V2dcnKXlqmuiu1oj\nJyf3Ce7jrmxMGu8x6FGRhHXaKv85/poXkzI14sqQa27GE4AEbh8SABAE0bdvX85T1wG5XH4zmiKO\nq7/HvZ43jYw02n7xgsBRxGhzRyoFRptHIycBQCrAOCticlBKUScDuQwWd6RSWNhoi1QInB6Gmy0J\nLkfWRioF+hZnewY8n/c+rgrHQ6O0qz7m/Cr1rzzoLOuYvmVhZviHs1Ompaq/LTByzkC4nNDI22ai\nGPZ8rTX22Y6Dw7y/8d97y4/rzQBwvtby+KhILr7Zq8TkoLg20+8HlxjpfK3Vd/BpqdFRY3ZxMvQt\nzuxSEwCcqbEcLOkk2P1AccuB4pb7s7SFjfYnJ8S8Oi1x7b4Kr8v0OvihqOXEY5lc+7hk1TDOlnBt\nnY9PG5ptnlXflU1Obh+7QzGsVIB9Nq/fHSnq7LJWtYQYGqPggvKVInxCUnDFk8O9R57SR+U7TA0A\nMqNkXGdkqkbCHa0b5Wsmx17549CHs767/4fClil9VC/dGQ8AiEQZijruSFHXmF0aOWl5bgynGVeF\nU6am2ucXmrNfpFpw3es/tXyxEcFwQqPzNFaXPzSIcXZyiz+c3TdSKbC6aBxFKv85vuLJ4VISE7Ce\nKjbIXVcKAO7aUgDgGlvdwLpdCNGJp4En8Alog/RHxeSgUjVSAChstHM2hjMYACAVdHw1RCoFBotb\nIxOAj6PPu6rGfGVkCbfW6WEohuVsD44hOIZQDCshMQCIVAgBIDlErG9xlBrtg7Qibz8Qh+aRV8X9\nhhOqcJamnBV51tM/+K5lPa50qmJojJzzsUgFGJdjhns/vnCwctxbZwFg6e6Suz/J9Q55GbXpLLfM\nSTXaPEEi/ITe/OXFxtePVKdHyL682DhvkObNYzUvH2vadLTmmN7MHdxJMaIV2Zwz0FVV2Hb4GgGT\nLv0W65nHrnXt2zHaPI/uLOa6XgAAR5GfK83Jaw8K/3XAZGlb9u5rMQ3PSEi0sNF+tRN1ZKwyv8Gm\nb3EuztI+PDxiQlLwP0ZHce9iq4v+35lfER/spBjOiutbnN6mqteFxdWKj07XPzQsQiMnxyYovTtS\nDDs7I6yfRvLA9sKHhkWkhku4Fo9aQuAoogsWtq4f7XsilvpFFx13rtzlWd6j9UQt1WKgMAJ1tnmb\ns4gy1Kkv4NrfQvyKJ5mMSLAc+cp2Zj8wtWRUGq4Kj3hyi2r2E7IR0wxvPCodMqV520vtwjwur3Nv\n4cAQZe15rxRPYzX3dNhk4Z7GGtbtcpZdQASSjV/93L1OvgPp5oU3SH7A6zErbLSFSUkAwFGEK9HI\nyE77YzrtpegQocdtwzkDva+MSIWAC7UCAI2c1AULNXLSYHHrW5w6ZefZ84iIBHd1kTA+zf1Lf73j\n0qmqFbcCQIJaDABKER6+5miNyWVyUCNjlR/n1PcR2hdtu7QWm+xwuqfajrE0db7WWmq0c37CnGpL\nTrWlsNGWFSMvbLS/eKjyP9OTIxWCklXDHhqmPV9rPV3nWLq7ZODJNyfYz4yND8qrtzkpJrusFQAs\nR74yvLPyo9MdXT1cW3NXXtPPlW0s40IFIY7CV65x9QFwFPm2wFjYaNMFi7jrlh4hPVNjOVj3r+HO\nfOu55XMlOSMlZ+UkKkZZpbmqw+6RSoGUxLacNWRGyd6ekcwVSgXY5KKPT5Y1zd9aEL7mKAAUz9TS\nlpa64vZYxOXflBptnsGvneb+5IYbz99S8NpP1TVmFxc4btzyXAedAEAxrC5YeO6fQ0bGthukV6cl\nPjIiEgAeHhbRtG5UZpTMe7u9zdYOjZ7WPf2AvVKvOlSn7rsAncVnuKYJ1VxfHZTy9vE5rqpCy8+L\nzAf/hcf0o5qq4bKPkYNqrsdVWldVIa4UsJQQlSgBAFeFC+PTxANGOQpPaR55DVOEGLe9xNJUw9v/\nanj7X6ynDQCav9hYt3q6vsVBNdcjGO6uLSVdVhsidOFCxmZGJXIA8CQN2559AQCMl03a1TBOGyYL\n7lB4o9ID8vyu8AbJD+AowgXILd1dckeKmivMN9ig3UF3JWqLc6dYXbRSiF89BGRkrOKhYRHc8lMT\ndVyQlW+vj1pCAoDVRXOvJyGOVjw5PFIh0Lc4m+2ehGBBpyHmuCKkLXu7ICoZkwV7XSttP7WnY7cc\n2x3SWjoyVvnpvSlPT4oFAJODenxUVKnRsWrf7LsEFwFgbcvG2ZaD1lN7CxttDw2LOFjSGqkQrPqu\n7NkD+jeP1YZJyUGRsil9VFzPRIJaxDXdmu2ev4+MnGY7FsKY+oSK3zxWs+HOhB/LTPoWZ6UNcWFC\n30BzDq7v5/Wfah7dWbT150KUHEHba5wU433vw+UeIyfF9N9w0uNscTsaNTJy0bZLRpuHu1b6Fmdm\nlPxohYlVRb484MTFSmFq9vE8q7bN6YmiDEv2L3IUnrrz/SsRz4Y294Y7E/qESjp0sKWc/ajo1LF9\n8q+8eXH+n73vDoyi3No/07eXZDfZ9EoIoYYeQBQQRbChXFHErldRbNcuXuxevSqWq1hAURSVK1wR\nFBSkSO8BAumkl022l9npM78/ZtksIQH0+qm/7+P5K5l59513Zmff857nPOe8x28ZsPLFJw61hl/7\nseKr0o4Hv63Z3xxSZ//iBXsPtYZxDDnmpH+q9k7qYxU97d5v3onvMN1CxV6Y+OPDM4wq22agsJhv\n/d7VfUdnmXpUu8iMEwBktkuePqUwMZ7WO32mbctz19Klm/nWWtSYMDwJRQiK3vuDFOK4pq8Re8qp\nUz9TfUCTN8gwcopx4nC2gUG1ZoXvoj0LVrShelPC9Ll8U2XD/eO1g2TTBZHAz9MAgDt+2DByyv3j\nM0V/p27Qea0vXm9ddFunMeuFDQ1HQgQA6IdNZgdeNJCvixzZ5l3xZuzljFfiqEA1XT+W4gV7H1lT\ne/Ybu5zDH4hzBukPgCgriTriqDN8aZFNnZRxFFFXcAYKUw2SKCtuWnCG+AEOg5sWDBRW8djobv2M\ny7HcPCIqW3p+Sq7qGxUm6WMNVMmDM8THr5cvyLdurPH5GTFBi+FYDzMRmZbv+26RfuQUTd6gWBjJ\n+fa9UsiLavThvT84375365xBAHDhd/f6qo94IkK+TVvx2GgyLb/Et1kylKSl+R/Pfzq8c/WO2s7z\n0ohDbeEBKQZRVt6b0ffogYMWCp65OOf5KbnxF33S97kgiGYNnpKa/NoFiVcPSvpkX/uUwkRniP9k\nX/vhvftdppxVzDuqwyF0Noue9pbnZgKAmxZGOTdrIh7JVd/y7A0Igjd42cTKjTEnQI0Yvb+z1WGi\nGg8uCOy6aUph4txx6f6HC4YdWQoAzhCXbCA7OjyYLS3dWL5jDwqUroM33zNEur2ILM28+OCGtRFB\n/uyAUw1upVsoE8J9UVjf/cFROmzjx1ll/9Hg6MGymm+SLm0deaPWYCxesPfyRZMmpOJqfljJ2/tF\nWRmeYVQTg0RZ+faoe+ixL+hDm+HkAIm6I4lKvsUrnmWWPpWVumtM2q77hp+6agEAvuUb0nGRwnd9\nRKX11L9vH5Ua8298q98LbPwi/rMyS6tD8v+wxDLlZlxv1hYMY2pKpYBbDuVRlmbMkkSXbm58eLLr\nk6c7PnxckcTw7u81fYamPvoxppUih6owbZrM98ChpT76cc47O3GrUfSVoFSS6GnHE1JQjf6Vi9Nl\nljaMuDjzlXVY89Gnb7wQAIIKhWr0aU98yppTHvV96V31DgBI/qiJbXryso92Nd3x76hDL3raVxzu\njF3Iz4inEW6cw58K5wzSH4N0C/XpPue0ftHkQZUrv7AgYWy2udHHbq/3L97ddtlHh0VJUVevZ/OL\nUpfwYU6KD2JbtHi3z2pwdEiaoSXABTipR65GUzDUcd+/qMxCMrNQULkafycAsDUH8cQUhNRo+5eo\nHE5S+0HW22FuK9PjSmGSjsosRLUi+/NRn91CajQCSibvWJL/2R0/VHom9bFOYErRfz+7svmx/kxt\n7FqKJAa3rsQx5KbgD1p3/V8+m6ZJ70MI9Ogs0wMZa/vgFZMOvYOjiKyAj7D069y9Y91aUVbeefj+\nziVPR45ss8qhyk761vLXCsLV6bhXkUkAaC/b/7b77U1Ho0XNHaK3asEDO+oDr16a//7+SIiTJqaH\n/jW9gPA2Ta1dCgD+Y/suWXff542PEQSJysrF7g3GoRN5GZ9tOJ4qeQ9Zin1VR1bePODWryoGvrpn\nd2NQg6Md7z0cT6+F9twm+ltNYy6bwJTi+UMz0OA363cU5WcdHXFHOhLcN6c/ALxZ2Ll5GvGPaXlH\nnXSDKzxYQzuM5BMrJplpZ27nQXrj566lz2kKhqkPVoVNT+TbtBYtzjVVHr9lQOy4e9lLqqxZ9LQ7\n333wjC+G4N1PJE+UhZOU9zId/XfRNYWTdR2t/7gJALiG8sDGL7mmSrb6gNqAqdibMH2uFPZJQS+V\nWYhq9Nr+JdrCEXxbjeO+TXiCQmUU+NcuFlzNMs/ph1zQ9MhFqN5MJGUAAKrFFR4QjV110XqEzLqo\ntGKFYwVXM+HIxixJXFOl5HeherMmb3DWgk22oqEAYCZBooMAENQ7AADBcAAQOrsSxVhP56G2aCJz\ngGY/qjnxrGgh36brFiv9RUAAE+Vz9ux3wjmD9AcARxENjm6v96tppwCAIYifEeddmHXlQPsn+9rP\ne+dga5CLVyefTdjZGYz+bFR1LwDgGGLW4Kwgd2NyJvWx/lTt7a2gMqrRm8ZfDQBURiHXXMU1VQZ/\n+kLXfwxTfRAApKCXyuirLk4FvQ33tc76+SH3Z8+LnnZEozeOm5J859s1bMoQO7fgqFwSOogAFCbp\nZg9zXJMl+9ctqSEzLI17FUnkGo5JIS994Cfn2/cmaxQJwS7l9rv7X2S/7QUp5AVF+nvuSr727fOZ\n1Z0dHQSBE7IQshdUlx4ofn1vK2EP7/5O1hrHJfKdDfVB0kqyAUrhj0MioBi27h3npU9Jb95U+fj0\nyiNHr7b5kZ3/lrztgxKRWYNN73VcN5j5uPnpq+kDG9tMeaPueZdb+77014WZU29IybCjmcO/K7oL\n1ZloljL88GKkbHurYsAFxqLBZw9zLLm235bjvjQ9oBq9bsiEmJsi+o74191IpuYBgG3qLVPX/y25\nebejsP/BDp4kycEGxnLJLe4375TXvntpke3SIlvzZ/+4vvSF+4cZAGBe63t37ntCWzhSpoOGERc3\n/m1iaEd06698m7bmiRIA4BqOafIGq76LTAcVSVL101zdXkBW0odfO81bITNOTJ+NauzxvBkA1N5U\nGPPGnO/MJRIb+cbdiiRaJs9u++etrf+4qfamQvrAhsCGzxKmzxU97ahGDwDJc15LvOahhOlz9cMv\nAgAFUG2/UXTp5rzFh5Nue8EwckravGXJf3059iIBAEKY5EjvO55IEe2A8RLNCh3VVGZfKqOg+akr\nmcq9mMUOAFRmIao3aXA0gJsUgd3fHHr3mNQ363PR14knpqjrpCi4SIx4DPhDInRVQsm3aVVq+tel\nixEYFWL/XGVE/hfjnEH6vRHmJA2BOkxkrZuJBQAAwM+IqqEKc9K1xcluWoh3Xyw9pS52w9xx6cMz\njPEsnCp5CLBi/IUAYHSWGQBGpun+Nb3gNB2iepPQ2dL++l8Dm740jJ7GHT+srnwJRw7fWis4G0KO\nIveBn8uzLhQ97aK/k7CnK6wLM2U0c7Y3LiT/fscVGYFqMi1/e86OZB063dRhmjBTuvQBqqM2tGOh\nb+0zzoX3+1a9a540K/Lzv7dqBo0P7FbS+uGWJJBEmXWR6VeSKdMwLVK7b+cx0WKxmARD4kip7vUS\nclo6GkR12zIvn6ZrN25cuG7gHCrQnq4RRUefLdurj9oL+1x6XeqFf1nU9/7Q0r9foWtsJpLn177U\n8ty1Dtz95tEMmxZFAHyr38seMfZl+P5W3e1DC9KyZz9su2KmwVbwz/lzCXt6IdsI9nTu+OEJxQXp\n2Vn0gQ2fXOYY+68J/OZl6b4KTd4gXf8S9+cv1d05TOhsRiBHaK8hkqFgRZth5JTGCx++qGW1ve+Q\n78rdWgLlW2u0RSXJcy/GrJ0DkjVPlZhZVxtjdKRVrEMuvZ8p35k2b5n5ohvS5i3T9S8BAJnpPv2J\nnc0JV99PH/gJALjmSk12EZmSLXQ2M/W7NIVT2Zqv6cObuomhmcq9qi5RZloQPNnz7Udc036Zpdv+\neSsARI7txC1J/nVLvCveVAROk59FpAdDB2cTDrOmYJjgbCCSMsyTZrX+4ybzpOsQghI7mzFrUnz/\nmDa6lsLt6eaLbkQISvVa8LjUV9RgSXnoQ5RMkNleE48AgEzLl2mBaz6CWZJ0xRMSps/1r1uiGrPo\nvbxyQbtibI8gyw91qDsnSX4X6ciR4gwSHnar5UsAgPG7IyglyoqfESs76f7JemeIL0zS/fOUlDJP\n+MzFOM7h98Q5g/R7Q80KiqmhVKiLO1XbjaPI2GyzOyzETkmKcjbb9716Wf60frb4+jE4iuAoEr/p\ngAqbnlh3x+DBDs3ccemn7zPtiU/Tn12Rs3CPtt9IRRIVScT0JjwxhWuu4ltrAlkjbJ4qc3YfzGLn\nmyoJe7rM+1AyoZ5JsiIdptwibeFIy7TbpZA3vPcHmaUd97xx+azrMINe9H6q7ac47nkm5eFFxvFX\n+b5f/JZ1RjbfRuRGa6nJvC+8+yem4hiaaMynj08qSsuxG3OKBgx/+uOiTS/3S8TTPyqfHx414fAH\nVWRmW/roAqHZAPyQgYVFYgs3YEKKzTps9t1HeEtl7pSsXR/lDxtlwSXD0El6gXaYtISv3VByqX7Y\nZEt231yKvXxoluosKkIQIUwAgFmThvqrtedN5poqb542OpGUW/9xk+ffryff8izWfHTYvg+o7P66\nQedpC0ckXn0/feAnhefMF71GpJgAANXoK6xDXhzyMma1u2mBsiQylfu0/UZiRiMgHrZhWYbiO4Jl\ntPWZHNr2n5wrb8n/tFJfPEFbOFJfPIHKG5x8zyVS+AtF4OrvHhX7FgRXi7bfSEWSFNov+joxS5K2\nqISp3Ct66rV9LuTqgu1v3sA1HJPpYMxpC+/90bfmAwDwr/+EqS3T5o6k963yrnqXLt0cObbT++8F\ntuufcH3yNFt3JLx/A5Zg0eTdyDfpUUom0/KzXtuQ9tQy+y3P5n9eox82GdRUU/NJqaaKIgIAAjKC\n4TGXqBsQDDeWXIpq0xWh56qAihBEcBOC4YpACW0HybR83JKUeM1DcLJhA4CXkYlT2WtiPIEssKje\nJEW6uq2ub42pSf0h2p6c7KYF61Nb9zQG1dXYkDRjgq570t6rP14uK+fq1P2J8Oet9v2/Eg1e9sFv\nayxafEiaIV7m5DCRte4o5yC8OuHzA85DbSGLFm8JsMPSjbENy8+IGYOTxuWY1b9VtifdQv1Y5T1V\nRjWlMLHbPhe9AbckAQDhyAYAzJggetoJR7bC0qKnnU4pyqGdPkeexo64lz6f+uhHEr0fIa3vX1eC\nSWVEUkbGC6sAgMru3/i3iWRatAautk/f8OEfbNfdKdONRPJEPMGR/dbWioc2AUBiWrS4NVu9RZM5\nKrxnI5XleIR2modP0BdPQFAc1ZvE7AHMsZ2ZRrJtwZXNT360LeNyHUEO4OsRIClUxiTN3JFdcva1\npnEXPvFVoiNVkUSFpZnKzWUjqvmO9sSrplqm3KJIomn81V/qo4t9hXOhlB0AjGOvILOJUKARABAM\n1w25QDdwXMeHj+cuPvT48MnBzcupvMEIhpsmzFQk0fnWnUQKTaYP59tXqP3cNSattuDKjAQ9ABj4\noOh34ZYkBKWkQGZg4xLKcMk6JnX2kMmZd97U7VErnBOlWJ7hwnt/EH2dQmez6pIKzgaEoAwjLw41\nlgveJv3IKQDgW/UuZiEQwmS++G7jWJQ5ttP//WKZpWWWTntiqehqJtPy6QMb+PrdXJsz65+liLaB\n3l2b8cIq//eLk+e8RjiypZBXP2xy81NX2m76C0rZLRffg5IW9fvqNjDB2RD7+lQgCA4ACmaIWfFu\nkDkXQloBANXYe/OQJLoR1WcBgEwDZibivSL1rYvBJRAOS5Ja8NBhJFOf2k5wYdfS52quy+nzZX0Q\n1QV9PkefqChR8ruL+xhb/Fxhku61LU2qKuRf0wu68QQq2vxV6daiHod3Dr8/znlIvytaAuyqoy7V\ncYnfswBHkfhSzQ4j6aaFwiR9i5/TEKifEc+yCsAAhz6mOY7lVzpDnOp7/TeIxgMwXJHEaEjZ1cIZ\nkwDAkGAzjb/aOO4KIiWa1Z+bkhEfsUAwPPutramPfhy92dQUyR9GKasUF1rwvTD+KJlrSLABgLZ/\nifebl8mckYpAoEaCrTlApuVjxgQ1E0VbOEKVnCEYnvnKOh5QNy28ZJltGHSetqjEMHqGwkXFV0NS\nDavKXCnDxpNp+VRmIZUzQOhoDO341jBqJiABtQdU3zWZypwL1djVm8XNGYjCqvbAPGmW+aIbbdc/\niVuSMGOC9fI56hOI9qDDZZrHLbnKCV21TU+Mzop2a0i0y3Qg+gxRPUhhz4o3g4a0WEXBeNCHHtEN\nfgnF2NCObx33/cvz9QJF4JqevEwdJJXRV+5oEFwt6u0Et64k0xwoZScSM6jsQtfS5zFLkuhpjxzZ\nxlQfkOgAQlDBLV9brpjluG8JqrWjWkh56ENN3mDHff9SlxfWy+eQaflSyEsk6lBdOmZIAqznUKUi\niWRm364HxTgRjR0AgHT0Fh+SIy2YPkt9Rt3ScrvahI+rbQSPh8rKix0vWNF2auNri5PVyhoOE7nw\ncIRwZNMHflLfBEoRkmR/Mtcp1R+pnd2HD3j6plkrO+nhGabnp+RatHjNEyU9WiMtYWz3V/U4tnP4\nQ3DOIP2uUMNCqqYuHt1EBziG+Bkx3UKpYdizN0g9QpSVbjtc/Dqo00Qs+UP0uyRzMgAIjj4AYL/5\n2VhKCnpaYRVuJvUjr0U1J81lFi1+dcpz6jjNk2ZZpt6MWzNSH15KZeQoAhef7GIYOSXzlXWxf+dd\nmJ1v0243Dca0FsPIKdrCMYoUNe23jUqNj2MjBEXlDUq85iHMkB6flBODRDeiuiiHiRImRAzkLNwT\nO5swfW6Pt6MbPIJrqocTLFY8nr4oB9fqFEmKuhGkGSEU3JL0t8uHqoW3TwWmzwIEUI3eMHIKbrG7\nl71EpuWrtpzKGSC1VsssrZpDIimDTE1BKTtC2RXZl7Nwj/3GvxOObMslt4R2rNYNPE8KeVGdCUEV\nKq0fAChCz3527gcHEAJFcD2icfTmymS+tCbeZZE5F0rZAACoZJnveR9hmXMh5Ilv7ZQnE20jBNU2\ntuufpzIze2wTw22jUlXKbkiq8fUtTc4Qr0jiIU3fWjfTRDgQWX78wEPCse0yS/d17UtwpKgs91OT\nsyFucdYNGsKIoj1kbp3DH4VzBul3hRrOwZDuBFq29aQfTHwps/8SqkriN+kKAKSQV50NEY1eYWmb\nUXtx8QqF7Mp9iU7KyOkup0i0cfTVqDZFEU+aIqvuK4xRi4TdipBWzJKpiAEAwE+OqMdXKhueYXzj\nij75JvYEQdQ1qxYm6bbNHdp1XTGC2zJ1g85Dteky3dDDwISg2gkAIIQJpO41WHsElZVPpg2AEyxW\nPJ65OEfhOVSjU4QgQhgRFAOA3MWHZo9IV7fL6xEyGyZT8xAMt13/pO+7RZoTcTWEoKTynQgZdaxz\nFu5RpAhCmBCMAllSnbmUB98zT74hsH6ptt9IVKM3jJ4mcy5UmwIA0EuwBE9MkTkXQtkRjFJ60Tdr\nCobF/6uItErTyXivggWF86nu5mkuHfOQiKRCmTvdtlK3j0rNt2k/m1UEAPMuzF50TeGqMhcAeFDj\ntAU/+VBDauh4q6UvgpwO9T0AACAASURBVGKixoDI0gCHwRMRTp/wG2A69JRFlM4s6T4XZ/rdcM4g\n/a5QU4JO9Ve68Qlq5YJkA6mu8pwhrkfC4WzgMJFnI4g4SyiSCBgOAKQji2+tVVNxLZro2BQxguA9\nL/zjITNOVJsCCBZzZVTEb9et8D6Uiq6vDSOnnLFW5oEHBiEoBQCA4PHTX6zcDgAovFdd16NUgsS0\n9nB3J2JIoBok0X/GewEAUEIJ0x+HnjwkAED1Ziqjb9RdwHDM3PNeQSf1JwoxSVvaE58aSqbFTmnn\nLky+q2u/FdXxQjUOmenyNanMQgDQ9Bma8tCH+uIJIEvR9UHvqwSZdaGUHdWkyMzp5HBd1+V9qOr9\n4EalFw9JijSi2qi7iVB2Re6hJohEN6L6bABAdemnV+ItuqZQg6Pq7pE4ilyQZz3cHn7jus1mi2l8\nhm7Q8KEj2YqIydEcFOoTBwOATU80eNnTJ0vwIpNsyg+x7tO0+XTn/R3B2gDTcZo25/Ab4pxB+l3R\nGuA0ONpt7wk4pfKYyunhKKJSfA1eVn/KNhNniVo309uGaT1CEYKid39vZ5Pvei3lgYUAQKblqymc\nrCDHBh+b8c9wCd6HEiYAUHpfFMuME9VE966NBZ9O36dK/qBah9RLVCMWfkdI6xlnXoQwIfJZeUhy\nnBk7FfYb/54w4wFF4hBcl3TLs1RG395ayowT0TgAgEzJ1w+OlkbVD5scz5Vhqfmx8BXEpG4aezfe\nrGBFW6xZj2ayGxQhiOA6VOtQ2LPSuSgSDZgOAECT3lsMSWFdqDb6DSKEiW9eFdo1O36t0FnrUUQa\nwXUAgKBUt9XJaWCtvE3acXGO8LOfEZMJgfW06602kxxpSBq6/nBzo48FAJueUDiXEenZWKo4vSlS\nUdG+9Zw1+j1xziD9rnDTQo/Zed0MkqpCdphIT0Sw6QmLFj/Vhp0lrh2SvOa2wWfZmG9dEz74YPjA\nvbEjUqg6fhIhkjJUagjQ6IDjy0CcNDVjVI+LYohjxhDC1BuZo4gntFsI1lubk9pLHIKdwYuSTxgk\nlLL3FlD5Feiyc6dQdl1tWCeqSUEICiF6XRwocvQW8KR+aA8FgHoFglLQ+2weGxVKJvTmzSDoL4tQ\nKmxU/aFgBrmXJxlvCBGU4tvWUBkzmJr3JLqRa1hWvqHm3RlLf9FFVQxw6DFNkmHkB8lYS4OXETUm\nhI+uG1ymnARMiCCa7CUVADDf+miJZttpugowHWZt8hmrMKC9f63n8JvjnEH6/RDkZNWu9Ma/xYpp\nqlBTiNTqdr+asottnnRGKGJE8OwxjvwQtxbLnEuRucDP09jaReF9d586kVE5/ZNue6F7D3EKYJSy\nnUbXEG2jz+7Nm4kBoew9ChC6X5pzITG2rZcZJJ6Rg1OMpSJGAP01WkSZc6vOGYLrerNzMtMecxd6\ntcEnhof0bsu74TQmsIfGuE4Rf5uNpmTOjZ7pacdDN+DvxpLPyfQrZdbJVr+z/p3q49sPZxfrBd20\nbi35tnU99hDDkQcHIrgepewOKtDgZSWNIQe8moQkADjAmFKNhIhgpNEMAFqgFfR0BDIjhKy6lDNW\nYUBPGxA9h98W5wzS74d1NcHrhyZD72qF+Bjs4xOz1DrfACDKyunDs2cDtu7j07sFbN3HmtxbAMHw\nxNGie7fQvl6bf5e++FVN/h30kXndh2pJMl90o/p3zFjKkZYulZom5TSMnAoE052ROkO1KaePLkQv\nfUKxDXFrc7Z+qeDu2jtHZp1dBukU26Pw3tMwb6eDxEV5J9La2xNWZE4NcSGEqTcbLPPeOF3GmW3w\nLwVCWntUxClCMMq/nTXiVx69UoI92VT9oBe0g17Z/5Nl/7fNOQV1HHVx7BSqsXONy8P77459ZTLn\nOvV5ynQDpk1DCJNDyzlD/NDCnFsyGaNBd0nqP/e20HkJZCERBAApUF6HjOAip2Pb/JH2bFvxGW82\nxJ2Z2TuH3wrnDNLvhy0NtKqtii+m0Bv+MS0vnsf77w0SU/7PyNHnezvLNSwDmcMMeQBAJJ3POzfw\nHZuI5EkAgCcMxxNHC64donc/feQptX18ZknMvkp0Y7wooMcaz/Fw4gVXl/UaU4n2g+l6y2KJhyLS\nyIlZVV2zy5yLPb5IcG44qc2JaRTB9d1kXTJ7Ircm1h4hz8ZTic3ICJnQm1RMZp2q1A0hjEovj0Vm\nnKgmRR0bSGe+5R7H0P14nOVAcH2PSwSZdWInlhEIboq3AbIk85Ffo4gRvftx88AeT3mb/GNvGnbP\nomTHkEv8beHYcYQwsccXWS85zB5fpD5GuvQRpuqtbh+X6EbM1BcAtAQJADpbMhVoQzT6OiLV9dx5\nCVpsZB8HAHBt39FJ12UbutcoiUeI9Vh1qWdU0J2NDO8cfiucM0i/HwLs6eTXp0oPYrv2QU/CvF8E\nmXORmTMQXMc1rzj1LF36CEKYtIUPqf9i+izRvRvB9erCHwA02ddHjsxjKl+X6QZQJIX3+db2hxP7\nLXVdhWmJKowBMH1Wj+FuRebgROYHqkvtbbQx/g3V9pocc1K3J0QNMUQOP2Uc9VH8Z2XOHTM5qC69\nGw8pR1owbdpJnVJJZ2Qd44FS9t4MkiJxqsgNIUy92Vcl5iFR9rNRu8mcK3Y7vfFmXQlDarc92UKZ\n88aL3eMN0raP9y27bxXXsOw0w0BwvXpHihiRIy3qx7nG5WTmjFgbZ5Xr2WFvla4+tmr++vYqlznF\nlDRiVvqI4Q0Hut4QhEygcm5ECJO2zxy+dY06mNjzlALl/p/Ogzh/zmCw3TBIg5AaobMZMyUAgIHC\nlLAf1ZsBQApWTR09aUx6r8s4mvMHmA4cI0/VLHSy8j6PoLYxahJPc+/n8JvjD47XybJ88ODB1tZW\nURSvvvrqbmc3b968fv16URQHDhw4c+ZMiorSLDU1NcuWLWMYZvLkyRdeeOHvPupfg5YAl2EmAOBf\n0wsGpBhObbDvgRHdjqSbNbEdynvcuOjsIXT+TCZPJJLOp4/MA4lDNHaFdYFmEgBIgXKEMJFpl8W3\nx8xFZOqlXf8jmHHMVwhh4uo/FX2lUrAKMxZIgXID2bWnUdSZOEG4I2SC3BPXobBdgZwAkggAPl62\nkicvjKQowQUACKaXOVf4wH0IrtMPPqlmmsL72IZlZMpFmLFAESMx84mQVqHzZ9SYhxkLEEwPygnd\nc1y3KGWT6AbM2FVbVvSVagpOSn1VcIvCuUCfFX/woFfIMWDxA44ZA4S0xsuvewRK2XtjMmNKd0Tj\nkDxn2KUbThYi9tqGjTNaGoccqu7huvFid41d5lwx3lWW5GC7lz7yMpV1bW+qccyQK3RsJFOnhvf9\nFaHscvi4tvAhRRFRyh7xMyiGaoxU85H2824d0XyojfYzzYfaCifkAYDBppcl2d8WtKSaAEDX79Fo\nh5aBXONJ29VLgXKm5h3cMhAAZLadsI8FgER734+moUKHnT1+WJM3eNd9EgAAFzX2CGE6fTJcpXNr\nccZUOCVEdNAr1ASlZfXM6glWXoqkmPuG2J2n6eccflv8wR7S/Pnz77rrri+++OKZZ57pduqDDz6Y\nN29e//79x48fv3Llyttvv109XlVVNWPGjOTk5KFDhz777LNLl/4arc7vjxY/l24iAGDuuPSzdHc0\nBNrgZdWqP918kV8KwbUDTxgOCKYf/LIYKJMZJ9e0HAQPADDHF2ny7ujW3jj6E8J20n6AqNaB4DrC\nMYnv2CS4d+iHvMy1rIpvILp3E7ax8e1F1/bYcps+/DhT9SYAyLwP6VLi6Y0I3c50lx3KrDMmAUC1\nDpl1LmMmynRjzKcJ7Zod3P4X+uhzmCGPrfuYPb4o9tktHTyC65iqtzRZswAAswwUPPvgFBD2cUJn\n1xaiMucCBFdIezsjN9KSm5PVa5+qRX75KH3UH+XHJAVYSYnRZShh6lXGFjNap/GixIjKOsZ8jtMj\nppmGE4akpzZxlB2Ky5GWwKYLu7U8idbDdIoYEVw7uMblonc/F+JJiqUyZoi+UjiZp41Bk3ur6DsU\n2DJVW/iQYegbxpLPwwcfpDJmAMCnd64sXX1sye1f//Daz4OmFl4+f/KgqYV7vjrk6Bt9AQZNLSz7\noQoA/G1dbhmCUorMKWIEIUwIYVJ4H9v4ha7oScyQJ0da5Eir6oWrInVt4ci8JUdRjT5WqwkzJkh0\nY4yE7A2yLNmN2QBg1ibHH3/mcNhKRRd/IdZj1NgAwAvZp+/tHH4r/MEG6emnn96/f//dd9996qnl\ny5fPnTt39uzZl1122RtvvLF3795IJAIACxYsmDVr1pw5c2bOnPnCCy8sWLBAkv4/yKNu8DKFtl8m\n4lLtlioBN/zaPCRQ5xGZi006+sEva3Ju1BY9ibV+xNZ9jGpTUK3j7j1BAHirgl7dHJ2CT7UTAIAZ\nC0T3bgTTq0o8ULrma8GzB088ycnTD/tXeP/dEt0IADLrwgx5kaPPqykvagOvpMlAO1oi3b8+ReKg\ny5WxC+3rvxfO35v8TOTYS6BGESyDTOO+Ngx9g0y9RDPo5XDnbtXyuTl5QTl9KJKo8F51mU/YRku+\nUqbqzdDO64TOn+NvBKVs0fi5IrHV77zA3vXK0fCduwP37g3eujMgKQC4mal4xb+hRHDtAICNzmgs\ngTgRz1vdzL58NNxlbE7mu9SPVAVFiI8z4XpV6vbi9909e5ltj061pLU3w3bSU4r3bHqJtKnltKNP\nUuNgjy+ismepFBxT/U5o53WBn6cJ7h1dRKsuXY60sLXvAYpFjr3UUdNhSgju/nkS27KOb12j8rQK\n74OTy+3oBvzdOPpT3FqsPgTrlIOEfSwfESJ+JuyJWFPNIifachIAIGNQCgDoLNG6JOmDUtoqOiJ+\n5o2pH6lHIn7G3xZECJPo2Y2b+hG2sULnz4oQRHXpuLVY9JUqiqi6Pri1WPSXIRgeX1ZKof2oRicz\n7bGc3N4Q4tyqseHjnpu6EAnyUZ5clDjVXO2U7ubPYkOyc/jv8QcbJILoVc2cmppK01GVKsMwOI6r\nlN327dtHj44u3s877zye53fu/P/Ap651MxnmX+zl5Nu0at7Sr85DkjlXeP/dVObMbscJ22hE9Hei\nmbp+j75ylFatQjsj06IMAJICd+4O0GIPP0KZbccThgMAYR+L+/fGjqs8XnxLTJ+lG/QiU/m64NrB\nWAaHzENQfRZXvxTVpKxu5loikqTAeOpoa6S75etWMUEKH8/XS61IpqKIMucS2taSyRNjjVc3sy8i\nL/DO9QBQERCnZ2pqNeOc/T7Y4eIBADMWRCr+iaCUseRz45jP46+i6TOHrX4rfPBB+tDjP8kT/RJV\nF5a+PM9yfY72b0X6eaWhgGHUkeRHzZO2hNvW8y2r3qqgAYBEofOEqeZlCHJ8zJmr9Fdtatul/u2L\ntMky/3mtf3vFFlAkGaJPso3xBCJtrlBDiPUwQmjn8a+6YuYnqMWz0YNANBrXZbZVJlARgkLHpmgD\n3hdf8ALVpVsu3KY6NBLdCIpoHPOlceRHQufP8SUVRH8pZsiTjNOw7IeFYF370ENbl5b7Ghq4xi/I\n9CslupFrXUOmXNJtMF2idoAvH1zdWet5ZcL7/Sbk1+9tLrow/9lD0W1tLamm+9fc0vUpDMUwtLPW\nAwD/mffDjk8PfHrnyu9f3kzYxrINy1BDHm4ZSJc9TaZdCgCoPksKH4+Z/4otHc3HuqvYFS4CAPKJ\nmoQI3t1O+9uCzioXAMiypFaxo/muehyq0SFPLDgYIZRoiD6ZmFt8Dv+j+POKGp555pn169c/8cQT\n8+fPf+qpp1555RUMwxiGEUUxOztbbYOiqE6nC4V63m3lT4VGH5uf8IsNUs0TJYVJOug9demMiBx+\nSjfwWSLp/FNPifkvza0f5uZkde5mJYWXFRRBAGCjk5vkINe3dSesGmmJLPmGypwBAETS+bhvOwBI\ndGP4wH0qsx8PXowgunSUtEbKX1pwdMmrP15OZl9PO9eDJmlpHVMeEH2cnEaJ3ggNAFL4uNoVU/Vm\npPL1WBgDIUxy9h1ZRq2blTU5N3L1S8VAmboYV1EREBN0RtO4r1si0qvH6POTSaectMSZ+srR6Gxl\nnXJQ02cOIJhqL2tD0uWbfQe9AoJS1OgvyCEL9MWvHkWHzS3UkSiix5GZ2ZoLksnrcjTLfJn/bOuP\noNRN3gc8HfsAQFIgS4+FRBkAdrsFAEAVPhbI6Qw1fSdM3lq9lBFCr6ybVnvo7xE+xMiwv/SZhc1R\n2nDJvr9/2Lj59fXTx+Vff/8+9stjG6o6dlR37Ayxnio2+hqvPvaeLEUA4LNdfzvNNxutwKQ+Jcoq\n815FCIb33823rQvvvZM+/Hhw12y+dU18nEl9qmTapYFNkzS5twIAqnVYpx7rKqmA67jG5VTmzLcu\nW7L/BwwEtzu5TjGHg/xYbdGTmpwb+eYVomsHfjKd2w3BjvB7Mz8XOXHQ1EJ3vSd31ElVUxMyLPH/\n2vMS9yw/dMFdoz3N/oOrjk64q4TSETSX07y/HE8oRnXpnc2U+vZihjwpXBf7YOma8up9lOgv63Z1\nVGeS2faoQTqFIP3snm82v78LAESZx1EKAGRFajtR8Fv1kPRE1CCxQghHKasu1YJ6Wuhfs9vsOfxS\n/HmTkNvb2wOBAADo9XqGYVpbWwFAURQAsNu75Lk4jvdG2TU0NMycGfUMEhMT58+f/z8+6N7hC9E+\nzxmqPfaGbbfluzt/Zf0STEDCIUoKOqsjSD99l8fTySNIwAWQXt3mAiAB4HCzywxYi59vbvdvbibu\nShcWtpA5EHCQiqTAfVXUu4XcvRXUo9lofjj6I5cjbTgi+/bcF8j++34u63ynU1LALyKJhAIAH++/\neXTm9X4aFcNR2/Dkf4ZjqH1S3U4KLqp2iQEBBhCmSKjD2dzBlN35sPab93XvKYkTlcwClk+FE9s1\nNZpux4IMI4KbS8FbflQMA9aUN4234hhKMDJCiDiqKO1c+s4O753pii7sYlmC5uGiRKWipcOKq7fs\nBIA1LiwoIawED2XJh9v8R9thjRsfYpDGWKR0FE1gwvOzwOmMLqiTARporJ9eqW3tACArTXdBEI7V\nV4mCvdnHvRem17mxMYawFD7+MVo0XeMEAI/f2Ure9X3ZZFw0O6ikfT4fKKFWJc3butYvyu9tvH16\n/xdI3O5jW4TU71H0sEk4HjDcfOD4mir3pjEZN23ztdJly8O8+7j7QD4W8TZXH2vb7HQ6m/ylLYGy\nMVk3guBhG75yOa1I+CgjBNBItaybzHsq9KQVCYqdZcdTrf8Ssx5S9IUgeAC3QJKEVz/W4YkAnMzm\n4SVI0eIejgMgPE4AlB+BPhOy9q04nHfexFrYKNsCzc7xiawdAIimNbJpaLgzyii6XC5GCKIoRmHR\nFNTdlV/r+5suu3mCLc+K65FZSy5z+06Xx6NLIasW1ZXcNbjfldG9SzKCyd+/VV6z5Zo5V/siXuaL\nhdfNHtUiMCLtjuToGhXT0JDTCQCRUMSQPyJw+Hkx73kFN6ORGgUlJUkKdrZJNm/AhEPIKUUQrL0C\nDF1UuS3fIkuS0+msOnxsoImtry9vcJcu2vrXO0cuBwBXBAUgAoEAAO50On0+r0WbelPxR09WtHb4\nzU7iF4cGXK7fPp/sl+K5557zeKLJvw0NDX/oWM6MP6lBkmX5/vvvf/rpp6+44goAuPXWW88///xx\n48YVFBQAQHl5+fDhw9WWLMtqtT3Xls/Ozl6+fHmPp35/aLVeuz3B4TiDLKpH/KoPAQAoQpBxJesc\njuUN7I8d3MdjzAvKadUV+Otm36t97OCGAGkhUYaXFY3ZamF4SYFvA8ilOXiWnXzcJr9XFZnTV1cV\nlAQl7NXaAEJGi9VhjbprbKTk0axv9WkTdhID17QxM/vZywPiU6Whj0cy83bvMPBevUHbHPZK5v7A\n7pQRgsULE6GhNXJY5jLXe4YAwL2DB2Yfb+MEdn3qe4k05uz7QpG5S1FYF5YePxhiJWVOga46KNqT\n9SJ3W4DM/rLS0sdckWAa1RqRxqQDK0ETBkdY7rkhRgyBMcC/U0nfWGB47Ej4BvO7Vxc/8WIZc0u+\n1utmUQKcvHR+rulAOW0ikacGEVuc/F4G7u+n05ysY2zxld+Z3NFIlbzcxA20oM2Yra8h8lRjUp6O\n2xmgrs/RXoDy7a724+jg42EYhOk7Gfk7bgYAcHh+wL+BM87eBvkppL6FbvHq85NQNysHOoTDzfoH\neWWXFjOUykOzwo9W62aHEauCZm5r/HikIWlr4/sawphsynOGy/saRABoZnb959hzAHDhwBvQig+Q\npMkhIpwz4K4v9s+3kEk2vmxP/Yq5E5e1SfiK58V7l8xOzrtAfWWit5HyZS+vRlovxx1K6rFDHxy6\n4JaS7zs2p/dNP0paRtxXxG8W1FeX7hhNpl1J2KL9t9Y2/xxcRFcQY9NuoQWfr4zfZ/w+eZhdOzBH\nJiSHrVgdCCOEtHE1k8oD4pJa5tVhRgCwnG+N3MFn5mXEztqm2NY+vdVRkKBDDB/dvmLKI+fv/eho\n9da6osl9Cq8yYnqtTv09SAhFGo19b1fY/VT69YFNswn72BCl1VOEhlDCQbK9qnMd8vWMgmsLHFPU\nnt31XoqkSB1BCpqOKo8yED30VSVcCMnmPPXuXH4RGkOI1gjAOByOcr+QmpzlsDiUihaDweBw9DzP\nnB6/7if/G2LhwoWxv2ML9D8t/qSUHcdxNE2npEQZCbvdTpJkc3MzQRCpqant7dEsDZfLxTBMfn5+\n7z3974cabGclxcefIlc7UTrByUgDLDgvK1s6+PpwdKHXxiEAcNQvZupRDIEWWlZNQUtEGm0jAcBK\nolPSqHml4ZfKwgDw+MEQAHSwMgCoMV7JPunK3EZN7q2HfcLQBOKdyoiPlzEEuWmPtgW5ENEW07wP\nRTAEMwIAixc2GN/CMdIdblYHMCU5sqVpVYp47Gh7eSekF5vkeaWh2F38cPTtSj9/S54234ixkmKl\n0M4I3W45bzM3GAB2es0P7Ase9YsDLcTQBPyVo/T1uVrVpoy1E88NMY5IJOYUYFtaO7yRjn0eYXEN\nc32u5m9F+scG6AEAQ4AWlMFW4p4C4qF+hOYUVf2O2i+21b09M1uzuMQ8OZWqCoi5Zi0AHI9Qf8de\nnGHvmI58Y9YnFgvPFGiaVjayK2qrPZJNI9XLeJ6fbgprh7Eylqo3G3VZh/0NyUXfpVr6/nD0bRYS\nDYTFTKB7vKRRj2nk1j3CjFbN7CLjyIzEaTTn94SbB6Vf3CIbDlUvAoCVB59Tx1N98HFNzo0hbc6H\npf9UMIpmQ7I+V1JEr8vjCba8s/sxAPBHRsF/DQTX+duCtpyEGxZOL768yKxLRhM4kYu+M/rBL8fL\nL/+z/blK57YOb8PBpjVruPtb+SOZg9OTE7N2HV++8uBzx9o2A0BHsPahnxZ1sl0vZ1BQYkoWjZE6\n/46Tho1TuCXVlFeSc+yn6kvnTeo3Ib96a935d4zSGilAcBSPGjacxHAKI5MnCe4dAIDqs2Teh5ps\niiQhKOVvC66av14CKUA3A8C+r48AwL+mfwoA1nRL85F2rVET9kQsqaYwNq408Be1zzXHlhkxlpUU\nAGjzV60/tlBLGgGAQBj6LJLZz+G/xx9skGRZFgRB5dwEQRCEaFq4Vqt1OBzr169X//35558ZhlHd\no+nTpy9evJjjOAD44IMPiouLYyGlPy1YUe5r/2XVWc4eb1XQkgLftXDvVHYxMPThxxUhKHj3x8It\naTqsnZFTtOghrwgAehw5RmM2Cm2NSLICOQZst1sYZME9nGwl0dj8PDSB0OPRf9TkGw8r14akW3cG\nAKBKSH1e9ylCmDAEWElZ386tbGRjeqRqzbPfuvq3CdYfuTkAwKNpCEh+XnQG6wGgyDsxnf/cGTxe\n59vyn3AqLeMmDADghR9m3bQjAABbqpbsdQXGJpHPDDZekkbpUfnD/R++XFq9rJ4BAAxYAAjyiolA\nalu/XVxiKDJH3X0Nhgy04ACQp3Gxmgm37tVqUPGwT0jRYhgC6ToMACrat7JCGAC+PfzylqoeqomL\ncYJvK4mU+cUhuroHc+sHmfn8wbce3XUb51r15LCMXAPIYuflGZoQkgEARm5LRHM+rUkVEC0IrQKg\nGUbrwIHLVzSy4wc8pyWNFKpQxAAzLt5Mri4pvMkCFT6w+cgJK4iXnw/d0GDfeP7QT8LUBSvJxdtb\ntsQGQASMazqTO50ZTf7SDH3xgjfu76jvKN9aFWECHM3u+X43CTpNX+bIhrJI6L+qVre9dpnb24pi\nKABsqfkIJRG7MXtT5aLD+W8++eXoPTXfyIoUk6WteHytEtYCQIIxpUb/7RTsFe3FTQiCaAljC6tr\njiCbKxcDAMOHfFjx/J0/PrE/Sjt7WNlEnI67fnDtbZSBatjfkjEoRc1SGnPjMJGTGMv81e+nxJqF\n3RFAMATT8y2rcMtABNdpZj1uueRahLRyER4AInxEqwg8z373SrRgR0pRkgnf1HyojdSTtI+ReUnY\ndVW7cTQA+NuCrXVOWeZlSdZgSIOnFACMlA0ASOBp4dcYJEn+zXZ++T+CP9gg/fDDDwMGDJgzZw7P\n8wMGDBgwYEDMJr3xxhsbN24cOnToxIkT77vvvqeffjo3NxcA5syZk5GRMXLkyLFjx+7cufPVV189\n7RX+FNDgqLpz5f8QfLwsKUCLiuotKWKEa1rBNa+Q6cb1oTw17Txdj7YzcroOczISANgotC6CpOmw\nurCkx5EsPdbOSKNsxLgk8rKMk+TpKrViIpB8I7a4xExLSpOXDQoKLyv7PEKeHpUUkBSoCkq35Glb\ngsI0gtUJZRqx6nbHVh/dyFNjZcCybcWgG5/ArmSxvLS+X2eTzQBQ07l76sAH29h6jEhvoemWxrnX\npbt5LNXHy9WBoJYwelnaRCAmAtFgCCIcK4Mb2pTBAKAFb4AXAKCfGQeAlQefo5TusrTqjp0r99zj\nwidowadjVkkK1Gqb+QAAIABJREFUYEiXxpfhvLQQnbvbAz2ki+ooCwB4ws0AoEgeAChv+ODH/bdd\nZtlW1rF/Fc1+4m7wRTo0hLFQ+beWXm3molMeBsxO8TaHBgJYcQKpFJq1a5yWhaPMi2siqGXWmGRT\nBfTL9n09xVTX13H+IxNetlEoANyer5uWTpXYqU3e3J/axQJ9aN5lu+stnwFAYseAavuyUusTH5b9\ndf2eo/jB2bQ3QpsaUb3Y6W6xUKl7Nm7JdF4SuObrvX2fX7H2TVmSZelXRuC/O/xaQ11l/YAvGCG0\n/tjCivatKea+t457lzN1yCTnaXFvrV4ac9pCbtqSR5HvXTn76qcG1d07/opJCsi8GBmadVkT/hed\n42EdaREl3hdpoxAmLPDHQqTqZtQEgykUs/7YwvhLx5s6ADAk6jtrPapA3JRs0BgpLsL7O8HdHJV+\nmJON6m2SGVeHDz5Ipl2GJwzHKD+qRVHSKkuyzqIFBcKs64udT4hXba3eWjfsqgGjrkq1JjgbS1t1\nFk2gPSgKUUct7KYBgIMEQghsXbTXRCCV7dvunrAUx0gfL5vIM0ePGCFU0b41/sjqQ6+srfrHr/si\n/s/iDzZIU6dOrToZMSH40KFDN2/e/OOPPy5evLi0tHTWrFnqcYIg3nnnnW3btn311Vdr167NyMjo\nvfv/zXBzckxIJisQEmUCRVRpMt+6xjD0DcG1Q2bbd/mI/R5BUiBdh1UEotJVHy+n6zCPgFhJBAAk\nBRxabHGJmUSRS9KomKsRD14GK4maCMRHi5/+u2KGSV6y7GhtlXd0EtVISxoMuTZbMzaJLHlt1YDj\nbXb206tyUif3uRQAOGqEHW0GXYnVWGTmfgyR54cV+3mJnmRTfp+k0enWoseLH3ikn6WArBiWMsXl\n+hbIvlaC/7DKH0p8NQfb5wk317kPAABN1/AyNtvyBQDokUAHpwWACxxR4SIrdFda1nbuCTAdg/X1\nqYEHrsxM7Kt1BpiO+d+OVWXWRizSyYjflL7oCTczQujUgmayIgkS8+qPlweYjnV7bx4rzOWEQL+U\n8fsavllb9sY1I19KtfRt8h5RG39T+uLUhIN9dIGx2ectGHf+vYP6TrL7HczC2XnW85LJJwcaUrRo\nuh6rki6Y1SfjxlztVefdoRv4LACQKPLxGPN12ZrLM6g7++juSEGLvN4yn5AdQHZ5gEHTSFwXJIsY\ngwEFJYiNr8q9d5cxcZj2+oQjE3mIVG6rprUtwtTdF1175X2TvgJSCDpDzw5768B/jgaYjtWHXmnx\nlfNnkWMLAJ5w8zelLwLAumWrOrDDbx3rmFh4x3eHX0s25aVZigBghmWhx9veETwOAFuqljyxfCRv\ncSXmWLB/PmiyJV83/3oUQ8fmz0qzFqVbi8ZnDpTJgdm2IVtrPg0wnbwMNl2CBhVVpu5g00/HO7aW\ntXaVGQwKyusHti/f91TsCIoj3ma/xkgBwEM/3gEAmUPSlt33LYqhIicCAO1nQm4aAIjEEaguHTPk\nEbZxmG9z5NhLeOKIsDsy87VLCcEocD6e42RraNl932qMlOgrtRUO7qz16MyasIeOfe1rXtzIhjhA\nESEckSgCAESZz0wYCACCDJgiNXmPqM8nHowQOtz847Ldj8iKVOfa/+XeJ9TjosTzYqSifWuC7v/o\n7PSr8SeNIcVgt9tzc3NRtPs4TSbT/1lTpKI+LKlybQAICooeQ9oZCQDCPMu3ryNTp+KWgaK/DEOg\nJiiaSCRFi+5zCyr/FhQUC4W80oe/JltzS54WQ0BWTsdIvDzUOMFB5hkxEpSDXkE06VzPrv4+PV3b\n7C6y4JucHCUIk22YWOfiI0LToVY9XTYBJ0hcpyMtRhwVBGlr+GILCRqp3ktddmWmZurABx+c/PXl\nQx4DAE3OjX1SBs0fNSE7YXhjx3pCO1AJb1Jab5+YnqxnN64te6O06ftNlYsaOzcAwPD0UcMNtQ7S\n7RZNS/tiMean2yYCvBhRtbyzMsKU1Hx+9misdday3Y8UZ05bW/YGACTrSBcnESiVaxtmN2b76Lbt\ntctEiY8ZJ1mWGDFYkDxm5YHnBmdc/NhFy5zB44n6jBZf+WOXfN8vZfwtY9/9qeKDjIQBAAoAZCUO\neX1U9q39R+gpS3GiyUziZm6DkcC9exqsTS4+IgwjpXFJJIYA+uGWqp9qol9cR7h6a911OVoA+O7F\njV8/trbive2CAtXLS7894iUYLrf8bwGYbCKQQjPhk6cmMrtHT8rFbh730DOvIwJmStM+c+U2ADDr\n7KmWvn8dv4hG3MOuGnBoTfmODT/trvt6WdnK27c37m3ZXx4QAWD5vqfUu/ty7+N7dmyM+JkVj69V\nR3Kgcc2euhU61MJk1JJUn52+xMEZF/kibamWvkHZ9MjFq7MKcgMRl6yIKILvafAUd84lp1YDwIGA\nFIsP5SeNml48DwCCvKLHES2ZsP7Ywn0N3wxLP2/ekIwLTAeX7n/dFWpI0Kfn2obUax72hJs/3n5P\nm7+qnZG2hQbFysqVB8RKfffSjmNvGpY/NttRYAt2hmVJ1hopUkcAACAYn71q/RtbUa0DCR7UFT6E\nJwwXedGQqAMF7fQhjaXNSpJPe+uRmslDxEAZbi4CABRDaR+DazCZwDAxYk01syFOwq0m0msYmGZA\nFIKIVrGrC0s4IjCi0uA+FD3i2q++Xc+uHk/zPg/dvPP4V7wYoXAtAFS0b12+b978b8da9amCdLrq\nrudwKv7sBukcToWkwPIGNj51nJEU/wmOe9YOhky5BBCMyphBOi6ykoiHU/QYQqKIm5NpUcEQpD4s\npWgwAEjXYdMzNWe8YpEZn1OguySNKv22fOAnm4o2HjIYqP7P/rsE4fqasO0tTPuO+mX3fbv3q8PX\nv31F5ebjiR/dvvDKryo3Hx+SPj4sKmHOnOn+ZmaaFwDS6H8kOH18RDiVVjKQNkJ2uZVsLRp58II3\np2RmiBKHItjEwtvXH1t484hHp6VTufbhSZH3UIUXZPyNqR+FWE+A6dBTlhDrbvFWeFujcuRNlYvH\n5F53+6iPHOZ8PWWx6lIB4K4LlkwZcO+xts2V9btwDijC0fyS48Kiu0LVULaz9LvDr5U2ff/s6vEt\nvnIA4MXI2KybS/JmNngOjcqZAQBXDHlsUMbFt457V+3NqEnMTBjUL2W8KAujcmeMybsWAA7852jl\n5uM/L9oj+QgAcFa5vpm/fsdnB3YtO3j45Q2XaEUAkCV534qoa9VW3rHsvm+rt9Ztendn1da6uj1N\nd796CQBcetvwZlKT4/L9Z/TEQAjP0mPpOsxjdxR15MzqY9jQzpUHRJ4WZUz4tIG7YtQnatGBXPtw\nT0KQzm+Wb/tpJ/1+qrlvi3KBDMhHR/e8W97+wvw7y1o3HKhbU7n5eJu/6vsv//3KBe8f21DDhriW\nthon7RP5NCxgRXI8KbaRAGA35jxy8WqzNvnO3QGLPsOekdxW0950xLsicNsO8raLbriaQbxV3gMk\nitSGTvIv3ZzMy8qYJJLVXvTX8YumDnwQR1GzNikcKvVDnwUbZmoJI4emNElFH267t7pj57+b0c/q\nWBwRyBMlPMr94grUGElL6FYu5IZ3p5tTTDuXHmg50q6zaMOeiFqMfO/yQ8d3N7EhThi4rHwX9tk9\n39CeiMZI4UAd3WNUSBEA6KTKH12SFKzCTEUP/XiHPlHHhjhvSwAVJJKAMgVvkFARzBTqFfVUkiQg\neDS35KWyMIWynEISWNQd/6i8anHpl4wQAoAI559QeHuzt8wTbtaRVgDYVvNZWetPqnfFS2e16fA5\nxHDOIP3/Bx8v/9jGdTJyTBvGSgofpwKismYCAKpLj/SZZ6XQ63M1arWbJWPMt/fR2TXoYa+Qru/6\n6m/M056XfFZJuwOn9M0yk/36JBSMz3li+fWdpS2f3fY1+CMll/Qtub7Y1xZIH5QCAJnFqQDw5YOr\nKVYICfLQ6sWGyA4lTAHAs4WPvTfz80/vWlm56fip/ScaMkKSdnL+tHRrEYpgnMikWAqsutT8pFHp\n1qI7++gA4IZRb4zBi1MqFgpXbV289oH3t9xqN+bUdu59Z/OsBQ+8sHDzjSHWU7G9qvoD7rNLf7bq\nUv9+6WYAeOHKPSiCmbXJzJsjv9v8fscWZ1gCZ5Ur7KbpWmSz581x+devPPjcxMI7lu1+pMlbRuK6\nISmX90sZ/9wVOxINGQAwLOvyzISBBcljYqOdOeIFqy4V4QkS0wIAG+JWP7dh17KDTYfaIt4IAPy8\neM/4O0ZiGOqsdtXtbnr94kX+tgBO4kab3l3vFTmxpaz9qhen7FpWak4xJWRYbltyTXZewqfD9UWD\nk5M4brgFe3Kg4W8FFIogBAZTEtGSkTYTgdzdV7/TxRsS9LyF/KaJ/UdNZmUw+u23Eo99n2AZk3/t\nAGRGVU1f1tNi47d6qcvdTq+72C04C9bt2re0dC4XEqk+9G1LrrnqxSmf3fPNk7vq9tTNaE18iKcm\nO6lZyQmjAQBFsERDhio5O+gVAMBcwugsWRxmAYAOlLp7wtLJAz4bbMXbI5KkgJuTt3Xy07f4bt0Z\n6GTl0TaiMoQlW4cd4kYXmHAS17m9G2vkC4qK3s+wZHayshnp3KtZdPGgx8qDmmZa0iBdzoSHl+82\ncP+vvTsPj6q8+wb+O/vsSzLJJCEJ2UhISAiEPUhYZCtYFKGCIHpRLUtRedDHh1quqqB9i7Wirctb\nlOqjFC2WReEqLyKrLIJiWBLCmoWErJNkJjOZOTNnff84YYjZiAg5E7w/f505Z5Yvk5v5neU+9+3I\nS198vKlNCyFp8rt/nz29s+hEavzwOdlK9znOx/cd3Mdd2wwAAif4PYGKs9UGmz4yuk/KcE18fyMA\n+BgjAPglESN1JrsBw7CU3IShs7MAgJV1p+Oi//VZEQAQOGWONsZGGxr8/BWPqFRESca0mJckGFGG\naz6xQJrmle3KbcueQEOkMaGJrWvy10WZkwFAT1sSbINJgiHxnzT+5M9TiN6HhHTBxuA5YVSlT4rR\n4gBAYODmZQBwc6IR5zzSjS4JLk62UPjk6JY1ehLTk1hfA7GplH2yv95x/V7bNFN3mwGto+b/7f7g\nw5qLjqi0iMH/2Dtj50JISkrNaxn8OzI5vOirywDQVO4SI8MMlf2avpd2n96P9wurvlgHAD4ne62w\nOmNSvzbv/9yUHccOOgOYWXnY0FzuuiC88cw/dJa8b8rzR83PAYAdzx+6cKDYmFedlDMY25Xeb475\n+GfHK8bvGkDff27uF5KcsS1/jelKzqm95zIm9Wuu97428b3UvKQ5r00HAvyegJ6LaTT9v/iUGdUc\nP+TBzPJTVYb6fjESlZv3+LGtx2Nj8/az739TvFnpZbfz5X1DZmUeev/Er9ZOI5kOvqWSE+XlZ6si\nqbS6Kw3FJ67GDozGCVxrZNy1LABwPn7U/Jxdaw9c/Lpk2ZYFpSevlRyvCE+whsdZLh8rEwLi4Q++\nW3Xsyezp6QAw5MFM5T2tRtoKsGFqVMvtRNPTi0rZcA0+uZ+upoYFgHg9Xt4slqe83k/XCG6I1uK7\nKwNXm8X3LvsSLDFWQ7M9fEzW3Iknd3/K7K7QHqfheZa1xFcEXuPTrGbPmb7EISdO4njf+MF9rnpF\ns9Xi8tFeSaLFKjZpbJNHsltTodILAKIMRx18hpksdAnDwqkSw9opCdegBmJ1RJFLSDOR9YIpN5I+\n08h/WOxTRkG0MXh9QCpqEvQkds0rvny2OctKTo5hAODPD3xV55d+l580N1Hj4nmd50u/rHEQDxqx\nazUBgxVzmXV2Ny9/dpX18vJAu4YP62C6d4NNBwDFx8tPjRn6XBb94W+27Hnj64xJ/awWs8/Fagxk\nc71v/OKRG5dtBwCcwOh4m9lVCQAABAC8XnXmSWdRrDUDAMb8ehgAyEdraSwg+zgZx2mT1qJvrudl\nDcb5JPqZk+4xkTQAyJhWlvmyhlP/Ovvx5sZfhuO1Pkj/3lNtBfDzHg1lBABB5LwBV1n9qT7WjHFp\nCzcdf44kmIAfzaX046AjpF7JRGPVrKghsB0VAROFs5feDgTcfglTqlHwVh6vIOnb9a8daaPeHGb6\nadNZtPC52DG/Hrb4k3mtV9I6yhTZ8lPSXO/VEJhZiMcLkjQeO/XefSe3FPQfn+z3BK6eqnr7wY9c\nVTd2gb/ZcKruSsO7g/QPxGkAoLHCBbXm8/+ubm7w1Vx0FH55SSlyPpcfAIivs/P6PTpoRsbhNVes\nvv4iFtBeSAeAjJhx7CWmfK+b1lFJw+OLT5TTOurS1yXnDxQr7zluyUgJE0ZGRaT9bde4xaP+8+qB\nmgJnhD/rr9P/V7933Jl/lcRsXXLm2IniQzWcl+fYwJfrvi45Uf7NplMdfgOndxQZ4vH8L7/f+cd9\nZSevLXhn5mPrZxnC9Y3n/ABw5WgZAEx8+p7Fn8yzJYZF9bPlf1EYkRjWf0LynnWH9/7tSEyGveVC\nSJceTtQG9yoAgMaxoeHUfXH6k27bo0nalZmGi26h0CUsT9dXarX3Z+QeqOG2XPU3mqatWLoQ98v9\n392o4wsW2U7mEjvDLIHEPgNjzf97LXXJ3w/9+kyD758++h5mK4/jhOwWQWfkj55qENJMpJOTNlzx\n/fW8d3AYVcdKflGuFmINlgkAMMxGlXtFvyif8+IjbRQvQbVP2jHeumWs5d0Rpg2jzOPsNAAUuITB\nYdT8RG2wsUVqcOVGgt9nGaxQHE1cLXBrCLkeAEzyRRbM13zijoqAk5NlTvT1CVNuJ1Be6+SkTaUs\nSZNwfXRwbbi+vrQxNS/JXdusrAcAgRNsiWEPvzEDAPS0RcJwWfT5yRQXPQkAIvWx+Vd3tv5uBzw8\nxII3SAyFCwJGygzJeQX568LnA2DMMJPVrJhmIlN0HgyjAeD0tWMAYIVL9fig3ITJVl2MN+Ayamxm\nbaTHX69nLN+VfZ4dNwUAaFLn8dfz6JTdj4SOkHolI4k5OdlKYxuu+CI1uEfQy+5CgJbRK36X73lr\nuInGsWteKcXUwTDhSYZbHzu8DVOkQekKFbTq2JPfbMoHAJ1F66xyN8WyjI4GAL8nkDQivuREuXKd\naeGGX1Weqzn31ZXRjw1x1zab7IYLe0qbq/1XjpZNfW7sqPk5FWer7w//y64LB7Knp53acc4aYzqx\n+TQAhMdZ/B7/nNfuC4u3CAFxz7rDj3/40J/G1Bd4qvpP/q/hY2c3Xjg0dcPAhKGx5acq/7HwM0uM\naeLT9+xae+D0zqLotIjUMYkpzSPirElY5fcmu+G5vYv8noDGyNyzcJjf448f3OfVcX+fl/Xm6R0X\ntjz15fglo5wVTQInVp2vrbvSYEu0Fuy+GDcwWhmQrb60UWfRjuw/8+Dm849vfSj4DaTk9t24bDv8\nAZRBRWkdpVQde6qtsrA2MiUcJ/AXv1+u/Ktv7WtXrvwNs1F2Da4nsZcHGS00RmBYvJ6I1eGflvop\nHHsgTtMnzqwxMss3/54l68MNeVMAHtp/vhT7473RNF7rPcLe5y4W5lk2Btji+YmP7CtPijXohofl\n7arjc8LIreV+LYHpSUyQ5QQDsaea66snDtVwNI4RGHgF+cNiNlkr6UnMwmAWioDrw5JqCOyZDD0A\njLRRg8La/sI82b/lQpFJG+n0VjUEJLPUDADhlM8rmZycNCdBMyWGsTGG6Aa3hoCiJiEnjAKAalba\nXOYfbdMDwB9OPPXgMY+bl9Le+JXd4Tz9j+MGm67yXG1CZJQsygCgTLlEkzqnr0pjSK3z3R8gUwDA\nbun/hTNvauuhu0lckKnE/raa8gYKmqx4XT0rJUmNAmYjMHBx8qRoKpxt4rDMorD9CeyfAICQfV5B\nHh0/6pI0scRxEscIEmckWfT4G4yacOUSI0PqJFnkBFSQfhxUkHorDQGssvMoy4ewifcarx11gYnC\n3LxczUrnm4RsK+XiJSt9i6OydpPBpu9gZbgeAHwu9uGHB/xnc4HXxQJARGLYoF9m/OK5cZYYE07g\nkSnhJrth66rd2dP7vz7l/ZUHl+ht2itHy5JGxO9+7dCo+TkNZc6kEfGSKGVOST2149zstdPqrjRs\nXLZt4tP3PLBmsvJBtA5feXAJAPg9gQXvzCQZcuOy7QabPmFoLADED+7zwJrJFw4Uj5g7KC0v6dxX\nl4v2XZ6wLPcJ4u+SKCmdiQFAKaiRKS29qpQ3/H7zhYxpKQMmptZdqbfGmQu/vPTO7I+H/WqgctHi\nvlX3Njd4dRZtal5i0sCxo/7xg9+dhKGxT21/rFhu2wuU1tEvfr88+PCWq1FQcMciUoO3XlPUJKwb\nakoxEgDw/OHfAoAOWsL4saixEbCvhhsR3sfhjwyrWV7sq+ofnTcrQXOyIWFukh7A5hD9JhrbV829\nP8o0NYbBMaBxbNWp5kWpulWnPM8N0CcaCL8I/yxhl9hFAFCu7bX3+6yu/oH9o8bsLnzLj8vRhG++\n5nXJNKvGecbNyYPDKOXerHdHmDaX+V8606x0qFFepZR2H04AgJuX/wX6RWGCq5E9qzWWvLBnIpPb\n3OA12Q1OX9V7h36TFDEUALxkIkfEU2INj0cAYXVA/xqfj7negcIvAgYSDp5AlNGMO8Jwx47x1me3\nN7KYPcNAFLiEcA0OLHAyAwBaJhoA9Fg9yJBoIEpwRumIoWcs5Y1n/bwnI2ac8rY62izJovb63B9I\nN6GC1Ctlh1FWBv+szA8AeowtFcMGJvcdUeIqZSnlelKhS8i2UvV+KZy5s2dl2xweKbKmpkUkhv3f\nOf/MTjSdrajTW7QPrJk8eMaA4BOU32WNkeF83Lm9l/uPTz6/v9ieFv7o27NcVW6/J/D6lPfdtc3j\nlowc+5sR8YNbBl6LTAl31zYnDu24u3/SyHicwB//cE7rk2CDZwxQPtcSYxr92JDRjw1R1uME3nU9\neGz9rJqaGlpHxQ6Mjh0YnTUlze8JvDbxPWXrhYPF1hjTkQ9PPrd3EbSa4EdBMqQtMcwGszt43x6x\nZayF7nwY3wUpZo/oeyRZu+EyG6ZlY62jfQEXXL8DGq4fxDyapAWASE3L+7w1vGXrsPCWkZZeyjbU\n1DTfcsj06LzkiKGzDwemRsdE4WJM9MBPGspr/NLoyBt9ASRZpnCo8bdMiQIAtJYCAL8oR2txFycB\nAGZgeLN+K2kcDLB37TEAmPHCJABw+qoijAkN3ooSaUS0741q3QpSdm9uXoqBVOxu1tEt1yndvGTB\n6yvqT/mj88JIt9ItnpIcVWLcvRoCAAgMkwEEIABAJuwgA4151+YYCQy8nFNPWwCAJrSCyHn8Dcbr\nE8b7uCZO8Olo2y1/Pz9P6BpSr5RkIMbZaeXUvE52A0CigVg1yObmZWVog6vNIifJyvAEd45yWbhD\nOIErP9PuWo/BpmtdjVpLHZO0a+2BEXMHnd11PizRYokxJQyN7Tc6IX18ymPrZ+EEPmFZLq2jlN18\nAHjwj1M7LCSrT69QBrzpziWZW0AypMGmX75zoXJEGD8o5r5V9/7hxFMd1mPVdVGNNowyR2rwl7IN\nffXEy4MMKyb9O9Weazd1dzTIHeOt7cf9u2XK4UWafXRe6gILjcmEuZH1s2zx77e1nHye2ofp61zg\n5iQAaAhIAGBLDFMag4nClX2vqATLuN9NaPPO3oALAOymZC1l9IhWrVDAE1EEBABAj7mK3LhHvHFk\nLwHO0DZBo9OAv9WM5pJ4/eY8kmBw2QcAOGVNMRIU+JSbxzmBVUb00NBGP+95bsqOrNiJ119Ca6gO\nOmUgXUNHSL2Y0idVKzaMtMUov0EGEmsWZAOJmSj84xI2O+zOnq+b+PQ9nW2KTAlXpmLzufzBC87t\njZibnTgs1pYQVnby2j1P5SgrJyzLbfO04O++0iFNLWFxlhX/+TVO4krx642CJ/eClIvwavkg16zc\n3WyiMA4sATFwzVkUHDjDSuO0qPSRg+B9DRojU+8TNQSm9N2hNVRkTiycuXGs9s/jz+UmzxmWOLNf\n5Miz1/aQIofLvAxEjPfVJsOTJIZ9WR0WQ428VOhVRtqtl6ITqPxaAUj8xmwR6djnaeZlAGClMVkT\n7pf0gAEnm/8yRL/hcJXynMkDfqtMqqSljCzvUW4PUNCEVhAD6Pf1x0JfWC9mobE6vwwAv89q2Rdz\nclJOGJUbSdsY7LsGflz37i66Q5QqIgldjatGMmRMhh0AVux63I93a5AbdXXY+Ru5Zbbrp5RpHGNl\n07Wqfe4rf4kwJnT2/Kte0cVJFI4lGQlnQAIAvygrUxuLWppgOQC40Fg5pK/PrIkkCdrLs6Tc0pPT\nyjA+HNcRHEjQLBmPOjgAPQB4JEsMc61AgAjGw5AGZbClSDijHAZROMYB+DErAFAE4/HfmN5J6b8A\n1w/12hAk1Of7R+utO3oIAKzNMY6JpDTGxOCaN4eZlqfr742is63UEym6O3q+rpuGPJipdDHomjKo\nM/Jz1ihoNVLRjEErY60DWg/BpxwbFTurCQz213DbywOiDBoceEm20ribl50BqZ8eF/SawB8+BoCz\n2neuOK/+xz0JAHAqxkC0FAarxkBgMkXQS2IOuMUbN+eN1h2ZlDgKAED06mizMql5q3N3N/glTfth\nD+GHY8MrzFp7H2vGT/xCfoZQQerFbAxO4xjD3Pgp76snuh7Yv+dNfPqeNpNYI0iH/k+m+4mMobnJ\nc8P1sa0HJ1T2q06UbicwWbmu4+YlE4UHD719opweRhnHRwBA8tQIAPi8YZSD1wMA4BpM5vWMBQBw\nELRYMyvpZL4eAKw07uQkK4OvHPHLVPvwp+JOBkfLbUMpThoC4+WOj48jjIlKj76gYYkzZ+WoOUV1\nL4UKUu+mITH/j55YGUFCUYwlbVjiTAAwa+0ef/2VuhPKekGW/aIcIBIjKJ8yL5FfBD2FOQMyJ8l+\nQa73Sw/EaS4PcQFA2mKDFa+zYGUpej8AABkNYq0yfFSYRgMABE5yvAMAIjX41nJ/gr7lSGiQvZ/H\n30ASjDJl82MfAAAQeUlEQVQevNItYmGyNlaHm7V2ANASGIWLfz/46/bJY60Zi/Leb78e3Rj7Y6GC\n1LuZSMzN3+LkNwgSmnCc8AQaNhxeosw528zW/u3Mt246T4tz1axE48CJcrQWF2XZrsHdvMRJYGNw\nDo+SMMPlxqt2yhPl/RuJYQCAY7gMEgAkupfROEXgooTRyjRXoiyfaRSSjC0FKcKYMC5toZ62vL5n\nJkDL1Fkz4zXKvJQA4OQkI0U0sbVMR1eMOsQK7tv81dztUEHq3Vy8bKHRHxG5q+hoS0VjQaw1o9p1\nEQAwsfZizTcAYCac1azkE3g3L5so/LurX3IS1PkluxYHABN3wEOPEiTBSPEef4My2A+QdjFQDgBa\n4TwAaMHXLFBOX9WKvt+vG2p6a7ip9UCOUzOf7nC2RqUDd5aFTNS5AIBtN/lWZ/pahvykL+LnB/2W\n9W4mCnNx6AgJuaswpO6asyglcoTy0EgEWCIVALKZ48vTdWV1Xzuayz84sljErX5RvOoVEw0EAGjE\nKwJmbRZkHanhBJ9HpAGAoW0kDgCwdlbLaIQYRkiSGGfo+Cahe9MXK3dlKV0bFFraCACPJmsHGWoB\noHVHu64Ni33o5k9CWkEFqXebEMXMT9Le/HkI0nvQpM7hKe0bPsgTaAAAjVzLUgNnMK83uotywiic\nMDsDXGPzNRmICFos90rKSQJCatYwsXVel5ExAkAYQwMAQcUtzn2l1XvLMmBOX1WHnegAQM9YlB4Q\n2la3teIY0d85I8XYcizVfnpi5HZBBal3i9biHc44jiC9l56xePwNNkO88tMvsKdETK/FA5IssryH\nJGgfLxByAwaihZY5Sa6qPwAAhNwgYjZWokyUNKH/b0gcL2oSeEkOjluB4wQBnCDj0Emv7tZaP8Go\nseFyM4G1nLtT+jsgd4LKv2WSJOXn51dWVgqCMGvWrNabtm/fLoo/6EB2//33UxQFAJcvX960aRPL\nspMmTZo4cWKPJkYQ5A5Thj8waMJrmopJgubYS0DBNWdRjCXNz3tIQu8XRUbmOSJKjzcDWPYW/HF8\nwmhc5iXAJNAAwOQBvz18uvl3+Z57o5jgcI5Gxub18BoaW5T3foJtcOefTgMAJ964ESpYnJSeDsoh\nFHInqFyQXnjhhd27dycnJxcVFbUpSKdOnQoEWm43u3r16qVLl2bOnAkAFy9efOihh5YsWRIWFrZ6\n9eqqqqpHH31UhegIgtwZRk04AGgpIyf4jIxNELlJtm/9HEGTuvKGAjMVWcVZ4wAEPIIUSwAshNQU\nvOTDgdlECsG3Kmrig7eH4xgOsggAbe4ZavfpNujkMKj13VHInaByQXrxxRdfeeWVQ4cOPfnkk202\nrVmzJri8ePHiBx98kCAIAFi3bt28efOWLl0KAFFRUcuXL58/f76yCUGQu8PUzKcBQJJFHCMEKZCl\nryp0GQfGTv7o2HIm7iMAGQBkIArLN4HhpeCraELLSpEGUgQAAoNRNmpZ/xuDqOoYiyw0anU3v3M8\n1pqxYNS69utHJs3WUsat+Wvab0JuC5WvISmn4LrmcDgOHz6sHB4BwJEjR0aOHKksjxkzhuO4Y8eO\n3cGICIL0uHFpCwEAxwiSoJWJ77wBV3p0HgCYKUm8PmICI5ZODy8EgLf3zwcAEtd4JU2q2QQAvCTj\nGNZ64BKG1GGSIzfiJr85ghTQ0RblZtgg5Y5dmtSZdfZOXofcBr2gU8OWLVuSk5MHDBgAACzLCoKQ\nkJCgbMJxXKfTeTyo0wuC3IWcviqz1q4MXdrE1iorRdEXkLVK52xKqo/DTsL1M2ycjBNyM0NSAKBM\nTtEaiTMW/vDDiTfvlaqctWstOA4QLwZu2iECuWW9oIPW1q1bg1eJZFkGgIiIiOBWkiTb9H0IKisr\nmzNnjrIcHh7+wgsqDy3lcDhu/qQehPJ0LdTyQOhFutN5Ys0DGzyVfc05vmaOwOmampqRcfPrSZ0I\nZIw+84Xw77Y0stfqLwafXy6l9BH+7XCkBRic5WmZ42pqbuytBrySN+Cqqanp+kP5gMQD29nTWA8v\nyeJN30QRCn+vNWvWNDS0XPoqKytTNcvNhXpB+vbbb6urq2fMmKE8VE7xFRUVDR3aclnS7/drtR3v\n8iQkJGzevLlncnZTVFSU2hF+AOXpWqjlgdCLdEfz/Nb+gSAGaFJX4jjJX2CjoqIeiPrvfTUcOL1A\n8X1jUqEQHL4rweeP1xyoadwfEfFfVl0UUdZkNWqiom4M81PL43rGctPA2mtaP+/p7GmSpim2MqP7\n/2rV/17vvvtucDm4gx6yQv2U3fbt26dMmWKxtPSzpCgqJiamurpaeehwOFiWTUnp7nyXCIL0IjhG\ntJ9qSBkqyxtw0qQ2N3lu655viUQJBi3nS9y83Gb6FaMmvJvd5LoYHCjGkvbkhE3dSo/8eCoXJEmS\neJ5XzrnxPM/zfOutPp9vx44ds2fPbr1y5syZGzZsUHqEr1+/fvDgwcFLSgiC3JWU7nbKsjIuA0Uw\nZq19xqCVrZ/GS34AMDI2AHgkUTvO/oMJ5o0aW1afm9+2qHQ6R1Sh8im73bt3r1ixQlnOzMwEgMLC\nwmDXu23bttlsttzcH0xovXTp0kuXLg0fPtxgMJjN5vXr1/dwZgRBehiOEcGZ8SRZBoCxaQuDWyem\nL957fj0AEBgNACRBA8D0WKbNm0QYE+aPfO2mn6XcGIuoQuWCNG3atGnTpnW29ZFHHnnkkUfarKQo\n6u2333a73U1NTXFxcR2+EEGQu0mEMfG+7P9WlikcA4D4sKzg1qzYid9f3en0VeHYbTjl4wk06Gk0\nFoM6Qr1TQ2dMJpPJhCa9RpCfBaMm/J6U+cpyhpn8dMyNgrHm/qMkwQCAnrFEGJJvy8d1f4IJ5Pbq\nrQUJQZCfLT15o7uC0uthYsbiCGMizUV0/qLuMjLhDk/ZT38f5BaggoQgSK83pO8MAOjm7UFd0zEW\n1K9BLaggIQiC3JCbPDc3ea7aKX6mQv0+JARBEORn4m4uSKE2Tkbr8ctDAcrTtVDLA6EXKQTzvDjj\na7VT3BBq30+o/SS2dzcXJEEQbv6kHhQcUSpEoDxdC7U8EHqRQjBP66nHVRdq30+o/SS2dzcXJARB\nEKQXQQUJQRAECQmYMqHDXWnQoEFZWVk3f15PuXLlSkiNA4vydC3U8kDoRUJ5uhZqeQoKCk6fPq12\niq7czQUJQRAE6UXQKTsEQRAkJKCChCAIgoQEVJAQBEGQkIAKEoIgCBISUEFCEARBQgIqSAiCIEhI\nQAUJQRAECQl3yfQTkiTl5+dXVlYKgjBr1qzWm0RR/Oyzz06fPk1R1IQJEyZMmKBungMHDuzZs0cQ\nhKysrDlz5jAM0wN5Ll++/NVXX5WWlur1+hkzZuTk5LTetGnTJpZlJ02aNHHixB4Ic9M8nW1SJU9Q\nfn5+SUnJ2LFjIyJuwyxwPyWPKk26i0iqNOkzZ87s37+/qqqKJMmxY8dOnTq1ddSeb9Kd5VGlPXeR\nJ6gn23P33SVHSC+88MKSJUs++eSTl156qfV6nufnz5+/bdu2rKysvn37fvHFF+rmWb9+/apVqwYM\nGJCXl7d169YnnniiZ/LMmzevtLR0xIgRFEUtWLBg+/btyvqLFy/Onj3bbrfn5OSsXr36448/VjdP\n15tUyaNwOBz/8z//s2rVqqtXr6qbR60m3VkktZr0/v37nU7niBEjIiMj16xZ88orryjr1WrSneVR\npT13kUfRw+35R5DvChzHybJ88ODBzMzM1uvfeeedmTNniqIYInnGjx+/adMmZbm4uDg1NdXr9fZA\nnqampuDyW2+9NWnSJGV50aJFa9euVZYPHjyYnZ0tCIKKebrepEoexaJFiz7//PPU1NTvvvtO3Txq\nNenOIqnVpFvbuXNnRkaGsqxWk+4sjyrtuYs8ih5uz913lxwhURTV4fpt27YtWLDA4XAcPnzY5XKp\nnicmJsbr9SrLLMuSJNkz5zdMJlNwOSIigud5ZfnIkSMjR45UlseMGcNx3LFjx1TM0/UmVfIAwM6d\nOwFg2rRpPZDkpnnUatKdRVKrSbfm9XojIyOVZbWadGd5VGnPXeQBNdpz990l15A6JIpiRUXFnj17\n3nzzzaSkpG+//faZZ555/PHHVYz00ksvPf/88yUlJRRFFRQUvPrqqwRB9GQAnuc3btyoXNZiWVYQ\nhISEBGUTjuM6nc7j8aiVp/ubejJPY2PjG2+88emnn/ZkjM7yhEKTbhNJxSZdUFCwefNmj8dTUVGx\nbt06ULtJt8/TWs+35w7zqNueb+ouOULqkCRJAFBTU7N3794PP/zwo48++vOf/1xSUqJipOrq6qam\nJgDQ6/Usy1ZWVvZwgGeffTY8PHzp0qUAIMsyALS+pEmSpCiKauXp/qaezLN69eonnnjCbrf3ZIzO\n8oRCk24TScUmbbFYBg0aFBkZWVtbe/bsWVC7SbfP01rPt+cO86jbnm9O7XOGt1ObazaiKKanp2/c\nuDG4ZujQoTt27FAxz+DBgz///HPlYV1dXXp6emFhYY/lefbZZ+fMmRM8xc9xXJuTyNnZ2V999ZVa\nebq5qSfznDhxIjc39+DBgwcPHty3b19qaup77713+fJltfKo3qTbRFK9SSvOnj2bmppaV1enepNu\nkye4RpX23D6Puu25O+7mU3Y4jicnJ7feP5JVnWsjEAh4vd7o6GjlYUREBE3TFRUVAwYM6IFPX7ly\nZXFx8UcffaTT6ZQ1FEXFxMRUV1crDx0OB8uyPTZ9S/s83dnUw3lwHM/MzPzkk0/g+tHJvn379Hp9\nD3xLneVRsUm3j6Rukw5S/hylpaXDhw9XsUm3z6Mcq6nSnjvMo2J77i61K+LtIYoix3H79u3LzMzk\nOE7p5CbL8gcffDB9+nRlx2T//v3p6enl5eUq5snLy3v55ZeV5YMHD6amphYXF/dAnlWrVv3iF79Q\ndiFb5/nrX/86Y8YMv98vy/LLL788Z86cHgjTRZ6uN6mSJ6j93rcqedRq0p1FUqtJHz16VFkQBGH1\n6tW5ublKz0O1mnRneVRpz13kCerJ9tx9d8kEfbt27VqxYkXrNYWFhUpXt+eff37Xrl0Wi8Xj8bzy\nyis907ekszz5+fnPPvtsU1OTxWJpaGhYuXLlvHnzeiBPWlpa64c0TRcUFAAAz/MrVqw4fPiwwWAw\nm83r16+Pi4tTMU/Xm1TJE8TzfGZm5qZNm4YOHapuHlWadGeR1GrSkydPrq6u1mg0Pp8vMTHxT3/6\nkzI9tFpNurM8qrTnLvIE9WR77r67pCB1jef5srKy5ORkHA+JThwOh8Pj8SQkJIRIHrfb3dTU1DP/\nb5HbAjVpAOB5/tKlSykpKe07mqvSpLvIo4pQy9MdP4uChCAIgoS+kNi9QhAEQRBUkBAEQZCQgAoS\ngiAIEhJQQUIQBEFCAipICIIgSEhABQlBEAQJCaggIQiCICEBFSQEQRAkJKCChCAIgoQEVJAQBEGQ\nkIAKEoIgCBISUEFCEARBQgIqSAiCIEhIQAUJQRAECQmoICEIgiAhARUkBEEQJCSggoQgCIKEBFSQ\nEARBkJCAChKCIAgSElBBQhAEQUICKkgIgiBISEAFCUEQBAkJqCAhCIIgIQEVJARBECQkoIKEIAiC\nhARUkBAEQZCQ8P8BPUzDRHdiPHgAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figure\n", "for iR=2:length(run_num_all)\n", " subplot(311)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W1),1))\n", " hold on\n", " ylim([70 85]); grid on;\n", " subplot(312)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W2),1))\n", " hold on\n", " ylim([60 85]); grid on;\n", " subplot(313)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).energy_in_bnd),1))\n", " hold on\n", " ylim([165 195]); grid on;\n", "end" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIVBQ0d3KhGNQAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMC1GZWItMjAxNyAyMToxMzoyOdZHHQMAACAA\nSURBVHic7J13QBPXH8BfkstOIEDYKwwB2UMUcVQrKtY9qlar1qpVq61atdZRt23dHfqzrlr3qBb3\nwC2iKCDIDDvskL3nJff742hAlrgq1vv8lbx779034+5777seDkEQgIGBgYGB8bbBv20BMDAwMDAw\nAMAUEgYGBgZGBwFTSBgYGBgYHQJMIWFgYGBgdAgwhYSBgYGB0SHAFBIGBgYGRocAU0gYGBgYGB0C\nTCFhYGBgYHQIMIWEgYGBgdEhwBQSBgYGBkaHAFNIGBgYGBgdAkwhYWBgYGB0CDCFhIGBgYHRIcAU\nEgYGBgZGhwBTSBgYGBgYHQJMIWFgYGBgdAgwhYSBgYGB0SHAFBIGBgYGRocAU0gYGBgYGB0CTCFh\nYGBgYHQIMIWEgYGBgdEhwBQSBgYGBkaHAFNIGBgYGBgdAkwhYWBgYGB0CDCFhIGBgYHRIcAUEgYG\nBgZGhwB62wI8h9u3bycmJsIwHBISMm7cODKZDABIS0vj8XiWPtHR0Z6enm9NRAwMDAyM10GHVki7\nd+8+ePDgl19+aW1tvW/fvuvXrx8+fBgAcPbs2cePH0dERKDdvL29MYWEgYGB8a7ToRXSyZMn586d\nO2HCBABAUFDQoEGDNBoNjUYDAHTt2nX9+vVvW0AMDAwMjNdGh/Yhubi4qNVq9LVWq4UgCDXZAQD0\nen1SUlJubu7bkw4DAwMD43XSoVdIq1evXrp0aWlpKZFIzM7O3rhxI4FAQA9dv369uro6NzfX0dFx\nz549HA7nrUqKgYGBgfGqdGiFVFtbK5fLAQB0Ol2r1VZXV6Pt8+bNQ+11RqNxwYIFc+fOvXjxYvPh\ngYGBVCoVfU0kEt8hPxOPx3tHVSwm+b/MOyo2wCT/tygvLzcajehrrVabl5f3duV5DkhHxWQyRURE\nnD17Fn0rEAg6d+6ck5PTpFtOTo6fn59Go2k+Q2Rk5BuX8s0wduzYty3CS4JJ/i/zjoqNYJK/DTr+\nLbHj+pD0er1arXZ2dkbf2tvbk0ikysrKJt0MBgMAAII69FIPAwMDA+O5dFyFRKVSnZycEhMT0bd3\n797VarV+fn4AgAcPHqCNMplsx44doaGhRCLxrQmKgYGBgfE66NALi+3bty9cuPDvv/9msVhisXjV\nqlXe3t4AgMWLFysUCgqFolarIyMjd+zY0eLwd3fZZGdn97ZFeEkwyf9l3lGxASb526Dj3xJxCIK8\nbRmeg1AoVCqVHA4Hj29YzxmNxpycnODg4DbWRuPGjTt58uS/IuNrhs/nOzk5vW0pXgZM8n+Zd1Rs\ngEn+Nuj4t8SOrjABAPb29vb29k0aiUSipVIDBgYGBsZ/gI7rQ8LAwMDAeK/AFBIGBgYGRocAU0gY\nGBgYGB0CTCFhYGBgYHQIMIWEgYGBgdEhwBQSBgYGBkaHAFNIGBgYGBgdAkwhYWBgYGB0CDCF9NrY\ndLvc+4cHMi38tgXBwMDAeCfBFNJrg00n0iCCzYp7IrXxbcuCgYGB8e6BKaTXw5+ptTVyA4GAAwAU\ni7RvWxwMDAyMd493oJbdO8HUE/l9fGyEKgMAQKQ2vG1xMDAwMN49MIX0ShxJ5wc7Mc7mCH3Z1JRy\n+b5xAUKVkSvQDAl825JhYGC8edQZt+kRfd+2FP8dMJPdC3M2R5hSrqiS63WwedKxvMUXi9cklv04\n2EcHmydGOk3v5lIixkx2GBjvDLBMYFYrXm6s/Prh1yvMew6mkF6YNYlll/JFU0/k3ymWfhbtXCzS\nIFs/HBPq8N2HngAABpmg0pvetowYGBjtwsjn8eb1lt88+nLD8XTr1yvPew6mkF4MvtLQx8dmXbw3\niwLNOMX9cbBP2fJY9NCPg33QFxAed79M9vZkxMDAaC+ShB0eP1zUclMBAGad2qSUvNBwRKd+M3K9\np2AK6QWokutnnOKGuTAAAOsGef81JcSJSWrebfvwTkef1P3r0mFgYLwAZp3ayOcBAEiuviSPAHX6\n9dqtX4iO/ND+GUxKCY5Cf1PyvZdgCukFuF8qg83IkEA2ACDAgRbjadViNxYVajE99qdb5SnlL2mq\nxsDAeL3Ubv2Ct6Ava9BUAIDtiDmq9JuMmMGwTNj+GcxaNYFp+8YEfB/p6FF2t2/fTkxMhGE4JCRk\n3LhxZDIZbS8qKjp69KhWq+3fv39cXNy/IwxfaVgX782mE5/fU9E08juzWnUysw7C41pTYxgYLXI6\nS7D7YU3CZyEMMuFty/LfQZKwgxEz2HV5vesIT6E7fvETAMDI5+l5uWROUHsmgSW1eArtDUr5/tGh\nV0i7d+9evnx5UFBQ7969z5w5M336dLS9oKBgzJgxjo6OkZGRa9asOXTo0L8jT4lYG+DQrv8fRMBR\nl9xJq1RaWvY/rvltpF+5VNekJ19p4CuxvCWMluEKNDeLpHN6uG64wXvbsrxj6GDzkXR+8/b7ZbKn\n5WItN9W634TmR5k9hiuTz7XzFIhBD9k5v5KUGM/SoVdIJ0+enDt37oQJEwAAQUFBgwYN0mg0NBpt\n27ZtEyZMmD17NgDAyclp3rx5EydOJBDe+POjSm9q51NqgAPtRqGkSq7r4s6cdCxvTg83vsLQ04u1\nM7na0kcHm6lL7lAg/KxY1+3DO70xqTHeYX5Jqlwex3GzJh9N77heyUnH8gAAB8Z3hvC4ty1LAwvO\nFd0olAQ40IOd6RSo4cl7xinul6Z7n/X9uMVRZE6Q6Pgms06Nb4dzCJYJcETya5MYo4OvkFxcXNTq\n+iAWrVYLQRBqsrt//35MTAza3qtXL4PB8ODBg39BHtiMtLMnemWiRe1OPxVcyhexqBAAoPGFkVap\nmBXr+vDrLlyBpv0zY7wnwGbkdJZApoXdrMkAAI4tpcWV9Nv953AFml47nvjYUf3taTcKXyw+7Y1y\np0QK4XF7xwZE/5yaVtnguI3Y9jjG09qnOpnRNb61sVa9R6keXmzPWWBxLcRyeA3iYvxDh1ZIq1ev\nTkxMXLp06cqVK1esWLFx40YCgaDVamEY5nA4aB88Hk+j0ZRKZZszNYWvNHTemPKi8rT/ARA2I318\nbKpkepXeFOBIO5st9HegAQB87KiWuIaUcsXoEPtwV0a/TjaZ1aoXFQbjPwxfaej/eyZPotv7cQDa\n8oEP606xtHEfrkDT938ZM85V8ZWG9dd5r3K6lytRXyXXf5VQeHxS0OqBXnN7um29W6mDza8ixmuB\nJ9H12vFk462KVQO8+vjYJEwN4Qo06KE7JdJx4Y6/uOTpOvXY+bAFax4KPSpO/eRme86FGPV4OuYS\nfp10aJNdbW2tXC4HANDpdK1WW11dDQBAEAQAYG9vb+kGQZDJ1EIuKo/HGzduHPrazs5u5cqVlkNX\ni5VkvHnnrYLRge3Na6tVwSzIyOe3+j9uzJJuzFol9YckweA9wm+72044XeFBMfD5/IEehN/vl3LI\nTgCA5GLheD8in893JOofFdW4ERskEQpfINSnQ4FJ/lpYcr32u1ibMCeSSipEH1U6M8zLH/H7ONev\nh2Az8ulx3sb+Ln+m1sw4llWpMIz1I1mRX/j5cvSJ8uEBVgcypFsGOke5UNs5SqI1Be0oGNHZem1v\ne0gr5WsBAGB2JPPj/U/2Dndr5yRv4guvlBsPP5Vu6sf2siHBSjFfCRwJhsQyKd8TDwD4+VbVelqy\nqOhh7PRNWx5JR+6rWxhr72vbQuaGViqsKczBW7HbllxXVaoPMuHbd094W6xdu1YsFqOveTzeW5Wl\nHSAdFZPJFBERcfbsWfStQCDo3LlzTk6OwWDw8/NLTU219AwLC7t+/XrzGcaOHdva5IvOF13JFy06\nX2RpEaoMbctzu1jy403eC30E1vK76BDwzc0ysRZtHPNntlIHIwjy2fE8tEWpg6efzG88sLa29oVO\n1HF4Q5KbtCozbNQWpBnqKt7E/EhH+s6lGuOIP7Kat396NNdoMiMI8tfTui7bH+9KrkL+EfvA45oL\nuUL0f9U2QpUhv06Nvp51mrviSgm06FaVVGf5N7ZBkVDjtCoJQZAr+SLwzc3wrY+adBiy7ykqYXt4\nE184+/t7TaRS6uALMz+qWD786c6VR5fP5+9eYoaN6KHbxZIVV0panEd27aDkwp7WzmKRvOqHySaV\n/DXJ/m/Qxi2xg9BxTXZ6vV6tVjs71wex2Nvbk0ikyspKIpHo4uJSW1uLtguFQq1W6+vr+0KT8yS6\nOD/bxhsX2a9MansfI55Ex7GhvNBZZFr40ygnAEDq/GiObf3Y4cHsi3kimRa2xEcwyAS+0sCTNA3A\nw7BQuWJE9YaJ0kv7BHu/U2fcftvivFmucsX9Otk0bw9youfUqgEAN4uksBkZH+FoOTQm1GHxhWKv\nDQ9+ulXe9uSnnwr6/54BALhTImWQCOvivY2b+7qyyLAZea47iitQQ3jcnRLp3RLZlRlhf00OadIh\nyo35Fj1JKeWK5XGcjG+6om8rlg2VXTlgfnS2gB3lvDbhPCEktmeMw7T1OEK9WQg1qrc4FbP3aE32\nfTRttg0QnRoz2b1eOq5ColKpTk5OiYmJ6Nu7d+9qtVo/Pz8AwMiRI/ft26fX6wEAu3fvjoiIsLiU\n2olIbYTwOB1sxi28ZTGgcwVtVQHhKw0BDi+WlV22PBb1SHdxZ1oahwSydz+sSatUBDk2zLZrjP/3\nV0tfaPL3B7NOTfYIcF16yHnBLpfvDsqvH4Zlgrct1BukWKTt6cVq3t7Hx+ZqgRgAIFIZM77piobJ\noDDIhAvTwvKXxOiM5k+O5LbhkiwQatxY5LM5wrRK5fDgBpNUlBszYuvjGae4d0qkLQ7svDHlTJbw\n9peRG29V/JlaG+dn68tuauL7LNr5ZOZb+2lOZtahz38AAF1hOj28D2TnLD2702HQlKWXSh5Bfpz4\ncRZtVN+tFacXmpYkOf9722dETNj20K+ZDu1D2r59+8KFC//++28WiyUWi1etWuXt7Q0AmD17dmFh\nYdeuXRkMhrW19e7du19oWpkWDnCkgX+CFK5yxTrYHOxEby0faPW1MicmqUSkZYW/2NdlWRU1hkWF\nZnZ3GbT36YVpoZZGVG+J1Mb2ZN2+b6gzbtPC+6DxtTgCZDNsljzxsN3YhW9brjdFepVybs8WPDHh\nrow1iWUlIu24iBYiu1D1sHqg1/0y2YYbvL+mBDfv03ljCptOWh7H2f2w5ipXLF3f23Jofm/3+b3d\neRLd1BP5XaZZNUlvgM0IX2n4M7X2wPjOhycEUiB8iwE+HFuKSm+SaWGLskwpV/xrmeB8pYFNJ/J3\nLgAA4Ck0m8EziE4cRtf4SQCsvlbW4qKzjTAlyM7ZrJa3cTqzTo0jYTHfr5kOrZAiIyNv374tFAqV\nSiWHw8Hj69dzRCJxx44dCoVCLpe7u7u/6LRplQpXKzIAgCtQz+/t/smR3FmxrpuH+jbOY21MiVhb\nItZWyfROVi34P1+C8RGObDqxi/szF+rwYPaJjLoW70TvM4hRr7h13Onr3ywt1ICu4nZniryLQHhc\n49WPBQqEv8oVJ82NbHH9ZKGnF+tgKr9KrkefciwUi7S+bBoFwg8JZMcH2C04V9Q8qY5jS1ke5xn9\ncyqbTpoY6Tgr1hVtz6xWze3phi682n5mGh7MvlMiHRFsDwDQwebuv6ati/de0Z/z/I/9ykB4nK4w\nHUckW/f5uPbXrxymbbAcWj3Qq8UhDDKhsfpsAo7UloleV/KU4hf1KgJjNKfjmuws2Nvbe3t7W7SR\nBSsrq5fQRgCAKrkeXSFVyfRRbkzh2l67RvvHB9i1to8Rg0wQqY0qA9w4i+gVifOzbXIZ9PGxSea1\n9UT2HmJWK2o2fW43/tsmFcNsRsypXj9RnX793xRm9pkC2IxUyfVvdHsRld7EZrR6x0e2fti2NkKZ\n1s1l6ol8mxX3GjceSedvHuqLrpwgPO63kX4tjo3zs02YGnp9VvjJTIHlk17liocH2Tde07dGsBMD\ndXQBAO4USw+M75xbpy4WvfEdwngSnZs1WXzmV7vR8yh+UV472pWYODyIvfVuRWtHCUzbNozD2tyH\njMh+LyMrRuu8AwrptVMi1oa7MAEAC/t4dHG3sjzxVcn1Lfp1dUYzT6KN6/Rmqyiy6USd8e2ncXQc\nqn+cUvvrV+yJyyg+YU0O0SP6uq44KknYiRhbdkq3gSb3gVFQ+aKjdLD59wfV66/zpp7I778745Mj\nuW8o5yalXB7mzHjFSWI8rbh16iGB7J9ulUdsezzpWJ5IbaxTGdpZ+CrAgUaB8KND7W8U1UcoJPPk\n4a7tkirclfG0RnUiow42I/sf1fbxsfltpN+axLKX/zDt40aRJMoWAQC8UC2f+AC7YpG2tWgOkquP\noaKgtbGG6mJys38mxivyPioknkSHencW9fFofIlO6+rc2pXjxCTPefPGNAoR/97WtTPr1PoKbuO3\nBCtb16UHWytziafQrft9orh98gVOoVZUb5ioy38sOfMLf+cCTVZS+8emlMt/HOzztEZFgfAPv+4y\nravzyAPZ7R/efjJrVDGer2HPt8qVPXaN9ndikq7PjHCzJo88kD2v14uZE6bHuJzJEuIW3rpfJgt3\nYbQ/K5yvNBSLtO5rk33ZVI4thU0nsunEJjuE3SySHs+WXswTva5Ynqc1qmhTKcXn+Wu4JgQ50luL\nASFzggzVxa0NxBGgJiESGK/O+6iQQCvOzDFhDi2GgcJm5PaXEU0s8q8ILMs28BONohRDzRVd0S7E\nIAUALPzAY+mlktd4lncFs1pRuWIE/9evNLkP+DsXmJQSbe4DWmBM856NY8CYvUerUq+Z1QpzOzZJ\nQ0xwzdYZ7InLbMfMd5y9xfGLnxRJf2ty21tx6mh6Xby/3fBgNvooE+dn28WdeTFP1M7h7ed6oTTY\n+fX4xhhkwmfRzmw6cXSoA1+pb+fyyALqsgpwoH1/pWziP9Fr7SFpbuSK/pz8JTHrBnmjLf062VjK\nJQAAzuYI113niTSmHL76funrMVOnVSoYNdm00F4vOjDAkZZZ07LzmOTqqyt60uIhI58HObyMvwCj\nbd47hYTamls8hAaCN2lU6U2t+TxfGliaoSvcYVaXw5I0xKTG09yUj78wilK6uDPZdOJ7mJAkufA7\n+5NvXVccrd3yBdkzsG7XItHxTbTQ3k26idTGvv/LsNzacASIETO4au044YFVzz2F4s4pengfy3oL\nRyQ7ztosObVt6TcrakVSAIDuzBZdydPWhovUxmBn+mfRzhbXy8IPPM5kvf5aA7RWAthehS7uzKKl\n3V9iYPbibglTQ++USIOdXlhHsqiQ5YOEuzKf1tSvQnSwecMN3ukpwV91Y3/3oWeMp9Wre5iq5HqO\nLdVQXUzpFPnMAeT53j4fYM7lq9HO+vKTmpx16ozF6EA8hY4jkvUVXOXDi7BMYNapS6eHo08/urIc\nsmfgK4qN0Zz3SyHl8NV3SqQf+LTqFm7ir3Zeff9+maxxwtCrY5LnHc3Ju2K/ZYPyk7PEaZuk8VNK\nezFjDmq5WxFY84EPq7VEkI5JWqVy8YWmZo2UcsXIA9ntrPuJGPXG6mJ6VH+I5eBzIMdmyAznhXus\n+01o7gzYcb9q12j/o08aKrVY95vgsfEKZOfctv0NMcGarCTW4BmWlknH8tJrtNWTd0nYnbJWTio9\nf1AvrhPsX1G7fXZjyyGKDjbrYHMTPcGiQnylocUqcGad+oXsgRa4Ak2wSwcKHXRikgIcaMc/bdfm\nQG3PY3nMyqxWxQfYWRy3H/iwrnLFXhsenM0RAgBkWjiH39Z6FzHBzRfEF3NF02n5iFFvsaEhsEZX\n+ofsZh99eVtG3Zq8urOTjxfWKA1KnjJlCkBgktsIyCZclbEIMesBANYDJlWvHW+SCWu3fKHJSmL2\nHl23cwFigvXleRSvFgLrMV6R90gh7XtUE7L50d0SWZN468Y0zle/mCdikAlHn9Q1TwB8aUzqck3e\nD8X0jwwAmuJD9bWC5gbQPvWiPpIRKd6fG6oSenqxksvepVi7M1mCP1NrLW9rVXD/3Zkbb5VTiHj0\nFvNctIXp1MBnnt9xBAjdx7MxOXx1uVQ3K9aVW6dpcshm8Iy297BRpVyy6jMWvVsVi7STjuUxyIRJ\nx3LjD+R7xfSpm7wz8/TBReRPXNafZ09cJr2wW3HvTOPhxSJtN48W/jPr4r2H7s9qonerf5wiPLBK\nfGrri1aUuMoVR/+c2uKJ3i6NS0K8HBAe58Qkoco7h6/qwWlwksX52e5MrhoRbL8zuTqzWvXxoZzZ\npwuq5K3Gqgj/XFW5YkTjjNQbhZKEpGy/zBNOc362NGq5W3EEunWfa0ZxillT1eJUsB6+/sv9npP8\nZoLLBY9+oodvIXMmQqwQMmci2W2EKvVLs6aK4hPmvS+TNWgqtXNXydmdtiPnWPefpDv0vS7/MWT/\nHKfy2RxhR6g2+27xHimko+l1B8Z3Pp0laCORwpdNrZLp0X297pbIZnZ3PZLOb0OBvRBmTZWueBcU\n/huDRJroRfVlEqLtiDYkfH8X0tVqfa1VnKHuFouCE5rwCULI9I7sR8EVaGI8rS035bV36qZ1dU4p\nl68a4NVOzarJvk8Neo5BqVComZdQ9ONgHwAAg0xofJ0Xi7TbUmUymaLxTQoxwVHfHqt/bdQr7pxC\nvQtVcv2MU9wpXZx2jfbPXxLjy6bGeFpNjvEcdehWZKBnTq2a6ODuNGe7JvOOrjDdMltaZcvZnV3c\nmdO6OZ/IqFt8oRhd1+pKnlIDoh1nb3FdcVRy5pcXCgL8JanqwrTQ+AC79g95hxgYYHs6SwAAuMaV\nBDcKI4TwuC7uVoM72/myqQvOFe39OODCtNDWdiOU3zwGWdvbDJ6uuHlMX8Gt27XoRqHk6JO6w+Ei\n25FzLFV8EKPCrBeSPcfhIBqt8xJ15mJ0udMYXlrVia8PRXRL9eSk60u89xzs9/BUNVegQQMciA4f\n0MN/urLhsKHmCtrfut8EXWE6gWlLC+1F6jeJ7BPWdkQDGmTYoTaIeid4LxRSsUh7lSt2Y5Hj/GwX\nfuDRRk9HBimlXD7pWB5PohOpjWNCHQAAr8WHhJj1qvSvaYHLHsjpoTbPTEjC46b6Uk+VG26SPjGK\nUhh2VjVq8/bHgo6/SdLpLMHwYLYTkxT9cyr6/FujMI6PcKxd3TPAgdbYj42CmGCzWqF6fLV0ZhQa\nvyRJ2GGsLSN7BLR2it8fVOfw1ZfzxUs+YLPhXABANw+rlPIGVbf4QnGAA+2ymKEt51rOUrVz0ZrK\nX6ruXqxaO656/US78d+it4+Ucvmcnq5xfrawNAMgptT50X186hP4nRlQlbzerGQzYo7ywXnLKR5V\nKMJdG4o/NWZ8hOO5HNFVrnjS3uTE6f1K/tpV69vvdJYAT6GzBk+Xntv13O/wz9Ta3x9UD92fNS7c\noY+PzX/1FjYkkH0pT4waP5s4cQ9PCIzzs/3Am5VSLufYUlhUqJuHVfPNXo2CSuW9v22Gz7bqO06T\n+1D45yqCjUPGwe2/jfQzF6fTgmMtPQ38RLJn/W6weKoTYv9pwryVj/b8qivZq0z5TFeyFyCm1IOn\nO3eThUxa5j1kGdXGER/hlpdWOe339KWXS9DrzmCwenyJoixPN2v5AACiE8f3YP0fjOARaD/5+7Y/\n75F0/vBg9qv8mgcfzNMalWq97Pld/0O8Fwpp9pmCQXufhrkw3KzJreVso3BsKZ8cyf3uQ887JVKZ\nFubYUpLmRrbRv/1oC36hdv7WDFnlSI0DXJpGVXjSCYuD6Nn4LqLyC3YM0s8XC25KkMW3a93XJrdd\n8rUxMi28437V6mtvPOcDZcf9qv2Paj+Nchodah/XyXbr3QrYjLhYNaw+GSRCE52qyUoqmR6mTPrb\nfd1ZyZlfdCVPNZl3IDuXNs6yM7lq/6OauyWyGP1vyuRPAGLq42tzLqchvI1BJgwJZOMj43lbZlZv\nmFj945San6ZU+fZL6L6Sd/mo69JDbmtOWzKZbhZJ+/jYGEUpmpx1qtQv1VkrDFVnzXohACDYkWoJ\n/yV7BBgFlZYll0hldGK2XKSDAuEDHGneNqRE8nHCR7MruXnjrypmny4AADC7D9GVZpnVihYHWr4Q\nRX7q7DMFC/u4fxbd4DODZYL2RwC+E1AgvC+b+vHBnIH+LefzjQlzKFpWv1D+LNo5Ib0cDXZQ3Duj\nenxVX1VYt3OB45ztaAUpm2GzSAExI0VxsVCt+dFZRKdu2LkVMcGSNCK7IUTz/hla5OQ5etg1/ZYD\no8v/cCQb2c0+ZkCK+vwbHNEKIkNDlvcbOTxgvYYw0ajdPNR3wbkiRZ1q17gjHhGu1ZIh6qzl9TEO\nz6ujqtKbLLudncsRoeUq2s/pct2UZLnFNJJfe2/vvRknU5e/0CTvOv99haTSm9h0YoynleVZuA0+\njXJCtn64PI5zt6T+waQ9ifHPBZakAQCI7JibfH2sA4nQymNTrCMtHx/uRtPkzPZd3pnyUGTcMNin\n/+6MJib13x9UN8nqUOlNf6bWfnIkl00n6mHzvkc1ry7zc3lUobgwLRTC4+ID7DYP9e2SvG365r8+\nzt9lqZHczdPKkrSPonxw3mvXI+eFe4gO7oAAKe6csp+2vu2HzQAH+pF0/kCXOgii0MLW6ytOBzjQ\neBIdarWzxExOHN53XthOx6VHXJcedF70cw0dNy8qd2un+SZCgyKBzYhIZWTTifryY8xu+xldd9M6\nfwsgmir1Sz3vqK8NoUSs5Qo06LdNDYhGAxO4Ak1QmzFmqwZ4HfArd+kxsN+oMfF/3ste3G1MmAMa\nHcPsMVydeXvGKW5jN1tjJGd+iby/XbImto+PDbp81BWml82NrV4/Ubh/hZHPQyuztchzc7B0JU+f\nW6/632TJh57Dg9mfthJBDuFxlpUTYoI3cZdzV4yp3T5bm/tQk50kPrHJYeZGI4mtqFMBACg+YYcc\nRm8f3ilm0SZ1+g37aevrB5r1qvSvSK4jLNOKyiQQmcCJ9uj95ejSTLPRQCS7xYb4pwAAIABJREFU\nj2HFJWm0z2iLPj42Oxd2p1TLXYxGf3vaoKU3XIIch6+M46ULiQ4f6CtOt+cDnsis6/5rWrFIeyKj\njkEmsOnE0kcVP/b6X9IfqYJisUHznCfLHBkc70Kq0jTEVQmUZQbTGy9y0aH47yskrkDTg2P98Osu\njUtutw2DTKiS61/aUpcnh59IjNvyGu7FutI/qL6zAAAPBMZI21Y9WJG20M/ygWxNGpmA68mxBjp9\nqLfdnB5u90tlAACV3gSbkRMZdZfyxYsvFDeO7/oztfZRheLwhMDxEY7rBnk3XkC8USwWCdXjq7Gd\nHOdLTvjakZX/bP/sZk3mKxtUKSwTABNs2fKZGTtMduUAybXVfUNEamPnjSl8pWG8n3os8xi18xKy\n20h95WkE1kyJdppxigsAWJNYNjjQDgBAq9i+yW1TVfIC1ZMFWu5WoYDrbo373v9OY02QWa3yZVMR\nowLgCDiSDQAAR7QiOQ2w6nHCbJASqvfxJLqtdyrQoEGrvuOUSX8DAO4US3t6tZWpCuFx2uQEZu/R\nlpYoN2ZalUKkNlK6DKy8exEi4I4+qWue8mzWqSE754eeg5XrRlZvmFixeIDw0Frlg/OOX2z03HKd\n2WtU5YoReAqtxYA9Lffxc3N7xae2CQ6sMikliFHfnlStN4oy+RybTpzezaU9l5XkzC8OH8+/NnA7\nPn6W/dQ1DtM21HrPP74m88D0v04uvggA4Ao0uXx1F3cmgWnrvGAX+qcya6pUj2dSfGejyyNJpSz7\nakHJowrfWA46rV8vL15aJQDAoDEy2U0fMoYEsl2DnA7OPDO3p1tPW3LA8GC2l624QgbsxhTmJlzj\nCnALb7UWpFCRUc0vEOby1eGujKH7nwIANg/1BQA8OpE589gEZ3/7K5vvPDzackoTikBnpkM4F4O+\nQFF/XVOJTNhkYJL/mz7F1vjvZxqL1IaXKKHNokAvXbLskciYUKEDAHzqTXWg4E3KQjzVDUe00pkQ\nRyq+teURAMCGhN/WxYpVlmfSOgDgdHG874kyXR9P67P3squrLo8pC9HBZo4N9finQZk1yknH8o5/\nGoTWxzyXK/prcjB6qUN4XLAT/XSWAHWAvUaIi2+vG+Qd7EQ/lM5f9iHHsm6QXtxrkgvZE5faEyA+\nn689sARtD3dlns0RWrz02vzH9OiBltloob3sxi5swzN8JCV/IO3CeOeMYC9/qs8iHEQDAJA9x+nL\nj44InsEVaL5KKIxyY/b0YhmFycCkVwf+L6+2fEJ4gNoI3czMnxUcDD2auTW/Ynq3epPgycy6fp1s\n9LyjZPcxz5wJR6D6zVXf//zWrEAcnjxo71OuQAMAxYZINvJ5yTzNZ13bqkYDi2tJzpzGlV4DHGgn\nMwULzhX52tEmyc3zo1hCxPGXe5VoUIYF1eOr9Ki4vEo/j/GLAACIUV+z6XOzVs2euAwAwBo0leIX\nSQ3oWvPTFJKrb+MgeF3JU/HxTV47HvB3zCfO+rXxnGiAOy04VnH7JDPmI1po79rtszVZSQ7TNjQP\nXGzt47xQ9Z22MfJ5dXuW2I1dWLt9NjWgaztnNlQW2I6e5/+QX0RxcKTQDRpD9uX8uK97Oviy7+17\nVJFRvbtCszyO02SUrmQvLfh7AsMHAFD6qOLh0QyVSA2Roan76n9ury7umRdyKUzyk4RclksL9reB\nC3upJWqVSM2QawnuNgAA724ed27ycmUcsvEGAE4p5fLmhpajX58zm8wQiVAczHFikiE8Do1L1Cn1\nTDbd1p1l687y7cHZPeGYlSMjYlgQAMBsMh/+MmHK7oaHmHt1hhgSnPjpYbB7alKdMd6FwGFH5Nfe\nI0FtpTMXKmEOHSL9h5YV/6GP0go5fPVLKCQnK5LK8DIKqUABS/XmU71ZMzvRSlUmAICu9A8yZyIA\nIFsGd7Z+zhOAL5Ng6z8DKlqmfvqdtexOnc4sxRG/f6RZLXLzcrHO+KZrwtQQBpnQ04u1Lt576ol8\n2Iysv84b6P9MqdZ1g7zPZAlPZNS9hPytkcNXz+/tnstX70yuDnakLzhXFO9vZ0KARK3T5j1kT1xm\nUS1kD380lSfAgbbhBm/o/iy0XVeUQe3c1TIhjgC1sYWEVqf6UP7VjN5hNb57GJHbCdb1SYhkt5GG\n2kQE1szv7V4s0s6KdTVrqvRlh6iB3/qyaWlCGg5PPpLOHx1qDwCgBcwbanMLXSShdVH7cXBGUXJj\nB4MFxOYDQ/UFAMBvI/0mHcvt/msac9A0WeJhAIClqK7i9smKZUObJCppC9Mp/tGNW8JdmDqjedfo\ngA98WBtV4U6F13p6sark+iPpfJXetON+ldeGB3dKpBUpt+nhfS1uNhyRTHIPQF8AAPAUOi0oFkeA\n7D9bU/f7ItT4ZlJKEBMs2L/Ccc52ohOH/eky7ektDR/BBFdvmKhKvVa5YoQq/Saz92jIztlh2gaP\njVe03Mdt/rwAnbxm09SKZUNgccsGxpdAdHwjnkKXnPnFdelB4aG17RkCi2vxTFscAerja3OnWAYA\n4KVVBQ30dwt1JtGIMRMi9k89Rdib7EFr+MPf+PX+8QXnd8xlKBX2AACDxph6Ouvjnz7yinaLHBmE\nJ9T/fLbu1tlXC4oflHcZE/LhnNgWz+7Vzb0qm0/RG7ly/YxT3EcUysmE3M9GfuOhOv1plNOlPHGT\n/hqZFiITJu0c6drTy+9y1r5hPgfGd0YPFdwr9evV4LGedmCsGUbu7n0EAEg+mK4Sq1HzIwBg2G3p\nxQLF9XF/WjHJvW3wJDxIF6scrXxWDbtHJ7OkmlYt8H+X6w3m+kWbGTHVyAoMcNNIIpQNl+LqFK2W\nQeo4/PcVUoFAw7F94UQiHztq27WCytUmkd58pbppOOnidKVYb6YQcL5WhHw5jBikiElPoHsCAKrU\nJjda04L/zcGT7Y2hJ6h+83WlfyzzqsmRw/Fd3BXuweO7PGN8D3dlhLkw+u56wqYTF/V5JnQQwuOO\nfxrUdh2BF13/3S+V9fCyBgC4WZPHhjvWEsjXpLiNOapVKXxD7NjGPZm9RllC1CgQ3mLlgMU1Fntd\nG2RWq7w2PLiTtF/kNCcobOyosGezPXAEiu8MfdlBCoS/MiMMwuM0eT/Qwtbj8OSthfpKM1Qs0p7M\nFIwIsQcAEKwDh3nrH+Vn6mDzz/cqR4faG0t+p3SaC3At/AomVm+j4B4AwJdNTZ0fvS7e+7zU1iio\nDKpJQouxKu6dMdSVO3/9m+joj40H6gpSG4d4AQAYZMLesQExnlZze7odXDNdnXkHAHB4QqBKb+q7\n64kONvfxsZmwJ4VbUrXnqbLxpll2Y79xXrSniWAkV1/HOdslCTsqlgwqX9Rfee+Mdb9PiA7uAABq\nQFeCvZvi9smaTZ9Xb5hY8nkwK36q4xc/2YyY4zB1DfqIQHL1pfiEEaxs21AziAmu27WodssX9p+t\ndVt5UnRi03N/pvZgqC7G063txi5UZ9ymR/XHkSjtKWurfHiR2ikCAODLpubWqQEAhUllnXpwAAAq\nvYnBpvc/Nsm2mycvrdKgMZpN5pq8OkWdKrw/7eOllKeX8gEACauu9Z3ZnUQjDljQG12RoEBkaOG1\nGeSxXZxDnC1aqgmdYjnn1lz3CHXOqVXzpLqlGaJOOMSO5VCktB7nVZNSrmgcZKRT6neOOYxqHVpX\nDoMCHRl35NrSyxnnc/OuF5U9quR0aSgvBJGhqFHBwhIx93aJSqweurxf2uksAIAJAZG2xM41wkEL\new1Y0MuznP99KKNMaaKRWFQik0VzFqta/dJIeMD452kpo+LS0UeLr+b8Zm5WnyKj4pI90+te4WGb\noKYKtaPx31dIfKWhxY3y2mZ+b/e9Y1uNRQYAVGlMO7iaXYWaJo3OVDyFgAMA+DKhLJFCkLaQ7DEO\nPVqhNnkxnq+QUPBUJ3rYT3D+D7M7kYP9nKwIJt69y/Kb9bk1N/mGYqXp0+5uFz4Ps2xa0wQKEY8+\nfV/livv+L6Pxoa8SCiO2PX4hnXQmW9jTi7V9eKfNQ30DHGjjurnHOhC/NGfGF5166PJMATGyR4Cx\nuhgNUROu7cWmE2Ezgm5fVK42neTpDG2Gs/OV+iqFIVdP5TkM3pijXpyubPIlkxz7GepuIbAGAKAt\n3EFyHoQn2xcoYH9rAkKmrH8k+rafp2VNQ+28ZIbdscKauptF0uHeesSkQZdHJgQ0FYNAxUE0NMYX\nADA9xuVSvlja+/MoWRr/168U987ILu2zGz2P6MQhOrihMetmtYK/c4FRUNlkd4zG+LKpeLq1SSkB\nAMyKdU2dH72oj8fESMcNToWx8YPO5YpWDWh4iMZT6IDJupy9/Y/7c7TGhgJrEMvBcfYW9x8uOM7a\nwt+5gBkzpOHb6DdZcecv29HzXJcf9T3IZXSNBwAwuw8hOnEai0GPjGtjtw5NVhLJ3d950R6igzvJ\n1ReY4OcukmBxrejoD6KjP6jTr+sruC1u06ArTGdEDyRzgnwO5AAAWPGfSS88Zw9WAIChpoTepT8A\nAN0GUCzSCAQqm61psBkZtPfpljsVR/PFIyZF5t0o3j/1ZNIfqU8ScuK+7unp8dCj17CavDpeWhWZ\nSnLwbdX1sjFHnSpuNb6AwaYvuDyt3+zuaxLLZnZ3WTbAy51F1in156sH5SzJmFBWs+9Owybx1VyB\nbQ9OUJwfACClXO7kwsRD+H5zYh+feHpp4+3aAgGJ1tQ2Ezky+MzyKxHDgtxCnYU8iaxGUaUxBbMg\nTm5Z94mRQXGdfHtwAABEoGfSPAEALtb+NbJWK443Jqf65sIBCSya85n0Z1aiCRkbcqpvTuq+Lb38\nPNXpLbsSn8t/XyHBZuRN5HZE2RKfSIyD3cjZsobgAqkBiXchfx/KAADAFSc/hi7cc9hoMRCZENCG\nA6k5eJob2WOcKvXLb+wfLw1ENH6xqBNbDSNnK3Q3+fqdBVoR3OqMQU70q1zxVwmFvyRVQc+emK8w\nbB7q+/O9SufV91HLHhox0eI8F/NEEdsesygQWraZRYUURoRBxPdyIMkOrBj4+bwCZdOBlE4R+n/q\nwnFsKFUyvTL53HX/MRcq9VQCbkuuWvdPcGvzk6ZVKof0cFIZKIEsUrwraVkInUMnJAsbRQTgCBSv\nycqUKYqkUYhRQXIdCgC4Wq0f7UE5OtDp4zCHCjzFEjuLg2h6t+m61KkrfK/psr6l+s8zmJGbfMOe\nIs0v+Q16TqyqPJ+/muQ6wlCVUP8RIHyAA+2k2MH06U+uK44iRj178vf1MceDZ9Rs+pz/61eCP1fR\nw/u0EZeBwogeqPon0AMlzs82HnDNIZ3OTe3U5M+ZUvaXXFvnwPRKLUtoMg+OANEj+jov3NMk/rhx\nXHtr0EJ7KZPPtxbaoEq5xOw+xKJWWfGfya4fbntC0YlNtPA+zF6jDLU86dmdsqt/Nu+j5aZS/aIA\nAOjMFJ8wk0LSxg5DZrVCce8MycXHIslAf9upcy5cdrRb0Z/T/de0gf62sBnhKwyBHGuzyQyRIWGJ\nuK5YzLQnmjVVBLrn4O8+PDD9r4C+Pi3Ob0JAgQLu40i6UKkT6VutoUCiEdl04pUZYWNCHdbFe/t1\n9yy4V7rUytHW0SxKKq25UYR2k2nh9XvT98mRH5KqPjl0r0KcHj05YsCWICd/+5nHJgxfGQeRW7DP\ne3fzgPUmJ397PAEf2K9TZVZthdrkhDMx7egAAIgM4Ql4M2IyajNgog8AgElhC1W8FuU0mBGVtoYn\nygAApJYlRHoOxeMIvf0mw2Y9bGq4XlQ68aTu26hEpqOVr0HxerYYfXP8xxVS8xJkrwsKAbc7xnqs\nJ2V/kSZPDt+pMwAAarUmTwYBAIAYpEZRcmzU9EpDvU/SYEZeSBuhkFwGUfzm2iIidsEcBYHIp9gj\nJjhPDo/lUGZ2os30o2VLW33W82VTZ5zizuzuemVGmBOTZLn1F4u0vmzqiGD7k5l1M7u77n5Yo9Kb\n3Ncl3yluuYZeZrWKW6eZEl1vMJQazCszlQNcSEY+j+zuB5HIVAIOvbwNZiRLhQcAWPUdJ795HO0f\n5ETPqxAobp8SOATO9qclZVaSNJovrlShOwx5rW+abVOoQcLxmXcqXWPYxDAbog0JP8iVfL/umY9J\nch1q1fMvq15/04KW5cnh+amKSDuiDQlPIeAGu5GNJmAJVQIAeHl3n541PjR0GCPmzyK9zfIMVbES\nLlLABFxDtwpJFk+aRrSLhuUNm0rM7O667gaPTSfhKXTrfhNoQfV2OaITh/PLPat+n5AcPZk9hqMx\nCG1Aj4pTpd9s3IKYYCOfd7Zi/6GH3zQ2yJgRUyH/wbjoDUPCFpWLM1ucjdl9iFInbjFfskKS/bTy\nWoujcATIqt8nsisHmh9SJp8zCisbhxtQ/KJMUsFzQsZNMC0oluwRYDNkhtPXvyE6dXNtZ9YomuhO\n6wGT6nYt1hWmNy6rgYKY4MrvR6jTb1jHTbA0DnKkTgm1P72s57p47+3DO83t6fbdh54JU0MAAKM2\nxE87MHbMTx9NOzBWX36S0mkWAMDKkUHbMREOdwcANK91kiMzrstSjfakjPei7inUoJFHrWEJxvHv\n7X3n9xSdUj/pfyO//EVC4onMJjMAYN+jmnATvPSz8DWJZQY4BQ+vtnasPl4yFx3l19t7xqHxLc68\nKn0e+sLRl11XKJTqEeEjXmNvk1hV6UBUAsgRAGBNdZRrWnYGF8rVYsmNh6UnAQDZ1Tf8Hev/n772\n3UpFaejrGlmBp104+npB/78IpI5eyui/rJD0eMrZbGGPNmN2XwVnKt6GhJ/tTzvF06FB3tUaM4uE\nBwCos1dRvOuDmlDTkFiPsCkv821DrBCy5zhmz7++xO846dNvV9LZE3klkTZ4AIAXg1Chbmp225an\nVsMIAGBEsH3R0u5onWYfO6qlumVapaKbpxUAIHtxt9UDvWI8rWafKVjyoefNIilsRppHJxcINbWr\nY7vcWIPecXYVaJYEM8JsiJrcB8xeowAA470oB4q1AIAfstUXhIQCBUxg2po1CjQnNM7PFj7yve3o\neSYcgYADp7MEd3P5tja0QXuelkt1Pw72+flewx155IFssV450L5u38RnvDIOVHyttuVr6WyFblkI\no5dDw6NffxdSWiObjBOTtHL0R0y7ABye/EBoXBZCn9mJtq2L1Zf+tONlOnTawrqHndg9tbAG4MmI\nsT63kU0nDglkt7YZBC0o1nbM/BYPNQFHgMge/nperqVFmZ10qSu+u8+4iTGbL2dvtziiMyouhbkP\nxOMIAABHK9/cmtu5NU0L4mmNyl9vjjuc8k3jp2AAQJU07zZ3XyovIaPiUnb1jeZiWPUercm802SB\nosl9oE6/4fLtH006209eKdi/vLXSR/oKLsnlmVWIVZ+xtVu/QC2T+gpu7dYvdIXpzWPqaEGxVr1H\nqVKv1W79wix+xlcvPrHJdvQ85wW7Gscrcm8WR8TVL0B7erFYFJyx7pZJVYKWAkL9QIhZb5JlQzYR\naLc6CiVJCP9Zov0hu+kuRw+Exp+jrTzphBAWtCyE8VQKt6dAF8vFauA3vWMmRlDt/chkORRA5d4s\nO7sy0bzzLxe29qNQhwvTQntyiDSSQ7U0ByKQAADHUlc94l147sxmG1lO1uNsnlydUuod0+AGVupE\nznR6ldoEAIAIJNjc8h5p6UJlpKOL2WwyIyYigWyJx4vwGHzh6ebzmRsBAIV1D3wdulmG4Dr8/b5D\nC5iQkHD6WYxGIwAgLS2tcWN5eXmLw4uYIZ8cyW07ieTV8WVCTyRGfytIajA/ERvdaHij4C6ebI9e\nId3sid89UZoQkCwweNDb60BqDg5Pdotav5CNC0VsNvhLQM5SxCAl4IDB/MyToNRgfiIxJtboAQAQ\nHocGhQMAgp3plk1fknnynl6scrVJYUQAAB/4sI6k82cynnCe7vn+Suknh+vvmz/dKl98oTirok5h\nZ/fNA8ETxy61279MERk7W0POVDwAQJOVRI/oCwDwpBM86IRf8tVsMn6uu3FjjjpFZGQNnl63Z4lZ\np7Yqe1SFWGW793Qm47gCTXyA3YXPQx2syDdmR/w42OfTKCdUEVo+QrSzLjJoRJOCtoNdyYdKtFJD\nU51kQgARj3N4VtP7MqFMifFAifap1GhGTAkZG/r5wgCA3UUagdZs80+QLIWAWxxE35yreipRmRHY\nmRlYKckm2sWoBXfPPFmbUXHpfObGC9NC27lvvUlZ2PitXFtngDVXc34FAMCSNJJ7jvTyXsvRnMf7\nAjgDojyHUYnMbt5j/kpbVVj3QKyqfFhyMsJjMNonwuOjNN7ZxNz/PSm/YPEnqfWyhyUnRkQs7+Y1\nOp9/z7JOgk2Gqzm/ftL1x3HRG6SamstZ25t7tgEAtmO/kZ7fbXmLmGDZpX0O0zY01gEoeLoVM3aY\nKq1lt5PywXlaRN/GLWROkN3H3/B//QoxwfLrh8neoYL9K1pcO6JrSodpG3RHVhv5PE3uAzRTylBd\nzOwxvElnXnqVd7f6O7W+8m9lyhSTqkRfflKV8pmlj778JMSuv+dWaUzRdsR0sTHAmkDAPXNpqGFE\npDOzyQ2/ZmdrqEzVLjdqQF8fJ397AACt85IJkX9l3uCa1DynsapBY1ONhdsGBzBdmOLBoXOu5vzq\nYu0PALivijzLf/5uSQm52yQRt8syamgUYuMgC7VBZkcm8nXmFJExVWykEltOoCyUq30ZOE92+Jn0\ntQxKg88MIpBmfXBAqROp9bJSYZoLy99yyNxCbfqORYdWSBkZGan/cPr06R9++AGPxwMAzp49u2fP\nHsshsbjl0BETIGQv7vZaSi20AQEHNkcxezmQ1jxVzQ2gkfA4feUZql/9yr2HPamPI/lQqVaoN3dj\nv3D0eRPs/MO9HvxBcYgle01WpX1p4Cd6MQiW1G4TAvYVab8PZTyRNH306+JmlVpV/8Ao05oARNhT\nqPnuiXJ5hpJam5lk/MFUtnaI57XqggQWFULTb5PL5CD33t0T+z/P3f0j/4g0eszfIVMvl0gGuZL1\nFVzJ6Z/JnCBLvZZxHIovE4p3JVtDYG936wuVOpJ/V3pUnOL2KU3ew4chn6xJrlt2InPo/qeDO9sB\nAAa7kfcV1y8LunlYRf+cqoPNPInOz1ZLA2oSw7PJB3eg4Kf6UrflaRRG5HiZFl0CAgAKFLAvs6ma\nJ+DA4iAGGehPFFffLjyh0GueVl4rUMD5MpjzbFAJHcKtDmMeKaq1shvlz+5zv+iozjo0qfAwmpMo\n1dS0p5IYYlSon34nvz3QsrSSamp23Jq48erge4WHSoVpuuK9asfeWbaZqBFMnZ1UwBDHhH6OdvZz\njPVzjH1YcvJG/u6Pu6zB/xMBaM/kTIn9ZWbvvUIl7+CDeahl72Tq8uTiY50cugU49z6asvhy9na0\nc0bFpSjPoSSIxqTYfRgwI8pz6IOSE81FpQXFGiq5lnWPNvchLaRXaxVxGN2HoKnBTTAKKnWF6c13\n8qX4RTFiBlcsGYSYTLYj53psvNJQzqcZkJ0zdcp6tBBD7fbZ/F+/YjTKUQMASCplR78+x4lyAwAg\nBqkq7UuzsogRvYfiM4MWtIxgE2EUpQAAELPeWHuF7DYSHZUqMobZEvd1t45hk/ysoAJ5Q5mDPDkc\nzHrGqRNgTShVvdgdGk916jxsjypPZuOovG78mBH1K45sr077Wi/N7GwSAgCYFDu1XgbDCpWJnCdv\ndXLYZFAa4Sum9YSwTxl2NNeQZwJoDbDG19paCyNJdYazFTqjqYV1qgkBYgPizvKK9RmPxxNifcY1\nPkons3r5Tf75xpgw92e+VRzU0U12HToxdu3ahnCRmTNnjho1ikCov1y7du26fv36tofr8ZSX2Fjs\nJfC3gnQmxJcJ+VtBaPQXWggApY8T6fMH8mO9rEmv7M3C063InCDV46uMrvHM7kc0uT/4ErRPJfGe\ndAIA4E6dIdAa8reCYtjEhArdGM+G2EIJIORTbZZnKFkkvIZlfaFKP8KDEmgNKYzIsatmeMzSwEBn\n69KKLdDmGkXO9lmgMO47NxbZHUe66zTlj2iClb3TRACmVQf7CApJOmr5ps9th82y6jehsWyD3cgA\nAL4aEHDgAydSksDwQY/h/J+/PO8yIKZ7eBjZ2HN4LFegQZc+YTbExBqDzoRQCLgV/TksKnQ+uzop\nN7eba42He9N9+VAcKPjBbuTPH8jjXUl3+IZ+zqQr1fp8OTzUvYUQSmcqPoSSxjOU/13rUYl8NMS8\nqYigXxBI92y2SLUi4iLxJ7M086Lo6o+7rD3++DsrvWR88Nc6Mx6PJ3D596I8h7Xxi5iUhZqctdTO\nS4iOHxqqL6AJZ+m88xO7bc6ovNzTd+KtjLXD3fsk1qaTWbRdSRMpjoF97gio/YIbP/ZGe42M9hrZ\n4vw0Mmtg8FdKnfj44+8i3D9iMzw+77kTPfTT6Ix9SbNMZuPVnF/za5PmxTVooO4+4+8WHricvT0+\n+Gv8szHuzNhhqsdX0bWIJjuJFd9qtiyeQicwbU1KSeMYQi33sejID84LdrWY0Wzdb4JV79HN/UMt\ngmM5eGy8AgBATLD4xCZmz/p6P1VZtVe23CVRiYFxnXzcTqieHAGIieIzw2KUAwBQvKdq8zYR2THa\n3B8oPjPQOP7lGUoTAob9839wINb9cv/grNCoMPd4PI7wRGIc5vbMX8WZSngieeElA5FsbYLxOY59\n0cRwitdk4DWZ8mgJ0Spoaedx14U5QmUZIDh3p149UOz2UySzuefYjJg2Xxvm4rGwC6GoAB4wsLtr\nN+9n7AFao9KG5qIzIbVacyALKtCM+iX9wshOXTysGkygqWKjC8i0oX2IxxFGR65sLqeHbcjywU0t\ntwj88kaaf4cOvUKyIBQKk5KSRo5suGj1en1SUlJubm4bo5B/0WIaZkOcG0ADABiqEkhO/RsfsiLi\nTn/AenVthGI7ep78+mEt9zHAEWjB33vqHt6ukSXW6r/PVJ2t0MW7kgFzhG0mAAAgAElEQVQA8a7k\nao0psbChXvL5Sj2psnoWkj18Y6RPcfLo6su+yftoOBNbXjFF95OPneO3Ra7miIHEyI1enbTTBoT9\n7FO5PEBd5N59QoidlX3949uaKJuPxXfKF/d3WbTXesDkNoosDHAmJ9UZ7ovNdVJFDdNjjj+tJ8ca\nMev92QRLjEmMPXFbnvqp1AgAGOUjY+R8/m1AWgmtVw/PVoPWYtjETVHMqT60p1LjxSo9m4LvbA0F\ntpJrXCZM/yJ8UCXS5adIZjoyQ6Csaa6NAACwyYAHOjc6dEkEMSl203v93s9z2LzHkl/yNQFOvR9U\nJBfWtVrk1CTP0xbuYET9BrFC0GB0A6zZc29GhSTbwy50ZMRyNt1ZoyzhEmydrf3Hx18eiANuxaV/\nBlV29WvZ3d0aTIpdsGs/vUkzJGxR43Y6mXW77H82NJcF/f/C4wiF90q3DtzLLxDSyayPQhY4W/td\nfLpFUCyuyqotfVRRP1XPEaqUS6jOMPJ5bZdOoEfFNdnVSZKw03XpoTZG4Yjk5gbANjBrqgBiYE9c\nZllOZV7IC+zXafSG+KghDmSamRG5nRH1a2NtBADAk+1xRCs97yiOZEN0/BAAoDMhRDzOjox/VHoi\no+KSQFlSwNvn7j5LqCxPzN0JAFAYENTUbMGBgpe2HmvXBl3+N3R5gdxSlA82GQhEOpEdYx34XQTV\n+srTH5kUFmKoCbGBmhiZlTrx/25PrhBnediGPBVrHSGRPb7SoK/efG1Y47W4zqC0pjrO9qeN5VBm\n+9GiGMVZdSVXqxpiRgQ689VqvR18nUl50cJCHX0DgXdDIZ0+fdrHxycoqMFKcP369V27dk2YMGHA\ngAE8Hu/tidYUQ90tkstHb25+PIXuvHCP+NRW9J7CClm5FizLFEiHuZN/62qFPo4RcGBeZ/qdpPto\nxeiK2wmOZGR+L7d7h/Z8xVkdwk9Wp17DU+i1W78QHJmigCKgkzVTOeTpD+XfiTsVOk454TPwD658\nUyV1pCthVKP1hxuN0OmzZc4L9zQ31zRnnkdtXfbP6/r9Zm9jAgAgZr3ywafqJwssu0pH2xHd6IRL\nVfr0Qwdrzp3y6Xmw0O3bnp6ebcciejMIBByIdSDlyOBeDqSRHpQW+xtgjVRTw6a7nO9rE2gN/dbN\nyUO3q0qa17ynQFnmaOUzyZsKAPj0vuyewHTaNHwiOOhGx20rgLikpSe5KVVKwaxkXpEop/FAY90t\nXekBesTm+tUwjgCxQlLy/1cqTHOzCULXJfqSP+KDZt8rOtLH/zMAgN+oWzFutOGuvZwl902qktY+\no65oV/O9t2N9xvf0nWhZ7qAWrSGhixW6OnQNl/pXVsaFvJlHJ5xbcz3pj9SsCxmu+q5Grs3eK1/t\nujTr7+2na/LqAAA4IpnZa5Q0YYeuMB2yf8bPYdbyDfxEkzwP+SfIghbaS516rXrDRDQUAhbXklx9\nn1v0up3g5Smq9K/VmYu1RTssjYJiMaw39ZgSxWDTDfxEksvQ1oaTvSbryo9R/b5C36aKjX2cSAsD\nKdzapIclJ48/XkbD64gE+oCgL7VGJV9ZUyN52HwShRFpnLbRTqK9GWw60ZI4L9XUMMls9LV3xI+D\nyKzObF+1QWZPxt+sNZzjyWFpfRagWFUh1wqyqhLtmJ0ksE0/34HdqTcDSWlxnWfuvz/rUWl9CVe5\nTkAjs2xIeDRUx41hbac7VadreJw6UKydG0AjgBeWXJT+qnstvmlwCNLRdSYAIC4ubvLkyZMnT0bf\nCoVCe3t7AIDRaFywYAGPx7t48WLzURG9B/g515vO7OzsVq5sYWH7eiHUHAJ4yOQ04fld28TyAVvD\n8CABhycQY4YBAHAGIb7mAFKXi3TZiRDqtz4zVxceqgQDH2yx9o/8Aw6NcwUBXWK1B5Z+7/L1V4mT\nHWPiKB8vMVYXHZj12DnIyX+Aj4AnS43r+rW74bti0kDTORrspUg613/WkhcNVbdITij/2ew4sgjx\nspJecNZn4fR8k8sUvCoHIdDMjv+UkjOKN3H1xC2ZtkZ9yHD/xG7hiz0NLxEc35ybJb8FO8Y7MjpZ\nWmTamlzBtR6eU8UaXjb/Sh/v2Wh7Nv+yHc3TxSpIKBTiWQ7bK4hRVuYx+Es4WTLsvcIESBtKgVxX\nFUUXctWEwc7uAGLz9WCAeheZRMc7j29c9AGnr72QvXBQ5EEAAAFPxJlUhMrfYM7SxoLhTCqgLgQA\nQLV/Gv22ANyzeSGICSr7EZg1CCO47X9R+vHc4rvlo7YPkKmk9vb2hbd4OoU+dIQ/AADwz1c94uo1\nBF420SPG2ze8SiC8lE/pAV/oHfddfeyiMeW8MfMWbfomAJFw2lKc4glengpILITqDYwynL4a9qm3\nlmv+NxfqHAsXPKZNWW+4ewLPCYECurUmVfsh8I9pZeWkTvMBgQoVLzN5LEBI9gCAaxvu953fjUQn\nAgCg4mWwz+qmX1Er7K+GJjibFJrCCllGtNvYq4WbWRTnR2DqZy5GjZZ7ouiMzGy/OHQUg8RuPMqI\ngN1VxLnu7d3hBaXJ5Vkkvq82SMKd6027ybUl1voirup2tO/mn3hET3zdMkeu2ToGAJDDvyrVVeUp\ndenQws9c4Fhr09XCzQaTup/PPDyOkMTbN6DTNwCAxKJt6AuUp7UXb5fuNDge/IjxpFz2f/bOOy6K\no43jc3u9cvSjH0V6BwVRsPeKDRU1r7EbjRpj1JDYEzUmMbElxiTGLrH3rlhAAem9H70c5bhe9vbe\nP5achCax3aH7/cPP3uzc8rt1Z559Zp55JmmMa9SBcsICS9GD4l9aV+uMLVu2aGfZeTxefHz8f/qx\n7xi9nkNCSUhIqK6uHj/+xVC+9mkgEolLliyZNGmSTCajUtvmB3K2MIyOfkmK/jeIqu6hEsen++56\nI1fjcDrO0o+iGfdx5bZIzsSFGjWMw3OaUns1XY025exm9tmDdpGNT073cx/3VLaxQorIYkqc/W4a\neruTevn8NMqzAYnkhI2icDgpDx5aOjMCJvn6jfc4H3VzewAbwkOHzDSgDA+RZRqn+WQLDgAgpeya\nAdXc2tCdoGyUl55UVlxgBh/BM527UK5BFJKyJgY3yBwAYD9PWXkJoloTjAIAGC1OXkUC6STOcLWk\nVJKyKbRsScpX40NcWMU7blP6QlYWXf3qbgKrlYCn9HH6V/4IDuCk8P/mcDi34razqGaVigTUsYit\nqhjgMB0NmeVwzL80VFvTIBL0kbLCAJHeojgu+MlcA4A5CcJ9m1rxdz1+hDXDENf4c9MkCsluDJ7c\nOty8Vig2pRmaqOLIdhEAAGnOdxTvNRCt/S9yAgAo6Wq16LI2+AVFnLyK5DCexBkuSVtHYbZknGqP\nXKRQi5AJXw2PP5jed6mPmanZlZsxcw9NIZAJGlgqqcoJXLQbABCCKBS8EwSjyeZei1MefkRlhbHp\nhhQmGQAAJi6McSOGcEwgcZG84jiZO4fgtQAHtbzy/+uvbzkLAFCU5dbuX45nm1nOXtf1TqkvQaNW\nVl1XlJ8jmoWpzSM4FlYAABVhoYp/g2b7RcrlLAc/O1tHGwCARtkkpRvTLbraTrM1qlqxvSUjpey5\nk5Uvh8P5H+cHAICjAD5YKF3qEtrM7zXVglclTw6zndPmi2S+mG1q1LGjDUB2M9zhmHDr5lkuw5ub\neHLMW0oK65kLVCdLiHgnC0N1idgClJs5j0NbZUJNratN8M20zLmOjePtHfE4EKSZcCRuxcJBbgCA\nB6US9LLUCmrr6+c2Q3SykQLSNMElcpyilmxsa6jSUKstjR267iVQDhw4oD2OiIjooqY+0AOG7C5c\nuDBixAg2u+NgOaVSCQAgEHRvWdXN2TSfl8RZvClwRDLZ0afp6qGCCNu6P6KUNaWc5afhWqos9yd5\nUZqiLFeSGhPoZPvAyKYhV+SMKFWWwZVbplM9Q0zoRJe56yiOPrACTrrEi9w7GU325R/umXIpGwBA\nwePIdhGK8rNku5bMSdlVMWeeb/wr7lNR4iKy5ViDQfdkeT+1H1NqjarqBtHixUQayWoCwSgAPWb4\nfS/jl9/d9IUs9weeYL08U7wpxKhejhROCiaU1MlFCgDAS3eO0bLunF9K2bXrGbt335laWNfy6ldc\n/9zVIrR9ZXOWY1ljBgEijfFaVdaY8aTwBABACUtbJ1R2YODR2T6S9URV/TMNLCVBOLRkoj3HBf9k\njgN1tHDnl27iSPOkQpH6Wb2qWKxWIpqyxoy/YlcEB+6EmzNk+fvESZ/iqVYQzbq9jH/uyTiNgt86\nWBxR8HE4AokzHABAcV5TcedbjbLjpcpPDid6jnDhBlqHzAm4vvFR7v0i51B7NC+AvOg3snVLdAAO\nIlMcPiawvSAqZ4CBRXXguTt7H6GnJArBzcw92RW3pRkb6b7fE02CUWskV2vUGkBx+FjBO9H6L5Jt\nXW133rBaf6QDa9T5k1AcX4aOE2qRlxxRi4sYAXsoDh+jfTSsgHHMQH5ufvLZuNTL2X0jW+aKFJVX\nWj9CXdOkRAxJOABAcX2So2mgttyLTZjGpX72XLjehzOYG1xSn9T+u05MfIW045mkegWyLlnU4anW\nVAiyaaQXvRMFD9ie602UdRp5iYNouYporHWjRfJ6D8tBSsgywISGWkA3izA3i46jeLQMdPl47cgr\nQnEGnuarpA74OlXsySaK5PWmzK72Gu2h6LtBkkqlly9fnjLlX/sFxMW1zDMLBIJ9+/Z5e3sTia8b\nUf36UHot0b5jvgPYw2fz/9pofyCe6trHbN42mneovEAoTrwvehrVePYH6tRvSx7y+tbXf7O694D5\nQQLDUO7Pj6iuL5JtX9x4O2gkn2rUMoLBDbTOjSmqSK8GAOAgMtG0n6ruIXoKRpRrRl5maJQpZPv0\n5hIcgUa2jZBmfauqfwYLMtoLAwAoa26jGX20iOslwlqxuF5yeev99ETvxxctyho+yXlYFfH9WAgP\nhdtS8hCCOZVwcObJivTqb0L2SQUv2ZcMVsC1gmInRv8maZWTWdCs4F1ljelbrw5KLLmQVfXAldNB\nI/eyGnbgwRwnsyASgRbuF5VfE4do1ITO/8so9nPkxS9WjLobEKw1MWeerkiTy1Lrki8kb/zIgXSz\nUvFFkuj3Qun1jN2LB/5pznKie28jGLjTfXagEXddQHVdLcv5QTthIy88RLZveX9/fqn82vHeqYe3\naBCFRiVUVl6pyq6FFTAAoDCWJxcp0NU5lu7mA1f2ubTlTkC4JwBAo2yCG58TTfu3/1uW1mOHOPer\nML5/M/rintsz/rq29qOQn1Ny9lNdVuBa2eP5T5svlMnxTGe1KB9dfNrBnVcrTzxbg2jUivKz4uRV\ngnsDFeUv9q8ra8z48nxg6tNnN3c9zH1Q9ODXZ62/q6p7RHVejiO+mIW6vfvxoTmn75wPKYu9P/mb\nUahZ1cBSmB9LMh/S9Q3UktYEOzEJAAAEUbfZr6G3MTGCS7Gj4yEc3pzl2D5ExZ5JuFYhV2uAXK05\nWypvvT/e41olnYBDV1DUyTs2Wjcz98BqJYfVEolTJ0dMKBBEs2YbB5anfk1RZQEydX/s5sSaollP\nBA2ScgiHV0NsS/qLYISPQn5GD5gUEwBAk7QKgtpG35AINEPJn1mq0ATZkO1uJcEmxFphYesFRu8N\nuncsuub8+fMmJiYhIf9at79mzRqhUEihUCQSib+//759+zr7+nsMkcN1OpIL0Vlo4mcAgMXq3wAA\nyoqLisorMWdin18Vr761gGXOYNBJ0Z9f9Rr54vG9vuOBYx+mg9O/omAjdo25vvOBtbcFAIBkNU6S\nuo5oPrhWWAjh8DgNzFXViY0CRPKGu9m/DnVfDEvr1E0psDCHbBtBNO3X+jpqcRFEtW5tm8X1klOf\nXZGLFCwzhucIl4To1BVX5t7Z82TU5wO16wH39WERIVYZXnFozumJW4Yfnn9GLlIsv/C/9ukpAQBK\nqern8YfpY8qr4kj9lw52dnUEAAx2XTDQ5eOdN8bYGfvQyR3406ZM7rLBJ7R9h4NpYFbVgy7ilIhm\nAxS8kxqVUNuBhvtHPY1bVEy1ryq7FtprDq8+ZY1HgFoDDmVlEphzH9az3dlqJya+mT2QgcO9NKEv\njsgiO8xVlByh9FqiUQlL05qf7c6N3OPKe14uqhMvjv74wOSDIv7SshJnjg1fgsByGZFIIrDMGSM/\nH6C9CNOcvv7xUvRYXnKks1zmJKtx9qnrcgNYT3P2W0TPEpUqnEfYPdEgeNP+SliKx9PwOFAnR7zY\nxEwBHG4LyNYTlZVX2m4cBQAA4FnJGRqZvePasEC68fCBpwEOL0n/CiKbEs0GAABuZu6Z4fv96d9+\n5uSNXH7ho7PrrsMKGDUz6uZsvIF7G3miBgmNTZ2wcTyxdiuZVACAHwBAlvcTxbnjH9IhJWL1MAsS\nrFbKVW0dGjwORNq3DOYPdVscnRhV0ZQ12HUBWpJUerm6McPKaPXZUrlAheQ1w1Q8TpuSP7kRnmhD\nKRGrnZj4+U+bfwxk1crV/UxfDNJKFIKyxoyFYS+WPOcJYUcmAQBgYz0qu4rqCOhM3KMbijHluY8h\nwgQJZUS9AjGlmxPwHUyMkQk0kbyhQVxuzuogF58xmbTex+ROyXNY1QAAaBBXGFDf8IZn+oC+G6RZ\ns2bNmjWrTWFsbKxKpcrMzPT09NQH30hXdBjvRLKeSDDt13jo4tIdz+iMSQAwKEyy73j3/EclaNJJ\nWAGLGiRDAiQA8m39RQKZYGDNKEnm2ftz0UwTysor0bknJvpFKUqOult8XFXlxzJn/HZrqVwuS5yv\nWXN7EcOJIk5cSjD0a/2Wray80sY9ursndlzUEAgPyUVyWz+rgEmeAICIXWNb10GzLdAHOc3eH+7U\nj2vhYiasFcUefT5ocd/W1SrSqw8vOOsUYvfRr5N/Ojl/wabv73+f5BBki9otCIef6bL3+eE80Mm8\nu7Whu/aYa+z7uOCYo1mfjqsCAACg9Fosy99H82jJOMAmUAcYu9L9dlU0ZRPxpIyKuw6mgQAAM9lh\nPmvDzSpFYoPKkgbVyxG5WuPOJmi7ws4gmgSrqm+IExZpACjKH9hvTsCZddfF9ZJ5h6dBeGjpuUWX\nNzuYuFJSbmYv/j6e7v2tsFbc4c5yAKB5FzKoLh1nM8JBZDzDcbSBl6vJAIGKKfOUVcced7Eb/+X5\nQGOGTZPxPgQylMCatZ707GY4jq8MtRonSljYoUEqqkuY5PWppyglmeIoUgiYFGO69zZR/DyIavG4\nKravY0T9FbJZfwI07G5iCcvCzbYmj4++5SjKorUuIABAJYMvb7kDAED3qUMMV0tSP2cGH1HxnwBE\nQWB7dX3rWlMhUVtQ8Y3icguDTqc2AQAEPCkyeFd04lfakvzaOAhHiLCjfBTbPJBDWupCf1zXkqdH\nrtZQ8aAXC18hVVPwAADwe4G0SYlY0/DaVy2lWmpIs2yjJNScBAAwZXLjik7PD/31r7hP+9iY3xJO\n8JOsQ0wWr34u+tKr4yBVX9vRV9N32Rh5tbkmyvrRNwEAbmxaMT8bANAgKe96774eir4bpM4gEol+\nfn4vr/dhQjDmBnmb9Bug4J1AO1OXMIcz6647h9ln3MzLjSly6GOr4v9K8/hX2CGiUceabXqUQ7CQ\n2Ax1W8R1XlaQsNSF5WcBNyoant89P76hLJFEI86a88Ppg3usV9DTruW6T7VgOC+XpH5O89oMkVsi\nTdTNOa27xbrCBhKNiGZeeSkkGhFNv89xMeW4mOY/Lvlj7t9Td4xmmbdEDz4/m9F/bqB9oA3VGjiH\nONp7OPqHy1MuZwVNbzGuKUdK5EJ1/qNi5zCHrv8W18Tv14cfBzl00Oe+uJGGfoqyaLW4CN2HVFl7\nD131ghq2q+V7b996VGEYY93bKcLNQKjSoEt90fw01yoU1yoU6HrhLqB5bQYAHF18ymu0t3OYg62f\nlbBWjLoUEB6auGUEAGDkmgGi+Hk4pHNrBAAsSCcavZg+qZYhOzPFkQ5UFxaBRcQBAKi9lohTPvfy\n+x58jK/Nq3z+x+1h367ysp9KITLXJpSOZF/p77WURcSZUaCdmZIQUwaB7QU3Pie0uiYAQJi8Em58\nrklZ5eC/u7bmWa2wkEkxrpYh5t7fHLo3xcVproXSPyH+7vIFRwCk2X1nio2jX/2lIGtvC41KiCib\n0NsIAIAV8M0tj0d8Gmbr17J5CkTlEM0Hi5NXAQ1M9/0edBu5WsMi4vA4UCMsNGa8PGEPooEBAPm1\ncc7mIQiiJpFoMpVou5fQkmVTr0DQlUlpTarDhbLBHLIZBUprUgIAIriUaJ58bx/Ww1rl8H8MgUje\n0MbDLpMgFlQ8AMCAau5jM8LJLGjbxHgAgCJbEkjo52NjmSKkurA67nVtjbweqpWVTTluHQ04o3BY\nTrGFJwEAneUT6uno+xwSxisA4aEBC4LwTGdEUorms6Ewyc6h9rFHkmJ+fdZvdoDPaGdEVgNR/xWi\nU8x/PsR9QT9BlL90YXzJuZo8/uNKWtr2pvv7H1TKPqOxaZO/Gekc6uAc5vDlnu8VNryH8u9vZu75\nO/eIynGpNO0rdXM2AACn5OMoLbanSVp1OXVn1t18/3DPV/shY6OGDPkkJP50yzIOWAHDSnjQ4r7c\nQOuMyjshXpMAAD5j3ArjSmvy+EqpKvFMOkTATd0x+umJFHTKquvre1kNbT3ukXYtZ/+UoymXs1rP\nYFGdV0qzvm0R0PicYNzSQf887rCgRA5C84VNTUNdF5MgnAkZsqbhtdnSxliTkxtV2ixHXaPRkNDo\nEgqT3OFePhRuZOsJrfYoys8RLYZrPx4vlq1ypx8ulP2SJ/05RwIAADg8iTMcvYgB8ZZAbA+pSU2I\n+cokxNHIvlFUQgRiAAAJwvkbEZ/VK8m20xWl/wpSVYuLcuQST/dVrLDLeIajIcPtaCk5lq9c9Kz5\nUC7CMfRv/KX66aHofqNycBo5hMPP6bubY8atYsbKRQoF74R2YzAAQF1RA8fDRGuNWn6jw8eMgD2M\nwAO4//Luf6RYhq4H54tKzFkv2QoEAEAi0JqkVX8++aRZVmtANUcQ9a8xH9/J/B4AYEiCGhSIEtEc\nKZIFmRCDTYnWNHydDElrVE20oewKYNrR8cWilkmmCynfVEjgC83/yr8nhl8k9Z/RZ4e2/DN3epjz\nHAOq+UDzrqLYrQzdsqoeGNI78JBQCHiSEpbyRbzWYRTvE5hBep8hO8yVlxxFj4Om+97fH+cf7mnt\nbQGaH5D+icXSkl0V42oROviTkIr4hobSpuidJ5tkdSv/XC6BgyozG4Z+2t/E3qjfRwEAAAKZMKPP\nDq/mj8bYfdXPaeax5G0XYMrRuOXJmT/mXLj/+IoH73kFACC/Ji6l7FpBxfP27tH1jN33cw+BbsAN\ntBZUCp+eSBbWiu8fiOsVag8AqBLkZVbeQ9MYQ3hozLpBz06kxB59XpxQNnxVGIlGtPG2+GHEofsH\n4vIfFd/c9fDYJxdq8lr2zxVUCf+Y+7egSggAiAzepe3Cbn8Te39/XMicAGmT/NSqK9r6EJVDNBsg\ny9+ngaUalRB1BJVSlZ2f1dRpy6qVGb7MaVVZHW8QMN6GvCNT0plNUmsAum1HXWGDhetLPEii+WC4\n8bk2XV4bEAVfI+dr/Y9isZpFwtnR8QeCWGs96UqkJeU8yXIU3JTyPG7L2jI/1xFBMTGlhwtly1zp\nE20pHpaD8mtaJvyHWZLi6lTo+wqieLHvsCx/Xw6s8bMe+/RsetTRnNNVNhbIo5wG/k4/Us7zx7ez\np5Rx/AauDHAaNl6atUWohE2Z3DDnOURnYerVDFXjc6JJsFClmfJQUChSp2bU2QZ0lSSim9TJEUQD\nUJ+jSVpt1o3AM0OaRVr5LVsjr/jic0YM6+rmPDeLUAbFuEFcjtqSTAE8zII8w56KDiOrNZoKKUIn\n4NC/4sDE1ylxInlDfPHZJ3yNNU2j3ayrWob0Yr1Wbh5bI28lLIVeNnlWzO84jvQ9ADNI7zNEk2BV\n3UMF7wTakYUt6OM2yBGRVigrLlLs/7Ug4272rxJlkwHVHAAweu2g6tO06jF/hQ/7lMS2mvTNqMGf\nhLQJLjBm2DgHOV/afMfW0OfTIacj+mwf2ueHZN6VsvysgMhB6ddzrl07GlcUPcJ6rbpX21zsaHx2\nMb+DGNwOmbBpOMOYfnfPE0Nrts8Yt6yqB48LjkUG7dK2W7YlqzSlsrlKNHXHaHSdTf+5vSP3TMh7\nVJIbU+Q6yHHEqrAnhxPRyvf3x/WbE3Au6ib6MeVy1v4pRw/NOW3mYrzq+jy/8R79PgoYML/Pk8OJ\nZ9ddRwPQKfZzICpHcLc/yWIU+i3e83IrL46tkddHIT8HTvROv57boXIfQ+JwS9Kj2o63D4jjK5fG\nC3NrZTduFLoP6dVhndZQHD5u4yQh0gp81VFx0qfSjI1Ex4WxfOXtakWxWP1HgTS8VYoNHyNCTK0y\nlq9cEi/8EtnxzOjzcDePMnfuFQHuM3eaF5tgR8c7m/fL/GfTChKEo+JxQpWGbD9HkroOjT5X1tyW\nQxQjVq/z3zw5Y2zhyYQm19YSldmFWWPLSo9Y4a6PHhmQObD/A4WPgOazRzl/V3za1ymCdcmiGpZP\nSl402XoiwOEP5kvdDAg7MsUPYNxDVYsDodaAreltt4pog3bXKO1Wv+gejzerFBP/+aVKWNphsEAb\nHEwCb2buGeuz5n7uIa6xX5Ugz9NqaH+nmfElZwEAagRObFD5Gb3oGCfaUuY6vZgLtGfgcySQXCWi\nk9k8CZhpK7pfrUQj8ZIbVK+T0R8AYGvkpc1V2BkEPCm+5KyDSWDX1XooPXUOCaObMEOOq2rui5NX\nUV1WDlrcF1HwJakb6V6b21RzMgvSbnxAIBPW7N+Y0ODoYNrVQ+8ywIFpSn94KH7Q4r4kAs3G2Neb\nFHV+8Bpr+ZUBqyf+eOG73l4jqv7GK0IrWn9LphLF5B2ODN6VXSY2DxwAACAASURBVPVg952pq4ad\neelPINGIXiNdvEa6VAnyDjyY42QWPNl/Q5uu56ODk1nmDG3MHolGdA5zWHF5rtaOykSKP+b+TWNT\nmCZ010GOtYX1+Y+KuYE2lRk1c3+fSmNTa2pepP5z6sd16sdNPJOe96gYjU4k20whsL0hasu6osxb\n+SPXtIS6MUzoBDK+rrChw6G23sbEXVmSMHMSndB26eXR6JwBDgaHTzfwHW2GOP0rYipDAF+vUKz1\n/FdSuGb2QHLxnxqVUFEWDTelAIgMEVkaVj+G42o1wG9IFQUaIw9rlUyiapkrvfWWHMMtyDszJRQ8\n+Lk3U64GdAIOjwPzi2UMpdLgn/6TTmZTSMxmWS0aB+9nTEtsUA3heOXZbGEmbbeEGggG7hkkO0qp\nSVKw62dBRhy84bmvblInM7kmflkFcSRTaIwNfaQ1mPVEkClQLfN1pCvL+Hm7i2DT+4TgStuYj4qC\nxypl1jSIimv6s4mKo1dxEFlFU3Z0YlSY3+HEBo0S0ZAgnATWtL9R55K3yJUic5bjUPfFF8rkF8vl\nE20of5fKT4WyS8VqNEOdTCXq5iQ/18TPku1ibejONfEzY9qvGXEZnXmqEuSdS95S0jhUhfT6KX24\ntrzNwlgfQ+KzSqheXObltL6uMtOMPsaBiS+VqB0Y+DKperTVay38IBFozuYhXdeBcASusV+HcaTv\nAfhNmzbpWsPb4uzZs1OnTtW1ildBLBYzGIw3cikcjoBn9iJbjZXl/6SsOK/iP6G5r8fT2y6AZ9Ms\naKQXG0eRGaSurREK05SRdDbDzNGYZkitL2l8djh/wtjF2U23lIiMWe7B20u18bZQO1S4WYTioRbD\ncDph/Vjv1QZUc0u2CwEiCuV8U2bH+QjaE198dqDrXB+bEe0XalCYZFy79LV44otqPmPc/Cd6UJlk\n7zFuRAqRRCUenn+2OreuvqQxZHYA6OieG1qxks9nuAxoGQeDyMY4iAgAaCwXZN0tCJz8IgzMgMOM\nP53aYRgFLFFe/iPpqoZar4GMyBD7n92YSnP5SULE5nrS6q2DQ7iMn3OkDCJkQoYIEO5ahSJDABuQ\noNg6lQMTTyPgLpTJt6SL71UrxcwAbmJ/ovlAmsdXJIuRRPNBIiWdwWSdKZUPsiAPMCe5sQn+xkRt\n4LKW/makYFMSHocj41vukz2TQM8oM2VT6EYt/TgBImZVPnhadDqp9NJQp3H3atTpAlWNinpd2c+8\n0fPRSXmO6maaesaEflYebCJEgMqSK4F1Q5UoG5drRbaX9XGYBOHAQA5phCWZjMdBJDbDYpCNmStD\nI7qunGivOeVo6m6jeVha+TeUW8fo5TXTYfC59Cg62TCh2XKkrd3FMnGuSLM7RzrJlgLhgFytQfPw\nwmplUuml2X1/fFxw7GH+8Xx12AwHAyokG2hB/zFb4m9EdGcTAAC1wiIYUdgaeb/0KQIABDlMweGg\nQO4ECMJrH3t/u7G3MvfVUyIowkN9rdySSq/42Y7BtUvQTMbjblVIObjELIX7ZEdnOwOOAQl6XKf0\nMSTG1SkHcUh43FvZolqLp9VgF04HS826g/53iZiH9GGAw9N9dmijxd4gY6OGHJ5/xsrDvKlS6DnC\nhcFmK/jS1LLrC2cckg9HGCa0R4UFvIZU9L3vatr3nlZDTJlc9Ls+NiOuZezmmvg9zj/mahFqQDUz\noJrLVKJqQR6FyGy/7q+sMWOw24LXUYuG8AEALN3N1z9eKqwVC6qaO6tMY1Oba8VykaIl3c4/RH9+\ndcRn/4qDMrE3YpoxHvz6tHWQOqyAH/2egKiRtRHOT85mZCbR1vn3wlMJ02NT42S4cl/H9YOt3Gc4\nAQDM8CDSgfo3T14igpMb4cEc0hJnmloDtN5ATjP8YyDLkIT7OYeAC7tPYf9rpkSo0lRK1RFcCgCg\nw4zmHeLFJuDtDGoL67WOnZNZ0J9PPpnsv8GQbvn7w+nx5ENjbehzHKilEvW2S+S1Ub2ymuaaEqz6\n/pMtyT/c8+zhBKJRr8gpUQZ2LYNarXfAAwDgiKwArrd3aY2zkMgr+MSMO9lB2tfXtFeWqZ1AI0wC\nS3qbeNXzi+t5SyElfkjwryQI16BA2CTctEeCYBNiiBmJKrnsazMaAOBuMVCEd2osT5Lxy2Ly/vx2\n0nNrGt6QhEM0alit4DWkdNMadcGqYWfUGqCEVwEAePUp93MODXVf3KaOTCVSy2J5BE2jxtDXzBwA\nYEfHl4rVAAC5GryppP4fLJiHpI+8QQ+pNRDJ6OWV/iMEMsFjWC8IgoYsC7HyMBeLxVQa2ck8yJLt\nQmaQcBCOgCcX1SWg/tbt7P0TfNdpv4uHiKUNqUV1CQ/z/+KLeZmV9xzNet/OPqCAxUX8xNKG1Na7\nL8NqZXZ1jK/NqDeonG5EM7ZrSb/b4T238ba4uOmOzxg3bUlFejWFSWldgsINsI47muw9ylVbcv9A\nXFVuHTfQ2rm/vVt/rrFQooovYVDwiXSWZz/uwMyCoCEvXg7MKdAAc9JXqeKvvRl9TNA1VcCdTThX\nKs9tVk/jUm3peAKE0wCQJ2W6GBBKJWrU2RKLxakysjOLYNXOK3opRCoxL6bIsW+Lh4rDQQHc8Y5m\nfYzo1iGO02urD8z26EeAIIJQVpVa8ZSGL1TY/8/JkEls6XMZJvQ+Q/uH9BvFMKIT8V0NVQUaE8uv\nyWfNWWNp4JZ7rtZvvIcRm7K/UDXDpdedatxga4sAExasqjUiQ0YMh7250qsVirWe9ABj0vkyhbLh\nj1FeywEAVoZuzxpZg2x7Pcra6mAa4MwJYRIgNSJLKDl3PnkbHkfoww1v7zr/VyAcIOLJRDzZlGmX\nVnGrqC7BmfOvMbSr6d9TNOCCOHyCNXA2aHEuSyVqCyr+Ua1yiMW7y9XyCuh/l4h5SBivC41NdR/2\nYk6+zV5zHJbT9YzdTdIqBFG3f4ft5xT5zbWhM/rssDZ0hyD8vvuRnlZD0YX0F1K+4Yt4WnequP65\nvWnA2/0l7TCyYRvbsBvLBQCAU6sue492q83nD1/V8TIRCxdT7UxSfUmjsFY8e3/LrYDwkM8YN58x\nbtnp1ddk5PkBRiCg7agLHgcuDzJsU7jCjV4hVTv8s9FtiCnp2wxxcqOqRKze6MNAy3ME8PxeL1mB\n2yFsS5aw9l/RBK2XZLobGpTUxblZhGXcyhvtaXxe/WymC7fNlkLdhMIkF8Ty/pj7N4lGpLOpLHMG\nCwBjomYIh9wgR4JMSQ6MEW4Wodcydj8t2WBuuZkhu+BA3cqkGLvQ+DLoRVblCikyjUv1HHUtrfxW\nevmttIpbZAJNjcAclhOiUXcnouE/Ee4XFZ34lXaxUZO0KibvsBKWjbEf5y2LCbB5IcyegS8QwSwi\nFiP2umB3EOPtQsCTInpviy04WVD31KadQWJSjD8dctrHZoQxw8aQZjklYPM47zXoqSD7KUmll9Fj\nvogXk3e4681b3xJ9Inxu7Hp4atXl2fsn2XhbuAx01K7SbYNzqH1BLA89TohO6xPh076Ou7fFmqD/\n4KeaUSB/oxfxjXgc+NqbscmHcTCYdYYnX5kovN2AphJ49ZEiRN1BljZEjXhZDXtaFA2rlcXx5dxA\na4bsuqvhq0+k+4d7Tt0xmsokh81vSY2xzEaFx4EZ9lTUrKIJBr8efcVEcWqa34ozzzfUCgtxjQeq\nER80oK5UojanQugP9bEZkVR6uZ/TTImiqbd9eGTwrojebyWvcYDduNzqloy0zdJa7ZZFve3DWwdn\n+xgSb1cprOhYd/q6YB4SxlvHgGreLKtNq7i5ZsTl9mdbzxW1znxsyXa5mv793exfe9uHX0rdEdF7\nm05Wp5vYG0XuaVn82JkpQrH2tri240HfWX4IjDRVCS093uJmaBQ8Do3Bu5JfF2n1Ku4RioWbeU0e\n39K9rdToz69ae1kY9nL48edPhw1dXtAY95oLX0I/7g0AmLLjJXtXMinGiwf8CQCYGrjl98eLh7ov\nIqhY2c2wvxHxeqVisu2LWPalg44CADwsB72OqpdiyuRmVN7tDcIBAEq1DADQ4SIhFhHnxiJ4GGLd\n6euCmXSMd8F433Whveb81+xbEb23yVXiffcjuca+6BopPWfEZ2G/RBzfNfQ3pVSpjUF/q/RmIV7s\nV+8H7XtblyRWtC8n00jN1cL8r+lGAZBhiDK94nZfx/+27fprwqQYrxp2xstqqK8RoUCoVmtAvRxp\nHcv+bjCgmkv/2Vy8SVKFlnRYc7o91Yv94ebVfFNgJh3jXcCkGIc5t90b7aUYUM3H+nxubxrw0j1j\n9ARuoPXc36dSmGQE7ni3An2D42J6afMdnzGuDJMXa56qsmshPDR63SDv0a5Ml/EpZdd6cyfqKnma\nPQN/rlSe1qTyMdRNdy9StGy3yhfxwD+p8DDeEpiHhKHveFgOemkyFf2BxqZCeAjNjqr/QHhoXNSQ\nJ4efa0vKUirv7Y/rPzcQwkO2flaGNMvBrgu6syjtLUGCcIZk6HChbIjFG45Z6CYQDs8X8Qrr4puk\nVVMDN3tbj9CJjA8EzCBhYHzQWHtbNNeJ0OR+iBp5+HvCjB/Hmdi/+RUCr8wIS7IZBWqfweHdMNl/\nw92cX+/mHMyqehBgN/693BZPf+gZ73EYGBhvjzFrB13actfQkkWiEd2H9NI3986Bgf/a+80vy+sm\nxgwbNG/39usjdaXhwwHzkDAwPnQYJnSmCS3tWk5tYYPfBPeXf+GDBN0iD+Otol+vQhgYGDohbH6Q\n/0RPdGtXDAxdgRkkDAwMwLZkdbEdLQbGu0GvDdKFCxfUanXrkgkTJhCJRABAQUHBiRMnZDLZsGHD\nhg4dqiOBGBgYGBhvDL2eQ0pJSUn8h7Nnz3777bcQBAEA8vLypkyZYm5u7u/vv3nz5qNHj3b4dR6P\n907lvjm2bNmiawmvCKb8HdNDZQNMuS7Q/y5Rrz2k1v/xixYtmjRpEh6PBwD8+OOPM2fOXLJkCQCA\nw+GsWLEiMjISPdUaGO6pS9gaGhp0LeEVwZS/Y3qobIAp1wX63yXqtYekhc/nP378ODy8JXfykydP\ngoOD0ePQ0FClUhkXF6c7dRgYGBgYb4CeYZDOnj3r6Ojo4eEBAJDJZDAMc7lc9BQEQTQaTSQS6VIf\nBgYGBsZro9dDdlrOnTs3Z05LJjSNRgMAMDU11Z4lEAhtYh9QZDJZQEDLDjpEItHOrrtbZescHo8X\nERGhaxWvAqb8HdNDZQNM+buitLRUpVKhxzKZTLdiXkoPMEgJCQnV1dXjx7fshYNG2WVnZwcGtuTX\nksvlVGoHGfizs7PfmUgMDAwMjNekBwzZXbhwYcSIEWx2y+ZgRCLR0tKyuroa/cjn82UymZOTk+4E\nYmBgYGC8AfTdIEml0suXL0+ZMqV1YXh4+O+//65QKAAABw8e9PPz004pYWBgYGD0UPR9yO78+fMm\nJiYhISGtC5csWZKfn9+nTx8Gg2FgYHDw4EFdycPAwMDAeFPg0BiBnohQKGxubraxsdG1EAwMDAyM\nN0APNkgYGBgYGO8T+j6HhIGBgYHxgYAZJAwMDAwMvUDfgxq6CYIgycnJlZWVMAxPnjy59akHDx7c\nvn0bhmEvL6+IiAgymawrkR1SUFBw586dkpISOp0+fvx4f3//1qf0NqN517I7O6UPdEdecnJycXHx\ngAEDWq+/1jldK1er1X///XdqaiqRSBw8ePDgwYN1pbM9XSvX5xaalpZ2//79qqoqAoEwYMCAkSP/\ntWmsPrfQzpTrefN8TzykDRs2LF68+OTJk5s2bWpdfvDgwaioKA8Pj7CwsHPnzs2fP19HAjtl5syZ\nJSUlQUFBRCJx9uzZFy5cQMu7mdFcV3Qmu+tT+sBL5fH5/C+++CIqKqq0tFQnCjujC+UqlSoyMvL8\n+fNeXl52dnaXLl3Soc72dKFcz1vo/fv3m5qagoKCzMzMtmzZsm3bNu0pPW+hnSnX8+YJNO8FSqVS\no9HExMR4enq2Lh80aNCJEyfQ46KiImdnZ4lEogN9ndPc3Kw93rt377Bhw9DjhQsX7tixAz2OiYnx\n8fGBYVgH+jqhM9ldn9IHXipv4cKFFy9edHZ2TkxMfLfSXkIXyvfv3x8eHq5Wq3Wh6+V0oVz/W6iW\nK1euuLu7az/qeQttTWvlet483xMPCc0n1B5LS0uJRIIey2QyAoGgVwMCAAAW68U2naamptqsU3qe\n0bwz2V2f0ge6lnflyhUAwOjRo9+1rG7QhfLz58/Pnj0bTYovEAh0oa4rulCu/y1Ui0QiMTMz037U\n8xbamtbK9bx5vidzSJ2xadOm9evXFxcXE4nEjIyMnTt3tt82SU9QqVTHjh1DJ8B6UEbz1rK7f0of\naC+vsbFx9+7dp06d0qGq7tBGuVqtLi8vv3379k8//eTg4JCQkPDZZ5/NmzdPtyI7pP091/8WmpGR\nER0dLRKJysvLf/zxR7SwR7TQDpVr0c/m+Z54SJ1RXV3d3NwMAKDT6TKZrLKyUteKOmX16tXGxsbo\nroOabmc01zmtZXf/lD7QXt7mzZvnz59vbm6uQ1XdoY1yBEEAADU1NXfv3j18+PCRI0e+++674uJi\nnWrsmPb3XP9bKJvN9vX1NTMzq62tTU9PRwt7RAvtULkWPW2euh4zfJO0mUNSq9V+fn4XL15EP9bV\n1bm5uWVmZupIXVesXr06IiJCO3quVCrbzGH4+PjcuXNHR+o6pY3sbp7SB9rLi4+PDwkJiYmJiYmJ\nuXfvnrOz82+//VZQUKBDkR3SXrlarXZzczt27Ji2JDAw8PLly7pQ1xUdKu8pLVSj0aSnpzs7O9fV\n1Wl6TgtFaa0cRW+b5/s8ZKdQKCQSiYWFBfrR1NSURCKVl5ejG/3pD2vXri0qKjpy5AiNRkNLekRG\n8/ayu3NKH+hQHgRBnp6eJ0+eBP/4HPfu3aPT6Xp12ztT7ujo2Pr1XKN/6Vc6VN5TWigK+iSUlJSY\nmpr2iBaqpbVyoOfNU9cW8c2gVquVSuW9e/c8PT2VSiUadKfRaMLCwrZu3Yoex8TEODs7FxUV6U5m\nB0RFRY0aNaqurk75D2j5zz//PH78eLlcrtFotm7dGhERoVOZbelMdten9IHuyGv//qsPdKH8zz//\nHDNmDPrCe//+fTc3t7KyMt0pbUsXyvW8hcbGxqIHMAxv3rw5JCREG8qo5y20M+V63jzfk1x2169f\nX7VqVeuSzMxMIpGYnJy8evXq5uZmNpvd0NCwdu3amTNn6kpkh7i4uLT+SCKRMjIyAAAqlWrVqlWP\nHz/WZjTXqzSyncnu+pQ+0B15KpXK09PzxIkT2k0g9YGula9fv/769etsNlskEm3btk2vAgW7UK7n\nLXT48OHV1dUUCkUqldrb22/fvt3Lyws9pecttDPlet483xOD1DV8Pl8kEnG5XAjqYUEcWEZzjO6j\nUql4PJ6jo2OPe871uYWqVKr8/HwnJ6cO49H1uYV2rVw/+SAMEgYGBgaG/qN37yMYGBgYGB8mmEHC\nwMDAwNALMIOEgYGBgaEXYAYJAwMDA0MvwAwSBgYGBoZegBkkDAwMDAy9ADNIGBgYGBh6AWaQMDAw\nMDD0AswgYWBgYGDoBZhBwsDAwMDQCzCDhIGBgYGhF2AGCQMDAwNDL8AMEgYGBgaGXoAZJAwMDAwM\nveB93sLc19dXu5tWz6KwsFBvt0PuGkz5O6aHygaYcl2QkZGRmpqqaxVdouMda98m/v7+upbwikyb\nNk3XEl4RTPk7pofK1mDKdYH+d4nYkB0GBgYGhl6AGSQMDAwMDL3gfTZIBEJPnSEzNjbWtYRXBFP+\njumhsgGmXBfof5eI02g0utbwtoiIiIiOjta1ilehpqaGw+HoWsWrgCl/x/RQ2QBTrgv0v0t8nz0k\nDAwMDIweBGaQMDAwMDD0AswgYWBgYGDoBZhBwsDAwMDQCzCDhIGBgYGhF2AGCQMDAwNDL8AMEgYG\nBgaGXqDv66QePHhw+/ZtGIa9vLwiIiLIZDJaXlBQcOLECZlMNmzYsKFDh+pWJAYGBgbG66PXHtLB\ngwejoqI8PDzCwsLOnTs3f/58tDwvL2/KlCnm5ub+/v6bN28+evSobnViYGBgYLw+eu0hRUdHL1u2\nbObMmQAADw+PUaNGSaVSGo32448/zpw5c8mSJQAADoezYsWKyMhIPB6va70YGBgYGK+OXntIlpaW\nEokEPZbJZAQCAR2ye/LkSXBwMFoeGhqqVCrj4uJ0phIDAwMD402g1x7Spk2b1q9fX1xcTCQSMzIy\ndu7cicfjZTIZDMNcLhetA0EQjUYTiUQ6VYqBgYGB8brotUGqrq5ubm4GANDpdJlMVllZCQBAs8Ga\nmppqqxEIBLVa3f7rPB4vIiICPTY2Nt6wYcO7EP0m4PP5upbwimDK3zE9VDbAlL8rtmzZ0tDQgB7z\neDydank5+muQEARZsWLFxo0bJ0yYAAD4+OOPBwwY0L9/f2dnZwBAdnZ2YGAgWlMul1Op1PZX4HK5\nep7atgt6aDphgCl/5/RQ2QBT/k44cOCA9lj7gq636O8ckkKhkEgkFhYW6EdTU1MSiVReXk4kEi0t\nLaurq9FyPp8vk8l66Bb3GBgYGBha9NcgUalUDodz+/Zt9OPDhw9lMhnqHoWHh//+++8KhQIAcPDg\nQT8/P+2UEgYGBgZGD0V/h+wAALt37169evX58+fZbHZDQ8PGjRsdHBwAAEuWLMnPz+/Tpw+DwTAw\nMDh48KCulWJgYGBgvC56bZD8/f0fPHjA5/NFIhGXy4WgFn+OSCTu27dPKBQ2Nzfb2NjoViQGBgYG\nxhtBf4fstJiamjo4OGitkRYWi/U61uh5ORYpjoGBgaFH9ACD9DY4m17X+6dEXqNc10K6hVrUKMtN\n0LUKDAwMjLfLB2qQ/oivfvpp4MGnlboW0i1wEEH44G9dq8DAwMB4u3yIBmnbHd6ivpbBdqzMGgmM\naHQt5+VAdBYiFepaBQYGBsbb5QMySAIZfDypBkY0SRWiiZ6mAABfK0ZmtUTXuroFjkJH5D1DKgYG\nBsar8QEZpHF/pNdLVLNPZpvQiWjJBA/Tm3kNulXVTai9/ORFabpWgYGBgfEW+VAMEoxoOEzSyjCb\nzGqxnSEFLfS1YqRViXUrrJtQPUIkibd0rQIDQx+BEc3N3J7xZonRNR+KQcqsljiZUAEATz8N/HyQ\nLVpIgHBsKqFeogIAGH71SK+C7grrZa0/kqycEJlEVcPTkRwMDL2jsF4293QOjGi+vlE843hWRbNC\n14owXpcPxSA9K20e424MAGCQ8RTCi189wsXoYiZfrFAzSPjjSTV6YpMSKqW9tj/NrPnXpJFR+LLG\ny7/qShIGhq6ol6h6bX8aui8ZnQPWlu+8X/q8XNh3z3NHE2riyt5rrhTqUCTGG+FDMUhJFSJfS2b7\n8pGuxkcSa8b9kb57Yq8fHpbNPpn97rW1Z198w5V53ugohFihvpnbUNGsIHK4iKgRkWDhdhgfEAIZ\nPPtk9qlZnncW+9aIlKsuFQAAZp/Mdtv5zINDz1gTlLiy9/wgSycTqlyFoKMdOudiZk/an0Kv+FAM\nklipZpA72OOcQoCuzPPePsZxirdZ07YwDpN0PKlGIIPfvUItvEa5GZ0w1t1k5/3ScX+kzz2dE8tr\nXn+tKPxwhsxvXOPFfYhcoijLlecnvZE/J7hxuGJLhCj20hu5GgbGm0IOI5tulcw9nbNxuH2gDZNC\ngD4faGtnSAn44WmkWWP254Erw/6VqCUywPxqdr2u1Gq5mMkPP5wRU9SkayE9Er3OZfem4DXKuf8E\nMrSHTSUE27HQ48nepjOOZ91Y4DPS1fhdqWvLz4/L5/oZAQBy1gazqQQChEPLeY3yFefhrwjFKRuW\nkCztCwqKe5EkEon0gcf/Ni6eippbRC6BKPTMGom1AZlNbfufCzdUQ3QWRKFrSyRJd9SiRusN0U2X\nfylbO4poZsNZeQCH/yCeCgy9pUak3B9b8bxctHaw7aYR9q1PrQ61nPDka2aeUVXiIQCA2bxtRLMW\ns9Tfnv3NXd7/elvoQHErolPr+FtCpx7JLAyQzQ+y1K2YHscH0fU8K20e4MjuTs3pfuZcI2pqpc7S\n3BXWyyoECg8zJgBAG56OwjWiLOlv+7Am3DN41uNy0f/mWlzNqpdJRPMTvjvwp2Y4S0BEFMRL333b\n+yd/ugQuzR5bFs3e/VT55xcm0z6jOAcAAIoXBZhEfmkUvkyaFUdgm+FZRsKYM5yVBwAAhuOXGI5f\nInx0ruHMjybTv2ijSqOGMSvVU4AbqgEAEIXecOYHZugkiqPPq10HncL05NBfWvMVgAV1nZ16UiL4\n5m5p1FC7rSMd2pxSixrrfo+yCl9E8wgBAKjqyusOrbNcdwR9ODlMUo1QCSMa7Tvcu0esUBMgnAmd\neGWe99zTOZhB+q98EL1MVq1kXp/uPhmeHPqR59VvVU8XrLlSuH2MI0A6niga6WqMum7ov4tDrAAA\nSOhe142fHpJb45kGAUtvbroTZeA2Wuzeb11C0LTVU6guAd53jlN5WWqJ0GT6F6LYS4hUqCjLkxlz\nqQ08w/GLSpthrlHLY8AKm1x/+rumy78Yjl+CljTfPirNeqriVzBDxrNHzMERyW0k1YiUuXWSgY6G\n2hJELslvVF7NF1kbkB8WC7aPdmzvq733/BpXuepSQeKq3m+pQ+8MRC6p2BJB8w4FAFAcvJsu7rdY\n/dt/usLd/Mb9sZUB1sw/Eqpczeg3FvgAABS8LLWkmWzrCjfVieIuy3MSiByu6ZwNEJ31ny4ON1TX\n/REFAMCzzWT8qtKGCqsNpwlsM/SsQAb/lVhd1CC7MNerdeRRy3cFdXW/rTOds4HI4aIlRDMb1uAZ\nwnsnDYbPQUsCbJhPSgStn8Z3zDd3eYv6WgIAGGS8HEZ0ax17Ih9ET8FrlHONOh2yawODjJerkLeq\npwvYVIKrGa2m5j9ELkAUetimgw7Nipa+b/AVAIAhACcG1ODl0AAAIABJREFUg9Ivj6wxnHh00WDp\nxT0AAPbYBaxBEbCgTjB0ea/vEjnMYQNTDE7/GSfbOVDb/k2mf9Hw9w81+1cR2KawgE/z6s9Z9hOO\nSBY+Opf55bTd3OUbZvTX3kwY0Uw9kimQqTLWBCESYc3+lXKxsJJESq6DetNAc9i8SH+/2Sezf5ni\nYm3wwpJp1DCaKxZ9z+0MRVku2db1P9297sNrlM89nTPAkd1mROhNkceXPl4WsODvnMfLAtAuSVlZ\nWLFxium8bdK0h4bjFpGsnAAAqhoeRGfBTXUauQT1YtvwV2J1bEnzL1NcutmvNV7cbzbvG9QgAQAk\nqTGqGp62B+8OB59WbRxuDwD4fJBt+OGMc5du+Sf+prHzMjBgCq79TuTYs8ImmUz/Qp6fVL1nOSts\nErPfhO5cVsHLqvruY4hCt1x3BB1kq6mpMRCUNZz6zmzhDtTFWXWpIMiWtXtCLwKEU9WV1x/bimeb\n4ogUghEHR6KIn1w0W7SzzW9h9h1b+U0ks99E1DTOD7Jcf61IVwbpeblIrFT3t28ZjInwNRMr1B/g\n29jr8EHcrP+asE4OI/USVZsRs3eAWKGmEF8lzIRNJXT43Nt9e2V4fNXxpJr5U1aiJRCFTjC2OHu/\n9NQsD1cz+tzo7K+GcW/mNqC5lFA2Ecc1qnmkarEj0/nzkHAcAZLDyAE4sNDR+NPS/T8cbd67cjJa\n86dH5RsN05Ccc2eX0d24HKfpX2QrGRseNm78yD6AQ6rZt5Jpotg+JvSHmLLdE3ppVEKgUWtU+Nrf\n1hLNbFR15YqiNK0rpkWen0RxDmi6+ps4/hBr4AqDIbO6cwf+66DijqM3D88Z+deefXse1BX2nmvG\nok5yInK6//1WSJLuNN87JS9K43y6V2tiUyvFuycwR7gY8xrlTiZUVV153W/rbL+/3XDqOwLHrvne\nKZMZX2iUiqrvPgYQHkeikG1cGs7tYQaPproF4YhkgnHLRMi17AYnE+qgAylsKiHAmtmh+RTIYPR/\nX6OG4bpyWqsRV5MZa2v2rbT66kTricM2yGFE+zoCI5oakdLXioF+/HswlP7rn7NNl5kSTCJ6mcnt\nEU8Ow9WMRgaA4hxgtf4I77evDpy4Vh0wo5JgumucUxevffWnvrPeEN3GnFBd+8gL02p+Woqj0Osn\nbuIwSajTr6wsrP3lc86yn9A5UVl+kkYusVx3GKJ14JCxR88X3D5qFL4MAGBCJwpksPaGvGMya8Q+\nlgztx1kBr/ZAfdC8/waJ1yhv/XreHQY4sJ+XC999XENmjcTHgvHyev+FWQGc0H1JJnSi1uTUS1RJ\n5aLPB9oSIFzKZ30EMnjG8Sw2lYC+V8phhNcoPzxvkAmdeDO3Yf21onlBlqsuFWwczl03eKBG3X/0\n3u/urom0VPHvGg+iKsQ+XkaSjSfqFdBPTyvhOE0xv+qPGV7oGmTOsp9q9ix3mmihaMj789hPEy0K\nkAa5qsrDYPhstOOu+yNKknSHHjBMq1bByyrfOMVoSh8NXGo0eZA0+4CqMZBo9MJP0qgUTVcP0QOG\nQiQKRGdp1LAk6W7zvVNkGxfzJd93dhPUokbBjcOi2EvG01Yjcsm9m3eXggbCvlMLTa3xtu784j8z\nwz7/869TkP+owS4m/+n/XfT0qjjuMufTvQCAut/WoSYWRjRoh+hrxXhW2uxkQuX/tZHz6V7AMjVe\ntIsA4cq/mli9e4miLNds3jdUtz4alQLPNELkElHsJcHtY4hcohbUma44MOdMkTWbvH2MIxrNvOZK\nYWqlWGstUGBEY/jVo8SVvQNtmIJrh+gBQ1ufJXK4BsNn849uNV+4o734wnrZzvulV7PrCyMZ9b98\nRrJxqVQQR/eKRM823z4qenYteMMvT5hGXrviTyTXftLP6kmJAB1VJkA4GNGsUU46/D854cGf9CV7\nZ57KvTbbiURjIBKhqqGqtXfbfPso3Xdgh46a4dgFYOwCccLNq79uX/vlNnRcDocnWHz+m3Yor2sP\nj+43SHD9dzhsMmrF0VG7se4mL/uve/Pk1UnRxY4YrwxOo+kB6a5fjYiIiOjo6F/jKl3Naf/Ji+c1\nyvfHVuwa5/T2tHXI8aQaNpUw1t2kpqaGw3ljr1dyGJl7OufULA/046pLBR8FWrTu12BEM+pQGgDg\nwv+85p7O+ag3R9uel1/IZ1MJkf4cVzOatv7Jp8VPKySLiEct8PcMh8dA5Jb31swaCSQTuNtbaWsi\nEmH1z5FUT2mtJKguNs1/Zi8ydwTJclTLWbmkZs9ygrGFvCjdesNpiEKv2BJhOM5FFJdk9tFxiGEo\ny7slTf+e7OhJ4gzHkQzlufnNdy4zwybJchOBGpYXpUF0A8Nxi+h+g2rO7btYKOvz8epAmxerzZqu\nHpIXJOPwBByRXOU5gevXu/7G0SPVTN+wAVN8LSVJd2i+g3B4Qv2Jb5WVhbKKwpKguV83eD1Y6t9+\nAkOjhtUCPkShK2tKyFwPafrj2l8/J3M9cXg859O9Wv+jZs9y9pj5dxVWvEb5sv7WNSLlzvul3w82\nrj/+rfmS7+eezqEQoV8muyASIY5C68Kla3p49uHte+KJUbN6W2sLBTJ46tHMyV6m84Mtm45ughuq\nM/iqz1TDZo3pF59dulf4B8nc2vR/m3F4wl+J1RUCxVh3E2s2mUKA5Gd3VnACCB795SqEa0RBXf9f\n4yr/SKjaPaEX8ckpdcrNPhsOXa3A3U/M/STnO8cv/9DIpfyjWyxW/YLOGlY0K9gUAhrJCSMai01P\nBjoasqmEraMcOEySLDeh4dR3dYCOiJosTA0RSTNENyDbuhhP/6L59jHxs2s0r/5G//joWrQPOYxo\nlpzNmyJ+4FF6D6Kz2CPnaoccu4kwP0d0ZpvF6t8gCr1GpJx7Oged+npLdNY8Rx1K63D2S39Au0Rd\nq+iK998gTT2SeWia63914Wccz9L24O+MJefyooZyrQ3Ib9YgAQBmn8w+NtMdPZ57OufwdLfWZxFp\nharuYVZe3J0yop/v+OG9B3d4EWXlFbjxOaIS4nAERMEnGAUS2F7Kyqt0v13aOm2Uw00p8rwDEG0q\nLBB9km2yPcLPIO9TmufXeIYjWkGjUoieXMSzzQTXfycYM8gOEqrLOLJdxIsL7lmuaiykuhgzgkaJ\n4r4ziUjQBlZoVAoAQDOM5zXK118v+or/Z7KMhQ+dtnS4FwCg8exPeJYRa8hMhQZacjaPQcbXS1QE\nCLd6gK2POSRJW4eDyBq1hMydQzTuDXD46soK5K+1j0d+J0eg1qHDCl5W872TaNImjVJBtvdQVvMg\nCs18yfdArW4zq49IhBXfROZWC0N/vUMlkwAAU49kboPuWHv6qlxD557O4bBIK0JtWlv3lhuFaG7m\nNmjfA9ZfK/KrvDcQX2o275s2NX+Pr8q5cW60DU7Wd3pGTtGQvKNmcFNFs0Ia/tXw/n4AgB33SykE\naKSr8dc3is+m1030NJUqlB+lbDtHC52kSW9m2aQ6h9sRpCKK0axgO07MfohMWywInRNktepSAYxo\nChbb1+xZDgDgrDqg9VG6g0YNzzyVt3WYraMRCZ10bL59jO470DB8WRvTiw4SphdVJDfia0TK+FLh\n6oE22qmXzoAFaXiWKw5qO9qR+6DoXNSNmZsDicm/kS3sjSev+C6+6Vp2w7GZ7t2fOf5PdNY8Q/cl\nP17m/zb+4ptC/w3Sez5k97xcxDWivMKAsk5ecyoECg6T1L4cUfA1cj7ewP2Vr4wOsKAT49oZNbWk\nVJK8CqJyIKo10bSfa/DKYlZDX+SQgldN5ka2uYKq/plalE91XY0j/qsLVjXEq+qfEU2C2/5JjVpe\n+BsszKEH/IB+ZbWjePnFkr6Wy+ekbDW0GabRqJXlZ/EG7oygZaqGZ8z+sEalpPksIZr2a30ZdDRM\nnHCzYsNy9oIJcHOK9m/hiOSr2fUHn1bBiObYTHdjyg/escfiT62UcjYpynIRRA2Fztz/tOZWXuPa\nwbat+ztx8iqK4wIC2wtR8JVlZ+VFh+hem3F4As1n4Ajx02m5TlO8zVBvQKNSNJ772WjqZ0QzG9QN\nSq0U10uUQ52NOrzPEJ1FWn+u4Nd9wXEXgIW9LDNuZ3XmXbHJ4OGBy49nrR5gE2xnMPd0zqnZHq2D\nFGYcz8qtkwhkMAHCjXQ15jXKM2sk2xcubL53sv7Et8bTv0A7dI0aFj+79pGjT71h/t+On2Vm1v8y\npU99nR2HwzFRqKcezfylIGPrKIe8Oin6wnFqtsduUa/fn1Ut62/NGrcrOOGhZd8tsoRrIY82yw2t\nrWSV4DnAB48xHLtgj0g541jWjQW+6Fir5fojcEP1f7JGAAAcnvDLZJe5p3OOzXRnAMAKm/yjzJ9N\nJVw6mOFqTvtlsgtabf21opt5DWoE+JoRR3tZjnQxnh9k2fV8LSzIkGV/CzEcAQCIrJoRsBdHaLHo\n8adTm8qbPzk7J/rzqxBhePhI77o/ouaxjCI1oi+uzyNAuDFuxqiZ/yuxeqy7yVsyUeA1JoAx/oXm\n/WXatGlT/sooF8hf4bv/O5X9xvV0jUgOT/krAz2urq5GD9TSauHTjyTpG0TPl0syv0GUza928a23\nSwr4UvRY+9PEqWthMa9tVQQWp0XJS463LoNFhcJnHyPqju4kAosSl6gl5a2VI2q5KH6hovyCBoFb\n131c3HQnr6H/3qTKzN8bC6P5IplaWs1/9om09O/2F5ep1Hsflz8ubkI//p0viHzcWB/3kfaav8RW\nzDqRpVIj6Ec577QgZnT65ckFJyOKoz/dcOLEqIMJh55VylTq1peVZGyR5R9oXaKW14mTP6/L/AuB\nVbzVQ59/s2TZgRsiOayqr6r4do40J15bUySHA3cnLD6bu/dxy+/li5VNUlXrq13IqDuWUF74Pw/+\n8W/kJZlqmXjjzeL50TlPeS3/dzdy6hefzRXJW37F7odlux6UplSIVGpk+rHMrbeLGetjNt4sRs+K\nn9+u+nExAqvEyffLN0+rObC69IuRqqZa7Z/TPio3cuq33+OBz+7l1Eo6+G9qBwKr1OJXfJy64EoW\n/6sbRRqNJrFMOD8650JGXUa1+KsbRTdy6rfeLpkfnbP9Hk+j0TRJVVrlnSpUSZofTxElrZTm7kYU\njWghLMgSp0Whz0B5WtWN72K09Zsqm/dNPnLuyxuywtSag2sVFQXVQsXKi/m/xFbMj84ZuD8Z/dOv\nT4fKM6rFKy/mv5Hrvz2mTZumawkv4X02SMMjl77yI7L4bG6bjuxtcyatVttgtE+8NHe3qikdPVbW\nxtQnrBCnRUmydzamfHk35XyzoOjF9//d9be/+KFnlRqN5kFhI9rZIYpGcVpUZ/WleXvlvNPoMSwq\nFMZOV0s77T4QRaMofiGikqDKEZVEFL9Q1ZjcWf2ManHwz4lT/soI3J0w/VimydePDidUaTQamUqN\nWheZSi2Sw2N/T7uQUTf9WObB+OodGeIndYpbVfKNselx+U81Gs2dvIaVF/NbrBECi9OipLm7EZWk\ngC9dcvjc/jM/Zz39LvnO8ja3RVn3RJS08v/snWdgFFXXx+/ObC/JZjeb3hPSO4EAoTfp0iQKgqKi\noAgi8oKiNEFBEAQBQRAEDUhROiglCRACgVQS0nvdZLPZbN+dnfJ+GJ4lpBFqFp3fl8zcaf+dzJ0z\n995zzm33XsmuzsKNTZheY6jIy185Y963B6o2vofUlbXcZ9nZ4hPZDQRBfH2xzPwT+v+YJtMg5n0+\nO130SJPwW2rdsrPF5C8dvCPd/KSpDejonzNbWTht1rWK/xvVeGQTpte0PVWrl2OrSxtrznfyj3tO\nzD2eP3hH+uAd6eYfYsLwwTvSz9yTkXaXLKyrzDE1pWPaqo4eXW3OOqQ+sZ3ywp8LTv+ceTb3j8/O\nGLUP7ry+9ICh8tiZtZfrixoNFXkNB9aQl7b96tqys8VVzYaJ++4+kx/YrkH68XrV4XTpMzn/88Py\nDdK/eQwpbM76A6vmt/JK6iKbEitH+YtfZFTjqn/KxgXakmPy5k5qdcq7guhfyB1+LdXflpkirA1c\nXM1kWuWpUFwvnQf/Ym0XSaA6U308xJIwHEewXCYBWuusfShOTNqf/e1Y75mH7h2bFeJjy9Hlfcdy\ni4V57h3p0RduRxUZEFuC66p5kVsglqSjPQEAmDLXUH6QF7ruVFETJr94lTYMh7izfTiefNiG2Vk/\nRmqV2seWM2B72lu9HI9k1muMmIuQbTDhBhT7aYp/lKugWod9fLXhTS/OIBeeFYd+Q6q9Xpw5yNNr\n08XGY28Fs+kQ2pRqKDvIcp/ettvQWHGEQFVsr3dUKMSj09JkGkPR9uCIj0Xcdv6t9SWJAl0CN2Q1\nIGN7FwxO8Z781tLPzTtojNgbv987826ouSSprDnK1aq8yfDxicKPYpwnBkua9eik/dkJH0Z08pNJ\nxv9yN9iBx6JDHiL202S7aTuegWkraDQY4jjq8r8nkCYCM9KtA9le77R9Kl40BGaSJWGaEojrgspu\n6JRVfMe+mLYCECgvdF0reWhTKlIfzw1onTQEAHDn2N2SSyftggIHzp1IZ9FxowxtvGVqvEEXRSE1\nZxHrDy7+LIvdNK7+h7n2H21p6e8etul22qe9nj5S1XzPG7Wmy4VNU8PsUJxYcqZ46VD3x3XofSSH\nby+bErmCSW896PhkWP4YErxq1aru1vC8+P585opp/Z7s+SuV6wEAXmLOsxbVId9frfpkoCtEowEA\nNBoNn89Hm1IBpmPY9gMA7C3WuXDhV13ZFXp6mJ3NoUr8u162bjZ26xsHDhIbOdY9OH6fMBxHovIU\nkyyp7asZotFEXHrMj2nX5/f0seXgeinamMxymdiJHoa4N8vlVZjjxPKYCTEfMeAMsSU0iKHJ//6r\nxuG5mM/eGMkIJ+bBEn2yzDTYoZ1RMTNO1iw2A3on2gmigTl9XVBbsa2jaGqEw9rhbh42rOxmNK7U\nMLcHd9i2OzfLVaP9xWESbk+x4EZ+IsGEhvOy9MW7CUTBDfwc5rcToEMXBpsaEhsrznxT3zuuVEdr\nSmoUjijUcyNF7YxYaBA2vfEkQ9STxrCi0ZniUW/9Jne04TGd//eKOZgmjXIRBP/PL5/Ajc60ItCc\nZq2//VZf39OF2NZr1U0609RQSVcem8pmA58Fn8lt/GGiL/lPfzLIR8W8iuuqtWnzcX2toewgwzaa\n47uA6TjK1JCIym+RD1In4LpqVJEB8zw62YdAdQDgpFeLSXrJ1JiM66phK79Wu5WmVFo7Cmgtqp6p\n4aou+ysaUwhbBQKTChaGaYVThG6DmPZDAarRF+9i2A2iQff/LwSi0Od/zw1ZSaO1Hv01qI1J+1Nj\nv58qIb5hOQ/XF+0wVhyBuW5s7/fpNmFM+6FY+bdG5sCqrAaPgSGa5DOcwAd1QaZBMJx4+kpN3vPi\nRv3sI3l1KmRmXO6pezKIRnu/zzNOFKQ3qY/c+dJT0lPMd3303l3g+PHjr7322jM51XPi39xC8pz7\nU9mu1nGXXeRyYdOI3ZkZn/YOd+Zn1mgAAOHOfBQncuq0tnzGM/8OAgCM/+Wu+eub/ATTZi3j+H4C\ncRxOVBoQHMR6tDMee6HGaM+BWr5h9QU/0IWhDPuhjUY8RWYa6/JAqjljhTZjCcdvIcR1aXvCpyFH\nWpFaXvp2nyHmko33tJ8G8uD23rcNBvxoucGZC01yu/+7jlcYbNnQYHtmgQqNlyIqhGBA4EM/Lhum\nSdVIo9ZEzn+D4sT2cXaJMmVfR0aMq4OYL7negKgQouUvBQAYMOJAqd6Egfwm5QT0QH8bPdN1Kl0Y\nsrdYl9WErgzjMyEaj04za5NKpRJOk6H8IC/sfsgO6S6/eJAb2WwdvSfrzLuhdIgGCEyT8RnAjXRR\nFMzzADDXJL2Eact3Ni84WWC6uSAKAIDgRHoT2kvMkBtxMQuiITI5ohXzXaEuNFNwvRSRXkTltyCO\nC10YgiMKAmni+LV2mzbLNreQUEWGoWQPL3Qdjdk6yEGX8zVDEsOwb+0/ieul2szPYGEowFHcIKVB\nLBqd29Z15T4Epk55l8a0AQRGY1gxRFE0toNJeokuijK78gMA0v7Kyb1SJHYVjlk2hDzKUB6HNWfz\nwte3bAa1VG6S3TCWHeRFbiG9FTSpH7J8lzCs2vnIuLjlmlu4s/8Qb1SRoc/7jhv0VStnH7Q5G2m8\nc2KbeMa2V2vWzTBnugMAlDcZvr9a+eMk33bvZNchla+PrxjlJw535muM2PYb1cN7iFqGHDwT0ipO\nl8rSxHyXof5znskJLb+FZNFedidOnMAwrGXJq6++ymAwAABFRUVxcXF6vX7EiBHDhw/v4ARPznBf\nUdHnfbder/pxku/n50sMJjzhw4i1l8r/KZDzWfRwJ/6zjVKqVhpJByczBKIgUB3EcVCZiPQmdFVY\n+x2PfSSMP8oNLQ0Sx+8TbdYyTFe9STHJjg05NkGJUsSZC8d6sD1EbIwAuOwqjWHVyhol1iOD7Ttr\nynSF6ypJX6eHrKYnHz5XbRzrwmplkxQI/k22ZoYXJ6cZvVhnHOnI0qJEapkq6u9UsH6MnxXdz+qh\nJ9NBwHQQMEnP9SVnit88VntrUa8SA21fBWrCNRVazJ0HB9vQ7dmQHiP2FulxAugxYpQzy4AR8/wc\nYdoy86ne8+EqEPznQj0AAMEJBYJPcWfHSJgAANg6EOAY2pxNF4YAANh0aM9r/pN+zf56tNfVemRM\ngFiNEgIYMWQuYTqPYzqMNJ+TYdsH11W/l7nCv+9HZMnWPJ0Vk3a0XK9FkNG0s82Nu5niKAOOO1j7\nDOgxS8C+Hz6pN+k25OIGjBCzINJy40aZNmsZy2M6v+ePuL4OVeXWcyKvy+VVqWWx/m5e/Psv9FIN\ndr7aOMubk6KCh9sSDAgAAjPmfcfvtbtdW8IN/irn9tf5Kj83kaS3+P4/GlMX6rJXcgK/ALgRAEAX\nRZGFmtQP+T1/bGvVtNkr2T5zW7W/GbZ9NKkfMuwGkbYkYddNfZPmtWWsk6vjm2+dZLCYhElFtwlv\nZY1awZDEANyoTV/EdBqN1F64ealnzor42XtfuxWXMfSjfkzu/cc74/Q9ncLgO9ATAEC3iRD0O9z2\nVHRhiKF0HwQNwjGc5R2G1BSbQ3Q9RGypCmmZmeJpyKrVfDbYDQDAZ8HLhnbY9f00KPX1/o4D0ivO\nPI+TWyYWbZAyMjKMxvvTEldUVBQWFk6aNAkAUFBQMG3atLlz54pEotWrV9fW1s6aNavt4b0ViQA8\nYQsJAOBjy0ksVvT64Q4dovnb8VKr1DfKlWRqsvXxFTMP5d6qUE4NtXO3YZP5Tp6Gy4VNrfKRI7Xn\nyS61ah3mbw2328gAANgwIYURR3CCCdEMGFGhxfys6PXe63ZnV0WDs+P9BqwpEg6wZ2A4+DRVZc+G\n1Ubtm9pDVuHra9WYjwDOVaJyI369HlGZCIwAwzrtXuucCi0G0YAD86EG90gn1rlqw981xrEuLIwA\n5K+41WjaW6RbGMBz1ekCrOFNNVihEqusUQVmFgMAVPUaK/vOhv3e6uUohDcTJuZIx+iRjqxSDVan\nx3qKGF/f1bBhGgDgA1+uHbuzN44NE1oafH9oASPAwVJ9rlLnDiAHADh+C3V53/F7bgMAIDjxUapm\n4iCf1VkqOo75OFt/k61laHInuswKsu1J3imcwPYlfQQAgGjwcJ/ZQ0s3oc1f4FbBMA180INrLI/L\nrf57q+mTMLeDLppbg0PH0WmakxnrKtUyF4F9Ne6fo/Ua7aCbEtQ/W81+60bz6hBGbW7cPZvv0WaO\nSqZvNFpx4L5iFjSqh39M3ucJNUvjjGyYBgY5MC/VIpPcWNvztWIANt7Tyo04E22c7/S+oN2WDQAK\nBN9H+3hKw/aTqo96ipgQpkNqzpjq43k9t6EMWxMOePT7Txgs8OUGfqFJ+5gXtr7lV4uh6CeY79XK\nGuEY/uPEA9aS3rhxe9jkUc7BjuqqgqGv3oSgcWHTZ8RtTB7+UZTf0FDQBRj2QwkCJQwytu985V9V\nM3f0OfLZWd+Bnn9vSpywYgR5rdTj2bP3TIXgR5gTlstEO+eihmK5dfhgbdrlljkjXvEXtUqU1RXM\nfSTmEjKr9xMMByCojg6zutJQBgDojEobeycT9h+amt2iDdKaNWvMyx988MHkyZNhGAYAbN68efr0\n6fPmzQMAODg4LFy4cMaMGeSmZ0vG4t7lTYbEEsXEYIlkxfW8pX3IR3DZUPdbFaqVIz0TSxR/3pW9\n18fpKUdKz+XKWwWrIvXx/F47AQAKBBd2Gt8wyIG5IUdboEKZEE2PEX5WdA5MWx7lzkNo+rxvvuB7\n0+EogmaMETVATckI02m/8GtWLatap5vtw9lfrB9sz5zmwfHkw1vztMkNyCPf5h1xqc44yokFHp64\nw4pBe8OT81Oh7noDcrTc4MiBeHQaRoD1kQJbFvTt+N8Dhvh4y7VDN4z/Z2/6tC+HSAtk1/amjFk2\npOVLp7wxw8M2olqR62ITKNdUpZVuGhfy6o3iQybMGOA40IsPe/FhvUkdbFqnaK6d3X8H53HCQWAa\nmO3NuadEf8mDYT4ywM4Z5rmTHVy30NAxznwvATzD3Q7FCVsew1h13MCr+xuek5Cvs2fpX/cSxuf+\nGOMzPcBxIIohcSlLIlymG3P2X2bPD3dwRBUZSSV/VDBdtsf41hg4tUrh8bspcnYoi78G5uivafE+\nIu3WMHZ6+fEDyUcH+c3e23fwh9fLRjhNG+ciZEK4TpNzq+qWWl87I3Axl8XDAmYPyVnk3veXBiPt\nSDky359ry4LCbBhSqcbBgY8pc5tKDm9rXhpZaTB3gZbKUo2ozk0UWm8S/FSg+9Bf4K7rpy/ac/h2\n8ET63yy3WH7v3QCAuBL9jQYkREif5sFx5EAAANg6kBe+SXdvDS9yCxmIijZnY7oKXuhDUbpNVc1n\n1l7mzM7RCKX9Od7p284k7oBmruXwe+3EAVAYjo1gcBGTAAAgAElEQVT/ufftjZVdNEgAALLRqWnU\nsgUNtp6iIVs8Lt7bDtVO+HBrOp/D8Lemayf3uqnE9ZhxsD2T2XGNY0j6C9h/1hf1dRjXu/nc3pab\nJgZLVl8seyyDlFmjmfdnvsaIhTsLPujr1N9TWKU0rTl3j0xB20UajfjqLM0sb05xyRoUQ2b23dyV\no/QmtQ3XiQGz9CY1h/GM+wMtE4s2SGZkMtn169ePHTtGriYlJU2fPp1cHjBgAIIgycnJAwY8XrqR\nrkCHaD62HLIzTbF2YMsAW3JOPx9bTnWz0XNt8rG3Qsyz/D0uZKTqQxPaGqphngf5LijXYMHCzv5N\nMRImB6a9x+FiBMGGaQaMcOHCAADAcOdH7USbs3FtOQCAaxMEe7zGh1iLAQAANBjw924qN0dZ+Qju\nX/fTQF6xGjtdbXjP50lcehr0uDsPlrY3k9Q8X+6ydDUDAr5W9GGOTA5MY8O06rt1g+f2+XvjVQc/\nycm3D0VOCuYKOR5RLjn/FBTfKPcdeH8unIv3duZLr2mNzRKBB4LqeCybyZErBGxxgOOAY6krWXSu\nlyQKAHDp3s4BPWbpkOaU0uOD/Wa3EoCgOrOfEk5gbb9Pg6zpC91MyXrsYCn6rs88tOmOTis7U133\nJWc333YRzPEGZD6LukvWvXba5O7moOr0RvrHNX35rNEDrT3yKw2FKgzlr86oVeoR5nTr7HDp5jJV\nSS27x6SIZXymwI8J/KwkQ1xGaNIXEZomGkuCsDCR/xZAg0cFL8AJ7NcbC3yZnO3iC812069kbaLD\nTEdrv4GeQ+Wayj3X32fAbKW+gQewxtMDPGyjXg9dZMt60GOMaSt0+d/bRmz6msk/XKa/Vm9QSbdH\nuo9PLNivoHndy+cI6KaZfl4+AgEQDB0EsbZJ/dQ+o/gcCABwocaoMOLbe1s1GvH9xbqJbuxAazoA\nAOI4sL3e0WWv5AatMDUmGcsP8aN2GnBoa54WIwhMh0jlerhWPmmJX2XD9bd774nP38uaJ53EnGXX\nx/9wmf5yjWwQn1YmO1ASmpNTKEiWHsQJzN7KW6Gtfaf/jsSC/U5CPyvQerojkqxz+fTo6nXnhsf4\nzIj0+fhn3PSOG48vdP99/bVpi/vLEUJlwrfm6ZYEdewBS4MdQ0ILUjPAuCBIIEJqisnc6uB/2Vc7\nPLAN+Q26z8+XnHk3TGPEUJyYczR/WA+bS/kNB2aEdj3G9nCZHgfgdU/2nxWGIJzACUyuqeqKn4LB\npOaxhM7CAJW+njJIFsTx48e9vb2DgoIAAHq9HkVRDw8PchMEQVwuV61+7lPqdZTuYW4/53Bn/ld/\nl176ILzzM3Q0Ocrf+fJhPR7qr4cbz7B63E+f02jA7diPaPy16zZGQheGAGFI23I7NnR0oJD9cFeg\njwBOltEOl+nf8HyEJ1K1DnPkPOhIzG5GPfmdiZzvz9WiBDkyhOhMV+PS1Q2aPtMjJDtEXn3cEJ2J\nLWABACAYGvXZ4LgFJ30HeiE6k57WpNTXLxj2B2lFUAyBIJg0J0w6d3LPFScz1nlJosobMyAa7GIT\nCABIKoprZZAyKs/9mb5msO9sJp3rJgrZmzT3jd7rg5yGtFLIgsAbnpzDZfothXiDIdKGCc0OZbEZ\nX5y88b6BbuVn4++gzXeK3Hwic72bKMTHLnoUQ0AauesNCAOijXVhHaswjHZxaqw7l1jyR4koRENY\nvxW53Jpj/+AaNJjsDAQA6Au3G6tPsFynAgAgGuxg7b3/1md0q0Ab9PjEiOXmQSYnoV+IywgUQ+gw\nk/QpaPCYfj3vp+aGctvUHsPGyOgmQgrjDL9PWRALwpBBNpWbCphcLPj4rRRH2y+c+TY/eHNoWNPp\nzPXunI8kAg+GJCaWh/1ZYZjvz73egJRrsYUBPJgGXLjwwgDe5lxtgz1zgB0TpgG6KAptvqu48TrX\ndSItdMvaXLzBoJ7vRr/343XEu0Fvs1fgEXZSOlvCX3qsijbGd35q+Z+/qplQlkZE5A9mnlKyP9fS\nx5mcmq5kbnx7/NpqRa6AbVvbnL/54tQojwmXc3cJrGcydaxedlYwDbjz4MSC/QK2OKPoYjVUzDHB\n7ww+92cVpmjGv442JudvgVTwyHfEVzK/C3QaMi5g7qEqToMBJ5vyOIHpETWP9VCPt23Y1IRffwYA\nCEe9rbxyWDLrK/MmDxE7v0HXNntTWzJrNBsSKg6/GSTk0MlcEnum+V8ubNr3qovZGunuJXc+i4rK\nRNyRm5oRYk9f6xI1Jq/hzQifd63o4KSI5Y8UQIeZAAAeS1QiS7W3etGpNbuFl8PLbvjw4bNmzSIH\ninQ6XUREREZGBpd7/5Hq06fP8uXLx48f3+qo6Ohos90Si8UrVqx4fgq/udYwwkewManhk762/Vxb\nf7uhODHnVHWVCjk01d2O19qwfXKhdsVgexHnwQsdz1kABd9/c31fwVjgZmK8wFm+zshgKzoYZPPA\nnSShCa5FaCNEGA4AgwZ+r6Nb04laneJNh2Yxk89j2mypZM51MXEgQiaTSSSP6A+5lXHybkEiXWya\nOnCFFlFYsex5D4+fZx7Pr86UVrqdpPnXR8oX9oj0F7m373d+vXyvylBvxLTj/b9iwBwAQEbdSQnX\nS6D1LIwv9+rvclu/B9ZYsTJDTSKpZ3+XElWSi3VIRXNauONER8GDoYXSppSCuhuR7uMvFm128fhR\naEh0sQ6qVCSXNN3s7z6b3pykIGi5mgqVsWGw11x3YTsTF5nRNuqZPAajC9mq6IVLMefZBM8fAABX\n7yLYrrjt2I52rkqto8E0Nz81XPZNUVHMnXRWY0AylyO0cbaGeAhSIjC6lSGYXmWs57I9xwV8ZwKE\nmMnhQPdrt96kOlewLsR+TA/b/hANPtdIlyHARNBmOujY8IOvmWI9dEcF5WkgBybuySGYEO1cIzTI\nBivQQrOcUAcmcer/rvR81ycd3/+K7xIcxzgMKz1OazKBszK6CsXsddsIwujB4fdxf5MF8wAAFQYo\nLlUdXFEzYcZ937ZMDXyxEfLmorlNMq7xLxMjqB53C4UTfLlYBeZen+MBh/Zw56I1RsYoW8yaDsQM\nAgAg15VrELmrdbhMW5pccUAN+4tE08bZMQEAaTV/ptf+OTFwrYT3UJPr5Ef7J257HcAc3a5POHM2\nmX3tEso0TXpsSqA1ufrNtYZXfASeNsyWFfBeg3FDUgNMA9vHOvPaBNK1fMj1+z/nzP62k/9yQhNs\nwwThfAwAcFOhvSu794Fv7zN5a8YHPPp1dDpv1YSAVUZMG1/y42jfZY/cv13WrFkjl8vJ5fLy8pSU\nlCc7z4vhJWgh3b59u66ubsKECeQq6WWXm5sbFRVFlhgMBg6nnS96Dw+PF+bj+OFgq4ANt/bFBvyU\nXj+5l3errZsSKxcP8/a35807XvDtWG9zvG1mjSbYkafFG1pmyEabUhWiKMn/PGLhWrWr43PPaV/Z\nlC1Tl7mJQiUCjzkOYFm6eognj/wCzVWiDTTj1B7sFZkajCBEtOox9opoJ++1l/5vF/JZNHOvFT+w\nh+gNT6f76d1axWmiGHK7/K/0ijNhrqPlmkq9SWXScCf3XO7cU3w6c4PepGbCnCk9V7RsSQyfY3sz\n4YpQFBhq+AaXEOlx2eOWD7ey5+ua9SW3KhksuoOfROhkBQCYYv+5VFlsRThnnS6QeNr4DvQaZjtr\n0753rW4MiXzL82jWEqe6IfZ4SOhY//yEEm6F3awJEwAAdSVDT5etFnKdhoa8fa3ooFxTZcN1MoCm\nqxU7nGx8ZLWf+XjFZkp/i/KYOCJsNpPOBWAYAGBQpzdQWiA7tz7BNdThxoG04Qv6R0wITNx9K2pq\naHOtyiPKhWz/tYIQ/aDL2wA0fxOYkW7ty/Z5uyM/tOy/C2puy1AENTbYV2bO84p2m/N9QHPt23VN\nhbf/uQVXu9WnVs89uojvxiA7dsgv64dxmOu053b5X1fKv6fDTHuOo1zdaAcp/kgvC3YdOibsE7Ld\n6QBAfwC0KKEyEdU67Fq9cUVAtRJlDLZvvlV8EOhnW4+S/yXf8lrUanfnBw+5JwA973uZrVXoam24\nD8JxHACIcJN8ehTwlPxJnpxTZboGHPqmF/fHfN2iHsDDYdmf6WvGRUz+Jts/0UQEiiBHfe6bEeIG\nA+5nRW/ZencA9x8qJ+Ac5jOgtrlgTVZ9fzs0o/IURKMvGH74dOaGGX02QjTYPNzCEYqEeB7beYyy\n3xiGvMycQXy0Nfr5+ZKxTOHW61WJJYpRfuI7MvBHvtJWURwraixs1GU0QYRLwNHZAzrJgUk+5EhN\nsdo7WNxBHuRqHQYAqJYbpnnfj3zwBndzdF4ODg7ccp7I1uqR4a6CSiF5IWYVQ2DDbtUK7CI7d+40\nL8fGxnaypyXwEhikEydOvPLKK0Lh/X8Gg8FwcnKqq7s/y7hMJtPr9T4+3dye9bfj5i3t42/HFbDh\nITszXvEXmT1BU6vU96Ra0kP08JtBk37NDnbgfT3K62SObPYfeStHeo4NeMjeIDVnMNH91p4CwT0F\nzzfAvrGs6cKmq6GfCVACOZO1MdprapDTkHl+XHIw6Y7ctDcnY5pTtTtv8hzXfBNSr9eXiGGPDRcW\nLBxyEGIH7i0Ku6JQfCgq/zvnslLf0MN6yIGMdwf7zS6sTx4X9tnpzA0N6rIgpyEDesw6nbV+eu8N\nfLbo5tlSrxE+XC7nrX5bAQAKXe2x1JUCtu1rUatxHLuct6tcnqmH1e+H7SFroMhVeGrNJbdwp/LU\nap9+HiiCJuy6+e7+WCaXAdHggj+alLUVjoF2Nbn1Nw6mid2Ew3p9nPj6uhKO3ztDtp5emjTxxEgA\ngEeUy4bBu+TlCom3OHHXLfeIqXq6bFfx/FcHfTLUP5DHFDbKFE6OzjiBAQAgGtzLc9Jj3ca8hOKx\ny4YgOsTa0eru+fzcy0X9ZvVMPpjmGe16as0lRGdqrlVBMG3mjslW9nwcwwuvleEoHjhiPabMhbgu\nrXy1a3Pra+7Vh40NYHIZGafvlSRXTF43CjVieQnF45cP49vyAAAOfhIHIHH09JZlKod91O/g+ydH\nfjogYkKH3y50mNnP+/V+3q8jqK4gO5t2S1NYdduTM6qUlbG9Zva7w7eZ33c8Oo1Hp9mzifzCFYWI\nPQDgRMkf4Q7jTlcv9+oRsCY6uT2Dd5+W1oiECdE+FOOn06s/TmM436v4+ININkxbEsSTStV0mBnb\nay0AYF2EAABQnlpdb8+0ZUG2rEe4pTgJ/bwE6TlNDRMjlpPmJ9pr6q7E2WyGoKope8HwP2y4TiJ3\n58bcOy6uY7jhQ5r//tVskIQceqPG9PGJwm/Hen871ptNh+5PdswV32p0E7l6rQxSq+O3QneaEO8w\n8+BTu2hunmX3uJ/eG9OUqK5P5kVsJF0zMAJ8mKKyYtA29rQyW1aNNleODgQAuNuGS1UlbqJ2+tLN\nqA1yHL/fSyHmu8q1VU9mkF4uLL3LTqfT9erVa8+ePf36Peio3bZt25UrV44ePcpisdauXZuTk/PH\nH3+0PbYbo8DM0z0klTWvu3y/G9q89WSOLC6t3oDiG8f7/JJSS053Zt6qSVugcf6C/DK61Whq0OMT\nXB87Drf6bp2djy2Ty0B0poJrpQwWHYJp5MCMOaqj+m5dwu5bPCHHxtU6cdetUUsGRUwMTKr4VaYp\nH9Bj1s5SG6W2XGliD2EcMmL11hx7ubYq2nNqL89JEA1W6uvNbZo7VQnFdf9ojc19vWNvFf41uffn\nJ9LXvRq+7O+cbWK+q6O1X5jrKwAA8pCUPzLjdyR/fv3DlmpRDEkqjrPhOmVWne/rHetjF21Eda1G\ncdP+yoHotIgJQQCA7L8LkvbfGb98GIpgFzYmcoWct3ZPAQCgRjTlj6y+b0bgAG33pZmw6yZXyHGP\ncHbwkwAASlMqE3bd8op2jZkVVV9f7+r55JHCcQtOzdjW2WTezbUqCIaOLDnL5jObqpThEwLpTHp5\nWvXoJYNErvdfNAa18cSKf1T1GtdQRxtX6/qCxvriRt+BnoPmRHfk62wOL8Ux/Niy872mhnpFu3Ui\no7Gs6dK2JLGbMHx8kJ2PmLzo3pXbuWOrOAK2VFlSryru3bDEa7T4duXxaM+pYa6vaBq1hbdKsk4W\njF0+2NZD1EWX5Vas67f9g7jpbAHr8rYbruFOPScHt016dHlbUvj4QFvP9jOpt6JOj5MjYS0L8+qu\ncRiC4oaU4YFzM07fg+VxIW+tpEGs2u/eEU1ZyPa+P0nSpO3Xlo4P7+NupTi7R5edBAAQTfqI49/b\nfB5UXqfNTGi+sF8yawXEszIfSGJWXr0m1nHRTzDf2tRw1VhxhBu2Vp/7HUMSw3SZmN2MpspNQgbN\n7PQIAPgzfY2cN2+Mq0inTlFoa6O9pnbyA3++Nie211qylqWUHrfi2AU4DiQ3fZiimufHDenU14mE\n9JeZ1XcLWR2owNin5a+//rK1tW1pjQAA8+bNKyws7N27N5/Pt7a23r17d3fJ6wg+C5aqEQcBM7G4\n+dsx3q3a/hODJYtOFW0c7+Nvx20VYItpSiD2g1parcXCO3ZY6ASNXJew+6yNk5WsrMnaXgAA0KuN\n2mb96dWXY97qmXE6t9/MnoXXS2dsm8jkMgxqY6+poRmncw/M+Uvo7DLxmxl/52zrCzNl/zjSvfy5\nRUMmrxtVqcgSsG3NrkEte9h6uQ7p5XrfR0AMBdhwHd7pvwPH8NHOy82vWvKQ6rt19YWyVtYIAECH\nmf19Zvx87b2RQR/52EUDANr6FPWcHGxe7hHj0VTVfHXvbbGrMHbTOPNV6Cx6zFs9AQAQaP8Tfsjc\nvi1XvaLd3MKd0k7krOu33TXSYcIXI8l39OOSsOumR89HGDOyj/G19WNkpXKJl5hc9ezlcmr1pfAJ\ngRETggxq46k1l8YuG9p5GFZHQDA0Ze2oY8vOd2KQVPWac+sTpqwbRbaxSNgC1usfz/5ny3VpcaPv\nK0PgpMr88X9lrXN0dQ+WZwt+ST1q7yO295W8sWVCux2PXWR58nxyYeKakWfXXanMsGE6Ppy8zojW\nFciGL+iSNQIAOHIglQmfkKDY29faHKhAvrKvF/0GAJB4iKqkASZpPNNptN276+q2zLOZMJffexRS\nU7yl6Et4j6iGZ832DnX+/EDbk9PFjtbDpnP8eyvO7UUq89udA151dSrLu1JfuAoQKN0mghe1jQax\neBEbNemLUtTWf2p6fhbEu+/v+j8U2tqhPUQnK40z3DyKGx4xloMTmLmWKYErqq83b/Lkw2eqDO48\nnlWnY8tbLr0GAIAhuEFd5iRsnd7JQune3K5Pg1KprKys7GSHbkxteyyrftTPmRnV6td/yzGnN+4K\nuoIfTYq75nTCP+Rq0Mc4+iEUNcrk39PMq2qZ5ty38Yoa5e2jWbJS+bVfbtflN7Q6RK8y3D6alX4q\nhyCIC98l5sUXEwSR9GsqWUIQxLlv4+N/Sj629Jy5pBWk8rr8ht8/PrnrjbhbhzPI8tQ/s899G39s\n6Tm1rJ2U1d2OrFReWVr16/vHbx/NaplAui0mg+n20aykX1PJZaMW+Xnm4fifkjH0CXPD372Q//PM\nw1e239j37lFFzWPPB9Eq83Ty72l73z5i1CJFSWVld6r+/OLC7x+frLknzYsvlpXKf33/eNt/uhm9\nynDok1PkD8FQ7O6F/LsX8p9A0iNRyzSbRv68a+bvSb+mJv+eJiuVJ/+etuuNOPJ56zr/1Br2FevW\nZ2uUyEOV5FTG+gZVmVGLnFp5Xp32ibm88cimuq3z6/d+gdR39t5ohb4gtWr1NE3qRXNJXV0dIs9o\n2D+g5TwgZirVuhUJCRpVOW7SoqqClpt2xM8kCOJsleGHXM3e6/M7uagOUR1PW00uHyrVLbtT/VXK\nTXJVY8J3FmhrddhnqapaXYdPnUrf+PvNz1LLT90u/atAeoMspLJ9dyfd2z5t1Jo+P1eiQbDHmnlW\nk7aA33ObuU9gc67208AXl3EcAIBj+Pn1CTX36vvMiAgbG0CWxC04hehMXtGuylp1+IRARa2yLKUq\ncHgP/yGt3TekUqmmxHDn+N1XV45gC1h7Zv4B0SG+mMsRsEtSKnrHhg94p9eL/DldRyqV2kns8uNL\nsi8WNNeohM5WIxb0b9nCAwCcXXdFUasKHx9Yl1evqFWp6jU4io9Y2L/zXrJHguhMeQnFPWI8uMLH\nzvvZtuMrP6Hkyo4bPWI8Jd4i9wjnhmJ5eWq1Y6BdfmLJoPeiyb7KbkfXrFcZlEgdJq9qzvmnsKG4\ncdH5dx+ZgqFdEuuRO42mBgM+35/rzoMBAHJNVVJx3Kvhy+IWnJr47k1uwNK2aZAeC1yrUpzbo793\nk8BQ5y/j6stLGBkLuAFLueGj2+58otLgz1E6pI2G+d64toIXuYWcc1JvUh+98yU5bnq8wpBQdr2f\ne//XPTjtJmEplaVWK3IH+s5SIPiflYZYF/3nadLtMUEAgFINltVkmuTGLlZjKY3IjA4iNFJKj4v5\nrj520eZTge5+JXYFS++ye3mx5TH2TPNHFRnGiiMMSUxXMpmiTakwv/1owRcGBEPjlg9rVTL6s0Ea\nuQ6CaUInayt7vgdwCRsbEL/jZs4/BZPXjWr5HtE16dNO3ntt/Rg6iw4A+ODQdPOmlsNXlgkEQ4Ej\negSO6AEA0DXrf/vwRPArfuoGjcRbnJ9YUptbP/iDPuTNCRnlBwDAMby5VtXKaD0BTC6DtP3PBP8h\n3i0/FESuQnL1GV7i6eEKOSqp0i3C2S3COWJCEGpEn8waAQAG2zMH2zOrdVi8FJnlxQEAiPmuNECr\nVxWzuAym42hj9Qm21ztPoxbiWYmnLSYwVJ9/u+KzEcxQCd25Z7vWCABQqMImuNrDo9IBAASi0KR+\nSLeJoNG5GoPc0fp+v9lUd3ZmNYJh+j/KQbsWpVZZQEZ8H60wTHFjC1hcNsg5XWXsZ8fYkKP5IoQP\nAPARwOeq8Y40l8szA52GAAAEbFuZpvxpfv6LhJpz9zmCSC8ayg5CbIku7zuk5tEZEg2l+9ieb5lX\nVSbC5lHuRi8GW0+RR5SLW4SzeXgDgqHhC2I8e7vF70guvlGOY/jFLdeOLDmbuPXOsA/7kdaoFRZu\njVrBFXImrXlF7Cb0inbFMTx249iFp2f3eu2hLDgQDD29NaIAALT7wDwWLly4Woth/+vuGeT39uXc\n3RiGG6Eok+zG0+oDAABAg+ncoH5uGw6z/IXCMd+1uw9GAAYEzI0eGtOGG/SVqf4KAECqKrbhPpj4\narhtQx9BfrUWN2Dt9FHJ1OVivitGgGYjQfocRjD+yVOih0uV83zZZEMQAKA2KjtSi6A6MryayxTW\nNRdsj58hU5c/0e9+oVjE++5fCIHpC35AZTd44esZ9kP5PbchdRcIRNHJEZi2ggbzWvYtKBBcQH+B\nAbGPT8SrgRxrTlV23eFFZ3CUiN04bszqgV30krJ87HzE/kO8fQd69XotlM6iv1wG9T9ItIQZV6Yn\nl6059tYce5a7QdWgga38UEXG456NTIWuSVugzViiL/iBMKnuF2Ytw9w/6ShirECF+ggeMq6wdSDT\neTwAQKmvt7d+4MHkJgopr8iPFNDOl+nankeuqeIwBLlKNNTm/tlQVDvWrvySFBSU3p8eJa/uWoE0\nSa6pOny7dcys3qQ2BznxWMIYn+kSgWe14t7j3oQXD9Vl9+zBtBW6nDUs99iWMxSwfebpC7dzg7/q\n6Chj6T6210M5byq1mCPXor8YIBgivdooKLqdYQ7MDTlaLUqQmcsj3ccnlB+TlQU5DJ2lz/+ebvPo\naXxJCNyoz/0O0GCWxwxY4AsAMNXHa7NXYspc2MqPG7Jaq22dtVJvUiOojsOyS5Yhg+3b90WsV5X0\n8XwwOZ69lc/PVXPoP9ytGvie8pzmrfm9IRiSFsgAALY+1qRvfUojMsHlvtd4oOPg36+/uWvE6bOZ\n1dvjZ9hb+SCoLsRhzvZrC3q5DkyrON3TfYL55DnVl/0dHuT2jHAb6+84cH/SR3x3VRdvQndBGaRn\nj7F0HzfoCwPbq6XrMV0YYiw7iDalkrPOtAI3yjBddaupxmp1+MCnnqOIguK/wwgn5oUa41R3NgDA\nSeinZlap6jQQJwAAgOulEKf9lAokhEmlTnmXxrCi0ejsHnNbGjCG/dCH5jbUSsm/CE6kNJqibIxH\n73zZqKlkuv3KZzA9+bDaIIdocKs4Vo1B3jI2ruKabBy+o+i9ox+Ee/+QVJd1Li9iQlDRjXKvGA+p\nqjgLvHuk3FCtxc0e7WGurzgK/ZysXAEAdJg1MuhDAdsWosEg/AQA4MidL42orp/36+TO+dLrM/ps\nbHl1DkNQ2ZTNdXqSiIIXiUV/gFsydXocwdt3UMR01Qa218e3VQdL9S3LeREbkbqLaHM2AOB6A7I8\n40FCWEPpfrZ360khpXpMzLLoLjsKCosiUsTIaUbNgzJ2Qo9aWREAgOk8Dqk739mRBKbNWMIN+kIQ\n/Qu/9+4uNqfylOjGe9qtl2eMCv54qP97RYqmIdb59cqCA8kLzt7d1HJPnMAw/H6WcdSIpvyRmXEm\nt/fYXoEe/W+Xb5Qzk+ILc2ZclMUjjJVNzE15tEEODHc+3MPqQccgk84l0wf39Y4dFfSxNce+ZYRy\nbK+1VU05ZGyTTF1uw3VqG7+8fOxlHLX0F76l67NYsptNWYp28tijigy6TcTuQt2XoXwAwK1GU8ut\n3MClhsLtf9+9VKk2iFkQWXMIkwprvttq6jMAAEaATiZ9oaCgaEuANf2O/H6lC/Ue2sTKBwAw7AaZ\n6uM7GcTV5X/PdJvSiR2q0+MAAHIeSzPpTehwqxuNtj/TmF4i0TCl8uqf6WvOZ28xYYjB9ND8A1Jl\nsS3fDQBgUBuv7knRyHWxG8cyuYxor6k+kui5ob1To/qNJ6ruejqtjxT0pO0Z7e7Rx5bRrgNeiPNw\nD9t2dE6JXBGfv1drbD6TtTGmx/S2OwjYYurdZ2EAACAASURBVJj9GFNvdAtUl90TEilinKk29hIz\nSjWYCxcCAGhRwoYJITVnq+1m26ghLz7swmVvz9f1sX0wGF5noK3Cv/MyNb5X/9F19ozMCodwMddY\ncYTlPqPV+Q0YwbFsjwYKCgskxo5xptpIVjo3UYiO+wtZzg38QpPxGb/XTnKaMUBguL6Oxpbgeqk+\n/3u6MKTliC/JjQNpyjpV1rm8kSfeW52tXRjA256vXRjA8wcAwYkyDVatxdyMlz4KfWXjPS1MAwt7\njo+UvE0em1iwv7ghhUw7AgCoUeTa8b2OLztv1JmcAu1aZgwhE2vdzntdxRGs8o7FjB7ONgFPMPsR\nHWYK2OIjd5b38pzUNqMgCWHxLSTKID0htiyo0YAfLNVnNpkcOXCdHrNhQl8GM3Bd9R2teKgDEwDA\nhGgYATACNBjwRKnxDU9OutxkwEAjw07c77f+TcVb8xGG5k4Ppg3TsXVlqNbhzpznm1aVguLfB+n/\nTS4z6VxAxwxqI1vAgq0DOb7zNXc+hDiOuL4OYksgtgNubCRQLcdvIcxvHeJ9fd8dJpfh08+9Uqc4\nX6r7Opz/VabmQIz19nydvx3YkKN140OvO0tT86yIe3XBJSqhLS8y8sEcsmJp1PmqdbXKgsH13+Eq\nenNMmlV2b7/B3mQEW1vISb/ibi3hsoTRnp3luOuEN3qv73wHGr3DuCULgTJIT87H/tw7ctM0d3at\nHm9G8HPVRm3hTnaPudU1uDmHlZ8VPfZa8wA7Rp0e97EyZSlMG3sKyFa/rchnSS9if7F7qO/9XAwN\nBvxGAxJiwzChtKJm1M+aMkgUFI+NpwA2T99n4yBKS7gdM2EAAIBuE8ENXgExrLqSuKG+UDZx9ci1\n+YaCAc6B0pUXFWXvei6yYQ5x58MXGuEwG0Z93qdHFeWSjLGy8KZBvrZlqVU3DjT1fTMibsEpgZin\nqFWimhjXGM8qcMvPfuTdssKxXjM7skYkEA32tut9OnNDV+buezJwxNJf+Jauz5Jhw7QBdkwAgBcf\nBgAuljfk6h34UIgVEzFHxk1wZfWRMBbeUR2IsZ5zUzXGmWV2mwEAWDFoZK80TAMYATbnavtJmH/X\nGKVqOkFHRjlbuksMBYUFEiliZDejwxyYAIAB4VMv/XWqLxZDZoKAefcnhSm+UX7jYJq9j23v18Pa\nRjejRlSvNjYRkMqE+9DKvGp7vPHB5rhbS1AsZqgD88MU+qDyuewMn1FB8yLWBZJn9ohyuXEgbeOw\nn8csGyJ2Ezr4SXQKPcFGdt14q8pa9ar7/ADHR6c3DXAc2KiueLJ86l2BBlEtpP8Mg+TfrqWttasw\nLA1+KPucHRs6PEAIANjdx4rdJnHVRDf25lztkiDeFalxlDNrsD0TAFBcoz7axKI8GigonoAwG8Y3\n2RrSIPVwio73PLB7+qFXV45wCrQHACA605ElZx39JDN3Tqq+W3dq9SWNXMfkMHAM54u5TB4TR/H8\nhBLfgV75SgRu3tPbFm8+4aOq0/o7DLh8/kTlHWmE390I/muhb/ZpFQMe81bPnpODzTnR+bY8AHhv\n99um1NebB5M6x4brNCF86bO+Hw9oTLN/9E7dCmWQnhn20VsDi4yzvDgdGZK21ggAECKk5zajH99W\nBQrp7/e4H1zNhwkyXRUFBcXjAtMAj05TmQhydgYridWkfVNPrbrsFGAfMsovaf+dEQv6k0lm3SKc\nZ+6YVJlZa+cthugQAKC5VqVT6KesG41j+OZShRtLGeQ8QbTcN35Hcm21rH78AZe+oe+HrXJ2cm33\n0m1n6JAIPCQCj+f7g7sMjlj6KABlkJ4dNHie7yPmJG6Xqe7sGDtGq6lTKCgonph+dswbDchoZxYA\nwN7KW4lV+82np+cflu0YyRawWqY8p7PoHr2dUczIpHMAAOaE6xgB6jQN74bNsrfyAQBMXjcKAKDQ\njeMxhU2Nlp7v4OXF0r0A/wvANEBZIwqKZ0ikiH73f2GCEoFnWsWZrJoLPBG38ZU/wdjMVulMz2Zt\n2ndjPgDgbJX+p0JdqQabkKBYkFLnAqVJBJ4t97ThOplzxFE8D6gWEgUFxb8NJkSz40Ckr52PXXRO\nzeUxIYtEfI8KLXbq7k9nUpq9BIxPA3l3q84BAJh0TqjLyG+ub6s02IiZ0HLpKz2aZ4pQl7n91z4/\n/wKKdqEMEgUFxb+QQfbM09WG93y4HIbAymn1rjITE9KK2bRmxlBfzXIY7vfRzQE8E/Kqo3p4wFwj\nwTgmb/qoR6WLlX1iwW4393nHUleaZxCneGFQBomCguJfiBcfvkSAVVkaAICfFfxVqNlLKBCAHWqD\n/Hz2Fpbz/5VjDHst9Hup9uNAoRdfDAAgw4BaJs+meGFQBomCguLfyQc9OhzvEbDFsb3WAgAS65HE\neuRjf27LAEGK7oIySBQUFP9dyBnQu1sFxX2ojwIKCgoKCouAMkgUFBQUFBYBZZAoKCgoKCwCyiBR\nUFBQUFgElEGioKCgoLAILN0gYRh2+PDhpUuXfvnll/Hx8ebyoqKiVatWLV269PLlyx0dW15e/iIk\nPgfWrFnT3RKeEEr5C+YllQ0o5d2B5b8SLdogmUymGTNm/PXXXyEhIe7u7qdOnSLLCwoKpk6dam9v\nHxkZuXr16oMHD7Z7OIpa+gTyHSGXy7tbwhNCKX/BvKSyAaW8O7D8V6JFxyHt2bMHQZDjx49D0EOG\nc/PmzdOnT583bx4AwMHBYeHChTNmzIBhKusUBQUFxUuMRbeQ/vrrr5kzZ8pksuvXrzc3N5vLk5KS\n+vTpQy4PGDAAQZDk5ORu0khBQUFB8WywXIOEYVhVVdXFixenTZu2b9++mJiYX375BQCg1+tRFPXw\n8CB3gyCIy+Wq1eru1EpBQUFB8dRYbpcdjuMAAKlUevnyZQaDkZqaOmPGjCFDhjg4OAAAJJIWU2zR\n6RiGtT2DXq/v2bMnucxgMNzd3V+I8GdAeXl5bGxsd6t4EijlL5iXVDaglL8oKioqTCYTuazX67tX\nzCOxXIMEwzAMw1OmTGEwGACAqKgoKyure/fuubq6AgByc3OjoqLIPQ0GA4fDaXuG3NzcFymYgoKC\nguJpsNwuOwiCvL29WzZ9CIIAADAYDCcnp7q6OrJQJpPp9XofH5/uUUlBQUFB8YywXIMEAJg8efKx\nY8d0Oh0AICEhQafThYeHAwAmTZq0d+9eo9EIANi9e3dERIR5SImCgoKC4iXFcrvsAACzZ88uLCzs\n27evUChUq9WbNm0i++vmzZtXWFjYu3dvPp9vbW29e/fu7lZKQUFBQfG00Mh+MEvGZDKVl5d7e3u3\nikZSqVRKpZI0URQUFBQULzsvgUGioKCgoPgvYNFjSBQUFBQU/x0og0RBQUFBYRFYtFND18FxPD09\nvaamBkXRKVOmtNyUkJBw8eJFFEVDQkJiY2NZLFZ3iWyXoqKiS5culZWV8Xi8CRMmREZGttwUFxen\n1+tHjBgxfPjwbhTZls5ld7TJEuiKvPT09NLS0kGDBrWMv+52OleOYdjRo0czMzMZDMbQoUOHDh3a\nXTrb0rlyS66hWVlZ8fHxtbW1dDp90KBBo0aNarnVkmtoR8otvHr+S1pIK1asmDt37qFDh1atWtWy\nfPfu3cuXLw8KCho4cOCff/753nvvdZPADpk+fXpZWVl0dDSDwZg5c+aJEyfI8i5mNO8uOpLd+SZL\n4JHyZDLZ//3f/y1fvryioqJbFHZEJ8o7yotvIXSi3MJraHx8vEKhiI6OtrOzW7Nmzdq1a82bLLyG\ndqTcwqsnIP4VIAhCEERiYmJwcHDL8iFDhsTFxZHLJSUlvr6+Wq22G/R1jFKpNC//+OOPI0aMIJff\nf//99evXk8uJiYlhYWEoinaDvg7oSHbnmyyBR8p7//33T5486evre+fOnRcr7RF0onzHjh2TJk3C\nMKw7dD2aTpRbfg01c+bMmcDAQPOqhdfQlrRUbuHV81/SQiLTC7XFyclJq9WSy3q9nk6nW1SHAADA\nysrKvCyRSMxZpyw8o3lHsjvfZAl0Lu/MmTMAgDFjxrxoWV2gE+Ud5cW3EDpRbvk11IxWq7WzszOv\nWngNbUlL5RZePf8lY0gdsWrVqs8//7y0tJTBYGRnZ2/YsMFip00ymUy//fYbOQD2EmU0bym765ss\ngbbympqatmzZcvjw4W5U1RVaKTfnxf/hhx+8vLxu37796aefvvvuu90rsl3a3nPLr6HZ2dlHjhxR\nq9VVVVWbN28mC1+KGtqucjOWWT3/JS2kjqirq1MqlQAAHo+n1+tramq6W1GHLF68WCwWk7MOEgQB\nupbRvNtpKbvrmyyBtvJWr1793nvv2dvbd6OqrtBKecu8+Pv37z9w4MB3331XWlrarRrbp+09t/wa\nKhQKw8PD7ezs6uvr7969Sxa+FDW0XeVmLLR6dnef4bOk1RgShmEREREnT54kVxsaGgICAnJycrpJ\nXWcsXrw4NjbW3HuOIEirMYywsLBLly51k7oOaSW7i5ssgbbyUlJS+vXrl5iYmJiYeOXKFV9f359/\n/rmoqKgbRbZLW+UYhgUEBPz222/mkqioqNOnT3eHus5oV/nLUkMJgrh7966vr29DQwPx8tRQkpbK\nSSy2ev6bu+yMRqNWq3V0dCRXJRIJk8msqqoKCgrqXmGtWLp0aUlJyYEDB7hcLlnyUmQ0byu7K5ss\ngXblQRAUHBx86NAh8L82x5UrV3g8nkXd9o6Ut5sX36JoV/nLUkNJyCehrKxMIpG8FDXUTEvlwMKr\nZ3dbxGcDhmEIgly5ciU4OBhBENLpjiCIgQMHfv311+RyYmKir69vSUlJ98lsh+XLl48ePbqhoQH5\nH2T51q1bJ0yYYDAYCIL4+uuvY2Nju1VmazqS3fkmS6Ar8tp+/1oCnSjft2/f2LFjyQ/e+Pj4gICA\nysrK7lPamk6UW3gNvXHjBrmAoujq1av79etndmW08BrakXILr57/klx258+fX7RoUcuSnJwcBoOR\nnp6+ePFipVIpFArlcvnSpUunT5/eXSLbxc/Pr+Uqk8nMzs4GAJhMpkWLFl2/ft2c0dyi0sh2JLvz\nTZZAV+SZTKbg4OC4uDjzJJCWQOfKP//88/Pnz5N58deuXWtRjoKdKLfwGjpy5Mi6ujo2m63T6Tw9\nPb/99tuQkBByk4XX0I6UW3j1/JcYpM6RyWRqtdrDw6NVvnDLh8poTtF1OsqLb/lYcg01mUyFhYU+\nPj7t+qNbcg3tXLll8p8wSBQUFBQUlo/FfY9QUFBQUPw3oQwSBQUFBYVFQBkkCgoKCgqLgDJIFBQU\nFBQWAWWQKCgoKCgsAsogUVBQUFBYBJRBoqCgoKCwCCiDREFBQUFhEVAGiYKCgoLCIqAMEgUFBQWF\nRUAZJAoKCgoKi4AySBQUFBQUFgFlkCgoKCgoLIJ/84yx4eHh5slLXi6Ki4stdvbJzqGUv2BeUtmA\nUt4dZGdnZ2ZmdreKTunmCQKfJ5GRkd0t4QmZNm1ad0t4QijlL5iXVDZBKe8OLP+VSHXZUVBQUFBY\nBJRBoqCgoKCwCCiDREFBQUFhEfybDRKd/rK6bIjF4u6W8IRQyl8wL6lsQCnvDiz/lUgjCKK7NTwv\nYmNjjxw50t0qngSpVOrg4NDdKp4ESvkL5iWVDSjl3YHlvxL/zS0kCgoKCoqXCMogUVBQUFBYBJRB\nemb8mFTV64fU7lZBQUFB8bLSzWNcOI6np6fX1NSgKDplypRWWxMSEv7++28YhidPnhwVFWUuLyoq\niouL0+v1I0aMGD58+IuV3CEMCOLSIcaShLpV/W15jO6WQ0HxX6FaaRz/S1azHv1temB/T2F3y6F4\ncrq5hbRixYq5c+ceOnRo1apVrTZt3779yy+/DA8PDwwMXLBgwalTp8jygoKCqVOn2tvbR0ZGrl69\n+uDBgy9adAsuFzaRC7P/yEurVhsxAsWJzBp1N0qioPiPIFUjP1yreu1AzuifM0+8HXrnk15fXShD\n8X+tl9Z/gW5uIa1cuXLt2rVXr16dP39+y3IMw3766aetW7eSDSBra+vvvvvu1VdfBQBs3rx5+vTp\n8+bNAwA4ODgsXLhwxowZMAy/MM2fnyvp6SrQGLHB3jaj92SFO/MBAKlVagcBM2l+z7wGbWatZriv\n6IXpoaDoRnKkWhdrFpsBsenP8ev2VoUqylVAh2jmkr0ptTtuVC8e5PbjZF9bHoPcNMhbeDJHNjXU\n7vkpoXiudLNBYjDa79rKzc1FUbRfv37kap8+fRoaGrKyssLCwpKSkqZPn06WDxgwAEGQ5OTkAQMG\nvBjBBhS/VaFi0aErRYp1l8uvz+/pb8dNLFE4CFh9t6V623LcRew/78qen4DyJsOkX+9GuVitfMXT\nxZr1/C5EQfFIJu3P9hCxq5uN+Q3aE7NDfWw5z/wSzXp00akiqRoBAAg59CmhkqmhdruSa6Rq5NIH\nEa36xj8Z6Dp6T6aDgEl13L2kWGiclK+vLwAgJyend+/eAIDs7GwAgFwu1+v1KIp6eHiQu0EQxOVy\n1eoX10WWVNo8NlD82WC3ZcPcy5sM/nZcAMDEYAkAoGpFDACADtGa9egfGfWvR9g/DwGrL5bteS0A\nxYk5R/NXjvTs4271PK5CQdE5qVXqX27XftDXaZS/GACQI9W+djB75UhPsi48ExJLFOsuV2iM6PLh\nHuMCbQEABhRfdKooLq2eDtEOzwxq2WAiEXLoCR9GjtiVactjNGpNW17tEeUqeFZ6KF4AFmqQWCzW\nhAkT1qxZs3jxYoIgNm3aRKfTcRwnw3glkgcPPZ1OxzCs3ZOUl5fHxsaSy2KxeMWKFU+pSmXEv79S\ns2Gko1QqBQAIAZBKVQ+UACDVAwDAj6/YLrtUO9jxyfuyZbL221g/3ZEHCCEXhhYAsP0VyZzT+Xsm\nuPCYEADgZJ4yvU7/WYydFas7xwU7Um75WLLyew3GPWnyH0Y7td30uLJRnDCiBPnMAAA+uVC7uJ/E\n1frxfHDyG41D9pe8EykKF5rIumALwL4JTov/LguxMplP3jmdKNci+PIrUjsefccoOxadxoJR8ioA\ngJUx1vmNRh8Rs7GhvqPDl/WzYdMhHzFz9om86aHCUT6CtqbrabDkR6Uta9askcvl5HJ5eXm3ank0\nFmqQAADffPPN3r17jx49ymAw1qxZM2vWLAaDQXbx5ebmmp3uDAYDh9N+R4GHh0dHYcnVSuPonzOz\nl0Q/lqSkuw0zeruGej86SFuJyp4ylrvV4dVK4/eJlc7Wgs8Gu5kLPx3KXHylzojiKE742HJm9fVY\nGl8V42ndcp8Xz0saxA4sVfnxuw27byroEAx4IgcBs+0OqU30qyXNG8d3aYYecuhllJ94bKB4Q3yl\nv53V/11pnBZuN9pf7CFid3Lg6D1Zv00PNKC4izXreHH1sbeCWw3VOACwc5pobXzFT1P9ujie1O4N\nb9ajHx/N/2ig52Bvmw6OesRpx/5vh53TrL+6UOpgyxgXaJsj1d6pVG2+WtnfSzg2QEw2uZ4Yy3xU\n2mXnzp3mZfMHusViuQaJwWCQngsAgOTkZAaD0b9/fxiGnZyc6urqyHKZTKbX659gsqwN8RVRrlaZ\nNRrSJaGLNGpM4c5d6gHQGFs32lCckKqRxx31OZkj23Gjhs+EPUTsGZEOrfofxgXatqpX/T2F6+Mr\nNiVWdq9NonhW3KpQpVSoLswJu1Wh3JVcs+oVz1Y7/JjS2IQyGjWmRq2pK8EGV0uaNUasuFG/Ib5y\nzzR/BwGzWmlMKm1+7WD28uEe53LlUjVCh2hjA8Wj/MXmx7W8yXCrQjn+l6xbFSofW05xo75uVf+2\nJ/e34w7yFn51oZS0jkllzZcLFRUKw9ejvR755GuMmAbB5hzNt+UxPurv3JE1eiz87bjfjvX+JaV2\nXKDtvOMF44Nsf5seFJcuvVrS/JQGieI50f1xSBiGkX1uJpMJtHBzKC0t9fDwgCCotrZ27dq1c+bM\nIV3pJk2atHfv3pEjR7JYrN27d0dERJiHlLoIihONWtPXo7x+T5M+lkG6V6+dGtYlB55gRx5naeL1\n+T2jXAWr/imbGCzZcaP6VoVyz7SAlqM+SWXN5U2GX1Lqjr0V3PZtUtyoP5XTeGFO2GN1OCwb6j7z\nUG55k6HzD14KC+f/2bvuwKaqtn/uyF5N996LtlBKKYUiQ0BkKfCCgKIgMgQBBRFBUXCDIuJAEMGX\nJbJlKVM2ZbWldO89kjQdWTfJ3d8flzfENB0UVPTz91dycu45zz259zz7OY0Ymas2rbtYc2B6HApD\nj4W4fHq+2oTTUsG9gNLPL1ZrMWrjlNgjudqtN+uXDwlqf8x+X6cLUSRnabK9BuOvEExJ8Ir2lNyp\nNy4ZHBjtKbZSzI8Z6md35a0aHjws0nXD1dp1l6ovzOuV8MWtlo8GojCUq8ac6moAgBeTfOYdKnp8\nY+b0JO+juY0rhgULefDiIyUHpsfZ+lyt0J3Iby5v0GFMQ7i7aPXosIU/FzdipJVivhkf+XAjI8Ld\nRb+VNFPH2bFx7pyU1tMv/Kkfsh+W0EYbmxHZvyG1Dw1/MUM6derU4sWLuc9xcXEAgNzcXI4nHTp0\naOfOnUKh0Gw2v/jii7a48Hnz5hUXF/fp00cqlSoUis2bN9/vpOk1xuRAebi7qKzJYmvcm6mZGO/Z\n/tZvwulOZry6iFArxdypN/YOkG2+XgcA0Fmo4zPjf7hVb2NIaiMxYMPtnn7S9WMjFh8t2fVcjMMg\nP2aoXxsQwJFkuLAPu33OdcJrguDYDmf/cETovENFK4YF/TmxRhTDPlwb/SMOnYVCYYhi2D8u1nnx\n0RKdhfKW8fc8H2ubYnqS9/Y01YLH/Lmvlc3WS2W6TSO9UBgaF+ex8HDxyC1ZM5N9MmqME3p4tnbm\nFzaYB4cpV48OczpjTz+pTTgTovCsZN8Xk3wS1t0CAJgIuuStfigMseuGcB3aD6XZNCGqVo//mKHe\nMimae18GhbnYwny23qy/VKZbMijQGxF7e3un1xgjPrk+M9l3y6Torq1Vh3i5n5+Uj9gHGfm7CM6V\ntAS7Ch88QFy9YbHfWzsecJB/YcNfzJBGjRo1atQopz8tXbp00aJFpaWlkZGR9mlGPB5vw4YNBoNB\nr9cHBAR0YdKrFTrOIGCfQ/fsj3nRnpL7UpjagUKITknwqmqxfnS2sm+QYt2l6rVjwoNdhaWN91jg\nkRztydnxj4W4SAXI7gxNeo3RtongNPvCT/mljeZ3ngjmWmCJwn3q2w3bVnlMe5fv14GJMthVeHhG\n96d+yK5stoyL8+ikd6FrWHO+6tf8pisLev1xUzxSuFqhe/dkRbi7yEoxOgs1M9nnIcaVcdiepvJT\nCNaPjXBoHxHlNn57jo0hbb5et2RwAArjAAAUhjZNiDLh9KcXqsbGeXz8W+XQCCXFsHlqTMiDdRZq\nbJz74iMl11/r7ThZ20BhKG1xUtc4rr9CYK+uzU3x6/d1emqlfmiE8lxJy67nYlAYUqtNAIDeAbIr\nCxI7KeexNNW460NLwS1hZC/3qW8DAGChpMOrZiU7BoNsmhBlpZinfsgeFuEKpx0FAMgHOpaJ+Rd/\nCR7pWnY8Hq9bt25Ok17lcnnXuBEAIKv+nuvoSK4WAHCnzhTtKc5Vm7pMqgPeGBy45Znoj85W5mmw\nTROjTDj9WKijspJaqe8bpOAsMKtHh316vsr20zc3Gp+Mcr3+am+b5iHtM4LnHew1b23D98tZEu+Q\nACEKb5vS7ZvxkQohuvR4aWuf1gOCYtgXfsofvy3HSjLeMr6VYh7u+I8g1EbCSjHvnqw4PrPHlknR\nu56L+WZ85M0qw5eXax7iLBTD/nDznhpkD6kAGRTq8mOGenuaasbegtJGi4OjRSpAPhwR2jdIfmB6\nHMWwUgEyNdFrZh/fRH/Z7P2FJW/3u18X5sPS/1AYSluUNKGHR2mj5ZvxkQ76dLCr0N4O2Q403y2V\n9h0d+OlJUUw/9dcLG354p/aDyZ15HVpDwJIfmvcfPXhUf2aXJe9688EvWZq630EYK4ZI/s27eKhg\n/7mYNGmS0/Ypu3K5DweyNMEfpaoM+JRduWnVhgU/F7UzWkWT5Z2TZfdFAHj9nMqAc9dyLcfztM/v\nziNphmXZidtz7Dvvua1efa6S+9xn3XWuT2voLx2senOE9sePGYrsJBkHsjRzDxbat+SoTN6rrrQ1\nRftIqzZcKdctOlJ8OKeBa/nmSo1tZVQqFcuy6y9VR6+5buvwSMFC0k7bs0pr2r/K//2rE7fnHMjS\nOPw0ZVdu68YuY9ut+rUXqtr6laSZKbtywz+5tu1WfYuZZP+34H9HdJJysrEery1Rb1pSsaC/4eoR\nh1+xrMt1n86wlN5hCGvnp6YtJtVXC1rO7bn00mOm9DMsyxquHqn9ZJp645Lmoxs7TzmhqmjY8UHn\n5/3L0daW+Ojg0Y2ye+jQWahf8huHRd6LnZ3Yw5Oi2U/PV8V6SXoHyF74KW/rzfrWCj6HwgZMIby/\n5bLZ3G3xBWNi3Gt1+JFcbW9/ub/L78TVKQleI7dkze3nd7VCNyBI0pZXRj5wgnzgBMOFfZpvF3u/\n+k1nyJjYw/NobqPtK8WwXBzUyC1Z/gqBCaed5hjeqTOpjfiIaLf0GqOLCA13F/1W3Jyrxk4XNY+N\nc3cT82ymqrkpfi/8lH+jysC5FtJrjFn1ppylye+fqXj/TIWLkHfhlYTO0PkQ0YiRAR+kaj8Y4CB6\nLzxcfLG0ZfXosN4B8sIGzFsmWHi4mKJZK0XX6Sz7p8vb8o58d61u9eiw5xOdBPuuHxvx6fmq1Ar9\n6tFhD6hSmHD6SI5277S4tjqgMLTn+VidhXIR/c3eXErXAPOEsJ0+QdeXsh7uEOL8RlgSr1s9jbGa\nURcP1M1HHD/Ya+7nrbuJewzgB0bpTm3XblvFD4wWRSTIH+84srnh++UuI14URiZuqu++JzEWACDr\nPxYWimnMgKWdvq+bQl3+jdZ7mPibpOvqRwAAIABJREFUPdYPgmd/zNNZSLWRiPe95ygaFun67I95\nxk8GAQBylibP2FvQFkNSG4mHEv/zYh+fkd9nUUzt/P5+Dj8NjVCO3HKntNGSOtO559kG+eOTKZ22\n5dgm5dPzOjOpvbfsy8s105O8x8V5cNvr9jSVx8orwyJc7dkSV6/FRFCbr9e7S3g6CyXkwe4SXryv\ndMukaAfLDwpDq0eFffxbZd8gOUYwb50s2zQhCoWhD0eETu3l/Vtx8/Y01YtJPp2h82Fh6fHSWX19\nl/5Sam8guljW4iJCc5Ymz95feChb6yJCf8xQz0r25fz8aUU1G6/XOWVItXr8ZrWhddQJB28Zf/3Y\niPQa4zM7cvc8H9va+mTC6fRaw40qQxNG+ikEs5J97fvYQkIaMfKFn/JXDAvqkKv97biRtThD8/1y\nnmcAPzBaMXiSpThDd2o7rfBSX9oNIagwopdi+Av2nEl3cht256LrhNfEsSkdDo66eLpPeRMAQDWp\nzHnX1F8v9Jq/vi0+BwAg1ZWwRC6MTAQAuIhQW7i8JPEJAABRU2RMPSoMi+d5B3c4NVFXiro53y7+\nRRfxV6tofyDs9VOjlZq1ryCt2hD+yTWtibDvVqI12z6P2ZrV1mgfnqnIUZkeCmEkzdhMLq1RoME6\nY81gKLJhxwd1n86wFKV32PnFPfk2U9WsfQX2xjrdb7tLVk3JfHP86ZlD6re9X5x6fszWrBHf37lQ\n2syyLHfLI76/s/5SdftTrD5XOXF7zoSt6VfKWxx+mnuwcPkvpTW6u0aV65V6lmXbuv2uQWsiOOuo\nyoAv+LloU2oty7KbUmvHbM3ibnzuwcKJ23OaS/IsRemWonT1xiVYbuo7J8ts/6lKpVp9rnLcf7PX\nX6pWGfBNqbUcwZm1xonbc2zEt4Prlfq4z24M+y5z/aVq0+3zXGNataH3+lvfXKm5Xqkv0GDH87SD\nv71t/wQuOlLcc93NXemqEd/fKdBg93vjj7jJznT7fOWSYRWvDqAMTSzLYrmp9Z/Pbj7+PW0xcZQz\nhFV3ekfDtpVki8ZakUu2aHSndzTu+7zLM+ovHdTu+bR1O6GqYCiycd/nNSsn0CY915hWbRjx/R37\nbmRjvXrjEtWGRe1MYVvzxn2fY7mpXSb1z8e/JrtHBUdytf1DFL0DZCVv9XP4yV7vcer859SLIq35\nYUmmKAy1ozFEe4rtKxK1BQhBPaa9y2AG9beLPF58n+cZAABgMAPszMsa5iaq1eHcnZoI2qY04JV5\neGVe+Ht7AAB7M+rG7Dr92s3vVox8pu/TE7kOcd4SAMDJ2fEd0rN8SNDWm/XInVN9+AoAfhfBsWlC\n1JFc7fht2VcWJB7J0S76uWAMnl7t3WtIz7AOU2fsQTFsYYOZI8mGwgbzL/mN50pauK8oDK0YFswp\nOnNT/MLdRbP3Fw6NUPpL0Y/Zk/iJMhDagyVxxfAXdKe2L0t6Uuodan8LAIClx0uXHi8dGqGce7Bo\n3dPh754qPzA9rh2thagrVa2bg7h4+GKG9Hmfqw9+U7q9QCVh7kRN0PQYt/229vCMHjadMtpTHO0p\nWXi4eM/zsQAAnYUqbDBfmNdrb6Zm7ajgSDlrunVKf3aXICye7xv2iId+sTTlVBEh6kotedcUw6fp\nz/1kzr4S8P4hUlvDJeuIY1PslB4jAADiCRTDpxkuH1J/vVAQHMeSVp5XsOuE17pMlXzghKb965oP\nfins1gdCUIgnaNr/BUtaAU2zNOU6fr7bpCW2zr0DZNGe4tJGi20TQN18vOZ9Xrd6OkviEK+DGBCq\nScVrpSHtzdSkVurXPhX+h5Y//6fi/wVDOlXY9G1q7fGZHe+qcT4Sh9xDAMDS46UAgMpma1vJgH8h\nYIncc86auo+mCkLiZClP16+ZHvzVZXPeNVgoYTC9Yvg0rlu0l/hGlT5MyeN2ENrYbC3OwKuLLIVp\nPv9zRE1J9BsRM81F9JJm0xv6c4Ri6HO2WViawivzBIHR9q8o2VCDuvlACGotzuAHRsNCyWTmtlbz\nm/rrA5yxxZ41jovzQGFo5PdZ/rAh0+cXVuEB645vB4ue+SEDFQhfipNI+EjulfPDR49yq7pGxT+p\nlAoz8svH7K8fHK4c3c1tWPn+75r83csuddPnaSTKfrMWCwKjYaHkdJlp8/X6+f39Fg0MQGHI4ZAC\nlsT7M6WgfLf6RO60UCXvyRdcJy6ykeQ9f33DDyua9n6mHDdfkvC4afWUer9QfmD021KlbNRY1MUz\nylMSvebGhVcSBBDDWC0QgppzrzFmg6z/WPu/QLvzQ58l3/P9wqkmlXb7Kr9ZH2mNon5b7hxr2R15\n6s0eMj+PFjFQ3MseC3cXBSuFT/2QrbNQXjC2MlEqMaqmKWqav/+iHkFQN1/P2WtIbU3z/i+kfUZ0\nJqz5L0HzwS9Nt89xbAYWigFD87yDBaE9GGOzOecqS1PNx75zGTHD+9VvIAQVSDpInuM8ow+LNrdJ\nSwyXD1nyrrMkTjbUeM78iBPXnCI5UP5bcXO4++/s57K+o1qOblKOX9CO6Q8AQGprULd7kmUjRu7N\n1BzNa5zZxydh3a2Zyb7/Fky5X0As+489z2ry5MlcLbu3fi2bmezbGQ/QR2crB4e7OOSTvnuq/KOz\nlatH3584/yBQq9X3WyzLWpbVtP8Lrzlraj+YLB88CXXx0J390Xv+ei5pyYTT8w4VrS5aSTPsLv9n\nZ5rPCcN6iKL7CELinIqBmk1vwBKFKDoJFkrwylxLYRq34TJWDOIJ5AP/wxB486GvhCFxeHUhzzOA\nxvQAAFF0H6L/ZA8JH8v4zXBhv7TPk4rh02xbKlFXWvLtMllgpOcTU4Rh8fozO42pxxgrBrn7FzXi\nrMUgjezZnHWDlburMfrxAckVF4/LQ7qdCX4m4vauamHAKFFtyFPTxD0GvLAz8wPVt4AkrLrGLKsi\nJcxNFhYrGzgBdbmX5EjUlTb++AmAgCg6SRTdxxoQ345227R/HamuZIfP9onugVfmkQ01Lce+c3v2\nTXFsitpIyKvTDef2AAQFAAiCYvCqfGFoD5eRMwAAZENNww/viKKTXMcvaGtwoq60af86WCgRRSeh\nbr6i2H4QglIMe6fO1MMNUn/0rDi2H8QToC4e4p6P2++bWMZZY+oxzzlr2udJDo8Kqa40Xv9FEBwr\njksxpZ/l2GeXuRqDGSChmNLWUroGYUQvCEGNqUetJbeJulJBWLz7lDdZmgIMzT1C1rIsa/FtfmCU\nMDgOlsjbUtbbovyvQiNG2hRWe+jP7KR0Wnt1ygYb5TXvjAv46IitfXuaakeaev3YCC6r5I8r+d9l\n2LbERxb/LxjSMzty7SuXtINThU0z9haMiHbbNqWbrXHG3oIVw4KDXYV/Wj2Ch/KukurK5mPfsVaM\npSmPGe+v2p820fDbS+TYHaVv+D4xifMDtwO8Mo9TCIQRvSQJj9vaKV2D8epRwFD2zKY15SxN6X7d\nQukalaNn0cZmxMWDCwu01VlhaQovyxJGJlK6BhsvacTIdRerFaWXKxv0Hy57WckYtdtWKZ+eKwy7\np93eqTON354d5y0NdxctTRR7Snl4WZbh4gHXZ17neQbAQgmprlR9vdD3zR/sWVSHsF9zxoppNr1B\namtRFw9YovCas8aebWu+X45I5LBAbEo77f3qNx3mKXOLSRuazTlXUFcfjpk1H/zSUpLpNul1+1tz\nAJZ5QX92l8/iTa2FBnPeNc23i0XRfeikp3z7DKGNzZaCW9jtcxBPIOs7Gq/MNaYek/V/GpG5YrfP\necz8qP2lYEm8af86vDIPVXrhtSU8D39E7soSOKmuhPgC1NUHkbsSdaWMFZP0GibtMwIA0I7O0Uk8\nIgwJADDvUNHLff16+klr9TgX4MBZ2+pWT3dahYGjnMEMqi/n+a3YbWufsbdg1fCQR7lk178M6a8E\nt/o6C/XuqfJvxkd2/sJ5h4qWDAoMdxdxETgz9hbY86c/AQ/rXS2ZHOj75g/8gGjVujm0UDYJeuHk\n0hFufAbASPu2iC7DgXLNpjcshbeEkYksYXWd8JogsFPlYSqbrToL1U7VDCvFOBjoyYYaw8X9eGUe\nS9OIRO42aUn7UVIMrgU0DqESiK90Snl711oxw4X9gpBYQUB0+0pAa6i/XsiQBGNoEsX2cyp9O8Ba\nnNG4e7X7tHft+Zbhwj5z/g2vOWvIhpr6kzvR+iJBYLQwKkkUmWhvQeJA1JW2HPuOsWLK0bMEYfH2\n/ztL4ljmBbwyz5J3Xdp3tOyxsSxNoy4eAAC8uhDmCzsTadZl3O9DTutyaawCAMD3e+rhUmLC6Rd+\nyh8aoVx3qdpFhIa7iTn5Vbt9lcuIGa0XgaPcnH3FnH/dXrB79se81prWA+JM3sZhMS/D0MM5EfvR\nZ0j/fB/SjSq9330mqI/u5pZeY1Ab8QEbbhcs62sfM/33QtiOAk6J8Zz5EeoZkHY/GsNDgeesj1kC\nv99du0MZs7W7mOcZ0Jn9nQNtLDbnrELdklnSyFhVPI9BgqD7KMsPCyWcltMFdDJ1zAZhZKLPG983\nbF3B8wmBYAQWyxGJ3FKS6TV3LYSgfL9w4ZhX2t/W+X7hXvM+p3QN+jO7mo98K4rpR5taaEOzICDK\nlHZK0nOwuMcA+cAJDttuJ0WHPwcsg1sK1rGEDlXGk42p4GHzJKkAOTA97oWf8q+/2ttbxn/r1zLR\nsovG1YMkvYaZ0s8qx8x2epW1OOM3OPrTL26lLUpCYcg+MuIh4nzhlji/ob4uUQ995EcT/3yGVNls\n7e1/f6dGPhbi8u6pcophVw0P+Ta19u97UrjNpMZlXfz5gHiCDkOV/nxYK3aK49cgkrseQePNmQ9d\n6H6IQGSu3q9+Y75zAfUIYMwGS+41z5kf3a+Ci7p4uk1awpK4pTgDkSgQmau1LMtj2srO1Or9K8HS\nZMMla8VOYegMnucgAIAgaIrx1hxEGoYoHNPCzAWfkQ2XBL5jYEkwY1VBPDnPrS8sdlKEqTW4jGPu\n8+rRYW4SXq4Ki4/t1/LrVpeRM2gIAQCEfHQtbXGSLbKpsjC/KHHMN+PdZW9dGhHtFu8rHd3tISfJ\nGq1NAAC9RfP/hyH98wMTs1SmYNf7k1y4dDmdhXo+0XvD1drpf25S579wCpbBaWPxQxiHMrOkwcaN\nAADC4Kl41e52LvnLASGoJPEJQWC0KLqP68RFXTa3QjyBODZFEByLuvlI+4x41LkRAMabM2msUtp7\nI8eNAAAAQiQ915gLPgPs7zI0aGMxg1UqBh5DlAmAwVGXHhBPbrw5k2pO78K8PX2lN6r0EIKKopMM\n534a8vWNhYeL5Sh9ZM27nL2Epan6JuP8gUGPhbhoPxgQ7Cos0pof+nHppQ034gOerGvJf7jDPsr4\n5zOk0kZLF9yMLiK0tNEc7i5aPiQo2lP8RxD2L9oHrc9nmbt1MyldjintFSzzjQcfFq/eK/AfZ9/C\n8xpCNaVD9EMrrfsvOgmWMpPaVAZ3fiI42XgDde0tDH0JQn/3AsICD57XEEJ1xn4cc84qSY+PAYTw\n3Pvy/cehrr353sNlKT9aK7siavQNUuy+rUmvMUqffDG9oGp1zefHL9/50j3zMd2NNVsOnS0zqm9d\nKHXvyUVASAXI+rERe553Un/rAWG0NoW6927Cah/usI8y/uEmOyvFoDDUhQclykP8W3EzAKCt82P+\nGWBwLVF3nKg/CfHkLGmQJHxurzr8haD1+aY7S1GX7ixlBhACi3ykid9YSzdRLZmosuuV8VgGJ7Wp\nwpDpDu2C0BmWqr3A750Ho/pfdBZk4w2kbDtWL0LE/kT9cUn8mtZ98Op9kriVTi8XBE3Gbi/m+47k\nvmK3F4u6vWmLT7EBFnhAqITGqu73qZYKkA9HhnAF+K3SsXvfmn1u89toelbI15cb3n7xU6OCLPyu\n12tr72tMDuXadDdpgELUqXBwgjL7K2Oyau+jvN7fHf9whnSxtGVQWFcOqRscpuxkSfy/L6jmdEvh\nOmHEAnn/6QBCaKwKy3xDHLMMdb2PU3M6CQbX0vp8RBYFizoVWGUuXCdL2uzgABCETLPkf+aUITEW\nNaE6QdSf5ALnYL4rgBBR1CIH4ZqoOy7wewq0ilniufeF8jexDA7Bj5zH688BbSwm6o5TLZkQIkEU\n3URRizq+pguz6PPNhesgRIAqujMB86WB3QEAWOZSWp/v4BNicC0Eoa15DAcIFqBufYm646gywVqx\nk+c5sC0xRRgyDa/cLY59+35JHRymHBym3JupGRHtJhGhUSv+y9Vu6P/qextWT7/qNXBg99COR2mF\n84VbZUL3yUkfdaazEW+SCP6MMzYfHfyTGRIF8T7+raprEdv2B2g+UmAZnNbn04ZiwFKw2B9VJkC8\nLp7IYq3YKe290fbOI5IgadJG7M5yWfIPTvtTLZks0QIJPFCX7p2nlqg5QqhOIpJgACGE6qRTWdgB\nZOMNROzf2h0NCzwAjDDmWoefWNJgzlklCH5OlvIjx1FY0oBX7sardgvDfhciRWrOSxOdx7mxbkOI\nuuOCgImdvLV/Bhhci2W8Cgm9EWkYz3OQKGoRgBBT+iutOQQHc94ngMF5PiMRsT9trmUstbShWByz\nrDWPdwpzwWeS+DWcUKJTq7lGYfhsS8kmaa/19j2tpVsEIdPaGUoQNNlasolsTEWkYf9dxqZMK4gf\n7eRNR2SRDFbFEi1t8bb2YZ/ZyoXnCIJjZe//MqOrWRkCVIzhLS3meqW446qsFE2I+UoB+v/IZfBP\n9iGVSWOWDQn8I2Ix/3xQuhyi9giWudR040Wi/iQs8kYUMQyuxTKXmvM+IWqPmHNW3ZfPn8G1sNDb\n4S2FBR6oS3ey4VLr/ixlxrLfoU1leMVOc94nNu9OWyAbbxivP2/OWcUyuLT3RnH398Rx77KUmTF3\nbBC3lmwQRjqvfSAMnmYt3+ZAmPHGi6JuS3ieg2z6DcSTCyPmkY037OmkdDmoMqGtrZN2GUg2XO6Q\nti6AZfDO3PVDm44y/+7fYWlKl+MQAmADXrlbGD5X2mu9KHIB6tqbWxxx7Epz4brWnRmLmjaVCcNm\n0y2ZeM1BBquCeHJY7I9X7e0MYbSxGBZ4tFaREVkkhAiolsx7E5lrWaKlfbkHggWiqEWS+DU5t5Pj\nnozSFGtTd2Q47SmKes1c8GlnKPwTgCL88b1WnMnb2JnODEvLhG7chz+YrkcF/2QNSY8qHY7U/JsC\ny34H0DjP5wlx7Nv2LARVJggCJnL8QxAyzVryHeLSXRg8tTPiKl61T+hMAhWGvmRKf4Xn8ZjDIJai\nLyU9PuIMI1RLpunmTFjoA/Hk4rh3nY9fvU+a9L2DxUwUPpdQnXTQWhxAas6jrr1hgfNzwRFFDFO2\nhbGobfsaducNcdy7iMxJ4rMweKq90oNX7RbHtG26QUQQT95Jf4O1ZBOpvcyQBggWcJsyIvITRjg/\nCgQv+y+pvQxLw4Rhs/8EF505ZxVLYyzRAgBgaRziyVkKE4ZMcxraTrXcEUUudGiERd6IJJjUpvI8\n+tu3W0s3CcNmw2J/hzs1ZbzK9x8PdSTIW4o3iKKcV00VRS7C7rwh67uDe+osRV+1JZE4gDCThRfL\npn49Fkbgg8tPNJQ2eYa7OfRBFDGwyJ/UnOd5DenMmH8cKJoAACjFvgRl7kx/rptU6Ka3aDqjUf0D\n8E/WkEyo4u/uB2JwrfH686i8myRhLd97uFOzA89zEM9zECINkySsBSxlur3YnPth+yI5SxpYosVp\nigbEk/O8hhD1J+wbaX0+g2ttZnpUmSDr96Mo5k0AAKlNbT0I2XAJlUW23qEQRQxjrmXbfRvx2iPC\n0Jfa6SAKm20t/y/3mdLlwAKPtvwHPK8hZMNlLoiLak5HpGHtmzeFQc/h1R3nsTO4lmq5I+v3o2LQ\nr/IBP8v6bhdFvUYZCihdTuvOLNFC6XNkKXtEUa9Zir60lmyiTWWc8bOt8VnSQGNVVHN6+wvlFDRW\nBfGV0t4bZSl7ZCl7OPJkKT/i1ftaK0lkwyWeW7JT8UUU9RpesfN3I5vKGFzLc+/burMg6DmLM43K\nHpQuB0LFiNR5iBAs8uZ5D8erDwIAqJZMiK9sh3Ori7Q3995haEZXbzi04uSAGUkwAgMABr/cN/tE\ngdNLRBHzrBU7aX178dOULkf32wBzwWdO/8eHghZzvYc0GABgIY2d6Y8ifACAQujJMP9qSH8KGIa5\nfft2XV0dRVETJjiW+71w4cKZM2coiurevfvkyZMFgrsGmZKSkt27d1sslieeeGLYsGFtDR5sLvoD\nSX8YYBmcVJ0h1GdZ0gDBAmHEXNSlB7dB0MZivGofY64VRS/pfFwZt5XTpjJz7oeosqcwfI7T7cZa\n/l9B8HOt2zkIgqeabr3M8xpq4yiW0u/E3Rxr38ECD1H0ElPGQp57X4dZrOXbpIlfOx88cLKlZEPr\n0TjQWBWEittnG4gihin6iiUNECqxFK6T9m7P+iGKes2c+6EkYa2lcJ00aXM7PbmR6YLPOgxtsJZ8\nJ4xcYH/LsMBDHPeuOWdVa2LMBZ9yGiEs8JD2Wk82XCJqj3CcxqlyyRIthuvP831GQqiY47sQIoGE\nHm2tmAMshetE0Y4VKyBYIAiaSqjO2MLSOOCVP0kSnIeKQTw5ouhGNt6wcSBL4TpxrPOYN557X7x8\nW/sBkNbSTe2ppwAIg6fqL44i1GcYrEo+4GenfUyN2NVt6WadJaCn75YX9qICdPwHw10D7rr93UNc\ntRXNzkeHEEnCWmvpFlBzSBS5oLVgR+vzLQWfKgb9yphrreXbSLGfMGLeQ49wMVobufg6mdCNYekO\nCwIRlAUAoBB56S0aN+mDFg/8W+AvZkgrV648depUWFhYfn6+A0PavHnzjh07XnnlFYVCsXXr1rNn\nz+7atQsAUFRUNGnSpLlz57q6ur7//vv19fXTpjl3foZihX/GPXQVjEVtSpsjCJoqiV8DoWKWwfGK\nnZaCzyC+kqevwD378P3HdS3EGZGGSftsJuqOY9krxN3fd3ivuAzTtmRVAAAEC4Rhs/GKHZxlhqg/\nibp0d65OoWKB31NE/Ql7cxDZeIPnltwWU0EUMaD2CNWc7hDLxzI41ZxpKVwnSXByUrUDhJELTLcX\nA9osDJvdvqUIkYbxPAfqTvcRd3uzM9EffO8nKG1qO7YdGqtiSUNr9wYs8EAV3Wljsb3xkDYWszRu\n/ydy6iwAwJTxqlNPu7Vihzh6yV0C/qcpmvM+oXQ5HcaS0Pp8uA3dgu870nTrZZ73ENvDQDbeQBTd\n2lkTYehLWOZSjiFZy7bwvIa0EyEpSVhrvDlT1neH07+DaslEZJEdFE2AEHn/vSyNtzULQzNHP/ht\n6PwU7ygPAEDsExEoH+WLefZ9/Lv71OdrfGOcBFXDAg9x7Ns0VmUp+pIhWmChN8STI/JIWOhDqs9Q\nLZnSxG8gnhxRxEgS1hLqM8bUZ1FlgiBggtPgjq4BI3RigQsAwEMa3BkrHArzAQAEba3TFYZ6PPzY\n10cRf+35gARBsCx78eLFuLg4h58ef/zx3bt3c5/LysoiIyMxDGNZds6cOWvWrOHaL168GB8fT1GU\n08Ef5eMRGUJvSJ1CmSqd/vqwjgEltNcNN16ijKX2jZbyHXjtsQ6vxbJXmgvXU7o8/ZWJDNneSabG\ntHm2DiqVypi+kMGb2+nPEHrd+eGW0u+NafNMt98wpi80ZiwyZiwyF64nGq524rbuG+aib1jm7kOi\ntdI/V1m+zDe9k2n8sdysJxgb5SzLMnizMX1hO0OZ7ixr619jaKvp9hu2iViWNaYvbKszoT5nrfjR\ncQRCb7jxkv0Itva2qLJ/VIzpC2lzm08Oob1uKf3+XuebcxhC31ZnDubC9caMReaib4wZi1pT5QDK\nUGS4NtWUtcKYvvDCx0uaLs0itNdZbklvzmn9CHX+IW+p0x9c/uuaQZuyTxa237OpuuWnRUc7MyaD\nN1PGUrz2mKX0e7L5ttM+tFlluPFS63+wy6/npaIdZQ1pLMveKDtQoXU+6b3ZGWrntcUsy5Y1pP14\n/Y2uzeiAR3lL5PAXa0g8Hq+tn3x9fTEM4z5bLBYURTmT3dWrV5977q65acCAAQRBXLt2bcCAAX8C\ntQ8LLIObbi8Wxbz9R7u4ee59UUWMueAzCBYg0lCACFjKTNQclA843OG1oti3yfqTWPY74ti3nYq9\nRQbq11r8+VCRa9hsa/l/RZwXmiUAS7UfYgvx5JKeawBLC0KmdcYqclFDtOBMkjvPR4QgXcqFF/3P\nQ36wypqro0b4CboreeEypNRIby42xyjQoT53C5RBfCWEiu2DJuzB4FrA0G39axAs4HkOtOmLDK6F\nePK2OvM8BxlvzhQETbE3/VmKN4h+bwy8OzJPDvOVDuqXI23mWggVt6PE8Nz74tX7GFwLCzxIzXnU\nrXeHKqMwbA7VnMbgWkHQ5A4jZRBZpKTX+jNf5dzcl5P0TI8bV4khfjmWgs8QeaQgdEaHIQ+tQZjJ\ntAPZd47n+UR5PrFo4JNLIKl7Bwc7uQa4eIS4nlp7afjrA67/mElYCL8YL01pU0hvf/8evysABvGV\nCF/Zjp0AAACLvKW91mOZSyU913QtatzxjiizkCcDALhJA7TGymD39uwfJ7LXJ4dOBACEevS+UrLL\naG3iIu7+2Xh0o+zee++9t956q7y8nMfj5eTkfPrppwiCWCwWiqKCg4O5PjAMi8Vio7FTHsJHBAyu\nxW4vFnVb1vlsntagWXCqDgcAJHvw3AXtRaZAPLmkx0eULoelMAAAhEqcZoY6uRAW8P3H8X9fZceG\nfZXWaoyeFCz8Ih+bGto9xLSTNpUh0jC46SzfZ6TTSwAAtWaaZkGQBOm8KfJkHa7FGW8RfKjKqrIw\ny+IkSn5XInEwiv0iH+vlynsv/l56WbgMWRorSWsivy4yj5UDbi8XBk8zpc0RBE7m+48nYREfhgAA\n+XoqRoESdcfbWhAOfL+nuBiwic1kAAAgAElEQVRFiK+0lm9rJ57wt4It2c3qvulvpSR9xrUwuJax\nqttM8IxcYM79sC3PHAAArzkoDHce5meDKGIednsx32ekteonef8D7XcGAECo+F4RuU4gdXelSClZ\nlfEaAGDf0l+EYbPbj6hsCwzN3Nx7p/pOfeSAkHn7nudiFjqJYa8+VnihbNcrh2OGRQhlAr3GFJTg\nm32iMPtE4cBZfTpkaQ6AeHJRtyVYzqrWK2+88SKiiBFHL+lkDhYAQG9tEPFlAAA+KtZbNO13rtXl\nj4m/WytLKfY1Ey3/MqS/EiqVSq/XAwAkEonFYqmrqwMAsCwLAPDwuBcTjKIoTTsPQamsrJw8+e6x\nAm5ubitXOnfJ/qlgabRkGR3wCmb1AP9LDGwNrdaxuhfOABQCNv1gl4oXKWE8eMz7t9EFAaSi47/R\nAwAPAACgALDiALQ5dSeRp0Vf9qcQo/E5d+hUBTHNdYr1xjzWdQjQ/NrsttvpreVh8DUdYqKh2X6k\nFGnzRI8cDL7UjEgR9jElI4BBVhP8gg+FQKCHEjRJoc/uEFKE/Y8XrUQdRyBZcKYJrbBAAhi85Eva\n1uqaHtGTIB+DX/Sl3FC2NWkBAIyWQd9VAqqmqa+CHerqCiI24M0XjFfnL2K/GO1O1VmhUgv8oi+V\nXeOFyyMDGrQ9ZIwHj3WqrkHyMfiliYw4AkJlRfUVPjIBAACnMZ2l3ksawfW5VL7ZQxr6XK/tB+98\ndO7cR0/6JforelzLWdA3ZG5TXVmzucZdHMRDHPPnEFqGlV1kJb87GIJ7VCBCizSV6hUCYGz/n5Uj\n8icsViETucnSaADA0G7n+wBDM5e+TJO4i3o/H6dWqwEAInd+1oVcr7YLYLd+yDkYNdj5dTciHg8e\ntKQ3AKBB23C/xLh0kzz5/u8C1nu92K0mXbVz4c9jPhrMl7RplWkDcoREzaVnGGkPG+UQVghD3iwU\nbE6dTftMc/hTbCAtlFGDuQYruK/NerVFz+IGNU0KWgyN6rZ3AAAARdK2DgyB1KjKWXNXUvU/+OCD\npqYm7nNlZWUXRvgz8YgyJIZhXnvttVWrVo0dOxYA8NJLLw0aNOixxx6LjIwEAOTn5/fufdfFZ7Va\nRSLnqa/BwcGP2mlUluINSPhUvm9Khz0dDrmZdV3/tL+wrwdva4m5EWdSPPhjg4QAAE93emuJeU6k\nOFT65wW4X2kgotxpPx8RAMAbgO0NBq/gZBB8htbnN4kjvH0CW19Cs+BKtuntBImOYN/LMs0IFyW5\nOdkXigzUjQbrykQJRrH7q6wNFmZerNimAnoDsDoAlBrpQ1XWZXES+8GLDNSeCutQH/6LnvxrWiID\nZ58OEAAA0prIQgJ/KkA4TYG2Y+7zBmAZTy1zd91QaP7FBBXp6RiXSQ2uY5fjewgL71lvL0TkuaWU\n7ueF9u3mkasjL6oJIQrNChdzYxKUucVc7yUPL9emYxJ+7LAzWmMFQJTHzo33kAXLhO4KkVeDsSI5\ndGKoe++s2lNKhceQ2BcMJNvs8ZY/U7RDK0fVt5/i8Y7U7PSShzMsnVpTIea7uEsDy7Tpk5I+9FFE\nwBDCKBeZc1ZJw+4F8rEMDjedlWjyWLxFFPsaouhE+QBvxzp+DwUZP+cG9wzoN7WXrWXYy4rdrx6d\n/t0Eh7iD39HSqt5B/tmS1F0ZU78Yd7+qTIfwHuMNE7yWQhNX0OHg8hO4mVT6yr0iPRL/08Fx0qzr\nu+a8TyThw20tktpNkoSPIb6SZcbilbuJ0m/5PsMRaZhDOMyptZeKLpcPnN0n4elYAABbTPr6+HHk\nXK7RdnCQVTHf1sET83eRKbw9u1IeYuPGew+MTUB/ZPGIMiQcxzEM8/G5a/b18PDg8/k1NTWxsbG+\nvr4qlYpr12q1FoslPLzjM6QfBVC6HAarErWRPumABitzrNYaLkOvNRASFAqSIHl6MldHTgsTGUg2\nXHaX/YTLkHd7SD/MNsUr0UnBIgQCXxVgz4aIPIUdWDlUFgaBgKcQttIsDIFcHRWv5HHbq4U0EpTZ\nVv/xQPqqxKCnQj16Z1QdK1RdaUAHyVyGTAu9JwQ8GyJam4f1cuOdrQ/oLvSc2moumgVf5GNDffh8\nGPIUQl/0lq3Nw3q58hw4BMGwO8ssq+KlfBji86GXI5x7HcJlSJwLerDKOjFIyF31VYFZhECvx4g5\na16KB//zPCyrhQySIkV66t0eUmHnXE8SFFocI77ZSM4IE2e1kHJPfrhsHsvgVOMNxlozP8wDdR0A\nQSBeyYtX8i5qiBWZxhgXtKi50WzOd0HM0fztWmMFw9KppT/lgukqihkZuSfXKJsXJY6SowxLH878\nuFhzLditZ3jYhCsNRGoDMTfWR5z9wUSoeT/8H4v/VwtC7/k5MFynt2jiA0akVx4xWBoYlpaLPF0I\nKqh8zy1NWr0uf4zM3Zs1A/kQcczbXS4f9VBgNeK5p4te2Dje1kLRRD2RnTwv7MSaC+M+GN7OtQ1N\n1SXa6xptJVPhbrglTBjec9inMbTEtOH8nOGx8yO9OhbdOo+I/sH7lv4SNTCUL+bhZnLq12OtRvy3\nr68eWVk/ZH6K3KtN/QPiK1H3ZGvZFi6tAq1czQ8ex3mVIFggDH1JGDKdNhRxSWw2nqQu0lIE9drx\nGb99ffXnFaeGzP/dvbSfisSwtH0BVgEqNlobH+DW/zb46/OQaJrmbG4kSYL/hTmIRCJvb+8zZ870\n6dMHAHDp0iWLxcKpR+PHj9+6devw4cMFAsHmzZsTEhJsLqVHGYxFbS3eIOm5pkOL88k6/EQ1j4CM\nA734NAtej5FcUBN8BBrqzXfaX4JCr8dIMprIhbcMNMuGy9Av8rFxgcK+7m1Kplaa3Vhk5sPASrM+\nIkRloQFZ9y2OGCmoP7oNISthCBmXsOJs/kajtdFobSrWpOKUJcIzOTTkzZvl+mHYd2Wa3lVNdyia\nUBtK+4VNnh42qNxEz4sS7ynCS420jV9y2FluGezNt6lEQgTqpkAPVlkT3XgtBGNrP1tPjAsU8jtR\nmn20v+BglXVZRpO/RGgk2dH+gnjlvZtFILAsTkIwbIWJnhQk7CQ34sCHoQGefABAL9e7A0KwwKkf\nZbAXf7AXP6e5ub52z8LEORktotO1/QI9ICFoMTLQAEXQCB+i2CQaF4JsKDRPCBLGKNAJvVZiFKux\nMhuLLCP8BM8ECz2FMOizGQAwgwVbS83LbxsJhnUXwBIUipSLRvpFAQCC3OIBAOXa9BZzfVZ19fk7\nn4/16dXH69lDFUf7xU8Ilw4lITS9bG927RkxTzGm2zJX5V052opZcy7mEY2goiKPbOANnT0wMMGv\n80vReWQey+s3NYHz9FA0sefWcgBAkFvPfOKinPe41YgLZU5CV3Q1hls/pWfC24V1If6+EW69AR6a\nk0qcCG5IsNQZn+65/E71iTN53/YKeiolbMpDoVPuJe0xKvrA8hOEmewzOR4AIJQJxqwYmn+25PDK\n05M/H+OUTg5cSRTjjeksjTPuz/C9f89lIQRRxIi7v2+69TLq1peL4Li2M2P44gG0Pn/AeHWLedCv\nay6wE+7ZmVsnIWEUy4MB9/wbrY32HiMUFlAdFev6ZwDivDJ/FU6cOLF48WL7ltzcXI4n3b59e8mS\nJXq93sXFpampadmyZVxwHUmSixcvvnLlilQqVSgUmzdvDghwnjL26BwgTxuLzbkfSOLX2FIxNhWb\naQYQDNuEM+MChfb2qw+zTS95mEwS9yj5/YkLNAtolgUAYBS7t9JabqRnRYhaD1JqpA9XWycECe2t\nfE2mmnp9UYDH4P+WmOZHicu1N3Zce23ZyF8Zht5XVqunYD9FpJmBig3whz1lWt2dYs31ANc4hcjL\n1yXqYtE2jaEMADCs28s1zfzjOsm7PaQ2kvZXWiQozBnQODAsfShz9YmWATQ/JkAq7O3GAwDwYajU\nSL3WrVOGml3XX4chpAmrMfN6L+q/SNjugXUEZeZ3IsRLrVbbLCTFmms0Q92uOj456WMAAMNStS35\npQ23kkLGUTRR0nDDtkUeu/NpcugEL/ldHf2ihlDyIRPFJrrybIywhWAuqoliA02zLEaxgVJkQqDQ\naSgKzQIrzRpIVoJCh6qtWc2kEIHmRYmDJL/POzbi+974RVdvULyeBRCEga1+dB8oK6g8p6wp8fRz\nw99PVx0M1Y8+VbHW7FPmwyb4hgS0YPXwof7PfjixnT23y9j96tHJa0ejAhQAcL5wi5skMD7gSQBA\ngerymbQfummfHz7zCYdLMo/lZZ8tYMaljum9yEPRXqzpb/nfiQUu3ILX64oO5OwUei6ZEOzSfizP\n/aI2W/Xrmgsztj7TjoERAMCSBgChmkaDg7WNMJMAAL6YR2rOk403xLFvH1l5BtNZpn491pTxqjjm\nbVjkXXC94FDWqr7Eq0Pmp8AIvOGXmXNHbuJqMXD4MNtUhdGb+yoQCNS25BdrUodE3w0JKdemqw2l\nD86YH50tsS38xQypQ2i1WqPRGBwcDMO/e/4MBoNer2+LFXF4RFafpcymjIXShM9tkaNZLWSujpoa\nctfqxflUuE0nR0fdbCTGSB2f+C7ASrNvZxpFCMSDIQAAAgFPEWwgWC8RHK9E7VUKe1xpIA5VWXu5\n8aaFig5XW/P1VKgU6eXGcxPAuToqSo76iJxvBC3m+l3XX6cphlWMUaOjBrs15Bng242WPkpsca/H\n7HueydvoIQuK8hm26cZ6b14TI5+Y6JeY3kQO8eb7izv2hBWoLmuNldzLmVF17Hzh1u5+w4bGvEzR\nhETgYhM8Ccp8Jm+jq9T/etm+KK/+o3osbicxvlhz7UrBnpmDv6ltyb9ZcZBhaC95mETgcrP8oELk\nhRG6SK8Uf2XMiZz1KMyP9EpJqzwS4BrnKvHTGiunp3zVIc0cMIoVIlDnFTaMYhEIfJyDYRSj5MMc\nmy+8UJZ1omDQrGSRq3j7rH2aUb49LBLCRPVIDogbGHzmyM+3mO+lpC+Q4JMGvxvodtc7UtuSf+zG\nF/xDg1MmJ8c8EUHhFMc/HhzFl8u1FS39pycWa661YPX1+qKxPZfblrrFXL9xx+uT+r8X0eOe2z/7\nTE7R9VL4yWKZTDY89pUOpziV+7XR2kRQZpzlFaFz3ajLlHTc293vCj16i0ZrrAz3TH7AG8k5VUQR\nFOfs4VCfrxG7iFx8Hc2h9rILAOD67tuFF8qUvgrOOKm9tCjjWooyJLL7iCgBr8FS9CVXyLzFXH+5\n4EeX24MQFK5Iqy1zOzxnwSpfr7tx52kHsrfBiiRf4aDu7qFSpFhzDcNbEgJHc7+Wa9PLtenDYuY+\n4D0+IltiO3jUGdKD4BFZfSxrOc9riL2O/0U+NitCLOfdk6A/ycFIhnXhw3wYvBEraW7QPCBD4uwk\nBo2p7GaVT5Qnl9xebqIBADbFiMKpyvRaqbukLk9j79fFKPacijivxpPdeaP9BXJeZ0VRhqWrastI\nfmN69ekM6hmApa4e/MLV0t2FqitxfsOUYp+Kxtv1+qJIr36c6Ge0NlU3Z9e1FGgMpdHeA5JCxnc4\nRW1L/i/Zn8967DtOtGRYGqfMKl1RWuURTmcan/A2p6/8kvW5hyy4CasZHjO/QH35dtXxp3suc5ob\nT1DmfWnvWK1WGrbKBG7JoRPb2t246UQ8GYbrRHxZXv0Fhcgr0LXr4fttgTCTV7elmXWWmmxVYEqw\nqG+Y3l1hhCAFSaZdrOg7MipbT2EUa6FYV9KCNROIr4urEH6tm6QdbleuTb9Vdtg7d0zFjVqrEZ++\neYLY5YEK4Z/J2xgrf3Lr6cX9kkfw+SKNoSzUPTEx+GkHxl+tyt/xyzsRsXG9wkaczvuGbRJbMQvu\nrhoZ8VbvqPbcS/Yo1lwLde+9Oo94NkRUr9p9Vs2P800c5i08XXq2zqDKpZ70UwSu7OlxX+ZZBzA0\ns2vezy9s+g+MwPX5ml2vHE4YG1OSWjlj6zMOC2XPkC5tuUlayCHzU27uvdNSoyfMJGW1BPqfTXx5\nDcIXmdJeEce9y9lFqptzalvy+vhPXDvs+/mHXjh1e1P+tpbXv17B+a5+/vjcpYgQ19SCpDeGjgoQ\nXi3d7auI4qozbC4xj/RQFdef/Zch/b3xl68+jVVZSzdBqNz+fDCaBZ/nYfZBYq3hIIJ1AXsWHzNo\nTHIvacLTsWkHs59aMdQm6FVn1qXuzBCI+ZjOInOTKHxlWJO5x6hoBwdDFUb7i+87EbUtyq+V7SUo\nS2LQ0yjCF/FkDr8SlPlw5ifJIROC3RPKtem5deeeiH3FYNHYTGEcjNamPbeWv9Dvi9YjcNBbNAfS\nVyUFj0st/SnSK8X+BW4x1x9IX/VsnzV6i6bFXN/d724JRI2h9FTuNyPiFrJm6YNrpQ6gcMrUZAYA\niF1E7duCAADlN6vLb1b7dvMqv1WN6SyJ4+KEMoFvrJdBYypJrdSWNRXI5ZSZGDQxrgnlD/bmS1DI\nSrM67V3Z5ZyaaLQyk4OF7UyRUXUsrfLIsG4v3yw8Wl5S0CNiYLHlAl8YUoaHTYoZ+ph/LPhfRWp7\nUxIAIOdU0Y2fMrmyPdzufCJnvUlvzCtLjQjt6eriXduSP2fglrbmNWhMWzd9DAc3u2Y8EdU/POmZ\nHjACt/+Q5+upX2vxJpwZ7S/gvHp7KiwhMpTzjFI0Me/y9TDkagE8N95V+Ixfy6GCU0G+z48PbO/2\nO0TRxbI7vxY8s2ZUxs+5EhdRzBMROaeKTE2YffQgsHvIG0qbbvx0++mVdw2SGT/nEhai39ReVHO6\nOf9TWOzP9x1pk0Szak4zLGVTeu5Uni5JKw4Gg5Ke6WHWWTZtzgia0tsnreSkl/ebfd1P56wd3m26\nQuRVhdFfFWBimErh7x8V1x5DMlqbVPoihzAQC2l8/9jAV4fuBQAoJb4vPj/rX4b0l+EPZUhpTaSn\nECYZ4ODAb7AyQgTiw6CheIc7VSEInOxQC+tYDe4pgtuJOAAPgyExNAMA4PzMzTW64x+di348LHlK\nz13zD/vFePWZHG8fVms14odXnu43tVdw73arjXUCXaa8IrfsSOlKH+9gHa7qH/7cleKdKCIYEj1L\nJnRTin35qJigzAfSVw2KmuGvbK+2WG1L/uFfNo6IWByWFMJQjL1hqsVcz6lNDEtXNmYqRF5P91y+\n49qrz/ZZ4yYNeMA1r8/XpB/MHr54oM1Jk3Yg+/bh3IAePsYmzKAxAQBgBJ68djQAIOvXwuIr5TJ3\nydMrn+CLec01uqPvn/UKd+8xKroqsz6if3DrMxTagj3Zm0vMPkLE5q4zkCzNsg55xLUt+dXN2TKh\nuwfb7cC3O0wpz+J+wsd9pfuKC1zYhniaX6T9So77RdY/6xPj6ZekvHTpMJHuFRgTFPtERMH5Mk2x\nFjcTteHHRaowpaHbUyuGSj1FMIR06Kgz6yyEmbRnzGq12tXTq8HK1JoZHxHMmawNJItRbIOVPlVH\nzIwQNeFMehMpgKEx/oIv8jGbmQ4AgFHs2jzsCV9+fw8+AOBa2d4fasIXhGNeUm9PWUgzieboKIc4\noBwdld1C/lKLf9Fb3pbluTS1svRalakJG7X8cbGLiDCTh1acfHb901xxca6Qq23NM37O5Yt53UdE\ntR6HNpVxh1LaWm6WH/SQBdtK0mmNlVlVp7U/+MQMi3hX7B3IY79IUfJhaF+ldXeFpSd64r3HpsAQ\nsqnYPCFQWGkijxRf+iTldwolRRMf/PJ439CJo7ovLlBdvlS8naDMrwzeaS9MHEhfFe0z4Ezet1pj\n5ZyBW95asPYRZ0iPaNj3ow9PIbzwlkGCQnsG3DtjmGDYWdf1w30EZ1Q4AGN39FeIf78dYBRbZKCe\nDnjIORatYZ/c7hrgMn3zhLQD2R+nbHhsRtKg2Y72KKFM8MyaUQeWn9CUNiZP6dnWmNWZde4hrjf3\n3hkwI8lqxB9WpkhtturKtjQYheOD51ccre038flu7hHd/YYxLP3dxRmcC4dhaTdJQP/w5wp3NR86\nu63v1AROym49WsVhrBcyI+tI0eXNGQAApa/cYsQVXlKvSA9TE5YcsyAwyI8wk8MjhWpz8drTT4/t\nuaxrdZTNOgtDMVJ3ScbPuRW3qlE+GjMs/MDyE0pfed/nEtIP5ih8ZTO3TbLniA2lTT/M2B8Q791r\nXPf+0xPzz5YcWnEyaWKPtIPZY1c9wW12DhVu7gsvR4ivNBDv3jF5CWGVhZagEM0CggFSFErx5F1r\nIEmGlfGCnw2J5rICgl9eXJKl8vzmCpMc8B+aTK2zXO2j5fn/EA2lpUs/ljO+ljPWcGWKafQZ16hn\nXX1d+k9PxCj2XE1lY7V40UtD5DyoyED1gpAVmcZ5UWJ/u73kSgNRb2aG+vBtoQdiF5HYRXRGhd8s\nNb3dXYpAgGTByjsmNwEc54Kercc9RbDKzCj5EB+BTCQ7L0os50HuAjhKjp6swxfcMrwc+TuGJ0Eh\n+6IbKWFTYJlhW6nKBVT48DMJ6VMVRnqwF9+m4qsszNl6fLS/oIeSt7PM0paJIrx/8JVtaRzBAAC+\nmCdRiurzNee+vWbQGB3KRqgKNINfdnIeBwCgdVGiJqwmxvdx21cx38VM6cw65bXjRb0nujyf5MnF\n100OFqa4YZ9mhnCWTxPJegphT6Hgv/meNAvsLRYqUwPwWV/d/F1pw80rJbuejl9mJnTrzoyP9X18\nVI/FB9JXyYRuSrEPZwxQiLyK1U5OinnU8K+G1HVgFHuyDkcgYDMUFBmoT3MxA8l+jryZ5f+pu0TC\niW827KmwxCl53V06kAMeXENyCl29QeombsebvfvVo1Yj/sK34zkx1mrEd796NCjBlyfiqYu1Bo2J\nMBOPzUi6tS+robTxhW/Htw4jdko5YSZPfX5R6iYJTQ7UVjQHJfiZmrDQ5EAAQH2+5tKWm6OXD7Fl\ngdzceyf7RKFfjFdocqDFaPUKd/cMc8OBSQCkxz74LSjRP/E/cVyfkN7+Zp0FRuA+k3tyKsWV/6Zh\nTebhrw+w7RrNNToXX7mp0dxco+OLeZrSxpo79UKZoKXewFCMyA1OmdLPNUDB0OzZjZeaK4zmFsvj\nc/tGDgxtZxlNjdhvX6cyNEMSlKnR3GNUdOJ/4rgZTY1Yfb4m+0RhWEqQvXu8LdTna65sSxu78oku\nB7+1XvBSI+3Ch2ycwECyBMOeUxEDvfg+IjhHRx2vsYZIkUApkqujuGSv/LMlUnexa4CL1F2CUeyG\nQnOYlElRNrlLPDm9Z/eNpZOTPs7WQ2fqcWPT7nHdxmcZpLUYQzIszYIYF7QFZzyFcL6enhUhOq8m\nxAiU6MY7VGWlWXZGuNhTCF/UEDe1xCBvPgJBGwqxp/yFFc2m8eEuXBQowbC1ZiZI0sVahTaoLEyp\nkfqhoOLNWP6tRlYKNUyMusswvirAZkWIJSgEAPi1FgcAjPZ3vuaEmUQFiO0RMmhMu+b/PHr5EFVR\nw6m1l5acnm1mTd7e3lYjvmfxsRlbnwHAMSjOKfalvTM56SP7lq1X5s4a8N2NRpJmWfuNorIx87Mi\n0Tcp0UUGKqeF4sywb187szBhGKfYNViZjUVmnaV5pHtRrJvfhcKtz/ZZwylGFtJ4JPNjpdiXj4oA\nAAMjptsUpuWHEnQFyu/eOX//6/rn4V+G9KDYWmqOc+Fxj9Q5NQEAIMv/O6xbslYY//IN/fhA4Yyw\nex7Rd++Y3ouXdvjW/UEMqTOozVZd2npr7MphtTnqzGN5A2YktdQbdPUGAED/6YkUTnO8ijNljP/g\nSYedNOdKPmOAIvoH2/zAhRfKjr5/dsLHIzSlTbgJV/jIqzJq6/I1fSbHq/Ibmmp0U78e23o7rs1W\nZZ8olHlKSQvZUqcXyYUt9YbkyfHh/YNtfTKP5bkFuEjdJdd2ZlA4bTFag3v7O5j720dDaVP6wWxV\nkVbhJQ3o59V9UIzYRfTb11cLLpQ9uXiAU7ZEmMk9i4+NXv64e4hr5yf649C1R6XIQKU3kRMC20zS\nStUSZ+uJZHceyYB4VzRTU3q+KsdfGduDdylAGRVrJ+ljFCtBIYJhC/SUnxjZVGQOkiK2vOlGnDlY\nZa3B6Mc8+Unu9+ouXmkgmnX6sZHOzwV+QFhI4w9X5xlIViOavzAKCfdMxih2W6llQfQ9HWtbmaWX\na5uxpk5BmMmCC6W6ekPUU0He3t5HVp5JmZbISUJXS3f/kvX5mgl3T2EvUF0WoGKHAyM49mPfsuza\nrakR3nkmjxRPvn1kf4Hq8i/16NCQpF9r8XlRdyuVrLu+tU/YNM6dtjYPmxEuyq74IdKrf2sLdpOp\n5kDGqjkDtzhEl6RVHN524KuNb17s/C3/BfjrCo3/4fhzaq3rCeap881PnW/WWuk30g1lxYetlXu5\nnyiGXXXHWGK4W7e/xED9VG7uzJgP6/iJrqEuT70y/otfV5+vyapvp1tFes3+pb/gGGFrMWpN307Z\neeeX/APLfj371RWLwVqRVrP3jeOklXS4FseIvDPFFoO18yTV5anb6aApadSUNHZyNKewX3Oaog8s\n+3XvG8dvH83Vq40sy5JWEseIirSarS/+X3v3GtXUlfYBfOcOCZdguBlBgyDIrYBibZ2i1UK1OENL\ntWWKl/ZtXSquTjvo21qHvlTQVlu7tBe1pdNpqw66bOt9xvECFAfvIoJQFLkKQoQYIYSQkJOT8344\nNsaQBLDA2cHn9+nk7Mj6y8rmyTl7n7332k8yzIbuo6LSG0+39fxyu2d7lSZP3nNLo/9H0YojpZvI\nvvah6K1WbeWfDOmH/I668Y668ZPy9o9PbejU3vlXk+6cQm/+hh7S+OFV9UB/LKEjdv/1kFwuV91W\n/3tDgen8D2fe2l+yvrjh0D+KVlAUlVmwaeXpsw1d9//Xpr0kTK6riKziqvRzVdll6gZlpflvtbjh\n0InqE38quGueefuZdTtq7/312FjeRVHU7guru/Wd/Q/f0X17xabpA/sPDzsYQ/q93HisFJmTmMd+\n/axq2Vi1Z9dFwYSP6C31P+cAABI0SURBVCYOC80ZI9hY0fVRjKu3E7uoTZ8w2vpqC1iRhvmsKVrR\n500k2WQ/Lo+zJ/2wLNZvlL+4+OerbA474b1pE6ICo+aGtlS27ss4JhDyns9M6H2TkC/khSVMGFAk\n+2/o/yyA/mBz2PM3JrZUtsqvK/7zaWHXnW6h2Emn7vF/bPQrW/70O2dLOwo3Hou+j/S0z70P7etP\nbXu4HzWcCy3S6HHBv4RSn5Qv/fJKvsZpTnb0AzMz+WyWh4DdrjcOaPF4roAbHDe+4Vxz1bGG5OzZ\n938a13n6hMWbjifRzxU0oycnc0u3Xo/4MMaFHhm6raqxeOSgWEkkjfP4+lqrh1H7w+llL07ONM38\nVOuUfm6BKbIHFlsZ5yq6rNa0djYrKZnMhYMQMpB6W9NNrXJ18mRzjf1/PyOgIA2CBQHOJIWe9uVT\nJe85hz+wT/MTnjxPgcvGii4/IYcwov48+ImDfg5p+D02+tWceQ3Ft+RVba9sSXJyFZjWJ5aG+Sz4\n4vmhzDjkpGE+0jCfPlfeBNhy4rDee8xj4zk0f6yVpdkf8+BWqgwWo7x9Cp0V+PfX9kx4IsA06qnS\ntro7+0hc/Bc9ubm08WjO5d0SnpiluxQ3/vVrKoNEwPYTcprulvubPa/WrjdWdhj+LPOK4XwVJIqe\n8NS2vMqvnXmu9ANwSk1T5Jj4BaMf+N4jFo6uqjmzoX4Hz/+HlWEut9or/Qf4ABybxWHzcS9Ig7n8\nxqOMw0L8jgtsZ9/eG7IFuXJWhIjifPiLA0fmN2t65GYo1qQB4Hfis1mzR7P4PZd7N/kJObc0A/4D\nLRQ7321QySbff0CitbN2jDgMIRQunWmkyHOq8f87+Rk2ixPizvm/0q5Pf9UghOqU13X8KPr9nQS1\n9Xp3WoiQw0Jinv5m63Gpe0jypIwrjUfpN+j0aqdelz4ySUy0e3urx7ZEz5rRzuw6RfFDrDxL6nC/\nAoGCNGh01Vtt7ZAW5MqZIuHZevQBADB0IsbEX711/OtTr1ucHyfiNGqsb6Vm3+J/vjBx1v1Z3bdV\nNaaFUBOjMib5hnk5C8aOivRgtyGEJAJ2nlxXp3X6sFJAUgghdElJxPncWyUrZmyiXFXF5fAtbuiJ\nBGL0IKk4JH3qa7ESkqUrQwjdVJZ6DvxxBa7QMNB/MszgT+SgcQ75q50NpAEAjBAJxK88vlEmiVao\nGyyadCTVrrd3kXRJSVj5gZ7OpknhKm1rRXPeaPG9Z2Nv9bhN9BAghMKkM+vbzobdnZU6Vn287kob\n/6VnfPnn7+gRQhXtxDSve4NDwT7TMubm0cdGijRS9gokh4X+MnFUTdsF+mV/lgy2QOpwHzKAgjRo\nuKNi+34TAIAJj/nNvnzzsMXJVwKcd9Zq6WO51nigUWfeeqfHuO5qF31c1KYvaydePaOiF4Q0+VfZ\npy/FZpsmF1xXkfSTVb5ugadrcn3cgoqrt4Wz97M4Hm9OFF1QEP9p7uGwWFb3WJGI/Fo6qpRdTcJe\nl0cmfK5QwBU23Lni8lDbmbPYuD/kAwUJADDyScUhjXfL9YZu85NBrhy9EelIqqrT8H1Nd3O38XDT\n/W2HzrYR3k5sjYHqJKhNv2o2V3b/LVJ0TqE3vaFT16E0+ni5ykxnKjoM9BNFfK4wPnR5cszfvFzH\nPRU4/7MpbhwWejtUVHBbb2ssebIsqeTmkVvtlTKJzdVSaLvOr5w1ccnAfweI6Bro9u3DDfcxLgAA\nGBRzIt765/l3XvvDF+ZPjD7ty/+fs6opEt7boaJ2vfFg472CpCOpsnZi4Xjn8g5DJ2FcNkEoFrBC\n3LiHm3rQbwWlRKnK63ljKUnRzxff1JB+ovtf8elNoWSeMaYzHBbaNNnmRG0PobRNXY8Qih6baOd/\n8UJMhtUVivvjbtmQPIk8iOAKCQDwSBg7KjLKf/b5up/MT06R8PbEiVeGiURclgefTQ8prSzufPm/\nHUGuHD8hp1ZtKLtrMK3i6iFgtRvu3XC7pKSSJRf3/Xaj71Sr3nynzYfg5xFW1XpG6m5ltVYTVyfJ\nw1UjhwAFCQDwqIgZO7e69RxC6Erjv3u3irisToKqUZNTPfnrol3mjBEEuHDOtBGEkTKN+gS5cq9p\n2Aiha/L/3u42/MHHtU5N3ukxIoTu6IwRfS1TaZ//qEhlV5PF3h+PFChIAIBHBZvFkYj8C67/fe+l\n940UebR8y4ErHxop0jS25MRhXVYSkyW8KA+eB5/NYaF545zmjLn/jF2EmFuvZal1ypyL212oOiFf\nPG+cE32R1K6nrM5W6D9v1wCLPcAeNVCQAACPkCcDU/Iqc54KWtDSUVV+K4/D4h4q3bjz3EqEkErb\nOkXCu6YyBJitdfSML3/SqPs34jwF7Dt6Vktng4vvGjfivLerLMyd26mnmrtJT8HvW6scIS9XWXrC\nT32/b+RieFKD0WgsKSlpbm42GAzz5s0zbzpw4ABJPjDD8vnnn+fxeAih6urq3NxcrVabkJAQHx8/\nrIkBAI5M4uL/0YvFLR1VuRfeiQteVK+4bKRIb9eAL/L/3NJRFR+6LC0g/rq8yXxFcwtPumvfv+af\n5HtnUUgmfWaun+DdEvWi8SNzKZbhxHBByszMPHbsWGBgYGVlpUVBunLlSk/PvRkvN2/evHHjRnJy\nMkKoqqrq5ZdfXr58+ahRo7KyslpaWhYvXsxAdACAw5KKQ2SSmJixc/Ov5SRGpk8el1TWdFzmGa3s\natp9YU1rZ81LsVkySczOcystLllq2i6c+/WtiQL/P/p/YToZ5s79aqq7G+/3XiEBhgvSBx98sH79\n+lOnTr355psWTdnZ2abjZcuWvfjiixwOByG0efPm1NTUtLQ0hJCvr+/bb7+9YMECugkAAPrppdgs\nhJCLwHOi73T02yxtd2efcOnMKQEvXJcX/VT8gbuzT3t3i/m6PmW3jr8a8xXBv+vu/MAK9FCNBgXD\nBYm+BWefQqEoKir66ad731NOnz6dmppKH8fFxen1+rNnz8bFxQ1hSgDACNV7zObZ8BUIoaeCFrR3\nt2j16oLr386blIkQ0hu6f235RadXi52lvr4D2AcS9J8DTGr4+eefAwMDw8PDEUJardZgMMhkMrqJ\nzWYLhUK1Ws1kPgDASOQhlErFIQih1s4ahNCt9sq9l95/iBXkQP85wEoN+/btM40SURSFEPLyuv+8\nMZfLtZj7YNLQ0JCSkkIfSySSzMzMIU46aBQKBdMRHhIkH2YOGhs5TvJoz5f2XfrIx2UCC3EQQmLu\nOEdJTsvOzlYqlfRxQ0MDo1n6hntBunjxolwuT0pKol/St/gqKytjY++tZKrT6ZydrU9ukclke/fu\nHZ6cg87X11EXDofkw8xBYyOHSe67Yux35c15ueffWRL3tcTFv6eT7SDJEUJo+/btpmPTF3Rs4X7L\n7sCBA7NnzxaL7y1/y+PxpFKpXC6nXyoUCq1WGxT0SD9KBgAYapFj4lOmrA/ynmqxcREYXAwXJKPR\nSBAEfc+NIAiCeGD3ke7u7sOHD8+fP9/8ZHJy8rfffkvPCM/JyYmJiTENKQEAwBCJGTuX6QgjH8O3\n7I4dO5aenk4fR0REIIQqKipMU+/279/v6ek5bdoDO/WmpaXduHHj8ccfd3FxcXd3z8nJGebMAAAA\nhgLDBSkxMTEx0eZa6wsXLly4cKHFSR6Pt3Xr1s7OTpVK5e8/4E18AQAA4An3SQ22uLm5ubm5MZ0C\nAADAoMF9UgMAAIBHBBQkAAAAWICCBAAAAAtQkAAAAGBhJBck/NfJsMV8pXPHAsmHmYPGRpCcCfj/\nSRzJBclgMDAd4SGZ1p5yOJB8mDlobATJmYD/n8SRXJAAAAA4EChIAAAAsMCiN3QYkaKjoyMjI5lO\n8TBqamocdMVYSD7MHDQ2guRMKC8vLy0tZTqFPSO5IAEAAHAgcMsOAAAAFqAgAQAAwAIUJAAAAFiA\nggQAAAALUJAAAABgAQoSAAAALEBBAgAAgAVH3THWgtFoLCkpaW5uNhgM8+bNM2/65ZdfTpw4YTAY\nIiMjU1JSBAIBUyGtqq6uPnnyZH19vUgkSkpKmjRpknlTbm6uVqtNSEiIj49nMGRv9mPbasJBf+KV\nlJTU1dXNmDHDy8tr+BPaYj85SZI//vhjaWkpj8ebNWvWrFmzmMrZm/3kOPfQsrKygoKClpYWLpc7\nY8aMOXPmmLfi3ENtJce8e46QK6TMzMzly5fv3r177dq15udzcnIyMjLCw8OnT5++b9++JUuWMBTQ\nptTU1Pr6+qlTp/J4vEWLFh04cIA+X1VVNX/+fB8fn0mTJmVlZe3cuZPZnBZsxbbfhIM+4ykUinff\nfTcjI+PmzZuMJLTFTnKCIBYsWLB///7IyMhx48YdOnSIwZy92UmOeQ8tKChob2+fOnWqt7d3dnb2\n+vXrTU2Y91BbyTHvnogaEfR6PUVRhYWFERER5udnzpyZm5tLH9fW1gYHB2s0Ggby2aZSqUzHX375\nZUJCAn28dOnSjRs30seFhYVRUVEGg4GBfDbYim2/CQd9xlu6dOnBgweDg4MvXbo0vNH6YCf5tm3b\nkpOTSZJkIlff7CTHv4eaHDlyJCwszPQS8x5qzjw55t1zhFwh8Xg8q+elUqlGo6GPtVotl8vF6oYA\nQsjNzc107OXlRRAEfXz69OknnniCPo6Li9Pr9WfPnmUgnw22YttvwoH9eEeOHEEIJSYmDnesfrCT\nfP/+/YsWLVIoFEVFRR0dHUyks8dOcvx7qIlGo/H29ja9xLyHmjNPjnn3HCFjSLasXbt2zZo1dXV1\nPB6vvLz8448/5nA4TIeyjiCIXbt20QNgWq3WYDDIZDK6ic1mC4VCtVrNZD4bzGP3vwkHvePdvXt3\ny5Yte/bsYTBVf1gkJ0myqanpxIkTn3322fjx4y9evLhy5co33niD2ZBW9f6d499Dy8vL9+7dq1ar\nm5qaNm/eTJ90iB5qNbkJnt1zhFwh2SKXy1UqFUJIJBJptdrm5mamE9m0atUqiUSSlpaGEKIoCiFk\nPqLO5XJJkmQsnG3msfvfhIPe8bKyspYsWeLj48Ngqv6wSG40GhFCt2/fzsvL+/7773fs2PHJJ5/U\n1dUxmtG63r9z/HuoWCyOjo729vZubW29evUqfdIheqjV5CaYdk+m7xkOJosxJJIkY2JiDh48SL9s\na2sLDQ2tqKhgKJ09q1atSklJMd091+v1FmMYUVFRJ0+eZCidTRax+9mEg97xLly4MG3atMLCwsLC\nwvz8/ODg4G+++aa6uprBkFb1Tk6SZGho6K5du0xnYmNjDx8+zEQ6e6wmd5QeSlHU1atXg4OD29ra\nKMfpoTTz5DRsu+dIvmXX09Oj0WhGjx5Nv/Ty8uLz+U1NTeHh4cwGs7B69era2todO3YIhUL6DI/H\nk0qlcrmcfqlQKLRaLW5bsPSO3Z8mHFiNx2azIyIidu/ejX675sjPzxeJRFj92m0lDwwMNP96TuG3\np4zV5I7SQ2n0J6G+vt7Ly8sheqiJeXKEefdkuiIODpIk9Xp9fn5+RESEXq+nJ91RFDV9+vR169bR\nx4WFhcHBwbW1tczFtCIjI+O5555ra2vT/4Y+//nnnyclJel0Ooqi1q1bl5KSwmhMS7Zi22/CQX/i\n9f7+iwM7yb/77ru5c+fSX3gLCgpCQ0MbGxuZS2rJTnLMe+iZM2foA4PBkJWVNW3aNNNURsx7qK3k\nmHfPEbJB39GjR9PT083PVFRU8Hi8kpKSVatWqVQqsVisVCpXr16dmprKVEirQkJCzF/y+fzy8nKE\nEEEQ6enpRUVFLi4u7u7uOTk5/v7+DGW0wlZs+0046E88giAiIiJyc3NjY2OHMVof7Cdfs2bN0aNH\nxWKxWq1ev349VhMF7STHvIc+++yzcrncycmpu7s7ICBgw4YNpk2oMe+htpJj3j1HSEGyT6FQqNVq\nmUzGZjvYJI7Ozk6VSoXVBx1giyCIhoaGwMBAh/uc49xDCYK4ceNGUFCQ1fnoOPdQ+8nx9EgUJAAA\nAPjD7vsIAACARxMUJAAAAFiAggQAAAALUJAAAABgAQoSAAAALEBBAgAAgAUoSAAAALAABQkAAAAW\noCABAADAAhQkAAAAWICCBAAAAAtQkAAAAGABChIAAAAsQEECAACABShIAAAAsAAFCQAAABagIAEA\nAMACFCQAAABYgIIEAAAAC1CQAAAAYAEKEgAAACxAQQIAAIAFKEgAAACwAAUJAAAAFqAgAQAAwAIU\nJAAAAFj4f+HUwN9U+oOmAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figure\n", "for iR=2:length(run_num_all)\n", " subplot(311)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W1),5))\n", " hold on\n", " ylim([70 85]); grid on;\n", " xlim([18 32])\n", " subplot(312)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W2),5))\n", " hold on\n", " ylim([60 85]); grid on;\n", " xlim([18 32])\n", " subplot(313)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).energy_in_bnd),5))\n", " hold on\n", " ylim([165 195]); grid on;\n", " xlim([18 32])\n", "end" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n", "Warning: Ignoring extra legend entries.\n", "> In legend>set_children_and_strings (line 658)\n", " In legend>make_legend (line 334)\n", " In legend (line 282)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nB3RJTUUH4QIWFBo4nX5wTQAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyMi1GZWItMjAxNyAxMjoyNjo1NrIUBzgAACAA\nSURBVHic7J15eBPV2sDfTCb73qR72qZ7aSlQyl72HQEFhYuA4o4gohe5fCpeUbnqRdGLigsIiKIo\nKAiCIAKylbK1taUbbemStmmbNPu+zSTfH1PSkKZlVbb5PTw8mTNnTt5J0vPOebdD8Xq9QEJCQkJC\ncqtBbrUAJCQkJCQkAKRCIiEhISG5TSAVEgkJCQnJbQGpkEhISEhIbgtIhURCQkJCcltAKiQSEhIS\nktsCUiGRkJCQkNwWkAqJhISEhOS2gFRIJCQkJCS3BaRCIiEhISG5LSAVEgkJCQnJbQGpkEhISEhI\nbgtIhURCQkJCcltAKiQSEhISktsCUiGRkJCQkNwWkAqJhISEhOS2gFRIJCQkJCS3BaRCIiEhISG5\nLSAVEgkJCQnJbQGpkEhISEhIbgtIhURCQkJCcluA3moBSO5R8vLyFAoFg8GYNm3a7TPUjbzR3yYG\nCcldi5fkbmH+/Pm8S1y8eNHXXlBQ4GtfunTpLZTQn+nTpwOARCK5rYa6kTe6bjHWr19PfDuHDh0i\nWkpLS4mWhx9+2NftkUce4fF4YWFhxGFjY+OiRYtGjhxJ9IyKirr2GyIhub0gV0h3Dw6Hw2w2E6/X\nrVv3wQcfEK8//fRTX7vD4bg1wt0DDBw4EAB4PN61XpidnU18QadPnx47diwA5OfnEy2//PKLr9uu\nXbusVuvw4cOJw8LCws8+++ymSE5CcptAKqS7k3Xr1r399ttMJlOtVm/durVzB4/Hc/r0abVabbfb\nURSVyWT9+/cHgOrq6sbGRgAYNGgQl8sFgLq6urq6OgDIzs4WiURB366ysrK0tBTDsNjY2JycnICz\nTU1NhYWFTqeTwWCMHj2az+cHdCguLq6qqhKJROPHj/dvr6ioKC8vxzAsIiJixIgRCHINLs+gIhUX\nF2s0GgaDMWzYMN/ncOTIEQCQyWRJSUlXcztdMWnSpOzsbAaDQRyWlJS0tbUR79XVDRJkZ2ezWCy7\n3Z6fn0+0HD58GABoNJrdbi8sLMzOzi4pKbFarXBJ7QFAz549f/zxxwEDBixatGjfvn1X/8mQkNy+\n3OolGslNY968ecR3Onr0aAD47LPPvF7vm2++CQAPPPAAcWrRokUBnX1kZWUplcqLFy8Sz/iPP/64\n1+s1Go2xsbEAMHLkyKBvqtPpJk+e7D9O7969GxsbibNGo/Ghhx7yP+uzOPkMXAsXLvSdnTBhAnFW\no9FMmDDB/8LY2NgTJ04ElSHAVtaNSG+//TYAUKlUpVJJdN61axfRhzCXdX8712Sy6/4GA5g6dSoA\nsFgs4jA2NpZKpS5evNj3Pa5fv95fTn8IgXk8XtCRSUjuIEiFdPfg0zHE83JmZiaO41KpFACIRYC/\nQlq2bNmSJUu+//77H3/8ccWKFTQaDQDmz5/v9Xq///573ziPPPIIoUV8M3gAxGzI4XBWr169ZcsW\nQntlZGQQZ4l5FgCGDh368ccfL1682HeKmK+JwR9//PHk5GT/CdenjebPn79y5cqwsDAAEIlEQcUI\n0ATdiNTS0kKlUgFgzZo1/tfKZLKruZ3rUEhd3WAAhKYEgIKCgpaWFuLrI+x1hBvp4YcfJlSp2+0O\n+hWQConkLoBUSHcPPoXk9XoTEhIA4OmnnwaAAQMG+HxIPoXk9XpxHC8tLf3tt9/27ds3aNAgAPA5\nxokLfQa6oHOo1+u9cOEC0eHdd98lWnbu3Em0HDlyxHfWf1ngdDqJF775ury83Ov1njp1ijhcu3at\n78J58+YRnbdt20a0rFq1qrMY/pqge5G8l3Rkdna21+s1Go2EJn777bev5trrU0idb7Dztb4nhs8+\n+4y42fnz59vtdiqVGhER4fV6o6KiAGDIkCGdryUVEsldA5mHdHdCmIk2btwIAM8991znDuvWrRMK\nhZmZmZMmTZo8efKZM2cAwKe31q5dm5ycrNfrAWDZsmWEp70zFRUVxIvly5dTKBQKheIz0CkUCt/Z\nRx991HcJnU73H4HH46WnpwNAZmYm0VJZWem7cOLEicQLn8mxrKys+xvvXiQAWLBgAQAUFhZWVlb+\n9NNPbrebSqUSCviK114HQW+wc7dhw4YRS7fc3FzCgTR27Fgmk9mzZ0+lUpmbm0ssm3wOJBKSuxIy\nqOHuZMGCBStWrLDb7REREY8++qjNZvM/W1FRQWiskSNHPvfcczQa7b333iN0EkFlZaVcLide79+/\nf+XKlUwms/O7+KIMRo4cSVi3fMTGxhL6DAAIb3xQfCEAQYfFMCxgBBS9wi+2e5EAYOLEiVKpVKFQ\nfPvtt8Sq5b777gsPD7+aa6+DoDfYGRRFc3JyTpw4cfjw4ejoaAAYOnQo8f/58+fXrFnjE+z6xCAh\nuTO41Us0kpuGv8nO6/UuWbJEIpEQxqgAk53PEvXLL794vV673S6TyeCS2cdsNhMOj6FDhxIBDk8/\n/XTQd/StGxYvXuzffu7cORzHfQ6b3r172+124lRXAQL+EhKrAQAYPXo0cfbjjz8mWtavX99ZDP+h\nuheJeP3vf/8bAAgjGAD89ttvV3M7nWXuRozubzDo5cuWLfP9Vfp8Wr5visBoNHa+kDTZkdw1kArp\n7iFAIfkTMBuWlpYSh6mpqQsXLszKyiJcKcSkNmfOHLgUQfDVV18RPXft2hX0TX0hZBMmTFi4cOG8\nefMI2xThK3rxxReJs7GxsTNnzpw0aVLnKLugEvqGHTRo0PTp0wnFlpCQ4FNs/gQM1b1IXq/Xt/gD\nAKlUevW385cqJP+Uo0ceeYRo1Gg0vsYePXr49z9y5AiDwWAwGMSHAwDE4XfffRd0fBKS2x9SId09\nXL1C8nq9q1ev9k1kL774IjF78ng8wu0EADt37iR6zpw5k9BPvsVNACtWrBAIBL55k8VizZw507cc\nWblypX/2Uu/evYn27udrHMeXL1/OYrF8F06aNKmlpSWoAJ31RPcieb1eIjIeAN58882rv52/VCH5\nOgDA119/7Wv3hecRgfg+Dh06BMHYsmVL0PFJSG5/KF6vN+jPmuSux2az5efnZ2dnEwmwN0hNTU1T\nU1NaWlpkZGTns3V1dQ0NDdnZ2Z2zYrvB4/FUV1drtdr+/fsHREPcuEh/3bUkJCTXB6mQSEhISEhu\nC+7UKLuLFy9u3brVbrePGzeuq6BkEhISEpI7iDsyD6mqqmrGjBnh4eF9+/Z96623tmzZcqslIiEh\nISG5Ue5Ik92zzz6bkJDw8ssvA8Dx48dffPHFwsJCn4uehISEhORO5I5cIZ08eZIodQMAw4YNc7lc\nvrosJCQkJCR3KHeeQrLb7RiGEYmcAIAgCJvN9g+ZJSEhISG5E7nzghoIG2NoaKivBUVRHMc790xP\nTycSWWg0Wlxc3M0S4Efps/9QrO/qLCvSgjJxlIN5PSBM18p3pBDtcrncp0RvB0h5uuG2Egb+Lnle\nn1z6Q358TduVcwAIeeLAZAOaGlhX7N8NPJOYbxZrxc0OZpf1pYLS0NDgdrsBwG63+4oQXjcjRoy4\n7upQdxyNjY3Hjx+/1VJ0wa1Ng7oOXC5XSkpKfn6+r6V3795By1H37dv3pr+73ubmLz828cvirjrs\nK/nfqzuzvz/78rm6n38pWqWzNhPt//jHP266MDcCKU833FbCeP8WeTxuq/YXmUv5x9XLYzi81Xbh\n7A2+b/GvFSt6/29F7/9d9wg35c/cVxrjXuB2vtk7b4VEo9GioqJaW1uJQ2LPU99en381BjsWwqYf\nqNR21cHqNLw9/SxCoQJAtepUjeps//jpf49sJCTXjUuxi5X6ovq7/+P2f5U//KErXwCA69vQjCE3\n+L4e3HODI5DcTdx5PiQAmD59+saNG51OJwCsX78+KysrqEHjipWhrxWN1f36gTohEwUABxb8D8nj\nxQltBAAJkn7nFb/b3WYAiMxyHanccHPluRHEYvGtFuEybit5bith4K+XB7c2uFp/A28vKo/mVv3k\nsSt9p9yaM+ANtIcT8ng9OCA3J7SVK+Fc97U3/c+c5BZyRyqkhQsXxsTEDBgwICcn59SpU6tXrw7a\n7aab3SvbrN8VKjGPFwCUJlfnDhjuwnCn7xCl0gcnzvr29EsA0HtIXLXq9M2V50ZYsWLFrRbhMm4r\neW4rYeAvkMeL2byejh+q5dx8VJTlalTQoky4rd7Vut+tlBOnzKdme+ytf508DrMTANjCIJubXCW3\nlbeP5Aa5IxUSjUb79NNPc3Nzt23btn///piYmL/nfWs0dgAI59MAQGkOopAutp2JD832b8mIGhXB\nT5JriqgUuogdRayWSEhuLeZTD5vzZnvdJuKQKkhnpS21XywSTfgTU2U46g7XP99hi8OtDUEH8dhM\nVI4g6KkrUtiwR22WwyWFxA/nXd84JHcZd6RCIuDz+X+bKpq04fzs78qf2HYBAP41Inbzwz0cWJC4\nvorWY1mxkwMaE8MGKAwVHi+eHTd1w4ln/g5xSUi6Brc2oKIsVtpSR317iRMKBW18eZKjupBCY3AH\nTXZUnmL1GAAAlnPPUmh8j1XexTgmhHMNpXJ9mB3anwreqFLlEYePfjZdHCN02dzXOo5JZTmw+naN\nFrvZNDc3P/bYY6Ghob169Xrrrbd87VMu56OPPrqFQt44pPm1O07WG4QsmlTAqNHYiOURAAhZNMzj\n1VgD/348XtzhMrNogc96UcLUsuY/mCg3KWxgTEim2aHlMW8vFwXJPYWraQctfDQtNMfZsJVowQxt\nnOyxRCwDf/hDCPOUrcSIGdo8TjW33+duTd41jY8bK8z5z/IGfU3lJgbtoLe1ZEaPtTmNAGBusyQM\nim2uUFm01hC2sKsxz++70FTcMuW1Mf6NpQeqyg9XQ5cX3VU88MAD2dnZra2tzc3NEyZMEIlEL7zw\nAgA899xzvj4zZszwP7wTuYNXSH8DH59QPLGt4sPjjYPiBADgXj3qXyNjJRyahENv1l+40HrC6jT4\nOiv0FQJWeOdBBKzw800H2HQhAMjEfeTaor9NfpJ7BK9LjxsrdHuTPE71FTvjllqqIB0AKDQ+4Uly\nq+oFY+bQImREB6ooBQ37w9VYRaEyaKE5uPHasnycit200BzL2acsBcEnR4W+PD1qpNGuAgAP5kWo\nCFfMsWi6y0OqPFarbTQE9GksbkaoSEJdn2sS7w6loqJi5syZKIrGxcXl5OSUl5cT7fddgk6ni0Si\niRMn3lo5bxBSIXWHA/PkPp99ss4IABdfHYwilNVTk5IkLFkIs1Xzz29OvdhqrPJ1Njs04fwgj4QI\nhTqx5wuJIYMBQCrKUBlr/jb5STrTUqE6/MlJXZPhyl3vHBzyrcbjk1kpz7ua93bTDdMX6Q/0BQCE\nEQoACEvqsSkAADAcFXds+8RKfpbK7euoLWg/9jj9IyD88WI24x8jAzQWpi/i9HpHMOYYUIIbYDTm\nBjFm9OIOlakG89oBgMVjEM6koBCh4ZOWjfx20S5f4+anfwpPkhhaTHT39QdE3EE8/fTTW7duValU\nxcXFubm5vt04fXz55ZePP/44gtzZU/qdLf1fjQPzMFHkWK0+RyZIknRkpEfw6E6PlIny/FdIFodW\nwA6yQgKA4SnzxGwZAIi5MTXqcwDg6RRKe49Teaju73mjXSt+z/0qv6kkMHLsjgbTFYRMrWGlLMb0\nxV318bpN9upPqWwphdoeY01lS3FDqeXcUgotKqAzLXKgq/ksIAwAoPLTcVN10DEtBc+hoUNdqiN+\nb4NTEBQoVABAmBGO2vZUB92eeOKF2aFVmmrY5SvstuY1h2bqKHIA4ErYZo2t8/jbzrwGAPIChbRn\nZFiSWBjF9+UteXDv6EVDAMBFc3T/4dwdLF26NC8vr2fPnkOHDh01alROTo7/Wa1Wu3v37scee+xW\niXezIH1IXbKjpE1pcgKAeuUwCYfmf0quKeIzY4enPqIyddjfzA5NTEhm92MiFKrHgyn0Fadrt7sw\n29xBwQPW/yLs7iAurtsBi8Z69MOzIx+90SzLzlQcumhsMw+e25c4tBns8f1iHlv30MnNBb0n97jp\nb3eroNBFhA7A9EXms0/xBm4i2t1tx20X3mfEzmLGz3M172XEzbJf+JAWNrz9Kkao+fQjgMxg914a\nMCDCjEBYFgotAgAQTpzHpgBhsN+2x5n3xziq4aeygvUv7nsWAHCrHBUPJE6yM5bbLryP6dpXWl63\niULjv7NvrABBECo+JWa0xxOKxmIAwJVw6gsUAWO7bO7SYyUP9nKX7Ksc+0IOABBLopAYoc1gF0Xx\nAeDV3Oden7Dqhj+/QL7Ob/0mX3nlfjebx/pHPN4/yA7FHo9n6NChH3zwwaxZszwez/333//KK6+s\nWtVx499+++3AgQNTUlL+RmH/EkiF1CUfHmuc1SccAPgMt9rcHMqT+U6tO/6kiDfVgfHsTo2vsULV\nNDw1uBfXn8eGfPLtmZc8HgylMv4CqYMj1xRprU27it6Zmb2yd8yEv+EdD5Z/Pizl0avUfxq5/i8S\no+a03KyxZYxN4YdzAUCer4jpE8WVcPQtxs6dWypUEamhCLXDbJD/UwkA9J/Z6y8S76aAW2oRWnu0\nG6fX287G7billspN9Lr05jOPszOW46YKAHBr8jh919DCRlAuWdJooTnCqTXNXywRTeoXMCaVm4iK\nW8HbFwBQQTqmD+74pNBFDrPLoe+la7a6FLvp0mkemwJhS30dWMnP28pXAgAz8RncUouKssL5SUlu\nFcVjZbo1adQpF8UnAQChIp1LNtSX1dGA01ajsRrsROZsVHp4c7kqJEaoqddFZ0YAAJPHwKjXHJ53\nRR7vHxlUMdwqqqurFQrFrFmzAABBkNmzZ2/dutW/w1dfffXiiy/eIuluJqTJrkvSwjj/HicDgJ1/\nrvzw4HSzo71cEPGCQnEb7Fy9tYVo1Fjdf1S36GxXroPCYQh7Scc36kr/zsVKWfMfB8s/f3ni/orW\nozc+mguz1bSdJfJIuupwXnHgaOXGqxxQXa8TRN38T0NR0qpvNk1YMuzY+vaUZHmhIi4rGgA8uNfQ\nYsKcmC9a0qSybHrix9yv8n2XO8zOisMXKw5fbKvpslLU7QBuKEUuxbPRwkbQI8bjxgq3Os/ddpzb\n73Nm4jNet8ljVyLMSArCoCAMoHSUVzhVu+03fimFGvhgSgvNQVhhXkc6+LmavNhlVjVa+DGEJWUL\nWRYTDQD0Z/7vjT5rrEXLEFaHQqKgbNxc63GoaOGj20qPA0AIJ2qUpIdoSiXCkFCMHDfdCABcMduq\nDTTZ6bXqsIhold+HnzAw9uCaE201WnW9PjQ+5EY/uDuHpKQkBoNx4MAB4vDXX3/1ry5dWFhYU1Mz\nd+7cWyTdzYRUSFdGzIkFAJWpPRgB8zh7RA5Pj5qps6N0lEvop91lag6d1TkWPCgDZA+CnxtpY+6C\n7fn/9o3/V2B3m1+etI/HFHs8V/Bd5dfv+vxooL/Uh0Jf8dae4W/vG7ezcOUvxau68oSdb/r9vswl\nNW1n8+s7vNAumzvgKViuaX/uVtdqw9PEhFvbYXZ6cI/NYL/KW+uGM98XTf33GEl8iN3sxJwYAJi1\nVmKpFJ4kXnPfpi/W5EW+eZL41pRVbdPeGq+u7Zj+Sg9U9Z3eM2Fg7GcztnQfA3ZrcWvP0CSDfIdU\nUZZLech8+hFMX4SK+wEAwpK6FLvQYDY3a82fBlbwpyhW6geOmgsAgLAiPC49eHH9/gzTyZm+Dl43\nn52x3Gaw01gcAGAMKQAAi8ZK5cgChkJY0TTJoPUveDEnRkdZFBofAJgJT9JwLlABAFAGijkDf0t6\ni1IcLlFVqxnsdoM5nU0bMi+7ZP8FvcIgkbUrJCp+95t5UBTdvHnznDlzRowYkZiYeOHChXfffdd3\ndtOmTbNnz2Yy74bgDlIhXRk6ymLReI26EuLQaFNFC3sI2QmLd1U3mLKJMO6qNluShFHj55jFPN6g\n1RwAAKXS37j/BIrQiUMOQ5gVe9/OwpV/3S1gHidRYQ9BqC4siPeYoLT5sMJQ0Sf2vsKGPUE7HK3c\n+H+T9q2YcnTJuJ9k4j4thqqg3WrUZxNC+z0/emtR034MdwGAB/e8M+RTZVV7ULLRrsqv37Xu+JOE\nStO3mMLSxMoqNebE/jvs89Vjvjy1pfDq7+74hrPbl/269YVfAtr1LaaQGCEAJA2W/Wfg2uMbzopj\n2pNWxr4w9PWzi2tP1q+PYXxXqLQZ7D8s2RueJMFxz9lt7XEBNafkyTmyYU/2v3/FuLba23eR5HGo\nqbwO5wGVE+dq3ksLG+Go30JE0zHj59kuvI9wEzGP99OTCgDwWE1eHHNpFC2thVZagm/17w89JhXT\nt7UfUKhE/B6mK/CVtvOCBwA8mNegtAMA8QyB4SjCivAfB2GGInQR8bq5+SINvL4OFq0VuTQF2c2B\nsQkGW0tomLT0QBWT12Hc7j+jV+2ZRlWNlitht98+il3b53VnMnv2bI1G8913350/f764uDg6Otp3\n6vPPP9+0adMtlO0mQiqkKzMkcdY/x/1U2ZqrMtVguAvzuASs8AgeAwBs7miVqe7VfbUKozOMx/St\nkD460ZT839NEZYegsGg8i1MLAGaHVsAKTwkf8te5lOrUBTyGhHgdzk9Ummq76qk212fH3T8k8eHC\nhiDRw1anAaFQWTQeSqXTUbaIE9VqqHIr5bhZ59/tp4I3PB6cReMhFGpaxLAWY5W8QFH4c5msn1Rd\nryPG+angjZ1/rsyMHqvQV5hUFpRBTZ+YmLelsPpE/ZTXxiza8aj2qsOyMSd2bvv5ikMXTSozAMgL\nFJVHawHAZrCzhe2BkVkPpC/c/ojT4iTisgiUDrz1gSyB0lRVppLnK7gStiReJIriH1yTCwAe3ENj\noMRUGJkWWn2i/irluXrGrS822G90MsV0BbSQQA+QYNTv3H6fC0bsIw4RtjQXCbdQecdq9It3VVsr\nC+qeG6D86Lmdvz6jkfDWFYz++c+VnRfoFCqKG9ofIBAa36nYze75Oi1sBHYpyJtyafZIHiKjs2nE\nApeZ9V3AOJy+a5gpzxOvdfpKLnh96tODe1Bm+/qGxQt8wLfYjQKB+ImNM8cvGe5rRBloco4s0s/V\n54F7pV44giAxMTFc7pU3rLpzuftXu9eH0uyK4LWvYOgom46yR6Q+8fHhh5PCBmbF3sdlilGEAgBi\nrqxB99uqIw1PDUDDuJEV2vZciiq1Ta5z9Izo7qfTTzYtv34XSqVHC9MBQMAKd2E2Otr+3HcTI+KO\nVW2eN3gN8TotYnil8kRsSOZHeZMWjPhKJsny72m0twlYYcRrDHehVLr/2TpNAdevxkSSMOvXzyeI\n5SxaaEz0q1uIKjIY7lKb658b1V6TJkKQ1KgrubiOrmsyPPrZg8V7y2Fyj6KmfTlJc2b2ewsAjld9\n3dM5OyxRTKVTB87q/e2iXa/mPsfkMSzBgoCD0larHfJotqKslcGiY04sb0uhRWOtzq2Ly5ZGpbff\nC0JFIlJDI1JD/S8sbjaPypDkDI86tuZUab1y0Y55CBUZv2S4qkaLu/CfXzsglrU/10ekhhbvqSg9\nUJU5MfUqpboiByq1Brv7ncPy1VNvaOcUTF+Ehg4NaCRmfCL7leC005lgqjlzaPuKP9KX6hQfrdgO\nOGapXn3RttSG2frExlYpT4XzAyVh9hhgLTzEyR5HCxvhOPsUb+AmWvgYp3wriJ/0ONUAFABw2l3T\nVo5PGR7fXK4CAIdTFDAIBWEc/uQkoa70mmYa10jlt3+MbrsbEC/x2mqwK0papb06QgksoAwXy8JE\ngWVN/J8qSO4yyBVScAx2TMC6TFtHCVMJ+5ILs7NoPCIQ3OLEjXYHAHg92nB+tPZSPS6lyeVePUrC\noXW1SwUAZMVOzpfvqmg5lhQ2EAAErDC9rcV39q09w/2TnK4VDHcRQQc1bWdjQzJ9qiVKmFqnLlSb\n5cnioRWtxwKucmF2HlMCAKE8mb8wl8Z0JoR2PIyzLE5zYlz0a1uFk54wHt1ONDbqSvrE3ufrI+bE\nNOsvCMJ5S39/JixJrG8xAYDOopBJsgSscAErHPdi8vrK6PRwAEjKkS3c/gixKBGEcxuLmq94myaV\npaGoOaZXxKzVUyLTw0p/r+JJ2NNXTnDZ3Ge2FiUPkXV1ocbqfu9I45QMSURqqLCwIWVYvM8uJIjk\nH99QTGfTBj7cXgIAoSL3vTLqz11lN8uTpDA6Xz9Q9+2cDF89qusGN1WjfoqnK9g0wZnaHZaIgvh4\nXXIFixbTg5mSraOFlSopD/cJB6SXKti6OWTaItOxnwCAFj6aP3wPUKhUThxurqbWvmk6OReo/QGA\nSkUAgB/GPbk5H6R6HL/MjWoz2G0Ge3O5ymqwo3REqz9nLvf4SgrZ9A4E2iMs3E73hnnb/K91040i\ndmCCVGcoQLliH5I7hXtOIX1wrPHtQ/IrdlOanb4VEgHxt8Gi8+o0BWJuLJdBBQCVxWVyRQ2LPceg\nqiTcEJ/JDkUoKEJJFLMUhi7zzxEKdcHIzXMHreYwhAAg5sQY7e0me8LvUqcp6OpatVneTeHwC60n\nvjzx9M4/VwJAtepUWuRw/7Mp4UN+KV7VM2KiQl9R3nJZ0J0LsxGuJhE7qs0caKTS21r8JwhH7fk4\nSe9KSgN30GTzqXafk9bSFMaL9/URcaKMdlVd3A5ClzNY9N8LvlToy32LvyGJs/50fifNak8o9i1i\npr01/tz2813doI/1c78/+L/ciNQwAIjpFbl7xcGkwbKwJPH4JcNbKlRRGcHzlC1OfPrm0s0P95AK\nGACgWDI2ZkyHDyaXyazaW60dlVZhvsyeNuKZgSc2nruiSFfDsr01387JSAtjy0KYN6iTvB6nf9Rc\nUMwOrbsoulZ9lv9ncu+3RrcNSD62vczs0Gqs/G/nZExOF+8tDxIEDwAIk0NhtmfR+sdEULwuVvIn\nFIiwaKwoHQUASXzIs9/PcT6xV95W5j9C0S8VH07YyJNwKg5dDJUxNWpF4V5Jj81DSAAAIABJREFU\nzakm4izmwoRCiVxTdKxqM51xWaofALhRK/Gn0T1uWpd/YiR3HPecQtJa3ZvOBT77d0ZjdQckwwLA\nrP5vtxiqUIRBVEfVvz3c4fYUtk5ICjnPQ08lhPYTslCLEwcAJg0BAFkIs7Ktu2dqxG8qCRck+YLI\n5dqioUlz69VdOva/Orlo3bEnL7SeCHq2XlP4UPaK/rJp+0vXGO0qqeiyJ+ihyXM9XlzK7/X4kI/L\nmv/wtRc27PEl9mZEjapU5gYMq7e1RvhZdbC2ppFpT52t34GDh5KaiRnaAMDs1PgrLYRC7c150MZv\nKlUcBoCxL+ScrN5qdXWs/ML5SWJ19qmmbwPeC2WgAKCp1x1cc6KbOtBhiWIP7qGzaQAQlR7ef2av\ntNGJAMAP5y7Z/5R/RpE/X+e3PjUw0ld6I07MKmgy+U5hyWG1vaTP/Vp7puGyaVrWTyqI5L83cl1L\nhSpgwAOV2lf21by058pxkoerdQt3VqEIJS2MDQBPDYx6dV+XLr0r4nGqffEC3aA0XGSpmCnf/sPe\nGO5ka6g5/eqKWr9YsL7eIJCFMKf1DD3fYlFbrjabh8pLobjUmLoJFUdiLtwXXBASIwxDU5rwMwH9\nMSeGUJGMhyO1c362MCUZyfLjG88R4S1WvZ3DEJUoDh4o+8SsDvxLoXivanZSS5quUnKS2597TiFp\nrO4+V5HyYnHixBrIn6zYyWqzvL9sGnEoZKEFTaY+0dwwdiWVNoBF4/WO5Ba3mDVWN7G6koUwu1kh\nBRDBT1QY2t3FZ+t2jEl/Vm9r8Y+r3lP8ntGuKm0+vPPPlRGCpP7x0/YUv7er6J3OQ+mtLWJObHbc\n/VpLE9KpnhhCoc4fvoGK0OgoG6FQidWY3tZS0XJsaFJ7KkMoT2brZDAM8Cq5WmqZ4fG9pRO+ylv0\nGfc367kDAKC1KAIqzMq34U8P2lSpzD1SuYEr4dCt4mUT9rTVaH3TukCf2mqs7hxBPnrRkM9mfOsw\nO09v/TPoJ+ayuQXhvLeKl/haprw2xqeEhFFd7oxwvsVCVMsl6BPNlescAGBx4uVK68uj41atGnpx\n+eA8eeC6Ieex7Cc2zqw90xjQPmnD+feONFZ1+/BR0GTGPN4ajX3dqeYcWfu794zgdP6ZXSUeu9Lw\n+wD/+LqgYLhr02/7wYYMEB8EjUBnV/DDuCal0UxRMF2RhCt07YMpJ+UOk8PS+XIKjeF1X/YbpqBs\nwMyu5hpUGGrRWKn0DvlFjBijq9U/Zs9pcfLDuZgLy3wsiseSaIW1kYlD+kxNV9VoAMCDe8TcmAut\nJzgMIY576GxaS4WqJk8OAHa3mYbdjlVFSP5S7jmFVKOxCy85hzCPl5iJOqMwOKWCIHH9cwet9g8E\nqGyzDYzla52zhZyRANAzknOmwaSxugVMFABkIaxm09UqJDrKJgKyMdyFUhksGi9a2KNO3W6109ta\nGnUl35x6EcOd49MXzR7w36FJc5eO36W3tjTqSv3H2XpmWYuhktAcHi8u5kg7v5ePaFEPYluanwre\neLDvCn99Ey3q4R95ZXZoOfQO+4mt/BQjoReFiqZHjapTFwySPiDP/fqTQzOrVXkBoRAWjS1KJm3U\nlRws/7ym7WwIPdaksvz0yr4zWzuS/1GErrW1Wwgx3EXMaCExwpePLbh/xThldfAK1hq5LjTxejby\n0FjdxAKFIEnCrtXaASB0Re62IlUEj44iFKmAIdfZFcbAr08SL2q5oAIAgx0jQqhXHWlYOz3ln8Nj\n+kp5lW1dxmL0/yj/cLWOMOpOy+wIr2DSkK7SA7rBcu5Z85nHeIO+pkund99zf+ka4O9ls3qkf/br\nM2vnmh3aCB4dTY+EcHMWdslSyqMnSCLk2iDFclBhaEfwNwAAUBCGFxXgZj09OtlhdnLFHbuPo0w0\nxJbm+9ECgEVrDUuSmDVWva2lf/wDgHhCUyaiDKov66hHxHC9rWVa1muKAd87+5Yd33CWqKBa21og\nsiZf68dCcqdzzykkzOOVcGjEvPDBscb+H+V31Y14eAwgM3psQLexKSFr//GvF4anA0BaGOd4rUFj\ndUXw6QAQwaMXNwd56uwKjwc/Ub3l37sH9oweAwD946fvL22PjpNrisb0ePaFMduyYifzmGIiGA+l\n0vvHT//h7Cv+g6BUxrCUeW/0WZP3TeGs7HdGpj7ZzTvGhvQqkO+2Og0eLx5gr48N6fX92Vd9gRWV\nrSfSIoe1y+mwGvZtFE6YBwA8pnjlA3lxkf3Lh8gSdax/pK0GAJ+RzdBiiukVAQAcunDuoNVbTr+U\nETJRWdUWEiO0GuxEyW2EimTFTTnf2h6jvPHkgt1F7xALJiLQgNqF5a3qRF1kWmjQU90T8M0mSViE\nShiZJPJXFVIBc/QHO84fWebfmeJ1AIDD7CxoMi3eVa2sUre9e2jBkOg1DyTnyAQ+019nJqaJtxe3\nNZucTSty/N2TiWJWzVWHFPrwuHRoSBYtbAQFZV+xM6tVMmbcUITJkSamWJ16IQt1D02k9OJLrR1i\ncGhilamt87VUXghuuKydmTQfS/3I2ViFhkrNWit6aYVntKuE3DCvjW7Qaog0ZADAnHhkaijmwlWm\n2l5x4wGAzqYJwnmmtnYPKEqlLxjxVWb02HGc12FADY2ByvpJAeBUzXYZddi1fix3Mc3NzbNnzw4N\nDc3JyTl6NLDeisViefDBB995J4i95M7inlNIEg5NwESnbjov1zmMXWeBGB2YkHXlmPjc5/syUYT4\nRwyusboUhvaACBShZEt5Zxq6nKQCmDto9ena7QtGfJURNQoABKxwMSeGWDa1GqsjBEHigzOjx8ok\nWe/9Nrm0+bDe1mK0qzDcOShhZsLA2GPrT7sMELBeCUAqSk+PHPm/Q9P9Vz8E4fwklamm+ZIVsU5T\nGC1KBwBH7fmGl0aL7l9AobWHpdFRdlLYoBJbUXiF67uHjhX+XPbfYZ8ThpeWcpW0ZyQAPDdqS2b0\n2JUP5KX36F+dW89lY9NWjD65Od+ksvDDuWkRQ4ECRyo3qM1yqTDd7NAs/7nfyZqtdre5WnXKV+js\n+IazPvEai5rbarVR6cHDFrpBYXQSjws+mCiCIhQH5kERykfjO7LB/jMpYXfOXq1O4dK37z2DGyv0\n+zN6SD86u62YeKapL2jiGGyEhpOFsB79vuJApbZzaOVHJ5okHJrBjikMTiKSwkfPCM7V/0IIPE41\nQg/h9L6qoqJyXa30WJ/IrCQAQChUGpUxMlF0tsFkpqKg63haErBDajRB0pxpYVK3+vKypxQqUFm4\nWUehoiaVhXMp2cvqNAj4EsTE//3HPSVFpzukxT0IFbE4tByGcJJunSQ+BKVTcVeHhZYwOYxaOJjm\n4POj2AgVqVMXCJEYjvBuTri5VsaNGxcZGdna2rpq1aqHHnqopuYyh+Xy5cu1Wm1h4TWkk9+e3FsK\nSWl2CVmoVMg402CqbLNiHm9AKB1BjcZusF+VQhoaHziPj00J+aVck3TJ09svhney/hqit5eM+8nf\nJBgn6UPksRrtqs4hsB67Uv9rGpvKAIDc6i3v/TZ59e/3IwgVAHgSzpTXxlSdqLtiDZ7+8dOHJc/j\ndtrElscUPz96a1nFx8bjk3FjhQuzEaFxrsZKyaOvs9IGBHRe+UAeyhmAIBSL1vrExhlH159Zc98m\nTYNecnnNsZAYQeHOEk7bMfM3S2x6s0auo7FoADBA+vDZup1bTi8ZmDBjwcjNr085Wtb8x6Hyz786\nuYgbziz8uUxTrzvy2SlfWbmS/ZWTXx7ln8N/lShNLjE7MFwF83jPNBilQobxj5Eee7vlSmb8Jl7W\nn5L6ysnfl1pLVzjlW20X3melLY0fKG08X19SpXm0rOGrzX+6wnjEgiAtjK1/e/hbB+u3FQVGPSz5\n5aLD7XmoV2i2OdDPNDRe2LCv4vAnJ6/+Flwtv9FjH7qanhjucrjdOMb296gJWWgEn15vtIHH61vK\nxIfmtBmPdq7iQeWFeKydYvAwF8JkO8xORanSlzmktTaF8mSok+PJrj6qWnvks1NEO4PLsHiVxIPR\niGcGCqP4XAnHorHZDPbAr0/HpUpcPAlHbWjgWRKu48u9W8nPz6+urv7ggw9QFB02bNiECRM2buwo\nFJmXl1deXt55h6Q7kXtLIVmcuE8D7bug3V2mlgqDOIqS/3u6c+NV8uzg6G1FKl+E3shEEeGfuEro\nl1tgwnjxWktji/6CgBFYStJW+obh8FB2z9dHcATzR2wQcaKeHrbu7WlnZw9YRRQpCI0P+fWdP35Y\nsveKOmlk6hPTs17r3B7GkzWYG9zGiqZDyxjN7dO0q6WWGd8zqOR2fsaYCfYRzwyMzYp+YsOM1OEJ\nzaXKkBiBfzevXjGgn6nf2++GPfUOvfFEY4GcqKfAZ4QvGPmV2iwP5ckQCpXDEOYkzTHaVff3edmQ\nkbdL9dLaY7PDx3krj7XHpBlVFqIC9LWisbr8t7YikHBoC3dUvTEuFihUX2VrTF/MSls6KrP3L4yP\nLJKZbl0Bp/cqVsrzzPh5lojW1nV5Dz/Z7+S4nniUQNfUPmULWejR5/r+XnVZ6Qoi8NLgwMZyqd6v\nzxhaLlsPcRlURK6tzpN7cI/Fia87deXsK0x7hh4+5ordAMBoV3lxAUKhEVGLAGB3m61Ow6ujuaOT\nE1OGxR/44DjRLmIxcV2QGkJoWEzgCgnAazHQIuJPb/0zZ162rxyGylgTxotneHgA4DHSj284S2g7\nlI62Tt0cKejIKWbyGHazw2F2ckSXfRFeA4PK89DZNK2hFbFyBOFkUEM7DocDQRDf5nsoilZXt+9Q\n5XK5Fi1atGHDhlsn3c3k3qrUoDQ7OXQqoS0+PalYPTUprz7w6e86PMz+SAWMi68O9ikkLoN6I+Vh\nIgWpJ8rWXChfM1IYE3DKi9nAizNkc91/LuGzo2YP6DDglB6o4oVxI1JDX9z7RFuN9sKR2uwHg6iQ\nK0JH2QN4EScZY5Kb99P0eNO/p4XOe90pL6cKg3tuzHaWxF7jqC5kpmSjDDRtVOLpbwt9UyGBbs+6\nMW88TQ/nAnAjR4y4cKxo6OKpxCkRO+rlSft8PTOjx2ZGj9VamvYUvzd48OyiQ38aBxyr0pmHwwBD\ni0nUdRBd9yjNrgCjGQBgHu/QeKHEU+OMneFSHoSoLLc6j3op82ZYYkiuGmb0bffnUfnp6RlfK3dk\n5YxPWqOy6U7TGoqaESqFWAsS9tvIN0++PDrun8NjAECudwyNF05IDWmtasu6P2PNfZue2DiT8JQA\ngM1gpzHpkf0iq0/UGxJCF+6smtE7rHPKgQ+vS48wQq+Ye0RgdmjASkWYHbav+zKXbM9/TSrK6Bcr\n6y3rUXG4xmF2MnmMCB7d+4embVy9mHvZLw0VhmmM9ZLLh/WYNMyoRLwOl8g6gs7VFrmYG+OynQcA\nm8adMjzh9NYiroQ9cG4vRcGUkalP+HoyeQybwWHRWP0DIgAge1K2OIqFtXjrDRdiDak+Vff3Yzq6\nncgI/pvhj5zJHzWrc/vgwYNFItGXX345f/78pqamAwcODBzYvunUihUrHnnkkYSEhM6OpTuRe0sh\nWZy4VMggbHGlywb2jOCcbSgL6EP4BrqpsHBFOj+AXzc8pliuPC52a3mUwGA5r8cZcv+l3FUv7j9D\nVR6tnfXBFISKhMQIuWLO2ulfx2VFSa69XD9mKO3F5J7Q6E7TeMlhMiYzWr93PW41IczgS5PWSnVa\nPK3l/afi1hyh8kISBsYmDIwNHFPbSo9ud4ZF5WQf2XLRq6kDSHAd2Ig/9JyIF2iWZNCiEAr1gez/\nm9wTQ1Dkg/XPqEw1bSW4LLu76MFuqNXaOxtaV09NQhGKq2o1I2aGW30SMZxw4zX0qEnE2X5S/ofH\nG4/XGtZOTwEAhBXB8Bpe/O1pgYg1UcQyiRgfTtgQlR7+xMaZREbUmgeSnxoY+fEJRbtC0tkX5UQ/\nnBV++JOTQ+ZlT1w24uCaEz6FVPhzGbtfDD1VvPedP5hTM54fKt1dpn56YJcVCtxtx2lhI67yZtVm\nud1E43I7fpBSUTqNyihvOfri2G0IBZFmRhCmM4bV6bUxLJ1WSFan4evwgrfk5bTQGLe2RfnJ4rgP\nDnnUTVQO36Kx+S9SiSw6eb4ic8DsctPZcS8M3TDvh9GLhljdOhEvcG+h6PTw+gIFR3yZPSAqPgYD\nS7loZ6upKFo/4xaa7PijZgVVDLcKFEV379791FNPvfTSSzKZbNasWS0tLQBQUlJy4MCB4uIutwm+\n47i3THYaq1sqYAhZNADoGRF8VtVYXQCA4d6b9aa+oL7ro9Vl7YW4KLTLFgQep5qCtP+5osLM0t2H\n3hu57ttFu1w2N+bEeBKO74+ZzqY9tu6hU99em7dT/1tvr8fpqP6U03tVdj1ag5sF4V7J7BdDH/8/\nmrjLjctQBhr7yrrwhastp38N2sFWfoqd0bFRQnTPKBdGw87+YCvJdRUdVn3xL0wbuLP4e0cbjirW\nvfl7fYHShlARSd3QA2Vrd6mXyPpfp0KS6xwyEc23jSkBEdfgMddShZmslMVU1Q5323FfLThZCHPj\nmZZPTyqUZldxswXzeOs8mQJuu6j8cO6z38+ZvnLCpie2u2zuI5UbKKAdGi9MkrCIpILKNlvPSC4A\ntFaphVF8Jo/hC3quOHSx5pQ8eUisPUrw4p4nTHvPLAxV/155mcWPwIvZvC69pfAFe/WnqHhQ5w5B\n0dtaeXozlX2Z7QuhUFMjhhBJ2VwxR9doAABNuZJiYTUZAq1zWmsTADT8a1zj8ilupdytbsK0rR5t\nCyq+TGViuIuwNkviQ6aPW9x7co+wJHHKk0xxjNDs0HKZgQ9DSUPiqnPrA/Y0kkmyShQHvUzXJNYq\ndb2O2CiEhGDw4MEVFRUWi6WsrEyv1/fo0QMAysvL6+rq+Hw+n89fvHhxwD5JdyL3nEISsmhpYeyL\nrw4mWqRCRkDuiNLkAoDrTlfsTKKYdd3lYXBL7ZK4EekP1ID3MrufU77VV0GZHj01/6fiZ7fOiu0T\ndeFojaJUGZATKokPMaospQeq9qw85HNid4XHrnQ27fC6Tc76LRSGyLf7J+psc8q3mvLGRSxZG/RC\nTb0uKj3U6zaxMoaYz+wL2sdefprdZ5TvkLDmxf7zg9Y1C9GkLNH9C1rXLMQuDzLGcK/C4CxXWl/d\nV/vpSYWQEVmnKrSxW92Mdk+M5dyBhpdGByRvdgOKUDzqI6aTMzFDe/4Wsfscpi9CWBHE/nV4zGLw\nOH0qHwDWPJA8rWfopA3FWf87912hkhkzw171kcemIBRbVHp4WJK477SeNafkB8s/l2uKASA7hlfc\nYgaA8y0WIu3JorESSyhf9m51bv2jn02PCWGt/LWoueZbntBw+L/nuAxqZ7uxveoj/YG+4MXYGcu7\nCfXW/vih/6FBczFR0YQKL6vmMKv/O+PTFxGvWTyGWWt9o88aXZOB6hGXlP6e+83Zg+Wf+zayUhlr\nACBuY5F9xBh9wf6IRR9ptr0PDotvmUtgdemJKohPbf4HW8jCcKcLsxWKPksaFqc21/tXkyIQRvEV\nJa0hMZctVUXsqL5xUy1eFdsaScTmdXWb9yAmU/sPPjc3d9++ffPnzweA2bNnmy6xdu3aKVOmqNXB\nk/buFO6tr/x8i0UqZKAIxWdVWzoy9q2DlxVtI+osjEm+ckWWqyQtjC3XXadCMh4Zy+bGAQCFHoJb\n2v35uLHC41BSOXHEIcIIdTkpPL46e3rP5lJlc7kqIiXwKUkUxS/ZX5kyLGH/e0c7xzi80WeNy+Z2\ntx3X7Yl3yLfYSt+gS6fZL3zIiG23Wrw2+XD6wC9sF95HhZnO2q9cit2dRa37Y1sIrNP/1hthMDvv\nQErglJcHTGSPrX+IEyaIfvUbWs5DrLQBkf/6Ur35Df8OSrNrSoZEYXQcfS7r9yqdMFnC2zRnXsa6\nPcXvHSj7RLt/o73iNG/Yg7ayU1f8MD02hbvtuAPzOOs28wZ/52zcjlsbXM17jUfGOhu22y+8z0r9\nZ3tPdrJgzDH/axcMiV77YMqGmT3+OznxvSMNo3tlUmh8W8W7tor3fH1iekdqm3VSUXqrsQoA0sI4\nj35fMerzIiKnTVmlJjarBQDfRoUe3IMyUJmI9VLkZoH8P4pZY2NSLGMiWP5Viw5X601OT2GjBgDY\n6ctp4aO7ukFH7Xntjx86Gyt9LWZDY2HUHF7YZXElKJXuSwbgStjEnoTmNgsnPMpTGlOjP50v/7nV\n2O4zV5lqe0QOt9Hxb7y7z8v3OVLTUGGo5o+Dq6ft8h9Tb23h+QVqDkuZt7fkAzrKrlLmaS1N7E5J\nBcQzU+dqGpnRY5/u+41Fe/tuh3irWLJkSUhISFxc3Jw5c3bt2hUXF3erJfpLuLcUklznCIjzlgoY\nxJLIh8bq/uHRjEeyI+Am0TOS+0u55jou9DjVCFtKOAwYMQ85m3YS7U7Fblby875uDrOTGxru1pzh\nSjgOs1NR1powyM9z48Vxc/WEZ9A5/xuXNioRALa+8MuGedtcl6yIRBKrvKDJ1fwru8f/uduOCyf+\naWa+tOPHN1FRFqZtpQrDeEwxsakau9c7bu1ZZ9OOADk9TnXpwdawkHNoSD/cVEXlhfiWLF4cI157\nrCaEyQnQVQkDYxEqwkzJpkYlAQAqDKNHJ1nOHfDvM7mHuKDJDADPDo4qodJ6jshITxso5sYcq9p8\nXp93LpO5lZurPxt8R0F/XK2/mc88PoTxB1WQSQvN8bp0xj9GWgpfEIzLxQxFzOTnKd3WhZMKGP1i\neP2kvMo2m5CFMhOedLX8hjDbdT+Gu3a2LCl2besvm661NAFAkoRlceJlSotMxASAhqLmXvel+UbT\nNRl8akkWwnwonYNFP/bC+EGSSIPY7vL/Tb7xe92jOxtrWxt5E8t8C9ag6Pesi35tq+XMPu2PHzrl\n5QDgsllprChBZJcBIGwhq7VSjTLQppLWkBAWoutXFfPNlF7LnJfiv60ug5gTQ+RHn8nmbchbIJm7\nnNrvAWI7iY63trWEcmW+w9iQzPz6XUOT5v7858pq1anOK6SAUBd/+DxRW62WDLELYNOmTS0tLefO\nnWtqaho1alTnDk899dTPP//89wt2c7m3FFI3wUs+cK834qZ6U6UCBopQTM5rjpLATdXM+HmoKAsA\nqLxU/NLGaF6X3n9iaixqTp+UhRtKAcCDezyYh3AgeT1Oa8m/LUX/sha/Yj7zOBHNfP+KcbNWT+k5\nIaXyUB1xeU2ePH1csrZR53WbmMkLBSP2URDGz//cRmMgAOBS1tOj2zcLCJlagwozeYO+plA5Xr+E\nlR+2Lznx9lOpw8IYTCc7Y7lLeZAqDCOe03V74nW716g3r7AWHVWt+xcv5/7OtxkQhcjuNcxRV+Lf\nMjYlJP+f/QFgZKKois2cuGwEAAyMn5ElHFJEvZgQlTM165XdvEK36QrGCkxfVJ16cC5jDSN2BgBw\n+q7hZn/CSnkeYYRyeq+iheZ0fzkREj00QZj7fF8AoPJSRPeVA8IgdlDV21qEnAiPy5sddz9R45yJ\nIiMTRQY7lhrGBgCtXB+W1B6thjKoH0/dfH7fBSKQzOs2gRcPy35TKmCIwjGuxVGlbv94n/mxcnnf\n0E3SIykh1HJ1d35N3KxDmBxO1ihHbYmtJNf4x/cAAC5cSKELunbGsEWsurONKcPjlVVqJh3FMH6c\nfnwyr6M8PEKhshkCh9vMYQgxlBIbkonhLk/v+wHA4xf4Y3ZoO6eyJYRmz+r/jtHeFjQ7e9iT/YOL\nJGQpSlrjrjdo5S6GyWSGh19zJvidxT2kkDCPN6hniKjM7UNpcl2N3romekdx6/XXHE3uxa1UQXvk\nMQVle1068OKu5r24Ve7f7ei6M2kjUry4FQDobFr4pVnP3XrQ1bgD1xfhVjldOg03tM/y/HDu4Ll9\ny/fV5P9UYmgxbV/2a9JgmaayiAgqczZWKja/z0IMDGP18dc/VbwxgxZ6KQ74UiAfQzbHcKCv1+ME\nAKXZ1VoYqjROHLJwgXDcaVSUhZurGbJ0+4Vz5lNfI7RwXJdnLT6m/el/7D4jOdnjAu5RY3WL/n0C\n83RMtczE3lhbe/1mB+Zh0hAmivSJ5gIAl0Gl2BptZf/B9EVcjSnri10PnUZ6RA6XSbISJNnVpzd3\n82G6FLsBYSjdwt8lPxIFSSkIgx49lZW29Gq+ixZD1Tv7xrYYquhUry9Ij4KyEVakx6EGAI2lMSYk\nM051H2BIvCS7pu0sABx9LosoLgUANoOdfikhl1iy/Fl8jBfGBQBMX0QTt0fxhieFH37nD1uDnjik\nlzZ7Dv959BvIY7wr1wc3/Lps7p9fO9C4bYtgzGwAQMWRHpvJi+PqhnNeO0XkdHdTZ5bQiEmDZQDQ\nf0qaJjN6SOTjhT+XtVa2OczOt3aNUpvrRewou9tMJBKlRQ6r0xR4cE9Yktis6Sj0oLU2SbiXRVQu\nGfdTbEhmUtjApeODP7aPfSFwX0EfJpUluoutQ0jubu4hhVSjsceJgqTB+s+GmavPEsXubu5by0KY\nZW3X7EaiR4ynSTriqWgR4+3Va52K3azkhf7dnv1+DlvIQlhSzFA65bUxw58eoP81DdMXudtOMFOe\npwrSBSP2c/uuwS11ALBwZ3t5mN4PplUcvrjuq8L+b0zIeiDdrtPQoiYBgK34aOGei8Nfmj50oLqi\n0Bm55AtmYu8AwWhhI1gZy92tBwHgx58r6FpOyPyZCEojzHoUeggzLRnTKNyq486WME52j6hXvol+\n9RvBmDn+gxyu1h2r1Rc0mSQcGlHMwlb+Lm6uptAYvlg7pckVzu14uHarjrzJf94JTFfLb4bfNsf9\n74j4H+3qpG//ZypVeUE/Ru2PH9orz+E2BSvxGbnOIQpJ8FhNht+6016dKVH8fn+flz/54+EvTzzj\n344KMjF9kd7W8sO5V6OEqZHpYYpSJVonrWxt37zj6HNZETy6B/cQ+wbPzS9cAAAgAElEQVQRWMNr\nqKmaixkb0QibW3PGVvYfenR7MpYwadDizVHcokYAcNnckr0ljUVyQYzY8uqe6ko1ZekR38/Vi2Me\nh9WLY7lPP4U49WcOGJkp2QAQMm1R+ILV/OEPntn9MsUm49hc/G7NX09snNljdOJj6x9KGZ5gjRL2\nGJVUeaxWWa3evfUbZ6mwv2x6OD+pQVMcwU9aOn6XVJTeYqiy6R297utR1+8ro729JoXDbWZevsFx\nOD+JiLujX0W1vQD6z+wVsL0vyT3CHamQCgoKdvjR0NBwxUumby6d/V2Zf41nHz71U9lmK1NabyQD\nqStkIpbCdP2R3wTMhCcdtRuYsrlB3drM+HmOmi+w1j324mdZqS/ayv7jsStYKc9z+31O6AmvF3Ng\nnnWnmjGPV7/ni5R4DW5Xy0tUG9qcCBUBL0YElbmaa80R45LG92OKhUyP2hM/gtibPABU3N+tzgMA\neVlt5jBahV/RdFbSAnfzt7wRiQi7PPzJXV5M52pZReUFBv5+ltc86vOi2d+VvzZWNurzokU/HXM2\nbjceneCo3YCGxRBup8o2q39Sl7vteHHUF29enOp16XGzjhGbxst5gDgVJkqV07Wd97AAAGvhYeMf\nP3jsCjMSse+CNuGbpxUrZ+n3bQjw/xNghjaPNUhlOa2lqT9n0FtTjos5Mb6tEa1OQz3mxvRF+0vW\nCFhh4fzEmF6R1bl13y36xXppNTMyUYQilLozjTF92uOka9rONtBO2KYdQg9nnzG/7ahZxx++pyOa\nUZTFRisoDszQYvru1/+6+gvHzdUyeFymgFW3qzQtjL27TP3Mj5WjPi8y/fF9w0ujm9+Za2akxGi/\ntbISP5ywwYN7aGExzJRsZnJflcC7wfWw29SxMguKrJ+ULWQRGWMRPHqjDes7rSeLzyyrOBWHD480\nD4oSpp6T74oJyQzlyUJ58SpTrQf3RGeE82UMXzCe1WkgivPelD+fKa9dVR0KkruPO1Ih7d69+8sv\nv8y/hFYbmM3XmYImU3GzRRYSJGWViSJEntCvFZrOMQ43BVkIs1J9o/taUlC2F7MhnODRNQhbijAj\nbRfeY2csZybNp0dP4fZff3kPtFalA4DW2oumYz+5f1wEjnKGSxkiYAIAlYYT0XflxXji0CQAYCb3\nFePlqhodUZM7AJTfw+NUt5R9GWe9GJnWu0HfoZAQttTjVGPqPMGYY0ChIpw4d9txl/Kg/tc0/YG+\nhMfl133/WS7+j3z5QIMdm5gm/uGRjFeiNnvFw0WTzmP6IlZqFBE1pzS7pMIOfx5uU4zvN6Kk1Y5b\n1AxZxmU3R6FmOxMKqrYHyGl3m0/F2521520lJ6rfejIl/yuWUBj9763sXsN1uz415wZak1RfLFNv\nWRnQqDbLBazw+ueHuP48IRP3adZXGO2qWvW549Wbd5R+0qo+hSDUpeN3CVjhEllI3jeFU14bYyjH\nyks6Csk3V6hC40XgxQtPPHz2/LuTE5YLPn98yeInUrjIO83nWy1NAFDUuM/s0FLoIo9Lj/IYa+7b\nVE3dRbtvjyrkPFMkCksI0Whss3ac256nYNIQCYdmKjgsW5vH6TvWys3I3rzf7Yas+zMOrD7+Rp81\nAGBxG+tDcuYNSfblPF0Nk9PFh6t12Q/2TBuZmHS/5L7HphXsKAUAF2ZLiRhCfM52i8WqsWM0S5Qw\nVW2RExcyUDaR2LTjfNuvFdcTwkNCAneoQgKAAQMGvHeJvn37dt/ZYMdGJokAgHBFBMBlUMuUlt1l\naosT7xfDNzhudCnTGQmHFhDU0DkD9GpgxM2icmRdnaVLp3nsSio3EShUZsKTAbm0NEEv58WPBsXx\njbs+iV6xzTBujE0ryBS2hjDcZl21IIJrUlk8VlNNvbD/jF4AQBWGxnMrqnPrP566+YtZ31WfqNM1\nGb6Y9d2elYeIAbnZaw9caOOYqAn9Jvpn/i7bW2PQySk0PpEuU858eL3yAcu5Z/mjfmclL3Rr8wua\nzGF4VUZCZpS3dGxKSETVY5MM85qpg3UJ71NofIZsHsBh+8VdAFCutKaFdeQvU1AOUKiD4viaFu3y\n6kA/eUbo0EZl4Bbjreqy4lCj84VXbNKYMnaP/0tz0bhCKi+EHhHHSsl2ysu9+GUhFRQqFdN1fDXH\nqjbn1+/6pXhVVvQE3uAppiM/hNvoFy/s+eHcq7nV3wHAwPgZp+z2QbFT2r8CNi37wZ7ZD/bsNyzn\n5MHffeNYtTauhGOq/qwE805m0WNTpEv2P8XlKHJ6L+0dM0GuLTpcsa7VWL05b9ErO7McOPa4ZZn0\n/V4suszlkRvc1p7395i0bETi5DbX5OO1x+vm9o14MAaXU8QUKurtPVMULQSAhdsfGb1oyNmf8wHA\n7jafk580KuNHGK6tjnjPCG6hwmywY416B0vAjEmId9pdFo112YQ9vl3nL56tvXCg1spsCecnMmk8\nIgDPZ6/Lkxv9Nz8kIbkm7lSF5HQ6c3Nzy8vLr9gT83gLmkxSAWNKuoTYJCIAMZv28QnFwh1VzUan\nhEO7iTUa/AlhUTGP13LpcbXzY/jVwOm9qpsiZqgwk3up3lpnGPGPOgwXFzJLTrd5gB/qQimjRqse\neT29F7de21ogkEar63Wu5ot0PpsIyWWlDUhbf0xVowUAJo+Rt6Ww/NDFCS8NF8eFyAsUZUprgwk5\n6n7Qi8TQOR2euYIms9Ls+kzzGL3Hq0SLERe+UzNBOO40lRNH5afbzr/S1pTL5EfRo6fg5upDz/ZB\n2ZGCUb/XsmcR2Vo0yf+zd95xTV3vHz/ZOwQIJOwwZAmyRRmuOhBXrVrco1WrraPWn63WVqvVVr+2\nta7v11WtWletVWu1uBUURUQ2AjICBBIggYTsdfP74+I1ZYkKBPS+/+B177nnnnxucrnPPec853kG\nMIf9BYwPAQAiuQ5x0zdBWtjCRboxBcUmJbH+68RShdaIpFhk+ESqpc1TzFUX/m6LZaZkfH5GrssJ\n+wAqzcDbOqj18nQvjNNXx2mhw+VJZ5HKsqtHacFDsFQmJKkGANwuPKzQSK7n/c9OR2E+LaeFvsOI\nGq9Zv6Co6o4vN3Z21PaR/p8EOg/PU9U7k5+vsxm/bgQkF3t4BmgoYsgIwaOIKqmaaU/PqroZ7DmT\nzBlmkOWTGSSjooTOCkiI2Hw5ZztkguIDV8yL3hOTDx4Kis7E0wT1F3RgNABADUw0NsXRnzMu3pnV\n3xAirPekYEdSRRlqJgCgKq/GK+p5p1n7xUnOvPrd12emP8nwk7ETt92hvIzLKJtGKKhVfZ1Y+rCy\nEU4gO3h+5JnVl5EAd6LCOmsHa3mdQmqqtGO4O7P8hbJCtV5OejZRpNAaO30K9m3m3r17y5YtGz9+\n/M6dO9svBABs3rx57DMmT57c7WI7gd5qkK5du/a///1v+vTpI0eO5PP57dRMLJCM2JfpZEW6+GG/\nViuwKPi7ZVKeDdkAmSYEsD9sO4zY62CATNZfJX2dWPpbuggAgCXT2u8kKV5mpAWB6PxuW4ceVcoz\nFD7BjYkb9INvFzeojYBi72SUEf3wmbq6uwFjhuVeKdTWiynWTa+3GByeYO+iU+kC43zGrX3HLcSp\nOIXvGuwY9l7A43O5i/8o/Dqx1A7X5KaFx2LgyXaBTDPYk6VkRBdKm56DIrmOQWXA81h423Ci87tB\n4jU4+xE4Gk/LP66rugjPXbkwCUh6VgyWBDBESN0It2mQCCu/etcgfYKjewIA4nxtK4vV8/wadt8V\nML684745Be6f4W0dNDrZ31k/mF+1WHbtfVzlxvTVWfWYrWPdDRIhycXn+INVafzzRiyGOfT9wgdH\nkguP7E9aACkbFWlXrEbOth4zX3f7BABAKCsc3XcpS9jgce6W7Nox+sCxjEGTXDadT2iIGOIzD4vB\n4XFEDtOLTqCbVJXIJwp/XCDauZRj5QVslBfv7/j24lCdQSWtEjUKz+TpdEGu8ThWP9iDH1ILsGQ7\nLAaXELF5uP9HAAAG2da3hpina1BSsJiGEoE83JrINFKbFvFU1ufYMBx83+u3/eTEX9cUKCWuuSJl\nfaUUiXdQUZ/jahOocS7DNFpLy+/b1GJZjsw+sc3XALUPmYAVSLUBnLoGjRMAgOtjhyfh4SVT/EeC\nazvvMqi2Q7/zrddWerDDHVg+goZ8jV5OJVoB2CuytXc+lFcmLS3N1tZWqVTm5OS0XwgASE9PDwgI\n+Pjjjz/++GM4lEOvo3cEV4UgyGhsekATCITly5dv2rQJAKDX61esWLFkyZK//24leBqfz09ISHho\nPQTQfGxxGpGolQzNAIBAFvRhiPXDKpVYpgy3sQ63IbRV83XoZ2Oa1Ndh3Q3hz0mV1hh1IIUlyk/H\n9wlvWdMAmVZfE6VUKq/N9qARO+3f+5Mz/F/GTmcnz7j4bnRi6u88DN2d5yfOLbV1LK1XG5l6E8Cb\n8m/kUDn25pcfsyQUR8AZKDq7fiydSSduEAMA1Go11mQ4l1O70R5jH2AtEolcadCVTH6YIyW/ot7d\nmujFgC5nVrCDrQEAT6sl3rbE7BKBPQ0PAABWU1dKBv0Q7lBTryXKixTpy4ycBLlIBKnllSqdSNSU\nyxVDdaxM+g1nHCgSidS/fIH1CJHc3IQJnCMViQAATBormFl97wMXg4nwY0pdQbnQy4YITMZJ5ILL\nddabLo6YEbyHQmACAOr0FJLLe0wrVw+bMevOR8yes/qOqcCJHuzG6L/uQtSyqL8f96VVZ+20VuHz\nGw8znfxEIhFgOmmqSvMyLhNyn1QkLR/LmwOGAP3T9FqpHAA5YLmqG6XmX9EC//Wy2mwjNsSkVRmy\nbwP/wYbMG9KKKhNRVyJKH+a37Pa9TyGNa1ZJTpDTrNqaOoyRgxOdbzB54iBrRU0dAMAOF1BbUwcA\ngGr4+L5DJYQrY22Hll4TXPPV/+TIvgis6urqpOrqOpnA02agLmC/RCpulBus8ZKff781Qgh54Zxh\nPY/K/xnKW0a0sz387U786NqS0+Xzz00BALzU/TyjL23znZoloVO+vUMd61VlQ8GRWPi8lAK7PjYl\nWfzie3zvwY4qq1q5QiZv0BiNpKLqVCus+7Zb0gAb0cMqlT3J0BX/Pi3ZuHEjPHnc/vtob+fTTz8F\nACxYsOCFhTAhISHx8fHdo60r6B0G6erVq6tWNWWSfvz4MRJAkEAgLF68+L333lOr1RRKc4cFHo93\n+vTpof/NmOzCCHR34LYRTZXLBe/0A9N+y+PXq7ncTgvQ0IwVgwGXy11wQXBmTsDeNNGp4EijspHJ\n5T4ob7yQW/f9mKbFp2Klfs3F4slhzmP7QWkSMDWk01Zj2DBqvGn4RirZD3vVSL/6Sda4KfFDJb9n\n6CP2/3W/6lsu1zfWK+tQXlCCu/mXgGxzudzA2KZgozQ6jUMlKXUKUnpt5I9jmRz6wD6ER5XyMaHc\nSrXsvXBHZyvSgjMFn3O5AIBqtXTpYN5DsWG+Z1NTBFK9s6MDAACMLzPKiwAGh6NzfRSG9CcaKZYJ\ne0IqXSLUR74f77DQjvZJHcuWM2uF5HyMrcdgDIEJaZQRfq401xCe4ldq4IZxSqIUYO3oMmNj0aOn\nnj7ekB3RtO9hwjLPuLOCFB8jlTtgY2Bp/vpxc9PKrNJrUqwonPigBVgMzohXaPBCG0f/mZiFGcUX\nqh4dcRu1kcHlAgAMQ95PuvbF4NgvmRCVPmBMs+gSNSxbezs2UmgyMNVPkqlcrnD7YqxG5fh/++U0\nCkZUKALZ9g/ejRg17jf+Pvuw8dU02RS/CbAPdGNJIaF0DWPAYSz1X/dbw8NzVv3fSUh/4uZr49ZH\nNWW+J1TqR9PhpNjCS483e9iFjwn7BABwOWe7w4TkpHASW3VSbBjr5Nq03Fhf2ejnHg4AEEZP+9/7\nIYZ3Da+QwWEulzs5woNOwlXqhLseN/5vko97sBtQ4rhcbgm+CgDg7xJVhr1Ho9Lhe8NQpLJi0YUK\njBgwDmfXfRjpwOWyX/QhncB///tfeCMhoQeF5bY4O3fuPHbsGIfDWblypb+/v6XlvDS9o38dFxeX\n8wwC4V8j1DqdDgCAx7dnWbeN82ortjeCj91Lr5Z4NeJ8bNk0Ao5lL9q5VHbjxIarZYmFz5Ne/5om\nDHNmvBtgF+7CbJbn7fWRJh5mDtqhr00KGnNieFAEnmWvqyhg0wgCqRYA0CeKV8aneA1rfWDTnCtG\nrN+um4F1Mt9oNzgkc4w76x5fZoBMYoXe2YpEJ+HESj086qgxQHE+tqcza1ttCsfwhgfibCi43XcF\nU47kwMN05D7vgnd8HbRC8W/f0SNGGRUlUKMTwFL1tZXFM/vgGDZk3gxIWwcA4DKIIrlOmbFK8ejj\nEolTijS8r6Z0hPu7xypuhxuFQVIOAEAk12ExuAj3iXnVt+IDV8D+YF72kdef7POwC6OFjQgYs0ZM\nUFADoppU9Y2BPHydBk5jRE9oGZePwOVpS7KQXdj7EQBglNY5rTmCIZBoIUOV6ddXjDgT3Gc4/5GA\nVcHTheQS8dQma5R0tvGWEUOcpX7ypJlLhUEqJvECguYcJKqr6X2CTJX3cAxvW7rz1ac/ObJ8kJTB\nVmTOdS8RhmgiFm0khjd3CpWqDZA9g0glvHI+IXj9+NwIB40eAgDQWBRFg+rrxNItSZUAAHuW+0PB\nSW9O03dFI1lXNtSo9LTR+zM/Gug41r87rBFKq8ycOXPNmjXLli2zs7MbMGBAszTnvYLe0UNqRkpK\nSlRUFABAKpXu3r27X79+zazUK9Ay7HdXYPqxaQmR3sH3+thdNrfvBfTvPyOUc72oHv5PzqpWHHjf\nFwDgxX71GOEIW26WTw3m6IyQzmji4ZW6ymKiUzjR6VcAwNJINgAAb21PwkBwbGk6mxYWKGZwXuwi\ntV+NGebvMjGb7/N/Tet26STcO32sT2XU+HKo8OOMZ00WyXVeJAp8FJ5kwmMx/HpNy/x4AAASDqPe\nOmTLzfLMKkW4CwNH9yzDBtDenYvLv0INitLyD+FZ/lUbp1L6DqSFDCW5eAMMDmDwwGTkMki3imru\nNmB8hj5SVF0EtQrKuAf9ClZf02tCBpyT3/gTAAB7RmAxuC9GX0LC2LjaBGIxOC/7SAAAi+4kC/Q/\nkbsJMhnnRO3A4PAkXptvl4yBY6VXj8GrUM1B8hbiGDZGeb0T04s0zv7uoQcaAa/W89Fkj6agsZLf\nf3Tbmlh/ca8q+wyOZW++7lhXVYxj2WFweJNRS3Kz1T69TB84mwFqIZPBluZix+DB1ai19SYiYXzQ\nF9fpHLUqxWDUwRcFG9qDqdUJwfYv/BE7DtvdJjmlfFNjw+AGFQCAYcP8ZMCfTo5NcRk4TE+BrMae\nzqhsBHG+zaMH9VK0lX/oKs++uF5nQ3SZRHJ5dWeE9957D94YOXJkZmbmsWPHNmzY0EnSuoleaZBW\nrVrV2NhIJpOVSmVoaOju3btfv00vNuV1Uru+FFwG8cjjuivGPiswV5YPcuEyiON+yQ53YbIoeANk\nQqaFg53oBbWqVhfzdpCtN8vzRMrHAnmQE32ELURlDGxWgcDlafl5dCIOAKAX8QeOaCWSRTP49Zr3\nQ7mnMjBz2QTnfs9zI80M4zp8c/f+sqZZMR97qkCm0RggOB1iuAuDX6/xYlMeCRr7tt1bHeDG/OVh\ndWY1Y36kY3ajyzQrMS2EqEidiSHasMZuowZWVHw5rs/pCrjXgmN4G5V8Ns0tL/u80jpy7fGSr8PC\n7NJPXXxqnDvg0FpNg/xhMt6GK5BpEb8vpJMBACDiqR/E7EF24wZ+pdbL7xWfUGqlRkjfavg15EvT\nVTV/99RWFOCYzxf/Ep28NCVZLM8go7aRRGR8NrIpHC2kUVL7RmFpTPbUz1WBMeq8FHODZNIo4Usz\n1D/S62+aIAKOuSnCLtqe2M+J2+Tn1ph0lv6/H1fsSCKwXZzFkkK1O1+S4WUf2aCqtqJwAACp5Y1w\nYsBOwQCZTFRCTpEkOMydXAQBAOhsqqqOgn3m7WlLc8mufujPHdXX8Q2xRgAAksvk1zEMPQE7O7vu\nmczrXHrHkF0z7t279/jx4/3792dlZf3222/tBBwUK/UddELt3ICq7WNFwS89V8SvV/uzSXDo1U+i\nnU5l1Pz6UDih7/MRjy+GuS34vcA8stHLMtafnVklj/ezPfm4JhQICP9O/QAAoAYP0ZZk/Z0vDtyW\nKr//N73/qBe2ebukYUYo59y8wBk7J5iXcxnE1cPcBrgxkV2xUn+3VBrpygQAjPKx+SW1GgCQXilv\nmbAVYYinNb9es/k6HwCQqwsi8X8yNGTSQrfjrPyxJDuyd1ifk2XIGBqO5gapBCwK/psY7YoJUzKr\nFFGhPjx99b77VQqtcfrxyt9uZCZqXQxGkxX5xS9eHnbhfR2HxgeuOPbgs0uFmxmk9h6vRCcv8ygP\nJoAT7V5CCx2OlLDi58tunAQAxH2ofXddf6RcU5JFsGsKykDtG6UuaFo8C0emQPpYJJfJzNg/TVpi\nzX/XQRolCUdDckbI7/3lsT+dYO8CAODZUJT6gIyKywAAvjjDgeUNABDJdXgs5oXX20GWnisacDjX\nFgfIeCzDBAGzZE4wZCKjXiWZ198L7tmjWAoIgpCYNQUFBZcuXRo3bpxlJb0CvdIgAQAIBEJISMgL\nR+oUWmMHU+115+IJOhE3NYSTtiICPHu2jvVnH38sSiqTmnsxOFuRYtytWuZq6yDFu1aFgspckTIh\nmAMAcNAIye4BzeqQXH1VOXc1BsiaAOmqS8h92ltibIBMgdtSbzxtiHFnvRvQSqgxxDUDwHlyFfrU\nikZ4mWSMOytXpAQA8Bs0PJv2+mH/LAga3sdGY4D4GlurQX/Rw3bi6J5Uv8/hoxjC8/cGLNXZqCwH\nADiTGjh27pXrorkMIpFpeyCOPWJfhhebQqzIXpas+jVNaB7uoX2crf0XDT7kzR4UxmslMDmC1TvT\n5CnPE15AMp3VyHG0kOdJAbAkOYByjSqhtvIsnvV8Ws5QW2n+WkCwd9EUpQMAnk5zl9+7gKRhpQZ8\njbcOsZmQyho9T7RzKTLVpKsqxhJJSBwmOglX1mCj0kkBAPnVt3m2IWKl/nW61K3Cr9dYA5O3Susl\nVRTOat7J9mCHa/QkJxY6ddQlLFmyBIPBHDx48ODBgxgMZsmSJW0VQhAUGBhoZ2fn5uYWHBy8fPny\nsWPHWlr+S9NbDVIHEcg0HXwYsWmEjM/6v7heZ7AkxvnkzL5kPBaDxSHPmk+inb8azmtW0+lZKKM/\nsmuRrpJUbZj22/MVwaq8lGZZVpvKK4piH+35agQv2ImevCQUqqvAt8g+jmPYQBql9tv+U+U36BGj\n2kqsByOS63JFSpFcB4/CtQ+bRlxzuSRXpECC0cGzdOax6doizJnxoFxGJ+IABtcs3sS/xNN4+pqb\nRmU5HI4Inpqi+Ea4SXLvLwvfPqGPna7u3PJhG66WtdMnaxVfu2Hmg3stITp5acue/wQ6YQPZk2de\nQS95QHDMU6SuoIVsM0/wqqsuoZhNPrFnfCk58xOkUZJ4fYXbF7Pi5po3giXTKL79mUPe1/6zHy7R\nFKXTB4xBKnAZRH6Dhkpk/ZFdq9BKZ5+szqySR7q1+Y29LGQCFl53PHR6KPd6HlGhldDJzd6QaCRW\nXv2HHTf5KC/F7t27TWbA0xOtFuLx+MbGxvLy8ocPH6pUqvXr17+o7Z7IG26QpGpDR4ZrYFoNLNSl\n4G0dkNmIuREO/pzmkytebEpBrdIAmaYcyUUeBBuulj2qbBTItNJGpeT3HwXrJyvNMtqZjIbyz4bV\nJf1Vxo0g9wldF4zFYzHRzhRIKTPvXiDYTv1c9sd2OxmfFja85VFzmpK7EzvU4wx2ot9fFg7nMYLx\nsaNuuFoGj+C1z7uBdmez6xS6FywNxhCtiU5jZTeGIJk1AAC08BGqnLsAAE1JVujwUTHurJxVkZ3e\naQBwlodnYVgN9SoMRmF+FNKKMUQ3o4IP+xAiaCsKzV8LMAQSxSei/vwe5pD3PQ/nwgNxzaD3j4NK\nMks/Cqv53/+pcu6a92LxWAybRoBMYNrRTLmWdD63bt6pJy9rfduhoEblxaY0bBoUFOc95fA0AMAA\nN2ZBbVM6168TSx9VyhVaI52I68RBQpTXgUqlcjgcLLa3Pth7q+4OIlbqW/Xp6iHQwoa3jO9pDpdB\nKqxTjfslO9iJjkR9FUi160e6b71ZPvzLY7Kks5yFW5SZt5FTtCVZWCoz6cCPaxvDOX5BqrwUbUVB\n9X8+gJPltITsGWSU1hKM6va7RwAAqVoPAOAy25ztNwePxTQzA2wa4Y+s2o4EOuMyiOUNrTvjNYPk\nMpk1PNlq2A2kBMewgUNgyG6edHnnPQDACz3+Xw2yZz91QSoAwCCtBcBKL0k1P2qU5TMGHDII/zVp\np60oIDrwmrXDHJqgLcuj949rGRD9+WfN+8516z9EF5/GpLPNjJZGD/2epf00tuFMjs2x6f7hLsxO\ntL7n5gVun9AHcUtZfnEeh06E42I8qpSfyqiZ9lvutN/yUGuE0lm84QapWbjongaJ11djtqKlJWw6\nYdM1/rdxHt/HexaLm7zSNQZoaghn911Bgq2kcfxXrCvOmuoy4fbFVd/PAQA0Jv/JXbbrq4CteQqi\ndeAATUl2482TzGHTWibHew4OT8OZkKBwBbWqX9OEBsi06mLx3pQqpFaxWM2i4DvYQ2qJM4vU8VxT\neqOpWeLEtsBSnZvF9yPYO+trK/U1FSTXLpxmp/j2Vz/NAADoRXyiYz8MlmTSNWXV01X/g8FT8SwP\nSPM8JzqkUUpO/cd63KJm7eBtHZzWHGm1b4SAZbLxLHvrsQtcNp1vdujA+75fx73jzry0duSIyUH2\n5+YFdsK1PYNFwZsbGxsXlq89VazQAwB+vFNx7aOQYrG6WKx6YV8WBaWDvOEGqUqm7U73uZcFg8OT\neAHK9GttVXC2Iv1vkk+4C4PLIInkOl1Vccm8AIxUpM26nfZpRAEAciIAACAASURBVCxBcFpqDwBo\nWHTEZuISPMtOX1sJaVQEexdfe1rOqki8rYNeVKatKGAMbG96k+Tiba8UwAbPAJn8tj6Yd+rJxMM5\nBbWqO6VNuScMkCmvRjm5n32Q4ysObHIZJDh3akcI4NIKal5xWRgteIj08kGCveuLq74GRCcvvbAM\nAKCrKibx+hKd39VWXYQP6aov0kK3AwCMykZI0zTApUy/Tg2MbTmN91JQfJtPc7JphACHwRX1OWMD\norohjhybRqxq1AIADEYTz4bMouDFSv3yWDTdOErn8CYbpCoKL7NK0b5Pl8VhT/u84dLBto7W//Hz\nNMUNAACbTpCo9JJT/8F5hg4X36zaPCPQVMXG6bakNs6NcCjTkW9puFYjZ0kTfzWYsAAAFgUPD1Wx\nZ3zZcglnc7B4HIcHe8EJpNq5EQ51G2OXxzofnupHxmPhKBJ3y6S77wp2vec9M+wVoyv52lOvfRTc\nwcpfDHM7NuMVA5/QwkbohHx6WJcneSPYu+hrKzVFj/G2DnjbcH3NTQCASdeAIdrAEWNJ7n31Ij7s\nt6IXllH8usRrBo8jLhp8CNt2GPhOhMskwkPH8F3RsGlQ5broN2Y9LIrFeZMNUjmlz90yaQ8f4MYQ\nSEQnr1bd5AAA2vJ8RdoVg0Ro3DBaINViCCSo7+DImtvu/00VrJ9sP2oGACAh2D6rWjH6QBbZM6jx\n/t9fZeHMl4KSPYPYUz9vXwNr9DzbJTuqZFoAgECmCXKks2mE4d42bBphsCfrdnEDAKBYrL74Yb9u\ni+XMphFeZ/LPac2R9oYoOwlG9ISavf9nlNcTnbwwWBKW6qwtP60pPUSwHwRXIDp6lv/fiPqzOwAA\nmtJsgl2nrVdtBo8d0kUtNwMO1AQAQHw+0fDeKJ3Im3wzkUyasrVRllbxYqiBsaqMW/A2pFEqzFzm\nAAAmnVZ8/DtjY1NcOzHN0bqxgmDv4nk4lxk6LMadNcTLetM1PgCAX68x1lWKcDa/pYvCnBkdF4DB\n4R3Y1rkiZchPD3ckCcy9AAa4WS09VyRVG0rEavNceSgAABKvL8HOxWbSctgfBG8drMxarS7aTWDH\nwBUovv1tJn+qefrYpNdiCKRWk8H3Ong25CyRpiOu/ygoL8ubbJCMANfDx+tgqH2jNKVNjsuKh4nC\nH58nMjEZDbbTPif3CWUOfd9GkI63dVC79IPMotokLwkl47Hn5gX+3xDXpeeKxjp8P3LCuDWXSl4h\nxmWwI31GKJfLJAY4PJ8l8rWnTu5nn1ktLxarO7KE6G2Ds/gHJPYPwXYAAIAZ+yey8Ihg78Ke+rnt\nlM/KlkQRW4TJ6KVEujJvlSmQxIkoXUrLXHwQBK1fvz42NtbGxuadd965c+dOs1MUCsV77723efPm\nbhfbCbzJBqm3gKUxDRJh463TehFfmXaF3j8OnnXQVhTASyNZo+dRfCOGVlzQka0qVbgH/3e/WQvv\nBtgtH+QCANj5ydgPhvg8XTOwg/EpzPl+jOf/DXHdNdG72bNmlK/Nj7crfTndFA2994KlOlu9cxtv\n3Xz0jOwd5rzutO37Ky2iqtMJd2GezZd62qJvJ91By1x8BoNBLpf/5z//EQgEkyZNGjVqVLOo3l9+\n+aVEIklPT7eE3tcF7Xf3CLBkWu2v6yFlI/eT7fo6gfzeBSyZpki7Yj2+yUuYGjyUfmRXg72fQmts\ntdvnbJYSt3OHUwK49L/zxSdn9u3ENt9UcDS3VsvfmO4RAMDXnlpcr+vIejKU16dlLj4ikfjTTz/B\n2x9//PGRI0cyMjK8vJpusHv37uXl5c2ePfvSpUvdr/b1QXtIPQIc04bsGeSxL505NIEWPERdkGaQ\nCElu/iRekxnA4PCajw8HnAeLzxayad06WsKmEZKXhL5ClwvlDab7w5qgtKShoSEnJ8fDwwPe1el0\nn3zyyYEDByyr6nV4k3tITKPM0hI6CnvW1wAywqF9yN5hrTpqx/naNmwaZP1VUnfGgYXpxGg0KG8A\neUt8erjz6lvCrFmzZsyYERbW9LhYt27dzJkzPTw8bt26ZVlhr8ybbJB8GzMsLaGjYHB48KLIPeDZ\nWFwHg/egoHQRNpQ3vLuc8Vde5l/53f+5weP9Q8Z3dGx8xowZAIB9+/bBu9nZ2YmJiZmZmV0lrlt4\nkw3SG0nZ2u5YkI+C8jYTMr5vxw2DRZg1a5ZEIvnrr7+QOKp5eXmlpaVMJhMAYDAYDAaDnZ1dXV2d\nRWW+NOijrZfRKxzZUVBQuo4FCxaIRKLz588Tic8HS6ZNm9b4jF27do0dO7bXWSOAGiQUFBSUHkvL\nXHwKheLgwYPXr1+nUCgYDAaDwRw7dszSMjsNdMgOBQUFpYeye/duOP+eOSaTqf2zPvzwww8//LDL\nRHUhaA8JBQUFBaVHgBokFBQUFJQeAWqQUFBQUFB6BKhBQkFBQUHpEaAGCQUFBQWlR4AaJBQUFBSU\nHgFqkFBQUFBQegSoQUJBQUHpobRM0AcA+P7778PDw21sbKKjo48cOdJ+5d4FapBQUFBQeigtE/QB\nAKKion799VeBQLB27dqlS5ciSWNbrdy7QCM1oKCgoPRQWiboAwAMHjwY3oiPjx82bFhpaSlc0mrl\n3kXPNUgQBD1+/LiqqspgMEyaNKnZ0adPnx4/flytVo8YMWL48OEWUYiCgoJiERQKhUgkun//fkZG\nBpJA9g2g5xqkdevWJSYmenp65ufnNzNIhYWF77///qJFi2xsbDZs2FBdXT179mxL6URBQXnDSC//\nK738Yvd/bpjbuDC38R2puX///gsXLty/f/+zzz5DMsa+CZh6KjqdzmQy3b59OyAgoNmhhQsXbtmy\nBd6+fft2UFCQwWBo2UL//v27WmTHWbx4saUl/AtUTzv0KDEmVE+7dMq/+cyZM1+/ka5j/vz58+fP\nb1kul8tDQkJ+/PHHjlRG6MkX23OdGgiENhN13717d8CAAfB2bGysTqdLSUlpWc1gMHSVuJdHIpFY\nWsK/QPW0Q48SA1A97dKj/s27GTqdPmTIkIyMXpMa+4X0XIPUFmq12mAw8Hg8eBeLxVKpVLlcblFR\nKCgoKN0BBEHl5eXwtkQiuXnzZlBQkGUldSI9ZQ4JgiCj0Qhvt9M3As9ygdjZ2SEleDweOdcctVod\nFhYGN+jm5taZcl8ePp+fkJBgWQ3moHraoUeJAaie1igvL9fr9QAAtVptWSVdypIlS/bs2QNvHzx4\n8JNPPvn5558HDBhgMBjodLpQKJw1axbsXNdq5Za5lHo4PcUgXb16ddWqVfD248eP27FJ8KH8/Pzw\n8HC4RKPRUCiUljXz8/O7QCkKCgpKN9Fqgj6hUKhSqRoaGhwcHLBYbPuVexc9xSDFxcXFxcV1pCaB\nQHB0dBQKhfBuXV2dWq328vLqSnUoKCgoPQgqlUqlUi2tovPpuXNIEATp9Xp4LE6v18Pdc5iJEyce\nPHhQq9UCAPbt2xcSEoJMKaGgoKCg9FJ6Sg+pJYmJiStWrIC3AwICAAC5ubnweN3ixYuLior69+9P\np9OtrKz27dtnSaEoKCgoKJ1BzzVI8fHx8fHxrR4iEAi7d+9ubGyUyWQuLi7dLAwFBQUFpSvouQbp\nhTCZTCaTaWkVKCgoKCidQy82SCgoKCidQkVFxaxZsyytopuoqKiwtIQ2wcDLelBQUFBQUCzLG9JD\naic0+K1bt65evWowGAIDAxMSEkgkUleLefr06bVr18rKymg02vjx40NDQ5sd7eY45W3paV9n9+tB\nePz4MRxR33z5s0XEGI3G33//PTMzk0AgDBs2bNiwYRbU0/13clZW1s2bN6urq/F4/ODBg5stzOj+\nO7ktPZa6k1E6nZ7r9v1SrFu3btGiRSdOnPjmm2/My/ft27d27dq+ffsOGjTo7Nmz8+fP7wYx06dP\nLysri4yMJBAIs2bNOnfuHHKosLBw8uTJHA4nNDR0w4YNR48etaCednRaRA9MXV3d559/vnbtWiQ+\niqXE6PX6GTNm/Pnnn4GBgW5ubhcuXLCgHovcyTdv3mxoaIiMjLS3t9+4ceOmTZuQQxa5k9vSY6k7\nGaXzsXR0186hrdDgQ4cOPX78OLxdUlLi7e2tVCq7WoxMJkO2d+3aNWLECGS3g3HKu0dPOzotogdm\n4cKF58+f9/b2TktLs6yYPXv2TJw40Wg0doOMF+qxyJ1szsWLF/39/ZFdi9zJbemx1J2M0um8IT2k\ntkINOTo6KpVKeFutVuPx+G4Y6DD3/bOzszNf0tvBOOXdo6cdnRbRAwC4ePEiAKAtd/9uFvPnn3/O\nmjWrrq4uOTlZKpVaVo9F7mRzlEqlvb09smuRO7ktPZa6k1E6nTdkDqktvvnmmzVr1pSWlhIIhJyc\nnK1bt+JwuG77dL1ef+zYMWROy+JxypvpeWF5N+upr6/fvn37yZMnu1lGq2KMRmNlZeXVq1d//vln\nDw+Phw8ffvbZZx9++KGl9FjqTs7JyTl9+rRcLq+srEQyk1rwTm5VD4Kl7mSUzuIN6SG1hVAolMlk\nAAAajaZWq6uqqrrz01euXGlra7t48WJ419ThOOXdo+eF5d2sZ8OGDfPnz+dwON0so1UxEAQBAEQi\n0fXr1w8fPnzkyJH//Oc/paWlltJjqTuZxWIFBwfb29vX1NRkZ2fDhRa8k1vVg2CpOxml07D0mGFn\n0mwOyWg0hoSEnD9/Ht6tra318/PLzc3tHjErV65MSEgwH+jX6XTNpkaCgoKuXbtmKT3tl3ezntTU\n1KioqNu3b9++ffvGjRve3t779+9/+vSpRcSYTCaj0ejn53fs2DGkJDw8/K+//rKIHsveyTDZ2dne\n3t61tbUmS9/JLfXAWOpORulE3uQhO61Wq1QqHRwc4F07OzsikVhZWdm3b9+u/ugvvviipKTkyJEj\n5hF5LRinvFU97ZR3vx4sFhsQEHDixAnwrHdy48YNGo3WDd9Pq18CFov19PQ0f+s3ddeKvZZ6LHgn\nI8A/RFlZmZ2dXU+IuG+uB1juTkbpZCxtETsHo9Go0+lu3LgREBCg0+lgpzuTyTRo0KBvv/0W3r59\n+7a3t3dJSUlXi1m7du3o0aNra2t1z0AO7dixY/z48RqNxmQyffvttwkJCV0tph097ei0iB6Eli/g\nFhFz6NChMWPGwG/cN2/e9PPzq6iosJQei9zJ9+7dgzcMBsOGDRuioqIQn0OL3Mlt6bHUnYzS6bwh\nkRouX76MhAaHgUODP378eOXKlTKZjMViSSSSL774Yvr06V0txsfHx3yXSCTm5OTA23q9fsWKFcnJ\nyUic8m4IDtuWnnZ0WkQPgl6vDwgIOH78OJKD0VJi1qxZc/nyZRaLJZfLN23a1A3uf23pscidPHLk\nSKFQSCaTVSqVu7v7999/HxgYCB+yyJ3clh5L3ckonc4bYpDap66uTi6X83g88+yKFgSNU96L0Ov1\nfD7f09OzJ9w83X8n6/X6oqIiLy+vVr3Mu/9Obl8PSm/nrTBIKCgoKCg9H8u/9KGgoKCgoADUIKGg\noKCg9BBQg4SCgoKC0iNADRIKCgoKSo/gTV4Yi9KTuXfvnkAgIJFI7777bs9p6nU+qNtkmANBkEaj\nAQCgC0JR3gQsvA4KpfNYuHAh4xnmQXcePXqElK9cudKCCs2ZOHEiAIDNZveopl7ng15Zxr59++Bf\nB4m+k5OTA5dMnToVqTZz5kwGg2Fvbw/vbt++PTAwEAmxSqPRVq5cqVarX/6yUFB6CuiQ3ZuDRqOR\nP2Pv3r1I+e7du5Fy+G0apSuIjIycOHHiKyyeDQsLg3+d+/fvwyVpaWlwiXlWwHPnzsnl8oiICHj3\n+vXrOTk5tra2MTExBAJBqVT++OOPS5cu7ZRrQUGxCOiQ3ZvJ3r17N23aRCaT6+rqjh8/3rICBEH3\n79+Ho5Dh8Xgejwc/6YqKiioqKgAAAwYMoNPpAIDS0lI4ynVYWJi1tXWrH1dQUJCTk2MwGFxdXaOj\no5sdraysTE9P12q1JBJp2LBh5tlrYDIzMwsLC62trUeOHGlenp+fn5eXZzAYuFzu4MGDX2o1aKuS\nMjMzxWIxiUSKjY1FvoebN28CAHg8HhKNrf3LaYvRo0eHhYUhCzazs7Nra2vhz2rrAmHCwsIoFIpa\nrU5LS4NLrl+/DgAgEAhqtTo9PT0sLCw7OxvOhxQZGQnXiY6O/vrrr+HdgoKCfv366fX6I0eOHDhw\noOPfEgpKz8LSXTSUTmP27Nnwbzps2DAAwJ49e0wmE5zTfcKECfChTz75pFllhJCQEJFI9PTpUwaD\nAQCYO3euyWSSyWSurq4AgCFDhrT6ofX19WPGjDFvJygoCIn5JpPJmiWnQUackAEu82QBo0aNgo+K\nxeJRo0aZn+jq6pqUlNSqhmZjZe1IgpNe43A4kUgEV0bSXcPDZe1fzksN2bV/gc0YN24cAIBCocC7\nrq6uOBwO7u7Av+O+ffvMdbZk+PDh8KV1c4pbFJROBDVIbw6Ijbl06RIAIDAw0Gg0Ojs7AwDgToC5\nQVq1atWKFStOnDjx+++/r1u3Dk65u3DhQpPJBIfchtuZOXMmbEWQJ3gz4Mc3jUbbtm3b0aNHYevV\nt29f+Cj8nAUAxMTE7NixY+nSpcgh+HkNNz537tw+ffqYP3ARa7Rw4cKNGzfCuUGtra1bldHMErQj\nqbq6Gp502b59u/m5PB6vI5fzCgaprQtsBmwpAQCPHj2qrq6Gfz54vA6eRpo6dSpsb/R6fcvTq6ur\n4V9w+PDhrWpDQekVoAbpzQExSCaTycPDAwAwf/58AED//v2RbJ6IQTKZTEajMScn559//rl06RKc\njtrR0RE+BJ+IDNC19Vb+5MkTuMJ3330Hl5w9exYuuXnzJnLUvFug1WrhDeR5nZeXZzKZkATYu3bt\nQk6cPXs2XPnUqVNwyZYtW1rKMLcE7UsyPbORYWFhJpNJJpPBz/FNmzZ15NxXM0gtL7Dlucgbw549\ne+CLXbhwoVqtxuFwXC7XZDI5OjoCAKKiolqeKxKJ4Bij9vb2fD6/VW0oKL0C1KnhzQQeJjp48CAA\n4OOPP25ZYe/evSwWKzAwcPTo0WPGjHnw4AEAALFbu3bt6tOnT0NDAwBg1apV8HBQS/Lz8+GNL7/8\nEoPBYDAYZIBOIBAgR2fNmoWcQiQSzVtgMBj+/v4AACSMdEFBAXJiXFwcvIEMOebm5rZ/4e1LAgAs\nWrQIAJCenl5QUHDmzBm9Xo/D4WAD/MJzX4FWL7BltdjYWLjrlpycDE8gDR8+nEwmBwQEiESi5ORk\nuNuETCCZX29oaGhOTo6zs/OdO3fc3NxeTScKSk8AdWp4M1m0aNG6devUajWXy501a5ZKpTI/mp+f\nD1usIUOGfPzxxwQCYevWrbBNgikoKODz+fD25cuXN27cSCaTW34K4mUwZMgQeHQLwdXVFbZnAAB4\nNr5VWo3ZjDRrMBiatYDHv+CObV8SACAuLs7Z2VkgEBw7dgzutcTHx8N501947ivQwaDUeDw+Ojo6\nKSnp+vXrTk5OAICYmBj4b1ZW1vbt2xFh5mclJydPmDChoaEhMDDwypUrSAY/FJTeiqW7aCidhvmQ\nnclkWrFiBZvNhgejmg3ZISNRFy5cMJlMarWax+MBABgMBlwZnvCIiYmBHRzmz5/f6ici/YalS5ea\nlz98+NBoNCITNkFBQcj6mLYcBMwVwr0BAMCwYcPgozt27IBL9u3b11KGeVPtS4K3v/rqKwAAPAgG\nAPjnn386cjktNbcjo/0LbPX0VatWIf+VyJwW8kvByGQypP65c+dgazds2DCxWKx9RquNo6D0ClCD\n9ObQzCCZ0+xpiKQv8/HxWbx4cUhICDyVAhskOPMb7EFw6NAhuOa5c+da/VDEhWzUqFGLFy+ePXs2\nPDYFPxmXL18OH3V1dZ0yZcro0aNbetm1qhBpdsCAARMnToQNm4eHR6sLP5s11b4kk8mEdP4AAM7O\nzh2/nC41SOZLjmbOnAkXisVipNDPz8+8flvjqHK5vNX2UVB6PqhBenPouEEymUzbtm1DFvkvX74c\nfnoyGAx42gkAcPbsWbjmlClTYPvUVgLvdevWWVlZIQ9ECoUyZcoUpDuyceNG89VLQUFBcHn7z2uj\n0fjll19SKBTkxNGjR1dXV7cqoKWdaF+SyWSCPeMBAN98803HL6dLDRJSAQDw66+/IuWIex7siI+A\nGiSUNw80Qd/bi0qlSktLCwsLgxfAvibFxcWVlZW+vr6tzmSUlpaWl5eHhYW1XBXbDhAEFRUVSSSS\niIiIZt4Qry+p685FQUF5NVCDhIKCgoLSI+itXnZPnz49fvy4Wq0eMWJEW2MXKCgoKCi9iF65Dqmw\nsHDy5MkcDic0NHTDhg1Hjx61tCIUFBQUlNelVw7ZffTRRx4eHl988QUA4M6dO8uXL09PT0em6FFQ\nUFBQeiO9sod09+5dONQNACA2Nlan0yFxWVBQUFBQeim9zyCp1WqDwQAv5AQAYLFYKpVq7jKLgoKC\ngtIb6X1ODfAYo52dHVKCx+ONRmPLmv7+/vBCFgKBgMT4ElA9iEa1vVbYLWKfw+fzESMKAHAASiGg\ndbMGc5rpeWVsw2rqM+xNEKaH6OkUepQY8Bp6EsL5px+9yont0+nfD6eGV8Phv9Qp5eXler0eAKBW\nq5EghK/M4MGDXzk6VK+joqLizp07llbRBpZdBvUK6HQ6b2/vtLQ0pCQoKKjVcNShoaEtC4fvzZh5\nPK8L9bXB+++/b74r3P1p92swp5meV6NeWfXFH8FieesLZrtfT2fRo8SYXlWPUSWUXOBBRk0P0dMO\n64J+ktcpXu3cVv/NXxYkNMbbQE++2N43ZEcgEBwdHYXCpi4OnPMUyfX5Qtg0gkLbSncK5RVIKzsf\n6TFZ1FhsaSEoraDK/w5vHaKv/sfSQjqETq23tAQUy9P7DBIAYOLEiQcPHtRqtQCAffv2hYSEdHwA\nQdSow2Nfd3wJBQCgM6gkyopAp+FFNSlqPTqH17MwGVQAAHKfRYrHKwz1jywtpz0MWgMAQCFuMyQ8\nyttDrzRIixcvdnFx6d+/f3R0dEpKyrZt21qt1jJVgUJrxOMwLAreAHW3s7utra35LgaL0zUIG1TV\nAACZuubHqxO7+ZneTM8r8Kj8r4EeCVYUTmrpH+nlf1lcTyfSo8SAV9KjE5wjcoYRuSOt4x5rBect\nrqcdVFINy5Fp0L3iuMULM5Kg9CJ6pUEiEAi7d+9OTk4+derU5cuXXVxcWq3WsttUUKsKdqT72FML\nalWtndGFrFu3znwXb+uQVnJ2980ZDapqiaKSQmCU1nXra+y6deueCJNWnw05mLzoFU6HTMayunQe\nO8SOwVs58lxJ7cPX1/OaLXQiPUoMeCU9evE9vO0AAACGaG2UZmvKOnPxeOd+P5ARYjkyZTWv+ELW\no9xPUF6TXmmQYJhMZlumqC0eVTaO8bflMoiiRm0XqeogGCyupD6Tw/Ta+s+Y+yWnB3omvP4z/aX4\n68k394pPzI/dCwCQayQve7qgId+NHQxv2zF4DlY+goYXezo1qKqTio5ez99bJ+e/7Cd2kPQ/c9cH\nby9Nreii9nsRWAoX3mDEnDFIHrRf2YIoxEo8CW9AZ3bbpaqqas6cOXZ2dv369duwYQNSPvbf/Pzz\nzxYU+fr0YoP0ChTWqYIdGc4skkBmYYPUwMKTTXjIZEyI2JRTdT3IJU6mruGLM7pNgMagKK5N5dmG\nWNMct10Z/8L6BqPu2P3PDEYdvHu/5HSIyxjkaIT7u2n8cy9sZOs/YxJzd/IlmU9ru+r5mHkxf+m5\nOTf2pGjkFv6JLYhBmoO3CkR2MVgSwJJMUA/9Qgw6o5M/RyFB55DaY8KECWQyWSgUXrx48eTJkzt3\n7oTLPzbj5s2b3t7eltX5mrxdBkmqNrAoeGcrskBq4X/OElyNE2S7aPChENcx82P3YjG4aK/pXddv\naAkZT3dk+eBxxEmh6wKdXhydNr38Lzu6+6XsnyCTUaau0RlUNBILOWpNddQZ1JCpvZdctV7u5zBo\nbND/zY3aWdXw5DX1tzoHXppa0S/el+1uM/SjAVe3J8H9pHtH0l/zs3od2orTBIeR5iV4hjekLLeU\nnhdCoBCMrzqH9JaQn58/ZcoUPB7v5uYWHR2dl5cHl8c/g0gkWltbx8XFWVbna/K2GKSDqdWbrvHh\nbS82pUSitqgcUK4tdWtsyj7nZR8JAGCQ2XKtuN2TOhOdUb3snVPwNh5HRLo+bVEtK4z1nsVjh5xN\n33iv+MRAzwTzo+KyelGKpp1RO4NR959/xgQ4vRPlORWPI1bUZ7/ynFl1fs2GsB2HF/yhkv7rRzRo\nDXcOpAaN8QMAeEXzON52FzfdSP8z9+r2pGY132AgtaghMdTQkIGje5qXY2k8o5JvIVEvwKA10NlU\nhbi7p3V7F/Pnzz9+/HhNTU1mZmZycjKSjRNh//79c+fOxWJ79yO9d6vvOGez664U1iO73e9lZw5k\nMtIpbIJMYV5oS3eRKAQtKwsa8tvvebw+DJJtq7bwx6sTkVFEjV5OI7GCXEb5Ow6RKCo97MLNaz65\nVSJLxxdVpwAAJIrK/UkLzI82qKp33ZwR7TU9yLnp9W1C8OrbhYdfTW3Jg4qEH8ZO+2nc3cNpSKFa\nLy9OKQ8Y5UOkEuCSyKnBMfMiLm+95dzPYeuQvbBv8RuPUV5I9vjAavClZuU4mpulekgVGVXtV5BL\nlAAArfoFr0RvOStXrrx3715AQEBMTMzQoUOjo6PNj0okkvPnz8+ZM8dS8jqLt8JjUmOAWBQ8z4Ys\namy66aVqSz6eBA35TuwAQ8pd80IsppVo5Xxxxt47H6yJT7SicLpOD5nIUGql1lRH88Lr+XtpJOuM\nyss8dohaLycTGHB5X8ehfR2Hmtc0aA3VT2oGDhqRWrKNSKQ4snxK6x4dmH0q9N2AsPcCAAB/ZW6t\naSxOiNiExzVlffWyj0wqOppScopnG0IjsV7q6iT8hug5SHO4EAAAIABJREFUYVgcVlIhhUueCJOO\npCzvJ/3AJpAIQD+kZth7AWHvBRi0htQ/HmdcyYoYH2bezq2994PG+Nm4sIAlSD6UJq9VxK8e+uKq\n7XLnQOrgBZHIrlFeRLCLblkNS+MZive+5me9Gr/M+31N8sdkBqmdOiQKkUDsQc+iX9OER9JE3f+5\ncyK4cyNayVAMQVBMTMwPP/yQkJAAQdD48eNXr169ZcsWpMKxY8ciIyN7+wQSeEsMkqhRx6LgB3uw\nlp4rgkssuza2tO6Rn8tQvf76C2vWNJYM8p7NF2eefLh6y6TWXR6UWqn5dE5H0BlUNKI1sksjsjQt\nVkHVNJYsGnxo750PAAASRaUdg9eswt+bb3j0dwUA1JSIg+L9bFxYxnNrapxulonTHWl+dC9T7pVC\nbVDu05r7HKbnnKgdzU4f7r+oTl62984H1lTHFSPOtCOViKc2bav0Bp3BoDNgcVgAgJ27zR+rL8ev\nHnqv+ERfyticxtMR+FYG0PEk/CPOj3XiSn/tZfiLgoxQ8qG03CtFZAbJYxyzuPKxJ34o18cOAJBa\n+kc/l1FGqJWoATvGHR6xLMZ3mCcWh4VMxixBorlbx8tSmlqBJ+HFZfVsdxu45MDsU24hjiNXDOp4\nIzf3pNw5kDpwRijSLzQ2FpE9PmhZE4OnmgxKYDKC1t57uhpBttArmtdOBao1Rd6TFsbOjXBo1TBY\niqKiIoFAkJCQAADAYrHTpk07fvy4eYVDhw4tX77cQuo6k7diyE6hM3LoRGcWSWOA4BIDZLLgqJ3O\noCYTGHiWvcn4go5aqfhRP+dRyU+P0kis4tpUnUHVbPjOYNR9+/dLv2XL1LW2VDdkl8P0uv5kn3nL\nkMlIJjIAABymp1IrLa5NtaX9y8O+4FZJ2pnse8fSkw+nVWRUew9yt/eybaiWxXI+eiJMclG8g4sq\nV2HEBcLk90LXxQUsa6nB1SYwzG38xgn3/BxinwiTWtVZVJOy6+YMmbpGoqgEAKQcS986ZK8tr8mU\nDl8WY+PCEhXWUQgM16qxSyPP6o2alo1USwv9HAZ71I97Up4CAFCIlUc+Okug4uYdmpSceG3P0U8v\nXzi+Z/W2A7NPAQAuZG5JzN256/54uUZSYxYSSSPXUq0pp1f9fX3nXZ1BdTB50YPSPzr6dbcGZIQm\nrBt+ZXsyvKstP21tq0g7k/3n2sR7R9JPr/o769KTxhoFZITaGmzMuvREIVHGrRpcW/x8uNVkMpib\nHH69BnEoxbMCIXV3xxQGAJAZJGFhXTsVIIMJAEBmtteFesvx8vIikUiJiYnw7t9//20eXTo9Pb24\nuHjGjBkWUteZvBUGSazUkQnYAW5WOf/XNLjBZRBFcp0BMlnE/1uuFTPIbCyNqassNC+nEBjm8Rrq\n5HxBQ74jyweLwS0cdOBs+satiWNSSk6Zn5JScgqPI8IRHzpOad0jLt0X2XVk+Tha+VRLn4t5Ikzi\nMD0BAM4s/yxBYp2c78jy+VcLqRVDFg1wC3H0HerpEekKd1lcg52kxepVo/4iFPIey06Xj9g70Gk6\ng/yCVf2xfWbfLzndrDCp6GhxbWpS0VEayfr4g1UnU1d/P3hPxoW8T/6YNXBGKFLNK8pNWFAHAGio\nlLEcmZDJINdImtns5KfHglxGutIjbhTsl2skN/53d/iX4fftNl8q3kJ8P8uzdEac5xf28+qkYbey\nC2/H9Jmh0kpjefO3XRm//doUeArt8PwzedeeekW5bchcoWrQZKTd9bLvz6a5vuzXjmDQGqwdrehs\nGsfLtr5SCgAQPr7HYuSuuPwhZISET2pUDeo/1yY+uVV85KOzaX9kt9pI4rY7MfMiPCPd7h0zcyP8\n97UvOFOw9WbT1BEGTzMZu9txoLFGwQt3lgkb26kDO3xDz14WUVqCx+MPHz48ffr0wYMHe3p6Pnny\n5LvvvkOO/vLLL9OmTSOTyRZU2Fm8FQZJoTVyGUQ8FsOzafrNnKxIBTXKX9OELhvvdb8eCDJiMTiy\nRz+D5F9PNAeWt1BaCAC4nr8XAHC/5PQH0XuwGNzHQ49ymF5DfOZ9OvyPAmFynZx/8uFqnUF1OWd7\natkfw/0WdWRRqjkCab4Dw9e8xNchVvjMICm10mP3P3Nm+QMAItwnqrRSBtm22TSPpFIaOy9i5IpB\ngxdExn4QARfaurIkFVJbuktNsWTLpIyh0u+t1M+D3hq0hpMrmiIM7Zt+AjI2PYBoJBaDZHupYLN5\n+wWi5IPJi6Lcpo8P+iIhYrOjvn+fpWDF5Q/tvdjmsxEsR6urO+7UltcqpWoqi9LPedTmS8Ov5u2B\nj8o1kqKaFDuGG4fp5ejg5lI98vTRPVmeP/8j+O6DmD0ZFZfej10/56dpsQlRS8cf5gW7nru/zd06\nfMaAbWFOk6b1/37ZO6eKa1MBAGQG6a+N1+DZppGfxabfuc9hetkxeCLZ8y5Uy85rq4jL6q/vvLtr\n4hHPKDcAgKMfpyqvxgRpKwtMzn50KotCZpC0Kr2tK2vylvjCO6Uqqbois7nZq8iourzlVsSUfjYu\nLHsvW+cAB0G2UKfSJ+27iX02EjvxcA4AgIzHIvOmWJKdUV7yQoWdi0FnoDDIOlV7gVPhOwEy9r7U\n1d3JtGnTxGLxb7/9lpWVlZmZ6eTkhBz673//+8svv1hQWyfyVhgksVLPZRDNS5xZJJFc181hvxML\nJLvvPvejI3kGaSv+1UOypjpWywr33vng+pN9OVXXZeoaW/rzgbJIj8kMsm2Ia/z2a5OLa1OfCJOJ\nOEpCxOZAp+GV9TkvpQSCjAQcxbyEZxucL7ydVHT076wf+JKMuIBlPHYIfGi4/6KWY24UBglPaj4B\naePCahBIpdWNVhw6AIDLdWusee5JyH8kgAf6SlMrqvNrxGUNyKH4fp8ZTXrz3iGFwPAVTU/dWMMm\netjSXcADDzWnDLbT5jA5dCLHqBED71h3AEBfx6FbJmWQCYwjKcvPZWzefGn47YLDg/rMAQBwfe2g\nAk6x7bnZI7csHHTAmuq4fnySebdvQvQKgo1JeKnpP8LPYZAjy6dK+kSj1FAYZACAFYcBAKCyKDqr\nOqKaxWF61jQ+f77/ePW9HMGLJwVzrhQmH0qbtn18YJwPAMDGlVWeLtALrxbk+HE9jCZIO3btOzN2\nThi/bkRgnI+9h+07n0Q31ij0z3xwdCr9nslHb+19UJJagZceglQCAMDAmSFXd91L3Pfg4e9ZIkmT\nR8P53LrrRfUGyEQmNF0Rhmht0rfXU+l05BpJbXU1k0OHO9DtQGVRZNWyutKXjhjyVoHFYl1cXOh0\nuqWFdCFvhUGSqg1s2r8Mkq89VSTXaQwQm0boNhm/pArvlEiRXaKDu17EN6/AYXr9nfUDX5yBxxGP\nP1iVELGpZSMhrmO+HncrxGVMuSQz0Hm4q02gLd1FqZVeztn+OtqIeCoRT6lpLLlbfPzY/c8CnYY3\nm7qQp0zTPYvRWVsssfNsZSCO7W6tkWsrs4Xw67+tCwsJUAYZoVv7Hsw7OKXgdsmxj895RfMKk0qR\nE2kklrt1/4raHORDVbpGUrGPSz+Hw/PPlKZWAD1hVuwPQllRyxC0YdtIke/EREx57lw3xGfenKgd\nYW7jJ4Wus2PyYNc+GxfWzJ8nDff7iMcOgqtRnvkNIt/Al+MvC/PEKqla06jdHv/L5S23qII+e3Z8\nCRmhlVcWOAdyAQByjURjV6kowvaxHyCUPX+f4DA9zz7emPqiiaXaEsmKyx/CDhSwqobqxswzfzv4\nuZOsnSD1vzy74lYN9h3qOW7tOycX/J1/7Wl9pTTjr7zaYonvUM8lp8cHhqYZGjKk12Mv5/6UOejo\n32UPWJ/9cyH1ulxVL5LrAri0j7bcnSeso5Nw8NQphsCENN06h7Q1MT6z4TyOiEN6w62ileuIVIJb\nuLO6sZUpQJS3irfCINXIdVzmv3tIVuQqmbZKpvViU35L7yb/TqnGYC4DQyBBmn95FtFIrPjAFStH\nnls67PicqB2Id5k5WAyOQmB4c6NSSk7Z0ppyXE4J3/DCeHTS6udvx60OLnlzokrrHuFxxK/H3C79\np+HbyF1I9B29+IHJqDUZteDZS3qf1pymsDis0Qjd3vfAZ5AHAMDeiy3hN3WDMi7kh08O5IU7z9oz\n8aMT00etGFRT9HyiWyFWlh83nbi1/u6J+zqVXqNVyCqUEZP7DV8Wk/DD2CMfne0X7wsAGOwz7/e0\nr2Dxco2kuDY1tfQPPJY4zHdBSzGuNoER7hMnhqw1Lxzu/4JIsrHzwi9uvpF1tmDC+hFkBil3i64e\n+9Q90oXJocM9wss528eHr8r/h4/HEbEYPPJ9UoiMb8YnZQmutLXEWGdQPREmkShEI1MGANDX3tGL\nHxCpBIc+rEu/+tpN1QCirfrJ1pYncn3shn8edeO/KTvGHeanC1ZeWRAxpR+kqyc6jlY9+Y9CWVXf\n+LRQOdM5TkI04DHO9T9vWp1cUp8QzNk/1Dnvz5y+HFpmlQIAgCXZwTkpugedQRXkHFerLmZy6HgS\nrp21yfBt5ujPkYkUbdVBeUt4KwxSyyE7LpNYLFaLlfoH5Y2zTrxu/uOOYIBMXAaRX/+vd0AMrvmo\n1yDv2XYMHofp5efQnvsvHNwBWdYDAIBML3DY2x7/y/rg7ZARUmqlzToHMN6c6AZV9cYJKcL0hoLb\nJfGrhz69x18fvF2n0hvqH5E9FxjlRQCA2mJx/Oqhjv6trxyKTAgWl9VTWRQAAJFKQGazyx5WwDEU\nAABcHzt7L1ssDosYvPRzuZJ0PS07tEyWvjlq99HNv9B1TrCjMMuRuSb5Y48BrgAAV5vAfs4jt/4z\nprg29c/HG0+nrS0QJQ/za8UavTKuIU6BI32qsmt54c5Rs8MW/DotMCa0b7w7fPTMo/UuNgH+vBhe\nmPP9449pRBb8HpBemOhA98VicAM9E/Kqb7XackbF5aSsEzl+P2+/PrmiPkdTvFfzdLem5MDQeZzx\nK0gXcjY/0CgwOBr8JTfDsZ+9uKx+zr5JCdvGwiNgJl0DjuFN8VokdJnmTnH05gR/GTWDrPGY+95e\nyFt3+Hj2zDCutkoWMr4vF0ACmQYAADB4SNuet1snotRK99yaY8fgaU1yCoPMsKerGl4QLMOOZyPm\n17dfB+WN560wSBoD1GzhERmPVWiN/Hp12qcRk/vZd4OGOpWRZ0Mm47EAAKXOWCx+rWA2WAzu67G3\nII2y7tf1sO84mcDQtfH+q5Kq4Vllro/dgVmnVDopnWzTspokVw0AyLlYeO9o+pQt8UFj/P5YfZnt\nxii+x4fUArx1CPw4K7hd4uBj1/J0GF6484bMFc914rAauVZcVo8n4ptNJLhHuqQcTQcA3DmQWppa\nYevBotZ4FotSF5+eKSU9HTX2eWgiMoOEnBviOubTEWeOP1g1PvgLuUYS4PROqwuKXwf/EX3e2z4C\ni8OSGSTnfg5+blFPa1MBAEqtVGdQRXlOBQBEzwkrTa2UP6Y+TLt6fNmF83/u59QNBAB42UeWSzJb\ntpn+Z+4TYVL1V32iNV+sG3vrau5ODcWFMfA3g+SRvv4RNlw93P+jkrp0re1Afe2dVlVFTg12DX6+\nchnS1GEITBJvRplOa2jQjXMRQhqho2NQYoFEZMKFYiCiSNZQ3egUyKVU1MM3G5bCNWm6djBg8dmm\nMUyZuqamsZjD9AQ6PIGOxRPxCskLOmc2rix5LdpDett5KwxSq8tgD7zve2x633AXBjLr26UU1Gk8\nbSkaA8Sv1ySVSKcczXlUKccxbXRVxXoRX1OS9bIN0kgsZfp1VXbylZW7bu29H2A3stWVMSqpeuuQ\nvaWpFdFzwhYcnerUl1PTUIaM9SHwHwkOzz9D+nb2pa23HHztyAwSiQbmfnpk/EJ+VW4ZpCzHUrgm\ngxIAUJVXw/XpqAn3inHnPxL888OdkZ/FNjsUNMZPp9L/vfkG/5EAADDwg+Dpm953iKTvfjKWGaNy\ntw9trT0AAKAQGOvHJ1lTHeMDVzSLYNQV8NjB2YIredW3/sraMthnHlI+Y+cEJxvvrAcPZRIJL8Aj\n83whZIQoBEa12cSSTqXPuvTk26ifz+jnsHSeg+cNHDZvMBFPDSXgrzVUCBryCZxhd/L/e0twx5sT\nHR+44ufH29Jq0lpq0BvVcV8MMvciMSpKsGSH1NI/pDpDkPpEf+U2vfCan5vH8cc1VmQSt0JwY0/K\npM1x7uHO2ie1JWK1+YBtF1EsVu9NaYoSJFPXAAAYZDbZaG2iq+hsajuhm2Q1ciaHTmVR4AVJKG8z\nb4VBanUNrBeb4sWmAABYFHxiQZe791TK9F5sSq5IsfRcUZS71a3FoWsul2iGLRBsTJCc3VG7f7Xi\nYSKkfLmnhjL9uuPqI674dKj0gTqbllv13Mtre3yTG+jTe/y4VYOP//YDxKnHk/BWDszK6sIb63M0\njf/P3nnHN1V3f/zk3pu90yRN23RPOulglL1BlixFGY8PP0AUcIDiQuEBcQ8eFfRBURREBUEQQQrK\nplDKaIG2tKV7pk3S7H2T/P64MQ1dFGwpxbxfvHgl3/u9Nye3N/fc7/d7zudYjm8+p1cYzDrL5V/y\nfl33x9xPHwaAJTvnEmIBTrOcH0Bn23fW5JZYTU4AAKf98LsZZp3FrQtwW6KHhR7bnOkXLSIm8TxB\nUGTcyqEXf7426ZWRC7Y+4hPGEwTydNTqUTGLZvfb0Jlxz7Cof7WQO+oOuHTfQEGCyljXL2S6lB/r\nuWnQ5GG+Q7HB7wb0T57gH+tbeLwUAFSGunUHXNOtv208dGHvRatPAys/rfQDauyYSKI9ErGmxT17\n8NqHMhL9ptUo4oRL+bH+vOi1E38vVLeMzFYZ6364+uz/Ti74MfsVd6PTqjIB9mvuuxdrIwGAlbje\nUr2HL4yuyTk/8PoRn5CK8ctSaWyqMFRgaDKQL1W6r4fuI6tSQ8MQmc5K2PzksK+k/FiSBUOpCEbB\nNA3tjn4cdsdtw/C8/EP4R1wHHQsF0TDkoa/ueIByp+TLzVIu7ear6b8tTOTSMB4de26oNFNJDt10\nTrJso/Bfbyh2f1SxZ/MdHdNps5DFgWFPrgiBU9f2ZAUJEt2hDeo6bcnN62e/u3hlX55kCBlLaizC\nDgAAz5+TX35Gk+fI2V2Quf3y5lk7PpmyrfhMWVO1OmxAEAD4hLhUiBxmGVFyNCHl0qcvDACAU0cm\nW5qKfCOEnbeQJWT6Rgj7z+7b5lYERVb8vtCtnQMAz47+aVjkE/fAzdwRQyLmDomYS6zbeYKhFARB\nixvOhYnSUqfHl2VXAcBTI76Jl47Zl/OWokpZE5TBfbpY+Lj84QlLxKG+RHCdXVeM8RKifAdNTFjx\nxcW145NenZ/uipBEKfxACt0z9/nPgv9dKNuT6j9zYsKKMvklYlZWZayr0FfnKPOGRn+cFPiwYGo5\nxk8BAIQh3d6nJmj2mshhGLnEpa86860JoqMFgkCetn2X0CVcqNK+PCqYeLbTmhqJjAWSiW7AFWwh\ns4NyR3ddvPwfRW1t7eOPPy4SiQYPHnziRMt1Sr1eP2PGjLfeeqvNfXsRD75Dwh3Ojh3S6Eh+B1u7\nikY9HiKgYQhJZ1YS4gVDQnmZFRqlFSlRmJjfmE8+uj3z5Bm11gAAmqPbcWU9AFgq8j1Dw0vmRdp1\nroVfXN2I+fgBAC0qNWDJOiZJSVMHVChzAODMNxdRsfnba0+eq/mOnq64JN+z5PEP/UODNKYGJp/e\n1KCQhPrn7imc++nDRrUppJ+04lLNuBXDMCrmufzjsDahDCkAxAzlxo+RKsqbzEba2Mdrpq2/pdDO\nbZn17kSOb7uZEzx/judbJpXnGalx/+PDDLLiRjbNhyVkaht02buvlhxSkAsijBb1hxfHGNk1V6sz\nBqVPShiUMn/zdACwVOzUZT1B8Z8IAEGChLVTT0eGPe55wCG8oHK5S3mhqul6iTz7ZNG2AG58iDB5\nZMwimbY0p+rQBxlT98hyrtcXrD5KeSzZFV3CHX0SAATaKkFAorNPkjE/y2mzAACDR6+YmjRscf/u\nDhnQW+yvjw3Ze00OABpTI5smBACyjU3lkCmMdssdNVWrAxPuI9W4+5axY8f6+fnV19e/++67M2fO\nLCkp8dz62muvKZXKy5d7femvB98hyVrFfLdgQozPtHhRd0vbaS1uGT0LhlAAgEfH9l+XP/RVbuQ7\n5z+YErFg1w2IG5n9x2Fc3djw5St1Zw5N33a9avU03dn9xbP8idk8h9lgupHttOMOs8FcfIUW7ZJI\noIbEJQddr/zZXlR7bsucH7J+yEleIuWdH4MLmnJ5X6qMdRJRaFLQuML6M0FpEv8o/75TY+d8Mzls\nQNCqP598eM3YcSuGDX4itYXBTosKEw5mD/yWlbJRmhye9UNO4qRY5+1i+R5glLs/aq09OC5u6dyB\nHxCv0+elWHTWg28dq/8dZsZtCD67kEZnvD3jUr/Q6UQHu6HS1nia1e9LlO1SZW4j3NFhF7FDCemN\nixX7nhj0CYZS+HQpAPhzo7edXfb79Y0vjPh6hSRu7415R59MdSfSocxgY/45ekw/ETu0QVtKC080\nFbtuT42BPlxfdnerlxJPfkImGbdbMZRCTLpajXa9Vcng0dsbIWkb9L7RdzDmdrO2799KvOtdXLx4\nsbi4+MMPP8QwbOjQoePHj9+6dat7a2ZmZn5+fusKSb2RB98hqU04l3YbUXMeHSPmvrsJhcHGobpO\ntcbYgKEu8ZucF/r/tjCp/j9Dnh8W+OKIoCHjx4X8+GzZor7Cua/l/77njaylpaGj7HoVyhZoT+8l\nJugsFfm6zF/LFvXVZx2i+LnCkUkoxpAGjpjVN+94QdSw0OcOLHAEVUyZ/jDGcvYLnf7ksK8AIEyY\nVqHM1ZgaRKKA9LkpXH82ALCETBqbShSJ8ER/aandWInQ/cji4QDgE8i7+PO1oOQAEukBl4dv+i2i\nRbKO02apevkh+fY3lbs/staWtLcjAIT2Dxq6sN+rZ5aGDwzaPGv7oDGjV4zf7dnBdOM9smQBxkto\n7wgAgDCDBweOziz5gQjqoyH0lc75xKYQYfIbU07M7vcW21xXDYkzE0Ut0rq1x37kDJvJpPIMVjU9\npr+l3FVUVMgkI2x6d0/ZEVCQppvyi35cl8dlU3xwu5XCILcXsKBp0DFbrS92jMPuqCtoAIB/Tt1F\ns9mMIIi7+B6GYcXFrvQAq9W6bNmyr776ques60oefIekMFhvK8cgYVPw7pTSyqrUJElcvzqr3eTW\nGxUyyRI2hdDZ+2BKRGhCUlbEjNig75ZoR4SYqxLf3v1dzLPq61nIqH8Zck/iynrWwMk2WYU+65B0\n3R4SjUkJbFa+YSQMFTnzJZHi9PnJRmNVzdXfWCc3Lp750Zg+S4gOGEpxOPHLlb+5bxYdYK0/ar75\nBUKXEG8jBofM/fRhGpsKCOow1lhrf+vKs3Nf4bTb9beEFZhLr1ICImiRyZJlG+3q2+fx0NjUlOnx\no5YN2mQguaPOAMBuqLQbTZUrZ5gKszvYHeMno4pMhxP//OS/UjR+1W9MN+ae1K4aZrj8BwAgJDRC\nPMCmyPykrP+igbestDltFqcdJ2ZxAYAaGmcpc6myCpnkegQxKI0kjOO0qqAbqNFYpFwqAAjQl/de\nXi9mux6VUDtNZ1EwePT26u857A4K484maS/8lLtlzg+CQF7HEnkPEunp6Xw+/8svvwSA6urqjIwM\nq9V1PtesWTNv3rywsLAeNbDLeMAfeAHALS7ZAVQMURhsbunVLiezXDMh0jU5ozN3VKf8j8Sl9suy\njCLlz9sLAEDC1uNVBedj500MwhU732YNmtqweYXPYy/RwpNo4UmeOzISh8q3vxkzPLnJVnnlh6fH\njl+D/nmMVlVDj+nv7jMzZc2aXwc/3t9V18uuayKRqQiNqbfYWdRbotrIwoHsgd+5CxkgKBI1LAwA\nUE6sMe9NW+MphCFFubEk5PYlAxwWuV1XShYOdNq0lqpdKDuKGHV1IZvO1jTorW9OuMvfpMMiR6gi\nALA1HCeLhxtyXoSIjy0Vx1BONCZIMxdf5ox4lJE41Fx61ZR/jpHYMn69NZwAbh8/Tsbb58OFdADQ\nZ2c4zAaUXWG8Uh+25bL827Wef5QWkCWj9BcWDo5+2eHAyVs+FD//OVkcWHv+qDE/i5k6luijNWgd\nmJDIaXOjPbGLPfhh91uU3RwqEsynNeAOh9pEInOcuIFE6fpFU5nW6sumAACCSvTmUj+u61GJYuVa\n8XoAaM954BY7gt5ZcTJisBUQ140lK7UndmlPtlujq/vgjHiEM3J263YMw/bv379w4cKVK1eGhITM\nnj27rq4OAK5du5aRkZGb20bqWy/lwXdIequdeHbrAB4d01u7cXWkRmOJEDTrAHVQIFVtwhcN8N/4\nsCs+eO240MYd9nJ+HHfICH12Bqv/BHb6ZCAWxtgUtQlnUVEiZAOhMZ02i8DBklVmGf3FgWHDqQtH\n1m6YK123x60HQcEY5YYtffzinTaL6euXarXywib896HrPrlqLl89yNMfkyiCNiu5YfxkW/1hWtRy\n7ZkZjLjXaOG3UUlwWlWmgvetsqOslI267CfBaSchVP7kws6euNth15eaCt4346u/za5fPSaEuEfr\nszNMhRe5o2ZTpLcfCzpxo/pIf1ba5xgvwVyxk5GwTnNsBFb7pVFxhBr6L0yQps8+QtwjqEExmqM7\nOmPV0E2Xsyq1Tw0KKGo06s4fNFw8Qg1LNBXtEP37EMbzYw2aqtz9kc+jL7S5LwmhIswQiYlU+eIM\n2pBpZHEgAKCBMbYzzaF3efX6JekBAGAqzMZ4YkwkJaGYLvNAwOuuom0YSvFUMOobwMqt1QcBkMgc\nZyckye+CrErNwGAuAFAwtskO7oqRFBtXZ84DALYPs80d9UpD+MCWWXFW3GjBTe0VLtE16hdvfyzv\nSLFRbWoRFNNVcEbObtMx9CDp6ekFBS5Nmblz5/aWdbT3AAAgAElEQVTp0wcA8vPzy8rKOBwOAOA4\njuO4SCSSy++RHkd38OBP2cm0Vh79NlN2Qia5W5W/MYTkjvTTmBo6SLL5bHrU2vGh7vEKj46F7izL\n01HI4kD+5MVu1+L3n7P78+SR75w/WdI8A8MeONH4yau7S/7bwMLpZDZCY7IHP2zxSLmtaDLvvqpH\nELo+OwMQlD/1qS2Jr03IfPPiM8kfnaryNANXVyt2vg2twHgJrH7fkn1mCqaU2BqO3/aLm8u+cdoN\n7PTvjflv0yOfFkwtx3yaU1nVJryw8S7V1RwmmeHqK9aa/VbZUb3Fviat/s9iVxSZ5tiP5uLLNesf\nIyIVTYXZuLpR/u3a1gdRm3Cb7Cgj7jVrzX7jjfeZCetQZrBgajk47E6Hhagt5HTYidEGiUwl4tZu\nS4yYqdow7LPpUY1ak/rQVvGT7/InL2amDMN4AQDATp9srS3poDYjygy2VJ7kPfR/gmnLXE0YBQCI\nXTIKlUwqNS2Q7TBoFd+/Xfni2PKlA9QZ3zH7jyeRXQ9evpxwmbYE8/EjzgCh3AiE4Hf3qAf9mq/o\nG8ACAATMA6P3eW7CHR2dNKfdSWn187xe++fWM+2qDjaUKCTRIiqb8s+ZsgMArdaVpHjmzJlDhw49\n+eSTAPD4449r/+Kzzz6bPHlyr/ZG8E9wSBoz3pk1JIXhHl3cZpueiIhtkxABrcV4jkylmW+tXUa8\nnb7tusJg03tE0zJTxw78X8lLfm8w2a4RWGXQ0A0fbHEHEJ4tVw9xltTlXtCe3E2b84ayz3grwyd9\n5uMxjRdkWqvnGbBWVdgaq22N1a0t1J7eW7FyJJBQEk3itKrshkr1kf7a01PdsQBOq0r9R7ohZxUA\n2A2VrNTPMG6sXV9KlowDABLqelJWZaS8/M3mjceLWn/EbXHaLI3fPOW0GUzFm0gUPk9/cia+Krz0\nMUvFTrtOjnIEJAqVIgkhwsxkm56XbVyqO/ur+vC2Fsfhv37a0phJDZxl15eCE0cYUqLdIZ4KAHZd\nkcNmoEhCmndAsRZ6uASm4k0tZOJ4dAxDSGGqfFLsUITGBADPESc1JM5880p73w6hS631uax+ERT/\nUHcjLTKl7v2FTjueJzMEcFEA0Gcf5k1aFPzxcemaXaYbWbwJzSoSXLqvylhHDUskFECIYisYFdVr\nhU5Ht8wE4HYnMTz1YTGHhAZ4bsI6nNfVKw0MfqukaRIq15W3+1lWe+vSJw88K1asEAgEwcHBc+bM\n2bdvX3Bw8O336YU8+A5JYbB1nIcEACwqVqq8RxE7Bov6TlNt9Ba7p0+qUVvmpUqWD5ECQGDFSs+e\nFU3mxogJ/zfYlWD7UwUpmVRXU+6qGVpRWvG2/kfDD+uF898gURlZlZrRkXz24Gn6rEOjI/l5f2kt\nm8vOYzx/wfTl6oxvPQ+OK+uddlyX+Ss9ZgAA0ELmGnJfsdb+Ro99CRP0s1S65otsiixq4Cyn3WBr\nOA4k1PUPAOPGAgAgqLl8u8MidwI2xa/4ccObusxf7+hsAEDDFy+iTLLDJKUGzyYL+j2MbbYEPnXW\n8pBNkak5PYESuF/81Gr+1KdttSUAgPHExvxz/i99bSrMNhc3J2rUaCwYySFXyUgUPnfkEWbfD92b\nHKxE3vhsu6HSXPAdJm4uScXsO8KQ0zIn0ZCzyly8yVTwvuvs4Q63GNVyce2S8lDRmjMOYw36l7cD\nAM6wmaXfvN2eMAfCkDpMZaabr1nrj7obBdOXc4bNaNr7SU5FHY8lAABjQRYrbSxZHEgJiPBb8YWn\nUC+X7rsza9V1KLarGwGAhiEYQhKGCHRNLUvKdi116iIfpqTF8x+CoA6nXddO2LcDd7aWaTDZdFy6\nb3u66YRQCINHv61g64PE119/XVdXl52dXV1dPXLkyNYdFi5c+Msvv9x7w7qWf4RD6swIqUZ9j2qZ\nG61qWlti2x3QN4DlKRNe2GiY1MfnzQlhH44XhjrOOv+aElm8u3D6t9cW7y5Um3AAyK3Vy3RWydyX\nK3a8h6sbAYBd8IdixFMv9XnX5hsJAIduKOelShAmB1AsRkQpbDACgNOOqw9toUj7UkPibLJbnlLL\nlqRqT+6mBsVQg6JtjdWYII1E5ljrD1Ol06mBM4laPrj6uv7SUkutnpn0rv7iUpQVTuzLf+gq4ZYQ\nymhLyVbduXnyiyRfmTjYUXDq6/+++1eZ7c5gKswm0ZjM/umm65eZSe8yUzb+YlvKT1h13DyBlfY5\nLg9BGGG4MoPeZ4CtKU+xawTFTxS+LY8WlSpZ/l/FznfKlw/SnPhId35eRZPp+xF5m8r6k144Xii3\nkG4t9oFQRdzhh6yNZzFus5IsLTLFVHDes5vxxvsoK4w76k9AUGvNWacdz6s3xPkyiTPJkt0YOTgt\nLZBTXXYCZzUHoWA+fus1iZ9+tGnrhTaKoKOcKJRRSw2Za627JZqRPfhhc+k1m7mJQhdYa0scBo17\njq4FXLoYAHQM1FzhWnUw4w5JtKg8D+mmKTuCE4VbJyY051brFQaWkOHDDKxSXgOADuTsAKBBW6Jh\nu6LqjRZ1H79hN2Sn2+xJOCQKg9xe5N6DCo1G8/XtxlCO+4EH3yG1DiFrDY+OqU3dGNTgmXVrwY1t\nVn/ogHAfeomiea2lRm2R8qg8OrZEuC3PlqI6GEM89hY2GrfNjl02OICQb1l3tPydSeFx/dMtKnnZ\nor5Np/eHqPJ9k/pnFCrfO1GZ32gx21z1CWlhidGK3CK5EQBknz7D6jcME4QAUbHJ4ykeZQvUh7fR\nIlNokSnEXBA99iWnTQsk1HA1nyj+RtQwVX73DYnMYSSsw/iusrMkMgcAHGZD3Uer7SbEaU04gUzk\nZ/9M56VJE3xOZeftvthcS7dj9NlH+JMWgV2DsqNMhdkkjJGHp9MwhPgLOgxBvDHHHMYaXJdFov7h\nMJJpcXz3IpD/K98ErF5na9iBCYcKSl8aRDk6afhjr4wKvlTdcrDy7cV6EpnjtKipoX3cjWRxoGfk\nt7VmPzhwWuTTCEOqQOOUu1+qevkh2Pcuj44BgPrwNlbq6BdHBGEI6Wz2/vm/0/9zpJxYqsyTGaLG\nzRhLqTpU0IaIorWqBDArNXAmyo6y1h323ESShMdDCULzU/70vu/TH7bel4CImtHbNbi82iUGjyGS\naFH9TTOhkNu11GgsUh61qum6DyvQMxIBt9pRCjogbNb5sl1sH2bHgt8XyvYWhn5NOC3cYU0JnkLU\nj2+BXmGg0nuTloeXO+LBd0idgbiDdB+ec4Z35I2IYccoX5kib5O5fDvReLlGFy9hGa69jrGjSiEN\nAOzaIqLeUt8A1pgoQW5FdWGjMUbMkLApPDq2O2ml9KtrtT99TBf5D4oLtX0wsrDBuCtPtXpMCHFA\nRuJQ7GbWf09X//zL72RxIK77ipASoMf0NxW6bgq4upEWlWqpyKdFplCDYiyVBQCAUEW8MWeM+edk\nnz5nrTus2D1FfeRjhLaIOWAGrm6kBs8miwa7v4utsbrx69cD39zftFdmraFmhj6CUKm8pKXB0Zrt\nCVcmfDc1r7iiM+fEWltCloQ4bFru+CX6rEPudh4dcwcdoKwwffYSzIcp/ncGQle6F3jwplOWqp9Q\nRqzN2f/N0ikOyYzRUaJlQ6RX625JGq3X4wt+uuEwGyzVBoSu9tyEsAXEcNOJG62yo4zYlwEgt1b/\n2M8GTGwOeveg0kZOl79trdlvvH6WM3oOAMQg2Qpa2v4nB1twx8ECBQBkFConp4VxTYpADlaeecxp\nx6tem+LOulUd+B81YCHKjaVFPt1ikKQMSB5iz7WUlzFTRnsGdrfm3Zk5VtyI+gXj8hoAEDLJRjJm\nMZK6oyQSbndiCEmprwq4VXyWKBRLXPAkvqnjurEGq0pgi9LI1QBAyGvpzcrWBYJxq50lZAAAk0fX\nK4zuklpeHgx6pUO6dOnSHg8qK+9gwqc9WgQOdCEKg83T4bVZrbVNnLhRf2mp06aV1q+fSvvOdOM9\nXH1dd/V1nukiB1E5jDW0yKfT0uZnkF/X567Kr1FIeVQAEGDql9BHDhz//uF411xTTKh0zv76RPp/\nUla4CpLOTfW9KjMTYVEAQAmIsMnKzz4Vb84+zBkyiiKdTqQKMVPHaE//Uv36NKcdt1YVMfuO4I6e\nQxYHYj5+dlWj6+uYDcof3w/ddA4cCELLQ1mNvLGv0COTTfm3TG0pfnpf88cO/qRF1KCYsM+zq8a9\nEi1ihG25TIsaxExcS9LsYU6ULPnkt59yGjo4IXXv/59i59sYT0RCMXBYyOJAu7ZZn01twu3aJiIz\nFPd7lBH3Gm/0cSChZPFwXJ5J9LE2HGelbGSmri89+fuAPn2DExcBgJRLzZMZcIfTacc1R7erD2+r\nU5t5dKzyu3eoAUOd9ltm1RgJQ0w3sgHAUvUTNeRfQEJrNJZn9hUPtTZhPuG4MvNS5DSu8U9j3luY\nTy2Q7IacVQt8fvaPfhwA5qZKtpyv2/BHxYVKbd8AFnfc/Kd+m920f1P5kjSKJIQIa2z44kVKYDQz\n9XUSQiUhVBKZ4/SIUrvMTwu2lhjzc9nDZt72+gkTpu31LSzM+QEAfNkUmc4qDuNZTV2/hkTUG9OY\nGpkUnme7XmHgiNmEJQaf8g6kIgwWNZsqZNolelsTAJhtOjZN6MuJqFW1LJ6pbdAxfRgAQGFQCk+W\nbp61vcu/jpcepFc6pP3793/55ZcX/0KpbLd4hN5i72S5Ixali+u8edrgqV1ECNl1BhLGIPuO0l9a\nign6XUDnmkJetVTutFXufJW/xnzzf8QgJiFYuqMmzeS/MDC3f7QAAMBc8tUpxpvjxTcHBrtSNJ4Z\nKjVY7ab3RrjX0qbFi36dE+L5Wdyx8wM2zUI0MsDkGMc1SUUWB+qzM0yF2abCbHPpVVpUCjFN5BkA\nrTu9lz/1KbIkRDCtFPNZykr/EUgoK31y1ZnmuSbd+YMIRhHOfY0aEgcACJPz0amqf/d3aQpQpEMQ\nlpYiFq5LULUWcDLmn7PrmhQ733YYtCQylRIYLVqwzmGsQehSAAAUU6k0xJQsj47h6kaMK1IYbJx1\nhbTwxYTSBMX/IWvdYYdJ5nRYwGEhkTmUgAh18fUhQc2Sr6Mj+X8WN5nyz5tLr1XWNl7a8fljyb7q\n0nzOmGV40yVPe+hRqeabOQBg19zABMkAcKlauyzdd4itSJfwru7CwvGOtXZ5hMOqIIv1lvLtJIwR\nO/XII6khABAvYZ4sVb2RUfbyqGAahrAHP8x/ZtO3g97zXbZRtGAdyhbYGqtxtVwwfbn741B2lF3T\nfFM+UtQkGDNNOP+d1rWGWzMgbNaySb8cVR8CgBABrbDRIAz3a7ipvu2Od4rCYJVwKEarukWCncPu\nRDASAERJBjWwLmc1fdveEeS6chE7hEXlK5vqSzIrjFYtQkKNpcjp3S1DSHCrnShlIo7wqblWT2Pf\nPjXbSy+iVzokAOjfv/97f5GS0m4xtxKFiSh6dFvu2QiJcuviecdQpdNs8kx6zAuXKYuszDhL5S5D\n6Os6ktBc9o0raA1gdCR/xfmQU+axsyL0AGDXl04b9Ug4p3mpgIYhfyzp2yKx340u6992XTEzeWTI\nJ6e/T3ndpClHmCHurUHvHQ5YvdOUf95Sdo1wJwR2XVPVa1OcNovpZo5bM4IzeBVVGgsATib/+A1Z\ndZPLBsOVY7zJrhTaS9W6Go0FQ0ie0e30mBfswskx7OJK1S0l3u26ppq1s0oXxAOKVTw3jDVwEmfY\nTITGtDWeIsZwtLDE6rWzkllmAMDtTlPNTbIkhAgAca/bIVSRVXbUWrPPVn+U7DuKaLxCCY8xNhcL\nXzTAf3Nmrbn4MnvYjD3SRziqiiVnnqv0648y/Bwm2cECBf/107m1+hKFCfPxu3it6M/iJrWinoRQ\nT5aqpm+7Pspx0+gbla3kbMI3hyHXMP4wh24BoCpj/tv0Pi97fqPDi5Pk64emBbqmbf1Sh6lNODN5\nJMoWsAZOKl86gD9pkWd/lBXu9ogVTeYwhhxVn0VZt8RVdwyVxlUf3jYklJdZrmHwmYrarn/wMtsc\nVBSR6yoY1FtGSDqFgciH5TP8G5x5Zfrz7U0PlCkuhYnSuAzfhvq6Hcv2adVNAKCVGVS12j8/Pes5\n16dp0HF92QDA4NEXb3/Ms3aJlweA3uqQLBbLmTNn8vPzO+6mNtt8OldN7raReHeN3orf9RoVwpDy\nJ1whYQwpj1qJB3JHn6xkzdxG2c2fXEgJmEL0eXFEECDUq/hgjr3SYZEjdD8SQgWESkQ6qI/0t2sK\nrDX72zw+rr5OovBNxZuItzt9p+kVV1Fmc4oDNSiGkThUn51ha6z2fCoPWL3T55GVql+/cBg0KK9l\nRfP/nq5mJI0499VHxFun2UDk4qz6reShr3LTP7nUQuaHHrUcgmdSSTdkmuY1A2P+ubInUwM37A/c\nsF/42Ev+r65mJKUCgN1QaanZTxYOBADumDl5nPhx9FoAiBDSZQXXqEExhY0GCZvimXLLn3DFYZZZ\naw9SJOMA4GCBwtR3iuFsc/4mj44NDuUWXDhHj0otbDDGrvzY9/Uf9/o+DAAoK/zUhf05K/uv/vUy\n9Uxyg0pRLDdZtz5qPXN2y7HCQwXKz6ZHkW6ciZrwaIXKtDaT9nbFdNbAyaoDW5kJvwimlrcI3psQ\n49PiSsMQEhGOwUweGbY1t4U0EcoKN+a/jVa873RYtp4vX8rfwkzZ2BnFJjc+AYmmyjy+8maezED2\nYerVXf+TJwT1TTZdi/VR3Iq7E4ae8P8h0DlAqb8ls03boCdKkzRoS31YgVyuT96ViwFPaoPsQwHA\nLqfhqOXMNxdlRc3rXkaV2V3sUZro94/Kjf0n0Fsd0h9//PHFF1/MmTNn3LhxFRUV7XWrUVs6qVBH\nIyPdNEiqUVsk7LuPCyKUxzCEZLMjKDOYCF4gIVTPRMvcWp2vJN6mzLLVH6X4jgIAlCG1G11xa5pT\nk4z5b7cQsSawVO6kRz9PHIoQFbUZ64iIuGYDUEy6dpdw7mst9mUmjzTdzHHaLK2nj47dVC1c+byp\nrrwuP1efnUGRRgOAGXcUNhqr1wy+8fLANv4oJNTWQJ9Ba9bmsZTnB67bQ4/pT4/pb9eXGgtexZWZ\nDpPMWvsbLWIxYTOJTM3lJrONcgCY3YfdWFKI8kT5MsO8VElubbNvI1H4tqZLNwwS4qvl1uoH9o2y\nqxs95RJeHh5g0qhrjQAASRKan5BPZArbIl4dLbguqnlzg+i1ncpJNUcnTXtYRu1j44zfMHTLhFk/\nPzLXnmWtLUlJiLxapx8YzOH1eZYaFBO5q8pzQNkBg0O5WZUa4jXGa1kbHmFIaaH/UqIxyoOxcdpP\neDyp5+NCZ2BS+NgjS5S7P1qW7ru5SG3UdP1P3ow72hx/W4027K+ZcDaTpy1Am/S1nh0cdgcJJQGA\nw2FHSGhK5AQV6wY90qI/xyk8UWq3OowmlX+sb31hs0PS1Gs9y2t1vnhxLyUzM/PZZ5+dOnXqp59+\n2nEjALz11luT/2LWrFn33NguoHckPDscDrvdNdgnk8nPPffchg0bAMBms61YsWL58uUHDx5svVdF\nRcUH//tWZK7LZuNr1qzp+COYYL1eWhvI7frru1zWJApgyOWu+6PJZJLJZHd6EIbDkF+ljudYK+p1\nFrO9xRFifMhhAh9zQxbITtsSfwKZDCGFk4p2OTgpKKuvI3wWSXtFXnrUwR3o3kUul5OsctSg1+mo\nZOU164FQB2+wA+XqLc62zRNHalu120TB9msnPfuXNFmHfl3y3lg/mUxmTX+k4tAOf8xMmfy0TCbb\nlaeeEEpVKxoBoPXqtlwuZzuTyDaj8lCCw2+u3f/fpsLL5uSHSDIZ2JTk0jW2hJ8g7ymnw+JkJ9kZ\nY51/faiSIWkqOKijcFkHPtvpNy9ariisV782VPy/S7IxHjNblvAtg/5bmB9Wx6EihXWqEQGIjedX\ndzUL9Y8AAHtVgVOv5qaOCFyf+d5YP0J/pUlnqqmrP1GuTyddNamlPv2/phbZr9brJg15KSzvRVv4\nmLVpnKF9wwWfP8R4fqtMJlNoDBSSc1EC7Y7+vhFM28F8ZV9e85P+3gLNzFgu8frDTLmY9diRwqYl\nA46MUc0xWkfp7vTiwSnVymqhOCx2ferF2BUqZTt/3zvBU59G12AoLVQnR3OtVmuLIzfWyAV92ESj\nFTPLLhjzhl/gksLdHRqKFA6yXSaTGU0GmUzmsDuQcoksulB/XFj154HBr0YLAk0pwsHZ310LGOQS\nN9EotWqDCgywfv16pVIZXpYcYxsIDy4XL1708fHJz8+/fv16x40AcPny5fj4+GHDhgEAhvWOe3sL\neofRR48eXbVqFfH6ypUrIpFrjohMJj/99NMzZswwmUx0esu1opCQEMGE6WvHhXZmgMJimUQikaQb\nBL/tmCk6SEKz0iQSicmmEzSIJRLJnR5EYFBpwSyRSKDa6UMntTjCvkUSAHBYfrarr5N9gwAAJNOa\nDoSiAPSYF+gR4+yGaEvVLoZkmudePPMxUsgkikTi4HwHJMymOOtA5mw9qwyqhXmpnbLQuWCN0/ay\nSxoHAABePXnjx3lxE2J8eHRMHN8PLfgZdaj8o+IrmswHS2WHFyd1oJrBHDDOWdxUETIvSv8tk4s2\noCS/ACkA6K+8hyS/68ONhJBLuCrHeH0tR9pcd6MKk8GNS6jTFvb2rzV7KmhcoZCj7hcd+H6Wxn2W\nKprMoR+cGxIqKDZQJgcLNXhjfKg/nTVf88cOccpbTjt+c/k8AEh87/DNmVFCJtmsUUgkkv6h2qHb\nymclikPDPg4NpAm5MSuCAXdswRASBOwHgJ9fmgoAMM4lA/jz/4kKG40SyZ0lmUkksPlyHmHqf09X\nRwjpyw/VLhsVDQB7rjUeKjEoDLacpyKk/n52/Y9OqwoT3NnFE+lMteIm6SPPagQ+cxS6Y+W4UOyL\nIaQajYVHw26bote+2S4z9j33PTVAIB7sY0ekLS5LJr1MJBLxJBwAAAmM/7/xFaajnn2arusEIr7Y\nV4SWuC7p0TMnH1FuoDqGvnpmqQlVnizKCYkKPm+86t6LSqESrz///HMAWNt3oxPp3tKaPcvzzz8P\nAIsXL75tI0FycvLEiRPvjW3dQe+YspswYcL1vyCTbxnEEHVB2nsc0FvsnZwuY1HRbsqN1Zhx98/e\nbNPRyO3W8+4AFqU5dbe9b4RQRe5FewBgp38vmFpOj3waAFBmsNOisBtuiY+31h0kVmIQhhShS6iB\ns+gBE3+ujX5mX3FWZduqNi0goZinN8IdzjyZ/rFkX2LNTMgk/zF0rXTtLjPuGLsl54uZ0R1rONHC\nk2LOf56To6CFzNWefo+ZOsaJGzXHxzjNsoW/Wad8fQ0AMH4yZ9gBz70kbApCofk++R5CY4bwaUM3\nXZ4U6wMAPDrmVufbnyefFi96Z1LYkaKmD09WnS1X8+gYNSjGrm1yGLS603slz37GHT2HGhIXIaS7\nF/xSpeyKJvNPOQ0RwfHoXyEkHXwFFhV1RyvcERhKIkIwtpyvXXe0/LFkXyIu43K17reFSTkv9Cc+\nFGWFY4K02xyrFZHigYWyMwiTwx42U6Aq4dIwv/+cxR3OwPWZf97sgqLmNDbVqDH5MJytNev0SoPn\n9FpQaLhSd8uUnUlnYfswdWYFk+qqiBGbkuQ+LAVlEOpBUUPDrh660eanP75xKslxZ9UrHmw+/fTT\nyZMnL1y40C0N3rvoHSOkFpw7d27QoEEAoFarN23alJiY2MJLuel8YXIhk6w2d8sCKaFdJGuZ4Xdn\nCJlkwiHJdNZOxg26klL/WmqihS+ylH3DSFjn2uy0Ox1469I4OSv7Z1Vq915rdEeNt0mbywZny9Uz\nE5tXQaRcmsaMV+qci3++NiHG57ZmkyUhISs3l2z8D/boTrxpFcLabyosoIbMsckzAYBHx9r8UJnO\nGvyxS3fch0lekh4wLV4EAAOCOVmVmsmxQgA4UtS0b0ECDUM+OV1T2Gh0OxX24Ic1x3Ya87P8X/qa\n0yqzZ1aiOERAG/l5zt9ZAuwMcb7MvHqDkEUeEcH/Ymb0wQJFVqVGyqPWaCzESZP9Dc02ojAjAGA8\nsdOOs+iQHsQ5W64eEc7/+09gv797InZMZMFvRRipiUv3Xdt346tnlrpDsVvo1IkjhPg10vfP753w\n3EgiOk6vNPjFiFSGOre+gw8zKM5/JJEhzKTyiKi81Bnxu1YdTJrUx6yztIjzjhkZbmBo/ua3aI2l\neo+1em+XH/a2UAJnUgPvfu1n3rx5FAqFQqEcP3584MCBV65ciYiI6ELz7gG90iGtWrVKq9XSaDSD\nwZCSkrJp06Y2u+EksribJRg6g+cztc6s7EDquwNYVFRjxgHAbHNI7ir3AmVHEboPrrd129orlDcw\nmLM5s0ZtwnGHk4Yhf95smhZ/Sxzdgp9uZFVqrq8a0GK4sOV83TsTm1cIJBzKpWrdGxllfxY3Lfwr\n66hj6DH9Ud/QguulviQBI24ZrsplxL8BQf+mlRcNDuX+Wdw0OVaYVakNEdAIJ6E24Z7e4sURzZV1\nJscKn/mlmHBIeoud8GSpgezjN1Xy9a5INkbi0JL3/y/44+NtpvWwqOiQUF6L794dDAzmXKrRAkCq\nlA0AI8L5CR9eePX30oX9/W+3a6dgU4UGi5qoUcQWOFMY6EcnqwcGc1pnfd0ptQUNY54d8sP+QotF\nwaIJAOqbqtX+sa5spBbSDDQ2Fa9iFpVcGdTYj3BIBqWRwaM3GOt8mC4FWwylzE//2HzGleXmjsoj\nUzDcgqvrtFy/ls9JTlLXT9lRA2f9HcfQU8yYMYN4MW7cuNzc3B07dqxbt67jXe43ev5+fRdkZmba\nbLa8vLz4+Pj2xkYAoKSIx/p1dn5MyCR3UwUKz1EabrfcqdQ3gXuEZHc6O5nq2xqnE7cbKlFmsCoj\nBfwX0yL+r72euMPZ778XaRiyJD1g1W8lpsq/D/8AACAASURBVPdGuDcRjuqJfn6XqnWeoyhi+OIZ\nPkf4AAmbcmZ5Sryks3+IPjMX1W5eGfj4U7QwV4W0vHpDnIT5WF/f9E8vVTSZn9lX/M6k8FdGBRPG\ntDeHJmFTJByKTGdlUVC30xoezj9V0pwZitCYkT+WtydRCgAYQtq3IKGTlt81aYGcFb/erFCZ69cO\nAQAWFa1oMlevGXzbwpKdxI8XVa8pihAPIKEYnWEJxpzrChQfTInYcr729ju3j15hCE2TUhhkK428\n9839YKYgEKKu1bodUmsZb7QkUDpJp2lwTRfIy5s4vixrpamF3LB7GCRiuUIKReE+TdUadZ2W36oi\nnx31Rn63gUgk+vvRK/ee3rGG1BoymZycnNyBNwIANUVIVLHsDCwq2k01+jzvmCab7k6lvt0QUel5\n9Ya7nkEioVTNsRGWyl1k0RC7eHoH6Sw/zou7vmrAE/38duU2jom6Jfdwz7XGmYmiWYniQzduqcX+\nZ3HT8HDerYeBE0uTP5gSMSSU1/lMrNCkZHFTESUoxt2SVamJlzBZVHTfgsRn9hX/OC/ucrXrjlai\nMBKCSW0SzKfVqC0lClPqX0s76cGcw0/eUvq9A290z+DRsZwX+n/1SIx7rdH03oiu8kYAwGf4E0MN\nckAEGbEk8ZzXVw0IEdD+5hOYWWehsqgAQEFw25jLJDkXAJTVzf6+tXjdym9foEdZjX+lP+NWO4Ii\nKmMdn9n2WPCRfuuJF6JQQVO1uuJSjX93Vi7v1TgcDreIWmFh4aFDh6ZMmdKzJt0FvdUhdQacRO5u\n1dTO4JneZG6VPHgHx7E5zparJRzKbcs7tQcr9TP+xHxbw3GKZOxtO9Mw5MURQWeWp2AICXc4Q986\n99/T1X3ey9qV2zginB8hpJ8tu2Xu/lK1bkhoS4d0dxSGjNX7NE/9ZVZoCKcYIaTL1w+dlSSmkZE8\nmQEAZDprAKfdG7eUSy1sNJQojTHiO1DH6BEwhPRYcvOttj1ZjbuDz/SX6yoAgBocy2JYHU2aeAmT\nhiGeNU3ugqqGfCJH1RyBRVPHvr7/jYXbHlXVNDski7HllCBCQjEqdmV/nqK8yWF3OBH7N2eXyXUV\n7VUrdyMM4Zecq7hxoqSbapbftyxfvpxEIm3dunXr1q0kEmn58uXtNTocjoSEBJFIFBwc3Ldv3+ee\ne27y5Mk9bf4d8yA7JAtC7bz+AouC3ekI6XrtnwbLnSmD3fUaEgCECGh7r8mfSOvUYkzbkFASxmD1\n3+JWeejk5z701VUJm7L3mnx2X9/RkXx3EJ3nI3atxnLXMcQtqJvxdp6y+cgyrdXtg4VMMoaQPpse\n9cnpagAokhv7BrTr4KU86oKfbuy83BAhvN8dUrfCpPCUhmoAoAREYGDQ/+WH5Pq/tYa0u/ZZFUUD\nAHgoEhwbQmGQg5IDPKUTkFvdqu7c47j6OpmGKSqVhz88VVaWT4qpRxEsv+5ECxG81vD8ORd/vvbQ\nqhF/x+DeyKZNm5weEOvlbTZiGKbVaisrK7Ozs41G49q1a3va9ruh5wcQ3QdOInf+FnkXa0hnireX\nNF6Ynry6RfvF8n1KQ/WE+GcBQKazej7t3vUaEgCE+9Df+rPCXTPinrHx4cj9efIR4fwWw80kf9bo\n/+VkLk8lTnJnCiF2kmkJoo9OVo0Id0UAtg6V5NExIZN8tlxdo7Z0EGkt5dJwh3N/nvznJ+K7xLBe\nCgVjWHAjAKAcAdnaZNS7Yvp9WHcfPUiM+z/JuZLLCiSjejbV9ZjlXjdqXbjIpsiynZ4qkP57wdGR\nW04uKrvGgBDqS/32Hbz6IUK6ze8Uo2JP75onie72AJPeDoPBYDB68ePXgzxC6ir25bzVZjuX7mtu\nVa8FAC5W7HPXcTHbHJ5LPla7iYLe5eUyK0ks01m7T3OvA6bFi1pPfgqZ5HyZnijwQ3DXc4ktkLAp\nxXKX0FF7X3nt+NDNmbUdf6iUR735avoro4K7yrDeC0JCHU47xhOTEdysdY2QxH/jWjpYoEBxtprc\n+N7xymCulfXXnBtGRa9nFBnVJrPO4pmE5LSqSBgD4yXQqn44X/K9k+RgqbmP+35JJ7MfSetUJJjX\nG/0T8DokFzw6pmxHqNGKt5EGYrLp2DQhn+GvMt5SL6fFpJxMZ6V6jJDc0bd3gYRNIULL7hNmJYnP\nP9Nvc2Ztbq3+YIGia5UAo0QMQh21RGGM92O27tCZVRYMIUUI6e9MCr9tzwcePtNfZagDABoL1atc\nQdUxYsZdR37vymlkWIVPDFI3GS1hQouYHUq0+/Xx3fPK73X5Deo6LRHyQIBrChhxazjDDvhGLLxa\ne1yKJNiqhG6ZVC9eCLwOyQWPjm06W0MUiGuxmEQns62tlEmV+mohOziAH1unLvJsL6g7kR4+m8gw\nBwC1ydaFaZX31b1VyCT3C2K/MCIw+ePs7y7KzLaudEiz+/oSf4vCRmMwv209J73Ffj8ErfQKuDSx\nxkQUP2Q4Ha4Hr3AhvUTRUVlxN++N+F9lbb7RoHVf2NycAtTIiJL02z3PZMer3VEJyVNjo4aFWY02\nndLA8PjD2dXXCLWLANGAZQmLx/nOMx7pwxK28ajh5Z+M1yE1s2iAv9qEq004+7VTAJBRqDxbrtZb\n7CyaQGduWQOwqumahBPBpvoYPeIaLpbv05gafViB7haZznrXaUO9gmnxouurBtDICIZ25bRYWiCb\nKCteqjC1FyNH5O124Yc+wNAobGIamYQx3HEHEjalkyMko9r0Rda8A3t2vL5/ANEiLKvEdUgfv2FU\nUhGKoO4qXxgVS5+brFMaVNUapscAyCY/jXKiAIDKi+WpLvv5M0lmiuecnhcv4HVInixJDyiSG92h\nDW9klH1yumbrhTo2VagxNaiMde7HQwCobsoLESbzmf5E/BLB3ivrK5Q5niFDMp21u4Vnepx4CTNP\npu+koFHniRDSK5rMJQpTe0m1b04Im9s5EVgvPsxA4skJZQnIZJzwSTFiZmHD7UdIVqMNMAcAFNuP\nitghGlODpk5nSsTHz5zOZ/jn151okcnA8mEalEZ5RZM7Q9Zp06LsKCLvDaGKyII0knIXtJU56+Uf\nzoN8QVAdd5ZmQST2y3QWADDjjggh4+cn4o/dVDGoPJ1Z+UHG1KKGzPcOTyI6m206hIRy6b4tBk8V\nihwiZIjI/DDbHFJe1yuI32/k1upHR7aUxfubjI8WnCxVAUB783Jpgex4iXfOp1PQyWydRQEAKDeI\nwzVoG3QAIGFTGjoR+W1Um2LniuL8Rxq5VQNDH61TFp8+doAc92e8dAyGUiJ8ByRKx3n2ZwkZ8oom\nq9HmnpHTXfg/iocSDzX8/6y1v0156T6af75vaV36yOFwrF27dujQoQKBYPTo0adOnWqxi16vnzFj\nxltvtR2KdZ/zIDukJE3WHfWXcql59fqz5Zp4CfNkiYpIlU+VskuUfvtyd0r5sXm1x1TGOkLwEUNc\n4x6H0+5w2n++tBYAuHRfYuuomEUni7YBQK3G8k9Y5/h3Pz9CNa4LGRjM/fpC/T/h7N0D2DQhEZuD\ncnyZDIO2UQ+dVicxqk0mn+pY/xEAwHeGVpQWVatzG6z/IQZGM1PWhAiTPfszePTi0+URg1wBOE6b\nFuPGYbxmBSYSQkXokr4TQ7vkq+Hkv6vIdz9DlD4yGAzu0kc4jut0uvfff7+mpmbmzJnjx48vKSnx\n3OW1115TKpWXL1/uCXv/Lg+yQ7oLMJT06qHSCTE+u3Ibo8UMAHgs2fex72Vm6/UvsodVKHL4DH+5\nrhwACMcDAA4nrjLUXa48gNutPqxAf140ALiXkRSG5qAGnVl524z0Xsq2x/p0+XIOi4rm1unGxwhu\n39XL7aCR2cRQniwMZNK0bjW5zpB7oMDAqNt1LYwJYrpRXFGfx02j0+gdBWG/cGTRgMf6Eq/N5dsR\nVsvBEG/seU8X9XeQC6tv36nX8vzzz69duzYsLMzdQqFQPv744/T0dAaDsXTp0qSkpJycHPfWzMzM\n/Pz8f/3rXz1hbBfgdUi3kLOyPwDMTZF8e7G+rz8bAGLEjBdHBtVadsoM0S8/dGhc3FKdWWmwqN2S\ndDQy+5vMZVy67w3ZaTbN59nRPxHt7hQlDCER68m4w+IeV3npDDdeHtjlA69/Ju5SDmRRNJWsMutc\nkd+ELlQHO+Jmy/mbu3Ft0QcnG6cxP9XWWhSGShuVF92hGhODRyfWhywVO+3q6xSPMl1euhCVSnX9\n+nW3u7JarcuWLfvqq6961qq/g9chtcT2wci+ASwAIP4HgDcnhO2YEzshxkdvsXPpvipDndLQHOc6\nPXm1Ul+dGjw1r/ZPT+FUhITidiuPjin11esODPsl/7U6ddFd6wb9M5Fyqd44uq4FYfEZDK3bIRHr\nph30bzz1qm1iFhsxTIsXPXag9OyOKyZebYGcu2jA7UtjOG1aW+NpVv8tCEPaNdZ7uZX58+fPnTs3\nNTWVeLtmzZp58+Z5Dqd6Hd4J+pYQWf03X01vkd4vZJJlOqsP07+kMZvL8G0h2h0i7Hu88KulI7e7\nW7h0XyLz43zpriERc8sacw/kvjc56cV78iW8eGmJW56HTjPZTK5QUialo2UkJ25s1NqpCJPL9n2u\nr/SYgNa49qADbFRM3PHantNhISFUu64YI6pE9jZyDuTnHuiBiqt9p8YmT43rZOe5c+cCwJYtW4i3\n165dy8jIyM3N7S7j7gleh9Q2rYOYfdmUyHfO2z4YqTLWOeR4fMAY96ZFQ/8XwI9NDZ4q5ce6G0Xs\nkHzZDSkvQmmofrTfhjRfw38zH2JSukYP24uXOwVBUIfTjpBQJsNiqHYptUcI6SWKdtXQHaYatcFH\nwhnnS6kbEs4fEc6fcL1fX9LucRGugAW7psBY+BE9+nliQchhkTvNcruhUn9pKcKQUoNmk3unQ0qe\nGtd5x9AjzJ8/X6lUHjhwAEFcUwj5+fllZWUcDgcAcBzHcVwkEsnl8h41847xzod0FmLAROjZqIx1\nRPACQYR4ACHJ5akRGSUZVC4v8GVRTH+VnMBQCob2fPUdL/9M2FShzqwAADKXg5tMl3/J+27J3o5z\nYx2WJiPiLFE5w31cHivfQao0bh0anAgApuLthuvr6dHPm4tdJZutVXs0pyaZbm4CAKe1yWGqwfjJ\n7R3cy12zePFimUy2f/9+CqV5Tfrxxx/X/sVnn302efLkXueNwDtC6jzLh0hDBLS8er3FpmPRfG6r\nT8xn+CsMlf4+iEHvumjWTD7hdUheegqDpalWlc+l+yIMEZiUJecrEAxhGG2eIveNJUqzzhyUHEC8\ndZplSoVVy/Xl0PREy8UV/YRMsqKxwa4rNhfvpEWuw3gJJDLHiRs1x0Y4HRZq4Cy86SJn6C8YLxFu\n9xvxcluWL1++efNm4vXWrVuXLVv27rvvbt26FQDodNcszvbt2+fPn99jJnYpXofUWWgYMjCY+8np\nag7p2oyUNZ3ZRWtGk+g32UgE8dYtr+LFy70nLmCUwaICAIQuwg0KqjC04mJNzdK92hXNIXC/rv8D\no6ALtj4CALgFl5Xoa9Xm5H6RAK7QancOg+bEeMCTMH4AAJD9xppubiJLRpGFg8m+ox3merRVnLeX\nu2PTpk1EuSNPnM6OAiMBYOHChQsXLuw2o7oR75TdHSDlUmU667z073mMfi02nSxVLfjpRotGMx55\nqvC1wZFz7pWBXry0i1uZniwZoFPbaGzqyyefGjQvWVGvs8qOqg4nOa0qji+LLWQCgNVoU1Sovn5e\nrsNM42LCSBS+06pqPpbdRPF/yGHqT6JQAYAiGWe++QXKiaUETCFhDK838nLXeB3SHfPojroPT9W3\naPzkdE2NxtIipUNhiX9i0Md8xu0DZL146W5E7BClvgYAaBFTUvrlhqRKAYDnz0Ebddaa/ez076/8\nPFtmxwHg+OZzm2dt19QpAAAEphBBKInMcVibiOPY5Jnk/AWYz0BcLcd4YqKRO/okRTKuzc/14qXz\neB3SnYE7nBwa1rr2D42MPBwn9KxWBwAOpyBCPOAeWufFS0fgDgsAkBBqcIQsMqkOALi+7Aj9BRKZ\ncznDnrF/TBhjl3/0N6e+ukBFGk98tgcAAiQUDKVg3Fi7xhUGbSr6ry1hOy30Fi0AlBmM0L1Ct17+\nLl6HdGecLVNPjxe1SN04WaoaHML9dz+/nZeJkjNgxh0dJ8B78dKD2OVxtobjAMDxZRlOkKupK77d\nlafWcxOiCvzpdRNnH3nsyS/ry1gAgJKpAIDyEmyKTKfD0nQglCweDiQKAIAd79Ev4eUBxBvUcGds\nnBY5MJh77KZKbcLduYGXqnUjwvksKkojI0T7gp9uRAjpPVJu3IuX9qBgDCIVCcg8u74WnHY2VyWa\nrtr1SkYEiqw4uNhhGNvwxYZnGYt5dTdXbtNcPn6ERo8GAIQqAoddd24eM/kDqnS6pkEOAIB67x5e\nuhjvCOnOmJUolnKpq8eEJH+cXdHkKm9xtU5P6Aw9HC9c8NMN3OHMq9f/Wdzk+6BXQvLSu+DSxDJN\nCQBQfIMxzkBj3nqHKlsdGXutj1RbqiCBQ/XLd+z+4zc/rEkWbTSCVhtS65911mnHAYCRsI6V+hk1\ncJY3mNtL9+F1SHdDWiB79ZiQCpUJAIj1JCJtdlaiOEJI/7O4KUbMzKrUDgn16jJ4uY9g04R6ixIA\nMHGg3SDF+MmGq6/IHAcpMaUvHVtU9fJDlMBo9rCZ+XWHx/RZcqFsz9szLiWHP4wr6wGAhDG8q0Re\nuhuvQ7pLeHRMbcIBYN2R8oUD/Nztc1Mk7x2vipMwXxwRNDCY03MGevHSEg5drDE2AAAzeaQu81eK\ndBqz/1d2iyOMeQKqLvEnLeKOnkNCMZNNN6rP4gFhsxASyug7onzpAPXhbS0OhSvrMV5HFSi8dAmt\nC/QBwDvvvJOWliYQCAYPHvzdd9913Ll34XVId4mQSS5RmACgQmX2HAnF+zEv1WhjxIwPpkT0nHVe\nvLQBmyaU6ysAAGULEBpz7/nVW/K3jtbWhzaVnT/xFjNtLACYbDouXYyQ0OnJqwGAFp4kWbbRXHat\nxaEsVYUo1+uQup3WBfoAYNCgQd9++21NTc3q1aufeeYZd9HYNjv3LrwO6S4RMikaMw4AZpvDUxcc\nQ0h6i71vALv9Xb146RkknAiVoQ4AGrQl26TXROWNz4z4fqApbPqgd4rDGQpnEwDUq4uCffq6d0Fo\nTM7I2XZ1Y4tDmYou0vv0v5fG/zNpXaAPAIYPHx4fH89gMCZOnDhq1KiysrIOOvcuvA7pLuHRMZnW\nCgCtw7tfHBEUIqD1hFFevHSEW943p+r3BcM/D6+0Vr38EHf04z7xo6YOe/dG/RkAyKn+vY/fsBY7\nIjSm89Ygb1PeOWrIfa2H/WCj1+tLSkp27NiRk5MzfPjwnjany7h/AzcdDseVK1dqa2txHJ85c2aL\nrTdv3ty5c6fJZBo7duyYMWPaPEK3IuVSiTWk1hXkvJN1Xu5bKBh94x+PKA1V4+KWIa82Lz9I+bGn\nirbhdqsVN7bWFmEkDGn8+nXxwg0kFAMAh1ZB9gslecO+e44vv/zy119/PX/+/MqVK3v1kKgF9+8l\ntWbNmoyMjPDw8IKCghYOqaio6NFHH33qqacEAsG6devq6urarCFfUVHRrRaacUdurZ5F7VQU7Pr1\n6z///PNuteeO8NrTAfeVMdCl9kxPXu2uh9ICDKX+fn2jZ6EvN9xx/7Lv22TMPUGPGYAwOT+8v2bx\no9O6xJ6/T3f8zC9XHrhc+VuXH/a2pAZPSQ2e2pmeK1euXLlypV6vHzZsmFgsXrlyZXfbdm+4fx3S\n2rVrN2zYcOrUqeXLl7fY9PHHH8+ZM+fpp58GAIlE8txzz82dOxdFWzoGHO/eTPIdc2If+iq3k8tF\nSqWyW425U7z2dMB9ZQx0tT1teiMAGBe39Gj+53H+I9vcyp+8+ObjoYzEodI1u9jaemp4Uhea9Hfo\njp95avDUTjqGnoXFYo0YMSInJ6enDeky7t81JDK5XZmDs2fPDhw4kHg9dOhQq9V67ty5e2VXMzw6\n9sKIoGC+d7nIy4MAn+E/u9+G9gp9kcjUqD11KFugy/w12tnkXUDqKRwOR2VlJfFaqVQeP348Kel+\neTj4+9y/Dqk9TCYTjuMhISHEWwRBGAyGTqfrEWNmJYpfGRXcIx/txcu9hxoSpzn2w1dIoncB6d6w\nfPlyEom0devWrVu3kkik5cuXOxyOgQMHikSi0NDQgICAfv36Pf/88+117lnj74L75apyOBx2u0ux\ntIOxEfxVnEokas6BwDDMva8nJpMpNTWVOGBwcA+7jYqKitmzZ/esDZ547emA+8oYuJ/swcABACUV\nVT1uT2Vlpc1mAwCTydSzlnQrbRboq6+vNxqNKpXKz88PQZCOO/cu7heHdPTo0VWrVhGvr1y50oFP\nIjYVFBSkpaURLWaz2V3N15OCgoJusNSLFy9eehgGg8FgPIAVqO8XhzRhwoQJEyZ0pieZTPb396+v\nd5XIk8vlJpMpIsIbae3FixcvvZv7dw3J4XDYbDZiLs5msxHDc4Lp06dv3brVYrEAwJYtW5KTk91L\nSl68ePHipZdyv4yQWpORkbFixQridXx8PADk5eUR83VPP/10cXFx//79WSwWl8vdsmVLTxrqxYsX\nL166gvvXIU2cOHHixIltbiKTyZs2bdJqtRqNJjAw8B4b5sWLFy9euoP71yHdFg6Hw+F46zt48eLl\n71JVVTV//vyetuIeUVVV1dMmtAuJiKL24sWLFy9eepb7N6jBixcvXrz8o+jFU3aedCANfuLEiaNH\nj+I4npCQMHv2bCqV2t3G3Lx5848//igvL2cymVOnTk1JSWmx9R7rlLdnT8d23nt73Fy5cqWsrGz4\n8OGe6c89Yozdbt+9e3dubi6ZTB41atSoUaN60J57fyVfvXr1+PHjdXV1GIYNHz68RWLGvb+S27On\np65kL13OAzJCWrNmzVNPPfXDDz/85z//8WzfsmXL6tWr4+Lihg0btnfv3kWLFt0DY+bMmVNeXj5g\nwAAymTx//vx9+/a5NxUVFc2aNcvX1zclJWXdunXbt2/vQXs6sLNH7CGQy+UvvfTS6tWr3YJdPWWM\nzWabO3fuL7/8kpCQEBwc/Ouvv/agPT1yJR8/flylUg0YMEAsFq9fv37Dhg3uTT1yJbdnT09dyV66\nHucDgdVqdTqdJ0+ejI+P92wfOXLkzp07idelpaVRUVEGg6G7jdFoNO7Xn3322dix/8/eeQc0dXUB\n/CZ52QlkEcKesqcIKAri3nsgzlpHXa11VatWP1fVqtW6t1Wr1m3FPRBBRQUE2SCbQEIIEMgeL/n+\neDRGlqhUSs3vr/fuu+O8l5t33r333HP66U9nz569ZcsW5DgmJsbX11ej0bSXPC3I2S7yIMyePfva\ntWsuLi4JCQntK8y+fftGjRoFw/BnEOO98rRLTzYkKirKw8NDf9ouPbk5edqrJxtpc/4jI6TmXA1Z\nWlpKpVLkWC6XQxD0GSY6DG3/zMzMDLf0touf8ubkaUHOdpEHABAVFQUAaM7c/zMLc+XKlSlTplRW\nVsbFxYlEovaVp116siFSqZTNZutP293jvqE87dWTjbQ5/5E1pOb43//+9+OPPxYUFGCx2LS0tK1b\ntzYOm/TPoVarT58+rV/Tanc/5Q3keW/6Z5anurp6586d586d+8xiNCkMDMOlpaX37t3btWuXo6Pj\ny5cvFy9ePGPGjPaSp716clpa2vnz58VicWlp6a+//ooktmNPblIePe3Vk420Ff+REVJz8Hi82tpa\nAACZTJbL5WVlZZ+z9SVLljCZTCSQIPgQP+WfR573pn9medatWzdz5kxzc/PPLEaTwmi1WgAAn89/\n8ODBiRMnTp48+csvvxQUFLSXPO3Vk2k0mp+fH5vNrqioSE1NRRLbsSc3KY+e9urJRtqM9p4zbEsa\nrCHBMOzv73/t2jXkVCAQuLu7p6enfx5hlixZEhERYTjRr1KpGiyN+Pr63r9/v73kaTn9M8vz4sWL\nkJCQmJiYmJiYhw8furi4HD58+M2bN+0ijE6ng2HY3d399OnT+pQuXbpcv369XeRp356MkJqa6uLi\nIhAIdO3dkxvLg9BePdlIG/JfnrJTKpVSqdTCwgI5NTMzw+FwpaWlnp7/eLDL5cuX5+fnnzx50tBF\nfDv6KW9SnhbSP788aDTay8vr7Nmz4O/RycOHD8lk8md4Pk0+BDQa7eTkZPjVr/tcW8gby9OOPVkP\n8kMUFhaamZn9GzzuG8oD2q8nG2lj2lsjtg0wDKtUqocPH3p5ealUKsToTqfThYWFbdiwATmOiYlx\ncXHJz8//p4VZtWrVoEGDBAKB6m/0l3777bfhw4crFAqdTrdhw4aIiIh/WpgW5GlBznaRR0/jD/B2\nEeb48eNDhgxBvrijo6Pd3d1LSkraS5526clPnz5FDjQazbp160JCQvQ2h+3Sk5uTp716spE25z/i\nOujWrVt61+AIiGvwV69eLVmypLa2lkajVVVVLV++fOLEif+0MK6uroanOBwuLS0NOVar1YsWLYqL\ni9P7Kf8MzmGbk6cFOdtFHj1qtdrLy+vMmTP6GIztJcyPP/5469YtGo0mFos3btz4Gcz/mpOnXXpy\n//79eTwegUCQyWQODg6bN2/29vZGLrVLT25OnvbqyUbanP+IQmqZyspKsVhsb29vGO63HTH6Ke9A\nqNXqoqIiJyenf0Pn+fw9Wa1W5+bmOjs7N2ll/vl7csvyGOnofBEKyYgRI0aM/Ptp/48+I0aMGDFi\nBBgVkhEjRowY+ZdgVEhGjBgxYuRfgVEhGTFixIiRfwVGhWTEiBEjRv4V/Jc9NRj5b/D06VMul4vH\n40eOHNneshgxYuQfxGj2beTDsLKyasGvc2FhIZPJbKH448ePL168CADYvn07gUBoTYujR4++evUq\ni8WqrKz8UGmNGDHSgTCOkIx8GGKxNjBUNwAAIABJREFU+FMCDWRkZOzbtw8AsGXLlrYTyogRI/8F\njArJyIcRFRWFBEB78eLF6tWrAQDDhg377rvvkKtUKhU5yMzMzMjI0Gg0HA6nZ8+eiGeBlJSU3Nxc\nJENMTAyBQKDT6QEBAVqtNj4+HvHRCUGQvb19YGDgB0mVnZ2dlpam0WhsbW27d++uT09NTRUIBHg8\nPjQ0NCUlJScnh06n9+/f/yOKJyUl5ebmhoWFWVlZqVSqW7duqdXqkJAQMzOz2NhYAIC7u3tlZaVQ\nKCSTyd26dUNq0Gg0MTExyFUrK6sPuikjRr442teVnpGOy82bN5EuNH/+fMN0oVA4YMAAwz5ma2sb\nGxur0+mGDBnSoPv17dtXp9NNnTq1Qbq/vz+fz0cqHDVqFACAxWI1KUZ1dXWDan19ffVeUPVlDWPk\nDBgw4EOLf/vtt8jVq1ev5ufn62PTYbFYZMAHADh69Oj//vc/AAAGg9ELf+HCBeTqy5cv2/LpGzHy\nX8RoZWekjZk0adLdu3cBALNnz16/fj2bzS4pKRkxYkRFRUVoaGhAQACSbcyYMRMmTAgPDwcAmJub\nL1q06OzZsxcuXFizZg0Wi01OTl6zZk1rmpsyZcrNmzfJZPK2bdtOnTpla2v7+vXrQYMGGeYRCoWX\nL1/+6quvOnXqBAC4e/fugwcPPqj4nj17wsPDe/fujUajx48fX1RUBACYOHHinDlzVqxYoc85b948\nLBYLw/Dvv/+OpFy5cgUA4Onp+aFjPiNGvkTaWyMa6ag0OULKyspCEqdOnYqk/Pnnn0jKli1bdDqd\nfjwhFosNa4NhOC0t7fbt2zdv3uzatSsAwNLSErnUwghJ39zPP/+MpFy+fBlJiY6O1pcFAGRkZOh0\numfPniGne/bs+aDiFy5caO4GDx06hKQcPXpUp9N99dVXAABHR0edTqdUKrFYLABgx44dn/7AjRj5\nz2NcQzLSlmRmZiIHAwcORA5GjBiBHKSnpzdX6uDBgz/88EMDW4nWmE7om1u5cuXKlSsNL3G5XP0x\nlUr18PAAAOijJ2RnZ7e+OJlMHjduHHKsXwPTL0T16NHDsOCCBQt+//33goKCx48fl5eXq9VqDAYz\nZcqU996LESNGjArJSFuiD4ug0WiQA6lUihxAUNOdLTMzE1ngCQ8PR6a8tm7d+vz58w9qLjw83NbW\n1vCS4WlzoQpaWZxIJOqP9XdRW1uLHDQwRg8ICOjatevz58+PHj2K3PvgwYORqKZGjBhpGaNCMtKW\nBAcHIwe///47Miw4c+YMkoIYnul1QHl5uYuLC/h7sAIAWLRoERKEtEGsxRbQL8x4e3vv3r1bn56Q\nkKBfrGrb4mFhYRgMBobho0ePTp06lUKhHD16tEGeBQsWPH/+/Pz588jpnDlzWnk7Rox84RiNGoy0\nJRYWFshwJzo6ulu3bqNHj168eDEAwNHRETGl0488fHx8zMzMFi9ejKglAMAPP/wwb968kJCQsrKy\nVjZnZWWFNLdnz56BAwfOmzdv2rRpPj4+QUFB+iFa2xanUCjIHSUnJzMYDBKJFB0d3SBPZGSktbW1\nWq1Wq9WWlpb62UsjRoy8h/ZexDLSUWnO7BuG4ZUrVxpOcw0aNKi8vFyfYdGiRfrtSjNnztTpdNu2\nbcNgMEjKwoULEVMCKpWK5G/Z7Fun061Zs8bU1FTfHJFIHDduHAzDjcvq16UMZW59cT2rV6+m0+l4\nPH7YsGG3b99GCh4/flyfAbH/BgAsX778o56uESNfIkbXQUb+EbRabW5ublVVVWBgIA6He29+mUyG\nTJRRKJSPazEvL6+0tNTNzc3CwuIfLV5TU0On0/Wnu3btQuYY7969q7d0uHfvHrIZKycnRz8ENGLE\nSMsYFZIRIx/GtWvXlixZEh4eTiQSBQIB4povKCjoxYsXAIDs7OyrV6+ePn06Kytr2LBh169fb295\njRjpMHRUo4Y3b96cOXNGLpf369evb9++7S2OkS8IMzMzHo93/Phx5BSLxU6aNGn79u3IaXR0NGJB\n7urqeuDAgXaT0oiRDkiHHCHl5OSMHz9+zpw5DAZj7969s2bNaux7xoiRf5SCgoKCggI2m+3l5aU3\nHQQAlJaW5uTksNlsHx+fdhTPiJGOSIdUSN98842jo+Py5csBAI8fP164cGFSUpJ+VdyIESNGjHRE\nOqTZ95MnTxDvMgCA0NBQlUqldwljxIgRI0Y6KB1PIcnlco1Go3e3jEajSSTSp0ToMWLEiBEj/wY6\nnlEDMsdo6IsFgiAYhhvn9PDwQHbDYLFYOzu7thLggvU347mHPrRUUVGRXon+G2hfedA4LcW+lulX\nWZPOFGUy212eBvyrhAGfIM+BSS+XXAyQqdp4NhuRxw7UyQC2EhDfX+B9uOYE57q+1IEPWD4oLi5G\n4nLJ5XK9T8KPpmfPng18R/2HKSkpefz4cXtL0QztugvqY1CpVC4uLgkJCfoUX1/f+/fvN87ZuXPn\nNm+9RqY2WRlTI1N/aMHx48cbnqp4heW/zoEltW0n2ifJ8zmRKGqOxH5zKWmdTFX3OOfky4Ir7StP\nY/5Vwug+Vh6NKEP8YrY0dc0/JI/o7kl5TmKbVLjG99easo/8L7TJ33zy5MmfXklH4d98sx1vyg6L\nxVpaWvJ4POQUCTPq7Oz8eVoXyTVsMo6+OvYT66mLvUwO6Cv8c2ubSNUaXpfe3Rs9SatrYij5cZxP\nWJ1b8UwDqz60YHz+n92cIsZ0XkPEUsNcpmbyYmpk5W0l1ReOOP4GLK5GjtXViVmEsdHpWSuuJv4T\nbWlElRgau61q08LatqrKSMel4ykkAMCoUaOOHj2qVCoBAIcOHfL3929yQqM599KfgkQF00hYAIBG\n+2HWiUwm853T8UtMwsbAokqdWtmW8jVDpbgoqfi6i3n3J2/ONCnPh1IlKdXqNHfSd5+KX/RBSq5G\nVl5SneZuEaZPGR+48XrKViaL8SnytC2f+HDanFbKI8t4Jrp5lLdzrg7WAADUtZn7Uhldu003Fce0\nqnhqHH9fq9za/hPPRyKUflzBf+JvbqS96JC/5dy5c3Nzc4OCgigUiqmpqT5CWgPacBkgnS+1NsWL\n5JpRJ1K1WgAA4ItV1qZNBzVokibjnxJcA+VZL3Wu3qefLzaj2o/p3KoYqR9BRvmj/p7zreke516u\naEEeAEAWLxYPkRzNurRcYVJxVG+3meYmzs/y/8zixXpa9mqlJNdTto4JWINGvV3VIGKp3lb97OdI\nDLOpNDIIg1dqZNm8WH/bhoHP/2laGaz2s9FKeWrv/G65/Ljk5Z2ib7uLLP0K7UWPi5XM8V0dCPf5\nYhWH2pIDJ61CqizJVua/hsXVGOp7Pg7a9vlolBoID2lUHzl2/1et9hn5RDrkCAmLxe7duzcuLu7P\nP/+8deuWjY3NP93iuJNpW6OLnxfX5gnl33SzWtDDWihRf3q1ZP9ekoQ7yaU3uztPNCWwi4TJn15n\nk9TIytlUewCAVtvS316lkT3MOhSd3TCeAoJMKbqesjWLFwsAqBQXmps4AwC62A2Pe3O6pDqtcf4n\neWfOPF9mOH7K4sWaUe1NieYNcna2G5orjN3/aKp+AvBw7KyEwqv3M/ZfTFxbUp12K23nR8wNflFo\nRAIUgYyhMkx6jrTYHf8SjfY1pRSuCkHh6A4USWJpXctl8yZ3kqU9sVhyWPjHz61tsYoHMT/GbWAD\nJFUyjquZ+GNHSEb+S3RIhYRgYmLyT6uiUSfSsMseLfrrjZ8V9WB8WeQfGQAAH0tysK2JSPFJCqlS\nXFQkTMZZOcuzXuYVRXta9gqwH55UEtVGgjdEpZHjIBJy3MKbPa3sQTenCDKeJlZUNXmVjKe/LLwc\nnX2ESal/8jiI9HX3vXfSdzfI/Lr0rkRRZW7ixK3JRBpdfS04kxcz0Ou7Jpvu7fStualzFj8WUWBU\nAutq8iYTItvTsteN19toJIvjT+dnlD/68FsHZ54vayxeuxOTXyNRttl6Xuz1K4Xf9qD1m6yuiK65\n5Tl8/73+gWLSm/qr1qZQOr+l173g8ArzudulSfdxVs46LSxNus/f/e17G9VpYRSmbaZYIBzGuIbU\nMmVlZdOmTTMzM/Px8Vm3bp0+fei77Nq1qx2F/HQ6sEL6DEBo1OQATmKpGEKjajaGPZrnDwCg4DEc\nKo5f90kf7Pcy9l1N/rlGVn62B06RmqatFtBJljXScqlS1Eayv0Wrg7W6+ug+pkTzFiwIymqyzE2c\nQztNPfF0fuOreYIXQQ5jJgVv02rhYMex+nQcRHJmB5WLcvQpGlj1ovBSX/c59iz/XP5TAECVtCTA\nbviYzu9M1hlCxtH7e8x/VRy18kqX5JKbali5ZUxyuOv0ob5L+3vOD3GaEBG48Wne2Q8dJ2lglVwt\ntmF4b7rZV67+t2xWu5EpjDydEbgrYVds6afUo1MrdbCmdF2E9PzW5d1+z8aYKvKPZFvu/NN+rqXb\nSJJXT8GxVbC42oTCiMkuaW7VU1WWhyaQTftMdNj7DABAH/ZN2eZpsozPt9O8rkLMtKVJhLLP1mJH\nZMSIEQQCgcfjRUVFnTt3Th9Pcp4B0dHRHd21vFEhtYRGqzsxwX2IBzPAmgoACHeij/Vhc6h4Ch7i\niz9eIcnVYlOiuVanvZi4NlvSPZMQ8eLILwCAUf6rbqXtbDPp/+bJmzNunFDk2I7lh0wMwtomRni1\n8gpLmqs13YOCZzYwVagUF6HRGCqBCWFwfT3m0EmWhled2V0z/x6+yNXiHfdGhXaaAmFwFqaur7l3\npUqRQFzkyHrPuhSVwESjMDNDDyILVEiiKdHcmR2MHATaj3yW/2fjghV1eU/yzoCmBn8l1amWNFdP\ny1693GaW1XzqbpW24mQCv3B1SNbyri9KWppJey+Co6vyJjreMA2Dhn23ZoSPOGVpInXlkTxXdOCf\nOKthpv2nkjv3rTiwFEi1k11qHuRWN1mJ5OUdkz6RAAAsxx4AgLd1s916m+QZ8imCfRBaWEdlUzSq\n9wdU/JLJzMwcN24cBEF2dnbdu3fPyMhA0gf/DQ6Ho9PpHT0apFEhtYREBQMAVvS2+z6sfobq4jQv\nZxbRjU06n1Kh0HzwJMPBx18/yTuz+dbAjPJHHpZhnTjjcLjRv85ZzCsslCtVTIoNtybzRcElAMCK\ny/4tjJZq5RUqTf0XZZPrN4YUCpP0dgHunLCkkqgHmQf3xA9vMGLI4sUyKTbICMaa7lkjLW9wtZtj\nRHNN2DK8y0RZiA5LLrk50Os7xI6OjKcN81127uWKexn77Fl+LcsJAJjS7VdndvDM0INNWlX42w7h\n1eZeTd604rL/+YTVepV5M3Xnq+Ko3Q8nPMg6aJi/SlKaUPSXl1VfAICreffX3LvvFeAzkCeUU/AY\nAoQGAEBo1PPiJnQSf98i0e0TyHHNjSOy/Qv0xtx61PwiWZVgpO8fuQ79+02Y5E0p8Xb0/OGhQqKE\naRbBKDQeAED278Ucv0Sa8LwvOfe3OC515eMnhQ07lao0h+gWZJhCcPJFYfFqwSeN3vRsDT/43jxo\nDBr+WKOGL4SZM2eeOXOmoqIiJSUlLi6usTvpw4cPf/XVV4Z+fjsiHVv6fxSFRguhUU1eohGhcCc6\nV/QBFtt1yoq0sgcVtXl1csGPg+/UyMoHeS3MEHj06USH0CiCTafkZ88AAKP8V74ovBSTcwIHkV5z\n7zRX2+n4xQcff30+YfW2u8P3P5p6+dX6WnlFkznzBC/MqPb6UwiDiwzarNVpu9pMyua9s5sqlXuv\n19/jEiu6e0HlO5tXeLW51nTPFm7QwyI8Jud4uSgnX/DS2/ptQBAX85DIoC1f99jX2JbhI4gI3EjE\nUlcNeeDMDlp5pYtcLdbAKiKOGhG4caT/qkpxkT6nBladT1jlbBZoTfcAACCLXknF17k1mc09q8/A\njUxhp83xQzzqzaaX9LSdezm7wWSapoqnUykUb17JUuNkqXEaIRc/aDZ/97e1D8/q8+jUyrLNU/fS\nRu0Y7blhoKNWWaksOU+y6Dmti8WGQY6GteHtPRkTNqJSL9zPEsTNDzgU33DCVgdrGi8F4e095dkv\nEfPxZmn56t/IRPKWTboVYqWJOcU4ZdcyS5Ysefr0qZeXV48ePXr16tW9e3fDq1VVVdeuXZs2bVp7\niddWdEiz78/DjUzhN90sm7vqyiZxaxXOrNb6TXmQ91uJKHlayG/I0OHn0YkAgMf5otOTPAAAbiOn\nFZ/YoAvrYc/yTxEMgnVPujqOfZzzu6Wpqz3Lv0FVUqWITrIc7LMIBcP8Wwe0pWSlLedB1qEmrcYz\ny2N8rPsbppgSzft7zssqTCwVvzSsE43CELH1kcVdzbufT1iVyYsJ7TRFP1iBMC3ZDQfYD3+QeWj3\nwwnLBlxvsFBExtPIgNa65/R+ELMIf9shaBTm13ujCFiqp2UvxOSPQmDmCV4gU3xJxddDXaZ6W71V\njf095p9PWFVQmUglsFw4IcjjelIo2vSg+PYs308RadzJ9FV97f2s3h/rVihVO7OIQz1YyKmfFWWM\nNzulTOIpP4kh2+GshslS45Ql2WS/cGrYmNKfRmHIJpY/HK+oquGsOsPft4jkGYJMrEmTHyV7RJh1\n6jzQjQl0sPjFMnXlE4bXmgWcJpbosGYBEA0rX+GGZVM0Wp1QqmaRscglycs7OKsmNpWTfEKLFobh\nOPYEl4Bmb6bVFg3lmRUuYe+oSblarO9scrGilfV8Nn5P4J1M4H/+dqcFcr4KbMJwUavV9ujRY/v2\n7REREVqtdvjw4StWrNiyZYs+w+nTp4ODgzv6AhL4AhVSYqmYgEV7ccjvzflXuvDEBPcWMijUTU/Z\nZZQ/KqvJyubHDvddrlcnJCz9x8F3yLj60NdoFCZPKCdg0cjUjbOX13py3/JVi7ARq8WqgOhi/ynd\n3Hu5zTwSO2tswDpLmqth/QXCRDuWH51kKXl5h16tYk7/teLg0mTHaq0/rNcENbJyMo4mVlTVyMob\nqzQAAJ1onSq8pj99zb3jZdVHfwphcAQc9XXpXTrJ0p7lXy7KabBo1Bg0CtPfc16gw8j35lQWZah4\nhbV3fseYMCyWHG45cwvN+dsOIWCptgwf8aGfdO4aFAYa5rMsKnVbbsWzLF4si2I7pduvhkWoBObM\n0IMqjQwHkS6/Wv+i4JIZ1X5HDJ4v/pi9ydkC2bKovKgZPhqt7lKqwJ5B8GvqzY4gUcIUPAYAwBUp\no2b4Ij86QrgzrTzngpPmOET3x1kNExxbpSrLczqRjsJANhuuGo5dTPtE1sZcMO0dqVMr62IunCJ9\ndTHcVlUWpSg4QXRdSO36O3j3Ra8HhcZjTFmS5+fpw5eOc0dZ/y9asW2AsihDJNeIbvxuMrcJuyyc\nlbP1mvPy3FctKaRWoBAr2c7MkpRyQ4UkV4vXXQ+bGXoQ+XQAAFCZZKlI/ikNtS1fBVo0qRjai9zc\nXC6XGxERAQBAo9GRkZFnzpwxzHD8+PGFCxe2k3RtyRc3ZffjrfxD8WWtyQmhUc1N2QEAaMSm7Rq0\nOvha8iYPy/BpIb8lFNW/8TWwCsLgTInm+kGGQqOdezlnw8C3/9Kpk8dYEzSJiSmbhzjtHNFpytlM\nLIbS3Xnio+yj4G9rMQBASXXardSd/jZDAADSlBj68DkQ08Jq1Rm6hlySdVcvw+4HE47GzdlxbxST\n3KxlvAZWInNcleKisposV847kwDeVn1NiewaWfn+R1P3Rk+yorekm/W8VxtpFdKKA0t1aiV95Hys\nlfPHWXOJbp8o/+Vr7tqxjmq29I9tdbGXlfmvAQAQBjfKf5WLeUhvt5nTQn5r0qJPHn0JFlf7mfeu\nkZX/mbjXmYWn4tGNLdAcNj27lCpoQQauSIHMv406kXZ1und0fs3+p9zmMlNXPi6qVgAAKiQNN6gG\nW6IYdbdNuv2BxjHk2S8pQQMd9r9AtqY2mElDVnqEpzdU/r42xWtiTx8HlKxAWXzWpMdFLLsnAECr\ng9ddD0PsOxpA6bpFIz4nTV7Wizc6Ofh/lWd8i7dPrv1pUJ/aUZbbm7b1wLJtVKU5TV6qpxVTdgqx\n0sqDU5H3zi4ChVpMJ1kaTpxCeAiNafa/ZsTZ2RmPx9+5Uz+Hf+PGDUPv0klJSXl5eZMmTWon6dqS\nL26ERIDQn2ixjUAjQk2uIVWKC/1thyDrFiqNDPlirZKWmODrvX5xa5UxeTWXUyvX9re3ZxD0Bfu6\nMKTDRvuW5DBYA2QZz7pyTJ8UisKdhicVR51PWK1Qi+VqcYDtsKSSqNk9j5DxNJ1aCYsE+vmWnr3W\n7nw+fRbHhoilPso+NjpgjbdVX6lShEY3bWatfnLJNyvrqmpTZNCWHfdGjfJfZfj65q4dazVy/pL+\nVzWwCo3GZJQ/asF3g06tRGFb67Si6sKvjDELKUEDAQB4B8/KE2uJbkEoDKQTCXRmrFbua5G+esCe\ntaUu5kLpTyPNpq6x/TmqNuai/lte/93dAFhcraniVV3+TXTndwLTYuCqM9cyNtlSvvNkduOLvQ39\nbjzIL+xibYKokObg1ioBAAq1NsCaOtLLrK8LY9zJ9P6uzJj8mrvZ1YYzeEKpGgDgsOlZuBOdW6vY\nPdxRLSjFsm3qN5aKkl5perFn9LVYOq724b7Kcb9SGHRsM42yJvwAABh3Mh2qRu0JRslSV5N8NoK/\nf7g8wYvB3otKmzJygWjuaLyvPCMRTZwoehKDDQqt6iO4hFnViStxaMYcHMux1ypa3Kzaih9LJpKT\n6IQGiWJFFcfUWb/XTSVTAwDwpJYmhL9wIAg6ceLExIkTvb29uVwulUq9efOm/uqxY8ciIyMJhIbP\nuSPyxSkkkVxjqAY+GgiNQl40CBIlnFIu7uFAKxKm6G2sfWwGJBVfd+eEJZfcsqTWWwTMupA9xsds\nz2iXxp6HSD5hlac24G1dyzZPmzRt6/lUWU9bn8ldNiuBChl5nHy2sLfbTOS45q8D1NDR+rIMa++R\niqC41ANKCNXbbRZi0kbGN7tyo8l5SUeberN6/Hpv1OywI4b6Rs0vwlo510QdJPmEIkM6ZCVGq5Ci\nsHhDnSF++hcKixccXmHSazxr0sqWn1jtw7PVl38zCR+PaCMAAERj421cuWvH2my8Jtk+lcuxZ45f\ngrN1hd512alTKzVVPGTtBPyt/7BsG5Pw8bC42rTPRACANCWm/Jev2bO3QM27+6w8taHu0XmrVWfI\n/r14O+fyRDKBbFCQVblSy08pEyM/x+vSu87s4HT+vLGeU54UcgH4tbnaMvjSBT2sF4baIOuIFBxm\nbX+HYcdeu7HJ24Y5R/6Rvra/A7JWlM6X0IiQRAlzaxV5Qnn5lmkqXiHOwgFiWGhldZQeoDPsLXDr\nT7pz5bbZ/P2X8/0sqc3NFQulaqFUDWFQ5ya5SZKXEjxWYihO+quvS+8O9Pquoi4fGZEDAMpFOWyq\nA3LMGHVYU8VTV5aWFOGlXWbxX+/YGJBCHD5u2LHU5u5RVZbXpMlD61HJ1FgiFtS8o9qlyhobhleV\ntN6KTyaSAwCMnhpaJjIyMiIioqysjE6nUyjvrFbu37+/vaRqc74shSRRwm2ijQAA1qaEdfcKWWTs\ngh7WP97Md2IRZ13IVm/rVSUt9bDsBQDg1irPptgxsfsq6vJVGpmPzRgAQJ5QzqHiZgY3Pa+FwuLt\nfo0uXtybEjRQ8deOvipU0UMiK3I5vfsIJMM40wgCxUtZki04vIISNED/Zkfw6f9j1v05FXTYnuWn\nVUjLN0+jdB1CGzQduVq2aRJ96Oy6J9cIjj4oDAZlbs/oMVR5ZMXYaXMNtZGqLE9weAVr6k+ShLvS\npAcQ00Ke8QyWicWxlzU1As6CXQQnX/GTa4yx30te3uHtnIuzcnY48KL2wVn+vkUERx99c4ZopXXl\nO2bhbd3s9zxt8HZjjP0eYlpw147FBgy0nPyD4OgqFAbifLcHuSqOv6Euy5PnJMhzkxwPJaEJZACA\nJPE+3t4TAIBl27BnbEJyMscvUZZkV+xbZPnD8QbDteqre+WZ8QAAokc3l0v1NmZYts2jpOzRPpaT\nA/adev7Lq5IoCzJTqZHxanMvv9pBxo/zseoS8ya7Rlbe5CTkg9zq7TElNRvDaMS3t9PVzuT+HH8O\nFQehUY/mdh52LNWNTeZQcb32J08O4OQJZfHfdVEWZYifelquOAmLKiGmhfjpFvGTM44cpymM6b94\neQlraMkRQcOOpSo0Wv0606XXlYeflvraSLYNcw7clVBUrUhbFqwoOgPR/SGat771KkkpGU+jEphu\nFqFZ/Fh3TlitvOLks4XdnSeGuUwFAKAwEJZtg2XbyGUO6XxpknrSCN4OYDuORcYmloq72DRceQIA\nmPaZKI69bNKrCXN/jUgA0cwapyPo1HUorAkAQCyUUphksUCiECsJ1PrfpUpayiTbVkkMZjgxWq7f\nRQDGNFehEQAAGo3+DG7S2pcvSyEJpWoOFSdRwYZ/+E+hrFbJrVVuiS4e6WW2orcdX6ySKkVUAvPb\nq7nX0ipZFOzOEcfDnegAAD6fDwDIFkiDbU1aqBCFgazXXQIwXLZp0h+dty3wJ6kybr2V/8xmNIFE\n8g5lRv7QeOsilm3Ts5QFukzWwRr+7m8Z4xdrqniF84IJnTozRi3A0Njy3EScpROyowU/aDbRytp+\nUxR/97dal+HIu14jElQcWGqx9DBEY2sVUu7asQAAkk8o0S2I890eHaypvvBrHeEKAECW8awu5oLj\n0RSttA6FxZv2nai5wFMUpJb/8rUOhs1nb9F7OZMk3q3566D5nG1NWnMBAKhhY7AWDiKsCYbKsFh0\nQHjmZ2VJNt7WTVmUIY67QhsykzZ0ljT5Ue2Ds/Shs7TSurqYixZ/ayxD8LZutIFfVRxYShv4leFS\nvDw7gfPdHjSBbKio7gC3wtsXFm3aBAAY7DXp5zurCNhp6WUPp3T7Nab4zSwviruFdZWyLLEoNozk\nrSrLo3YfUXP9ADVsDDICS+TRB0OdAAAgAElEQVSK4xZ0NtRGCPpRLwWP2TzE6VB8mR2dcGS821eB\nFnKRqOLwCllqrOXSIygMhDwfFKHccnEKQGEuyzW+GytuDEgDAPR0oqWUSbramQAAppzNdGWTjoyw\njiqE9z7hTg7gLOlpSyNC4ufR1OBjFXV5So3cluENAMjixyJzlY6sLvcy91WKC+9l7F/Q+8yN1O2I\nQtLDoeKm/5l1/xs/tMJCp1VKlPDq08eils7C4hpa+pj2n8LbMbtJhaRTNTtPqxY+Fz+LZAwvBABo\nVBoIj6GyKYYKSaESW5q+Y6ejM5GJ2TmV4iLDLQpGvkC+LIXErVUwyVgyDsMVKZ1ZRIkSLqpRtMbi\nrjGI0RQZhymqlgMAaESIScaK5PXLvBIlzK1VPprX+VB8GaKQEPKEcjc2qeWakVee3a/RM8ok+57k\nrZZUq8rysGwbFBaPNbPG23uK7pxwGD6nybIWc7ZVX/6N99c5avcRiMYyCRtTF3u5/JevbTZcM3SF\niShINIHMGLNQcHgFMiiRJT9ijFmICEBw8jWfu53s1wtNNkHUFQBAE16KwhHIAX0LvgngzN8F0diA\nxgYAoLB4/ZSdml9UcXiF1Y8n6x/FizuWPxxrwYE0CgMR3YJq+fVWtrQhM8s2TmKMWlAXe4U9YyOW\nbQMAoHYbytsxGwydJbp9nNZ/MprctFInB/QDaEiScFeaEsMcvwQAUHPjCM7KuUHre59wFVZdIt9c\nJEgEAG/BoljVaJZ7Wrp7WvaSvLyjTcljdxsLAFgc3udozCqznMtiioXDw7MAhqVJD61Wn0Fh8cU1\nigbD3JLqtMc5JyYH/aIqzRHdPsGeuSmQoak4O0UImYbTpHWlY5SlOeSAvoyR85E7AgDoNDIU1gRZ\nAaIRoZx1Y9WJt3QaWbgT/UamsKudCV+sgtCo1X3t+Xz+V4EW1JWPES0oS9+ANe9dqxBeTlpfKxcM\n91vuadkrmxcXYDccAEDG0xRqcaW46Kehj8h4mimRrZ/BQxjoxtTt6A0AULyx0sq4kwLMHUyiBE9f\n0Bh2JI+VyMhG/9Pof/oGwCJBc7+psuQ8zmqYRpSGDOCIVIII1EmEUpplfc0KtcSUaK7SyJABqFgg\nqZALLQr7P8k7M8p/VZN1GvlC+LKs7PhilTOLyKHiEEvfg/Fl/jteNpnTcK+GoZc2PchVqQrOFsjq\nTbdZxCy+SKNVAgAkSrhwVYgzi5gnfMeY9WlhrT2jtVuX/KwoNTCusrKqeMPEss1TVWV5WAsHavcR\nWmldc9P6EI3NnrHJ8ofj1L9n+QAAJmFjHPa/QLTRt1dzGxQhOPnqYI0sNU5Vlid+fovkVT/wQvyb\nQUwLw1eSSa8IavcRaALZcf/LBhOGerAce7ytqzTpPgBAzS8CALw3nEHDW5i5SSutJTj56N/dAIAn\nGSWnv/86Me4Jya+lUBdk/16sSSsR8zBFbpI8M54V+UODPA/f1HwfZmM9cal+qymERmm0Oh2sEVzZ\nO6zsL7ggBQDgyXsZqM4Yoxu4hj5dE7HeYulh2pCZorunAABCydvuAQCoqMt7kHmQVq26ua9/1YUd\nRLfAkh+Hlm2eFrpm/+RNu5z2xKEIZLJfuEnYGMM7gusyMdS3G0cIEBpnNVTFu9XFhvq6XAIA+COJ\nPy2Qg1yl4DFRM3y62pmqhc916jqCw9QHWYfGdVkfEbix3g5Tq9IbfAc7jC2oTERWEK1oHlXSEiS9\ngWslNMk6nxdjZ/KSwnC7TdqBMfFQCxpGtkZh8U2G7FJX8dCEpj+ttNJiksdKefYOnVZZVyEhUPEk\nGlEfXWLDjV5cUSadbOliHrL19hBuTaZWoyurSyPnexruazbyZfJljZCEErWXBVmh1iJbiKqk6saz\nLggSJUzG1RsvPc07W1GXN6fnCf1n5ouCS7BOs3kgJrmc+EeSlmOCI2DRLDI2hZvuxa6fi0AWqyA0\nSh+K5o8kPrIvsvUCzwi2kFx7FO81LdKsuvb+aUrXIVi2jfMfb95fsim4tcq9T7g7R3RqYM6Ot3Hl\nro9AE8hm09e10l6uuTEKgmmfiYITa6uv7tOplR+x04joFtTAmc219ErZgAWRPdz6XK0rSRQ0twin\nB2Ja1EQdEsffsPhuT4M70mh1FDwGQqMglwDhmc3Ior2VKT5PKLfKj5a49UqzGu72+ljprYPU7iNG\njjpGyTvuaRMx7GxGmGPFhRTxxqJrVVmwm1eYYZ130veMCVgj2fXD7e6dMln+4a6jGkxz0YfOaiyk\nRpQKMQINUzAUJxX/PgDAy4I893JOdoVM77Mq8c3p6uqnBS80HLWA5/BNauLaSnGhGdXejGrvaNYl\nT/DCcK3L0awLsvMaAGBN9ygSpiAbh1dfC94y5m2Ik2PZpyslxY6swOEU4sOsmhmBEXUxQzAmroZq\nEmflpOIV4m3dGgpfWYq392p8U7C0GGJ1RRM5BOc58pzftHAoAABHwqpk9bpQqhSZEmXINrK8yhdi\nhRAAUKvkE7GeMERBdok1rtbIF8KXNULKqZQ5s0gcKq7eZlejbS5qmWFAMybFmluTqf/M1Orgq8mb\nrqdsFdX9zBVlD/VkObNINALEoeL5ojjEII2ArX+wvpaU58W1yPGZVxUXp3m1sLepMT0caGnuY3Od\nB6H8+koS7zd4TX8QB5+VzbqQ3cWG2tiameAexBi1wPmPN4jF2qeD5dhb/XjSbPo663WXDMcEH81f\n6cKIMYNxVs7npngee1GunxptDsaYhViWFXPMd3rbPD3Pi2v1y3iM8YuFZzYDALrYUB/kVvNvnUy2\n9Pe3YxJGfW+99jxt0HRzljuTYiOR/zXY+U8adOXboMOo8YRepEMc+MfLSesRZ3q18gpCzpvqJcNN\nwkbPDDtkRnW4l7mvSankanFuxdt9V6ezz0KmHsixVgdzazLRpp5aOQ8AsGGgo6c5eaDTCaBTAwCy\ny69k5hzwEz6Ikdbcp3RJrXhpy/AOtB+FlO3uPPFi4lobxjvqQW/E72jWJaP8Ua28Iq3sIQBAPwqp\nlVfYsIK+Z1jBwqd4dlcKDqPUYimB+1Vl78RAwXIcVGV5je9Fq5A1+cvCtZlYRhcAAJbVVSvOB0BH\nYZIgHKTf9+puEfZdnz8BABAG52czWKKokosVaAhNphGZWAdDV/QaWKUPcGzkC6FDjpASExOLior0\np4GBgXZ2dq0pKJJrOFQcvw7X71DKQDemUKp2Yzc9Ra7QwHql4m87RAOr+bX5yGcm8k2HeAC68UYY\n4ce+nFppZYqnESGpsppJsdFvywcAjPVlH3tRPtLLTKPVcag4w3me1gChUTPXbXqQW72nwHTd9vsf\nVPbd29HezKq6Ot177xNuY49HJM+Qf8K7M8Hpk/zxIEiUsEihkShhZF7U2hS/MNTmwZvqsT7NmncD\nADBUBqXb0CYvxeSJRnrXm4eRPEPqHp5TFmX0JqH/d+fVoWq7lYoZRIvHtVIcMq7S1CSHWPXaF79s\nad+DVP7twswbFdaT/lIVjK9Sy3Cam8/X9zEZkFQT7Ub1cdhf78fF12ZAXuWLxuvzVZLS8wmr0GiI\nW5NxL2P/zNCD+fKqoqpUxI/GvYx9BZWJLuYhXXT17j+CrRLSyuDYNye7WYbmc09NDtqIN+8lenOG\nSbFpEJ/XlGj+4+Bm3R4CAPxtB2++NRAAMNh7MbcmAxGsSJjiYBZg4rvUPH23yNTPyhTDr1PZM1zU\nlU/xthFoknX9kzRhqEqyG9epqeI1OUqG6zJxNvWhSSC6n7K6FMJ7UVnksoz6bbAQ+u0nIJXAKq1O\nV0iYaIwOwmMoKLNqaTnyLwMAvCy60sBHiZH/PB1yhHTt2rXDhw8n/E1VVRPR5JoE2ZBvzyA4s4jp\nPIlGq2vOY7dC/dYMj06yDHQYqf+2VajFAAAKgdnT5SsGobKHA23PKJcFPaxZZKxCLcsTyg3Xn9zY\nJMShA0+ssaZ9QMhzQ/q6MBJLxYZrOTbrn35QDTcyhWN8zAgQ2toUn857u+Ej8o+M/90t/DipPg97\nn3K7/ZY4wO3tKtRAN+bd7KYjKbSG/Kp37Erow+fwds6tu75/5rNlfCcfmGCLEsYglxRvDtTFjYbK\no34cfIemKINlxW5DUsMD1q0d9sjFy8WlFNa9SX/8ak9u9nX3/ksNmwh3mR71eluDdu+k7x4TsGZO\nz+OmRPNw1+lH4+ZMtugc9+b0wcdfl1SnVUlK5/U6RcBR71bn6bTKPMGLTF7M5K7borOPXk/4UUdy\nxXP6AhQmzGVq66PF6/G3HbJx5Iv+nvNsGV682vpFxLzKF53YwQCAALvhScVRNCKE7Ksjui1RVUTr\ny+KsnFXl+Y3rVFeWNl4ahCX58jcHMH8rM5z1KHHxK3VFDABAJakDANTKKwxn5KgEplgplMBVJBzN\nOcRexcXXyeu9Y+yNnlRand7CduwvjbKyssjISDMzs+7duz961DBSpUQiGT169KZNm9pFtjakQyok\nAEBQUNDWv+ncufMHlaURoeW97R6+qXE1IzUXtYwvVnFM3n7K0UmWaDQG2VuORIWwpXvTyZYDXbJq\nZfXbKSrq8lzNzZ8UivhilTnlnZlAjVaXVC5Dgip9HH6WFL2nopj8Gm6tMlvQKu/IEiXs8cuLuZdy\n+rowAABDPVjnUwTIXSs0Wg2sy6mU3cmu+ohQGh+NQqM1DGDKF6sUGu2ueGGTv0VxjeL2bD/DRSMa\nEcoTyhuHUWhl0xIlbDhrirf3tP8tlvPdHuqeV6v84umBuzTViUAHq7jX1NWJJmHXlaWXJInzFAUn\nSB4rURAJAEDE0QDQmk1bNXzq5VeMSq/whTgTlmErTIpNgN3w2NxT+pRyUY4p0Rz59g+wGz7Q67tl\nQT85m3WxYXgP9Px2/6OpFjQXAEAP50l4Aic2/bd7GfuG+y3HQaQNQx+VSPmO7L7g04AwuN5us8yo\nDvqoIvrVGjOqfaW4iEXG5gllAAAsq6um5u06E4bKaDIOhU5Vb+lQG90Xrq13PqQWPCZ7r9N7jkAT\nORCru65sD4FQV5N6CgBQIy03JZprapKBDgYAmBLNFXK5zpFvQXNxDLaty4WR6YcqSakV3SMicOMn\n3vV/iX79+llYWPB4vC1btowZMyYv75151JUrV1ZVVSUlJbWXeG1FR1VISqUyLi5OH6XqvSBb3PWn\nzizitfTKvi50P0vKxvtFranBkRUQ9+ZURvkjuVocEbgx0GEUlcCqk3P1cbWrpeXeFl43M6uEUpXh\n1JyvJSWdJy0SqZ1ZH79aS8Zh9BGvz6cIomb49DuYTF8d21gtIR7Y9Jnv5FStH+iwZ1S9YwgKHhPu\nTEOWkdJ5UnsG4cQE90FHXgfuTPho2VrmeXGdw6Z3HNZtf1TS72CySK5BPE932hxPXxV7J6+uSVc9\nQom6saF81AyfQ/HlzX1MGKKSqRHPNAixBaKApnaAAgAYyocODt0guj9AYXBpE+RvDlCDDkM0b/rA\nV5Qu+6nBRw3toXEWgyQJs4EOXjXkQQ/nJnyI+doMyObHnXy2MIsX+6Lg0rXkTT1d39kyTJIWQszA\ncNfp9iz/maEHuzlNQNL7eX17+805fQhEFffqwqB1Hux+773T1kDG0zTaJvxmMck2WJCNRP8CKAzQ\nKsHfsaZgaTEap9NKGwZtQuw8FW8OYEw91FXPAQA6dZ2y8BTOduy72QhkKz+4cLucaLL3YUStXEDA\nUuriRssyt+rUdQAAhUSGcxe5c8JwJKxOjlOoJQCAkurU94Zz/KJISEjIzc3dvn07BEGhoaEDBgw4\nevSo/urTp08zMjIaR0jqiHRUhXT//v0DBw5MnDixf//+hutJzdFpc/ymB0X6T2MOFZ8tkPlZUjcP\nccqvasLNMF+s4lDfmWGzZ/nH5p56nHNCoRZTCSwAABqFWT/iaaWkvvU6ucCGYVNUI88WyLws3vr2\nsGcQBh1JecV7/w6kFrCm4bm19e/romrFUA9W6ZruV6d7H4ovM7QszxbIxp1MzxbIqCsfp5RJ3Lc+\nP/aCN9SDNcH/bSyi7vamyPAisbQu2M6EAKEvTvNyZjU7WPxEnhSKNPA7NSdxxacnenhve4Fd9mjc\nyfTlvezkW8OX92A3HvRotDoCFt3YDISCx0T4sfc+adaZKUJdheS34Seennob2OliigBZfNJpZGrB\nY1harL+kFsQS7CcBACidd6pcduLtJ4Fmoq0DAHCWg3DWI2tu+yjyjzSXZ0q3XzvbDUssugYAmBl6\nkEpgvnNrojSIXu+F3ZkdrLfYJtP9vrXp6kixQk5V/Ps48z6gTdHqYLGiytAqz8EsQKPN1/t4ROPN\nYEk+AEBVFiVN+hZnXyhNjQUAqMryyjZPAwBo64QYE4ZOq1RXJ5L9t6n592FJviThmzrnhTrUO8vS\n4iqpTqtEQSQVw0SlEqdy79qz/CFGF0X+EVicCwDAoAgatByJVgXBRMSDcK1c0OBxfeEoFAo0Gq0P\nvgdBUG5u/dSrSqWaP3/+kSPN9sOORccwatBqtTBc/8mGxWIXLly4ceNGAIBarV60aNGCBQtu3LjR\nuFRRURHisJ3OZPl7TMsoE1lQofoNoUotAEBSUykBQC6X8/kNY58Ia+rENWi+1vDDEA0AgADpSc65\n3k7f8rX1RbjCrOQ3MRZUN27lGxOU/TedTb6/XdDHGs3n18dj9adp5wUy1kTzhYIPiwuHgiVAB6MU\nxWj+nybqEaUqDz5ZyZNoCCgNn8/HCK66y7k+qLMR58+dHmOPFLmZWjPGw9R96/NJPvTFVzNn+ptO\n8qGLhO94rTaHNLcKqwMIqLuZqk19OHw+vwcb5JpjzsXn9XP6+EnF5niaVznKjXo3pciXQwAA8CQa\nC6LWy0T1Sz/zUDuyzY6suZ2pfD7fDC29XigbaPOO7rmRW9eVg2n86wAAujDAr9G8sc5QA3UVWyS5\nmy8RSDS7Blmmnnrdf1VI0p+ZzoU2WCIkkGpqxFKKprairAybOkGn0+govjqSo5YzAaAwaC1ZUlGJ\nVFIpxgOz/qCpdt+C7YF22QlzT4hIg5tTXWYYr34OXgCAamEdAG/7ElpehEKxpX8317BickhN3jXY\nPALDP6sjdpFWVFZWNp3zI7Ai+ceknTXBm0MaE/2DxaoZCmlMeVVt/b9DRZIUxmjZJlDWHth9P0b+\nrfD6DjHFXMvLlyXd5/P51cV5VDOHysw/ADFYKqjBmA5Ux0WoO205nLymU0l8L8e5WEy91QwKq5Oa\nzYKputpnvzspiuLLeWG281UoOuy6u7r8tVZlXVPLQ+twSLtyuVwtl/P5/IqqEg7Olw+39PzXr1+P\nLB635nv0Q6l7dL4u5mKbV/teTMLHNekXo1u3bnQ6/fDhw7Nnzy4tLb1z505wcL0H4TVr1kyePNnR\n0bHxwlJHpGMopHv37i1btgw5fvXqld71OhaLnTt37ujRo+VyOZHYcH+Pvb39+fPnAQDcWuWOmJJd\nsaXnJntyOOYAAA4ANRvZyCYkLL6aw+E0KIvCSRysOQ2M4iICN55PWB3uOt3dvot+T1KAZGh65XX/\nTuGaUqmrvb+7AyanFu3taGX4ovzJ1rKvI6VxKy2jlXFFD0IxFCdK0CGv1yee4YI4HI6QL+1rkUQT\nv1RWXUNhTSSW0/vqREJA9eKQN94vOpkkSvg+cItUTcCibdY/vT4rQG/vp4cDwOjzJU4MhrM50cOh\n/kv8uz5mkX9kTOne6YMkfC/ZAhmHXrt+sNPcyznn/Ow1Wt24S8lr+9tzOIxIDgAAQOjswf4OiJA/\nveAeTVOs7mePlNVodWeu8K5O925ur9hgL9Wsm4KoGT4QGqUQK7WwdtVjrkKjjfC1qtPqtj6p7ClQ\n+fbyQiuxByKuzr3x9Y0fLs1a6qflC/DCDaYhpzCmHgAAdeVTVfkJWJxPdFmAZb/9gVr3Y3EUunwM\nJg+J/tAcOlWNovAk0fV7fYos/QjedSqG1nQTOvZ4yfOv8MBdpcmjBOxBtN2Hdp7mYJtPOR2/2Bzt\n5GXXl0Ovr5MDOM/LT/PkaKQVHetbacpSCme2uIBJtXKWS4eQ7dm1D85iqQxUQD8mWq2u5dKcPFCq\nGIr/doDCAPPJIt5Rc+e+HtUPzE2cRCDfm1O/6EUxoZjbegMAVKYyD6s+8aVP7KycpAJTom2gougU\nicPxwY0nk8lIu0QiESISORyO+A3Pxd63yeghevQeRZGPzrbFpFdEk4qhvYAg6Nq1azNmzFi8eLG9\nvX1ERER5eTkAIDU19c6dOykpKe0tYJvRMRTSwIEDBw5s2i+ASqUCAEBQSzdSVC03p+IezfPv4fDW\n+7X+NdfkxiBDSzk9/rZDpCpRiNMEw79KD+dJmeUxAAANrETStw1rwmmbA/2DveujSdYmYdfr/a+o\nilQoBQBAWRHTTfcnhrbA1Hk2QGGIwudf4Z4ujbYd4s58XCC6/40/jQght3Z6okdjbYSwZ5TLsGOp\nyYvf7mqi4DFeHPLRF+Uzgy1j8msAAH6W1OY0wXvh1io1sM6ahl8WlbdzRCcaEbKnExJLxRKVZoAr\nAzGvQFBve2szFv9dl8g/MmLyazY9KD432fNJoWiMj1kLMiwNt+1qZ+K+9XnasuD4M69iDj53CJHQ\n1Na18ZRx28dF38hhB1hrlZXeA10X/fVGFnmWKRNV7Dv3MsdMow4ZvkbbqbsEjUFRzLpjzbo318R7\nwTt9LUmYhzXr0cL8nizjZ4DByzJ+JnaaCyCSVloMS/IxtCZ2lSKg0HisWRgsSiP7bmmh2o8DjcLY\nMf3upO/u7znfMJ2IJdszCHlCuTOLiIJIGBMPuDZTp9UAACBTD62chzWzrrqww2LJYXnGM1gkwAX1\n1VQ9qRcPhaH1jUP8ANFJlgqVuHG7GrzUmhZM5CWr+Pcwpu5oIgdnMQgAQIPtmbSGPum1OrhlbfQF\n0q1bt8zMeuORSZMmubu7AwAyMjIKCgpMTEwAABqNRqPRmJmZteF4+vPTMRRSA549exYSEgIAEIlE\ne/fu9fHxwWJb2t/DF6u8OGRDn3IfTZMr2Aq1+HT8YmQevG15687ZfrZ75nat/CeW8NRDs62dzeyR\nZCyrKynvYHFVSOQf/BMT3A19mU8OaPabGgmL0CDk9oZBjv0OpkwO4Ox7UnYpVQChUbdn+SLKA5YW\no7EmKFyrHqBCox127LVCrXVmkVa4J9ppawDoOb+H9bq7hRqtbnnvlnaMTepsHnk6Y/MQp98TeDcz\nq27PbnYnEy+jyBQfnbEGP3dCYEx0gaQgMfTrmmqKZT+Hy7eP2wjTmU6ZAoZLXF3sK6jbLbPuDt+M\nzsASaZVFvcbscqwskj06GB+9/5lnv079vw+F8B//L0Ch8XibsfI3B4guC5AUWFqsrniIwpDRBDOI\n2VWaugqi+xMcpmqqEyWJ82BxPsTsos/cHIROcz9apPcS7jo92HFs4ze+ryWlqFqO7FHDWQ5SFp9H\n7DjQJGt1dSJz/A8kn1CCky9v51ydWoOzcta8u9uiSJiLxzqaUR0yy2OadLiAIVkv95ikKr9N9tkE\n/u7bkiop0/atQoIwuKTi6x6W4W1+1x2duro6RPHExcXdvHnz9evXAIDIyMjIyEgkw7Fjx27evHnl\nypX2lPKT6ZBGDcuWLfP29g4MDAwJCVEqlXv37m05/9PC2gYWCi3TwAHdexnsvYiApXpYhH9QqQ+C\nygmRwZD8zd58/FA0+p17wXH6bfTPevNjN8Ogy48OxgMAtLA27niCqLyhiRQAgLfMo0EKhEZ9083y\nRqZQo9VdnOaVtiz4ZCIfAABLi8VPxtU9GWdoAqBHKFX/HBWrN/zl1ip77X+1c0SnI+PdhFKVl/K8\nIu+gLONnS2ylSK5JKRe37DlpqAeL978eXwVapPEkCg3cnEf27Ef5J7+58uhQulIiwV5Oeb7+Vto9\nzZDi0KCRX9F73fCfOufA9JSQwPhEjBfJc01a+o0+drANvdi5xzfdJnchsxj2Xawjtg9ddPNrAMC+\nsaeTr2dIhFKNUiPIq4re98ERbHEW/WFRmkaUBgCQZ+8QPxmHJljI3+xVFp+vfdQHa9YdsZWAGF2o\n3f4gd95J6bIfYnykCZnCINp68vWMzPsf6USqcZhzCIOzpKL1WwswFCe18CkaxwAAoMl2WmkRLM5V\nlf2AwuK10jqMc0Bjb4q7H9/46R4OB9Gjs4+cT1hteCm34hlOygAQSZb1CyxKQxnoKi38zn4DS1PX\nB5mH3DnveGYyAgBYtGgRg8Gws7ObOHHi1atXW+kKoMPRIUdIT58+VavV6enpXl5eLY+NAAApZRKh\nVN1gNGAIAYs2jEah0eo6bY43fLm/F2d2cHNRStsKGhE6L54UWBQhZF9uENkPbzfBLXs0Vtrv9QuJ\nmQPD0sMcABBz8Hn3qV1OzTmn1ajFhXGDNyxuTSs9HGmRpzO62FARU7RgW5Ow3+LOemwjeu+uUWAw\n2TsonXcCFIa+OnaoByvY1qSHA+3bq7k7rbZy4zU2YcfQJOtD8WWbhzghg9Gns6wVRX0wFEetjFsb\n3Xezhc9dJU6V6QqbuuNtxrYsiQrWUZoZuEgq62J2n1twwnPbOFSvkU8eXevMmZ3EEU/JnxOGPBn3\nfr6LWX9gzQesvGZx8pJ8rdn+sd7lBMuvDSsh0YgAgMHLe2mXatcF/Pb2OVuahM38QP9MKAzJ6ydx\nwjcYsp2mKpHWPx6gMDjLQQAAnarmnWElCtPc9KBKpn6w+wnTnh48wa/JDCXJZcemXzAxpwRF+AWM\n9ora9FCQV0WzNHEJc/iUEZ4eKp5pbiJ7ZvjJoZEid4FC4wEA8jcHEPcN1usuITYIOt1bB055QjkF\nJ5jg79H515zJXkCqEgEAkoqvA0AAAKSVPaAVB2AZgZSgQ9pGnzUU5lv9ZM/yq0kup5Pf46vwC+TY\nsWP79u2rra01NzdvMsOMGTNmzJjxmaVqczqkQgIAYLFYf3//1uTki5U9nWgteJAzp+D4dSr9ZBfy\nkaj/VPz3INeRTfvE5Fl7hQQAACAASURBVD7T9bV451fjpgnunB7Mz7+gVqDD53QtTeXFHnkOANgU\nspduVjNjfcHV/dbcM54Sxv7ke7XW3hahXwc23YAOtsBw3dikaV3qlfGCHtZf0078mDD++kstAQK3\nh4eV3hhs0fsKh4r7I4kvUcIx+TWXxuLR5YGHSsMWpiwj+21L50k3DHREiiuLz+AsBiEzMwSHaUS0\naffiArw5SsW9VvtoAIbqhDXribMcVL+/R6dSFJ7CUF2wrK4AgG3DnIUSdQMBpcnLNKLU1OfOXcb2\no3QaueSuBKfLxBDP+XWGqF0HGOYk+28DABwYKxNKVcHUVZKEbyDPpaAp0Bj0wqjp+c9Lbmx6uDBq\nenWJ6Nraez2+7wwAuL7+flWJaNqhMWjMeyYS0CRrk+4XFQXHiZ0WGK76tHKSU1Red3PLo26T/OPP\nJDenkOLPJs+/NNXEnJITW/DbsBNhM4O7TwmoKhVtDjvw7dVp+sgOHw0BR6XiFRWSt3dq2idGf6yD\nlTpFJUT3V+QfITjNAkgIPszbD6NOm+MXd4MX9LBWaLTCKmBu4gQAuJi4tivYCgBQaWQYNRGFo+M4\n/Ru0K62SGSpUJtkWwuCMC0hNQiAQ/htxylugoyqk1mPoJrVJCFi05G/f+AAAxHFny0XaBYkS1hFt\nNdqiBrIVJ5c7h7r37LuJFrzp2pY8AhVnZfk6p8oFjdaFTWJDTLbfhB7HfuKgoeSR6wflPyvOvP/G\nrbdT4/oVBcdlmVt3+8zViZRibj7WfQ/BhKRVVf82/aefpGquSDnsLMob9NgFAu/7Whbj+7/UDjGj\nMcnc9SSPlRmZtZjAJVcWrt0cmlf7mGLa86ZWWQnLuMS/18BQODoBAD8nZwAA0W0J0W0JAEBVFlX3\nLJLssxGi+UC5KzVEsroiGqL5oCCStSm+wUBQkX8EYnQh+22puv9n/yEDAAAm5hQAgkKXNzugcWOT\nACAB0JU+6HULD5ZhQ2PY0LwHuhKoeIYNLf5sslquubXlEZVNoTDJubGFbr2cAABJV9KZtrQX51Pc\nwp18hzQMMY6CSO9dGWqO5OsZAaO8HINt7//2JOFiauA4nwYZZNVyPBHHdmYCAHyHuOtbt/axMHNg\nvDyf0n/Rp85xkXE0DVwnkjc9kUDx347CmshzdskyfkYUkop/DzKt/3E1Wl1fZ6yvlQUAYGaw5dO8\n+UJx2pO8MwAABa5KrhZT8awm9jwjZZWw4SmEwW0c+eIT78VIx+W/r5ByBDI3r2ZjLQMAWGTsg9xq\nfZg+oVS1up/9/O7Wn0W6D8CeQUgsFd/NqVoabmuY3n1aAABAI6KryqLM7LuY2wi8w/ur/t/enQc0\ncW4LAP/IvhNIQgCJrAWBgIIoilUrdaGotC4tdW17XepWrVq7XN5Tsfpa67vl1i6vbrXqxaW1rtVS\nVywCdWERlIrIvhMCIfsyCe+PwZiGEKJAJsD3+2symRkOMHAy33xzDhC0V+7kvHwcOOHDA8GwSaHq\nog9ZUUFBE/xuHc8/l3xl9Lt/m+WlV1TqGq8xR+/VtdzFswIzU8tyNx2YsbzOd4QrAIBLJ3LpRDaV\nKKO+uqEh4rsx90YgonBtCtn9VV0THUfzItVU7oy/rWILDby5/tPIioL/AnoNbdhG698RachMPDtc\nee9jvazU4PNPRtBrSMtd0fV3qyX/UMoY6JVcxg93hoTyWW6M6itFEe+mAAAQgws64Na7jP1MfUZ6\nHVv26ysfTAqLC0I0yK87rt3/vXhG0svpe7Llzcp5KTNvnbjXOSH1hLiideKyaADAu0fnp6492zkh\n1eQ3+sdYvmfgGcK//v2fBr0Bh8cdWX161NxwNH0+Kxeap0hWgehfMC0NbIRe6lGHbTRoRGgRB035\nYeaLHU/qNMi0AraWSXEBALCphOlhSxUayWe/TfPhRiipDVJVI4vqZmXil+mQHTTI9ctJDc+kpk1j\n/XJnRgg3p0ZmrDGK6Nv9OVQHvEIK5dOTL5UzyASLk7kJ7DCDumHya78FD91N9493fSGKM/ln4/AR\niUbE4wwGVSOJRhz/j1EcH5eqG38W/N8ctCFbxg93qtK2UwLXEfmxtOAPyYK5FdUvvfGPAyWF/jTh\nfxu/RMaaSC6d2GjwYoUl0SN20UI/keesJfsuBgDEA239vNH/8/t7BCenVtnwdkTR3o4YK0ajjq0/\n1/TYvAwunu7NjDnm/HK6TDccAKDFhR7YOqo6O/tRRvmppLSU+AMKsTLjhztZBy9dP+l9/ftsebOy\n2wG0Hhr31shJ70eHxQUBAAhkgkqmLkwr3rf4+PSPY7fkrAuc4OcRxGso7rWZtYgGweFxxm+KzqYq\nJeZzapoein2juvyENHKW8M7PBQ3FIgNiuHfxr+cLw8sltKw5Z3oIJ61Y3CDTIoZ2Y+WOj395OjaO\no3rpFRUAACcC3enJ5JqKFpUHq4FDfzrLlE5mGwz64e7xUtdHDW2l7s4BNBcL3xeqV+6BQQPDIEhI\nEo31MtvuTJJpAaEGmdZssMhBLBzpnvZQfPrtsK42oPi9o605wxx3zAlnIX6ie5yu8Qq6PHK28Mae\n8vNHXso7/nNl1s3cU/kPbvujN28AAM3lLR7DPHzfzm+spv1r2j5589NCqFum+h6Z3zE9D8/wd00o\n75i8Wyz6/oOxBDKBwiSf2PSrhPAhIzLFuFfZrapdk/ciWv2fR3MtRt5Yqji88IxWqcs6nDPvq9kv\nJ5ZOWazyHum15GDi1A3joxPDSzIrgmNfqMyp3f/2ccqzTJh8Djg8ThD1dErL9I9jF+x+dcTMEOOV\nx+jEEVmHe6eKZVVe7cWd102vfsKnD8s5dd/4UqvUNRSLpI0KBtdynxQAwLBJ/pdSMm4evDNr2zQy\nlWSct1ZX1Hjvgq35CX3Q+5Ug1oUi8fLjZ4ibrqM1HttUHeVF2lSNf9X/8en9g3rpI5yyhMB5Ooun\nokXNoajNiv3E+L/pivNzIusei245U92YHLppUUEjlayrwTxoMBoUn0267YnnziShpVeP5zVKVEhP\nqqD2HQYZX715XFfPugIACC4RzpN+xzMsj9iQPKZKM98kecY7kVzI+Ool2+62OO04v50k/eHOtLfb\nKst8TyWlvbZtqlqmSd/z54vvjAIAzPyvl6WN8gs7r7/+eTz6Ed70OScjSZ2UH8BBN4j/eJJWqTu2\n/pxWpRu3aGTIlBcAANmpecGT/F96d8yllIzm8haur3nbgoKLf7n6OB9a8QuLz5gc5YVI3gcP/8Um\nnKUg7yhunxhCBWuP/oPIjwUANJe3mE59tgMWn8HiMwIn+JmuAQCoZZrnS40GvUHerPztf9MnvTv2\n/I6rkbOEpgOAftFDr36bpWpT+Y0emp2aKxcrG4pF83+w3NvJaMnBN9yDeDg8zj/G+1RS2uwdcQCA\ny1/dlNRJbR9d5LP8cU4iPlPngtud/u7672/z1YhBLO8o9b3zt+nuzgEh/LGyxqtOOAHBcxRiaEf/\nsmraNDyqgsf0NT3ajOEfSOqkPM2IO+UHZkUkUdkisxneKCpzgN+lh57JwE9IttQMJeCcKARcRYt6\n3n8ebJnq64DjdahuL91Mm0+bc8LTh++Q566nBq5R5H/czl8UGOq38dK7WkmtXpIV4/P6pZQ/jq47\nSyAR+IFc9yAeAMAzhO8ZwjcghoNLTy45+EZXB7558E54/NMW1yQa8a09cwAAh979ZVisP6LRU5nk\nGUkvAwDiNk08m3x5XkqC2RHqH4peWjfamcn2ifICABDYYcwxP+oVldqa02TBXCeSi7E2T+dkhgnf\naMFf1x9HJISiL9FbODbu++iP8l+SfmNw6Ge3XQ6a4Dd2gXnzlCUH30hde7Yyr27OjjgKk6xV6tS4\nblqNoHP9AQBhcUFKierehb/yzxVFzhKWZlVqlToSzaa2kC40z5rWBxO9mwoblslU5T4uI945/teG\ncdVUIlOhkbjQPeskxWMjE+vL9rlTpETumoh/nd84afTCke6VrWovrxbTaq0orVInwI2KejES54TH\n4XHKVpWroFNRBktZyhbP/YGgf8nMzDxx4kRFRcXkyZPXrl1rZSUAYMeOHdnZ2egyhUI5efIkBhH3\nzMAfsrO9ZTjauKFUrHrWvq79BZ4ZSB22UVm0kzX+lJ7TMU+axB5C9XkdAPDSu2O9I73e2DV90oqx\npnuFTHmBI2DLmxVape7RH2WdD6uWaYZGDOm8PiDGpySj/Mjq01FzO4YZaWyqexCvrqgR0SDGC52m\nx+IhoXx+MNfn77dJ8HRvatD7JK/XrFeKw0TYtKDc0w8QDZISf+BxZkXyyK/2zD968XObqlvmnL7v\nKmAzuPSagnp+oIXpNjg8bsTMkJqCelcBm8amPuuU7oiE0DObLwmnBQ2fHswP5D3OrLBxRw5DcDrv\nfyrFGR+8vFClk3023Z9CwNVIigLcotU6mTsrIHRIvDONL3PCgXbkbo1ymu+WSw/vP25W1Ug0en0r\nnWyebJQSFcOFEciPAQCw+AxEq+/8RW1M5NJGOaL5W9/6z8Z/19VNqYHkzp07HA5HoVAUFhZaXwkA\nyMnJEQqFq1atWrVq1fLly+0ebC8Y4FdIEhViY0E2As6pslX9mpD3uFlpZVisvyOww1gdk6PMP3Sj\n8x0s7uUbLagpbNBpkJMfX5y89kVEixiTVl1RI8/fcqeA4Fj/o2vPJmyebJquIhJCz++4Km2UcX1d\nX/88HtHof9uVPi8loUVqa9tfR0AgEyJnhaZM/2FohOfl3TcX7H71/u+PlBIVokEIZMKNfbfQWXOd\nPfqjzCvMfdyu6XKxUqvUoaN/nYXFBaGzKp4DiUZcfXIx19cFADAklH/3ZAE6cNotDkMwxm9ufNh6\nAIDhST8kLaLiMX1l6mYKkfnGsYk1/y0oxTs7aer3ZNf60N1Kq6++d5rHphJoJPNsZIZAIphlFJT1\nK6Smx2J0svvXs36cl5LgF90xv7SmoJ7CJOedLSq6+py1KvqL999/HwCwbNmybleiIiIi4uPj7RNb\nXxjgV0i2J6QALvVhk1LoQbfYJm6Q840SXN5981LKH6tPLtapdA3FIq1Sh/4rKbpSEmRyf8WUq4A9\ncXm02cUT25MVHj9s1rZpbv6cfYuOV+XVDpvkb+OYkkOJSAjddGV54q4ZK08sDJzgN3tHnM9IwX/e\nO1t0ueTat1kt1RIAgFqmMbvjlXe+KPrNEQQyge3Jcgvg9NGgk9uTW3o+UV5sT9adnwts2YtKZKLZ\nCACAc8KrdDI+cb5M3UwiUMuaCy6XECkE3PVSYhuiAQatGjF4OAesHGuokaipBL0xgZlCNAiB1PHX\nx+TSZWKF2QbWh91qCuq/nXtY3qxA5zTWP3w6s7Ekq+KlFWOu7L5psGOn435h9+7dM2bMWLJkibES\na/8ywK+QatrU1qfYGTlTCY+bla+GcrvfdPBh8RnvnX4LXY4NiDmx6dfPxn83ee2LFCZZ2ihHbzhZ\nFPbKsM4r0dvsniF83yjBL0m/vf55P/5AZyrq9TDPULc984/O3hGX/v2fw17yzz6aZ9AbFn07y/hv\nl0gi2PnOx+S1L57Y9GvW4ZwFu199pjtwRXXXNYbR9W3F0X5zL94/nV4WNCOE+3txS7yAY2DGkFpa\n6WQXAMCpt0NpxNa8SgtXSDKxwsXTGV0m0YidZ9kpJSoqu8tJDXKxMmCcT11RY8bBu/NSErJT80Kn\nvIAOYIorWuM+mNha3dbWKAN1tn9PA9zChQtJJBKJRLp27dqYMWNyc3MDAix0HnBkAzwhNSt0HNs+\nfQdwqRUt6mFuNAd8JNbRRCeOiE4ccWPfLZ6v62vbzIvB2M4nykvaKHcPcuvF2LDlGcJfdvhNr3CP\n2yfundj068Rl0cJpQRc/v45Oe2sub3ERONs/qsRdMyru1lTm1dmekAzt+jZVI5H82sKx4Vw6pVW+\niUaeFMClNit0rXqiyDkRD+7wmN4EHJlFbtDptRSihbFHA9KOw3fcwWVw6Aqx+SixvFnBcnta5hVH\ncDKdHqKSqQNivHNO3x8SwveLHpp/rigl/sCC3a9mHs7hDGUzuPT4jyelrj37zD8OG2iqT2qrf+mL\nI1tHEszptsyjFbNnz0YXpk6dmp+ff+TIkeTk5F4KzU4GeEKSqBAbr5DQmXWTA//WrQeyCJ194NP1\no5q2S85f3/ODOBSvcA8AwLLDb0rqpCw+A4fHqWQa9P9sSVaFf/TQbo/QFzxD+PnnikbO7rIJU2et\nynouI3r3TeWWqXwAwHh/4RBncrQ3K/VPeX6diMdq5dCHUknMstp8Z6o7k2JhaEEuVviO6jhJGFya\nvNOQnbxZiSM8nXPE4NDlzUrjfTVlq9p/zNC0XTfWnX8HAIAm9cdZlYHj/RhPHsxQyzScFgsTanqI\nLJjbk8TgCHg8nsVWyw5ugN9D6raQndEz9aeAoG6xPVnoh30XTxZ6F6Tibg2aruyPRCMiWqQkozwl\n/oAt2xPwJC2i/DA23JlCWPbTQwPxq69nDVvzolfcMA6RQDiUL/Zgyp2pbnyW/83M87lX7pAIFoo5\n6bV64z0kHB5nQMwfwNCotEzO0wd+nfBOpnMctCothUlOzl9vnCzuEeL21/XHYxdGGB+uqsqr5Yl6\nvw9Zf2QwGCorOyqpP3z48MKFCzNnzsQ2pOcwwBNSbZvGxkzz3N1RIcg64bTAP1Pz5M0KKpPS13WP\nrPAUul/YeV0Q7mHLbGk6if246RYAYOs035MFTfNHdjwsRSHgXh/u60xu4NIkfOcAZypfS5KqVHL0\nIaSqvFrTg8jFCobVZ8y1Sp2VukEKsdKsaOHw6cFsT2fTn+F7p99qY/XjBqndWrNmjZOT0/79+/fv\n3+/k5LRmzZquVhoMhrCwMB6P5+3tPWLEiHXr1s2Y0c3z1A7Icf8LGwyG3Nzc2tpaBEHmzJlj9m5J\nSUlqaqpKpZoyZcrkyZO7Oohco7dYXKAzLp2YvfY526ZBkBVDI4Y8yijft/j49I8ndb91nwmPC/r9\nf2/EbZz44HJJ5/qtZuKEaycGvYMut/8r1vQtT+egnVM1Gl0z2uWPgFC1xDZ0yO7AOz99lL7CmEUM\nSLtp8ug8w9ssNdLYVKVEZXzuCtHozaZf0thUswe0ub6uTu0D+VP1N99807kBqcWVBAJBKpUqlUqZ\nTMbj8XC4fvljcdygN2/evGLFiqNHj27dutXsreLi4rlz5/L5/MjIyOTk5MOHD3d1EDVisP3B2DHe\nPW0qA0EWxa6OMegNAeN8MIyBwaUn568PiPGuzKmxZfvOXWVRPtwRVa17w706JrOwpAESaunu2GPo\nSyuFndCqE8YHBlCm10AUJvk56kIR9P3vmYG+Q6PR+Hx+P81GwJET0pYtW+7evbtq1arOb3355Zfz\n589fuXJlYmLi9u3bv/zyS73ewmMQbURX27MRBPUdHB638fdlGI7XGaFDZNJG+XMfgUMfSiYwhgvi\n0JdsZQBZwQNaIppmTEvxmqGyKXKxIiX+QFVex0xtvfZv10BMLl3W9e7QYID9X0hXrPQmv3nz5pgx\nHaWpx48fr9Vqs7KyOm9WQ/XbOBGbSU0Q5LB8Rw8tvWXeR9x2BDzp7cgDT5u6itgudyYDAJrLWwEA\npg8bmY3R0dhUNBE2Pm5G15gN2aFXSOgzxZ1374rBCT4bO3A4bkLqikqlQhDEx8cHfYnD4Wg0mkwm\n67ylBkcO4PZ+JzcI6td4vi7iitZeOZRapqEyKVPWjvOJ8mp83IzD40zLMWiUWtONaWyqqLwlONa/\n4smYoQFpNx2yo7Gp177N+mrmQfTINrZh1OMtdLWA+ilHmdRgMBiMw25Wro0AAO3t7QAAHu9pdQAC\ngWBxyE6i0CxZPB8AwOFwNm/e3JvhPjuRyLHmAsF4rHCoYECvx8MyNJQ19eQhFWM8skaFHoeQPPD+\nsYKTH18c/VZ4c4MYPbJaqgGEdtOvosNpynIrmO4Mg0xfmFHEe8FVVC1ukYqB9MkGGkQt0/CDuQ0N\nDaKSFhwTWAly27ZtYrEYAMBWmFcZh/ovR0lIly5d2rRpE7qcm5trJSehbxUVFUVFdUyKU6vVVKqF\nD1MMBuPE9yf6INjn5O7ujnUIfwPjscKhggG9HY+TIbeHB0R3N7Q0urq7uLu7i1zbSDTiqJkjHlx5\nhL7VrGrh+/D+9lXa8Dm1RQGj/Dx8+Uhru7u7OwFP6ByGmzeH68JtlLbyBW5Wgvzuu+/QhU0x/awY\nAWSFowzZxcXFFT5h/QqJSCR6enrW19ejL0UikUql6nclmyAIQ2qZxmLt7WelbFWhA2vOfEbs6hi2\nJ8tYH6ilWmJWp47BodUU1LsMYVGZlK5m0yXnr2dw6NImuVqmYXbdJNcUvIc0kDhKQurMYDDodDp0\nLE6n0+l0T0eKZ82atX//fo1GAwDYs2dPRESE8ZYSBEHdmrh0dMr0H3p+HJlYgU6TGxoxZOyCSNMK\nqrJm88daGVw6i89gcOg0NkUlUQMALM6po3No0ka5UqKC95AAAJmZmWvXrk1ISNi9eze6xmAwbNmy\nZfz48a6uri+//PKNGzfMdpHL5bNnz96xY4fdg+0FjpuQ0tLShELhypUrtVqtUCgUCoXGnLRy5UqB\nQDB69Ohx48ZlZWXt2rXL4hGC5ffsGC8E9RsB43yCJ/n3vBm8tFFuWvsHAIDD427suyVtlFfm1Hh3\natu48fdlbgEcGpuK1rWjMCxUUeEHcJStKlmTfDA0hO1W5158CILIZLIvvviipqZmzpw506ZNe/z4\nseku//znP8VicU5ODhbx9pSj3EPqLD4+vqtOU0Qi8ZtvvpFKpW1tbQJBl5WsmLremUoEQQOPixe7\noVjUwwq5NYUN4xaPNFt57dsstPpcV71u0SdkAQB4ooVOmDQ2tbaosbVW2lX3wkGlcy8+Eon05Zdf\nosurVq06dOhQXl6e8Z5FZmbmgwcPFi9efOHCBftH23OOe4XULRaLZSUbQRBkhYsnS1wl6ckRmstb\nPIJ4ZsXoDHoDgUwozar0COmyqwiDS5c1K+TNlivdsfhMhVipVelsfI54YJcOsq61tbWwsNDPr6ND\nplarXb169b59+7CNqicG7+8SggYz9hBW46MezSYvyaoIHO9rtpLCJLPcGHnnHnAE1pqaM7l0tUxD\ntTQox+DSGh832z5e1z6IJzUsWrRowYIFI0d2XKRu3rx54cKFxvzUHznukB0EQX3HPYjXuaf4M1HL\nNIxOE+HGLIigsimyJrlnCN/KviQaUVInZXAszKPD4XEPr5fOxbSPcN65B/nnMGgBPiIhJCIh1MaN\nFyxYAADYs2cP+rKgoCAtLS0/P7+vgrMLmJAgaDBCB8S0Sh3JtpbKnakk6s4T4VwF7Ekrxna7Lz+Q\nV3a7iulm+S6RWwAndMoLNobRxm6ycUvbRSSE2p4YMLFo0SKxWHzu3DljHdUHDx6UlZWxWCwAAIIg\nCILweDxHe8S7W3DIDoIGqcDxvnnnHjz37j1JZhwBu/ZBY1fDeqtPLra9EK2SaqFs2MC2bNmyhoaG\nM2fOkEhPu4/OmzdP+sTXX389Y8aMfpeNAExIEDRoDZ8eXJ1fh8mXprlQmytabXzSaDDr3ItPLpfv\n37//ypUrVCrVycnJycnpyJEjWIfZa+CQHQQNUjg8TqPUGfQG+/fFoLGp8mYFzQUmpG5Y7MWH1vO0\nYsmSJUuWLOmzoPoQvEKCoMHLM8StJ72Rnht6bWRxUgM0mMGEBEGDl6uA3VAsOrb+3DPtpVMhmYdy\nbOxXZBF68+m5b0FBAxVMSBA0eLl4sqryax9eLwUAoI2IbKFoVl5K+aMv44IGKZiQIGjwchWwC9OK\ncXictFHeUi1RyzRmXVwtUks1AID64h7Nt152+M2e7A4NSDAhQdDgxeDSpY1y16Hsexf+IpAJvySl\n/fzRxW730qmQkbOFkjppt1ta4RXu0ZPdoQEJJiQIGtQ2/r5MOC3wYXqpmz8HAEB3oabtMu9oYEbR\nqhKM8EzKWmOXAKFBBCYkCBrUWHyGIMyjpqCeH8ClMsmKVlV2au7177OVElVDseUnKxXNKmc+085x\nQoMBTEgQNNiho2cUJlmj1I6aGz5xWbRGpj249Of/S/wPAKCl+m9FwY+sPq1qVRNIFjpHQL2uc4M+\nAMBnn30WFRXl6uo6bty4Q4cOWd+4f4EJCYIGOwqTnJS1RilR0V2oIVNeiF0dE7dpYtNjMQCgoVhk\nNvuuoVhUeO4RC14h2UXnBn0AgJiYmB9//LGmpiYpKem9994zNo21uHH/4riVGgwGQ25ubm1tLYIg\nc+bMMX3r7t27FRUVxpejRo3y9va2d3wQNICQaESD3oDD/+3BoJApL6AXScZqDmqZxjfKyyuaD7vn\n2UfnBn0AgIkTJ6IL8fHxsbGxZWVl6BqLG/cvjpuQNm/enJaW5u/vX1RUZJaQzpw5c/v27YiICPSl\nn58fTEgQ1ENxH0w0fflJxioKk7xv8XGtUiupk6JNYJseN7sK2D5jh9i/2hBkSi6XNzQ0ZGdn5+Xl\nGRvIDgCOm5C2bNmyffv2GzdurFljYTLP6NGjt2/fbv0IpldRmNu2bdt3332HdRRPwXiscKhggL3i\nMWtuhLbIW3b4zVvH85vLW1wFbK1SV18sYroxHOrn0xd/5jmV53Iqz/f6Ybs10nvmSO8EW7bcu3fv\n2bNns7OzN2zY0K878plx3IREJForK6LRaDIyMlxdXUNDu2xbgiBIH8T1nMRiMdYh/A2MxwqHCgZg\nHU/wpIDbJ/IDJ/gVphVnHcmZ9v4Eh/r59MWf+UjvBBsTA1Y2bNiwYcMGuVw+YcIENze3DRs2YB1R\n73DchGTd5cuXa2trHzx4wOfz9+7d6+Pjg3VEEDQwsfgMcbUEAIBoEZVExR7CwjoiqAODwXjppZfy\n8vKwDqTXOEpCMhgMer0eXbZ+bQQAWLduHTpep9Pp1q9fv2bNml9//bXzZiqVCu02TyQSMb/JVFFR\nkZiYiG0MpmA8IDp9mQAAB9pJREFUVjhUMMAB4qErnU8lHiFrqQwae+OW9RVV2P98KisrdTodAECl\n6r7W0UBiMBiqq6vRf2hisfjatWsLFy7EOqje0+4YfvvtN+ETWq3WuD49PV0oFFrZ8f79+4GBgUql\nsu9jhCBoYFq4cCHWIVi2evVq03/Xq1ev1ul07u7uXC7Xx8eHTCYvXbpUp9N1tbHFYzrsN9ve3u4o\nV0hxcXFxcXHPsaNWqwUAEAiO8o1AEAT1FosN+urr65VKZWtrq4eHBw6Hs75x/+K4czcNBoNOp0PH\n8XQ6HXp5jsrKykIXJBLJN998Ex4e3u0oHwRB0IBBo9GGDBlimo0GBse9sEhLS1u/fj26LBQKAQD3\n799HE8+mTZukUimFQlEoFJGRkf39QwEEQRAEHDkhxcfHx8fHW3wrMzNTp9Pdv39fKBTCayMIgqCB\nwXETknVEItFYqQGCIAgaAAbaECQEQRDUT/XXKyQIgqDeUlVVtWjRIqyjsJOqqiqsQ+iSU3t7O9Yx\n9AIrpcGvX79+6dIlBEHCwsISExPJZHJfB1NSUnL58uXy8nI6nZ6QkBAZGWn2bmpqqkqlmjJlyuTJ\nk/s6GCvxWI/T/vEY5ebmogWMeTwetsHo9fqffvopPz+fSCTGxsbGxsZiGI/9z+R79+5du3atrq6O\nQCBMnDjR7MEM+5/JXcWD1ZkM9boBMmS3efPmFStWHD16dOvWrabr9+zZk5SUFBoaOmHChF9++WXp\n0qV2CGb+/Pnl5eXR0dFEInHRokWnT582vlVcXDx37lw+nx8ZGZmcnHz48GEM47ESJybxoEQi0Ycf\nfpiUlFRZWYltMDqdbsGCBadOnQoLC/P29j579iyG8WByJl+7dq21tTU6OtrNzW3btm2m5YwxOZO7\nigerMxnqfVg/mds70OIOncs6TJo0KTU1FV0uLS0NDAxUKBR9HUxbW5tx+euvv54yZYrx5fLlyz//\n/HN0OT09ffjw4QiCYBWPlTgxiQe1fPnyM2fOBAYG3rlzB9tgvv3221mzZun1ejuE0W08mJzJps6f\nPx8SEmJ8icmZ3FU8WJ3JUK8bIFdIXU3+9vT0VCgU6LJKpSIQCHYY6GCxnlaf5PF4po/03rx5c8yY\nMejy+PHjtVqt8SFf+8djJU5M4gEAnD9/HgDQ1XR/Owdz6tSpRYsWiUSijIwMiURiaW/7xYPJmWxK\noVC4ubkZX2JyJncVD1ZnMtTrBvikhq1bt37yySdlZWVEIrGwsHDnzp14PN5uX12n0x05csR4T0ul\nUiEIYixMjsPhaDSaTCbDKp5u19s5npaWlpSUlGPHjtk5DIvB6PX66urqS5cu/fvf//bz87t9+/aG\nDRuWLFmCVTxYncmFhYUnTpyQyWTV1dXGRnAYnskW4zHC6kyGessAuULqSn19fVtbGwCATqerVKra\n2lp7fvWNGzdyOJyVK1eiL9vb2wEApjfqCQSCsca5/ePpdr2d40lOTl66dCmfz7dzGBaDMRgMAICG\nhoYrV64cPHjw0KFDX3zxRVlZGVbxYHUms9nsESNGuLm5NTY2FhQUoCsxPJMtxmOE1ZkM9Rqsxwx7\nk9k9JL1eHxERcebMGfRlU1NTcHDw/fv37RPMxo0bExMTTQf6tVqt2a2R4cOHX758Gat4rK+3czy3\nbt2KiYlJT09PT0+/evVqYGDg3r17S0pKMAmmvb1dr9cHBwcfOXLEuCYqKurcuXOYxIPtmYwqKCgI\nDAxsampqx/pM7hwPCqszGepFA3nITqPRKBQKDw8P9CWPxyORSNXV1VaazPaWjz76qLS09NChQzQa\nzbiSSCR6enrW19ejL0UikUqlCggI6OtguorHynr7x4PD4YRC4dGjR8GTq5OrV6/S6XQ7/Hws/hBw\nOJy/v7/pp/52ez0g0TkeDM9kI/QXUV5ezuPxMDyTLcYDsDuToV6GdUbsHXq9XqvVXr16FW2nZOyo\nNGHChE8//RRdTk9PDwwMLC0t7etgkpKSXnnllaamJu0Txre++uqrhIQEtVrd3t7+6aefJiYm9nUw\nVuKxEicm8Rh1/gCOSTA//PDD9OnT0U/c165dCw4OrqqqwioeTM7kzMxMdAFBkOTk5JiYGOOcQ0zO\n5K7iwepMhnrdAHkw9uLFi8bS4Ci0NHhubu7GjRvb2trYbLZYLP7oo4/mz5/f18EEBQWZviSRSIWF\nhegy2uI2IyODwWA4Ozvv2bNHIBBgFY+VODGJx0in0wmFwtTU1KioKGyD+eSTTy5evMhms2Uy2fbt\n2+0w/a+reDA5k6dOnVpfX0+hUJRKpa+v72effRYWFoa+hcmZ3FU8WJ3JUK8bIAnJOpFIJJPJfHx8\nHKR9iFQqbWtrs8MfMNRzOp2uoqLC39/fEU4e+5/JOp3u0aNHAQEBFmeZ2/9Mth4P1N8NioQEQRAE\nOT7sP/RBEARBEIAJCYIgCHIQMCFBEARBDgEmJAiCIMghwIQEQRAEOQSYkCAIgiCHABMSBEEQ5BBg\nQoIgCIIcAkxIEARBkEOACQmCIAhyCDAhQRAEQQ4BJiQIgiDIIcCEBEEQBDkEmJAgCIIghwATEgRB\nEOQQYEKCIAiCHAJMSBAEQZBDgAkJgiAIcggwIUEQBEEOASYkCIIgyCHAhARBEAQ5BJiQIAiCIIcA\nExIEQRDkEGBCgiAIghwCTEgQBEGQQ4AJCYIgCHII/w+sezV+lrkNFwAAAABJRU5ErkJggg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "figure\n", "for iR=[2,3,5,6,7]\n", " subplot(311)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W1),5)-max(smooth(10*log10(A(iR).max_W1),5)))\n", " hold on\n", " ylim([-10 0]); grid on;\n", " xlim([18 32])\n", " legend(num2str(run_num_all([2,3,5,6,7])'),'location','eastoutside')\n", " subplot(312)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).max_W2),5)-max(smooth(10*log10(A(iR).max_W2),5)))\n", " hold on\n", " ylim([-10 0]); grid on;\n", " xlim([18 32])\n", " legend(num2str(run_num_all([2,3,5,6,7])'),'location','eastoutside')\n", " subplot(313)\n", " plot(A(iR).ping_time,smooth(10*log10(A(iR).energy_in_bnd),5)-max(smooth(10*log10(A(iR).energy_in_bnd),5)))\n", " hold on\n", " ylim([-15 0]); grid on;\n", " xlim([18 32])\n", " legend(num2str(run_num_all([2,3,5,6,7])'),'location','eastoutside')\n", "end\n", "subplot(311)\n", "title('Max echo level in W1')\n", "subplot(312)\n", "title('Max echo level in W2')\n", "subplot(313)\n", "title('Total energy')\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Matlab", "language": "matlab", "name": "matlab" }, "language_info": { "codemirror_mode": "octave", "file_extension": ".m", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-matlab", "name": "matlab", "version": "0.13.0" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
dennissergeev/classcode
notebooks/satelliteII.ipynb
1
8311
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Reading MODIS level 1b data in netcdf format" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a walkthrough of how to read metadata and data from a level1b file. I've used the the converter I downloaded from\n", "[this link](hdfeos.org/software/library.php#H4CF Conversion Library) to produce the Aqua granule netcdf file in this download directory: http://clouds.eos.ubc.ca/~phil/Downloads/a301/MYD021KM.A2005188.0405.005.2009232180906.nc (right click to save to your local drive)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I'm going to use http://unidata.github.io/netcdf4-python/ and two new modules (modismeta.py and netcdflib.py) to read the granule" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import print_function\n", "from __future__ import division\n", "import os,site\n", "currdir=os.getcwd()\n", "head,tail=os.path.split(currdir)\n", "libdir=os.path.join(head,'lib')\n", "site.addsitedir(libdir)\n", "from modismeta import parseMeta\n", "from netcdflib import ncdump\n", "import glob\n", "from netCDF4 import Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the glob function finds a file using a wildcard to save typing (google: python glob wildcard)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nc_filename=glob.glob('*.nc')\n", "print(\"found {}\".format(nc_filename))" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nc_file=Dataset(nc_filename[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "netcdf files have attributes" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(nc_file.ncattrs())" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(nc_file.Earth_Sun_Distance)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(nc_file.HDFEOSVersion)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "netcdf files have variables -- stored in a dictionary" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#print(nc_file.variables.keys())" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "the_long=nc_file.variables['longitude']\n", "the_lat=nc_file.variables['latitude']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the following cell shows how to write code out to a file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "%%file snippet.py\n", "size=100\n", "lat_data=the_lat[:10,:10]\n", "long_data=the_long[:10,:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the following cell shows how to read code into a cell" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "%load snippet.py" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "size=10\n", "lat_data=the_lat[:size,:size]\n", "lon_data=the_long[:size,:size]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot some lat/lon pairs" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig=plt.figure(1,figsize=(9,9))\n", "plt.clf()\n", "ax1=fig.add_subplot(1,1,1)\n", "the_points=ax1.plot(lon_data,lat_data,'r+')\n", "ylim=(22.65,22.9)\n", "xlim=(149.,149.8)\n", "ax1.set_xlim(xlim)\n", "ax1.set_ylim(ylim)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lon_bins=np.linspace(xlim[0],xlim[1],3)\n", "lat_bins=np.linspace(ylim[0],ylim[1],3)\n", "lon_indices=np.digitize(lon_data.flat,lon_bins)\n", "lat_indices=np.digitize(lat_data.flat,lat_bins)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lat_indices" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lon_indices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with a partner, make a copy of this notebook and add comments that explain what this code is doing and why. Upload you notebook with this commented cell to connect " ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lat_array=np.zeros([len(lat_bins),len(lon_bins)],dtype=np.float)\n", "bin_count=np.zeros([len(lat_bins),len(lon_bins)],dtype=np.int)\n", "lon_array=np.zeros([len(lat_bins),len(lon_bins)],dtype=np.float)\n", "\n", "for point_num in range(len(lat_indices)):\n", " bin_row=lat_indices[point_num]\n", " bin_col=lon_indices[point_num] \n", " lat_array[bin_row,bin_col]=lat_array[bin_row,bin_col] + lat_data.flat[point_num]\n", " lon_array[bin_row,bin_col]+=lon_data.flat[point_num]\n", " bin_count[bin_row,bin_col]+=1\n", " \n", "for i in range(lon_array.shape[0]):\n", " for j in range(lon_array.shape[1]):\n", " if bin_count[i,j] > 0:\n", " lat_array[i,j]=lat_array[i,j]/bin_count[i,j]\n", " lon_array[i,j]=lon_array[i,j]/bin_count[i,j]\n", " else:\n", " lat_array[i,j]=np.nan\n", " lon_array[i,j]=np.nan\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Now get data from Channel 31 (see modis " ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "longwave=nc_file.variables['EV_1KM_Emissive']\n", "longwave.ncattrs()\n" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "band_names=longwave.band_names" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "band_names=band_names.split(',')\n", "index31=band_names.index('31')" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "index31" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [ "chan31=longwave[index31,:10,:10]\n", "chan31\n", "#chan31 = scale31 * (chan31 - offset31)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## For Wednesday, use planck_inverse to calculate brightness temperatures a 100 x 100 pixel section of your Channel 31 image and bin the brightness temperatures into a regular 0.05 x 0.05 degree bin" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
AstroHuntsman/POCS
examples/notebooks/Mongo Query Example.ipynb
1
242227
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pocs.utils.database import PanMongo\n", "from astropy.time import Time\n", "import pandas as pd\n", "\n", "from matplotlib import pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Getting data\n", "\n", "If you are not local to the unit and want to explore the data you might want to export from the unit and import to your local machine.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Export data from unit\n", "\n", "There are some convenience scripts that can be used to export the data from the NUC, which can then either be imported into a local mongo instance.\n", "\n", "> Note: Your output will vary\n", "\n", "Export data:\n", "```bash\n", "➜ python pocs/utils/database.py --help \n", "usage: database.py [-h] [--yesterday] [--start-date START_DATE]\n", " [--end-date END_DATE] [--collections COLLECTIONS]\n", " [--backup-dir BACKUP_DIR] [--compress]\n", "\n", "Exporter for mongo collections\n", "\n", "optional arguments:\n", " -h, --help show this help message and exit\n", " --yesterday Export yesterday, defaults to True unless start-date\n", " specified\n", " --start-date START_DATE\n", " Export start date, e.g. 2016-01-01\n", " --end-date END_DATE Export end date, e.g. 2016-01-31\n", " --collections COLLECTIONS\n", " Collections to export\n", " --backup-dir BACKUP_DIR\n", " Directory to store backup files, defaults to\n", " $PANDIR/backups\n", " --compress If exported files should be compressed, defaults to\n", " True\n", "➜ python pocs/utils/database.py --start-date 2017-01-30 --end-date 2017-01-31\n", "Exporting collections: 2017-01-30 to 2017-01-31\n", " config\n", " No records found\n", " current\n", " No records found\n", " drift_align\n", " No records found\n", " environment\n", " No records found\n", " mount\n", " No records found\n", " observations\n", " 293 records exported\n", " Compressing...\n", " Writing file: /var/panoptes/backups/20170130_to_20170131_observations.json.gz\n", " state\n", " No records found\n", " weather\n", " 2094 records exported\n", " Compressing...\n", " Writing file: /var/panoptes/backups/20170130_to_20170131_weather.json.gz\n", "Output file: [\n", " '/var/panoptes/backups/20170130_to_20170131_observations.json.gz',\n", " '/var/panoptes/backups/20170130_to_20170131_weather.json.gz']\n", "\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Import data\n", "\n", "```bash\n", "➜ mongoimport --db panoptes --collection panoptes.observations --jsonArray < 20170130_to_20170131_observations.json\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Connect to mongo instance" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "db = PanMongo()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show available collections" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['config',\n", " 'current',\n", " 'drift_align',\n", " 'environment',\n", " 'mount',\n", " 'observations',\n", " 'state',\n", " 'weather']" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "db.collections" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find current value for collection" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_id': ObjectId('58d8b587535f695281fa2676'),\n", " 'data': {'ambient_temp_C': 25.87,\n", " 'date': datetime.datetime(2017, 3, 27, 8, 37, 23, 932000),\n", " 'errors': {'error_1': '0', 'error_2': '0', 'error_3': '0', 'error_4': '0'},\n", " 'gust_condition': 'Calm',\n", " 'internal_voltage_V': 3.0,\n", " 'ldr_resistance_Ohm': 37.3029315960912,\n", " 'pwm_value': 9.970674486803519,\n", " 'rain_condition': 'Dry',\n", " 'rain_frequency': 2560.0,\n", " 'rain_sensor_temp_C': '33.63',\n", " 'safe': False,\n", " 'sky_condition': 'Very Cloudy',\n", " 'sky_temp_C': 22.53,\n", " 'weather_sensor_firmware_version': '5.51',\n", " 'weather_sensor_name': 'CloudWatcher',\n", " 'weather_sensor_serial_number': '0884',\n", " 'wind_condition': 'Calm',\n", " 'wind_speed_KPH': 0.0},\n", " 'date': datetime.datetime(2017, 3, 27, 8, 37, 28, 692000),\n", " 'type': 'weather'}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "db.get_current('weather')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_id': ObjectId('58d8b570535f695281fa266e'),\n", " 'data': {'camera_board': {'accelerometer': {'o': 0,\n", " 'x': 0.05,\n", " 'y': 0.01,\n", " 'z': 0.99},\n", " 'count': 343263,\n", " 'humidity': 61.3,\n", " 'power': {'camera_00': 1, 'camera_01': 1},\n", " 'temp_00': 21.7},\n", " 'telemetry_board': {'count': 333309,\n", " 'current': {'cameras': 312, 'fan': 43, 'main': 328, 'mount': 0},\n", " 'humidity': None,\n", " 'power': {'cameras': 1, 'computer': 1, 'fan': 0, 'mount': 0, 'weather': 0},\n", " 'temp_00': 0.0,\n", " 'temperature': [21.56, -127.0, -127.0]}},\n", " 'date': datetime.datetime(2017, 3, 27, 11, 26, 12, 487000),\n", " 'type': 'environment'}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "db.get_current('environment')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Work with a date range (and mongo cursor)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "cursor = db.environment.find({\n", " 'date': {\n", " '$gte': Time('2017-04-10').datetime,\n", " '$lte': Time('2017-04-12').datetime \n", " }\n", "}) #.sort([('date', -1)])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Num records: 163467\n" ] } ], "source": [ "print(\"Num records: {}\".format(cursor.count()))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "environment = {\n", " 'telemetry_board': {\n", " 'temp_0': list(),\n", " 'temp_1': list(),\n", " 'temp_2': list(),\n", " 'temp_3': list(),\n", "# 'humidity': list(),\n", " 'date': list(),\n", " },\n", " 'camera_board': {\n", " 'temp_0': list(),\n", " 'humidity': list(),\n", " 'date': list(),\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for record in cursor:\n", " try:\n", " data = record['data']['telemetry_board']\n", " board = 'telemetry_board'\n", " environment[board]['temp_0'].append(data['temp_00'])\n", " environment[board]['temp_1'].append(data['temperature'][0])\n", " environment[board]['temp_2'].append(data['temperature'][1])\n", " environment[board]['temp_3'].append(data['temperature'][2])\n", "# environment[board]['humidity'].append(data['humidity'])\n", " environment[board]['date'].append(record['date'])\n", " except KeyError:\n", " pass\n", " \n", " try:\n", " data = record['data']['camera_board']\n", " board = 'camera_board'\n", " environment[board]['temp_0'].append(data['temp_00'])\n", " environment[board]['humidity'].append(data['humidity'])\n", " environment[board]['date'].append(record['date'])\n", " except KeyError:\n", " pass" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# camera = pd.DataFrame(environment['camera_board']).set_index('date')\n", "computer_box = pd.DataFrame(environment['telemetry_board']).set_index('date')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7fcd306434e0>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAILCAYAAAANN5GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lNXZ+PHvmcm+QEhCgLCFfQ0CgrIqiAiIVnCtKK6v\ne1v9vViLVRS0Wmq19X1tUWvLqyiotLZF64aKiAgSWQIBEkiCYUmALGRPZiaTeX5/nMkkk2WyTTID\n3J/r4sqznOc8ZyY6uec859xHGYaBEEIIIYQQ5yOTrxsghBBCCCGEr0gwLIQQQgghzlsSDAshhBBC\niPOWBMNCCCGEEOK8JcGwEEIIIYQ4b0kwLIQQQgghzlsSDAshhBBCiPOWBMNCCK9RSi1SSu1USpUp\npU4qpT5VSk3zdbvqUkrNUEqd6IA6Hc7XXaaUylZKrfDmPZz3OVDnHtVKKUud/V97+36dSSn1vVLq\nVl+3Qwhx/gnwdQOEEOcGpdR/A0uB+4HPARswB/gJsNWHTfMqpVSAYRj2Rk7lGIbRx1lmAPCtUmqP\nYRj/9ta9DcMYVacdm4F3DMP4q7fq7yge3rOz6h5CiHOT9AwLIdpNKdUVeAZ4yDCMfxqGUW4YRpVh\nGP8xDOMxZ5lgpdTLSqkc57+XlVLBznMzlFInlFKPKaVynb3KC5RSVyqlDiulztTt+VRKLVdK/UMp\n9b5SqlQptVspdUGd84ZSanCd/TeVUr9RSoUDnwLxdXpU45VSJqXUUqVUplKqQCm1XikV7bw2wVnf\n3UqpY8Cm5t4PwzB+BLYBI+u0YYpS6gelVLHz5xTn8Wjna7/auR+hlMpQSt3Wxt/FfUqpQ8737GOl\nVG/n8RDn67jf+TpLlFJPKqWGKaWSnO1aq5QKcJaf62zHCmddPyqlbqhzn1Dn7/C4UuqUUuqVOr/P\nmmuXKaVOA68qpbo7nxTkOevboJTq5Sz/EjAR+Kvzd/KSUmq4Uspe77W5eo+dr2OTUurPSqlC9Bcx\nT6/f7Cyb53yte5VSw9ryHgshzi0SDAshvGEyEAL8y0OZJ4BJwFjgAuAi4Mk653s66+gNPAW8AdwK\nXAhMB5Y5e1xrXAP8HYgG1gH/VkoFemqkYRjlwDx0L26E818O8HNgAXApEA8UAn+ud/mlwAh0b7dH\nSqkhwFTge+d+NPAx8L9ADPAH4GOlVIxhGGeAu4A3lFJxwB+BZMMw1jR3n0buexPwCHA10APYA7xT\nr9gs9Pt/KfC0s003AAPQv5Pr6pRNAILQv5t7gLfq/A7+APQBEoFhwFCcAWmdawOBvsAv0H9vXgP6\nOe+F87ViGMYS4Afgv5y/kyUtfMmXAMlALPBSM6//KmA8MAjoBixC/56FEOc5CYaFEN4QA+Q385j6\nFuAZwzByDcPIA1YAi+ucrwKeMwyjCngPHeD8j2EYpYZhHAAOooO4GrsMw/iHs/wf0IH0pDa2/37g\nCcMwThiGYQWWA9fX9JI6LXf2eFc2UUe8UqpIKVUCHAZ2UDs8ZD6QbhjG24Zh2A3DeBdIQwdtGIax\nER3YfwVcCdzXjtfxG8MwDjvflxXANKVUjzplVhqGUWYYxh5nOz8xDOOoMyjfCIyrU9YOrDAMw2YY\nxpfAl3Xel7uBhw3DKDIMoxhYCfy0zrVW4FnntZWGYZw2DGODc7sY+C06IG+PI4ZhvGEYRrXz9+Lp\n9VcBXYDhAIZhHDAMI7ed9xdCnAMkGBZCeEMBEFsveKwvHjhaZ/+o85irDsMwqp3bNQHn6TrnK4GI\nOvvHazYMw3AAJ+rV1xr9gX85g9kiIBWoRvcuNrhfE3IMw4gyDKMLEOVs71vOc/VfO8793nX2/wKM\nBt40DKOgbS+D/sBrdV5HHjqg7VOnTP331NN7nGcYhqVem+Od/wKBA3Xu9W8grk7ZU86AFAClVKRS\narVS6pjzC8NG9Bee9qj/O/H0+j8F/ga8DpxSSq1SSkUghDjvSTAshPCG7eiewAUeyuSgg5Ua/ZzH\n2qpvzYZSyoQOeGrqqwDC6pTtWWfbaKSu48A8ZzBb8y/EMIzsZq5rlLPncx3Onl8avnbQrz/b2X4z\nOhheAzxYd7xzKx0H7qj3OkINw9jVxvpilVIh9dqcA5xEB5mD6tynq2EYMXXK1n+/lqJ/RxOdXxiu\nAJSH8uWAuWYcslPPemXqX9Pk6ze0PxiGMQ4Yg37K8LDHVy+EOC9IMCyEaDdn8PcU8GelJ76FKaUC\nlVLzlFIvOIu9CzzpnEgV6yxffzxra1yolLrW2Rv9CDoY/955LhlY5Jw0NRf3x/GngRilJ/3VeA14\nTinVH8DZxmva2jBnj+NPgQPOQ58AQ5VOPRfgHNs6EviP8/yv0YHdXcDvgTXOALm1XkO/x8Oc7eim\nlLqumWs8CUSP1Q5SSl0GzAY+cPb4rgb+RykVq7S+SqnZHuqKRH9JKXL+/p+sd/40MLDOfg66Z/cW\n5+/xQdx70hvT5OtXSk1SSk1w/vdSjs524mj+LRBCnOskGBZCeIVhGC8B/40OcvLQvXQ/Qz8+B/gN\nsBPYB6QAu53H2moDcBN6EtRi4No6j+UfRvfKFqHHKrvSmxmGkYYOzI84H6fHA/8DfAhsVEqVooPq\ni1vZHleGCvRwgmjnvXEOe7gKWIIeUvIYcJVhGPlKqQvR79ttzmEiv0MHxksbuYdHzrHIfwL+6RyK\nkIwOYNsqC90DfAod/N5pGMYR57lH0AHrTqAY+Azw1KP9InpYRAF6LPUn9c7/EbhNKVWolHrB+V78\nF3qSXz76SYDHHu5mXn8U8Cb6v4kj6N/R/3iqTwhxflCG0eInf0II4ReUUsuBwYZhyCINHcTZo/4n\nwzDaOmRDCCHOCtIzLIQQQgghzlsSDAshhBBCiPOWDJMQQgghhBDnLekZFkIIIYQQ5y0JhoUQQggh\nxHnL02pRXhcbG2skJCR05i2FEEIIIcR5aNeuXfmGYXRvrlynBsMJCQns3LmzM28phBBCCCHOQ0qp\noy0pJ8MkhBBCCCHEeUuCYSGEEEIIcd6SYFgIIYQQQpy3OnXMsBBCCCGEaLmqqipOnDiBxWLxdVP8\nVkhICH369CEwMLBN10swLIQQQgjhp06cOEFkZCQJCQkopXzdHL9jGAYFBQWcOHGCAQMGtKkOGSYh\nhBBCCOGnLBYLMTExEgg3QSlFTExMu3rOJRgWQgghhPBjEgh71t73R4JhIYQQQghx3pJgWAghhBBC\nNKmoqIhVq1b55N5vvfUWQ4YMYciQIbz11lsdcg8JhoUQQgghRJN8FQyfOXOGFStWsGPHDpKSklix\nYgWFhYVev49kkxBCCCGEOAus+OgAB3NKvFrnyPguPH31KI9lli5dSmZmJmPHjmX27NnExcWxfv16\nrFYrCxcuZMWKFWRlZTF37lwmTZrEtm3bmDhxInfeeSdPP/00ubm5rF27losuuojly5eTmZlJRkYG\n+fn5PPbYY9xzzz2N3vfzzz9n9uzZREdHAzB79mw+++wzbr75Zq++B9IzLIQQQgghmrRy5UoGDRpE\ncnIys2fPJj09naSkJJKTk9m1axdbtmwBICMjgyVLlpCWlkZaWhrr1q1j69atvPjiizz//POu+vbt\n28emTZvYvn07zzzzDDk5OY3eNzs7m759+7r2+/TpQ3Z2ttdfn/QMCyGEEEKcBZrrwe0MGzduZOPG\njYwbNw6AsrIy0tPT6devHwMGDCAxMRGAUaNGMWvWLJRSJCYmkpWV5arjmmuuITQ0lNDQUGbOnElS\nUhILFizwxcsBJBgWQgghhBAtZBgGjz/+OPfdd5/b8aysLIKDg137JpPJtW8ymbDb7a5z9VOhNZUa\nrXfv3mzevNm1f+LECWbMmNHOV9CQDJMQQgghhBBNioyMpLS0FIA5c+awevVqysrKAD2UITc3t1X1\nbdiwAYvFQkFBAZs3b2bixImNlpszZw4bN26ksLCQwsJCNm7cyJw5c9r3YhohPcNCCCGEEKJJMTEx\nTJ06ldGjRzNv3jwWLVrE5MmTAYiIiOCdd97BbDa3uL4xY8Ywc+ZM8vPzWbZsGfHx8Y2Wi46OZtmy\nZa5g+amnnnJNpvMmZRiG1yttyoQJE4ydO3d22v2EEEIIIc5mqampjBgxwtfN8Jrly5cTERHBo48+\n6tV6G3uflFK7DMOY0Ny1nTpMwqiu5uTTy3FUVnbmbYUQQgghhGhUpw6TsKamUVRpoej99xmRlgqA\n7fhxMmdfQZ9Vq4i8bGZnNkcIIYQQQnSi5cuXNziWkpLC4sWL3Y4FBwezY8eOTmmTz8cMZ867EoAT\nDz7oCpCFEEIIIcT5ITExkeTkZJ/d32fZJFKH63Ed5i5dfNUEIYQQQghxnuvUYDhktHuyaNuJE1Sf\nOdOZTRBCCCGEEMKl03uGE/6+3rWdefnszr69EEIIIYQQLp0eDIcmJjI0qfEB0Y6Kik5ujRBCCCGE\nOJ/5ZMywuUsXuj/yiGs/+q67ALCkpfmiOUIIIYQQoglFRUWsWrXKJ/eeO3cuUVFRXHXVVR12D59N\noIu9/z5GpKUyIi3VlVLt9HPP+6o5QgghhBCiEb4Mhn/5y1/y9ttvd+g9fJ5aDSB48GAALAcOkDp8\nBMMP7Ee1Ylk/IYQQQohz3qdL4VSKd+vsmQjzVnossnTpUjIzMxk7diyzZ88mLi6O9evXY7VaWbhw\nIStWrCArK4u5c+cyadIktm3bxsSJE7nzzjt5+umnyc3NZe3atVx00UUsX76czMxMMjIyyM/P57HH\nHuOee+5p8t6zZs1i8+bN3n3N9fisZ7guc1SU237+n//so5YIIYQQQoi6Vq5cyaBBg0hOTmb27Nmk\np6eTlJREcnIyu3btYsuWLQBkZGSwZMkS0tLSSEtLY926dWzdupUXX3yR55+vffq/b98+Nm3axPbt\n23nmmWfIycnx1UsD/KRnGKD3H14i+7+XAJC/6lW6/+IXPm6REEIIIYQfaaYHtzNs3LiRjRs3Mm7c\nOADKyspIT0+nX79+DBgwgMTERABGjRrFrFmzUEqRmJhIVlaWq45rrrmG0NBQQkNDmTlzJklJSSxY\nsMAXLwfwo2C4y5VXEjFrFocuGIsKCvJ1c4QQQgghRD2GYfD4449z3333uR3PysoiODjYtW8ymVz7\nJpMJu93uOqeUcru2/n5n84thEjVMzjfNsNl83BIhhBBCCAEQGRlJaWkpAHPmzGH16tWUlZUBkJ2d\nTW5ubqvq27BhAxaLhYKCAjZv3szEiRO93ubW8JueYSGEEEII4X9iYmKYOnUqo0ePZt68eSxatIjJ\nkycDEBERwTvvvIO5FYkPxowZw8yZM8nPz2fZsmXEx8c3WXb69OmkpaVRVlZGnz59+Nvf/sacOXPa\n/Zrq8ttg2DAMn3ebCyFEaxiGwdFFt9Dt1lvoOn++r5sjhBBes27dOrf9hx9+uEGZ/fv3u7bffPNN\n13ZCQoLbuTFjxrBmzZoW3ffbb79tZUtbz6+GSdRVuSfZ100QQohWqcrOoXLPHnKWPOrrpgghhGgh\nv+sZDp8yhfJt26guKfZ1U4QQolXKNn3l6yYIIYRfW758eYNjKSkpLF682O1YcHAwO3bs6JQ2+V0w\nHHrheMq3bSPvpZeInDHD180RQogWqzp92tdNEEKIs05iYiLJyb4bEeB3wyTCJ00CIGTkKB+3RAgh\nWseakeHatufn+7AlQgghWsrvguHgYcMACOjV08ctEUKIVjIM12Z1sQz1EkKIs4HfBcOmsDAAHOUV\nPm6JEEK0ju3oUdd2Vc5JH7ZECCFES/ldMKxMJsxdu1J17JivmyKEEK1iVFogMBAAe16ej1sjhBCi\nJfwuGAYw7HYclZW+boYQQrSKPTeXsHHjAKguLPRxa4QQwjuKiopYtWpVp983OTmZyZMnM2rUKMaM\nGcP777/fIffxy2A49IIxVJ0+5etmCCGER9YjP+Ko0EO6bMePA1CRlATIBDohxLnDV8FwWFgYa9as\n4cCBA3z22Wc88sgjFBUVef0+fpdaDcCodlBd6P0XK4QQ3mLY7Ry58kpMEREM2/kDhe+953a++kyB\nj1omhDhX/S7pd6SdSfNqncOjh/Ori37lsczSpUvJzMxk7NixzJ49m7i4ONavX4/VamXhwoWsWLGC\nrKws5s6dy6RJk9i2bRsTJ07kzjvv5OmnnyY3N5e1a9dy0UUXsXz5cjIzM8nIyCA/P5/HHnuMe+65\np9H7Dh061LUdHx9PXFwceXl5REVFefU98Mue4eBBA3GUlPi6GUII0aQzb70FgKOsDADbkR8BiLn/\nPgCqTsrTLSHEuWHlypUMGjSI5ORkZs+eTXp6OklJSSQnJ7Nr1y62bNkCQEZGBkuWLCEtLY20tDTW\nrVvH1q1befHFF3n++edd9e3bt49Nmzaxfft2nnnmGXJycpptQ1JSEjabjUGDBnn99fllz3ANw2ZD\nBQX5uhlCCNFA3Yw3DouFsq+/BiDq2mspeO1113AJIYTwluZ6cDvDxo0b2bhxI+Oc8yPKyspIT0+n\nX79+DBgwgMTERABGjRrFrFmzUEqRmJhIVlaWq45rrrmG0NBQQkNDmTlzJklJSSxYsKDJe548eZLF\nixfz1ltvYTJ5vx/XL4PhoIE66q8uKyMgOtrHrRFCiIZMYaGu7ZPLnnJtB/bq5YvmCCFEpzAMg8cf\nf5z77rvP7XhWVhbBwcGufZPJ5No3mUzY7XbXOaWU27X19+sqKSlh/vz5PPfcc0xyLszmbX45TEKZ\ndbOqTkqeTiGEf6rcu8+1XfLRRwBEzJiBCgyk6/XXQQf0XgghhC9ERkZSWloKwJw5c1i9ejVlziFi\n2dnZ5Obmtqq+DRs2YLFYKCgoYPPmzUycOLHRcjabjYULF3Lbbbdx/fXXt+9FeOCXPcOB/foB4JAV\nnIQQfqpy374Gx/r86RUAlMkMDgcOmw2TDPUSQpzlYmJimDp1KqNHj2bevHksWrSIyZMnAxAREcE7\n77yD2WxucX1jxoxh5syZ5Ofns2zZMuLj4xstt379erZs2UJBQQFvvvkmAG+++SZjx45t92uqq1OD\nYbthJ6csh/iIxl90jYBu3QCwZmQQPmVKZzRNCCE8Kt+RhCX1IKWffkb871ZiP33a7XzMffehAvRH\navBgPdTLUVyMqXv3Tm+rEEJ427p169z2H3744QZl9u/f79quCV4BEhIS3M6NGTOGNWvWNHvPW2+9\nlVtvvbUNrW2dTg2GD505xJwP5pBye4rrmMNwkF2WTd/Ivq5jrp7hSktnNk8IIZp07PbbXduZc+e5\ntgd9+QXWtDQiL7/cdaxmWfmqnBwCJBgWQgi/5pNhEnvz9nJB9wsAuGz9ZRRYClg1axXT+0wHav+Q\nlH27hdj77vVFE4UQAoCK3btRHsb/BvXpQ1CfPm7HgocMAcB+5kyHtk0IIc42y5cvb3AsJSWFxYsX\nux0LDg5mx44dndImnwTDt35yK59f9znxEfEUWHRi+k9+/MQVDNf84ancucsXzRNCCABOrlhB0bvv\nNV2giRnQZmdC+GoJhoUQolmJiYkkJyf77P4+m+4854M5FFtrJ8gFmgIbLecoL++sJgkhhJv6gfDQ\nH5KIvuMO1/7Ajz9u9Dpz164A2E6c6LC2CSGE8I5ODYbrjgsG+Pmmn7u2qxxVbudif/YzACyHDnd8\nw4QQoh57Xl6DY+bISEJGDHftBw8c0Oi1pi5d9IZhdEjbhBBCeE+nBsNdgrpwT2Lt+tN7cve4ttML\n093KRlx6KQDWdPfjQgjRGSwHDwIQc8899PnTKwz+ZjMAwcOHe7hKUyYTKjCQyuS9HdlEIYQQXtDp\nwyQeuOABpvWe1rAhyr0pQQN0j0vFDz90SruEEKKu0k3O5ZVvvIHIyy8nsEcPAEKGDaPHrx9n8Oav\nPV5v6toVZWp6VSUhhBD+odOD4UBzIK9e/iqr56x2HRsfN56jJUfdypkjwgEJhoUQna+6rJyi998H\nIKhv3wbno2+7jcCePT3WEdS7N9aMzA5pnxBCdKaioiJWrVrV6fc9evQo48ePZ+zYsYwaNYrXXnut\nQ+7jswl0E3vWLr3XI6wHZlPjK5fUT2wvhBAd7fCECe2uwxQZiQpsfGKwEEKcTXwVDPfq1Yvt27eT\nnJzMjh07WLlyJTk5OV6/j0+XY/7i+i8IMAWw5uAaSm2lVFRVEGQOIsDk3qzqsnJM4WGoJtIYCSGE\nt1Ts3tN8oSZsObGFh756iHsS7+GGXr0o37rViy0TQpzvTj3/PNbUNK/WGTxiOD1//WuPZZYuXUpm\nZiZjx45l9uzZxMXFsX79eqxWKwsXLmTFihVkZWUxd+5cJk2axLZt25g4cSJ33nknTz/9NLm5uaxd\nu5aLLrqI5cuXk5mZSUZGBvn5+Tz22GPcc889jd43qM5y9larFYfD4dXXXsNnPcMAPcN7EhsaS/dQ\nvULTFR9cweJPFjcod3jCBA5PmtzZzRNCnGcsBw9ydNEi1/6ADRtadf1LO18C4I2UN1y9wobN5r0G\nCiGED6xcuZJBgwaRnJzM7NmzSU9PJykpieTkZHbt2sWWLVsAyMjIYMmSJaSlpZGWlsa6devYunUr\nL774Is8//7yrvn379rFp0ya2b9/OM88847G39/jx44wZM4a+ffvyq1/9ivj4eK+/Pp/2DNcYHq1n\nZxdbiym2FlNVXUWgOZA+r67ixAMPAuAoLvZUhRBCtIthGPx47XWu/WHJezCFhLSqjqHdhnKk+AgA\ngb17AzpFW822EEK0R3M9uJ1h48aNbNy4kXHjxgFQVlZGeno6/fr1Y8CAASQmJgIwatQoZs2ahVKK\nxMREsrKyXHVcc801hIaGEhoaysyZM0lKSmLBggWN3q9v377s27ePnJwcFixYwPXXX08P54Rmb2m2\nZ1gp1Vcp9bVS6qBS6oBS6mHn8eVKqWylVLLz35VtbcTQbkPd9k+U6UT1EdOnux03qqvbegshhPAo\n84o5ru1ezz/f6kAYcJv7YI6JBqBavsgLIc4hhmHw+OOPk5ycTHJyMhkZGdx9992AXkK5hslkcu2b\nTCbsdrvrXP1hry0ZBhsfH8/o0aP59ttvvfEy3LRkmIQdWGIYxkhgEvCQUmqk89wfDcMY6/z3SVsb\n0TW4K3+Z/Rfiw3XXd01mCRUQQPdHHqltiEymE0J0kKrjxwGIvusuoq5d2KY6Dhbo3MTB5mAC4+J0\nvafkc0sIcXaLjIyktLQUgDlz5rB69WrKysoAyM7OJjc3t1X1bdiwAYvFQkFBAZs3b2bixImNljtx\n4gSVlZUAFBYWsnXrVoYNG9aOV9K4ZodJGIZxEjjp3C5VSqUCXn/mNzl+Mi/PfJkb/3MjlmqL63js\n/fcR2LcPOUsexZKaSmCdsSKGwwFKgcOB9dAh90ece5Mx1fmGIoQQTTHqTMro8dgv21xPiFn3Jlur\nrZgi9Sp0RlWVp0uEEMLvxcTEMHXqVEaPHs28efNYtGgRkyfruVwRERG88847mM2NZwVrzJgxY5g5\ncyb5+fksW7asyXHAqampLFmyBKUUhmHw6KOPuoZheFOrxgwrpRKAccAOYCrwc6XUbcBOdO9xYXsa\nExsaC+jelbkJc13HQy+4AADLgYNEzpoF6G76tJGjmqzLejid0MTR7WmOEOI8kXXzzV6p51DhIde2\nKToKANvRo00VF0KIs8a6devc9h9++OEGZfbv3+/afvPNN13bCQkJbufGjBnDmjVrmr3n7Nmz2bdv\nXxta2zotziahlIoAPgAeMQyjBHgVGAiMRfccv9TEdfcqpXYqpXbm5eV5vEdNMGxW7t8uaiafWNMP\nu46ljRiJJ9bMDI/nhRCihmWv/rDtX+/DvrWCzbVPo8pD9cerMvs0aY8QQohmtKhnWCkViA6E1xqG\n8U8AwzBO1zn/BvCfxq41DOMvwF8AJkyYYDRzH7oEdeFA/oEGxwFKv/iyyWtDLhhD9wcf5Pj9D4Bh\nUPLhh0Q1MTNRCCHA+YSpzhfrsPHj2lxXlaOKSnslkYGRlFaVUhagJ4tYjxxpdzuFEOJcsXz58gbH\nUlJSWLzYPbVucHAwO3bs6JQ2NRsMKx2J/g1INQzjD3WO93KOJwZYCOxv7PrWMgyD4ADPY32rnYO4\nAYYf2I+qM05lyNZvSZ86jfJt273RHCHEOaxwbft6gusqtuqsEXFhcZQWl2KttgJgCgn12j2EEOJc\nlJiYSHJyss/u35Lnd1OBxcBl9dKovaCUSlFK7QNmAv/PGw0aGj20Qc9wXbYTJ8j9g47Jez6zwi0Q\nBgiIiQEgeMhgbzRHCHEOO/2b37i2h2zf1qpri63FzP1gLl8d/QqAPbl65brQAB38ZpdlA1C4dq03\nmiqEOI8ZhscH6+e99r4/LckmsRVoLAFcm1OpeVLtqCYsMKzJ86eWr3Atcdr1Jz9ptIw5NpaAXr06\nonlCiHPQsD27MYW2rgd3+8ntZJdl88jmR0i5PYVPjuiPxHxLPoBbVhwhhGirkJAQCgoKiImJaVE+\n3vONYRgUFBQQ0obc8DU6dQW6lOxiEpZ+zJHnr8Rk0r/Q/dnFXPXKVj762TQS+3RlSLch/P3w3xtc\nG33XXZxZvdoVCANNJsUPHjwYS4pXRm0IIc5R1UVFAERcPqvVgTBARqH7JN3L+1/Ol8e+ZNmkZTz0\n1UMcKznGgC5dcNQZ1iWEEK3Vp08fTpw4QXNJCM5nISEh9OnTp83X+2Q55k/2n+SqMTqn3FWv6OD2\n6j9tJWvlfByGzvdZsyRzjbhHHubM6tWu/ei77mqyfsNehZIcw0KIJlSXlHB4ks6RGTlzZpvqSM5z\nH992qvwUAL0jdPYbszITOXMGxRs+bEdLhRDnu8DAQAYMGODrZpzTfJLz52fr9Ni6qmpHg3M1SzMX\nWYvcjqugIAJ69gTAFBbmMTF+yMiR2E+dkuWbhRCNOlMn/2XEZZe1qY6qavfFNF7e/TKgg2GTMpFZ\nlIlhr4YAn/Q5CCGEaCGffUpvSM6ma2htz+/QHhEAmJSOz0ttpXQP6+52TVDfvthPnSJo4ECPdZvC\n9JjjqpOnCOrj9cXyhBBnufxVrwI6h3lAt27Nli+vKmfSukmu/ZuG3cS+/NpE8P+9+b9d2yEBITgM\nB0HmIIIBxgcJAAAgAElEQVSH9IePP8ZRWdmmoRhCCCE6ns+ywT/8XjJ3/N8Prv0eXfT43z6ResxH\nTnlOg2tCRusV5cxdu3qsO6h/AgDVhe1aEE8IcQ6quzzy4K+azl1e17fZ37rtv3/ofbcFNr44+gUA\n/+9CnVQnoUsCaWfSsBcUAFB16lS72iyEEKLjdGowPDA2nMiQxjujv03XM7DDA8MBsNgbzsTu/ouf\nE3XDDfR+6UWP96npDbYePuSxnBDi/FP61aYWl92WvY3EtxL55TcNh2WVV5UzInqEa3/ZpGXcNVrP\nZbBWWwkJCKF040bAu/mMhRBCeFenBsPhwQH8/voxDY6HBOpmWKqq6RHWA4CskqwG5UyhofR69hnM\nUVEe7xPonFHoKCtrZ4uFEOca29GjAPR4apnHcnaHnfu+vM/t2MszX3bbH9C1dlLLgsG1K16OiB7B\n/vz99Hr2GQDCLprYrjYLIYToOJ0+TGLu6F5krZxP1sr5rmO/nDMcgOHLPmPKc9/rhqm2Ny0gLg6A\n8h9+aKakEOJ8U/btFgC63XCDx3LHSo41ODar3yxm95/t2r9m0DXcPPxmnpv2HEHmINfxKkcVQaYg\ngvr3B2oDcCGEEP7Hp9Oc37rrIoorqwgLrLOKnKH/oGQWZba5XmU2Q2Agtswj7W2iEOIcYtjtVO7c\nBYAKDPRY9uCZgwBM6z2Nrdlb+e303wI6403NGOGxcWOZ0ntKg2uHRw/X44zjYvV9rTavvQYhhBDe\n5dNg+NKhOlvEyeLKOkf1Yhwh5ravJAIQMnIElr37MBwOlMln8wSFEH6kcN27LS67N3cvAM9OfZbY\n0FjX8YFda7PZNLVaZqBJB9qnq85g6tJFJvMKIYQf84sosVfXUGIjgtyONbYKXWuEjR0LQOF777Wr\nHiHEucOeryfqRt9xR5NlKqoqSHwrkfcO6c+OuoEwwOT4yUzvPb3B+OG6hkfroV8ny09ijoigcn9K\nO1suhBD+K2vRLaQOH4HDcnYuQ+8XwTDAe/dO4qcT+7r2DYx21Rc+RT+6PP3Ms+2qRwhx7rAe0hlm\n4jws2vPn5D97rCMyKJJVl69iVr9ZTZap6TGusFfgqLJhCgxqsqwQQpztKnfvBuDYnU2vDuzP/CYY\nHhwXycrrxjCiVxev1Bc+dapr27DbvVKnEOLsZk1Pxxwd7XHoVHu/iAP0DNerZWYVZxGaOIbKAwfa\nXacQQvijunnUK/fswWE7++ZI+E0wXMNaVY2taEK761EBAcT8190AlH/3XbvrE0Kc3QzDoConh+DB\ng5ssc/Hai3n74Nuu/Vcvf7VN94oJiQHAbtjBpDAqKzGM9gfZQgjhb4r+8YHbfuE7a33Ukrbzu2D4\nSH45SlUDtPuPR5QzdVJ5UlK72yWEOLtVHdOp0kJGjWr0/JHiI1TYK1z7KbenMK33tDbdKzwwHIXi\n0JlDBEQ7A+O8vDbVJYQQ/iz/T38CwBwdDUDuCy/4sjlt4nfBMIDDoh8xlleVt6uewH79ALBmZLS7\nTUKIs1vZNzq/cFMLYFzz72tc21cOuLJd91JKYWBgNpkp+c9/AChcJ6vQCSHObpnzryJ7yaOufaPO\nkIghm7+uPX6WPQnzu2D4jikJrhF7Zyxn2lWXUoqAuDisabIssxDnu5JPPgFqJ9fW5TAcru3vbv6O\n313yuzbdo9RSxWf7T1FmtTO021AyCjPoufxpAEITE9tUpxBC+AN7YSG2zExKPv4YR7nurDxT50u+\nCgrC1LUrANXOzD1nC78Lhn8yNh7DplMZna443e76ggYOxH769Fn3LUUI4V2VyckAmIKDG5x75+A7\nru0uQW2fxJu4fCP3v7OL5z4+iMVuwWwyEzxsGABVOSfbXK8QQviSLSuL9Mm1HQlHFl4LQOG7Ond7\n0OBBAJgjIgDIW7Wqk1vYPn4XDPeLDsNw6AU3iq3F7a4vbIKejHf0llvJf+MNUoePIHX4CAmOhRAA\n/PQ/P+X3O3/v1Tq/yyhgZMxIDhcedi0PX7F7l1fvIYQQnSVz7jy3fcOZTzhs/IUA9HpWp7Ht/sjD\nACiTmbOJ3wXD3cKCcFR1AyD1TGq76+syX4/9q9y9m7yX/uA6njZiJEdvu73d9QshziJm9w/oKkcV\nBwpq056l3O6dxTGqHQYWu4VAUyDmqCgASj/9zCt1CyFEZzEcDlKHj3A7poKDsefm4rDZUME6h3rI\ncL3QUJcrdcxVlZ3duQ1tJ78Lhs0mRUyIXqa5boqjtgoeMKDJcxVJSaQOH8Gp559v932EEP6ruqQE\ngOhbb3U7vut0bW9tgPLe6vTZRZV0C4ml0l7ZfGEhhPBTmfPce4RHpKViWK0AnFqxAtuRHwEwhYYC\noMxmzFFRVO7f37kNbafODYZz9sCz3aG5IQqG/qNUafdObs66C3AMS97T4HzhmrcbfPMRQpw7amY/\n14xrq7Ete5tr+69z/urVe/4r4x8AZJVkET59OqawMK/WL4QQHcmoqqLq6DHXfv91On9wl6uvBqD4\ng39SkZSE2TlprkbIyJFU5+efVQuedX7PcLUNXpteu5+fDqn/cSsSE167dOn+/PZ/u+j3t78yIi2V\nEWmpmEJC6P7wLxotV/79jnbfSwjhf8q//RaAiEsucTu+8/ROAPbetpcLe1zo1Xte3EPfq9pRTVVO\nDo6KimauEEII/1G6qTZV2oi0VMLGjwcg7tFH3cpVF7vP7wqfrmO8Iz+55qyZo+WbYRKnU2p7h/80\nAd6/BQqzXKdHxXeh4qhePW5/gfe72mMfeMAVHPdcscJ1vGZWpBDi3FF1sjaLQ2CPHm7nUvJTSOiS\ngEm1/qPQaq/mF+/u4Ycs9xSQPbrobBVjo2YDUGwrxpaZCYDl0OFW30cIIXyh0jnpd/DXm9yOB/aI\nc9vv8etfu+0HDxkCgO3IEQDKt2zpqCZ6TecGw/Hjarf/d6z7cInv/se9rNLnnt/RseN5u910IyPS\n9ES90s8/PyvX1BZCNO3Mm28BED7NfTW5vAq9ItzEno0vwtGczNxyPtybw9IP9gHgcOjPrPAgPczL\nWqUAsNgtRFw+S5cpK23TvYQQorNZDhwEIKBnzwbn+v7ldYIGDGDY3mSib1vsdi5sgvtTtvxVr7ry\nEvurzu8ZHn6V/lmYBSuiao8f2ezaTIgNx2GJ79RmmbvpDBYZl1zaqfcVQnSsks8/B6Dva6+6HU/J\n15kjJvSY0KZ6f8zXH+6Zefrn/hz9qPCSoXoCcGGp7iG2VFuIufNOAOyn2587XQghOkNlSgqBvXuj\nlGpwLuKSSxj06SeN5m03hYQQdeONtfXs3cvRO+7s0La2V+cHw9e+0fjxM0dcm93CAjGqIwgLiOCS\nPpc0Xt7L+q3+GwDVRUVUFxV1yj2FEB3LYbNhP3WK0PHjUQHu2SL+cVhPcBsVO6pNde8+Vuja/sPG\nQ/zkT98BMHO4foRYVqk/Xk+Vn8IcHQ1A5f4DCCGEv3NYLBhWK6HjxjVfuBG9nlnB8NSDrn1LSopf\njx3u/GA4KAyWe15MIzZCf9PoEzbIKxPoWiJkxAiCEhIAODxpMkZ1dafcVwjRccq+/BKALnPnuB3P\nKMzg22w9qa53RO821Z2SXfs59r+bMlzbNWOGlUOnGrJWWwnqre9xZvXqNt1LCCE6UunmzaQOH0HF\n7t0AVOzQCQXCLhzf5jqVUvR44gnXftWxYx5K+5bv8gwvL9b/ni6CKc7sDsUnAOgbrVMQldksVFR1\n3gzsvq+/5tou+OvfOu2+QoiOYUlPByDyiivcji/8cKFrO8DUfH7hE4UVJCz92PXviX+lcCC7mLjI\nho8IQwPNDIwNJytP94LYqm2ooKAG5YQQwl+cuP8BAI4uugUAa4b+gh82sW1zKmpEL76V8Ev1E/78\nVa82U9p3fL/ohlIQFqO3/zgKjnzj+gMTYh+OpdqCw3B0SlOC+vd3bee//nqn3FMI0XEqkn4AcC2J\nXN+exQ3zjte1+VAuf9v6I8/+56Db8bU7jlFuq2ZAbLjb8elDYunbLQxbtQNLlcKszBwvPQ7o3JuB\n/fq19aUIIUSHsGVlue0bhoHlgB7SFeSFz6zIGTOA2sWP/JHvg2GA0dfWbq/5CdHOPMOpJ/XM6wvf\nuZBiq+ehFd4y/IAelmFUVJxVCaOFEA1Z9u0joEcPlKn2o66gssC17alX+KO9Odzxfz/w7H8O8vmB\nxie+FZTXZp9ZOK43b999MSaTom+3MFJPllBtVFNepSfYBQ8d6tePCYUQ56fy77932z9y9dVYMzJR\nISFeeapVM5mufIf/ruXgH8FwlPs3j4Azunu+2qKP2x12pr03rcFlHUGZza7tnKWPd8o9hRDe57BY\nMKqqCJ90sdvx1fv1uN2V01d6vP75T1IbHHvhujFu+zHhQXz8i2ksnTecl264wHV8ZHwXAIZEDSWn\nLEe3x5layFEpSzQLIfyHNVMnMIj9+c8AsGVkYj182JUvuL1q4iqjogL7mTPNlPYN/wiGQY8dXuAc\ns3v4MwCMqkifNCX+xRcBKNu0qZmSQgh/ZUnRqdNCLrjA7fiag2sAuKzfZR6v79U1pMGxGyf2ddt/\n+upRjIrvyv2XDsJkqk0/VPN0q7LKSpWjSm8nJwNQtnlzK16FEEJ0LFum7oCMffBBt+P1M/C0R2C8\nTpeb7qfpa/0nGFaqdrjE0e/44IEpOKy9XKdjQmI8Xm4YBi/88ALphentbkrXq+YD4KiokKwSQpyl\nKlP0kKewsWMbPR8aEOrx+rwyKxP6d2NIXESTZWp6gOsb7LymR8ggTpfrIRbBw4cD+H3yeSHE+cWS\nnk7wkCEopei5/GnX8bjHfum1ewz67FO9YbdT5ocr0vlPMAwQEAwhUVB4lCE9IgATl0W8AECBpcDj\npf/O+DdvH3ybaz+8lu9Pfu+xbGvkPC5DJYQ4G1U4lxINGjjQdexU+SkApvee3uR1NruDR/++l+Nn\nKim3VbPunkkAXDe+T4vv3TtKB9plNiulVXruQ/efPQSAUVXVilchhBAdxzAMqvPyXZOMo266ifjf\nv0DvP/6BsDbmGG5M3bHHx++9z2v1eot/BcMAMYOhIIPIYN09n3WqtufF7mh6Qtvr+2qzP9yz8Z52\nN6PHsicBKPnwo3bXJYTofGVffgXo1ZBqfPqj7p24adhNTV63fudx/rFLp3lMPVlC98hgslbO56Ub\n9XCLn80cDMDd0wY0WUe/GJ0eMsihn27ZHXZXthp7Xn6bXo8QQnhbzaqYIYmjAZ0buOvVV9Nl3jyv\n36v/2ne8Xqe3+F8wHDsEHFUoh524yGD2Hi/iobG6R+V0hfuM7mJrMaW2Uj7K/Ijssmy3c0WW9q0i\nF7VggWu7Yrfn9EtCCP/S1EpHR4r1RJHJ8ZMbnPv6UC4JSz/myX97Xujn0TnD+G7pZTw5f0STZbqE\nBBJgUhRX6F7gvIo8TJF6DkR1UWGT1wkhRGeyHdGfiSHOYVwdKezCCzv8Hm3lf8FwD/3thKJj5JZa\nAfix8CQAHxz+wK3otPemMeXdKfx6668B+MW4X5DQJQHAtbpUW5nCa/OHFr3/XrvqEkJ0LstBnRe4\n/oSQ3ad3ExkUSZDZPV2QYRjc+X8/NKjngwemNFp/76hQlFKNnquhFIQrPeGuxFaCMpsxR0VhPyPB\nsBDCP9QsER88eLCPW+Jb/hcMRzvH9+WluQ796wc95i69qHZyXGM9v7eNuo2h3YYCDXuR22Joks6J\nV7zhQ5lIJ8RZJOu66wEIHec+ee5Y6TEGdGk4vGHSb79y2+8dFUrWyvlc2L9bm9swqHsEmbkWANeT\nKxUYiP3UqTbXKYQQ3lRdqL+cByUkdOp9LYcOd+r9muN/wXCM89tJWa5rbJ6tUD/SHBUzylXs6+Nf\nu7bDAsL44ZYfCDYHc++YewHoEtT4LO/WMHeprSNt1Oh21yeE6Hh1hzXVffR3xqLzW46IaTi84XSJ\n1bW9eFJ/3r77ona3Izw4gDBTdwDKqsoACOjVy/XHRwghfK0m5aM306h5Ethfrx9RuG5dp9yvpfwv\nGI5wLpt6MpmbL3YuxuHQE2BqxvsBPLXtKQBeuewVtvx0CyEBukxsaCyAK7dne8Ut/ZVX6hFCdI6y\nr2u/KAd07+7a3nlqJwDj4txnSNur3Zd7f3bBaAZ2bzqdWksNjA3HZtOfSzVZLEwhIdjzZQKdEMI/\nWDMzm1yuviMM/Ne/ACh6//1Ou2dL+F8wHBqlf+am0TsqlMznrwRMGI4g9ucdbFB8Rt8ZBJuDsVRV\nc+Pr27lwxVYADuQ3LNsWMXfc4do+eutir9QphOg4ljQ9xGrwN9+4Ha+ZR3Bxr9oV6TYeOMXgJz51\n7WetnO+1doQGmTldqHtbbNV62ebgwYMkz7AQwi9Ul5biKCkhfPKkdteVW5FLakHDVTvrM4WFubat\nR454KNm5/C8YrnFc5wo2mxQLxsajTDaOlx0F4MfiHwEYEDmcw6dL+WhvDk/+ez9JP54B9B+fj458\n6LWm9HruNwBU7NxJzhNPeK1eIYT3VfzwA6bISAJ7uPd21Hxu1Dw9Arj37V3evbmjGlI/ArsNk1KA\nXoa05qmWKVIPvaouLvbufYUQopWKP9KpY0MnTGh3XbP+Posb/3Oja5Ghlij59NPmC3US/w2G67jv\n0kGu7arqKtYfWg/AgZQZXPHHLfz83T2uvKAdIeq66wjs3RuA4g/+6ep5EkL4F3teHobFQtj48Q3O\n7c3bS/8u/Zu89trxvdvfgDcug/dvhd90p78z13BkYBcq7BVA7ZKkth9/bP+9hBCiHU4/8ywAXee3\n74nY4cLayXBfHfvKQ0ltyLbvAKjKzmnXfb3Jv4PhYh3gDq6zHOrO0ztdk+eqKxv/w1Zt6UW3oJ5e\nbcqgL79wbf+4YKFX6xZCeIflsP5Q7nKle8L48io9NOFoyVHXsbq5iJ+cP4KXbrig/Q0oyHBtxkQE\nAxAR2JWs4iwAggYkAHqpdyGE8JXC92rH7NYdutAW61JrJ8Ptz/ecpx0gIDoaAFtWVrvu603+GQwr\n/WiRfJ1KLdBsovzIIwDc+8W9dRbYcM/zObSHDpodtlgKbd5NX6SUYsjW2tzFhsPhobQQwhcqd+0G\nICQx0e14ibWkQdlTJRbX9n9NH9hs3uAWGXSZa7NmFc3uIfFUGzo1Y0A3napNFvIRQvjSqeXL23Rd\nlaOqwaJGybnJru2PjnxEbkVus/WEjB6N5cCBNrWhI/hnMLxID4Oo28vSL2KgW5FqSw8A0p6dS9bK\n+WStnM/G/3cpB1bMwagOBcBit+BNAbG1Yw0zLp3h1bqFEO3nsOj/54MGuOcSrvkCvfSipQAkLP2Y\nyb/dBMCqWxoOqWiz1Nq5CiFKZ7QxO7pyqvwUhmEQNEgP+bKmpzd6uRBCdKaaIQstUWQpYvzb43l1\n76uuY4ZhkFmcycCutTHaP9P/2WxdQf36YlitfjN/wj+D4YRp+ufJ2m8bUWFBOKq6uvYrfnwYgJBA\ns9ul4cEBOGw6nVLdR6LeMmDDvwE9NlEI4V8qkpJQwcENenk/+fETAC7s0XA50IsHRHdIW+ID9GJB\noQH6c6u8qhxlMqGCgiQYFkL4THVpqWu7ZsiCJ5lFmezL28f096cDuAXDNQucTYmfwp9n/RmAzcc3\nN1tnYH89zPXkU0+3uN0dyT+D4UCdm5NTKa5D04fE4rDV/aWZ2L9iTqOXh9EHgNQzzaf5aK2QYcNc\n27bjx71evxCi7VRgIAE9ezQ4/mGm7rEdHj2cU8XuT4xqxvZ6W8zxzwEIVXpoRE3vtGGzYfOjlEJC\niPOL1ZkEoPvDv2i27MmykyzYsIBbPrnF7XilvRLAlU7tgrgLuKTPJcSFxXGgoPnhD6GjR7u1xdf8\nMxgGiB8HJ/dCqf7Wcfe0ARgOPfzBVqhz4kUEN75iykjnClMHC7yTa7i+Xr/RMzAzZ1/RIfULIdqm\ncs8eggcNdjv22x2/xVptJTRAf358nHLSdW7b0svwmnrj6EKci3wUluh0aqW20nrF3csLIURnqOkZ\nDpvUfH7hKz5oPM6pefKekq87LUfH6OB2Zt+ZAFRUeZ4kHDFjBgC2o95/gt8W/hsMj3MucLH3XQC6\nhgbisOjURw5bDH+7vem8eMGmSADeTXu3Q5rWdWFtNom8Vas65B5CiNZx2PTCFnWXUQdYl6ZnOgeZ\ngwD4MV8vjbzqlvHER4V6rwGVzmWWR12r21Ggh0KYjXB93xKdTi3yCv3HRZZlFkL4Qs2TKXPXKI/l\n9uQ2nOj70NiH3M7ZDTsAvSN0fJbQJQGozeveFGWuHeJqOD+7fcl/g+EL79A/nRNSlFKMDr+WyhO3\n8OjFdzNrRMNHoTUGxrZ/KVVPlNlMmHPFlvz/fUXSJAnhB2rG4QYPHeo6dqSodjjCNzd+w1epp3nn\n+2MAXJnYy7sNKHPOoI7WE0lUXipDe0SQnqOfYDmcGWgiLpnubG9GwzqEEKKTBMR193h+0zE9yfjC\nHheScnsKKbencOfoOwHYcmILAIfPHKZrcFfXPI24ML3Y0ev7Xm9xO6rLylrddm/z32DYZIZuCZB3\nyHXouQVjWD7rZm6a2HTifIDo8EAc9vblzWtOvzfecG0fGt9wUo4QonNZD+kcwyGjRrmO1fQKA5hN\nZv745eEG13nN/n/on2Ex+mfiDYQHB3CmRPeA1IyjCx4xwtle/xgrJ4Q4v5QnJQFgCg/3WC69UHcw\nvDn3TdexYHMwkUGRHMjXn2fZZdkEmYJc5yOD9JP5mvUgPIn71a8APfHZ1/w3GAboezHYysCmE+aP\n6NWFWyf1JyosyONl8VGh2It1uqT64/S8RQUEMOTbLa791OEjOuQ+QoiWyX3hBQCChw5xHbNWWwHY\ndvM2ALo5PzsGdff8R6BNUpzBcOUZ3Tucs4eo0EAqbPpjtmaYRvBgPabZdvSY99sghBDNsJ88iblb\nt2Zzqx8pPuIa/uB2vcNOobWQU+WnyCrJIq+yNrvW5PjJAPSN7NtsO7pefRUAJZ993prmdwj/Dobj\nx+mfz8dDUcv/cAzv2QWHTXfVT3l3Ske0DICA7t1RdVZuKd20qcPuJYTwrLqoCABzVO04uH15+1Ao\nV2/FvhPF9OgSzFdLZni/AUOcE00ufgCCwqHoOMEBZgwDeoX3cvWkmIJ19oqqEx23hLwQQjTFmp5B\nUH/PT9gBTpafpE9knwbHazJJzP7H7EavGxM7huOlzWfbCoiNRQUGUv5dy3MddxT/DoaH1VlS9eXE\npsvVM6RHBFXFY137zc1qbI/hu3e5tvNffa3D7iOEaJm6vR3HSo4xPHq4a7+4soqY8I5JpeZKBRke\nAz0SodrKFwd0OjWr3SA4oPa+AfG9sGbImGEhROfKffFFAALjPc+ZKLPpcbyDowY3OLdm3hq3/bVX\nrnXbHxatU9AmvpXIQ1895PE+4VOm4CgtxZqZ6dOVff07GO6WADOfrN1vYSqiQLMJjNqhFHvz9nq5\nYe4Gb/kGgOqCgg69jxCi5Sx2C3bD7vpgLrHoFeGmD431dFnbbPk9HNtWux+jJ9FNitZDvKID+7il\negzq24+q7GyEEKIzFfz1bwBEzJrlsdyhQj1fqyY7RF1ju9d2Ns7oO4Mx3ce4nZ/QozbbV81Eu6Z0\nu01nDjsy/yrSRo6i8N2OyQLWHP8OhgEu/WXtdnHLHys+OGMQFcdvA2BD5gZvt8pNYJweklGVk4Nd\n0iUJ4TN182amndET1IZE6THEnzrzCyfEeGm8cGURrJoM3/4BNv3G/Vx33Ru9Yqr+Up5RtpNKeyXV\njmoA7Kd1/nTJRCOE8IWu8+d7PF+zmMbo2NENztV9+vb7S34PwOZDuWw8cAqA2QmzuaJ/bX7ixLcS\neeybxxq9T/gU96Gsp1Y804LWe5//B8MAM5/QP1M/avEld0xNwLDpWd0fH/m4I1rVqKwbbuy0ewkh\nNLvzqUzI8NohEQWV+tjQaJ1q7ZMU/UE9oX8379w040vIPQhfrag9tsSZ/aZLPAC968XdxbZiAGxZ\nWQCUf7/DO20RQohmVJ3W6R8DejSdmrZG0imd4aGxYRIAv5v+O6bETyEkQK8YfMf//cC9b+tho4Gm\nQF6a8RJPTX7KVf7TrE8brUcpRbdFN7sd80Wn4tkRDE99WP9M39h0mYMfwvKurn9xIYZrEl3P0OYH\nirdX/3d1CqeqEyc4/cLvO/x+QohalgN6clrIiNpg+OAZPSyhT4SeALLvRBHTBscypEekd256st7w\nqxFXQ2RPvR2hf4ae2klYkJmejqsBKHdmxon/vc584Sgt8U5bhBCiGTUpzOJ++ctmSuqMEQEqwBXs\n1khY+jEJSz/myoFX8vpsnUs46cczrvPbM2uHi17c8+IWtavnU08xIi3VtV+8oWOf5jfm7AiGA4L1\nH5ej9WYc1gl+Wb/Y/dzxHbx80ziqrXEUWZv+lrE/u9gry6KGjRvn2j6zenW76xNCtJwlTffI1s0x\nXLMCUk1qoApbtXdverxer+4VdYZKOHuGyU3FbFI4rHo/qyQLgPCpU3W7UyXXsBCic+S98goAYePH\nNXp+wb8X8MoeXWZ7znYu7FG7hoK92sFn+081et2Nr293bd/8xveu7b6RfXl0wqOufYvd4rF9cUt1\n3uGqnByP5TrC2REMA/SfDNU2KHPms7M006Nyaj9zR/fEYYvF4ijBYrfw869+TkpeiqvIzqwzXPXK\nVv76redlA1uq57O1Y10qnT1VQoiOZ0nVvcBBAwa4jh0sOEiXoC4opah2GFjtDnp2DWmqijaol6Oz\nW0KdU85zR76md1QoZ4r1fSvseoxwQHQ0AIXvvefF9gghRNOqjukUtWbn509d1mormcWZ/GXfXyi2\nFmM37EQE1a7m++LGw9z/Tm32rGqH7kQ8fLrhWg5Z+foJmFKK20fdziPjHwGgyFrksX0xd9wBgO3H\nrJa/KC85e4LhYVfqnyl/hyoLrGwkofOSQ/Ckc0nU0/sJCTQTofoBMHHtRDaf2MyiTxaR+FYiCb/+\nO5i1W3cAACAASURBVNe/pr/NPPdJKl+n5ba7id1uuMG1THPWdde3uz4hRMtU7t2LCg11rXfvMBxk\nl2UzsKvO6nC6RPdIDPPWEAmA484eEHMQzGt6aNTYvlEUlYYCkFmU6XbOsHjuKRFCCG8wqqpc26aQ\nhp0C+/L2ubanvTdN/+ytf36VeprXvnH/7HrmI93hVxP41rX5kHs8VbMAR/3Pv8YExPfCduxos+W8\n7ewJhkdeo39+/jg8V2fw969zYHmx/hfZUw+pCAiBY/oPVYxpVCOVQWDXZLf9O9/8wSvN7PPyy16p\nRwjRMoZhYM85SWidIRJHio4AML6HXomy5gO7W7jn1SvbZFkeXHxvw+OROo9nSKAZw+7FIFwIIVrJ\n+mPTT8DzKvK46/O7Ghy/etDVVNjs3P3Wzgbn3tquA1aLvWFu4JMl7l/y+3XRnZKpZ1IblK0vILY7\nqv5Tt05w9gTDAY0kyr/3G73SU309E6FQ/+KvHTmt0epCen5I5IilmENr/wNJWNr+rBPmrl2JmDED\ngKIP/tnu+oQQnpVu/AKAoCG1s56/y9HzC2omcCz6qx7fO6KXl4LS8nz9Mzyu6TKDLgNgcGwIYCbY\nHMru3N2u01E36KdHjvKGPStCCOFNlbv3ABD3q181OLf+8PpGrzl0spKRT7kvlZy10j0lW+pJPWQ1\n6YlZZK2cT1CAide/OYLDUTsXqya9ZUvWfAgZMQLb0aNemcvVGmdPMAy4j9FTED+28WK9nYO+ywu4\ncUI/yjIew2GPpDTtWUpTV2I5udBVNCzhdUzB3h2sHTxE/+JPPvGEV+sVQjSU/bAz24zzw9fusPPi\nTr3K0sReE9l1tHYC7aDuEQ2ub5WXhusJu6sm6/1yD8Or4kYCMCTCBkCACiKvIs91OniYznxhSZNJ\ndEKIjmU9rCcZR91wQ4NzgaZA1/aDFzzIw+Mf5qsbvmJbpvtCYr++Un9mRYYEAPDFwdOuz9fuEbrD\n8qIEPR7ZYq+dsGw2mYkMjGTz8c3NL9Ns0nGeYbW2+LV5w9kVDD/ufBPv/gKWexiI3dO5dHPmV3QL\nD+KpudMoT3+CUb1iyFo5n1jjUgZX1o7xCx/4v67tLYfz6tfWarEPPQiAKaKdf3iFEM0K7K8fwcU9\nugSAnadrH+kFmgL55T9qeyNCAs1tv9GfLoJSvXCHKwhe+LqHhulxeX0DdW7hSHN3TKr2IzdklA6W\nLQebf3QohBDtYcvSwxrMEQ2fpjsMPdTh5uE388DYB/ivxP8iLiyOowXuiwJdf6Ee+3v/pYMAuGfN\nTldatZqFOGqC46/T3GOpuxL1MIwntz6JJyFDdV54e177Y7HWOLuC4eBIPTa470Weyw2dq39mfAXA\nnVMHcOg3c/n4F9MB2P74LP51/1xXjjwAlO69uW11Eje+tp32MIWEYI6JwVFWJivSCdHBqs8UEjx0\nKOZIPQTisx8/A2DZpGXsPV7EkbxyFoyNb/B4r1XsNsg/1PB4Xw95NJ2r0MXY9JMnkz2ejKIM1+mQ\nkc5geH9Kw2uFEMKLDMOBObbxpegPFx7GrIKIttzkOlbtMHg3SWefyFo5n6yV84l2zrm4cUIjCQyc\nKqt0j/BnB9zTsN01WgfDu3N3c6K06dWEVaiebGzPy2/uJXnV2RUMt1S48xe+7z1wLn/6/9k77/C4\nqmtvv2f6jHqzJNsq7r1iG4zB2A4lwSaUEAIkkEIIJQmEhNxwQ3MgBBKSCyGBfJBLLp2E0AlgujHF\nYIy7LduSbclNVu+aPuf7Y0+VZkYjTVHxfp9Hz9lzzt77LIF8zpq91/oto673itDJowNlADOm3gaK\nyLbcUN3slw0ZKG5vRazKxSenPPZFIjle8FiteDo6/KFJAB8d/giAb07+Ju95VWKiPbxjYt0fwp8P\nllPriSkbACPiudLsrgTA6RafNUYjitGIrbIyPtskEomkD6ybt2CaPi3sNaPWiFt1cM+bgZCtmqbI\nuQz56Qa+d3J52Gtv/WwpAJYeu3AaRUO+Wfhmd31+V8S5jeOFApAjSsJfMhiZznAwa++JevmfKwM6\nn4a8tf72df/cHNdtJ7y1xt/ePW16XHNJJJLwdH0iEuVMs2YC4PQ4qbfWM3/UfBRF4dMqsbpw8sTw\nKyIxs84bVrWgR8a1EiXr2VeNrm4HE0elY0OEWOxo2uHvYpgwflA0NSUSyfGD6naj2mwo+vBqOuuq\njuC2iedVbZsVgJc3H4k4n6IorP76DCYU9A65mFKUgUGr4V8bD2F3hRY6+sdZoiCZT/IyHNrcPGFz\nkBRcKhi5znDRbHFc9wf/6nA4ZuTPYHKOiFExFrznP//6ttq4bm8oCy0BLYtwSCSJp+P9DwDIOP0M\nAH9RnZNHn4zD5WFjTQvleZb4bvJxkFzimXfB998U7e++Fn2c2Sts33aI8jwL9sZlABi0gReScdx4\nVKsVT3d3mAkkEokkfmw7xBdw88zwUrOtroPgEc+l6/8pZGcrjoliGh//annEef/z01O5fHEZW28/\nM+T8RQvHAjDlljUhNRxKM0R+x3sH3yMSutwcAOx790b+hZLAyHWGfS8sgC1PR+36r1X/8rff+HkE\nhYoBMHVbIHFHFuGQSBKPfc8eUBQMY0XJ5T0tIq73pNEnseWQSLKdOSZr4DdQVXj3dtGedg4YLFB2\nsshdGLc0+liNBvQWUFWKs8y4u0Qox5GOwIqL+QShg9y5bt3AbZRIJJIoWLeKghqWE0/qda2x047q\n0YNG5E35EuLcHhWDTsPYnMiLCWaDljvOnUmWWR9y/nCL1d8OruGg1YjQiSOdUVadvTHDil4X9XdK\nNH06w4qilCiK8oGiKLsURdmpKMr13vO5iqK8oyhKpfeYk3xz+4ExHbK8cYKvXR+1q04T+I/+rTe/\nCoiV5M/3N0UYERuKwcD4N9/wf3Y1N8c1n0QiCeCxWrHt3Ik2L89/rrJFxN9Oyp7kLxPqy3weEH8P\nWhW54O/9Hz9qOhzdzILyHFS3eKnY3AFB+owVQou48+OPB26jRCKRRMF+QBQhChczfKi5G63pGB7b\n6JDzFbXtnFA6MLeuLDfUgW7sjF0mzadK0friSwO690CJZWXYBfxCVdXpwEnAjxVFmQ7cBLynquok\n4D3v56HFVd7VFm8iSzR+u+S3/vYPTxffcr71yGdxJ78Zx43ztytPXhLXXBKJJEDd738PgLsxkHW8\nplrE6lv0Fo61CaezKKt36dGYUFU46s0dWHUf6M39n8NtB52JdKPOX4UuWFFCVyiqabY9/8LAbJRI\nJJI+sHuTdMOVYd7XJJ6f80vzmTNW7KJd9PB6attsAxYSuO2c0HCMa5/aRHOXWHk+b+J5ANhc0UvR\nezo6BnTvgdKnM6yqaq2qqpu87Q6gAhgDnAs87u32OHBesowcMJZcKJwJ1mZoCCOLFMS5E8/loskX\nATBudGAF92t//ihuM8r//e+455BIJKE4D4uttrF//Yv/XIcj8ADdfEjIGuZYBliC+WhQEm3PxLlY\nKZ4LjXsoy0vzrwx7PIHypUpQAp7qjpzbIJFIJAPFtm07+jFjwl5bc+BdAJaPm8f3lpQDgVCJgVbs\n1GoUqu9Z6XeuN1Q3M/9OUSl0Wq5YnQ7Wgx8K9CtmWFGUcmAe8DlQqKqqL8vsGFCYUMsSha8Ax4OL\nROWoSD+qyo0LbwTgni8CChS7j8X/7cTszXQH+cKTSBJFlze0IOP008Ne33CgmalFGWg1A6xzv3+t\nOH5/TdRuUfGWkS8zWwENejLZ3RJacc4wUYRx2HbtGvh9JBKJJAyuhgZUhwPz3N75UPvb9vN5x0MA\njMnM5dw5oQ7zz06fHNe9/3rp/F7nFhWJOhEVTZGLDWkyBuaEx0PMzrCiKOnAC8DPVFVtD76miliC\nsOvpiqL8SFGUjYqibGxIcUURAL72+9j6/SYb8/5AEsvYPE+Uzv0n/9prgEAgu0QiGTiqw9HrnMvj\nAuDrE76O26PidKvkpQ9wVRjg4GfiOHbBwOcYPQ8AfZPIjHarzpDSpwDFd94JQPt/Xh/4fSQSiSQM\nvtjbjK+s6HXt3JfP9bdXlK5Ao1G46/zA4l22Rd9rTH8o7hGiZnW4Kc8qB+CBzQ+EGSFIdYgExOgM\nK4qiRzjCT6uq+qL3dJ2iKMXe68VAfbixqqo+oqrqAlVVFxQUFCTC5v5hyhLlm30suCJy32cu8jc9\nY+/2t8tviv8llb5UZJ53b9gQ91wSyfGOu02UOE5fHkhw29Eo5IPGZY2jolZ8Xz9tchzPnMq3xFEb\nxwshx5szYGtj2ZQCHN2j2d+6P6SLec4cAJoff7znaIlEIomLhvvuA8A0a1avaycWBypomnTCcf32\niWX+inNKNB31GNBpNSGVP5u7HSGCBZFQDHEsYgyQWNQkFOBRoEJV1f8JuvQq8F1v+7vAK4k3L0GU\nLBJSSKvbYNX/BNq+n18f9Xf9R20dIGIPrzglkPz2RXV8ShC+0qvdm76Max6JRBLQ7c44/Sv+cwfa\nRMWiuQXzWPUXEUIxYFm1R8+Kz0AfvsIbDbvJSzMCHhqtoWVGFU3gMew8FlrCVCKRSBKBvrB3JGtd\nV11K7u2rVnewKVRPPZJAgW/nz3E4ctnmRBPLyvAS4DJghaIoW7w/ZwP3AGcoilIJnO79PDwxpMHC\nKwFYYAtIgHxvaUBW5Jv/b31ct/B90+la95EszyyRxIlth3CGg+Pg2h1iNbi+KfDvdnpxZv8nt7bC\nIW+IxMnXDdxIgEyvXFHDbkpzLaiuTFweV69ngGmGyL6uWrZc5hVIJJKEE261tbq9GoBJXf8vqfc+\nZ04xAPUdQkHi8umXA4EFjJ5knCUWI1JZhS4WNYmPVVVVVFWdrarqXO/PG6qqNqmq+hVVVSepqnq6\nqqrDW0R35R9hyfUEbwqc/VJoVZXT7v0gIbfqePPNvjtJJJKI2PcIdRhDebn/3M7GnegUHdc+Gaj2\nmD0QJYnfB1WPPPPOgZoo0JsBBdwOZo3NxGMvxoMnRGsYoPz5gOJM22t9VLaTSCSSGHAcjlzcIpjl\nU0Yl1Y4x2UJJ5/p/bqG5y8H+NhEqdtNH4RV5M1eeDYC7Kb5aD/1h5FagGwhn3AHFc3nvYOAP6MFL\nAytPNU3dNPVDPLon+df9FAB3Z+fAbZRIJDgOHkSTmYmi1frPHew4iE6rw/dY++VZU/o/cXfQd/pr\nPo3TSi9j5sPhLzHptaiqsK2+OzTFQlEUCv9bvBhsO6WqhEQiiZ+ONZEX3m77SORFOdtnkG5KbrW3\nURlGv8zaK1uOcM0cIShQaAkvQqaxpAHgbk9dIp10hnty1YeMCtqmXNNwN784IyAvsvQPH+BwDUxp\nIufiiwGwbtrcR0+JRBIN+549GMaVh5w72nmUPEOJ//OPl0/s/8R/COQJUDgjcr/+4HFD20EsBh2q\nU7wQDnf0joXLuewyALo/+ywx95VIJMc12lxRnTPvyitDzr+69Sgv7X8GAHfnVGaMjqNkfQxoNAoP\nXCKUdX7z2i6c3WMBWHt4bdj++tEivMzTlbqFQ+kMh2N1G3fXiySXtYc/5CcrJnLe3NGcNrmALoeb\npX8YWLiELjcXgO5NmxJmqkRyvOGsFfLmpsmBlV9VVWmxt+B2ihWF569e3P+JPUGxusEKNPEy7lQA\nJmc4UHRipeMn7/2kVzdFo8E4aRL2ykqZVyCRSOLG0ymeNxlnhGqxv7UjkKjrbJ/HvNK+q/TGS1le\nmr/9zOeHovbVZgqdYXd7e9R+iUQ6wxFYddod/razpZr7L57Hz06fBMCx9uhlBKNhPuEEnAcPyped\nRDJAbN544bQlJ/vPvX/wfQCOObcAcEJZTu+BfbHLK4hz+mqhQJMovPJq5rZ9uDpF9aWJOeFXrdOW\niJLtzhRmUUskkpGJo7oaAOPE0OfNjBIRFuFoXgKqDr02ta7gC5sOh8i69cRXdMNxoDpFFklnODKL\nrqTIJUT8//OPJeBxM6808II9/6FPBjStZZ6IQXYeiv7NSCKRhMdRVQWEPuDdqljVzXJ+hZJc88D0\nMbc/L46zvxW3jSE0ioIbyuu/YFx2KQD55vywXc3zxFaijBuWSCTx4jgkvlRrLJaQ813OLgA8tqKU\n2vP2DUv97bHpIlTC7u6dh6UxGr2N+HSO+4N0hqPwyPK/AnB7QR7ckQvbn+e8uSKWZfPBVtye/q/u\nmueL8oRdMi5QIhkQVq+smqG01H/ul+t+CYCzuwjPQEL6VRX2vA46U0AOLVFM9G5RpuXR2CEe/J/V\nhv/3b54zG4DOdevCXpdIJJJY8bS3o83v/cW71SpicVXVwI1nxldyuT9MGpXub7978D0A3tj/Rti+\nuoICHDU1KbELpDMclfJxPcoXvnAF9+9e5v9447+39ntOywknAODYt7+PnhKJJByO6mo0aWkhupk5\nRrFrU98whrE55v5P+tavxdE18BCoiEzwPkfMubTbxG6Tr3R0T/RFYqXGvnt34u2QSCTHFdatWzGM\nGdPrfGWTKLbxwMVz+cmKSSmzR1EUvj5HLDaUm04CoMkWXj7N09UFA1hwHCjSGY6CoiisGr8KgP/N\nCoj3V5su5TzNx7y+uZqjz/wEVmfBtn9HmiYEbZbI2vTFPUokkv6hWq0Yxo8POTc5R6xuqM4czpge\nXq4nKke9Ci/n/S1e83qj0YIpG5qqYupunDwZ2y4ZJiGRSAaOr2CFdWvvRbvqVlF1d0xGb0c52fzu\nAlEW+pMvFgDQYmsJ31GrpXvjxlSZJZ3hvrhoykUA/Dk3NNvyfsND7DV9l9F7nxQnXvxhzHPqiopw\nHEzd8r9EMlJQVRVHTQ0Wb7iRj/1t+8nQ5QJKSNZyTHzxKLR7tcXnXpoYQ3tizoG6HQA4WkTiSIcj\nvIamadZMAFwtEV4SEolE0ge+egbavLxe11wG8cU8Uu5CMkk3iuQ91S2e0wc7Dobt5+noQLVaU2aX\ndIb7YHb+bH+7++ba6J2bYwt9ME2ZgutoH3NJJJJeuL0OomIy+c+5PC7quutoaRUP9plj+lGCuWEv\nvP5zaD0I87+bUFtDaBFlR2//6jg8VpE40mpvDdtV0esBOHTV1cmzRyKRjGhcXgnK/GuvCTnv9qg4\nLesBKE4rTrldAH+4cDag4HFmU9FUMSg29EQ6w32g1Wi5avZVAPx87c/h5rrInR+YF9OcxkkiC94h\nFSUkkn5h3SzCGYKVJDbVCd1ud7cInSjO6kfM8IMLA+2Vf4rfwD6YbzqKqoqVkX2t+8L2yT7/fABs\n27Yl3R6JRDIyse4UicbGHiFlTV0B9QaNMjgu4IXzxYJAhraQuu66sFKzuVf8ACBlMrTSGY6Ba+de\nC8AnRz+hmz5S1WOIHbYsEhqm3Z9/HrdtEsnxhHWrcBDNc+f4z929QZQVdXVMH/jE120BrT4u26Li\nLeIxyVUF3pLMv/7412G7mucEfjd1QNIYEonkeMe6WWium6aHPhe3HmoDoNiUusS5nmg0CgadBq1j\nAgAH2g9E7Ovp6kqNTSm5yzAn+NvTic+cCLeH394EROxwd3PU+cyzReiFTwNQIpHEhvOw2E3Rjx3r\nP1fVKuLfzBRz+eKy2CezB5X6zB0XuV8iKJgKgKWjmiyNWKlJ16dHGwFA7S23JtUsiUQyMvHlJfmS\n9n1c+9pfAKi1VabcpmCWTyngWL1Qz9nT3FtQwFBeDojY4VQgneEYWTZ2mb/tQYXVbZE7/yH6i1Wb\nLZLx7FJRQiLpF/bKKnRFRWGLanQ53GSYdLFPtvVZcTz3wQRZFwWTN4754Ho0HhHbPG9U5LCq7G9+\nE4C2F1/EY+8tSi+RSCTRsG3dhnHatF7njQVrAFhe8pXE3nDPGtj2XMzdS3IseGwiZvnTo5/2uq7o\nxE6d42BqwkmlMxwjD6x4wN/+xdpfiMaPv4hrzu4v4hsvkRxv2Csr0WYGEuSOdR0Lua7Qj4pFPm3h\n6eclwrTYqN3ClMIMPI5s6roj5x8U3fEbf3vPnLmpsEwikYwQ3J1dqE4nhrLQnbLmLgeK1o7qNnLf\nsgTmSKgqPPstePFK6KyPachXphWiukXZ5ZerXu513ThB7KC5W6PsxCcQ6QzHiKIo3H2qiE189+C7\n4mTBZLh+4EkuqYqFkUhGAvb9Iq7Mvnev/1x1ezUAY9LKARiVaYxtsuYD4HaItrHvcIVEUpJjRvUY\nqWoJn0AH4nlT/vzzKbRKIpGMFBr/KqrnqrbQIkLrD4piPnmciFajTdwNX/lJoP3HSeDsWxJtflmo\nXO3vPv8dT1c8TbezGwjsoDuPHEmcnVGQznA/WDV+FWadyFRvs3vDJHL6EaMYBtXtjtcsieS4wN0s\nKhUZJwUSP658+0oAFmaLsIIJBTE6tg8MwmrrYvHCmJvVherOoM0RfcXDPHOGv626wlesk0gkkp44\nj4qiGmlLloScv2nDtwH4+tRTEnvD6h7l4+8u6XOIUSeccY1NJPg9u/tZ7tlwj8jLAnSjRgEygW7I\n8l8L/wuAU/4Z9Mc0++J+z6MvLQXAumlTQuySSEY6rkbhDBf8/IZe1576QKwIzx6b1etaVH70Ydx2\nxUypKD+6JKsBXZpI+mu0NkYdMuqXNwLQvfHL5NomkUhGDB6bWJnNufQS/7mWLoe/vaz0xMTe0N4B\nuoD2Ox5nTMN+sGQcbQe+E/aaYhTPdHtVbJU740U6w/3kq+Vf7X3y6w/Qcfm7IafqG6LHzegLRclY\nW8XuhNkmkYxkam8VygoG7xfJYFS3WBHOMMUgj+YKvBQYncIV4vwpABR2Bv7N17RHr0SZftppAHR9\n/lny7JJIJCOKrnUfAaBoA6EQr28PFPqaPyaB6jkeD1hboHQx/CIQwoa7b4f4gvljAA1LLHfwvRnf\n85/f1bQLRVHQ5uTg6eyMOD6RSGe4n6QbAtuwL+x9QTR0RjLGLwzpN+rB6Bp+hb/+bwA06amNV5RI\nhis+iR3f9hmIhLksQz9Xg9++WRyX35Io02IjVySE6Ou20n3wewDY3dGVIgzjxEtLJttKJJJ4uOXV\nDQA42+aGVeMZMI1eVaySRZBRCCu8cpCHNvQ5dOYY8ez+Ync6v1jwC4rShNTamgNC8UKblYWzNjXV\neqUzPABm5s0EYPX61aHVUbxaorGgKxL/023eKjESiSQ6lgULANBmiAzkbmc3KioFBiHcfs2yCbFN\ntOERcVxyfcJtjIrWK/u2+z+Msoh//9saoifgKlotusJCHPsji9JLJBKJD1+hnvTly0POa03CqfzF\nqSsTe8MnvGo8Wd444amrxLHybbFi7HJA/W5whf/if+b0Qpq6HDR3OfjP+f8B4FBHQE9edTjCjks0\n0hkeAE987Ql/e/YTswMXrlrH68vf8H/0tEX+RqPLyQGNBo+176xLiUQiksiCdTO/rBNxtK5OkWi2\nanZx35PYgwTcdYaE2tcf0jVjgEDBkGhYTpiPu7kZV0tLss2SSCTDHEd1NRBayRJAYxJJdUvLIuub\nD4hOr7xlkVgkpECEg/HJ/fD7cvhtATx0Ivy2MOzwxRPyAPi4qhGDRjyTfYpd2pwcnIdTU5xMOsMD\nQN+jbKvDJ9GkM7LytED2pvvhpVHn0eXn071xY8Ltk0hGIvaqKvEl0otPm7KyejSLynOZMTqGcIkD\nHyXLvNgoEl+eTx4nXgBvVb/V5xBf+faq05YlzSyJRDIysG3fDoBpRmgZZkPuxwCMy4ojXtjjgb1v\nhS4qTPbmUY32OtkRQzDUsBrEK72LGNc9u5lx//1GyDVdnnhOelKwOiyd4QHy6SWBiiknPHVCyLX3\nljwDgL67HlqqI86hyczAefBgUuyTSEYSqqri6exEk5bmP7ezaScKCjZrDmnGGDUzaz4RxzgL5gyY\nCSsAKNTELiSfvkKMSdV2oUQiGb4c/dVNABinTPGfq+2sRaMXcrAGbRw7Ym/cCM9cBHePDZxrPQSG\njNjG7/ug16lRGaaQz2MtgXwrXb5whl31Df23tZ9IZ3iAZET5n7/glDMDH/48J2IguaNKiO77Ynwk\nEkl4XHWiWpu+JKBfWdddR65WPDhr22xhx/XC928xP3qCa9IomgXALE0Nrm6hUe7sQ4ZIH5QwKJFI\nJLGgKyjwt9/dtyX+CVUVNj4a+hmg7RDkjQ/te0s9rLgFvr8Gpn0dLvhfcb7q3cC4IG4+OxD+pjhK\nUVBQVRX96NEAeDra47e/D6QzHAebvhPQCL7vy/v87SxzD3mnuh1R5/F0dyfULolkpOH2xsv6ClFY\nXVZcHhd1jeKBP704M+LYEI5tg8JZUbbyksyY+QBMU6twd4htzNrOvrOlM844A4D6++9Pnm0SiWTE\nEKwY8c4BsSN287y/9X+irkZYnQW/Ca0YR/VHYG0Fe7s//MuPzghLfwlli+FbT8Lsbwod4u3PiXl6\nOMQ/PHUclXd9jfx0I1W1CioqVpfVX4XOcSD5CcTSGY6D4Njhf+z4R+SOnvBV5vKv+ykAjv37E2qX\nRDLS8AmvazKE07u7WWj1lmcJzeEbz5oSfmDIJJ3gsoky6oNFjojXy23egscptgB3Ne3qc1jaKaLI\nT9P/ezh5tkkkkhFJRbsoLrRqykn9G2hrg3sjqPQ8fg783luBNzuGSryXvxpof/j7kEuKoqDXalg5\nqwitReyYb6rfhKG8HABHCsJJpTMcJ+9c+I6/HVJNKigm0WPrIBxpJ4k/TOuWrckxTiIZIRy7404A\nDKUiTMKnJNHYOJrJhemMzjbHMIlXxmzsoqTYGBOKAhnFaOq2k6cXv8vvPv9dn8OyL/pmr3Oqx5OS\nl4REIhlemGbO9Lf/+uWj2FSRo5Bu1PVvok1P9j53a1Pvc+NP63uu0hP9Wus9nWEfPzt9Mihi1Xh3\n825/qIfqiK2iXTxIZzhOfCLRAN9f8/3AhaDVJ837vwk71jhxIgB1v+v7ZSiRHM/4Cm5ovWoSf970\nZwAamnLJTzfGNsmBdeI47tSE29cvCmdCdyPFaWILsMXet2Ra8Janp6sLgN3TZ7DvzLOovX11718T\nzQAAIABJREFUUsyUSCTDC1eDSDQzTQ8oSTy688GBT1gtFCj48QZY3SZ+tDromYRXEuMCw3WbxbE4\nfOXPnDQDzmaxC7ahdgOKXuy+W7ckIOa5D6QznAAePl1sXVa3V/drnKw+J5H0D21mz9hgLZX1MZbr\nXHu3OI6aHr1fsjGJ32GlXoR+FFqKovX2k3f1VQDsOWEBtj2Bsqet//oXR29JcTU9iUQy5HDWC+ky\ny4KAwlWWIR8A7cEBLLod3QQZowPawT6+EZRId94A4pCPboKOurCXskxCXWJ97XoAtHl5KIbka8JL\nZzgBLB692N9ee2itv9019UJ/Ww2TQalo5H9+iWSgqB6xarCgLKePnj0YrOQ5Hx4XABd0P4fbOoa6\n7mMxDcu/8kp/+8C554Zca3v+hcTZJ5FIhiVND4vqmoouEA7RZK/FbS3hye9Hr3vQC1WFzrrwORbT\nzgm0Z17Y+3os/Cl87sacvBMB+P4MsdNuKC/Hui16pc5EIL2xBKAoCml6oX/6q3W/8p+3fPV2f9u5\n+Z9hx6af/hVAyqtJJLHi8jqTri4RZvS782cNpjn953zxwupIH4fbJvQ62+xtfQ4L1lj2UfbsM/72\n0ZtvTpCBEolkONLx9tsAKCaRQ9HhEOFlbutYsi36iOPC0iQS2cKGNCgK/HQT/PC9/lfyvD4oR8rd\nOxbYbDCgerTUtIt8CI3JhLu5uX/3GADSGU4QH18sYmu6Xd1c/c7VACjZpf7rnrdvCzvOOEnonfp0\nVCUSSXSe2/Oct6Vw+znTyUmL4WFc4y2SY4qhSl2y0ZtAo2e0tRKPVTjDG46F1yLvyeSNgcTcsmef\nwTJvHoW33QpA2wsvcvj6nyXeXolEMqxIXyYS2g60CUkyj72QgowYcyt87F0jjuURcizyJsDYBf03\nLqccFK/rWdt7xXdaUQag8e/8GcYJBR53Z1f/79UPpDOcIHSawLbEJ0c/6XXdZOtdhhDA5HWGbRUV\nyTFMIhnmuDtFTLAvs/jtGrH6gUfHgrLc2CbZKUo3Y8lPtHkDo2gWhqYKNHYRi7ehNjZnWJueTvHv\nfkfe1VdhmSfKn+Zeeqn/esdbfZd3lkgkIxtfCOYDmx4AwOMowKTvo0rnS1cLPeH3hHIPB0XMLuOX\nJd7AH3ifU/vf73VpQkE6Hkcee1qEfKZxopB2c+zfl3g7gpDOcALxrQ5DQEjffVZ4CREfphneIgKb\nNkXtJ5Ecr9h2CR1eX6b0oiKRuWxvOIvxBb1DB8Ji9grGn/PnhNs3IApFEt/Jo4TW8BfHYi8PnX3B\n+Yz6WegKcNkzgXAJZ134L94SieT44vNjnwOQrivooyew9Vlx/OiP4PGIVVtjllCPSDRjvCvKVb2d\n4bx0IygetIiVbMN4IcfWtf6zxNsRhHSGE0iWMbAFe90H1wGgPekq/zmr3dVrjKFMiFV3fymdYYkk\nLG5RtKbozjsA+NtWkb08q6ictFh1M494/32VLo7eL1WUCI3x8/NqcFvHsK9tX9gk21ixzJ9HgddB\nllKNEsnxizY3sFs2K19UhrvEu4sUkc6G0M935EDbQRg9J9HmCTQayCqBo5t7XSrJNeOxj+JwdyUA\nlgXCcbZu7t03oSYldfbjkD+d9icgUCErOHP90K71Ycfoy0qx7dyZdNskkuGIx2YDwOitRuQjx2yK\nfZKqdyCtIDmrHAPBq3W8SKnA3V0OQEVzfKFSeT+8AhChEqo7fNVLiUQyMlFVFRTFX8wLoKG7GdVt\nIsPUx3Ovyls8rKfs5ISvJNjKIMYuBJcVukKLeAjdeAWtInJBFI0GbUE+3V9+mTxbkM5wwjmz/Ex/\n2+kJzZQ0vX9r2DHm2XNQHY6kB4hLJMMRXzy9Ni803ndacU/N4QhUeh/0Y06I3i+V5JQDMKptK64O\noYbRn1CJcATLKTU/GaZy1CDicTiomDqNiqnTOPyzGwbbHIlkxOFpawNVxTgloAlc2+rA48jDYugj\nXvjla8Tx+2+EOsCLrgzfPxFMPF0cq94NOa3XasAxCpdq8/tQ5pmz8HR0JFV1SzrDScAX07i32SuM\nv+o+AEo7wi/zm+cJ6ZLuDbEl0UgkxxUuEV7kK8XsY9Xs4tjGP+3VwTT3U4842eSOR3NsO9PzxGrM\newfij4nLv/ZaAOrviZ6rkEoqZs1mz+zAdmvHmjVUTJ0mS0lLJAnElyugMQtZNY/qQTHUozE0MaUo\nI7ZJzDlw2YviWLoYDDHmZAyEyWeJ4773xLG+QiTwrc7CpHEA0OkQydOmadMAsG7d2muaRCGd4SRw\nzRzxLeu9g97/yfO/57/mcPX+ZpO+ZAkAnWvXJts0iWTYYd25E8ViQdHpcLjFQ9LZPpOxOeb+TXTO\nA0mwLg7GLAC3ndrDItl2c9PHfQzom/yf/Njfdre3xz1fPOxbuYqKqdPA2VtLFGDfmWel2CKJZOTS\n9fFHAOjyRVJul1PsNCtaW+yqOz5+VQ0/WJNI83qT5t3p2/YvcXwoEN6xRCN2yWraawBIX74cgLYX\nX0yaOdIZTgLzC+cDgUxOgirNHapv6tVfXyr0iK2bZRKdRNITjcEoqiERKHnutpZgMcQQ/2sLKmbR\nX3H4ZDNJhFTdVLrLf2rj4fjkg4KrWlZffElcc8VDxdRpOPYFfhfD+PGMe+UVpu2uYMxfAl9Kam+7\nPdxwiUTSTxq91edcTaJARaO1EYBsx1cx6GJw9cpOSZptffJ/Z4d8PGgRxULePyTUJkwzhepW67+f\nx2O1JsUE6QwnAY2ioTyznG0NvQWlays+7XVOURRM06djr6yKK6NcIhmJdG/ahMkbB+cTkcdZFNsD\nfq9Xz/LsPybJujiY/nUALqz/C7a6rwFwxbvxO7Cljz8OgGP//rjnGgg94/oM48Yx4Y3XMU0R5Vcz\nzziD7EsuBqD1ued6jZdIJP0n/RSxw5x1/vlAoKplpqYk4hggUGkumSERkVhyvTjWeGszFAn1i580\nidC4BYVCSUIJEiJo+Mtfk2KKdIaTxKx8kRTje3m3LfstAGO2/y1sf/NcETds27kr7HWJ5HhFMRj8\n6ghVLVUAnFwyNbbBVd5QpennJsO0+NAFKkI5W04GwKNY/eWmB4pl0cK4xsdL18eBcI+pO7Yz4c03\nevUpujWQTOysrU2JXRLJSEbxxgpr0iwA7G8VX4ZzjIXRB37glWJs2J002yJyys9DP//gLcifQrZL\nhFbZXDb/paLVqwFo/sc/kmKKdIaTxKoJqwB4fu/zAGQt/h4A41rDy6tlrloJQHuYF4dEcryiejy4\namsxzxEJWDsbxQP7pNLJsU1wdBNo9JA+Klkmxoe3Il71ubWobvEye6liXVxTKoqCNlsUGbFu3x6f\nff1EVVUO/Uhoq4996MEQhYtgFI0GTZpYiapaviJl9kkkIxXb9h0Yxo/3r6J2OEQ4wayi0ugDvco2\nXPR4Eq2LgK8YEsDlr4DBAtklGFXxOxxoq/Ffzv7WRf624/DhhJsineEkcVKxCAZfU+0NQjdGz+Y0\ne0Wxuz+XihISiQ+PtxSzT697f1s1HldabMU2VBUa98LouUm0ME5WCl1y1tzEynyxe/Sfyvfinrbk\nkYcBqLn023HP1R861gSSbjJWRHdyJ7zztr8tV4clkvhQzCbUoGTVLXXii3CGrg8Vndot4lg4K1mm\nRWd1m/gZv0x8HjWN8WorAM6gTTJFUVCMYjet/veJV8uRznCS0CgaZubNpL67Hqdb/IE2a0RGp8fT\nOy5YURQ0Fgu2HTvw2O0ptVUiGaq4GkXCqS/etLbrMKojjymFMUgFWVvEsXgIO8NB4RurF4vfcV9b\nVdzTmmaJF5saQckhkdTdfTcVU6fR/uabHLlBbHv6ysxHQxdUKUuuDksk8WHbug3T9EDRjH2t1QCU\n5WZFGOHlwDqw5A2dgkROK2leH+nN/R+EXCr/1z8B0FgsCb+tdIaTyLKSZQA8tPUhAPYUnwdATW19\n2P6e7m4Aan99c/KNk0iGAe4WkRmtGI043U48uPA4CphfFoNmcK1Xk7JokFY8YiEoMcT84BxwZdPu\nPpKAaQPzOo/EP180mh9/AsDvCAOUPflETGPH/+e1pNgkkRxPqKoKWi14ApUnbU43HmcWkwvTIw9s\n2ANux9ApUw9wYB2+EiEHu0PDvHwFRbo3Jb40s3SGk8jZ44RcyP9u/18AsgvLADi6+c2w/Ufd9CsA\n2l9/PQXWSSRDH0e1iBkzlJezp2UPAB77KFGlqC++fEwcxy5IknUJ4sZKf7PAnYaqbYs7iS6Yg1dd\nlbC5eqI6HGHPx7pyY5w40d/u3pz4F5xEcjzg6ewEtxtNWsDxrbNX4baWMCaaHvvnIpyKE5P3jOg3\nvtAxIE0buuihKArmuXNxHjqU8JLz0hlOImMzxoZ8Lpm7DADz7vDC0bmXXZZskySSYYVvm1+bnU1l\n0yEAFpfEuNK762VxzJuUDNMSR1By3ze7dwLw7r74NccnfrhWNJyJc6x70vWFEMc3lJf7z+lGx1gZ\n0Ev2xd8CoOaSSxNml0RyPNH1qUjMb3tZPPM6HZ14cKE1tEXXY/dJT5afmmwTY6dAKAXl28zk6Mb1\numxZKNRy2l5+JaG3lc5wElEUhYVF4n+c0+0k3ShE/+d3fhi+v1aLabbQ2fOVVpRIjme6PhH6k7q8\nPHbUCz3M2aP66dwOtWIb4bjsJQCm28VK6xt7P497Sn1hIdrsbBw1NbgaGuKeLxyd7wlR/DF/vp+c\ny8WX+Qlvht/5ikTRr3/tb/fUKJZIJH2jSRfKLIW3CcnCV/YJR1FjOhR5kMcN7Ydh7KKQcK1BJ60A\ngBzVTqOzstdlXYFQ4Km9ObHhpNIZTjJLxywFYEvDFsjv+yXubhIJQ1WnnZZUuySS4UDHO+8AQkPz\ncMcxAE4o6UNEHgKV5wYrQ7q/TFgBP9mI3ftS+qDxkYRMq8kQiYaVpy5NyHw96fauDBsnTqTo179m\n2u4KNEZjH6NCUQyBLyu2HTsSap9Ecjzg6RSll31hR3oyAZio+U7kQfu8yWmlJybVtn7jfQaaFSv4\no4cDZF94IQCarD4SA/uJdIaTzMJisTK8o3EHaPX+8/YIW5eljz+WCrMkkmGFoih81vAfAMbnxZA8\n9+hZ4liXWp3duMifxGke4UiqLjPttviVIMqfedrfrpg6LaEVLlVVxV5ZiWnmTBRt75dWfyh79hlA\nlmeWSAZC50dCm9wwVoRmflotVlTPnhQl/OHpb4ijO3lhVPEw32bH5mnt9czSWCxoc3MhwbtI0hlO\nMpNzhFzSZ7WfAXAk6wRx3LMxbH/fHzOAp6srydZJJEMby4knoh89GgAPImGiMKuPlUdVhYYK0f7h\n+8k0L+EY532HiQ4HGsXJgx/EL7GmKyjANHOm//PuadMTForg9Arfm72hXfFg9krB2XcPQhUsiWSY\n0/b8CwBoMsVqaVWrCCn72pQYdsaW/7rvPqlmwldweFeFfWWlg0lbvBhPRwfuzsT5SNIZTjJ6jZ4s\nYxYVTeLlnG4Sq8NFr1zc59i6exIvLC2RDCdsO3dinBQaXmTU9bEKuf7BQHvM/CRYlURmnM9EhxNV\n6+LVLYmpsjTu+X+DPmhXas+ehMzb8pRYdbYsPinuuYIr1clFAImkf2gyRViErxTzse7D4NEzNieC\nHrs7aNfJlJls8/qP6maCU6wIt9hbel02zxdFylq9usOJQDrDKWBewTxa7C24PC7SzrkbgD2myKsp\nY+6/DwB3a+8/AonkuEKrxePwFqFRNWht06P3B3jbm1ihNQytxJBYKJ7DBK+CRr1rG1X1nQmZdtr2\nbf62LykxXpofF+VbLXMTU9REV1QEwIELvpGQ+SSS4wXznDloMjL8+uJ23X5QooQ/dAv9dp9yw5Bj\nzAmYVRsAHY6OXpfTlywBoP7ePybsltIZTgFzR4mXxeb6zejGiG80ekd7xP4ZZ4l4R+u2YRTvKJEk\nGNXjwdPWhjY7m25nNyge0pnY90AftyZHQSGpaPWU68VWp6X0MU7/n/DKMwNhylZRdrX+j38aUKjE\noauupmLqNJz19aiuwItWm5+fEPuK77wDAEdNTULmk0iOF2w7d/pDjRxur/a3EiU/oHGvOJ50TZIt\nGyCqyljvM+ZwR+8dMn1pacJvKZ3hFLB4tKju8sSuJ0BRaNAWUmjbF7G/oihYTjoJV10d7rbe8TIS\nyfGAdZPQ2u14cw1HOmsBKMroo5iDy7uKPHVVMk1LKstGBYqE6DJ2JCzpLVjloeOtt/o11tXSQueH\nwjGvWnoau2eKF2/ud78bUu0uHtJOij/cQiI5HlF0Ov8OWm2HkGXN102OPKB+lzgO1eqco6aT6f3C\n3txt7XVZ0WgwTp8GgLO2NiG3lM5wCpiUI2Ie1x5aC0CjvpgCpR2PO/LqTObXvib6PpIYiSWJZNjh\nVSjI++EVVDWL1YF8Y1n0MbXecIDS4etYmZr3+9vmsU/R0GlP2NyFt9wCQNdn/dMxjhS6kPuDH8Rt\nkw9Fr8eyaBEQubKdRCLpjau+HvMMkSj70JZHAbCqzZEHNHjzBgqmJdu0gWGwkOf1j3Y07A3bRT+q\nEICq5SsSckvpDKcAvUYf8nmaTWxXPv/o3RHHZH7tqwA0P/qP5BkmkQxh6v8kynK6Wlu54zOR8WxO\na4w+6IhXpWXMEC/BHI3zH+HWxsCL7KYXE1emOMdb7c1XqSpWfEltvrheH/rCUeG6D5j004Qecvua\nNQmdVyIZqbiaxbNCVYXzWNcidLtXll4SeZAvTMIQW9n0lJMzjgzvynBjZ3fYLgU/v8HfTkRpZukM\np4hlY5cB4FE9fFT2EwD21ByJ2F+bGcjwlFWZJMcjvhK/WStXkqaIQhtnlC+PPsi3qlo8J4mWJZlR\nU7moo5Prm1sBWH/knYRNreh0pK9YgWq3Yz9wIKYxHrsdT7vIcZi09gOm7a7w/ySarAsuAKBz3UcJ\nn1siGYk4jxwFwDxLJOW3d4mwpe/PXRl5UGMl5PQudTxkSMtHC5hceg509K5CB2CaHAgD8YVwxYN0\nhlPE9DyRBb+raRez5p8MwK36p6MN8Sem2HbuSq5xEskQxFAmQiJMM2dy6FguALML+0igq/c6aEN1\nxSNWflXNeZ1CSeIr2U/R7UicMH7OJWLF6OB3vxdT/5rvXJawe/eFLicHRa+n69NPU3ZPiWQ446qv\nA0CTkQ6AFW9+RXphhAEO6DwGBVNSYt+AsAjfR1XceDyRcyYmvvcuAB3vx68nL53hFLGoWMTCbW3Y\nSvZUsRXYQfQX9tg/3w9A59q1SbVNIhmKOPbtB40GTXo6GvMhPK50ctP6KLhxaANk9xFXPBww55B/\nmai492Gakc8PNCVs6rSTRPlVV319TMl5ilFsu+Zfe23CbIiGZeEC3M3NeOyJi5WWSEYqjupqAIzj\nxwNwuF2UrddpdOEH7H1THIdyXoVGuKblDjPNrsg7WPoxY0BRsO2Kf8FQOsMpwrcyXNFUAcYM6pQC\nutXoL3bzHLHVmyhdUIlkOOFqaACPB0VRSDPoUBQXFkOEBzyA0wZuO4xOjO7toFO+xN/8ZMtjCZtW\nCSrA0fqv56L2VVUV68YvASi47qcJsyEa6aedBgi5KIlEEh3Vm2imzc3F7VFxa5vRqlEKabwtkmiZ\nOcT1vHMnoMeKqkZXqzFOmoR9V0XcccPSGU4RZp0ZgA8OfQBAq7mEQqWFtq7IWdOKToeuoADrli0p\nsVEiGUqoDoc/VMihOYZiGx99QKM3Q7p0cZItSx1n5Yg4wNzaB/vo2T/K/y2c4GOrV1MxdRoVU6ex\n/5xzeq0U7z87StxhkjDPE1rsHe+9l/J7SyTDDce+KlAUNGlpPPRBFRpDE6ojN/KA1oPimFWSGgMH\nitPKZKeCqumOuoNlWSCSpeNdNJTOcIpp9xbbcJacAsD+LR9E7Z+5UryM7Pv3R+0nkYw0bHv3Yp4x\nA1VVUTWdZKdFWRUGOLZDHEcNUbmgAXD76Q8A8HaamYaOxIUN+AT6g7FXVrF72nQqT13qd5Ad3iS7\n0ff+IWH37gvTNPH/r+vT9Sm7p0QyXFHdHlBVFEXhqc9rQHGRqY9QCKc+KOl1qFfnLFlImir8pfYo\nRcpyLxc5DR0fRPel+kI6w4OA2+OmIF1sVc5756KofdNOFU5zZwICxCWSYYXHg8dhp8UqZL3StH1U\nOvMJyRcOUSH5AZBhyWOiw8E+g4Hrnvw4oXNHUoNwNfSu3Jd1zjkJvXc0FL0e4/Rp2CsqElZwRCIZ\nqdh27sTo/QK5am4+iqJy7vRF4Ts/5I0TPnGIVp4LxuVgvFOEPuxvPhaxm96baN39xRdx3U46wynk\nunnXAXC48zB5p3w/pjFpCxcCYNuVeBkjiWSooqoqno4OzLNms+mwkCCcnjs1+iDf9l9aXpKtSy0n\nOkVuQW79CwmfO1gmreTv4Qv8JENCrS98W5/2veEF9yUSiRePB9VmA6CyQShLZJn72EVb/ONkWxU/\nRbNI94gw0k9q9kTspigKpunTceyPTSoyEtIZTiGTc4Qu3sZjG9HlxBavoxgMKEYj3Rs3JtM0iWRI\n4W4VGruq28XuRuHkFmWlRR/UfADSElsEYiiw4NRfAbA842UcruRpjqefeiplTz0JwLiXXkyalnAs\nZKwQVaU6160blPtLJMMFR02N/8tjQ3cLAKWZpb07BtcryB7i8cIAqDi9rYf33By1p2nWLLGT2B2+\nQEcsSGc4hcwrFIkh2xu3h5y32aOXHjXPmxezDJJEMhJw1YutetPUqdz/gVAzyNKNjT6ocQ9k9dFn\nGLJw8ioANhlNfL6/jwp8cWJZsIBpuyv8cbuDhS+mueOttwfVDolkKOPxrgirLqFDbnWL2FqdEmZl\nuHGY7bIUzWaeV14xWxfGuQ/CNE3sGlq3bRvw7aQznEIyDULuZFdTqCbenm0boo5LO1HE/0hVCcnx\ngrNWVFVSTCbQiAdihiE9ygAruB2QPzlyn2FKljELgNcy0mj+9IlBtiY1aNLS0I0uxrZjR0JKrUok\nIxG3txSzT4b1aKev4EZR784HvQmp30l8uFVSMGUy1uVG49FiUSIUEPHiU6Dp+vzzAd9OOsMpZmL2\nRKrbqwHY+7VnADi2I3oWZNrJomKdddOmpNomkQwV3E2iyIRx3DhmlIrtvRUTo0irNVWJ45j5yTZt\nUDmn+k46bGLz8EirlfX7mjjQ2DXIViUHd5N40dfdddcgWyKRDE0chw4DIpxSqO6IZ0G+KUyycY1X\nemzMCakyLz685aJVxY3DHV1JxzhRVCa17xn46rd0hlPM9LzpWF1WHG4HpTNPBcC+/5OoIRDGKaJs\nYufa+OtvSyTDAVejcIY1mZk4PGLrL9cSRUj+iPeLYkEfSXbDnGq9jnmr3wDg/ntvY/GT4/E8cAJ7\n6zoG2bLEM+oXPwfAUXNwkC2RSIYm7hbxhdE4aRI7jrSj0YuY4XxzGGd43wdgSAdzTipNHDhp4nco\nsVtocx2N2lXRatEVFND5/vu4WloGdDvpDKcYXyW6ypZKTGni5b5Es4OdRyPr6GlMJnSjRiWk5KBE\nMhzwlRjV5efT6qxHdZsxaA2RB9R5NYaLRo6sWjCPnCGUHl5KT6fKdDmf33Yi9+rFuQmaWm68//8Y\n99+vc7TVOphmhuXJz2oov+n1kJ/rnt3c57icSy4BwFlbm2wTJZJhyZGf3QCAp6OddyvqULQihlir\n0YZ2dNmhuxFGz0u1iQPHkAaGdIyKE6em71wJnyRk5eKTB5Rf1aczrCjKPxRFqVcUZUfQudWKohxR\nFGWL9+fsft/5OGWqVx5qd/NuAL7QzCFP6eDcv0Rf9TXPnYunqwt3e2SnWSIZKbS99BIAikaDihNF\n6ePhdtirMWmJUnlpGDNvlHiJPZadiQqcqNnNb/JymDWulLtzc/i57nlUFU6+Z+jpkd/68o5e517d\nGn2lB7x6w1Om4JAFhySSqBjKy6lu6kLRt1KaUda7Q/VH4jh1VWoNSwDjvZISzbbmqP0KfvYzf/vw\n1f3XUY5lZfgx4Kthzt+nqupc788b/b7zccqknEkAVLWKGMeyReKP82xN9MDv9BXLAWh98cWQ86rH\nQ9Oj/+Dgj36Eu2PkbZVKJJ3uJjI0YR7wwRzdDFnRM46HMyadyd++OT8PJ/B8ZgYAz2RlcIJuGxqS\nJ7s2EFRVpfym1yNef/Kzmj7nSFuyBJCrwxJJNPSjR2NzujEau1HDPQcOev2Liaen1rB4GbuQhU4R\nL7z+SHShgfyrr0JXJBIHOz/sf0hpn86wqqrrgOguuSRmMg2ZaBQNB9qEQHTB7DMB+Ivhr7jckV9m\nmWedBUD9vX8MOV+1fAX1995L17qP2LtwkZRfk4wI9CUlmGbMEB+0bRDN0WvwJk20jezY0uvnXw8I\nVYmVJaNDrp1cXsKduv8DwOYcfPUFp9vDb16LHtb153f30mV3Re1jnjcXgO6NXybMNolkpGAoKwON\ncOOOtFrxaNopTivu3fGoNywpb0IKrUsAbgcndYrqczd9/Ms+u09aGxAjOPbb/iXexhMz/FNFUbZ5\nwygiRmQrivIjRVE2KoqysSFMmc/jkQJzATXtYlVEKZ7jP//hnvqIYzRms2i43f54ykPXXIurri6k\n3+5p06lcvoKOtWsTarNEkkpc9fXoS0po7nKgaO3k6qPoBz+4MHWGDSJXzLzC367VCR3RH8z8gf/c\npbr3WKRUMPXWNSm3rSc3vbCdxz6t9n/+7Xkzqb5npf/n5Al5NHY6+lwdtswX6iDdG6KvCkkkxyOO\nmhp/MY2WLieqYmNCdhiH9/AXYMkHRUmxhXFS8wmlruhfmCPR8tRT/UqmG6gz/DdgPDAXqAX+FKmj\nqqqPqKq6QFXVBQUFBQO83ciiKK2INnub+BD0x7lmY/SVFF/98ZZnn8Xd2krnB+JbkH7MmJB+rtpa\nDl99DRVTp1ExdRp7T16Cu7Mzgb+BRJI8VFVFtdtRNBo+rtkKQI0zuvwgANesT7Jlg4tEGTrRAAAg\nAElEQVSiKNy37L6QczeccIO//UBOFs8Z7xz0cAm3R+WFTYf9n5+7ajHfOSk0zOWRy0XFrEc/jl5C\nVZcnSmt3ffZZgq2USEYWRztEkpleow+9cGQT2FqhePYgWBUnGcUogM6REfOQqdsDhTcqF58c87gB\nOcOqqtapqupWVdUD/B1YNJB5jlfmFMyhw9k7vveKml9FHVf+r38C0PbyK+w95VT/+QnvvsPUil2U\nPfN02HHu5mb2LlhIx/sf4HFEr3YnkQw2ni5RUtM4bSr13vKiZWkxVEQrnJ5Ms4YEp5cFYv7eufAd\nAG5ccCMAr6aLctUvGFan3K5g1gbtcJ01o5BF43onNaYbdRRnmWjosEcNDwMwTZ+O89AhGQImkQTh\nqzqXdcEFWB1u0Irnpi9J38/fRb4Ri65KpXmJYepKAE7wygy32Ppe6VX0esa/ETlXIRIDcoYVRQkO\nSjkf6J0uLImIRW8BYF/rPnHiEuHkjnId5ePKyBIiGoOQlnK3tYH3H8KEd95GURQURcEyfz5Ttm2l\n7Nlnwo4/fO217Jk9h6M3/bdcKZYMWZxHjgCg6PQcbhHqKRdNujx8505v6NWCK8JfH4F8dulnrL9k\nPUVpIlnksumXAVCv09Gi0TBPU8Xa3XXRpkgqr28TyW6ZJh0PX7YgYr+rlooiKlc8vjHqfOnLxcvc\nJcPsJBI/jgNiV8U4YTy1bVY0ulagx8pw8BfIKeF0EIY4FqE1fKFV/K5///KVmIYZx0cp0BSBWKTV\nngXWA1MURTmsKMoVwB8URdmuKMo2YDlwQ9RJJCEsLBQxjpvqvYUCJos/0lylk9f6kBwyTpoU8tlQ\nUhLyWWMwYJk3j3GvvkLWNy4g7eTFveZoe/ll9i5YSO1tt8uVYsmQw+2N8zJOnEBDl3CGp+aXh++8\nU0iwUb4kBZYNDdL0aaQHlabWKIHH+FdLRuMBMl/57iBYBg6Xhw/3Cqf1o/9aEbXv+fPGotUofLi3\ngZ1H2yL2M4wXlag6P1ibMDslkuGO78uhccpUjrXZ/BrDY9KDwiYbK8VxGEqqAbBA5EQs7Rb66U/u\neD7mocX9rFwZi5rEJaqqFquqqldVdayqqo+qqnqZqqqzVFWdrarq11VVlbo3/WBqntjG2HjMuyIS\nFDecsS/6N59xL7/kbxd4KzSFwzR5MqPvuovSf/yDqRW7KH388V59Wp97jj2z50jZIsmQovbWWwFQ\nnS6a7eKBX5wRIUd3+3PiOOnMVJg2ZHn7G28D0K3RcOOofOZb1+PsI/wgGXy2v4mmLgeluRayLPqo\nfbMserLNos/KBz6O2C/9VBES1vHOO4kzVCIZ5tj3i9VSbU429R12FL0Q/co0BlXqPOxNPF04THfO\nMgoBMOV7Qz9MNRzrOhbT0OxvXMCEd2N/ZsgKdINApiETnUYXKiI96yIAJnZs5O43KyKOVbRaJn74\nIWP+50/kX3llTPdTFIW0ExcxdecOiu/6ba/rVctXoHqGlkap5PjF3SZWCQ1lpbg8Ihwo15wdvvPh\nLyCjGIyxJ1iMRIrTi7lt8W0AvJMmwrBW3hX7Kkqi+GSfCPN69LuRwyOCWTo5kFQdSWZNm5mJYjZj\n3bo1fgMlkhGC6hTVKAxjxrCnrgNFEe/wAnOQUMErPxbH4VymvngOmu4m/8f/+uD2mIcaxkZRIeqB\ndIYHibKMMiqag5zeVSJL/GLdWh7+MHrFJX3hKDLP7n/RP0WrJfsb32BqxS7G/PnPmBec4L+2e/qM\nfs8nkSQD80zxt2gYP54mZzUAFp2ld8dj28XRLovNAFw46UJ/+8X0NO50RRT5SRoN7SLTZVx+Wkz9\nb1sVSHp85vPIOtEZy5fh6ejAcfhIfAZKJCME+25RxVaTno7N6UZjEju8Zp25d2dTVipNSywFU6Gr\nnvQO4fNsbvo0KbeRzvAgsa9tX0BeDcAYiAHMI3L8XCJQFIXMs86k/KmnQs57uruTel+JJBZUhxNt\nfj6KotDtdICqRwmnj/nlY+KYXphS+4YqiqJwwaQLAPhdXg4nanbT3JXanIAvD7ZQlGlCp43t1ZKT\nZvC373oj8o5Y5qpzAGh/7dX4DJRIRgiq0wFaLYpOx/6GLvRaD2adOfyz0hDbl9MhSf5kAD45/yL/\nqTU7Eh/aKZ3hQabd0d7r3Jema9h+OLkOsY+pOwNCIHV335OSe0ok0ejeuBGdV5PcqtaiVTPDd6wX\nKyNcHTne9Hhj9eLVANg1GroVhZc3RtfxTQTlN71O+U2v88B7ldQ0dVOWF2YVPwobbv6Kv+3xhJdP\nS18q4obbXn1t4IZKJCMIe2Wl/zlZ125DY2gi35zfu+PoeSm2LMGMF2oyms8f8Z/68+fhFbPiQTrD\ng8TPTxDJb9Vt1YGTK271N5/qozJTolC0WiaseROA1n//W2p5SgYV1S1KCdsrxCqhoijo1Qjxwse2\ngSUPDP1zvkYywatCD2dnUvDZ75J6v9o2q7/9P++IstiTCtMjP0dUVVTMCro+KsPkbz++vjrsMEWn\nw1BWhuPAAf/fiERyXKPRoi8WKrcaRUGjaMgz5QWud3llWoe7MzxGVKFk2z9xNJ8EgGqOvIs0UKQz\nPEjMGyX+QHc37w6cXHqjv/n8xuqUZYMbysv97b2LTkzJPSWScHistpDPbt1Rcox5vTs6usDeDhNP\n733tOMdXovmttDTOsb5Mm9WZtHvdu2ZPr3OvtF3K7Cdm83LVyxxqP0S3s5uujlrUo1vhN9lwR444\nWlv9Y8YXiG3c37wWuQpn5iohD9Xy7D9lwq/kuEZVVex79mDdvBmAXbXtuHW1FFiCkueOimuUxl6F\nbUgS9AV/03Ih11jdmPjwL+kMDxKTc0QczJb6LWGv7zT+gLV7UicyX/aM2HbwdHTQ7f0HJpGkGucR\nUcY3/9prsDqEuoBeEyYh5MBH4jjcVz2SwE/n/RQAj/cd8ub25Eknvri5R0KbEnhJ3frJrZz90tmc\n+MyJnPTimXztjYtp0QS9cn5fBrWidOrfL+9bfSL7GyIeuu63v5UJv5LjGtUa2JFx+0OLFIxaY6DT\n3jXiODY2ZZchzbilAKS9fDWqqkVjaEj4LrZ0hgcJi96CTtGxtaGHXNDcbwNgUpxc+UT0ykwJtWd+\nwKmoueRSf6lHiSSVuJuF3KB5zhz2NYkvg6PMRb077vLqcXvLdUoC6DQ6JmZPpFanw6YoPPVSbFWb\n4mHbaqHzrLVEjlE+otextGwsjYVBpbUfPhVUldLcQKhLpLhh/ejRaHMDpZ1lwq/keMVZJypM5l97\nLU2ddlAcqLgptAQlE+8R4Y/kjhsECxPMZS/7m6UONxrTEZ5McCipdIYHkel50zna2aPi3LkP+puZ\ndAZ960s+U3ds97d3z5yVsvtKJD7s+4SsoG7UKCobhbh6eXYYZ7jZKz+YXZoq04YV5008D4CnM9P5\nj/EWym96nT+s2d3HqP5hd4nY3VMn52ExKHx5y+lcsqzTf/80byiDvscKznJLF23feiJw4jfZ6IPU\nJ7YcbiUSE999B8Usdgr2zD8hYj+JZCTT9sILgFCUqGnuRtGKL4a5Ju+Xxa5GaD8CxXMHy8TEotH6\nm/McnSiKymOfVib2FgmdTdIvpudNx6W6aLIGBKWD42Pu1D9GTVNXyuxRdDpK/v53/+e2V5K/oiSR\nhOB1nHRFRRzuEF8UCy1hMqQbKqB4TiotG1ZcOvVSAO7PFZX7SpQ6Hlq7L6FfrnfXCn3nCv0NzHty\nHsteWMD2pi8BuPOdB/is5jDbDxxkU/Uh1p/2UMjYUzbcwp/KZ4acSzfqALjgocg6ohqLhfEvvej/\n3LF2bSJ+FYlkWNG14QsAVI+Hxg47GoPwIfxqEjWfiKO3nPGI4JdiAWSaQ+RAlBf3VuKKB+kMDyKz\nCsTqa69QCe/q8LnaT1nxpw9TalP6qaf420d/dRMemy1Kb4kksdR568lr09OpaRErhONzi0M7uZ1g\na5OrwlHQawOlkJ3AR8YbMOLgG39LnGD9N/72KYquHbun039uf9t+prh6ONw3HSS9/FS2f3c7M/MC\nDvBjSjv+1L737+KBS2JbxQpO+D189TWyEIfkuCN9qYihzf32t9lV246iEe/p4nTvs3L3G+I46YzB\nMC85pOXBiluYaReFfbY2r0vo9NIZHkROKBTbfFsaeiTReeOGAbS4Uy53Nu7ll/ztPXPn0fR/j6X0\n/hKJotdzpFusBEzI6+EM13gdOrkyHJXzJ54PwHqzkC7bY/oeX6l9JCHPE1VVcXlUtGm9tyqXdnpX\nbLJKYHVbSPWrZ1c9y60nBSQk54/zfqFZ9weWTxkVMn80pmwJJPnuO10qikiOLxr/+lcAdAUFNHU5\nUAxCRs2/MnzoM0CBzNGDZGGSOPVG5thFkq5VW4XNmTiZRekMDyJj0scAsK1hW+iFoFCJX+ueYefR\nxG4H9IVp6lSyLwpUe6n//e9Ten/JcUyQ2oDbLRyi0qweznC1V0li+nmpsmpYcuXsKwH4cVHAyfyp\n7mX2N8YfevXEepG8osvYCcDjR+v81y5q964U37Cj1ziAi6ZcxCvn9Q7BUny6qMBTUUozA2hMJsr/\n/W//Z0dNanTZJZKhhKLXex1C4TPkmnJFqFlLNZQsGlTbkoKioABjnC70eLjo4fUJm1o6w4NMWWYZ\nX9Z9iUftoZu59L8AuEL3Jqv+kvoKW8V3/IbJX2zwf66YOi1Kb4kkMRhKSjDPE8om2+r3oKpa9Bp9\naKd194pj3sQUWze8KMko8berzvuLv/23++/ot/bwG9trOfevH7PygY8ov+l1bn9VOMFGSzUZbg/z\n7Xa+19rOxe0dFLnd8L3Xo843Pmu8fzHgDzOWiZMbHqYoU6xiPx1Dprh5ViDkYt9ZX+3X7yORDHc0\naUKbu7Kuk6xsIZ9o0Vmg1ht2Wbp4sExLOpMdDjyWw2xLYKVe6QwPMguLFgJQ2dJju3HZTf6mhsER\nmNdmZJB35Q/9nw//9LpBsUNyfKCqKo6aGgwTxntP6IAo2+VBOyiS6Jy/9V6cY0VBnT/qH+Y+b7W4\nWHns02oq6zup77AHTmrseLTdzPbG8P2ipZWbm1rEtfJTwswSyt2n3g3Ak95wGNbdy7+uEhWmciyG\nmOya+OFaf9tZKxyCiqnTQn5kgQ7JSEJ1iDAB0wyhta0ogKpFQREVKKveFR0nj9AviJe/Sq63IJmi\na8XhSsy/b+kMDzJnjzsbgAtfuzD0QpCUSAGtdNoHR/e34Oc/97c73nmHzo9Sv0otOT5QvU6VxihW\nB7Xmg3gcPZQkfLGkuRNSadqw5b1vvudvz9fXcmeeUJd4+tOqmOfYW9fBhgPNlORY+NePTvKf15qr\nATjFaoNb6gMDZpwf07y+KpwARyacBkDZhzcAsH5/E4ea+9YR1hcGdFWrlq+g+8sve/WRBTokIwnb\nLlGl0bJA5BxVN3bhMe7zF/LiyCZxLBmh1WTHLeUUb9ERQ3oFk295MyHTSmd4kFlQGKU6zPJbADhH\nu579DZ2R+yURRVGY9Okn/s+HrrxyUOyQjHwcB0WcqGGcEIlXVT1mXY8QiW6vDOFIypJOIqMso7h4\nysX+z89lZuAGvq19N+YVlQ92C0f3xysmMr4gnTvOncF935rD/2fvvMOiuL4+/p0tsPReBFSKNBWN\nvfcSW4yxxJIY05smmvJLTNWYom+aiYkmmqaJ0WiMxoIl9i6KDVSaFBFEpEtn2Z33j7s7s8POsgss\nsMD9PI+PM7fMHmWZOXPvOd8zazBJXhmsaAfIrIH554Fus4Dpv9XZznFqTbGOmC1c2/FE0ypw6t6f\nbj32OHcsb8+HiRTt2lVnmygUSyRt1mwAgP2IEQCA+xXVkEsUkEmINCHuxgI2LoL8i1YFw2BAOVHP\ncLcxXL69rrTS/62WA6Oz1atU1YjjG7wIAPC+/E+kmiHppb7IXF3R7rPPuPO4sHAo79ypZQaFUne0\n1efk7byRnlcGqSILpSUewkHaeDjvbk1sXcvlvf7v4eNBH3PnKXI5npLux9VailvoknCX6AkPDSar\n9E8M8McjPfyQWHAMANAxQKPm4BEKTF1bp/CVIzOO6LUtHBUMAMgrqdLrE0OmU5VOS9ChQ+h08D94\nvEF2tvJ09NMplJaGqqSEC/vRoujaFeVV5IW0jM1CqGso6ShKB7xbd9Esu5mbIGNZMDYZAIBSM+yc\nU2fYAni6KxHG1pNY09EK3X2leZ1P56mPwPfrr7jzmyNH4c7id5rRIkproyotDQApuFFUXgWWZaAX\nM5yq0Zb0aSWVlZqIKZ2m4J2+5Pf1kLMHOkru4cdf1hktwpFfWoXtl4mOr7NOHK9KrUJ8cTr8lEow\nXR6ut10etvzLTkIoWe1f2IckBq08ZHpcs89XXwrOrfxIcp67ZierMukmlNn39OZRKC2BxN59BOfW\nISFgGAaZheUAdOTFMjRhQjJF0xnXHASPRTXDoMi6HJBUYsW+hlfXpM6wBTDOnwS6n8jQF5FmPcib\nYEnm9Sa1SQzHCRPgMmc2d17077/IfP2NZrSI0poo+HMTAEDm7gGWqQTDsBjUocYKxx1NPJxn5ya2\nruUzM3QmAGCNPdlO/UW6HC9tvIiHvz+FnOJKpOWWciWWtaw+yscW//m1LyI2RCBiQwTGbCOO64Dy\nCrPFJi4AKb8t+YaP8TVVE9lp4kTuOCw2RnRM/q+/NsA6CsUycH/1Fa4WQPb9CjAysmsc7BwMnF9L\nBhXebi7zmgapjD+0ScUfJqjPGIM6wxZAmGsYACAyRV+OiBlHMq7/Ui5EenLD334aiveHH8LtpRe5\n8/t799KQCYpZqEwiiipSF2d8dZiscJRW1nCGMqJJ5TmqJFFnpDpJuUvcSWhB9I0kXM0oQp9PD2H4\nl8fwxlZhNcxfTpFY3ve8D2CFGx+OkFNO4nkjKqsa/LOImhMFALhbVYRiRrgboJVwM4Xw+DiEx8eB\nkQvjzAN2/gsAqM6hK8OUlk14fBw8Xn4ZjCYeODG7GIyEJJPJJXLASyM3OHVdc5nYZKysIjtIbvIM\ns1yPOsMWAMMwiHCPQE55DkqVNWKDA4Zxh8cjNzaxZeJ4LlyITkf4LPXM/73VjNZQWgsyjTKAxMoK\nV++SN31bxpsfoKoGlGU0XrgB2MhsAADbHewBAJcULwr698RkwX9xJPwXRyJi6QGuPVm+R/R6U2Zs\nb7BNtnJbzA6brbHHGgAwsyf5uWuLezQERWgowDAou3zF+GAKxcJgVWS3xraf/g7MrbwyMDJSlMvX\nwRc4s4p0tAEN9v4D3wYA+DuQ4j41d7XqCnWGLQStxNrx28eFHToZoZnZpmVXNwVyHx8E7tkNACi/\neBHVublGZlAotWMdFAiJEyndOzzMEQAwNpxXBEBOHPmbxgvXm2OPHuOOteuv/SXiGdnFFSQpZXKw\nNSLt7fT6r6amg+lgnhCJOWFzAAD/BZLYyLdDssxyXS22vXujOisL1QUFZr0uhWJOKpOTERcWjrs6\nCeuViSR2XrfIjBY1ywIS4gRaS62BUo2PYGXb+MY2M/ahJDSqypr8m7WJvvWFOsMWwrgAEjf8d+Lf\nBsdMkEY1m96wGNad+LfPpMFDmtESSmug9MxZqItIRaHEEiKXFe7pxw+4c5n87durqU1rNdjK+Ydk\nuozE3f1l9QnSFHOQppiDV6TCld60FROxKpOXZrsy9wpi58Uidl4sJEuLzBau0tGxIwDgZDVxVl1v\n7ef6TNEbNobjRLLYULjV8P2VQmluUiaTZNSC3//g4uVLjpMFMrshQ/XGn03Og4szcQY9bDz0+ls1\nMpLQmyxXAVBi8venax9vBOoMWwjuNu5wsHJAdHY0KlWVwk6NiH03SSrOnTosMrv56HScX8mOCwtH\nZXJyM1pDaamoK4Xf+dvKkwAAR4VOJbJdr5C/fXqAUn8W9lwIAJjU3kev7w35Nhy2egOfTOmKw28M\nA9JOIVPC6xHrxh2bE4ZhMNBnIAqq7qOSAXD9X7w6krxs79CoWTQEp6lTAfCOBYViiUisrbljrbpO\nySlS6EpbZEOXpHslULNkgczXgSiowMq+cY20QMLsGuYIA9QZtihmhMwAAJy7c07YMWkld9jzlGUV\nvZB7eQrOUyZOaiZLKC2ZyiRhRTQ7ljhCAU4B+oNtXJrCpFbLU12e4o7ZhbF6/UGSLDy+vxuCVvsC\n6yfiOW/yOz7/gfmNape2NP1F/z5AVTHmdncAAGw0R6a4lRUkDg4ov3QJKs3uA4ViSaiKi6Eu43dB\nSo4cBQBUXLsOWbt2YKTCF9H8UqLDXYYMKKQKyFWaXePwyU1jsAXwaWfiD0ndjzX4WtQZtiCmh5CS\nzAuOLBB26Dz8XdkixGZY1s085HyU4LzkhL5EHIVSG4yU3IpcnyKOWuF9h+Y0p1Wju7r7edJmYGkR\n+fOUfllTNYDbGnWGeV3mNapdI9qTilr7XIjz7ZG+F4/29sO94kpUKBuWHAMA6mISU5g4aHCDr0Wh\nmJuif3cCADzfIgnpJSdOoLqgAGxFBWy66ScNl2t/J1gZlGolkJ9Czj1CmsReS2DcA88DANJtK2CH\ncpRV1T+MlDrDFkR7Bz5ZSKlWGhy37nAM1EbE8psSqaMjwuPjuPPbz79gsj4ohQIAVelEF9O2T2+w\nLAuJIhOqinb6A/1pbLo5iHyEyDhujNuIKpWm0lvHgcDzmjACTWjWZkd+y1WrRNFYBDoFAgD+LYgl\nZQTi9sDPhcQ4J2Y3LDkGAAJ2EWcD1ZaTd0GhaCk5SqoxusyaCZmHB8qiolC4bRsAwH7EcL3xlRpn\n2M0lj8izFqSRjnbdm8Jci8BKzhcXeVX+F27eK6n3tagzbGEEu5BSpLtu7hJ26MQBeSduQtB7e5vS\nLJMIu8ZvucaH06IIFNNRlxBnx8rfH0oVC6jlAKPjtFRptg9psQ2z0MGxA3fca2MvrphGxMG5ZJV4\nxnqUv3+X0xZePWp1o9ukW5r+jp0LkHIUAwPJ5zc0OQYAFCH8illp1PkGX49CMRcsy6L0zFnIPDwg\nsbWF3RDy0p/z1dcAAMfx4/XmaMMkHKxtUFFdAcRsIR323npjWzNj3UkOSZXtHRy8kV3v61Bn2ML4\nacxPAIDN8ZuFHS/xD4P35JvAssAz6y/gpxMpTWlerTAymUALkcoYUUylIiEBACBzd0dltQoSxR0E\nOgbzAwpI8Qe4+De9ca2Uvyb+JdqudYz7/tmXaxvi2zQr8trS9Df8yWf3tKn/w00MuR9RJ0mf17gh\nHxRKXahKIc9xG02SnPsLz3N9cj8/QWKdlpRcUpPgTvlNhLiEADc0Ox+uInkWrZj5g5YCAKps7uC7\nIzfxbz0TbqkzbGG42bjB194XCQUJwlAJpw6CcTJU43D8PXy6N86iQhL8Vn/PHScNGNiMllBaFJqv\nsMTeHtn3KwBWColEJ070niYMxz1Yfy6lXnRx74LvRn5ndFy4a7hg1bYx0eoN77ImjyZJLO+wmyM0\nLOCfbdwxq1bXMpJCaTpSHiJJb+oS4uBadezI9dkN6C86J7OAVJ6TMlKhryBv3HAmS8PfyR8AcNHG\nCu4owqIt9SuuQ51hC2RiIBGTvph9kW+UCH9USXP5B0PAO3sbFDhuTqT29vD99lvuPC4sHHFh4Rbl\nsFMsj/IrVyDzaQdGIkFxZQUYSTVCXcL5AVpn2KtL8xjYShnefjinGxw7jw9z6uTcCZ8N/gyx82Kx\n9aGtTWaPl50X7OR2uFyaThri9uD9ieR7cPJmwwv7SDVFXQCg7DwNlaBYBhJbEhvvs2I51xZ06BAc\nxo+D1zvviM759nASwFShmq1GZ7e2Gz4mYSTwtXJGopUc78lJld7x356s+3XMbRil4Tzo/yAAYHti\njVKnb/LyU4xEhheGBXLnn0bGwVJwfHAsHMaPE7TFh3cmTjFdjaGIwMhkgJK80GWVEKdHpqskdPJL\n8reDSFIdxWxoneIdD+/AQ0EPNYsNA30GoriqGJWOfkB+Mkb6ky3iTVENl1gDAI/XXgMAZH+23MhI\nCqXxUVdWQl1SAuuwMMjc3Lh2Kz9f+K1cyTnKYjAykmvRVDs3lkof34GolEgwQXYaAIu4rPvIK6k0\nOk8X6gxbIJ2cicbqvrR9whVVe50KMwc/xDvj+ZWzP6PSseaYUKu1OfH94gvR9vjOXWgsMUWPyqQk\n2DxAyizH52QAAPzsO+oPbOM3/bZAdw+SDX+1ilTWCjjzNgDgwHXzxA+7PvUkAL7MLYXSnJSeJvlA\nTpMmmjynvIqEkEnk5FkaYN++tuGtnk6alfEkuRXSFI/BFhXo9cmhOl2DOsMWiIThfyzJhQYquuWT\n9vPvjeKaPt+fgC8OxDeqbabCyGQIj49DWMxVvb6kAQMRFxYuMovSFmFZFuqSEigzSeJDSh5xgvyc\nnWqbRmml9PbqDQD4JpgU4WDidnN9VdUN31mSWPFVDatu367T3JITJ7jQr+SJk6CuqGiwPZS2TfER\nIqnmMHasyXOy75Pv3dQ+5B7pqHXlvCPMa1wLIdyV+BMXFWQX6YaCJOKm55leyp06wxbKzNCZAIBV\nl1cJO95K5Y9TjsPTQYHXRvOSQauPJltUfC5jZYXw+DiBDrGWO4vFY6EobYsqTQnvihs3AAB5VSRe\ntItHEBlQWX/tSErLI8SV3M9iS9K5NgdrEjPTEB1RAZocjOQxpjsgZZcv4/bzL3DnVcnJSHigB5RZ\nWeaxidImKTlGtL2tOnQwMpInv0xTfY69AwDwr9S8lPV51rzGtRC6uncFAHzp5oI/Ndroq+XfYMxK\n08uvU2fYQnmz95sAgKO3jwo7bF35498nA6pqLBwtzLAPeGcvqlWWF5sbHh+HkAt80krRv/8idfqM\nZrSIYgmwmu+q8+xZAIDUfFJh0Uerl1mmSZwKNX0bkdJykUvk3LH2tf6PR0gs5b9X6iebVJPgk3yV\nTEOLB6mPzkRcWDjurfwG1Tk5uDV7jui4myNGci9yFEpdUJeXQ5WbC9u+fY0P1oiu274AACAASURB\nVEGrJOGgIC+JLkpyDs+2mWBsK+fjqle4uUIJYKL0PCTVdGW4xaOQ8ZVV1GwNx3b+Bf54JYmVOfT6\nMMGQ/suP4FZeaaPZV1+kDg4I3MNve1Zcu4a4sHDk/fxzM1pFaU6Ud4iD46jZJixliOYwd4PLIefo\nMqXJbaM0Dw8HPQwAyNOU6e4W9T8AwDoz6arrJipVpaXp9avLylARE0NsWLsWSUOGcn1uL76A8Pg4\nOE7kX85Sp04zi12UtoVW0aQuIRIAX3DjbkUKHK0cIYvXFOFy8jWrfS2Jcf580v4RWyIvF6cJlzAF\n6gy3ALYkbBE26NYeL8kGbp1BJ097pK2YiM7tHAEAuSWVGPbFsaYzsg5Yd+qE4DPCilL3vvwKcWHh\nUJeZ/iZHaR1UxF4DQApuqNUsYJMkHPCXZkWuyvJe7iiNwwCfAQCA6AeXAAAkUhnXdzndPAm4Uo1D\nnDJ+gl5fxqJFonMYuRyemj7fr74U9NE8CEpdKT5Kdn4NaQkbokATJiGXMahUVQLXd5AOW3ez2teS\n+GLYF9j7CHkpeNPLw8hofagzbMF80P8DAMCJjBP6nUsK+ePfxgM75wPfPoDIp0MEw/wXR+Lp9Rdg\nachcXRF0SD/bM6Fnr2awhtKc5K5ZAwCQ+/oiTWw3w0PjZASNaEKrKM1JD09SYjWWUQISGVCQxvV9\nuPO6WT4jcDdf8r7gL764R/mVKyg9QXRKa760h8XGCM5r5kIk9KubU0Np2xQfJM9AK3//Os37/ghR\njjqXdRq2Mh3pNZmVgRltg/aOvKrGKpe6JWBTZ9iC0ep8nso8pd/JMMDQt/jzyxuBglQwX4Vg1VgH\nwdAj8fdwLbPI4uKIrfx8RZPrsj8Xl2WjtG4ktrZIzS2FWukEP9tQvkNbaMNZRGqN0irxtiPx4lfu\nXQH8BwOlOXh1GHnQ1VU/1BAyVz7/4u7SjzgN9LRZswVjtPcosSRgQOgQq4uKUHLqtOg4CkWX6oIC\nqPLyYDdwIBip1PgE3bk61RgLKqlUqS6hLuTZ8ZOzE9T2XibPo86wBWMjM1JWcdjbos2TTzyEtOXC\nrb9J351Cp/f2mcs0s6P7QMn/9Veoy8ub0RpKU6Lo0gUSTWWwcqUKEnkRunt04wfkJpLEEKox3GaQ\nMBJ0cOiAW8W3gGBShOj14Bw81N0Hd4oqzJYPoXvfub9nD9Sl/HX9vjdeqlqLroTk7Wefher+fbPY\nR2m9ZH/6GQDA8aH6FrchDrFgZZiCvx/6mzve88iXtYwUQp1hC2dyEKlZnn4/Xb9TKgOm/Cg+MepH\nXHhvtF7z0l3X4b84Ev6LI0l8pgUREs2HcyT06NmMllCakorr12HThaz+JucSjWEJo/PdvHOJOMSU\nNkW4WziKKovABmrCY+L3YFwXsmL814W66QPXhuu8eQCAkpOnkPP9agCAxMEBDqP175+GYKys4L+F\nD7VI7NsPbBWJ61Rm30Py+AmICwtvkzJsWUuWctrM9/dZ7oJMU6K8exf39+wBADiMGVOva3TwJBU7\nZ4U+ShqGvGEW21o6DMPgqa5PAQD+SfzH5HnUGbZwtBmSxzMM6OU9MBto112/ff9ieDhYI22FUI5q\n/Zk07vj3s2mwJKT29rAO5mXiqvPymtEaSlOgzCZVxUrPnAEAFFSSn3kPL813Wit7pVY2uW2U5iXI\nmehMJ8k1j6mbh9CrowsA4IdjBooR1QPPxWSH7f7u3cj/7TcAQPCxo7VNEcWme3e0+/RT7jzt8bkA\ngJvDhqEqlejD3xwxEpWpqaLzWyMsy6JwC58Anvna60gWSVhsa9wczuc/SO3t6jRXG+7o7EBKMYfL\nnUmHjgJVW+fVHq8CAC7du2TyHOoMWzh9vEkVput5tSSNvCCSYAcAaSTWOG3FRO6PLkt334D/4kiz\n2GkudJNakgYNNjq+5PRpbtVB90/uDz80ppkUM6HKzwcArhTz9WwiIu9grbmxKzXqIsZChiitDm0S\n3cnMU4B3N6AwHe625n9kMSLhNxK7ujkoWpynTeWOK2JiUBGvXxFUTL2iNaGuqODuw3c/+kivvyo1\nFcp795rBMstAeecOd+ynSR6uC0mawjPlDv8CAOJj/iQd2dcablwrQSaRYbz/+DrNoc6whaPVG45M\nMeK0LorVb1uvX6Tg+P+G67Xti82yqKp1wadOcsfaFUMxKhITcfsZ8Yo7Od+uws3R9dt+ojQd2Z8t\nBwBInIgk4H0lWRn2c/AjA/I1q2gj329y2yjNS3cPsjtwNusscI/E9sr+e5frLyo3326Bx+uvm+1a\n4fFxkLoTiavUKY9w7e11tNRLTp7Um9dQkidN4pzQW0/MM/v1TSXhgR7cceFfZFXYtk8fBO7ln2E3\nhw7Tm9dW0H0uOYw0XSGHZVkkZRfjbDK5R3rZkuSwUfaaxOJuM81nZCtgYa+FYGB6ngl1hlsQesU3\ndHE2rZRjRzc7vRXil/68hOOJOQ0xzazI3HmtxPSnnxEdo66sROrkh2u9jjIjA0U7d5rVNop5kTqT\nxDmnySQ2PqecfA+drDWyOHc1L3lenZvcNkrzYiOzgaetJ67euwoMXEAaL/yEb2aSXYT1p9PM9lnu\nzz/HHbs991wtI03D9/P/E5w7z54F+8GDuPPbzz3f4M/QpeDvv1F1kw8dKTt/HnFh4VzcsrlJf/pp\nzvHWhn3cnr/AoNay97KPYB0YiKD/DnBtSUOGQlVU1Cj2WTQa1RLdXVBTOJuchzErT2DZHlLtMMSN\nPPNDr24nA8TCJdswvva+iJkXY3ygBuoMtyBSCo1UX3rwM/22a+IB5CffGoEvZ/C/PIu2XGmIaWYn\n9CpvT3WBvnRMQvcHuGPvpUsRdOgQQqKjEXI+CiHR0VzfnbcXg1XSeFNLRWJPZAAdhg8HAJSqyPap\nt62mFPO/L5K/7Tyb2jSKBdDTsycqVBWo6Pci1zapWzsAwJ6YO4am1YvQK5cRfPYMPN9o+Cqx3cCB\nXCwyALRbQoqHBPy7g2u7/99/Df4cAGDVatz94EPRvvhG0G3P/2MjSs+c5c5TNMmBJYcPc21SFxd4\nvbOYO7cOCAAAWHXgF22qc3KQ2K9/m9rB040X182PqXVOtQr+iyMx5+coQXtOZSYcrRzBKQvTe2SD\noM5wC+C3B0lSx56UPbUPDBql37ZNvBxhe1dbTO/lhwhfsgJXWGZZDqPE2houjz0GAEgaMFDQl7/x\nT+7Yf+sWuMyaCSs/X0jt7SB1dITU3k4gmZQ2c1bTGE2pM1WpqYBUComdHVRqFmBIhrRcKhcOdKEa\nw20Rbc7E4ZyLXJtMwsDZVo4cM+kNa5EoFJC5uJjtem5PPqmnT6wIC+OOM19daJbPyf7kE+449PIl\ngSoPqqvNGgJXceMGsnWSBA0RfOY0XOfNQ1jMVYTF3RD0hd24DqkHv/unzMhAXFg4MhaKV/1rTWR9\nQApp2fY3vTjLtosZou0qtQpKtRLwH0IK07TxghsNhTrDLYCeXkRmLD5fPxlDgGeYeHu+4RXl3a/w\nSWof7rSsAHz3l1/ijqtzyPY5q1ZzN39GLodNt26icwHAd9W3AMgNvPyaeapWmZP8jX/iztviWtFt\nharMDFh1JI5uam4JJPJCOMq8+QGhmmQjaweR2ZTWzuiORN4sOpvf7cGVTZjTtwMKy5SIySg0MNNy\n0XUO48LCoczmk8nUlZVc7G9t+RJaKlNSULBpMwDA/ZUFkNjYQGpvL3DA48M7I+O113Bz5CgSOqFS\n1dv21KnTuGOxIiRhsTEIj4/jkhIZKyu9BEVGIkGISMx08YEDKPjrL1SmpCC+W3fEhYUj883/1dtW\nS6Q8mrzUdfj5J9H+7ZcyMGjFEVRV8yGRB65nc8e6yfCZJZkIdw0H0k4CPj3ELkepA9QZbgFIGAl8\n7Hxw+k49Kxut6gFUG15F6d6eSLP8fvYWdl0179ZjQ5C5uXHHSUOGQl1RgfjOXbi2mqVRa+I4dix3\nnDZ9OtG53L+/1jnq0lLkfPd9oycUViQkIvuTT1C0cxfufiYS3tIGYFkWqpxcWHfqBABIySkFI60A\no1kdBgCknQbkVFS+reKqcIWUkSIqKwrorqkMl3IUw0PJlvDe2LvNaF39YBgGLk/M5c5vDhuG1Jkz\nERcWjoTuD3Cxv+lPP4PbCxYYvA7LskiZwOd/eMyfL+iX+/lxx8X79nMqBvFdutbr/pazejV3rHXo\nw+PjEBZ3A2E3riMs7gYYudzQdD3C4+P0yl3fXfoRUiZM5GKd7+/ZI1AJuvel6UUULI3Sc+e4Y0Ym\nEx3z+taryCwsR3o+X/wlLZcc7311iGBsUWURqlSamPCMC6A0DOoMtxDulJIb2cFbB+t3gU8MxxMt\nfySCO3518+X6Xb+REBTi0MlSNlWo3GXOHMF55qLXEBcWLqg0pYVlWST06o3c1asR36UrKpMbpmVa\nfPgwkXn7SX8VIPVhPvmv4Pc/GvQ5LZUKzWq9NnYuv7QKjDwfAU5B/KDKIl5ejdImCXUNxe3i22Af\nWkUasmLQzY+Edx2Jz65lpuXi9dZbgvOKq+Iv9iWHDpMY3bNn9XIfCv7g7xvWISF6c4MOGH7xv7ts\nWV3MhTIrC7nffc+d6672MgwDRiIRlagzhszVFZ0OH4LdsKEmjc/7+ZcWK5uZ8z35/7MfOVK0/3Y+\nf5/TXQ1O17R39nEUjM+ryEOYcydzm9lmoc5wC2FaMNme2hS3qfaBU+p+o6j5S/b5fiPhGE2I1N5e\ntN3vu1Umzff+8AM4TZmi157Qq7eeNnF8uI5igVqNlIlku7Lk5Kk62Zz7ww8kBm4+WdXJ+eprxIWF\nQ1VCHHCxVZnKFCPJka2QsgvkRcde8yBMyysDIy2HTHtXUtd/O5fSehjuNxwAcL0wEfAIB3IToGAr\nMCrME4nZJbhfYVn5DqbAyGQIuxYL72X6OrxB/x0QFO/I/vRTpD/1NOIjhCFhWllCu6FDELhLXzWH\nkUoReuUyAnZsR8CunQg6yCfsFW7+S2+8Ie7v34+bI3gHTvc65kDu64sOa9ciaD9fnS7g3x0I3LdX\ndHzOt6vIKvE335jVjsZGGyJhqMz3sQQ+XObqbRL+c+9+hehY7Yowm3eTNHh2ER1HMR3qDLcQPhxA\nsoUFsXNiPDAHWFIIvCJSeeXS7wan/fPSAO54zbFki9Id1kvAqHFuDJ8VyxF69Qo6bjbyImGA2889\nh+zly5H+7HO49cQ80ZKqynv3UJWRgbguXZHzrbijnti7N4oPHUL5ZX713etdopuqu93ZVqhKSwMA\nWIeGkvPqajCMGr28NUohxZot8GGLRWZT2goDfUkCbfTdaMCDfFewpj8iNKvD0Wn5zWVag2BkMrg8\n+ihCL5N7te2A/giLjYFVhw5wnjYVoRf17/XZy1fotbVfu9bgZ0gUCijCw6EICYFV+/YIvcQnIpZG\nnTdqY3nsNWQueo07D9i5E1bt2xudVx+s/P0Rdi0WYbExUISFwTogAGFxN4hKUHQ0Oh0XVmHN+3Et\nymNF9PUtEFUhH9vOSMTdrhtZ97lj7Qveec13e3ioh2Ds/SoyNtTalTQEm146nCIOdYZbCBKG/1Hd\nyDPiDDIMYOuq377rFYNTenV0RcIn47jzIZ/XvRxpY8EwDMJiYxB66SKJS6vHdpzE2hq2PXogLO6G\n6ENGl5Coc3pj8jf8jtJTp1B2/jxujhiJuLBwVCQkoCojA7cXLMDNocOQPHoMUCM5paYDnrHgFdya\nQ1Qy/Ldugf2I4VwfW12NtkT55ctgbG0hsbYGAJxMSRcOuKvZOjaUGEppE4S5kp//qTungL4aDeDC\ndE5i7en1RhYILByJjQ3C4+PQ4ddfBTG3EjuiihNyjpcxy9+wAaxKhbvLPuba6nI/lNjy8ffp8+ah\n+Ngxg2OV9+4hbcYM7lzm0w6KUP1wDHPCyGSC/wOGYYhKkL0d5F6eCI25KhifNuNRlJ6LqnkZiyN1\nOvl/dHn8cYNjNp+/zR2fS8nHtcwibI0mShJfTBdqCBdWaJzrak3McHdhOCCl7lBnuAXhbkPkaHYk\n7TAyEoCNC/BmEvBGgrB9/SSDU6xlUrw3gYimZxSUo/cnh7Bgk+m1vRsTRi6HxNa2Xo6w4DoMA4md\nHTodPw6PRYvgvXQJ7IcNg3VwMFweewz+W7dA6uQEiZ0d/P/eKkh0qUnqw1OQPHoMSg4d1utzmTsX\nHdb/BtsePdBxo3hMsCIiQrDK0pb0NgGgMilJ8O/PLiF60r72vqQhXZNwQsXk2zTWUmu4KlxxI/cG\n4M+r3wR58CFUxS0wVKImhu5tUmdnBJ/llSXiu3RFwSbykm1q7oQuoVf4namMF19Ceo0CIKriYmS8\nulCvSlynAwfQ3EisrBCwcydcn3ySa0t/8kmw6loKUjUzLMtCmUGcWoex4j+vu0X64RAbz91CTEYh\nbK2k8HCwFvQVK4sBAD7XNYU7qPRkg6HOcAti/zSSEHE266yRkRrsPQEHb2HIRNpJ4OYhg1PmDuB/\nqXJLKrEnRj8koDUg9/KE+4svwGXWLLRf+yMCd++C9wfvC6TabCIi4P3uuwg5dxaBkXvgt2YN3F56\n0eA1O278A95LlyL47Bl4v/cu7DRakra9e+utNHt/9BH38NOWaa2+e7fNrA5X55PtP5vuvKNboSZt\n1lLNjf+0JibQ2b8pTaNYIOFu4ShWFnPbwwDAZPGFeab/YOI9sYUic3FBx036YV6+39Y9blaiUMB5\nJl+6t/TkScSFhSNx8BCoKyqQ2KcvinUKgtj06oWwG9frpBTRmChCQ+C1+G1BjHHy+PHNaFHtFO/j\n7bTr21d0zKbz/K7Y/00jCe0sS/T/gz3182ZSi0jxDjttOKPcxlzmtlmoM9yCsJZaI8ApALfu30Jx\nVbHpE92CgHd1nNqN0wCleGC+Qi5F6vIJSPlsAtfmvzhSdGxbQersDOugIDiMHAHPhQsRfPYMfHQk\nfnz+bwXCrsXCtndvuMyaKSrcL7GzQ+iVywi9chlB/x2Ay8xHuT77wYMgcSRJjGmaEIrWTqlGZ9RW\n83AorayGiiHfST8HP+FgAzF2lLbDmA5kRS0uLw6Ys5U0rhuOZQ+TxKGE7DrcD1sotj17wEOnOl6n\no0cMxp8ao91HS9FhwwZBmyo3V6DYo8X/z431/pzGxMrfH17vvw8AUN5KNzK6+ch8/Q0AgP/fWw2O\n+e10KhwUMqStmIiZfUiVvi3RJGxiWi8/vfE5ZUR33981HJDSYhvmwPK+4ZRamR1GtDYHbh6ISlUd\nKjBZ2QJP62xzferFxxvVgGEYSCQMumsSVADg5r2SetnbGpG5uMBp0kSEXb+G4DOn4fTwwwZ1I3WR\nKBSQKBSCkqRa2mmyyitiYix6y89c5P38CwDAbhBJjrpTWA6JVS4AwN5KXEGE0nbp5kF2bK7lXgMC\n+O37mX34MJvKahWOJtzD72fTsPJgIt78+6pArqo14PbsswiJOoeQC+chb9euQdey69eXS94TI/js\nGYRdt6xCTDVxeYyPlVXdv1/LyOah+Aife2MTESE6hmVZFFdUw9tRIdqvkEv12oqqigAAbrnJgGe4\nGSylUGe4hTE9eDp33Htjb5zIOAE1a6Lz1KE/0Ekn6/QTD6AWx2vnAj4+b+zK48gvFXee2yqMVAqZ\nq0iiYj1wHDcOMm9Sea3gz/qpXrQkKpOSAIBbRU/ILgYjISvDXrZezWYXxTLxd/QHACQWJAJyBaAg\nL+rWZbwc1ZKd1/HUbxfw4c7r+PZwErZdzLCoRGBzwDAMpE5OkDqYpyKjxMYG/tu2QeruLmjvdOI4\nZC4uYKT6jpglwTAM7IeRl6PEvv30tJibE3VVFTJeftnouDPJeQCACRH8y810ndXgzu0c9ebcLLgJ\nuUQOpqoY8Oys10+pO9QZbmHIpcK4rfmH56P7792RUSxev1yPx/8B3HSEupfpb+nrcu6dUXhyoD/U\nLNDz44P47nBSXU2mmEjAju0AiK5oa0ZMUznxbjGsPY4AAGxltoBK81ALM5zwSWk7yKVyyBgZzt/V\nyIGNXkr+/joM0e+TF/ydV8SrZ/ovjkSFkmpWG8KmaxeEnDqJTsePwfOttxAacxVyT8NFmiwNXa3m\n+IhuKNq1qxmt4UnoxudD1FTB0GVTFAnxeKg77wx/+khXLBwVjG0vDkAXH31nOD4/Hg5yzQ6anYde\nP6XuUGe4BXJi5gm9tvHbx6O8uty0CyyoIUV023ApR28nBZ4a5M+df3Uw0bTPoNQZsVjj1oi2JHb7\ntT/ybRV84iDDMEAF2QZE+35NahvFcunm0Q255blkJ6zrNK7d3d4aj/Twhb3CcKjSsj110yZvi8i9\nvOD29FOQWLWsGFS5l3An6c5bb0N59y7UlZUWkZDsMGZMrf+ncXdJeEd7V172zlomxWtjQtDb31VP\nZUSpUqKgsgDB0CyM3RWvXkipG9QZboG4KFwQOy+WK8Shpe+ffRGVFQWVscpdDAN8qCNU/0vtgt0d\n3ezw6kh+NbmtJ9Q1Jg5jyM9CrFx0a0Fb/cpuKF+CNTazCEy1O7ztSKgISjTlSG2cm9o8ioUy0IfE\nlycWJHJhEgCA4mysnPkALrw3GmkrJnJ/4j/mddM3RaVj7fGGlVenWC6dTggLctwcPgIJ3R9A0qDB\nUFc1fXifMpsvp1xbtdTyKhVSckoxq097WMtMC0m5W0qKEQ1RaxxsD6rDbg6oM9yCmREyA+/3e1/Q\n9ux/z+KBPx4wPlkiBab9wp/f0C/nqcsro4IFAf47Lmfg9S1XUFhG44jNie0AUgmw+JBh+buWDFtV\nheockgmtu+JRUlENBhJ42mq2Z+9qKks5+DS1iRQLpV87sktw9HaNOOAND4mOV8ilGBjkxp0v3xeP\ni7daZrU6Su3IPT0FxUm0qIqKBOEKTYVYpUAxtInpPs6mS6MdyzgGAGjvolmg6m88LpliHOoMt3Bm\nhs1E7LxYbtVEywsHXzA+OYJPxsPWJ4Ayww8KuVSCc++O4s5f23IV2y9n4oFlB+tsM8UwThOIpF1R\nZOtcfS+/Kh47V1yhhFp2D24KjfOyQ/P9pQU3KBoi3Ek2/rHbx0jDvD3k79wE8QkANj3XH4de53cg\nprVyPeK2jNTZGeHxcWj/y896fckTJzVZyERp1HkUa0LBQi7UXvL6vxtklVf3pa02difvxucXPgcA\n9Coi6jtwpAsG5oA6w62EtWPWYmHPhdz5mTtncPz28VpmaPgglz/+PMDo8KRPx+PwG8MglfCrellF\nJsYqU4widXYGo1Cg9Oy55jalUbg19wkAEFTlY1kWdzTfIW2VRQ5b0x4SlNaPVCKFr70vEvI1zm/A\nEL4zy3DcZCdPB5xZPJI7f2PrVajUbGOZSWlm7AcNQsj5KPh9/x3XVpWcjOQHx9UyyzxUFxQgfd48\n7tyY6sd3R24CAHr7G1cl+ir6K7x76l3u3ImRAQpnQGoZxVBaOtQZbkU8G/EsPhv8GXe+4MgCRGyI\nQHZptuFJUjkwazN/fr/2inNyqQRBHvbY+sIArm3WutbpuDUXjuPGAUolqm7fNj64haJbea5cqQI0\nsmoeNprMaEc/gJHQghsUAYN8BkHFqniHWMvaIeITNPg422BwJ/Ki9c+lDCTda/1FOtoyUkdHOIwe\nLSg9rczMBMs2zksQq1ZDmX0PSQP4HdpOh2sPdatWma4nr1KrsP76emFj3C6gorAuZlJqgT5pWhkP\nBenHz43eNhr3dPQ49Qjjq83h6zBSB9IIvTryyge38srq9ItNqR2nyeRnmPeT/nZfS4ZV8YmduqVd\nYzOKwMhI7JyTtSYx6n4GYKp+NqXNMLnTZADAgTRNAaGXzpg8d+Oz/fDLvN4AgHHfnKT5Dm0AiUIB\ntxf4kMH48M5gjSTUqSsqag2pYFUqlMfGoiIuDhVxcbh/4D/Ed+6Cm8P4YjAdfvsVcl/fWj/nSHwt\nz+QanMsSLjhFPx5tYCSlvlBnuBVyee5lvbZRf4/CWyfeQpXKwI3gTR394F/GmvQ5Vz4cwx0//ksU\ntlxIb7Q377aENomucKvh8p0tkZITRBLQfvQoQXtsZhEkViSpzsvWy2CpcAqlmzupRHcoXbPq5tWF\n70w7bXT+kGAPPNiFSHHRfIe2gedri2A/ir/nxHfrjoq4OJSeOYOyy5dRHnsNxYcOoeTkKZRdvoyE\nB3ogvmsEWJUKrEoFdaWw0mt8l65Im/EoUh+ZitRHpiJz4UJBv/fSJbAbMADGeHcHSRLe/vJAIyOB\nFw+9CAD47cHfEDsvFtYSjZKEf+07IhTTMV5DltLikElk2DppK1ZeXImzWXzCyL7UfdiXug+x82L1\nJ9nriKxnnAcKbwPO7fXH6eBsy2snnkvJx7mUfAwIdEcHN9taZlGMwTAM7EeNQsnhw6jKyICVn35t\n+pZIxksk69lr8TvC9oJyMAwpsuHn4MfLqg19q0nto1g+DMMg0CkQKUUpUKlVkEqkgMwGqC4H1k8A\nlhbVOt9KJsH/HgzFgevkO3Y7v0yg70ppnfh9twrxnfkXp9RHphqdE9+lK+yHD0fJsWMIi7sBhmGQ\ntWRprXMCdu2EIiTE6LVZlkVuCVmY6u5nunxkb2+yswGlJk/HxwTlKIpJ0JXhVkq4WzjWjV2HH0b/\noNcXsSFCvITzezqxxd90NelzUj6bIDhftud6neykiOM8gyh9lBw3IQmyBaBbJtXKT7h9GJtZBAdH\nksjpZO0E5Gp2KbxomVGKPr28egEA1sWsIw1vp/Kdd64Ynd/Jk09qam3lminiMBKJqPSaMUqOHQNA\nwiviwsJRuGUL1+f27DMAAKvAQASfOY3w+DiTHGEACHhnL3esm4wOkOdzxIYI7lz7rNaWJAcApGv+\nLeU0ZthcUGe4lTPYdzBi58Xi57HC+NPuv3fHn3F/CgfLFbxcEQBcMB6zKqnxi3wo7h5KKpu/6k9L\nR7vNdn9P65BYy/78CwCA3EdfBqiyWgWAfI88bT2BLE2Yj0d4U5lHaUGEGvEfPgAAIABJREFUu5Hv\nxZqra0iDXEejdd0wk3IePpjEv2itOpwENVWXaPVopdccxhoOA7TuHA5F925GrxUSHQ3PN99EeHwc\ngvZGQuZqXA1CC7nfEeaPCBL0/XrtV+5Y6wRri2w86P8gPzBe85y+F2fy51Jqx6gzzDDMrwzD3GMY\n5ppOmyvDMAcZhknS/N026si2YPq164ftk7cL2lacX4FHdz8qHKgrVxT5BpBnvGqTtuLTy8PJL3bX\nJQcabG9bR2JtDZmXF8ovX7aIkqINpeAPIqXm9f57en0pOaVQ2GfAWmoNCSMBMi6SDo/QpjSR0kKY\nHszroytVmh2HYB0H5yNnYKkTcHGDwWs8M5iXkfz6YCI6L9lvdjsplonfqm8RHh8n+idw+3YEbNmC\n8Pg4SD3cRed3WP8bpPZ29f788d+c5I7nDfQX9K28uJI7jssjju7BWyS2PdRV5354R7NgMOHzettB\nEWLKyvB6ADUF+hYDOMyybDCAw5pzioUT7BKM2HmxGOrHi9DH5cdhR9IO4cDFOpJe3/U0+frzR/Al\nm1fsi6+3nRSC4/jxAICy87ULt1s6qmJexsph5EhBH8uyKKtSwU5uA4VMU+EwL4noCzPCXQcKBSBx\nwzNDZwIAorM1WfWz/9IfuPtV4hQb4ORbI7jjCqWaJv9SBIScPCnqMNv171/va7Isi5TcUgDAjF5+\n8HRQCPoZ8Pe8WZGzAACH0w8DAIa3H84P1DrDtuIOO6XuGHWGWZY9AaBmabKHAWhfuzcAmGJmuyiN\nyOpRq3Fi5gnu/MMzHyK3XKf4hsIReEZHI3Hv/0y6rp01n4/543HjK8qU2nF+dAYAIP3pZ5rZkoZx\nTxMiIcadIqIcUcymIchJs2WYlwx40nhhimFmh80GwK+aQSIFnjQQUmTAIa6ZOJeYXWI2+ygUMfJL\neTWnpZO7CPpyy3PBgsX4gPGC9oT8BPjZ+0EuESmu4dKxUexsi9Q3ZtiLZVltdYa7ALzMZA+liXBR\nuGD/NH5rcMTWEcgpy+EHtO9DsrQB4Pw6k69781P+F9l/cSSGfUETVOqLVYDxioAtgcK//wYAeC9d\nqtd39TZJALGT26CarQaqqwCwgGvr+LdTGodAp0AAwIkM/qUe/oOJmsTSIuC1Gom8BhzitBUTueNj\nCabrvlIo9WHloUTuWHfxCADeP/0+AFJYRktFdQXKqssQ5hrWNAa2YRqcQMeSvSWD+0sMwzzPMEw0\nwzDROTk5hoZRmgFfe190cOjAnc/ZO0c44P27/PGGySZdUyYVfqVu5ZVh9dGbmPbDGZxMoj//usAw\nDKQuJBxfea9lPqiVWXxFQ+eZj+r1R6cVAAByKjPIyvDJr0iHwnS5IUrbg2EY9PDsgeyybJQpy/QH\nOPnpy6yViP8O/fMSSVY9lpADtZrF5O9P4dEfz2LdiWQ88et5Gj5BMRtH48kzcO+r+vrApzOJTnY3\nj27c6nCfP/sAAEJcdVQqqjWry+37NaKlbY/6OsPZDMO0AwDN3waf1CzLrmNZtjfLsr09PDzq+XGU\nxiJyaiS6e5DSuHdL7+KzqM+EA2ZqFCdSjxst1axl30LhL/oXBxJw8VYB5v7SsmNfmwPvD8hqQdGO\nf5vZkvqROn0Gd8yIxAAfuH4XAEkQlEvkwDmNFKCDd1OYR2nBjGxP4s/n7Z9neNASHempL4NFh/Tq\n6AobuRRnU/LwzIYLiMkowvm0fHy2Nx4nEnOwYj/Nf6A0nLKqamQWlqObnxM6+zgaHBfgFIBgZ+F3\ntY9XH/7k3g3yd+Bw8xvZhqmvM7wLgPYONA/ATvOYQ2kO/hj/B3e8OX4zjt0+xneGT+KPvzZtqya8\nnSNOvjUCe18dgt0LBgv6/BdHwn9xJKLTaoahU8TQygCVnjG97KwlocrLAwB03LRJr49lWWQWlmNk\nF5KZHegcCFRqVvN6PdVkNlJaJuMCSF53fH4tzirDAK/r9C9zEx22YCRJ/j2aoL97tfZ4Ct7bEcvd\nu/wXR2LWurNYffRm/Y2ntDl+OEbyaGb00i+idDSdhBOOaE+SOp+NeFbQzxXbAIAbGneLVp8zK6ZI\nq20GcBZAKMMwGQzDPANgBYAxDMMkARitOae0UBiGwbFHj3Hnrxx5Rbg1+JKOWPnlGtrEBmjvaovO\nPo6I8HPC3P76Qf7TfzxLtT1NgJGRuLKyqChU3b5tZLRloSop5Y5teuhXStImkzjakXKnggQRK1oV\njFI7XrZ8qopWi1UUx3a846CuBjIv6Q0Z07n2tJc/o9IF5+dS8vHFgQTTjaW0eSJjyc7qoE76ChCv\nHn0VANDegVR9ZRiGix0e03EMP/D+HeDU1+S4Q/1VLSj6mKImMZtl2XYsy8pZlvVjWfYXlmXzWJYd\nxbJsMMuyo1mWpct8LRw3Gzd8Pfxr7rzb7zrC47qVwHa+bJKovS4fT+nKaRHrEvjuXhSVKQ3MotQk\neYxhsXhL5N7nvAamWIjE/2m2n6XW5Pbh59A6yk5Tmgbd79SM3TNqGQlg3m7++KcRet0hXnxVuvkj\ngkTvV2L4L46Eir7UU4zAsixSckoxracfAj3sDY57rddr3PGPY35E7LxYwXMZX+sUIpKKqEtQ6g2t\nQEfhGNNxDBeHB0BQEhKv3eCPP6p/cpO2MIeWt/+J4bYeK5QqA7PaNsGnThofZIEUbt0KAHB/ZYFo\n/9boDACAXEp+7m5WhjVhKRQxtCFehZVGytIyDPBOJn8uoi7x5QySO7FwFJ+stH/REIS3c8TYzl4I\n8yYOs5ejtWBe0Lt76b2LUiv7r5GdC2dbfQe2sIL/7sokMr1+jtPf8seTvzebbRQCdYYpAr4d+a3g\nnHOInXyBcTrRMNoqYXXkrXFhSFsxEaGalZj91/ntzf7LD9frmq0dmTu/rdZSqtGpKyq4Y/eXX651\nrMKefAdc1epGtYnS+njAkw+/ya8wskFpbQ/YefLnNUrZTu/lh7QVE2El4x+LYd6O2LdwCNY90Rv7\nFw1F2oqJiHp3NM69M0owd8OZtHr/Gyitn5f+JKE5gzrpx6xvjt9s/AIVRcDBD8mxc0eg51xzmkcB\ndYYpIlx94qrg/M84TZxw/5f4xp9HAkWZqC/7Fw3BjWUPCtoKy5TwX2xAOL+No5VYK4uObmZLTKP4\nICmGYBUQIBoioV1Jm/KAD+yspQAAt8wY0tnnuaYxktKqeO3oa8YHvaGTTLem/jGX3k4KpC6fwJ0v\n3xeP+Lv36309SuulWsW/5I8M049N177EbRhnuHw4VulUgn1FP+ad0nCoM0zRQ8JIcHnuZe58xfkV\nfEKdbqnmlZ2Beq7mMQwDWysZds4fpNdXoFOlh0LosH49ACD9yZahslD49zYAQMdN4gmX1+8Q1Qhv\nJxtcy70Gdxt3SCJfJ500Fo5SB74YRioclihJBbn0++mI2BDB/bl9X+eeJZECL5/jz+P21PtzGYbB\nmsd4J2XcNyeRmltaywxKW+TiLaKlLpeKl5e/mkMWn3p69RTtBwCUaSrEhk4EpLWEUlDqDXWGKaLI\nJDLEPBHDnXMJdQpHob7hqu4N+pzu7Z31klV6fHywQddsjViH8LqT5deu1zKy+WFZFmXnz0Pq5gaZ\nZkW7JtN+IAolA4PcYCW1gkqtArpOJ53D3m4qUymtgHH+RGItsSARX0d/jYk7hIlvE3ZMwCuHX+Eb\nPHWSkLY81qDPnhDRTnA+4stjDboepfUxcx15+frx8V56fWpWjbj8OHRy7mT4AlU6RWVm60tUUswD\ndYYpBqm5vc1VenpiJ9D3BXJcmA6cXWOWz1s3l79ZvPn31VpGNg6388sEWqKNmSX+3O/R8F8ciUV/\nXTY+GMKfRdr06Y1lllmoTEwCANiPGC7aryvb19vfBeeyzqGgsgCoKiaNNrT6HKV+/Hb9N9H2YxnH\noFTpKNe8mcQfX93SoM88/94oDAnm4/onrmqZCa8U81NWxed4DA/11OvPKiVya329+5IGlgUOLhHK\n/92OIn+P+rDR7KRQZ5hihHNz+C3Ffpt0yj9O4GWzcOAdQN3wbOqxXfiqY9suZjT4enVlyOdHBeeN\nmRRz8EY2AODfK3dMnhN85nRjmWNW8v/4HQDgNOkh0f7b+eXcsY1cynfk3gRsxFeSKZTamB6i/4IY\nOy8WEe68Ik7PjTrb0PY6jsmO5xv02Z4OCmx4qi93fv3OfaqhTgEAnE/lkzqlEv0wiUvZxOnlQiRu\n/Auc/obI/93RLJT8/ST5O7hlSWu2NKgzTKkVO7kdfh77M3eeW57Ld76rU5759Ddm+TzdcImGJNM9\ns/4C3t4WU+uYW3mlgpXgmizbcwP+iyPx9PoLJn3mx5rxYn9ySyq5cXcKywXztGO6LT1Q6/Vlrq7c\nMauyXCmnou07AAC2ffuI9g/9grx0/PREb1SzZOWkq1tXIDcBcA0SnUOh1Ma7fd/ljj/o/wFi58UC\nADZN3IR1Y9Zxfd1/1wnr0q1Ml/hfgz5fImEE967Ad/dix2XyQv/j8WSD95jWTnGFEkM+P1Lrfba1\nkpJTgid/I8+OI28MEx1zOJ0oKHErw1rHFwDWDSd/a6XXPLs0gpUULTQSm2IU7hcVwIitI3Bg2gH4\n2PuQKmFeEUB2LHB4GTDkDbN/dlpuKfzd7UT79l+7ixc3XsT0Xn7o7ucEd3te//Nw/D0AwNWMQiwc\nFSw6f/tlcTUMX2cbZOo4rEfi7+H536OhZlncL69GYXkVtr00ELdyyxCVmodPIuPw/sRw/HIq1eC/\no/cnh/D6mBCMDvfC5vPpomPuV1TjfoUSjgrDCWRuzz+PvHXrUHH9Omy6dTM4rrmoTEkF1Go4jBkN\nRlL7u3aQhx3ulZGf09B2/QH1XmE8J4ViInKpnHOAazLAZwAmBU7CnpQ9ULNqbLi+AfO6zCOV6Xx7\nAZkXgU0zgKVFDbbjsX4duGp1r225irGdvbFiH+90/3wyBY/16wgbK6mhS7QISiqrsfJgIl4fEwI7\na6EbsXTXdaw/k4ZxXbwRlZqHghqFlVYfvYmXhgVBIrJS2ppYtofX5g8w8AzTOsMuChfx3VXdEB4j\n91NKw2DYOlYTawi9e/dmo1uINBRFyK37tzBpxyTuPGpOFGzltkRNYplma7vfi8D4/2vwZ52+mYvH\nfo7izg1VgmqMVYbBndyx8dl+eOi7U4jNbPjDsTbOvjMSeSVVmPTdKa6tnZMCZ2tomOpSFh2NW4/P\nhef//ge3Z55uVPvqQ+7adchZuRLt1/4I+2H6qyHJOSUY9dVxAED8x+NwKScKLxx8AV91fRljdy8G\nxv0f0P/Fpjab0sphWVZQVTPmiRgSh19dBXziQRrn/gsE6VenqyvXMosEv9M18XOxwam3Rxrsbwlo\n771h3g7Yv2go137xVgGm/XBGb/yIUA8cTcjhzpc81BlPDQpofEObEd3nk9gzLKskC2P/IaEPsfNi\ngeQjwB+PiF9swpdAXyo5WR8YhrnIsmxvY+PoyjDFJDo6doSnrSe3ktdvUz+cnHkSzgpnIGwSEL8H\niPoRYCTAuOUN+qxBndzx/sRwfBJJRPGrVWrIpPxb8c17JRj99XG9efsXDeGOK5RqTFnNx9juXjAY\ncpn+SkRJRTVKq1SoqlYjwN0OQR7kDX77ywORmluKlJxS7I65g8iYLL25Ndm3cAhu5ZVBKmGQX1oJ\na5kUUgmDX0+n4nK6foWsdk42aOdkg8NvDMPW6NtYezwFWUUVuFtUAW8nhehnKDSrweUxtYeANBc5\nK1cCAGwHDBDt11ZiAgCFXIp3Tr4DAEjJ0fx7vOhWIMX8MAyDNaPW4OXDpABMt9+7EQdEZkUcjb1v\nAn9MMcvqcFdf/ep2s/t2gKudHKuPJiOjoByH47IxKlxfc7YhPPrjWZxP42NUHRUyXF0yVlTnu0Gf\ns/Ysdxx/t9ikRYlfn+yDown38PR6shj20e4b+Gj3DSR8Mg7Wspa9Si7Grqt8LkjSp+NFx7x4iLz0\nTwrULDJpHWGn9sDgRUCkzk5r91mNYieFh667U0zm8IzDeDjoYe58yJYhuJh9EXj0d37QuTVAvuFw\nAVOZ3suPO07LKxP0iTnCH03ugjBvR+7PA+15RYL+ga6I8HMS9Gv/9PZ3xbAQD4zp7IVOnvbcg0Mu\nlSDEywHjunrjo8nGHbRxXbwR3s4R47p6Y0xnL8zs0wFTevjioe4+2PB031rnBnnY440xody5NqZW\nDImVFSR2dig5aXkZ67rV8SRWVqJjtIlFq+eQhBFtgtNktcb5p84wpZEY4jcEL3bndx3+SfyHHPTS\n0e4uM1LFzkQ+fph8j7V+6IeTOuOVkXy41jMbzLtDyrKswBEGSNhVjk6ugjlQq1lBUpipMAyDkWFe\nOKCzigwAJxJzUVBahcpqy82BqA+vbuZVguRSfTcr/X46UopSAACfDPqEqEhoeeEE0OdZ/ty5A2Dt\n0Gi2Ugg0TIJSZ7gSzRpOzDwBF0YOLPflGz/MJwL3DWBPzB0s2HQZPTo4Y8fLpDhHfmkVeuroEBsK\noWhshn9xFGl5ZXX6fGPbZsb6tdx+eT5KjhxBSPQFSO3tTf78xiZj4SIUHyBJgOHxcXr9LMsi4J29\nAIDU5RPAMAxeOfwKjmUcw1W2AyRpp8yyMkeh1Ibu/ev07NNwtHIEluqs5jbid/CbQ4n45hCRdfv5\nid4Y3bnhq8P7YrO4cr9ipK2YiDPJuZjzUxT2LxqCMG/Hen/WG1uv4p9LtSv9fDipM54ebDgEwtBK\n8r/zBwkWMVoqM9eeRZTmhWHpQ53xpEg4iO53MHZeLHDhF0BbdIjeA82KqWESdGWYUmdi58XiwDRe\n+WDolqGAtT3w2D/8oOOfi8ysG16OZLXwcnohen58EHcKywWO8KUPxjT4M+rLtpcG4u8XxUMBDLFq\ndg98Mb0btr4gPu+PZ2pfQdZiP5SEg5RfaXot5trQOsK+334r2h+XVcwda1fgq9lq2MntIFEpATuP\nxjeS0uY5PpPfWZry7xRyMEOnFG4jLhAtHBXMyQk+q9Eaz75f0aBr1uYIA8T5nPMTycEY981JxGbU\n3dlSq1lsjb6Ncyl5AIC5/Tvi1NsjMG9ARwDgdJbHdvbCkwP9a73Wpuf6wU4kgXDK6tPwXxyJmWvP\n4tNIoTLPf9fvilypdr49lIRZ687iz6hbdZ5bX347nco5wgBEHeETGSe4400TNEU0tI7wjFpKMlMa\nFeoMU+qFj72P4Ly4qhgIHs03HF8BVDdsiy7Mm98ayi+twsAVR7jzQ68Pg6ud+FZ8U+Bub40+/q7G\nB+owubsPZvRuj74B4vOGBPPOYG0FP2x6khCD0rP6iSqWgMMo8eSgCZpiBN6OfDz0pexLJFTiXhzQ\noX+T2Edp27gqXDEzdCYAIKc8BwUVBUAnnXvXRfHCHeaAYRjcWPagoK3fZ4frfb0KpTC8QFvNs7ad\npYe+N5zcZ4jrd+7jrW0xyCwsxwvDAvHxlK7wc7HFRw93RdqKifjjmX5IWzER657obVQlYmCQO64v\nG4e0FRNFQ9CiUvPx00lhqN3zf1yss80rDyXiXEo+3ttxrc5z68tHu28YHTP/8HwAgLuNOyI8IoQv\nX8HNt8DT1qFhEpQGobfdA/BbjowUWNKwGDylSo3g9/bptTdXeERj8+upVCzbcwNTe/ri60cfEB3D\nqtWI79wFiq5dEbDt7ya2UJzSc1FIf/JJOE2ZAp8V4gmU2u3R+I/HQaFZHeu9sTe6uXfDr+f+IYmY\ns/5sMpspbZvuv3eHmlUD0Ny7bp0BftNJdnojEXAwb5KbFmNJZy62coEk2fwRQfjfg2GCMZvPp+Od\n7bycXMpnEwSO6JH4bC5hrSaRrw5GFx/9RL+a6IY2AcDGZ/phUCc3syflfXc4CV8dTDQ6LsjDDvsX\nDRWNwwWAeb+ex/HEHNG+ZwYH4INJnUX74rLuY/y35GU9zNsBcwd0xGP9OoqONVXFSOwZlVOWg5F/\nk8WCS3MvQS6RA9d38PrCNETC7NAwCUqTsHvKbu64WFtO94md5G9WBWRfb9D15VIJuvgIY9wMCZi3\nBoaHktXh7ZfENZABgJFIIHVxQcW1a2CrqprKtFpJf/JJAIBNzx6i/QWlvJ1aR1ipUqJSVYk+TppC\nG+7ietAUSmOwbyr/kj1zz0ygQ43wpa9CyIt9forZP/vbWeIvulr0tXmTcSopF0qVmmvTdYQf7OKl\ntyI7JNhDsAu1+Tl+52XiqlMorzKctFZVrUZRmRJXdUIqpvX0Q29/F7M7wgDw/LBA7tjX2Qabnu0n\nOi45pxSL/4nFlgvpyCwsR0llNYrKlcgsLMe1zCKDjjAA/HIqFZExWdgXm4V/LmZgzbGb2HIhHb+d\nTuUcYYAoZLy34xq2XriNr/9LwN7YLPx0IgWrj97E1ujbJv17DP18tY4wAOIIA0CaZqV+XMNlSSn1\nh64MUxqM7uqwhJHg6hNXhQkpQIPfeLVv44mfjIeVrHW/w2n/rdokMzHiwkhxCufZs9BuyZIms80Q\nWnvCYq6CEVGSEEsOTCxIxLRd07Cow0Q8c/wH4NE/gM6Tm8ZgCgXAk/ufJIo4ENnZ0qURV+wupRdg\n6hphyNPrY0LwtYGV0rQVE1FQWoUe9Ugk/jv6Nv6nU5nT0LyaMm11+YzGYN2JZHy2N974wBroSnQ2\nBb07umDbSwMN9muflUdmHIGHrSYsblVPID8ZWFLIy49QzAZdGaY0GeMD+K1FNauGUq0Epv0iHLTU\nCThV/5LN65/qg+/n9Gj1jjDAJ6PUVtHOVVNwo3DzX01iU21oS0Pb9Ogh6gjrrkBFvcsXFEnITwAA\nhLEauXOPUFAoTcmaUWu442u5mtjSpUXAy+eEAw+812g29OzggjWP9cRvT/bBPy8NxJnFI/HCsEAs\nnxqB0eGeeG10iGC8/+JIgSMcu3SsyZ81raef4Nx/cSSKK/hV6Od+j0bXJQc4R9jVzgovDQ/CwdeE\nkmhNzXNDAvGhgRCHmthaSeFgLcMLQwPx7JBAPDGgI4aGGE/OnRDhLZD0NIUIXyd08XFE53aOGBri\nYTA5GiBFNrRwjnB1JXGEXQKoI9zM0KIblAbz+dDP8XDQw5yIeM8/epJVFr8+wLc6JYMPLQGU5cCI\nd+r8GcNDPc1lrsXz8vBOOJmUi08i4/DskEDRMR7z5yP/l1+b2DJx8n8jCUd2A8QT4C7orDB56STP\n3cgjySbBlZpselv3RrKQQhHHVm7LlWqeHTmbXx32DCdOsXaV+Oz35E8jrRBPiGin1za7bwfM7tsB\nADA0xB2PrNFPmD3yxjA41FK+vSYSCYO9rw7hklkB4Jn10dj64gCo1CwO3sgWjB8e6oG3x4XVvEyT\nwzAMnh4cIChxLIa2gqguyx7uCqD2WN9Fo4OxSPPSsWBEJwz/8pjBscse7oInBvibZrgOX0Z/CQAY\n3n4437haY6tKqT+B0qRQZ5hiFgb5DsKPo3/kHOKM4gz4uXQkD48vQ4ESjTTO8RWARAYM+18zWmvZ\nDAhy445rVt/TIrG1hXV4OCrj4lAWHQ3b3kZ3gRqNe19+BQBwmjpNtP8VjQD9odeFsd4FlQUAAI8C\njW6pbd3UOSgUc7B8yHLsSdkDACisKCRVNbXoOsQAf9zEiU49Orjg7xcHYMaPZwXtgR511xnvXCMH\n43xavqijaIlJyjVtmrXuLM6l5OP4/4ajo5tdneYawt/drlH+7f/d+g8A8MXQL/jGAs3u30PicpSU\npqP17zlTmoxBvoO44/HbdbKy30wAHt/Onx/9RFhqkqKHkw1Z7Ym/W2xwjMtsUqLz1uNzm8QmY1j5\n+eq1FZUrUVSuhJudFQLdhQ+r+Lx4hLmGgSm6TTSG6TYhpZno146s0D3939P6na+LxKoudQKymlbn\nu3dHF8F5PwMSjaZw/r1RtfbrJttZMqtm98CKqRFGHeHmRqmz8quQaXbHbh7iBwSNaGKLKDWhzjDF\nrByczseybUvcxnd0GgW8rSN+fuFnIEFfMo1C+Hw6CS+Z9J1hTVDHCc2/clOZSlY2nKZOFe0f9RUp\ncDB3QEe9bPfU+6moVlcDuUkkZo5CaSa+GkZ2N5IKkqCXVO7YTnwleO1Q4hRXGn5hNScMwwh0hLfU\nEp9qDE8HBdJWTMS5d/Sd4tTlEwS7U5aMp4MCszShJJbMC4deAAC4WOu80GzU7KS179fgaq2UhkPD\nJChmxdvOG24KN+RV5OGjsx/ho7MfASBOsredN/BBLvCxJjZ08yzguSOAb69mtNgy6R/IP4xYlhVV\nlZDa20EREYGK2FgoMzMh99VfmW1sUsZPILa4iJdRzS0hhVce7OItaK9SVUHNqtHNrSugOgK4dWpc\nQymUWnCy5kMhuv3eTdB3fOZxuCpciUOsVgMHPyDxw1qW+7VYfVhvJwV2LxiMW/ml8LC3hq+LTaNI\np7V1Lty9AABYMlCj/LN+Et+plSKlNCt0ZZhido4+elSvbcy2MURWRioHnvj/9u47Pqoq/eP456TQ\nQ++9SVN6U0QUBEEUxYooCvbesHcXEUF3/VnWjq6IIk1ZRQRWVIqIgIAUqQKRGlpCgIRAyvn9cScz\nE2ZSgJvMJPm+Xy9ee+feO3dOnnXuPHPmnOd86zvwUS94/7wCbF3hEFPS9z31xJqj/qrd56xmFP/F\nhHxvU04qDR4csC/pWJp3u2n1rGMbNx3cBMAZ0Z5VBmsErkQlUpCe7fps0P3nT/Ib6x4RAX1fdspg\n1fSVlGTxh/ncuvzTum4FLm1Tm66Nq1C3UplQN6fISU5N9m5fWP9C2DofYj0TGM++F6JLh6hl4k/J\nsLjOGMPwjsODHms9rjW7qzeDh/1mBcetcn5uTCmcvSv5ISLCeAu3z1i9O9vzynbvDkD8JwVfWcL/\n5+QSdQNLEj3gmTgHBKwYtTHeqaHaNN3TC1W9ZT60UCTvrml+TbbH/r3i3+w84iyEs3rfag4eS4S7\n/IYwzXzstJefl6Kp64QTFhAZN8C33W9UwTZGsqVhEpIvbj7rZm75B8jOAAAgAElEQVQ+62YAUtJS\n6PxFZ++xi75y6mL+8dBqIt/w610ZXR+e3g0l1DsBcGFLZynY2WviuPHs4EuDmkjfWLP0gweJrBh8\nuEJ+2HZLkMlGHtZafly/F4CPbgqsdLE4bjEALZM8X4BUY1hCLMJE+EqrefT7qh87j+zkg1Uf8MGq\nD6hWuhr7jvpWOevb83ZG/fwRJQBGVi+0wyUk//Ws1xNSU3w77pwfusZIAPUMS74rFVWKBYMWBOxv\n980lpD19Qq/nqMB6m8VVOc9QiUVbDuR4XonGTi3irYMG5XubMtn0dJIXOQsT1H7ttYDjy/5O8G6f\n2zRwMs7aA2uJjoimwn7PUrcxtfOnoSKnYcqAKVke+yfCALNjZ9Oxkd8Erm8fKIhmSSFxNO2od/ut\nXm/B2x18B2u1DUGLJDtKhqVAVCxVkdVDV/Pr4KyF49t/2ZXbzjnh58nvHi7AloW3By48g/QMy8Y9\n2c9YbzRlMgCpf28rqGax7623vdsVBlwacHzS0u3e7TIlsv4AZa1la+JWmlRsAvs3OGXVInQrkvAT\nUyKG5UOWU6NMjRzPG1DH8yV++TjYtrgAWiaFwfMLnwfgyS5POjsOOUNtaJ39kBwJDX0CSYGKKRET\n8FPk4rjFPHT+zYwv75lM9fsnWpHHo0N9Z9jD/I37sj0noqyvxmbK+iA1UfPBoenTAajxbPBJR5v3\nHQHguSBLqP518C8AutfpDvFboGL4l0aS4is6Mpo518xh9dDVrB66mj9u/IOVN61k5U2+OsOxJaLZ\nHuX50vfJRRC3JkStlXAyK3YWAFc3uxr2rnN2Nu4JV40NYaskGCXDEhKrblpFVISvx/DHbT/yapVK\nTCvnSexeKvpL8yYeS2TqxqnesjvBdPEU1n911oYcr2VKOYXctw68wr0G5iB11y4AKg+5IeDYj+v2\nsHzbQQBu7R5YP3jmVqe+dPfqncBmQO0OAeeIhKvIiEgiTAQRJoLF1/t6gfvXq01SZlmy98+FY0dC\n1EIJB7uP+IYAlowsCe96FjJpd32IWiQ5UTIsIWGMYekNSxl/8Xg+7OMrS/R8tSp4axT8OS0kbSsI\nyanJdJ/YnX8s+ge3zL6FGVsCl0MFZ4jBuU2rcDw9g4Sk49ler8msglvAJO7lnGdAvz9vc47HV+x1\nqky0T81wdlRv4Uq7RApamegyfHzRx97HZzesx9+ZPcSv1FFCXIy9vcIZSvav8/8F/gu5NOkVohZJ\nTpQMS8hERUTRrno7zql9Dr9c5ytT9HbdM5yNKcOy3kROQlxSHBvic+5NDebP/X8yeslo/j70d+4n\n5yI1PZUh3w9hzJIxJKQkZDl2YrmdJxc8yT+X/jPodS5p7Uwum7NuT7avFV3Tt6hFwsSJp9rkPEkY\nPx6A6o89FvR49fJOL/XHQwOrSIAzea5m2ZpE/L3Q2VG3i/uNFCkgXWp18VbOAbi0Xm32Z46Bf6WO\nUzYy89/KSSFqpRSklLQUpm9xhpJd1PAimDvad7Bs0f/VszBSMixhoULJCvRp0AeAj6KPsTna07uy\n4vM8X2Pzwc3c+cOdPL/wefpM7cPV068mJc0pZTN141Su/vZqRi0eRf+v+zN05lBW7VvF/B3zuW32\nbQz870BGLBrBdTOu44t1X3DptEsZtXgUmw/m3MuZ6WDKQe6acxeDvxvMmCVjeHTeo3T4vAMr963k\n83Wf02NSD9bHB47nfaPnG97tcWvHMW1TYG/4gLbO5JwJS3KeIFf+Mqd+ZdyL/8hTm09FeqKvdFTl\nW24OOL478SgzVu2mfuUy3tJw/lLTU0lOS6ZF5Raw509np2oMSyE3vONwWlb2/Xfcs0Fg3W0Apt0B\ns56CownBjxdhcUlxHE07yrZDBTfRN1QGz3AWIapeurqzY+1/nf/tNyZELZLcmIB12PNRp06d7O+/\n/15gryeFi7U2y1Koq7Zuw4Cz2lMuS4S+t/wt3l39UcD+LjW7YDDeuranIvND7ov+XxAdGR1wfOL6\niby8+OU8XevVHq+yat8qPl/3OX0a9OH1C17HWsuQmUNYtW8VQMAEQ4Bmz87keFoGG0b2o2RU8HXs\nU/fs4a/zLwCg4ZQplG59Vp7adDL2vf1v9r/zDgAt168LOP7tyl088OUK7uzRmKf6Bya5by1/i49W\nf0S32t34YO1vkJ4Gw/90vZ0iodB6nK9ueoyFX2OdxC82KoqJ5WOom5bGtYcOO3WJn90LUSVD09AC\ndPj4YZ5f+Dxzts3x7hvVfRQDmgzI4VmFV3xKvHfVwjHnjaF//QudGtQR0fD8/hC3rvgxxiyz1gb/\nmdL/PCXDEk7ikuLoM9XpIS6VkcHSv3c4ZWiymX2bmhBLz28uI9EUzH/H1zW/juaVmzN3+1zm7ZhH\nnXJ1vCtTBWMwRJgI0m16wLGxF42lay1nuER6RjrtxntWnLtiBvXLZ62w8ORXq5i4dDujrmjN9V2z\nr76wroUvAQ2WrJ6uzOufsehXoipVCjj+8KQ/mLZiJ4ue6kWtCoHLjF4z/RrWx6/n0U6PMnTKA1Dv\nbLh1tuvtFAmF1PRUOnzumxBaPyqGi46lMzYyOct5i2O3U8baQr1Ix7H0Y+w8vJPGFRtn2R+fEs/r\nv7/Oir0rKB1Vmg0JwYer1S5bm68v/5qy0WWDHi+MNh/czMBvBnofrx66GmY+AYvfh/MehQufC2Hr\niqe8JsNagU7CSs2yNWlYviGxh2JJyRx3t3oKXPlRYO/whpl0+O1x8Nt9+8FEzjmaQtX0dGLSMxhb\nsQJfVHBKtt2ZkEjX2t34bdevjKsQwzG/2raPJRyhSdd7qV+xCeWPJbG2Yk1m7VrA15u+zvKSEzdk\nHY97YiJ8Z5s76V6nO4eOH6JkZEm61uoa0OOdqUMN34dmZISvt3fZnmUByfBzl7Zi4tLtPD1tdY7J\ncNMf5/DXhb0BSEtICJqwnqqUDb4PteyuO2tNHBXLRAdNhAEOHnOqTNxY1XNvUuF5KUKiI6NZfuNy\nOox33tvb0g4zNsgPOV0b1uOzXXG0f70VDF8beEKY+233b9z+v9uz7Du/7vnM2zEvx+eNv3g8N868\nEYBdSbs4e4JTYaF/o/68ct4rRBj3Rm4mpCRw7XfXEpcUxw9X/0DNsjVzf9Ip2JK4hT1Je/i/Zf/H\nunhfB8SY88bA8WQnEQa44Kl8eX1xh3qGJSxl/tx4d0Ii9xxMhJpt4C6/VewO7WLSR50ZWbWyd9fM\nZrdRt1RViIyGxB3w4z+wwJ7ISCpmZFDK7791CyRGRHC0651UWfSe87Plifr/k3W1WpIQEcG6+HW0\nrdaWm2cHjpMF52e/fo36ER0ROIwCIC0jjVtn38ryvct54ZwX6FC9A43L1ISVX0LqUeh8G/vTjtBz\nck+ub3E9T3UNvHE2fNKpOLFx5MWUiMr+Q8PbOxwVRcs1gUMuTlVuvc7H0tJp/uwszqpTnu/uPy/g\neIbNoO1nbWlZuSWTl3l6g68dD60uc62NIuFg/9H99JzcM8u+xzs/TnREdJYhVau3boMej0Gv4PW6\nT8XRtKPsP7qfstFlqVyqcu5POEm7juyi71d9T/p5P17zI9XLVA/oPc3UrFIzpg6YyuHUw96yZA3K\nN2Bf8j7qla93Uq+VnJocMEn53QvfpXud7phshtwlHktkU8Im2lRrQ4nIoJ8IgDOc76ftP7EhfgNd\nanYJ+plweZPLGdl9JLxUHdKPQf1ucEvBVfwRHw2TkELtpUUvMXmjs7La6q2eCRfP7IHoUrB7JYkf\nXUB3v0kqKwb/RlSJE35uO3YYXslmIsvJGPQFbFsEyQfYX7YyFZoP4EDVRsQlxZF4LJHmlZs7vQ6x\nv8CKL6BSQ2g7CKJKw541EBEJjS8gw2aQkpZCmegywdt271LazbyWiiUrMnfQ3IBmZCbDz1/ailuC\n1O/NdHT1GmKvcVY4arFubbY3/5NhMzJY3+pMpx2TJlK6bWCPbrsR/+NgciovX3EWN3RtEHB8zf41\nDJ4xmAc7PMhtXz3i7Hx0E5SrftrtEwk3h44fot/UfhxOPcy0y6bRtFJTADbEb+Dq6VcD0C7lGKP3\n7Sfm4n9RvvUgiFtFQrlqLE7cRN+GfU/qvZt4LJHxa8fzwaoPvPse7fQoQ88c6trflJqR6u31zsm4\nfuMoHVWa+368j71H97Jg0AIqlqroPb798Hb6f90/z6/7xgVv8Pue31l7YC19G/YlKTWJ6mWq06Za\nG8pElaFG2RpYa1m5byXfb/2eL9d/me21hrYaygX1LqBTzU7Mip3FnL/nUDKyJN9u/tZ7zohuIxjQ\nZECWWvjgfKG/ZfYtLNuzLNvrn1v7XN7r/R4mIx1e8ixFf/NMaNAtz3+vuEfJsBRq/mNof/l7OxUy\nPP+dnnMfLPo3rRv5hgr8ct0vVChZIfiF4rfAV7c5FQsyMuCsq+C/d0HSPmfoRckY+O092LUCOtwE\npSrAph9gx5KcG9j9YdjxuzMrvFRFqNIYln+W/fktLnXGPp/p6RF5MXh7M/+uYD/r/bX3CL1fn0fX\nRpWZdOc5OTYvsxe36r33Uu3++3L+W/IgL2ORM5P1lS9cRIXSgT3kD/z0AD9v/5kpF39Oi3d7ODsL\n8ZhJkdykpKUQlxRHwwoNs+z3n2iXqXdSMp2PpvCK369dj7e6hRs75215+mDXBCgdVZqrm13NloNb\nGHrmUFpVaZX9/TIHKWkpdP6is/fxpEsnERMdQ/9pTlLbpWYX/jzwJw+0f4DrWzoLSxxLP8buI7sD\n/n5wem+fW/gch48fZtHuRSfdHn/1Yuqx/fD23E/0c1+7+/j3H//O8ZwO1TvQrno76sbUpVRkKZ7+\n5emAc57s8iQHjx1k+Z7l3NvuXtpWa+sMe/v+cVji+WKi+1zIKBmWQi/z5n5t2cY8t2aud//kmHK8\n5PnA+Piij+lSKx/q1G6cDV/fAec/DrMDb4CnJbKk89NZEGc3qEtSRARPdnmSG1oGru7W4rmZlIyK\nZOULF+X4Ekf//JPYq5zep+YrlhNROvgY3rzKTIbL97+YOq+/HnA8MTmVtiP+B0Ds6EuCXiPz/8/V\nTW6BOS86X2z65q0Kh0hRkpaRxpXfXsnWxK25nlu1RAVKlyxPz3o9eaxz8Nreby5/k7Gr877E78wr\nZ1I3Ju+/mm05uIXLv7nc+zjKRLHiphV5fn5uTky0e9bryc/bfz7t6y4bsgxjDNM3T+eFX1/I9fzS\nUaU5mnY0T9e+vMnlPNjhQaqVqRZ4MOkAvOaZWHjXL1Az+BcVyX9KhqXQ8x+b5h0qga/3tFLJSsy/\nbn7+NyR+K/zyutMTHBkNu1cGP6/t9bBqIjTqAS0vg6hSTg/zuu8gOZuSOi8mQtoxWDYOZj7GjqhI\nLq5XB/CNsfP30ndr+fiXrawd0ZcyJXKe/+pWZYkj8+ax/c67gOyHXbw/bzOjZ67nX9e05aqOgR+y\nX238ihcXvQj4/X/59G4oUeaU2yVS2N31w10s3LUwy77RDQby49oJ/FA28L3xYPsHuK1N1olrh44f\n4twvzwWgdaWWXF+vD62rnknJSo3o81X2X5pX3bQqT8Mwgk0AzutzT8aepD0siVtCnXJ16FCjAxk2\ng6VxS6ldrjYVSlbgzWVvMnnjZM6udTZxSXHEHooNep2hrYbSokoL+jXsl2WYQ0JKArfMvoXoiGjO\nqX0On6z5BHAq/vSo24MHOzzIGZXOYObWmUzaMCnoUIhR3UeRlJrEdS2uy/4PsRb+4RsSol7h0FIy\nLEVCZm/i7WfewgM7NvFbxmFuP/wHAEtvWEqpqFIF36jUFNi/ETZ8D1sXOMnvmVdAtWbZP2fVZPg6\n64cYw9dD+Vq+x56hEzkNAflw/mZGfb+eafd0o339nCtFxH/xBXteGglA4+nfUvKMM/L4B2aVmVSX\naNyYJt8HXzZ62H+WMHfDvmxLqmX+/9itdjc+WOipyKEPCRHikuLYnbSbWVtncW3za2lSsQkkHWD9\nuL5cUzbwF6Qx542hf2NnaMKJE8W8tdkBylZnS/9XmHB4PWkZaSSlJnFO7XO8PaSda3bmk76f5Ni2\n1PRUBn4zkG2HfZ0RUwdMpXnl5nn/A62FvWvh0G5IPuCswFazDZQL0qN6ElLTU0k8nshvu39j0a5F\n9Kjbg/Prnp/nz4SjaUdJSUuhUqng99FV+1YxdvVYrmh6BU0rNqVUVKngvcD+jh2GcQOcYXfgDKfr\n/WLe/yhxnZJhKRJeWfwKE9ZPAGDeoHneYuYQfHGKsBa/Bd5q72w37w+DT5jkkXYMRlbPkgy/dO5L\nDGzqm3n9x/aDDHxnIZe0rsU7N+Q+kcW/d7jFn2swkcEX7MjOjoce5vCsWU6TV/5BRMngiwQ0f3Ym\nzWrEMP3+7gHH/HuWll/+PdFveBYDUTIskqOUaXfR+dDCgP2Lr1/M3uS9DPivb+GKjkdT+DRub+BF\nosvC0zu9pSnHrh7Lm8vfBJwJdpc3uTzL5DZwEs2th7Zy1bdXZdnv/XKekQ4bZsLReDijL8T4rTaZ\nkQ6bf4JDuyCmJkx/EA7vDmxX/39C66uhtHvlHwNs/hkSYuGMPlDBhcnU/jLS4fgRJ8Hf/xcc2BQ4\npE73uJBTMixFRrCJIfMGzcuXskEh92IFko2ha0NfKSH/pN9aS6OnvqdBlTLMe6xnsCtkkbJ+PVsH\nXuF9fDLDJay1rG/ZCoDKw4ZR48kngp638+BRzh39E5e0qcU71wcm6Jkr9J1b+1zeX+j5AnDJ69D5\n1jy3RaTYWj8DJl7PspIlGVY7cIlzgLsSErn3YC6JV+8XIbIEdBhK64lZJ+DOGzSPfcn72HVkF2k2\njeFzhwc83XsfOp4Mo2plPdjiUmg1EOJWwa9v5fEP8xg2w0meu93vTmJ8ZJ9TsnLT/yDWrxxnz2eg\n483Be6QP7Yadv8P2xVCvq1P/vGI29dyPJ8O80bDicycRzo6GgYUFJcNSZCzbs4xhs4Z5H7ev3p7P\nLs6hckNhtmMZjO0F+IZLnDg+r8/r89h/5Bgrns95El2mjV3PJj3R+aCs/+mnlD27ay7PcCRO/45d\njzkTdnJKot+Ys5E35mzizevacXm7OgHHM7/MzLl6DjVe8wwleXoXnFgKT0Sy98MLvPfnJ7xbKWsv\n7oSdcbQ+ftx58ESsL6HcOt/5yT6IxCf+pvvkwFrgwcREx/DlpV/SoLynXGI2lXDyrFEPp23BPHcA\nMtIgNRkiopxqP+mpEFXC6YmNyOWXreR4eDX7spOAEyNwhm+YCGey9LQ7As97Jg6i/YZ8HU9yJj9n\nlkvLTo2z4Nb/6f4WJrQCnRQZHWt0zPJ4XL9xIWpJAajbEWdJPUuvpGR+KluGHYd3ZCk636tFdT6Y\nv4XPFsVy0zkNc71ks8W/eYdLbBs2LE+9wzYjw5sIl2jaJMdz35iziXIlo4Imwv5ftmtYT0Jftro+\nKEROVp9/cPfReN5NmOvd9d32XTRIS4NqLeH2n7L2RDbqAVd8ANPuDLhUhTENmHvXfC6YPSTHlxzV\nfRQDmgxwEseMDJj/at7bW7G+M0Sj/Q3Q+tqsQymS4+GLa5zeWH+5JZqnomR5OHbI93hMw7w97+U8\nrFhXtRnU6QQrJzh/620/QI0zT6mZElrurX0oko8mXzqZzjU7s/SGpa7PYg47fUYA0DPZKfHzzsp3\nshyuUd6ZIPL8N3/m+ZLN/H6RSTuQw097gD1+3LvABkDjb77J9txjaenOOdWCJ7fvr3KWIo2KiIK5\no52dvXMvcSQiQVz2Nj/h/GI0Yt8BJxG+/F2497fgP8m3vQ5umR30UlXe78GyQYHjkQGqlKrCsiHL\nnEQ4PdWpjjCiEsx9xXfS/cudMbHN+gVe4MGV8NBqp13d7s+aCAOUqQy3/wh3zodb5+TpTz8lT+2E\np7bDJf9y/9pNe8O9S+CK95w4PLNLiXAhpmESIuHGU5pnSamS3FrL+RDxHzecufgGZF/TNxj/yXQN\nvpxA6TZtAibU2ePHWd/Gt7pcjWeeofKN2fcezf4zjjvHL+O5S1txa5BV8TKHSDzZ6TFumHK/s/P5\n+Nx/7hSR/DHjEVjqV5O4/z/Z3PBsShhDvahyUL6uM1Th4N9w7Ih32JZX28FOAh7hcl/a13fAqknO\ndkQ0ZKRmf+5ZV8Oaqc52455QpwMs8CS8d/+afVKaEAu7/oApJ6zK9/hWJ0HPtG8DvJNN/fq+r8A5\n9+T650h40JhhkcLscBz8q7l33PCSG5ZQOso3fu3KdxeyfNtBHuvbnHt7Ns3bJefMYcd992fZd+KQ\nCf+EOdjxE2WuOvfLEz2pWylrz5R/FYlVKZUwmfWZNcNaJLTGXwmbfzz553W+HS75p/vtEckneU2G\nNUxCJBzFZB2vtvPwziyPr2jvjM99bfaGvF+yd28qDs5aLH5di5bYtDT2/utfWRNhY2ixNudhGPsO\n+2qg1iwfWNtzxlZfTWJvInz95Dy3V0TyyY1fw2Vv5/38ig3ghYNKhKXIUjIsEq4eWMGL+5zxvXO3\n/ZTlUN8zfcny9JW78nzJWi+8QNN587LsW39Waw58lHUp15br1mJy+Rl05Iy13u2oyMBzn1rwFABn\nVfDruT4jbxUwRCSfdbgJ7vkt9/Me3QQPrfLWKRYpilRNQiRcVW7M5UeSeLFaFf735+fc1tZX/qe6\nX0/s/V+uYEDb2nm+bHSN6jRb/Bsbu54d9HiT/wWfcHOib/5wkvD/G9Q24FhCSoJ3+7M//BJ5faCK\nhI/qLQOHLcX+4pQ+6/l08OeIFEHqGRYJY1Hdh1M/NZV1qQkBx8bf6pvgsWDTvpO6bmSFCrRcv45a\nr/hmhzeZNZOW69dRon42xeb9/LJpv3f7/GbVA44P/MZZNe+yJpcRnbnzmbiTaqOIhEDD7kqEpdhR\nMiwSznq/QPPjzqzqORunZTl03hm+lZSennZqS1NXvGIgLdevc5Lghg3z/LwhHy/2blcuWyLgeHxK\nPAAPR/olyv4F7EVERMKEkmGRMFcx3anl+9ivzwUcm3C7s5rc9vijBdaejAxfBZr/3ntuwPGtiVu9\n21VnP+9sdAks/C8iIhIOlAyLhLmnr/wagLQg4227Nanq3f5x3Z4CaU/jp7/3brerVzHg+GX/vQyA\ncpF+PcH9Rud7u0RERE6FkmGRMBdVp4N3OzVxR8DxlwaeBcCkpdvzvS3b45O9222DJML+fti80dko\nXcn9Av0iIiIu0SeUSCHQM6YJAH+90y7g2A1dnAlvq3bk/2IWny/+27v9xqDAtqzZv8a7XS5zQZ+H\n1wacJyIiEi6UDIsUAjd0Hg7Aj2XKwPHkLMciIgzDujUk7lAKj0xema/tWLwlnmoxJYkdfQmNqpYN\nOD54xmAAzilZw7ezRJmA80RERMKFkmGRQqBTHWei2sTy5eCzywKOX9WhLgBfLd+RZWU4t/2x/SB5\nWcL9zQ2eZde7D8+3toiIiLhBybBIIRAZEUnb8o1IjIxk3+5lAcdb163g3e788px8acOkpdsA2H/k\neNDjfx7wLd9cOjNh7hVYAUNERCScKBkWKSQGtbkdgMkxMZCaEnB81kPnebeH/WeJ66//xFc51zK+\n7rvrsu5oeJ4mzomISNjTJ5VIIdG7QW8AppcrCxOuDTjeomZ57/bcDSe3Il1urLWUK+ms3n5/r6Y5\nnjtz+05n49rPXG2DiIhIflAyLFJIlI4qTY3S1dgZHUXctl+CnjPxjrO927PW7HbttQd/9BtHjqVx\n49kNeOSi5gHHUzNSvdt105xFQihT2bXXFxERyS9KhkUKkVTrJJqvVqkEKYGl1Lo09CWgd32+PE+T\n3XIzflEsv22Jp0RUBLd2bxT0nMW7neWZbz3oadPQ6af9uiIiIgVBybBIIfJ+7/cBiMnIgGl3BxyP\niDB8MqyT9/HPG/ae1uslJqfy3DfOxLhbzm1EwyDl1ADGLBkDwOVHkpwdDc8Lep6IiEi4UTIsUog0\nr+wMUfi1dCnYMAOC9Pz2auGr8XvLp7+zfFvCKb/ehCXbvNvnnVE12/NiD8UC0DA1zdkRZOloERGR\ncKRkWKQQiTARtKnahrioKFKMgQ3fBz3vfw/38G5f+e6vp/x6Y2at926fVbtC0HOOp/tKrRmAS984\n5dcTEREpaEqGRQqZNtXaAPBphRiYeH3Qc5rViOG/957rfbxy+8GTfp1f/9rv3V7weE8qlIkOet6C\nnQsAeDje0wPdYehJv5aIiEioKBkWKWTWxzu9te9UqujsCDKRDqBt3Qr0PdMZMnH5OwsZPXN90POy\nM+RjZ1LcPRc0oV7l7JdUHvnbSAD6JiVDnY6qLSwiIoWKPrVECpkR547IuuPNdkHPM8bw+rW+Y+/P\n25zn10hNzyDDMxz5od7Ncjx3/1GnB7l2WjoMm5Hn1xAREQkHp5UMG2NijTGrjTF/GGN+d6tRIpK9\nejH1vNvJxsDRePh7UdBzy5aM4qu7z/E+fnTKylyvP+X37ZzxzEzv4xJR2d8m0jLSvNsGILp0rtcX\nEREJJ270DPe01raz1nbK/VQRccP97e8HYEYFT13h//TL9twO9St5t6cu28E/pv/Jx79sDXru3kMp\nPDZ1lffxO9d3yLEdmfWF70k4COc/mae2i4iIhBMNkxAphAa3GAzAiEp+dX8TYoOea4zh/wa19T7+\nz8JYXvpuLfM2Bi7ZPOw/S7M8vqRNrRzbMWOLMyyib1IynPtgXpouIiISVqJO8/kWmGOMSQc+sNZ+\n6EKbRCQXMSVivNvrS0TT4ngqvNkWXgw+me6K9nV5eFLWIRJDP1nCs5e05OjxdP71w0bv/l4tqlO/\nchnu7dk0xzZYa5m+xVlprlFqGpTIfpKdiIhIuDrdnuHu1tp2wMXAvcaYHieeYIy5wxjzuzHm9337\nAnuiROTUDGk5BIBBder4dqYcyvb8B3oFJrcjZ6zLkggDXN2xLi9edibVYkrm+Por9q4AoE9SMlpi\nQ0RECqvTSoattTs9/7sXmAZ0CXLOh9baTtbaTtWqVTudl31rYy0AABHXSURBVBMRP493fhyADDJI\nzdw5ul625w+/qDmxoy8hdvQlOV63f+uch0Zk+nT1WADuTEiEB1flcraIiEh4OuVk2BhT1hgTk7kN\nXASscathIpIz47fk8ZgL7vAdCLJE84me6NcCgE4NKlG1nK8H+LlLW+XptdMy0vjZs9hG89RUqNQg\nT88TEREJN6czZrgGMM3zgRwFTLDWznKlVSKSJzOvnMnFX1/MpL9nMdwYylgLX90GV3+c4/PuvqAJ\nd1/Q5JRf96kFT/ketBp4ytcREREJtVPuGbbWbrHWtvX8O9Na+7KbDROR3NWNqevd7trQM0RizVRI\nTcnX150V63zvfSduL1w7Ll9fS0REJD+ptJpIITe843DvtneAxMs18u31Dh8/7N3ucc3kfHsdERGR\ngqBkWKSQu/msm73b317kN3zh4PZ8eb2xy94C4Izjx6Hx+fnyGiIiIgVFybBIEdC3YV8Ant30hW/n\nG2fly2t9snEiAB/v3psv1xcRESlISoZFioCR5470bi8cOtV3YM3Xrr7Ootg53u1K9y1z9doiIiKh\noGRYpAgoFVWKDtU7AHDX/OHYC552Dky9OU+l1vJq2gynhNugQ4ehcmPXrisiIhIqSoZFiohxF/uq\nOsyu5zdEYlSdIGefgvQ01pUoAcCzQ+a6c00REZEQUzIsUoQMbOrU/H3slyd9lSVSk2Dn8tO+9rGR\nVYgtEU2blGNQqeFpX09ERCQcKBkWKUJGdBvh3X5rwD98Bz7qCRkZp37h5Hguq1MbgGNVTn2xDhER\nkXCjZFikCDHGcPOZTqm1sWs+hsc2+w6OqHTK17WvNmJXtLNg5fBznjutNoqIiIQTJcMiRczDHR/2\nbs+NX5P14OafTv6CqSn8XKa092G3Ot1OtWkiIiJhR8mwSBFjjKF5peYA3P/T/fBiou/g+Csg7djJ\nXfDlGjxYoxoAX132lVvNFBERCQtKhkWKoMkDfMskv7L4FXgmzndwZHU4uC33i1gLL9fmR79e4WaV\nmrnZTBERkZBTMixSBEUY31t7wvoJ7Dl+CM6+13fCG61h3fScL/JOV0hN4iFPr3DHGh3zo6kiIiIh\npWRYpIj6+dqfvdu9p/aGfqOynjBpCMRvCXzi0QR4uxPs38DeyEjv7ufO1sQ5EREpepQMixRRVUtX\nZe61c72P31z+JjyfAPf71Rx+qz18cD5snQ9ThsHbHWFMQziwCYAL6zsLdjze+XGaVFRJNRERKXqU\nDIsUYVVKV/Fuj109llSbDlWaQKVGvpN2/wHjBsCf0+DAX97dx/2uc12L6wqgtSIiIgVPybBIEbds\nyDLv9nsr33M2HlgBF72c/ZO63k2f5m28D6MjovOreSIiIiGlZFikiCsRWYL5g+YD8NHqj9h/dD8Y\nA93ug7sXQUwt58Ta7eHCF7BP/M3ISuWIP34QgKU3LA1V00VERPJdVKgbICL5r1Ip3+pzPSf35Omu\nT3N5k8spU6MVPLLemTRX2jnnvT/eZdKGSd7zS0WVKvD2ioiIFBT1DIsUE490fMS7PWrxKLpO6Oo7\n6EmEV+5b6RtKASwYtKDA2iciIhIKSoZFiomhZw4N2HfPnHv4bst3AHy46kOGfD/Ee+yTvp9QsVTF\nAmufiIhIKGiYhEgxYYxh1U2r+HrT17y46EUAFuxcwIKdC9iYsJH/rPmP99wpA6bQonKLELVURESk\n4KhnWKQYMcZwVbOrWD5kORVKVvDu90+Eh505TImwiIgUG0qGRYqh6Mho5g+aT/2Y+gHHHun0SJBn\niIiIFE0aJiFSTEWYCGZcOYNfd/7Ka7+/xod9PqRamWqhbpaIiEiBUjIsUsx1q9ONaXWmhboZIiIi\nIaFhEiIiIiJSbCkZFhEREZFiS8mwiIiIiBRbSoZFREREpNhSMiwiIiIixZaSYREREREptpQMi4iI\niEixpWRYRERERIotJcMiIiIiUmwpGRYRERGRYkvJsIiIiIgUW0qGRURERKTYUjIsIiIiIsWWkmER\nERERKbaUDIuIiIhIsaVkWERERESKLSXDIiIiIlJsKRkWERERkWLLWGsL7sWM2Qf8XWAvWPRVBfaH\nuhFFhGLpLsXTXYqnexRLdyme7lI83dXAWlstt5MKNBkWdxljfrfWdgp1O4oCxdJdiqe7FE/3KJbu\nUjzdpXiGhoZJiIiIiEixpWRYRERERIotJcOF24ehbkARoli6S/F0l+LpHsXSXYqnuxTPENCYYRER\nEREpttQzXEgYY0yo2yAiUpjovikieaFkOIwZY1obY54AsOrCPy3GmBqhbkNRYoxpYIypH+p2FBXG\nmFpK3Nyh+6a7dO90l+6d4UnJcBgyjn8CE4AoY0x0qNtUWBljyhlj3gBmGmM+MMZcGeo2FWbGmNLG\nmP8DZgLjjDF3e/brXnIKjDEljTHvAfOAD/Xf56nTfdNdune6S/fO8Kb/E8JTNaAW0NFa+7K1NjXU\nDSqMjDF1gPGAAfrjJByvhrRRhd8DQG1rbSvgReAhAGttRigbVYhdBtSy1jYDvgNGGGOahbhNhZXu\nmy7RvTNf6N4ZxpQMhwljTDm/hxWAM6y1x40xfY0xjxpj+oaqbYVYCjDWWvugtTYOmAz8YYxpE+J2\nFTrGmEhPD4YBVnl21wZmGGNahK5lhc8J73UL7AOw1n4DzALuMsZUCkXbChvdN/ON7p0u0b2zcFAy\nHGLGmKbGmMnAp8aYS4wxlYEjwEJjzAjgcZwb0xvGmKEn3PzFjzGmuTHmfWNMaQBr7QFgrt8p9YDG\nwIYQNK/Q8Y+ntTbd04OxC6hvjFkAjAEOA3OMMX005jVnQd7rZYGjwCFjTG3Paa8B7YFWnucopkHo\nvuku3TvdpXtn4RMV6gYUZ55vi28AS4CVwCVAT2vto8aYKOA84CFr7UpjzB5gEPB1yBocxowx3YHX\ngU7AduBlY4yx1ib5nVYCiLXWHgtFGwuTYPH0HPoc+Ab4CLjGWhtnjNkLPGyt/SEkjS0EgrzXL8V5\nf78A3AO0NcYcsNbuMcbMAx4GFmoCWCDdN92le6e7dO8snNQzHFq1gIPAy56fSF8GzjPG9ADGAmk4\nbyistVOAKkBMiNoa7g4AtwDNgJuNMQ2CJBLtgc0Axpjb9ZNfjk6MZ0PPfguUA3YCZTz7xgJljDFV\nCriNhcmJ7/WRQC+gHfAf4BqgrefciUCCJoBlS/dNd+ne6S7dOwshJcMhZK3diXPT7uP3+D3gOWvt\nSpyVaC41xjzl+WllDRAfqvaGM2vtOuAva+1fwA/ACAiYqXshUMUY8xVwPc7PqBJEkHj+w7PfAnHA\nGcDtxphhwGxgKZAYmtaGv2ze6+8CI6y1U4FNwFPGmEdwkuEtmgAWnO6b7tK90126dxZOWoGuAHi+\n9WVYaxP89kVZa9M8b4jbrLXdPfsrAh8Ab1prfzXGnAn0A3ZaayeGoPlhJVgs/Y4Za601xsQAK4A7\nrbU/+h2fCdQHXvAkIMXeqcbT0zPUHecn6vH6b9PhGSN49IR9kdba9Gze6x/ijBP+HSeeVwNLrbWf\nF2zLw88pxFL3zRwEi6ffMd07T9KpxlP3zjBlrdW/fPwHPAvsBqbg3EhOPB4B/IQzxi1z3zjgrFC3\nPdz+5RZLzzmRnv99CPjOsz0YZybvBaH+G8Lp32nGs3So2x9u/4DRwHSgvedxxAnH9V5XLMMynp59\nuncWTDx17wzDfxomkY+MMa1wvgE2Ah4FehljrvPMIscYE2GdWaaPAQ8aYwYaY4YAZwGqPegnt1j6\nyQCw1r4BnGuMSQR6AyWttXMLsMlh7TTj2QvPGgcF2eZwZoy5DeiLM9zhSgisH6r3et4olu7KSzw9\ndO/Mg9OMp+6dYUrJcP46AlQEyllr/8YZ13YBnoky1toMT0K8DOfbY3vgDuBBa+3a0DQ5bOUYy0zW\nWmuMqWCMeQ1nJm9/a+2t1lqNccvqdOJ5u7U22VqrMVY+U3EqRPwXqG6M6Q9ZS6PpvZ5niqW7co0n\n6N55Ek4nnrp3hiklwy4xxlQxxnxojDnfb3dpYBGQOfN2EnAc6GiMifTss+AU3LfWvmCt7WGt/aXA\nGh6GTiOWmQ7jjMVqY61dmP8tDm+Kp7uyiech60zkWgmsBfoZY8p7PhAzPyT1Xj+BYumu04hnJr3X\n/SiexYeSYRcYYxrglEi5ChhsfGVS/gJSgfbGmNqeb4OzgeuttengnWEqHqcTy0zW2gxr7SpE8XRZ\nkHhWBt/PpNbaRJwvGQZnMpz3Pa73elaKpbtOJ56Z9F73UTyLFyXD7jiCU+uyEdAAZ/xltCep+A5o\ngjP2CmvtDOCI8a04JVkplu5SPN11YjwvNJ4SVH69QmuAn4HWxpjHjDF3a4xgUIqluxRPdymexYhW\noHOBtfaAMSbZWnvUGPMlzozRxcA2a+18Y0xVYJgxpj3QGqfW4N4QNjlsKZbuUjzdlU08fwO2e34m\njbDWJns+EK/D+UC9Tz2ZgRRLdyme7lI8ixfVGT4Jxlm33eY2ocAYMxVYCPzbegrnG2cVmiuBo9ba\n9/K5qWFPsXSX4umuU4jnm5k/nxpjKuDUFn3XWvvPfG9smFMs3aV4ukvxFNAwiTwzxtTAKaXy2gn7\nI/y2MycevQ30BBoYY24xxjSy1sZaa19XsqFYuk3xdNcpxrOxJ55NPGMJW+jDUbF0m+LpLsVTMikZ\nzrsInCUTexljWkKWOsEYY9r4TYqbh7MG+XKcpSu1rGpWiqW7FE93nU48jxljjLX2eGiaHnYUS3cp\nnu5SPAVQMpwtY0yU33YEzvjq/8OpLfgqeOsE1zDGfAa8a4ypbYwpaZylQpsAN1lre1trdxT8XxA+\nFEt3KZ7ucjuexXnMoGLpLsXTXYqnZEcT6E7gebOMBqKNMdOttXM8b446QB9r7SBjzEpjzEBgC87C\nBYuttTf5XeMna+2nIfkDwohi6S7F012Kp3sUS3cpnu5SPCU36hn2Y4wxwFtATWAJ8IQx5l5jTElg\nH85MUnCKbX8N3GGtnW+tfcfz/CgAa+22Am98mFEs3aV4ukvxdI9i6S7F012Kp+SFeoazigHaAX2t\ntYeNMfuBSzz/1gDDPd8c04HfgdXgvNmsIy1E7Q5HiqW7FE93KZ7uUSzdpXi6S/GUXKln2I+19hAQ\nCwzz7FqIM1i+D5CGs0jBeGttL+B2YKgxpozGDQVSLN2leLpL8XSPYukuxdNdiqfkhXqGA03DWWu8\nlrV2tzFmNdAGqGitvRu83xhXAt1C2dBCQLF0l+LpLsXTPYqluxRPdymekiP1DAf6BdiP51uktXYZ\n0AUoBU7NQX1jzDPF0l2Kp7sUT/colu5SPN2leEqOlAyfwFq7G/gGuNgYc41xVudKwfk5BeupOSi5\nUyzdpXi6S/F0j2LpLsXTXYqn5EbLMWfDGHMxcA3OTyb/ttb+O8RNKrQUS3cpnu5SPN2jWLpL8XSX\n4inZUTKcA2NMNM6a5ZpNepoUS3cpnu5SPN2jWLpL8XSX4inBKBkWERERkWJLY4ZFREREpNhSMiwi\nIiIixZaSYREREREptpQMi4iIiEixpWRYRERERIotJcMiImHAGPOiMebRHI4PNMa0Ksg2iYgUB0qG\nRUQKh4GAkmEREZepzrCISIgYY54BhgJ7ge3AMiARuAMoAfwF3Ai0A77zHEsErvJc4h2gGpAM3G6t\nXV+Q7RcRKQqUDIuIhIAxpiPwKdAViAKWA+8D/7HWHvCcMxLYY6192xjzKfCdtXaq59iPwF3W2k3G\nmK7AK9baXgX/l4iIFG5RoW6AiEgxdR4wzVqbDGCM+daz/yxPElwRKAfMPvGJxphyQDdgijEmc3fJ\nfG+xiEgRpGRYRCS8fAoMtNauNMYMAy4Ick4EcNBa264A2yUiUiRpAp2ISGjMBwYaY0obY2KAAZ79\nMcBuY0w0cIPf+Yc9x7DWHgK2GmOuATCOtgXXdBGRokPJsIhICFhrlwOTgJXATGCp59BzwGJgIeA/\nIW4i8JgxZoUxpglOonyrMWYl8CdweUG1XUSkKNEEOhEREREpttQzLCIiIiLFlpJhERERESm2lAyL\niIiISLGlZFhEREREii0lwyIiIiJSbCkZFhEREZFiS8mwiIiIiBRbSoZFREREpNj6fw8BFcjgDBnI\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fcd3065e898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "computer_box.plot(figsize=(12,9), title=\"Computer Box Temperatures\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Work with a date range (and a list)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "cursor = db.environment.find({\n", " 'date': {\n", " '$gte': Time('2017-04-10 12:00:00').datetime,\n", " '$lte': Time('2017-04-10 23:59:59').datetime \n", " }\n", "}) #.sort([('date', -1)])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Num records: 40822\n" ] } ], "source": [ "print(\"Num records: {}\".format(cursor.count()))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Convert to list\n", "records = list(cursor)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_id': ObjectId('58eb73c1ba6c190d5c50e6b4'),\n", " 'data': {'telemetry_board': {'count': 1047161108,\n", " 'current': {'cameras': 507, 'fan': 45, 'main': 548, 'mount': 148},\n", " 'date': '2017-04-10T12:00:01 GMT',\n", " 'humidity': 1.8,\n", " 'name': 'telemetry_board',\n", " 'power': {'cameras': 1, 'computer': 1, 'fan': 1, 'mount': 1, 'weather': 1},\n", " 'temp_00': 9.1,\n", " 'temperature': [7.31, 7.56, 11.31]}},\n", " 'date': datetime.datetime(2017, 4, 10, 12, 0, 1, 987000),\n", " 'type': 'environment'}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Examine first record\n", "records[0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_power_reading(records, key):\n", " # Get the timestamps\n", " ts = pd.Series([rec['date'] for rec in records])\n", " \n", " power = pd.Series(\n", " [\n", " rec['data']['telemetry_board']['power'][key] \n", " if 'telemetry_board' in rec['data'] else None\n", " for rec in records \n", " ],\n", " index=ts\n", " )\n", "\n", " if key == 'computer':\n", " key = 'main'\n", " current = pd.Series(\n", " [\n", " rec['data']['telemetry_board']['current'][key]\n", " if 'telemetry_board' in rec['data'] else None\n", " for rec in records \n", " ],\n", " index=ts\n", " )\n", " \n", " \n", " return pd.DataFrame({'current': current, 'power': power}, index=ts).dropna()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df0 = get_power_reading(records, 'computer')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>current</th>\n", " <th>power</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2017-04-10 12:00:01.987</th>\n", " <td>548.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:04.004</th>\n", " <td>542.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:06.017</th>\n", " <td>789.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:07.029</th>\n", " <td>557.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:09.043</th>\n", " <td>615.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:12.062</th>\n", " <td>560.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:14.083</th>\n", " <td>514.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:16.092</th>\n", " <td>687.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:18.101</th>\n", " <td>736.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:20.118</th>\n", " <td>705.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:22.136</th>\n", " <td>671.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:25.164</th>\n", " <td>699.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:27.186</th>\n", " <td>741.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:29.208</th>\n", " <td>676.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>2017-04-10 12:00:31.232</th>\n", " <td>783.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " current power\n", "2017-04-10 12:00:01.987 548.0 1.0\n", "2017-04-10 12:00:04.004 542.0 1.0\n", "2017-04-10 12:00:06.017 789.0 1.0\n", "2017-04-10 12:00:07.029 557.0 1.0\n", "2017-04-10 12:00:09.043 615.0 1.0\n", "2017-04-10 12:00:12.062 560.0 1.0\n", "2017-04-10 12:00:14.083 514.0 1.0\n", "2017-04-10 12:00:16.092 687.0 1.0\n", "2017-04-10 12:00:18.101 736.0 1.0\n", "2017-04-10 12:00:20.118 705.0 1.0\n", "2017-04-10 12:00:22.136 671.0 1.0\n", "2017-04-10 12:00:25.164 699.0 1.0\n", "2017-04-10 12:00:27.186 741.0 1.0\n", "2017-04-10 12:00:29.208 676.0 1.0\n", "2017-04-10 12:00:31.232 783.0 1.0" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df0.head(15)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7fcd1d5f6860>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHwCAYAAACPE1g3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecFOX9B/DP0LsgIBbAA0RFFCwICsGGJZaov0SMNWqK\nsSRGjUmwG0skiihiVwR7BBsqiPR69M5xd9wBBxztjgPuuN7m98fu7G2ZeeaZuuU+79fLl9zulGdn\nd2e/88z3+T6KqqogIiIiIiI5TeLdACIiIiKiZMIAmoiIiIjIAgbQREREREQWMIAmIiIiIrKAATQR\nERERkQUMoImIiIiILGAATURERERkAQNoIiIiIiILGEATEREREVnQLN4NMNOlSxc1LS0t3s0gIiIi\nohS2evXqA6qqdpVZNuED6LS0NKxatSrezSAiIiKiFKYoyg7ZZZnCQURERERkAQNoIiIiIiILGEAT\nEREREVmQ8DnQRERERGRNTU0N8vPzUVlZGe+mJJxWrVqhe/fuaN68ue1tMIAmIiIiSjH5+flo3749\n0tLSoChKvJuTMFRVRVFREfLz89GrVy/b22EKBxEREVGKqaysROfOnRk8R1EUBZ07d3bcM88AmoiI\niCgFMXjW58ZxYQBNRERERGQBA2giIiIiSinz589Henq6Z9tnAE1ERERECaG2tjbib1VVUV9fb3k7\nXgfQrMJBRERElML+/UMGNu8pcXWbpx3fAU//qr9wmY8//hhjxoyBoigYMGAAmjZtimuuuQY33HAD\nAKBdu3YoLS3F/Pnz8eSTT6JTp07IysrCzJkzccUVV2DIkCFYvXo1pk+fjuzsbDz99NOoqqpCnz59\nMHHiRLRr1w5paWm444478MMPP6CmpgZTpkxBq1at8M4776Bp06b49NNPMX78eAwfPtzV188eaCIi\nIiJyVUZGBp5//nnMnTsX69evx7hx44TLr1mzBuPGjcOWLVsAADk5ObjvvvuQkZGBtm3b4vnnn8fs\n2bOxZs0aDBo0CGPHjg2t26VLF6xZswb33nsvxowZg7S0NNxzzz146KGHsG7dOteDZ4A90EREREQp\nzayn2Atz587FyJEj0aVLFwDA0UcfLVx+8ODBEXWZTzzxRJx33nkAgGXLlmHz5s0YNmwYAKC6uhrn\nn39+aNlf//rXAIBzzjkH33zzjauvwwgDaCIiIiLyXLNmzUL5zPX19aiurg4917Zt24hlw/9WVRWX\nXXYZvvjiC93ttmzZEgDQtGnTmBxqrzCFg4iIiIhcdckll2DKlCkoKioCABw8eBBpaWlYvXo1AOD7\n779HTU2N1LbOO+88LFmyBLm5uQCAsrKyUKqHkfbt2+PIkSMOXoEYA2giIiIiclX//v3x+OOP48IL\nL8TAgQPx8MMP409/+hMWLFiAgQMHYunSpTG9zka6du2KSZMm4eabb8aAAQNw/vnnIysrS7jOr371\nK3z77bc488wzsWjRIjdeUgRFVVXXN+qmQYMGqatWrYp3M4iIiIiSRmZmJvr16xfvZiQsveOjKMpq\nVVUHyazPHugEUlev4pnvM7D7cEW8m0JEREREBhhAJ5A1Ow9hUnoeHvpyXbybQkREREQGGEAnEC2b\nJtHTaoiIiIgaMwbQREREREQWMIAmIiIiIrKAATQRERERkQUMoImIiIiILDANoBVF+VBRlAJFUTaF\nPXa0oiizFEXJCf6/U9hzjyqKkqsoSraiKFeEPX6Ooigbg8+9riiK4v7LSQ0cQ0hERERknV9TeTeT\nWGYSgDcAfBz22CgAc1RVHa0oyqjg3/9SFOU0ADcB6A/geACzFUU5WVXVOgBvA/gTgOUApgP4JYCf\n3HohRERERKTjp1HAvo3ubvPYM4ArRwsXycvLwy9/+Uucc845WLNmDfr374+PP/4YS5cuxSOPPILa\n2lqce+65ePvtt7Fhwwa8+OKL+OabbzB16lTcdNNNKC4uRn19PU477TRs27YNW7duxf3334/CwkK0\nadMG77//Pk499VTceeedaNWqFdauXYthw4Zh7Nix7r5WHaY90KqqLgRwMOrh6wB8FPz3RwCuD3v8\nf6qqVqmquh1ALoDBiqIcB6CDqqrL1ECNto/D1iEiIiKiFJSdnY377rsPmZmZ6NChA8aOHYs777wT\nX375JTZu3Ija2lq8/fbbOOuss7BuXWAejEWLFuH000/HypUrsXz5cgwZMgQAcPfdd2P8+PFYvXo1\nxowZg/vuuy+0n/z8fKSnp/sSPANyPdB6uqmqujf4730AugX/fQKAZWHL5Qcfqwn+O/pxXYqi3A3g\nbgDo2bOnVIOqauvQomkTMDOEiIiIKIxJT7GXevTogWHDhgEAbrvtNjz33HPo1asXTj75ZADAHXfc\ngTfffBMPPvgg+vTpg8zMTKxYsQIPP/wwFi5ciLq6OgwfPhylpaVIT0/HyJEjQ9uuqqoK/XvkyJFo\n2rSpb6/L8SDCYI+yq1m7qqq+p6rqIFVVB3Xt2tV0+bKqWpzyxAy8OmuLm80gIiIiIgeiOzY7duxo\nuOwFF1yAn376Cc2bN8ell16KxYsXY/HixRg+fDjq6+vRsWNHrFu3LvRfZmZmaN22bdt69hr02A2g\n9wfTMhD8f0Hw8d0AeoQt1z342O7gv6Mfd0VxRQ0AYMrqfJMlExs7z4mIiCiV7Ny5E0uXLgUAfP75\n5xg0aBDy8vKQm5sLAPjkk09w4YUXAgCGDx+O1157Deeffz66du2KoqIiZGdn4/TTT0eHDh3Qq1cv\nTJkyBUBg1ub169fH50XBfgD9PYA7gv++A8DUsMdvUhSlpaIovQD0BbAimO5RoijKecHqG78LW4eI\niIiIUtApp5yCN998E/369cOhQ4fw0EMPYeLEiRg5ciTOOOMMNGnSBPfccw8AYMiQIdi/fz8uuOAC\nAMCAAQNwxhlnhHqxP/vsM0yYMAEDBw5E//79MXVq/EJJ0xxoRVG+AHARgC6KouQDeBrAaACTFUX5\nA4AdAG4EAFVVMxRFmQxgM4BaAPcHK3AAwH0IVPRojUD1DVbgMMAqdkRERJQKmjVrhk8//TTisREj\nRmDt2rUxy7Zu3Toir/m9996LeL5Xr16YMWNGzHqTJk1yp7EWmAbQqqrebPDUCIPlXwDwgs7jqwCc\nbql1jRQzOYiIiIgSF2ciTCCcQIWIiIhSRVpaGjZt2mS+YBJiAE1Cqqri+/V7UF1bH++mEBERkQUq\ne+Z0uXFcUiKA5sfDO/OyC/DAF2sxliUCiYiIkkarVq1QVFTEIDqKqqooKipCq1atHG3H7kQqCSlV\ncocTqZzd4fJAicB9xRVxbgkRERHJ6t69O/Lz81FYWBjvpiScVq1aoXv37uYLCqRUAJ3sEvEqUQvm\nE69lREREZKR58+bo1atXvJuRslIihYO8owT79RMwticiIiKKCwbQJJRI6SREREREiYABdAJSEjCb\nmx3QRERERAEpEUAnYu6wHYn8KlLlGBMRERE5lRIBtEZJlXyDBHoZ2jFl+ExEREQUkFIBNLkvFMsz\ngiYiIiICkGIBtGyawV0TV6Dv49M9bo11iZgl0VDGLgEbR0RERBQHKVEH2mrqxrxsFhWXlYgDGomI\niIjiKaV6oMk7idg7Hi/VtfV48rtNKCqtindTiIiIKA5SIoBOtQoRidTnG0rhSK1D7MjPGfvwybId\nePbHzfFuChEREcVBSgTQmmSvwpGIecbaEU3EtsVLffBqop6HhIiIqFFKqQCa3MceaCIiIqJIDKDJ\nBOtAExEREYVjAJ2AEikTJZHaQkRERJQIGEAnkgTu5l2SeyDeTSAiIiJKCAygSUp5dR2KK2ri3YyE\nkmrVX4iIiEhOSgTQjGO8E57BUVtXH7d2JJJkr/ZCREREzqREAO2HotIqpI2ahk+W7RAul1twBGmj\npmH25v2295VIs/8xWCQiIiKKlJIBdF29ihqXe0vzD1UAACav3CVcbs3OwwCAGRn7XN1/vDB8JiIi\nIoqUkgH0rR8sQ9/Hf3J1m02bBELJukY2ewY7oImIiIgipVQAvftwoJd42baDrm9bC6DrPUy4TsTQ\nnAE0ERERUaSUCqC91ESR7IF2IQpm0EpERESUuJIqgC48UoV6kwD2SKU3pdasBrWpEgO7NaCxvLrW\ns/cmXhLxjgERERF5L2kC6PxD5Tj3hdl4c16ucLnqWpZac5VLVwJDR8/FGc/MdGdjcZYqF0dERERk\nT9IE0PuKKwEA87cU+rbPXQfLDSfLKK2qxcGyalf3Zye9uv9TM/DXL9ZGPFZdWx86Xlbc8eEKnPPc\nLOwvaVjXrWDxcHnq9D6z55mIiKhxS5oA2m9rdh7C8Jfm4bPlOyMe14KnX/x3Ls5+blbMeqrP4VVZ\ndR1+WL8n4rFHpqzHeS/Osdwbv2BLIYrKqjHkP3NCj7EOtDEeGSIiosYp6QPo6tp6bD9Q5mgbO4rK\nUFlTF/HYtsLANtfsPAQgNlgy61GNZ9w5KziJS22983QWBolEREREkZI+gH5q6ib87sMVttevr1dx\n4cvzce+nq11slT1a7zU7fYmIiIgSV9IH0OlbixytryVcLPAxt9pMIkzlfbg8Nr9blM6xcEshJi3Z\n7mWTEg5zoYmIiBqnpAugtUF9ZVW1gb99DmOMBhU2PO9TQ0RtcOGYXDp2oaXlf/fhCjzzw2bH+00G\n8b+8ISIionhKmgC6uKIh53hxzgH0f/pnpG894H3AanP7fvcir8o7iJq6yJxnJ204UFoV85jZxQMR\nERFRY5A0AfQfPloV+vfy7YG0jVV5hzzbn1HoqZfGUF+v4pALJe2cxKc3vLMU//0py3EbiIiIiEgs\naQJoI251ijrZzDM/ZOCs52YhY0+xK22xO4gwe/8RAOJjMn5ODj5emmdvB0RERESUnAG0naB5X3El\n6nSmAbcaq+qlMXy8dAcAYPRPWVKB+CdL87C1sNTw+YrqOsPnrNALxF+ZtQVPTc1wtA0iIiKixizp\nAujwFArZ2G5vcQXOe3EOxs7Kllr+YFk1luQeiNqvbAvNl39yagauf2OJ4fOrdthLTfFi0pPwvOr3\nFm5zffvJZl5WQczMj0RERNS4JF0AvdokuNQLIgtKAgPiFuUciHlOz+0TluObtbsBeFeq7Eiwikja\nqGn47wxvcpe1CVXsShs1Db+f1JB7/i4DaPz5k4Z64XkHylBb53yyGiIiIkouSRdAm3GjUkTOfuP0\nCi+8PX+rK9vRLh20IyDbU6qqqicVNopKqzAzY5/r200UGXtK8PJMubsaRERElDqSPoCODvzKdfKH\nD+pMCmJ7f6bt0X/81VlbkLm3xLV2OBXeczph8Xb0enS69Lp19So279F/LeG93ndOXIm7P1mNI5Xi\nac+T2YrtB+PdBCIiIvJZ0gfQ0SYuyYt57K6JKwHoB7ehVA3TDlj7+cVVtXUYNycHV45bZHsbmsqa\nOgz890zd9AyzFOjbJywP/XtxWI73lyt3WWrD2FnZuOr1RcjedyTmuZ/Depx3FJUBAOqZ5UBEREQp\nJOkD6Oi4t95CKsKOojI8MmW9q+3RgtisfUfw7x8ybKdG6K13qKwa87MLUFxRg9E/ZQpW1n84PAfc\nScLG+l2Bcn0FRyodbCUx7C2uwK6D5a5tb0P+YVTWuFNFhYiIiBJTs3g3QEZ03eLS4AC8V2ZtcbTd\nqlrzrlG7AfC6XYexbtdh3Dk0Dcce1cry+uXVdWjbMvLtuXLcIuwrCQStWwvLYtax2kdeUlmDr1bl\nWw6mcwv8zRH30vkvzgUA5I2+Wm4FwUHec7gC176xBDec0x1jRg50oXVERESUiBK+B7qipi6mbvGk\n9Lz4NAYw7bqNjrcvfHm+rd3opWNowXPo72LzHuDFBpVH1u48jCe/24Rnf9xsOSCObocR2cD846V5\n+GBR4lb4qK9X8bf/rcXanbEVYMLfppJgrvfGfHcm1CEiIqLElPABtAfFIQxt2h0b+HhRW9ktk1dF\n5i7rtfW2YN5zdLD9+pwcHCr3bnDfopxCHKmsDTZMvOxTUzPw/DRBSgqCeeSzc1BV6396xIHSKkxd\ntwd3h5Ww0/j48SQiIqIEkfABtFOHoypwzBbURj4UXFYVhUU24mmjXmBZNXX1uuXgxkqmsHy2fAfO\ne3GOozZYdfuEFa5u78PFeXh19hbdQaJEREREfkqKHGgnmjSJjHj/+HHDxCAysbAb9ZHD9xlOtjd1\n/NxcvD4nx3Q5o9czY5N+LWYv+tZ3HSxH2qhprm+3IjgwL94D9BL3fgQRERH5JeV7oMMJe5blN+La\nPj5btjP07xJBreT8Q9aqRFipROLU/OwCFB6pCv29XKcu8vfrdvvWHr8xoCYiImp8Ur4HOlxZlf3e\nS5lUaKv50jVhk5mc+e+Z6HtMe6vNijAnqwAV1XWorfcugA7vXVbVwGQpZp6MGgSarFSVOc9ERETU\nCHqg3wmbJnv7gdjSb4miXgWy9zdMTKLY7NucmL7drSaZ+t2H7uY5JyzBW8GAmoiIqPFJuQB6+sa9\nEX+/FRZAR3O7wIZRvrSft/m/Wp3v497852dVFj1M2SAiIqKUC6ALwvJxzchUdNgZNUudWfxmJcDL\n2FMiv7CkbToTrJQFJ56JlsAV+mK42dTXZm/BJWPmu7KtJDqERERE5JJGlQMd7bPlO02XWbPzMAC5\nQMlqDvT36/dYWt4u7TVQwGuzzSuaEBERERlJuR5or5RXBwYg1tWryLOYSx0eWLtRFs8toYlOCFW1\ndSg2nVgm9r1bs/MwauvMp4QnIiKi1MEAWtKobzYACKR0FFd4N4Ofn1bviJ2aurG67YPlGPjsTN3n\nwgd06t1keHLqJq+aRURERAko4QNov3v3DpRWoaYutqdx0265fGW9/mXmycqprKlDwZFK4TJW+u/z\nD5XjvYVbsftwBepMSvutzDO/mDhQWq37+LQNe3UfJyIiotSU8AH0joPWJhFxaktYKTkjf/1ireft\nWLa9CPuKxcFkqrl9wnIMfkF/ynE7Ax7vnLgS/5mehWGj52LcbLlpz4mIiIjMJHwAnYiiK3NoFm4p\ndG0fd01cictfXQDAfk3oZCPTC2xFePWRJVuLXN02ERERNV4MoB3yclBgCQf5JZzGcjFDRERExhhA\nR9ELkHIEaR2jZ2RFPqATUIenH+y1kZahptB8d35WIXGyqx837MF3a3cDSK562UREROS9Rl0HWtb6\n/GLD5z5O32G6fvigxKGj51rad21dve7kKMmqsLQKx7RvFe9mmPrL54E89+vPOiHi8VS6mCEiIiJ7\nUroHeqMg8HVLTEDlcnfl7z5cgXW7UmcilGRMgbDak80gmxq7ypo6PPTlOhSUNK6B0ETUeKR0AH3j\nu0str3PHhys8aIl96Rz85poJi7fjpMemh/5OGzXN8jaS8QKAyG/TN+7Ft2t348WfsswXJiJKQkzh\nCHP7BOvBc2VNZJ3q6lrOSpeonvtxsyfbje5vZpBNRESU2lK6BzoeRv+UGe8mNApPfLcR/Z6c4cu+\nOIiQiIiIwqV0AF1RU+f7PvVmMSRrwus3G/l02U5L769sDFyqs++8A6kziJOIiIiccxRAK4rykKIo\nGYqibFIU5QtFUVopinK0oiizFEXJCf6/U9jyjyqKkqsoSraiKFc4bz6louXbBXnfghF9y7cV4avV\n+fqrSe47PfdAzGM3vNOQS8/eaCIiIrIdQCuKcgKABwAMUlX1dABNAdwEYBSAOaqq9gUwJ/g3FEU5\nLfh8fwC/BPCWoihNnTWfks15L87Bfhsj88Pzit+Ym6O7zG/fW4ZHpqwP/c1qGEREROQFpykczQC0\nVhSlGYA2APYAuA7AR8HnPwJwffDf1wH4n6qqVaqqbgeQC2Cww/37oq6eAwPdUlevYtqGvY62MWbm\nlpjHtjPNgoiIiHxiO4BWVXU3gDEAdgLYC6BYVdWZALqpqqpFSPsAdAv++wQAu8I2kR98LIaiKHcr\nirJKUZRVdtvnppd/jg3YKLFs2h1b85vVMIiIiMgLTlI4OiHQq9wLwPEA2iqKclv4Mmpg3mbL99FV\nVX1PVdVBqqoOsts+Nx0orYp3E8iEXm6yGykcVbWRAxUZkhMREZGTFI5LAWxXVbVQVdUaAN8AGApg\nv6IoxwFA8P8FweV3A+gRtn734GPUyLg5EE8NDiqM7m1WVRX7S5xf+Dz1XUbE32XV/ld2ISIiosTi\nJIDeCeA8RVHaKIqiABgBIBPA9wDuCC5zB4CpwX9/D+AmRVFaKorSC0BfAIk17R/5wurU2OFKqyID\n2C9W7NJdbv6WQlvbX73jECrCguSNOqkhlPzScw/gie82xrsZRESUpGzPRKiq6nJFUb4CsAZALYC1\nAN4D0A7AZEVR/gBgB4Abg8tnKIoyGcDm4PL3q6rK7jyK8ewPm3HJqd1Cf/d+dBrqg0H3h0u2Ryw7\nP7sAtwzpGdOrXVltL/Xi3YXbsPtwhdUmU5K55YPlAIDnrz8jzi0hIqJk5Ggqb1VVnwbwdNTDVQj0\nRust/wKAF5zsk1JfXlF5xN/1Ej3W4QHy6h2HUHDEfvpG5t4S2+sSERFR6nMUQBPZEd5bXC+IjncU\nlaHn0W0sb/M3b6fbbRqAyFGvMtkmRyrNZ04kInLTef+Zg77d2uGTPwyJd1OIGiUG0OS78Bzopdv0\nZx1cv+swrntzCZ69rr94W6F/iZM0OKUKEaWSfSWV2GdjUioicofTiVSIHKk16IHWJkZ5amqG7vNe\n2lbISVnIXUu3FuHz5Tvj3QwiInIJe6DJd26WsSNKBje/vwwAcMuQnnFuCRERuYE90JTUtHSQp6Zu\n8mj7TP4gIiKiSAygKa7c6ow2q7pRXFHj0p7MuTEDIhERESUuBtDUKOQWlNpaL2vfEZdbQkRERMmO\nATQlJNk8aVVVkTZqmreNsSh6WvFUUVJZg6pab+Y+Kq+uRVkVywES+a22rh5vzc9FZQ3nNSOyggE0\n+a5OZmYUSSvyDrq2LRIb8MxMjHxnqSfbPvPZWej/9M+ebNtNew5XYBOnd09puw6WI2tf45lM6es1\n+XhpRjbGzcmJd1OIkgqrcJDvdh5smGnQaUUOTmLirw353gSP1bX1nmzXbUNHzwUA5I2+Os4tIa8M\nf2kegMbzHpdXB3qey3kHiMgS9kATJal52QW+Do4kouT36Dcb8MGibTGPKwlWXzQ99wAKTQaHE8UT\nA2jyXWKdppNTQUkl7pq4En/5fE28m2LLtsJSV1J5qmrrsLOo3HxBck1lTR12HeQxT1ZfrNiF56dl\nhv5O1Eqdt3ywHDe8k+7LvlRVxdhZW5B/qPF+ruvqVYz+KQsHSnnRIosBNFESqgqmPGgzNiaTvANl\nuOSVBRgzM9vxtv4+eT0ueHkeKqo5AMovD325DsNfmufZgFLyV4LGzwCAHT5dHOcUlOL1OTm499Pk\n7JBww8IthXhnwVY88a03cyqkIgbQROSrwmAPx8rtsQNArfZKL9xSCCB5cqhTwfzswDF3czBwohs7\nawsy98ZvYGFZVS22FtorxSkrwTI4fFUf7IZvzOcR7ftcU9d4j4FVDKDJd4mWa0f+ahJ8++t17h03\npqAsWdXWN64f2KraOrw+Jwf/99aSuLXhrokrMeKVBXHbP1Eiq69X41KGkQE0JaQfN+yNdxPII9oF\nlF6sbHUWR4bb7vpixU58syZfuExNXeM86vG8bvCyXKeaqEnQUapr67F6x6F4N4M8lLm3BE9P3WT5\nM/nU95tw6pMzUO9zBwwDaEpIszbvj3cTLCk1KAE1N2s/NuQfjnn81Cd/0h0J3xho9x/0TnVJ8lue\nEqpq62I+t49+sxEPT14vtT7fq9SS6BNAjf4pC795Ox3ZKTo77FvzczHgmcSvhe+l3324Ah8t3WG5\n+srny3cC8L9DhQE0xVWin7RlvTBts+7jv5+0Cte+EXvrt7KmPmIkfKr4dNkO/PZdyclWTCKwt+bn\n4tNlO4TLuPnp2bS7OOHKZu0+XIEt+70JGH79VjpO92jyGs4qmXwSPbNu895ADfqissT6jrrlpRnZ\nKEmweQ12FJXh95NWRgzS3nWwHDkenZOSDQNo8l34ifr3H62MX0Nc5OTE998ZWQk3HbldT3y3Ccu3\nH0ReWHWQQ2XVEflpohz48Jj6pRnZeOI7/0aEXzN+Ma54baFv+5MxbPRcXP6quE3frs1H2qhpKKm0\nVhM8Y4+zQXGigOvJqRkAgMPl1Y72kQjY05767L7HBUcqkTZqGmYn2R1TWc/9mIm5WQVYlFMYemz4\nS/Nwmck5qbFgAE2+C+91bsyjnjVvz98a7ya4LnyGyLOemxUxBbgov03LgZYdEOJ2bHOwLPkCvncX\nBFKB8g9WxLklsapS6fsddsFQUV2HeVkFwsWrautsBVaVNXW44e10bPRo1s9obl4gfLw0D09NbTxl\n0LSL0E9M7pTFW0FJJVbayqPn1aMIA2jyXZMEv1WYiCpr6vDi9MyYescFNlIOjlTW+J6qsHG3TjCg\n04Wp/ZhXs5SSZVYHYGrsTh7RmHtmn/huE+6atBJZ+4x78V+cnoU/frwKq3dYC1w27S7Gqh2H8MwP\nGU6baUn4t3H4S3NtVR15amoGPl7qcTDpwefOdvpKknwHrnp9UUQnhiztO87KWfoYQJPvmjCCtuyj\n9Dy8u3Ab3l0Y2Vttpwd/+EvzcO4Ls91qWlzxk9Tw4yYKaGvq6vHd2t26vf9eln9K1SA7ryiQolQq\nSN3aEVzmcLm11Bo3TV65C7d+sEy4jN6F166DFVi7M3bwM0XSjl2ix5cHSgN31qxWt9CWtvryVuUd\nxCWvzEd5tbXURrsdO1rxDb8ryjCAJt8l+LnGV9skJ0fQitu7UeTejx90qd5QwclO9jOSovGZJTLH\navzcXDz45TrM2LTP5hac27S7GG/OyxUuk7WvBK/PyfG0Hf/31hL0eWy6p/sA7PfaufmZ/ufXG7Ak\nt0i8v1Avo4s7Fu5PxWaH+feJJll+075fv8fWelY/Gy9Mz8S2wjJk7k3twYYMoMl/yXK28cEljXBy\nhMoa84sAo+DDcPpofqaECkoqAQCH4tgbes34xXj5Z/H07f/3ZjrGztri6diItTsPW5qwJ5THbTOy\ndbNTLFlJ+Z/oAAAgAElEQVRqNotMXJKHq15fhOXbxIF9MvD77aitq8dny3eg1qQj5ZrxizBh8faY\nxw+FjfGoq1dNt5OIn7fi8hqc8czPWKEzk63fGECT71KldJ0Ru7moqUT0Hr/0cxYAYL3FQVI7i8px\nyhMzMHnlrtgnk/CQb9l/BMUVzgNamd4h0TJe9jzqzTYZbu3OQxHBbEUwncRqRREvab3mVvPytcNa\naXTRZ7JeoiutqsU/pqw3fa/Gz8mJGMC2aU/ge7/rUOIMenUaJ3qRI1xfr+KZ7zMi7lJ+vmInHv92\nEyal5wnX3bS7BM/9qF9aVTPynXSc9PhPMY+v29WQuhNK4fD7QynY37r8wzhSWYvxc2PvVPmdq80A\nmnyX6PlidiiI/4VBUWkV0kZNQ/rWA3FthxmZShd6RzK3MHA78KdNqTFL5eWvLpSvmS1BJghIpIu7\nDfmH8X9vpeO12VtinhsflsaRW1CKGS685zV19bq9cmaKSu1VZjlQGsjnHPX1Rkvrid4hLzoE60Mp\nHNbOX5OWbMeU1fl4d4G4itArs7ZEDmDz+SM4Y9Ne9Hp0mlQ+rtXfJi87aLcdKMWk9Dz86eNVoce0\n9Du7F97h7/Eagxz3orDzcyi9x+S37avV+dhXXGmpLSWVNUgbNQ1zMnUq1STOaUqIATT5LlXHEPoZ\nnExZHTvdsjboZ8Ii60GCn5pI/ErpLSKcQjpJP1NZLsyqJvejb7yQl4dO9I3YXxIIMM3yYS8duwD3\nfLrGcVsmLckz7ZXTY/eCX5vl0WiWUtP92tutZVrOud8lHN14fV9JBPBjZ22BqgI7D5pXmwkPiA+U\nVknnavv1HYpbRoXgBRZX1OCRKetx+4TlljaZsz/Qs/6GybiIaImUVsIAmnwX755ar5m9PjdOAAuy\nxTVoNRXVdXhjbo5prpsdm3YXI23UNN1ZqUQXE3YDkldmBvJn1+5idQA94ce8vLrWduDmF+1C2q+f\nwyMeBLKitntxO1m0v73FFUgbNQ1Lcq3dgdLSZopKE3uGP73z6iNT1uPFn7KE62kX3vWCU6DeW3XF\nqwtx1euLLLXRXfG56A0n893UUrAKbX5+7P4c6n2/WIWDiBwJP4W8MS8HY2ZuweRVsT3WTv2wITCi\ne3amXDCvaSqaiTD4f70fy9yCQI+F1Soim3YX49YPlhkPQDRQXF6DZR4NdLJ7oldVFfd8sjpiZjDt\nWIVv8uznZulO0623W0/zBgUvU7sTYZYnrWfdrsPYX2LtlnFqX7YDq/IOAQjkyXphQ/5h7C1OnLxl\nWduDs6Ja/ZwVSfTIy25xY34xdh+2eexMdvLD+j3411cb7G3bbNfBYya8iJRYxk2J0//MAJriIBVT\nOBLhS621YW7YDGllVYGg0Wqt39mb9yNt1DT7J30BmRQON9d7/LtNWJJbZLl01q0TluGm95Z5Mh31\n1HX2yknV1KmYkbEPd01cKVwuutJJvMYdCNOagm2yUBAj5Po3l+DiMfNttckq4QBM0Xqut0TM63PQ\ntW8swfkvzvV4L/4oLq9BsQsVaULBo8mb/as3FmPYaGvHTtvmtuAFAKD/ffrrF2vx5SqdgdUu4kQq\n+hhAk+/4ZbROpvNErzSX7Ak+2uTgCVlmOmGrud92q0bYDaA1eq0U9QRv2h0IuF+dFTvIzSmrvaca\npxM3JMKFnkZ7P+32xpdXW6xuYfOYJVLKmehY+d0TKCNbJ8ff68/gvKwC04vegc/OxMBnZza0yXGj\n3D/qwi024t/QRHrlDKDJd434uw8gPgNBvDjkosDCbtAhDKZsB0DO6NWtvnPiCkfbtB0A61RMcPp9\nEq1+IFjZ5X8epAWEcqB9+j74HQjH6zxnt4PCi46NXYKBe14cn+LyGtw1aWVE5QorLFfhsLUX+5yX\n2xNs2+Y2G0rdiQ9e2qhp+Pvk9XIb9aCdNXX1eO7HzREXV5t2F+ODRdtsbpEBNMVBIvXouEWBt4FA\n9LlJb1d6569E6nHU2O1JdvqpcfP9mZ9daL6QgP0LDG1994jejh1FgQBI7xax08OpHQM7OdAythaW\nIt3igDqrhIMIHb7HVvfnlF9nZb086pz9R6THG4iOgVare3tY2oPGbsAuM6mP3xdLvuUb2zzfGH2G\nv17TMBbHiwt/0Wfjxw17MGHxdvxnembosWvGL8bz0zIFa4kxgCbfpWoPtFYiy4uAwO4m9Xos4832\nrfREzOPVcaSyBo9+swFlgqoP9lMwjFM4xMGctpC/l1Si3XndAz3ilQW45YOG0lrJ9rmzW5PYbnNt\n90BaXHHZttgZ5C57dSFuem+Z1PriqijOPkx6r6XgiL10q2SjH5A6SxlLJFohqlo7gy4MNHNtS0SS\nUnEQIQCkbw30oPgRouie7ETZD14WWtDZrxdl7GR7rhdsKUTXdi1x2vEdTJdVVfePzXn/mYOy6jqc\n0LE1/nJJX1e3rTexgUzznb5G2xdwgue0i7qlCT6ls91BhE7pfq8S8ZZSQop9Z4QpZw5TqrygW6bN\nu90JiY6d3oWb43OqcDYhh9t2EXugyXcnHdM+3k2IKzvff5kUDv19eXe28SIol+pFNVnhjg9XRNRv\nbWin8dZFM3tZ/ZEsszi4zQq9qXWtNE839cdmGBi+1pqdhyxXehFdSFv91B6prDEd8OpFsJtAv+WO\n2T0+fvVOxmsWTZnvvzdjTATP+XXMJV57Kg1stooBNPmufavUvvEhOo/MzNiHPo9Nt7xNxykcgmV2\nHSxH2qhpWL0j9taqF22yG7CJeqCd9hKKRu17cYK3m1ITr0oLoubuK67Er99Kxz91atGKBoWKjoHV\n1/fHj1bhV28sRo1gwiD7QYfdQXl292e8viiI9Pt2+7sL7A++Ahy0U5zDYYv9nmSfwz+HXd5WD11D\nCqCj3SaE8HPRkcoa0xksZTCAJvLRuwsd/ugET4H65zN7ORzpWwMDrb5c2TBQ7JAHtY8lmmKyovFT\nUj0lPv+4ejkTXfjFhJW9aHXBLe9XN00nQJvxcNNu85KH4dw8PNrslHqlHJON09nU/OpJ1mZ29CKN\nQe8YeFmBQrSMsHJFnAJMvwbihy7KfNmbNVaPuTbjpgIFL0zLNJ3BUgYDaPJdIn4Z3WQ5DcHStq39\nili6vR+28MrgrGYi4l7f1HmX43XrWI+qdbBaPLwHjgQuiP47I/ZHw+mPv2hKbrtHzurFh7a0eBxA\n8n8mhRU6PPyYisrR+S0Rzy1+t8n2OUk0C6zdEqJq7ELxytUX7fepqRkAgD2HK1BS6XwSHYABNJEr\nZH+c3aoEIJ0DLZHC4cXJXziIULSe+78LQokTGlujAFi6tQgj30kPjSoX/QBWWMxPjtmf4PiKpuS2\n3+tvbcVEjI39rsfstOKO6JAfqTSuKGOX1c+GlcWt9iTb5WlZQU+S9i12wFhY3NX2CsdHODvqZdXu\nfZYZQJPvVATqdNYK8hVTlRe1YcXLyOdFWj0t2U8pdT5ozdruAmsmS5qjSEOeq4JHpqzHyrxD2F9S\n5f1+dY6B9n5ob6duAO1dk3R5cbdANxhzfS8N4pXCYXt/Plew8LuiULx4MVGViOgOktX9SaXLSG7r\ng0XbIma0/Gp1oJb0oTLv0gxlMYAm3y3MKcTFY+bjpMd/indTXCP9o+fzr5te2bMYvufv2VxPePvR\neL19xYE6rtqkIH7x4oe+PtTL2PDYgVLzANqLuCA6HzuewYeXbdB7G2V2o7fe8m1FuOCleSh3sRfM\nLYlYys0qcfqc+2Xs/Ob4UFs9h0rkeDtuk8kH6Plpmbg6rKrS9I37AOhPluM3BtDkO6ejt5OFTGAj\ny/nUz/LLei28LbsPx85KZsRuz5y2jy9XGk9HnYh5lXq0Y2B3Nkc9ok1VBVM/SiUmhdH/AdZL63B/\nYFIoB1q0jM4O9xyuwO0TlgtL8LlZB/o/0zOx82B5RI+aW5x/fW3eHbO5N8vrWUknsLppp1WOPDh9\nCD93npyu7B0Ex7OjSrwYvclPEuG6jQE0kcu0AGHv4dgZrOyeZByPQLf5nNeGjZ4b+UC8Bp8Iy4PZ\n40VQXm/zx8puS74IVmbJLSg13nao99e9N89pmT9ZQ0fPxaKcA6Hbwm7uRzRbpMzr0/v8SL08Fz92\nm/eUmC7jRZ67aLY4L89XyTZbZaKSqx/tdCdON+AcA2giF4Tnf2r/atnc/tdr0+5i4VTQspzmhIp+\nGLSg6ru1u61tU2IZ3ZxbiV8pqwGUzPJuBoZO+V3rV2ZaelHvr+3eScuDCO0FpKH92VzPai+h9rK8\nmI3Vi8/pZ8t3uL5Njai1H6Xn6SyfON9Djd9t8vtU5EcZO91t270ok1jRzWPIAJrIBZl7I2/J1tTV\no7Yu9psqM5q9oroO14xfjHs/WxN6TPRDvb8k0NMtuoMuN4jQWhWFrOBt6BxB76QeT8qJBdu5tzi2\n119GsqRw6JWMinnKItH7USGYVTE6nUQm2A6sZ6FxkmRSOIRsNsp6JQktILGbLmF+p8T+Z9nuMXB/\nPdHMoHa5cdqpqK6LSPeRGmPiAb8KdMhUdtG7qPfjAt9+6pDq2vuV2lPCEfkk+ut4x4crkL61KOKx\nnUXl2LzX/JZodbA6ydodDbWYRb9RpVW16GbaPlEvmr2Tid1eNHFJUcGtW50Vj1jopRfW0PUghUPc\nFntb1RtE6JRoU3OzCkzX1z4HcZ3DRMvDFhT28fv2vCgFw8sAw+8ZF2UvnKKJVrOb42+3lLGsfk/N\nQMc2zbHuqcvd37gEx3cULe8vuJ5UVQ1rWxd+bKTG7MT/jgR7oIlcpgAxwTMA7DjofNSw8Da0Xg+C\nlY3rpk0YL97EZgSdbPmCtnM8PQi9RbdU43ZYQ4MIrd3B8OIiwG79cdv7tZjCIXORIVrEab6xeGp1\nu9u2uZ7gOVEALZWuY/G17D4UGGicJTG483C5+73jevweROgwnm2UGEATJRHLMxE23Nc1JOwR9qCX\nKJHI3Pa2n8drc0WJbeod+3j1x2jHTv8Czp/R8yXB1KiCI/Yq34imAPc78NaOo+ULMNEdFg8/HG5+\nP279YBlW5R20fXfL6h0szYq8gxF/T1m1K2YZv0sP6l0oWH0fN+QfdtQGmV7eBdmFAIB9JQ3pczLt\ndPrzEf/+ZwbQRK5QDf5tR0kw/y88PUE0Kl3qZOWwTXqaJlAAnYgDjLyg3S63euhFAYnTWRxFE6nY\nZXdLny0zHvQmep2inmG9QGbNzkBgojfOQaOfU2qeA/3FikC5xZV5hwyXEbF7QWyX0wlRPgl7z5bk\nFuGRKet17255eRFwMGpSjn98tUFq/36fdd6avxWAfNrdtW8sifhb5sIt4jGJ9dbnFxs+Z3V/TslO\nOObW7wUDaKIEo1cbedycHABAgWDWOf3ePvkThd6SomL1buaGhtqQkD1l4jVvn7Dcchk0PZU1dfhh\n/R6TtgT+b7mMnQ8XO3pBqDDv3IsfUMFzos+dKPgXvf81ggBaVIVD9HbsLTaujS5M7/AkZchcVa29\naeK1Y/Hkd5tinhOncBhv0+7gMJnvr/77aa9KRUllDX7O2CdcxoscX6ubXLtT68EWj1xxsr9knsCH\nATSRT2RP7qKlioI9JbLnnPKqwI+bKIDSntKr+SoKLOwGZfYD7/gwO08vyjmAR6asd7yfF6Zl4q9f\nrMXybbH589Gs3t71slcylHIgmQMtVUNZ8JwoYHM6IYYTfR+fjt+8nR76W+81yJQhtDsYUyY4t/sy\nRdvcVmhvbIfVdAuZtnt5J8ruQOysfbHn1Qf/tw5//mQ1dh30d3ZUEbvpL/olR+X26EQi3HVkAE3k\nAr9GBOvnahrve0awl0PmfJa9P3YAjehEWGRzpsUEyvwIcTP9QLPT4tThe4J3HkoEpQ7ttjNeZaXE\nF2D29jN1nXEvvd0gwO6FYvhTNXUqVodVztHboUzZs1KJUpcidnth7V5kefHdEaYcCdabtmEvAGC/\n7p06Z18Cu5/Xcp1SkDuDgXOFYAZML3iRUuH0/bf7rpjtduq63TGpOQ37dOeEyACayAV+3CIHvPmx\nElbaEDzpd9ky0f6c9jwKVxc8ubXQuAZ2ocULjOXbDwbbZH5LVO9tEY/ad//zGd1MNz+awvba/Bzk\nHzJOjbD7WfaiLJjehayVbQuX8eD84fY5SYX9AcpajrBw+16cQ6P+rqtX8eR3m7DrYLnuawlVjYnT\nwE+rvPx1E6Ylic6FgvUKjlTib/9bhz99vEpnm/JtM8MAmshtDr+gwqL1MgGf7jZttkXwXJd2LWxu\n017Fi/o4FRqen61fCzm3oBRZe42DHauHvDQ4aFSc5xrQRFFi3lPRD0NtnaBAskv0AikvpnkWlU8U\n7S6nwPi9st1TbrGntGHyGcE2HfKiPKCXKSe6+9XZoahSiqZUUBde22S1xe+C1SD3y5U70eex6fhk\n2Q48PHmd7nutBdV+pyF4MeGLaAIWEe1tqK51/9ykvc6IO0JBemOM7GIATeQCqbxOyXOXaDmZHxEn\n+7ayXofWzW1ts4nNs06dh10y4QFUZU0d7v+8YRbIMoPZ+C4du0AYCNkftGj8nN0qHPOCpaZ092dt\nU4b0glDdoNrhfvyeBlsYdAheTFO9ShJhWzVy/FGtDJ9bmXcwYia8iG2LAr2Y/VtTJghMj25r70Ja\nRO/orNsVrHwiOAfKfDa8CCLDv49PTs2IeE63Bzr4kN+9zHsEwaNwAK5wJkLResbPfbU6UCowQ2fs\njVPNoj4IMzY1DNh0c5ZLBtBEPpE9WbZoavy11HLmrJ54hQNgbD9nz2X9zOZN1Gf34kEje+t2fnZh\nKJfSjKg3tEMrexO91gh6yOxW4bCq0EY9Zetlvuy9CtHtfbu3xO1O+CJ6fXq9X06vHu6auBJPTY2t\nWuEVrbmir57dcpZGm9xhMmOruGa3+fnKanOtLh99ntH7vGrVjTYKSsB5QdT7an9KdnvPlVU5y/8W\nnSej3fPpakf7MsIAmsgFbnYkdG3fEgDQslns19NpEOkXUZDTXOd1RdO7tSksNSbXLOP1IzYgvzVR\n8NC2pb0AWqakmtc59+e+MBuZZtPOS+RA+52zLwoCenRqY/hcjU8TqTSk4JgvY8Rotrwtwdxp0S1x\nuxcKwrtiHrzHdstCyvRAW22uuGdf7zwVua7eHbeq4Hv01Rrn5S+jiXqZ7X6WFQQC1nlZselset+5\nw+X6g/fCyZwb3MgRT996QG5BGxhAEyWI6tp67CtumM2pU5vYW6MyZbD0GC1feKQKD365zvJ6ZlpI\nBMl6RAGQdqu4Uxt7qSO6+wseT7u9L3q36Ru27b7QIDQYvzdfrtzpyr6slieTDZZlFjsomC5ZdMz/\nt3KX4S3aM3t2NFxPFHS6ea2idwE0+IXZuDtssJPdeHRSeh6AhlSHcD9u2IO0UdMMqxI4Yfu748FF\noOiO0Guzc1zfn94doejvgeh1isYmiA6rKA1hf9iMgNGclB4dNzsHd01aGfOcXjPzoioQ6aUAeXFx\nrQnf8i3vL/dsPwygiVwQfi4wOi2YnbtGfb0B5704J9Q7IdqPW+eeLSYj/v2qLhKuqrYOvxq/OObx\nWwafCAC4eXBPW9u1m6snIhzQ5sHgqvAqHEbL/evrjRb35zA1JnhkdX8QhZs2fnL7AePqJmYVGp7/\ncbPu48IybT4N5gq/ANIUHKnCzM37Q39fd9bxAIDLT9NPdTJ7u/R6hD8KBte5BcbHVUR07OzeFXPz\nQljG9yaTFBkRXbBpws+T0YdfdA7VZrRclGM8RkHPjiLji1u9CyiN3fEDChTsMKhZLXP+KNBJCbs0\nmMrXq0tbqTaIXpdlMQOw7X2GGUATuUw0e5/IrOCPqJbbdaQytpdBNLuZFxf0RudbVVVDZdf0nzfe\nplk7txaUYatO76d28vdi5iq7AyJFTXF7sNuW/Ufw1vzcwH51D4K7H4BpG60FHHp7t9vL1E6Q/mJ2\nWCttjOq3WhFCZj09O4I9c6LPcNd2gRSu7oKUExG7x1zvjpdGtEXBZIy6Tj22PQCgc/B1ukqiLVYv\nloR3mSQ2ZRaA19bV4/YJK2K3LWincOp5wb4UJfD78sK02ItM0WtZmXfQcJZUux0TWi96n65yAfT1\nby4xX0hrk0+jMxlAE7nAjY7a6K+8XvUHmdnGgEDJt/CTiFEQYHaeMdrPNpsXCU5YzX3dFlWj2WZn\nqG22A32Dxlz/5pLQJCJe3BeIPobTN5pMNRzVTtkOaJkA5rijWhs+58UMmKISiUrUcuHHyW7PtReV\nIDT1OtcPolZef2agx/ssQYqLsDKMxR5oLaD0K8iR0bZFU8PnZN4pw44GmF9Iu30URHfFmigKfs7Y\nh/cXbddph3FLnjW4qwPY67ipqK7D89Myg3/pVCmBVubPGukyrxLjN2TYG+VCRBF2SMw6J/uTKfNl\nNgtWTnnyJ5zYWe7KXkQBMHnVLhwV1UNr9uNne1pYK40zcckrC5A3+uqwjcdu/c25ubj41GNwQkfj\ngE1E2Psiqndt44WGly9LxNkc9ahqIM9er/au3dntnNyGNiJ8O8JW6/3Y9FDACYh7bWXYrW0umgVU\nNKW63veyuaDqj7ZeZ0HNd1EKh9776PSzK/rcHN+xta2JaGQuyuwGWaLPnV4JQFVVTdsjvGMiaovi\n/kB08aBn/cfDxxwky7lMDwNooiSinWyiTzqVNXWoC+t6qqlTbec7hmvRrCn++dUGx9txg9MOq9Y6\nvUyvz83F63NzseKxETbbZNyoNoJeLfE2zZdREDuRil1edgSqUHHuC7N1n7M7s6QXeflW0h6+W7cH\nPY9ug50Hy3Ur5Xi133CDDI4pYL8qhijQE71O0ec8T5Cra1fblsb7u6J/N9MA2nIVDsFzS3IDFR5K\nBNOv6120dG7bAkVl1Rhx6jHG6wl2LDoGdmf+0btzIUN0fGZm7DOdcEs/Gc3huAyfbm4whYMoQUhN\nxhI83YSfdFQApz45Aw99ud76Pg1OVB2DA3z6H99BbjuqiuXbisL+ttwUaVZvf18X7DG8duAJrrcl\n/HVW1QZ6iHsHB8VceEpX1/en0fuNbGp3hpogL94z3XSCUM6+oOdKsE3TW+JG2xWmAIm3KfLFip2W\ny641VNOxWUNZ2ANps062zlEXNW9w2tEAgBvP7WG4zGnHHSXYnzVpnQM54cLykFENHj/H/cob4b5Z\nuxsADEs+Gh2+Ef0CgfOgtE6WzmZaj/Vvzu5uuIxoe2f37Gj4mbNdjlCw2rsLt+HSsQvEExVZTM3z\nosfa7tefATRRgjCa8S6clkphPTfM2hrafmROVsNO6ozJq3bht+8ts9iqWKpqvk+9H3o16v/hWjUL\n9NbYrb3bW3KQyzPfb8a42Tmh/HBxyoCzaFWvl615U3/vhcqlGhkvJBpsK07hsP46n/1hs/BOinAq\nb5PUj0e/2YhHpkRevHoxPXHDPq1/duwO9Aqtr7OB5s0CK/75k9V4ddYW29uWJXWxEdXQV6La9e6C\nrZ7U0jfaphrbJGl6q50YvIiw8x0AgC7t9Qdufrd2t+07jWafxxqdUaZOzn9md332l1Ti8+XGpTzt\nlljVwxQOIr9InvNW5hlXt9CrTuDkN8qsN1fm5N+xdYuYup+eVASR+v0037HVKik3CXrYwm3eW4Iv\nVrhTg1mPEla7Tu9lypTbclt1bT0W5xhPVCB6N0Z9Y1xuT/g+2niZHy6JHTQVzu2atJe9usDV7SWi\n8HPHuDk5eOiyk2OXcbHX341Bhy/+lGU5+JTZrReTyYjYH7yq//UZG3ahcUq39tbaIpNyJjjmVu8o\nmu3v95NWCqcHb9ZEcW0UNnugifwiec574rvYqXq126VXDzjOzRYZnojNzi92fi8GC/I2nW7byrrP\n/pAR89jEJXmG28jce8Twosar+sHzsgqQNmqacJnoHx6nlR3svJKXf87Cw5ONU4e8qIXd3GGqip7T\njzdONaiojs1vNXvfZQYVe0XUNr1n/E638rICiYwynfdTpkWi4+pmr7an74fExYP1qctttCPsiFve\nn/A51XSyoEt08s5ZB5oohWk5yXoj5mW++p52kEieAPWK6VthtzpJ6DnBeu8s2Gr43Ldrd2PkO0vN\ndx6zPxVjZ2Yb3t4W+UxwCxII5DImArPZCq1eYGi3qC8+xXhwVesW4p8tK3nFWm+baDIH0QyGVoRX\nzkigCm4heoGtF+20e9EptVacSjrYzee3u00R0eDxONykMmW5KpPDz+Swk7o420AYBtBESUQrByY6\nt9otyabHaDfzs8UzZ9n/kVRNfwNFP/R6nZNe/qa2bCautPH63FyMsziQSaZ6h6IosXWYDY75hny5\nGbys/mDLLG21Y67vMe0AAEcFLxi/XWttcJ5doma2bRGbNmUntrnJ4hiBrH0lSBs1LWJwrgzdtkk0\n2Iu7KeLgyOLnzaXmWa/CoWJRTqHhRCKAIAfa5SsQmc1pU7rrkUnzytpnfMdNt022cvIb1tG9IyE5\n2DW8tKcTcRlEqChKR0VRvlIUJUtRlExFUc5XFOVoRVFmKYqSE/x/p7DlH1UUJVdRlGxFUa5wsm+i\npOMgkKsInij++VXs7fL8Q+a3i41OcnbP7y9MzzRdZmN+MX7x37n2diAgOmG3ah4bfG7aUxxYz4Pe\nNFF9XJFj2reKeUybzKHH0fZmoDNy7RuRM3it3nHI9rasDo6zHkBEfkn0KsuYbdLPCTqs7CrHYlnJ\n9K2BwPnnjP0mS0Zq2VxU19m9qgYy6+nlG1tN4VgVFcwZHfNdB8uxdKtxPn5ofZ3HtLsMPQ2+e7dP\nWIF/fW2csy9K4RDV5faLdqeliSJX/tLKHTeng4mt/i72D0u3uu+zNRHPzczYbz45mLXdCTntgR4H\nYIaqqqcCGAggE8AoAHNUVe0LYE7wbyiKchqAmwD0B/BLAG8pimKvUCpRI6NdaVfWxAYwv5+0ynR9\no8kS9pVUCtc7VC7OJwOg+4ukqsBrs7cg/1CF6epbJCc+sPtDv2m38YASN9VZKKTarUMggA4fsNNG\nVP9JdyIAACAASURBVJ4ripMfgZd/zor428qP+e7D5u+n2bbdCh66SE4FXSFR3cZvF42Zj9fn5EgF\n+7sOyQ3QveP8EwEAN54TO+jVySHfvKcEr+vcRfErCLwhGMyZ9XRe+PI8rMyzd3F42WndAts42Vrp\nSa2s3LFHxV4Q26V1TujeSHBtL+45poP7U7KLXmf4935uVkHEcw9+uQ5FZc5SBa2wHUArinIUgAsA\nTAAAVVWrVVU9DOA6AB8FF/sIwPXBf18H4H+qqlapqrodQC6AwXb3T9QYZO+zPqtWOC2ndN1O/dv4\nZqWL7pq40nQf0zbuxfpdkduvtXDv/oa306WWe3fhNtNl/O7ZCd9fTKAuNTpdf1syonvyZNc3Ws7O\noTNbx9u3o2Hrg3sdbbhUv6dmmG8pDpHJJ8t2SC03a7NcD7R296WZYGZBPWav/fo3l2CKxTrXcju2\nuLjJ8uGnnPN7d7a/IQuL3zqkJwDgmgHHGy+kQ9QZMGGxuGKME158zof2CeQU6w3OMxIxiFDn+YZa\n8ZGPZ+87gtmZ4u+DXtk8M3aPi5Me6F4ACgFMVBRlraIoHyiK0hZAN1VV9waX2QegW/DfJwDYFbZ+\nfvCxGIqi3K0oyipFUcy71ohS2BWvLYx5TFVVbNxdLLW+lr/5gcRJWXbSFD3a7WbN9W8ukf59jLj9\nqRr/uByxONsX4O/t/GjTN+01X0hSUWmVJ/VrnRAd2/atAp87o1vijvYr/aB3EnEQoEb2Ts2mqHOI\nUWqF3jTsbrdFhpVjLkxjcaEtGm3Aak7BEZRU1uguE31ulGU3l11P+PvgdhUUrUmi/Orogb0ROdA6\nHxKj87neHdOdNireuHUEnATQzQCcDeBtVVXPAlCGYLqGRg2cYS2/46qqvqeq6iBVVQc5aB9RQnFy\n4oqc8c6bSRriUUdY1pGwHycrx/H7sIE/XpWcM1IqCPitGjMz27VtGR0FN4PChtkfY3vmZN4Ho7ZU\n1tShKpTG5N7nVYWK79buxq6D1n6MZ2zaJ7VcjYMg1CrZtJlrxi/GgfDKIAjMJrpiu9wAMrkcaKlN\nJb3pG/fhpnf1B4nqlSXV3o9Nu0tw0uM/edk0KXEqXgIAKKsKnCc3h9VutnKO33rA2tgCwL2LKCcT\nqeQDyFdVdXnw768QCKD3K4pynKqqexVFOQ6AlqSyG0B4clb34GNEZCL8C/9zhvhHOyItwMI+3D6H\n2un9PVBajax9sTnLT3/fULtZC8Cit//oNxsxtE/krdu//W9dzLbsTp/shrp6Fcu2FQkncyivrtO5\nTRlV81lv4LoaWSpNlifVF4LtffbHzdbWM3lrTn3SIB3Dhbf0wS/XoXPb2EGhoqPz6mzzEoW/HdQD\nf/hI/maq7c+njdUqqusijrnebKJh8/e4yuom3bqb5OprCdvYZoPpvEW+XLXLfKHw3Vneg/fkLoiN\nl5mbVYCq2joUhp27zGYbdJvdc6DtVqqqug/ALkVRTgk+NALAZgDfA7gj+NgdAKYG//09gJsURWmp\nKEovAH0BrLC7f6LGSi8olLWtsOFq3eiWo1uMUtFicnfD/n3V64t0J+YoLjdv6xcrduKvX6y10kRd\nD/zP+TaMvLNgK279YDkW5sSWAdQCmWkb9FI/Ig9mUVm1brB5zfjFLrTSmFcpMS9Oz8RpErnK0Sqq\n6zB+Tg5qXerhLTKZhMGOg+XVWLhFXPYxnO1jLFMNIervB780P5e4/Zb7cf0q2oUoWPpk2Q4siyob\n6OTlG60rdwwSMVw2Jvu2vq8zlqWqtl6/WknUMdDdRxwPk9OpvP8K4DNFUVoA2AbgLgSC8smKovwB\nwA4ANwKAqqoZiqJMRiDIrgVwv6qqiTc8miiFRN86Lq5oCEQHPDPT031bCRqsKCgJ9FR4NdublUEo\nhywGXNo04vtNqp+Y2VZYhmPax45+31sssV3DQYT+/BLpBWQyA0T1vD43B2/PN54ER5qHL91oEKDd\nONK0TJc4eoywesch9BZMImOFXvqLqDfdej1md5jtVzSpklsmrwoMyjQ6OnuLK7BuV+w4FzcuZry6\ngBE1bX1YLfoXpmfGjLdR1fheLtg9ro4CaFVV1wHQy1MeYbD8CwBecLJPomT0w/o90mW33CSalSra\n+vxiTFm1CyMHxZbBcpPVQK26tj7ipD9ldT5eHjkQF42ZH75R8/0Gl9knE2RK+m6dcRaa8Fa8CxUI\nKqImEbjq9UXWNuqQ1z94eyRK5pVXuZNnPtbibJFab5mb6Q2HyqqDdXrdj3BkvnNGeaeyr/EtnQsZ\nUaqSVQk5cNPh6zNa/fwXI+vn19er6P3YdEf7Ary5SJZ5X7bsj/wdqokaEL0xX25QvFc+WLQNf7mk\nr+X1OBMhkQ/cSC3ww0dL83zfp9lP0D90Jo9xwk6uIqA/YGytQXnAZGJUMiqeauvrMXS0vUl4ftyw\nF3NMSl1FW2Vzchkn4VP04T7ruVkY+Kz9u0LR27PaM+9FcNXMpVGERaVVrrXP1dxrh18a2cFydRb2\n08VkcievMmicbHduVoHtK3Krn4sfdVLkxszcYiulkQE0URKIZzm2eJubWQA3TvtbC0uRNmqa7fX/\n8vmamMeszi7nJrd+CJ+fttnRcdFjt/NdW63WRi3XcA9KjBNIGzXN10kX9OhXKnPnu/7fGVkxj+kF\nG9p7lWeQEiX/OdPJYRXFnhYCn9smrIjbVN566upVvDBtMwpLxSlcXrVZtN2WzeIzP53M9zq0bNQL\ncHumXJHFuQcSoowdEVng5G6fW+cRs9vDfsTpokGEeo5U1WLzHue3+Nbt8re3WBQIRT+zeU8JCo/4\nE8xF/1jNziwwWFJsX3FlzExgMurqVMNjY6lqjAu/ggdMAiDALAi0z27zjeoya9ubvHJXzJTrMt9r\n/R5rZ/2+oguU2yesCJUwM7OtsNRSO+ZlF+Lz5TtNl7tq3CJ8scJ8uWgLcwrx/qLtltcd87N75SiN\niEomHi6vwb2fxXYEOCHzvlju9bewrNt1ra1gAE2UYkTTZ8v2bsWz1JuePSZ5y370z1vdh94xNDqq\nZvnLMlOiO2V2gfHBom0Rx+A3kjNIRhv47Ew8rlMb101HXMqNBoBnf8iIeUw7Dl58S8y+e2bjGrYd\nKNOdetuInYvmypo6LMo5YLqduz9eLdzflv3WZ1qVDekf+3aj6fqb95bg0W/0lwstr7O7epuTGr0x\nLzfib9nTrOxrXr3jEAoEF+KyNb7tcPpd2ClRg123fGcchx8ygCbyyU06NVZlZOwp9v0aWxRor9lp\nL1/USHm1P8V4GibgSGx6E+Uszj0Q81gTm/mlqqpfGcLs8/n8tMyIv51M6GPUO2h1tkU/LvREF296\n+7dTjs8N4Ucu+m6GkztLekd4imT9Yr3e8ujecak2mAxknLzSQj1lne08NTX2IkkkutSdEbOLUruf\n3nW7DiN9a+w5Yfn22Hat3nEIWfsCFypepAK6sU1Vjaz177VpG92ZJZYBNFGCm7xyV0JVBP31W/Z6\nHjXx6jGwO3hQY/WH4tu19uaJkr0t7CR0/NPH8hN7uLVPGVpKSDx7lWRoHwW94+HXBaFIfUyOqV36\n77je9sKvJdYLAsfw93a5pR5R41fxz683WNiOc+8v2u7KdmTfl+g0hbGztuCW95cbLB3J7p2ieFqU\nU4iXdHL43eLWdYTTOtBE5LGcglLfqz141bN3wMZMeansQGk1Plxs78f4kMTkMnq0WtTkXIJlOoUY\ndeQvyY3toZyyOt/y9vVedllVw4XDdW8ukdrO6J/kgqTKmnq4VQXUauw0/KV57uzYAS8vKOdnF+jW\n1M8tEKfX5B0ow4q8gxGzBm4rLMUlryyIWdZshtSKqItObbKwB0ZElpZbrVMtJ57j69kDTZTg0rfK\n3S6UIRsYe1X1Y9Dzsz2p+ZlsRUoyg73hB0qrLE937ZQXs+25LZ4Dg/ziZfAd/f3VdjXB5sVaDJ3G\nf79+j+lqB8uqY2oCy3LrO252DOZn258A6qDEdyv8vUmET/mdE1fqPv5zhrgU5LVvLMY/v4rs+Tca\nVKxNHGNkT7HcGI/XZsvn9lu1zMbvbMoE0L8++4R4N4EoocnMmpexx1mag4z/WclXTFFaTiLJ87uU\n45ifszHewmA8q/aXuHM3Zn52bNDiXgqHu8fcTsULjVstsZpnb8Xb83PNFwoj26EhW9bRfJZK90L2\nkkr3Buomgrs/WW35DmnKBNCtm8en9iFRssgrKkvaKhxmEj1nNlX4dZQPlce/l/yNebl4xWCGQm1i\nCyvTvutx0tup0etBdDNGtFJNxkvh567Kmjpc+8biOLRCzK3c6GhGA3Zlev295sZ1rdE2/L6zuNli\nB1LKBNBJ9ntP5Dsr56LGPHGLETeOSKqfp2Tucsj49w9yaS1TBVOpe8mtmt0bd3szhXF0D7Rdbp4G\n3pyXi22F9vPvw5uSs78UG+I8/bNdZTYGmRqdjx8Im+FW5rtg5bwue67aWlhqaXnAOG0k3n734QpL\ny6dOAJ0Q2UTJb+r9w+LdBCLLiiQmxEgEqX5dctZzs4QTOTgRfewU2B9ImSjs1hPWEx4cLdwS2bPt\n5n4AexeCL/+cja/XWB+wqEmV784NYVUx3Ixa/iYx+6YVssdbGzyqqu6/R/mHzGtDx/NzkTJVOKzM\nFU/UGKmqXO3g9xduM5zWN1Et2OL8VngqikfFjSvHLUJxhfeBbSqc8d3qKY4WnZ+abWPCEiAw2NXL\nnGErtAuE79buwVVnHBvn1tgXMf5BeiIVd7iVdx9O+wzP3LwfM3Xqy8vQq3MPAJe9utB03Ynp3qTN\nyEiZHuize3aKdxNSQqrfYiZzL0zPNF+oEXIj1vH7+3XxmPn+7hCBmfL8mpY82enFpnX11nvwa+vq\nPcm/XW+QJhGPO77aoXpngd6U4yRjRsY+6WUnS06WMyk9z2Zr3KFXmtEvSR9AD+x+FO4cmoZLTj0m\n3k3xTee2LeKy31OPbR/x99UDjsM5J8pduPQ7roMXTSJKKtk2S3hRbC9cKlzr6/VA/2e69Qkkwmsw\ne23XwXLslSw75qYjKVb1AZD/DMfjBrtebWiKlPQB9NS//ALPXNs/JU6mspo3jXzbjmnvUoV5iHsW\nbjine8Tfb95yNi46uavUdjkoLf5Kq1LvByjZiGZoSway5bRITp5LKTZ+VqEZ/tI8jJ9rrVwb6ZMt\nBSf7/vJ31l9JH0A3Rq2aR75tp59wFI5q3dxw+fat3El1v3NoGh6+7OSIbcqmxyVKHl1jdofFEcZE\n0R780t2BSo2d3ZzRxq7RxYmSr3ddkl+gJ5uUCaAbU+7ui78eEPF36xZNsf7py0N/L39sBD75w+DQ\n3726tJXe9vEdWxk+16xpE9x23okAgKbBwWjaLchrBhyH24PPaf5xxSmhf3OQJ3lpdiYDET9oMyjG\nw1erI3MyC5hnHVLtUeWTROXm7KypZHam/kyA5I2UCaAbk/P7dNZ9fM7fL8RX95yPbh1aYXjfhtSK\nSXcN1l1eT+d24nSQ6OuUG8/tgRM6tsaoK0/F3y8/2XC95647HSd3ayfdDiKRf0xZH/H32p3seUl1\n//p6Y7ybkLCip1T2SqJ0VP13hvU88WTG7qfElDIBdDLXgXZrFsU+XdthUNrREY+NPKc7jg4bdHhK\nt/b4zdndo1eNMPbGgXhl5MCIx9669WzdZU/o2BpLRl2C7p3axORmhxt2UhfMfOhCs5dAHttfUhnv\nJrhiymr79WSJUo0bMxrK4I3E+OBxT0xJGUBfdIrcwLVkcF7vo3FWz46OttHBIMc5b/TVeDkYCHdp\nFwiif37oAsMebM2vz+6O86KWueqM4wAATYJdEB1axeZct23ZDJ/+YYi1xpOv/vzJ6ng3gYiILPBz\nkCjJS8oA2kpKgl3rnrrM830AQMtm8r3P4246E9//JXamwA6CAYSahf+8GOufutx0OTNHtWmOZ351\nGj77o36g/Iu+XfD7Yb0c74eIiIgoUSVNAD3qylMBIJSO8MCIvnj5hgGiVRzp2MZZreXoShlGFAUR\nNazPTTOuq3zdmSdgQPfY3mqZ9JU2LZrhqDaBQFsmZUS0xTuH9UKPo9sYPt9S8rUTEVHySJQc6Mbm\nvYXb4t0E0pE0kU5a57bY/OwVSB91CQDg4ctOxshBPULPezUlqtcUAH/4RUOP7aNX9fN8n1ee7u00\nqNcOPB4AcEX/2P1Mf2A43rntHE/3T0RE7kvSn9mkN3FJXrybQDqSJoAGAr2orQx6TxPtey07qLGJ\nokAJu6xvInmJ//W9Q0P/tpof1aSJ+T6OO6pVxOBDK/od1wF5o6/GScfEVt047fgO+KXHATwRERGR\nl5IqgBZJ1hl4FJv3xM45sRP+9ctTXW5NA0VRsOrxSz3bPhEREVGySpkAWtRbesYJR/nYEmui42cr\n4bSTkbl//IX5QD+Znmozj1/VD5P/fL7j7RAREREliqQJoM06asN7cq/o383j1rgnOkaVTeFw6p6L\n+viynz9d0BuDex1tviARERFRktAvIJzkrj/zBPyckRxT+0bnSp9+Qgfb61rRvInctdPEu85FSUWN\n7f0QERERpZqUDKDd6sQ9oWNr7D5cYfh8tw4tsb+kylEbYlI4fOqB1krambn4lGPMFyIiIiJqRJIm\nhcMacRA67qYzI/42mglw5kMXRPz9jytOifj77J7GNZtvDCuxJ+JXygYRERERuSNpAmiZMFObAe+Y\nDi2Fy3WKmiQlrXPbiL+1vOS2LRs66D/+/WDcf/FJEct1aWe8nxH95Hpuo4NyKwZ2DwyOPEcQyBMR\nERGRu5ImgO7SXhwUA8BTvzoNeaOvxtEmswhGd/o2ixrJ11knML7g5K4AgA3PNEyH3VGQBqGqwMZn\n9KfOHtqnc+jfaV0CwfvdF/RGl3bW6i4PPakLVj1xKS7XmbDEigcuOcl8ISIiIiICkAQBdN9j2mH8\nzWcJ0yWiaUGpkSG9GgLYqfcPQ+sWkZOzHN+xteG6HVo1BM1/MCkF175Vc7RsFnuILzsttkrIY1f1\nw6onLgMAzHhwuHC74US94LIevtx+LzgRERFRY5PwAXSr5k3xq+DU0FbcdK5xDnKLsKB2YI+O6Nut\nfcTzFwV7m810bNMCb95yNgDgrwa9uHqVmq8ZEHg9Rj3Opx7bAX2Ds/jddG4PTLzrXEx/QD6olnXd\nmcfrBvNEREREZCzhA2i7nr3u9NC/FQXCAPS2IT3x8e8Hh/5+YERf6f1cdcax+Pa+oXj4spPx4q/P\niF3A5lwnTYNpJXcMTcPFpxyD046XL28na9xNZ+H93w1yfbtEREREqSxlA+gWzZqEqm3884pTYwLQ\n7/8yDN/dPwxAoHTcwB6BShztWzULBa8yFEXBWT07QVEU3Dy4J4b37QKgIW7WUjhuHtwztE6nNs3R\nvVNrPH/96dGbC0nSmcmJiIiIUl5K1oHWXHfmCbjuzBN0nxvQPbJ0nRY09zbJn7bq6/uG4udN+3Cw\nvDr0WLOmTbD4X5dIrc8qd0RERESJJaUDaCvatWyGiXeeG+qJdsvJ3drj5G7t8e8fMgAAf76gt6vb\nJyIiIiJ/MYAOc/Gp3s+611WiHB8RERERJa6UzYF207EdWjnehiI1FUyD/94wAMNO6ozeXdo53jcR\nERERuadR9UC/MnIgzgjO3idr/dOXo0XTyOuMAd2PMqy/fOfQNCzKOYDTjnNWNePMHh3x2R/Pc7QN\nIiIiInJfowqgf3NOd8vrHNU6drbB7//yC8PlR/TrhrzRV1veDxERERElB6ZwEBERERFZwADaJ53a\nBHqyw6cCJyIiIqLk06hSOOLpzxf2Qae2LXCDjTQSIiIiIkocDKB90qJZE9x23onxbgYREREROcQU\nDgIAvHzDAJyb1inezSAiIiJKeOyBJgDAyEE9MHJQj3g3g4iIiCjhsQea4qLn0W3i3QQiIiIiWxhA\nU1xcM+A4x9sY0utox9u46JSuuPeiPrh1SE988LtBOOMEaxPtEBERUePDFA6KiyG9O+Ot+VtDf3dq\n0xyHymuE6xzTviUKjlThg98Nwh8/XoUR/Y7B8u0HLe33ytOPxU+b9oX+fvvWc9C6RdPQ35ee1g25\nBUfQsllTDH9pnqVtExERUePAHmiKiwv6dgn9e82Tl6HvMe1N11n8r0uw4ZnLcelp3bDmycvwp+G9\nQ89dd+bxMcu3bt405rHoKdjDg2fNSce0Rw9Bism9F/UxbSsRERGlLgbQFBeKooT+fXTbFlCh6i53\nwcldQ/9u0axJaCKao9u2iNjGuJvOAgBc2u+Y0GOjrjzVURsv7dct9O/2rQI3a64783jcc6H9ALpd\nS970ISIiSnYMoCmhffz7wdLLZj33S7x7+yA8dtWp6N2lLW4d0jNmmbCY29S7t5+DaQ/8AhPuGITp\nDwzH27eejXE3nYWjWtufTfLZ6/rbXrexs/JZiHa1hZz79U9fbns/eoad1Fl62RZNeUqm1Jb13C/j\n3QQiV/BsTXGz4rERSB91CQBA1e+AtqRV86Zo2kTB3Rf0wdxHLkIzQTBy3FGt8PW95wu317SJgv7H\nH4UR/bqhx9FtcOUZDUGY1tP92m/PjFmv//EdIv7WgreObZrj12fHzkQ55+8X4se//kLYloE9Ogqf\nTwRX9O+GmQ9dgH9fa3yRoJdWIyv8boRVV58RGUC/MnKg7nJT7x+Gls0aPjd/vrB3zDKDTuyEEzq2\n1t+PTqD+m7D3fNJd5wrb+dODw4XP67ntvNgLRVlWgnsAeP3ms2zvq7GZev+wiL8/+YP9C8BUcWm/\nY9DKwTkglZ3f29p30aoLHZw/AWDTv6+wtV63Di3NF0pSDKApbo7p0ArHGwQif76wt2mAK2Pu3y/E\n538cErv9C3rjnBPtV/F4/3eDsPU/V+H6s07A0kcvwYd3Dgo9d17UifCNm8/CB78L9GJHO7lbO/Tp\n2g6n61T/ePiykwEEBj5+e+9Q223t3LaF8Pkr+nfTffzy0/QfNzLoxKNxcjdxLvuif10sta0LTu6K\nl24YYLrcVWccG/H3g5f2NViuIbC98vRjI+4ihAfTA3t0RF19w9XcyWG5+R/eOQgzH7oAX907FIv+\nGfk6Zj50Aabccz7evOVs5L5wZcRzvwjm+3dq0xxD+3SBSJ+u7UL/PrNHR/Tu2la4PACc0NF+ScjP\n/nge8kZfjZOOadjv9heviljm3dvPQb/jAheFvbs0tKddy2a4cVDsBaHbwvfpp78Hv38AcOfQNMPl\njNKyoi96B3T39yL42oHHo1uHlq6cR/UYXUSKvHJjbIeDG5pYuLMY7ubBzuY+ePyqfo7WD2f0W/i3\nEfrnNKs+CruDl/PClciJOk+ZadeyGba/eBW2/ucq84XDdGoj/v2R1UfiXAgA/7jilJjH0jrLnSOX\nBDv0ZDGApoQQ3QH920E9HAW4mt5d22HoSYGg5fLTuuHYo1oBADqZBJVmFEVB0+BZ+7ijWuOSU7uF\n0jMeiDrhKYqCS0/rFjpBhj8/ol9skHrLkJ7424i+oVrZzZs2QROdXwjZHO/oQDS6J6x7J/2Ty5De\nnfHQpYEg4ubBPbD2ycuk9hedJvPObefgiav74ce//gJd2rXE6Sd0iFln0ImdsOqJSxva/JsBuHFQ\nD6x/KjKdYvKfI4OBt249J+Lvbh1axWxbC34W/uNiZD33S7x9W8M6vbq0xXHBz4TWA9QirAf6rJ4N\nQc/QPl1CFwjR78fJ3drj3LTA59XozkfTJk1Cx6Zre3GvzKX9uuG7+4dh4p0mPdZ/i70oM/th/K3J\nhElK1BvYRFGgBm8RNVEUtAkOvL33oj4xd45EgaYZox/IiSa99kYeuyr2+xFePjP6rkS4Yzu0wl9H\n9MU39w3Fs9f1xzPX9jdMv5JJC7t5cE80sxvlGfjv/7d352FyVWXix79vdyedfSVkT8gKJCEkIYQl\nEEhMQrBZIjqsCg4iDstPkU1QRvYxozOOjijKoOM6IqOojCgq4CjqoCyDCyCCEkAFBNQBkUXC+f1x\nqzrV1dXLTS/VVfl+nqefrrp1q/u8datuvffc95z72t06fXzkkCZ+9M61vbIfLXX5axYBcO3ftU/M\nxw5rW972waOXcFfJfqNS+Vt5ydSGhZParVM0ZXT7z/dbXzWP/z67ewfm5UqTu20pzXvTfrM4ZkV2\nBuiEfWZuUxuKSvc7pRry1B1206DGBgY1NrQrGRszrPJrUOyEKv3e667j9u7Z61LUEMGoIV2PITpt\n9dw290cPHcR/n9O998eOXeyX27Up19pSP7j2Lfswu6Qnrjds3tTCVccv5+T9Z/OhY5Zy2O7tZ+3o\nqeP32YnNm1q63BGfUjIIsdKuaOa4Yby9pPerkiuOXcpbVrUvL7ji2KXMn5i9dvdftoEPH7uMNbvs\n2KZnduqYoewyaWvP6rkbsiP28i+nVJId7TCimbHDB7cmv52VaZQmYLtOHsWGRZM4af/Zrb3swwa3\n3Qm+/8jd+eIp+7aZIaW4IxtdtkNf0cnc35duXMRRy6e3liXsPTtbd8fCKcQZ44e1O308a4fhLJkx\nhgWTR/HOQm/SoJIvldkTRnDX36/jUyeu2KZTz+WnZQc1NvDpE1dw49v25y0HzOa01XMY1Nj2XbB5\nUwtXn5Cd0Zg5vvNel10nj2ozAPejr1/GoMaGdr3gpf7xdYt5/5G7txkk+w+v6TgZa2qI1l75xobg\n3ks2sHlTC6etntvuwLcnA3dvPuvA1tv7zd3aUz9z/HCO3nM6y2eOzfX3Tl41h4+9oe0B1iGLJ/Pd\ncw7kulP3bXegW6r4Fl42YyzH77MTsPXzXa44sPmDR3fcu3rMiukMb27igpZ8PZafKyQuI5qbuPDQ\nBa3LX7N0Kkft2b50pzT53NaquC+cvHenjx+y2xQ2b2ph6pihfPOMVa3LN29q4T1HtH0fNTYE4yp0\nVpSWrJXuLz90zFI+fNyy1vtrdtmxzfPeV6H06sx185nRzR7GouJA8OI+JwIuOmzr6/vg5Qe3Y7oP\n6wAAIABJREFUvvYd2byphYaGaO3dHNzUUPH90V0R8JXTVrYbpL5gSvsOh7w6+lwOb872aZ87aS9u\nPGN/7i7psCiWsl182MLWTqjuuOWsA1pvb97Uwhu6kUBXOpvxnbMP5CunreTK45Yxe8JwLtu4iJ9e\ndFDu1zj1Rn1oB0ygNSAcXzh6v+vv13WaJJX7j5P24sqSHW5XmhobOHT3Ke162frT0MGNnL0+S5BL\nm1Ec9Fj8uBcTo0pNPWRxFsPQQY1tSjQOWTyFr5y2kjsuWEtzUyMtiye3izUBny70Ql953DKamxq5\n84K1fPvMA9oMvNx/3gReVaj1Xlco54hCyr9k+ph2ZQzFf9NYuLF214lcV6H05EPHLOXs9fNbpx6s\nFF9nm6f4Bb9sRttT4octnkJDQ7SWJbxjQ/alceD8Hdv9jdb/Q5bQf/1t+7PbtMoX0Rk3fPA21w9W\n6j1dNX8C40c0c/7Bu3LOQbtwxtrOD5a6Uvx+GDqokQ2Lsl7V0l7wgxZO5M4L1vLBo5e0nsY9Ytm0\n1iQdsgOTm86sXL++cMooTtp/FgBTxrQ9yHql5MvpoIUTGTKoseLp9J0njsw1kLP8LMmm1y7mi6fs\n22XvebmDShLKW89dzYZFk5k5fjjLZoxt0/Zyne0dSg94RjQ3cf3pKzlj7TwOXbz1oLy8bGzmuOxA\n6OgV3a9XnzpmKCvn7sCt567m5xcfxN+unNWufaOHDmrTq/7RkgOGrvKG8vKnu9+9js2bWthr9nje\n143yKYCdJ3VestXYwQe5UskawKFlHRufKDkD89B7Xs3KuTtw9fHLy58GwL2XtK/RLT2AOr8kiTzn\noJ35wXlrWs9Iblg4ib1mbT3YbWps6HZNcvFlLu5nOxrnUezt3aPkQLBYGgXZNl0yfUy7kqV1CyZy\n97s7P/tX6SCl1MYlUysuL7Z918mj2GVS20T9Jxeu59ZzV7d+N1dSaQxFpc6v8u+KcpU6nWbtMJwl\n08dw8G6TueWsA9mrZHtcedwyZpW9TktnjOG9r23/vv1/azovgdlhxLafjTaB1oBw+JKpbN7U0uWO\noNy+c3doM7ivVhR7M0t7Y4u1lMUvvuLv8q+gG966tffmvks3cGdZacWwwU3t5rsut+PIIWze1NL6\n2o0f0czw5qbWHeqlGxex86SRLJo6ms2bWlrrN4un+Joao8O5slsWT2avWeO48NAFFefZnjhqCKev\nmcdZ63Zm79nj2vSEFnV2gLPX7PFs3tTCdadmg7SuOXlv1i2Y2DrVYNHSGWPZvKmlYg9O8XTpiE5O\nCS6Y3HnPT7HE5tKNizpcZ8igxtYkovz0dlH5Kcdyt567mq+/df/Wg5uPlB0wFksqTi2bn/yuv1/H\nW1bN5qOv34PxI5o5fMnUTg8E5u44khPKSjA2b2phx1FDOGrPGWze1MLIIWUxlCRpI5qzx35w3hr+\n6/T92gwe2nfueN772sXdTkoigtNWz2mX0F/+mkVceOiCNj2fpaaOGUrL4skVZ2wpf7/O3XEEq3eu\n/HrsWKEUqOiakh7a09fMZfyIZs5YO79NWU+xx+6281/F9aevbD2TMqK5qWIP2uZNLW2Wf+mUffnq\n6Ssrthu2fj5+cuF6rjh2GUcsm8pVZb3tHV2pda9Z4/jpRevblT+NKSlnKC0xqlRT2pHypL14ur+r\n/VGp4qtYPnajGPPaBRMrvoblZ7YAdiqcwdl79jjeUtKz29gQTB0ztE17y2uQK5XNVVK+n76vZJaR\n4SX7v1GFJLE4qHjXyaPalGC17vJK/m1xkPqYYYPbjFMo+s7ZB7J5U0ubA43Nm1rajV8pHijcdOYB\n3FzSQ9zRdwxk+67p44Z1ui9+5ZXsd1e99cWSyeEVvg8A5lSIrTMH7zaZ75x9YOv94YMb+fKpKzly\nz7YH2Js3tfDmsjO17z9y99Zym8FNDdxxwbrW8qq8ndVOSqsBb/7EEV0mMwPN59+8N8f8220dPn78\nPjvx4suvtPbswdbT9VPHZjvy4hF3ea/Vwik9u9x4d3YSHe0y/+WoJXz17t+1bo/BTQ289PIrbdYZ\nPXQQX3hL1wOXZowfxjUnd73euOGDee2yyj0okA3aLB+42ZX95+3AeQfv0lq/WO4nF65vMxtHJTe8\ndT8+e9sjHFfhb0wY2dzaMzh+RDOXHr6wYr17qY6+XIoJ1Pmv3pWpY4eyYeEkjt9nJt++9wkAjttr\nJn95aQtv2m9Wm+eNGz6Y83txkFMlpW+l4oDHyaOHMnn0UK4/fT/23XQLW15JDB3UyPDmJj5/8t7s\n/95bePQPzwPw04vWs/iib1X82+cc1P60c1NjQ5ue2KLvnnMgY4cPZnBjQ7tSmyOXT+P2zX9s95xB\njQ38+9+uYM47v95m4CjQaZ3nHjPH8eb9Z/Fvtz7UaU81ZInLpAp1ux0Z3NTAqQfOadNLWUnx1HvR\n+ysMztu4tPJnpjufzeKrsWr+BE5bPZf3ffP+1seaykqOPn3iitZl5buW4ut467mrefmVV+jITWce\nwE8e/ROQJa6bjtitywG3//7GPRnexbz6c3ccwe3vWtvay9hVogdtDx6WTB/D3Y/+ics2LuKCr/y8\n4vpbzxRufV3+35q5fPz7D7H79DH88FdPA3D1Ccv56W/+xKTR2d/vanaK1+0xrc02nD9xBA/+/s8V\n110yfQwPXH4wz734MpCVvnyrsH8oVZ6EF8sbtvWEbGdnSTuyfOZY7nj4j/zwvDUMGdRIc1MD5133\ns21rQEH5AN3hgxsr7icgO/t2xLJpLJo6mmWFz1mx/R1dj6IjJtAa8L719gO6XmmA2WfOeD587DJ+\n9WTlHd7gpoZ2PY/HrJjOTuOHsc+cLBmcOmZot+u9zjt4l16ZLqir5HqHEc1tErXifvOA+RPaHf33\nlru6OXgxj4jo9II43RlQNHLIoA6vSnn7u9a2uf+GQh1tR248Y3/GD+98+41obuLUA7P3zCWHL+KS\nw7Oe70rvpZ767jkHdmvw0js27MKLL2/hdXtM44CyUpmJo4bw2TftxTH/dlub06+TRw9tTaBHlfVo\nbzpiN57/65bc7e2sVvy9r6s8ZWFRpRrJjmam2fqc7HdPK8FuOnNVa889wC8v63wA6A/PW8PGD/+A\ns9Z1v1e4M+OHD+bp517q8PHy8L586r7tktbS6SXLy2KKs8pkZ6LaJv0bFk7ixnseB7LErjS5K+00\nOHnVbFZWqMFdvUv70qzvFQaLldZElybElf5OqfL97adOXMHDTz/H4mlj2iTQ08dt7a0unjksPQN2\n1vqdOWv9zjz7wl/ZrXCAOGnUEJbssxM335cltuWvbbE87pDFk7nlvt9z9vq22/iClgU89n8v8L+P\n/Kli2wc1NrSeRThqz+lMHzeM467+UafxfuZNe/H5Hz+SewDlR1+/B/c99gy3/To7OMgz0PGTJ67g\ngSeebdPjX+wBHtzYwEtbOj7QKrdwyiju+d0zXHV827Mp91zS9Vzjf1NSDpa99vlrpU2gpT6Sp+YT\nsqSus8EaVx63rMOaw66ujnjI4il84KYHCvc6qf2Mtr+7cvFhC7n0a/fyiTfumXt0dkd/74M3P9D1\ninWmvP6w2roavFg0afSQdqUApfaZM56fXrS+TaL8keOWseED36t4wJCnRri33XjG/jz89F/Yd874\nLq8YWkz2Zoxr/zrt3MVUjm3/TvfXhazM4MdlB2fdce8lB7Hg3d9st3zU0EE8/dxL3Z6SbumMznvG\ni/lzy26Tec9rd2t3gFTqimOXditZemeOsyh5BxPuOSuL58T9KvdWjh46qF3v5i8u3dAmYTx2xQxe\n3pJ4fYXBciOHDGLSqCE8/swLrb2bxdeoPOks3h02uKlNLXvRlDFD+fKpK7n29ke57IZ7eeaFlzsc\nIBcRXR4sQDbV4rZcY2DDoklsWDSJIz/6P9n/q7DOvJIDoqGDGhk2uJELD13IiOamdu+j4mtx6caF\nvONL3e+N/vKpK7MzXB2cvSt19fHLOyw7vPjwhVx+w30MashX1WwCLdWIntR6z91xBOdu2Jn33nh/\np/WI56zfmS1bUpuLf3Tm6BUzejXpOWHfndrV4aq2lSdRO4xo5o4Len5Woasyqbzm7Tiy2wcyR+05\nnfmTRrKsLBG46cxVTBjZ/ZKN/lKsD964pO0gvSXTx/DQU8/xz0e27aWfW+g5Lh1ouHRG14lWcbzB\n+oUTO02eISvH6exiV/2hOBYkj/ISoabGhg4TcCgpDyjkusUxCzuWnTHs7vifI/eczh47jeVztz3S\nbiBdfyvGUF5/Xv45KM7e05GtHTfZjT136t6MOx1N/VfJ2k6ua3DMihkdlvN1xgRa2k6ccsAcTtpv\ndqc7nbHDB/OP3RyBL/WGL/7dPts2ReCc3rly26r5E/jv+5/ssp65VES0S54hf49yf3rg8oPbzYpx\n6cZFrJy7Q7sxBNPHDeP+yzbQ3JRtlwcvP7hbMxfNmTCCX152cK7EplbsudPYirX0XRlUdpCwz5xs\nQO0hu2cdItefvpJP/8/DreVZ3TFnwgjeXTKtYUcuPmwh/3nno/kanMN7jtiN1TvvyG7TRvO5k/Zq\nnX407+dg0ZRRfPHObGD2A5cf3CdzX/eF6Ms58nrD8uXL0x133FHtZkiSBpg/PPcSf93ySsUL6HTX\n8y9t4fFnXujX3rydzrsBaF9z2xt+9Oun+eUTz3ZZd698nnvxZZ7684vdLm8qeuip57jurt9w5rr5\nVZ0+tbs++YOHWDh1dOuFofpDSolfPP5sm2n9qiUi7kwpVZ4rsXxdE2hJkvrPVd/7FT//7TP86zFL\nq90USSXyJNCWcEiS1I9OXtX5oF9JA1+PC5UiojEi/jcivla4Py4ivh0RDxR+jy1Z9/yIeDAi7o+I\n9pcNkiRJkga43qj0fxtwX8n984CbU0rzgJsL94mIBcDRwEJgA/CRiMg/ckSSJEmqoh4l0BExDWgB\nri5ZfDjwqcLtTwEbS5Zfk1J6MaX0EPAg0P56q5IkSdIA1tMe6A8A5wKls6FPTCk9Vrj9OFCcfG8q\nUDqfym8Ky9qJiJMj4o6IuOPJJ5/sYRMlSZKk3rPNCXREHAL8PqV0Z0frpGyKj9zTfKSUrkopLU8p\nLZ8wYULXT5AkSZL6SU9m4VgJHBYRrwaGAKMi4rPAExExOaX0WERMBn5fWP+3wPSS508rLJMkSZJq\nxjb3QKeUzk8pTUsp7UQ2OPCWlNLrgeuBEwqrnQB8tXD7euDoiGiOiFnAPODH29xySZIkqQr6Yh7o\nTcC1EfEm4GHgSICU0j0RcS1wL/AycFpKaUsf/H9JkiSpz3glQkmSJG338lyJsDfmgZYkSZK2GybQ\nkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCS\nJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIk\nSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJ\nUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElS\nDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIO\nJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m\n0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQ\nkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCSJElSDibQkiRJUg4m0JIkSVIOJtCS\nJElSDibQkiRJUg4m0JIkSVIO25xAR8T0iPhORNwbEfdExNsKy8dFxLcj4oHC77Elzzk/Ih6MiPsj\n4qDeCECSJEnqTz3pgX4ZOCultADYGzgtIhYA5wE3p5TmATcX7lN47GhgIbAB+EhENPak8ZIkSVJ/\n2+YEOqX0WErprsLtZ4H7gKnA4cCnCqt9CthYuH04cE1K6cWU0kPAg8CKbf3/kiRJUjX0Sg10ROwE\nLAV+BExMKT1WeOhxYGLh9lTg0ZKn/aawTJIkSaoZPU6gI2IE8CXgjJTSM6WPpZQSkLbhb54cEXdE\nxB1PPvlkT5soSZIk9ZoeJdARMYgsef5cSum6wuInImJy4fHJwO8Ly38LTC95+rTCsnZSSlellJan\nlJZPmDChJ02UJEmSelVPZuEI4OPAfSml95c8dD1wQuH2CcBXS5YfHRHNETELmAf8eFv/vyRJklQN\nTT147krgDcDPIuLuwrJ3ApuAayPiTcDDwJEAKaV7IuJa4F6yGTxOSylt6cH/lyRJkvrdNifQKaXv\nA9HBw6/q4DmXA5dv6/+UJEmSqs0rEUqSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhA\nS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBL\nkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuS\nJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5Ik\nSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJ\nOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5\nmEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmY\nQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhA\nS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk5mEBLkiRJOZhAS5IkSTmYQEuSJEk59HsC\nHREbIuL+iHgwIs7r7/8vSZIk9URTf/6ziGgEPgysA34D3B4R16eU7u3wSS+/CE//qp9aKEmSJHWu\nXxNoYAXwYErp1wARcQ1wONBxAv37e+FDy/qndZIkSVIX+juBngo8WnL/N8Be5StFxMnAyQDzp+0A\nr7mif1onSZKk7dPFR3d71f5OoLslpXQVcBXA8uXLE7sfVeUWSZIkqb51P4Hu70GEvwWml9yfVlgm\nSZIk1YT+TqBvB+ZFxKyIGEyW6l/fz22QJEmStlm/lnCklF6OiNOBbwKNwCdSSvf0ZxskSZKknuj3\nGuiU0teBr/f3/5UkSZJ6g1cilCRJknIwgZYkSZJyMIGWJEmScjCBliRJknIwgZYkSZJyMIGWJEmS\ncjCBliRJknIwgZYkSZJyMIGWJEmScjCBliRJknIwgZYkSZJyMIGWJEmScjCBliRJknIwgZYkSZJy\niJRStdvQqYh4Eni42u3oIzsAT1W7EX3I+Gqb8dW2eo6vnmMD46t1xle7ZqaUJnRnxQGfQNeziLgj\npbS82u3oK8ZX24yvttVzfPUcGxhfrTO+7YMlHJIkSVIOJtCSJElSDibQ1XVVtRvQx4yvthlfbavn\n+Oo5NjC+Wmd82wFroCVJkqQc7IGWJEmScjCBlrohIqLabehLxidJUveZQPexiJgSEc3VbkdfiIj5\nETGj2u3oKxGxc0QcDJDqsNYpInaLiHdA3ca3OCI+CnUb38x6/fxFxKRqt6EvRcTkej6oi4gh1W5D\nX4qIidVuQ1+q57ylN5lA95GIGBER7we+AVwdEccWltfFax4RY4F7gZMiYodqt6c3FbbdPwOfBwZX\nuz29LTL/BPwH0BQRg6rdpt5Usv3+HXhjRKytdpt6U0QMjYh/Idu3fCoiTiksr/l9SyG2DwA3RsS/\nRMTh1W5Tb4qI5oi4EvgucFVEHFHtNvWmiBgeEVcBF0bE+MKyujlQKOxbPgB8IyI+Vofbr67zlt7m\ni9IHImIK8Emy5Gsl8FWg2NP3SvVa1qumAfcDw4ElVW5Lr4mIUcB1wH4ppWUppa9Wu019YAIwGdgj\npXR5Sumv1W5Qb4mI3YAvke3bWoCLyeKtJ28FpqSUFgAXAWdA3exbTgMmpJSWAF8B/iEi5la5Tb3p\nMGBySmk+8DXgkoiYX+U29YpCr/MlwH7ASGA11M/Zn4iYBnwGCODVZAdB761qo3pRREyl/vOWXmUC\n3Tf+DzgzpXR6SunPwETgKxExAWr3aK7Qc1nsTfgT8EUgAWuKvQ114AWyneQ9ABGxMiLWR8S8wv2a\n3HbQpu2jgHkppZci4qCIODsiDqpm23rR48CJKaW3p5QeB5YCMwEiorGqLeuhiGgsbMMAflpYPAW4\nISJ2qV7Leq4QWyMwmiyxJKX0XeA54KKIGF3N9vVERAwruZuAJwEKB+c3An9XOKNXk0riexG4ElgF\nPADsERFzCuvUbC90RAwv3Hwe+HhK6W2Ffcu1wN0Rsbh6reu5kvj+BJxVb3lLX/IF6QWFWtmPRsRQ\ngJTScymlRyJicES8DTiPrKf2hohYkFJ6pVZ2KKWxpYLCQ8uAIcC7yHr4jomIjbVW+1Zh270E3AKk\niHgCeA+wDvhuRCyspW0H7bZfsRehAfheRFwCnEt20PCBiDghIkZUrbHboML2ezKl9NuSspRryHqi\nSSltqVY7t1XZ9ttS2Ia/A2ZExK3APwLPAjdFxLoafm9uKWyfBmB5RCwplIb9ApgHzC48p5bimxcR\nnyYr1Tis8B59CfhT4SwlwPvIDvIWFJ5Ts/EBI1NKD6aUngK+Q/b9ULO90CXxfaxQSvQ8cEPJKtPJ\n3pf3V6N9PVUW32FAY0rp4UIZVU3nLf3FBLqHImI/sh7Lk4EzC8sCWpOxr6eUpqeUzibrbfhg4bEB\nv0PpILbie+bnwO9SSi8Cc8ji2iWl9EI12rotKsVX8BhZffD7UkqrUkrnAFcD/wy1se2g0/ieJDtN\ntz/ZmZIrgHcDh5L1btaELj57xbKU3wO/iIjpVWlkD3Sy/T5LduDzGLAipXQh2YHe2+vgvfmvZAd0\n7wJuIhuH8C3gFKipz94byE6B/w/ZAfnhZKf9vw/sCiyOiOaU0hNkpQBvh5qO71BgY/HxlNJPycbI\nLIyIParSyB7oIL7XlW2fwcDmwndgTels+6WUnqeG85b+ZALdc08DJwLzgb+NiJ1SSqnki/yBkqO2\nTwLPFXvLakCl2Iq9mPuQDSD8Odlp888Dj5adrhzo2sUHrfVeP0gp/VPJup8B/lJjPewdxfdHstPk\nLwDLC8v+ExhPVrtYKyp+9srWeQrYE3gGaquHjw62H1kZwAjgt0Dx83Y1MCxqp5Sqo/fmEymld5El\n1WtSSt8A7gbug5rafk8A70gpXZlS+gTZ+3BSSukPZAcERwC7F9a9Bvhj1NZg3vL4/kDhvRgRTYV1\nvkm2nfeKiPMiYlV1mrpNOouvWAq2FPhVYdmba6yUo7P4osbzln5jAt1DKaX7gAdTSg8C3yYbtASF\nnryIaCgk1PsAnwB+WDjCG/A6iQ2ynf7tZPWmx5IN+JlODfVgdhRfYQfS2pMeEfsCHwduq6Ue9i62\n37eBTwMtEXF+oRzg52Q70prQyfZrKPyOlNIvyEocXl94Ts30oHQUXyGGx8lKG94cEW8kS1ZuJxt/\nMeB1te2A36aU/lBIus4CHi08rya2X0rpW8C3SpLJF8jq1QE+TBbPeRFxFtm+9Ne1NJi3s/hSSi8X\nfj9CdqB3GXA0tbVvKY/vebbGVywFexUwPiK+BBxL9hrUhC62X6rlvKVfpZT86cYPWe/c2A4eK14S\nfSTwIPCqksfGAZcC/wscWe04ejO2svUaqh1HH2y7EWSjkO8Gjqp2HH2x/YDdyBKUo6sdRx/FN5Ts\n9P+yasfR2/EBi4FTyeoyB+T260Fsg4DXAb8Ejq12HNsSX9l6nwOOKLk/hGyw3QeB11c7jt6Or7Bs\nT7Iyo+OqHUcfxfcNssHmr6t2HL0dXyFvuWQg5y0D4afqDaiFH+CCwo7gP4ELO1insfD7DOBrhdtH\nA43AgmrH0AexHQMMqXb7+zi+JmB+tWPow/iGVbv9fRzf0Gq3f3uOr4exNQPDqx1DL8TXQHZq/Mtk\nsxoEcBDQXO32G9+2x1d4bHW1Y+ij+NYXfi+sdgwD/ccSji5ExAKyeS1nAWeTTdl2dGyd+qXoFYCU\n0geAlRHxf2SzNwxOKd3bn23urh7GtoYBXgLUw/jWAoNSSr/szzbn0Qvbb0DXlPZCfGF81dHD2F5F\nllg/159tzqO78aVsPMXowk8L8COywbsDdttBj+NbRX3Hd2BEDE4pfaefm91tPY2P7Lvvnn5tdA1q\n6nqV7d6fgTHAiJRN8XIl2RvsEeCHxZVSSimyuUovIKtvOyWl9IMqtDePeo4NjA8wvgGsnuOr59ig\nm/EVLC889hTZPLu39mM7t5XxbWV8qmhA9yD2t4gYHxFXRcQBJYuHkk31Uhxh+wWyuTz3iPYXZngW\n+ExKafFA+xKo59jA+Ar3jc/4+l09xwa9Et8tZAcGRw7E5MT4AOMbsPENZCbQBRExk2wqqNeSXRSk\nOB3Ug8BfgaURMSWllMhGvB+byi7MkFJ6JWXzXw4o9RwbGB/GZ3xVUs+xQc/ji2w2g+dSSh/r77Z3\nh/EZ30COb6Azgd7qz8DlZDVDM8lqhgYV3mxfI7tYyFqAlNINwJ9j69WkBrp6jg2Mz/gGtnqOr55j\ngx7Gl7bOmz9QGZ/xaRtZA12QUno6Iv6SUno+Ij5PNhL8R8AjKaXvRXZZ2TdGxFKyqb+Q/znkAAAD\nOUlEQVQeJ7vK2YBXz7GB8RnfwFbP8dVzbGB8xjew1Xt8A11xHs7tRmRX00mpiwtiRMQXgR8AV6TC\nBPeRXS3rCOD5lNKVfdzU3Oo5NjC+kvWMbwCq5/jqOTYwvpL1jG8Aqvf4alYaAHPp9dcP2TyHvwE+\nVLa8oeR2cV7SA4Drgblkl5ydVe32b6+xGZ/xVbv923N89Ryb8Rlftdu/vcdXyz/bWw10A9mlbtdE\nxK7QWkT/SuH24lQosE8pfZfsSnR3kV2mc6BfZrWeYwPjM76BrZ7jq+fYwPiMb2Cr9/hqV7Uz+L78\nAZpKbjcA04GTyIru/6vksYnAp4Hvk10Pvhl4I/AwsLHacWxvsRmf8RmfsRmf8Rlf/cVXTz9Vb0Cf\nBJUNjvwn4IPA2pLlewNfKNz+CbCRbJ7EVcBpZX9jRrXj2N5iMz7jMz5jMz7jM776i68ef+quhCMi\nAvhXYBLwY+AdEXFaRDQDTwK3FVb9CXAdcHJK6XsppQ8Xnt8EkFJ6pN8b34V6jg2MD+Mzviqp59jA\n+DA+41Ovq8dp7EYCS4CDUkrPRsRTZNd4bwF+DpwZERuBLcAdwM8gewOnzMtVand31HNsYHzGN7DV\nc3z1HBsYn/ENbPUeX12qux7olNIzwGayWiDIpnS5C1gHvEw2ufhnUkprgDcDJ0TEsJSy8x8DWT3H\nBsaH8Q1o9RxfPccGxofxDWj1Hl+9qsceaIAvAxsiYnJK6bGI+BlZzdCYlNIp0Hrk9hNg32o2dBvU\nc2xgfMY3sNVzfPUcGxif8Q1s9R5f3am7HuiC7wNPUTiaSyndCawAhgBERGMNH7nVc2xgfMY3sNVz\nfPUcGxif8Q1s9R5f3anLBDql9BjwVeDgiPibyK7E8wLZqRBSYc7EWlTPsYHxGd/AVs/x1XNsYHzG\nN7DVe3z1qK4v5R0RBwN/Q3a644qU0hVVblKvqefYwPhqnfHVrnqODYyv1hmfBoq6TqABImIQ2TXk\n626Uaj3HBsZX64yvdtVzbGB8tc74NBDUfQItSZIk9aa6rIGWJEmS+ooJtCRJkpSDCbQkSZKUgwm0\nJEmSlIMJtCRJkpSDCbQkSZKUgwm0JEmSlMP/B2PEeT2W7YlwAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fcd1d5eaa90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df0.plot(figsize=(12,9))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7fcd1d402c18>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHwCAYAAACPE1g3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXncJUV1P/ztZ1ZWUeA1KsYZDaKsKrwC4UXzE4wkcY8Y\njVGIUYNGjfIagxpFBRFljSwCiuyLgCDLsAwMDDMwA7My+wqz7/PMPs882731+6Nvd1dVn9NVdW/f\n57l35nz5ME/f6upTp6urTp06depUpJSCQCAQCAQCgUAg8EPHYDMgEAgEAoFAIBC0E0SBFggEAoFA\nIBAIAiAKtEAgEAgEAoFAEABRoAUCgUAgEAgEggCIAi0QCAQCgUAgEARAFGiBQCAQCAQCgSAAokAL\nBAKBQCAQCAQBEAVaIBAIBAKBQCAIgCjQAoFAIBAIBAJBAIYONgMuHHbYYWrUqFGDzYZAIBAIBAKB\nYC/G9OnTNyulDvfJ2/IK9KhRozBt2rTBZkMgEAgEAoFAsBcjiqIVvnnFhUMgEAgEAoFAIAiAKNAC\ngUAgEAgEAkEARIEWCAQCgUAgEAgC0PI+0AKBQCAQCASCMPT19WH16tXo7u4ebFZaDiNHjsQRRxyB\nYcOG1U1DFGiBQCAQCASCvQyrV6/GQQcdhFGjRiGKosFmp2WglEJnZydWr16N0aNH101HXDgEAoFA\nIBAI9jJ0d3fj0EMPFeXZQhRFOPTQQxu2zIsCLRAIBAKBQLAXQpRnGmXUiyjQAoFAIBAIBAJBAESB\nFggEAoFAIBDsVRg/fjwmTZrUNPqiQAsEAoFAIBAIWgL9/f3Gb6UUqtVqMB1RoAUCgUAgEAgEbYfb\nb78dxx9/PE444QR88YtfxLnnnosHHnggvX/ggQcCiJXd008/HR//+Mdx9NFHY/ny5TjqqKPwpS99\nCcceeyxWrVqFsWPH4tRTT8X73vc+nH322di1axcAYNSoUbjwwgvxvve9D8cddxwWLlyI5cuX44Yb\nbsBVV12F97znPZg4cWLp7yZh7AQCgUAgEAj2Yvzs0XmYv3ZHqTSPfvPBuPBjx7D3582bh4svvhiT\nJk3CYYcdhi1btuD8889n88+YMQNz587F6NGjsXz5cixZsgS33XYbTjnlFGzevBkXX3wxnnnmGRxw\nwAH41a9+hSuvvBI/+clPAACHHXYYZsyYgeuvvx6XX345fv/73+O8887DgQceiO9973ulvncCUaAF\nAoFAIBAIBKXi2Wefxdlnn43DDjsMAPCGN7yhMP/73/9+Iy7z2972NpxyyikAgJdeegnz58/Haaed\nBgDo7e3Fqaeemub99Kc/DQA48cQT8eCDD5b6HhycCnQURX8A8FEAG5VSx9bS3gDgjwBGAVgO4LNK\nqa21ez8A8G8AKgC+rZR6qpZ+IoBbAewH4HEA/6mUUuW+jkAgEAgEAoFAR5GleCAxdOjQ1J+5Wq2i\nt7c3vXfAAQcYefXfSil8+MMfxj333EPSHTFiBABgyJAhOR/qZsHHB/pWAGdZaRcAGKeUOhLAuNpv\nRFF0NIDPATim9sz1URQNqT3zWwBfBXBk7X+bpkAgEAgEAoFgL8CHPvQh3H///ejs7AQAbNmyBaNG\njcL06dMBAI888gj6+vq8aJ1yyil48cUXsXTpUgDA7t27sXjx4sJnDjroIOzcubOBNyiGU4FWSk0A\nsMVK/gSA22rXtwH4pJZ+r1KqRym1DMBSAO+PouhNAA5WSr1Uszrfrj0jEAgEAoFAINiLcMwxx+BH\nP/oRPvjBD+KEE07A+eefj69+9at4/vnnccIJJ2Dy5Mk5qzOHww8/HLfeeis+//nP4/jjj8epp56K\nhQsXFj7zsY99DA899FDTNhFGPl4UURSNAvCY5sKxTSl1SO06ArBVKXVIFEXXAnhJKXVn7d7NAJ5A\n7OZxqVLqzFr66QD+Wyn1UVfZJ510kpo2bVodryYQCAQCgUCwb2LBggV497vfPdhstCyo+omiaLpS\n6iSf5xsOY1ezKJfqyxxF0deiKJoWRdG0TZs2lUlasA9j8YadmLhE2pNAIBAIBILGUK8CvaHmloHa\n34219DUA3qrlO6KWtqZ2baeTUErdpJQ6SSl10uGHH14niwKBib+9agK+ePOUwWZDIBAIBAJBm6Ne\nBfoRAOfUrs8B8LCW/rkoikZEUTQa8WbBKUqpdQB2RFF0Ss3l40vaMwKBQCAQCAQCQdvAJ4zdPQD+\nBsBhURStBnAhgEsB3BdF0b8BWAHgswCglJoXRdF9AOYD6AfwH0qpSo3UN5CFsXui9r9AIBAIBAKB\nQNBWcCrQSqnPM7fOYPL/AsAviPRpAI4N4k4gEAgEAoFAIGgxNLyJUCAQCAQCgUAg2JcgCrRAIBAI\nBAKBQBAAUaAFAoFAIBAIBHsFWukob4FAIBAIBAKBIAjLly/Hu971LnzhC1/Au9/9bnzmM59BV1cX\nxo0bh/e+97047rjj8OUvfxk9PT2YOnUqPv3pTwMAHn74Yey3337o7e1Fd3c33v72twMAXn31VZx1\n1lk48cQTcfrpp6enEZ577rk477zzcPLJJ+P73//+gLybcxOhQCAQCAQCgaCN8cQFwPo55dL8i+OA\nv7vUmW3RokW4+eabcdppp+HLX/4yrrzyStx4440YN24c3vnOd+JLX/oSfvvb3+Kb3/wmXnnlFQDA\nxIkTceyxx2Lq1Kno7+/HySefDAD42te+hhtuuAFHHnkkXn75ZXzjG9/As88+CwBYvXo1Jk2ahCFD\nhpT7ngxEgRYIBAKBQCAQNAVvfetbcdpppwEA/uVf/gUXXXQRRo8ejXe+850AgHPOOQfXXXcdvvOd\n7+Ad73gHFixYgClTpuD888/HhAkTUKlUcPrpp2PXrl2YNGkSzj777JR2T09Pen322WcPmPIMiAIt\nEAgEAoFAsHfDw1LcLMTn52U45JBD0NnZSeb9wAc+gCeeeALDhg3DmWeeiXPPPReVSgWXXXYZqtUq\nDjnkkNRKbeOAAw4onfciiA+0QCAQCAQCgaApWLlyJSZPngwAuPvuu3HSSSdh+fLlWLp0KQDgjjvu\nwAc/+EEAwOmnn46rr74ap556Kg4//HB0dnZi0aJFOPbYY3HwwQdj9OjRuP/++wEASinMmjVrcF4K\nokALBAKBQCAQCJqEo446Ctdddx3e/e53Y+vWrfjud7+LW265BWeffTaOO+44dHR04LzzzgMAnHzy\nydiwYQM+8IEPAACOP/54HHfccakV+6677sLNN9+ME044AccccwwefvjhQXsvceEQCAQCgUAgEDQF\nQ4cOxZ133mmknXHGGZg5c2Yu73777Wf4Nd90003G/dGjR+PJJ5/MPXfrrbeWw2wAxAItEAgEAoFA\nIBAEQBRogUAgEAgEAkHpGDVqFObOnTvYbDQFokALBAJBibjw4bl4xw8fH2w2BAKBAEqpwWahJVFG\nvYgCLRAIBCXitskrUKnKoCUQCAYXI0eORGdnpyjRFpRS6OzsxMiRIxuiI5sIBQKBQCAQCPYyHHHE\nEVi9ejU2bdo02Ky0HEaOHIkjjjiiIRqiQAsEAoFAIBDsZRg2bBhGjx492GzstRAXDoFAIBAIBAKB\nIACiQAsEAoFAIBAIBAEQBVogEAgEAoFAIAiAKNACgUAgEAgEAkEARIEWCAQCgUAgEAgCIAq0QCAQ\nCAQCgUAQAFGgBQKBQCAQCASCAIgCLRAIBAKBwIk/Tl2J+6atGmw2BC2G68cvxfhFGwebjQGHHKQi\nEAgEAoHAif/+0xwAwGdPeusgcyJoJfz6yUUAgOWX/sMgczKwEAu0QNDi2NNbwfcfmIUtu3sHmxWB\nQCBAT39lsFkQCAYdokAL9kk8v3gTlm7cOdhseOFPM1bjvmmrccXYRYPNikAgEGDpxl2DzYJAMOgQ\nBVqwT+KcP0zBmVdOGGw2vKCUGmwWBAKBAPsPHwIAeHXT7kHmRCAYfIgCLRC0ED5x3Yu47rmlg82G\nQCAQ5JAo0D194sIhEIgCPcC45cVlmLR082CzIWhRzFq1DZc9Ja4aAoGgdSFrYgKBROEYcPzs0fkA\n9r3dqoLGEUWDzYFAIBBANGiBAGKBFggEAoGgNNwzZSUmLtk02Gw0Be26HWN7Vx8ufHiuRA8RlApR\noAUCgUAgKAk/eHAOvnjzlMFmo6lQbWaCvnzsItw2eQX+NH3NYLMi2IsgCrSgpdFXqeKix+bv0zGQ\n22uoEuwNWLNtD3715EKJACMg0W7NolJjuNpujAtaGqJAC1oaT81bj5tfWIaLH5s/2KwIBPsMvnX3\nDPx2/KuYt3bHYLMiaEGIGioQiAItaHH0V2JR3V8VkS0QDBR6K1UA7WdpFAwM2rVdtCnbghaFKNAC\nAEBvfxWPzV67TyzZtus7RpAwHAKBYPDRbj7QqeRsU9kvaE2IAt0kPDFnHcYv2jjYbHjj8rGL8M27\nZ2LiktaKUZ0I6o4SdUeRoYKBQLtO1HS0m6IkGBi0W9OWEKCCZkAU6Cbh63fNwLm3TB1sNrzxWu1o\n1j0tdsJUIqijOiXgnt4Knp6/oUSOBAI/tJuSoUNWOwRFaOOm3Rbo6u3HMzJutTxEgRYAQBofc+Sw\nIYPMiYlGlZCfPDwXX719Guau2Z7RbJCngUY7K2L7Mtr5s4nlWVCINhVK7cL1jx6ai6/cPg2L1u/E\ncT99Cl++tX2McfsSRIEWAAC6a5bnkUNbs0nUaw9bsaULALCrpz9N2xuW1vd2KKXw5Nz1qLTx5tG9\noZ2JJVpAod1adtKO26VLLu+MV4R39fRjZ3c/nl3YPu6g+xJaU1vay/C7Ca9hVU2Ra1V098W77lvO\nAl0WHY1Qm8jQfRqPzFqL8+6cjlteXDbYrOzT2Jcs0Zt29uCacUv2iolPsyFV1Fy0U/3uy/1FFOgm\nY/OuHvzi8QX40h9a+2SqxALd0WK7LZLO+eDMNXho5mqvZzbv6sG05VsA0Jbrduvv+6KA2rCjGwCw\nfnv3IHNSP9r5q+2Llufz73sFVzy9GDNXbRtsVloWSZtuN5nUYsOaN9qB7zZrCqVCFOgmI2lcO7v7\nBpcRB7prPtCtZnHSufnuH2cV5k2Urk9d/yI+c8PkApqt9Y4CHu0wgHDYlweWdsTumptXtY3dhgTF\naDfFvx2wL9eoKNBNRhJ+rZVl8pINO7Fqyx4ALTjoe/Lz+Jx1OPmScZi0dHP6LizJFnvHe6asxC/G\nuE9abGdlksKi9TtZ16ZW+0b1QCZq7Ym9rZ81A+3WsuWTNg/78vHookA3GUn4tVZuZD/XjsluXS6L\nMW35VgDA/HXZ0cPtYm34wYNz8LuJ+56v70eunoDTf/1cYZ56wxe2Alqh+d03dRWWbtw12GwI9jK0\nQtuuB23KdkujlXWbZkMU6CYjGf5buY3tPzzbONhqSqevFS/JpytcrWz1FwgGAt//02z83f9OGGw2\n2gIiLtxIxod2q6t2noi3OpqtMkxZtgX/cfeMlnStEgUa8amBc1Zvd2esA8knH8xZ2vauPvRXquz9\n/YcPTa9DuOzpr2DUBWNw98srG+CuGL7Vlh64oqX1V+l3brE5gjf2pSGgTT9RS6KvIrUpKBetZmjx\nRZuy3dJodp3+261TMWb2Ouzq7XdnBrCtq3fAwp+KAo341MCPXftCUzb6pYJmkDpuf6WKE34+Fj98\naA6bx7RA+9Pu6ok3Hv7qyYV181cEpRQueJDn284LmP6LeifSLdlfub29gtLvyzK/nScNe8NgXfQO\nKzp3Y0UtXu3ehXZudQLBwGKg9nr4yNPte/rwnp8/3TSdxIYo0Bq+fucMr3wPzliNUReMwZ5e97HX\n1cHVn9FfY+DhV9ayeQ4YMVT75c9pR22HZJfnzDAUPf281dxGUs96GL7+qiI3BL24tLNR1gYULbhy\nFQSlFG6fvBydu3oGm5UBRTtvIvRZ8f7gZePxwcvGN50XQethb5gctjLaqXpbaXzasSc2gj4+Z92A\nlCcKtIbZq/3if179zBIAwMad7hi1ySA62I72RaXXa4FOrL7NWiKm6qy7r4Kv3zkda7bRkTYMC/Re\nsnTdir5fIViycRd+8vA8fOyaF7zjOrfSAP3qpl349j0z0VfgBkWhld5BICgT7To5bDeu22EtpJXc\neVJXzgGqOFGgm43aBx1sBboIhgId8FyzX6mfUByfnr8BT8xdj0seX2DykmwiBDCkZhmnnm9HtHLb\n8UFvbSVh7fZunPLLcWEPt8AI8r37Z+GRWWsxO3CfRDt/tTZvcoImo93aR6JQtZKyt7egkWH2pdc6\n8fJrjhXhgDEg0wMGZuAQBbrJSF04VOt2Xv347iALdGA5Sim8/Fqndz0UWpCtW2knjiIMqUnLgdpI\n0GxUWrTdNBPtauHS0ar9vRHs7O7D3DXN2XA92NgLP1fT0G5V1XYna7ZRY2xEzn3uppfwTze95Cig\nbvJNhyjQTUaiCMQK9CAz44GQzhBqGX109jr8000v4f7pfkdyUxZkfWnmkVlrMeqCMejuq6R12xEB\nHR3J82FL7q0EpVR6Mlq2LNVmg0CdeGre+jR2cdsNfBoGu7s3MrBxTe3fbpuGj17zwl4zOaWwj3Sz\nhtAOY9negHaQ+QPWFlS8mtnTz+89G+h2KQp0k5FtIhwcm5pPg9LzNNOFY/XW+NS5Vzf5HexQNEgr\nKFz+1CIA8RHeaRQOMBboNhD4usJz66TlOObCp7Bm2562UFbmrtmOix+bX4rV9d/vmI4HZ6wpgStB\n2Zi6fMtgsyAYRLS+JKLRBnpo22KgXAyrSuGUX47Du3785ICU5wNRoAvQ1duPO15a0ZBSkDxbVWZD\n69zVg1EXjHH7/3jg8qcW4ayr6cMSfNR2na96NhH6YljNNNzvubmPsiDrFkn93UwLdOYDneQvq4uv\n6NyNJ+c2Z4evXp1PzFkPAFi1pastfKA/c8Mk/P6FZdjT545MUxYqVVVojRhsDPZna2b5e6N7Sii+\ndvs0/Oe9MwebjUFBu7lYtcOBZu2KATRAY8vu3sJvqHlyDghEgdZgL5dc8vgC/PjPczF+0aa6aaZh\noJUyPvz0FfHR02Uc4Xztc0uxcP3Oup83LdD+3SG04ySb+2yL6l0vr8A37pqObkv5KrRAa7ciRKmS\nGUV0OWUJzg9fNQHneYY7DAXHYhKFox2UlrJdLooE4Tfumo6j/qd1rBE5NPi5uvsqDfkbc8UrpXDR\nY/OxZINbZrA06uaqdRH6TmPnbygMDwrEKzO9AeE42wVtIIoEA4SmG3ii8HIGasFhn1egi5SSLbt7\nAQBdTLznEPcIBcti6s1hY/Dikf3ROG0dw4bEzdoOB/ajh+bi8TnrsWpLl5EeEkUjm3lmLhy6pbus\nTt7MwVBvi3pUkaQa2nUzYbPYfmrehuYQZhH2Io1a6b59z0x89Jr6D3jiZNu67d24+YVlOOcPU+qg\naf7dq6CyPlcGVnTuxkeveQEXj5lfEkWBD1p5VcoXbdW96mDW/kZ3vLTC6arop28NbM3t8wp0Pf6l\nIcsDg72J0KdIU3HzR6hSOnRIsQuHnRrSoara4NdBWaCDOB0cUDxGUZQqzm3gCl06WsF1sV4eGu3v\nY+fHE4R6feDLsB5z795uS/ghKGvjVmKAmRUY/rDVsLunH0s3mqsVrboaNmf1dhz1P09i3AJ6ct1u\n7bYV5J8LoeLpuYUbcdT/PIlZq7JzN37857l4YPqqwudC2txAbb7c5xXoemIFh/kJ09eNfN6v3DYV\nv/Y8qtKn0XE8Op/zzwrAHZ/ZLptStKl+EUUZMx1RhFoxhg91O/gRc98hceFo5QNV2qB6BxxlVUm9\ndSvfRFAvqlWVTtzOu3M6zrxygiF/WrVtzVwVu0Y+t2ijkZ7FgR5ojvZ+hI6tzy+OXWITN9YEu3qK\nVw5a8dPt8wq0z8fnZq0+kxxjg15JTeCZBRtx/fhXvfJ6WaBRH4/BmwiHJJZh2g3CLtvlA01FD4ki\ntG8UDsLFJ4qyNtQWk4B2qOiSoJTCL59Y4B1Vpl7U+93L+Ba8H3XDpAcUSilc9tRCLPbw+xYAH7v2\nBbzjh48DAKYtjxWdnbWwmkDrilNuSG6HcHDtinrbgv1ch+MT+elqA4u9VoH+8q1TccXYRc58RRbo\nMjZE6dTLGHTqtkIWPFa3BTqQlSG1KBx9nhboc27J+2iyS8rawx2EpbsdQsFR9RkBSFzG2+AVSles\nWmHc415p9dY9uPH51/CV26bRzzVQGV29mbJSd5dv4Fu0QLWXiu17+nDdc6/i865DGwQAgHlrd6TX\nB40cCgDYsSfzxS+rn6/f3o0n5pQf1Sjh72u3T8OvPFdrBfWhSCepVlVODnbUhDqXziFkz5lsImwQ\nzy7ciGueXerM1+xlccpPtwi7e/px4cNzjQFUx9au3rrL58AZarfu7sWGHd0N0dYxLPFN5nygreTE\nh1DHtpoQt61ryTt0RJERhSPpk+1gvdWhC5fUAt0GGnTrc1gekgka17YaqQt9ebMV/U1bkCUv2BuY\nBRl6+6vkakqqQGubWctaafrRQ3Pw9btmYGVnlzuzDywlbOz8Dfittlrbps3WiUXrd7aknHj7Dx/H\n//x5rpHGudOUYYHOCvHP2gj2WgXaF/X4QIcgdIPeTRNew22TV+CWF5eT9zft6glkwCeL7tuWXb/3\noqdx8iXj2OdCldLMB9rPhYPCDx6cwzwbQ3fh6PfcRPjTR+bhvx+Y7Sy72eCqs61cOAge292tg5PF\nyarGEMZy0sjn0jfY1L1E2kD5rkfb7Zv6rCY28kbPzN+ATTsDZXOL4aePzsMZVzyPjZbR5KCRwwAA\nO/ZoLhwlff5EOX+a2fRXL2z29uY40FOWbcFHrp6A2yYtH5TyXePSXS+vNH6n38L6Si43m1b8dvu8\nAu1j1StrIPKhU3FsGFu7bQ8A4JD9hxXSWboxnpH6DHSUL7EPQqtlaBrGzs8CHYL0JMIo0qJwVHP3\nKdw6aTn+OK14B/BAgPpWpg/0QHPkD2X9LQsDdZR3parwizHzg5Sg5Lt0MKaTRpTM3iaEYCwTLciS\nF3zYDm1xPf0VfOX2afjC79vDPWTL7l5c9Nh89FWq+ObdMzDqgjEAkB7qtX2PGTZRt0DrYVnLwBGv\n3x8AMHv1NkdOP7CKssdHfXHpZvxx6kp3xhbD8s7dAIC5mtvNQCJUFnAWaE5/Dpv8DKxg2ucV6MLY\nuiWM3Qb5QGswhdc2xZ1l1KEHsHmmLd+CM6+MZ6TBsRODfKDDGmuSnbNANwLd94mKA91uK7d6zSa8\nt0Mc6DZgkcTEJZvwu4nLcisc1arCjJX04J5Mdodya48lTAiBBnygG2DAJfra7jM3cR6WfKrlZbkh\nNBk/f3Qebn5hGcbO24DHZmf+x4kF0P62B6cW6L6sXZbU0ROZ1tNXjoBuZM/EF37/Mv77T/QKZ7PQ\n01/BGVeMxwtLNhvp9UxUBkv2hk7wO5h25vSBDjAGRoj3kXzwsucwdfmWIP5CsM8r0L7HSlPw8y+m\nLUnco2kDYNrSss2xAv36Agt0Ishna/FHFWJnfsrHzdSf/eujaGBftnl3zoqeKtAlWKDtvAnfyzfv\nJuNA+3byUReMwS8G6eADajNnHG1E1a4HTkJybcX9YLl8DNQmwqRqbR/Z+wpWJpL2xQn+RqrCkBv1\nxoFuYnNpRX9LL7Qp22Wij/Hd57paZoHub6j6Hp+zDk/PN101Eh56S7dwMGNMizWAlZ1deHXTblz4\nyFzyvk8/G+wNv5x44nhPJmp2+3P7QPvzFEUR5q3dgRWdXbj0ieZtIt3nFeh6lkdDNqa5jLvssgVz\nY3PNB7qo5MzHyMz3yKy1OOOK53MxMkPdTOgnMyxYtwP/5/LxuGHCq2RuNg506Elvmm9wYtS+4unF\nWLBuR64cv28V5ynjeHUXZq/ehqUbTQWVWqyoaPFYm2C4Z3H/tNU444rnMenVze7MGhodoAZSMVu4\nfgfmJ8ueybKilaeT2MiaIGlTQ1ySvw6U4a7jQ6K3v4pHZ61l651Nb4CvZmDJhp2YM9gHlrRapTjg\nMuIkOGCEFoWjAReOb9w1A1+93YxYk5RV1umBnMvXQLmChSKpR268L6rnRet3Yu6a7S3Q7MIMYvwm\nQpcPtMcYTpVn/d68qwcf+PVzeK2E8KP7vALdyCbCD13xPOkzSR3JbKdzcOVIjpIu9DzRWkzqG4wI\nc9fEA8zi9WYsVMMyHlAdXNUlftpTl5lLJwkv/Yy1IcgCbT1HKW6hFuhmhLrb3tWHrYQS9vFrX8SZ\nVz5vpFHto6oG5yjvWTWfxFdrLkO+aJRF+/mn52/A2HnrGyPK4KyrJ+LvfzMRQCZkJyzexEZqsHlL\nLdCcD3QDdVGtY/UkX777ud+MW4Jv3TMT4xaYk+qBjB+4oubD2dtfxZqa7AjFh6+agI9d+wKfQVP8\ndvX045dPLEhlaZpl8DWRAQEfK5lOT5r3ju6+bK9DSXWV9CH7WzQKjj87fcOOblz59OJBW1FxhV0r\nYusjV0/AR68paPMDBG7Y5OQW964uBTp0eObq7om567FySxdufqFxQ9k+r0A3GhoscakwaBJL8XY6\ndZ/6bSPZgOfDdbyJMAPn41b3JkImc+pCYb9b7S83aan/wAi6bvu1MHY+K4QhCqqvwD3h52Px3oue\n9qPJlJPUy4C6cNT5gAKweMNOLFxf34YWuw0sXL8TX7tjel206sWfZ67xypdF4aDvN2KNN12/6qPh\n89ja7bHCus3aOOYSRGU1xQmLN+GDl43Hw6+swX89MAunXfosuvvKsUbq0L/FVU8vxo3Pv4b7raOD\nkzyhc4eqSwtqUfCrC8rKF//d2d2fuZOVZPdMXTg8Fejlm3cXbjjkV3Tp9O/c+wp+M24JXllVzibG\nesG3Of96tmms2tKFM698Hht38qFoywA7WWHypyv4lmDrcGqjPqvItTKI8nKZSsA+r0A3GsaOavic\nRVcXOi5ZS9Ht6a9g1dauGl2e73SJxCqf281qWnMDlEimQSeb+IJ9oL1Ltv2FFdkndEu3z0QpcZHw\nWZFvhi5rbjiNf8QW6Ox6oGFXxcYd3fjfZ5YULvn/7VUTcNbVE7U0//IGK9KIvoTquxKRTGY5F46G\nLNDGxLsU7lBdAAAgAElEQVReC7RPpjpvl/SdFtVWw+as3p5awcv3h83qQimVKmvcdw6t7jR/m1iw\nOXcBzs0hea1qVaXtsqiOrntuKUZdMMYr5nYil3s8Fei/uXw8Pn7ti858Nn+cSO+uuY4MltxJJ21c\n3QfwZee9bdJyLN24Cw/PXFsve17g5BOXXu8mwqJvdPIlz+BzN00OmtiVsci2zyvQjS7bU9+A3ZTn\nUZSe/5pxSwwH+G/dPRMrPHZ6U51RQWkWaN7sHVIbnE/uEGITn069j4sDHTpwJXwo/Vf+PuBnXU6i\ng/j4tDZF3hJEKyrzgW6F0xS/e98ruOqZxazFplEOB2uTj/7JfQVr0l6avYmwbkU84LnQJeSyvpNh\nVGB8I8sppzl568nf6uBWRasqC4ta9M7XPxcfYOajFCcirSwXDi7GsBuD8xVTi6nVAYMUwRL5qQe+\n7jIJEn5zm1gbiAO9YUcPXnpti1GfupGnu6+CZxfGG1jL/NINKdBRFH03iqJ5URTNjaLoniiKRkZR\n9IYoip6OomhJ7e/rtfw/iKJoaRRFi6Io+kjj7JuYvXobHpi+OuiZepQSw6rrsEBzp/zxxGt0EeGK\npxfjhuezjXhjtR3MPoOM7RvMDVCcy4mb1eIZpq20Jj/5Oq9fU6D41tN8vnOi17s6cky7fIFr+Msn\nPGnW9WaE/2N5YV5vT29isfG33tW7slA2/uE3E/HRayaS9/RJp++Go8TCxlug638Ze4WlLhrs5h4P\nelGmitA06mKJpRNF+gpZE/pW6nrgnzeUdkGGIHqDBW58SNpRVemWfJ5OyNumYexqCvS67Xsacqsc\nQNf9UuBsOmWU0eTJQchYACD9SPZ9zm7FRe0o4sWW5z99ZB6+fOu0dB+Ynade1K1AR1H0FgDfBnCS\nUupYAEMAfA7ABQDGKaWOBDCu9htRFB1du38MgLMAXB9F0ZDG2Dfx8WtfxPfunxX0TKMbsyhlixv8\nQpZiXYKgqFPoLhx6to5UQFqKrenE4c0j9zqJQpFz4XA8V+/SqVJ03XIhBDkkbaEJQRW8YLab5K9q\n2kabZoBqlyEKSTMPDZm3dgfmrvHwzfb0o0xcODqiCEs37sLSjebm3EZexdwAWx8NVz/zmygy6fWx\nxCKKIm2gLJk4BsYC7TpZbfqKrU33R20GTAt0Lc2jlnzEaCIbeitVrN7ahVN/+Sz+d9yS+hg16Fq8\nMGPfYIOf5Jp/60HoZOKl1zrxxZtfDjYqhq5Sdej6iZFevwXalSfZq6YfBlQGGnXhGApgvyiKhgLY\nH8BaAJ8AcFvt/m0APlm7/gSAe5VSPUqpZQCWAnh/PYVu7+rDqAvGeG/2KYKu5NUze6Ue4eI9ezUA\nJt2OTezbCPRsyYyLW6ILoVuUd0itVXEWaFZo+Bdt5FbMs3qaT7xv15I8R7ssUDQr1fCNNoOB9JsS\nLxEijwdrfNM/ua87Q9KmOjoinHnl8zjzygml8RM6+fvq7dNw2qXPetH2840uttiWpYgY8ind8NsM\nC7T5tyhPvbRd+MffTsI//IaPmvDqpl2486UV9TERAPchOfQLVeMlzSRTKUgW1Xr7q9hQO0J8wpJN\nddNzhbFrMf3ZOZktY0+SL4lv3TMTE5dsRucuM7LYL59YkJ5WGVIu142zb2FmcMeBrlNDiGjdblB9\noJVSawBcDmAlgHUAtiulxgJ4o1IqOd5oPYA31q7fAkDf9ry6lpZDFEVfi6JoWhRF0zZtynemuWtj\nM/zdUxo/dtNnE2FRDqrhm/6LjDLNlZUuQZiwYxP7zcZM14aImfkFu5mkebkZJmeBVrV0hl6dwq2q\nFNlZQ63/CV9DGrDMNQIq/GH8bvG170abMlCvcGl0ajRYx1abu7b9Xj71ma+jrpZv3o0lG3ay90Pd\nqp6evyEXAo6VMSVoP6VboKG5fjVDgSZXRpi89ZqgPVB0VPwnr3sR//PnuYNmJXUpcdVqVo9FHIaw\nn7lwVDJl0v9xnocSaAwk2Em7z7PcptBAIZ5+N+uxG59/rfC50INUEkU51AfaB6kLRwSjPblcPOtF\nIy4cr0dsVR4N4M0ADoii6F/0PCquwWA2lVI3KaVOUkqddPjhh+fur9sez1Tf/LqRXvT+/Y5p+NAV\n48l7Rf5W9X5OzupMlRUadicro4BvYperUrzzvhmrurhcHVzVpZsIGQs0B0OBdGSOjSEqu6ZcOKoq\nne36TJQqWudzoRl+ZaQVXXfhGMDzyMu0xpXRppoOLhRdAfONROH4m8vH48NX8Rbrel2/OBouvhSA\njTu7MeqCMXhm/gbWT5GjcdbVE/Cvt0ypi88ESS02Jd55ukDiZX4PJJ3JoUaws7sfQH2Rod7xw8dx\nyeMLGmOghtwKZe2vvh+jjDMNEppAbIFO9bdGFKnAjaiD7TKdWaCL7w8MEuNdqOIdaIFOV5rMdHcU\nDo82N8DjRyMuHGcCWKaU2qSU6gPwIIC/BrAhiqI3AUDtbxKhfw2At2rPH1FLC8a6mqXlL163n1f+\np+ZtwGvMgRD1CCvXcq/SGkZZwb9D8uk8mZsImUFR0fndPNAKb2ZJoothNx0YtOO/3znzSA8+mHTt\n2m8TYZyHOxjDp8xGQNGMXTji68Fw4Qgdy0hLXxiBYNgCfM22PWl4NF+Ym078kIRJ5KNw1N9IyojC\nYfYnhecXb0K1ynM1r3Yq4+2aG4GvNXTh+p14blH9S++AtlmoKRbo2l/lYZwoWWb7kutIFYvw969U\nFW6aUGwpdMHlulRVfu8S0u6Tb11VmUtUI0ot9yy3+toqYBVoD46dxiZPHupfAQ4ruN6jvENdYF11\nN9hh7FYCOCWKov2juEbOALAAwCMAzqnlOQfAw7XrRwB8LoqiEVEUjQZwJACnyYJScNfVfKUOO3B4\nA+zHaHwTYT6NdeEIaACuWSBF6rgLn8IvdSuEMsvkXTjqG6wphVe/rli+GulOeA+rVnpMspc/siKV\ncr3p+AxKSVvz8YFuBqiVAN2Fo1kK9KgLxhjRXhoB9W1DFCJuckWd5siVedqlz+IjV4f5IxuTYs/P\n35ccpNIGcaAfnb0O5/xhCu58eQU54Eago2DwY2M5qoi+bNyIAuldjk/eUNpGOX5P236mQCZ3fOIn\nlwFTZiunEhe7BLqt7SFWav1TJzGZyxC/Csrc32Tx1ipwxYFupJvxEyKFLQXyNLz+OQt0MfM++5JC\n6AF0mzMNnlGpLlKN+EC/DOABADMAzKnRugnApQA+HEXREsRW6ktr+ecBuA/AfABPAvgPpZTzyKkF\n63bgsdlmIPB1dR73SqFRawfV8NlNhAG9wdmICVI7e/px44TXNEXZOomQWd8yBKk3h/xAm5TKHlTA\nespm6WlEDE9rMO06kCV6uXCkCrQza3MEMTEJMRTophwwEdPW4437PUf/pqolpKo4Ifnei57mj9gO\noM/B9IH2eya1QHMKdAP86HKpXjp6f0pk5qotXSw9V0Qhi3gp0BWIpPhGD7cqKkfBbwIfRFtltHVw\nzWjGyq048eJn8Mgsc1xrhg/4jJVbsbPbPGWSat+UAcT+XVF6FA43fPLo/T0xEDQSXkxvwyETz8FS\nrJNPzU9eGof9bje/sAzvu+hpLLdOUa63LNYHmsmftHM7LGsZKzlZfbrbUBlmsoaicCilLlRKvUsp\ndaxS6ou1CBudSqkzlFJHKqXOVEpt0fL/Qin1DqXUUUqpJ3zLefm1LcbvxAe6jEbfqKwihZFBX2nX\nbnreLhxFPtBa00g3JWo7UW0+6rGgxHmza8qKbZeTHUnNEczTLjqkIrN00MLS4M/HhSOtKz+rd9mg\nKFZVc8PY8Z+bvuEOdl/8HVwo+kzN3GCov5fvwSiJBaVolaSnv4LdPf3B/IRG4SARqCiGWOma8SUS\nudWM7xxkgQ4s3pSf7vyJq8xLr3Ua6Ukz6gu0zHHY01vBp6+fhH+/Yzp5344771LiQuNA+9SF0c5T\n7cf9nBOqSb70JcO1T8HnFViZzCSPr7lardxCH8oWWv3c2Mr1Y26i7HpVP90kmZDzBMtsFW1xEqHd\nPhIFugxB24wdzwZfhlLoVi58FTOvQc5SSNMB0irDOfNjMnCRApJL25JSZKW06SV16GUNBnOQilZS\nO1igqTqsNskH+q6XV+D2ycudrS18QwmVFjApq0O8DVbUgmRFYGjBQSqfum4SjrnwKSPdyx9fy7J2\n2x6cd8d0dPWGKeJ8KcUDm5mzeIBvFJSLWXOicNgXRRu3wsoPXcHjelTiCjRj5VbsqmPSZSM58XX2\n6u1GOlW+uWrKyO2CPCR8FGhNpJWx8qC/GxXtabBOOuWQHfxBoxn8cq6c9R/YxKRrN7p6+zFz5da4\n/FpapWK3s+LyQ3WeBBEikscyon60hQJtIxlIymhaep8t8hni4FwOA33t+nROS1/hsxkf1ABlv47L\nB9onTA3l980q0OzMMLuRKbO8cpJgZ3c/Xl62JZfH9IF2K59JmX5+18CzCzdg1AVjsK2L9yerF2no\nKJX58vVXFTvbv/bZJXjPz8d60//RQ3Pxk4fnDYjyGVKCj29lI/Q5mD7QfoK14rCYKQDz1+UPbvFR\njvT+9KsnF+LJeevxxJz1Xnyl5TPKonup1K0Rhg7snbt6MOqCMRi/aCN5P4qaHMaOMV5s3d2LUReM\nwXOLNga5Jxh0CB9hP57M38n7//sd0/GNu2YEcpEH5dPuy4t1F4D5XfxWKTyMFsQYUpIB2jRkOaLK\nGM8O4IQ8rdIowvY9feyY2QgG7yTCLP3b97yCT10/Cdu7+jQXDutdHeX4vIVPSN4yP29bKNB2h8pc\nBMqoicZouHyguQ2FLDee7BQq9Vw6Ed4uR5e4y/syczRi5MPl1f46lq3iZ+O/Pj7QKzrppaiqUppV\ny0kmfU9fBeqGWnzMhYERHzhQda/7QAO8H/TlYxdjW1cfea+4TCa9zm5BW6D9n6+nT5chBiLievqK\nrcZyOieHQvnyUaDt1SOgnImCUjwd/bCJbLXKzZ8P5tbcFm5+YZkzb6MK9ML1O7Dd6gtZHZqb5ZIJ\nzu+0CBbB7clj0NbBiRdd1M1ZvS2QCaoct7xPUNTvklve38VhKDFpa7It8YFuQIPWTxzUlfMQkgO5\noKUbRE742Vica4WCbIQVZyACbnwOLcjDsDG71p739FW0MdnPBzp1PfU5syOZhEUZvShqXrjCoU2i\n21RkiljjtIq+ia1Ibd/ThxN+Zlr5aKVHu89dO/jiPvjxR7wOr9tvmN8gbLk2cBZoV6QQTrjyE4X4\nb342XbPUsPxqtD3cKZL8+w2n54E6214W6MRtxGNaWY+VolJV6KtUMXIYfYI9Z/3XV7p6+qqoKoX9\nh5fTdV2v4TuYZcKXngSUwY/PykW9sN9z3trt+MffTip8Jn0vtnj6Rk+fc+80ae0Ldi3Qyjf3RdAc\nUvKhmVb/mH5mdeywTjDd3dOPA0aEt/Ozrp6Idxx+AMb9/38TwId2Hfh23MYlj+He+KUbC4YOady2\nFRL1KJ40JT7odL5gY5AHj3o7T4wDESK8umkXlmzYibOOfZMHlQz6J6AULjuFMpZUlELHAEWITtp6\nd28sEyYu2WzcD+rzHt8ZcE+sQoc2TofS24se2CBB3mWnuGAftqg8UeT3bHdfBXe/HHY4X3tYoG3B\nlAqGxsV4CAkqtixtcdMEjZ5O0Aw9SMVno4/hwkEMona9uU49YxUg9jlFPpdNfGh6lEuI7sIxnBlU\nOOuyTs9nQ0mmtPu5cITi63dOx7t+/GQQzaq1LPyzR+fh6J88hW4PJcwHZS/vkf0h4PlCS1hTlyKz\nbx5FwOZdebccTtyHDkQ+b0FuivV4zlW+Al+P1B4J3ge6/G+RKnBVhUdmrcUxFz6FBYQLjA9eteL+\nZ5MQu0w9T33vZLpwuOlxx0rrrmPDfDZiOJDIdfsbktFWNMs8d9CWrvB4KTM+MlfL0qdZoM+44nmc\nd2f9bizKoh1i1W5kZbu/UsUPHpyNlcyqqI2kqG17aDdAH07sV1u1pQsbdnQ7dQiOl1A5m0bSsQjr\nEUaSMdVcZbbamaPYkINU6lnF+M24Jfj5Y/ODnmkLBdpGpoiVQav8gUCPbxgaY9kldKIoQhTRTvGF\ndFGweQDFgrFSjSNB2EqbntfHAp084BP2hnLhGDGsg8zbz4U30zL5uHAkA0ToUd6+7XDs/A0Omvk6\nrCqzHh+cGZ89tKe3JAW65OZPkWvEL9TnXikuHLoPNDPEcCs3PgcDFdGh4Dqa3gch5UcR0pHVvr9s\n826MumAMFhccPd4o4kE2vu6vKoxbEPeVhevrU6BtBMl5Fde17ySVs15zJfJGk3It0CGuFEVGlFQW\nefpA+xz3nZWb5SojTKfed0mXkwAlrB7MWLkN90xZhfPve8Urf8Ij635XBy+n//o5nHzJOHdGVkCE\nlcdtBdHlVbpxUPsmwdFmAvSneONgmFzetifcBbI9FWiHIlaEa8Ytwcta+KBCF45cufnM1OB59o2T\ntYeK89pIcthlJzu0OxJ/HoZWnC9bojFcOJIyCmZ+9DsC//XArJz1lAvRl1zmXDg0Sw0Joq50Q8zP\nPn4MyTe3ezt0E2EyQHjNXlX5flVUtcxbsz0Ne9VK4JWz/J2QblpsgW4ejH7iGZ2hfjnkM4gT9Rg6\n3rArPXR+auKgFPD4nHUAgD/PXGOklw39JMKZK2OfySE+/lQecHrb6HkBXPPsUrzrx0/mfKm5/HY5\n9nURTwl0nZmL7BKCNGyoR/lKKX58qP3VV/H8Tsjz5xEoxwdaL9twIQg4mKyZ4TJtJGX1MBGWmsEL\n5U4BZN89tEQu/GtqDdbuVarZKo1t+HKV6xUG2HG/ngOzitAWCnQjx1zauOLpxfinm17KaDDuFr6g\n2vemndkpU9TpchROuWQc7np5RfrbboyJVTS2QPO82oJXz0ctowDunavVqsKDM/Knrht0iIGD86Xj\nJ766Qh5f69bgT733LWTZrAVao+e1iZBwG+HQ7J3NCf17p65qbjmBr+GqGYpceRboMIUwDHlrCZ8j\nRtJG+V3oDJ1AxaJu1wJmUuBqu0y3bjhmPlkWMcGfuWpbGqO2DEUScLdLW04/OGM1AKBzd/7EQI5O\n0dSRssbZ0OUOd7plCMImrvxz2YpiPq24fHcm3a7Rmx7lXf+766us9bpB2e38lVXbMH1FPsqTq3wf\nuGxJjfS50FpMiuLlVjGzPpus+6vVtF08V4tHXZTfLKa+SZvdnlriJMLBgr6M1AyBHgoXC4bQKci9\nfkc3fvTQXN46VGsDHTV/Ii7fMGvpzxDcqY+b/VSxBs35D7uijeROGkrvk+Qs/6j4rz6o5H33knI4\n/rJrHwt06sLhefph2Qhx9ynrtPHyjmSuKREEuZC6clmgO3f14AcPzkFPf0VLb/wd/CzQeX7idEaB\nDlxC1FEl+kIZX0qpAgs0EXpDP+LZ1xig4+YXlmHikk3s/YSMfhLhuu3ZSbNlKJKA3j6VOZwS5GN/\n4GwVb/OuHqwpOP3WR56R/cL6orqsK8OFw73J1WAmbQD25ruET99Te9N3tdoRBX1sKfugKH0FtBEf\n6E9e9yL+8beTmdwmOCs+BzbClWNyHgKbF86Qlubn5BaTP7NAc+lRukG4v6oKXDiL39Wn+XG8UGhk\nopag7aJwVF1SqRF6DlCN3dVRgn2gQTeAZCCJap+d43vokGwgUsqUndmgYAlIQ3/O0/Xx8aSubZ01\nleceFjuXO8Xzi7NBmVOgQ4/yzsr020TILYXVi8GYEDZiJWWebIhWUR0oBfzyiYV4YPpqnPi219fB\nWwFt4xctWu3vnFqg2U2sYek27Y7IvcG3CKHl05sItdpwyAkKF9U25dz25fcX5otPSs3Xus9+BB/o\nOp0P53qpJ138DABg+aX/4C6HsUWYcpgpU0sfNqRMFw67ddN5o/Q6S1faIKIbRHx18owOk6dpLhyK\n7Zd0fu26AT0+lHeX/tGItTQ4EIFi0s3b+XSV0OVXv5N7/RX60DO73CvHLsLU5Vtxz9dO0e676yKb\nkGt8RQXMN4i2sEAbGwMMq2fjtKklRA49hB+AiwXTYu5W9Dhe9JmVHuPQxtAOMwCPrrRyHcc1J6ka\nS3f0CEFuIrSIuTaX6OmpC4eHBcpnE6HPRCnsJEJFKhZAHK3l8qcWBQu/Ih5LMsTl4OIweBmQaj9B\n9VCkQTPLsiULR3YQZAYc7v04v0avpW2lMNTy/w21RlHlqNp/FCLNMqVbozuIZl5Wnet0knJ0eT+k\nBEXSLicBN1EOtdFkMpa30vvIAsMCXUaHD1CIuJMIdSOM72ROEXn4VczsurfS+MZo/ZuGyAo7AlS9\nMjyl55nPpcOU0c+CFWKWDvcNUw2aTI99oOO02ALN6EHa9W+eXYrJtb1qrMLv4NE5tln81lPXbaFA\n63BZSxuh50IfMSC6ntcFRx+lgCs/gZ1E9og/Oh+Fw7RcWJYHRibrB45QdLlJC2ddT74Ld6qST1xp\n10mEOrjdvDq9fo8dv1ToPA5F1D5302Rc+9xS7OgOPHq5oPPbS7rlKTDlap8UtZASCi3QUCSxMt6g\nnmpw+UBzS9JeFuhqNnkMiWrgUw6n2OkywDAsJK5fgWHMQhCBtvuHKpJ8e67VoU+dJAxpzxWhwsnB\ngMH8e/fPSv2+gTAXDl6xYcom3VbM8Kd6On2yrLteqD0tNow40KkFuhz/b+ogFc4ab49rn70xluHh\nR6oXu0fYcFqgA0v3gX7YDFUW75JGg1e4tTJrfzljV1G5WTk+bc6NMoe8tlCg9f5UMSy6jdMOserQ\nilrx8zq/nB9VlRK0lhDp1xTK2AJNlxu7cOidOFG8+Zm5QrFfFGdFZy0sjhmvzyCmx5B0weekRJ/v\nnNZxg9Yfc7Ljj6L2bMeFLUsGlC2gqWp2Vf3Fj83H+u3dABw+0IRAjtPLmEhnNNjj4xl+fA4SoJ4r\nQmyBtvpkSZKfosKd1qWQrbQY6lOoNdwjf1LtevWHunD4yBajTDLyCL9aR6HCTCw4xZpKe2D6auNe\nyMSBtzD6fyNOrldVRiX4KG+dTkGs/uRVUwXah2G2TG2s8pjwpV1Ly1FRqlDRK0LoJkLaSu6eeFDg\ncua7UHENh/ahhF+7yeqnAurHd/v60tvwcclJ6y6KvFb2G0VbKNA6Qn2KXQghwVmQi+DqAFxEDf1D\n/+DB2Ub+okYwrIO3VKYWCatApfRl2jw33GZBUvFHQZ3W8heoSFrW+NrHhaOP6VmURbsI6VHezpzl\nzmITFEVeyFugOeUsULHhBjZHz8i1oYLnXDz9/oVl+N79swAUC0mujZXxKXQa+pKjkccqKGlSPisq\nZlkelhSVd18IfU/jnbQXclp6LBnLWSbLgHHQEzWJj4A7XlqBz97gt4mL4ytkzFZAkBWU67fcaik1\nIbERZIFm+crzVEQks8aa75D89FWgqagknAtHRal043t6EmEZWo4K3D9g5Q05Bl1HKOtUu6Q2EBeW\n6SiUn2DZ+RxygamNLA50gQ904sJR4aWf6xv5fAuKht2Xy9qAD7TJJkL9fVl/XLjT6cz+WaklWdfj\nfrMm+jrBPVOyUGaZBZqmNXRIZAgwQ9FI082HYytA7GlP0eUEp57VZ2KTKlkeljk9pNxpf3VooQJc\n4dwztGSvTYTMTJomTU8eGoHRtq17tkWK3cmswgSES5mzadUjrKkS7DaQbFAq4qeZYewM6zbzjrl+\nU/td9C1C0nVUNAt0yHNmfmoy426vsQKZ5ec2H9eDhNZNE17FX7/jsOydomz4NTarKeDHf57rTT8k\nIortYpFZ+mGku8DJJlbh9OifIScRusZBXmHJ7nBh7HQLtHkSoc8kUKfPKF/VOHJUT3+1JAt0xl/F\ng1/OhSNkBaKQEQcoa2wZISwBPsoENSEGPOSCQ56xUTiQrYr3V6t1r5gEnUTI3UfRpwmv6/a2QDN5\nQtpcyEehTkpyPe5zhLTZcGqNjmkBF37smMJTdoZ2dBiKKqWcUx2no2DGzYer0/Po9IoVHZ8ZcTKG\ndkQR7vrKKbj3a6fSD6EojF0WjsrPAp2V6YSHoupl+OEGGevZ3IYHro7dRVrlBz5QBz2fNFfbACyL\nRjBnxagnxmjGM9/+6kVVKc0HurgcDlx9uSe4ZhqlTDTabi55fCE+es0LBn9JG9c3X4bWoc9khh9c\nVS6P12SHcRVwR1jg7w1lNk/+x10zcN1zS006Dvp2OaTbCjJZmT9iWeXS/WRbds0t21eVSt+1N+Bk\nOp+JUtAmQuM5lC9gGLh4LCWMnfWbbf8eMpiCvlmQoqff668UbCJ0lOvDl0s/NA/XaRxtoUAbPtC6\nwuHh++pCUV5baaFcOFwN3Mffh1x2ID7viW97Pf7q/zmw0AI9bAgdI1qpbPd9/oCTzA+NephbUjKX\nK93C1W0R0cuJf/gYYqjvYvPqY4FOYkX7+EAXUgvomdwyo1NwOuqYwl0vr8gdCFCy/kxb+sg0Gr4+\n0EauAZgEUMW4YrWGWqbtZ5MoHPWeEBZqacmsd3paJhvMtlVfpRe1z2Ti2mso0IH0He/mSyMkRGWR\n/zCV7iMeOBeOMXPW4bKnFpn8MiyGbFCrKn3SYCqhyS9uolBEV6fP8Zi08z5iE6Frg2SubE0JpOqf\nlzvatetksQKEun5Qhh3DYBUUis+k5bYDuSchXuUy6Xp0Dj0KR73iOiiMnfbutbX1NEOZh6C1iQKd\n1caFj8xLr3lFzL+CwjYR+lmg9xs2JL32skATShTV+HfUzmrn/KaBRPBmA25uZp3egZHe0cF3fHPj\nJi1EC4ynuXQf39CQiBh8MPrsmp1saZkyC7SzyNIst1z4qHy78XThKCjrRw/NzW1kLdstgnqO4pUT\n9sUW6HIEPkOEujSzqHy/AfhBrjEfaJXz/7fJTX61E2ddPcE4VMYuiabNl0lloJSC0PbBhozTrpPX\n1eVscOg+tl/QN+jDY/jlbwoVRuFK2kUoT0CgC0fgd6b9+2llX8WDCABrU15RPyXucTK6qrLIUakP\ntF3+fnIAACAASURBVHWffs79zpTC72z7SL5/8lxY+wu1atLGruy6qUd5W6TTaD+OyUk+XdXoRpiz\nejs+dMV47OzuM/J3GC4c9Y05PjXhmuPrSftkGLsxs9el16GWHwohlUb7QOcJvH/0GzJefCzQMDsv\nwO2IT+7RO0yBeNOdPg5Synm+4xRH4TAEEXOcq3ldZwcxBEf812sToUcYO24iYwjcdCnKxwJdMJgo\n62+uTHpCYlpBzGe8XTgChYAru68iUTyg5m/mqiwZpIs1aI0vv7J9YSqHnOJr/45TeP/O+r+RHoVD\nT9Pxk4fnYuH6nVi+uQsUfCzpjvEmduFo4ibCBJHmw6H35/BoH2Hprrw+z3G+ttzk2GeD4pCOkDB2\ndHrIUrlSWrhCS4FLw5Iy7+PDF2tJrmqbCInxNXS5X1eUqUPXfOSm7vpXb6Qvir/fT3wNizfsNNJI\nFw59bAko0yeuOeCW6VyZrrqLAPz6qYV4bdNuzFi5jdRlKtXYrZQa1ytKYdWWvCzjXIuKuNetznq1\nVBV/kEs9aAsFOgJw4/Ov4n/+PMdIDxUcFMwZSXHDIn20FPCHF5bhv2pRBGyaPtZRX3bTAbnAAt1h\n3aNmszkFWnHLtDyNomuON6586rk0IoaH/uZzTDdvAckP1j5jlz7gsHk8hDVXtza/Rf5lRWWu7OzC\nrFXbeB7rHiAaU+D5vss/U4/V3RdeyqF1g4tqY993kDFw4cNz8dvxr5pxoJkHXG4GisjL0YsQZf0T\nZt5so5Uy0jmMX7QR22urZU5ohOxwZkDYEjbguafF436mTLrp8VZSjSY3O2FQxkmEIf2CjSSCjHcf\nNzizfE2escYuzQe69t1d4f9sfo0yDRlKMuXkdcryLUHfXwfXJ5VSuHjMAnxM8/sH6Hrh3CRD4WpB\nNuXMwBYm26mDVHSXUSDTrfpqPtAUb//7zBKc/uvnsHzz7qDyTV6y8igFXqdh63t7tQX6l08sxJ0v\nrTTSyti8E9JASRcOAD9/bD7u1+J4crub80/aV/SsKaOVza44QVBVWkdAviPrdDJ+kduwpMM8SIXj\nm/vhD8qn2usgFQ/l2CdWdBbGLi5z6+5e7OymFYHCVyQsOdyznDJtC9a8BZqhbd34wGXP4RPXvciy\nWq/7A1u+R3uj8tnB/b/3t+/E4QeNcNIuC/aKArfRyvhd++kzmHPXNm6bvAK/enIhs4nQzJuGQ+Pa\nGZEebywubpjmbUW7cDDfYsvuXpx7y1R8/c7pdBkMIq3Gextx4eDSuUlI+hxtmQq2QGv5OVlJeI3k\nMGJo4xZo7jtzIRqTL2AocFWtnQf6BhvyjItUohSG1yzQi2rWWc5l0AdpX4Ei678oGkiC7z8wm5w0\n+oDrk8lv+3RSl3tbGWdd8LKWyx+Wrtn1DFmhn+WQ1GelWjUmqDrWbNsDANiwo5spx10ZLsOkQjkG\nlwTtoUAzOlSosGw0L+nCQTzPWWa55yjLDjWAG7Mrhkd95mdbEhIBaD+r78Cm2OUOr+FcEcpwLwhx\n4eCC3vso0EV53nvR0/jrXz7rLJ+DT5hFzvLjcv2pNxh9npmw7PUpbe40fdIHAO956+tzh2iEKgoh\nsJVGd56sXJ840KH7knTLHBd+0j0QZjd+9uh8Z/m68qHvKaZOLuPKTELQLdm4iyklL5cSJJPlnkY2\nEXJ9TreGedAIWTbmFGWub/usqgW5cNQrb+0xiPrO4Fw4gPunrcJ37p3pQ563XlbzEUdC65wqVCna\nZztUaQyWj8y39ZlkZ3ndz3nRYpjhw3QmdDzpW+lRFFnW3ix/0pz7KqomU/hO0MhBZi73l7J9yttD\ngWYQfIABZQnzmdXUPgVtgaZoZtcuy2cED0Fn0Yqf4d6dn4WpNI/5rFL6QSoUTU7h02m4B9eQwznC\nXDj4ASR5nFt+pCYyepk7e/rx8mudGHXBGCzR/NfsQYakzfDLDbI6izkLtKcvclkWOxYFrj4cPTvr\nrp5+vOvHT5LPJ4MeJUN96rNe+Az2uWdq+bjoW3zEGjftqsorUfX2q1x+x+THlhnUpImjkSjBRRM8\n6tkoAobXrK67teOTQydHjUQ+SfN60NNhWqAVnU7yVFBHJbRqjnfSJcco26RBtgul8F8PzMafX1nL\nls/VhZ1nqNXOfSzQ/OqeViYho+3HOFeNsn2g2YNkiALKtkBzKDjSJCA1e9d8HOhaura+FPtA0y4c\nCbh7oRbobDzXIpOVXJ9trUCzs9oAIerTQJPnfKNw+GxeS59P/9F+A2Qr0o/G5KjqYYdYvqwMsQJt\nWrvs+zkasGZ7HoOrq/1TFhufo3z5TYTatYcCzZ3e+lht4+qkVzvJ5zj41AOrTNs+0J47hkMn2PVO\nyHlhmr9jC76tu3tzeXIbmKK8gFda23b59DYC10CRIPPp59ofNxC6GdY3EXKyv2jVqDg9kyMZR/rK\nlVlWtj/CzE8h6a9Fco+7k8igXd2ZAh2qQISGNqUVW33JmVf8EtiWWZ0Ode0VZj5E4WfHQY+xJ6Wh\naMWaGU982ONkmw7dhSPNq8lhfiwvlufKejZJ992UWK8LBzPEOpVMO282aQlTGn3us6uIis7vKid1\nO83Ryh5I3ruvErtwFLlmctZpn9PVdTdXit+QlSgftIUCzVnfQjvXCT8ba/z+u/+diJ8/Np/Ma9KL\n//b2E8qlg6+rnl5cSDOmkVdEqTfWfY2KJg/pkq8CKcTtR6tKFTZon0gRPkvULlFgKurxX5/lnH52\np5HS8vACPCuTzkMtYQM+u5m5wVz73kYdcgpXvj3wIdLCUO+BLLwwdacNJ/w7s7YZX3RE+XjmnEJS\nhrXObwUF2NNbwfauvvQ34Gcl892Ap+exNxFyg3wRjVwazO/BbbDR00JiIic5ig4u4uo6qSPdAl2k\nwGzv6sOeXjOEHx9tx09xqqWyfZ56jlPaufB2dlLRJl8fsPLW8bn41UQ9D98unHwx7d/kIe/CYW4i\ndPcto0w9D2nd5Xi1ZDtjmf7pI/Mw+gdjaCLI+ohNT1891uE6idAvihcNVj6wLhyqkB53Q3ctNSNe\nJOnmhLRaVYWTSNYNJmA2HVkbxdLvWS1oA3WMI22hQPPwEFwadmqCGQAWrNvhVUrSoOmTCAskI3jr\naGEYNAZpmLWIP4nQbmT67DDh1a4fhcxHieKF69B6VvN9QgYrk48E2VHexc8A8elGFHS92ue4XS4P\nxUJZFmhuEMtF4bD9gdkyw4SAM7tD2HrRK1CEuee9ToMsET61ppTCh696Hif8PJ6IJ9+OjQMdaA3V\nUalqFuhkQmw9WdRnqfxpOqPX6VE49M11IS4cWZ0UKNAEj5H27E5PBfqEn4/F3/9moll+qAVaMzZk\naXRIN46e3yZCbTC3OhW1yTekH9e7md5WlCmlUeWmXEm6F2cGfZJHLYxdAm7PjQ8D+mTT9+CXovt2\nFd46abmX/LJBnWswbfkWdBKrcVVFX/NlOr5zaHqgHukzzmVHeSunBVq/N3PlVmyp1VHomRqUwdGg\nUMIQM7RxEs0HPyNh0sMnEnS5tb8KQHdfBZt39uTyUEXV66sT08uU5PwzujJM09XjHNoO9ckvuyEq\nlTXaXzy+AAeMGIp/PvkvSV45vvVvwXdYU8nOh5HRldnaqYAeihTr32wIcE6ZyCvQNl8hUQhM2u50\nzr/c6fpTmgW6PvDs5W/YdV/UP3Q/dDuXKZALiwyHoVTSFhIFYPXWPbln/DYR0koWBz0KB/dcqtgG\nTGaUovNHyDYm5w6VcCiTVJlF7ZeqL+50VVddLbNCXvnEe0/TYPfpPHzkBqcou755oSLG32ooL8Bs\nCmUMOkpxvBfLcptO0SZuO2SfUecOhTRXZtaKyfoPnWyEunC4VqP0avrMDZPJvKFxoJX1NwE3dGYb\nhPN6gF0+x5eObHJg5tXdKdKTCAvC2Nn8AcCnrp+UXhetatm8xGdl1OgZ7n6KfY960NYWaH7gKKeC\nUqGggC/dPAWTX+vM5fHx+aTACm5t1pSni/Qmr0Bn9WILv4SvSsXuOMrwNb7m2SUWTUYRtZSOjJ5J\nm07P864n9fTFCvRI7VRHDpwCrSezLhwBIZM4/oMtgFq66UKS5XEtV3F3w60HboWju6+Cc2+ZYm6i\nBLB22x4sXL+DfY7jtaiek1sdUf40tnrdTXxgt18fhSfzgWZoGn1PT/eQDwq5g1Rs+Jze6OLLvEEn\nZRNI9yQgPVzGMm54ucgQ6aEKDD/Iutt5ZunXQrp5yBZjYZL75lqWVvSBrlbpCVk84Sp+NiREqI1K\nNT9R9NtE6P6e1MTGf39U8f4CDlz2KmOc0fGetx6Slsm5gqTlWBOYELjOu1AqPqTp8TnrcunFvESa\ncq4bQzJlNj6JEIXWX85oZn/zzbt6MHv1Nl7HII052XXIaaMc2kKB5ndlhqXroBodV46CwpTlWxg6\nVP6w8n3bvx2nmKPLTeA561A8SObLoX77bCLUSy2K/5lnPrvsrh1P7KNAcwep+ISxqxB5+HZgXjsP\nUvEQ1lzd1muBDtUmnW1PAdNXbMX4RZtw4SPzjPL/+tJncdbVE+3szjKKytSF7iH7D/d6roz5st1n\nfLZOJb+KNkhl9PV+40ZPfzWNwpHkz/vgF9MLbSL6xDujoVmLHIOT/izXfosOL6DqMXwTIZ2uk9Z5\n0N1W9LxuFw66r3JKo89pnBx9JwL7BTU5qKps1aVq7ctwuSn6RDgq6rvFLhxu5ZxKV4redOayoiao\n9yCV1IprPaZbYzm8+00H554NmZyztD3fQa+72yevwDfumkHe556LIqt/E+Nc0laKNxHS6fYY/tHf\nvICPX/siPVGN9L5rLleWZF8F0C4KNOeHySrQ7hoKEcxF5GiriT9twFJEC/IZy9sFM3O9E1MhcXI+\n0MrcRGjzr9fnt++diVdqm16oXc72dT8ziFDfKKmH8Ys24r//FJ866XOgAOcDDW0gZGNF637S7KBf\nI+c5609q0kf4G7wXCE57Sb/IAnj9+KW4d8pKOkMg2AMmuPxkXru9FZRXu9cRRXjDAZYCXcBjo7CV\nRvI9ct8k+cspEPm+R9FJ82iZunr7Mws0MygnDdMn9jHHl543lRvWc6RvrGNgL95EmE+LoohRoMO+\nrU+fc01m/Fy/tDI9InWQ5RS8W8hr+yqFdn6XQpRcu+qIik5l5yk6idBWoDkDkP0cXSjz7WqXd760\nEvdNXcVQzZDJcGdWmwEylXLhsJG4srArvgY9dx7O0KZbiSmEruxXGcOTrtinCnSlakzWAODHHz3a\n5M9TgV5fO3Al5MCqUF3OhbZQoDnUu3kC8POnScsJvBcaesYevHm68d+ogKfYhSPhTVnCMP5lv3tV\nwVLOzPv6Rsi5a3bg3++YluObiylqKtD5d9GRpJ17y9T00BofCzQnwIuiWiQwXCjYTYSEf5+TqyIl\nI7vR72FtAYC3HLKf4WZTpMD++slFuODBOUwOPx6p+/puap+lxQRFE7J83kwYH7L/MCdtm0cbj81e\ni0Xrd/IZGNBKg12uKiyfc9vgBqg+bTbX1VvJn0Ro5a/HAs15AMaTbfq5TLHW6TBlevQMzmBAh/Qy\nB8Te/qoRpcOGrajt6a2gu6/CfqNtXflNXEqFhTHjNhFu2d1HpvsgJLtP+3M9Z1igLZnomkxyBgxu\nfNBRUcU+0LyiDIyZvS7Xt/W+wo1J3//T7PQ6O33RLMcVhYUDNwnVfXM5ukk8bG7c4iZk3AFpdt7d\nPf3o7a8WHjeuvwNF575pq7BqSxdJ36RFT0T7a+1JN9h9/IQ3M5yb8Jscx39DvRbqRVso0NxMKmTg\nsEFbQMPphc5ysrIyRYEWUPlE/XARXmjSS276AElF4dCXXuxByBaQlK8cG01Ce1anQgaQz6UAI4d5\nWKAb8MHTlWYuzqTTVcPxu5gv96lr/+eow3HjF0+Eft5A88PY5YWyawLElm9l9vOBjlIF+r1/eUhK\nm4phXIRv3j0TH7l6gjOf/Z4+/Tr57WMlMrIwr2/3M9s3lB/kaXosGIWIGwgpX+/Q8GJcHhdNO+9n\nb5yMYy58iqdtMfDunzyJky8ZR9K+fvyr+M97X8no6zeJkwipk+0A4PcvLNNoZDeuemYxmV6E0/7q\nUBx24PBAC3TYHUppLGqfLlb6GL8ZQ4Eu8CUfaseBJizH1HP/cfeMXN82xh6HCw33HKDXUeFjeToM\nvaoltyh2hqUnj9KyhZuQcDzaMvKYC5/C526a7LRAc+ivKHz/gdn4zA2TjHTduh4R6Yh0C3R+E6Hv\nGQfc+OzaxKtvSDei4TTuAt0eCjQHdlbr0erDBJTC/sNpS6hOZtnm3Xj4lTWoKpWznnHlL96wE6f8\nclyOHsWescOUXWYxOzElxCpVhR3dunVEGTtobWHHxVnmNsnovOnPuiwS1DcZMdRjE2FFkRuuzI0+\nbiUnUWZ9XIa8Jkmckqml+1igP/W+I3DogSNMCzRLm2sX9Sk8Pu/gSg+ZYOhC7/U1H+jte/pytD3G\n2CDYFuKQSTC/PK1f6/Rp2Ap0MnnkLEPO1QAqTdHKnNJ4tPty8tvnHfxW3/J5oohui3aZrzhiJlPf\nYvuePpLfTVpUJdu6l1qg2Tjt2bUeDpV9/YBGGhsz/B9oZDKT5VWkYl1kkEnAWqB1F44CA0buIBVF\nX9v8kmWmfUV5uU25ygl1D0vKsZ+y/ZQpqnbc9/ia7nPcRMGFGSu3sQcwuagkdb55l7lqk0UHM1dI\nqQhX/dVqzmBnD7dFxkEK1LhQb1SfULSFAt0cH+gQAVWwsUwj85GrJ+A/730FVQUcduAIJ00AWN7Z\nRaYXCS2XBTrpCfZwmFxNfq0Tx/90LNZtz0JydRQoZ7yPsUabmSlXqgovLt2MK8YusmaHxHNWFx42\nJMpZ4Sj0V6vkgStKKUxdFm/+9DlKlfWBJvnj249z+ZcZfLiBMPEDL/pGCfx3mReXmd5nZuy8npC/\nk4tNXlCmbs1INhEmB5cAXLisxqWiPTjRSqaZlihX/Ma1fHtP6FOwLXkHjBhq8GY/5jpu2MflRZc3\n+rUxyDJKgYs2m4dNJ9oOo0xw4E8OdPNFlcMup3PPBqRTaXE0jEB+uXTmBh3vmd44yYuw7Ma37pmJ\nVzftKiy/SBG2jR8+Lhyuelbgrd7kc1Y51IbKeugkSHjpIFY2EiSWeD+rs7uOKBqAW5dx6VVc+Lt4\nEyHSPGk6srG1v6Jq8gX4/llH4X1/eUhOprMreh7fM5uoREb5Ltr1oi0UaA6umItF8AnKneCRWWux\n2zrxKkNGJ/HbVUrhsAOHM/mB/bwiS+TTqCUJKg8XHcOur87aTLKqlKGAViyrA2+9za45i2B/VeEL\nv38Z1zy7lLSGc1ZFABjpYX0GeAv0Y7PXpd/NzwJN80HGBGYG9j29FeyoHUXsoyiYFmg6f6pA637q\nDtcLG/W6fIQqZ6R7gCdNPXdHFOEth4wEkL2/Upq1Q1fmS5CJdjv0sV64Qk2Zhw7RA57hD29NVA8c\nYYXptwd5gp7JHw3y3fR/rbpI6XsoVj5gB2gqagJjgePATmaMiaB7Uk4pk9x3M8oJmLRQSHyRwxR+\nnpbvc5whQ9+Uzj07fcVWPD57XT6TBy8uFw52nPOYKHHRUVzPcbz4IFXgredSOkUuHNaeh/g5msei\ncT2Bq5X7jE9Gel4MGOVHVqnUCkTiAx0B+Mbf/BUe/MZp3qfs+hjBOBcO8z10frV0knox2kKB9okz\naaRrFT19xVY6T8DMcsqyLITd8Ue8ziorn7+qFF63H+/CMbQjKmi8GQ0bWQPKH3Oclq0fVanyljUd\n2RKxGQS9qszlL9syRm2w4CxF3GlQdPgok8ERHv7PQNwph3gMihT0iYpzMwYzSdCvf/XkQi2/h5A3\nfKDp/Ikbi08UDo75UMu0K0NI8TnFs1CBiP92RBE+csxf4BefOhbf/fA7C8sMxe6efpx/3ytWqtlO\nyQ1tDK/8BlXtWa7t6P3MmjXvP9xUoBtRJpx0FD9AZuKEa/UaLw4lUylTKLkiXnB+xzmaNbCGEUfj\nsb8JNTnhvqEPzI2TTEWnZfMuei7aNq0icMqZbWnnXH50HHZQfsXVpeQl33Z4zff3lLe/AZ98z5tN\nt5lAJ+RMgeW/Hf2cmSHtC4EfmsufjIOJBZqqU8oC7fLvja+zsrkIOwYcGyRnMDoTtRcipl8ja1uS\nq1l6YlykNhHmFFyydL4tsIEKiLycccR+1hdtoUDzcSY5IZ5d/+NvJzF5wmtr+JAOvO8vX8+WlaBS\nVYVxDhXcFgyXCwfXzOKTdpJybKFg/r5j8gps7+rLNehYCc/y8j5uPO30WUZK0y4cJnz8n4Faffuc\n+U3AsEAzdU+eRMjoEom/rp1fh56u1y1rgR7m78LBlxmi8pp3yQE0QAjZfc0nCkdHFNf7F05+W6pI\nNmL11HHPlJV4cMYa9n68/Mgof8Zvk+ei/JxiabQFqwEcOGKIUY5djPuEQFrxYcPYMfyl76mfNurx\n/bnBjNokFjFGAVOZcyuKocYWOq/S3GO4b8g8G1AvnJtQB+MPXsAwU6arbzOyx2qrFBk7jd6Ur8lW\n4oWSZ4YN6cCT3zkdfzj3/8WwIR1OvrnyEn7TPIxl0gDTh7KDV8KEDhdFS3dNi/Pln9U3Edr07HR+\nZSSEVzr9p4/OJ9OD/dG16+6+eCWYCmNnB4ngvr+fBZphQOPV/haNoC0UaDbOZOAHdeVx1WdHR77S\nqQ12/YQC/YO/e1d6rSu5HIo2BhT5yFWV3yAGALdNXoEfPDQbVWVacG0LtM9Jf5w1Q7ew9lTy1taJ\nSzaTzwHAcI8Y0EDcPlyntnEwgvYz70ntWuYGWR0+7dNnp3jiwqCvdIZaneqddev3I0TO8E4+lrNi\nBbpWli5gmbBLFI9muv9oYvcTnycT+j4Di48yaccqTyYO2WqNWVAy8NgDyyOz1uK+qauCJlmcZSbe\njJUvn6uftdq+Cm4wo56NNxEqvH/0G4x0L6XV4pfM4/VB80mhLhw+pIserSoYJ7eF0rZpUaCUuFip\nyfvU8xY7M5FcsWHGhARJu+3oiPCuvzgY+w8fio4osk5ndY89HHdceEEyf25CkNEJgcpdJPTjhKII\nGEPTTYT6+zPlsBOFPGwFlYqi5QPXOKfL7KoyXSh6ahboSjUutdDAyLDFReEwAxVkZepBF3TaZZwb\nkKAtFGjOAuoTPoqDzwzf/sQdUZT78MnShI7+iqpFEcjcOIzl9/SfPJLkIv58faBj4VcsjLZ1xTvU\nzcZv+lHbAzu1+59cooSpfCfHc+u8/OutU9O0zl09+PPMzDJoxwfl0F+6BdrK5PSBpmn7+Mb2eQj5\n1IWj4LCblAbTMvT3vO65pVp+E4/MWouNO7vTGyERHuL87jQyT3ovEYD5Xdq8AuVWmtzWOPvZfP7c\nezhoc8oXmLaT9JVEVgy1LFJcu7T79bfvmYnv/2l2mKKs0VFWevaeNN86/vl3L2t5GPlgpGeoKoXD\nLVcAH0WSm5AadFwrLda7UTLOa3Odhyyg6jNBwr/PID93zXa89Fqnd7+oVBVOuvgZ/Km2+sJbN813\n9lmBolc1zLI5GvqY2tERedZzcZ9XSoHb+07B7kPJz3ALNJ2ejC3ZamY+Y+bCQfPFTSYrqauEeyUg\nyWeX4wN93HrXj5/A84s31XjJlFZqE6FSmQKty5mMIascVoHO9IdHZq3V0vP1wulIqoB+PWgPBTrQ\nx89n52w9LhyxAm2m9RLTor5KFVEU4aUfnmE8m6BwFuTRcePlToXdPf1YutHc/ZyzQOukCZLDh3YA\nCrmTCKmBPccqI+iMZzUp1mtYoPP0fvPsUnznj5lvatEsVUelIR/ojJF+ZvCiZux2HW/d3esVYB4w\n393PBzruppHRhsL6hJ5+2VOLyPTtXX349j0z8a+3ZJMaH0XZZQHh/AttrNrShZ88HB8XTvnIxf2m\nmBezXHce8j6rZJqJyffymcib7YUeFJO+krTlpA4qaTkmfUrJM/h1KB/2RkxSsVNZQmhEDK7+qSeT\nVbWiDUU+9cwt84aIe6WyuuFWqNh+0eBkrruvAt8odh+95gV87qaXCibN2fVPHp6LZZt3Y/OuntTo\nY39PbqWtaMKbluXQSqjvkvkFZ2kdkT1pcb+byZfe5/LtnAMv5/waTueuHqze2pUZr6z7qT9wSjdP\nI3Xh0N6C91On23xIOw/VgXReuvuquLoW5zxVWmHrEPEN3YNAKcT6hqZ5cpv8bOgHun37npnpNRfJ\niiJT1SwInNtOCIa6s7QCwjpR2WHsEkRRXqnroyzQ1diPbcTQIRg2JEJfxYyz7BNnluLvU+99S8qH\nAvBvt03FS69tMfKYPtB2p8uXM2JoB3Z192Oo9V6cEhyXn1coOWVBV751a33o5hAXfMLdUaAGyNwE\nmVjytAX1ab96Fl29lfQbUXTScrQb3X3Fkwog84HOrWIQ4JV2ZmA3VgtiXtZt78ZRbzwovu+hTJoC\n3MzcX6nmlt4496nz73sl9SG3Fx3tMk1eaIREcLBXUHwU9cxKxZXvvtaRbNYd0hEBlex7c1bJTMnj\nynfXVyYrMr9vBU2ZsmqGosEh9P0V8vI11OrLR+FwQ5eb1EEajbhwkOXULvYfPgRdtWhBu3r6C1cY\nSXpsvWQ3bp+8AnPWbGefU6DD21Wr3KTVjBZCu3AU11e230GzQEeRVedE4SnHVJnZtb5xz7kClbtP\nK1l6ft2g8f5LxqFSVbj9y+8n6dkRISiyQ5KTCPW9BkyfoyazSlltNL1vluNa0eNgryJkG21rv6Ms\nraLVT4+hIyUHqeRXGBNwdU4ZK22+Ul4QGXWefg+lueeUoIK0hQWatyhzirWPAh3ORwTkXAU4C3Qi\nFH728WMxtCPCCC10HWdJA7IOY/M35Ydn4LLPHJ/yoRRyynP8XKbxcEJBx/ChQwzhadCpgTtIhR0g\ntTyGD3S/29qqwyfcVIJ6FWhdwa8wCjQHXYB0EWEOfdwp9OfKiMLRiMsFOVBq11zoOHYTB4C/S5MQ\nNAAAIABJREFU+tETRmQSgFtmNGlyFuiQr2wOOK4B1LwmJw1WmtMCbQh2XZmg+Uomqke/+WAAwBsP\nHmH2y9xAWOyDz8H1brZ88gk5SZbDDP68y0tsaNBDgPqENDPaImuBdnx/Ji8V7cC+5nhh0608R7/p\n4PQ77+7pT1cY8zTq79tA3hDCWfcvHrNAo00PVgow9p1wfToBHZY1/quPqR05NwSurZDJZpmJAsVS\n0Z5T9G/fCDfZJDfPB6Ar0Hk/5wSJBZpduWImJJyvN9cWXftYONjf2N4DFFm0k3SbP1vfsMd5btyk\n3GUBKwqHQScPpZkEyvCFbgsFOnTzkI9yXI8FNCJcOPoIR6vEBxoA/vnkv8TSS/4ew7QdYLayoCNJ\nt2d7B40clvpIRQUz6qqyG5EmJIn2N7y269neaGAq0G4hxllnDBeOfl1ZJEl64+2HHWD8LmUToaI7\nFunzbWThFCi6TP3Zrt5+FxntIBWdRlif4MI2FlkDC8vRro22ygh87lkd+kBq7tLOP2tuDHHXhWus\nsAVviFLKZeXi0JrKWnadlPmdM4/EvV87BSe+7Q3kuyfIDnsIqWfavq7LJE6ZDu2y7OCPfHriv9kR\nRXjqOx/Ao9/8//LPse1Jl3Fhbc7kV8tFKBmcT7dPOdQeET3SwxGv3w8AsLu3wlqgfTaUcWUC+TGF\na4ew0rl3Nd3+iDbFjA9pGuHCEUWRNfHk+SpK1yfBPq6AOR9o62+uHC69YFwG8lZbHcOG5NUxri70\nx810dxulnvOBa6wwafOuP0pZBhLPcjgFmt2Ir8kWPanq+rgBaA8FmlWUuYHTXTP1uHAA+c7YQ7pw\nVImdrxoKhFKaJTfbs+4zz+kNV1kZqTKHD+0gLdAbdnSn1/YmQooepyDojVuvK5/jR4vE3jl/Pcr4\nXe8mQh8LtEv+8oKFE6ZZ+u4eHwu0vwsHBx8XjgQ+NWlMkgwLgC7M3M/qZep+7KYynVhtGHocjwGD\nickfZ70wQVlYzPv5vDF9RaYn10M7OnDK2w8FYMqb3BJquuROFu9nDdUSXYq1aQ1216epQMV/7QgT\nRp5qfP/QA0ekVnhOadBh7ilwNxJj0spkTZeijaO8aXrGs6QlVrHvnNBNzg3o7a+yUZZCJ832BD4n\nA5h2aGeheTHlEV3txfSTtCGGBdpvE6GPPEvags/BNPmqUbly/CZzND2dFyOjhqQeuFUP/Rlenujv\nQBeV7ukJ1IFcqzvmuM9NqhIXDo2fnA80XT4XjY1aIY8n5Pm8+v6uEvTn9vCBtl/0w0e/ESs7u7wE\nKod6LaD2cgP1UW2fZ8B0mi/ygU7SLx+72Ei3hQwvwLUGbSkCnA90VeXf66u3T0+v/TYR0iNdfzXz\nldNnkI34EAJ5hbn+TYSaUu/oWNwg6JNfh16d+mDOtcnk2/gd5V0s2H151O+7vhR32AUncEl/SVgb\nS5C/5hRiH0XR/Z4m7XrjQLMWS84Ci/wPc1NVtgBtf1t7kyH1Hvl34CcH+jik+0lWNXlCM05DMW/K\n8qUyudmRTg7o78xNQthBXivzvmmrXYzT/sDMN7QedabbSpZS5sFbUUQftBUcNcGqC3tyYU9OKAka\nR2TKQ6FxC7QdmQKIQ3WGbhylylRQpgLNfJnMIuwzxunlk9nTj8udwVB4kEoaxk4vh+431KRR5fJn\nfOv9pe4oHLZRT6Of/DXdyvItKlkhL4oDzX0LHws0JYvjg4lqaZpsz8n4OlSS9lCgrRf73ZdOwieu\ne5FtAD7Wzfot0Obv+Wt3MPki9neRUuKzXBZFwM4e2opiCzyXEhFH4VC5pr5s8+70Or+JMJ++Zqse\n/1Ub0KpxhIx+pSwfaJJ9b9jfwccH+pD9h2FbV5+RZhxkku4uMJ/LonBkiONA164bEERFPtC/+fx7\n8cEjD09/uwasIl582juloHARSTgXH9egyfGon/YJ8D7QKW1DlroH2aJ+QCnGpNWNoc8NrD7lU89G\nxLtTfGfpdDlBVlJNJvHhKWnSoS401ORTIVaoku9OxSSGTx16+qwWgQu5x31PL5rEs0lKRSnj0KgI\nzDdiPqid9dFZazFsSJQzitiTi2v1cJZK5fInPHKTyQ5H29STKONh8oyx8hRFXgq018Tf43s59GB2\n0sS78HCyKP5rK506OggLNBtqkHPtIAZ/zmDnNybQvLjo6D7QRjrybc13dZ3bRBh8EiGRt160hwtH\n7ZVHH3YAfl3bSGeHuzHyBzaMBO6l+vwBKUksRBctIwSZk7s8DD+xgny2Cwc3GOh8KhS/O7eJUBfI\nP66FH4vL0Z9VqXLbG+rCUcCT/R18FGjqeHUzjF0Sq5KeMNiDtst64eNipFug7e8zYmgHXsfFEg8c\nEPwsLLRiRdUsbyWh8/jwosP0iyRoe5Wj5+fLtBVmu9+QhWrl+iynms2dGSBr6dS72+XE92oW6IBN\nNBziuK3JgKunawofo9j4bOjSr6nvv2TDLmzY0YOD98tsOraM56P+ZNd1h7GzFBUyCofhzuFfjj5o\nA/m2Va3G8uyLp7wNv//SSQCzwMj3efPGt+6ZifPunJHrz0X7frj9GpwFGrBcOAjarolNFoUjS4s8\nXTh8JpN6+EfX59c3Tur0fSbEOrh6zKzheSU5QYc2aaT6os84Q610KWXmCVms5YwDOp3M7mTKBLov\nKHZMyZ6l35PdRFjJv3NclsarVn66KbqAB1+0hwJde9P/PONIfPaktwIA6ycGNNeFw9fV1p7N67+U\nPWIb99z0ijqAISwsYhTpajVe6irahMcdZFPhonNYeRJB29Pv9vf1Rd5Fxv1hKDcPffaavE5OUBC0\neGWOFrKcYmX6QBfz22H4QLuVczOdTGaXBbP77sHctADQSo4Or29PLPH5WEN0UOGNKOQUZkVbbOzJ\nKKlAa/nZ5X9GQcgs0FlaoQ+09VzCF0XbeA8iv/6d7edo/1W6TLOcPC8TFm/CbZOW59KXbNwJADjr\n2Del92xrpF4MF/vWR5l3QUEPEch8w8KniVTim+vtpyMCLvrksTjz6DfG35VUPpgSPdM5V7ykOG6i\nzE0KXD7QLlmgh5lLkJs0sWN8cT0rpVm96xhqqGV+L4utxYdNryiMHSXd7Yk9xYsrCkdsDc6X5PM+\nXDkAMHX5VnT3VbS6MvuN3SaGahZ2aoUxY5zmhbdA56N7Rbrs0CakRXKuHrSJAm02PqAW29Fj6ZaD\njwXUliixYPXToO0Zt+HCAb5P+3zTIh50S1L8W+OJqJe+SqxAF+1U5gQvH3/WfJayQHvpUAVVbftN\n+UThoJRsvR1UCKGpM8JZ832iTehZXtUOvzF9oE06tlXdOJgxUFHwsZhVtX7mPKZcp80oqi4/wSIY\n7dFlgeaKYS0zKpfPHqhohcC8pkJOcsqxz0CoNOGfwD7gSAcVhcOsl/xL6Hzb6Umy7baR/OImBH4W\n6OzXnS+tzKUn/fDgkboFOjJkjE6PU2x5Fw5/5Qfw8IEOnKgC9DdK6JoKBT22he5vsKui0AJdMAmi\n7igop0uZ8b2o+7UkM4xdZK2oMGOPl8xVKY1QZYlUYJlr4zlNmdRhVz31vG6Bzp7jxvLsWg/XR/lM\nK8W5WdDvoMN1rPodk1eQ1m3KhWPokCidkBUbAWnGZq7cRufXZUTtUY68XheNGvGAdvGBrv21Zy1F\ny04u+OSxlTSbhyLYHdz2F2vk2xUvf2jlgFfiElQSC7SmnQ0f0mHM9ngF2vwA1Wp8pHbOBzq1QGf5\n9/RVsG77HtQLW7D6bCKkdGx9E6gdyzMB5bfGfT7utEA9/9fvmpFemz7QFr8Wwzu73RsOuXbFH3Gc\ngVIQXAMFwFugfaJTcKDCHJkDGD2w6CiKT63Dvhf3z2KFoJqz6mTpVPmsBdoqF7A2UOouHKwFmqFN\n8LdtTy8ufWJhLj2WFcQD2uSCq//QDVgUKOt7FJkyho/8ksGnnbvAGR28XAs8aGY/koHcnCxzq6s8\nbe6dzXRO6UxYokSoMvg184dtIszTJk8i7PA7SMXl665vIozT6PzsqKGS8jkFNqydJXX/f9l770BL\niip//FN9731xXpicc2QizAwzzAwMAwwwZCWJiCQVBVQQJbmiiAlXd9fVdXXNGPkp+hXUFRVZAwgi\nSJAcByTOkJn00q3fH93Vfar6VHf1fffNmwf1+eO9e/t2V1d3V1ed+tTnnBMIgUc3b9FWYRRix1mb\nvllbLWT6anP/+Br0uhdxIsx7h7v7qomEw3xuxv7lIICK9aOtqBtPoaht1JOTp4KWTiWuqf2LnRbA\nUDGg2c7VzkC7PIBaDVgmVCOGNZaxxXDqS4ecMhtJ7XXPsqBpA+mrytyBrreaZqDHtDfiSeIUaIax\ni50IjWvs7quiKSjpDHRfIg+hDPRZP/g7nt/SZb8Q8BMYWm8KFw00N/mhz0kZ0y4vWDjguLO0tue9\nlRjQ5j6Vkl7fhwhzbVcm8tuthoWDIZp3FptUwjbIuU1eyWcm9pNuhOYb6rY42Kos0zjkSjQNX+6Z\nfvwXiS+A3Wi2DIRIBlkFeh9MAyjWQDNlqDqa+M09zzFbFWPE1TWpY1E2DpL9yEK1FZN9txnKtiQ1\ndUnljSQuvsaAOxTi1HcYv1WlTK+uMuUUNdrMCFG2FUPAfm3Vqv1d0CUcjAFN23mGBlqPMMXvY8I+\nOU/aaryiiOLjvdrdygbbjrMZ/FK1b+CEr92MTa8xYx+30uYwOc7LXCihs8HcxNuGLAkHtw/dl1tR\nVeSEjSRwrZd2LksqbyrnSH6n5FCNRiDBkJBwKJgDi3V2WrBh1FoHhSN3n5DaZovZqvDUyzb21cW4\nyJJwJB1Hn9H5cSX3Vavok7oGWsUdVjCTxcQONsY1bo46BdO4UveMGtB5xnMezHO7GtDmtdEB954o\nooppHHFL5RTWQdOhw92eIeHgAuvnn5Pfbn9X6GdmEJR8SDdYjnMxZtycCHkGOmGYaB35MjjjlAMX\nATkvCoKNgf7RLf9k62UNu8cMhJoxleGoxWug03VygXlv2cgn2nPmt1O4SB4UKEOnEAi7vtMa+aVG\n3ZDZnpJIQ3zkoKLjR1Ydq9W0JrTIkrtt+ytGxKGsOtuMTLXd7F8lpBZ2kr3tZBt9jjt6+vDZa++P\n/T9skiVY6gS4SjjU/+IvhTrGRcKjBxLgjbMkpBp44xlUwmE7Z7o8wO4PkFx/7faO2/iQfKdRmsy9\nK0TCYQtZCrhYQDo0P6boowqOkKovKd+lz8/DkDCg1WXRG50VC9llacJJA82A0x+bRhnASTj0477+\n58dqOn9Yh+zft0esZirzFNNAeqsSvX1SG6hpSKWwnPzwMQCwz7/+nzpRvK2nWo2Ncy7pTK0wr83F\niTAIgD+ev19mOQCAjE6B7ER3Z+HC0mU5EWYZ0IWXEB0MizzdL8BrQ7VQgLTz78dyuqAdLMvM5Jfh\n7EQo05Md1pgwnmdeFazL/9o+6e2BxaBIM9BRGf3Q/cZJasg0whyo+egc/DPXzm89Jy0nKoNbzk8x\n0HzboqfvDwPNTc70wdnhnbetipLtpk+2KeEw65CcM/8dpnhlu74qakuIFdaBr3m4XabrJ3UiJ08D\nTX//3k2P4yt/eARf/eMjAMxnbpRhm5yRS9FCYJK2SiV5RW2j2MiiBqRFj3/Kt24xT5+6l+rWZ0lA\n4180o5Wek+9PrrotiWvOTdpNJ8K8foPCZszT8yVSGf39YBloqEQquuZfL7PYwyoiYaMGf61kA8XQ\nMKDV7M1hlg64MtC1VITX0TZVSqltaSdCx1M41CuvqB09iQGtxWdmylZLLRoDXQmbRVvk0GNP5Z3e\nvr27L7XUqoxbmxetDdmh9fRzuzgRloTAuI4mrVwuFbuEZVnK9qJazqeb2/xeWU6E5jV99aRl+ee0\n/GCXcCSfk/PTwPOW85DPLpES9HPmN3KdgRYZdXW75rxzmsY5t7c5UOWV6cJe2eQcCrQJpJ+hu4Qo\nD4oZimvFDeLWgd1WZv4zSspTBrTex+vLs8n+NsO2X6m8mb04D/+s8twMdWVwJOWm5Ins4F/snPc9\no+coKDKJVDjx63/F3U+9igpj4Oe9g1ICT7+8HaZD2fZofFKESklkGFOW+tK+5YKr7kztL6UkTuH2\n/teGxMhKjqPjl30Cxf9OI0LYkMSBZo4DsOoz18cSMSfbhxjz2ooqE6LRBk0qxcXyNs8ZXV+fQUIB\nkQY66lsZH/GkzIK2GZUqqecsSL2oTwE17Iu2CQ5Dw4CO/qejcFj2d3gCtepfuBlkUzltQKcYUkfn\nQ5da5RWlHNMefX4rPvLzu+Ptm5mlo96qjCJlJE1BMerKgLOm0GSMz6O+fINuRFWzQ+TVilrur+qc\nNV0p0yuYBlRutAObcUT7MsuD1TXQ+m8NxsrGiNYGUiBfntVr3cGwsMWBTt4/XUumYDNmrJo5h3mU\nvtqULlurt+WaXQweILoWY9zhntcd/0y8wLOcUZJ9jHPYzm181tuyneXjQq1J/cZkgrJA9BaYYzA1\n9JLzkM+2aDza5+zKJFnpkm1BIKxSDZuDqE2Dn/es9PuWJHrgwlyGu1jeJ4fnbDorpyQc2q8Jik6U\nrr3nWe171qqrjYFWoAy0+iwt91rh/mdfxerLr8e3b9yYKQXIknBY/SjynAiNCUHR4Z6LsKMZagWf\nf6zxN7b/6zGL489aPxe/jPr+375xo/U85kQlbl+SZ6BdDEibI3RyzuQeSej6avMehQx0eExWWN6i\n5KbrSmNYRz5EYPhbcQwJA1pdmYtODHCcWdU4+eBsweaG9G20DXb1QJYGGkhm+CZuffyl1La+KIwd\nVQsoCYcyqm9+VM8SFw/czP1/8Lkt2ovTJ93kFRyyjko7EeaXx+mkOXbd5nShOxTx0SEoXFZCbMHh\ngTQDXdI0h8WMU5dICdw7sXnLDnzlD4/E37nOVwsFaPmsnZOvogY2jJ1h5DAfNVgdgFIdp66C5kIw\npcvO38dlYsUZpTpRkHy2xYHWDV7Jfs6rozRmDVQDHS8Fk+Nc9MC2CaT+OTJUmCXuUMKRZpcAY9Ak\nnz92jcWJs8DwKEm9bPIkW2kuju1mv1mVJgtrMZBs53S8tLwoHFnllEnnU4rkk1UpcfzySQCAb9zw\nGB549jXtmEc2h07Ptzz2YqaRoxvn+m+2cdqePEgZvrKQYWUDfeY9Tgx0tk2SInpE+ov+ntnK48Yt\n/t2irCtXpyxw+mL9nBLmior6bO5eLiXtRqMIUqsOxR6WNobH7LLe59LII5wkrVYMjSgchJZXsC1z\nAa4SjtpuH6eB5iQcpmHmGj/aTbeY/fv2bt6A5qCicJQzGGgb+qqS7ey1DqCaHWO6VpjGBK2/Ddzl\nqMGXhu4zBxNO95sVVzjZh/9sg8mqmBpoukpQvAO31dFiIEQfacxe/bjk8+MvbGW3F/HaNqHbz4lO\nNz5PbgnG+TMOKGKsKFRzDA7z/DYto8n2AhkaaGNyxE1ki7Y5WifKJNE6xdstbd7OjPL14mBLqmFj\noOl2Wzuz3Zc82NpwEafIVJn0fhma0arUHfJs7j0u9zkLWQw050hLYTLQimSgz+tPD27G3HFt8Xcl\njyuVhN7PZMgbU06EhfszdZxbBJW8SYluQOf3P8k7JI3tkQ2TYT9zK222R8ZejuTf/6rk+3aXNqzn\nbmCMdptxXpWp51wmIW6zTIv+MNCa7RF9oTYKHdtrNAE1DA0DOrpQ03OTPlAqT3B5AC5OhKmEC+iP\nhCO/TuocebAV1VgO0NVb1XS1Nhy2eDwefPa1MAqHYeQ2RhOCvDr3VSUqQZDSNtNL73Ng6mqBOUFx\nYbljCQd5o1Q5jZUsAzqtNdWMDAdj1mWQM5ukaUDTCU1ex2/CKQ60xUkm77j/uO7BpAxSgf3/7Y+W\nOhY0oGOqNdnm4gDjEgVF/ZYaePLqaBk4KHRiJN/I5QZZ2qxTq1qMBtqlXSo88eI2PPHitnhfLryT\nJC9Dn1ZX/rMG5toAngBIonCA7Cd0DTTdn5zU5qPBTU5cQB2NKAP+8vYeso/t2Pzt5kQo1EDrmv+8\nyDcu5zSRKeGoZr+XFdOAluF1ZBFDymmxEugJcZK2ED1zGgPbEoXjle09+P7NjzNl8M+ZMo10u4ki\nhrWbhEO9Q/r2RI+rX58QAj9450o888qOxKHXQmpw5el1NlbSyCcu1J1Lu6FjO5sMB0l71h1l0yNe\nKdJAm+09VWZBe4GbZJtjeFLfxB55w4SxSwYWnZ1Ql/+ru57Bnp+6Lv7N5cZkpTXNAmenKac7CrOB\n15WFtZTV0hAavtscGOgJHU0Y1lROGGgSc1gx0EII9noTSYN+nIKZTKPmdppxz7jZrYmfn71G+86m\n8o4G6GayiiDBG7zWlKm2SloMJRvMNmPGgaYsUNGXv4gTYTi/SO+v1Yb8TieQLq+VS9XZMHa0DIfy\n8rJoJceb4R75EHUUTqtcNgZaazvpfUwjUiG9qpU+j+ukgYM0/pvbredxMELybGw+DrRbkh6XlY68\nCZdpeKhjadmnfftvqXrXAhqfOKwnI+FgjnNlI2tRzOVdT4n0RYmWVRptVT+mJ6pwKQi0dzErQlU6\nCkf4/9Jr7sHnfvNAvD1v0kSdCAH+fX365e2435CdJAWlj9Od1YrBxkAHAlgzaxSOXTYpvnbbBJup\nnr5N8v2MyRJz7LoNlIFmb7nUJRx/ikL6VSVw60ZdMlomGuisNlrUXujTQk0m7xanXKg3Az0kDGh1\noaaEQ92sGx95XtvfhV3mOtTnt3TjZ39PPO25VsoxnZyEIy8OtA0uD9VWVEtDuKBg00CbKAcCtz/x\nMrb39OkMdGRAm0t0JlwcBFWmw3ojxUAb9WyqBNh9cqe+D9PaVTn0GZphfxRMTSUr7dD2B7vdBtMQ\nKWcw0IWW9rL2z5ET2EB/p86O9YqAY6Y2VvWLjTyLEaqdh0nxaquPOWi5RNjIu1ab8WdtIwxRQJt1\nKg400fVxZReZZGWFd1LfX92RMLAuemCbhMYc0Gh5pqO4nomQL9sq4SDbv3j9Q5ZaputCP3NReujv\n5x04x1qGbXsqDrRpiJL9t3T1xlGVXOUMLjHxuTKymguVyIUMdNj+s87VExlfFauEIzw2S8Khru3V\n7WZMa/6clF3NayOrL79ey+7KlUP7kB6LHl47Tr1Dxnabb4rZ3sOyyXEFGGizT6J6cN65EDjw3/+I\n9//odr5y0CcNnM0kSV02vdaFV6P7+dqOHvzqH89o+9J2k5nLgmnniyd1WPfnki3ZxnAtYZSpMKjB\nTBkaBnT035ypqgvu6rFLCGywzWDP+/GdeOaV7XjoudfSTIzFoOTD2OXXgYPLM7TZtM0RA+2igZYy\nbNAqgyI1ztT1mNKO5Pwi/p2LVWwOdDXH3M76zfjRrMayqcNTx/CZCMMH1WSsIvCJVPi66Cwu2a4Z\np8UNy4aUBlozPfi6WLbbnsEjmxP9MhcCyQSXRIfGQXe7zvx9OGbLpoG2TxryjTz1o1m2ywQi7zI0\n/SA91sLeckSBroHOf7ZFJkEU+uQkOfKTv7oP19+/CQDw+Avb4u1Vdkk+o16WZ6eOTdh3Xf9t66ep\ntMIlZfyjpJ3ngTJ2dulTuH32mGHs9ksOn89uB6CFVwPCd0lb0iYRphZ+7Dc44ks3pK6HIo9McIK0\n9x2APj4oBroqs8+l7l0pEJmSG8q+mwQVZRS17XYLOj4uL8yeC2wMtFVOY5FHcImCAD4ggFOMdWY7\nZVdpHazbIfHQpi245s6n2XMAhgFtOSf3KLicD5VSwkBnZlNmxtm9Z43CxM5mdn97FKJ025HS/oxq\nwZDSQOttT8QPrqtXNxhdBuisoPKrPnM9AOBNTIZBbsKtltqbK6WY/U3pherwsBRsszclQ3CRcABp\nVkGBMtBc/yilxAtbusIMhpyEA3oHMBAa6LPWzcTWrl7c9eQruOOfL2sOdn86fz+MGNaQOkZ1XrTG\nsQa6TBlovlPQnqnFULGFznK5A+Z9Mu9t2cWJ0LLdZghcQsIcVh067vg85DNloJ1Wfxzag64Jjc4p\n6ed849gWqcHcP/QkJ98tz5/CpV13WwYf3YDU6wHYl7T7pERPXxVdvVUMa0y6bmlrlwVeO0nKMQ+7\n14gnbO5ju1fWgY0ph0ukIoS9DN0g4/tyF508LZuyh+pIWwhPLmskhdktcgx0fO2GIRoy0MkBD23a\nEpWRP1EBBoaB1pwIIwd+c3wwda1KwlEOhNZGkuciU8elJBzqv1G5vMmZlGB1v67gVmNcJBzJ/tLY\nrq5V3z+PgbaTA8y5wbeRqjT7XHcDkhrCXN9uRqyKz8nsWwoEevrCJ5HtRJg+Vgh+BRnIX+kzCS7b\nKkEtGBIMNCwDi7pZ5mynXhpobg9uxq0Y35HEaDPLd31YPQ7Z+mydttJA73CUcHCxPYHEmOy1MNAb\nX9iGZZ+8Dk+9tJ2NflE3BjrjJWtrquCyoxZixfQR8bb95o7G+/afhSkjWzQDQ0FdIr1WxRLqGmip\nPTCOddWuyGJ4MpPhTJiTrlQYOzIq5xAwuWVzcOm4uX31jGS5pymMhIHmO0VrtjJHC1JK41nBkr48\n4xgOVv2g3niSfbhU3uRLtSpx2rf/hoUf+422f39Spse1kG5tNNmfn5xQcEur3HkBGgfazkBbw9jV\n4frDusj4v21sSddFf0fVKU0mldbE7A9DKUTy3dbvuay0pGvkBplRPqBP5mMG2jI+KKixrBQEWh3N\n9kr743Qqb32yYSvD3L8qDQ2044rwuPam+PjwvEkZLmHs8lZDssY0NZRSn4wiUj2zT6LXwPXtLhPM\nE7/+18xzmvI3Bc6+KgdBbORnSTi4exgIYT2Gi8KhJnhqW7yd9O1vPAaabKOhScxOzmUQd4rCwezC\nvQAvbQv1WZ0tFTwZZf4zG6frw3rF0HpxsGugizLQFgM6kjOEEg778Y+/sA0TOptS27XBYoAYaIW5\nY8OwSU++tA3fe8fKzH3VNZYDARWzRbUd6ghKXz7AFsYuKZfrtACjDbjM9g0pksno6FGrozN7AAAg\nAElEQVQ4sgcQE0XStoqM8rnydvTSdOTu53GH0kDzxlRPn8SOnr6UlMqVUa+ldSrGjoY/NNFt8dov\nEsaOvux9UuKGh58n+4dHuBiZedA8+GV+rHmTsefgsoSu7ksSxi75LchioMkXLqGTuY8LOCPDJoeL\nxyQLY5pOfZ02ILUwdikG2n5OE+b1F71uALjiLxszfy+Zq5UyNMrodZotRhmclZIu4ciKUGVzIjSR\nl0jF3Me1zzGfGz2NHsYue9Jmno6GaSyTBEFcxtU+KWNtdh45MG1kCzbG0iqLbEXy72LRVmKTcHD9\nDLdyo9qNlMLKJgN8+xWws9YcA01XFU2ZnE0DXQuGCAMdwmQn1A3o6iku4XALY5cGN+Me3dYIAJrT\nmlm+68NyCUGXq4F2ZKBbCUvLSThsGmiF7r5qytENIIaYCDuxejoRXrBhLpYQhwIVd/ThaJkzC6pZ\n0GtVBjQ1vqpSf1pqbzpOhXukmWmbAwj3/M0oG6YUyQR9FkWW9sy62GC7Dg6009rRk8/MKDSWg8L+\nAZSB5s5z/P/chHmXXJs6zpVRp6Ha1L551xHuI1PPkEKPocrX5ZHNW3D+T+5Eb1+VfUYmA23Wwdyu\nGZn9kjDkTKAYg3AeiQEM6IYdLU9T8kv9f5YGmtbIKWFPgW5HSj5qi60/Vr+bkX2kbTs91mSgjXBw\ngoxt3Dnzttfif3P/s6/ZI1KACWMHu8RPIYnCIfQoHFU1cQi/m9dOUTXaR1yGjYGOj9ONSddXIWaB\nSTkKdGXXLlvSj4/rRcgJNkQnEgPxX699AM9v6Uqdn0Jt/8zRi8k2XrYSTvbT72JRIoOXjfAEmWlA\nByKJLpPnRMhNjoQQ1tB3nKMxZeMl+UGLuGScphYrZUgY0OrCzIaXaKANBtrhbXFjoLMHNIV954zG\nNe9dg7csn5LUwTiWM9449FYlFk5sz9zH1pDKQZA5oGv1QciYK9AOX0k4VKKULHBRONTsuRzF/6yn\nE+FZ62bh6vfuHX+fFTnxmGmvOah2Qo1+NfmiBvQjm7dqTB8XLmzjC9tw3X3PATANO77T5voq00lw\nR0/2yOcSB9rFocuGvPrStkA7ra4eNwZarZAUbQ3xabXJSf5xtgD7JiTze97gUo0YuEpGu+vSJBx8\nXd77w9vxk9uexH3PvBb/EGhL2sm+XAY7wC6VKMZA0+XP/OOU83FYj3D/rBUAKwMdnZVzsgo10DyL\nT6/ZJscr2u8kCU6Se7Hd8k6qyZHZ76jjUhIOOrFJPUddwhEI3gi2XY15/bUw0Hmg41ZzpYQdPX2Q\nMv28KLpjCYfQ+k5lWykjK0vC4eJEqC53R09f7NtUlQbh4cpAk4g/qhyFa+9OUqObKycKtnsf7yd0\nPTg1JNWlq9js5vkpkgkn3WZmVI3+g+/bizYTtk+UfB3N6DWlQMQrKxLZUhbuvRXCfoyeLTSqljRX\nIMP/3dFqZVT1fmNoGNBs55qExqlFwtHjME1PzSJhX0ZYPKkT7c0Jo5tmoEM05Rh6r+3oxbIp6QgS\nLggEHxHEho7mxICmL57GQEcX/OY9JrJlcFE4/hl1AKVAxIaGMp7qjaZKCV89aSm+d3q2fANIGN4y\nw0A3Gs/lf/74CEzQZ/rbe2hnmuxjZ6DTMAffvOgpVAPt6lCUt51CLzN7f52BzmdmlkzuxNtXTY0Z\niCKIw9jRwcGh+7NJOMzTm4yzGReaQzgQ8FFoFGyaSa5eISEQfSZlZGUiVM/IFp+5kAEppTbg5uGT\nv7qPHgogvaJSSANdTe6DQiAEOzgC+jXXQwNO96ea0e0WBtpmQCukY86nDUh6XnMpvxADzWiq6w2q\ngR7R2oAHn9uC7r5qpsRPTaz7qpLtF9X7QcswXyduGV6VaWLeJdfiipsej/en94WGYMyCTYMNIJZn\n0nqZTGufzelU2c9G3bOcMIH89yYwSBWtH4v+d/dWcfsTL6W2F80lwEo4LOWYQRqCiEFW71ZmAh7O\ngM7grG0SNkpBq+1f/eMj+N29z1mvpyiGhAGtJAmmNFBdfy1ROJwGF2agVQ9+Qkda+zt1ZCu+8Jbd\nw/JTDHT4Pc/A3dLVi2FN2dJ0W9sLhKjZgO6rAievmgogkYL0kY7dFu+Zi8KhDOhyEMROhG9bOSW1\nXx5c059vWDgeU0a2sL995uhF2H/eGACJsUyNHtV2zIFQ6+SINk2B66jC7WTAtxg2CuY5ryVGOQeN\ngbY0X/uSX2bR2j7Uv8AGen92WJhWipKI7qMs3nGrq9aN3PzjXONAm06DpkHNHiPD8s1VBIpuGwNt\nazvRf5tsymxPuQx0gfsskQwyUuZroLVjo/OYDsV9lgdAa2W2S1PCoffTyWctlXdOrGYXSCRtWhJL\nxOZP0tVnYaAV2WMxBAGD6ZaMQWF5/2zXY2pAB8B+1jTQdOUyS+K3gxjQmma9qgxomSojy4ClsDxy\ncpz+zv3NSOphG/+zVg66GYfSNPuvjnOb1GTFwObKMcvTGWi+j/z13c/iwp/+I7W96MIwGwda2iQc\n+rYyYaAhZWbvYmOgbW2N7v/tGzeG9SKmtBllKal7SFr1JyPhkDCgb370RQDpxqYuu5Y40LWk8gby\nJRhLIh20lYHOMXD7qhJtTZXMfayDm0gzqVmgBnRVSlx6xALcd9mGOCZyuEQX/s4ZygBQYbwBHicM\ndJ8MO0+XVNsDgbeumIJjl00CkDC8nAbaNIQ4lkBfhuSNY51pST5zra2RSQGfBS0ToYWbsPUFblE4\nwn0EhLXDV/fCykBb3qtyEEQauOwBfnhLBfd/YgN7zqL9nH7NmRZ0ypB1kXAAadaVoquXZ+b1CVe6\nTFsUDhqurUomIjZHuyLZVl0mDTao05h9RK8lDbd2XuMXM4wdl6YXcAtjV1TCQRn4mIE2/EnUPe+2\n9BvdvWmjUJUZ14uZTGmZCMHfL5dVp4FIWgXoGmg6PnEZQxWUBjrMRkv6yGh7b8xA2zXQsRFkXJZN\n90+Py7oXNm27uXJAy+hmVpTMqFlmiMJ4u+S307vG9ST5RInQtnHh6lJl1qiB5iYt4UQlvd10rA4C\nERMzEtlh7LixKssfi1u5DQmOZKLK1XFrVy9WfOo6/DZipGvBkDCgFcwMXaoB1BLGrtaORj349mbe\nyFUvYMqAjurU7CBl6LCUrWCb9Hc2N2QuKev1ATpbkrB71Uiu0dxQ0pgkdc+5cHUAb1i/HEUlKQcC\nP/zrE+jurbJptHcWhkfX+XIU4YTWWU2+TEOIax+a4xT53aZ1zdOAuurVFegzsCmQ7BKOfMlSnuSE\n1pYu0blIOIIgWTXKevW4VRQ1YaSHFYkqklUvs1zAkd2OBqss7f3WLtqxUws6e/KjGdCkeHoNdFnc\ntoRZKA4yYeG5yVl7UxlrZo1kj40d6oxR0bZio+1lnCrtRMjH3j3rB3+PP3db6MiaJRwyuQfm4Pyh\nn9wVntMi/VKTppKxWsQy0EgMnlTiIItRyEEzoI1r/s8TdrccVQz0emi7yjJ+VR/RW5Wska+em66B\n1s/LhZMDzLbF99VZz98WntAcpmgZ3IqSKQU1k+Qk+8eVtZ6PMxCpLw6FKsZ2v7g6JD9o/5zBJm8B\n/56Z0pbwGQts6w5zN2StLnMrSj19Vavds4WZDEnoky+u7i9t68ZrXb14KpLm1MJEDy0DmnwOhOiX\nhMOWopWCK0Y5z0wazksG1IBnG7xcGOLxjDyEgmtHEzqacP7Bc3NTa1NoEg5ysdQIz2WgMwx22jFy\n0TryUC+Te3RbaEC/tLU7rAupl/J2Nict9H7EmRfpIEh+/9xvHog/c4wiwBsltkmJDdpynWUfes4P\n/79k2S4jb1BSZr6NF6PHpk21HKgY6Kx9bEgYaGrk5SOPpaK/adduSDrYsqNjstq/7mhHy7fVI/yF\nrjDZMhH2VUmsWEvhNUfhYA4TQtilJdEBZt9jW6Xhjk3Ok3wOAn0wtT0SW1Ksl7Z18wdYwMUNNln8\nn/79SQCJMVUpBVqdH4giWdiic9DzSEmcJ7VwcMU00Fnxjov2MTbQ/p8ajVzGUAV170IZX7Jd1ZfT\nQKedCMP/5qVnTRrC4/hUznHdLON/ahJoIUrUVtOOSGRA+nYbA03PVoRj4pIuKXaXfuePVb/XNsHU\nypKOBrQIGWgVcu+mR16wnsfGQNuM7q1dzGoC7c8sq57KQVhN0oubz/00oIUQnUKIq4QQ9wsh7hNC\nrBJCjBBC/E4I8VD0fzjZ/2IhxMNCiAeEEAcXrqyxXGRjoN0kHPkWxa/vTmtSn3o5nK1MGs6nlZzQ\n0YwTV07BN07ZU9uuHmCzg0Z5giVlpQLXjk5ePS1kj3MMVdo/0GQjdBCmzKi65zZDIYtFpcfMH58d\nWWQgMbI1DDOoOnSq59v0WmhAz5+g1492sOoKXeKKWmMPM7vbJiU2CK2zzD//D//6RLK9IGObt/d3\n/rKR3W6rlzIQZMY+ecgbHO4zMubpdqX9nNL4NY8lV0dVZbYToV6XfENQbdaMEvK7KVtQ99Em1Sgy\nUfnhLU/E/Sh3VNa8XJ0my/iwThqM766JVCg4bSoAHPOVmyxn5aGGBLM9cOghGmh61Z/59f0A3BKp\n0EmLGc2ClSVYKtVX5VfAgPQzOX3NdL6QHFBDfM3MUfFnuqJq9jHqOnsNCYea8NAoHQrWRCrGtXNR\nPfTjsieQtgyT5vmpMUeJOlWvV428DXlx+M2fzVV1V6hHrhnQpi+HVeYntTJcwd5nSLacnt50O6SX\nZ7v/Yb04g5zXTTeUAt6ABr+iRKFWTl3IVBv6Oz39TwDXSinnAVgC4D4AFwH4vZRyNoDfR98hhJgP\n4AQACwBsAPDfQohCIlDTY1W1FbMDdWFeiugDKQ6YNxYAcMKKyezvQSDw6TcvShlksQHtIOHIZ6DT\nTUmVnycL2LBwHADg6KUTtbrQjqKsMdBheTbtt8lwtDXxsaVXW5Z/s1Av1YfJLqt7pBizpkqAaSNb\ntX0440OPfcufS0+kkmzndnc1vjjYWq+tU3RLcJJ8dplg5pVBETqRhJFzir55nAaaK+WQ//yz9l0z\nODM6SXOJT8JurChUI7Yny4nQPEfyOV24EMnAYYuLa7Yt9dVmqBZhoF/e1oP/+r+H04WQetgYaBcD\n2iVWs9nFCMOJ0PZMsgZjV1BnKNuSL0U3MaC5+5JmoJPPerSP8LPJ5HJnt4eoJJ+NfcxVAZowqgho\nX3XggrGYPirsL2kuAfMVU+9c1eJEqAxSbsVTwTppsBEV5LisPs/ViZAac1wq73889YpRrv57Uke1\nXf8lz4nQBs5fIrWSZr13fF1cz0lhu88PPKfHFC9FGmiFrJV4joHurVbZ5CstjSVs6WI00OTaJPhx\nScmz+tN/1DyCCyE6AKwF8E0AkFJ2SylfBnAUgCui3a4A8Kbo81EArpRSdkkpHwPwMIAVhSqbmqVn\nz7CyUEQfGJcLibnj2rDx8sMwa/SwQseqRpYn4WhvKuc7ETLvmW0Z1cSs0cOw8fLDsHBiB6aMSGQo\n9HZQI1ydy6ZhNlnUqSQahqrLKaumoj3nmgYSqlNcNWOkVi9V947mSnYUDkZ6YGs/dPMHf3Jn/Jlr\nkkU10BR27/Ri2ylop8zNyl2ioti9zUUSSL/gu5dMGOmgmX8cvUc2zaNeanxg7uBSlWGYrErZ7Rnm\nsft0+dWWmc1koFWZ9XAi1OpicXWydS2JBtr+DtHrt00KTAMiEHYnQor+MEi0bCf9aAQaxo4zfFJR\nOMg9jQ1LmdyjVBg7owJZ0TW0lTHjmZeMPqaIkzmFqdVtbQzJl5YMBlotjfdWpTE5VwZ0moE2EUeG\nMdokV552nLRroEPnVBsDrX+nthWXGOlBI/lM3M8ap9YivBh14T7nQV0yPcaUrdiasHpORbsHl+yP\nNpipuBszVuK5fitkoNM3qLWhzDLQKVKEqaTKoNtjm/U4oD8M9HQAmwF8WwhxuxDiG0KIVgBjpZTP\nRPs8C2Bs9HkigH+S45+MttWEwDJLB9waRk+Ng4uCa4g1hd2nhNE5Tl41LXO/PPlGHvIkHGZK1gs3\nzAOgvxyqkz166cS4Y7f1cSaLSo1yZbia+7jKtIuE0srD3R8/GFecHs7XFGuurq25UkrVkWWgq9m/\nAxmTOqa19ouBtjTfovGhbcdyulKniallFxrGqOirRxnouAoOdaGTBp09yjZOpEPxUoYsZHMlO+Qk\n3Z/7HNeVGBk2DbTpxKq+1sOJMFXXFBts7/NcNNDawG5ch0LagDYYaEuP75p5NQs09nOW8QUAG5/f\nqkXv4W6LOZmgVa8SI0udU9NAM2PbZ699wK4BZ5j+wxaPx3dPX5FmoAtG/onrRD6XhIgNy9YGykDz\nRm5ftcpGMFIO3JSEMZ9lLKsxrj1r0gAAT7+yw7rqFAhhnXRlSTi4Nmyyl7YoHLbEK7Z3PR/piZfr\nJFBJF+qSiVBKJ3LGZKAzz8OcqJeJOS5EOIFjDWhSX5OZV9jWPbgSjjKApQC+IqXcA8BWRHINBRm2\nmsK1E0KcIYS4VQhxq1ZZY5ZuawA2pxKKWqJw0NMVNe3GtDVh4+WHYe2c0Zn7uRjQaiCjy8eq0eWx\nmiZjrIqg92PWmDZ89/QV+OwxSZpQWxg6qqMGgMnEgFastcrW9vnjluAD6+fkhgIcCAxrLMcsszq/\nql9TpZQaaDjmi0tHa6JIs3LJnmiD7TS2pl80E2Gt7OUv73qa3V5SuVxRvEOIDWhQRiof9BKylulM\njZzLEn5VSvT0VZ0TBJlLilx5sRMhaRZ00DEdp1T/Zxs0a2eg03h+S3cGAx3+N99rzrAzQfcxB9jA\nYAptj+SV7W5JMrJgVi/rzq37/B80A9pJwkE+J6msk2du3tt/PPkKVnzquvj7FX/ZaJ1AcEbeXjNG\nYu2c0alnUmufYzKlSuKlSTgynjEXwUjJYKgMUGWxVbA537lkorz/2dewLzPeSintToSmE6ONdbWc\nmzMmr737GXzx+lAelbpH/WSgdQ20MVG3tJc4qUzB7oErLzRU8wsqB7oELMtG455nX1WmbpBAaEBv\nYRloMxJ0GmpFYVAkHAgZ5CellH+Nvl+F0KB+TggxHgCi/5ui358CQIXDk6JtKUgpvyalXC6lXE63\nmx7a1iU9Fw10P5f9Bioq27gc/TOQvHN6XOAQeV7XpoGtGrX54q+dMxqVUhA3PZuEo6VRNyAmkQmA\nyUAfu2wSzlk/m2WW/+9D6zLrXU+oSYS6JDN0H8APBrYlaQo7M53exulnz1o3kz3e9Ty5qWQdy6xV\nwkGzdVHoYb2KvXtxGDvCJLgUQQc/m6OZray84qUM75GrAa3nFEmXXiUsuC00mKnp5gZxWnKtmbb6\nqhK3PPZiarvt+avrSRkfOUuogP6MTEPUVQP9csFoG2w9jElI3r17ZVs3KiWBIBDsxCIrkUqiQeUN\nIRE5TyoH56SOfF1o9jtTU232a0WiNNlQChLnztZGu4SD1omLmqG2UVLHZBNl6kP0Verl2dpXa2MJ\nSyZ1pMq0SjiM52bTlKvNZjvh+tnzr7rL+rtJCrqC00BDAg9S7XHOhLMwA81KZdxIoyAQ2mQhazxi\nnQirkvWRaGkoW+V5dKzIutZBMaCllM8C+KcQYm606QAA9wK4BsAp0bZTAFwdfb4GwAlCiEYhxHQA\nswHcUqiyWmsJc8qzNztjsFTobxrHohIOV5iMLn/u8L+ZCAVwYKCNHuK4ZZOxz+xReM++vOEWD+qW\njteMKkKXCFWn1mDUyQyyPrqtkXecHKBJijLo1TU1V0opZp5zzLLFgaa4/YmX2e3c3pwOTGVNzIOL\nHlLbXlB+UdSJMG9VgXph1xzGDjzragN9Rra02qpck7nJK17FtnVxCnapb1+VDIpkO72tpu4zWRam\n15bPzNWKXAY6I5GKbYzq1Qxo40epT+Rsk0MVd74/oHX980PP5044X9zWE0+AWQ10ioGm9yK8GdSw\ntEVeibeJDHmW0S6AZDJjvpe1rv7R2xEIEfczLYYj+g0PpeMW9/bxDLRCllFvi01uhki0PS8hREoq\nJ6X93UiH0dP3Uwx+b7WKw774Z/z2Hj0JBxfGTgtFaZRne9fzkEy8km23bHwRH7vmnvi7rQWr96Ww\nBpolGvJDfgJRGDvyPatv4t7znt5q6r0IhD6B0+tFHTezCZf+kKn9jcLxPgA/EELcBWB3AJ8GcDmA\nA4UQDwFYH32HlPIeAD9GaGRfC+BsKWUh8VrauUamApkDbgOHbQa6MzDVknYacPPqV7dhRGuSCEU1\nkDwG2jQUO1oq+N47VmJsO898q3JtHW+KgWNmmXlaXymL6r/6B3UtVAOdaUDnLJW7gOtkOIeePI3i\nRw+fH5Zn+d3FU98GSQy4op2KkwEt3OtCoUrWGGiH4/QQVLyRGZdrfM8zeLsiHaG7hEMvP1XXamIi\n2FIb0z6rl2qgLbGSa9VA23Diyqns9iSVt10/ysVVB7KdCG/ZqLPgNiPp5TpIOOiS8i0bX8TjUbxa\nG17c2hVL01wm+vS59BAnwiT1N2Wg+TJsj/MTv7w3/qzaQrL6pxdWKwOtP6fkedLx5gvXPYSTvvnX\n1LFU30/rmNQpKeOU1dO032wrTqacznZvSkKw4UKP+yof4tDsx8x3SI1lW3b04p6nX8ULW/XVj9iA\nJttokea1m5HFXBH31RnH2Axb9b4UlbFyhq1LXwmoTIT8e586DzM+9FbTmQgFBJobeMIxLD6ZzGQ5\nhStCr3h8qH4a0FLKOyKpxWIp5ZuklC9JKV+QUh4gpZwtpVwvpXyR7P8pKeVMKeVcKeWvi57P1GFV\nJT/Qmwwnh/5KOPqDP56/n/U3F8cyNUEYOYwa0FGHVpCBdoVNwtFUKeGwReMxtr0x9Zt64fKvSbIG\n2ECZ1GXDgG5qKKVSkvMSjuTzo89vLXROrr/gDOg8jeKRu0+wFwj7IOvGQBPG1jLBNIvZe1YYEzZL\nIgEoBkJo51kaOdbmQddA8/XgoIegsk9+TIaCnseGHdH1tlg6cBN58Vlp5jSbZ77pxJrHxtc7rfO+\nc0bjhgvTfRcnQzDPbxvMtXjrOS+87XpeqQMDzcn+9pw2nNkzxI0Pv5ByRqZgyPQY8XVIyd47O5mQ\nlHL1Haz6MZ5k1Z2B1rTqAgfND8OhDifZbG148qXtuP7+TfF3s71So76pUsLK6SPIvuF/8+noMfnt\n70ApSDPQWTANUtOUUP1zkX5Wy+KYYqDpc3euZtxfZR1ie/tVX12URGTD2EHvl2xQTuQKWSTnj255\nIrWtt1plJF5Aq4XAoH16Xh0Hk4HeqTCD7NucAVycCGtZ3twZJrdLWKwXo1kv7bxU3VRnYWtYRUOn\ncQwJxcTOZnz5bUuxz+y0s0bs2JhjFIYMdPL98qMXFapjUZTjpdfwe1O5lLo+rn3Um9Hj2Oa8MFOq\nlpdcfQ/7u1XC4aKBJq8N914JpI2/wxePzy0XUAyEXpcDdhubcYR55ohJsCzpcrA5EaYcxgyGgjLd\nNpzyrVB9ZkqYvnzi0ty6cGVTDbQZMkxBi6Vr00CTsl284+sBKwNN6vWlyInKhI2Z5mAb8M2Ys7WA\nGzNWk4QhHOaNawPAG/7mtXDSmqoE/vTQZgD5Eg5Al6qcc+Ud7D6xBjrqRlIa6BpDZ5rvzMWHzMMt\n/3IAOlryw5Oaz8eU7Zh9b5bBqZCO+JF8p32oEMmYOH98Oz500JzMupq3JyXhKCUSDrZesYQD2PTa\nDnyeZKkNj6sPA/1apBXPknzmvf5FJ9h2DbQrA+1eNxOhE6G+LYzCYbl+qcd1z8LjL2zNJYBsGFoG\ntPG5KvmG7DKjoI0nj/X73LGLM3+vJ1wkHMqAphIO1UkkMY75clodNNYcTPv57P1m4hsnL8/U7KpO\nztRAm5DQO48pGRKXeqBiSjga8g18oH8GCctAM0kN8hId5HWyRZ0LbcfaQvuYxZhJalxgYywBfpLK\ndby2y+FSJgMJ6xKGv9QPTjPQbro+QE+M9Ok3L7K+DybDbYJqmilXY3MipMvW1ogw0XZXpt8FXPuz\naaBdBug+w5hy3bfe4MYMmhSKw9tXTQXAt2MteghMBjpZMr4gcjAzcxyYEADeccWt6R8MqPfWlgAr\nFV7PESnWuBRgTFu+wztbFnmO3DjFOceb76M536FtQ0vmJURMGmWFYuTODaTti1gDbekfaZKcC6+6\nC//1fw/j+S2JzMM0Qm2rTVmQUuJ7N20EAAxvbcBNF++PTmYik/e2FCUR+d2zQz4qVIL+BaXt4cLY\nQVg10IAhZ8uo451PvoKLfnaX9fcsDCkD2vRUllKyjcBFwkFfuHVzRmd23oc5smz1gEuYIaW7GkkM\n6DPWzgCQdEi2l9FVs6mg7lIqHFKphPXzx2Z2SKrvyddA8417oGTRRy+dBABYNTNMrOIaG7U/DPTx\n/5PW3NWigc41MvqxnE8PtTEsZvHtjga0lEkqVlVHrllw7VPTQJPy8uontQlBeD2VUsAw0ORcIc3u\nvNpEJ7xC2JfI8/TzehSOZLvtefcRmlzTQJOaq77xSxZWvBZw1YmfpzCND9szSrbf9vhL8ec8P4iB\nlN1xkqW8tj2mLZStcc+Iykp6+6pag0oy9CXbTAf5WhE7ESoixahcrRroei5m0HbB1UePbawMUh1m\nX0zvJR1vyiVdwpE3ppjjmdmElTFua9uUgd7Rk++fVUsc6F/c9QwefG5LVJ8A4zuasWRSepKcRwIU\nZqCtGuj8Y8slUYhhN8ElUhHCntmZTlpNgoTDHx7YXFO9hpQBbc7WpORDkLh0tNRAaKqUMhvBznRw\nc9JAR9c8e2y4hPiOvaejKVpKjmfblmOLMtDJoG4yGfx+FElkkBwD2vg+oSMMhZe3hFor9p49Chsv\nPyyOWZ03aVFGSX8itzz76o7UNs5YzpPY0E6E8/i2teMiYeyEENZ3yGRvXduTlMn7qwY/7r0aOSyt\npVcdL43CYWWgyWd6zTRub/pgyoKKqMN1e9ZUniRgN1DyNNBhFI6oHC20FY++atcDFMQAACAASURB\nVDUuRaVEBoD7nkmWy7moHv0F1xXaE6nwkzDbQJov4Rg4A5ozdtpzGOjRkQHN1fslYkBv7eo1onCk\njUJKDPdnuFH3qP5ROOp37/tyDGg95KX+Py4jQ8IRiCS0YDkI8Fjkr3LP06/mjuV5caATBtom4Ug+\ns+9KFgOdWbME7//R7alt3LlyGeiCE9L+SDgqpaBf/VBDKUiFGAyE0BL52OqVlxhJlVVLE69tPX+Q\nYDpaSPCNwEUcT49rylk2jzFw/XcMZWz+4r174x9PvYKGcoDpo3RJw6ePXoQf/+1JHDR/LG68aH+M\nbUuMDqV5sw02xRlondFQsGmiKYpE4aCYNqoVN1y4X2xIDxQe2RTO4mfmpGWvh4SDA3dbcidQ5LZv\n6+5FW1NFW3GxseTFE6mk3yE1adXrm1Toh+9ciRO/kfbCD8uWsaGRpH5Ot6FRrWmnJI2BVgOq5Rps\nk4mYgS7zDDRNaJGVNtmEyUAHgcAlh8/XIiOY9bUy0EjqoGAb8GloMGr8febX92n7qHrVisZyoEUw\nYRdio+tJp/Iudq58CcfOjZyUNzkcncFAL5uaOCC+1tWra9NzQp31x9B405dvDMsQSspXHwZ6wAxo\npr/jsm+aE9rr7jPCx2la+rAf7eqtohQIPLJ5Cyk7u26pONCWKBy2XBM08Qv33qUZaHLufryo7JE5\nj6w4A81tc+sry4FAV43xlj+wfg7esudkfOgnd2rbQw20jYGW2vXnVTFgxjYXDCkGmkIgfHjcQO+S\nmvG39yYvYFNGXnaAamVrS4NaBGqGu2hSB05cOQXHLpuEZVNHaPuM72jGOetnIwgEJnY2a52QeoHN\njE4KrlEDFFSjKgmBq96zKnacsUXloFtVXRocHCNNTBre4mSk9wezx4aGc5a3PZB0zvUev7kXNo8h\nord9e5SKlBo4toHO5Z2gx9oZaB3USSnLWZQeFzOtzH4jOAM62pGyCtaENfQ8WhSOanzOLA20iJgI\n17GFtm1lXL5j7+mp/apViZseeQGnf+dv7CSnSjTNGgNtec/6yMC1rTt51+lz681g+gHgW6cuZ7dT\nmHK4TAY6pYG2yYD4m5tnQNjacFMlwB8GIBFTnj+KWkEyde8bLz8Mc6N+EggZaH1yml5FydVAFzSu\nlKFs9id5xUyz+J9kvQ+//+C+heqWJ+Ggt90WhcOM/U3fqYZyEBu6lZLQJph5StysVN4AcSK0MtDE\nkGfOlUqk4hC+kMOCCe34l0N3I8emD85ztNazfBYbH5JzuBnipSDAFotNYsN795uF685bi3PWz8a4\njqZYcqkgYLdndLlf/vWVArHzw9jtbNDGFgThQHfkf92Y2q9oeJY8A7qhHODiQ+bhp2euSv12cuRI\nUi/kOdzl4SWSlWvJ5LQuyhadwwbVpIJAYPm0EXGqcZelQHcGeidQ+wzO3m8W/nzBfpg6sjVzP1W9\nerIwQHJvj18+Kd6WxxDRDn6rMqDJAGFPp5v/TsR6Q4tvQfgjsNeMZEJH20FW3em96+6tomLRxCl9\nOkWciVCrq6V6ZPun/jdhY7u1SUb6mLidC0RB+GUqwgYHLcpBxqOrSuA9378N19+/iU09rTTN5i2x\naqCJwb2tO5FwUIP3/90ehjqzsTQujNfZ62Zp37kjYifClISDL9O2kmNe6yeOWmCUlz7ugwfOwV8/\nvH5AZHaUmDjvQHv0hsuOWphpwFelPslR10GjU9Sakc4GNZkxw3PmdQM25/Os6EB5K3gmaF+QL+FI\nTzb4MpPPjeUkrn+5FGACSdKV10y2d+upKewSDstKH1ki4xloY0JKPzs+9r1mjMCv3r8P3hX5PQF8\nP5Fn2OqZdfPPy+3jLuEQbMrtLCyc2IFZY5KJ6Jn7zsT5B8+Nv4eZCLOcCNVqQD5LXquEY2gZ0IZe\nqCqlNngouLBtFE0Ojnvv3nem9jCBkGm47KiFhc6VhyIxKzlQ7d3VZ69JsSgtNWqgVTHJUnf+275g\nQphCNS9Sw+CYz+G9VjroLCQZ3+psQMuwDf3rsUvibUWYJjUoUw2srTNz0Y/GUR0yehIJ3ZmDDoCZ\nbZcMKC9u7WLjxx4wb0yKZQAoA53fEdpYhK3d9ntEO1jVkXb3VTM9vBV0ximBio+dnCM5L/cslEFs\nPn1bc+glUTvoCgTnE2LTCbq8wx8iA1ZYofQ+RTXQNiPObPv7ztGZXfO+BQI4YcUUdDRXCstUXDJ+\nUnmSypR69NKJeOuKybiMGPeVUpCZHAvQVwS5yawpQegv1LuYioyS8wI9vGkLu33F9BHs9lpA2ds8\nCUdij2bXm7b7RsJAlwOBq85czZbNYd74No1kMl/VJIwdX588R3PzZ1vIyizw0sb0sXldvh4b32F8\n4DTQDsYpED7nZ19J+wFlIUUmBAJTyHgthN1/ia4iuhj5QVCbHTKkDGhtZi7sF1w0t7mZUnmcJSvf\nzoBLFI4svGRkRjIboQurxiHtRGiRcJD9/uvEPfDTM1dh0cSO7MIHy4K24E0qWUkE1Zw45rA/qGXJ\niA7qnITD1vRdOq/YwCswAdUY6IzVk6pMDO8XtnZjRGtDqm3mRc+RSN5tq4TDUnVlwMj4j35Moj8O\nl/K6e6tOISVpX0Pb/tdP1uURktDcdMKjoDTQ5ntmG1SrVX7gMuOZtjakY5wr2N7h09ZM075//x0r\n8W/HhZM8jh1Vg2+KgbY8DCsDbToJpfSo+rX98fz9iCMfW6QGyiIfuWRCxp4h6OqCqrGAwGeOXoyT\nV03T9lXPfhRxgqVyJMq+ce9XD9WZM9fiElmKIg5nSp7Jl966R6aBd+762fju6SvY396y5+RC58/C\n9p6k/edG4YAbA/2tGx+LPzeWg1hiWA6CeNUUyG8nLQ1lXP3evePvKQkHSeXNIXEQlY5kCFlVdzSg\nx3Wk7RPWiTDnphVnoBkDmjFO541rS+1XCQSeenl7/kmMsk3Q+/6ONdOtpI2EIeHIOVfpjcZAq0Qq\nHIp6l5oSjlljii1J1RP9ZaDNyYN6KZW2rbgXts44q/qZg7Iy7OjmzpYGLJs6Ircj2VXs55+dtRrX\nnbcvZhhLklWG6asHanlhG8ulWEr023ufQ3dvVZNw2AxLmgnMBtWJ2iag1923Cf946hWtsy4FAr96\n/9745fv2zmy7Ekkn/8KWyICOflODUhcTCQHQGWjFkBW9d0+8mKRmNu8RxyJ391adJrO91UR2QVu5\n6S9BMwdy11mNonCkJRz8u9Nb5dPTmgb0sCiSRBuz8mSWvdv4dgDARw6br23fe/YoHLMsLa2J626R\ncFhZOkcNtFmeubJIf6fHrpqRrGJ0NFewbOpw/Ohde+H9B8yOt+85fQQ2Xn4YWw8FLSJOvEJh3/+7\np6/AL9+XGF+/PmcfnBJJ/F7bQcLaMfeFGgbcJEU9Vy7jKwfF7NJ7dMSSCVZD6esnL8e56+dg7Zx0\nQqwT9pyMxnIJEzvr49RNnyM36dYTqbiV+ejmJDMsJcRU+WesnYFTVk3NNVLNUJR9RpuLnQjz4kAz\nq0m288WfHfYHktUQrRy2Ltnl0DbnlqmW25aOcHHtuWvj90QxxuWSyCfSmLJNqPfguGWT8L4DZluj\nVtGkW+H37HNl2ZOZxxU+YjBhNDbb9RZloJsqAa48Yy8Mj4KRLyz4oOuJ/hrQX36bHvNVNeTvnLYC\nf75gv8LlSWNwVEaF6UR40SHzcNqaaTh8cT6z86W37qFpmU5dPa1wvQYCS6cMx6wxw1JB6XcVA19B\nOU587U+PYs5Hfo2HNpHQZf2QmbhIVXb0VLVOvxwILJjQgYUTO1J6Swpa5IsRA60KUuHCOGYWSIyj\np17eEcdAt7H3LxgrMAqPbVaGd5q57e6rJttE2OZdDej549tjFi1rbKZLijuY61ROgeZk01Ym1UBT\nmMaZiiRxw0X7468fPkD7zTQGr3rPKtx40f6FUgoD6T5CwdYWbf22edq0plo/kLKX9D5989TlOHhB\nmOVy5LAG/PTM1SlpUCXnIlsaSqxzdpYBtnbOaI0dHNvehEMXhTkEqISDe780gyyjajY5jgllWJiZ\nCDmjpBwIHDjfnhVUsfy/Pncf3HTx/uw+N198QK6MhYNZP8AWhSO7nB2E1W4qB3F7UPfhw4fuho8f\ntTC3bQsIbWyzMtA5ToQSbqm585xHgfDe/u4Da2Pfk1FsqM/0cXlGsc5AuxjQ6X1s/ZCSb6rJbLkU\n4AfvWom/XMS3Hw58jo9wm3JYz+qjqfwn7/pEhqIhC0PKgDbD2NGbQpfLChvQ5RL2mjESf7noAPzH\nW5bg0EXj+l/ZGuGybJyFmaOH4bHPHIrHPnMogGRAbmksOel9Tag7rO59Q8xs6Pt1tjTgY0cscDI6\njlgyAcdFjnNvXTElrbMcZHQa+tx6p/BWqNV50nSc+CMJAt+fqqr3yRaiSYEyZK4SDppIZfOWLowk\nDLRKR2tj+NVrT+VJtlu35vLr2e2vEgPGvLzu3ipZoo+29YUGNGUtTdx88QGYNqo1fjeyDOgqWerk\nGWip3SMF2+pNT1/VqV0q5rmjuYKxhjSNPrtx7U1obSxjYmdz5ooRZ/zZNNBF4zanGGiRXV5gYaBb\nGsqYNip0DLYZnMo4/vape7JZ3KaPatWuR526aCI/tQKQp4HWpEAZ5eU5vCsow9TFiLM9pWVTh+Pf\njluC9+0fvgPtTRWMt4QWHdfRlOo3TXAOXzwDTeoWG0HZoH1HY6UU30MztGLeamgYijL5bobLSyQc\nNnmS+7kA04mQ339cRxNmj22LI48MZyIVcRM7ror0nafXUDRKk4KU/Pj4ndP2xFdPWha3/0og0N5U\nwYTOZuw1YwQuPWJ+6hggXAlRmVO5cntoPH9k20ua/Cfn8krBG4CB1hubfk9o+s6iHbfqlJobSnjz\nHpPYWXG9cdV70hE9gP5roIHwRVQvo7pntXp2m/pGxZD3NyDFmLYmXHfevvj4kQvyd97JMJe76x19\nQ4EWu343OwNkwgzdQ2v3H9c9WHN91Biu2BXb4Ksz0CSMXVZnRuQJfVWJKSNb4+9q8jvG4nug2i5l\nmWqdKIR9qX5wd281fhgqw2kYKSTIjL6g4serdyOLnQw1ziG4iUJf9HtaA82X191bZbPnmcgKW6lO\nNaatEb/5wNrcsgCenEjieptxoIs9JPP2pSQhxrmpgW3eJmX82rz0leG237wxLKP3P29fphl3e0SD\nehZTy6GtMTTOqYSDuy9UdphleDU65ixI0leH/0cNC9+xgxeMS634md//eP46vG3lFHzhLbvjmGWT\nnMekPGP9rHUzU9vco3BktyXNgC7TPolf0Rnd1ogPrJ+Da8/dJ+f8+m8NsYTD5iDrVl+zPgpZ91D5\n4IzMCPVJwdWBGpy0Hbq8q9w+IQOd3j5yWCM2LBwX95F0NefKM1bh1DXT2XMcOH9sPPnNyjLdkMNA\nR0GNws9wcCIUoiYGepdPpEKXhdOpvJP9mkhWt56CWtUpBjObxaTVC8un8V7NeZnoiiLWZ9ZYrLrF\nqv1Xori3WU4tfzp/Pzz2wlbr7wqDqTXPgqlfHSgJB+0fvn7yMudJSdFkOK5Q+jIhQh1DR3NFi+pC\nEe2iefmbbXfNrJG48eEXAKSjd8wY3YqbHwl/Wz5tBE7fezrWWDJPqrZLnY9qeSpzxg7Dpte60hKO\niIEWIpmYuzgRqjjANr+CSkmwnu47ehgnwqpEtcqFsePL3tFbRU9v/j3IMrjUKzx1ZEtupBwFru2Z\nkXqS8vvJQOcw2rTtmUanmtjZ3hU6rnD1nDS8BZtf64q/7za+HY9++tDCsekVA0dXQDi2r9uRgXZd\noaQGyzdOXo75E0J9e0M5wKVHLsB3/rIRAPDopw9NtbmpI1vxqTcvcjoPRZ6+mJs45kk4XPvELvJO\nNZaDJJGMUb5akZgxqhXnrE+vLgnYcxwASR9na9tUwuHSUkxiy1xZnx/5JQBJiFo2Vj5zNm6lq1IS\nUL7w9H1yC3Oa3tYneQmHggpaUISDUpMqTiajbDv1HOxOhMSwlw5OhMHr1IlQc64gbcRsLjSbYN4S\nNMVPz1yNRZN0zTPtuMe0uTlt1Av91UCb6G8yEsWMNJRUqvCwfqazEsWUkS3Yl3FGGSowO6gBk3CQ\n11oIET+rT7xpIb5z2p7W48xIKvViyJU2Vw0CtvjY1FgpaxIOve0eumg8/jvS5Fer+vs7d2xbPKif\nsOdkHL54Ars0CSTvOk2I8KNb/ulwRTp2G9/OBtXv7qviS9c/HDv+qDB2ecxb7A8Qa6B5Iw7QE6Xc\n+vhLqbKqEiwDbRvLu3r6nKRqWf2JGqCKOBaPHNaI331gLS7cMC/eVi8GOteANp0IM/SjaoC1PUNK\nkqj7qLIHHr10olZGXL8a+lJlwJvxhU3Qa8s6jbuEIylk/fyxWiQKiiDg47HXgizDE+ANaG6CxzkR\n5nVxjz5PnAgJmWYy3JNHhPfhuVf5qEShhMN+Hao92SQPfTFj7kZamfvQvnzUsEb87zkJQ6606KxU\nhjnXdmai3kDuTVEGmpdwZOuLVXstkptDjSMcAx1nlI0T5aTbz6hhDQYD7ZbKm7tfedjlDWh62fRF\nNzvbfecmcT1tAn8OSyalHQZpR3DzxQekfh9IZAWsrwX9TTCg2DLFyioGpGhYJVcUTfQyEJgztg3/\nfvwSvG//MInEzpBwULx9r6lYN9cep9bs4Ld2ub/4WVKRGx56XvtO0xFT0LPbEqm0NpSwfrexsTFA\nJwsLJrRjQmczjtp9Ih745IZU1BPbCTnmtgiUzMvsl6njoSBh7PLeRXXtsROh8fvlxyyKJ+BUA81B\nLYWar6tNerWjp8/pHcxiLNUAVVSyNntsm8bsqvuZjgNdXwmHGcaOi8KhtikjY4clsgutq6rnZ49Z\njIc/dQg+H8VltyUVKQJ1//MG56NI6Mwsg7bdcaUgj4g5dfU0HFRQjpKHPaamE3cpBIKfRJi6/HDf\n5PqVJK1IyM+mSuJEaK4mTx4erjY/YwnraToRmlBEUp6EQ5Wmlc0Umzag6Tf9mq88YxX+5+3L2Akv\nN86zBjS5H9ROetHifK3XjZdwZEU9UxFRiuTmUPef6z+6HCQcEzqb8dCmLfG9fHTzVms/oBAEAq/W\nEKZ2lzegKTQGOvrc3lTG2/eaqmUbsi07c+A6Sa1jHsB00lxIonoz0Kr2tdqAapBVA2Y8A3dYPi6K\nP1+wH/58obuX7kDi6KWT4kHYvHfHZoT0KoJ63cFXd7i3d+orYOIfT70Sf25pKGHGaBsDDZwSxcGl\ng41qu22NZdxz2YZocAx/p30h1ZxStsgGUwP91ZOWZu1uhTIUzYHgGRKftAgDrWBzIjxq94lx5Iu8\nhANVFYUjVTbYsrt6q+jtk7kTTpNFpVINNUAVD22p94sf+smdUV31cn5y25PFysxxIvzi9Q9b91fG\nQGd0fSqWvy37GTVSe+JVtgDlUhBfW15WUBcEgUBDOcic/O0xpTPWfQLZS//tGe8vRZ4M8dIjF+Br\nJ+enci+C8w+aq60Ea/UJAjbpGReSzWwHW4xU6HloLJeSRCrGeKpY3Ky41lljvpLk3Pjw8+zvtknt\nimkj4ogsFFm+SeY1T+xsxsEL+AAHXCnchIX2aVRW9O7v3Wath60+QOg0mTU5VNFuipCaqj9iNdAO\nToR3PRmOY8oB1BaZiUJKWVOehyFlQOtROML/vVWJUiCcl7ZcsDM00ADwl4vS7Halzgy0GihqSdpB\noQzoSo4TRX8weUQLq+8aLKg29uRLegD4pVN4ZrYw6sRsu7AHCrZQcSZaGkpxdAwTAsBHD5+PBz95\niDbYlAKBL751D1xLHNJiBlomiQVs5dpgaqBHtNYuq5Iy/SY8TQ1o4a6BVlDvApekSF1zngyoL4rC\nYQ7eigww29yOSMLRmnMvzUnAbR9ZH39OGOji/R13TH8NTpMIzzPs6fk6WioY2dqAT74pzAyrmM3X\nHCaXitlW/h0K9SIzGnMM6FTTyLhsV616PYz/oiiXAmus31Ig2PCNXFIQ87Z/6lf3FloFbKwE8btr\nhisUQuCBT27ApUckzutHkKQ6D2/aktnulAF+/7Ovsb9vsURbKQW8qZwducf9mrlyuDZnIwXMMY6t\nD9OHbe/WJ6jfPEWflGXJMSi+/46VsUOnartsFA5HJ8IsrJ45ErtP1ldLSq9XBprOULVU3lGL6emr\nolxnA7oWRqZe5+lvGDsTiQHTv3KaDQN6oCQcuxLU07n2nme17fWS2dSLgS5iQKtZ9vRRPLusUCkF\n1hBgSq/NdV5HLpmgJVyYMzbMSnXQ/HGpsHWuSDTQ4YAwclj/JlmmBvrndzytnS0vDvT4jib8/oP7\nxt/V8qDtuqaNbMFtT6R1zxTKGcfsEe6OVgVUaCeF7T196K3KXIPKNAIpI6eceDcsLB62k+u7zLTR\nRZHWf2eXRycbjeUSbrvkQBwSsXyj2sI2YupFuRClanA371W9xoGmSilzCdlsj1mspLMBXedxxBW2\nZxYI4JLD0qHLuLTU5iTyR7f8s5AfSkdzJeWfQNFY1rNzfumte8TxiRdObM+UcIzKIXjoaiA1YEsW\nrXlm5J4C18yVwq2+2CaFLm2dM+hN+aBJIqgVsDzCbe/ZozBvXOgTs0/kP7XHlLQkaJ/Z0W+ThzvX\nmzvXnLFh3/exI+ZjWGMZlSDA1hw/BQ67vAFNl3tpx6LaXU+fRKkkrEtHHD50kD00FVBcE1hP1DsK\nh3pB+6vjVcaU6wvxeoarrFxFd5k0nHfgqZe2uogBrWKJ5jH9DeUg16nPBdNGteK+yzbg+D0nx4zM\nMMdl6Ph8Qkk4wuO5ME6ukADufurVjHMBj7+wFc++usNqQLc0lDCT6LYVs2a7rrVzRuOvj76YXS8J\nNpX3s5Gz0xKDMVFMV95z5AbMeePa8P79Z2F69GyOW148TTPHcHY6Gnc21MuZDQDGdzTj88ctwX+9\ndQ9t+5feuhT3f2KDtk1pOOstn1NoqgSZy9xmP5B1G1w10IPBQANpB0hVjz4pMa6jCSun69GnWAba\nMaaxDRM6m+N31/WZTuhsxr2XHYyT9pqaaZQ15hB1z29J+mIqoQhqYKCLDA/cu8M5bdr6tGkOSXA4\nGfNWg4E2752ypYpkh953zmjcd9kGNlLZwQvG4b7LNqQCPxRBSYg4AtGwxjIWTmzHi9vcx1CKXd6A\nptCjcCRfOAZaedtyaM7J5rSzGGgO9RxEwvLC//0NJKFmlieunIKjl06Mg+u/nvEcCWNF4dqxzR0X\nsq+2UFpnrE3HRR1oKB2ezahXqJQC7DG5E19ndJJFm6havdgSsRV5soPU+aL/yggZ1liuaaVGiDCh\nBdV6m5AS+EsUXs82+JrZNlV7UDF/TbQ2lnOXMFVGL/Pefvf0FTjngNloa9LLVok58th4bsC89ty1\nOO+gMHmRGbJR4eNHLogjqHA4dNF4zDBWMfqbwbXeve6xyyalYotzcj+lBbe1qf4OB43lUqZDpRmg\nIFsDXR8nwoGCOQFU7avPwvJzGmhz/G1tKBUiG8Z3NJGEX+4Pr6WhDCFE5jFF+j6aPKccCN6JMOP4\n/ko4ONjahS1BDgUXV9pkoE35q/peJAoHYO+X8n5zQVdvNZZtlUsC5SAoREJRDFkDmrbxUhCkOsXZ\nY9qs5eTNztXvg2hH1w1K68PpM4tALXm1NJTx78fvvktplQcKj0bpnxXeumIKAGB4q9sg9qGD5uLM\ndTPjZSeKr5601Hk51gXzx7drocVsOHPfmbj74wfnDsSVyJnqwPljU3HSazV1tkZLimaimjyo935H\nTx/KgUC5FKC1cWCitTy/JZk0KeNzBWHNvnnKcpxjyU5oc9BscnCUDDXQ6Qn02jmj8YED56S0nK91\nuTHQtcZaP2X1NNbpSaGpUsIXCbsbiP4bbYPV36rBnVv9+++3LcV15+2b2l4EeaujCye2a9+zjCHX\nPmOwSCCz7kqL3mtxWOWuxzTCe6MY6Qr7zc0OkTq+o4lkDCy+Ukqr+BZjdabIXaWh9QIhNJ2xzTmY\nogjp5ZooTckPTRtoR09fbl/CTQK3dpkMtN7Wk6hdAxPJqggUkfXStu64PQbRhOkNYUDTF4tqvEIG\nWr+ULJ1qnpNgEp5q592evE6hVvz78bvjmveueUMYvPXGyukjte+XHjkfPz1zNWaNtk/OKOaOa8OF\nG+ZhuJEqeOHEdmxYaDdOakFbUxnvXjsjd78gEBjWWI7jldpA2YZr3rtGL6PGsVnJDooz0OEJt/f0\nxe91Voa9vHJcoQb3H797FdZF72dA4nWbsF1XVjITlbwljMKRTuWtMNFYMUgkHNkOlcfVKWIMB9rn\n1qOv/PsTL/e7jFrw0zNX47Q101ij89BF4/PDLOaAm0ApA2/Z1OG47KiF2m+mEULR3py0sfW72UNd\nDhZM43dy1G5Vd6ImKbuNb8e562ezK67mc+jqrWorOKfvPT0laVL42BHz0daUaKC7a4gWReu0ckYy\neV44sb3mFeJyIDRCJok+xJd3yqqpuPKMvZzLL8pAm5Nd2rcqmKtXHCNuSpNM+Y2Suu0KbVX5qLyy\nrSeeDJSDoF9ypyFlQNPLHEeW5kqBSHVSWd6ZeQHfK6Xwpn7Ukq99IPD1k5fj3ssOrnu5zQ0lLJ5k\nj8+Zh3o7NQ4lnLp6Gt659/T4e2O5hGVTh1s7q71m8NklzX7H5pzXH7Q1lQuFXMxLNUsHLNMRq1am\ncUuklyuqgVb2hJRJYP4xTAhIhWOW1sdopM6QCyeE8oQsDaqtz2nK6IuayiWUhEBvxEDbnIomdjZr\nDOm9z4Q67iw9+Kwxw+ouCaOgIQjzGM+1u3BipT2mDMfHjlgwYPeKm0Apg2LGqNbU6mkWy0xXjj4X\nxavelWDeQ3P1SrWTA+aNwbnreV8kri1RprMkBGwcmBrrYgO6n746tI1fcdqKmmVGvdWqdl2qTZiX\nOnlEM85aNxMfP2qhdZLAwbVecfg3o0/a0dOX2jbaSHHvwoibz27KyBbct+6hNwAAIABJREFU+bGD\n8Pa9pjrWcGAgBHBGRDC9vL1HWxHpTxsZUtYRHVwmdCYGdDkQqU4qi4HOSy5SCgQe/vShOGknPPT/\neMsSXLBhLsqloCZWbaBxw4X74XckLNkbCUEgMD4yoqjxYjNUrzxjVRxGi8Pes0Zh3dzR+Owxi+tb\nURRnZOlyHLd0nRW3s9bY6LVKOIY1lmO2U73Xq2boqwOfPy4xJt6zL8/EF7WPaJKHc9fPxpVn7MUm\nl9l7Fp+CXEE5HplL9UDI4jZXStjR08cmUlEolwJMTklpsiOaZEkw6gHax+YZ0LPHDGMNQ/ocP3HU\ngtTvrwe8sCW9PLxuTmhA7zk9PekekSERo/cwT1c/GEgbhHqbVSvHWc2FewdohIRSIKxjuGJJVbSM\nPLIsDwfsNgaHLRqPGy7cDyOHNWbaDm9bOQU3XrQ/fnNuery87r5N2rHq3TEnHH++YH9c4CDFM2Gr\nltm325wrd/ToYTs5VjaPdAH41f2O5sqATuRN/PH8dfj4kXpfcukRC+K+u1ISsSSoHAj8+SE+prcL\nhpQBTZ8BZYdKgUglZMg0KHYhbfOb95iEs9bNGuxqWDGmvQmzx7pJFl6PUMYebU8TO5vxCYuhfNJe\nUzG+owmnrp6W+m33yZ34zmkrtKQJ/YXSdRXVuNOxlzIN/358aIhmZY7a6RIOIeJUxIqtm2O0SRoB\nwiU5iw00ji01oMulAHsZRrvCt07dE3d/3L56pIx/bjBvqpTQ3FDCtq4+NpU3BedwZYsbv2zqcJxr\n0WrXCzQiQZ4BHQjgrx8+IJUIhB43b3x6gvF6gIoZfNV7VsXbFkxsx98vOZCV2LCpmiNQByol5zj/\n4Ln9ikxTT6QkHCYDHf2eNQnPM3pLgV1GpSJfXHjIPFx0yLyaQjRSNFVK+PLblmJSlMEwq2ozRw/D\nxM5mq9M4vTe1xC/Ogq3f+Owxi7WQm8p3xCQYu3p1Bvoflx6Mc9fr/YfLfK2/mY/rgXEdTZg3Th8f\nGsoBdp/ciY8dMR+fevMizIx8Q1Rc71oxxAzo5OHQ8HaVUpAyIDpb7LP4XeEhewwNTIqiuZjZ/rKW\npG66+ABcSmbAA8kTxQZ0hmfycoY1pU45o4mhqN6bLOebWt+ffaNl/KkOIZNMqAmz6uTN6BO08zdX\no35z7lrcfHGStIhq0q87T2eLfvG+vXH/JzbgyjP2yo2VTc+dxQQreRlnZDZVSmhtLGNbxEBngUt7\nbNPvtReU9NQCOgjb6nH+wWG0j0CE0S/MK6R1dHG2HIrYZ3a4QkFXLxrLAUa0NrDMXFY4QMoSNpZL\n2Hj5YTh7v1k4nUjNBhPm1Qw3JgPqcWf1Ieo9WT51OC45PC2jDAJ7um2lyW1pKOM9+87cqc6Uqkq2\n1W/qd6Lq78LqFjn3UbtP0IzHUcMatZCbSj6YlnBU43qPbmtEc0MpFd7ytsftsezV5H6wwidSBEKk\niIWGUgAhBE5bMx2jhjXiQwfNxQ/ftbKQTIY9V7+OHkQEgYjTd5cCgeaGEj5z9KL4d/PF1Y4d/Gfs\nMUSgMsCpIO+1QBl/eaHjaoFiW7MSCf3gXStT244nqWwpA91cCTvYrLidtRrQZ+83C3+/5EDWEMyD\nunfqOukEemRrg7YkaQ5gc8e1YVxHUzy4zyUDzMTOFlxmSAeaKiUr21wLlEHPDebvP2AWmislvLi1\nCxuf35rKxkfB3TfXzJIDARcJh2oqSSzvsL7HRswrXfFtbhiyw1Emvn7yctz5sYM0Y7mhZH9fzdUf\npSMuZzCvKi7//vPG4Msn1pbqvh4wJwSJ0294varvyA4VF/42f0I7y9SG94E/1jXMX60wu75Pv3lR\nTAwojGlvwqVHzMcYwm52NFe03An1ljSomM+zRg/DYhIj2fTZSDIKp6NwDGuq4BNvWoifnbm60LmP\nXTbJ6bnuLARCoGI0EJNUaSgHWD0znNgqQuX770iPk7nnqrGOuwSUd7Sa9agwY0DCpHEhhDwD7eGK\npkoJV5+9BlecvmfNZRy9dCK+c9qeeMuexRNW5EF1kOYKzA/fmXQGnKRhrxkj8bljF0dlJOypWuLL\nSpRTax8ZBKLmaDBqEqJMC8pAn773dG2gzVse7WxOjm2qBDh51bSa6uQKZSwFQuC3H1iLq89eg2ve\nuwYbLz8Mb95jElobS7jx4Rfw9ydeRjeT/EAhHU4wHYdVDYw7Qx1LjQDKPFEGTBFs6mdlHLZGAzkd\n4OuZTXZXQlOllNJ/Z7XRdXNH46D5Y+PvasKXpXlWE949JnfisMUDq33PgrmKogwXZbipNpM1Bm+O\n4u/PGjOMZWgDwWug37//LKyaWb+Jbx4uO2oBTlw5hV2pOnXNdNzyL+vj77/9wFr0kHdb1b5e76m6\nZ2M7mrQ+xGx3TdFzMG9rb1WioSTw9r2msr4WWaiUROxTs2sY0OnoIFnBEH59zlr88n17Y+/Z2b4s\n7LkKHzEI+IDFW1cNotzLpHRk5SDA/Z/YELPVAGVF6lxRj9cllkzuxJi24qypghAC6+aOqSvr8O61\nM9BQCmKNtmLvjls2CVNHtmB1jmMbQFIYk9m6GuiyBuvB6CRHRozzjkjjOCJ6vyd2hl7rlA2lnSXV\nNKvbT+VdO8O5RUbDZLkkMGdsG5ZM7tQi49DETs+9yifvAYDDF49HORBa/bcZmcCUDKJOK8POmB9F\nKbnzowfhZ2clDJYygMw+WjWvzjeAAc0hy4BubSzjaySB0Ul7TcWM0a2Zcd7VhHewUngrbCbJp45c\nMiEOb9gcM9DQ/nM4edVUnH/wXJy4YgqOZ7JklgI+2cmhO2HiQJVtsRHs8LKNbW/SVxaE+7EueDXy\nL+lsrmjnMQ1oRbRwMZ1rja5UKQXxeLErSDiEEFg2dTg+eOAczI60zlnXNq6jqeYkULte2AcG56yf\njXPWpx1ilEzjNSbnu6Llq1KiqVLCWfvNwkd+fjeAZNDcFR62h0ctuPjQ3XDxobvh9O/8DUDSMX7u\nOPfQVnEon5LA9R/cF31VGTtLZjHQO9OjWkFpjKmh8NMzV2H6qDBUGzVIqBHx/707iaWqoiHUmlyk\nViQhk/hOvNUxs1ZbUwUPf/pQfPOGx/CJX94LADh22WR8+n/vj/dprJTY/nCg8YUTdgcAdLRUYqMg\njG8d/m52tYolow5znCPsWetm4qVtPfjRLU8MQK0HD0WcyFobSrj+g+vi7+eun52SKKpQXFxEnZ0J\nlXr+uvPWYtaYNjz0XOhAOTYiIFTXkTUJn9DZjLP3Cx3ryyXg+OWT8ONbn4x/LzNROL57+op+yew4\nzGecWns0C1pf7cm78zRcWmJ8114/ijjCUVNFS+FtOu2qSSqXB6BWA7ocBHFmv8EgV4RI38dSIPC+\nA2bjoU1b8NCmLVqCrHpiSBjQNqjZ1StMHnOV+lbNtOjSTuDwEnt4DAUow7KWyBN9yhgNRCyHejl6\nlwYiCkd/oLL80cFh2dQkBJg9DXNS2XueDmMnL5iQZhtOXT0N3/nLxnpUNQXVT80czTslFk1Ne/Kq\nqdiyoxfH7zkpJYnJCt85kKBOlEIIXHbUAqyeOQq/vOvpeBuFMiaoQyfHQF+wYR5uf+Kl140Bfe76\n2fj+zY8Xippj3jsufrKScNQ7ukNRKAZapYaeNWYYLtgwF8dGsdkDBwmHCdOwCxgDut5xxu/46IFs\ne6S+IeYVFCEWAsP47i9UhKO2prJmqCsy4XcfWIu/bXwpbnecw3KtbYdKOHZm8jmFpnIpJdlQOGX1\nVFxz59PYY0rakb4eGBISDhvUUubL25MICcrjudXQ+swcPSyOORoL3r2Gw2OIQ4WEq8WZrJfp9Gzh\nH6lhNhg+BGpCbGPGbZ0/nSS/EvUTC5h4zJceuQAbLz+sv9VksXTKcHzzlOW46BB+CV7JZg5bPB5X\nn72G3YeiUgpwzvrZsZHyzVOS5f61c0Zh+dTh+PChu9Wh5rXj5FXTMGvMMJy4YgqWTO7E21ZO0X5X\n7WkUcbSyERq7YrzjWnHu+jn427+sL0TeuOyq4u8WDWdZb1xx+gocvnh83C8JIXDWulkY094UfweK\nTcJNA7okBC46ZC6WTulfBIUsdLY0WAzopP/pTz+oDq0XA72lKzGgldaa+sHMHtuGE1dOia+prTHt\nbOnKQB+1+4TUcV85aRnWzR0dEx07E1kExLKpI7Dx8sMGbNVxSDPQyvuVxnr8+snL8dqO3th5kM60\nlJ2gtnkG2qM/+OpJy9DWVMYzr+yItVY7G6rDqmXZPtZAk2VfZYi+34ghfOtH1uObNzyGL1z30KC8\nN2op0pY1ympAk0Hu26ftib9tfHHAPfU5HLDbWOtvyj7cfVJnTWGVDthtLM4/eC4+95sH0NnSgKsK\netEPJMa0N7GTgosOmYcx7U04ZOF4ALdnlqEmTRM7m3Hq6mn41P/eNxBV3WkoKoFyYfXOO3AOhjWW\n8aY9JtZarbpg3zmjU1EpKBZN7MCPkI4PnQXz3S4FAtNGteFnZ63Be753G25+7IVaq1sYPWQy52IE\n33XpQZm/yzpx0FuIhENFLBoxLO2w3VAOK805czc4yn/+84Q9cPUdT8ffyyWBNbNGYY2D381A4P37\nz8Klv7gXPz97De55+pWdeu4hbUDPGD0sxRo1VUpoqpTiJYWDiXH94UN3w4d/9o+YiT54Qf+CrHu8\nsdHfIP31wJ7TRuBrf3oUc8YUT3Zj85zmmNi2pkq8TD8YCzcxA22JUmEzoGnYr93Gt2O3XTBZh7qm\noinOKeZGiWV272dc052FzpYGnHcg7xxuQi2bTx/VinetnTHkDeiicJH4tDVV8MGD5u6E2vQPJ66c\ngmOXTSokFzB13bS/+urbl9Wtbi6gNVGysTPWzsCtj7+EwxknRm6yfu25++DcK+8AUH9n37amMj5+\n1AIcsmgcqwl/dXtoaA9nDOgxTJjMfz1mMf7w4CZs6erDnx7czJ6zVu10vXDqmuk4dU0YB31n939D\n2oDOQikQuPniAzCcpEVdMKEDV793bwDATRfvr8WS9fAYijhw/lj86fz9MMWSnOSYpelMZwrKMHF1\nplWd/WBIn9ryGOiCnfhX3ra0cEbEgYJiWIteA8X6+WPx5wv2KxyCaihAhXGjYUrfSFChJV8vKKq1\nNWNmD+bK8ZpZo3Dq6mno6u3DkZGUYfKIFvz6nH2cy5g3rh2nrp6Gi372D0zoqE9ugLHtjXju1S5U\nSgEqpQD7z+NXvFSM6BP2nIxf3Pm09huXle/4PSfHOQP+3+1PxrIxijfySv6uMYIMEMYxqW8VuIbg\n4TEUYTOe8zS9iee024CmPLcHOsMdh5aGEvaZPYpNkQ4UNz4PWTR4sXJN9NTJAWwwjGfOAz4LHzls\nNzy8aUuhc4xtb0q15X1qiNk6VNFSeV0P07molPX+ZjDzOJQCoWWZLYLdJ3fijn++DAA4YcUUnFDH\nCeHVZ++NjS9szd2PW7VXyEo+BwBv3oMnY7iQeG8UvLHfTA+PNwju+OiBqW0qtvLYdreVmKolpu/O\ngBAC38vIFKWM+nevnbGzqlQ3qIm+mZ58KOCOjx5UaAB95z79fz43Xbx/7mD/ekLRKC2vN5iT46Ea\nfvaH71qJ13YMTIjJcR1NmYQhh88esyhO833dfZuwbm5tkUy8Ae3h4fG6RidjcJy011R0tlRwxOIJ\nzBFpHL3HJPz4b/9MRVTYVTBQUTQGGucfPBd7TOmMfTOGEsxEDTsDb7TVw8EOTTfY4MLYDUW0NJSt\nUY4GA2/ZM+nHl08bkbFnNt7IBvQb+8308HgDoxQIHLX7ROcBaVxHE/5w/utTZzuYaKqUcPjiCYOS\noMbDY1dHKozdEDWgX6/ordqTbg01XH70okL7ewPaw8PDw2PQ8POz1+A3564d7Gp47KI4aMHYODQb\nMHQlHK9XvJ7itBfVpXsD2sPDw8Nj0LD75M440oaHh4lRwxpxw4X7x98H04nQI8TtlxyId+4dho6r\nvo4M6KLwBrSHh4eHh4fHkICXcAw+hrc2xE6LrycGuih2HUW7h4eHR51w5Rl74f5nXh3sanh41Izb\nPrL+De2gZeL0NdPxrRsfK5QG3GPgsFfk9Lzf3DGDXJPBg5D1ToVTZyxfvlzeeuutg10NDw8PDw8P\nj0GClBJSDt0oHK9H9FXl625FQAhxm5Ryucu+noH28PDw8PDw2KUhhICXP+9aeL0Zz0XhNdAeHh4e\nHh4eHh4eBeANaA8PDw8PDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh\n4eHh4VEA3oD28PDw8PDw8PDwKABvQHt4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4e\nHh4eBeANaA8PDw8PDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh4eHh\n4VEA3oD28PDw8PDw8PDwKABvQHt4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4eHh4e\nBeANaA8PDw8PDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh4eHh4VEA\n3oD28PDw8PDw8PDwKABvQHt4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4eHh4eBeAN\naA8PDw8PDw8PD48C6LcBLYQoCSFuF0L8Mvo+QgjxOyHEQ9H/4WTfi4UQDwshHhBCHNzfc3t4eHh4\neHh4eHjsbNSDgT4HwH3k+0UAfi+lnA3g99F3CCHmAzgBwAIAGwD8txCiVIfze3h4eHh4eHh4eOw0\n9MuAFkJMAnAYgG+QzUcBuCL6fAWAN5HtV0opu6SUjwF4GMCK/pzfw8PDw8PDw8PDY2ejvwz0FwBc\nAKBKto2VUj4TfX4WwNjo80QA/yT7PRltS0EIcYYQ4lYhxK2bN2/uZxU9PDw8PDw8PDw86oeaDWgh\nxOEANkkpb7PtI6WUAGTRsqWUX5NSLpdSLh89enStVfTw8PDw8PDw8PCoO8r9OHYNgCOFEIcCaALQ\nLoT4PoDnhBDjpZTPCCHGA9gU7f8UgMnk+EnRNg8PDw8PDw8PD48hg5oZaCnlxVLKSVLKaQidA6+X\nUp4E4BoAp0S7nQLg6ujzNQBOEEI0CiGmA5gN4Jaaa+7h4eHh4eHh4eExCOgPA23D5QB+LIR4B4DH\nARwPAFLKe4QQPwZwL4BeAGdLKfsG4PweHh4eHh4eHh4eAwYRypR3XSxfvlzeeuutg10NDw8PDw8P\nDw+P1zGEELdJKZe77OszEXp4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4eHh4eBeAN\naA8PDw8PDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh4eHh4VEA3oD2\n8PDw8PDw8PDwKABvQHt4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4eHh4eBeANaA8P\nDw8PDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh4eHh4VEA3oD28PDw\n8PDw8PDwKABvQHt4eHh4eHh4eHgUgDegPTw8PDw8PDw8PArAG9AeHh4eHh4eHh4eBeANaA8PDw8P\nDw8PD48C8Aa0h4eHh4eHh4eHRwF4A9rDw8PDw8PDw8OjALwB7eHh4eHh8f+3d+9Bt53zHcC/v1zF\npSGTSCMSSQlJlClN3ULbGSVMjTAG0aEudalbGYJgtKWiHa2WTF0aoy690BCm2mpNKaamlTDG0CRS\n0SIhSMQ1CHJ+/WOvM30HSc7z7vfsN/usz+ef7L32WtnPOd+z9v7utdd6NsAABRoAAAYo0AAAMECB\nBgCAAQo0AAAMUKABAGCAAg0AAAMUaAAAGKBAAwDAAAUaAAAGKNAAADBAgQYAgAEKNAAADFCgAQBg\ngAINAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQAAAxQoAEAYIACDQAAAxRoAAAYoEAD\nAMAABRoAAAYo0AAAMECBBgCAAQo0AAAMUKABAGCAAg0AAAMUaAAAGKBAAwDAAAUaAAAGKNAAADBA\ngQYAgAEKNAAADFCgAQBggAINAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQAAAxQoAEA\nYIACDQAAAxRoAAAYoEADAMCATRfoqjqiqj5QVedX1XlV9Yxp+UFV9a9V9ZnpvzfbsM3zq+qiqrqw\nqk7aij8AAACs0jJHoH+U5NndfXySuyV5alUdn+S0JO/v7mOSvH+6n+mxU5LcPsn9krymqvZeZvAA\nALBqmy7Q3X1pd398uv3tJBckOTzJyUnePK325iQPmm6fnORt3X1Vd/9vkouS3GWzzw8AANthS86B\nrqqjktwpyTlJDu3uS6eHvpzk0On24Uku3rDZJdMyAABYG0sX6Kq6cZKzkzyzu7+18bHu7iS9if/n\nE6vqY1X1scsuu2zZIQIAwJZZqkBX1b5ZlOe/6e53Tou/UlWHTY8fluSr0/IvJjliw+a3nJb9hO4+\ns7tP6O4TDjnkkGWGCAAAW2qZWTgqyRuSXNDdf7rhoXcnefR0+9FJ/n7D8lOqav+qOjrJMUnO3ezz\nAwDAdthniW1PTPKoJJ+qqk9My16Q5I+SnFVVv5Xk80keliTdfV5VnZXk/Cxm8Hhqd1+9xPMDAMDK\nbbpAd/eHk9Q1PHzva9jm9CSnb/Y5AQBgu/klQgAAGKBAAwDAAAUaAAAGKNAAADBAgQYAgAEKNAAA\nDFCgAQBggAINAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQAAAxQoAEAYIACDQAAAxRo\nAAAYoEADAMAABRoAAAYo0AAAMECBBgCAAQo0AAAMUKABAGCAAg0AAAMUaAAAGKBAAwDAAAUaAAAG\nKNAAADBAgQYAgAEKNAAADFCgAQBggAINAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQA\nAAxQoAEAYIACDQAAAxRoAAAYoEADAMAABRoAAAYo0AAAMECBBgCAAQo0AAAMUKABAGCAAg0AAAMU\naAAAGKBAAwDAAAUaAAAGKNAAADBAgQYAgAEKNAAADFCgAQBggAINAAADFGgAABigQAMAwAAFGgAA\nBijQAAAwQIEGAIABCjQAAAxQoAEAYIACDQAAAxRoAAAYoEADAMAABRoAAAYo0AAAMECBBgCAAQo0\nAAAMUKABAGCAAg0AAANWXqCr6n5VdWFVXVRVp636+QEAYBkrLdBVtXeSVye5f5Ljkzyiqo5f5RgA\nAGAZ+6z4+e6S5KLu/p8kqaq3JTk5yfnXuMWln0xOv8VqRgcAANdh1QX68CQXb7h/SZK7/vhKVfXE\nJE9MkuMPPzA54bGrGR0AADP1sl1ec9UFepd095lJzkySE044oXPS6ds8IgAA9my7XqBXfRHhF5Mc\nseH+LadlAACwFlZdoD+a5JiqOrqq9ktySpJ3r3gMAACwaSs9haO7f1RVT0vy3iR7J/nL7j5vlWMA\nAIBlrPwc6O5+T5L3rPp5AQBgK/glQgAAGKBAAwDAAAUaAAAGKNAAADBAgQYAgAEKNAAADFCgAQBg\ngAINAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQAAAyo7t7uMVyrqrosyee3exxr4uAk\nl2/3IFgpmc+T3OdH5vMk99W6VXcfsisrXu8LNLuuqj7W3Sds9zhYHZnPk9znR+bzJPfrL6dwAADA\nAAUaAAAGKNB7ljO3ewCsnMznSe7zI/N5kvv1lHOgAQBggCPQAAAwQIFeU1VV2z0GVk/u8yPzeZL7\n/Mh8vSjQa6SqjqmqE5OknXszG3KfH5nPk9znR+brS4FeA1W1X1W9Jsk/JrlFVe2/3WNi95P7/Mh8\nnuQ+PzJff/ts9wDYJfdJcvPuvt12D4SVkvv8yHye5D4/Ml9zCvR6OCTJR5Kkqu6b5IdJLurui6tq\nr+7esa2jY0tV1T7d/aMsfsJV7vNiX5+JqqoNX9nLfQaq6sbd/Z3prtf3NecUjuuZqjq2ql5XVc+o\nqp+ZFh+R5OZV9Zgkpyd5YJJ/rqojunuHCw/WX1XduqoemyRTeU6So5McLPc903Tu46uq6rer6mbT\n4qOSHCLzPVdV3aaq/iLJqVV1i2nx0ZH7HqkW9q+qdyQ5var2nR66dby+rzXzQF+PVNXRSd6e5O+S\nHJdk/yR/kOTbST6V5KwkT+3uq6vqlUmO7u6Tt2u8bI2qekqSlyX5QpIXd/fZ0/JbJ/loFv8enib3\nPUdVnZbkkUnekuTOSfbt7odU1W2SnBuZ75Gq6veTPDiL3I9N8nPdfW+57/mq6oNJvpTkH7r7rVV1\nTJJzIvO15Qj09cuxSS7v7j9O8qQkFyb5zSRfTfLnSe6ZZO9p3Tcm+dKGT7Osr88meXySFyX5jaq6\nQZJ092ezyPkekfseo6pulOQ7SR7e3S9P8pgkx1XVL3b3RUneHJnvqc5Pcv/ufkWSZye5oqpuuiH3\nEyP3Pc50MOTKJO9Lcq+qOrK7P5Pkr+J9fW0p0NcDG76q+a8k36+qY7v7h0nek+SAJCcneXGSy5M8\nrqoekuS1SS6c1mMNVdVeSdLd701ydpJPJLkiyZM3rHZakm9E7nuS7yY5u7vPq6r9u/v7ST6e/38T\nfW5kvkfq7rO6+0tVdecsDpDcNMlLpw9Vz8li/5f7nudLSc5L8uksvlG+b1XdJMmz4n19bSnQ26Cq\nDth4f8OFJPsm+e8sPpGmuz+W5PNJ7tDdVyf5nSRfz+KI1Rnd/cpVjZnl/ZTcd2y43Um+mOSdSX5t\n+nov0wvpk7MoVI+J3NfKj2eeLLLu7kun21dV1d5ZnMZx2bRM5mvup+X+Y/ZLcmp33yeL9+HnT9c+\nPCVe49fSdWR+uyS36u7/SPK5LL5tfOv0vv7MyHwtOQd6xarq95JpsorkAAAFjklEQVT8UhZzP36o\nuy+YjkQ+pLvfPl1IdvssjlD9Z1XdLcnru/sO2zhslnQNuVeShyc5a2eZrqqfTfKMJFd290ur6rZZ\nXJntiuw1M5D5vZI8r7sfMD1+aHd/edsGzlJ2NfcN698pi3Oi775hhgbWyHVlnuTQJE9P8jNJHpDF\n9S4f7O7f3aYhswUcgV6RaXaND2cxo8afJbljkkdNk6cfnMU0RknygSRfSfKiqrpxFlfln1tVN1z9\nqFnWdeR+SBZf4d5g52k8U3F6U5JHV9WVWbzYskYGMt95ysaBSc6ZvsI9L8lJrsBfP7ua+0/Z9LZZ\nXCzsaNaa2cXMM93+5SQ3SXL3JM9LcmRV/cLqR81WMQ/06lyR5B07v56pxRR1J2cx9+Pl3f2aJOnu\nz1XVK7L4xPrXSW6T5HHd/d3tGTZLuq7cX7dzxalQHZzF0aivZZH7v69+yCxplzOfPCjJ47I4D/5J\nMl9bI/v6gUmOz2L2nR1JTuvuK1c/ZJa0q5l/sqpO6e5LpvV+kOSF3f3F7Rg0W8MR6N2kqg6qqsfv\nvJq2u7+a5A0bVrkgyZFZTF+1Y8N2N5ruPzfJE7r757v73FWOnc1bIvcDpvPhvpXkT7r7borUelhm\nX59unpPFh6WHynx9LJH7/t39zSQHJXljd9+7uz+6yrGzOUtkfsPuvqSq9qqqvbv7a8rz+lOgd4Oq\nOjmLiwGfncVFITt/derbG1a7a5LPdvdVG7Y7LMkrpyludnT3ZascN8tZMvczquqo7v5ed799leNm\n85bM/FVVdVh3v76737TCYbOkJXN/dVUd3t3/1N1vWeW42bwt2NePmN7Xr17luNl9FOjd45JMR5Cz\nmFHhVt3dtbDzvMcjs5i6KlV1r6o6eroy/znd/YXtGTZLWjb3z23LqFnGMpmfunM2DtbOsrk7+rh+\nln19v3h7hs3uYhaOJU2fQH/iL3HaoW6Wxdye1d3P/bHHz8ziStxjsjjv9Rm9mEyfNSD3+ZH5PMl9\nfmTOrnAEeglVtd/GnWzjlfPdfXV3X57kXUmOrapf2bDeQVlMb/OwJB/p7l+3k60Puc+PzOdJ7vMj\nc3aVAr1JVfX0LKaXe0lVPfBaVv10kg8leei03XHdfUWSFyS5R3e/dvePlq0i9/mR+TzJfX5kzggF\nehOmT52PzGLqqfOzmLP5xOl8qL03rtvd38hiXt+7VNV3kjylqvbp7le3SfPXitznR+bzJPf5kTmj\nzAM9oKr26sXUNAcn+Zfu/niSj1fVzbL4Dfs7brzCtha/MLhfFjvaTZI8qrvftfqRswy5z4/M50nu\n8yNzNssR6OtQVftU1ak1TUGzc3EWvyqUJJm+rtlRVU+cttlrWr6ju7+fxW/eH2cnWx9ynx+Zz5Pc\n50fmbAUF+lpU1R2SnJvFFbcv37m8u9+R5LCqetSG1V+Y5MHT4zum7Xf+PPPfrmrMLE/u8yPzeZL7\n/MicraJAX7vLk5yR5NgkR1XVfTc89qwkL62qG0z3L01ywfTJducOZo7A9ST3+ZH5PMl9fmTOljAP\n9HWoxU8sf6+qnpTkEd39qxsee1OSq5K8L4urcb/Z3U/YloGypeQ+PzKfJ7nPj8zZCgr0LqqqA7KY\n+/E93X3GtOzAJPdM8tgkF3T3i7ZxiOwGcp8fmc+T3OdH5ixDgR5QVScleUl333U6j+rL3X1ZLSZe\n/8F2j4/dQ+7zI/N5kvv8yJzNcg70gO5+b5KvV9VVSf4w09+fnWzPJvf5kfk8yX1+ZM5mmQd6F01T\n2LwkyXFJntbdr9/mIbECcp8fmc+T3OdH5izDKRwDqur+Sf6tu6/a7rGwOnKfH5nPk9znR+ZslgIN\nAAADnAMNAAADFGgAABigQAMAwAAFGgAABijQAAAwQIEGAIABCjQAAAz4P+eZ34/9Kw3sAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fcd1d14aef0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Zoom in a bit\n", "df0[0:1500].plot(figsize=(12,9))" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
mobeets/blog
_notebooks/testing.ipynb
2
368823
{ "metadata": { "name": "", "signature": "sha256:06923e8dcf0e8debc4f9f777db0dbd032f2ade4836353ff0404d943b34236edc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "_Adapted from MATLAB code by [George Mather](http://www.georgemather.com/Model.html)_" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 484 }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.signal import convolve2d\n", "from scipy.linalg import toeplitz" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 616 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Testing hello $$YOU BUTT$$" ] }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "1. Create component spatiotemporal filters" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "a. Define the space axis of the filters" ] }, { "cell_type": "code", "collapsed": false, "input": [ "nx = 80;\n", "max_x = 2.0;\n", "sx = 0.5;\n", "sf = 1.1;\n", "dx = (max_x*2)/nx;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 486 }, { "cell_type": "code", "collapsed": false, "input": [ "x_filt = np.linspace(-max_x, max_x, nx);\n", "gauss = np.exp(-x_filt**2/sx**2);\n", "even_x = np.cos(2*np.pi*sf*x_filt)*gauss;\n", "odd_x = np.sin(2*np.pi*sf*x_filt)*gauss;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 487 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.plot(x_filt, gauss, linestyle='--', label='gauss');\n", "plt.plot(x_filt, even_x, label='even_x');\n", "plt.plot(x_filt, odd_x, label='odd_x');\n", "plt.ylim(None, 1.1)\n", "plt.legend()\n", "plt.title('spatial filters')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 488, "text": [ "<matplotlib.text.Text at 0x112bd8150>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX6wPHvYlJEBBQccMQRLKfUMkvFzDJNc7jdsrJ5\n8td0m8sy7dZtnruV1c3ylkOZWpaWZl2zUivTEhRHUFScUEBAGc/6/bHPQcQDnGGfAc77eR6e4Jy1\n137ZyctijUprjRBCiMAR5OsAhBBCeJckfiGECDCS+IUQIsBI4hdCiAAjiV8IIQKMJH4hhAgwkvhF\nwFFKvaOUetzBsiuVUjfV8P7TSqkMpdRapdT5Sqktld7bpZQaZkbMQpgpxNcBCOFJSqnrgZu01oNs\nr2mtJztRhbZ+2Kt7EHA70E1rfcT6cqK9a5VS04FOWutJTtxbCI+QFr8QrmsPbK2U9D1GKRXs6XuI\nwCGJX/gNpdRNSqk1Sqk8pdQWpdQF1tenK6XmKaXeU0odVEr9oZTqWem6R5RSO5RS+UqpTUqpsdbX\nk4B3gHOt7x21vv6RUuop6+cxSqmvlVKHlFI5SqmvlFKtHYkVeB84x1r3NKVUslJqj52yI4BHgSus\nZTdYX49SSn2glNqvlNqnlHpKKRVkfe96pdTPSqknlVK7gWlKqZZKqdlKqSyl1GGl1Dy3HrgIWJL4\nhV9QSsUC04FrtdZRwEXArkpFxgPfAfHAZ8AXlVrBO4DzgebAf4DZSqkWWus0jK6YNVrrSK11U2v5\nyt03CvgAaAf0A0KBf9cWr9b6gyp1P1lD2W+BZ4B51rJ9rG99BDQCzgVGAmOBmytderY1np7W6+8H\n9gGdgNbAG7XFKYQ9kviFv9BAONBVKRWqtc7UWqdXen+/1nq+1roceAsj8Q0A0Fp/rrU+oLU+AbwG\nHMFImmAkdnuU9dqjWutFWusirfVO4CVgiIMxV1d3dWUryiulWgCXAg9prXdprf/C+AV0ZaVryoDp\nWus8rXURxs9rK6C51rpEa73aifsLUUESv/AL1n7yScC9wEGl1FxrcrTZWKlsAbAdo/WPUupapdSf\nSqkc4ChGcox15L5KqUZKqXetM3DygAVAlFLKmaTuivYYP38brV1MOcCTQFylMn9prUsqff0MsBdY\nrZRKVUpd6+EYRT0liV/4Da31N1rrCzGSYkPggUpv97J9opRqDHQBspRS7YGZGH3oTa0f+zjZutbY\nb5nbunrux/jL4RxrF9MEqrTOTVI1jj2ABeiutY6xfkRprXtUKlN2SgVaH9FaP6q1bg3cAbyjlIox\nOU4RACTxC7+glOqqlLpAKdUACMZIepVb7S2VUn9TSoUA/4eR3NcCxdaPI0AUxi+A+ErXHQS6WH9Z\nVNyOk0m4AMgFipVS3YGH7YXn7vcHHAC6W78/tNb7gSXA80qpJKVUkFKqk1JqcHUVKKUuV0q1sQ4A\nWzD6/6NMiE0EGEn8wl80AJ4FDgPrgByMJA5Ga3kBcDGQBVwBjNdal2utD1jLfQz8BYQBP1eq93vg\nd2CvUupQpfpsLf6ZGL9EtlnrmMnp8/arO7TC3hz/6srOBwqBQ0qpddbXrsX4xbPc+v3OB1rWUHc/\njF92ORgD4TdprXdVcz8hqqXkIBbh75RS04DOsvhJCHNIi1/UBZ4eaBUioEjiF3VBtdsmCCGcJ109\nQggRYKTFL4QQAcZvdudUSsmfHkII4QKttVPjYH7V4tda+/3HtGnTfB5DfYhR4pQ4/f2jrsTpCr9K\n/EIIITxPEr8QQgQYSfxOSk5O9nUItaoLMYLEaTaJ01x1JU5X+M10TqWU9pdYhBCirlBKoZ0c3HV7\nVo9SaiYwCjikT91ZsHKZZ61ljgPXa6232CsnhKgfPL+rdWAyq3FsxnTOD4E3gf/ae1MpNRLopbXu\nqZQ6B+PUoQEm3FcI4cfkL3hzmfnL1O0+fq31Txi7BVZnDDDLWvZXILrKARtCCCG8yBuDu60xDp2w\n2Qu08cJ9hRBC2OGtlbtV/0ax+zfg9OnTKz5PTk6u16Pqwj9pDV99BdOnw4YNYLGAdFcLf7Jy5UpW\nrlzpVh2mzOpRSnUAvrI3uKuUmgGs1FrPs369BRiitT5YpZzM6hE+ozV88w1MmwYlJXDP4/uh87en\ntFj6tOpD75a9SU2FX36BG26AsDCfhezXrDNNfB1GvVLdM3VlVo83unoWY5w0hFJqAJBbNekL4WtP\nPw0PPQSPPGK09H8IfpBPNn7MqsxVrMpcxbKdyxj/6Xi01igFixZB9+6wfbuvIxfCeW63+JVSc4Eh\nGOejHgSmYZwFitb6XWuZ5zCmcxYCN2it0+zUIy1+4TPFxRASAsHBUG4pp8VLLVh/23raRbUDjBkq\n7V5rx3eTviMxNhGA//wHnnwSVqyAbt18Gb3/kRa/+fyqxa+1nqi1jtdah2mt22qtZ2qt37UlfWuZ\nR7TWPbTWA+wlfSF8rUEDI+kD/LbvN+Ij4yuSPhg/XKO6jGLJtiUVr918M/zzn3DBBZAm/6rrjPXr\n19OnTx+aN2/OzTffzDXXXMPUqVPJzc3l0ksvpXnz5sTExDB69Gj27dtXcV2HDh34/vvvK76ePn06\nkyYZp4FqrbnvvvtITEwkJiaGs88+m0OHjCOev/zyS4YOHUp0dDQdO3Zkzpw53v2G7ZAtG4SoYsn2\nJYzsMvK010d2GcmS7UtOee2GG+DZZ2HbNm9FJ9xRUlLCuHHjuPbaa9m/fz+XXHIJ8+fPRymFxWLh\npptuIjMzk3Xr1lFaWsqdd95Zca1S6pS59JW/Xrp0KRs2bOCXX37h6NGjvPvuu4SHh1NaWso999zD\nc889R25uLmvWrKF3795e/76rksQvAk5RkdG1U50l25cwqsuo014fljCM37N+J68o75TXr70WLrvM\n7Cjrt+nTjdlSVT8qTeyrtXx1ZWuydu1aDh48yOTJkwkODmbChAm0bNkSgKZNmzJu3DgaNmxIp06d\neOCBB/jxxx9rrM/W9WKxWDh27BgZGRkopejTpw+RkZEopSgpKWHHjh0cP36cFi1a0L17d+cDN5kk\nfhFwHnzQ6Ju3Z9+xfWTmZXJu23NPey8iLILz2p7HivQVHo6w/ps+3ZhJVfWjpsTvaNmaZGVl0bVr\nVxo2bFjx2llnnQXAiRMnuO222+jQoQNRUVFMmDCBvLy8ascqKr8+cuRIbrzxRm688UZat27Nww8/\njMViISQkhAULFvD555/TunVrLr30Urb7wYwASfwioCxZAosXGzN47Plmxzdc1OkiQoLsL3EZ1WXU\nad09ou5o1aoV27Zto6ioqOK19evXo7XmpZdeYu3atfz666/k5eWxYMGCUw47iYiI4MCBAxXXbdiw\noaKrJzg4mDvuuIONGzeyevVq5s+fzzfffAPAueeey6JFi9i/fz/t27dnypQpXvyO7ZPELwLGwYPG\ngOzHH0N0tP0yS7YvYWTn0/v3bUZ2GcnS7UuxaEuN96qpK0n4zsCBA2nRogXTp08nOzub119/vSKZ\nN27cmOjoaBo0aMDmzZt5/vnnT7m2d+/ezJ07l+zsbL744otTuoFWrlxJSkoK5eXlBAUFERQURHZ2\nNocOHeLLL7+ksLCQ8vJyQkNDyc7O9ur3bI8kfhEQtDYGYm+6CQYPtl+muKyYHzJ+YETnEdXW06lp\nJ6IbRrN+//pqy+zeDT16QG6uu1ELs4WGhrJw4UKWLVtGYmIiKSkpjBo1ioYNG1Z003Tt2pVJkyZx\n4403njKY+9RTT3H48GG6du3KvHnzuPXWWyveO3DgAJdffjnR0dFcdtllXHXVVUyaNAmLxcKrr75K\n69atSUxM5OjRo8yYMcMX3/opZD9+ERAWLzYWaf3yC4SG2i+zIn0FU/83lTU3ramxrvuX3U9Uwyie\nGPJEtWXuvBOys2Hu3MDc8qEuzeNv0aIFL7zwAtddd52vQ6mRX83jF6IuGD0ali+vPukDLNlmfzZP\nVaO61t7P/+KLkJJiJH7hX1atWsWBAwc4cuQITz75JAUFBYwYUf1fefWRJH4REJSqvl/fprr5+1Wd\n3+58tmZv5VDhoWrLhIfDBx8Yg8gFBc5GKzxp69at9O7dm/bt27No0SI+//xzWrQIrJ3ipatHCGD7\nke0M+WgI++7b59CBFxM+m8CYrmO4rnfN3QPXXAMdOxorfANJXerqqSukq0cIky3dvpSRXUY6fMrR\nqC6jWLpjaa3lXnoJbrnF3eiEMJckflFvOTOlctnOZVzS+RKHy1/S+RKW71xe67TOli2hbVvH4xDC\nGyTxi3opO9vYMTOnpkNBK9l4cCP94vs5XH+ryFY0Cm3E3mN7qy9UWAjHjztcpxDeIolf1EvTphkz\neWJiai+bV5RHblEubaOca5p3j+vO5sObqy9w220QHw8PPAAZGU7VLYQnSeIX9U5qKsyf7/heLmnZ\naSTGJhKknPtxSIpNqj7x5+fD118bm/UrBf37w7hxxikvQviYJH5R7zz2GEyZAs2aOVY+7XAa3eOc\n3zGxxhb/woXGEuF+/YxJ/bt3U9p3AHuGXkulbWKE8AlJ/KJe+eMPWLfO6GVx1ObDm11O/GnZ1ZzA\n8vHHYD2kA4CICEKnPEhEUTbzn/H97owisEniF/VKdDTMnGksoHLU5mzXE//mw5tPn1u9dy+sX28M\nMlQWFETZpWPJfH2RtPqFT0niF/VKp05w8cXOXbP58GaSYpOcvldso1hCgkI4UHDg1DfmzIEJE6DS\nnu82zW8bz9+CFvLee07fTgjTSOIXAa2wpJCDBQdJiElw6frT+vm1Pr2bp7LkZDrp7Xz0r32cOOHS\nLYWbsrKymDBhAnFxcSQkJPDmm2+SlZVFeHg4OZXm/27YsIG4uDjKy8sBmDlzJklJSURHRzNixAgy\nMzMrygYFBTF79mx69+5N06ZNTzmysTqTJ0/mb3/7W8XXDz/8MBdeeKGJ32n17J82IUSA2HpkK12a\ndan24JXadI81Ev+wjsOMF/76y5jRc/759i8IDSXksku5d+sXbNx4B+ec42LgdZx60pwtS/U057aF\nsFgsjB49mvPPP5/U1FS2bdvGlVdeSbdu3Rg4cCALFizg5ptvBmDOnDlcfvnlBAcH8+WXXzJt2jQ+\n/PBD+vbty7Rp05g4cSK//PJLRd0zZ85k3rx5HD9+nOTkZEaPHs3FNfz5+corr9C7d29mzZpFx44d\nmTlzJn/99ZdrD8JZthNmfP1hhCKEd33818f6ys+vdPn6N9a+oSd/PfnkC/fdp/Vjj9V80RdfaH3B\nBS7fsy7w15/ntWvX6ujoaH38+PGK1+655x59ww036P/85z/6Auv/F4vFotu2bat/+uknrbXWI0aM\n0P/6178qrsnOztYhISE6MzNTa621UkovWLCg4v2LL75YP/fcc7XG8+uvv+qYmBjdvn17PW/evBrL\nVvdMra87lW+lq0fUeWlpsG2ba9e62r9vkxRXaS5/WZnRv19dN4/NRRcZU4/84CSmQLN7924KCgqI\nj48nJiaGmJgYZs6cyaFDh5gwYQJr1qzhwIEDrFq1iqCgIM63/uW2e/dunn322YprOnfuTFhYGPv2\n7auou3fv3hWft2rVigIHtmU9++yz6dixIwCXX365yd9t9STxizrvvvvghx9cu9bVqZw2p/Txf/+9\nsTFPt241XxQeDsOHw1dfuXxf4Zq2bdsSGRnJwYMHycnJIScnh2PHjvH1118THR3NRRddxKeffsqc\nOXOYOHFixXXt2rVj6tSpFdfk5ORQWFjIgAED3IrnrbfeoqSkhPj4eF544QV3vz2HSeIXddqff8LG\njcaxiq5Iy3Zt8ZZNq8atKCkv4XDhYfjkk9pb+zbjxxuLvIRXnXPOOSQkJDBlyhR27dpFeXk5qamp\nrFu3DoCrrrqKWbNmsWDBAq666qqK626//Xbeeecdli9fTklJCXl5ecyfP7/a+2gHtqTetm0bU6dO\nZfbs2fz3v//lhRde8FofvyR+Uac9/zzcey80aOD8tcVlxWTmZdK5aWeX76+UOrmQ68cfYVTtJ3gB\nRrkff4T8fLQGS82bfAqTBAUF8fXXX5OVlcWAAQOIi4vj1ltv5dixYwCMGTOGHTt20KpVK3r06FFx\n3dixY3nqqad44IEHiI2NpUePHixbtqzi/arbeSulatziu6ysjEmTJvHII4/Qo0cPOnfuzDPPPMOk\nSZMoLS01+bs+nRzEIuqsnTvhnHMgPR2aNHH++pSDKVzx+RVsvqOGjdYccPPimzkv8gxuGPME5OVB\nkIPtqZEj4brruPX7Kxg6FCr1LNR5chCL+eQgFiGAl1+G2293LemDdWA3zvWBXZuk2CTy/lgN3bs7\nnvShortn7Fh47jljCYAQ3iCJX9RZjz9uDOy6Ki07je6xrvfv23SP6w6bUuHMM527cMwY+PZbLrnY\ngtbwzTduhyL8zO23305kZORpH//3f//n07gk8Ys6Kz4emjZ1/Xp3Z/TYdI/rTtT2TKjUJ+yQ5s0h\nNha1bSuPPGK0+kX9MmPGDPLz80/7ePvtt30alyR+EbDMSvxto9rSOauIgq4ubPvQvz/8/jt//7ux\nt1ulhaBCeIwkfhGQyixl7MzZSddmXd2uKwhFj0OKrS1d2Pahf39Yt46QEHjmGbBOLhHCo2SvHhGQ\ndh7dSevI1oSHOrF/c3UOHCAoOIS/OEBfZ6/t1w8+/xyAK690PxQhHCEtflGnLFtmLNpyl1ndPACk\nppLTqTWbqzuUpSZnnWWsQPPC3G0hbCTxizqjvBzuvtuc7hBTE39KCuXdazh/tyaRkdChg3FQsBBe\nIolf1BmLF0NMDAwa5H5dm7Pd25ztFKmpRJx1jmuJHyr6+YV/+eijjxhUwz+25ORkPvjgAy9GZB5J\n/KJO0NrYnuHBB6GGlfAOM7vF3+zsIRwsPEhhSaHz1/frB7//fspLpaXIQS1+rrZtGfyZJH5RJ/z8\nMxw5AmPHul+XRVvYmr2VxNhEEyqzwObNhPTsTZemXdiSvcX5OqxTOiu7/3544w33wxPCHkn8ok54\n6y144AEIDna/rgMFB2jSoAmRDSLdrywjA2JjoUkTOjftTHpOuvN19OoFW7ee0sS/+WYj8RcXux+i\nOFVaWhrJycnExMRw5pln8pV1e+wjR44wZswYmjVrxrBhwzhw4NSzlL/77jsSExNp3bo1jz32GFD7\nLpy+PF6xJpL4RZ3w/vtw3XXm1JWek07HmI7mVJaSUrFVQ8eYjq4l/oYNITHROLbRqmdPYyHw7Nnm\nhOl3lDLnw0mlpaWMHj2a4cOHc/jwYd58802uuOIKtm3bxh133EGDBg3Yu3cvb7zxBq+//npFV052\ndjbjx4/nqaeeIjMzk5iYGFavXl1rV88rr7xCSkoKs2bN4qeffmLmzJn897//demRmUkSv6gTIiON\n/GgGUxN/amrFVg0uJ36w293z0EPw4ov1dMtmrc35cNLatWvJzMzkH//4ByEhIQwdOpSzzjqLTz75\nhIULFzJ58mTCw8M544wzGD58eMV1S5cupWnTphVn8N5xxx0O9e+Hh4fz8ccfc++99zJp0iT+/e9/\nEx8f73TcZpPELwJOek46CdEubK9gT+rJzdkSohNIzzUv8Q8dCo0ayUFdZsrKyqJr165ERERUvNav\nXz8OHDhAWVnZKccn9unTp6IrJysri549e1a8Fx4eTmKiY2NEvjpesSaS+EXA8WRXT0ZOhmv12JnS\nqRS88AJERbkbpLCJj49n27ZtFBaenH31+++/07JlS0JCQtiwYUPF6+vXr69o1bdq1eqU07FOnDjB\nli2ODeT76njFmkjiFwEnIzfDnMRfXGycAmNt+bWPbs+eY3sos5Q5X1f37pCZCfn5p7w8bBgkJ7sf\nqjAMGDCAtm3b8vrrr1NaWsrKlSvZsGED11xzDePHj2fGjBmcOHGCzZs380Olg5xHjRpFTk4On3/+\nOWVlZbz99tt+f7xiTdxO/EqpwUqp9UqpjUqpu+y8n6yUylNKbbB+PO7uPUVgmDULfvvN/HpNa/Fv\n3WqsurUOPjQMaUjziObsPbbX+bpCQ40R3T/+cD8uUa3Q0FC++uorli9fTlxcHHfeeSdz586la9eu\n/Pvf/6aoqIg2bdpw9913c9ddJ9NZbGwsn3/+OY899hjt2rXj6NGjnHfeeTXey9fHK9bEraMXlVLB\nwFbgQmAf8DswUWudVqlMMnCf1npMLXXJ0YuiwvHjkJAAK1dCkkkLbAFOlJ4g5vkYCqcUEhzk5tzQ\nOXNg0SKodOj2kI+GMG3INC5IuMD5+u65B9q0MVap1XFy9KL5/OnoxbOBHVrrXVrrUmAecJmdcnVz\neZvwmZkzYeBAc5M+wK7cXbSLaud+0odTZvTYJEQnuN7P36+fbN0gvMLdxN8a2FPp673W1yrTwECl\n1Cal1FKllEnr5EV9VVoKL70EDz9sft2eGti1MXtKZ2XHjsHhw65VLTzHX49XrIm7+/E78rfceqAt\nUApcBywGOtsrOH369IrPk5OTSZZRrYD06adGN8+AAebXbdrALpwyldOmY0xHlmxf4lp9Xbsa+1Jk\nZxurgat46SXjLR+f2ieqmDFjBjNmzPDa/VauXMnKlSvdqsPdPv4BwHSt9Qjr148CFq3189WUV0A2\n0EVrfbTKe9LHLwAYNcrYfvnii82v+75l9xEfGc8DAx9wr6LCQiM5FxScso/E6j2ruXfZvfx686+u\n1TtkCEydCnaW9R88aHR9paVBixauBu4d0sdvPn/q418HdFFKdVBKhQFXYLToKwfVQp1c4jYaOFE1\n6QtR2RdfwEUXeaZu07p6du+Gdu1O2zzIra4eMPbtqWa6X4sWMHEivPqq69ULAW529Wity5RSNwKL\nrHW9r7VOU0rdZn3/XeBvwGSlVBmwEfuDv0JUCA31XN2mrdrNyDD6o6poEdGCwpJC8ovzXdsErlcv\n+PHHat9+6CHj0K4HH4RmzZyv3pvq6pbFgcDtM3e11j8Cfaq89m6lz98C3nL3PkK4S2ttXot/1y5j\nDn8VSikSYhLIyM2gZ4uep71fq169atyPuX17GD/eaPU//bTz1XuLdPP4N1m5KwJG9vFsGoQ0IKqh\nCXsgVJP4wc3unjPOgO3boaSk2iJTpxrjIEK4ShK/CBimTuWspqsHoGO0G4k/PNyod3P1xzi2awfn\nnuta9UKAJH7hB7SGK64wtr3xJFN35ayhxZ8Q48YiLqhxgFcIM0jiFz733XewcaPRf+1Jprb4a+vq\ncXV7ZpDELzxOEr/wKa3hySeNfmszjlWsiWmJPz/f2EyoeXO7b3tySqcQZpDEL3zq+++NxapXXOH5\ne5m2atfW2q9mumJCdAK7cndh0S4enWVL/A7MjDl4EL791rXbiMAliV/4jNZGS98brX0wscVfQzcP\nQERYBFENotifv9+1+lu2hKAgyMqqteixYzBpEhyVJZHCCZL4hc8cPgwdOxqrUT2tpLyE/QX7aduk\nrfuV7dpV7YweG9tcfpco5XB3T5cuMGECPPOMa7cSgUkSv/CZ5s1h9myjcetpmXmZxEfGExpswrLg\njIwaW/xgQj9/794O9/NPmwYffmjsIiGEIyTxi4DgrRk9Nm7N5QenBnhbtYI77jC6zIRwhCR+ERAy\ncjLoGO3FxG/GzJ4//3S4+IMPGgPl+/a5fksROCTxi4Bgeou/lj7+jjEdXe/jB+MA98xMY9qoAyIj\nYcsWaF31GCQh7JDEL7wqJwdyc71/3/TcdBJiTFi1m5dn7KNTy9aYCTEJ7rX4Q0OhWzfjsBcHRbqw\nGagITJL4hVc98YRvZqCYPpWzli2HW0e2Jvt4NidKT7h+L1nIJTzE7W2ZhXBUSopxrOKmTd6/t6mJ\nv5ZuHoDgoGDaR7VnV+4ukuJcPDFeEr/wEGnxC6+wWGDyZPjnPyEuzrv3zjmRQ7mlnGbhJpxc4sBU\nThu3+/ndTPzl5a7fWtRvkviFV8yaZXSN33KL9++dkZtBQkyCOSdCOTCjxyYhOoGdR3e6fq9evYzd\n61w41OSTT4xftELYI4lfeNzx4zBlCrzzjne2ZqjK2zN6bNxu8TdrBk2aGPd00ujRsGQJrFnj+u1F\n/SWJX3hco0awejX07eub+6fnpHt1Dr+N23P5wen5/DZRUfDyy0arv6zMvRBE/SOJX3iFg41kj8jI\nMWlXTq2928cP0KcPbNjg0qVXXAGxsfDmm+6FIOofSfyi3kvPNamrx7YAISbGoeK2Fr9bB4/37Qt/\n/OHSpUrBW2/Bv/4Fe/e6HoKofyTxi3ovPcekxVsOzuG3iWoYRWhQKNnHs12/Z79+sG6dSwO8YKwB\n++gjiI52PQRR/0jiFx7h4E4DHlduKSczL5MO0R3cr8yJbh4bt/v5bXswuLEJz6WXQuPGrocg6h9J\n/MJ0x44ZY5KbN/s6EtiXv4+4RnE0DGnofmVOzOixcbufX6mTrX4hTCKJX5ju7rth6FDo3t3XkXh/\nO+aqTJnZ40Y/vxD2SOIXpvr0U2Pu+Kuv+joSg2n9++BS4k+IdnOzNjC9xS/TO4UkfmGazEy46y7j\nVK2ICIw9A/LyfBqTqXP4fdHHDydb/O7MDqpk9Gg5oD3QSeIXprlncgnvXPYt/RY/AcOHQ9Om0LYt\nfP65z2LKyDVxDr+LXT1uz+WPjzfOp9yzx716rB59FK67DrZtM6U6UQdJ4hfmyM3ls9zhjP/rCaOl\n/49/QHo6rFplfO6jvh/T+viPHoWQEKfnRbaLakdWfhal5aWu39s2wGtSP//gwcbc/lGj4MgRU6oU\ndYwkfuG+vXth0CBC+/dBrV17Mqs0a2YcGr56NXzwgfELwMtbRpo+h99JocGhtGrcisy8TPfu37ev\nqf38N98MY8fChAnG5nkisEjiF+7ZvBnOOw+uvdZo1QfZ+SfVrh38/LOx0+Tf/+610cWCkgKOFR+j\nZeOW7le2eze0b+/Spab085vY4rd57jnjD5jPPjO1WlEHSOIXrlu92pi3+fTTxmnfNa1ojY6Gb76B\nrCyv9fnvyt1FQnQCQcqEf+aZmcYvMBeY0s9va/GbNMALxk6pn30GV19tWpWijpDEL1yyduZmCi8a\na+wHMGmdDOePAAAgAElEQVSSYxc1aAAPPQSvv+7R2GxMncO/Z48xUO0CU1r88fEQFmb8AjJRWJjD\nO1CIekQSv3Daik8O0OqWUey9+0W45BLnLh4zBg4cgN9+80xwlaTnpJMQbdIcfjda/KbM5QdZyCVM\nI4lfOGXx3EKa3TCaoBuvp9sz1zlfQXAw3HmnV1r99arFD17buiEnx9QeJeGHJPELh82bXU7oDVfT\n7uLutH3vCdcruummk/39HmTaHH5wO/G73ccPXmvx33IL3H+/cU6yqJ8k8QuHlBRrQh+5n0E9j9Fs\n4fvudQxHR8PEicZZjB5kWou/pAQOH4ZWrVy6PLZRLCXlJeQW5boXhwcGeO15/32jJ27MGKP1L+of\nSfzCIWGvvcCE6O9pvHyhMSLorrvvhvfeg6Ii9+uyQ2tNRk6GOXP4s7KgZUtjAZcLlFIkRCeQkeNm\nq79VK2jY0Jha6kExMfC//0GXLjKsUF9J4he1+/BDmDHD2ODFrBM9unUzssrcuebUV8WBggM0DmtM\n4zATNqJ3Y2DXpq7184eGGssynn8eRoyAHTs8fkvhRZL4xWlyc6GgwPrFV1/BlClG0rcdCmKWe+4x\nBnk90HXhL/37Nqb283txb/7LL4fUVOjc2Wu3FF4giV9UsFhg1ixISrLu3vjzz8ZA7OLFRgvdbBdd\nBMXFxn1M5i8zemxMa/Gfey788ov79TihRQuv3k54gSR+gdbGXmqDBhmHcy9eDH9r9Yuxkcsnn0D/\n/p65sVLGIO/ixaZXbWri96eunvPOgw0bKv1J5jvr1sne/nWVa6NVot7Iyy/l3MvXcrDxctpd9hdR\nzY+x4L3ddJq7h4eubUkz9T3XHmrNGc3P8EwAw4YZ8/pNlp6TzqB2g8ypbM8euPhit6owbRFXo0bG\nL+JVq2DkSPfrq0VWfhZzUuYwN3UuuUW5RIZFEtkgkiZhTUj9qRMnNg3n3nHJ3HlLJJGRHg9HmEQS\nfwA6XHiYhWkLWbJ9CT/u/pGWF3Xmlh4XcU7r6+kx6xvaLt3C/q8XcEe3dny26TNGzB5BXKM4rut1\nHZP7TyYs2IRZPTZnn21s35ydDbGxplWbkZvBdb1cWGBmjwkt/g7RHcjMy6TcUk5wULB78Vx4IaxY\n4dHEv2DzAt5f/z6/7vuV8YnjeWn4S7SNakt+cT7Hio+RX5LPpvab+PzP13ji0FU8cX8fzmk2gvsv\n+RvjBnf1WFzCJFprtz6AwcB6YCNwVzVlnrW+vxZIrKaMFp5hsWj9a+oh/cyyd/WwWcN01LNR+srP\nr9RzU+bqQwWHjEIlJVrfdpvWvXppvXfvKdeXlZfpFTtX6Av/e6G+dM6luqi0yNwAR43S+tNPTa2y\nzStt9K6cXeZUFhOj9eHDblcT/3K8zszNdD+eNWu07tnT/XrssFgsetr/pulub3bTc1Pm6sKSwlqv\nKSwp1B/+9I3uO/UOHTGtpe49o7f+16p/6W3Z2zwSoziVNXc6lbeVdmNGhVIqGNgKXAjsA34HJmqt\n0yqVGQncqbUeqZQ6B3hdaz3ATl3anVjESWVlsGWLZv7KzSze8jWby7+iNCaFc2Iv4cFL/s4lnS8h\nPDT85AUrVhh75XfsaJybWM3f7KXlpVy18CoKSgpY+PeFp9bhjtdeg7Q0ePddU6orKisi+rloCqcU\nut+6LiiA5s2hsNDt3cwGfTiIp4c+zZAOQ9yLqazM+Oto2zYjNpNorXn8h8dZvG0xKyatoEVj50d1\nyy3l/Jz5M/M3z2dB2gJiGsYwuutoujKaxMbnclbvYMJN+mcjDEoptNZO/eN0N/GfC0zTWo+wfv0I\ngNb6uUplZgD/01p/av16CzBEa32wSl2S+J1gscDx49DYOk293FJO6qFU1uxdw8cr1/DbwVU0aFjO\n2dGjuab/aCaem0x4aMNTK9mxw1ibn5oKL78Ml11Wa3Irs5QxadEkso9n8+WVX9IotJH730xKCowb\nZ9pk8a3ZWxk1ZxQ77jahvrQ048SSrVvdruraRdcytMNQbuhzg/txXXaZMTB+5ZXu14WR9B9e8TDL\ndi5jxaQVxEXEuV2nRVtYl7WOr7Z+xaw1izmevYcGuwYQc7wvXRr3pX+7nlx+RRRd+jYxFg4Il7iS\n+N3t428NVD4IdC9wjgNl2gAHqScsFigtNWbH2D4sFuNMkkZ28mJhoTFeWFpq7AZQUmIsYG3SxJim\nXdXGjfDsSyfYn3uEQwVHOHL8CEfL9pE0cAc9knew4+gOtmRvoWXjlgxsO5Drhp7Hu20f5Iy4M1BV\nE3lxMfzwAyxYAF98Yeyj/9lnxpbJDggJCuHjcR9zw5c3cOmcS/lq4ldEhEW48NQqOfNMyM93+ZSr\nqvxtDr+NaXP5wRgU//57UxK/1pr7l9/Pyl0r+eHaH2jWqJl7FRYVwYoVBH37LWenp3P27t08lZmJ\nJUhRFLaG4tIfKbWUUq5LCX83mPJiC+WhwZQ1boSOjETHxLAnvxmHS5tjiYxDR0ajo6JQUVGceV4U\ncR0iICLC+OFq1AjCw9lzMIwTlgaENAojJDyUkAbBBIWFEBMbTIPwoNMaNKWlJ39GlTr5dtDpResl\ndxO/o030qo/S7nVlQXaeuL3/CTXd1VpeufDHQ8WtrNc6Otc1CKicNi2AVkY1JUFgUWAJUpRb/1sa\nBBFKURocRGiwIjhEQajiWIMgVkQojocp8hpochtojoaVcyS0nOAGmrimTWiWEENQs2ZExbehXdsk\nElqOoHP/znSL7UbT8KanBlZaCvv2GUv809Nh2TJjgn6PHkYr9umnja0InBQSFMJHl33EpEWTePC7\nB3l71NtO13EKpU4msptucq8u/Gc75qo6xnRk2c5lptTFhReado7x7JTZfJf+HauuX0VMeIxrlRQX\nG42JRYtg+XLjyM1LLzWW/bZvD+3aERQVRSPA1hY6Xnqcrdlb2XFkO7v2p7F/7xZyDu7CknOEskOb\nCDu2hsgTZTQtCiEqL5ioQ4r8LYrGZdCoxEJ4iaZRiYXQMk1wsaZJmSbMogkr1wRrCLEY/7X9PJer\nkz+XGuPnvdLbFWXsqZpPTvnaxRzlsfIOcDfx7wMqN4faYrToayrTxvraaaY/+ljF54MHDWbIkMEE\n2+mitVjs7xyoFBXlNaCsJy/ZWuD2VK7fggalKlrtACpIGYMhylavtv5j0da6jVcs2oLWGoul3Pgo\nL8NiKae8vBRdXo6lrBRLWSm6vAxLcTGUlqCKiwkrLiKsqIjo40UEnygi6EQRQcePE1ZQTFjBcUIL\njhOSX0jwsQLU/hzYdBRyjkJeBuR9bXzTTZqc/qdFaakxU6Zly4ofPC680Fgpa8KKnOCgYP498t8k\n/juR2/reRq+WvdyrcNgwY6zBhMS/NXsrXZuZNLPExBZ/l6ZdePO3N02pi6QkI9mmpxtjMy4qKCng\nkRWPMP/y+a4lfa2NdRj33w8JCUb309tvQ1ztXUWNQhvRp1Uf+rTqA2faL1NcVkxRWRHF5cUUlxVT\nXF5MuaXc+DnUmlI0ZSiCVFDFh1KKYBVMcFCw8RqKYIz/Bmkjj1aURRlfW8eCFKrir2RlzbhKKSN/\nVPpTwKKN/FLdXwj2jpa2aE1QkP3TScvL7S9gt1f+xx9X8b+Vq06+8My/7D+8mjg7Glz5A+MXx06g\nAxAG/AkkVSkzElhq/XwAsLaauswY4A48RUVaHzqkdUaG1rt2nfzYs0fr0lKP3/6t397SQz4coi0W\ni3sV7dqldfPmWpeXux3T8P8O10u2LXG7Hq211jfcoPX775tSVc6JHN34mcbuPyuba67R+t133ari\n0RWP6qsXXO3axSkpWl94odbdu2u9fLlbcQjX4cKsHrdW7mqty4AbgUXAH8BMrXWaUuo2pdRt1jJL\ngY1KqRTgNcCEkS1RoUEDo3XVoYPRsrd9tGnj8m6Szri1760cPXGUBWkL3KuofXtjNlFqqtsxbcne\nQlJsktv1AKZ29UQ3jKZxWGP25dv9g9d5tu4xF6XnpPPuH+/y/IXPO3eh1vDkk3DBBcYg819/wfDh\nLschvM/tzKC1/hHoU+W1d6t8/QjwiLv3Ev4nJCiENy55g+u/uJ5RXUa5N8XTlsh69nS5ioKSArKP\nZ9MuypxkbWZXD0BibCJph9No06SN+5UNG2YMzttGKZ10//L7uf/c+2ndxInN94qLjZNatm0zZmPJ\nRj51kuzVI9yW3CGZ/q378+LqF92ryLYi1Q1bsrfQtVlX9+fvg9GyNTnxJ8UmkZadVntBR7RtC02b\nGtO+nLQifQV/HfiL+869z/GLcnKMwdqCAmNmmCT9OksSvzDFi8Nf5PVfX2dP3p7aC1dn6FBjp87S\nUper2JK9haQ4k7p5jhwxDj5pbMKe/lZJsUlsyd5iWn2u/LIss5Rxz7f38PJFL9MwpGHtFwBkZMDA\ngXDWWTB/vv15yqLOkMQvTNEhugN39L+DJ1a6cRZvbCx06mSc++eitMNpJDZLdD2Gykxu7YO1q8es\nFj+41M//4YYPadm4JWMTxzp2wZ49MGQI/N//GQv97E21E3WKJH5hmnvOuYdFaYvIPp7teiW2aZ0u\nSstOM6/Fb+LArk1SXBJph01M/BdcAGvXwkHH1kNqrXnztzd59PxHT1/cZ8+RI8a5Cf/4B9x1l5vB\nCn8hiV+YplmjZoxNHMuHGz50vZLzz4c1a1y+3NQZPR5o8beObE1haSE5J0w6xTw6Gv7+d+NoTAes\n3rOa4vJiLki4oPbChYUwapRx6vp9TowFCL8niV+YanK/ycz4YwYWXc2Kudr062ec7u3Cvk2l5aVk\n5GbQpVkX1+5dlQda/EopEmMTze3nv/tuI/EXF9da9O11b3N739sJUrX86JeWGucuJibCc8/VXFbU\nOZL4hanObn020Q2jWb5zuWsVxMcbfch7nB8k3pmzk9aRrR0fsKyNB1r8YPLMHoAzzjD2O/rssxqL\nHSo8xNLtS7m+9/U116e1sYI6KAjefz8wNq8JMJL4hamUUkzuN5m3f3dx/x6ljFa/CweKmzqjBzya\n+E1t8YNDB9fP3DCTcYnjat+a4YknjHn6n30mu2bWU5L4hekmnjmRX/b8wu7c3a5V0Lev0d3jpLTD\naeb174NHunrAOsBrZosfjNO48vJg9Wq7b5dbynn3j3eZ3G9yzfXMnAlz5hj778iUzXpLEr8wXURY\nBNf0uIb3/njPtQpcbPGnZaeRGGvSVM6yMjhwAFo7sarVQbbVu6YKCjJm3bz+ut23v93xLbGNYunf\nun/1dXz3HTz6KCxdauoBL8L/SOIXHnF7v9v5YMMHlJSXOH+xrcXv5ACvqTN69u839kDyQFdHp5hO\n7MvfR1FZkbkVX3+9MRXWzvjIO+veqbm1n5ICV19tLM7q1s3cuITfkcQvPCIpLonucd1ZmLbQ+Yvj\n4yEszOhqcZDWmi3ZW8xr8Xuofx8gNDiUhOgEth/Zbm7FTZrAtdfCW2+d8nJGTgZr967lyjOrObRl\n1y5j7/zXXoPBg82NSfglSfzCYyb3m8w7695x7eK+fZ3q7tmXv49GoY1cP0ikKg8mfvDACl6bu+6C\nDz6AQ4cqXnrvj/eY1HOS/WMy//rLWDvx4INw1VXmxyP8kiR+4TGXJV7GpkObXBvktc3nd1DaYRNX\n7ILHBnZtkmJNXsFr06mTMa9/4EDYvh2LtvBJyifc2OfG08v+8IOxnfIrr8Cdd5ofi/BbkviFx4QF\nhzEhaQLzUuc5f7GTLX5T+/fBOK7Sk4k/LoktR0ye0mkzdSo88ggMGsTGRe8S3TCaHi16nFrm00+N\n83o/+8xY+SsCiiR+4VETe0xkTuoc5y90coDX1Bk9YPR7J5h0bq8dHpnZU9nNN8OHH9LpxvuYdrSn\nsap37VqjdT9hgnFU4ooVkJzsuRiE35LELzxqULtBZB/PZvPhzc5d2KqVsSXyrl0OFU/LNnkO/65d\nxqlmHpIYm8i2I9sot9g5nNUkpRddyNjrGjL2re+hWTOYPBl27oTx42HDBrcOvBF1myR+4VHBQcFc\nccYVzE2Z6/zFTizkMnXVrtYeT/yNwxoT2yiWzDzHZy45a0X6Cgp7dCNk63ZjeuqGDcaMn6uvdugw\ndFF/SeIXHjfxzInMTZ2LdnbjNQcHeHOLcikoKaB1pEmLrbKzjbOMmzQxp75qeGxmj9Xc1LlMPHOi\ncZZxZKTH7iPqHkn8wuP6xfdDKcW6LCdX4zo4wJt22Ojfd2h/eUd4uLVv47GZPcCJ0hN8te0r/n6G\nDNyK00niFx6nlKpo9TvFwQFe02f0eCvxx3lgszarJduX0LdVX1pFtvJI/aJuk8QvvGLimROZlzrP\nucHMli2NjcIyMmosZvqMnowMj87osfFkV09FN48QdkjiF16RFJdE84jmrNq9yrkLHejnTz2USve4\n7m5EV4WXWvzd47qz6fAm1w+tqUZeUR4r0lcwPmm8qfWK+kMSv/Aat7p7qlFuKWfN3jWc2+ZcN6Or\nxEuJv3lEc5qFN3N+qmstvtjyBckdks3bvkLUO5L4hddceeaVLEhb4NyOnbVs0Zx6KJUWES1o0biF\nCRFaZWR4JfEDDG4/mJ92/2RqndLNI2ojiV94Tfvo9iTFJrFsxzLHL+rTx5h/Xs0A76rdqxjc3sQd\nJbU2tmvwYuJflelk91cNDhYcZO3etYzuOtq0OkX9I4lfeNU1Pa/hk5RPHL+gZUsICYF9++y+vSpz\nFYPaDTIpOoxdLSMioHFj8+qswaB2g1i1e5Xzaxyq8emmTxnTbQwRYRGm1CfqJ0n8wqsu73453+74\nlmPFxxy/qFcvY/vgKrTW/LT7J3Nb/F7q37fpGNMRgPScdFPqm50ym6t7XG1KXaL+ksQvvKpZo2YM\naT/EuQNaeve2m/i3H91Og5AGtI9ub16AXprKaaOUMvr5M93v599+ZDu7c3czrOMwEyIT9ZkkfuF1\n1/S8htkpsx2/oJoW/6rdJnfzgNdb/HCyu8dds1Nmc+WZVxISFGJCVKI+k8QvvG5019Gsy1pHVn6W\nYxf06gV//nnayz9lmtzNAz5J/IPbD3Y78Wut+WTjJ9LNIxwiiV94XXhoOGMTxzp+QEu3bsZRiIWF\np7xs+owe8Eni7x7XnZyiHMd/Edrx277fCA4Kpl98PxMjE/WVJH7hE1f3uNrx7p7QUEhMhNTUipf2\n5O2hsKSQbs26mRuYl/v4AYJUEOe3O9+t+fy21r5pG9WJek0Sv/CJoR2Gsj9/v+O7U1bp5/8p8ycG\ntR9kbqKzWIyzdtubOFjsoMHtXO/uKS0v5bPNn0k3j3CYJH7hE8FBwUw8c6Ljrf4qiX/V7lUMbmdy\nN8/Bg8Ye/I0amVuvA9xZyPVd+nd0jOlIp6adTI5K1FeS+IXPXN3T6O5xaPGSvcRvdv++D7p5bPq0\n6sPu3N0cPXHU6Wtl7r5wliR+4TN9WvYhPCScX/b8UnvhXr1g40awWDhceJis/Cx6tjD5zFgfDOza\nhASFMKDNAH7O/Nmp6/KL81mybQlXnHGFhyIT9ZEkfuEzSikm95vMi6tfrL1w06YQHQ27dvFz5s8M\nbDuQ4KBgcwPyYeIH16Z1vv3724zoPIK4CDlDVzhOEr/wqZvPupnf9/3Ohv0bai9snc/vkW4eqHOJ\nv6CkgFfWvsLUwVM9GJWojyTxC58KDw3n4fMe5p+r/ll7YWs/v+kbs9n4sI8f4OzWZ7Pp8Cbyi/Md\nKv/O7++Q3CGZM5qf4eHIRH0jiV/43K19b+XXvb/y14HTt2U4Ra9eZK/5gcOFh+nfur/5gfi4xd8w\npCEXd7qYt39/u9ayhSWFvLzmZWntC5dI4hc+Fx4azoMDH6y11V/e40yK1//Gi8NfJCw4zNwgLBZj\ndbAP5vBX9sLwF3hx9Yvsz99fY7kZ62YwqP0gzmx+ppciE/WJJH7hF27rdxur96xm48GN1ZaZeexH\nYgrK+Hubi80PICvLGEBu2ND8up3QuWlnbupzE49+/2i1ZY6XHuelNS/xxOAnvBiZqE8k8Qu/0Ci0\nEQ+c+wD//NF+qz/nRA5TV01Hn9EdlZJifgA+7uap7PHBj/Nd+nf8uvdXu+/PWDeDgW0H0qNFDy9H\nJuoLlxO/UipSKfWFUmqjUmqRUsrukUVKqV3WMhuUUr+5Hqqo727vdzs/Z/5MysHTE/s/f/wnl3W7\njIh+A+1u0ew2P0r8kQ0ieeaCZ7j727uxaMsp7x0vPc6Lq1+U1r5wizst/qnAaq11T2At8Hg15TSQ\nrLXuo7U+2437iXouIiyCKYOmMGrOKF5f+zoFJQUApB1O45OUT3j6gqer3ZvfbX6U+AEm9ZoEGJuv\nAZRbypm/aT5DPhrCkPZD6NWyly/DE3WcOyc2jAGGWD+fBawEHqmmrGwZKBxy9zl3M6DNAF5c/SJP\n//Q0t551K2v3reWxQY8Zi5R694aPPjL/xhkZMGCA+fW6KEgF8caINxj/2XjyivJ4/dfXaR7RnCnn\nT2FMtzG+Dk/UccrVQ56VUjla6xjr5wo4avu6Srl0IB+wAG9rrd+vpj5t1oHTon7YeXQnr6x5hc3Z\nm1l+zXJCg0MhP984gD0vzziE3SxDh8KUKTB8uHl1muCeb+5hd95uHhz4IOe1O8/X4Qg/pJRCa+1U\n47rGxK+U+g5oaeetx4BZlRO9Uuqo1rqpnTpaaa33K6WSgKXAtVrr0zYel8QvHNa1KyxcCGeaOJWx\neXPjlK/4ePPqFMILXEn8NTaZtNbVNn+UUgeVUi211geUUq2AQ9XUsd/63zSl1CLgbMDuiRPTp0+v\n+Dw5OZnk5OTa4heBqH9/+P138xL/oUNQVgatWplTnxAetHLlSlauXOlWHe509bwAHNFaP6+UegSI\n1lo/UqVMIyBYa52vlIrDSPh3a62X26lPWvzCMa++Cjt2wFtvmVPfDz/A9Omwyv0Dz4XwNlda/O7M\n6nkKOFcptRE4B3jaGkS8UmqJtUxL4Cel1J/APOBVe0lfCKfYWvxmSUmBHjInXgQOl1v8ZpMWv3BY\nYaHRJ5+TA2EmbN1wyy1w1lkwebL7dQnhZd5u8QvhGxER0KmTcTCLGVJTpcUvAookflE39esH69a5\nX4/FAps2wRmytbEIHJL4Rd1kVj9/ZqZxwHrMaUtQhKi3JPGLusmsxC8DuyIASeIXdVOPHsaUzsJC\n9+pJTTV3IZgQdYAkflE3NWhg9Mv/+ad79UjiFwFIEr+ou8zo7pGuHhGAJPGLusvdxF9aCtu3Q1KS\neTEJUQdI4hd1V79+7iX+bdugXTsIDzcvJiHqAEn8ou5KSoL9+yE317XrpX9fBChJ/KLuCgkxDmb5\n4w/XrpfELwKUJH5Rt7nT3SMDuyJASeIXdZs7A7zS4hcBShK/qNtcTfyFhZCVBZ07mx+TEH5OEr+o\n2zp3Ns7hPXjQues2b4Zu3cw9t1eIOkISv6jblDL6+deude466eYRAUwSv6j7Ro2CxYudu0YGdkUA\nk8Qv6r5x44zEX1bm+DXS4hcBTBK/qPvatzc+fvrJsfJaGy1+SfwiQEniF/XD+PGwaJFjZf/809jd\ns21bz8YkhJ+SxC/qh/HjYeFC4yjF2nz8MVxzjTEwLEQAksQv6ofEROMIxdrO4S0rg7lzjcQvRICS\nxC/qj3HjjFZ/Tb7/Htq0MX5RCBGgJPGL+mP8eFiwwBi8rc7HH8OkSd6LSQg/pHRNPyRepJTS/hKL\nqKO0hg4dYMkS+zN2CgqM1v62bdC8udfDE8ITlFJorZ0asJIWv6g/lDo5yGvPwoVw/vmS9EXAk8Qv\n6peaEr908wgBSFePqG/KyyE+Hlavhk6dTr6+b5/R/ZOVJUctinpFunqECA6GsWPhqafg8OGTr8+Z\nY/w1IElfCEn8oh564glju+WuXeHGG42VutLNI0QF6eoR9Vd2Nrz/Prz9tvGXQHo6BElbR9QvrnT1\nSOIX9V9pKeTkyGweUS9J4hdCiAAjg7tCCCFqJYlfCCECjCR+IYQIMJL4hRAiwEjiF0KIACOJXwgh\nAowkfiGECDCS+IUQIsBI4hdCiAAjiV8IIQKMJH4hhAgwLid+pdTlSqlNSqlypdRZNZQbrJRar5Ta\nqJS6y9X7CSGEMIc7Lf4UYBywqroCSqlgYCYwHugL3KSUSnLjnj63cuVKX4dQq7oQI0icZpM4zVVX\n4nSFy4lfa71Fa72tlmJnAzu01ru01qXAPOAyV+/pD+rCP4a6ECNInGaTOM1VV+J0haf7+FsDeyp9\nvdf6mhBCCB8JqelNpdR3QEs7b03RWn/lQP2ywb4QQvgZtw9iUUr9D7hfa73eznsDgOla6xHWrx8F\nLFrr5+2UlV8SQgjhAmcPYqmxxe+E6m66DuiilOoAZAFXABPtFXQ2cCGEEK5xZzrnOKXUHmAAsEQp\n9Y319Xil1BIArXUZcCOwCPgDmKm1TnM/bCGEEK7ymzN3hRBCeIdPVu4qpV5USqVZF3a9ppSKqqac\nTxd/ObFIbZc1xg1Kqd+8GaP1/nViMZ1SKlIp9YX1/ouUUo2rKeeT5+nI81FKPWt9f61SKtFbsVWJ\nocY4lVLJSqk86/PboJR63AcxzlRKHVRKpdRQxh+eZY1x+smzbKuU+p/1Z3ylUur6aso5/jy11l7/\nAIZj/NIJAt4HnrNTJhjYAXQAQoE/gSQvx5kIdAX+B5xVQ7kMoKkvnqWjcfrJ83wBeMj6+cP2/r/7\n6nk68nyAkcBS6+fnAGt98P/akTiTgcXejq1KDIOAPkBKNe/7/Fk6GKc/PMuWQG/r57HAAXf/bfqk\nxa+1/k5rbdFaW4BlQBs7xXy++Es7tkjNxmeD0w7G6fPnCYwBZlk/nwWMraGst5+nI8+nIn6t9a9A\ntFKqhXfDdPj/o08nS2itfwJyaijiD8/SkTjB98/ygNb6T+vn2cDvQHyVYk49T3/YpO0W4Es7r9el\nxV8a+MH6p+Atvg6mGv7wPFtorQ9aPz8IVPcP0xfP05HnY6+MvUaLJzkSpwYGWrsGliqlunstOsf5\nw9q69z8AAAI4SURBVLN0hF89S6VUZ+AMYG2Vt5x6nmZN5zyNI4u/lFKPAfla6/l2ynll1NmERWoA\n52mt91v3IVqqlNpibUmYpq4spqshzsdOCUZrXcPaDY8/TzscfT5VW3/enh3hyP3WA22BUuA6YDHQ\n2ZNBucjXz9IRfvMsrWNi84B7tdaF9opU+bra5+mxxK+1Hl7T+9YBipHAsGqK7MN44DZtMX6Lmaq2\nOB2sY7/1v2lKqUUYf46bmqhMiNPnz9M6iNZSa31AKdUKOFRNHR5/nnY48nyqlmljfc2bao1Ta51v\n+1wp9QHwvFKqqdb6qHdCdIg/PMta+cuzVEqFAguAT7TW9npInHqevprVMwJ4EBijtS6qpljF4i+l\nVBjG4q/F3orRDrv9fEqpRkqpSOvncRi/zKqdyeAFtS6m8+HzXIzRasL63y+qFvDh83Tk+SwGrrXG\nNgDIrdR15S21xqmUaqGUsv07GA2c8LOkD/7xLGvlD8/Sev8PgE1a69eqKebc8/TRKPV2YDewwfrx\ntvX1eGBJpXJDrO+nAHf7IM5xGP1mJzBG0r+pGifQEWNmxZ/A98Bt/hinnzzPSIxkvxFjUV9jf3qe\n9p4PcFvlGIDnrO+vxcuzohyNE7gDSLU+w/8CfX0Q41yM1fol1n+bN/rps6wxTj95lucDFmsMtpx5\niTvPUxZwCSFEgPGHWT1CCCG8SBK/EEIEGEn8QggRYCTxCyFEgJHEL4QQAUYSvxBCBBhJ/EIIEWAk\n8QshRID5f055X+a3hqLwAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x112bceb10>" ] } ], "prompt_number": 488 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "b. Define the time axis of the filters" ] }, { "cell_type": "code", "collapsed": false, "input": [ "nt = 100;\n", "max_t = 0.5;\n", "dt = max_t/nt;\n", "k = 100;\n", "slow_n = 9;\n", "fast_n = 6;\n", "beta = 1.0;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 489 }, { "cell_type": "code", "collapsed": false, "input": [ "t_filt = np.linspace(0, max_t, nt);\n", "t_fcn = lambda n: (k*t_filt)**n * np.exp(-k*t_filt) * (1./math.factorial(n) - beta*((k*t_filt)**2)/math.factorial(n+2))\n", "slow_t = t_fcn(slow_n);\n", "fast_t = t_fcn(fast_n);" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 490 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.plot(t_filt, slow_t, label='slow_t');\n", "plt.plot(t_filt, fast_t, label='fast_t');\n", "plt.legend();\n", "plt.title('temporal filters');" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOXZ8PHflbBDSFgDhCXsUVBAEUEFgmBRsIAL4gKo\n2L5o61J9nteitjVW61bb4vK2UJWC2qrFFsGCG2IApaDsqCyyhC0SCPtOkrneP84kDEOWyZwzMyG5\nvp9Pysw597nPndM419y7qCrGGGMMQFysC2CMMabisKBgjDGmiAUFY4wxRSwoGGOMKWJBwRhjTBEL\nCsYYY4pYUDDGYyIyVUSeLOX8L0RknYhki0grETksIuI/lykid0WvtMacyYKCqRBEJEtErox1OTyi\n/p+ziEhr4AXgGlVtoarbVTVBT08YKrpWRO4QkYVRKbExfhYUTEWhgMS6EGURkWqhJi3heGsgR1W3\neFSkkgsQelmNKWJBwcSciLyJ82H5gb8p5X/9x3uLyCIROSAiK0Wkf8A1mSLyiIh8KiJ7RGSaiNQQ\nkUkikiMiX4lIq4D0Pv8375UisltEng9oshER+ZW/tpLjz6u+/1yq/9qRIvIN8Kn/+HQR+UFEDorI\nfBE5P4TfcxDwCdDM/3tOCcg/LihtGjAJ6ONPu89/vKaIvCAiW/1l/YuI1PKfSxeRHSJyt4hsAF4X\nkdoi8pr/d9srIgsKf29jimNBwcScqo4BtgHX+ptSXhCRFOBj4K9AK+CPwEwRaRRw6XjgKeBSoC+w\nHFgEnA/8ANwRdKvbgXTgYuB6YJz/+J3+1+lAOyAReCXo2luBYcDV/vezgQ5AZ2Ar8PcQfs+5wDVA\ntv/3HFdK2nX+3++//rQN/aeeBboDQ4DLgDTgNwGXJgOXAP38148DagMXAk2BR9TWtjGlsKBgKqrR\nwBJVnaqqh1X1DWALMNR/XoGZqjpfVTcDc4GTqvqGqu4F3gUGBuX5pqoeUNXtwD+BW/zHbwPeUdUs\nVT2KExBuDvr2/kdV3ayqJwH85TqqqruA3wLdRCQhhN+rPN/Sz0jr/4b/U+A3qvqtqm4CXgRuDkgW\nD2So6i5VPYHz33hjIEVVC1T1y3Lc31RB1uZoKqo2QF8R2R9wrBrQLOD9qoDXOcDqgPe7gZSgPFcG\nvF4BjPC/bg4sCzi3zH+v5IBjSwpfiEg88DvgRqAJ4POfagwcLvE3cq8JUAeYHdACJJz55S7HH/QK\nvQ7Uw2maE2CSqv4+gmU05zirKZiKIrijeRuQqaoNAn4SVPV5F/foEfD6ImCn/3U20DPgXE8gHyfQ\nFMoPeH0rMBa4SlUTcZprwPuO8uBnkgscBwYHPJMkVa1fQjlR1WOq+oyqdsBp/vqViHTxuJymErGg\nYCqKHJy2/kJv4XSyjhWRBiJSy9+RGvjtX0p4XZJbRSTJ3wF9I04TE8DbwE3+Tt96wM9wmpN8JeRz\nBDgKHBORVJzmo0BeBYccoKO/TPjL8yrwWxG5SETiRCRFRH5UUgYiMlREOvibwhSnVtPYo/KZSsiC\ngqkongF+7h/N85Cq7gB+hNNRugmn5vA/nPmBq0GvgztQg9+/AczH6ZB+H5jiPz4FmAosADbjNAHd\nV0o+M4F5OM1RH+AEl7LKUlq5Skr7GfA1sENEdvuP/RKnees94ADOaKhOpeTV0Z/mIE5AeUJV55dS\nNlPFiduBCCLSD5iI0wb7qqq+HHQ+DfgbTtX9MVX9Q6jXGuMVEfEBHfyd0saYErjqaPZ3uE0BBuG0\nz34tInNVdW1Asr0437pGhHGtMcaYKHLbfNQL2OgfypcHvAMMD0ygqntUdSmQV95rjfGQjc03JgRu\ng0IKEDj8bQdnDwOMxLXGlIuqxlvTkTFlcxsU3Hz7sm9uxhhTwbidvLYTZwmCQq1wvvF7dq2IWPAw\nxpgwqGq5h0e7rSksxRlHnSoiNYBRwKwS0gYXLuRrVdV+VHn88cdjXoaK8mPPwp6FPYvSf8Llqqag\nqvkiMg6YwelhpWtFZLz//GQRaYYz1ro+4BORB4DzVfVIcde6KY8xxhh3XK99pM5EmB5BxyYHvN7F\nmc1EpV5rjDEmdmxG8zkkPT091kWoMOxZnGbP4jR7Fu65ntEcaSKiFb2MxhhT0YgIGkZHsy2dbYyJ\nKdsIzj0vvzhbUDDGxJy1BoTP66BqfQrGGGOKWFAwxhhTxIKCMcaYIhYUjDHGFLGgYIwx5ZSRkcGY\nMWNiXYyIsKBgjDHlFM1htHFxcWzeHL1V3y0oGGNMOUV7CG0072dBwRhjSvH666/Tp08fEhMTSUtL\nY968eWfVFGbNmkWXLl1o0KABAwYMYN26dQD87W9/Y9iwYUXpOnbsyE033VT0vlWrVqxevbrEe/fr\n1w+Abt26kZCQwPTp07381YplQcEYU+GJuP8JR25uLhkZGbzxxhscPHiQTz75hNTU1DPSbNiwgVGj\nRvHSSy+Rm5vL4MGD+fGPf0x+fj79+/dn4cKFAGRnZ5OXl8fixYsB2Lx5M0ePHuXCCy8s8f4LFiwA\nYPXq1Rw+fJiRI0eG94uUgwUFY0yFp+r+JxwiwvHjx9mwYQN5eXm0bt2adu3andGc8+6779KjRw8G\nDhxIfHw8999/P9u3b2fRokW0a9eOhIQEVqxYwYIFCxg8eDAtWrRg/fr1zJ8/v6gmUJFYUDDGmBI0\natSIN998kz/96U8kJydzyy23kJOTc0aa7OxsLrrooqL3derUIS0tjZ07dwLQv39/MjMzWbhwIf37\n96d///7Mnz+fBQsW0L9//6j+PqGwoGCMMaW45pprmDt3Llu3buXEiRO88MILZ/QppKSksGzZsqL3\nR48eZd26daSkpABOUPj8889ZuHAh6enpRUFi/vz5IQcF62g2xpgKYMOGDcybN4+TJ09SUFBA9erV\nyc3NPSPNyJEjWblyJfPmzSMvL49XXnmFli1bctlllwGng8KJEydo0aIFV1xxBR999BH79u2jR4+y\n9xhLTk5m6dKlEfn9imNBwRhjSnDy5EkeeeQRmjRpQs+ePUlKSuLpp58GTs9V6Ny5M2+//Tb33Xcf\nTZo04aOPPuKDDz6gWjVnEeqOHTuSkJBA3759Aahfvz7t27fn8ssvD2m+Q0ZGBg888ABJSUm89957\nEfpNT7NNdowxMeXfDCbWxThnlfT8wt1kx3VNQUT6ichyEVktIveVkOYZ//nFIpIWcPynIrJIRJaJ\nyES3ZTHGGOOOq6AgIvHAFOB64GLgLhE5LyjNEKCbql4IPABM9R9vCDwKXAVcAnQSkcFuyuMVVeW6\nd69j8tLJ9g3GGBNRCxcuJCEh4ayf+vXrx6Q8bnde6wVsVNUsABF5BxgOrA1IMwyYBqCqS0QkSUSS\ngUOAAIn+dHWA/S7L44kVu1awLHsZ2w9u5/317/Paj18jpX5KrItljKmE+vbty+HDh2NdjCJum49S\ngO0B73f4j5WZRlWPA/cAWcAu4EtV/cpleTzx1uq3uKP7Hfz3rv/SO6U3PSb3YN6WebEuljHGRJzb\noBBq28pZnR0i0gT4C3A+kAr0EZGhLsvjWr4vn7e/eZvbLriN6vHVeTz9cZ6/6nkmLrYuD2NM5ee2\n+Wgn0CrgfSucmkBpaVr6j/UCFqvqRgARmQ70A2YH3yQjI6PodXp6Ounp6S6LXbJ5W+bRqn4rOjfu\nXHTsmg7X8ODHD1LgKyA+Lj5i9zbGmHBlZmaSmZnpOh9XQ1JFpBqwHhgIZANfAbeo6tqANEOAe1V1\niIj0Biaqam8RSQSW4QSHo8B04EVV/SzoHlEdknr7+7dzcfOLuf/S+8843uXPXZg2Yho9W/SMWlmM\nqQpsSKo7FWpIqqrmA+OAGTgf8FNUda2IjBeR8f40c4DVIrIGmAjc6T9+EHjKf+0XwCrgczflcevo\nqaPMWj+LUV1GnXVuQOoAPt8S0+IZY0zEuZ6noKrzVbWHql6gqi/5j01W1ckBaSb4z/cOrEWo6lRV\n7a+ql6jqr1XV57Y8bsxaP4veLXuTXC/5rHMDUgeQuTUz+oUyxsTU999/z8iRI2nQoAGvvPJKrIsT\ncbbMRYC31rzF6AtGF3uuf2p/vtj2Bfm+/CiXyhgTS88++yyJiYns3buXe++9N6w80tPTef3110NK\nG+3tN8+6f8zuXMHsObqHL7d9yYi0EcWeb1ynMalJqSzLXlbseWNM5bR161YuvfRS4uLC/7gs757O\nsexjsaDgt3DbQq5ofQV1a9QtMc2A1AF8nmX9CsZUFVdeeSWZmZncf//9JCQk8NJLL9GjRw/q169P\n69ateeKJJ85I/9BDD5GWlkaDBg3o1asXu3fv5rHHHmPhwoXce++9JCQkcP/995dwt9hsvxnMFsTz\n++3833Ii/wRPD3y6xDQz183kz0v/zMejP454eYypKkIZfSRPhLmfZgB9PLzPkQEDBjBmzBjGjRvH\n/Pnzady4MWlpacydO5eRI0fy5ptvMnz4cGbPns0LL7zAe++9R8OGDVm5ciUdOnQgISHhjDzKEhcX\nx8aNG2nXrl1I5fN69JHbeQqVxprda7g+7fpS0/Rr048xM8ZwquAUNeJrRKlkxphwP9A9u7//Qzdw\nU5zBgwczfPhw5s+fz/Dhw/H5fBw6dIgtW7bQqFGjs/ZKqOhfwAtZ85Hfmpw1dG3atdQ0DWo3oGOj\njny98+solcoYUxEU9gksWbKEAQMG0LRp06L9Dfbu3QvAkCFDGDduHOPGjSMlJYVf/vKX+Hy+s/Ko\n6CwoACfyT7D14NYzZjGXxPoVjKm6br31Vvr168eOHTs4cOAAN9xwQ1ENID4+np///OesXr2aRYsW\nMX36dD788EOg/BP0rKM5xtbuWUuHhh1CahKyoGBM1VWvXj0aNmxIQUEBs2bNYtasWUXnMjMzWbNm\nDQUFBcTFxREXF1e0dWdycjLLly8P6cM+2ttvBrOggNOfUFbTUaHLW1/Okh1L8MV2np0xJgb+8Ic/\n8M9//pPWrVvz9ttvM378+KJzu3btYuTIkSQlJTF8+HBuvfVWxowZA8ADDzzA3LlzSUpK4he/+EWp\n94j29pvBbPQR8PCnD5NUK4lH+z4aUvoWf2jBkp8soVViq7ITG2NKZWsfuVOh1j6qLMpTUwBIa5zG\nutx1ESyRMcbEhgUF4Jvd33BB0wtCTt+5UWcLCsaYsFS07TeDVfl5CvuP7+fAiQO0SWoT8jVWUzDG\nhKuibb8ZrMrXFL7Z/Q1dmnQhTkJ/FGmN01i/d30ES2WMMbFhQaGcTUdgNQVjTOVV5ZuP1uxewwXJ\n5QsKrRJbse/4Pg6fPExCzYQIlcyYquNcme1bFVhQ2L2GG8+/sVzXxEkcnRp1Yv3e9bY9pzEu2XDU\niqVKNx+paljNR+DvV8i1fgVjTOVSpYPCzsM7qRFfgyZ1m5T7WutXMMZURq6Dgoj0E5HlIrJaRO4r\nIc0z/vOLRSQt4HhdEZkmIitE5DsR6e22POURbi0B/HMV9lpQMMZULq76FEQkHpgCDAJ2Al+LyFxV\nXRuQZgjQTVUvFJFLgalA4Yf/n4H5qnq7iFQDSt72LALW5KwJOyhYTcEYUxm5rSn0Ajaqapaq5gHv\nAMOD0gwDpgGo6hIgSUSSRSQR6KuqU/zn8lX1oMvylMu3e76lS9MuYV3bqVEnNu7bSIGvwONSGWNM\n7LgNCinA9oD3O/zHykrTEmgL7BGRqSLyjYi8KiK1XZanXDbt30SHhh3CurZujbo0rduUrQe3elwq\nY4yJHbdDUkMdSxY8CFn9974EeAq4B5gMjATeCL44IyOj6HV6ejrp6enlL2kxNu/fTPsG7cO+vnAN\npHYNQttL1RhjIiUzM5PMzEzX+bhaOtvfMZyhqlf73z8C+FT1uYA0k4BMVX3H/34d0B8nUKxR1Sb+\n49cAY1X1lqB7RGTp7ON5x2n4fEOOPHKE+Lj4sPK4/8P7SU1K5aE+D3lcOmOMcSdWS2cvBTqKSKqI\n1ABGAbOC0swCxvoL2Rs4oKo5qroL2Cgil4pIHDAUmOuyPCHbcmALbRLbhB0QwDqbjTGVj6ugoKr5\nwDhgBrAMmKKqa0VkvIiM96eZA6wWkTXARODOgCxuB14ENuD0PbzjpjzlsWnfJtfNPrYwnjGmsnG9\nzIWqzgd6BB2bHPR+AjChmGs3cHp4alS57U+AsvdVyMuD6tVd3cIYY6Kqys5o3rTffU2hRUILjuUd\nY9/xfWedW7IEkpKgZ0+YOBFyclzdyhhjoqJKB4X2Dd3VFESk2DWQduyA66+Hv/8dnn0WVqyAzp3h\nr391dTtjjIm4KrtK6ub9mz0ZStqhYQc27d9En1Z9ADh2DIYPh/vvhxEjnDSDBsE338DAgXDzzVBB\ndt0zxpizVMmagk99ZB3I8iQotE1qy5b9WwBQhTvugPPPh4cfPjNd165w1VVOU5IxxlRUVTIoZB/O\nJqlWEnWq13GdV2pSKlkHsgD4xz9g82Z49VUobs+QjAx48UXYu9f1bY0xJiKqZFDYtG+T65FHhdom\ntSXrYBbg9Bk8+ijUqlV82g4dYORIeO654s8bY0ysVcmg4FV/Ajg1hS37t7BhA6xbB9deW3r6X/8a\nXnsNsrM9ub0xxniqSgaFTfu9qym0TmzNzsM7eW1KPmPHQo0apadPSYFx4+Cppzy5vTHGeKpKBgUv\nawo1q9WkSZ0mTP1XNnfdFdo1//u/Tv/DyZOeFMEYYzxTJYOCF3MUAtX3pdK08xbS0spOC9CsmTMa\n6fPPPSuCMcZ4okoGBS9rCgCHtqXSe3BWua4ZPhxmzvSsCMYY44kqFxQOnTzEsbxjJNdN9iS/H36A\n3I1tSe6cVa7rhg2DWbPA5/OkGMYY44kqFxQKawlS3ESCMEybBr06prLz2JZyXde5MyQkwLJlnhTD\nGGM8UeWCgpdzFADefReuG3B6Alt5DB/u1BaMMaaiqHJBwcv+hB9+gKwsGHp527CDgvUrGGMqkioX\nFLyco/DJJ85id20btuKHIz+QV5BXrusvvdRZUntL+VqejDEmYqpcUPCypvDRR3D11VA9vjrN6jVj\nx6Ed5bo+Pt6ZAW21BWNMRVHlgoJXcxQKCpyawtVXO+8DF8YrD2tCMsZUJFUqKOT78tlxaAdtEtu4\nzuvrr50lK1JSnPepSalsOVD+dqBBg5wRSPvO3rzNGGOiznVQEJF+IrJcRFaLyH0lpHnGf36xiKQF\nnYsXkRUi8oHbspRl28FtNKvXjJrVarrOq7DpqFDbpPA6m+vUgSuugMxM10UyxhjXXAUFEYkHpgDX\nAxcDd4nIeUFphgDdVPVC4AFgalA2DwDfAeqmLKHwcjhqcFAIt/kIoG9f+OILT4pljDGuuK0p9AI2\nqmqWquYB7wDDg9IMA6YBqOoSIElEkgFEpCUwBHgN8GY2WSk27d/kSSfz3r2wdi1cfvnpY+E2H4FT\nU1i40HWxjDHGNbdBIQXYHvB+h/9YqGn+BPxfICqLPWzev9mTmsKnn0L//lAzoBUq3OYjgEsuge++\ngyNHXBfNGGNcqeby+lCbfIJrASIi1wK7VXWFiKSXdnFGRkbR6/T0dNLTS01eok37NzGqy6iwrg0U\n3HQEkFI/hd1Hd3Oq4BQ14svYVCFIrVrQowcsWQIDB7ounjGmCsrMzCTTg85Jt0FhJ9Aq4H0rnJpA\naWla+o/dAAzz9znUAuqLyBuqOjb4JoFBwQ0v+hR8Pvj4Y/jNb848Xi2uGi0SWrDt4DY6NOxQ7nwL\nm5AsKBhjwhH8hfmJJ54IKx+3zUdLgY4ikioiNYBRQPBqPrOAsQAi0hs4oKq7VPVRVW2lqm2Bm4F5\nxQUEr6iqJ30K334L9epBu2KycdOEZJ3NxpiKwFVNQVXzRWQcMMOf16uqulZExvvPT1bVOf5hq2uA\no8CdJWXnpixlyT2WS/W46jSo3cBVPp9/DgMGFH/OzQikyy6Dm2+GvDyoXj388hljjBtum49Q1flA\nj6Bjk4PeTwAmlJHHfLdlKY1XM5kzM+HGG4s/l5qUypb94Y1AatAA2raFlSudjmdjjImFKjOj2av+\nhPnzoaR+7rZJbcMelgpOv4I1IRljYqnKBAUvFsJbswYaN4YWLYo/3yapDdsObgs7/759bb6CMSa2\nqkxQ8GLJ7MzMkmsJAG0S27D14Naw8y+sKWjE53YbY0zxqlZQcNmnUFZQaJHQgpwjOeXeV6FQq1ZQ\nuzZs2BDW5cYY41rVCQou+xTK6k+A0/sq7Dy8M+z72NBUY0wsVYmgcCzvGPuO76NFQgmdASFYvRqa\nNoXmzUtP1yapDVsPhN+EdPnl8OWXYV9ujDGuVImgsGX/FlKTUomPiw87j7Kajgq1Tmztql+hVy9n\nrwZjjImFKhEUvOhP+Pzz0IJCm0R3I5AuuAA2b7bF8YwxsVE1gsK+TbRLCn84akEBLFgQelBw03xU\nowZ07QrLl4edhTHGhK1KBIXN+ze7qimsXg3Nmjk/ZXHbfATOjGZrQjLGxEKVCApu5yiE2nQE7iew\ngQUFY0zsVJ2g4KKmMG8eXHllaGlbJ7Zm28FtqIsZaBYUjDGxUumDQoGvgK0HttI2qW1Y1+flOUtP\nlLQyarB6NepRu3pt9hzbE9b9ADp3hj17nG0/jTEmmip9UNh5eCeN6jSidvXaYV3/9dfO6qWNG4d+\njdsRSPHxcPHFsHRp2FkYY0xYKn1QcDuTed688u+G1jqxtasRSGBNSMaY2Kj0QWHjvo2u+hM++6z8\nQcHtwnhgQcEYExuVPih8s/sbujbpGta1x445H8x9+5bvOhuBZIw5V1X6oLBm9xq6Ng0vKCxaBN26\nQUJC+a7zYq5CmzZOJ/fO8NfWM8aYcqv0QeGb3d9wQfIFYV0bTtMRuJ/VDCBitQVjTPS5Dgoi0k9E\nlovIahG5r4Q0z/jPLxaRNP+xViLyuYh8KyKZInKH27IEyzmSQ74vn+b1yljatATlmZ8QyIvmI7Cg\nYIyJPldBQUTigSnA9cDFwF0icl5QmiFAN1W9EHgAmOo/lQc8qKpdgBuBZ4OvdauwliAi5b72wAH4\n7jvo06f8921SpwlH845y9NTR8l8cwIKCMSba3NYUegEbVTVLVfOAd4DhQWmGAdMAVHUJkCQiyaq6\nS1VX+o/nAl8D4W94UIw1u9eE3ck8f74TEGrWLP+1IlI0s9mNwqBg23MaY6LFbVBIAbYHvN/hP1ZW\nmpaBCUSkA9AFWOyyPGdw058QbtNRIS+GpSYnQ716zlLaxhgTDdVcXh/qd9jg9pui60SkHk4N40FV\nLba9JSMjo+h1eno66SGuTrdm9xru7H5niEU809y5MHVqWJcC3kxgA2dm87Jl0N7ddhDGmEouMzOT\nzMxM1/m4DQo7gVYB71vh1ARKS9PSfwwRqQ78C3hLVWeWdJPAoBAqn/r4bs93dGnapdzXbtoE+/Y5\nH8jhcrvURaGePZ3lLm66yXVWxphKLPgL8xNPPBFWPm6bj5YCHUUkVURqAKOAWUFpZgFjAUSkN3BA\nVXPE6f19HfhWVSe6LMdZsg5k0aBWA5JqJZX72pkz4cc/hjgXT6dNkvvmIzhdUzDGmGhwFRRUNR8Y\nB8wAlgFTVHWtiIwXkfH+NHOA1SKyBpgIFLbnXA6MBq4UkRX+n6vdlCfQmpzwJ629/z4MD+4uLycv\nJrCBExSWL7fOZmNMdLhtPkJV5wM9go5NDno/AZgQdOwLIjh57pvd33BB0/J3MufmwqpV4U1aC+RV\n81HTps6M6k2boEMH19kZY0ypKu2M5nCXt/jPf+Cqq6BWLXf3b1m/JT8c/oF8X767jLAmJGNM9FTa\noBDucNSZM903HQFUj69Ocr1kdhwK7ncvPwsKxphoqZRB4VTBKTbt30Ra47RyXXfsmLPe0dCh3pSj\nbVJbsg5kuc6ncASSMcZEWqUMCutz15OalEqtauVrA5o71/kAbtjQm3KkJqV6EhSss9kYEy2VMiiE\n25/gVdNRodSkVLbs3+I6nyZNoH59p7PZGGMiqVIGhXBGHhUUwAcfeBsU2ia1Jetglid5WROSMSYa\nKmVQCKemsGABtGgBqanelcOr5iOwzmZjTHRUuqBwquAUC7cu5LJWl5Xruj//GX76U2/L0rZBW0+a\nj8CpKVhQMMZEWqULCgu3LqRz4840q9cs5Gu2b3dGHY0d621ZWtZvSc7RHE4VnHKdV2FNwefzoGDG\nGFOCShcUPtjwAT/u9ONyXTNpEoweXf69mMtSLa4azes1Z/vB7WUnLkPjxpCUZJ3NxpjIqlRBQVXL\nHRROnIDXXoN7741Mmdo28GauAlhnszEm8ipVUFibu5a8gjwuTL4w5Gv++U/o0QM6dYpMmbzsbLbt\nOY0xkVapgsIH651aQqh7MqvCyy/DffdFrkxtk9qy5YA3nc0WFIwxkVa5gsKGD7i207Uhp1+yxNlM\n55prIlcmL2sKPXvCihWQ736NPWOMKValCQq5x3JZs3sNA9oOCCm9Kjz5pFNLcLOZTlm8DAqJidCy\nJXz3nSfZGWPMWSpNUJjz/RyubHtlyOsdvf46/PAD/OxnkS2Xl81HAL16wVdfeZadMcacodIEhfKM\nOtq8GR55BN58E2rUiGy5WiS0IPdYLifzT3qS3yWXWFAwxkROpQgKpwpO8emmTxnasew1rwsK4Pbb\nYcIE6NIl8mWLj4unZf2WnuzCBk5NwTqbjTGRUimCwi8//SXpqekk10suM+0f/gDx8fDgg1EomJ+X\nTUjdusH69c7eD8YY4zXXQUFE+onIchFZLSLFDu4UkWf85xeLSFp5ri3Lm6ve5D/f/4e/Df9bqel8\nPvj9752gMHVqZDuXg3nZ2VyrFpx/Pqxc6Ul2xhhzhmpuLhaReGAKMAjYCXwtInNVdW1AmiFAN1W9\nUEQuBaYCvUO5tixLs5fy0CcPkXl7Jg1qNygx3a5dzrpGx4457fFt2oTxy7rQNsm7hfHgdL/CZeVb\n888YY8rk9vtyL2Cjqmapah7wDhC8I8EwYBqAqi4BkkSkWYjXlij7cDY3/PMGJl87mS5Nz+4cUIVV\nq+D5550Zy336QGZm9AMC+GsKHu2rANavYIyJHFc1BSAFCFztbQdwaQhpUoAWIVwLwG1/+guKkqcn\n2ZG3iqx/doYTAAAYN0lEQVS8r9jv28bgOo/xw7zreelTOHUK9u93JqPt3g1ffgn16sHgwTBjBvTu\n7fI3dcHL5iNwgsLTT3uWXZVT4CvgeP5xTuSf4ET+CU7mn+RUwSlOFZwiz5dHvi+fvALn3wItcP71\nFeBTHz71UaDOa1UtOqZo0TFFUf/eqYWvC3xw6pSSlwd5+UpenlJQQNFPfoHiK3CaOQt8zr/Oj+JT\nUJ/zRafEH+dmRVu2Fv1b9D+nlbata0nnbCfYqsNtUAj1byW0dSdK8PF7ryMqCHE0a3EFlyX/g4b5\nXakWV43v4pz+gerVnb2VL7jA+ff556F9ezd39Y6X+yoApKVBTo4TAL3aT/pclFeQxw9HfmDHoR3s\nPLSTnKM55B7LZc/RPew9vpeDJw9y4MQBDp44yJFTRzhy6ghH846SV5BH7eq1qVWtFrWq1aJmfE1q\nxNegRnwNqsdXp3pcdarFVaNaXDXi4+KdfyUeX348p07GcfJkHHkn4zh1qvBfIe+UkJcXR94pIT9P\nyM8X8vKE/HwoyBdUhWrxEBcnxBf+GyfE+f9+4+IgTgSJAxGIEwJeC4Urt4gA4vwHFfi66BxnHjvj\neCAp9mWpQlw9xsTI0W3ZHNv+g+t83AaFnUCrgPetcL7xl5ampT9N9RCuBSD3y3N7adBm9Zpx8ORB\njucdp3b12q7zi4+Hiy5yVkz90Y88KGAFd+DEAVbnrGblrpV8t+c7Nu3fxMZ9G8k+nE2TOk1IqZ9C\nSkIKzeo1o0mdJpzX5Dwa1W5EUq0kEmslklgzkYSaCdStXpe6NepSM75msetj+XzO3hpr1zo/GzZA\nVhZs2QJbt0LNms7ufM2bQ5tkZznzxo2hYYqzrHliovOTkODUUuvWdX5q13a+tNiHqommUNeAC+Y2\nKCwFOopIKpANjAJuCUozC7gXeEdEegMHVDVHRPaGcG2lECdxtE5szdaDW0lrnFb2BSEoXByvsgUF\nVWXjvo0s2LqAhdsW8sW2L8g5mkPXpl3pntydrk27cl3adXRo2IHWia2pHl897Hvt2uVsw7p0qfMs\nly93PsTPO88Z4XX++XDttc4WrampzjljKjtXQUFV80VkHDDDn9erqrpWRMb7z09W1Tn+oadrgKPA\nnaVd66Y8FVlqUipb9m/xLCj06uXMyK4MCnwFLNq+iJnrZ/L+uvc5kX+C/qn96de6Hw9f/jBpjdOI\nE/djiI8fh08/hY8/hnnznCa4K65wnuWECc7udo0be/ALGXMOEy2t16kCEBGt6GUMxfgPxtOtWTd+\ndok3iy3t2OGMqtq9+9xtlth6YCuvr3idKSum0KhOI0Z0HsGItBF0b9Y97KpvsOPH4f334b33YO5c\np9lt6FC48kpnImB8vCe3MabCERFUtdz/IbltPjIh6tCwAxv3bfQsv5YtneaMDRugc2fPso2KRdsX\n8buFv2PxjsXc2vVW5tw2p1wbI4Vi2TJn0cN333VqAqNGweTJVhMwpiwWFKKkU6NOLNi2wNM8r7gC\nvvji3AkKi7YvIiMzgw17N/Bo30eZPnI6darX8Sx/VZg9G559FnbuhHHjnJnfrVqVfa0xxmFBIUo6\nNurIhr0bPM2zMCjcdZen2Xou+3A2D3z0AF/v/JrH+j7G7d1vp0a8d8vTqsL06c7+GNWqOf0DN95o\nTUPGhMOCQpS0b9CerQe2ku/Lp1qcN4/98sudtZwqqgJfAZOWTiJjfgZ3X3w3b4x4w5MhuYEWL3YW\nNzx1ylnbavDgc7ePxZiKwIJClNSsVpPmCc3JOpBFh4YdPMmzSxfIzXVG0SSXvUBsVO08tJOb/3Uz\ngrDgjgWc1+Q8T/PPyXGCwYIF8LvfwZgx0V3k0JjKyv4ziqJOjTp52oQUF+csivfll55l6YnPNn9G\nz1d7ck2Ha8i8I9PTgKDqdB536watWzvLiN9+uwUEY7xiNYUo6tiwI9/v/R46epdnYb/C9dd7l2e4\nVJVnv3iWl756ibeue4uB7QZ6mv+ePXDPPc4e1bNmOaOKjDHesu9XUeR1TQFOB4VYK/AVcPd/7ubf\n6/7N0p8u9TwgfPUV9OwJbds6M48tIBgTGRYUoqhTo058v+97T/Ps2RO+/RaOHvU023LJK8hj9IzR\nfL/ve+aNnUdK/RTP8laFv/7VWW7ipZeczuRatTzL3hgTxJqPoqhjQ++Hpdau7bSvf/UVDBjgadYh\nOZ53nJHTRxInccy5bQ61qnn3iZ2XBz/7GSxa5NSGOnXyLGtjTAmsphBFbZLasOvILk7kn/A031g1\nIeX78hk5fSQJNRP4103/8jQgHD0KI0ZAdjYsWWIBwZhosaAQRdXiqpGalMqmfZs8zTcWQUFVuec/\n91CgBbwx4g1Xq5UGy82FgQOhaVNn3aJ69TzL2hhTBgsKURaJfoXLLnMmcRUUeJptqZ5c8CTLdy1n\n+sjpngaEHTucIHfllTBlirMPgTEmeiwoRFkk+hUaN3bW91m+3NNsSzRlxRSmrpzK7FtnU6+Gd1/j\ns7OdYDBunLPdqM1MNib6LChEWadGnZy5Ch770Y+cfQIi7audXzFh7gQ+vO1DmtVr5lm+OTlOk9Ed\nd8DDD3uWrTGmnCwoRFnHRh3ZsM/bmgI4a/589JHn2Z5h3/F9jHpvFJOvnUznxt4tzbpnjxMQbr4Z\nHn3Us2yNMWGwoBBlkZjABtCvH6xaBQcPep414HQs3znzToZ3Hs51513nWb5HjsCQITBsGPzmN55l\na4wJkwWFKGuR0IJDJw9x+ORhT/OtXdtZNfWzzzzNtsgf//tHdh3ZxfNXPe9Znvn5zuY3F1zgLGpn\nfQjGxJ4FhSiLkzg6NOzg+QgkiFwT0tLspTz35XO8e+O7nu2DoOpMTCsocHZEs4BgTMXgKiiISIKI\nvC8iq0VkhogUOxRFRPqJyHJ/uvsCjv9eRNb6z00UkUQ35TlXRKqz+eqrnc5mL7e0PlVwinEzxzHx\n6omkJqV6lu/TT8PSpc7mODbs1JiKw21N4dfAIlW9EFgM/Co4gYjEA1OA64GLgbtEpHAt5U+ALkBP\noC7wiMvynBMiMSwVIC3NCQjr13uX5zMLn6FNUhtu6XqLZ3n+61/OekazZ0NCgmfZGmM84DYoDAOm\n+V9PA0YUk6YXsFFVs1Q1D3gHGA6gqp+qqk9VfcDHQEuX5TknRGICGzhNMF42Ia3JWcMrX7/CpKGT\nEI/ad1atgrvvhhkzoHlzT7I0xnjIbVBIVtUc/+scoLj9v1KA7QHvd/iPBfspMNNlec4JHRt2ZP1e\nD7/OByhsQnIr35fPuFnjeGbgM56tepqb66xn9PLLcNFFnmRpjPFYmaukisinQHGzlB4LfKOqKiLF\ntWaX2cItIo8Bh1V1enHnMzIyil6np6eTnp5eVpYVWpemXfhuz3f41EeceNvXXzgB7PhxZ0RSuCYu\nnkhizUTu6nGXJ+XKy4ORI525CDff7EmWxpgAmZmZZGZmus5H1EWvpIisA9JVdZeINAc+V9W0oDS9\ngQxVvdr//hHAp6rP+d/fgVNLGKiqZy0fKiLqpowVVdsX2/LJ6E/o2MjDbdj8Lr8cHn/cmeUcjh8O\n/8AFf7mAxT9Z7Nl+0g8+CBs2ODumxcd7kqUxphQigqqWu93X7dfUWcDt/te3A+8Xk2Yp0FFEUkWk\nBjDKfx0icjXwf4FhxQWEyqxbcjdW7loZkbyHDHE+fMM14bMJ/OSin3gWEP75T5g5E956ywKCMRWd\n26DwJNBHRFYDlwJPAYhICxGZDaCq+cA4YAawDJiiqmv9178M1APmisgKEfmzy/KcM7o3686qnFUR\nyfuWW5wP4ry88l+7ZMcS5m6ey2N9Hys7cQjWroWf/xzeew8aNPAkS2NMBLnaeU1VD1PMiCNVzQaG\nBryfD/QoJp33bSfniO7NuvPa8tcikne7dtCxI3zyCQwdWnb6Qj71cd+H9/HMwGdIqOl+rOiRI3DD\nDfDss9axbMy5wmY0x0j3Zt0j1nwEMHq001xTHm+uepM4iWP0haNd318VfvpTZ6+Hu7zpqzbGRIEF\nhRhpk9iGI6eOsOfonojkf9NNMGcOHDoUWvojp47w6LxHefHqFz0ZEfWXvzhNRy+/7DorY0wUWVCI\nERGhW7NuEetXaNQI0tPh3/8OLf2Li1+kX5t+XNryUtf3XroUMjKcfgQ3w2KNMdFnQSGGuid3Z9Wu\nyAQFgDFjQmtC2ntsL39a/CeeHPCk63vu3+/MR5g0CTp4M3jJGBNFFhRiqHuz7qzMiVy/wrXXOlt0\n7txZerpnv3iWm7rc5HoIqs/nTJwbMQKuv95VVsaYGLGgEEPdmkVurgJArVrOh/Pbb5ecZsehHUxZ\nOYVf9/u16/s995yzi9pzz7nOyhgTIxYUYuj8Juezcd9GTuRHbt7e6NEwdWrJy2k/kfkE4y8eT/ME\nd6vTffIJvPKKsxR2DW+2XDDGxIAFhRiqVa0WHRt25Ls930XsHv36OfsVvF/MXPP1ueuZuX4mD1/+\nsKt7ZGXB2LFOjSTFm7XzjDExYkEhxiI9XyEuDn77W2f/Y5/vzHMZ8zN4qM9DJNVKCjv/48edJqoJ\nE5wAZIw5t1lQiLFIroFU6NproU4dp2mn0Le7v+XzLZ9zb697w87X54Nx45zNfR54wIOCGmNizoJC\njEW6pgDO5jtPPunMHSgocI49Mf8J/vey/6VejWJ3UA3JY4/Btm0wZYrtsWxMZWFBIcYKJ7BFennw\nq66Cxo3hH/+A1TmrWbhtIff0vCfs/CZPdrbVnDnTGeVkjKkcXC2IZ9xrXKcx9WvWZ8uBLbRr0C5i\n9ymsLdx1F1xY/Qkevuxh6taoG1Zec+Y4tY6FC51AY4ypPKymUAH0btmbL7Z9EfH7pKdDs+4r+XTt\nf7m7591h5TF7tjNB7d//thnLxlRGFhQqgEFtBzF389yo3CtxeAa1l/+St6aWf1Giv//dqWn85z/Q\np08ECmeMiTkLChXAwHYDmbt5bsT7FZZlL2N17lI+//14fv1r+PTT0K99+WVn2Om8edCrV+TKaIyJ\nLQsKFUD7Bu2pEV+DdbnrInqfjPkZPHLFI3RNq8X06XDbbbB6denXbNvmLMP9yitOH8L550e0iMaY\nGLOgUAGICIPaRbYJ6audX7Fy10p+ctFPAOjb1/n2n57u9BF8++2Z6Y8dcya99egBXbrAihWQmhqx\n4hljKoiwg4KIJIjI+yKyWkRmiEixA95FpJ+ILPenu6+Y8/8jIj4RaRhuWSqDQe0GMXdL5ILC45mP\n81jfx6hZrWbRsVGjYONGZ+vOgQNhwAAnWLRsCUlJsGaNs8rq4487k9+MMZWfhNuOLSLPA7mq+ryI\n/BJooKoTgtLEA+uBQcBO4GvgFlVd6z/fCngV6AxcrKr7irmPRrqtvSLYfXQ3nV7uRO7DuVSL83ak\n8H+3/5eb/3Uz39/3PTXii1+t7vhx+PhjaNDAqRGkpEA1G7BszDlLRFDVck8rddN8NAyY5n89DRhR\nTJpewEZVzVLVPOAdYHjA+T8C7lZjqySa1m1Km6Q2LM1e6nnej2c+zq/6/qrEgADODmkjRkD//tCm\njQUEY6oqN0EhWVVz/K9zgORi0qQA2wPe7/AfQ0SGAztUtYyuzqojEkNT52fNZ+O+jdzR/Q5P8zXG\nVE6lBgUR+VRE1hTzMywwnb99p7g2nmLbfUSkNvAo8Hjg4XKWvdIpHJrqFVXl4bkP89SVT1E9vrpn\n+RpjKq9SGwlU9aqSzolIjog0U9VdItIc2F1Msp1Aq4D3rXBqC+2BVGCVOCuptQSWiUgvVT0rn4yM\njKLX6enppKenl1bsc1a/Nv24afpNHD11NOwlKAK999175PvyubnrzR6UzhhTkWVmZpKZmek6H7cd\nzXtV9TkRmQAkFdPRXA2no3kgkA18RUBHc0C6LVTxjuZC/f7Wj8f6PsbgDoNd5XOq4BRd/tyFSUMn\nMbDdQI9KZ4w5V8Sio/lJoI+IrAYuBZ7yF6SFiMwGUNV8YBwwA1gGTAkOCH5V51O/DIPaDeLDjR+6\nzuevy/5K+wbtLSAYY8ol7JpCtFS1msKmfZu49LVL2fqLrWE3IR06eYhOL3fi49Ef061ZN49LaIw5\nF8SipmAioH3D9vRt05dpq6aVnbgETy98msEdBltAMMaUmwWFCuih3g8xcfFEfOorO3GQpdlLmbpy\nKs8Pej4CJTPGVHYWFCqgK1pfQf2a9Zm9YXa5rjuZf5I7Z97JHwf/keR6xU0bMcaY0llQqIBEhAd7\nP8ifFv+pXNf9buHvaNegHbd0vSVCJTPGVHYWFCqokV1GsmHvBlbuWhlS+pW7VjJp6SQmDZ2Ef+6H\nMcaUmwWFCqpGfA1+fsnPQ6ot7Du+jzEzxvDCj16geULzKJTOGFNZWVCowMb3HM/HGz/m76v/XmKa\n3Ud3M2DaAK7pcA1jLhwTxdIZYyojCwoVWMPaDfls7GdM+GwCr3z1ylnnsw9n039qf65Lu47nBj1n\nzUbGGNds8to5YMv+LVz15lWM7TaW8RePZ13uOtblruP3i37PTy76CROumFB2JsaYKiXcyWsWFM4R\nu47sYug/hpJ1IIvzGp9H50ad+VH7HzGq66hYF80YUwFZUKgCVNWaiIwxIbFlLqoACwjGmEizoGCM\nMaaIBQVjjDFFLCgYY4wpYkHBGGNMEQsKxhhjilhQMMYYU8SCgjHGmCJhBwURSRCR90VktYjMEJF6\nJaTrJyLL/enuCzp3p4gsFZFvROS5cMtijDHGG25qCr8GFqnqhcBi4FfBCUQkHpgCXA9cDNwlIuf5\nzw0AbgX6qGpX4AUXZakSMjMzY12ECsOexWn2LE6zZ+Gem6AwDCjcXX4aMKKYNL2Ajaqapap5wDvA\ncP+5e4Bn/MdR1T0uylIl2B/8afYsTrNncZo9C/fcBIVkVc3xv84BitsUOAXYHvB+h/8YQEegsGlp\nvohc5KIsxhhjPFCttJMi8inQrJhTjwW+UVUVkeJWrSttJbvqQDvgcmAQTvPRlaWW1hhjTESFvUqq\niKwD0lV1l4g0Bz5X1bSgNL2BDFW92v/+EcCnqs+JyIfAy6o6x38uG2inqieC8rAlUo0xJgzhrJJa\nak2hDLOA24Hn/P++X0yapUBHEUkFsoFRwC3+c+8DQ/zBoRewKTggQHi/lDHGmPC4qSkkAG/iNAFt\nAsao6hERaQG8qqpD/en6AxNxAtCrqvqS/3g88P+AAUAecLeqfuHy9zHGGONChd9kxxhjTPRUmBnN\npU1yC0jzjP/8YhFJKy5NZVDWsxCRNBH5r4icEJH/iUUZoyWEZ3GbiKzy//xDRLrGopzREMKzGO5/\nDitFZLaIXBKLckZDKJ8X/nSXiEi+iFwfzfJFUwh/F+kiclBEVvh/zppTdgZVjfkPEA9sBFJxRiWt\nBM4LSjMEmON/fSmwONbljuGzaAL0BJ4C/ifWZY7xs+gDJPpf317F/y7qBrzuDyyIdblj9SwC0s0D\n/gPcEOtyx/DvIh2YFWqeFaWmUNokt0JFk+VUdQmQJCLFzY0415X5LFR1j6ouxemLqcxCeRb/VdWD\n/rezgZZRLmO0hPIsjga8TQTOGrhRSYTyeQFwH/AeUJknxob6LEIesFNRgkJpk9xKS1MZPwBCeRZV\nRXmfxf8BZka0RLET0rMQketEJAtneZmfRqdoUVfmsxCRFJwPx7/4D1XWztNQ/i4UuExEvhWROSJy\nfmkZVpSgEOr/YcHRrjL+H10Zf6dwhfws/GtpjSZoYmUlEtKzUNUZqpoK/Jzih4lXBqE8i4nABHXa\nT4RyfFM+x4TyLJYDrYDuwL9xphOUqKIEhZ04hS7UCifilZampf9YZRPKs6gqQnoWInIh8FdgmKoe\niFLZoq1cfxeq+i7QUkQSI12wGAjlWVwMvCMiW4AbgD+LyLAolS+aynwWqnpYVY/5m5deBxqISMOS\nMqwoQaFokpuI1MCZ5BYczWYBY6FopvQBPb32UmUSyrMoVFm//RQq81mISGvgX8BoVd0YgzJGSyjP\nor2IiP/1EOB4QH9LZVLms1DVdqraVlXb4vQr3KOqpX5DPkeF8neRXPh3AfwY5+9iX0kZupnR7BlV\nzReRccAMTk9yWysi4/3nJ6vqHP/QqzXAUeDOGBY5YkJ5FiLSDPgaqA/4ROQB4HxVPRKzgkdAKM8C\n+A3QEJjk/7vPU9VesSpzpIT4LG4AxopIHrCC4jscz3khPosqIcRncSNwj4jkA6sp4+/CJq8ZY4wp\nUlGaj4wxxlQAFhSMMcYUsaBgjDGmiAUFY4wxRSwoGGOMKWJBwRhjTBELCsYYY4pYUDDGGFPk/wNG\nCDsm4SY6pgAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x112c5f610>" ] } ], "prompt_number": 491 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "c. Combine space and time to create spatiotemporal filters" ] }, { "cell_type": "code", "collapsed": false, "input": [ "e_slow = np.outer(slow_t, even_x);\n", "e_fast = np.outer(fast_t, even_x);\n", "o_slow = np.outer(slow_t, odd_x);\n", "o_fast = np.outer(fast_t, odd_x);" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 546 }, { "cell_type": "code", "collapsed": false, "input": [ "def plot_imgs(imgs):\n", " for i, (name, img) in enumerate(imgs.iteritems()):\n", " plt.subplot(2,2,i)\n", " plt.imshow(img, cmap=plt.cm.binary);\n", " plt.gca().axes.get_xaxis().set_ticks([])\n", " plt.gca().axes.get_yaxis().set_ticks([])\n", " plt.xlim(nx/4., 3.*nx/4)\n", " plt.ylim(0, 1.4*nt/3)\n", " plt.title(name)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 558 }, { "cell_type": "code", "collapsed": false, "input": [ "plot_imgs({'e_slow': e_slow, 'e_fast': e_fast, 'o_slow': o_slow, 'o_fast': o_fast})" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAARsAAAD8CAYAAABHGwCvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfXuMbF9W1re7u7r7XiYMIjAKylMeThCCGRyM4AxqAA0E\nEYyCAzpiCAkSJJiIEjNjNPiPiBp8DVESIRGDQKImQ4zA/Bgibw0ICsObeYSZYRgmP+69/azjH92r\n7ldfr7X3PlWnqqu715ecVNV57X3249vfWnvtU2UYBiQSicSmsXfbGUgkEg8DSTaJRGIrSLJJJBJb\nQZJNIpHYCpJsEonEVpBkk0gktoIkm0QisRXcWbIppTwqpXxLKeUdpZT/dNv5SSQ2hVLKq0spb73t\nfKyLg9vOwBr4IgCvAvCxwzA8WfUmpZTXA/iYYRi+dKqMJRKJm7izygbARwD4mXWIJpFIbA87Qzal\nlD9cSnlTKeW9pZSfLaV8XuXcfwDg7wP4i6WUF0spry2lfHQp5QdKKb9VSnl3KeU7SikvpWu+vJTy\nI6WU95VSfr6U8qdKKZ8D4O8C+EvX9/nfm3/SxEPBmDZ9ff6nl1LeWEr57VLK20opXzfmvqWUjyql\nvJfO+9ZSyjvp97eXUr5mqucbjWEYbn0DMAPwSwC+AVem3WcCeArg4yrXvA7Af6DfHwPgT1/f65MA\n/BSAb74+9kEA3oorkwsAPhzAR3v3yS23KbYV2/RPAPjzuBIBLwXwKdf7Xw3grY37Wtv+dbruF67P\n/QQ69sm3VSa7omw+DVcE8M+GYbgYhuEHAfwvAF9cuaZcbwCAYRh+eRiG7x+G4XwYhp8B8K9x5dMB\ngAHAIwAfV0qZDcPwG8Mw/Ip3n0RiIqzSpvdwNWi+/zAM7xuGwVPa0X2/5Pr4CwBeXUr5fbhq9/8Z\nwKtKKR91fd+fnuLhVsGukM2HAnjLsOx/+UkAH9Z7g1LKy0op33ktP98H4JsB/F4AGIbhPQC+FMDX\nAnhnKeU/llJeNl32E4kbWKVNfxmATwbwK9dm0h9b4b4v4EoJfQaAH7r+/SoAfxLAm1d4jsmwK2Tz\nDlypjvejfZ8K4G2Va/TdGN+IK+n5icMwvBRXxLJ4vmEY3jgMw5/BlWP5GMDfpvuksklMjdFtehiG\nnxuG4csAfDCA7wPwL1e47wu4IppXA3gTgB8G8CdwRThvWuE5JsOukM2P4sqn8jWllFkp5dUAPgXA\nd1auUYL4XQC/A+D8ekT4m4sTS/m4a4fwEYB9ABe48uMAwG8CePn1sURiKoxq09fn/JXrSY0DLLdR\nxo/V7jsMwy8BOAHwGgAvDMPwIoB3AfhCXBHRrWEnyGYYhnMAnwfgswC8G8C3APjiYRjeUrsMy+rm\nm3Hll/l1AN8E4F/R8SMA//j63j8J4L24moUCgO8C8ATAu0opPznF8yQSK7bp1wD4VQC/AeCVWPbv\nDNf3Peu475sA/NYwDG+n38CVb+fWUK691IlEIrFR7ISySSQS9x87TTallJ+7DrbTrTZ9mEjsLB5y\nm04zKpFIbAXVhZillGSiDWIYhpxyvyVk294svLbdXPX9ute9DgBQyrT9YmpFtcv58/L2+te/frL7\nJ1bDptt29KnnGSwfpZQb33WfXuO1V06Xj99W277Lr5hIJLYOr3P1dN4a4QzDcINIeF8tL6WUMP3a\nsVr+pyZfQ5JNIrElqMKwffq91tkj9eOlpdfV1I/u2wThJNkkEh3oIYAxnTnaZ6TQSk+JhsnErtd7\n9uTDy89USLJJJDaMyF/C31cxn/i6Wpq7giSbRKKCqUZ2z0nrKQ/93pMv/j41yUypcJJsEoktI5od\n8kind1bK+63m1G0jySaRGIneGanWm+v0njWisU+PdCLs7e01p929fOdsVCKxA2iZNl4n7iEbvren\nSCJV0yKGmpM4UjwPdjZqHeZdNSYikfDajme2jJnxqRGOEcne3t7i3CgPqzqIayaVptf6vQp2mmzW\nIYaoYHbJhk3cHUT+kVYHtk/9HqmbWqfuNaPUBGspmlUJaCx2lmw2SQhJOIkxaDliax2aiWU+n2M+\nn4dEo+fzfXocxXbu3t7eIh0+r0d5RU7mKbCTZLMNIkjCSfSgRTQ11BRNTdVEzltP2bRUkH33yLBX\nWU1FODtHNj0E0BNh2YMknMQYrNrhemakjBzm87nbLplc9vb2sLe3d4NsWEHZsVXa94NwELdsSS94\nqWfk8ZiajyXhJFpYt/OpOcVk4xFGbcbKCMczo+bz+WLKu3eKvDUNPxV2hmx6nFarMO6mYgYSDxdR\nxK4OXDVFM5/Pl85jYtBzI/PJIxLz1zDhWN5avqXoGafCzpANo6Y0xhBOzZ5tpZNIeNPLXgdnXwuT\nhR1jJRM5iU2tqDrR40o0NlXOafExdRJ7qKmoe+0gnsJnA/QxszaQRAKI1x15nbY10xOZT5eXl0um\nSkuB2DHz1xjxKNnw95oZ1eOs1udbl3x2gmxUyrU6fuuhvREpSjMJJ8GI2o431Qz4sSgejGjm8zku\nLy8Xvw1GGqxING11EKuTWE2zFjH0zki1fvfi1smml2D0mpYjuEf5JLkkGK3Byzun1Y5U2eim97AZ\nqWi2ykhmf3//hrLhNFu+nRY0bb7vqtgY2fSwvZ6vtm7vvceQTE8eIngVkHgYiJQNg9tuRDKmaphs\ngOfKxlRNayaKN0uTSUH9N5xvvf82nMPAhshmLPsD8UuFWtdsq9N7XvwknIcHr+PqMUNEOp4ZZfAc\nyJ5KUbKxay1dJpqastHBPXJRTNHeJyebmhSNSMQbEdZNy/vktPj3GEXjXZu4X1BnrXbYSOF4batm\nQqmPBVgmG82Tkcz+/j729/dDZbO/v7+UZs1JrPmO+sMU7XxSslnHTzJG2fTONEWzB2MIp0eRJeHc\nP9Taj2e2jyUam43S9mNEoQOvRzT2aemxIoqijL38RSZb1PZvfTZqEx2uVQi1NFuzB1M6h5Nw7jdq\n6oadsR48E8o2Jhtrj5eXl0sLKTUf7CBWsuE8eWZWlD/+nMoZ7GESspkqU56DWG1iLdTarFSv3J0q\n70k4DwM1v43C89UY2bAZtb+/DwALImGyYROKFY59Gi4vL5fS9IIA7bj2NSW9TbTlW5369h5Yzama\nacPkE212Xk9eEgnFKu2K1UxN2TDZGJRoNB+eKeWlbwqJzalaXj2TjtOeAluZ+jb0OIjts2ZP8nlq\nP69KNq38KFLFPCyMMaW8WSj7NKK5uLhYirOxTyYoT9nwtr+/j4ODgxvtM1I1nrnXmpRRa2IdrE02\nY5mw5Yj1Ctu73j6jEWAM2bRkcLQ/CedhgNtR5DRW6MBZUzZKNj2EY+rGlA23UyObyIzifEV9TYlU\n2/sq7X8tsqkVumbM9tW89tHG92y9o5XP9ciGScqL4IzgVYZXAZpe4m7BU8refu+6mm/EIxx+m57d\ng4P+tO33kA07h1tKxjPXPN/NFEQD7EhQn2c+cUGoU5g/vbRr0lErsJWn2vEpJWZidxANojVVU+vY\n0dS3vrqzpWw8omGfjbVHT9l4iPpSNGiuO5hOPhsVZWSMqtEISvuu7+qoSU2uQF3YZrD76WjE+dNP\nj+GTcO4ftJO2VHsEz3zylI2105oJpX4bJRtL7/LycomMalPgLRPKUzqrYqtBfTX0mFFMNPZd09dK\niaQtm1C21XxJSTgPCzVTyTteM1dU3fAUuGFvb+/Guqkef41HNkoykYnH+eTn2JQ7YKNT3z0jQKRo\nopWvhmjBmhYsT/vxuTaKeNdECszOTWJ5OPAUTq9prm3Zi7WxtmTtlPdrPjxVw2Tj+WtqZhSjZ6Bd\nt81vPM5GO6/9VqLQEcDz3bCSqfmBtGI8h1droRpf4xV6Es7DgqoaHsBU7USugSiKmNurp2w4TSUa\nm/oehmERoxMRTs13E5lLU7bzlclGC9hjfz0XiBnUUzha4Dp7xJtXsBrQpCRnI4HH3N65fIwJJ02p\n+4loENK23ar3iHTYZ2N+Fp0Y8dLW9s1p6Fv8WiSjvzfZfieZ+m5ViHedZ9poZaj68RzDyv4a+GSb\nnaeL1ZioPHgKjNPzCMcrk8TdQdSea+o3QjSImrKx++jizIhovLZt6XhE04IO2B7h9JJQ65ytOYi1\nYjySiZifz2Ny8GRmVCl8ni7tV5OqB2lS3W9E9ekp+kjJ97gJuJNHW02164Cpimas38azAlTxr9rW\nVyKbHtXimU4e4UTMH6kbYHlWKrJrebFaFAjIRNOCN9LUVEwS0N3EOiN41A68Nu6Z6ZFi5/tHmymb\nHpKpkZpHMFNhNNlEvproAT3SYUS2LMch6MP3vGBIPfeWlqqaVrSlfjLzezI6CebuolV3q9StEgrv\ni4715FOJJuqXm8CqZDSZz0aJRj8j30hky3LMgd3HKoK99qwulGi8gCb1F40hGv6s+WlS1Txs1Mik\ndd0qqBHOWFNqk5hkIaZHNC0bln97yobVjd2DyUadxZyuLsNXsrE0e+MRPHPNc6jVzKrE7mNbg8QY\nM6yGmhlm+zaBrfpsavDUTaRq7JjatNE7P8wcsinClrJh0vHUh57rqZtW5SWx3C/UCMcbYDzUfCs8\nW6QOYL3WS9/z/eixFgl5+fW+t84di628z8bzbXgkEy3DV4loMQme4qiFdKsK0fd+aL7tPP7U+yTu\nJ1p13NsGIqLhdXkAwgHPS9dzMuv+yK/p5U8H4jHkMwaTT33XmFn311TNxcVF821mrSjLg4ODG8qG\nX53IbzPz8u6NDgbPNEvcD+ig5KkD66Q15aBE46luS6u2nknJxPqJzrR6YSNe3iL/avS9t323iG3y\nF557ZONlImJmVTeqbADcmKliKVpbP8L5UFXTQzSpbh4WtI65rfFnrW0o4Vh7tEFUyUYJx2DtnSdO\njHB4INXJlZq6YTKz37x/akz6iolWZiPV4xGNTn+z3IxicGqEY+nYfWx1bMtX0xrV7HwtC00vcXeh\ndW3mT+Qf4X7gmfQHB1fdjgPyDg4OFpu2S7svq/7z8/MbBHdxcbHYlHS8vsJ55LbdslBWxWRBfVHm\nVJYpMdWIJvoD9taSBt34Pa0WEh6ZUIyWqtFPO1Yrp8TdAtex/dbjPSbUwcEBLi4ultqiks1sNltS\nNzpwWb8wQtF8XF5e4vz83FU3njtC27wS0NSks9ZCTC8jNXvQg2dGRQ5ij4Q8RmafjY0UlpZ9slyt\nOec8BaONTwkncXeh5GL79HvLzPZUzWw2WzKbeG2UtdfZbHZD3SjRnJ+fY29vb2l9FYAFCZ2fn+P8\n/HzJ78k+H0sz6qfepMmYPh1hsheee5nj4zXnkefcYsLhexrpeKNJ5K+JyKb3BUP2PWqIuj9J525D\nSUN9fZEbQAc/boeqaPjfFQAsCKaHbGw/ExaAJdXD5lQtTESfl49Hm50zFpOv+q597/GN1Hw2VkCe\n80slYLRcYRjGv2BI1U2kgPSZE3cXVp82keAdU7+NdmZzBLOiYdXNA5WZWqxumAyMSM7Ozhb9RGda\n1czy1A3nj/012q75+FSm1KSzUT3Kxo55MtSLIlYzquZlV6Lx/qLUGgCfO4Z0ahI7cT+gPjhrL9qm\nI7IBsNQGWdEY0agfxdqpOopZ2Zyfny9+m89RyUbDR6IQEn0ebxD1iGYdwtlIBHH0vUc9eP4bZv+a\nc1gZm0cSvm/E2D0F6VVK+mvuByJHvx6rKXQ7zmqFv0d/1eKZ/2xGcXzYxcXFgog4LzpgezNSlr/I\nhGJMSTTAxGujdJ99B+KH8kwpJR1WNt45UZ5UudRMqKggVYFFo0ASzv2Amki2TxWtnmPn8fXsE+QB\nz9q1wnMB2H3Nx2OKptctEfmTANwgHK/9RuJhFWz05VmtzHkVVSukGtF45KF2qXdeD1qmUhLN/UOL\naFrg9hX9H3ftWj1XZ56iPPX6Dse0/1We38PGX3i+Kriyvf2rwCvgJImHi5bqtmM9Pjr1V3omfc0s\nidwIkQ+Tt8iqYFcCm05jiKaFMf1x7ReetzIyhj2963uvaTWYnvRWRRLW/YIOdNEnw4tNMTPK88NE\nyxE0nsYIhaez2ZfJU/HqOjA/EYd/jJ0Q0edtmZI1rEw2SiTq0+CM1EaD6IEj80crqzY6sClmxzXA\nqaegetRQEs79QGSy8z4+z1MV6iCezWaL6GBvOQLwfCbJSMZ8lBwGcnZ2hrOzsyXSMd8PE433Ny9e\nXtkvVCsD7cc9Ss/D2maUSrna9x6los5dvk+NaDgNlqHsjNP9NR8Q56n2O3F/EBENtx9tK2q2cFu1\nIL3Dw0McHh4uSIcJx2A+mbOzs4Uz2ZYfmLI5OzvDyckJzs/PcXZ2tiAhA5OMpcX5VNXDedB+2uoX\nq7gzJvPZKAt6medMqo0bMTJHEHP8gU79ccPg6GNVPrWVsVqwnm2tv6e0fxO7AU8ZewMU4M+8Assx\nNbPZDEdHRzg8PMTR0dGNZTTA86UGRgZGNNaf7Pfp6elisxgaS5uV1OHh4VKYh75ATpfpeP3II1vD\nKk7jScjGUzOe1KoRjkpAXe1tZFNbhs/KxexeBa+I1XUjHmqEk6Rz/xARjaeUgZs+EFY2RipGMsfH\nxwvSMbPKrrFoX2tD5+fni+NsXp2enuLZs2d49uzZkskFYCk9y6MGEgI3Q0O4H7FosGe2+LZeH2mE\ntcgm8s1oxGUkyZRkrEC4wrzFaixDdf2IVYxVhEZq2ghhlWvkoyaWpam+I97P39X/lMRzt6HmeBS5\nPgzDkmkCLLdrVjZHR0d49OjRwqxSsmHTSCOIWdmcnJzg2bNni2us3VlarGhms5m7XIH7nQ6UOvBy\nf16FZAwrkY0myCTDdqhWiidBI/PJjjH58Hlq97IJxYzPjM5mlLcyNlo/ogqGj9cCBJNw7h68NhtN\nPQPLof66n82ow8NDHB8fL7bDw8NFdPEwDAtfjbXf2Wx2Y23U2dnZgmyePn26IBtLz0gNwILouI17\nfc9TNloe2rYjwmkR0STKhhNRVcPnerauLkyzYyr9gOfrR0yG2mI1S0u9+eZYYwJk5aMvGvLyx8pG\nzTqPXJJg7i64Pet3Vb52nNtGrW0b4bA5ZWRjg3QpZUEgrGx0EDXCsdkpS5OX9ijR1BZiRmRjqo3b\nvV2vZNuDSXw2TDCeGrCMqwTlCpnNZjcqKJra05WxKjW5gnR6Txeq8QuHvMVq3Jj0mH1G6idx9xCp\ncfXZaHvwFA+3ZTWnjo+Pl5SNtdHT09OFP4dJgFd9s5OYycbaL8+C1d79pLO76ntVovGUzRizajTZ\neA5gPaadzxsxuDL0NxNNNFpwzIKyP4CllwxxfnShmi5Yq/lrlCj5PP2euLuIlA2Tjh0D/Ehk9Yuo\nwjF1bm3X7u1NjXsuAlM1p6enS3mwwfjo6MidCOH8eW4AdmFE/ZmxcWXjSSgteC9zkc+GSYQrtWbW\nKFmZsjHTSQvSywOnE62M9VSNPp8+axLO3UM0eHr7IjIyaFtldeO9s4YnNnTGlX1BSji2AVhS/ZF7\nIFLoOqjWLBS+LiqjCJP4bPR7b2cz34x3D+93rVMbyUTp1O5by1/tWTz1lrh/0M7aIhuDp270xed2\njhJN5IZQN4C1eUuDfTTR6ywsbxGpeP1sCtXeJJsWg3kmhv5WteOpFE/S1dRRZA7xCFDztXjRyLX0\no7zw8VYZJXYbvfW0aj17HZxNlx6/Xy3tKDh1V7DW2ij77GX5yAzShWr6MnK+N0tJXSPizTLZNQa+\nrzfacNwBx014I41HsLta0YnNoTbQRooiwqrqIWqLtTS8tDbpAljZZxM50JhhDdx5NfCJX/LMn94r\nPY1ozFY9PT1djApGNuahtwVrOsvkzRBYuuoQ8/JsefGe3Ssnuy4JaPcR1VNkcqifUqHtRJfS6Exq\n5MzlPHiDpcEbuCMlxfny8srPMNUAutJsVI1glGysA7N3m/dZx7cpQV2wxhViisW88FZJdm8jm5OT\nkwXp2DXWIHRWgMnIfEhMLlppHtHUljyk0rk76Kkna7ca+l+biNCgQI9svCURSmaeNcDT42oR6Nqn\n2kQJO6L5+JRY20HMBRV1PO6k8/l86d0aGmHJpKMh2+aFf/bsGUopC+Lh42dnZ3j27BlOTk4WK2Qt\n9sbIw9Ljv9OwilHi8V4HoM9uz5UO47uNmmNUB8zW1LC1D/0XS4sU1sHX1LgF4nnBg6rIlZB4Sj36\nd00vj0pu6vtR9bMqJjOjvHBuLgjbePkBd34LdHr06NGCdHixGoCltSAAFpGWbEbZMvwnT57g2bNn\ni0q09Ew1HR0dLRENRzF7ctVrTJ6S0RgMr+wSuwceED1nrfrxrH1zwKhex0qGp6t5yttIR99Vo4rb\ni0bmtmTroLxXWURvSLDvPFB6VovtZ6yifCZTNhHhAMvSM2JrJpzHjx8vqRtmfwv4u7y8XFrMpmRj\nhKMh3Uw0qnSifHvxOko0TKA8Ytl9kmR2H1pPkarhetZZTcCfzGA/o12rbdtMf1U31k512QOny23b\nBmpvwbLB8mf9kvPuiYYpfDcr+Wy4QGuEY+cZ+9cigrkQWd1whVjhWeXpMn1eGWvL8C2s29I0Pw0Q\nh3Vr/rzK4vLQxhiVWWK34SlxNZ28c6PBiMlG1zsNw+Cu+j49Pb2xeNLS4NdVWHQ8R+BzH/LWD3pk\naISj+/mz1n7HtO1JlI1nSnkedc+88uShKRxv/UgpZVEp7I1nsuHVseYstvR0/Yj+EbtBG5xtLJ/5\nkyvTGyGTcHYfkbKpEU6kfj1lo2/hU7KxgdLMKfUfcv+w11DMZrNFfiKy0UkOyx8Tiua7pmpWbcuj\nyEZVDX/3SIevUW+37fPWjtjWs36EJa1WrlWcSVduPLPZ7IZ97OVPCYefs6Zm7Houg8Tuo0Y4wM21\ngepEtnO4PbKfxtqyzkZZW2SyYWWjKnwYhkUbtnyw/5PdENxXLH/WR9Us1OPaL7Qta1nUsLIZ5e2v\nMWEkx5RwmHSsoNhM8taOcB406M8kKVBfP1IjG08meza8npO4m9B6VIXjdTi9xtorh2vYcSMgVeVM\nNqa41WfDExv8WlDguVo3wuEXrUc+Ja/N1tSNYmtmVA01UjJ4FapqggtDf0cdOyqkHnmYKuRhwwY2\nHViA+qJLjcVinw2/upNNKA3qM1JiM0qVzcXFxUJVe+8gZgXEyiYiG34Gg5pY0VT4WIwmm6n9D0oY\n3u8xUq11/162bhFa4v7BIxqDmtB8jfptACwpbO7M8/l80fnZ/+O9QVKnvs1BbL/5XzI5D+qO8KwA\nUzWeulGy8Z57FQ6YTNl4qqSHIOwhdCWrmUB2/Xw+X1RE6/0zHPx0eXm5cKKV8jzOxgt6iuzXMZv3\nbIm7g5r/LSIb+9Rr2Tdjf8liIRoau6XmP7dvNqPst01Z8z+IcFyY/hNJNGPm+R1Z9Xgko8/f28ZH\nkU3vjWtT3RGDchg3Ew5LP11kWYuLsQJn9jfHcK0ivPx5mzfbFiEJ526CicQ6ZM8Awu2EycB+e6EU\n1p68hcSsbCw/+/v7N9qgtn/rA5qeuha0XzPZ8L7oWXuxkrKJ/Cv8AHae2ZfR9BsTjM0ccVSwBj7x\nuqeaE+34+NiNRaj9rUZk13os703zp5K5P6iZVHqefUbqwAY7UxKeylCFb+3a7m3tmPex+gaWX5vi\nrY9iKLloXvQczuOqWNuMUsJRGNnwZvvViWbT1cbgto7KCpb/pKs2PWhBTyZXNRaBycaLRTBw/rhC\nWs4zrZCp/VyJzaJFNJGfUQdSVgfcDzyTqzaI8WDOL9zi6zh9j3Q8cvPS19+tdrsxM4pv3iIZzkTN\nTFGisXPNZ+MFPllk8NnZ2ZKDzBxox8fHC4I4PDxc+H6A5cCn6E/DWC5zKDc/kzaKWjxCEs3dx1gC\nMijhRNPNdpwHYc9EMrAlwed4FofX73pIokVI0b4IK5tRKvG84+qv8aYHOb6A2ZojLm0fr/q2Fd1G\nKmbTmqqxAuVXJwJw/8en9pJptmmVbLRh9IwGLVme2A14yqPXpLLz+bsXne7BU8dR/4nywPdntT4F\n4ayDlc0oLTAlnBrZGNiE4pgD89VE77Ph/81RsjESsfT4HxfYr6Oh3V6UJTcSlcjqKB5DOIm7h1bH\njJSK51TuIRv77t3fUzXeffn3KoPc1G14ZWUDYDH9ZmBiiJhZSYVjEYDnfyJX+zsLfveH57M5Pj5e\nkA/PRlkeOdJSX9Sl+bO0I7KJNi2vJJ+7j3U7rLaf1nVeOxqTj9b5U7TJrfhs7LsRjnrHPbJRdWM+\nG/1tjt3IoWzOXyUbUzbA89Bt77WgRkQ6Ba6xD5785WM6Cnn7+DPxMNFrsug1jJbPKMKmzfat+Gws\nIfaUe74NPt9TBzzbw0onikXgeBz12RjBsLmkhMGe+uidrZw/S9eDRypJMAkPU6mIu4y1fDbe75q9\nqc4rJgImktrslTcLZPfmeBoOetIZJTXrongEI49aJasjUPclEokrrBVno9KOv3sd1PPwGyGYOtJl\n73q+Omc1SpmX8dc8+55p580mtOSvHkuiSSR8TBLUt+r5an6oJ907X5WERzTDMCyiLWszAZHi0vy1\nkASTSLQx6SsmWvP/HnR6UM0x/a3X1tKJ8tMiNS9/EZJoEok+TP4+m3WnB9fpvOvEFNSwLqHk1Hfi\nvmJM2765ziAxOZJoEvcVY9p2kk0ikdgKbo1sphztUzkkdgnZtn00fTabfNhdLshdzltiGmTb3i5K\nLeFSyu6W2D3AMAx3OyT0DiPb9mbhte0q2SQSicRUSAdxIpHYCpJsEonEVpBkk0gktoIkm0QisRUk\n2SQSia3gTpNNKeUflVJ+tZTyo7edl0RiUyilfGQpZV5KudP99c5mvpTyGQC+EsArhmH4tDXu89dK\nKW+eLmeJRMLDnSUbAB8B4BeGYXjPbWckkUi0sTNkU0r50FLKd5dS3n1tGn115dwvB/CtAF5ZSnmx\nlPK6UsoHlFL+WynlXaWU95ZS/msp5cPoms8vpfxgKeV3Sim/Ukr5klLKJwD4NwD++PV9fnvzT5p4\nKBjTpq/Pf3kp5Xuu2/BvllK+qXLf/1JKeU8p5RdLKX/jev9xKeVZKeUDr39/QynlvJTykuvf/7CU\n8s1TP2f+IkBnAAAet0lEQVQ3an9Hsq0NV6T3UwD+OYCXAfgMAG8H8FmVa/4qgDfT7w8E8AUAjgF8\nDIDvA/C918dmAH4NwCuvf78MwMu9++SW2xTbim36uwB89XV7fUzt9SMBzAHsXf/+IVwNkocAPhnA\newB85vWxFwD8hevv/x3ALwL4HLru82+rTHZF2XwqgI8G8PXDMLxzGIY346rg/3LlmqW1F8Mw/PYw\nDN87DMPJMAy/DOCfAHiVHcZVxfyhUsrj6zT+r3efRGIirNKm9wB8OIAPHIbh6TAMP6YnlFL+IIBP\nB/BPh2E4G4bhpwG8EcCXXZ/yAoBXlVL2AfwRAP/i+vcxgFfginBuBbtCNh8B4CUA3nFtAr0XwF8H\n8CG9NyilPC6l/NtSyq+VUt4H4LsBvLSUUoZhuADwhQC+CMDbr82tj93AcyQShlXa9NfiStH8bCnl\nx0spf9Y550MBPBmG4S2076cAmMvgBQCvBvBHAfwfAP8DV4PuKwH80jAM7139kdbDrpDNWwG8COBl\nwzD8nuvt/Ydh+NwR9/g6AJ+GK+n5UlyRS7neMAzDjwzD8AUAfj+AXwfwjdfXDUh1k5geo9v0MAy/\nMQzDVw3D8MG4Mr/+nTPd/Q4A71dK+Xja9woAb7v+/iMAPh5XLoU3DcPw/3Cllv4cgDdN8WCrYlfI\n5scA/CqAb7yOKdgvpXxiKeUVI+7xuwB+B8BpKeXlAP6OHSilfMi1g/j9AOwDOAfwQdeH3wngY82J\nlkhMhNFtupTymlLKB5dSDgBcAPgAXPlvFhiG4a0AfhjA3yqlHJVSPgnAZwP4juvjT3GldL4KVyoH\nAP4nrsJEXsAtYifIZhiGOYDPxZVE/FEA7wbwBgDvX7vsejP8e1w54N4C4Nuvf9vxPVxJ1LcD+Hlc\nOZO/8vrY9wP4CQBvK6W8a4LHSSRWbdOfDeBncTUAvgbAFw3DcGq3pPO+GMAfwJXK+R4Af28Yhh+g\n4y/g6sV4P06/X4Jb9NcA+T6bRCKxJeyEskkkEvcfO002pZQ3Xgfb6fb1t523RGIVPOQ2ne8gvkUM\n+Q7iW0O27c3Ca9vNf1f4tm/7ts3k5oHjta997W1n4cHjDW94w8rX6iA9xvdZ5P/mi/Nf87W/g7bP\n1vfevLTSHIuv+IqvcPdP/ve7icRDwxji6enQ0d9ID8Ow+LtbO8ZpRd9reeB7bRpJNonEhFh3dldV\nz9h0etKPCGbTxJNkk0iMRKuj6/FeNaPmlKdAIlXTm1++dtuEs9OzUYnEriEymSKiia6xTq2+GoPu\nW8WvU8tvK8+bwK0pm1XYf8z5YwvQY/9EooYa0Wh78pQJo6Vs+J6eOqmRXJQXvsc2fDc7o2xW9aCv\nc06UdkZVJ1roUQz6O2pXNWXjzVzVrmuluW01w7gVZVOzeVskMYZEjLE3lZfE/YP6SVqITCS9Z6s9\nGZHs7e25yobvMZ/PF2nV2nhtGrxHbXnX8L3HYutk09P5owefuvOvk5fE/YPnJxlDOBrvUrs372/F\n3Gh++Hw2raJYm5qDeBWiWRVbJZsx3vNNd/Jdykvi9lEjg17C8Tq7d33NZ+N9t3tqnpiYIr9RpG7G\nzETV9o1ROFvz2azjsJ0au5SXxO1jVdM9cspGMz49qocJxEwqz7xq+WsioomOjfEnrYqMs0k8aKzb\nmbTz1hywntnCBLK3t7fYlFDsfnt7e5jP51Vzi/PF19bUyKrl0Kv8gDtMNlNPfSceHqYYtVtEo+ZU\nz7S357vx0vCmxj3F4vlnPD/Oqug1qbZCNlN3/KlnpHqQvptEhMhs0mPWFiNl4ZlPSjaqaiJ1UzOl\nLD0+t/Z7KmycbKbo6FMwbxJOYiq0fB4tlcNqQzcjGjOnonu2zKca2UTkVDs+BTZKNrdpyijBTEU4\niUSElvO15oRVwonIZhgG7O3tLakcLw/e9wjbGkB3Ls6md2agx2fTQzC7UAmJ3cGYwDWvY8/nc1dJ\nsJrRYx7JsKPY7m/BfAAwn8+XnMVeviITSp+1R7F7aYzFzjmIaw/eSzR2TotwehpTEs7DgUcErbYT\nmS2eY7hm1jDB7O/v35iR4muUaLxzIsJhYutxXk+JnSObFnoIRwsxkdgEWoRjx1pTzjV146kPj2g4\nTy2fDZ+nz7EO4bT6250jG6DP1EqSSWwSEbH0dnCgTjSmbvha+9RYnIhweA1VlJepVU3tPhsjm+gB\no2OG6OGjgo1syVpcwTp54fsn7g9qprtnnujv+Xy+8Neo34bb7hgzan9/fykdy6OZUd6iTfUdaXpG\nYHxsFbdFb2wNYyNksyrR2PHejlyLMbDjHsmMzUv6bu43ep2jtfZS6+TawfXenrphvw2nbcqG2753\njuZHiaqmzLg8pmz3d9qMisjGkKZUYtPw/COsbJhwak5bIxjdmCQMpqIuLi6qPhtWWurvsXSn8tf0\nYGfe1GfofWAbLWrBTdvIR+J+YcwUb01JKDkAy4TD6UU+GyYbVi+tNVSaH50e13z09JU7M/Xteb1b\n5xrUEaa+Gy3omlml+3oKLE2ph4Pe+o2cwkw0TDamJsyE4fQ888m2g4ODG8rG7n95eblkZmneLD02\n60opN1RNZE6NcWX0Es/Wlit4RONlssd+VqJpqZuazR3lgQs8Ced+Ymxdeo7hmhmljlnPhLJ8MNEc\nHBzg4OBgSdmw34eJhvuDEiCTDacTEYx9ji2XXsLZynKFXqLhY7XZKE/heKjNRNWUTZJLIkKkarwO\nru3Lcx6vomyMbHRJA+eJ02I1Y5/qKLZrPUSzUWoOtghnJbLxpoLHoOfhuKOrQzgiG68AvP1eXqL0\nxxDPFHZt4nZQM8trijgimsvLy6V7t1QNk40pG49s5vP5goxqq8PVlNI0I8LpKaNW2UQYTTae4uj1\nfbQUTkul1EhH7+XlTb3vXn5WJZrE3UVkjrfadmQ6RX6SSNWoGcWE4ymbi4sL10FcI0BLz5zFnlkX\nkaFXNqtgFNlECY5RDpFpFakSLy0rrEjZcOG2HMY9rN5yQtfyqukl7ge8TspKwovejRZpesrGM6Ms\nDVY26iTmvFxeXt6Yhuc+UvMjbQLdZNNjQtQIx2NR/uxNQze1WWurYaN0vd/RM6nTOPFwEflsog7s\n7Vdlo6aUte/Ly8slsmlNfetslKUVKZvI2mhhjCm10eUKLfKx79E5DHWkRfaq945W26LKV5tW003c\nf/TWc2R6MNGYqlB4U9GWdstBbNf3Eo3mi8FT8WNVPpfXWDW0lanvaOPjGn/AiBSNZybpb291bJSf\nMcSSJHS/0eMaUBWhikLvFR2ztqxEw4sx7R6Xl5eug9igppyXHptQSkyRwvdcAhtxEE/RsWpkw5/6\n3SOZmrLR+3B4tpcnL7Rcse7zrzIKJLYDr27VDwj0+R6jTltbfe21a0/ZGElEs1BRXjSCuNYHe8ur\n1k9q92qSzbodTR+q1rmNHGq2rUc4DP1rUq9SOF9eo7FC40CqdcsincW7B2+mxZtwiFAjGk8lePu0\nTevaKPbZ6P7InAJummzcrj2/UkSEUblFCqfWR7YW1NdSM3oNwyMZL6iJCYaZvUY0rbzYvfgzcT+x\nSt16BBN1cu0PTHbqKFayARCSjOcisO8tZROZTmPRo97XDuoD2tHA3u+aaVNTNeq5V7LRRW+RqdUq\nbJ116iGcMeWSuH+ICMd7CZYhUuwe2Wi7r5Gj5sWbgfLO3yTWDurrQY/MjJxQfFwVjb7zw1tKX6uU\nKC9qPtWIplYe6au5v4jas+dwbSmIHuVupFVTNZwvzSMQv8tmW2100qA+louemeJViB3jQuVjkYOY\nYxKYYGzKkRm9Jjc5P0xaTFYqe8eQTs2+TewuxtRTjXC845qOtWtu3/zd7sEkU/PXeGkbVgnmY3Nv\nnba7taA+dVjpHD8Tgwbq2f09JxorF69QPWXjNYxIFXnkOUbdRGWVuPuoqQj9rtd50EGViUQHzVYb\nUiKpEV8P6UzRZtdyEPcyHT+UxiTwvayQdWSI7NnW28wuLy9Dn433vg8jktsI5U4kNoFogLwNrD0b\n1VI0Pbat3UcVBaehjmGPbFjF2FRha/2Ilw8+V2cS+B6RwvGkchLWw8Sm6v0utqeVg/p6ZJx+qqJg\nJeKZLpaOkg0vVItWxu7v7zffZhaZdBq1WbO5o/JKwrn/UDPH+9TvNUQDM+C/C6eVN86jZ4LpOZvG\nSkF9rSk3/h6pGu89G0o0nJ5HOBHZAMvKxjOjvDxpmpE51SNLk3AeDno6b61D1/qInuOdX8tXD9Fs\nC5NMfWsn6jGfPLIBYgb3QrlbyqblsW+tH+HPVuX2lEvi/sDrvDYYeu6BiIi0b1xeXi5tdh/e5/ka\nvXzphEuP8znCFO14rdmoyEehUGdspGzsXlHhRYTjkY29YMhj9ZrKigimZzTxyiMJ525iTJ1p+9TF\nvzXF4w3CvWSj5r/mh8lPiSYahKOymEIBrewg7s1k5LOJWFkdtrbfI5oxLxjSPKmq4ZkrS1MrrLcs\nkmDuBqwT6Scfj+CpB26jfL0GoNqnDnoXFxeLjc8Frsjm/Px8cZxfjMUqSvOiefaikD1ijMqqVpat\nMptkuUILyt4e6dh9+TxOr5RyYybKUzZ2v9oy/EjZ1GSxXTemjJJwdh8e4ejxHjOFNx1go7gwO4dV\ny8XFBc7Pz5fSA56TjREOqxzOow7Kmm8lmkj9c9nwby0b7zPCxpYrRM4sVRS23x7UUz01E6qmbDS8\nW/OjeeECb8Xa9BBJrREndg+9yoYHJG8JjbUfa48e2bCyMVVzfn6+UOy2n5XNxcUFzs7OFqTDJpXl\nh9WL9Q2elfWi7z0fjpaBZ/7VysjDJMsVIniE45EN8DyC2CMaHUWit5lZ4XvvaB2jbCLiq/lramWW\nRHN30FtXnh/RyEoHUlXkbN6YCW9kY+318vLyxkBq5xjhmMLRQXl/f39pCY63zEEJx1M2q5RLDRt5\nxQRnrEU4XFCR0ysqpNrbzDxVw1CHtSosS9PLT5LH/ULNH1Ezo0z5srlibY/bjbZdVjZGNufn50v3\n0T+p4/POzs5wdnZ2w3djaRnZWH49CyHy3YwtnzGY5E19bKJ48NSB+mZUWnoVHC1X0JFCo4uVtSPi\n07SUKNctoySp3YL6ClvnslnM7cTgDVDDMNxot3YNm1DsNOY2rGTDhMOmFKfPKotno4DnUfY1R7Hn\nt6mVT2+7nmwhZpSJGtEo2URBfXy8ZkYBN18KHQX1af60wmp5X7dcErsFHdiiY3zc2gi3L1XKfI3n\nnDUVfnFxccNc8nyNbHKZSXVxcXHDZDKFZHk0F4HtY9OqNhWuBFsrlx5s7LWgXmaijut1fjZrLB+R\n/ckVEnnZe/KiymoVH00LqXB2G1G7VRh5WBvxBig+N2qzRi5s/rPjlvPAg7TG3XCevAHTy0u06bOP\nabO1827t3xWi4x6UcNT2ZFnaQzRRviyNmqpZh4CiUSJxO1inHtV1EH3a+d6nEYwRTk/Hr23c9o0I\ne/NSa5NTDY5beQfx1IgKhiuoRjSJxKqIOmdPW/MGWY2T8Qiilr6SE0+W9EDztElsXNlsCkkkiXUx\npnN5g1iPOVLzV3rmkO1jPyKn5c0mRXE8rHT4mXlZT49rYypslGx6CWEMC7cKqNfkWWVksvPW9WOl\nz2b3EPllvH2ROe/5ZIDlYFNe88TT2bwUwZvSNtNIA1pns9mSryb6qxcvL9F3r5329qMammQzhY8h\nskNr32ujgwYGGqICrBWUplUbuaZAEs3uoFUX6sfjdqEKg1UGd/BSypJiubi4APD8v7stKvjs7Ayn\np6eLaW0N2OPYssPDw8Vmx2xWdn9/H7PZbGmmlsM4PFXFzurIF9VTRi10K5uxpNOyLXnzHLv6MDVv\nvJ0TLcPn+/RI39r+xP1DzwDgtQkNLuUgU51xms/nizVP1sHNQXx+fo7T01M8e/YMp6enODk5WSgc\nJhtTMkdHR4sX+9t+60OWj9lshoODgxsTKNx3OFpZ+9mY8lEyjtBFNnaj6Ia9yoFHAs4kgBuyTwnH\nKoYXrLF0BZ6vH2EZGi341Jkszm/Pn4Fp2dTKrlZGidtFb/2o8mai4c32saOWp6dNzVjbt5mok5MT\nPH36FCcnJ3j27NlC4Vi+TLEcHh4u7mdEo1PfRjamcFjZcP/x+ljU92rl0uIHw2ifTQ/heBWjNi1n\ndBiGG7am59TSoCZVHDZ6MOGo7Wvnc4OJ9mvMjj5bq1ySaHYbPc5Qz7enAyf7T5h0DNwGeXGlHWNl\n8/TpUzx9+nRhWhmR7O/v4/DwEEdHR4t9rHKG4XmksuXl8PDwRsSyEg1bDBb9zOXTKhslmlpbX8lB\nPEZ22ncOowawZCtaQUUrY3Wxmp1j+1XZWEVxOLenamwNidnVlh9dDqEmXk3lJO4WVpl90UFJ1YQp\nG2sjkSJnM+rs7GyhakzhnJ6eLjr/wcHBglhMwRwdHS0iiC1fnJeIbDh9JpqobXvqZoyiMWxkNsoz\nn0y98HGWljqd59mZ3spY88YD9ZWxuvaJV8byqm/g+X8qR9OJ6bu5X4j8FZ7v0FO/ZuIw2fC6Jmu7\nEdnYAGnq5smTJzg5OcHJyckS2Zyfny+IYTabLWaxdLmCmlH8Mi9dGmHLe6I/B/DKhctnjC+3ezaq\n11/DUso6tR5nAmKfTSllycmmJHJ2drYgKVuC7y1WU3UTrR+x35Hy0Qbl+ZO0DGrHUvnsFrRuxjhG\nPXXDqoLbpZ3LqtzurwOkqRsjG3MEm2+mlILDw8PmQkz1J7FPBojXENbKyNuvhLy2z6Zlj3kSlB23\nDHuw2mI17thcIXY/+62kxE5krkBv/QiTnDY0z8cUVYg+Q6uMEruHHt+E/q75bvilbrzpQKqqndWN\nEQ4rG7MAjo+Pb6h2bs86I8VkY89o/z7SGkR50zJgcplsNiqqhOi4+mrY/xI9gF2js0RWMPbdKkXN\nLTuucQRaIay2PNKzvGiD8vw2Y8to7HmJzWMd5ekNRt7bCKyNRTOt3mpuIx4jGzNzzHyKAv80H7ax\nf0ZVjfpXx5bfpGbUKmBlYwXN96uNINyxjWysQpQIuKA8MuMC9u4dPZ9KYN03RRkldhetTuSpm8jv\naO3P69xMNhxNzKrc7nFwcFB94TnnSxWXRjFHYSZRWdTKZKMO4pqPgvfV2LJHGVhBWtSlHVc29+7h\nTVeznK3lw8tLtK92TjqSHwa8wY87shezBbQj43mQjI5FFgWna9/N51PbIkwxoK6tbKKHtU+v8PmY\n3kcZWKOFNXLYM4E8GamzSzVmrykkzmtNpdX2JwndH3BdaqcdU89Rm+M2Vtsf5cH2eepj2+1wpaA+\nD5px7sjawT3fh5KMzSCxt56ntG3Kj4OQmM1t6u/w8HBpGpAddd6b0+wZdVqcQ8y9ZRBjiCXNrvsD\n9fkoEYzt0JHa6FUgUb50X89vzde67bZ7NqqWIc6IqhlVGEo8dg0Ti60J4TeY2bSgBTu1FqsdHR0t\nRVvarJOdc3h4eGMtC6srVVSllBsOuWh0iZCK5u5grCrRwYlNlmjZjKUTOXbZyRwNkJ5Z5uXFM9U8\npRSVRY04J3cQ947gHtno2hGdcgOed3CLpWElYTNQFl1p04LmlWeysVWxx8fHC1+P7bcC46Cn2Wzm\nzn5FSyMsrz0jh5bPKiNdYrPQgbJ39Fbz2vO5KNnUTJ4oPobJprXgk/Pl+XYin886imVMex6lbHoY\nkL9rAfK8vxfSzT4RM3mYbE5OTvDkyRM8ffoUT548WZhUTDa29N5IiJUOKxtbV1JbrHZ+fu4687zR\nhMuJy8DO18/EbmKMX0OJRpWwbbxOL3pPDS8xsGUJ7CZgtR4ti1CzX5cE2UDqLVKuhYCsUm4eRimb\nXodoxNStkG6e5uNo4YuLi6WFai+++CJefPHFcLHa8fHxolPrknxWNlaxHFEMYEnNGEFYhbBnX5+9\nV9mkz2Y30KqLmo+kpmi4rRnZ6JsI7LipE26TvLJbycaOK9kwqXBgK+eXVXttVmtMGem5NXQrm4hs\nvNGaTSo1paxAVSYy+3MhWmWqKWXrR6LFaqZeHj16tAjrtnxq5XLgE4AbZhUHQvGoFZWPVwGpbHYX\nXEetc+w8VQq85gl4/iIqJhv2MXpt8ejoCMfHx4uBlge1g4MDHB8f49GjRwvSYQvB8sX54ZAR23iy\nRd/71NOGvfLoxeipby9DHvup00uZ25jZMr2/v78ooLOzsxsmli3Dt/d+PHnyZBHWzRXy6NEjzOfz\nReWdnp42V8by/ysDuEF0RnbR+pFaeXF5JHYPWi+1zmbH1V/jvR+mRjasJHTgOzo6wqNHjxb9hlW7\nHTs+Pl70odryB3MxMJnw/015wYFjVPeY2TFgpLKJjlnCXia8WSlv/cgiQ/KXulqAFsZtC9aePXu2\nkK2z2QzAVQXqjJUVqKXnrWXxGpL+YZg3A9AqIy6rJJ3dgQ6Snr+mZkJpWASfz4Ob91I3O2bt0Mx/\nO85tElh+n83x8fGSutG+YmmZMuLlCpqX1kvmVJnXysrbzxgVZ+OxX3RzJhpVOKws7Fwu1IitOdaG\nCccqzyr94ODA/T9kSytaPKdEE001euXifffKJLFb6KmTSNnUiIbfdqAzmzzwWUwYvxhrGIaFb5P7\nhZ1nppT6PrWvGNGpP5LzUlv6UCsnJpceogG2+FcuqnR02q4V0atedi0sS0O9/jUvuwYaWmFHwYct\nh2E6fu8uIn9aS9moD487vF1vbTFaFMw+G9t/fn6Ow8PDJXPLCKimbNR/tLe3txSLpi/y8vpJr29m\n7OA5Odl4GVAW1A7rsaNHOLrZ/to5kRqL0u95nnWRpLRb8IimZfIaqRiZ8D59ERX7/WpmFM92zmaz\n8IXnpoJ0RkpdDnadEqFO0/cqm14yjrAxZaMVZ5+62UO0HFSRwuD4mDEqxIOmP0atqA8ncbeg9ReZ\nB2pGecesXdq11pE9ZcOBqKx2NDre3ANMOOwgtvRZbZlK1z7GhNM7G9Xrs6lhFNn03FAVhz4gP6gR\nhVVIK9JSAwT5bfMA3DieKMqS2d0bGVaNtuxRTOm72Q146rmmcHVwjGKtdKCz/a2XXTHZ8GJjS19D\nSGqTKfw87BO1c8zk0jZu53jP3Sq/FtZWNjUTJGJT7uBWUJ6vhe9vRMOEYtLTCtdGCH3LvUpJzY8d\n50qIWD8iQm6IXhkldh9e/XmEBFyZRhwHo2rHU/bcruze1rZ5JtWmvJmUrK/wJAsvLtbB0tKN3BFe\nQKLXtqN2vUqb7iabGsNp4hHB8Ks8gecVBmDJ4asee/bEW6yBva3v4OBgiWyOj4/x+PFjNx6BK8Ti\nDWxE4QLXwKeWEy0qnxoRJ3YTY+rLUwue+aX9gTu1Rq+bEvemob3FmhyAynnh/KmJqCJA969TLrXz\nmmTDGY0YLvKL8AOpl3wYhsVLrEopS1NynsdeIyyNuJRsjo6OFmTDHnubimTlYnE7lj+Wu97UYGRK\nRYrGK6ckn7sPrWtVM63+oARifYHJJGpn1h/4XHUA8/daXjRf66LVtidTNpxYjWTsuEZdGgHwW+M9\nsnn8+PGiQO0t8xpleXx8jJe85CV4/PjxwmvPJGdxCEZAHIvAZKN/+B5NpUcFXWt8idtHzyBh5xmi\nQZf7Ri/ZGFiZsDlv1/E9WeF4EyFKJLUJEo90+LilN7aMInSRjdpunifasw3ZJ8LrNNRXUsrz+Bjv\nr1eMbPS1EUZMTDZMShz8ZMTCQU9swmmUJYd8c7Rl1GBa5mUSzm5ilXpRwtHfrQ7upc+DYWtA581b\nQmPtMyIK3qf52qTPscuMahWAgiWcOqw8sgGev2KCO7ela45f/UfA1vtsbFOfDasqi/b0XjHBZl1k\nSqmD2Cs//Z7Ec/ehg6/XgT0nsX2PBu2evlYzyTWdKA/R+ZtEt7IZc46Siu7jGSK7jgOflGxY2QBY\nTP0ZGaizjRd8srJRM8q+R6u82Qz0Zsp6ysdrUIn7gZp68M6NsEob8QauVn5qedg00QArTH2rw9jb\nb5/qsIpUDYAbHVyjLG2diCkdIxsjMz6Xp8ijkG5VNaxseFrQi0WomVE1KZ1Ec/9QUyJjOvBYC8Lr\ne6vmYRtEA4yYjWJEzjBlWVYALB29NVB2PisLVjY2c8Vh26oy2HnGsQga0m0EZVOMXl40H7WgvhYB\nJ+431ums67SRlhm1a1gpqK+ngFQlmJLwPOh2Pm9eSDd/95y17DTjeATPTLK89eQl2izNmppJJHqh\n6rh13l3DaGUTFUSPI6rm2OLrVBWxGjI1ov9fzOfq+Uo27MD2nlHzot+9NHvKJZHowX1tMyv5bHqn\nfb2pwVZBasdm4hiGYelVEHw+54M/PSXlmU49+dH0tAx6yyWReIjYmBllUA/5qjZlzRkdndvy2I/N\ny32Vt4nENrCVl2et67Ra1+naawomEonNYa99yu5gCqJJJBK3g629FnQqJHkkEncTd0rZJBKJu4sk\nm0QisRWUxpqN9KRuEMMwpE14S8i2vVl4bbtKNolEIjEV0oxKJBJbQZJNIpHYCpJsEonEVpBkk0gk\ntoIkm0QisRX8fwAPWHSTmyINAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x11353f950>" ] } ], "prompt_number": 559 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "2. Create spatiotemporally oriented filters" ] }, { "cell_type": "code", "collapsed": false, "input": [ "left_1 = o_fast + e_slow;\n", "left_2 = -o_slow + e_fast;\n", "right_1 = -o_fast + e_slow;\n", "right_2 = o_slow + e_fast;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 544 }, { "cell_type": "code", "collapsed": false, "input": [ "plot_imgs({'left_1': left_1, 'left_2': left_2, 'right_1': right_1, 'right_2': right_2})" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAARsAAAD8CAYAAABHGwCvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfWuordtZ3jvWnOuy9z77HIKIiYIWbz+aeCWYSqwo/ohS\nkaaKIEprIyEkFuuPogm1iPbHwYoIoklo4YQgtEd/CC3Y1P6xJvUWxShIqjVoaKrRijnZt3XWZc41\n+mOtZ+5nPvN9xxjfvKw159rjgY95+y7jG+P9nvG8zxjfN1PO2To6Ojo2jb2bLkBHR8ezgU42HR0d\n14JONh0dHdeCTjYdHR3Xgk42HR0d14JONh0dHdeCrSKblNIfp5S+sXHdT6aUvmXTZero6FgPtops\ncs5vyDl/uHX1q2UBKaVvSil9qmUnKaV/llL6/ZTSg5TS/00p/VRKadRa5o6OFrR2jimlt6SUPpxS\nepRS+qrrKNt1YWvIJqU0vqFD3zGzf2lmn2Nm325mbzWzf3VDZem4vQg7R8F7zeylnPN9M3uQUrpI\nKVWv05TSa1NK/yWl9JdX23zhqgVeN26UbK7Y/l0ppd+yy4r9FNg/pXQnpfTBlNLfpZQ+mlJ6p6NW\nvjyl9NsppVdSSi+nlA5TSvfM7ENm9vlXvcPDlNJrozLknN+fc/7NnPMk5/yHZvZBM3vzps65oyNC\nSimZ2Rea2W/qTw2bX5jZfzWz71x3udaFm1Y22cx+0Mx+1C6VxcSesv+Pm9kXXy1vvVqPe4ZkZu80\nsx8ys68zszeZ2ffnnJ+Y2bea2V/lnO/nnJ/POf/1gDJ9vZn90dJn1NFRQLrEu1NKn7jqSH8ppfSa\nlNKhmT0ys5GZfSyl9Akz+42rzT571XG+Kdpvzvn/5Zzfb2a/v/mzWA43TTZmZi/nnD+Scz6R77/b\nzD6Qc36Qc/5LM/sVm2f4bGYfzDn/Xs75z8zs18zsq69+a+kJFpBSeruZfYWZ/btltu/oqCDZZef4\nPWb2fWb2+qvvfyHnfJpzfu7q81fmnL/UzDBY8sJVx/m711vc9WIbyCaqwNeZ2cfo8x846/whvf+0\nmT3nrNOElNI/NrN/a2bflnN+tOx+OjoqeIeZ/VTO+XeuFPeLZvZdgS+zVKe5rdgGspkE33/azL6G\nPn9tZT+qepobKqX0FjP792b27Tnnj7du19GxBL7IzN535TO+Yma/bpfXwOfdbLE2j20gmwi/bGbv\nSCm9PqX0Zrs0vlqfh/E3ZvbalNLraiumlL7ZzP6jmf2TnPPW5rsdtwafMrO355xfQ8vdnPOnnXUR\n77dC4Wwz2fykmf2pmX3EzH7WzD5gZmeF9WdDiznnP7HLUaWPp5Q+UxqNMrN/Y2b3zexDVybco5TS\nr67jBDo6HLzfzH4kpfQNKaVRSulzU0rfEaz7t3Y5yvTGlh2nlI7M7Ojq49HV561B2pWHZ6WUftrM\n3phz/uabLktHx1CklP7CzH7ALtOmH7ZL7+YL7FKFv5xz/rGr9aZm9mU55z+/+vwTdjkSOzKzt+Sc\nP1o4xsXVW9gIOee8NRNUt5ZsrtTIl9ilgfxtZvbzZvYzOeefu9GCdXR0LIVtTqMO7FJyPjCz99ml\nh/PeZXaUUuIUiZd3r7G8HR0dBWytsuno6JhHSun9Zva9zk+/mHN+13WXZyg62XR0dFwLijc/ppQ6\nE20QOedbMaS5i+ixvVl4sV290/qll15q2vnlPWRNhXA/R9+XjpNSmn3m16gsKSX3eFEZamXR8gzB\n2972tqW261gfXnzxxbXsZ5nswItbfh1yzCGxXCrLuvCe97zH/X4tj3VYd2FLFZVzHnw8JSjso6VB\naussU56O7YW25TJEsq7OKVpX47cUy973NxWvNzoa5VXEKh6SV4ml74b2Jh23G63xU8K6PNDScWtx\nO7QM1+Xb3tQDq4rSryWFir73GgLveb9DFU7H7UWNUNalglvL0UImXpmi1CoqJ++/ptDXQWwrk82q\nqqCVaPAbk0RLOYbK1tYG6+gwG+bzlWK0xcNZNm3STvamsBLZbMqrKSkbL1+NylUipFreO4RoSmXp\nuL0oXfDL+DalwQ7uYLWzrXXQ+rsq/euK262bQdwi/0pkFDVYqxLq6FgGQ0eBalaBxqwX28seY52K\nfch1tDHPppV58TszcIuyqR271DAe0w9tmE5WtwPLtmPkObZ6OzV/xOsgSzaClqc0paT1OkJZWtZp\nOe+NkI2nIoYy/jIXuTZSac6NytKh6EPeu491tt+miQa/8X5ajlUqQ/S6DFqu8aXIZhnXOgKrmpJZ\n7J1MS6PxtuuYQ6Hbd8J5NjC0Y1pmRDVK9b1jryt2Pf9nUzE9mGzWSTQePNIpEY1WDvcM0fD3Okmn\nE86ziWVS75bO0ovfKJ0qHasFQzrvdWBtaVSLjxLNC1CCUUmKylUG5kqPCMc7ds2zqQ3Ht6RmHbcb\nUbyWbICaqvEWb3uvEy2Rz5CyrIJaKrWR2xWGsK5nbHn5b87Z9vb23OPxcT2/Bu8jssM6JcLR7Trh\ndAAtRBPBUzAl34bX8zyXqGz8flV/poTSPtduECvrthKOp250v62NGSmbmnE9xMjW8neC6TCLfRWO\nrZb0ySMh3b6k3FtGpLxybzKO10o2JQe9Rd556ZP+vre3V/VpajmvbucdOyprVzQdQHRBexaA57NE\nnWrJd1TroNY56jG8GL2u2L2R2xUij8Zb9Fi131NKtre3V/VteP3IiC6lUJ1cOhSt3o1Zm7pR2wD7\n2tvbs4uLi2KqpeXh7yJFr+nZurGx2xXUzK0hIp8hZWGiYcLBflGpFxcXc9tEnk5U9k44tx9DfEdF\nKYXhfUfHjTpM7JeJJvJ3aulc9For3yrYyGhUi7GFV14uLi7mXrEOKgJMHzVgqWfgAGjpGVrkaSec\n24ll2zPqKGt2AY7Z0mFeXFzMXQe1GG7ptK8rftc+GlUiGq8BIsLR3iGlNKto/d0jGW0oJhwQTa3M\ntd6pE83tg7ZnpHBKKX9EJooofpVwGNpRRuonIpiaf7NJbNwgxvelFCUiHF4HFV+qyJqyAWF5jTRU\n4XSiuX0Y2p41AtLfWJG0qHNP2WgH7JXfu650vU2nTB4GkU1LwUoM7kFJxlM2uq7u01M1WPA7ti0R\nzRDCUU+qtdEi4u3YTWg8RqrczOaUuYJjkOO3RDbq30TlKx2PSadFjUXrtqCZbCIWrRWsBK/yNJXi\n/TNpKDMP8WyUdLg8WhZPYek5cMMtS8gdu4sobiLCiS7WVmUDlaR2gJapxbPR2K3F8Cqxu/KNmC3e\nB37TvJbfR+qGt2fC0X1rnqs9A/bNxyv1CF458dmToZtspI7NY5X28UiGF8SLplFRHHMMl/wYjnPE\ntpaLX/l7tiVw7CExHHlZJax0I2Yt/eD19CI1K5MM+zbYR0ndaCONRqMFsuHjqnejZcJ7ftVz8eAp\noE402w2vfVovppKqUcKJBjj4eJ4VwGXh6yKyA7zyRGW/DkUDbHTou3aSSiwgnOl0ulBJzMJeZXuN\nNBqN3LKg0b3ewCujfu/tsxPK7YHGsl6QXkx4C+KalU2NaLxYjtSzp34UEdmULImhddWqbtYyg7i1\nZyg1iBKOVkLJXDOzuRRqNBrNFt4eZRg6z8ZTNnyO0fadgHYPUSxHRMOI4tsjr0ida2epZMOLTvzz\nlL8qdVX6Q9RNdM6tWJpsSgSjr16BSsrGIxsQhPdbpGy4ofS43m9e2byeoZPI7cSy7VrqRLXT0lQK\n3+P4URrFvuNoNJrFcDSnTMvGx4nKrtdrS31cm7KpEU6UcngNwkTD5GNmM2PNm2cTkYwqG20w7Q24\nbFpOrvxIknY82+ALOprCwfGnsewpFJ3CwQpkNBrZdDp11Y1XJn2NZuPrNbtOwlmrZ+MpG+9k+H0L\n2ej6fEw+tqZQSjZmi3lu1DiRsvEqv/Z7x+4juqBqNgH/zp1nFFtKNPAdvfRoKOFoWb1yL5tOtRDO\nxp5B3GKo4b2XRulolJkVh8S9XBdko/soGWulYIkqsxPMbqIljoES0UQk48WwmYXTO3Dckh3A2zHR\neHeIR4t6oN7vm8BGHjHhKRtNpyJFE5ENMzt/5xENFm4kVjbaA9QaaMi5d+w+onZVY1VfI8LRfXCM\n8z4iZaNxzMpGp3gwvLIpot9WUTkR1mIQexKuJKtqhDOdTueGDc3q0tNLoVTZIFeN0iher0Y2tYbw\nzLqO7YVnAQCRQuff8erFtB7HUxT8OxZW6JopsELHeh7plI5TUz9RfLd6NIqVDWLvoi1dwPpZCQav\nTDboDVokZwvZ1Iim9Nkzz0qN0rH9qHUM3sUVpd9qDEfKpqSgPWWjBIVRqdqIVEQiJRVfIpxVYrqJ\nbFp76egCZmiFRb2Bko1OrfbkJi/j8Xg2RMjHrg2JR5XP63FdrFNmdmw/Wnr1krIxe/qYCE2lovjW\nyalMNiXC0TIpiZTu02qpB+y3tW6qZFOSl0NRk5usamrKxmP/KI3CsYbMuIx6HY+A8LmTzu1GLXXW\nTlS9R7zC2G0d8NDhbyzT6bSYQnnlA7xJskxGq9RRhLU9PKv1RD1Vo8Pd2iPU0qdI1bCyKd0hi2N4\nQcLl0GCr5bYdu4mST8G9dy2eog5LlY1HSNg/qxveb+TZtKocr4x6/Na6at1m7UPf/LvX+3vE4ikc\nbOtNPorSKCYZJhuomogUo9Qu8om8PLjjdiBS8NqxlJS+RzTcaUGR6DVQIhq+DriDjQgminM9z5qS\nr2HIuiuNRrV4NCiQV/nRKJSqGm5gbQRPzfCChhzq1WjFd4/m2YanbDxEsc6EE9kGnlXA8a4dnRf3\n0Wir1/F7Ckd/b1VyLbjWP6krpVC66L54n60pFIw1vT1ByxMRocfyqxpqHbuFyAitwYslbFfqaD2F\nox0lk03JJC4pG97PKspm42kUH6ikcKKcsJZOKUHx8SKS8Ra9p8QjGq9nKVV8Tdl4ddGJZrfgpUga\nOy0xr50qk810Op1bvBjkYyP2zWyWgnGcl1Iqr4yeHRAt64rfwc8gLpFLi2ooqYhITWDfkaIZj8ez\nZSjZRJKXZa93fi11NXSbju2Btp+ncGtWgnZmWA+jUR7RaIcH6IiURzRRKqVlwmuJcHSbko3Qqm7W\nnkahQHgtXci1SuYGZ58GpMIkw9/pFO4S0URpHJcH20cV2kK+HbsNT+W0Eg4rG8STKhsmHU6ptAxM\nEJ7C92YUY/SLt+WylTIQJiWth6HYCNmYxflhlD5pCsUEE3kzEdHwnbKe2dxCNF46V6voTi63C5E6\nVZLxyIfhdaIe4UwmkzCt8o7N1wXHvpdOKeEoNNY9AorUTYuqMVujZ1NCTc20Dv95JLO/vz9HOLVR\nJ8+Ui+Ssbh/VgVcnHbcD3oCHRzaltFlTck2jJpPJjGiUcLzURq+Jmm/JRNN6zXLZS+qmlWjMBt6u\n0FIwLqBe3F5KVRr1UVWjJMNEo4Sj5SoRjTcUqY3L+9HvvQbshHM7gXbF7FtV4KWLmS9cJZqIcPR5\n3C2KP5oCEhEkl4/LWVLzQ0gGGHy7QnTgUuW2pixaoSmlItEo4TCba/6pRFPKmTnH5vPQevEarJPM\n7UCtXfmir13EZovXgkc0myIcveUB5fGwDIm0YuV/xFSJhe+8NKnmi3BDaeUpwXiEo7JxaAN7yqZm\n/Nak9LKSs2Pz4NgttXNkDiPOIo9E03n1Jff29mwymdj5+fnccnZ2NnvPscm333iEE43KQtmAtFpt\nj3Vj7QaxZ8LWPJuaT1MjGa1kVSQlolFl4/2NTCl1KsHrDTvhbBdqF58Sjno2EdFEaQorZih3EM7Z\n2dkc0YBsJpPJ3PVSUjZRGgWfKLICuIz83vOMvO1asNKf1NVUTUnZeE43NxLI4+DgwPb39+3g4MAO\nDg7s8PDQDg8PZ9+rquGg8EhGexFuUG/IsWYGDjEKO3YH0QXptb3O//KGn3m/2Pd0OrXz83Pb29uz\n/f39OcLxiAekoQrHmxKC/eE64o5UBz/0nL3RqNqIVAtWVjbeQVu9mpopDDLxiAaLRzZ6bBAOiEVJ\nxhsBMHt6EyiXr7Tweh27hZaLR9uYlYIqjNJM3pwvHw/B+zk7O7P9/X07Ozuz09NTOzw8nBHOwcHB\nLE7H4/FCp+YNouDamUwmC+kU0j/vvJRwvPfYZijhrGU0KmJEHeHxVA1f2DnnudSJSYXJBosqG0/V\nePlwSapOp1PXGPYUDb8vmYMd2wn1bIYQDvs1iFukKh7peOqGY//8/NxOT09nMX1ycuJ2qpPJZFYO\nTami6SHj8dim06mNx+O5UaaSwuHFq6MhdQY0K5vSDj0W9EZ/vHk1vG/ksMzMHsmwuvFUDfYPElFp\nqjIV63FO7fktLarGq6/u02wv9GIpDQwATDjYJprNqwoH63OnhrhHOgX74PT0dI5s8JtaDpFJjFRq\nf39/YQBEz9erF7x6dVT6HGGlNMqTWbUhblU3etGikiKSOTo6WlA2PLemRDSnp6d2enrqqhs2hjl9\n0vJ5ow0txNMJZ7fAF1CpjZlwLi4uFtSFEg/WVdV8dnY2i//RaLRAMqrgdTi7RDiTyWRGOOrZROkU\nyhnVSVRfpThvnmfj7dz7DidTMoq9vA8NomRzdHRkR0dHdufOndl7T9lAFqpHwyTDi6ds+Jw1P48I\npxSImud2bC88Q1gvLq+doYQ9nxAX/mQycSf8eaOxIIlXX311RjA68gpS4TJFvg17kjCKx+PxwjnX\nYtRLn7iuWvaxFoMYrzrMXXoFSl4NyEaJBmSjM4YhT3Uo8fT01E5OTuzk5GSBcKBqIGu1IpVkSsOc\n3a/ZTbSkUiW/Doom5zw38lN7EgGTE6AjSt4cM+zLK2NEON48MvZuSqKi5NNsxLOJCsIFUjXjLQzO\nfVFBIBqQiy487A2WV1UDogHB6KLKBpXvpU9KMB7hdKLZTajCBjwzl7/3CIfXVYWNCx8jQ+ov8nXE\nQ+fejHlWNohPLkcplQIReopqiLJhKPmUMJhsvF5Al5pPwwVFBXGlsj+jaRSTjd6awKNPUC8nJyf2\n6quvLigbTqG4TJ48rZFMraK7Z7NbiHpwz8fh31jd5JxnXgmUto5OqbWA0S1VKJ5vw0Yxx2w0KgXP\nRieusteKc9G68IhGlU0L4SylbJQRa/6MRzScPsGFV58mSqF0BEp9GiYZXpRwIC81eJZRNVz5Xh1F\nv3XcPDwfwiMaQNtdBzqwzcHBwWywAnNl0MHxtrg+eIQKMeYNYzPZgOA8wlGiKd2WgzJjH1wvpTob\ngo2lUfreY0W9JYFHoLz0SVMoQNMnkImSDQgHygaVzuTCZdTp4BHZ6OS/Epl0otlOeD6EqhmNYR4J\nYsLha2E6nc6IhtMgjhkQDasM7MtLp/AeZIQyeLYEiAbvde6bp268uvHIZSjhNJNNa/rkkUzUSCnN\n35ZQIxsd/sMxMMTNiub4+HhuUWWDSXzoFdQI9qads9FXSqM6oewmIjWqMcwoxYF6N4hTzH/BREAc\nByrIbF7ZePc9cRqFsiEumfhUHfGoVOTdqMLh3zzixbo18hmkbLxC1fwabSyVid7kPZBLzRQ2s5ks\n1PRJiQYLqxptFJRPFUw0I7Qrmt1GdMHwb0OJxvNyOEYPDg5m9yxxp8XqRtW2xqAOgavKArztptPp\nTOF4U1GiOXBaZ16qWfMmq2TjKRquSFU13qKNwBUYeTUlojGzWS/gkcyTJ09miyqbs7OzmarxSMZr\nVCYa9ooili/V5ZD1O64PkV9RUziIG45tvUB1oqk+PgLzcHhdz2rQVIpVNhQOFA/K5sU1Ew/MbK0H\nrouovtTnqqFJ2WgFt3o02jioEM0pVdXcuXNnZgzzTEqWiWg8DHF7RMOEA1WDeTUoj5c+RaacEo1H\nwl7dcT10otk+ROpFPZSoE1WCUU+GyUbvx4PKgWmMtAvHL8WldoIAkx98HyYYLF46VUobW4kowlJD\n360LF6zFFG6ZJcyylIkGxPL48WN7/PjxgrKBaaymcNSYpUeOsvPfSWS34XWkAIaiNbXh7z3SQYeq\nhrH3gHNdeGTKzOzs7CwczsZnkBuOwxkAoOlYybfx5sThHGt1uVbPZkgaxQVkn4Mn8JUMYVU0qAg0\nzMnJyZyaefTokT1+/NgePXo0e//kyRN79dVXZ/NqUDYQhg4xquPvDTfqSALOUxutlO933Dy89uL3\nfOHoKBMWHXJmguH3ZvOGMROOPnmAvRPet+cfqmeDsvMctJL/MxqN5sglqg+uh1qdRhg0GsXvh6ga\nvEbpU41oNJ+FT4PUiQnm4cOHc0SDFAoNa/bURNPy8OI9nEsNvZIp5jVaJ57dgPbyZotmcOn2G724\nsb3aDd4/K6AzZasA2zNZMGl4ZMPZAJfN8yWVbNTg1jqJ6qtGRE0GMb9vIRn1NFARmj6V5tIgfcK2\nkJZQNEidQDIPHjywBw8e2MOHD+cIB+mT3pLgER/Iz3uOiBc43DhRw+h3nXC2G1HHoam3N+pqtjia\niQve66hY5fD8F02rJpOJnZ6eLuwzGhnFvjEXRzt8jv2Li4s5k1gzl1o6VUudGIOVTZRK6Xpm85Od\nhqRPOkvY7OkjFM/OzmZEA0XDJIP3SK1gyKGSsJSIRh87qvezYF9RnZS+69heeP5NlEp4t+PgN8+w\nRQquqkFVDiscM5sjMyYN7LdENqxwOG6ROuHO9Gi2P3tT2K+WQettZc+m5NXoouPvzPK4uPVubjaG\noWhY1YD9McTNJPPKK6/YZz/72dnrw4cP7fHjx3PpEyqVexmP9Pg1mtcTsX1N7XWi2Q147cTtnVKa\ne0LA3t7iP3lwh5ZSmikIb+qE5wPxUyPZNOayQKV7Fz9+Z4XD6zAhqjpT72YZozjCWtMoLUykIlpu\nR2CDCz4NDGEmGyaaBw8ezNInzBTmix2Nw6mcpnPeIyy4cjnQSnVSqsOO7UetzRADrA5U1aODAxB3\npZEqGMZQ8vonivBwuGNHebhc2slxlqCjsKpmcs5z5Y5uY6jVm2KQsimpGwafDJg9mlNTGn1CJWOI\nG0Tz8OHDGcnwAlWD0SfMXdDcmcuBOT28KOGxuReRiS6t7n7HzYE7DEYpLebfUkqzCXm49UDTKR7B\nxDwXHk0CvHQKZAPDmG8c5ol/al6jvEw6uAb53Nm/wciaNxSO43l1NQSDlA0+a26n4BSqNHnPe0Wl\n4Bg8ce/4+Hg24uSRzaNHj+zJkyd2cnIya3gcG5UPstEJhLzwjW44F36GsqZSHtFEddOxXVDCiVJg\nViGcKu3tPf3Pbo4R9SnhmyAmVTUz0fBjUs7OzuZ+xz6YdPR8uGz4TsusyoZfo/R/VcIZrGxa5SUu\nbFzc3l+y6POE9SZLsLuqGng1r7zyin3mM5+ZpVBQNaenp3Plge/CPg2I5u7du7NXqCwNBA26Ut1E\nXs2yeW7H9aFV4fAF7o3uMCHht4ODg9k2PPDAZMOzjHFjMV6xDqdb+E7TIm/UCmXl9EiH6JlovDiG\nPxXVVw3NyiZiO4Y3xBbd1e39WwI79shjwfClFArG8JMnT2Z3dHMAoOGhWFTRgHBAfpxroxyobJ5K\nXluwHsvZju1B1C4lm4DTF7P5SaHRf4+xUkYM8dQOlAOWgT7KljtgftgbPivZ8BwaTuV4AqJnFrMy\n5+9QJ/he/alWDL43KiIczxT2biDT/4Jif0RPGPMLdKgb6obn1jx69Gjm1UTp03g8nrs1AiSDBaSn\n92CBaEojCPzZU4Bd2Ww/PGNVSYeNYbOnZKN/dsiKlm8zQIzj3iRO0zHiyhNWj4+P7eDgwE5OTuYU\nPw+N8yS/2rNvWAigfBiI4ZFj/o7PG9ssg0HzbFqUDSqXVQ2rGyUcfWo8G2U6UxhEw3NqQDaYwAfm\nPzw8nKswbzJhZAyDWLin4srm+oiCkutIpwN0bCeiNIo7EzVhlWz0b5xZOYAAQBperEHN4DYcng7C\nih9xjj/G80Z9eWHS4QmG3oJzYiWDa0njegia0qhI2eiBS3LOe1J8dBsAKhNyku/oxoxhDHHr/U8I\nCE6fdATKm+PD/0Ol56/zbHRRReMFbSec7UM0GqVgwuE2zDnPUnZWNaxuOJ3ioW8zmyMQEBWeu/Tk\nyZOZ8kZseqk9lA18IY7xk5OT2d/4IrbVy/FGtFjdMNF4I15DsNSNmKUUip1udeNrj2xA5Xn/kKCP\nj+B7nzCnBjOF+SZLJrtoJEwn8als5vPnelCCidRfJ5rtBrePdqyljhYdkd7BraNTOAZ3wuyh5Jxn\n8X737t3Zog/516cfIP74Wjk8PHT/Hw0P7WIvh+ORiUZvzfAWrZMWLH0jpsIzh/XuVP2sRGNm7h/M\n6cPL+WFY+v9PaMRIVqop7f1nOEtmPudI1ZSIpmP34aXL6rXondw8GU/vneIJq4ghTuvZS4xuTOZR\nLP5XkegvpvlhXZjrwyNVKFvrwufTGu+Dn2ejzMbfM3mowuHfdHsev+d5BrW/zdX82Kw8t0dv9NRH\nSPBoAaNELiVl05XM9kNVTckIVcWrabTe3+SpHCWrkvr2bk7G84v1bm2Uj8vhLXzTp3d+WjdRDC+T\nSi317woRm3lE471yQXU0x/s3yxJLR5OovNEvbTRWM5q/llSM9lieR9OxO9B21++8C447FZ7/Eqkc\nj3DM/MecqPeiD5Pj/6fnskbl8fyk6L6q0nXtKZshaCabmu+gROKdCPcAep8HKqkkAZnJtZFwHPQO\nLEM9KcrTxZVQmP01UDwz2COcjt1EFMPqbwAaO95MYMTy/v6+nZ2dze23NFQe3UuoRKKdpg5ocNwy\n2fBkPzOb60yHxHergh+kbDzmx/uakaQnjpPm76fT6RzBeLkmHx/D6zk//TsWTNrzbq7UYXZPZaWU\nFgiHG8vLw1vrznvfsZ3wOkuOlRLh6E2VTDo8GsVTPVpsAMQzp2o84uuN7GrMemSjKm1THehSng0K\npsxf8mS0AbjCUek8qYlNX1YzfMsB5hpgvb29vRnZPPfcc3bv3r25B6d7U8RVZaWU5m6E80YZamZw\nRCydZLYLmg5oPOvENrP5TonX5d/YM+GBDo51DJlz3HPHajY/+xgGMp5kgDhlwtHZ+N4MZRxPJ/Zx\n+aOpHB4/Jk0eAAAgAElEQVQBrd0gVhbXiyYimhLjo5A6qQmjT/xPCB7ZHB0dzcpyfn4+mw8AIrp3\n796MbEpDh0w0AMrCZKOpVAvzewHZCWe74PkVHMva+yPOPGisM9HwrTjT6XTW8eWc5xQ9PzhLO9c7\nd+7MPQgOsQnigPopjVyhbLhLnevA8yajTnUjBnGUOuk6kXPPFzSzKTMskw17Nfr/TjwDGIyOe1IQ\nBPBsmGyOjo7c/51CQGjFYn+esqkRTUTE/FsnnO1EyRpgFaAGr+eRsIo/PT1dmFPD6RS8Sih6j3BA\nJPwcbb6uUkpzz2cqPfwNBKfxqN5TNBCybHo1WNnU1ouccZWbWlG4kJlsWNXwoyHAyCAfVAb3BJiv\ncPfu3bkZmKxqVMpqmTlgSgZxqY460ewGPPWuCoaJpoVsMIkOv+N77fhAQBr72D93suhU0cnyM5t0\n+FyfpMDlQ1lwrnpupVSKX7leamhWNt5r1FjcaHxifMJ6jwbWQ6VDSTCJIHfF8bgB8B2vp/8Tzo3L\n6ZOOTHmjZtHQZa0O+PtONLsBVThMFnqx8e8R4SjZ6GNv0fHhYf7cuaWUZrciwDpgsuGOHErfu8nZ\ni2989sgmGpUq1VmNcJqVTYlosI6naqBauMA8g1EbiFMW7mEgJbmy+Qn0KIP3SAv9pwYcB+cDhQN4\n7r2SDcrM51+rw47th3oRPNNXUyisz4SDbTnGOM7Y0PU6P6gbfpQEq3r+zKSB7727vr1rjZV8RDbR\novVVU/fAUvNsvIus5NnwZ5CFXuBMREoirGxyzrPKLg2H89ChjkLBKzJ7+nwSnXMTDXevOuzdsb1o\n9SfNFh+Kxv6O2gdm8+qFVT32pT6P+pXoQFnpKNnwbUF6H6I3p4yvAz53TZtKqmbIdbDUPJsohdKG\nYCmGXBOvnhJSv4QVCyqYUyW98FlOehWufg2rr6jstdyVz7u1Dju2A7VUWDtYXj8iG4BJALE0Go3m\nfEolJ6gfkA53tuhgEd86BQNl0PsSWUXxMDi242ss8mVqr61Yep5NC7hQfJLcEOqE80XOUpYf/FNS\nGEw4fMOnJ3OhsrQcXnn0Nz7e0Erv2G60xLjX4Wp8Aap0eOF1eD2Ob8Sz2eJEQI9s+FVveAa0k/Xi\n2CPXZYnGrNEgXgYe0ZQ8H94uqkS8Z7KIyuzdCMr7R2WXKi1SMx7BddwueLE6tJ09Za8XfUtnq/Gv\nkwy13LxEWYTGfolo9LtlO9elbsRsRUQ4Ldth4crl97UT1krnCldWbz0H7/uO24uh5KIXNL+mlGZx\n523jKWqOczWh9TheGSIVpcer7bP1txo2QjZDT8DbXuHJvZKy8V65bK3lKTF8x7ODUsx4sa6dK3ee\nNXjK3nvforwiovGIsaVcq2BjymaVgkVsrb1ADVHDrkp8Hc8mhvqVNR+kZR987FIHvkyKd93wb/LY\nIGon2VIJyxh4mypLR0eEdXa4Hjzlvs3YqGcTYR0X8boquBNKxyax6fjaFaIxuwFl09HR8Wyik01H\nR8e1IJVkXkqp5xgbRM55dzTwLUOP7c3Ci+0i2XR0dHSsCz2N6ujouBZ0suno6LgWdLLp6Oi4FnSy\n6ejouBZ0suno2DBSSn+cUvrGxnU/mVL6lk2X6SawVWTTWtEppbeklD6cUnqUUvqq6yhbR8eyyDm/\nIef84dbVr5YFpJS+KaX0qZadpJTekFL6tZTS36aULupbbB5bRTZWqGjBe83spZzzfTN7kFK6SClV\nzyWl9I9SSv8zpfRKSumvU0r/IaX03KqF7uiIkFK6kVuCzOzMzF42sx+4oeMvYNvIpop0eTPIF5rZ\nb+pPDZs/b2Y/aWavM7N/aGZ/38x+eq0F7HjmcaXQ35VS+i277Aw/BcWeUrqTUvpgSunvUkofTSm9\n01ErX55S+u2rTvHllNJhSumemX3IzD7/StE/TCm9NipDzvl/55w/YGYf39iJDsRWkk26xLtTSp+4\napRfSim9JqV0aGaPzGxkZh9LKX3CzH7jarPPXjXCm6L95pz/U875v+ecT3LOf2aXCunNGz+hjmcN\n2cx+0Mx+1Mw+x8wm9lSx/7iZffHV8tar9VjNJzN7p5n9kJl9nZm9ycy+P+f8xMy+1cz+Kud8P+f8\nfM75r6/hXNaGbSSbZJcV/T1m9n1m9vqr738h53yac0ba85U55y81MxhvL1w1wu8OONbXm9kfraPQ\nHR2Cl3POH8k5n8j3321mH8g5P8g5/6WZ/YrNq/JsZh/MOf/eVYf4a2b21Ve/7fTtLdtINmZm7zCz\nn8o5/84Ve79oZt8V+DJLNUBK6S1m9r1m9q+XL2ZHR4io03udmX2MPv+Bs84f0vtPm9mt8BW3lWy+\nyMzed5WzvmJmv26XUvTz1rHzlNI/MLNfNLO35pz/zzr22dEhmATff9rMvoY+f21lP6p6dlbdbCvZ\nfMrM3p5zfg0td3POn3bWRb7b1Agppa8xs/9sZv885/w/1lPcjo5m/LKZvSOl9PqU0pvN7DutbQTW\nzOxvzOy1KaXXtaycUjoys4Or94dXnueNYVvJ5v1m9iMppW9IKY1SSp+bUvqOYN2/NbMLM3tjbacp\npTeY2X8zs3+Rc/7V9RW3o6MZP2lmf2pmHzGznzWzD9jlMHWE2XSQnPOfmNkHzezjKaXPlEajUkp/\nz8yOzeyPr7Z/1cz+1+rFXx5b9YiJlNJf2OW8gF83sx+2S+/mC+yS0V/OOf/Y1XpTM/uynPOfX33+\nCbt09Udm9pac80eD/b9kZv/ULise+GTO+Ss2c0YdHWWklH7azN6Yc/7mmy7LprFVZNPRcdtxpUa+\nxC4N5G8zs583s5/JOf/cjRbsGrCtaVRHx23FgV3aBA/M7H126eG8d5kdpZQ+dDW3TJd3r7G8a8Ot\nUzYppffb5ZC24hdzzu+67vJ0dHRcoj+D+AbRn0F8c+ixvVl4sV29Seyll14aepDwt+jvQb3fav+H\no3/Bq/+VXCuP97elpfLVMFQhvu1tbxu0fsf68eKLL65lP0Pa3ou1oX825/39dO0vqVvKtC685z3v\ncb9f6x2pLf8wOeTfLGt/N7rKH6C3lqUVtfJ0PDuI/j7aQ4l8avsdUobW8rRus0ysb51BPFRlrEIY\nkTrq6GhFy395tyhtYAgxrVuRDCnTMse+qWdtuKilVPpn7a1qopRK8T75tePZwjJqooVo+LdaXNVI\nxIvVZcDXTw018htShq1VNqXfSo0xNAC8dbrCebawTOdSixnE4rL+Id5j4d+G+Jm6tJzLprAWZbNM\nLlnKUVvYtMSqrenRuhUMK7COZwctxNOiamoWQqS+S4axV1Zv/9eh6LcmjWpRNEPSpxYfRomvp1Ad\nq8KLuyimhozO8v5bOlp9z/tfZ5wPSaU2RjbRiZYQKRx+hRyM2Nn73FKWITl1tM+O3UNLm7e2dS0t\nj8ilJV3i+Fwl9jzfc1W01tFGPJtVckOu6NIypCxe3hrNy6mVK/rcsXtobcPSep4/Eq3XGmdejLco\nHu/9quu2oqUu165s1lH4Eqm0jPeXyKW2v6HlLEnVjtuJTUyZiBRO5P+U4l7f63Fay7NuXOukvhKW\nUTBexXuV3RoUy1RwJ5xnC9Go07qgZDOUcGplGmoXrBMrk83QivZO1vvcMsxXYnh9bfVtovKU0Inl\n2UOrVVCLsZJnw/vwRqKW9XDUvL6ugZGVyGYZb0ZHfkoXdiQpvQYtmcMXFxcLv3nbtJBM1MCdcDo0\nPmsX8lBPUvelRm90Degx9bfr8h/XlkYNudCiBmhl+5LM9AzhiBi0HC2qS/fR8eyipKr1fU2h47Xk\nVXKnWepcI6+yRn6bVjgbn9TXegKlUShex5OR0XEvLi4WyEYl6dCA0O864Ty7KI3qDB2QQKzv7e25\nhJNztr29vVlMe/spEVCUivF6qxJNbfuNTurTk62hJiuxHzB81BPUehw+3qoV3Qnn2USLV9gCL9b3\n9vZmv+n+WM1HhOMpeq/D5c/XgY0NfZccdFUmEcGA5bEO7/Pi4mKBaLyhP09WaiOyyimRj9cbeL93\n8rnd8C7i6JVRi3dviTrYWvlK9gGXpRXriO2NDH2XjONWs4zlpBIOmJ9NZo8IUOFqEAMXFxe2t7dX\nVV49heooIfJIovX0gueYx+LFfClTKHWujOtSMR6uTdmYladr6+dI2YDlI18Hx2ai0QbGftCAutRU\nDX/Hiq3j2UaNcLw4iTpXtQ8Qy9E6vF702SsPl7cl7ldROBsZjVrGMC6lUryOqpmIqZVwvONzA3oN\n1dILdMLpqKkJM38kyIt1VjYap6zCIzWv5WkhPj7OJpXPxmYQ106yRjhepXvHUO/GUypa6bw+qxve\nvlXdDOk5OrYfpU6jJU0peSVKNPw+invezvMpo/JB0eP7yIK4TqxlBnFNyZi1zcLVHFblpaY6nqej\n5WJloxVcIqSOZxcthIP3/F0UR6qm+Tgcu4h1L+aZJEA6UfnYOojK4nXAm0aVbKKKH9IY3vpRD8AV\n7bE8b6c5rO774uJituB7j6BKgVJL13gfPaXabajaaOlE+ZXjTNeNFLOmT6U0iuM32r8Sjadu9Ltl\nsEyMNymboYTDv0X5a+lYXuVjX1xZUcNo5Xtkg/QJhMXe0BBERNMJZ3cQxeMQwimp41InpnE+Go3c\nmMZr1MFqObw0itdh4mn1JrksLfWjWKtB7LFptK6iZJYxEfC20WxLLY9HNnxcrKP+TYROJB1msT/I\n0Itcf/PifTQaLah57KM0w1iJxpvyUVJZCs+eWCX2lyKbUnqk30fEEm2nuSurF21UVTZeA6is5EbE\n8VjplHooXp/PrZPPswdP1ehv/DkyhCMlrzGP/Xjx7hGeTvnwsoNSrHtEw78tE++DyaYkE1sqXb9X\nWRY1gCfjPEnpkZI310a9IVU3XvkjVRR97rgdiC7K6MKN4p7hxfpoNJotnk/ZmkKpojezBeV+E3G6\nkXujWhhTL/6SpFSyUWUTDZEzyXAOq34NfJ2oMTxCwzE8j6aTzu5gGYO0RDIlUsLxNNajNApA7Opo\nVak8HO+8H5ThJghn4/+u4PX8tRQlUjcqXVvTKCzecZVgLi4ubDQahefjEY7+3olmN7As0XjfRRe4\nbleLcVY22A4xpSrfOz7HOisbTaO897rfVuO4Nd7XPqmvJR+sqYdI3WCb0WhkOWebTqfVBtBGUMLj\nxvEagaGpWkQ4vH4nntsDjY+aslF/EEDcIG45ffLIBqo7UteeqlHiKyn3WoyuK84Hk020Yy18SVJq\nLqr794hGmRmNEqkbj2h0BiZSKE259Dywrr6W0qZONLcbGr8R2UTXQtSpemRjZjYajWw6nTYreCWb\n6D7AqFP1DOJSTLfEezPZtHoSXuV7+ymdpGececYt57et6gbHwevFxcVMIZVmXrbUCZet43ahRcnw\nemZP1QTQkj4p2fC0jcibjFSNN/Q9xK9p9ShbMUjZ1A6gZKDvo/Wxb7x6jcHKBp5KpGyiHiciG5Wd\nLbIyIplOOruNUnqC7wFNwb24V8LBMbzO1Bvw0JTLIxotr86cxzH5d+68W+qD97Es4az9saA1ZcO/\nRYhSKf7dzBZ6g4h0tPKxPWQpVE0peLwyosKjutB1O7YbrYaxxkZNTegxlGh0GY/nL0vEWaTecfzp\ndGrT6XT23uvMazPllzHNW7GxR0y0pFHR71EqpawOgvEUDq8XkQ17NjVZ7BFLC4m0mskdN4chJON9\nx52aF8/6OfJrxuOxjcfjudFQxE/UkXodKgjHe3xuq02wCdK5tmcQAzwiFKmIiGzwG9adTCY2Ho+b\nCMcjDU2jSgZbCRHpdEVz+xBdrFEc45WVSeTV8GeGN6+Gj+nFMJSNlxZG8AZBvHWuxbOpoZTjeoTD\nDrkHJRxOn/AajUq1lC0ivRblpfvQyu9Ec3tRU8Jm7YqmNPKK/ZU6UI9koGw4/aqRTUQ0Xtq2bGxv\n5LGgHtFg4ROv+SNew8wVfjy2yWSyQDgR6WhOHSmb6DZ9LVsnk2cPGt8tcaJEk1Jy1QwvvP9WotFF\n1/c6fi2r97ouND3Pxmy41xA1BCqhNu4f9QRcAZEE9db1ypFSsul0aqPRaCGFakmjPDXDx+u4HfAu\n0lYlDLSkUbwwoWhZcs5zvkyps2RjuJZGoZz6uq5YXtukvgiR1MTwW0lJKOGoSawOfmmSn5YFv0Ve\nTWsQbaLOOrYPJTVTi4+SKewtTAwcw56i0REovZ68Tt0rn/d53YQzaFKf2fw9FK0F8MhGl0hNePIT\nUAe/NBTulSU6fm3h+tD3Xvk70WwvIn8Pr7W0yYvryK9RkvEIB+uoqikRzXQ6tclksuDXaNm892pi\nR6nTKsYwsPHRKE+C8qSi2tCz2WJjzQp/5dmAcJh4Ip+Hy8INOIRwuOJLqZSed8d2oeRJaLt5MVOK\n3WgkimMzIhoo/tqoqqdutFwoQ6vy4s98HqsSjdmKZNN6cCUdeCWofE/+qcpRKWpmc+mTEg6Tjj6m\ngsvkpVFRo3XcLngqRH8fmkqXRp1qakaVeEQqk8lkQcmo0imdm5rW0bJurKxsaoXzGktn7Hrs7DUw\nD+Oxox8RTeTjeGVrJZxIKnfsJrQtW1InXVdRIxz1Gb3Z7zXC8dInXlAO71YJr5ylkah1dbaDn/Lt\nSS3+rYV09KJWdi4pCzWMPaIZj8e2v78/iHBqQ9+aQ/P2y9Rfx/bAS/Vb1lcMMYJ5Mqo3glpSNaxu\nPJVTI0GP2PR7b9tVsZSy4fSplO+Z+eaw2eLQs8fO3jAe71+Vzf7+vu3v7y8oHG3Qki8TqRv2mZZh\neq2zju1Cqx0QwTNavdsRSimUqhDEmqdmvIWvF8RbRDp63CiNWodXA6zVsxmS/2L9FmnoGV6oMCWa\naDk/P682asu8Bc8EbK2ndTVax/XA6yRL/k2Lqil1gkwQuC6YTM7PzxeWSNmoSllF1Qypq1J8N0/q\n053qOqX0irf1lE1KKWTraO4AGjLnvJA+HRwcLJANGhjPrkF5ItkaEQ7KXatYrptOMLuDki8TxT7H\nEaf4UfqkXo03eMHpU0Q0TDieX8NlZELxbpXwMpTWDrI1DV16Up9XGD1B/c4rGE6wJA+VcLCd+jYg\nloODg9mipMP7iGZnRqoGRMPnMIR4OrYbHsl4hrFC415Tp9rghaYtHsmcnZ3NLapscJ1415dHLjWi\nwes643olz8bLU6Pcz8yXoGBi3OMUycTJZGL7+/sLaQw3qhLN4eHhQuNEkwdbfRvuJTrB3B5omhSN\nQnopFMe459EgNpVomGy89CkiGo9w0CFzeTz/yJv0WhoJK9XX0Phf2rOJTOIhhMOFhacyHo+LUlFN\nMNzXpMoGRHN6emoHBwez/fA8BJQHZVSi8QhHp3937D5UDXivJZ+GY8gb3mblXUqhamRzenpqp6en\nC4TDqibyY2pze4Z4Np6X1YLBjwXlg3h5YYlosB0YmBsTJz4ej+3s7GxGGko6+/v7c3NtQDisbM7P\nz2dkc3h4aKenp3NkU0ulPEXDzyn2RqVqjdS9m+2Ep3D1NUqhSkQTTcnQCafqGTLRMMF4i/o1Zk+f\nxFfyjmoKJyLW0vctGHxvlFY03peIRmWZqhtcwCCO0Whk+/v7cwx+cHAwS6fG4/FCKjUej+3i4mK2\nHogGi6eQPIb2fBsQDRMO18GyDn7HzWII+ZcIx8zmUqcWovHI5uLiYkHRgFhOTk5mC9SNqnVvoCYa\nGSt5N0PrphUrD32b2QK744KNDChsw+nQ+fm5mc3PnfGGsEEmmBRlNt/QWOfo6GhGOmdnZ67ZzGXx\nzMFoNAreDY9MaX2U6qwrnO1DqeOJ0ieeQlFKnXT+V41oQDIgl1dffXWObJhwML9GPdRIZXmf+Vy0\nAy2llNfi2UQ9OQ8ps5nqGU96weN7TqdOT0/nCARsPh6PZ5MBUVkYBj84OJg1HMhG5yNwjgvpqkPa\n3vwab2QK9dFS8V0JbSdaUiYPHNORKexNv2BlgWNBnYBsmGiwgGSwIKY1w/DUTEld6dC7iojWOqn9\nvtTQd+2znnCkcJQhOZ3iilJlo7cjRN7NZDKxo6OjhVEt7g1qjns050YboRPJbqLUY5eM0EhFIF69\nGe3RCFTOeU6Fe0TD6kaNYbP5v3rxpoRERIPOms9TY9vztSIzvYS1PGKCC+ulUUo4WnBv1mOJbLgR\n+e9YoG4uLi7s8PBw1lOgYVThlNKpKJUqDYF3wtktlEzQ6GLzBkU8v4YvcC+F4uOxKcwejZINqxv2\nahD33MlH6Zw3ezlKmUr1Ulvfw1o8GwUuQI9ovFwVFzxYGvv2GBpkA4UD74YN5v39fZtOpwvGcIls\n1ENieKSj/hSXuxPObiG6aKKLqKRqhng1iCWomohkjo+P54gGyoY7aZSnVgZe+LqJ1FykbGp15KFK\nNtGFo4YvDFNuhNZUCiSjaUmp8jSdYnID4bDCaSEb9m5U5qrS4VEps/k//+om8O4haq9S+sSjp6W0\nRVMX7Bfpk5rCx8fHc4sSDjpQlINVjecX6Ux6j/j4+vXOOzKKh2CtysZLKfgCjSYyeeYr71PTKUza\nY7LhykOFozFr6RQbvjo5yiMcXp/XUWOtY/sRXTQ1VaPeYgvRcEzgmlCiAbEcHx/bkydPZu91BGoy\nmSxkDN514hENqxouD87Pi3euk2U70mayKSkcfo/10PvrUrofhOe14IR4G1U4qFg0NhteUDv7+/vV\ndIrJA+Xx5KSXRrFZrETbsTuoGcSqaGqjPV7qFKVPSjJKNJ5X4w2m6Cx6XbxBFe0oa/US1Y/Wk4cm\nsvF6bW+oDO9RCDZsVdl45hR7NnxSPBw+Ho/nKo+9G52shMpHOqW36vOtC0oaep+JqhqPaCIjsWM7\nEV1E+M0sfrKdGrEtw8vYr6oaHn0C0WBRVXN+fr4QZ56vicmsqm50BIqzCj5v732NaErfm63g2fDJ\n8iuAlAr3LuGk+Fb4aMo2p1TcwDq06KVRZpcPQkcZdGaxd1u+592o0RsxvEdCHbsNT6GqKewRTXRr\nACsaxNd0Oq36NDzczaqGCY87YJ4xzwsIJ0qfvAGR2qL11IJmZQOUUqnI54DCwVA1DNtIYkZP6UNF\nRfMYuDLVvzk4OCg+TpEVjp53i7oxm/eshjRCx/aglhpwXA2dMIe44WFuVjWqaEA47NXgetLBkBLZ\nsL+po6iRetEJrdG6Q2J8aYMYB1L1wYSjDcUSEhc4GojVBC54nQeDhvPmCjBj8zpmNqeI0CjRqBQb\nvywv1WPyUi9tED3/ju1CSfKrsuUORYe7NRYji4DTp9PT04W06fHjxwteDSsathVAHoeHh3Z0dGR3\n7tyxO3fu2N27d+3OnTt2dHQ0UzXcIeNcNHXi61JvzdGOX+uuVeEMIpsSk+mQtn7mk5pOp7a/vz/3\nn094xITZPMl4Bi43qkc8IBkOEE2nosePMtl4f4sRpU9qEmvddOwOlGjwHRRNZA6XFA3HGSbuMdmA\naFTZQNXgelBFA+UCsuHl6OholkKhbCiPviq5RN8phqRSzZ6NvvJv2lCe7IxIRx/izOaV/tMCtmUX\n3nvPyoq/Y3WjZKMpG58Lm8WewuH3kaLTzx3bgagtSsawplA1nwbHgVeoZvDjx49ni5rCOnkPMXx0\ndDRTNHfv3p0t9+7ds7t37y4oG06fvImsqmY8K2NVDBqN4ldtEP7sjVbpFG0sTDZojL29vYXHQKjy\n0PQtSqd4qM/zb1TVcEPw+UTnXDPPdPuO7UGU9mrb6QhULY3yRp74Jkv4M0wyWHio++zsbG6YG34l\nrAAQzb1792YLSAdko+mT2hUtSxTTQ7GUsuFG8Xp0b/Hm1nAuy6btaDSyyWRiZk/TKNw8ieFxTnd0\n/1zeg4ODOdJQwlGy4YrldEr9G62jiGw8Sd6xnYjSJ2/inKoa7ejMnqoaxDXSJ/ZoHj16ZI8ePZpL\no46Pj+ceH4FjI26Pjo5mJPPcc8/NLffu3bM7d+7MVA3KxmmR2XzqhPjWTrekaqKYLsX5YGXD33Gh\n+TuvkTj94QLxBCeoG3g4+J0JCfkryMjrmdirwXF1/o1XuXouTF78jFeuVE/ZcF2t2ht0XC+0jZRo\nIq+Qp16Y2Vw8YX4MFMuTJ09mJKNkA2XDD8TCMaFomGju379v9+/fn5ENVA2nT+w/skjg2OeO11P6\npTpqxVIziD2CiS56NmtZDrIC4ZPlZ66i8ZDyAPjMuSYfk4/NXo16Nzzvwctd9Xz4GThaN5HKq3lc\nHdsL9QNr6RPHNMc15tPAp4Giefjw4QLZwKtB/PHs+YODg1nqxESDBWkUzxY28w1hJRq1FDjWI29W\nUYvtpjQKO4p6br0ANcdldeOZaGZPFYw+4Bm/8TA1FA4qSRUHB4YSnrr5njnmkQ2XM/qt5NtwHXbC\n2W54Pk1piNubK4bU//z8fEYgTDSRqkHsY3/wXODRqKJ5/vnn7fnnn7f79+/PRqFANOx9qinMJOON\nyvJQO7bTrAR1xa8lDFI2DKiUyKfQhmKJybOH+TuQDXJbTNLjhgPRwNeBWw94szuhakA+PDyOc9GF\nh9x12M8jkyit5Ebw0tGO7YNnCEeEo5NIOWb4JktVNUo2SJ9w4fMxPLIByYBo7t+/PzOFEe9mNueF\nms2PBEf/0+Z5NSVl09p5Niub6DcUntULk45HOJrjsieiDxACQSDdOTs7mx1bH4totngfFcgG33GZ\nAFU2np/D5xuZZlwvnDoBXdlsN6KBDVUx0TA3Xw88Szga5uaF0yf2N9kUVqJ54YUX7IUXXpj5NTCF\neb4arhuUz/NnvD+E9IimFLct6wxWNlEK5fkVrCKgUlhq8sWPi5rvF4EcxDE5feKUi81bncLNj6PA\n/SEoH+8bZeLG8FQOB1Stvrgu8F1XNtsLj2Q8omHCUTsAF7c+5lNnCevcGkzew/6QObCqYa/mhRde\nmJEORqEQ39ge5KFD8SVVw8SEOuFzayGcCIPvjeL3uODYz4k8HG4g7Ie9FJ5diQlLbHQx4aDXYKPY\nzACKrykAAAjFSURBVJ/GjVf0Dt49VCAnnlnsSUud66M9gDaIkktXNNuHyOj0FI7n0bCPwRczbviN\nnlPDI0/8QCx+eoEOdUPBeMYwezW4TqCQAFU13p8AcIeK847qaSgGpVFej1xSNyik+ig8kxG/61Tu\n4+PjWf7ppVKnp6dzw9ioWP4rFywYDsS/Y+KeLDOb827wOFH+jyo10GqTnfC5j0BtPzwfQglGVY5H\nRICqhuihWHp398nJydycGpCN3vt07969BaJhY5hVDasj9pKizpSNYbNFQ3joyJSHpQ1iL5ViVvRG\nYtS74R4fJ8wkwc/h4NsYlKGxD24czKR87rnn7Pj4eCZDeQo3szaTYfQQJCx6v1Spvtin6QpnuxEp\nmtJnT9Xwoz71Xy2j/37i0R94NYhnviUBw9s6W/jo6GgWz5iFH10vnk+jo1YoR2vqtDbPxuvBOXVi\nhRIRDjcOEwe+U7Lh2+P5uanYTofm0BMcHR3N3dD25MmThYdFs+OPMtTmUYzH49nsZkjVKI3SOurG\n8PZDR1ci/4YJx+xpe+twsvc/3dG/WvIcMu704DfqPVBMNDxbmK9JJUEmHCUZTaE8NdNSd2vxbLhS\n+XPk1USL10MA+ihD70lj7LdAJrLz7zUqNy7/5zc/T8cbPfNGHWr5ekuFe3XZcbPQjo/ft6QMOsrD\nZKOLl7oAHtHoIyRwN7f3CAmz+X8o8Sbu6Zya6IbLKI61joZgqefZeL21Ry4lb0N7DX2sofcwIDaM\noS74WGzM8f+Eg2jwGevoXB+ubO3FtGfD4uWxXpB2bDc8wtHfFBwv0bT/KF1RxcAKmuPfU/pMMDwi\n5l17Wh5vtnDkt3p1w98NjfPBZMPE4SkbNVA9P0dPQg1kJR1UPH8Gk2N7lMnrYZh4sOAmNSaUUvm8\nfJ4X7hE60ewmhqhSjXvvovYUhKpopPIe0USdrfdXLGaLqVzJCPbUTKlOSmTcimay4QsqQiuzMjmo\ndGPS0ccdguVZnZyfn88MNfV1tOKVeJRsvOBAOVG+GuHUZHjH9qC1bbwOVX/z0hJV9hzfiHEzm42O\njsfjBSWjgyTqF02n0zkfEzHupW9R2hR5q1pP3ndD0EQ22nN7/k2kbjzS8WZd8v5Z4aic5P/u5nk7\nmCvj3X3L6RWnWbxtRDY6ec8zD3EevE7H7qDWXqxmMBiCz5GyiYiG53XxLT9MNp4v46VMPFSN956K\nZ7KpEU1EPMv6NIwq2Xjk0tI4ms6w52F2WTnsu2Bd9kBU3dy9e9dOT09n6/BNa3t7e7NhQp6fw1O3\neQo5z0nAetxgmme35LT6uaub3UFk/HIHyu2qNoJO+ozUOuZ55ZznplGAgHSUSad9sD1weno6R2L8\nvY54KeF4ap0/RwMiXFdDSahZ2XADRPAUjpINX/zsnGNSE89K5gYC45+dnc3KgMo0u/RVcAs+9wba\nC0DVQMKCbEaj0ez4Jdmp9eJV8rpkZ8fNwyMbs6dtX0qjsJ7ObEcsIebMnipzfqwnezRQQBzDSgL4\nTcmGp3to2bwO0RvqV7GwTGw3K5toh94Fp54NWJcrRfNPbzgQ6gZkw/+bMxqNZqyNdXkSFBqLfRw1\njVFWVjY5P73D3OsNvB7BG43y6mcdUrRjvfBiN1pUeSvZaIeEOIU651nCmLfFZDMej+f+HUE7TMQv\nHi3KHTbiW//4DtM9tDPHNiAxJRsmGc+f9OquhkGeTcvOPWWjHo3eY2L29BET3ACc3x4dHc1+Q0+B\nSuS0i5/PChnqpVJ8jxbKgmDx3HwvmFA3JcLpRLO9iNokMoOZXLjdvdEdvlihao6OjszsqYrhiakg\nG51B76ka3KqDlF9TLJ7yoZ6NdpZ8bdRSKf5tmTgepGxaCEeJBvvAb+yRcKE55dJGgGLB/tB4/JwO\nXhdKyMt5kSZxA+qcGZbE/N/KnrqpqT7vtWP7gVjlTojN2YhsuENiosHFDAXuxfloNJpZABy7Zk87\nSpALm8oAd6Y88soxrF4S4Pk2WKekaIbE9FqVjWea8W8glGiOQM55rmJwstwL8M2WICfuSfjJZjwn\nhwMDKR3Kw3JSU8DSLMuWyu5Es5tAGzNJMMlwe3LMqHJAB4jYxUPf+OJnFcH/Ye+pcjzzBteRPgSO\nO0kQj3c8JRMuN5dfz3WVeF7bPBtWLyWygfxTstERLE2lDg4OZp/13xEAnsPAf9Gro1IgGFY2fH5o\nFB1h4Jw3GqHTRtP33ueOm4Uqd3711uMLTuOd259HW82eqpfIqOXOklMos6eKnDtJnhSIdbSTZBtA\nO0motsgGUOIp1V0LBs0gbu3FUQiz+Qu3NJTG67GCQIVqbuvNg9E8GevyIyp0bgKXB8eITEFevPMu\nGcWtddhxM6gRTslK0LhQ8sB7TN7zRjexTvQUQJ6WoSO8WoaaMtcyRvBSJ494WpX+0v/1XQIfnBsH\nFeFJM6+y8BvYmxuMmVorENug8XTIHcdT4tNya2/lKTtPgkboRLPdGKJwzObbXglHL2LEJHeq+jt3\nlohdTf+5w+TrSMvh+UitXqOWaYhHU8p+mgziZeAdVB1vbxtPPaChmBR4NEnLq/moZ0ZDQpbKwmXS\n7/SYHbcDJaLRC7TUCZnZQuyhg/O2U49EiYTT96iT9IiPO0xPgbR2kOuI8Y0oG6BFgpa2wfo8F4CN\n3Agq+ZSdWWENOQfv+47bh0jRROt6UF+ntq3GIhOV2VM7ApZDaf/r7CDX2ZFuPI0yq5vLte2xj6H7\nivLLIfvQnq3j2YCm/2ZtsacEwp1kbV2Gdo5eutRajuj9dSvyjSobYOhFGrGwVngNUWWuSnwdzwbW\noWZraUjrxb+OTu+mYzm2ojeEIYwcoYWRh6RIq5Slo2MVDPFEVonHbYjla1E2inWc+Lok4DY0Qsez\njSGxvMvxeu3KpqOj49lEJ5uOjo5rQaoMIe+uZtsB5Jz7BJ0bQo/tzcKL7SLZdHR0dKwLPY3q6Oi4\nFnSy6ejouBZ0suno6LgWdLLp6Oi4FnSy6ejouBb8f/AFLmDSf1UtAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x11373c250>" ] } ], "prompt_number": 545 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "3. Convolve the filters with a stimulus" ] }, { "cell_type": "code", "collapsed": false, "input": [ "stim_width = 4;\n", "stim_dur = 1.5;\n", "x_stim = np.arange(-stim_width, np.round(stim_width-dx), dx);\n", "t_stim = np.arange(0, np.round(stim_dur-dt), dt);\n", "\n", "nl = max(len(x_stim), len(t_stim));\n", "signal = toeplitz(xrange(nl))[:len(x_stim), :len(t_stim)];\n", "noise = (nl/7.)*np.random.random([len(x_stim), len(t_stim)]);\n", "stim = signal + noise;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 822 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.figure(figsize=(20,2))\n", "plt.imshow(stim, extent=[x_stim.min(), x_stim.max(), t_stim.min(), t_stim.max()], cmap=plt.cm.binary);\n", "plt.title('stimulus');\n", "plt.xlabel('position');\n", "plt.ylabel('time');" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA6sAAACqCAYAAABLVtm9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXvMbdtZ3veO9a3vdrbPcYSQACGgtAkCp3FxISUIQaME\npQiUplITVaGkihqlSa0mUtUqoqrU0kuaSEV1qFWpOEWRKHbCRZgK4WBxKRIFTDBg2QWMqDHCPq5P\nnRh8Ofu7r9E/9n7WfuZvPmOu76Bz7LPRHNLU+i5zjjnGe3ne533HmHO13nutbW1rW9va1ra2ta1t\nbWtb29rW9mpqm8/2ANa2trWtbW1rW9va1ra2ta1tbWtjW5PVta1tbWtb29rWtra1rW1ta1vbq66t\nyera1ra2ta1tbWtb29rWtra1re1V19ZkdW1rW9va1ra2ta1tbWtb29rW9qpra7K6trWtbW1rW9va\n1ra2ta1tbWt71bU1WV3b2ta2trWtbW1rW9va1ra2tb3q2pqsrm1ta1vb2tb2CrXW2jtaa3/lFep7\n11r7l1+Jvte2trWtbW1rezW07Wd7AGtb29rWtra1/WForbXvqKp/pfe+T05779/82RvR2ta2trWt\nbW1Pd1tXVte2trWtbW1rW9va1ra2ta1tba+6tiara1vb2ta2trW9xNZa+2uttV9orX2itfb+1to3\nV9V/UVX/XmvtU621X3183s+01v7a45//amvt/2qtfUdr7fnW2rtba3+itfYXW2vva619tLX2bXaP\n/bV2/c8OxrN4bmvt21tr73k83ve21v74yy+Vta1tbWtb29pe3rYmq2tb29rWtra1vYTWWvvcqvqO\nqvoPeu+vrao/V1Xvr6r/oar+Se/92d77Gx6f3h8fan+yqm6q6l+tqndX1Y9U1Z9/3Me3V9V/Y+fy\n2qU2PPdxYvpXq+qbH4/3L1XVv7hnv2tb29rWtra1fdbamqyubW1rW9va1vbSWq+q86r6stbace/9\nd3vvv11V7fGx1D5dVX+v9/57VfW/V9WXVtV39t7/36r6vqr6/Nbal7zM4z2qqrOq+mOttU3v/Td7\n7x99me+xtrWtbW1rW9vL3tZkdW1rW9va1ra2l9B67/+iqv5KVf2nVfVCa+0ft9Y+756X/3rvfff4\n5xce9/e+x5+3VfXxqvrCl3m8762q/7Kq/v7j8X53a+3By3mPta1tbWtb29peibYmq2tb29rWtra1\nvcTWe/+nvfdvrKovqUerlv95Ve3q8MrqS2kvVtXn2+9vGJ146Nze+1t7719bVa+rqtfXo23Ba1vb\n2ta2trW9qtuarK5tbWtb29rW9hJaa+3LWmt/prV2Wo+22N5U1efWo5XS1z3++8vR3lNV/05r7Qtb\na3+mqv7CSzy3Px7vV7fWvqa1dlyPkum7x+Nd29rWtra1re1V3dZkdW1rW9va1ra2l9ZOq+rvVdXH\n6tFLkn6/Hr0J+Afr0Qrn/9dae3e4Lr0EaekFSm+qqt+rql+rqr9TVf8Lzu8HzlV7rqreUo+2GP+f\nVfVLVfU/Ltx3bWtb29rWtrZXRWu93/dFg2tb29rWtra1rW1ta1vb2ta2trV9Ztq6srq2ta1tbWtb\n29rWtra1rW1ta3vVtTVZXdva1ra2ta1tbWtb29rWtra1veramqyubW1rW9va1ra2ta1tbWtb29pe\ndW1NVte2trWtbW1rW9va1ra2ta1tba+6tv1sD+A+rbW2vgVqbWtb29rWtra1rW1ta1vb2v6Qtt77\n7LvKn4pktarq93//96uq6ujoqDabzf64u7uru7u7ur29rbu7u+q91/HxcW2329put3V8fFy3t7eT\no/e+/7+Oq6ururq6qsvLy7q6upr0c3x8XMfHx7Xb7Wq321Xvff95qLXWarPZ7MfdWqubm5vJoXn5\nORzzZrOp7XZbR0dHtd1ua7PZ1M3Nzewc9aO+eu/7cfbeJ7LbbB4trCf5aH5+vfrwuelT89TRWtv3\n8+Y3v7ne+MY3xn59vEdHR7Xb7Sb63O12s3Nub28n8ru7u5vZRe99f/1ut6vWWp2cnNTJyUkdHx/X\nycnJzHbS4TI/Ojraz5lz0H01B41RfXs/2+12Lws/JDd9VtVBe5O8dLBPynt0aA5ug7rf933f99W3\nfuu3TsbnevYxH5Jn8r3e+/4a92Mff/Ijt+tk25TnZrOZ2Q6vk4798PElOSe73u12M59prU3kLB0T\nL9I5fq7uq3G4HetwPb3jHe+ob/mWb5lcs9vt6uTkpE5PT/eHbNePpEPOXX6lY7fb1fX19f64ubmZ\nYOl2u627u7v9//RJ3UmOuidt5+joqO7u7vZ+dnNzs8cL1ydtvbU2s0HJTX05Jvu9kn+5LBx7j46O\nZj4sbPDj6OhoH2OOj4/r6OhoIr/r6+t617veVV/3dV8381PHxYTX9FnFOcU64ut2u432T3tz25Ct\n+9wVWzgm9s3xpcY4k8ZCX0w4wPjF8STduD87DnHM3i99cbfb1fvf//76yq/8yr39M145djoW+s8J\nO338lJU+hXXys7u7u3gNuUKSl8stxRHZsHxdfu5YwEY/22w2M99i3JHcOX82jk9ycFmM7Mzt5oMf\n/GB98Rd/8cy+/DzKcwkn5DPJhxkvkz/63IRnLkNiePJbzjf1QzsQ3uoQVlJ+5Ae892azmdhJioeu\nq+vr6z3H9YMxqqr2HE9Ha60++tGP1hd8wRdM8Gwpzml84orHx8eTOCO/TvHZW8ICxku3Fde5y1DY\n5FjgetputxN5XV1dTfBLOvS4OOJxKV7yOtpysgtildus27/3W1X1wgsvRFk+Ncnqpz/96YOBQoKV\nUm9ubury8nLSjwhE732vVA+kIm763YGcpLCqZs6TiCvBhT97/+4AcmQ/X8RZ9z47O5sYEBMwEjf9\n34FG/zs5Oamzs7P93NPYnDim+ejeGr/m8NrXvraqajI278evc7kyCHhiJT2lRgDSfUTSfN5OFlNg\nUfMkwOWq8wRkLheBiWREgNe8nKjJkQmkKSFjPwo4/jv1qbGQZGusChzS0enpab3mNa+ZEblRQcPv\nJ7tykuaAf3FxEQnndrvdJ1BOyrxvnxODuMtPpMRJxtnZWT148GAiixTE3Ab0KT/3a13XXijy63St\nYxjlJdk4mWKCpj5d39vtts7OzmZESRggHHHZaW4XFxf14osv1mazmSSUSjwT8fFD8/EATix1O3Fi\nIVLghRyfJ/Xifel63YfFAtef/1227YE2FUtEWq6vr2f6lC/KvqVz7+f6+no/RscZEZRRXBDJkD6k\n49e85jWz4O86TcTUCYvfRzrmvSVjNse94+PjKGOfiycYtPU0dydptFOO33XqibL7H8cuWXiBNyUl\nPi8n71588CRSOvY5qc/T09N9PJXOPM4xCWHSIP2MZCad+98oo0TGW2uz4hGbx3z3vRRHeEjODx8+\nnOjg7OxsLw/vy++h+EkbkC/oSIlKsjf6tsdlxkkvgvKQn9Nf/JMLBSw6kLwrGSSeemGUhZdUUHQd\nX19fx7hT9QRrT09PJzZPveo617/7mrD9/Px8j/uUscajpvuKZ3n/4qOuCx0nJye13W7r/Px8Pwfn\n/0ux6fb2tq6urvZ+t9vt9rbj/u425k1zurq6mtm98yzKz39XXPa/uUwvLy+Hi2mecPs4t9vtvo+L\ni4sJXukQF3AOnQodxImbm5voR4wlxGD/lC8Id71Apn6dY15fX08S9VF7apLVF198cQYqbnSsEqW/\nsULgVQkHB09uFECd0MsQ0kHHcSN0kubG7fPxlSM/2BiYCHA+ByZVmpOCIZ3XAZ4G5A5Ho/XGSo3+\n5hWUUaCjzEbg6/JjNc0rPU6efA4eWFOBofc+WYkVaLA6y3NkLw5KvDdXlkSeaK+0FY3VEwXZsUiw\nkzKCj4MWSSr1mEivgvHJycnEn1hY0LgZUEXu1M/p6WlcqaGPMyglAs7xMJnwRG/Jphg4iBuJiDjJ\n1zjTKojfU77GJMnJqmTFgpMCgO7NlTY19afA4HJU4nF6erofn2zh+vp6Vuhz2bnMSVKSXLk7Qnjk\n9qe5eAWdOvVz3A58rur/5ORkVjX2ObrdVT0hcySxSX5OfjyoS54eD1hxTomVY3lKDoQ70n2KcYcw\nWXNksSsVIr0lv3L7E9H0uMrzvWLPOEQ/9/FI3/4398Pj4+NJPPEYyzlIP164WYqxVfNdDEyQEtkd\nxWvvw3WRuIzHa9ooV75IFMmRGA8kByfES6uvbsuO0fI1Jl8+nhQjuNqU8J96a63tk4YUH1OyoPEd\nHx/X+fn5rFCqezunIQ+T3foODBUA/dD1vfdJwuhYnngH50581c9u0/T9zWYzw3bKyWODF17c110v\nqajucnVc9ftK5ypA+oqxzrm8vJzYhWTDe49wiCu+jiUs4gvv9emLCUy4iIHkCF7c0ZiZ7PHnJZ7h\nepT/eGLae9/vgmExVzpP2E0uS7kk2fmYibtpvI7zaUeA+EUqPtNePE8acfyqpyhZJelIJISJFFej\nuKrqSkrAR4Kv//snz6HBpJWhFAD1u5IRNTqKEiIFISfNbvSqXNAgU0tJkd+bhjgiiW6YLuuv//qv\n34+FzkWjFXiJQLtTjoiI+r2+vt6v1LkuXfYuDyc7CkppngoqAlnN27eZaJx0Ng82dGaOJW3B8WSm\n9z5ZhSLRJQF0QKFePDB58E2k6Q1veMNs28iooMIt7g6WOi8FChIuXaef6UdJpm7DDrquCxIRycIP\nBnn/fUQMnQToMyVJye49yaLd+jykK/fbRAycHPTe6/Wvf309ePBgpq8k/5GdOhEh6UmEm3Ok3aTg\nNvIbx0Qvcnji7uTPfabqCXb6CrMn1/TFlIBUTYuK6kfNd9u4Hfrvvk1auCIC7vLxVU/J4nWve109\n++yzM3LhWOq6dftLBxP3UUwiiXFs8FVi+pXHJ61w0A5SDPf7y96dJKYVd9eXWrIDFrGSzZFw0v9Z\nsHZbdztmIvqlX/ql9eDBg0lc8fFSDv6pZMnt0wuRfi3nwqSaib36oh8mPEu4revko4xhnszQzx2r\nUgKhcUo+KQb5oZ1yOlTYcFn679r1QU7i8lTh6vM+7/P2nMRX5alD12vCRc7RYzTjyygRYhKgwoYf\nblMJb29ubvbyd7+SXWmexET3M9qe39vtyv1Vc6A+3C8lj5RUSUfETrf/VADYbrf14osvTubg1zGJ\nT/xE/QubnO8zjrP4S52PCh3uV87td7vdflcg9UH8G+Uj+p1cRznF2dnZvnClopWKW17YSjsxZFM+\nF8cX94E0VnLw1BrJ9auxtdb6b//2b/vv+0+SfE04ERAGNiZpNIBEYLzpnl5tceD3oOT3ozM5QVHy\n5JV4Pc/Fc/xevrVInw5Qul8CB4KW95nm4ERXsqJzpcSN90uJKI2XDicC4f3wnJTICCT8WgYBjdHv\nz5VekTR33JSgkYwlAIWNx+DBuZNQui0nm3ZdJSLuJJFbfFN//JnzoExHQckPAZ1AUgSVpMfvR5l4\nocPtItmXB6c05mT/nCcrnUxO5OfcoZD8iATNm89Tek+YN8KyhGM6qAeNOSUqo0/6lfCXWOC69GA3\n0mfyYRE1H3MidKNCin+6nSTMczm43JeKNSMfoT4Zj5K8nUwlkpFIzyhe+bwTLpJUp21ph+adsH0U\nfznX0bgTCUt2U5VxJ81fn/I96sZ1dN+W4oi3hIHEW8a+kR8zjqQVF8ZmxvuqeYKWkh3KLPlawhTO\ng/4xwhH26b9zDql/l9d99bnkp/7zy3mkMennFMPIBXUeY/gSJvXeZ/3wmcyqvCtrJK+UHI3unzCF\nfSTdEHMou2Q/o370qWSX70vw2LJkt+Reo3k43rqfU3eMjeKmPq9RrDg0nvv6AP2c/abY558J35N/\ncmzc6bDb7erhw4fVwwuWnppk9fnnnx+CPrd1VM2Dmf+cHCo99Mztnl7NGm3ruw9h8MAuksjruHVM\nyYxX02hkiQiThFEm6VpWmlRJ4lY2n0MCTBq996Gtr0k26dkUJiVMVhnER/Py3zUe3/pEp/Mtvnpm\nJb08hqCfiK8Tg6QDzVlJsBMqBnEe7Nuv4/wpByf9BP0EcsmPZMcJfGhztFkSLhEqP38poXTbZrAh\ngHIOsjcvOFF3nrCqL9p81Xy1hwmPF5w0TxY6NCb3cc6dhSbZGxM7H6/LhoTPk9VDSeZut5vYvir0\nCdMSwfBkgrZD3bAA1vv8BTPCFZ837X1EGumLxFPGkBGB8XGzD43dfcJtwIsNjtuOlZIxiyPJdtI8\nRgTGbc31TBy4uxu/DItkxWXqfqXtbSyIUZ86x3XOpNx9yhNuP25vbydjVj/csrqUOCesog8JO+nr\nqVDlsqc+feu5mubgL5hhscZ9y22QffnPjqFLc+d19M8UF3h4POeOMMdtxiXGTJJ65wXu9+RF5AXJ\nL9L80hzcb6+uriYvs0l2uiRDtRQj3CdTgnafMZPHVM0TXOpRWMri/Cjp8HunQsMh3/JGO5E/JA7p\n+JASPc7TV9z1fKQvOGh3HOfImMpGfydPkC9Sn26zHmN99wjjE+NBwlfyoRQLk89QFmk7NhNV6kE6\nXCpqOrYnXNTPT32y+sEPflA/zwSQAoEHE1YxHVhG5Jh9JhDw8514L1VpquYOyCBI8pYMfFRZ4XXs\nN80hkQESX36mJJmGSmf3ZFDjZaI3IpcOvC7nBLxLP6ffl0CUZPTQPZJNpIQj3SeB4yhY6JPEKd2L\nP6eE9ujoaBKMq+bVUAJdmieJuAOtVxaTvTnI+hwlA1ac+cZUXpP0duh/JHtu225zqThC+/f/U+a6\nFxNcv2+qYCYfTv2Oms8zJdwJH2jrtKlREucH5UX7a61NthrpZWej1X6NO83vEC5KV6kvjyvJ3inf\nhCuHmttRSg5JDkTMKQue49ihc6gH+h5xdLPZzJJgFvFElJjgstDhuJ6SVfeL5B+uj1Gckd2m3S3e\nn+zLCfFoldl9Pe1e4txTo00wKdGYOEf3yWQXh/At4Txl1vuTF/3pMxFNtsRbyHdGcqBuyYfINxI2\n0Z6JjyT0nvyxP/KspfH5vUefnmzJLugPCQOTLRFj78NT6M8s5i7huf9tCVPcR0Z47y3Zte+6cFui\nfzjekge4HtkHZSE9uL0n7EwtcTbGrJG8NJ6RvnxO1If8yu3Ji55pDokfOqf04jNthTiUdE5dJpsk\n7qi5bY0wzuf/kY98pPrTnKx+7GMfW6z8jAApEc2qedUkAdmhIN5am6y8bbfbGYHebDbxBTyP51VV\nTypablQjIqlPBn4FHFbsmdiaTPeflE8iwv57cnb9PZHzJYPmkYg6XwbBoCQ7OERofDXIV8q96suA\nQPklwsB7p3l6UOKKkJM32iTHx8QzAUsq1rhtVU3fnqmk0nVEWSr58nsn22HASYE9gTPBNgV2NV3D\nxDiBNe/P5H+32+0rr/JZzjsdlIX7pxp92MlP+tkDv7elIkPAyolsk73o0/1jtD0wJRxLK3qaNwOi\nn6+VLpevjznpynHb7YLFLt9C5XaafNab9K9P+axjD339EPkTWXCcSrtJvHAq3Ga/qdG2kr5J5hJu\nO5HzZ9m8MDSyJ5dx2srG+7MoxdXFu7vpKq6vPPjKCeM9ZbUkB5Jj963ks7xPitX0cRJWznOUbNJ2\nuMLBr1/TPUaruMn3xVu8L96feuCWUI/N/khMiunEFPKWhB+UF3dBpZi/3W4nWJVskLscqmoyB38D\nunMajplzVLHX33zPHViKvS7rQzyvavqW+cQdxMcYQ73RFjyRcTtNtuy45nglnE9FbWJhWsThvWin\nsgPuoCOXcdtZ8iMWPf06jnezefQ2b/eTxIt5PxbjEg8iriSenezEbSDlOsS85IuHYkTiaskfU7Ge\njeNTLPSiAZPyqqoPf/jD1Z/mZPWjH/3oDPgYyDRZgqz1s/9MQS8lOCQnbqRVc7BhUkejqJqCo38N\ngAfQVLFk37xG43EAYBV/lATQ2f0+/jf9TNDwwOUJ2YgcOCF1OScQYFLCAOIVLPWb5EfQSlvQ3G74\nGnjXO22JoOotySvpim2JBKeDNrlUfGBwS4kldeYFA/maB/4kU5LopN8EmJRzmieJJGU3ImqHiC4J\nzX2DmxcWjo6OZjhEUsEgoNUeJzlKyA4RXfoWK9W9z4sslIN8hCscLrNkg2yOOyyYEK/YR7JjrwCn\noJ7G4H8jWfZ78166XyIe92k+b5Fl7ixgIi/9Od56cnaIoLJQ5HbAeSaClfTHuEdZsKCTWipCcRws\ntvm1apwXd4F4XPPkORWcvP+l7W6ePPiYGa/uM/c0zxEWUjc8j9tRJR9ibOrL/0YukXSeuAJ5wQhT\nfKtusp2E20vkmjxPxTXGMNp/ip3+s2Ok5ntIn+SCIx9i0c7v4z7MhQIWdGhLh4pvSupYVGF8p48k\nDpzslvelzsl5ExYlXsx+km2P9OK2NLID3dcTbtlS2pmRsDyNmff3T8o8yYbXJL2wHZJn4trOizUv\n9wUdCbfTohcxhf6Qioqj5n099cnqBz7wgf3vSVEuaFaGXVkjQTqZSSs5VTWralbNn01kS8EiJUkk\nIpxDMrL0EqalJf6qecXZA7DaKMFk4sKVOQ/+d3d3s3l63wwSTo75Iimecx/iPaqmEZgpKxJbJmOJ\n0JCYuz69qLJ0TpLpSF5+HcfAsY1k4bJLNlk13wbMCm/v82erR/a/1BycvbDgupCOHbxJphIJIhEZ\nBWUfQwryDCAkfClZZaAngdjtdhNbl9xHxNP9k/7AgolXMd3+R+RE8uLcqUP3GVV4026XRCwTUUxE\nZBTUEt4nrOK5vEYxwuWVAntKAkZk1+2AhMvPr6oJ5ig+kRCm8bmfMXkgJuog4eKuFN3Lz+N4mSir\nOOlH0msi4q4rjZk2SN2RnFP2skvGc/oJD8ZL4llaZU74Snkl4kYSmmw7YT2TRRJJxp8kQ+pc+mNf\nlHOKI0mmrnMmAUkelGFKaFNLCSNlSBygbaeiFHkIx5swIRVlKQv6o8cA+nDyn5G8RjbockoJC/E/\ncTzacrovfXLJdkeHx0vZCu2PdkterHhJG+B47uNrbD4+5ztLtuEcWHpOcj9ky4yNjlUuK/qj61+N\ntsQdflU1KahfX1/HR/PIx0byGyXbsrdR4dbx63d/93erP83J6vve9774v1RlpfOS4Duo6qiaBxyC\nD0GCwdeNiuBIMoD5DYOG/k9j9k8fb0rs/PxU/WGgT8k+iTbllYidk3c5Bsk7gzKdksmDb6MbBVwn\nKyQ07hwJFBiMGXw9KOngXJJ+qO8E4JxTsiPeK4GDtxGwUg8peUvJBOeUQHdE8nUsrRSObJn35JxG\n96XPpAC5tGqUAswh2d43aVqSnwdAJhz0Yfmfzz/ZBGXERrkLz1wWbu/0ERJ6YiVlQHkcIjqJrCd5\nJXLs43Oi5oUiBnGuvCX9sSU/og1wfkw6aJO3t/NHPEg23UfctjgeJmMkGrQHzYk6HsVY9yNuEdV5\nS8nOSIeUO+0ybVMjaSQxct36Ns2Rz7osHEPYT9V8hZ16GMUe/z0lJ6PYs8RtWLiqmn4VhR6tYYFu\nKSFKdiKy7kUV4mBrbUaGd7tpIeb2dv4iqaX7q99kSwk/Ur/+6TJe6sv/n3wt2S3llrDKeRhjnWOg\nxuvnqF8mxQkfnJv5Ix7ppaJcWHFdOXaK3x5KBjUO5xaJdy7FV/mIyyElSslHRvJzGdOH/TEWx07X\nbfJ5t6+qvMuC59A+UnHkPotV1DltOtltKrInjPZ+iYvi7T5G95NRnlP1h2Bl9Vd+5Vf2v/uYaaAK\nXC64FHSWCL6fS8Xq2tQoSyaZaqwOjQjX0lxJpmWYBMcRYCYjYwXJz6NRHQJ0J4n6VND0ZzjohD4n\n3dMB17fHeHKYVis4b4KqA7Ne0MNAStKYiMV9WwLWJccdAQQb9coiAANg1TyYsKhSNSeWaZwp2KZK\nv19DffqcdR7BUkUpfx6J9x6tGjmxTDabVgZ9LK6jVJUWESC5I6lI+uLfGDyoK8qFq/1eiGHwZZGA\n82ahJR3EoNamW86U7KdVZp8DcefoKL+uP5FEji/J9b5YPSKS9yU9bCOCTzz1a2lLCVuZXEim3J2R\nyLnPhwUB6irZBROkqjlOVs13YpAEJbuiLdHGkyzcp50ge0tYwJWSROh5L8bYhIFp3i6f7XY70w1t\ngLaXbDTZN5NyLzBpzOne9D3vUzZ56CVMOs91RH3qnJHO2WcqIHqBmn5NP3L71nlM9pnsMEkaFVCW\nuI3PM9ls8vt0D413KdlJK47kUYprbhcpMXd70jgcS5aSVXI4vsU3rcQ57iR78pb0OfJ7yTXFc7ed\nJe7ssqD8PGZ5MSLJmAf9fMSZnMOOYiEXRdx+mCjT3p3zJxyjTXC8jCsuP+ed7ls8J2ER7/n8889X\nf5qT1Q996EN7gSxto3h8fvzkz97860n4og4dJCvqj8mVj2WkIJf7drvdP8ytL55OBJArbaO5Mei4\nkbOl5IbO5omCgq+u5TyXAmsC8iRT6H5GTm5ubiYvRBklvdRJInOJPOm+HjgcAHgN9U2dJxsQSfSV\nCr6cS/OW7FWtIhBTzgQjgixtp7U2+TL1q6ur2u12k+RGlVefZwJ+L0aIJLo8U5BigPHVTbfBVFl0\nMpV0MgLHBNRqLGp4ICcJ8X5dD8QLVaDl4/IjvniIekn35jkJmyhvv4b2QrtZIhDJvtIWPpfhZvPk\n6wNk254IkKzquL29nVynooXrRhjiRSwWrhjkq2rWTyJU7s8us0R8SExGSTT70f+ZnCVSRjJA+6Ys\nRaYScXNd8kgVcZ7D+ScspQwSKeP5qSiZiozEfz6iQ/JEHYjI0YepT87ZZepbahOJdZ9ggTphD5Pi\nm5ubury8rKurq7q8vKy7u+lqtb+s0eeUkme/t2wpJRMuCxJ6P9/5D+3Z/+4+Jb7GogH9NZHspcKa\n7IscoKom2OrvL2HzvlIiw/F4oUaPhDlfcwyWPEY8wM9LfpYSF+JFWk2nHyVsor6SDXqcTVhAO0iN\nWMlreu8z/qOijxc9E1+jrljsSvdKds/fKavEXRKXYfHBfS8Vj3h/6dNx5e7ubsKryP2qaiIrYcOI\nLzJX8cPyJLB/AAAgAElEQVR9SDsf/Gua9HiE+7D7iObvfev/LPZyMaG1Vh/84Aef7mT1Pe95j36+\nN2HwRmBLq0+J0NsYZoBQNX9+zMeon/1zs5lvWSIgLR0aP5PXVGVK82dwSTIcOa73RUfTvEgAmYi6\nnJMzeWLijpr6cYDyMRFQSfbUTwoMLqOq+VbAlPCPgHqUyFIXaiRPDtZcGfQ5s9rGpGNEIJfu7Ym7\nxkpC7/8bgR/nKf8cJb2J9NPenUD4mHwsnggwweT4aAcpCSbBYh9JfrSPFBSZNKWxUsb029R3SjqZ\nZNO2E+lhS7hGMpX04LYxagz06b5Jpklefk4iV5SFF0EV1KlzJ8opiUt2S/tL+qPdSH+cwyj26TzO\nyW1AvuOJnn//qNthsu2UQPJNybTtFLeSLqmzJWLr90nJ6Minq2qW7JBwOfF23SS8dTtwfXM+qTk2\npb/rZ8YrJ3e+CkguQ9mSEKt/JkTEj7QrhUkb2whfie+cb5KRX3N3N3+TaEpUUoxLPMf9lW/tHY3F\n73coptIePIalFbTEs0bN+avznRGH88Q+4XeSTUpEq6Yrl6lIPIr5qZBAu13iu6OfU0v4uIRnIy7I\ngwUezYvF0xEGO+d1W3a70HnkvMmmU+xJnCjFRdc/i3MJx+9rl34/Hsx9eC/N87d+67eqP83J6i/+\n4i9Wa9NXrp+cnOxBjA9hMxlkS0aVQDQRxuQM+n+qshJkGeiTkdF5tSqjSl5KBpmgjRIMNypWXVP1\niuCQwJHVSN2bW6y8MfgtJfuwh6gPJjuHSGJKHvg33jM1ByxtwUkB0OWXtrIlcjsan+xDdqGjtfkq\nqXTs1auUGCcZug+wmNP7/PmVEfA50NNWEglK9pT0QP/jz0xkUp/c7jMKhm6XyU6WAr8SvxR0vYkM\nUF5cKaRfpe1anDttKckiBUnikZoImD+XyMRlJB/KIsmPCaTLgitzjh9MuH11RQkan6d0MsxdO+5r\no2e8dK1/dYb8kX5Nn5EcXQbEVY5PccRxhH4kWbjMEsakFTNvlPFIFike+Xwoz1RoIKFPSRv9gZjA\nsXghxq9NRVBiMleZUwwdFUzcrn3Fw7dTur0lzGPiwHmlc3wFRi9MIXfQuNS4qpVwmsl90jljlAjq\n6FsCUsznHLSilzjXCD8ki9RGxJ9JCXHQdUxbcj+vmq8ojxIOYhVjXUou3W74rDWTEu8nYYrHvWT/\nxGAmno6vSy9to25SfEr8I3EevzbJij6kHTr+rClt2TmA8II+knROu0r+wHlS58l22E/KLTg+Xkd9\nyveYHCauf8hn/G+eR3ghjXah8bhtpILc7/zO71R/mpPVD3zgA9EYUvJIkK3KWb8bUjJEgi8DDgNp\ncii/txqVmhrHS+CigacEyBMBJyZLAKr+vXlFhNV3H+tSgpnmNponx0E9CORT1Xy0RcLtQtem+XJs\nKbCyIODjH/kTZaOEg9sn05i80bYTmLMxMfV+vD9vIlMkRj422QULHZQHD5KOlNAmPzokVx5JlkvJ\nvxMRbk05VPThnKvm32XrSaY+udVaY/SDyQ0DVyJYR0fTZ3y9ik9MWLILykvz8vt7H8RDfVI3Ixz2\ne3EOXrl2LBhVmNW/25Uwj7acSBBJxWhLbfKhEYFmos7zfSzUF4kPbTv9nAoAJAej+Ok4SX3yHqP4\nynHTt5lw05+Ik8n+Fef8WiZ1VfOVcuJSGicLuU6mddCn3Y+YOLn+E26n5MRlvBTPR4WPxDdIJEf+\n6fc6VKAeJYhJzj7v5MOHkvKEeSnBT7rim5EPccPkR+ybfjzy75EsnId6TNhs5t9RzTm6/auNOHCy\nbU+aiOOMafzbSJ+0uUP8RwU4P1JRij6akv2Em4eSOPdfXy32Rr1rHsRl2pDrvWpeTHXdUJ7SQ+L2\nPmbNi/Y44jkeP5nX0N5SjEicLvFJn/9SfPK//dqv/Vr1z3Sy2lr7hqr6B1W1rap/2Ht/M/5/XlX/\na1W9vqo+WVX/U+/9/wj9TN4GnJKi+wRtfY4ObwwGhwLXCBCo1IGcZqtWHD+rYAr0NODRfDQ2fY5A\n1efg57HvRPrZn1f0UwW8qibzXlrVpbwIGpR7Wi0bjSc5dwIfJxRJ1gRir8bzWaOq+TMuBClWqw6R\nMg8wIz0vkdw0F/+ZQaH3+SoR9XSo/xQgSYYpc1ayl44Ezmk81J/bQGvzlxOlqiHlw+d9eI7bu+sr\n+d4ogUykIgWXhH/Ug2MeyQAJA8kJ+01zSuTcGwlqCtAcn+MvMcGxij59CPspi+Sfwm2N02NAwlf2\n6yTbV59GRca0ysyixSjO+SrD6MVDnjAmTEuYPMJfys7JVBofx+lz4fZrEqMRDrFfJqsuU0/CvaWE\nh3PnPN0uNEbi9MivR3HP5ZwIoNs6txnKtvx9HGzJPw9hSu/5O0ETYSVZ91hMvE72QbtNfIwJULLt\nlCDRLqkX9+NRnEntPjKlTp0LctUtYZdjxVI8oL2leaZ7LelGPzMW0o9am26X9d2OGttuN32hl95u\nu1QM13UscNNnqD/N3eVMvih8dVmTo2vMvrPG7ZqYPGqMB4mnsDGuMl4kG0vtEB7TTvQ7E+WED16s\nEN76V+QoxrvMqqp+/dd/vfpnMlltrR1V1W9W1TdW1fNV9UtV9Zd7779h5/zNqnp97/2NrbUvqaqf\nrqo/2jGo1lr/uZ/7uaqaJzcpAUmB4XE/i8TtEMnnvatq5igER/ZdlYPUiPSnBMkDgTeu5DAoJZKu\nQM/KtZ+n/nzbFxMt3n+zyS8DYkWcJIWOK0dYOmgXI4KRVscSIBDkCOAMQu6UAlSfh2zH5aPA4Pfh\n+EYkzsfo13lS7tex6CJ5ccw+36SHdA2JWrLRFPT8OiblslufK4P+KCl3n0l+5QEzFQBIwHxVhsmo\nz1NAPHrtP+9F+9LP1HfVfBXEK6H8TlcPtvQh4qbLSnKmjn1OV1dXsZ9Eag/5+e3t7WSrOrfQqqBD\n22Y/9EfHArclb9SVr1Z4cGaizkQsxQjKlNhRNf96g7u76aMsd3d3kxdx6QUuJCKje/mxtPo0IiJM\nDl3nniD6PZmkiMQ6OUm4w8bY0/v8u5wTMaIcyA9cfl7o8Hkn32eRigSVj3hojr5bQrbDgsdSEjLC\nTs6B8yapdmxYIsPExar5W46TrmhHIw5FnPHrUlGIdpAIPeMB9SBfY+LpLcUwkmzqgcmAJ2fkDn4u\n8VU+4gla8uuRXfgnOcKIJ5E3ej+bzWa208dfZKZVtlT0oe4SBjOep0JH4ugc7xIfo/7dBlhk9yPZ\nCe1slNy7HBn3WEBhvqB+yS/YRj48SogT/gvPnMd7scOvIV7RVijzzWYzedRgu93GRwuIBSlfeu97\n31s9JKvzb9V9+dq/UVX/T+/9d6qqWmv/pKr+QlX9hp3ziap6trV2XFWfU1UPe7K2qnruueeqKn+N\ngxIsEhkZjguXxM3PF4CMjEwKplO5EtzY9XcaGQMpHc9BzYnuYznunYREXERDFUQnkh4QaeAkmkx6\nHVxubm7qxRdfnFyncXny4YDZWtuDvtoIWAiwo8RTTfdxx0qgn5JuJnEjUsagm8bIa1Kl7vr6ui4v\nL/fOn4iibMKfZZYtjipu1AOThUTsfHwKQgl4mdxQBwyMus5B1+fRe5/4kIMl5zoKuCM9+Jj06aCs\nxEBz9ypwIgf+3CFl4b7tduBf5UFMGo2fWMFiCOejZO/u7q6urq5mSUfa4pj0q7G7/ScCr7+fnp5O\nxk/Sz+RVMk66cZLHN5v6dkqfe/IX+kPvT5Kby8vLfTJBH9hsNnV6elrPPPPMXp+J/Eo3jttMQFjY\nUCP2eH/udy4b2RtXlHWd+0sqypLkEwdGNsiiIG3PYyf92QmXky76hJ+v2EV745xSUYC2VDV/Ts3n\n5dv6SMxcVx53T05O6vz8fIKRLAZut4/eF8B7Kwbd3t7WxcXFrNAnWbmeHANc9k585Ru0N7+/60ov\n09L1Gqtjkcsyxb2R3DQ+yUMtJbjeN/2V8cMLTn7IvqXTqtr7YSL4yc6r5m+KdX4iDPKxqEDHeMS3\nT7eWF0ncRmX30o0K0j5fcomEeW4rbi8sSC/pN/ma93F5eTnR0cnJSZ2dne3lr4Lf5eXlJN5LFj53\nt2v/dD0RnxOvS/NyHVPe/rM4j372ZCxxJ8qN8YCcRdjARF42R/vxcbvOdD8WpJnv8Gfxfi/4Mq5R\nfsR0l42fm2wxLa7JpoU5msvZ2Vk988wzE1l5TKXMR+2VTFa/sKo+ZL9/uKq+xk/ovf/j1tqfr6p/\n/ngsXzvq7BOf+MQk4eDKpZMggYEU6UTTV7U8cKovJolK/LyfqmnF3wMISZTfS+OjU/qc9AIEBluS\n5c1mM3ltempyUD9Y8WJC7JXY3W5XFxcXM4Pf7aYviRKhIrB6Vd3fejZadXbQIGBQxymA6nomVg5C\noyJFCsyJOFXNq0EiM779iAloSlbUpwi9b9XiS0tkN3R4natVGMldX3egFQ2ORzr3r0pK1TS3JZ6j\nfh1cZa/6SgmRewU73csDXtIjbd1l4UUf97VEcpOvHR8f1/n5+XAFgfZR9SRh8TdR0iZJ4F2WLgv3\nHV4nEqFrErnjITxSsNjt5i+QaG3+VT+SsRNu+kHahpVWq4mviZDS11PC5HPnudJDkrt/yi7Ozs7q\n/Pw8kmHiFRMX2Sa/h5k+wZ+5quWEKWEZ9UiCJ2xxe3IcOj4+rrOzs9nXmKgP4a9jAeVHLPWVFSdc\nfihR0DwVR+n7HmMkV7d5xQ6PI5QFiXRq1EXCMiYEHrs98XOiyMYdAVqVZzxRLGcxhP7uch9xmeQL\nsnPGohRnfI6OX2538m2Xof/eWpvoXDGW2K0dAdSNn+OY7bHaG33i7u7RYoF2lvQ+f1GN5ucv0knJ\ng7fdbjd7mdPoO4TJKYVrwtKqJ9xA17jcNReNxTFTY3T7ury8rNvb28kOi+Pj4/04dJ77mmyCyUzC\ncnIcynSUQBC3R3HJfdm/9kRfjUd9k6MwJhD7ZbfMB5jEaR7erwrimo/rSHNyfPMVdt6bRRViNXkt\nsZex2uMG+Yf78Ha73fM37XbU/x8+fDgphvj9fV5JbwmbeOh69Utsk7zTotwogXbZpvZKbgP+d6vq\nm3rvf/3x799WVV/Te/9bds5/Uo9WYP9mVf2JqvqhqvqS3vsOffV3v/vd+98JoqxI0VlIaJYE5v0m\nx0sVQp2frvP/eUskgQGNgJCMzPtPBsZzmGS2Nn9BBOeZnClVUKkHBs2UMLoOdI4DgPoZycWDqs+V\n+nVQ5bmuQ5LYZCduD0m3yQ5SJSqRHD8ETq4bt3/6Ae89sr10TSI0vEfyAeLHSH5M+DkGyou6Tb+n\nOSbSmhIZJ1wjHVNHyW5ZofdrSbKTjtmUnIh0KTHgVkTvl76VArYTEceQkR1Ljt6H+zkJjcvdZcmi\nQdK1/ka79qIjn1NjYux9ERsSeRgRrKXD9cIXT6S4M4oZKbCnWJP8gcUQP0h+ZQe0FfoSW8JIzim9\nATTN1a/hmL3gRH/0+TLxpE8yxifccNLpRcZDmOfx0rfN+ZGe2aNtpyIpfY3FraQT4htlrH5c714k\nU5JEzLsPZ+F4iEOUX+I4KVbzmoS5tP2q+Wr6CJO9v1TQ1Djc1zhetuRDI1zTJ/kn41Eqmh/ihT4W\n/3lpHD4H9kt7oy3pfxw3d1T4tn3uODkUBzg+FjoS1/c+0pgZW8iXEg6ReyW+yWII7cX9QwkyZS5e\n4HE52QD1tMRVHUtob64rycsX3FKjrJM/Ur/p/kkP5CDvf//7q3+GtwE/X1VfZL9/UT1aXfX2DVX1\nPb33h1X1i621j1TVl1XV+9nZW97ylv3PX/VVX1Vf/dVfvZ+874euGr9ta8kAmJDJ4Zw80jESQeEq\nQzqHLYGY9yNDTAQ0ORDJp/+svvxcl48qmJKDKvZKnPy19rret36oOUhobAlwudLEoHOIWHJ+DliU\nVdIVK//UOW1HgX+z2Uy2aCQQYgDQvc7OziYAkVYiWCnV6hcbVwccEBkQWRV3mW02m0lVfLfbxWfF\naGPUAe2SeiEQu11qHJqXBxzJgUGR+nGQdpLKAEdyR9KVkhufB4s5HAeJ+e3t7T55oB7cfn0Mkq90\nwVVfnxv1ScLXe37WSESdyQMDuHzc5yUsSKu4xCDaUkqcqKtUaGLBgzisc1yHtEFf+dJqRXo2l76o\nv2mlg8HY/Z3B2A8SCU+iGLM8AVg6ZC/eSHYTRkkebk8sUMjGfYy6ToSNJFrjkR4d1/3gOInlHgd1\n7oigus7TiqPf17fSuS2ykCNMub29rcvLywkWOHZtNk+2u40Ipg5uTVcjoSOx9MJQivnUu+tec5Bt\nE3dSQYAyTPxHuKL7ehzyAp2eY9ts8tttiR8ar3YsEfOEKSx+uP+Jm/h23YT19BnaoMcVYrNflzgc\n8SPhlGKmsMCf+/PipOMBYy+TJNod/c4XJdwGyCX8Hu4XjGGu+yTfZEu6jnL3/yUu4/dmouV2oE/u\nFGGM0M8eBxPOkEPILlRUFu5wMYjz8h0kKSdw/uAJt3MN9uk+7gUCxTmNSfFeq68un/Pz84m9OUYz\nH2ERWecsLTL5fN12PvnJT9YnPvGJOtReyZXVbT16wdKfraqPVNU/q/kLlv5GPVpR/dtV9S9V1Tt7\n738s9NV/+Zd/eQaGBLFUPeXWD5IJ/ezK9+TMj/RGV1ZN2BLJJvgQROSUaW4pCdbhVWKNh8lzIpIM\nVJ5ApmoydLOXYSJQDICpKsbKCvuljDyIOxHx+yZZMXlg1bxq/jKblOTw92Cvs58ZVN3W1FeyCxKq\ntLJE+x69tEH/V6LtOubKr4OYZE3ZyL4TQDlxoKy4ouFydYLKZMx91wmn+vLzl3zEr3HC7PKhjdK2\nuQoyCrZMxjgvjo99+L19nLxPsttkJ96PF3Q8WU026SSNlfTRdjf6uB+02UR0q/IL9fx3khXNwc8l\nLtK2WRF3HZMwcNwJmxiUad8JJ5fIgWJGwpAle0vJIb9f1hMDfaaCGW0y7axJWOCyurubvkhKPuv6\nSvNM/kF/8E/p1+fpxFZ9p2SCW7+TLKjbtGuGMZfkM8V/NvpMOhJWpHuRwKcCih/u575tlAfxnp/q\nx2VHOyXmc16u15EtCXeS/NyXRkmcyynxRxY30uLGKNFzP2VsSXIfnaNxkuNKNy5Tj//iAJxXKs6m\nQgjtnQd17vjFOKKDq5bkbErKkj3R5omDS3ihPokFqRjB4m5aFEgcNsXypYO27MmpPiUT3ybsBZ9k\n/yMZJdn4kWKjvzjy5uZmxgESn0j6JE7zqKp6z3veU/2z8NU1/2ZNv7rmf36coFbv/btba6+tqv+2\nqr6+qj5WVd/Ve39H6Kc/nsCEmHjVd4kMhP5mwtbf1Rz0R+RA55FA0sFJoB0o088pKfF76X40Kl8R\n9Af4OZZUrfXG5LlqupKUCI4n5WmbVaqOpsSPjpQCNIN8kmWSFx2VAaeqZsQjgcvSeEfnuLNrReq+\njfaVknuf76EAmMgAg7bLzD+Z1HngTEQkkQHqfwRafl8GOC/E0DaXDsprt9tNyLOeWXKym0hFGh8P\n6ioR8ZQUJDLndkV759jc11z3DL6+pVXPM7IgN8Ip/xttdGQ3JB0+RsnQSUPqk/pO42Ihgb6Zzktk\ngOfQlhSP3CYpYydzHKcnKcSQlBRQ1smu6UOMI6NEJiVN6ldz8eSPdkAbTGNOBRT6nmO3GvGCc/Xz\nR1ifbIey4M93d3fx3vRPYmsi1IdsMGFe8rdDeFY13058aHzyvaVEVLjNGEIbIhldkoM+R8R1KR74\nvV1XxDzqj9xm5I8Je+j7xGiel/TAIrtjtsdqclqXXYqFft5mM/8mhhQvl2SccCW1NO8U8/16t2Pa\nBf1+hPc6WIiUnDmHJbsS3yYXXCqacXzCM9qS22fSg7h9avSlZKtJxiNdivM6DtNOnbcwNo/mJvtz\n3qQE1sctmbkM0yLJ6G3Ar2iy+nK11lr/2Z/92fi/o6Oj2bI7qzac41Ji5UZVtfz8Su99VhHRthMd\nbgwpINKRH883ks1RlXcUSNVXClL6v5N135ZDIDmU7DBBkZxZ1aRu2LQV9ezsbP/wuFeP+EKLEWml\no7fWJrpTZZEV8dPT08mRiJzLX6s77ria+ygwuG35wcBFUEhg69s8tArOQgJtKd07kSCOIW2tcx/p\nve9fDKFPySvtLFg6GHA4T5e7JyWJFPoYU0WX1xEL3JZZ4PH+D5FPP18/c54MSlU1CaIuPw+mvC5t\nu2JgYIU+JUlc7bwPYaasUoFJMnXbdLuU/SXC4DJN4yBR4zaw5AMpiRslvWqexI227MmGXIYshlTN\nyQCxwMmAdMXKupNm1wfxgqSCMuTPwiaXCWMU9ZuSOJe1n+e2S5nL/n3MtH3KSlV9YhXnla6j/j2W\npzdscszEf8dcx4NEPpfwX3Li8+sJP9LXMnm8SkljSpAYQ+mvu91udi/q08eWdJBieVXNHsdxnudx\njoUFn4cwxH3Pi1KOBd4cI+lXS74iWbmeKTMe5CxeQEwrxrIBt0lPDNSfY7364HVLnNS5jM/VE25f\nVfame/r3j3rs1ktBR4XJUYIpe0s7iNy2OY9UJOOqKpvszQt0CS94L7bEnQ8lg46dOtftIr1Ui7sG\nhNHOHRQ33G7FgT2WcHFN4/O+E7Yn+yGnI5dJ7V3vetfTnaz+xE/8REzgqub73pnUJXJF4adEZwmU\n9Dd+8iBhSZWLEZCxX56XjIGrsYn00HFG91VL1zCoE9CpF/XjKw9eAfRtYYcSovtU3Pwa/UydU66p\nIEAQ1zwSEfcEg/qTHfq8HSAEPj4GEhgfc9KTz5WycHlwrimZJonwAoXbH4l4AlACOxtl7Mmq65dV\nxKS/EVlh/6mwoOtG/ud/S7gxakkH+vmQ70k+fowIT7JTnsdxkJCSbHLM9GEP4p44q42Ih8td55BY\nJpmOMNnlRhnS91O/KQbcx74YmClPyjvJPNkZseqQzigjl6+POSVElF2KhSM9LMWPROjYiOWj+TEJ\nZpxLu3j8cF8YJU3EM9+m7ONLcdcP9eP2zPk4GU7bbBNO9p6/H5JcJyVxJPS0xYTRKeGmrSTb9WtS\nDPN+nEu4H3H1aclGvUjAvum79Ff3BY9haZXNfSbtNGCimXioy5w6oBz1+6EE0nmF5JWKOSwUjezW\nk9y0JToVhhLfdl158qoCwCiJS3FwFKeSHbIv+ms6vCUMlM6TLFw/yT/ILVy+7hOaX2vz58UdS3wX\nj9uq65fx85D8kg+7/Ljlngkt43zyxXT/VJx86ldWf/zHf1w/Tw5XqKpMOk+fo0TUjTqBXyKAdIpk\nwElB/jkiwU4qCXyaqxunG9UoaUpJCefJv41AFjqZyFCNhsjA6gAvebl8DgFJVX5dOZNn6tfHpp8Z\nlFLynmxnlNAcsOGJ3FTRctCi/BLw8mfaKmXHVYbRymAKFN5PAu8RGfT5ug+5L3l/CdBH8/HxcHcB\nA0WSe/IRNhJ8JyLSFf2eRJJBXLZO30vFJBZrKMOUXC/5EclnKlCkxMltwBMbn9Nms5kREWEVV8Fd\nNkn2tDW3N9qpEyyXT2tt9tUTqSK+hHkjkpNsh/ZPnd/d3e2/4kRf3ZB8b0T23baJOfSRkS+6T3DX\nQO/zr7QgMWGy7LbksSclSRw/+yFmsGBXVbOdNSOfJdFye3f7kg45BpKy29v8ngruUKDvpcN9KuGk\nx3fpImFnKoZQ17TbhIu0Kdqcx+9UhEq80XHc/YhxN/nSaMzkW47j90ncR7HDsSXFcJLuVLAi72Nx\nhV/dVzX/+iS2UYHHdUWMkV8v7Zqpmr6Pg89jayxM3Lkyl8Z4n+ZxxxNjT76448Rlqc9kk8knvKkw\n5DE1xT33haV76R4pVo0ScP89FRKSjbotJp2n2Ex/IQ4yVrv+dC0xT/fyuabnxWlPlJ/swGVBHVdV\n/eqv/urTnaz+5E/+5AwsEpET8VgisSNwrqqJITKwa4uqiJAvY3uSOQIoApUOJ3IiBylIJpBdSpZS\nABwltKOEwwk+K5/etxu0zh8ZdCLbdCoSIQIF5+l9CLxJcHxL1+npaSRB3CqjlhIBT7z8YNXc5Z4C\ntICQAKf7pUB/KNlyeVBWqV9P9J2YOIinZJUVNga7RGBYKeZYUkCmzAhyLj8GXw/kXtgSEHPMrJZS\nDikQJP+jbRxKuFkdXUrUSVb5+AETtN1uvlqdtpGygEO/l30tBV/HHZEDJvLsJwX3RGypB+E0CyEk\nIiTn9Af+nmIE8UyJsRdKEwnxz0RoZKsJb1OioHNJJFP1nXNKuuJ2tyW5q59E/t1OEgEc9csx8m/J\n1+kLjB9c2UxYSeyqmhJxX1llfPFPEsvEHfz/3tyHUwGMvs/xJVxiP0xShN2MNRwXSXTiVTzoe5SF\ncwffOk98oM9SV+J+fp+URDGOJH8kDjAepUY5HJqD+7g+PeFWfCJn85VK9ZOwnWN2WXFVNyV3/Jt+\nJ88bJdjkRLSdJAvaSUr8KAcm5cSQlBz63N1HfcwJjylj8njayyjGM+4QQ5Lt0CYTL2cu47v1mIhq\n7rSLxL9p8x5jfXx+nnDH7YXXkL+P5PW+973v6U5Wf+qnfsp/33/yUHPB0JmS0EbVBAe/0Tl+sNGQ\nNW5WF0jePdHxZHUEMOmTpD+tkqY+R2TvELFklSgF+ENEl2QmEdQkA4JqsKHZJ/WrfgjyJCa0JU9+\nWIlaCqQjAPL7UXcMBm5P6ouJ58g2lu5LeVVNVxRUfEg69ePu7m6SEMmPXGZui/pMVTkGegZIyisV\nOhJmjOwrkQB9JkJNHSdSnZIOlzlJYgrGqSVbIjlIyXiyJb+eyasIlicC97EvtoQz/nfZVgqstEuS\nEBJAVtarapaoj4oPh3CR+JoKHeyX8nObSH7Jv6vR35isehK3JD/ek0noiLwnMkU/8mvcp30nges4\nyZkxNNn2UoxPHMfx3+MV48ihQpH7p/pN8dyTM9eF65jPSrpcXd+0UfcDxps0bs5TPuFzuLu7m60M\nJnMe1xIAACAASURBVB1zHokPjQozaomsj+K7v8U6JXo+Ll1PG072S7umHTOZSnyIyTTjcDpG8SkV\nRZh8Lc2BRQ3HAk/2mVQy9qV7E0MoGyaCI35N2+VOM48/vtXVD/Kh3sdf+0iO6T4zwkO3h4RFnOeS\nrlIb3XsJf+nn+mRhJhUWaKspnifZJNvx8Y3m5v1wjpyPfv/5n//56p/h71l9Wdtzzz23F6yDFBXq\nDl81XnEkaPrW2qr8fIh/R1lVfktiGt+hIJ5Aye+jn1MQcAPVPZUgOEjofPapn5eORIRTEPf+Wmt7\nh/HKv29tTlt3mCRWzUkOg5L34aDGoMDgqrHpRVhJN8m5NWcnM5eXl/vvrdpsNpNtiP4SFQXmQw7u\ntupy58FrHeD1XW0ksSmRuk+TrZ+cnNSDBw+qqiZ9Xl1dTebgtuNydtu6urqKBEdzODs7m1SXJYtE\nypbm4YSPySy3xrD4QNB32/IEkCt8WsH3l625fHa73eSlCZIFxy2Zqy/14biXKtpaUSJe6Dt7U/GB\nLyFzO9Hug83m0feunp+fT0ijr2IxyJKsj0ggyZxj/FI/komTW40zVcS32+3kBWqj5OY+ZMP1SZIo\neZHAeJKQkp3R4fd0Wac56D6sdlNXKQFxP5F9EYO9+X10Lzb1q+uZMOmaFFv8k5iovv0c6pH6HJFP\n6U6+KAw4Ozvbb03Utm5hhtukziEm9N73fp4KQzz8BTiK6SLifj/eJ+mTcmbRorW2xx/NzbnDs88+\nu8cCt78lG6XMmdC6zBUfhE30GS/keZOM3B+IZ8Rg6ptJR/Ijtyc/z+2PfrbZbGbJl8dd9e/fAUue\n4NjtzbEy4aJ4qGTgWOGFAPd1FQBGGOixizbHRk7M1f2HDx8uJmN+31ERUZ/kNtSVc1FPkhOujOxC\nPzu2aZXedw160dM5xqiA4n17/Jafyx+4yDSag8ce3yno8VyN8h7pW43JN+/nPF+7jPxxirS7Jfne\nUntqVlbf+c538m+zn90o3NAZaD1x4bmeLJI4kfTw+hR0aIh3d/O3ShJomBQlslK1/MZBBmCvvrjD\nedDmdfpZyZcbPWXDcaYAphUO/5JiVqdImhikaOAEX9rBqArt56Xkz39mEKbumTQlgsDx+FxGQf4Q\nCaA8XM5+jIAp6Z3BnME5gdZonKO+R35K/0v9+s/Ud7JdBp90H24HT35OGxndy8fJBJuyoJxoE0zc\nXZ/u17pXksXSWFNVPRHEJHufE1cVquaEy4OWJyssHLg8UrJCf01zGyVf7nvErtE5LmcW1qivFPhd\nJ5JXejwi+cBSXBn56KEj4WtqyXeTnagfx0Rf0SBWk1gy+Upzon8QO1wPOpZ0rrFQn5JrwmQniD6P\nRNaTzY3Iuc+LhQ75iBdwR/bln9Tf0t/U0vh4PjmTrhvZ1+ichHHeyDf03DkLru6b7Mft0u2LzeXu\n23ddnm5bniByzGmXhXODkb4O4dlSjB7pmfjh148SMx/LCHd83KOfKau0giyZJTxy7uwF4N7nX+k4\nwotRzBrxj2QXtFfuTCIWpXm4blzmjkW0AcqVuk/XLOnJP1NyyGtHWODHyAa8pX6ZN/D8qvHbgJ+a\nldVPfvKT+0o5X4FdNSaBAh+tbKSqYmvT1QH/yo2jo6M6PT2dBGMPQAI5VT9ZYfPmSkuBlcv4rNR5\nH4lAjIizz8XJBAOwJ9MuI4K1G7TOqZq+eXi3202eD1VV02WcAr3rTi0VFfSzEkEfh8bMvjh/6c2f\nL+bzW17k4FvsNAYGDCc/CpJpbCIj+htJrIK2bJ39tDbd+ufJsicjLhv/2W2K/pDIsBKO6+vr/apR\nKrIwCJJYJEBNwdnHnMi8E1Efs9/f5ykCofEzAJ6dndWDBw9mPpTGNkpcRkmEbD3NmwmRVydba7OV\nX1Vc/dl54gALdAxM/rOv8qmPke24nbsshIdMYLRacHx8HAuGDOqpWusFH/qjzyORDpex7qGxSXa+\n+4BJrMvVV3qTXJIfJXn5eEbFBz+/av71La5z709zS/rye6drXmqhKBEzlwMx0mOJ60K7LmQrlD+J\nt2OeViodD/ylWvL1pDOfgyfYHCevcdtm4qJ5sqBJO6EeUjKXkmlf1U1f45YKHkzqNEef24iQpvOI\nJb5ay/vIDrRDJc2ddqa/X1xc1IsvvjjDTteD+hW2c5VZ+KE4KtzQIfzXTgutAvruuNbaZHXd7Yu2\nqjh+fX29n296lEvz5E4H+s0oCfbdab7TQZ9uM8IDX+lVHNHhO4i8L+cWGp/7Yhqf+7DPi+NzPNts\npl/P4i92o++kpMzHw91Ofh2b44JjWeKblEVKgg8VHKtq8r3mbtt+PVdxJZurq6v9GLiA5BxttGuG\nvu7YJ/0l/0wcIPmvx4qURzDBd7zz2JfaU7WyOgqij8+ZXONCo/F4wkBgHim19z5LZDzBUFBkwpkq\nVCn4Uw++hSIZIqtVVdMVGJE7Jgs0TAUYrgzSaV3GdKwlIDiUSHNV2QmrrmHizuR55CgECwJIChT+\nciVuG6Jd0UZY1XPbTMSD8mRLwMfqsleOBfqUOfXZ+/hNin6vpTnRHtQS+aJ9J3JMcPRAzcKCXhKS\nXkJGv+LcE0liS+NPcycZv2/hiOP0azjedN4oUaBtul7crxJ+JHkxmDgR92MpiKtPx02RfCfdfG5U\nY6ccWXCi/KqmbwsXXpBQUqZJfmkeoxgxui7FLNqKCK0XFLkKeMiW3G4dO5O8Rn3pZxIIL5r5NkPf\n4qg5uNwT6eG9XC9eKHUbYCFBMnO9EOuX/CHhlsfKpVXTpL8UU+mfbnfJBmW33o+KI14MP6S71Bj/\nJFM/PIaocEW50/49rukeTIgS/vN9HM6JRnNxWXBVXp/Sn9sUdZHieYpzI192mfohfuZbH0db3JcK\nMQljRn40whbKL3EAt3cvTJKP8eVcOsfnRbxIMYyrzImvcaFGyXxaSEkcXff28aXdGvw9xWqXoe7l\nY5Of068p9/R74no8Lz2/zmQ6rTKnGOM2p/v7GLiYwHmn/pI9OX4prxjpXI1zqqr66Z/+6epP88rq\n5eVlNGgnYR6k3Yi84sPgzWqCK6VqXoVgIPTqVapkMLB5oE3nKECScFVNyUgCVQGmms/Pq3skgjRW\nNzgnhC5jPmvRe06ADlWaRrLye3l1zFsKJIlgShZOuOQYLjuBhOR4dXU1S5qq5s69NBcGOCeEtFvK\nynWk6zyQ+POLCiYpGJNE+kqaZMQ5OZF2W2Uyy9U7yUrPRcq+vNrtlUMFEyeIPhbNSf0+ePCgnnvu\nuX2g0MFVNgIpE2MngCkh8+vc95xkeMItu3D5MZikIMV7y05IdJO9OR75s+pKHlLy57on6SG+ioS5\nnaaAo90TiUQwmDP4np6e1vn5+cQPib/0Z78Pf6968iKphw8f7ldoifvu+6kx6N+XaNBOJPNEstTk\nH77iTztO5IrY5KtMtEkvbnmyIN933yNWc16Xl5ezORIfNpvNZDVAq4BpRwDty+Uv+dF/aFe6Xn4g\nOfjOJNpjSjg0H9nqKIHw2Og2IxmngkkifcRa93vNWVjv86Sd+HUc0xIOjZKx5Bf0B8clFRB13maz\n2ccn+mpaieN9Rvbusdt15xxJMuC9hHu0Iz5bmrCejy+xH9eFmvtOkt+oue2rT1+Z9nMSD9R4yBdd\nD1VPvvnAYxibdnHoHQVMiLhq6rLxg3r2eKbxpXilc9NKYfJpyYAx38coTuSyYJFKfbhvOdZQp0kH\nzltGOKQ5ce4q6NIHiLmSD/MgFY0dx8W1kv24zsjPE18f2XLi6DovcXDPF3zXUmpPTbLqyZMLK1Xc\n1CQ4J0hSoD90r0BFsuzNjVUrqGpuAKkS5MScRuigxCSiqib9aP5eySSpSEmbJ0g0Mr+vtjsnw+SK\nHhMq3tNBVfL0lQMvErguZdCnp6f7uTEJ9uRbldkENnRI/f3m5qYuLy/3c+D9XK6+bVnkRSCvbUEk\nez4n2qlXoXRfAZlXMZUoe5VQzn19fV0XFxf7ggDPkdylZ28iL6PmAE/SIFKiecovpU8VLdxu2a9f\n434sm+G93Z5pZy53bvdxgPbnldxGNQZuuWFyyCDgvqkxeZLOApiOlIyPgoDLhUUn+ZzbudvlKLCm\nYgjvp3GKfLoNaDxe9JAtJaLg8+JKTiqMjMiyB0BiHxMr9zcRUY2Ryb0fXFGomn/tUVrJ9/+7bbA5\nUSQGEndSQYKJqebgq1i0+c3myfsatNVZOKTHMGT/IhDn5+eRGEn23C7Oc+QXss2jo0fb67VLxeWv\n5JwFTh+PEj3ahMcpt2M/z2XuMcztkPbmiREfHSKh5334v6urq7q8vIwJHvXJBM45ie9W8PjhYziU\n/CimeAElJerEC7c94pkw5+zsbLIDbBR7aB9ejOR4ib+KL3ocRratQy/3kyzPzs4m/ShmpsKV42Zr\n428JWMLOqtp/reHZ2VnkO55Q6B5ujyqUpxjARJh2l5JDyYyxNsV2cWfiPfXJhEP8y8en/oiLTJRc\n345DOjjGFJNZCPFrhHGctyeQI27gsUmHn396elpV0zd4393dTbCLhXjHXMYtYr4O4jhfOOjzZ2JK\nufnLI30nnutB+mOxg/yfuyPUT8LkQ8d921OzDfiHf/iH9fNEKU4ivZrAwE5jJfFwxSQi7hUaJ4g0\nOgcfVp3oUN4PHZ4KZTBLiR+Nyq/TeTxH83QCqvFCB/fSFUkmk2p3yHStO5//fcm4HZx1MOE51Lca\nCT1BMgE5r0kH55mCJuXHoMnK4khH6Zylv6V5O+EfETv6g+zNbZIBlWNJMqauPAgy2I70IDteCm6j\nTwbsZH+s2Dux9FUsP5Q8+apuSrpGckoBmbjFJJjXub6Sb1LHLALJVpy8ecLkGEyC57/TH9KceG2a\ne9JhImX8G/15KVl1fbptu03yHslPRn6Q7C21ke8SB/y+lCn7S36U7J22Qt323me2Tf0RU9L97msr\no3HqM/kQG4l4+nQfd53z4DgSgU92mxIMj+deUJFMHTOS3tJ42Ci7UWxg3Pa/eT+6p+OAFgjSdliO\nhf7oupT9cXWYtkQsTf6whAn34QnJ1nguY6rHOb4hNfVDWY94HlfQWOhw7jDyEeqX8mKR0eflvCXZ\nlvsS5cP/V81fDOl9jfRHjlk13+KeFjKIMffh4OQp9FmXuxd00oKD69DxVJ+HcDKN5z4+QltVYsut\n32krP6/1luI89XaIIynu/uiP/mj1p3kb8HPPPVdVcwPyKkkCaRf0CLhTv1VTopuAo/fp69I9mCQS\nSCPRfVNyk64fKV8/Sw6np6f14MGDYQKkLUWSDY2MAbtq+oKmzWYzedZMVU1uN/WxcnuNQINFgyQv\nBmhW492hnXx6vwQSrmppjk7G9GyWQJHBX9dqhV7bhBKJoE6px1QBJOC6vHxbN4GfIEbbITBzbjon\nFQB83E6yNC/pRC8CODo6mrxkSzJ1QJSsVZWWffnXKWw2m0k1L61IyRavr6/3L+ZgNZS2JJ/wQzr3\nghNJq+SrezrJ4ZZr+RYDisDag5knlZI1q9SJNLku1A/xhNeoX+0aYILotir9uF0qkGk+2qWSMDVh\nIP3PCZHG50Hd56mxpUox9am/s4iRVng1r0Rg5WM+xiXSL1mkZDIRDyduJFOOEzp3tMLN+Mi+fUxp\nDD5OnUtb1sro5eXl7HlKJnrqQz7suqd8EpYl+/emfn3lzf2autE90xY0zdEfY5C9aGeNDvcz/ySR\n1LU+H8dl3YNfdZZWd4jnKUmifJKNMo5wp4GINuflh1buXO7Cao3fbZnE3jGYnC3p3AtmHne0I4w7\nITyB1Sex02Wn8yR37tJy2ZLg995nX8vHmOF8QStzLA5oV4v8S/illV8lPJqL/NvtnbatGOY8xb+2\ni5whcSTnG8mOKUv6CWM1uYpzHue0vviT5C47cx1JPp4cui0lXzw9Pd0fo5cWphyBn4qhS8mqmsvb\nV0zdP7VaTz/2lVa3N+78EX+6u3u0u0C2JBvwuKEmf5WPpYR/FMdT0q9zyEudg3AMqT01K6vveMc7\nIoEnKXOCQCAYBUUPrB5gR/dKSnHi687ugVT7/9OKVUpmEsnRp99XRzKGJBv2RcLm9x7NlT8zILE6\nlJIxzZuVMYIYEww5Pp8DcLLkc+R81RJYcn5MwHkvOZwfvE6khskhV00JggQfydQPFlBktxxPKoRQ\ndyxaUBZpntQFSY+A189hxTPZGW0wjS0FV/89BVKXrxM+nysDuJN1rg6QYHlyRZkmv04FCW9uS/5i\nNw/2o8BPgkqMS2SF17GKXzWvgPt1lJfmT7ugXpNdco70z4T1rlsSjTRfHa5b6SrJ0I/dbv68m8/H\nCWoa5wibOFZfpaSd+rmpX9p7OkbXqX/aDotxyQ5T7EmYcogspwQ7JWjsn3NYSu78dx7Ur+K1Nz5G\nUDX3a8on4W7SC22H19A/RZZdFpSv+vPz0uoTV3s4PnId+RELQ9QBY4aItCd6yc/ZWEAR6edOENdz\nWuVlXEtFWuIX9ZD8mvjjeqS9sSBQNeVmfng8EC/gHBKuJ7tlMp3iEXknsZrzHOHF0rx8jMR6chDn\nDrqX81v6GrmD69ztjfqgjpN+fTzu187zeI4//6yFo7TotWT/KZ4RO6vmC1Hkix7jvbDh90n2ykJa\nio9uA+LA7o/uV/L93nv9zM/8TPWneWVVz7wkoiHBiQT58y7Hx8czw+y9T8BSzx1qhcGrci7gtFpH\nBXgwcwXq96raB7REsPznJVJBclj1xDD9oXn2yWRbBuNAkCqgJFR0SiZg7vRyyqq8hcpXRz0gswJL\noBzZQ/q75MM+BdIChERwBNr65D001meeeWa24ueyoW41Jtcdyejt7W1dXFzUpz71qcm9CLxqAgmt\nUnpi5bbjoKbnhnze0pvbfAp+GqPr3uUt+/Kk1Fc69VUxCWjVj8ajxCiRDD6c79d4UCYpkz/6QVyh\nreprCWiL7h+ym1ES4bI4Pj6u8/PzyYvKvMKcAr/jDMfrJMMDiaqtnuQd8ic+00Ny5Yf6HPXD56dG\nOKBKMG1QyYMnENS5kxd9jogRk4Kjo6PZewzc19NqhexKVWqSPfVNufmnV8hH28PdH/R/r9aLeDCZ\nSLYsWTkG+f2YgKTYpx0MvrOAZEgy8C2sfKuwy0Xjcpl7PGIBwLHV56m3ltIf2VKSSa6Q9EmdupxG\nibT0p7+5zbt/brdPvsbH44bLRlyHxQH147xAZN1txTFG7yBwH5BeKHe2hDssTug8YpHup3F6IS7Z\nbeJCkp9j0WazqbOzs4mcWcDUjgC37e12u4+X8sOHDx/OVpk1Via05IIp5gvT3baIDaltNk++oo9x\nx2OPxye3QV89S/YivuC+r2OUfGkO2lXHhNaLtUyCpTOXnz8z7Nc43jsW+MKPx43e+yRmcKFAY6Rf\nc3zUjfuG+4i/5DLZburHMcLPlVzv7u7283Pu5WMTL1Dc2W63k7fr6/l0jpn+SdxWHPE5ce5+js8j\n7YTS73pBLu/vPui2nNorurLaWvuGqvoH9Sgp/oe99zeHc/5kVb2pqp6tqt/rvf/pcE5/29veFifr\njdl9IkYp2UqVn5RcJIMjiI4qIi5nJk1uvDbnyacbgwzBjTBtO1QwGCVzmlMi64mo+98SaDLBJEF0\nouSycF0M7Gj/OSJ9iYD6pwCfW2j9HqMkl+cxaPgYOU793cloWpV0Us0Em/Ol/RMASbK8uuUE3gGW\noFaVV/3cdiRTyfPo6Gi25YbzlF1SZsnf/F4jW0g26OTKiZTPIR28l2MFgzbtXwSS23LoE7SLVBGn\n/aZKv9uJApfLIM2NwZh2QTvVCgKLO9R5etEPbTs9y0YcXNJJmqdfM8K3kU7TvfzviWC4bTl59z6W\nKv9eYHI7TuNN+Ob98pxUbPD+fI4phpHA+nm0N0+63B8Yg5w8iUCnQgLjkf+/tRZJEPGD8qIsFOc8\nUXZ7kC8q+Va1P3EJ8olEABkzl+KlMJGrDJqXX5v8wWO3J/2exLAA4DL1hI++Tl04DlMO6eclos54\n7/aYFhioL++PdpOwlrakghOLFrw3CxE+TjUm7bvdbpY0+bw0BuJHii1JRpQlY/WIq7qfk5+19mT7\nqQomviWZzy+qJVxMfk0/YgxL/IZcJ8Un4s6It3rhg7JM+Ju4jR++eMF56iDnPDo6msiULxhLXHfE\nMUdF2VGRJ+UCVcv5CO89Ggv9IeEB45Bshzj41re+tXpYWX3FktXW2lFV/WZVfWNVPV9Vv1RVf7n3\n/ht2zh+pqp+rqn+r9/7h1trn9t7/eeir/+AP/mBVzVfmZAT+vCDBOBHbx/3uP+9zcPUnKYDEPIFm\ncjivOItsLpGv5BgMNJKXgxINk8HOKzSqnldVfBOmy3BE/hiQEhH3MQnEfLWVBJUyFdi4jIINRdLv\n1ySwHAVbnxf1QrtIhCZdt9QSwC7ZcCL0rifqjHNLsqD9p3Gzb6066RkJkQFPXGT/vvrmhIJbU3g/\nHUvkSuPinJRkOqmmf6S5saXgSkD3SrEqqAmsaWssYlA3aZ4c7263m8l9ZNOHbCwVpbgV0f1R9u/z\n9OSelWyfE/GDuk9JAGXoWObVd7e50RxIYBjU6etpy7aTm7TaygTCdZw+k12MCjGUH+1N/Tixowxl\nO9wq6QRf82QxhGSKZI+ySORTuibpYmGPtpF81e2KCVnvfU8khQnJz3h/2qrbun5O/IO64pZjkV3v\ni/7KGMZ4n+zC50+78v5TLEs+7XyHdkKeMvLjRGS9kffp/pwHYyxlwQKdcJn69H49sdN5SW60MXIC\n2l+y1xH+p2TDOWjiQ+SQPHhO8pEUU+lb6d4J87wlnSX5cZcRkz/yBE8g9UnMEyei7CkbFrrpe2kO\ntB36YxrPks8m/u/2z/uO/Eq/J5knrnpoMW1kQ2mRy+2LXCJtRX/b295W/TOcrH5tVf3Xvfdvevz7\ntz+e5N+3c95YVZ/fe/+vDvTVf+AHfmASYEaBTL/731Mw4eHVI22xGT0rpr4Z8NJ4UlAI85sBXwq2\nDFKjirNflwA1Oacf/iC+tjmwwka7OTo6mlyTXqSRGvtJ4MPKZ0rKGXCS8x8KbiS8JM0jYu8riaqI\nuwP6ob+JrC8lZEdH82dWE5lKlc1EhllFJUmkXLlyL8Kvg0RtKbi576Q3cY8IPf2DY2RF1VefJEOX\nPX3J/WiUqLTWZmMmKdN1DtapOOL32u3m31csffmR7ITEl3afbI46TmSUuMPVYgVtb0s+4/obBclE\nxtxenfimBIMklvenfziZ45xHeNtam+0aSJhC3ZG8ENtH8Tfp6hDZTOSA8WnpOTVPejk+kqL0DDK3\n+FK2KeEYyd8/aV/UD3V1yLZcPinOej/EHTa/j+7F2EM8c3mSO4z6HRUjuD074X0qsBNTSYqF5R7D\nGP/uE8OSf6Z5+/2rahZ7tOKtgtPt7e2kwL6UzLs8fQdI2uI7SsaI5STliXvRJpNe0jWJn5Lv+P2k\nB8fp5EucJwt2vfeJjFmsIY7KJljsVd/OnRmfkryY3KdEkLF6xOVSojXCWtqMJ9zEe+8nyZiy8nuP\n9JCwiivw7gt8BFEtrfwS//i87Ciucbxc0CL+J3ziNSkXcV2qjx/7sR+r/hlOVv9iPVox/euPf/+2\nqvqa3vvfsnPeVFXHVfWvVdVrquo7e+9vDX31t7/97bPJiRCS7KWVm1QtOGQwBHsSVl3noJUCK5Wf\nVlO8+f0ZqEbBxLfv+phpQCkhc3mMHD4Fcx5sDJKbzfxlU0z0lsaggwlt731CkgS8icQuJWhONh0w\n/Xzqoff51wO5PUmfyd5GwU7NA8MSGU66SoePJRER6bWqJoA52ipGEp4Cw9L4SJD8Z/Y/ssklGafx\nuV/6mBn8nYyQ3CWCL7/2MdKWEjHnvDmu5Hv0Q9mKjzEFAWIgk0MFJbcN9uN2qX7cH52Y06+4EpZW\nKYl5xDDaXkpGaFtO6H3niuvDSZDPkwm2y5z3GZHREZaObED2NtKvxuJ60Uqc45BseQkv0ji8JYLm\nNkq/9599fE5SUzJN33E/TYmm95PkleIRG3VF+1dxizixhN0jeY3sk7bt+hnFMM7z0Jxpm36d+x5x\nKOnC7+V9io9Rn7o/++b4lvSZfCbFMPICcQMmwt5SbKHcXRYpxuoc6iHpmXbC4i4bx8JVXY2Xxb3k\nn5Qh/5bi5gi3WYRln67LFJsZVzxxVx+jFdERVqkx5qe4kvjYUnxe4lP04bQq6b55yB9Gulri286L\nnZvQ/hIPOsRDaROMu86PaMsjXJbME095+9vfXv0z/IKl+2TBx1X1p+vRVuFnquonWms/3Hu/4Imq\n3hLYq2qyvWt/c/vZqwUK2Gk1Sk3K0WrhyPAkZE+4EvgksurNyZS/NpuJp89fivbtfAqwvrLJ/fEe\njJUwJgKoQ6uoBLdUafSqpSqf/tKI3h9ts3r48OFwqxgdgQ7gCaEKFe6E0rfO86/T4PbmVPlxObAa\nlAKDdKAXNmjM6Tlgt0EPfryPbEw24ElA0vGhllZOdrvdvgpKG01BXY1FFgYmtREItzZ9LXt6QUEK\n0FXz6jsDhZMXVR9pt1w91Zgof/qq9KzrdC/564ho8JNHWvVwWenTf04J/NK9JTMnc8JLBrPLy8s4\nfx8TizMeTJl0yE6ur6/3+KCXcjBJ8QCslTnqnGSYpNGJrsbktuR+6gfHrP7cVkYyd1nLLnSu7EYY\nwWRBcpAt+c6LkT9wq7UXA52gOSnUIbxx+yJh8OIvi7L65E6k1uZf4ZXGz/EwlnmiKHti835IlhjD\n/BwWdEhqNQ7JwfGROMlkhr5H36fvkgBKVz5mxXSPPUzGZDf+YjAvYHCniJNWybJquttF9xyRX/bn\nc2M/vffJKiZjvriD/3+3m37vsRdTE5b6ooRjP5Nw9xH3YcZmyk964PZT11f6WfdyrKKOqRcmzk76\n5RspkfGVspTU8XCbZCI1Sl7cV30M9JEUnxIOHR09eUFQ8vP7xE/qi7gpTOYOI/WZztecyOGoDCjY\nIAAAIABJREFU4xQf6d+ybX/TNXcu3t3dTb6m7+7ubvJ1f/qaI86bGKf7S5aOMRoX9cAVYx+f2xSv\nU1wgb9J9yZNdN0v2ziTc2yuZrD5fVV9kv39RVX0Y53yoqv5p7/2jVVWttXdX1TdU1TvZmT+z+hVf\n8RX15V/+5bNqzOM+ZoSGmXvVk22rUsiSY3NLoQNQuncKSqyIpApJ731CIpm0udONEgV3YAcPT0x9\npU7X8HoaJ0Es9aVDwUp9XV1d7d8GpjkosDJopyYdJJB1csZA4QAlefXe98mhmm9lo+Mw2Pm9ffxu\nG5xPqvg6iEiG3HbOQJUId2pLtkei5HOlPH3FW/KXLyRdce6jyt3Nzc2kaCLdSNfsj32oH5Iejdv1\nyQCz5IOUSyrkaHz+f+nG5eXY5H5IHxY+KSBw3lVPtvfIjrxYITvxgOgvhvE5icjprZejZMj9PRGn\nROh9zArQ3o+P4/z8fKgHvxeTUC9SeKAdJQcj35Ct+L2IeUyAHPN9fMRJJvHEQ9qExqz76y2OPhdP\ntEY+Q9Ko/3shUSSRfp+IousyxUTp8Zlnntlf48n00ht5nQhSv8QNkmVvTnLddj2B0r1cTrKbkf15\ngdq/71lvzqVdJPvz/qhvn4/jREqsiG/Jr6UnbdvU/RiHE9H1e2kMmqP0XFUTH3Hf5cqX60EYrOvP\nzs4mvqvtvIp95+fn9eyzz+7xzAtrHh+FecQqYb/bAXWcbJxxyzFevsZdSF6w0SMxIxvVPYhrTD5o\nRwlTnFd4bOSiBONTSoITx0t+7rjjc2Tim+SqT/cpycD1xkQzjaVq/ggRuZUXCVznKfH1z8TzJBN/\n9EZ9+1fO+DGKEbrei+jcru12LTv0l63RRshxKVOPKz5PPyRTcQL5u+4jGXC7f/Ir+pfL4fT0dIiB\nL7zwQr3wwgsHY/cruQ14W49esPRnq+ojVfXPav6CpS+vqu+tR6urZ1X1rqr613vvn0Zf/S1vectM\nOdz6yoRCjYCaHJ4BXMbkZD0lV/y5ak4ynKDKGAlQPFIlyre6CkT9/slx6bRMiKrme90PJTkeoB3U\nXDej7SH8G8G0Kr+YwPtIuvOKfHLc5MSJuCXbSWSdVSYmmYnAe5XaCZsHelZeGYxT8kCZEkB4DVep\nR+DOcST9sXEbXe99AnSpsp5ADP4/SRZGK5nc/i85J1vhGPxnztOTPQI6Pykbl6sHN9kB7W2UHHqF\nkr4mf0yJpyeLxM5EmLhtU7bh/pH8aSQL/5vPk3bpdqfz3fZlf7RdycTf3JlkqEZyqP7vg4s+h5Qs\nUt/SOfGCYxjhq8uO/stk9z6N8UKYw7f28rmmqvmzyx5TZUv3tR0SNMeLZF/Jlr1vv3cqBupcxl3a\nAH1E9kUyT13Rtj1+p8TTyXoqBPs1HA91SMzb7fJ3BnOctEnasWzO7zcqYNOW6QcpztIGyePoW+yH\nc5B/Enc4PrdbTzwpd78f+0q8JumKMV9yId6N4rsSXfc9vQCQibvjFIuern/HAh+b5MfHQEYY47+T\nr6X7Ur9pfN6n+xn5iR8s0sr+/aCdiHs5b3P88AUPYvkSpyTfl/xoO5Qf/YG6cqygDL0/zls+4npO\nHJC64PgcV8Wr2I/bAf3Ziy6KKdqRlrbt/8iP/Ej1P8g24NbaH62q/6yq/lTv/Q2ttddX1b/de//v\nl67rvd+21v7Dqnp7Pfnqmt9orf2Nx///7t77+1tr/6iq3l2PktXvZKKq9jmf8zkz5dDRndAQkBwo\nU7LFrVVVTxKV7fbRG03dUPTK6ZETeQKpajkBk0azlDQ50b24uKjen7zR0t+E7CQ0NY1D3zXG80bJ\nAwPPiHTJyZPBej+UkxcfFOyZcLtMUmAlaSRgMJFJJJrAIj170PRAcXp6OguiI4Klw6vd3v8owZBe\nPSmRPRB0E4HxwoYHaFXjExlICVRKyki4KC8Wa3wsrlP6QCIGsolEFkgYVMljAOSngz6Dgq9GOcj6\nC5Y80BNnkg+ngMMgQUIum+MLES4uLvYE1ZOLs7Oz/eqW+5H8SyvB1CNt3+cjHe52u73/+NvMExn1\n8TNwuf/5/Sgz19fIXo6PH31Prcbv9n91dRXJgHzVt8R64qPfuQ3Lx+uJsn52spoq1dJtVe0LI4lA\n0G79/+7DxAP3+6qa2K22nOnwl6RpniQrLFa57ByrNS7t4HEimV7IJpnf3d3t7TL9PxWGfDxq8nuR\nIGKE4o/7rI/Z4/Vut9vH7JSU+GM72h6Y5OQrUR4P0wsKPQ7qf0xKRoW0xGdSMkHfdtLuOOR+5gft\nK/EMXuO8RXjEorv7kidb3hLJT/IbxbB0nuTm29nFX1zHqeDlyaO/lNNjis9TPMF5j+zRFxeEJZ60\nqx99L3myKdmL+E4qDCzZiOyEB7EsYbOPxbF6iW87NmiFnZwwjZXjkX3R77SF9uTkZH8v7Vp0PPVH\nHSQDyVN6dNtx/D1kX+LJ5J2MlyP+7/OWfXniyTwnJfXcrpt2iiwl987tnUOSj7nPCKvSS/iEIywK\nnZ6e1vn5eXLtfTu4stpa+4Wq+u+q6u/2R8lqq6r/u/f+xxcvfBlba61/13d91yQBccd8fM7+5xGg\n6zxWP/gMDwM2f/a/sbpIY0mNQJLG7fckWdPPlEUinax6JccYHQ4arJq77KSHUbUpkd/7BpNEfhPo\nUjYkckl/iQAmOfsxuvchnVOvSc9ul6lala6hTHVNquo72JIEJXvj/UjEndylJE9JnMsx6ZirWgno\nki143xqjyyvdi3pKiULSUbrWbcpxhf2ojZJV2glXLVix97GlPtxuUqAfEV+Ow+XgcuUcEiYTB1ig\n83lydSlhqcvzPuf4+Ee45D8fwsVkAyKXTljZT7Ill0PyvTTm0Tz9mkQyiCncLZTwIeFNwhD/WbJY\nImXExxRzaF9c9XPZ+DxpX/fBZGKXxpTG6n6xhOOjQ30vzZ34O/JH1437EAsK/un3TH59H17gK+si\nz4fkTC6heabkxvtI8xrZpCcu9IHkjz629PPSNZIdVzt1HfE/6W/JVpbmkGyTsWgUs/zcUbxMtsxk\nSHPnjsOEDyy+pXnSj0e8ivJ1PPOCmIpfzicS/tMnUixKzX0z+WvSFRvHo+sS99bPSVeHxjSKJeQf\nzIWSrVJ+KWbchxeMMNH1/D3f8z3V/4AvWHpt7/0drbW/+/j3o6o6vcd1L2tT1k0lEixJaAViKShV\nPXntt5zPScfp6WmdnZ3tDxoziflut5s9GJ0IvRzMX0Tk12jlzY3FK3CqAHLLRjJGgpUqhV5R0hxG\nW7x0vlZ2NCdWoUk2Xc7SHcGM5JEr3GkOfr2DqPfloOYvwfHPBNR01BQ0l+aVyFxKXPx3Jxg+J+lE\nL6fhVkT9nHzASZvk6CuFWi0avTzA59Xao8LI7e1tXV5eTirBnINs+JlnnqnT09NI6FOg0P286OKB\nSGPwFeaEAd7vSD4833XvwZdFAyYCrsfNZvriGvXFV8KnMbotbDabvb1Kf45NFxcXM2Ihv/YVdgZN\nBRONRS/78SJUIv06tGLm/bitqMlffcUq2b/ux75SIE/z1Eqyz0mVcy/E+EvInAjzu1e9yq5xJ7xn\nEWi73daDBw8mq0TuE7766n7jK2xMHKpqOE+9oIoFDScHWmFMcteYhekp4Ui+Q0yT7C4uLibPcjqx\nJKa5rSfc1Vh8DvIlP1znwkQ+y5ZI2ui+TmAlH4+ptEtu5ee9HfOks0MYnZK9EUnUNYoRXiTkPEXe\nl16eJBky4SXZ1EqVJ50k0dRNiq1poUDnMQ5xdwufWXXfdBtyu3M8IBYkHsdiiXCHCZDmojgnn9Zc\nkk267YjDeb/u577S6/bCRn4oefn8nQcQzxzHGUeY/LTW6uzsbIIRtLmEJc4vxa91r2eeeaY2m01M\ngp3feiwUD5GdakeRYh3jhvNE2kDVkx02S8noUjxIsZA68vs6b9Hc+LZ63tvHQDun/LglmtyXccpx\n1WWTeHdV/kpM8nninY9N2Mh4s9Tus7L6U1X1d6rqf6uqP1VV/3FVfVN//P2pn4nWWuvf+73fW1XT\naiiDtYTEhNYBiwTeq1c0IvbtQcYB2xufwWEy7KtNfg3fBpyq5DRgNQ8Cfv+q6fMONzc3+4Cj5FgB\nz0Ga85Tc/WBRoGr+PJKDnkjjfaovDHAp0HOFj4GdhMsrPw7oh45UfeeqgtnpXh+0UdokD79Wn0nG\nBEcHYp1Pf7gP+SRwpYPjW0q8mEwtNRIe2Y4ftHUnR/ocAWyqdPqYGGydPMiPaDsEWdpkWrkk5jgR\nSdii/kmkSCQPFe3ch5lkUp88EtZSxvdpDJiJmFI+9BXXg+ZCW/Zz1NfIj/wgbic/0nyd6JIkqnnS\n5rZ0dDT9ui4VMSjLpD/6VUoEUktxY3S+xzQmuW4XnpRo3qPn3dTvKLGinbgeRHJSApRiP5O6VLTz\nGJHiPufpR/KTET56ow168VBzOuTDfq+E7Wojn3Vd0LeSLzpmOf/xsdBnU0uy9bH4mEYx0uU1Kmyl\nWOjzWiqOOH4v+T254dKR+CN1SzmkOJwa/8d4PuLIh7gzG+NSwm33WedjPtYUJ2i7S36dbE2FIr4N\nO+3KGsXEkQ/T7xMvTnNK/p94if9M23Y/GnG3hFVLdqP/c2Eu5T6Jm1I+S9jrGOwHOdsor/mhH/qh\n6n/AldX/qKr+UVV9RVV9vKreU1X//j2ue1nbxz/+8ShQ/SyCUTUFa9+u4lUFrqQmwrAEoKNlbRFd\nB0evpCXHlbHqMxElKlQgy+dZVMHSV1DoHD0zob78uSZfPTk7O9vL5Orqam/QdBqd789KjozV/8cg\n4wSv9x5XOFxXiaCqf+9b8/Zqla7xFW+RBT1rueS4nky7zrxy69Vbd2LOIQUvBk23Ew+srtMEWCMA\nY9CSblPgam3+nYOJpHnQSgRis9lMvgaD8qmaPsDPhMjJpl/jvqHrhQOub7ZUTWZ1myCrpv7dH0Y4\n4X6vuUmmTsR9LFxp01x9ZUPXOTHxeXnyMCK/o6BOAk870r0YtFJQ90Ra96LP8x4+T644yd4SZic9\nu91rTCIB0uPp6eneVlxX/tU6bk+UMYl91fQ5NRVZXJ9aVdAqgMs0EbNRwpHiyIgMpSTB/YjF1GTL\nS4mLVpSFcxcXFxO/SvjBAlki1Co0eGz13Qs+p1SgIOGi7VIWxMne+2SVWv7q2w79WSzdg6t5uk52\no1UPJkM+BulGiYfsJMmHRTJ/Tk3X00dl58Imjyv+DK/bkf8tkU/HOrclT2TSqhHty+fO5CvxNPqD\nxlc1xQZyJi9Kud6TffGeTNgSLtD+NRbHs1HxjfL2lhIpFnG4cNFam8RY8RbuxknJssue8Uz27ljP\nZNDtlnjpuiOX93t5XCM/YdFWjXjljXpNHNvHyGLrKPnyeOEr2inh9gKYz8t3TiwlppxDSkSJDa09\nWcHVex6o81RY87h7e3sbOS9lQT/yuXvhPekktXu/Dbi19qCqNr33T93rgpextdb6m970pomg02vZ\nE5jJEKvycx/69OSL2ya82kHDIhFMpJ9gTWMQUVXw82oVE2O/N2XBCo2CrR+siHPbbQLZZEScd1V+\ntXaq0HhLK6tqTEw4Tjo7ia33IxCkjtOcUqDimBzMnTA4+fRxp5bIOBMVNoKXj8nPcWAl6Kcxp+BP\n4jZqPpZR4uvnJqDjvXj/RDJoB0uFBQYTTya4cpMwhls5uV2KpKdq/oyog75vYaTuGIBTRdj1Tpkx\nmXD7chk7BnlQ8oBH7KqaEjWSHunTcUg2x+SLgTLZNufKYE0ZaE4uQ9qA8Nbn6gUyJSe0ZR7uaxq7\n2wmLgV54WTpcfiSYbl+jogqb+y51TgJdNd+Nw9jn548w1+0kJVa+aurkJeFMiiO8L4l78odRXKN/\npCPJXbpcKhSluEds02fy83R/9kVdjwodfi7lyWTDZcpiu/rdbOa7Bkbyc59PuMhkj2NO8Wop0XOC\nPMJFLwC4HpgIpvjNGOuyT0nJbvekEEiu4D7F66umBbBU7CVu+24Ncl4/UqKXMM77SfjBJIXc2O2L\nq9fpXqmRQ7h/UF/sm4l7wkraEn2ERUXdm/btNpGwvqomj0Tpa4ZY1GDRx2VPbNHP5E3UP3W5xB+I\nHQl/qZsRd3Z5jQq9fq/v//7vr/4HfBvws1X156rqa6vq9PEgeu/9bx+69uVsesau6tGk9UarpDi2\nZHQEx91ut387rhQ9IhMOdk5aVWGumu8Dv7198pwYqy8O4lU1IYeJtKbkxt/CWvXk+700V1V0/RwF\ncAZPjV/ORLBhVUky9oT/6OjJS3K0QktdJLJJXTmZcn16tbtqmnA4MeLWFCUeqm774QktVwE9MSTp\nV0LosmGQp0Onlsg7gY/FBW8j0HBy4KtWbsesFDOwy6ZIaJZetuArS/yUbXkiKrlrFcvn6eTDq7pp\nXBzjqHkSJbvyartkrTHTDzQGr/i6bTAZ9WAtPaTGAoHGMNJ3CjrJ3hiEKBvN7+TkpM7Pz/d6kB37\n81jehyqkLksGJPXt8mWgT4Wr5G8+BiamrbUJ7jiJpT9pzo5Hu91uj3mULeXm8YC4qLE55sh/1UgA\n0+foS+FJLLwv2scoZrj9c35uR9KZy4nj4b1l77IB2p+vurk/OPH27bGuZ58X7dd1y3N0b70JnwQ6\n2W0i4sRpjidxBsqZfMLl4ztviG2cLz9TEsCxSMZeIOcKm+7L5xZHMnAbZyLvxS/GGZJsj3ssOKWV\nad3fZZSSL5cLSTL9UbJU4cq5jmMVORyLLvIdxkG3R+5e0jydO9Dnkp2JE7kNseDk90qFUPcRJisp\ntqjJv32OTFq8iOTnsX//mXg94i3Eam+UlyeViYu6PZA70fbddnUdC5PyC2GabENj1VeDObepmhZ7\nGeec07osqLtUAOA1SefEPMdsj20s1tDXGMt0jubuf79Pu8824LdU1UVV/UJVXdf/z93bxey2rndd\n13jfNec7P9bOtgVTSEVKqyEeQCKkgE3ZVvlsBRsD3WFjQ9VEqUYPOKjWlIQe1dYQgnIACEE8EqPB\nqAf1AA8kQAKcNHa3tYEQ6m4RQ7S1e635zjn3mu/wYK3/8/6e3/O/xztb9mKzvJOR5/0Y4x73fX38\nr/913fcYz8w2M2+3HPsxtZVRrs6NITBweDXFLYlX+7qKGN7r16/nxYsXZ/c+eqieAMSVoIyTRpz/\nE/zbtg4Gdq8+zVxWyUk62C8T7lVVh2PgnPhCqryAIcT/+vq6ki0WBDhPB3VXYgJOngd/T3WKDmKy\n5eudPKc13RGE28+NiNOxLfv83SDR5mjb9nw8B8qbYGgCk2YCRJv0ChnBPC9V4jgMUA0UCaiZv0lD\nmyPPz2d8NiudK13YBtm/q76r4Er/beNpAdHJaUs8SFBzflutsyzcJ1/OE9+2bZNcJRClgNASSH79\ngnW8Iu/52TiU85wMOamifhvGGx/j/zc3N2e2a5t2UKaM+bUlbJHjkydPzraquTBFsppEjHpwoXTm\nfJsZSXb6a/bfKtNOiFph1L6XApETosyfBJrbtxqmUs7RM8dJkuREcmZOcYQvcXGS1Fa+THZNdGNT\nxEfHGSccnKcTR5JSc4lGEvOITewgSRdfNkKuka8ZSkKZF8pQ1ibTTLj5IhP6CPlGErL4DROC5iO0\niTRjM/2e9w0XYvE+8w62hD/ER3LEjuiTDdvj+/R3r9zHH+LDTpZjF6uYwUSFR0vqvJIfLmgbYxGQ\nfCx4G2yKDVgX7d7R67Nnz862+LqIYV+nTUUWrYBNv+ec6Ge2VR7GlBZr7UftHOqaMYC+Sl8gp3Vs\nMB/y191wR1bsjMln4qeTzPj0kydP5vr6+uJ7rRkLGRNvbm5Oc4oNJOe4u7t78KVyM5fJs+2FvDA6\njL8yZhjjWuGDsjROs1Bhvun4sWpv84Kl/23f9197eNLH3LZt23/oh34oP19MzEGqbePzYTByMjhz\nuc/eAZlELk5ytIUk4/QqJf+fc+xwVnAL2pSPZbWSWe5l4GUgb335b04cWvWlEZomCxMv/0w5ZPzt\nLXZOHha2dSEXByjqZiXb5nC2SycuBn0CKl+H7wTBQcDN5zlZbEDfglBLpDxfz8d9N3m6WmqfpJxX\nsp65fHbHpIxz5xw4ZpLXjNc7GywL2zp9r+mZsnFyyGBj3Gn6aoHNSYP9qOnb411hStO3A6DJVyN4\nlkubp1ubt5MQ+1k+V1jPQgLn1bC0JQKUnZNc2qCxlMcK/5vPNB16nm3OK7yzrELwScJMqJtubE9v\nc3/7TfRAeTDm5py2ukLdNTLVcIifGffKl/KzCVdk5vu7SEAfScLBRI3nsLjKe3t1jAUy2n/mkvmx\nqMDdLo6x9Ff7ePMd+gKLKo7Rxi1jcntG2tsgV32t/Jq+13CYuGO78OEiXubAg7LzatmKw63ssfEE\nJoxcAc+2UcanFR84mlcwzmNuHK01nke/ZtHpiEs0PdAmY+ueJ8eaexvbV5yXY3ezrpxMtwWtt+U2\nLc49JOO3wfJVIYVcx3mNZWXdGQuaL8Xvm++RV60w+chG932fP//n//zsv8gXLP3Jbdu+b2b+65n5\nOdzk/3mLa79s7d13352Zh5XMZkBhAGxO2pKCBuC5rgU6B+RU1nO88847p+Bze3t7tuWHhwnziowy\nmLkdgTb74fI+g1LbFrQCfQfiyDlBKUDcnhvKeFZtRd5JhB0cWYlK9YpfFM2Vl0YMV7bSHM5VJo6Z\npMxEg8E5jfc2Sdy2+0q4n7vyeSZfHrcJMwOZX0qWz1aMiDwjd87dZKMlCg7OWRU1uaMfperHwEsb\n5jYxB63YM98yTDLAtwceEdnoj9uqPdesHtBOYyPZZps55OtI6Lf5bPZle2z+bR/yPO2L8WMeTA6I\nRzzSf1tBM+lP5Zk+sHrhE+feXpTGZJW+fPTCoMyTOgrmRZc5h4E2q60M7LF/rppRxi9fvjz5LF/m\nRFxyUYpJLpttYNvuv+Cd/dDHWwyzD5O0Bnv8Mo3cn8VA34t4x35b47kZU8PG6NoJUfNLjv3169cn\nu8pBv2njIIl8mzjHHU2NT1A+sePMLSur8fuslLgRn/k1PrlPbNDj5T1c7GhkNjJOrKIPcx6M5fmb\neQrlmJ8bf3Hcpy9mHoxV7TqPr+nXPtz4Y0sMmECbtDv5il20RQrGwDYHY0rk7uSRvpG5xeY5J/9s\nLMhW4djXKmbkZxfQW7IVO0ps9f/bp3H67u7ubMWbOE05rhZomCSt5GG7IM55lTLzCR/JdcbPpj/i\nQnyfOxhcfLAu7Oe5N+8Xv7DvuYBCHk4uYlxIY0HAcZXcxtzB9tOSdOIFZWEsXbW3WVn9rpn5kzPz\ns/PhNuCPxrJ//eGFX8a2bdv+gz/4gzNz+Qp4V19IjEIEP+qD/V18mow2Q/dnU6TPa4nOQwkk58DE\nwEbPfkkQV6DadN0Cv+fQqkweM6vE3CrcVl0or1VhgONp1/CelMVqbk3erpqHWHLbnhOtBlgPydAE\nzFuCqGMekbvPIWE38AQQMg9uO2TF3a350UNt5RdsrXLmoO3zqDuC4ENjsoxj/9Rd8+G26mFC5Dl4\nddFjW9mc7cT25Xk3fLBdmGS2YDJzuZ3YK4cNL5quaG+r4oNl2IpCkeuRXfnejRQ6QXJiZWKSc+If\nbQuV7XH1ufL5h+zfNkD7o3zSh+X6kC2tijUNj1fY1eZy1JxUWp8taXLfxrOmC8eaq6urszklPjU8\n8z1XiVwOF7sZ74jTJJLN95usXNC0vFYys++t+A9XqHhe5kXcI26afObT2xepi8jDiXxiqrfB2/4o\n0227fMTpIduz7Bz3HUtaa/dgskCbbHzSzYmM8c/4ar1T5+zD92z3txwYM7iVk4sSM5fPbLOPlcz8\nvxbzWmHZ8Yu25O28SdLNZdr4LGuec4R17X9s9qvG921r5owrDtKw27ZCu2j3o587XrZc6AgTV7Gw\nHatCTItF5kwNg//Un/pTs/8iV1b/yMz8c/u+/9RbnPuxtWfPnlUhBXh/ocbqFoddVYhaM+B7q0Aj\n8waZjJ/PLRg0E4A++OCDU7U+indlZZUM5mAl1Kt6aQwSCRRc4Xjy5MkZ2LBCxNYIPQNPxsct20yM\nU8XN/54+fXrSjauBToydIOacrOx4SxeP2A1Jbiph27adktmMxytWjQD62YLYKXWda1slKpV1ytwk\nhzbGefHeeQ7CgEjCnK/ucNB5KJFZkem0FeliMkJSzZW4RgAbCUlQiH7tD00++TtXW1sy4eSIwbIF\nC69sNEA3mfFOjJk5PdvllRz2S6LpFXcWJzI2+9GquOW5NfmxOprVC47l+vr6DCPb1roWOG0TxIr8\nncE4/bpokWtIMqzfVpWmT3lsq0TH19gmTJiJN0eJmn08ccPEkvduvkg8fJvx2xecxDQfYWLHvoJb\nwdU3b96c6ac9fsMY1pJ0jp3YGP9z/GFfLPLQLthyfQqM0WnjEivymzkRa+OzlL9JbfyUsXqlL9rl\nEUZ6zJFN7v/q1asTx6BeUtx59OjRPHv27GI+q0QqYwoG+XwWaTMexpqM19jr5IaJrm0j92kveLKf\n5N6tsOY58eBKXHSW3Rh5GSjtyTtEVqtjGSOx0NwmvKolUsSF6DB9rOZJH7euGrZ7R0zuxXkxlqxe\nOGV7pZwZw1KIz7xdiHdMNX49JPeWMNJXrq/vv/5w1Sh/j6/xlhXuH/EW/35315+ZbbyDMuZ4iYEc\nG7nw3d3li8H2/fxFUt65FRnn/37ZbHDmSKZvk6z+7fnwBUtf0cYAm88GIjnXYOJrGokgaDrwskJJ\ngKeBc3z5maSlGQidiRXgZoh2KCcanCONncbNqhZXkXwkOIZAmDAEnGnQfr6GJDrgYh1mrmlXV+db\n63ieAwxbC5o8j0T35uZmnj9/fpYUB2Q/+OD8q0tmzr/fL32m3wCQEyJv1/V2T44xfXrLI++Tn51k\nNJtrstj3/ex7Ad0ctGiTnj/v5U8SP97bSYhXxe1HkUO2y5KMOrBGbpx7I9+tMNGA3Ak3X9/7AAAg\nAElEQVRp5J4XJDQsIhAnuaT92XeYPNhOc9C3HYSNbSHpq0CWBIdHw71VkrQi4i2hbEmoG/Xm1THu\n3mir5LRVjinJPe3w1atXJzvLduOZ/uI524nnbdnHP5zst/E13/L/GuknWadsjB/7fvkCEMcNFvHo\ne3zm1jsLktRZNyyoBCeJpVm5YbKVYkz+x2TSfsH5G5tMUJnwPH78eJ48eXIh07aqYF1Fn5RPK9C4\nHxLRVkyaucRXJzdXV1dnq5YtRhh3+LPxlfHD4yGecJcFbSNy5/bPVcLNhD6ffDNtjmCjOUbOy4uk\nmNgEe+PbbNavt2Qzsco2/MiKuNnsiTEgY+DqMLkDr33x4sVpfDn/3Xffna/6qq860wV11rgMfdL4\nRcwl7uYzdmJbXWGTz+PP9n1iUmuJK7RvrqaTL7Vk2fGJyQ6LGE7mkgQHZ2ivrZDrRQjGIu/EaHlG\nMHn1yEnOoa0zwfbjLpRVirst9/Dug9Uqc3tUg/ZBeXrHhHdlMc7Rr4Ml9BliQ+aVGLHv99+TnuLx\nUZH9QuarhA8T/W9m5jMz85fm/pnVff9H+NU127btP/ADP8DfTz83g1+RUgadpjT2kfuwL957RXgb\nmfJ17XoTQ68OeK6N4Hh+be6rlQgelK2bCboDvcmvr8mng4r0Xe0g59vAQ6hMTNynK5rUQ/p3VbOR\n/rcZo5srqrynx2iba/1Tds0OqQfbdiM7HMNROwpWKxLVgpD78bxMnkxMWnGo2YV9pPkVCbYTl5n+\n3adtzE0e9k/K0P2SjBKHLAsXWVbz4hwYWGjbtu9Vsnmkd2Nes9GM3WTgqDGhjQyMf5Z/s/V2vI3+\nTN4sG5Lklqi0pNMJEav6LEgYazyvljxEZryW/nJ3d789nI+TtFWZRgp5v0bujuTekmvK2DG96So/\ntxjrVUAnIYwJ6Wdl67SHVkBpL0XjNa2w0GJPm1+TnzkJbaqRffpLK9w3W2qxzWN7G12tiD0/TfDT\nd+NI+WyFtSP+s8Iq++uRr1E21J+Lm7R9+prHnYQ9c2eR5Wjc7tc2EvvnYUyJXTiOeKu15dz8z+N1\nwj5zuT3c8dvJV0tEm625IEa7bLbTxpu+aP/Wg22bsWYVLzhOfnpMTkTbGI0NzlvanJuufN7bxMeW\nBBvzWvyxfbbm8Zizzsz8sT/2x2b/RW4D/uGPDra3e4Dgy9hSLXUAStUsL80xsSUYUVBx/lQxGXiZ\nUPBoCmrkxz+vQD6fDmQ0aoMOiYVb68eG6cTGSXuqOrzvCjjYb+TlrQF2eG/V4POhfIkE5dMS9LzA\nJONzktaa9Wk9sK2cnSuffq6VAcuVWr5gKyvSDVxmzr/GoQXpI0JAwDEgk9Ra526NiDeApLxMxFMp\nYyV4pReTRr6EjC/bIUk26BuA4wO5dtu201ZVBjuOl1+ZQSKy7/fb9Vvgb9jU7I2/uyDSCjy8Jj83\nfSbYe8xN/w2beF8WAzwH/j++R5KUr1vwHPJzbKnd335EXMjKCnGJJM4r87Yv456TtryoiFv2/FUi\nscnYz7bdb5V89uzZ2YoLk1fLIviVr0VgBbpV1jmnFQmfuX9RWI4klUziGinOPFby8woCVynTH/0j\nMngoAYlcVqSsJZMpTHJlIrbibWfBCJJkHo6DxOSMJ7Ycm0k/fGTDhcjIohUfjmKP7d+xhgWSfBpv\nZ+Zkyy9fvjytZHqFauZ+BxoLJvw0frjIYp9qRPfq6upsFb7hNv0lmEK/by+XMg6tiizmdfbFN2/u\nv0IocuO8uFpMG3PCTbykn7uAlXNcWOWKrX2YOBi+YXnZDixX7+zK7obcO3GvJYycF+2ffpTG3WEZ\n8/X19bx8+fL01Tt5VIS6iV+vkjjfP3bphJe+TLv0nBy/KfOs7rPv2IGLD+2xBiZ1ttvkHNEDeXzu\n0eZDPd7e3l4UL4Ix1FdkTJ7fMNi5jn0zMn/9+vXc3t6eJffm/S6SEdNaAXHFgVt7cGX1H6Zt2/aZ\nmfnj82FS/Gf2ff8Ti/O+cT78HtfP7vv+F8v/T19d42ZSNnNO8l1ZNKHN7w7iLcFcGRKVxsBoYtjG\nF2fidXGUVbBeEVLI6/TpABMwDLEh2OTT17SxOJhxXkxQmr742ZzJBMaHA39Lyq3nBJ5VMs0xyfZO\nnyvydaTPVgmlvBqRbmQyzcScgSFJcHuGxLZjuTdb8thM+EJESLT9JtFtu9xC5Tm1pHNFajk+Ewjr\nsNmEiSUTWtq2EzLrqtml9e1qt/WXvk0IKatWxWz+6Xs3+/fqq4tfJNVN/7HZ1b2Pktzm+/Y3E8sm\n51Uhkvd0831any52OYYY82iHR/jRxtLIOf3T/tHsP3hm+yK+sDgYgtBsx81El3iwkqtjzdXV1cXb\niulHDePydydEXgGKjTkBOLKDyI62TmKZZNC2sSqGmFxZFg07W4GJB6/nmFeENH3QbkkKWRhqsdL9\neiw+x7YTW7HvN7nbdlexu/kY/Zzk2IeLNa1g2GTu4pfH3/T5kN4jv5Z82faJH+YAjSOskgDHXc/z\nIR7VMLAVg5uPma9Zn8T18A0nRGxtbJ5DzuO4930/SyD92BPjWJvnEQc3V2wFsJW+LCN/rjhiGgsR\nLLy7OM54ZfuKTTp+tThnzPPvzoWafflovMvy2/dfxAuWtm37b/d9/45t2360/HvfH/ju1W3brmfm\nz83Mb52Zn5mZv7lt21/a9/0nynk/NDP/88ws94aRdDcCTaAxoB4ZdAJ6zku7vr4+Wwl7/Pjx2b0a\nIJg0sgLBIE4wbs9IMDDkWp4XI6MBszpKxbvSTMPh17fQQVoFlc45c2/gfBmVgc2A1Yh4kmdX41eE\n0WBPO2hO/5Gxno7cz0Gm2YmB0n3l92L7F59NzgyMJJ+co+fQnJsJJ4EgK12ulKXl3NULDzzHgCRB\nMEEh1b4mg1QdX716daHL2C1tl4GCPuMEY9/30wtBaOt89sMrXfGto0bd5xkN2rSDkkHYWOBKNH2E\nfha88QqRSTjxZVXVt8xMdJzEeDteDmJHiiG5NxOQjJ9YYFwj7rWkl8SrkSJiTq7z6kx000ghbXMV\nbOlrlnEje55DKxSZfObebRWfvrfCmoZd8T2fnzFGbvzfKqY6AYmO2zjZGB/oM8H+mf44BOVzd3e/\na4b++s47Hz7z9ezZszMiypfwMflcnZOX4uWc2I6/PmaFhZQ77ZK2ZMKcFcYWT4h5Tqavrq4u/M9x\nlbhCWRNTGnY2npL/cWy2A9ueEweet/qZuqcvsjVeRR9njLAPuV/vmLPf/0JWe1Z2QD9jkYW8psmC\nfba4Z323gkDuH57qJNMF4FyTezJ+tKQ1vuekpM0jmGMMNr9tq2yWhT/JkVygc/+RZWKWk87Ihe9X\nMVc3v27bYzOmla1YnjP9/SrmjL4XYzPnEd9teGGuwLhrHkd+eXV1/nx08IwHV/r5zgLGYs5n5T/k\nFcTF1o62AeeZ1J+Yme+Z80TyPz3s9cP2G2bmb+/7/nc/GvRfmJlv/6g/tv9gZv67mfnGo84CZg+R\n2I/udfq0sFwdYhBtgTTX+02tDUT2fT9bacobwxq5S/8hEKt+Q/KTVOT7/AJIMeZsrWACwvFnHDzH\nSajJRs5n0kQ55jyeQ+d1VaYRMpLPFAQcuJOIxQGZFGVcJpOWJeUe2bdKsbf6eStgI7YOkgRDr1g5\nEFAXOf/ly5cXAYTXRr8BqTdv3sz7778/X/ziF8+SNh7sZ+b8rbn8XlL6RyNh1t319fXphVVXV5df\nXcA5cCUn9wk4pp/IwlvZ6PskKGm2q8icemvgnblTX012K4IRWTaSY/lxZZlj5RGizkDGBDx6t104\n8LMKmwIIEy8HyfYWZNtyigKNfK7kxfskmNr+6RO+d8PctrXOPslg6WKC52acauSN10VmsZ+XL1+e\nBXFurWOSl7a6X0sqWoLQ9ETiwU+eTzLQiGt+jlwsf+qnEWjr0DF5dbgxeUn/r169Om1Bc/JKch7/\nia09e/bsbBXwzZv77Wwcrx9BcRwxNrLxkRSTNNqQdzWkSJtVwPgPt4PbR7zCnH5Xumk+FFzk0Yqg\nHD/tk3Lw1nLu2oqfGgdbXGlEN8242jA4Yw2PSCFoVSRw3/zdCUuKAn4h29v4Hu9tn17xVWJumz8X\nULibKrK/vb294CfGr3Y0HPb9WTTIpzkNiyixubYAQmw1Djc9OD6QM4V3OFlm8Z/8o/l5W2hJ35TL\nzc3NPH36tMqi6Zbx8erq/ntWWUCnvPOZed/c3JzGTLvIuXwcjViZPrg1mzboIjLjNfu3nIwHtk/6\nUsNOnufHE1o8SFsmq/u+/58f/fjP7vramm3b/pllj/fta2fmC/j9p2fmN6qfr50PE9h/eT5MVpf7\nqEhyA4KN0GsOp2tbZYXVzwSrAAFXZd0nhZ9rnAjc3t6eQMMA5apNC4xeEY0zJdDu+301OcEt8lmR\nPDrF6miJOv9OQFodNuoWLJpDm6BSXi5QtEJBc4pmH/m7HY8gwSSayayD+qqCZALIgJV+TLpbcDXJ\n5vkBUVbS8vcELQOtfSFHZEDyybFzzKwWe4uvV3FpA5G3C0O0hwSc6P3JkycnsLZcrff8jdXSFViy\nP1dQG5lKn8GMNgf7QIosXB11s75bopLfkxgxCDP4s0AWHfG57kYYqGMG5+gwxZq8F2Bmzghp9BVs\noj3yDcpMzLhyxCJkCoLGL8qDMo98rV/beXROIu7DONgwxhiYfq+u7rfDW8ZMNEiwKAfqn0UVEifb\n7cofOEcmnMRk6n1VPLu+vp6nT5+e+jYpaZhvstUSICbpxhfLgX5FIkk8yeqw7YsrdenfsSJ/a9zB\ndpR5m9hbnybdLkpY9vRZ4iZ9ibZkMm8bIPFuKxwm7i1hoa8cFVybHbD/58+fV7k69jDe2MYaIU7z\nc4SOuZ4Hk6ZgvfWd67gzonG3Vfw8Oprt+LC90GZsk+QTSWqye8BYEV5AG2vj4643FzDTT3CXY6Xd\nEgsc4701lxzafIf9rlZfKbsk7rT3Fad8iBfPzJm83rx5c7GaGI7IN+9ybPbFfJVRdPfkyZPTV3JS\n5/FtYrO5V/oxV7SPGFujk9yj4XZb1Y3ds/A/c1+wZf7QntXNucZI+qlt3e1oG/C/OzP/3sx8w3a+\nFfifnA9XQh9qDz/A8+HzrN+77/u+fTjK5Ui5cmiA8qeFZKecuX8Q3ECy7/vJ4QzYXOEIgWZVJwT5\nI/mdlEdCf319fVEFo9GH3HHsrHTO3BNcA6eNIgZp0mSws3E2GWdOaZYNExe/SIGOyCIAyXnmmdaC\nKEmQK7i8jv03EMqnV2zpbDnPiV+rPJHMh9C7Ekud2l45XuoqckvlvumT9k37iE3RHmKrM3N68UGK\nHRmnCT3b1dXVqaqYwBr5JCla2Q6TybaS66DJl6aFzBnIVoGB84z/tRXmyJi2HzlzXCaNXN0k5jRQ\npi23Rl060WFxhv0niHL1wjsALJf4OQkYiwzBpkag3rx5c/ZSIQZUbl1mYS2J9c///M+fJfcs0NkG\niE0hMH6m0NuXY5cMkrSNBHWSoYYFLrKkXyYFbQuag6/t3xgU/fH5uhVZp2zcYpMuWHCu1Hk+GcNy\nnu9NuUSGfGQmP3sVYkXASXzZdyO8LbaZWLqfVVw7IqSRm595b0TN/md5UcdZvTCGWF7RF33HqzS5\nPjt9KEt+ZVDDnvhcZMqtsPFpFr9dmGFruNSKt5lXW0HOQfzhpxOy2EDz1fxMfTghib6TxEXOxp1W\nEGs7Wax3YkVw3oXllmiZh9G2InfGdsqDHNXxrhWSG2/inL26PnP/krYXL17M69evLxJzxysmtJSP\n57UqXPk8+qmvm7ncZRRMYgJuO7VsyKOiX8+v2RS5LF8SRazizofYev4XvGU/flSEMaxxhozRWETu\nyseHbIMtztFf4y/52kgmk/RzJrmO3cRtx0b6dLCNXL7FutMcV//ctu3TM/NVM/ODM/MfzX0i+cV9\n3//vZY/31/+mmfn+fd9/50e//8czc7fv+w/hnL+Dfn/pzLyYmX973/f/UX3t3/It33L6/eu+7uvm\nV/2qX8X/nz4b6TewxKAJ4C35MjkxuLmiSqAjALRguwJgzuMo0VolN67QELBWgd9BvI3BYzUhS3so\nuPt/DVTdHJSazGQvFwDUghvHlJ8duFbJF9sR0Ll/XmPS2OzU8lqt7qxknmsIqDNzRmJbMkE7yKeD\nXcgZA4j12QoL1s9KxpRbs0eOJaSMhMHEgPJa2dfM5Vu4reMEUvqa5ZzzaJPN5la2xLHzPivyefS8\nCLGCgandy2N0stXIh+XYiGCTjXHFJLIlqw6+R5jCe9iWPB77aTunFViMBx5Ps3X3Yb9P/LF8jCMm\ne+1elEdrLtY0/7RO932vRNeFyVXssI21oxFZz9Org2kk9LaNI99rY3IjvrViRPzV5ND+QPtKP175\n8n2p81ViFSzw87oPzb/FK+Oox9J002KN5+8Y1siw44jvRV0Ym1ZJaPpt+nTMMrabR9lfIy+Tdhfx\nqJdVMdO+QrzjozW8nxOOhsErHDIftI1Yxo0nWTcrW1nxwmaPnCPvz2ssh5lLvu1Y3bDd97KusojT\n+MURv2641hJGy/qheGmfScwwJj2Uexj/24JDm6fxLfZv3nLkj7HJL3zhC/PTP/3TpzH9lb/yV2Yv\nL1j62N4GvG3bOzPzkzPzW2bm783M35iZz+16wRLO/y9n5n/aF28D/kN/6A/NzOULGtyaM9m4XJFO\nldD9WCGtKn1EIKIg9hMSxgpIM8y3JWG8N+efnz0ebvFIcuHVCjsGKzbtubvMuzkPdFiN1zJfEU0e\nHgtBgkGpkQj2Q+dbydR9OCC1ea0IKvXhYNYSTwZErohya6arhlyd8Jg5R4L33d15ldXbPdvzeLT/\nI/IZGfLTydf19fXZ9hpWQwmGq7nk077diEnzV9s/A/9qa7DtthFr+0PGaEJDLGo6c6O+SXrYGom1\nrUTXOYKDvGdbaWp+ZftvhQ/K3fKjbOxn9A+/6ZE+5qBu22vy9L05hoarxJl2nTHdNrciiM22TaDp\nE4lrtKUVOeC9TTqMi+mX5+X6Rv4bAck97UN3d3f1mUbqwXgSmdKe41vEEfugEwXOs50/c/n9qCaA\nsTHvRuDKYb72yDF+ZfON3BvX6GdcofSWS8dL65/3MJbbz2fm4qVVjVsw7jsZXNnyyn78M/VLWwqm\nuOC6uqdJNrHTSdGKnNtnvHMqNsdrHWPJOVZ+FezkPZkwZZeWi3gPJUnBKvbrc7LSR3x9KMYScx/i\npfx0whb5MW6s/MV9+Z6NNzUsP+KU+77XHQG07fAWfi0TZcd4aftxnFnZvQsm5nBHOt+27YxX0Yd5\nP/tRK0SaYzafpu28efPmAj8SwzkH33vf9/mjf/SPzv6L/J7VX1Tb9/2Dbdv+rZn57+f+q2t+Ytu2\nP/jR///0L6Q/VjborI1UrJKHfM5cvhSB1cAElxV4MgAdkYOZ++9n40sTVs5t8rJKNmzknHer4nI8\nWelqwELHdYWUwZLVIDtOW/anTNuYTZRcceYY/TNlZvBKn2mNWD5EaBoBZCLEPgkS1GGTccZFcugW\nsGk6DzGy3GcuV1JNYlbzYl8Zm4sPDGzNLt2s45k5+UPknv5imz4/NukAnaCQYGKCkjlwDC5SRUaP\nHj2q39Oc/ls/LbEiGTCRJm5x61+2H6dQdFT1dVKUwsLK5qj3kFQ/23N3dzcvX768sBHqIP9zkSXy\nclJuQsbP9rfYAH83eYlsnzx5crYVfYXBtD8HdJPSJB4sxnmFymOPjUVHkUW2yZKo2Daiw6Yr/kyy\ndZTYZjwuODj5MV40vGpJMIksd2JwC63tJvcKTqXPvACH2JT7N9vzuEwIG15QD8FYy933SpEs21dZ\nBOI4gwlpwZA8gzZzvprY4qXJN/0+euR28fZWYb54xb5qu+Cx7/fPDr733nsX28OfPn160juTmBXh\ndmy3PjhvYmo+iYuJC0yAuYMiMsl9+ehU859G4HlefCq6bthgv+W833nnw5d4kfTbLhkz/I4HJ1Xh\ni8S8zJMJdjiAYxPtnQWW/LzaTZhr8mKqHO7b2BIZElNWcZhJZHQROcYfc16+g9qY7kJy5M5+uZ21\n8W3yjZYM5ufwjLz400dadE3szVZa6yX/Jw+Jf7UFo2DVUZJLbs8CAPE38d2t+RH7CHbbr/078YvP\ntZr/tp9jl8GmVfvYktWPBvS/zsw/r7/VJHXf93/zqK9f8kt+Sc47KSEKaIlcJp/g9sEH91+REsMi\nUbEDWmiNkLckw4BGZ8oXAZvAtOb5tMSgVcqaYzrRZsVj5vx79ZKEmAy3bYZtzBx7I6kmJ5Znzg/w\nmGiwOpNPg0+KD+3ZLN4vcsnzdQaROC4TtMix6cEVUY43dudg21b587cEZ66m2BYI5gTQyJGEj39v\nCWqew2g2F+DnEdLDMTKpXK2+kvya0LNo4OPVq1enlYvIL9fka5goi23bzpJiB+jY85HuuCrSiFB+\npi1T5m2ltwV1Bzfq3olr8wP7Gm2ViYkDjG3YKy5HiSjJ78rmVoSf5zopoe0RD4IF9IM2vtXjG07Q\nGlb6ubqQTL7K3ySMSYkDuudlGczcr0DSZ9qqfK5tSV7G4mu8ukmSbbsmzhnrW5LZ4gyTND8PZsLK\nlfFGbNwn9cfGQkb8jcQvmOHnur2ayJgTuZok2rcyV8c+6saxkPOif7YYYOLrhKiNkwmJfZirPX4f\nAPsgRvOlcvSrJgv7N3GCsomuwi/S18yckfXc0xzFBNnP79KOVwlkbKfhhRM0zoG2wDic/0VWjhGO\n88F9c0+22AXjhc+NvTMZ37bzHQnB4ryFtq2O2U637fLxEuuYuoztsbDgxG7m/ps9PJ/Vz/Yl/j16\nYkKZv7VnIJuM2Xfk0ZIm+oY5bebbuF/0TXlR7pSP4xO5IPXn2JJ+idPUZ2Tln50fsCgbGzKvylg4\n3vRFfPNBLHAxhd+0sWofa7L65Ww/93M/NzOXyWBaC3Q5Qp6fPXt2qqAftRiQtwdSuDEi358Aaedp\nBkJS7H6PHCuJAvtigpbkgjIL+OR4//33T45iQyax4PhSzTWI0cGYePAgqSERNPF15YYG3xxh38+/\nruXm5uakvxQIDOQMdExKmMC6cQWBjZXRzMlblgxAvDaydt8kHFlh5dbcrJDb8VmpfvTo0ZkNs/rI\nF080YGuyd+Xv+vr6RGATVEkW+B26ub+TQ847n6y0Zw5+3scrfNQlE0Qe9v30mxeNvH79+oKMN3Dl\nvdvKEv2qJS4upFGuLmAYz1pwsL/4XsQqjqURSRYGnDSZBCWY0fbZSCp4mFRnnq16G9IzM2dyYRBn\n4kCSElunP2zb5TY+jzEBlFvujd9plu9q3iv8is7zFWW2P9tAS6ZoN9nuRV0HY1qi2ZIV2rpxuhFJ\nFuL8xmwWWigvJyGJNbSv6JgY5Gtm7ndrBDOIed6OFxshkfaupyZfcw7OfXUEb51MM75ya539lvKb\n+RCviOnWc+RLPhKf5Uuu6DP28dhJZPns2bN5/Pjx2bbIFy9ezMz9VuEnT56crUi7f64IZixPnz69\nWB0Ltps3USZciIgu2X/DyVbso64tvxTGol++fLDFnvTHeGA7dVxIAkkdGANn7ossT58+nU9/+tMX\ntk2OlmtdWAjmZT75NHZ7McN43PTrYiDtdvV4SbO7oxiXZkyJLFiMMA8w5tK3V3ho347Okz8k7rFY\nn/u7nzYXfvL8vIGdY2ax8ugdAZRTiz+285yXeZGTcEtvuyarsN5lSptwgYfyXPH/Vc4z8zE+s/rl\nbNu27d/93d99BgYEBSetFsBMJ435DGiwcjdz/nwsyTX7XYFqDjs4nZmfVlhbyXyIZDSgWxmDjZnO\n3KofPlZg0mRrAFjZnMdmvaaZQJDA5DDoMhHOGNr4nBQbHHkOiwQmZZYPSclqu6dJIp0/nyZTrVlX\nnqOJU/MRAiV9wvJjH7ZpJxNcQWjJGG23EUSDse+Z3RMhLwkwBtVmn/STFkSbTNnHkR5Ikp24W36N\nIDdduSjAlRMW1la6WSWHq0SYenE/TQ7u1zpvNtwIcyvisdlHGABNGIiJXmVrbyW0DLlTg4+gNL/J\nz5YX58CxWV5p/tn+x35sb+1wP/SZzN/Jfc7j0bBrRYg4xxZnfZ7xwI0+zSQzskg8tw/z/0wUaDvt\nXvQh+hsLAI6NTLy84rIixyZ7jBHp24lB892GU0dJAP2TPr2KPTlWeOZ4aX7h31sC+VA8sOzsiy7Y\n5TyONwsKbkdFdsdF87PG4Zjg8psDuBqcZhto47MMG1ZRfk0WTX5u9Fn7EdvKlo982HOI3dLebV+N\nmxorWAxo3DT3cWxcxUIeKyxdYbf//1D/9McWR5qPHMXtFntsx01/tkHP3f5g3Gk5Dbmg+bPH8/3f\n//2z/6N8ZvXL3fKMkgVikjAzZ4To6ur+QXw+DL9aHUi7urqvMhFY3BygrQwrMudGcdxeE2Npwd+K\nd0AmMbJReXwEWTp3PunAGXuqL+1B7QZqDFyZk8lKEhdvwWFlZ9/3M1LJZzhn1tsg3VqAcTLciFK2\nSmWcJAwMXNxesyIFbCSEWeHMuLKixbG1IO7CRD4pTxKG/L8RBn/9jq8joWGSycD/8uXLuo2UX9PB\nlzZQFtQxK6aRa+5rgkpb58uhqPcj0M/48tUsIeuZQ3YSxB49Hn+2xKoFFRLm2Hnz81Wy2fw8Ad1F\nMfZN4mzfm5kz4pmiD5P9zIv+1+zJeOBEqn2mT+IhfdOrEMEPYjRxq33Sv1++fDkvXrxYkn4HcSZp\nlAf14uSPBKvFL+Ii8YNb6YO3+V8+rRv6Noti1hfnFruI7LJ9zIl14mE+M+YQfiZWq+Kusd1k/s2b\nNycsCBYFF2mTvEfsdvUSGsbuPOcf3Rg7GfO9hTwyjexSrKD9kywbAxppbEUWzi249OrVq3nx4kV9\nbtrFe/KCJMuOaRmPiXdslXbGeOl+qPNgpe8dWVGuzeePkov4nnfW2KcsG/ouE5aMDWgAACAASURB\nVHc2JoMu+kQGuZYrurGjxI+rq/vvzM33nTa8ys/vv//+MgEiDgZTnLRZXoyLbcfCzJzZNbfrtuSI\nf3Nhpm2bdmHDfa0SIvo2dZf5c1dk4+krLrg6GtZzFyQLKOQczDWMBbQtv6AqfsP7kutwlZR24tgY\nn8pxd3d31sfjx4/PeLhjcGyV+UUwzAWgZge2E+YELFxlJ1183/Kx/FuhY9U+MSur3/M93zMzl+Tz\no/+ffZqcENCd5JokWnlHySFlZ6BrALSqYjVn4t9zDYNdxtOqJPmMQTIxIkBwCxWJq4O4k8yQCoJf\nkgcb/VEVh/3zHAcyA31LyhsZfgjEjoJd5m8yxfHluvb2NCflJittPG18JC8J2iR81BufTXHRwC8n\nMqDJ3ypYOSA2oubgnCBvEtsScAcLj4ky9Bhb4GfBJ/JugGjbeZvEpQW99jf2kco6k3IGN26D5EuY\nTB5aQmvftzxX9r5KYtjPiqDmMBlrpNNJnoNT9Enc4bjsmw/5jW3A/zfhMi42XdoGHsL0mfuiFN8Y\nuZLXyp5aUa+Rc8eNo9juWOm+Wmv907aclLi/Nsf2VlWP0cUgk+OcQ/tqsjR3cNybmQt8bbZkYm5S\n1ghgKxKvMMbxi81FgBY/bZ9v4zMcX3hBi63s32Ne6bhhIfXrYk3snfps8lvJ2tyh8bYjLHVhMPLx\njoCmo9XvLc7tey8A+xxjjOOs+2Hx4W30wLG2JMl8sSUhD83T2G5dEc8ow+YjTRZO0vi745V9aMVB\nrHPbiX2r6b3FYcpwZbduK5nmf0ef7ucXYhNN3+YXLGIYg52rudkfZ2b+8B/+w7N/kldW88zQatuJ\nX4/cgJGG4KSQxCHNYJ3fua3UgYvjIaE3aWyJi42ZxtGcKYlAzk8/+WQfGStXuVJtsZE5EHGeNNA8\n1xkC69dkcx5JkEwIXSX3vSlvgmPTMeXQqkL8f/QyMye9mzzzHpyHix85L1Vwnpuxc9WUzxqxGTRI\nqmMvrYLpV8zTXlN8yBvh2DdByEGzASflmbf1WQ+We/7WyL1tn3Nq5G915P+x7w8++OA0VxZUUn3k\nmCM/2mYrfJgQrXTn5DmJBef68uXLub29vfDR9gxUs41WYLBt21aZnB6RRJOBVlhw9bzpw2Mm/jRb\nSN+cb1s1cnJDm+XKR0sc2tgyprSrq/u3P8Ym8jNX84mTjjOOGzmXOsvf81wYY1r0QD+M3l++fHnm\nW9Z/u3crLLDw17Y9ruw7P5vItVjTdOw+80m/N/F2P1yF4bUZE0mk8Z/3dcLjeB6dU5a5zhjH/mbu\nY0rul/vETjnujG8VCzNv8h+/YMl+y3t6Zfrubv22WG5NtVwbybdMY9v8+0PFGc6RBYms1JjoZm6W\nl7GMybuTFBc9PQffj7GUc2pJMPVpDOAOulWiYvk03kfuEduLfIOx1FVssvmsfYzJRXt+8agoYx9n\n3LOt+Hzzy5V8rBtzNI4tHNOLKpnjqjBp/7bdOyZyDrGPprt2Ly4mccGI82t24d0p5Hxc3GChx/Hg\nCCsp11bAsV6tJ+Ioz+End9m052PZPjHJ6j/4B//g9DMnHIPLG/+c4UfxBkuDSwvYEXSW3U3KZi5X\nepmIMGCYRPjnzMcEiI7t+9sJHIAyB25zYFDKFkcDXVsFsxHzMz/HgfI6eoM1AZugn4SBOmzJCOe9\nqqy7+k5nceU/DsIXNHirTJN5iHK2jrZtThwjicjNzc08e/bsAiASHJrzmxiwxcYIqt5WuwI7E4bo\nrwU7JlQEaZOuh4Ivz+Oc7Z+5j1f7Y6NHoEb5sSKcfl1scJGExC7XenXaWxg5r7S3Deom7Xz5S0sg\nOY68RY+Az+SLY1n5CP3I57XAvW3n2yBNAK1PFys8f5IHr67EjhMwjakNJxqZCDbznjzaylJsJCui\nJlOtn5n7rYVemSOB4JF75C2OId68F8lYYg9xisTDeqd8rHOez5WalozRDjNmkmb6QyOBGT9jQYoD\nli9jaVsR8WM5jWjathuZXcVzyt7JPbnF1dXVxbzt//RtJxzxXxYmcnAMjN+5fx6Noh3u++VLX9Jc\niKQcvD3b5L/FQs4tP7cVSJJoblekXXAs0YPPc7zyWKh74hR3HmW8tHlygGCnx+TEmGNk0cf4yjFZ\nV9Fx4wKcR/rNXDJmbwll0mP7b/HZfsX4z2II/d8Fi3awwEFMoexjD/Qjv/Au+uNClHcieXwNq4zB\nTPJpB62gk0/H9hV/or04JrFowPtxzOGXvM7jzXkuMmQM0TfnH6xhLIycOb4VDmW8eUTNONoScye4\n4Ta5t4ucfoTL7ROTrH76058+qyZwFcROR2U0oCPg8625M/eEnYDWjD3EiQbOvgnmDDqtGsp7p62q\n3TFGE8I3b95cbAclCDXHYvUq1yVwvXlz/uwkZcDKsPtkAhKiYRLFsQSEV8mNE6LI03+jTD1ny5ek\nO/cnIMVBU6U38c31XPH0KkADRNvXUdDOvVxs4Bxib04YuOrD5NpJOd92arCxnBlYrXc2E2j6YnzW\ntk2ymOag6KDbSEx8OoG72UHmx+8PW5EwyzJ+lqJKwwj+vZFhNyc61gNtlffKeLKST99zIpq/r+bJ\n+7MYsO/nyb1Xe3KOSXruFbvMdQ6unCP1wN0imWvsx8UBE3InE0y4TWRb8nJzc3NKAqyb2GFL5Bq+\nZo4tOQhxb2QvczCBb2SXsuT/M4ZguIlR64eEJePLONq8KX/inrfU5t7Ubw7aQPPpo/m2xCVzcKLX\nkqLYVHa7UFe5L/vntfRn23qbSyOw/puvI3YnBningW2OvzfiST+PfOLv4QHRH2W6bfdbQvld66uE\n0bhlf0h8NA9KH7G5XOP/E3fMA3iu8cEJRGTBglBbfSLekOQ/efLk9LVCxO7EeNq2+SN1zjnQljL/\n3Lclt+QrsRnKnnMy/3vz5vzrUGjv4QX+O3kmsZp24jcP046o71ZcJRf1ogn9JnO3DRpTcmS3VeOF\nvE/ei9J4KG3Z827+SFtrMff6+voMJ2M35Ge8jvelPtob4H3vq6vL3Y0uUFIWLIJGNrmPY1YSUT7O\nQZ80JgUnHYM9zzO7WP7nH7P28z//86dJ8rXnJiIRAP9m8Jm5D6QvX768WA2d6SsRaTSG/C9GFWNI\n5SB9Oci1IEJFJZAESEyunDzGiBJMDD4Zt42BVX2TfAKoZcGtxPyqCM7FK1jN4RJ0SXIoY1e4TeQZ\nRI6++NhyJ4n1uQaWdh77y//5JlEfqwpvI2rRHUmtV2VCtGwLHncITl5SkPGmn1evXs37779fAwP7\nyJwDWAEoVmG9zYT6jA25+hw9eEXGOll9Wl8ETRPC6MyEgttHW5HBZJCyINAeYUh8ytVurxhxfLR7\nBpdmq0wA8mw6x2zySH2waOB5M9G5vb2tBSqvVrdAb91RNu3eM/db0LKDwRVd+jVlQiIVXDR5oQ85\nicv4vGOiJSHUt+WdwG9yRxxbbeVs92i/8/6WSwpxjx59+IXvjx49OsmTuJ0XwuQFMW6JQ35jsIsC\n0T3vTZ1bD7l/0w3xfoVvtmfqgfiSir1ffkI/5A4d2mbT7Wrs+Wy4ZNtpsd8Fusj3+fPnp3kyeQ1u\nc7xJFoLxLBJQP8Q8xvtG5umPXrFl/Gl+3/zDOmsx0HJpujLmubVxtHvRRhgbv/SlL83t7e3pXozh\nq9ZsM/MIN8v3urfdB5Rps6PIIjGSsmUcaEkU33aeHWH8aiImepFz2wZMHcTeOd74MP3YXwMWTAkW\ntYUBzy9zJL6Y/0d+LNSssNKFGB4tXlonDZvtv9Q55c5VcK+Ex/7TT/NJcolcQ8yMfniPld+tcpH0\naTmE67Yiy7adv+iyJZ/2R89j1T4xL1j6A3/gD5yICANky8qd0NhYQ0RoNE4CTPZmzgMgwb4drRqS\n5mQr98F8L4iAiWvmYTLswE9H9jWu7h0FGs+vbaNs11sGnreJSJrvz89VssJgb1m0ObjKtG3bxVda\nNDBsQVj2ejEe2mSrOLlfEl3aWwvabrTLlgQ0mTZC2EgG+36orZJM7wjImFshhlVUyibXkFy2ooZt\n0vdoY/QYZi63BzaZOzl2nyYCq0DBMTY9tE/Pw/KcuSSbK5k3HdCvuJuEhbQmO2LTERH2PKlrXmP8\nj26MYby+kT/asImRr1nJJXrkM89tVcYE1vOy3u1btFvqk3ZuUsFP99t898ifVza5imErXHRxJPo7\nSiiYvMZuvSvk6urqIhF1kWDm0v7tnxyLYxj/T1KbZLr5kDnJUVyeOf4O4eCFCx98Y3CK1K0Y2OR8\ndISDuB9fb67VigompC7YZe4r+Rk7c435mIt6xOmMpa0aOVFp2Gl8Wc3BhUfe28kfkyLjW/hp4pr9\n4m387yF/bHo/atGFiyoru2C/TFxdoGNy9BAHNYYY01iszme7l5t9+CjOrTBwVXShvTUuaKxqOm+6\nawn2kc5XuUq7xj83/ZqH2v7NCWL70cuqQPGJf8HSV3/1V58MKBWvtrLUjJ6ENgbubRVpDlAxthas\nWMlqq4cNZE10DfDtmLnfzpkKDRWde/FV1jc3N3N1dXX2nZN5lrQFtKzeJQD6DY2sypKoUWYZx+oz\n/fNNpwQwV6vTb9MfdZRruCXIzsrgm7627fyZyMyvBTEHFxOYfK5AwkEoOl0Bku0onwRT93GUlHsO\nJp+WK4N0Woi5yTH78dgd+C2z6NdgbYBc2ROTIuqApMLEwiTDqynxtUZYbXMkCx6f7cSgHPxg4cyB\ngGTYWOTAy/HSHxxMstW1tYY96Tvz5Dat2AWTgGaHtgv2y8ZzTQLy9xRushrARpwMxq+KCBzDanU4\n9yYBJv5Hbzc3N/P8+fMzX8sWba9eU1Z+/jq+6a8loH4zjrbSZVnatltSYF9zUSV90Q45p5ubm1Os\n4+qAi22NKNonicFccaddBIc++OCDee+99y6KdplT4tft7e3FfbkFmUmnV9CcBOfa4FSL+fnkfP0i\nEZ5Du6bMErNpgy3Jjp6zc8aH7eTu7nJrusffeIjjiIuCId5OIoM5TnqZyJBvpCCRXUVZQfM96TNc\npWz2yr85tuVvjMsslDAZdPLFRCb4nZVXJxPRU3Y6NI6R+6zIPP2MxV77mse7ioX8DIdc7UohNvjR\npIeSpOB1fNtJrTGHBQDqML7/8uXLJf+M7z5//nzeeeedM/uKPm2nvDe3eT9+/HiePn16lpRnzMSh\n6O+o4EKd0H/Jq1z4YMxqCWBbQV7JNRjHvnMd5dgeG/O8rPe0VfJuW2F8aMWH1j4xK6vf+73fe+Zw\nJN4rRzHwRvEzl9U+VywN8kzwaCRpjdTGwJ2UUPEPVZdJEh1UbMANxBx8W1LRQKIROn56q51laqBm\nYcHVRxuwK1F2QMt55vILzB1oG1FbkWFXho+S0NgX9WGZ0QZX8252bOdu55DYNZIdYmKbsf78kokA\n+qpadgTGlulRMclEgH2s/DNEkf/n/Sz3o/GT/MdWWYAKFvgc+8SqOmqbtG0bz2zbTjhWpNHNwbgd\n3uLVSGwrtNGnWgLSmoPSzLnPGhft99Gvbc/BkHM3MWp+46Sc55joOgBHN7xfSyBZzEyhzwTCK46O\nGW7EKcuL820kwz5jbGxk1jHJSbBltcKJ/J+yZr+W6YrQr2SRnz2H2BfHtYoHXjGgTbSffe9Gvo3J\nJmrUORMic5DmV34Jje/VVmBaTLAsnKhbf5wDMaVtFWZsbATWcjVBd0EsxaJV/IleKJs8HmFZeO4r\nXLS9rewo43HRf9WPr6XM2s/UiR/5ytHinnmUcZHjcWHPiZULOGzEBWOe72+9W5/8v2MhY2w7cq8m\nYyfuPicJuV82xXG5KNN8z7Zi/rM6OO/oxoft30Uf4sxKXs0OzauazXucqzmwGYtWvv993/d9s3+S\nV1aT4ZOksfLUnD0t161euJTAkCpMgqSdqxFKt5WzOSDb6JwE83oSVJJTboXi1y3QGDKPGLADJAkf\nq80PkSWOw3OJHrLyQSd1/w1UKcuZ+4eynUDmszmNZczAHUcmMLvKFCe1HLbt/A11qaZax5xjyF0K\nE21snFN+NrGlLAwarWJPgmBfiE20MTjoUnYOiJZFKrSxkcgw4489p+9VFdh+nHFnrrk3E8RgAiuo\nuc6rNpElf+e47+7u3zJue1qtUKU1H4r88nVPuV/G3lYQOA6TsASh7KBw4Mp1b968OX3diRsT8lT6\nHcyoo4zZc28E0AEr447c/b82vobnKz9j8PPqE+fJFWH6jn24EbeGz8Z7vnTEyQK/hsP+H+JJGdvO\neF1+pj+3GGGyTl/KvONP9ndifxLqRs5t/27UnfHddpAj/ko9xE6bHeRvM3PCdq5+zly+qZayY59O\n5Gk/lJ138sR/Mm6+OJBJFuW+Wj1j7Lu+Pn+Tpwsd1GkrNESGfFlL8yHOZ+Y+EX7y5MmpOOg5uIBA\nXfE9GrF/6jXjciErCSPlTPuLf60SEOomn9lhYa7g5MEFHD9PSPmQO8S++Cb3/P/p06fz/PnzMx7W\ndN/8IPGGdsi/5/lP42ArYjSZumBH22kFivzMFfOWpBivc43jFOdu2/V9aefeIZBzKa+cz3vSBtin\n5R/9plgdudtvXEByYhpf4/hs/4zzmZefa3WsM88lh8nqPe0i/TKOJR7Qr53cs7DscyzTxh14XuTD\nT+vuqH1iktUvfvGLM3O5gkYCkuBAh0zVhCseJPntCOl3EPTKhBOBnHuUNDWyR6KxWtWa6W/PzHzz\nhtKZezAx8Y2Rc5wJYgQ2VooM5kckIT8nIDGA0/hZtfM+9siZ8iH4cKXEoLFaoWpt3/czIF891+Rk\nIvNhEtCclIkUAz3fQkv5MXHJp8dOQMs2RwZ72n9sKbo4Ws1mAsTkzUHauqa9Ud4NpHiu7b/ZduQW\ne3SwjCzyogpX8Um8efB5t4yFW0azBS3nhRyzkk1yFnlkyxqfeW4JayM8DoB+rsPV5PgYt5C6CBW7\nyDzbwZd9hGS5EttIxcx98KLMcz/bCXH19evXJyx335ZDsytjMJMrB1InUUyKneC3l++YqBmXTJRo\nxw7YLbnL/4hfvM5+1PyqkcnMLzJPwSUkKDb67rvvnpG6fBL/WNCijdFfYge00VVBx6SWPt0SolUs\n9JhpZzNz5sO5PxPhtlISu3bC6uS98QvjmcfIn10UdoLE8dKucy1jS/CCsSX/z0u1KFNuK/b4qIc0\nztmyabZNGw0Rp2+0RrLebJsv6uL/WuJpnTauQEx2HG5Jf2z/5ubmJHe+NCfcy0UxxvzYyaNHH74c\n1IVu3pv2FbtwwcS20+TDz8g+80pc4TmJt+RdzQcsH3MHJuWxTRZJWoJJW2s6WnHOxq294tl2KNiW\nyQXDfX1Oi9/G5dW5K67l4g5jIYsGLaHmC68aP4svx27p1zm3ceeMk0VcHzPn36GbObVYxTjcdOlx\nr9rHnqxu2/aZmfnjH93rz+z7/if0/399Zv7Dj379sZn5gX3fP+9+EjTj8FxRaMTXTsCl/AiWpMyA\ndeQ06bNVUdgHx5HzMpdmxFQY93DHcUymTNxcgcu9Ml4bcg5XHz0ny9ggxj75SXm1c/jz1dXV6RXw\n6dv75TmWlROY7DUAyxHwur29nffee++UzCQwvfvuuycHfvXq1bx48WJJMnIQ7OnMJNshIiZKM+df\nj9LIau7J4gxJOwk9v7eqyZufLGj4OTqOu9mHfc2A/tB2NwdEgmESIIIqV44s/9g/t/ITjJnM0S84\nBq58eCXNlc58pj8WnFa+zYIAr4v+mGRmjC4aUA+RA4OPfdyJAu3v+vr8ebdVcrEKwqtEzLbHHRKt\nr+bn1GvkFBy8vb2tBMZYx2JOxmNyG3uJ7OmzK3JFYsvKtTGYzXEm1/A7S5lYWa+Wu/3S42Xix99f\nvnx5gQPUufVCu0o/Hktkxzdc5nByuCI1OTeJC5Mi2itlbJJIInt3d3e2myE+HEJK+SXm+H0NTMjp\ne0mEPZ/mK46N1hftkXEl30HLbYYmvi3xST+toNpsp23ftV8bg6m3FBX9OAnxgaut5j+UQX623xBv\n46sssruQm0SZsm4JkO/DhIVFg7u7D7/yLG8Ijo6ePXtWsaH5fuw72NFicXTz+PHjs10Z8eOMj4sK\nnpeTSsqrfZOGr8vf2Adj1Eo3tkH6ouOLi1peIW6824Urb9lOgd4cLGPgYygeH+0kcZz9OqbRjyOX\n+IL5H+XR+KtzDdtDkzHHYptIPDMGG4fYPxeoeI7xzLGRMqZcvepMWTS7aHyY7WNNVrdtu56ZPzcz\nv3VmfmZm/ua2bX9p3/efwGl/Z2Y+s+/7/7tt23fNzJ+dmd90MVCsFMYgk7C52rht29zc3MyTJ09O\nTsDKQY4AeQOWNBuFj2Z4vK45pQODSVnGnHm+efPmrCL+qU996lRVbWS/fX1KZOg5cV75nw155pyc\nNGdq8mrFBAJVSyYYfFnhynlJqLnSSoDneKgPJ7A5LzLN2HOvBAcmWrEnt+ZwDbCdXK8SAVcsY+MB\nH1YGCRzUmWXNvmb6l7dzPit7ZzOBtl0kQbGPtuQw9sX+qGvLKrrnkaB+e3t7CnYObi2ZdDO5iv3T\nTqnX3McAbH/wNZn7Q4Ufy9S2sm2XL1cz4Ys8eTTcWa2I8f7+m3XTzmkvbfA8WcmdmdOcWBkmeXv1\n6tWJ1OXIOc0289U7Tcbt0+Rg9dIjroTEvllotCxN6D2HEHonJdGNx9fiQOaRwlteNpJ75yAupm/a\nQOx/5h4zuIsnfhg7SMxKsc3YxM/YvxMgFtsa4TOOZsyROWV8e3t7wnL6k8eSfn1/Yi1JPMd0dDRy\nZxz1HHktV8EyNhb+snLOtwFzd07mQIzlXBlnTfC9Pdc+vG3bmd3mnkwg6G/WnxN2ysUcickAdwME\nByzj6NDJD/vgNmUe9FtibksUjCUcB7dQM+5yTPGX1e4g34Nb+ckfvSurJRhuTmhbAsGdCRlPW3nm\ndYw1Xs3kXMzFfKR/2hKLxSnWkyOENzVbyLFt28Uc7OexU8ZTt4ZfsdX83xzO8Ym4xM+Gi0xG2xz4\nKEnu79iw4uJMsp0vrQoRtn3rlHNOvmLe2eS6ah/rC5a2bfsXZuaP7Pv+Oz/6/XtnZvZ9/8HF+b90\nZn5k3/d/Sn/fv+u7vuvifJNRGuJRgGnO0ZThn50Uz/RVDzYGGAMor3nIeVlxJkgQSEw6QwBp9DYg\nyiuHKzSZJw+TW4In++GRfgik7ockO59NXpGZf86nSbhlwVU2jo8rETmH5MDJwkNzyDx8TSP+BtV2\nXbMvk2Ff04gI9c1zSFSduNhO2v2bHzn4OtkKcYh/efXViXvmadBviZ3/RruybvJzwxTb1xHGpHl7\nPUlpPptM3Xxv2gzntbrOjXphX9bNEcl2Ys3/246vrq4ufO8Ig3lv9n80t6O5Rs70oeZrPDzv1XhX\n+vPYrTP7bLuG15l4xA6MwY5Hq6TpqAjRZHG0ouEdS21+LSFr+luNjf9vSSFtkqQs48nfTd5XOs7P\njQvY/p2ANHmtxunPo6PZOvW74hJOgBuBtx0fEdSGAyseaZLNJCT3slwZDxmz7APsw3gcX+SuCq4m\ntuQzPzc/d0LD8bFYw364KuctltHVimtxjJZ5028rgJG7PIQzGTd9mo8AtJiao3GUxolW17iomN/N\nVVuMcKGB3CpzXOmbrWHDERda2WTrs/Fi5wTGyzYvxzDbjnlMw9jGre1Dnm+ToTG6xcJWAG947r/9\n/t//+2f/Crxg6Wtn5gv4/adn5jcenP/vzMz/0P4RRz4iTwEDK6wJaBUQCQCt8hRndnAL4U7/bnQs\nnsMqYSP4McaAL53CRNmJcUDBwTSGxIpttnAxQOcedDhWHx3kc9+8pp7Xvn79+iwIcZtmtvSxguQE\nsemcbUU2TKI5Vp5PEPTzDa9fv16STVbzrRvaoAGZKwdtNYVbxQlCBrn0zdXC/D8rTQ28ox8XPngu\ndzDEZnLw+d3YtsfrwGXAYhU4c3j//fdrMMm8uYVvVYhhgKYNNvK+IromSp4Xv+A8enRAjOxevHhR\nbTt9RybUCYmck2fiXfDE5NOkrpFPnk8f4jYp41kLNJZn7setU/SfbPenvzXiGHmRELoy2wJyS0Tt\nn9ZxI9D2dcvUSQl3DeS4uro6K8Swwhybdz/0K9sSx0ccYHEr59IujrYlM27e3d2d2aiLlfZz4odt\nJX23e65+b8k8bd9Jb8bWdis1zOE47Wvbtp0VmPL4gfHMCX7GQ7ugb9hv7FdMFhomUU6MSyymZszx\nERaGTFydeBKL0xL3mARxZwHx3/jiRlmwEMxV0+bHjEnWubEsB/2fso3MGLeJ7dRfmvWZ+UfGsZ9w\nGxfoLGvHYidCDf/NaTlH2jbjPTkJk23bnX8nj+QLE8PR4iORg22mtaNk2+e0hNq6sP4pV8ex/Mzk\n28X51bEaR/PPyDhxhDGK86dteGHDOBodxN4aF+T4iEUcJ4sPbeWetkO+czRv4u2rV68uipXZUeD8\ngH5K3kiZHbWPO1l962Xbbdv+pZn5zpn5pvZ/Bj2DbT6tgEammDysAC+GZ0LaiFJAwIBAg24VDwPs\n0VyY5OXIM7t0ABqRX9QUshIwjKFlrg6wlgW3wnIlwiT1zZs3p35JprKyZNLAt1S2RDSkl4fJXebe\nEtoWBPlzK1YYhB3oc7D6uLLH/MwEj0kUn4U1CWqVvARHEixXACOL+ExbBbRuOM/YcQITZWVS3ex9\nZef5v+Xd+nDADrHPs3bNTpMIUA++f7P1o8p888kUer70pS+dnnV2MKKOmbiEAGe8nsOK/NEHTfhC\nwmg3HrvlG7uwbxhz7N+rYpJtnm3f99NzZDmCYdzmS3xN4LJfN7uyjwcHjZ0Ze+aeF5+YBNlOQgCZ\noNlPSRZaUkibIo7HHlLQ8wpMDhZigv0ZD1+OxfMa4aCuM08XBDPWfJchY1xadJ94ELmzUNGKLB6L\nbY4yznZx7mZysk+/5bUm7fR1xur8jy9XybiZXDHxY9zIXGyLzUYaIebPEjKaLwAAIABJREFUXBlz\nApRznHSwgJBY9DZ8g37B4hR1zO/FzLZ3kn/OnT8bu2x35BJte6B9PjZJPVC+1CFxiTYXXRGDEkct\nrzbmxi8pG8cx2mD6cAEg33tvHuNENVtRw5XiG4mHXMXKd2i3MXte5sVsPJ/n0PZXcc54nP54neXb\nkiTGOX+Dwyq5jx3waP02PThe8v4u1tMnOX4v5tCeMmfHz9zLhVLzOtoz502/sa6yCPXs2bOTLRIL\nYkvEHvM8X0O/zrhW/JAyyrjJc6zDZjtpH3ey+jMz8yvw+6+YD1dXz9q2bb92Zv6LmfnWfd9/rnX0\noz/6ozPzoYB+2S/7ZfM1X/M1Z5XdVvmMohupadXalnTs+/1LF/h3GxLvleseOqw4Hq7GJ9im7xgp\n/+YAZUKSl16kApTx0uFIVhhE+IIrG6aNND/TAf21DAR9Xpu5Ubd2ysiEz8pYtg1IGqhSXrSdBvSN\neEQv7NfnBbQoCxMG38efTIhMwlpCSzKeayKrmTkLdgYozssyNVDbt0yOXGRppJUkM9fnHiGRTuZo\n3y0piRwY7NqOANs0ST514ubVqNZfI4J3dx++9OTFixdnSQhXx0jkeW38nYQvOvDLIFqhowUc3sP6\npfzdT3RAXDCBN74x8YmtEMechNu+TbjsH6sEKLKjLH0Qa9sKFX02suI8iFueq69rq53GrVWCkful\nX2OBbc0+02zAMmPLmEiuWFjg86CODS5ernCR46R8uHV+5n51jPaasZmw0l5IcrmjxvGSNtViNc9r\nCRV1bDz1wYIxyfA777wzT58+nU996lMX2DRzTmqJlxwbE+7r68stvsEuPu9JO8gnE6BWgFnZPBMY\n6txcy36bOMjiJLEg/fAZQuOXSbHJNf3J/td8ocWIbbt/Bj86zPijQ/KfyIY2dnNzc5pHm4t/pl1m\n7MFn8xrzQreVjdN2jbeMt/QBF08Yw8xNWYQj9wveOlanT2Ky5xWfzrm8FxdsiF2WhRPg1Tnsu8kz\n43HsX3F/vlvGLXpMa/ye4/aYPR7zUOLZ9fX1PH/+/GRnK558dDSfabHEbd/3+bEf+7H58R//8WWh\n4yTno3/+w7Zt296ZmZ+cmd8yM39vZv7GzHxuxwuWtm37p2fmf5mZ79z3/a8v+tm//du//SwQEoxd\nSeMLJLKFs1VF+Hur6rd7GXSdVPkzlTcmVqxkZHxttaIlXCYtDKSS2RkB9GqRDYogwKoUVyL4MgA7\nQc4hKGXlJKsnruATXBqpZWDlOXzxSra++FXp0V9LZBjEqXMCI+fOxnHyYGC6urq60LkTbo6P44x+\n8snA0XTl8x1creeAEee9SuKavVE3lBe3ttKvfK9c1+yQ8jDBafKxv7FPklxe02T3NtVt99XsuNmy\nibhXiRzYWxGlkRjbCO02gd3ztp1a5kk+mfQeYeaq0EcS62JiDuNpsNuk37qxjbCY5q1XjYy1pMm2\nknt7O2wjvg/5IxPyjM07dvb9fHuni5VeTeH3VfJ+lg31xJ01Lqw1fXpetMdGnFo/DWOsS4+n+Zft\nyzgeOR+NM/Lh0UiZW/sb7TBkmy/Hmrl8FszybBhr32oYbCzwS49Czl0M8VwsX/oQt0sSy1ywaMl4\nOBdXh7lVuY1npTP+7Fi9KgQ5uTfmNftqvM5jNGlvxQevUPmdBUlQKKNWyFjFwowx9+FLtdocGv5x\nXg8lF9ZN5OcxrhJTfvo+5nqUb/pxTFsVus07fS8XPmYuv3+6bU03Vjk20uZoB0fcoflf4wvWfzvH\neNFw2bGp4W2zMcaPZhctvrf78t7uP/Oirc7MfOd3fufs5ZnVjzVZnZnZtu1fnPOvrvnPt237gx8N\n8E9v2/ZnZ+Zfm5n/46NLvrTv+29QH/tnP/vZ0+8cs4GZZHOVVMzMBeiyXxIaKq4RUd/LgG4yF+Ns\nc+HPNgDI4vRpctDAuhGsh5KdVk3xGNtqmQ12Bbz822pcPKxLE0mCRPThQgYBkjJ1ALejNmdqjeN1\nkCGgr86J4z50WMYkSnxW2Eml7aLZnsdnHbuiP7OuxObTyejM5ZseSfj8rEzuZwJuoKP9UVecu+2N\njf/3s4AMKE0PDMZHOue92n0fIulHzb7VyLL90K0lwm+DVd4FMnOu45ZYUQ+0OZ7T8KPJyAGyFTDZ\niCkrMtX01xLclvz5sI94/Cuy0vzqIfLZ/Jz6Mil5W8Jq+3ds5NxybyaqscGVX1F+LY7ZJlfJTcNX\nYhljc+MH9m3LPclXS+6bvFbks/l4w4Uj/RhvadvETtvi28Yey8OtYbvn3X62TVoG7ec2Ps+FmJPE\nfdUfMabhorkY5clV8HySN63m3rBglTwYhzimxpXcPGbqMNcwWUvRzAs9LDSEa1mGtjfztRUXbHjb\nbI5z9HW2jda8+LFt29mCxKNHjy6KPjNzUTB0TKMtU+7mBa0IxXlkbNZXw0VirRNj2jjPp50eFbdy\neHFh5pwTtSJ74z9M7Pn4HnM1FslSJPju7/7u2b8SyeqXo23btn/rt35rBVkHzZn+plMKO4puZGVF\nKGhUBJa20sAxzZwnnvt+WRFpgJR7pjUQdIKWa5rBNrm1uW7bdlZBYiXKhFQ6ujBWE4mZy++H9Ipj\nM2iTEdvBzFy8xS59EGTbmNn2/fJV5Efn53euIAf0CQhZiT7SA4MA7Y02R9vhSol3BHhl/M2bN2cV\nX4Ms7S9yoM/kc0VYWaCxTTYy6Tk34vs2rRER+7Cb/Wbm7VZcml/xM/MkPvicmbnAD6/eRf5HxLHJ\nq5Fh26xJjrGKZCX2669UCXauyHAj0zOXq2GN0HtOXDXNak+bq+3GCVAbj2VB/GbxjbZi4tb8+Shp\nymEf4cHnIlty0fRtGyOJ844TExj7b9v5EzvlroBWHDTu0EYyL+OB7caxtP3OVebVs2yrGNvi6CpZ\n3ff9wj8bNtGnV3G46cak3CtJnieLsC2erPgRbT52/TY7a3wfy8ZFR25bTHMcoV/nM7aT+QeD6ReN\nrHNOTmzMk6gbt5Y0tX74c0uaPA7bvzEn8rGufM7bxohVAsHxeCeZscvcz49HcF5N5+QF9Fu/6Mc6\nXy0YOb7znJm5wKq7u7uLRHTl67QLY0x0Qd26GJIxNhsyV6CP+v4+d2Yu4rD5me+5solVnFjxo9bP\ntm1nMSIJrXOEpnPaU845imMzM7/39/7eT3ay+h3f8R2r/10oweDSAteqkkpCaHJisLETNAKY1kAs\nn++8885pZSwvG2lB1LpaJYcmw5x7GzPl6OY5MYGk0zUS5CTFgS1zX5EBEpgWNC0XOmGTn0HDhIHg\nk2Yi50Q0W3msC4NCCyb+3SDbdGJyuyIoJt6NQPPaRtTaOHlO66cFzIeCwEOBl5XFpj8TX/pGS7ib\n71KmlmNLwFqScpSs2h5opyZBjcDYDlZYkE/bf/yIh4MmEzuSKQcW990IhWVmm7y7uzsjMEx6cx8n\nUldX/TuqvdJl27XtzPTtUB6zx8NzHiLL+ZlzCCmznJKUHMliZRe0g2Zbllebl3XcMOBtxmL7tH01\nf2zFLdu1fYhyjv21ZJqJ3r6fryTx7evujz7pebfzmj/6b17hMGFsRLzZVCuq+J6Osc0+rEsXB2Yu\nY02zdY59phf+vMLesL2NzzbpsbiAzvtwK2fD6ejOc/Q808fbyP2h+MmfG2dpPtv4q3UWDPEcVjFj\n5dPBZCYYR0lY+mjxYJWgrY593y+2TTeuuvIz+whl1Obun52AU34rOTrhDXewHTdZNB5lO/UYOZbw\nUOqLsYar/avEOH21WMj7NTu2DcSXvOrM84wzjYPPfAW3AX852rZt++/6Xb9rZtaEywbNoxEun+PE\nNADA6thHYzl9vg14X19fX1ScOc4VWK8cJfdpQNsAys3JVPtswNoSPwc4ExET8RWAtiKBiwuUj4Of\nK6bNpkNoVraTPlpQss4tF39eX/fnlFmJ4niOni1akW6vJB0Buee5AkLfqyUP1PVKl7xXrjsi2bQh\nFkPcH0F35rLi3OzU+rPdhtz5ZR5HvrgKLl5FWlURHehpS7RX2i0Pr0ysMMS/GzttO6t52b5X5ITy\nbfpsAZFjPQqKKwLAe7MvNm59SpXaRSj7QJNF8xnr1dg0c1lxbphnO/HOH/rkUbPsnPC3AoXJ9MpO\neC7lY5zIYaxszXZqO1hd4/s1AujD/Tpuefzbdvnd3NF5S6RaYcj+wKKZY7dt2jbZEqJGAI1XzX/N\nHRiv8hbglsjxoP27mND0m2aS7xhxxL2OcMb9OhY0fHVrGOf7UTb20YantFHKft/P33R99Gy6Y0fD\nSv5sHtUKSravJMqU/UPJjefZYgZtmz5jfR2NrXGimcuvtNu27SLh5o6FvNXaK7JeaGl22mx9NS7+\nrR3GK5870wu+9LG2cvkQb3EcbTbke2WctPm22m+dtpV8XrPi4J/73Odm/wp8z+qXrdlRqWxvteA1\n/LkFgrR9v18xi8IIhPzKiQi3kYwj53716tXpqzfs3AzuM+dvtgs4uvruxqAVAzKx5bOBCUquvjuJ\navLyHGKcr169mvfee285PhcFrKsWaBkMGDyyIj0zF8kgwTogFvmasCahJDn54IPz74ZdAXEjewT/\nbDFJc2J6d3d32mq3Isc8CPYmSpaTCQ2Tf4+XIMI377Gf9J+3CNNHTPiiw8jSyaDtyKvrBjoD+NXV\n1dnXKWResalGlqmX2Kt97qiiS5lZV8GIp0+fLrfKN5Jo/KBOcu/YIsnwUUBKeyhx8Ty37fzrH9qW\n0JYIkBBF55Evx8J7RdZttSnjbcS6JVrpn/Zk3VA/Tm6y8maMacUkB3WPOcXJfL0M/SZzMDF68+bD\nbfq3t7cngmoy0Ap4lIOJZe4dP8pbZy2XFc5wC7B1TB+zbVMvHDO/Hos+lWILyUorPpig8qtmghfZ\nEty2ODoe2D8boUtjArHvl2/wjq0wTriQ8vr163nx4sWpYJJr6ANMiI25tHW2xC++tdsy5tycUDbi\nmkSKWJN5xm5abGhbvaOvRvAdJ3lPxpWbm5vK81yoNLY27Hby2mKEExLajHcE+IgMgu3sj3ZrGyF2\n0s+JoY3/Gvd4HuXKgkD6Ppq7v87O8S+Ncg+WxteePHlSX4wUn2o7ZCxjP07lZn7WbJxYRtzOeXwh\nofMK821jPR+R4bOvxIvGaRkLYxfBA/Ifvjgwdt84MIs13MFgfmG5B0N4/1zPN71HJ3wzOOfFJHfm\n/BtI7IO5zn7DhZTWPjErq7/n9/yeZSLoybaVCCqpnePAlkDK6xzQVs5ucJ45d3ADpgGLRM0GzTej\nmaw4cWj9GHyclDdgaUDggwS7BQMGPsqQ9+DPJt0NnAk6DxUNWjBr8zSQWb+NBLWEtlUfH0owrBv2\n40r2EdF0a7bue7Txue/VGKkfy8VAmAC8qrixcu1qXiNCTpqYbCX4Ex+sO9rKSuftsN1SJ9ZNPts5\nJkyrIojv5aKG5dP6aTq2bRtDHpJ5wzcTIxcwgkvUC4t/DHrue6U7JxdeuTF2PYRnzfaN07mXE/5G\nRHk0/TQ5e95Mtlo/D82h2UBLXlf3p7xcRHAcoW1TNpZPi0/UZebtN3f6WU63XMNEzvdqsYj35u/+\n+yoWPYTl5AkPYXKTzUO7LNo5b2MXtoNm/56T/2Z5NSwND2g2ufLFZicsjrDwZ/x1DPG9ck6zU9sF\nf3bix4IGn/ekz4ZTers/be2ho9lJPolFHBtXCs0DOacUeji+xnGMDavxcWz0G/tWWivkumBofzS3\nd9w0Z3Os8Lg4du+qsI2+bRFjZYOUnWNTa23snmezbfoL9cvnSFernSwereI5x8LDi2Azl3HENjEz\n8/t+3++b/ZO8shrHNglIZYFEM4CR75BcOTyT0EYkr66uTlXybbt8TfzM+VuFExjoGPu+XxitlRqS\nzQrNzDmQ0NCyymIlUzZcPbFBp0+OL2OzvHKdg4NfKsQxZr4Omg2sH9pOkODLQESyku8SbYTDn5SX\nSdHMnCpH/Gocb7Ugqc+YDUaWs0GXK70ZSwP4Ro794H0DdCcclNV77703d3d3Z+dmDpQRfYIrCLSd\ndrhFbu+///6JWPJrO54+fXqyi/gsfWRlt05MSWJfvXo177///mmeOZ48eXKy0devX58A1M+y2VYo\nD/9OHfnwlqpVwu0AbkC3bdjWTXyzC8QEJtfnb/4KFa8ezly+6bGR1LZi1Uh3I+3Uc/B29cySiVlI\ntpOkyCXYmvODm9u2nW3Rf/z48Wme8fVc68JCqs0svjW8X+3yIXYw8XQCbjtpRCT34I4YxpG2euJ2\nd3d38hm/hKnJ1HOO/KjbyIfyy1d30PdcSec8c6/YZO41c17lXyV3lvEKp0imHeNWyY19xGQvfbXk\ngPNMvG0JQWyJscV2kHny/QatIONVGifqmUN01Qh1dMDfzW3u7u4usPTNmw+/ZzcH59v8xvJtNpsx\nxMZZBLL+Gk9yP+GP7qfxtvRnvnh0TfAg/sSv8fNKnO3JCVawgQV3+lpa5r7iis1GyXefP39+8lnO\nh/o3R6Tu6FOxdY+bfRAXIx9y3vACN+4sePbsWdVfK8aRQ7aFKM6TdsLtxNFFDu8gy4s+Hz9+PM+f\nP69fXUmdE2+d8Db8OtqyzWJNi7kz94VfP/vNXSq0YffPo2FBbPfx48fz5MmTC59nQXMVn8589aET\n/nFo20ffszrTvypgRe5m+nN5MVxXvXyeCZaNpRm2Ew7fyyuiceoG3rx/Sww8T963VUT8cwDT19JJ\nWBFxIt+qLQZVjodGnnu36suRfAls6Wvm8vXkTMRCVhzEXBmL09FuWpWpJSqrVd2cb4d0RTyg2uyZ\n4OME17JpxM1j9Hha8F0ln/SPyIdjWRUfCGS2ddtUghuTpJborWTN1vym+XD7vRWcMhaCO1dxbSvN\ndnlYXpQVV0pWxZGc4+CxksXR77FLz6El006s6FstoW5+fKQnEi/+/2jXDItbLpK1hLeRWRJz+43n\nmfHQDuxXLblv2G6ZrmJLGosOHI+xw9e1oopjg7HJhIL2lnsxpuSwvzquxI/aygnnbXygDPJp3bSC\nwMr22N+qwGK8pX6aHviOCt6fcmNfbQ4mrPu+nxWIV0Up29BqDo4vlrHt1HN/yJZXdt3e32BZNZ7n\nMdsfbOtJIHis4gBbi78+nJhw7ke8xb7ppMkYlfHQP5vcLYejORqLVvptsmkYY125X/PoFS5yTJm3\n8cnja/b/NjHMBX2evyrKtns7/rS413idcaDxG9uBsbHZ2yrvoe7dt33E9tbGZ+4/07/33jZn/Xtx\nZWbmd//u3z37J3llNc95REEBtVWjwdg58jP3sq+Cm8HZwl4lyu1gtSUVUScGq0CainSOu7u7s6B1\nc3NzVolKZcSGTIJLg2kJF6u2TnTdMr8WYKg3gkf0l76zqpX/82fr0JXv6CL98J4NKDNePgcRu3IS\na3taBbH83yBmWWTeHC9/z2GCZxBtASbXrqqyaS3ARKbcbdBIO21glRhzjqkmZywGtVQXj+ZE+7G+\nabf8276fv4rfVf30GR90AKEd0gf2fT8Lng6uR806efPmzdze3tbVuNzXhN6keuYe9BkUVqsCObwK\nYqxogZO2lTFx7I0ctABqX4tubROWRfMjt6yiroim5WO7ZRHPKwGUH0n9KvBHZibsnFPGQ1LyEKne\ntvuVJa+qZEyRo+3fxUrriePlLpBV3CNWZfeECzoZa+JS7hfZZrxNv7HfHC0ZikxiT3d3dxfPeTuZ\npu5sn6u2SkKavxBv2u4N+yP79G6inMuELufyZ/IU+qxt2weTL8ZWtlY0MP5nfuZo7IvXx++5cynz\njC652yU2Y11xzvHtmfvt4E+fPj1bNWq741a7EVoClvlwlY2xirJx8YGYHH1mfJapk6z4Q3iL+cVR\ngu3mMUUfD/Vl+3cix/HG/nxddE6OFD3y07bteTS9G6tcvAxeuchi/ZlfcEcbV0QfPXo0T548qbbj\nI3OPHTeeE72Sr5uPRbbk8o3D2JaaLWeufLmaOZd38TD+RT+8JveyvbPlXO6Oa3Z6Ov9tAPor3bZt\n23/H7/gdM3MZcFrQsBM24u3DoDtzaaytSkdBB2zcnGC4cp0gyzkdzcE/20AY+J1keFwNfFwJo3wb\naJHY0TG8vaARKlco0yfn6a90CSniM0seT7Gh5eoyyUvbltP6Msgc6cVkryUBTtJWtu4Vx4AlZUx5\nujARkGmFDlfFLCdXxG0/q4D2UPAgCHrrDsmY+7E+HWBXjbKwjxALuFLoZtl4fK4s5v8NZzwe2lmC\nSEhRXirle1l/rhzHdowpPmwrzZap24YxHhNlSDt3ccyyiW1zi6XPaQSwFS4oD9olZW37tc+2RNTX\nOylxIWXbttN2yBQeiXF8WUYjGsQL+0gjmCYnjmkzl4UN22wjr81ufY7n0DC44aT9o20tpR6ajzb/\ndNLQEtVm723ejnPevu4Xw7gfF0TbinErctgWWiJqufsa+i1jln2Yhe83b96c2SjnmblmKzpxJ/Zl\n/2xxs2EM520/dww+SjLtB5SzbdJya7jsPpqMzTUckxoPaGNmaxjd4srK3oin9iPGw1zXiuXGSdut\n+Xbjs60f66fNm/2QJxBneU3js+4jmNfmxZ/tr+SvKz/3veKzbYGIh3XsnGHf9wtfCy/mYhVl2bCq\n5T7keCkgWZ+OM+T/XlldcUTjWeb82c9+dvZP8lfXfMu3fMsy2JXzLwTp/xvkHchm5kI5jTQ8RIpN\n3hvQsbpAR+D9OHbP03/3GNrvJo00fPZHQzTYNNLvBIPjYj+R9dEc8ntL2uyEvrYF6yY7O6GbQaQ5\nnINkO1a6a45PezPp9xipO678HSXBK5t0AKSdzJx/aX3spG2HYh9MOPLpQBEbtE83W+X8j0j2Sn9N\nn6v5pjXCsyrE2C5NnlrgWhHjZqMrO7Xe3MfM5YuHHDSbHzYM9ItE3E90w/HYhxvBWmE7x0NfIPHO\nJ7GUq2z0JZ67knnmYNJqu/TBwkJWhBrhI7YzcfHbIFkYNbGxvRlPPEYmNzzPc7D8GilzMaTJsMWM\nRnLsr+73iIivCh2UB+24yc8E+YhMcYwmx2n08yTTfGtoVuIsd9o27dS69b1bnLEdsDWcP4qxOa8V\nQmijSWj9LgsnzM0f2LbtfDcJd3Ic2T9lzsTKSYBl1kj2UaxcYbKTIsolhXhiXLNtj4VzeIgXmLPx\nsO20glgrbFDnrZAQfzCeUM/hAcZ/F6itT+uB/DHXBTP5nP7RfOjH5q8PNeu/4f+KV9EubH8t9nh8\nlsdM39Xm+Gl7t+04FjXeuuJHK98g36B+27WtkPxt3/Zts3+StwG/++67VeAEDlZqZ863HFBwdkKD\nQftfwJHBcuYycJlM2REa8U1g98sWMgcqlfOk0YU0mmRw63C+eoJjySpbXrJiQPfniuBENkdBnWSW\nY+BnA5roLfJwf/n0KiAr2231lQlH5t5aC3AGHTu67dCriY2IW6ZtPL6X5+6iCglMPh1M7u4uX4xh\nIjRzDz4vXrw4SzJjQ0+fPr2YU+z65cuX8957753s1L6VfuJfJjRMlP2qduLBqvoYnzBIx2doC23e\nuUf6f/Xq1QVBpK3Hzp1I5X75apOHiiGUe2RJGyZu8f62S8qSxJL6c6GDcqV/0va4fZjBsQVefv1N\nZJ0XmsVnc9ze3p7GxQLJUfWWhOb29vZsnrYdB+CG282PbN/WV14kQxkZq4IH1N9R8uMx5ny/lC8v\nSuKjIiT8fBFSI9BOCjjebKWkX/PgFs7IrBFA68w+4yMxlYUw4k6KZnwhSB7tYWMRg1ubI1vaNj8j\n33wNR+w4sv7ggw/qdnrHsTzG8+LFi7NVrMYzWsw0PuRnxn8nBtGtV9BmLlerM9/MqyXc1k3sgBiR\n663PVVEj8Sp6sI5j49EPV9JXB/syOTe2Nh3QJshlnPQaGx3T/RhRG5+Tn+jLSVd81j5mPtfmZQzh\nVzBRNzPnxef0RzxYcYfgauzf8md8tn3l/24tkfF1tDPKwEkxcS/xJy88Ih+L7Gz/Ke6anxsv2Af/\nz4St7RThTpvGkRou2p7c3G++T9Yy9fXemdeKIR5Ls2+/uIzjyW4NFmn/f7MN+Ju/+ZsrKfPkDBgk\n582BcrSkx8HiqCKY+9nIZi4rnw5EDSxdlfPcbbxJTldJE8lcS2Q4bgNMCwYtCKWvyIJVlVTjWXV9\n55136rZbO0axh0rq2RxcrAcmekwuPHdXDWcuV3esk2YDzeY8npbsWO5t7k3HR7JYAcLq7ysyFzuw\nnHlNAzav8K386CgwMDAfzcPjszyNCyYQK5nyPqtxNHJn+TRscDCxjzS/bsRjhe1H8mRyE0xxAmLd\n+I3ZM33LVMOdI/nlf0d+7nOabJuP2K/b+FYYwtbI99F4Q5h4WBbb1l+8RTxtuOPYZkzh2GwHlhdl\n2xICx0Ze3/S7ks+R7k3EWrwiPnjc7ZP6a5js+/E+xHLaSis6rcZwNGcT30YsXXRiMwfxWDgO2kMS\nxiN+tPL9Jt/GF9JS4PJ2Yq/QrmK8sYuJKP0lxJccKkkA5x3+RT9xwcq6az7xNuc4+UlSaj8ivzB+\nrezGWG6Osm3bmczzBvTGZ9u9HM855qP4lGvsw9Zd8yP7Qzun2ZyLra0133S85/gon1Vcadhve2s+\nTL9iEajFCI7PPMr+6X6S3DuHshzosys+xLcZ870/LHqueJ5x2ljyiV9Z/dSnPjUz56t3fm5o5pIc\nN6LUhMbr82nDdbUlAMDnk2xkV1fnKzftnJbAcAxOeFqiwEociSWTw0ePHp0ZDoEsDjFzuYLYiHWq\nsJGXt2OwauSkl6sPNNSbm5uzeXJ8JqOWU3uBhcebMTBQhNBFnnE0By4HD96fSUIqqbY3JvUBYq8S\nGdBjO34xAM9Z6cYEzHbtYNH8gIH/+vr++1E5dhMmjilzoHzoj0fBhd+PGLIe/bXna0yi8pk++WKX\nBvomPbm3nzskqfCc7dO+h4sjJlPGluis2Z8LagZ8zmcVtFeFL2O+FGn+AAAY10lEQVRn0yttjnqm\nTuPnM+uvBzIpbASPfmRbaqTWPuEWe1gVTDIfYufV1eUXtVumxFuuNhwlLSY7sa0PPvjw6xpyz6xa\nmIinEv+lL33pbAtmXtjSkgfjv+3PibLt3X61ai1haXM2+aVNZp5+hoo2EV3d3NycjjZnP7LQbN9+\nbqKWldvYz5e+9KUzvMiYOeeQxMyfRI6rF7RrbiEndsUG8vUiLamgPl+9enVWNOLKr3mK9ZFzqDvL\npK32UPcNmxvvyvVJXomjLcak36yQ0Ub3fT/JzHGOSQRX2COzFpvsny0RDSbTtqO72F3ml1V677CK\nXppvuh/iYHzEq+e0x9ybXDT2RTx0ktmSQxfNOGfvtEmjTfo5c34yDlimHsv19fVFoswCQPCXfhYd\nmyvYljmeVfw0ls3cv7Q1GJGY4HhgHkQ92DdbssrxHeEr/YRzoI+t4hA5cFbE6SfmI47xreB1FHMf\nap+YldVv+qZv8t9mpm81TcvcLKRc52qGlcbgwXPYf+t7RZacZLoibgPgmFZElwSqbZW0zBjkG5Hw\n+Pk/BquWWHFVJslzS0acmFA+DmRODFefjejwZQIzc7El2i3j93OZzUcIGtR/nN9kz5XjmbmwLwOm\nbavpzsHFerK9phmQWrDzKlvr18Sxjc/3cuCfuVzhTN9OUlj0MRC67yS2DGYPBanVM7UO9I3UkIAy\niEc3lkOThZPnzJ324cJZCwom4UwwfI63RrYj+iHpyeEXb8V2LFd+0iYtQxe3nBS7IOFEtRVriBdN\nF8YY4/9qC7L9rRWBPF4Tftv/KmYYU7yivfI13pP4ZR3kZ2J47kU7Dua5qt9sjte0WGCdsx/Hc8Z8\nx33jH33RiYrx27bD8bFgx62IjcQ2rLXdtqKOdZ4Wkkl5uAjVbNtxwD5oDPecVrzAONTswLKxXTQf\nIdFlvObcTOCDi7SDllwYexyrrZuGL4kjticntK3owfFlHtb9ET8K5jpRab7MvzUsbcmVsab5I+/P\nsfugLIz3vrdtgP7Je3FsRzyHY2xybON0sreSTebcbMM6WN1nhX3kCa3fVbPOGy41ftjmtUqMeS/H\nk9Zvkx/vZd9reLHv+3zuc5+b/ZP8gqXf9tt+28xcbnlIa4nVKngkCHi72yoA0RAp5FVSx+tsGO08\nE2YH+iMSeURweB/J8/Tz9fX1WeUnFV32YwNL9d3BpZ3n6i0rL5G75cO505n87ICT96Z3zsWy8t9W\nhIsA1YDHpNbJi4nSzOV3p4VgteojbZKySzXfiZ/lfpS4NFs2oSdRclAyYXBrROAIyNvvJDStABB5\n2Y8a0W12YBLWCgvtGS/6yEM+mTEY9Fvg9M+WX7NtB376J1fimNzw/15Bzhi9mkh5ebsPq67GLxdj\nmsycXNke2B+JJOXHc4wFKxLQgm1Ltq3PRoRWhJDXksi156WCeX75SJsHf3ZMC6b4IDY1uXsOlkWS\nrczN9r0imyvZm6z575bxKgnwHM0TnOA2X/VY3E+TR7OBFXYSQ20bjjWUW+7tWJ15M4kyJjf7Ml40\nPLPuXLBbYZF/930a9/Jq3aqYZExovk89Gndsoy2pbMXKti2fYzFOZjcEEzZzzOi04RnPsT7v7i5f\nbGU/akUWbt3MDgXrbZWI0H4cw7gdlF/pQl5kPMsYWwGTY7Kf2B+tv2Ae7bsVijKeVnywXlqxLmMy\nj2rj93iIQY3rz/S3S698rWGJuQ1t28+jOuYbq6h3YpPH0uzWONnswH77FdkGvG3bZ2bmj390nz+z\n7/ufKOf8JzPzr8zMi5n5N/Z9/99bX6zyNDKqPs8mH0fKyyf2fb8gao0wz5yDb+7L5Xw7vPthcCO5\nY3BlBXUVBDgvJ3FUvIN4O8eOmLGHjHqlZNvOt9k+e/bsJNP333//7KUN3jraCEPG74TMBs/gn/nP\nzIXzXl1d1YTbga2tHlK2lnHTQyMilmtLYFpSx+0Uvne2UIdQur80vkAq/TGoRhaZf7Pr/J/AeyQX\nAxc/2XcLNgwEDZxpJ5TXvu9nwbC1jN3kzyTV/XI7ZUhGzmmr3yQnXon2ufyMjvyqe9sXZZ4x+CVD\nJB5JTm9ubk7nMihky33G9eTJk3n+/PmFLFqCZXtj8OV25RSi8n26tB33F3nZtla2FFLC36NnY0cj\nlg7QM3NG5Lwdj23f71+oY7s1Bpsw0y7p5y58mCxwLLG3Roo8T443cc6FvmDkkydP6gv1mMhQz8Y4\n47XxZGZOW3KzRdekvpHslpQ4gbY/R8Y8WAxITPXh701MLDY22Tdpcy4kpG/vPvCcPO/IlNzAGEQi\nHsziuIj1sQPKgn7O2JNzzKtsB+nTsbPhNhMD23/6D++hrScZoz/ERr0SQ19rhWX26aQj10aWHCNl\nwRfhWU+Mu5kPMdAxwH7cEkTKPDpywm2/MZY9evToZNe3t7fz+vXri8SAySITefNXJ1aNRxFzG0cw\nJ5q5396exx1spyxoNqyhrqjL+Aj1k35pe7l/dtn5eV4WSDIOF3tptymmu7WxWzbGHPrZ3d3d2XPA\ntN1WEOB2aHO6yCp8OW/rNp6298gQT1th4Yi35//BqNyX17Vk3+1jW1ndtu16Zn5yZn7rzPzMzPzN\nmfncvu8/gXO+bWb+/X3fv23btt84M//Zvu+/qfS1//bf/tsPEw46vitaJgAzl0nc24DcisCxbydf\n7qslMw1kHzoyB4KbncuAlIqgAd8k2+NpSWSTTxvjzMzf//t/f375L//lZ3Oe6SuxkaOJG2VN4G4g\n20hjA9HWXLBw0Gwg4/+3ChJttOk897Zu3HerSjcw5JyPAnbGY9AgSfzCF74wX/d1X3fRL6/JdY1A\ns18XH/KzcajNgWQqhIty9nxXvmO9OZDazynb/Ox5RofNZtmvq4+e15ENtuC/khll/pM/+ZPzDd/w\nDRfEw41jCW7Yjm1f/OQ4bHNv0xqhJ1EjEVkVclaYR6xssjOxbEnLCjMemncL5E6wqRfr7+7ubn78\nx398fs2v+TU1HtGWOAf7Fn3aWMDPFucshyYTX/M2CdpD8j0iZSGNLR75mmaDzS4aITSXaHNrGMG/\n/ciP/Mj8+l//62vMaDEz9/D4nGC4CHdkb44RKx3k54e4COVA++LRMK+tUlKfLAAwCV75KP2hcQDH\nbMvLdtvi5V/+y395PvOZz5zm7TlRdsRo+6d1xznOXPJSx4KGXQ23VzbJ8fjell+SVdu/525Obpyh\nLHhP+33Di5W/5NMcsmHB3d3d/LW/9tfmG7/xGy94smWYzySMSWiTlLdYzDms/O0IBxuGPBSrjQ2x\n94d41ErGPJzstxhgX2zY7Z1vHGP6dKzetm1+82/+zbP/I15Z/Q0z87f3ff+7MzPbtv2Fmfn2mfkJ\nnPOvzsx/9dEE/vq2bf/Etm1fs+/7/+XOfvZnf3Zm7oWUlQSvYphEO3FgtSqC4sPABIiHSO5MTzA+\nms98NO/TZwtIDMYhvXxmI+fYyGKsnBfn5ODKAGTjz9jz2nnfm+PPzwEFOoFBI3P6qZ/6qfnqr/7q\nOo9VIGXi2pJp3rP1aT1k7gQaA922nb+Qil/1QNBx/0dBPPdvCZsrptF9S4jTbwJ6Xr5i+YQgeP78\nJKGnnTiw5L5f+MIX5uu//uvrKn0quU+ePJnr6/uvDHr58uXyzbUGVAfEVHAps8gm5yUIEXC9mmL7\n37btbDXFX6OST+o59uUgzkp15kP9tgKF55DdBzy4CsiVEdqJVwrja5w/Zfe3/tbfml/5K3/lCfco\nj0YYggWcD+dhmTSMcDM2mQiT9IS4Xl/fvz2cOm3JEMeeI3bIgMwX4ZAMGIccaF3QzHXeGvnBB5cv\noqAdbFt/GZwLj7alz3/+8/Orf/WvXsYjF2WpK86rzWFVoIgcgp0kJu6nYY0xiPMLNniHk+0nc8jq\nUPPHyDT+xX5iVyuZMYm1/LmlnbLj/BKrvNJEeV5dXc3nP//5+eZv/uazudn3PPfr68uVPeNivqIo\nvyeG8WVb3s3Bwh7vRV3MXH6Htsdq3wuWtmIlx0i/SF8uNDju2q5zPW04c+M2V77Dg7uV4qOM5bZX\n3ueHf/iHT/43c7mrIckNC3v2rdYc4xsWHSU+GWc4Qc7z7qrIlHbqog7nkIPzi30Zo4LTz549W3KQ\n7Grk7kb7Y0u0Vr5KDuzx8CVFGd9f/at/dX7dr/t1F1wpn/T92GiwhvjK8Xosjc/GRo075muONfkM\n7pEzEN+Ip+aUxKqMrxW6VvyVn7Y964l+FxviXLmDyDnUKm64fZzJ6tfOzBf+v/buPdSysozj+Pdn\n08zpaE2pmFYDI2VZJoaWGZWiZUwXvBBhEwWjEBLUHzolmWVCSWkhQhGKKZHXMJGcNMTUiSgUnXHG\n1LEYShgVjcxKnQsznac/9nqPz3nP2jNnn845a+/x94HNvq/1rrXe2/Oud6+dnj8JvH8Gn3kLMC1Y\nLRtSV3RZnbnzLf/nT1lOuZX/BcudmbbAqj6odaaF6dMX20YN65GMsoxSSPKoYFuHMldseXQuF5g8\nRahtNCg/rqdJ5UxXGsN6m8soSMmI/QLR8jh3GnOa6k5wW8CROw87duxoDdDyNvTr0Ndn4kta6g50\nPmb1Pm/rANaNUn3Mcv4p686NcCnYdSe6Pq5tt/o45Ia+XlfJV7kzWo+g1pVYyZe5MsxBYFlX/g/f\n0mEq/49X74/coNcd0DqflvxZGtKSH/PxK/elcs/1QX0mIgegZR+XY94vMM3lqOSTXIn360SU+qBs\ne35c1lV3pHODlxvkHESV/V434GW5OZAuy62DtLwvcqctl7uy3/NyclCU80fdoarl/JIHBHN5zB2i\nkq9LXZaDxXxrGwXOxzv/JCCvPw+GlW1oC87L+7leyuW8fK9tYCZf2bTeR+ViX3V7VY5V/l00MHmF\n3zwQUndO6vqj1D11YNfWMZmYmGD79u1TtrvehtzBr+vxtraqTk9uY8t683faZkqVY5PLVdtxyMH+\n1q1bp2xDvcyyrLZ2OG/34sWLJ8tc6QDneqe+7W6wq0zbzeW8ri/qfVrydVbX7XU7C0zmxZIvy3LH\nxsamdXLrTn5pY8tncp7tN8hSBy75Vpfx3N7mOrmsu5T1XPbKvqn7FuVzdX4rP3PI9UOZElv3YUr+\nyuW+DnAlMT4+ztKlS6cE+yXP5kA+5/GS1pJ/6r5E3r66nskDB/nKxnlduf9ZnuftyH8rkvfPkiVL\nGB8fn1bOJE1O3S9yH6rUD2393zxY0q+OKfslb3e9LW3lMZe3foNvbbPMyq28X190tN+AYp2m3NbX\nfZX6wmD1tuf6P9+XwYXSrpXjXgb96z5FLmflf2pLOvMV63PZK3VBHoCo6522uigHzPlnM7nOrfNt\nDs5zTJL3WZs6L+zOfAarM51fXKe29XslI8D0Of45I+SgIH8md87L8hYtWjR5if/coOdl5ls9At0W\nmJX1Tm5cSmueqz25sS3rrCuEfge0X4GuR+rqEcuy3rpjndOUOwZ1pyQvH5hWEef0lft8lrIUvlyB\n5cvP50KTR2hKRZePd9sIfanU8ohyDoRyJypvTy5cZfn9fttcB7R5OXU+6TfPv+145uOV15GDkLyu\nsv/zBRPqvFB3Zst32n5zk/NsztttV9Jta3DbOkF1B6tW0pTze24USoOTA5A6X7elrc7npVz1m0Kd\nA+G2MpLv6zNqdRDXVh5g+n805v1UGq48Il46rbkOK++VzlQe0Cm3nNfLqHcenCtnLuuRz9w5zx3z\nPIBSB9O5kWwbuCrq7a0DxDp/9OvA5ONdH1tgSp6u6+RcL+YyUQ9YtdWldWBQH7uImFJX9JsGX29P\n2edlulnu9OeBhRJElc5kTk8ZLKr3e96Gtm3N+7DueOaBpHxM2s5O1Mc8d/DaOl05AKrPxPULwsox\nzu1H2S/1Z9s6zf3qqjz1tF9dXga8gSn1ZqmT2+rFutNaylTJA3lmV64/6vYol7e2PFnfJiYmJju0\nbQFkWz3dNlgJTNkPZdt37do1Gfjl/Znfz6/X5Snvw/xe/j1b2wBYDsBLPV5fdK+t/i15vN8AS10/\nlDyUg8y6fNfbVPcZ63xf14VtfdmyntLe1ukrfci6PJU05Jk6Wd3OlbxbL7ut35uDwZL/29rUfvm+\nrCP3l/M68gyWuq1oG+xqyxN1Wsp3Sp+ylO2dO3eybdu2aXVEzuf5luvKkqZ8X39vd4Pd9bHI+63u\nr9Tbl5/nPF2nNw9o5Dpd6g1CjI2NTRsIKG1HPjlVb2NbnZvrkrr+b4ulcnCd9/vuykhtPn+zehxw\nUUSsaJ6fD0xExCXpM1cAayPipub548AJUU0DljQ/iTQzMzMzM7POxQL/ZvVB4DBJy4GngTOAldVn\nbgO+DNzUBLf/qgNVaE+4mZmZmZmZ7b3mLViNiF2SzgJu5eW/rtkk6ezm/Ssj4g5Jx0v6E/AScOZ8\npcfMzMzMzMxGx7xNAzYzMzMzMzObrZn9Ad6QkLRa0oSk/btOiw1G0nckbZS0QdK1kg7oOk02c5J+\nIGmTpPWSLpe0tOs02cxJ+oykRyX9V9LRXafHZqaZebRe0sOSvtJ1emwwkq6R9Gwze8xGjKRlku5t\n6s61klZ1nSabOUljku5v+p33STqn6zTZ7IzMmVVJy4CrgHcAx0TEPztOkg1A0msj4oXm8YXAooi4\nsONk2QxJOhm4u3l6JfBcRHy9wyTZACQdDkzQO3arI2J9x0myPZD0KuDPwEeBp4AHgJURsWm3X7Sh\nIenDwIvAzyPiyK7TY4ORdDBwcERskHQg8Ahwosvg6JA0HhFbJS0B1gGnRcTmrtNlgxmlM6uXAed1\nnQibnRSoLgL2BbZ3myIbRETcFRETETEB3Env/5BtRETE4xHxl67TYQM5FtgcEU9ExE7gJuDUjtNk\nA4iI3wPPd50Om52IeCYiNjSP/0FvwOhN3abKBhERW5uH+9G7fs6ODpNjszQSwaqkU4EnI+LhrtNi\nsyfpYuAZ4EPADztOjs3eF4FfdZ0Is73cm4Et6fmTzWtmtsAkvQ04Ariv67TYzEnaR9JG4FngxxGx\nZU/fseEzn39dMxBJdwEHt7x1AXA+8LH88QVJlA1kN8fwGxGxJiIuaALWi4FLAP9+YIjs6fg1n7kA\neCEibl7QxNkezeT42UgZjd/omO3lJO1Hb2bDORHxUtfpsZlrZoMd1fyN5h2S/hARD3WbKhvU0ASr\nEXFy2+uS3g0cCmyUBL3ph+skHRsRf1/AJNoe9DuG1We2SroGuHYBkmQD2NPxay4u8QngIwuSIBvI\nTMqfjZSngGXp+TJ6Z1fNbIFIejVwC3BdRHhG0YiKiCck3QGcADhYHTFDPw04Ih6JiDdGxKERcSi9\nxvpoB6qjRdJhzf0iYCXgqyOOEEkrgK8Bp0SEf2882jwzZTQ8CBwmabmkxcAZwG0dp8nsFUO9MyRX\nA49GxOVdp8cGI+lASa9vHh8AfBz3PUfS0AerLTw1ajR9r7l8/x/pndE/t+P02GB+RO8CBb+V9JCk\nn3SdIJs5SadL2gIcB9wu6Tddp8l2LyJ2AWcBt9K7iuU1vgrpaJF0I7027+2Stkg6s+s02UA+CHwe\nOKlp9x5qBm5tNBwC3NP8ZvUG4LKIuHsP37EhNDJ/XWNmZmZmZmavHKN4ZtXMzMzMzMz2cg5WzczM\nzMzMbOg4WDUzMzMzM7Oh42DVzMzMzMzMho6DVTMzMzMzMxs6DlbNzMzMzMxs6DhYNTMzGxKSzpb0\nhebxKkmHpPeukvTO7lJnZma2sPw/q2ZmZkNI0r3AVyNiXddpMTMz64LPrJqZmc0BScslPSbpakl/\nk3SzpDFJJ0na1Lx2taTFzefPkfSApI2SLm1eu0jSakmfBt4LXC9pfbOctZKOaT73WUmbJf1V0vdT\nGl6U9C1Jj0q6QdL+XewLMzOzueBg1czMbO4cDvy6ud8H+CRwKbAKeBdwAPAlSa8Bzo6I90XEUcB3\nm+8HEBFxC/Ag8LmIODoitpf3JO3TfH4FcAxwoqRTm++PA09HxBHAS8Cn5nuDzczM5ouDVTMzs7nz\n74i4NSJ2ADfSC1YXR8T9EbENuB44vnn8rKRrJa2IiP/0WZ5aXjsO2BQRmyPieeCXwPHNe7uadQDc\nA3xgjrbLzMxswTlYNTMzWziTwWdEnABcB6yS9Is+n2+7sET9mtJrO5qzsAA7gbH/I61mZmadcrBq\nZmY2d5ZKOk3SEuAM4HZgh6Rjm6m/K4G1kvaVdFBE3AmcC7yn+b54OaB9ATioZR33AYdLequkNwCn\nA7+bx20yMzPrhINVMzOzufM4cEpzD71g9TzgZ8BjwHPAFcDrgDWSNgA3AKubzwcvnyX9KfDtcoGl\nsoLoXcb/m8CdwDpgbUSsSd+nZVlmZmYjx39dY2ZmNgckLQfWRMSRHSfFzMxsr+Azq2ZmZnPHI8Bm\nZmZzxGdWzczMzMzMbOj4zKqZmZmZmZkNHQerZmZmZmZmNnQcrJqZmZmZmdnQcbBqZmZmZmZmQ8fB\nqpmZmZmZmQ0dB6tmZmZmZmY2dP4HmM2yQzXZnBYAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1144fa510>" ] } ], "prompt_number": 823 }, { "cell_type": "code", "collapsed": false, "input": [ "resp_right_1 = convolve2d(stim, right_1, 'same');\n", "resp_right_2 = convolve2d(stim, right_2, 'same');\n", "resp_left_1 = convolve2d(stim, left_1, 'same');\n", "resp_left_2 = convolve2d(stim, left_2, 'same');" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 847 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "4. Square the filter output" ] }, { "cell_type": "code", "collapsed": false, "input": [ "resp_left_1 = resp_left_1**2;\n", "resp_left_2 = resp_left_2**2;\n", "resp_right_1 = resp_right_1**2;\n", "resp_right_2 = resp_right_2**2;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 848 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "5. Normalise the filter output" ] }, { "cell_type": "code", "collapsed": false, "input": [ "energy_right = resp_right_1 + resp_right_2;\n", "energy_left = resp_left_1 + resp_left_2;\n", "total_energy = sum(sum(energy_right)) + sum(sum(energy_left));\n", "\n", "RR1 = sum(sum(resp_right_1)) / total_energy;\n", "RR2 = sum(sum(resp_right_2)) / total_energy;\n", "LR1 = sum(sum(resp_left_1)) / total_energy;\n", "LR2 = sum(sum(resp_left_2)) / total_energy;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 849 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "6. Sum the paired filters in each direction" ] }, { "cell_type": "code", "collapsed": false, "input": [ "right_Total = RR1 + RR2;\n", "left_Total = LR1 + LR2;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 850 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "7. Calculate net energy as the R-L difference" ] }, { "cell_type": "code", "collapsed": false, "input": [ "motion_energy = right_Total - left_Total;" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 851 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "8. Display filter response" ] }, { "cell_type": "code", "collapsed": false, "input": [ "energy_opponent = energy_right - energy_left;\n", "xv, yv = energy_left.shape;\n", "energy_flicker = total_energy / (xv * yv);\n", "motion_contrast = energy_opponent / energy_flicker;\n", "\n", "mc_min, mc_max = motion_contrast.min(), motion_contrast.max();\n", "peak = abs(mc_max) if abs(mc_max) > abs(mc_min) else abs(mc_min);" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 862 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.figure(figsize=(20,4));\n", "plt.subplot(2, 1, 1);\n", "plt.imshow(stim, extent=[x_stim.min(), x_stim.max(), t_stim.min(), t_stim.max()], cmap=plt.cm.binary);\n", "plt.title('stimulus');\n", "plt.gca().axes.get_xaxis().set_ticks([]);\n", "plt.subplot(2, 1, 2);\n", "mc = motion_contrast[:-nt/4.+1, nx/4.:-nx/4.+1];\n", "plt.imshow(mc, extent=[x_stim.min(), x_stim.max(), t_stim.min(), t_stim.max()]);\n", "plt.title('response');\n", "plt.xlabel('position');\n", "plt.ylabel('time');" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAEZCAYAAACO8VR1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWusJl1W37fqOef0Od3vO4EPSLGELHIzAscQOQQIH4It\nGyUIyXKkOEFEOLJiIZMoRIqUC1Y+hEQI2woEMpBRCMp8gICNuChoJHPJEIJIxGWQYBiRgcGAIQwZ\nh3EmMO/bfU6fS+VD9//pX/1q7To90jvDNNSWSs/pfqp27b0u//Vfa++qZ5rnufa2t73tbW9729ve\n9ra3ve1tb29dO/xhD2Bve9vb3va2t73tbW9729ve/qi1PdHa2972tre97W1ve9vb3va2t7e47YnW\n3va2t73tbW9729ve9ra3vb3FbU+09ra3ve1tb3vb2972tre97e0tbnuitbe97W1ve9vb3va2t73t\nbW9vcdsTrb3tbW9729ve9ra3ve1tb3t7i9ueaO1tb3vb295eyTZN09+fpumvfpz6vpum6Z/5ePS9\nt73tbW97++PRTv+wB7C3ve1tb3vb231tmqavq6p/dp7nY2I1z/OX/eGNaG9729ve9ra37bavaO1t\nb3vb2972tre97W1ve9vbW9z2RGtve9vb3vb2SdWmafrr0zT99DRNvz9N069M0/RlVfU3q+rLp2n6\n6DRNv/D8vP9tmqa//vzvvzZN0/8+TdPXTdP0wWmafn6aps+ZpumvTNP0vmmaPjRN01fiHsdrcf1P\nDcazee40TV87TdMvPh/vL03T9M+/9VLZ2972tre9vWptT7T2tre97W1vnzRtmqZPq6qvq6p/Z57n\nT6mqf7WqfqWqvqGq/t48z2+b5/nPPj99fn6kfX5VXVfVn6mqn6+q/7mq/tLzPr62qv5LnOtrt9rw\n3OdJ1V+rqi97Pt5/s6r+8Uv2u7e97W1ve/sj3PZEa29729ve9vbJ1OaqelhVnzlN09k8z789z/Nv\nVNX0/Nhqb1TV35rn+SNV9V1V9U9X1TfO8/x/V9X/VFV/Ypqmz3iLx3tSVRdV9aemaTrM8/yr8zx/\n6C2+x972tre97e0VbHuitbe97W1ve/ukafM8/+Oq+qtV9R9V1T+apunvTtP0T77k5f/nPM93z//+\nR8/7e9/zz5uq+n+r6tPf4vH+UlX951X1t5+P99unaXrtrbzH3va2t73t7dVse6K1t73tbW97+6Rq\n8zz/8DzPX1JVn1HPVov+46q6q/tXtD6W9mZV/Qn8+8+OTrzv3Hmev3ue5y+qqj9dVZ9bz7YS7m1v\ne9vb3v6Ytz3R2tve9ra3vX3StGmaPnOapr8wTdN5PduWd11Vn1bPVqj+9PP/fyvaL1bVvz5N06dP\n0/QXquovf4znzs/H+y9N0/SF0zSd1bNE8Pb5ePe2t73tbW9/zNueaO1tb3vb294+mdp5Vf2tqvq9\nevZCi/+vnr1x8Pvq2crS/zNN088313UvrNh62cU3V9VHquqXq+o/rar/TufP95yb9k9U1f9Qz7Yl\n/kRVvaeq/uuN++5tb3vb297+mLRpnl/2pUt729ve9ra3ve1tb3vb2972treXafuK1t72tre97W1v\ne9vb3va2t729xW1PtPa2t73tbW9729ve9ra3ve3tLW57orW3ve1tb3vb2972tre97W1vb3HbE629\n7W1ve9vb3va2t73tbW97e4vb6R/2AF6mTdO0v7Fjb3vb2972tre97W1ve9vbJ2Wb53n1W4+vRKJV\nVfWRj3ykpmmqw+FwPKqqbm5u6vr6um5ubmqe53rw4EGdnZ3VgwcP6uTkpG5ubur29rZubm7q7u6u\nDodDnZyc1MnJSU3TVE+fPq2nT5/W9fV1XV9fH787PT2tw+FQd3d3dXt7e/zk/fP9PM/HT4/x9vb2\neP+bm5uqqpqm6XhUVc3zfDx4fb6/u7s73p9viezudzgcjufwM0f62jrYOFaPjTLgkf8/OTk5yiA6\nurm5WY15nuejnG5vb1f3ytwjx2ma6uzsrE5PT+vs7KymaVrogfK6vb2tqlqMKXLt5knZsq/MJZ+e\nM6+3Xrt7xG5zbNlFVS3kEzs8PT09Hp3eI5PRm0Vp1z6Hc8nfHkMnP9rGSMaWP8cdeVpuPjfzo39y\nvrbjrq/Od9zoO/M8H/Fh5P+Wkf3VdnV2drY43Iwf1Fns8vz8vB48eFDn5+c1z/PCtuZ5XvjsPM8L\nvOOcTk9Pa5qm1fg552maFmOJLVL3lpt9h9fe3NzU6enp8f6np6dDO+t8lDrN98bsaZqOfZ+cnNTd\n3V09ffq0rq6u6unTp3V3d7fwJeo3c6J90bYyR/py7mkc9zh5jOY88l3GsRGmcXydjKLHxE7juv2V\ndmvZ01Yje/saschjqqpFjGAstv3lcHzj/RMntq6nrWb819fXR/9gLKMeOxlzTpYJ/ZZ2Hn7CwzKx\nbxFD6Jvp1zLuxuoYSY6UexoPzSH4b96LMs+YiV+MlTnsb+R08QXKxfcnvpycnLRj5WfHZSxjxxX7\nv+ff2RVtf+uI7ee4ublZ2a3txJhp33UstW+dnp4uuPLd3d3xnMQF2yLn0/Ef2w1trKpWc3LMpqwS\nx3i42Tc7XkE7uI+7d/fzNZ2O+fdHPvKR1TirXpHXu0/TNH/gAx9YOEMcNIYSwk1jvb29XTmxnYaK\n57m5F40vAalqGcA4LgYaEq18JjnIkYCXcTOIZXwm1OwvAaYjnUz+OEaTihEZ7ECF/eUgUJtE3d7e\nHnWUowselNvLJIpOzCjTjrgYGDsZ8B7UeefkthknGZeXl3V1dVWXl5d1eXl5PDf3c3C4ubk5Jv1P\nnz5dER8GU97zuX/U7e3t8dqrq6tjUBsRI+ovNh8/Ojs7q5OTkwUhD4GkngjUDx48WPUP/13ps6pW\nNmY7pU3SDmwTOSLDEOh5nhd6tn8yCenIavqkLRt0LZMu6HOeDojEl+vr6zo7O6vz8/PjQUJpmXVk\nqapWGEY7dUDpEiHLvMMT6sgY6cSX83nw4MFRRzmsZ5NRBrYuyHd2Zrnb1ng+fZMYy/6MJbabrWKV\n/S0yi3/FVjnuxAknf/mkDC8vL1fEKIUY2mGXhFDGTiQ55hAxjtdxiXbFpIIYZ1xmnEyxIIeTACeX\njgUmRV3McIzyGEzgabe5J4m48ZF2PE3TAiNPT08X/CR6oN6McZbXKJbHVpwkdDKjniwD4wrjD7GB\nBNvFadqOx9PZDX0hJJ+H44xl0tkUx8j7nZ2dLTiTZcpEwYQ644nezQvJjxhLT09frGc4WSYeGXNs\nS/yMzHKQBz948GDhq9fX16vEMr6Q8Tv+d0VHz4EyMSe8vb09YtPV1VXd3t6uOCDHn2IzZeHEzHGN\n+ED/jUxZjE8Bj77XxQXnBpSpbb/jmM9tYVWReSUTLRPNjetWAbFzni4p8fV2xPzbAu/IoIlKF/CZ\nPLJaYbLnIG7g7cDazUbVgZRl2CUH+dvJVUeM01dVtQ4yqvYQrEfJa9W6CufKBBOxgDuTWwOjwd4B\niEG7q0CZeHWVkU4mDMC2Awdcgkj6cBLhSm7u6f6sd8uY5zPI+vCcqGufO5JJ+rAMrZP4S+bpBNky\ncPW3u0c3R85pROJjl640dnPo/Dd/W2acr/2dwbDTHf2X5NOJlpNvN/dtguZ7kNicnp4uAurTp09f\naoyUc1ccoBw6cmhMHNlyhz/Us7FsRCxMCExmLcORXeWgPJhU0C5d4DHR8Yo5z7c8bJfGvKo18fGY\n3Zfn3B2jBD5Eiv5AeWU+HJP90jZje7bdsViVZNJkmQTWyWTkzsSCNh4ZUq+dzI1B/NutswPPyYkd\nx1xVK9uiDJnMRQZOiozh1EMIK1derf/uk3bk74zjnYw6vY9k5iKnx0B9WWYubsW3LEsXWDu/YXNy\nOuJ4HT/p+EYX63lvF7fos13s7cbeycA27dVdcvMOc9w//ccx2N8T/66vr1fFJ9tt/D/nE9c7X3XC\nDTm9uonWb/zGb1RVrRzA1RFXqDrSzmaDdBuBd/dZtQatkTHS4egAh8NhkYnP87wKmFa+V/GcKHIV\nLcDCxM0B1BWmToY8WHk9OztbkF1XU5yodkSjqxSYXJlgeyuQgwkTmapl4pVkMeMlWYscO9Dh305A\nTX4InKwUEjRM2kcBaWSHtFnb7jStt1t21Vj3574Y0EyoKUNWa623yMhEinb64MGDlS2YhBjsmXhF\n/g6InKODFL8bydb+3a1s8rqOxPh6V928MtARtzRfH19gUsPvTQZNspOsbhUpOEYn0Ca/LHBFPl4l\nNCZ322S6yuLIRzpySXyyniKL0YoLZRi86HyDmG+s42rz06dPF9XdVOk9Zx6Zl3Ekn5R77MgrZrRt\nk8cO40f3G5FHfz9qXWJPX3UCRpnSv2OvPN8FPPsKbZmx9enTp0eM5M6ILp4b+2mPJvdOuO8jzF3S\nwv6th8iEyR6v73ZKuEDguGAiTZ3Z7ruY6CTRBJt9UOaj4pRtwclqh6k8bm5ujn739OnT40oFd2J0\nGJs5Z/wszHZ27CLGKEHpZGpbZ+E3nMq2xDF3c3aS4UTPsdE6dhLDPoIP3EnhMZgPWSZdUWILN7qE\nkgftuOOh3k3WxXbzTuqqizeMZfM8Z3fBq5to/fZv//aCSLGyYIDfyrodUOzkzoJZoe6yYCvH/XfO\naNLBAGxCHAOVPBYJSrfi5WSrq34GFLyNwCtWowBDh7HB8dwRacg1JotVtXJC3s/JVgImE6XIhgTc\nlUeSKRNm2pQDRidjP2vTJUe2VQeRkY5NjDJny3yUHHT/Z0I9WgnobMdJJEkDdeXg4JWlznfZDNgZ\nc3Q9ImLcKmgdmOA7CXHy6STKduktqCYZJo0uOHRVNZJuB7jMn9stuorxSP/WcWzBZJUrXt6+xvEx\nCJMcmoz5b9siMcO2nmvz6bmYzMXfuXLppMhzdHXVfsox8N6WYY7Odnl465GLR45frsZ6DpwzkxCO\n3/07KbEOOxlZpvZBysG2ZixxAcWfLxNHHUtJMDtS213v5IixdYTXmad9yf7eNf6/8cOY6TFaZtQJ\nCwDGGxd2vWI+wgrHcvtW1XKFK5jp4rVlTFl4hdzbZl1k6+LcKEnodGB7ZDLKZ/Os2605ODExv3Af\n3hZsTtUVm4zz9Kdu9caY5li9dYzsnfbSYSATM25nTDGZunRBkbbacTRjifkh/YBFy3xa79YVv+s4\nTpccumj5yidav/u7v7syZAfxaZoWBhknojINbHba+wysA/mOMI2cMm3UX5RJA+uCGOdsMjgao5PT\n0eHrTZC5gpaARnllr30+nWRE3lsyssypI9+PcnQfjS21Mmb/DuAh7CPb6P5/K5hbrq7OWsecM8mo\niRz3bTPhJVnLnJiQcK88A6ZXhwiO/t6V1ZOTk0UBIasr1MNI55x3J7dRIhgZePWXvu7klOBL36Ae\nOeZRUmHdcfy8xqs5XUC0rY+IrGUUIuWA6UIMv09AZEXbiRTnT7zpZBq58j5+juQ+P+owsSOvlhHx\ngnZIMscVLlY2nVT4/kyKWMjpbIP3j295tXdE2HOYXHKlNw+vj1aaLM9RbDS+xVfzTAXnFzuhzLz9\nutslwJVFF/A6rNsifF7JMI7kfBOzroo/sjti6jzPqy1l1OuIDNJX6DMcZz6NZdYh8dYrnZGB++T/\nOYkIJnrFwTJiXOwwLy34kqNqufprDmZe03Ey84UOV+13nIf5zMim0n+KGKNCcPSUgzKyn0Rejq22\nuy7J8IoT9Wg/GXEy6pltlIQY58kVPB5j/FbrYlSwK3ZBfsCCu4sG+TT/4LnxRx6dHdhHPGYXepxw\nd3yO/f3Wb/3Wq51ofehDH1olCF2AcsC7j0j5PJMeVwq4heXs7KxdAeM5VoYDZFW/dz6HHaJq+bC4\nnbgDI1dCtgKyQSXnO3MfBUM77HP9LeZopw/w8NmaUbJIQs1Ez1V3B2+D+1YSFD1RLk4iCMQGAAZE\nP6TcAX1XTTEYd0RpFHRMTnNfJ+TdmDpC63ukdckqz6PdpfppgOL9nUjd3NwsyJ+Jyci/2W8abYp9\n8HvPr/u3x8xruz5GMs6/XaQxxnm7w+3t8s1oXZDvyCIJsW2eY+f4R77QbfXhPLeC0TzPqxdBdAGz\nk2M+/Tf9hCSD+u7woSP4lCOLINaf8dAJjFfYP5YEnb7q8XZz5ooYVwFGW84TN4gHlvEoGemwotN7\nR0y8GtPFGcp2tFpje03rZMJYnDjAcVgPHIOTy/gTZcQVNJO5aZoWXCFxgDa3VfAMP2Cjn2QHDn0p\ntmu7D47Yn80vQoiZKFHHtCsmIplTZLb10gP7Hm3RxRPabQ4Xq8wP7NMjDHaRdXQ9Y1l8hfdnrDEn\n5eoT8bDjF8QP89T7kgQWNMITeU/LgDo6Pz9f2HTHIbvEzJyv8+cuTkbeTvItJ4+5w0n7cIdL+ew4\nWZeIcYw8Ok7mVf4PfvCDNf9RSLRIRKqWS+/TtNwLz6X35/0sFOu/7QwMiFVLUHB1YxSEnHiR9BMk\nHPBoPDYGJ5J00q0qW5rHnP/Lp4HM+4VNNDqn64hcDhp7+nO118DlSiiBJXbArYcE9251hzp2EsNK\nYcZAeXgZ2nOl3WwdlIuLBAYS2i/BugsesauuAt0lpyERLwNqTlYtJ5PFroiQxvGmv5EvVL0gUtwa\nZFLu+9POYhesolF/JFYhozz/5uZmlWRw7p1OTJw6POLRnW+ZWD9sTnA7cml/5xxMKhL0bYu+zr5C\nbLC9O8CaII/aiHjd3S1XMj0HB/34BnVI2zLOB1O7QsTo02M2Xni1pysa8PouebXddUVInsfxh4T7\neSTqzGPmOIzZ9CUmqLQrXp/mv3kei1gmQt3fxq4QoMwxcnpZHRr7rAf7VleEND55NdErnbY7jiPj\n78gjC68mh1187mIQ+YYTETbb4giLcq4LvV5hH2EgEynbfmdP+XRSEL0wbtlWHXtHvpT7UY/Ri/HO\ndmnbJAZ2dtnJ3EUJ92vb55ZUJuVdnHBs7xJY+lzHDSgDy8x8adRn/u44Jm2f8vMKee7f+YKTY/o8\nZWm79Hh5XT5f+UTr137t19og1gVQVpBcveqcnhUaOy5f73p+ft6+KCLnEhjz6SzalUaTu47kEIir\n1itaIyAeOa2d1Ev6fFD07OxssarAB7kjaxuwV3qokzz43VVbadSRadX6901yPqudrozQOQ0yIQVe\nfmdlgkvxWaGijryCZWCz03d7qH1vHunXySeJGxOpqlrZCQNw1Xby2RF2HwYdkgRWqCNXB8z7vu8S\nj04mXLnoEjkCMfXGe9IuvP3JFeiOyOXTlU1vg3ES4eBlu/ccfb+Tk+XD60wy0r+f8XSwod12AXGL\nhDkg24Z87jzPq10AHYEeXev7kSh1hTHiYz7jfy7McKuQ40CXdFBnxPVpWhf4RtuhjLlcfTH+UQb2\nnYyPvuNCkUmHC4S8npia60k2Pd7I0EWJYGwwkYeLgl2sMlnsiBSvIxnzWI1j9h0nCTc3yxdHuDBi\nHRmngsFOJGhHvH+nJ+OB39i5lWB0vmsZBRO9wtsVZoIP5DS0O+JNtwLWEe6q9W9GMebE7lwUcLz2\nmC1HysExjPPjHDmOLhEjPnJ8Tra7xM4roy6CcFXy9vZ24VtdQW9U+M3h7ztf4D3MXY1RW0UPyqzD\n5TQn79QjCyssvHaxPXblBYD8lM6TJ0/q8vLyyN0vLi6Oj7B4Hvy/Tvecl3loZ/u//uu//monWu99\n73v9f6vg0q1OWTlb1RE3np/zaAgkj51Ddv1aiQZHjmc0vo6MjA46lWXkTN8Br6v6ZTycs6tynkdX\ngTbZ4z06GZpoMTGqqhXIdbJkVeK+IG+wd38+38HgPr8y+FsHPCdOzgS/armNJDLYqqx1yZOBrJtT\nBz5MRv1AP2XgpGREmNkvk2UmKQ7aTsRClng+x23i4TnGFztZdISV+NIFeJJFjrFLKkYysh35HI+n\n24ZHQmAbZH/0Hdo5rzeG2vfu7tZvwLJ8bFeeE7Ggk9Mo0eKcrAt+H/whWfTqjufkQocLdn6+0UH6\nvmTR+OHCDJO7bNckaejwZItodRjAOFG1LNwwCcj3JB3dSmQ3vy388OqM7YC+3+m5I/jWgfXOOZPw\nZmXTxTzHR9oo5ciEluc7YTV++KVKHRkkFhiTu1hO/3CCYN0Yh40PI95BXVFHXTPm2UeJYV2RorvW\nSQYP2mLH0WwXSUZZbPObG4mx1nOHmSNOxgIgZTzy0xHGWS+d7Y/4BWVgTmY763gA4wgTmNyja5EB\n++SOm8QRF6vse1utkxEx3bGOnDIYu1XY7fQzSrRO/R+fzM1GVbUm/R0w0riclKXffDp77wSa/0vA\n6UhMmoEzymMAY6MzVa2raA4oBvuRTEicuJqR8w2ulgkrda7O8P63t+uHGjug4P06mXtfuQ2cQEeZ\n5sc7/eAlZc4VohFJ9oqZm/XixM3ztZNvBWyT2cybldjONzKOkBRXjLYIvG27avnMA/fWdwm4yWps\nndewUvz06dPjnHK97a6rylnmXPWxD1XVItA5wCUoM8BZFsYLV/lcvfbq6PX1dV1dXR1tzyvkqZLF\nhu3Dnd1Rr5ElD9utCb5XImhDd3d3ixeYxJ9PTk6Oz5zSLmJvp6endXFx0a482LZHxYToxIUbBuWM\nmQGac7Rd57uuEEMde5tth1eck1ccjSXsM3ZAck37Dl6dn58vtprTtuibnLfHNiKjLlpM0/LhdOJ4\n/CZyi55jf46B2aXQxSXalbEt92Lc9lY/6tNJB/2cNsRY2a02ZGz5N380O2OLTLwtz3bMnQ+0rXyO\nEvToeZSosGhxdnZWFxcXdXp6utAhV8xyPe05+GBfcsLOOVS9KOBRFtQl43VVLey8I/XdChV9jP1F\nr7ThzKl75ivPeHLVnKvTKXwEX9lfPkdYRblGtsGHzDmvh+c9aQcdX3EyaD7WxR1zFNuBeSMTKONc\nErtuJ0QwKPE6dmFuYt7E5pVj2oXnHbl1q2TUQb53LDNHMlfu4g/nQVvgivYbb7yx8JWsiEVeV1dX\nC952X3tlVrR++Zd/uarWDy57/KyEdATX17n6OkoI+P8dqWPAZ0DowJrBysZXtf5hNlcSXV3imGJA\nHJ/n47E7OLvZgO+TQcgliR8dL/dx0uEEeuREBHuudPDYkllXZermkb/p4Kw4MWA4kfOv2Qc02A8D\nTEDc1dzc24kQgdAvOYiOrFPLaORDnb10yZ2TFALr2dnZYnxZaqftc45df7lvrumA0lUxzomy3tJ5\n59sj2Rh7vIo+SjKsz44MM2nh1sAuUeIKGeXGOXVk08TPvmPZcf5bsukwh8Gecjfx6lbAqLuuqNEl\nTh7rKMh2Y3S1mzrp7ISf8zyviB0Tt9PT5RZ2zz8kjlhP2+gCus/v5jkiQiF63Q/PjnaHdP5pnHAC\nbBl5C3qXLHqcxr2RXdkmYjdbK2SU78gnbVP2RRduaLed7H2vkR1G/h3/YAsRHv1O1n0Y7nsmIeEW\nWvt2p2eeY8zifIOZtDGvhHhl03jkIpfjCnVnndqXMh4XdkexesQ32Fg4yDwpv+AFi9eWJxOR8Ej6\n50ifmZf5yMcqo6745NjRcTIWAEaY6jjQrYB1dmZ7sgxsjx0O+vqR/Dr+4NjbFUI/8IEP1Pwqbx38\nxV/8xRWB7hyd5JVOxKyVBmzB2fhYiTg5uf93LrrkyNsTOrB9Ps8VQYAMjv134M4xO4B1MiJBJ0Fm\nFSxy9PcE9qurq5VOMvYu0KR5bgYBE72OoPPTDjaqZMYurDP2UVUroNsiFV3FqZM7x8z5MNjkyJzZ\nfwcyo6Nq+8eznTi+LKnmOfaNTiccp22iI25dUs/gw+or/aFbvdnyAdoJk5RuxYv24yJIJ0ee7+TT\n5NDVV/s/59clTt0cbcv0M2NUZNaR/8iQOp6mZVEhJIEy8RxM2v3af/t/R3ppV14xp95pe0y+reet\nJCL3YPHNZNAJvuPKVqJjmd/e3h5XOrPa2ZE79mWduXVJU0cMO0zoiFeHPyTDJpOUaUeMohf7gxMZ\nE62uiJlPY6jxxL7TYeMI33O9n+OzjC1Xy7jT0xYB7hr7M1/JHNJnJ/Ot/i3DLjExPoz4hr+zfXCs\nsVf6UveCkA4fKD/7Yp6HJg/bSpJGzfP3NjdjmHcVuBDD851EOBkNJ6PdWpa8Phjm8fNIEYIYZ4wx\nd/FKpu2esY/XOxHritXdgoe3T3c629Jfx134t3W21UdVv4vJc/rN3/zNVzvRev/7398GA523qsZZ\nEfdVV0ycXF0xee8SI5MMJ3sZaxdsMgeS127Lx+jhUxq7tyLxk81GbvA3MI0CJMF3lCTyegZgg463\n2tDBOqfsgk6XYHhMI7AdOWc+HfR9nm3TyXcng+4e+XTwN1nqgMzz9b5y24Pn4/vxexOVLlHrbKez\niVEy6aLG4XBY2D7nnCTFOuTYcn22aRHMufc+SVESYM65S7xIEkyATQY7G2WftOvgDYM69Zh7sjEZ\njUxMvBx0HWBdje1wdstn6LvRG3HFFWkmo8RYJi3sf0SER3a0RXTz/1srZLZhk1j7RkeELAMnUh3W\n8nrPydcfDus3bFKvIzviTgu2u7sXW335opguseowy3rq4o/txLhu2b+MjHnPYAjtif5mjEoVnysp\nfjlGl6C7sNutCDJ2Uk62LfuGiwpcwcqzezyHc41dUM9beBH50E9scx1Zte3at8wXbAfuj9vysu3W\nLyHgfR2HzLkyD3Ksj2XM7t+xn2PmNlz2Z1t3smvSb3nRlrqiJmP/zc3652Vc0GMbYRtbF+spo9gZ\ntwry+4xr9OKpLpk0B/V9Xdwi/p2drX96yXO2XXIVL/6/Vfzu+M373ve+T3yiNU3TF1fVt9SzZ8G+\nY57nb9X3D6vqv6+qz62qP6iq/2ae5x9q+pk/8IEPHP89GnNH6jpgy7m8Ls2O5C0gXdKx5ZQmBRx/\nlwSZeJEcPnjwYEGuOMdurl0w6hpJQMDeb+mizJ00dMZn0s0xmdy5+ko9kFQQpEbJoBMIypRVuq0l\nYBMvOnEOO/nIFkfJpWVgu+uabdbVmE6mW6szHdjbttmv59zpfRQs4gsmFV3VPvc0UbMMQy6ZeJE0\nkPgEOAnAomV8AAAgAElEQVS86YM2TDlYph1p2LLrqvWzfu7HMiTJ4moRfeO+RMm20o3bASv3rarV\nWwtd4aZd2fbsu92Y7LNdAsvxdcnqli/ZbklQTJC7JDp6Y3HMvmLfY8LvhHlUcOB4nVyRlETutDUT\nL+N7R1KModRJ/Ju+6Hv4ORM+wxHb4TjsW/ZnFyVGsXVE0N0cVztf4LkuSoQwx/a9Snd3t17J2EqO\nq9YE1fHSBSvjxYhP5JM2kjkwNjPuZXXHyaTtzL6aT8Y0J9CO97Rv27oTZmNoV7yyDLrkIIfPd3Mx\ny4ULj8kydSzMPTJXYnZ8xXHe13t1mLjUJR2jmGQ74hxH/IJ8gXbpLamWc8fDaQ9d4dZ4QF9xDKAu\nzLGImbYD84URz+wSZ8qTSVveru1k0f7+/O3on7hEa5qmk6r61ar6kqr6YFW9p6q+Yp7n9+Ocr66q\nz53n+d+fpukzqup/rap/btagpmmaf+qnfupo8FEWyXKc0kHzZZQxCtJV673wdmI6R1cxMjAZ+EYk\nqTuqlttmQnQM8iZZ3urj8XGVwFUxO+3JyXr7pMliRx69yrZFVq1nJ1ImRx1R4fy2ACnOYmJEsptE\ny9UOBw8CRJeEUD+eg/XeJdysGHXzcvXFvtERKfoC7d7EK0UHkhDbehc03Wc+GeBD1lhRGlXlvbpr\nX+CcEiyyTc2k3XrpcMBFElZWb25ujlu9+AIDk25XqJ04sTkY3NzcLLbZ8RwnOSTg1LuTmqurq7q8\nvDw+0OtCDm3ZxCZ6ZmDyqj+xp6qOr929urqqq6urlW8Yx43hHYE2xjkBd0D1K7K5TS/njOzWdmjf\nJAHujsh9a5XP/uHEhFu1I0PGnQ73qHsSJ2534rmWr+3Iye0o2QxeMK6cnJwcxx57drylHeZFMbaD\nUQI/iuWONb6OdkICTb1SlrZzJinEccqQx1YSYrxxHArm8R6jJKErQnT4Yr3btjuM9T22EqH0GT1U\nrYsYo5UHJtfGacrNvuY4z9bxM8ed29vbI2bl5VqOS/TnquU2+i6umFN1CSx9qeMpXkXrfDWfjkPm\nvp3OzLeMR042vR3S+ElubIyjnUUmnR55mJP5Z0M6mY18oTuPz9Sfn5/Xzc3NAnMzxxy2m8PhUO99\n73s/4YnWF1XVfzHP85c+//fXPhf038Y5X1FVX1ZV/25V/Zmq+s55nj+n6Wt+viTXknIHFR6uUHSV\nNf7tJd4RwWZ/riAR+Ex8OlJggzThNgj5fBu4ZUEj4/UdcN5HNnM/HqMkL83GbX1Bz1W1fn5hVDEa\nrdZ4zN04OB72mTExyWBFmRWmEamiTB2wM0+Pw8SrswMTGRMHJ068pxOVEGQml1tEykRrZC9bh/Xc\nyYxEx4S3C070vdhOhxMj3+gIGefWJR3dWNg39TgievnsCHuX/I7kyfO7IG3ZdSTEmOn52cZ5jQOu\nt/ZYR12Qt0yImUmYu203vIZti2hVvSB6fiMW7YBBfUSMRnY0wpnOJrugH9/ksdVPZzck4JSZ/dBY\ncZ/djWzZSYsxlMnoKP7ajlyU6DDUsXSEJ4mdHSFnUmFbtX3ZD1zENC52ccXPN1oetDPbJZOUEGoX\nq7iSQZ+gTvN3t5pLW+j07vmNCjXuM/ekXYySBmPAFgHvEnL26b7o3yPfsB15PrYTzrGqf8GYfY/2\nTK7QYdYI8zr+ZD50c7Pelkvb75JR8hcWerk12YmP8ckxxI+80Aa8u+Xu7m6VSLmQ4DFvYao5G5PR\n+KP13tkdYwJtK7ocbR38eL7e/dOr6v/Cv3+nqr6QJ8zz/HenafpLVfXh52P5olFnv//7v79Qdl71\naTJJwQWYXL1J8lJVi4TjcDgcjSArOxayEzEHD8ytqtZL8AyeeTUox+2AFQPNMyWS33EuDKgEY65A\nZJwxlsvLy0WWHuPpVs1oUNwykter8mUZGRvBIbIh+DugdwTRhpzrnETlHK82MWEjgTfRur5+9mp4\nJ8ixBQeq9MvVnuwpzytmA8pV6xc/dNUTVnwDVJkXdXJxcbFwem4Fol3wnpRl7C5V7oBMxnR+ft4G\nTJOsyIbA5WooD4N/5xtnZ2f16NGj43YHb2GlTAim+X5kV058Mz7/6KGTraw+MOCQiLhFprmeRRGu\nePFB73zX+Y4DpJOO+Gv66ZIl28YWUTGh4jW0rY5M8u1UTthNgtm46hjb932pWxOnUYKYz+7v2EBW\n9RxAgw15Zb3jTLAvmLElZ9o2tx6bCFFOJNCPHz9e+H9eNZxzGOeIabYBkyLK1DLvZHJycnLEhml6\n8XwjK9KcJ2U+z/NxVfPy8rJ962Dm99prry22O9FvHR/YBwmYbTzy5aq8yZnjuxNsJl4m8pGJVwU4\n/nmejz+gyjHTpzo/MZnmmG5uls/jRAfEC8brjJUyoM1GBnzhUF4vz1eZk29ELpRZ7pH/5wo/x8C/\nIzvbSWJSPhkns7rbrYgzlpPPONHi9dwtQp+mnYyKLUyO88Pl+RxhWBcbuwJYeAXxw3HEcSn6rHqx\nAkebpeyNW7xXvjcfsAzom8SC2GWXiDJeJvYnFtJu33zzzYX8gkfm9/y+Kwzw3xl7dE68Ibf3gsao\nQLjVPp4rWv9GVX3pPM9f9fzfX1lVXzjP89fgnP+gqr6gqr66qj6nqr6/qj5jnuc79TV/1Vd91fHf\nn/d5n1ef93mftxAEg66rciYGJg5bf9uA7ST+vlNo+uwqkW52+rSOIHW6i1Nyi5mdmMZD2bHiQ0J6\nX0XaQMMxZ06WG8fL1pFjy8167+7fkUkmHZ4TvzfBTSLG1yHbBpjYdmBvUtERCOuRxMt21R12/JHt\nWk70kw6YSC54fXf/jgiNDtuAA1iXVFjund2aBFCGnS901aucz60DIcRMnka2nsNV+u5+tDOSXBcI\nAv5OrDgG+5P/bT/rbKojUiSQI7+lHbH6SDxjNbUjLiGPfO7EcnUzWatavvGOdmP9jMbMOXX398qE\nEyUXVjxHYzBJBe1kK8hvJR3W0SgmdXGSMqOfkcDbtrkykPlypYM/VZBzaGchizxGc8nfIxwkzo+u\nDTH0mP0YQEe4/Uk7GWGkdUVOsHV02GiOw+bziIexK8a2jIH6d6zs+E3nW8ajzJN469hSVYsCRLct\nfxSXKH/L1zrq7D5H5//mGyb19k2/NOU+vRBLaGcjOxolEaPD1/igrll4YRxzMctctsMjnmO+1yWT\nnXzi+07s3L91MuKMjkOZV4d5lJn9wfOcpqkuLy/ryZMnx7F/6EMfqvkTvKL1war6k/j3n6xnq1ps\nX1xV/+M8z4+r6menafrdqvrMqvoVd/bVX/3VVbVOnCyo+1ZXKLx5nlfPnXAfO4GJyknrSAiBOomS\nHZ5HF1AJjB24uNlIXTGqWr5153A4LFZgYkipLDDAZs7zPC8eAOzmlfNYychLCnIEhHitkzBWGeLg\no6o7H/BlcsqqHANGVa2qLffZSQj2o0ePWqIVkpFqIMlCt/KaAOgVHq/2OEEKUHAllOP11sIRqeqS\nLNsRbSafJqv+nr5HYkWg4v91iaD1FP3kldf3gTV9NXPw1s8cwQvajf2NpDE2GZm5ksigbZ8lSWWi\nFhtN9dZEKH6a+XkOtg0Tnbu75apgF7Cs1/QTPKK/e6Uy9yCm2q5Sjc3BZ85YkabeuHpjP7HO6acd\nCTeBDiay2QeY6Nm2I5fIKvcjNlF/JycvVnuZmGU89K/YGXXEOMT+uu2aJNAd+eTcOyKUeUzTizep\nZc6eA2MYfYM+wlXKjjxmvBcXFyt8MGawb84vR+zs4uJisWJF/fL+JthMSi4vL1eJjuMQk8n80Cvv\nletSBAruM0GPjPODxPTV6+vrdiWUtunk1FsJI/c04tD5+flxTi6qUNb0dcrM/p5/O077WT3rOSs/\nb775Zt3e3i5WsPISAuqpK4yxjchxxm8Omfjg5Co23RVpmIiSV52fnx/9gTuCPB7G9ciuKwAGF12U\nsO1zi133rLC35rnQZ35iXw82+fnpxNf4lhOzLvmhTVl/1IF3yBCPTk9Pjzz9yZMnx51V8ZfYtv2R\nfkm/jy7NQ6NL+jLPcYL5oQ99aHWvqo/vitZpPXsZxl+sqt+tqp+r9csw/kY9W8n6D6vqn6qqH53n\n+U81fc3ve9/7FqTBD/Q+P689KDiTemfRNFBXdHyPqvVLFGxcdrqbm5sFyWCwoZGaQHHZ22+DSYDJ\nEq2V7zH7e5NDyX4xfi5be0sXg6er/qPEioF/lJBGzjzfjmui5opyxphPJ8hdQKad2Ok7YKaNWUa2\nyZEecngVwOTQQNTpmec6CQmB48OsHfCxD4Om59TZHeVuu2JhwtVVBuzRFpDo2VU5ztmtK9BQn13S\n4qSEcuJ3CToMbCYFTipIjLhixhfTeEWMSUPsIP3YtquWe+mr1s9o0o47cktbrFoWMbjtLTK7TwbG\n4vuaX5rSYaZtu0vIt/zNdk3icjgcVr7i5tWe+1ZOHYdcRIiPOCkwablvTvns/N/3o+13ya9tJDLN\n51YRhPPJ37ye9+cYnXDSXz5WO3Lr4l7HHRh36EuOAR3+2E79Mh3LusPYjq848ckYbEfGE2PWlh90\nmOprwg+ID17ttc1T/+6var1SMdJTmudM/bgw1PlSh82Ue86/L9Z28jGGmk9wuyV1bNnw/j6/sw0W\nDTqORl9P8utY2tmbYz310iVMTi7JuSjzeZ4XL2nKi5/M79nsW06ciOH8bUIXo3ON9W6ddnhgGfzc\nz/1czX8Ir3f/c7V8vfvbnydXNc/zt0/T9ClV9V9V1b9SVb9XVf/tPM9/v+ln/tmf/dkjkBDo/Spi\nGqODUdV6xcvBw4KzcZD4cX9vlxSxAsWXWRB4fG0aiR0Jd9X67U5sh8NhKBMGBwMbCb2TTTvGKMkY\nEX1X5TK/7ui+64IPZe3xVa3fdPTcjo6fJj2yt1WA40pnyB7natLeJeZdAKfMSSZ5rftJ63TZtVxn\nMmibt89sJVKWZ/qjXYxkzoBrnZs0OEnogI59pDE4cSXHwdR4Yn/3nEx6uoSNvmb/tkyTnOUaB0DL\nyAExYx4FxVF7WYI8sl/ahBMvbwXqMJOHA6D9ZGRHJKckdwyK9hnqzAl2rpnn9eubTWzuI8jGsA4T\njetsTCpYMTZR6hJ2vgXMcWxr5ZM6muf1D03bLq1X6nGel29q6x5m34oZo5hCf7fMO+LkOdOOUsTg\nyqWLBh222I+Id5YRnyXqXhRj27Rv2I662Ew7sh47WXZxbxSPOT9iJH2TvkQZdEUE2kXwwc+9d77T\nxaGMyxjL58f9NlvuXOg4XxdTwzdGRc+7u/61//fFGZ9DexgljRwz7fK+z1Hy6kK0cZYy9xg6TrZV\nGObhAqITHfMNY5jlFw7l2Ji52Fe7QpD77PybY3Tcubu7+8P5Ha23qk3TNP/Ij/zIAlRYPWFw8KvK\nn1+/Ih/59D5zk8Eu8TJJdyCwU/GeNngbl42JhDMkhIlU5pAkwAE2BJvANkoyGMCcSFGOBgFvGXPQ\nz1aAHCb2VTWUeUda+H8GrsiYAX6als8ThAAzUbNddDIiePlVxXxYN9ujWKFhkBsR4C7RZDDhdoou\ngNmWPCfL0uMwoN+3ijd6Li19jMh5xjdKTvJ3dOnEKp8jUkK7MtGy7TjgdgHG+nCw25Kh527/p2+z\nkpjm8XLL64MHD1YJqc+3zE0+Y8v+UVZiU0c2t5K5TqYcA+2qq+p3drk1Rxe3qIeuMHN7u3zFfchf\nZJsxjl6q1BUMTIC7pIu+bVu2XXgXAcljkgI2YzD1ELsyyXDcMtn1PLtP+glXVk2ccg/KxHr39ibj\nDbGmK9iNcIR4ZFynDjy/Uf/sz1vQR0mB/Sf/ZkLQPft7H//okhJ+Hxwnf6DMgx8uUOc4HA4rvKEt\nxncYlxgbb29vV8/qEUPSH/2ti5VbHM4ydzHKW+i8lbnDA9om9dXJ2OOhjF6Wk9mn/Gyv509fSBzx\nvM0P6E+0MRdSOgz29cRUF6e46s85f6wY63saU50YOU7YV3i/bveH72Mc7sbhMf3CL/zCq51ovfvd\n7/b/HUEgyotTdEbCvwl+7K+qJwk2yq3AYwO3MbvZOKrWD5dugX9HYH2+QbQjf1vgTRn6uxBuAkdn\ngJ3cI3MaNKv4JLMcr7+3wxCwOoJOGROctwi0gYjJeYiPgWxESjo5jipEXtkwgeYcR/ZOeZGoOph4\nBcngbhluAQ5lMDosM8uhS9A45szHK1b8nkk/Ce0oeXMBwFU6yjBzZH+WwX3+MyJmtg0SLScN3k7F\nAO4AmHnRPu4LaMYHE/Yu6N8X5Ef9Re/2GdqiSc7NzYvfGstbBLtEkL7vgp312iWQ9CvjhxME4llW\nnJhIdI1jdlzo/L2zLfZF2zThphxGmLuVlHSycTGLsdlbzi0D4xPtlHHChZORjtifY/FIJl0i0/ln\nmvvv/L3Drw7X82lf6ezA8Y3+2a3mMBnkfRx77P/xXduouQPJaMeB7lsdNt/pYkqHuV1sDKZyrO7D\ntuKknMkli9mMI47tnR2OuGbVemfGfWPcsnP3lwJax5GYdHQr5plPhxejlSQnWozHjl3GctoVPzu/\ncGGmK1LwHNtmZ4td8si4ZBlQjvaXeZ7rl37pl9pE6+P5Moy3vFEQJIdPnjypN954ow3i9wGdASdL\nmlGeVyoMcn7VKBXMe6R5yTTEKA/Ejkg/DdBz2nrmIgbaJWQ5uhUqzsEGyZeFsDKQg+Phq+XzmWYQ\nMZHJXG9vbxcvDJimqS4uLo4rZNM0LVaX5nn545cJAHTwu7u7IyHoiGH6zoPVPC+Vf1avA84j4M38\nDL4EIa42jgAp1xAEQi5pJw7YDIpc5cuWlnl+8cD/xcXFIpkkGFNH5+fn9fDhw9WP9UY21qsBOr6Q\na05OTo7yjsw9Br46nb7QySz3ygtZOJbI3XrPg7RcpetWKryykn6NF67WGhuSHKSaenJyskqUaHv2\ntQS4fE//CjE0EdxKfm2rne11hDlyYfU1cx3ph+Pk4dWbk5OTxV77ESEMoXC12AUrz8GkLr64tSJu\nUscxxZZj89SlfajDhYwv5IEkYlR97eRI34htO9blM/6S30Jy4sTEKP0yTjC+xuYo69hdMMPJYlWt\nfjaks718n0TOhNj2QJzM2GMHWdl47bXXjnhDX4wemQSMkqLYQuLdaGWA15rs3t7eLuZzcXGxeKFF\nbJM+7NgaDM19iLFPnjxZxeeq9Sr8VpzqEi/aU/QYXAufOD09rYcPH7YrRIlhkYf5gxMnJnCJfYx1\n5h7meY6NiX2MU8SQyNzjdkLsXQnmGx4nE9mMMxxzaztlxshYwtZxGnNf40aXMHuOXQJOX0/sTP/0\nZ68wdTGAYzSnIx5QBrkutkWZ8B7BASZnvHdVLewmW53zgiqP877Ck9srs6L14z/+4/l75Xj5m80B\nhZUCzpkPzCXr5fndr08blDDOFVCRGHXEJ8SKQX0L6Dj+AC4NzKDQXds57egIsFGOruYY6Ak6AQnK\nxbrzGAN0DOLWG4GsI8wks040q5bBpbMDA3G3UtkRGpJM6qa7nvIz8en0bbu3bfG7kN7RvnFfM8/z\nChi7bbi0HSchlscogY9eHbAsE/dHwB8FfsrAejOhtox9v6r1qt0W5lg33XzsG67W+loGjthlt72q\nI0D2L392/2d/7hIkXms7i579DEa3PWpUeLFd0I8tA69UJMiTqLBCbB2N/s15kxRzWwrJtG2i8wUn\nRlux17Zj2bg6SyzoVqgs06p+uzbHuUUkTL6q1g+n23dsO5RXbIkH7Z7Fsoyb88/zz5a/bZj3NuZ2\nsZuYZcwMEctBPXQY3c2R4zMB9RxJuCNLbxl1IbfTM21hZHv+d4eJ6YdzcOLXxQEXKe/jTKNiUGTg\n8XZxqbN1Jz75HMWhyILXd8W3aZoWnC6xk3bXYSaTw25c5AYd5zIHskxHuo0cbRtdIee+InD6Yt+R\nWRe/eW9yTOJ+l0xW1YpjuXDh/mlDSb678XR8s8PCbg4//dM/XfOrvHXwPe95z9GBWAEaAbeJgfqr\nqnVVIMpikLZgvd94BPYjYuKA6CXOqlo5vVfg6KRVtXBqG+QoyHJeXuUjMQ1QUXYcL2XGFS4vLXdJ\nBVc+KC9XV6rWiVEXyJzQOnnz9wYxBh8DpbcKUr6Wt+3Q8+sAynMmuXOi4Opyd//D4bBK4F3Ft010\niUYHhqwCGghNnFzk6Mba6Sh25R/b5JwcdEPALTcScvovCWmu54/nupI4TdNixSorBLafrcO2GnvK\nPF3NzbhMAmLHkbGJC5NXV/m2AqpJQ1X/4gbbBX3NAbBLcNkHm8kwbSX/b7LWEdqXbaN5jJJyypQE\n3HbXJdzERBPozD2ftAMTtciAcapbqRjplsTDBNrJGWXUEc6OJHVFytPT08X2zqxUMo7YXz1uE2Da\nDO2CBUH2P8/rH3l33KGdm1Te3t4u5nB7u3zltFdrrAPHBus811H+tj3aHH2R9+N1Jp9ZxeMzVZ3d\nj1a3nJzaNsypEndc+KA8WOTsitmWqZNj+wp9o9vWb84wwpzMiePhnNMSl1gQ8GqwZelGO/UOHPbX\nFVZ8bsa8xXFsX+ak5trxj67ANOJTTtTYf5eoeUzmPlxtip1Qpl3RZKRTxs4ckT2L7bZb9tnh6nvf\n+95XO9F617vedS9peH7uIuASaEJ0GPC2AubNzc0CBPKbDjZQXm8n55gyfoIzjc0GY1DgnNNsDPO8\n/m0wg7kJN7c6cXtJ5nlfVc2/e2GHMbB1zj4iNRm3V6caG1n8bT2bKLlCZmB0Qt0BC/XGT+qS9+yc\nnMmsx9TJ0MmqQaADc5PJtK3kM/e0T3UyvY+YMSmgjrkyk211DFipGIfcmIB2iauJoEmBE8mOCGUO\nXbJsmd1HTke27uCbc41JDAaumHcFBtpm5u/tEqME3M9wUV7s32TYQZ+k4eRk+RawJJPEcduBq/TG\niM7fKJPMOfet6l9pT9kbn2g3sR0TCeK0i0ls1n0Xc61LFx1MCryiRbsJSeC59MfusIwts2maFjKd\n5+XvJSaRsT3z6MgiDxfnLMMumaNsuwo4v7cvd/jRjb3zX/bJZiwaxYbRZ+dbPIiPWcFyfO70nk9j\nLBO8qnURgyQ8vuH72I5tN91qsDGL47SfjWx1pJMOs3gPx978P8/fwlQ322bHYUZYbU7GIsGIv9hO\nMgeOzcVzy9CJVJeIsU9ysIyfbeSb6aPTif1oFGdzdOPr9DDikR9r6zibV8xsWz/zMz9T86ucaP3g\nD/7gyokDxl2ygmsXCmajg0Q5ztq94uW3wRi4qtZvCusMKodJBQ3QhsPrTci7JCLBxonVKNkcObUN\n3AGtC/och4HTlUYH1YENLGRnMmoSwEQp5ItVf9sEx1e13K+bgDEC7qpayWD0/IBlOwKD+4iQCXn0\nPKoKU28B3o4wMikxcfT5BkKTFK/YjuY7kmE3xy6xYTLqYGDbMxCPAl6AlDZA/4+sSTZDcO3z3X3v\nCxYmDRzjyDdoN7Zt+3MXjEgKKEPb0YhE5L6dHbBP+iKDsmXSJbqdDDqc8rzvk7HJ4VZi1+lklHzS\nf3lYZpaBcdnzYcDnLoKtYpRtwETNccMVYtscV6RY/CGOsr0sIbYd+fpR/7YbrxY7aegw1jGberfu\nbXtds05Y1GCBjThLe7cvjbCE/IWxOTphkuOqPXekZMyxA5L6JMe8PnrKWFwE6PiG/c9JivmDbaQr\n/LJljl2xqis6OMFyEuJY1uGdY6PtwnbA+bqQw/tRD7SF7h4+x7zQONrZvvuzX9lvGGfNM0e+nfv5\nfC8QWM+OB90cqZstnmU5dRhy3/Vdf698ovUTP/ETQ7DpiFPVekk3iRDPGfWVwxUkV2cwxuM9aWBd\ngHXyxr9jgKykmmAYqNy/txLaOLrqiSuo+QwocN6ulniOJlZbzQ7eOTc/rb8uCZmmqZXByH6q+t9X\nc9JhuRg4Grs9HgRhLlOT3FFP3bw5B+okRIvJZVUtAqhJhvuzLVX1P8ad67pPvwUoY+GLIbptctFT\n5jXyRSeRJMhe7R2Bqv2GerHdHA7rFe6Rrdsu4v9crcmYaRtdf17t8ct2KNO7u7uFTE34uIKehJ96\nctW7qla+YX+3XdDeHUBd8ea5nZ+wRW9dwDUZo296Fc/EhYTWJCFkc7SaE/Jl/+f5xoeq9Rs9Owwd\n+Zb9Pfc36WOj7+flEZar8cb44BV3v2DIfsn7seBGWzfG0B+6ooXJqMfMwwTZtmUs8fcu7DAWm3B3\nCXnVepfAVpWf+s3fXu3tYpWvNf+xL3S+Mzq6GLlVvDMGxm7IX7gjKMUq4sPH4gtVfcJNO6KvxQ6I\nNcbcjI2YSsxlAtvxOieN5AL2LdpZx7FGK1QuesRP/Mr8tGBapzsm+C62Uwde9aOc8/2osOL+40ss\nUtKGjKHh6pSBX4xFzpYdMLTXTia2XTbH3lwT3Xo8mSdx/kd/9Edf7UTrh37ohxaVCi9L07Fp7AzK\nJh1RTrfkW1VHJ6Tyu+TOShsRh6rxw7B04peQx/FvA6VBIPPgtXSsyJAO4OdQ/Oa0reAUA+V9R4DU\nycBVtOiU/TGB5iogK6+WiZurt66qWYZOiN08r65y2tlHR7jv7ta/l+SE1cHCIEP7Z//0ja6CTeCk\n7Yf0d3vt0yd1MrIbysRVO5K1btut9egqGoNaJ2PLvpOjEzEXTrrG/++Swe7eHgM/eb59xvcc+T9t\n0pVDj9kE+D5btT74Zqjr6+vFNmJubxoVdkgG8z39rcOMDuc5Purt7m654h3/zPdd6wo3mY+rrU5W\nLT//Tb3mMCnyTgduv+Rru0ky7GuU4X0FLxKzkFNeP01T+3IdEmzLZMvWqbOtqnen5zTGzejZ/kfb\n4r3sKy9j77QLFuBoR8ZQ9pE24lwjGfFv85XIYSTjLrn1PTkHE2jHlcRe+gLv6cJPEm7jk/3YhJZ9\n2j7YOrwate67LrEkqe6KEPbzLuH1PZwAeGcWfY/J4SjZtG06dpGPnZ6erlbAtzhr+vMqYMdTRzK1\nzHojIXUAACAASURBVDr+wrgQX6GunZB3PmnbNV5sydFjdDOOkKPy0Qb+rMhoReuVeb371dXVMSiH\nlFUts1yDP8E3gjUQGoRIplN9efr0aT1+/Pi4VZAHwTzKMCE3iYnC+DxUVy0PkBPYMif25yTHP0BK\ng8x9q15s/2Cb5xc/YPrmm2+ukoDcsyM2XVWMQNgFsQTxGHrOD8HIdbyeoHZ1dVVVLwhnZESZOEBF\nX6zWJDnI60kNXLkmDuWEnQBxOLx4NXoCTvpOAuukwkCQlz+MwN1VMZJTB0ySAq78ZE6Xl5eLRIky\nIFmn/nMf+1pk9eTJk1VlMcWR7noGLeqFcu0IBH34cDgsfhg7cvRzJfFR24XtNn6ZRt+NzL3SwdbZ\nPefslVMSs87Wg2/RYfDnyZMni2ewXHWnzRjfqparLSaHHckwHpycPPsxbfrJzc1NvfHGG4uVDeID\n5cL5RI+0666o4JVCyjDj8cpLviM5iEy9kmniRHnkXkwu6bv523HFBTuO+/T09DjexJ3r6+tj3IlM\n4p+8B5M0x7Pok/Nx8YrY4Kp9/Ib2n58h4Rwpx+jRZJK+yEJKYpQLL8SBLjam6k2fYGOS6UJOEu6u\nXxJ+Ezr/bZnnfv4pmIyNr4/v+ASbxxPbJ2l3ws3vuuJWNyZiPPG5I9HdtS7kxE5HBUKuHhvTulid\n/vgGP9tvx08yb67usghBmXf44uJUWsbDbW4u7NDOuLqSebqIGft08T/6Nn7YNrIV1b8pRQ4Uu7y4\nuGjnaF7mnVZdvKVN0T46f+rOJUe/ubk5robf3r540czDhw+Hjx6MYmxnR/F/J7Mci3Ewq7Cxo6ur\nq3ry5EldXl4e+cbDhw/rUz/1U9sC/LF/Z36fjG2apvmHf/iHj/9mECHwOID7/Bg4X+PtSqJJgcls\nV1E1SWYzIBj4OFYauYnNqP/7iFkCEkk45ZbgwKBEY8xWwa1qhoOBl2A9RzcnQJ6XCT0d2TLOtQYZ\n6/k+IrSVTHa21ZFB2xVtamSnH4uut2ytk/Xo3wyuBJkOWBkUvcLV2QkPk2PP0XbTkYzR9qmMaYs8\n8R7RAROlgLu3gEVGGYtJLeVvbOiS0e48Evrunvy0vrfayHZtq8YE21PnKw7CJO3E0W7rH+fplQgH\nTMvAdjUijl0hjRicz6r1W029c2LLptInm6v1PijDEbnip4nTFuno/u7G0Mmkw7iukTBTb1tx7T78\ncmxl/4wL+UzRMLIMUfN2Scce2woTK9q9ZRI7IX51cXEk06rlb0yl+MQkwvzANuQicdV6xYeHdc5G\nux5xGX/P8+KLjpve9dDxD9sg79nxF+q5e06e/sHvnj59uthlkR0w3Vw6v6CsLLMRHlTVIo5GD9Rd\nhxfGUPZhfVhHxliP3zKgzBnXiIHGYGJTl/x6S7rxwJjL+2cOLIJ7O7Z3TtguzD9Gq3gjzDT39/jo\ngx1/qap6/ojTq7t18F3vetdK2fO83B8c4XSk3qDFlQzuO6diUjHqkoYcdnrvnbURR5GuHFaNl6C3\nyCS/z/y7IG8yRwfoCDqNzk7aETMeBr4OBKgzy4xzHAVLy6urynMufmbL19Mp7+7uVm8dtB25qm4d\ncj7Z992RyYzPc+gSPAOJiRH/dlUtts5gQ9C6vb1dbPlywOIWEIIl9eHqrJPbUaI1Cmiev8kXk8ME\ncV5rvVatn8XjvSMz+r/H4kqmiQyTQSb0maeDg/VumbK/PItHmRgzaOupAo7IJ30j43Ji1AV9+h/x\npgtklkkSchORjpzn09vmuqSgS7ZsV07uTD6Jh1sEtcPpl00icrhiPErIch+uXLAAMCLG91XljfEm\nQ1W1smMXWrq4QWwYPdeWe3hbvpNN4keSEmKYiVSSL9qW8cMVbeKHyV5iGcmuMbNLyDtMoH+awDLO\nMW6cnZ0tVsAuLy9XCbrv4RUurnIkDvD+Pp+knS/HYILvZ0K7WEQ7cAHBnLMrZjuhJOewjDgersDS\nH3hktS3Xxy44J5NxF+gcy73ryDhBX+wKvbZb+47l6wTA13MVr4sbxJ8kSmy0gc4OyC/yPfnD4bB+\nAZltP7KNrMw3nAwbs4yhXrkkNnWYZ7wxN++4P1t8i8nlT/7kT37iE61pmr64qr6lnm1R/I55nr+1\nOefzq+qbq+ptVfWReZ7/fHPO/O53v/sYQOyI+buqFuBt0tBVV7pq6/N7rvrzSkfV+tmeVNlIaNkc\nELsKhea++ndXGWDj9zbgGHxHnHKvLgDze5OKjiBsVWNHSQLHPCIe0bOTjy55pGydjDv5tINtESde\n5wA6cuJuzpa558PvLdPIgcktiUgCFosKnF/VesuYx2Ny52q7bbZLsF1R4jUEspACE3KTAM6JgcZk\n18mryaaJav7PCfkWfkQmIzyyjSXIuxLI7+1D1DH936Qm37mwQ3/t7Ncyr1omo4fDYRUA2RfHE78x\nSTbGZfssHz6nHJ2Us38mJaOihYsOt7e3LTm0j498MbbU6ehlCbW/d3GJP2PgZJIYmz66CrXl4gTd\nhJZ+wOs7Mtz5ircGOpbaDmw3H2tyulXM4kqFD2O1k+duLMYPFvB4dDK1n3klwElFR+zzaRzpipy8\nn/3A/+76MJklLidJIH/gGLvY7thF20l/XVHRc+/0U7VOzEh2nWjRXjLP+A6LqLYLy8xxgLZoTK6q\nFf5RPuYXOZ87KzxH4+J9O3BGxYr8bbkeDuv3H3QFM2NM+p2maeWLXL2Nv5Kf2Lc8H76QJCtY3k1B\nuXeFXB4uBLs5FnaFJOok8ZP+/WM/9mOf2ERrmqaTqvrVqvqSqvpgVb2nqr5inuf345xPrar/o6r+\ntXmef2eapk+b5/nDTV/z93zP97QkIwLIpw3YRGdUUcq5JugGqq6/LvEhwXfQxLwWn1XLxC0GbKei\nscSpDL4ETgdEkxoGIQMHgXfk9I2+FjKzTLqgZhmapFqmdlo2B9XMibLuKkS+B4MViVpWLkfV2ATk\nrYTSh8HLAc/26YpO1bpy6PmTnGVOAfiQP67WWKZuJjEmS04+DXRORu8jSV2zTE2OuapnsLUu5nn9\nxrxRcjiqvpqgez5OIlw1iz5ia7YjJkGsxrKKx/5caHFRocPArqhBvOkIsAmbcdQYy79NtGwnnQyJ\nYffFheBJDp9vvRDXiUejeRMz6c/2DX5vX814acckPtfX14sfy3XyaV/pvqdd2185Ps6Z53o1mHq9\nu7tb/SCxMdTys69Yr9SBizgnJycLP2FySiJEPcR/Mo+OTDpxtsyM5SZ8tL0Ow8wfOs5ifOMnMZvF\nq+jCvuQYxASbScSIb8RuuNvDY7M/U48k2MS40eqO8cmx3fe2nTKhJ653+JH7n5ycrHafdLsAeG9z\nMOvWscVJ7YgbMFEjrjNO2LadzDORoi3y/izMOqGOnl3gIEa40DPP82p1xzIjF+j0OcKDjtdmPqPY\n6xWoLiZ0/sbme/j+9pVpmuq7v/u720Tr4/kyjC+oqn8wz/M/rKqapunvVdVfrqr345x/u6p+YJ7n\n33k+sVWSlXZxcbEKiBOy6Gx3srE4wLmNiHA+vd/XRCGGn5UsO1jGkyDUrXiZrJi08OFhBx4HbTtx\nAiINPMEwAZFb5DKmjhQQmA6HFw/8OknwHFNRZkV8pJNRspu55zPg4aQiOg8wZYxdouB78983NzfH\nffS3ty8ezHz06FGdnp4uAkUejKReqNNU5Q2mHFP+P3bcyYVyzni7RCavdzdQcWWJ8qVMua3CvuRt\nb/SNrjLpRGWUcOZ8k5boIA/IJkCYwKUZFDOfi4uLev3111d2kIAaP4jtRobdain1nucDci59LZ/G\ni2zfYSJDAjBNL7ahMCDRB4xZtv/gDcnl+fl5vf766zXP89H3Ly8vj4TWOonsMtb0WfUikaOtUhfs\nP/jCCrK3W5vsEgtj65RhZO7tl8Eo+4aJczCik2nmTLzyGOgvrjyb5HdFgpBXEiBuYecK15tvvrmI\nG48ePapP+ZRPqZubmyOpefLkSUvuTAZDnBlHac8cX2fHfOFK+mP/xuxR4kACTDzLg+9+jsSyyz2i\nLxP0rtrNhNp4yGKTx8rY7sQl9pq+7IeZE7eUOfY6LowKEyR3Offhw4cLu3fs647gFgs5GeOjR4+q\n6sW2Mb5oKjKoWr5ZMRyIMre+6H93dy+2Nxr/Oz2bWHcxPy1y6Yo/5FNMHiLz6CTyY9xwsmZbDj4a\nL3he5OOthbEhJ/TBgtdff32FmTwvn/GZi4uLo562bCk2w5eexbYSe+xH1BOT0cePHx9t/eLiot72\ntrcd47cx5vb2dvUiGvubCxb5dLJ6cvLspUexPyectHtuj+wKBLF7c5oRr3Sh0oUrt4/nitZfqWcr\nVV/1/N9fWVVfOM/z1+Ccb66qs6r6F6rq9ar6xnmev7vpa/6BH/iB/D08qtbbH3wOCbETKW5T6SoN\nFKQDygg0HICtjC65ch+doxBkOLeRXNhofCSPXson+ebB8XX3c6Whq/ZsycRzdtWtak04DQodII4I\nZVWtAlbXP//NAG27iWx5uELFcZisRobedrO1GjO6nsvgnW2b+FD2lmlXQTLxoF04yHeVx24sXQLB\nAMvqMld3qmphJ51fef4deFPftkkHDcuwIwG0M9uFCa9l6iJHh9cmYvZLz9nJplcWXbjhSjrH5Epf\nmhNyEyav6tm/TJTcKN+u6GBC5WS3iwmjODIqgDk2eMeBbd22az0Z47vEzWSTB5v7zt8cs/2JvsHV\nqtFhu4k/2t5M1KyLLbvobHsUz42ZwbwuQU9i0dlSV7QkFvDcDlMd17gLIomNfdc+1J2TT+OHVzpd\n5LT9Gj8cZ2wH1HV8kautkftWYmPf6nzTCfRWrLrPbmxftn3G6CSfo1XC6IOxkHGABUCubNh2KWPG\nBd6DXMj+PuIulAll7/Pv89/YM5OK+3CS2DLy6fy/45xt2cVlYhwTSx6OMzyXmDjiqpZHJ3MXq3y9\nE+Tn75L4hK5ovUwGd1ZVf76ebS98VFX/yzRNPzjP8xOfGIdOdTtAzFdmJ0hz+dLKjBKyQlT1zLHz\nzAAz/dvb28XvRQScaWQeYxfYO6K3RSx4WNlV66VyGjCdJGMyyOT13QHlvC74qDg5Df/PW5uur5/9\nbs7FxcXx0+Ny8O3IJJfqU6lIfwF8j9HJVJcMd8SUFahUMnO/R48eHbdkdUCXgz8MXFULmVxeXi6A\nPFX3zoldlbfMsnLAuXXyZIUpwSL9xzdGIJg+/XySAydB2USoqlZV+cgiYzJJcMCzT2UMBMCO9PJ3\nLLwNxqvHXGFOcOl8lnPLvTt/yv/liL468E+A4b516jLVTmIDH85OUuLnC7YS8vhWKra0C65E5DoS\nLM+fmEks64iSiRWPYNAIR7eCX/RAG8jYvcLCpIL2Q53lb+qcVdd8Bou4cyK2lPOz2kO/om9wRdz2\nxsINV9AiL1dbTcpd3DFecYzEB+qbdhSb4D063DB2cOuxfdXEzvrleLKFy/q3fZAgsnAVf+cRfHjy\n5El99KMfXc3RdtZhgklb7hOCHTl7W1xa5BOMIDbc3i6fzTk5efFCIhb1gnU5P31eXFys9M6kPn5j\nwuuWa5IYEts68u7CkrdnupDrZNW/2+miBG0/nI64np1GTPi7Al94ne2KhZJwIcaX6Jm+ZX7XrQ53\nOBD98tzIIFwsu0l4pI/8TZxL/KdOWGggfyGPSPxi7DFeJFZGBn5hGfVIzHULh4luuuSPcgomJuZk\nDsadzIW4lT7MX/hs8Pn5+TEuXl5eHl808+DBg3r48OFwRwl1Sq4dHYzax3NF61+uqq+b5/lLn//7\nb1bV3TzPfwfn/GdV9WnzPP8nz//9vVX1znmef1R9zV/+5V9+FNhnf/Zn12d91mctwDqTpJPFYKgE\nPoRMQkECzCqKVzL84CXJdFcJ7KpcmNcKqKI0VtHcn+/nN+4QhAIMvLeXR20DvH9HuLsKcMZpHWSM\n/J7z999ddcQV45BVJkpOQrz6M3Lo/G07InFhgs6KNOVqosFA0ZE7y+RlZNMRWMrJFWrqkMDoymY3\npoAv5+XWydD9Uy+Wqcds4GVgsF8E2Jj4hQywsmi9UV6UEckD52Cb8XfUObeUegWK8ujux745Zs97\nhBdOetgX+6RtG9uCN7yOATTjtwzcPB+TU2OufcWY6TnRHrokwAS7s02P38kzxzPP6y2rLm5trYRy\n7vY3EgXqzDLoVrCcSIWIMyHnc6xOPjt/tT675Max1sQ753E83NLJvrf05sO+a13SJiIzJsRc7eH2\natt750PRCclat3LZ2UX8zXYR/LNeR37V6YN4mti4hald20qo2V98j4lO1ZJPdDsJOL7gts+xHbB5\nZ0SnI2Nid8Q2jE/deEZyt3zoC05mnHQ4lmz9bWzuEjnqzLy1iyuWkXfHcJy2fesh/s2VWidifOSG\nuM5YYzukr4/iUA7vEuq4Ag8Xq0Y+YH5Lu6FM5nmuD3/4w/XhD7944un9739/zZ/gl2Gc1rOXYfzF\nqvrdqvq5Wr8M47Oq6jvr2arWRVX9TFX9i/M8v6G+5ne+852riTsh6MCewqla/55ApzxWmDrjMNjz\nsIINvqxAZSXDD7OPErPnslglEQbKUQKTT8+H9+cYmbDm2i6x6ogPz+sAiNezkXhx5YTXWSe2g+jF\nxMD3ZH9dEsBrLCOCSrZomJB7uZt2aeLlFTDbVs5xssGko6scMsFg/z6maVok7Dc3N6u997b1kR3k\nMAnw6o6JEn2HWzA6m0sw8iocz6dMWMXnnNhnfJGvb3Ylk9/f3Ny0zx+x+kwZsuiQcdpGRm0kA8o0\nwcNBgvZStVwB27pnd798dsTI/mmiMSJy7tsY7wBpvXPVLjsR2H8KNSw8cW5O/DLWUSJn8klilE/7\nEt+y+ODBg8V4s+XLiRV9havFDx48OFbn00eqsbmHbcOfkQvtwgTd9udYOypiJrHzzgfqmXZqItOR\nb/puxuAVdsd2Y6JtlbGDhR/KiL7TJUbEsKp1casr0HHOxiPiN/GDBT/GIcvUtrzlZ50OLGPKJPcj\nplXVCjM7/tLp3ZxrVMT0nBzD/Ap8cwIT5y6JMMk33rr45dVjtg4fjCecb2dHLnIyaeFKY8Z6Hw+t\nWv8MB8drnZiD2XfIrYiz5necP4scScS4+6zjc/zbdtIl4JwT9WwsMBdncZwYwCMrnt5BRzl813d9\n1yc20XqukD9Xy9e7v32apr/xXBDf/vycf6+qvqaeJVrfOM/zO5p+5u/7vu9bgX8E0m2XshK6lY0u\n63dSYGew8g1U7tukwQbt5gpZSAUfqKUB0QHcIq+OzI1Iflc9MZm0Afr+3DrQPYfCsUHHi/HwnibE\nIVZcxeMcPB4TxC6gmOhsBadu3CYzBg3358TOQBByyC0YJrdbRYbOzreqdk7AR9U5fkeZWj7d/buE\nvGsm7NQJfeNwOKyeufBqkv3NwYlJUfo08fAYOD8TWAaT09PTFaH2ymcnJ6/umFxyRZ1y6vCFwcN4\nMSIXtJeq9QoYbcj9dxVl28N9AdK4bEJtmeQcFhjsKy9bvCKp5hgcZ0yEHEesV8uEZDkvRdg6SEr4\nQgqOn5hr+VtGJNov0yIDFklsd8YZY4KfqegwyQWpTqajRIykKWSOdpVtd/HFkL8RxvJa2kp3xGa8\nujOyg8Q02vfd3d3CrlK44ZbPzm/tu5SR7YjNCUASfBL6qvULPTgfx/ZutaUjzbQbF6esA8ce2/6o\nYOfYO+J9I37A2GoZMw51OjF+eWuwYyvvX7XGdK/ekPCfn58vks2rq6vVNrkUZrh1eIT/8QOOyYlb\nh4kj7IoM6ce2syQ+W8Vk+yR9jRjaFYbJU7uYRE5G3tptt3acYPve7/3eml/lHyx++9vffkw6uA/c\ngcIONALGHFaogd/nu+L0fHytsaZ/BhcquRtv1Zg4kWy6osY+fZ0N2A5Gh2FixYqxKy8GNgO2HYTz\n7FZvLAOOkYR2RBZdvTJY+3vr2SspDoC2A8ugW70xwc08HQxGSYTlxOSsqlb9OyFy8umKjomOA7cD\nJKt4If30B9uAg4nvZ39x87wtI8+VrQsOXVD2YSzhHEOEDMb0ja7dl2R0gX80JpNZ6tzkK43f+XpX\n8DoCbTyxLW/Zetdc4Lgvuey2fIxWGiITV3NNshyAaWf2lS5x61aDQ+IZ9Emq2aw3n29ftT96Tp5z\niAyLUZ0dUWaj2Bqd29Ypl9hZ5++xCdsTv3dfHWHOWLZa5zv5dFLAWEOddOR3dC7HWLX8kWav7nRJ\nvu2S4+3IK8fvFzd059s3fD7jHuMKMbrb3ZJ2d3e3mvPItql33mOLj7ho6USvi6W2K+vNMnDz2I2T\n5h+HQ/8bVC7UuAjI+9NvHLcOh8OC8D99+nTBKVOw4/0cVymP3N84bh/s4gr172t4/8ypiyXxFeOD\nx2Nf8Bi61V8/vsGx2f8di13Uq1rzxg7TKZPv+I7vaBOtj+fLMN7SlocU46hPnz5dEQAaKQkzD5Nx\nPqx/e3t7fKkDX+xgBbgCxepCR2Lymt4YA7eAhGzl06t0Cep8ToZ9GyhiGKxAEZiT6ERGkcfFxUU9\nfPiwql4A7dXVVT158mSVlLixr8yjIyhMXqPLqvUzYVVjEsHXbo8Sq45UhHh0MuuCAuXIysUIBDqn\nzX1Tgeb9CIi2XwbI6Cx2liXrETlgQp7Xd3cJ+eFwWDx8ezisf5iWQepwOBx9MAE3tp3DiVg3tui7\nI/H+m/ok2cx4aasdWFNvBufI9b52cnJyfEkKCfiTJ08W98x9vGLl+RM/8kIOJjoMsgngtEcH7fjH\nlj3wO2JTl3BH1pEhCXjG4pWNbKkgWaMeuIoQX8gcTRJI6PMgduSQF+M42RsR6MzF/ac/jjc2b73G\nR6kXBlb2H3yi3jtyzfmnXxMpyjA+QxxMs83HtnPvhw8f1muvvbY4l/pnwdBb/5xMmXw6DjH2xvdo\nW149zr3ySmpvt0yL/Jygu7lYYX/Iv03YI5vYBZ8/sq27GXcfPnx4jKMcEwl3t7JIPXOejCOJXzyY\nJEUmW3Kg3XMVLzLgHHPfcAAWJVhkyDWM3Zkr+Uvs1/fj+E9OTo7bg7NlzqsctIlpWq+I5dpgkpMA\n235i4dZWwNhDxwNoVyxKMI4Gv1jIoS8wUSNnCx4xBtO+On2TNxlDzLHYR8dducrYJVucP+3MGEu9\nd/Lj+CJ/FoqccGdusan4c+T65MmT1bhyj3B1c455nhcr7eaFXOHKc2fGl1F7ZVa0vvM7v3PhKCYH\nJoUMSq7Cu3pK8LXRmhC60ZhOT0+PS7RcUmXj1gY+kEvgNZFPG5EEby3gkrFXHpxskvxtbQnhwTlk\nxYvARbl3VfvoKYfPr1pWO3y+iWLVMkB1lRQT8i5Zy32iE9qXiZMTMoOIx+AA6e9zXQfg3f06vRhs\nGz9ake7uft11Jk3zPK9WPjn/yJBy9xg6PXEMHUH2tjv7jgkVA7iTNwYUF2K6ZLDqRaLmAMniTpf4\nEqxNcOnvPt+VSMqHuhrpkHbDYo4LRuzfdtnhB+3QffGexpfIzFvIaF+2Uwb8biUiCRsrmSQyXVW7\nC7Ijfxo1+7z/b+t8398rWF4ht19SppRJmlegSUK61ewOO7wq6PONhSYd1DnJomU+kqV90Al152c8\nP2PmfRxHPKdOR0zM6IssYFEmXWzl6gqbZUI92167OGA8MT8iEU3i5nNo7070iP2j5HUrBjnJod1Q\nT8ayLhb6+/zdJacvc3heW3qnHdO/uvjfNWN2NwbjIIsYLObnGU9uK3XM8mGZ2jfpb040KXd+ek62\nCfPKkU13PuAxW5bzvN462GGAdz7Qfrbkz1g88v/OTr//+7+/5ld5Rev3fu/3WuGZpFG519fXx73a\nOceJ0H3NiZSByi9FYNWqM5IY3c3NTV1eXlbV0ulGAZNkNpl1svazs2c/9Pi2t73tCO43Nzf10Y9+\n9DiHVA4Ph8OiwpxtLgZyP1RMI2RSmpUBBh1uVwkhJ1Dc3LzYK8/nDWjQ7DNEKnKOLqLbjCMV8Fzj\ngBHizWSN+9BdfeGc/WC3QYHA64pzdMBK21aw2QLGy8vLxTYv6sQrpU6qSFRinwzIfs0u7TEy8GpQ\ndJPVXMst9kryGHuMfJiYeWmfr4u331e9SLBNpvJp4ufnJ9j/4bDcmsNXAeczdpjXdBuDuBpN3zL4\nxx/9DBd9wUDP1aIuIId8ugBgUmgM7VaKGez4ADYJM+22C7C5JvgUWdP333zzzeP/5/XpxG8mePQl\n4hNJc8aXym+3+kOZdcUt+4XxqUt02YiBIzsw2aVO4kt5SJyrP35WJvMjAbBNsADglVYWbVy0IIay\nGGRss8zoK7w+r1HOsySWoWMp8YZFy5Ag40fkmHl5TMTpxDgTMcvu6dOndXl52b7R9+HDhy1RtC1w\nDLH7q6urI8ZxFdzy7Qh4/p92T5nwvhlX5s2CSvCPhd/4ePo1HsVWeA8n/YwVd3d3C4z1Kn9VLfTs\nOOEVsNi6VwbpK8SH8I30nRfHPHz48FiMti0xVrJIQPkaP7tYwzjNZiyZpulo3yweV61Xsnmd5U8Z\ndRjV2Wb6dqwxRpoTkqNwvh1eJ+a4SNBhKq/pfMWrnycnJ3VxcbGwx4zL9/ALRcwvrHf7VHyCc+zk\n2rVXZkXrHe94x8oYqmoFQF02v5Ulm9RQUUwq7su6Mxb/7S1lrM5ya6Arl/mMYXK1x88rMEDFaWNQ\nJFgkKjRYk0UbbBeUt773nCnzzjgdqJ1k+HBiY5nZThwcbAOdTLwa05F8Xu9q2chW+Tkab6pyBDrO\n2XvpO1BwspExdvJkIOjG5KCSvx2MvG/cqyX3+Q77pwxyDwJj3qzGyt40TavEzOTMFaqAZpJH+zht\ntMMTN8u2w4zR9V0SEFnkcMKcBGy0tXhUvaUvdQWrkb84XnRE077A5Pb6+nr1ILdXczoZ8b4O6p0P\ndQcJuG2XBQjjfqfnLRuoWq4GJci7wOf5bWGkdWKS0lXBu8SE4x4lJZ3dVC2LRfTTYLBjp18A+Ifk\nJgAAIABJREFUYF04gTAxMl52GMt5uDlRua8/6raTeXyNySqLAVyhznXd6pB1TVlTvtkh4ziwZXtO\ntj0nXndfXCAevQzHSpzzNd0cvVrK8dgPuh0vbPRhFxy6sTC5NcHu8KSzha3YSztJUt/50xYPNf56\njh5Tx08pU84vhR/vOrKe6DvdnHh/4rwfUYnOeH/besfjrNOOU9n2bf/8zPVM9DpctC2O+jd+VVV9\nz/d8T82v8ooWt4jRsVmh6giwgdgBzwZtMunvuTrTbZdy8E6FxYmJs3oCsslgjDhVwFQX8sxMkres\nkOXai4uLFbgzGPP3DbpqduQX0hoy52qzjdUG2G1j4XgYsEOgSXwOh8Pi1cgdmXMwSvJpJ6YuHYAJ\nFuyvI6hboBYddEmm79m1aVr+VsnDhw9bMhEAZyXUwEu/8PYrEyXLJEf8xJUk2lqKBNFdAhDHxNVZ\n24HPTd8MPBnfkydPFnuwk2Dlb6/YUYfUFRO3119/fbFiTV91cuhxUm+ek33b1VvaTcYUndPXsoJt\nbGNQyriIP7QFPq/gSivt2fZKu49vRY+Hw2HxnN719fWCjPJc6uX29rbefPPNeuONNxZ22m1Fps2k\nn/RBe08jtmX8JvHEu1S4nXR0lX3LfkR2s2rfJY/ds3vdwXvGBiJj6jV4wSJDYgJXI/3s4IhQR66U\nU9Vy26y3K+V7PndimUVvW/jn5JO2RxsltnLrpPlBbMqJKRNuJqeUf+yIr6DmuJkAMGnpkjf7WWSW\nvll43bItJm0sCBpzIzf6YvDNhLi7T3TB+SXekDBX1eoNwbSTLjmkX9G/wzPML5x4uTG+sP/oN/2T\nP4xwnL5AOx4V6DI+88zb29vVM+5bsc7Jpws15lnuxzo0r+yKxbyHbc6JV/okxxutYJHfVtUqzmS3\nTORFPY0K9F0iaEzvEh/zmBz5GQD6sDHQOJK5WCYpcI78qOoVWtF6+9vf3hLk+6qYThxsHM6q02g0\nFDj/r/u72zrUGXSax9olWiRnnnNV//p2jp/VGyd9DC5dQI3BbVUScp80V6CYCHVOayciaQh4d8kM\n7+0A2m1z8/WdHkZ6drPdMHnnw7wEja3qqcmkk+Iukdo6OkLt7ZHspyOXlvmWDrrm/rjy+uDBgyNY\nc/WG1VwTIQeP3MO2nJbrCZwjUhAZ21cc0FxhtjwcIK0XE7HR91xZoUyMESEEJE6drXR6o9/z08mp\nY4Sx1fN0kcLVZRcdnIwab0jsuBefvur5GkNd5TdedNVKjtFyNHH3+V4hdxB3QuBGLCGRcfLhhJ5x\nbKuQ4TnQ1zo9UWadzVAGxi76Frd/83vKhLY9KpTY105PTxfPrCQRpB4yRmMxfbnzE/sAZcn+IqOu\naDlKxHwvEvzb2/WWUT+XskXgXZTJZ7dDIZ+dbLYId8ZMPXd4QTunzOz/HXejTrP1b6tgZ87G1Rwn\no5aXr/dcqXfiSScT+oMJuzHb/kv9jOIG5Uqb4IviRtzSPDV2cR9+jGTW8RtzRmOk+zZnIh6Fq3ex\nNfL3zoiO043m1MWhFKtYFPUqoGPdO9/5zppf5RWtx48fL4zBz9pEENzD3jmZWxREpxkBaciiq6sk\n9azO5E1lW33SCXhemqsrBIKqWjgot9LxnNwrTrgVHNJXXqSRKryTCAOCgy7/P2PI3EycqtZOFhmH\npKSSy9/NIhClEdQctCPH7hzqwiQhyd+oIhzbyJyy8sjGgJmVxthf9JxKMQNWlww78XSyGjlTnyRT\nSRh8DwdoE/zufF7nAOjK5N3dXV1eXtbjx4+HAS2/b8O5dWCZ71kcsd4yprx9inJK0YLJW/q8u3vx\nLAX9lWCcFeVufBy/5doRMPZBvOJWJG6fpK9Ez94q2WEJsYD20q100naYfLJoEHvyszS2bScdXvXv\nyIyLRtP0YkWG4+9WBfP/xNjcmyvm3NUQmY5WzDuSwIKJW0f2KGv3YxlE9nzOzEmM4xoJSOTG/p10\n0Ea40hjZ0XeIoUx8KP/IN+OwnWWsjx8/XhWPqAP6NGVpAk57oe3yGTbqmolXCj1c+cycufPCKxfe\n6rRFLjtcJh505No/vE0bTzLqGMLmFa7cg+RwNKbcJzKP3h0rjHeRqxMQ8hXGEeMjVxlubl78CDyf\nS3dRwNzBhRXatuMi8cI6i916m5ttrou11HtsMOf7cQ7GEc4tdsWVY+ql84vI9+Liol577bVFEcN2\n4NUiYwp1x/+LnEdFxMjE/dreGetGRY/Mmzo0DiSOeHeIeXbHSc0Zc77nk2u8JT82kWtsT117ZRKt\nVKSrXggxgJjXw9JA81rMl+mXlSUnDtyW6IBJQj1N0+Itgre3t8etfA66MVRW9QMyCVZ8UDP/32XV\nAbvIhZ+sQDkB4+EtIXQmglheFUwnduJGWRIEeBDISLS6pI3zY39MeqqW2+KqqiWHBAE6aKpkTNBj\nCwkgDMBcZub2i5OTk3r06FG99tprq+Q0YJf5htSwWuOtP3wYNHpnkkHZRCZMGlw5tH665Ir985wE\nIB62j3l+8QArdVZVq9WYDuydGEY3kUEHhk6CmMzGF/PzCgmA3FbqZjlEtvybc2aAiJ4ZoGiHeVuU\nq+6jooGxg0nE48ePV0lEt3fefUX/XYJsf40PJljndfQmacTh2L4DoFv6Dh44kbHt8XDF1STcdhG8\nur6+Pm6/pHx4XTc+2rHtzkkEP02Eoqske5yD/TS2y21xnU79nElskHOIvvNihyQ1xkivDjBZiJ14\nh4HHT1l7NSRjyT1N7NyCidEPySq3/aeZ2LmZhKXRbxynYj9s9BHqeJ7nxTbabIujb9I+7u7uFtvZ\niJEsqPAg+WaSS9zgPFm86Qo8tG8nholLIfHdPXw/6sFkO/8X2/DWwsPhcHxRVJIpF546gku/YV+O\nE+nDO2aYjIfP0Base9uXeR0TcK/aRu9VteIZtBMnj44TxkxzijQnq04imNhFTp5/x89oC5RJdNHF\n6W5l0XHIxRonZsRbjpMYm3l5lxFl0PEHxxEXJMgvsuuIc9osvI1A6ZOpTc+3Dlb1RIj/7jJpGxiT\nKlbgE2jYp4HH2Xcz1sU9nLCwXxskgxf726qiObDE4LrtkOnbFSfLxfN0omQdMKByuwMDKivITpQc\nWAxQliPJk+cQvVKn0zQtHC7kkG/QYQBPYsug54DnLR5OWgyO3ZwIVpbxfTLxnG1Xna13AD4Csq46\n5WDiIOJx2zctU97HFUf7AYEwn/ZNX9/ZgWVIX2HRId/7mUyTR9pBfMX+6kSJ144SeBaAuqIHCz9+\nG6ZJBLdURQ+5X2yTdmO7ILaQlGTe3YoVj853OEfasZNA4xtJlu2eQb5LvGzXHXZuJRD5JH5Qhjzc\nnxNw69H+aYLp+OWtP0ycWMAjQXUfJFA8P6Skm6N9jqtbJrgmKi5SuDmZHSWuo0TPhRrrLrbNIolX\nc00otxIKnhtft56Nz12c4WHbtn3Yt2x3HE+HwZ4HybkJNgt2HVZ3SW04FTGXb1Xt8MCxyHHF4+8w\ncHT+y35aNh0m0u7s6+Z4TqyMo6Pi2Oiw3u2H9g3LaISZ9B1jZmc79E2+iMr+bRl0XNd41OnCOMxP\nxtkUIUZ85PR0ubWYW9DJa40Xjt3GZPKLw+FQ3/Zt31bzq7x18Pz8fCVwKq9q/TC6A0POoUG4CuEA\n1yUZzGTTSGhp6GkGJX7n6gzBmuMNEI9Azv3y/+hwXB3sgr6DmQ2UP+icF3J0CWqOjJ2VXOqLwX3k\nVGwhAFy54CoBCXLOj+xS3XHA59Lz3d2L1dIHDx4cnTg/bt0tU3O7Q1Y2PeYOyAjsDhgGJF/jJIjV\nlhCNzk4id1edHQyit/TH1dwAXbYWnZwsH8zmNtp8cm55SyADRO6bT1b64nsEUwOlZZPK+tXVVb3x\nxhuLgMR7pkU3TMDpd05qWFXPZ+buwGc9Wu8hy060IouOHBv7iBP3YU+CT9WLl+nEd0yCTJhzf74a\nOXOJv7MqGZKV13p3QT39dolNh8Ek+rQV21HGZX9xgYGY70JIbOLhw4fHwpCr1Lx/Cjck1cTAk5MX\n27G5XYpH+s31xDy+7ILVWiYQh8Ph+BKdLunwthvGgfwganydr2KnzdFWq5ZbjY13GQNt0ltOR74R\nXWfuiT95QUxsK/Llb1SyUMH+YzdcUaKv5Bz/QCkxLQmvx0l+Yts9HA7HmEIbTv8u6kXPkTPlmfhG\nDKBNxp85bxYYGSfSuLKTlTPaOuNM5EZM5M+6ZEwpVGVbG3XMZj7AZ7JImJ1QmG+YwHfFOHIdx1fi\nvBP8FOOzBTDFq8RBP/ubv50QZ4dGxuNngymTqhd8Jfc3V3Bxm9gR3+D39yVqNzc3i9VZYiZj7oMH\nD+rhw4c1zy9+mJ4cLHp3kcC+Ycz0jgDqKL7cFSlz/dXV1YKPZV6xH2517bhQfJ2/SXt3d7fAg/TD\n3VCj9sqsaH3DN3wD/338e1RFNMHJYdAbJW6dE3ZVAzsQnZzXdA5d1VeAOB73z+qDx0KgYsWLQGVC\n2jXfj0kJV7TSDHSev3S5An+ucJH8sYLsPrpEmf27at4lkJ0+OC62jsQ6aeQ9+P8+t7Mz6zTnubLW\nja1rW3bX6a9qvRrcJQkci2XiJMFJCEGJQOfVIJMMJzUkwF492pKP/Yl66BI7BvGu2pskgmPkyk5s\nmfLvqvSUM4kU57Sly45I5LsOX7Yag2i3kmGdjgojxgN/ujnB5uHil/HRMuoSM69kGi88h5GdsFob\n261ab1V2IkZ5dPcxaRjJtNMxZehkfqSLjmh5OzaTMevepMu+56Ll3d36NydtF052aYvExO4YyYh+\n0825i4sjXRkveP7Inkc6oBx5eMu5bdt/d8msOdGo2BM7psxdjLIsRrGXfTMOkK+wqMkV8a7wQhmO\nEtl8Oq6kkMDkkGNmMbB7zsvzdqwOMU8f4TAs6HK85FCOK7wH7WL03Gvn6x2XoB3QX/n96KBtuo04\nHnVOjN2S6X167+KH7WzL/11M8jb+DutZ/HDrcgHP8Zu+6ZtqfpVXtC4uLlbgXVWLH7pMRbgz4Hy6\nKk8HMbGpWle43Doj7UAt3zE4OWizOuZ9rGkMDkwaRkTGYNgZl52WxjbPL94WlYTIwcJEiBWvVBa3\nHDv6uLy8PMrYFSfPywA/InD5f+qOVUVWFzkeBp9UjCj7EdmJPAjcTsxsl5F5CI2rokkUSTw6vRvo\nLJMuQDvAGPR8Lb9PtZsrWEwyHBS5rSN2l0QgFa88T5WH19NXqlIZC22Kq0gmHUxqtsCfwYJBiffz\n3xwDA7LHOCKBXSJFXbp4xP5yMDlkZT7X8b5+pnQ0B/50hZMGE56MkbZo8kgidHJysqgKXl1drVZz\nWNHOatDp6enxlfddUOf98z1/viIkLK9x764fBdL4ZsYT/+YLg2gz+ZurbxwjiVS3AhpfcKzbIvTE\nwI54GS+DcRkHCSvnE9+zDYRAd0UJk1NiQVafiGk5rNeOXI58j7HchZz0SzuIXacK/8YbbxxlwO2S\nkZXjYkf64y8jPkHylznG5rnSRD/j+SaLiUlsI+JIGTgpoG1lJYQv5IgcIhMXbpgURG8cF7e6Mfa5\nsGZ8SJKRVczwCsovq0aMZxkzZcjVOcogq/Ij/kQ8yTOqnENWMmg3VXWUH1dKggfBHya3nAMTtciJ\niVqKAvQL+4KL64nVT58+rcePH6/4hPmKi5zRf2yV/k67CbZlvmkj3pvraPMujufoOJXlQOzqttnm\nfh/96EdXGGnfjT3EbmlzLPi5+NW1j+uK1jRNX1xV31LPErrvmOf5WwfnfX5V/XRV/VvzPP9g8/38\n9V//9asAYpB4fu7xM+BoUt8FhC7D3iKgI/JlMKaBJBE0SDDAMTHqKgGcg6tyCS7eB27iY+fy9yYM\nJpAOugY6B2DqyAlBxufzTeSoYwZMvgSlW03JmL2X1qSBoG8ndVWMcxqRSx8mEQka2VYRMsetPGwk\n1FyZsO3RRmyHfLV5AmSOu7u7Bdnl9oXMlQG/q0TaLjjeAOCWTOwL9xGxTu78PyZ4TOBp912FlHpl\nFT7+Zb04uWM/Dh4kVNmSasLLudiXvFpjO9wiDJ3/xS74I8+URycb+lXGeB9eOYA6wHll1LZLPHKy\nOZrj6PvOZhwTOCbaCcfGYli3IkU9dAnqSK4kSvlkYpptKxwjx5VE0A9uG9Nom1Xrt4zanux7JJch\nkTzYf5es225sF5aJ7a5LsLfIj8ma8aHTzyg2Mk45iej4ycgXunhujPSYOpmk0WaCL+QDuYfP924S\ny4Tj6+K7Ez7Ou4ullNOWDDs+ZhnSF8MnRmOqWq/a+/zEYhY5TPB57xQdRrZc1f+sUMbRYabt2/2T\nP7mw2tntSI/0ha1imvGGvtP5Sucbnp9x3/ftdLgV3xz/zQmceLlowMJG9M6+bYedHbzjHe+o+RO5\nojVN00lVvbOqvqSqPlhV75mm6d3zPL+/Oe/vVNWPVNVwXwuNNq0DfwJNBElgJLm0U4aQxwFYXUpl\nohM2jSfXptrpjNiGRKfugMEKzjV0AAfIeZ4XxNCBx2TNgSDziMy9T7sjo5l3Kk55nonPD0TGrGDl\nOQLqwMGnS5b5Y4BO1JgQBwDiRK64kawmKHWyz31DhkfJaORAIKDsHaSzsprrQ3pNAGgbBJsu2SOA\nk7QEQLhyyP4SjFPxcrJjkKR+2FjhTiUtNunnAzxu6i6BJPdggMyKi8miSVGqcE5K7BP52/7dVfxM\nEnL/6JJHriF5zbidhHUkwwkWZdr5v2Vi3wnGsTKZOeSNfA5QHD+DPJM1+0EOY40x0X4efLGvRHcm\n78QrjoFv2uInfbIj1Gzsn40YZptiBZh9Ou7YtkyUYvt5S6AxnzYa3GB/qdxeXl7WH/zBH1TVi0TK\nLynqYqcJclUtVhYYF4InW0SRcsv1PlhwoIy6xMgJ6jwvi2XZGmRbjd/EbruiY3yii4tMhpw8ZQyj\nirgTBCdOnc8b641BTmSJgcST2KrJpX2WfIR+xT4pSxPeyLQrpjAWpZ/OXnIdCy9cGerwmTtnGOu7\nuND5qnH//Py8Hj161CYh8zwfeaWxkvjSzTP/5u6VDvf9sjAmVk6a4tuUh+3eumSiGTtz3LCdOq6x\nyFK13mpMGQVPMof4ClePc33kYd/skjXaXTdG6tZ2yUIU3z7JMXZYxliat2TGvkft47l18Auq6h/M\n8/wP/3/23j7mtj6t6/v+1t7363nmeYYBO0V8IUQoSROb9IUZpmpBECwkjm0BS3mpIHZGbIdCCQqU\n5omlGkyqGDXV2rS1qZEmLQTa6l+tTWqcUm2qqTBaqVJlEGsM8/Kcc5/7Za9f/9j7u/dnffe19n2A\neYbnyLqSdda+z17r93K9fq/r91tr7xjxA5LeK+lDcd2/I+m/lfQvnGrMiQgZxUBsQdAZMCiZCVyu\nNfhjRbfKhk1ul8vQCR5twHx41sfFxcXeyKTp69czkZpTpiqRGMdxH1QlHTnSTJQSQOf1VjQHJX93\neXmp9Xp99KB3BbD8sow0AAJmn+kY7eAzSSDQ4JgJuNPQ6cQoY25lYUWqSioykWFyTTnR6WSApPys\nUx7vzc3N3qhJCRrozK037IOBlY6NQIo888Od5FPy4BSAbu3wEDS3eKVsveUvgYx57PN6vZ7IkPae\nldMEBXyGq1oJo9xyzuS7r+cDtH7g3jafKxcMBtQrt89tM1nJZH922Jz/7e3tXl6+Ngs0ljVtw/bB\nrUVzemgZsLI6t1pjXhIsbDabI16knnis9idpW3O2xvsZ/GkbLmgRZPi6rPbShhjIkz/pb6qjSiLS\nZngwPmQS4y2dqYsVyCDAcixyAbCqklsu9rG3t7f7Qgp/RkQ6JINO7szfJ0+eSDq8cOiNN944KjoS\nSGeMMuV2yAR0KXfaTyWXiufWe7550XJfrbavKSdPE0CznUyGyaO57UPEDEwYTNbfqmhJ8MkVb9tZ\n9pd6aJlx9wb9etoGi5RM7AjqOY8qLlZ2RV2d87n8nuNNH1olqY4r1l9uXbS87VPtP4iB0tcwtqTd\nEl+ySJSrdKnH1BvzxO3Yn1N/Kx+TL6Lg9QT2VVKSc84CFXWJiQ39CH9aofKp9PX8PhclaFOOc/QH\njgs5F8YZ6fgZ70xwueW0+h2u/Nt9sxictpW6Sv9E35P9JL2ZidZnSPp7+PunJL2LF7TWPkPb5Os3\naptozY728vJy4tD4ECNBXBWw85yMskCtMOxHOgYpBPi+1iss2b6dlceUwSlBF5NEKysVrLXpK2Q5\nJs7Z4MZ/G5xUzoT84bw9DxsPjZIJVbVtJhORTLR4zqpcOhyOxZ+dVNrg7Xivr6+PquY8CPhoUAnQ\nq+8z6FI3LBdXeKtiQAWk7MzSMVqnDHrsoK0HngtXDRmwmJARjNsJUta+LoGFx+6AnDw1KHACnvbi\neRi8JVXJmx283yaZbbp/Bkw6fM6h4hETTcoxyduzhmHQ9fW1XnnllYmMCRhJWVhx3wxS9D1V0aFa\niUqQyWtsSxXwNO9ou5lIZz+ZEFMX6Su4iiYdKpppq2krKf8sHDCRsl7RL1R6yr6qPskTJir0MXkd\nAVGV5NBW06dXus0+kufUKdsn55Byp09PADy3YlbpVr5oRqq3glou9vf0mbYjxqVc3XW7q9Vqv4uB\n48hkmrHNxAp8bru1feeqPEEe5ZigMxOtBJieI31lbrXl/R432x/HceIbfG/GOtpSAngC/1NEPTLf\naavUxZxvvugh/QrtKtvid4kDMpYS8/DajAfW8SqBd1HV+jEHeqs4U9mpiTgoKROTxERS/TKvqtjo\nv7maY5mlXE7xiEWX9B+pA1UxqvKp5AcTPPor9+trrq6u9Morr+x5SAzFMVsPHG98zlUnfqa/9io6\nfbBj+5MnT/Taa6+Vhdu5gzxnYfdU7PWZvyU7R29movUiD399v6Tf23vvbTvb2bW3H/7hH94z5TM/\n8zP1WZ/1WROGpEKaKbkUyNUZVpa8DS1XuLIKl46DysnXSNKA7Lj8A6VZvbGgUuFZJabzpjOUDm+8\nql63SmBSgQYqqxWHgJ4Pn7IKRhCe21vSSdBgpeMtKg7M+RYg87RapZgoWj+sNHr7E/vOVQdJ+wdb\n7Zxc2eUzDQkUCIpyVcNVFL7elIdXpvjGLbdZGSkrN9ZDV7g+9rGP7R2V281kV5ruta+SSepF74cf\n23z27JkeHqYPXhuoZFKTMs6gmiCLQCn1Yo7flDHBkW2JcqVMCUZdSSMYtx2lrcw5fN/DI7d43N/f\n71/m4dVeHtQD/gwAE0lWddPx81pT6g+DmwEhX8ec4M/8sJw4vmE4vJ69eu1uys0B1W221iavyL24\nuNi/5t2Hx+afi6CM7VuoC6l/mZgR/BuEZEU7gUrKNe2StssiGxMC6ku1RT2BBvtg235dcpUgE1gR\nEFdAKcEZkxLL2TJh0YG2QcBNf0xbYPJmnlsP+R1toAL9HJ+LEzzoE+kPKp0zj7nVyoWh/KFaJjW0\nBcam1I0KEOdq1DAMkznZZ1FXqiQibTnBHj/nnKnTllHykStylW1lrOQqBeVY+aQ8t9Ymuj0Mw96X\n+PEC8ryKLfnMOSnjOwsvJvvAOZCdtp/9u3hqf8WE2f0ljyteJPH/PXauuDIGVYUdXpev2E8MyaSS\nPt127jEwgeQ9tBXPjzrCxM2rQxUOZNxwPPLfuTLJcVfFc75EZr1eT3jguEEdSJ7aJ/qw/XpuxHvp\nP+3Tf+ZnfkY//dM/XerdRE9PZWG/EGqtvVvS673337z7+zsljb3378M1f1uH5OrTJD2T9Dt77z8S\nbfXv/u7v9ueJcCrHR0eTRIOsKgXSFDikEWdmmwKkotzfH37/hG8JqoKCx8z+gwd7hc8xZkUswWxW\nb7NfBgcbTtXPqeSDASD5zr+r8TAAWtGrSl4Go7mAJ00fPq+AVQIzyjQBnYn95TJ28iarHnR83CZH\no02nxDPbtKPNLatsz32mfmYlkXPLIJ7ggrrMIoX7q5K3ORnlPDN5Th0gqMj7MiDQlql/la0kXyqb\nZB+Vvlcg7EX8xzhOX0CSW0TJg7lKZTWn9JFpf3PAznZCXW3t8CxOBUZTHmkv+dl6xD7S1z2WZOR8\nTt1byaTiUfKQ11RAtyoykCr7p55V4I7zy9WdtOG8P/vLedvnJTiiz6McrAdzYJJj5pzTR6XPyVjJ\nNhMMpg6RLJeM/ymDBIccB5O13EplvauKV1wBy5csnfIH7p++JuVHHSDPOYdT+KHSgbwn40omxNku\n70877L0f/dZY+rwKL1T/58/Z9xym4u4NjjF5WsWlTIyqFSgT8UJVZEi+0mfMxYiMg5mU5T3J0/xZ\nkco+yJdMvLKoUdl+FpaSV6Yce+UvLdfU20puqbum5EH6PNp6FoqNkSrb9Jjdhu+3TKvEs0rUxnHU\nH/7Df1j9k/x6978i6bNba58p6acl/TZJX80Leu+f5c+ttf9C0n/fI8kyfexjH9NqtZpURlmF27V3\ntP0qV4Sc7fKBPR5k9GazmVSsDZBzpYDkhOH6+vooY59LQCjAnE8qJzNrAp/kwRyosBFZgdimz+k0\nqEzO/LMNO5cE4JvN9JkKbl/knHw8e/ZswhM7IVYm/b0PJj1OZiuQnsBNqhP1lA95y3a4JJ33eG4e\nj+9xxSlXZ+gIOTZJez2jYzH/zU86K25B8FgYwNh+BTJ8j7cFuopt5+7nyjLIZ1GBlcgMBhVQyuQ1\n50je0zFmQu32M6GWtAcDDi5+uN9bohjQ7T+YGCQPM6FMwJw6USUVHle1EsqEzjyqngllcln5kwro\n+Hr2QYBNPTOP3EaVjFcr/gmczDfz8/z8fBLwc8uZfQp9COdBWWey7H4qSt5k0pHXVaCW/SQIYULj\n63nwOV4mUr6ewd0rnF6tddziyyk4j7nEg+N3W/k8KwEO9cRjO1WMq4iJJO9JmXH3CFes54oC0jRp\nceJG0M9++HIM+jtT2rkTBMvJ22Ztd96iTr5ZjnymsuIH+Wyf4mv5w95c7b26utq/Zp9kIVSzAAAg\nAElEQVQJOPs2z1wIo+7P6bRXILylfrOZf60+fSpjVf6Mi/nvH+NOuXvniH0uZXZ/fz/BXNYLHtQ7\nx1LyJO2HWMK6y2JFleRQ91NXiUd8nf/fcpxbKSVWYsJCrEJcal44Ljn2+v/9I9DplyqepF+0b05e\n+Ow+nz9/fuT7qPsm2g/xEXeLsI2qWEW/z+et3M4cuU2+nML9+ydjcn4pd44nn/2tirD2i74nsTjp\nTUu0eu8PrbVvlPRDOrze/UOttfftvv+TP5f23vGOd0yU/9mzZ0dBnIpmw3diRdBvg7NRmGkEOjRW\ngsLWpm+cyn4p3GqlIinHz+szoBPUeSxpVAbIrJCn0dtJGkBXlb90zAk4+F2Sx0xjpjFV7dNZMHD4\nWZncksG+zQ8HC+m4+pEPFCef5xyzx1Qta2fAyWpLVYmsZJ0Vk8fIPHr+/Pn+4fR0ogyIDrh21Aaz\nXEW0rMxP89RbDBxEXOy4uro6qgT6+tRjV8fmAHTybLM5POdGvlaJC+dHnWLSZRnYjmm/tim+NlvS\n0VuscrsEiw2USzrwqlqaVb4EAgyymWBTrh47AfocDxjgmZylXmbQYwXW12ehqVrpZJCv7Ml+KYsh\naYfp8xy0mRxVdpU68tjKhK+nb0lQxOtp+9ThBAwe62ZzeHkIQYdtiTwahuHIrjKO0Ge7OEXeSTri\nU4I52gx9WILF29vbfUw1SLZPzW1lVcxKv562kDElV0IM2qoCHmXgcftFTOa5wZr12PEmfbj1gvbu\nmGOdSL1k4TMLt7T/uVWAtA0nJi5CELRmkmk9MI8IqB3fqYtMHLk9k3LIF1Nwnjnm6iB2Ojs7m4zP\n8+fq32Zz2BLq52CTR1WibiIu4tyJF8wbP0df+UXqq/vMRIn+kgUCX0/99nWJE/2ZZ+kQb6oxeVwu\nrFAemYBUfKJd0r/Tp6f85njDvxl3s30W8RJ7O0nj9uD0A2yPb6bO5CgxC/2FdW29Xk9e/lX5RBa7\nfHY7fFkH7d/XuhByCru9qb+j9Ymi1lr/lm/5liNHlxNLZjs48LeBUjC79vdt5IoWHXG1TF2BzRxD\nBayZxBXzncyJwTGdIavsNhQmBFWFNh1R9sn5WwEZENg/l2RzzkxSeVTVcBqAeeT5EexWSUsmOXNO\n+RSl4WYSlTxJgJx9pZy5VO9n9Wis1UoFE2TKjcmmKR1IzodJCYGCr3EQJnAiTwl4fV8+w8VVibu7\nuyMwkwA6j5SDE20CpeQ7fYKDO201eVKBBvafwCiTcfqCasyp07StytbnkooqqalWh6tEL3W60gPz\ni/bJOfD/0ufSFhOEUC+4S4B+NfvgG8RcHEr9rSjnN+djKr9b8SznXCWec/3PJXmmTHJOXW/ATXvM\nokTOOVfImZBzq2CCDMvFgOFUgS7Hm757DigRwJInaSsZSxPUpA8mVXGAYLnS1QpPcA7kK8fHtlis\nGoZhsjLz8DB9S2kWIaoKeyZ/lEHqUBVrcz7p89K/UNcr/1TZVdpy5ePZXs4hVwqSJznH9A/5/GPy\nMX0kixLc7ZM857PIOQ7qXfpL6l6lSxnLs5id7fU+3V49DMPs80tMXMiDSi+oH7Ql+gtirmoVkTac\nulTh3iz8sMiSPMrvEyNVusvPiTGqnRLU8dSTTL5Srhlb6EM8j+/4ju9QL7YOvjSJ1vvf//6TCk2h\nmIGtHT/4nSAlH7RMwLvrfxJc6GxTWDYGtylNg3ZW4RgMUhmq4OExpEImH8gfjpfgkTyjYVdgMR2L\nx2fK73lNlWzOBTjKzIeTO4KAFzHaDIh8IDdBRG4R5fychPBIPcykogL1FUhh4pbOszon4GU/+ZBz\nlYhkQkogyfHQ0bG/KsjPgcvUK74AwVXyas5zn12htm1l8pljJM9T321LbI8VYd+TyWTOMatiCcbS\nP2QArJIW2kQmDdXqzCm55Lzzb+sNt5GlnqSdngLgVZLErULn5+f71UOuIvJIYOW2qgJCyrgCjAYN\nBOiZYCf4TYCSR7XNjLbo+XlbFufj7VD0J5SpC4JZgJoDvFUxrbqHfEvd5qqo+ZFAi7aTsZWJj9tI\n/WERxrGWPGQcJJgkjynTtD2CRa5kpGwrMFiBx0rHMhZXhRkmlvTJXL3x3Mm/KvlKvcs5ZIyoZF3F\nY39OvJJJgPXE42aRwnqSLzBJSp/Mxz+47TWvT9+XBaAqYZ5LLknpF6lTCaapK6T0R9V3iU9Sjzjm\nxKHpgys+VPrq/884USUJyZP04dRL64KPlE2VcFV6zevSv87ZnikT+oy3qReVzyP+rpLN7INy45wq\n3yxJ3/M93/NyJ1rf/u3fzr8n389l0Sk83ls5VmkKyM/Ozo4Ymv2nUadBVUZOI5OmjoVB3AZCR13N\nk8BJ0sR5JxDi2NjOqRWHKtNP/pNHeX8GxRzzY2NzHymvyhESKPC7NKBss5pPAlzyKUFCAm06kXQK\nlMkcoMu/s32PIZ9L82E98jXWiwROVSKV9lIBd17PIkYWOqojgQ3lyv9L28sxpN49FlBTbyvK4JIV\n6eRPfk8ee/sC51QlMafmlHaRtpW6TnlUSUMe6QdpQ7SlbK9aHUobSr/MvhJ8zcms4pETboPEBNhz\nukXbSP7neKvvE+TkuCtATJ6l7TAJSJCRiVfVPv0J+UGesGCYPK90gPNjTOi9HwHySpdOAacXwRqV\n3pi/6QPTlrwCzme05mJapdtpR5Tr3Bj5fxWPCXiHYZgAuypWpt7nilraR6588vssAFS+NvUo7TXB\nZ2W/nJM0XeXzGHh9Jr+JP5KvCajp3zab498yrWJxFXcqn5c88f1pi4lDCNrnfF7aF+eZuszvKzvK\nI+0v+8vElXMmTiU/EgPmqlzyiG/rXq1WEzkln4lrbQtZrJ6zzblYVeG4ObtNHEsff0o35njmz6+/\n/rr6J/llGJ9QqipmqRwVWCO11soKdRKDyhyYqwKik4YcYzo2PrxOp8hEic+Lsb050MTlzewnV2sy\nieFe/HTmBB2r1ap8c2IagI2P+5t9ra/nQ++cv3mYToQBK4GFdAhoc0FmHMf9K/wT+KxWq8nrm6uK\nMp1LvikwjXQcpytkrgRSJzhnzykrn9zKQwBDPaWj59gywa6CDR+ErwBvlQxS13iteT8HYDyeCmwy\nUeOrxd0Wq1UcA/vxd9yy5nvnAoSkIx5TpzwugiKCCG+XfHg4PKRMO+Er5T13BuTb29v9tQxoBOqc\ncwZTj5HbK80L37terycV5Ez6DQpynNS1KtgRWGXiSN9L/2EfyTeU5VYez3duNY36z3ZZVEhgnGDQ\nZ74ljStO3EbCcdE/pSwI/BwXaEf0iUwSDEpyOxT5SHnPAX/aBO81r90Xf77CffH5pUxEcrWKiRt5\nwL68YpWxlklBVYSotojlD5AyDmacti7wd/3SByU4tBy4U6JKpDzOKlGgD+ILSqoVq2E4/E5g+lBp\nGovJI15HOeV27STzny+s4LjdxxweoQ+wHmQSVsVaPy+dSUcWGfw9/VAmVNZd86zCG57P8+fPj2TO\nuTB2ZSz12fNk7M8XMfB6t+v4ZXvPAjl1K22NfViXM9aSh/k699Qj/nSDn0+qfKDP5rEPxxU+080x\n508Z0Z/41eqZPGbximMwzynT9H+0OybQc1glk0HiMWIuj4M4vkqos4hKbJ4++chuq4TkrUattf6t\n3/qtR45TOq4EpEAzk6+MOLfN0Siy2jIHHhlwGBSrStpjWfEcoE4AU1Emm5l4poO0kVPpU3mzYpTJ\nZPK0kN/EEIZhutWOzpKJHmVIBTewJ6BOA0i5knfpqFNWCeoqXld6wPkmWCSPcs+zpIkTMI9znDzm\nkm06MsqdCXAmVgQvc/raWpsAQW79YbWTPM7koAKbuZWXelIla7RP65F5xzlylcDjIbDy2Cq7OiX/\nXIVg/96OwHFmAKiq8ORp6n5Szok8YHI5V0lMf5W2Jx0nn/k7Wgmg03YqmyGPK4A6d20F1FI+qfvS\ndGtuzjvHl3ojHSePqR9ZGKriSiaflW9Oe+a8qnsod/KdwK56OL6Se9oUKeNlyoE8Nw+ycFIl0Dwy\naXlR8pwygU+wn58pP/vX9Impl+kL0/4pFwL5LDpwLNlHJWN/zgQ7E7y8N1dCXXzz4dhJvlGPHGtZ\nsMs5zgFsrnRWwDf9RPrgOfml3FNvMhaSLGPGrsQPaf/U/UoPcg4e7xwGSp47lnJ1OAv2mahxPtQZ\nH0yo+dx8hXuZ+M3FKWJTzmMOl1Z4KGN76nfKKd8ymLaU/qqKBdST/L4aY/qDx8aYupH+4Hu/93vV\nX+YVrVNERrkSxCo0gRUzcicZfjOhFT7BEI2Ee5FdeaTDmgOT1cqFlSmBTQYJCnMYplV1Vp3MAwI3\nVqlsRFlx8vj8dheOj1tRMvEywEznXzkl8sHt+vmFx0DHqUqKdPxAqtthFZQrVllpJA8YtBMs0PGn\nnthB+KjAJ+c3p2P+7KqmQe5qNf1pgwR31uE54JSAnM8femxuo3peyWP2OC2HKpAyUfKcrbur1Wpf\nmaTtWQ88FvOYeuZkLpPEHJ//P0EGATC3tcwdVUKQz9pk4JEOq2jWvwTIaY+Uw6mgYTlSt6hXuTo0\nBy6t+ywmUXbWBeuApL1/YNt+FTV9VfZHsFnJLOeTAL7aS5+FDfafwMf/lz8STaBjHlgvKIPKB7Fv\nVr3nfC7nNfd3Ap+5xIfzrOIKeUTeZBLg76okhGB1LgFwDCEwSlvMMefc7I+9AlQlIaQqeWVsZMzy\nSk2OiTy3rpNHaSvsI0FlJkK2G86RxSQmNXOgLqv8VeLG1bqMI/Z5Dw/bt1Fy3JQ7VwUqPUvbIT7h\nuMdx3Mcry5DjlY5XOhnb09+Zl5XcmQwyIaQdUI8c24dh++a66+vro7iQPKJN+yB+YeLgcVlumWhV\nMmbSxF1VlZwrP852mED5+5Sr+ctCXMXvqj/KaRzHo9XlLLYxMfTZMpemBTzrMA/zktiBsqTPs65X\nRYuUn/8m9mFB2gf9mVfJya9MKM1X8mCOXpoVrW/5lm/x56NASEpGV6C8cpRsO++Zy5CzvQpo5Bgr\nEEKFqEDrKToFrCRNHBD3zmb1lUaeb7jJ8dCx2WA4nnT+VaCtAldWEskjfu+kw6DXDobL9AmM5gJb\nJd/kqzR9C6FBBPmYupFtZgBlYphJkB0inU3KOXW1Auw8Z6XSjodbG7OKl0vtuQ0m55sVp+Rx6kXq\nnXnEymMFjiqQncEhbdefq6ID9Y5j4vfmS25BPFVQcALOgkV+n39T7tWRc87kpAqipxKbtI0s7HBl\nsLKdBGLedpLFF/6d+nrKtjKpzvnbH9B25oBb2nee5+ZY+f/UMwL9cRwnhR0nb+S5g7mLKcmDqkBH\nP5jjSr9a8ZBjIGXcqPyX58h2M7Grkke2zzG7vWqMeR3vTfulLFKWczzj9XMrmXN8qvTE4+i9T7Z0\ncXWHScKpeJ3zymQ1KVcqslBR8TN9Cc9VXM5VxzmfnBgrY1WlR9W5imvkd/KkiinkOf1vtarHNiv9\n9vVMsjg+JxR++U3v059OMaaiXlR4gUcV79OG5mLvHA6t4kja1xw5Flu/XGgxb5mQOo7l1knyvLKt\n1OXEE4mR+IbP3FpMPSUOpW4nD05h8eRNhV177/qu7/ou9Zf5ZRhf93Vfp2Go35QkzS+pkhLQrlar\niaBshLs+JwZWvXVsDlynwGjAGSyonNU2OmkK/qT6Ad45A6uMljzL8dCBzlVXsg3O2ePlszLJh+Rh\ntpH8yX5yjgTABuj5zMUcoKoCcuUU5hIlggq2mWCpklPqZlVtJZ8ziUnQwfklGDSfMmBTDnRKkiYB\nikmF20xHNmcTvmfOiVZ6YT3K5LPShUofyVNWk1OPswBQ2TPHdQo8VqAgK9pzVXfyrkrcfKSupy5R\n7zLpqGw1+yVIN19oywmgE4yN4/GPwLMP9k+glDZPvUmgxOJRAqW5pCH9DfWOfp4JNhPNbDPBVvIh\nq6XJe47fcp1LTOeSU8bClEf6tUyMXKzyIWnCY2m6otzadOswK/Op/5WcM67N+Sjybc43+3OVxLAP\nxyEf3iXglVjPsdJt6xRBd4UnaGtVcSdlmnqR/oB2QXBJfEDezs059YoJMe/x9fnsHvUg/UkFgulT\nThWKDdCZkFK3ifFyhYqYiHyYW93xOX1L8jipSnLoj3mN55Q+pSpCzPmj1BP7XMulKh7x7b3+uRjG\n4rT5jNWMI3N4porR1GPKiD7TMYm6y6JB+jTberUFda4gWOHE9BfUk4qqBLzCwuaZd6mY55VcX/q3\nDn7gAx84UmAym0AqweipKtsccKqMgQE5gQyDSzqhmMtRsKZAKUz/UFqC2wywdFwGOlkRZYWrevB6\nrorHcc/xJ4NBVoTSceW8Kwc058Tt+LJql44xq1vV1qO5ZC/nXMm9SnZ9fwWkquSOTiF5wMDh4FEl\nOXRkqc8JmOcCIIOcv7cMeH8WHR5LeE5VlDg+9pFJTybcbD/nkPczcUq9rezbhRjPzwGJskowmHqS\n9s4AWiWr1Rjm5lz1lwGV13KMFTGB4P+Rj621k69jtk8+VcVPSt9UAWoeBHrVW8VSbgZzrLZm/6e2\na3N1KvlqfuWKLD/PFafmQIak0r/wnlwBTZ1OnlmXaM+k1JvK157SoQrUUKZMIiqwl7pf2Sj1qkp0\nsgjh2Mm3Dlbt5/+Th9UWUPIwfUvGVupOlZCcWrW0j+T1TEju7+8nSdH5+XnpQys5z8UR6/KcrVY2\nmTFmbqcEi5QsWtBWyLNql0Dlr9new8PxSwxSTrlSkitoVdIwZ7uVXSfR9zGRoM0kT4gJzZO0Z/aV\nujO3c2KukFMlVhmXqxWrjH/+O+dX8Sh9ZGWDFQasYkPqEXXX/dFumNAzcasw2GPJpv+/KrR84AMf\nKBOtl+YZrevr66PgUIF4SRMhJqBPg2Fl0M46n6FKsCgdkptUvkp4qQwJUqikJD9HlsL3UrVXbzyH\nJ0+e7J1XKuzd3d2kOmv+nJ+fHzmkfEthVoyq6mjFI7ebQYXfuarv8VBGrI5kkE6wm0bu++norBsV\n0K7kyHlkMGLw5Rg4Nz6/kkeudFhOdKyUe1awLVPuM0/Hw8Q8nYz7I984lzle2C6qRIkgwBVkV34q\nB5xANcfI9m1ruVKSwZP8dwDl9q3Uq1y5tF7f3NwcbfGg/LnqR3CVxPa9Cs+jqqqxv7QFAiPzLCn1\nNlcmcsU8EzsGGOsCE47UG49nvV7v/QnHkYUV+j//nlrqHAN4VUgzz/38KH0Rbcn8yuKY27m5uZn4\nH589lwpge0z0QwQnlS1al0xVESSLRx4Lk4A58JlAh8mgfXK1OsN+0sedAoPDMBw9p5kA1u3a/tyn\n20xAynur4gtl6ITf3zE5Sv3zmT40f4/R/DEGYKw0j1KPpQOY8zPe5FHqnf0Ln6H22P1cbwXq7W+I\nAdhGrpCTp6kXHof9NOXh5JR9uWjB51xTb4Zh0OXl5V5v05+4XeoTbcH98flr2mTagrEMk7zEfymn\n5GfqO5O4jPHuy5gvEx/arv2Lr68KGLQl2jq/Z6xgHMjDuuO+/WZZxs7b29sJjhiGYaK3fh4pZbpa\nbZ/LfeWVV450qYqJib/ol9IWKc+M+5SF5+eE2kWy1Wo10dtM0M0389FbONkXx8fxM/Y5nvj79InG\nYd4yOkcvzYrWt33btx1VnAjiM0s2ZUU5GUlHmBUlKhSdbSUs01yWTKVkEJamCpoVl2EYytczs2JG\nSnA5Z6TsJx0b55QBO8HxarWaOP18DsWOJ51lBRbIwyqBJn/TaefqzlyC4/nymRKuUFXV3dQzJpMc\nV46R7ZFn6QhzVTGBVvYx56wywGUFi5VQ65H7T13Ndq2nWdlJcEeHmdXXrLqdSj4dENiegSy3tZBv\n1DkGvAq8pE54/PnAbhZe0n9kUYKBexiGch85Zcj+Li4uJklbtZ0hA1LlE6k36/X2ddcXFxe6vLzc\n8zF9aAIT2mXykMllrmA5ScmEOINtJi2s8qcvYtseH79n9bXaTpn9WTdTz9Km/JlA3mCWz4haT05t\nq0vbSR6lf5ijylf6XBVqEvhn3Knsw/4q48jc1kH2T/+Zq/qZHKSfyZWe3GKW/m/OX/lgPGWcII+z\nSJNxq4rNtJ0s5NDeaY9MfjnP5EnqvX2njyzspF5lLOC1Hk/G3bSN9DepY+SDNF1ZNE/ZHxNc+0Rv\nv7IfT72mnHMrYSbjWXz3C1Zsowbj+UP33G1S+dDH7O4UTkmsV8Xm1L1MMrLAluPIz4wLlEEW1Ggb\n7CMLGxUljqNfZsGy9z55DrX3fhRbM2mZW+nMeGO9p+2dnZ0d+Yv0eeyPhZ4q8arwjKQjW0tb+eZv\n/mb1l3nr4Pve9z5Jxz9EWy1TMwmZy5pZRUvQRYWjU+TKWOWodmM9Eg4pkx0aJCuP/l6qH9BNoGWH\nTZDBAJaV+6rqVYHPFzG4agWMRlHx/dTxWHCo2jtlMFK9La4C3yYmCXQKTNjdj2VEOZL/7o9Gno44\neZ96kXqWcqiAVnUdqdJlnlPv0rZyNTh5lDymHfF6t+lVBB+uCnI7BL/vffo8Aeft/jK5PJUsOtHy\n9V5x4hgrOaRenkqMkt/Vilb6Gx6ngBX1O/0Tz6kL9Hepy5V/SP7l/DPhTV5UyWvqZSZ+c0kaQQr1\n9tTK52M+LWWacjXP6KNpC0wW3ReB4GazOfIXCRwzEeMYKpnkWJkQJ9Cai2FZ4KMPbG36SupxnP40\nSmvT543Sh7G4ZL3J7xN8pl5XBULOOeVI/pLHmdSkn+aZemUeccUrbYU8J37wOe03C3LUmew/ZTiX\nkGch5lTcmov5mSDOxV8Daq72JCajrY/jOClycqWTCW3ih4oXCfo55yqBoJ+nXlWxuIoTc5goeZxy\nrHx6tplxJn1/jidjafrUpCwUk0fWC44n45bnmYUZxqGcI/k0579PHRk38u/H7k+5pG3NxcX0+VmY\nIcbKGP9N3/RNZaL1pm8dbK39Bknfv+vrT/Xe/2h8/zWSvmP3549J+v2997+e7Tx9+vRImGSAmUmj\nt8IyWTLzLMjdGCaOTKqrZnYCFYD2OR2R26ocmHR4cYTn5jZZxUvQXVXRmKQkcEownpSrehyz7z/l\n3G3c1Q8e20n4Oy8B53YmUiYl5lNWKJicppPJKprb8nMkCZSYLJIHrsgkVcmJdLwtxucMHlzpY9U/\nnTm3R2UwyC0oqXvJM8rFPKOecWWFFWi+orVKMFIu6bTN63SWvDb1PHXQvNhsNnr+/Pmk3/V6raur\nqz3/6fzdDoOJNK3upTx77/stbe7Hq8kVSJ8LIlXVPsGVdfji4kLX19dHcrK+5MPyGcTNiwQWaYsE\nMrSVXF0hfzIYJw/Sr6TfMBFgzI2/8i+ZkFvmrowa5NIH+sc2veX08vJSl5eXeuWVVyb6JdVbQuaA\nERMSgmr6CMYp87MqOnirz/n5+d7P2N7ML0n7aqxjGlfAsxBDcD33jIXHR583DMP+1fcmtuN7zMPk\nScYV66rvpz4wjvga++HW2mRbYMaBueTSfJrbju0kgL6GPoQ8zofd0ydxrm7ftpRALG3AsZ2rwU5q\nKwBOu5jzB9StXAFj4pAyMKYhn6nD/j757vkSbPpHmIlBLHvPxe3ah9s2q9jkdr2CVdk/5Ta3Kigd\n/0al5ZCJnTHKXFGVVGEWJnIs2Dm+8x4m6733/Spc6otpbjXYfdsfVkWLCpN5vvY3jJeUE/0FMZt9\nbs6r0hePMQu1vN7X0HYqH0oc57n6ez6fyZ1V3HXAI7F08r1K1IjbaA/U8Yre1BWt1tpK0t+U9MWS\nPizpL0v66t77h3DN50v68d77R1tr/6ak39V7f3e007/2a79W0vHvyORSPydOJvlzVoQy8Umwy2Br\nYDhX+ZG0V3hWaxL8pVOZAzC7uR9lzRlgKpCQQNJjzEydQMrjpILbkZGfVTWWSpc8zjEnCLBDtSEb\npNJJZIWaMqYjcEDMAE2DohwZLCqemShDGlUF3NNgM0hlVa2SKb9LJ2M5854EXi/i/Kxf2U6VFFB3\nqvFW91dOaG7MWeCokjXqZSandOQEIVmkyAScfSaPs1CRwSp5kb6pkm2+iIZ6m9vszPOKbzyfkqNB\nJivO1fg5v0wyyA8HdQbADOrpc6sV7yxOcSy81kCLcp3jxxxP5vgz5yNpG/6/Cnix7fTjCVqqcRJE\n5xaZXJVLuVexh59zjpX9V0n7nF2nT2aymEXMTNDNuyoOVEVK9p9yyPibRUVen/7CiZSTqdamuzGk\n47iRcSe3iKYNzSXUc6t21UoD55U6y7azaDHHHx6OlYz/5JmTqFy1Y1xJ/JMyq8aTRbecY/rLHBOP\n1LOcJ3FhxvpKT/gd/VFVyM+xnMIP1OEqluZ1le/xOV/skLi0osQdmTRUvogrr7kSmWPM8aYvyLnl\n1uPUoWpFjDxLf5exNmWU16fu5ZwTS7yID037/4Zv+Ab1X4QVrc+T9BO995/cMeYHJL1X0j7R6r1/\nENf/j5L+o6qhV199VeN4WOnxiwZoEFXAY3AyM6X5t9olURhOAijAKqhbYH5rYCo4x+R2+RryahmY\n88kATGPyWLhSlgZDoGkjTf6QR5locb5Mcv3/dCrcOuh55z1OvPxiB1fI8kcSzQf3w2CRybN1pXpQ\nsnJsCRYyMOT11bM5DBTJO4/RfE9QnmA15Wy9SEBa6YHHTeDW+/RVwQmgGVC5zzqdSlWldxseRxXg\n0r48Xj+IewoEUvcToCYQOTs709XV1V4vGNCpt/5/3kuwk76BbZinOU7zqNJFn5mkeBWO/iL1rALY\ncwm/ZZhVutYOz54l6Ldecetxdc3cIU3fOkp7tA6wD4/R33MVxe352jk9IG/Mc/ZPnlpvuMXV9un5\nMjG0v8rqLQFBUupW6tMcaKA/rZJUrgSlHlRjYB+ZMGdCTyCU/oo+wW3brl01l45fBJHb5DJGJEBN\nsJ1jTNtJnznHg9QjxxUnVk+ePNFrr72210uuvKTdEWARTBK8Mvm0Lvo+f1etkCPNdqAAACAASURB\nVDk+Z1yqZMGihfGCX8s/N2frd+VbK575/z22LEL4+ioRS32n/3McdiwmMV7kVsPclXRxcTGxb46H\nq1rUa2kaq5NntkP7pqqgar33ql0mNumT2X9iQuKiCpPljhqf/QKsxGNZBEscWFEWHIlr6T8uLy+P\n8FLyjAU876yS6jf42g9TJ/m50rUsuvA72lXy3fOcKz5L02cJueJNuecLrLKPF8khpDc/0foMSX8P\nf/+UpHeduP7fkvTD1RdvvPHGJOB4mToPU+VMpAPA4zX8nsrH6qsDSlZfTOkkE5xVlElaVhfo8Biw\n6bzt3BmAqfz5fWuHqrqJ7VdVs5ynx+D5VuCS88rvaaD8oTkCO2/x4zgtq6wGZQD2934gNkFOOiKC\n7zR+8yd56Ouc8KceZpWIiQ8rSj7T+fn5o4eHBz179mxfXbFOXl1d7cFRBch8OEmlk6HOr1aH1Uo6\nukxMuNJip0SgYd5WSQEPggQD7Awq1LUKyOSc055S17IixfbMo/y9NepBAs98di8fwE29NF/NH+u2\nA3v6kzw473E8/O7N3Koceci+DMCsR/wxTcqbAdLfMxHLBJNyyv6rpIfyq1a8CCh8Lf1TVYWvEhHy\n0Lb37NmzSXXWRH/r7TsGDn6QO3Vpru+MCw7mWbhJ20gwmUkJx8gkJL9ngpuAkfpG3SAoN8/pb1iw\nyy14CTCsn96qU22TM68q4OhiUuVzM3lkDOF2S/OBPtc8muP/3Hzok7MQSbBpfa7Gbp5kH1wdJf+8\nKyZtzysZ9guSjr6nH7fvzm3BpNQzy8DbytJHpd1lYmV7Z5yTNPs7Xbm9mm057vCFKtwCxsLI2dnZ\nJDGoEh3Gfv+fdcbju7y8PIptmTSY/6dWTzgf60rGQha+zIunT5/u7Y+8TnvOH4lPOabPTtvx+G9u\nbvTxj398r3fUE46Buwry8QvzKOMScWql2+QXdS9XvDJxykKLv89Vv9SpxHdVbK92vCQmoSxylX+O\n3uxE64X3JbbWvlDS10p6T/X99fX1kbJVKy2silnYvKYKkAnQHWT5piPp+OHaBGbVcSrAjuP0hQIO\naDlHj9fE7xkQq5UGjtuKw2pKAplM9KrAQX4aeJGykjCOh1edzlXpDHgNdHhNyolGYhlVSm6e2VHm\n/n06Yo6n9/oHizl2qa5kuz2uJGWwcptZKfG1fDMSX2V6d3enZ8+e7ZOM3PZiB8jgw4pSpYMVeby5\nQkGdM/hkdS9tK50/dcrAjYlKBZbJ5+RZ9pcVqsofcG7mGZO23P6Qc7B8Eni7Wsr+Hx4eJnpXBUTr\nSmU7bjeBjMeRz5GxAMBASN2ijibA8b1MBMl/3s9g7PEYhBPwVzx0QsHV2jndYz/s71SAI9j3/QZT\nfslKVpQzsfM8rWf0heYzQQL9m4FHJmVzusw45Z8VyFUC6x157Pn5bZUEr+6DY8hiodt2bE2eeO7W\nIfPBYDMTzJxvypX6SP3LNqljtAf7i5ubm8lOidVqpSdPnhzx1HGiijvmA32sNP25Bo/35uZGz549\nm+h/AmFuL6S8+Tfjvm2mKg74O9/n+Eh/9fz586MCm4F7hWkqmdBfeN6eSz7fRd9Pf8Yx2QYqH5pF\nBRc1aEf+bL9n3U5c4rH7b4LenF/l6wjqbe+5RTRx2jiOk59rqRK65HPit9zFY32mD5vDYMQfvp6F\nIMrEuuL+6VOZmGWbniNxY+W/jC3oo5Jn7jfv97w9PuoG8RHH6GsSVxIDGif6u8vLy6PCAcdIHcqC\npfmQcqjyj9wOOUdv9jNa75b0eu/9N+/+/k5JY+/9++K6Xyvpv5P0L/fef6Jop3/u537uXpHf+c53\n6tM//dNLsMoKlwMWg3YGcCYcVdKRzj6ThFTUfBjVoMtBko6KIGDOOWawoAOWpgZNg6WDSeeTy9Rz\nlccE2FU1JX9LhZUDGp2PBDbmGV9hb1CRVTr2kdVbylGqX25hfknHlYl0YlkxympLysy8ZXJ3CmhR\nHrx37jCYIxA6dT31xuCmqm4yaWHwseOaC1YESLQ/UgL+BGfJjwT2ad+W8xzAngt4c0WPtEUGDNoW\n76v6SHCYWzp5XepaAqPc+kMeMGHMZJM8rHwUixZZRGAbDFZZaLGec3wENwmYGEATKFH3k2fZTqUb\nHHMCJ4M4r1Q6yfB46QMTwDpop22mjzuVkFegYI5HqWdZlGDcof9JP2g+uH/qJf2TifLIhDnPFQi0\nv6jsu7K9vJ+Jb4I/AtRTBSEmm+RD2oTJxSq+Vpy2UPkktue4RP2nb0nbShuSpvjk4eHhaAeNiXGq\nOjLuJ9Cr4pCTkox16ZdTL9hm+lP3wdifz4TS1obh+PXuibnYXnXwfmOq5HPqHnla+e2cYyaX6QNP\nYZy0hcq+c3z58oz0D7mCxPFbt1kkYOLFnVn0geQ18YVtI+ecOLTiMceU4832MpHKuJTxmjJMnlZx\npsoP8v60hWpOnFsW3H7sx35MP/7jP76//od+6IfUP9mvd2+trbV9GcYXSfppSf+7jl+G8ask/U+S\nvrb3/qMz7fSv+qqvklQ/gEdQkxlnJcwEh2QsnSOrJSkYf34MWFWGzs8J5tIZpLIYXJ0y+pwTx5PX\nW4FJ2V/yoHKEc2Pi5yq5cXusQEvHW7wYvCq+kacJFnPeFVUgn3ObA4+snuY88+B4M7nknKsAVo2T\nB4O8eUQeVnNKnczAk8/uzCWf7uMxcJl8mUu88vuUqec5Bw6rxG5OjrSL5EGVTKXO5P+lPWTVsCqq\nVMQgPaej0mH1hnvtc2Uix17pTiYVyTfqYfqOxxLuigfsZ8620gdXIKMCZCmz1AvK6ZQPpYw53uRl\nglNeV+mNdFzomfPxPlOm1Vagx8BhNY4qofLfydsqqXksCcgYkElI+uIqzqSuzNlj8vuxpMv9EZxa\n9+ZAPv1N5dPNt2pM1LM5vjEWz4HX1KmMOTl260uu3Ff+TTpOhjNOmGfc3pXFu9Tt/EydImabS/zS\n783ZqSmTz7yeKz+OY07cvEsgt5CRTx4rY18WNdN/pk+Ysz3PJe/J70luh2NhTPBvWDLJ5/xylT93\nclV6m3jDsvS4GYeqAnvv87+bxWSVvMyiKOfjH20mRsidW/wuVy5TZo7dLKxYd+i/mJyO46j3v//9\n6p/sl2H03h9aa98o6Yd0eL37h1pr79t9/ycl/QeS3iHpT+wYe997/7xs66Mf/egRgKbzMiBPx8mV\nDToeviShAhUWciowKwW5rG0nQ6NjYHEilkpcgSA6Hy6PZmJEp5WHHR/7sHKwepu/a5HjsJJnUkHn\nzvYTFFC52b7PCSqYyHpLWRoDdYHz87XcZ54VavLaPPTrny8vL7Ver/fGe3Nzs98bT8eQ8qr0hkcm\nCZ7b06dP9ZGPfGS/TeLi4kJXV1eT6mv1a/Q5H8qIQIjj4/N+dmxVRYdtrlaro1VLrib5//PV0FV1\nNVdwcw5pa5axr6dcmTzSwXv+TjrMZwIp9p/JeoKGBOAZIKsVJo479TPbyvvv7+8n1VrrhbfWpn3Z\nVgwQ3Jc/VwCeviX5Jmlfabb9VOAz2/OWtwyQaWsekwPden38/KL9hOfB1xY7wKX/ye+rohiLBnN6\nU+0ySBA/juPRD9Mmn7ljYL1e6/b2diJX7ny4vLw82haXuwaSGNyzYEDfaD5XxbP8MWDzgeNm3LLe\nVLsSEkQ59vJ5xkr/51bEMmGvgLu3uJnXjuu50kGfmIdfnFMl/cYRtgUmf/R7tAXqZfrw3GZvsGob\nr8AhwbCTglOFG/KrSlASV1TJCuVQteO5poxY1OP1XEkxD9hu6qbHxaIk7SWTt9SrTCBp+3x2x/0w\nEaBsOK8E1LzOdmMZSsfbKblqmav2ko58Teq+/Yd9CFfAzJOU7cPD9pmvj370o3s7vri40JMnT0q5\nVbuI0ibtlzMWkI/cumz80PthqyPtKu2B+pdJaI7H/fPZOtqudFixzoKAbY2rrywoWQ+zCELddN/O\nA1Juk7kl6H8rUmutf8VXfEXpFFI509lXiRkphcmM1SDgVPUhFW433v05twKt1+sJqOeY80iwaQdX\n8OcIsPr+HGMC3Lkz2+b8smJl4Efnn8leyiyTlqpqlTJitYMByiAgE4YKSHFFLAMgx5PzZRWLfCXx\n+pyfgQ3vz+Q4eZSySIBrwMMkIu9JXa0Ad5UwZ6DyOW2pqnKls6QMcl5Z8UswlQfvn+uH/SWYSzkR\nSGTwPDUPntMZZ9U+Kduj3j8Geiyz3EJ2yselLrPQwqQjixfUkwQZLJp4jjkPHnPFKCZWLMakXqVM\nsn0H83yI2TSXCFDulQ5lv5RNlSTMybhqkzpySk+opxVPfH6MZ5ks5/UGDXxWmP5Fmr4oahiGcjWo\nSlD9OeNEUsqVYJKFkwTYyTefWXzKOFQl42l/le1ne1wFqFZPKr+RxaMKY1RYo0oiOB/LmbqVtuY2\n8n4TQXomH+QrsUTlQx+T7SmMxud286UG9FEExIkPeD3HUH3OOacfrPzOY3Elizx5PfU65VQlfKdw\nJ+dZ+UnraSZClXwyiZ3DK8nXU/2TR8QC2VfqaeKoyk4q3ToVO3lQj7y9kglyhZ+4Eljh1q/8yq9U\n/8X4weJPFPm13wzyVmg6cJOFT0E6yFNgVHhXxZzp2ugyULr9/Oz2uNf27OxM19fXkqZ7nMdx+8Cd\nNAVDGRAs/Nvb20k1pUqIfM6qPNuqqlipvJlseFz+Lg0kgwcNx1V57hcmH6TpMx+s0vqgc7eROwjk\nihflTplxlcS0Wq10dXW1543l3nvfV6dcMcpnPDgf7u93n3QaXhGrEnh/z3vtFNjGHM9PAWxWph3U\nyadTcvf11O8KMJNY6XY1lhVtz4MBkfOm03MAtd7PvWEz50zHLNX7xJlc+LDdcfyZ3EmHCpn1JwEb\nn9uoiGDVz6VQrlmk8P+btxls07bJQ4JBPuTsyqTf3Jp6QF9qXfcPKldFgfSN+RxLBQrMc27N8Vio\nC7R9f05gRN3zS1DSfxB4pf/hHBI8ps0kT7hdimAqQRlXATyH58+f7+9JUPEYnUrgmPz6oD7bjujD\nLLenT5/ueZnAig/ft3Z4Y+eTJ0/28YFz5nalfB7JL/Agz+hPPaZMBjJhrJIW2qR3rpjHGZ/ZhzQt\n1FYrIZeXl/sXNtkXcD65bTcLM733o61ZGafIk7mkwn1VemEioCUfKx3NNqhHWVBIGeUqW1X0pA0n\nqPc4MyGlTVLWlit9WibYHnuV8CcRQ6afJeAmuPeYvEOHPtr8I97JIgMxx5yvoVz4srDz83M9f/5c\nt7e3urm50e3t7dHK56mtgldXV5M4zBV57lyif2FcyNjo+ZOPxG2Z6DAOmU/2L2zLPoT6TFlynMQD\nVdxmLuBzYijyPe3ftsbryZOqKDGxqTlA8Fai1lp/73vf688T4Wdwy5WJKsulwFK5KnBbBW0ebE86\nrj5U2T7nwHuq9vOeOQOwMlQV5wzG5FECrXSM5HFVVajAYwLcKlk1ZfC0E6CCM0mhk7LRVitcvt9z\nypUM813ShCcMBp5nUlb+6bSqam1eT3BdVWfoqJnIkSo9m9NN6fhHE9MhEew5OBA0cPuDK8wJ0Jl0\nZOCks/f96fjSdhmgKnCQ8+cccquA+T7Hw6ziVSC90l3af65gpzxyJaMKeFk1n/M/tJ1T9jUnc9+f\nKxUJNqnXBhLZF9tm4arSkwTIudW40gPezwII37CV8+R9uZKSMuH26dbapKo+juORf8kXgqTN5ct4\nqu3UDPQck+UyV7yiDOjPqqJCHizKZHHAcqQt0SfSVnOMvibjBuWWfSTlyib5VRWrUu+Tx0yGaEv0\nt5VtEiCn3pCP1Dt+n0kKV6CTEj885tPTZ6ZuJ16gbc75zirhysTFR8XDXJmt3kJI/0K72Ww2E55n\nwi5pEgM4Rx9V3CFfE49YRowJmeBW+KWSB/nD2Emyj8+3083565Sf26DMLQeeT12fsTATMel4p1HG\nKW6XTkyU86hwZs45fXaV3FW+3Nenved2SurZ/f39RM/yERnp+LcMUw+rYlqO+Wu+5mvUP9kvw/hE\nUWutf+VXfuUseMzqia+RptUKVs0cANNoGBQSAFfnzIrngrzPCQA9B/fF4OD2CMSGYfq2JvZZAd7k\nSZVkzAXjTD7dZjod8phV9QxwPmewyP9zksHf+qnunzuSRwZz3C5Fx04AXgUj6fi12+kkMiCl454L\nZqcAM/WdY/O9p6oxGYir/lLOVd++rzqno0vK5DIp5Zg8N6C2LsyBtzkQQWefQTflSvDEoFHJsbId\nyykBdPIox1pVEnnOaivlmDLiGDJpZvDKLV855+QhA1RVRaySMQKWTNDze4Jr6smcfE8BJwLwSt/y\n7Dkm4M17TvG8OjJhTzlXSQJ5mPZf9Z88qhJq2hKf9bPcWEjJogcr6F5dTV89138m5Dnu9F+ZcOfz\nG54Di4iVLnBsTHi5+kK9YUFAOvg0JrSUNeXIKrptKwu1lS/PYlaumiVxDOlfUgZpf5kI5Kpb+ozk\nURW36FMr/5LPgKec0ybJg6rQkjtichtc8iB9cvaXCWrikfShlc+gXNwW9SaLEsR0iancZyYl7CPH\nkCuHj8Xa9C+cNwsnqQ/0yem357Ac26OuV7j0Rb+vMFfGVvKYu0F8VLaYRQTy2vxi0TQTtcQGu0ec\nXt6tg0+fPi2BWRpVMjMdRYJP3i8dP/hIR83qLJXMW87SSF2dqQIjx5BGTgeZQcx9kThfVmevr68n\nAdJtcH5O/jLRSvBnh+dKQfLIS9L5hhv/0DTbz6DsPpk4bjab/Y/3OfEi4CYvnVjxAXTzxdeZ7OSk\nww87VyA5A0n+7S0pfEUt760SN8ohk1HL1sb9GNAymJuTn3XZc60ANXWSeuFx5Fae1AcDNPKR4/V3\n5P0coOX32Y6dKudnx8wXN9AR8ndg6PzdD+dNUELgxWpe6qrHQFDhLRzc8madrZx5Bdi5InZzc1Mm\ndglaqFeZ9GZy7OsZKOfkkuCSzxO4L/pgbkUkX91W732/BdRzIkAlsE3glEkKdZf354tjnOQw2Zsr\nXBA4VVV5AuzU3bkkIlcJ+WIFghYCSf/wKuWSsa9aIbONUt+qIoDnz3hBvWMCTF3P2Jc2PAfMU1b+\nzrLywZeDvPrqq0d6SDtIm6ZeE3gRbDNRIR7gyzNIlhsTR44/sUNrh2111OuqUOKz5XJ2dqYnT54c\nxVbGteqlB2xHOmxnTr9BGVTgkvwkn6rYlzxPW7HOXF9fH/m8im9+EUHavrftcYs1ATZjJfWkwoCU\nY8qEcqN/qIA52+RYE9Sz/ey7Sk5cCJjrm3Iy35mk5vUZt/kYwRwP6CMsV2/PrHxqFvxTzzg/4xTH\nDGPdLATkXCl3+tNMvJgUedyet19wxjjB+XCMWTjO+On2/SjTXIKc9NKsaP3W3/pb/Xl/rj5XWWx1\nXypxggozL406KwdzwcftPgZipKkztLLwR1xdVax+E8ZGSgefRpw8yICXVbIK0PPIpKRy7JxTxSM6\n23TeeT35WMk55ZqJR6UDrH5Ucz61IpUBnv3P9VclXJXeJF+YbLAK5nYzOTE5MbZz9ZyYfFWruxx3\ngsGUa+p2bpN5rMpGPlQVp+ThHM/JCxYJUk/S1xFQMMCk8+X95Bm3uVR6aNsh3zNAZ8JNHlc6k0lH\nAo/KB5F4P7ekngJnp2wj/Y/nQMrqawXgsnLJ63Nlk2Daqz9VsEsbq0ByXp98SgDoc65SVjxI0HAq\nCSGvq88Zl7IgmIBlru3KT9KGOd/0sbkyMaenlX8jwGehhBX2HE/aWuULsu9TekMfarlVNkJ+ZYzI\nWJgxYk5v3Fdus0+9y9WaakxzPr+aC2XCxMzn5Fk15/QNc/1UMuHf1WeOnXqXusTr00dX9pR8SX49\ndk9SJlmZSFVtsT/GkcSlabuZbEnT3SOWI8ecPjV5TV4Sw80lX1UM4DnxCO3b40hKuT1GFb5IDDOH\nPav28/5cKU1dTxuv/BkLeKvVSr/pN/0m9Zd5RStfhjG3DG1B2pFmElE5eysLs21XbhnMWGHKIF0F\nY2n6ViJXDujIqOD5vfuRNHmrURos/yZfHHCroEfDI1hJo68UnMGLq0fmgXnFZJHtUsHPzs72KxM+\nzLsXAYve1pLJr9t69uxZGWCqpKYCIUx0Kh5mkuD2qadO2Fn5M/8uLy91fn4+4QFXMkx+4Prq6mr/\nMPapqlzv21fC+qHZCsgQoEnHwIpbjc7PzyevQvUzEwT9lTNPWWbyWDleXpdyTYA7Z/90xBmQeWZV\nvQIIlU5U1UHbIYEjnbm3bjFJ8Rj9mS9FIaVu2mbt3/xCAvMoVybT3ikX2yuBHX/fjT6KB9tPkMDg\nxa0ntJEELmlXXrnnq4ZpW+mD2L/v9euQW2uTOQ3DcCQHfiZoqA7biufh6zNBmUuw6cMYBzj/Chim\nn7cOek7kccrc8cR8s9xtzywUeHxcIZO2scyvn5+bU1VYJFikPaZ/4W8Z3dzc6Pnz55P7M0lJO/GY\n3b/txBVuxo2rq6uJ7WVhzbaZscU65sTNqzi+zy9Ise1UPwPANrPfqq+qKGDKKnzGcdOLgEfqJduZ\nK1alnlUJqJNLF4odm6jv6VvSH3D8lHUFwG075B0TduMNxuOMNdYZPo9UJWvuh4UyxqncPskX/6QM\nPMc5feR8uKrO4hRjL7FG9bIt2iftwjuTjEdsk/ZxLLIwMZOO32p8quiQ2Dpj5TAME0zIbbUet3XK\n/iP1KHng8dg2E+NRL7iiVfk08sCrfqeSx5dmResLv/ALy2pLVbng55xfMjgVOh1bOo8XGGvZv8+s\nJrOilWCwmleVdLBtf06gmFu/sjpROTq2lQqZc6wqDdlHyoDBpuIT5z4nA/bxWECq5pDglf1XwHtO\nJhWwyGpnjjkddALNnF/l6E9Vc+g4DUpyL3zqSW6bI6hOEJBVMyYllFsClzmZ0CHPVeWSMtl1MOOD\n15VtZELGwHYKLGYAZwDxnCudYVtpKwm4T/HI/oqvPuY1VWGF7XOVj7ZaybUC+PYNmTClf0ndr4JU\nZSu079RnHtxK5SQgdZWHwZYBl6SjhJ3JWuWzqjGnnOcKM5KOeJQgIP1BBvg5H5uAmuOt5E4epw7P\nyXlO9ysepH/iNanLyed8jiR/Syx5mrGbeptA75S/yrg25zMSWNu/ZPJBIEafO47j0Zyq5CTlzDHN\nbeWm/+B4sihCuZMnlFdigSoOVTzmqt8coK7iSPqLLIBkXEgeVZhrzgc6EWJflf85hRWqWJwyS1ue\nW5Ei0R7mbKHaQlodP1dcn1imSnZzjIy9FRZJ/3QK42Ust0+mbiUmm5t3XlcdOZ8Ky5H/xEsZ+yjn\nL//yL1d/mV+G8WVf9mWSjpel55y3z6ngcwA5AV+uODFoZ0BNUIFxl0bPvjLYUHh2nFQkO/tcvfFr\nsK0Q5A+rufm2twQ0/sxzIY8SjM7NOY2A7VCGyXvKgKsp5LP5kUlCUs7lMUNMA6RBVduj5u6f+z7n\nmI6GfZunqYeZVHCe4zgeOQnqVYIzgwIfVRUvq6wZEDkeBwOOmas93IbLVY+0laooQb3KRCn1lLad\n/qHStfQHGVArf8LrKt2lbOm8XcWb20qUvq6yq7QlfiaAJk9zVYDPhfTeJ0kMq+4M4BVPPKdqe1SO\npwqQGQQrOdoWyKeUccotv0s5POZPJE1WyFh95XNrad9pbxxL8qQqds0V3+YSwfSf/Jz2Qp/m7/Ml\nBuzLbeVzLJVO+nP6ZLb/8PAwSX79HA71oXoW55RcOecqLqW/SL+efUrHvx12KilKubNPzynlkzpy\nyi7I07lErQKUCY5PFUWr2E57e+z7tNtKXxMTzOEFJv2nMEXVV2UjxET00UxGXbzKBJ1ytNyyoMdx\npW5kLEw+zSWfmXTQXnnkllPaqpMAHo7HXAnNWFfFH+pR4tLchkfMVsVK2h4LN5VcJU1+8N1vEcxd\nPBwn55crYtaDqkiZus4EP1cJ6b+GYdAXfdEXqb/MidZ73vOe0rnuvt+fqyBMYVHpDT4rhfS9WVl4\nzLmno8gkLonGyKV/3pOrPxmAs6JEmeZ4EtBXRpQVszS4dB4XFxf73xe5uLiYLLv7xR3J1zzTeVdJ\nS7UC5jnQcToJIk8rXcgAyPna8OlsabRORMhD8ixBAxMnjoNzrviRQOkU+LIME4DDhiY8qsBe2tWp\n6qrb4xizIpnOO+WetkOZJLhngKOcky85xrTXrEBlf9lWAq0Ei4/NieN5EcrkM+fHBNE8y/GkP8s5\nJVA6Nb4qyTsFeCuZp49JIDXHM8ox7aVKni0H2z2TR7Zh/hIUnHrmKn2SeTiXjEvHFekESgnCTgGp\ntOcKeM3FPlPyPO230glSBZZzjimzquhAu84tpukf58Ay4xBBbRYtMrlM+64Sg0rHyB/ywskpY0LG\njdSPHE/2z61Q1Yun5vSfYJDgMn1e79Ptaf7evEt/UOGZLB5UySTHVhVWeH3GpYy1qYM57xxjJjre\n/srkNHd2ZOxjfxmPx3H6qvMqYU0eJHY4lVgRN1pv5mJxJkW0v/SPVaJKOaTN8XMmp6nXTkK43TuT\nkNzSXtk17TN9UuLYpFNYo7Jpv5jIxzBM31JKPfGcUg+z+PylX/qlL3ei9SVf8iVl0pDCSMeYzv1U\nMJGOX0mdSUUmPnRs/N4KNucEfJZq4BPzP1Icf7ZyEAyyulyB7gQNj33PFbFTy9ZVdbgy8rk+fWbA\n9Bu0SBWQotxz9WnOSB9L/qprqvlUc6IO2WipCznnKrmsnH9eRydJx3YqicgEm8AoE1rOOdujU+L2\nx3TcFSBPUMCqGudM3qZ9k78EaqZ0lAZCjyVeaTsZxKpxzR15bx7kee69r0BPBtCsTKY+rlbT34hi\n0jBnx6mn5LH1goF2TrdPzZtHgksCxer5gseqtdRBFjn4fa5K5u9y8fmAcRwnb3/LJJ+26XPq0dwq\nH3WVR4LJ5OMpHcwiTVU4ybEPwzDZmmTwx2Sl2m6Zuy84hkwEyVP/iOqpZjrmhgAAIABJREFUKn0V\nizmG7CN5lL4ifbnl5PllLK3iRsYHfm8+pg2n7lF2mcxlMliBzSwWcwzEHrllNJNM+uiMM9SrjG9V\n7GNMTblTbo7v9CdJ1SrQqaIEk/30gezPcnWixDclpo+l7dBfsHBTYU7zMHc+0OemneS5OrK9vI8+\n08kpdTULeJQjMVvex0Qqt6yfKkalD06cWGGw1KnkURU7qJNJtD/iDZ+z/8p2OA8W71lsZ//vfe97\n1V/ml2HwNdxUlhSiNN2rS+baEdFBp0M0UQG5Vezh4WH/S/fVChSFSGeaIIHBgQrJCpMBOpdMez+u\nFHhcNgD27fFn9YQGkAGYSY4DDgO+ecAVK5P7IyhJMEieZEVK0j4B9X1Z+fR8yHNfa5lx+5rlzKpe\nvpKW412v10eOPgNsBvEMmNxqlL/MzpepkAeZpGRVjOQKkudNh18lOVX1Oh1Wfp88WK2mD5Janre3\nt3r69OkeLPsFH7l0X4GKrKjxGtohAd/t7e0ehMw9HJ9OmFuDvJUhnTPBpvUnbSOTePZlvaJtzAFm\nny1HX5MgwtcRPJJPVbKaiRETuMonvgjYog56zLTb1N1M0pPPCcbcL587sywqwJUr5dSbtJ05PfJB\n0GweJkgiQPX42L63bvNFMf7eiZX7e/78+RHwSbBFudv26P88Xl7DedH/V8l1ysl9ujgh6QiMpg/x\n9byHNpfgkvf7pwBMWQSxDDLWek7JH+tx2hsP2z9XBao2WQDNeaQ/4P2O3dTF9Ou5zTZjW/rkjHUp\nT9qAeXZ/v/1piHyRjHRYoWfR1DLmT2R4TOmzzBeOg8lzgnzb8fn5uZ48eaL1ej2Zv31xFiXMF/5c\nTAJ1JouUc+5S8tyePn26x5H+7urq6igBpr/xKqJXxYxnclucKXFe/lSDj/SZTADSJzMusAjCcTru\nzsUZ2ot90VyRM/lp/1TxiPE4+5orQlQHY0XGKRbEEq9Xus+XX2Rs8Ms+rId8IZD113ZQJXWZhFIG\nnmdFL82K1hd/8RfPfTc5k1IhnEQ4gBtQM4hnZp9KmgrB7xIIVcKywOlAqSzpmFPQ6TgTQNDx+Jy/\nd5DKUQGjqlrgcxo5eVoBo5RPBXQYTJgYVpWFueoIKYPTY0dem31loMv7c2k/ZZKJVsVX8jv7Id8T\n9KU9VLaQPCagrsBx1UbOL8dYJVKU0xwIYuXQ46lAROqAHSe3gGW1N/lSJa+0sWpFK3nIokVePwfy\nfKTtVAk4x8vAYZBQ2UblJ3LulVxPJSWs2M35nN6PVzZyjuQXVz6q/ikXfz8XzOYAtwEJnw+inlbA\nJv1hzil5RJlYt7OqfYoyaUm/X/mmSo/SP6UcK31wHMotZVl8mtNhyzC3Q1U+i2PIOSffmXB4N0jq\nNecyF5srnjnpof+QjqvevLfSk+Qxx28/z+JGUsaZ3H7p1V0nQtVLU2j/GXeSTxU4rXiTtlf5xkpv\nLMcqLns8adupu7nqmNuzs/jFAsDd3V1ZACAPclwVpc9JW845ZozIFf9MqLN9jrfCidQrFlqq1d3N\nZnOkF7l6/JjcM/alj/e43U4l5/Tz7FPSRKa5GMH2icEYy6l3q9XxTy9lcZG7WapFkcRziUsTq1c8\nSp+023n3yV3Raq39Bknfv+vnT/Xe/2hxzR+Q9OWSnkn67b33v1G1dXFxMam+0MEzQNJRM6izou0H\nmq2gVLxq+ZCUANrOjEkIq8WYp6TDNhw6rnS+VNTMuu0o3N8wHKr6rp6kI/Oqitvn/JgYMUGgEmWF\nPJWUPHFVIJ8byaV4js8O1M96OehTVnRC5BFX3AikPB8uc1snDMorY6scn+fFlcW83kS50JmlXnl8\nXImswIzvdduZEHC/c4LZKjml08yVk1NJRkWWPXXXPPEcM3HPOZB3VdW+KjwwmXLFsZJhrhpY98gb\n2lbvh9VcV7049uSxQQFf30y7Ojs7m7TPsWbymDKsQCL5kCtmHFfaas7BlMHFwc8rl9wSUiX5/lwF\nLrefdmE9Y7+UOVd7CQKoR7QnV5jpb+iHvPc+bZV20VqbgLnWjh/kTr5Zzm9729tKn5iANX0iK/pV\nMps2kyudFdDJMWY88Zj9Bj/7Mz7YbV9s/Z5LQiTtec9krwL11HXOKeVM/vjV7qlTvD+LFPYH9NFc\n6abfr5J0V+cz2cx5s8DgF0w5tlAO1Es/y0P/YB5bNplsJn+G4fBAPgs1tnW/5j/BI49KN+g3jF+4\n0sFCrcfAlYwE7V5JYyF2GIb9ihDHkLZouXqlKWUuafKbohVVqzVV3M/E7FRhgmM0CG+t7X1Dxm3P\ni0kFbZP+Im2bbbh/67RX5Xit5cIYQHlWBT3yiM8ncdWOPou6k/zK2O65Z1JCvfRP1PCo+F4VWjJu\n2WdYluYJCyXcqux5Jo/NA/fhldCPf/zje13PMWfsm6M3bUWrtbaS9DclfbGkD0v6y5K+uvf+IVzz\nZZL+7d77l7XW3iXpj/Te31201d/znveUwSSBj3S8fMlzJdhKkLyGdEoRCAJoMGw/jTz7yQCdwJJt\nzGXmOadKoXMuJBqrHSurj2nU6ZzmKtAeC9un3JLPc+DBY0ywmgk3q26VMyCvExRkpTDlkzzK9iuZ\n8Ps5I63m7DP787WZ8POeOd1OHs8FmOy/AsA8sqqW1dpMpCqeZ4BMW5qrLDr45XNqFdDIxCkrogyY\nWZlMf1PZf4IIHrn1MPViDlBnopx+qCKPI8dMmVb+JbcmPzaGqs3kSeWrCB5P2VomYlXiV82bAJ3j\npX9iklLp+py/ok7YJ1aHeZ9xKH1o2kLaJ+dazZnJZ/rUKk7RfmwXqXtpE+SR2017TD2qnmuzDFht\nzu2W7K8CNgnSGV+r2F3ZS8rItpDgsPL5LE5V23Az3nL8GVvTh1HvKt/MuczpnI/0qdQTbkHNRIzn\n7DdjW+qFaS7uVckmecXx+pmoUz4843cmHATj1TOfFY/4vKLlPOcvkh5LMhKzuK05POcxVsWuufid\nRUbavROQfIPeqSSCSYvte84ubbtV4TbxD3Hw3FsK52w65Ux9MGUukDiWNsPxVs9wZf8Zy1prete7\n3qX+SV7R+jxJP9F7/8ndIH9A0nslfQjX/BZJf1qSeu8/2lp7e2vtnb33f5CNPXv2TLt2yqTBfxOY\nZTVb0kS5sgJNx0RglQB3N96j8QzDMFHgm5ubI4X1PTzPJXq+Ph2viQZnY7KjSedDp8gfhrRjoeKz\n6mTHzPFSGV0NYRtUaPM4n3vJKn9uFyRosJFzFbMCGpVh2sDIZwdUPoORANhjcuUsf6y3AmI855ak\nJK7icSvhXBKRgMZJBffSpx5VDptyTN3L6wiECAIqXg/DtpLpH+9L22HAY9LBgEaZONHKgJRzpL76\nO65QzZHBLm2u6qPSOzt1AqWsdFb8rsBfBvm0FWn6MHsCKdpGtbLB+eT4/B15kNeTF5ZzFl7mfGT6\nZxOBKRMr90Od4M8EWL/Sr1lHCAKom4wDtm32mbYmTR+MJhjwmfPPZJLgzasP7tvt0baqbS3kh3XO\nY3IFO/XMsjJIyKSEcrV/8zOX5AUTDttRBeqqhNI7K8yjcRz3P8BeJSHmyfX19aT/TIwqoMQ4wV0i\nLLjxSMDu2Oa2PH5X2zNOkDeps9YBbqNfrVZHb1rLmMHPWcS0T+WRcZ2+xbZgmdk2Lefr62tJh6Th\n+fPnRz4g/YZXADwvgv7kSYWJUq/GcbvDhpTx07Z6fn6uq6urSUzIZ/XSFsdx3D+/SWzk4/r6+ohv\nmYRQ5m+88UaZKFU4lONx8pIFEl9nO2ZhhAd5bL2Z0wtvm8vEin4zx5jYjnZHn86VTBN5nhiFScp6\nvX1GjbHKZB7x2SjKy36Bj/nkdkiPhWfqbtqO58uCGX1dYo0XKTBmsjhHb2ai9RmS/h7+/ilJ73qB\na36FpKNEy7/knpPJlZNkPLcXSoeHS588ebJ3blyCTGeeypdGWRmadFjezjHbERiQpuIn8btTztWB\nZa7K6+sZLOe2AlYOoyJWOzw3j4MVcQIAgorLy0tdX19PeG6jyz363JftoFbxxXPkQ7atHf8YL0E1\nKxzecpJJgnSo0FYGlcEiq3KVbvplGSlnGrCBi2XB7ZgVef6VA8pEokrkEkyxXTtl89xVacvPvOI2\n1lMH+8qqOlcuaJt5vSlBQVb2q0CTwCyTY9sIAWn6CgMYBwQWaTI5dQJOPfd8CYQsm2fPnh3pRPKc\nQDcT9gxsDuBVpTF1OUE0g1NWVVl5Tp1zopMByaAt/V/K5ebm5sgne64E2OQF/YJt3dvRuD0ywQt5\nSL0jLzPIErCkv+D4WJgiUCeP8n72SV/vcVGO5AlfvsGYluM3bypgYT3gPClb2qb1MeMHk28WJaqk\nowKvyXcmDU6Y5+x5LpZmgs6iTMrBPGQCnsXb9EWemwsCaVeO/97KT55yDsQDVdGFNsiXReQWsSo2\nztkn7S9ps9nsC8ccM5NF/18mCZZfJmKpT77Pxd8KvFYYbBiGyfY5Uvr49Hf0Z/SHxDBuJzHfnP5K\nmvgl2gn9LuN/+qOUcZ6ZCF1dXe3bN64kn/MwcSud5+gzrzUGnCu4pHzdN3FpJQfG/LnCEX2wv3OB\nOuNUlYhVY/KR8S3HWOlNjjFj4Ry9mYnWi+5JTMRY3vfBD37wFzaahRZaaKGFFlpooYUWWmihTxK9\nmYnWhyX9Svz9K7VdsTp1za/Y/d+EerHncaGFFlpooYUWWmihhRZa6K1Kj7+H9udPf0XSZ7fWPrO1\ndi7pt0n6kbjmRyR9vSS11t4t6SO9eD5roYUWWmihhRZaaKGFFlroZaI3bUWr9/7QWvtGST+kw+vd\nP9Rae9/u+z/Ze/9zrbXf0Fr7vyQ9lfQNb9Z4FlpooYUWWmihhRZaaKGFPln0Uvxg8UILLbTQQgst\ntNBCCy200MtEb+bWwYUWWmihhRZaaKGFFlpooV+StCRaCy200EILLbTQQgsttNBCn2BaEq2FFlpo\noYUWWmihhRZaaKFPMC2J1kILLbTQQm85aq29mT8/stBCCy200EJvOi2J1kILLbTQQm8Jaq39ZGvt\nm1trf0nSR1pr/2Jr7S+11j7SWvurrbV/Cde+t7X2F3bf/e3W2r+x+//f3lr7i621722tfbi19qHW\n2m/Efb+8tfYjrbV/1Fr7W621b8J3r7fW/mxr7Y+11v6/1tpfb639c/j+d7TWPtha+2hr7W+43bal\n39ta+4ldu/9Na+1TPilMW2ihhRZa6C1LS6K10EILLbTQW4W6pN8t6fdI+hxJf07Sf6rtD9v/IUk/\n3Fr71NbamaQ/Iun39t7fLunzJf1VtPN5kn5W0q+S9Psk/WBr7e27735A0k9L+nRJXyHp+1prX4h7\n/1VJf23X/wcl/TFJaq19mqTXJX197/01SV8i6Sd393xA0ldL+lpJ//Tu//74L4wVCy200EILvey0\nJFoLLbTQQgu9legHeu//q6Svk/Sjvff/svf+8d77fyXp70j6ckmjpHNJv6a1dt17/we99x9HG6Ok\nP9573/Te/6y2v9P45a21Xynp10n6Q733u977X5P05yV9Pe79m733P9V7/4ik/1zSP7P7/y7pStLn\ntNbOeu9/t/f+t3ffvV/S9/Xe/7fe+89I+gOSvqK1tsTYhRZaaKFfwrQEgYUWWmihhd5K9KO786+W\n9Otbaz/rQ9KvkfRP9t43kv41bVekPtxa+x9aa5+NNv5W7/05/v4/Jf3y3fG09/5/47v/Q9Jn4O+/\nhs9/X9Jla23ovf8jbZO/b5X0D3ZbDN+Jsf4nGOdfkPQg6Z1aaKGFFlrolywtidZCCy200EJvJXrY\nnf+upP+l9/4pON7We/+DktR7/2Dv/V/Rdgvg/yvp96ONz26tXeHvf1bb7YIflvSktfZP4bt/XtJP\nvcjAeu9/vvf+xdomVpeSvh1j/Z0x1uve+9//Oc18oYUWWmihf6xoSbQWWmihhRZ6K9J/LenzW2tf\n31r7lNbaZWvtC1prn9Fa+yd2L8N4Imkl6V7Sp+HeQdLvaq2dtdb+dUnXkv5c7/2nJP1FSf9ua+2i\ntfZrJX3prq+T1Fr7nNbab2ytXez6fECff0LSd7TWfl1rbdVa+2Wttd/yCeLDQgsttNBCLyktidZC\nCy200EJvOdolRV8i6Rsl/T/arhr9e5KatrHrW7Vdofobkt6h7XNSph+V9KnarnS9Lukreu8/u/vu\nqyX9Cm1XuH5Q0nf13v9nd7s7JkPZnS+0ffbqH0r6K9q+bOM7d9/9EUl/RtJ/Jukj2r5E4/N+vnNf\naKGFFlroHw9qvWdMWWihhRZaaKGXk1prv13S7+i9//pf7LEstNBCCy30S5uWFa2FFlpooYUWWmih\nhRZaaKFPMC2J1kILLbTQQv84UbX9b6GFFlpooYU+6bRsHVxooYUWWmihhRZaaKGFFvoE0/oXewAv\nQq21JRtcaKGFFlpooYUWWmihhd6S1Htv+X8vRaIlSef/6COSpPXqQWfre52t7w+fda9z3R2dfZzp\nTue614Vuda67ybk6DvfwuN//H/s504PO+r3Wu8/rcaPVZpwcbdPVNlJ70Pa8kTTi6Cf+nvtc/f3Y\n0XHuUucGmyb1Jqm17XnYfR6kPjRpd+7rJq2b+lnTf/inH/Td7ztTP2+H46xpPB90e3amu/Mz3Z5t\nj7uzc93o6uh4puvJ8VTXej655nL3N8/bz3d353p4fqH723Pd357r4fZc/W6Q7rQ72va8wfGwO0vH\nm4sajgFnHqvivCq+3x9dav3o3PD3tI7Qt/3GuBoHW/x9+Ni1+YN/QKvf851qbde2r29drWnX3/a7\ntut/2F17fI+UdY6enT5Cvbf9sdW73d9j07g7H75v6mo73TxcdzgP0ri7bhy2Sjvujq7p+UVsZFNc\nU9mcz2bAY5vTqD8+/5nXpa9//VinKn3KYxi3x6rvPncNq1FtGDUMPne1YVQbdvIcTsi00rMudR1k\nJEnjjueU1/57y0c72WwG9XHYfh6HvVy6ZdR9kIf5d8Hf8FOPntvM37TBYTf/1qXv/33St33P9vPO\nRlTYyPa84+8wbu1m6JO/t/+Hz23UShsNGjVoo5VGDfL/bf/29yttcDzsr82jadSw5bqaxqkvAG3Q\ngj8/aL0/NrvzvdZ60NnkfH9/poe7c93fnev+7kz3d+fq98POpzbJn+91fNDP+kDc2R+0j/S1K0k/\n+Lr0Va8fbGAdNrGe+bzS1k7Wbm/cyXs8+N92kP+pOm7f62fb24as2/BFB//ha2LO1fwFPlT6mv9n\n3kx4NUqr3bx2nwfr42rrG4bVeNBb6/Gw0x/7hdb3PuEIJ+78gnlx8/v+Y13++98++b+pTx/2Z406\num7CV/sbHT5P+55et/ch5Pv+DP5vZo7Uy7n/H3H2Z8srfX/KqsIJ6+I4l3Q2Pbezjdr5Ru1s3H9e\nrTdarR60Xu8+rzcTn+Hzz77+x/WO17955w+28uy7wfW9l2ilR9mMK20202PcDBrHlfpm0DgOe/+u\nsUmbBjuAvtBP24/ic1uN+1jWVttjtdpo2J39eWhbnR0Gf7a/E+bnf7WfX1fbjrUPGn2MgzYPK20e\n1rvz9tD9zo89DNvz/c6fPWjqzx7ioI5QTyTpd9e46KVJtIbVTtNXXeMw6F7rbeDo2xTnrp1rtQ8d\n04MhJBOxuc9VUsYz7zlr9/tE7Gx1vz32idi9zjYPWt+PWj+MWt2PWt+PGu679CA1CvJe28SA5+r/\nqnN1xDV9117fKUrfHRp3Sdco9d4RCLs0aAc8pDZIw7nUzqR2Lq3/jnT1kY3atba/UnMt6Wp3ftvu\neOXw+e6Vte6enG3Pu+OjelUfa6/qY3pNH22v6mPaHh+XP79NH9er+rjepkFdG6101y+2wOF+rfFm\npf7GIPm4adJzTY80EIPrIyXTsZNca+sE88j/d6Cn0x12jmU1SqvNzslEcNsF+UnAItjdHaODzLhz\ncBPwqilgfXah8R++enB0Unzuh8PjQQJIQLn/zPHiczWXpCrIbuepHVhnoB6QgA27hGo75z1g3wdZ\nnKsEqXKGcwnUi5xPJVak9LWZDAhtETRl0r7XJchoF5xkELUDUv5MeUjHMvP/HVHXHiAxuR3HYQqe\ndsH1kFQN6hvK4RGZzCVQL8LLSdKEc343SaZwLmygNakPo4azhwkAzyJD21+/uweJaOtd49j2ILb3\ntpdHb1tgswU9g/oO/GyP/Ptwbds5kw4GHIDToI0MOFb7/+/7qw5tOW3z522CtZpEyPvxTPf9bHve\nfd7crzXenWlzt9bmfq1+d4Z41I4TK8vXsrA/pNwru6gKWraDK21/pexUgWvVp5/3Cce26HCUPFO2\nIePKB0+UkH7Wf/OcE2w61u92fNkRzel80r5/dLTzp2Nvapthb8P2DePOnw/DvK5/QqniAfk1iXM6\nJFJS+BImVnq8ID2XaGU8OHVN5f/Tf6Wskk6xtNCj3pu0GdSHrjYM+59ub61rHLuGPm71sx1s3OQS\nzLb48hhxMm1fFNLQdv1J49A1brZ4u20GjYP9/SANuyR6M8zPkTgjMIeGvh9GH9veT/YuDeOwj2mj\ndoWDXSazT6f2ugosYb83Doe4tfs87pKr8WGl/rDeJVdNemjTBCsLQxmftfs/+jb6vhl6aRItUx8H\nPYxNra10rynga23cVeZHrdqooW20aqNWbaPVsNknYitttG7b8z4ZiqNKqqpka3rNrS6qlbLhVhfn\nt7o4u9PF5a0uxlutHx60vhu1uu1a3Y5a3W2roxq1FXjXVvjPJd1Ierb7/Gz39wsc43Pp/l66u5Pu\nd8fdg3Q7Snd9e/Zn6xh1LRdn1pIuBulykC6b9LOj9OGfks6upHMfl9u/9XZJr+2O3efzT33Q+ac+\nbH/d5lOl/qnSq+e3+sj5rV45v9X1+XNdnT/Xhe603mVDowbd60y3/UKrcSP1rk1fbQHB87U2T1ca\n31ipf7RJH5P0FPzyUVUlCApMTqyy6uTjIv7m4YTL7f5CXjPjgLMZtknVxgcALINFBp7n2v7CTwKD\nbVSdznuQOoTcvQq3mp73SeIO5LcVkrGo4j8K6jnPR3nRtoMaeehQPc7VqSqpeoHV3dlACtbNRi8C\nxioZoLM+1zGonF0t7dOz2/PYdocT1XFsaoODUTsASG2Tgd7bHvgcJ/TaBaVtgjuOwzbZ3RyCqxOr\nvR7u9bHNJ7UJgB4j6mdVwa9AziC5KLS91snVYQXjkEQd6+c4dA3rzc8BaBbXBehy4WDsB0dgcDRo\n3J+3CdCwqy2vdtVp15l7eWiSfm0/H9a5fOchydrwc1/rYVzpoa+16Ss9jGttHtY7ILLeH/1+kB7a\n/rwFJZoGiQcdZGvwMQc8qxXe2RXdnSxf6dI77Xf6Nnnafd92q1Rtt5rrlVzLdJo47PjlfKlv/+h7\n3W/TlRbpaCW2s3o/WTVvBx3PM1XllGpV/qLFd9Rr7JTY++UdDzRsAfNhFfaQVE2LY7vkU+ATkq4d\nh8AzJJvekdHju4pQANzvWtjzMYpne38+w9f8/Njx84kHc0lVyoogPM8smOUK7Lr4TL8+x8adLxnH\nQW3suxx1Gs8PiZeLNb3wFJp4EzfQ5FXOUUPTvrjOexsVe+jq4y4x63GMAD97vWlS6+qtq20NT711\naWzaDIPGDQu7O73dF36NLariyG70PXbBcMdMb+obrMwRo60gS8slk/A5/ZCO9WOGXppEa9xs00lu\nTdlvUZGk3rZ6sWP8NuvVxHkMw3ZVoQ2b3bab7VLlevVwOA8bnbXpdsSz3bbD+a2GTrCe61K32Ny2\n2+jWnuuqHTa/XelGl+tbXa6f6/L8VpdXt7rc3Ors+UZ6KrU3torenHQRZPj/brVNKJ5KekPqT7fH\n+FTqz7bn++fS0430xrg9Px23Ry743KqOnxkTV5Iux90h6ZdJ+us30qv30qvPpFdX0tvW0tvOpPb2\nw6GP7s5OEnedtltp/cqDLp8818OTQWqj1ud3u+pF3013C0Q2baXNsDqsUfYz3Z2Nur/our+V+sWg\nzaWmWwG8SmiygWT11ZTBPxmQAKFyomtJ675zogYHu8TEWzwUCQgdBFYUtNmBnA2OXMIm2PHxOV+w\n/cnUF3EIJdBvu3m1/fz6apDWUt9XkPt+6b8No8aVbesQ6Ic27gPT0Za1vnP46RzbroI2tp3f3jrk\nrr531K6Ebs8F0K+CaCZNlnfy5THHOQeC5g7qzbu/QHqief3a/58TBYKqadLgoXZtA9uoUa0Nav2w\n6mJQNVk99NkrVrEl05/3q4jUvX2yr/nqMP9vLoGteJr8rGwxdZVtWpaPAJak3pv0+b9+G0/cWBnQ\nd4C79eMufL0U2wrHKcCV9gnffjvMvjiYidQBChkiuY8y/bIsd9s8xz5o3AzajKv9eTMO6g9bwGHg\n0Tcr6UFbOT+0/fkIaHCLLf0o5WdfmEnDKRkerUzZr2ykL3qP2qfd7KvbDau3h21w42FbJxKDiYyx\nNfkIgGHlVuOwKz4YnO2SqzHP4MNcIvAiuu5z6S8iqdodDb7AIHS/PdC6d5RsUQczCX0xYjJ1/gXv\n3o4D8p+uAOI+JWYzD+G7Kx9+ajfCi35XJWZVUnzKT/Gz8wfGgKNHBXScaPlcbX1dx/8zLrgPJ6lj\n07gZ9mGv7x7zGIZtoebsCz5f91rvfUWbUcKpp5mnpoP+DH2UBu0SuXGnD01qKHxaB1o/JF3S4UyW\nIoblihcLYvy77f/e3dnY4GFu5pcxwqRgssMb+8TK565t1ubvK9zAvib2+7gtvRRvHWyt9eHvvyFJ\n28Cwq/D3h12lvwr2c4aTQKnYgrA6f9gd91qd32t9ca+z4V5n7U7n7W67VbDd6aIdkqqLXYK1TaSe\n6xJPGV3r2dETSVe60ZPdU0lPdv93cX+n82cPOnu20dmzB53dbLR6Y5TekPRxnT6/oW3ShWNzIz19\nkJ7dS0/vt+dnm+PFL++uY35SJVqDtos6l7uzP7+ykt42SK/4WEsAZ2qwAAAgAElEQVTDa9ujvSYN\nb99+1qfsjnccPt+9fa3b18509/a17t5+prvX1vpIe7t+Vm/XR9qnbM+746N6bXdsP7/x8IqePjyZ\nnDc3a+nZoH6zUn+2Ur8Z1PdbXdp2++RDq3XE+sAJe4vg0blP/94lVdttgl75QYAbDg4jn1eSCwa7\nFaz9qsFmN9bcR56rc48FGdpAFdhfZD95ESjaerM7xsNnJlrFKherp+nEJkv9rj5hNWUcAX64R3zT\njoNqFVCratTpSDM9XuT/pLrKOXtPP/57n1Dlisx20Blw9n9Lhyr9JInVPvA50TqAHQCfvR6dSKZc\n6Km227wIrysezBU05raLJWAxGOVnbxvD5+TXJ4wmTRVIf/ban2d3c/J0NbnPyPNUgpByTrnluFt8\nTp8yl1hNzvaX4+6Zql0itdpotTtv/8Y2WSdczQmpZOg4z6/dKl8fDkmpwb8B7Dho3Ky0ediex832\nLBe8nGiRl7lyO8er5Fvqf8mj8aC7u+cy+Uzm4fNhZ8GAxGqfyPv/Jgm8BftiZJ6ZfyOe2Zw8l7Up\n/Pf+uZ4dZpvwsB3jtlOFm1Pfn/L5/Oypz+l3hRVTtytflX6rfG4wjvL7UW09av+owU7/8zmmTKKH\nYdwN+SBnT+FYnrYcFN6wAs/iwziGXMNu+uQ5RcQTrGROd9W8IO1tpD/qUo/vmyZq+86zHV7DHTiT\npA7YBUWKyVZytyXp5rVP00v9Mozx5nL74UG7yn6rH1Cb22ubwcO0N5S2d3Kb1Zk2Z2fS+moPpofz\njYaLjYaLh92x+f+pe5tQ65ovP+i3qvY+59x73053QiNIiOmB7UBQEEmCEpoeBByFDEUnASdOBOfO\nBIeikYAoweBE7ImKgqNEUZwY4sRRC2YQSXcmCbb2/33ux9m7ajmotVatWrv2uffp/r/gu6Fu1dln\n3332ro9V67c+cVnuuOQPXNM7rvkD1/zRtFeTsA8NXL3i2QGulxAK4mV5xcvLK55vr3j5tTe8lFdc\nPu5IPzLyj4z0Y0X6kUE/8giuItCSdvoGPL8CtzfgV18b8NrfgXsF7kVKBbYKbCxYhFvZMd9LD+5K\nJKaEC/C0tvq6AnRFlxTc0RDdii55FrPI9XXH+m0Hq2buF8CfvPwC/8Tl/8a3yzN+vDzj2/qEb/QD\nfkQr3/DS6uUFr8vzAFffccM7X02v+MFXbHXFvq/Yy4qtLNj3FbVmISpJNo402D5DahXcsCw8/dwX\nKEZm2dWN6e3mWCaRKrIBSbH5bMCKRo3cbJ7PnDJnGpzZxhE3hWjOEDeWirbZE9rmvwBYGZQbyEq5\ngSxjjFIHWs0Rm7t0zIGtwbZ6otEzv6CShg2cwwbeJc8Y68j8xD6JfXNWPwRbE6AUN4lhfvBJ7a6b\nHTW5TVFu5jexwa/B1+gSushQz0wkztozxmY252bMpickX9FuKNjX+QeM83X4HzYmnZRx90FB1KQs\ngPyH0l7pr0ELogIRNSNzYKebzCDMPzr2zWdSdB4eptdfmcPx/756XvoEQO/XeF7bnn7MGFBrc9DO\naM0gaatGXK1LKNcj/VDtoDrHixZw1Od9Mp7ESCBUYgMK+l1VLdYf95gx+Wf95+f1o8NL+J32yoPQ\ngwbVASuCDyIw147OXgP2H3I1K60+0mnb25xpmwYj0GtUGDZox2e05nsB12fCg7juhr49GR89Hs3x\nmTBoJhA602zZ9XzQ5hq41mA9MijVLLcgJuLjftpNxj8/2O0h0eSufz/Zk01AbAyR9Bv3PuOC5sTq\n9qXTQEg4p3sRpH2FdtlY0QP6xL3/nbktSb8P/s5OuJNTEPZQW19J+RqZYL938og/G6Bldp+2QOkI\nrL4CvOKCnC24KG1YgLpk1EsG1tVQxrsCr1sDXvm247J84JbfcUvvrc7NbNBrtgZwhW/9M33Dy/KK\n56VruZ6eX/H0wzuedinbOy7vG0hNDH+EtfGKBrSkpjdgUbWV+ni9AXwH+KMV3Nvnurc1Uvfenm0e\nzSQJZsdLhBYcYwHS0tum8rqiTeqCZqP4o7TfAfwCoD8A8AzQCyygxg9P73h5/kB9/gPU54T6RNiu\nC+6XFffrgu3SIhq+09VFIWz6xHdc8UHX7i1HV9zTBffFx428aIzIwTMvOop75/EeC2xx7eb1Z//D\n4gOhpTRHctQFpaTmVL5lsEa72Ugcy2kevctHvfHOmnGTmhGuGaGZSdXYfe//12u2VgAr97LUBrSW\ngrzsyEtB0mhIVDpxkraDU9CNvtF5t/0rsE3qFEvGCB21XDSArlpSl6wdotzJCw0Em3Ag8BEc+bYx\n6O6zB0lO8jUAKH/fs8M2PHSwZLV71kOExQl48vPijDbOgPqjczMm52yzjLQ0mtR4YB81pZ751HOH\nADR8KCTzLgngT4uLWqURAdWE9aT/vdmTBmFpc41Mq1pLBiOhSuAPYxpVo2rlk76LjOGZtP0RcxHX\n9hTonPS9/zxjFoMPUAwm0qP1ARY856C1d53r1pKatIKO/+M/6+8cNOCklKSZeXbA0EEE28O5swoS\nJkBhFD7L83DtdyEBZZQwCkyotz39PBu7yAzG/9XiD6UNYBHMUz8dr6P2vtQmtHvGx8y3130cqXTv\ntwoHqGKgAWdt0APkJAucc/DpPKNRZ+vFr5UoSPR96/cw7ctH46D1bP2cWSXMNFkzsDVbf3YurDEF\nVn7NuX2n1mYS3swGnVjApuDXAJY/dKx9H9k5jtcezwHOMsDtUwMQ0z1Kp6GNZdh/OX5/Usc9W+d5\nHMszGpjRGFcBuQR0k+Ok+8eoPUxZYjyQRHekgkQxZmMP1nF2/HyAlh62OUgv+86N180OHfjZIGqZ\nDZQxCGQMQr0sqJdlCJLwftvx+nTHctuw3O5Ynu64ZvXRmgU4fzNzw2fEYOeveE6veL62YmCtvuNp\n/8Bt/2j19oH1voMMVHFvRxvBN4DuAAnIgtYxwqFGk5oB1TjpZ8QrEhnIPVl+4xWnEf3SlYELI18B\nXApwBZ4u9zEghQdyzpZxv2Rsa8a2LrivGdtlwZ0awPogCVtC6lXXg/xrKJNZaZ53j7z05Dq6Gcj7\nwLV1xD2D74TyvgBvF/B7bn0+Kxot8gNzwHUmLPB9r8dMkjaLlgj3fdy8wsZjgTDWCqwVed2xLDuW\ntYGtZd0HAuQJUbvlWEc5a5M+y6ZOQr5SNFuhHqwhMsTcNYde+mYSO90wBgDm+y8Aq3hMzffknTwj\nenLMo5oRmIVF0g0pmmGoliSaLc1AUjQr/Z7yVeZndswYjpkJatRQPQo4s/LQzpeCvIpJ97ohr3sz\nM5NgR0kCHxH1kBC+2Di4OadBJKxwC2lcstRiQqavj0oo4M5EfKZtPjt3xkhEBmTG9EXAdCZVn5oA\n127evHTTJG+up6ZJMaJlGzZlwx+b643HjHmX87omtH1yHEGR6yf3G8f1dX6vaj6JQlMUgMn8aME1\nanPpqAzmCmRdm6HWZzkDyHGfPDCIPH5WjYbeWrX8CvwAJJZocSlZdNiU0gHE6th95YhaDQBjBFJv\najk18SZYECdvJnhGu7zw8BFjPdBpdFDlwZU/Zn39VeDk19iZcOKgtUUftxOf2sMjej8kyP2ctqnq\nHjA7BkuG87l+ekzM5o7XyKqa7W26D0pbPZBIH4mFRtoJHX83GJXQtF+YA69HBTgfdz9u9qzuvb0l\nhGrZnclt0xprWP0xlL7Gb1Vw5etHx88GaF1+7Q8BoDnx1mB6ZU68GE2vviKxnUmF/RFBhG6uSgz0\nvncAC1DeM+rbFdtlBS5PoEvFctlwWe9Y1w9c1jsua4tEaL5d9C7s/BhM4+qCajz5ABvpHbeLFP0/\nfsettoiGV/7ArX7gUjbkrSLfS6u3VtMHI30w6M5IHwB9cGfwI9P/mYYlAjJPOJVoalEgF/t3wtRP\n7Zl9UaDgc1FcgOVasFwLnm53A2D8BPBNainbZcFdcn3d1ws+1hXv6TboHWd5vnzx37/hCVkWoEZK\npBZnFygM0v7VKJIO+FpEEg98te+j+eCMQTuTsi1yjWoM/NyOG09k5LRIP9PKSCuDLprfY8eSRaOV\ndonq6YEWD0BrNEYZEV2nm/7KnimIiVCpn2/gqzPG0bbch4vv9ufyW55Z+97NSftNgdaDG3g/KX2O\nIbCC/Hs3sQFQOxhrUSfhNCZ4rMH35VEOkGiS6uszkxyEOs4bnTNRS+XXp7avs8KgC4Ou1drpIgB+\n3Xqddyy0Y0k7sta2+fX8VFE2rwM3bos9v5QPgb5jcYF3GEQZhQjg2vYdQgPFkiMIhUQjTed9fSal\nnwn4Ypk520efSQ3As451Wls+nrSKae8qjEPesSSphZHI1OsWfkh7qq/l3qewtje707Zm+eo12egc\nxDDkKAY1Bl4DeHSttTdd6utpCO4SQVgwEx0FISPjqP4WOdXme0ru/+X+/jhEKHTP1J8H9ox2rdEg\nDNdCZ6l8bzc13oP7NZVQkQFOqP755TqSzwdNI3p/PCR8sU+FRtXgl8MKUjXdw+DDpjSL5nN/ZhL4\nSPCthwen/pz/bqaZmml2vZ+g1c0Ez6JaZu5R7+ScttW0bNb/024d+lb2OqcZtBpCXypAzmS5B2Ih\npxGieV/NaIrvo0PhDgo9UBz+168VHN0A5P0AHASbw3p179IDo2BSYz4v4vyI/LmfA3GPms2fwzgF\nzTf3EPpNCFyR0KM6zgR5s+NnA7R++DUJhuEnpvPhMBMi78NhATNIfGEwqq7PCIAfTM9s6KGfPYOr\nAIypgcF77maH6wXb+tQYVCnLsmNdWt6ty3Jv7eQTLTdDN9W1XAb9Sy+ma6EPXPK9+Yq5MPQ+UMcV\nDYRd6x2Xerf6UjYs94Llo2C9Fyz3gvxROzBQIBDDFWrxIO1MI6P9O0sMGEHZGcMRnUhn+a1ux0JP\nrViOrydgedlxeyngH95RfyDwC/C+XvGan/EtPeNbfsJresY3av5fvmhfalRKTRmgjImWTAUfueJj\nBfjWzAubMTX194pzyW8G66TPZgRnJqWbMWOz/pqVSdh6WrmZaklEMN1omjm2mpdoGJ8R1em3+nhn\nG73KktleUAlfZ9hYGLJGw2ekTpgxeQ6GAz1KZRl2b/3sJeCPpOGzY/jfQUKPAehxdCLn1EGVZ1R8\nwI/PQNVnIOsMbJ2ZoALjXMKknjlyz0DVTFN15V5urc6XHetlw3LZsFzuWC4b1rRjpQ0LbVhpx0J9\nnXmD3TSdBQz4+QCghzsfwZWOX7WXbntMqQmltPDn+760nH33BXUT2n7P85yGZ0K9uL9EBggY6Z32\n/8zMchKch9YqiU5bktMke8ySd9lrBKhib4bO1DNpjYlPfYLlsXwGqmKJCZN3tDyI3qSv1oTCWaIi\nSqLUvdd1z90ETRm1My3S0H9sTKT6X0B9mFyC7ySBNdTc9BB0Q+cVHajMUBtT6ehM5TAzZc2388lp\n1iLD3Zk8H6jA7l/QJogx1jTW/ojMvzLMxytlTORbzxwbaHSA0UyXQx2Z4pnA9Svgyu+L/oFnYEr5\ngzNA5fyg1C+w+XR2H0HV6lpkS3JFkuYmuETk0p724WSdFM49ga4ICEffYxn/PTczZZZgLHvu/av8\n66O+Gx/kCDBmQETN6YbStKQtoJcD7zN/QPUllPuT7OAHvy8H0i2oRnURbgfw5ecVHd91xpfr+81K\n1Ep6EFgJTKnlldV5Lrii5Nyjw/r3PYz04+NnA7Qu+QMAwLkzUPAETIGXY2S6aUAPSBB9O8ZoQqry\nxpxYAI+lBx5hA6bF4T2B7wlIixGELTPeJZGtJiFNPvO3lEUZDijj0RMvx0TLs/xe3oNJtWdP+a35\nj7kQ9N5/7AlveKpvWN8KlveK9a1FQFzeas9Npb5gPmS7N1NUYKaqfW8yU3AEYB7szo6Zf9GMoXvE\nVLqF6mdRZm7fXXfU9QO8kkiCdyQSxiTkV7sN2sbWb6Mh6A1vyxPeX254e3nCO9/wzjd87FeU9wv2\n9xXlY8X+fkH9yPNE1WfvEeflI+LiicynEY8QmDq2zyz2zRUJVDN41024IhsYcvbLrp4xJwq44nfx\n8FfG/5ldy+ggzA7y1/QnYHwPqfTP05knAONmEiTYg2SsNjv7CtlcAFikuD2j50uDFOrjPgNQs8+z\nOfOVKIHaT7E7ojlawtwEdWb6NzHvTZeCfN16VFeN6Jo2i+a6ps1AgE9C/8gsNY5R16i0F+vM/jFh\nr4Mf2OuCbb9g21Zs9xX71pL3Nl/K1Op7Ou/7M83+bM/whwexj0z/okZfza0vtfWp69uVNiypgdQ1\ndbC6uD71QMubyHiIoP3s16LWHlAVoQQAuhTYXaN+rb6vS2lAVktLKCqh56VtAge/VzxisgYTMG4+\npar1E4l8znXca1PT5i3YzSdjNBkqYc4NFEDoTqRsXaunJSaQrhANHnfAWTkJ0Gx1KbknBRd60TUd\nDnhaPc617wosfcbXzM59hUf6Kt8EjABqJnzQMjOVjXQqc4+Em1tUXPXfVLOwlGs3OVZtLtXDWMe2\nXxvzNRGFg4RCGZVCAnFqY7vLBtuCcamwsU1VDcxz2A9mQHbWvzM+IPaX9vOBJkkKBQ28YgJWTa0Q\nAEjwtzxYdWC+L3b+nRwIc3y6grGZuaQTCLQfONnPzfeN7TMLcLQ+ry5X2dboxBFIund7pFEPx88G\naL3fnwDMmRqwY5hYKxomTkoMpjZhsI7Ex0+IwacjSJViBBV2aJtjtC9dIOyeg9HNv0DgJmKxryoB\nu6luAcuVoQ7eIoUx84+8W73kDRcSTRbdW5vugzniGIL+FU94l/ptiID4gm94Tq94ub3h+fKK55c3\nvNQ3PO3vSK8V6RsjvTLolZG+cQ+24euYqOsdRyDhzZVm0t5IXGMUnzMp+iwGvS9Pob4CWADKjCUV\nrGmTYWzkcsWOGz7wjFevQ5z4bo1prZs/mMAzajrKLa/Yriu2X226MAvCwZ3Z04AapXQpr7abQ3IW\n4tMkX4OqG73WdWFrBtS0TweGQOej1ixCzU6UAO4mNdTWTCntOcqeHUGSO8lyjIkyzWFeIYu1VWqM\nIUqhHdSf0Fa4/kY8D/9vczB3Btb80e90/gvWp2j+E4yez6hKdDqGCHxKsrDR6vsDSVFhqSp2+hxA\nzQBVZPRn/g+eGVIBiHcBiACdcNSmnGlGp4m8K+hSASl0bX5969LMAdd1w7Jupl1ZB9ijJoBsDGoF\ngYLZxsjoKHNLqMbMRhNBF+RGE/bW3ALX1IwiAWyqK9jcuMwAlPaZRuvTz4+Ch3hGUutPBR9hDCxf\nH7oJlPaamLwUbmsTrPM0oaIMcPWog1KghUNfewHFqMnKoZ99wKCWIHmvawOytbWLJEmu24KyZ9Rt\nMVcAYyw9yIrzOPahjoHOcR2PcDTa0iwOliRgNHtgXwbtqS8zc2g/D/tcxKmWzwdRKsjYUwuilNC0\nJ6ppVYa0R5wToYwKZKqz0okg9AwUzQDPrD5rn5FNmlzD4XutPwNSkQ4dtC0sfIDWKqiuZnGhfJIF\nNVC/G2ci64Mc9JnMk1FTK5X2Urou9FNcF9FMthjYTvbabZ9QM9m2DvZ9EeFCE7y1mo70PK6HR76z\nj/qRQ9tHHD47CF0D7LR/GnmPICAMHZz09AIekAKDosS3Q7Gcd+omUNPwva4TAIFnB0ZA5CaiYgaZ\no7W4jdBf5z/bvHbCjAH8nR8/G6D1h//Xr7cGK0hyL2uTSZlBjMxCdPyz6EZsCNXHz7fcFO77dgQw\n5wc92C53VSh1yZMl/KRO+A4E0KF1O7W0oIu2WBi0sDk008JIS8Gy3rGsWzPDWe9Y8x03crCAPgYt\nVgw/fyj5FU/5FS+rREDkV9yePvD0qx+47e+47R+47h9IrwC9AfTGSG+tfTAl/MCcMfwq0JpJrR5J\nez1DOI1g5tpCaHIpuBAj0Y4rCM9IzVeDmt+G1pGJGMsyOTeWkSFpRHkn978kjGAeJfCziIhaehTF\nKKnXsh7ObVgbs8mLMUNmxhNqc3zW4AAlj4KHIcofjjW1D+SWUXey1XGWEN0akltDGhNbuG4z+aHR\n/KcDtWNI4zZ9BtI+2R7d87njCEJju0swCQw1QatMALOYgEiIejWFsg01d79SLWcaqxnAemSKe2YK\n6DfYuL6iIONTRv/B+lK/PvXpW3ekVVMAtLQAzc0poWCRfszYsAikGnuXJmMzjo8XHBxN2QonVBFQ\nqPZATXeK5E0qlsQ3Adqu1PtnRRfwzBidmUlUHR70nFEFzn1KHplE6ZakDHlJLbIpgJoIOTc6k1PB\nhnXQ0vg6aglnhcNIaD/H+kjjusBo35sAaS/jOjhor2bmlh4gfMdhpm8CTCoxasooiUGVmzuKYzAb\nLdGFogxie9/GNid74684wsPdwc/QJjZAoxxU4IU2KVdjGlOtYAkKhMp2Kz6Lcnk2H88KMPbrWdsf\nXwFMjzRUM/O/mZYqJm7XtABiDqrmf4dIcbkHx0lUkKkiaeS4KQSOoGrwEj4d4ziibMKdqCPOLSqx\nCHhsTdTFBKlV+EONaHoYX2/qHenLo0MfPe4JymvpCUbbx41fpsaOlnZpi/XZ1g/x2CO+vyIN0e99\nPbTJ7bwDiz0KLxSIjVpiQP3BVMA0gDJtm8ZstG7j0B5D0avFGyZ1GINPSMDPBmjV/1NCpHnCoMUt\nVD5bsDNpYYZFYEKuTUI4SwqYuz2u5SyQzxmjrVtXe/qEb19M2vfI7tb/TKJmQpkBzs0XrC6Msi7Y\n1h0fH42xycuOS76PJd2dhqtru2aREG+WeFnM5OgN1/UDt3U0R7xyN1m8cKuXe8WyaSlYtjrfFB4x\nJjNm/QyAReJ9dj1CG/KbH0D6YFy44IIy/D4Pz0HHZ3OL7LDehGANv+uek+X5OQO8kNRAzYQ9N2nn\nnqWkxXnvqSef9+Dr0RR7aJXroT2coxYC35+P9/rgK/b7iv3eJNFcCbwtEgCAXDCAMJejhFX7MqzZ\nYRwnJiDjeuUmuVx2pMXl71pKy3Vh0dPqEIZV5ctKkmeMZRuiUfoWGXjPVGobjslULUKpKqXs/iYq\nrewgK81NAD+LCDgzG1WBnOcPg3xoum48jXxkTjrTsgz+Qyz0cyysCVfhJPMg80EoSltJGVxtT1fT\n4VCp5KnZZvg+JnT2FgskZjKcK5hLN92ZPgqNvitwgoavSDm/avJy/FkMIaGlzYklTxRQawbdE1LK\n2F3kOV9r6HvLUQURLoJdMuBRqzV7mDpZFzG5aYxQFyPV2bsndnNWaIkyhDoGj8BWnNvWzwkoFRDm\nC0woArxqySjLgi03M/2cxIzQaT/m5oOPzVf1gboYp/VRBKGq/fBsff9PuYvm+altbZilQTw87xAF\nAZEpPDP1O9s/P/s8A00z+v6l7zqwakEpKjTnEXlNysCn8fA5huDupn8dONfhof2otTD5NewA8y4P\n/sNhjFWUYdpzL8AsXdjzBVL3Rz9mvJK+0iAIotZQH2iLcEkgEeSkWpBqAi8FuSZwLQNNSU7YeWbm\n7XfU9nmkN8d2P5jGq5twYtyPo4hOzQGbwDh34ZrSp5JBtVoKD1WGsPlL4/OYDmcuL3L8bIDWaSYw\n4MionQGrqXQ2SZ0lRxDAmVFTRc19kSeRpHRHWa/p4s5Ly8bX/AuLs0H1NqdkGq/RP4wcEaRzpDxj\n2Kn9T61ZcsZ1FWrTmKy40xUrbXhHs99fjWU/+njNyjqw+b1eqOlTVmtvWG4F+db1L2e+AFGSNC7O\nvnTGa9wi5rHOVdq1Ildu7cJIOyMVSM2fawlcoeFaHjUJQZ1PMwDJ/Jjx9UzuEOhjP5pnqbmjlHql\nFkHxslh9Xy94pSe80jPeqBmHvtI8cqJmbPO1wmstCRV3ZlAhYF9R7wn4WOch6mMfPjL7icR/xtxr\nOgXTpBDqQsCaUCyvV4uwlpbSwn9rXq9ckJNEWEulr5W2YlFBUOm0l8D1zXgOsg7aktq0Jerw3EBW\nNtOosjd/C0gxk5Azc8Doh5Iwzh2lb8DnG/QZmP1MELW47z3Y1c8mYYZpH7smskfkUgAFwMxNy+5t\nuuZAxpt/KIH7kq+J7cosbQFuwYQVzs8gaThzzb0F7uYwdPys7eNPnzPAxjpo25v5sjIE1MOMs/M5\ndmAw+jV0gNmBI++pP4k1Rgbey37ggO7oiyC1298mr+beCfYcQ7Q9YHyP2tsdbAq61rnFaHNwMNPB\nY80WTWrSe2TTBnFl2ScLaK/Yc0+WHM3Nulak1wFWTljtUVjThyH674w6ky8fM4AzK1+5j69n3z36\nvTPwdEZvhiLr09cuLLolaT5EUBwFBR40mIURSCLVNrNYL0yI2pZHGtyZFiay/zO44HWdA7dCAvSp\nC5VU+MFMSFzBkgKDM0Argwt/TavCkxLH04/3TKNI8qWCrwpwbkCDEzUBf0moqaLseUgsTgH4Junz\nWM77HmE1jCKKz/rfCzNm/V5TQgKjEKNKoA+1Ymj3yT1KtAis3I+Ogoo/gpb9JwVaRPRbAP6a/M7f\nYOa/Hr5/AvCfAPjnAfwhgP+Amf/b6c0+9J8mtRLmir6QY+f4TspoDI0ytMrE7WTmIZwykJNJZotI\nV6pjJIaQsX6DCnV712bXyolBTACraQCAw8YD91le0jCdo4ADMWyEiWWSUCUwmoNlqRnbvjopkDr/\nqjNowUJq+LabJG+M8rUf6tGOfbQ89zK7x4Z0s2u7cZz//ZkxnA8UskKc6kMa4rVsWMuGS9mx7hsu\nZUO6c8snJl1HasaofmQxr9VZjqsZk3wSgGMAGf6IjO6ZL8wFHWSJ71m6MS7PGy7PG/AM8DNQnxLe\n1wveL1e8X1r9tt7wo0VO/AHf8IIf8QO+4Xk41z7/MERZXOmO97ThbdlBXFGIQZkat8apBcYgkUyX\nSZ9FTaZKqnUOa3sKtDAx+STgQsP5esngtaJeVmyXFtY6r8USKi9L0/BmJfro9UybBWA4C4hOjJ1I\nQMzRyt58rkpRe/vcIo/uydWpa/x24BCyPQIr7Zsk3604HtSnztkAACAASURBVLEPvwtUCWPjtE+k\nwMmFOvaMDYTR6Uy5PkPsM8yBgSb79SGh1TzD1ohnrB0Im2mWImC3NneNj9YSVezITDs6KEm2TRBE\nR4HQIz+dmYS2dYWD8BahcyZeGkVPBdlFKZPv2M2z2ttqDtOAGsboXUMyb4xCvFNz39jRJ/Pul1nr\ngCpRbtLD+WN8BXTrvXWOOhcCRnNoJ9Wo1YpUamPIcsWesuyVbCbKyhSPjGN1TPwoS58dniEchDfc\nx12j0x20qTq3K/ra9esmAqy4z3heyXetr6fraVI/skiIRXiT3paaxjEZaM0Q4c2BfhrPAzDwYu9R\ngULNN7EiGY/W+TIVHpyt294pvQvPJlwc6TlVUPDXHqcJgCkxOItQxcLnp6MgRdawRenzQigRyo8J\n75V/1EensR7aYZLM5o/eqyYws1hkNQ26d8Vp66MD4qh5NI2XF1q5fTi5tfQ56O2LYvx2LP5/KLV+\nBzeajGG0pU+z9F2u0q+OYfPz/MwS6+T4yYAWEWUAfxPAXwLw+wD+LhH9bWb+XXfZXwXwjZn/BSL6\nswD+RyL675gnsss/qTd29fcyGMPin1xDELtV17EKchKDU2qmMJTaBq5Sv0AIPCMylXx6YHZ2sFYO\neKEvKO+n1oMd6P+SqT2LvYf7PZo8rw9AIJ+V+RgWi5PCaHumpZqZXETQdgag4vmMMmjfPJD6UvTF\nfMcliyGcmDley4bLvuOi9d7AF97RkjlreZ+0v5Jf7DOTr9km56MyPgrb/YEh6AA5LRfdAHqqeHr+\nwOX5jh+egfJC2DnjGz3jlV4kbP0LXulZwNaL1cci2q7LM15XFzKFn7G9XrG9XXF/a/X2ej3mB3vD\n0e9IQS2HegYIHkVc8yHoLwm8EviSgXUFLkBdCspSkJYdd8kjpAlZm3N0Y7aHgBxuUIYkyZiZQTWz\ng2YWuJgP1ujQj3nUtIlZ5YHR8efgvvPXnGmmFra2Ood7R3Hzd/P+b6rh8QxPOAjiq8OB9jgbeGUc\nfHQ07buezJRcG+OGxZPSH+DYF8o8Cg03+pol6tjSQNaydOBtkeZMqBMFO2eBEEqAQ2NUstnRWe/R\nxCWWffar1OvhexITpFRbKQvqTqi1gazu7xSL6+czk/UqHewB7+zVzvbfrzDlpzU7LUftzPgv+5B7\nGqZUgCo+HUTNqqUzjQ5oOUl+WytqhObpiGf9OrM3MoQyN8S0iTX8d/Ab1OiDMP9BOtKYgxUFjmNm\noOzke+sbV38FUE2jAHIPWKGmrqqlEs2Vpzln0d1IeBXPT33GYxltesxhOf75lz+/xrxt8yOlasBL\n3+fTZ5bDv+PMZFoDQAwRuF2uyeFzVd5ypOkmpBEajpoGsMbCV7Z2G7vGbzoARuFzGPODGajnM928\n8AAsmvsP/XIAXW6NqQBD/HQtR58K9/Q5c7fGQKrt3TP1+AqZxjX2aC3J8VNqtP48gL/HzH8fAIjo\ndwD8FQAeaP2/AH6FiFYAfwrA6xRkAcBvSO2lIiYlQSAGCoDcdzMAr/vH7PsZsgdgma0lPDPLgtJI\nbTGxGxyxGAJvACNxebAgx4UkE4njwqCDz4FtkpqDxDbNsT1sqED/PPShPJ9PbGcMTZf8GQM3+Lq1\ncz7Sz1Dgaw+0StBg+Th9TmPlznsTx6O54x0Xkvxkyx3XxccL/MCV77jWD1xYc4x9YNkL8p0l8TMj\nbRXpzqIRc0VBxCxMewRhM8dlz2yz73dXVFuktQKRHzHmvLoA+cbIVzYAxreK59svsN9esd8y9lvC\ndl3wlp7wSk94S094Sze8picxIzyCrh/ph6H9+vKM1+cGurTsbxds7xdsby2E/fZ2AT4I/EFDfQCl\nW5j0Ovc8ePDgQxmG3V2rc1n6l5eMuhDqklqI560YUSeZl8YoSR+bpobRgYMHEcG/hFuo0DlDG8uM\n0ZmN+yPzmxxrHrRUPpSxhjYeIkSlDi5NKm/S+fYgvp7qaQR4+nxACqIq2GmuWl+wRUrLfbPyQYFm\n0sHYL0qPfL8AA833fUKabNQxZ6TvaoDpa+FseuxCdaRXyAR70DMGaS6bPUpdtYdbD9Lp/XR+avTQ\nSqlpHstkx/dr5CyAigo9IgCLY3EmsfVj4ufrYZ6enJt9xxj2F9t/3OfWD35flVe2LnDCSO0L+GY4\nr4x5IZSqTHJyJmtdUh8l9wYG3LM9AgORSfaaC58btKoPj0YoVZ+R/YTGzEy1z/aXXxa2mPJJPPAO\nZlosPIHXVnn+x0x5nRD3EaCaHg5gxah0Bz9Ndy7yRSNowQAwHvYBeAjkNAD1INzKDlQkFWqbSGY0\nSRUOr8MH0p9288rOdAoehTwV1AG9K0PAK/Fnsr2u9H1vSJpsLi8Y55SjFQx3Xrq50wvl32V+OKuJ\nY6JoZ9rtwBrA41yhnsNrmA86B3xbQacDoGx0w42tf+Yzd55Pjp8SaP1pAP/Aff49AH/BX8DM/yUR\n/WUA/1ie5V86u9n1N1vCYhsEWbTW6TqtqE2ndrFWsjmxm6rsak/s+PycN/EbTPsYAGTCEQCwATBQ\nayshZkdgmOjU7BDohCXWre8ioYBIKPrktmccTHQcc+NNSGaS5OHwlHM8zUL/+0bLDvD6BdQXjfpz\nGKNrJhpiF5+cXXwKdvJ6DY5heOcmhtGccNR8WU0flvB5LBoaXz5rwufS63XfW9Lne0W+FyxbQfrg\now/TzBzxewIg+EOZz8iAqknspdd0YazXgvVWBtPD8vQLlKeE8pRQnxL2W8L7eu1laWaH3/CDmB7+\n0LVg9AO+0cugFXtdnvHt5Rmv/IJv/IzX+oz7dsX9fsF2v+J+b22+5wa87qnXMwAapt7wjrPgDXqN\nzGFWm/ZCALV4duDm3AtUMAM0cUDxvpWdERKJsgS2YUssrM9L83fwaymuq+TaHlTPgNZBc1W76d9S\nxfyva61U2JEnYGvwNTHtOg9dfX50ZkU3qiHQgUbwGyKy0vdtUDqGNGl/8pC6mVqQi5oA4qYVIBgb\nU1NGpoKiYZ5pwRgU3oOr6EM6wqXO1gAjK89DS9v+Dt7bJ7bNhNBBOwBd+4jaItbZXpVAtQKJ0BCY\n/iR1Ou815j7JcsWR3vhyNk6xfBZEpaJzHn4Mh7nema+zPV8BlgEbN/bKbFnthJV+L/dMt7++jxfc\nvtz7vjF4+p0DAlLPztnBWnmmL1keoW5a2wQUbNpfOIBFx/H6LCLdHxVceZp0VgZNFjtBOKOFdexM\nBaEzzdHnfQRgrt8UcLl+AxxoZR8GXGmOWiH0tgYlG5LjmvAHDkjgyBs96htPk/z7qxm2S5DchGEV\nedmx5KZlXxYC0m4a8i7w2QcapNQgimsGNGPDPQIto2LUcngNdkfiY7xzRtHow0XN4ltQJ/jIoGga\n2Nb5dNzzZi4Tsd+UlyQa+lGVaOMe2HlKq1WhYvwlDLSbgAbS9nPGtW3NS3vgm32Bexb9Dwr1g+On\nBFqf/joR/Vto5P6fBPDPAfjviejPMvOBrK//8b8DAEhgPP32n8PLb/+LxmzHSZdOdoW5XbxMX3aR\nYmpCrc0Gvgak702HTGorhLIPphscQMAWMOQl8tI4OTdKcI5SslPNl/1UW+DUuEdQInDltunWCk5C\nWIjknH5HbQLNJJh+DX+F2PgFBBr+hQ/XsXt2f78gz3X9MOA9b45g2rViWd5TUl+MvfluSb6xNe24\n0P1gZuhzjWl7Fgr/Kb3hlt7xtLhz3Muz1Jf7hvTKyK9sNfmkzj7fGKNvlHeMIMxrx2YM0Ww8ZuZk\nPseRJJbNzxX5qQLPaIE2noE/8fIG/gHAC4FfAH4hvF5ueL3c8Ha54XVt7R8FdLXyKw1w0Qt+zKM5\n4uv1CW/83LK3Sf2xX3Hfr1Jf8LFdWzS+LQ316YYX59JUyyNSL41apYyaSsPcPBuk0nLUmprPYxIn\n69Si6JmdvG3KqUv3vKbmkUnPI+o4Y15nwMsDxJoAquBmiyKSS0LK1AUySaTmOY3BHiywz5kepR2d\nTaIBZJnphQq6UkWm5mzMlJotfxHhk/ZXdn1nY+sYnK8e0bRJHpQ5gYvek5r5VVq6dNQLdkK0MpOe\nmqR9brbSmRwczsUAK8q6P+7fI2yLvwqgPxfXptliAnNxU0t8dSk3sAUJzKwMzXFQx/U1My08i6o1\nm5vV1X7++usPZsHcchkuDJip66iRJSco8OvUC1IbyBo1Ez5Ix5QRFyGkrWm3r+uezo7hmi7dKXM3\ndtPZwfY7ZAKCMQUMHcfGj9eMnvg+T+E6DtdRaMdzjzTsw3cKrNiBZBYtVgfLQ5Q6p73yAEt/3/up\n2SpyoNlAlhPqWFuCj2kOQ4v2fGZOexYe3++zsQ8j/UlotC37GuCFwQvLPK/AwuDLDqy78I578xui\nvsYrGEQtiEMbitGTc4RPkXq0hz3SkFF4Yzp7Wlr6Gri0MTmj5AV7WbDnBfvSQBfv3Vyed2qRkwkC\nwCb9dGbS+l17IPU9z/U1+7ky2yttTU7u73/Hzp2sVIIDVnpfBv7X/wn4O//zJy/z0wKt3wfwZ9zn\nP4Nj7MDfAvCfMfMrgL9DRP8QwD8D4P+IN/un/t2/CgA20TL+H2vPNsDZESWFFdTlBj6PUc6oecx1\nZEljyyIoX1WrIunman4J3lwPGtI4ol9VcQoIm9m0TiVln6BngmjK0O5L1CQOnACSABwHLZfXdClh\nj4TZL47PPsc6Endr03HTEIaLw//O3zofF+QkoAKtFVgr6FJaTp9LxbrccVnuuKwfuC53XJYPyTP2\nZkCr5xhrCZ6fp/nGvrWaXvFCV/EUa3q2K+5Yy461FqxcoIFfB6ny5p7dEyb93uchu2Mepc7/n7Zn\nm+EsuIZP6CxtemHQC4AXBl4AvAA//PANzz+8gn8A6q8A9QfCj+kF3/ILvqUX/Ki1abdeTAv2hucW\nBRHPeKNnvOIJH5cb3i8+ycAV93rBxiu2esFWV2y8WqJm7/zfpVCdsTpqgyHrKUhL1TbctWdr6hgt\nDUfzHtN4paMk2jNstp4603BcNzRO8hkDBA7z3TE1BJjpS1EgmFCLN7fofZHi57MNaXIoXQonJX4B\nG/5LonFLXDqTqgxu0HQdg/+4PnMmH4cf1f6MB6PRN+bWH/EyDn2q3w6CLQx0N0Y86/PJ96v3PRFt\nIcn+RI7dOfU5GIGZh3L21nIfPaVxtoY5nrgJBiiBU27bUiYHcqjRjhXnpoVn5mf+mDHhs4i/s7xr\nwnTSUpswZKlISzVBmQYt8X1qIGtqBeLogdTMFMLKi5krNYLLRCAOvjFekl19jb6Gz+bdYX59funp\n/z8CVFp7xlLbce/9niPeK9aHc3wEWjEQjV8rYOcDBBTxhwN0nbUHn0a5tDGF7QEz4Gy0uPSivm0P\nTS3P2l/V6OrnmaXFSq0UQM3tKhOK+q+WjLRnlJxQk5ScsFqS8VFB0HVRrR+yPGCbdgSd0Z6aKE3p\nygilNz1peUE2y6CWQzSjLBnlIrxwWbBLgvGyt3YtScznUw+Jrn195kf4mSXVDAjNDj9fdV4O40LH\ne83G7Kzo98ndy8/7f/m3gL/4F9tnAPiP/r3pY/6UQOt/A/CbRPQbAP4hgH8VwL8WrvkfAPxlIvpb\nAH4DwJ9i5gPIAmBaqtGOfncardEYY3aMrss6YXVyZRSUwTp/R0ZCRsLSzNdQUahFJtKEl+a0urcV\nxaiNCJAQaGXiBgLtvjO1JAt/oYCLrd0GuNUMJ/WRYzAtVCZBf8oziaD2k5WaJusAvMhJmWmc+H4h\nxMUxk7Z9dl38Pv7G7Pt4zIi/Aiz3G40RJyAlUUkTEi0oqaDUBTtXZC7YqUgsw4IdBZvMs3vw3Yim\nRd6USB+MkVDSO67rHcwbUrpjWeuoUdJyQ9dsaQCJmOw5mhnGwBKRgPk+0tqb1zFGMAeMmrJNnuUV\nwC+A9AKkZwFezwBeGPn2huenDb96+wW2pwX322Jh5L/hxdodpj5J+wnvDs42sPWEexLdYu4hTjbn\nqafJmE0DrSHVZQTaFPLbydh+qE8YTAh6HzWb774WOEkYXm+m4oCCMgKm6TagRvY7w28a8+bbDx7T\n/Z0eikckChkjgyRkLaV08HuwHiOlI06zF69TUjW5Tn87U+2bnZzr/+PewYBsv2hsd7rlmeYhpLnS\ntdjXJuxKXTPhGeVH9EkekF0322MNG7MymOyYTRZNTKvVlDPlXkjDhmv0OtGeHfwz6Dy4RpRPMwg5\nV1QqjVGTxMyaYqC6NAOQ1AKsfoV7Ovr6zMwGHzGaMzOyg8CriraKBVhx7w8xp2paxRK0jEVMW6Wo\nAHLaN23fZVdXbpPR3AsogXSbK6mvb52Tmu/S/FFwnDcz0OMf54z+fu8xA1Xj67bDr7cA8B7+7mcM\np53jzlySP8cYBD2OLgy+dWBbT4zUgK0hqRNQZdd7OuBoqa11Xd9wn9HH7lDjHFD5cTWG2tWzY8bo\n+3Xg+RN5JzVT5JRQKYMb19i2nEqoOWPPCzJaknG13PK+7Ef+Y4yeO6u13fXt8+A8HaJVZNkDMlVU\nFBTasVBGXSQYj1l8eX/CZEDXki+bNhHO7JVG+vIIeJ3VZxY9X5nXM8FBbA//w258GT2dSWv7x4rH\nTwa0mHknon8DwH+DHt79d4no35Tv/1MAvwPgn0UDZf8IwL/96X1lUqggvyI5NqozvLOpFpPLjcrX\n0fK+/Zf2exVmXUw1UsvWjtQZOxCaFDGG6VRCoLv1I2bKM136AHAaL2V6nObLS15P7xkPcl8QII4q\n7bcT0By9AoPitV5qFuIn/dnmHIHVowV1tlnpc8bFcLbBhyh1aa1Il72VdUe6FKySwHlNW4tKSN2M\nsOukis2gNudawmAF/RWEHRl3rHjHDTc84ZszPbzlD9xu77heJTE0v+NSNqwfBcu9YL0XLB8F+aPO\noxzeJ2UW7TA6uMeIdtqOmz6FPvNO6RU9QIUCuze0wBsCEC+3HevTjucbwE8E3ID79Q9xv6wtn9dl\nxf26WMrrNwewZu2jd5wHXGPMyZ0W7LQaAJslIIjBuQuyMOzJBA8+V5F3Sj8FZW5ezrRhgwP+Vw/2\nTQ8sgAMA7L/uTKL6/xh4i//PEJqE83ebfDM4HqtWBwqwVCOofVFbQNagLYz+F/13vHAiPkrX70Ap\nfBinQ0Jcl6tQzYXMl45oDMQRI/Ap0/UZE20dQzLMNNAkTgBrtDVdS0sHXhawxIWbt7YL0GK+KwYu\nqgMZh4dpZxOQJOazarXyUqSf7hbExWt4tK96+HdH872W8WzPisGRzIm9Wu5Jb/KX3Hk1z+xmmsHc\nkvrOPft1r+3Tqz6PFNqtUDSk9ukR58AjJnDGFJ4dMyYwtoEjGXn4fzyeD/zCYFGj+//s1WUt67Wq\nYTp9Jjv49HtWIIQ0CpOmfFGYe3prdtcbL0G9PVz3haLX6x44A1IzHmTGvMfPMwbep9NI+lnSBYFA\nJQPcaFXJefCn9abMQ+RnowmdNujONQNZx9c7DpY/N64v5UkJJDQKLIIeZ+UxmG7qOjPLD+rmnB58\nHQJs4Mg3Plp3sR2PM8Dlx2eqrdXSNbPNDaHvfbZeZM2cPsJZkL//Px1ExP80/++tjTEpICGS2/PJ\ndfyvY9LAo5uzQ/wapQWp+ydEBs0zAAFweRW3Eo6jycxXOyUSzBPC+dVj2FAjuKLePmNOIoj6Csj6\nijr+EQGb5l1isYFumz2Wlk9pWXcs64blsrc27QaofP2o+BDyZ+e+p7Y233HhO1bu7aUU5K0ibYws\nJW0MiuXOBrjIA7GzUPNea3VGyGZ9PzOHcME2rH0L5Qps14ztsmC7SH3NeKebK9dW4/PSQpJcDIzd\npT0DYxqf0pei0n4WaZyEU46hyYdgM7o+AKip0hxo8PC9mspQAgBHmEN7uGe7FAaagKNPAoJGB71d\n7R0mjuCR/pgQyDE1h8Mxa/L+M2Zs8J8JvjTK9HuGesinEhiEr9BvCxrByjSn/s6l5TXzNZsJEfUo\nkd4B/jM/ja8eUZI9k24njIFM1MTS+REaSCHXd97UdTLn7NAPNo96PT3n/8c+frYRyW+Sm+sOTKsA\n0NdHWOTuc/Kb+h+zXz/s2X4PjqGs/dpWZlDnjErgDWQmDIJFWys4ChgfMfGz4xGDftjveDTLG/Z8\nGXcnAMHJ/BgDS3SapYLag2Z67PyBvpigZqbNj5pmPV97v7LnJTyD/RkP8Ugw+8fp+0eM9tl4mCZb\n+i36pnlzVjdmpunD2N+elh7osPZ3GBP759m7unPdFNP97knfDPMigAh9nwF4k//3cC7QlxhkbuCN\nA3/s11//jM6jansGsB8dp2PPbpz5OG4umJutNfQxtLEGsP36r4In0pufNGHxL/N4x5P75Mnvo1U1\nTtKz9tl38Ve4zbx2lthMiJAwEJjBMVMIStsIAlE60X6NUU8wLj7H8PVX9ZM8tP1rhuvI2kB7OIIl\naNPfUQ1W3JR9qaGth+nD3f/5Op2cnxG+yLAYw89DbSGth/DWpUVeW2p7DVat6CJdSuYEesfFGY96\nncjoPjpLxHyW1Ll91nD1Pjy91NSCcwxAbL1jvR1B3ZU/cK0freYPXGqLeLhuBYvUeSsgyQdGYo5I\nXksWtWUzDdks+h8wLjefVFjrCL4uwHorWJ9KC7YhZb9lbE+p1beM/Zbxlm94pWe80VMzO6TRQ+7V\necypJsxrxqJGTE0vdBMwE0OGSd/M9CFoR3yUPNswAvPSNtnRN8abhakEsic3VWZzJn10VCeuB/nA\nw5UaqreLngw0Siman6dGSb6ADoi2h7XGyFRGxsWNPbtnZDSmowigMr+MXEHJRUD0+fhy6Cs1oQvg\ny7+5/9ysDGAWBpzcVTW1QEYlD/3hwxVrbTmJvB/HmWb+jNGL68KPm2cWB/qWAhOHJt3WjT/DmLmD\n7+7g91I7Y5T6/NTrUvAfszmcj8CoA6QoZpzP1c/AWPw+Qqs4wtXuGkde2jy2lZmLzP3I1On5hB4M\no9tyGaMMseJA87fue2Bf+2bx4cH3Z8xdPPxa0r3x4FeCzrz79aRgyrVjXq8ePryP+WyMFQDbOHkW\nw/czXL+i8yfmpxo1hEpfhG+xNeZ9prxgIwo34t5jjDXm6/BsDKZACUehB8J5s+pg+GTugyBENdGH\nvlfhUXuoR35m1s+eDxTesRYnPNIot9qHpvWhYH5Hx/75zGpI+0n7gEJtc29s9/D1MDqkYMXTJgT/\n1WamKz9LDMqzCDsjgJyBNV3r7aSfuP6FvnAorUQHTbr/evAUDzvrBaCfHD8boPXt/nL6nZe4ADg3\n36FOVKZ+TUp4AvrvEgetwnl9DpkEM01XHRZVI0ogaotoIPIAyQJRYjf4ec0AluuJAWDFSUR9izub\njx2rdeAHCfZxlEC5BT+TAnP4rPf2JRJD4ET1jiOhFPV7rMlFmUup5QxipuavUJJljT9sQIPkJmxM\nJg1sLG4PwszG+MW6gTRNM9rBV9ez9DxgUdPloyBqJMQrPvBEb7hlr+N5w/NljH54Kx9Y3gqWt4r1\ntdX5rTZ/q1fpY7+JqT+WgrGZeeKM+ZyB4SGJsBSJZujr5aUgvxTgZTO/r/frO96u73i7XFu5NuCl\niZM1t5eGIdE+82BX12ZnDXtb/bhAACf5TlIsELXoglQrkpjYHdYGYcyjY4xs7X42wujM7Od90INZ\n9DrPVsZjxqRWJFRyv0Kp+4+qaIDFj7SmQcvTAiS0qIq1yKIysw3q5nUzJufYMzIHSMlY6+PBTAYu\n/LwyjKMJXXa1ar20X7tZWe8FC3Ex7M0EzgDnhLr0lRgDmQygOprSmdkLBT+QTg97f4Q+6g9yZAbP\n2oBE9bMd3roV4TLj/51UfWCMqNcWZVPpYTRHGqIuFmRvpoTowTHCH1/PjjmoGtu+DGb7HkCh76sR\nVOl3XSgiT+S3SNvri+MLiglWvGDU+0zaZwUGIrBQ38cWrRcdLEVTbf8cp+tGjhmTqwy/PrK9Txfq\n6HjmsH4GYYUKfKBQloexnI4d+XFCC6ji/1v6rMgDNnNNhmmsRGjBJZuPTs/9RUefwFmAiug7FQUe\nX+nXgxY5FJ9iwIPdxIcgLbSEftbPkf4rn2A92GblQVTEcJGtk0W3Vv9+htKg1DXw4l/ZaozBa6Lr\nwKMIimf9F3mxRK2EvHeskRRnQW8yi+CVm3VRZvPNbHnUVAAn9F+091FgABx5dOm5Ax/+xz48nQ3A\nd6Q9MNrghQqmJHlw/GyA1v1+AdBBlGmHjNI9PrwKdUxi2aU/usnIL8AvFD3Xz8ffJNkEZSBA4JRs\nwfgNvkUoVILFjuCzbexz7RaPCH74+QnIcqreg0oYDnDOkHuQtnRVrppYRPOKGcNBD4ihA6/6SjPQ\nZYte7WSbNBwinfXv1sa5L0TdTPXE8BiHTRXwPgrdty7099lUM8ZRCQg3TZokj81SlrRjpc00WCv1\nnF4RWGnkw5vT37y4aIcvWNtmJ1EmMwpW2lB5QyUGc5tPrMEt1AfsFc3X6hua35UCMA05P/MNm4Hp\nKB2MIeTPgNYzgB8A+gHAr8gz3Vuo+XXfmrAhF2TeZD0qeJqHITEAFQ7tkw56CzZaUXIezAkHPy2d\n8+gATOfVwLxAIhcOT3EEWB5oKUs5MjtRWzA//EY9MqfjLxXklidF9a+UW86U2mz/NTmlBkooOQP7\ngrKzbKwidSY0ohn9/c7KdM2SzAuyOcIpCQBjkxwr2NqdtDg57dcQeQ7nZoedXgNARSYCo3nxghRc\nj9RcN1HPyA8bbWDGjZYHLYox/2qa6WmJ0s/BZApGc6bM5COTRY+6Yn8b6Gpgk1Uir0B3AF/t8xkD\nqUE5vEa299w52DoDWdNdNPhLngGqs8OvUTy+dOy/ye90k/8eRZQzddNC8S2xsdSO17DWDc99bupG\noR1BVoITYnK/Vy5QoIhZqH74Jch9DB390e8eCXQUGPhHVU2gulCMpl6TPdKKfq/76Um/zEoECL5f\n/e+cHdpdMwC7hPZQCFgIvKYmMJT5SUwAF/lNmTeJ2YVgYgAAIABJREFUkBvGREupcARZfiVYjxI1\nkAEVBkBM03Dk5cCNpiSASdH3pK+1n85ycXr3gdi/s4PwGKzO3AkyuT4EsAKsUY7FrYPVtWOpoKW0\neb1gEGobzQkWIVGwDXxOj3pXHYU9sV3R1rwXpR+0jFWsQFRIJ4FAHs3Fnw/Q+rhYe9AkzYATccvV\nGM9JMSdC2bBNlkadEToOwfyIm0pFApNKmyXCCzUJaOXGwBwkdV6qpgTss18mvygDyDATEBwd0Z3W\n5tCXh5dz01baMcKXAcHWCVACJA85nPPPB/D4vLZZBlDo3wujRGPoQ3TwbaFeizyf5DhikUwO/hnm\nFE/n0qAzxhKuTuiO8M4JHhcGrQysFVgZeS1YLx9YL3es6x2Xyx3X3MLK33HBE96wY7GxV4CwYoOm\nLezzwiU3ZNWQbVjrHcvOyPeK9F5Br9xA1awowPJg6xHQ8mUm0fIMhBLmuEE+OlSaZyAirgUyQmvv\nLlpBb9SpDIM36zRgZaBE4BElmcL9t3prXo7aqYE02xPH/7M57Op4jNQH4RfnQXy0dGjRayJGTe4c\nB5qg2pA9Sa4wAClJ7cb6kV+fjZ+rtT1os4Ve6H0TNwfwlIT5X0TyWYdcVzG5afRZsp5SBqVNJXkW\ntkdS5sXGg/y18iK5j5C7m9AZGbkBZMndPJMewFnUqHWpvzLw6WgKdBYS2fd3XG+O/2/AiwbNM2d2\n4KvVNTeGx/IPSmCOwbwzq3ChA1wVSvYZ6x9oPOLqGfbNSNtlr2CehF7HeO2nvicnR5RY19oiENpe\nrb/JTetrwSUecgOHlx4Z2rNHtLWAydoi+39eEriiWbwIEEu1trx4uTRttjfPDWbMNgLkaZE+qANV\nRrniuH327iyWAe1qFj4LNt5OgOMZd282uITPZ5YyZ2Ar0qIIZIN2xmR0HqjooDCAmgW0MOpSwLmg\nLgVlb+4JQxJ4XTM08pdnc3PwUYIC2z6fKTGIZa1C0vUkyce10wiozsqZpnDG48T+0z7U8zFYUARr\nZ7TKgWXjwYR+khYUVJ0/Mj8IjMQt4uExuvjRqkh3xaEf3QvNwJX/b925j/tqt5cZ9mxVOJQE7AEA\nh+NnA7SS2HMOEa3EBlRD5BJ1wtKlzUfJzkzSDMwkPZ6lPbJbI2vVNw9jcNBDQ+uCKi76UY98lAYp\n6kETpIReQYs80UD3hKBEm1gPROGZKygQ/SMOCMceGo8z08z4+/Z8GK8b7oW+2UaTkYGJEUf4ioy6\nQ0KNZiFKUko6EqkyqR+ZL7j+tmed5o4h4ELgC4BLBq5AvRbUwqjMqMTYl5ZQeQwcPw/KEntlYOMl\n3wYzoSWJrUiJWu6chRro8zlsLhgTIOs7EsY8W2o6OAObs3f2Yes1jL1qsbxG6wXAD2PhW0K9JuyX\njC2vuNMFGy7YRXPnNVe6jpUErtjgwdWCbQyC4QwM4/qNc823vwK0zmjIkZ70o9OKkfmsw7M9BlUF\n+eT+yiIlaI6lSq1dkRudzGruUpBrQVmyrZdaUktIWXLQwkhh9FrXxaNjQqfsMe0+ImhK3EBIauvj\nIIxxgiJy33s6M56T8XE0McWgAej3nfkrmfbRAFp4J2AccXbMKjuzcXSzK58aRPvcJ1hF0doXtNoz\n4zMG3q9Rkmu03wsNGkZkoKYK5IyqEbVmQU2MmRwB70DPMbZ9r4xTofbui3MjHo80Wl8GV2FF+nva\nWDGgZsSpysqR0wJ2vg/KfcehN/Y0WM+rkEPBVcrgnExDWVNtQDlV7KnK2PEIALKL7uh5J7/n4hys\nRoomzW4FhAoiAhHAlUG5JXVPYgHjc1v1CJcp0BWMgoYzzYuf2wifPwMLHnRFDaJvRxcF0TQ1S4eW\nxxGFQXt2JnCam3H0idQ+Oht3ZkcvglUFAKRUR47Uot+RgFLqguPPgNX35rKaHbN+Orh0uBK1Xt7E\n2SkJupC8KSgI8p7aUbbft88jNDoGyGuPOt9/H4GtxmcwilHw9suP9vKvHD8boLWuOwAczEk0/4gP\nXDAGMfABno++EnFg9IiD4QHVYKbjmL8ePposOmHL9+PBlVtM8qtfHj9qTwTgyIC4c51JwGBWZ+/m\nNWp6a7l3t2n/yrP0zXX47ROmp312NuNUXS8/Zkyj5IHRElEWzgaySm3MYcta3jKXY8/AJkRoozEq\n35n0xxOrMwIUibcSFX+N1+a4ovOjcAaZ19YuOhllsY/zU3tK557TYeGOSzM2pBue0ytutzuu+Y7b\n04brn7iDPjbgFaBXAK8MUrNB75ul7ZmP1oy588TTwOWk3NBAltYCuFhBl7TrCpTcTNz2JUvY9ixs\nWTMcXLDhImsuocrn+xBhUNs+fInWvkc9KZ3NwxmoipTh7DjO6KP07BFNOYZeObYNOEldkECDWlHh\nFoPdLxNosIOvzEhL7b5L3mSuuGAaPjobANVO+Vxg4H7+8RHpnvxP8I/mWfuwDnnYtGMOn04nAQy0\nkrsjuzKfw/7Co8+L0S7VEMzBuNE+aU/BtGrBLBz5CL60VvMUtv53jNUQHhkjU3oGviIzT2jmojkJ\nEwcgAUWY9yLAiwLwMgbeaxeVwTQNig/E0B7iCyEvDtPkq0fcs3vbn1PRQze7HUBxCJ5iIal1fn/P\nQa6otmoGEI4vErTAcCBZaqG5nBKQqpjjNqBcQ7RPBKbfA64o6GyPrevoC69I3Ez5AWSU0aQWrs1y\nZ8dQey2vXjfQEy0SeW5IlSP3O/TjV8DC8AKu9kMcogi2LWekK+35AeIMFBZr0k5fHgbFQAcXre3e\n3fXbIRQ+U6dvLclVn1vKf8R9+hGgOuu3z8DWDLzGeuZXrzRGzZkBVHmvts7aJTUTMhIqFWRqXHyi\nihJ2zJE7N+rqqO35Pj1ePaMJ8oqyflTT5gWLc3378fjZAC09lPHxAQZmkd8e+0kcbTz9/WdIV7VU\nf/QHlw0nkU0CriJNRLLBI6CZKjC1lXg6jLqh+zPB1IIhvwS3cAKDE6R7cP/7tfdSyZaoyFNvexNA\n7ws3REKyjdgBttnbOhX7EKFniKhGGDWD/Rlt8euinxEbTyAqGkiIG168p793jMJntslSEsSHrzm/\nllKBbQG49U2l5lOz04KNVnzginfc8IpnafUUv6MPV4u9pwExbukdt9sbbjcNiP7ecnhtGy771upt\nw7rtSHdG/qhId0aS+jRXV7SXn8yFgyTLa9BcoAy+AvUG1Ku0r8CeGTUVUNqxUMJVdihd7xdsuAqo\n6qUBq57CfBkAyUy8onN8IKaOHdPP3yMpOzJ3x/IIPPnPUQPnz82+8zEyi/t+H/qh90dBaoEz8ujj\npQIAXWPVR2oLGncTFAUzYvN7rCOjNQ004JmpganyDFRgpqbMgqNZBxDW1yj7tk6DzA1MaJSxwc/S\naXK835jUmcoQVdL79+pM8fBqQJEk888endp4MA3j4aNialATs4RwAAz62bWH/lPNYZ+wYz9VuVa1\nX6WZ1Gq0sWa21LUn3qF95k+XRKOeUm2KGBFJ+hk322X7Ch335tneG1ej3939vh1Ngr4bMJ0dkcnU\nMgNKkYH1tZ+n/r6+fXZvIiCJeZvst+ovZMIHiwLn92gPtNzea+32A9qeCU+tG9yebZoy/z7xCABj\nBGcwWmGC4CCUtv+x/+/f6bnTQ661J35wbeebPD81/pbSuuH6R0KnszU4488+FVbBzRPuwVMCV9hP\n8eH0oe35r+9dJsM85g5Kre5tgjuHxssRE2rNoNJ4xBKCZXRtrFisqVAHPPhxTYVfOO7xcGc9T+AL\nAONdzXxRTe91HeUKyq3z95Ou+dkArVKcMS0xqDJAXXo77sXpIdCKoCseM5A1O+dNBm1QoBOgyIDU\n9otJGZFulzuz4W9MDibMjNzdEZWBkQGAotKhzrhwdQveB6+wQhOJB31uDqSHLiKTZLBJLmhQK4t0\nzULUttqbpeiiinkbFPy6AWqVY/CMKCUGcQUv+lwVyKmZz5kpTuqAYWYm6AFF3CRnQAvuPWeOowq0\ncru+MjXN28btpwuh5IQtr/jIF6zpCSv1kO5jDq6WKaq377hCky1/WPvwmT5wvUhxQTeu9Y6r5O66\nVs3htWOtO5ayYak7lrIj7QBtQNoA2hlJIxFGW+8Z0zCRbtHSXEhSBVg0ZmmpyMuGdam40oaN3xvo\nDHmxpvmxJsBjZm53XO2zKe1ZuPj5yABGmZYn1B7kVUSANQdGBWOcSgVYe2iPn+P/ebHTsczMEZnI\n/EtnwibvS2DMrTAVB/M4ZwIT83j1cPrJnIyhwQaQRlOiM9v/z6S1x0Ht9SAgIVjQDoJE02KXdJhB\nC4NyTxVxjJQo6SPEusIHkpgB9NmeY3PHib81dL2CLtt3eFL2aIqYx4AFMYJiBLUDg+c6TEGaAkOm\npkWpquVK4NIAWEoVqVakVJAyNcNWIiQWszLUYW349fWZtYlfc3Gd+Xbr+W4B8Us/PLAyLRWPoHZW\ngPm8/MrvfXZOf4PQgFeVi/yWKftqq6uZb5ExwP0zeUFoCjXpHt15HQZ1sMVt3hL44fva/8k9AA+6\nJCjYyQ28UEd5n27VMwK/+Q3w6dwYhEZy/SEdj64hwPFaD9bYjFYBx3nylSPOQ/JtDm2W8a4ddHtA\nHUA2vtKHnx2ePw11+zqAVelXncdlAP8IwoDx85m2dvCVg9bdX/G8YyMOJWMvFdRhadZ1ORfj5QHg\nFyd3/dkArX1bAaCFJ061RajyIWpdGGCTMA7KQNVgRdLsP3difmSpjge7QSH3O3behUnVjSoyKiPO\n7sxKfQDKDpnunYmJ5qrgIuGaz+x2Z5FoouPpbLOYHYPNf29zDAt6iO7TTFRaGNDaQ4B623KzMZde\ncxK2YQNAW4DextmbQHV/OF3QnTCOySrJ7MZNK/bVDVM3OmPqlMD1Wn1PAELZF1DNoG09hOnNuSBT\nQU5SS1nQki3nADU8BPF5t8YSM0194Jo0yuHkO3RQNgs/v2wVeWMsW5V2Bc1C9s6O0ug+dgixB9al\nYMkF16XNHV6AkjO2nLHnBbvWFN9+mYCUHvQimunNQMRxKOdCmRnYOjsiiz0DfjNTwTNQNQOXxz44\nfv+ZOaLWERhy7AVKx/cg378CtPz7uiTvQ54vpV3qV1kSeM89ghOJWRwmzMqMTkWaNVubtkZdmZq8\nKA0jMc9i8JKAXFHy0mmUz9Gn0RKd2aFGzDJzQ9ebfv6M+9JxDgGd8ckodr9hDq9K88I+UcY+Pwj2\nBtqXev0Zn2WMZgM1xAIKa0JKSXJMFmQuLXIf0TGS4UHX1ESkXw1Drv3j99RBMOBKDfN9yAOlZv2u\nb9rPciNOyqQStzkRwelXNA92uP8xtaq9THy5EcB97+H/p5KAMG5rSxhsTrXvT6nNKao0Ai/bZxuw\nHq1RPMj5HOC0yoMk1x4Eyt8Hks/8Nwf/b8+ou3PTRx20bK19iDzqtMqaWDf6/1k947HOwFY856dJ\npF0z/zLlu7QvxHfPatUK+TxXzsfMx0HofcUPTCDpSFcOYDjwZLVbTrSl1vu7kcfk+C+yd4HwgTp/\nLYiRB40xWJIAsXQQGnwGLD8BY26s1RT/7PjZAK0iUT00d8MYXWpkvg9hzd2i6pOompq7m6xxvwaq\nnpQ6kO4jA1ZtgxjZjbhZNGIQAZfdhTQss2Nm2DFGnFDqgrI1ZopVMrxJ0IdNgj14s6+YlPYr/kkx\nwswsCERc8L5MQNVQzKQuSTu77yt4KShLAS0VdXH5dcRvouXa6dIMH1nJH4QekMR6/0TaMppANaJg\n0RZtU6CRCPP5Od2Mdc/uC1TajMZUloSyidqZ7CnhNXo2vz0ATdyCGVBBEiCmn1dqiZBX2rBIrYBJ\nNV0XAVhqhujDyo+h5eflsnzgmu+4XiV5Mj4a6NodANvrPJqjbiBOC0YFTUm9wbSBeanIC6OsBWVp\nK2yjxcwrN6zYyGu4CgoWJNSDWR2goYsxtOf7R5v4fTaRnVeBzLj2+7o/E6nM//MIurzGS7Vgs1TY\nUZs112odjas7uNL7j6aFI/t71AzOr/eh9x2gk/Dy9vspY69L88OrSws1X2rTxiQGSgXvGUhiumYF\nDXj5ORPB1RnQ+gxknbWNkVGQp04FCVwYhRg1MXbdcwbGpR42dkw2+XHvcaBLmUahA/5VRpjfZ5md\nJQxm2gfmp3b65rWNcN8Z0xPABCuT41eKLiIHvHgj1D1hp2VgfA6RI+FqVGPs7O2Gdx9/e6DdjvkZ\ndmbTtNIguDwwzJGWW9dyMyVltMBC9q5hbrkRMWbwS4fra9uPTvrfAZGpJhKTz58Blpra/GJ2mks2\nppa1/w3ESJ94vkq+/9L7hXfy++TXDt/H7hlkbQ3amUNQsCNAPGhJJvPb3kTWKRIho5lo1uTMd1Pt\nmvmSGt1QQUaKN8MRXM2All4badgMZGkk0cSSAofFrE15hp48/pA6Q7VDUQtk+9n4QG6F9nWm65Ad\noJKcsSrUoNLVEVx0HtMo5I5awQdzuE0d2V/dXNW0hAMos/7z4Mq1HVDv4w275zB233n8bIBWyo3T\nNzQsJiejg2RoA+OkJW7mbMTOvI3NHn9I6ugTAKY6aBYSNfv8WdCNmLdHWRZlseDqI9iKDFYzLdqp\nS6k3WhqDSEAiApH4jjEaA6v5ku6uju0dHXBpPdN6zRb/bJHPos95czltayLbNdwT473ZTBoTUBlc\nUwtrKlRdGQgLhEK9x2ayTAMt+jNu0Th2ZiQcNi5HiK2EpTu1O3MpBC2kbOae2Fj+BXlHTYQ5JIg+\nmE/phhQ2At1gEkCOyFJu+btoEWn7UnDJ90MZ83dJUmTx9XoW/69nuITIrtzoDTcafcYu+Y4Lb80U\nkVs77xV5r0ilIu+MvFd99N7xjCZIF02otksm7Lnle9pzRklpAFgaCKTp87p+TwNpjOZzy0HiXQ87\noE5FD4NGSORhygg5CqKfSSz+/jr/ZmUGeLq5YQ9jHz/PgNBMgxXbRw1bpGzjvUYTzaPmba6Ny9hp\nxZYX7LxgzwKQy4J9X7ClFXtpjHndc/MN2nUuNIdzC3uu4ebPmBOlJ2cgawqweLwesa17Cpmmlgda\n4g6enFWm1K3hQRugElsHzMbAHjgwkcYgzsCb4YUO+FiYPmZqM99JnmGAJJzHEXyNPjQQCbV7Xc8I\nA0HwOWdiDoy8gVDff+Om4YVogDL0HpCEZyF3nT67uy5qZ0xSPWhL/Lt0pn0Yn0fvG46Dv5EDe1Mh\nXu37TQQs9i6nwAxzxlWfz4OeAID8G5y+jQdS9izuN317+J8vHoF51rrddlwvpKZy5qPmA7dEP3H0\n9eTe7jPNGsnvkvraU+3PVglcuVnrRN6U0f0iIw2Lh4/Sp20X6ETBVXJadqs1F1UI9e+VCbMcebO9\nqvX8fL8aTM6JALFi4NLWjeezPj0CXzD0U/zeRuGTg0L3EuDFqDavTv7XasI4B7/48z8p0CKi3wLw\n1+R3/gYz//XJNX8OwH+Ilrr0D5j5t2f3WtYNAFpEORZfpJJaZDlTx9Jj3xq3/rVYThFX0lKRlr1p\nUqRwph6hKjFyKlhobsA0Y1kci27M/wi0aMrIeJ+UDSsWLLjjIv+pfh88vqdOzpmZjfdNOgtpPjP5\n0sl0pq4+K4fQnphLd/xHJX7qdL2Uwck6MhFaH1lV7esBIkFNd75y+BHr/92ICUP8WjBqJromMg2+\nKObUvrcQokBG0TlaEUI50zxMqyfMALqjcKA7B+DLeLsW0GVHuhSk64607g1s5aaZ0vYAplyQjQPQ\nmmi9rvSBC92d9uyOZT2w25M1wa4fe3+WGbNu62GZ+G2tArjWU4ARx7LPnz6f5mZN9dTr6ShwmUMZ\nN4OGkkQdM6MLbXo8jlgYz8+vi/8zmbMT4HUWlMODqs28B9dDGc/LGJEbqywga1mx84KtriglS1Ll\nxZIrT5OlD4xKYKyN6UJnJCOAwRHMHImA/I43rxvC3NO5/1g4x/o5rtk26Ua6Sie1k1xrewhQYVEC\nnSZpiDSH5mfgAMLhlR2j75n8aMJ+FHymwW9lYPh9wI3vMZ366qFjPfNdMQZJzyvTqn059h1CePRB\nE+ej+qkmYLK2v3r0q73+4ERr4LUEppWbnU/uu+RAWAdzxgxFQTXQNTFnQMODtu8dp9mYnx1x/BhA\ntGFjCmuX+z/omkto2lZqfUFVBNQGsPgAsg+PbXNZxsX1DRFaHkAAzNX1Nw7gv0dpnbyuB4r6fKIp\n96Z+Q2RUbXvTXKnjHnPWnr7vZL+ZXaN904TPqZuLm2uL88t1psyWCFxpq59zEaADc2AzoxmzY0Zv\nDgjpOwF/BGAPjp8MaBFRBvA3AfwlAL8P4O8S0d9m5t911/wagP8cwL/CzL9HRL9+dr/r7Q4AKNuC\nkitKWlB0QRS3Eqt767jpzZCpDSw7QFY6AeY4CY8Mkpc3j/LzDryOku0e3RBuQu9YjKXSX1OmZ7iP\naXUEDNYE3pMAmtTNv2eASEfdfzdzOtdrMLk+3u9Mo/WVktl9DsA30lST6okUhZKtxwoy9rEZhlUk\nkPV3xXErgzvnX3i+8cXRPynsaibUiiE4wECsPztmG40+YGDahv9RQG1jRqj3BVgWFOlnWhn7ZcP9\nesfb5Y7leseybi1whpQL7rjS3LzQa8NuzpcrFmXPFSYtQfOovepXlbZnGpQext1rr6KPUnar8hje\nHTau2mXjSHthydyIb4QeEQrOYwp+Br4inTiyWwAjDxtjf4fZe52dewzIejmL6xrfOgKq+9Srr31u\nANmBLzED3VMHY4WXZlrIGTtnlLqEKKOpM/0q0a/KzPRuIQewyNbTKF8dmCYONIYbuOKKxk35SLBR\ncDULsKNCvxjM42zdxuJ9LqymnkdH6C3n5n/BuQJLa+dUgUxIKGCJdgtCN7cW4DDOlLFPombFtPTK\n2GvwDaGvrf/TmPfL2hiFe3G/+Z7cSW6MD/01E/bFPWqRPhQhVAuYVCXnoPxc6ow3pSaAzalMfM3K\nVGyByVqeHTOgFbkM0xpkv1bVJy8NgVHaOJGZhXq/GG9lMQZJSSMYHh/QATHM564fl8+YXj9mCob9\neWu7/d8LQ0hurgKTk/vbumYCK2EIJpCRv+j/LiBHfxse3+m9Hr9fQnW+Uv6eHeCNGmi2aHo+sh6J\nds5/nonF+oyZ+xVHn8ezfYKHOx33iOJ9btEioZaaUDVCavQLdcGP4PgfE1LpOPna2PgwvnxofH6Y\nQAFu/p4MXhQC+EsHeuPmgP98cvyUGq0/D+DvMfPfBwAi+h0AfwXA77pr/nUA/xUz/x4AMPM//vSu\nfsElbmpZtM0QjEY8gQ6sCOcgC8AQ1z+zbGbFbFvJS7P8ohiOYyfrpAwyqYFxipPay8dnZj1eeh3L\n8G5ek+RzO5Gcm2myeFJmqD06XEat1fJJO9YSAMPGMgvxlKiEmrTOIrsoI1QpSGpF4gMebK1jn3uG\nOo4b2UvzcObI7nYwpc+mWlar3WbWw8/32oKX1KaZNWSsuRq0z7V/Z8FJzhgQ/7+R+dDxoPbcpSbw\n1qDPVjPSvuKeVrznKy55w5o3rLRhjHx4jIboP3f40/RMZ5qfuDHMgFaHJ17LMvdL8hqXUZ8sG8Kw\ndvpYHrcVHn7NC1NiDMA57PBPF3VAIzjzQpqZZuxM19TB2bgNenA2mbU2/49ze76xRqA6At3uG9dB\n1Crt1WbFHGx1YOZrA2u0tsAnDlQXZBT1V7U6daa/JhNomE+RbKpj3des17gc/C2V6Pl1ptosn1g1\nRt48E4CcHXFDn33PGH0bCcecYyT0QyL0VjBIIhfqzW2k1QE+zYNEwa7uR6Nn2s9SpywCz9wUC5A+\nV3829f1Rs3Zvrn6WNP6Rr7CndbG/zvammRm7T96+UEs5sSTwSsBKoJXBSwbWvb3Lurd+WzqTrIf5\n0YIfrFGe9HN/Fb1DH4HxqjnTK4JGOjLDGoDGtAwloSgorq3tc1n16KCqsZV26QIIeADcH/wxsJox\nqWeHZ1qtVn6Ah88+CMLDe/rDMdxNqzQ3Gwc63fD/03+HR9AVwKDyiOy0nub7NJgvchd4+O/QQFXX\nSkVRWB9tP8/ak0Zex554aB8BlZ+9rs1uRsuaL1Vy/dWMUvIQPbanm+hAvgccQwDx9GDO8DhnCLCA\nNH4+nBxewHb+eyOvN28r2O4AOYan97RgO3menxJo/WkA/8B9/j0AfyFc85sAViL6XwD8AODfZ+b/\nYnYzDYbRCIUSIl1oJNonQouqI8wqo9d+oXiwJb5aZo4hi4XBbfNVRpkSakoovGjofyOtjfk4NyV6\nJMmKJkHRoX1n8WfgFVtt9V5WlPuCsvW63nMPfHGnMfeRnz+qgdL6jIEHTsxWMM/2fQa8/PW+v4f2\nSEhZOrglA2yLlYhRKNtkj4FPSOfCF48xYlInnGOknF4fxk4ZNCPcgUHTezg/wu5P6AqAqarc97kf\nky+/ICYg2fW1tpfSwlmLnXutzYGdOWHnBZmvg57oPMbdGPvP6z8eS9/6ZnHGXBwN+I4R9M5KlP2d\nQW6lKHq2b2LjL8d3jBEfFWRG4zmNBtkhSgek0eBuNIBste+rY1/79qg1y5A0E2Akln7nKmSOhYS2\nmhOhSoh3TgmV6LSvR9PBZQBY2wForQ5oHeNaev3neO0RgGm4f60twAZ3IDYmnW3S/TGqXDLm0idC\nfbg+DUDRkWZ6GtkwR2dKz2jr2Zr16zXSXqOZ8huJHd3lZrokJoRILoqpDybkGbpP6aVnz9yKISfQ\nogpKhJRrWEEAkMD6ydM47UsvAPLCUH/NTCt41o+z/vqydQWZNgtLBi8ALwxeV+xrM1/HWkFr688l\n78hLaUUixCbU7sMNr7X3ZtJHk+nIGPtzs9HwQOx4Z6FYJBRMg2pRQl2c5svAV+5JssU8V6PpoUpA\nGo1YWKQmGsfiszHR2pfZOT92h//VvSuYbao57BePaArrz/n93JhyFYAyBg2MCWk8GER7ThbBr/ej\nqoksEFtNBKpsJqlAasEqbPwxzA3fDX2WJDDkmFtZAAAgAElEQVQqmqUTG/advrObUeOsc4BdhFaF\nNeiaAvI8JFHXXH3dZNjFSQhRm4e5EY0wHs2Dw5i7PtbzYCDBTCk/mwsx2MX5dZ2XPMsf111bHIgW\nhcA/OhmDnxJofWX2rwB+G8288BnA3yKi/5qZ3+KF29Yelf0GampGBpICLzQTgP+PurcLte3Z8oN+\no2rOtfY++/y7o+hTCIhJHppAoDGtMWDTqIhP+uRH8C2gIaK+BNEQ0IgGbUEI+CAxYIsvCgaDCkYh\nD/0iIXZAReEa6IiSj/alY9/c/zl7rzVn1fChxqgaY8yaa+//7XtNbh3qVK2151przvoYNX7j0zGv\nQBe3AX5ClelUDYocUi0Mt3yuNgDETGLKsiBxkDZQkF6xJ56ai6EfRAd1v0oMBqOg0oGyZ9Qto+4J\ndcvNRHBDiy64E7DRUSqorT2grDQqzpAeSpboRQnhrD0LhKEgyrZ2syD2zQ0p0wMDdGarydmWh2dz\nn7HX0eOVSQ/+9pHrlNmKF370LKDQPwjdOFzD41rX8mS8TSufU/OYWtvqpcqoJWOfRAgb6RPY5Awq\nXfLmtDHdpGZAnAFcZgwGY8CdeCActS6d+edJqwdG30u5mTZwNtLbIckFYJzv5dc1cpxJXtv8MguW\ntCPT3qM5Lth73rPz0Po219mtm1kq1NDXOjoKqrQ/QN3QKi7YsbKAM96x8I5caqt7RS6MXGoPpU8i\neKEzf6LZgWfoAMuerzmhLISypFYzYUsSBZJGa5/8QYIBl/XNZ4J7DMqs9qsHSBEQtvMic9xCxpc9\ng4vWNNJfRPqh+3TWxvdm50mkC5au2ddTJoPde0STzwSmszMNs9DFyvAxwLWdXfq3KpEce4JZZSAi\nfTElmlQqbe7gTQgwQwQ3pOuGhiXFinZmPUo5MstvGP2M41y48Q1t9NViDG1glXuIQsMMIBM4ZyBn\ncF67cLLkim0R64ul9gTX6ZDEufTQ/zm3iLAzPxprdjjTVESNdXus8wMl6tM60EIDTl1YlTLq0mhl\nr8Y3cpeWSwL2BJC4JygvZc+67yJUmAEr16fAfwhQzxi/zRj7BYaRfsBEA/BaPLOG+4iqaXAHDsPc\nzfGS0HtQHlTeUFwmYIB1vyZJ62LC6fcAFW7NmDM35OYjcF83c3Ghec7ZOWpcGg55+A4mf9RopYIp\n0YZ2ENWFTpHPfjD38Xw5BVuGdzHCYaJj/xAxMq4FwKwLOMG6/6y9LgAqVB+JPIhutQ/8rQFafw3A\nbzOvfxuaVsuWvwLgzzLz/wMARPQXAfw8gP8hftn+7/4iAFnbv+8fAv2+n5dDobaNyQ1cecZ80j8U\nz3gCGFmqSxNNdiYMk9ZIPslISwbhoeEAXdFsorUtDShxkb7atPfDhx4fPrPK5rciQ6D9CKT0cAHC\nQRPqmT+WO6RYAJvdJKryDWPeX9JonUTEErvwjO89f9zw3+UAsP04dtraw3smgZt9xxmhOVxjmCoL\nSM9A6uw5ejlnnIDGgKkUj+TCYj5zWPPymzHR4ZAA1eG0S0Nyfggda5g6r40cN9sPh26aqf3kzTNl\nr3Zpm+Zi6vuKxn6zkja7XmZ7xJoTZ24RHJeCtI665G1EcUy3FlCEjqDqCTdsWPAsWjYd7YTmc6VA\nqva/cQeuFmD1ynesdcNad6xF2x20A2nnllx6B+ij5ljv0QqCRGwFcq7IC4BcOj0oK7Xw+wt1ELZR\nM0O90wUbXXBPq0ks4KHmmxmptwPA8lne3uT1G54OMPaOSwNdeR0tryhlQdka41j3jLLXlnhX10T3\n7aU5Ex/3eWegtJU9EyMGqtSVhnTbRwWMB7vfX2D0/dml7bpn4nzJPXuKQBLdFI9L3+8P6IXegxmb\nGBa9a/oJ4EWEl0s1DJml7TD7kcyepDm9n63Z2fvm/g59PHhfn1u/c8eJRlE0PUEAUZwbAiSIU4v8\nShIBNmejBev5Eo0di/QhdIEwTJYj8Ep9Ui1bHZhrGC0XgiE0Zew0dPMFmq9wwbYs2MuKvS4i5G37\npm4L6o4h5D3zqXvPt+4wpphYxpCArCSt0GKI7xO3p3VMse6zk0nv1jLKp7H3Z+t+1ABA1KIGqlav\nr1/9erOvDjwm+ZdJLHWMFU8x4KvTBgO8YuAVlxsqLHDqT+w3b3RrOOQVFW0/jEtDN/WzoMpqqeL+\nsz/7Hk/khB6GrwmmoW0s4F8Lj9DpZATa5plJnx0YvAks/UXnawY9pjHeMIGEHLDyAuW3X/4LePvl\nXwnzcSw/TqD1FwH8TiL6ewD8dQD/DIDfH675rwH8Z0T0CcATgJ8F8D/Ovuz53/jDAHThAMz3g6Pu\nEWj50g8sUQfbzN/2NVhU5yLNGI578ARE7fStxO096dx7krz4/iPfHIR+JF4ET7gsiLLXu8AUoT8z\nFYzvJZHuWa0g4Ez7QDxU9Haso9SoGlAVx3cWhS8mAoxMdJR+RsZ6CnRCjWN4kMBNasZxLqJktYN8\nOEkXUh1/i2XGjE3K1BzCjP+R6THr3IwVz9bZ6TnG8/HrTDqbMbBEVT9rCC9MazWRbPcj+QOgS9rg\nD/6Yv+sRU6alH/Rk9kUCX0iiKLXEnryim941TS51ot7M/Ir82zHCaQyzOwVXyhCN4T0ySlYP2GUS\nCY31SkBJLRgM0EJ3d2NMXY/Rh2i2R2YlzifgGfcK5MpIOzsaseeCbdmw5Rv2JWOj7ELyWxNDq62y\nYOx9Tdjx2jtdcM9SrWEmGyNPMcluwRxSN4/pkfSE2fBSbzsmfPCvGBHBvHZpFqUuGvNMxxyQ/dve\ncJLpIJW30miN7OUZq8ZMHgVYMyLzHcpUoDZoFHJz8Af0PBhgzglbRNJsOEY/GGzO+Xh2u1Y3haET\n0a9OfcbOBHUzUzjLWM5onNIL1chktITrC7VgG0tuOSHXva2rlfrnGq1gMIkljqEfWWiI9eeMbglx\nhXha0lpv/tu+YYTuGfQo0wCCO5dmGrwt2LeCcl+wJ9VWJnQzQs04r8GXtJ2dGfbstWOp56amblBz\nUknxgip0uF9U2u8yxv7RNTXRTOj46P6x62lEbzQmcVyD5YMCDznA1OfIPlt8Tvu6j5V55rZk2/I2\nZ2Kxpv3J7xl7Ztr36Iy/MkJsyxOMvwXeQPvxWc74TH0942n0Xu19JgbUrFKejzCewc7XR4o+U5UY\nDcOlYzyTDr/lmaLWf+T4Sz2KY2VC5jHW7LSXrbz8wu/BT/3Czw6N1r/1p6b3+S7QIqLfAeAPA/i9\nzPyzRPS7AfwTzPzvPB4A3onoDwD4Mxjh3b9HRH9Q/v4nmfn/IKJfQgNlT2g+Wt9Ob3TdH/wWubYN\nrlks5jorBT+i+xZdqq1VGp/VRbjDa5xmiX+/S51pqSyTeLppcS4NgmktsLLgSXNZucTBJ697REBl\noiT8rZhL9LC4buGGJME6P52IwTPM/RBMY3zPxipGrYoANx6UZ+ZAceziawtUtcRD4ZFJpUqueihm\nHTNhRKwUy2mEDBE9KXZsdXydj5hKdOwe6GOdDKOlDMd3ZDxmTEgfoEkRng6J/Nr9aMXk9ez3zw4D\nPfSX8Dl724fKwQ+mabTy2sLi58uOvO5YFgkWku6tpREgRJkjnUtldHZkbFiQsIJkcBVMjVDpK264\n4Ipr937SeH1iIIc1ic9XHr5c+VqQudWFd2QuSAVIlRsYqoxUGGCWMzC2rXbwyGZWbd9OtYwZqYRf\nrk21Yi0VmXdUbgB1T6knMd4po9DIr2UDX2z9iY/BMmaxLdWgMvp2DUPLFRvZSIfyezkGVrFBiHwA\nFetZGIfB7lfL+M5a32ezpC30kkoTeSoPzQTzSHdiAWMpuQXFUF+bQtKHD+Tx3t5+b584usdGoyNn\ng7Qjt49E7puETB9J52MAiXkReXQfwRFxL/mAHSEKWq0JvA8NOEoe2u5OB+mcDsa1DxzPkU6rlPjo\nTQ8m0Pr0MglgJkLq2qfs1kZGQfPJKShIyHJDZEbCjo1dT7McezEmqh95sx6AwfTn0nzZwBB1bdv4\n6hdf4YU6Mx5mRtPjWupnLJuxjV9mpoGMKV6uB6CloGTwiCpghz87oVoe5QtHhQYQKQ38jWAPZr04\nwBJuUtdQLPb8jMy8wULuvekoPPju2Nrvw8l7cW46eIotG+BUO6ByCdwd+LUaJa9dwkTjaP3mnVIl\nCMS6cOUAKOePb8Ge+v4l4W8HfeJGu9QMOBXkJCJT8r7Rjwr1sJdnFxD9eQD/NoA/LkCLAPzvzPy7\nHn7wR1iIiP/OPVodfqAEwBUlGBZ4jbC1yRNg3Vi7AoATIGDrhnmEpUcaGSttn0nUInE6M+mLWqlH\nYMq1POra2tQjLxakZeRmic6ofZQ7jWDvkG7HdR8+ErwnGRMarR3DWT+CLwuy9FAEPLGbMe5nAGkW\nLXEakj62DVSRiaJI2iY7dlHqrczFmN8z5qJLs2tYy066nQYR6pF/TAQgayplmYm4Dt8DXLECOKX8\nllDPGBLbxoP2QOj1NR+JPqSvv2kprL0/giHqMIQfQnxh5mz4XqRcWuJyY/ajufRiYJBZUIvowzV7\nbd+3n7Pf9SgoyTEQ+3lS9YwGyPrfubaKisQ8XjMj1dGO85Sb71cdQxnXRH978DdNMpha2xQQDVAU\nCcZRU0JRQJYy9pRRKLVkxz3syDxP1yyX1zy/1+Je770dsSFtFMuoDdCA3oM5nUe0tJqF2J9pLL2n\nDh2AX8FwUC91Mc7quZl2abuLD5qlrTNT9LM9HZi6wz60gqiD1UMFLVX8l1qbloJlKciLCSIhgSM0\neET3Wwp1BkrtqziOB1DKzT+zsPpr5gMo7We+CwYRGGmm+fmCybiIZYeeAdpXwJltK/6fmYShSz6Y\njbZxxdgVZlfdUV+q+rEz0J79WFUN2T0iFFbV+ErLHcSTAfTw54Qzq4OnxfYsnjL0MoZadRyNWZ01\nr3P5zh4ALQBOY6KaIAe0DvxhFMbbvp6voz+Al107YWxmZ+cZKHoEln6YMj1PT15HSxQFJT0qtEbm\n5p4YWc0cQTiALGv+p7xOFMp7LePgZWy+uMjfxCiHB+B7Ng7OfBFGOCSKBJtLLw8BURbApX1NbP5r\n9NvBExOIj5gO/jQz/3dE9MfldQZw/cDnfqRFow4e1MGP1IyWaSW4hc6qsZL33fcmBirEnnd8l2MG\n3yuWqdSDaOYnEbVXWjh8z4whPeQG+WBdawNTa5V8SmEhSZSqbvbSpRPcbwlKuBgHDaFKDkskzlsC\nttQcazeSPo7AdPb6zKwyAoFY+MH4jYfx79uxtGC091muGeCUlkGAKEhFNKiCHggApqYN7ratllaE\nBMQtMxhIpaLj+uE4XxuRoTSkQ3rtjBmOYFSlkpFUxM/asY5MWSxna3jGtEVtobuePchSYm8AawwK\nAARzAWjfH8DxUI4CBQ2DnSD7AuN1G5bGFLe2Bc+xwGYGgDKKYe2PkRtj/1G0x0d/96HmQ2h6MqHp\n6QjabG6whQV2FAm0sVcs0rLsT7L7VAGYtp3+CgCuPNZeKn2eOWiWWUyyOLd+lZYzsOcsdcGWxL+E\njnm9ZlEQHyVZjnUW0n4W5XL4wuRpa4P22+stqHKtMMJFctYUzj2Bc68lg/cM7BKsQPpTmjkzuZ4x\nfrpvLUNs9yVL386rpSHxux6UIzQ9r/b6GXg9fEb2fQWLpqgic/Farm5uGUwwHfNmoqsx4Gy+GHBm\n0EbKr3RKrRcYjZaX0hjHWhOaX+sycicF2nX0yXm/ROCgZ4gytZ2ZRdAWyDMNhhfuNagJEIm45Wyr\nCVwruvbgcCNAkLKcLYJ2cRxD+xpmTK1wTZ6XqwgomAbfYkCCrgfAnL84P3/PwJc3L/YmhwrALGBn\ndYewliTRFeUMpJ79/TcDts7O4ri/+/pFt86hAEQ0/VH3I7M5+oJA/pRXZwAYGsbTS0SQrHtVx3nY\n0BthSB9vM16Wh9HSzTm1TS1AmHwtEqOKuSOpZdJE86XJqs/KR4DWrxHR39fuia4A/hCAX/3A536k\nZZeog87Mykop4DeeK11djyOhYf/aEYZYKFRdmBEUzYDVzCxL7unhprEM6KNofzbhb0j+Sws3h+SF\nRaomUh9jzqFOmNaUo4+3aWfOzz3zd88EnsDbApZoiSx1CqLuoX2kvTpz6LfjGOdIx8+aVZ6B0hVH\ns8rZ64WDxLaYDWei9XUpDjqj38cyHBJqyuD9DtEPOfue9VOw/hcuklK1B4WsG90jQegw+jR5D3Mp\nbhz3R+vYMmtx/5wR/F4tw8JHDaHrGwfWVP3hasFUfO/sticHcUUSwEvyOJbVa62PQmp1FUdn9pnf\nxayNCZFj3q6PaNLi6zOtmjVVtP1KGxgbGAVUK1IFeK8t4MZMODIzsY7m0dG0V6bargHSIAPdLA2j\nruWwP+tK2NeMfU3Yl4SyZmy55fq6k/hw0ToxP4yh5Yc54vvg7PJQ30hg7ALEyawYC8ymKQvqpO5D\ngKXCLOxqdREAVmTMdJ8BQ6hyRkdn+zUKQc4CI1kfVf1qe+7Wprnsf6MBlKzvkQdZY4+N8jFN4dCF\nsWMEU6qNUc7krC86M234hd7C0mYZJLZ3NX4Lwr+pypdrQqkAOIfBMZ+zj2f63u8W53zKo0Kxz/79\nKACM9FHfV987e51jmCPjrIcOOuAazLP83T6r3pLco/VH9sFjxoeGjxKjMoFKSwtDdTxT6gI59O/y\nuj/5dVnzdr0ddYeBF7KCZlvV5DDkmxpBmoz2tNNF8jTykZnv7Oy1+z3u5YoBpvTaGj6rv5VpjEef\nJ+pj1ZcTjZGZFuW9Z+9Pxm/uN6faLQOsZjWOyxnPMisKurSvi4Dy2KKEljuwg3jhTR6UjwCtfwHA\nLwH4GQB/A8D/AuCf+8DnfqRlbNqxSaMKGOaS9iH9LB1aT/TVtttKIwxatt9rDyr7vj14PmJ2Fe81\nfv+7hxsPrYpGRZOEv2q+ZkFVA1MKCNhJzxRUHcbxMGZD4je0Ve3A5z2hSgjl2jVWUi2IOgNWEWDN\n/LFmQDWOX2TUz4CVBVEXPARVzZRy9HsyaxlPMkDVSXMMoLJEqB/gQCdAXnIIT8C7EMAcSuazgxE4\nHlqcgBbmUsaBx2f7oM0O+Q8c/GM9+0Pyw+UMgBmTvu74aySZ/WDvUuNxP4x2QFVOci0Z4Uw7IFje\nIzIOrh8tgabYvpsbPY7Jf5BcvzErPWS+hPC1JlUJBZkqjhqpOdiamSGeJZe2cf9shivt77jhggUF\ndwx/pQYlCXtLXcgt3yBVtH16NzXubdVMf8R8jSZ1xthPzKPThXFZd1wuaHv7ApRLwn3N2NYFm7T3\nvPanPQTU+GCdAS+r+dpOZqogI6M480TVX0aNzOE86PsBsq6zRDRLjX/fpY2aq+jDemZqHccf/rdP\nBSOG62oaeGGKiFB3ATElYd+WIYwygqn+HoYmSveE7hcLtnw7ioVdyXCQbgcmAwg6UDJnneuPZ+rg\nQO9GgJeLXGfMuIe5kxeAdZMzpmHO3dt0nKcZD3EmRKdJO5uvg5VAa1kEV5xUc8HDxN32lblWYaIC\nIgDd50bHPdBI54MzOf90vDu9DUDMlk5/0egQUdMgNcHbWEtNs9mCHYAD/2j3nINUHl4h9FkYcwa1\nPQdxRYGZf6Qj+DIAzFr9QHwpWft7Gnt3Zg1l93FcG7qP7RrQqtd07ZW5rn+OxnWkY2yeHQpUm66Y\nU7O6AZnzsRI4AGI/eTDRhC3gUqGH3VcNXHlNcwBXemPv7Z0fhl9xhezh7vnQSXkXaDHzXwbw80T0\nAiAx8w9+czf4w5X1QTCMWbGEskdkmV4om96oeVkcH32gBjoeWlHCYBdrxnFCZ4s+vp5FCXRBFdio\ncIf61uVdCCrdtiYGsQFw6Ov41Jr6uHkJHw1QpYRhl3w0O4G7KaACLJybAcb3Y7Xj+54fQQSnMx+1\ng+nfpJ5psBY04LqUDl51bKND90zSpodFRSOYB0nNTLM6A09Gs3WIHuiKUkpgmFdYpsyAlyghhH3f\naOJOqdLHQIo1wbBOyKflwdfqPR5+AxiHuX5F2POWGfDPOLvp8Z1Ri9gZAjNP/X19r5sZJUnvMPmR\nPr4YINLZuldnE77kvfuILcmz7xl79zSyUGDFZgKfH0HVMai6DZ7+1uP6jWtXXOmOmu+ouIOpgrJE\nO9SlVdFMCDX6mOW4LGMwCwL0iIH8CNBa0WjIBY6m0M5YrgXEFZkIayJcaMEFF9zpjjsueKK3h2Dq\nDFzZ/khHPTMK7QabDmANkHU0R9xTvCaH3HHD96gJwSRnXBCEab9LgjX4UJQAY9K37XQNh/ljARF7\nguZQZBGKFGviG88q5+MxzI28dYC8H7TCXgs2vObQ3wMi0zxM4c9oyhHSzbRlM3+nwur/pUx1RhEf\n5bpnMDd/uqaBJMNE09yPexYx9WxOIiC2fMXBPJvkNYnVR0Vzw+cO6AfImoUcH/P00I1jDKqnm4GG\nRmuNQWsxzr3ZXFktmdBUEgmQNV9LtSX5JaVXSQUabR20CJn1MMsK2Af4YnvS+nshWRekq5BQ81gj\nXYtdxrro60PdLHb1hcs+PoD1u1Q6aumrBVizfazrwYIs7SvPaq20YL4LY++4yH1WqPwxlmCMlX7I\narpdxFTrj6W0S+lYMmcG+eefKTl0HB7Ru+9SIg//oHwk6uA3AP4xAP8ggCsJt8LM/8oPcWs/dHl5\nmgYjBGCXvSGEhoG1TK2Chm5aBUAn2kq35IuHSdUZgbMEzS5S+x0RDCQciWF/j72kySRM1Yh/7kDK\nntG3uRZOCZJp9R5rkMbZhMnVBbNQMxUNEpLOA4JEM6IzjZXdCPZg0HGxjJd9ppm2bxawYqqpmvRt\nQBA1u8wDyDpQ63LjmLGVg+QguTN9lciok60Grzj6AlhANQNVJ0UYeGgoVava7uM3mA0XpMNojbrU\n0pqTGDA2B2jhVggCQvwBG8ert7Y4sCPjNwWXswHgPub968ycjD1//A2AYEFuBLyx723vk6EThm7o\nD00OPr2dQScYVltH6jcpeXmSBhVQwJVa5MElzYNu+HqWEvjNZKxqYKsBLduXNt9aNZ9f7gXLrWK5\nVyy31iervX6k5foo0FJ6EJlFl2oCnkbI91FlpAKwhKCnJHMvgTnU1FMDMzTt4B3XkwAaR53iMPD0\nWqojeHrkwxVClcwrybVkPpMz9tWDNa8pa/eoQEwTepee1Du5AAgjUakJCKXnpvM3CWMNDNOnvrDt\n2kYDXQRw93/gvuatf6vS25H0V4JHoCJ3sDVGz46Sfe8swMYseTrC4/ggJ8dgGzpvO5YWvMWM+5Za\nGoGNF2wEVJGAE0N8Gkn8lfExYeNsn1i6YfdI5CuUN9FihcIaWbVbynDXZKnwJwaccOBF/Vdi0bOh\n/1DrR98nPROs9qJWs26YB60mYCq0sqVSI72F2v6uQ5iVDCg85KZK1sLAzDLZNTOAvAXw/rHbymm6\n6RbsIaEln1cTWQah5IxKqbWyJ7vf5ZIByfeHlKTKetEIj8pDWWD1Ueb/w4DIPJsTJPvWzrUHXgaA\nE+JQ9Z+wZzAsj+QiPVqgJfTnEbB6D2hh0p+NkW0f8fIPykdMB/9jAK8A/jzaUXk2XD/W8lvwfaD/\nsJdReRmWvKbUs6F3oqiSJWkBoVVM0EzevczsY6MG66xY08LZxPQJ4kk71PU9dHoHV0a6FJlg1ttO\nzSZZmF/HwAZm1zKVLjpgB6M+qg40+atK3s5yW1naqsyQfb2E62emlnEjnC12y3id+QrEyIvaP4sc\nKKB2AFvuEtdjFJ0BMNgCAiuNO6jF7d8AH3JdpcyGSecxf1PGZla6c6cMvmFuVHvCHShyjyLU19Mk\nWtAsgpB935rkHTSogZqN3RsKw/3Fma7qNxkJZ7zu8BkzH1GDqKDXAipr4uMiGVnpv41odKZt/aip\ngpU693VNsKHwOSXUJYGXhLJkSX66YFl2lKUdynvKWDqL6f181Ohwg/gp4e5g11X+v+CGN9hky/eQ\nSjimGR7XXZY7LnnD9WnDpd5xqRvyXpE2Rtoq8t5amkUTPbMUCGtiykQ+ihxq9jz3Sq3VnEcYiaFV\nRp0Ellw+BJCGp92RnR+BLqIWJJ5Z6rl3rGdxI/19zXzD9qBV27BiTxI0ZGLi6Mwe6yJVco7VBWVf\nxGR8kSAci0SOpW7q1FqzByxN7zScRhvORc4tyAJnbn7FmVFEsFCXgrq2qIXIGIJFYiQaGeqiLjHq\nDH0YkjaLM6AFM0ejTVMwbccuo2Cjta9ZTu2zQEIpFaDU2G/mBrh03cc9EX2Tz85Fy1dY7izhnO7o\nlwgzrPxH93kN5vEjzDUPQe/UWkZE3pGfmoztwUQzWnpM6fXkPQPWDv5rfbwGcBtaGemHcw1dU2d4\nLgFlfb2l2s1au5krKmxWIPTRmPcrJ1c7byDjp4L08Ripx2DpdDACrgg45kN/bv7rhFgCuhcWfkha\n5RW6y8TRxz+CL3vQxzmL/v1V3XccyCJjVWb7ONKZR9os2743No9AlbruWCHFg/IRoPW7mPl3f+C6\nH2t5wRcACqz6dpaxPBoRxIOpIiFRRk0ViTIKMVJO7cDQH2ECVwk3qUTKHvLAkCJF5t9e9xEErGaA\nSRawtYdWNb1lhLU+GKNh9td+fGaidbCD1b7Rpowwpcr801jccfESPJCyDFBBY3bOoiyeManuhqWd\nmUNYAmF/N4Is+37vy/j38LsCNoz5ljOJCMBBx1F5hqntudF8dOKC8fcOolTikwBwlfVkrsE7wOs9\nQkL9P9OOr9VoWGO9slnHQjBNxB2oBsxIN72pGzuTykRidiFmiL1FlBd74tyFBf2RjoeW/7RhaOUQ\n72tcD7ZuEy9+hsxds+hMFGwYfNfHuXDgkaDAzoWdiikRN6/1sxUB9HHXQFBlMdOTMAtqD0ljfEay\nZGtgaHN03XEMitHMDsfVt6mv1wV3rEk+m02ADRYPJd6xcmNDW46visSiceCCVLkF1yjcNE8SQl7y\nWo68lzDLn87bmgicCDVTA6lZzHhIGJQ6IsIAACAASURBVGYx6alEQd/RJqb1NmTs5pyZMUxHiXZk\n2MmtXDZTHwUQ8zU9A18z8BcjIu5YpkE8Rh6yWTJoA6HTBfcUvPj4ijtfWq2t3bcV5a51Qbmv4J2a\ntsas3SnNn52NmYCcm7+LMDO8VtQ1A5dNNGrUTLqFzrCYvzXcNoDzeVTO/QCX50ALATC3T2QUtKii\nLaEvHTY9+twV5A7TzB+9QCYGjLG+jGduCtpP5vVYaPMyOyMPbgkKtMoImBWi5vaIxA5oVLNLOOyY\nY2GQHGPCz+n+5LZnGQNUueAIRND8VoN3iWG+U+BVyI0f2/GbjZGeOzRIaT/3zFhRHvxC5xtC3qgO\n4sDGFL+dhUfACBPRMA3+TedtGfcx1gcNPus9Xso9I8b+s+tCeVNZG5oHr+dPtWDK+PkDkPtvvpkz\n65ZuYeZMA3U+DU+qOf96m/zZOxPMPXIzOSuRJYq87APhPS21BUTLZfTRtu+sfARo/UdE9EcB/OcA\nfmMMGv+ND3z2R1YWeYTjYYQAsvQwalt4tANysh62wiir8L+XyAgxt4t0IT7SbMVFDJiDhM3BMsCV\nTfjmNSX+KyGaN9KNaX6W9e/aWqkBqEsPDpGSDuZPDzQq/YfCM9qQoLGeLfz3NsApQ2rG0LxH8T2V\n0vXPGKBgtDCuf1KcpOz0otlbZvzt4xnO0f0lzM3BF0s4ye4k7MAYwpzNXpt7des3Hol0GH+evU6M\nYvLEQKWeauKzVJGCapLSgpwIKRUDtryYhEJ/7HK4fiz+k0abHbXanFBzNtpt8V9Raf0OFJW0WkYo\namDP0guoFPERbbCv2bwfmc+zKG7he+xhrXSOiVA4I1PBhtUE0zgau9n3c2hnkQx9oHP7XoiOSPOw\n8TGwx2N90MwHx6+J4zDP18hHrvWrKEAdHms1c0UqFbkWaQUoFoB2tGj1Ug8Mwtk6mu3VCEQIU218\nWQllTSgXwr4mlJVGhMV07f03POGNxAOPnsQT7wmveD60r3jGV3zq/TfSz1zxltvnbvmK+3rF7emC\n+37FrVxRtwX1nsH3Fm223vPwK7GaGvushIkQozHIzfw/gytQSwKVpsVt2kk5l4m6n41fI0eOq23V\niowERkFCc+aPxWogPchdTOth3KZVTAb3mrGVBXvJ2NX/pnrthdvvug70LKvwPIc+wKP18UjTG+lI\nrMCQakBBAQygYsCMrRWaRcHZbEzhvtm3lRKYjBYxNSaciBuNpgQis2PteKhAbE+DSbcawffMMeO5\nKeOhx6+OK8dxPhtr1QhFwbpKj7oAHYMnIXjerJ/7Oi+1aZe4oCWNDnxAXxuGJzgr+ru2H/gkZ/4H\nFuDJA4zq/za4l5kbhvKbg9c8jx4YhZuY08iZ8OGR4B6Yj4U9Z2fa4HitzqdYSNBSkdYCWvZu1g/8\n5oDWVwD/AYB/Ec10UG/97/3AZ39kZcPaf/gowT6yaNGcQ2VXaiMLoDHYXJGy2VCJm8oyJ7gIJ5a5\nBcJinixsXYzaprFoLbDykdTG5xhtYdKEUZ8VD6bGItd75n7Pnmn3DLl9LzyjP6sGsEp4XCxY6s/r\n++rnROa1M1VLdpyqbIwa/Ie8xmkEGZDbD6Aihuf1pmODGOiz9zngONY6tufPr0eJzu+ZeR3IMH7a\nj1Mffr/fZyBi3Qext8kwLzT6M0IVn8eCATunmYCUnSSMcwNf1ZhepqX5VyRJVNoT/5Im6aytL/oF\ny0TPbePHDeq1lh6gX62mXYYOSBLcQqm1LGBr2Xvy19QdktNIsK0JYK0UsZA/rGcmG1O6YPoPTTfQ\nD4HBk8n8UkIVZlVNfktJSGTz8VQTvVBbniSGVb3OPK3pzO/FvzdYzgjUoqHbDGhZ/Yz9zjz9vaMx\n3Qykz4Ha7Bm9L08W7UYGj+fgHctekUvBUiSP2N7MILViw7lPWoyyepaMfaYpjevFMtKm5gsjX0qP\nsogLwE834BngZ/T2fl2xXRfcryvu0n7FJ3wlqdL/ghd8wQu+4lNvY33FM17zM97SE17XJ7zhGa/8\nhK1csG8XbNuKbVuxb5cWOGlPwKb7igb9sTRnticiMJD9rhEaAfSZbEKFoduLIUcWs47s+ibw4Zyd\nAa2oUZyZDx4qLyi8DB8kNEEvCF6CruD5zCTKgivbj0BpNn7TYBjcAzypVU3X0qgA7YEAckCko2WC\nFWDMBCNW56V9QkubMXoqMKfxfXruaeCIPYvfOI38nDOf8bNoxu8F44k8z0eBVkYDQ32PkvwtO22i\n09waAOYE8ALQGi8EjFD6Mgscjmhrrh/XyqwP92FzyeA/HC/CEM3TmI8IqKzw3gmGLZjqfIgZ97P6\nSDj1yDJK+5YP1fa9uVTBRx8aGooX+V6C8nPnQgXgY0Dr3wTwM8z8f3/g2h9b+QE+T94dLNeRyfLb\nHxgMbkYBsRy4ubpIJ91XyZoTBTWn1Ra5k7Cv/7H4hzZowjRbcGUXsYIdDMA0z9cRxuIUNJmFD3uN\n/ZypgP+R2YbUxQkYoqDPxANIGtPHEWre5J1SW2dlCtNwSrftUXJW/f0A/bD0upLR7yFXIbbgakom\n4GrYCAvzSsZeuPr1cDIJhylpvksyHmgbsj9vzLkVbcUVlMnamTEDul7O7Z5pmFqY1z2RYve7M/3Z\noRPXBWNEleuMEDUznpx60j9koOaKkovkHSvNwX1p0fPyUrBIYIdEHnBlsh4wo3+m5ep7DxakNcps\n10EhcUI27LXayRckVM4duGjEtqLRNmszbWAjmXaBMGyAgCio0Dbup9Nq6AMI4AQuDM29UolBtHQh\nzkHgoO/pT4W+Sql1bY21ZiTVzkGcMXwVTAh6sgbaFiAdY+3NzLjG36NmTDVpVgPn4u8F8HYEd2ev\n4/3ob7czuSIZ5i8xI1VG3hl5A5aNke8Abg/q2zt/n6W6mIGvGQNx5oMa0lXQJwDPAD0DkP7zy4an\nlw14eQW/APgM3J4ueHtacXu+4PZ0we1pxRd6wbf43AHXt/iMr3jBF3ySttVXPOMrferar6/0jBtd\ncV+uuD8188IbLtjLir0s2Pel9512R3IMGc5uFOO7DMmPx0woNQOlgaydl6Y172uypUU4ChUiDRkc\ngr5CfycKcDD5JqkmkIiaKJeSjaly7rQDoOaLphoKR0PgAWg8l2OJPIW+F2tn4k0/qeCSh0+4CGiA\ncdKoELIFqEggJiBV8clVOhRP2yPoovAQszEewFbObBbrgzqi8zVwtUiS7mxyyOm+ofeDccXAI5aJ\nPxv76bjiCLRmAbnyrE+j7dfX4QuV2+g0Og5QwsE0ceY3DYyz4HTRGD7T+zR74ORqoaGFjcCq+1El\nOBDF8ALdGag9M/+bgbDYfwSuZrysLTOzfTs/Wg/frXwkg5GbyaS1+pqUjwCtX0ULhvG3tPwG/xYA\nXorS8zi48kj/05gvBgkCpcYLJSWu7Re6LekEWClTqwtsREILixR09M+ZLO7DHRqt09k1R8BkX9uK\ncB3OF+NHiyPcrR/teMmajxmmujPSos2wEb6i1PqjpkNnxNpqMR37pww2NW3GTiLj5KbNABNqRTso\nJS/Y8NkJ9t8WpNqxgT3Q2rgAwijopZa5JUZKBTlV0fYIGDuICzz6pf7TR8agh5FlgRwOSJq6Jx+y\nv9tDC7HsBBRHIgd3O35taTCHgmZzn0ikpks3OUyL9wWw0cVSqmPNwLRuVv3aGCNxHBU7aov43rg1\nQ0PbzZBwvGvQg/BwYB4gPXUm5OjQHWzRo+QPdBjH/t5B+xyKScOA/r0wnw3z8hGmbVYM7+v2vkq8\nxcfUCVByQV4qco+GWJA1KiKNAOhzs8Ste5Gd1XHdA7PFCaiLf1uxdbqwyByzUZ+MnZfAtAOJkPIO\nrsIg72ZsLNNgAZMCsjdTXzEHZDPN18xMVefCzsksZcUzgCdptb4IAHsB6KW1z5/veP7mDnz+AnwD\n4DPwennCl8sTvl6e8VXaL0bTZYFWrN0kkUYMy3s+hsXv2h6hvzuWQ56h4s5fs4+ALhTFfr6g+zCp\nmRa0xYf2gZrouz2rH7bb0llHhLO+73MeOS4RPiut/414M4A/22f040Gx1iRAF7LYZ2EIs0yMwgCp\n6Z4IWKrxIXeh3Y35fRQO6pjTjPjw+F2Ws8r68hQj6Gom3tlbGfQoyDjXYJ0x5Rzu4xFvdDawuu8p\ntMX8fcYjnLlaTAanj7eJxpmMP5iNpNhA2Rj/sxIFs+PsGmfYOOcNb+t8mA0/9MhC5pGG6mxezswC\nz8wD7ZCdzVsEyQh9+/l4LyVcZwAaZ5qf0aZ8BGj9vwD+VyL6cxg+Wv+/h3f//vcFaE03+lh4ajLj\n2KiuDWlFj1BbHBNLEKYLQDbfxJO+LlKgMekulLxnsqxZml3g2j8tZ0xX7KtEzF0Pv/jiQj5jvOJC\n1NptxuWCxADrRh8ai2XZnbYiL8doUGe+IjG2l5p2RGmZB1dtVs8ic81+GeY7mm+LEBTVGEgi5m4/\nrFofpuMY6lglKIpqmzDJZ8Qxn2oFLUU+xg2QzCddnsj7r8A9tYKKAbl04mp3/DeGU7lFruvfxkPq\nWmru/a65EWaHBXB1k8RiwGYfC4q34NemrpcKgBhcGGWvoLSgqJOtjWJ0yFWmQNRrO8loPS2sTmad\nxHUTgZmOth35aZ+ogzFPYY6y3GhyxAakNdBrtarUgdvIW5e6lH8kURcmiO3hhtCf1B/mwNIyBVrU\nTGCMuUXNQNUoVRnAwkhrQV535MuOvO5Ilw1r2rGmDQuNvgdSd/f68gBwFdynpogxv9hMq9bev0w1\najb18IoNK224LBvWtLXoipfUTAgvjHRlpBsjvbUWrxhVE6FrQJ7I4OsBXtBAlRZ9fcdUy9UY/867\nNwog80BZJN8ZwFXqxfRFs+VaAVz4PPpPn2+4fL7hp7/5m+DPQP1MuF0ueF2e8LY+4W254nV9wis9\n4yue8dpNCp/x1v281AfseRqv8o4LNtJWQFgap0TXZ3JG4QWl5gbMhFY15lvCYYuwqEcLtSZKHGiV\n7et8KBm16x7wUm+12jho2AYf4kKFJxOlT/kSqy3u4O9jxWocLO/htA/qL8PjehX8Wj7jXIiLrjHU\n10wtEW0lan6HTnPeLnLP4sz2Q58w15pEiyHlnWZBilzFMULjLAqyzrVqnLSNdHAmRNQy44nOzDQP\nwbcmrzXS8QKJ7CdCa5OvEyZXZ8zbObOE6bf6wOTTr5URdGMoDKyWOfWx70LYg+bq5Px579xBGPvZ\n+Nt9CAwNU/wsJn3b0oM2zmc03485WUXrRQkuKvij8hGg9Wel2nI+i6YQ0c8D+BPyO3+Kmf/Dk+t+\nDi18/D/NzP/V7Jrbr/9U6xhpaouCIiDLMGYd/buQkyKXJmPLr9HQOsPqGS/VGfS/0rhy+Hop0Wuf\nSRMp9ogkQ6i1QiPKzCTcFnh1/ywLxtqNyHs8QJVOSY8vqhQT54zVGRAzHz8wWlbNmtCYrv4MErYW\nQE3UFTmULQN8hD4RBnlTn+KAltVszYCWN17yEbmsxqxLfCQoSqXGABOlo9rdjuEZIdHxcZVk0wpI\nywzU2rWl+hnxyGvEUg9HOv489+H3ASNmxcIw9DFSZ2MBAZRQU+raryItG/OXrrWxmrAyDj4uAwA4\nX0bYPnB01hXQRuiS1qK26IaRcUxK4n7AdG2phh8WU6Fodjg0pEMT5iGSAli49yM9OI6t/4Qf80m0\nOLJ5jwYsLGK22E0WBfz6ZJbNH6GD/yKaFyb0Pa6Aa+bsPXv9XWmAXd8HGgA5fMiZwfBC2FdCuWfQ\nugDrBcu6YV12LMuGddmw0o6VLMhaHcjaTjRaXrsVzQDnaYFnPmYzs8KDto02XMhEVsQdK2+4XDZc\nP91xKXdc9g3LtiN9BegVINPivbrCmxWNhdbntpP4Cuxl1CKtMrN9qgjIK7As0q6t7YDL1k/wwOsT\nQJ8Y+QXIL9zB2PXlDd+8vKG+EFjq/bridllxu156+0pPRy1XD7Thg2749NhPPQKijYY4gnqsLeIh\nLtjqin1roAy8gGvz5+kJXcUfzPlRWtMwO8Z2bXdQBc9s6VmHAaogmnhaRq6vbsmRvPmiWnA0gOUD\n+8/K4C3QW2fbwDQEOGqxoIIbB1wsHzKATK2p8xw6BgcQpn/XQhN6aMBUYzvMd/RzwLTmbHDaeKsV\n6bTK0DamIy2zbTyfZzyPnVM797GvzzWje7M1YhnzM58tE8mv5ynrfnHscnR2xYE988iAqx7JUM7G\nBz5CHTwpMMdYFzZ3atQkq8C1n+s2j9XZvHxXM794vjCO9O+9Mju/ZuURwLKvo19oP9vQBYjIAK0V\naS2tLgVpbWEwNIhFLO8CLWb+T9+7ZlaIKAP4TwD8owD+GoBfIaI/x8zfm1z3iwD+exxl4eM+fkNm\nwCxgNj4giv5VGtDQ/8gB0fJBmBClJvR0ZODnzOvxXYVh8hx6p+OPUpLYM4OBlAjMNahrlUkNzyyS\nJP1WgsdU4yYUcMnfknndFzydSxf6D5r2bOFaoqKXFwJInCNBAKtphIwsJVRqLE6lTfqpa1sWR8EG\ngNVBbACjdnAV50ivjww0gxy7e2SwJfguKXhGX1/dLl1EKMwZSDwCZOg82PmYjVcx86JETXCcEri0\nNBv0WgtqrS1vDAezOTo3qdSRPrL//oYiIADQQYBtOVmNjWjD2AAwC8KCOaJNeq3mc4M4GztuV2SM\nSpsAtyRJk5qKBJmq8/XLJrLhELSwC7ARfXrOgj6crZXHdMGPpwdaHnDNo6Nm7CQiBTFnTSjIlFFS\nQc5qOlNRSwaVOqT3PbpWEjBPom3GaLWqJPDMrGMGtizgj0KEFFq9zjA+LBtqMFQseyA33wtesEGS\nLkOiE1Jrh2/WPMRADkKZmfmxbWdZsOYhDY6/PULeN8O3C+640g3X9Yan9a3rba71jvXTjsut1fVW\nsLwV4Ase12/RTPwUeCmN1XFndNMVBlAYuNdWbwW4l+N0VgB5OwrR1wW4LKZdAbrK7z8BJO1M80Wf\nGPQCpBfumq/L5x2fX16bNkzq/WnF6+WCt8sVb9J+TSOKoQ2mEftTU0SM6Ig3uuINBTdU3EVAw0Qo\nlEGUmj8sMOIFxEF5T2MRmWVJXK++M7Rw09IuTUub12atoYF9ciqyjh8lSv4oTfGfiIIb19pqNePy\nGhAexZj36VlqwZY1Y+xJ2ac3GAEUmarvk+c/4lycRZCL/fdSanyXMqNhZ8KjCJjeu077IZjFIT/Z\nRCPl+jQA1sHvStoIwfs8Ri7A8pgGeHvQTcGPW9aMmAf29uB7FeYhvgcczxV7Vvy4SjyrHl0T53M6\nxxWHNExLEZpQmrDlgQYReAC0iOi/ZOZ/ioj+t8mf+QO5tf5+AL/KzP+XfN9/AeCfBPC9cN2/DOBP\nA/i5h9+mUDGjbTxd3AVilpWBnBoznADOpQOw5geSnW1rTK6mbUqBcVU1+EnRRa2lD3hq3xEdCqmG\n9xKQOvBS5sT0u4QI/X0lbsMfDOgSIo1Ap8TPMrg82SiWWM2kAzPQpa87gZTvzSSLUaO2ZdRckJYF\n96VizRu2vDa/Da0npoSRgTqyrTpPfhYiQFApYOvZOFVKoNCvSomRV/EtWRbslw2lLKh7ltr6aqLC\nNnmeArA4VnGzM5pGggkoFdhzFwzsqRo/lyEZba2ACX1+Gqx7PJIt+LLwKo7WoH2qX9G/+2/r2q8c\nzOEqdTO4o+mbEG81BynBBMRocg/BWmQ991IbkIekWWgHAqOmjH0bEuYhVBnClJyKb22AjVNmqIbV\nM2eOjmD/CGYjozQT6TR6Xvt6ocSoxEgpoXJFXRJyLdOk4t60hqCRUlGov260Qvdp3NPkX0fN41gw\nvtCkPYAxAkikFnsGKlro7xtjNz6d0b8r5ToiUqqmkiQVM1XREqggYsyb9e+MgOtMgzWA1eb63nzx\nbrJJjUTOh4Do9IZPl1c8L2/49PSK5/KG61ZB3wL0zKCnBmrImhTaPH/RvFDHXc2hBHwp76nWhW+Y\nB1WbTdOyA+vurWAuC3Bdgesy+qRBNJ5N/wVD+6Umhwqwvhnt8nnHyzcFz9+8oXxDqN8QXpcnfEmf\n8IVemq9Xejn4e2mGrxV3LJLHTDWRLdeVCtvGAzE12pRSRTU+SPwO4+MGBTgy1hINjpbaEidLrhyS\nUM5as5rGq1AnaNbjujwyyJYej79GSFYn77nKoa/09UdRLICKgMqZZgIOUFke4bukOXikIYm8SSxx\nTiNNyqaNpn6xPwNRzkzQgykfBGwAJ1jw1P2tBog6C2oR087YfjxvAHhXFAOypsDKarNU0G/MBEfu\nKjKaxhPe0baP5ujR3yKhmpUInmafmZ1DM+B1CrLO5lQtbAQTiMlwt1h7Bz0+0mipD9b3APyr4XH+\n/Yff2spvBfBXzOu/CuAfsBcQ0W9FA1//MBrQOqeODyUXZtPL4HEhcM/xk40atgqgGqpZuwmmEeDS\n+W2dFUvkHNpN7Sk7k8Zms/QNgsGITr+7PfMsOe7BaTiaJ1owZsFXJJo28pHdRGbIe7GfFwfxmhKQ\nFxQhSJQYW8850Py3khxSSyoN3EhrTQYHw3Rkig0M6CxsHyNzk+MKkilgLCiyv7gzXYUySm61mXPl\n5g8gPgF7WYYfk7FfrgqclNE1Y9wHy3IHnZlqhEsDLbSQ3cklTB5Z172QoCeMpGNfJV4zLe0AB+ek\nIY7duH6wAQkMTtRAWjIMgQKAoOWqizWfHWaGbIj+YO5t36453TPU9ndNY1EShsmn1KRSwWDX7irV\nsefVx5OOwPVsHC3YOo4jHV4fv8X3CWMuVSvLQGekYJiqTjtYRuE9059+q+RoiI65ozv6WetjWsdh\nHn0rMKE1BwatELgYDbGUYuYQYNjEnj31BSBzKe9JMJ5Gz1VKXAEyAFtMS3ulpm1QjcMjUGXrFbem\nsXLtq9G/iC6GvuItf8Wn/BW3dcGdM55KxoKKhSqWVLHkZmbmmDbLAABTxrTn4yrmuiE7OYCvzUy3\nbScpuHAtwFMFrnfgiYA7AcsrkJ+A/NzaRTVuCrZeMAJ53H1Nd0ba2AUlyNcEWjNoSaAVoFXnNTKP\nHrlzp9tdHAa1hmD1n04EzoSUGTUtrRJ6gBtomGYV0EZegjHmwIJdvSdL20vqLrh6JtZKzQSbEkpq\nNVEO55X1DfXiGH1ez5PqyUaHvmv52Lr9+Q4DOC32/HrUnmkzzsyWZ2DLmv7Fesa86yNZre+ZWd9H\nTPtmNYbB79+v5wsOwGqWD1XPpRgV0KabYQBUaPi56XXdHw4+wMiJEGEa4OJMMynXqHUKHB03181A\nDJs2fOcUFHP4+4ynjPzlrBzJw/z1mYYqVi3KRpwyRCSWOW14CNyMb8yDv+dreQq0mPnXpPs7Y2h3\nIvodj79Wfv398icA/OvMzERkh+1YfumPyY8D+D2/APzcLxx/TSdfmX6IFLxSi3ymBzQxqqoAgyNr\nY7raF+rCjyGQHy3271zIkFjb/xGVoySDjKbBMLkdIKQAwD5AXGebJGRcbnzWAF66ATR4Rm9N2O9e\njcQwSgjPzTPGcXQ68BjhMzQS3TDNkFDgOaPmhLJ6n5qpKZ3zY0pufI9MKTxzWvToNUbKlqDLa+d0\n7aINeca0S8wm0aGsYGGwN9r/buuPMIgPgLZ/QE0JVblra+M6VE3sQ6fobk4bxkyLBa8RVMDzpP6m\n7bia/Wz2vX2PEA5AGevoFG4PQvvZ/l4ygLjb2R8ZL2WPkmyu/lswNAg4rHUKn/9haIm9owEzQ+VJ\nayKDaaAC3odvWWuzcVQnw3iRO6BZ248cwoS5dNrkp0EG0lqR1w3psiOvG/Jlx5I3XNK9+Yilrfti\neQ1Wa59daIfW/2TCQGj7lTQI+id8pQbAnp5ueMIdT8sd9HRH/lRHRMAnHANWqCnfM5ppobmGVmAV\ngLOgAaRtH8ENFe/c4Pkea0E6E9wriakAKgN18I1tCiy4QPhyG7Ajhq2XSqJNXtOGCycUJqGxHgwo\nfbfaxhn4faI33JcLbst1vFtb7q77Ljm89hVlX5qkviRgH34nB3Bg11PnREhMvxNQGLwDSIySuAXw\nEY0sQqAC1xcfnN7HUYgzK54yxL6nFkCgfd9h2w9Tb3vuWwuYZM55v08PYzgDV7Pr20QPJnjBnDHX\n+YjzcmbiFd87A1TuevZaDBJQhQCoYM4IA3pOxzUIyqfnweTc7uk0ulC1fYb7Bnxc3O/IYzAmAKyS\n8+XT9EY+pVHqWi50ny3yPnSPtJPWd+4jydofWVidlY/MewzXPgtO0teH8K32+0Jhe29/4ZeBX/ll\nA5znhfjkCiL6Q2hJin87gL9s/vR3A/jTzPwvPfxiot8L4I8x8z8ur/8IgMrMv2iu+T/No/xdaDKz\nf56Z/5vwXYz/eYARt1FmtT2Z3ygnfccsJTbv6abwTNZgsBA222NUO34nfm4wUdp3TF1/v/2G/4xn\nwo6sJjwDqn27+YC+0WJl4xTpzZNEAhIBmG6+mUTDSgwi8bSq+IQRAlcPssyS9FZMNrImva0tGp2a\nFqV5ctVhDsa99cwt+g3GA+4oUTSmc4H5bGGKk/ifJPG7CiAsRvYr5oA71DGHrnULC2NN60ER1jYI\nI+mhFS5Y7a4KGvRzaQgZ3DqcHDDOpMFqVTi8Dq1PEm1AVugfNLRGKIAaxstpxsLYxf7Z3+L4zlr7\n9zDufR2bQ5wkYE/PV6OBemx0RVnTNvVBN6ELcMcLG2ygD7/OozZurHB93LgL/JVzz6aYUrjlMdqr\nVOmXfUHZTN0XSSiqFe31WRLRR9JPO/6R0ZrmrGFgZdemtWAR4LVcNizrjjVvuNCtAS6640p3XOhm\nQjaM0A3PAroUeNnYe7a+1C944S/SfsXz/orl24r8pfY2f8vNV+tbAD/A6Ed/rq9wkQ35FcAbsG8N\ncO176+978+WKNdGIz5Mg8Utyq+si/QXNxPGK5rOlrQ0Tr75bLw+qiWi4PWXcn1bcnlZpl5boeOKT\nNYwxh2Hmzfhp6Szcu7GhiWJoFilWNgAAIABJREFUPOo2rNhY8ndVbdUqQWlzdpHVOj1WKwVHh+2h\nPXaQ5ysizR1CFRjhlzUjG/RYmewAvpQZP3k9pbFKW+W+rbnY6KuJsT536pq7Aaw+AK6sjxU+0MYx\nnIGozhewbzMPbbYJKqG0tgeWSKHVIEuwPJgHTGTux6XtAcK5lNxrhLPMzkV37ZgUp6EyZ+2wqmpn\nhBPmGc2Ys8RIlrZ7gdvZ4LOZBNVu2YAZNhiWEyCLQI0l6icrPd9I+uloyxzrZv5+pumc0f5T3hED\nZMU6y2M2y5d15os3KzMTVwD4OQJPTNEeAa2fBvB3APj3APxr5id/wMy/fvLz9vMLgL8E4B8B8NcB\n/E8Afn8MhmGu/yUA/+0s6iARMf6SEJ8Zo/Po9eHL+PjaSLMjIKN+jX5AlqcBdFNgpn8z17i+AXd0\n2Ejme2H+DtMeWCO7ddj1x9Cw+YS/cmaCcAh6YEGD5rVQCWH3W0qGONN8McY2ztnMLtpovUbAk+IS\n3+ZlMKaj7p0J/WiOLjteMwbUe/JE9tfo3VjMDqUdEeVMbpA9i+OpkR5151P4Q+3R+M0IkErnFAwc\n7Mj1MKoGCAz/xUdhZJ1Dbgf9A017shJXowVOAWwdNFsxZYKPcthtyrs/km3xWLIaGQc71u+VR0zC\n1EyFTa2gpbVZBAdZfT5yceZuS9pNUI+P1ZlfiF/jZ1L0o7nSLIxETJvgwkiw0UXso5Y9Y98X8Caa\nri0DWwJvKSQbxUgiGtd+rHYu4jzMzIcO4ZUZtNbmf7NWQAIdLIuArnVr0REFfHXdCY0g5dak8MnF\n1lOY8IoXfEXLQCXAi7/gU33Fp/IVn8orPtWveN5uyN9WpG8b6Gp9HmDLAq8YtfAVU5VWLQDvAJsW\nGGdXNzrIAC2tQlv1I7Ptk6nPk3aWt0veq8+E8kytfWr9bVlxoytu6YobXVoLW4dHXOzP2rsBW7E/\n4lpeBgDjBRtLIP/aEilv+9IAWVlFK+s1sj1s/IyuIKzNKYBgT5uTBWXAwQ8kmbbzAwg8x2i7wJAV\ncBl6OqGZbAMd9JD4k/03Y4If7cfZvpwxx848jx2dJMm12H3i1IdT/W+pDPNvUzXlR6diZMWkx+LP\ndn/OW+eEzg9p7kTHH5Exlx9jrP02PuRbJxSVOzEC0Fkqo9SFo7X7bavAOXhQnwrZJqfxAZrZb+qW\nCypQVncKrXtuvrd7RtkW1C03ur6RaLdJKnwCaQu2Ykj+2Xk943Nm6ykmiz4Jzz49E9w5bvn+UA5W\nGfL+CdB6ZDr4fQDfB/DPnl3zqDDzTkR/AMCfwQjv/j0i+oPy9z/5nb7w5fbgx8ICtloB4NiPn330\nHNoJYIxPwJnfIAxQlRONHchjFptcPkoqui8CDKCT7RCpm7VgfwS0IoiIpZK4/VMkNKbtJkLJhZ6u\ncgiNfjJEOxDwmZQi3lZkhBOATrzQGenBlBuCl0LNCVXYworkGFE7sjNAqu8r8dF+I+CElhm89jEq\nHW5JX/xFEre2cHZSkhYMhVpId3lg0gNyNlazg+1sSrsa3PRNtnnOepgPwNX9wZwZDI/DDL61hFuJ\nuhnEXo4iATQn9ggBWF53qdo4uIZGMPX5bgcbgyu3NUZptNHW3K6nM3D1kfGO5Yy5PwgLSNQHDOQE\nLgBlRi07sLRnSpVQF0LNrbb9CGdiZVeqB/5Dt9X+b20yu3jAp/nD2HnSdiaWsIeynf+M0pk+Ao+1\nhIqdFlCqqFmkoJci0tA8yY0zEdDMaMY5OTufJ12XFcBOzZwx5RbBloCaGZtEmENu4CtpPsB1xyJR\n5hr4anoT1X7ZLFEWgEXzwk/0FS/5C17ylwa8JBzE55/6tmu/Ptdv8am8Iv0ASN/yaGdg6wt8QmSp\nyTI2asqnY2fHcGZ+ZZkSDdxxmVQbkl6Z8bt8D4/X6cZIrzxMJC9Aue4olxv2a8J+IZRrwpaWg9fc\nLIvaDFTNNFwDHntAdiMJG6/X5Avuq71eTBH3VcwQmznivi0tt+KWhqDAmtfNwIgdczVL6m0bb7Z9\nAb8DgEjf+AH1/F2W9wD3cWcoD6TnCTmBaGsn9/wR+jgz7VJGOO61KajStcV9jflAI7u4EGjQrNKD\nZ+U0jyoaxZztVGk3OQMU4y9zfscKlbqgicSVAMZ6pWSUmkClcRRtKtLgEe2gzHjUsDw8X9nm1eaV\ntGmMciZkVDBVtCBfGiMZAEqny7HqWMyE8bb0sTCRLYukhHFjU1WglkWo1ipvLSAab61OBWpRq6VC\nthndnwGtmfnfTFs11WDVsZe07xQirbXB5Vjnbxdeo5j2QTnVaP3tVIiIL7/eciUfsq9bW1g7IFbt\nfwa83gFZ/iZ4tA+1YCpdkr587pFzZPe7mfwNqb2XSK8ZvxF9bM6lF+OaRyUyWjMGK4byPuReMFHR\nDva9jGCWgOOhbzeU3VQq7UrcN0UP4y+aLg3nn3PxtedU8mZWj7RaSqTiuHBvB9s6tFshoDQnFA6t\nSIA0yWaRiIZdo2XDdsdD7gxkTccrVu4+cJCWckE245X0tZqumahvlpX3mpIToBXWVRQDDJDlDzf7\nCwXDvKcYM58i7dCumkhJdgzPfArPckrhpLWPNSP27479mINxIPCYEw3529dx7ZEnU2pzkiTSXrbS\nWx0xleL2eYgiktg/pwMzsDX7Bgvfjr9sJKEuSXOCNUnptMKZ4NDwZTRmoSwhqv28kOnr3/QMMH3A\nnwXVvD7bW7ZEEKL+keuQttPaGMN12bDmO9bc2ktu/kRPJBovesMzzUwMR/y9z/hW2i94KV/wuX7F\nS/mKz/ULXvZXpNeK/LUgv1bkrxX5tQ7N1jtaLsfUxOAatjhtLI7gywKwddKPNf7Nft7UuhLKSr0t\nK2FPGYUWbLRg14oIyNYD6LoHsGVBmBqDPqojl5cBanzFLv5f275i3y8dfLVKqHtq/mAHy46J8EfX\nl11jsR+Bi/Iayts53gRjnds9Yn0hH+XYmwGruE/ONP6PgFX0nVx8TWv1IfPXHTnvPWS+s1I50eJb\nYPGI95nxOYOu0ZyW4ajNb8Gywvl0cBVI5/yQHTh3xhgipyBaAbbwnjZfLDnBqJwZquWyUVrR+tGs\nPJkJjWfDmfDNtpbH6fkgqwjkdUxkHPr5bH2+Zuttur6E91UtsPKFwiMPk/0Km48z8trRFBOmb00n\nFUtoADQn7BWejfcEaCRqAPiZ76jR+tutLOsmPfJqcYyD2R7SFEyTpiFKgfP2Q4XDJvATBwVD9n3Y\na8Z1/RuVQYDk0GJZAMQAkvs+lWA5MIfRH9tjlPfA1ngyM6bWfjcyQ+OLj2OTLFVukgFNcDxlbCJD\na4uaviUjhZANZYMa6L1XTn2uK2ckqtghKvhAKiLIGjPA/ftiO4iyIcyd4Chj6YGBmgw2m/jc7eIb\nMMDQ/tkwqu8xgTpW8SCOpmri5zYiPqqZWov2uKR9RH48eOFYoGqhUDye5jc4I+0e+g5wuovoSbUl\nQNsT6ltQDLiqYiNed5EqH7SomDMLbpwm40qT/inDE69h8z771hyU+n6bVgYxtRDoJQf68OBgMGsV\nSm9g9j4FgYwxPwZgaNTJugqlUxNtOoM33yN2XBnUaVVOLdjBdLzleeznuf+H/u39uS07ZQ9JY7bT\nzXpKajm85LDvmvde4c3CFIgc9qFqGxMqLWO+M1o48JVBYpZIa8F62bBe7qOudzzTa6t4xRO94hO9\n4hOGhqtruvIXfM7f4mUdAOzT5694EZPDZoL4iuVWsL61vF3LW8FyK0ct1w1z052ozag4Z/KjyU2U\nFJ+Z7Ni/6Xxbxl1q2rmdewXgrV1f846S7yg5oWRCzanlniNjstr7mgHNx5S8d7+tqP2amyE6zZZc\nu0ESJ1+kWtPE2swPtyomiXVt9F/PARa/MPGJqkXTVNBYu8HHajDgdi8ZYtOBVDhPz0yjZ+aA8W+z\n7zD7r9PMye18HGiFNUSNxlemRsd3BiOjVjSLFBYtSs4H8/+MgigC8gJTRyHkVtm15yLqKFil/rmu\nGSJGzZKKA1WsMOiYX9L129+dv7HWOunr8Bt6WgzwGoCDndkhDr5qLP5cxtrGRd0NVflLfXpidxNk\nOir4W+MV4WxVnrb3zTyc9bUdCb+FkzCAtJ9l/dOe953NrYfmwtmw8CU8Ap8pnRyRktscqq8xq2bu\nQfmJAVpJwh9xBRipEyab4fwIJFm4CTPb+lKT/FJYCY+KY5wMoHFgyjA3EQQZpmm8Z/4Wbl2ZjQNc\nOvmNDxf73SfA8nHQgmTAVsIhLPRBezgZx/Egx/IR7SH0N5NEyJJ+YqQyfIv2rjE8+hpZZlTHdDYO\nPlKP8RcyY1BD9KaYm8JKs7zjJ50ferMSmfuZuZrkf6GldM0VLRWL5n0xfm2zPGY2n5n2H2n/2m1x\nZ5DtO8BRM1qRQFiEh6V+rT0+NfZY4dwc2I0msO7iO7GLZGnPOPhNzBjks3GMVce1jyk7LVSTJg8z\nHjJr1YMWhw6mpTNVapZQAa75eOha4YR+9UdenxQX4zU+++E1h7Fh9ATS3Tx6ADztRz+DEXiFQzRM\nPfQ1IqZdX/7Ana29GchzBpNMneEtdZj7VPWRFB+yKmsK5hBt5i00N3OZMKKcUzP/MkBkX5/wegHo\nwsAK0KXicr3hcn3Dernhcr3hur5Nw0LEbFOf8BUv6Qs+pa8dmH3CV3z6/IpnljDz3ELPr7cd671g\nvZXe7xEBbZ1puWZraWoSe9KPgGtyHcs4sXldM6EmCn2ZdVJwO1ZAY+42ZBSs2FFxP5h8zfwLz6ie\nAjPbtz5eUWvW/57WVrH2QBynabd5/P7BPA2iGSgjrUiP4mmDKAkzPzT3KmgSybqdQxv97cwkK+Eh\nvTgUC6xi+957jq6KmW6q7bZq27dUEygtLkquBQQHHijQHeDYb7ft4dN478jYx3Lgw+R7Ewqom+8B\nNQnsM8JpyzewBWLFC2FhANjRJJVGH+NMsCDscOeOlvOBV6BuZdEE15QVoM00ZVqNxkx95WDteYz4\nNPzN5v+0YDn256D5eCbMZ1XFvoOvmGkjLafjfIwZnbcrLGfEtnQ/tLotLQfGRqPd4sD78hMDtO73\nFQCCaUnqQEAlO71v3hv9B8WClcjUu80cNrRlKozWKmqsujQaARhNGPwoDZa7MeAFomEaoMb+fWy8\nIS2xUpMBjGA+O8bNmmLa9/t7Hx1TN57vvTYA6gCsDBPrJDlh3Lgx24UyUBmE7Oe1dym8Hs/GYR05\nRti2XbphGOJuJkI4VYm/5wtk7+sRqNIK+x4Lg9OAVhKgpZqsbu+e9lYNmLKgamaWMavnB5Mneo6J\n6Pqy5UjouNXCpr8vKJvYfkv0uqauF0ZYmeIzP4NYZsDKaqesaZ910FbJYDZSQu3P9r/+vFlzVmjR\nJWOiben0rDvb09DQRTPSWD/ipD6jJx8ZGwK6r59jnvJhPfIZMDXVHuA9+IrklsqarDgXZx5JxCK5\n9hDKe4vpitPnM3+hVmsaK1dNG0uV/HgmX549UOuu/gUQ6aUBYLP8QDq4u7R3NN+8BHAmIAO8EG6X\nJ9yvF+BSQdeKdCm4rjdclwa6LusNT8scfEWfr96Khkzb6/Mbnp6tMdwbLmXHpW64lK33qTJQAKos\nFQBzJ8Hd/pIAkUzJMdAAEUtIZE6QcSaUnFqbCEVzTJH3d3Fg2M2m7Jf+o3Dv+L8+bpXiHFe+/61o\neGbZvhhtc7egaWLCuGM5gLMB0lZsdHGAbDPatg0r7rRiT0fAtxu62GtZxAx9wV5y840J4ey5+2NZ\nOmLOQFvtedNpAM/7ybxOGJoVPbO136eR7XS66WBABJH6fri/yBMdzm4ci+G5LP9A5jk6gIs+UC6P\npc9tSOCuXQFYjmFDf+z49dsjlw6DMY/07AKN7c1iY5wDcj6k5IWJlv7Ec8KOTbRAorZf2/ylQMMx\nN/G0ibrX1l/yjiVtWNOOhTZQ2jvtVgHIuTB3iBss7xF34sxaxmumhhjOx5seoGoLd6K7v8JazygI\nztjlbKjbgnJvLd8XYFu8wEr7D8pPDNDavjxJzwIHmA05AQUI/bjRdcMBjqFXBp8cU4/RIoIsqykZ\nf7fgalosyJLbsyFZO1NmmDQXBEIZfR0PE/WvR2IzoADRN0rrzLkVprX9OH5n7YyJPbw2xDhIx8dv\njJtgw8RaQKikzt2nI9R2zZhxcH8P/Tr7G86Z2dnYnX0u/v1sPKPNPsOPzXcsylgo+Sr9S5dOsAqS\nAVmDvYg23ZZNabfM5jc8G/xe5LouYeLG8HYNljAOqnXo2qvSOb0xXmqSpGP1yI/AAQYMUKCO5wZY\noYcLrj10sJOwzoCWLi1zsA2N6ABYTYabAWZwdywK620W/va9xJ8fAfOPxuZRxWTsdPy7tJqkTwc/\nH84MzhVVooph4R5BNAnQSouJvCgh72tK4mdAAFrLh9U2Vl17HE/IDrJRSg0Q5BAplNshW3hx4Kvs\nGWVTACZgf2t+OS1MPR3Bb6ShO4BCTSN7z92EqiyMcr3i7VKQrnvL93XZcc03XNOttdKP+bzOagzM\nccUNF/UfWwd7P9uNUYqsJcLbj+ztmWZpsE8eaNnBGuTwzAvQf+vQD9lYmFFrv2EJ8CmjtIBFzEi1\nItXWdkspw2O0tJyiVZO2CIjcU8aeFpSUsVN2QMpqw6zJovchs9EWvQ/ZG56a2SJ5s8dtWbFf1x49\nceNV6KdJt1AXFwmvRx502nR9zgBEMOOBDH8EzC1rDG/D5qxl5WW6L7e+ViFT08yN6LtkaBx5EGHp\nnO4vS+MII8iI9qemjYMOqam9Na/vrdHopERDEBTORl27VvjTBT62TTRAl6z/gyazDguOamoXLu4C\nlHS3RO3lzFrGXN777izEoOMiHNLKa0a5FNR1wX4R39R1x7os2PPWWtqw0o7V7PFBgavQbpKfHhDJ\n7ukYhukozFXK0G68fUMFyQkxfm3wOtpaCqFUQAFwF8CJT3HpJudjrXY+TMfsAyjqJwZo8d98ev8i\nwAOCA+OvgxQAlzWFMWYuatc69ZcAzPvAVFv13q0q42XN9Go6JhNWEKWtDWdtI/qdObzOmK+ZBDyW\n2RiemQXMTEg606qvFVS9M9azsQL6Qadj1TVKvZ2BSwOuvqt26Qw8TW/unWLHMl4/A6iR+M3G/Ozv\nMj61JlDlFt4ZEH+VjFQqNpXcqeYgicMszSMVeZmRsVE3TK1lfdtjDoYsssKzX6jUJN1I7fsSVSDt\nPYhHd0RVMwxjinH0wbSDa4iCE6zACVScmZvJaWPNV5SBeM9st5vRCnDqoekjkyGho1sgD23hpc79\nS009Mzd9b3+/B7Zima0968OjQ/yeSVlvCcgZyAxecnvWXMBLQl0IPQZ5bl/ctFHtCM1oBqeDibEH\n9ZBf0mEVekGALYd1KUxzSUMaWgwAKywCAREClC1j31rbGCDVtqahbZ3RGh0/BdNMqHVtZilvV9FK\nM26a52vdkC+tbfm9brgkaSnG2bvhGBJieCnFmH72SbU/KwegKkBryKFn+vDcIdAeXkfQNlgwX71Z\n0kgwf3wWGwh+BIOfBYvX18rYrbxhuVXke8VyZ+R7Rb7zPEJaODOYdX2T0wrwQsBi2pWwrRnburT2\nkrEti8sNNoPMEU5rbrE3PLXw+LjiTuNJt3zUpO1ihm3nhfmoDfA7C1Cp0QANHnjP1gjs7puYzikd\nL+JfW0o2dE3BVhpgItZHmnyYdka7Im3KaDSpArwkqCaXiUetDFbzaGYkZmSuLr+hPdH86WdpD2AZ\nz4rUoz13mJFzi2y4aACtjD0Ez4KaOAu9GRYek7GajVccq2puK/I99rMZ4g5hfn9l1LWA1w31sqDw\njoUW7NibWINkn9LwmrTtoBjDqubIf8z5DR1lS0es+GU3tCaCK6uNVhPfQgsqNeFXpgrOBbQAZako\nawH2BdiLzAH5iIP7jGsd5ScGaOFbaSMS13bGoNpWmCoXUEEYfBhmX99zCVxtorsTQNWDWFQhRUYj\nxRYoRU1UHdXbWpMPjBAl2DOzlTMCNAMSMC1wIukJVd+Pzs0LN9vehTuDQCKdJpFUUy4uP1NXz2OA\nXmVeu7YOo41RfDRhnoYAh4SYV4mxy88wG7ePgKpY7Ho7AzvvgVFdhzTpA+59Orx3vJeG0XUMR8sQ\nZn8TLRAWUIIXFsS8WFTbNRiAQsGEv140OVBgzO4zCkT6IaPfZe7bHtYERgYLcRsXeZI6WuiznbUK\ncCbl7H37ew8/N1kXUXMFRmcsXECGnltlgKyRwyaNPT/bx3H96r2cgXZdbz8syIprPa7tGb09E7gc\n+myCIhgAxKmF6zf5nogYnLiBazCq1XDLEZxQXTuTMI/H8oxi+8xYb/6TRs4qwRc6o5ozyppRrnnk\nyhOfr54fT0x/2Jr+WFNQOTN6n+ShGU2qz8BeCOWecc8XaP7AZdmRl921q0iRF2FqtL90NmJuFqzA\n1ApUUl9go1hGxo3LjKlRhp5tX7w3jJO5Y0Op/YYKWKzDe6YywltQe44RsuKt636sli+aWX7CK55N\nlMcqm2NBAfMdVBi0MegrgK/SSjJo3Ex7wwF80T5GyRxnRkM+1v563YHrbYS5vwL1GajPBP40+rd8\nxS1f8ZavuC2t/4onvNEzXkmekI7A6xXPTjum/Q0rNvLmiG49Bw3kmN9ooNtWiF0TESy7yH3c5h4V\nEgBkpIEp3UxOkt664DQ4r5GnGZvbl7Mz2AVuEb5lqV2zhaWClr1p2DU/p2q01HrpTMDWYBqo0xTd\n2LPrxqnW95zhhQiMgnbeplyQS0ZZhnmhBvjR/jG4T3oMSiPPE8uMn0bjW1EB7EK7a8JeEsq+NHeF\n20UiGY/Q/FlcFro4hs7FMpYm2TYKzVSwa8dzRqNUIGRpVtS+V1nTRCrgBcCMxC0app7hQwtr4xQI\n/46RQSOWnxyg9UXaMyZ3xsyqRkVCipLEy48JWo/O2cpADuYfQF+QVko9S7DKNQ+nVWWgdmoHrtYo\nrYmJ22JW7dnfYu6BKIk4K7PxiyF3NUklMAjTCuDCza/gwsCFQRcWieuOvJg2FWTasVBp0exoRAey\nG+hMShoNQ/YkNugkLZYWlYgJVBjY0KJU3eno7P0oKV4k2pbBtGNlJfPR2TtN3lNfqSyEW8wSoi04\n5QoywQQaLTuCk64tMn50IyiH1fD4PhTEcwJv5H0Ybbjhd4lu2082+EvXAiXbF8GFiXiUZk61NkR5\nDFdujmtb21AEQQfp0TYmzfejbuP43lm1Jk39bqwAgHWM4RJVVokqNvomrK8VqHSzGDm4ZiBr5nv2\nSDtr50/7cU2flTMwdfb6PTp8qCLoUlosqRpsmOKRz609DHMzp9Gcc4WyT1B6OFbPHKiP9UyaMlaa\nXzdNIFA6GMhUmvmP/rIJY19q6mGO666MpYl4KNYL1lLBm8Hr3qSh8ZQ/bcTYrKCQQrhnSTpONHzd\nqPu7qY/JEIg4GqDdjn5kPNgwF5xGQCQNBMRiiaH0p6iQwVcYumXXU9cW90A+UtfGqF2WOy55w7q0\nkPnXdOtAygIrBVIKKDoDhab1XLG195tDGRIzllqwbnvL9fUGpK8MfMuN54gh82dh8++Y78+ZMMKG\nuJdk0OkJSE9sEkIznp9fwc+vwDPAkvj5fl1wv67Yrgvu1wXbdcErPeONJDW29K32y0LRGOI+5ii7\nq+YrGFvOWWGvB1UTrLaMsuh45O+1gaougOj7QIPP5AAQ0PijGb2z5zJLO7buOZ3Sdhn8YOcLRYAB\npUF5nFO6Li2Q1HKmgY2Cnb6nAiH2pxr17+xnDIZpofKiOYmxXGLUTEicwHXvERttQuphDTUEgN6F\nhPzrcaPHYm+9j287ebmmFnmvpqbVT4xdzvqRrmSYXmpgMhv5MBta9YgXmIGtOLqRWxjn/VwwYPkB\n/W0GYSG4XzrMI4fXAH5tMnTATxLQUmezKJkAjtLXzgwPm1ttbVLWcSBJayT8sQwVuGFwJUy3Hp61\nqCpXgZS0GpVk5kAX+zb07ll/pqWZSSlmDFAHTPBE/xoq0FYHYSSrfGLk5x35aUN63pGfWv+S7s2M\nJTUzlku6Ix9I9W6W91jyM1bJWtOrPPaOC+58wa0S0P0mMviWWn2jJnWcHYKzsZ1JdmbEeRaqWMfv\ngkHoRbOHCwNrq+lSkdet5QS57FjWJiXTfCCWwET23oKHqbSGVWKYDnk8okS99RXYkw8kcRZEwp4X\nXdpu6LGMDdt1pQfZwkY6yN3e3dm8d/+bAqRG4MbTDnOhmM3ERyLSUZkTXoSrjzHrZgHq52Ffo3fI\nIP9KGyA0gQbj2Q+81JnqQ5SwM6ntzNzjIyaCHy2PmJFHYEr3xEPtlTAxzgezAathJlwBCjS3tzKT\nnFAKgyqjUpoGIBqPY/pOS8td++oP69n6OVtLxxLBV0YxQTfMWtOk27EN0eOGH4CAr2LWjJqRimaM\nzf5kmftqBWwaQjkCqG53LUOs71f/XY7xmp0r0W811jFIo5ydRUJTWfp8YdClApfSBHo1ASuQUVBo\nx1LRmONOC+oUApwB7sM8EhpYTtQERpkBMfXDyu2sUJq/SRvP3mye3QpGZ+VgSotxFtv2CSABXvTc\n2qfnHdfnHRDghWdge1qwXbOpy8T08DnkCLu413fXD9EUJwE9Nmf45cPp78JSRlCiwX9suHONGtuT\nls80L3btEDCZwu9Ax1TQU30rriNkeUAMwWYVwUiNSWnJvmD/0v9JvgtdcHEW7dl+8Xh8oXn6O0L/\nctbN2rb2sIBhJaHtt61rihXUmj4Q/vb/sfd2sbYs23nQN6q6e8651v4559x7cx2CUfIQyAvhJ+Ta\nJMr1MTISPxLmJYosIhGiiLzAQxQpghcThAAhJGQpEopxZPHz4hcUgQQIEeAEBxFjxzIm0TXoClmK\nbXxzf87P3mutObu7avAwalSNqq6ea59rH28fvEqqXT3n7tWzu7p+xjfGN8aArjVUKXXz/Idp7aOy\nrFMcHOJanoLSfRWKftkcz1/gAAAgAElEQVQP7Hqu6/WG+WTdd2DOh7axfDbv49oaDmzX+j2Kot0f\ndP/Iyiqztnz+gZbe6Z6Foa1KZ0v0NfhiuaoBlXQQ53+ANmR59qtIm1/eJG2G+NUlQEVbi4oV/h9r\n22MFBy1PvLco9TQ6bVJIBVWGuoADysagf6MClS78J4BuGMNxxXScMZ7OmI5nCVPcZCOZMDebn4At\nYDtga+6stLJ8OCi5RBcmjQaj0efixQNnBzw48AMBD1RTPbRqCGPbh3Yh12HQjitn+mxE3c+++exY\nkgGPEkUMhwg/SQLTaZwlkem41ObzxlRuRX4AZgo3PG4UGlMkAaZKbVpTSNyAMn5FgkARolpLaUtB\nbQV5O7bQjK9Nf1GqriQhHQIwruDRgQfJcRe9KC2iT+ISETwFiDur+ORIYI6a/17IADWlQIvd7upl\nUW+9LPzSS9LHlLZWhrjTRqh7rf3VmKOl5ZadCNcqRPiyPugxeRP9i1iOgYRS9caoFkb1nTjzXrS0\n1morgOwJvb3315be+tFbb7ttElhyuGauqNgwQKryb7P+rvoIGbi6ag2uI39a1N88a1sYG1Bn88rI\nxs6b/cGmg1DLq2yw+9ZWGZdAXlAJYF+rUBhUAS9OlrDsh2F9V7IPhs8W6s1+sGE80Ba0q5Il7Rds\nv98bN23bjo8eeLq2N28UVgyaIMyIkYGJ4aeAYZrhDwuGacEwSfCOCeqLNosyL4eLKNTBAy4ZBui6\nCshesmDABQdQWltWGnChA+5xg1d4hgPNOLgZh+OC6cWCw7JgXALozKYCdOZ9ZZ5VhF7LT2ZLT6mh\ny0JAsZbNAM4A3aEo+SZgOqyYDmu1l4v/l/iBzelYfbnOdKzaLfjSXi2hVNqAHX3vvzrgR+Uf5gas\ng4enAauXSLLR+RwUJ3rOkRE5W1jQB/TtOASgOUxLX7JYSaHrDvL6sw1yxvmaed9NVvSswAbKOmQZ\nIsoIqe6TzGezRrXn6XPk5+EsR9RpRLhmvyTLkK5ZeuyNpUjpb3sKpn5JRgRQomm3qWwK2Ny4cGhg\nFRtkJUdjLmt4lq83v23ekT3O38HkA1NDCZuUIQ1I3q1KSeZi2a+krJhkgXo9b1W0teq11Gvl8wO0\n1Mqyu8mjMgfXSW3NddJEjg6iLdPvgKLwU5pPov9wdNkCUOVZaQGVBVVaP83n2VzDWmJa2uCeNcb6\nUunGZq0vChb0XB3xdhOsABhnKoO0EXQIcClr+0C1U2OrRbSriopR0awuDKAX5lusV/WCvqwTlnnC\ncpkQLgfEyyTg6gwBWMqnt1Yty6lv+1D7DNgKD1Y4aGgeuS8PkD5JfUUHhjuw9M8hwB0ly/3oF4x+\nyeHUt2FNbb/B9B1Mb8YEAARktUUBwZ7W9tHSjiW7EShFoyeot5YNZ87R60QIjYjEKScmi2T0EcEH\n+BRxzg+hTqJIEd71/Ud6tqleKd/X2kY2Z5RbLfovrh60BFqot6tUyYE95dwp2dqYrRdFqLZKmqzV\n1bo68eHRYBiWQrMXcXCPTtiCrn7nlPdFne9bYbkVnKv1Fpl2o7TRrNgygk1FjYVqYLmmYCutTgUZ\nQ4fZpk7QzRzVeOuCTn22DVDgTaVMJ+Icjt4PsfhsaHRECvCW7kLF7tmOzVYBECkBcR3d7BCcgKx1\n9QjOg1LiVgYSNYiqYJv5eVUg71Gm29qjpeq1bGsFfzsm2vFgFXmWdt6smzSyKKFMdWMQqvm4iL/Z\nmMJEk4SJHmjF6Fon+tqhXo91fq4Y8IAjVnhccGiCp9t21hTEcuwkqfQ0GajACyZeMMYFU1wxxgVj\nXOFDaGqEXyPckto1wi9c+ty+iz3rtR27e+NV30VAST59wQbAjlPAMAacJoDTO1hGj3X0WAaPNQXj\nuNCUAdiFUq2AVg1la0i7BV49ELY4AVo2KEcbXXaNQ6bdVhRUa3GxgCVPJa73JO04smt/KQwr7Kdr\nA1VEOVY/Sl17jH9ltS6rH3hvXW7fZbsO63FldaM0p2jjnsADIwxJGZESovuUssWPAX5YAePXuLXu\n1h5KZG6i2q5TckWNihgha1T114kOHVIy7pyX0OYDW1OAJ+uHrP3YkzV6CrMGTAte4wpIt5GBdQ/K\nVjBfLGPKXrNh+0VuKko0kbFqdlGt3N1yWuz/X9P2ff6A1p6T9SZMuLghiskakMyIOh8bLUMTIj0L\nOG2yylZr1bNAfRprVQus9jSUOnG1An2Nol1wrTVKLViJkoATgBsUCsKN+XxjP3MCWTFR4gJ4CAie\nERxhJQ+HMQ/LEjrTm8FawIMdvnpckwsTZXAdMa8TljDmY74kmuDZp2Nf96NWKzwoGNB2MH3Ybl62\nD98EaDWfaWLQIcJPAf6wwE/JUT3llLBc75B/SK0p9SpMgOmrWqeymeI5HHXJBZQF+ax964wZBdra\nNz3aYLt2dAVVbAUyS/OISM+ZKFHeASuDlUrWZq9Xf8k2II3Se3foA3lzbdo+KFOxtx6fdoGVu1by\nSw3UbMlXInN1opJkVZdoroXqiKIRrDapDL7MsSp3Kkdxqjd4q0G/ttFbxUyzmW0UWD2llq61ntH6\nv6qPFYy2sQq+Qgzr8xOTA3EV4jlrjZ2hWpqN2j6rfeYWfHLTtuMXOk4JOU9Yek72AA9I1Fdp15wA\nPAIpR50m/batbtrWAmY1pNvRo7NcboMdMAxIWmlRsQQAUEdstXL2APKbVNecz83/6XGPJdLz423X\nxhECpKYAl8I/0yTC4OC1TYo6l3gMtFbtnrAo38sqyKAcqN1h6go/lkbYfu7HRqwJ6wNJkJHJbbNe\nWdA2YRZAhgUTzwLQElAbWNqRBaj5heGWFNVwYQFkb+JT3HMP0P+fm3fsAfKmHYDDGDCNIb8jHoEw\nOYTJYU01jA4XlyxbavGiA2rL1/XaS+i88QNTy5avnQssJLABU67VrVqjqWzOY0rAQBVeKTAHIym4\nfKEyrhB2UtVi68qxxzbqrT9t2ayrZk5VCgsCRgJPAEYPTECcVtCBEJOSF8SgZCkgx51gE3WOqrI3\nbpVBtv+sn3xm0qTIiPmK0URFTPncYigh6Xn1sifmNZreTN7QktenBEZz2hCWHH4cpXVJjndSiWNK\nik5wTGCWhCry/AIoCUWGaNeLInG9yWh7yxYtIvoqgB9Lv/UTzPyXmv//lwD8hfTx7wD495j5b28u\npIEZ2g2B0pcxbZbMNT/avrgAAV26YbfVLnA9a1U70R4DT3t/uzdBe5pqfWYFClZQbgMwjNhqE1vf\nK7XEHJvjU+dY/34kEa5ACHEAAhBXjwUjznysKDXWmbDt/1prlerqEdbiVxRWD15IKJmzAy9KzzR9\nZTejnnYQqU8OqR9ssULWNZqL7d9WwGiS+BWfpAD2LGJTTHQfLwk7HTwWN+RFrqf1tqWGAigbhsn1\nkGsoNaTNQ/OQiPDqyrgZTNsTyq+vF/2+3BPosmBHyXzB+R1xAkuslA6gbkUjkv60fF/lcgG2NLRG\nsC+BOLhotjK3OxYQlwWwvvUMHcDWf3dF5VptXITy1ikBaOckipQVMFg1hb743MUyN6Lxv6uC6wQq\n2tesmKH6HdtjK6i3AKQHpHf9soyCK/1N18LI9VguycEh2mvDHqhz6Jj22prds/b1rAS22LXUPleu\naUMfCDw4sB8y+IoDI5iE4DSEnAssW2mV8kMF3IsSgItfhOmTkH0sVUtsALdq+O196zxun03fnc7x\ntk9a0N1TlLRKu3Z/GVhA1ZRA1SFkcOWHBKQGE3WMamFPxbdWhWR6BACyyKOiSk/lsa8G6SlRivKl\nBWFt4vbihVQsZxW4MvVACWqQJeN1smQdLzjEC458wYEvmOIMPzP8heFmhp8Bd+FaxrDMll5tBdVW\nPkpjgYy8QAPgxohxjNV7DdMDwkQIByft5LC4oeTwMrm8+lasuoe2QGuqetcqWDfOBibB9V4QjliN\npm0et5VMSO+U5HmhAStJ7sicEmYlYHZZ7ugqwluF+aexGvfWWKvUbZXjrVLXKswPEJYICzxgpO11\nYBBH+ERV1n1R9zUNc9JjhfSKAq0WANcOIQl8DV7Ac1xzBNawptyDq0cIa2ZtlND9brtH7a3V+8ai\nqpA5oPwFZ4qhT4E5vNsqZnp7uq7SrZr7muzWK58p0CIiD+AnAfwQgF8F8LNE9NeY+WvmtP8HwFeZ\n+WMi+pcB/BUA37+5mGVM2XV1QxWxggbqTaY3KfYCT/RAU6/tAavHfKqslapF8nubfzspe6CqnZAt\n0Gr/r7XOtNf1SUBPWjMOjJWkluhznORhzu+AUAAtp4nElbBE22AMPZ8C276J5gMoi1Ur7O8KU20t\nWnpYWqqJrlfxp43/CRPLUAsOFB1WGmCjVxbnfdXqp48b03kBqbIZpI/qowKqnVnR/Ln+jZ5vTO3m\n6vtF7+ENF7fqqvlvmr9vHWhNVLXub/L2T+W/i0CfB9s1/r1ay7JfTqyjHzqGd1va4vWIdtc0W3Jf\nWajuSsFFOKz1ZZSSoDpEV+vUlLIh4NpvgysoPdHSEfVzlE5kDaQQS99z+x7sYe5bc6zUjabvOZ3H\nDKFkq3a18YGow/BTiYJpuf0pkuMmvcUemMr3imKxsWOot2bY/4ud8/Q3PWQNz+svJToPgVNOsJCt\ne5xSWcQUbCmluDBjr7bslefPwZVsCGH1A141fDPVz2FBkT6/T/c9ob9utu8Y6FstW3+qAaBRrHmF\n/pcseUr7G1b57FbkZMCkPqg1/cZq0QM8CC7rR9uZdM2K0ZuJu+sWFeBlxfQe0JK2jcsnUKElyz1m\n5ykJo884kiSezt/xBZNbMfoV07hiPARMx7XP1nhMqG8VtHacz2ioatgC6QHwA8Nnipp8F8cZcXpA\nHB3iRAgjYfWiOKwq9UCVQNQlkz4NhTDbEOvPbV12vtc31eZDsiHsF/P7C0bMNMHRBEkbQYgusW80\nabxVtLcuCD1m0p6s19aeIsvOr4gijbcgWedmc22xwjFiYFDwiBSlurCZIwqSCOqHLINE97S9Ylkd\nDg42CI38n4cjyXCYfVzBmcGTlXArg8iDnewh7Bw4MHKqi54iqL6RrUxnFH2ktG/HcEoZTOtwSTad\nqN4dy5XS/3ogSvuQMuTq7/3Xymdt0foKgK8z8y8DABH9FIAfBpCBFjP/b+b8/wbAv3v1iu2mcQ1U\n7VmpeoCqR/3r1R6o6nGw2/ux9w/0J5OlrtlJ2ANGe6Cqd9z6aVXWGRQrR0sDo3S/+kygrIFgu4gE\n1M7V2t97YdVbPrMVbmz/wBy397cHQG3ftf3okTXSOVDKEHNI14rGRmaxYDPkEvjJdKfEJ1dQGZVP\nbsM2W78S6+xbLSwtUEF/cW4XHEIBfgZkZOd/jahkgwEoLc9Yg1T7c027lZ9dhUMgC4kqNNd544zD\nMKiAK+58lwcb5WYDuvS8TZ+UwSKnpAUyg7G2T2J1vIl8pMEQlPduHYyp7kNrHROrrhX/6sW7wKu9\nFnnRR/VEYhGD7wucSovJmyuX7xhUUXDycQZerh7L2fnZAvm6RW8MmPfDUc/tgOr8/ql8jp22tcT1\nNuGWBuewXVN6IKNX7Jiya6CW2HzW+wxUWfei84BjBKuMoWYMou7Dal6YMOi1P5r+P7brp/aFrun2\ne1t0XtkK7FjyI0jzC6Vjp0BqCPBj8lcjq6RQQWZbgZTbDy6LLz07U6V0UMEmO+OrooGyhc+Gls++\n1s1rteudcyU0f1tbH9qxwMXKatKzbWeFSMeqYq02a6LPzZhygI8phayfjkI9nNiJlWth8ftauE6e\n3EbP3bNw2blwbR+xY51RfJgTTdUNLFa2IZoAR0AcSKoHwkBCJ0sBmVYnVqOVhgr4XAdU46Z902ot\naTYgRxVFkSZc3IrRrRgGCb01h4jVj1jdJO4Q0BAqnT6yrgQahbIHtHprT6//9xToPT/HprInocpB\nxj8FILgIigyKnAKPyvNs7X69+bktWwWHzEdLwM1XIJkTUDjiBODIM8saGF1MbJsgERxtNN685rkr\nQMuAN7Ofa1RbBVu6tuSQ9ww4T/CJPujgyrN3aN4WOO0d17f22Oby2QOt3wPg75rPvwLg+66c/68C\n+K+uXrFdRHogq0f/U5+qnkXqMd+p1oxvowy9CW2lXdBaUNXzB+oFX7h23FqqDqgnq53ELVghuxKY\nfu5Zm3qUnR49co/W1/aNLUXa7GtZWyvexszOKZJVBMYo4YHHWJIOGn8Ka72gJCj0SkVzVMtB8qcp\n0cGSgJoytVfZ2h/zo9mj82g/XAOZ2TpHBUSa4AQwuUF0scuWnNQquKooeN1+aITuDDLlxWWQ1STz\niybgTBHOe4Cr+7P9UjlHm+P2c9RrU+5XjXxdzm/63fZ/uzlWx5xBruYOy3lYrCOuycfiTPQoddJV\nrb9DzNr/fUtaveAX8Ma1tZTKWdINW61/f7t1263YhmQ2ochzGoH0mbJiwW2BQnW809+98d/7P6DM\nC0bxNWzP+TSFOp97glFrEdCiczhQAf3mGu0t8bU+6Clh9vqo12dI98fYrh97x8Yih5T3z3lJ1Klr\np9M1sxnLe0Kbas4L9Q95PJaRq4qCtJYYUJUjMsZ6DOaIv41FtJqyVNazKky0TxpCfe70Bwb6pjuu\ndfe9eSOwTOcm8sVUANWgTmccM6Fut1Kq5js/tDabAB8DhiitVhcZLgAU0hIUeGNNocjbccKNgGg7\nsB3vne/IQd5e5DyEYogYfUDwi/SRLz4+PeBpoW0NRuVzH1B1ANQOdbHNHTZjwkzpfEqhUGjE7CYs\n04g5TJjjhHUdEWePuAyI84A4e/AifltsffYDElOn7u832kt6fdyybawyWfd2pYAmy7lGIpQ9Hojs\nMAehZ84hyTdZ1hHFYqvOcNXisVOozGkZLnYuNxZlPd+lvIPEiI4l+qpa7o1Sz8oWbQCUrIyCXeLK\nPpK/Y0pUeoCdy8rQaJTMa2pdo2TWZ9PPZQ2pf9WW7frTbiJ1+ayB1htve0T0gwD+JIA/0j3hP/6L\n5Yp/+H3gD70vg1o3Fbs55otiu0Hq4I0og9hu4K3mYsLWYtWGb22F5vbpVXvR+gPt5We6xtO9VhNv\nXirLpBzKBkqDIv769gBAQ3MWLaqhDVoc1gOyLQ1zz4LVExz2FpbW4tZ5XvEPkEiIeiwUFolipa13\nhtGdqSwqpCIfZw2qaSMZzwI/ILBE14gBIlyuA3gZEBdfwvvPtHWgtQC0R/doS6tN02NrqWs1Yhlw\nAfASSl1aef/sIqLmj2uTdRtrV7coQMnUL+QFRkFWJfCQbAzehXQ+meuYACBpMbu+TLW30izGQBHw\nNQ9RlYNI+5u2ioOekqanENi8o7JzSi4xL+t/S081ltQSeU1aN8aS7HtcMYwLvF8l6hrEGX8g1bDv\nBQmI+fs9jZv2ma0toOpx71cMEglPHaAhfg7KuwcBWCHaSabCv8+V9teAazSRXjfXXf64QNj+X9pI\ntTfKtXgLrKo1nN7g2LR79ZqlLTbH7bntbzzWJz2FTKWc4YoeTT4F+tDErdnPLBZ/BuNvViVANrBJ\nbr+Aqk1NczZbVLkBURqZUxN/J1CVI09apkCPbt2hD0fHOVmqUjo1h5/cqpyr6RqEXmU7V6r+n1LZ\nRqy44IA6g9R1Mlyfnrj9v60vW6pO3kX7faFA9ma1+cxlZ3Oc3h+zfM8Mxwzi9LZYd0MAXCt5bAvz\nWV5Duk6I8IHAFBA1UBA5RKJiAaF0h9SuP6U3bM9aS1cNXSfYJDO9XGClreNPLjRi9QOWHJhjLOsf\ny30E+E20vTxes8KR8tguXWM0LWae6nDd9iZt/08VAVWb/j/tfSUPFnII9nX1KIrMslDs6FHzOlj7\nQ2tFtsxn3+c2t5X5W/3O+1DkCYvpG1mggCy5z5jXhrJGZMWtZWCYtSArfZly5FooSOutpT05vf2/\n/Hd6v1R/FwH8738d+LkP6vWoUz5roPWrAL7XfP5eiFWrKkT0BwH8JwD+WWb+qHulP/dvSdujX+lG\nEpq/0XXSWox6lMJrVLdrvNt2E7S/eW3Tuwa0ulFn2spJcIvJnM+gpIVUTbpo1jnToKyWzw7UnIA5\n+Jx0Oef80YdQAbUnDl8Dt2ievVdagbQFuTmhMidLHYvlamK4acVwWDBMK/yU8q44I6SmtkTaaU3l\nVlNitZWGwcycXFKKNiZqosVlAM8DeB7FgfZaouRrIX4fA1p2HL0pVdITMFB1LnsGJyEreC6mdk0e\nqMeka31ZODMgqtoafO0WEkpdlTOJTO6iawCvU4r1zFrOinBWUjIkYZ9TJ0Ygh+W95q/ZC05jQQLM\n8WOAOPc/gScCDk6iR00ATww+DIiHFXRY4Q4j/LRKAnC/IDqCRvBzCUip78i4EcbEL8ZqKq2erdVA\nbjXM2zAAWaucfC8AZAFJ+yAHsNCcgpqgXTW/e2O93fxasLM3/q9ZdxP/v4Rpj9A0HzaipY2GmH+v\nGl81kFchZpPHawPqFdhTHzBZILW3n7S1V2xf2c9twJIeMyBRpnMAH8+SmyenWZA2a37V7yEH9UAK\nA13bcuQ2OPefzb2T101rFU3+g9kfzfgUal/m4C5VWGjajpmqcp7uIAY8I/oATpr/6APikCxnA+UI\noapYk3BFa94H1J5ksz3WoCagiONtSIetdbofxmE/xEMBUXFz3F6jD77MORT6x+Z59q61AW4c4TjA\nx3QcIxwzXGTZTiLgYtwRaJPVnSgRECixxiRxdEhJvyOJn3POEUmDUBMr8GXDlRQg1aMfls81FO71\nICsY1KcnJ9HsGuWBPFZR27JZxAp46tceg0DXYQu3u4mhU2APW0UBNmBdXQqeNCQrjyq9XGc+pbUn\n7ev12stp/+GirDcKGEqtKmE0+I+kvkjjz1DzrLVbd6Qt0DSW4xz4S63cXqJGarTIWPINxhyl1wNN\nkKiun+/eGnxN1rdKMW1vfhD4Yz9Y9rW/8m+jVz5roPVzAH4/Ef1eAL8G4E8A+BF7AhH9AwD+SwB/\nkpm/vnulcZW2R0lpNxfbmSO2AlMrPLVWKaCvTWxLTzDoCV27QIurKEAw1qd2YOtmSGZgO0tHIt74\njOjNlcmN7JPRUjHiygia64hJfLAq9ccVYbq34SnQiua4pd70NP8KtLo8ZaEDCtiKoHGFG1e4YcHg\nF4x+Tlz7snlYraurekJfLVXH7fa18oAlDFjDmNqULHkewLNHvLh9ummv7UUl2hOw9vpr12qCGnR1\nLV6Uv+NKCEsCipee2PChFbCrwJUBfFomCZUASw2o0mz2CtJ6SWGrSIKmzfQCc2xDgkf1j7NJgqMD\nkwdTGXz5XevGUlBIPf979FhrkWmtXO176ilRbAS4BOh4Rbp3D2JkVQANensMcu20khEa89lS5P/t\nll0iq22FAtoIgA4RS+6OcqWulUxBRhBKDc9DAVc2afsefdj2OXf6r6XTtJSa1pfIC01WrTEtPbYK\nSJEBftxd0lqabJe6ZqMkZnCvm7pplVpEKG27RurnPY1rW3p7TO87tVrZtcDmOUt015riGnO4Y00e\nq/PNvv98e7mfjMWqoZjGKBbOkp+yAaat4rQ3x/b6YbPvUhIQ5bj4wWmb1g7nEGPSw4S0lhAhwsOT\nx0o1UNkDPy3w6SVX7821+m94c43+b9eief1dC95qkb0m6tVWtG1+x37YiaryCooAJ2DlQ4QLica4\nIrfUCqsRKPxt3ipbbNuZ99FLMI4wOKyDtMG7YoWiDniiFkgV22HvjfSA1F5pz9G10wKGotiqbY9t\nRrgVg4lXaZNI16FVNOz+uQm9P2PCGlnGeBgQFp8iNpt12bozWDkEwIb2nBSGbPqfBwaPEWEMOS+e\nGyQfHg8BflyLb3t+nftzQCyhdR9acJtbdvIeXUpl4z1CjAiUIgHFlMmKse/Oci3HoN2vWvnsTXDD\nI3rizxRoMfNKRH8awF9Nv/UTzPw1Ivqz6f9/HMCPAngPwF8medELM39le6fJXBXNThKArH63GxfS\nsXaMdRDm5vgxraGd/C1Fpatt5ULJyMdckl860SRaKoONUOVSvqAqCSYZQhuVKDFWM6Dq9Vag2i4i\nyE7E4mvkTMjoweSR8EbQpH6wjxaHWcvVXj+3i2mvtAJHFn6TZmZhgHxawAhg2c4CvNArKOVkccX/\npa31T9UTvF2AmRyYUABCimwTPUBjmtw9jfWA7bOrIkAFL6BMXPvMlaYJW8HT1tZ6smvl6rQZbFGj\nCGAzlmuQlSP8QEEVtmHVbfCNDiADDJBCEuhSXgulSORjFeDMcdaEW8Gu0pI32nGrxWvHoT6zBbgh\n9VELEnqA2L6fVoHQo8YagThTH1LIW3Yk+nTlkRvajhad9UPauCNWBDh4+M4WX29k+retKNfXnA5Y\neMTKY6M5lRrXAQhakdYH2moBbR/1LNvt2NbzbD86FEWUBmnwxZKvodXLehqrBJWW5iKKqLZPy4LU\ngnpyLE7mIYLIgULScEeJ+AVicGRZnyiBUIcCJJSq3tOStuyIXqHmuAeqMrhgc1wcxEnz1hkH8hIl\nzChJGCm/mavAZq3gaKh8mbZLJtlrWzvP286nPVDVAqouwEJZr/LaFc2+a1keRTFpg9zkNaop7YwS\nRYdL3wzYU3D0bRhbobMoAuvjvdpauLa1Iv8a8NQPXT9sbD69kBRFUaX3FznCMwkJIlmxKPmLYRWg\ntatsuTb+2/3SVJfyKo4uVt8rGGCjQIwuWcxSXiXB266k18jyEpmfpf695GMjbzEyOGHIseB5SjKD\n/G4kwuoSSPA+H587sSkfcMIZRzzgZOoN7nHCPW7yca89I+AiYYYR4UVxprKTjaLYY2/xzrzaKHMJ\nPDlgIsnHlvKrhskD41qSPydrsadQrb211U9fM2/aTTXWdE8h9z2HmKM9UwJcRWalEpuhF9SuB8R6\nwU32FK52f3ubQAsAmPmvA/jHmu9+3Bz/GQB/5ru6+DVhfe98C57sNXrAqq0baoZZ1HVhT5QVDSOd\nj40DvPM1kMpRmyO41XEAACAASURBVIx2qzfYalBVLw8yucoyDXP2d9157UamwuieoGnP6wFbe832\nbxzqW2qBSyCZCCiCXFwBrIS4CifZaahhm0jUF7BVNij1Zyn9pwJpWabSe9AoVc4jjAEDe4RpRVgG\nhGnAugzAIkBVtUesWqSZtoFU9ihrrS+L1fzblsxnPcdSZrV/Q/N3jwGDamHl5NtXLAVViHSlFGXw\nZC1W6fLmOPOlCVl4ywIcgEzJQqe1DrOV8yyV66rGPbgi7GWLgo4h2mqm7DPbOd6Cqh7A2gNt7Txo\nN6vW91A/ewAGeAZ4A0RLNDMVfWwySkv7aYW6Mq4L2JIhs9XmWk1w8VMYsMa6htWLooYBpijq6yE9\nvONiOe0JVL2yBx4yyGID/pPlKiVGVv+b1opVKNP9n8zDMVtnytjaWE3ZUFNta6hxKoTJRGCxrIDL\ns6Rx2h1Dtl/a9dF+Z63MO2kmSuRUA6YsdVwvaYGm+nokrXC2+sRiqeNkxeuCqLx22fmGer5dmz/t\nS9lbm2yrgL2dbwNnC6euXb3x4VzyQ9OWwlUQtB0/8sNiLy43zChBQHoCpAn/YfZ7+13v/7dWry3w\nqql/j1mv1J5iQdVjsf0WS9Bzksx54BXjKO0QAvzKGEKEX6OE9A4swGsPbLWKBx0H7V6l37dKStLx\nXLcA4MsGY64btmOwvR9rsbimGNiTaTqKTT4AfCDTEs7DiMs4SR0mXMYRd7jFPW5xh5t0LO1rPMMd\nbnGX2tc4Y8KtBE5Byo1FUax+A2FlD4cBMXoBH6sojKsO6slntr8d6mfO58n+q30jis5yHCIhBCdu\nHJ4kCEaKmFsYGS7LYW3haiaUVnNM2vyhtWLVJ2U8klxFW0tWD1jZ/9tTCPT6x/bjI+L0Zw60ftOL\nbmJ202EUEKBUhB7i3EOh10CW/azgKi/4utlFs+mVUavUprzP5hoRXeH8RjjjfFqoG7rAyi0w2oXb\nliJeNaJWdtJ0mTcfk09LVCtB7tdoNM5m16NUNSP3gOuh7NuFqhUmbLlGj2tBsd6W/oYzGtQgvG6K\nTgSN5NhbtI9sNr+SEaFn5bL9m03Xlq/tHcKYhFEWR9kQPdZFaIXrOmBdlFblUhJEKm0vIua1fBy9\nxbDcbN1nve/3qGyVxYvNd0WQKwIcV9G79qM0UqIQuUIlskErOtS/TE2KhJxAMvvA6PPTdrMD6om1\ntyn2zmvPt332yKK56X9tbW0pnjuWxyqJaAJbDMpJiykyEJAcxoccmnpP6JJbub5WADAbWFkvaiKS\nJSgly1lOmpvyZuXwven9jOb9aZje9v3Zvqr6jevvqnU1ZqtMidpYrFWAAgoBEJnyRiTrwI4HeJ3T\nCxXAsk7Xaj1FNW7TjVtaGlLL5vvqefv3kYvSdI1DerXPQY4rZUdlNU6rOT3yzFzSUFSg0s5F44NW\nqKIo2uJWIOkJz3vCqda9uWMplWi+b5UXlhrpWdJ2mLUrR0hM+XS8L8wRjTZbZsFWwXkNeLUgjGEs\n8u2rhQIwAJB8RiG1exr9noXrTaiJe35bNWkuGIvWti3eTOuOpWuFN8F6BiQF51T/1pb+GJJPF4tf\nV5CWEp3QuAP3hn4+hjlns64zgLRubkBe65Pf88+9ZtHoKevacdphM9ARoAOnnKYMHAF3G3G8nRFu\nKdc7usUdPcNruhVARc/wGs9wgwe8wlmJgybsR/FIm/yCA804jBdMPGOMM9bLiHAeER5SPY9gDdTV\n5mNr98t2ztk9TPdJhiRPJi9jOzpQ8HDDgNVGe+ZQ8lUi5ra3TrWqwghZf0Pywwoa8XZ1EohsHUTW\nUh9hu6dnBUznmTRmQ9sPvfWslRs+ZfncAK3hIB4EdkOpk8BycdQ3f9cKGjZCS2khQILTfmk2G7vx\nsJ5vtJh6PRUSmYXSVoO5tEFSWRly6EhCtTmK0oE7NI9yTs4B1B5r/5i2W5JQoD4yjPJb7AkUA3gs\n1KuKhqU0wuxoiH16QHtc9QkqLFctVjD/H833qmHJ2swiZLikvfQuYHQSLneg/cwd15x+7ebWMWKj\n4n2ndvUDlrFxug0jlmXEsky5jbMHXxz44oBZW9qmEdhb6Nv+07rn62XfQ69mWq1RTkSCBtPgBLKz\n8JnGfHSUhVsdz2VuEpgZQgWWm80CXrIEqOUpBxWwvpfWGmU0Z1cFtx542tuEe9WWa/Jwu6nasalt\n73hTub6GuZEs7AfhpYORqC8E55I2kKzQdd0KjnyU1r5GpEtvsN7YUgUJXQcq2EdG9A4+hirAQWsB\nUiCiy99mYpP5hpr1i8raboNX5DUQpt0pDBk30az3bXSuDRXORrTj+jgDjny8+cF6gNj/t+8c5vgN\nQBV6z2366De16G+kdZb1IZgANshIlZ36VUSx2r0JwCrDsvRH7hdT23m0UV6woUvCUARDyo8YSsLS\n7LBvUnsgljxgO0CG8kwoYKxHz92bXblr83cAmv9vrc3VK2muUc9tdOf99v73Am3Y/a9O2mxph62v\n1/WAGfXvdvuNhNVDnkHj9pnq1anu73Ld+llbAOl5xRgDhrhK5SAWtxDgQ5S6BriVQReGmwG6MGhm\nkE1ObANc9cBZK4zzzlidsUm/4x8Y/p4x3gG4kTqODzhMjOM443a6x/PpVbZovc6WLbVu3VZWr3u6\nwb0XuqHQDE84D0dcjkecnx1xCQec1yPiOiCuDnERN5G4OOSovYFSjtRqc6rnZzsvnYqUohjNPo/R\nIay+8pPNS8gja1eliNXjYKzrPZ9Ya1EHClPFQUDVmwKoVk7VZ++17fFO+fwArVGA1uBFcyJmyYDB\nr2WC5wUzNCJDsQxpKX25zTETOGl21VoBsViEkNpUZcD6XCVyn4IP2lgmbJJfbl+mBR3dDYYbLV4E\nJT8FVH4KaTMZBHTkTcXkjbK/q5o29YHRRKU5yksoUV1C8NmHS6LuSfS9DBJU4G81Rqop6tEFbNEB\n2/Ml6oV3h1CHPK3wwwJ/WDH5Cw7uggOdcXQXHOjScSudU3yiOm99z8EZwGbbsKx3q+8r+qZU/QFn\nd8R5OuLMB1z4iHmeEO4nrPdJw4RRzPuaJFI5xRf0Td49QaZHq2ktVrsRLLGN8DgAPBrBEg5KS/JG\nO7zxfaEicNh2q9goArlNPprzMGUNeyPAZz8QowTQCJm6OfRoSz3wz53vW4tsC9J65dqc7fnNZeog\nlX4eXPreSf43rEKRA+CSEiEnVm0Epj0Bx7ZWxNM30lv3eiKSWnNZI0D5Qt3I64R5f3XYXdS/zWg2\nJQXqBVgJAKvBVvWdApD0N/Ib5fp5LcvWqCQ4pBdU0wGd8TMqG3u2yNnWAvIWnLdjo7cJE5C4tuY7\nKuAKqMEXpQsTpwht5TtO4Cu3aMBXC0b3LF36PQOSDNs+X+mnEmWxnYe6RqBureLGntPSkK4V24cd\nwc7S9QuFPyb6fsiKtzqPVskFludQQytv/Z+2AKwV/mulhoKtawtGq+QAyhi2be8X0LQ94Fb+YgvO\ntoCsZx3v0xV7ysjH77BZA6qyhZatnNb7jZ6Pmg2tP0BojZOfcfB1li3Zmc1OzRcc4owpzDiEWY7X\nBe4hwp8j/JnhHyLcmWvgpW1rJQvYFn3IiFpOSks9ZgBnAPfAeFpAp4DpdMYzOKyDwz1uBEThBnep\nLf5a9vNpU8/+iIs/4DKVp154LDWOyQ/XI8bE0EltlW6hVaR1mCoAyncp6qEOALJ7QNtuviPj927X\n3s5x75pAjWw2ihwuSixX2GjWPaIK0mV9ffWzmQM2bsI3O6+/vZ3f1kVfmkcEpQz0IxZM1E8GuNXg\n9KWlHgEnUBKkqehxFj9iGdLgRGrXCeEyYp1HBBDWwLKxLKg1IS33c+3eShGSK845kiBMWSAulIgA\nmgLctMIPK0a/5Dp5CXXeRiDK/klphy1rwLYf9FlnnvLEDOcR63mSdh0Rgi8LxUOq553a48T2Si+X\n2CnVm9LSc6lgln46MUZacEP3eEaiAxI90N2mHnGu6gGXatxo7fWN5uWwoEq1SKphytxqeo5XpHfy\nDA/xBouLmJmxrIR4GYB7AK9SfZ3auzSGbJ2xBRGtBk2F+l4utmOnHprPnATcIYBcAI0RdAgYU06y\ncVgweslRtheBq9UKv2nZJ8M08zNRNS1tUwM0hMWL/9wyCJXgQsliSHKsm2Ev+XgLantWWgvAtFwD\num2OvDbJ+NGlvnfgAwAWSpP3wEgBg58xDnX2F62tc3tfMNyheNZbBRiEmljUuNeT0WVTHf8sJFph\nhKvaNnpfzp/SlgSgKmsWFLyXIEBvWjLY4iQWp+MSBY9KZMpQxhyCIjikzZiQ8w5m0IB+Bfpr+l7J\noMv8ZraAsrGEFvAl8gXXtEqlshNAMEEeshIk9Yj2ayfa5xv3a+d9FjCb+rjRREcFrw0lsUpqba3Z\nu/2lfdH0S+Orln2gK0tWkFxg2tKehUZHc29ds4DEWlf2QUYLmvS4/a63xuU+NxCjd17/unoHBf61\nd7B3z+WXyvEbj48GxrW9VNu2ts+xvSOg7S0LrizAauW/AqrqesJDte+f6AE3/h4nr1BFdu/Ti7NA\nFZZ6jBe4BxYrVKoZfLVBFno02j0XCUD2mov83bBGDEsELqvIUvfAZZhxGe9xHiZckl+XPoUGz6gl\nGWk3it/0eSbJHzZjwuxLzrE2KXQvmbQ1NKxxyAYINTYEDaoWHWzkVbYh1nsyzJu4SPQUmr3vhpjT\nHmEQg4S3NEb13zcB03J7ZRes/aK3sxEA/rudufG5AVrLh7cAADoMwOECOiTHvqHWi9jpqp/Z/LvV\nAPW1MhEODhFBFz1GoU2pFjfIAOKVhPeaQ2hiyxO1g8ci7HbiTZwSmkp1U4SfFvhpTXXBOC44JMtN\ntuC4GXWO9CVpd2r3doe4WewZZHVBWDFgxogzHXHGCQ+pPccjZj5iXhnzTIgPHuEOwCed+rpTrTZI\nj3taCSuIan0B4GWq6Zi/QAhfcODLAI5AHAlxeoD3ASf3gBf+E7xLH+Id+gjv4EO8g49yfRZf4zbe\n4zbe4Tbc4zbeYwpzohaUCpBEDnKi2Y/OYfEjLn7CeTjgMhxw9gfcuVt8jJf4GC/xCV7gY7zER3gH\n38F7uQIARwc6E+Jrj/DhCPoOA98B8KGp30l9eG/qQ+qzwEA0lSE0HkdpDJFYSwwgzfVZqs9N+zyN\nvwmJS84YTwummzOm0wXj6YLpdO5uWjWnfyvs63Gv9PShxR6tIo8zW2nZVhcaRfFht9ZhxGU9YB4n\nzKvUcBkkxDuL5ZXhZfG/YKsY0DGpx708aO3GoBz9ni+WgioFWIf0Po4oSoMTgFvIegF5fzQCPkaM\nvIq2lR/SlmmEAzxknr6traJAe7JXeuJlrRO2SUL3XeT1nJZKG+AqS2Vkt2vFqKyiLuYUFXsWOquR\nt+Opaomk6thiscapQ3VgXzj/QQSEYHIISloAKmHNI2S+2STMjwEuKy1utKqd77K1hprPXFoDpNRv\nrec/WSLYxprVcKVP7XGv9PYNa+PJNSUZrZK7JpCrfa6O7BryvYR/by1kti8NEMt7ZjrP699Qtdeq\nmO8Q8164Fxyi/f+WGqfH7RjcQgTpqT1QZftLFBwdxYUBXK39zK6T7Tuw57W//WmKHQOtBc7OqcxK\ngEOdBsGX9x4ceHUl19FKErRgpRxtdcNG2DMKqvVy4ByFlMYouTTHAD+tGKaAYZhxcBcc3VnkI3/G\nkc4dm48FWKW9oRTnj1LcP3+Poz/jeHvGMZ5x5DOO8QK/xKayBAHRqIsrxE+st17sgS9K5yfF6jCt\noBgw8gU3IKyOBChRkvRSaz23tsdTVg4X216d4PlijnermzA7hbLp98OIdRmxLAOWZcRKjAhf5vZC\nkmdUQ8tbC2BL4bOuIra2TBHrZ+U4M0VojHDjCj+ucJOk//HDisktGN2M0S3puM6oVpSXrZ/iipY+\n6zsz9v83QAu/LvB/PU2IJ4/5NMGdTnCn2pKjtbdYlsXDWnJ0uSx1ZY/AaQnWsMZhSMnghmTJGYTj\nurhEoXMCtnRSEVLekvRDzaARfnKAGwNoinBjEKvUMGMaZoxJkz35C070gBOdcXQPsliQ6DJaPcbU\n6CTUGdVWAlfDJsBjwdAR5U7ZCjPgGQgsC+vqES4D3OsA+pgFEHzb1O+k+nFTPwEQLkCcgTAD8SJt\nTzpxB8AfpHUHwE/ASwLeRVXj9zjgd48IDwMoTIAHbk4zMH0Cf2Acpwue+1d4Fx/iS/gmvohv4kv4\nJr6Eb+H2co/jqwtOr2ccX11wfD3D38cigKsVTn3CzOTmE4GfA/E5gV8Q4nPC/fGED6d38NH4Eh+O\n0n7LfQE3uMOYTHcLJGobZkK88wgfj5i/zcDfA/ANU38dwEcRmGepywzMC7D2vHUZG1OJG4HTAJx8\naW+9JFF4DymQCICjaMExRdBtBL3LcO8E3Eyv8Gx8jWfjK9wOMgo0iKzdkEpqyDLuLHdeW6vCKMKC\nr5atsBHuB41vVS3qukmcobROiZanWnFePeI8ICwj4nkA3xNw78APTqyESUu4AbHte7dgy1q92s1S\nLVjt4q/WQmsxtNxx5YwjaeSHCBwYdFwxTBcchnvc+DvcOLGN2mC+etxqbSfMXUFxq7dG7nP7DvRt\nFrtZ2bAvedM+VFrPBSM8Qq31TMcRDpFkFBBxTnTcRr/LK3D2O+vbNHtgqwcKijBarhYoicrawiE4\nj0BDprwCSXfBBI4AM2efgw0j4dNw/Fs/Pdc5LkaMRsjgnBIkR9EzYexL9Lx0bMBVBgnUp5nafm3F\n9F6phX0yIKHeaSNp36bv2MvndTD+e6lY/worcNt+1XkG06piKXqZPwEyh1j6DDH1GVCNFasE6lLO\nrvjytvvpPjgtCHsDThogVWxoteim84ggQTP0GvZaDiXQk/6aBVX2je6VnuoZzTGDsmuBHLsKRCmA\n5pQol9WVYvUCqjT6W26xbXs07q5lg9CmIuEBWKYDFlXQTgAdA4bDguG0YDjOGI4LxumS5KcHnLIs\ntQVehniXj4844+iSrOXVVnTGdEi7Emu7wHPAEKXqsWMGxZgDf0iL4o7JLMcdhUxMbiPkgoTTX4VS\n7l3ESCsCXbC6WklWB+efqjW9D6IO6KtT6++LleyYP8804eImzMMBHgGzi1jdAIaXmAVhKG6e+n5t\n7qreGtqujbZvkL4bxBhBml91inBTxDjOGMclt9NQFJFFKdna8fbrp7Fo7ZXPD9D6NWniYUA8DMDx\nkCO4PIyi1cAQkyUomuhUsUrE2JbMQw3KR00+HzmjdtG4cC+MLbAVvBR9j0ha6gh/WOFMHYdZtC3+\ngoMTf6Kje6i1Kil7wm3FxL1LE78M+yPO1VRSVO6QLDIoC2qAzxNLtR0XHE340NsMsFRIUyBGYGBh\n0AODXkGsL9+GEFP/Xmq13s/A3QLcL8DdLG3FjdO2U+Kt1GyCuQX4AKwT8HAAPpmAb0/AQ7IgRkiy\n3RHg5wP4RkzXTAQeCY4CRsy4wQOe4zXewUe4mR8wvgoYvxUwfjOAvs3FEncHEcBfo5j9jcWCbhj0\nAnAv2VjYLggvXsO9YIwvF5xe3GM8zBBrofhv3eEW53hCXEas5wNmBavfSX32DQD/bxrrHy8APgbY\nmrpeYbtLAcVklUxYfAMsqe/WW+D8DDif5P6PECsWABoZw2nG+HzG+N4Fw5dmTF88F8sffYx38BFe\n4uMUcFbGoB73FqWekFanvvTJYqpCfaEu6GKugkZMFi0V8CtlAEt9wAlnPmKZJ6wPE8LDiPVeWr53\n5V3uAavWomWtrT3H57ZYgbmi+qIALLUsPqsrPWO45yvcixX++QL3YsV4M+PG3eHW3+HW3csx7jrr\nQgFadrtste89C3b7Tnx6JypAy2fOjydt3/LfWpIqoZZk8jD1HfZb4belPFpiUQ0Kar/bHj+h/WsH\nn3AypT099RL7rIFXCgyWpDRT5VlLI93TxO5RXlrn+J6mVgWHJmG9S4EdnA8ZZPlO21LENeRzS5/v\n9TOhiNXavxsLYQNetxS3raVDA+gE9pnWG1OUsLgMybKh+6wCrU6fdi0bKAL3QDnqcOSSg4TJQ2P9\nEWKyciLRLNvxWGiAPSGqpRNugepWndFamBiUjyzIsqUHonpV53X7vj5tKfcrv76FjOa6OZgMwfo5\nFiul+qm74jur4OoxqnYbUtsGz6pvuO9e0VyTV4d1HRADYVk9aD3AH5Lf9HDE/XCDo0/yV95VynEn\nRXDl55XXXHVdoXofbOFOuyZXLdtx1dqKuX52815a5SXAEAbDCgfO1PIJCw4bBWa9/7auELZXjub4\ngDkdzxhxxIgZZzpiHA64uBXDsMLHgGWcEIYRwTOCIwTnZL4u5n21qVT2/M7z+lhXGiGuM4cAmla4\n5EajrjOjL5arlvnR0vALI6RYuMXNJubapzD0lVJt+fwALfUy2zjvi4aDvascz0OrOZRxuK29AA29\nF7+72Dd1YuAoSBvHCDoyhsOM43jGcXrAcZL25B42/kPFk6f2L7Iuj7e4w5HPmHjGIS6iSYkzxrjC\nhQgXWbK0R9HuhYEQB5czqC9+wAMVu8QDnXAHoWVGiP/RgDUt3kCEZNyYccCZj5jDQUKG3nvwaxJr\n1UepKu3tOywc48sZmM9AUIlWUYy2dyjSq0WtbVa5GQg3wHwjgjI7AV0qvD6HgJ0XkOSA8Fj8hMt0\nwj3fpGR+p7yUzpgw0goikoj1jiGp7M04sQE97B5G6TtbWDTzgw8YDzOOi0eIhFscjbVxLtQ6DqAY\nJcfIKuAVgYEQgRgh6vQHCLD6EMC3Uv0Efc/bZyjRM9IORV5WIndADtuv9LVb6St6hzE9X3Bzc4fT\ndIeb4TVu6A7v4sNcFXT1/Nxa+s2AFcWQXraOudmiNFSNAPhDlaCxduq9wT2nYz7hgW/wwCfM8wHz\nZcJyOWC5TJgvB/DZCfC+h7QP1PcTtL6Tdpip8KyWaIKsMXZN0Dlvq1qn7JqkViylBx4hY/UWwC2n\nFqCbgPFmxnh7xnRzwXRzweFwzn4CFlQpxNRxpAKebskrBoi1ejDisAp1VnzU87eBne0WVDbiLZ2k\np/vv+XVZ8bNMn8c88PqCraVs6XX0+Vv4F9PCr3qvvFWq0M++sBSWEWEeEOYBcRklAlfWwlOhu/Sq\n3UOsoo3MI7drRwvMbcCflIA5W6+yb8Ha+BY0dU+A67Q9oLuFy2x6uPS2/I9r3iaZN+YLCyQOCMGX\n3GsZYHnwMgDLYCxZqAXt1sdlr//s3hxgIpINCMEBa4QbBsTRI4wrAhaMziNgQYDDmOdDGTcWAK0Y\n8ggP8BtqtJ7ZizyovdhatbYqhD0o9d0BJ/tmVMv+aa/FzT0zSJL8EhdwRwYEEIMopVBJFuEYGXAM\nVsujhtduldE6/nv+sD3FVk/msmvwiALEUCjLFABe09qYoqfCw7xrUfRNOG6E8akCTy3vov5ufzWs\n+Ruq+PAIVUCWer5ubZ/WetIHyToCtxZUay2163Y73nTsyP5ezxW7WgApgxyJhY2cUQQMEStFrC6K\ne89AktRY81tp7cnc+p6tDN9J5YCBE1UwwI8hUwZHt8JrpRKXQJYJUbotGDd9pOyMPdqw3ZvqHbWm\nsffK5wdofZLazeaErfCjiraWwtGjejxG/9DjNuCAWqysc/skVgLnVkHapwC6XXGczrj1d3jmX+OZ\nf41busNzvKrqM7zutrd8h5v4gBt+wCk+4EZ9iWYJSepmhl+SwI76ntkDdADCgYGDUJOiozzoIjmo\nP9bFCLw5QR4/wx3fSsUN7tcbrMuIsExYlwFxdrXpPy+iBDgPuCndjHaWOq9YybP3ovT/snQKUKLE\njRMwjdLnyWKICLmPMxAuHvPhgPtwg1fxObxZMO1G+WJ4hdubB9y8+wD4M8ZTAN4JdVCK1yhRguzt\nHVD8nBLQ4+eEcOuwHgfM44SLS2Z141iq2nVOOcnYU7KAJI2sT8mUMpVJ+0mBlEWA2hKKs1W6GXoG\nDDfA8QY4HYQ6+BzAFwB8EcDvAvBlAF9mDC9WHJ5fcHu6w4vhEzzHxwlcFZD1Eh81VlWpdvHXDcFS\nilQgL0TXAhm2V1M1QglXe4dbnJcTLvMR58sJl4u08ezBDyR0QG17Vqm9ZIW2C3Vu6/C0ShXCVrhr\n157OGrAJOHIC6MSgU4C7WeFuAtxNgD8sOA6JiuLPOAxNRCzjC6cabLVIC1AdNxtCr/TE8F72nKUS\nK2r7eJNBJ1Grk/0kRWnN9KLUIlkOQGhScVync/WAV89qoKUVYGuxJYk4PGAJA9Y4YokJZIURcVGQ\nJblYsPjr2vY9IfDamOnkT2sBFjzghihBaIYVbgggBVZDnQOqZ7XsgVQ7HrSPtL+ttaRXWoFfx16P\n6lb7UKaxkfp4DR5rUAtWopMFl+iYHRDbs2TpvtL2t92rM/AiSR9hoiUKryMJoOTEb4yENrrSiBUL\nFtr6bdXUQXu8BbA1yFL7Aqob3wNafXG6/II99xpQ23t/3y1o+9R/R0COBMmEElWTiu+hozoPZwuy\nW8Fbr6ttz6K1ieiKDLpI2U6eTSJvpLyEIlwDhYIudOkmVPwV4XsriPc87ervCoiyDhz7oGxrmbaC\n/p6fYHmH1j5m528b6KLlpxTF2oQVY75bvZZdv7Wv8v8Ri8+cW+DGBf54QTC00kwtzfkzgW3uQS6t\nzeuZIo2Sj3BDgMtBLiQiuVDQAaZiMea8VgWsnb7tr6XWylhmW+nv2gJ5rXx+gNacWp1kizluNzdR\nY24B1JuALNVqo7mendBalVY2lnujkeEPAf64YLhZ4G8XnKZ73FISHel1ioj3Cs8SyHqBTyrAJfVV\n8Y3hC47hjFO44BBmjOsKCmUNy/fQgE32Dss4YB5GXMYB8zjg7A94jeeV3ewVnm8COXzML/FReAcf\nre/go/AOPllf4vX8HHzvRdBdkrMjUl8cIZhII+PdHYC7Sfo1g8CeKaHtaEI3/vhAYh14DuAFCWXv\nC5D2FiLoHCARIgAAGwVJREFUeiCSx0wTHuiEgZ6D04RRzb5aUd49fIR33vsI7774GPxlYAgXTPcB\ndAfQ61LR+uUAIkwrWy/hwXh0uEwH3E3P8NH4Eh8NL/BNfBHfwXv4GC/wGre4xwkXmrD4EevoEQ8O\nfKJ0HcqYErcEzAMQnyWfhSMQXiYrVxunnFBz0m4BdwMcHPDcAy8d8MKLX9vvTvXLAL4I0HuAu43w\ntwHjYcXoZwNKiwYcGTgJIJfp5ZpFR2pLB5wxdV2Oe3lA7uIt7sMN7sMN7qK06/2IeDdUFeeOtaoN\nXtEmfW4VKSrkthrWdgPfC89uh6cFWQcUq7ZRcNBhFb74NGOcZoyThB+eqOaMi8VqSVZlAa4rPDhZ\nAhcM8JjyZmv1l8B2Y2VQV8dq9bH72ebEOpH9bLStnN6l3RbKCYadJo11Qt8CUIV117FkhX8rJCpF\nrQcKesJnV2zhAUscsYYByzpiTVEqWROLr04Sils3yB6oslrWXulRXrpjiSuKIA0sAMsXwcENwfhg\nBfG/MsLAnkBlP5d+bembPYGs9PJ2ZPWDNtTHRmxJ4yWyL4mQc+30px7b+apKtL1i1+UIGVQhQRwG\nwB4cI2J0WELK6bN4LMOQgevg1mwlrEd+nXB3T+DtKQPsGNa+1XYvCl8Nnvp23n4g9nK9rehXj4nv\nthTlSR3cJqdHsNFEi9MRJDKmS1ImlXcdIOtmzyerBdo92c7OL5XNslzGQisbWCi3SWEhAvkK8hHs\ngegIK/n0k5SYAHuKi33Le6swao9tW/7GKpZqUFaA3db6Zc/bs/i3gL83n3sE7a2Koe8z3QZC0jsC\niiVswCqv2yfLp2f4GBBGvw2UYvMYqp91eq0KtGy+WGcjqqa9Rd2ClMoKApgIgcR61Zs1rTWqJ8v0\n3qe1Xl1T/rXl8wO01DjSTjK7hrRasFZAtotyGwlGSw9kWbBlhS2be8hqUAYxnTqDsmttmC6HRVOo\nfitnHNKkEcS30oDLMOMwHHGnOaB4SdnVI3yMcOK5LQ7HycE7OI+Fhg3v9iH5CilZUaxXt3iFFxnq\nKfx7FZ7j1fICd8tznOcbzOejhMhWXqYnESxvUTZG/fyAROEy7XqUavnUtn+139sw2FO6ZuPjgncg\nAOKdVG+BcHJYDgPOwxHeCR9MrQEzRtzjBh/jJV74T/DSf4IX0yd4Aak3Lx9wDBcc40XacMEQQx4j\nsodIP1/8iMswCYgdRty5m3SVl9Arfoh38S18Ed/CF/Ex3sEdnuHsTriMByzHEeHWg19Q8QcCih/V\nOwNwfgE8PAPOvwt4iEIxrJKxRbmpYQAGL633wDEBq/dQ2vcAfAnAl1jaLwJ4yeBkdeEJYC9Lh/rk\nDemmAnwVeEGPe8KZZT3r8V5sp7qecFluxHJ1lnq+nMBKA1TfKo2+2OYzsZpRqxXLNBLUoMquI3ug\nympHG01pPp4gwMq0bgo5QuiQIoYOw4KBVkmindqB2i1Nwa0KZT4xGn1HjGppcy3oqPWpVoNZUbws\noIq+tCl0b5VLJRThqk7o7pKm2G6CXOcu0uANFCWKJwV4TcKcAKVHzPfc2/h6m1ktulibTi3w5+cK\nGthIcx86aK4stuNDXWf0c09ZB3OOPbcFWe1xtmIpTZDFvzj5YZHmhgIAKtt7IU9GU9VStQ03bqGq\n/t+29MxFFhTsix4MQuA01thEdMzjhkpI/2zt0MU0inUjkvHVoH2Gid6q7XM7lysAnDTjKyRpagQo\nEMLqAT/IvuwFzK6WkolQUTId7Qu2rQDdy63VK/tvpu7vPdDVArP2OhuPO7Uuf7eFscmdlJPX5/D9\nlCOM5rxK7XvSaHo6/kNqW4poK7O18sHu/ErzyORXKwAr5HcuVi2xdqi4LG91H0DVK2zVu7ttO3t6\ncSH3aGn98dZTcxT4Xaxc9WxFvmvk41aJpW3vF6zVq2cFs98VqVbAkSPJ5ar34jnImDGJ7u1+kqPT\ncrrnZgrliLRN/k79PQByTZesatEh5lyMNQC1KpA3eZ+g9v2213mLQIuIvgrgx9Lv/AQz/6XOOf8+\ngH8eIkr9KWb+pe7FnusfdGqvXLNm7VVgf4L3hCwbVUzbyZyTFv4tmDrmSaADeknf3+EWr0x2BMnv\nZLnCMzyFlAulFrqKHmRI17RA61jRA60vjM3/dJcoXPd8g4d4i4dwg/N8i/VyAi5TMaKoVYfT854g\n4EeF4dZwpcn9egaZFmj1Euqqz4ulZLWhym+BeHJYDiMu4wHwEYEoWQJE4H+FF/gI72Vymg3ucHRn\nTG6uwISCXrulRfiu1ebO0N/kPRZL4cd4iVd4jnu6wTwcsRwmhNtEv1RXK+3TlwA+UYDhSqQ8DdJo\nx7Jrxp+yDY3fGp6na74bgXcYeJeBFxF8GxCniGUiXIYBZ3eEx4IIyalUnuu2IprpcdGNlyWnF8vH\nBrHIY5AliMVDPOGBjzjzCctlQkiJnNeHEbgnAfZKC1TLlQ1MoaCoJwxraZUnLQXY0rhsomc711ug\nZcLJ0hjgpgAaV7hRNvXBJ8dgv0pidVeRqyoaa9qaEFFHGysbtu1h5PleC2TbzdLq3lc2RBXNPZYS\nsKs/DSeHdgm9nQJDMFASSFJN78ibIYFTXic2NA+Jjuc3gRyic3DOIyCIxpGMSEl9YceZF2oFh1r4\nTGdyqYEdYgp4EcJQHPcTgAQ7fYQyhuy40fHR7h+9cdWC+B7wcki0F87Ag9QnS/NB2T3NCLpgyH1T\noQHmnGMbQXArRNTCALc/A/vD3PlLBqXE1VSONV+ZFb6NIMUxrRE6LhCKpcOTBMKIVEDXtT15T5bp\nvYfmBE2GDgLimgSy6BFWCZTlvAiFVf4tCmY88mZsbjXhtSDdK723VD73heDe5+r/qoiAabUwOc92\n89dxedf52J5rBF42iWkrwGUtEjk/mivn63uxVks71/be9fYV1teq2jSPXERJWh3zvAIVGYmYNykn\niBiiyLg+nz5NqWdS7+3WqgsL1nuWMwuqHrOu7Smo7Jjs3c2+FdVvPofqrrYW7lYRYDtGE/4yEchx\nGatcxqqONQDZAk5k7j4dV+NdSyjAS39awVK5DWNx1j2s84pFb8M5D6HcB+frSfu4KuMzA1pE5AH8\nJIAfAvCrAH6WiP4aM3/NnPPPAfhHmPkPEtH3AfhPAXx/94Lv2IubCqD7lHtgqge6Njff+Z1Wy21z\n5Zi8T3wA+EDgwUnepZTcbYHkpdIXpEKVJru1QRN6uXFqk7J1hpSXrEDLMnxLdDcbWWYyoKuOLqPw\n7gEnXHDEjAMWlhqiL8pPBT6/+AHwD74vAKgXXEDrXmjsvfdpfRr0uE2+2/rCJBAWJ4d1GHDxEyIx\nVhBWOMwY8YAjXuMWH+GlSe1X/GKKV0oxlvc0RVbbo1UBtK02cbEC2TMdsQwT1sOAcHLgmWQsehRq\n5BcgwKrN79RL8Gx9BbV+4wPgD7y/cXPDcwY9i8CzCJwEIMQBWL3HxR3gSCwLcxqTJaD3paIx6Fjc\namKV5177/tSBFGRUX+IB83rAJRxwWSfM6wFxHsBnD56TtcGCSQU++tk6UPfonTpW7YZsQdbGwtAZ\nd5vKOQliObYcccMTdzEnQtTM8ecPfga37/8TeVMDCgXTgqu9UuvP+htjz8ITgkcIA1YFV4m6oRYq\njbiarTshCaXR7c/ZzTik0q9ZgBN4xEwgjum3Ysn1FH1OnJsT6OpxR2hAvnRPSC0iTYTLNJKSpNiJ\nb4DJ36QbPP7m/wJ85Qe3Y6X1FXms7AItLkBjk2Q3WaVT/zITYkjCKwMxUrIOupJwGKqlvb756y19\nN6UrYKswooK2PacVlriM19J/bOakfhkBcokmyGasEfAzHwBfef/T3XjeR7jZV9K7DgkMOIcQWEJn\n6xi0OchytOKarpTHJqWVj3qpeR/XcLd9bUGt9EoHVNk+RwdUNe+k+q7/w5nKyZw7antavl66n5/+\nadAf/WrnnZd3D0a5nuOyHuv6re8YwNWuyrIYN8f6fpOg68pcyr5YqW8iExC8rEGO4CIjOgeiCOcS\n7a2ZT/o2Hiub/gbVVhbavw4lBVNvLNURMPurfbtGvv7gb+Hl+/9o9f2blj0gvwf2e62FgpVShs34\n7YCqbt8AZQ0zoErAkEOM+azHn80CKTNH6uffu17/f6p32/gf98pnadH6CoCvM/Mvy43RTwH4YQBf\nM+f8CwD+MwBg5p8honeI6MvM/I3N1V6mlpp6rfSEhN7ntvSA3DV6UWvp8pBw44n2EVgsIAAQSI7v\ncdqAqpJkuI7p1ZqS24lrJ4HVKFherT22lpjc8oiZTRtHhHXEGkYEHsCqkhogwJIA/NIHwB9+f+vY\nqhaHno+MfQfat22f96gBLY0rWxbYRHxj8ASE0YHcAAZE0GKPlSSC2gPdYKQ6tGfpoV7uNUvGUM2Y\n1S1Jf2/7dsTMB1yiRGu8RDmelwkxjghuQDh4scYpXfAZxAKlAMs65StotWNWN6+2X77+AfD73t9Y\nWymBUTpKX5GT3EYLRhBFMIAVHmccMMKGSOjnjynjrizEPf+YTRB4HiUowVoSHa7LCJ6Tn4xquYlq\nPyoFW3t8/nZ8tYLzm1C6unRCzm22PqS25DQKJYWEWZfs3Lz/4OdweP/7G4tVgQhW5KpLD1jUAboF\nXLiSIDaKtaFQ/2rQwQlQcbQgiwp9S1s73srtdOYtNQItp6AEEewiKBLgSWiD0SWgFQvAUr69oYYA\nBkiAu+u91a5fpTZVdBWz0TqIQP9P/oBYWSKXZ1BhcG/v6PZDKxDa71RANNU+i/5DJNgrOjCxaOFj\nA6o6guFvRelqn7OgbgXycgyk95cEbPGnYMCla0QJnqB01CyA/9z/BPzRrz5yQztCgO2XTR8RmJOC\nkpEsarJX6LNEcnk+C9hqxiaV91AAbvktG5XPzt7uI5g5XbTsDaAyfW6tSDsXhILixwTa/t83IK65\ndvgb/yv8H/mB6r7Aiq2kL5hYOtcDlSU8gyuqjz9NUeVEtgBvgVdWP2fhGgA7cBCrO0WAyGUyydso\nlJVMvJnTeUwZC5vrAHtbP/rgl7C+/09Ve4kZUUaOqUs5A6hHq60t4Gr/v4zhPP7smmyqMiTasaWA\nyB73zusWa0HNiqByrPdk26YT8m+/WenvR3vlswRavwfA3zWffwXA973BOX8/JKNQXdSiZR/uTYBW\ne9wDX23pbaA9CogJMwl1cB5iYigQQnASySqOiI6S39SI2U0d/4xtlKMBoRWlsuBfJoXc6J7eo+cI\n33N4V98FW2NyFo8hEZwU8ADFkqL+Wb2IQVqvaYV7oLal3ejxRhDWvo/ZuZx9ABMnLRYBiwe7CcF5\nzG6CdwGebFQh63ja6mWkV62IqxL81sXVbd7kyiOWOGJeRyxBalhGoWWRBw8pGIZa7DT0ehvtzILX\nXv/Z6JseYhX7Mhr6JQMHgCYGTVHCovoIOKRxOYFJwn73IixtaTK90Nq0ITdUVDX2CHFIeXW85NZZ\nPWIYUmAVV8CVBnfRoDM90G7H17Wx1Y6zLp2rrVw4/xrlSB1vVQue/JA0khWATEdhEq64izFbIQIP\nOLNYtfuCWBlfelSOi0Zbj2PevIyTesN/j0rpyYBDzhcglQBXOs79qVHCtO+4aYG6X/U/W6sNJaEm\njRVEh8hIwEHuj4wli6wwm66dt8+9td5uoGYDr2vxF8otUARwgghvrGDACPy9Z6+AlhHw7DXRfJfP\n4c7fpfNU2xrF+0qfmcx1VJgn7Zt0/FtVlF5jhZ983KX9XLs5LvORGUV1DQAk825Mjry5W+07MdfW\n427/54sawJvGTQqiwREp7Hfx66jArPp4NIDL/l9pt+P2KiDWMWyPdRynZ7Ogtu1X2/9W2GzP6/50\nY1XivYlmfpcjIa7JH8eCrSt/tykdRUP/PHMR8+7yxa+sC7pPU0xrbUR5R9geA48rLrp9/V0W6szj\ndqzp+GtrdU56azOPuONb8/0WWOln+55337l53rxbWcu2BVatNRXNmFDwxShAyICpfHdmblfAafcG\nd9ac5p72/vaalevRYub7Y+WzBFpvetvtbfb/7nn3209XWoB17Q5pp1bCfxHCRCiLYC8a3MgARwe3\nesRI8N4j+IDFD2jDw/ZDS4qtpGT50GHdv+mehrtfk79CyieTnZiDy5SiknzQZbOvCPRmY4wko+e2\n6de2ojne6+drfW77Xvtd26pGAVmQ++PgEVmS5TnvCy2EY4rgFQvvnrYOzVvTe9aT5VoBXHZVGxJt\nVGt2/NTs9iOV52qpcDZjes/vyPZfC0xvIEEwqrDSlPNZwDkwMzhR7iJkDKxxyAELnEstlXCpFhAU\noGW/SaOVU+9pa+lbQSldJRgBa2JwkFDQZHcpIGvPgvXY2GrHFJq+sm2uRgCuKF5cNKmN1aoI+SK4\nRU40rygWQ90cQ3RYwgirrcy4ygrvbO7XCGGtZrtYbwyYstrCytpjfGasNlmDEqiA0dM+v0nJ/Ya6\nb3TzjPp/atbQL5PVBkbIiNsXugcm7EZZjrf3rn0uWJ5N/0AsbkPMf1+e/ZF+6AlllfXKto+XSvNq\nhHVLU9ncym+xRatbOv1TWTtQwMMbFStcu84ETwJa1b4JoHtMuDdzTZ+BiMWXJAm0GjUzm0IakJXH\n8KeYOru30z52JUhe6Vcu31f93/2R3/h9Xi15Duj6kr7svbvfwNx5s/vA4wL81fHxm3Uz6XLV78o3\n9RjScdRbD9P/mXG3riPOl9OGDfAbuseORah/jjyEPe5fr//3dt3urd/X7q8a73vrjL3utfM+TcnX\nfPxU4t6T/yYUIvp+AH+Rmf+Z9PnfBBCZ+T8w5/xlAB8w80+lz78E4Ada6iD9VvMjnspTeSpP5ak8\nlafyVJ7KU3kqT+UNC3fMu5+lRevnAPx+Ivq9AH4NwJ8A8CPNOf81gH8NwE8lYPZRzz+rd+NP5ak8\nlafyVJ7KU3kqT+WpPJWn8tu1fGZAi5lXIvrTAP4qSnj3rxHRn03//+PM/N8S0VeJ6P8EcAfgX/ms\n7uepPJWn8lSeylN5Kk/lqTyVp/JUfqvKZ0YdfCpP5ak8lafyVJ7KU3kqT+WpPJXfqcU9fspvn0JE\nf56IIhG997bv5alIIaJ/h4j+DyL6BSL6L4joC2/7np4KQET/IRF9jYh+noh+jIhePv5XT+WzLET0\nx4no7xBRIKJ//G3fz+/0ktgUP09Ev0hE//rbvp+nIoWIfpKIvpGYLk/lt0Ehou8lov85rV8fENGf\netv39FQAIjoS0c8k+etvEtGfe9v39FS25XNj0SKi7wXwEwD+IQB/iJm/85Zv6akAIKLnzPwqHf8o\ngIGZf/Qt39bv+EJE/zSA/zF9/HEA32bmf+Mt3tLv+EJEfwASau/HAfx5Zv75t3xLv2MLEXkA/xeA\nHwLwqwB+FsCPMPPXrv7hU/nMCxH9MQCvAfznzPwPv+37eSoAEX0PgO9h5l8goi8C+NsAfvBpvrz9\nQkQ3zHxPRAcAfwvAv8jMX3/b9/VUSvk8WbT+IwB/4W3fxFOpiwFZGuz9/Hbv6KkAADP/D8wcmTkC\n+O8h+emeylsszPxLzPx/v+37eCoAgK8A+Doz/zIzLwB+CsAPv+V7eioAmPmnAXz4tu/jqZTCzL/O\nzL+Qjr8FUUz8fW/3rp4KADDzfTp8BomHcHmLt/NUOuVzAbSI6IcB/Aoz/+Lbvpensi1E9P+1d/ch\nd85xHMffn8XMQ56mIdSWh+Yp2lhEhGgewvKHh6hRWv5kKEb8QViSIikmxSYhMQ8JM38Q2cyKzR8L\nNYSSmGFZff1xrtnd3LPJ2X1d577fr3/OOb/rd53zPffV3Tmf8/tdv+tu4DvgVOD+lsvRP10LvNR2\nEVKHHASsHfL466ZN0r9IchhwNPBB27UIkoxLshL4Hni4qtZuax+NrB25vPt/kuRN4IBhNs0DbgHO\nGdp9RIoS8K/H5taqWlxV85qwdTdwH+A84RGwrePS9JkHrKuq50a0uDFqe46JOmEw5sxLHZJkD3qj\nv9dX1fq26xE0s1aOay6l9FqS96pqRbtVaajOBK2qOnu49iTHAFOAleldJvtgYHmSGVX1wwiWOGZt\n7dhs0ee3JE8AT41ASWLbx6U5Yfk84KwRKUjb9b+iTvgGOGTI40PojWpJGkaSnYEXgKeryhkSHVNV\nXyV5DTgdMGh1SOenDlbVp1W1f1VNqaop9D4MpxmyuiHJ4c3tTvQuSO1KUR2QZCZwE3BhVXneXPc4\nKt+uZcDhSSYnGQ9cCrzcck1SJ6X3K/cC4LOqerDtetSTZL8kezf3JwLn4newzul80BqGUz665Z5m\nGd736Y2Q3tByPep5iN7JsW8lWZHkkbYLGuuSzEqyFjgJeDXJ623XNFZV1UbgGuBFeit1PeEKat2Q\n5Bl6nydHJFmb5Oq2axKnAFcCZzafJyuaH/PUrgOBJc05WouAB6rq7W3soxE2MMu7S5IkSdKgGMQR\nLUmSJEnqNIOWJEmSJPWZQUuSJEmS+sygJUmSJEl9ZtCSJEmSpD4zaEmSJElSnxm0JEljQpI5Sa5q\n7s9OcuCQbY8lObK96iRJo43X0ZIkjTlJ3gFurKrlbdciSRqdHNGSJHVekslJViVZkOTLJM8lmZDk\nzCSrm7YFScY3/a9P8lGSlUnmN213Jpmb5BLgBGBhko+b51maZHrT77Ika5J8keTeITX8muT2JJ8l\nWZRk3zb+FpKkwWDQkiQNiqnAK83tOOB8YD4wGzgKmAhcl2RXYE5VnVhVxwF3NfsXUFX1ArAMuKKq\nplXVH5u2JRnX9J8JTAfOSHJRs/9uwLdVdTSwHrhgR79hSdLgMmhJkgbFz1X1YlVtAJ6hF7TGV9WH\nVfU7sBA4rbn/fZKnksysql+28nwZpu0kYHVVramqn4DngdOabRub1wBYApzcp/clSRqFDFqSpNHi\n7+BUVacDTwOzkzy7lf7DnaS8ZVuGtG1oRr8A/gQm/I9aJUmjnEFLkjQo9kpycZJdgEuBV4ENSWY0\n0wUvB5Ym2T3JpKp6A7gBOL7ZP2wOY+uAScO8xgfA1CSHJtkHmAW8uwPfkyRplDJoSZIGxefAhc0t\n9ILWzcCTwCrgR+BRYE9gcZJPgEXA3KZ/sXl06nHgjk2LYWx6geotxXsb8AawHFhaVYuH7M8wzyVJ\n0j+4vLskqfOSTAYWV9WxLZciSdJ2cURLkjQo/GVQkjQwHNGSJEmSpD5zREuSJEmS+sygJUmSJEl9\nZtCSJEmSpD4zaEmSJElSnxm0JEmSJKnPDFqSJEmS1Gd/ASgjapTo0jY9AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x115fd9b50>" ] } ], "prompt_number": 891 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
gfabieno/SeisCL
docs/notebooks/Inversion/ComputingGradient.ipynb
1
615
{ "cells": [ { "cell_type": "markdown", "id": "filled-needle", "metadata": {}, "source": [ "# Computing the Gradient\n", "\n", "Under Development ..." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 5 }
gpl-3.0
tpin3694/tpin3694.github.io
machine-learning/encoding_ordinal_categorical_features.ipynb
2
5753
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Title: Encoding Ordinal Categorical Features \n", "Slug: encoding_ordinal_categorical_features \n", "Summary: How to encode ordinal categorical features for machine learning in Python. \n", "Date: 2016-09-06 12:00 \n", "Category: Machine Learning \n", "Tags: Preprocessing Structured Data \n", "Authors: Chris Albon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Preliminaries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Load library\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create Feature Matrix" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Score</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Low</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Low</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Medium</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Medium</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>High</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Score\n", "0 Low\n", "1 Low\n", "2 Medium\n", "3 Medium\n", "4 High" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create features\n", "df = pd.DataFrame({'Score': ['Low', \n", " 'Low', \n", " 'Medium', \n", " 'Medium', \n", " 'High']})\n", "\n", "# View data frame\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create Scale Map" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create mapper\n", "scale_mapper = {'Low':1, \n", " 'Medium':2,\n", " 'High':3}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Map Scale To Features" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Score</th>\n", " <th>Scale</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Low</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Low</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Medium</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Medium</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>High</td>\n", " <td>3</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Score Scale\n", "0 Low 1\n", "1 Low 1\n", "2 Medium 2\n", "3 Medium 2\n", "4 High 3" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Map feature values to scale\n", "df['Scale'] = df['Score'].replace(scale_mapper)\n", "\n", "# View data frame\n", "df" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
sophie63/FlyLFM
Notebooks/.ipynb_checkpoints/986_FlyLFMpaper-checkpoint.ipynb
1
2222126
null
bsd-2-clause
UChicagoPhysics/SampleExercises
exercises/classicalMechanics/Velocity of Moving Object Under Decelerating Force.ipynb
1
67218
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Velocity of Moving Object Under Decelerating Force\n", "\n", "- **PROGRAM**: Velocity of moving object under decelerating force\n", "- **CREATED**: 4/14/2018" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Import packages.\n", "import numpy as np\n", "import matplotlib.pylab as plt\n", "%matplotlib notebook" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Set folder to save images in.\n", "import os\n", "#os.chdir('Folder/Address/In/Here')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rename the function 'figure' from the 'plt' library (a.k.a. the 'matplotlib.pylab' library) to make it more convenient to use.\n", "fig = plt.figure()\n", "\n", "#Set up axes.\n", "ax = fig.add_subplot(1, 1, 1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x118359d30>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Define the parameters in the problem. This way, they are located in one place in the code and can be easily changed to test different values.\n", "k = 2\n", "b = 3\n", "v_0 = 15\n", "\n", "C = v_0**2 / (v_0**2 + b**2)\n", "\n", "#Pretend to plot the function as a smooth curve by plotting a thousand points close together.\n", "t_f = 10\n", "t = np.linspace(0, t_f, 1000)\n", "#Above creates 1000 points at evenly-spaced locations between 0 and some final time, t_f.\n", "\n", "#Define the function.\n", "#Assume v > 0. (An 'opposite' graph of the same shape would appear if a minus sign was added. One can try this.)\n", "v = ( abs(b) * C * np.exp( -b**2 * k * t ) ) / np.sqrt( 1 - C * np.exp(-2 * b**2 * k * t))\n", "\n", "#Plot the function.\n", "ax.plot(t, v, 'b-', label = 'Velocity')\n", "\n", "#Label the plot.\n", "fig.suptitle('Velocity of Object with Decelerating Force $F = -mk(v^3 + a^2v)$')\n", "ax.set_xlabel('Time, t (seconds)')\n", "ax.set_ylabel('Velocity, v ($\\\\frac{meters}{s}$)')\n", "\n", "ax.legend(loc = 'upper right', fancybox = False, shadow = False)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Save figure by inserting a filename below.\n", "#plt.savefig()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Notes\n", "- Make sure that comments are as concise as possible, while being as helpful as possible.\n", "- Add observations about important values.\n", " - If $v_0 = 0$, $v(t) = 0$ for all $t$. If initial velocity is 0, the object never moves.\n", " - Increasing $k$ or $a$ makes the force against the particle greater, and it approaches 0 faster.\n", " - The particle's velocity never reaches 0, but approaches 0 as time approaches infinity." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-2.0
xpharry/Udacity-DLFoudation
tutorials/sentiment_network/.ipynb_checkpoints/Sentiment Classification - How to Best Frame a Problem for a Neural Network (Project 4)-checkpoint.ipynb
19
324875
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sentiment Classification & How To \"Frame Problems\" for a Neural Network\n", "\n", "by Andrew Trask\n", "\n", "- **Twitter**: @iamtrask\n", "- **Blog**: http://iamtrask.github.io" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What You Should Already Know\n", "\n", "- neural networks, forward and back-propagation\n", "- stochastic gradient descent\n", "- mean squared error\n", "- and train/test splits\n", "\n", "### Where to Get Help if You Need it\n", "- Re-watch previous Udacity Lectures\n", "- Leverage the recommended Course Reading Material - [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) (40% Off: **traskud17**)\n", "- Shoot me a tweet @iamtrask\n", "\n", "\n", "### Tutorial Outline:\n", "\n", "- Intro: The Importance of \"Framing a Problem\"\n", "\n", "\n", "- Curate a Dataset\n", "- Developing a \"Predictive Theory\"\n", "- **PROJECT 1**: Quick Theory Validation\n", "\n", "\n", "- Transforming Text to Numbers\n", "- **PROJECT 2**: Creating the Input/Output Data\n", "\n", "\n", "- Putting it all together in a Neural Network\n", "- **PROJECT 3**: Building our Neural Network\n", "\n", "\n", "- Understanding Neural Noise\n", "- **PROJECT 4**: Making Learning Faster by Reducing Noise\n", "\n", "\n", "- Analyzing Inefficiencies in our Network\n", "- **PROJECT 5**: Making our Network Train and Run Faster\n", "\n", "\n", "- Further Noise Reduction\n", "- **PROJECT 6**: Reducing Noise by Strategically Reducing the Vocabulary\n", "\n", "\n", "- Analysis: What's going on in the weights?" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "56bb3cba-260c-4ebe-9ed6-b995b4c72aa3" } }, "source": [ "# Lesson: Curate a Dataset" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "nbpresent": { "id": "eba2b193-0419-431e-8db9-60f34dd3fe83" } }, "outputs": [], "source": [ "def pretty_print_review_and_label(i):\n", " print(labels[i] + \"\\t:\\t\" + reviews[i][:80] + \"...\")\n", "\n", "g = open('reviews.txt','r') # What we know!\n", "reviews = list(map(lambda x:x[:-1],g.readlines()))\n", "g.close()\n", "\n", "g = open('labels.txt','r') # What we WANT to know!\n", "labels = list(map(lambda x:x[:-1].upper(),g.readlines()))\n", "g.close()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "25000" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(reviews)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "nbpresent": { "id": "bb95574b-21a0-4213-ae50-34363cf4f87f" } }, "outputs": [ { "data": { "text/plain": [ "'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life such as teachers . my years in the teaching profession lead me to believe that bromwell high s satire is much closer to reality than is teachers . the scramble to survive financially the insightful students who can see right through their pathetic teachers pomp the pettiness of the whole situation all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn t '" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews[0]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "nbpresent": { "id": "e0408810-c424-4ed4-afb9-1735e9ddbd0a" } }, "outputs": [ { "data": { "text/plain": [ "'POSITIVE'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "labels[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Lesson: Develop a Predictive Theory" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "nbpresent": { "id": "e67a709f-234f-4493-bae6-4fb192141ee0" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "labels.txt \t : \t reviews.txt\n", "\n", "NEGATIVE\t:\tthis movie is terrible but it has some good effects . ...\n", "POSITIVE\t:\tadrian pasdar is excellent is this film . he makes a fascinating woman . ...\n", "NEGATIVE\t:\tcomment this movie is impossible . is terrible very improbable bad interpretat...\n", "POSITIVE\t:\texcellent episode movie ala pulp fiction . days suicides . it doesnt get more...\n", "NEGATIVE\t:\tif you haven t seen this it s terrible . it is pure trash . i saw this about ...\n", "POSITIVE\t:\tthis schiffer guy is a real genius the movie is of excellent quality and both e...\n" ] } ], "source": [ "print(\"labels.txt \\t : \\t reviews.txt\\n\")\n", "pretty_print_review_and_label(2137)\n", "pretty_print_review_and_label(12816)\n", "pretty_print_review_and_label(6267)\n", "pretty_print_review_and_label(21934)\n", "pretty_print_review_and_label(5297)\n", "pretty_print_review_and_label(4998)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 1: Quick Theory Validation" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from collections import Counter\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "positive_counts = Counter()\n", "negative_counts = Counter()\n", "total_counts = Counter()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for i in range(len(reviews)):\n", " if(labels[i] == 'POSITIVE'):\n", " for word in reviews[i].split(\" \"):\n", " positive_counts[word] += 1\n", " total_counts[word] += 1\n", " else:\n", " for word in reviews[i].split(\" \"):\n", " negative_counts[word] += 1\n", " total_counts[word] += 1" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[('', 550468),\n", " ('the', 173324),\n", " ('.', 159654),\n", " ('and', 89722),\n", " ('a', 83688),\n", " ('of', 76855),\n", " ('to', 66746),\n", " ('is', 57245),\n", " ('in', 50215),\n", " ('br', 49235),\n", " ('it', 48025),\n", " ('i', 40743),\n", " ('that', 35630),\n", " ('this', 35080),\n", " ('s', 33815),\n", " ('as', 26308),\n", " ('with', 23247),\n", " ('for', 22416),\n", " ('was', 21917),\n", " ('film', 20937),\n", " ('but', 20822),\n", " ('movie', 19074),\n", " ('his', 17227),\n", " ('on', 17008),\n", " ('you', 16681),\n", " ('he', 16282),\n", " ('are', 14807),\n", " ('not', 14272),\n", " ('t', 13720),\n", " ('one', 13655),\n", " ('have', 12587),\n", " ('be', 12416),\n", " ('by', 11997),\n", " ('all', 11942),\n", " ('who', 11464),\n", " ('an', 11294),\n", " ('at', 11234),\n", " ('from', 10767),\n", " ('her', 10474),\n", " ('they', 9895),\n", " ('has', 9186),\n", " ('so', 9154),\n", " ('like', 9038),\n", " ('about', 8313),\n", " ('very', 8305),\n", " ('out', 8134),\n", " ('there', 8057),\n", " ('she', 7779),\n", " ('what', 7737),\n", " ('or', 7732),\n", " ('good', 7720),\n", " ('more', 7521),\n", " ('when', 7456),\n", " ('some', 7441),\n", " ('if', 7285),\n", " ('just', 7152),\n", " ('can', 7001),\n", " ('story', 6780),\n", " ('time', 6515),\n", " ('my', 6488),\n", " ('great', 6419),\n", " ('well', 6405),\n", " ('up', 6321),\n", " ('which', 6267),\n", " ('their', 6107),\n", " ('see', 6026),\n", " ('also', 5550),\n", " ('we', 5531),\n", " ('really', 5476),\n", " ('would', 5400),\n", " ('will', 5218),\n", " ('me', 5167),\n", " ('had', 5148),\n", " ('only', 5137),\n", " ('him', 5018),\n", " ('even', 4964),\n", " ('most', 4864),\n", " ('other', 4858),\n", " ('were', 4782),\n", " ('first', 4755),\n", " ('than', 4736),\n", " ('much', 4685),\n", " ('its', 4622),\n", " ('no', 4574),\n", " ('into', 4544),\n", " ('people', 4479),\n", " ('best', 4319),\n", " ('love', 4301),\n", " ('get', 4272),\n", " ('how', 4213),\n", " ('life', 4199),\n", " ('been', 4189),\n", " ('because', 4079),\n", " ('way', 4036),\n", " ('do', 3941),\n", " ('made', 3823),\n", " ('films', 3813),\n", " ('them', 3805),\n", " ('after', 3800),\n", " ('many', 3766),\n", " ('two', 3733),\n", " ('too', 3659),\n", " ('think', 3655),\n", " ('movies', 3586),\n", " ('characters', 3560),\n", " ('character', 3514),\n", " ('don', 3468),\n", " ('man', 3460),\n", " ('show', 3432),\n", " ('watch', 3424),\n", " ('seen', 3414),\n", " ('then', 3358),\n", " ('little', 3341),\n", " ('still', 3340),\n", " ('make', 3303),\n", " ('could', 3237),\n", " ('never', 3226),\n", " ('being', 3217),\n", " ('where', 3173),\n", " ('does', 3069),\n", " ('over', 3017),\n", " ('any', 3002),\n", " ('while', 2899),\n", " ('know', 2833),\n", " ('did', 2790),\n", " ('years', 2758),\n", " ('here', 2740),\n", " ('ever', 2734),\n", " ('end', 2696),\n", " ('these', 2694),\n", " ('such', 2590),\n", " ('real', 2568),\n", " ('scene', 2567),\n", " ('back', 2547),\n", " ('those', 2485),\n", " ('though', 2475),\n", " ('off', 2463),\n", " ('new', 2458),\n", " ('your', 2453),\n", " ('go', 2440),\n", " ('acting', 2437),\n", " ('plot', 2432),\n", " ('world', 2429),\n", " ('scenes', 2427),\n", " ('say', 2414),\n", " ('through', 2409),\n", " ('makes', 2390),\n", " ('better', 2381),\n", " ('now', 2368),\n", " ('work', 2346),\n", " ('young', 2343),\n", " ('old', 2311),\n", " ('ve', 2307),\n", " ('find', 2272),\n", " ('both', 2248),\n", " ('before', 2177),\n", " ('us', 2162),\n", " ('again', 2158),\n", " ('series', 2153),\n", " ('quite', 2143),\n", " ('something', 2135),\n", " ('cast', 2133),\n", " ('should', 2121),\n", " ('part', 2098),\n", " ('always', 2088),\n", " ('lot', 2087),\n", " ('another', 2075),\n", " ('actors', 2047),\n", " ('director', 2040),\n", " ('family', 2032),\n", " ('between', 2016),\n", " ('own', 2016),\n", " ('m', 1998),\n", " ('may', 1997),\n", " ('same', 1972),\n", " ('role', 1967),\n", " ('watching', 1966),\n", " ('every', 1954),\n", " ('funny', 1953),\n", " ('doesn', 1935),\n", " ('performance', 1928),\n", " ('few', 1918),\n", " ('bad', 1907),\n", " ('look', 1900),\n", " ('re', 1884),\n", " ('why', 1855),\n", " ('things', 1849),\n", " ('times', 1832),\n", " ('big', 1815),\n", " ('however', 1795),\n", " ('actually', 1790),\n", " ('action', 1789),\n", " ('going', 1783),\n", " ('bit', 1757),\n", " ('comedy', 1742),\n", " ('down', 1740),\n", " ('music', 1738),\n", " ('must', 1728),\n", " ('take', 1709),\n", " ('saw', 1692),\n", " ('long', 1690),\n", " ('right', 1688),\n", " ('fun', 1686),\n", " ('fact', 1684),\n", " ('excellent', 1683),\n", " ('around', 1674),\n", " ('didn', 1672),\n", " ('without', 1671),\n", " ('thing', 1662),\n", " ('thought', 1639),\n", " ('got', 1635),\n", " ('each', 1630),\n", " ('day', 1614),\n", " ('feel', 1597),\n", " ('seems', 1596),\n", " ('come', 1594),\n", " ('done', 1586),\n", " ('beautiful', 1580),\n", " ('especially', 1572),\n", " ('played', 1571),\n", " ('almost', 1566),\n", " ('want', 1562),\n", " ('yet', 1556),\n", " ('give', 1553),\n", " ('pretty', 1549),\n", " ('last', 1543),\n", " ('since', 1519),\n", " ('different', 1504),\n", " ('although', 1501),\n", " ('gets', 1490),\n", " ('true', 1487),\n", " ('interesting', 1481),\n", " ('job', 1470),\n", " ('enough', 1455),\n", " ('our', 1454),\n", " ('shows', 1447),\n", " ('horror', 1441),\n", " ('woman', 1439),\n", " ('tv', 1400),\n", " ('probably', 1398),\n", " ('father', 1395),\n", " ('original', 1393),\n", " ('girl', 1390),\n", " ('point', 1379),\n", " ('plays', 1378),\n", " ('wonderful', 1372),\n", " ('far', 1358),\n", " ('course', 1358),\n", " ('john', 1350),\n", " ('rather', 1340),\n", " ('isn', 1328),\n", " ('ll', 1326),\n", " ('later', 1324),\n", " ('dvd', 1324),\n", " ('war', 1310),\n", " ('whole', 1310),\n", " ('d', 1307),\n", " ('away', 1306),\n", " ('found', 1306),\n", " ('screen', 1305),\n", " ('nothing', 1300),\n", " ('year', 1297),\n", " ('once', 1296),\n", " ('hard', 1294),\n", " ('together', 1280),\n", " ('am', 1277),\n", " ('set', 1277),\n", " ('having', 1266),\n", " ('making', 1265),\n", " ('place', 1263),\n", " ('comes', 1260),\n", " ('might', 1260),\n", " ('sure', 1253),\n", " ('american', 1248),\n", " ('play', 1245),\n", " ('kind', 1244),\n", " ('takes', 1242),\n", " ('perfect', 1242),\n", " ('performances', 1237),\n", " ('himself', 1230),\n", " ('worth', 1221),\n", " ('everyone', 1221),\n", " ('anyone', 1214),\n", " ('actor', 1203),\n", " ('three', 1201),\n", " ('wife', 1196),\n", " ('classic', 1192),\n", " ('goes', 1186),\n", " ('ending', 1178),\n", " ('version', 1168),\n", " ('star', 1149),\n", " ('enjoy', 1146),\n", " ('book', 1142),\n", " ('nice', 1132),\n", " ('everything', 1128),\n", " ('during', 1124),\n", " ('put', 1118),\n", " ('seeing', 1111),\n", " ('least', 1102),\n", " ('house', 1100),\n", " ('high', 1095),\n", " ('watched', 1094),\n", " ('men', 1087),\n", " ('loved', 1087),\n", " ('night', 1082),\n", " ('anything', 1075),\n", " ('guy', 1071),\n", " ('believe', 1071),\n", " ('top', 1063),\n", " ('amazing', 1058),\n", " ('hollywood', 1056),\n", " ('looking', 1053),\n", " ('main', 1044),\n", " ('definitely', 1043),\n", " ('gives', 1031),\n", " ('home', 1029),\n", " ('seem', 1028),\n", " ('episode', 1023),\n", " ('sense', 1020),\n", " ('audience', 1020),\n", " ('truly', 1017),\n", " ('special', 1011),\n", " ('fan', 1009),\n", " ('second', 1009),\n", " ('short', 1009),\n", " ('mind', 1005),\n", " ('human', 1001),\n", " ('recommend', 999),\n", " ('full', 996),\n", " ('black', 995),\n", " ('help', 991),\n", " ('along', 989),\n", " ('trying', 987),\n", " ('small', 986),\n", " ('death', 985),\n", " ('friends', 981),\n", " ('remember', 974),\n", " ('often', 970),\n", " ('said', 966),\n", " ('favorite', 962),\n", " ('heart', 959),\n", " ('early', 957),\n", " ('left', 956),\n", " ('until', 955),\n", " ('let', 954),\n", " ('script', 954),\n", " ('maybe', 937),\n", " ('today', 936),\n", " ('live', 934),\n", " ('less', 934),\n", " ('moments', 933),\n", " ('others', 929),\n", " ('brilliant', 926),\n", " ('shot', 925),\n", " ('liked', 923),\n", " ('become', 916),\n", " ('won', 915),\n", " ('used', 910),\n", " ('style', 907),\n", " ('mother', 895),\n", " ('lives', 894),\n", " ('came', 893),\n", " ('stars', 890),\n", " ('cinema', 889),\n", " ('looks', 885),\n", " ('perhaps', 884),\n", " ('read', 882),\n", " ('enjoyed', 879),\n", " ('boy', 875),\n", " ('drama', 873),\n", " ('highly', 871),\n", " ('given', 870),\n", " ('playing', 867),\n", " ('use', 864),\n", " ('next', 859),\n", " ('women', 858),\n", " ('fine', 857),\n", " ('effects', 856),\n", " ('kids', 854),\n", " ('entertaining', 853),\n", " ('need', 852),\n", " ('line', 850),\n", " ('works', 848),\n", " ('someone', 847),\n", " ('mr', 836),\n", " ('simply', 835),\n", " ('children', 833),\n", " ('picture', 833),\n", " ('face', 831),\n", " ('friend', 831),\n", " ('keep', 831),\n", " ('dark', 830),\n", " ('overall', 828),\n", " ('certainly', 828),\n", " ('minutes', 827),\n", " ('wasn', 824),\n", " ('history', 822),\n", " ('finally', 820),\n", " ('couple', 816),\n", " ('against', 815),\n", " ('son', 809),\n", " ('understand', 808),\n", " ('lost', 807),\n", " ('michael', 805),\n", " ('else', 801),\n", " ('throughout', 798),\n", " ('fans', 797),\n", " ('city', 792),\n", " ('reason', 789),\n", " ('written', 787),\n", " ('production', 787),\n", " ('several', 784),\n", " ('school', 783),\n", " ('rest', 781),\n", " ('based', 781),\n", " ('try', 780),\n", " ('dead', 776),\n", " ('hope', 775),\n", " ('strong', 768),\n", " ('white', 765),\n", " ('tell', 759),\n", " ('itself', 758),\n", " ('half', 753),\n", " ('person', 749),\n", " ('sometimes', 746),\n", " ('past', 744),\n", " ('start', 744),\n", " ('genre', 743),\n", " ('final', 739),\n", " ('beginning', 739),\n", " ('town', 738),\n", " ('art', 734),\n", " ('game', 732),\n", " ('humor', 732),\n", " ('yes', 731),\n", " ('idea', 731),\n", " ('late', 730),\n", " ('becomes', 729),\n", " ('despite', 729),\n", " ('able', 726),\n", " ('case', 726),\n", " ('money', 723),\n", " ('child', 721),\n", " ('completely', 721),\n", " ('side', 719),\n", " ('camera', 716),\n", " ('getting', 714),\n", " ('instead', 712),\n", " ('soon', 702),\n", " ('under', 700),\n", " ('viewer', 699),\n", " ('age', 697),\n", " ('days', 696),\n", " ('stories', 696),\n", " ('felt', 694),\n", " ('simple', 694),\n", " ('roles', 693),\n", " ('video', 688),\n", " ('name', 683),\n", " ('either', 683),\n", " ('doing', 677),\n", " ('turns', 674),\n", " ('wants', 671),\n", " ('close', 671),\n", " ('title', 669),\n", " ('wrong', 668),\n", " ('went', 666),\n", " ('james', 665),\n", " ('evil', 659),\n", " ('budget', 657),\n", " ('episodes', 657),\n", " ('relationship', 655),\n", " ('piece', 653),\n", " ('fantastic', 653),\n", " ('david', 651),\n", " ('turn', 648),\n", " ('murder', 646),\n", " ('parts', 645),\n", " ('brother', 644),\n", " ('head', 643),\n", " ('absolutely', 643),\n", " ('experience', 642),\n", " ('eyes', 641),\n", " ('sex', 638),\n", " ('direction', 637),\n", " ('called', 637),\n", " ('directed', 636),\n", " ('lines', 634),\n", " ('behind', 633),\n", " ('sort', 632),\n", " ('actress', 631),\n", " ('lead', 630),\n", " ('oscar', 628),\n", " ('example', 627),\n", " ('including', 627),\n", " ('known', 625),\n", " ('musical', 625),\n", " ('chance', 621),\n", " ('score', 620),\n", " ('feeling', 619),\n", " ('already', 619),\n", " ('hit', 619),\n", " ('voice', 615),\n", " ('moment', 612),\n", " ('living', 612),\n", " ('low', 610),\n", " ('supporting', 610),\n", " ('ago', 609),\n", " ('themselves', 608),\n", " ('hilarious', 605),\n", " ('reality', 605),\n", " ('jack', 604),\n", " ('told', 603),\n", " ('hand', 601),\n", " ('moving', 600),\n", " ('dialogue', 600),\n", " ('quality', 600),\n", " ('song', 599),\n", " ('happy', 599),\n", " ('paul', 598),\n", " ('matter', 598),\n", " ('light', 594),\n", " ('future', 593),\n", " ('entire', 592),\n", " ('finds', 591),\n", " ('gave', 589),\n", " ('laugh', 587),\n", " ('released', 586),\n", " ('expect', 584),\n", " ('fight', 581),\n", " ('particularly', 580),\n", " ('cinematography', 579),\n", " ('police', 579),\n", " ('whose', 578),\n", " ('type', 578),\n", " ('sound', 578),\n", " ('enjoyable', 573),\n", " ('view', 573),\n", " ('husband', 572),\n", " ('romantic', 572),\n", " ('number', 572),\n", " ('daughter', 572),\n", " ('documentary', 571),\n", " ('self', 570),\n", " ('modern', 569),\n", " ('robert', 569),\n", " ('took', 569),\n", " ('superb', 569),\n", " ('mean', 566),\n", " ('shown', 563),\n", " ('coming', 561),\n", " ('important', 560),\n", " ('king', 559),\n", " ('leave', 559),\n", " ('change', 558),\n", " ('wanted', 555),\n", " ('somewhat', 555),\n", " ('tells', 554),\n", " ('run', 552),\n", " ('events', 552),\n", " ('country', 552),\n", " ('career', 552),\n", " ('heard', 550),\n", " ('season', 550),\n", " ('girls', 549),\n", " ('greatest', 549),\n", " ('etc', 547),\n", " ('care', 546),\n", " ('starts', 545),\n", " ('english', 542),\n", " ('killer', 541),\n", " ('animation', 540),\n", " ('guys', 540),\n", " ('totally', 540),\n", " ('tale', 540),\n", " ('usual', 539),\n", " ('opinion', 535),\n", " ('miss', 535),\n", " ('violence', 531),\n", " ('easy', 531),\n", " ('songs', 530),\n", " ('british', 528),\n", " ('says', 526),\n", " ('realistic', 525),\n", " ('writing', 524),\n", " ('act', 522),\n", " ('writer', 522),\n", " ('comic', 521),\n", " ('thriller', 519),\n", " ('television', 517),\n", " ('power', 516),\n", " ('ones', 515),\n", " ('kid', 514),\n", " ('novel', 513),\n", " ('york', 513),\n", " ('problem', 512),\n", " ('alone', 512),\n", " ('attention', 509),\n", " ('involved', 508),\n", " ('kill', 507),\n", " ('extremely', 507),\n", " ('seemed', 506),\n", " ('hero', 505),\n", " ('french', 505),\n", " ('rock', 504),\n", " ('stuff', 501),\n", " ('wish', 499),\n", " ('begins', 498),\n", " ('taken', 497),\n", " ('sad', 497),\n", " ('ways', 496),\n", " ('richard', 495),\n", " ('knows', 494),\n", " ('atmosphere', 493),\n", " ('surprised', 491),\n", " ('similar', 491),\n", " ('taking', 491),\n", " ('car', 491),\n", " ('george', 490),\n", " ('perfectly', 490),\n", " ('across', 489),\n", " ('sequence', 489),\n", " ('eye', 489),\n", " ('team', 489),\n", " ('serious', 488),\n", " ('powerful', 488),\n", " ('room', 488),\n", " ('due', 488),\n", " ('among', 488),\n", " ('order', 487),\n", " ('b', 487),\n", " ('cannot', 487),\n", " ('strange', 487),\n", " ('beauty', 486),\n", " ('famous', 485),\n", " ('tries', 484),\n", " ('myself', 484),\n", " ('happened', 484),\n", " ('herself', 484),\n", " ('class', 483),\n", " ('four', 482),\n", " ('cool', 481),\n", " ('release', 479),\n", " ('anyway', 479),\n", " ('theme', 479),\n", " ('opening', 478),\n", " ('entertainment', 477),\n", " ('unique', 475),\n", " ('ends', 475),\n", " ('slow', 475),\n", " ('exactly', 475),\n", " ('red', 474),\n", " ('o', 474),\n", " ('level', 474),\n", " ('easily', 474),\n", " ('interest', 472),\n", " ('happen', 471),\n", " ('crime', 470),\n", " ('viewing', 468),\n", " ('memorable', 467),\n", " ('sets', 467),\n", " ('group', 466),\n", " ('stop', 466),\n", " ('dance', 463),\n", " ('message', 463),\n", " ('sister', 463),\n", " ('working', 463),\n", " ('problems', 463),\n", " ('knew', 462),\n", " ('mystery', 461),\n", " ('nature', 461),\n", " ('bring', 460),\n", " ('believable', 459),\n", " ('thinking', 459),\n", " ('brought', 459),\n", " ('mostly', 458),\n", " ('couldn', 457),\n", " ('disney', 457),\n", " ('society', 456),\n", " ('within', 455),\n", " ('lady', 455),\n", " ('blood', 454),\n", " ('upon', 453),\n", " ('viewers', 453),\n", " ('parents', 453),\n", " ('meets', 452),\n", " ('form', 452),\n", " ('soundtrack', 452),\n", " ('usually', 452),\n", " ('tom', 452),\n", " ('peter', 452),\n", " ('local', 450),\n", " ('certain', 448),\n", " ('follow', 448),\n", " ('whether', 447),\n", " ('possible', 446),\n", " ('emotional', 445),\n", " ('killed', 444),\n", " ('de', 444),\n", " ('above', 444),\n", " ('middle', 443),\n", " ('god', 443),\n", " ('happens', 442),\n", " ('flick', 442),\n", " ('needs', 442),\n", " ('masterpiece', 441),\n", " ('major', 440),\n", " ('period', 440),\n", " ('haven', 439),\n", " ('named', 439),\n", " ('th', 438),\n", " ('particular', 438),\n", " ('earth', 437),\n", " ('feature', 437),\n", " ('stand', 436),\n", " ('words', 435),\n", " ('typical', 435),\n", " ('obviously', 433),\n", " ('elements', 433),\n", " ('romance', 431),\n", " ('jane', 430),\n", " ('yourself', 427),\n", " ('showing', 427),\n", " ('fantasy', 426),\n", " ('brings', 426),\n", " ('america', 423),\n", " ('guess', 423),\n", " ('huge', 422),\n", " ('unfortunately', 422),\n", " ('indeed', 421),\n", " ('running', 421),\n", " ('talent', 420),\n", " ('stage', 419),\n", " ('started', 418),\n", " ('sweet', 417),\n", " ('leads', 417),\n", " ('japanese', 417),\n", " ('poor', 416),\n", " ('deal', 416),\n", " ('personal', 413),\n", " ('incredible', 413),\n", " ('fast', 412),\n", " ('became', 410),\n", " ('deep', 410),\n", " ('hours', 409),\n", " ('nearly', 408),\n", " ('dream', 408),\n", " ('giving', 408),\n", " ('turned', 407),\n", " ('clearly', 407),\n", " ('near', 406),\n", " ('obvious', 406),\n", " ('cut', 405),\n", " ('surprise', 405),\n", " ('body', 404),\n", " ('era', 404),\n", " ('female', 403),\n", " ('hour', 403),\n", " ('five', 403),\n", " ('note', 399),\n", " ('learn', 398),\n", " ('truth', 398),\n", " ('match', 397),\n", " ('feels', 397),\n", " ('except', 397),\n", " ('tony', 397),\n", " ('filmed', 394),\n", " ('complete', 394),\n", " ('clear', 394),\n", " ('older', 393),\n", " ('street', 393),\n", " ('lots', 393),\n", " ('eventually', 393),\n", " ('keeps', 393),\n", " ('buy', 392),\n", " ('stewart', 391),\n", " ('william', 391),\n", " ('joe', 390),\n", " ('meet', 390),\n", " ('fall', 390),\n", " ('shots', 389),\n", " ('talking', 389),\n", " ('difficult', 389),\n", " ('unlike', 389),\n", " ('rating', 389),\n", " ('means', 388),\n", " ('dramatic', 388),\n", " ('appears', 386),\n", " ('subject', 386),\n", " ('wonder', 386),\n", " ('present', 386),\n", " ('situation', 386),\n", " ('comments', 385),\n", " ('sequences', 383),\n", " ('general', 383),\n", " ('lee', 383),\n", " ('earlier', 382),\n", " ('points', 382),\n", " ('check', 379),\n", " ('gone', 379),\n", " ('ten', 378),\n", " ('suspense', 378),\n", " ('recommended', 378),\n", " ('business', 377),\n", " ('third', 377),\n", " ('talk', 375),\n", " ('leaves', 375),\n", " ('beyond', 375),\n", " ('portrayal', 374),\n", " ('beautifully', 373),\n", " ('single', 372),\n", " ('bill', 372),\n", " ('word', 371),\n", " ('plenty', 371),\n", " ('falls', 370),\n", " ('whom', 370),\n", " ('figure', 369),\n", " ('battle', 369),\n", " ('scary', 369),\n", " ('non', 369),\n", " ('return', 368),\n", " ('using', 368),\n", " ('doubt', 367),\n", " ('add', 367),\n", " ('hear', 366),\n", " ('solid', 366),\n", " ('success', 366),\n", " ('touching', 365),\n", " ('political', 365),\n", " ('oh', 365),\n", " ('jokes', 365),\n", " ('awesome', 364),\n", " ('hell', 364),\n", " ('boys', 364),\n", " ('dog', 362),\n", " ('recently', 362),\n", " ('sexual', 362),\n", " ('please', 361),\n", " ('wouldn', 361),\n", " ('features', 361),\n", " ('straight', 361),\n", " ('lack', 360),\n", " ('forget', 360),\n", " ('setting', 360),\n", " ('mark', 359),\n", " ('married', 359),\n", " ('social', 357),\n", " ('adventure', 356),\n", " ('interested', 356),\n", " ('brothers', 355),\n", " ('sees', 355),\n", " ('actual', 355),\n", " ('terrific', 355),\n", " ('move', 354),\n", " ('call', 354),\n", " ('various', 353),\n", " ('dr', 353),\n", " ('theater', 353),\n", " ('animated', 352),\n", " ('western', 351),\n", " ('space', 350),\n", " ('baby', 350),\n", " ('leading', 348),\n", " ('disappointed', 348),\n", " ('portrayed', 346),\n", " ('aren', 346),\n", " ('screenplay', 345),\n", " ('smith', 345),\n", " ('hate', 344),\n", " ('towards', 344),\n", " ('noir', 343),\n", " ('outstanding', 342),\n", " ('decent', 342),\n", " ('kelly', 342),\n", " ('directors', 341),\n", " ('journey', 341),\n", " ('none', 340),\n", " ('effective', 340),\n", " ('looked', 340),\n", " ('caught', 339),\n", " ('cold', 339),\n", " ('storyline', 339),\n", " ('fi', 339),\n", " ('sci', 339),\n", " ('mary', 339),\n", " ('rich', 338),\n", " ('charming', 338),\n", " ('harry', 337),\n", " ('popular', 337),\n", " ('manages', 337),\n", " ('rare', 337),\n", " ('spirit', 336),\n", " ('open', 335),\n", " ('appreciate', 335),\n", " ('basically', 334),\n", " ('moves', 334),\n", " ('acted', 334),\n", " ('deserves', 333),\n", " ('subtle', 333),\n", " ('mention', 333),\n", " ('inside', 333),\n", " ('pace', 333),\n", " ('century', 333),\n", " ('boring', 333),\n", " ('familiar', 332),\n", " ('background', 332),\n", " ('ben', 331),\n", " ('creepy', 330),\n", " ('supposed', 330),\n", " ('secret', 329),\n", " ('jim', 328),\n", " ('die', 328),\n", " ('question', 327),\n", " ('effect', 327),\n", " ('natural', 327),\n", " ('rate', 326),\n", " ('language', 326),\n", " ('impressive', 326),\n", " ('intelligent', 325),\n", " ('saying', 325),\n", " ('material', 324),\n", " ('realize', 324),\n", " ('telling', 324),\n", " ('scott', 324),\n", " ('singing', 323),\n", " ('dancing', 322),\n", " ('adult', 321),\n", " ('imagine', 321),\n", " ('visual', 321),\n", " ('kept', 320),\n", " ('office', 320),\n", " ('uses', 319),\n", " ('pure', 318),\n", " ('wait', 318),\n", " ('stunning', 318),\n", " ('copy', 317),\n", " ('review', 317),\n", " ('previous', 317),\n", " ('seriously', 317),\n", " ('somehow', 316),\n", " ('created', 316),\n", " ('magic', 316),\n", " ('create', 316),\n", " ('hot', 316),\n", " ('reading', 316),\n", " ('crazy', 315),\n", " ('air', 315),\n", " ('frank', 315),\n", " ('stay', 315),\n", " ('escape', 315),\n", " ('attempt', 315),\n", " ('hands', 314),\n", " ('filled', 313),\n", " ('surprisingly', 312),\n", " ('expected', 312),\n", " ('average', 312),\n", " ('complex', 311),\n", " ('studio', 310),\n", " ('successful', 310),\n", " ('quickly', 310),\n", " ('male', 309),\n", " ('plus', 309),\n", " ('co', 307),\n", " ('minute', 306),\n", " ('images', 306),\n", " ('casting', 306),\n", " ('exciting', 306),\n", " ('following', 306),\n", " ('members', 305),\n", " ('german', 305),\n", " ('e', 305),\n", " ('reasons', 305),\n", " ('follows', 305),\n", " ('themes', 305),\n", " ('touch', 304),\n", " ('genius', 304),\n", " ('free', 304),\n", " ('edge', 304),\n", " ('cute', 304),\n", " ('outside', 303),\n", " ('ok', 302),\n", " ('admit', 302),\n", " ('younger', 302),\n", " ('reviews', 302),\n", " ('odd', 301),\n", " ('fighting', 301),\n", " ('master', 301),\n", " ('break', 300),\n", " ('thanks', 300),\n", " ('recent', 300),\n", " ('comment', 300),\n", " ('apart', 299),\n", " ('lovely', 298),\n", " ('begin', 298),\n", " ('emotions', 298),\n", " ('doctor', 297),\n", " ('italian', 297),\n", " ('party', 297),\n", " ('la', 296),\n", " ('missed', 296),\n", " ...]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "positive_counts.most_common()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pos_neg_ratios = Counter()\n", "\n", "for term,cnt in list(total_counts.most_common()):\n", " if(cnt > 100):\n", " pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)\n", " pos_neg_ratios[term] = pos_neg_ratio\n", "\n", "for word,ratio in pos_neg_ratios.most_common():\n", " if(ratio > 1):\n", " pos_neg_ratios[word] = np.log(ratio)\n", " else:\n", " pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[('edie', 4.6913478822291435),\n", " ('paulie', 4.0775374439057197),\n", " ('felix', 3.1527360223636558),\n", " ('polanski', 2.8233610476132043),\n", " ('matthau', 2.8067217286092401),\n", " ('victoria', 2.6810215287142909),\n", " ('mildred', 2.6026896854443837),\n", " ('gandhi', 2.5389738710582761),\n", " ('flawless', 2.451005098112319),\n", " ('superbly', 2.2600254785752498),\n", " ('perfection', 2.1594842493533721),\n", " ('astaire', 2.1400661634962708),\n", " ('captures', 2.0386195471595809),\n", " ('voight', 2.0301704926730531),\n", " ('wonderfully', 2.0218960560332353),\n", " ('powell', 1.9783454248084671),\n", " ('brosnan', 1.9547990964725592),\n", " ('lily', 1.9203768470501485),\n", " ('bakshi', 1.9029851043382795),\n", " ('lincoln', 1.9014583864844796),\n", " ('refreshing', 1.8551812956655511),\n", " ('breathtaking', 1.8481124057791867),\n", " ('bourne', 1.8478489358790986),\n", " ('lemmon', 1.8458266904983307),\n", " ('delightful', 1.8002701588959635),\n", " ('flynn', 1.7996646487351682),\n", " ('andrews', 1.7764919970972666),\n", " ('homer', 1.7692866133759964),\n", " ('beautifully', 1.7626953362841438),\n", " ('soccer', 1.7578579175523736),\n", " ('elvira', 1.7397031072720019),\n", " ('underrated', 1.7197859696029656),\n", " ('gripping', 1.7165360479904674),\n", " ('superb', 1.7091514458966952),\n", " ('delight', 1.6714733033535532),\n", " ('welles', 1.6677068205580761),\n", " ('sadness', 1.663505133704376),\n", " ('sinatra', 1.6389967146756448),\n", " ('touching', 1.637217476541176),\n", " ('timeless', 1.62924053973028),\n", " ('macy', 1.6211339521972916),\n", " ('unforgettable', 1.6177367152487956),\n", " ('favorites', 1.6158688027643908),\n", " ('stewart', 1.6119987332957739),\n", " ('hartley', 1.6094379124341003),\n", " ('sullivan', 1.6094379124341003),\n", " ('extraordinary', 1.6094379124341003),\n", " ('brilliantly', 1.5950491749820008),\n", " ('friendship', 1.5677652160335325),\n", " ('wonderful', 1.5645425925262093),\n", " ('palma', 1.5553706911638245),\n", " ('magnificent', 1.54663701119507),\n", " ('finest', 1.5462590108125689),\n", " ('jackie', 1.5439233053234738),\n", " ('ritter', 1.5404450409471491),\n", " ('tremendous', 1.5184661342283736),\n", " ('freedom', 1.5091151908062312),\n", " ('fantastic', 1.5048433868558566),\n", " ('terrific', 1.5026699370083942),\n", " ('noir', 1.493925025312256),\n", " ('sidney', 1.493925025312256),\n", " ('outstanding', 1.4910053152089213),\n", " ('mann', 1.4894785973551214),\n", " ('pleasantly', 1.4894785973551214),\n", " ('nancy', 1.488077055429833),\n", " ('marie', 1.4825711915553104),\n", " ('marvelous', 1.4739999415389962),\n", " ('excellent', 1.4647538505723599),\n", " ('ruth', 1.4596256342054401),\n", " ('stanwyck', 1.4412101187160054),\n", " ('widmark', 1.4350845252893227),\n", " ('splendid', 1.4271163556401458),\n", " ('chan', 1.423108334242607),\n", " ('exceptional', 1.4201959127955721),\n", " ('tender', 1.410986973710262),\n", " ('gentle', 1.4078005663408544),\n", " ('poignant', 1.4022947024663317),\n", " ('gem', 1.3932148039644643),\n", " ('amazing', 1.3919815802404802),\n", " ('chilling', 1.3862943611198906),\n", " ('captivating', 1.3862943611198906),\n", " ('fisher', 1.3862943611198906),\n", " ('davies', 1.3862943611198906),\n", " ('darker', 1.3652409519220583),\n", " ('april', 1.3499267169490159),\n", " ('kelly', 1.3461743673304654),\n", " ('blake', 1.3418425985490567),\n", " ('overlooked', 1.329135947279942),\n", " ('ralph', 1.32818673031261),\n", " ('bette', 1.3156767939059373),\n", " ('hoffman', 1.3150668518315229),\n", " ('cole', 1.3121863889661687),\n", " ('shines', 1.3049487216659381),\n", " ('powerful', 1.2999662776313934),\n", " ('notch', 1.2950456896547455),\n", " ('remarkable', 1.2883688239495823),\n", " ('pitt', 1.286210902562908),\n", " ('winters', 1.2833463918674481),\n", " ('vivid', 1.2762934659055623),\n", " ('gritty', 1.2757524867200667),\n", " ('giallo', 1.2745029551317739),\n", " ('portrait', 1.2704625455947689),\n", " ('innocence', 1.2694300209805796),\n", " ('psychiatrist', 1.2685113254635072),\n", " ('favorite', 1.2668956297860055),\n", " ('ensemble', 1.2656663733312759),\n", " ('stunning', 1.2622417124499117),\n", " ('burns', 1.259880436264232),\n", " ('garbo', 1.258954938743289),\n", " ('barbara', 1.2580400255962119),\n", " ('panic', 1.2527629684953681),\n", " ('holly', 1.2527629684953681),\n", " ('philip', 1.2527629684953681),\n", " ('carol', 1.2481440226390734),\n", " ('perfect', 1.246742480713785),\n", " ('appreciated', 1.2462482874741743),\n", " ('favourite', 1.2411123512753928),\n", " ('journey', 1.2367626271489269),\n", " ('rural', 1.235471471385307),\n", " ('bond', 1.2321436812926323),\n", " ('builds', 1.2305398317106577),\n", " ('brilliant', 1.2287554137664785),\n", " ('brooklyn', 1.2286654169163074),\n", " ('von', 1.225175011976539),\n", " ('unfolds', 1.2163953243244932),\n", " ('recommended', 1.2163953243244932),\n", " ('daniel', 1.20215296760895),\n", " ('perfectly', 1.1971931173405572),\n", " ('crafted', 1.1962507582320256),\n", " ('prince', 1.1939224684724346),\n", " ('troubled', 1.192138346678933),\n", " ('consequences', 1.1865810616140668),\n", " ('haunting', 1.1814999484738773),\n", " ('cinderella', 1.180052620608284),\n", " ('alexander', 1.1759989522835299),\n", " ('emotions', 1.1753049094563641),\n", " ('boxing', 1.1735135968412274),\n", " ('subtle', 1.1734135017508081),\n", " ('curtis', 1.1649873576129823),\n", " ('rare', 1.1566438362402944),\n", " ('loved', 1.1563661500586044),\n", " ('daughters', 1.1526795099383853),\n", " ('courage', 1.1438688802562305),\n", " ('dentist', 1.1426722784621401),\n", " ('highly', 1.1420208631618658),\n", " ('nominated', 1.1409146683587992),\n", " ('tony', 1.1397491942285991),\n", " ('draws', 1.1325138403437911),\n", " ('everyday', 1.1306150197542835),\n", " ('contrast', 1.1284652518177909),\n", " ('cried', 1.1213405397456659),\n", " ('fabulous', 1.1210851445201684),\n", " ('ned', 1.120591195386885),\n", " ('fay', 1.120591195386885),\n", " ('emma', 1.1184149159642893),\n", " ('sensitive', 1.113318436057805),\n", " ('smooth', 1.1089750757036563),\n", " ('dramas', 1.1080910326226534),\n", " ('today', 1.1050431789984001),\n", " ('helps', 1.1023091505494358),\n", " ('inspiring', 1.0986122886681098),\n", " ('jimmy', 1.0937696641923216),\n", " ('awesome', 1.0931328229034842),\n", " ('unique', 1.0881409888008142),\n", " ('tragic', 1.0871835928444868),\n", " ('intense', 1.0870514662670339),\n", " ('stellar', 1.0857088838322018),\n", " ('rival', 1.0822184788924332),\n", " ('provides', 1.0797081340289569),\n", " ('depression', 1.0782034170369026),\n", " ('shy', 1.0775588794702773),\n", " ('carrie', 1.076139432816051),\n", " ('blend', 1.0753554265038423),\n", " ('hank', 1.0736109864626924),\n", " ('diana', 1.0726368022648489),\n", " ('adorable', 1.0726368022648489),\n", " ('unexpected', 1.0722255334949147),\n", " ('achievement', 1.0668635903535293),\n", " ('bettie', 1.0663514264498881),\n", " ('happiness', 1.0632729222228008),\n", " ('glorious', 1.0608719606852626),\n", " ('davis', 1.0541605260972757),\n", " ('terrifying', 1.0525211814678428),\n", " ('beauty', 1.050410186850232),\n", " ('ideal', 1.0479685558493548),\n", " ('fears', 1.0467872208035236),\n", " ('hong', 1.0438040521731147),\n", " ('seasons', 1.0433496099930604),\n", " ('fascinating', 1.0414538748281612),\n", " ('carries', 1.0345904299031787),\n", " ('satisfying', 1.0321225473992768),\n", " ('definite', 1.0319209141694374),\n", " ('touched', 1.0296194171811581),\n", " ('greatest', 1.0248947127715422),\n", " ('creates', 1.0241097613701886),\n", " ('aunt', 1.023388867430522),\n", " ('walter', 1.022328983918479),\n", " ('spectacular', 1.0198314108149955),\n", " ('portrayal', 1.0189810189761024),\n", " ('ann', 1.0127808528183286),\n", " ('enterprise', 1.0116009116784799),\n", " ('musicals', 1.0096648026516135),\n", " ('deeply', 1.0094845087721023),\n", " ('incredible', 1.0061677561461084),\n", " ('mature', 1.0060195018402847),\n", " ('triumph', 0.99682959435816731),\n", " ('margaret', 0.99682959435816731),\n", " ('navy', 0.99493385919326827),\n", " ('harry', 0.99176919305006062),\n", " ('lucas', 0.990398704027877),\n", " ('sweet', 0.98966110487955483),\n", " ('joey', 0.98794672078059009),\n", " ('oscar', 0.98721905111049713),\n", " ('balance', 0.98649499054740353),\n", " ('warm', 0.98485340331145166),\n", " ('ages', 0.98449898190068863),\n", " ('glover', 0.98082925301172619),\n", " ('guilt', 0.98082925301172619),\n", " ('carrey', 0.98082925301172619),\n", " ('learns', 0.97881108885548895),\n", " ('unusual', 0.97788374278196932),\n", " ('sons', 0.97777581552483595),\n", " ('complex', 0.97761897738147796),\n", " ('essence', 0.97753435711487369),\n", " ('brazil', 0.9769153536905899),\n", " ('widow', 0.97650959186720987),\n", " ('solid', 0.97537964824416146),\n", " ('beautiful', 0.97326301262841053),\n", " ('holmes', 0.97246100334120955),\n", " ('awe', 0.97186058302896583),\n", " ('vhs', 0.97116734209998934),\n", " ('eerie', 0.97116734209998934),\n", " ('lonely', 0.96873720724669754),\n", " ('grim', 0.96873720724669754),\n", " ('sport', 0.96825047080486615),\n", " ('debut', 0.96508089604358704),\n", " ('destiny', 0.96343751029985703),\n", " ('thrillers', 0.96281074750904794),\n", " ('tears', 0.95977584381389391),\n", " ('rose', 0.95664202739772253),\n", " ('feelings', 0.95551144502743635),\n", " ('ginger', 0.95551144502743635),\n", " ('winning', 0.95471810900804055),\n", " ('stanley', 0.95387344302319799),\n", " ('cox', 0.95343027882361187),\n", " ('paris', 0.95278479030472663),\n", " ('heart', 0.95238806924516806),\n", " ('hooked', 0.95155887071161305),\n", " ('comfortable', 0.94803943018873538),\n", " ('mgm', 0.94446160884085151),\n", " ('masterpiece', 0.94155039863339296),\n", " ('themes', 0.94118828349588235),\n", " ('danny', 0.93967118051821874),\n", " ('anime', 0.93378388932167222),\n", " ('perry', 0.93328830824272613),\n", " ('joy', 0.93301752567946861),\n", " ('lovable', 0.93081883243706487),\n", " ('hal', 0.92953595862417571),\n", " ('mysteries', 0.92953595862417571),\n", " ('louis', 0.92871325187271225),\n", " ('charming', 0.92520609553210742),\n", " ('urban', 0.92367083917177761),\n", " ('allows', 0.92183091224977043),\n", " ('impact', 0.91815814604895041),\n", " ('gradually', 0.91629073187415511),\n", " ('lifestyle', 0.91629073187415511),\n", " ('italy', 0.91629073187415511),\n", " ('spy', 0.91289514287301687),\n", " ('treat', 0.91193342650519937),\n", " ('subsequent', 0.91056005716517008),\n", " ('kennedy', 0.90981821736853763),\n", " ('loving', 0.90967549275543591),\n", " ('surprising', 0.90937028902958128),\n", " ('quiet', 0.90648673177753425),\n", " ('winter', 0.90624039602065365),\n", " ('reveals', 0.90490540964902977),\n", " ('raw', 0.90445627422715225),\n", " ('funniest', 0.90078654533818991),\n", " ('pleased', 0.89994159387262562),\n", " ('norman', 0.89994159387262562),\n", " ('thief', 0.89874642222324552),\n", " ('season', 0.89827222637147675),\n", " ('secrets', 0.89794159320595857),\n", " ('colorful', 0.89705936994626756),\n", " ('highest', 0.8967461358011849),\n", " ('compelling', 0.89462923509297576),\n", " ('danes', 0.89248008318043659),\n", " ('castle', 0.88967708335606499),\n", " ('kudos', 0.88889175768604067),\n", " ('great', 0.88810470901464589),\n", " ('baseball', 0.88730319500090271),\n", " ('subtitles', 0.88730319500090271),\n", " ('bleak', 0.88730319500090271),\n", " ('winner', 0.88643776872447388),\n", " ('tragedy', 0.88563699078315261),\n", " ('todd', 0.88551907320740142),\n", " ('nicely', 0.87924946019380601),\n", " ('arthur', 0.87546873735389985),\n", " ('essential', 0.87373111745535925),\n", " ('gorgeous', 0.8731725250935497),\n", " ('fonda', 0.87294029100054127),\n", " ('eastwood', 0.87139541196626402),\n", " ('focuses', 0.87082835779739776),\n", " ('enjoyed', 0.87070195951624607),\n", " ('natural', 0.86997924506912838),\n", " ('intensity', 0.86835126958503595),\n", " ('witty', 0.86824103423244681),\n", " ('rob', 0.8642954367557748),\n", " ('worlds', 0.86377269759070874),\n", " ('health', 0.86113891179907498),\n", " ('magical', 0.85953791528170564),\n", " ('deeper', 0.85802182375017932),\n", " ('lucy', 0.85618680780444956),\n", " ('moving', 0.85566611005772031),\n", " ('lovely', 0.85290640004681306),\n", " ('purple', 0.8513711857748395),\n", " ('memorable', 0.84801189112086062),\n", " ('sings', 0.84729786038720367),\n", " ('craig', 0.84342938360928321),\n", " ('modesty', 0.84342938360928321),\n", " ('relate', 0.84326559685926517),\n", " ('episodes', 0.84223712084137292),\n", " ('strong', 0.84167135777060931),\n", " ('smith', 0.83959811108590054),\n", " ('tear', 0.83704136022001441),\n", " ('apartment', 0.83333115290549531),\n", " ('princess', 0.83290912293510388),\n", " ('disagree', 0.83290912293510388),\n", " ('kung', 0.83173334384609199),\n", " ('adventure', 0.83150561393278388),\n", " ('columbo', 0.82667857318446791),\n", " ('jake', 0.82667857318446791),\n", " ('adds', 0.82485652591452319),\n", " ('hart', 0.82472353834866463),\n", " ('strength', 0.82417544296634937),\n", " ('realizes', 0.82360006895738058),\n", " ('dave', 0.8232003088081431),\n", " ('childhood', 0.82208086393583857),\n", " ('forbidden', 0.81989888619908913),\n", " ('tight', 0.81883539572344199),\n", " ('surreal', 0.8178506590609026),\n", " ('manager', 0.81770990320170756),\n", " ('dancer', 0.81574950265227764),\n", " ('con', 0.81093021621632877),\n", " ('studios', 0.81093021621632877),\n", " ('miike', 0.80821651034473263),\n", " ('realistic', 0.80807714723392232),\n", " ('explicit', 0.80792269515237358),\n", " ('kurt', 0.8060875917405409),\n", " ('traditional', 0.80535917116687328),\n", " ('deals', 0.80535917116687328),\n", " ('holds', 0.80493858654806194),\n", " ('carl', 0.80437281567016972),\n", " ('touches', 0.80396154690023547),\n", " ('gene', 0.80314807577427383),\n", " ('albert', 0.8027669055771679),\n", " ('abc', 0.80234647252493729),\n", " ('cry', 0.80011930011211307),\n", " ('sides', 0.7995275841185171),\n", " ('develops', 0.79850769621777162),\n", " ('eyre', 0.79850769621777162),\n", " ('dances', 0.79694397424158891),\n", " ('oscars', 0.79633141679517616),\n", " ('legendary', 0.79600456599965308),\n", " ('importance', 0.79492987486988764),\n", " ('hearted', 0.79492987486988764),\n", " ('portraying', 0.79356592830699269),\n", " ('impressed', 0.79258107754813223),\n", " ('waters', 0.79112758892014912),\n", " ('empire', 0.79078565012386137),\n", " ('edge', 0.789774016249017),\n", " ('environment', 0.78845736036427028),\n", " ('jean', 0.78845736036427028),\n", " ('sentimental', 0.7864791203521645),\n", " ('captured', 0.78623760362595729),\n", " ('styles', 0.78592891401091158),\n", " ('daring', 0.78592891401091158),\n", " ('backgrounds', 0.78275933924963248),\n", " ('frank', 0.78275933924963248),\n", " ('matches', 0.78275933924963248),\n", " ('tense', 0.78275933924963248),\n", " ('gothic', 0.78209466657644144),\n", " ('sharp', 0.7814397877056235),\n", " ('achieved', 0.78015855754957497),\n", " ('court', 0.77947526404844247),\n", " ('steals', 0.7789140023173704),\n", " ('rules', 0.77844476107184035),\n", " ('colors', 0.77684619943659217),\n", " ('reunion', 0.77318988823348167),\n", " ('covers', 0.77139937745969345),\n", " ('tale', 0.77010822169607374),\n", " ('rain', 0.7683706017975328),\n", " ('denzel', 0.76804848873306297),\n", " ('stays', 0.76787072675588186),\n", " ('blob', 0.76725515271366718),\n", " ('conventional', 0.76214005204689672),\n", " ('maria', 0.76214005204689672),\n", " ('fresh', 0.76158434211317383),\n", " ('midnight', 0.76096977689870637),\n", " ('landscape', 0.75852993982279704),\n", " ('animated', 0.75768570169751648),\n", " ('titanic', 0.75666058628227129),\n", " ('sunday', 0.75666058628227129),\n", " ('spring', 0.7537718023763802),\n", " ('cagney', 0.7537718023763802),\n", " ('enjoyable', 0.75246375771636476),\n", " ('immensely', 0.75198768058287868),\n", " ('sir', 0.7507762933965817),\n", " ('nevertheless', 0.75067102469813185),\n", " ('driven', 0.74994477895307854),\n", " ('performances', 0.74883252516063137),\n", " ('memories', 0.74721440183022114),\n", " ('nowadays', 0.74721440183022114),\n", " ('simple', 0.74641420974143258),\n", " ('golden', 0.74533293373051557),\n", " ('leslie', 0.74533293373051557),\n", " ('lovers', 0.74497224842453125),\n", " ('relationship', 0.74484232345601786),\n", " ('supporting', 0.74357803418683721),\n", " ('che', 0.74262723782331497),\n", " ('packed', 0.7410032017375805),\n", " ('trek', 0.74021469141793106),\n", " ('provoking', 0.73840377214806618),\n", " ('strikes', 0.73759894313077912),\n", " ('depiction', 0.73682224406260699),\n", " ('emotional', 0.73678211645681524),\n", " ('secretary', 0.7366322924996842),\n", " ('influenced', 0.73511137965897755),\n", " ('florida', 0.73511137965897755),\n", " ('germany', 0.73288750920945944),\n", " ('brings', 0.73142936713096229),\n", " ('lewis', 0.73129894652432159),\n", " ('elderly', 0.73088750854279239),\n", " ('owner', 0.72743625403857748),\n", " ('streets', 0.72666987259858895),\n", " ('henry', 0.72642196944481741),\n", " ('portrays', 0.72593700338293632),\n", " ('bears', 0.7252354951114458),\n", " ('china', 0.72489587887452556),\n", " ('anger', 0.72439972406404984),\n", " ('society', 0.72433010799663333),\n", " ('available', 0.72415741730250549),\n", " ('best', 0.72347034060446314),\n", " ('bugs', 0.72270598280148979),\n", " ('magic', 0.71878961117328299),\n", " ('verhoeven', 0.71846498854423513),\n", " ('delivers', 0.71846498854423513),\n", " ('jim', 0.71783979315031676),\n", " ('donald', 0.71667767797013937),\n", " ('endearing', 0.71465338578090898),\n", " ('relationships', 0.71393795022901896),\n", " ('greatly', 0.71256526641704687),\n", " ('charlie', 0.71024161391924534),\n", " ('brad', 0.71024161391924534),\n", " ('simon', 0.70967648251115578),\n", " ('effectively', 0.70914752190638641),\n", " ('march', 0.70774597998109789),\n", " ('atmosphere', 0.70744773070214162),\n", " ('influence', 0.70733181555190172),\n", " ('genius', 0.706392407309966),\n", " ('emotionally', 0.70556970055850243),\n", " ('ken', 0.70526854109229009),\n", " ('identity', 0.70484322032313651),\n", " ('sophisticated', 0.70470800296102132),\n", " ('dan', 0.70457587638356811),\n", " ('andrew', 0.70329955202396321),\n", " ('india', 0.70144598337464037),\n", " ('roy', 0.69970458110610434),\n", " ('surprisingly', 0.6995780708902356),\n", " ('sky', 0.69780919366575667),\n", " ('romantic', 0.69664981111114743),\n", " ('match', 0.69566924999265523),\n", " ('britain', 0.69314718055994529),\n", " ('beatty', 0.69314718055994529),\n", " ('affected', 0.69314718055994529),\n", " ('cowboy', 0.69314718055994529),\n", " ('wave', 0.69314718055994529),\n", " ('stylish', 0.69314718055994529),\n", " ('bitter', 0.69314718055994529),\n", " ('patient', 0.69314718055994529),\n", " ('meets', 0.69314718055994529),\n", " ('love', 0.69198533541937324),\n", " ('paul', 0.68980827929443067),\n", " ('andy', 0.68846333124751902),\n", " ('performance', 0.68797386327972465),\n", " ('patrick', 0.68645819240914863),\n", " ('unlike', 0.68546468438792907),\n", " ('brooks', 0.68433655087779044),\n", " ('refuses', 0.68348526964820844),\n", " ('award', 0.6824518914431974),\n", " ('complaint', 0.6824518914431974),\n", " ('ride', 0.68229716453587952),\n", " ('dawson', 0.68171848473632257),\n", " ('luke', 0.68158635815886937),\n", " ('wells', 0.68087708796813096),\n", " ('france', 0.6804081547825156),\n", " ('handsome', 0.68007509899259255),\n", " ('sports', 0.68007509899259255),\n", " ('rebel', 0.67875844310784572),\n", " ('directs', 0.67875844310784572),\n", " ('greater', 0.67605274720064523),\n", " ('dreams', 0.67599410133369586),\n", " ('effective', 0.67565402311242806),\n", " ('interpretation', 0.67479804189174875),\n", " ('works', 0.67445504754779284),\n", " ('brando', 0.67445504754779284),\n", " ('noble', 0.6737290947028437),\n", " ('paced', 0.67314651385327573),\n", " ('le', 0.67067432470788668),\n", " ('master', 0.67015766233524654),\n", " ('h', 0.6696166831497512),\n", " ('rings', 0.66904962898088483),\n", " ('easy', 0.66895995494594152),\n", " ('city', 0.66820823221269321),\n", " ('sunshine', 0.66782937257565544),\n", " ('succeeds', 0.66647893347778397),\n", " ('relations', 0.664159643686693),\n", " ('england', 0.66387679825983203),\n", " ('glimpse', 0.66329421741026418),\n", " ('aired', 0.66268797307523675),\n", " ('sees', 0.66263163663399482),\n", " ('both', 0.66248336767382998),\n", " ('definitely', 0.66199789483898808),\n", " ('imaginative', 0.66139848224536502),\n", " ('appreciate', 0.66083893732728749),\n", " ('tricks', 0.66071190480679143),\n", " ('striking', 0.66071190480679143),\n", " ('carefully', 0.65999497324304479),\n", " ('complicated', 0.65981076029235353),\n", " ('perspective', 0.65962448852130173),\n", " ('trilogy', 0.65877953705573755),\n", " ('future', 0.65834665141052828),\n", " ('lion', 0.65742909795786608),\n", " ('victor', 0.65540685257709819),\n", " ('douglas', 0.65540685257709819),\n", " ('inspired', 0.65459851044271034),\n", " ('marriage', 0.65392646740666405),\n", " ('demands', 0.65392646740666405),\n", " ('father', 0.65172321672194655),\n", " ('page', 0.65123628494430852),\n", " ('instant', 0.65058756614114943),\n", " ('era', 0.6495567444850836),\n", " ('ruthless', 0.64934455790155243),\n", " ('saga', 0.64934455790155243),\n", " ('joan', 0.64891392558311978),\n", " ('joseph', 0.64841128671855386),\n", " ('workers', 0.64829661439459352),\n", " ('fantasy', 0.64726757480925168),\n", " ('accomplished', 0.64551913157069074),\n", " ('distant', 0.64551913157069074),\n", " ('manhattan', 0.64435701639051324),\n", " ('personal', 0.64355023942057321),\n", " ('pushing', 0.64313675998528386),\n", " ('meeting', 0.64313675998528386),\n", " ('individual', 0.64313675998528386),\n", " ('pleasant', 0.64250344774119039),\n", " ('brave', 0.64185388617239469),\n", " ('william', 0.64083139119578469),\n", " ('hudson', 0.64077919504262937),\n", " ('friendly', 0.63949446706762514),\n", " ('eccentric', 0.63907995928966954),\n", " ('awards', 0.63875310849414646),\n", " ('jack', 0.63838309514997038),\n", " ('seeking', 0.63808740337691783),\n", " ('colonel', 0.63757732940513456),\n", " ('divorce', 0.63757732940513456),\n", " ('jane', 0.63443957973316734),\n", " ('keeping', 0.63414883979798953),\n", " ('gives', 0.63383568159497883),\n", " ('ted', 0.63342794585832296),\n", " ('animation', 0.63208692379869902),\n", " ('progress', 0.6317782341836532),\n", " ('concert', 0.63127177684185776),\n", " ('larger', 0.63127177684185776),\n", " ('nation', 0.6296337748376194),\n", " ('albeit', 0.62739580299716491),\n", " ('adapted', 0.62613647027698516),\n", " ('discovers', 0.62542900650499444),\n", " ('classic', 0.62504956428050518),\n", " ('segment', 0.62335141862440335),\n", " ('morgan', 0.62303761437291871),\n", " ('mouse', 0.62294292188669675),\n", " ('impressive', 0.62211140744319349),\n", " ('artist', 0.62168821657780038),\n", " ('ultimate', 0.62168821657780038),\n", " ('griffith', 0.62117368093485603),\n", " ('emily', 0.62082651898031915),\n", " ('drew', 0.62082651898031915),\n", " ('moved', 0.6197197120051281),\n", " ('profound', 0.61903920840622351),\n", " ('families', 0.61903920840622351),\n", " ('innocent', 0.61851219917136446),\n", " ('versions', 0.61730910416844087),\n", " ('eddie', 0.61691981517206107),\n", " ('criticism', 0.61651395453902935),\n", " ('nature', 0.61594514653194088),\n", " ('recognized', 0.61518563909023349),\n", " ('sexuality', 0.61467556511845012),\n", " ('contract', 0.61400986000122149),\n", " ('brian', 0.61344043794920278),\n", " ('remembered', 0.6131044728864089),\n", " ('determined', 0.6123858239154869),\n", " ('offers', 0.61207935747116349),\n", " ('pleasure', 0.61195702582993206),\n", " ('washington', 0.61180154110599294),\n", " ('images', 0.61159731359583758),\n", " ('games', 0.61067095873570676),\n", " ('academy', 0.60872983874736208),\n", " ('fashioned', 0.60798937221963845),\n", " ('melodrama', 0.60749173598145145),\n", " ('peoples', 0.60613580357031549),\n", " ('charismatic', 0.60613580357031549),\n", " ('rough', 0.60613580357031549),\n", " ('dealing', 0.60517840761398811),\n", " ('fine', 0.60496962268013299),\n", " ('tap', 0.60391604683200273),\n", " ('trio', 0.60157998703445481),\n", " ('russell', 0.60120968523425966),\n", " ('figures', 0.60077386042893011),\n", " ('ward', 0.60005675749393339),\n", " ('shine', 0.59911823091166894),\n", " ('brady', 0.59911823091166894),\n", " ('job', 0.59845562125168661),\n", " ('satisfied', 0.59652034487087369),\n", " ('river', 0.59637962862495086),\n", " ('brown', 0.595773016534769),\n", " ('believable', 0.59566072133302495),\n", " ('bound', 0.59470710774669278),\n", " ('always', 0.59470710774669278),\n", " ('hall', 0.5933967777928858),\n", " ('cook', 0.5916777203950857),\n", " ('claire', 0.59136448625000293),\n", " ('broadway', 0.59033768669372433),\n", " ('anna', 0.58778666490211906),\n", " ('peace', 0.58628403501758408),\n", " ('visually', 0.58539431926349916),\n", " ('falk', 0.58525821854876026),\n", " ('morality', 0.58525821854876026),\n", " ('growing', 0.58466653756587539),\n", " ('experiences', 0.58314628534561685),\n", " ('stood', 0.58314628534561685),\n", " ('touch', 0.58122926435596001),\n", " ('lives', 0.5810976767513224),\n", " ('kubrick', 0.58066919713325493),\n", " ('timing', 0.58047401805583243),\n", " ('struggles', 0.57981849525294216),\n", " ('expressions', 0.57981849525294216),\n", " ('authentic', 0.57848427223980559),\n", " ('helen', 0.57763429343810091),\n", " ('pre', 0.57700753064729182),\n", " ('quirky', 0.5753641449035618),\n", " ('young', 0.57531672344534313),\n", " ('inner', 0.57454143815209846),\n", " ('mexico', 0.57443087372056334),\n", " ('clint', 0.57380042292737909),\n", " ('sisters', 0.57286101468544337),\n", " ('realism', 0.57226528899949558),\n", " ('personalities', 0.5720692490067093),\n", " ('french', 0.5720692490067093),\n", " ('surprises', 0.57113222999698177),\n", " ('adventures', 0.57113222999698177),\n", " ('overcome', 0.5697681593994407),\n", " ('timothy', 0.56953322459276867),\n", " ('tales', 0.56909453188996639),\n", " ('war', 0.56843317302781682),\n", " ('civil', 0.5679840376059393),\n", " ('countries', 0.56737779327091187),\n", " ('streep', 0.56710645966458029),\n", " ('tradition', 0.56685345523565323),\n", " ('oliver', 0.56673325570428668),\n", " ('australia', 0.56580775818334383),\n", " ('understanding', 0.56531380905006046),\n", " ('players', 0.56509525370004821),\n", " ('knowing', 0.56489284503626647),\n", " ('rogers', 0.56421349718405212),\n", " ('suspenseful', 0.56368911332305849),\n", " ('variety', 0.56368911332305849),\n", " ('true', 0.56281525180810066),\n", " ('jr', 0.56220982311246936),\n", " ('psychological', 0.56108745854687891),\n", " ('branagh', 0.55961578793542266),\n", " ('wealth', 0.55961578793542266),\n", " ('performing', 0.55961578793542266),\n", " ('odds', 0.55961578793542266),\n", " ('sent', 0.55961578793542266),\n", " ('reminiscent', 0.55961578793542266),\n", " ('grand', 0.55961578793542266),\n", " ('overwhelming', 0.55961578793542266),\n", " ('brothers', 0.55891181043362848),\n", " ('howard', 0.55811089675600245),\n", " ('david', 0.55693122256475369),\n", " ('generation', 0.55628799784274796),\n", " ('grow', 0.55612538299565417),\n", " ('survival', 0.55594605904646033),\n", " ('mainstream', 0.55574731115750231),\n", " ('dick', 0.55431073570572953),\n", " ('charm', 0.55288175575407861),\n", " ('kirk', 0.55278982286502287),\n", " ('twists', 0.55244729845681018),\n", " ('gangster', 0.55206858230003986),\n", " ('jeff', 0.55179306225421365),\n", " ('family', 0.55116244510065526),\n", " ('tend', 0.55053307336110335),\n", " ('thanks', 0.55049088015842218),\n", " ('world', 0.54744234723432639),\n", " ('sutherland', 0.54743536937855164),\n", " ('life', 0.54695514434959924),\n", " ('disc', 0.54654370636806993),\n", " ('bug', 0.54654370636806993),\n", " ('tribute', 0.5455111817538808),\n", " ('europe', 0.54522705048332309),\n", " ('sacrifice', 0.54430155296238014),\n", " ('color', 0.54405127139431109),\n", " ('superior', 0.54333490233128523),\n", " ('york', 0.54318235866536513),\n", " ('pulls', 0.54266622962164945),\n", " ('hearts', 0.54232429082536171),\n", " ('jackson', 0.54232429082536171),\n", " ('enjoy', 0.54124285135906114),\n", " ('redemption', 0.54056759296472823),\n", " ('madness', 0.540384426007535),\n", " ('hamilton', 0.5389965007326869),\n", " ('stands', 0.5389965007326869),\n", " ('trial', 0.5389965007326869),\n", " ('greek', 0.5389965007326869),\n", " ('each', 0.5388212312554177),\n", " ('faithful', 0.53773307668591508),\n", " ('received', 0.5372768098531604),\n", " ('jealous', 0.53714293208336406),\n", " ('documentaries', 0.53714293208336406),\n", " ('different', 0.53709860682460819),\n", " ('describes', 0.53680111016925136),\n", " ('shorts', 0.53596159703753288),\n", " ('brilliance', 0.53551823635636209),\n", " ('mountains', 0.53492317534505118),\n", " ('share', 0.53408248593025787),\n", " ('dealt', 0.53408248593025787),\n", " ('providing', 0.53329847961804933),\n", " ('explore', 0.53329847961804933),\n", " ('series', 0.5325809226575603),\n", " ('fellow', 0.5323318289869543),\n", " ('loves', 0.53062825106217038),\n", " ('olivier', 0.53062825106217038),\n", " ('revolution', 0.53062825106217038),\n", " ('roman', 0.53062825106217038),\n", " ('century', 0.53002783074992665),\n", " ('musical', 0.52966871156747064),\n", " ('heroic', 0.52925932545482868),\n", " ('ironically', 0.52806743020049673),\n", " ('approach', 0.52806743020049673),\n", " ('temple', 0.52806743020049673),\n", " ('moves', 0.5279372642387119),\n", " ('gift', 0.52702030968597136),\n", " ('julie', 0.52609309589677911),\n", " ('tells', 0.52415107836314001),\n", " ('radio', 0.52394671172868779),\n", " ('uncle', 0.52354439617376536),\n", " ('union', 0.52324814376454787),\n", " ('deep', 0.52309571635780505),\n", " ('reminds', 0.52157841554225237),\n", " ('famous', 0.52118841080153722),\n", " ('jazz', 0.52053443789295151),\n", " ('dennis', 0.51987545928590861),\n", " ('epic', 0.51919387343650736),\n", " ('adult', 0.519167695083386),\n", " ('shows', 0.51915322220375304),\n", " ('performed', 0.5191244265806858),\n", " ('demons', 0.5191244265806858),\n", " ('eric', 0.51879379341516751),\n", " ('discovered', 0.51879379341516751),\n", " ('youth', 0.5185626062681431),\n", " ('human', 0.51851411224987087),\n", " ('tarzan', 0.51813827061227724),\n", " ('ourselves', 0.51794309153485463),\n", " ('wwii', 0.51758240622887042),\n", " ('passion', 0.5162164724008671),\n", " ('desire', 0.51607497965213445),\n", " ('pays', 0.51581316527702981),\n", " ('fox', 0.51557622652458857),\n", " ('dirty', 0.51557622652458857),\n", " ('symbolism', 0.51546600332249293),\n", " ('sympathetic', 0.51546600332249293),\n", " ('attitude', 0.51530993621331933),\n", " ('appearances', 0.51466440007315639),\n", " ('jeremy', 0.51466440007315639),\n", " ('fun', 0.51439068993048687),\n", " ('south', 0.51420972175023116),\n", " ('arrives', 0.51409894911095988),\n", " ('present', 0.51341965894303732),\n", " ('com', 0.51326167856387173),\n", " ('smile', 0.51265880484765169),\n", " ('fits', 0.51082562376599072),\n", " ('provided', 0.51082562376599072),\n", " ('carter', 0.51082562376599072),\n", " ('ring', 0.51082562376599072),\n", " ('aging', 0.51082562376599072),\n", " ('countryside', 0.51082562376599072),\n", " ('alan', 0.51082562376599072),\n", " ('visit', 0.51082562376599072),\n", " ('begins', 0.51015650363396647),\n", " ('success', 0.50900578704900468),\n", " ('japan', 0.50900578704900468),\n", " ('accurate', 0.50895471583017893),\n", " ('proud', 0.50800474742434931),\n", " ('daily', 0.5075946031845443),\n", " ('atmospheric', 0.50724780241810674),\n", " ('karloff', 0.50724780241810674),\n", " ('recently', 0.50714914903668207),\n", " ('fu', 0.50704490092608467),\n", " ('horrors', 0.50656122497953315),\n", " ('finding', 0.50637127341661037),\n", " ('lust', 0.5059356384717989),\n", " ('hitchcock', 0.50574947073413001),\n", " ('among', 0.50334004951332734),\n", " ('viewing', 0.50302139827440906),\n", " ('shining', 0.50262885656181222),\n", " ('investigation', 0.50262885656181222),\n", " ('duo', 0.5020919437972361),\n", " ('cameron', 0.5020919437972361),\n", " ('finds', 0.50128303100539795),\n", " ('contemporary', 0.50077528791248915),\n", " ('genuine', 0.50046283673044401),\n", " ('frightening', 0.49995595152908684),\n", " ('plays', 0.49975983848890226),\n", " ('age', 0.49941323171424595),\n", " ('position', 0.49899116611898781),\n", " ('continues', 0.49863035067217237),\n", " ('roles', 0.49839716550752178),\n", " ('james', 0.49837216269470402),\n", " ('individuals', 0.49824684155913052),\n", " ('brought', 0.49783842823917956),\n", " ('hilarious', 0.49714551986191058),\n", " ('brutal', 0.49681488669639234),\n", " ('appropriate', 0.49643688631389105),\n", " ('dance', 0.49581998314812048),\n", " ('league', 0.49578774640145024),\n", " ('helping', 0.49578774640145024),\n", " ('answers', 0.49578774640145024),\n", " ('stunts', 0.49561620510246196),\n", " ('traveling', 0.49532143723002542),\n", " ('thoroughly', 0.49414593456733524),\n", " ('depicted', 0.49317068852726992),\n", " ('honor', 0.49247648509779424),\n", " ('combination', 0.49247648509779424),\n", " ('differences', 0.49247648509779424),\n", " ('fully', 0.49213349075383811),\n", " ('tracy', 0.49159426183810306),\n", " ('battles', 0.49140753790888908),\n", " ('possibility', 0.49112055268665822),\n", " ('romance', 0.4901589869574316),\n", " ('initially', 0.49002249613622745),\n", " ('happy', 0.4898997500608791),\n", " ('crime', 0.48977221456815834),\n", " ('singing', 0.4893852925281213),\n", " ('especially', 0.48901267837860624),\n", " ('shakespeare', 0.48754793889664511),\n", " ('hugh', 0.48729512635579658),\n", " ('detail', 0.48609484250827351),\n", " ('guide', 0.48550781578170082),\n", " ('companion', 0.48550781578170082),\n", " ('julia', 0.48550781578170082),\n", " ('san', 0.48550781578170082),\n", " ('desperation', 0.48550781578170082),\n", " ('strongly', 0.48460242866688824),\n", " ('necessary', 0.48302334245403883),\n", " ('humanity', 0.48265474679929443),\n", " ('drama', 0.48221998493060503),\n", " ('warming', 0.48183808689273838),\n", " ('intrigue', 0.48183808689273838),\n", " ('nonetheless', 0.48183808689273838),\n", " ('cuba', 0.48183808689273838),\n", " ('planned', 0.47957308026188628),\n", " ('pictures', 0.47929937011921681),\n", " ('broadcast', 0.47849024312305422),\n", " ('nine', 0.47803580094299974),\n", " ('settings', 0.47743860773325364),\n", " ('history', 0.47732966933780852),\n", " ('ordinary', 0.47725880012690741),\n", " ('trade', 0.47692407209030935),\n", " ('primary', 0.47608267532211779),\n", " ('official', 0.47608267532211779),\n", " ('episode', 0.47529620261150429),\n", " ('role', 0.47520268270188676),\n", " ('spirit', 0.47477690799839323),\n", " ('grey', 0.47409361449726067),\n", " ('ways', 0.47323464982718205),\n", " ('cup', 0.47260441094579297),\n", " ('piano', 0.47260441094579297),\n", " ('familiar', 0.47241617565111949),\n", " ('sinister', 0.47198579044972683),\n", " ('reveal', 0.47171449364936496),\n", " ('max', 0.47150852042515579),\n", " ('dated', 0.47121648567094482),\n", " ('discovery', 0.47000362924573563),\n", " ('vicious', 0.47000362924573563),\n", " ('losing', 0.47000362924573563),\n", " ('genuinely', 0.46871413841586385),\n", " ('hatred', 0.46734051182625186),\n", " ('mistaken', 0.46702300110759781),\n", " ('dream', 0.46608972992459924),\n", " ('challenge', 0.46608972992459924),\n", " ('crisis', 0.46575733836428446),\n", " ('photographed', 0.46488852857896512),\n", " ('machines', 0.46430560813109778),\n", " ('critics', 0.46430560813109778),\n", " ('bird', 0.46430560813109778),\n", " ('born', 0.46411383518967209),\n", " ('detective', 0.4636633473511525),\n", " ('higher', 0.46328467899699055),\n", " ('remains', 0.46262352194811296),\n", " ('inevitable', 0.46262352194811296),\n", " ('soviet', 0.4618180446592961),\n", " ('ryan', 0.46134556650262099),\n", " ('african', 0.46112595521371813),\n", " ('smaller', 0.46081520319132935),\n", " ('techniques', 0.46052488529119184),\n", " ('information', 0.46034171833399862),\n", " ('deserved', 0.45999798712841444),\n", " ('cynical', 0.45953232937844013),\n", " ('lynch', 0.45953232937844013),\n", " ('francisco', 0.45953232937844013),\n", " ('tour', 0.45953232937844013),\n", " ('spielberg', 0.45953232937844013),\n", " ('struggle', 0.45911782160048453),\n", " ('language', 0.45902121257712653),\n", " ('visual', 0.45823514408822852),\n", " ('warner', 0.45724137763188427),\n", " ('social', 0.45720078250735313),\n", " ('reality', 0.45719346885019546),\n", " ('hidden', 0.45675840249571492),\n", " ('breaking', 0.45601738727099561),\n", " ('sometimes', 0.45563021171182794),\n", " ('modern', 0.45500247579345005),\n", " ('surfing', 0.45425527227759638),\n", " ('popular', 0.45410691533051023),\n", " ('surprised', 0.4534409399850382),\n", " ('follows', 0.45245361754408348),\n", " ('keeps', 0.45234869400701483),\n", " ('john', 0.4520909494482197),\n", " ('defeat', 0.45198512374305722),\n", " ('mixed', 0.45198512374305722),\n", " ('justice', 0.45142724367280018),\n", " ('treasure', 0.45083371313801535),\n", " ('presents', 0.44973793178615257),\n", " ('years', 0.44919197032104968),\n", " ('chief', 0.44895022004790319),\n", " ('shadows', 0.44802472252696035),\n", " ('closely', 0.44701411102103689),\n", " ('segments', 0.44701411102103689),\n", " ('lose', 0.44658335503763702),\n", " ('caine', 0.44628710262841953),\n", " ('caught', 0.44610275383999071),\n", " ('hamlet', 0.44558510189758965),\n", " ('chinese', 0.44507424620321018),\n", " ('welcome', 0.44438052435783792),\n", " ('birth', 0.44368632092836219),\n", " ('represents', 0.44320543609101143),\n", " ('puts', 0.44279106572085081),\n", " ('fame', 0.44183275227903923),\n", " ('closer', 0.44183275227903923),\n", " ('visuals', 0.44183275227903923),\n", " ('web', 0.44183275227903923),\n", " ('criminal', 0.4412745608048752),\n", " ('minor', 0.4409224199448939),\n", " ('jon', 0.44086703515908027),\n", " ('liked', 0.44074991514020723),\n", " ('restaurant', 0.44031183943833246),\n", " ('flaws', 0.43983275161237217),\n", " ('de', 0.43983275161237217),\n", " ('searching', 0.4393666597838457),\n", " ('rap', 0.43891304217570443),\n", " ('light', 0.43884433018199892),\n", " ('elizabeth', 0.43872232986464677),\n", " ('marry', 0.43861731542506488),\n", " ('oz', 0.43825493093115531),\n", " ('controversial', 0.43825493093115531),\n", " ('learned', 0.43825493093115531),\n", " ('slowly', 0.43785660389939979),\n", " ('bridge', 0.43721380642274466),\n", " ('thrilling', 0.43721380642274466),\n", " ('wayne', 0.43721380642274466),\n", " ('comedic', 0.43721380642274466),\n", " ('married', 0.43658501682196887),\n", " ('nazi', 0.4361020775700542),\n", " ('murder', 0.4353180712578455),\n", " ('physical', 0.4353180712578455),\n", " ('johnny', 0.43483971678806865),\n", " ('michelle', 0.43445264498141672),\n", " ('wallace', 0.43403848055222038),\n", " ('silent', 0.43395706390247063),\n", " ('comedies', 0.43395706390247063),\n", " ('played', 0.43387244114515305),\n", " ('international', 0.43363598507486073),\n", " ('vision', 0.43286408229627887),\n", " ('intelligent', 0.43196704885367099),\n", " ('shop', 0.43078291609245434),\n", " ('also', 0.43036720209769169),\n", " ('levels', 0.4302451371066513),\n", " ('miss', 0.43006426712153217),\n", " ('ocean', 0.4295626596872249),\n", " ...]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# words most frequently seen in a review with a \"POSITIVE\" label\n", "pos_neg_ratios.most_common()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[('boll', -4.0778152602708904),\n", " ('uwe', -3.9218753018711578),\n", " ('seagal', -3.3202501058581921),\n", " ('unwatchable', -3.0269848170580955),\n", " ('stinker', -2.9876839403711624),\n", " ('mst', -2.7753833211707968),\n", " ('incoherent', -2.7641396677532537),\n", " ('unfunny', -2.5545257844967644),\n", " ('waste', -2.4907515123361046),\n", " ('blah', -2.4475792789485005),\n", " ('horrid', -2.3715779644809971),\n", " ('pointless', -2.3451073877136341),\n", " ('atrocious', -2.3187369339642556),\n", " ('redeeming', -2.2667790015910296),\n", " ('prom', -2.2601040980178784),\n", " ('drivel', -2.2476029585766928),\n", " ('lousy', -2.2118080125207054),\n", " ('worst', -2.1930856334332267),\n", " ('laughable', -2.172468615469592),\n", " ('awful', -2.1385076866397488),\n", " ('poorly', -2.1326133844207011),\n", " ('wasting', -2.1178155545614512),\n", " ('remotely', -2.111046881095167),\n", " ('existent', -2.0024805005437076),\n", " ('boredom', -1.9241486572738005),\n", " ('miserably', -1.9216610938019989),\n", " ('sucks', -1.9166645809588516),\n", " ('uninspired', -1.9131499212248517),\n", " ('lame', -1.9117232884159072),\n", " ('insult', -1.9085323769376259)]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# words most frequently seen in a review with a \"NEGATIVE\" label\n", "list(reversed(pos_neg_ratios.most_common()))[0:30]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Transforming Text into Numbers" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFKCAYAAAAg+zSAAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAB1WlUWHRYTUw6Y29tLmFkb2Jl\nLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1Q\nIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5\nOTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4w\nLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAg\nICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZm\nOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0\naW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K\nAtiABQAAQABJREFUeAHtnXvQXVV5/1daZxy1BUpJp1MhE5BSSSAgqBAV5BIuGaQJBoEUATEJAiXY\ncMsUTfMDK9MAMXKRAEmAgGkASUiGIgQSsEQgKGDCJV6GYkywfzRWibc/OuO8v/1Zuo7r3e/e5+zr\n2ZfzfWbOe/bZe12e9V373eu7n/WsZ40aCsRIhIAQEAJCQAgIASFQAQJ/UkGdqlIICAEhIASEgBAQ\nAhYBERHdCEJACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSq\nWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQ\nGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEh\nIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC\nQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYC\nQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaA\niEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgB\nISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSAPQXX3yxGTVqlPnlL39Z\nQGkqQggIASEgBITA4CAgIjI4fR3Z0iVLlpgHH3ww8ppOCgEhIASEgBAoG4FRQ4GUXYnKry8CJ510\nknnf+95nbrvttvoqKc2EgBAQAkKgtQjIItLarlXDhIAQEAJCQAjUHwERkfr3kTQUAkJACAgBIdBa\nBERECuhanFXHjBkzrKR169ZZB9atW7daHwymQHBodZ8bbrhhWHp+kJbr+G1wHM7Db65FiV9f1HXO\noSO6ItRPXU888YRZvHhxRy853Fp49EcICAEhIAT6hICISMlAz5kzxyxbtszMmDHD4I7D5/HHHzfr\n16+3RCOq+u9973tm/Pjx5oMf/GAnD/kmTZpkLrjgAjN9+vSobKnOXXnllbbsE0880Vx00UWdenbb\nbbdU5SixEBACQkAICIE8CLwjT2bl7Y3Az372M/P0008bf4DHsrHPPvtYsoGFY9asWcMKwkJx5513\njjgPeTjqqKPMxIkTzWGHHWb4LRECQkAICAEh0GQEZBEpufcuvPDCYSTEVTdu3DhLRrZt2+ZOdb4h\nGWFy4i4eeeSR1oJxyy23uFP6FgJCQAgIASHQWAREREruuoMPPrhrDb/4xS9GXD/rrLNGnPNPHHPM\nMWbHjh1m06ZN/mkdCwEhIASEgBBoHAIiIiV3mT8lk7SqPfbYo2vS3Xff3V7ftWtX13S6KASEgBAQ\nAkKg7giIiNS9h7roJyLSBRxdEgJCQAgIgUYgICJSw256++23u2q1fft2ez28ZLhrJl0UAkJACAgB\nIVBDBEREatgp999/f1etnnrqKevoiuNqWOLigOBPgl+JRAgIASEgBIRAnRAQEalTb/xBl5dffjk2\ncBkb1EFU5s2bN0xzlvSyJHjjxo3DzrsfN910kzvUtxAQAkJACAiB2iAgIlKbrvijItdff725/fbb\nbRRU38JBNNQzzzzTLt8NL+/FKXb27NnmqquuGkZi3nrrLRsA7Uc/+pElKn+s5fdHe+65p3nhhRfC\np/VbCAgBISAEhEBfEBAR6QvM6Sph1cxLL71k9t13X3PQQQd1wq8TjZVAZ3E75RLgjOuQGBdKHisJ\nQlC1KMGysnPnzk56QstLhIAQEAJCQAj0C4FRQejwoX5Vpnq6IwAJILR7VFTV7jl1VQgIASEgBIRA\nMxGQRaSZ/SathYAQEAJCQAi0AgERkVZ0oxohBISAEBACQqCZCIiINLPfpLUQEAJCQAgIgVYgICLS\nim5UI4SAEBACQkAINBMBOas2s9+ktRAQAkJACAiBViAgi0grulGNEAJCQAgIASHQTARERJrZb9Ja\nCAgBISAEhEArEBARaUU3qhFCQAgIASEgBJqJgIhIM/tNWgsBISAEhIAQaAUCIiKt6MaRjfjVr35l\nHn744ZEXdEYICAEhIASEQI0Q0KqZGnVG0aq8973vNd/97nfN3/zN3xRdtMoTAkJACAgBIVAIArKI\nFAJjPQuZPn26WbZsWT2Vk1ZCQAgIASEgBAIEZBFp8W3wwx/+0Bx33HHmpz/9aYtbqaYJASEgBIRA\nkxGQRaTJvddD97/7u78zo0ePNhs2bOiRUpeFgBAQAkJACFSDgIhINbj3rdY5c+aYlStX9q0+VSQE\nhIAQEAJCIA0CmppJg1YD0/73f/+3wWn1l7/8pfnzP//zBrZAKgsBISAEhECbEZBFpM29G7SNFTMz\nZswwq1evbnlL1TwhIASEgBBoIgIiIk3stZQ6s3pm0aJFKXMpuRAQAkJACAiB8hEQESkf48prOP74\n483OnTsNq2gkQkAICAEhIATqhICISJ16o0RdLrzwQrNkyZISa1DRQkAICAEhIATSIyBn1fSYNTKH\nYoo0stuktBAQAkKg9QjIItL6Lv59A4kpwkf7zwxIh6uZQkAICIGGICAi0pCOKkLN2bNnmxUrVhRR\nlMoQAkJACAgBIVAIApqaKQTGZhTCjry77babDfmujfCa0WfSUggIASHQdgRkEWl7D3vtI6DZ5Zdf\nbh566CHvrA6FgBAQAkJACFSHgIhIddhXUvPkyZPNXXfdVUndqlQICAEhIASEQBgBEZEwIi3/TUwR\n5Lvf/W7LW6rmCQEhIASEQBMQEBFpQi8VrONnP/tZ88ADDxRcqooTAkJACAgBIZAeATmrpses8Tm0\nEV7ju1ANEAJCQAi0BgERkdZ0ZbqGnH766ebss882p512WrqMSt1KBJiq27p1q3n11VfNtm3bzBtv\nvGG2bNkyoq3Tpk0ze+yxh5kwYYIZP368+fCHP6xdnUegpBNCQAikQUBEJA1aLUpLYLNbbrnFPPXU\nUy1qlZqSBoENGzaYxx57zKxcudKMHj3aTJo0yRx88MFm3Lhxdpk3AfB8wZL205/+1Lz11lvmtdde\nM08//bT9QE5OPfVU88lPflKkxAdMx0JACCRCQEQkEUztS0RMkfe///3WaVUxRdrXv3Etot/vvvvu\nzsqpOXPmmBNOOMFkvQcob/369ebRRx81y5Yts8vDL7vssszlxemt80JACLQXATmrtrdvu7aMmCLT\np0+3g0fXhLrYGgRuvvlmSz6feeYZuwHi5s2bzXnnnZeLNHAfMb23dOlSay0BrPe+973miiuuMFhQ\nJEJACAiBXgiIiPRCqMXXZ82aZVatWtXiFqppIID/x6GHHmrWrFljPwS0+9CHPlQ4OFhVbrzxxg4h\noY7ly5cXXo8KFAJCoF0IiIi0qz9Ttcb5AOArIGknAlhBpk6dapiCwR+oDAISRs4REojPokWLDI7R\nTOFIhIAQEAJRCIiIRKEyQOcYoHBWlLQLAQb+mTNnWgsIBIQpmH4LpGfjxo1m7Nixdkrohz/8Yb9V\nUH1CQAg0AAE5qzagk8pUUTFFykS3mrIhIVOmTDF77rmndUzFj6NqYYrm6quvtlYZZ4mrWifVLwSE\nQD0QkEWkHv1QmRaY0WfMmGFWr15dmQ6quDgEHAk57LDD7OaGdSAhtA6LzK233mqOO+44I8tIcf2t\nkoRAGxAQEWlDL+ZsA6tn5FSYE8QaZPdJCE6jdRNW14iM1K1XpI8QqB4BTc1U3we10IAll/gSyGxe\ni+7IpARLZl9++eXaB6mD9OLEiv9IXSw2mQBXJiEgBApBQBaRQmBsfiEXXnihjS3R/JYMZgsY3HE6\nXrt2be0BYJrmgx/8oDn//PNrr6sUFAJCoHwEZBEpH+NG1MC8PfP3hPBGcGLNGm2zEQ1ukZL0FStU\nWC7bj+W5RUDHNNJRRx1llxVXsaKniDaoDCEgBIpBQBaRYnBsfClMyfBhD5ovfelL1tGx8Y0akAZc\neumlBotWU0gI3cKUzJIlS+xKGkiJpFkIXHzxxeakk04apjTnRo0aZX75y18OO1/kDzZmpI4bbrih\nyGJVVsUIiIhU3AF1qJ43aqJvHnTQQTb2xL/8y7/UQS3pkAAB+u355583//RP/5Qgdb2SQJxwlL7m\nmmvqpZi0qRwBNlaEbJRJaipvpBToIKCpmQ4Ug3vgpmUgJE5uuukmw5u2pN4IELWUnW+bOr3BPYej\nNFOCmgqs973ma4f147/+67/MunXr/NOFHVPuySefbF5//XW7G3RhBaugWiIgi0gtu6W/SjElw4oZ\nSbMQcNaQppIQ0IZ8XH755eYrX/lKs8CXtkJACBSGgIhIYVA2uyDIiIKaNasP77jjDjN37txmKR2h\n7WWXXWZX/MhXJAIcnRICA4CAiMgAdHLSJhJw6p577kmaXOkqRIBBe9myZXZDuQrVKKRqrCIQ4fXr\n1xdSXpMKcc6XOO5yjAMozpjuw2+uRQnX+OBH4RxFx4wZMyLpgw8+aH1xXJl8f+ELX7D1jUj8hxOU\niY+Gnwd/njhdyIYOUfVzLao80ob9QEhHnUzLIOPHj7e/nXOqj5dNEPqDfocffvgwvWkrPidhYfqH\nuigTjMLYuzrD+fS7eARERIrHtNElYubHVC6pNwIM2oTmb4tfBffdo48+Wm/QS9Tue9/7nh10ia8y\nNDTU+UyaNMlccMEFlkjEVf+pT33KXtq1a5fZvn37sGSQAwLdsTTflbtjxw7zi1/8wtYX5ePBoH3s\nscdaYvjAAw908n3mM5+xU7iUmUYY6HGEJ9gePh9Oj3nz5plbbrnF1gUBQXbbbTd7/fHHH7e/Xfor\nr7zS/o77Q36IxO23326thK4O19Z99tkn1p+FjT8h9fw/uXzUz/8YZUr6gEAAvEQIjEDgBz/4wYhz\nOlEfBIKH5lBgvaqPQjk1CZxVh4LHXc5Smpc9GGhtu2n7nXfeGdmAYFWUTXP99dcPu37iiScOBQPs\nULCZ4LDz7gflcT0YjN2pYd/k43pAYIadp9xgr6IR510iVy/fvlx00UW2PP8cZVPWWWed5Z/uHLu2\nhdsQEAHbZvDxxeEVxoryu+ns2upj4eqIyxdXl6+PjotBQBaRPpC9JlaBqVxSXwQee+wxc+SRR9ZX\nwZSaYdnhLRwH3EGUYDA0s2bNimw6/RwM8tZ6EE7AGz/XooR4QLNnzzZ777131GWbj/xYPZxgIXni\niSdsXBqsE1HCcmvyJRHKxhKC9SNKXNvuu+++qMuJzm3atMncf//9XXUGI3RevHjxiDKJwRPV1nHj\nxhksKdu2bRuRRyeKRUBEpFg8VZoQKB0Bt8y6bWSRwZiYKIMowRt912Yfc8wxdiBl0PUFzKKIBj4P\nDLxEr40T8pHfXzH3zDPP2OSTJ0+Oy2YJMPmSCGWTlkE9Tm677bYRU0pxaaPOv/rqq/Z0N51dW92U\nj1/OwQcf7P8cccw0lqRcBEREysVXpQuBwhEg5sbEiRMLL7fqAhkQwj4OVevUr/r32GOPrlXtvvvu\n9jp+IL7stdde/s/OsUvHfeI7nIaPsVb8/Oc/7+Rj0MUKEEVuOomCgwMOOMD/GXv87LPPJk4bW0iP\nC/jXIFFWDT/rEUccYXbu3Omfsse98o3IoBOFIyAiUjikKlAIlIsAVoOxY8eWW0kFpfPWLDN4d+Ad\nweie6o9XAz+HjgNmMJsfeRzlsPrHEnQkBMpHQESkfIxVgxAoHIG4ZZKFV6QC+4LA22+/3bUeZylK\n2u/OgvLaa691LTd88S/+4i/slI5bxRK+7n7/6Ec/coddv0ePHm16pWVVTXgZb9dCQxc/8IEP2DO9\ndH7hhRcM+kjqh4CISP36RBoJgYFE4P3vf79ZtWrVQLYdZ8tugq8FUyZJHZQ/8pGP2OK2bNkSWyzL\ndJmq8ZfjHnLIITZ9N18diANTOkkE3xfSkidOVqxYYR1xs06ROB8PHLjjxOncyxcnLr/Ol4uAiEi5\n+Kp0ISAEEiLAjryDKgzWccHCcDyFqMStPInCDB8PVopcd911Juzg6tK7FSSXXHKJO2XOOOMM61xK\nyP04CwOrcZIKQdAgUHF5IEOsmPnEJz6RtMgR6SBnEAxiiHTTGT0+97nPjcivE9UjICJSfR9IAyEg\nBAYcgSBGiB1IsU74gylTFmeeeaYlFXHLe+Og+7d/+zcTxPqw5MInOQz+EARIShCPY8SKFojB97//\nfUOgNEiQE6wK5MO5NW7JsEvrviFE1A2RIi91O6HsKVOm2OkSdPXFTS3h7JpE2O4Ax12WgPs6u7ZS\nDnpktbok0UFpsiMgIpIdO+UUAkKgQATYBbotkWLTwsKqmZdeesnsu+++NgqpW91CdE/IAktc0wqD\nLo6oWFIeeuihzuoZLAMIMT6iyA1Ow88995whqiskyOlCuHV8SNI6txKdlKXE++23n7WOuPKI+Iol\ng3aHCYKLL0JU2fD0URQOrq3EBCFKqquDtrJ8mPYoSmoUcvU4N4q4aPVQRVoIASHQCwH2mPnqV79q\neGO89NJLeyVv1HWCmS1YsMAOmo1SPIeyWBkY4CEbUaQgR9HKKgQag8A7GqOpFK09AgwkPFgJMMQy\nzDfeeMOEneV44yW2AW+AEyZMsMcf+tCHat+2KhWEfAQh960KvPmxb0cb92XxpySqxFt1CwEh0F8E\nRET6i3fratuwYYPdwh2PdZbGYc7Fix2TLoNmOPonUUEJyMXcLUsL2cb+6aefthtOnXLKKTb/IDst\nuhvE4cRvcPTJGgP2m2++6ZK25puYF0cffXRr2qOGCAEhkAwBTc0kw0mpPAR4Q7/77rutGR3ywe6V\nJ5xwQub5fcpjLpxlfCwbxKntsssuy1yep2qjDn3y8d73vrdr+5kDh5C0ibSdfvrp5uyzzzannXZa\no/otj7KamsmDnvK2BQE5q7alJ/vQDgjDzTffbIj3wJ4Ua9asMZs3bzZs4Z7HyZDBlMEHhzq36RkD\nMc5s1NlmwUGTNrt2Y/ng0wtPVgd85zvfaRU0kFDCcEuEgBAYLARERAarvzO3loGSDbQcAYE0+NMF\nmQsOZWQAvvHGG+30DdEmIT3Lly8PpWr2T0c8+Ka9ScmH32qICCsB2iJggXWtFwFrS3tdO1ihwnqB\ntjmqYt079NBDXTP1LQS6IqCpma7w6CIIEIyIYEHEHcD60U9hgOIh/cEPftAsWrSosVMRtMNJEQQO\nSwp+OFik2iDcYz/72c/MTTfd1IbmDHwb6E/2xeGlQiIEeiEgItILoQG+zrQIAYeQr3/965W9raIH\nfig4aBINMuwAW8cuQme30gX9iiAf4Xbyxrlw4UJz/PHHhy817jdTcY888oh5z3ve04j+bRzAfVaY\ne5MAYmXc931uiqrrAwKamukDyE2swpEQggGtXbu2MhICdviQLF261EZNPO644wzWgDoK5mgsH3w4\ndlMuZT2MP/vZz9oVS3XEIo1ODz/8sCUf3GtMzfjWozTlKG09EHD9V9Z9X49WSosiEZBFpEg0W1KW\nT0LqZlpl0GJvDDYBq4NlJM1Kl6JvD/qJpb0sh26ybwVvz/Pnzx+2WobBTANZ0XdMf8rDyZyAe2n2\nxumPZqqlrgiIiNS1ZyrSq84kxEFSNRnBIuOCb/VaZut0LuMbEkQk0t/85jfWYlRGHWWXSV9ec801\nkb4uIiNlo198+Tw/cDCn75pMjotHRiV2Q0BEpBs6A3ht5syZhtUqrIqps+AMRyA0po36EUvDmZvB\nhAdtP+rshj9kCB34oA9LqZtmQWDQYiVW2Britxvc64C3r5OO4xGAWN5yyy3WYhmfSleEwHAERESG\n4zHQv4gRctddd5mNGzdWPtAm6QgCYBEqHv+RMsQnH3Ua5MODM8ubWVHUlH5zfQWZZAuAXqQX0sXb\nddXkz+mt73gEeJEhQvIgBaWLR0NXkiIgIpIUqZan42HPmycrPerge5EEbmcGvvfeewtZOUJ5Za90\nSdKubmkgIVGkCFJ2yCGHNGZennZMnTo1sQlfZKTbXVGPa0wVMlXZtoi/9UC33VqIiLS7fxO3joGM\nfT6atqMre92ce+65lkBkeWP2yUfU3jiJASw5odMzioRQtVulc+utt9b+bTSrriIjJd9kOYvHModV\nriwLZU71lL3GCIiI1Lhz+qWacxhsmmnf4ZOWRDEQstIEqTP5cO1DX4hIL0uVI2V1WVHk9Pe/aQex\naViqm2VFFmQEwilHSB/VehyztP4LX/hCIdbJerRIWvQLARGRfiFd43qilk/WWN0RqjE48RBkWiXO\nKkKaOqx0GaF8jxOQECTJwEvab33rW+bKK6+szfJmv3mOhOy333653prTYOLXr+PyEHD/g47gl1eT\nSm4jAu9oY6PUpuQIYA1BmuxchqWAHXvZEdifWvLJB/4vvSwKyVHrT0r0T/P2zyDwD//wD+Zd73qX\nJWZ1sow4EgJyONbmEUgZZIRPEoKWpy7lTYbAgw8+aP8Hk6VWKiEQQiDYcKmv8sADDwwFKtjPWWed\n1de6i6jM1592+OLaxXewk6h/qedxYKru4HLnnXf2TF9UgmnTpg2tXr26qOIqKyfYiXYoGJSG+Haf\nwAJSmT55K6YNafQnvS/0KfdhHfo2sFQNBZv0DV1++eW+irmPA+I1RNmS6hHgf099UX0/NFUDhXgP\nntaDKrxRrlq1ykyaNKkVELBPCdMvOHTyiZumqXtj3cqYpPrTj6xW8AULV0BObBRaIl1ikahCsLgx\nbcYKmSw+Id10xhrCB8uRpDoE8E1i5+SmWRyrQ0w1hxEQEQkjMkC/n3zySTNjxozGDth+V0E8cJR7\n7LHH/NONOoYsOBKSRnGmZBiQwwImlLdt2zYbOIzjfgnkiJgShOMn2Jo/ZVakDm7qSmSkSFTTlcX/\nHJtSSoRAVgRERFIid8YZZzAf0/mkzF6r5Ox2SvChtsiRRx7Z2E3gGLj5QB7SSC/iAkEhYBgDBVYJ\nVhiVSUggUwTGox0Em8OBOG2b0rSftCIjaRErLj39zQ7QJ5xwQnGFqqSBQ6AWRITtokeNGtX58Gb7\n1ltvxXbGpk2b7Nuvn2fMmDF222m3MiKc2U9Lfj4nnXSSrZP6kSRpcMry04Xr8X+vW7euUwd5qI9z\nWSSqzThook9WYVrmiCOOyJo9dz6HI+0oQpxpuGlvxxAQxOmfFAvyhadk4vKed955lhQQK8YREkzq\nRQmYMwWEU/AzzzxjV+0wFZN0eimvHo6MlEmy8urYxvzr1683gZ9ZpEWuje1Vm0pCoN/OLb6zJ86q\nfIKmjfjss88+Qzt27Bih3vXXXz8irZ+ffK+//vqIfH6acBnOOTRJGl9/0vvi57/66qtj9XT1+Xm7\nOauS3i87fExdaQXHsiASZ9pshaZ37TjxxBMLKzeYaqqFg2bSBtEPOF1mkbCDatIycIK95557bP8H\nFhPrRBoMKKn1oP5rr712WDlZ25JU9yTpsuKSpGylGY5AW5zdh7dKv/qNQKXLd++///5gLIqWgITY\neAgrV67sJMBycdVVV3V+Rx2Q7+STTzavvfaaDVYVlaZXGeRJkiaqbHfuuuuuc4cjvi+44AJz8MEH\nG6YSegkWFNJ3E+oaO3asmTVrVrdkw65t3brV7L///sPOVfXjiSeeKKzqCRMmGO6BJghv71k3dOs1\nJdOt/VgPsJDwwZLBPbZ48WLruEyYeO4L7iesjGHB2vHzn//cbjgYrIQxfDDNH3/88eGklf12vjFl\nTwlV1sCaVIxFDqsqy+YlQiAPApVPzQRvwyawYFifi127dhl+O/GJClMubJLlhMiMwRLZjq9GYBVw\nl+xAdMcdd3R+Rx2QPmB99hM3gCdJE1W2OxdYMjp1BJYUd9p+sz9KEvHb5WPFYBtYkzpFgE3ctFQn\nkXdAfsz0dRGmnoqQ8ePH26mBIsoqswxHJLJMXaSZkunVBqaDcCTFj4T/B+7TuXPnRpIQyrrooovM\nggULbFrilMybN69WJMS115GRqlYLOT3a/M09EyzJ7tv0W5uxHPi29dsEE57aCAbEYSoQfyPolM4n\nICf2ejhfVJwOf5qHKRpf/DJJFyVJ0oT18Mvx8wcEwr9kj8NTLK5tXIyammGKyS8zjBX5aadLg25J\n5aabbhriU6U4vflmesbHI6temOUxF9dVmBbJO3WQN39dsSlDL6a+wFxSPAJM7TKlJxECeRGo1CKC\nVWPvvfcOxqE/Svi3e8tnu3AnweAbOa3xmc98xiWxVhGmH6KEuAa9JEmabmWceuqpIy5/9KMfHXau\nm0MuCZlecoI1JIwN+6Scc845Lon5yU9+0jnudYCJHetBXsHR1Dmdpv3262Z6BjM/02+9cPHzNekY\nSwafPFMGzpLSpHZXqSsWHzCXZaTYXnAO4XWakiu2hSqtnwhUSkQOOOCAxG198803O2nDA7q7sPvu\nu7tD++1IzLCTwY9wuvB1fidJE5XPnQuTBs5DHHyJ08+lCSwE7tAwUEcN9L4vyttvv91Jn+QgrE+S\nPGWmefnll60/TJNjgcThw2CIpF0Z45dHGUlXyfj5Bv1YZKT4O4AXBlbLSIRAEQhUSkSKaIDKEAJ1\nR8C9PUYFHUuje1zgsjRlDGpaR0YcIRxUHIpqN4sIiKkkEQJFINAYIsKOnU6effZZdzjs27cgcKHK\nN34ccMMStoBEWU38PL5VBsfUYB6u6+fLX/6yn73rMasi4qauumbUxVQIMJUCAclLQjQlkwr2yMTO\nGiUyEglP4pPEnwFLh2fijEooBGIQqHT5boxOkadZVuiEFR+ssggvfw1iI7gkBj+ScePGdX73+wAf\nDAKY+eITKPTrRUQOOuigTnbyQmSKIlcszQwTt05lKQ5YNfH5z38+RY7eSXvh0ruEeqQoijz0Y0qG\nOl544QXrW8W9i7hluhxDpCZOnMih4X+R+4f/v6YNRrSDtvLJSw4tGAP4B2sIS78lQqAoBBpDRIgN\nwuANCUH+8R//0Xzta1/rkBGisfrLfX0nzqLASlNOOLYHEVD9eCBJ9INI4dCL7wTt/tSnPmW3UHcE\nizKJZukwCVbNpDKXFkFEnC5psCkzLVYerD1VCo6RRYY2Z0omj4NrHBZMGXEPEQti586dlmiwpPvs\ns8/ukGRXLwM3eiAsm9+4caO9F8k3efJku1UAG+01QRwZof1NI1JV48u9vWzZMhMEsqtaFdXfJgTy\nLrtJm99f/hq1jDYYVDvLUQOch0VXDS9/5XrUJyAsI5aC+unilrkmSePrT3pf/Py9jmmnL1HLd7ke\nri+uXPKnkbovc03TFj8tkT6rXJZMZFGWjBYlZSzVXb16dScaKnjlqYP2EqU1WPE0FAzwFnvONUEC\nC2OhfdWENufVkb4merFECBSJQGN8RIIB2EYO9QN8cS4sWE0ef/zxwqYwwuUn/R2EkY9NSqCzpNMP\nOISRvptgNVm7dm23JCOusfqCN+G2Ccu83RRCv9uG1QAp6i2b8opcJfPwww+bQw891FxzzTVm/vz5\n1sLB1JqzemTBC+sCZnqCm7HL7vbt263ObHxX9yWzbn8a50ycpf2Dlmf58uWt2ihz0Pqvru1tFBEB\nRBwyIRphQgIBYcAm9kYdpguIrxFYM+zUiut8YoGge1wkV5cu/E16nF/D5AYCQptfeumlxMTGlc0A\nwlx/mx7CDHyQK8Km91scjuBalDAVUkR56Mauu46AbN682ZQxjQKhYaM79MbPhH4ocmO9onD1yxEZ\n8dHofgwx5l4q497pXrOuth2BUZhX2t5ItS8aAfxLcDokxHcbhEEPosrbeT8Fp9Sse8bE6VmUoytv\nsJB2wraff/75fQ3HTX+ce+651odk0aJFfa07Dte480X79cTV0+TzbCOBXxlkUyIEikSgcRaRIhs/\n6GXhZIg5vQ3CoLdixYq+e/M7wpBlz5g43IuakoFoQkLoY8hmkTrG6e6fJ+omTrsE2psyZUqtrW9g\ng0WH/pREI4C18cwzz4y+qLNCIAcCIiI5wGt6VgYKTK1uWqHJ7fnwhz9sp71Gjx5tBxMGlDIHFd6g\nHQkpGre8UzLoxhYFrLYqcvVOlnYywLM5GtOI6FT3e01kJLqX3f9SHn+i6JJ1VggYo6mZAb8L2mJu\nZQrikUcesYOe36XuAerOFTGFgsWCwb4op1SnG995yQ16YX1AcGDutxXEVhzzB2fZSy65xE6dlYFd\nTLWZTufth0yV1jgT1jUCLOLcLBECRSMgIlI0og0rz00D5H0Lr7rZrAZZuHBhzy3peSP3I9yyKiWN\nQyh4IWnyJMWmiLJxSiUQWd1IiMOgaWSkCOLq2t7Ub8gtOEDOyrjvm4qL9C4OARGR4rBsbEm87SBN\ndULDGoIzJKtB0gqDPyTMCZFr497WITFYGMp6GOd9C8e69fTTT9eWhDiMm6In+tLn9HedLEsOx359\nQx5vueWWvjuB96t9qqd6BEREqu+DyjVwVhH8CeIG4cqVjFHAva3hkFnE/DXlgYMvzm+gzLfjvCTE\nrVBpylsrlps99tjDLF261Ie6lseDTkZmzpzZqMi5tbyJpFRXBEREusIzOBcJQMVg3u+lr3kR5iGJ\nlDmgYXHxY9MUQXj8duedknFk7N577+05NeXXW+Vx03Qu2xpWZV90q9u9pDCdOchWoW4Y6Vp+BERE\n8mPYmhJY1TB16tTGxBUp2wrgrCNh4oHVwZe8lpK81pB+kDG/vUUdu/7DAtWEQS4vYSwKt36WAwln\nX6EyiX4/26O66omAiEg9+6USrXjrg4w04c26bF0ZdCAiSaaq0CWrA2xeEkJ+yGNTBvPwjc0UDRF+\nm7IaY9DICM8DNhRlqb9ECJSFgIhIWcg2tNwmrGqAILBENdhorZQBLO9gQ/4kDrB56+EWYyBnx9ym\nRscFA1YuNWnVVhH91oTHgyP7/r3cBL2lY/MQEBFpXp+VrjHmWCJy4i+SxCJQukJeBZCQE044wXzs\nYx8rZZUPD9+iV8a4KR6vGZ0onuFpHz9Nr+OmW0Nc+5oYowIyktRi5trZtO+2xBhqGu6DqK+IyCD2\neoI2MzisXLmyVmTEWUIOOuggc8455xSySsaHgoE9r7+HX16347ADbJZ66aM27BXU1Ddv7kcISd3I\nerf7Ls01LFV1fBlJ0walbQYCIiLN6KdKtHTTNHXwGWGwYp+LSZMmdSwhRRIHyspjnUjTQVGmfdqX\nxs+EQZCYJ02a0uiGEb4Is2fPbtzOrm0lIzgSX3755Zli83TrZ10TAlEI/On/CyTqgs4JgQMPPNDs\nt99+ZtasWea3v/2t+fjHP14JKFgP2MX1i1/8ornqqqs6OvDGtm3bNvN///d/mVddMJC88sorfSMh\nKI9jKRYQX/baay/rK0Gb+KAX6SAtfH79618b0jj55je/af7nf/7Hhkx355r+vX79evP3f//3jWrG\nO9/5TsOHe4h+a4vcdttt1g+LiMUSIVA2ArKIlI1wC8rnbf2iiy6yLVmwYEHfBm0GYJww33jjDbNk\nyZLYeknHwJ3WRJ41X54uzWp5ccTE1X3TTTdZX5nzzjvPnWr0N32BRarJjpFZ+7ZuHce91iZrW93w\nlT4jEdDuuyMx0ZkQAgzwzBWzTJQPvgkMHGUJD0Ic5XjDZGkncQy6TZsQgpsPA0FScfqnJS9Jy49K\nR51Z35pxoAUD93nttdfMe97zntrvZhuFQ9Q5+s/tnBx1vQnn6Js092Dd2sT/HYJlatq0aaVtZVC3\ndkuf6hEQEam+DxqjAdYJpgsQBlQCaTGXXJRgeYHk8Da2a9cu+3ZMfIkkwa7cQM1A4B6ocXpRD8Lg\n108pyp8DQrNlyxa7dLefRKpsrPD/2bp1a9nVlFp+k8nInDlz7P/zihUrzNlnn10qTipcCPgIiIj4\naOi4JwIM+GyOh2PlhAkTrEMb88gQCEhJLxIQrgDigPWDMnBYZKvxZ555xsyfPz8TUWAgYKB2Fo+o\n+pwFJXytzN+0E92KEAgNb6xtE1YAvfrqq41vliMjaf8Xqm7422+/bZ3BV61aZadD2fYh7v+oal1V\nf7sQeEe7mqPW9AsBCAkWEj5YGB588EGzePFi+yBjOmX//fe30yoQi7BANNiqnp1iCUrGZ+HChcOi\nN+YZuLES8ABFL99ikKfMcBvS/EaXrFMyUfVgNRg7dmzUpUafmzhxoiWhjW7EH5SHjHD/QXqTWPTq\n1macwlk102+rYd1wkD79QUBEpD84t7oWBns/RDcPYCwmzz//fGS7cXxl+qWbhcC9VXZLE1n4H07y\nAOWNFPLBChWmlLKW1a2eJNewYBRZN9NWWA8k9UaA/4umkhFeDrB8SoRAPxAQEekHygNWh7NC5B18\nsSJgTcj6VsabKGWsW7fOnHTSSZX0QlVWmEoam7NSCCPTAm0SR0a4F7Pex/3GAxKydu3afler+gYY\nAfmIDHDn173pzqqRda7dzW+zHwvHWcvJilPRUzJZ9WhKviZOYSTB1hFzdz8myVNVGv7nmGJta19U\nhavq7Y6AiEh3fHS1YgR4iLuVOmlUwSSOuLdQymEg6OdgUNQqmTTtVtp6IuDuw37ef1mQWLNmzTC/\nqixlKI8QSIuAiEhaxJS+7whgsnfEIknlTIfw4HcPf5fHvZmmKcvlTfutKZm0iJlc03Dpa+t/Dnc/\n1pWMfPnLXy7Ul6n/CKvGpiIgItLUnhsgvTET80nyAHcEIM607AgK6coS9CxylUxZetatXCxIrJxp\nszgy0g8ynBZHR9TT5lN6IZAXATmr5kVQ+TsIMAC/8MILZseOHZ1lmG6ZLoncsl53zMqPI488MpEp\nmAe4s3R0KvQO8P9IujIGkoIjLeVhbYkjLV7xqQ6LXiUTrnyfffYxjz76aPh043/7m/41vjFdGsC9\nzP0KGSli8Of/7vvf/755/fXX7Z43xAPx/++ozxE8/gf5vxs3bpysH136SJf6i4D2mukv3q2rjYcp\nMURY7bBz5077wDv66KPN+PHj7RJdGuxWz5CWwYaPe2i++OKLNt/06dPN5MmTh8USiQLLWTz8azyI\nebBneaijE0TEvan65WY5jtIvSznd8lDH3Llzbdj9bumado0AWgixaQZBuGe5d7Pet+7/jii7BLjj\n/w6Suvfee1v4wv93nGRJ/fbt220Yd/5f+Z875ZRTbPyfogn5IPSh2lgMAiIixeA4UKXwAGU/imuu\nuca2m4fgGWeckemBSgGQgU2bNplFixZZUsIge/7550daKsIPbx7kSB4ikYfI2Mr/8KcIXfzy4o7B\ngDgsELqsA1lc2VWeZ8sABlJ2e87Tn1W2IW3d9GVSSx5lP/zww+aWW26x/zNJyXucTtw7Tz75pGF3\na/4HL7zwQjNjxoyBwT4OF52vAIEhiRBIgcDq1auHgkFiKCAfQxwXLd/5znds2dQR7DA7FAy2I6oI\nHtz2PN/BNMiI61lOUA9155G8+ZPUTR18Dj/88KFvfOMbSbI0Jg197vrUtbMfmNYBoF7tDIj/UDCt\nYj9l/N+BexBJdSgYgux31P9dHXCSDu1EwLSzWWpV0QjwoAoCHdkHYa+HZhF1Uwdkh4cvD+Gw3HPP\nPZEkJZwu7W/qzfIQLgsTyvU/rj3XXnvtEJ+2CPcXfR0lfvuLIp5R9VR9Luoeor38H0DSyiAg4TZT\nX2AVsfXxPyYRAv1AQESkHyg3vA4eSLwpYaHotzgLDIOuIwg8sDlm8CpDKDfNgEfaNOm76Uzd/sAb\nl9a9Icddb9p5+pc38l4Czknw6VVOXa/7ZCTq3u+X3ugBMYSUuP+7ftWtegYPAfmIVDAd1pQqmb/G\nDwR/kAceeCCzD0je9jKX/elPf9r87ne/M8GAZT7+8Y/bIsv0yaBs2p/EkTCPgyr1BINrB6I0q3hY\nIkwAKueU2CmkgQfsvrxkyZLUbQF7J+ARWA7cz8Z+06b77rvPOoBX2b/c/3PmzDE4lFf5/9/YjpTi\niREQEUkM1WAl5CE0ZcoU22j2najao54B+4tf/KLdN+app57qEIQ8JKBXj4JBYKHoOjimrd+V6erO\nM3h+6UtfMmyA1/TNyXDAhPBu3rzZwZLp2yd1OPMmIZGZKio50xVXXGG+/e1vm3vvvdcccMABJdfW\nu3hWMy1YsMCu0moqpr1bqRRVIiAiUiX6Na3bkZDDDjusNoMcOkGGeEivXLly2EMxLRlICzvlR1kq\nGPiQXm/h5HdS5ABJ/RAZLCq9dHD11/GbvYDOPvtsc9pppxWmXpjwRfVfYZUVWBD398svv2w3naMN\ndelXyOIll1wy7P+uwGarqAFHQERkwG+AcPPrSELCOjoygrUCcoLODMplvq1FxRuJI0A+8UD3MqdO\nwAJpqlUErKZOnWotT2Va3ei/wNfBYlUkGbQFFvTHJyFlYpFVXZGRrMgpXy8ERER6ITRg1+v+MHTd\n4fRkmgZhoOHtscwHOGQH0gPh8UmIP8ihS5nEg/J9QSfq86er/Ot1P8Y3ZP78+YVaQ3q1mT6ExDqp\ng7WE6Y+77rrLbNy4sdR72LU56zcxR4j3U3c9s7ZP+apBQESkGtxrWSsPmauvvrr0t9OiGn/ccceZ\nYEmxmTdvni3SJwdF1REuh0EMB8K//Mu/NKNHj7aXqx7IGMTQyZGysM51/V0XvX0iWYW1xFmFmkIm\nCTxHGPmHHnqorreW9GoYAiIiDeuwstR1b9ZVeumnbVuUzmWQkfAbNKGxISFVExAfL0gZUxxNCY/O\n4A9+WCbKnFLzMUpyHO7rsvuY+qjjuuuuM+edd14SFStPg85HHXWUXVHTFJ0rB00KdEVARKQrPINz\nEYfBIG5Ax7rQlJaHTcWQEySvkx+Exon/luwTnX5MBzkden2jC2QEsznh9ussTRrIfGtJnhVOcf3B\nyif2immadcFZcfjO+78Wh43ODw4CIiKD09exLXUPFef8GZuwphcgUWz45awBPllIqrI/4JAnys8j\niuSQD7+UOjyMb731VvOv//qv5j//8z9rZWXw+wASwrLwOq3I8vXrdkz/+zFfou6RbvnD1yivyaue\nmu4oHe4P/a4QgcGL4aYWhxEggmI/wkeH6y3qN1EgAyIwLAKkH6Eyqp6AdA2L0JkkemRcmUT7pLwq\nBd1oA1FwwaJqfeKwIHoqWwUkwTuujLqcB3P34R5IK2BRRbTitHrGpafNwdCVO6pwsCOwLYey7rzz\nzrjqBup8EECugwm49FvoB+rlE+yUXnr1/W9h6U0qpoLgja3TEeF/jm7Xiqm9f6W0JVQ4+3H4D3UG\nOn8w5qHpBg03aKdBmTzdhPp6pemWP+u1qHoZ4OpGRtCTcOFtISHh/grfX+Hr4d9uEAeXJgv3Gp88\n4p6nfA+SuIGeb4iHL1UTEXRx/XLiiSf6qpVy/CcBCJIGIzBq1CjjPg8++GDqlhAcjDDOTZe5c+fa\n5Y9+O1599VU7TcFUDYIp3X3SLPN1JnS/7PAx5VE2dTH90A9BLz7hKQJiiuD8iM/Ihg0b+qFK1zrc\ndMybb75pA3Wlwb5rwTW6yNScu7fcfcC9wIc+CstXvvIVEwzgtV6qG9Y56vdll11mFi5cmPmeJ6w/\nAdwQ/ocl9UHA9ccTTzxhsowtqVpSCr1pQaGODQZgjjAXdrvW76ajn/uEWXUvXdryVuba+bd/+7dD\nX/va16xlwllDirBSpC2DusG2TElSh9s0zbcUlalTVNlgh3Um71tzVNlNOedbS9x9WTeLVR4ssUZm\nmdoNticY2meffezzi+9BE/fc5jvts7sfWIX7h99liSwiwV0wqPLkk0+awFze+Lcy+o83T1aL8NbN\nG6lbEureTrP2MeVSRhpxdePIWoagE2/gfLoJIdOJTcGSbKwjZekTpQNWEFaEsKQYJ9qmRn6Nalva\nc/QT9xAfjm+77Tbjr8RKW17d0hOef8WKFanVCgZfs2PHDptv9uzZw/LzBu4svV/4whfstRtuuKFz\njmsXX3yx2bp167B8/g+sLYcffviwPJx76623/GTDjimPcl3dY8aMsdYA8rhzfIfL4HdYP9JxLqzj\n9OnTbVl+xWeeeaY95ywPfvspBwmm8YbpgJ5hCadZt27dsCSbNm0y4Om3BX1cvX5i7tFzzjnHnqKf\nHn/8cf9yscdFMhx8KXxrQaCptSYEjRhWTRA0q/MWDxMOX/fL4DgsMDPfmYZ64ury8ybVjzy+Dml9\nRHC+8tuIbmeddVYs6/XrAgvyMy/n2gVGYR0oz10Pfydl18zZZ3mT8TGt0zFvmzjehoU30iwWiqz5\nXP3M/6e1pri8Ud95ysMqEgyC1jKRBYsofaLOoaOri/urzLqi6m/CuWAH6SE+bRH6nGcQ32nEf+7x\nzPOFZ5h7rvEs9Z+H7rz7DuflGdotPc/TKAdMynFlhr+vv/76Ydf8MYuywunDv/3nd5Jnt99+ynJy\n0UUXdeqKsiJRj6ub674Vw7/m0vjf4ByWgHx0yivTV+SPLQxrkOJ32o4nPSA5EHwAwh0QvsnodD+v\nK8P/DudJqx9N9/9J/Juo17UsnR2uy2+Lf8wN7CTJzezSxn1TdtEDBVjTh/QpOkb1Fee4RhrSkqco\nYbCNahMkJe2DsigSQTlp6w7jQZucWT98LelvymCKhH7nO295fr2U7QgIpvqisPPraMsxDrtF41P1\n/x1twvE9qYQH73C+8DjgPwfDx+EBshsJcXl5BvmDNMdRzyqXPvztP7P853c4nf/b1Zfk2R1uv8Mn\nfD5MqHyiwrETn1D4OoWPw2MdOvtpwvW58vN+F0JEsnR8eMB2Het3qg8kDU16s1CGL1n08/UId07c\ntayd7Zfnd3rUMXUgSW5mH4PwcZz1IJwu6W/6z/8niNK92znyunsgaZ1R6brNV6d5+KdJG6VH+Bx4\nRxGkcLqo33nyRpWHHryRQ9qwIHGcpb3oxXJhLB/0Ld9ZyonSsc3nwKooqcv/HfdQGl8k//kfJhJg\nEx5wSeMGQcaB8PPPDfLhfP6zu9s1Xx/6x88XtoZw3T2rwlYUP1/4mnt2u76nHPdBN1/CurprYWLg\n10can0z59fljjI8l7fCxDBM0yvTzhuvjehGS+z8iDJivaLdrKO830L0du44BENfZrqGU7a7z7dcV\nvllcJ3TTods1Xze/nrDe/jU/T5rO9vOF20U7/DbTTl/8a7QnqfD2wqBdhKCj/w/g65TmmDJcv2XV\ni4dh3AMRqwSDZy9hoM5KGrqVTZlJ6vfLIH1ea4pfXviY+4BBBEJCX/FmC6FwOIa/Sct9A4nhQ1qm\n98rUMaxzk39D1MC4CKnT/x33APdCUvFfWsIvnJQRfjaHx4KwRcVd98v1Le1OL38M4bnrhOe1e1ZF\n5eOcu863q88vj+dXWPxne/j57JcXvhZuv1+u30YfOx8TdHHkzD/v6+7KJJ3//A7r4hOVKGxcOXm+\nczurfutb3wra9nsJlDSzZs1yP63zYNBRnd+3335755iDYIVD5zfLDRcsWND5zUZme++9d+c3B34Y\n5HBdV155pY3W6DK88sor9jCPfq6sJN84JLllaKRftmyZGTdunM1KO+644w4TdLb9HdzEsY4/4Xad\ndNJJJrjZbD7+sNlUERLcnDYaad6ycNKiz2lTXqEMygo7gqUpF4yfeeaZyCxu2Wiv5bUBYejpCBpZ\nQY+TwcBty8XZNIk4p1Snd5I8adMcf/zxNqz/5s2brTMc/4PsIxInu+++u11miW7gtHTpUrtzbpk6\nxunSxPMBYTN77rlnbtXr9n/HMy7Ns+mFF17oYLDvvvt2jqMOgsF8xFjgnq3h9H65RFsOy+TJkzun\neF7TH3xYouokKl/UOdLzvAoGYPvZvn27LQKHUJxicSb1xwRXft7vY445plPEf/zHf3SOn3322c7x\nJz7xCesQzYnXXnutcz4gXCOw9J1SSfiTn/ykk56D/fbbr/P7xRdf7BwXefCOvIVl6Xgajhx55JF2\nt1dICOI6jRvPJzT2YvDHv1mCNzh3uvP90ksvdY7dQR79XBlJvpN2tmtruLNdHVHt+sAHPuAu1+6b\nOCRhEkL/BSza7LHHHubggw+O1JkYHzy4gjfyYf1KWZQJscwiYfIaLoMVLQyicSthul0Ll5XlNwM2\ndVNP3IZqEKXAEhKrY5Z6k+RxusVhk6QMpemOQFEvAHX7vyNU/apVq7o33rvKxpFOeE50kwMOOKDb\n5WHX3BjCyZNPPnnYtagfkJCwjB8/Pnyq8xI54kJwgjICK4K54IILoi4Xfs5vF89LXoIhZt/73vc6\ndbGNgpPA4uEO7bPWrcLpnAwddCOUP/vZz0Kpi/mZm4hk6XhHRGgCb/v33XffsMHMt5S4ZobfkllW\nlUTy6pekDtIU1dlJ25VUr7h0WA1YdpdXIBK+8A+ZZNM1SCgC4eANYuLEiZ1iKDMrEekU0uXAEYHw\ngJskcFmXYlNdou6ofWrQASIS1i1V4UrcegTq9n+HtS+NhF9e0uStU1pISDDV1nmJdrph2R47dqxh\nFsAfg9z1PN+Mn7zo3X///bYYLCG8gC1evNj+xirsP0/z1NWvvH/Sr4ri6qEjwzclb8uS8hHoZT1I\nooFvpeKfLwkJCZfrLGPuvF+mO1f0N29w4YiXZU3JxOkejjfi4ny483H5dF4I+P8jTfq/cz2H1bQM\n8csNnEU70yZu+iT8HfUMxGoVlvAY5a7z4uWIBnWTjjq+/OUvR1r1Xb6838QFcoIlhLY68adlOMd0\nqhMITBiD8G9077fkJiJ5O56gR2HhXNgC4ltRSO/m48J5w7/z6hcuL+53Ezo7TveizvMGkFXy5M1S\nJ29wWB6cv0jZUzJxOjq/keXLl1v/kbRvlnHl6vzgIJDnfydP3jwI77XXXp3s3aYCOokSHhxxxBGd\nlElfaCEjzn+PzFE+ZlHnSEvAQCcXXnjhMP8LXrIdSXFpivomAJoTLCG+fv60DGkOOuggl9RgPUGv\nrJJmmixNHbmJSJaOdwoSzc2Zl7gRcKRBYJXOzOTSQkT8myXKx4JpDRcxDmchJI9+ru4k30V2dpL6\n8qZhXjYc8S9vmf4/Zdqy8uRNW5dLj+UBX4x+Tsm4ut238wc577zzrC6OGLnr+hYCvRDI87+TJ28v\nvbpdf9/73te5/OMf/7hznPfAd+TEZ8ONA5TLy60fNZWoq05cBFF+48fn5+PY+fa59FHfLKZwgzzT\nzZ/61KeikkWe86f2IxOETrrpGXfa6Rc1LYP/iHshZ2xFL//Zzzjsj53hKKtEq3biynG/C/sOzDK5\nhKU+gTKdj7+cNWj0sNgSQSM6dYWXDJEvvO6a374EJshOPdTpL/UML99lyRKSVT90de3y20SZcdf8\n8/7yXadHcJN0ykQvJ36+cJtJQ/1OFzDwxZ3nO6ynny587JZlhs+n/e0v7UIH+oG+TSqk9dtHGZSZ\nVVgemWZZcvDgGPrGN76Rtbpc+aKW87Jcl/P9FnAAO+4Lt0QXHMMfAqGRJvBRqETPfuNSdH0O37zl\n1u3/jvs2sOYlbpb/P8+zMiz+czvueeA/+xhrnPjPUz9N+Nh/BpM/fL3bb1dfeNzplsevD12j0ro0\nfvtJFyU+hq4sfzmvnydcnksf/ga7sPjjlj/mhtPl+R3dwpQlZul4n1TQUDd4+f9gYVCS3izhzsii\nn58nPMDHXcva2X55eYiIu6nczdytG4t6IEb9M6AHDxf6kutRH66Rxunsf4fx7taO8DUCbKXZYI3B\nl4G/34N/N8LRL32oB7yIawH+fDuiAS5RH9Jz70BQyJMnIFq47wbhN5imIcpxmNTt/y5tu8LPcvf8\nd+31n6VpiQhlxz1b3HMm6hnj1+nSue8w4XBEhG9/oHbp+WaMYyxy5yjDlygd3bM7rIufzx2DmSvb\nfXcjCnH3jMvLOOTaFVdHuJ9curzfhRCRtB2PtcI1nm//puh2jVopbAYAACaLSURBVMaGO8gvh2M6\nNwxWWv2oxycHvn69rmXpbL+utESk282MrnGS9sERVw5YR+kQ7pekv6P6L67uqPNpIjz6Az549Euo\nCwtEN0E3yEoZgjXDEQmIB7976ROnB21xAdEgJRCVrGXF1dGm8/QpOOWVuv3fpX0BoP3+cyM8gPrP\n+bRExGHLs9ivg2cQ5CDqGevycI363POKZzO6cN6d49sfYxizfMLh8lBmHIHhWjgf5VIX4ref83Hi\nt89/oY9LT51hndA3PMa5/PSLa3dcP7i0eb7jW5ih1KQd74MHCGEJW0vCLA0w/TQA1Q1MV35S/UhP\nea4Dwp3U7Rp503a2X17UPwn1O11oty/dbmY/XfiYgS6NKTWc3/+NDn6fOl3TflMGZeURBlgG1iQS\nJh/h30nKSJPGTX8kzZM2fa9yaR+DYFmEwREc7iusJpJoBPi/KIKs1en/DkILGUkj/mAbfq6lKacf\naf1nMAP+oIhPsBxJKqPthRKRMhRUmeUhwIBU5Fs3/6w+qUpKRMgTJntZW530IR9FOnwLSdb64/Ll\nsXCga56Bi7oJvw1BSDtYxLWn23n0hRByf0Xh3C3vIFxLQ5aT4FGH/7ssfY1VwU1rJHmbT4JF1jT+\nixTPI//ll5dDpyfPF9IOgtA/7hkOJmXKKAoPKpMMIAJXXHGFjXzKio0iBe/05557zgZ5Y437L37x\ni2HF/8Vf/IUhWixLnj/ykY8MW/I2LGHKHxs2bLDr93utBHDxQ4KBeUQNxPLgfJEhy6MCl42ouMeJ\nrGWAybnnnmumT59u5s+fX2i7eqhsWJIcvOkaljWyZYPk9wjcfPPNNvzAjTfeWCgkVf3f8f9EAL6A\n8KZuDytSXETSgFCVGnujm3K+Ht3ScS2wDGSKl9Sr3Lpd9zEpvc1lshyVXW8E2KiqqA24qm4p0wKz\nZ8+2/gq9dOn1lt7req/y/etYnPJYM/yy0lpV8N3ACpJ0qsqvq6hjdOYe41MUDkXpVkU5YMAqrdGj\nR7cGjyz+IT72zhpR9lu3X2fUse8bEpCCjjXAP677FFJUu7Kc861V/bAAaWomSy+1JA8PRQYqBoum\nC235q7/6K/uQh0jEkYm48377KauIKSvqoqwihfKStIE5ewb/ItpRhP7oU/RUYBF69aMM+oA+4+P6\nAyyqJIhFtjtvW/B1cYN9UVO0WduHH4TvF+H0wsEzyn8vaz11z0c/0HampPxpqrL01tRMgPYgC9Mz\nSNFm4n5j+vDDD5tbbrllWKRDoqU6IQCQm26JmpJx6dx3t+kblybu2wUpK3O/mG6b5tGnRHRcu3Zt\np81xuvbzPHqxWRtTZ20OY8+9409TRG1uyLTVI488MmxH8X72RVF1cR9OnTp1WHuLKlvlDA4CIiKD\n09eRLXXzu8GbWq0GrUhlu5w89NBDrQ/EaaedFpkKchBMRdldKknAXjO9CEmWsO/gSV39GGij/Ebq\nSkJcpzgy0vT7zbXHffukN8m9xT0CQSFfr/vQ1VHH79NPP90cffTR5tJLL62jetKpIQiIiDSko8pU\nk8GBEL9NfZhgDbnmmmvM5s2bY2EKk4okb60UFs4XW0FwIYoYdEtfxDWf+OAEedddd5mNGzfWmlTW\nnSwl6Rf6Opgm6yTNYv2iv9gjhNDgTRT+N7CGtI1UNrEvmq6ziEjTe7AA/RnMeIvDnNy0tzPeLI86\n6iizcOFCc/zxx0eiQfuQbm2LG1gon/y9LBw8lKNM8JEKFXwSHbH2/PM//7N5+umne+pacPWZimP3\n0MCHpTGracCYAddJEX1NmZSzZs0au+rEld2Ub1lDmtJT9ddTRKT+fdQXDdnxeMuWLY17O0uidxqr\nhgObPE7+93//13z0ox+NtDK4ASrLG7ErP++3G9BuvfVWEzc1lbeOovND7sDs3nvvjSWQRdeZtjz/\nHsDHqBcZTVs+6fEVWbRoUe2tWOG2Ob27WSHDefRbCMQhICISh8yAnWcww7IwZ84cU3RckbKgZKDA\nNMx3nLWDa3lJAthE+ZcwmHKtjAEqDWZMdbCV+tKlS9Nkqzytm1Kry1QS/ek7mea9b5ICjGUhWHnS\nGOsQ1kMsWk215CTtF6XrHwIiIv3DuvY18YDBVIwJuurBtRdYSawADCxIHEnpVYd/nfooD1z4JmDb\nu9/9bhPEg6hsSgb93KDQjYz57ajbcdXmfXBzksTJ1KUt8pv7CdLTBIsW/wdTpkyxLwBN9Skrsu9U\nVjEIiIgUg2NrSuEt9ZJLLqn1Ekv3MAwCIHVddlyENcTvWEdseGv2fQTi/Ev8vGUdVz2Q520XfdRP\nh8cq+6obVi4CLkt6ua/rKjNnzrTWt6Y62NYV10HXS0Rk0O+AiPbXeVWDIyF77rlnV3+WokkIMFE3\nUzS9pq78t+yyfAvQx1lDmr5qoUwyRZ8V7WQK9mXIv//7v9upUVbS1NEiWefnQhn9oTL7h4CISP+w\nblRN7qGzePHi2jwUHQkByG7BupzloogpGddplEn9DBBpSE54ICzS/E8fsV9P0/dxcVYR3z/D4Z7l\nu19EMItucXnc/bV169ZaWiTd86Db/11c23ReCPRCQESkF0IDfJ2HT10iYfKg/vSnP232228/u8rA\nRUmN6p40RCEqf/gclgfqc8QGcoE+Wd5ayecPuP4UT7jebr/Rgby01enVLX3drxGQrtsS7G76hzHt\nl5NpN53SXEN/xPWjmx6tg88I9xk+IYhIiIVBf0pA4E//XyAllKsiW4BAsNmRHfhZTbPvvvsaBosq\n5MEHH7R+BGeccYYdrN75znfGqlEGCWGA2GuvvTp1Uj9Levnupksng3cAocEq4j7btm0zP/7xjy2x\n+fWvfz2sHi/biMNvf/vbxr09j7jYwBPvete7zLPPPmu453oJg+Mrr7xiMWMQZ/oLUuYw7ZW/TtfD\nJATdDjzwQPu/NmvWLPPb3/7WfPzjH69EZf6XWA7O0vXbb789cvl6JYqp0tYhIItI67q0+AZhETjz\nzDPN/vvvb4gG6d7ciq9peIkMOCwnfuyxx6wVhCWO3awQUQ/14SWm+8WDuJvFomjSQ3t9f4Zu0zhY\nq5ocDTfcE/QdlgzfWuSn8Z1My/S78ess+7jX/cp1rIDIggULci9DT9oe7sOvfvWrlnxcd911PX2i\nkpardEIgFoGydtNTue1CgF1fb7rpJrsjIzupBgNGaQ10dQWEZ2jGjBmdHWw5HwzUsfUm2ZU2NrN3\ngXqSlpU0nVd84kMwpnz3QS8n7HjaDQuXrknffptcH0S1vUltitOVvk36P8T/Hf8LZf/foWvgjG3r\nmjZtWmL94tqo80IgKQImaUKlEwIgwMOTB2LAbO13kYMhZbuHLg/CqEHeDVDh3ohKG06T5Dc6pGkT\n6fn0Q9CLdr700ksW/37U2c86zj333KGrrrrKtjFNH/RTxyLqynLPcN/7/3dF3e+0h7L5v4MI8lm/\nfn0RzVQZQiAxAn8SayrRBSEQgQDTMjfeeGPHhE6ERT5M2TBVkVYwuRMumjKYiti+fbuN2Eicgiin\nQ3wsOE9dmJARTNjkzSvognSb/gnXAR7o4XQJXy/yN3rR9t/97ncmIGpFFl2Lsg4//HDzZ3/2Z7aN\nafqgFsonVKLXdExcMdz37v+OKTn8R/DZYouDLP936IFTLHFBmOrC52bJkiV248i4PZvidNN5IZAX\nAfmI5EVQ+Q3BmPDjCN6k7H41DJJjx461PgzAwxJTHnY7duywaO3atcume/755+3vyZMnm1NOOcVM\nmjQplUMcxIEHdPCGGUlabOEJ//Aw7+YP0qsY8kcRp175slyHuL366qtdg7llKbfqPGCIL0Rbg2Vl\nJSFx/cL/HRF+2eiQD5sIsqpswoQJnSzjx483r7/+uv0d9393xBFH9M3vq6OYDoSAh4CIiAeGDvMj\ngGUgMKvbFR08+BCsHOyF4j8gJ06caK0YWBTyyDe/+U3zvve9L5UVw6/P6ZuXRFAOA00/3uSxPiFt\nC7HdZiJSNAnx72GO3X3MSqpu/3cQk7333rsv92lYR/0WAnEIiIjEIaPztUfAPdyxikB+0pIJ8vMA\nL4o8YKGBWKFPmdJWIkJfYDkLJpbLhK/vZbv7NC/p7rviqlAI9AkB+Yj0CWhVUzwCTMm4gR8Swhs1\ng1kSyeIP0qtcCA2ESJINgbIJXDat8uVy95lISD4clbvdCIiItLt/W9u6KJ8MyAhvn+4NNK7x5GVg\nKGNwcIQorm6dHxwEnIWsjPtscFBUSwcBARGRQejllrURohG3SsZNs7g3Ub/pWEscgSnz7RvdepEh\nXy8d/x4BMGvLoO1ISJn3me4bIdAWBERE2tKTA9QONyUT12Rn7YB0OGGQ45PWj8TlT/NN/ZCepNNE\nacpuc1r6FSfmpotISNN7UPr3G4F39LtC1ddeBBh48ZFgWa5bKhjVWre0Fw9+9tVI8xbsLBpR5frn\neBN10yR/+qd/av76r/+6MKdUv564YywzSXWNKyPuPMuhN27cGHe5seeDwFqN1d0pLhLikNC3EEiO\ngIhIcqyUMgIBrAxPPvmkDUrmYhkcdthhNobI3LlzI3IYu7SXJb2LFy82q1atMkE0Rxugi03t3NRK\nVEbqipuSiUrPOVZh/OY3v4m7XOp54pIwMHVrUxYFxo0bZ/HOkrfOeYh3wb3QVBEJaWrPSe+qEdDy\n3ap7oKH1E5VxxYoV1voxffp0Q1CyD3/4w5mWrrrATOzwOXr0aDN//vzI4GZpLQykd0HKIDFYbIom\nBb26j3qRNFafXmXSjjYucyXKJ4Ht2PG1aSIS0rQek751QkBEpE690QBdIA3BnhdW0zjCkKcZPsG5\n9dZbO4NSGhLipojC/iBx5/PomyRvGt2TlEcawnsTkjvcxqT565gOa9dTTz3Vd7KYFwuRkLwIKv+g\nIyAiMuh3QML282ZPJE/8P3yCkDB76mQM3uynseeeexq2vGfgTWJVSGL5KIMY9Gpg0XWCCb4i8+bN\n61V1I64zmLPfEA6rTRKRkCb1lnStKwJaNVPXnqmRXlgpePNm/h5n1H6Yzqlv8+bNZurUqdZcn2T/\nEQYFpNf0C2VDDLCQ9EuKXNIL2WJPkfvuu8+2o19tKLOeBx980DDF1yThHoIca4luk3pNutYRAVlE\n6tgrNdKJN++VK1faHXGrmgaAYFx00UXWOnL33XdHPvgZFJw/SFL4KJdBJImlJWmZ3dJlfXsmn7+i\nBFKDzk2dyojCCIvXwoULTVN2fi3awhWFic4JgUFBQERkUHo6ZTuxFpx//vnm5z//ufn617/et8E6\nTk30mTNnjnnzzTfN2rVrO2Qkr99HkqmcOJ2ynE8ygIWJRxzBYgt4lkmzPXyTxfkdYQFrgiTpwya0\nQzoKgbogICJSl56okR4M7lOmTLEa+YN+HVTEQvPyyy9bMoKefHpNxfTSOy+Z6VW+f526ID++zgxs\nvsQRDz8Nx5SDVaRXgLdwvrr9Pv30083RRx/diN2ERULqdvdInzYgICLShl4suA0sowxbHgquIldx\nkJFvf/vb5t577zUHHHBArrL8zAwySUmAny/t8Te/+U2bhaXKSJ4pL7BAmmoVAXP8gPA9qruvhUiI\nvdX0RwgUjoCISOGQNrtAzP0EJqubJcRHFVM+JIRAZUmcWP28vY6L9htx1ha/Xucsm4eAuPKabhVh\npQxEhBVZdRaRkDr3jnRrOgIiIk3vwQL1Z4A/99xz7UqMfjlwZlWfAZ7pozIGsTx+I2HiQeAxfxrG\nb29Rg9vNN99snnnmmcJJma9rGcfLly83ixYtsqujyii/qDKL6qei9FE5QqBtCIiItK1HM7aHAZRp\nCSwNTVm5gPWCN+o1a9bkmt6IgswRil5WC5fOldGNeLg07pu8YX8Rdy3NN+UcddRR1pn3vPPOS5O1\nsrRl9l2RjRIJKRJNlSUEohEQEYnGZeDO4heCLF26tFFtL/utmoHI9xuBOPhBt9IQjyhgGZCLiEVB\nOeiJr0WcBSaq/irOQZzKsmYV2R6RkCLRVFlCIB4BEZF4bAbmCg/cpjgMRnUKVhEsAWVYAyAezz33\nnHn3u99t98FxMTyi9Mh6rqgBj8Bzl1xySe3DpEN633777VpPJRXVJ1nvCeUTAoOEgIjIIPV2TFub\ntHwyqglFEiksC1HBw/L4jUTp7J8raoqGMv3lzXVchVJ3/egLrEq9puT8/tOxEBAC+RAQEcmHX+Nz\nFzmIVwkGZOrUU09NbRUJEw9/GibcnjIHKYgOUoSTsBvs6xCIzsfQ6VXXFVlFEkK/3ToWAkKgOwLa\na6Y7PrFXDz/8cDNq1Cj7YRdUX9x5vjdt2uRf6nrMfht+3q6JC7p4xx13mLlz59Y+hkOv5hICnhUY\nvQTi5X8Y+Hn7dZ9uVgSukY78DFpFCnr4vid5yiamyGGHHWZ1hWhVLWAFUXSB6LphXJWuIiFVIa96\nhYAxtSUiDO5uUGbQlxSPAA/fZcuW2UGi+NL7W6Jb6QNJ8MUnHRw7wuG+swyK5MWC4awYfn15jh3J\nyVOGywsZYZdkLDw49FYlECFW9Oyxxx61jU0jElLV3aF6hcDvEXiHgBhcBNavX29mzJhRyHRAHVD8\nxCc+YYmVrwuDexnCyhRHRoqYTnE6QhwYvItY+cIuyd/5znfMrFmzzCOPPGKIN1Kkrk7nqG8GdzYo\n/PznP2/uueee1FNmUWWWcU4kpAxUVaYQSIdAbS0i6ZrR/9QvvfSSGRoash8e9E2URx991L6tNlH3\nsM4EY/vYxz5mp8KctaMsEuLqdoN6kdMfzkLDAFmEgMHGjRvNIYccYvelgYwUVXacfqzewQpCkDUc\nP8tYzRRXd5rzIiFp0FJaIVAiAsFgWit5/vnnh4LmRn6Cee8Rut55551DnPfzcG7Hjh2RaV26s846\ny16//vrrO3ldBpeGb/Thc+KJJ9p0lI34dbpzcfkff/zxTn7KpCzOheWBBx7o6EK6KEnT3qj8/rlg\nIB0K/BL8U40/rqJNwSqbocDyUCh2RZeHcgEpGJo2bdoQGF177bWF9j0YrF69eiggPPbDcZ0FfcFD\nIgSEQPUIRI92FeqVlIhANBw58ImDO95nn32GXn/99WEtYRB31yEi4fwusUvDt09U+O1IR1IicvXV\nV3fq9Mv1y3L1diMiWdrryo365iHMgNQ2YaANppwqaRbkgQGuKCmDjKAbfX/55Zfb+/LYY48dCqZO\nMg3KjnxQFvcS2NedgNB+kRBQkAiB+iDQWB8RfBueeOKJYDyPlmDgNieffLJ57bXXDNEvw3L//feH\nT0X+vuqqqyLPJz153XXXxSa94IILzMEHH2yOPPLI2DTuQt72unLc91tvvWUmTpzoflbyPX36dOP6\nIfiXKEQHtpMPCGglYeqZBmGahumVYGDO3R6Cp+GHUkRZvjL4n+DMOn/+fIOfEFN0AWG2SbgnwBAZ\nP378sP+drVu3ml27dplXXnnFvPjii2bLli0mIB922fRll11WuJ5WiYL/aDqmYEBVnBAoAIHa+Ygw\nKDMoBZaHTvMC64M9h18GwjJXn4SQljx8AqtCJx9kxP/dufCHA8oNLDCdvOHr7jcPaVd+Fn+QOP0o\nn71deklR7fXrYbB2A45/vqrj4C21kKoDS5gdKAspLEMhzsm0CL8RCEhRS3qjmgJhwqGVsP7U89RT\nTxmWQSMQjsWLF5sFCxZ0Pq+++qq9dsoppxhWtfE/we7H+IAUTZZsRQX/cc7Fro8KLl7FCQEhkBWB\n4GFSS2EKJGiT/TAN4kvwsOxcY+ojLHF5/fOUzTRQlLh6+Xa+JOF0aaZmwnnDegQPfZskbmoma3vD\n9fq/b7rppiE+VQrYOqzj+iKtfkxnMEVQtWD+L2pqpahyqsakyvrxhWqbP1SVeKpuIVAkArWziAQD\nU0954YUXOmmi3uonT57cuU4Qpbi37SRTIuxjkkeI9hmWj370o8NOMU3STYpqr18H5nWsB3UR97Zd\nF33y6oG1gamaIoKfuSW9eXUa1Pwu3ksTrDaD2kdq92Aj0EgiArlwgh+IC3zmvsMDbBQRYVomiey+\n++5JksWm2XvvvUdcC/usROnnZyqivX55HLPpWJRu4XT9+v2lL33J4IPQNoGMuCmBrG0reklvVj2a\nmE8kpIm9Jp0HDYFGEpFB66Q6t9ePgOuIYNJv56hK+5xz8Q033NA6QuJ8EvL4jVBGsNqlzrdC7XQT\nCaldl0ghIRCJQCOJiG/N8J1NgzmrjlOpf1zlmz9OoWEJW0B66VdGewm53WtKKKx32b8hI6xSwjrS\nNmFagE84BH2adrqpnjR5BjWtSMig9rza3UQEGrl894gjjrAbaAE4vgVJfD2q6hyiS5500knDqn/2\n2Wc7v5lG6kVEymjvhAkTrBWio4gOSkfA9xvptstvN0XKWtJLnVhsmB6DEG7fvt1s27ZtmCqQV+4b\npivHjRtnfWCGJajJD5GQmnSE1BACCRFohEVk586dw5pzzDHHdH4Ti8Pf/Za3/IsvvrjjN1L1hnnE\nEfH1YykuOjs555xz3GHsd1ntZYlm24SBlAGzzpLHbwSrCrEwigjTThmEY585c6YN/37mmWeaFStW\nWOjGjBljd2VmZ2b3YdkuAvnnHFNwOHMTNt4N/jZBhX+cHnJMrbATVLUQSIlAIywivKHx0GOKglgi\nZ5xxho1t4Jw4Gdj9wd3HgAdm1dJNPxe3oZuOZbSXYFXEicgrrFBieqxICTvzpikbcsVbe90Fnw8G\nTawQzockqc6kdzsJJ83jpyMv8XUWLlzYCUgWhHzvGQsEAuULRCZYWmwee+wxax1Br9mzZ9vYJH66\nfh2LhPQLadUjBApGoMi1wEWWxV4sQVOHfQIi0qkiICcjQrSH0xOvwxc/fodflp+GY78cYntECfld\nunA97jzf4RDx/rVwvrg4ItSfpb1RertzxFQI3hrdz9Z8VxniPQuIgb9Q5vDqafdKcTFW6HdiyBQZ\nV4N2VLnXjOKEZLn7lEcI1AOB2k7N4FcRDNSxsS7wq1i3bp1NE+wZE4zvfxQiofKWniUK6h9LKeaI\nMOa8fWLNcYK+AdFKpV/R7XWm6zwrOVx76vS9atUqc+CBB9ZJpa664DdCX6R1YiUfH2cF6FYJlgsc\ngKdOnWqj6bL65tJLL+1pAelWZvgauhCldfPmzTZ0/DXXXGOnbfpxf7k63D0d1k2/hYAQqDcCo+BD\n9VZR2pWFAL4BbNde123a07Z7w4YNJtiAzQ6GafPWIT1kJK0Ta68pGq5DyPfff3/ry9HPwRrfkc9/\n/vMmsL5Y4lMGxpAQ2gQRkggBIdBMBGprEWkmnM3SGufD5cuXN0vpLto+99xz1uehS5JaX8rixNpt\nSS99ixVkzpw5dk+YfpIQgMbqgvVlzZo11iG2CAdbvwNFQnw0dCwEmouALCLN7bvcmjMw4BgazK8X\naqbPrVjGAljaysZtaZ0/M1ZXWjamW+ibpO1w0zM+0bjiiivMypUra4EHbYEMvfnmm2bt2rWFWC9E\nQkq7/VSwEOg7ArKI9B3y+lSIOZupjGXLltVHqYyasAx19OjRiQfvjNX0JRuEgk9SvxHSMtjzQSAh\nrCjDGpGUzJTZMO4zdvjFT2rKlCkdPbPWKRKSFTnlEwL1REAWkXr2S9+0YrDDfM+g1eR59g984APm\nkksuMTNmzOgbdv2oiP5J6jdCWhyjISFFWR6KbqMjSVn1EwkpukdUnhCoHgFZRKrvg0o1wMdg4sSJ\n5u67765UjzyVYw3B55qYJgzG/idPuXXIm8ZvhGBuTMd8/etfry2pvPHGG81+++1nzj///NTwioSk\nhkwZhEAjEJBFpBHdVK6SDNxYRfj2/QzKrbW40g899FC7ZJTlo2GhTb7gE1OH6QpfpyTHvfxGGKSx\nnNRlOqZbm5hCYorm2GOPNfPmzeuWtHNNJKQDhQ6EQOsQEBFpXZdmaxAm87ffftvO5WcroZpcLBFl\nVQZOqkmEQZDB2pekUx9+niqOne5YSXzhPMuwcQhtylJsiAXh4em7cHv8tnEsEhJGRL+FQLsQEBFp\nV39mbg2DGQPyrbfeWlmI7rTKF2UFoJzwjsi9Bse0uhaZHiuPT54IVrZlyxa7RLfIesoui+XFixYt\n6hr3JdzWsnVS+UJACPQfARGR/mNe2xp56DNF04QlsGVbAcJTOiwNrtO0FeTJORejW1OXYGMV4Z4j\n5khY6IM6E8KwvvotBIRANgRERLLh1tpcTHXcddddZuPGjZ2Bro6NZQBjOSjOj/0QfDQY7H3xrRL+\n+X4do9MXv/hFs++++yb2teiXbknrceQ3vGpLJCQpgkonBJqPgIhI8/uw8BbkXWJZuEKhAuuiX3hK\np9+OsBARrCHoccABB4RQas7P008/3e6B46wiIiHN6TtpKgSKQEBEpAgUW1hGXQZ7H1qmY9hMra5x\nMtAv7Ahb5pQOfYT0yyrk90WRxxAP9sNhwzyRkCKRVVlCoBkIiIg0o58q0ZKBbv369TZIVtVLXhnk\nWfKJZA2GVQWIUVM6Rfk9QHKa4M+TBHeWYF9wwQXm4osvTpJcaYSAEGgRAu9oUVvUlIIR4E0bnxH8\nMapcTcNbMg6N06dPt/FCnJNmwc0tpTgcXMNOrrTHlyxTOuw0DDmsmiD67chzPG3aNLsXTZ4ylFcI\nCIFmIiCLSDP7ra9aOyJA5NJrr712xMBaljJYQb761a+a22+/3Vx33XWNiZGRFo+oKZ1ejrBYq3bf\nfffGOqmGMcLPBcIbdggOp9NvISAE2oeAiEj7+rSUFjFY4p9BCPG5c+faEN1lWiYI2059+++/v7XK\nhK0KpTSyRoWGHWFRzZ/SYSpjyZIlw87VSP1MqrRpqikTAMokBAYUARGRAe34rM3GOrJgwQLz/PPP\nW0LCioeiSAJkZ/Xq1TbIFfotXLjQHH/88VlVbV0+N6Xz29/+1hxzzDGNjR0S1zEzZ860EWKbEh02\nrh06LwSEQDoEtOldOrwGPjVv5Q899JANzb19+3a7fJQBhCiZOGamFcgH1g/KwFfikUcesQSEFRQi\nIcPRBHs+7373uw0+FQiWk7bIhAkTDPeURAgIgcFCQBaRwervwlsLkWBlzaOPPmoee+wxM3r0aDud\ncvTRR9u62NnXF3aI3bVrl3nllVfMiy++aEOTM6ieeuqp5oQTTijMuuLX2bZjSB8B55YuXdqqpuGA\nu3jx4saFqm9VJ6gxQqACBLRqpgLQ21QlfiLseut2vuUNHbKxY8cOSziYxvFl7NixZsyYMeaUU04x\nn/vc51rl4+C3s8xjiBzWg7YJFjGJEBACg4eAiMjg9XmpLW7TktJSgVLhIxDAWRXfI4kQEAKDhYB8\nRAarv9VaIVBbBHB6zuJnVNsGSTEhIAQSISAikggmJRICQkAICAEhIATKQEBEpAxUVaYQEAKpEZA1\nJDVkyiAEWoGAiEgrulGNEALNR4Coqm5ZcvNboxYIASGQFAERkaRIKZ0QqAkChHZXvI2adIbUEAJC\nIDcCIiK5IVQBQqC/CIwbN85s27atv5X2oTZWzBxyyCF9qElVCAEhUCcERETq1BvSRQgkQIAN8Vat\nWpUgZbOSEOSOGDMSISAEBgsBEZHB6m+1tgUIEEQOy0GbwrvTLUTaPfLII1vQQ2qCEBACaRAQEUmD\nltIKgZogMGnSJLNu3bqaaJNfDUjVzp07DQHxJEJACAwWAiIig9Xfam1LEJg8ebLdeLAlzTGbNm0y\n06dPb0tz1A4hIARSICAikgIsJRUCdUGAnYmxIrQl9saiRYsM5EoiBITA4CEgIjJ4fa4WtwQBLAhf\n+cpXGt+a7373u3ZaBnIlEQJCYPAQGDUUyOA1Wy0WAs1HAGvIhz70IfODH/zA4MDaVDn99NPN0Ucf\nbS699NKmNkF6CwEhkAMBWURygKesQqBKBNgkbuLEiebuu++uUo1cdWMNIX7I+eefn6scZRYCQqC5\nCMgi0ty+k+ZCwPqJEFeE8OgQk6aJrCFN6zHpKwSKR0AWkeIxVYlCoG8IsNz12muvbeS0xvLly80b\nb7wha0jf7hZVJATqiYAsIvXsF2klBBIj8Ktf/cpgFbnuuuvMeeedlzhflQmdf8uaNWusn0uVuqhu\nISAEqkVARKRa/FW7ECgEAXwtpk6dap566qlGBAU77rjjzLHHHmvmzZtXSPtViBAQAs1FQFMzze07\naS4EOgiwembu3LnmzDPPNFhI6ixXXHGFVU8kpM69JN2EQP8QkEWkf1irJiFQOgIM8i+//LJZu3Zt\nLZf0ot/69evNxo0ba6lf6R2kCoSAEBiBgCwiIyDRCSHQXARuvPFGc9hhh5kpU6bUzjICCVm5cqV5\n4IEHREKae4tJcyFQOAIiIoVDqgKFQLUI+GSkDjv0MlXkLDVN8WGptgdVuxAYLARERAarv9XaAUEA\nMoIzKE6hGzZsqKzVrI7BOuOmi7S7bmVdoYqFQG0REBGpbddIMSGQDwGcQe+9915z7rnnmpkzZ/Z9\nqoY4ITjRQoiwhDQ5DH2+nlBuISAEuiEgItINHV0TAg1HgI3k2IsGIdbIzTffXHqLWEqMJYYddYkT\notUxpUOuCoRAoxHQqplGd5+UFwLJEYAgLFiwwEYz/exnP2sjmhZppXj44YfNihUr7N4xTQqulhxB\npRQCQqAMBEREykBVZQqBGiMAIbnjjjvMsmXLzIwZM8wpp5xiJk2alGnqhLIef/xxc/vtt5vRo0eb\nOXPmmE9+8pOZyqoxZFJNCAiBEhEQESkRXBUtBOqMAI6kTz75pHnkkUfMqlWrrC8HS3/HjBljxo8f\nb3bbbbcR6rNT7q5du8yWLVtsnkMOOcRMmzbNnHHGGY2I6DqiQTohBIRA5QiIiFTeBVJACNQDAawb\nW7dutUTjmWeeiVRq7NixHaJy4IEHNnLH38iG6aQQEAKVISAiUhn0qlgICAEhIASEgBDQqhndA0JA\nCAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISA\nEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qF\ngBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUh\nICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC4P8Di13nEo+f\nAH0AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "\n", "review = \"This was a horrible, terrible movie.\"\n", "\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAECCAYAAADZzFwPAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAB1WlUWHRYTUw6Y29tLmFkb2Jl\nLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1Q\nIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5\nOTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4w\nLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAg\nICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZm\nOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0\naW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K\nAtiABQAAQABJREFUeAHtnXvQVdV5/xdNZjIxjRgrM52qFI01ERQVExWNeMMLQy0YiEiNEgOYaJAO\nitIaGYo2TFGQeElQAREjRa0oDEG8AKagosYYkEuSjjUEbP+orZFc/KMzmfe3Pys+57fOfvfZZ1/P\nWXu/zzNz3rPP3uvyrO/a717f/axnPatfTyBGRRFQBBQBRUARUAQUgQog8CcV0FFVVAQUAUVAEVAE\nFAFFwCKgxEVvBEVAEVAEFAFFQBGoDAJKXCrTVaqoIqAIKAKKgCKgCChx0XtAEVAEFAFFQBFQBCqD\ngBKXynSVKqoIKAKKgCKgCCgCSlz0HlAEFAFFQBFQBBSByiCgxKUyXaWKKgKKgCKgCCgCioASF70H\nFAFFQBFQBBQBRaAyCHy8MpqqooqAItAVBH784x+bPXv2mJ07d5q9e/eat99+2+zYsaOXLuPGjTOH\nHHKIGTp0qBkyZIg59dRTzac//ele6fSEIqAIKAJ5EOinkXPzwKd5FYF6IrBp0yazYcMGs2rVKjNg\nwAAzcuRIc8IJJ5jBgwebgw8+2Hzuc59ravh//dd/mf/8z/807777rtm1a5d58cUX7Qcyc8kll5gv\nf/nLSmKaENMfioAikBUBJS5ZkdN8ikDNEPjtb39rli9fbh566CHbshkzZpgLLrjA/MVf/EWmllLe\nxo0bzfr1682yZcvMjTfeaG644YbM5WVSQjMpAopA7RBQH5fadak2SBFIj8A999xjPv/5z5stW7aY\nJUuWmO3bt5tJkyblIhlME1166aVm6dKl1hqDVocffriZOXOmwUKjoggoAopAFgSUuGRBTfMoAjVB\nAP+Vk046yaxZs8Z+nnzySfPFL36x8NZhtVmwYEGDwFDHihUrCq9HC1QEFIH6I6BTRfXvY22hIhCJ\nAFaW+fPnm3nz5lnrSmSikk5CmKZOnWqOOeYYOz2lTrwlAa3FKgI1REAtLjXsVG2SIhCHAL4nU6ZM\nsRaWzZs3d5y0oBsWl61bt5pBgwbZKapf/OIXcSrrNUVAEVAEGgioxaUBhR4oAvVHANIyZswYc+ih\nh3pj6WDK6JZbbjGQqPBqpfr3iLZQEVAE0iKgcVzSIqbpFYGKIiCkZdiwYdbfxJdm4ATMEuvzzjtP\nyYsvnaJ6KAIeI6DExePOUdUUgaIQ8JW0SPtYfYQoeRFE9FsRUARaIaDEpRUyel4RqBECc+fOta1h\nZY+vAnn5zW9+YyZMmGD9X9Rh19eeUr0Uge4ioD4u3cVfa1cESkdAfEh+/vOfVyJ6LY7DH3zwgWFp\ntooioAgoAmEEdFVRGBH9rQjUCAECveH4SpyWqlgwFi1aZPdD0jgvNboRtSmKQIEIqMWlQDC1KEXA\nNwTGjx9vTjzxRDN79mzfVIvVhzgvY8eONVWxEsU2Ri8qAopAoQgocSkUTi1MEfAHgaoP/mwNgPjs\nl+NPb6smikDfQUCJS9/pa21pH0MAaws7M7PcuIrCNBd7G7HrdNaNHqvYbtVZEVAE4hFQ4hKPj15V\nBCqJgFhbGPSrLGp1qXLvqe6KQDkIKHEpB1ctVRHoKgKszBk6dKiZPn16V/XIWzlWF7YHUF+XvEhq\nfkWgPgjoqqL69KW2RBGwCBBsbtmyZYapoqoLU0RsA7Bx48aqN0X1VwQUgYIQUOJSEJBajCLgCwIM\n8pMnT66NXwg+OuvXr/cFXtVDEVAEuoyAEpcud4BWrwgUjQCD/FlnnVV0sV0r74ILLrAWpK4poBUr\nAoqAVwgocfGqO1QZRSA/Ahs2bDCnn356/oI8KYHponPPPdfgcKyiCCgCioASF70HFIEaIYAzK4Jf\nSJ2EHa23bdtWpyZpWxQBRSAjAkpcMgKn2RQBHxFg+fPw4cN9VC2XTieccILZt29frjI0syKgCNQD\nASUu9ehHbYUiYBHAKjFo0KDaoTF48GCzd+/e2rVLG6QIKALpEVDikh4zzaEIeI3AwIEDvdZPlVME\nFAFFIA8CSlzyoKd5FQFFoCMIfP7znzerV6/uSF1aiSKgCPiNgBIXv/tHtVMEFIEAgU9/+tOKgyKg\nCCgCFgElLnojKAKKgCKgCCgCikBlEFDiUpmuUkUVgb6LwC9+8YvaRALuu72oLVcEikFAiUsxOGop\nikDXEWCPogMHDnRdjzIU+M1vflPLZd5lYKVlKgJ1R+DjdW+gts8PBIh6umfPHrNz5067rPXtt982\nO3bsaFKOCKnEIDnkkEPszsYcszOwSmsEICvsnIwcfPDB5vjjj6/lvj4QFxVFQBFQBEBAiYveB6Uh\nsGnTJrNq1SpDCPoBAwaYkSNHGgKJTZgwwQ6y4eiuRH0lgNq7775rdu3aZWbNmmVefPFFu2Hg6NGj\nbX510jRGcKLjICsuuWOAf+edd0rr024VvHv3bjNixIhuVa/1KgKKgEcI9OsJxCN9VJWKI4AFYPny\n5Wb+/PmWrMyYMcOwSR7WlCxCeex2vHLlShvyfeLEieaGG27IXF4WHXzI45KVww8/PLb9/fr1MxCY\nOpG88ePHmyuuuMJceumlPnSH6qAIKAJdREB9XLoIfp2qhmDcc889hngbW7ZsMWvWrDHbt283kyZN\nih1k22HA4Mtg9eSTTzY22WPgnjlzpqHOOgsOqUyxyeaCWFb4tCOBbEj4+uuv1woaIgKfdtpptWqT\nNkYRUASyIaDEJRtumstBgIH1rLPOahAWSIY7feEkzXXIgL1gwQI7nfTBBx9YkrRixYpcZfqWWYgK\n37Q3KVlx2wFxeeWVV9xTlT4GC6Ya2xG2SjdSlVcEFIHECOhUUWKoNGEUArfffru5//77zbx586x1\nJSpNWecY0KZOnWq+8IUvmEWLFlV2aoR2iBRB+LDU4EeExasOwj32P//zP+buu++uQ3O0DYqAIpAT\nASUuOQHsq9mZphkzZoxt/qOPPtq1t2H0wI8Gh9TFixebsMOvj/2DzrISCP2KICvhdp500klm4cKF\n5vzzzw9fqtxvpgbXrVtnPvWpT1WifysHsCqsCFQMAZ0qqliH+aCukJZhw4aZtWvXdo20gAU+MEuX\nLjVMj5x33nkGa4OPgnMtlhU+HMsUUBmkhfZ//etftyu6fMQijU5PP/20JSvca0wVudapNOVoWkVA\nEagPAmpxqU9fdqQlLmnB38QnYZCbNm2a2bx5sxdv5mlWAhWNI/3EUmmWl1fZNwTL0Zw5c5pWE0Fe\nyiJ8RfeDlqcIKALFI6DEpXhMa1uiz6RFQO82ecHiI8HS2i1bFp3L+IY0sST997//vbVIlVFH2WXS\nl3Pnzo301VHyUjb6Wr4i4C8CSlz87RvvNJsyZYphNQ+rhnwWnDkJXMc0VidimbjTFywH70SdcfhD\nntCBD/qwNL1qFgpIMivVwtYWt93g7gPerk56rAgoAuUjoMSlfIxrUQMxWh566CGzdevWrg/MSQAl\nYBlbB+D/Uoa4ZMUnUhAezFkuzoqrqvSb9BXkky0h2pFkSBpTYd0mi6K3fisCikD5CChxKR/jytfA\n4MCbLSthqrBqB8B5Y0fnRx55pJCVNZRX9kqgvDcKpCWKREHiTjzxRDN79uy8VXQkP+0YO3asdcRN\n4p+j5KUj3aKVKALeIKDExZuu8FcRBj72iZk+fbq/SkZoxl5JV111lSUcWd7IXbKCo6uvpE30jCIt\nwCKrmO67774mJ9cIyLp+KquuSl663nWqgCLQMQSUuHQM6mpWJA6SVZtqELTTki53JZDPZEXah74Q\nl3akSkicLyuuRH/3m3YQG4ilz1lWrEFeIKhJrDRuvXqsCCgC1UJAiUu1+qvj2kYtR+24EjkqZDAj\nvgvTPK2sLqTxYSVQ2mZCWpAkAzVpf/SjH5mbbrrJm+XibnuFtBx99NG5/JLSYOLWr8eKgCJQHQQ+\nXh1VVdNOI4C1BanyjrxYIthRmh2r3akul6zgC9POYtFp7NvVl9a6QDyXv/3bvzWf/OQnLZHzyfIi\npIU240icRyBxkBc+SQhdnro0ryKgCHQHAa8i5z7xxBOmX79+9sNgUzVx9acdrki7+H711VfdS22P\nTznllAYuS5YsaZu+qAQrV660y1GLKq9b5bBvDzFNcPqUD4MaPiF8WlliuqVvu3ppA/onHZhJL/4v\nkFB8XSBrQkzb1VfmdQiYTA9BporoC8GFslUUAUWgfgh4RVzqB291W8Qb6+rVq83IkSOr2whHc/a5\nYTqoqmRFmiIkJOkATz8SCM8VyMvrr79uowzPnDnT+si41zt1DHFiGo8VRFl8WuL0FGKn5CUOJb2m\nCFQTASUu1ey30rV+4YUXzOTJkwt5Ay5d2TYVQFa+/e1vmw0bNrRJ6e9lplOEtKTRslXIfzChvL17\n99pAbxx3SiBTBDNkewaC47lTeEXqALmDwCh5KRJVLUsR6D4CSlwK7IPLLrvM9PT0ND4FFt3xotiN\nd/To0YXWu2fPHsNU13XXXWf9TtzpMzlmWoxpwjvvvNM899xzDafZvIqcfvrpld10kIGej0z3JMWi\nHdFhUCfAG7trY/VgBVaZBAbyRSBD2kFwQBym07YpadslnZIXQUK/FYEaIRAMtN7I448/3hNAaz+X\nX3651evBBx9snOPaLbfc0rN///6WOm/bts2mkXL4PvLII3so58CBA5H53LTk53PhhRfaesmHJEnj\n6k96V8L5n3322UYdXKM+zkVJsDy0Ub/o46aLajP4oU9WQafgbT1r9qZ8Lp4uDkmO6bs77rijZd81\nVdTmRzBQ9wSDZZtUfl2mD7L0Q9p8wTRaz913390DRuPGjevZuHFjYUCA+Y033tgouxt9QPuC6bHC\n2qQFKQKKQPcQaB5du6eHrdkd+Bl4+UQNbgxmUeSFAS4qvZwj3+7du3u1Uq7zHS5DiEKSNK7+pHfF\nzQ/5cn+7x1KfmzeOuJDezR8+pq60wsASRFpNmy0yfTv9wvq2+g0GUX0eWWmLk8HUV89TTz3V4qp/\np+mHLKSFlmQdpBngH374Ydv/kBgIByQmrR7Uf9tttzWVk7aMMnokKy5l6KJlKgKKQDYEvF0O/dhj\njwVjWLQEA5iNR7Fq1apGAqYgbr755sbvqAPyXXzxxWbXrl2G4GJR0q4M8iRJE1W2nJs3b54c9vq+\n5pprzAknnGCY2mgnTKWQPk6oa9CgQWbq1KlxyZquMaVzzDHHNJ3L8iOJfknLffPNN63PDWVmlaFD\nhxrugSoIUzas/EnqhOu2qd0UkZs2fEx9kyZNsh98Q8B78eLF1lGbbQO4L7ifBg4cGM5qtmzZYt5/\n/327weW5555r+CxcuLCQLRd6VZbxhPj2lD1FlVE9zaYIKAIJEPDaxyWYPjGBhcT6jATTPIbfIi6x\nYbUIm7KJEHkzmJ6w+QI+ZwKrg1yyA9cDDzzQ+B11QHry8Wk14CdJE1W2nAssEY06AkuNnLbf7K+T\nRNx2uVgxOAfWqkYRYANGSYX8hPjPK3fddVevItCTtvOhj8KfYLrMXqNt9KMrzz//vB1I3XNpjocM\nGWIH1zR5upFWiEcW0hK1iihrG4htg+MsfjD8L3Cfzpo1K5K0UMe1115rl52TlqXN7I10/vnnZ62+\ntHxCXvC5UVEEFIEKIhA8ZLyR8FRLMIA26YavRABx4yM+K+F8pAuLO+3ElJErbpmki5IkacJ6uOW4\n+YNB2b1kj8NTKtI2LkZNFTHl5ZYZxor8tFPSoFtSwdeBTx6hfqmb71bTdO3qCOPCVF5WYZoA/w1f\npQg/DJ0KSd67TMWBuYoioAhUCwFvLS68bR9xxBHBmPf/JfxbrAg7duxoJAoGyMhplq997WuNNFgU\nmA6JEuJKtJMkaeLKuOSSS3pdPvPMM5vOvfvuu02/wz+Y7hLBihHGhqmwK6+8UpKYX/3qV43jdgeY\n/LFO5JEwvsTpGDx4cOoisXi5lhemjOooWVcOuViIpcY9p8etEcCiBO5qeWmNkV5RBHxEwFsfl2OP\nPTYxXu+8804jbZgAyIX+/fvLof0W0tN0MvgRThe+zu8kaaLyybkwyeB82OemlX5SRmDRkEPDFArL\niePkgw8+iLvc61pYn14JUp6I8olIWgT3Ql0JCxgweCJ5th0ocorIKtNH/oA5vjwsDc8yNddHYNJm\nKgJeIeCtxcUrlFSZ3Ajs3LkzUxkQuJdffjlT3ipkkuBoDJx5JFixk3gLgDz11DGvWF6EQNaxjdom\nRaBOCNSCuLCjrEirQc61UJC2aIuC1J/kG4fjsIQtLFFWGTePa/XBETeYoYz9fOc733Gzxx6zaiQ8\n1RObIeJieFUUDsJp91liuuzv//7vm1YC5Z2mi1C1a6eY2oGw5CUtOkWUvwvF2qXkJT+WWoIiUDYC\n3k4VpWk4yzRF8F9hE8PwwBnEppAkBj+YLP4WjQJyHuBDctFFFzWV4hIu9GtHXI4//vhGfvJCfIoi\nY0zrhIleo7IUB6wyYSktQr+wdJsPROszn/mMOfnkk3uVxpQW00L//u//Hjk91GoqsFdBnp8oimx0\nYoqIOl577TXbh9y7iCx75hjiNXz4cA4N/4vcP/z/CRmwFyrwh3bQVj55yWQFmqsqKgKVRaAWxIXY\nLAz2DI7It771LfO9732vQV7Yp8ZdPu06rXaj58KxVdhV2o3HkkQ/iBdOqwzytPsrX/mKWbRoUYOQ\nUSYb6Akmwaoiw5YESaUI4sJeND/84Q8bOkjdbl/IuSTfLJHOQzixImFN6qbgCBqsZiks1D1TRGXE\nJGEKi3uIjTbfe+89S0xYIn/FFVc0SLXUy0CPHgjL27du3WrvRfKNGjXKbh3Bxo5VECEvtL9qxKsK\n+KqOikAhCPi0CMpdThy1LDkYhJuW2PJbJLxsNgCnKa38DghOr/Dxco3vVsuGk6Rx9Se9K27+dsdu\nuygjajk058P1tSqX/GmkyGXDbGMA5q10S3o+sN706rc0bSItkVzzLvNOW6ebnsixLMEtSspY+kxk\nYaImBwO4xStPHbSXKLxBIDpbHthzrgoSWDAL7asqtFl1VASqgkAtfFyCwc8GinMDsnEuLFhlCHBW\n1JRKuPykv4NYJC2TEpit3TSRZMaCQvo4wSqzdu3auCS9rh1++OH2TbvXhQwnmBJj6TZtBv+0wrQS\nffb9738/d7+xbF6mNNLqkTc9VgmkqLd4yqOfipKnn37anHTSSWbu3Llmzpw51oJCADmxqmSpB+sF\nUXgJRscu0Pv27bM6s9Gi70uQWWGE/uI8naX9mkcRUATKQaAWU0UCDQ6omLOZh3fD6jNg8hCeMGFC\n7sFP6srzze7Hf/mXf2mjjMoyX2Kx3HDDDb18X9rVQ5wT/D7Wr1/ftBUBhOWb3/xmy8i/ceXywMZX\noShzOUTxpptush+ma8SfhwEtLDhaM52DnwQkoyiSyUDJtMfy5cvDVZb+GxxlICyqMqZm8pAK0QPd\nmEp9++23LWEpa0oHXflwjxONd/78+YYI0T5G1hVspM+K+j+QcvVbEVAE8iHQD9NQviI0dx0RwD8G\n8sAgUwfZtGmTgdhGkaUy24cTbtY9h1rpVZRj74oVK+x2GITxv/rqqzsax4T+uOqqq6wPDL5ZPsdQ\nKdovqVW/6nlFQBFIhkBtpoqSNVdTJUUAp0rM+3UQBsmVK1faaYtOtkcIRpGDclFTRBBTplbpY8hp\nkTomwRhLC07KrCIbM2aM11MyYIO1iP5UUQQUge4joBaX7veBtxrgQ4GFoii/jG41lDdm2rB06VIz\nYMCAhhpFTLU0CnMOynxDFzLkVJfqEN0gCgi+T50mLFHKQqLY6b0K91pe/KPar+cUAUUgHQJKXNLh\n1adSEzSOZdHsM1RlYUpk3bp1dpdjtx3hN+gipnSwiAhRcusq4jjvoOkjaRFccA5m+bySF0FEvxUB\nRaAVAkpcWiGj520gLqwuOILisFtVYbXMwoUL2zqC4oTpRjCm7WnaLSuH0uRJimkRZY8fP94GjvPF\n0hJue9XISxFEN4yB/lYEFIH2CChxaY9Rn06BGR+pqtUFawvOn9u3b0/dj5AFSJsIK5xaTZuVsXJI\n6uU7r7UF69mLL77ozfSQ2zb3uCp6ojN9Dkn1YbrNxVCPFYG6I6DEpe49nLN9DN5YHnCkbDVo56yi\ntOxMjfBWjANqEf4slAcOrojTZplv33lJi6zgoZwyrEEuHkUcYxk65JBDrE9SEeWVWYaSlzLR1bIV\ngWgElLhE46JnHQQIGMbg3+mlxI4KmQ6nTJli8+GUW5Zg0XG3ISiCILm65p0iEvLme8wUt81V07ls\na5uLjR4rAoqAMUpc9C5IhAC7Mo8dO7YycV3KtjKI9SVMVLBquJLXEpPX2tIJ8ua2t6hj6T8sXFWY\nislLMIvCTctRBPoCAkpc+kIvF9BG3iohL1V4cy9bVwYpiEuSqTN0yerwm5e0kB+yWZXBP3ybMmVE\nBGeiXldBlLxUoZdUxzogoMSlDr3YoTZUYdUHhII4JcHGfqUMeHkHJ/IncfjNWw+3BAM/W2BUNfox\nGFRtVVsR/dahf2etRhGoLAJKXCrbdd1RXMLE+xhvA9JywQUXmC996UulrIIqw5dBppzc3hSH3/A0\nlJum3XHVrS3SPla19e/fvxQSKnUU/Q15SWqRK7puLU8R6AsIKHHpC71ccBt9jHQqlpbjjz/eXHnl\nlYWsInJhgwjk9Vdxy4s7Djv8ZqmXPqrDXlMy7edaqeKw8+Ua9yMEJsl0oi86qx6KQFUQUOJSlZ7y\nTE+ZNvLB54XBjZ2/R44c2bC0FEk0KCuP9SNN10VNNaT1k2HQJOZM1QMHCm74Vl1//fWmrJ2rpZ6i\nv5W8FI2olqcI/BGBj/1jIAqGIpAWgeOOO84cffTRZurUqebDDz80Z599dtoiCkmPdYJdhm+99VZz\n8803N8rEN2Lv3r3m//7v/zKvSmHgeeuttzpGWlAeR1osLK4cdthh1teDNvFBL9JBcvj87ne/M6QR\neeaZZ8x///d/2xD6cq7q3xs3bjR/8zd/U6lmfOITnzB8uIfoNxVFQBEoBgG1uBSDY58tBWvAtdde\na9s/f/78jg3yDNg4nb799ttmyZIlLeslHQN9WpN91nx5boSslh0hMlL33XffbX19Jk2aJKcq/U1f\nYPGq2nSRC3rWvnXL0GNFQBH4IwJ/okAoAnkQgBDgqMuyWz74VjDQlCUM0oSF5w2WpbJbt25tSVrQ\ngUixfBg4koron5bsJC0/Kh11Zn0rJ84JA7t8du3aZT71qU/ZkPRRdVXtHP3Hrt5p+tC3NtI3Vdbf\nNzxVn76NgBKXvt3/hbUe6wfTFwgDMIHPCCJWlGDZgRThu8GO1bx9E98jSXAyGdgZOCA+cUI9SKdD\n4xfljwIB2rFjh10K3UniFYdpEdfwX9qzZ08RRXWtDCUvXYNeK64ZAkpcatah3WwOBIHNGAm4NnTo\nUHPjjTcadmaGcEBi2pGGsO4QDawrlIGDJstit2zZYubMmZOJWDBwMLCLRSWqPrHQhK+V+Zt2olsR\nAgEaN25cEUV5VQYrpHbu3OmVTlmUEfKS9n8hS12aRxGoKwLq41LXnvWkXVgwnnjiCWsFWL16tZ3e\nOeaYY+w3RCQsEJP333/f7mRMEDk+Z5xxhjn//PMbSfMO9BAXBg7XIpG3zIZyKQ+ERBVl4cFZmQG+\nqrt5t4KP/sGH6sknn2yVpFLn+b+gz5NYDCvVMFVWEegAAh/vQB1aRR9GAHLghmzngY1FZtu2bZGo\n4OjLdFCcBULeWuPSRBb+0UkGDIgLgyEreJjiylpWXD1JrmEhKbJuptGwTqj4jQD/F0pe/O4j1c5f\nBNTi4m/fqGYxCBRhqaCMV155xVx00UVdefMtw8rDTt5IVcP8t+pyiCaEtqenp1WSSp6HvGB1Kcri\nVkkQVGlFICUC6uOSEjBN7gcCYjXJ6isgxIf9fDjOWk5WNKgz6yqirHVWOV9dp1RkulLuxyr3kequ\nCHQKASUunUJa6ykcAR76spIpTeG85SLylks5DBydHDyKWkWUpt2a1k8E5D7s5P3nJxKqlSKQDAEl\nLslw0lSeIoCPihCRJCoyPcNAIYOF5JE33zRlSd6032VMEaXVoWrpGdTDfVa1NsTpK21T8hKHkl5T\nBP6IgBIXvRMqjQBTCHySPPCFMLSadhBCQ7qyBD11iig9uliohg8fnj5jhXIIeekEea4QLKqqItAL\nAV1V1AsSPVEGAgzYr732mtm/f7+NxUIdsuyZY6LgskxajlkZc/rppzctWbYXI/7wwBdLSsRl67+S\ndOUQpEZWLWXZlTmqfvdc0auI3LI5PvLII8369evDpyv/m5VofUG4l/G3gryIFTBPu/m/+9nPfmZ2\n795t90z64IMPmv7vqE8IIf+D/N8NHjy40JVuefTXvIpAFAK6qigKFT1XCAI8fInhQvyW9957zz4g\nR4wYYYYMGWJXiFCJLAUmLYMTH3nIvvHGGzbfxIkTzahRo5piuUQpKBYV9xoPbgaCLIMAOkFk5E3Y\nLTfLcZR+WcqJy0Mds2bNstswxKWr2rW6rpZq1Q/cs9y7We9b+b8jijIBCfm/g9QeccQRtsrw/x0n\nCVGwb98+w4aW/L/yPzd69Gi763orK2Ur/fW8IlAmAkpcykS3D5bNA5cH39y5c23reWhedtllmR7A\nFAB5ePXVV82iRYvsw5RB+eqrr45cvhx+2PPgR/IQjzzEx1b+0Z8idHHLa3UMBiwbhgBmHfhald3N\n82whwcDLbuR5+rObbUhbN32Z1FJI2U8//bS599577f9MUrLfSifunRdeeMEQ0JD/wW9+85tm8uTJ\nfQb7VrjoeU8QCOIiqCgChSDw1FNP9QSDSk9AVno4Llpef/11WzZ1BDsg9wSDc68qgge9Pc93MC3T\n63qWE9RD3Xkkb/4kdVMHn1NOOaXnX//1X5NkqUwa+lz6VNrZCUx9AKhdO4MXhZ5gmsd+yvi/A/dg\n+w4C6NjvqP87H3BSHfoOAgR0UlEEciHAgy0IzW8fnO0esrkq+igzdUCOeFjz0A7Lww8/HElqwunS\n/qbeLA/tsjChXPcj7bntttt6+NRFuL/o6yhx218UUY2qp9vnou4h2sv/AaSuDMISbjP1BVYXWx//\nYyqKQLcQUOLSLeRrUi8PMN7EsIB0WsTCwyAthIIHPMcMdmUI5aYZIEmbJn2cztTtDtSt0sobeKvr\nVTtP//LG307AOQk+7crx9bpLXqLu/U7pjR4QSUiM/N91qm6tRxEAAfVx8WTKrmpqMP+OHwv+LI8/\n/nhmH5a87WYu/qtf/ar5wx/+YIIBzpx99tm2yDJ9Siib9idxnMzjkEs9wWDcgCjNKieWXK9Zs6bh\n/NwopIIH7A6+ZMmS1G0BexHwCCwT8rOy37TpBz/4gXV472b/cv/PmDHD4EDfzf//ynakKp4LASUu\nueDrm5l5aI0ZM8Y2fu3atZGOsp1EhgH+1ltvNc8995xdTSOEIg9paKc/GAQWkNjBNG39UqbUnWew\nvf322w0bLlZ9l2gcTiHI27dvF1gyfbskEOdluUcyFdbFTDNnzjQvvfSSeeSRR8yxxx7bRU3+WDWr\nvdi1e/PmzZXFtOsgqgKpEVDikhqyvp1BSMuwYcO8GRTRieWaPNRXrVrV9BBNSx7S9i7lR1lCGCiR\ndm/55BcpckClfogPFpt2Okj9Pn6zl9QVV1xhLr300sLUCxPEqP4rrLICC+L+fvPNNw0vC7TBl36F\nXE6bNq3p/67AZmtRikAvBJS49IJET7RCwEfSEtZVyAvWEMgMOjOIl/mGHRXvpRVhcokKuks8jXA7\nivgNFkhVrS5gNXbsWGvZKjOOCP0X+GpYrIokj7bAgv64pKVMLLKqq+QlK3KaLwsCSlyyoNZH8/j+\n8JRuET0xXyMMTLydlvnAhxxBkiBILmlxB0V0KZOoUL4r6ER9VTXj49syZ86cQq0tLj5Rx/QhpFfE\nB2sM0zEPPfSQ2bp1a6n3sLQ56zcxX4i35LueWdun+fxBQImLP33htSY8lG655ZbS336LAuG8884z\nwRJtM3v2bFukSyaKqiNcDoMeDpN/9md/ZgYMGGAvd3vgY9BDJyFxYZ19/e2L3i7x7IY1RqxOVSGf\nBApkW4Enn3zS11tL9aoBAkpcatCJZTdB3ty7uYohbRujdC6DvITf0AmVDmnpNmFx8YLEMeUyffp0\n97S3x5AF8MPyUeYUX1oAwn1ddh9TH3XMmzfPTJo0Ka26XUmPzmeddZZdcVQVnbsClFaaCwElLrng\n6xuZcZAM4jY0rBdVaXXYdA2ZQfI6NUKARNy3cJcYdWJ6SnRo940ukBfM+Gy/4LNUaeBzrTF5VoC1\n6g9WhrHXUNWsF2Il4jvv/1orbPR830ZAiUvf7v+2rZeHkDi7ts3gWQJIFxvMibXBJRdJVXUHKPJE\n+alEkSLy4Vfjw8P7vvvuM//0T/9k/u3f/s0rK4bbB5AWltn7tGLN1S/umP53Y+5E3SNx+cPXKK/K\nq8Kq7hge7g/97RkCGodPEYhDgAiZnQgnHqdDnmtE+QyIQ1OETzcCaVTZAUlrisCaJDpoqzKJ5kp5\n3RR0ow1EOQaLbuvTCgui47J1RBK8W5Xhy3kwlw/3QFoBi25Eo06rZ6v0tDkY6nJHjQ52rLblUNaD\nDz7YqjpvzwckPJP+QVC/Rj7a3mkJYkD1iO7XXnttp6tvW1/nEWmrkv8JpEOj/pnirvnfsmYN6xI6\nnv1c3EGAgdEdvHnIyiAjg3wzEvG/yBMn1NcuTVz+rNei6mVA9I28oCfh4+tCWsL9Fb6/wtfDv2XQ\nB5cqC/canzwiz1O+qyiif9RYwTn5QFRc6TZxQRdXh2effdZVr+vHfxIAp1JTBPr162fk88QTT6Ru\nJcHcCOtddZk1a5ZdTuq2Y+fOnXbahKkjBNO+fNIsmxaTvlt2+JjyKJu6mA7phKAXn/CUBTFdcPbE\n52XTpk2dUCW2Dpkeeuedd2xgtTTYxxbs0UWmCuXekvuAe4EPfRSWu+66ywQDvtdLn8M6R/2+4YYb\nzMKFCzPf82zzQMA9hP9hlc4igD9cQLxspawo9Uq6Tp0qqEAci4671ummBjdaS0bfTpe6vPVJO//q\nr/6q53vf+561fIi1pQgrSNoyqBtsy5Qkdcgmfa4lqkydosoGO6w/ed/Ko8quyjnXGiP3pW8WsTxY\nYu3MMtXMVMWRRx5pn19811HyPJ87hQfTc6KnT1N1anHxikb6o8wLL7xgAvN95d/6QJQ3W94eeKvn\njVeW2Mrbb1bUKZcy0ojUjeNuGYJOvOHziRNC6BMbhCXuWF/K0idKB6wsrJhhiTZOw1WN7BvVtrTn\n6CfuIT4cf//73zfuSrW05fmWnu0aVq5cmVqtYJrC7N+/3+a7/vrrm/JjiRFL8re//W0b9fjOO+9s\nnOMaaYKptqZ87o9XX33VkFfK4XvgwIFt82G5njhxYlM+freyaJ9yyimNtOiESH5XnwkTJth0Ug7f\nrm6SNtzOPXv2yKXGt5vmoosuapznIKrdcfqPGjWqkf/+++9vHHf9oJPMzbVGBA23zlbBzdmkQmCS\najA8mHb4ulsGx2GBqbsskXpa1eXmJY9bdlweN12YhcZdoz6czdw2Us/ll19u5xNdfeTYLQ8syH/h\nhRc2YRTWgfKk3eHv8Fyq1BP+xucgy5tSuBxffvM2i6NxWHjjzWIByZpP6o/yP5FrWb7zlIfVJRg0\nreUjCxZJ9UVHqYv7q8y6kurkW7pgh/MePnUR+pxnEN9pxH3u8cxzxX2+8yx1n4fu844ywuMH5dxx\nxx0tn4/kZ9zZvXu3W6U9Dj+33bo45rkbFrcd8pxO8nx2/UsoWwS93HqlTLnOt1iqSOded3Fzy5Bj\n2hclLr6++Lr8f0SiNC7gHDeO23ABSb7DNwnpXeBdMMOdGb6h6VQ3r9ThfofzpNUPSKJuRoEq7lqW\nGydcntsW99j9p0nyjyH6tvqm7LoNLAzOUW2C1KR9sKadImqFM+WkrTtcFm2SaYbwtaS/KYMpG/qd\n77zlufVSthAWpg6Kws6toy7HOCjXDR/ahKN/UgkPzuF87Z6jrZ6LlJM0L+MIL8Ei4bHHrcM9pnxX\nws9vriV5Pofra1VmeMVPGDt+IxAOV89Wx2H9yesSvXB9XO+GlE5c4kiLgBe+ScI3l7Bm9yYIA+jO\niUq5Ud+U4UoW/Vw9wh3d6lrWG8ctL6o97jlhw0n+MVwMwsetrBPhdGX+dttQVD1x8+1pBos0aZPo\nDt5RhKrsvFHlowdv/JA8LFQcZ2kvbWL5NZYV7lG+s5QTpWOdz4FVN6WM/zvuoTS+VO7zn+dzWNzr\n4EUaGSP4dtvAdXlZDY8RPFvlGnWELSoM2CJumdQnpCb84hvW131+h8cKdJMPRMWVOOLiEgnGTldc\nbFxdXD04L4QmjFd4LKZsV5dwfW7dnTwu9b/EbTAd5HZc3DUAcIHmhnLTA57cqAKW22HhutyO5poM\n8G6Z4Txx11zd3DaF9XavuXnS3DhuvrCOYTLk/qOhC+nlQ3uSCm9HDPLdFPdBIQ+JvPrw8Gz1AMXq\nkcTKwMCelWTE6U+ZSep3yyB9XmuNW174mPuAQQcCw33EmzMERHAMf5OW+wbSw4e0TDeWqWNY5yr/\nhtiBcTeljP877gHuhaTCS6k8t8IvqJQRftaHxwKeF5Kfb3kuhp/pLmkR3dz2u4O0+xx2n+vkCz+H\npSy+4/K5Ooafz2Fd3TJbWVVI42IneobTR+FFW0WfsC7gJNf4Dud3devUcanOuT/60Y+Cdv5RAvJh\npk6dKj+ts2QAbON32PEnWAHSuMbyzfnz5zd+s3HeEUcc0fjNgRsWO1zXTTfd1FjWRdq33nqLL5NH\nP1tAwj84UMmyPrIsW7bMDB482OamHQ888IAJbhz7O7gpTPCPYI/Df8LtwvEquFEbydjcrAgJbnQb\nbbaIsoooI8oBLUu5YLxly5bIrLIMt91y5YBgtHV8jaygzclgoLfl4lybRMQJV/ROkidtmvPPP99u\n87B9+3br6Mj/IPvQtJL+/fvbZavoBk5Lly61OzuXqWMrXap4PiB45tBDD/VG9aL+73jGpXk2vfba\naw0MjjrqqMZx1EHwEthrLMC52X0u/vKXv7RZ2T5BhGfB6aefLj8b31/72tcaxzyLBYPTTjutcf6a\na64xOMCKAzDP4WDAbnwaCUs6YOwICFGj9Jdffrlx/MMf/rBxfOaZZ9rjXbt2Nc61wuvKK69spPnV\nr37VOOYgPNYyPnRbPl6mAu4NSNj1sLgeywzs/ONy0yHcVAzUkBZEBn46zCVA9mLw5/nnn5dDu69O\n48dHBz/5yU/Cp0we/XoVFnMi6Y0jbQ3fOFJ08OYrh43vk08+uXFc1wNirkQ9ZNK2N/wPGM7Pih8G\n3VYrheKuhcvK8psBnrqpp9UGfhCrwNLSUscs9SbJI7q1wiZJGZomHgHfXhiK+r9j64LVq1fHN965\nykalIocccogcRn5/4QtfiDzvEp5f//rXNg2rCkVkUJff8g35doUxCZk2bZpZvHhx49LNN99sjyEx\nSGCpMZCe8Coee7GEP9QnY+JPf/pTWwMkC7KFQFDk5TiwQNlz/GGcZLVSnLQjmW55ceWUea1Ui4sA\nSwMuvvjipuVdgCdWBmmg3CTyG9YcTuNaYiTdu+++K4f2m2VtSSSvfknqII3b0XLjuEvdOBbSQvpW\nN07SdlFGHsEqEcY9T3l587J0Vt588pbVLr8Qh3C6JIHmwnmy/kYHCSDnliHnlDy4qOhxWQgU9X+H\nNTGNyOCbJk/ZaSEBEEtepqPkscces2MclphOiGv5FCvL+vXrG1WzR1udpVTikhc4iEz4JuYtQKV8\nBNpZJ5Jo4MZbCBO1dr95EIhwD0B8eSh0gsDwhhiOaFrWFJG0MfwdjvcicVbkfDi9/lYEBIGq/t+J\n/u40iJxr9S3WlPB1mR7i/NFHH20vyzc/3OkVe/GjP+5LJqdkBoBjyMt3vvOdxpQQrg583Jc8LDGd\neEZhgZZ6eT5SZ+CThppWXIuSa0XCUuNOa0Ud00bfpVTi4t6AgYNPW8DCgyWMPyycC1tY3JuL9Pv2\n7Qtni/ydV7/IQiNO1vHGiWhmqaf45+ShEHVPFF0xb4hMyYi/S9lTRK30F7+XFStWWP+XtG+urcrV\n84pAUgQ6+X8nOh122GFy2NL6LAmYvgmPB/x2p3UGDRpkk7tT7bSLYGxhCVbCNU5BDCArlOe+aAkx\nwWWBD64AQiLI7LoGNAor4cANzEeQP3GXcKeJqPb4449v1A5hC89sNC4mPOiU5T9OnVKJi+vQlNZS\nQuRAeevmpqAzEG4496bkHMTFvXGifEQAW24+iWCYRz/qTSpF3zhJ682ajnll+efMWkbV82HZwJek\nk1NEYczEn2XSpElWFyFS4XT6WxGoEwKf/exnG81xLSeNk6GDYMVSg7xAMvjtilgfsNq648S3vvWt\nJvJCJF0Zc8gvDqu8ULv5wi/PvJQzLom4L6pyrt132NLTLj3X3eki19UgPE0E+ZKXdPT8yle+0vR8\nZ6x1x0eJ3is6hIkh5XVbSiUu55xzTqN9ODEJYeAkYFx33XUNMkFoZBEY4cyZM+WnXdkwd+7cxm86\nKcyW5SYjEW/mzz33XCM9UwzujSU3clb9GgUnPMh74ySsJjZZmn+MoUOHNvnlxBZc44s4yL7yyiul\nrCJqB1vYn6WV30u7coq4DmHC6nTPPfdYixcPxqgP/7OkYfPG8FRbEXr0hTLS/J9WBQ+mOdNYC90F\nB//xH//RtplYGiAWvJjyLZYHMuInKQMtL7isSBXBx3H48OGNMcgd/CnH3djRtW5AbqQ+6oQQiXCe\nMtMK4yNlhUlDXDnudJGbTsY395zbFvAZMmRIo91sNyDjIwSH7VFccY0OGBDCMxxu2k4dl7qqCABY\nQilOsHSOeGGHG+gCSx4BkhsBYAGL+TlhxLBld6UQN6h747k3k1uXeyNn1c8tL+kx7aMdiNw4UXmj\nbpyodGnPCfbBGv1eN2ZUWUU8QFk1xttIkZLnnwYr0qCPzMZJdMLicsYZZ9hBOM2DN0nZcWl40LOK\nJ+zPwm8hNGXrQz3sV8U01YsvvmiC+CL2rY03M/d/1W0H+HLfYBFlFQmm+SCui32wq0Oxi1T0MQOe\nG/YhOlX7s7793/EimmYwd1eb8qwkf6v/e8aE999/v4msCEIMsv/8z/8sP+03Uzt79+5tGiuaEgQ/\nGHMISeHW+Y1vfMP6kLikKJyP3xAPN19UGjmHfu3Kk7StviFUssKJNJQpRM3Nw1jH/2ar8Ze0jD1r\n1651s9ljd7HIyJEje13vyomyA8YEBCQ25H/Q6KbAdIHndlOwGwmig55x17geDtpD2e4n6NRGxEPS\nI2n1I0/QwY1yXf3aXSOtq0/4mHLRxxW3LgIBhcUtM/B4b7pMe8N1hIMLNWX46AeBsLodgC5Kr7zn\n0kTwJCAcH6STEV+pK3hQxzYVvQg+V4ZI8EHuG0L/87udPq30oC0SwI4gdkTSzVpWqzrqdJ4+Bae6\nCf2edgdw99lFgDdX3GdeQFzsM51nn/usCz+X3fwcU2Y4T0BY7FgUDPDh5I3flOvqJnVynvEpLO7z\nO6wT6YMX6Sa95fkcHsvC5cpv2iE68B2uQ9LJN3WGA7KiY1w+t71RY5CU3clvHGY7IgDjAgDI3Dhh\nINw0ABoW92bjRgsP9HSMm4Z62nUMdSTVj7RxN2PcNfKmvXHc8sJYUR56y41Lu12J+8dw04WPGRiD\nN/rw6cr/howxECeRMFkJ/05SRpo0DOhp6kibvp0u1M2gWRbBEELEfdUqenE7HfvCdf6X60buIC2Q\nlzTiDtzh55r7zIO4qJSHAGOIjC+MRb5Ix4iLLw1WPZIhwABW1lt9Mg2KT5V0UIgiEK4FpmjN8lhQ\n0DXPQEfdhGOHUKQdXLLggL4QSO6vKJyzlFmnPGnIdVXanaWvsXrwYsr/LN+uFUSJS+d63rXOiDWo\nc7W3rqlU59zgplOpKALMZYYdoCvaFKs2DqP4abQLP49vB3FcwoJPCU6qRa/syRufJY/TLpiQn1Vk\n+POweqlsoT6255gxY4YZO3ZsR5a3l92mIssnwviGDRuKLLKrZfH/RCTctD5O+ImII21gVTfBoNnV\ndvTFyoMXInPvvffapgfWlkS+kZ3CSYlLp5CuWD14puOYWQdhgMbpDOLSTgILRMsVELJEul0ZSa/L\nagtIUR4RJ14hQUnKYknnVVddZR555BGzYMGCtoQuSZlp0kCSWKmE4+95551XOCFMo4svaSHF3Av0\nSdEEuVttxMF74sSJmarHkTZwHbB5w3vZZSpQM6VCALIIaUTchS+pCikpsRKXkoCterFYXBgIeWOq\nupx66qn2je24446zgyUDZpQkCTTHEuk0BCGqHs5RF4NUOwtQq/zh85TFp1Xb3PQsW4YwbN682bCR\nYrcEfdGBtzliUhSBa7fakrVe2kyf8eF/jWXm4BJMo2Ut0qt8ixYtMu4qobTKkR9hZaobTiNtOZo+\nHQJYWyTYZzBd1LE9mJJq2Y9ZpKSJNV3fQkBi6fBGXmV5+umnrcmTQVLEHeAxSwuBYNBoJ0LmkqQN\nl8WbNNMyaU3n4XLiftO2Vps00qcMAligpM1xZXXqGnqtWrXKEhmxIHWq7k7Ww72DVU8kqp+wdK5b\nt65px3tJX6Vv7kOmA932Vkl/1dVfBJS4+Ns3XdeMhywDLAOtT4NcWmBOOukkM2fOHHPppZdGZoVM\nPPXUU434B/i4tCMlPJTTkg/wpK5ODMy8ydNnbjt8JS3SKUJeqn6/SXvk2yXJSe4t7hEIDfnc/pPy\nqvKN9QifnenTp1dFZdWzIggocalIR3VLTQYTgo5V9eGDtYWoy9u3b28JYZiEJHkrprBwvpYVBBei\niERc+iKuuUSJiLYPPfSQ2bp1q9ck1HdylaRf6GtM7SJpCS756C92aceRuYrC/wbWlrqR0Cr2RR11\nVuJSx14tsE0MfrwlxjmtFlhdoUXx5orvxMKFC1v6ctA+JO7NttVARPnkb2dB4SEeNSVQaGNbFIaO\nWJP+4R/+wfq1tNO1RTEdPY2zLo7Usqqko5VnqAyMGaBFiuhryqScNWvWpLbsiR7d/FZrSzfRr3/d\nSlzq38e5W4iT1o4dOyr39pdE7zRWEwGSPCL/+7//a1iBFTWVJgNaljduKT/vtwyA9913X8upsrx1\nFJ0fMghmrK7ppvNwXLvcewAfqTIIIb4uOKf6biUL4yR6x1k5w3n0tyKQBgElLmnQ6qNpGfywXBB7\noxOxPoqAmYEFUzXfrawpXMtLKsAmyj+GwZdrZQxoafBh6oW9RpYuXZomW9fTyhSfL4M2/ek6mea9\nb5ICjOUiCOBWGesT1kksZlW1FCXtF03XXQSUuHQX/8rUzgMJ0zUm8W4Pxu1AS2JlYCBCWpGadnW4\n16mP8sCFb3aUPuigg8yAAQO6NkWEfjKIxJE3tx2+HXd7ugHcRJI41UraIr+5nyBJVbCY8X8wZswY\n+8JQVZ+4IvtOyyoPASUu5WFbu5J5C542bZrXS1bl4UlskLhl3EVYW9wOFiLEW7nr49DKP8bNW9Zx\ntwf+vO2ijzrp4NnNvorDigCKBAtkiTT3ta8yZcoUa92rqkOxr7iqXr0RUOLSGxM9E4OAz6s+hLQc\neuihsf44RZMW4KJupozaTaW5b/Fl+Uagj1hbqr6qo0zyRZ8V7VQL9mXIv/zLv9ipWlYa+Wjx9Pm5\nUEZ/aJndRUCJS3fxr2Tt8pBavHixNw9RIS0AGhdcTSwjRUwRSedRJvUzoKQhReGBs8jpCPqof//+\nlfGNECzD32J1cf1LwmnS/O4UcUyjU7u0cn/t2bPHS4unPA/i/u/atVGvKwJpEFDikgYtTdtAgIeV\nL5FOebB/9atfNUcffbRdhRG1wkcUT0MsJE/cN5YNN9AbZAR9srwVk88doN0ppzgdwtfQgby0tUiC\nFq6nU78JIBi3pD1OjzCmnXKqjdMpzTX0R6QfZbrWB58X7jN8WhAlLRYG/dMhBD72j4F0qC6tpkYI\nsPkZRIHVRkcddZRhcOmGPPHEE9YP4rLLLrOD2yc+8YmWapRBWhhQDjvssEad1M8Sab7jdGlkcA4g\nQFhd5LN3717zy1/+0hKh3/3ud031ONl6Hb700ktG3s57XazgiU9+8pPm5Zdfbmy4F9cEBtO33nrL\nYsagz3QcJE4wjcvr27UwaUE/9tvif40NCD/88ENz9tlnd0Vt/peIRE0oADZAjHtZ6IqCWmmtEVCL\nS627t/zGYXGYMGGCOeaYY2y0T3kzLLtmBiiWZ2/YsMFaWVgyGmfliBoE8ujIgzvOIlI0SaK9rj9G\n3LQS1rAqRzsO9wt9h6XEtUa5aVyn2jL9htw6yz5ud79yHSsjMn/+/NzL+pO2h/vwu9/9riUr7Bjc\nzqcrabmaThFIhQCbLKooAnkQCMKb99x9991s1tlz44039gQDTJ7iYvNKXQFB6pk8eXIPvxG+g4G9\nZd5gt92W19JcoJ6kZSVNl6Z+SQvGlC8fwYHrAYmLxULKqNK32ybpg6i2V6lNrXSlb5P+D/F/x/9C\n2f936Bo4n9u6xo0bl1i/Vm3U84pAHgTU4pKK5mniOAR4C7zrrrvslE3wILXm7DgrSFxZ4WuUzTJL\n3i6HDx9uZs2a1estU6wSYT+Goqwf6EAdSdtEeqQTViixOnzsYx8zp5xyigkeCmEIK/2bN/s///M/\nN6wyqotVJapDstwz3JPsx4UfEP93WEDD/wNRdSU5R9nLly+3+1yRPquvUZK6NI0ikBSBP0maUNMp\nAu0QYIAmdkrwtmiTEkGTDxvGQR7SCoMx4cMpg6mRffv22YicEJioBzPz7JynLh64CAMBefMKuiBJ\nSQtpwQM9RBfOlSXoRdv/8Ic/mOCNuKxqulYuZOxP//RPbRvT9EHXFM5QcRbSQjXc9/J/xxQh/i/4\nwbDlRZb/O/TACZi4LJBEfIaWLFliNyr1dQuGDHBrlgojoBaXCndeFVQneBZ+KBs3brT7HTGoDho0\nyPpgoD9Ldnk47t+/3zbnwIEDNt22bdvs71GjRpnRo0ebkSNHpnIAhGjwQIdERZEcW3jCPzz84/xZ\n2hVD/rw6tKtDrkP0du7cGRt8T9JW6RsMsbbVNbhZVtLSqg/5vyOC84svvmg/bFqJM/3QoUMbWYYM\nGWJ2795tf7f6vzvttNM6YjFsKKUHikACBJS4JABJkxSDAJYHHExZ8cKDEsGKwl467gOVqaA459Ok\n2jzzzDPms5/9bCoriVu26JuXdFAOA1MnLAVYt5C6hVyvM3EpmrS49zDHch+3+7+DyBxxxBEduU/D\nOupvRSANAkpc0qClaSuDgAwGWF0gS2nJB/l54BdFNrAAMXWEPmVKXYkLfYFlrm6+O3KfdsIPqsz7\nTstWBDqJgPq4dBJtratjCDBFJEQB0sIbO4NfEsniz9KuXAiQu5y5XXq93oxA2YSvubbO/JL7TElL\nZ/DWWuqDgBKX+vSltuQjBKJ8SiAvvN3KG24rsMjLQFLGYCIEqlXder7vICAWuDLus76Dora0ryKg\nxKWv9nxN2w0xabWKSKZ95E3XhQBrjBCeMt/u0a0deXL10uM/IgBmdRnkhbSUeZ/pfaMI1BkBJS51\n7t0+2DaZImrVdLGmQFJEGBT5pPWDkfxpvqkfkpR02ipN2XVOS7/itF11UdJS9R5U/X1A4OM+KKE6\n1B8BBmp8PFjmLEsvo1otS6VZ4cC+LGnessViElWue443XZm2IWAbgc3EGuOmK+uYupLqmlYHlpdv\n3bo1bTbv0wfRcr3XsZ2CSlraIaTXFYFkCChxSYaTpsqAAFaMF154wQaRI54EsSSGDRtmY7gQ+TZK\nWLLJEunFixeb1atXG/YgIvYLmyjGkQvqajVFFFUP51il8vvf/77V5VLPExeGgSyuTVkUGDx4sMU7\nS16f8xBvhHuhqqKkpao9p3r7iIAuh/axVyquE1E3V65caa0rE7JufpwAABmPSURBVCdONASRO/XU\nUzMtBZZAWuxAO2DAADNnzpzIYHRpLRikl6BykB4sQkWTiHbdSL1IGqtSuzJpRx2XDRPFlUCE7Ehc\nNVHSUrUeU319R0CJi+89VCH9IBnslYK0Ihh5muMSovvuu68xiKUhLTJlFfZnaXU+j75J8qbRPUl5\npCHcOyHaw21Mmt/HdFjTNm/e3HFymRcLJS15EdT8ikBvBJS49MZEz6REAMsBkVrxX3EJRcpiEidn\nsGc/lkMPPdTMnDnTDtRJrBZJLCtlEIl2DSu6TjDB12X27Nntqq7EdQZ/9qvCQbdKoqSlSr2lulYJ\nAV1VVKXe8lBXrCC82eN/gPNtJ0z51Ld9+3YzduxYO32QZP8aBhGk3XQQZUMksMB0SopcIg05Y0+a\nH/zgB7YdnWpDmfU88cQThinHKgn3EGRalzxXqddU16ogoBaXqvSUh3ryZr9q1Sq7Y3O3piUgJNde\ne621vixfvjxyoGAQEX+WpDBSLoNOEktO0jLj0mV9Oyefu+IGEoTOVZ1aicKIqa+FCxeaquxMXLQF\nLQoTPacI9GUElLj05d7P2HasEVdffbV5//33zaOPPtqxwb2VuugzY8YM884775i1a9c2yEtev5Uk\nU0utdMpyPsmAFyYqrQjZ7bffbpedL1iwIIsq3uQRvyksbFWQJH1YhXaojoqAzwgocfG5dzzUDTIw\nZswYq5lLEnxQFQvQm2++ackLevJpNzXUTu+85Kdd+e516oIsuTozELrSiqi4aTimHKwu7QLyhfP5\n9nv8+PFmxIgRldjtWkmLb3eP6lNXBJS41LVnS2oXy1LDlo2SqspULOTlpZdeMo888og59thjM5UR\nlYlBKSlpiMqf9Nwzzzxjk7L0G8kzBQcWSFWtLmCOHxO+U777iihpsbea/lEEOoKAEpeOwFyPSph+\nIJCcb5YWF12mFiAtBJZL4rTr5m13XLTfi1hz3HrFOTgPYZHyqm51YSURxIUVaz6Lkhafe0d1qyMC\nSlzq2KsltAlCcNVVV9mVKp1yWM3aDAgB01llDHp5/F7CRIVAce60kNveogbDe+65x2zZsqVwEufq\nWsbxihUrzKJFi+zqsTLKL6rMovqpKH20HEWgLyCgxKUv9HLONjLgMk2CJaMqKzuwjvDGvmbNmlzT\nLVHQCQFpZxWRdFJGHFGRNPJN3rC/i1xL8005Z511lnVenjRpUpqsXUtbZt8V2SglLUWiqWUpAskR\nUOKSHKs+mxK/FmTp0qWVwqDst3YGLtfvBaLhBklLQ1SigGUALyIWCOWgJ74irSw8UfV34xxEqyxr\nWZHtUdJSJJpaliKQDgElLunw6nOpeUBXxUEyqnOwumBpKMPaAFF55ZVXzEEHHWT3UZIYKlF6ZD1X\n1ABJoMBp06Z5HzYfkvzBBx94PbVVVJ9kvSc0nyLQ1xFQ4tLX74A27a/SctSophRJvLBcRAV7y+P3\nEqWze66oKSPKdJeL+7hKx3f96AusVu2mCN3+02NFQBEoHgElLsVjWpsSixz0uwkK5OuSSy5JbXUJ\nExV3WijcnjIHNYgRUoRTtJADHwIHuhiKXr6uWCuSQLrt1mNFQBFIj4DuVZQes7Y5TjnlFNOvXz/7\nYZdeV+Q836+++qp7KfaY/VrcvLGJC7r4wAMPmFmzZnkfQ6Ndc9kSgBUq7QSi5n4gCrxdyyfOSsE1\n0pGfQa5IQQ/XdyZP2cR0GTZsmNUVYtZtASuIpQQOjMO4W7oqaekW8lqvIhCNQCWJC2RABnFIgkrx\nCPCwXrZsmR1Uii+9syXKSihIhSsuSeFYCIp8ZxlEyYuFRKwkbn15joUU5SlD8kJe2MUbCxIOzN0S\niBMrng455BBvYwMpaenW3aH1KgKtEfh460t6pS8jsHHjRjN58uRCpid8wPGv//qvLRFzdYEMlCGs\n3BHyUsT0jugI0WCwL2JlELt4v/7662bq1Klm3bp1hngvReoqOkd9QwbYEPPv/u7vzMMPP5x6Ci+q\nzDLOKWkpA1UtUxHIj0AlLS75m11uCT/5yU9MT0+P/TAwVFHWr19v34arqHtYZ4LnfelLX7JTc2JN\nKYu0SN1CAoqcjhELEANqEQIGW7duNSeeeKLd1wjyUlTZrfRjdRNWFoLi4ehaxmqvVnWnOa+kJQ1a\nmlYR6DACwQBbGdm2bVtPAE/kJ5i379WOBx98sIfzbh7O7d+/PzKtpLv88svt9TvuuKORVzJIGr7R\nh8+FF15o01E24tYp51rlf/bZZxv5KZOyOBeWxx9/vKEL6aIkTXuj8rvngoG3J/CrcE9V/rgbbQpW\nIfUElo1CsSu6PJQLSETPuHHjesDotttuK7TvweCpp57qCQiS/XDss6AveKgoAoqAnwjUcqro3Xff\ntdMczz//fDDGN8s111xjjjzySBOQAzN48ODmi86viy66yETld5LYt9Wbb77ZPZXqGBP9vHnzmvJQ\nJ5+AhFgzftPFFj+KaK9btFgJxGrgXstzjJ7EPdmxY4fdqPHll182AYlsKpK+OfPMM83RRx9tLQFn\nnHGGOeKII5rSZP0xfPhw87Of/axjUyLo6Trtxq1KStMmLCXik5MmX1xapp/Y24m+x4eMmDTnnnuu\ntYicfvrpqaensFgw3Ugfr1q1yoD9nDlzDFNUPotaWnzuHdVNEfgjArUkLvhmxJEOBsuLL77Y7Nq1\nyxDdNCyPPfZY+FTk7zykhQLDpMWtBIJ1wgknGAaNdpK3veHyIRgMNEUJ5dHWxYsXty2Svgnjz6qg\nW265JTeBGTFihNm9e3dXti2AbEAKIDJFEEKIBX40RZTldgoEBuddSAbEgylDsEe4J8AQGTJkSNP/\nzp49e8yBAwfMW2+9Zd544w1LTgMLjl2GfsMNNxSup1Wi4D9KWgoGVItTBEpCoFI+LgzigeHKWiME\nD5Z2cg6/EoRlwy5pwXLBdT7BdItks2/67u/GhY8OKDeYBmrkDV+X3zzUpfws/iyt9KN89gZqJ0W1\n162HwV0GKPd8luPnnnvOYDVJQlpalU9eyqCsPII1h4G1WyJOtWLRyqMHhKWoJdJRekCwsI6wzQP1\nbN682UAgEQgKfTJ//vzGZ+fOnfba6NGjrcWG/wksOPiwFE2ubEUF/xFnaumjgovX4hQBRaBIBIIH\nTOUEX44AA/vBn8SV4OHauBaQCveSPW6V1z1P2fiuRInUy7f4woTTJfVxaacfdQSDhC2+lY9L1vaG\ndXZ/33333T188gq+RAFZaPSHi12WY8qizKyCbwh+HN2WIv1eyvB36TY+na4fX666+XN1GkOtTxHo\nJAK1myp67bXXgjHxjxJlNRg1apRctkGvgkGkyeQtF5NM0bAPTh4hmmtY8O9whWmWOF+cotrr1olV\ngjfnvIJvA1M/rmDJCgifjd3BVFiU8PbOfjVMVbjWM8qizJtuuikqW2XOFen3UuQS6coAWKCiEm+n\nClahAputRSkClUagdsSFCJwi+LG0kyjiwuCaRPr3758kWcs0UU6nYZ8b9IuTItobLh/SEKVbOF27\n3xAPV5iau+yyy9xTkcdCGiEoRBd2/W0os+rERRpdhN8LJAjBP0OOpXz9jkdASUs8PnpVEfAVgUr5\nuPgKouoVjYBrLcEXKAlpCZcEiSGviFumnKvyt/hU5PF7oQxioqgkR0BJS3KsNKUi4BsCtSMurrXE\nda4N5t8aTrTucRGWhaydihNsWMIWlnb6ldFeQrAzRVWkDBo0KHNxefJmrrSDGZmm4BPekiCNCrJE\nOk2evppWSUtf7Xltd10QqN1U0WmnnWZ9V+ggfCVk2sHHDiN6KPFiXCHuhQirYNoRlzLaO3To0F6+\nKaJT1m9WpWRZdUV95K27FOH3UtYSabDHIsSSZ/yM9u3bZ/bu3dvUJZBd7humT/HJgkj5KEpafOwV\n1UkRSIdA5S0u7733XlOLzznnnMZvYqG4uzNjRbjuuuu82aCR2CaufixtRmeRK6+8Ug5bfpfVXpa8\n5hWccEWIzXLnnXeasEVJrkd9kxZ83LgubplReeLOMfAywPosDPgMrjLAptEVqw2+LnzyCmUQnn/K\nlCk2GN2ECRPMypUrbbEDBw60u4azc7h8xJmblwXOsQkqzutsI5ClLXn1j8oveqgjbhQ6ek4RqA4C\nlbe48AbIQ5IpE2K54EdBfAlxWoUIuGTA7RoesN2WOP0kbkacjmW0l+BieeKuiL4MXC7pIGAfn2Bb\nA3PooYfagU3Sut9YWN5///2mFUVyPc9KLsgYVgHfBZ8VBlmsHOIDk1Rn0ueJqktenKgXLlxoJIBc\nsAVA21gsYQsLxCdYqm02bNhgrS/odf3113ctcq6SlqR3kKZTBCqAQCfXXhdVF3v5BNA2fQLi0ig+\nIDNN+/+E0/KbuC2uuHFc3LLcNBy7ZRFbJUrIL+nC9ch5vt29kNzzHIfztYrjQv1Z2hult5wjpkXw\nVio/M38Tg0b2cQq3L8tvypK4NlmUIoZLsCopS9au5AksTpn2zMmST2Lc0O/E8Ckyrgn6dHOvIo3T\n0pXbVytVBEpDAIfVSgoDuxvcLIpskCY8cBL0LSq4HGllMI0qS0CSNHznJS4QDspwiQ765tlkMWl7\npT2tvhnAithoLnBA7tUHLoZJj2kXZeUR6ipyQM6jS9K8DPpZgswlHawpn00VhbDwu0wRAhPsg1TI\n/dVOV+7hqvV5uzbpdUWgryNQWeLS1zuu7PYH+x/1PPzww4VVAzF0CVpSwkIe8uYVLC3sTlxVgbyk\nJRXtCA/XwQRLVKcHd6w63ANFRGhu1aeQlrSYtSpLzysCioA/CPRDleABoqIINCGAY+a9995b+Ioe\nHKTZIRp/k5/+9Kfm17/+dVO9n/nMZ8zJJ59sV6cUuTP07bffbuuZPXt2U31V+oHPC6uPAutIYrVb\n+busWLHCxsfBQZz9hLohtAc/LnYCX7RoUaEB9CgbnDQoXzd6VutUBMpFQIlLufhWtnScK4niG7yJ\npxoofW0wS4Vx+k3r7Opbe3AypW+StiPKKXXmzJl26wQf8KAtM2bMMO+8845Zu3ZtIURDSYtvd63q\nowgUi0Dll0MXC4eWJgjwpnrjjTeaZcuWyanKfmM9GjBgQOLB3ueGYkXgkzRYHWkhB3wQSAsr7oi0\nm5T8lIkH9xk7UAdTgmbMmDENPbPWqaQlK3KaTxGoDgJqcalOX3VcUwbHsWPH2kGuyiZ3pp6mTZtm\nAr+djmNYZoX0D5ssJukb0gaO4Ja0FGXZKLptQqqy6qekpege0fIUAT8RUIuLn/3ihVbE5mCDw+XL\nl3uhTxYlsLbgxsWu4Aze7idLeT7lSROsjuB77Kz96KOPJiI63WjnggULrL/L1Vdfnbp6JS2pIdMM\nikBlEVCLS2W7rjOKM9BjdeGbaYeqyUknnWTmzJkTGfiMNrmCT48P0yeuTkmO2/m9MKhjmfFleiiu\nTUxpMWUULJc2SR2plbTEIarXFIH6IaDEpX59WniLMOF/8MEH1heh8MJLLJBw82vWrEm8MopBk8Hd\nlaRTMW6ebhyL7lERbM866yzrANut1UNp8YCIECGZvgu3J1yWkpYwIvpbEag/Akpc6t/HuVvIoMgA\nft9990VaLnJXUEIBRVkZKCeIBdKkYbvBtClxh39gRXLJFsvAd+zYYZ588skOa5KvOpZrs0R6+/bt\nLQsKt7VlQr2gCCgCtUJAiUuturO8xjBIMGXkwxLadq2EaJVpZQhPMbHU2qdpNMiWOOyiW1WXtGN1\n4Z6bPn16ry6nD3wmkL0U1hOKgCJQGAJKXAqDsv4FMfXy0EMPma1btzYGRh9bzYDH8lqcPTsh+JhA\nDlxxrR7u+U4do9Ott95qjjrqqMS+Ip3SLWk9QpaZvhMiRl4lLUkR1HSKQD0RUOJSz34trVV5l6yW\npthHBfuiX3iKqdOOvxAXrC3oceyxx5YNe2nljx8/3owYMaJhdVHSUhrUWrAiUBkElLhUpqv8UdQX\ncuAiwvTQ3LlzvY1TIs6zrs5lTjHRR0inrE5uu4o8hqhMnTrV+rooaSkSWS1LEaguAkpcqtt3XdWc\ngTHYuNAGNev2EmJIAUtokazBy7oBZtQUU1F+G5CiKvgjJcGdJe3XXHONue6665Ik1zSKgCJQcwQ+\nXvP2afNKQoA3eXxe8Cfp5moj3sJx4Jw4caKN1+L6QpTU9MKKxaE37NRLe1zJMsW0adMmG4+m24TS\nbUee42D3aruXUZ4yNK8ioAjUBwG1uNSnL7vSEiEORKa97bbbeg3EZSmFleW73/2uuf/++003dzgu\nq31SbtQUUzvHX6xh/fv3r6xTrrRdvvHTgSCHHaDlun4rAopA30JAiUvf6u9SWsvgin8JIeVnzZpl\nCNlepuWDMP7Ud8wxx1irT9hqUUojPSo07PiLau4UE1MrS5YsaTrnkfqZVKnT1FcmADSTIqAINBBQ\n4tKAQg/yIoD1Zf78+Wbbtm2WwLAipChSATl66qmnbFAy9Fy4cKE5//zz86pcm/wyxfThhx+ac845\np7KxW1p1yJQpU2xsnqpE/23VDj2vCCgC+RHQTRbzY6glfIQAb/1EaCVU+759++xyXAYcoqDiiJpW\nICtYVygDX49169ZZwkI0VSUtzWiCPZ+DDjrI4BOCYJmpiwwdOtTeU3Vpj7ZDEVAEsiOgFpfs2GnO\nNghAPFh5tH79erNhwwYzYMAAO71DXA6EnaddYQfjAwcOmLfeesu88cYbNlQ9g/All1xiLrjggsKs\nN26ddTuGJBIgcOnSpbVqGg7HixcvrtzWBbXqBG2MIuAJArqqyJOOqKMa+Llceumljf2NsABATvbv\n328JCtNKrgwaNMgMHDjQjB492nzjG9+olY+G284yjyF+WCfqJljcVBQBRUARAAElLnofdAwBlufW\nZYlux0DTiiwCOOfiO6WiCCgCioD6uOg9oAgoAt4jgJN3Fj8p7xumCioCikBqBJS4pIZMMygCioAi\noAgoAopAtxBQ4tIt5LVeRUARSIyAWlsSQ6UJFYHaI6DEpfZdrA1UBKqPAFFzZZl39VujLVAEFIE8\nCChxyYOe5lUEPEOAUP/E0FFRBBQBRaCuCChxqWvParv6JAKDBw82e/furV3bWVF04okn1q5d2iBF\nQBFIj4ASl/SYaQ5FwFsE2IBx9erV3uqXVTGCEhLjR0URUAQUASUueg8oAjVCgKB/WCbqFO6f7iGS\n8umnn16jntKmKAKKQFYElLhkRU7zKQKeIjBy5Ejz3HPPeapderUgYe+9954GL0wPneZQBGqJgBKX\nWnarNqovIzBq1Ci70WVdMHj11VfNxIkT69IcbYcioAjkRECJS04ANbsi4BsC7JyNlaIusU8WLVpk\nIGMqioAioAiAgBIXvQ8UgRoigIXirrvuqnzLfvzjH9tpIsiYiiKgCCgCINCvJxCFQhFQBOqFANaW\nL37xi+bnP/+5wWG3qjJ+/HgzYsQIM3369Ko2QfVWBBSBghFQi0vBgGpxioAPCLAp4fDhw83y5ct9\nUCeTDlhbiN9y9dVXZ8qvmRQBRaCeCKjFpZ79qq1SBKyfC3FdCJcPkamaqLWlaj2m+ioCnUFALS6d\nwVlrUQQ6jsDnPvc5c9ttt1VymmXFihXm7bffVmtLx+8arVAR8B8Btbj430eqoSKQGYHf/va3BqvL\nvHnzzKRJkzKX08mM4p+zZs0a66fTybq1LkVAEfAfASUu/veRaqgI5EIAX5GxY8eazZs3VyKI23nn\nnWfOPfdcM3v27Fzt1syKgCJQTwR0qqie/aqtUgQaCLC6aNasWWbChAkGC4zPMnPmTKuekhafe0l1\nUwS6i4BaXLqLv9auCHQMAUjBm2++adauXevlEmn027hxo9m6dauX+nWso7QiRUARiEVALS6x8OhF\nRaA+CCxYsMAMGzbMjBkzxjvLC6Rl1apV5vHHH1fSUp9bTluiCJSCgBKXUmDVQhUBPxFwyYsPO0gz\ndSWWoKr44PjZs6qVItB3EFDi0nf6WluqCFgEIC84v+IEu2nTpq6hwuohrD8yfcXybRVFQBFQBNoh\noMSlHUJ6XRGoIQI4vz7yyCPmqquuMlOmTOn41BFxWnAahkBhaanytgQ1vD20SYqA1wgocfG6e1Q5\nRaA8BNi4kL2MEGK93HPPPeVV9lHJLM3G0sOOz8Rp0dVDpUOuFSgCtUNAVxXVrku1QYpAegQgFPPn\nz7fRar/+9a/biLVFWkGefvpps3LlSrv3UJWC4aVHUnMoAopA2QgocSkbYS1fEagQAhCYBx54wCxb\ntsxMnjzZjB492owcOTLTVA5lPfvss+b+++83AwYMMDNmzDBf/vKXM5VVIQhVVUVAESgZASUuJQOs\nxSsCVUQAx9kXXnjBrFu3zqxevdr6orCUeuDAgWbIkCHm4IMP7tUsdnI+cOCA2bFjh81z4oknmnHj\nxpnLLrusEhF7ezVITygCioCXCChx8bJbVClFwC8EsJ7s2bPHEpMtW7ZEKjdo0KAGsTnuuOMquSN1\nZMP0pCKgCHiFgBIXr7pDlVEEFAFFQBFQBBSBOAR0VVEcOnpNEVAEFAFFQBFQBLxCQImLV92hyigC\nioAioAgoAopAHAJKXOLQ0WuKgCKgCCgCioAi4BUCSly86g5VRhFQBBQBRUARUATiEFDiEoeOXlME\nFAFFQBFQBBQBrxBQ4uJVd6gyioAioAgoAoqAIhCHgBKXOHT0miKgCCgCioAioAh4hYASF6+6Q5VR\nBBQBRUARUAQUgTgElLjEoaPXFAFFQBFQBBQBRcArBP4fntNQJrCufL0AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "review = \"The movie was excellent\"\n", "\n", "Image(filename='sentiment_network_pos.png')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Project 2: Creating the Input/Output Data" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "74074\n" ] } ], "source": [ "vocab = set(total_counts.keys())\n", "vocab_size = len(vocab)\n", "print(vocab_size)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['',\n", " 'inhabitants',\n", " 'goku',\n", " 'stunts',\n", " 'catepillar',\n", " 'kristensen',\n", " 'senegal',\n", " 'goddess',\n", " 'distroy',\n", " 'unexplainably',\n", " 'concoctions',\n", " 'petite',\n", " 'scribe',\n", " 'stevson',\n", " 'sctv',\n", " 'soundscape',\n", " 'rana',\n", " 'metamorphose',\n", " 'immortalizer',\n", " 'henstridge',\n", " 'planning',\n", " 'akiva',\n", " 'plod',\n", " 'eko',\n", " 'orderly',\n", " 'zeleznice',\n", " 'verbose',\n", " 'amplify',\n", " 'resonation',\n", " 'critize',\n", " 'jefferies',\n", " 'mountainbillies',\n", " 'steinbichler',\n", " 'vowel',\n", " 'rafe',\n", " 'bonbons',\n", " 'tulipe',\n", " 'clot',\n", " 'distended',\n", " 'his',\n", " 'impatiently',\n", " 'unfortuntly',\n", " 'lung',\n", " 'scapegoats',\n", " 'muzzle',\n", " 'pscychosexual',\n", " 'outbid',\n", " 'obit',\n", " 'sideshows',\n", " 'jugde',\n", " 'particolare',\n", " 'kevloun',\n", " 'masterful',\n", " 'quartier',\n", " 'unravelling',\n", " 'necessarily',\n", " 'antiques',\n", " 'strutts',\n", " 'tilts',\n", " 'disconcert',\n", " 'dossiers',\n", " 'sorriest',\n", " 'blart',\n", " 'iberia',\n", " 'situations',\n", " 'frmann',\n", " 'daniell',\n", " 'rays',\n", " 'pried',\n", " 'khoobsurat',\n", " 'leavitt',\n", " 'caiano',\n", " 'sagan',\n", " 'attractiveness',\n", " 'kitaparaporn',\n", " 'hamilton',\n", " 'massages',\n", " 'reasonably',\n", " 'horgan',\n", " 'chemist',\n", " 'audrey',\n", " 'jana',\n", " 'dutch',\n", " 'override',\n", " 'spasms',\n", " 'resumed',\n", " 'stinson',\n", " 'widows',\n", " 'stonewall',\n", " 'palatial',\n", " 'neuman',\n", " 'abandon',\n", " 'anglophile',\n", " 'marathon',\n", " 'chevette',\n", " 'unscary',\n", " 'eponymously',\n", " 'spoilerific',\n", " 'fleashens',\n", " 'brigand',\n", " 'politeness',\n", " 'clued',\n", " 'dermatonecrotic',\n", " 'grady',\n", " 'mulligan',\n", " 'ol',\n", " 'bertolucci',\n", " 'incubation',\n", " 'oldboy',\n", " 'snden',\n", " 'plaintiffs',\n", " 'fk',\n", " 'deply',\n", " 'franchot',\n", " 'cyhper',\n", " 'glorifying',\n", " 'mazovia',\n", " 'elizabeth',\n", " 'palestine',\n", " 'robby',\n", " 'wongo',\n", " 'moshing',\n", " 'eeeee',\n", " 'doltish',\n", " 'bree',\n", " 'postponed',\n", " 'gunslinger',\n", " 'debacles',\n", " 'kamm',\n", " 'herman',\n", " 'rapture',\n", " 'rolando',\n", " 'tetsuothe',\n", " 'premises',\n", " 'bruck',\n", " 'loosely',\n", " 'boylen',\n", " 'proportions',\n", " 'grecianized',\n", " 'wodehousian',\n", " 'encapsuling',\n", " 'partly',\n", " 'posative',\n", " 'calms',\n", " 'stadling',\n", " 'austrailia',\n", " 'shortland',\n", " 'wheeling',\n", " 'darkie',\n", " 'mckellar',\n", " 'cushy',\n", " 'ooookkkk',\n", " 'milky',\n", " 'unfolded',\n", " 'degrades',\n", " 'authenticating',\n", " 'rotheroe',\n", " 'beart',\n", " 'neath',\n", " 'grispin',\n", " 'intoxicants',\n", " 'nnette',\n", " 'slinging',\n", " 'tsukamoto',\n", " 'stows',\n", " 'suddenness',\n", " 'waqt',\n", " 'degrading',\n", " 'camazotz',\n", " 'blarney',\n", " 'shakher',\n", " 'delinquency',\n", " 'tomreynolds',\n", " 'insecticide',\n", " 'charlton',\n", " 'hare',\n", " 'wayland',\n", " 'nakada',\n", " 'urbane',\n", " 'sadomasochistic',\n", " 'larnia',\n", " 'hyping',\n", " 'yr',\n", " 'hebert',\n", " 'accentuating',\n", " 'deathrow',\n", " 'galligan',\n", " 'unmediated',\n", " 'treble',\n", " 'alphabet',\n", " 'soad',\n", " 'donen',\n", " 'lord',\n", " 'recess',\n", " 'handsome',\n", " 'center',\n", " 'vignettes',\n", " 'rescuers',\n", " 'pairings',\n", " 'uselful',\n", " 'sanders',\n", " 'nots',\n", " 'hatsumomo',\n", " 'appleby',\n", " 'tampax',\n", " 'sprinkling',\n", " 'defacing',\n", " 'lofty',\n", " 'opaque',\n", " 'tlc',\n", " 'romagna',\n", " 'tablespoons',\n", " 'bernhard',\n", " 'verger',\n", " 'acumen',\n", " 'percentages',\n", " 'wendingo',\n", " 'resonating',\n", " 'vntoarea',\n", " 'redundancies',\n", " 'red',\n", " 'pitied',\n", " 'belying',\n", " 'gleefulness',\n", " 'bibbidi',\n", " 'heiligt',\n", " 'gitane',\n", " 'journalist',\n", " 'focusing',\n", " 'plethora',\n", " 'citizen',\n", " 'coster',\n", " 'clunkers',\n", " 'deplorable',\n", " 'forgive',\n", " 'proplems',\n", " 'magwood',\n", " 'bankers',\n", " 'aqua',\n", " 'donated',\n", " 'disbelieving',\n", " 'acomplication',\n", " 'immediately',\n", " 'contrasted',\n", " 'reidelsheimer',\n", " 'fox',\n", " 'springs',\n", " 'toolbox',\n", " 'contacting',\n", " 'ace',\n", " 'washrooms',\n", " 'raving',\n", " 'dynamism',\n", " 'mae',\n", " 'sky',\n", " 'disharmony',\n", " 'untutored',\n", " 'icarus',\n", " 'taint',\n", " 'kargil',\n", " 'captain',\n", " 'paucity',\n", " 'fits',\n", " 'tumbles',\n", " 'amer',\n", " 'bueller',\n", " 'redubbed',\n", " 'cleansed',\n", " 'kollos',\n", " 'shara',\n", " 'humma',\n", " 'felichy',\n", " 'outa',\n", " 'piglets',\n", " 'gombell',\n", " 'supermen',\n", " 'superlow',\n", " 'enhance',\n", " 'goode',\n", " 'shalt',\n", " 'kubanskie',\n", " 'zenith',\n", " 'ananda',\n", " 'ocd',\n", " 'matlin',\n", " 'nosed',\n", " 'presumptuous',\n", " 'rerun',\n", " 'toyko',\n", " 'mazar',\n", " 'sundry',\n", " 'bilb',\n", " 'fugly',\n", " 'orchestrating',\n", " 'prosaically',\n", " 'maricarmen',\n", " 'moveis',\n", " 'conelly',\n", " 'estrange',\n", " 'lusciously',\n", " 'seasonings',\n", " 'sums',\n", " 'delirious',\n", " 'quincey',\n", " 'flesh',\n", " 'tootsie',\n", " 'ai',\n", " 'tenma',\n", " 'appropriations',\n", " 'chainsaw',\n", " 'ides',\n", " 'surrogacy',\n", " 'pungent',\n", " 'gallon',\n", " 'damaso',\n", " 'caribou',\n", " 'perico',\n", " 'supplying',\n", " 'ro',\n", " 'yuy',\n", " 'valium',\n", " 'debuted',\n", " 'robbin',\n", " 'mounts',\n", " 'interpolated',\n", " 'aetv',\n", " 'plummer',\n", " 'competence',\n", " 'toadies',\n", " 'dubiel',\n", " 'clavichord',\n", " 'asunder',\n", " 'sublety',\n", " 'airfix',\n", " 'stoltzfus',\n", " 'ruth',\n", " 'fluorescent',\n", " 'improves',\n", " 'rebenga',\n", " 'russells',\n", " 'deliberation',\n", " 'zsa',\n", " 'dardino',\n", " 'macs',\n", " 'servile',\n", " 'jlb',\n", " 'apallonia',\n", " 'crossbows',\n", " 'locus',\n", " 'mislead',\n", " 'corey',\n", " 'blundered',\n", " 'jeopardizes',\n", " 'disorganized',\n", " 'discuss',\n", " 'longish',\n", " 'tieing',\n", " 'ledger',\n", " 'speechifying',\n", " 'amitabhz',\n", " 'bbc',\n", " 'chimayo',\n", " 'pranked',\n", " 'superman',\n", " 'aggravated',\n", " 'rifleman',\n", " 'yvone',\n", " 'radiant',\n", " 'galico',\n", " 'debris',\n", " 'waking',\n", " 'btw',\n", " 'havnt',\n", " 'francen',\n", " 'chattered',\n", " 'scathed',\n", " 'pic',\n", " 'ceremonies',\n", " 'watergate',\n", " 'betsy',\n", " 'majorca',\n", " 'meercat',\n", " 'noirs',\n", " 'grunts',\n", " 'drecky',\n", " 'tribulations',\n", " 'avery',\n", " 'talladega',\n", " 'eights',\n", " 'dumbing',\n", " 'alloimono',\n", " 'scrutinising',\n", " 'geta',\n", " 'beltrami',\n", " 'pvc',\n", " 'horse',\n", " 'tiburon',\n", " 'huitime',\n", " 'ripple',\n", " 'loitering',\n", " 'forensics',\n", " 'nearly',\n", " 'elizabethan',\n", " 'ellington',\n", " 'uzi',\n", " 'sicily',\n", " 'camion',\n", " 'motivated',\n", " 'rung',\n", " 'gao',\n", " 'licitates',\n", " 'protocol',\n", " 'smirker',\n", " 'torin',\n", " 'newlywed',\n", " 'rich',\n", " 'dismay',\n", " 'skyler',\n", " 'moonwalks',\n", " 'haranguing',\n", " 'sunburst',\n", " 'grifter',\n", " 'undersold',\n", " 'chearator',\n", " 'marino',\n", " 'scala',\n", " 'conditioner',\n", " 'ulysses',\n", " 'lamarre',\n", " 'figueroa',\n", " 'flane',\n", " 'allllllll',\n", " 'slide',\n", " 'lateness',\n", " 'selbst',\n", " 'gandhis',\n", " 'dramatizing',\n", " 'catchphrase',\n", " 'doable',\n", " 'stadiums',\n", " 'alexanderplatz',\n", " 'pandemonium',\n", " 'misrepresents',\n", " 'earth',\n", " 'mounties',\n", " 'seeker',\n", " 'cheat',\n", " 'outbreaks',\n", " 'snowstorm',\n", " 'baur',\n", " 'schedules',\n", " 'bathetic',\n", " 'incorrect',\n", " 'johnathon',\n", " 'rosanne',\n", " 'mundanely',\n", " 'cauldrons',\n", " 'forrest',\n", " 'poky',\n", " 'legislation',\n", " 'womanness',\n", " 'spender',\n", " 'crazy',\n", " 'rational',\n", " 'terrell',\n", " 'zero',\n", " 'coincides',\n", " 'thoughout',\n", " 'mathew',\n", " 'narnia',\n", " 'naseeruddin',\n", " 'bucks',\n", " 'affronts',\n", " 'topple',\n", " 'degree',\n", " 'preyed',\n", " 'passionately',\n", " 'defeats',\n", " 'torchwood',\n", " 'sources',\n", " 'botticelli',\n", " 'compactor',\n", " 'kosturica',\n", " 'waiving',\n", " 'gunnar',\n", " 'stiffler',\n", " 'fwd',\n", " 'kawajiri',\n", " 'eleanor',\n", " 'sistahs',\n", " 'soulhunter',\n", " 'belies',\n", " 'wrathful',\n", " 'americans',\n", " 'ferdinandvongalitzien',\n", " 'kendra',\n", " 'weirdy',\n", " 'unforgivably',\n", " 'chepart',\n", " 'tatta',\n", " 'departmentthe',\n", " 'dig',\n", " 'blatty',\n", " 'marionettes',\n", " 'atop',\n", " 'chim',\n", " 'saurian',\n", " 'woes',\n", " 'cloudscape',\n", " 'resignedly',\n", " 'unrooted',\n", " 'keuck',\n", " 'hitlerian',\n", " 'stylings',\n", " 'crewed',\n", " 'bedeviled',\n", " 'unfurnished',\n", " 'reedus',\n", " 'circumstances',\n", " 'grasped',\n", " 'smurfettes',\n", " 'fn',\n", " 'dishwashers',\n", " 'roadie',\n", " 'ruthlessness',\n", " 'refrains',\n", " 'lampooning',\n", " 'semblance',\n", " 'richart',\n", " 'legions',\n", " 'gwenneth',\n", " 'enmity',\n", " 'assess',\n", " 'manufacturer',\n", " 'bullosa',\n", " 'outrun',\n", " 'hogan',\n", " 'chekov',\n", " 'blithe',\n", " 'code',\n", " 'drillings',\n", " 'revolvers',\n", " 'aredavid',\n", " 'robespierre',\n", " 'achcha',\n", " 'boyfriendhe',\n", " 'wallow',\n", " 'toga',\n", " 'graphed',\n", " 'tonking',\n", " 'going',\n", " 'bosnians',\n", " 'willy',\n", " 'rohauer',\n", " 'fim',\n", " 'forbidding',\n", " 'yew',\n", " 'rationalised',\n", " 'shimomo',\n", " 'opposition',\n", " 'landis',\n", " 'minded',\n", " 'despicableness',\n", " 'easting',\n", " 'arghhhhh',\n", " 'ebb',\n", " 'trialat',\n", " 'protected',\n", " 'negras',\n", " 'rick',\n", " 'muti',\n", " 'tracker',\n", " 'shawl',\n", " 'differentiates',\n", " 'sweetheart',\n", " 'deepened',\n", " 'manmohan',\n", " 'trevethyn',\n", " 'brain',\n", " 'incomprehensibly',\n", " 'piercing',\n", " 'pasadena',\n", " 'shtick',\n", " 'ute',\n", " 'viggo',\n", " 'supersedes',\n", " 'ack',\n", " 'cites',\n", " 'taurus',\n", " 'relevent',\n", " 'minidress',\n", " 'philosopher',\n", " 'bel',\n", " 'mahattan',\n", " 'moden',\n", " 'compiling',\n", " 'advertising',\n", " 'rogues',\n", " 'unimaginative',\n", " 'subpaar',\n", " 'ademir',\n", " 'darkly',\n", " 'saturate',\n", " 'fledgling',\n", " 'breaths',\n", " 'padre',\n", " 'aszombi',\n", " 'pachabel',\n", " 'incalculable',\n", " 'ozone',\n", " 'sped',\n", " 'mpho',\n", " 'rawail',\n", " 'forbid',\n", " 'synth',\n", " 'guttersnipe',\n", " 'reputedly',\n", " 'holiness',\n", " 'unessential',\n", " 'hampden',\n", " 'asylum',\n", " 'bolye',\n", " 'strangers',\n", " 'rantzen',\n", " 'farrellys',\n", " 'vigourous',\n", " 'cantinflas',\n", " 'enshrined',\n", " 'boris',\n", " 'expetations',\n", " 'replaying',\n", " 'prestige',\n", " 'bukater',\n", " 'overpaid',\n", " 'exhude',\n", " 'backsides',\n", " 'topless',\n", " 'sufferings',\n", " 'nitwits',\n", " 'cordova',\n", " 'incensed',\n", " 'danira',\n", " 'unrelenting',\n", " 'disabling',\n", " 'ferdy',\n", " 'gerard',\n", " 'drewitt',\n", " 'mero',\n", " 'monsters',\n", " 'precautions',\n", " 'lamping',\n", " 'relinquish',\n", " 'demy',\n", " 'drink',\n", " 'chamberlin',\n", " 'unjustifiably',\n", " 'cove',\n", " 'floodwaters',\n", " 'searing',\n", " 'isral',\n", " 'ling',\n", " 'grossness',\n", " 'pickier',\n", " 'pax',\n", " 'wierd',\n", " 'tereasa',\n", " 'smog',\n", " 'girotti',\n", " 'spat',\n", " 'sera',\n", " 'noxious',\n", " 'misbehaving',\n", " 'scouts',\n", " 'refreshments',\n", " 'autobiographic',\n", " 'shi',\n", " 'toyomichi',\n", " 'bits',\n", " 'psychotics',\n", " 'barzell',\n", " 'colt',\n", " 'shivering',\n", " 'pugilist',\n", " 'gladiator',\n", " 'dryer',\n", " 'reissues',\n", " 'scrivener',\n", " 'predicable',\n", " 'objection',\n", " 'marmalade',\n", " 'seems',\n", " 'spellbind',\n", " 'trifecta',\n", " 'innovator',\n", " 'shriekfest',\n", " 'inthused',\n", " 'contestants',\n", " 'goody',\n", " 'samotri',\n", " 'serviced',\n", " 'nozires',\n", " 'ins',\n", " 'mutilating',\n", " 'dupes',\n", " 'launius',\n", " 'widescreen',\n", " 'joo',\n", " 'discretionary',\n", " 'enlivens',\n", " 'bushes',\n", " 'chills',\n", " 'header',\n", " 'activist',\n", " 'gethsemane',\n", " 'phoenixs',\n", " 'wreathed',\n", " 'sacrine',\n", " 'electrifyingly',\n", " 'basely',\n", " 'ghidora',\n", " 'binder',\n", " 'dogfights',\n", " 'sugar',\n", " 'doddsville',\n", " 'porkys',\n", " 'scattershot',\n", " 'refunded',\n", " 'rudely',\n", " 'insteadit',\n", " 'zatichi',\n", " 'eurotrash',\n", " 'radioraptus',\n", " 'hurls',\n", " 'boogeman',\n", " 'weighs',\n", " 'danniele',\n", " 'converging',\n", " 'hypothermia',\n", " 'glorfindel',\n", " 'birthdays',\n", " 'attentive',\n", " 'mallepa',\n", " 'spacewalk',\n", " 'manoy',\n", " 'bombshells',\n", " 'farts',\n", " 'lyoko',\n", " 'southron',\n", " 'destruction',\n", " 'flemming',\n", " 'manhole',\n", " 'elainor',\n", " 'bowersock',\n", " 'lowly',\n", " 'wfst',\n", " 'limousines',\n", " 'skolimowski',\n", " 'saban',\n", " 'koen',\n", " 'malaysia',\n", " 'uwi',\n", " 'cyd',\n", " 'apeing',\n", " 'bonecrushing',\n", " 'dini',\n", " 'merest',\n", " 'janina',\n", " 'chemotrodes',\n", " 'trials',\n", " 'authorize',\n", " 'whilhelm',\n", " 'asthmatic',\n", " 'broads',\n", " 'missteps',\n", " 'embittered',\n", " 'chandeliers',\n", " 'seeming',\n", " 'miscalculate',\n", " 'recommeded',\n", " 'schoolwork',\n", " 'coy',\n", " 'mcconaughey',\n", " 'philosophically',\n", " 'waver',\n", " 'fanny',\n", " 'mestressat',\n", " 'unwatchably',\n", " 'saggy',\n", " 'topness',\n", " 'dwellings',\n", " 'breakup',\n", " 'hasselhoff',\n", " 'superstars',\n", " 'replay',\n", " 'aggravates',\n", " 'balances',\n", " 'urging',\n", " 'snidely',\n", " 'aleksandar',\n", " 'hildy',\n", " 'kazuhiro',\n", " 'slayer',\n", " 'tangy',\n", " 'brussels',\n", " 'horne',\n", " 'masayuki',\n", " 'molden',\n", " 'unravel',\n", " 'goodtime',\n", " 'interrogates',\n", " 'bismillahhirrahmannirrahim',\n", " 'rowboat',\n", " 'dumann',\n", " 'datedness',\n", " 'astrotheology',\n", " 'dekhiye',\n", " 'valga',\n", " 'kata',\n", " 'wipes',\n", " 'hostilities',\n", " 'sentimentalising',\n", " 'documentary',\n", " 'salesman',\n", " 'virtue',\n", " 'unreasonably',\n", " 'haver',\n", " 'cei',\n", " 'unglamorised',\n", " 'balky',\n", " 'complementary',\n", " 'paychecks',\n", " 'mnica',\n", " 'wada',\n", " 'ily',\n", " 'prc',\n", " 'ennobling',\n", " 'functionality',\n", " 'dissociated',\n", " 'elk',\n", " 'throbbing',\n", " 'tempe',\n", " 'linoleum',\n", " 'photogrsphed',\n", " 'bottacin',\n", " 'hipper',\n", " 'titillating',\n", " 'barging',\n", " 'untie',\n", " 'sacchetti',\n", " 'gnat',\n", " 'roedel',\n", " 'cohabitation',\n", " 'performs',\n", " 'sales',\n", " 'migrs',\n", " 'teachs',\n", " 'nanavati',\n", " 'fresco',\n", " 'davison',\n", " 'obstinate',\n", " 'burglar',\n", " 'masue',\n", " 'dickory',\n", " 'grills',\n", " 'appelagate',\n", " 'linkage',\n", " 'enables',\n", " 'loesser',\n", " 'patties',\n", " 'prudent',\n", " 'mallorquins',\n", " 'nativetex',\n", " 'suprise',\n", " 'drippy',\n", " 'quill',\n", " 'speeded',\n", " 'farscape',\n", " 'saddening',\n", " 'centuries',\n", " 'mos',\n", " 'improvisationally',\n", " 'neccessarily',\n", " 'transmitter',\n", " 'tankers',\n", " 'latte',\n", " 'mechanisation',\n", " 'faracy',\n", " 'synthetically',\n", " 'thoughtless',\n", " 'rake',\n", " 'ropes',\n", " 'desirable',\n", " 'whitewashed',\n", " 'donal',\n", " 'crabby',\n", " 'lifeless',\n", " 'perfidy',\n", " 'teresa',\n", " 'bulldog',\n", " 'cockamamie',\n", " 'rasberries',\n", " 'notethe',\n", " 'captivity',\n", " 'chiseling',\n", " 'smaller',\n", " 'clampets',\n", " 'alerts',\n", " 'tough',\n", " 'wellingtonian',\n", " 'aaaahhhhhhh',\n", " 'dither',\n", " 'incertitude',\n", " 'florentine',\n", " 'imperioli',\n", " 'licking',\n", " 'disparagement',\n", " 'artfully',\n", " 'feds',\n", " 'fumiya',\n", " 'tearfully',\n", " 'lanchester',\n", " 'undertaken',\n", " 'longlost',\n", " 'netted',\n", " 'carrell',\n", " 'uncompelling',\n", " 'reliefs',\n", " 'leona',\n", " 'autorenfilm',\n", " 'unfriendly',\n", " 'typewriter',\n", " 'shifted',\n", " 'bertrand',\n", " 'blesses',\n", " 'tricking',\n", " 'fireflies',\n", " 'zanes',\n", " 'unknowingly',\n", " 'unnerve',\n", " 'caning',\n", " 'flat',\n", " 'recluse',\n", " 'dcreasy',\n", " 'chipmunk',\n", " 'dipper',\n", " 'musee',\n", " 'cousin',\n", " 'shys',\n", " 'berserkers',\n", " 'eve',\n", " 'conflagration',\n", " 'irks',\n", " 'restricts',\n", " 'parsing',\n", " 'positronic',\n", " 'copout',\n", " 'khala',\n", " 'swiftness',\n", " 'higginson',\n", " 'imprint',\n", " 'walter',\n", " 'sundance',\n", " 'whispering',\n", " 'thematically',\n", " 'underimpressed',\n", " 'uno',\n", " 'expressly',\n", " 'russkies',\n", " 'discos',\n", " 'shaping',\n", " 'verson',\n", " 'prototype',\n", " 'chapman',\n", " 'trafficker',\n", " 'semetary',\n", " 'unrealistically',\n", " 'lifewell',\n", " 'rivas',\n", " 'consequent',\n", " 'katsu',\n", " 'titantic',\n", " 'jalees',\n", " 'ranee',\n", " 'shipbuilding',\n", " 'gambles',\n", " 'dispenses',\n", " 'disfigurement',\n", " 'bright',\n", " 'cristian',\n", " 'puertorricans',\n", " 'constituent',\n", " 'capta',\n", " 'jewel',\n", " 'erect',\n", " 'farah',\n", " 'despondently',\n", " 'avoide',\n", " 'inconnu',\n", " 'headquarters',\n", " 'sanguisga',\n", " ...]" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(vocab)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0., 0., 0., ..., 0., 0., 0.]])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "layer_0 = np.zeros((1,vocab_size))\n", "layer_0" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFKCAYAAAAg+zSAAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAB1WlUWHRYTUw6Y29tLmFkb2Jl\nLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1Q\nIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5\nOTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4w\nLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAg\nICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZm\nOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0\naW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K\nAtiABQAAQABJREFUeAHtnXvQXVV5/1daZxy1BUpJp1MhE5BSSSAgqBAV5BIuGaQJBoEUATEJAiXY\ncMsUTfMDK9MAMXKRAEmAgGkASUiGIgQSsEQgKGDCJV6GYkywfzRWibc/OuO8v/1Zuo7r3e/e5+zr\n2ZfzfWbOe/bZe12e9V373eu7n/WsZ40aCsRIhIAQEAJCQAgIASFQAQJ/UkGdqlIICAEhIASEgBAQ\nAhYBERHdCEJACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSq\nWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQ\nGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEh\nIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC\nQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYC\nQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaA\niEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgB\nISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSAPQXX3yxGTVqlPnlL39Z\nQGkqQggIASEgBITA4CAgIjI4fR3Z0iVLlpgHH3ww8ppOCgEhIASEgBAoG4FRQ4GUXYnKry8CJ510\nknnf+95nbrvttvoqKc2EgBAQAkKgtQjIItLarlXDhIAQEAJCQAjUHwERkfr3kTQUAkJACAgBIdBa\nBERECuhanFXHjBkzrKR169ZZB9atW7daHwymQHBodZ8bbrhhWHp+kJbr+G1wHM7Db65FiV9f1HXO\noSO6ItRPXU888YRZvHhxRy853Fp49EcICAEhIAT6hICISMlAz5kzxyxbtszMmDHD4I7D5/HHHzfr\n16+3RCOq+u9973tm/Pjx5oMf/GAnD/kmTZpkLrjgAjN9+vSobKnOXXnllbbsE0880Vx00UWdenbb\nbbdU5SixEBACQkAICIE8CLwjT2bl7Y3Az372M/P0008bf4DHsrHPPvtYsoGFY9asWcMKwkJx5513\njjgPeTjqqKPMxIkTzWGHHWb4LRECQkAICAEh0GQEZBEpufcuvPDCYSTEVTdu3DhLRrZt2+ZOdb4h\nGWFy4i4eeeSR1oJxyy23uFP6FgJCQAgIASHQWAREREruuoMPPrhrDb/4xS9GXD/rrLNGnPNPHHPM\nMWbHjh1m06ZN/mkdCwEhIASEgBBoHAIiIiV3mT8lk7SqPfbYo2vS3Xff3V7ftWtX13S6KASEgBAQ\nAkKg7giIiNS9h7roJyLSBRxdEgJCQAgIgUYgICJSw256++23u2q1fft2ez28ZLhrJl0UAkJACAgB\nIVBDBEREatgp999/f1etnnrqKevoiuNqWOLigOBPgl+JRAgIASEgBIRAnRAQEalTb/xBl5dffjk2\ncBkb1EFU5s2bN0xzlvSyJHjjxo3DzrsfN910kzvUtxAQAkJACAiB2iAgIlKbrvijItdff725/fbb\nbRRU38JBNNQzzzzTLt8NL+/FKXb27NnmqquuGkZi3nrrLRsA7Uc/+pElKn+s5fdHe+65p3nhhRfC\np/VbCAgBISAEhEBfEBAR6QvM6Sph1cxLL71k9t13X3PQQQd1wq8TjZVAZ3E75RLgjOuQGBdKHisJ\nQlC1KMGysnPnzk56QstLhIAQEAJCQAj0C4FRQejwoX5Vpnq6IwAJILR7VFTV7jl1VQgIASEgBIRA\nMxGQRaSZ/SathYAQEAJCQAi0AgERkVZ0oxohBISAEBACQqCZCIiINLPfpLUQEAJCQAgIgVYgICLS\nim5UI4SAEBACQkAINBMBOas2s9+ktRAQAkJACAiBViAgi0grulGNEAJCQAgIASHQTARERJrZb9Ja\nCAgBISAEhEArEBARaUU3qhFCQAgIASEgBJqJgIhIM/tNWgsBISAEhIAQaAUCIiKt6MaRjfjVr35l\nHn744ZEXdEYICAEhIASEQI0Q0KqZGnVG0aq8973vNd/97nfN3/zN3xRdtMoTAkJACAgBIVAIArKI\nFAJjPQuZPn26WbZsWT2Vk1ZCQAgIASEgBAIEZBFp8W3wwx/+0Bx33HHmpz/9aYtbqaYJASEgBIRA\nkxGQRaTJvddD97/7u78zo0ePNhs2bOiRUpeFgBAQAkJACFSDgIhINbj3rdY5c+aYlStX9q0+VSQE\nhIAQEAJCIA0CmppJg1YD0/73f/+3wWn1l7/8pfnzP//zBrZAKgsBISAEhECbEZBFpM29G7SNFTMz\nZswwq1evbnlL1TwhIASEgBBoIgIiIk3stZQ6s3pm0aJFKXMpuRAQAkJACAiB8hEQESkf48prOP74\n483OnTsNq2gkQkAICAEhIATqhICISJ16o0RdLrzwQrNkyZISa1DRQkAICAEhIATSIyBn1fSYNTKH\nYoo0stuktBAQAkKg9QjIItL6Lv59A4kpwkf7zwxIh6uZQkAICIGGICAi0pCOKkLN2bNnmxUrVhRR\nlMoQAkJACAgBIVAIApqaKQTGZhTCjry77babDfmujfCa0WfSUggIASHQdgRkEWl7D3vtI6DZ5Zdf\nbh566CHvrA6FgBAQAkJACFSHgIhIddhXUvPkyZPNXXfdVUndqlQICAEhIASEQBgBEZEwIi3/TUwR\n5Lvf/W7LW6rmCQEhIASEQBMQEBFpQi8VrONnP/tZ88ADDxRcqooTAkJACAgBIZAeATmrpses8Tm0\nEV7ju1ANEAJCQAi0BgERkdZ0ZbqGnH766ebss882p512WrqMSt1KBJiq27p1q3n11VfNtm3bzBtv\nvGG2bNkyoq3Tpk0ze+yxh5kwYYIZP368+fCHP6xdnUegpBNCQAikQUBEJA1aLUpLYLNbbrnFPPXU\nUy1qlZqSBoENGzaYxx57zKxcudKMHj3aTJo0yRx88MFm3Lhxdpk3AfB8wZL205/+1Lz11lvmtdde\nM08//bT9QE5OPfVU88lPflKkxAdMx0JACCRCQEQkEUztS0RMkfe///3WaVUxRdrXv3Etot/vvvvu\nzsqpOXPmmBNOOMFkvQcob/369ebRRx81y5Yts8vDL7vssszlxemt80JACLQXATmrtrdvu7aMmCLT\np0+3g0fXhLrYGgRuvvlmSz6feeYZuwHi5s2bzXnnnZeLNHAfMb23dOlSay0BrPe+973miiuuMFhQ\nJEJACAiBXgiIiPRCqMXXZ82aZVatWtXiFqppIID/x6GHHmrWrFljPwS0+9CHPlQ4OFhVbrzxxg4h\noY7ly5cXXo8KFAJCoF0IiIi0qz9Ttcb5AOArIGknAlhBpk6dapiCwR+oDAISRs4REojPokWLDI7R\nTOFIhIAQEAJRCIiIRKEyQOcYoHBWlLQLAQb+mTNnWgsIBIQpmH4LpGfjxo1m7Nixdkrohz/8Yb9V\nUH1CQAg0AAE5qzagk8pUUTFFykS3mrIhIVOmTDF77rmndUzFj6NqYYrm6quvtlYZZ4mrWifVLwSE\nQD0QkEWkHv1QmRaY0WfMmGFWr15dmQ6quDgEHAk57LDD7OaGdSAhtA6LzK233mqOO+44I8tIcf2t\nkoRAGxAQEWlDL+ZsA6tn5FSYE8QaZPdJCE6jdRNW14iM1K1XpI8QqB4BTc1U3we10IAll/gSyGxe\ni+7IpARLZl9++eXaB6mD9OLEiv9IXSw2mQBXJiEgBApBQBaRQmBsfiEXXnihjS3R/JYMZgsY3HE6\nXrt2be0BYJrmgx/8oDn//PNrr6sUFAJCoHwEZBEpH+NG1MC8PfP3hPBGcGLNGm2zEQ1ukZL0FStU\nWC7bj+W5RUDHNNJRRx1llxVXsaKniDaoDCEgBIpBQBaRYnBsfClMyfBhD5ovfelL1tGx8Y0akAZc\neumlBotWU0gI3cKUzJIlS+xKGkiJpFkIXHzxxeakk04apjTnRo0aZX75y18OO1/kDzZmpI4bbrih\nyGJVVsUIiIhU3AF1qJ43aqJvHnTQQTb2xL/8y7/UQS3pkAAB+u355583//RP/5Qgdb2SQJxwlL7m\nmmvqpZi0qRwBNlaEbJRJaipvpBToIKCpmQ4Ug3vgpmUgJE5uuukmw5u2pN4IELWUnW+bOr3BPYej\nNFOCmgqs973ma4f147/+67/MunXr/NOFHVPuySefbF5//XW7G3RhBaugWiIgi0gtu6W/SjElw4oZ\nSbMQcNaQppIQ0IZ8XH755eYrX/lKs8CXtkJACBSGgIhIYVA2uyDIiIKaNasP77jjDjN37txmKR2h\n7WWXXWZX/MhXJAIcnRICA4CAiMgAdHLSJhJw6p577kmaXOkqRIBBe9myZXZDuQrVKKRqrCIQ4fXr\n1xdSXpMKcc6XOO5yjAMozpjuw2+uRQnX+OBH4RxFx4wZMyLpgw8+aH1xXJl8f+ELX7D1jUj8hxOU\niY+Gnwd/njhdyIYOUfVzLao80ob9QEhHnUzLIOPHj7e/nXOqj5dNEPqDfocffvgwvWkrPidhYfqH\nuigTjMLYuzrD+fS7eARERIrHtNElYubHVC6pNwIM2oTmb4tfBffdo48+Wm/QS9Tue9/7nh10ia8y\nNDTU+UyaNMlccMEFlkjEVf+pT33KXtq1a5fZvn37sGSQAwLdsTTflbtjxw7zi1/8wtYX5ePBoH3s\nscdaYvjAAw908n3mM5+xU7iUmUYY6HGEJ9gePh9Oj3nz5plbbrnF1gUBQXbbbTd7/fHHH7e/Xfor\nr7zS/o77Q36IxO23326thK4O19Z99tkn1p+FjT8h9fw/uXzUz/8YZUr6gEAAvEQIjEDgBz/4wYhz\nOlEfBIKH5lBgvaqPQjk1CZxVh4LHXc5Smpc9GGhtu2n7nXfeGdmAYFWUTXP99dcPu37iiScOBQPs\nULCZ4LDz7gflcT0YjN2pYd/k43pAYIadp9xgr6IR510iVy/fvlx00UW2PP8cZVPWWWed5Z/uHLu2\nhdsQEAHbZvDxxeEVxoryu+ns2upj4eqIyxdXl6+PjotBQBaRPpC9JlaBqVxSXwQee+wxc+SRR9ZX\nwZSaYdnhLRwH3EGUYDA0s2bNimw6/RwM8tZ6EE7AGz/XooR4QLNnzzZ777131GWbj/xYPZxgIXni\niSdsXBqsE1HCcmvyJRHKxhKC9SNKXNvuu+++qMuJzm3atMncf//9XXUGI3RevHjxiDKJwRPV1nHj\nxhksKdu2bRuRRyeKRUBEpFg8VZoQKB0Bt8y6bWSRwZiYKIMowRt912Yfc8wxdiBl0PUFzKKIBj4P\nDLxEr40T8pHfXzH3zDPP2OSTJ0+Oy2YJMPmSCGWTlkE9Tm677bYRU0pxaaPOv/rqq/Z0N51dW92U\nj1/OwQcf7P8cccw0lqRcBEREysVXpQuBwhEg5sbEiRMLL7fqAhkQwj4OVevUr/r32GOPrlXtvvvu\n9jp+IL7stdde/s/OsUvHfeI7nIaPsVb8/Oc/7+Rj0MUKEEVuOomCgwMOOMD/GXv87LPPJk4bW0iP\nC/jXIFFWDT/rEUccYXbu3Omfsse98o3IoBOFIyAiUjikKlAIlIsAVoOxY8eWW0kFpfPWLDN4d+Ad\nweie6o9XAz+HjgNmMJsfeRzlsPrHEnQkBMpHQESkfIxVgxAoHIG4ZZKFV6QC+4LA22+/3bUeZylK\n2u/OgvLaa691LTd88S/+4i/slI5bxRK+7n7/6Ec/coddv0ePHm16pWVVTXgZb9dCQxc/8IEP2DO9\ndH7hhRcM+kjqh4CISP36RBoJgYFE4P3vf79ZtWrVQLYdZ8tugq8FUyZJHZQ/8pGP2OK2bNkSWyzL\ndJmq8ZfjHnLIITZ9N18diANTOkkE3xfSkidOVqxYYR1xs06ROB8PHLjjxOncyxcnLr/Ol4uAiEi5\n+Kp0ISAEEiLAjryDKgzWccHCcDyFqMStPInCDB8PVopcd911Juzg6tK7FSSXXHKJO2XOOOMM61xK\nyP04CwOrcZIKQdAgUHF5IEOsmPnEJz6RtMgR6SBnEAxiiHTTGT0+97nPjcivE9UjICJSfR9IAyEg\nBAYcgSBGiB1IsU74gylTFmeeeaYlFXHLe+Og+7d/+zcTxPqw5MInOQz+EARIShCPY8SKFojB97//\nfUOgNEiQE6wK5MO5NW7JsEvrviFE1A2RIi91O6HsKVOm2OkSdPXFTS3h7JpE2O4Ax12WgPs6u7ZS\nDnpktbok0UFpsiMgIpIdO+UUAkKgQATYBbotkWLTwsKqmZdeesnsu+++NgqpW91CdE/IAktc0wqD\nLo6oWFIeeuihzuoZLAMIMT6iyA1Ow88995whqiskyOlCuHV8SNI6txKdlKXE++23n7WOuPKI+Iol\ng3aHCYKLL0JU2fD0URQOrq3EBCFKqquDtrJ8mPYoSmoUcvU4N4q4aPVQRVoIASHQCwH2mPnqV79q\neGO89NJLeyVv1HWCmS1YsMAOmo1SPIeyWBkY4CEbUaQgR9HKKgQag8A7GqOpFK09AgwkPFgJMMQy\nzDfeeMOEneV44yW2AW+AEyZMsMcf+tCHat+2KhWEfAQh960KvPmxb0cb92XxpySqxFt1CwEh0F8E\nRET6i3fratuwYYPdwh2PdZbGYc7Fix2TLoNmOPonUUEJyMXcLUsL2cb+6aefthtOnXLKKTb/IDst\nuhvE4cRvcPTJGgP2m2++6ZK25puYF0cffXRr2qOGCAEhkAwBTc0kw0mpPAR4Q7/77rutGR3ywe6V\nJ5xwQub5fcpjLpxlfCwbxKntsssuy1yep2qjDn3y8d73vrdr+5kDh5C0ibSdfvrp5uyzzzannXZa\no/otj7KamsmDnvK2BQE5q7alJ/vQDgjDzTffbIj3wJ4Ua9asMZs3bzZs4Z7HyZDBlMEHhzq36RkD\nMc5s1NlmwUGTNrt2Y/ng0wtPVgd85zvfaRU0kFDCcEuEgBAYLARERAarvzO3loGSDbQcAYE0+NMF\nmQsOZWQAvvHGG+30DdEmIT3Lly8PpWr2T0c8+Ka9ScmH32qICCsB2iJggXWtFwFrS3tdO1ihwnqB\ntjmqYt079NBDXTP1LQS6IqCpma7w6CIIEIyIYEHEHcD60U9hgOIh/cEPftAsWrSosVMRtMNJEQQO\nSwp+OFik2iDcYz/72c/MTTfd1IbmDHwb6E/2xeGlQiIEeiEgItILoQG+zrQIAYeQr3/965W9raIH\nfig4aBINMuwAW8cuQme30gX9iiAf4Xbyxrlw4UJz/PHHhy817jdTcY888oh5z3ve04j+bRzAfVaY\ne5MAYmXc931uiqrrAwKamukDyE2swpEQggGtXbu2MhICdviQLF261EZNPO644wzWgDoK5mgsH3w4\ndlMuZT2MP/vZz9oVS3XEIo1ODz/8sCUf3GtMzfjWozTlKG09EHD9V9Z9X49WSosiEZBFpEg0W1KW\nT0LqZlpl0GJvDDYBq4NlJM1Kl6JvD/qJpb0sh26ybwVvz/Pnzx+2WobBTANZ0XdMf8rDyZyAe2n2\nxumPZqqlrgiIiNS1ZyrSq84kxEFSNRnBIuOCb/VaZut0LuMbEkQk0t/85jfWYlRGHWWXSV9ec801\nkb4uIiNlo198+Tw/cDCn75pMjotHRiV2Q0BEpBs6A3ht5syZhtUqrIqps+AMRyA0po36EUvDmZvB\nhAdtP+rshj9kCB34oA9LqZtmQWDQYiVW2Britxvc64C3r5OO4xGAWN5yyy3WYhmfSleEwHAERESG\n4zHQv4gRctddd5mNGzdWPtAm6QgCYBEqHv+RMsQnH3Ua5MODM8ubWVHUlH5zfQWZZAuAXqQX0sXb\nddXkz+mt73gEeJEhQvIgBaWLR0NXkiIgIpIUqZan42HPmycrPerge5EEbmcGvvfeewtZOUJ5Za90\nSdKubmkgIVGkCFJ2yCGHNGZennZMnTo1sQlfZKTbXVGPa0wVMlXZtoi/9UC33VqIiLS7fxO3joGM\nfT6atqMre92ce+65lkBkeWP2yUfU3jiJASw5odMzioRQtVulc+utt9b+bTSrriIjJd9kOYvHModV\nriwLZU71lL3GCIiI1Lhz+qWacxhsmmnf4ZOWRDEQstIEqTP5cO1DX4hIL0uVI2V1WVHk9Pe/aQex\naViqm2VFFmQEwilHSB/VehyztP4LX/hCIdbJerRIWvQLARGRfiFd43qilk/WWN0RqjE48RBkWiXO\nKkKaOqx0GaF8jxOQECTJwEvab33rW+bKK6+szfJmv3mOhOy333653prTYOLXr+PyEHD/g47gl1eT\nSm4jAu9oY6PUpuQIYA1BmuxchqWAHXvZEdifWvLJB/4vvSwKyVHrT0r0T/P2zyDwD//wD+Zd73qX\nJWZ1sow4EgJyONbmEUgZZIRPEoKWpy7lTYbAgw8+aP8Hk6VWKiEQQiDYcKmv8sADDwwFKtjPWWed\n1de6i6jM1592+OLaxXewk6h/qedxYKru4HLnnXf2TF9UgmnTpg2tXr26qOIqKyfYiXYoGJSG+Haf\nwAJSmT55K6YNafQnvS/0KfdhHfo2sFQNBZv0DV1++eW+irmPA+I1RNmS6hHgf099UX0/NFUDhXgP\nntaDKrxRrlq1ykyaNKkVELBPCdMvOHTyiZumqXtj3cqYpPrTj6xW8AULV0BObBRaIl1ikahCsLgx\nbcYKmSw+Id10xhrCB8uRpDoE8E1i5+SmWRyrQ0w1hxEQEQkjMkC/n3zySTNjxozGDth+V0E8cJR7\n7LHH/NONOoYsOBKSRnGmZBiQwwImlLdt2zYbOIzjfgnkiJgShOMn2Jo/ZVakDm7qSmSkSFTTlcX/\nHJtSSoRAVgRERFIid8YZZzAf0/mkzF6r5Ox2SvChtsiRRx7Z2E3gGLj5QB7SSC/iAkEhYBgDBVYJ\nVhiVSUggUwTGox0Em8OBOG2b0rSftCIjaRErLj39zQ7QJ5xwQnGFqqSBQ6AWRITtokeNGtX58Gb7\n1ltvxXbGpk2b7Nuvn2fMmDF222m3MiKc2U9Lfj4nnXSSrZP6kSRpcMry04Xr8X+vW7euUwd5qI9z\nWSSqzThook9WYVrmiCOOyJo9dz6HI+0oQpxpuGlvxxAQxOmfFAvyhadk4vKed955lhQQK8YREkzq\nRQmYMwWEU/AzzzxjV+0wFZN0eimvHo6MlEmy8urYxvzr1683gZ9ZpEWuje1Vm0pCoN/OLb6zJ86q\nfIKmjfjss88+Qzt27Bih3vXXXz8irZ+ffK+//vqIfH6acBnOOTRJGl9/0vvi57/66qtj9XT1+Xm7\nOauS3i87fExdaQXHsiASZ9pshaZ37TjxxBMLKzeYaqqFg2bSBtEPOF1mkbCDatIycIK95557bP8H\nFhPrRBoMKKn1oP5rr712WDlZ25JU9yTpsuKSpGylGY5AW5zdh7dKv/qNQKXLd++///5gLIqWgITY\neAgrV67sJMBycdVVV3V+Rx2Q7+STTzavvfaaDVYVlaZXGeRJkiaqbHfuuuuuc4cjvi+44AJz8MEH\nG6YSegkWFNJ3E+oaO3asmTVrVrdkw65t3brV7L///sPOVfXjiSeeKKzqCRMmGO6BJghv71k3dOs1\nJdOt/VgPsJDwwZLBPbZ48WLruEyYeO4L7iesjGHB2vHzn//cbjgYrIQxfDDNH3/88eGklf12vjFl\nTwlV1sCaVIxFDqsqy+YlQiAPApVPzQRvwyawYFifi127dhl+O/GJClMubJLlhMiMwRLZjq9GYBVw\nl+xAdMcdd3R+Rx2QPmB99hM3gCdJE1W2OxdYMjp1BJYUd9p+sz9KEvHb5WPFYBtYkzpFgE3ctFQn\nkXdAfsz0dRGmnoqQ8ePH26mBIsoqswxHJLJMXaSZkunVBqaDcCTFj4T/B+7TuXPnRpIQyrrooovM\nggULbFrilMybN69WJMS115GRqlYLOT3a/M09EyzJ7tv0W5uxHPi29dsEE57aCAbEYSoQfyPolM4n\nICf2ejhfVJwOf5qHKRpf/DJJFyVJ0oT18Mvx8wcEwr9kj8NTLK5tXIyammGKyS8zjBX5aadLg25J\n5aabbhriU6U4vflmesbHI6temOUxF9dVmBbJO3WQN39dsSlDL6a+wFxSPAJM7TKlJxECeRGo1CKC\nVWPvvfcOxqE/Svi3e8tnu3AnweAbOa3xmc98xiWxVhGmH6KEuAa9JEmabmWceuqpIy5/9KMfHXau\nm0MuCZlecoI1JIwN+6Scc845Lon5yU9+0jnudYCJHetBXsHR1Dmdpv3262Z6BjM/02+9cPHzNekY\nSwafPFMGzpLSpHZXqSsWHzCXZaTYXnAO4XWakiu2hSqtnwhUSkQOOOCAxG198803O2nDA7q7sPvu\nu7tD++1IzLCTwY9wuvB1fidJE5XPnQuTBs5DHHyJ08+lCSwE7tAwUEcN9L4vyttvv91Jn+QgrE+S\nPGWmefnll60/TJNjgcThw2CIpF0Z45dHGUlXyfj5Bv1YZKT4O4AXBlbLSIRAEQhUSkSKaIDKEAJ1\nR8C9PUYFHUuje1zgsjRlDGpaR0YcIRxUHIpqN4sIiKkkEQJFINAYIsKOnU6effZZdzjs27cgcKHK\nN34ccMMStoBEWU38PL5VBsfUYB6u6+fLX/6yn73rMasi4qauumbUxVQIMJUCAclLQjQlkwr2yMTO\nGiUyEglP4pPEnwFLh2fijEooBGIQqHT5boxOkadZVuiEFR+ssggvfw1iI7gkBj+ScePGdX73+wAf\nDAKY+eITKPTrRUQOOuigTnbyQmSKIlcszQwTt05lKQ5YNfH5z38+RY7eSXvh0ruEeqQoijz0Y0qG\nOl544QXrW8W9i7hluhxDpCZOnMih4X+R+4f/v6YNRrSDtvLJSw4tGAP4B2sIS78lQqAoBBpDRIgN\nwuANCUH+8R//0Xzta1/rkBGisfrLfX0nzqLASlNOOLYHEVD9eCBJ9INI4dCL7wTt/tSnPmW3UHcE\nizKJZukwCVbNpDKXFkFEnC5psCkzLVYerD1VCo6RRYY2Z0omj4NrHBZMGXEPEQti586dlmiwpPvs\ns8/ukGRXLwM3eiAsm9+4caO9F8k3efJku1UAG+01QRwZof1NI1JV48u9vWzZMhMEsqtaFdXfJgTy\nLrtJm99f/hq1jDYYVDvLUQOch0VXDS9/5XrUJyAsI5aC+unilrkmSePrT3pf/Py9jmmnL1HLd7ke\nri+uXPKnkbovc03TFj8tkT6rXJZMZFGWjBYlZSzVXb16dScaKnjlqYP2EqU1WPE0FAzwFnvONUEC\nC2OhfdWENufVkb4merFECBSJQGN8RIIB2EYO9QN8cS4sWE0ef/zxwqYwwuUn/R2EkY9NSqCzpNMP\nOISRvptgNVm7dm23JCOusfqCN+G2Ccu83RRCv9uG1QAp6i2b8opcJfPwww+bQw891FxzzTVm/vz5\n1sLB1JqzemTBC+sCZnqCm7HL7vbt263ObHxX9yWzbn8a50ycpf2Dlmf58uWt2ihz0Pqvru1tFBEB\nRBwyIRphQgIBYcAm9kYdpguIrxFYM+zUiut8YoGge1wkV5cu/E16nF/D5AYCQptfeumlxMTGlc0A\nwlx/mx7CDHyQK8Km91scjuBalDAVUkR56Mauu46AbN682ZQxjQKhYaM79MbPhH4ocmO9onD1yxEZ\n8dHofgwx5l4q497pXrOuth2BUZhX2t5ItS8aAfxLcDokxHcbhEEPosrbeT8Fp9Sse8bE6VmUoytv\nsJB2wraff/75fQ3HTX+ce+651odk0aJFfa07Dte480X79cTV0+TzbCOBXxlkUyIEikSgcRaRIhs/\n6GXhZIg5vQ3CoLdixYq+e/M7wpBlz5g43IuakoFoQkLoY8hmkTrG6e6fJ+omTrsE2psyZUqtrW9g\ng0WH/pREI4C18cwzz4y+qLNCIAcCIiI5wGt6VgYKTK1uWqHJ7fnwhz9sp71Gjx5tBxMGlDIHFd6g\nHQkpGre8UzLoxhYFrLYqcvVOlnYywLM5GtOI6FT3e01kJLqX3f9SHn+i6JJ1VggYo6mZAb8L2mJu\nZQrikUcesYOe36XuAerOFTGFgsWCwb4op1SnG995yQ16YX1AcGDutxXEVhzzB2fZSy65xE6dlYFd\nTLWZTufth0yV1jgT1jUCLOLcLBECRSMgIlI0og0rz00D5H0Lr7rZrAZZuHBhzy3peSP3I9yyKiWN\nQyh4IWnyJMWmiLJxSiUQWd1IiMOgaWSkCOLq2t7Ub8gtOEDOyrjvm4qL9C4OARGR4rBsbEm87SBN\ndULDGoIzJKtB0gqDPyTMCZFr497WITFYGMp6GOd9C8e69fTTT9eWhDiMm6In+tLn9HedLEsOx359\nQx5vueWWvjuB96t9qqd6BEREqu+DyjVwVhH8CeIG4cqVjFHAva3hkFnE/DXlgYMvzm+gzLfjvCTE\nrVBpylsrlps99tjDLF261Ie6lseDTkZmzpzZqMi5tbyJpFRXBEREusIzOBcJQMVg3u+lr3kR5iGJ\nlDmgYXHxY9MUQXj8duedknFk7N577+05NeXXW+Vx03Qu2xpWZV90q9u9pDCdOchWoW4Y6Vp+BERE\n8mPYmhJY1TB16tTGxBUp2wrgrCNh4oHVwZe8lpK81pB+kDG/vUUdu/7DAtWEQS4vYSwKt36WAwln\nX6EyiX4/26O66omAiEg9+6USrXjrg4w04c26bF0ZdCAiSaaq0CWrA2xeEkJ+yGNTBvPwjc0UDRF+\nm7IaY9DICM8DNhRlqb9ECJSFgIhIWcg2tNwmrGqAILBENdhorZQBLO9gQ/4kDrB56+EWYyBnx9ym\nRscFA1YuNWnVVhH91oTHgyP7/r3cBL2lY/MQEBFpXp+VrjHmWCJy4i+SxCJQukJeBZCQE044wXzs\nYx8rZZUPD9+iV8a4KR6vGZ0onuFpHz9Nr+OmW0Nc+5oYowIyktRi5trZtO+2xBhqGu6DqK+IyCD2\neoI2MzisXLmyVmTEWUIOOuggc8455xSySsaHgoE9r7+HX16347ADbJZ66aM27BXU1Ddv7kcISd3I\nerf7Ls01LFV1fBlJ0walbQYCIiLN6KdKtHTTNHXwGWGwYp+LSZMmdSwhRRIHyspjnUjTQVGmfdqX\nxs+EQZCYJ02a0uiGEb4Is2fPbtzOrm0lIzgSX3755Zli83TrZ10TAlEI/On/CyTqgs4JgQMPPNDs\nt99+ZtasWea3v/2t+fjHP14JKFgP2MX1i1/8ornqqqs6OvDGtm3bNvN///d/mVddMJC88sorfSMh\nKI9jKRYQX/baay/rK0Gb+KAX6SAtfH79618b0jj55je/af7nf/7Hhkx355r+vX79evP3f//3jWrG\nO9/5TsOHe4h+a4vcdttt1g+LiMUSIVA2ArKIlI1wC8rnbf2iiy6yLVmwYEHfBm0GYJww33jjDbNk\nyZLYeknHwJ3WRJ41X54uzWp5ccTE1X3TTTdZX5nzzjvPnWr0N32BRarJjpFZ+7ZuHce91iZrW93w\nlT4jEdDuuyMx0ZkQAgzwzBWzTJQPvgkMHGUJD0Ic5XjDZGkncQy6TZsQgpsPA0FScfqnJS9Jy49K\nR51Z35pxoAUD93nttdfMe97zntrvZhuFQ9Q5+s/tnBx1vQnn6Js092Dd2sT/HYJlatq0aaVtZVC3\ndkuf6hEQEam+DxqjAdYJpgsQBlQCaTGXXJRgeYHk8Da2a9cu+3ZMfIkkwa7cQM1A4B6ocXpRD8Lg\n108pyp8DQrNlyxa7dLefRKpsrPD/2bp1a9nVlFp+k8nInDlz7P/zihUrzNlnn10qTipcCPgIiIj4\naOi4JwIM+GyOh2PlhAkTrEMb88gQCEhJLxIQrgDigPWDMnBYZKvxZ555xsyfPz8TUWAgYKB2Fo+o\n+pwFJXytzN+0E92KEAgNb6xtE1YAvfrqq41vliMjaf8Xqm7422+/bZ3BV61aZadD2fYh7v+oal1V\nf7sQeEe7mqPW9AsBCAkWEj5YGB588EGzePFi+yBjOmX//fe30yoQi7BANNiqnp1iCUrGZ+HChcOi\nN+YZuLES8ABFL99ikKfMcBvS/EaXrFMyUfVgNRg7dmzUpUafmzhxoiWhjW7EH5SHjHD/QXqTWPTq\n1macwlk102+rYd1wkD79QUBEpD84t7oWBns/RDcPYCwmzz//fGS7cXxl+qWbhcC9VXZLE1n4H07y\nAOWNFPLBChWmlLKW1a2eJNewYBRZN9NWWA8k9UaA/4umkhFeDrB8SoRAPxAQEekHygNWh7NC5B18\nsSJgTcj6VsabKGWsW7fOnHTSSZX0QlVWmEoam7NSCCPTAm0SR0a4F7Pex/3GAxKydu3afler+gYY\nAfmIDHDn173pzqqRda7dzW+zHwvHWcvJilPRUzJZ9WhKviZOYSTB1hFzdz8myVNVGv7nmGJta19U\nhavq7Y6AiEh3fHS1YgR4iLuVOmlUwSSOuLdQymEg6OdgUNQqmTTtVtp6IuDuw37ef1mQWLNmzTC/\nqixlKI8QSIuAiEhaxJS+7whgsnfEIknlTIfw4HcPf5fHvZmmKcvlTfutKZm0iJlc03Dpa+t/Dnc/\n1pWMfPnLXy7Ul6n/CKvGpiIgItLUnhsgvTET80nyAHcEIM607AgK6coS9CxylUxZetatXCxIrJxp\nszgy0g8ynBZHR9TT5lN6IZAXATmr5kVQ+TsIMAC/8MILZseOHZ1lmG6ZLoncsl53zMqPI488MpEp\nmAe4s3R0KvQO8P9IujIGkoIjLeVhbYkjLV7xqQ6LXiUTrnyfffYxjz76aPh043/7m/41vjFdGsC9\nzP0KGSli8Of/7vvf/755/fXX7Z43xAPx/++ozxE8/gf5vxs3bpysH136SJf6i4D2mukv3q2rjYcp\nMURY7bBz5077wDv66KPN+PHj7RJdGuxWz5CWwYaPe2i++OKLNt/06dPN5MmTh8USiQLLWTz8azyI\nebBneaijE0TEvan65WY5jtIvSznd8lDH3Llzbdj9bumado0AWgixaQZBuGe5d7Pet+7/jii7BLjj\n/w6Suvfee1v4wv93nGRJ/fbt220Yd/5f+Z875ZRTbPyfogn5IPSh2lgMAiIixeA4UKXwAGU/imuu\nuca2m4fgGWeckemBSgGQgU2bNplFixZZUsIge/7550daKsIPbx7kSB4ikYfI2Mr/8KcIXfzy4o7B\ngDgsELqsA1lc2VWeZ8sABlJ2e87Tn1W2IW3d9GVSSx5lP/zww+aWW26x/zNJyXucTtw7Tz75pGF3\na/4HL7zwQjNjxoyBwT4OF52vAIEhiRBIgcDq1auHgkFiKCAfQxwXLd/5znds2dQR7DA7FAy2I6oI\nHtz2PN/BNMiI61lOUA9155G8+ZPUTR18Dj/88KFvfOMbSbI0Jg197vrUtbMfmNYBoF7tDIj/UDCt\nYj9l/N+BexBJdSgYgux31P9dHXCSDu1EwLSzWWpV0QjwoAoCHdkHYa+HZhF1Uwdkh4cvD+Gw3HPP\nPZEkJZwu7W/qzfIQLgsTyvU/rj3XXnvtEJ+2CPcXfR0lfvuLIp5R9VR9Luoeor38H0DSyiAg4TZT\nX2AVsfXxPyYRAv1AQESkHyg3vA4eSLwpYaHotzgLDIOuIwg8sDlm8CpDKDfNgEfaNOm76Uzd/sAb\nl9a9Icddb9p5+pc38l4Czknw6VVOXa/7ZCTq3u+X3ugBMYSUuP+7ftWtegYPAfmIVDAd1pQqmb/G\nDwR/kAceeCCzD0je9jKX/elPf9r87ne/M8GAZT7+8Y/bIsv0yaBs2p/EkTCPgyr1BINrB6I0q3hY\nIkwAKueU2CmkgQfsvrxkyZLUbQF7J+ARWA7cz8Z+06b77rvPOoBX2b/c/3PmzDE4lFf5/9/YjpTi\niREQEUkM1WAl5CE0ZcoU22j2najao54B+4tf/KLdN+app57qEIQ8JKBXj4JBYKHoOjimrd+V6erO\nM3h+6UtfMmyA1/TNyXDAhPBu3rzZwZLp2yd1OPMmIZGZKio50xVXXGG+/e1vm3vvvdcccMABJdfW\nu3hWMy1YsMCu0moqpr1bqRRVIiAiUiX6Na3bkZDDDjusNoMcOkGGeEivXLly2EMxLRlICzvlR1kq\nGPiQXm/h5HdS5ABJ/RAZLCq9dHD11/GbvYDOPvtsc9pppxWmXpjwRfVfYZUVWBD398svv2w3naMN\ndelXyOIll1wy7P+uwGarqAFHQERkwG+AcPPrSELCOjoygrUCcoLODMplvq1FxRuJI0A+8UD3MqdO\nwAJpqlUErKZOnWotT2Va3ei/wNfBYlUkGbQFFvTHJyFlYpFVXZGRrMgpXy8ERER6ITRg1+v+MHTd\n4fRkmgZhoOHtscwHOGQH0gPh8UmIP8ihS5nEg/J9QSfq86er/Ot1P8Y3ZP78+YVaQ3q1mT6ExDqp\ng7WE6Y+77rrLbNy4sdR72LU56zcxR4j3U3c9s7ZP+apBQESkGtxrWSsPmauvvrr0t9OiGn/ccceZ\nYEmxmTdvni3SJwdF1REuh0EMB8K//Mu/NKNHj7aXqx7IGMTQyZGysM51/V0XvX0iWYW1xFmFmkIm\nCTxHGPmHHnqorreW9GoYAiIiDeuwstR1b9ZVeumnbVuUzmWQkfAbNKGxISFVExAfL0gZUxxNCY/O\n4A9+WCbKnFLzMUpyHO7rsvuY+qjjuuuuM+edd14SFStPg85HHXWUXVHTFJ0rB00KdEVARKQrPINz\nEYfBIG5Ax7rQlJaHTcWQEySvkx+Exon/luwTnX5MBzkden2jC2QEsznh9ussTRrIfGtJnhVOcf3B\nyif2immadcFZcfjO+78Wh43ODw4CIiKD09exLXUPFef8GZuwphcgUWz45awBPllIqrI/4JAnys8j\niuSQD7+UOjyMb731VvOv//qv5j//8z9rZWXw+wASwrLwOq3I8vXrdkz/+zFfou6RbvnD1yivyaue\nmu4oHe4P/a4QgcGL4aYWhxEggmI/wkeH6y3qN1EgAyIwLAKkH6Eyqp6AdA2L0JkkemRcmUT7pLwq\nBd1oA1FwwaJqfeKwIHoqWwUkwTuujLqcB3P34R5IK2BRRbTitHrGpafNwdCVO6pwsCOwLYey7rzz\nzrjqBup8EECugwm49FvoB+rlE+yUXnr1/W9h6U0qpoLgja3TEeF/jm7Xiqm9f6W0JVQ4+3H4D3UG\nOn8w5qHpBg03aKdBmTzdhPp6pemWP+u1qHoZ4OpGRtCTcOFtISHh/grfX+Hr4d9uEAeXJgv3Gp88\n4p6nfA+SuIGeb4iHL1UTEXRx/XLiiSf6qpVy/CcBCJIGIzBq1CjjPg8++GDqlhAcjDDOTZe5c+fa\n5Y9+O1599VU7TcFUDYIp3X3SLPN1JnS/7PAx5VE2dTH90A9BLz7hKQJiiuD8iM/Ihg0b+qFK1zrc\ndMybb75pA3Wlwb5rwTW6yNScu7fcfcC9wIc+CstXvvIVEwzgtV6qG9Y56vdll11mFi5cmPmeJ6w/\nAdwQ/ocl9UHA9ccTTzxhsowtqVpSCr1pQaGODQZgjjAXdrvW76ajn/uEWXUvXdryVuba+bd/+7dD\nX/va16xlwllDirBSpC2DusG2TElSh9s0zbcUlalTVNlgh3Um71tzVNlNOedbS9x9WTeLVR4ssUZm\nmdoNticY2meffezzi+9BE/fc5jvts7sfWIX7h99liSwiwV0wqPLkk0+awFze+Lcy+o83T1aL8NbN\nG6lbEureTrP2MeVSRhpxdePIWoagE2/gfLoJIdOJTcGSbKwjZekTpQNWEFaEsKQYJ9qmRn6Nalva\nc/QT9xAfjm+77Tbjr8RKW17d0hOef8WKFanVCgZfs2PHDptv9uzZw/LzBu4svV/4whfstRtuuKFz\njmsXX3yx2bp167B8/g+sLYcffviwPJx76623/GTDjimPcl3dY8aMsdYA8rhzfIfL4HdYP9JxLqzj\n9OnTbVl+xWeeeaY95ywPfvspBwmm8YbpgJ5hCadZt27dsCSbNm0y4Om3BX1cvX5i7tFzzjnHnqKf\nHn/8cf9yscdFMhx8KXxrQaCptSYEjRhWTRA0q/MWDxMOX/fL4DgsMDPfmYZ64ury8ybVjzy+Dml9\nRHC+8tuIbmeddVYs6/XrAgvyMy/n2gVGYR0oz10Pfydl18zZZ3mT8TGt0zFvmzjehoU30iwWiqz5\nXP3M/6e1pri8Ud95ysMqEgyC1jKRBYsofaLOoaOri/urzLqi6m/CuWAH6SE+bRH6nGcQ32nEf+7x\nzPOFZ5h7rvEs9Z+H7rz7DuflGdotPc/TKAdMynFlhr+vv/76Ydf8MYuywunDv/3nd5Jnt99+ynJy\n0UUXdeqKsiJRj6ub674Vw7/m0vjf4ByWgHx0yivTV+SPLQxrkOJ32o4nPSA5EHwAwh0QvsnodD+v\nK8P/DudJqx9N9/9J/Juo17UsnR2uy2+Lf8wN7CTJzezSxn1TdtEDBVjTh/QpOkb1Fee4RhrSkqco\nYbCNahMkJe2DsigSQTlp6w7jQZucWT98LelvymCKhH7nO295fr2U7QgIpvqisPPraMsxDrtF41P1\n/x1twvE9qYQH73C+8DjgPwfDx+EBshsJcXl5BvmDNMdRzyqXPvztP7P853c4nf/b1Zfk2R1uv8Mn\nfD5MqHyiwrETn1D4OoWPw2MdOvtpwvW58vN+F0JEsnR8eMB2Het3qg8kDU16s1CGL1n08/UId07c\ntayd7Zfnd3rUMXUgSW5mH4PwcZz1IJwu6W/6z/8niNK92znyunsgaZ1R6brNV6d5+KdJG6VH+Bx4\nRxGkcLqo33nyRpWHHryRQ9qwIHGcpb3oxXJhLB/0Ld9ZyonSsc3nwKooqcv/HfdQGl8k//kfJhJg\nEx5wSeMGQcaB8PPPDfLhfP6zu9s1Xx/6x88XtoZw3T2rwlYUP1/4mnt2u76nHPdBN1/CurprYWLg\n10can0z59fljjI8l7fCxDBM0yvTzhuvjehGS+z8iDJivaLdrKO830L0du44BENfZrqGU7a7z7dcV\nvllcJ3TTods1Xze/nrDe/jU/T5rO9vOF20U7/DbTTl/8a7QnqfD2wqBdhKCj/w/g65TmmDJcv2XV\ni4dh3AMRqwSDZy9hoM5KGrqVTZlJ6vfLIH1ea4pfXviY+4BBBEJCX/FmC6FwOIa/Sct9A4nhQ1qm\n98rUMaxzk39D1MC4CKnT/x33APdCUvFfWsIvnJQRfjaHx4KwRcVd98v1Le1OL38M4bnrhOe1e1ZF\n5eOcu863q88vj+dXWPxne/j57JcXvhZuv1+u30YfOx8TdHHkzD/v6+7KJJ3//A7r4hOVKGxcOXm+\nczurfutb3wra9nsJlDSzZs1yP63zYNBRnd+3335755iDYIVD5zfLDRcsWND5zUZme++9d+c3B34Y\n5HBdV155pY3W6DK88sor9jCPfq6sJN84JLllaKRftmyZGTdunM1KO+644w4TdLb9HdzEsY4/4Xad\ndNJJJrjZbD7+sNlUERLcnDYaad6ycNKiz2lTXqEMygo7gqUpF4yfeeaZyCxu2Wiv5bUBYejpCBpZ\nQY+TwcBty8XZNIk4p1Snd5I8adMcf/zxNqz/5s2brTMc/4PsIxInu+++u11miW7gtHTpUrtzbpk6\nxunSxPMBYTN77rlnbtXr9n/HMy7Ns+mFF17oYLDvvvt2jqMOgsF8xFjgnq3h9H65RFsOy+TJkzun\neF7TH3xYouokKl/UOdLzvAoGYPvZvn27LQKHUJxicSb1xwRXft7vY445plPEf/zHf3SOn3322c7x\nJz7xCesQzYnXXnutcz4gXCOw9J1SSfiTn/ykk56D/fbbr/P7xRdf7BwXefCOvIVl6Xgajhx55JF2\nt1dICOI6jRvPJzT2YvDHv1mCNzh3uvP90ksvdY7dQR79XBlJvpN2tmtruLNdHVHt+sAHPuAu1+6b\nOCRhEkL/BSza7LHHHubggw+O1JkYHzy4gjfyYf1KWZQJscwiYfIaLoMVLQyicSthul0Ll5XlNwM2\ndVNP3IZqEKXAEhKrY5Z6k+RxusVhk6QMpemOQFEvAHX7vyNU/apVq7o33rvKxpFOeE50kwMOOKDb\n5WHX3BjCyZNPPnnYtagfkJCwjB8/Pnyq8xI54kJwgjICK4K54IILoi4Xfs5vF89LXoIhZt/73vc6\ndbGNgpPA4uEO7bPWrcLpnAwddCOUP/vZz0Kpi/mZm4hk6XhHRGgCb/v33XffsMHMt5S4ZobfkllW\nlUTy6pekDtIU1dlJ25VUr7h0WA1YdpdXIBK+8A+ZZNM1SCgC4eANYuLEiZ1iKDMrEekU0uXAEYHw\ngJskcFmXYlNdou6ofWrQASIS1i1V4UrcegTq9n+HtS+NhF9e0uStU1pISDDV1nmJdrph2R47dqxh\nFsAfg9z1PN+Mn7zo3X///bYYLCG8gC1evNj+xirsP0/z1NWvvH/Sr4ri6qEjwzclb8uS8hHoZT1I\nooFvpeKfLwkJCZfrLGPuvF+mO1f0N29w4YiXZU3JxOkejjfi4ny483H5dF4I+P8jTfq/cz2H1bQM\n8csNnEU70yZu+iT8HfUMxGoVlvAY5a7z4uWIBnWTjjq+/OUvR1r1Xb6838QFcoIlhLY68adlOMd0\nqhMITBiD8G9077fkJiJ5O56gR2HhXNgC4ltRSO/m48J5w7/z6hcuL+53Ezo7TveizvMGkFXy5M1S\nJ29wWB6cv0jZUzJxOjq/keXLl1v/kbRvlnHl6vzgIJDnfydP3jwI77XXXp3s3aYCOokSHhxxxBGd\nlElfaCEjzn+PzFE+ZlHnSEvAQCcXXnjhMP8LXrIdSXFpivomAJoTLCG+fv60DGkOOuggl9RgPUGv\nrJJmmixNHbmJSJaOdwoSzc2Zl7gRcKRBYJXOzOTSQkT8myXKx4JpDRcxDmchJI9+ru4k30V2dpL6\n8qZhXjYc8S9vmf4/Zdqy8uRNW5dLj+UBX4x+Tsm4ut238wc577zzrC6OGLnr+hYCvRDI87+TJ28v\nvbpdf9/73te5/OMf/7hznPfAd+TEZ8ONA5TLy60fNZWoq05cBFF+48fn5+PY+fa59FHfLKZwgzzT\nzZ/61KeikkWe86f2IxOETrrpGXfa6Rc1LYP/iHshZ2xFL//Zzzjsj53hKKtEq3biynG/C/sOzDK5\nhKU+gTKdj7+cNWj0sNgSQSM6dYWXDJEvvO6a374EJshOPdTpL/UML99lyRKSVT90de3y20SZcdf8\n8/7yXadHcJN0ykQvJ36+cJtJQ/1OFzDwxZ3nO6ynny587JZlhs+n/e0v7UIH+oG+TSqk9dtHGZSZ\nVVgemWZZcvDgGPrGN76Rtbpc+aKW87Jcl/P9FnAAO+4Lt0QXHMMfAqGRJvBRqETPfuNSdH0O37zl\n1u3/jvs2sOYlbpb/P8+zMiz+czvueeA/+xhrnPjPUz9N+Nh/BpM/fL3bb1dfeNzplsevD12j0ro0\nfvtJFyU+hq4sfzmvnydcnksf/ga7sPjjlj/mhtPl+R3dwpQlZul4n1TQUDd4+f9gYVCS3izhzsii\nn58nPMDHXcva2X55eYiIu6nczdytG4t6IEb9M6AHDxf6kutRH66Rxunsf4fx7taO8DUCbKXZYI3B\nl4G/34N/N8LRL32oB7yIawH+fDuiAS5RH9Jz70BQyJMnIFq47wbhN5imIcpxmNTt/y5tu8LPcvf8\nd+31n6VpiQhlxz1b3HMm6hnj1+nSue8w4XBEhG9/oHbp+WaMYyxy5yjDlygd3bM7rIufzx2DmSvb\nfXcjCnH3jMvLOOTaFVdHuJ9curzfhRCRtB2PtcI1nm//puh2jVopbAYAACaLSURBVMaGO8gvh2M6\nNwxWWv2oxycHvn69rmXpbL+utESk282MrnGS9sERVw5YR+kQ7pekv6P6L67uqPNpIjz6Az549Euo\nCwtEN0E3yEoZgjXDEQmIB7976ROnB21xAdEgJRCVrGXF1dGm8/QpOOWVuv3fpX0BoP3+cyM8gPrP\n+bRExGHLs9ivg2cQ5CDqGevycI363POKZzO6cN6d49sfYxizfMLh8lBmHIHhWjgf5VIX4ref83Hi\nt89/oY9LT51hndA3PMa5/PSLa3dcP7i0eb7jW5ih1KQd74MHCGEJW0vCLA0w/TQA1Q1MV35S/UhP\nea4Dwp3U7Rp503a2X17UPwn1O11oty/dbmY/XfiYgS6NKTWc3/+NDn6fOl3TflMGZeURBlgG1iQS\nJh/h30nKSJPGTX8kzZM2fa9yaR+DYFmEwREc7iusJpJoBPi/KIKs1en/DkILGUkj/mAbfq6lKacf\naf1nMAP+oIhPsBxJKqPthRKRMhRUmeUhwIBU5Fs3/6w+qUpKRMgTJntZW530IR9FOnwLSdb64/Ll\nsXCga56Bi7oJvw1BSDtYxLWn23n0hRByf0Xh3C3vIFxLQ5aT4FGH/7ssfY1VwU1rJHmbT4JF1jT+\nixTPI//ll5dDpyfPF9IOgtA/7hkOJmXKKAoPKpMMIAJXXHGFjXzKio0iBe/05557zgZ5Y437L37x\ni2HF/8Vf/IUhWixLnj/ykY8MW/I2LGHKHxs2bLDr93utBHDxQ4KBeUQNxPLgfJEhy6MCl42ouMeJ\nrGWAybnnnmumT59u5s+fX2i7eqhsWJIcvOkaljWyZYPk9wjcfPPNNvzAjTfeWCgkVf3f8f9EAL6A\n8KZuDytSXETSgFCVGnujm3K+Ht3ScS2wDGSKl9Sr3Lpd9zEpvc1lshyVXW8E2KiqqA24qm4p0wKz\nZ8+2/gq9dOn1lt7req/y/etYnPJYM/yy0lpV8N3ACpJ0qsqvq6hjdOYe41MUDkXpVkU5YMAqrdGj\nR7cGjyz+IT72zhpR9lu3X2fUse8bEpCCjjXAP677FFJUu7Kc861V/bAAaWomSy+1JA8PRQYqBoum\nC235q7/6K/uQh0jEkYm48377KauIKSvqoqwihfKStIE5ewb/ItpRhP7oU/RUYBF69aMM+oA+4+P6\nAyyqJIhFtjtvW/B1cYN9UVO0WduHH4TvF+H0wsEzyn8vaz11z0c/0HampPxpqrL01tRMgPYgC9Mz\nSNFm4n5j+vDDD5tbbrllWKRDoqU6IQCQm26JmpJx6dx3t+kblybu2wUpK3O/mG6b5tGnRHRcu3Zt\np81xuvbzPHqxWRtTZ20OY8+9409TRG1uyLTVI488MmxH8X72RVF1cR9OnTp1WHuLKlvlDA4CIiKD\n09eRLXXzu8GbWq0GrUhlu5w89NBDrQ/EaaedFpkKchBMRdldKknAXjO9CEmWsO/gSV39GGij/Ebq\nSkJcpzgy0vT7zbXHffukN8m9xT0CQSFfr/vQ1VHH79NPP90cffTR5tJLL62jetKpIQiIiDSko8pU\nk8GBEL9NfZhgDbnmmmvM5s2bY2EKk4okb60UFs4XW0FwIYoYdEtfxDWf+OAEedddd5mNGzfWmlTW\nnSwl6Rf6Opgm6yTNYv2iv9gjhNDgTRT+N7CGtI1UNrEvmq6ziEjTe7AA/RnMeIvDnNy0tzPeLI86\n6iizcOFCc/zxx0eiQfuQbm2LG1gon/y9LBw8lKNM8JEKFXwSHbH2/PM//7N5+umne+pacPWZimP3\n0MCHpTGracCYAddJEX1NmZSzZs0au+rEld2Ub1lDmtJT9ddTRKT+fdQXDdnxeMuWLY17O0uidxqr\nhgObPE7+93//13z0ox+NtDK4ASrLG7ErP++3G9BuvfVWEzc1lbeOovND7sDs3nvvjSWQRdeZtjz/\nHsDHqBcZTVs+6fEVWbRoUe2tWOG2Ob27WSHDefRbCMQhICISh8yAnWcww7IwZ84cU3RckbKgZKDA\nNMx3nLWDa3lJAthE+ZcwmHKtjAEqDWZMdbCV+tKlS9Nkqzytm1Kry1QS/ek7mea9b5ICjGUhWHnS\nGOsQ1kMsWk215CTtF6XrHwIiIv3DuvY18YDBVIwJuurBtRdYSawADCxIHEnpVYd/nfooD1z4JmDb\nu9/9bhPEg6hsSgb93KDQjYz57ajbcdXmfXBzksTJ1KUt8pv7CdLTBIsW/wdTpkyxLwBN9Skrsu9U\nVjEIiIgUg2NrSuEt9ZJLLqn1Ekv3MAwCIHVddlyENcTvWEdseGv2fQTi/Ev8vGUdVz2Q520XfdRP\nh8cq+6obVi4CLkt6ua/rKjNnzrTWt6Y62NYV10HXS0Rk0O+AiPbXeVWDIyF77rlnV3+WokkIMFE3\nUzS9pq78t+yyfAvQx1lDmr5qoUwyRZ8V7WQK9mXIv//7v9upUVbS1NEiWefnQhn9oTL7h4CISP+w\nblRN7qGzePHi2jwUHQkByG7BupzloogpGddplEn9DBBpSE54ICzS/E8fsV9P0/dxcVYR3z/D4Z7l\nu19EMItucXnc/bV169ZaWiTd86Db/11c23ReCPRCQESkF0IDfJ2HT10iYfKg/vSnP232228/u8rA\nRUmN6p40RCEqf/gclgfqc8QGcoE+Wd5ayecPuP4UT7jebr/Rgby01enVLX3drxGQrtsS7G76hzHt\nl5NpN53SXEN/xPWjmx6tg88I9xk+IYhIiIVBf0pA4E//XyAllKsiW4BAsNmRHfhZTbPvvvsaBosq\n5MEHH7R+BGeccYYdrN75znfGqlEGCWGA2GuvvTp1Uj9Levnupksng3cAocEq4j7btm0zP/7xjy2x\n+fWvfz2sHi/biMNvf/vbxr09j7jYwBPvete7zLPPPmu453oJg+Mrr7xiMWMQZ/oLUuYw7ZW/TtfD\nJATdDjzwQPu/NmvWLPPb3/7WfPzjH69EZf6XWA7O0vXbb789cvl6JYqp0tYhIItI67q0+AZhETjz\nzDPN/vvvb4gG6d7ciq9peIkMOCwnfuyxx6wVhCWO3awQUQ/14SWm+8WDuJvFomjSQ3t9f4Zu0zhY\nq5ocDTfcE/QdlgzfWuSn8Z1My/S78ess+7jX/cp1rIDIggULci9DT9oe7sOvfvWrlnxcd911PX2i\nkpardEIgFoGydtNTue1CgF1fb7rpJrsjIzupBgNGaQ10dQWEZ2jGjBmdHWw5HwzUsfUm2ZU2NrN3\ngXqSlpU0nVd84kMwpnz3QS8n7HjaDQuXrknffptcH0S1vUltitOVvk36P8T/Hf8LZf/foWvgjG3r\nmjZtWmL94tqo80IgKQImaUKlEwIgwMOTB2LAbO13kYMhZbuHLg/CqEHeDVDh3ohKG06T5Dc6pGkT\n6fn0Q9CLdr700ksW/37U2c86zj333KGrrrrKtjFNH/RTxyLqynLPcN/7/3dF3e+0h7L5v4MI8lm/\nfn0RzVQZQiAxAn8SayrRBSEQgQDTMjfeeGPHhE6ERT5M2TBVkVYwuRMumjKYiti+fbuN2Eicgiin\nQ3wsOE9dmJARTNjkzSvognSb/gnXAR7o4XQJXy/yN3rR9t/97ncmIGpFFl2Lsg4//HDzZ3/2Z7aN\nafqgFsonVKLXdExcMdz37v+OKTn8R/DZYouDLP936IFTLHFBmOrC52bJkiV248i4PZvidNN5IZAX\nAfmI5EVQ+Q3BmPDjCN6k7H41DJJjx461PgzAwxJTHnY7duywaO3atcume/755+3vyZMnm1NOOcVM\nmjQplUMcxIEHdPCGGUlabOEJ//Aw7+YP0qsY8kcRp175slyHuL366qtdg7llKbfqPGCIL0Rbg2Vl\nJSFx/cL/HRF+2eiQD5sIsqpswoQJnSzjx483r7/+uv0d9393xBFH9M3vq6OYDoSAh4CIiAeGDvMj\ngGUgMKvbFR08+BCsHOyF4j8gJ06caK0YWBTyyDe/+U3zvve9L5UVw6/P6ZuXRFAOA00/3uSxPiFt\nC7HdZiJSNAnx72GO3X3MSqpu/3cQk7333rsv92lYR/0WAnEIiIjEIaPztUfAPdyxikB+0pIJ8vMA\nL4o8YKGBWKFPmdJWIkJfYDkLJpbLhK/vZbv7NC/p7rviqlAI9AkB+Yj0CWhVUzwCTMm4gR8Swhs1\ng1kSyeIP0qtcCA2ESJINgbIJXDat8uVy95lISD4clbvdCIiItLt/W9u6KJ8MyAhvn+4NNK7x5GVg\nKGNwcIQorm6dHxwEnIWsjPtscFBUSwcBARGRQejllrURohG3SsZNs7g3Ub/pWEscgSnz7RvdepEh\nXy8d/x4BMGvLoO1ISJn3me4bIdAWBERE2tKTA9QONyUT12Rn7YB0OGGQ45PWj8TlT/NN/ZCepNNE\nacpuc1r6FSfmpotISNN7UPr3G4F39LtC1ddeBBh48ZFgWa5bKhjVWre0Fw9+9tVI8xbsLBpR5frn\neBN10yR/+qd/av76r/+6MKdUv564YywzSXWNKyPuPMuhN27cGHe5seeDwFqN1d0pLhLikNC3EEiO\ngIhIcqyUMgIBrAxPPvmkDUrmYhkcdthhNobI3LlzI3IYu7SXJb2LFy82q1atMkE0Rxugi03t3NRK\nVEbqipuSiUrPOVZh/OY3v4m7XOp54pIwMHVrUxYFxo0bZ/HOkrfOeYh3wb3QVBEJaWrPSe+qEdDy\n3ap7oKH1E5VxxYoV1voxffp0Q1CyD3/4w5mWrrrATOzwOXr0aDN//vzI4GZpLQykd0HKIDFYbIom\nBb26j3qRNFafXmXSjjYucyXKJ4Ht2PG1aSIS0rQek751QkBEpE690QBdIA3BnhdW0zjCkKcZPsG5\n9dZbO4NSGhLipojC/iBx5/PomyRvGt2TlEcawnsTkjvcxqT565gOa9dTTz3Vd7KYFwuRkLwIKv+g\nIyAiMuh3QML282ZPJE/8P3yCkDB76mQM3uynseeeexq2vGfgTWJVSGL5KIMY9Gpg0XWCCb4i8+bN\n61V1I64zmLPfEA6rTRKRkCb1lnStKwJaNVPXnqmRXlgpePNm/h5n1H6Yzqlv8+bNZurUqdZcn2T/\nEQYFpNf0C2VDDLCQ9EuKXNIL2WJPkfvuu8+2o19tKLOeBx980DDF1yThHoIca4luk3pNutYRAVlE\n6tgrNdKJN++VK1faHXGrmgaAYFx00UXWOnL33XdHPvgZFJw/SFL4KJdBJImlJWmZ3dJlfXsmn7+i\nBFKDzk2dyojCCIvXwoULTVN2fi3awhWFic4JgUFBQERkUHo6ZTuxFpx//vnm5z//ufn617/et8E6\nTk30mTNnjnnzzTfN2rVrO2Qkr99HkqmcOJ2ynE8ygIWJRxzBYgt4lkmzPXyTxfkdYQFrgiTpwya0\nQzoKgbogICJSl56okR4M7lOmTLEa+YN+HVTEQvPyyy9bMoKefHpNxfTSOy+Z6VW+f526ID++zgxs\nvsQRDz8Nx5SDVaRXgLdwvrr9Pv30083RRx/diN2ERULqdvdInzYgICLShl4suA0sowxbHgquIldx\nkJFvf/vb5t577zUHHHBArrL8zAwySUmAny/t8Te/+U2bhaXKSJ4pL7BAmmoVAXP8gPA9qruvhUiI\nvdX0RwgUjoCISOGQNrtAzP0EJqubJcRHFVM+JIRAZUmcWP28vY6L9htx1ha/Xucsm4eAuPKabhVh\npQxEhBVZdRaRkDr3jnRrOgIiIk3vwQL1Z4A/99xz7UqMfjlwZlWfAZ7pozIGsTx+I2HiQeAxfxrG\nb29Rg9vNN99snnnmmcJJma9rGcfLly83ixYtsqujyii/qDKL6qei9FE5QqBtCIiItK1HM7aHAZRp\nCSwNTVm5gPWCN+o1a9bkmt6IgswRil5WC5fOldGNeLg07pu8YX8Rdy3NN+UcddRR1pn3vPPOS5O1\nsrRl9l2RjRIJKRJNlSUEohEQEYnGZeDO4heCLF26tFFtL/utmoHI9xuBOPhBt9IQjyhgGZCLiEVB\nOeiJr0WcBSaq/irOQZzKsmYV2R6RkCLRVFlCIB4BEZF4bAbmCg/cpjgMRnUKVhEsAWVYAyAezz33\nnHn3u99t98FxMTyi9Mh6rqgBj8Bzl1xySe3DpEN633777VpPJRXVJ1nvCeUTAoOEgIjIIPV2TFub\ntHwyqglFEiksC1HBw/L4jUTp7J8raoqGMv3lzXVchVJ3/egLrEq9puT8/tOxEBAC+RAQEcmHX+Nz\nFzmIVwkGZOrUU09NbRUJEw9/GibcnjIHKYgOUoSTsBvs6xCIzsfQ6VXXFVlFEkK/3ToWAkKgOwLa\na6Y7PrFXDz/8cDNq1Cj7YRdUX9x5vjdt2uRf6nrMfht+3q6JC7p4xx13mLlz59Y+hkOv5hICnhUY\nvQTi5X8Y+Hn7dZ9uVgSukY78DFpFCnr4vid5yiamyGGHHWZ1hWhVLWAFUXSB6LphXJWuIiFVIa96\nhYAxtSUiDO5uUGbQlxSPAA/fZcuW2UGi+NL7W6Jb6QNJ8MUnHRw7wuG+swyK5MWC4awYfn15jh3J\nyVOGywsZYZdkLDw49FYlECFW9Oyxxx61jU0jElLV3aF6hcDvEXiHgBhcBNavX29mzJhRyHRAHVD8\nxCc+YYmVrwuDexnCyhRHRoqYTnE6QhwYvItY+cIuyd/5znfMrFmzzCOPPGKIN1Kkrk7nqG8GdzYo\n/PznP2/uueee1FNmUWWWcU4kpAxUVaYQSIdAbS0i6ZrR/9QvvfSSGRoash8e9E2URx991L6tNlH3\nsM4EY/vYxz5mp8KctaMsEuLqdoN6kdMfzkLDAFmEgMHGjRvNIYccYvelgYwUVXacfqzewQpCkDUc\nP8tYzRRXd5rzIiFp0FJaIVAiAsFgWit5/vnnh4LmRn6Cee8Rut55551DnPfzcG7Hjh2RaV26s846\ny16//vrrO3ldBpeGb/Thc+KJJ9p0lI34dbpzcfkff/zxTn7KpCzOheWBBx7o6EK6KEnT3qj8/rlg\nIB0K/BL8U40/rqJNwSqbocDyUCh2RZeHcgEpGJo2bdoQGF177bWF9j0YrF69eiggPPbDcZ0FfcFD\nIgSEQPUIRI92FeqVlIhANBw58ImDO95nn32GXn/99WEtYRB31yEi4fwusUvDt09U+O1IR1IicvXV\nV3fq9Mv1y3L1diMiWdrryo365iHMgNQ2YaANppwqaRbkgQGuKCmDjKAbfX/55Zfb+/LYY48dCqZO\nMg3KjnxQFvcS2NedgNB+kRBQkAiB+iDQWB8RfBueeOKJYDyPlmDgNieffLJ57bXXDNEvw3L//feH\nT0X+vuqqqyLPJz153XXXxSa94IILzMEHH2yOPPLI2DTuQt72unLc91tvvWUmTpzoflbyPX36dOP6\nIfiXKEQHtpMPCGglYeqZBmGahumVYGDO3R6Cp+GHUkRZvjL4n+DMOn/+fIOfEFN0AWG2SbgnwBAZ\nP378sP+drVu3ml27dplXXnnFvPjii2bLli0mIB922fRll11WuJ5WiYL/aDqmYEBVnBAoAIHa+Ygw\nKDMoBZaHTvMC64M9h18GwjJXn4SQljx8AqtCJx9kxP/dufCHA8oNLDCdvOHr7jcPaVd+Fn+QOP0o\nn71deklR7fXrYbB2A45/vqrj4C21kKoDS5gdKAspLEMhzsm0CL8RCEhRS3qjmgJhwqGVsP7U89RT\nTxmWQSMQjsWLF5sFCxZ0Pq+++qq9dsoppxhWtfE/we7H+IAUTZZsRQX/cc7Fro8KLl7FCQEhkBWB\n4GFSS2EKJGiT/TAN4kvwsOxcY+ojLHF5/fOUzTRQlLh6+Xa+JOF0aaZmwnnDegQPfZskbmoma3vD\n9fq/b7rppiE+VQrYOqzj+iKtfkxnMEVQtWD+L2pqpahyqsakyvrxhWqbP1SVeKpuIVAkArWziAQD\nU0954YUXOmmi3uonT57cuU4Qpbi37SRTIuxjkkeI9hmWj370o8NOMU3STYpqr18H5nWsB3UR97Zd\nF33y6oG1gamaIoKfuSW9eXUa1Pwu3ksTrDaD2kdq92Aj0EgiArlwgh+IC3zmvsMDbBQRYVomiey+\n++5JksWm2XvvvUdcC/usROnnZyqivX55HLPpWJRu4XT9+v2lL33J4IPQNoGMuCmBrG0reklvVj2a\nmE8kpIm9Jp0HDYFGEpFB66Q6t9ePgOuIYNJv56hK+5xz8Q033NA6QuJ8EvL4jVBGsNqlzrdC7XQT\nCaldl0ghIRCJQCOJiG/N8J1NgzmrjlOpf1zlmz9OoWEJW0B66VdGewm53WtKKKx32b8hI6xSwjrS\nNmFagE84BH2adrqpnjR5BjWtSMig9rza3UQEGrl894gjjrAbaAE4vgVJfD2q6hyiS5500knDqn/2\n2Wc7v5lG6kVEymjvhAkTrBWio4gOSkfA9xvptstvN0XKWtJLnVhsmB6DEG7fvt1s27ZtmCqQV+4b\npivHjRtnfWCGJajJD5GQmnSE1BACCRFohEVk586dw5pzzDHHdH4Ti8Pf/Za3/IsvvrjjN1L1hnnE\nEfH1YykuOjs555xz3GHsd1ntZYlm24SBlAGzzpLHbwSrCrEwigjTThmEY585c6YN/37mmWeaFStW\nWOjGjBljd2VmZ2b3YdkuAvnnHFNwOHMTNt4N/jZBhX+cHnJMrbATVLUQSIlAIywivKHx0GOKglgi\nZ5xxho1t4Jw4Gdj9wd3HgAdm1dJNPxe3oZuOZbSXYFXEicgrrFBieqxICTvzpikbcsVbe90Fnw8G\nTawQzockqc6kdzsJJ83jpyMv8XUWLlzYCUgWhHzvGQsEAuULRCZYWmwee+wxax1Br9mzZ9vYJH66\nfh2LhPQLadUjBApGoMi1wEWWxV4sQVOHfQIi0qkiICcjQrSH0xOvwxc/fodflp+GY78cYntECfld\nunA97jzf4RDx/rVwvrg4ItSfpb1RertzxFQI3hrdz9Z8VxniPQuIgb9Q5vDqafdKcTFW6HdiyBQZ\nV4N2VLnXjOKEZLn7lEcI1AOB2k7N4FcRDNSxsS7wq1i3bp1NE+wZE4zvfxQiofKWniUK6h9LKeaI\nMOa8fWLNcYK+AdFKpV/R7XWm6zwrOVx76vS9atUqc+CBB9ZJpa664DdCX6R1YiUfH2cF6FYJlgsc\ngKdOnWqj6bL65tJLL+1pAelWZvgauhCldfPmzTZ0/DXXXGOnbfpxf7k63D0d1k2/hYAQqDcCo+BD\n9VZR2pWFAL4BbNde123a07Z7w4YNJtiAzQ6GafPWIT1kJK0Ta68pGq5DyPfff3/ry9HPwRrfkc9/\n/vMmsL5Y4lMGxpAQ2gQRkggBIdBMBGprEWkmnM3SGufD5cuXN0vpLto+99xz1uehS5JaX8rixNpt\nSS99ixVkzpw5dk+YfpIQgMbqgvVlzZo11iG2CAdbvwNFQnw0dCwEmouALCLN7bvcmjMw4BgazK8X\naqbPrVjGAljaysZtaZ0/M1ZXWjamW+ibpO1w0zM+0bjiiivMypUra4EHbYEMvfnmm2bt2rWFWC9E\nQkq7/VSwEOg7ArKI9B3y+lSIOZupjGXLltVHqYyasAx19OjRiQfvjNX0JRuEgk9SvxHSMtjzQSAh\nrCjDGpGUzJTZMO4zdvjFT2rKlCkdPbPWKRKSFTnlEwL1REAWkXr2S9+0YrDDfM+g1eR59g984APm\nkksuMTNmzOgbdv2oiP5J6jdCWhyjISFFWR6KbqMjSVn1EwkpukdUnhCoHgFZRKrvg0o1wMdg4sSJ\n5u67765UjzyVYw3B55qYJgzG/idPuXXIm8ZvhGBuTMd8/etfry2pvPHGG81+++1nzj///NTwioSk\nhkwZhEAjEJBFpBHdVK6SDNxYRfj2/QzKrbW40g899FC7ZJTlo2GhTb7gE1OH6QpfpyTHvfxGGKSx\nnNRlOqZbm5hCYorm2GOPNfPmzeuWtHNNJKQDhQ6EQOsQEBFpXZdmaxAm87ffftvO5WcroZpcLBFl\nVQZOqkmEQZDB2pekUx9+niqOne5YSXzhPMuwcQhtylJsiAXh4em7cHv8tnEsEhJGRL+FQLsQEBFp\nV39mbg2DGQPyrbfeWlmI7rTKF2UFoJzwjsi9Bse0uhaZHiuPT54IVrZlyxa7RLfIesoui+XFixYt\n6hr3JdzWsnVS+UJACPQfARGR/mNe2xp56DNF04QlsGVbAcJTOiwNrtO0FeTJORejW1OXYGMV4Z4j\n5khY6IM6E8KwvvotBIRANgRERLLh1tpcTHXcddddZuPGjZ2Bro6NZQBjOSjOj/0QfDQY7H3xrRL+\n+X4do9MXv/hFs++++yb2teiXbknrceQ3vGpLJCQpgkonBJqPgIhI8/uw8BbkXWJZuEKhAuuiX3hK\np9+OsBARrCHoccABB4RQas7P008/3e6B46wiIiHN6TtpKgSKQEBEpAgUW1hGXQZ7H1qmY9hMra5x\nMtAv7Ahb5pQOfYT0yyrk90WRxxAP9sNhwzyRkCKRVVlCoBkIiIg0o58q0ZKBbv369TZIVtVLXhnk\nWfKJZA2GVQWIUVM6Rfk9QHKa4M+TBHeWYF9wwQXm4osvTpJcaYSAEGgRAu9oUVvUlIIR4E0bnxH8\nMapcTcNbMg6N06dPt/FCnJNmwc0tpTgcXMNOrrTHlyxTOuw0DDmsmiD67chzPG3aNLsXTZ4ylFcI\nCIFmIiCLSDP7ra9aOyJA5NJrr712xMBaljJYQb761a+a22+/3Vx33XWNiZGRFo+oKZ1ejrBYq3bf\nfffGOqmGMcLPBcIbdggOp9NvISAE2oeAiEj7+rSUFjFY4p9BCPG5c+faEN1lWiYI2059+++/v7XK\nhK0KpTSyRoWGHWFRzZ/SYSpjyZIlw87VSP1MqrRpqikTAMokBAYUARGRAe34rM3GOrJgwQLz/PPP\nW0LCioeiSAJkZ/Xq1TbIFfotXLjQHH/88VlVbV0+N6Xz29/+1hxzzDGNjR0S1zEzZ860EWKbEh02\nrh06LwSEQDoEtOldOrwGPjVv5Q899JANzb19+3a7fJQBhCiZOGamFcgH1g/KwFfikUcesQSEFRQi\nIcPRBHs+7373uw0+FQiWk7bIhAkTDPeURAgIgcFCQBaRwervwlsLkWBlzaOPPmoee+wxM3r0aDud\ncvTRR9u62NnXF3aI3bVrl3nllVfMiy++aEOTM6ieeuqp5oQTTijMuuLX2bZjSB8B55YuXdqqpuGA\nu3jx4saFqm9VJ6gxQqACBLRqpgLQ21QlfiLseut2vuUNHbKxY8cOSziYxvFl7NixZsyYMeaUU04x\nn/vc51rl4+C3s8xjiBzWg7YJFjGJEBACg4eAiMjg9XmpLW7TktJSgVLhIxDAWRXfI4kQEAKDhYB8\nRAarv9VaIVBbBHB6zuJnVNsGSTEhIAQSISAikggmJRICQkAICAEhIATKQEBEpAxUVaYQEAKpEZA1\nJDVkyiAEWoGAiEgrulGNEALNR4Coqm5ZcvNboxYIASGQFAERkaRIKZ0QqAkChHZXvI2adIbUEAJC\nIDcCIiK5IVQBQqC/CIwbN85s27atv5X2oTZWzBxyyCF9qElVCAEhUCcERETq1BvSRQgkQIAN8Vat\nWpUgZbOSEOSOGDMSISAEBgsBEZHB6m+1tgUIEEQOy0GbwrvTLUTaPfLII1vQQ2qCEBACaRAQEUmD\nltIKgZogMGnSJLNu3bqaaJNfDUjVzp07DQHxJEJACAwWAiIig9Xfam1LEJg8ebLdeLAlzTGbNm0y\n06dPb0tz1A4hIARSICAikgIsJRUCdUGAnYmxIrQl9saiRYsM5EoiBITA4CEgIjJ4fa4WtwQBLAhf\n+cpXGt+a7373u3ZaBnIlEQJCYPAQGDUUyOA1Wy0WAs1HAGvIhz70IfODH/zA4MDaVDn99NPN0Ucf\nbS699NKmNkF6CwEhkAMBWURygKesQqBKBNgkbuLEiebuu++uUo1cdWMNIX7I+eefn6scZRYCQqC5\nCMgi0ty+k+ZCwPqJEFeE8OgQk6aJrCFN6zHpKwSKR0AWkeIxVYlCoG8IsNz12muvbeS0xvLly80b\nb7wha0jf7hZVJATqiYAsIvXsF2klBBIj8Ktf/cpgFbnuuuvMeeedlzhflQmdf8uaNWusn0uVuqhu\nISAEqkVARKRa/FW7ECgEAXwtpk6dap566qlGBAU77rjjzLHHHmvmzZtXSPtViBAQAs1FQFMzze07\naS4EOgiwembu3LnmzDPPNFhI6ixXXHGFVU8kpM69JN2EQP8QkEWkf1irJiFQOgIM8i+//LJZu3Zt\nLZf0ot/69evNxo0ba6lf6R2kCoSAEBiBgCwiIyDRCSHQXARuvPFGc9hhh5kpU6bUzjICCVm5cqV5\n4IEHREKae4tJcyFQOAIiIoVDqgKFQLUI+GSkDjv0MlXkLDVN8WGptgdVuxAYLARERAarv9XaAUEA\nMoIzKE6hGzZsqKzVrI7BOuOmi7S7bmVdoYqFQG0REBGpbddIMSGQDwGcQe+9915z7rnnmpkzZ/Z9\nqoY4ITjRQoiwhDQ5DH2+nlBuISAEuiEgItINHV0TAg1HgI3k2IsGIdbIzTffXHqLWEqMJYYddYkT\notUxpUOuCoRAoxHQqplGd5+UFwLJEYAgLFiwwEYz/exnP2sjmhZppXj44YfNihUr7N4xTQqulhxB\npRQCQqAMBEREykBVZQqBGiMAIbnjjjvMsmXLzIwZM8wpp5xiJk2alGnqhLIef/xxc/vtt5vRo0eb\nOXPmmE9+8pOZyqoxZFJNCAiBEhEQESkRXBUtBOqMAI6kTz75pHnkkUfMqlWrrC8HS3/HjBljxo8f\nb3bbbbcR6rNT7q5du8yWLVtsnkMOOcRMmzbNnHHGGY2I6DqiQTohBIRA5QiIiFTeBVJACNQDAawb\nW7dutUTjmWeeiVRq7NixHaJy4IEHNnLH38iG6aQQEAKVISAiUhn0qlgICAEhIASEgBDQqhndA0JA\nCAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISA\nEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qF\ngBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUh\nICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC4P8Di13nEo+f\nAH0AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'': 0,\n", " 'inhabitants': 1,\n", " 'goku': 2,\n", " 'stunts': 3,\n", " 'catepillar': 4,\n", " 'kristensen': 5,\n", " 'goddess': 7,\n", " 'offing': 49797,\n", " 'distroy': 8,\n", " 'unexplainably': 9,\n", " 'concoctions': 10,\n", " 'petite': 11,\n", " 'paramilitary': 24759,\n", " 'scribe': 12,\n", " 'stevson': 13,\n", " 'senegal': 6,\n", " 'sctv': 14,\n", " 'soundscape': 15,\n", " 'rana': 16,\n", " 'immortalizer': 18,\n", " 'rene': 67354,\n", " 'eko': 23,\n", " 'planning': 20,\n", " 'akiva': 21,\n", " 'plod': 22,\n", " 'orderly': 24,\n", " 'zeleznice': 25,\n", " 'critize': 29,\n", " 'baguettes': 25649,\n", " 'jefferies': 30,\n", " 'uncertainties': 61695,\n", " 'mountainbillies': 31,\n", " 'steinbichler': 32,\n", " 'vowel': 33,\n", " 'rafe': 34,\n", " 'donig': 68719,\n", " 'tulipe': 36,\n", " 'clot': 37,\n", " 'hack': 12526,\n", " 'distended': 38,\n", " 'cornered': 37116,\n", " 'impatiently': 40,\n", " 'batrice': 12525,\n", " 'unfortuntly': 41,\n", " 'lung': 42,\n", " 'scapegoats': 43,\n", " 'pscychosexual': 45,\n", " 'outbid': 46,\n", " 'obit': 47,\n", " 'sideshows': 48,\n", " 'jugde': 49,\n", " 'kevloun': 51,\n", " 'quartier': 53,\n", " 'harp': 61948,\n", " 'unravelling': 54,\n", " 'antiques': 56,\n", " 'strutts': 57,\n", " 'tilts': 58,\n", " 'disconcert': 59,\n", " 'dossiers': 60,\n", " 'sorriest': 61,\n", " 'craftsman': 49412,\n", " 'blart': 62,\n", " 'dependence': 37120,\n", " 'sated': 61698,\n", " 'iberia': 63,\n", " 'sagan': 72,\n", " 'frmann': 65,\n", " 'daniell': 66,\n", " 'rays': 67,\n", " 'pried': 68,\n", " 'khoobsurat': 69,\n", " 'leavitt': 70,\n", " 'caiano': 71,\n", " 'attractiveness': 73,\n", " 'kitaparaporn': 74,\n", " 'hamilton': 75,\n", " 'massages': 76,\n", " 'horgan': 78,\n", " 'chemist': 79,\n", " 'audrey': 80,\n", " 'yeow': 55655,\n", " 'jana': 81,\n", " 'dutch': 82,\n", " 'pinchot': 24773,\n", " 'override': 83,\n", " 'dwervick': 63223,\n", " 'spasms': 84,\n", " 'resumed': 85,\n", " 'tamale': 66259,\n", " 'calibanian': 49636,\n", " 'stinson': 86,\n", " 'widows': 87,\n", " 'stonewall': 88,\n", " 'palatial': 89,\n", " 'neuman': 90,\n", " 'abandon': 91,\n", " 'lemmings': 65314,\n", " 'anglophile': 92,\n", " 'ertha': 61706,\n", " 'chevette': 94,\n", " 'unscary': 95,\n", " 'spoilerific': 97,\n", " 'neworleans': 67639,\n", " 'metamorphose': 17,\n", " 'brigand': 99,\n", " 'cheating': 41603,\n", " 'clued': 101,\n", " 'dermatonecrotic': 102,\n", " 'grady': 103,\n", " 'mulligan': 104,\n", " 'ol': 105,\n", " 'incubation': 107,\n", " 'plaintiffs': 110,\n", " 'snden': 109,\n", " 'fk': 111,\n", " 'deply': 112,\n", " 'franchot': 113,\n", " 'henstridge': 19,\n", " 'cyhper': 114,\n", " 'verbose': 26,\n", " 'mazovia': 116,\n", " 'elizabeth': 117,\n", " 'palestine': 118,\n", " 'robby': 119,\n", " 'wongo': 120,\n", " 'moshing': 121,\n", " 'mstified': 12543,\n", " 'eeeee': 122,\n", " 'doltish': 123,\n", " 'bree': 124,\n", " 'postponed': 125,\n", " 'debacles': 127,\n", " 'amplify': 27,\n", " 'kamm': 128,\n", " 'phantom': 18893,\n", " 'boylen': 136,\n", " 'rolando': 131,\n", " 'premises': 133,\n", " 'bruck': 134,\n", " 'loosely': 135,\n", " 'wodehousian': 139,\n", " 'onishi': 70389,\n", " 'encapsuling': 140,\n", " 'partly': 141,\n", " 'stadling': 144,\n", " 'calms': 143,\n", " 'darkie': 148,\n", " 'wheeling': 147,\n", " 'ursla': 15875,\n", " 'subsidized': 49420,\n", " 'mckellar': 149,\n", " 'ooookkkk': 151,\n", " 'milky': 152,\n", " 'unfolded': 153,\n", " 'degrades': 154,\n", " 'authenticating': 155,\n", " 'writeup': 12548,\n", " 'rotheroe': 156,\n", " 'beart': 157,\n", " 'intoxicants': 160,\n", " 'grispin': 159,\n", " 'cannes': 61718,\n", " 'antithetical': 70398,\n", " 'nnette': 161,\n", " 'tsukamoto': 163,\n", " 'antwones': 44205,\n", " 'stows': 164,\n", " 'suddenness': 165,\n", " 'vol': 61720,\n", " 'waqt': 166,\n", " 'camazotz': 168,\n", " 'paps': 55042,\n", " 'shakher': 170,\n", " 'terminate': 63868,\n", " 'kotex': 56419,\n", " 'delinquency': 171,\n", " 'bromwell': 25214,\n", " 'insecticide': 173,\n", " 'charlton': 174,\n", " 'nakada': 177,\n", " 'titted': 24791,\n", " 'urbane': 178,\n", " 'depicted': 54491,\n", " 'sadomasochistic': 179,\n", " 'hyping': 181,\n", " 'yr': 182,\n", " 'hebert': 183,\n", " 'waxwork': 12990,\n", " 'deathrow': 185,\n", " 'nourishes': 24792,\n", " 'unmediated': 187,\n", " 'tamper': 37143,\n", " 'soad': 190,\n", " 'alphabet': 189,\n", " 'donen': 191,\n", " 'lord': 192,\n", " 'recess': 193,\n", " 'watchably': 61023,\n", " 'handsome': 194,\n", " 'vignettes': 196,\n", " 'pairings': 198,\n", " 'uselful': 199,\n", " 'sanders': 200,\n", " 'outbursts': 72891,\n", " 'nots': 201,\n", " 'hatsumomo': 202,\n", " 'actioned': 18292,\n", " 'krimi': 24797,\n", " 'appleby': 203,\n", " 'tampax': 204,\n", " 'sprinkling': 205,\n", " 'defacing': 206,\n", " 'lofty': 207,\n", " 'verger': 213,\n", " 'tablespoons': 211,\n", " 'bernhard': 212,\n", " 'goosebump': 64565,\n", " 'acumen': 214,\n", " 'percentages': 215,\n", " 'wendingo': 216,\n", " 'resonating': 217,\n", " 'vntoarea': 218,\n", " 'redundancies': 219,\n", " 'strictly': 57081,\n", " 'pitied': 221,\n", " 'belying': 222,\n", " 'michelangelo': 53153,\n", " 'gleefulness': 223,\n", " 'environmentalist': 24803,\n", " 'gitane': 226,\n", " 'corrected': 66547,\n", " 'journalist': 227,\n", " 'focusing': 228,\n", " 'plethora': 229,\n", " 'his': 39,\n", " 'citizen': 230,\n", " 'south': 55579,\n", " 'clunkers': 232,\n", " 'pendulous': 55991,\n", " 'mounds': 24805,\n", " 'deplorable': 233,\n", " 'forgive': 234,\n", " 'proplems': 235,\n", " 'bankers': 237,\n", " 'aqua': 238,\n", " 'donated': 239,\n", " 'disbelieving': 240,\n", " 'acomplication': 241,\n", " 'contrasted': 243,\n", " 'muzzle': 44,\n", " 'amphibians': 72141,\n", " 'springs': 246,\n", " 'reformatted': 49443,\n", " 'toolbox': 247,\n", " 'contacting': 248,\n", " 'washrooms': 250,\n", " 'raving': 251,\n", " 'dynamism': 252,\n", " 'mae': 253,\n", " 'disharmony': 255,\n", " 'molls': 72979,\n", " 'dewaere': 12569,\n", " 'untutored': 256,\n", " 'icarus': 257,\n", " 'taint': 258,\n", " 'kargil': 259,\n", " 'captain': 260,\n", " 'paucity': 261,\n", " 'fits': 262,\n", " 'tumbles': 263,\n", " 'amer': 264,\n", " 'bueller': 265,\n", " 'cleansed': 267,\n", " 'shara': 269,\n", " 'humma': 270,\n", " 'outa': 272,\n", " 'piglets': 273,\n", " 'gombell': 274,\n", " 'supermen': 275,\n", " 'superlow': 276,\n", " 'kubanskie': 280,\n", " 'goode': 278,\n", " 'disorganised': 45570,\n", " 'zenith': 281,\n", " 'ananda': 282,\n", " 'matlin': 284,\n", " 'particolare': 50,\n", " 'presumptuous': 286,\n", " 'rerun': 287,\n", " 'toyko': 288,\n", " 'bilb': 291,\n", " 'sundry': 290,\n", " 'fugly': 292,\n", " 'orchestrating': 293,\n", " 'prosaically': 294,\n", " 'moveis': 296,\n", " 'conelly': 297,\n", " 'estrange': 298,\n", " 'elfriede': 49455,\n", " 'masterful': 52,\n", " 'seasonings': 300,\n", " 'quincey': 303,\n", " 'frowning': 49456,\n", " 'painkillers': 53444,\n", " 'high': 25515,\n", " 'flesh': 304,\n", " 'tootsie': 305,\n", " 'ai': 306,\n", " 'tenma': 307,\n", " 'duguay': 71257,\n", " 'appropriations': 308,\n", " 'ides': 310,\n", " 'rui': 61734,\n", " 'surrogacy': 311,\n", " 'pungent': 312,\n", " 'damaso': 314,\n", " 'authoritarian': 61736,\n", " 'caribou': 315,\n", " 'ro': 318,\n", " 'supplying': 317,\n", " 'yuy': 319,\n", " 'debuted': 321,\n", " 'mounts': 323,\n", " 'interpolated': 324,\n", " 'aetv': 325,\n", " 'plummer': 326,\n", " 'asunder': 331,\n", " 'airfix': 333,\n", " 'dubiel': 329,\n", " 'clavichord': 330,\n", " 'crafty': 50465,\n", " 'sublety': 332,\n", " 'stoltzfus': 334,\n", " 'ruth': 335,\n", " 'fluorescent': 336,\n", " 'improves': 337,\n", " 'russells': 339,\n", " 'tick': 43838,\n", " 'zsa': 341,\n", " 'macs': 343,\n", " 'jlb': 345,\n", " 'locus': 348,\n", " 'mislead': 349,\n", " 'merly': 49461,\n", " 'corey': 350,\n", " 'blundered': 351,\n", " 'humourless': 3568,\n", " 'disorganized': 353,\n", " 'discuss': 354,\n", " 'sharifi': 45391,\n", " 'tieing': 356,\n", " 'kats': 34784,\n", " 'bbc': 360,\n", " 'pranked': 362,\n", " 'superman': 363,\n", " 'holroyd': 9223,\n", " 'aggravated': 364,\n", " 'rifleman': 365,\n", " 'yvone': 366,\n", " 'vaugier': 24820,\n", " 'radiant': 367,\n", " 'galico': 368,\n", " 'debris': 369,\n", " 'btw': 371,\n", " 'denote': 24822,\n", " 'havnt': 372,\n", " 'francen': 373,\n", " 'chattered': 374,\n", " 'scathed': 375,\n", " 'pic': 376,\n", " 'ceremonies': 377,\n", " 'everyplace': 65309,\n", " 'betsy': 379,\n", " 'finster': 37176,\n", " 'meercat': 381,\n", " 'noirs': 382,\n", " 'grunts': 383,\n", " 'tribulations': 385,\n", " 'apparatus': 47673,\n", " 'martnez': 25825,\n", " 'telethons': 24825,\n", " 'talladega': 387,\n", " 'alloimono': 390,\n", " 'situations': 64,\n", " 'scrutinising': 391,\n", " 'geta': 392,\n", " 'beltrami': 393,\n", " 'pvc': 394,\n", " 'horse': 395,\n", " 'tiburon': 396,\n", " 'huitime': 397,\n", " 'ripple': 398,\n", " 'exceed': 61748,\n", " 'loitering': 399,\n", " 'forensics': 400,\n", " 'nearly': 401,\n", " 'ellington': 403,\n", " 'uzi': 404,\n", " 'rung': 408,\n", " 'pillaged': 24829,\n", " 'gao': 409,\n", " 'licitates': 410,\n", " 'protocol': 411,\n", " 'smirker': 412,\n", " 'torin': 413,\n", " 'vizier': 31853,\n", " 'newlywed': 414,\n", " 'dismay': 416,\n", " 'moonwalks': 418,\n", " 'skyler': 417,\n", " 'invested': 18455,\n", " 'grifter': 421,\n", " 'undersold': 422,\n", " 'chearator': 423,\n", " 'marino': 424,\n", " 'scala': 425,\n", " 'conditioner': 426,\n", " 'lamarre': 428,\n", " 'figueroa': 429,\n", " 'mcinnerny': 61753,\n", " 'allllllll': 431,\n", " 'slide': 432,\n", " 'lateness': 433,\n", " 'selbst': 434,\n", " 'dramatizing': 436,\n", " 'doable': 438,\n", " 'hollywoodize': 27207,\n", " 'alexanderplatz': 440,\n", " 'wholesome': 45745,\n", " 'pandemonium': 441,\n", " 'earth': 443,\n", " 'mounties': 444,\n", " 'seeker': 445,\n", " 'cheat': 446,\n", " 'outbreaks': 447,\n", " 'savagely': 61759,\n", " 'snowstorm': 448,\n", " 'baur': 449,\n", " 'schedules': 450,\n", " 'bathetic': 451,\n", " 'johnathon': 453,\n", " 'origonal': 57843,\n", " 'rosanne': 454,\n", " 'cauldrons': 456,\n", " 'forrest': 457,\n", " 'poky': 458,\n", " 'aristos': 54856,\n", " 'womanness': 460,\n", " 'spender': 461,\n", " 'pagliai': 37108,\n", " 'rational': 463,\n", " 'terrell': 464,\n", " 'affronts': 472,\n", " 'concise': 49476,\n", " 'mathew': 468,\n", " 'narnia': 469,\n", " 'naseeruddin': 470,\n", " 'bucks': 471,\n", " 'proceeds': 69809,\n", " 'topple': 473,\n", " 'degree': 474,\n", " 'passionately': 476,\n", " 'defeats': 477,\n", " 'gras': 49477,\n", " 'sources': 479,\n", " 'pflug': 49976,\n", " 'botticelli': 480,\n", " 'fwd': 486,\n", " 'waiving': 483,\n", " 'gunnar': 484,\n", " 'stiffler': 485,\n", " 'unwise': 49480,\n", " 'kawajiri': 487,\n", " 'sistahs': 489,\n", " 'swallowed': 30511,\n", " 'soulhunter': 490,\n", " 'belies': 491,\n", " 'wrathful': 492,\n", " 'badmouth': 16696,\n", " 'floradora': 61766,\n", " 'unforgivably': 497,\n", " 'weirdy': 496,\n", " 'violation': 63309,\n", " 'chepart': 498,\n", " 'departmentthe': 500,\n", " 'posehn': 49483,\n", " 'peyote': 37188,\n", " 'psychiatrically': 24846,\n", " 'marionettes': 503,\n", " 'blatty': 502,\n", " 'atop': 504,\n", " 'debases': 25135,\n", " 'henze': 24845,\n", " 'unrooted': 510,\n", " 'cloudscape': 508,\n", " 'resignedly': 509,\n", " 'begin': 49917,\n", " 'hitlerian': 512,\n", " 'reedus': 517,\n", " 'crewed': 514,\n", " 'bedeviled': 515,\n", " 'unfurnished': 516,\n", " 'herrmann': 12602,\n", " 'circumstances': 518,\n", " 'grasped': 519,\n", " 'fn': 521,\n", " 'beefed': 22200,\n", " 'scwatch': 64018,\n", " 'dishwashers': 522,\n", " 'roadie': 523,\n", " 'ruthlessness': 524,\n", " 'migrant': 12605,\n", " 'refrains': 525,\n", " 'preponderance': 44377,\n", " 'lampooning': 526,\n", " 'richart': 528,\n", " 'gwenneth': 530,\n", " 'enmity': 531,\n", " 'vortex': 61772,\n", " 'assess': 532,\n", " 'manufacturer': 533,\n", " 'bullosa': 534,\n", " 'citizenship': 61774,\n", " 'chekov': 537,\n", " 'hogan': 536,\n", " 'blithe': 538,\n", " 'aredavid': 542,\n", " 'drillings': 540,\n", " 'revolvers': 541,\n", " 'boyfriendhe': 545,\n", " 'achcha': 544,\n", " 'wallow': 546,\n", " 'toga': 547,\n", " 'bosnians': 551,\n", " 'going': 550,\n", " 'willy': 552,\n", " 'fim': 554,\n", " 'forbidding': 555,\n", " 'delete': 56779,\n", " 'rationalised': 557,\n", " 'shimomo': 558,\n", " 'opposition': 559,\n", " 'landis': 560,\n", " 'minded': 561,\n", " 'arghhhhh': 564,\n", " 'trialat': 566,\n", " 'protected': 567,\n", " 'negras': 568,\n", " 'tracker': 571,\n", " 'muti': 570,\n", " 'dinky': 49489,\n", " 'shawl': 572,\n", " 'differentiates': 573,\n", " 'dipaolo': 61779,\n", " 'sweetheart': 574,\n", " 'manmohan': 576,\n", " 'enamored': 66265,\n", " 'trevethyn': 577,\n", " 'brain': 578,\n", " 'incomprehensibly': 579,\n", " 'pasadena': 581,\n", " 'bruton': 59142,\n", " 'shtick': 582,\n", " 'ute': 583,\n", " 'viggo': 584,\n", " 'relevent': 589,\n", " 'cites': 587,\n", " 'greenaways': 61781,\n", " 'minidress': 590,\n", " 'philosopher': 591,\n", " 'mahattan': 593,\n", " 'moden': 594,\n", " 'compiling': 595,\n", " 'unimaginative': 598,\n", " 'rogues': 597,\n", " 'subpaar': 599,\n", " 'darkly': 601,\n", " 'saturate': 602,\n", " 'fledgling': 603,\n", " 'breaths': 604,\n", " 'sceam': 37206,\n", " 'empathized': 58870,\n", " 'aszombi': 606,\n", " 'incalculable': 608,\n", " 'formations': 28596,\n", " 'hampden': 619,\n", " 'rawail': 612,\n", " 'forbid': 613,\n", " 'holiness': 617,\n", " 'unessential': 618,\n", " 'reputedly': 616,\n", " 'wage': 63181,\n", " 'kewpie': 24860,\n", " 'asylum': 620,\n", " 'bolye': 621,\n", " 'celticism': 63189,\n", " 'strangers': 622,\n", " 'rantzen': 623,\n", " 'farrellys': 624,\n", " 'marathon': 93,\n", " 'cantinflas': 626,\n", " 'disproportionately': 12617,\n", " 'bared': 67212,\n", " 'enshrined': 627,\n", " 'expetations': 629,\n", " 'replaying': 630,\n", " 'topless': 636,\n", " 'bukater': 632,\n", " 'overpaid': 633,\n", " 'exhude': 634,\n", " 'nitwits': 638,\n", " 'tsst': 51554,\n", " 'sufferings': 637,\n", " 'ci': 24693,\n", " 'eponymously': 96,\n", " 'ferdy': 644,\n", " 'danira': 641,\n", " 'unrelenting': 642,\n", " 'disabling': 643,\n", " 'gerard': 645,\n", " 'drewitt': 646,\n", " 'lamping': 650,\n", " 'demy': 652,\n", " 'wicklow': 37214,\n", " 'relinquish': 651,\n", " 'feminized': 64196,\n", " 'drink': 653,\n", " 'chamberlin': 654,\n", " 'floodwaters': 657,\n", " 'searing': 658,\n", " 'isral': 659,\n", " 'ling': 660,\n", " 'grossness': 661,\n", " 'sassier': 24865,\n", " 'pickier': 662,\n", " 'pax': 663,\n", " 'fleashens': 98,\n", " 'wierd': 664,\n", " 'tereasa': 665,\n", " 'smog': 666,\n", " 'girotti': 667,\n", " 'zooey': 64814,\n", " 'spat': 668,\n", " 'sera': 669,\n", " 'misbehaving': 671,\n", " 'scouts': 672,\n", " 'refreshments': 673,\n", " 'itll': 39668,\n", " 'toyomichi': 676,\n", " 'politeness': 100,\n", " 'bits': 677,\n", " 'psychotics': 678,\n", " 'optimistic': 61796,\n", " 'barzell': 679,\n", " 'colt': 680,\n", " 'anita': 49501,\n", " 'shivering': 681,\n", " 'utah': 59297,\n", " 'scrivener': 686,\n", " 'predicable': 687,\n", " 'dryer': 684,\n", " 'reissues': 685,\n", " 'sexier': 26115,\n", " 'spellbind': 691,\n", " 'marmalade': 689,\n", " 'seems': 690,\n", " 'wyke': 37223,\n", " 'innovator': 693,\n", " 'inthused': 695,\n", " 'scatman': 6309,\n", " 'contestants': 696,\n", " 'bertolucci': 106,\n", " 'serviced': 699,\n", " 'nozires': 700,\n", " 'ins': 701,\n", " 'mutilating': 702,\n", " 'dupes': 703,\n", " 'launius': 704,\n", " 'widescreen': 705,\n", " 'joo': 706,\n", " 'discretionary': 707,\n", " 'enlivens': 708,\n", " 'manos': 55596,\n", " 'bushes': 709,\n", " 'header': 711,\n", " 'activist': 712,\n", " 'gethsemane': 713,\n", " 'phoenixs': 714,\n", " 'wreathed': 715,\n", " 'oldboy': 108,\n", " 'electrifyingly': 717,\n", " 'inseparability': 24874,\n", " 'ghidora': 719,\n", " 'binder': 720,\n", " 'tibet': 51530,\n", " 'doddsville': 723,\n", " 'sugar': 722,\n", " 'porkys': 724,\n", " 'hopefully': 37226,\n", " 'scattershot': 725,\n", " 'refunded': 726,\n", " 'rudely': 727,\n", " 'enacts': 67435,\n", " 'insteadit': 728,\n", " 'nightwatch': 61803,\n", " 'eurotrash': 730,\n", " 'radioraptus': 731,\n", " 'unreservedly': 73710,\n", " 'vall': 49508,\n", " 'boogeman': 733,\n", " 'flunked': 24880,\n", " 'weighs': 734,\n", " 'glorfindel': 738,\n", " 'hypothermia': 737,\n", " 'misled': 64919,\n", " 'toiletries': 71501,\n", " 'birthdays': 739,\n", " 'attentive': 740,\n", " 'mallepa': 741,\n", " 'manoy': 743,\n", " 'bombshells': 744,\n", " 'glorifying': 115,\n", " 'southron': 747,\n", " 'destruction': 748,\n", " 'manhole': 750,\n", " 'elainor': 751,\n", " 'bounder': 13003,\n", " 'bowersock': 752,\n", " 'lowly': 753,\n", " 'wfst': 754,\n", " 'limousines': 755,\n", " 'skolimowski': 756,\n", " 'saban': 757,\n", " 'malaysia': 759,\n", " 'cyd': 761,\n", " 'bonecrushing': 763,\n", " 'merest': 765,\n", " 'janina': 766,\n", " 'chemotrodes': 767,\n", " 'trials': 768,\n", " 'whilhelm': 770,\n", " 'asthmatic': 771,\n", " 'missteps': 773,\n", " 'melyvn': 24885,\n", " 'embittered': 774,\n", " 'profit': 37234,\n", " 'seeming': 776,\n", " 'miscalculate': 777,\n", " 'recommeded': 778,\n", " 'mankin': 37235,\n", " 'schoolwork': 779,\n", " 'coy': 780,\n", " 'mcconaughey': 781,\n", " 'waver': 783,\n", " 'unwatchably': 786,\n", " 'saggy': 787,\n", " 'breakup': 790,\n", " 'pufnstuf': 37237,\n", " 'superstars': 792,\n", " 'replay': 793,\n", " 'aggravates': 794,\n", " 'urging': 796,\n", " 'snidely': 797,\n", " 'aleksandar': 798,\n", " 'hildy': 799,\n", " 'kazuhiro': 800,\n", " 'slayer': 801,\n", " 'tangy': 802,\n", " 'horne': 804,\n", " 'masayuki': 805,\n", " 'molden': 806,\n", " 'unravel': 807,\n", " 'goodtime': 808,\n", " 'rowboat': 811,\n", " 'dekhiye': 815,\n", " 'datedness': 813,\n", " 'astrotheology': 814,\n", " 'suriani': 59610,\n", " 'hostilities': 819,\n", " 'wipes': 818,\n", " 'sentimentalising': 820,\n", " 'documentary': 821,\n", " 'virtue': 823,\n", " 'unreasonably': 824,\n", " 'cei': 826,\n", " 'hobbled': 37240,\n", " 'unglamorised': 827,\n", " 'balky': 828,\n", " 'complementary': 829,\n", " 'paychecks': 830,\n", " 'tughlaq': 45551,\n", " 'functionality': 836,\n", " 'ily': 833,\n", " 'prc': 834,\n", " 'ennobling': 835,\n", " 'dissociated': 837,\n", " 'elk': 838,\n", " 'throbbing': 839,\n", " 'tempe': 840,\n", " 'linoleum': 841,\n", " 'bottacin': 843,\n", " 'hipper': 844,\n", " 'barging': 846,\n", " 'untie': 847,\n", " 'sacchetti': 848,\n", " 'gnat': 849,\n", " 'roedel': 850,\n", " 'performs': 852,\n", " 'nanavati': 856,\n", " 'migrs': 854,\n", " 'teachs': 855,\n", " 'gunslinger': 126,\n", " 'fresco': 857,\n", " 'davison': 858,\n", " 'jet': 59446,\n", " 'burglar': 860,\n", " 'jerker': 69267,\n", " 'masue': 861,\n", " 'dickory': 862,\n", " 'muggy': 46634,\n", " 'grills': 863,\n", " 'figment': 28693,\n", " 'monogamistic': 49527,\n", " 'appelagate': 864,\n", " 'linkage': 865,\n", " 'loesser': 867,\n", " 'patties': 868,\n", " 'prudent': 869,\n", " 'mallorquins': 870,\n", " 'nativetex': 871,\n", " 'suprise': 872,\n", " 'quill': 874,\n", " 'angsty': 71451,\n", " 'speeded': 875,\n", " 'farscape': 876,\n", " 'herman': 129,\n", " 'saddening': 877,\n", " 'centuries': 878,\n", " 'mos': 879,\n", " 'neccessarily': 881,\n", " 'tankers': 883,\n", " 'latte': 884,\n", " 'faracy': 886,\n", " 'stilts': 24897,\n", " 'synthetically': 887,\n", " 'thoughtless': 888,\n", " 'authoring': 62813,\n", " 'rake': 889,\n", " 'ropes': 890,\n", " 'whitewashed': 892,\n", " 'donal': 893,\n", " 'arching': 4910,\n", " 'cockamamie': 899,\n", " 'lifeless': 895,\n", " 'perfidy': 896,\n", " 'teresa': 897,\n", " 'bulldog': 898,\n", " 'vingh': 73726,\n", " 'evacuees': 65858,\n", " 'rasberries': 900,\n", " 'chiseling': 903,\n", " 'clampets': 905,\n", " 'grecianized': 138,\n", " 'smaller': 904,\n", " 'kluznick': 62184,\n", " 'alerts': 906,\n", " 'aaaahhhhhhh': 909,\n", " 'wellingtonian': 908,\n", " 'dither': 910,\n", " 'incertitude': 911,\n", " 'florentine': 912,\n", " 'imperioli': 913,\n", " 'licking': 914,\n", " 'disparagement': 915,\n", " 'artfully': 916,\n", " 'feds': 917,\n", " 'fumiya': 918,\n", " 'jbl': 52774,\n", " 'tearfully': 919,\n", " 'welfare': 24905,\n", " 'idyllically': 49534,\n", " 'isha': 43702,\n", " 'lanchester': 920,\n", " 'undertaken': 921,\n", " 'longlost': 922,\n", " 'netted': 923,\n", " 'carrell': 924,\n", " 'uncompelling': 925,\n", " 'stems': 37258,\n", " 'reliefs': 926,\n", " 'leona': 927,\n", " 'autorenfilm': 928,\n", " 'unfriendly': 929,\n", " 'typewriter': 930,\n", " 'shifted': 931,\n", " 'bertrand': 932,\n", " 'blesses': 933,\n", " 'leukemia': 12666,\n", " 'posative': 142,\n", " 'tricking': 934,\n", " 'zanes': 936,\n", " 'dashboard': 12667,\n", " 'unknowingly': 937,\n", " 'flatmates': 51897,\n", " 'unnerve': 938,\n", " 'caning': 939,\n", " 'shortland': 146,\n", " 'recluse': 941,\n", " 'dcreasy': 942,\n", " 'scratchiness': 24911,\n", " 'pms': 30930,\n", " 'chipmunk': 943,\n", " 'tkachenko': 49537,\n", " 'dipper': 944,\n", " 'europeans': 61601,\n", " 'berserkers': 948,\n", " 'shys': 947,\n", " 'monte': 68505,\n", " 'eve': 949,\n", " 'luxury': 61828,\n", " 'conflagration': 950,\n", " 'water': 46389,\n", " 'irks': 951,\n", " 'positronic': 954,\n", " 'cushy': 150,\n", " 'swiftness': 957,\n", " 'underimpressed': 964,\n", " 'imprint': 959,\n", " 'sundance': 961,\n", " 'aida': 31951,\n", " 'thematically': 963,\n", " 'uno': 965,\n", " 'expressly': 966,\n", " 'russkies': 967,\n", " 'discos': 968,\n", " 'shaping': 969,\n", " 'verson': 970,\n", " 'blushed': 61831,\n", " 'prototype': 971,\n", " 'lifewell': 976,\n", " 'trafficker': 973,\n", " 'crucifixions': 62188,\n", " 'unrealistically': 975,\n", " 'rivas': 977,\n", " 'consequent': 978,\n", " 'katsu': 979,\n", " 'titantic': 980,\n", " 'jalees': 981,\n", " 'ranee': 982,\n", " 'gambles': 984,\n", " 'dispenses': 985,\n", " 'disfigurement': 986,\n", " 'bright': 987,\n", " 'cristian': 988,\n", " 'subculture': 37268,\n", " 'capta': 991,\n", " 'jewel': 992,\n", " 'erect': 993,\n", " 'avoide': 996,\n", " 'inconnu': 997,\n", " 'headquarters': 998,\n", " 'babbling': 1000,\n", " 'pac': 1001,\n", " 'performace': 1003,\n", " 'dorrit': 1004,\n", " 'runners': 1005,\n", " 'sentimentality': 1006,\n", " 'marred': 1007,\n", " 'commemorative': 1008,\n", " 'helpers': 1012,\n", " 'chiles': 1011,\n", " 'snowy': 1013,\n", " 'cheddar': 1014,\n", " 'neath': 158,\n", " 'outshine': 1016,\n", " 'nadu': 1019,\n", " 'wellbeing': 1020,\n", " 'envisioned': 43779,\n", " 'fanaticism': 1021,\n", " 'morrisette': 12687,\n", " 'sesame': 1024,\n", " 'gran': 1023,\n", " 'marlina': 1025,\n", " 'artificiality': 1030,\n", " 'coinsidence': 1027,\n", " 'founders': 1028,\n", " 'dismissably': 1029,\n", " 'dracht': 66299,\n", " 'scavengers': 1031,\n", " 'neese': 12685,\n", " 'pangborn': 1034,\n", " 'elmore': 1039,\n", " 'bristol': 71162,\n", " 'lillies': 1035,\n", " 'parkers': 1036,\n", " 'skipped': 1038,\n", " 'clipboard': 1042,\n", " 'jucier': 1041,\n", " 'haifa': 1043,\n", " ...}" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word2index = {}\n", "\n", "for i,word in enumerate(vocab):\n", " word2index[word] = i\n", "word2index" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def update_input_layer(review):\n", " \n", " global layer_0\n", " \n", " # clear out previous state, reset the layer to be all 0s\n", " layer_0 *= 0\n", " for word in review.split(\" \"):\n", " layer_0[0][word2index[word]] += 1\n", "\n", "update_input_layer(reviews[0])" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 18., 0., 0., ..., 0., 0., 0.]])" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "layer_0" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_target_for_label(label):\n", " if(label == 'POSITIVE'):\n", " return 1\n", " else:\n", " return 0" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'POSITIVE'" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "labels[0]" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_target_for_label(labels[0])" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'NEGATIVE'" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "labels[1]" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_target_for_label(labels[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 3: Building a Neural Network" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "- Start with your neural network from the last chapter\n", "- 3 layer neural network\n", "- no non-linearity in hidden layer\n", "- use our functions to create the training data\n", "- create a \"pre_process_data\" function to create vocabulary for our training data generating functions\n", "- modify \"train\" to train over the entire corpus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Where to Get Help if You Need it\n", "- Re-watch previous week's Udacity Lectures\n", "- Chapters 3-5 - [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) - (40% Off: **traskud17**)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import time\n", "import sys\n", "import numpy as np\n", "\n", "# Let's tweak our network from before to model these phenomena\n", "class SentimentNetwork:\n", " def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):\n", " \n", " # set our random number generator \n", " np.random.seed(1)\n", " \n", " self.pre_process_data(reviews, labels)\n", " \n", " self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)\n", " \n", " \n", " def pre_process_data(self, reviews, labels):\n", " \n", " review_vocab = set()\n", " for review in reviews:\n", " for word in review.split(\" \"):\n", " review_vocab.add(word)\n", " self.review_vocab = list(review_vocab)\n", " \n", " label_vocab = set()\n", " for label in labels:\n", " label_vocab.add(label)\n", " \n", " self.label_vocab = list(label_vocab)\n", " \n", " self.review_vocab_size = len(self.review_vocab)\n", " self.label_vocab_size = len(self.label_vocab)\n", " \n", " self.word2index = {}\n", " for i, word in enumerate(self.review_vocab):\n", " self.word2index[word] = i\n", " \n", " self.label2index = {}\n", " for i, label in enumerate(self.label_vocab):\n", " self.label2index[label] = i\n", " \n", " \n", " def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):\n", " # Set number of nodes in input, hidden and output layers.\n", " self.input_nodes = input_nodes\n", " self.hidden_nodes = hidden_nodes\n", " self.output_nodes = output_nodes\n", "\n", " # Initialize weights\n", " self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))\n", " \n", " self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, \n", " (self.hidden_nodes, self.output_nodes))\n", " \n", " self.learning_rate = learning_rate\n", " \n", " self.layer_0 = np.zeros((1,input_nodes))\n", " \n", " \n", " def update_input_layer(self,review):\n", "\n", " # clear out previous state, reset the layer to be all 0s\n", " self.layer_0 *= 0\n", " for word in review.split(\" \"):\n", " if(word in self.word2index.keys()):\n", " self.layer_0[0][self.word2index[word]] += 1\n", " \n", " def get_target_for_label(self,label):\n", " if(label == 'POSITIVE'):\n", " return 1\n", " else:\n", " return 0\n", " \n", " def sigmoid(self,x):\n", " return 1 / (1 + np.exp(-x))\n", " \n", " \n", " def sigmoid_output_2_derivative(self,output):\n", " return output * (1 - output)\n", " \n", " def train(self, training_reviews, training_labels):\n", " \n", " assert(len(training_reviews) == len(training_labels))\n", " \n", " correct_so_far = 0\n", " \n", " start = time.time()\n", " \n", " for i in range(len(training_reviews)):\n", " \n", " review = training_reviews[i]\n", " label = training_labels[i]\n", " \n", " #### Implement the forward pass here ####\n", " ### Forward pass ###\n", "\n", " # Input Layer\n", " self.update_input_layer(review)\n", "\n", " # Hidden layer\n", " layer_1 = self.layer_0.dot(self.weights_0_1)\n", "\n", " # Output layer\n", " layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))\n", "\n", " #### Implement the backward pass here ####\n", " ### Backward pass ###\n", "\n", " # TODO: Output error\n", " layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.\n", " layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)\n", "\n", " # TODO: Backpropagated error\n", " layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer\n", " layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error\n", "\n", " # TODO: Update the weights\n", " self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step\n", " self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step\n", "\n", " if(np.abs(layer_2_error) < 0.5):\n", " correct_so_far += 1\n", " \n", " reviews_per_second = i / float(time.time() - start)\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(training_reviews)))[:4] + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] + \" #Correct:\" + str(correct_so_far) + \" #Trained:\" + str(i+1) + \" Training Accuracy:\" + str(correct_so_far * 100 / float(i+1))[:4] + \"%\")\n", " if(i % 2500 == 0):\n", " print(\"\")\n", " \n", " def test(self, testing_reviews, testing_labels):\n", " \n", " correct = 0\n", " \n", " start = time.time()\n", " \n", " for i in range(len(testing_reviews)):\n", " pred = self.run(testing_reviews[i])\n", " if(pred == testing_labels[i]):\n", " correct += 1\n", " \n", " reviews_per_second = i / float(time.time() - start)\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(testing_reviews)))[:4] \\\n", " + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] \\\n", " + \"% #Correct:\" + str(correct) + \" #Tested:\" + str(i+1) + \" Testing Accuracy:\" + str(correct * 100 / float(i+1))[:4] + \"%\")\n", " \n", " def run(self, review):\n", " \n", " # Input Layer\n", " self.update_input_layer(review.lower())\n", "\n", " # Hidden layer\n", " layer_1 = self.layer_0.dot(self.weights_0_1)\n", "\n", " # Output layer\n", " layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))\n", " \n", " if(layer_2[0] > 0.5):\n", " return \"POSITIVE\"\n", " else:\n", " return \"NEGATIVE\"\n", " " ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:99.9% Speed(reviews/sec):587.5% #Correct:500 #Tested:1000 Testing Accuracy:50.0%" ] } ], "source": [ "# evaluate our model before training (just to show how horrible it is)\n", "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%\n", "Progress:10.4% Speed(reviews/sec):89.58 #Correct:1250 #Trained:2501 Training Accuracy:49.9%\n", "Progress:20.8% Speed(reviews/sec):95.03 #Correct:2500 #Trained:5001 Training Accuracy:49.9%\n", "Progress:27.4% Speed(reviews/sec):95.46 #Correct:3295 #Trained:6592 Training Accuracy:49.9%" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-62-d0f5d85ad402>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# train the network\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmlp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreviews\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m<ipython-input-59-6334c4ec4642>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, training_reviews, training_labels)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;31m# TODO: Update the weights\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_1_2\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mlayer_1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update hidden-to-output weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_0_1\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_1_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update input-to-hidden weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mif\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "# train the network\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%\n", "Progress:10.4% Speed(reviews/sec):96.39 #Correct:1247 #Trained:2501 Training Accuracy:49.8%\n", "Progress:20.8% Speed(reviews/sec):99.31 #Correct:2497 #Trained:5001 Training Accuracy:49.9%\n", "Progress:22.8% Speed(reviews/sec):99.02 #Correct:2735 #Trained:5476 Training Accuracy:49.9%" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-64-d0f5d85ad402>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# train the network\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmlp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreviews\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m<ipython-input-59-6334c4ec4642>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, training_reviews, training_labels)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;31m# TODO: Update the weights\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_1_2\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mlayer_1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update hidden-to-output weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_0_1\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_1_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update input-to-hidden weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mif\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "# train the network\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%\n", "Progress:10.4% Speed(reviews/sec):98.77 #Correct:1267 #Trained:2501 Training Accuracy:50.6%\n", "Progress:20.8% Speed(reviews/sec):98.79 #Correct:2640 #Trained:5001 Training Accuracy:52.7%\n", "Progress:31.2% Speed(reviews/sec):98.58 #Correct:4109 #Trained:7501 Training Accuracy:54.7%\n", "Progress:41.6% Speed(reviews/sec):93.78 #Correct:5638 #Trained:10001 Training Accuracy:56.3%\n", "Progress:52.0% Speed(reviews/sec):91.76 #Correct:7246 #Trained:12501 Training Accuracy:57.9%\n", "Progress:62.5% Speed(reviews/sec):92.42 #Correct:8841 #Trained:15001 Training Accuracy:58.9%\n", "Progress:69.4% Speed(reviews/sec):92.58 #Correct:9934 #Trained:16668 Training Accuracy:59.5%" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-66-d0f5d85ad402>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# train the network\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmlp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreviews\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m<ipython-input-59-6334c4ec4642>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, training_reviews, training_labels)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;31m# TODO: Update the weights\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_1_2\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mlayer_1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update hidden-to-output weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweights_0_1\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_1_delta\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlearning_rate\u001b[0m \u001b[0;31m# update input-to-hidden weights with gradient descent step\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mif\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlayer_2_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "# train the network\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Understanding Neural Noise" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFKCAYAAAAg+zSAAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAB1WlUWHRYTUw6Y29tLmFkb2Jl\nLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1Q\nIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5\nOTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4w\nLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAg\nICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZm\nOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0\naW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K\nAtiABQAAQABJREFUeAHtnXvQXVV5/1daZxy1BUpJp1MhE5BSSSAgqBAV5BIuGaQJBoEUATEJAiXY\ncMsUTfMDK9MAMXKRAEmAgGkASUiGIgQSsEQgKGDCJV6GYkywfzRWibc/OuO8v/1Zuo7r3e/e5+zr\n2ZfzfWbOe/bZe12e9V373eu7n/WsZ40aCsRIhIAQEAJCQAgIASFQAQJ/UkGdqlIICAEhIASEgBAQ\nAhYBERHdCEJACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSq\nWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQ\nGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEh\nIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC\nQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYC\nQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaA\niEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qFgBAQAkJACAgBERHdA0JACAgB\nISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSAPQXX3yxGTVqlPnlL39Z\nQGkqQggIASEgBITA4CAgIjI4fR3Z0iVLlpgHH3ww8ppOCgEhIASEgBAoG4FRQ4GUXYnKry8CJ510\nknnf+95nbrvttvoqKc2EgBAQAkKgtQjIItLarlXDhIAQEAJCQAjUHwERkfr3kTQUAkJACAgBIdBa\nBERECuhanFXHjBkzrKR169ZZB9atW7daHwymQHBodZ8bbrhhWHp+kJbr+G1wHM7Db65FiV9f1HXO\noSO6ItRPXU888YRZvHhxRy853Fp49EcICAEhIAT6hICISMlAz5kzxyxbtszMmDHD4I7D5/HHHzfr\n16+3RCOq+u9973tm/Pjx5oMf/GAnD/kmTZpkLrjgAjN9+vSobKnOXXnllbbsE0880Vx00UWdenbb\nbbdU5SixEBACQkAICIE8CLwjT2bl7Y3Az372M/P0008bf4DHsrHPPvtYsoGFY9asWcMKwkJx5513\njjgPeTjqqKPMxIkTzWGHHWb4LRECQkAICAEh0GQEZBEpufcuvPDCYSTEVTdu3DhLRrZt2+ZOdb4h\nGWFy4i4eeeSR1oJxyy23uFP6FgJCQAgIASHQWAREREruuoMPPrhrDb/4xS9GXD/rrLNGnPNPHHPM\nMWbHjh1m06ZN/mkdCwEhIASEgBBoHAIiIiV3mT8lk7SqPfbYo2vS3Xff3V7ftWtX13S6KASEgBAQ\nAkKg7giIiNS9h7roJyLSBRxdEgJCQAgIgUYgICJSw256++23u2q1fft2ez28ZLhrJl0UAkJACAgB\nIVBDBEREatgp999/f1etnnrqKevoiuNqWOLigOBPgl+JRAgIASEgBIRAnRAQEalTb/xBl5dffjk2\ncBkb1EFU5s2bN0xzlvSyJHjjxo3DzrsfN910kzvUtxAQAkJACAiB2iAgIlKbrvijItdff725/fbb\nbRRU38JBNNQzzzzTLt8NL+/FKXb27NnmqquuGkZi3nrrLRsA7Uc/+pElKn+s5fdHe+65p3nhhRfC\np/VbCAgBISAEhEBfEBAR6QvM6Sph1cxLL71k9t13X3PQQQd1wq8TjZVAZ3E75RLgjOuQGBdKHisJ\nQlC1KMGysnPnzk56QstLhIAQEAJCQAj0C4FRQejwoX5Vpnq6IwAJILR7VFTV7jl1VQgIASEgBIRA\nMxGQRaSZ/SathYAQEAJCQAi0AgERkVZ0oxohBISAEBACQqCZCIiINLPfpLUQEAJCQAgIgVYgICLS\nim5UI4SAEBACQkAINBMBOas2s9+ktRAQAkJACAiBViAgi0grulGNEAJCQAgIASHQTARERJrZb9Ja\nCAgBISAEhEArEBARaUU3qhFCQAgIASEgBJqJgIhIM/tNWgsBISAEhIAQaAUCIiKt6MaRjfjVr35l\nHn744ZEXdEYICAEhIASEQI0Q0KqZGnVG0aq8973vNd/97nfN3/zN3xRdtMoTAkJACAgBIVAIArKI\nFAJjPQuZPn26WbZsWT2Vk1ZCQAgIASEgBAIEZBFp8W3wwx/+0Bx33HHmpz/9aYtbqaYJASEgBIRA\nkxGQRaTJvddD97/7u78zo0ePNhs2bOiRUpeFgBAQAkJACFSDgIhINbj3rdY5c+aYlStX9q0+VSQE\nhIAQEAJCIA0CmppJg1YD0/73f/+3wWn1l7/8pfnzP//zBrZAKgsBISAEhECbEZBFpM29G7SNFTMz\nZswwq1evbnlL1TwhIASEgBBoIgIiIk3stZQ6s3pm0aJFKXMpuRAQAkJACAiB8hEQESkf48prOP74\n483OnTsNq2gkQkAICAEhIATqhICISJ16o0RdLrzwQrNkyZISa1DRQkAICAEhIATSIyBn1fSYNTKH\nYoo0stuktBAQAkKg9QjIItL6Lv59A4kpwkf7zwxIh6uZQkAICIGGICAi0pCOKkLN2bNnmxUrVhRR\nlMoQAkJACAgBIVAIApqaKQTGZhTCjry77babDfmujfCa0WfSUggIASHQdgRkEWl7D3vtI6DZ5Zdf\nbh566CHvrA6FgBAQAkJACFSHgIhIddhXUvPkyZPNXXfdVUndqlQICAEhIASEQBgBEZEwIi3/TUwR\n5Lvf/W7LW6rmCQEhIASEQBMQEBFpQi8VrONnP/tZ88ADDxRcqooTAkJACAgBIZAeATmrpses8Tm0\nEV7ju1ANEAJCQAi0BgERkdZ0ZbqGnH766ebss882p512WrqMSt1KBJiq27p1q3n11VfNtm3bzBtv\nvGG2bNkyoq3Tpk0ze+yxh5kwYYIZP368+fCHP6xdnUegpBNCQAikQUBEJA1aLUpLYLNbbrnFPPXU\nUy1qlZqSBoENGzaYxx57zKxcudKMHj3aTJo0yRx88MFm3Lhxdpk3AfB8wZL205/+1Lz11lvmtdde\nM08//bT9QE5OPfVU88lPflKkxAdMx0JACCRCQEQkEUztS0RMkfe///3WaVUxRdrXv3Etot/vvvvu\nzsqpOXPmmBNOOMFkvQcob/369ebRRx81y5Yts8vDL7vssszlxemt80JACLQXATmrtrdvu7aMmCLT\np0+3g0fXhLrYGgRuvvlmSz6feeYZuwHi5s2bzXnnnZeLNHAfMb23dOlSay0BrPe+973miiuuMFhQ\nJEJACAiBXgiIiPRCqMXXZ82aZVatWtXiFqppIID/x6GHHmrWrFljPwS0+9CHPlQ4OFhVbrzxxg4h\noY7ly5cXXo8KFAJCoF0IiIi0qz9Ttcb5AOArIGknAlhBpk6dapiCwR+oDAISRs4REojPokWLDI7R\nTOFIhIAQEAJRCIiIRKEyQOcYoHBWlLQLAQb+mTNnWgsIBIQpmH4LpGfjxo1m7Nixdkrohz/8Yb9V\nUH1CQAg0AAE5qzagk8pUUTFFykS3mrIhIVOmTDF77rmndUzFj6NqYYrm6quvtlYZZ4mrWifVLwSE\nQD0QkEWkHv1QmRaY0WfMmGFWr15dmQ6quDgEHAk57LDD7OaGdSAhtA6LzK233mqOO+44I8tIcf2t\nkoRAGxAQEWlDL+ZsA6tn5FSYE8QaZPdJCE6jdRNW14iM1K1XpI8QqB4BTc1U3we10IAll/gSyGxe\ni+7IpARLZl9++eXaB6mD9OLEiv9IXSw2mQBXJiEgBApBQBaRQmBsfiEXXnihjS3R/JYMZgsY3HE6\nXrt2be0BYJrmgx/8oDn//PNrr6sUFAJCoHwEZBEpH+NG1MC8PfP3hPBGcGLNGm2zEQ1ukZL0FStU\nWC7bj+W5RUDHNNJRRx1llxVXsaKniDaoDCEgBIpBQBaRYnBsfClMyfBhD5ovfelL1tGx8Y0akAZc\neumlBotWU0gI3cKUzJIlS+xKGkiJpFkIXHzxxeakk04apjTnRo0aZX75y18OO1/kDzZmpI4bbrih\nyGJVVsUIiIhU3AF1qJ43aqJvHnTQQTb2xL/8y7/UQS3pkAAB+u355583//RP/5Qgdb2SQJxwlL7m\nmmvqpZi0qRwBNlaEbJRJaipvpBToIKCpmQ4Ug3vgpmUgJE5uuukmw5u2pN4IELWUnW+bOr3BPYej\nNFOCmgqs973ma4f147/+67/MunXr/NOFHVPuySefbF5//XW7G3RhBaugWiIgi0gtu6W/SjElw4oZ\nSbMQcNaQppIQ0IZ8XH755eYrX/lKs8CXtkJACBSGgIhIYVA2uyDIiIKaNasP77jjDjN37txmKR2h\n7WWXXWZX/MhXJAIcnRICA4CAiMgAdHLSJhJw6p577kmaXOkqRIBBe9myZXZDuQrVKKRqrCIQ4fXr\n1xdSXpMKcc6XOO5yjAMozpjuw2+uRQnX+OBH4RxFx4wZMyLpgw8+aH1xXJl8f+ELX7D1jUj8hxOU\niY+Gnwd/njhdyIYOUfVzLao80ob9QEhHnUzLIOPHj7e/nXOqj5dNEPqDfocffvgwvWkrPidhYfqH\nuigTjMLYuzrD+fS7eARERIrHtNElYubHVC6pNwIM2oTmb4tfBffdo48+Wm/QS9Tue9/7nh10ia8y\nNDTU+UyaNMlccMEFlkjEVf+pT33KXtq1a5fZvn37sGSQAwLdsTTflbtjxw7zi1/8wtYX5ePBoH3s\nscdaYvjAAw908n3mM5+xU7iUmUYY6HGEJ9gePh9Oj3nz5plbbrnF1gUBQXbbbTd7/fHHH7e/Xfor\nr7zS/o77Q36IxO23326thK4O19Z99tkn1p+FjT8h9fw/uXzUz/8YZUr6gEAAvEQIjEDgBz/4wYhz\nOlEfBIKH5lBgvaqPQjk1CZxVh4LHXc5Smpc9GGhtu2n7nXfeGdmAYFWUTXP99dcPu37iiScOBQPs\nULCZ4LDz7gflcT0YjN2pYd/k43pAYIadp9xgr6IR510iVy/fvlx00UW2PP8cZVPWWWed5Z/uHLu2\nhdsQEAHbZvDxxeEVxoryu+ns2upj4eqIyxdXl6+PjotBQBaRPpC9JlaBqVxSXwQee+wxc+SRR9ZX\nwZSaYdnhLRwH3EGUYDA0s2bNimw6/RwM8tZ6EE7AGz/XooR4QLNnzzZ777131GWbj/xYPZxgIXni\niSdsXBqsE1HCcmvyJRHKxhKC9SNKXNvuu+++qMuJzm3atMncf//9XXUGI3RevHjxiDKJwRPV1nHj\nxhksKdu2bRuRRyeKRUBEpFg8VZoQKB0Bt8y6bWSRwZiYKIMowRt912Yfc8wxdiBl0PUFzKKIBj4P\nDLxEr40T8pHfXzH3zDPP2OSTJ0+Oy2YJMPmSCGWTlkE9Tm677bYRU0pxaaPOv/rqq/Z0N51dW92U\nj1/OwQcf7P8cccw0lqRcBEREysVXpQuBwhEg5sbEiRMLL7fqAhkQwj4OVevUr/r32GOPrlXtvvvu\n9jp+IL7stdde/s/OsUvHfeI7nIaPsVb8/Oc/7+Rj0MUKEEVuOomCgwMOOMD/GXv87LPPJk4bW0iP\nC/jXIFFWDT/rEUccYXbu3Omfsse98o3IoBOFIyAiUjikKlAIlIsAVoOxY8eWW0kFpfPWLDN4d+Ad\nweie6o9XAz+HjgNmMJsfeRzlsPrHEnQkBMpHQESkfIxVgxAoHIG4ZZKFV6QC+4LA22+/3bUeZylK\n2u/OgvLaa691LTd88S/+4i/slI5bxRK+7n7/6Ec/coddv0ePHm16pWVVTXgZb9dCQxc/8IEP2DO9\ndH7hhRcM+kjqh4CISP36RBoJgYFE4P3vf79ZtWrVQLYdZ8tugq8FUyZJHZQ/8pGP2OK2bNkSWyzL\ndJmq8ZfjHnLIITZ9N18diANTOkkE3xfSkidOVqxYYR1xs06ROB8PHLjjxOncyxcnLr/Ol4uAiEi5\n+Kp0ISAEEiLAjryDKgzWccHCcDyFqMStPInCDB8PVopcd911Juzg6tK7FSSXXHKJO2XOOOMM61xK\nyP04CwOrcZIKQdAgUHF5IEOsmPnEJz6RtMgR6SBnEAxiiHTTGT0+97nPjcivE9UjICJSfR9IAyEg\nBAYcgSBGiB1IsU74gylTFmeeeaYlFXHLe+Og+7d/+zcTxPqw5MInOQz+EARIShCPY8SKFojB97//\nfUOgNEiQE6wK5MO5NW7JsEvrviFE1A2RIi91O6HsKVOm2OkSdPXFTS3h7JpE2O4Ax12WgPs6u7ZS\nDnpktbok0UFpsiMgIpIdO+UUAkKgQATYBbotkWLTwsKqmZdeesnsu+++NgqpW91CdE/IAktc0wqD\nLo6oWFIeeuihzuoZLAMIMT6iyA1Ow88995whqiskyOlCuHV8SNI6txKdlKXE++23n7WOuPKI+Iol\ng3aHCYKLL0JU2fD0URQOrq3EBCFKqquDtrJ8mPYoSmoUcvU4N4q4aPVQRVoIASHQCwH2mPnqV79q\neGO89NJLeyVv1HWCmS1YsMAOmo1SPIeyWBkY4CEbUaQgR9HKKgQag8A7GqOpFK09AgwkPFgJMMQy\nzDfeeMOEneV44yW2AW+AEyZMsMcf+tCHat+2KhWEfAQh960KvPmxb0cb92XxpySqxFt1CwEh0F8E\nRET6i3fratuwYYPdwh2PdZbGYc7Fix2TLoNmOPonUUEJyMXcLUsL2cb+6aefthtOnXLKKTb/IDst\nuhvE4cRvcPTJGgP2m2++6ZK25puYF0cffXRr2qOGCAEhkAwBTc0kw0mpPAR4Q7/77rutGR3ywe6V\nJ5xwQub5fcpjLpxlfCwbxKntsssuy1yep2qjDn3y8d73vrdr+5kDh5C0ibSdfvrp5uyzzzannXZa\no/otj7KamsmDnvK2BQE5q7alJ/vQDgjDzTffbIj3wJ4Ua9asMZs3bzZs4Z7HyZDBlMEHhzq36RkD\nMc5s1NlmwUGTNrt2Y/ng0wtPVgd85zvfaRU0kFDCcEuEgBAYLARERAarvzO3loGSDbQcAYE0+NMF\nmQsOZWQAvvHGG+30DdEmIT3Lly8PpWr2T0c8+Ka9ScmH32qICCsB2iJggXWtFwFrS3tdO1ihwnqB\ntjmqYt079NBDXTP1LQS6IqCpma7w6CIIEIyIYEHEHcD60U9hgOIh/cEPftAsWrSosVMRtMNJEQQO\nSwp+OFik2iDcYz/72c/MTTfd1IbmDHwb6E/2xeGlQiIEeiEgItILoQG+zrQIAYeQr3/965W9raIH\nfig4aBINMuwAW8cuQme30gX9iiAf4Xbyxrlw4UJz/PHHhy817jdTcY888oh5z3ve04j+bRzAfVaY\ne5MAYmXc931uiqrrAwKamukDyE2swpEQggGtXbu2MhICdviQLF261EZNPO644wzWgDoK5mgsH3w4\ndlMuZT2MP/vZz9oVS3XEIo1ODz/8sCUf3GtMzfjWozTlKG09EHD9V9Z9X49WSosiEZBFpEg0W1KW\nT0LqZlpl0GJvDDYBq4NlJM1Kl6JvD/qJpb0sh26ybwVvz/Pnzx+2WobBTANZ0XdMf8rDyZyAe2n2\nxumPZqqlrgiIiNS1ZyrSq84kxEFSNRnBIuOCb/VaZut0LuMbEkQk0t/85jfWYlRGHWWXSV9ec801\nkb4uIiNlo198+Tw/cDCn75pMjotHRiV2Q0BEpBs6A3ht5syZhtUqrIqps+AMRyA0po36EUvDmZvB\nhAdtP+rshj9kCB34oA9LqZtmQWDQYiVW2Britxvc64C3r5OO4xGAWN5yyy3WYhmfSleEwHAERESG\n4zHQv4gRctddd5mNGzdWPtAm6QgCYBEqHv+RMsQnH3Ua5MODM8ubWVHUlH5zfQWZZAuAXqQX0sXb\nddXkz+mt73gEeJEhQvIgBaWLR0NXkiIgIpIUqZan42HPmycrPerge5EEbmcGvvfeewtZOUJ5Za90\nSdKubmkgIVGkCFJ2yCGHNGZennZMnTo1sQlfZKTbXVGPa0wVMlXZtoi/9UC33VqIiLS7fxO3joGM\nfT6atqMre92ce+65lkBkeWP2yUfU3jiJASw5odMzioRQtVulc+utt9b+bTSrriIjJd9kOYvHModV\nriwLZU71lL3GCIiI1Lhz+qWacxhsmmnf4ZOWRDEQstIEqTP5cO1DX4hIL0uVI2V1WVHk9Pe/aQex\naViqm2VFFmQEwilHSB/VehyztP4LX/hCIdbJerRIWvQLARGRfiFd43qilk/WWN0RqjE48RBkWiXO\nKkKaOqx0GaF8jxOQECTJwEvab33rW+bKK6+szfJmv3mOhOy333653prTYOLXr+PyEHD/g47gl1eT\nSm4jAu9oY6PUpuQIYA1BmuxchqWAHXvZEdifWvLJB/4vvSwKyVHrT0r0T/P2zyDwD//wD+Zd73qX\nJWZ1sow4EgJyONbmEUgZZIRPEoKWpy7lTYbAgw8+aP8Hk6VWKiEQQiDYcKmv8sADDwwFKtjPWWed\n1de6i6jM1592+OLaxXewk6h/qedxYKru4HLnnXf2TF9UgmnTpg2tXr26qOIqKyfYiXYoGJSG+Haf\nwAJSmT55K6YNafQnvS/0KfdhHfo2sFQNBZv0DV1++eW+irmPA+I1RNmS6hHgf099UX0/NFUDhXgP\nntaDKrxRrlq1ykyaNKkVELBPCdMvOHTyiZumqXtj3cqYpPrTj6xW8AULV0BObBRaIl1ikahCsLgx\nbcYKmSw+Id10xhrCB8uRpDoE8E1i5+SmWRyrQ0w1hxEQEQkjMkC/n3zySTNjxozGDth+V0E8cJR7\n7LHH/NONOoYsOBKSRnGmZBiQwwImlLdt2zYbOIzjfgnkiJgShOMn2Jo/ZVakDm7qSmSkSFTTlcX/\nHJtSSoRAVgRERFIid8YZZzAf0/mkzF6r5Ox2SvChtsiRRx7Z2E3gGLj5QB7SSC/iAkEhYBgDBVYJ\nVhiVSUggUwTGox0Em8OBOG2b0rSftCIjaRErLj39zQ7QJ5xwQnGFqqSBQ6AWRITtokeNGtX58Gb7\n1ltvxXbGpk2b7Nuvn2fMmDF222m3MiKc2U9Lfj4nnXSSrZP6kSRpcMry04Xr8X+vW7euUwd5qI9z\nWSSqzThook9WYVrmiCOOyJo9dz6HI+0oQpxpuGlvxxAQxOmfFAvyhadk4vKed955lhQQK8YREkzq\nRQmYMwWEU/AzzzxjV+0wFZN0eimvHo6MlEmy8urYxvzr1683gZ9ZpEWuje1Vm0pCoN/OLb6zJ86q\nfIKmjfjss88+Qzt27Bih3vXXXz8irZ+ffK+//vqIfH6acBnOOTRJGl9/0vvi57/66qtj9XT1+Xm7\nOauS3i87fExdaQXHsiASZ9pshaZ37TjxxBMLKzeYaqqFg2bSBtEPOF1mkbCDatIycIK95557bP8H\nFhPrRBoMKKn1oP5rr712WDlZ25JU9yTpsuKSpGylGY5AW5zdh7dKv/qNQKXLd++///5gLIqWgITY\neAgrV67sJMBycdVVV3V+Rx2Q7+STTzavvfaaDVYVlaZXGeRJkiaqbHfuuuuuc4cjvi+44AJz8MEH\nG6YSegkWFNJ3E+oaO3asmTVrVrdkw65t3brV7L///sPOVfXjiSeeKKzqCRMmGO6BJghv71k3dOs1\nJdOt/VgPsJDwwZLBPbZ48WLruEyYeO4L7iesjGHB2vHzn//cbjgYrIQxfDDNH3/88eGklf12vjFl\nTwlV1sCaVIxFDqsqy+YlQiAPApVPzQRvwyawYFifi127dhl+O/GJClMubJLlhMiMwRLZjq9GYBVw\nl+xAdMcdd3R+Rx2QPmB99hM3gCdJE1W2OxdYMjp1BJYUd9p+sz9KEvHb5WPFYBtYkzpFgE3ctFQn\nkXdAfsz0dRGmnoqQ8ePH26mBIsoqswxHJLJMXaSZkunVBqaDcCTFj4T/B+7TuXPnRpIQyrrooovM\nggULbFrilMybN69WJMS115GRqlYLOT3a/M09EyzJ7tv0W5uxHPi29dsEE57aCAbEYSoQfyPolM4n\nICf2ejhfVJwOf5qHKRpf/DJJFyVJ0oT18Mvx8wcEwr9kj8NTLK5tXIyammGKyS8zjBX5aadLg25J\n5aabbhriU6U4vflmesbHI6temOUxF9dVmBbJO3WQN39dsSlDL6a+wFxSPAJM7TKlJxECeRGo1CKC\nVWPvvfcOxqE/Svi3e8tnu3AnweAbOa3xmc98xiWxVhGmH6KEuAa9JEmabmWceuqpIy5/9KMfHXau\nm0MuCZlecoI1JIwN+6Scc845Lon5yU9+0jnudYCJHetBXsHR1Dmdpv3262Z6BjM/02+9cPHzNekY\nSwafPFMGzpLSpHZXqSsWHzCXZaTYXnAO4XWakiu2hSqtnwhUSkQOOOCAxG198803O2nDA7q7sPvu\nu7tD++1IzLCTwY9wuvB1fidJE5XPnQuTBs5DHHyJ08+lCSwE7tAwUEcN9L4vyttvv91Jn+QgrE+S\nPGWmefnll60/TJNjgcThw2CIpF0Z45dHGUlXyfj5Bv1YZKT4O4AXBlbLSIRAEQhUSkSKaIDKEAJ1\nR8C9PUYFHUuje1zgsjRlDGpaR0YcIRxUHIpqN4sIiKkkEQJFINAYIsKOnU6effZZdzjs27cgcKHK\nN34ccMMStoBEWU38PL5VBsfUYB6u6+fLX/6yn73rMasi4qauumbUxVQIMJUCAclLQjQlkwr2yMTO\nGiUyEglP4pPEnwFLh2fijEooBGIQqHT5boxOkadZVuiEFR+ssggvfw1iI7gkBj+ScePGdX73+wAf\nDAKY+eITKPTrRUQOOuigTnbyQmSKIlcszQwTt05lKQ5YNfH5z38+RY7eSXvh0ruEeqQoijz0Y0qG\nOl544QXrW8W9i7hluhxDpCZOnMih4X+R+4f/v6YNRrSDtvLJSw4tGAP4B2sIS78lQqAoBBpDRIgN\nwuANCUH+8R//0Xzta1/rkBGisfrLfX0nzqLASlNOOLYHEVD9eCBJ9INI4dCL7wTt/tSnPmW3UHcE\nizKJZukwCVbNpDKXFkFEnC5psCkzLVYerD1VCo6RRYY2Z0omj4NrHBZMGXEPEQti586dlmiwpPvs\ns8/ukGRXLwM3eiAsm9+4caO9F8k3efJku1UAG+01QRwZof1NI1JV48u9vWzZMhMEsqtaFdXfJgTy\nLrtJm99f/hq1jDYYVDvLUQOch0VXDS9/5XrUJyAsI5aC+unilrkmSePrT3pf/Py9jmmnL1HLd7ke\nri+uXPKnkbovc03TFj8tkT6rXJZMZFGWjBYlZSzVXb16dScaKnjlqYP2EqU1WPE0FAzwFnvONUEC\nC2OhfdWENufVkb4merFECBSJQGN8RIIB2EYO9QN8cS4sWE0ef/zxwqYwwuUn/R2EkY9NSqCzpNMP\nOISRvptgNVm7dm23JCOusfqCN+G2Ccu83RRCv9uG1QAp6i2b8opcJfPwww+bQw891FxzzTVm/vz5\n1sLB1JqzemTBC+sCZnqCm7HL7vbt263ObHxX9yWzbn8a50ycpf2Dlmf58uWt2ihz0Pqvru1tFBEB\nRBwyIRphQgIBYcAm9kYdpguIrxFYM+zUiut8YoGge1wkV5cu/E16nF/D5AYCQptfeumlxMTGlc0A\nwlx/mx7CDHyQK8Km91scjuBalDAVUkR56Mauu46AbN682ZQxjQKhYaM79MbPhH4ocmO9onD1yxEZ\n8dHofgwx5l4q497pXrOuth2BUZhX2t5ItS8aAfxLcDokxHcbhEEPosrbeT8Fp9Sse8bE6VmUoytv\nsJB2wraff/75fQ3HTX+ce+651odk0aJFfa07Dte480X79cTV0+TzbCOBXxlkUyIEikSgcRaRIhs/\n6GXhZIg5vQ3CoLdixYq+e/M7wpBlz5g43IuakoFoQkLoY8hmkTrG6e6fJ+omTrsE2psyZUqtrW9g\ng0WH/pREI4C18cwzz4y+qLNCIAcCIiI5wGt6VgYKTK1uWqHJ7fnwhz9sp71Gjx5tBxMGlDIHFd6g\nHQkpGre8UzLoxhYFrLYqcvVOlnYywLM5GtOI6FT3e01kJLqX3f9SHn+i6JJ1VggYo6mZAb8L2mJu\nZQrikUcesYOe36XuAerOFTGFgsWCwb4op1SnG995yQ16YX1AcGDutxXEVhzzB2fZSy65xE6dlYFd\nTLWZTufth0yV1jgT1jUCLOLcLBECRSMgIlI0og0rz00D5H0Lr7rZrAZZuHBhzy3peSP3I9yyKiWN\nQyh4IWnyJMWmiLJxSiUQWd1IiMOgaWSkCOLq2t7Ub8gtOEDOyrjvm4qL9C4OARGR4rBsbEm87SBN\ndULDGoIzJKtB0gqDPyTMCZFr497WITFYGMp6GOd9C8e69fTTT9eWhDiMm6In+tLn9HedLEsOx359\nQx5vueWWvjuB96t9qqd6BEREqu+DyjVwVhH8CeIG4cqVjFHAva3hkFnE/DXlgYMvzm+gzLfjvCTE\nrVBpylsrlps99tjDLF261Ie6lseDTkZmzpzZqMi5tbyJpFRXBEREusIzOBcJQMVg3u+lr3kR5iGJ\nlDmgYXHxY9MUQXj8duedknFk7N577+05NeXXW+Vx03Qu2xpWZV90q9u9pDCdOchWoW4Y6Vp+BERE\n8mPYmhJY1TB16tTGxBUp2wrgrCNh4oHVwZe8lpK81pB+kDG/vUUdu/7DAtWEQS4vYSwKt36WAwln\nX6EyiX4/26O66omAiEg9+6USrXjrg4w04c26bF0ZdCAiSaaq0CWrA2xeEkJ+yGNTBvPwjc0UDRF+\nm7IaY9DICM8DNhRlqb9ECJSFgIhIWcg2tNwmrGqAILBENdhorZQBLO9gQ/4kDrB56+EWYyBnx9ym\nRscFA1YuNWnVVhH91oTHgyP7/r3cBL2lY/MQEBFpXp+VrjHmWCJy4i+SxCJQukJeBZCQE044wXzs\nYx8rZZUPD9+iV8a4KR6vGZ0onuFpHz9Nr+OmW0Nc+5oYowIyktRi5trZtO+2xBhqGu6DqK+IyCD2\neoI2MzisXLmyVmTEWUIOOuggc8455xSySsaHgoE9r7+HX16347ADbJZ66aM27BXU1Ddv7kcISd3I\nerf7Ls01LFV1fBlJ0walbQYCIiLN6KdKtHTTNHXwGWGwYp+LSZMmdSwhRRIHyspjnUjTQVGmfdqX\nxs+EQZCYJ02a0uiGEb4Is2fPbtzOrm0lIzgSX3755Zli83TrZ10TAlEI/On/CyTqgs4JgQMPPNDs\nt99+ZtasWea3v/2t+fjHP14JKFgP2MX1i1/8ornqqqs6OvDGtm3bNvN///d/mVddMJC88sorfSMh\nKI9jKRYQX/baay/rK0Gb+KAX6SAtfH79618b0jj55je/af7nf/7Hhkx355r+vX79evP3f//3jWrG\nO9/5TsOHe4h+a4vcdttt1g+LiMUSIVA2ArKIlI1wC8rnbf2iiy6yLVmwYEHfBm0GYJww33jjDbNk\nyZLYeknHwJ3WRJ41X54uzWp5ccTE1X3TTTdZX5nzzjvPnWr0N32BRarJjpFZ+7ZuHce91iZrW93w\nlT4jEdDuuyMx0ZkQAgzwzBWzTJQPvgkMHGUJD0Ic5XjDZGkncQy6TZsQgpsPA0FScfqnJS9Jy49K\nR51Z35pxoAUD93nttdfMe97zntrvZhuFQ9Q5+s/tnBx1vQnn6Js092Dd2sT/HYJlatq0aaVtZVC3\ndkuf6hEQEam+DxqjAdYJpgsQBlQCaTGXXJRgeYHk8Da2a9cu+3ZMfIkkwa7cQM1A4B6ocXpRD8Lg\n108pyp8DQrNlyxa7dLefRKpsrPD/2bp1a9nVlFp+k8nInDlz7P/zihUrzNlnn10qTipcCPgIiIj4\naOi4JwIM+GyOh2PlhAkTrEMb88gQCEhJLxIQrgDigPWDMnBYZKvxZ555xsyfPz8TUWAgYKB2Fo+o\n+pwFJXytzN+0E92KEAgNb6xtE1YAvfrqq41vliMjaf8Xqm7422+/bZ3BV61aZadD2fYh7v+oal1V\nf7sQeEe7mqPW9AsBCAkWEj5YGB588EGzePFi+yBjOmX//fe30yoQi7BANNiqnp1iCUrGZ+HChcOi\nN+YZuLES8ABFL99ikKfMcBvS/EaXrFMyUfVgNRg7dmzUpUafmzhxoiWhjW7EH5SHjHD/QXqTWPTq\n1macwlk102+rYd1wkD79QUBEpD84t7oWBns/RDcPYCwmzz//fGS7cXxl+qWbhcC9VXZLE1n4H07y\nAOWNFPLBChWmlLKW1a2eJNewYBRZN9NWWA8k9UaA/4umkhFeDrB8SoRAPxAQEekHygNWh7NC5B18\nsSJgTcj6VsabKGWsW7fOnHTSSZX0QlVWmEoam7NSCCPTAm0SR0a4F7Pex/3GAxKydu3afler+gYY\nAfmIDHDn173pzqqRda7dzW+zHwvHWcvJilPRUzJZ9WhKviZOYSTB1hFzdz8myVNVGv7nmGJta19U\nhavq7Y6AiEh3fHS1YgR4iLuVOmlUwSSOuLdQymEg6OdgUNQqmTTtVtp6IuDuw37ef1mQWLNmzTC/\nqixlKI8QSIuAiEhaxJS+7whgsnfEIknlTIfw4HcPf5fHvZmmKcvlTfutKZm0iJlc03Dpa+t/Dnc/\n1pWMfPnLXy7Ul6n/CKvGpiIgItLUnhsgvTET80nyAHcEIM607AgK6coS9CxylUxZetatXCxIrJxp\nszgy0g8ynBZHR9TT5lN6IZAXATmr5kVQ+TsIMAC/8MILZseOHZ1lmG6ZLoncsl53zMqPI488MpEp\nmAe4s3R0KvQO8P9IujIGkoIjLeVhbYkjLV7xqQ6LXiUTrnyfffYxjz76aPh043/7m/41vjFdGsC9\nzP0KGSli8Of/7vvf/755/fXX7Z43xAPx/++ozxE8/gf5vxs3bpysH136SJf6i4D2mukv3q2rjYcp\nMURY7bBz5077wDv66KPN+PHj7RJdGuxWz5CWwYaPe2i++OKLNt/06dPN5MmTh8USiQLLWTz8azyI\nebBneaijE0TEvan65WY5jtIvSznd8lDH3Llzbdj9bumado0AWgixaQZBuGe5d7Pet+7/jii7BLjj\n/w6Suvfee1v4wv93nGRJ/fbt220Yd/5f+Z875ZRTbPyfogn5IPSh2lgMAiIixeA4UKXwAGU/imuu\nuca2m4fgGWeckemBSgGQgU2bNplFixZZUsIge/7550daKsIPbx7kSB4ikYfI2Mr/8KcIXfzy4o7B\ngDgsELqsA1lc2VWeZ8sABlJ2e87Tn1W2IW3d9GVSSx5lP/zww+aWW26x/zNJyXucTtw7Tz75pGF3\na/4HL7zwQjNjxoyBwT4OF52vAIEhiRBIgcDq1auHgkFiKCAfQxwXLd/5znds2dQR7DA7FAy2I6oI\nHtz2PN/BNMiI61lOUA9155G8+ZPUTR18Dj/88KFvfOMbSbI0Jg197vrUtbMfmNYBoF7tDIj/UDCt\nYj9l/N+BexBJdSgYgux31P9dHXCSDu1EwLSzWWpV0QjwoAoCHdkHYa+HZhF1Uwdkh4cvD+Gw3HPP\nPZEkJZwu7W/qzfIQLgsTyvU/rj3XXnvtEJ+2CPcXfR0lfvuLIp5R9VR9Luoeor38H0DSyiAg4TZT\nX2AVsfXxPyYRAv1AQESkHyg3vA4eSLwpYaHotzgLDIOuIwg8sDlm8CpDKDfNgEfaNOm76Uzd/sAb\nl9a9Icddb9p5+pc38l4Czknw6VVOXa/7ZCTq3u+X3ugBMYSUuP+7ftWtegYPAfmIVDAd1pQqmb/G\nDwR/kAceeCCzD0je9jKX/elPf9r87ne/M8GAZT7+8Y/bIsv0yaBs2p/EkTCPgyr1BINrB6I0q3hY\nIkwAKueU2CmkgQfsvrxkyZLUbQF7J+ARWA7cz8Z+06b77rvPOoBX2b/c/3PmzDE4lFf5/9/YjpTi\niREQEUkM1WAl5CE0ZcoU22j2najao54B+4tf/KLdN+app57qEIQ8JKBXj4JBYKHoOjimrd+V6erO\nM3h+6UtfMmyA1/TNyXDAhPBu3rzZwZLp2yd1OPMmIZGZKio50xVXXGG+/e1vm3vvvdcccMABJdfW\nu3hWMy1YsMCu0moqpr1bqRRVIiAiUiX6Na3bkZDDDjusNoMcOkGGeEivXLly2EMxLRlICzvlR1kq\nGPiQXm/h5HdS5ABJ/RAZLCq9dHD11/GbvYDOPvtsc9pppxWmXpjwRfVfYZUVWBD398svv2w3naMN\ndelXyOIll1wy7P+uwGarqAFHQERkwG+AcPPrSELCOjoygrUCcoLODMplvq1FxRuJI0A+8UD3MqdO\nwAJpqlUErKZOnWotT2Va3ei/wNfBYlUkGbQFFvTHJyFlYpFVXZGRrMgpXy8ERER6ITRg1+v+MHTd\n4fRkmgZhoOHtscwHOGQH0gPh8UmIP8ihS5nEg/J9QSfq86er/Ot1P8Y3ZP78+YVaQ3q1mT6ExDqp\ng7WE6Y+77rrLbNy4sdR72LU56zcxR4j3U3c9s7ZP+apBQESkGtxrWSsPmauvvrr0t9OiGn/ccceZ\nYEmxmTdvni3SJwdF1REuh0EMB8K//Mu/NKNHj7aXqx7IGMTQyZGysM51/V0XvX0iWYW1xFmFmkIm\nCTxHGPmHHnqorreW9GoYAiIiDeuwstR1b9ZVeumnbVuUzmWQkfAbNKGxISFVExAfL0gZUxxNCY/O\n4A9+WCbKnFLzMUpyHO7rsvuY+qjjuuuuM+edd14SFStPg85HHXWUXVHTFJ0rB00KdEVARKQrPINz\nEYfBIG5Ax7rQlJaHTcWQEySvkx+Exon/luwTnX5MBzkden2jC2QEsznh9ussTRrIfGtJnhVOcf3B\nyif2immadcFZcfjO+78Wh43ODw4CIiKD09exLXUPFef8GZuwphcgUWz45awBPllIqrI/4JAnys8j\niuSQD7+UOjyMb731VvOv//qv5j//8z9rZWXw+wASwrLwOq3I8vXrdkz/+zFfou6RbvnD1yivyaue\nmu4oHe4P/a4QgcGL4aYWhxEggmI/wkeH6y3qN1EgAyIwLAKkH6Eyqp6AdA2L0JkkemRcmUT7pLwq\nBd1oA1FwwaJqfeKwIHoqWwUkwTuujLqcB3P34R5IK2BRRbTitHrGpafNwdCVO6pwsCOwLYey7rzz\nzrjqBup8EECugwm49FvoB+rlE+yUXnr1/W9h6U0qpoLgja3TEeF/jm7Xiqm9f6W0JVQ4+3H4D3UG\nOn8w5qHpBg03aKdBmTzdhPp6pemWP+u1qHoZ4OpGRtCTcOFtISHh/grfX+Hr4d9uEAeXJgv3Gp88\n4p6nfA+SuIGeb4iHL1UTEXRx/XLiiSf6qpVy/CcBCJIGIzBq1CjjPg8++GDqlhAcjDDOTZe5c+fa\n5Y9+O1599VU7TcFUDYIp3X3SLPN1JnS/7PAx5VE2dTH90A9BLz7hKQJiiuD8iM/Ihg0b+qFK1zrc\ndMybb75pA3Wlwb5rwTW6yNScu7fcfcC9wIc+CstXvvIVEwzgtV6qG9Y56vdll11mFi5cmPmeJ6w/\nAdwQ/ocl9UHA9ccTTzxhsowtqVpSCr1pQaGODQZgjjAXdrvW76ajn/uEWXUvXdryVuba+bd/+7dD\nX/va16xlwllDirBSpC2DusG2TElSh9s0zbcUlalTVNlgh3Um71tzVNlNOedbS9x9WTeLVR4ssUZm\nmdoNticY2meffezzi+9BE/fc5jvts7sfWIX7h99liSwiwV0wqPLkk0+awFze+Lcy+o83T1aL8NbN\nG6lbEureTrP2MeVSRhpxdePIWoagE2/gfLoJIdOJTcGSbKwjZekTpQNWEFaEsKQYJ9qmRn6Nalva\nc/QT9xAfjm+77Tbjr8RKW17d0hOef8WKFanVCgZfs2PHDptv9uzZw/LzBu4svV/4whfstRtuuKFz\njmsXX3yx2bp167B8/g+sLYcffviwPJx76623/GTDjimPcl3dY8aMsdYA8rhzfIfL4HdYP9JxLqzj\n9OnTbVl+xWeeeaY95ywPfvspBwmm8YbpgJ5hCadZt27dsCSbNm0y4Om3BX1cvX5i7tFzzjnHnqKf\nHn/8cf9yscdFMhx8KXxrQaCptSYEjRhWTRA0q/MWDxMOX/fL4DgsMDPfmYZ64ury8ybVjzy+Dml9\nRHC+8tuIbmeddVYs6/XrAgvyMy/n2gVGYR0oz10Pfydl18zZZ3mT8TGt0zFvmzjehoU30iwWiqz5\nXP3M/6e1pri8Ud95ysMqEgyC1jKRBYsofaLOoaOri/urzLqi6m/CuWAH6SE+bRH6nGcQ32nEf+7x\nzPOFZ5h7rvEs9Z+H7rz7DuflGdotPc/TKAdMynFlhr+vv/76Ydf8MYuywunDv/3nd5Jnt99+ynJy\n0UUXdeqKsiJRj6ub674Vw7/m0vjf4ByWgHx0yivTV+SPLQxrkOJ32o4nPSA5EHwAwh0QvsnodD+v\nK8P/DudJqx9N9/9J/Juo17UsnR2uy2+Lf8wN7CTJzezSxn1TdtEDBVjTh/QpOkb1Fee4RhrSkqco\nYbCNahMkJe2DsigSQTlp6w7jQZucWT98LelvymCKhH7nO295fr2U7QgIpvqisPPraMsxDrtF41P1\n/x1twvE9qYQH73C+8DjgPwfDx+EBshsJcXl5BvmDNMdRzyqXPvztP7P853c4nf/b1Zfk2R1uv8Mn\nfD5MqHyiwrETn1D4OoWPw2MdOvtpwvW58vN+F0JEsnR8eMB2Het3qg8kDU16s1CGL1n08/UId07c\ntayd7Zfnd3rUMXUgSW5mH4PwcZz1IJwu6W/6z/8niNK92znyunsgaZ1R6brNV6d5+KdJG6VH+Bx4\nRxGkcLqo33nyRpWHHryRQ9qwIHGcpb3oxXJhLB/0Ld9ZyonSsc3nwKooqcv/HfdQGl8k//kfJhJg\nEx5wSeMGQcaB8PPPDfLhfP6zu9s1Xx/6x88XtoZw3T2rwlYUP1/4mnt2u76nHPdBN1/CurprYWLg\n10can0z59fljjI8l7fCxDBM0yvTzhuvjehGS+z8iDJivaLdrKO830L0du44BENfZrqGU7a7z7dcV\nvllcJ3TTods1Xze/nrDe/jU/T5rO9vOF20U7/DbTTl/8a7QnqfD2wqBdhKCj/w/g65TmmDJcv2XV\ni4dh3AMRqwSDZy9hoM5KGrqVTZlJ6vfLIH1ea4pfXviY+4BBBEJCX/FmC6FwOIa/Sct9A4nhQ1qm\n98rUMaxzk39D1MC4CKnT/x33APdCUvFfWsIvnJQRfjaHx4KwRcVd98v1Le1OL38M4bnrhOe1e1ZF\n5eOcu863q88vj+dXWPxne/j57JcXvhZuv1+u30YfOx8TdHHkzD/v6+7KJJ3//A7r4hOVKGxcOXm+\nczurfutb3wra9nsJlDSzZs1yP63zYNBRnd+3335755iDYIVD5zfLDRcsWND5zUZme++9d+c3B34Y\n5HBdV155pY3W6DK88sor9jCPfq6sJN84JLllaKRftmyZGTdunM1KO+644w4TdLb9HdzEsY4/4Xad\ndNJJJrjZbD7+sNlUERLcnDYaad6ycNKiz2lTXqEMygo7gqUpF4yfeeaZyCxu2Wiv5bUBYejpCBpZ\nQY+TwcBty8XZNIk4p1Snd5I8adMcf/zxNqz/5s2brTMc/4PsIxInu+++u11miW7gtHTpUrtzbpk6\nxunSxPMBYTN77rlnbtXr9n/HMy7Ns+mFF17oYLDvvvt2jqMOgsF8xFjgnq3h9H65RFsOy+TJkzun\neF7TH3xYouokKl/UOdLzvAoGYPvZvn27LQKHUJxicSb1xwRXft7vY445plPEf/zHf3SOn3322c7x\nJz7xCesQzYnXXnutcz4gXCOw9J1SSfiTn/ykk56D/fbbr/P7xRdf7BwXefCOvIVl6Xgajhx55JF2\nt1dICOI6jRvPJzT2YvDHv1mCNzh3uvP90ksvdY7dQR79XBlJvpN2tmtruLNdHVHt+sAHPuAu1+6b\nOCRhEkL/BSza7LHHHubggw+O1JkYHzy4gjfyYf1KWZQJscwiYfIaLoMVLQyicSthul0Ll5XlNwM2\ndVNP3IZqEKXAEhKrY5Z6k+RxusVhk6QMpemOQFEvAHX7vyNU/apVq7o33rvKxpFOeE50kwMOOKDb\n5WHX3BjCyZNPPnnYtagfkJCwjB8/Pnyq8xI54kJwgjICK4K54IILoi4Xfs5vF89LXoIhZt/73vc6\ndbGNgpPA4uEO7bPWrcLpnAwddCOUP/vZz0Kpi/mZm4hk6XhHRGgCb/v33XffsMHMt5S4ZobfkllW\nlUTy6pekDtIU1dlJ25VUr7h0WA1YdpdXIBK+8A+ZZNM1SCgC4eANYuLEiZ1iKDMrEekU0uXAEYHw\ngJskcFmXYlNdou6ofWrQASIS1i1V4UrcegTq9n+HtS+NhF9e0uStU1pISDDV1nmJdrph2R47dqxh\nFsAfg9z1PN+Mn7zo3X///bYYLCG8gC1evNj+xirsP0/z1NWvvH/Sr4ri6qEjwzclb8uS8hHoZT1I\nooFvpeKfLwkJCZfrLGPuvF+mO1f0N29w4YiXZU3JxOkejjfi4ny483H5dF4I+P8jTfq/cz2H1bQM\n8csNnEU70yZu+iT8HfUMxGoVlvAY5a7z4uWIBnWTjjq+/OUvR1r1Xb6838QFcoIlhLY68adlOMd0\nqhMITBiD8G9077fkJiJ5O56gR2HhXNgC4ltRSO/m48J5w7/z6hcuL+53Ezo7TveizvMGkFXy5M1S\nJ29wWB6cv0jZUzJxOjq/keXLl1v/kbRvlnHl6vzgIJDnfydP3jwI77XXXp3s3aYCOokSHhxxxBGd\nlElfaCEjzn+PzFE+ZlHnSEvAQCcXXnjhMP8LXrIdSXFpivomAJoTLCG+fv60DGkOOuggl9RgPUGv\nrJJmmixNHbmJSJaOdwoSzc2Zl7gRcKRBYJXOzOTSQkT8myXKx4JpDRcxDmchJI9+ru4k30V2dpL6\n8qZhXjYc8S9vmf4/Zdqy8uRNW5dLj+UBX4x+Tsm4ut238wc577zzrC6OGLnr+hYCvRDI87+TJ28v\nvbpdf9/73te5/OMf/7hznPfAd+TEZ8ONA5TLy60fNZWoq05cBFF+48fn5+PY+fa59FHfLKZwgzzT\nzZ/61KeikkWe86f2IxOETrrpGXfa6Rc1LYP/iHshZ2xFL//Zzzjsj53hKKtEq3biynG/C/sOzDK5\nhKU+gTKdj7+cNWj0sNgSQSM6dYWXDJEvvO6a374EJshOPdTpL/UML99lyRKSVT90de3y20SZcdf8\n8/7yXadHcJN0ykQvJ36+cJtJQ/1OFzDwxZ3nO6ynny587JZlhs+n/e0v7UIH+oG+TSqk9dtHGZSZ\nVVgemWZZcvDgGPrGN76Rtbpc+aKW87Jcl/P9FnAAO+4Lt0QXHMMfAqGRJvBRqETPfuNSdH0O37zl\n1u3/jvs2sOYlbpb/P8+zMiz+czvueeA/+xhrnPjPUz9N+Nh/BpM/fL3bb1dfeNzplsevD12j0ro0\nfvtJFyU+hq4sfzmvnydcnksf/ga7sPjjlj/mhtPl+R3dwpQlZul4n1TQUDd4+f9gYVCS3izhzsii\nn58nPMDHXcva2X55eYiIu6nczdytG4t6IEb9M6AHDxf6kutRH66Rxunsf4fx7taO8DUCbKXZYI3B\nl4G/34N/N8LRL32oB7yIawH+fDuiAS5RH9Jz70BQyJMnIFq47wbhN5imIcpxmNTt/y5tu8LPcvf8\nd+31n6VpiQhlxz1b3HMm6hnj1+nSue8w4XBEhG9/oHbp+WaMYyxy5yjDlygd3bM7rIufzx2DmSvb\nfXcjCnH3jMvLOOTaFVdHuJ9curzfhRCRtB2PtcI1nm//puh2jVopbAYAACaLSURBVMaGO8gvh2M6\nNwxWWv2oxycHvn69rmXpbL+utESk282MrnGS9sERVw5YR+kQ7pekv6P6L67uqPNpIjz6Az549Euo\nCwtEN0E3yEoZgjXDEQmIB7976ROnB21xAdEgJRCVrGXF1dGm8/QpOOWVuv3fpX0BoP3+cyM8gPrP\n+bRExGHLs9ivg2cQ5CDqGevycI363POKZzO6cN6d49sfYxizfMLh8lBmHIHhWjgf5VIX4ref83Hi\nt89/oY9LT51hndA3PMa5/PSLa3dcP7i0eb7jW5ih1KQd74MHCGEJW0vCLA0w/TQA1Q1MV35S/UhP\nea4Dwp3U7Rp503a2X17UPwn1O11oty/dbmY/XfiYgS6NKTWc3/+NDn6fOl3TflMGZeURBlgG1iQS\nJh/h30nKSJPGTX8kzZM2fa9yaR+DYFmEwREc7iusJpJoBPi/KIKs1en/DkILGUkj/mAbfq6lKacf\naf1nMAP+oIhPsBxJKqPthRKRMhRUmeUhwIBU5Fs3/6w+qUpKRMgTJntZW530IR9FOnwLSdb64/Ll\nsXCga56Bi7oJvw1BSDtYxLWn23n0hRByf0Xh3C3vIFxLQ5aT4FGH/7ssfY1VwU1rJHmbT4JF1jT+\nixTPI//ll5dDpyfPF9IOgtA/7hkOJmXKKAoPKpMMIAJXXHGFjXzKio0iBe/05557zgZ5Y437L37x\ni2HF/8Vf/IUhWixLnj/ykY8MW/I2LGHKHxs2bLDr93utBHDxQ4KBeUQNxPLgfJEhy6MCl42ouMeJ\nrGWAybnnnmumT59u5s+fX2i7eqhsWJIcvOkaljWyZYPk9wjcfPPNNvzAjTfeWCgkVf3f8f9EAL6A\n8KZuDytSXETSgFCVGnujm3K+Ht3ScS2wDGSKl9Sr3Lpd9zEpvc1lshyVXW8E2KiqqA24qm4p0wKz\nZ8+2/gq9dOn1lt7req/y/etYnPJYM/yy0lpV8N3ACpJ0qsqvq6hjdOYe41MUDkXpVkU5YMAqrdGj\nR7cGjyz+IT72zhpR9lu3X2fUse8bEpCCjjXAP677FFJUu7Kc861V/bAAaWomSy+1JA8PRQYqBoum\nC235q7/6K/uQh0jEkYm48377KauIKSvqoqwihfKStIE5ewb/ItpRhP7oU/RUYBF69aMM+oA+4+P6\nAyyqJIhFtjtvW/B1cYN9UVO0WduHH4TvF+H0wsEzyn8vaz11z0c/0HampPxpqrL01tRMgPYgC9Mz\nSNFm4n5j+vDDD5tbbrllWKRDoqU6IQCQm26JmpJx6dx3t+kblybu2wUpK3O/mG6b5tGnRHRcu3Zt\np81xuvbzPHqxWRtTZ20OY8+9409TRG1uyLTVI488MmxH8X72RVF1cR9OnTp1WHuLKlvlDA4CIiKD\n09eRLXXzu8GbWq0GrUhlu5w89NBDrQ/EaaedFpkKchBMRdldKknAXjO9CEmWsO/gSV39GGij/Ebq\nSkJcpzgy0vT7zbXHffukN8m9xT0CQSFfr/vQ1VHH79NPP90cffTR5tJLL62jetKpIQiIiDSko8pU\nk8GBEL9NfZhgDbnmmmvM5s2bY2EKk4okb60UFs4XW0FwIYoYdEtfxDWf+OAEedddd5mNGzfWmlTW\nnSwl6Rf6Opgm6yTNYv2iv9gjhNDgTRT+N7CGtI1UNrEvmq6ziEjTe7AA/RnMeIvDnNy0tzPeLI86\n6iizcOFCc/zxx0eiQfuQbm2LG1gon/y9LBw8lKNM8JEKFXwSHbH2/PM//7N5+umne+pacPWZimP3\n0MCHpTGracCYAddJEX1NmZSzZs0au+rEld2Ub1lDmtJT9ddTRKT+fdQXDdnxeMuWLY17O0uidxqr\nhgObPE7+93//13z0ox+NtDK4ASrLG7ErP++3G9BuvfVWEzc1lbeOovND7sDs3nvvjSWQRdeZtjz/\nHsDHqBcZTVs+6fEVWbRoUe2tWOG2Ob27WSHDefRbCMQhICISh8yAnWcww7IwZ84cU3RckbKgZKDA\nNMx3nLWDa3lJAthE+ZcwmHKtjAEqDWZMdbCV+tKlS9Nkqzytm1Kry1QS/ek7mea9b5ICjGUhWHnS\nGOsQ1kMsWk215CTtF6XrHwIiIv3DuvY18YDBVIwJuurBtRdYSawADCxIHEnpVYd/nfooD1z4JmDb\nu9/9bhPEg6hsSgb93KDQjYz57ajbcdXmfXBzksTJ1KUt8pv7CdLTBIsW/wdTpkyxLwBN9Skrsu9U\nVjEIiIgUg2NrSuEt9ZJLLqn1Ekv3MAwCIHVddlyENcTvWEdseGv2fQTi/Ev8vGUdVz2Q520XfdRP\nh8cq+6obVi4CLkt6ua/rKjNnzrTWt6Y62NYV10HXS0Rk0O+AiPbXeVWDIyF77rlnV3+WokkIMFE3\nUzS9pq78t+yyfAvQx1lDmr5qoUwyRZ8V7WQK9mXIv//7v9upUVbS1NEiWefnQhn9oTL7h4CISP+w\nblRN7qGzePHi2jwUHQkByG7BupzloogpGddplEn9DBBpSE54ICzS/E8fsV9P0/dxcVYR3z/D4Z7l\nu19EMItucXnc/bV169ZaWiTd86Db/11c23ReCPRCQESkF0IDfJ2HT10iYfKg/vSnP232228/u8rA\nRUmN6p40RCEqf/gclgfqc8QGcoE+Wd5ayecPuP4UT7jebr/Rgby01enVLX3drxGQrtsS7G76hzHt\nl5NpN53SXEN/xPWjmx6tg88I9xk+IYhIiIVBf0pA4E//XyAllKsiW4BAsNmRHfhZTbPvvvsaBosq\n5MEHH7R+BGeccYYdrN75znfGqlEGCWGA2GuvvTp1Uj9Levnupksng3cAocEq4j7btm0zP/7xjy2x\n+fWvfz2sHi/biMNvf/vbxr09j7jYwBPvete7zLPPPmu453oJg+Mrr7xiMWMQZ/oLUuYw7ZW/TtfD\nJATdDjzwQPu/NmvWLPPb3/7WfPzjH69EZf6XWA7O0vXbb789cvl6JYqp0tYhIItI67q0+AZhETjz\nzDPN/vvvb4gG6d7ciq9peIkMOCwnfuyxx6wVhCWO3awQUQ/14SWm+8WDuJvFomjSQ3t9f4Zu0zhY\nq5ocDTfcE/QdlgzfWuSn8Z1My/S78ess+7jX/cp1rIDIggULci9DT9oe7sOvfvWrlnxcd911PX2i\nkpardEIgFoGydtNTue1CgF1fb7rpJrsjIzupBgNGaQ10dQWEZ2jGjBmdHWw5HwzUsfUm2ZU2NrN3\ngXqSlpU0nVd84kMwpnz3QS8n7HjaDQuXrknffptcH0S1vUltitOVvk36P8T/Hf8LZf/foWvgjG3r\nmjZtWmL94tqo80IgKQImaUKlEwIgwMOTB2LAbO13kYMhZbuHLg/CqEHeDVDh3ohKG06T5Dc6pGkT\n6fn0Q9CLdr700ksW/37U2c86zj333KGrrrrKtjFNH/RTxyLqynLPcN/7/3dF3e+0h7L5v4MI8lm/\nfn0RzVQZQiAxAn8SayrRBSEQgQDTMjfeeGPHhE6ERT5M2TBVkVYwuRMumjKYiti+fbuN2Eicgiin\nQ3wsOE9dmJARTNjkzSvognSb/gnXAR7o4XQJXy/yN3rR9t/97ncmIGpFFl2Lsg4//HDzZ3/2Z7aN\nafqgFsonVKLXdExcMdz37v+OKTn8R/DZYouDLP936IFTLHFBmOrC52bJkiV248i4PZvidNN5IZAX\nAfmI5EVQ+Q3BmPDjCN6k7H41DJJjx461PgzAwxJTHnY7duywaO3atcume/755+3vyZMnm1NOOcVM\nmjQplUMcxIEHdPCGGUlabOEJ//Aw7+YP0qsY8kcRp175slyHuL366qtdg7llKbfqPGCIL0Rbg2Vl\nJSFx/cL/HRF+2eiQD5sIsqpswoQJnSzjx483r7/+uv0d9393xBFH9M3vq6OYDoSAh4CIiAeGDvMj\ngGUgMKvbFR08+BCsHOyF4j8gJ06caK0YWBTyyDe/+U3zvve9L5UVw6/P6ZuXRFAOA00/3uSxPiFt\nC7HdZiJSNAnx72GO3X3MSqpu/3cQk7333rsv92lYR/0WAnEIiIjEIaPztUfAPdyxikB+0pIJ8vMA\nL4o8YKGBWKFPmdJWIkJfYDkLJpbLhK/vZbv7NC/p7rviqlAI9AkB+Yj0CWhVUzwCTMm4gR8Swhs1\ng1kSyeIP0qtcCA2ESJINgbIJXDat8uVy95lISD4clbvdCIiItLt/W9u6KJ8MyAhvn+4NNK7x5GVg\nKGNwcIQorm6dHxwEnIWsjPtscFBUSwcBARGRQejllrURohG3SsZNs7g3Ub/pWEscgSnz7RvdepEh\nXy8d/x4BMGvLoO1ISJn3me4bIdAWBERE2tKTA9QONyUT12Rn7YB0OGGQ45PWj8TlT/NN/ZCepNNE\nacpuc1r6FSfmpotISNN7UPr3G4F39LtC1ddeBBh48ZFgWa5bKhjVWre0Fw9+9tVI8xbsLBpR5frn\neBN10yR/+qd/av76r/+6MKdUv564YywzSXWNKyPuPMuhN27cGHe5seeDwFqN1d0pLhLikNC3EEiO\ngIhIcqyUMgIBrAxPPvmkDUrmYhkcdthhNobI3LlzI3IYu7SXJb2LFy82q1atMkE0Rxugi03t3NRK\nVEbqipuSiUrPOVZh/OY3v4m7XOp54pIwMHVrUxYFxo0bZ/HOkrfOeYh3wb3QVBEJaWrPSe+qEdDy\n3ap7oKH1E5VxxYoV1voxffp0Q1CyD3/4w5mWrrrATOzwOXr0aDN//vzI4GZpLQykd0HKIDFYbIom\nBb26j3qRNFafXmXSjjYucyXKJ4Ht2PG1aSIS0rQek751QkBEpE690QBdIA3BnhdW0zjCkKcZPsG5\n9dZbO4NSGhLipojC/iBx5/PomyRvGt2TlEcawnsTkjvcxqT565gOa9dTTz3Vd7KYFwuRkLwIKv+g\nIyAiMuh3QML282ZPJE/8P3yCkDB76mQM3uynseeeexq2vGfgTWJVSGL5KIMY9Gpg0XWCCb4i8+bN\n61V1I64zmLPfEA6rTRKRkCb1lnStKwJaNVPXnqmRXlgpePNm/h5n1H6Yzqlv8+bNZurUqdZcn2T/\nEQYFpNf0C2VDDLCQ9EuKXNIL2WJPkfvuu8+2o19tKLOeBx980DDF1yThHoIca4luk3pNutYRAVlE\n6tgrNdKJN++VK1faHXGrmgaAYFx00UXWOnL33XdHPvgZFJw/SFL4KJdBJImlJWmZ3dJlfXsmn7+i\nBFKDzk2dyojCCIvXwoULTVN2fi3awhWFic4JgUFBQERkUHo6ZTuxFpx//vnm5z//ufn617/et8E6\nTk30mTNnjnnzzTfN2rVrO2Qkr99HkqmcOJ2ynE8ygIWJRxzBYgt4lkmzPXyTxfkdYQFrgiTpwya0\nQzoKgbogICJSl56okR4M7lOmTLEa+YN+HVTEQvPyyy9bMoKefHpNxfTSOy+Z6VW+f526ID++zgxs\nvsQRDz8Nx5SDVaRXgLdwvrr9Pv30083RRx/diN2ERULqdvdInzYgICLShl4suA0sowxbHgquIldx\nkJFvf/vb5t577zUHHHBArrL8zAwySUmAny/t8Te/+U2bhaXKSJ4pL7BAmmoVAXP8gPA9qruvhUiI\nvdX0RwgUjoCISOGQNrtAzP0EJqubJcRHFVM+JIRAZUmcWP28vY6L9htx1ha/Xucsm4eAuPKabhVh\npQxEhBVZdRaRkDr3jnRrOgIiIk3vwQL1Z4A/99xz7UqMfjlwZlWfAZ7pozIGsTx+I2HiQeAxfxrG\nb29Rg9vNN99snnnmmcJJma9rGcfLly83ixYtsqujyii/qDKL6qei9FE5QqBtCIiItK1HM7aHAZRp\nCSwNTVm5gPWCN+o1a9bkmt6IgswRil5WC5fOldGNeLg07pu8YX8Rdy3NN+UcddRR1pn3vPPOS5O1\nsrRl9l2RjRIJKRJNlSUEohEQEYnGZeDO4heCLF26tFFtL/utmoHI9xuBOPhBt9IQjyhgGZCLiEVB\nOeiJr0WcBSaq/irOQZzKsmYV2R6RkCLRVFlCIB4BEZF4bAbmCg/cpjgMRnUKVhEsAWVYAyAezz33\nnHn3u99t98FxMTyi9Mh6rqgBj8Bzl1xySe3DpEN633777VpPJRXVJ1nvCeUTAoOEgIjIIPV2TFub\ntHwyqglFEiksC1HBw/L4jUTp7J8raoqGMv3lzXVchVJ3/egLrEq9puT8/tOxEBAC+RAQEcmHX+Nz\nFzmIVwkGZOrUU09NbRUJEw9/GibcnjIHKYgOUoSTsBvs6xCIzsfQ6VXXFVlFEkK/3ToWAkKgOwLa\na6Y7PrFXDz/8cDNq1Cj7YRdUX9x5vjdt2uRf6nrMfht+3q6JC7p4xx13mLlz59Y+hkOv5hICnhUY\nvQTi5X8Y+Hn7dZ9uVgSukY78DFpFCnr4vid5yiamyGGHHWZ1hWhVLWAFUXSB6LphXJWuIiFVIa96\nhYAxtSUiDO5uUGbQlxSPAA/fZcuW2UGi+NL7W6Jb6QNJ8MUnHRw7wuG+swyK5MWC4awYfn15jh3J\nyVOGywsZYZdkLDw49FYlECFW9Oyxxx61jU0jElLV3aF6hcDvEXiHgBhcBNavX29mzJhRyHRAHVD8\nxCc+YYmVrwuDexnCyhRHRoqYTnE6QhwYvItY+cIuyd/5znfMrFmzzCOPPGKIN1Kkrk7nqG8GdzYo\n/PznP2/uueee1FNmUWWWcU4kpAxUVaYQSIdAbS0i6ZrR/9QvvfSSGRoash8e9E2URx991L6tNlH3\nsM4EY/vYxz5mp8KctaMsEuLqdoN6kdMfzkLDAFmEgMHGjRvNIYccYvelgYwUVXacfqzewQpCkDUc\nP8tYzRRXd5rzIiFp0FJaIVAiAsFgWit5/vnnh4LmRn6Cee8Rut55551DnPfzcG7Hjh2RaV26s846\ny16//vrrO3ldBpeGb/Thc+KJJ9p0lI34dbpzcfkff/zxTn7KpCzOheWBBx7o6EK6KEnT3qj8/rlg\nIB0K/BL8U40/rqJNwSqbocDyUCh2RZeHcgEpGJo2bdoQGF177bWF9j0YrF69eiggPPbDcZ0FfcFD\nIgSEQPUIRI92FeqVlIhANBw58ImDO95nn32GXn/99WEtYRB31yEi4fwusUvDt09U+O1IR1IicvXV\nV3fq9Mv1y3L1diMiWdrryo365iHMgNQ2YaANppwqaRbkgQGuKCmDjKAbfX/55Zfb+/LYY48dCqZO\nMg3KjnxQFvcS2NedgNB+kRBQkAiB+iDQWB8RfBueeOKJYDyPlmDgNieffLJ57bXXDNEvw3L//feH\nT0X+vuqqqyLPJz153XXXxSa94IILzMEHH2yOPPLI2DTuQt72unLc91tvvWUmTpzoflbyPX36dOP6\nIfiXKEQHtpMPCGglYeqZBmGahumVYGDO3R6Cp+GHUkRZvjL4n+DMOn/+fIOfEFN0AWG2SbgnwBAZ\nP378sP+drVu3ml27dplXXnnFvPjii2bLli0mIB922fRll11WuJ5WiYL/aDqmYEBVnBAoAIHa+Ygw\nKDMoBZaHTvMC64M9h18GwjJXn4SQljx8AqtCJx9kxP/dufCHA8oNLDCdvOHr7jcPaVd+Fn+QOP0o\nn71deklR7fXrYbB2A45/vqrj4C21kKoDS5gdKAspLEMhzsm0CL8RCEhRS3qjmgJhwqGVsP7U89RT\nTxmWQSMQjsWLF5sFCxZ0Pq+++qq9dsoppxhWtfE/we7H+IAUTZZsRQX/cc7Fro8KLl7FCQEhkBWB\n4GFSS2EKJGiT/TAN4kvwsOxcY+ojLHF5/fOUzTRQlLh6+Xa+JOF0aaZmwnnDegQPfZskbmoma3vD\n9fq/b7rppiE+VQrYOqzj+iKtfkxnMEVQtWD+L2pqpahyqsakyvrxhWqbP1SVeKpuIVAkArWziAQD\nU0954YUXOmmi3uonT57cuU4Qpbi37SRTIuxjkkeI9hmWj370o8NOMU3STYpqr18H5nWsB3UR97Zd\nF33y6oG1gamaIoKfuSW9eXUa1Pwu3ksTrDaD2kdq92Aj0EgiArlwgh+IC3zmvsMDbBQRYVomiey+\n++5JksWm2XvvvUdcC/usROnnZyqivX55HLPpWJRu4XT9+v2lL33J4IPQNoGMuCmBrG0reklvVj2a\nmE8kpIm9Jp0HDYFGEpFB66Q6t9ePgOuIYNJv56hK+5xz8Q033NA6QuJ8EvL4jVBGsNqlzrdC7XQT\nCaldl0ghIRCJQCOJiG/N8J1NgzmrjlOpf1zlmz9OoWEJW0B66VdGewm53WtKKKx32b8hI6xSwjrS\nNmFagE84BH2adrqpnjR5BjWtSMig9rza3UQEGrl894gjjrAbaAE4vgVJfD2q6hyiS5500knDqn/2\n2Wc7v5lG6kVEymjvhAkTrBWio4gOSkfA9xvptstvN0XKWtJLnVhsmB6DEG7fvt1s27ZtmCqQV+4b\npivHjRtnfWCGJajJD5GQmnSE1BACCRFohEVk586dw5pzzDHHdH4Ti8Pf/Za3/IsvvrjjN1L1hnnE\nEfH1YykuOjs555xz3GHsd1ntZYlm24SBlAGzzpLHbwSrCrEwigjTThmEY585c6YN/37mmWeaFStW\nWOjGjBljd2VmZ2b3YdkuAvnnHFNwOHMTNt4N/jZBhX+cHnJMrbATVLUQSIlAIywivKHx0GOKglgi\nZ5xxho1t4Jw4Gdj9wd3HgAdm1dJNPxe3oZuOZbSXYFXEicgrrFBieqxICTvzpikbcsVbe90Fnw8G\nTawQzockqc6kdzsJJ83jpyMv8XUWLlzYCUgWhHzvGQsEAuULRCZYWmwee+wxax1Br9mzZ9vYJH66\nfh2LhPQLadUjBApGoMi1wEWWxV4sQVOHfQIi0qkiICcjQrSH0xOvwxc/fodflp+GY78cYntECfld\nunA97jzf4RDx/rVwvrg4ItSfpb1RertzxFQI3hrdz9Z8VxniPQuIgb9Q5vDqafdKcTFW6HdiyBQZ\nV4N2VLnXjOKEZLn7lEcI1AOB2k7N4FcRDNSxsS7wq1i3bp1NE+wZE4zvfxQiofKWniUK6h9LKeaI\nMOa8fWLNcYK+AdFKpV/R7XWm6zwrOVx76vS9atUqc+CBB9ZJpa664DdCX6R1YiUfH2cF6FYJlgsc\ngKdOnWqj6bL65tJLL+1pAelWZvgauhCldfPmzTZ0/DXXXGOnbfpxf7k63D0d1k2/hYAQqDcCo+BD\n9VZR2pWFAL4BbNde123a07Z7w4YNJtiAzQ6GafPWIT1kJK0Ta68pGq5DyPfff3/ry9HPwRrfkc9/\n/vMmsL5Y4lMGxpAQ2gQRkggBIdBMBGprEWkmnM3SGufD5cuXN0vpLto+99xz1uehS5JaX8rixNpt\nSS99ixVkzpw5dk+YfpIQgMbqgvVlzZo11iG2CAdbvwNFQnw0dCwEmouALCLN7bvcmjMw4BgazK8X\naqbPrVjGAljaysZtaZ0/M1ZXWjamW+ibpO1w0zM+0bjiiivMypUra4EHbYEMvfnmm2bt2rWFWC9E\nQkq7/VSwEOg7ArKI9B3y+lSIOZupjGXLltVHqYyasAx19OjRiQfvjNX0JRuEgk9SvxHSMtjzQSAh\nrCjDGpGUzJTZMO4zdvjFT2rKlCkdPbPWKRKSFTnlEwL1REAWkXr2S9+0YrDDfM+g1eR59g984APm\nkksuMTNmzOgbdv2oiP5J6jdCWhyjISFFWR6KbqMjSVn1EwkpukdUnhCoHgFZRKrvg0o1wMdg4sSJ\n5u67765UjzyVYw3B55qYJgzG/idPuXXIm8ZvhGBuTMd8/etfry2pvPHGG81+++1nzj///NTwioSk\nhkwZhEAjEJBFpBHdVK6SDNxYRfj2/QzKrbW40g899FC7ZJTlo2GhTb7gE1OH6QpfpyTHvfxGGKSx\nnNRlOqZbm5hCYorm2GOPNfPmzeuWtHNNJKQDhQ6EQOsQEBFpXZdmaxAm87ffftvO5WcroZpcLBFl\nVQZOqkmEQZDB2pekUx9+niqOne5YSXzhPMuwcQhtylJsiAXh4em7cHv8tnEsEhJGRL+FQLsQEBFp\nV39mbg2DGQPyrbfeWlmI7rTKF2UFoJzwjsi9Bse0uhaZHiuPT54IVrZlyxa7RLfIesoui+XFixYt\n6hr3JdzWsnVS+UJACPQfARGR/mNe2xp56DNF04QlsGVbAcJTOiwNrtO0FeTJORejW1OXYGMV4Z4j\n5khY6IM6E8KwvvotBIRANgRERLLh1tpcTHXcddddZuPGjZ2Bro6NZQBjOSjOj/0QfDQY7H3xrRL+\n+X4do9MXv/hFs++++yb2teiXbknrceQ3vGpLJCQpgkonBJqPgIhI8/uw8BbkXWJZuEKhAuuiX3hK\np9+OsBARrCHoccABB4RQas7P008/3e6B46wiIiHN6TtpKgSKQEBEpAgUW1hGXQZ7H1qmY9hMra5x\nMtAv7Ahb5pQOfYT0yyrk90WRxxAP9sNhwzyRkCKRVVlCoBkIiIg0o58q0ZKBbv369TZIVtVLXhnk\nWfKJZA2GVQWIUVM6Rfk9QHKa4M+TBHeWYF9wwQXm4osvTpJcaYSAEGgRAu9oUVvUlIIR4E0bnxH8\nMapcTcNbMg6N06dPt/FCnJNmwc0tpTgcXMNOrrTHlyxTOuw0DDmsmiD67chzPG3aNLsXTZ4ylFcI\nCIFmIiCLSDP7ra9aOyJA5NJrr712xMBaljJYQb761a+a22+/3Vx33XWNiZGRFo+oKZ1ejrBYq3bf\nfffGOqmGMcLPBcIbdggOp9NvISAE2oeAiEj7+rSUFjFY4p9BCPG5c+faEN1lWiYI2059+++/v7XK\nhK0KpTSyRoWGHWFRzZ/SYSpjyZIlw87VSP1MqrRpqikTAMokBAYUARGRAe34rM3GOrJgwQLz/PPP\nW0LCioeiSAJkZ/Xq1TbIFfotXLjQHH/88VlVbV0+N6Xz29/+1hxzzDGNjR0S1zEzZ860EWKbEh02\nrh06LwSEQDoEtOldOrwGPjVv5Q899JANzb19+3a7fJQBhCiZOGamFcgH1g/KwFfikUcesQSEFRQi\nIcPRBHs+7373uw0+FQiWk7bIhAkTDPeURAgIgcFCQBaRwervwlsLkWBlzaOPPmoee+wxM3r0aDud\ncvTRR9u62NnXF3aI3bVrl3nllVfMiy++aEOTM6ieeuqp5oQTTijMuuLX2bZjSB8B55YuXdqqpuGA\nu3jx4saFqm9VJ6gxQqACBLRqpgLQ21QlfiLseut2vuUNHbKxY8cOSziYxvFl7NixZsyYMeaUU04x\nn/vc51rl4+C3s8xjiBzWg7YJFjGJEBACg4eAiMjg9XmpLW7TktJSgVLhIxDAWRXfI4kQEAKDhYB8\nRAarv9VaIVBbBHB6zuJnVNsGSTEhIAQSISAikggmJRICQkAICAEhIATKQEBEpAxUVaYQEAKpEZA1\nJDVkyiAEWoGAiEgrulGNEALNR4Coqm5ZcvNboxYIASGQFAERkaRIKZ0QqAkChHZXvI2adIbUEAJC\nIDcCIiK5IVQBQqC/CIwbN85s27atv5X2oTZWzBxyyCF9qElVCAEhUCcERETq1BvSRQgkQIAN8Vat\nWpUgZbOSEOSOGDMSISAEBgsBEZHB6m+1tgUIEEQOy0GbwrvTLUTaPfLII1vQQ2qCEBACaRAQEUmD\nltIKgZogMGnSJLNu3bqaaJNfDUjVzp07DQHxJEJACAwWAiIig9Xfam1LEJg8ebLdeLAlzTGbNm0y\n06dPb0tz1A4hIARSICAikgIsJRUCdUGAnYmxIrQl9saiRYsM5EoiBITA4CEgIjJ4fa4WtwQBLAhf\n+cpXGt+a7373u3ZaBnIlEQJCYPAQGDUUyOA1Wy0WAs1HAGvIhz70IfODH/zA4MDaVDn99NPN0Ucf\nbS699NKmNkF6CwEhkAMBWURygKesQqBKBNgkbuLEiebuu++uUo1cdWMNIX7I+eefn6scZRYCQqC5\nCMgi0ty+k+ZCwPqJEFeE8OgQk6aJrCFN6zHpKwSKR0AWkeIxVYlCoG8IsNz12muvbeS0xvLly80b\nb7wha0jf7hZVJATqiYAsIvXsF2klBBIj8Ktf/cpgFbnuuuvMeeedlzhflQmdf8uaNWusn0uVuqhu\nISAEqkVARKRa/FW7ECgEAXwtpk6dap566qlGBAU77rjjzLHHHmvmzZtXSPtViBAQAs1FQFMzze07\naS4EOgiwembu3LnmzDPPNFhI6ixXXHGFVU8kpM69JN2EQP8QkEWkf1irJiFQOgIM8i+//LJZu3Zt\nLZf0ot/69evNxo0ba6lf6R2kCoSAEBiBgCwiIyDRCSHQXARuvPFGc9hhh5kpU6bUzjICCVm5cqV5\n4IEHREKae4tJcyFQOAIiIoVDqgKFQLUI+GSkDjv0MlXkLDVN8WGptgdVuxAYLARERAarv9XaAUEA\nMoIzKE6hGzZsqKzVrI7BOuOmi7S7bmVdoYqFQG0REBGpbddIMSGQDwGcQe+9915z7rnnmpkzZ/Z9\nqoY4ITjRQoiwhDQ5DH2+nlBuISAEuiEgItINHV0TAg1HgI3k2IsGIdbIzTffXHqLWEqMJYYddYkT\notUxpUOuCoRAoxHQqplGd5+UFwLJEYAgLFiwwEYz/exnP2sjmhZppXj44YfNihUr7N4xTQqulhxB\npRQCQqAMBEREykBVZQqBGiMAIbnjjjvMsmXLzIwZM8wpp5xiJk2alGnqhLIef/xxc/vtt5vRo0eb\nOXPmmE9+8pOZyqoxZFJNCAiBEhEQESkRXBUtBOqMAI6kTz75pHnkkUfMqlWrrC8HS3/HjBljxo8f\nb3bbbbcR6rNT7q5du8yWLVtsnkMOOcRMmzbNnHHGGY2I6DqiQTohBIRA5QiIiFTeBVJACNQDAawb\nW7dutUTjmWeeiVRq7NixHaJy4IEHNnLH38iG6aQQEAKVISAiUhn0qlgICAEhIASEgBDQqhndA0JA\nCAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUhICJSGfSqWAgIASEgBISA\nEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJCQERE94AQEAJCQAgIASFQGQIiIpVBr4qF\ngBAQAkJACAgBERHdA0JACAgBISAEhEBlCIiIVAa9KhYCQkAICAEhIARERHQPCAEhIASEgBAQApUh\nICJSGfSqWAgIASEgBISAEBAR0T0gBISAEBACQkAIVIaAiEhl0KtiISAEhIAQEAJC4P8Di13nEo+f\nAH0AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def update_input_layer(review):\n", " \n", " global layer_0\n", " \n", " # clear out previous state, reset the layer to be all 0s\n", " layer_0 *= 0\n", " for word in review.split(\" \"):\n", " layer_0[0][word2index[word]] += 1\n", "\n", "update_input_layer(reviews[0])" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 18., 0., 0., ..., 0., 0., 0.]])" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "layer_0" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": true }, "outputs": [], "source": [ "review_counter = Counter()" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for word in reviews[0].split(\" \"):\n", " review_counter[word] += 1" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[('.', 27),\n", " ('', 18),\n", " ('the', 9),\n", " ('to', 6),\n", " ('i', 5),\n", " ('high', 5),\n", " ('is', 4),\n", " ('of', 4),\n", " ('a', 4),\n", " ('bromwell', 4),\n", " ('teachers', 4),\n", " ('that', 4),\n", " ('their', 2),\n", " ('my', 2),\n", " ('at', 2),\n", " ('as', 2),\n", " ('me', 2),\n", " ('in', 2),\n", " ('students', 2),\n", " ('it', 2),\n", " ('student', 2),\n", " ('school', 2),\n", " ('through', 1),\n", " ('insightful', 1),\n", " ('ran', 1),\n", " ('years', 1),\n", " ('here', 1),\n", " ('episode', 1),\n", " ('reality', 1),\n", " ('what', 1),\n", " ('far', 1),\n", " ('t', 1),\n", " ('saw', 1),\n", " ('s', 1),\n", " ('repeatedly', 1),\n", " ('isn', 1),\n", " ('closer', 1),\n", " ('and', 1),\n", " ('fetched', 1),\n", " ('remind', 1),\n", " ('can', 1),\n", " ('welcome', 1),\n", " ('line', 1),\n", " ('your', 1),\n", " ('survive', 1),\n", " ('teaching', 1),\n", " ('satire', 1),\n", " ('classic', 1),\n", " ('who', 1),\n", " ('age', 1),\n", " ('knew', 1),\n", " ('schools', 1),\n", " ('inspector', 1),\n", " ('comedy', 1),\n", " ('down', 1),\n", " ('about', 1),\n", " ('pity', 1),\n", " ('m', 1),\n", " ('all', 1),\n", " ('adults', 1),\n", " ('see', 1),\n", " ('think', 1),\n", " ('situation', 1),\n", " ('time', 1),\n", " ('pomp', 1),\n", " ('lead', 1),\n", " ('other', 1),\n", " ('much', 1),\n", " ('many', 1),\n", " ('which', 1),\n", " ('one', 1),\n", " ('profession', 1),\n", " ('programs', 1),\n", " ('same', 1),\n", " ('some', 1),\n", " ('such', 1),\n", " ('pettiness', 1),\n", " ('immediately', 1),\n", " ('expect', 1),\n", " ('financially', 1),\n", " ('recalled', 1),\n", " ('tried', 1),\n", " ('whole', 1),\n", " ('right', 1),\n", " ('life', 1),\n", " ('cartoon', 1),\n", " ('scramble', 1),\n", " ('sack', 1),\n", " ('believe', 1),\n", " ('when', 1),\n", " ('than', 1),\n", " ('burn', 1),\n", " ('pathetic', 1)]" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "review_counter.most_common()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 4: Reducing Noise in our Input Data" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import time\n", "import sys\n", "import numpy as np\n", "\n", "# Let's tweak our network from before to model these phenomena\n", "class SentimentNetwork:\n", " def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):\n", " \n", " # set our random number generator \n", " np.random.seed(1)\n", " \n", " self.pre_process_data(reviews, labels)\n", " \n", " self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)\n", " \n", " \n", " def pre_process_data(self, reviews, labels):\n", " \n", " review_vocab = set()\n", " for review in reviews:\n", " for word in review.split(\" \"):\n", " review_vocab.add(word)\n", " self.review_vocab = list(review_vocab)\n", " \n", " label_vocab = set()\n", " for label in labels:\n", " label_vocab.add(label)\n", " \n", " self.label_vocab = list(label_vocab)\n", " \n", " self.review_vocab_size = len(self.review_vocab)\n", " self.label_vocab_size = len(self.label_vocab)\n", " \n", " self.word2index = {}\n", " for i, word in enumerate(self.review_vocab):\n", " self.word2index[word] = i\n", " \n", " self.label2index = {}\n", " for i, label in enumerate(self.label_vocab):\n", " self.label2index[label] = i\n", " \n", " \n", " def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):\n", " # Set number of nodes in input, hidden and output layers.\n", " self.input_nodes = input_nodes\n", " self.hidden_nodes = hidden_nodes\n", " self.output_nodes = output_nodes\n", "\n", " # Initialize weights\n", " self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))\n", " \n", " self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, \n", " (self.hidden_nodes, self.output_nodes))\n", " \n", " self.learning_rate = learning_rate\n", " \n", " self.layer_0 = np.zeros((1,input_nodes))\n", " \n", " \n", " def update_input_layer(self,review):\n", "\n", " # clear out previous state, reset the layer to be all 0s\n", " self.layer_0 *= 0\n", " for word in review.split(\" \"):\n", " if(word in self.word2index.keys()):\n", " self.layer_0[0][self.word2index[word]] = 1\n", " \n", " def get_target_for_label(self,label):\n", " if(label == 'POSITIVE'):\n", " return 1\n", " else:\n", " return 0\n", " \n", " def sigmoid(self,x):\n", " return 1 / (1 + np.exp(-x))\n", " \n", " \n", " def sigmoid_output_2_derivative(self,output):\n", " return output * (1 - output)\n", " \n", " def train(self, training_reviews, training_labels):\n", " \n", " assert(len(training_reviews) == len(training_labels))\n", " \n", " correct_so_far = 0\n", " \n", " start = time.time()\n", " \n", " for i in range(len(training_reviews)):\n", " \n", " review = training_reviews[i]\n", " label = training_labels[i]\n", " \n", " #### Implement the forward pass here ####\n", " ### Forward pass ###\n", "\n", " # Input Layer\n", " self.update_input_layer(review)\n", "\n", " # Hidden layer\n", " layer_1 = self.layer_0.dot(self.weights_0_1)\n", "\n", " # Output layer\n", " layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))\n", "\n", " #### Implement the backward pass here ####\n", " ### Backward pass ###\n", "\n", " # TODO: Output error\n", " layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.\n", " layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)\n", "\n", " # TODO: Backpropagated error\n", " layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer\n", " layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error\n", "\n", " # TODO: Update the weights\n", " self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step\n", " self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step\n", "\n", " if(np.abs(layer_2_error) < 0.5):\n", " correct_so_far += 1\n", " \n", " reviews_per_second = i / float(time.time() - start)\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(training_reviews)))[:4] + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] + \" #Correct:\" + str(correct_so_far) + \" #Trained:\" + str(i+1) + \" Training Accuracy:\" + str(correct_so_far * 100 / float(i+1))[:4] + \"%\")\n", " if(i % 2500 == 0):\n", " print(\"\")\n", " \n", " def test(self, testing_reviews, testing_labels):\n", " \n", " correct = 0\n", " \n", " start = time.time()\n", " \n", " for i in range(len(testing_reviews)):\n", " pred = self.run(testing_reviews[i])\n", " if(pred == testing_labels[i]):\n", " correct += 1\n", " \n", " reviews_per_second = i / float(time.time() - start)\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(testing_reviews)))[:4] \\\n", " + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] \\\n", " + \"% #Correct:\" + str(correct) + \" #Tested:\" + str(i+1) + \" Testing Accuracy:\" + str(correct * 100 / float(i+1))[:4] + \"%\")\n", " \n", " def run(self, review):\n", " \n", " # Input Layer\n", " self.update_input_layer(review.lower())\n", "\n", " # Hidden layer\n", " layer_1 = self.layer_0.dot(self.weights_0_1)\n", "\n", " # Output layer\n", " layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))\n", " \n", " if(layer_2[0] > 0.5):\n", " return \"POSITIVE\"\n", " else:\n", " return \"NEGATIVE\"\n", " " ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%\n", "Progress:10.4% Speed(reviews/sec):91.50 #Correct:1795 #Trained:2501 Training Accuracy:71.7%\n", "Progress:20.8% Speed(reviews/sec):95.25 #Correct:3811 #Trained:5001 Training Accuracy:76.2%\n", "Progress:31.2% Speed(reviews/sec):93.74 #Correct:5898 #Trained:7501 Training Accuracy:78.6%\n", "Progress:41.6% Speed(reviews/sec):93.69 #Correct:8042 #Trained:10001 Training Accuracy:80.4%\n", "Progress:52.0% Speed(reviews/sec):95.27 #Correct:10186 #Trained:12501 Training Accuracy:81.4%\n", "Progress:62.5% Speed(reviews/sec):98.19 #Correct:12317 #Trained:15001 Training Accuracy:82.1%\n", "Progress:72.9% Speed(reviews/sec):98.56 #Correct:14440 #Trained:17501 Training Accuracy:82.5%\n", "Progress:83.3% Speed(reviews/sec):99.74 #Correct:16613 #Trained:20001 Training Accuracy:83.0%\n", "Progress:93.7% Speed(reviews/sec):100.7 #Correct:18794 #Trained:22501 Training Accuracy:83.5%\n", "Progress:99.9% Speed(reviews/sec):101.9 #Correct:20115 #Trained:24000 Training Accuracy:83.8%" ] } ], "source": [ "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Progress:99.9% Speed(reviews/sec):832.7% #Correct:851 #Tested:1000 Testing Accuracy:85.1%" ] } ], "source": [ "# evaluate our model before training (just to show how horrible it is)\n", "mlp.test(reviews[-1000:],labels[-1000:])" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
bbglab/adventofcode
2016/ferran/day7.ipynb
1
4536
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "# Chellenge 7\n", "\n", "## Challenge 7.1" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "myinput = '/home/fmuinos/projects/adventofcode/2016/ferran/inputs/input7.txt'" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def fourlyndromes(mystr):\n", " for i in range(len(mystr)-3):\n", " if (mystr[i] == mystr[i+3]) and (mystr[i+1] == mystr[i+2]) and (mystr[i] != mystr[i+1]):\n", " return True\n", " return False\n", "\n", "def separate_brackets(mystr):\n", " bracket_dict = {'[': set([]), ']': set([])}\n", " state = ']'\n", " myword = ''\n", " for char in mystr:\n", " if char == '[' or char == ']' or char == '\\n':\n", " if myword != '':\n", " bracket_dict[state].add(myword)\n", " myword = ''\n", " state = char \n", " else:\n", " myword += char\n", " return bracket_dict\n", " \n", "def tls_count(myinput):\n", " tls_counter = 0\n", " with open(myinput, 'rt') as f:\n", " for line in f:\n", " bracket_dict = separate_brackets(line)\n", " inside = False\n", " for word in bracket_dict['[']:\n", " if fourlyndromes(word):\n", " inside = True\n", " continue\n", " outside = False\n", " for word in bracket_dict[']']:\n", " if fourlyndromes(word):\n", " outside = True\n", " continue\n", " if (not inside) and outside:\n", " tls_counter += 1\n", " return tls_counter" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "115" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tls_count(myinput)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Challenge 7.2" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def threelyndromes(mystr):\n", " myset = set([])\n", " for i in range(len(mystr)-2):\n", " if (mystr[i] == mystr[i+2]) and (mystr[i] != mystr[i+1]):\n", " myset.add(''.join(mystr[i:i+3]))\n", " return myset\n", "\n", "def transform(aba):\n", " return aba[1]+aba[0]+aba[1]\n", "\n", "def ssl_count(myinput):\n", " ssl_counter = 0\n", " with open(myinput, 'rt') as f:\n", " for line in f:\n", " bracket_dict = separate_brackets(line)\n", " inside = set([])\n", " for word in bracket_dict['[']:\n", " inside = inside.union(threelyndromes(word))\n", " outside = set([])\n", " for word in bracket_dict[']']:\n", " for aba in threelyndromes(word):\n", " outside.add(transform(aba))\n", " if len(outside.intersection(inside)) > 0:\n", " ssl_counter += 1\n", " return ssl_counter" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "231" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ssl_count(myinput)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:adventofcode]", "language": "python", "name": "conda-env-adventofcode-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
scott-maddox/obpds-binder
examples/degenerate_pn_diode.ipynb
1
33651
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from ipywidgets import interactive, fixed\n", "from obpds import *\n", "\n", "layers = [\n", " Layer(1*um, InAs, 1e15/cm3), # p-type layer\n", " Layer(1*um, InAs, -2e18/cm3), # n-type layer\n", " ]\n", "\n", "d = TwoTerminalDevice(layers=layers,\n", " Fp='left',\n", " Fn='right')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHuCAYAAAAWfJF3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8leX9//HXxZ4JCTuMBEFwIAIOhlSCAwGlDgQXCFpH\nsVjBX0vBGcQtWkVrq9a6UHG2yFCozK+rIDIFZCghEFYIMYxAQnL9/vhkk4QEDjkZ7+fjcT/OPa5z\n359ziOaTazrvPSIiIiJSflUJdgAiIiIicmKU0ImIiIiUc0roRERERMo5JXQiIiIi5ZwSOhEREZFy\nTgmdiIiISDkX9ITOOdfPObfOObfeOfeXAq7f6Jxbkbl95Zw7KxhxioiIiJRVLpjz0DnnqgDrgYuB\neGAJcL33fl2uMt2Btd77X51z/YAY7333oAQsIiIiUgYFu4bufGCD9z7We58GTAWuzF3Ae/+d9/7X\nzMPvgBalHKOIiIhImRbshK4FEJfreCtFJ2y3AZ+f1IhEREREyplqwQ6guJxzfYBbgF5FlNE6ZiIi\nIlJueO9dIO4T7IRuG9A613HLzHN5OOc6Aa8C/bz3e4u6odamleKIiYkhJiYm2GFIOaGfFyku/axI\nSTgXkFwOCH6T6xKgnXMu0jlXA7ge+Cx3Aedca+ATYJj3flMQYhQREREp04JaQ+e9T3fOjQLmYMnl\n6977tc65O+2yfxV4EAgHXnaWyqZ5788PXtQiIiIiZUuwm1zx3n8BdMh37pVc+7cDt5d2XFKxRUdH\nBzsEKUf08yLFpZ8VCZagzkMXaM45X5E+j4iIiFRczrkKMyhCREQkIKKiooiNjQ12GCJHiYyMZPPm\nzSf1GaqhExGRCiGztiPYYYgcpbCfzUDW0AV7lKuIiIiInCAldCIiIiLlnBI6ERERkXJOCZ2IiIhI\nOaeETkREpALp06cP//rXv47rvW3atGHevHkAPPHEE9xxxx2BDO2YFi5cSKtWrUr1mRWFEjoREZGT\nLCoqijp16hASEkLz5s255ZZbOHjwYLDDKtL48eN59dVXS/y+6OhoateuTUhICGFhYURHR7N69epi\nvz/3+qa5E0wpmhI6ERGRk8w5x8yZM0lOTuaHH37g+++/59FHHy3xfdLT009CdIHlnOPll18mOTmZ\nxMREevfuzbBhw4IdVoWnhE5ERKQUZM1D1rx5c/r3759da/Xmm29yxhlnEBISQrt27fLUimU1QT79\n9NM0b96cW2+9laSkJAYOHEiTJk1o2LAhAwcOZNu2bXmetXHjRrp160ZoaChXX301SUlJ2dc+++wz\nOnbsSHh4OBdddBHr1q0rMN4JEybkScS++uorLrjgAsLCwoiMjOTtt98+5md1znH99dezdu3a7Gup\nqamMHj2aFi1a0LJlS8aMGUNaWtpR97j55pvZsmULAwcOJCQkhEmTJnH33XdTv359QkJCqF+/PtWr\nV+eRRx4BrDZv0qRJdOrUiZCQEG677TZ27drFgAEDCA0NpW/fvvz666/Z9x8yZAjNmzfPrkVcs2ZN\n9rVbbrmFUaNGccUVVxASEkKPHj345Zdfsq9XqVKFV155hfbt2xMeHs6oUaMK/S5KixI6ERGpFJwL\n7PHxiouLY9asWXTt2hWApk2bMmvWLJKTk3njjTcYM2YMy5cvzy6/Y8cOkpKS2LJlC6+++ioZGRnc\neuutxMXFsWXLFurUqXNUQvHOO+/w5ptvsmPHDqpWrcrdd98NwPr167nxxhuZPHkyu3fvpn///gwc\nOJAjR44UGGtW82dsbCwDBgzgnnvuISEhgeXLl9O5c+djftbU1FSmTJlC9+7ds889+uijLF68mJUr\nV7JixQoWL15cYG3l22+/TevWrZkxYwbJycn86U9/4sUXX2Tfvn0kJyfz1VdfER4ezlVXXZX9nk8/\n/ZR58+bx008/MX36dPr378+TTz7J7t27SU9PZ/LkydllBwwYwKZNm9i1axddu3blpptuyvP8Dz74\ngAkTJpCUlETbtm25//7781yfOXMmS5cuZcWKFXz44YfMmTPnmN/HSeW9rzCbfRwREamMjvU7IP/l\nEz0uiaioKF+/fn0fFhbmo6Ki/KhRo/yhQ4cKLHvVVVf5yZMne++9X7Bgga9Zs6ZPTU0t9N7Lli3z\n4eHh2cfR0dF+/Pjx2cdr1qzxNWvW9BkZGX7ixIn+uuuuy76WkZHhW7Ro4RcuXJgd59y5c7333sfE\nxPhhw4Z5771/4okn/DXXXFOszxodHe3r1q3rw8LCfM2aNX2DBg38vHnzsq+3bdvWf/HFF9nHs2fP\n9m3atMn+vK1atcq+ljue3Hbt2uWjoqL8hx9+mKfse++9l308aNAgf9ddd2Ufv/jii/7qq68uMOa9\ne/d655xPTk723ns/YsQIf/vtt2dfnzVrlj/99NOzj51z/ptvvsk+HjJkiH/qqacK/U4K+9nMPB+Q\nHEg1dCIiUinkX3npRI9Latq0aSQmJvLLL7/w4osvUrNmTQA+//xzevToQcOGDQkLC+Pzzz8nISEh\n+32NGzemevXq2ccpKSnceeedREVF0aBBA3r37k1SUlKepaVyjxSNjIwkLS2NhIQE4uPjiYyMzL7m\nnKNVq1ZHNdnmFxcXR9u2bYv9WSdPnkxiYiKHDh1i+vTpDBo0KLuJOT4+ntatW+eJLz4+vtj3PnLk\nCIMHD2bo0KEMHjw4z7WmTZtm79euXfuo4/379wOQkZHBuHHjaNeuHQ0aNKBNmzY45/J8782aNcve\nr1OnTvZ7C3pWQddLmxI6ERGRUuALyAhTU1O59tprGTt2LLt372bv3r30798/T1mXr6332WefZcOG\nDSxZsoSkpCQWLVp01P3j4uKy92NjY6levTqNGjUiIiKC2NjYPPeLi4ujZcuWRcbeqlUrNm7cWPwP\nm0uvXr1o165ddpNk/hhiY2OJiIgo8L35PzvA3XffTYMGDZg4ceJxxQPw7rvvMn36dObNm0dSUhKb\nN2/O3dpXLimhExERCZLU1FRSU1Np1KgRVapU4fPPPz9mX6x9+/ZlTwuSmJhITEzMUWWmTJnCunXr\nOHjwIA8//DCDBw/GOceQIUOYOXMm8+fP58iRI0yaNIlatWrRo0ePIp950003MXfuXD7++GPS09NJ\nTExkxYoVxfqM3377LWvXrqVjx44A3HDDDTz66KMkJCSQkJDAxIkTCx0F26xZM37++efs41deeYWF\nCxcyZcqUYj27MPv376dmzZqEhYVx4MABxo8fX2DyWJ4ooRMRETnJCksW6tWrx+TJkxk8eDDh4eFM\nnTqVK6+8ssh7jR49moMHD9KoUSN69uzJgAEDjnrWsGHDGD58OBEREaSmpvLCCy8A0L59e6ZMmcKo\nUaNo3LgxM2fOZPr06VSrVq3IOFu1asWsWbOYNGkS4eHhdOnShZUrVxYa46hRowgJCSEkJIThw4fz\n2GOP0bdvXwAeeOABzj33XDp16sTZZ5/Nueeee9SAgyzjxo1j4sSJhIeH89xzzzF16lR++eUXIiIi\nske7PvnkkwXGXlSCdvPNN9O6dWtatGhBx44d6dmzZ6FlC1KSZ5UWV56rF/NzzvmK9HlERKT4nHPl\nuslMKq7CfjYzzwckG1QNnYiIiEg5p4ROREREpJxTQiciIiJSzimhExERESnnqgU7gEDLWrc4a8BJ\n7oEnZWAQioiIiEjAVbiErtoJfqIqVXISP+9zjtPTISMjb1LovT2vWjW75j1kTeadmmrvyX0vgBo1\nbMu6X+ZE4Rw6BGlp9rys8t5DrVpQu7bdLyPD9gEOHoTDh6FqVTvOen7dulCnjl3LyLB9gP37ISUl\n5/vJKl+vnm0pKXauXj2L+ddf7RlZnyc93cqHhlqZQ4fsXFiYxbx3rz2jdm17/5EjVr5pU2jY0K6l\np0OTJlZ+xw5ISoKQEDs+dMjKt2plZZKT7R7Nm9v1XbvsXKNG9v0dOWLPad3aYkhNtTgbN7aYjxyx\n94WF2XHVqvbZa9e24+rV7T5Z32/t2jn7tWrl/DuIiIiUBxUuoctv1Ch48UXb1q+HrHV5r70WPv30\n6PK//z08/zz87W9W/vnn7fx118F//nP00i+33QbPPgt//zts2GD7ADfdBNOmHV1++HB4+ml45RXY\nuNH2vbfz06dbUpXbDTfAk0/Ca6/Bpk3wxBNW/tZbYebMnBrJLIMGwWOPweuvW/nHHrPyd9wBs2ZZ\nopPbb38LjzwCb7wBP/8MEybY+ZEj4YsvchKlLP36wUMPWfnYWLjvPov5nntg7lzYty9v+T597NqH\nH8LWrfCHP1j5Rx6BVauO/v5POQWuuspi3b4dLrrIyr/0Evzww9HlzzsP+vaF776DhAT4zW8sMZ49\nGzZvtqQvK+n1HiIjLWncts2SzEaNLJndtcsSWLDvtEoVe1/9+pbEgh03bZqTVNesafcLCbFz9erZ\n/UJC7H25X8PDLVEUERE5GSrcPHRr1tjn2bvXfrG3b2+1PHv2WHLSvLmV/ekn2LLFaoO8h8REu37m\nmfYLf/duqzXKWg5v9Wr45Rf7hQ52v8OHoXNniIqyGqdDh2wfYNkyS9iynrd7t93/nHOgXTuIj7cE\nol07u75kCaxbBy1a2PGuXXb/7t2hQweIi7PyHTrY9W++gR9/hKzVWnbutOf/5jf2GTZvtvJnnGHX\nFy2CFSusRgty4o2OhrPPtmRu/37o1Mmuf/mlJVCtWlmCEx9vic9ll1lMa9da8nb++Vb+gw/g//7P\nEpz0dEveDh6EIUMsCVyyxP5NMueV5OWXLemKjLSEbds2OHDAEtXrr4f58+07GzLEyt9/P3zyiSVG\naWmWvB0+bAn7fffBlCkW49ixVv766y2m/MaMgeees8R72zbbB0tsp08/uvzvfgfjx1sCHhcHd91l\n38ODD8LixZb41axpP0PO2XffooX9fCUnW5KXnGzxOmcJX+PGOYleVJTVYDZsaD+LzZtDRIS91q+v\nbgIiJaF56KSsKo156CpcQleRPo+cGO8tiT50yJKwlBRrkm7SxJLHI0dyat/++19L0OrWtXJbtliz\n85AhVmO4aFFOQgswdChMnXp0Den48fD447YdOGA1pGDvy72aT1aTb79+cNZZlsAmJFhiFx9vCTFY\nwh4RYYlgixb2B0CbNrZFRVnCKCJGCR306dOHYcOGceutt5b4vW3atOH111/noosu4oknnuCXX37h\n1VdfPQlRVj6lkdBV+CZXqbycs9qzmjVzErcsdevmPb70UtsKc+GFeY+nTLHt8GGrgfv1V6vlbdzY\nro8cmTfZ69rVksSDB612NDXVahrPOceSwAMHrPZx3Dgr37u31XimpFhN6JYtsHy53Wf2bFi50mpx\nQ0IsuWvdGk47zWpkTz/danKz+k+KSPBFRUWxa9cuqlWrRt26denXrx9/+9vfqFNG/0MdP358sEOQ\nElJCJ3ICata0JC4rkcsSFpb3+IknbIOcJv7t2y2JA+tTmDsBbNjQym3bZluWP/7R+iSOHGnJ2+DB\n1rz+//6f9ZlcudK6Bqxfb7V6Z59t5bp0sWSwffucPoUiUnqcc8ycOZM+ffqwfft2+vbty6OPPsrj\njz9e7Hukp6dTVf8BSyE0lk+klDlnCVvHjtacCjZgInet4aefWm3eunXw+ec26GbsWMhaPzqrb2Kz\nZtanMT7eavCmT7em2/Bwq6W74gp71jPPwCWXWE3lBRdY38M33rC+fpW8hUqk1GQ1uTVv3pz+/fuz\nevVq3nzzTc444wxCQkJo165dnibOhQsX0qpVK55++mmaN2/OrbfeSlJSEgMHDqRJkyY0bNiQgQMH\nsi33X33Axo0b6datG6GhoVx99dUkJSVlX/vss8/o2LEj4eHhXHTRRaxbt67AWCdMmMCwYcOyj7/6\n6isuuOACwsLCiIyM5O233w7kVyMBoIROpIyqXduSsn79bPT1U0/ZqF6w0cOnnppT9o47bEBMaKg1\n6e7YYf3y2rWzJt26deG996xv3mOPwYIF8NZbNkilaVMbFPLcc9aPMC0tKB9X5KRzruCtJOUDIS4u\njlmzZtGlSxeaNm3KzJkzSU5O5o033mDMmDEsX748u+yOHTtISkpiy5YtvPrqq2RkZHDrrbcSFxfH\nli1bqFOnDqNGjcpz/3feeYc333yTHTt2ULVqVe6++24A1q9fz4033sjkyZPZvXs3/fv3Z+DAgRzJ\nP/1B9ue3DxwbG8uAAQO45557SEhIYPny5XTu3DkwX4YEjAZFiFQg3luT67JlNkr53nuthu6rr6zZ\nNasWsGZN62vXr5+NbB43zkYsr19v09H06gWXX26DOdq2De5nEimuYw2KKCwhK+wtBZU/3l8xbdq0\nYc+ePVSrVo3Q0FCuuOIKJk2aRM2syUgzXX311Vx00UXcfffdLFy4kMsuu4x9+/ZRPWtS0HyWL1/O\nxRdfzJ49ewAbFNGjR4/spty1a9fSpUsXUlJSeOyxx1i9ejVTp07N/CyeVq1a8d5773HhhRfmGRQx\nYcIENm3axNtvv82TTz7JkiVL+OSTT47vw4sGRYhIyThnc/mdcorNSZilV6+c/UOH7HXFCtuy3teh\ng43mPXTI+trVqQMTJ1oS2L+/zd3Yq5f64En5VdJkLND1A9OmTaNPnz55zn3++ec88sgjrF+/noyM\nDFJSUuiUNX8U0Lhx4zzJXEpKCqNHj2b27NkkJSXhvWf//v1477Nr1FplzbcFREZGkpaWRkJCAvHx\n8URGRmZfc87RqlWro5ps84uLi6Ot/rIr89TkKlLJ1Kplc/x98QX86U82cMJ7WLPGmmwPHLCm2o8+\nsr55b75p2z33WJ+/O++0KVjUNCtSMvlraFJTU7n22msZO3Ysu3fvZu/evfTv3z9POZevmvDZZ59l\nw4YNLFmyhKSkJBYtWnTUvePi4rL3Y2NjqV69Oo0aNSIiIoLY2Ng894uLi6Nl1oSmhWjVqhUbN24s\n2YeVUqeETqQSCgmx5tRnnrHBFDt2wMcfW01d27awdKmVc84GToSH22orX39tSd/QoTYv3j33WPOu\nejqIlFxqaiqpqak0atSIKlWq8PnnnzMn94SVBdi3bx+1a9cmJCSExMREYmJijiozZcoU1q1bx8GD\nB3n44YcZPHgwzjmGDBnCzJkzmT9/PkeOHGHSpEnUqlWLHj16FPnMm266iblz5/Lxxx+Tnp5OYmIi\nK7Kq96XMUEInIjRtCrn/n567UiApyebBu/BCm6tvyRIbMfvddzY9yxVX2ACNv/7VpmMRkaPlr2kD\nqFevHpMnT2bw4MGEh4czdepUrrzyyiLvM3r0aA4ePEijRo3o2bMnAwYMOOo5w4YNY/jw4URERJCa\nmsoLL7wAQPv27ZkyZQqjRo2icePGzJw5k+nTp1Mtc5HvgmIEq6GbNWsWkyZNIjw8nC5durBy5crj\n+RrkJNKgCBEp0rp1NiL23Xdt+bMsTz1lU6nccYcdp6TAjBk2N94f/2jTsoiUJq0UIWWVlv4qISV0\nIidPRgYsXGgrZHz0ka1kcfbZMHkyXHONLVO2c6dNqbJzp61zfO+9MGCA1qSV0qGETsoqJXQlpIRO\npHSkpNg8efklJtpo2fXrYeZM66OXkmK1eVddpcROTi4ldFJWlUZCpz50IlJiBSVzYDVze/bAsGEQ\nFQX//KcleY88YvPgTZumARQiIieDEjoRCZhly2xalJkzbeWKO++Eu++2SY4ffdTWnD3zTPj++2BH\nKiJSsQQ9oXPO9XPOrXPOrXfO/aWA6x2cc9845w455+4NRowiUjw33mgrTTz4oE1vsmwZxMTA66/b\naNjISDj3XFtqbOjQvIMsRETk+AU1oXPOVQFeAi4DzgRucM6dlq/YHuBu4JlSDk9EjkPjxtbE+vPP\nNgq2YUNL5ryHUaPgX/+yPnZt2lh/uwkTID092FGLiJRvwa6hOx/Y4L2P9d6nAVOBPJPweO8TvPdL\ngYJXDxaRMik83AZDbNkCzZrZgIirr4Zq1aBePeje3ea/mz8funWzZlkRETk+wU7oWgC5G122Zp4T\nkQqiTp2CzzdubKtPzJ9v89Zdcglcfz0c0Z9uIiIlVi3YAQRa7mVQoqOjiY6ODlosIlKwjAybo+77\n7+Gxx6wp9okn4McfbTDFlCm2BJmIlH2xsbG0adOGI0eOUKVKyeqJFi5cyNChQ7PXn+3YsSMvv/wy\nF1544ckINegWLFjAggULTsq9g53QbQNa5zpumXnuuBW0rp2IlC2pqdZ/7uuv4U9/gk8/hb/8xaY7\neekla44dOdL64olUBFFRUaSkpLB582ZqZ8778/rrrzNlyhTmz58f5OhOXGHLhpX0vatXry7x+wtK\nKO+++27mzp3L3Llzad68+XHHFmj5K5omTJgQsHsHu8l1CdDOORfpnKsBXA98VkR5TUsqUgHUqmUj\nX2fOhIgI+OYbm97ko4/gnnvgrrvgySdh9Gg1wUrF4JwjIyOD559//qjzZV1GRkawQzimrO/Re88d\nd9zBokWLWLRoUZlK5k62oCZ03vt0YBQwB/gRmOq9X+ucu9M5dweAc66pcy4OGAPc75zb4pyrF7yo\nRSRQBgyA1athyBDYvx/i4+18VBQsWmTryF56KezYEdQwRQLiz3/+M88++yzJyckFXv/mm284//zz\nCQsLo1u3bnz77bfZ1/r06cNDDz1Er169CAkJoV+/fiQmJhb6rD59+nDffffRrVs3QkNDufrqq0lK\nSsq+PmTIEJo3b05YWBjR0dGsWbMm+9ott9zCXXfdxeWXX079+vVZsGABs2bNomvXroSGhhIZGXlU\nzZL3ntdff50WLVrQokULnn322exrqampjB49mhYtWtCyZUvGjBlDWlpagXG3adOGefPmAZZIPv74\n47Rr147Q0FDOO+88tm0rvBEvPT2dESNG8MMPP7Bw4UIaNWoEwM8//8zFF19Mo0aNaNKkCUOHDs3z\nb9CmTRueffZZzj77bMLCwrjhhhtITU3Nvj5jxgy6dOlCWFgYvXr1YtWqVYXGEFTe+wqz2ccRkfIm\nI8P76dPtNbcjR7z/05+8r1HD+9mzgxOblB9l+XdAVFSUnzt3rh80aJB/4IEHvPfe//Of//R9+vTx\n3nufmJjow8LC/LvvvuvT09P9+++/78PCwnxiYqL33vvo6Gjfrl07v3HjRn/o0CEfHR3tx48fX+jz\noqOjfcuWLf2aNWv8wYMH/aBBg/zQoUOzr7/xxhv+wIEDPjU11Y8ZM8Z37tw5+9qIESN8gwYN/Lff\nfuu99/7w4cN+4cKFfvXq1d5771etWuWbNWvmp02b5r33fvPmzd4552+88UafkpLiV61a5Rs3buzn\nzp3rvff+wQcf9D169PAJCQk+ISHB9+zZ0z/00EPee+8XLFjgW7VqddT35L33Tz/9tO/UqZPfsGGD\n9977lStXZn8fuWU9/9prr/U9evTwycnJea5v3LjRf/nllz4tLc0nJCT43r17+zFjxuR5Zrdu3fyO\nHTv83r17/emnn+5feeUV7733P/zwg2/SpIlfsmSJz8jI8G+//baPioryqamphX73BSnsZzPzfGBy\noEDdqCxsZfk/ZhE5Pi+95H10tPdNm3r/1VfBjkbKsmP9DrDZEE98Ox5Zicrq1at9gwYNfEJCQp6E\n7p133vHdunXL854ePXr4t956y3tvCdpjjz2Wfe3ll1/2/fv3L/R5+RO+NWvW+Jo1a/qM/H81ee/3\n7t3rnXPZidCIESP88OHDi/w8o0eP9vfee6/3PiehWr9+ffb1sWPH+ttuu817733btm39F198kX1t\n9uzZvk2bNt77ohO6Dh06+OnTpxcZR+7nh4aG+ueee+6Y5f/zn//4rl275nnme++9lyf2kSNHeu+9\nHzlyZHbymaVDhw5+0aJFx3xObqWR0AW7D52ISJGGDIEvv4S33rJ57J55Bg4fDnZUUh4FKqU7EWee\neSZXXHEFTzzxRJ7z8fHxREZG5jkXGRmZp4mxWbNm2ft16tRh//79AIwcOZL69esTEhLCk08+mV2m\nVatWee6VmppKQkICGRkZjBs3jnbt2tGgQQPatGmDc46EhIQC3wuwePFiLrroIpo0aUKDBg145ZVX\n8pR3ztGyZcs8z4vP7EMRHx9P69atC7xWlLi4OE455ZRjlst6/owZM4iJieGNN97Ic23Xrl3ccMMN\ntGzZkgYNGjB06NA8sQM0bdo0ez/3dxsbG8uzzz5LeHg44eHhhIWFsXXr1mLFX9qU0IlImbVxI5x2\nmk1Q3LcvPP20jYZ99dVgRyZy/GJiYnjttdfyJGsRERFs3rw5T7ktW7bQosWxp2b9+9//zr59+0hO\nTmbcuHHZ5+Nyra0XGxtLjRo1aNSoEe+++y7Tp09n3rx5JCUlsXnz5twtXcDRgzVuvPFGrrrqKrZt\n20ZSUhJ33nlnnvL5n7dlyxYiIiKyP1tsbGyeWLKuFaVVq1Zs2rTpmOWy9OzZk+nTpzN69Gjef//9\n7PP33XcfVapU4ccffyQpKYkpU6YcFXtRMdx///0kJiaSmJjI3r172b9/P9ddd12x4yotSuhEpMz6\n3/9g7164/35bRqxTJ5g82eau+/jjYEcncnzatm3Lddddx+TJk7PPDRgwgA0bNjB16lTS09P54IMP\nWLt2LQMHDjzu50yZMoV169Zx8OBBHn74YQYPHoxzjv3791OzZk3CwsI4cOAA48ePP+Zo2/379xMW\nFkb16tVZvHgx7733Xp7r3nsmTpxISkoKP/74I2+88QbXX389ADfccAOPPvooCQkJJCQkMHHiRIYN\nG3bM+G+77TYefPBBNm7cCMCqVavYu3dvgWWzErQLL7yQTz75hDvuuIN///vfAOzbt4969epRv359\ntm3bxjPPFH8l0dtvv51//OMfLF68GIADBw4wa9YsDhw4UOx7lBYldCJSZt10E7z/vi0XNmkS/P3v\nNj/d7Nk2zcmwYbB9e7CjFDm2/AnTQw89xMGDB7PPh4eHM2PGDCZNmkSjRo2YNGkSM2fOJCwsrMD3\nF8ewYcMYPnw4ERERpKam8sILLwBw880307p1a1q0aEHHjh3p2bPnMe/18ssv8+CDDxIaGsqjjz56\nVA2Vc47C/8e4AAAgAElEQVTevXvTrl07Lr30UsaOHcvFF18MwAMPPMC5555Lp06dOPvsszn33HO5\n//77C3xO7s957733MmTIEPr27UtoaCi33XYbKSkpx3zfJZdcwgcffMDw4cOZOXMmMTExLF26lAYN\nGjBw4EAGDRpU6HvzO+ecc3jttdcYNWoU4eHhtG/fnrfeeqvoLytIXHGrHcsD55yvSJ9HRMysWTBo\nEBw6BLfdZk2u995rkxDPmAGXXRbsCKUscM4VuymtouvTpw/Dhg3j1ltvDXYoQuE/m5nnAzIZoWro\nRKTMGzAAPv/c1oXt1AmcgwcegKlT4eabbS47EZHKLNhLf4mIFEt0NGzYYCtLADRsaLV2qanQr5+t\nAfuvf0HmqkoilVp5WIFCAktNriJS7rVvDykplvDVqhXsaCRY1OQqZZWaXEVEiuG77+C882yghH6f\ni0hlpBo6ESnX1q2DtDRb/7V7d+jfHzp0gNtvD3ZkUtpUQydllWroRESKsHIl9OgBAwdaUvfMM/Dc\nc+pHJyKVjwZFiEi51b49nHoqLFlio10/+ywnqRs8GGrWDHaEUpoiIyM1GEDKpPzLup0ManIVkXIt\nNha6dLEVJR5/HMaNszVfTzvNml5vvhmqVg12lCIiRwtkk6sSOhEp92bNgssvhypV4JtvIDLS+tR1\n7AhffgkNGgQ7QhGRo6kPnYhILgMGwJ/+ZDVxP/4IzZrBww/biNd69YIdnYjIyacaOhGpEA4dgo0b\nrVYOLJm75BJL9m65xRK7GjWCG6OISG5qci2EEjoRyW39epufrnZtW0ViwIBgRyQikkMJXSGU0IlI\nfkOG2PJg//lPsCMREclLCV0hlNCJSH6JiTbidcECOOOMYEcjIpJDCV0hlNCJSG4zZtiUJh99BHPm\nwAUXwDnnQL9+wY5MRESjXEVEjumpp2wFifvug7vusvVe58yxuelERCoa1dCJSIX088/W1HrkCKxY\nAYsWwezZtpqEiEhZoBo6EZFjOOUUuPNOm77kvvvgd7+DH36AZcsgKcmmORERqShUQyciFdauXdC2\nLezfbytIfPcdfPABbNoE774LffsGO0IRqcxUQyciUgxNmsAf/2j7L70Et94Ka9fCJ58omRORiqVa\nsAMQETmZ7rkHGjeG22+HunXh5pttcMSFFwY7MhGRwFGTq4hUKuvXQ69e1p/u3/+GUaPABaTBQ0Sk\nZNTkKiJynNq3h86doWdPG/164ECwIxIROXFK6ESk0hkxwqY0+ec/oV69YEcjInLi1OQqIpXOwYPQ\nsiWsXg0REcGORkQqKy39VQgldCJSlNRU+PRTGyTx/vvQqJFNPBwVZX3pRERKk/rQiYgchzffhBtu\ngKefhuHD4cMPoVo16N8/2JGJiJwY1dCJSKWRmAjNmkF6OmzZAuedBwsXwqmnBjsyEamMVEMnInIc\nwsPh8sshI8NWjPjtb2HaNLuWkRHc2EREToQSOhGpVIYOtdcpU+Cqq2zViOuug7POsnVfRUTKIyV0\nIlKpXH45NGgAy5ZB8+a2FFivXtb0qgmGRaS80tJfIlKp1KoFzzxjSV27dnDZZVC7to14FREprzQo\nQkQqtXfesX50H38Mu3bZlCaqqROR0qB56AqhhE5ESio+3vrPde0K339vTbDNmgU7KhGpDCrUKFfn\nXD/n3Drn3Hrn3F8KKTPZObfBObfcOde5tGMUkYorIgKaNoXf/95q6JTMiUh5FNSEzjlXBXgJuAw4\nE7jBOXdavjL9gbbe+1OBO4F/lHqgIlKhXXwxbNwI1asHOxIRkeMT7Bq684EN3vtY730aMBW4Ml+Z\nK4G3Abz3/wNCnXNNSzdMEamoDh+G3r1hwQKbcPiHHyAtLdhRiYiUTLATuhZAXK7jrZnniiqzrYAy\nIiIldvvtNtq1Vi347jvo3t3mqYuPD3ZkIiIlo2lLRKTSql4dDh2CFStsFYlXXrHBESIi5U2wa+i2\nAa1zHbfMPJe/TKtjlMnmnDtqi4mJKbBsTEyMyqu8ylfi8n//uwNimD8fevSwyYbLU/wqr/IqX77L\nB1JQpy1xzlUFfgIuBrYDi4EbvPdrc5UZAPzBe3+5c6478Lz3vnsh99O0JSJSbLt3Q5Mm1uT61FNW\nUzdxoiV2AwZoPjoRObmcC9y0JUFtcvXepzvnRgFzsNrC1733a51zd9pl/6r3fpZzboBzbiNwALgl\nmDGLSMXRuDGcfrrNPRcaCv/7H/TtCy1a2HJgoaHBjlBEpHiC3ofOe/8F0CHfuVfyHY8q1aBEpNLo\n3h22bbNaup9/hsRE2xcRKU+0UoSIVGrJyVCvHlSpAmefDf/6F5xzTrCjEpHKoMI0uYqIBFtISM5+\n5862/FdqKuzcCVddFby4RERKItijXEVEyozOnW0+ulGj4Ouvgx2NiEjxqYZORCRT587w6aewdGmw\nIxERKRn1oRMRybRnD7RtC3v3asoSETn51IdORCSAMjJyRrhWq2bruW7cCFFR0K1bsKMTETk2JXQi\nUuktXQrnnw9nnAEdOliz67p1MHx4sCMTESkeNbmKSKWXkmJTlzgHN91kkwrffnuwoxKRii6QTa4a\n5SoilV7t2lYzl55u05j89FOwIxIRKRkldCIiQMeO9lq1qiV0c+bAs8/Cvn3BjUtEpDjUh05EBGjf\n3l4PHbKE7rPPrAk2JQXq1w9ubCIix6KETkQE6NIFeva0gRFvvAHPP28jXkVEygMNihARyadlS1sp\nIjIy2JGISEWmeehERE6iyEj43//giy+gWTO48spgRyQiUjQNihARyad1a/jxR/j+e+tTJyJS1qmG\nTkQkn9atoVYteO21YEciIlI8qqETEcmndWuIjQ12FCIixacaOhGRTPHx1nfuwAHYsgXeftsSu7Fj\noWbNYEcnIlI41dCJiGT68ku45hqYP98SumXLrA9dWlqwIxMRKZpq6EREMrVuba9791rN3HPP2eTC\nIiJlnWroREQyZc07t3WrJXJJScGNR0SkuFRDJyKSqWVLqFIFtm+HU0+FGTOsX92FF0KPHsGOTkSk\ncKqhExHJVL06RERARgaEhsLPP0NCAmgBGhEp61RDJyKSy6BBsH8/7NgBp50G110X7IhERI5NCZ2I\nSC7PP2+vo0bBzp3BjUVEpLjU5CoiUoCmTa3JddIkePXVYEcjIlI0JXQiIgVo0sSaXePjoZraMkSk\njNP/pkRECtC0KaSk2Fx0IiJlnWroREQK0KSJ+tCJSPmhGjoRkVwOHoRPPrGlv3btsv3//Q9uv93m\nphMRKYuU0ImI5JKWBjffDHXq2GoRO3dCWBjUrBnsyERECud8BZox0znnK9LnEZHS570lc4cOQe3a\nsHs31K0b7KhEpCJyzuG9D8iK0epDJyKSi3M2IAIgPNyaXUVEyjoldCIi+TRrZq8hITZ1yTPPwG9/\na7V1IiJlkRI6EZF8shK6WrVg715ITYWRI6Fhw+DGJSJSGCV0IiL5XH453H23Nb3u3Qv33w/9+0OV\nKrBoEcyZk1P2889h6dKc4y++gGXLco5nz9axjnWs44KPA0kJnYhIPrffDpMnQ9u2kJiY99orr9iS\nYFn+8x9YsiTn+N//tmlOdKxjHev4WMeBVDUmJubk3DkIJkyYEFORPo+IBNe331pza+/eOedq1YJz\nz81pfk1Ph/btoUULO05Ls/nqWra049RUHetYxzou+HjChAnExMRMIAA0bYmISCH++leIjYXnnw92\nJCJSEWnaEhGRUhAWZn3oRETKOiV0IiKFCA9XQici5UPQEjrnXJhzbo5z7ifn3GznXGgh5V53zu10\nzq0s7RhFpHI6cAD+9jeYO/foQREiImVR0PrQOeeeAvZ47592zv0FCPPejyugXC9gP/C2977TMe6p\nPnQicsJ+/RUaNLAlwE45BVatCnZEIlIRVZQ+dFcCb2XuvwVcVVAh7/1XgBo9RKTU1K9vc84dPAjJ\nycGORkTk2IKZ0DXx3u8E8N7vAJoEMRYRkWxVqtiACICkpODGIiJSHNVO5s2dc/8FmuY+BXjggQKK\nB6StNPc8dNHR0URHRwfitiJSyYSHw549sH8/eA8uII0iIlKZLViwgAULFpyUewezD91aINp7v9M5\n1wyY770/vZCykcB09aETkdLSvbvN6F67NuzaBfXqBTsiEaloKkofus+AEZn7w4FpRZR1mZuISKm4\n8UYYO9b606kfnYiUdcGsoQsHPgRaAbHAEO99knOuOfCa9/6KzHLvAdFAQ2An8LD3/o1C7qkaOhEJ\nqNNOs/UXTy+w/UBE5PgFsobupPahK4r3PhG4pIDz24Erch3fWJpxiYjkFhqqGjoRKfu0UoSISBFC\nQpTQiUjZp4RORKQIISE20bCISFmmhE5EpAgNGmg9VxEp+4LWh05EpCzbsgU++AC2b7f56EREyjLV\n0ImIFGDzZpu2ZO1aJXQiUvYpoRMRKUBoqL2mpSmhE5GyTwmdiEgBQkLsNTVVCZ2IlH1K6ERECpCV\n0KWkKKETkbJPCZ2ISAHq17fXgweV0IlI2adRriIiBahRA/78Z/Ae3nwz2NGIiBQtaGu5ngxay1VE\nAi0jA2rVgv37LckTEQmUQK7lqiZXEZEiVKkCTZrAjh3BjkREpHBK6EREjiEiwiYYFhEpq5TQiYgc\nQ0QExMcHOwoRkcIpoRMROYbmzZXQiUjZplGuIiKFmD0b/vc/cM7WdhURKatUQyciUogZM+Dhh21y\n4U2bgh2NiEjhlNCJiBQia7WI2rWV0IlI2aaETkSkEFkJXbVqltBpmksRKauU0ImIFCIroUtLg5o1\nNTBCRMouJXQiIoXISuiSk6FzZ1ixIrjxiIgURgmdiEghOnWC+++Ha65RQiciZZumLRERKcRZZ9kG\nkJ4OU6YENx4RkcK4irSYvXPOV6TPIyJlx86dcNppkJAAVasGOxoRqQicc3jvXSDupSZXEZFiaNoU\nWreGb74JdiQiIkdTQiciUkzXXQfvvhvsKEREjqYmVxGRYoqPh44dYe1aq7ETETkRanIVESklzzwD\n48bB4cMQEQG/+x3cdRdkZAQ7MhGRHKqhExEpQpMmsHs37NhhtXIpKXDZZdCgAbzwArRpE+wIRaS8\nCmQNnaYtEREpQkiIJXTJyZbQ1a4NX34Jjz0G550HzZrB6adb4levHtSpY6NgncvZIO9x7vMiIoGg\nhE5EpAi5V4vIUqMGTJhgkw6vXg0//QR79sD+/XDgAKSm2rqvWQ0GWfu5NxGRQFJCJyJShIISuiw1\nakDXrraJiJTUs88G7l4aFCEiUoSiEjoRkbJCNXQiIkW48Ubo1g06dAh2JCIihdMoVxEREZEg0Dx0\nIiIiIpJNCZ2IiIhIOaeETkRERKScU0InIiIiUs5plKuISBE2boS33oJWreCOO4IdjYhIwVRDJyJS\nhLg4ePRReO+9YEciIlK4oCV0zrkw59wc59xPzrnZzrnQAsq0dM7Nc8796Jxb5Zz7YzBiFZHKSxML\ni0h5UKyEzjlX1zl3mnOug3OuboCePQ740nvfAZgHjC+gzBHgXu/9mUAP4A/OudMC9HwRkWNSQici\n5UGhfeicc/WAO4DrgYbALsABTZ1zCcB7wGve+/3H+ewrgd6Z+28BC7AkL5v3fgewI3N/v3NuLdAC\nWHeczxQRKREldCJSHhQ1KGIa8D4w0Hu/M/cF51xT4LfAf4BLjvPZTbLu673f4ZxrUlRh51wU0Bn4\n33E+T0SkxEIzO4MkJYH34AIyp7uISGAVmtB57y8u4tpO4LXMrVDOuf8CTXOfAjzwQEG3LeI+9YCP\ngXuOVSMYExOTvR8dHU10dHRRxUVEilSrFsTEQHg4pKdDNc0NICLHacGCBSxYsOCk3LvQtVydc2uw\nZtX3vfebAv5gaz6N9t7vdM41A+Z7708voFw1YAbwuff+hWPcU2u5ioiISLlQWmu53gDUBeY45xY7\n58Y45yIC8dBMnwEjMveHY028BfkXsOZYyZyIiIhIZVVoDV2eQs51B64DBgGbgPe890U2txbjnuHA\nh0ArIBYY4r1Pcs41xwZbXOGcuwBYBKzCmmQ9cJ/3/otC7qkaOhERESkXAllDV6yELteDo4G/Amd4\n72sGIoBAcs55/5e/ZB3kfS3onK4d/zXnoEoVqFrVXvPvF3XtRMpVqwbVqx+9qae6iIiUM6Wa0Dnn\nzsOaXwcBvwBTgY+893sCEUAgOee8Dw+3g9RU68HcsydcdBEsWwZ790LWIInPPoMff4Q6dSwZOHQI\nMjKgWzf4zW9g5Ur49Vfo1cvKz5oF69blLZ+eDuedBz16wJo1NgyuRw8rP2cOrF8Pdeta+ZQUK3/O\nOfaedetsHoTzzrOhcwsWwIYNUK9e3vKdO0OXLnZt3z7b9x6+/trWJKpf356XVf6ss6BTJ9i0CQ4c\nsGPv4bvvYPNmu3/u8meeCWecYdcOHIDTM7sxLl0KsbE5czZklT/9dGjXzqbPP3gQ2rSx723tWti+\n/ej7t2wJjRrBnj1w+DA0bGjlt2+376t2bYvv8GE7Hxpq5w4cgCNHrEd6RoYdHz5siV16es6/b0YG\npKXlJHs1aliCl3Vcq5YdZyWCWdez9mvVsufl3opzrl49++5DQuw16+dCRESkmEoloXPOPY41syZi\nSdwH3vutgXjoyeKc8379ejv49Vf7RX/KKdC0qSVzqam2D5bwbN1qyQbY9bQ06NABIiJyEpCIzG6D\n69bBli3QuLEdJyba/Tp2tEUed+2y8q1a2fXVq+0ZzZrZcdb9One2JGjHDkt62rSx68uWWQLYvLkd\n795t5c87D049FbZts/Lt2tn1xYstiWrRwo537rR4evSA006zhOvAAdsHSwBXr86Jb+dOS0p/8xv7\nDFkJ3Zln2vUFC2D5ckvI0tMtATt4EC65BM4/H376yRLMc8+18p98Al99Ba1bW5K1dauVHzQI+va1\nBHHvXns/wKuvWtIbGWn337bNnj9iBAwZAosW2XcwaJCVj4mBjz6yf6+0NLt26BCMHAnjx9u6TLGx\nMGqUXb/zTvj0U0sWa9a0RBBg6FC4+Wa7tn07XH+9fa/vvGMJfosWlpjt3WsJ5RlnQFhYzvcZEmLl\nExLs86em2uuhQ5bY5U7ycr+Gh1syW9hWq9bx/dBLqVi1ytZzbdcOfv/7YEcjIhVFaSV0D2EjXDcE\n4kGlQX3o5Cjp6ZZspaTYVru2JYUpKZawZdVwLlxotZj16tm12Fj7o+Dqq2377jurUezXz8rffju8\n/bbdI6tWtUYN+OMf4aqr7Nru3XD55Xaf//7XkvgmTez+O3fa/fbts2S/enW71ry5/RFR0GuLFpZc\nqiaw1M2aZf+Ul15qf4eIiARCaTe51gH+H9Dae3+7c+5UoIP3fkYgAggkJXRS6o4cgf37LTnbuxca\nNLBa1+Rkqyls2NDKPfooTJ1qyeX27ZZohobCxImWHMbEWA3gVVdBfDx88YXdt1YtKx8XZwlhRgZE\nRdkz2rTJu9+unTX9SsCtWmU9GU47zSrGRUQCobQTug+ApcDN3vuOmQneN977zoEIIJCU0Em54L3V\nzGX1OWzRwpK/tLSchOx3v7Nm4ObNLWnbv9+6C4wfb+95+21r0q5RA375xfpTxsZaE//pp+fdspqN\n5bjt3Wut5nXr2j+dKklFJBBKO6H73nt/rnNumfe+S+a5Fd77swMRQCApoZMKJS3N+iL+8ov1cfzl\nF+uP+JvfWBNw/fo5fR4HD7am2Wuvtf6d//mP1RrGx1uVUng4dO1qg3K6drWtadMiHy85vLev+8AB\n+3qVH4tIIAQyoSvOIjapzrnaZC7N5ZxrCxwOxMNFpAjVq+c0p+bXvXve4z594N//zhlE0rSpDaj5\n619toMqdd9p9fv0VnnvOBqnUrm2jwHv1siSxUyeta1UI5+zrW73a8moldCJS1hSnhu5SbO3VM4A5\nwAXACO/9gpMeXQmphk4qPe+tVm7ZMvjhBxg2zDKRH36wEcVZffp69oT77rNavK++slHN8fGWKPbu\nbTWB55yTMzpYePdd6zI5YEDOYHcRkRNR6hMLO+caAt0BB3znvU8IxMMDTQmdSDF4b0le48Zw8cU2\ndPMPf7CpXDZtgnnzbFhnYqJNM3PZZTa6N2sKHhERCYjSmrbkFO/9z8cI5JhlSpMSOpFiOnTI5jL8\n8kubUmX1apt0e9o0u3bGGZbYzZ8Ps2dbmTPPtCbda66x2j4RETkhpZXQTQXqAtOB74HtWA1dM+Bc\n4Eog2Xt/QyACCQQldCLHKSnJJpLOWknF+5yhnD/9BDfcYFOvfPKJJX1t2tgE0DfdlDP5toiIlEip\nNblmDoC4HugFZP1Jvhn4CphalmrnQAmdyEkxbx588AEMH24rkUybBh9+aIMqPv3U+uONGAEDB2rF\nCxGREij1PnTlhRI6kZNg61Zb92rKFFvqbPBg61t3ySU2j8cjj9hKGxs3WmI3apTNnSciIkUKZEKn\nIWwiUrSWLeH++2HNGqupO3TImlpnzrSZds87z6ZC+f57a6Y991xbLm3BAmu6rUDef9/y2I8/DnYk\nIiJ5qYZOREouNdVea9TIe957OOssuPFGq9GrWRMefNCWNKsAU6A8+aQt1jFyJLz8crCjEZHyTk2u\nhVBCJxJkhw7ZyhRdulhy9/HHNt9drVqW2A0aBFWrBjvK47ZokU3Td8YZ8OOPwY5GRMq7Um1ydc59\n6py73DlX/v+8FpGT68cfbVLiwYNtMuPOnW007NNPW7Nsly42DUo51b27LaW7Zg3ExQU7GhGRHMVJ\n0l4GbgQ2OOeedM51OMkxiUh5dc45tjbWBRfAlVfC2LEwdCj07w/ffmvLjN12m01UvHp1sKMtsRo1\nbB5msIG+IiJlxTETOu/9l977m4Cu2JQlXzrnvnHO3eKcq36yAxSRcqZePRg9GjZssMSud29bisw5\nuO46mDPH1s+6+GJboeLXX4MdcYmMGGGv8+YFNQwRkTxKsvTXUGAYEA+8i81Nd5b3PvpkBlgS6kMn\nUgYlJ0P9+jkTFWfZuNFq6lJS4IUXrH9d/jJl0JEjtvxt797lIlwRKcNKdVCEc+7fQAfgHeBN7/32\nXNe+996fG4hAAkEJnUg5kppqmVGNGnDnndC2Lbz6qtaMFZFKo7TnoZvsvT/De/9E7mQOoCwlcyJS\nzkyfDh06WL+6Zcvg4EHo2NFWohARkRIpTkIX5py7Jt92sXOuyUmPTkQqro0bbdTr229D9erwl7/A\nm2/CmDFw++22CkU5snVrsCMQkcqsOE2uM4EewPzMU9HAUqAN8Ij3/p2TGWBJqMlVpJxZtszWiI2K\ngtdeg6ZNrc/diBGwYoUNoGjbNthRHtO8eTbG48wz4fzz7eM0bQpdu9pCGvnFxcGmTTnHWX3xWrYs\n+ONu3WqDh/OXj4iAU045uvy2bXnLZ1F5lVf5slW+bdvANbnivS9yA+YATXMdNwVmA+HA6mO9vzQ3\n+zgiUq4cPuz9+PHeR0R4/913du7rr70fMsT7Jk28nzkzuPEVwxNPeF+vnvc2m3LONmZMweUnTTq6\nLHh/770qr/IqX5nKZ+YtJc53CtqqFSPna+m935nreBfQynuf6JxLC0hWKSKVV40a8PjjEB1t1VoA\nPXva9vXXNjHxHXfAQw+V2WGl48bZTC3Ll9t8yvHxsHNnwbVzYDVxvXvbvvc55wv66x6gRQvrapi/\nfJs2BZePiLAZY/JTeZVX+bJf/ngVp8n1ZaA18FHmqUHAVuDPwAzvfZ/AhnT81OQqUgF99RVcdplN\nUPy3v0G14vwdKiJS9pX2tCUOuAabdw7ga+CTspg5KaETqaB27LC+djVqwNSpULdusCMSETlhpZbQ\nOeeqAl+WpVq4oiihE6lgvLf1YTt2hLQ0uPVWWLIEFi+GkJBgRycickJKbR467306kOGcCw3Ew0RE\nSmTTJrjoIvj4Y5va5LnnoHZtW2EiOTnY0YmIlBnF6YyyH1jlnPsvkD0xlPf+jyctKhERgHbtctZ+\nTU62GrqlS2HUKOjbF/77X1tWTESkkitOH7rhBZ333r91UiI6AWpyFamgfvrJErh774V77rGm2KFD\nYf58+PlnqFUr2BGKiJRYqQ6KyHxgbaC19/6nQDz0ZFFCJ1KBbdliU5tMnAg33QSHD1uS16wZvP8+\nVCnOwjciImVHqa7l6pwbCCwHvsg87uyc+ywQDxcRKbbWrW1Jhssus+OaNWH2bJvwbfTovBO0iYhU\nMsVpcl0KXAQs8N53yTy32nvfsRTiKxHV0IlUQr/+aqNgTz/d+tuJiJQTpVpDB6R573/Ndy4jEA8X\nETlhoaEwa5atC/t//xfsaEREgqI4Cd2PzrkbgarOuVOdcy8C35zkuEREiu+ss2DKFFsmbNu2YEcj\nIlLqipPQ3Q2cCRwG3geSgdEnMygRkWLJyLA1XhMTrW/dXXdB1662qKqISCVSrFGu5YX60IlUQmPG\nwPr1MH26DYzo3h2uvBIeeCDYkYmIFKm013JtD/wJiCLXRMTe+4sCEUAgKaETqYTS0qBPH5t8+L77\nYOtWOOccmDbNkjsRkTKqtBO6FcA/gKVAetZ57/3SE3qwc2HAB0AksBkYkn/whXOuJrAIqJG5TfPe\n31fEPZXQiVRGW7fCeefBe+9ZcvfBBzBuHNxxB4wfH+zoREQKVNoJ3VLv/TmBeFi++z4F7PHeP+2c\n+wsQ5r0fV0C5Ot77g865qsDXwP/z3n9dyD2V0IlUVrNnw223wcqV0KCBrffavDm8+WawIxMRKVBp\nT1sy3Tl3l3OuuXMuPGsLwLOvBLKWD3sLuKqgQt77g5m7NbF49wbg2SJS0Vx2GTz+uK0Y4Ry8/jrM\nnAk//hjsyERETrri1ND9UsBp770/5YQe7Fyi9z68sONc56tgzb1tgX9478cWcU/V0IlIjpdfhqlT\nrfl1wIBgRyMikkcga+iqHauA977N8d7cOfdfoGnuU4AHChp+VmAm5r3PALo450KAOc653t77hYU9\nM29VYJsAABjlSURBVCYmJns/Ojqa6OjokgcuIhXDHXfASy/BpEm27mu1Y/4vT0TkpFmwYAELFiw4\nKfcutIbOOTfWe/905v5g7/1Hua49XtTghGI92Lm1QLT3fqdzrhkw33t/+jHe8yBw0Hv/bCHXVUMn\nInnNmQN/+IM1vdaoEexoRESylVYfuutz7ecfJtYvAM/+DBiRuT8cmJa/gHOukXMuNHO/NnApoBlD\nRaT4+vaFU0+15tf09GOXFxEph4pK6Fwh+wUdH4+ngEudcz8BFwNPAmQOvpiRWaY5MN85twz4DvjM\nez83AM8WkYpu505rcs3IsCbXxx6zJcJSUoIdmYhIwBXVocQXsl/QcYl57xOBSwo4vx24InN/FdD1\nRJ8lIpVQ48awbBl89BFcdx1ccgm0awe1awc7MhGRgCuqD106cACrjasNZE0f4oBa3vvqpRJhCagP\nnYjkMXcu/P73sGaNLQ928cWwaRPUrRvsyERESndi4fJECZ2IHKVvX7j6ahg5EgYPhq5doX17GDQo\n2JGJSCWnhK4QSuhE5ChLl8KVV1rN3IoVltQNHAgvvmgTEIuIBElprxQhIlJ+nXOO1dJt2ADnn2/L\ngV16qZI5EalQVEMnIpXL++/Da6/BvHnBjkREKjk1uRZCCZ2IHFNqKkRFwdixNoXJ+PzTbIqIlA41\nuYqIHK8aNeDmm23U6003BTsaEZGAUA2diFQ+a9faFCZbtmh9VxEJGtXQiYiciNNPh5Yt4csvYe/e\nYEcjInLClNCJSOWRlmYjXX/9FUaMgDffhJ49YffuYEcmInJC1OQqIpXL1VfDb39r2ymnQFwchIQE\nOyoRqYTU5CoicryGDoUpU6BhQ5ujbsGCYEckInLCVEMnIpXLoUMQEQErV8Knn8Ly5fDnP0OdOhAZ\nGezoRKQSUQ2diMjxqlXL1nF9/31bEmz6dJgzB1atCnZkIiLHTQmdiFQ+N91k67pGRtpo165d4Yor\ngh2ViMhxU5OriFRuMTFw4AA880ywIxGRSkZNriIigdK3r81Ht3KlNb+KiJRDSuhEpHI77zz4+Web\niy4lJdjRiIgcFyV0IlK5Va8OF14Ie/bAkCHBjkZE5LgooRMRufhimDs32FGIiBw3JXQiUnnFxlq/\nud/8Br7+GhYvhr//PdhRiYiUmBI6Eam89uyBsf+/vXsPsqMs8zj+fZJgwiWTiyQzKCQBNBHZQi4C\nIlAMhSgCCu5aiOVycV11FVdLrRWw3DK7VauyFq6Wd8AVVtd7iSJFSYIwoGCUWxaQGBQhQCAjCEkw\nXJIJz/7RPZmTyTlzgZnp6Znvpyo13X3e6X4m1dXzm7e73/djcMABRbibPh0WL666KkkaNgOdpMnr\nVa+C7m547DF49ath3bri9qsk1YyBTtLkNXUqHHMMXHcdHHEE3HRT1RVJ0vNioJM0uR1zDNxwA7z2\ntUWgu+IK+OIXq65KkobFQCdpcjviCFixAg45BG6/vXie7vjjq65KkobFQCdpcjvoIHj3u6Gjo7gF\nO20avOIVVVclScNioJM0ub3oRXDOORBRhLuVK6uuSJKGLSbSZPYRkRPp55E0xs47D3bbDZ59Fl7z\nGjjppKorkjSBRQSZGSOxL3voJKnXgQcWPXRnnw1HHll1NZI0ZAY6SerVG+j23Rdmz666GkkaMm+5\nSlKvLVtg5kxYvx5mzKi6GkkTnLdcJWmk/eu/wh13wKJFsHo17L8/bN5cdVWSNCQGOkmCYgqwFStg\nyRL44x+LAYanTau6KkkaEgOdJEHf83NLlsA99xTP0U3xEimpHrxaSRIUM0TceScsXlzccpWkGjHQ\nSRIUs0OsXt0X6C6/HN73vqqrkqQh8S1XSer14hfDDTfA0UfDAw/Ac89BW1vVVUmaoHzLVZJGw7Jl\nsM8+0NNT/DPMSaoJA50k9TrkENh5Z1iwoOihk6SaMNBJUn8LFsCaNUXA++Mfq65GkgZVWaCLiDkR\nsSwiVkfE1RExa4C2UyLitoi4YixrlDRJ9fbQ/eIXxfAlkjTOVdlDdx5wTWYuAa4Fzh+g7YeAu8ek\nKklauLAIdLNnQ4zI88qSNKqqDHSnAJeVy5cBpzZrFBF7AicCl4xRXZImu8Zn6HxzXlINVBno5mdm\nN0BmrgPmt2j3X8C/AF5VJY2+o46CmTOLZ+guugg+/OGqK5KkQY3qRIURsRxob9xEEcw+0aT5DoEt\nIk4CujNzZUR0lt8/oKVLl25b7uzspLOzc1g1S5rknnqq+PrAA3Dmmc7nKmnEdHV10dXVNSr7rmxg\n4YhYBXRmZndEdADXZeZ+/dp8Cvh7oAfYGZgJ/Dgzz2yxTwcWlvTCvOUtcPrpcMYZsGkT7LRT1RVJ\nmqAmysDCVwBnl8tnAT/t3yAzP56ZCzJzH+B04NpWYU6SRsTChbB2LbS3F1/9I1FSDVQZ6C4Ajo+I\n1cBxwGcAImKPiLiywrokTWYLFxbPz7W3w333we67V12RJA2qsodDMvNx4HVNtj8CnNxk+/XA9WNQ\nmqTJbMECuP76ItA9+SQ8/HDVFUnSoJwpQpIanXACXHIJzJ8Pjz4K06dXXZEkDcrXtySp0a67Fv/a\n2+HPfy6eocuEKf79K2n88golSc3Mnw/d3XDyybB8edXVSNKA7KGTpGba2+GWW+AnP3HoEknjnj10\nktRMbw+dYU5SDRjoJKmZ3mfoAJ59ttpaJGkQBjpJ6u/cc+Gaa4oeuptuKt58laRxzEAnSf1Nnw7r\n18MTT8Chh8K111ZdkSQNyEAnSf11dBRj0M2eDY8/DjEiUy1K0qgx0ElSf+3tsG5d33N0mzfDY49V\nXZUktWSgk6T+OjqKQDdvXtFT96Mfwac/XXVVktSSgU6S+uvoKF6ImDOneI7u7W+HCy+suipJaslA\nJ0n9LVoEK1fC3Lk7PkP37W9v/5LElVfCzTf3rV91Fdx6q+uuu+764OsjyJkiJKm/qVOhra2vh67R\nokWw++6tv7enB7Zu7VvfssV11113vfn6CIrMHJUdVyEiciL9PJIq9qlPwZNP+vycpFEREWTmiLxG\n7y1XSWql95arJI1zBjpJaqXZLVdJGocMdJLUyty5BjpJteBLEZLUzEc+UkwB5i1XSTVgD50kNTNj\nBjzzTPFShCSNcwY6SWpm7lx4+mnYsKHqSiRpUAY6SWpmzhx46inYuLHqSiRpUAY6SWpm7tyid66n\nBzZvrroaSRqQgU6Smpkzp3ghoq3N5+gkjXvOFCFJzWzdCs89B0uWwDXXwD77VF2RpAlmJGeKcNgS\nSWpm6tS+OV19jk7SOOctV0kaiIFOUg0Y6CRpIAY6STVgoJOkgcyaBevXV12FJA3IQCdJrWT2ve0q\nSeOYgU6SWjn2WNi0CR57rOpKJGlABjpJamWXXWD6dPjLX6quRJIGZKCTpFba2mCnnQx0ksY9A50k\ntTJrFkyZYqCTNO4Z6CSplba24sUIA52kcc5AJ0mttLUV038Z6CSNc87lKkmtbN0KzzwDu+8OTz0F\nMSJTLkoSMLJzudpDJ0mtTJ0Ku+5avOnq4MKSxjEDnSQNZo894OGHq65Ckloy0EnSYF7yEgOdpHFt\nWlUHjog5wPeBhcD9wGmZuaFJu/uBDcBzwJbMPGwMy5SkItA98kjVVUhSS1X20J0HXJOZS4BrgfNb\ntHsO6MzMgwxzksbc1q1FoHvooaorkaSWqgx0pwCXlcuXAae2aBd4a1hSFdauhb32gr33hvvuq7oa\nSWqpyqA0PzO7ATJzHTC/RbsElkfEzRHx7jGrTpLa2mDjRth3X7j33qqrkaSWRvUZuohYDrQ3bqII\naJ9o0rzVAHJHZuYjETGPItitysxfjXCpkrSj3XaDp5+GRYsMdJLGtVENdJl5fKvPIqI7Itozszsi\nOoA/t9jHI+XXRyPicuAwoGWgW7p06bblzs5OOjs7n1/xkhQBM2fC7NnQ3V0MMjxjRtVVSaqprq4u\nurq6RmXflc0UEREXAI9n5gURcS4wJzPP69dmF2BKZv41InYFlgH/lpnLWuzTmSIkjawFC+CXv4Q3\nvQkuvRQOPrjqiiRNEBNlpogLgOMjYjVwHPAZgIjYIyKuLNu0A7+KiNuBFcDPWoU5SRoVs2fDk0/C\ngQfCypVVVyNJTTmXqyQNJLO49fq5zxXP0X35y1VXJGmCmCg9dJI0/kV5rT36aLjhhmprkaQW7KGT\npKHo6YF582DVKujoqLoaSROAPXSSNNamTYMTT4Qf/7jqSiRpBwY6SRqqM86Aiy8unquTpHHEQCdJ\nA8mELVuK5Te8ofj6/e9XV48kNWGgk6SBfP7z8LGPFcsR8LWvwQc/CDfeWG1dktRgVGeKkKTaa2uD\nDRv61g8/vBhg+K1vheOOg5NOgv32g/nzi6nCdtkFpk7teztWksaAgU6SBtLWBhs3br/txBPhrrvg\nO9+BH/4QVq+Gxx+Hv/4VNm3a/hm73mAXseM/SRohDlsiSQO5+mq48EJYNsxJajL7gl3vcuM/SZNe\nzJgxYsOW2EMnSQOZNWvHHrqhsBdO0hjypQhJGkhbGzz7bNVVSNKAvOUqSZJUAWeKkCRJ0jYGOkmS\npJoz0EmSJNWcgU6SJKnmDHSSNJhnnoGenqqrkKSWDHSSNJhjj4Wbb666CklqyUAnSYNpNv2XJI0j\nBjpJGoyBTtI4Z6CTpMEY6CSNcwY6SRpMWxts2FB1FZLUkoFOkgYzbx48/XTVVUhSS87lKkmSVAHn\ncpUkSdI2BjpJkqSaM9BJkiTVnIFOkiSp5gx0kjQUTzzhfK6Sxi0DnSQNxWtfC6tXV12FJDVloJOk\nodhrL3jwwaqrkKSmDHSSNBR77gkPPVR1FZLUlIFOkobCHjpJ45iBTpKGYsECWLOm6iokqSkDnSQN\nxZIl8MwzVVchSU05l6skSVIFnMtVkiRJ2xjoJEmSas5AJ0mSVHMGOkmSpJoz0EnSUG3eDCtXVl2F\nJO2gskAXEXMiYllErI6IqyNiVot2syLihxGxKiJ+FxGHj3WtkgTApk1w9NHQ01N1JZK0nSp76M4D\nrsnMJcC1wPkt2n0BuCoz9wNeBawao/okaXtz5hQzRtxxR9WVSNJ2qgx0pwCXlcuXAaf2bxARbcDR\nmflNgMzsycyNY1eiJPVz7LHwi19UXYUkbafKQDc/M7sBMnMdML9Jm72BxyLimxFxW0RcFBE7j2mV\nktTohBPgqquqrkKStjNtNHceEcuB9sZNQAKfaNK82RQP04CDgXMy85aI+DzFrdpPtjrm0qVLty13\ndnbS2dk57LolqaXjj4d3vhPuuw/23rvqaiTVSFdXF11dXaOy78qm/oqIVUBnZnZHRAdwXfmcXGOb\nduDXmblPuX4UcG5mvqnFPp36S9Lo+/rX4Ygj4IADqq5EUo1NlKm/rgDOLpfPAn7av0F5S/bBiFhc\nbjoOuHtMqpOkVt77XsOcpHGlyh66ucAPgL2ANcBpmbk+IvYALs7Mk8t2rwIuAXYC/gS8MzM3tNin\nPXSSJKkWRrKHrrJANxoMdJIkqS4myi1XSZoYNm6Ee++tugpJk9iovuUqSZPCjTfCWWfBvHnw6lfD\nggXQ0QGHHgqHHbZj+zVr4J57+taj/AN9wQJYvHjH9g88sH1g7G2/557wspft2P7BB5sHTNvb3vbj\nq/0IMtBJ0gv1xjfC2rVw111w6619y3PnNg90v/0tXHRRsdz4mMhb39o80K1YAV/96o7tTzut+S+Q\nm27qa9/I9ra3/fhqP4J8hk6SJKkCPkMnSZKkbQx0kiRJNWegkyRJqjkDnSRJUs0Z6CRJkmrOQCdJ\nklRzBjpJkqSaM9BJkiTVnIFOkiSp5gx0kiRJNWegkyRJqjkDnSRJUs0Z6CRJkmrOQCdJklRzBjpJ\nkqSaM9BJkiTVnIFOkiSp5gx0kiRJNWegkyRJqjkDnSRJUs0Z6CRJkmrOQCdJklRzBjpJkqSaM9BJ\nkiTVnIFOkiSp5gx0kiRJNWegkyRJqjkDnSRJUs0Z6CRJkmrOQCdJklRzBjpJkqSaM9BJkiTVnIFO\nkiSp5gx0kiRJNWegkyRJqjkDnSRJUs0Z6CRJkmquskAXEXMiYllErI6IqyNiVpM2iyPi9oi4rfy6\nISI+WEW9mli6urqqLkE14vmiofJcUVWq7KE7D7gmM5cA1wLn92+Qmfdk5kGZeTBwCLAJuHxsy9RE\n5EVXw+H5oqHyXFFVqgx0pwCXlcuXAacO0v51wL2Z+eCoViVJklQzVQa6+ZnZDZCZ64D5g7R/G/Dd\nUa9KkiSpZiIzR2/nEcuB9sZNQAKfAC7NzLkNbf+SmS9usZ+dgIeBV2bmowMcb/R+GEmSpBGWmTES\n+5k2EjtpJTOPb/VZRHRHRHtmdkdEB/DnAXb1RuDWgcJcebwR+U+RJEmqkypvuV4BnF0unwX8dIC2\nb8fbrZIkSU2N6i3XAQ8cMRf4AbAXsAY4LTPXR8QewMWZeXLZbpfy830y88lKipUkSRrHKgt0kiRJ\nGhkTYqaIiDghIn4fEfdExLlV16PqRcT9EfF/5YDUvy23tRzMOiLOj4g/RMSqiHh9dZVrLETEN8rn\neO9o2Dbs8yMiDo6IO8prz+fH+ufQ6GtxrnwyIh4qB72/LSJOaPjMc2USi4g9I+LaiPhdRNzZOxnC\nWFxfah/oImIK8CXgDcD+wNsj4hXVVqVx4DmgsxyY+rByW9PBrCPilcBpwH4UL+B8JSJ8wWZi+ybF\nNaPR8zk/vgq8KzMXA4sjov8+VX/NzhWAz2XmweW/nwNExH54rkx2PcBHMnN/4AjgnDKTjPr1pfaB\nDjgM+ENmrsnMLcD3KAYt1uQW7Hh+txrM+s3A9zKzJzPvB/5AcV5pgsrMXwFP9Ns8rPOjfDt/Zmbe\nXLb7HwYfIF010+JcgeIa098peK5Mapm5LjNXlst/BVYBezIG15eJEOheCjTOHvFQuU2TWwLLI+Lm\niPjHclt7i8Gs+59Da/EcmoxaDXbe6vx4KcX1ppfXnsnlAxGxMiIuabh95rmibSJiEXAgsILh//4Z\n9jkzEQKd1MyR5RzAJ1J0eR9NEfIa+UaQBuL5oVa+QjHywoHAOuDCiuvROBMRuwE/Aj5U9tSN+u+f\niRDo1gILGtb3LLdpEsvMR8qvjwI/obiF2h0R7QD9BrNeSzF8Ti/PoclpuOeH580klZmPZt8QERfT\n94iG54qIiGkUYe5bmdk7xu6oX18mQqC7GXhZRCyMiBcBp1MMWqxJKiJ2Kf86IiJ2BV4P3Enrwayv\nAE6PiBdFxN7Ay4DfjmnRqkKw/XNQwzo/ytsmGyLisPIh5jMZeIB01dd250r5C7nX3wJ3lcueKwL4\nb+DuzPxCw7ZRv76M6tRfYyEzt0bEB4BlFAH1G5m5quKyVK124PIo5vadBvxvZi6LiFuAH0TEP1AO\nZg2QmXdHxA+Au4EtwPsb/vrWBBQR3wE6gRdHxAPAJ4HPAD8c5vlxDnApMAO4qvdtR00cLc6VYyPi\nQIq36e8H3gueK4KIOBJ4B3BnRNxOcWv148AFDP/3z7DOGQcWliRJqrmJcMtVkiRpUjPQSZIk1ZyB\nTpIkqeYMdJIkSTVnoJMkSao5A50kSVLNGegk1U5EbI2I2yLiroi4PSI+Ug6++Xz3d37D8sKIuHOI\n33dORJz1fI/bb1+fi4ijRmJfkiYfx6GTVDsRsTEz28rl3YHvAjdm5tLnub8nM3NmubwQ+FlmHjCE\n77sdODQze57Pcfvt6+XAhZn55he6L0mTjz10kmotMx8D3gN8ACAipkTEf0bEbyJiZUS8u9x+TERc\nHxFXRsTvI+IrUfg0sHPZ4/etcrfTIuKisgfw5xExvf9xyxHhV/WGuYi4LiI+Ux739+XnRMRZEXF5\nRCyLiD9FxAci4qPl8W6KiNnlz/EHYGFEzBrt/zNJE4+BTlLtZeZ9wJSImAe8C1ifmYdTTJr+nrLX\nDeBQiul09qOYM/EtmXk+8FRmHpyZZ5TtXg58MTP/BtgA/F2Twx4F3NJv29TyuB8GljZs3x84tazn\nP4CNmXkwsIJijsZeK4EjhvvzS5KBTtJE83rgzPJ26G+AuRQBDYpJr9eUcyV+lyKUQcPE66U/ZWbv\nc3S3AouaHGch8Ei/bT9u+J6FDduvy8ynyt7EJ4Ary+139tv3wy2OJUkDmlZ1AZL0QkXEPsDWzHy0\nfDninzNzeb82x1BMlN2o1UPEzzYsb6WYHLvpoVt831a2v7427i8b1p/r1y4GqEmSWrKHTlIdbQtS\n5W3WrwJfLDddDbw/IqaVn788InYuPzusfIt1CvA24Jfl9s0RMbXZ/gewBugYSo3DsEe5X0kaFgOd\npDqa0TtsCbAM+Hlm/nv52SXA3cBt5fAjX6OvF+wW4EvA74B7M/Mn5faLgDsbXooYSi/Zryieyes1\n1N6/gfZ9EPDrIRxbkrbjsCWSJoXylutHR3JYkIi4DTg8M7eMwL4WA5/NzFNeeGWSJht76CTp+bsY\neMcI7eufgM+O0L4kTTL20EmSJNWcPXSSJEk1Z6CTJEmqOQOdJElSzRnoJEmSas5AJ0mSVHP/D2to\nm7cYM5mCAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10f9c9e50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Simulate and compare the equilibrium band profiles under different approximations\n", "import matplotlib.pyplot as plt\n", "_, ax1 = plt.subplots(figsize=(10,8))\n", "ax1.set_ymargin(0.05)\n", "ax1.set_ylabel('Energy (eV)')\n", "ax1.set_xlabel('Depth (nm)')\n", "\n", "solution = d.get_equilibrium(approx='boltzmann')\n", "x = solution.x*1e7 # nm\n", "ax1.plot(x, solution.Ev, 'r:')\n", "ax1.plot(x, solution.Ec, 'b:', lw=2, label='Parabolic Boltzmann')\n", "\n", "solution = d.get_equilibrium(approx='parabolic')\n", "x = solution.x*1e7 # nm\n", "ax1.plot(x, solution.Ev, 'r--')\n", "ax1.plot(x, solution.Ec, 'b--', lw=2, label='Parabolic')\n", "\n", "solution = d.get_equilibrium(approx='kane')\n", "x = solution.x*1e7 # nm\n", "ax1.plot(x, solution.Ev, 'r-')\n", "ax1.plot(x, solution.Ec, 'b-', label='Non-parabolic Kane')\n", "ax1.plot(x, solution.Ef, 'k--')\n", "\n", "ax1.legend(loc='best')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
agpl-3.0
zhouqifanbdh/liupengyuan.github.io
chapter2/homework/computer/3-29/201611690595-322-ex4.ipynb
27
1620
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "请输入要输入的整数个数,以回车结束:3\n", "请输入一个整数,以回车结束:2\n", "请输入一个整数,以回车结束:4\n", "请输入一个整数,以回车结束:3\n", "3\n" ] } ], "source": [ "m = int(input('请输入要输入的整数个数,以回车结束:'))\n", "i = 0\n", "max1 = 0\n", "max2 = 0\n", "k = int(input('请输入一个整数,以回车结束:'))\n", "n = int(input('请输入一个整数,以回车结束:'))\n", "if(k > n):\n", " max1 = k\n", " max2 = n\n", "else:\n", " max1 = n\n", " max2 = k\n", "\n", "while i < (m-2):\n", " w = int(input('请输入一个整数,以回车结束:'))\n", " if((w >= max2) and (w < max1)):\n", " max2 = w\n", " elif(w >= max1):\n", " max1 = w\n", " i = i+1\n", " \n", "print(max2)\n", " \n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
arve0/FY3490
morphology-gw-chap9/tophat.ipynb
1
1434684
null
mit
freedomtan/tensorflow
tensorflow/lite/g3doc/performance/post_training_integer_quant_16x8.ipynb
7
18889
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "c8Cx-rUMVX25" }, "source": [ "##### Copyright 2020 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "I9sUhVL_VZNO" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "6Y8E0lw5eYWm" }, "source": [ "# Post-training integer quantization with int16 activations" ] }, { "cell_type": "markdown", "metadata": { "id": "CGuqeuPSVNo-" }, "source": [ "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_integer_quant_16x8.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_integer_quant_16x8.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n", " \u003c/td\u003e\n", " \u003ctd\u003e\n", " \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_integer_quant_16x8.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n", " \u003c/td\u003e\n", "\u003c/table\u003e" ] }, { "cell_type": "markdown", "metadata": { "id": "BTC1rDAuei_1" }, "source": [ "## Overview\n", "\n", "[TensorFlow Lite](https://www.tensorflow.org/lite/) now supports\n", "converting activations to 16-bit integer values and weights to 8-bit integer values during model conversion from TensorFlow to TensorFlow Lite's flat buffer format. We refer to this mode as the \"16x8 quantization mode\". This mode can improve accuracy of the quantized model significantly, when activations are sensitive to the quantization, while still achieving almost 3-4x reduction in model size. Moreover, this fully quantized model can be consumed by integer-only hardware accelerators. \n", "\n", "Some examples of models that benefit from this mode of the post-training quantization include: \n", "* super-resolution, \n", "* audio signal processing such\n", "as noise cancelling and beamforming, \n", "* image de-noising, \n", "* HDR reconstruction\n", "from a single image\n", "\n", "In this tutorial, you train an MNIST model from scratch, check its accuracy in TensorFlow, and then convert the model into a Tensorflow Lite flatbuffer using this mode. At the end you check the accuracy of the converted model and compare it to the original float32 model. Note that this example demonstrates the usage of this mode and doesn't show benefits over other available quantization techniques in TensorFlow Lite." ] }, { "cell_type": "markdown", "metadata": { "id": "2XsEP17Zelz9" }, "source": [ "## Build an MNIST model" ] }, { "cell_type": "markdown", "metadata": { "id": "dDqqUIZjZjac" }, "source": [ "### Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gyqAw1M9lyab" }, "outputs": [], "source": [ "import logging\n", "logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "import numpy as np\n", "import pathlib" ] }, { "cell_type": "markdown", "metadata": { "id": "srTSFKjn1tMp" }, "source": [ "Check that the 16x8 quantization mode is available " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "c6nb7OPlXs_3" }, "outputs": [], "source": [ "tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8" ] }, { "cell_type": "markdown", "metadata": { "id": "eQ6Q0qqKZogR" }, "source": [ "### Train and export the model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "hWSAjQWagIHl" }, "outputs": [], "source": [ "# Load MNIST dataset\n", "mnist = keras.datasets.mnist\n", "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n", "\n", "# Normalize the input image so that each pixel value is between 0 to 1.\n", "train_images = train_images / 255.0\n", "test_images = test_images / 255.0\n", "\n", "# Define the model architecture\n", "model = keras.Sequential([\n", " keras.layers.InputLayer(input_shape=(28, 28)),\n", " keras.layers.Reshape(target_shape=(28, 28, 1)),\n", " keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n", " keras.layers.MaxPooling2D(pool_size=(2, 2)),\n", " keras.layers.Flatten(),\n", " keras.layers.Dense(10)\n", "])\n", "\n", "# Train the digit classification model\n", "model.compile(optimizer='adam',\n", " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", "model.fit(\n", " train_images,\n", " train_labels,\n", " epochs=1,\n", " validation_data=(test_images, test_labels)\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "5NMaNZQCkW9X" }, "source": [ "For the example, you trained the model for just a single epoch, so it only trains to ~96% accuracy." ] }, { "cell_type": "markdown", "metadata": { "id": "xl8_fzVAZwOh" }, "source": [ "### Convert to a TensorFlow Lite model\n", "\n", "Using the Python [TFLiteConverter](https://www.tensorflow.org/lite/convert/python_api), you can now convert the trained model into a TensorFlow Lite model.\n", "\n", "Now, convert the model using `TFliteConverter` into default float32 format:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_i8B2nDZmAgQ" }, "outputs": [], "source": [ "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", "tflite_model = converter.convert()" ] }, { "cell_type": "markdown", "metadata": { "id": "F2o2ZfF0aiCx" }, "source": [ "Write it out to a `.tflite` file:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vptWZq2xnclo" }, "outputs": [], "source": [ "tflite_models_dir = pathlib.Path(\"/tmp/mnist_tflite_models/\")\n", "tflite_models_dir.mkdir(exist_ok=True, parents=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Ie9pQaQrn5ue" }, "outputs": [], "source": [ "tflite_model_file = tflite_models_dir/\"mnist_model.tflite\"\n", "tflite_model_file.write_bytes(tflite_model)" ] }, { "cell_type": "markdown", "metadata": { "id": "7BONhYtYocQY" }, "source": [ "To instead quantize the model to 16x8 quantization mode, first set the `optimizations` flag to use default optimizations. Then specify that 16x8 quantization mode is the required supported operation in the target specification:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HEZ6ET1AHAS3" }, "outputs": [], "source": [ "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", "converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]" ] }, { "cell_type": "markdown", "metadata": { "id": "zLxQwZq9CpN7" }, "source": [ "As in the case of int8 post-training quantization, it is possible to produce a fully integer quantized model by setting converter options `inference_input(output)_type` to tf.int16." ] }, { "cell_type": "markdown", "metadata": { "id": "yZekFJC5-fOG" }, "source": [ "Set the calibration data:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Y3a6XFqvHbYM" }, "outputs": [], "source": [ "mnist_train, _ = tf.keras.datasets.mnist.load_data()\n", "images = tf.cast(mnist_train[0], tf.float32) / 255.0\n", "mnist_ds = tf.data.Dataset.from_tensor_slices((images)).batch(1)\n", "def representative_data_gen():\n", " for input_value in mnist_ds.take(100):\n", " # Model has only one input so each data point has one element.\n", " yield [input_value]\n", "converter.representative_dataset = representative_data_gen" ] }, { "cell_type": "markdown", "metadata": { "id": "xW84iMYjHd9t" }, "source": [ "Finally, convert the model as usual. Note, by default the converted model will still use float input and outputs for invocation convenience." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "yuNfl3CoHNK3" }, "outputs": [], "source": [ "tflite_16x8_model = converter.convert()\n", "tflite_model_16x8_file = tflite_models_dir/\"mnist_model_quant_16x8.tflite\"\n", "tflite_model_16x8_file.write_bytes(tflite_16x8_model)" ] }, { "cell_type": "markdown", "metadata": { "id": "PhMmUTl4sbkz" }, "source": [ "Note how the resulting file is approximately `1/3` the size." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "JExfcfLDscu4" }, "outputs": [], "source": [ "!ls -lh {tflite_models_dir}" ] }, { "cell_type": "markdown", "metadata": { "id": "L8lQHMp_asCq" }, "source": [ "## Run the TensorFlow Lite models" ] }, { "cell_type": "markdown", "metadata": { "id": "-5l6-ciItvX6" }, "source": [ "Run the TensorFlow Lite model using the Python TensorFlow Lite Interpreter." ] }, { "cell_type": "markdown", "metadata": { "id": "Ap_jE7QRvhPf" }, "source": [ "### Load the model into the interpreters" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Jn16Rc23zTss" }, "outputs": [], "source": [ "interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))\n", "interpreter.allocate_tensors()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "J8Pztk1mvNVL" }, "outputs": [], "source": [ "interpreter_16x8 = tf.lite.Interpreter(model_path=str(tflite_model_16x8_file))\n", "interpreter_16x8.allocate_tensors()" ] }, { "cell_type": "markdown", "metadata": { "id": "2opUt_JTdyEu" }, "source": [ "### Test the models on one image" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "AKslvo2kwWac" }, "outputs": [], "source": [ "test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)\n", "\n", "input_index = interpreter.get_input_details()[0][\"index\"]\n", "output_index = interpreter.get_output_details()[0][\"index\"]\n", "\n", "interpreter.set_tensor(input_index, test_image)\n", "interpreter.invoke()\n", "predictions = interpreter.get_tensor(output_index)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XZClM2vo3_bm" }, "outputs": [], "source": [ "import matplotlib.pylab as plt\n", "\n", "plt.imshow(test_images[0])\n", "template = \"True:{true}, predicted:{predict}\"\n", "_ = plt.title(template.format(true= str(test_labels[0]),\n", " predict=str(np.argmax(predictions[0]))))\n", "plt.grid(False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3gwhv4lKbYZ4" }, "outputs": [], "source": [ "test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)\n", "\n", "input_index = interpreter_16x8.get_input_details()[0][\"index\"]\n", "output_index = interpreter_16x8.get_output_details()[0][\"index\"]\n", "\n", "interpreter_16x8.set_tensor(input_index, test_image)\n", "interpreter_16x8.invoke()\n", "predictions = interpreter_16x8.get_tensor(output_index)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CIH7G_MwbY2x" }, "outputs": [], "source": [ "plt.imshow(test_images[0])\n", "template = \"True:{true}, predicted:{predict}\"\n", "_ = plt.title(template.format(true= str(test_labels[0]),\n", " predict=str(np.argmax(predictions[0]))))\n", "plt.grid(False)" ] }, { "cell_type": "markdown", "metadata": { "id": "LwN7uIdCd8Gw" }, "source": [ "### Evaluate the models" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "05aeAuWjvjPx" }, "outputs": [], "source": [ "# A helper function to evaluate the TF Lite model using \"test\" dataset.\n", "def evaluate_model(interpreter):\n", " input_index = interpreter.get_input_details()[0][\"index\"]\n", " output_index = interpreter.get_output_details()[0][\"index\"]\n", "\n", " # Run predictions on every image in the \"test\" dataset.\n", " prediction_digits = []\n", " for test_image in test_images:\n", " # Pre-processing: add batch dimension and convert to float32 to match with\n", " # the model's input data format.\n", " test_image = np.expand_dims(test_image, axis=0).astype(np.float32)\n", " interpreter.set_tensor(input_index, test_image)\n", "\n", " # Run inference.\n", " interpreter.invoke()\n", "\n", " # Post-processing: remove batch dimension and find the digit with highest\n", " # probability.\n", " output = interpreter.tensor(output_index)\n", " digit = np.argmax(output()[0])\n", " prediction_digits.append(digit)\n", "\n", " # Compare prediction results with ground truth labels to calculate accuracy.\n", " accurate_count = 0\n", " for index in range(len(prediction_digits)):\n", " if prediction_digits[index] == test_labels[index]:\n", " accurate_count += 1\n", " accuracy = accurate_count * 1.0 / len(prediction_digits)\n", "\n", " return accuracy" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "T5mWkSbMcU5z" }, "outputs": [], "source": [ "print(evaluate_model(interpreter))" ] }, { "cell_type": "markdown", "metadata": { "id": "Km3cY9ry8ZlG" }, "source": [ "Repeat the evaluation on the 16x8 quantized model:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-9cnwiPp6EGm" }, "outputs": [], "source": [ "# NOTE: This quantization mode is an experimental post-training mode,\n", "# it does not have any optimized kernels implementations or\n", "# specialized machine learning hardware accelerators. Therefore,\n", "# it could be slower than the float interpreter.\n", "print(evaluate_model(interpreter_16x8))" ] }, { "cell_type": "markdown", "metadata": { "id": "L7lfxkor8pgv" }, "source": [ "In this example, you have quantized a model to 16x8 with no difference in the accuracy, but with the 3x reduced size.\n" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "post_training_integer_quant_16x8.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
zkbt/timingtransits
SuperSeriousNotebookForRealDataAndStuff-Backup.ipynb
1
276956
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#This is a new notebook for use with real data. We totally won't try to divide by zero this time." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import batman\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "% matplotlib inline\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def chisqa (data, model):\n", " chi = 0\n", " \n", " for i in range(len(data)):\n", " num = (data[i]-model[i])**2\n", " denom = model[i]\n", " summ = num/denom\n", " chi = chi + summ\n", " chisum = np.sum(chi)\n", " return chisum\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x10f48dbd0>]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFdCAYAAACjJQ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmYFNW9PvD3Owy7AhEURNwBRROjA4JgjFsMRqNETYzj\nhltcY+J4455ERRGXq0QTjXp/KknUiTvRqGDcrlFB4yC4AUYR0QgIqIgCMjLn98fpulVd3T3T3dNT\nb8/0+3mefrq7urr69JmaqrfPOVVlzjmIiIiIJKWKXQARERGpLAofIiIikiiFDxEREUmUwoeIiIgk\nSuFDREREEqXwISIiIolS+BAREZFEVbML0FbMrC+AsQAWAljLLY2IiEi70g3AVgCmO+dWlHrhHTZ8\nwAePu9iFEBERaceOAnB3qRfakcPHQgC48847MWzYMHJR2pe6ujpMnjyZXYx2RXVWHNVb4VRnxVG9\nFWbu3Lk4+uijgdS+tNQ6cvhYCwDDhg1DTU0NuyztSu/evVVnBVKdFUf1VjjVWXFUb0Vrk2ELGnAq\nIiIiiVL4EBERkUQpfIiIiEiiFD4kQ21tLbsI7Y7qrDiqt8Kpzoqjeisv5pxjl6FNmFkNgIaGhgYN\nMpIO7fHHgb/8Bbi75AfDiUilmjVrFoYPHw4Aw51zs0q9fLV8iLRzhx8O1NezSyEikj+Fjw7mww/Z\nJei4yrVuzdglEBEpjMJHB1JfD2y+OfDvfyf7uV9+CTQ1JfuZSfvnP33dPvccuySZFD5EpL1R+Ggl\n54B169il8GbP9vdLliT7uRtsAFx0UbKfmbS33/b3SQe7fCh8iEh7o/DRSr/+NdC1K7sUfH/7G7sE\nErVkiQ8lc+awSyIikknho5Xuu49dApHQ8uXAGWcAL7/sn0+dyi1Pa730kg9R777LLomIlJLCRyup\nydvLtx5efx1YtKhty1JponV/+unATTcBr7yS+Vp79Mwz/v6117jlyMfbb5fnmCCRctSRLyyXiPa+\ncS+VfE8Xs9NOhc0vLYuug0FLXFC/HWX9bA/fY7vt/L3WbZGWqeWjlebP53xuQwPwxhvp09pqo7dk\nCTBsGPDxx+nT580DVqzI/p61a4H//d/SlmPdOj++Jvg1DACffJL/ybXq6/1RK61RjjuWbDvmcixn\nMTrK9xCRdAofZWjyZKB7d//4nnuAxYv948WLw53niBHAt76V/f2fflra8jz4oA8ajz+ePn3YMCDX\nyWPPOQfYay/gs89KV44VK3wA+cMfwmknnggcdVR+RxwdeSTw3e9mf+3zz4E+fXy3UNSf/uR37uVy\nRFPg7beBwYOBVauyv66WDxEpZwofJXL11aVb1qWX+pYDADjiCODgg/3j0aP9zvP++7O/L9hAjxuX\nPn3ZMmCLLdLHWnz4oQ82gb/9Ddhss8xlPvKIH8AYXT7gz+0BhMtctAhobAxff+89fx+d1pJVq4CH\nH/aDJtet83Ww4YbA889nn3/hwrDlpdBfyK++CvzrX+HzN98EVq4E7rgjfb577/X3wfdNyvDh/m+W\ny623+kGYr73WfMtHMTvtlSuzt2i98ooPaUlSy4dIx6TwUaTVq9Of//73/n7lSuCss7LvdLt08TuD\nVav8jm/UKGD9ev/ajBl+sNpDD/llRH3yid8Iv/++f37ppeFrAwb4cLB2bXoA2nlnv7OYMwd49lng\ngw+ALbcEPvrIv77//j7YBM47L3wtKgg+cfGw9eWXvrUjbpNNgOuvz76MNWuAbbbxrSoAcOaZPjht\nvDFwzDG+m+eLL9JbOgBfF198AWy9ddgSVOhOqqYGGDkyfB7spCdPTp+vUyd/H/ydAP+3PfbY7PUV\nWL3a/90K9c47/rvNmuX/ZrlEw0W2oBCc9K2Y8LHppkC/fpnTd93Vn8qdQS0f5evTT8MBziL5Uvgo\nwtKlQM+e6dfT+Pprf3/ddX5n26ULMG0a8POf+3OBPP10GEiefhq4+GJ/OOT48cABBwBjxgB77gkc\nemi4zMGD/f2CBX7DH4iO9Vi61B/dEHTTBObM8e/ZeWfgllvC6Rdd5Dfkb76ZPn8wdmWPPYBrr/Wh\nIO6OO/xZPg89FJgwIfP1mTMzpwF+eY895kNQ1D33+BaSYcP882XLwtemTvXfLZhvzZr0HVB8rE08\noBQq184tCB/nnx9Oe/11fyG3yy/PvbzddgP69i28HEOGZLZcZdNSy0ZrWgzWrMn92ltvFb/cYqjl\no/wdcED69kkkHwofRQjGYER3pkGwiJ6P4Ac/AG68EZg4ETjssPRlBOMn7rorcyxFILqshobiy/vU\nU+HjKVPSX1u4MP35888Dv/qVDwUjRqS/9uyzvrvmoYeyf85LL/lQBQCPPhpOb2oCDjwQ2HvvcNr1\n1wNVsbWvc+fw8bp16S0T0RaJ2bMzy3bOOcV1CUyY4Hdw0bIsXx52s8TLCIR/6y++yL7Mhx7KHDuy\nfn0YUFvy9NPh4+aCAJAePh58MHwc7LRLfeZZVhhQy0f5aimQnnSS/n6SSeGjAEuWAEcfHQ4+vPXW\n8LUVK4AnnvBhIpvowMvoWAO2vfbKPZ6hmMAzYULmhuY//8mc76yz0rsygHCcSzYLFvgWHiB3d8TW\nW/sWiRNP9ANF83Hxxb4FK9qatPHG/pTxzqXv0AM33ujv6+v9WJcFC/x3NgNeeCG99Sqw994+XH30\nkR9fE6+T444Dxo7NfN8VV2Qvd7YQEA248bq98krfldVaSYSPF18Mx/nMKuBC3mefHV5ioNzddVfY\nqtbetRQsbrstmXJIO+Oc65A3ADUAXENDgysVv+l17ve/Dx/rVppbtH5bulVX579M55z7xz/Sp69f\nn9/7V6/OnHbVVc7tsEP6tLvvDh//6lfpr82f79xHH2UuZ/vts69b2W533pm5Lv7yl/61GTOyv+eY\nY8LHn32WXtabb85vPY9as8ZPGzgwv/+V+fOda2rKb97mPj94/MgjuedvanLukkv8fEOHhtO//rr4\nMhQjW73l8s1v5j+vc84tXOj/BuWoT5/mv0sh9SLlo6GhwQFwAGqcK/0+Wi0fRTjzTHYJKlu+3Rcb\nb+wHTu63X/r0fH9xbrJJ5rTzzstsZo7+8osf5rzddsDAgZnLKeTifxdc4D/zvfcyu5ZGj87+nmnT\nwsd9+oSPjzwSOPVUX+ZOnYCvvkp/n3PZl3fssemvNzQAJ5yQfd733vPf++abw2nXXpu9BawYX3zh\nx8YEA5W//hq45JLM+aqrfZfn1KnA3/9e+OcsXeq74BiCa/ME69pWW/m/nUhHofAhHdby5blPgpaP\nXGM64qJdPPk2MX/2WdhV01Kz9QcfADvu6AcBb7mlDwAvvdT8e6KDd3NpagK6dUufNmNG9nnj1zAa\nMSI8LDkYm/TOO8BBB4WDlYNBzR9/7McRDRrkjwoLjsQpRLSO3nzTf9Yf/+ifRwNTPDzV1wOHHOLL\nFffss365Tz6Z/TMHDPABttRWr848QWBc0DUbvWBjvqdub2wEbr89d5AUKQcKHyKtFG1laGuffeYH\nweY6sqgYQUB7//308DF1qt8xR3f8ixenH247dao/KsvMt0ZEWxiamvyONnp+mV/8IhwAPWOGHzc1\nZkx46Prbb4fzRs9G65xfXmMjMGmSn3bDDf5IqOZ2ss0FnWAA9LXX5p4n6quvMlvdPv3Uh89CdvSF\nDIyeMqXw68X88Y9+3NODDxbWwgb4v+Oppxb+nrh//av8TswnZaYt+nLK4YY2HPOhW+lvql/ebdy4\ntq3/G25Ifz5linPPPps+rWvX/Mqw7bbpzzfZxLnZs8PnQ4ak/78OHRq+5pxzt9/u3IsvZn5WdGxI\nQ4MfYxK8Nn9+OP+uu6ZvE/bd10+/4IL0z8mlsdG5YcNanjdeZ4Bzfftmn3f9eufuvz/8DhMmpL8v\nsN12zj3wQPh8zz396yefHE7L5zvEbbRR+ns+/9w/r6srbJmPPebcvfc69+GHued56SX/966uzj0O\n6Kuv/HebO9e5I4907qij8vseX37pXH19fvNWgrYe81HyBZbLTeGjfd1Uv7zbHnt0nPofPNh/l5de\nan6+bN/3+utz18Oll4aPR450bvRo5z7+2LkttsicNxpk7r/fuVde8dMXL84cfJxL377Zy/GTn2TO\ne/vt/rXHH/fPg8G30c9YudI/7trVD0COf8/4Ni5u5Urnzj7buSeeyBzEG5Q1sGKFf37AAenLbGmw\ncjBfly4tzwM4t/fe2eeZP9+/Hh10nY8zz/TzLlqU3/wdXdkNODWzPczsYTP7j5k1mVmOc2CmvWcv\nM2sws7Vm9raZjc8yz0/MbK6ZrTGzOWb2gyzznGFm76XmmWlmOrWNSCu19mJ75eSdd/zJ30aNan6+\nbF0F0QGyccH5awB/csAZM/yA5GiXUuCJJ3yXw7//Dfz4x+E5aW65xXc7RU2dmv740Udzn7UW8GNv\n6ur82XPnzPGD34PD+IMT7zmX/p5588JDl7/6yg9AzjZoPn5Y+ZQpviwzZgDXXONPoPj97/tuv7vu\nyjwTcyA4N85jjwGnnx5O/+ijcIzTokX+/oEHMt+/bp2/maWfLygu/j0Dwd+20LFFwWHd06cX9j4p\nUqFpBcD+ACYAGAdgPYCDW5h/KwBfALgawHYAzgDQCGC/yDxjUtPOTs0zAcBXAHaIzPNTAGsBHAtg\newC3APgEQL8cn6uWj3Z0U/2q/svh1thYumUFLR751H3QMtHa2+uvO/eb32ROnzat+ffFW0sefDB8\nvNtuzl14YeZ7amt92eMtH9FDu1u6Ba1uQVdNcPv+9/39977n73fYIXMd3Wuv8DPfe89Pu/HG8PUj\nj0yv45Zsskn4PinzbhcATXmEj6sAvBabVg/gscjzvwJ4ODbPDAA3RZ7PBHB95LkB+BDAuTk+V+Gj\nHd1Uv6r/Sr0559ySJfxy5LrtuKMf6xKfPnasH18RPG9s9F1Ab72V/7J3392HlfHjW573ySfTn2+7\nbbhtvu++luu4Jf37+3mPOKJku4x2ra3DR3UJGk9ashuA+MFs0wFEL+E1GkB8zPl0+NYVmFlnAMMB\n/N/5Hp1zzsyeTL1XRKTdyveIG4b4daAC06f7LqDApEnAb39b2LJfeCH9PDTNiV8a4t13/SUY8jlj\n9Mcfp5+35913gW23TZ8nuJZU/NII0jaSONR2AIClsWlLAfQys64tzDMg9bgfgE4tzCMi0u7Mn1/c\ndYnKQXDJA6Dw4FGoO+/MnJbvpSr69wdOPtmfb2bjjcPDw3fc0b8eHR+SK2xJaSXR8iEiIjnMmaML\nryXhf/4nc1pwBtnf/z7Zskgy4WMJgP6xaf0BfO6c+6qFeYJT5CyHH9za3DxZ1dXVoXfv3mnTamtr\nUVtbm1fhRUTaUmOjwgfbWWexS8BVX1+P+vr6tGkrcx3OVCJJhI8ZAOKHzX4/NT06z74AbohM2y+Y\nxznXaGYNqXkeBgAzsyzvyTB58mTU1NS0pvxSoF//2h/uKO1DtmvYSHKcY5dAKl22H+SzZs3C8OHD\n2+wziznPR08z+7aZ7ZyatE3q+eap1yeZWfSC5jen5rnKzLYzs9MB/BjAdZF5rgewv5mdnZrnEvgB\npn+IzHMdgJ+Z2bFmtn1quT0ATCn0OyQhel6AXIJLr+++O/Dd75bmc/faK/v06DUi2tKkScBllxX3\n3sGDS1sWyY92flzxi/uJVIJiBpyOAPAqgAb4w3CuBTALwKWp1wcA2DyY2Tm3EMCBAL4HYDaAOgAn\nOueejMwzA8CRAE5OzXMogHHOubci89wL4Ffw5wB5FcBOAMY65/K4hFZpXHBB+Phb30p/LX6ConzC\nxwMPAC++CDzySOt/fQ4c6K/38cwzmTuTa64BDm7xVHDpnMt9xdSW3leozTbz9/36tTxvvN6l9dTk\nz/X11wqAUnkKDh/Ouf91zlU55zrFbiekXj/eObdP7D3POeeGO+e6O+eGOOf+kmW5Dzjntk/Ns5Nz\nLuM8c865m5xzW6XmGe2ce6XQ8rfGsGH+fs4c4Ec/Sn/tlFPSn+e7QR89GvjGN4AuXbK/vsMO4eOh\nQ/1nL1/uLxUO+CuIPv20v4x5trM61tf7Ed6AvyjYP//pLza1zz6Zg6z6x0bUBBvE1av9YW6NjcD9\n9/szNwL+MLeNNvKPgyu7Bu/Zeuvs36c61tF35pn++0ff25xoq8qqVf49t94KXH11y++V7LKdCfLe\ne5MvR6VqavI/QkQqia5qW4CjjwZeew3Yaaf0HWWhV4HcY4/MQ+uuv97fV1X5w8eCrrZp0/yl3b/6\nyh+St9NOQN++wIUXAj16+BaWvffODC9Tp/rTGR9xRDhtwADgO9/xIeOpp4Cf/zz9Pbvu6oPGl1/6\n58F37NYNGD/eB4fDDvPdIw895LtygpDVt6+/79QpfZkzZ/qQEL90e8As/BznwiCSzQcfAOPG+aC1\neDGwwQZ++s9+BpxzTvb3xL8j4E95nWv+SpQtfPzkJ8mXo1I1NQGDBrFLIZIshY8CmGVv9v/d7/z9\np5+G13GIC1pK5s71l8jecMP01/v1AxYu9DvVESN86LjiCr9R6tkze8vIl18Cxx6b/fPGjQM23TSv\nr/V/hg4Funf3oQYIQ0G2Vpwf/ciHmeC1/ff3QSi4ZkQwfdQoHxJytWrEw8ePfxw+79HDt85ceKGf\nFmygt9rKf3Y+zj03/fm4cf76GNGWkvXrgccf9y07waXd87V4cWHzT57s/87NWbbMt2adf75vubro\nosI+AwCOPz7/cURNTcU3+zc3lvvII4tbZiU66SR2CUQS1hanTS2HG9rg9OpRF12U/dS9q1c7t2yZ\nf/zII87deadzCxe2SRFKIvgOM2f6UyVHvfSScwcd1Pz7+/XLfvri4NLnga5d/fMpU/wVQYPPPess\nf4lx55wbMSK8vPf48eFVOgv9LsFt0iQ//cor/WXjv/wyff6ZM9MvMe5ceG2PjTcOr3IZPc10ttM2\nb7VV+rTbbvNX/ozP+6c/5S7rhx9mX5+iPv205au1Bt+7sdG5ffbJfC16DY1evfz9aaf5y7LHv1dw\nrYvmbkuX5n4t+j+iW+7bjTf69ZBdjkq9Zft/lDK8qq14QVN1/JS/3buHAyd/+EPgqKOALbdMtGhF\nGTUqs3Vl5Ejg4YdLs3zn/P348en92/GWj6DFZMoU35rSGsGyzjvPd0MFLTqBUaPCI47i7xk0CLjh\nBt/lFRw2fOml6fPuskv2z91sM7+cWbPCQcozZgDHHJM575Ahvgto4EA/74cf5v4+ffr4v8mkSf75\nYYf5++i4oH79fItJdbUfh3PllenLiLa4TZvmz/DYpUv4N4gK6uL447OXp2vX5q8c6lz+6/7mm7c8\nT0dW6BVYRdo7hY8iBRvrSt9o5ivXxjVX+CjGggXpz7PtUPMVlCPa5eWc75raaaf0eeKC8LnLLj64\nfP45sNtumfNXVwNvv+27gMx8N1tw5E9zzj/fX3L83nv95dKDULT11n5AcWDQIB+8Amec4e8np66q\n1KdPWP/Rupo9298Hf7Pbb/fX4AjssYe/vPqSJb7LCsg+pmfcOB++89G9e/j4vvuyz/P11/ktK+7l\nl9OfH3RQcctpK9H/AeHLNnBfSk/ho0jBxqKqwmsw1w443xBRyvARP8KmFOEj/nj+fODVV9OnX3aZ\nHyj74INAQ0M4WBjw60d8fE9gzJjiy9e5s1/2dtv5YAP4AcDbb58574wZ/noVf0idNecXvwCef94f\nvVVVlT7m49JLgW9/2z+OBsYxY/yYpmnT/KHhdXU+vAThI/53c8630lx+uR/4HD16ZtEif/Guo4/2\nz4cP98u84go/QDm68Z82LVy2GXD44Znf7623gNNOy11XsRMcY+rUzKPTon74Q99qlZTu3VteV8eN\nK3y5xRwqL/n9AJDWq/BdZ/GCjUV7P0fCo4/6w3dLLdiBBeIb15Ur/a2U4SOumF8w+Xx+dGcI+J3o\nJ58AhxzS/ADMqH//29d9KQwa5Osu1zlQdtstvWumqsqf2A7IbPnYaqtwvviA0T59gLFj03fmQUBp\nLoRuuinwg9Q5ju+4w7cWfvOb6efGGTrUdzuNGhW2gpx6qv+8Zcv8wNuqqswjyzp18iEq2sID+KO6\nzj8f+Mc//LKjqqqAq64Cbrwxe5n32iuzS805H/Ty9dBD+c+70UYth4877ggf5zpy7Ljj0tf5XOvX\nHnvkXzaRtqLwUaSO0kx6wAFhN0Ip/fnP6ZemjgeBXr38ra3Cx9q1/lwmxcpWjvjfvDVlHTw4PFSY\nycwHiCBERFvyfve7ls++OWiQP/Lpkkv884kTfZdQXHDE03HHhdN69gT23Tc8WizQr59vQQrOQ9O3\nb3jI+N57h+d6Of543xIF+LElCxYA77zjn9fU+LEx3/uef/7BB+mf0bt37taS4LDxuFmzgBNO8Jdj\nDyxb5p/fELvIQ/w8QNGWlDfe8IHw2mv982j9B3r2TH8ebT3bYov01+rrfYvV5Mnh3+EnP8l92Ppz\nz2UuI3D22f71cnDggdmnZ/tR8fTTYUtaa3WUbXu5U/goUkdp+WitXN+/Rw//6zbw+OPhjiL+/lKG\nj0028aGja9fWLSdXt0tUR+hyq6pKb/mIfteqqtwnvwtUV/tf+dtuGz7v3Dn/z3/ySd9KEVdTk3lC\nukBwCPlBB4WfC/hut2239d1M8ZPOZTuPRq6/a3xgcLAT7NEDuO02f2K/hgYfpPr188/79Mlczty5\n4eHOu+wSHoa/ww6+jEEQy3aoczSs3Hxzel088wzw2GPh85oafzn7Pn38IO2FC9O7uX7zG38ivqiN\nN87+3SdO9C0jzz/vBytfcUX2+fK1886+i+uQQwp7X69emV1sQZmzrS877ZR+BuqWNHfJEg3+TUYH\n2HxyKHwUplevzOZvoPThY+lSfwK11oqWIzhxWrxsrT0apxzEu12Krf9sLSdtZfx4v0PONQ5it92y\nh8+nnmr+0um9evkWhuA7vPmm/0X9179mzltTk94VctRRwBNPpM+z/fZ+zMqiRf55EMaDOg4+Jx4+\n7rzT/68ERxkF41Nuusl3SQ0cGHZjVVVl/l9FjzByDpgwIXPcUa7zEQVdOrvv7ruyLrjADy4Gwp37\nN7/px/EEgpaSbNdmcs7/rU4/PZzW2Njy5Sf69/fnMHLOtyr985/h5194oW/ZibdmRde9oFUpl1/9\nCjj55PB5tDWlHFokK4HCR5GCXyLxM3pWmtaGhbYc81FseeJOOcWf6CvY2ZkBn33mf222d/EBp8XW\nfzDoNVdTeSlVV/u/SaFBZ599Ms94e9tt4Y7w4IP9kUlBHeywg+/myWdnVFUF7LefH+t0003h9O7d\nwyPi/vjHcLBy8B4gs9sl+Pzbb08PJaedln4SvFtu8Wf7zUdwGYTghHW/+13+f+tg/FZQlurq9BMY\n7rGHH/P03/+d+d74enXRRf79QfdQVDDW55hjwss1AP7Ehd/5jh/k7Jz/Lvfe61uzDjggnK9XL3/f\nr58POxMm+Odz5/rxP1FNTT5ABn+DffcNX8t1aLmUlsJHkS66yPezBhtdKU65hY9AtBzdu/ujNqLd\nCb17d4xul1K1fASDXoPrH7UXJ5wQDqwtxbo3e3busSTduvluiEC2lo/qah948nHyybnHbsTtt58f\ngBqMl+nWLRxA+/e/N//eXXbxASwYU5Gtnr7xDR/enn02nNa9u2+lAMILZ0aPSIuPyVq8GFixwo8X\nK+ZInYED/ZFPS5f67/eb3/h63X778Nw4gcMOS9/2VFX5dbixMT2ISNvJ0asqLdlww47xy5etXMPH\njjuyS5CMUoWPjiDp7x58XjR8rF5d2JiZQj4r2koA+B3wxIm+terLL3MPtPzGN/z1mQAfJnJd0sEM\n2HPP8Hm0leZb3/LjWKLh66mn0us8fkh0Pg45xI9/CU4g2Fz47dkzvG5V166Z255OnXKPM5LS6wC/\n3aQ9K7fwEZyZNNdhmB1NqbpdpHBBXbPC34QJwJo1/nGPHplH2GQzcWJhhxxH7bJL5vcLxpNED/Eu\nxIkn+vU3epK6XIKBxEFLT7QsTU1a95OmnCetUuoxH+Ug12nTOyK1fPC+ezR8tHS+lLZQVZX7nCH5\neOEF380Rt2RJ/mPh6ur8rVjF1FcwXiUe/ipx3WdS+BCqcmv5qDRBy0eSR6uUm+Aw3J/9LNnPzdby\n0Z7qf8yY7Gfp7d8/+bIUI17/7anuOwKFD6FS+OBSy4fvbmC0urG7XSpNvG7V8sGl8CGt0tEOta00\nCh882bpdpO1cdpkPmsGg13j9a91PlsKHUCl8cGnAKY9+eSerb1/gmmvC56p/LvVySauo5aN9U8sH\nj8YccKn+uVTd0irnntu69yt8cKnlg0fN/lxq+eBS+JBW+eUvWzdYT+GDSy0fPNr5cSn8cSl8CJXC\nB1dQ/4zzTFQ6NftzBfWt8Meh1V2oouEjeC7JiXe7aAeYHLV8cMVPb691P1mqbqFSyweXul341OzP\nofDHpfAhVAofXFVVCh9M0fCnuk+WxnxwKXwIlcIHl5mOdmGKhg81+ydLLR9cWt2FSuGDS90uXNEB\nv6r7ZGnAL5eqW6gUPrh0ng8udbvwqOWDS+FDqBQ+uNTywaXwwaMxH1wKH0Kl8MEVDDjVeT44FD54\n1PLBpfAhVAofXPEBp+r3TpbCB4/GfHCpuoVK4YNLYz64ouu/6j5ZavngUvgQKoUPri5dgHXrtANk\niY+5keRozAeXwodQKXxwqeWDS90uPOp24VJ1C5XCB1d0Axx9LslQtwuPul24FD6ESuGDT4fa8qjl\ng0dXteVS+BAqhQ8uneeDS2M+eKJXtdWYj+QpfAiVwgdXdAMcfS7JUMsHj8Z8cKm6hUrhgy/6y1sb\n4GRpzAePxnxwaVMjVAofXOp24VLLB4/CB5fCh1ApfHApfHBpzAePzvPBpfAhVAofXDrUlkstHzwa\n88Gl6hYqhQ8+tXzwaMwHj7pduBQ+hCr6D68NQPLU7cKllg8ehQ8uhQ+h0gaAS+GDS2M+eDTmg0vh\nQ6gUPsqDzvPBoZYPHo354FJ1C5XCB1f8l7c2wMnSmA8ebXu4tKkRKm0AuNTtwqWWDx5te7gUPoRK\nG4DyoPDmmeRqAAAdSklEQVTBoTEfPBrzwaXwIVQKH1xq+eBSywdP0MXY1KQxHwyqbqFS+OBS+ODS\nmA8ebXu4FD6EShsALoUPLrV88Gjbw6XwIVTaAJQHHWrLofDBozEfXAofQqXwwaWWDy4NOOXReT64\nVN1CpfDBpfN8cGnMB4+2PVza1AiVrqpaHlT/HOp24VH44FL4ECqFDy51u3ApfPBozAeXwodQBf/w\nGvDIofDBpTEfPBrzwaXqFiqFDy6FDy6N+eBRtwuXwodQKXyUB+0AOdTtwqPwwaXwIVQKH1zBzk/1\nz6HwwaMxH1wKH0Kl8MGlbhcujfng0ZgPLlW3UCl8lAed54NDYz54gnVdLU8c2tQIlcIHl1o+uNTt\nwhPd9qj+k6fwIVQKH1wKH1wKHzwa88Gl8CFUCh9cCh9c0W4XSZbGfHBVswsglU3hozwofHBozAeP\nDrXlUvgQKoUPLrV8cCl88Ch8cCl8CJXCB5fO88Gl8MGj8MGlXi6hUvgoD9oBcmjMB098wKnGfCRL\nLR9CpfDBFe920QY4WWr54FHLB5fCh1DFw4ckS2M+uBQ+eBQ+uBQ+hEotH3wKHzwKHzwKH1xqZBUq\nhQ+u6AY4+lySoTEfPBrzwaXqFiqFDy51u3DpDKc8avngKip8mNkZZvaema0xs5lmtmse879lZqvN\nbK6ZHRN7vdrMfmtm76SW+aqZjY3Nc7GZNcVubxVTfikfCh9cCh9cCh88Ch9cBY/5MLOfArgWwMkA\nXgZQB2C6mQ11zi3PMv9pACYCOAnAKwBGAfgfM/vEOfdoaraJAI5MzTMfwP4AHjKz0c65OZHFvQFg\nXwDBavJ1oeWX8qLwUR5U/xwKHzy6qi1XMS0fdQBucc792Tk3D8CpAFYDOCHH/Een5r/fObfQOXcP\ngFsBnBebZ6JzbnpqnpsBPAbgv2LL+to5t8w593Hq9kkR5ZcyovDBpUNtuTTglCe67dGYj+QVVN1m\n1hnAcABPBdOccw7AkwBG53hbVwBrY9PWAhhpZp0i83wVm2cNgO/Epg0xs/+Y2btmdqeZbV5I+aX8\nKHxwqduFK6j/lSuBFSvYpaks6nbhKjTr9QPQCcDS2PSlAAbkeM90ACeZWQ0AmNkIACcC6JxaXjDP\n2WY22Lz9ABwKYNPIcmYCOA7AWPjWlq0BPGdmPQv8DlJGFD74FD54gvBxzz3AggXs0lQWhQ+uJM7z\ncRmA/gBmmFkVgCUApgA4F0BwaqlfwnfFzEtNexfA7Yh05TjnpkeW+YaZvQzgfQCHA7gj14fX1dWh\nd+/eadNqa2tRW1vbqi8lpaHwwaVDbbl0qC2Pwkeovr4e9fX1adNWrlzZpp9ZaPhYDmA9fJiI6g8f\nKjI459bCt3yckppvMYBTAKxyzi1LzbMcwKFm1gVAX+fcYjO7EkDO3wLOuZVm9jaAwc0VePLkyaip\nqcnry0nyFD641O3CpfDBo/N8hLL9IJ81axaGDx/eZp9ZUHU75xoBNMAfcQIAMDNLPX+xhfeud859\nlBojcgSAR7LMsy4VPDoDOAzA1FzLM7MN4IPH4kK+g5QXhQ8uhQ8uhQ8etXxwFdPtch2AKWbWgPBQ\n2x7wXSkws0kABjrnxqeeDwEwEsBLADYCcDaAHQEcGyzQzEYC2AzAbACDAFwMfzjtNZF5roEPLO+n\n5r0UQCOA9LYiaVcUPviCX36A6j9pQfg44ghgaXwknbQphQ+ugsOHc+5eM+sHYAJ8N8psAGODLhT4\ngafRo1A6wR8yOxQ+LDwDYIxzblFknm4ALocfRPoFgEcBHO2c+zwyzyAAdwPoC2AZgOcB7Oac0xjx\ndkzhg0tjPrh0ng+eePio5G4XhqIGnDrnbgJwU47Xjo89nweg2UEXzrnn4FtDmptHI0Q7IIUPLp3n\ng0vhgyc+5kP1nyxtaoRK4YNPYz54FD541O3CpfAhVAofXOp24VL44FH44FL4ECqFDy4d7cKl8MGj\nMR9cqm6hUvjgiocPSZau7cKjMR9cCh9CpfDBp1/ePAp/PLqqLZfCh1ApfHBF6191nzx1u/BE133V\nf/IUPoRK4YNLOz8u1T+PxnxwqbqFSuGDTxtfHoUPHo354NLmRqgUPriiG2DVffIUPnh0qC2XwodQ\nKXxwaefHpaNdeBQ+uBQ+hErhg08bXx4d7cKjMR9cqm6hUvjgUssHl+qfR2M+uBQ+hErhg0tjPrgU\nPnjU7cKl8CFUCh9cwc5Pv/w4FD54FD64FD6ESuGDTxtfHoUPHo354FJ1C5XCB1d0A6yNb/J0tAuP\nxnxwaXMjVAofXPrlzaWjXXjU7cKl8CFUCh982vjyKPzxKHxwKXwIVXQDEH0uydDOj0v1z6Or2nIp\nfAiVWj64dKgtl8IHj7Y9XAofQqUNAJcOteVS+ODTmBsOhQ+hUvjg086PR0e7cCn88Sh8CJXCB5e6\nXbh0tAuXwgePwodQKXxwRTe+Os9H8rTz41L982hzI1QKH3za+PJo58el+udR+BAqhQ8ubXy5VP9c\nqn8ehQ+hUvjg0pgPLu38uDTgl0fhQ6gUPvi08+PRzo9LA355qtkFkMqm8MGl83xwRcOHJE/hj0fh\nQ6gUPrjU7M+lnR+X6p9H4UOoFD64NOaDSzs/LjNte1gUPoRK4YNP5/ngUfjgUvjgUfgQKoUPLnW7\ncCl8cFVVAevX+8eq/2Tpt45QKXxwqduFS+GDSy0fPGr5ECqFDz61fPDoaBcu1T+PwodQKXxwqeWD\nSy0fXGr54FH4ECqFD65o/avuk6fwwaXwwaPwIVQKH1wKH1wKH1wKHzwKH0Kl8FEe1O3CofDBpfDB\no/AhZUEbAI5o+NN5PpKn8MGl8MGjzY1QqeWDS90uXAofXAofPAofQqXwUR4UPjh0VVUuHWrLo/Ah\nVNFDPSV5OtSWS2eY5VLLB4/Ch1Cp5YMrGOexfr3qnkHhg0vhg0fhQ6gUPrg05oNL4YNL4YNH4UOo\nFD64gvpWyweHwgeXmS4sx6LwIVQKH1xq+eDS0S5cVVXa9rAofAiVwgeXzvPBpaNduNTtwqPNjVAp\nfHCp5YNL3S5cOtSWR+FDqBQ+uBQ+uBQ+uNTywaPwIVQKH1wacMql8MGl8MGj8CFUCh9cavngUvjg\nUvjgUfgQKoUPLoUPLh3twqXwwaPwIVQKH1wKH1w62oVL4YNH4UOoFD64FD641O3CpfDBo/AhVAof\nXDrPB5fCB5cOteXR5kaoFD641PLBpfDBpZYPHoUPoVL44FL44FL44FL44FH4ECqFDy6d54NLR7tw\nKXzwKHwIlcIHl1o+uHS0C1dVla5qy6LwIWVB4YND4YNL3S5cavngUfgQOm0AeBQ+uBQ+uLTt4VH4\nEDptAHgUPrgUPrh0qC2PwofQKXzw6DwfXAofXNr28GhzI3TaAPCo5YNLR7twadvDo/AhdNoA8Ch8\ncOloFy5te3gUPoROGwCeoKtF5/ngULcLl7Y9PAofQqcNAI9aPrgUPri07eFR+BA6bQB4FD64FD64\notseSZbCh9ApfPAofHApfHBpwC+PwofQKXzwKHxwaefHpW0Pj8KH0GkDwKPzfHDpaBcubXt4tLkR\nOvW78qjlg0vdLlwKHzwKH0IXbAD0z588hQ8uhQ8uXdWWR+FD6BQ+eII613k+OBQ+uNTywVNU+DCz\nM8zsPTNbY2YzzWzXPOZ/y8xWm9lcMzsm9nq1mf3WzN5JLfNVMxvb2s+V9kHhg0ctH1wKH1y6sBxP\nweHDzH4K4FoAFwPYBcAcANPNrF+O+U8DMBHAbwHsAOASADea2YGR2SYC+BmAMwAMA3ALgIfM7NvF\nfq60HwofPAof5UHhg0MtHzzFtHzUAbjFOfdn59w8AKcCWA3ghBzzH52a/37n3ELn3D0AbgVwXmye\nic656al5bgbwGID/asXnSjuh8MGj8MGllg8uhQ+egsKHmXUGMBzAU8E055wD8CSA0Tne1hXA2ti0\ntQBGmlmnyDxfxeZZA+A7rfhcaScUPngUPrii4UOHOidP4YOn0NW9H4BOAJbGpi8FMCDHe6YDOMnM\nagDAzEYAOBFA59TygnnONrPB5u0H4FAAm7bic6WdUPjg0Xk+uILwofWfQ+GDpzqBz7gMQH8AM8ys\nCsASAFMAnAsgOLvDL+G7Yualpr0L4HaUoEulrq4OvXv3TptWW1uL2tra1i5aSkThg0dHu3Cp24VL\n4cOrr69HfX192rSVK1e26WcWGj6WA1gPHyai+sOHigzOubXwLR+npOZbDOAUAKucc8tS8ywHcKiZ\ndQHQ1zm32MyuBLCg2M8NTJ48GTU1NXl+PWFQ+OBR+OBS+OBS+PCy/SCfNWsWhg8f3mafWVBDq3Ou\nEUADgH2DaWZmqecvtvDe9c65j1JjNY4A8EiWedalgkdnAIcBmNraz5Xyp/DBozEfXAofXDrUlqeY\nbpfrAEwxswYAL8MfhdIDvisFZjYJwEDn3PjU8yEARgJ4CcBGAM4GsCOAY4MFmtlIAJsBmA1gEPzh\ntAbgmnw/V9ovhQ8ehQ8uhQ8utXzwFBw+nHP3ps6tMQG+22M2gLFBFwr8ANDNI2/pBH/I7FAAjQCe\nATDGObcoMk83AJcD2BrAFwAeBXC0c+7zAj5X2imFDx6FDy6FDy6FD56iBpw6524CcFOO146PPZ8H\noNlBF8655+BbQ4r+XGm/FD54FD64dKgtl8IHj1Z3oVP44FH44NKhtlwKHzwKH0Kn8MGj83xwqduF\nS1e15dHmRugUPnjU8sGl8MGllg8ehQ+hU/jgCVo7dJ4PDoUPLh1qy6PwIXQKHzxq+eBS+OBSyweP\nwofQKXzwBHWunR+HjnbhUvjg0eoudAofPNE6V/0nTy1PXAofPAofQhf80+ufP3kKH1xqeeJS+OBR\n+BA6hQ8ehQ8uhQ8uhQ8ehQ+hU/jgida5xhwkT+GPS+GDR5sboVP44NHOj0v1z6VDbXkUPoRO4YNH\nOz8u1T+XWj54FD6ETuGDRzs/LnV7cSl88Gh1FzqFDx6FDy7VP5fCB4/Ch9Dpn55HOz8u1T+XwgeP\nwofQqeWDRzs/LtU/l65qy6PwIXQKHzza+XGp/rnU8sGj8CF0Ch88GvDIpfDBZRa2fHTqxC1LpdHm\nRugUPni08+NS/XNF67xzZ145KpHCh9ApfPBo58ellicurf88Wt2FTuGDJ7rDU/0nTzs/LtU/j8KH\n0AX/9OpzTV60qVkb3+Rp58el+udR+BA6tXzwqOWDSzs/LtU/j8KH0AX/9OrzTp42vlyqfy7VP482\n90Kn8MGjlg8u7fy4VP882twLnbpdeHS0BZfqn0vhg0eru9Cp5YNHG18u1T+X6p9Hm3uhU/jgUbcL\nl3Z+XKp/Hm3uhU7hg0cbXy7VP5fqn0ebe6HTmA8etXxwaefHFV3/9eMnWapuoVPLB492flyqfy7V\nP48290Kn8MGjjS+X6p9L9c+jzb3QqduFR90uXDrUlkvhg0eru9Cp5YNHOz8u7fy4VP882twIncIH\nj1o+uLTz41L982hzL3TqduHRxpdL9c+l+udR+BA6tXzwaOPLpW4vLq3/PFrdhU7hg0cbXy6FDy6t\n/zxa3YVO4YNHG1+uaJ136sQrR6XS+s+jzb3QacwHVxD6VP/JU8sHl8IHj1Z3oVPLB5fCH4/CB5fC\nB49Wd6FT+OAK6l31nzyFDy6FDx6t7kKnX95cqn8ehQ8u1T+Pqlvo1PLBpfDBo50fl06yx6PVXegU\nPrg04JRH4YNL3S48Wt2FLvinf/RRbjkqlVo+eBQ+uLTO82h1FzptdLlWr/b32hAnT+GDS8GbR6u7\n0FVXs0sggDbADAofXAofPFrdha5zZ3YJBNAGmEHhg0vhg0eru9AF4WOffbjlqHTa+SVP4YNL4YNH\nq7vQLVjg759+mluOSqcNcPIUPrgUPni0ugvdv/7FLkFlGzjQ32sDnDyFDy6FDx6t7iIVrmdPf68N\ncPIUPriC+l+3jluOSqTVXaTCBZdyV/hInsIHl9Z5Hq3uIhVu3jx/rw1x8hQ+uLTO82h1FxEA2hAz\nKHxwaZ3n0eouIgC082NQ+OBS+ODR6i50Z53FLoEAOtkbwxtvhI8VPpKnOudR1QvdY4+xSyCATnPP\n8MUX4WPtCKWSaHUXuuBoC+FSy0fyouu+wkfyJk5kl6ByaXUXOm10y8P69ewSVJ7ouq//g+StWcMu\nQeXS6i502uiWh4ceYpeg8ih8SKXS6i50r7/u70eO5Jaj0kXHH0jyFD6kkmh1l7KxahW7BJWtSxd2\nCSrPqFHhYx32mbwTT2SXoHIpfAjd6NH+PrjGiHCo/pO39dbhY+d45ahUvXqxS1C5FD6ELhjo+Pbb\n3HJUugMOYJeg8uhoFy7VOY+qXujee8/ff/45txyVbsst2SWoPNGdn36FJ09dXTwKH0J38cX+fvvt\nueWodPoVmDyd44ZL6zyPql7oBg/294cfzi1HpdOOMHna+XGp/nlU9ULX1OTv1QTKpQ1x8lTnXBrk\ny6NVX+iCDYA2xFy9e7NLIJKs4IePJE+be6ELNgAKHxzB4Z5B95dIpdA2h0dVL3QKH1wa6yEiSdPm\nXugUPkSEobqaXYLKpaoXun32AcaMAcaPZ5dEJHl33w0MGMAuRWWaOZNdgspV1G9NMzvDzN4zszVm\nNtPMds1j/rfMbLWZzTWzY7LMc5aZzUvNs8jMrjOzrpHXLzazptjtrWLKL+WlVy/ghReATTdll6Qy\n6YJ+XLW1wN57s0tRmSZNYpegchUcPszspwCuBXAxgF0AzAEw3cz65Zj/NAATAfwWwA4ALgFwo5kd\nGJnnSACTUsvcHsAJAA5PvS/qDQD9AQxI3b5TaPlFJN1tt+nU9lKZdk39bNZg6+QV0+1SB+AW59yf\nAcDMTgVwIHxguDrL/Een5r8/9XxhqqXkPACPpqaNBvC8c+6e1PNFZvZXAPHfZF8755YVUWYRyaFb\nN2DIEHYpRDiuvhoYN45dispTUMuHmXUGMBzAU8E055wD8CR8gMimK4C1sWlrAYw0s2Cc/YsAhgfd\nN2a2DYADEIaTwBAz+4+ZvWtmd5rZ5oWUX0REJOqcc4ChQ9mlqDyFdrv0A9AJwNLY9KXw3SDZTAdw\nkpnVAICZjQBwIoDOqeXBOVcP3+XyvJmtA/BvAM84566KLGcmgOMAjAVwKoCtATxnZroQuIiISDuS\nxNEul8GP05hhZlUAlgCYAuBcAE0AYGZ7AbgQPlS8DGAwgBvMbLFz7nIAcM5NjyzzDTN7GcD78GND\n7sj14XV1degdO3VjbW0tamtrS/HdRERE2rX6+nrU19enTVu5cmWbfqa5Ak5un+p2WQ3gMOfcw5Hp\nUwD0ds4d0sx7O8GHkMUATgFwpXOuT+q15wDMdM6dG5n/KPixIhs0s8yXAfzDOXdRltdqADQ0NDSg\npqYm7+8oIiJS6WbNmoXhw4cDwHDn3KxSL7+gbhfnXCOABgD7BtPMzFLPX2zhveudcx+lxogcAeCR\nyMs9AHwde0vQKpL1cmNmtgF8C8niQr6DiIiIcBXT7XIdgClm1gDfRVIHHx6mAICZTQIw0Dk3PvV8\nCPxRKy8B2AjA2QB2BHBsZJmPAKgzszmp+YYAmADg4VRYgZldk5rvfQCbAbgUQCOA9LYiERERKWsF\nhw/n3L2pc3pMgO9GmQ1gbOQQ2AEAokehdALwXwCGwoeFZwCMcc4tisxzGXxLx2XwwWIZgIcB/Doy\nzyAAdwPom3r9eQC7OedWFPodREREhKeoAafOuZsA3JTjteNjz+cBaHbQhXMuCB6XNTOPRoiKiIh0\nALqUl4iIiCRK4UNEREQSpfAhIiIiiVL4EBERkUQpfIiIiEiiFD4kQ/w0u9Iy1VlxVG+FU50VR/VW\nXhQ+JIP+SQunOiuO6q1wqrPiqN7Ki8KHiIiIJErhQ0RERBKl8CEiIiKJKur06u1ENwCYO3cuuxzt\nzsqVKzFrVsmvoNyhqc6Ko3ornOqsOKq3wkT2nd3aYvmWumhsh2NmRwK4i10OERGRduwo59zdpV5o\nRw4ffQGMBbAQwFpuaURERNqVbgC2AjC9La4e32HDh4iIiJQnDTgVERGRRCl8iIiISKIUPkRERCRR\nCh8iIiKSKIUPERERSVS7Cx9mtoeZPWxm/zGzJjM7OPJatZldZWavmdkXqXn+ZGabxpbR1cxuNLPl\nZrbKzO43s02S/zbJaG2dmdk3zOwGM5tnZqvN7H0zu97MenG+UTJKsa7Flvd4fDkdTanqzMxGm9lT\nqflWmtmzZtY12W+TnBJt1/qb2V/MbHFqvgYzOzT5b5OM5uos9frFZjY3VRefmNk/zGxkbJ6K2hcA\nra+3Uu0P2l34ANATwGwApwOIHyfcA8DOAC4FsAuAQwBsB+Bvsfl+B+BAAIcB+C6AgQAeaLsi07W2\nzgYC2BTA2QB2BDAewP4A/l+blpqvFOsaAMDM6gCsz7KcjqbVdWZmowE8DmAagBGp2x8ANLVlwclK\nsa79BcAQAD8E8E0ADwK418y+3XbFpmquzgBgPoAz4Otid/hzPj1h/hxQgUrbFwCtr7fS7A+cc+32\nBr8xOriFeUbAb/QHpZ73AvAVgEMi82yXWtZI9ncqxzrLMc+PAawBUMX+TuVeb/A7jkUANslnOR3l\nVmydAZgB4BJ2+dthva2CPxtldL7lAE5gf6cyqbMNU/PtnXpe0fuCYustxzwF7w/aY8tHofrAp7vP\nUs+Hw1/T5qlgBufcfPidw+jES1ee4nWWa57PnXMd+ddooTLqzcy6w5/m/3Tn3MesgpWxtDozs40B\njAKw3MxeMLMlqS6X3ZmFLEPZ/kdfAPDTVLO4mdkRALoCeJZQvrJiZp0BnAJfX3NSk7UvaEGOesum\n4P1Bhw4fqT7iKwHc7Zz7IjV5AIB1zrnPY7MvTb1W0XLUWXyefgB+DeCWJMtWzpqpt8kAnnfO/Z1T\nsvKVo862Sd1fDL9+jQUwC8BTZrZt8qUsP82saz8F0AXACvhf9H+E/1W/IPlSlgczO9DMVsFfYuOX\nAPZzzn2Seln7ghxaqLf4vEXtDzps+DCzagD3wf86OJ1cnHYhnzozsw0BPArgDfg+6IqXq95SA7n2\nAVBHKlrZamZdC7ZJNzvn/uycm+OcOxu+H/qEhItZdlr4H70cQG/4dW44gOsA3GdmOyZayPLyNIBv\nw7dkTIOvj37cIrULedVba/YHHTJ8RP5BNwfw/divgyUAumQZmds/9VpFaqHOgnk2ADAdvgnuUOfc\n+mRLWX5aqLe94X/JrzSzRjNrTE1/0MyeTrioZaOFOlucup8be9tcAFskULyy1Vy9mdk28IMET3DO\nPeuce905dxmAV1LTK5Jzbo1zboFz7mXn3M8AfA3gxNTL2hfk0EK9AWj9/qDDhY/IP+g2APZ1zn0a\nm6UBviL3jbxnO/gN24ykyllO8qizIOE+AT+o6GDn3LpkS1l+8qi3SQB2gv8FEdwA34x5fFLlLCct\n1ZlzbiGAj+AH/kUNBfB+EmUsR3msaz3gW0PiO4D16IDb+Vaogh8HA2hfUIhovZVkf1BdurIlw8x6\nAhgMwFKTtkkdSvYJ/K+mB+CPLvghgM5m1j813yfOuUbn3OdmdhuA68zsU/gR4jcAeME593KS3yUp\nra2z1Ir2D/hLLB8FoI9ZsCgs66iDTkuwrn0M4OPYMgHgA+dch9yRtrbOUo+vAXCJmb0Gf0jgcfBh\n5LBEvgRBCeptHoB3AdxqZufAj/s4BMD34A8l7XBaqLMVAC4C8DB8/fUD8HP4w0TvA4BK3BcAra+3\nku0P2If6FHFo0J7wh/2sj91uB7BllteC59+NLKMrgN/DH4a2KlWpm7C/W7nWWer98fcG82zB/n7l\nWm85lrkeHfhQ21LVGYBz4Vs6VgF4HsBo9ncr93oDsG1qW7Y4VW+vAjiS/d1IddYVPrB9AP/r/EMA\nDwGoiS2jovYFpai3Uu0PLLUwERERkUSoL1BEREQSpfAhIiIiiVL4EBERkUQpfIiIiEiiFD5EREQk\nUQofIiIikiiFDxEREUmUwoeIiIgkSuFDREREEqXwISIiIolS+BAREZFE/X9d0D3Zy7+CFwAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10d33ba90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import astropy.io.ascii\n", "table = astropy.io.ascii.read('kepler1b.txt')\n", "time = table['time']\n", "flux = table['flux']\n", "nflux = flux/np.median(flux)\n", "uncertainty = table['uncertainty']\n", "plt.plot(time, nflux)\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0.06666417 0.06415853 0.06162956 0.05908018 0.05651547 0.05393816\n", " 0.0513529 0.04876179 0.04616929 0.0435791 0.04099612 0.03842453\n", " 0.03587083 0.03334145 0.03084372 0.02838619 0.02597661 0.02362419\n", " 0.02133843 0.01912973 0.01700802 0.01498519 0.01307203 0.01128025\n", " 0.00962059 0.00810445 0.00674209 0.00554467 0.0045219 0.00368379\n", " 0.00303916 0.00259466 0.00235476 0.00232275 0.00249899 0.00288115\n", " 0.00346481 0.00424318 0.00520875 0.00635308 0.00766699 0.00913932\n", " 0.01075909 0.01251529 0.01439721 0.01639272 0.01848994 0.02067621\n", " 0.02294065 0.02527313 0.02766356 0.03010254 0.03258112 0.03509167\n", " 0.03762615 0.04017887 0.0427431 0.0453151 0.04788933 0.050463\n", " 0.05303135 0.05559181 0.05814087 0.06067549 0.06319163 0.06568592\n", " 0.0681543 0.07059209 0.07299567 0.07535964 0.07768126 0.07995166\n", " 0.08216702 0.08432193 0.0864121 0.08843143 0.09037549 0.09223875\n", " 0.09401656 0.09570363 0.09729534 0.09878769 0.10017592 0.10145793\n", " 0.10263051 0.103693 0.10464355 0.1054827 0.10621101 0.10683089\n", " 0.10734415 0.10775497 0.10806898 0.10829186 0.10842908 0.10848763\n", " 0.10847476 0.10839785 0.10826442 0.10808252 0.1078594 ]\n" ] } ], "source": [ "params = batman.TransitParams()\n", "params.t0 = 0.0 #time of inferior conjunction\n", "params.per = 2.47061317 #orbital period\n", "params.rp = 0.1281 #planet radius (in units of stellar radii)\n", "params.a = 7.903 #semi-major axis (in units of stellar radii)\n", "params.inc = 83.872 #orbital inclination (in degrees)\n", "params.ecc = 0.0 #eccentricity\n", "params.w = 0.0 #longitude of periastron (in degrees)\n", "params.u = [0.1, 0.3] #limb darkening coefficients\n", "params.limb_dark = \"quadratic\" #limb darkening model\n", "\n", "\n", "plotting = False\n", "\n", "\n", "t00 = np.arange(-.8, -0.7, 0.001)\n", "chiSq = np.array([])\n", "for i in t00:\n", "\n", " # set the model t0 to one value of t00\n", " params.t0 = i\n", " m = batman.TransitModel(params, time)\n", " modelflux = m.light_curve(params)\n", " chiSq = np.append(chiSq, chisqa(nflux, modelflux))\n", "\n", " if plotting:\n", " plt.plot(time, modelflux, color='orange', linewidth=3)\n", " plt.scatter(time, nflux)\n", " plt.title(\"t0 = {}, chi^2 = {}\".format(i, chiSq[-1]))\n", " plt.show()\n", "#plt.scatter(t00, chiSq)\n", "mint00 = t00[np.argmin(chiSq)]\n", "print chiSq\n", "#plt.title(\"Mininum t00 = {}\".format(mint00))\n", "\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 7.21114782e-02 8.21374405e-02 9.50341157e-02 1.11199709e-01\n", " 1.30992180e-01 1.54692635e-01 1.82332359e-01 2.14015802e-01\n", " 2.50386369e-01 2.91973640e-01 3.39303841e-01 3.92921559e-01\n", " 4.53395408e-01 5.21321616e-01 5.97325161e-01 6.82061352e-01\n", " 7.76217214e-01 8.80511885e-01 9.95697666e-01 1.12256156e+00\n", " 1.26192578e+00 1.41464840e+00 1.58162461e+00 1.76378790e+00\n", " 1.96211057e+00 2.17760512e+00 2.41132560e+00 2.66436873e+00\n", " 2.93787427e+00 3.23302769e+00 3.55106038e+00 3.89325085e+00\n", " 4.26092637e+00 4.65546517e+00 5.07829677e+00 5.53090435e+00\n", " 6.01482551e+00 6.53165500e+00 7.08304569e+00 7.67071095e+00\n", " 8.29642641e+00 8.96203128e+00 9.66943069e+00 1.04205976e+01\n", " 1.12175769e+01 1.20624853e+01 1.29575159e+01 1.39049400e+01\n", " 1.49071095e+01 1.59664599e+01 1.70855140e+01 1.82668843e+01\n", " 1.95132765e+01 2.08274939e+01 2.22124396e+01 2.36711208e+01\n", " 2.52066539e+01 2.68222677e+01 2.85213076e+01 3.03072402e+01\n", " 3.21836596e+01 3.41542915e+01 3.62229990e+01 3.83937891e+01\n", " 4.06708178e+01 4.30583967e+01 4.55609989e+01 4.81832683e+01\n", " 5.09300263e+01 5.38062797e+01 5.68172289e+01 5.99682775e+01\n", " 6.32650408e+01 6.67133562e+01 7.03192953e+01 7.40891741e+01\n", " 7.80295405e+01 8.21473089e+01 8.64495314e+01 9.09436534e+01\n", " 9.56374634e+01 1.00538904e+02 1.05656412e+02 1.10998840e+02\n", " 1.16575309e+02 1.22395291e+02 1.28469017e+02 1.34806692e+02\n", " 1.41419314e+02 1.48318298e+02 1.55515633e+02 1.63023812e+02\n", " 1.70855968e+02 1.79025863e+02 1.87547932e+02 1.96437328e+02\n", " 2.05709966e+02 2.15382571e+02 2.25472733e+02 2.35998944e+02\n", " 2.46980707e+02 2.58438711e+02 2.70394317e+02 2.82870610e+02\n", " 2.95891677e+02 3.09483042e+02 3.23671701e+02 3.38486241e+02\n", " 3.53956949e+02 3.70115922e+02 3.86997346e+02 4.04637375e+02\n", " 4.23074577e+02 4.42350000e+02 4.62507353e+02 4.83593288e+02\n", " 5.05657695e+02 5.28753870e+02 5.52938830e+02 5.78273764e+02\n", " 6.04824359e+02 6.32661170e+02 6.61860148e+02 6.92503163e+02\n", " 7.24678537e+02 7.58481826e+02 7.94016445e+02 8.31394571e+02\n", " 8.70738080e+02 9.12179625e+02 9.55863865e+02 1.00194886e+03\n", " 1.05060766e+03 1.10203016e+03 1.15642518e+03 1.21402288e+03\n", " 1.27507764e+03 1.33987126e+03 1.40871684e+03 1.48196317e+03\n", " 1.56000009e+03 1.64326464e+03 1.73224846e+03 1.82750663e+03\n", " 1.92966823e+03 2.03944911e+03 2.15766739e+03 2.28526238e+03\n", " 2.42331797e+03 2.57309138e+03 2.73604934e+03 2.91391360e+03\n", " 3.10871855e+03 3.32288583e+03 3.55932039e+03 3.82153756e+03\n", " 4.11383124e+03 4.44150175e+03 4.81116792e+03 5.23120243e+03\n", " 5.71235181e+03 6.26863741e+03 6.91869924e+03 7.68785931e+03\n", " 8.61139105e+03 9.73991058e+03 1.11486791e+04 1.29545712e+04\n", " 1.53492175e+04 1.86696236e+04]\n" ] } ], "source": [ "rp0 = np.arange(0.1, 1.8, 0.01)\n", "chiSq2 = np.array([])\n", "\n", "for j in rp0:\n", " params.rp = j\n", " m = batman.TransitModel(params, time)\n", " modelflux2 = m.light_curve(params)\n", " chiSq2 = np.append(chiSq2, chisqa(nflux, modelflux2))\n", "print chiSq2" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n", "0 1\n", "0 2\n", "0 3\n", "0 4\n", "0 5\n", "0 6\n", "0 7\n", "0 8\n", "0 9\n", "0 10\n", "0 11\n", "0 12\n", "0 13\n", "0 14\n", "0 15\n", "0 16\n", "0 17\n", "0 18\n", "1 0\n", "1 1\n", "1 2\n", "1 3\n", "1 4\n", "1 5\n", "1 6\n", "1 7\n", "1 8\n", "1 9\n", "1 10\n", "1 11\n", "1 12\n", "1 13\n", "1 14\n", "1 15\n", "1 16\n", "1 17\n", "1 18\n", "2 0\n", "2 1\n", "2 2\n", "2 3\n", "2 4\n", "2 5\n", "2 6\n", "2 7\n", "2 8\n", "2 9\n", "2 10\n", "2 11\n", "2 12\n", "2 13\n", "2 14\n", "2 15\n", "2 16\n", "2 17\n", "2 18\n", "3 0\n", "3 1\n", "3 2\n", "3 3\n", "3 4\n", "3 5\n", "3 6\n", "3 7\n", "3 8\n", "3 9\n", "3 10\n", "3 11\n", "3 12\n", "3 13\n", "3 14\n", "3 15\n", "3 16\n", "3 17\n", "3 18\n", "4 0\n", "4 1\n", "4 2\n", "4 3\n", "4 4\n", "4 5\n", "4 6\n", "4 7\n", "4 8\n", "4 9\n", "4 10\n", "4 11\n", "4 12\n", "4 13\n", "4 14\n", "4 15\n", "4 16\n", "4 17\n", "4 18\n", "5 0\n", "5 1\n", "5 2\n", "5 3\n", "5 4\n", "5 5\n", "5 6\n", "5 7\n", "5 8\n", "5 9\n", "5 10\n", "5 11\n", "5 12\n", "5 13\n", "5 14\n", "5 15\n", "5 16\n", "5 17\n", "5 18\n", "6 0\n", "6 1\n", "6 2\n", "6 3\n", "6 4\n", "6 5\n", "6 6\n", "6 7\n", "6 8\n", "6 9\n", "6 10\n", "6 11\n", "6 12\n", "6 13\n", "6 14\n", "6 15\n", "6 16\n", "6 17\n", "6 18\n", "7 0\n", "7 1\n", "7 2\n", "7 3\n", "7 4\n", "7 5\n", "7 6\n", "7 7\n", "7 8\n", "7 9\n", "7 10\n", "7 11\n", "7 12\n", "7 13\n", "7 14\n", "7 15\n", "7 16\n", "7 17\n", "7 18\n", "8 0\n", "8 1\n", "8 2\n", "8 3\n", "8 4\n", "8 5\n", "8 6\n", "8 7\n", "8 8\n", "8 9\n", "8 10\n", "8 11\n", "8 12\n", "8 13\n", "8 14\n", "8 15\n", "8 16\n", "8 17\n", "8 18\n", "9 0\n", "9 1\n", "9 2\n", "9 3\n", "9 4\n", "9 5\n", "9 6\n", "9 7\n", "9 8\n", "9 9\n", "9 10\n", "9 11\n", "9 12\n", "9 13\n", "9 14\n", "9 15\n", "9 16\n", "9 17\n", "9 18\n", "10 0\n", "10 1\n", "10 2\n", "10 3\n", "10 4\n", "10 5\n", "10 6\n", "10 7\n", "10 8\n", "10 9\n", "10 10\n", "10 11\n", "10 12\n", "10 13\n", "10 14\n", "10 15\n", "10 16\n", "10 17\n", "10 18\n", "11 0\n", "11 1\n", "11 2\n", "11 3\n", "11 4\n", "11 5\n", "11 6\n", "11 7\n", "11 8\n", "11 9\n", "11 10\n", "11 11\n", "11 12\n", "11 13\n", "11 14\n", "11 15\n", "11 16\n", "11 17\n", "11 18\n", "12 0\n", "12 1\n", "12 2\n", "12 3\n", "12 4\n", "12 5\n", "12 6\n", "12 7\n", "12 8\n", "12 9\n", "12 10\n", "12 11\n", "12 12\n", "12 13\n", "12 14\n", "12 15\n", "12 16\n", "12 17\n", "12 18\n", "13 0\n", "13 1\n", "13 2\n", "13 3\n", "13 4\n", "13 5\n", "13 6\n", "13 7\n", "13 8\n", "13 9\n", "13 10\n", "13 11\n", "13 12\n", "13 13\n", "13 14\n", "13 15\n", "13 16\n", "13 17\n", "13 18\n", "14 0\n", "14 1\n", "14 2\n", "14 3\n", "14 4\n", "14 5\n", "14 6\n", "14 7\n", "14 8\n", "14 9\n", "14 10\n", "14 11\n", "14 12\n", "14 13\n", "14 14\n", "14 15\n", "14 16\n", "14 17\n", "14 18\n", "15 0\n", "15 1\n", "15 2\n", "15 3\n", "15 4\n", "15 5\n", "15 6\n", "15 7\n", "15 8\n", "15 9\n", "15 10\n", "15 11\n", "15 12\n", "15 13\n", "15 14\n", "15 15\n", "15 16\n", "15 17\n", "15 18\n", "16 0\n", "16 1\n", "16 2\n", "16 3\n", "16 4\n", "16 5\n", "16 6\n", "16 7\n", "16 8\n", "16 9\n", "16 10\n", "16 11\n", "16 12\n", "16 13\n", "16 14\n", "16 15\n", "16 16\n", "16 17\n", "16 18\n", "17 0\n", "17 1\n", "17 2\n", "17 3\n", "17 4\n", "17 5\n", "17 6\n", "17 7\n", "17 8\n", "17 9\n", "17 10\n", "17 11\n", "17 12\n", "17 13\n", "17 14\n", "17 15\n", "17 16\n", "17 17\n", "17 18\n", "18 0\n", "18 1\n", "18 2\n", "18 3\n", "18 4\n", "18 5\n", "18 6\n", "18 7\n", "18 8\n", "18 9\n", "18 10\n", "18 11\n", "18 12\n", "18 13\n", "18 14\n", "18 15\n", "18 16\n", "18 17\n", "18 18\n", "19 0\n", "19 1\n", "19 2\n", "19 3\n", "19 4\n", "19 5\n", "19 6\n", "19 7\n", "19 8\n", "19 9\n", "19 10\n", "19 11\n", "19 12\n", "19 13\n", "19 14\n", "19 15\n", "19 16\n", "19 17\n", "19 18\n", "20 0\n", "20 1\n", "20 2\n", "20 3\n", "20 4\n", "20 5\n", "20 6\n", "20 7\n", "20 8\n", "20 9\n", "20 10\n", "20 11\n", "20 12\n", "20 13\n", "20 14\n", "20 15\n", "20 16\n", "20 17\n", "20 18\n", "21 0\n", "21 1\n", "21 2\n", "21 3\n", "21 4\n", "21 5\n", "21 6\n", "21 7\n", "21 8\n", "21 9\n", "21 10\n", "21 11\n", "21 12\n", "21 13\n", "21 14\n", "21 15\n", "21 16\n", "21 17\n", "21 18\n", "22 0\n", "22 1\n", "22 2\n", "22 3\n", "22 4\n", "22 5\n", "22 6\n", "22 7\n", "22 8\n", "22 9\n", "22 10\n", "22 11\n", "22 12\n", "22 13\n", "22 14\n", "22 15\n", "22 16\n", "22 17\n", "22 18\n", "23 0\n", "23 1\n", "23 2\n", "23 3\n", "23 4\n", "23 5\n", "23 6\n", "23 7\n", "23 8\n", "23 9\n", "23 10\n", "23 11\n", "23 12\n", "23 13\n", "23 14\n", "23 15\n", "23 16\n", "23 17\n", "23 18\n", "24 0\n", "24 1\n", "24 2\n", "24 3\n", "24 4\n", "24 5\n", "24 6\n", "24 7\n", "24 8\n", "24 9\n", "24 10\n", "24 11\n", "24 12\n", "24 13\n", "24 14\n", "24 15\n", "24 16\n", "24 17\n", "24 18\n", "25 0\n", "25 1\n", "25 2\n", "25 3\n", "25 4\n", "25 5\n", "25 6\n", "25 7\n", "25 8\n", "25 9\n", "25 10\n", "25 11\n", "25 12\n", "25 13\n", "25 14\n", "25 15\n", "25 16\n", "25 17\n", "25 18\n", "26 0\n", "26 1\n", "26 2\n", "26 3\n", "26 4\n", "26 5\n", "26 6\n", "26 7\n", "26 8\n", "26 9\n", "26 10\n", "26 11\n", "26 12\n", "26 13\n", "26 14\n", "26 15\n", "26 16\n", "26 17\n", "26 18\n", "27 0\n", "27 1\n", "27 2\n", "27 3\n", "27 4\n", "27 5\n", "27 6\n", "27 7\n", "27 8\n", "27 9\n", "27 10\n", "27 11\n", "27 12\n", "27 13\n", "27 14\n", "27 15\n", "27 16\n", "27 17\n", "27 18\n", "28 0\n", "28 1\n", "28 2\n", "28 3\n", "28 4\n", "28 5\n", "28 6\n", "28 7\n", "28 8\n", "28 9\n", "28 10\n", "28 11\n", "28 12\n", "28 13\n", "28 14\n", "28 15\n", "28 16\n", "28 17\n", "28 18\n", "29 0\n", "29 1\n", "29 2\n", "29 3\n", "29 4\n", "29 5\n", "29 6\n", "29 7\n", "29 8\n", "29 9\n", "29 10\n", "29 11\n", "29 12\n", "29 13\n", "29 14\n", "29 15\n", "29 16\n", "29 17\n", "29 18\n", "30 0\n", "30 1\n", "30 2\n", "30 3\n", "30 4\n", "30 5\n", "30 6\n", "30 7\n", "30 8\n", "30 9\n", "30 10\n", "30 11\n", "30 12\n", "30 13\n", "30 14\n", "30 15\n", "30 16\n", "30 17\n", "30 18\n", "31 0\n", "31 1\n", "31 2\n", "31 3\n", "31 4\n", "31 5\n", "31 6\n", "31 7\n", "31 8\n", "31 9\n", "31 10\n", "31 11\n", "31 12\n", "31 13\n", "31 14\n", "31 15\n", "31 16\n", "31 17\n", "31 18\n", "32 0\n", "32 1\n", "32 2\n", "32 3\n", "32 4\n", "32 5\n", "32 6\n", "32 7\n", "32 8\n", "32 9\n", "32 10\n", "32 11\n", "32 12\n", "32 13\n", "32 14\n", "32 15\n", "32 16\n", "32 17\n", "32 18\n", "33 0\n", "33 1\n", "33 2\n", "33 3\n", "33 4\n", "33 5\n", "33 6\n", "33 7\n", "33 8\n", "33 9\n", "33 10\n", "33 11\n", "33 12\n", "33 13\n", "33 14\n", "33 15\n", "33 16\n", "33 17\n", "33 18\n", "34 0\n", "34 1\n", "34 2\n", "34 3\n", "34 4\n", "34 5\n", "34 6\n", "34 7\n", "34 8\n", "34 9\n", "34 10\n", "34 11\n", "34 12\n", "34 13\n", "34 14\n", "34 15\n", "34 16\n", "34 17\n", "34 18\n", "35 0\n", "35 1\n", "35 2\n", "35 3\n", "35 4\n", "35 5\n", "35 6\n", "35 7\n", "35 8\n", "35 9\n", "35 10\n", "35 11\n", "35 12\n", "35 13\n", "35 14\n", "35 15\n", "35 16\n", "35 17\n", "35 18\n", "36 0\n", "36 1\n", "36 2\n", "36 3\n", "36 4\n", "36 5\n", "36 6\n", "36 7\n", "36 8\n", "36 9\n", "36 10\n", "36 11\n", "36 12\n", "36 13\n", "36 14\n", "36 15\n", "36 16\n", "36 17\n", "36 18\n", "37 0\n", "37 1\n", "37 2\n", "37 3\n", "37 4\n", "37 5\n", "37 6\n", "37 7\n", "37 8\n", "37 9\n", "37 10\n", "37 11\n", "37 12\n", "37 13\n", "37 14\n", "37 15\n", "37 16\n", "37 17\n", "37 18\n", "38 0\n", "38 1\n", "38 2\n", "38 3\n", "38 4\n", "38 5\n", "38 6\n", "38 7\n", "38 8\n", "38 9\n", "38 10\n", "38 11\n", "38 12\n", "38 13\n", "38 14\n", "38 15\n", "38 16\n", "38 17\n", "38 18\n", "39 0\n", "39 1\n", "39 2\n", "39 3\n", "39 4\n", "39 5\n", "39 6\n", "39 7\n", "39 8\n", "39 9\n", "39 10\n", "39 11\n", "39 12\n", "39 13\n", "39 14\n", "39 15\n", "39 16\n", "39 17\n", "39 18\n", "40 0\n", "40 1\n", "40 2\n", "40 3\n", "40 4\n", "40 5\n", "40 6\n", "40 7\n", "40 8\n", "40 9\n", "40 10\n", "40 11\n", "40 12\n", "40 13\n", "40 14\n", "40 15\n", "40 16\n", "40 17\n", "40 18\n", "41 0\n", "41 1\n", "41 2\n", "41 3\n", "41 4\n", "41 5\n", "41 6\n", "41 7\n", "41 8\n", "41 9\n", "41 10\n", "41 11\n", "41 12\n", "41 13\n", "41 14\n", "41 15\n", "41 16\n", "41 17\n", "41 18\n", "42 0\n", "42 1\n", "42 2\n", "42 3\n", "42 4\n", "42 5\n", "42 6\n", "42 7\n", "42 8\n", "42 9\n", "42 10\n", "42 11\n", "42 12\n", "42 13\n", "42 14\n", "42 15\n", "42 16\n", "42 17\n", "42 18\n", "43 0\n", "43 1\n", "43 2\n", "43 3\n", "43 4\n", "43 5\n", "43 6\n", "43 7\n", "43 8\n", "43 9\n", "43 10\n", "43 11\n", "43 12\n", "43 13\n", "43 14\n", "43 15\n", "43 16\n", "43 17\n", "43 18\n", "44 0\n", "44 1\n", "44 2\n", "44 3\n", "44 4\n", "44 5\n", "44 6\n", "44 7\n", "44 8\n", "44 9\n", "44 10\n", "44 11\n", "44 12\n", "44 13\n", "44 14\n", "44 15\n", "44 16\n", "44 17\n", "44 18\n", "45 0\n", "45 1\n", "45 2\n", "45 3\n", "45 4\n", "45 5\n", "45 6\n", "45 7\n", "45 8\n", "45 9\n", "45 10\n", "45 11\n", "45 12\n", "45 13\n", "45 14\n", "45 15\n", "45 16\n", "45 17\n", "45 18\n", "46 0\n", "46 1\n", "46 2\n", "46 3\n", "46 4\n", "46 5\n", "46 6\n", "46 7\n", "46 8\n", "46 9\n", "46 10\n", "46 11\n", "46 12\n", "46 13\n", "46 14\n", "46 15\n", "46 16\n", "46 17\n", "46 18\n", "47 0\n", "47 1\n", "47 2\n", "47 3\n", "47 4\n", "47 5\n", "47 6\n", "47 7\n", "47 8\n", "47 9\n", "47 10\n", "47 11\n", "47 12\n", "47 13\n", "47 14\n", "47 15\n", "47 16\n", "47 17\n", "47 18\n", "48 0\n", "48 1\n", "48 2\n", "48 3\n", "48 4\n", "48 5\n", "48 6\n", "48 7\n", "48 8\n", "48 9\n", "48 10\n", "48 11\n", "48 12\n", "48 13\n", "48 14\n", "48 15\n", "48 16\n", "48 17\n", "48 18\n", "49 0\n", "49 1\n", "49 2\n", "49 3\n", "49 4\n", "49 5\n", "49 6\n", "49 7\n", "49 8\n", "49 9\n", "49 10\n", "49 11\n", "49 12\n", "49 13\n", "49 14\n", "49 15\n", "49 16\n", "49 17\n", "49 18\n", "50 0\n", "50 1\n", "50 2\n", "50 3\n", "50 4\n", "50 5\n", "50 6\n", "50 7\n", "50 8\n", "50 9\n", "50 10\n", "50 11\n", "50 12\n", "50 13\n", "50 14\n", "50 15\n", "50 16\n", "50 17\n", "50 18\n", "51 0\n", "51 1\n", "51 2\n", "51 3\n", "51 4\n", "51 5\n", "51 6\n", "51 7\n", "51 8\n", "51 9\n", "51 10\n", "51 11\n", "51 12\n", "51 13\n", "51 14\n", "51 15\n", "51 16\n", "51 17\n", "51 18\n", "52 0\n", "52 1\n", "52 2\n", "52 3\n", "52 4\n", "52 5\n", "52 6\n", "52 7\n", "52 8\n", "52 9\n", "52 10\n", "52 11\n", "52 12\n", "52 13\n", "52 14\n", "52 15\n", "52 16\n", "52 17\n", "52 18\n", "53 0\n", "53 1\n", "53 2\n", "53 3\n", "53 4\n", "53 5\n", "53 6\n", "53 7\n", "53 8\n", "53 9\n", "53 10\n", "53 11\n", "53 12\n", "53 13\n", "53 14\n", "53 15\n", "53 16\n", "53 17\n", "53 18\n", "54 0\n", "54 1\n", "54 2\n", "54 3\n", "54 4\n", "54 5\n", "54 6\n", "54 7\n", "54 8\n", "54 9\n", "54 10\n", "54 11\n", "54 12\n", "54 13\n", "54 14\n", "54 15\n", "54 16\n", "54 17\n", "54 18\n", "55 0\n", "55 1\n", "55 2\n", "55 3\n", "55 4\n", "55 5\n", "55 6\n", "55 7\n", "55 8\n", "55 9\n", "55 10\n", "55 11\n", "55 12\n", "55 13\n", "55 14\n", "55 15\n", "55 16\n", "55 17\n", "55 18\n", "56 0\n", "56 1\n", "56 2\n", "56 3\n", "56 4\n", "56 5\n", "56 6\n", "56 7\n", "56 8\n", "56 9\n", "56 10\n", "56 11\n", "56 12\n", "56 13\n", "56 14\n", "56 15\n", "56 16\n", "56 17\n", "56 18\n", "57 0\n", "57 1\n", "57 2\n", "57 3\n", "57 4\n", "57 5\n", "57 6\n", "57 7\n", "57 8\n", "57 9\n", "57 10\n", "57 11\n", "57 12\n", "57 13\n", "57 14\n", "57 15\n", "57 16\n", "57 17\n", "57 18\n", "58 0\n", "58 1\n", "58 2\n", "58 3\n", "58 4\n", "58 5\n", "58 6\n", "58 7\n", "58 8\n", "58 9\n", "58 10\n", "58 11\n", "58 12\n", "58 13\n", "58 14\n", "58 15\n", "58 16\n", "58 17\n", "58 18\n", "59 0\n", "59 1\n", "59 2\n", "59 3\n", "59 4\n", "59 5\n", "59 6\n", "59 7\n", "59 8\n", "59 9\n", "59 10\n", "59 11\n", "59 12\n", "59 13\n", "59 14\n", "59 15\n", "59 16\n", "59 17\n", "59 18\n", "60 0\n", "60 1\n", "60 2\n", "60 3\n", "60 4\n", "60 5\n", "60 6\n", "60 7\n", "60 8\n", "60 9\n", "60 10\n", "60 11\n", "60 12\n", "60 13\n", "60 14\n", "60 15\n", "60 16\n", "60 17\n", "60 18\n", "61 0\n", "61 1\n", "61 2\n", "61 3\n", "61 4\n", "61 5\n", "61 6\n", "61 7\n", "61 8\n", "61 9\n", "61 10\n", "61 11\n", "61 12\n", "61 13\n", "61 14\n", "61 15\n", "61 16\n", "61 17\n", "61 18\n", "62 0\n", "62 1\n", "62 2\n", "62 3\n", "62 4\n", "62 5\n", "62 6\n", "62 7\n", "62 8\n", "62 9\n", "62 10\n", "62 11\n", "62 12\n", "62 13\n", "62 14\n", "62 15\n", "62 16\n", "62 17\n", "62 18\n", "63 0\n", "63 1\n", "63 2\n", "63 3\n", "63 4\n", "63 5\n", "63 6\n", "63 7\n", "63 8\n", "63 9\n", "63 10\n", "63 11\n", "63 12\n", "63 13\n", "63 14\n", "63 15\n", "63 16\n", "63 17\n", "63 18\n", "64 0\n", "64 1\n", "64 2\n", "64 3\n", "64 4\n", "64 5\n", "64 6\n", "64 7\n", "64 8\n", "64 9\n", "64 10\n", "64 11\n", "64 12\n", "64 13\n", "64 14\n", "64 15\n", "64 16\n", "64 17\n", "64 18\n", "65 0\n", "65 1\n", "65 2\n", "65 3\n", "65 4\n", "65 5\n", "65 6\n", "65 7\n", "65 8\n", "65 9\n", "65 10\n", "65 11\n", "65 12\n", "65 13\n", "65 14\n", "65 15\n", "65 16\n", "65 17\n", "65 18\n", "66 0\n", "66 1\n", "66 2\n", "66 3\n", "66 4\n", "66 5\n", "66 6\n", "66 7\n", "66 8\n", "66 9\n", "66 10\n", "66 11\n", "66 12\n", "66 13\n", "66 14\n", "66 15\n", "66 16\n", "66 17\n", "66 18\n", "67 0\n", "67 1\n", "67 2\n", "67 3\n", "67 4\n", "67 5\n", "67 6\n", "67 7\n", "67 8\n", "67 9\n", "67 10\n", "67 11\n", "67 12\n", "67 13\n", "67 14\n", "67 15\n", "67 16\n", "67 17\n", "67 18\n", "68 0\n", "68 1\n", "68 2\n", "68 3\n", "68 4\n", "68 5\n", "68 6\n", "68 7\n", "68 8\n", "68 9\n", "68 10\n", "68 11\n", "68 12\n", "68 13\n", "68 14\n", "68 15\n", "68 16\n", "68 17\n", "68 18\n", "69 0\n", "69 1\n", "69 2\n", "69 3\n", "69 4\n", "69 5\n", "69 6\n", "69 7\n", "69 8\n", "69 9\n", "69 10\n", "69 11\n", "69 12\n", "69 13\n", "69 14\n", "69 15\n", "69 16\n", "69 17\n", "69 18\n", "70 0\n", "70 1\n", "70 2\n", "70 3\n", "70 4\n", "70 5\n", "70 6\n", "70 7\n", "70 8\n", "70 9\n", "70 10\n", "70 11\n", "70 12\n", "70 13\n", "70 14\n", "70 15\n", "70 16\n", "70 17\n", "70 18\n", "71 0\n", "71 1\n", "71 2\n", "71 3\n", "71 4\n", "71 5\n", "71 6\n", "71 7\n", "71 8\n", "71 9\n", "71 10\n", "71 11\n", "71 12\n", "71 13\n", "71 14\n", "71 15\n", "71 16\n", "71 17\n", "71 18\n", "72 0\n", "72 1\n", "72 2\n", "72 3\n", "72 4\n", "72 5\n", "72 6\n", "72 7\n", "72 8\n", "72 9\n", "72 10\n", "72 11\n", "72 12\n", "72 13\n", "72 14\n", "72 15\n", "72 16\n", "72 17\n", "72 18\n", "73 0\n", "73 1\n", "73 2\n", "73 3\n", "73 4\n", "73 5\n", "73 6\n", "73 7\n", "73 8\n", "73 9\n", "73 10\n", "73 11\n", "73 12\n", "73 13\n", "73 14\n", "73 15\n", "73 16\n", "73 17\n", "73 18\n", "74 0\n", "74 1\n", "74 2\n", "74 3\n", "74 4\n", "74 5\n", "74 6\n", "74 7\n", "74 8\n", "74 9\n", "74 10\n", "74 11\n", "74 12\n", "74 13\n", "74 14\n", "74 15\n", "74 16\n", "74 17\n", "74 18\n", "75 0\n", "75 1\n", "75 2\n", "75 3\n", "75 4\n", "75 5\n", "75 6\n", "75 7\n", "75 8\n", "75 9\n", "75 10\n", "75 11\n", "75 12\n", "75 13\n", "75 14\n", "75 15\n", "75 16\n", "75 17\n", "75 18\n", "76 0\n", "76 1\n", "76 2\n", "76 3\n", "76 4\n", "76 5\n", "76 6\n", "76 7\n", "76 8\n", "76 9\n", "76 10\n", "76 11\n", "76 12\n", "76 13\n", "76 14\n", "76 15\n", "76 16\n", "76 17\n", "76 18\n", "77 0\n", "77 1\n", "77 2\n", "77 3\n", "77 4\n", "77 5\n", "77 6\n", "77 7\n", "77 8\n", "77 9\n", "77 10\n", "77 11\n", "77 12\n", "77 13\n", "77 14\n", "77 15\n", "77 16\n", "77 17\n", "77 18\n", "78 0\n", "78 1\n", "78 2\n", "78 3\n", "78 4\n", "78 5\n", "78 6\n", "78 7\n", "78 8\n", "78 9\n", "78 10\n", "78 11\n", "78 12\n", "78 13\n", "78 14\n", "78 15\n", "78 16\n", "78 17\n", "78 18\n", "79 0\n", "79 1\n", "79 2\n", "79 3\n", "79 4\n", "79 5\n", "79 6\n", "79 7\n", "79 8\n", "79 9\n", "79 10\n", "79 11\n", "79 12\n", "79 13\n", "79 14\n", "79 15\n", "79 16\n", "79 17\n", "79 18\n", "80 0\n", "80 1\n", "80 2\n", "80 3\n", "80 4\n", "80 5\n", "80 6\n", "80 7\n", "80 8\n", "80 9\n", "80 10\n", "80 11\n", "80 12\n", "80 13\n", "80 14\n", "80 15\n", "80 16\n", "80 17\n", "80 18\n", "81 0\n", "81 1\n", "81 2\n", "81 3\n", "81 4\n", "81 5\n", "81 6\n", "81 7\n", "81 8\n", "81 9\n", "81 10\n", "81 11\n", "81 12\n", "81 13\n", "81 14\n", "81 15\n", "81 16\n", "81 17\n", "81 18\n", "82 0\n", "82 1\n", "82 2\n", "82 3\n", "82 4\n", "82 5\n", "82 6\n", "82 7\n", "82 8\n", "82 9\n", "82 10\n", "82 11\n", "82 12\n", "82 13\n", "82 14\n", "82 15\n", "82 16\n", "82 17\n", "82 18\n", "83 0\n", "83 1\n", "83 2\n", "83 3\n", "83 4\n", "83 5\n", "83 6\n", "83 7\n", "83 8\n", "83 9\n", "83 10\n", "83 11\n", "83 12\n", "83 13\n", "83 14\n", "83 15\n", "83 16\n", "83 17\n", "83 18\n", "84 0\n", "84 1\n", "84 2\n", "84 3\n", "84 4\n", "84 5\n", "84 6\n", "84 7\n", "84 8\n", "84 9\n", "84 10\n", "84 11\n", "84 12\n", "84 13\n", "84 14\n", "84 15\n", "84 16\n", "84 17\n", "84 18\n", "85 0\n", "85 1\n", "85 2\n", "85 3\n", "85 4\n", "85 5\n", "85 6\n", "85 7\n", "85 8\n", "85 9\n", "85 10\n", "85 11\n", "85 12\n", "85 13\n", "85 14\n", "85 15\n", "85 16\n", "85 17\n", "85 18\n", "86 0\n", "86 1\n", "86 2\n", "86 3\n", "86 4\n", "86 5\n", "86 6\n", "86 7\n", "86 8\n", "86 9\n", "86 10\n", "86 11\n", "86 12\n", "86 13\n", "86 14\n", "86 15\n", "86 16\n", "86 17\n", "86 18\n", "87 0\n", "87 1\n", "87 2\n", "87 3\n", "87 4\n", "87 5\n", "87 6\n", "87 7\n", "87 8\n", "87 9\n", "87 10\n", "87 11\n", "87 12\n", "87 13\n", "87 14\n", "87 15\n", "87 16\n", "87 17\n", "87 18\n", "88 0\n", "88 1\n", "88 2\n", "88 3\n", "88 4\n", "88 5\n", "88 6\n", "88 7\n", "88 8\n", "88 9\n", "88 10\n", "88 11\n", "88 12\n", "88 13\n", "88 14\n", "88 15\n", "88 16\n", "88 17\n", "88 18\n", "89 0\n", "89 1\n", "89 2\n", "89 3\n", "89 4\n", "89 5\n", "89 6\n", "89 7\n", "89 8\n", "89 9\n", "89 10\n", "89 11\n", "89 12\n", "89 13\n", "89 14\n", "89 15\n", "89 16\n", "89 17\n", "89 18\n", "90 0\n", "90 1\n", "90 2\n", "90 3\n", "90 4\n", "90 5\n", "90 6\n", "90 7\n", "90 8\n", "90 9\n", "90 10\n", "90 11\n", "90 12\n", "90 13\n", "90 14\n", "90 15\n", "90 16\n", "90 17\n", "90 18\n", "91 0\n", "91 1\n", "91 2\n", "91 3\n", "91 4\n", "91 5\n", "91 6\n", "91 7\n", "91 8\n", "91 9\n", "91 10\n", "91 11\n", "91 12\n", "91 13\n", "91 14\n", "91 15\n", "91 16\n", "91 17\n", "91 18\n", "92 0\n", "92 1\n", "92 2\n", "92 3\n", "92 4\n", "92 5\n", "92 6\n", "92 7\n", "92 8\n", "92 9\n", "92 10\n", "92 11\n", "92 12\n", "92 13\n", "92 14\n", "92 15\n", "92 16\n", "92 17\n", "92 18\n", "93 0\n", "93 1\n", "93 2\n", "93 3\n", "93 4\n", "93 5\n", "93 6\n", "93 7\n", "93 8\n", "93 9\n", "93 10\n", "93 11\n", "93 12\n", "93 13\n", "93 14\n", "93 15\n", "93 16\n", "93 17\n", "93 18\n", "94 0\n", "94 1\n", "94 2\n", "94 3\n", "94 4\n", "94 5\n", "94 6\n", "94 7\n", "94 8\n", "94 9\n", "94 10\n", "94 11\n", "94 12\n", "94 13\n", "94 14\n", "94 15\n", "94 16\n", "94 17\n", "94 18\n", "95 0\n", "95 1\n", "95 2\n", "95 3\n", "95 4\n", "95 5\n", "95 6\n", "95 7\n", "95 8\n", "95 9\n", "95 10\n", "95 11\n", "95 12\n", "95 13\n", "95 14\n", "95 15\n", "95 16\n", "95 17\n", "95 18\n", "96 0\n", "96 1\n", "96 2\n", "96 3\n", "96 4\n", "96 5\n", "96 6\n", "96 7\n", "96 8\n", "96 9\n", "96 10\n", "96 11\n", "96 12\n", "96 13\n", "96 14\n", "96 15\n", "96 16\n", "96 17\n", "96 18\n", "97 0\n", "97 1\n", "97 2\n", "97 3\n", "97 4\n", "97 5\n", "97 6\n", "97 7\n", "97 8\n", "97 9\n", "97 10\n", "97 11\n", "97 12\n", "97 13\n", "97 14\n", "97 15\n", "97 16\n", "97 17\n", "97 18\n", "98 0\n", "98 1\n", "98 2\n", "98 3\n", "98 4\n", "98 5\n", "98 6\n", "98 7\n", "98 8\n", "98 9\n", "98 10\n", "98 11\n", "98 12\n", "98 13\n", "98 14\n", "98 15\n", "98 16\n", "98 17\n", "98 18\n", "99 0\n", "99 1\n", "99 2\n", "99 3\n", "99 4\n", "99 5\n", "99 6\n", "99 7\n", "99 8\n", "99 9\n", "99 10\n", "99 11\n", "99 12\n", "99 13\n", "99 14\n", "99 15\n", "99 16\n", "99 17\n", "99 18\n", "100 0\n", "100 1\n", "100 2\n", "100 3\n", "100 4\n", "100 5\n", "100 6\n", "100 7\n", "100 8\n", "100 9\n", "100 10\n", "100 11\n", "100 12\n", "100 13\n", "100 14\n", "100 15\n", "100 16\n", "100 17\n", "100 18\n" ] } ], "source": [ "t00 = np.arange(-.8, -.7, 0.001)\n", "chiSq = np.array([])\n", "rp0 = np.arange(0.01, 0.2, 0.01)\n", "\n", "chichi = np.zeros([len(t00), len(rp0)])\n", "\n", "for i in range(len(t00)):\n", " thist = t00[i]\n", " \n", " # set the model t0 to one value of t00\n", " params.t0 = thist\n", " m = batman.TransitModel(params, time)\n", " modelflux = m.light_curve(params)\n", " chiSq = np.append(chiSq, chisqa(nflux, modelflux))\n", " chiSq2 = np.array([])\n", " for j in range(len(rp0)):\n", " print i, j\n", " thisrp = rp0[j]\n", " params.rp = thisrp\n", " m = batman.TransitModel(params, time)\n", " modelflux2 = m.light_curve(params)\n", " chichi[i,j] = chisqa(nflux, modelflux2)\n", "\n", "#print chiSq\n", "#print chiSq2\n", "#print chichi\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(101, 19)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAFjCAYAAADPQClMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXv4JFV557/vjLcFw8wmWYZVo+KKilmjMArBmKCyLqKu\nUYmRMXl41qybNYYEcX0cXTEi6KIEHXSjCSb7gJc4edBknY0LEqPREIygDsoqEGW5icggAxm5yWXm\n7B/VBed3OJf3XKqrf9Xfz/P001XvuVZVd3/qnKruFmMMCCGEEDIN1ozdAUIIIYS0g2InhBBCJgTF\nTgghhEwIip0QQgiZEBQ7IYQQMiEodkIIIWRCUOyEEELIhKDYCSGEkAlBsRNCCCETgmInhBBCJsSo\nYheR3xWRq0XkLhH5qog8a8z+EEIIIaud0cQuIq8C8D4A7wBwEIBvAThfRH52rD4RQgghqx0Z609g\nROSrAC4yxhw/WxcA3wfwQWPMaaN0ihBCCFnlPGSMRkXkoQA2AvjvfcwYY0TkbwEc5sn/MwCOBHAN\ngJ/MqZuEEELa8wgAjwdwvjFmZ+vKReSxAGpmfm82xlzXqj9jMIrY0e30tQB2OPEdAJ7syX8kgD8f\nulOEEELmxm8A+GTLCkXksXvttde1d955Z001d4rIgatZ7mOJPZdrAOATn/gEDjzwwGjGN7zhDdiy\nZUtRIzmXJbR5ay51pMrWpreqw8fmzZvx3ve+t7ieMS4RdVeD2uXz5c1Zj7UTy2evv/GNbyx+P5B2\nnHDCCTwOMy6//HL85m/+JjD7XG/Mz955550qV/iY9W0vdINPij2TmwHsBrDBiW8AcKMn/08A4CMf\n+QjWrVu3ImHTpk3YtGnT/evr16/HwQcfrO7IWDIfWso19bcou88+++DpT396tB5NWyVo62wpcl+e\nXKm7sZzlUPq6deuy3g9kGJb1OGzduhVbt25dEdu1a1e/ONhl1ac85Sk46KCDssuNdc9Za0YRuzHm\nXhH5BoAjAPxv4P6b544A8MFQuS1btjR7c7QecbeQeW6+kvIlaUOdBOQw7xMAW46afHaeUKx0G+yy\n/bJ7UmDHfOmEjIE78AKA7du3Y+PGjYO2a4wper9R7PW8H8DZM8FfDOAEAHsBOHvEPq1gXiKeF7ni\nnselgJK8Q5QHdDL3CdVN10g+FbMF7sY022Hna/n65AkDIYvPaGI3xpwz+876yeim4L8J4EhjzI/G\n6pNLzShrLHIkPfZIvOUsR0kdKUn78qXypEbpmlgqj7bevj+pfTjEvQWEjAlH7CNijPkwgA+3rPOY\nY45pWd0k0Eq9pWh/7dd+raiOeU3tp+rKHb23GKX3Ma3AUyeeIoJjjjnGmyfVd9IWdzqaDAvFPjFa\nvoHGOMitb3orFXhu226eV77ylVnlSy8HaCgZseZeV0/VXzJyT8U1vOpVr1KfYMTifRrFXwbFPn+m\nIukSJif2lsx7Kn6eN73l5h1ilF1TZ23+3LI5N9ON+YESaz91/Z8iJ1OBI3YSZNGlPq8R8DxPOFrK\nviXzbnvoEwR3Sh8IC56Q1QbFToKMPfoC2o1cW8WHSJvXScjQ1E65D0no2nxI8PzqHCGrF4o9wthS\nb0GL6+41N9W1iLc6DkMdz9A19xyBt/qee05e9zvxFDqZCss+Yh/1/9gXndX2wea+KH3rdqxfD+WL\nvTlSeXLivnpy29c8hiLUVk58yIevzT5mp9kxQlYzte+XFojINhG5VkTuEpEbRORjIvKvI/kfIiLv\nFZFLReR2EfmBiHw0ViYER+wLwBCj2tp1bV80ebSj8Jaj9TEFNcTd7TFSo27N6Nv3gzihPK1YbSfO\nZPWwICP2LwJ4N4AfAng0gPcB+BSA5wTy7wXgGQDeCeBSAP8S3S+xbgNwSE7DFHuEMeUwpNSH7Eur\nuLbPudvGEelKXPlrTgJCUNRkkRj7vW6M+YC1+n0ReQ+A/yUia40xuz35f4zun0zvR0SOA3CRiDzG\nGHO9tm2KPcI8bnJqPZpt3d/adlvFU2k1eVuUqyHndZYanYeWWwrc7bvdt1AaIfNkQUbs9yMiP43u\nb2ov9Ek9wnoABsA/57RHsUdodZCHGKnWUDMa1swGzEPyOXly8tWUj/1wzRi/iTC0WGOXHPo+uDFC\nlonZKP04dNPs/wjgJRllHw7gPQA+aYy5Padd3jwXIfVhlDorjKW3EKKGljIplbpvP4RuVtHEYze6\naPKF8sQeGmJlS9qsedS0uWfPnuizm8/dR6F9Tsi8qH3vhBCRU0VkT+SxW0SeZBU5Dd118xeg+6vy\nj2v6LyIPQXc93gB4fe72c8QeISXtlmlDSL2G1AezRuo54tfENGkl+WrLhND89OyYv5VgTP70vCYP\nkP5+PCFDopH0pz/9aXz6059eEbP+Kz7E6QDOSuS5yurHLQBuAXCliFyB7lr7ocaYi0KFLan/HIDn\nm8zROkCxRyn50J2X1HNl2JIW0q+NtUxvXQ7QvXaGlLpPoiUC95VJldd+V56QodCI/eijj8bRRx+9\nIvbNb34Tz33uc2P17gSws7Bba2fPDw9lsKT+BADPM8bcWtIQxR6h5EO31Yd1juxbxoZez8nX6oRH\nk1aST1NHTGJaycXyxaQZE3lI3D4ha+rxMcTNeoRoGfPyj4gcAuBZAP4BwK0AnojuL8q/h+5ae5/v\nCgCbjTHbZlL/S3RT9y8B8FAR2TDLeosx5l5t+xT7yNSOWoecEh9C6mPFYvHcPL58GvG2Qit6ez02\n8tZKvU/TiDp2YkDJkyXgTgCvAHASgL3RfZf9PADvdgR9AIB1s+VH44Gb6745exZ019mfB+DvtY1T\n7BFaT8W3ZkiR5qzPsx9DxHLSS/LmiLiEkMxD+bQj71D+WD2+90zsxKIVPFEgNpqp+FC5Ru1/G8AR\ninxrreVr8cB0fRUUe4Qxp3JasAhT763kPW/Bt8yXOkH0Tdu7Md96TOaxKXo7lju9PjSl7XIWgNiM\nLfaxodgjjHnH8hCMLfUxp/JbjNRLXgs5r6GQ4LXC1uRtOXvQ8v2RGsVT2iQHip0EGfqDfEzGlPS8\nBF86Um+Vp/S1kCvsvq3QequvsLUqp8U3g+HGCfFBsZMgi36NPUbuiLVV3Yswip+X4Gum32O0ODmM\njdZzRu+aMqmZgVhMuw9ilykI8bEon8VjQLFHWOYXho3m+rAv36Kvp+I1aTWUjLJTwg2VL5G9r3xO\nH3L76t6VrylDyDJDsS8YQ11Dru2DL00r9bEFXiv4khOC1mhkGJOfZsStlX1K6q1G7f222NvF0TrR\nwKl4EiQ0JdpCAC1jLde1abVlSvOVrGvzDBFveZd37eg3JmyN3Pvt8aW79bmxWJk+v2bUnnMzIFle\nKHYSJOcgDy1vbWyokXNLWdcs+9a1sZr9nJs3lJ4jo9AIXBvTjKa1cnf7rpF7LN2OaaHIiRaKnWSx\nKAL3xYaQeCwtt0yp0Ic88RkiFiO2TT2tRuqh0bBG3Jq0VKykTGh/aE6QtMfCrS+0zhOI1QvFTiZB\nzezCapJ67nqrMjmxWmKjcjueE4tJ2hfTpOWO0n3pdsxd9tHimnvJ64GsPpb5OFLsS0CJuGNppfWV\n1pnbbm5ebWxeYnfr9o3M3XhM8rlSt+uISb1vQyNyd1lDSuIcVRPiZ9WJPfQhs2xv8phQNJKM5SsR\nfE4+bd6a5Zr+5MRaij0lcjdNGy+Remz0XiLyFrL3TZm72+vui1KW6bNkihjDqfhVQ7/TU8+xsto2\ntGk1L4SSEWGLEXcsbch8vuM01rJmvTSPllC5kOBjabG4Zho8FLPr1FxLr112+xBaD8XcbQ5BcU8b\nin3CtJB5LD03ntNGqaSHyjv0KHmMk4EW66FYiJK8tYIvEXmszBBCt9spEbor85DcfaP80P6l/Fcv\nFPvEaCXzVL5aqcfytZBSS4G1knqthGvqGFLummOe87rQjsZjaW5cK3c3va/DXh56tG73oSQWIjWV\nT5FPB4qdEIeUXHPKaKXe8qQgJz21XiP11L7TnhyGriWn0ux0e9k3zR5L943kQ8t9vtByKN2Vuy/u\nOxFwJe/uk5CsffuAo/RpMRVJl0CxRyh5YbijgrHwjU5q+9V6tBxLn1c9sXpz0mIxTZqb7hOWS+qY\nxgRdmq4Ruhuz03yxHLGH5G6XTQk6NltByBSg2COUyHARpA6UTReX1D2ktFvEasReK/lYvCYtNUrv\n84ROFFzBujFb4L5YrrxjablS9wncV97Xz9S+0uYni48xnIonAVbTQc7pa4nY5jH6bi3t1nLXngC0\niocE4yvv5nWlHpK0L92tLyXr2EhekxaaWu+3I1fwGklT5tOGYieTRzsyrBFlSZl5SLtmO0qWbXzx\n2rw5su/zpwSek94/a6fhQ9PeIZmGRuGhtND0vK/N0L7hlPz0oNhJkJKp+EWgRuT28mocfZe2lbsc\nG/GHYjmiDxHLHxJlnxYTuL2sSQ/JOybLkNRdKYfimin4kOxj+8y3rWR1Q7GTIDmjq5K4L731C6uF\nuIYQ8yK3mZPuLvvWS/PEiEk8lV87Wo+Vq132ydwn7NAoXSt9d/+ERu7u/mt5Us8TBjJvKPYIOW9u\nrdQ1H/CatFakTipy5DjmqH7ofuWk29Qc/xi55bSj8dCyW66l5GOx1Cg9FHf3VWrk7m6jb9+VEjqh\nIMMyldF3CRR7BO2oqjQ2xId8yQgzlF4iyHmLvFWeVrFW662xxenGNMuu4H3T7rVij43QY2mAX/Ax\n2af2k412JoQsDsZwKp4sETUj9FTeVHuaNmrE3VrsJYIP5Sldb0HpKD20PO8ReypNk17ycLff3afA\ng48XRb8YUOxkktSM0FP11fQn50RhCIHPQ/6+9Zw0HzX7XyNtbb4hpO6ujyH0NWvWePed74Qoto+1\n+cmwLILYRWQbgGcA2BfArQD+FsBmY8wPE+UOBPAeAIejc/R3ABxtjLle2zbFvkSkBO/GtPk1aak2\nFu25NI8bjy2n0jRoyrSQubs81Ki9lfBzRb5nz57oiL2f6g/tX1fosfxkeBZB7AC+CODdAH4I4NEA\n3gfgUwCeEyogIv8GwAUA/hTA2wHcBuDnAfwkp2GKfUEpmbJtHcvpny9tEZ7HGu379pEmX80HS6hs\nicxDaSE5+2KlUo+l1YjdlrlP5L6HLeiUrHPzk2ljjPmAtfp9EXkPgP8lImuNMbsDxd4F4P8YY95q\nxa7ObZtiXxByRsKpEWMLcfvK5o7uaxhD6jV1t1z27QctvvxasWvTtNLW5K0Rtr3NqRE5oJO5Xa6v\nVzNa9z2TcWn9mVSDiPw0gN8AcGFI6tK9aF4M4DQR+RyAg9BJ/VRjzLac9ij2kdCKPHfqdh5Tu/MY\nrWvar5X6ECcJNcupbc85nnbeUrGH1mtH6PZyv94LNXcU7kq+JyXx0DV1t1yOrCn3xcF+z+aWa8ls\nlH4cgL0A/COAl0Sy7wvgkQA2A3gbgDcDOArAX4nIc40xF2jbpdhXES1GdVrxa2STkvI8RsqLlBZa\nLk33UXLi5RNMidBDzy3k7ht1D/Hoha6dincl7RN2n8dejuUnwzOU2EXkVHTiDVYB4EBjzHdn66cB\n+DMAjwPwDgAfR1ju/dnmZ4wxH5wtXyoizwbwOnTX3lVQ7BOlZGRfMxIP1Z1bT65kW4i6pexT25kT\nC+270vSUvDV5SuQdSrfX16xZExyJ20LWiFsj6VS+ULmQsF25+/KQ+aER+7nnnovzzjtvRey2225L\nVX06gLMSea6y+nELgFsAXCkiV6C71n6oMeYiT7mbAdwH4HInfjmAX0p1zIZiXyK0EtbKtrTMECPz\nRYpptzOV5lIj/R6NzH0xV2LzHrFrR/RacRtjsuVu7+vYPnMFT+aPRuxHHXUUjjrqqBWxyy67DMcc\nc0ys3p0AdhZ2a+3s+eGBuu8Vka8BeLKT9CQA1+Y0RLHPCe2HsvYDulTS2liOaGpH3aVpqdgQZWLp\npfvE9+xSG28hdHu9ldABZAu2leDdvpRI3geFTkTkEADPAvAP6L7D/kQAJwP4Hrpr7X2+K9B9t72/\nOe4PAfyFiFwA4O/QXWN/CbrvtKtpLnYReSuAlwN4CoC7AHwFXce/6+Q7GcBrAawHcCGA3zHGXNm6\nP0PjfoBqhBsSeUk+rbg1/asZfbaQcm7+WnEPIfnafeTu91BMe2x91Eo+JOjS5V7COQ/tyUBM8MbE\nR+2hG+xK9i+ZP9r3w0DcCeAVAE4CsDe677KfB+Ddxph7rXwHAFjXrxhjPiMirwPw3wB8AMA/AXiF\nMeYfkcEQI/ZfBvA/AHx9Vv+pAP5GRA40xtwFACKyGd2dgscCuAbdd/fOn+W5Z4A+NaHkhVIj69x8\ndqxG/qk6S2XuS6vJVyv2VHrpyUHOvog9u/tfux6KtRi1547GNflqRuRa4YckHurLmjVrvDfYxWTf\n12fve0p+HNyT5Zxyjdr/NoAjFPnWemJnAzi7pv3mYjfGvMheF5H/COAmABvRTUsAwPEATjHGfHaW\n51gAOwC8DMA5rfs0FDUfwNoXkKZMrC7th37L0WesznmKOZXeWug1JzihfRjap5r1frlU6L5YrrS1\naa2m43vhayWeI3xX9r5fr3NjrUThwhOGOGOLfWzmcY19PQCD7s5AiMj+APYD8IU+gzHmxyJyEYDD\nsIrEvqzUyN1d1sZCdWqXF0XuOYL37ZfUPgmt94SEkCP6VjIHHri+3gs55xE7GfAJO0fibswndZ/k\n+5jva3WpY6BNJ2ko9gGR7hV6BoB/MMZcNgvvh070O5zsO2ZpZEHRvOhDo043VnIS4C7nyLtW9Dl5\nW9Sn2f6c5Ryhp+I5Mo/l0wo9Nr0ey+cTudu+NhZb10rfPS6hEyf3vUPR50OxD8uHATwVmd/BWzZa\nvQBbvyhjktbk0YpKMxq300vEXSv21uVTyy32YYpcqfdptaP03NG4T/6hm+F8ZWPrGrGnxB3K647a\n3X3b99fet76TMTcfISkGE7uI/BGAFwH4ZbPyb+puBCAANmDlqH0DgEtidZ5wwglYv379itgxxxyD\nTZs2NenzIlAzKnNjORIN5UnlrWnXTdeI3id5d72l5Gvy1qSV7M8cuafkHYvXytxd90nbJ3Nb2jHZ\nu4JPyd1d14rbJ3Lfsu/kI4Wbd7XKfevWrdi6deuK2K5du+bStvYEd4oMIvaZ1H8VwOHGmOvsNGPM\n1SJyI7o7Bi+d5d8HwKEAPhSrd8uWLTj44IOH6PKqIWfkFksL5W8teTdfrsjtZe26Wz63jlZ5ctZD\n+0Rz7LSvA5tFFXtI6rVCT8m8ZFtCJwChqfi+fylJ23lWu9w3bdr0oIHX9u3bsXHjxkHbdd//OeWm\nwBDfY/8wgE0AXgrgDhHZMEvaZYzp/1P2DAAnisiV6L7udgqA6wFk/YNNKZqDN8YBTklbU86NpaSb\nU0dunpxljezs9RbSz5H20CcBMbnH9rPmRMBHidj7tKHEHpO6VvZ2Xt+yRubabbGXbZmH4j5hu7LW\n5CFpKPb2vA6AAfAlJ/4aAB8DAGPMaSKyF4Az0d01fwGAo8wcvsNeIklfPLU+BrE+5Ei5leRzlrWC\n10peK9Oh46UxzfEZUu6hPLnSTq3bj/7rYm7clXpI6LFRer+cSo+JuXY5Juo+7otR7vlQ7I0xxqh+\nrskYcxK6X+WZG7niC6Ut+sHXbIv2BKdW8r5ln7g1+VrLMxUvTWvRTmg/l6SlyBFGK6H367472WOj\ndd+6XS4m777NkMTtfaEdrecKXiNoW/KUOilhaX4rvkTqKWHlxuaNpg85ks6VfEjUsTRfPt96KJYr\n9Vq5D5Xu7tOUwGPpJcREkhqBp/LY6+4o3RV7bD0k/dAUvFbydv98y6Fpd1+67ya6npiw+7ibh5LX\n4X5G5JSbAksjdpJP7slQSu61aaFYSvQauWrzDJFPczLi7t+c5ZbUCD0Us+UeE33o+nmO1H2S16Sl\nxN8L3Cd13/fYXcn39bjHjFIvZyqSLoFiJ1nEhB6K1chdK3NfWkr2LYQ8dPnc5aHFDrQTemgknrtc\nKnWftGNp7nMszSd636jdt297YpIncUpf/1M5GaDYR2YeL6QWbdQK3SdaTVqoHbdsC6HPU96lcteI\n3LcfUmjzxiTti6divpF6SuahkXuJ1HNE3j/n5O2f3VF7zr4m+VDspDkpMeUKMbYceo71S/uc01dN\nn31pofVcQfv6uNofvu0oiWnJkbt2RJ6K94JMTWXb4vbFamTe90X77PZV++zuA43sKfcyKHZSRa7E\nS6WYKhfqV474U33K6Y9W4Kn1ViKPbW/pY8+ePaOLPpXmO7YxNHlyptlDaX3cFntM9CHJa55TMq8V\nfezZPVGx8V1/t8u6x4OSJ1oo9gxqJO6uh+SUs+zGcmSekyeUT1Om5brbTo7IU/laSbxU9r5ymn5p\nysSOkTatj+dIXZOeO/ItEbpP3DGJ+2IpcYee+7whwbty7/vu9qPvs30y0pKpnTTEPjtS5aYAxb5E\npGReKu9UGd+6Rui5cvO10eIRk3VK5DVlWzxCx1BzbH2xHGlr86xZs0Ytc43ofUIPSd0neHs5JfBY\nWt+2uw/d/alJs4U+NQkPAcVOlp4W8k6lx+TrrodiQ8m8RL458ZpYK7lrjpkmT2up22L3ST4lc5/Y\nY0IPSb3vq7vsjrztWEruvr4DCC67IneXh5L7VE8UpiLpEij2ieFKuPQ5tJwjfI3M7VhK8qHtHepR\nI297PZamWa/pr3tMUusa0WtknTNa7+WmWbZl6S7bMg+t268ZW+q1kreXQ1K3Je4TeErqrYVub/vU\n5K757AiVmwIUO3kQGpnGYjky19Y970ep1GuWtScNOWmaY5OzXDIi147YU3J3RW4LL7Tuytwn9Jjk\nQ8s+8QO6EX5I9rETAPdZw9RknQPFTkgFGhnYsRzp17zJ5iX7lLC1sZTwNScBvnXNMcqRe46wNfld\nqbtT8q7Qbam7ku/F6zt2PsFrJB8SeGjZXtdeh9eIXCt2uy9u3mUW/bJBsZMouSM6dzkkeF8sljdX\nwqH6c2WdK9WYyHPTUrL3lQ3137c/c2IlYi8ZrYdk7grbJ/WU3EMi96X16RrJ2wJ313PlnnoOid2+\n/u7rY5+2LHIPfQ5oyk0Bin1kUi+klEC1Z/KxMrEP9trlfl0TC21H7ptNI3pfn+28vvKpPDHp5j63\nirn9dbc997lU3rli903F++QferhT8inJ+wiNxIG4zPt19wQkJOmcZ99r2b4mb/fTPmY9PrlPUfYU\nO1k4tLIv+UDIzRNL1y6nYlrp+9BKPFa/T/Cx+mtkXiv8khOElq+XWpG7eVJiTwncFmaqXC6u8GLy\nttdDMXd/log+tR225EOCd+Xuk/0UmIqkS6DYRyBHeu5y6MU6tNR97WhEr5V2SvqhD3UtvjK++lNp\nOaKPST1X+jUnC6XHO3SMQ+Iuibd6aF8bsWPl4oo8FrNlbsdcycckrhG8209X5KHlvnxI7lMj9/PB\nLjcFKPZVTu0LUVu+pp2UtN2YT7Kp+lOPUJ9S0tZe+9YIPEfsLeuLbWvuckrYuTFbzmvXrk0KfO3a\ntVnHOiV6G5/oUtJ2xR3qj7sck3iO2O2+u1JfFon7WCSxi8jDAFwM4BcAPMMYc2ki/8kAXgtgPYAL\nAfyOMebKnDYp9iXHvT5Xmy9EqGxKviXS1pS1+6RpQ3Pjm0+2tbLOXfel+bYzd92WRkrcqXWf2Neu\nXbtiSt2VvC30mORTr6uYGN2RuI1P2imhx8Ru3wPgey26MTcthC11n9yXUfILwGkArgfwtFRGEdkM\n4DgAxwK4BsC7AJwvIgcaY+7RNkixk7mR+lDSSHtI2fskHkorkXqtwEOxVN6YrHPjpTIPrdtSt2Xu\nroeEbi+7xznntee7ocwncRvN9f+QsDXyTondJ/HQ87KhOQkKlWuJiBwF4AUAjgbwIkWR4wGcYoz5\n7Kz8sQB2AHgZgHO07VLsS472hex+cNbUk/Omyxmt+NoItRf78IzVkftwTxJ8U/i5wtY83BMIjcg1\nD1fStcu2tH3y9kncfT2kXps9tuDc5V7cvQxdkackbpePle37mDsVb59o+GbPciS/DNJfBLGLyAYA\nHwHwUgB3KfLvD2A/AF+w+vNjEbkIwGGg2EkNOS9u34eq9k3V8k2UOmHQisvdDu1zrtxTsRKZxyTf\n6hEadYdiqTSf2F2pu0JPvXZiAtcup6bmXXxfb/O9DlyZp8Tum7L3Cbrv8zLJO0XLz5dCzgLwYWPM\nJSLyOEX+/QAYdCN0mx2zNDUUO4kSGg1pRkkp2cbK5vTPV4dP2G6buYKOlQm1mxJ+TPAxWe/evVsd\n155waNJSAs997qXdC88ndd9+95ESmE/avuX+WTvVrj3WPvmnZB+TfM519GUTfOpzJ1YuhoicCmBz\nrAoABwJ4IYBHAnhvXzS7MxVQ7EuOb1qvhpjkY2Vib0SfmFNCT7VR8hyqw5eukbibppmGd8WdWndn\nAULyjqXZ674Rd0rgsbS+fnvZJ/V+OYTvGrm77HsOSb2PtRK7byq9dNl+zYVG7G66GyPAl770JXz5\ny19eEbvjjjtSxU5HNxKPcTWA56GbPr/b2d9fF5E/N8a8xlPuRnQnABuwctS+AcAlqY7ZUOxLTkup\na9pKtef7UHTjsfyhtFBbpc+lD81oWjvFbks8JviQxEti7vXxmLw1y67M7fV+X7tSd49nTOK+WEjw\n9nO/3TFyxd9K7imRu8vLiOaz5vDDD8fhhx++InbllVfi+OOPj9W7E8DOVPsi8nsA3maFHgXgfAC/\nju6rb766rxaRGwEcAeDSWT37ADgUwIdSbdpQ7GTuhOQdyx8qG6s71naojXlKPiRxOx7K45N6SPSu\npH0x7XNI1LlCt6+v+2Tuxlx80gqJzBa4T+Kh59pjO6Tc7W1zRW9v87KKX/O5EirXqP3r7XURuQPd\naPwqY8wNVvwKAJuNMdtmoTMAnCgiV6L7utsp6L4qtw0ZUOxkIYh9GNrpqbLadFfQbv6c55JtSsle\nI3ef1EvknpK+Vuwp2afEnpK5j17W/cOOhUbhraSuyet7PeRMuadkHEtfJpG7jC32UPWe2AEA1lnt\nnyYiewG1OJo5AAAgAElEQVQ4E90P1FwA4CiT8R12gGInmfjk6FsufWPV9Cc3PSbqHLlrTkhqHim5\nayTvlo+dOMTWfTIPST4U37Nn5V+wpnDl7Xv09dpy9glbK/N+Gr505G6/jkrEncpn7xs33be+jMzj\n80eLMeZaAA86YzXG+GInATippj2Kfcmxp+9CaOQYyjdPyfvaTcVL5Z77AZ9bLiR1n+BD0/LudXdf\n2dAJQygek7hW9u73ukP0It69e/eDYimp+0Teb5N2NF8q+Nix9ok7JfFQmv26ikl9GaVf+pmzSCcD\nNVDsS07ohayVeW5bLd84uX0PnYSUyD3VTq3ke7mmlrWj+Rx5xx6+KXQ7HhJ4bJ/Y8raFvXv37qDA\n+3W7/dDIOyZl37HwHVvNcUzltdNKRuklUifLCcVOmjL2GW/sw1SbtzQtR+CpdK30NeuxejQPd0rf\nfaxZE/9f8xj2CNmWc+o739qH79i4+z9EKC0n7ralHYlr0jRSX1bRh97zmnJTgGInTdFM7bcgV9Sh\nWOzDXpumPZnQiEcrc63sS+SdGuXnSDWFfc09JPiQ3F3Ru/s9dBIVex1oycmfI3F3vUbqob4sg+gp\ndrLUhERcKuhFemPEpK49CdCkuflCQvfFfPFQudjJgK9OzclCTNg+sYek4Jvu7q9Ph+hH6zF5p04c\nYrHU/h+CVL05Uk+V1fRlGSTug2InhCw0GinliCv2oRcbcaekkztyd0+yXDlr00Ix37o2D1n9LPNx\npdiXnNgHfAnzmopfdnKFlRKtNq1kJJQaeftG3L5nbVpoPRRrTawNjrjnw7KP2MvveiHEwyK9MWIf\nir603Pw19camtFvX2adp0kP1uo8W9PWEnmNlatsckpw2htxWsrxwxE6aMq8Ru68dTSy1bsdy0+w8\n7odyLJZK8+XVPPrr1G4shjHxu9z7Olo++jrd51Cauxw68Yjt29i6hpwTs1Qeez2VNsQJ4RRZ9hE7\nxb7kTO3muRy52/FSmWtGuqH8LWXuSrxfD0naFb5W/EOIPfXjNjGppwQfkry7/3MkmCtX3/HOEXjq\ndVKyDVOHYidLTckLOSb91AlB6QlDbV25fXZlrjkJiH2Ia2SeIyeN1FMnArl9sMvOU+i5ItdI3d72\n1LJ7vHyx0HGNlU+JuaQ/yypyF4qdkARaKYby2R82Ld84rd+EmhOF3JOJGpmH5G2PxvsPsNj3uVPt\nxkbvvq+75cg59Vi7di3Wrl37oGVt3e7Jhm8bQttWchx8+9G3j1Ovi1D+lNxTJwsl61NlKpIugWIn\nWYRE7gpvKJnPA1t2qROalATs/KWPmNRTorfbt3/3PCZ2W+iu3GPizo3bMreF7oul6mslbq3cQ8c0\ndszdtNC6Ji/lTWJQ7KQ5MSHOox1NPKePrug14u/L1co8JnBb3r6Rur2tvj9FccXuE7oxK3+T3pam\nZjSdErItcc2IPSRyn9DtNmPCrxm9x4516PUQW9ekhWIxmS+b6DkVT5aaeUl4KGIS7/HNJNijVDtu\nP8dkbj+3fvgEnrtP+j9QcUXtCjv17MZCYrfXQ8sxuT/kIQ950JR8ziM2svf1JxbLPVY1swP98fIt\np9Lc17m7vmwyt6HYyVIzhRdySOK+9D6PVth2+dZyjwnbHXWHts3dRp8IXKnbzz6hx2QfE2OORPvl\nmKhLR/OxUb5G6ilRa2YOSkSeEry9TIHHodgJWWB6eebkd/HdRGbXnfMckn2/nCNzd0rcl0+z7akR\nXj/q98ncXY6luTfPhaSYEmZI7K7MNeslMs8ZqedcBih9hI6b79jGjnvp8hSh2AkZCc2Hiy1NTT5N\nO+7UfK7c++e+vO9DOSRqV+apafbUDESsbfcPXnx/9hL7AxhfLHYNu+TZd0e8u5yb7k7z288pqftO\nPrRyDh3/2GvRdzxz0pdJ1rlMRdIlUOxLTi+qebbXE2q3ROK+MrH6tdKOPbvT8H2aT+ohodtxn+S1\nN+eF2u63yb5mX/NwtyEmRk0sJeuY3GPPPpmnRvXaqfiQsEOvW5/87efQciw99R6h5Jcbin3JmZfU\nbRnG0n153JMPrcTdfNqRep83R/i58k7FfLJPjRS1/6Heb5/m4eb1iV277EvLlbRW5Bqpu0LPlXqO\n+N3XY63ctXlCsanDqXhClNiC1Sz360BavLF0W6qaukL53DpCwo5J3BfzfdC7onflbQs7tD3uI/Q9\ndPvHY+y2+0ffhkbcqXiuvFPSj0lZI+2YzFPruQ93m2LpvjyhfaFJD+3b2Osw9lqdOhQ7IRFcUcfS\n3WUgLexQWijdzZOTz86vkXmu9GNSd4XeX692l/t6eiHb9fYPd+Tsk3m/rhG2G4vl8bWbisXy1Mg5\nR9yx6+8+OZfIPHVCUCNyNxZ6/ZU8TxGKnRCHHJn7YqHyNbJP9SeEZibANwXvy+e2lRoppSRuL9v9\ndGc83JG6O3L2/UqcMQ++Aa6vOyXzWFpM1rnxGgGHJK4dlWt+uraFzH0id2VdInfN6zEUWwYodjJ3\nUmLMidkf9L7nVB6bWLlUemoqvi/vbksozU739TVUJlSHr2zsg9Be7oWZSrdFG4q5/bbF2ddpt2WP\n/Ps++2Kh9jTydvsRW04JPDctR8i5U+m1U++lsnfzpE5uUvss9Ii9ZlPpNlOV/lQkXcLgYheRtwD4\n7wDOMMa80YqfDOC1ANYDuBDA7xhjrhy6P6uBlNBTMi/J65Noqej75T6Pb/tSaaH0UF4tvv6FTiBS\nkneF70rdFbn7HEuzBe4+x46h24eUuEPPsT5rJKTNs1oevv6mRO7bFzkiT+XxvU5Dr9vYcujEmaxe\nBhW7iDwLwG8D+JYT3wzgOADHArgGwLsAnC8iBxpj7hmyT4uGT+Kh9JiwY2VbyN1ejvUntk01sm91\n9h37QNOm+eRe8mxvrzsaDz1rjqNvxO62ZT/H0nwnHDmPlJxaSbalsLVSz5F8jsi1o/fQ61qzPnXs\n131uudaIyMMAXAzgFwA8wxhzqbLcn6Dz5xuMMR/MaXMwsYvIIwF8At2o/O1O8vEATjHGfHaW91gA\nOwC8DMA5Q/VpyrSUn6YNrdRdWbr1+dLcD6EhRhRunTGRp9ZzZB4Tpy+PK3Wf4N36Y9Pw9vb6nlOx\nXLFrZNZSuLUnAqG8dtwn75jkQ+LOFbkrdY28tbGpsUhiB3AagOsBPE1bQEReDuBQAD8oaXDIEfuH\nAPy1MeaLInK/2EVkfwD7AfhCHzPG/FhELgJwGCj2hSJ1whATPFAm85jkc4nNZth5Uh+S9ii9X+8l\naqenZK4RvS10W+C21O24Lfd+2e6bVtqa9H7fDCV2jVi10q49OQjJXCt5n9xbPXyv0dBrNxWfIosi\ndhE5CsALABwN4EXKMo8G8AEARwI4t6TdQcQuIscAeAaAZ3qS9wNg0I3QbXbM0kgF7miupo6c9JDg\n+/WeVNz98Kl9o6U+zEKzAdqYLfyQ1GMyD4ndlbsrct+6PUrX3HFfspwrHq3YtZKPibRW+LH2ciXv\nCr3laN1+HaZe3xqZT1H4iyB2EdkA4CMAXgrgLmUZAfAxAKcZYy4vPTbNxS4ijwFwBoB/Z4y5t3X9\nJA9X9KlnX1lfPW66r0wsD+CXfGyEPwQ5oxt31O6Lh6Qekrlv2j0m75jIQ2k2sZG4Jm+pwEP5NSPk\nnLRa+YfKhqSdknoo5jvByRF9iJL3S+jkdrUz0LR6DmcB+LAx5hIReZyyzFsA3GOM+aOahocYsW8E\n8K8AbJcHXi1rAfyKiBwH4CkABMAGrBy1bwBwSaziE044AevXr18RO+aYY7Bp06ZGXSclAg+VAfTy\n1shf0/dcQmViErenuX35fVIvmWrPedjtuA+b2vV+n5VIPPQoHQkPIf0aWedKvUTm7vOis3XrVmzd\nunVFbNeuXSP1ph4RORXA5kgWA+BAAC8E8EgA7+2LKureCOD3ARxU2c1BxP63ePBNAmcDuBzAe4wx\nV4nIjQCOAHApAIjIPuhuFPhQrOItW7bg4IMPbt7hZcEVcOjZV8ZX3k33lUnFAJ387bQQJWVi6SG5\n92mu4N0RtCvbvo8+uadG56mHW7dW7L5YLE+NwH35NRJMpeWeHJSUyelXqq85Mnf3V+o1m4PvPdma\nTZs2PWjgtX37dmzcuHHQdn2vfZevfe1r+NrXvrYidtddyRnz09GNxGNcDeB56O4Zu9s5Xl8XkT83\nxrzGU+456AbF37fKrAXwfhF5gzHmCanO9TQXuzHmDgCX2TERuQPATmPM5bPQGQBOFJEr0X3d7RR0\ndw1ua92fIXHfGLnrsfpS8szpX275ElmH2tLKOxbrCZ0YxEhNM6bqcGUdS7fz+EbQfX9cudtltbLO\nlXro+OfE+/5qBKTNoxF27vMQyy1OOHxCjwne3le+5Ra0qmfR0Ij9mc98Jp75zJW3gV133XU49dRT\nY/XuBLAz1b6I/B6At1mhRwE4H8Cvo/vqm4+PAfi8E/ubWTx1MrGCef3y3Io9bIw5TUT2AnAmuh+o\nuQDAUWbBv8OuEaRW7hqJp8TpxkpFnkOO9IG4vO0PFW3MJpVu5wvliY3KfXlDAo0JPTRCj0k+R/Cx\n9NA+S+2vGCVij6XlyrtEtrXT7CUnFaG+x6Tu7id7nxM9GrGHyjVq/3p7XbrBrQC4yhhzgxW/AsBm\nY8w2Y8ytAG51yt0L4EZjzPdy2p+L2I0xz/fETgJw0jzaHxKN6EKibSH3IYm1E9tu3/YDDxZxjfRt\nNIJPyT0maw0xoWvk3bcXErUvpo1r0eSNSTon3sdqJF4r+JxYqeh9Ak9Nw7v7m1LPZ2yxh6r3xA4A\nsC6zTBL+Vvyc0Ii7pL7Wz5q2tGm+7cuVvk/wbtxNj50A5HxIamXd6uFKv+9zbsxed/dbLSlRl8Q0\nEi0Ru0bg2jwtxZ7zINPAGHMtuuvlbvxBMSddfV3dhmInK9AIX5sGpIXtW3dlnivx2AmAVnJDfKi6\n4o49+r7GZK3NO8R25Arcl8cn95RUh5JujdCHkjrlXsfAo++FhmJfQkLybiFzXx57XSP0UF471lM7\nig+RO7rv29AIO5Wvb1+7nMqXS2q7a6XurmtFnrvcYvTdMk17opPa3yRN6et/KicDSyN2n5BSaTGJ\naeseE42w3bza8tqTAQAPKuOmaWTfoxmp1wreFq82n5s/Je9Qet/X0HIq3ZfX7XMNNQL3redKu1bu\n84jF+p7aH6EYyYNiXyJK5Q48eGSo/dAfg5z+uXm1ws5JSwk+JfsSiZd+KGpeI1qRx9Jicrf7kJJ6\nKq10H6TStAJP5dXIewjRa0RcMpMQi+XuJ9+xoOx1UOxLRuqDuyc1Kk+tLxo5Mq6Veam4Y8t2eZuY\n+HM+BG3JhuIakZdK3DdqL3kOxWLbnbOP+udcgcfy5oo9Z7319H7NiYBm//mOC2WeD8W+hGgkPIao\nQ0IsKa+JpdpodTLQYhkIX0+Pib+G0P6JbWtM8DGJ50g9N09o27T7wBcrEXgoLSXp0ljNcusyvv3g\nPofSco4XIcCSin21kZKfVugt+5HK01LqPqH7ZO6O0n2j9tyRfAm+Pofk3vfJJ3Z7WSP1UCzWT+32\nuOu1Yu/XtcLOiQ8t6Jq89v70iTuWh+jhiJ0sLFrZ2bGYfFvJ3m0r9KzdBu0y0O7rchpKyvr67wrd\nXu7byZV1Tnqqv7n5tGLXrOcIPDetROJDrrv7UiP2UIykmYqkS6DYF4CUtGNlNPlb5cllaMGHBN5K\n7rETKF/M1+eU3Pv+1cq7ROp2/3PShxZ7SuCpPK1G36E2NLHYNHxon6aWiR6O2Mnk0Eg/lMeN1z7b\ndYaWfULOXXbJkXloH/hG3rHp9P7ZXU5JPEfsseVUWmx/hNJCAtKIOydNI3JNvtaj7Rxpa6bhY/tU\ns9+JDoqdTIYSkfvSWsjc16eQyOch+pJ9aAs8Jve+7f45V+K5Yk+tpz6cNCIJxXOErVmukXit1Evz\n5Mi9j+Xs41ScpKHYSTGuyFLrsbIl7ZWWiYm4Bb76UzFgpejnJXdffzTLrtx926cdvbuxnhyZp9Y1\nMs/JM7TUW4h/qLvtSyWfgiInraDYM6gVa0z8muVQWioW67+bv/Wztp8lck8xj9F8bB+Gtj0m9Bqx\nh2K+7aiJ+QQdStPkyx2Zl0o/d5Rd2o4rcnc/UuDDwxE7qSImXl+sVO4AVFLxtVsiWa20tfunVIQx\nMbcWt9tndzmWXrJf+373z+42lIo8dmxKpe6KKlfwmvWhhF6bVpPX3k4yX6Yi6RIo9gEYQu45beSK\nvHY7c04EYnmAB4/Yc0bzPS0l725rKla6b3x11Yjc11dfH1Mx33qJtFPr83jkTt23fpD5wRE7WRo0\nJwOtn3PbstGklcRy902Lfdj3RfNs991Hbtzta2w9lScl6VhaKu+YUk/l0fSVLA4UO5kkPgGF0mtk\nre1HyTMQH8H35I7Qc/PXnhCltiNX7Jp0d0bI7XvOuh2LyTm0XCP0nLylQo/l9bWfEyPjQLGTyeOT\neIv65vFsUzvKz9k2zXZr9kuoT7bM3Zi9LRq0+WoE7y6XCD60XPJIlS+dVrfLxfqbSvPtT0LmBcVO\nvMxT3iWS76kVeWr7c/ZRaczdDrv+GHZd2m0KredIvX9edLnXCN7Xjq/vbizneJDh4IidrHo0EmpZ\nV6mEY7SUfaqNHEJth/L5yrgxd3t96bFtsNvM3ZZQ2Zy0RZF7btnSu9l9Io89h2JkvkxF0iVQ7KuI\nlgLPqS8lqpxryq1OBGzm0YZLbJ/kptvb4G6Xr92aPqeWNfm0stbkrZV1bv4c6ce23/fs25dkHDhi\nJ6OQK9VUmlYkoTpTdeX2R0uO/Och7Jq+2zE3HdD/cp5df+v+tlrOlXyO3LXC1uSpkXzJ/qHkFwOK\nnSwcriBjUtZKOrScEn6snZpti/V7zOfavrdYHooWYm8pdHu5RNyp9BYP374oWSdknlDsC0JK2L4P\n/1q5hNqyYxqhl+aJnVzEZDukxHNnAXJknTN6z3ktpPLGlksEvyhyT5VtKXab2OuDQl8MOGInq56U\nuHPKpSTrk2NJnlC5UF98/a6VuVbiqZMhjcRDaXa6L6/dXmhdm9ZK8lMVu6++FBT5YkKxk8kSk0/u\n9HzoOZTHJqdcy+l5H7ETjFb71Jfmth9bb8kQkq8RuB2rFXcqvVT+of1AVheLImkReRiAiwH8AoBn\nGGMujeTdG8B7AfwqgJ8BcDWADxpjzsxpk2JfIoaQO6AfjefmyZk5qO2Du1y6f/t67PVYzHcS1BqN\nrGPLWrGn0mPLuVKuKautm6xeFmzEfhqA6wE8TZF3C4DnAng1gGsB/HsAfywiPzDGfFbbIMWeiS2c\n2lhqfZGpORloNdXfsu/ucg21r5HWDCl2X6yF2EvSfHFNTLO/yOpiUcQuIkcBeAGAowG8SFHkMAAf\nNcZcMFv/MxF5HYBDAFDsLcj5oI99SJfKfGzRp2SUK7BcuQP5fwSj3Z5cubc4FtrXiKae3Hbd5VrJ\nt5C5vVwq7pCoQ+upNEJaISIbAHwEwEsB3KUs9hUALxWRs4wxN4jI8wAcAOD8nLYp9gi5wo3F7fpi\ncm8t81b1peqJydoXC4lbO8Vf2vfak7XcOkrrzD1h0abXSn5osftiOXm1fUxtL1ndLMiI/SwAHzbG\nXCIij1OW+T10JwPXi8h9AHYD+M/GmAtzGqbYI7SW7LzQ9jskvJQIc8q1Er4diy33tLiOXlNH7Bi4\nJ3puPFWvlhJhp9K10mwldW0s1s9YH93tJdNgKLGLyKkANseqAHAggBcCeCS6G+EAQPsi+30AhwJ4\nCYDrAPwKgA+LyA3GmC8q66DYY6xGqfuIibpW0qn6c+qqkXqqrpLlWkICd9NtatqPlYvJTBMrEXxu\n3haSb7E9ZBqkPr+/853v4LLLLlsR+8lPfpKq9nR0I/EYVwN4Hrrr5Xc7r6mvi8ifG2Ne4xYSkUcA\neDeAlxljzpuFvy0iBwF4EwCKvQU+SS0qOX0tkXtO3pioY+lu3hyptxD50IK3yZF9TnqsTI34+uWU\nrH0xTXrLWGibNOlkGmhG7E996lPx1Kc+dUXsxhtvxFlnhb1tjNkJYGeqfRH5PQBvs0KPQned/NfR\nffXNx0Nnj91OfDeANak2bSYn9tQoyc6XylMida1gY/liwrT7lRK0mzenbOkIuFUdLcU7lLDtbSsp\n15JYfTkij6UNJXV7uUToWoH79pM2H1ldDDUVn1HP9fa6iNwBQABcZYy5wYpfAWCzMWabMeY2Efky\ngNNnJwbXovvq27EA3pDT/uTE3qMRfOmH8hCUStr+AHIFFiqrTStZzhHyvEbfJWhPfOz9aDPE60qz\nPb48tUIPpeUIPBWrFbqvz5r9EYsR0hjfh8IBANZZ668CcCqATwD4aXRyf6sx5iM5DU1W7D0pwcfk\nXiL+nPwxefTrdp05Eh9C6L66Wy6PPXWec7xTeUN9yX19tErLkbYmNoTUtbFYXu0+SqW3ntkh82Xs\nEbun3msBrPXE1zrrNwH4T7XtrSqxh97ANq0FHkrLjWvxlU/FtP2PnUhohF5SRps/Z1rfzuNb1uTT\nrA+Br37fsc0pr41rBK5Jayl1ezknFsoTgpJeLhZN7PNmVYm9lpQAAf+BHUriQ6EVeCyt9CQgtZ9y\nyuacYPRpGsGXrA+Jpp1cobtpJeJO5Wkt9di6Ni8hPYv42TwvlkrsgH4KNTSKyh1NLyJDyx3IH63b\nyzl96NvytR1Ks9fd/CHGmpqtFbq9vqhSz12O1V+L/RokqxeO2JcQjXhrRV4TK6HlyURqJJ2Tr0bu\nQJ6kS0bpdv5YbN4f9LlCT8VbSr1/bin10jKh/tdAqa9+KHYSJOcgt5R7S0m3pnQUn3ONPLWcWs89\nAQjVGaO17FN1+dK1ks8RtyatVNSpvKnnWL8IIQ9AsUfQjEJTcd/IPxTLWZ8nOX3RSNyXL+eEILWu\nPQGwY3Ydbto8Ba7JXxLTjnS1wq9ZjsVS/aDUiQaO2MlcmLeYc08UatZj0vblLRm9D7EeimnScimp\nJzTyzo3VjtjdWOnIPFZHTh9S208IxU6ClBzkGoGXyNXup2Z9EWSvTauV9qJRO1ovEX2t1N20HKmn\n0mPbo1kmJMZUJF0CxR6hRNK11+VTeVwphvLkCDd3fYi2S/vllo/FWlFTd065XLFrRFki9dhzrei1\n26LNQwjAETvFHmGMg+yTvSY29mjcXR/6xCMn1sdz5D/EicGiST2WNi+5h/ofi1PohMSh2COUjNgX\nmUWTf826HfPly82rSevTc8VSm7+F1O1l7XMqT+7IXDta90GZkxw4YidB5n2NvTWLNtJvtd6TK+4a\nofd5akbdJXlLJR5Kaz16byF8QlpDsZMgJZIe84WhEbkvVjJ6HkPmvu3oyZV/Ks1lyJH6vKXui+WK\nXyt5TX5CWrPsYs/683YtIvIoEfm4iNwsIneKyLdE5GAnz8kicsMs/fMi8sQh+rIa8X3g+T4Ih4hp\n193ypevuB31o3Y2FtqemjO+Rk3fIx5o1a6LroTRfvj4Weo7VGctjv0bc51CMkKHo5Z7zmArNR+wi\nsh7AhQC+AOBIADej+8/ZW608mwEch+4P5K8B8C4A54vIgcaYe1r3qZR5HGiRNj+C0yo2j3Ug/oM9\nofWekil1zVR7Tf4QmvKhPD4pptJC+XKEO1ReQubFso/Yh5iKfwuA64wxr7Vi1zp5jgdwijHmswAg\nIscC2AHgZQDOGaBPRYTkWlqmhcT7OJD/a3ba2Bgy98VsIZROqWuvnbu0ktEQYq8Rfgt518YIIcMy\nxFT8fwDwdRE5R0R2iMh2Eblf8iKyP4D90I3oAQDGmB8DuAjAYQP0p5iY1GMfVPbUpDZN8+FeQmn5\nmDC060PEQvtOk5Y6JmM9avowdv/d4+WTuruvCRmakmn4KU3HDzFifwKA3wHwPgDvBnAIgA+KyN3G\nmI+jk7pBN0K32TFLWxhE4iN2TToQHhFqRtO1tKzP7Z9v3W0zFCu9dGDX6dbrpvnyzFss2vZSEowJ\nU5PPFW9MxDl5c/tHyDzgVHx71gC42Bjz9tn6t0Tk3wJ4HYCPD9DeYGgOskbGIcHXCk7DECcLqfo1\nsZyTgB7tlLlG9vOkVO61MrfXW4u9xTohQ0Gxt+eHAC53YpcDeMVs+UYAAmADVo7aNwC4JFbxCSec\ngHXr1q2Ibdq0CZs2barpb5ChpZjTbsuTAO125bQJ5F9Dt2N2PCTzkBi0Ih/6BKc2T44YS0ftqXXN\nc2xbcuNk2mzduhVbt25dEdu1a9dc2p6KpEsYQuwXAniyE3syZjfQGWOuFpEbARwB4FIAEJF9ABwK\n4EOxirds2YKDDz44lmXVEZturhFoaup7EfqsiWskHZPGGNPwsXZy03KmuEun4e3nGqmntoUsH76B\n1/bt27Fx48ZB2+WIvT1bAFwoIm9Fd4f7oQBeC+A/W3nOAHCiiFyJ7utupwC4HsC2AfpTzLwOco4o\n+zhQ/kcwmvWSPmjivn6n4qn6SvLNg5LRa830duk0fI7YKWxCFp/mYjfGfF1EXg7gPQDeDuBqAMcb\nY/7CynOaiOwF4EwA6wFcAOAos0DfYQfGm4pvhUbmQN53v3NF3uKkINa3VL5Ufi39vssRW2ux10zF\nx0beuc+ELDocsQ+AMeZcAOcm8pwE4KQh2m/FajvIoanwFte0tXmHFryvbza5ws8hNXrWtqkVe2up\na2Op/IQsOhQ7CbIaR+whufe0FLc2Fqu3tEyIeQsoZ/StScsVe+oa+FDlCFlkll3sg/xW/FSYykEu\nxfchnhOLycuXbsdTaZpHLrVthNJi5Xzx1HKovtx+U+RkqvRiL3m0QkSuEZE91mO3iLw5kv8hIvJe\nEblURG4XkR+IyEdF5F/nts0Re4TVOGKfB7FZgdxRtyuO3LvYS6brS8ipq3ak7q7HRJwzIi9ZJ2S1\nsgCf3QbAiQD+FED/xrotkn8vAM8A8E503xj7lwA+iO6m8kNyGqbYSZTQyU0sDrT9MZnW8s69CS5F\nC/+TUb8AABS9SURBVJH74rlC14i9NkYIyeJ2Y8yPNBlN99PqR9oxETkOwEUi8hhjzPXaRin2CAtw\nxqcS5bzuSC+9i10r5pob33KOVYmIa+otjQ8l9tJ+EbJaWKBr7G8RkT8AcB2ATwLYYozZnVF+PbqR\n/z/nNEqxR5jnVHyqrRrxxtJaCj5VLpSemy9Vdii0bdSOiFuKXdvvVnkIWQQWROwfALAdwC0Ano3u\nK+D7AXiTprCIPHxW5pPGmNtzGqbYI8x7xB6TqiZPKm3okwLNNsSuqWvbb8HQU/EtYjF554g91E4u\nrS9hEDIUQ4ldRE4FsDlWBYADjTHfNcacYcW/LSL3ADhTRN5qjLk30c5DAHxqVt/rVZ23WFqxa0bj\nrUeaGnHn9C0mxdLr37knBS1++MVGe21+DEpGtRrBhvKkRuA56S1YlONASAqN2K+++mpcc801K2L3\n3hv1LQCcDuCsRJ6rAvGL0Tn38QC+FypsSf3nADw/d7QOLLHYgbxR4VDXjHPlrCUl/lDbsRH8PGYw\nSuTRul8lfcgVunZ0XSv3lnDETqbE/vvvj/33339FbOfOnTjvvPOCZYwxOwHsLGzyIAB7ANwUymBJ\n/QkAnmeMubWkoaUWu412ijgnb63Ah5R7qn++stpYTnoLcmTT92WoqfgSSWvzldadg3u87HVKnawm\nxrz5WUR+Ed3/pPwduq+4PRvA+wF83Bizy8p3BYDNxphtM6n/JbqvvL0EwENFZMMs6y2p6Xsbij1A\nayGVCrzmerY2T6ys5vp6LOYul9LqWOT0RZu3xWh8Hmlahrg+T8g8WYCb5+4GcAyAdwB4OLr/THkf\nuj9JszkAQP9f5I9GJ3QA+ObsWdBdZ38egL/XNk6xLwja0XWN4FvJPdRmSAAt3ixDjvxLrp3H0mvE\nW7tOCBlf7MaYSwAcpsi31lq+FsDaSHY1FHuEeV1XzmmvRvA1ck+1aRO7wz6WL0Z/fTc0TZxLTIgl\naUPKXBuj5AnpGFvsY0OxRxjjIGtlVTO1X/pdc02e0nzatlvKrIXAQ/GhRuK5cUKWEYqdBJn3iL0l\npdft7XRtnpx8pfmHYJHFnupfTh5CyHJBsUdYrVLvqblu7+Zplc+X30fO1w9LaTkdP/S1cgqckDxW\n++d3DRR7hNU8Yu8ZQ945U+w5dZRSO/LNGb3zZjhCxodT8STIVA4yoBO8na+n9np7qN6cslpafLVL\nkzaPG+gIIeVQ7GSp0Irbl7/2erumbKqeVgJc9OvrhJByKHYSZKyp+Jw743tqv/aV017J9e+ar9mV\nkFN2qGl4X4ySJ2R4KHYSZOSfJMzqQ63kc05iStpaFGG1/v56KK3VXe+EEJILxR5hEW6eK5nmLhFv\nix96GWt2Y4iyJd8X53fMCVkcxv7sHhOKPULOaHTeU+faOsbq26JR83WylpLX9IUQUgen4kmQkunp\neU2d59DyO+aL/MJveVd8ztS5tl0KnZD5QLGTIC1u+JrXaFlLi2vxPub9m/pD1FETK8lDCBkGip0M\nSulouXXeVN9q6vHVtSiUSril5Akh84ViJ0HGvHmuRPA9y/aCbjUF32JanhBCxoZij7AIsqv5atki\n9L81rb6fnsrDO9wJWd1M8fNPC8UeYRG+7mZT+qtxLf6UZdFpcQMb73InZBpwKp4EaX2Qx/wlO2A6\nL9qeVnej16YTQhYLip0EaS3isV80Y/+YTAtafrWMd7cTMk0odhJkKgfZR8s74oek9XfE+Z1zQsjU\nodjJQpArUo7ICSEhOGInQRbt5rnVTq1Eh/hZWELINFnmz26KPcKi3zzXsr5FFV+pzCl5QpYXjthJ\nkNVw89wi/MRrC4aYiieELCfLLvY1Y3dgkVnNB1lEvI+xqe2XJv8ibCchZDx6sZc8WiEi14jIHuux\nW0TerCh3oIhsE5F/FpHbReQiEXlMTtscsUcYYuq8JS3/xGWR4Z3shJBViAFwIoA/BdB/ON0WKyAi\n/wbABbMyb5/l/3kAP8lpmGKPsJpH7KuRUjFT6IQQmwWair/dGPOjjPzvAvB/jDFvtWJX5zbKqfgE\nlEZbQlPxJdfYF+XyAiFk8RhzGt7iLSJys4hsF5E3icjaUEbpPsxeDOB7IvI5EdkhIl8VkV/NbZQj\n9gi9NFrJY5lmAFoKl/ImhOSwICP2DwDYDuAWAM8G8B4A+wF4UyD/vgAeCWAzgLcBeDOAowD8lYg8\n1xhzgbZhip0sHBQ5IaSGocQuIqeiE2+wCgAHGmO+a4w5w4p/W0TuAXCmiLzVGHOvp2w/g/4ZY8wH\nZ8uXisizAbwO3bV3FZMTO39UZlxK9/88ZM7XBiHLgUbsN910E2666aYVsfvuuy9V9ekAzkrkuSoQ\nvxidcx8P4Hue9JsB3Afgcid+OYBfSnXMZnJiN8bc/wGe8xwq25KhfqBGsx0tnzVt5GxD6bbW9J8Q\nstzsu+++2HfffVfEbrvtNmzfvj1YxhizE8DOwiYPArAHwE2+RGPMvSLyNQBPdpKeBODanIYmJ3b3\nurj2OZS2Wn6gJrUdLZ+1eTT9zqFl/wkh02Xsa+wi8osADgXwd+i+svZsAO8H8HFjzC4r3xUANhtj\nts1CfwjgL0TkglnZowC8BMDhOe1PTuwt4bRtWyhWQsi8GPnz+24AxwB4B4CHo/vK2vsAbHHyHQBg\nXb9ijPmMiLwOwH9Dd/PdPwF4hTHmH3Map9gj8JpsHRQ5IWQMxh6xG2MuAXCYIt+Dvv5mjDkbwNk1\n7VPspArKmxCyaIwt9rGh2CMs+s1z82QsgfPEgRCSC8VOggx585xb96JIf2yR2vvBXSaEEJKGYo8w\nxIg9Z301U7MtvrvvCSFEy7KP2Jv/VryIrBGRU0TkKhG5U0SuFJETPflOFpEbZnk+LyJPbN2XWigV\nQghZnSzIb8WPwhB/AvMWAP8FwOsBPAXd792+WUSO6zOIyGYAxwH4bQCHALgDwPki8rAB+lPMlA70\nPOEJESFkTEqkPiW5DzEVfxiAbcaYz83WrxORV6MTeM/xAE4xxnwWAETkWAA7ALwMwDkD9KmIRbnu\nvdrgL7wRQsaEU/Ht+QqAI0TkAAAQkaej+53bc2fr+6P7h5sv9AWMMT8GcBEU3/sjhBBCSJghRuzv\nAbAPgCtEZDe6k4e3GWP+Ypa+H7p/wNnhlNsxS1sYpnL2Rgghy8Syj9iHEPurALwa3c/pXQbgGQA+\nICI3GGM+PkB7g7FMU/GcOieETAWKvT2nATjVGPOp2fp3ROTxAN4K4OMAbgQgADZg5ah9A4BLYhWf\ncMIJWLdu3YrYpk2bsGnTpiYddxnqX94IIWQZ2Lp1K7Zu3boitmvXrkDutizz5/YQYt8LwG4ntgez\n6/nGmKtF5EYARwC4FABEZB90/4TzoVjFW7ZswcEHH9y8wyGWReocrRNChsA38Nq+fTs2btw4aLsc\nsbfnrwGcKCLXA/gOgIMBnADgz6w8Z8zyXAngGgCnALgewDYsGJQeIYSsLij29hyHTtQfArAvgBsA\n/PEsBgAwxpwmInsBOBPAegAXADjKGHPPAP0hhBBClobmYjfG3AHgjbNHLN9JAE5q3T4hhJDlhiN2\nQgghZEJQ7IQQQsiEoNgJIYSQiTEVSZdAsRNCCJkUyz5iH+K34gkhhBAyEhyxE0IImRTLPmKn2Akh\nhEwKip0QQgiZEBQ7IYQQMjGmIukSePMcIYQQMiEodkIIIZOin4ovebRERF4sIl8VkTtF5BYR+StF\nmZNF5IZZmc+LyBNz26XYCSGETIpFELuIHA3gYwD+J4CnAXg2gE8mymxG90dqvw3gEAB3ADhfRB6W\n0zavsRNCCJkUY988JyJr0f09+X81xpxtJV2RKHo8gFOMMZ+d1XMsgB0AXgbgHG37HLETQgiZFAsw\nYj8YwKMAQES2z6bWzxWRnw8VEJH9AewH4AvWdvwYwEUADstpnGInhBAyOUa+vv4EAALgHQBOBvBi\nALcC+JKIrA+U2Q+AQTdCt9kxS1NDsRNCCCEKRORUEdkTeewWkSfhAbe+yxjzGWPMJQBeg07crxy6\nn7zGTgghZFJoRuC33347br/99hWxPXv2pKo+HcBZiTxXYTYND+Byq0/3iMhVAB4bKHcjulH+Bqwc\ntW8AcEmqYzYUOyGEkEmhEfvee++Nvffee0Xs7rvvxg033BCrdyeAnan2ReQbAO4G8GQAX5nFHgrg\n8QCuDdR9tYjcCOAIAJfOyuwD4FAAH0q1acOpeEIIIZNi7JvnjDG3AfgTAO8UkRfMpuf/GN1U/Kf6\nfCJyhYj8qlX0DAAnish/EJGnofu63PUAtuW0zxE7IYSQSTH2191mvAnAvejk/C/Q3d3+fGPMLivP\nAQDWWe2fJiJ7ATgTwHoAFwA4yhhzT07DFDshhJDJMfZvxRtjdgN48+wRyrPWEzsJwEk1bXMqnhBC\nCJkQHLETQgiZFAsyFT8aFDshhJBJQbETQgghE4JiJ4QQQiYExU4IIYRMjKlIugTeFU8IIYRMCI7Y\nCSGETApOxRNCCCETgmInhBBCJgTFTgghhEyIZRc7b54jhBBCJgRH7IQQQibHVEbfJVDshBBCJsWy\nT8VT7IQQQiYFxU4IIYRMCIqdEEIImRDLLnbeFU8IIYRMCI7YCSGETI6pjL5LoNgJIYRMimWfiqfY\nCSGETAqKnRBCCJkQFDshhBAyIZZd7LwrnhBCCJkQHLETQgiZHFMZfZfAETshhJBJ0U/FlzxaIiIv\nFpGvisidInKLiPxVRtk/EZE9IvL7ue1yxE4IIWRSLMI1dhE5GsBHALwFwBcBPBTAv1WWfTmAQwH8\noKRtip0QQsikGFvsIrIWwBkA/qsx5mwr6QpF2UcD+ACAIwGcW9I+p+IJIYRMigWYij8YwKMAQES2\ni8gNInKuiPx8rJCICICPATjNGHN5aePZYheRXxaR/y0iP5jN/7/Uk+fk2YbcKSKfF5EnOukPF5EP\nicjNInKbiHxaRPYt3QhCCCFkgXgCAAHwDgAnA3gxgFsBfElE1kfKvQXAPcaYP6ppvGTEvjeAbwJ4\nPYAHnd6IyGYAxwH4bQCHALgDwPki8jAr2xnoNvRoAL+C7szmLwv68iC2bt3aohpSCY/DYsDjsBjw\nOMyfIUbrInLqbEAbeuwWkSfhAbe+yxjzGWPMJQBeg86ZrwzUvRHA78/yVZEtdmPM54wxf2CM2Ybu\njMTleACnGGM+a4z5NoBj0Yn7ZQAgIvsA+C0AJxhjvmxt8C+JyCGlG9LDN9BiwOOwGPA4LAY8DvNF\nI/Hdu3fjvvvue9AjwekAnhJ5HAjgKgA/nOW/fzrdGHPPLO2xgbqfA+BfAfi+iNwrIvcCeByA94vI\nVTnb3/TmORHZH8B+AL7Qx4wxPxaRiwAcBuAcAM+ctWvn+ScRuW6W5+KWfSKEELJcKEff6C5pryy3\nZ8+eWL07AexU1P0NAHcDeDKAr8xiDwXweADXBop9DMDnndjfzOJnpdq0aX1X/H7ophp2OPEdszQA\n2IDuGsKPI3kIIYSQIkpvgmt185wx5jYR+RMA7xSR69HJ/M3o/PipPp+IXAFgszFmmzHmVnTX4WGl\n3wvgRmPM93La59fdCCGEkPa8CcC96Ebc/wLARQCeb4zZZeU5AMC6SB1FZxqtxX4juuvuG7By1L4B\nwCVWnoeJyD7OqH3DLM3HIwDgta99LX7qp35qRcKRRx6JF77whfev79q1C9u3b6/ZBtIAHofFgMdh\nMVjW4/C5z30O559//orYbbfd1i8+Yqh2h/gVuYI+7EY3Sn9zJM/aRB1PKG285vt+ewC81IndgO7G\nuH59HwB3AXiltX43gJdbeZ48q+uQQDuvRnfmwgcffPDBxzQer67xT8AVj0X3Tayaft0B4LGt+zbP\nR/aIXUT2BvBEPHBH/BNE5OkAbjHGfB/dV9lOFJErAVwD4BQA1wPYBqC/me5/orvT71YAtwH4IIAL\njTGhG+fOB/Abs/p+kttnQgghC8Mj0N1Edn4iXzbGmOtE5EAAP1tRzc3GmOta9WkMJHe6QkQOB/B3\n6M5sbD5qjPmtWZ6T0H2PfT2ACwD8rjHmSquOh6P72sAmAA8H8LlZnpvKNoMQQgghQIHYCSGEELK4\n8LfiCSGEkAlBsRNCCCETgmInhBBCJsRkxC4ivysiV4vIXSLyVRF51th9WiZE5B2eP0S4bOx+TZ0W\n/7ZI6kkdBxE5y/P+KPqvbUJSTELsIvIqAO9D9xd5BwH4Frp/lKv5ygPJ59vofmhov9njOeN2Zylo\n8W+LpJ7ocZhxHla+PzbNp2tk2ZjKT8qeAOBMY8zHAEBEXofub2F/C8BpY3ZsybjPGPOjsTuxTBhj\nPofu66IQ9x8tOu7/t8VZnmPR/Srky9D9KRNpgOI4AMDdfH+QebDqR+yzf8zZiJX/FmcA/C26f4sj\n8+OA2VTk/xORT4jIz43doWUm9G+L6H6zmu+N+fNcEdkhIleIyIdF5KfH7hCZJqte7Oh+YWgt4v8o\nR4bnqwD+I4AjAbwOwP4A/n72S4VkHDT/tkjmw3kAjgXwfHS/HX44gHMjo3tCipnKVDwZGWOM/fOQ\n3xaRi9H9VeGvI/O/hAmZGsYY+7LHd0Tk/wL4fwCei+6XPAlpxhRG7DcD2I3uphSb2L/FkYGZ/TXh\nd9H9rwAZB/vfFm343hgZY8zV6D67+P4gzVn1YjfG3AvgGwCO6GOz6a0jAHxlrH4tOyLySHQfWj8c\nuy/LykweN2Lle2MfAIeC741REZHHAPgZ8P1BBmAqU/HvB3C2iHwDwMXo7pLfC8DZY3ZqmRCRPwTw\n1+im3x8N4J0A7gWwdcx+TZ3af1skbYgdh9njHQD+Et2J1hMBvBfdjFbzfzgjZBJiN8acM/vO+sno\nphm/CeBIfrVkrjwGwCfRjUJ+BOAfAPyiMWbnqL2aPs/EA/+2aND9ngMAfBTAbxljThORvQCciQf+\nbfEoY8w9Y3R2wsSOw+sB/AK6m+fWA7gBndD/YDbjSEhT+O9uhBBCyIRY9dfYCSGEEPIAFDshhBAy\nISh2QgghZEJQ7IQQQsiEoNgJIYSQCUGxE0IIIROCYieEEEImBMVOCCGETAiKnRBCCJkQFDshhBAy\nISh2QgghZEJQ7IQQQsiE+P9ZXXQs3Aq/KwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10be1d910>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "plt.imshow(np.log(chichi), cmap='gray', vmax = -2.999, aspect = 'auto')\n", "\n", "plt.colorbar()\n", "chichi.shape" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "row, column = np.unravel_index([np.argmin(chichi)], np.shape(chichi))\n", "tbest = t00[row]\n", "rbest = rp0[column]\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(122.6, 122.8)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAFvCAYAAACcrRsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VFX6B/DvmUkPqYQkJIFQEgJEWgIISrVhwa4ggr2h\n66roT1iXXXVFxM7q2isCioqrgFQFZZUaSABBIKHXNEjvk8z5/TGZYe6dSZmQzJ2ZfD/PMw9zzj33\nzjtJyLw57QopJYiIiIicTad1AERERNQ+MQkhIiIiTTAJISIiIk0wCSEiIiJNMAkhIiIiTTAJISIi\nIk0wCSEiIiJNeGkdQFsRQnQEMA7AUQBV2kZDRETkVvwAdAOwRkp5tq1exGOTEJgSkC+1DoKIiMiN\nTQbwVVtd3JOTkKMAsHDhQvTp00fjUKi1TJs2DXPnztU6DGol/H56Fn4/Pce+ffswZcoUoP6ztK14\nchJSBQB9+vRBSkqK1rFQKwkJCeH304Pw++lZ+P30SG06nYETU4mIiEgTTEKIiIhIE0xCiIiISBNM\nQsitTJo0SesQqBXx++lZ+P0kRzEJIbfCX3Kehd9Pz8LvJzmKSQgRERFpgkkIERERaYJJCBEREWmC\nSQgRERFpgkkIERERaYJJiAswGAx49NFHERsbiwkTJqCoqEjrkIiIiNockxAX8P333+Pdd9/F6dOn\nsXjxYrz77rtah0RERNTmmIS4gMcee0xR/sc//qFRJERERM7DJMQF5OXlaR0CERGR0zEJISKPd/jw\nYZw4ceK8riGlhJSylSIiIoBJiOYa+qXGX3ZEreOZZ55Bz5490a1bN7z11lstusaxY8eQmpoKnU6H\nSZMmoba2tpWjJGqfmIRorKGVMKWlpU6OpO3U1tbixx9/xNKlS1FXV6d1ONSOnDlzBq+//joAwGg0\n4vnnn4fBYHD4OnPmzMGOHTsAAF9//TWWLVvWqnEStVftPgnJzc3FjTfeiF69euHVV191+usfO3bM\nbn1ISAj69OmDPXv2ODmi1iWlxB133IHrrrsON9xwA+6++26tQ2qQ0WhEeXm51mFQK9q2bZui16Ko\nqAjZ2dkOX+fDDz9UlN98883zjo2ImITgX//6F5YsWYIDBw5gxowZ2Lp1q1Nfv6EkBAD279/v9itl\nfvrpJ3z99deW8sKFC1v0IdDWNm3ahNjYWHTs2BHPPvtsq157165d+Oqrr3D27NlWva4zSCmxa9cu\nl/yeNUdFRYVN3alTpxy6Rk1NjU2d+utx8uRJXHXVVejevTtee+01x4Ikasc8Pglpauz2/fffV5Rb\nOmbcUkePHm30+NKlS50TiIOqq6uxbNkyrF+/Hkaj0W4bKSVmzpxpU5+RkdHW4TWLed6NlBJ33303\ncnJyUF1djVmzZmHnzp2t8hrLly9HamoqJk+ejL59+2Lv3r2tcl219evX45577sFrr72G6urqVrvu\n5MmTMXDgQMTGxmL+/Pktvo6UslXjai57yZOjSciBAwds6oKCghTlf/zjH1i9ejWOHj2K6dOnY8uW\nLY4FStROeXwSMmbMGMUYcF5eHr799lucOnXK7thwYx8SJ0+etJnDYTAY8PHHH+Pll19u0V+LjfWE\nmJWVlTl83da2Z88erF+/HgaDAVJK3HLLLbj++usxduxYu4kGAKxYsQLp6ek29eax9aZkZ2fjlltu\nQUpKCubNm+dQvKWlpdiwYQPOnDljc6y8vBzXXXcdwsPD8eCDDyItLc3mg+bbb7916PUyMjJwySWX\nYPTo0di8ebOl/v3337fMg8nLy8Nll11mN6bzsWbNGlx66aWYN28epk+fjldeeaVVrrt161YsWrQI\ngCmJmDZtWosmZO7duxf9+vVDSEgIHn/88VaJzUxKifz8fADA/PnzMX78eMyaNQtVVVUAgNOnT9uc\nc/LkSYdew96QaElJiaL8xRdfKMovv/yyQ69B1G6Zl5152gNACgAJQO7cuVNKKeXJkydleHi4BCC9\nvLzk4sWLpbmN+TF48GBpz7333isByA4dOsgff/zRUv/oo49azu3evbssKCiwe35DbrrpJpsY1I9d\nu3Y5dM2mfPvtt/K+++6Tixcvtnt827Zt8q233pJHjhyRGRkZ8pJLLrHEMmrUKLlx40ZFfF5eXrK0\ntNTmOpMnT7b7fm688cZmxXnHHXdYztHpdHL37t3NOm/btm0yJiZGApDe3t7ywQcflPn5+Zbj06ZN\nU8Rjbmv9uOiii5r1WlJKWVhYKCMiIiznxsbGysrKSimllImJiQ6//9LSUvnKK6/IOXPmyOLi4gbb\nlZSUyLlz59pcv0uXLtJoNDY7/oY888wzNtfesGGD3ba1tbUNxnrjjTcqrrFy5UpZUVEhf/zxR7l4\n8WJZUVEhP/roI/nCCy/Io0eP2pxfXV0tlyxZIj/99FNZVFRkqd+0aZNMSkqy+zP21ltvSSmlvOuu\nu2yO/d///Z9DX4d//vOfNtfw9vaWdXV1Ukopi4qKbI4HBAQ49BpEriY9Pd3885wi2/Kzui0vruXD\nOgn5/PPPpZRSPvHEE4pfFIGBgXZ/gY0ZM0a+/vrrll/k27dvVxzv06ePlFLKuro6m2s88MADdr+h\n2dnZMj09XRYWFirqU1NTm0xCvv/+e7vXbEhtba08efKkrK6utjm2YsUKxbWXL1+uOP7LL79IIUST\nMakfP//8s81rDRkyxG7bbt26Net9qM+77bbbpJRSnj17Vp49e9buOSdOnJCdO3e2OTc5OVnW1tZK\ng8HQrPej0+malVAWFRXJ22+/3eZ8c6Lq4+Nj9/p5eXkNXvOyyy6ztBsxYoTdNqtXr7Yk1PYee/fu\nbTTuuro6OXfuXHnXXXfJNWvW2G1jnXyaHzNnzrRpl5WVZUm2rrvuOmkwGBTH7cXXo0cPu/XR0dHy\n1KlTivOfeuopxdfjf//7n7zzzjulXq9v8P2PHTtWSinl5ZdfbvfnaPPmzfLhhx+Wb7/9tqytrW30\na9XQHwrZ2dlSSik3b95s97h1wkTkbpiEtGIS8te//lVKaf+XYWOPb775Rkop5fTp022O3XXXXfLW\nW2+1e95vv/1m+Ub+8ssvMiEhwXIsNDRUbtmyxXLc+i/ohh69e/eW8+fPb/CDt6qqSt5zzz0yKSlJ\nTps2TV544YWWX/T/+c9/5Lhx4+QjjzwiCwoK5DXXXKO49siRIxXXGjZsmMNfJwDyiSeekFlZWbKg\noECuX79erly5ssEkD4DNezEajfLbb7+VDz74oPzuu+9kWVmZzTl+fn7y7bffll5eXtLLy0vOnj1b\ncY2amho5ePDgBl/z999/lz///HOz39OLL75oubb5r17reNU9KtaPe+65x+57MD9uvfVW+dlnn1l6\nTMyys7Nt2h46dEhKKWVOTo5MS0uTTz31lNTpdI3G/uabb9r9WTGbNWuWpa1er5e//vqrzc+Un5+f\nzXVTUlKklFKWl5fL+fPny9mzZ8srrrhC0WbBggWW6+Tl5Tn8s3Tttddazi8tLZVeXl4t+pmUUsrk\n5GSbel9fX0VyOH369Ea/Vr169bJ7/fXr10sppfzkk0/sHl+2bFmj1yVyZUxCWjEJ8fLyUgybNPfR\nu3dvKaW0+5duU4+EhIQGezkSExNldXW1fOeddxy6po+Pj5w6daqsqalR/LA88sgjzTq/b9++duuP\nHTsmpTT9wm/JL/uWPNauXWuJv7y8XE6aNElx/LHHHmvWdczd7lJK+fzzzzfadtasWfKBBx5wKM7L\nLrtMXnnlldLLy0uOGzfO0pO1Zs2aRs8LDw+X+/bta/L66iRww4YNNm1WrFghb7vtNofiHjdunFy+\nfLn829/+ZjOEUlJSIkNCQhTte/fureg5W79+fYPXXrx4sSKxVj+ioqIs1/nf//7Xop8P8wf46tWr\nW/wzVltbK8PCwprVNiYmRl533XXywIEDiq9VZWVlownf8OHD5X333Wf32N133624VnV1tU3SSeSq\nmIS0YhJyPo/q6uoGP7zP53Httde2+NxZs2ZZflCOHz9+3rGYr7ds2bJWf5+NPTZs2CALCwvl8OHD\nzzv+9PT0Jv9iHjJkiOzYseN5vdb1118vly9fLjt16tRk2+eee65Z19y3b5/l+/nFF1/YHA8KCmr0\n/AEDBjQ49GV+/Pvf/7a8hr15JADkyy+/bGnT3NgbeqSlpTVrvlNDj6CgILl9+3Y5Y8aMFl8jKyvL\n4XNiYmIU81LS0tLO6+vw8ccfSyml3Lhxo4yJiZFCCDl27Fi7w5dErsRqKNO1khAAIwEsA3AKgBHA\ndc04ZwyAdABVALIA3GWnza0A9gGoBLALwFV22vwFwJH6NlsADGnkNVslCVm1alWTXd/OfnTo0EHm\n5ubKuro6u2PeLXm8++67curUqY22iYyM1Py9N/eh1+vtTih0xYf1nIxnn33Wofc4e/ZsaTQaZWFh\nYaNzJADI119/XdbU1Mhu3brZPR4eHi5ra2vlxo0bZYcOHTT/unTq1ElGR0c32mbz5s0NJmlz5sxp\n0esmJSXJAwcOyDVr1shBgwad9/tYtWqV3V5R6148IldgTvw//PBD659Vl0tCrgTwAoDrAdShiSQE\nQDcAZQBeBZAEUyJhAHC5VZuL6uuerG/zAoBqAH2t2kyEKYm5E0BvAB8CKAAQ0cDrtkoS4qyHegVB\nU49rr71W9u/f32nx6XQ6uXTpUs2/Ts19zJw5UxYUFDg0yTYkJET+/vvvDr+WXq+XBw4ckC+99FKL\nYp03b578448/GuzWt/eYOHGizMzMVPwCaWo+j06nkykpKY22Wb16tQwNDdX8+9ecx/333y+llPLn\nn39udHhI60dDsUVERNhM4iXSysGDBxv648O1khDFyc3oCQHwCoA/VHWLAKy0Kn8NYJmqzWYA71mV\ntwB4y6osAJwEML2B13V6EvL999/LQ4cOyXnz5snHHnvM8ss8Pj5eZmVl2Uzgs35s2rRJ81+WjT2S\nkpKk0WiU/fr1a7BNz5495b/+9S+7x+688045a9YsGRwc3OD5AQEBrRbviRMnpJTSob9kb7nlFiml\nlEuWLHHotV555RUppZT5+fkt+gCfOnVqo18X68dbb71lM0nW7K9//et5f92ioqJs6lo6WbmhR3R0\ntHz11VfP+zo//PCD4v2PGzeuVeNs6eOqq65qdtvVq1c3+sFA5CyNTLRv0yTEC21vGIC1qro1AOZa\nlYcDeMNOm+sBQAjhDSAVwEvmg1JKKYRYW39ug64aAIR3aFngjhoamYVYUY4eo/S4a9QQvPbIAJw+\nfRqdYzrD12srHr4qCJ3s3JrEx8cbQyOzMPnixq/v7eUFQyvevbNTRATym7lx1pAhwRBHv8T3b96E\nl17aj5oaA4KCOsBgMKCqqhqhISGY8bf74Ovrh6yfbM+/YUAZbryxG6bfOhcLv1yIX3751SaWGTNm\nYOWqlTbHHBUVFYU4w3rgCPDUTVFYFaA8HhnZCTfccAM++uhjRf39V4cARxbiopj8Jr8XZrGxMXjs\n2nDgyEJEAFj82vWYN+8Lu22Tk/ti3959MJqSZIvS3R/g2n5Nv5afny/+ck0IdMe+snv81sHVKGhm\n3IDp56lTZCecPm29yV4ukHCu1L9fP0x78kE8++xJnDjh2CZf9sx64QV0794d1TXV2GVnM+D/e+op\nLFiwALl5eU1e68qkM8CRhZbyhKE1iHBgX7977rkbPXv0RHZONuJi4/Dmm282+v8hKSkJmZmZjV4z\nJqYzXpo9AY+LjSguLmmw3Z6TwK5jwKJFizBu3LjmB03UBqSUmDt3rqLOSwfU2t8Mu1UJqfqF6NDJ\nQhgB3CClbPCWkkKITACfSSlfsaq7CsByAAFSymohRDWAO6WU31i1eRjAs1LKzkKIzjDNQRkupdxq\n1eYVAKOklDaJiBAiBUB6+otASvcWv0Uiojbx6nLgpZVByMnJg5+fn9bhUDu2d+9eJCcnK+puHw58\nZdr8OVVK2Wb32vD4bduJiFzR9PHAv28rxaqVK7UOhdq5JUuWKMr+PsBdo5zz2s4YjskBEKWqiwJQ\nIqWsbqJNTv3zMzBNgm2sjV3TFgIhqu74ScOBSRc1J3QiorZz9yhg4d6PgJtu0joUasc+/fRTRblz\nKDDbSfdOdUYSshnAVaq6K+rrrdtcCuBtq7rLzW2klAYhRHp9m2UAIIQQds6xMfeRJKQkBDTWBIBp\n9k1VZSV0Oh18fX2bbF9eXo7MzCxLuVv3bggPC2vyvMNHjqCoUHkTvKTeSQgMaDpGs9KyMhQWFMDP\nzx+dIjtBwHSnz9JS2wHx8PBwdIrs1Oj11ecmJCbgxPETlrue+vr5om+fvhCiefHl5eXh5EnlnUoH\npQxCM09HTk6OYp6Cf4A/KisqFW2EAAYNGoSCwkIcPXLUUu/n54u+ffs285Ualp9/BidOnFDUJfZK\nRFCHpicY1dXVYdeuP2zqky9Ihq+PD0rLynAgy/bOrE0ZOGggdE18E44fP44zZ84q6hISExCsuuur\ntaysAzY3SdTpBJKTk+Ht7W2pKysvx+lTpyAlEBMbg9zcXJSo5j30H9AfXnq9pZyXn48zZ87A398f\ncXFx8PY69yunxmDAvr17UVdnBASQ0DMBwcENx9kUg8GA3bttbzYHAF5eesTGxqKsvBxBQUEICwtr\n9s9jS0kJHD58SDE3pEeMP0J9lT/Lw0N+NzVu7n8wolaUk5ODw4cPW8r+PsCm54FTBUDqP5wQgKMz\nWQEEAhgAYCBMq2OeqC93qT8+B8AXVu27ASiFaZVMEoBHANQAuMyqzXCYluSal+g+D9NyXOsluhMA\nVEC5RPcsgE4NxJkCQKanp7fKzGF7Vq9eLR9++GG5cOHCZt8wzN7qkYqKivOOxd6Nuh566KFmnXv4\n8GE5fPhwGRkZKefMmSOllHLnzp1y/Pjxcvz48Q7fQC8/P1+x1Ov666936PyzZ89aVmnodDr5/fff\n27y3wMBAKaWUBoPBstmZEEIuWbLEoddqiL2luo7cnNDelufm3TKbs5Oq+hEfH9+s1509e7bNudY3\n77NHvTeJt7e35ZYFjbG3D4ujTp8+LefNm9cqN2msq6uziad3795ywYIFDt9YsrWUlpbKm2++WQKQ\nAwcOlMePH5c7lzwt5ZdQPAzHuMU7aePzzz9X/J958mrTz2T6i85ZHdOSJGR0ffJRp3p8Vn/8cwC/\nqM4ZBdNmZZUADgC4w851bwawv77NHwDG2WnzCICj9W02AxjcSJxtnoS0xKFDhxSbSo0ePbpVrvuP\nf/zD5hew9c6qzdEad141W7t2rbziiivkHXfcIU+fPu3w+WfPnpULFiyQGRkZUkopp0yZonhv5mWx\nUpoSkfXr18uTJ0+2WvwGg0FxB9xx48Y5dP7AgQMb/IAuLCx0OAn56quvmvW6+/fvV5zXq1evJs/J\nzc2VvXv3tiQ7GzdubNZrHTt2TLFL7eTJk5t1Xlsy3zfJ/Ni6davWIUkpTT9P5qXV+Xm58s9XlUlI\nyQ/2795N1NYmTJig+D9zeK6LJyHu8nDVJERKKT/44AMZFxcnhwwZ0uzb0zflo48+svngmjdvXqtc\n2xXs3LnTspdG165dZW5ubpu/5rFjx+Tjjz8un3nmmQZvHtiQ5cuXK74Xw4cPtxwzGo3S19fX5vs1\nfPhw2adPHwmY7ha7bt06OXPmTLl06VKHEsQZM2ZIIYQMCQmxuUtyQ6qrq2VWVpbNfYma8t///leO\nHDlSTpkyRebk5Dh0blv45ZdfLPeLefTRR7UOp0HTb4mw6Q2RpYe1DovaGYPBoNjb6KJe534emYR4\ncBLSFlatWmXzobZu3Tqtw2pVubm5cv369bK4uFjrUJpUV1dn2ZzO39/fJhmIj4+3+X79/e9/l7W1\ntTI/P7/BDcmaq6ioqFWG+dxRVVWVZsMvzTXl9ltl/geqJOTPl5s+kagVqYed37vH+UkIl+h6iMjI\nSJu66OhoDSJpO5GRkRg9ejSCg4O1DqVJOp0Oq1evxq5du3D48GFcc801iuP2vje9evWCXq9HREQE\ndLrz+68ZEhICf3//87qGu/L19UVYMyaJa2lQ6jD8N01ZV773M6xevRp1dXXaBEXtzk8/ndtZ0lsP\nTLpY30jrtsEkxEP07dsXoaGhlnJ4eDh69uypYUQkhED//v3tJhwRERE2dUlJSc4Ii1zA0KFD8c0W\nZV1gTRYev/cqjB8/3tybS9Smdu7caXk+rj8Q6u/8BJhJiIfw8/PDW2+9hYCAAAQGBuI///lPs5Ya\nkzYqKytt6nr16qVBJKSF1NRU7DgVhBzlan1MuBBYvXo1/vjDdok3UWvbt2+f5fl1qaqDYQOcEgOT\nEA9y5513oqSkBMXFxbj99tu1DocaUVJie1+R8PBwDSIhLfj7++Ovjz2B71RDMtcMMv3LJITaWlVV\nlWJ/kKvVOUfUWKfEwSTEw+j1euj1zh/XI8c88MADinK3bt20CYQ089RTT+GXLOXmd0N7ABFByr9Q\nidrCgQMHYDSa7lA3MB6IVf8N1GmkU+JgEkKkgYkTJ1rmiggh8Nprr2kcETlbSEgIRtz4d5RXnavT\n6YAr+jEJoba3d+9ey/Pxg1QHO/QEAuOdEgeTECINhISEYPfu3ViwYAHS0tJwyy23aB0SaeCJp2bg\neE2Cou6qAUxCqO1Z/4xdo05CYsc77TYCTEKINBIREYEpU6Zg8ODBWodCGtHpdOhz6ZOKunH9gUOH\nDqCmpkajqKg9MCchYYGmYUCFmGtsT2gjTEKIiLTUWXl/z07BwIAuRhw6dEijgKg9MA/HjO5jGga0\n0PsDkaOcFgeTECIiLXXoBgQpl2eP7cshGWo7tbW1yMoy3QX+0mTVwU4jAL3ztndgEkJEpDXVcsgx\nfZiEUNs5fPiwZbjvEnUSEnWJU2NhEkJEpDVVEjKyN5C5/0+NgiFPl5GRAQCIDgX6xqoOMgkhImpn\nIscoisH+gL54p/22ROdp+/btAEzDfgreIUB4ilNjYRJCRKQ1/yiU6rooqhKDTmoUDHm6BpOQyNGA\nzsupsTAJISJyAVUhwxXllC6lMBgMGkVDnspoNCI9PR0AMEJ9u6rI0U6Ph0kIEZEL8O1yhaI8rCeQ\nffqURtGQp8rKykJZWRkigoA+6vkgkc7Zqt0akxAiIhcQ1H2cohwaCBQc3ahRNOSpzEMxF6t7QbwC\ngTD11qltj0kIEZELEIFxOF2kHI+vzfldo2jIExUXF+PBBx8EAIxIUh3sOMzp80EAJiFERC5j/9kw\nRdmvbIdGkZCnqaiowMiRI1FZWQnAThLSaYTzgwKTECIil3GySrlCphMOahQJeZp169Zh9+7dAAB/\nHyC1m6pBJJMQIqJ2rdhbuX1llH8BUF2gUTTkSY4cOWJ5PrgH4G098iL0puEYDTAJISJyEbqOg1Cp\nvnnu2a2axEKeJScnx/Lc5q65of0A7w7ODagekxAiIhcRE9cN6UdUlWc2axILeZbc3FzL86E9VQc7\nXujcYKwwCSEichGxsbHYfEBZJ/M3aRMMeRTrnpALE1QHOw51bjBWmIQQEbmIuLg4bFIlIbW5GwFj\nnTYBkccwJyFRIUB8hOogkxAiIoqKikLaYeWvZW9U4dO5T2oUEXkKcxJiMxTj1QEI7uP8gOoxCSEi\nchF6vR76wFgcyVPW7/3tU20CIo9gNBotc0JskpDwwYBO7/yg6jEJISJyIX369MFm1fYg/TqXo7S0\nVJuAyO2dPXsWdXWmIT3bSanaDcUATEKIiFzKjBkzsPWQUNQNTwBOneLN7KhlzEMxQthZnhuh3coY\ngEkIEZFLueSSS/DPt1Yq6pJigLyTWRpFRO7OnIQkRptujKjAnhAiIrIW0XMsamqVvSHVOdwvhFqm\nwUmp/jFAQJzzA7LCJISIyNXofXG0SLmDpXfJHxoFQ+7OnIRc6GLzQQAmIURELulUZWdFObjuQAMt\niRrXYE8IkxAiIrKnUKf8xIjxPa1RJOTucnJy4OMFDIxXHdBwu3YzJiFERC7IENRfUY7uUA7UFGoU\nDbmznJwcDIwHfKzvnAsBdBysVUgWTEKIiFyQb2QKqg2qyoIMTWIh95aTk4PU7qrK4N6Ad7Am8Vhj\nEkJE5II6x8bjj+PKOnl2uzbBkNuSUuLEiRNI6aY6EK59LwjAJISIyCXFxMQg/aiyrobLdMlBhw8f\nRmlpqZ0kJEWLcGwwCSEickHR0dFIP6KqLEjXJBZyXzt27ICPF3BBF9UBJiFERNQQb29vHCkOV9T5\nGk5ycio5ZMeOHUiOU09KBRA2UJN41JiEEBG5qBLRBVU1qkr2hpADMjIybIdighJdYlIqwCSEiMhl\nRUbH4Y8TqkomIdRMUkr7SUjYIC3CsYtJCBGRi+rZs6fNvBAjV8hQM2VnZyMvLw8p6uW5LjIfBGAS\nQkTksiZOnIjth5V1lSd/1yYYcjs7duyAXgcM6Ko6EMYkhIiImjB8+HCU+yYp6gJlLlBdoFFE5E6W\nL1+O3jGAv4/qAIdjiIioKUIIXHnbUzY7px7f/aM2AZHbOHXqFD777DPb+SABXQG/CC1CsotJCBGR\nC5t42xTsz9Er6rb/9IlG0ZC7ePXVV1FTU+Oym5SZMQkhInJh/v7+qAnsq6iryt6C0tJSjSIiV1dV\nVYVPPjElqjaTUl1oPgjAJISIyOX1SL1JUU6OqcWCBQs0ioZc3cGDB1FRUQEhgEHxqoPsCSEiIkd0\n7Hmpotw3FvhpNeeFkH1Hjx4FACREAUH+qoNMQoiIyCGh/RVFby9AX5alUTDk6o4cMW0uYzMfxC8a\n8O/s9HgawySEiMjV+YSgUq/88IjQn4SUUqOAyJWZe0IGdVMdcKGluWZMQoiI3IAxRNkb0ie6BgUF\n3C+EbJl7Qmw2KQtnEkJERC3g1/lCRXlgPHDs2DGNoiFXZu4JsUlCQgc4PZamMAkhInID+o6pivLA\neOBY/YcNkbUjR46gUzDQOUx1QDW3yBUwCSEicgdhAxXF0ECg8OROjYIhV1VUVISioiL076I6oPcH\nghI1iakxTEKIiNxBQBeU1ShvAiILmYSQkmUoRr0/SMgFgE5v015rTEKIiNyBEMitUa6QCaw5oFEw\n5KoanJTCziJjAAAgAElEQVQa5nrzQQAmIUREbqPcp6eiHOWTrVEk5KrcaVIqwCSEiMh9qOaF9Ajn\n/WNI6ciRI/DWA31iVQfCXG9SKsAkhIjIbXSIG6Eox3c0orzolEbRkKuRUmLdunXoHQP4eKkOuuDK\nGIBJCBGR24jqNQY1tcq6/Ky12gRDLmfLli3Yu3ev7aTUwHjAJ1STmJrCJISIyE0EBoUhM0e5wmHz\nyg80ioZczccffwzAfeaDAExCiIjcylmj8hOm8vQW/Pgj76jb3pWWluKbb74B4D4rYwAmIUREbqXf\nqCmK8sB4YM6cORpFQ67il19+QUVFBQD2hBARURvp2PMSRTk5Dti9Kx11dXUaRUSuYMOGDQCAqBAg\nMkR10EUnpQJMQoiI3Iuqa93XG+jesQbHjx/XKCByBeYkxKYXxCsQCOppe4KLYBJCROROfMIgA5XL\nHwbGA5mZmRoFRFqrqKhAeno6AHvbtfcDhOt+1LtuZEREZJdQbVo2gElIu7Zt2zYYDAYA7jUpFWAS\nQkTkfkKVScjArkxC2jPzUAzAJISIiNqa6oPFNByzX6NgSGsbN24EYJof1DtGddCFJ6UCTEKIiNyP\nKgnpGASU5OzTKBjSktFoxObNmwEAfWIAL72qAZMQIiJqVYHdUKcLVFRF+uSgrKxMo4BIKwcOHEBR\nUREAO5NSO/QAvIOcH5QDmIQQEbkbobP5C7d/VyArK0ujgEgrW7dutTx3p03KzJiEEBG5IX3HQYry\nACYh7VKjSYiLT0oFWpiECCH+IoQ4IoSoFEJsEUIMaUb7vUKICiHEPiHEHarjXkKIZ4UQB+uvuUMI\nMU7V5jkhhFH12NuS+ImI3J7qA2YAV8i0S+7eE+Ll6AlCiIkA3gDwIIA0ANMArBFC9JJSnrHT/mEA\nswHcD2A7gAsBfCyEKJBSrqhvNhvA7fVtMgFcCeAHIcRwKeUuq8vtAXApAFFfVt3UmoionVB9wPTq\nDBxfyySkPamsrMSuXaaPyJgw0wRlhTDXnpQKtKwnZBqAD6WU86WU+wFMBVAB4N4G2k+pb/+dlPKo\nlPIbAB8BmKFqM1tKuaa+zQcAVgJ4SnWtWillvpQyr/5R0IL4iYjcX+gFkFJYinodgKI92sVDTpeR\nkYHaWtPf4rbbtQcBgd2cHpOjHEpChBDeAFIBrDPXSSklgLUAhjdwmi+AKlVdFYChQgi9VZtqVZtK\nACNUdYlCiFNCiENCiIVCiC6OxE9E5DG8AlGu76yoCqo7olEwpIUdO3ZYntusjAnr79LbtZs5GmEE\nAD2AXFV9LoDoBs5ZA+B+IUQKAAghBgO4D4B3/fXMbZ4UQiQIk8sB3ATA+n/YFgB3AxgHU+9LdwC/\nCSGU69SIiNoJGdxPUe4RXoZdu3ahpqZGo4jImY4dO2Z57o7zQYAWzAlpgVkAogBsFkLoAOQAmAdg\nOgBjfZvHYRqi2V9fdwjAZ7Aa4pFSrrG65h4hRBqAYwAmAPi8oRefNm0aQkKU9zWeNGkSJk2adF5v\niohIa/4xw4Cic78aB3QFBg4ciISEBKxduxbx8eo/j8mTNJqEOLAyZtGiRVi0aJGirri4+HxCazZH\nk5AzAOpgSiqsRcGUXNiQUlbB1BPyUH27bAAPASiVUubXtzkD4CYhhA+AjlLKbCHEywAONxSIlLJY\nCJEFIKGxgOfOnYuUlJRmvTkiInfiFZGqKJs/iA4ePIj33nsPr7zyigZRkbMcP34cAODnbZqYrODA\nTqn2/jDPyMhAampqA2e0HoeGY6SUBgDpMK1QAQAIIUR9eVMT59ZJKU/XzyG5DcCPdtrU1Ccg3gBu\nBrCkoesJITrAlIBkO/IeiIg8hmr1Q2gg0LV+kPvjjz/WICByJnMSkhxXPzHZQgCh/eye42paMhzz\nJoB5Qoh0nFuiGwDTEAuEEHMAxEgp76ovJwIYCmArgHAATwJIBnCn+YJCiKEAYgHsBBAH4DmYluG+\nZtXmNZgSl2P1bf8FwABA2YdERNReBHRFhcEHAd7n5oD07wIcPwMUFhZqGBi1terqamRnm/4GtxmK\nCUoAvNxjuqTDSYiU8lshRASAF2AaXtkJYJx5aAWmCarWq1b0MC217QVT0vArgIuklMet2vgBeBGm\nyaZlAFYAmCKlLLFqEwfgKwAdAeQD2ABgmJTyrKPvgYjIIwiBs8Y4BFiNXA+IB5bvgM1cOPIsJ0+e\ntDy3WRnjJpNSgRZOTJVSvgfgvQaO3aMq7wfQ6KQMKeVvMPWONNaGM0mJiFQMgX2AWqskpP6v4uLi\nYpSUlCA4OFijyKgtmYdiAPfcrt3M9RcRExFRg/w6X6goW38gnThxwsnRkLM0vjzX9XdKNWMSQkTk\nxqL7KG6zhYQoIMDX9JxJiOcy94R06WiakKzAnhAiInIGXWg/SKtf5TodcEGc6TmTEM9lTkJsekG8\nQ4EAdaXrYhJCROTOvPwhgnspqswfTExCPJclCbG7XbuwPcFFMQkhInJ3qtUQ5g8m68mL5DkqKyvx\n888/A3Df7drNmIQQEbk71RwA9oR4ruzsbAwaNMhSdueVMQCTECIi96f667d/V1OPPJMQz/PBBx8g\nMzMTgGkCcoL6JiputDIGYBJCROT+VNu3B/sD8RGmJMR0pwzyFH/++afl+QVxponIFkIHhFzg/KDO\nA5MQIiJ35x8L+IQrqgZ0BaqqqnD2LDeV9iSnTp2yPLfdrr0X4OXv3IDOE5MQIiJ3J4TtvJD6yalH\njhzRICBqK6dPn7Y8d+ft2s2YhBAReQL1Cpn6v5J37dqlQTDUFoxGozIJcfNJqQCTECIiz9DACpkd\nO3ZoEAy1hTNnzqC2thaAqfOrvxtv127GJISIyBOoekJ6RgEd/ICdO3dqFBC1Nuv5IPERpgnICuwJ\nISIiTYT0AYReUdWvi2k4pq6uTqOgqDU1OinVJ9w0QdnNMAkhIvIEej8guLeiakBXoLy8HAcPHtQo\nKGpNjU5KDRvgVtu1mzEJISLyFA1s3855IZ6h0Z4QN1wZAzAJISLyHJyc6tE8bWUMwCSEiMhzqP4a\n7tfF1EPPyamewdwT0sHPNPFYwQ1XxgBMQoiIPIdq+/YOfkCPSHBOiIcwJyE2S3OFFxDS1/kBtQIm\nIUREnsIvGvDtpKga0NV0Dxmj0ahRUNRazMMxA9WTUkP6mCYmuyEmIUREnsLe9u1dAYPBgJycHI2C\notZQXV2NM2fOALCThLjppFSASQgRkWdpYIXMsWPHNAiGWov1kJrtpNSBzg2mFTEJISLyJKqekP5d\nTP8yCXFvb7zxBgBArzNNOFZgEkJERC5BtUqie6Rpe+/jx49rFBCdr6ysLMyfPx8A0Ksz4O+jasDh\nGCIicgnBfQCdt6Kqf1f2hLizf//735at923mg/jHAn4Rzg+qlTAJISLyJHofUyJiZQCTELeWlpZm\nee5J80EAJiFERJ7HzuRUDse4r/z8fMtzm54QJiFERORS7CzTZU+Ie5JSIi8vz1JmEkJERK5NlYRc\nEAeUlZagqKhIo4CopcrLy1FVVQUAiAoxPRTceFIqwCSEiMjzqFbIBPgCCdHsDXFHjfaCeAUCQT2d\nG1ArYxJCRORp/CJNW7hbGdCV80LcUaPzQUIHAMK9P8bdO3oiIrKP80I8gifPBwGYhBAReSY7K2SY\nhLgf654Q2+W57j0fBGASQkTkmexs387hGPdj7gkJ8AWSOqsOhrInhIiIXJFqcmrXCKAw55BGwVBL\nmXtCLogDdNaf2EIHhF6gTVCtiEkIEZEnCk5CHbwUVR3qDmsUDLWUuSfEZj5IUBLgFeD8gFoZkxAi\nIk+k80aNX4KiqmtQoWXPCXIP5p4QT5wPAjAJISLyWPqIwYryoHjg5MmTGkVDLdFgT4gHrIwBmIQQ\nEXksn6gLFeWU7lwh427y8/MhhOlOyAoeMCkVYBJCROS5wgcpin1igJPHDmgUDDnKfN+YnpFABz/V\nQfaEEBGRSwsdAKM8V/TSA1W527WLhxxSWlqKmpoa26EYvyjAP0qTmFobkxAiIk/l3QF5laGKKr/y\nvRoFQ47y9PkgAJMQIiKPVgjlJ1iY4JwQd2FeGePJSYhX002IiMhd1XRIBoy7LOUugfkwGAzw9vbW\nMCpqTFlZGTZu3IiDBw8CAFK6qRqEesbyXIA9IUREHs2v80WKcu9oA55+appG0VBT8vLy0LNnT1x5\n5ZV49NFHER0KdA5TNQpP1SS2tsAkhIjIgyUOnaAo+/sAa394F998841GEVFjPv30U8Wdc216QbyC\ngKAEeAomIUREHkzn3wnVXsqVFIO6AVOnTsWpU6e0CYoa9PPPPyvKqd1VDcIHme4b4yE8550QEZFd\nvupNy7oBRUVFeOihh7QJiBpUVFSkKNv0hISlOC0WZ2ASQkTk6cKVH1yD6ldbrFixgr0hLub48eOK\nsk0SEs4khIiI3EmYcufUQd0AIUzP9+zZ4/x4yK7i4mKcPXvWUo4IArpGqBp50KRUgEkIEZHnUyUh\nIQFA906m5/v379cgILLn0KFDirJNL4jeHwhKclo8zsAkhIjI0wXEAb4dFVWDupn+3bdvn/PjIbvM\n+4KYjR0QrGwQNhDQ6Z0YUdtjEkJE5OmEsJnQaP4rmz0hrkPdE3JRb19lAw8bigGYhBARtQ+qCY3m\npZ9MQlyHOgnpE12lbOBhK2MAJiFERO1D+GBFcXB9EpKbm4vCwkINAiI16yQkNADo5F+qbOBhK2MA\nJiFERO2DKgnpGAR04+RUl2I9JyRFvUmZzhcI6evcgJyASQgRUXsQGG8zOXVID9O/TEK0V1VVpdiz\nxfamdf0BnefddJBJCBFReyAEED5EUTWYSYjL2LJlC6SUlrJNT4gHDsUATEKIiNqPBuaFbNu2TYNg\nyNratWsV5fawMgZgEkJE1H50VCYhqd1NHST/+9//kJ+fr1FQBChvXBcSAMSHVSsbsCeEiIjcmqon\nJCQASIgCjEYjvv/+e42CosLCQmzfvt1SHmwzKdUHCOnn3KCchEkIEVF74R8D+EUrqszzQhYvXqxB\nQAQAv/76K4xGo6V8UZKXskHYIEDv4+SonINJCBFReyFEg/NCfv31Vw7JaGTdunWK8hWDw5QNOion\nFHsSJiFERO2Jal6IuSfEaDTit99+0yAg2rlzp6I8IFY1H6TjUCdG41xMQoiI2hNVT0hKN0AnTM//\n/PNP58fTzkkpsXfvXks5JgwI8ipRNgpnTwgREXkCVRLSwQ9IijE9ZxLifLm5uSgqKrKUzRvIWXgH\nA8G9nBuUEzEJISJqT/yjgIAuiirzvBAmIc5n3QsC2JmUGj4YEJ77Ue2574yIiOxT9YaY//rOzMxE\nTU2NBgG1X+okZFSyv7KBB88HAZiEEBG1P6rJqUN7mv6tra3FgQMHNAio/dq3b5/luRBAP5tJqZ47\nHwRgEkJE1P50vFBRHNQN8K2/NxqHZJzLuickIQoI9Fb1RLEnhIiIPErHIQCEpejjBQyKNz1nEuJc\n1j0hNpNS/aIB/1jnBuRkTEKIiNob72AgJFlRNSzB9O+ePXs0CKh9KigoQG5urqVsHhaz6DjUNEbj\nwZiEEBG1RxHDFMVhiaZ/d+/erUEw7ZN6k7KhPVUJh4fPBwGYhBARtU/qJKS+J+TAgQOKfSuo7Sxb\ntszy3Etvmpuj4OHzQQAmIURE7VNHZRISHwF0DjU9t76jK7UNKSV++OEHS3lAV8DPWyobqZZSe6IW\nJSFCiL8IIY4IISqFEFuEEI32GdW33yuEqBBC7BNC3KE67iWEeFYIcbD+mjuEEOPO93WJiKgBIX1M\nc0OsXFjfG5KWlqZBQO3HJ598gsDAQBw/ftxSd5F6U9TgJMA33LmBacDhJEQIMRHAGwCeAzAIwC4A\na4QQEQ20fxjAbADPAugL4HkA7wohrrFqNhvAAwD+AqAPgA8B/CCEGNDS1yUiokYInU13v3lIZuvW\nrRoE1D6kp6fjgQceQGVlpaL+ikGByoYRFzkxKu20pCdkGoAPpZTzpZT7AUwFUAHg3gbaT6lv/52U\n8qiU8hsAHwGYoWozW0q5pr7NBwBWAnjqPF6XiIga09H+vJCtW7dCSmnnBDpfa9assVt/cZLq45hJ\niC0hhDeAVADrzHXS9JO6FsDwBk7zBVClqqsCMFQIobdqo9omDpUARpzH6xIRUWNUk1OH9AD0OtNN\n1U6ePKlRUJ4tJyfHpi4uHAjzKVVWdmISYk8EAD2AXFV9LoDoBs5ZA+B+IUQKAAghBgO4D4B3/fXM\nbZ4UQiQIk8sB3ASg83m8LhERNUa1c2qAL9Cv/t5299xzDwwGgwZBebbs7GybuvdemKKs8A4Fgns7\nKSJteTXd5LzNAhAFYLMQQgcgB8A8ANMBGOvbPA7TEM3++rpDAD5DKwy1TJs2DSEhIYq6SZMmYdKk\nSed7aSIi9+YXAXRIAMoOWqqGJwI7jwHr1q3D1KlT8emnn2oYoOdRJyFvv/02rh12CMi0qowY7tQ7\n5y5atAiLFi1S1BUXFzvltR1NQs4AqIMpqbAWBVNyYUNKWQVTT8hD9e2yATwEoFRKmV/f5gyAm4QQ\nPgA6SimzhRAvAzjc0tc1mzt3LlJSUpr59oiI2pmIYYokZFgC8P5a0/P58+fjnXfegb+/fwMnk6PU\nSUjnzp2B/AXKRk4eirH3h3lGRgZSU1Pb/LUdSrWklAYA6QAuNdcJIUR9eVMT59ZJKU/Xz+W4DcCP\ndtrU1Ccg3gBuBrDkfF+XiIgaoZoXMjzx3PPa2lq7cxioZaSUNklIbFQYULhD2bCdTEoFWrY65k0A\nDwgh7hRC9AbwAYAAmIZYIISYI4T4wtxYCJEohJhcP99jqBDiawDJAGZatRkqhLhRCNFdCDESwCqY\n7q70WnNfl4iIWiBCObc/MRqIshrBtr63CZ2f0tJSm6W58UH5gKw9V2Fn6bQnc3hOiJTy2/q9OV6A\naThkJ4Bx5qEVmCaKdrE6RQ/TUtteAAwAfgVwkZTyuFUbPwAvAugOoAzACgBTpJQlDrwuERE5KnQA\n4BUE1J5bnTEyCfiufr8y9oS0HnuTUiOQpawIHQB4d3BSRNpr0cRUKeV7AN5r4Ng9qvJ+AI1OypBS\n/gZT70iLX5eIiFpApwc6XQxkr7ZUjep9LglhT0jrUSchwcHB8ClWbZHfjoZiAN47hoiIIkcpiiOt\nVocyCWk9tpNSo4EzqmmN7WR/EDMmIURE7V2nkYpi/y5ASIDpOZOQ1qNOQob2DgWqzyobsSeEiIja\nlY5DAJ2vpajTARfX31CNc0Jaj/prOTJJtTW+f2cgMN6JEWmPSQgRUXun9wUilLunjqofkmFPSOtR\n94SkxKm2ao8cDQjhxIi0xySEiIhshmRGJpn+ZRLSetRJSK/Q08oGkWOcF4yLYBJCREQ2k1OH9AD8\nfTgc05qsk5CEKCBIX6JsEDXGuQG5ACYhRERkc78Sby/gwgSgrKwMFRUVGgbmOawTujF9VQf9ooGg\nXs4NyAUwCSEiIsA7CAhTbunEeSGt58iRIygoKLCUx/RRNYga0+7mgwBMQoiIyIzzQtrMV199pShf\neoEq4WiH80EAJiFERGSmmhcyPAHw1nNeyPmSUmLhwoWWcmI0EB2iWp4bNdbJUbkGJiFERGTSaYSi\nGOhnuqsue0LOT0ZGBvbv328p2wzF+HcGghLRHjEJISIiE78IIGyQouryfkxCztd3332nKF8zJFDZ\nIHJMu5wPAjAJISIia9GXK4qXXwB88sknmDBhAv75z3+irKxMo8Dc15YtWxTlseqVMe1waa5Zi+6i\nS0REHqrz5cC+Vy3FwT2A0rMnsHjxCQCAwWDAyy+/rFV0bsdoNCIjI8NSTowGgr3LlY3a6aRUgD0h\nRERkrdMIGMW5+8jodcq/3BctWqRBUO7r0KFDKCk5tynZJcmqBu14PgjAJISIiKzp/aCLUq6Subzf\nuefHjx/nahkHpKenK8rXD/FRNogc227ngwBMQoiISM3OvBBr27Ztc2Iw7s06CfHWA6N71ykbxFzp\n5IhcC5MQIiJS6qxMQhKigW6dzpXT0tKcHJD7sk5CRiQBAd6qJKTzOCdH5FqYhBARkVJof8C3k6LK\nujeESUjzSCkVk1KvGqBqED4Y8It0blAuhkkIEREpCR0QfZmiynpeSFpaGqRU7fhJNvbs2YPi4mJL\n+Up1EhJzlXMDckFMQoiIyJZqXsilyYCufv5kUVERDh48qEFQ7mX+/PmW53HhQL8uqgad2/d8EIBJ\nCBER2aOaFxLeARjS81yZk1MbZzAYFEmITS+ITxjQ8ULnBuWCmIQQEZGtgDggWHmTk/FWO7r/+eef\nTg7IvaxatQp5eXmW8pX9VQ2irwB0eucG5YKYhBARkX2x4xVFJiHN98UXX1iee+mBcQNUCQfngwBg\nEkJERA2JvVZRHBgPdOloer53714NAnIPZWVlWLlypaV8USLQwZdLc+1hEkJERPZFDDfNXbByzUDT\nv4cOHUJVVZUGQbm+FStWKL4241NUO6KGDQL8o50clWtiEkJERPbpvICYqxVV16Wa/jUajejatSve\nfvttLtdVWbx4saI8aaS/sgGHYiyYhBARUcNilPNCLk0GQgJMz/Pz8/H4449jxYoVGgTmmgoLCxVD\nMX1jgbjgCmWjuBucHJXrYhJCREQNi70a0J276ZqPl3KCKgAsXbrUyUG5pry8PIwdOxaVlZWWupuH\nqoZiAuJMO6USACYhRETUGO9gm43Lbh6ibLJ27VonBuS6HnnkEezatUtRd+clQcpGcTe267vmqjEJ\nISKixnW5WVG8cgAQ4HuubP2Xf3t15swZ/PDDD4q6oX0jkBBeomzY5SYnRuX6mIQQEVHj4q4DxLl9\nLvx9zq2SAYDc3FzFPVLao1WrVsFoNCrqlr87RdnINwLoNMKJUbk+JiFERNQ4345A1CWKqtsvUjbJ\nyspyYkCuZ/ny5Yry9ddfj07lqmGqLreYVhyRBZMQIiJqWvwkRfHqgUBY4Llye05Campq8O233yrq\n7rh2EFC8R9kw/jYnRuUemIQQEVHTutwE6M5NBPHxAm4Zeu5wZmamBkFp76effoKvr69N/RVJZ5UV\n/rFA5EgnReU+mIQQEVHTfEJs7iUz+eJzz9tjT0h1dTXuvPNOm/ohg1MQdGaJsjJ+IiD4kavGrwgR\nETVPt8mK4ug+QM8o0/P22BPy559/Ijc316Z+5n3DgIoTykrV145MmIQQEVHzxFwN+IQrqu4fY/o3\nKyur3W3fbu8mfrNmzcK1yWeUlWEDgfAUJ0XlXpiEEBFR8+h9ge7K4Ye7R5luVV9RUYETJ040cKJn\n+vPPPxXl8ePH4x9PPwzdKdVQTI97nRiVe2ESQkREzdfzfkUxOhS4tn4b923btmkQkHbUPSHJycnA\noc8AY825Sp0Ph2IawSSEiIiaLzQZiBiuqHpsnOnftLQ0DQLSjk0S0jcJyHpH2ajLTYCvcgiLzmES\nQkREjkmYqiiO6QsM6gZs3bpVm3g0UFlZiUOHDinqhnfJByqOKxv2esyJUbkfJiFEROSY+NsA/86K\nqmlXAdu3b0ddXZ1GQTlXZmamzUTc7tWquSDhQ4CIYU6Myv0wCSEiIsfofYBejyqqbhsGdAoot7ti\nxJOcOHECGRkZ+OOPPxT1E8dGQV+wWdk46THeMbcJTEKIiMhxCQ8Ben9L0dsLePZG4LvvvtMwqLa1\nZMkSJCYmIjU1FXfddZfi2N+vNSgbB3QBuk5wYnTuiUkIERE5zrcjkPiwourOkcCij17A008/bXcT\nL3fx3//+F71798bFF1+MPXvO3f9l9uzZqK6utmk/ti/QP6pAWZn8jKnHiBrFJISIiFqm7wzUyHMf\ntHod8PrtwOuvv47ExESsW7dOw+BapqioCPfeey8yMzOxadMm3HLLLTAajTAajdi+fbtNey898JZ6\n5/aAOO4N0kxMQoiIqGX8IlHbQ9kbcl0qcMNgoLS0FBMnTkR+fr5GwTWuoKAAhYWFNvVpaWkoKSmx\nlDMzM/H3v/8d77//vt3r/OVyoF8XVWXyTNPGbtQkJiFERNRiAanPw+gTqah75y4gMhg4e/Ysnnzy\nSbvnGY1GFBQU2D3W1t544w1ERkYiKioKH3zwgeLY4cOHbdq/8sorePTRR23qk+OA2eppH6EDbDZ0\no4YxCSEiopbzCYVu8FuKqthw4Mf/AwJ8gYULF2LDhg2K4zt37kRcXBw6duyI2267DUaj0WnhFhUV\nYebMmairq4PBYMDTTz+NiooKy3H13h8NiQwGfpgGBKo7PIa8C+i8WjFiz8YkhIiIzk/8RKDzlYqq\noT2BXS8BlyRDMZRRUVGBW265BdnZ2QCAb775BkuXLnVaqNu3b1dMLi0rK8POnTst5eYkIdemAHte\n1SExWnUgYSrQ6eLWCrVdYBJCRETnRwhg+BdAYDdFdUI0sO7vwNVhX6M4Zz8A4Pnnn7f5oJ8xYwae\ne+45bN6s2mejDVivdjGznnB68ODBBs/tEwusngEsewroFKTqvQkfAqT+u9XibC+YhBAR0fnziwTG\nrAS8Q20OTb7IiMB1/ZG7agoWfPy6zfEDBw7ghRdewKhRo7Bp06Y2DXPXrl02deYkREpptyekRyTw\n/r3AH3OAcf3tXDSgCzDyO05GbQEmIURE1DpC+gBXbAYiLrI55CUMiCr8EofelHj3buAC9YoSALW1\ntXjxxRfbNET1TqfAubv/5uTkKOaHDO4BfP1Xgaw3gKmXmpbj2oi5BrgyHQjs2lYhezQmIURE1HpC\negOX/47dfo+guML2cIAv8MjlwO6Xgd/+CdwzGggLPHd81apVOHHiRJuEVltbiz///NOmPjMzEyUl\nJTh48CA6BQNPXAnsmgNsmwVMHCaht/NJafDqBAyfD4z+EfDr1CbxtgdMQoiIqHUJHfpc9xaueb8H\nPlwHGGrtNxvZG/jsQSD3PWDldFNvQ2I08NlnnzbrZQwGAzZu3Njs3VkzMzPt7njaO0Yi/7fp6HXs\nPmDaBlMAABDOSURBVOS8C8y9A+jfQMdGVQ0w6weg8rKdQPc7eG+Y88R1RERE1Oq8vLzw7mffY8SI\nEXj5xzLMvB64e5T9IQ1vL+CqAaYHAJwqehHGDVnQRQwBwgcDYQMA72DFOVVVVRg1ahS2bdsGnU6H\nVatW4Yorrmg0pl27dqFTsGlzsYHxwMW9gBG9gMgQACUfNvpneWkl8ME64N+rgdOFwD8Xxzj4FSF7\nhPpWxJ5CCJECID09PR0pKSlah0NE1C6tXLkSN954I2pqahAXDjx+jT8evdIXfihy7EJ+kUBQIhDY\nHfCLwqYdh/Dx/CWorAEqDUB0TFd8+P57gKwF6qoBQxFQXQBUnwEqjgPlx1CasxtB3pWOvW5gPD76\nBZjxyTEUWQ0veepnp1lGRgZSU1MBIFVKmdFWr8OeECIiajNXX301du/ejZ9++gndu3fH5ZdfDh89\ngFNLkfXzLHTR74Z/c+7zVpVneuRvBABc5A9c9JB1g+PA/8Y3eokg7+bFXF4F/LAdCBr4GK6fNBcJ\nQetR9PalluNPP/108y5ETWISQkREbapXr17o1auXsrLrreh1362oLMmDLFiHrPX/RlB5GmLCtInx\nxFlgxU5gWTrwy15A5+WPffueBIQOY8eOxYsvvogFCxZg4MCB+Nvf/qZNkB6IwzFERKS54uJixMR0\nRnxYJUb1BgZ3B65IDUOXkBIIWdeqr1VRDZypjUaFbyJe+vh3/J4JHLW6z96AAQPw0UcfYejQoa36\nuu6EwzFERNRuhISEYMKEiZg3bx72nQI+BIBPCuHjZdosLDEaSO7qi0fvvQGbf12CEN9qhAUC/j6m\nh48XUFsHxMbFw9vX37Rpmk8Y4BOGX7dm4bvV23E0HziYC3SIHoCtadtRV1eHX2cm4GT+SUscU6dO\nxTvvvAO93t6mINTamIQQEZFLePLJJ/Hll1/CYDBY6mpqgf2nTY8fM6rx8pJvGr3GJ5/8E/fdd5+i\nbvoTQ2C1Mzuee/AGeHl5wcvLC0uWLMGECRNw9uxZTJ8+Hc888wwEl906DZMQIiJyCf369cOXX36J\nyZMnKxIRR1jf+6W8vBwrV65U3BsGAEaPHm15npqaikOHDsFoNEKn49ZZzsavOBERuYxbb70Vq1at\nQs+ePVt0vjkJ2bBhAxISEjBhwgTFcW9vbwwbNszmPCYg2uBXnYiIXMqll16KzMxM7NmzB0uXLsX6\n9evRv7+9O8cBDz/8sKL83XffoXv37hg5ciRycnJs2g8dOhT+/v5tEjc5jkkIERG5HL1ej+TkZFx3\n3XUYPXo0Pv/8c5s28fHxuPnmm23qjx492uB1rYdiSHtMQoiIyOWlpKRg2rRpirrbbrsNiYmJDl3n\nsssua82w6DxxYioREbmFl156CXl5eVi6dClGjRqFmTNnIjAwEL6+vnZvTAcAsbGxKCoqQnl5OSZO\nnIgxY8Y4N2hqFJMQIiJyC35+fli4cCGklIpltD169MC+ffts2h86dAg9evRASUkJioqK0KVLFy6/\ndTEcjiEiIreiTiTsraRJSkpCjx49AADBwcHo2rUrExAXxCSEiIjcWkJCgk3dyJEjNYiEHMUkhIiI\n3Jq9npARI0ZoEAk5ikkIERG5tdjYWJs69oS4ByYhRETk1kaOHAlfX19LOSkpCd27d9cwImquFiUh\nQoi/CCGOCCEqhRBbhBBDmtF+rxCiQgixTwhxh502Twgh9te3OS6EeFMI4Wt1/DkhhFH12NuS+ImI\nyHNERETgvffeQ2RkJBISEvDJJ59wEqqbcHiJrhBiIoA3ADwIIA3ANABrhBC9pJRn7LR/GMBsAPcD\n2A7gQgAfCyEKpJQr6tvcDmAOgLsBbAbQC8A8AEYA/2d1uT0ALgVg/umqdTR+IiLyPPfeey/uvfde\nrcMgB7Vkn5BpAD6UUs4HACHEVADXALgXwKt22k+pb/9dfflofc/JDAAr6uuGA9ggpTTfo/m4EOJr\nAENV16qVUua3IGYiIiJyMQ4NxwghvAGkAlhnrpNSSgBrYUok7PEFUKWqqwIwVAihry9vApBqHtYR\nQvQAcDXOJSlmiUKIU0KIQ0KIhUKILo7ET0RERK7D0TkhEQD0AHJV9bkAohs4Zw2A+4UQKQAghBgM\n4D4A3vXXg5RyEYDnAGwQQtQAOADgVynlK1bX2QLTcM04AFMBdAfwmxAi0MH3QERERC7AGdu2zwIQ\nBWCzEEIHIAem+R7TYZrzASHEGAB/hym5SAOQAOBtIUS2lPJFAJBSrrG65h4hRBqAYwAmALC9vWK9\nadOmISQkRFE3adIkTJo0qTXeGxERkVtbtGgRFi1apKgrLi52ymsL02hKMxubhmMqANwspVxmVT8P\nQIiU8sZGztXDlIxkA3gIwMtSytD6Y78B2CKlnG7VfjJMc0k6NHLNNAA/Syln2jmWAiA9PT0dKSkp\nzX6PRERE7V1GRgZSU1MBIFVKmdFWr+PQcIyU0gAgHaYVKgAAYVoHdSlM8zoaO7dOSnm6fg7JbQB+\ntDocANuVLuZeErvrrIQQHWDqMcl25D0QERGRa2jJcMybAOYJIdJxboluAExDLBBCzAEQI6W8q76c\nCNMql60AwgE8CSAZwJ1W1/wRwDQhxK76dokAXgCwrD5pgRDitfp2/9/evQdpVddxHH9/uAyYoJYU\n620UozIqCdSJS9SoFek4OFoWQSNZTDnETDdj0mCMaKZoRpIUHLroGCMpZSVOM0IZTkNAVBsaBk6M\nXDJRBBSUixB8++OclcPTLrvPbX8+D5/XzJl9nnN+z/ec3373t/vdc90CnAXMBA4Bx+5DMjMzs4ZQ\ndhESEYslDSArEgYCa4GxhUtnW4DiVSs9ga+R3fvjELAcGBURWwttZpHt+ZhFVmC8ACwBphfanA0s\nAk7Pl68ARkTEznL7YGZmZulVdGJqRMwH5new7IaS9xuA456UERFtBcis47TxmaRmZmZNxM+OMTMz\nsyRchJiZmVkSLkLMzMwsCRchZmZmloSLEDMzM0vCRYg1lNJbC1tjcz6bi/Np5XIRYg3Fv+Sai/PZ\nXJxPK5eLEDMzM0vCRYiZmZkl4SLEzMzMkqjotu0Noi/A+vXrU2+H1dDu3btpba3bU6WtmzmfzcX5\nbB6Fv51967ke5Q+pbTqSJgD3pd4OMzOzBjYxIhbVK3gzFyGnA2OBzcCBtFtjZmbWUPoC5wFL6/m0\n+qYtQszMzOz1zSemmpmZWRIuQszMzCwJFyFmZmaWhIsQMzMzS8JFiJmZmSXRUEWIpC9K2iRpv6TV\nki45TtsWSfdJekrSYUlzOmh3naT1eczHJV1Rvx5YUa3zKWmSpCP58iP5tK++vbA2ZebzGknLJG2X\ntFvSSkkfaaedx2dCtc6px2haZeZztKQVknZI2pePwy+3066qMdowRYikTwK3AbcCw4DHgaWSBnTw\nkT7AdmAWsLaDmKOARcCPgfcCDwG/kTSktltvpeqRz9xuoKUwnVurbbaOVZDPDwDLgCuA4cBy4GFJ\nQwsxPT4TqkdOcx6jCVSQz73AHcAY4AKy373fkTS5ELP6MRoRDTEBq4G5hfcCngGmdeGzy4E57cy/\nH1hSMm8VMD91f5t9qlM+JwG7UvftRJyqyWfhM+uA6YX3Hp/Nl1OP0cbO54PAvYX3VY/RhtgTIqk3\ncBHwaNu8yHr7e2BkFaFH5jGKllYZ0zpRx3wC9JO0WdJWSf6vuRvUIp+SBPQHdhVme3wmUsecgsdo\nt6tRPoflbR8rzK56jDZEEQIMAHoCz5fMf55sd16lWuoQ0zpXr3w+BXwWGAdMJPv5XinpzCpiWudq\nkc+vAycDiwvzPD7TqVdOPUbTqDifkv4t6QCwBpgXEfcUFlc9Rpv5Kbp2gomI1WS7HAGQtApYD3yB\n7DiovQ7lD5ucAYyLiB2pt8eq11FOPUYb0vuBfsAIYLakjRHxQK2CN0oRsgM4DAwsmT8QeK6KuM/V\nIaZ1rl75PEZE/FfS34HBtYpp7ao4n5LGAz8CPh4Ry0sWe3ymU6+cHsNjtNtUnM+I2JK/fFJSC/At\noK0IqXqMNsThmIg4BPwNuLxtXn688XJgZRWhVxVj5j6cz7c6qWM+jyGpB/AeYFutYtr/qzSfkj4F\n/BQYHxGPtNPE4zOROua0tL3HaDeo4e/cnmRXKrapfoymPmO3jLNyPwHsA64nu1xoAbATeHO+/LsU\nztrN5w0lu2zoL8DC/P07C8tHAq8CXwXeQVbhHQCGpO5vs091yueMfAAMIrsE7edkl5ldkLq/zT6V\nm09gAnAQuJHsP6e26ZRCG4/P5supx2jj5HMKcBXZXqrBwOfILq+eWWhT9RhN/o0p85s4BdgM7Cer\ntC4uLLsH+ENJ+yNku6CK09MlbT4GbMhjPgGMTd3PE2WqdT6BOcCmPN6zwMPAhan7eaJM5eST7DLr\n0lweBu4uienx2UQ59RhtqHxOBf4BvAy8CPwV+Hw7Masao8qDmJmZmXWrhjgnxMzMzJqPixAzMzNL\nwkWImZmZJeEixMzMzJJwEWJmZmZJuAgxMzOzJFyEmJmZWRIuQszMzCog6RZJf5K0V9KuLrTvJWm2\npCckvSLpP5LulXRGoc0bJf1Q0gZJ+yRtkTRX0iklsTZLOlKYDkuaVub23yxpjaQ9kp6X9GtJby8n\nRrVchJiZmXVA0nJJ13ewuDewGLiri+HeQPboiZlkt62/hux25w8V2pwJnEF2K/R3AZOAjwI/KYkV\nwHSyW+O35J+5o4vb0WZM/pn3AR/K+7NM0kllxqlYozxF18zM7HUlImYCSJrUxfZ7gLHFeZKmAn+W\ndHZEPBMRTwLXFZpskvRNYKGkHhFxpLDslYh4oaP1SXo38H2yYmMvsAz4SkTszLfnypL2nwG2AxcB\nK7rSp2p5T4iZmVk6p5Ht1XipkzZ7SgoQgG9I2iGpVdJNknq2LZB0KvAo2dNzh5MVP28BHujCtnR6\naKlWvCfEzMwsAUl9gO8BiyLilQ7aDCA77LKgZNFcoJWsYBiVx2kBbsqXTwVaI2JGIdZkYKukwRGx\nsWQ9Am4HVkTEP6vtW1e5CDEzM8tJuhm4pTDrJGCEpHn5+yB7VP0zVa6nF/CLPN6UDtr0B34LrCM7\nj+Q1EXF74e06SQeBBZJujohDwFDgMkkvl4QN4K3AxpL584EhwOjKelQZFyFmZmZH3cWxhywWAb8E\nflWY92w1KygUIOcAl7W3F0RSP2Ap2WGaayPicCdh15D9TT8P+BfQD1gCTANU0nZbybruBK4ExkTE\nNrqRixAzM7NcRLxE4fwMSfuB7RHxdC3iFwqQ84FLI+LFdtr0JytA9gPjIuJgF0IPA46QnVgK2aGa\na4Et7ZxLUlzXncDVwAcjYms5fakFn5hqZmZWAUnnSBoKnAv0lDQ0n04utNkg6er8dS/gQbITRT8N\n9JY0MJ965236A78ju5x3MnBaoU2PvM0ISV+SdKGkQZImAnOAhRGxO1/1POBNwP2SLpZ0vqSxku7O\nz/9A0nxgIjAB2FtYT9/6fueO8p4QMzOzjsVxln0bKN5DpDX/einwx/z124BT89dnAVflr9fmX5Wv\no+0zw4FL8mUbS9oMArYCrwLjgVuBPsAm4DbgB69tdMQ2SaOB2WR7VfoAW4BHIqKtTzfmcR8r6dcN\nwM+O0++a0dFtMTMzM+s+PhxjZmZmSbgIMTMzsyRchJiZmVkSLkLMzMwsCRchZmZmloSLEDMzM0vC\nRYiZmZkl4SLEzMzMknARYmZmZkm4CDEzM7MkXISYmZlZEv8D/SAshW/8BLEAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10f46de90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def f(xdata, rp, t0):\n", "params = batman.TransitParams()\n", "params.t0 = t0 #time of inferior conjunction\n", "params.per = 2.47061317 #orbital period\n", "params.rp = rp #planet radius (in units of stellar radii)\n", "params.a = 7.903 #semi-major axis (in units of stellar radii)\n", "params.inc = 83.872 #orbital inclination (in degrees)\n", "params.ecc = 0.0 #eccentricity\n", "params.w = 0.0 #longitude of periastron (in degrees)\n", "params.u = [0.1, 0.3] #limb darkening coefficients\n", "params.limb_dark = \"quadratic\"\n", "\n", "m = batman.TransitModel(params, xdata)\n", "modelflux = m.light_curve(params)\n", "\n", "\n", "plt.plot(time, nflux, color='black', linewidth=3)\n", "plt.plot(time, modelflux, color='orange', linewidth=3)\n", "plt.xlim(122.6, 122.8)\n" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "make imshow plot of t0 vs rp and an imshow plot of t0 vs per\n", "\n", "comment EVERY single line of code" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n", "0 1\n", "0 2\n", "0 3\n", "0 4\n", "0 5\n", "0 6\n", "0 7\n", "0 8\n", "0 9\n", "0 10\n", "0 11\n", "0 12\n", "0 13\n", "0 14\n", "0 15\n", "0 16\n", "0 17\n", "0 18\n", "0 19\n", "0 20\n", "0 21\n", "0 22\n", "0 23\n", "0 24\n", "0 25\n", "0 26\n", "0 27\n", "0 28\n", "0 29\n", "0 30\n", "0 31\n", "0 32\n", "0 33\n", "0 34\n", "0 35\n", "0 36\n", "0 37\n", "0 38\n", "0 39\n", "0 40\n", "0 41\n", "0 42\n", "0 43\n", "0 44\n", "0 45\n", "0 46\n", "0 47\n", "0 48\n", "0 49\n", "0 50\n", "0 51\n", "0 52\n", "0 53\n", "0 54\n", "0 55\n", "0 56\n", "0 57\n", "0 58\n", "0 59\n", "0 60\n", "0 61\n", "0 62\n", "0 63\n", "0 64\n", "0 65\n", "0 66\n", "0 67\n", "0 68\n", "0 69\n", "0 70\n", "0 71\n", "0 72\n", "0 73\n", "0 74\n", "0 75\n", "0 76\n", "0 77\n", "0 78\n", "0 79\n", "0 80\n", "0 81\n", "0 82\n", "0 83\n", "0 84\n", "0 85\n", "0 86\n", "0 87\n", "0 88\n", "0 89\n", "0 90\n", "0 91\n", "0 92\n", "0 93\n", "0 94\n", "0 95\n", "0 96\n", "0 97\n", "0 98\n", "0 99\n", "0 100\n", "0 101\n", "0 102\n", "0 103\n", "0 104\n", "0 105\n", "0 106\n", "0 107\n", "0 108\n", "0 109\n", "0 110\n", "0 111\n", "0 112\n", "0 113\n", "0 114\n", "0 115\n", "0 116\n", "0 117\n", "0 118\n", "0 119\n", "0 120\n", "0 121\n", "0 122\n", "0 123\n", "0 124\n", "0 125\n", "0 126\n", "0 127\n", "0 128\n", "0 129\n", "0 130\n", "0 131\n", "0 132\n", "0 133\n", "0 134\n", "0 135\n", "0 136\n", "0 137\n", "0 138\n", "0 139\n", "0 140\n", "0 141\n", "0 142\n", "0 143\n", "0 144\n", "0 145\n", "0 146\n", "0 147\n", "0 148\n", "0 149\n", "0 150\n", "0 151\n", "0 152\n", "0 153\n", "0 154\n", "0 155\n", "0 156\n", "0 157\n", "0 158\n", "0 159\n", "0 160\n", "0 161\n", "0 162\n", "0 163\n", "0 164\n", "0 165\n", "0 166\n", "0 167\n", "0 168\n", "0 169\n", "0 170\n", "0 171\n", "0 172\n", "0 173\n", "0 174\n", "0 175\n", "0 176\n", "0 177\n", "0 178\n", "0 179\n", "0 180\n", "0 181\n", "0 182\n", "0 183\n", "0 184\n", "0 185\n", "0 186\n", "0 187\n", "0 188\n", "0 189\n", "1 0\n", "1 1\n", "1 2\n", "1 3\n", "1 4\n", "1 5\n", "1 6\n", "1 7\n", "1 8\n", "1 9\n", "1 10\n", "1 11\n", "1 12\n", "1 13\n", "1 14\n", "1 15\n", "1 16\n", "1 17\n", "1 18\n", "1 19\n", "1 20\n", "1 21\n", "1 22\n", "1 23\n", "1 24\n", "1 25\n", "1 26\n", "1 27\n", "1 28\n", "1 29\n", "1 30\n", "1 31\n", "1 32\n", "1 33\n", "1 34\n", "1 35\n", "1 36\n", "1 37\n", "1 38\n", "1 39\n", "1 40\n", "1 41\n", "1 42\n", "1 43\n", "1 44\n", "1 45\n", "1 46\n", "1 47\n", "1 48\n", "1 49\n", "1 50\n", "1 51\n", "1 52\n", "1 53\n", "1 54\n", "1 55\n", "1 56\n", "1 57\n", "1 58\n", "1 59\n", "1 60\n", "1 61\n", "1 62\n", "1 63\n", "1 64\n", "1 65\n", "1 66\n", "1 67\n", "1 68\n", "1 69\n", "1 70\n", "1 71\n", "1 72\n", "1 73\n", "1 74\n", "1 75\n", "1 76\n", "1 77\n", "1 78\n", "1 79\n", "1 80\n", "1 81\n", "1 82\n", "1 83\n", "1 84\n", "1 85\n", "1 86\n", "1 87\n", "1 88\n", "1 89\n", "1 90\n", "1 91\n", "1 92\n", "1 93\n", "1 94\n", "1 95\n", "1 96\n", "1 97\n", "1 98\n", "1 99\n", "1 100\n", "1 101\n", "1 102\n", "1 103\n", "1 104\n", "1 105\n", "1 106\n", "1 107\n", "1 108\n", "1 109\n", "1 110\n", "1 111\n", "1 112\n", "1 113\n", "1 114\n", "1 115\n", "1 116\n", "1 117\n", "1 118\n", "1 119\n", "1 120\n", "1 121\n", "1 122\n", "1 123\n", "1 124\n", "1 125\n", "1 126\n", "1 127\n", "1 128\n", "1 129\n", "1 130\n", "1 131\n", "1 132\n", "1 133\n", "1 134\n", "1 135\n", "1 136\n", "1 137\n", "1 138\n", "1 139\n", "1 140\n", "1 141\n", "1 142\n", "1 143\n", "1 144\n", "1 145\n", "1 146\n", "1 147\n", "1 148\n", "1 149\n", "1 150\n", "1 151\n", "1 152\n", "1 153\n", "1 154\n", "1 155\n", "1 156\n", "1 157\n", "1 158\n", "1 159\n", "1 160\n", "1 161\n", "1 162\n", "1 163\n", "1 164\n", "1 165\n", "1 166\n", "1 167\n", "1 168\n", "1 169\n", "1 170\n", "1 171\n", "1 172\n", "1 173\n", "1 174\n", "1 175\n", "1 176\n", "1 177\n", "1 178\n", "1 179\n", "1 180\n", "1 181\n", "1 182\n", "1 183\n", "1 184\n", "1 185\n", "1 186\n", "1 187\n", "1 188\n", "1 189\n", "2 0\n", "2 1\n", "2 2\n", "2 3\n", "2 4\n", "2 5\n", "2 6\n", "2 7\n", "2 8\n", "2 9\n", "2 10\n", "2 11\n", "2 12\n", "2 13\n", "2 14\n", "2 15\n", "2 16\n", "2 17\n", "2 18\n", "2 19\n", "2 20\n", "2 21\n", "2 22\n", "2 23\n", "2 24\n", "2 25\n", "2 26\n", "2 27\n", "2 28\n", "2 29\n", "2 30\n", "2 31\n", "2 32\n", "2 33\n", "2 34\n", "2 35\n", "2 36\n", "2 37\n", "2 38\n", "2 39\n", "2 40\n", "2 41\n", "2 42\n", "2 43\n", "2 44\n", "2 45\n", "2 46\n", "2 47\n", "2 48\n", "2 49\n", "2 50\n", "2 51\n", "2 52\n", "2 53\n", "2 54\n", "2 55\n", "2 56\n", "2 57\n", "2 58\n", "2 59\n", "2 60\n", "2 61\n", "2 62\n", "2 63\n", "2 64\n", "2 65\n", "2 66\n", "2 67\n", "2 68\n", "2 69\n", "2 70\n", "2 71\n", "2 72\n", "2 73\n", "2 74\n", "2 75\n", "2 76\n", "2 77\n", "2 78\n", "2 79\n", "2 80\n", "2 81\n", "2 82\n", "2 83\n", "2 84\n", "2 85\n", "2 86\n", "2 87\n", "2 88\n", "2 89\n", "2 90\n", "2 91\n", "2 92\n", "2 93\n", "2 94\n", "2 95\n", "2 96\n", "2 97\n", "2 98\n", "2 99\n", "2 100\n", "2 101\n", "2 102\n", "2 103\n", "2 104\n", "2 105\n", "2 106\n", "2 107\n", "2 108\n", "2 109\n", "2 110\n", "2 111\n", "2 112\n", "2 113\n", "2 114\n", "2 115\n", "2 116\n", "2 117\n", "2 118\n", "2 119\n", "2 120\n", "2 121\n", "2 122\n", "2 123\n", "2 124\n", "2 125\n", "2 126\n", "2 127\n", "2 128\n", "2 129\n", "2 130\n", "2 131\n", "2 132\n", "2 133\n", "2 134\n", "2 135\n", "2 136\n", "2 137\n", "2 138\n", "2 139\n", "2 140\n", "2 141\n", "2 142\n", "2 143\n", "2 144\n", "2 145\n", "2 146\n", "2 147\n", "2 148\n", "2 149\n", "2 150\n", "2 151\n", "2 152\n", "2 153\n", "2 154\n", "2 155\n", "2 156\n", "2 157\n", "2 158\n", "2 159\n", "2 160\n", "2 161\n", "2 162\n", "2 163\n", "2 164\n", "2 165\n", "2 166\n", "2 167\n", "2 168\n", "2 169\n", "2 170\n", "2 171\n", "2 172\n", "2 173\n", "2 174\n", "2 175\n", "2 176\n", "2 177\n", "2 178\n", "2 179\n", "2 180\n", "2 181\n", "2 182\n", "2 183\n", "2 184\n", "2 185\n", "2 186\n", "2 187\n", "2 188\n", "2 189\n", "3 0\n", "3 1\n", "3 2\n", "3 3\n", "3 4\n", "3 5\n", "3 6\n", "3 7\n", "3 8\n", "3 9\n", "3 10\n", "3 11\n", "3 12\n", "3 13\n", "3 14\n", "3 15\n", "3 16\n", "3 17\n", "3 18\n", "3 19\n", "3 20\n", "3 21\n", "3 22\n", "3 23\n", "3 24\n", "3 25\n", "3 26\n", "3 27\n", "3 28\n", "3 29\n", "3 30\n", "3 31\n", "3 32\n", "3 33\n", "3 34\n", "3 35\n", "3 36\n", "3 37\n", "3 38\n", "3 39\n", "3 40\n", "3 41\n", "3 42\n", "3 43\n", "3 44\n", "3 45\n", "3 46\n", "3 47\n", "3 48\n", "3 49\n", "3 50\n", "3 51\n", "3 52\n", "3 53\n", "3 54\n", "3 55\n", "3 56\n", "3 57\n", "3 58\n", "3 59\n", "3 60\n", "3 61\n", "3 62\n", "3 63\n", "3 64\n", "3 65\n", "3 66\n", "3 67\n", "3 68\n", "3 69\n", "3 70\n", "3 71\n", "3 72\n", "3 73\n", "3 74\n", "3 75\n", "3 76\n", "3 77\n", "3 78\n", "3 79\n", "3 80\n", "3 81\n", "3 82\n", "3 83\n", "3 84\n", "3 85\n", "3 86\n", "3 87\n", "3 88\n", "3 89\n", "3 90\n", "3 91\n", "3 92\n", "3 93\n", "3 94\n", "3 95\n", "3 96\n", "3 97\n", "3 98\n", "3 99\n", "3 100\n", "3 101\n", "3 102\n", "3 103\n", "3 104\n", "3 105\n", "3 106\n", "3 107\n", "3 108\n", "3 109\n", "3 110\n", "3 111\n", "3 112\n", "3 113\n", "3 114\n", "3 115\n", "3 116\n", "3 117\n", "3 118\n", "3 119\n", "3 120\n", "3 121\n", "3 122\n", "3 123\n", "3 124\n", "3 125\n", "3 126\n", "3 127\n", "3 128\n", "3 129\n", "3 130\n", "3 131\n", "3 132\n", "3 133\n", "3 134\n", "3 135\n", "3 136\n", "3 137\n", "3 138\n", "3 139\n", "3 140\n", "3 141\n", "3 142\n", "3 143\n", "3 144\n", "3 145\n", "3 146\n", "3 147\n", "3 148\n", "3 149\n", "3 150\n", "3 151\n", "3 152\n", "3 153\n", "3 154\n", "3 155\n", "3 156\n", "3 157\n", "3 158\n", "3 159\n", "3 160\n", "3 161\n", "3 162\n", "3 163\n", "3 164\n", "3 165\n", "3 166\n", "3 167\n", "3 168\n", "3 169\n", "3 170\n", "3 171\n", "3 172\n", "3 173\n", "3 174\n", "3 175\n", "3 176\n", "3 177\n", "3 178\n", "3 179\n", "3 180\n", "3 181\n", "3 182\n", "3 183\n", "3 184\n", "3 185\n", "3 186\n", "3 187\n", "3 188\n", "3 189\n", "4 0\n", "4 1\n", "4 2\n", "4 3\n", "4 4\n", "4 5\n", "4 6\n", "4 7\n", "4 8\n", "4 9\n", "4 10\n", "4 11\n", "4 12\n", "4 13\n", "4 14\n", "4 15\n", "4 16\n", "4 17\n", "4 18\n", "4 19\n", "4 20\n", "4 21\n", "4 22\n", "4 23\n", "4 24\n", "4 25\n", "4 26\n", "4 27\n", "4 28\n", "4 29\n", "4 30\n", "4 31\n", "4 32\n", "4 33\n", "4 34\n", "4 35\n", "4 36\n", "4 37\n", "4 38\n", "4 39\n", "4 40\n", "4 41\n", "4 42\n", "4 43\n", "4 44\n", "4 45\n", "4 46\n", "4 47\n", "4 48\n", "4 49\n", "4 50\n", "4 51\n", "4 52\n", "4 53\n", "4 54\n", "4 55\n", "4 56\n", "4 57\n", "4 58\n", "4 59\n", "4 60\n", "4 61\n", "4 62\n", "4 63\n", "4 64\n", "4 65\n", "4 66\n", "4 67\n", "4 68\n", "4 69\n", "4 70\n", "4 71\n", "4 72\n", "4 73\n", "4 74\n", "4 75\n", "4 76\n", "4 77\n", "4 78\n", "4 79\n", "4 80\n", "4 81\n", "4 82\n", "4 83\n", "4 84\n", "4 85\n", "4 86\n", "4 87\n", "4 88\n", "4 89\n", "4 90\n", "4 91\n", "4 92\n", "4 93\n", "4 94\n", "4 95\n", "4 96\n", "4 97\n", "4 98\n", "4 99\n", "4 100\n", "4 101\n", "4 102\n", "4 103\n", "4 104\n", "4 105\n", "4 106\n", "4 107\n", "4 108\n", "4 109\n", "4 110\n", "4 111\n", "4 112\n", "4 113\n", "4 114\n", "4 115\n", "4 116\n", "4 117\n", "4 118\n", "4 119\n", "4 120\n", "4 121\n", "4 122\n", "4 123\n", "4 124\n", "4 125\n", "4 126\n", "4 127\n", "4 128\n", "4 129\n", "4 130\n", "4 131\n", "4 132\n", "4 133\n", "4 134\n", "4 135\n", "4 136\n", "4 137\n", "4 138\n", "4 139\n", "4 140\n", "4 141\n", "4 142\n", "4 143\n", "4 144\n", "4 145\n", "4 146\n", "4 147\n", "4 148\n", "4 149\n", "4 150\n", "4 151\n", "4 152\n", "4 153\n", "4 154\n", "4 155\n", "4 156\n", "4 157\n", "4 158\n", "4 159\n", "4 160\n", "4 161\n", "4 162\n", "4 163\n", "4 164\n", "4 165\n", "4 166\n", "4 167\n", "4 168\n", "4 169\n", "4 170\n", "4 171\n", "4 172\n", "4 173\n", "4 174\n", "4 175\n", "4 176\n", "4 177\n", "4 178\n", "4 179\n", "4 180\n", "4 181\n", "4 182\n", "4 183\n", "4 184\n", "4 185\n", "4 186\n", "4 187\n", "4 188\n", "4 189\n", "5 0\n", "5 1\n", "5 2\n", "5 3\n", "5 4\n", "5 5\n", "5 6\n", "5 7\n", "5 8\n", "5 9\n", "5 10\n", "5 11\n", "5 12\n", "5 13\n", "5 14\n", "5 15\n", "5 16\n", "5 17\n", "5 18\n", "5 19\n", "5 20\n", "5 21\n", "5 22\n", "5 23\n", "5 24\n", "5 25\n", "5 26\n", "5 27\n", "5 28\n", "5 29\n", "5 30\n", "5 31\n", "5 32\n", "5 33\n", "5 34\n", "5 35\n", "5 36\n", "5 37\n", "5 38\n", "5 39\n", "5 40\n", "5 41\n", "5 42\n", "5 43\n", "5 44\n", "5 45\n", "5 46\n", "5 47\n", "5 48\n", "5 49\n", "5 50\n", "5 51\n", "5 52\n", "5 53\n", "5 54\n", "5 55\n", "5 56\n", "5 57\n", "5 58\n", "5 59\n", "5 60\n", "5 61\n", "5 62\n", "5 63\n", "5 64\n", "5 65\n", "5 66\n", "5 67\n", "5 68\n", "5 69\n", "5 70\n", "5 71\n", "5 72\n", "5 73\n", "5 74\n", "5 75\n", "5 76\n", "5 77\n", "5 78\n", "5 79\n", "5 80\n", "5 81\n", "5 82\n", "5 83\n", "5 84\n", "5 85\n", "5 86\n", "5 87\n", "5 88\n", "5 89\n", "5 90\n", "5 91\n", "5 92\n", "5 93\n", "5 94\n", "5 95\n", "5 96\n", "5 97\n", "5 98\n", "5 99\n", "5 100\n", "5 101\n", "5 102\n", "5 103\n", "5 104\n", "5 105\n", "5 106\n", "5 107\n", "5 108\n", "5 109\n", "5 110\n", "5 111\n", "5 112\n", "5 113\n", "5 114\n", "5 115\n", "5 116\n", "5 117\n", "5 118\n", "5 119\n", "5 120\n", "5 121\n", "5 122\n", "5 123\n", "5 124\n", "5 125\n", "5 126\n", "5 127\n", "5 128\n", "5 129\n", "5 130\n", "5 131\n", "5 132\n", "5 133\n", "5 134\n", "5 135\n", "5 136\n", "5 137\n", "5 138\n", "5 139\n", "5 140\n", "5 141\n", "5 142\n", "5 143\n", "5 144\n", "5 145\n", "5 146\n", "5 147\n", "5 148\n", "5 149\n", "5 150\n", "5 151\n", "5 152\n", "5 153\n", "5 154\n", "5 155\n", "5 156\n", "5 157\n", "5 158\n", "5 159\n", "5 160\n", "5 161\n", "5 162\n", "5 163\n", "5 164\n", "5 165\n", "5 166\n", "5 167\n", "5 168\n", "5 169\n", "5 170\n", "5 171\n", "5 172\n", "5 173\n", "5 174\n", "5 175\n", "5 176\n", "5 177\n", "5 178\n", "5 179\n", "5 180\n", "5 181\n", "5 182\n", "5 183\n", "5 184\n", "5 185\n", "5 186\n", "5 187\n", "5 188\n", "5 189\n", "6 0\n", "6 1\n", "6 2\n", "6 3\n", "6 4\n", "6 5\n", "6 6\n", "6 7\n", "6 8\n", "6 9\n", "6 10\n", "6 11\n", "6 12\n", "6 13\n", "6 14\n", "6 15\n", "6 16\n", "6 17\n", "6 18\n", "6 19\n", "6 20\n", "6 21\n", "6 22\n", "6 23\n", "6 24\n", "6 25\n", "6 26\n", "6 27\n", "6 28\n", "6 29\n", "6 30\n", "6 31\n", "6 32\n", "6 33\n", "6 34\n", "6 35\n", "6 36\n", "6 37\n", "6 38\n", "6 39\n", "6 40\n", "6 41\n", "6 42\n", "6 43\n", "6 44\n", "6 45\n", "6 46\n", "6 47\n", "6 48\n", "6 49\n", "6 50\n", "6 51\n", "6 52\n", "6 53\n", "6 54\n", "6 55\n", "6 56\n", "6 57\n", "6 58\n", "6 59\n", "6 60\n", "6 61\n", "6 62\n", "6 63\n", "6 64\n", "6 65\n", "6 66\n", "6 67\n", "6 68\n", "6 69\n", "6 70\n", "6 71\n", "6 72\n", "6 73\n", "6 74\n", "6 75\n", "6 76\n", "6 77\n", "6 78\n", "6 79\n", "6 80\n", "6 81\n", "6 82\n", "6 83\n", "6 84\n", "6 85\n", "6 86\n", "6 87\n", "6 88\n", "6 89\n", "6 90\n", "6 91\n", "6 92\n", "6 93\n", "6 94\n", "6 95\n", "6 96\n", "6 97\n", "6 98\n", "6 99\n", "6 100\n", "6 101\n", "6 102\n", "6 103\n", "6 104\n", "6 105\n", "6 106\n", "6 107\n", "6 108\n", "6 109\n", "6 110\n", "6 111\n", "6 112\n", "6 113\n", "6 114\n", "6 115\n", "6 116\n", "6 117\n", "6 118\n", "6 119\n", "6 120\n", "6 121\n", "6 122\n", "6 123\n", "6 124\n", "6 125\n", "6 126\n", "6 127\n", "6 128\n", "6 129\n", "6 130\n", "6 131\n", "6 132\n", "6 133\n", "6 134\n", "6 135\n", "6 136\n", "6 137\n", "6 138\n", "6 139\n", "6 140\n", "6 141\n", "6 142\n", "6 143\n", "6 144\n", "6 145\n", "6 146\n", "6 147\n", "6 148\n", "6 149\n", "6 150\n", "6 151\n", "6 152\n", "6 153\n", "6 154\n", "6 155\n", "6 156\n", "6 157\n", "6 158\n", "6 159\n", "6 160\n", "6 161\n", "6 162\n", "6 163\n", "6 164\n", "6 165\n", "6 166\n", "6 167\n", "6 168\n", "6 169\n", "6 170\n", "6 171\n", "6 172\n", "6 173\n", "6 174\n", "6 175\n", "6 176\n", "6 177\n", "6 178\n", "6 179\n", "6 180\n", "6 181\n", "6 182\n", "6 183\n", "6 184\n", "6 185\n", "6 186\n", "6 187\n", "6 188\n", "6 189\n", "7 0\n", "7 1\n", "7 2\n", "7 3\n", "7 4\n", "7 5\n", "7 6\n", "7 7\n", "7 8\n", "7 9\n", "7 10\n", "7 11\n", "7 12\n", "7 13\n", "7 14\n", "7 15\n", "7 16\n", "7 17\n", "7 18\n", "7 19\n", "7 20\n", "7 21\n", "7 22\n", "7 23\n", "7 24\n", "7 25\n", "7 26\n", "7 27\n", "7 28\n", "7 29\n", "7 30\n", "7 31\n", "7 32\n", "7 33\n", "7 34\n", "7 35\n", "7 36\n", "7 37\n", "7 38\n", "7 39\n", "7 40\n", "7 41\n", "7 42\n", "7 43\n", "7 44\n", "7 45\n", "7 46\n", "7 47\n", "7 48\n", "7 49\n", "7 50\n", "7 51\n", "7 52\n", "7 53\n", "7 54\n", "7 55\n", "7 56\n", "7 57\n", "7 58\n", "7 59\n", "7 60\n", "7 61\n", "7 62\n", "7 63\n", "7 64\n", "7 65\n", "7 66\n", "7 67\n", "7 68\n", "7 69\n", "7 70\n", "7 71\n", "7 72\n", "7 73\n", "7 74\n", "7 75\n", "7 76\n", "7 77\n", "7 78\n", "7 79\n", "7 80\n", "7 81\n", "7 82\n", "7 83\n", "7 84\n", "7 85\n", "7 86\n", "7 87\n", "7 88\n", "7 89\n", "7 90\n", "7 91\n", "7 92\n", "7 93\n", "7 94\n", "7 95\n", "7 96\n", "7 97\n", "7 98\n", "7 99\n", "7 100\n", "7 101\n", "7 102\n", "7 103\n", "7 104\n", "7 105\n", "7 106\n", "7 107\n", "7 108\n", "7 109\n", "7 110\n", "7 111\n", "7 112\n", "7 113\n", "7 114\n", "7 115\n", "7 116\n", "7 117\n", "7 118\n", "7 119\n", "7 120\n", "7 121\n", "7 122\n", "7 123\n", "7 124\n", "7 125\n", "7 126\n", "7 127\n", "7 128\n", "7 129\n", "7 130\n", "7 131\n", "7 132\n", "7 133\n", "7 134\n", "7 135\n", "7 136\n", "7 137\n", "7 138\n", "7 139\n", "7 140\n", "7 141\n", "7 142\n", "7 143\n", "7 144\n", "7 145\n", "7 146\n", "7 147\n", "7 148\n", "7 149\n", "7 150\n", "7 151\n", "7 152\n", "7 153\n", "7 154\n", "7 155\n", "7 156\n", "7 157\n", "7 158\n", "7 159\n", "7 160\n", "7 161\n", "7 162\n", "7 163\n", "7 164\n", "7 165\n", "7 166\n", "7 167\n", "7 168\n", "7 169\n", "7 170\n", "7 171\n", "7 172\n", "7 173\n", "7 174\n", "7 175\n", "7 176\n", "7 177\n", "7 178\n", "7 179\n", "7 180\n", "7 181\n", "7 182\n", "7 183\n", "7 184\n", "7 185\n", "7 186\n", "7 187\n", "7 188\n", "7 189\n", "8 0\n", "8 1\n", "8 2\n", "8 3\n", "8 4\n", "8 5\n", "8 6\n", "8 7\n", "8 8\n", "8 9\n", "8 10\n", "8 11\n", "8 12\n", "8 13\n", "8 14\n", "8 15\n", "8 16\n", "8 17\n", "8 18\n", "8 19\n", "8 20\n", "8 21\n", "8 22\n", "8 23\n", "8 24\n", "8 25\n", "8 26\n", "8 27\n", "8 28\n", "8 29\n", "8 30\n", "8 31\n", "8 32\n", "8 33\n", "8 34\n", "8 35\n", "8 36\n", "8 37\n", "8 38\n", "8 39\n", "8 40\n", "8 41\n", "8 42\n", "8 43\n", "8 44\n", "8 45\n", "8 46\n", "8 47\n", "8 48\n", "8 49\n", "8 50\n", "8 51\n", "8 52\n", "8 53\n", "8 54\n", "8 55\n", "8 56\n", "8 57\n", "8 58\n", "8 59\n", "8 60\n", "8 61\n", "8 62\n", "8 63\n", "8 64\n", "8 65\n", "8 66\n", "8 67\n", "8 68\n", "8 69\n", "8 70\n", "8 71\n", "8 72\n", "8 73\n", "8 74\n", "8 75\n", "8 76\n", "8 77\n", "8 78\n", "8 79\n", "8 80\n", "8 81\n", "8 82\n", "8 83\n", "8 84\n", "8 85\n", "8 86\n", "8 87\n", "8 88\n", "8 89\n", "8 90\n", "8 91\n", "8 92\n", "8 93\n", "8 94\n", "8 95\n", "8 96\n", "8 97\n", "8 98\n", "8 99\n", "8 100\n", "8 101\n", "8 102\n", "8 103\n", "8 104\n", "8 105\n", "8 106\n", "8 107\n", "8 108\n", "8 109\n", "8 110\n", "8 111\n", "8 112\n", "8 113\n", "8 114\n", "8 115\n", "8 116\n", "8 117\n", "8 118\n", "8 119\n", "8 120\n", "8 121\n", "8 122\n", "8 123\n", "8 124\n", "8 125\n", "8 126\n", "8 127\n", "8 128\n", "8 129\n", "8 130\n", "8 131\n", "8 132\n", "8 133\n", "8 134\n", "8 135\n", "8 136\n", "8 137\n", "8 138\n", "8 139\n", "8 140\n", "8 141\n", "8 142\n", "8 143\n", "8 144\n", "8 145\n", "8 146\n", "8 147\n", "8 148\n", "8 149\n", "8 150\n", "8 151\n", "8 152\n", "8 153\n", "8 154\n", "8 155\n", "8 156\n", "8 157\n", "8 158\n", "8 159\n", "8 160\n", "8 161\n", "8 162\n", "8 163\n", "8 164\n", "8 165\n", "8 166\n", "8 167\n", "8 168\n", "8 169\n", "8 170\n", "8 171\n", "8 172\n", "8 173\n", "8 174\n", "8 175\n", "8 176\n", "8 177\n", "8 178\n", "8 179\n", "8 180\n", "8 181\n", "8 182\n", "8 183\n", "8 184\n", "8 185\n", "8 186\n", "8 187\n", "8 188\n", "8 189\n", "9 0\n", "9 1\n", "9 2\n", "9 3\n", "9 4\n", "9 5\n", "9 6\n", "9 7\n", "9 8\n", "9 9\n", "9 10\n", "9 11\n", "9 12\n", "9 13\n", "9 14\n", "9 15\n", "9 16\n", "9 17\n", "9 18\n", "9 19\n", "9 20\n", "9 21\n", "9 22\n", "9 23\n", "9 24\n", "9 25\n", "9 26\n", "9 27\n", "9 28\n", "9 29\n", "9 30\n", "9 31\n", "9 32\n", "9 33\n", "9 34\n", "9 35\n", "9 36\n", "9 37\n", "9 38\n", "9 39\n", "9 40\n", "9 41\n", "9 42\n", "9 43\n", "9 44\n", "9 45\n", "9 46\n", "9 47\n", "9 48\n", "9 49\n", "9 50\n", "9 51\n", "9 52\n", "9 53\n", "9 54\n", "9 55\n", "9 56\n", "9 57\n", "9 58\n", "9 59\n", "9 60\n", "9 61\n", "9 62\n", "9 63\n", "9 64\n", "9 65\n", "9 66\n", "9 67\n", "9 68\n", "9 69\n", "9 70\n", "9 71\n", "9 72\n", "9 73\n", "9 74\n", "9 75\n", "9 76\n", "9 77\n", "9 78\n", "9 79\n", "9 80\n", "9 81\n", "9 82\n", "9 83\n", "9 84\n", "9 85\n", "9 86\n", "9 87\n", "9 88\n", "9 89\n", "9 90\n", "9 91\n", "9 92\n", "9 93\n", "9 94\n", "9 95\n", "9 96\n", "9 97\n", "9 98\n", "9 99\n", "9 100\n", "9 101\n", "9 102\n", "9 103\n", "9 104\n", "9 105\n", "9 106\n", "9 107\n", "9 108\n", "9 109\n", "9 110\n", "9 111\n", "9 112\n", "9 113\n", "9 114\n", "9 115\n", "9 116\n", "9 117\n", "9 118\n", "9 119\n", "9 120\n", "9 121\n", "9 122\n", "9 123\n", "9 124\n", "9 125\n", "9 126\n", "9 127\n", "9 128\n", "9 129\n", "9 130\n", "9 131\n", "9 132\n", "9 133\n", "9 134\n", "9 135\n", "9 136\n", "9 137\n", "9 138\n", "9 139\n", "9 140\n", "9 141\n", "9 142\n", "9 143\n", "9 144\n", "9 145\n", "9 146\n", "9 147\n", "9 148\n", "9 149\n", "9 150\n", "9 151\n", "9 152\n", "9 153\n", "9 154\n", "9 155\n", "9 156\n", "9 157\n", "9 158\n", "9 159\n", "9 160\n", "9 161\n", "9 162\n", "9 163\n", "9 164\n", "9 165\n", "9 166\n", "9 167\n", "9 168\n", "9 169\n", "9 170\n", "9 171\n", "9 172\n", "9 173\n", "9 174\n", "9 175\n", "9 176\n", "9 177\n", "9 178\n", "9 179\n", "9 180\n", "9 181\n", "9 182\n", "9 183\n", "9 184\n", "9 185\n", "9 186\n", "9 187\n", "9 188\n", "9 189\n", "10 0\n", "10 1\n", "10 2\n", "10 3\n", "10 4\n", "10 5\n", "10 6\n", "10 7\n", "10 8\n", "10 9\n", "10 10\n", "10 11\n", "10 12\n", "10 13\n", "10 14\n", "10 15\n", "10 16\n", "10 17\n", "10 18\n", "10 19\n", "10 20\n", "10 21\n", "10 22\n", "10 23\n", "10 24\n", "10 25\n", "10 26\n", "10 27\n", "10 28\n", "10 29\n", "10 30\n", "10 31\n", "10 32\n", "10 33\n", "10 34\n", "10 35\n", "10 36\n", "10 37\n", "10 38\n", "10 39\n", "10 40\n", "10 41\n", "10 42\n", "10 43\n", "10 44\n", "10 45\n", "10 46\n", "10 47\n", "10 48\n", "10 49\n", "10 50\n", "10 51\n", "10 52\n", "10 53\n", "10 54\n", "10 55\n", "10 56\n", "10 57\n", "10 58\n", "10 59\n", "10 60\n", "10 61\n", "10 62\n", "10 63\n", "10 64\n", "10 65\n", "10 66\n", "10 67\n", "10 68\n", "10 69\n", "10 70\n", "10 71\n", "10 72\n", "10 73\n", "10 74\n", "10 75\n", "10 76\n", "10 77\n", "10 78\n", "10 79\n", "10 80\n", "10 81\n", "10 82\n", "10 83\n", "10 84\n", "10 85\n", "10 86\n", "10 87\n", "10 88\n", "10 89\n", "10 90\n", "10 91\n", "10 92\n", "10 93\n", "10 94\n", "10 95\n", "10 96\n", "10 97\n", "10 98\n", "10 99\n", "10 100\n", "10 101\n", "10 102\n", "10 103\n", "10 104\n", "10 105\n", "10 106\n", "10 107\n", "10 108\n", "10 109\n", "10 110\n", "10 111\n", "10 112\n", "10 113\n", "10 114\n", "10 115\n", "10 116\n", "10 117\n", "10 118\n", "10 119\n", "10 120\n", "10 121\n", "10 122\n", "10 123\n", "10 124\n", "10 125\n", "10 126\n", "10 127\n", "10 128\n", "10 129\n", "10 130\n", "10 131\n", "10 132\n", "10 133\n", "10 134\n", "10 135\n", "10 136\n", "10 137\n", "10 138\n", "10 139\n", "10 140\n", "10 141\n", "10 142\n", "10 143\n", "10 144\n", "10 145\n", "10 146\n", "10 147\n", "10 148\n", "10 149\n", "10 150\n", "10 151\n", "10 152\n", "10 153\n", "10 154\n", "10 155\n", "10 156\n", "10 157\n", "10 158\n", "10 159\n", "10 160\n", "10 161\n", "10 162\n", "10 163\n", "10 164\n", "10 165\n", "10 166\n", "10 167\n", "10 168\n", "10 169\n", "10 170\n", "10 171\n", "10 172\n", "10 173\n", "10 174\n", "10 175\n", "10 176\n", "10 177\n", "10 178\n", "10 179\n", "10 180\n", "10 181\n", "10 182\n", "10 183\n", "10 184\n", "10 185\n", "10 186\n", "10 187\n", "10 188\n", "10 189\n", "11 0\n", "11 1\n", "11 2\n", "11 3\n", "11 4\n", "11 5\n", "11 6\n", "11 7\n", "11 8\n", "11 9\n", "11 10\n", "11 11\n", "11 12\n", "11 13\n", "11 14\n", "11 15\n", "11 16\n", "11 17\n", "11 18\n", "11 19\n", "11 20\n", "11 21\n", "11 22\n", "11 23\n", "11 24\n", "11 25\n", "11 26\n", "11 27\n", "11 28\n", "11 29\n", "11 30\n", "11 31\n", "11 32\n", "11 33\n", "11 34\n", "11 35\n", "11 36\n", "11 37\n", "11 38\n", "11 39\n", "11 40\n", "11 41\n", "11 42\n", "11 43\n", "11 44\n", "11 45\n", "11 46\n", "11 47\n", "11 48\n", "11 49\n", "11 50\n", "11 51\n", "11 52\n", "11 53\n", "11 54\n", "11 55\n", "11 56\n", "11 57\n", "11 58\n", "11 59\n", "11 60\n", "11 61\n", "11 62\n", "11 63\n", "11 64\n", "11 65\n", "11 66\n", "11 67\n", "11 68\n", "11 69\n", "11 70\n", "11 71\n", "11 72\n", "11 73\n", "11 74\n", "11 75\n", "11 76\n", "11 77\n", "11 78\n", "11 79\n", "11 80\n", "11 81\n", "11 82\n", "11 83\n", "11 84\n", "11 85\n", "11 86\n", "11 87\n", "11 88\n", "11 89\n", "11 90\n", "11 91\n", "11 92\n", "11 93\n", "11 94\n", "11 95\n", "11 96\n", "11 97\n", "11 98\n", "11 99\n", "11 100\n", "11 101\n", "11 102\n", "11 103\n", "11 104\n", "11 105\n", "11 106\n", "11 107\n", "11 108\n", "11 109\n", "11 110\n", "11 111\n", "11 112\n", "11 113\n", "11 114\n", "11 115\n", "11 116\n", "11 117\n", "11 118\n", "11 119\n", "11 120\n", "11 121\n", "11 122\n", "11 123\n", "11 124\n", "11 125\n", "11 126\n", "11 127\n", "11 128\n", "11 129\n", "11 130\n", "11 131\n", "11 132\n", "11 133\n", "11 134\n", "11 135\n", "11 136\n", "11 137\n", "11 138\n", "11 139\n", "11 140\n", "11 141\n", "11 142\n", "11 143\n", "11 144\n", "11 145\n", "11 146\n", "11 147\n", "11 148\n", "11 149\n", "11 150\n", "11 151\n", "11 152\n", "11 153\n", "11 154\n", "11 155\n", "11 156\n", "11 157\n", "11 158\n", "11 159\n", "11 160\n", "11 161\n", "11 162\n", "11 163\n", "11 164\n", "11 165\n", "11 166\n", "11 167\n", "11 168\n", "11 169\n", "11 170\n", "11 171\n", "11 172\n", "11 173\n", "11 174\n", "11 175\n", "11 176\n", "11 177\n", "11 178\n", "11 179\n", "11 180\n", "11 181\n", "11 182\n", "11 183\n", "11 184\n", "11 185\n", "11 186\n", "11 187\n", "11 188\n", "11 189\n", "12 0\n", "12 1\n", "12 2\n", "12 3\n", "12 4\n", "12 5\n", "12 6\n", "12 7\n", "12 8\n", "12 9\n", "12 10\n", "12 11\n", "12 12\n", "12 13\n", "12 14\n", "12 15\n", "12 16\n", "12 17\n", "12 18\n", "12 19\n", "12 20\n", "12 21\n", "12 22\n", "12 23\n", "12 24\n", "12 25\n", "12 26\n", "12 27\n", "12 28\n", "12 29\n", "12 30\n", "12 31\n", "12 32\n", "12 33\n", "12 34\n", "12 35\n", "12 36\n", "12 37\n", "12 38\n", "12 39\n", "12 40\n", "12 41\n", "12 42\n", "12 43\n", "12 44\n", "12 45\n", "12 46\n", "12 47\n", "12 48\n", "12 49\n", "12 50\n", "12 51\n", "12 52\n", "12 53\n", "12 54\n", "12 55\n", "12 56\n", "12 57\n", "12 58\n", "12 59\n", "12 60\n", "12 61\n", "12 62\n", "12 63\n", "12 64\n", "12 65\n", "12 66\n", "12 67\n", "12 68\n", "12 69\n", "12 70\n", "12 71\n", "12 72\n", "12 73\n", "12 74\n", "12 75\n", "12 76\n", "12 77\n", "12 78\n", "12 79\n", "12 80\n", "12 81\n", "12 82\n", "12 83\n", "12 84\n", "12 85\n", "12 86\n", "12 87\n", "12 88\n", "12 89\n", "12 90\n", "12 91\n", "12 92\n", "12 93\n", "12 94\n", "12 95\n", "12 96\n", "12 97\n", "12 98\n", "12 99\n", "12 100\n", "12 101\n", "12 102\n", "12 103\n", "12 104\n", "12 105\n", "12 106\n", "12 107\n", "12 108\n", "12 109\n", "12 110\n", "12 111\n", "12 112\n", "12 113\n", "12 114\n", "12 115\n", "12 116\n", "12 117\n", "12 118\n", "12 119\n", "12 120\n", "12 121\n", "12 122\n", "12 123\n", "12 124\n", "12 125\n", "12 126\n", "12 127\n", "12 128\n", "12 129\n", "12 130\n", "12 131\n", "12 132\n", "12 133\n", "12 134\n", "12 135\n", "12 136\n", "12 137\n", "12 138\n", "12 139\n", "12 140\n", "12 141\n", "12 142\n", "12 143\n", "12 144\n", "12 145\n", "12 146\n", "12 147\n", "12 148\n", "12 149\n", "12 150\n", "12 151\n", "12 152\n", "12 153\n", "12 154\n", "12 155\n", "12 156\n", "12 157\n", "12 158\n", "12 159\n", "12 160\n", "12 161\n", "12 162\n", "12 163\n", "12 164\n", "12 165\n", "12 166\n", "12 167\n", "12 168\n", "12 169\n", "12 170\n", "12 171\n", "12 172\n", "12 173\n", "12 174\n", "12 175\n", "12 176\n", "12 177\n", "12 178\n", "12 179\n", "12 180\n", "12 181\n", "12 182\n", "12 183\n", "12 184\n", "12 185\n", "12 186\n", "12 187\n", "12 188\n", "12 189\n", "13 0\n", "13 1\n", "13 2\n", "13 3\n", "13 4\n", "13 5\n", "13 6\n", "13 7\n", "13 8\n", "13 9\n", "13 10\n", "13 11\n", "13 12\n", "13 13\n", "13 14\n", "13 15\n", "13 16\n", "13 17\n", "13 18\n", "13 19\n", "13 20\n", "13 21\n", "13 22\n", "13 23\n", "13 24\n", "13 25\n", "13 26\n", "13 27\n", "13 28\n", "13 29\n", "13 30\n", "13 31\n", "13 32\n", "13 33\n", "13 34\n", "13 35\n", "13 36\n", "13 37\n", "13 38\n", "13 39\n", "13 40\n", "13 41\n", "13 42\n", "13 43\n", "13 44\n", "13 45\n", "13 46\n", "13 47\n", "13 48\n", "13 49\n", "13 50\n", "13 51\n", "13 52\n", "13 53\n", "13 54\n", "13 55\n", "13 56\n", "13 57\n", "13 58\n", "13 59\n", "13 60\n", "13 61\n", "13 62\n", "13 63\n", "13 64\n", "13 65\n", "13 66\n", "13 67\n", "13 68\n", "13 69\n", "13 70\n", "13 71\n", "13 72\n", "13 73\n", "13 74\n", "13 75\n", "13 76\n", "13 77\n", "13 78\n", "13 79\n", "13 80\n", "13 81\n", "13 82\n", "13 83\n", "13 84\n", "13 85\n", "13 86\n", "13 87\n", "13 88\n", "13 89\n", "13 90\n", "13 91\n", "13 92\n", "13 93\n", "13 94\n", "13 95\n", "13 96\n", "13 97\n", "13 98\n", "13 99\n", "13 100\n", "13 101\n", "13 102\n", "13 103\n", "13 104\n", "13 105\n", "13 106\n", "13 107\n", "13 108\n", "13 109\n", "13 110\n", "13 111\n", "13 112\n", "13 113\n", "13 114\n", "13 115\n", "13 116\n", "13 117\n", "13 118\n", "13 119\n", "13 120\n", "13 121\n", "13 122\n", "13 123\n", "13 124\n", "13 125\n", "13 126\n", "13 127\n", "13 128\n", "13 129\n", "13 130\n", "13 131\n", "13 132\n", "13 133\n", "13 134\n", "13 135\n", "13 136\n", "13 137\n", "13 138\n", "13 139\n", "13 140\n", "13 141\n", "13 142\n", "13 143\n", "13 144\n", "13 145\n", "13 146\n", "13 147\n", "13 148\n", "13 149\n", "13 150\n", "13 151\n", "13 152\n", "13 153\n", "13 154\n", "13 155\n", "13 156\n", "13 157\n", "13 158\n", "13 159\n", "13 160\n", "13 161\n", "13 162\n", "13 163\n", "13 164\n", "13 165\n", "13 166\n", "13 167\n", "13 168\n", "13 169\n", "13 170\n", "13 171\n", "13 172\n", "13 173\n", "13 174\n", "13 175\n", "13 176\n", "13 177\n", "13 178\n", "13 179\n", "13 180\n", "13 181\n", "13 182\n", "13 183\n", "13 184\n", "13 185\n", "13 186\n", "13 187\n", "13 188\n", "13 189\n", "14 0\n", "14 1\n", "14 2\n", "14 3\n", "14 4\n", "14 5\n", "14 6\n", "14 7\n", "14 8\n", "14 9\n", "14 10\n", "14 11\n", "14 12\n", "14 13\n", "14 14\n", "14 15\n", "14 16\n", "14 17\n", "14 18\n", "14 19\n", "14 20\n", "14 21\n", "14 22\n", "14 23\n", "14 24\n", "14 25\n", "14 26\n", "14 27\n", "14 28\n", "14 29\n", "14 30\n", "14 31\n", "14 32\n", "14 33\n", "14 34\n", "14 35\n", "14 36\n", "14 37\n", "14 38\n", "14 39\n", "14 40\n", "14 41\n", "14 42\n", "14 43\n", "14 44\n", "14 45\n", "14 46\n", "14 47\n", "14 48\n", "14 49\n", "14 50\n", "14 51\n", "14 52\n", "14 53\n", "14 54\n", "14 55\n", "14 56\n", "14 57\n", "14 58\n", "14 59\n", "14 60\n", "14 61\n", "14 62\n", "14 63\n", "14 64\n", "14 65\n", "14 66\n", "14 67\n", "14 68\n", "14 69\n", "14 70\n", "14 71\n", "14 72\n", "14 73\n", "14 74\n", "14 75\n", "14 76\n", "14 77\n", "14 78\n", "14 79\n", "14 80\n", "14 81\n", "14 82\n", "14 83\n", "14 84\n", "14 85\n", "14 86\n", "14 87\n", "14 88\n", "14 89\n", "14 90\n", "14 91\n", "14 92\n", "14 93\n", "14 94\n", "14 95\n", "14 96\n", "14 97\n", "14 98\n", "14 99\n", "14 100\n", "14 101\n", "14 102\n", "14 103\n", "14 104\n", "14 105\n", "14 106\n", "14 107\n", "14 108\n", "14 109\n", "14 110\n", "14 111\n", "14 112\n", "14 113\n", "14 114\n", "14 115\n", "14 116\n", "14 117\n", "14 118\n", "14 119\n", "14 120\n", "14 121\n", "14 122\n", "14 123\n", "14 124\n", "14 125\n", "14 126\n", "14 127\n", "14 128\n", "14 129\n", "14 130\n", "14 131\n", "14 132\n", "14 133\n", "14 134\n", "14 135\n", "14 136\n", "14 137\n", "14 138\n", "14 139\n", "14 140\n", "14 141\n", "14 142\n", "14 143\n", "14 144\n", "14 145\n", "14 146\n", "14 147\n", "14 148\n", "14 149\n", "14 150\n", "14 151\n", "14 152\n", "14 153\n", "14 154\n", "14 155\n", "14 156\n", "14 157\n", "14 158\n", "14 159\n", "14 160\n", "14 161\n", "14 162\n", "14 163\n", "14 164\n", "14 165\n", "14 166\n", "14 167\n", "14 168\n", "14 169\n", "14 170\n", "14 171\n", "14 172\n", "14 173\n", "14 174\n", "14 175\n", "14 176\n", "14 177\n", "14 178\n", "14 179\n", "14 180\n", "14 181\n", "14 182\n", "14 183\n", "14 184\n", "14 185\n", "14 186\n", "14 187\n", "14 188\n", "14 189\n", "15 0\n", "15 1\n", "15 2\n", "15 3\n", "15 4\n", "15 5\n", "15 6\n", "15 7\n", "15 8\n", "15 9\n", "15 10\n", "15 11\n", "15 12\n", "15 13\n", "15 14\n", "15 15\n", "15 16\n", "15 17\n", "15 18\n", "15 19\n", "15 20\n", "15 21\n", "15 22\n", "15 23\n", "15 24\n", "15 25\n", "15 26\n", "15 27\n", "15 28\n", "15 29\n", "15 30\n", "15 31\n", "15 32\n", "15 33\n", "15 34\n", "15 35\n", "15 36\n", "15 37\n", "15 38\n", "15 39\n", "15 40\n", "15 41\n", "15 42\n", "15 43\n", "15 44\n", "15 45\n", "15 46\n", "15 47\n", "15 48\n", "15 49\n", "15 50\n", "15 51\n", "15 52\n", "15 53\n", "15 54\n", "15 55\n", "15 56\n", "15 57\n", "15 58\n", "15 59\n", "15 60\n", "15 61\n", "15 62\n", "15 63\n", "15 64\n", "15 65\n", "15 66\n", "15 67\n", "15 68\n", "15 69\n", "15 70\n", "15 71\n", "15 72\n", "15 73\n", "15 74\n", "15 75\n", "15 76\n", "15 77\n", "15 78\n", "15 79\n", "15 80\n", "15 81\n", "15 82\n", "15 83\n", "15 84\n", "15 85\n", "15 86\n", "15 87\n", "15 88\n", "15 89\n", "15 90\n", "15 91\n", "15 92\n", "15 93\n", "15 94\n", "15 95\n", "15 96\n", "15 97\n", "15 98\n", "15 99\n", "15 100\n", "15 101\n", "15 102\n", "15 103\n", "15 104\n", "15 105\n", "15 106\n", "15 107\n", "15 108\n", "15 109\n", "15 110\n", "15 111\n", "15 112\n", "15 113\n", "15 114\n", "15 115\n", "15 116\n", "15 117\n", "15 118\n", "15 119\n", "15 120\n", "15 121\n", "15 122\n", "15 123\n", "15 124\n", "15 125\n", "15 126\n", "15 127\n", "15 128\n", "15 129\n", "15 130\n", "15 131\n", "15 132\n", "15 133\n", "15 134\n", "15 135\n", "15 136\n", "15 137\n", "15 138\n", "15 139\n", "15 140\n", "15 141\n", "15 142\n", "15 143\n", "15 144\n", "15 145\n", "15 146\n", "15 147\n", "15 148\n", "15 149\n", "15 150\n", "15 151\n", "15 152\n", "15 153\n", "15 154\n", "15 155\n", "15 156\n", "15 157\n", "15 158\n", "15 159\n", "15 160\n", "15 161\n", "15 162\n", "15 163\n", "15 164\n", "15 165\n", "15 166\n", "15 167\n", "15 168\n", "15 169\n", "15 170\n", "15 171\n", "15 172\n", "15 173\n", "15 174\n", "15 175\n", "15 176\n", "15 177\n", "15 178\n", "15 179\n", "15 180\n", "15 181\n", "15 182\n", "15 183\n", "15 184\n", "15 185\n", "15 186\n", "15 187\n", "15 188\n", "15 189\n", "16 0\n", "16 1\n", "16 2\n", "16 3\n", "16 4\n", "16 5\n", "16 6\n", "16 7\n", "16 8\n", "16 9\n", "16 10\n", "16 11\n", "16 12\n", "16 13\n", "16 14\n", "16 15\n", "16 16\n", "16 17\n", "16 18\n", "16 19\n", "16 20\n", "16 21\n", "16 22\n", "16 23\n", "16 24\n", "16 25\n", "16 26\n", "16 27\n", "16 28\n", "16 29\n", "16 30\n", "16 31\n", "16 32\n", "16 33\n", "16 34\n", "16 35\n", "16 36\n", "16 37\n", "16 38\n", "16 39\n", "16 40\n", "16 41\n", "16 42\n", "16 43\n", "16 44\n", "16 45\n", "16 46\n", "16 47\n", "16 48\n", "16 49\n", "16 50\n", "16 51\n", "16 52\n", "16 53\n", "16 54\n", "16 55\n", "16 56\n", "16 57\n", "16 58\n", "16 59\n", "16 60\n", "16 61\n", "16 62\n", "16 63\n", "16 64\n", "16 65\n", "16 66\n", "16 67\n", "16 68\n", "16 69\n", "16 70\n", "16 71\n", "16 72\n", "16 73\n", "16 74\n", "16 75\n", "16 76\n", "16 77\n", "16 78\n", "16 79\n", "16 80\n", "16 81\n", "16 82\n", "16 83\n", "16 84\n", "16 85\n", "16 86\n", "16 87\n", "16 88\n", "16 89\n", "16 90\n", "16 91\n", "16 92\n", "16 93\n", "16 94\n", "16 95\n", "16 96\n", "16 97\n", "16 98\n", "16 99\n", "16 100\n", "16 101\n", "16 102\n", "16 103\n", "16 104\n", "16 105\n", "16 106\n", "16 107\n", "16 108\n", "16 109\n", "16 110\n", "16 111\n", "16 112\n", "16 113\n", "16 114\n", "16 115\n", "16 116\n", "16 117\n", "16 118\n", "16 119\n", "16 120\n", "16 121\n", "16 122\n", "16 123\n", "16 124\n", "16 125\n", "16 126\n", "16 127\n", "16 128\n", "16 129\n", "16 130\n", "16 131\n", "16 132\n", "16 133\n", "16 134\n", "16 135\n", "16 136\n", "16 137\n", "16 138\n", "16 139\n", "16 140\n", "16 141\n", "16 142\n", "16 143\n", "16 144\n", "16 145\n", "16 146\n", "16 147\n", "16 148\n", "16 149\n", "16 150\n", "16 151\n", "16 152\n", "16 153\n", "16 154\n", "16 155\n", "16 156\n", "16 157\n", "16 158\n", "16 159\n", "16 160\n", "16 161\n", "16 162\n", "16 163\n", "16 164\n", "16 165\n", "16 166\n", "16 167\n", "16 168\n", "16 169\n", "16 170\n", "16 171\n", "16 172\n", "16 173\n", "16 174\n", "16 175\n", "16 176\n", "16 177\n", "16 178\n", "16 179\n", "16 180\n", "16 181\n", "16 182\n", "16 183\n", "16 184\n", "16 185\n", "16 186\n", "16 187\n", "16 188\n", "16 189\n", "17 0\n", "17 1\n", "17 2\n", "17 3\n", "17 4\n", "17 5\n", "17 6\n", "17 7\n", "17 8\n", "17 9\n", "17 10\n", "17 11\n", "17 12\n", "17 13\n", "17 14\n", "17 15\n", "17 16\n", "17 17\n", "17 18\n", "17 19\n", "17 20\n", "17 21\n", "17 22\n", "17 23\n", "17 24\n", "17 25\n", "17 26\n", "17 27\n", "17 28\n", "17 29\n", "17 30\n", "17 31\n", "17 32\n", "17 33\n", "17 34\n", "17 35\n", "17 36\n", "17 37\n", "17 38\n", "17 39\n", "17 40\n", "17 41\n", "17 42\n", "17 43\n", "17 44\n", "17 45\n", "17 46\n", "17 47\n", "17 48\n", "17 49\n", "17 50\n", "17 51\n", "17 52\n", "17 53\n", "17 54\n", "17 55\n", "17 56\n", "17 57\n", "17 58\n", "17 59\n", "17 60\n", "17 61\n", "17 62\n", "17 63\n", "17 64\n", "17 65\n", "17 66\n", "17 67\n", "17 68\n", "17 69\n", "17 70\n", "17 71\n", "17 72\n", "17 73\n", "17 74\n", "17 75\n", "17 76\n", "17 77\n", "17 78\n", "17 79\n", "17 80\n", "17 81\n", "17 82\n", "17 83\n", "17 84\n", "17 85\n", "17 86\n", "17 87\n", "17 88\n", "17 89\n", "17 90\n", "17 91\n", "17 92\n", "17 93\n", "17 94\n", "17 95\n", "17 96\n", "17 97\n", "17 98\n", "17 99\n", "17 100\n", "17 101\n", "17 102\n", "17 103\n", "17 104\n", "17 105\n", "17 106\n", "17 107\n", "17 108\n", "17 109\n", "17 110\n", "17 111\n", "17 112\n", "17 113\n", "17 114\n", "17 115\n", "17 116\n", "17 117\n", "17 118\n", "17 119\n", "17 120\n", "17 121\n", "17 122\n", "17 123\n", "17 124\n", "17 125\n", "17 126\n", "17 127\n", "17 128\n", "17 129\n", "17 130\n", "17 131\n", "17 132\n", "17 133\n", "17 134\n", "17 135\n", "17 136\n", "17 137\n", "17 138\n", "17 139\n", "17 140\n", "17 141\n", "17 142\n", "17 143\n", "17 144\n", "17 145\n", "17 146\n", "17 147\n", "17 148\n", "17 149\n", "17 150\n", "17 151\n", "17 152\n", "17 153\n", "17 154\n", "17 155\n", "17 156\n", "17 157\n", "17 158\n", "17 159\n", "17 160\n", "17 161\n", "17 162\n", "17 163\n", "17 164\n", "17 165\n", "17 166\n", "17 167\n", "17 168\n", "17 169\n", "17 170\n", "17 171\n", "17 172\n", "17 173\n", "17 174\n", "17 175\n", "17 176\n", "17 177\n", "17 178\n", "17 179\n", "17 180\n", "17 181\n", "17 182\n", "17 183\n", "17 184\n", "17 185\n", "17 186\n", "17 187\n", "17 188\n", "17 189\n", "18 0\n", "18 1\n", "18 2\n", "18 3\n", "18 4\n", "18 5\n", "18 6\n", "18 7\n", "18 8\n", "18 9\n", "18 10\n", "18 11\n", "18 12\n", "18 13\n", "18 14\n", "18 15\n", "18 16\n", "18 17\n", "18 18\n", "18 19\n", "18 20\n", "18 21\n", "18 22\n", "18 23\n", "18 24\n", "18 25\n", "18 26\n", "18 27\n", "18 28\n", "18 29\n", "18 30\n", "18 31\n", "18 32\n", "18 33\n", "18 34\n", "18 35\n", "18 36\n", "18 37\n", "18 38\n", "18 39\n", "18 40\n", "18 41\n", "18 42\n", "18 43\n", "18 44\n", "18 45\n", "18 46\n", "18 47\n", "18 48\n", "18 49\n", "18 50\n", "18 51\n", "18 52\n", "18 53\n", "18 54\n", "18 55\n", "18 56\n", "18 57\n", "18 58\n", "18 59\n", "18 60\n", "18 61\n", "18 62\n", "18 63\n", "18 64\n", "18 65\n", "18 66\n", "18 67\n", "18 68\n", "18 69\n", "18 70\n", "18 71\n", "18 72\n", "18 73\n", "18 74\n", "18 75\n", "18 76\n", "18 77\n", "18 78\n", "18 79\n", "18 80\n", "18 81\n", "18 82\n", "18 83\n", "18 84\n", "18 85\n", "18 86\n", "18 87\n", "18 88\n", "18 89\n", "18 90\n", "18 91\n", "18 92\n", "18 93\n", "18 94\n", "18 95\n", "18 96\n", "18 97\n", "18 98\n", "18 99\n", "18 100\n", "18 101\n", "18 102\n", "18 103\n", "18 104\n", "18 105\n", "18 106\n", "18 107\n", "18 108\n", "18 109\n", "18 110\n", "18 111\n", "18 112\n", "18 113\n", "18 114\n", "18 115\n", "18 116\n", "18 117\n", "18 118\n", "18 119\n", "18 120\n", "18 121\n", "18 122\n", "18 123\n", "18 124\n", "18 125\n", "18 126\n", "18 127\n", "18 128\n", "18 129\n", "18 130\n", "18 131\n", "18 132\n", "18 133\n", "18 134\n", "18 135\n", "18 136\n", "18 137\n", "18 138\n", "18 139\n", "18 140\n", "18 141\n", "18 142\n", "18 143\n", "18 144\n", "18 145\n", "18 146\n", "18 147\n", "18 148\n", "18 149\n", "18 150\n", "18 151\n", "18 152\n", "18 153\n", "18 154\n", "18 155\n", "18 156\n", "18 157\n", "18 158\n", "18 159\n", "18 160\n", "18 161\n", "18 162\n", "18 163\n", "18 164\n", "18 165\n", "18 166\n", "18 167\n", "18 168\n", "18 169\n", "18 170\n", "18 171\n", "18 172\n", "18 173\n", "18 174\n", "18 175\n", "18 176\n", "18 177\n", "18 178\n", "18 179\n", "18 180\n", "18 181\n", "18 182\n", "18 183\n", "18 184\n", "18 185\n", "18 186\n", "18 187\n", "18 188\n", "18 189\n", "19 0\n", "19 1\n", "19 2\n", "19 3\n", "19 4\n", "19 5\n", "19 6\n", "19 7\n", "19 8\n", "19 9\n", "19 10\n", "19 11\n", "19 12\n", "19 13\n", "19 14\n", "19 15\n", "19 16\n", "19 17\n", "19 18\n", "19 19\n", "19 20\n", "19 21\n", "19 22\n", "19 23\n", "19 24\n", "19 25\n", "19 26\n", "19 27\n", "19 28\n", "19 29\n", "19 30\n", "19 31\n", "19 32\n", "19 33\n", "19 34\n", "19 35\n", "19 36\n", "19 37\n", "19 38\n", "19 39\n", "19 40\n", "19 41\n", "19 42\n", "19 43\n", "19 44\n", "19 45\n", "19 46\n", "19 47\n", "19 48\n", "19 49\n", "19 50\n", "19 51\n", "19 52\n", "19 53\n", "19 54\n", "19 55\n", "19 56\n", "19 57\n", "19 58\n", "19 59\n", "19 60\n", "19 61\n", "19 62\n", "19 63\n", "19 64\n", "19 65\n", "19 66\n", "19 67\n", "19 68\n", "19 69\n", "19 70\n", "19 71\n", "19 72\n", "19 73\n", "19 74\n", "19 75\n", "19 76\n", "19 77\n", "19 78\n", "19 79\n", "19 80\n", "19 81\n", "19 82\n", "19 83\n", "19 84\n", "19 85\n", "19 86\n", "19 87\n", "19 88\n", "19 89\n", "19 90\n", "19 91\n", "19 92\n", "19 93\n", "19 94\n", "19 95\n", "19 96\n", "19 97\n", "19 98\n", "19 99\n", "19 100\n", "19 101\n", "19 102\n", "19 103\n", "19 104\n", "19 105\n", "19 106\n", "19 107\n", "19 108\n", "19 109\n", "19 110\n", "19 111\n", "19 112\n", "19 113\n", "19 114\n", "19 115\n", "19 116\n", "19 117\n", "19 118\n", "19 119\n", "19 120\n", "19 121\n", "19 122\n", "19 123\n", "19 124\n", "19 125\n", "19 126\n", "19 127\n", "19 128\n", "19 129\n", "19 130\n", "19 131\n", "19 132\n", "19 133\n", "19 134\n", "19 135\n", "19 136\n", "19 137\n", "19 138\n", "19 139\n", "19 140\n", "19 141\n", "19 142\n", "19 143\n", "19 144\n", "19 145\n", "19 146\n", "19 147\n", "19 148\n", "19 149\n", "19 150\n", "19 151\n", "19 152\n", "19 153\n", "19 154\n", "19 155\n", "19 156\n", "19 157\n", "19 158\n", "19 159\n", "19 160\n", "19 161\n", "19 162\n", "19 163\n", "19 164\n", "19 165\n", "19 166\n", "19 167\n", "19 168\n", "19 169\n", "19 170\n", "19 171\n", "19 172\n", "19 173\n", "19 174\n", "19 175\n", "19 176\n", "19 177\n", "19 178\n", "19 179\n", "19 180\n", "19 181\n", "19 182\n", "19 183\n", "19 184\n", "19 185\n", "19 186\n", "19 187\n", "19 188\n", "19 189\n", "20 0\n", "20 1\n", "20 2\n", "20 3\n", "20 4\n", "20 5\n", "20 6\n", "20 7\n", "20 8\n", "20 9\n", "20 10\n", "20 11\n", "20 12\n", "20 13\n", "20 14\n", "20 15\n", "20 16\n", "20 17\n", "20 18\n", "20 19\n", "20 20\n", "20 21\n", "20 22\n", "20 23\n", "20 24\n", "20 25\n", "20 26\n", "20 27\n", "20 28\n", "20 29\n", "20 30\n", "20 31\n", "20 32\n", "20 33\n", "20 34\n", "20 35\n", "20 36\n", "20 37\n", "20 38\n", "20 39\n", "20 40\n", "20 41\n", "20 42\n", "20 43\n", "20 44\n", "20 45\n", "20 46\n", "20 47\n", "20 48\n", "20 49\n", "20 50\n", "20 51\n", "20 52\n", "20 53\n", "20 54\n", "20 55\n", "20 56\n", "20 57\n", "20 58\n", "20 59\n", "20 60\n", "20 61\n", "20 62\n", "20 63\n", "20 64\n", "20 65\n", "20 66\n", "20 67\n", "20 68\n", "20 69\n", "20 70\n", "20 71\n", "20 72\n", "20 73\n", "20 74\n", "20 75\n", "20 76\n", "20 77\n", "20 78\n", "20 79\n", "20 80\n", "20 81\n", "20 82\n", "20 83\n", "20 84\n", "20 85\n", "20 86\n", "20 87\n", "20 88\n", "20 89\n", "20 90\n", "20 91\n", "20 92\n", "20 93\n", "20 94\n", "20 95\n", "20 96\n", "20 97\n", "20 98\n", "20 99\n", "20 100\n", "20 101\n", "20 102\n", "20 103\n", "20 104\n", "20 105\n", "20 106\n", "20 107\n", "20 108\n", "20 109\n", "20 110\n", "20 111\n", "20 112\n", "20 113\n", "20 114\n", "20 115\n", "20 116\n", "20 117\n", "20 118\n", "20 119\n", "20 120\n", "20 121\n", "20 122\n", "20 123\n", "20 124\n", "20 125\n", "20 126\n", "20 127\n", "20 128\n", "20 129\n", "20 130\n", "20 131\n", "20 132\n", "20 133\n", "20 134\n", "20 135\n", "20 136\n", "20 137\n", "20 138\n", "20 139\n", "20 140\n", "20 141\n", "20 142\n", "20 143\n", "20 144\n", "20 145\n", "20 146\n", "20 147\n", "20 148\n", "20 149\n", "20 150\n", "20 151\n", "20 152\n", "20 153\n", "20 154\n", "20 155\n", "20 156\n", "20 157\n", "20 158\n", "20 159\n", "20 160\n", "20 161\n", "20 162\n", "20 163\n", "20 164\n", "20 165\n", "20 166\n", "20 167\n", "20 168\n", "20 169\n", "20 170\n", "20 171\n", "20 172\n", "20 173\n", "20 174\n", "20 175\n", "20 176\n", "20 177\n", "20 178\n", "20 179\n", "20 180\n", "20 181\n", "20 182\n", "20 183\n", "20 184\n", "20 185\n", "20 186\n", "20 187\n", "20 188\n", "20 189\n", "21 0\n", "21 1\n", "21 2\n", "21 3\n", "21 4\n", "21 5\n", "21 6\n", "21 7\n", "21 8\n", "21 9\n", "21 10\n", "21 11\n", "21 12\n", "21 13\n", "21 14\n", "21 15\n", "21 16\n", "21 17\n", "21 18\n", "21 19\n", "21 20\n", "21 21\n", "21 22\n", "21 23\n", "21 24\n", "21 25\n", "21 26\n", "21 27\n", "21 28\n", "21 29\n", "21 30\n", "21 31\n", "21 32\n", "21 33\n", "21 34\n", "21 35\n", "21 36\n", "21 37\n", "21 38\n", "21 39\n", "21 40\n", "21 41\n", "21 42\n", "21 43\n", "21 44\n", "21 45\n", "21 46\n", "21 47\n", "21 48\n", "21 49\n", "21 50\n", "21 51\n", "21 52\n", "21 53\n", "21 54\n", "21 55\n", "21 56\n", "21 57\n", "21 58\n", "21 59\n", "21 60\n", "21 61\n", "21 62\n", "21 63\n", "21 64\n", "21 65\n", "21 66\n", "21 67\n", "21 68\n", "21 69\n", "21 70\n", "21 71\n", "21 72\n", "21 73\n", "21 74\n", "21 75\n", "21 76\n", "21 77\n", "21 78\n", "21 79\n", "21 80\n", "21 81\n", "21 82\n", "21 83\n", "21 84\n", "21 85\n", "21 86\n", "21 87\n", "21 88\n", "21 89\n", "21 90\n", "21 91\n", "21 92\n", "21 93\n", "21 94\n", "21 95\n", "21 96\n", "21 97\n", "21 98\n", "21 99\n", "21 100\n", "21 101\n", "21 102\n", "21 103\n", "21 104\n", "21 105\n", "21 106\n", "21 107\n", "21 108\n", "21 109\n", "21 110\n", "21 111\n", "21 112\n", "21 113\n", "21 114\n", "21 115\n", "21 116\n", "21 117\n", "21 118\n", "21 119\n", "21 120\n", "21 121\n", "21 122\n", "21 123\n", "21 124\n", "21 125\n", "21 126\n", "21 127\n", "21 128\n", "21 129\n", "21 130\n", "21 131\n", "21 132\n", "21 133\n", "21 134\n", "21 135\n", "21 136\n", "21 137\n", "21 138\n", "21 139\n", "21 140\n", "21 141\n", "21 142\n", "21 143\n", "21 144\n", "21 145\n", "21 146\n", "21 147\n", "21 148\n", "21 149\n", "21 150\n", "21 151\n", "21 152\n", "21 153\n", "21 154\n", "21 155\n", "21 156\n", "21 157\n", "21 158\n", "21 159\n", "21 160\n", "21 161\n", "21 162\n", "21 163\n", "21 164\n", "21 165\n", "21 166\n", "21 167\n", "21 168\n", "21 169\n", "21 170\n", "21 171\n", "21 172\n", "21 173\n", "21 174\n", "21 175\n", "21 176\n", "21 177\n", "21 178\n", "21 179\n", "21 180\n", "21 181\n", "21 182\n", "21 183\n", "21 184\n", "21 185\n", "21 186\n", "21 187\n", "21 188\n", "21 189\n", "22 0\n", "22 1\n", "22 2\n", "22 3\n", "22 4\n", "22 5\n", "22 6\n", "22 7\n", "22 8\n", "22 9\n", "22 10\n", "22 11\n", "22 12\n", "22 13\n", "22 14\n", "22 15\n", "22 16\n", "22 17\n", "22 18\n", "22 19\n", "22 20\n", "22 21\n", "22 22\n", "22 23\n", "22 24\n", "22 25\n", "22 26\n", "22 27\n", "22 28\n", "22 29\n", "22 30\n", "22 31\n", "22 32\n", "22 33\n", "22 34\n", "22 35\n", "22 36\n", "22 37\n", "22 38\n", "22 39\n", "22 40\n", "22 41\n", "22 42\n", "22 43\n", "22 44\n", "22 45\n", "22 46\n", "22 47\n", "22 48\n", "22 49\n", "22 50\n", "22 51\n", "22 52\n", "22 53\n", "22 54\n", "22 55\n", "22 56\n", "22 57\n", "22 58\n", "22 59\n", "22 60\n", "22 61\n", "22 62\n", "22 63\n", "22 64\n", "22 65\n", "22 66\n", "22 67\n", "22 68\n", "22 69\n", "22 70\n", "22 71\n", "22 72\n", "22 73\n", "22 74\n", "22 75\n", "22 76\n", "22 77\n", "22 78\n", "22 79\n", "22 80\n", "22 81\n", "22 82\n", "22 83\n", "22 84\n", "22 85\n", "22 86\n", "22 87\n", "22 88\n", "22 89\n", "22 90\n", "22 91\n", "22 92\n", "22 93\n", "22 94\n", "22 95\n", "22 96\n", "22 97\n", "22 98\n", "22 99\n", "22 100\n", "22 101\n", "22 102\n", "22 103\n", "22 104\n", "22 105\n", "22 106\n", "22 107\n", "22 108\n", "22 109\n", "22 110\n", "22 111\n", "22 112\n", "22 113\n", "22 114\n", "22 115\n", "22 116\n", "22 117\n", "22 118\n", "22 119\n", "22 120\n", "22 121\n", "22 122\n", "22 123\n", "22 124\n", "22 125\n", "22 126\n", "22 127\n", "22 128\n", "22 129\n", "22 130\n", "22 131\n", "22 132\n", "22 133\n", "22 134\n", "22 135\n", "22 136\n", "22 137\n", "22 138\n", "22 139\n", "22 140\n", "22 141\n", "22 142\n", "22 143\n", "22 144\n", "22 145\n", "22 146\n", "22 147\n", "22 148\n", "22 149\n", "22 150\n", "22 151\n", "22 152\n", "22 153\n", "22 154\n", "22 155\n", "22 156\n", "22 157\n", "22 158\n", "22 159\n", "22 160\n", "22 161\n", "22 162\n", "22 163\n", "22 164\n", "22 165\n", "22 166\n", "22 167\n", "22 168\n", "22 169\n", "22 170\n", "22 171\n", "22 172\n", "22 173\n", "22 174\n", "22 175\n", "22 176\n", "22 177\n", "22 178\n", "22 179\n", "22 180\n", "22 181\n", "22 182\n", "22 183\n", "22 184\n", "22 185\n", "22 186\n", "22 187\n", "22 188\n", "22 189\n", "23 0\n", "23 1\n", "23 2\n", "23 3\n", "23 4\n", "23 5\n", "23 6\n", "23 7\n", "23 8\n", "23 9\n", "23 10\n", "23 11\n", "23 12\n", "23 13\n", "23 14\n", "23 15\n", "23 16\n", "23 17\n", "23 18\n", "23 19\n", "23 20\n", "23 21\n", "23 22\n", "23 23\n", "23 24\n", "23 25\n", "23 26\n", "23 27\n", "23 28\n", "23 29\n", "23 30\n", "23 31\n", "23 32\n", "23 33\n", "23 34\n", "23 35\n", "23 36\n", "23 37\n", "23 38\n", "23 39\n", "23 40\n", "23 41\n", "23 42\n", "23 43\n", "23 44\n", "23 45\n", "23 46\n", "23 47\n", "23 48\n", "23 49\n", "23 50\n", "23 51\n", "23 52\n", "23 53\n", "23 54\n", "23 55\n", "23 56\n", "23 57\n", "23 58\n", "23 59\n", "23 60\n", "23 61\n", "23 62\n", "23 63\n", "23 64\n", "23 65\n", "23 66\n", "23 67\n", "23 68\n", "23 69\n", "23 70\n", "23 71\n", "23 72\n", "23 73\n", "23 74\n", "23 75\n", "23 76\n", "23 77\n", "23 78\n", "23 79\n", "23 80\n", "23 81\n", "23 82\n", "23 83\n", "23 84\n", "23 85\n", "23 86\n", "23 87\n", "23 88\n", "23 89\n", "23 90\n", "23 91\n", "23 92\n", "23 93\n", "23 94\n", "23 95\n", "23 96\n", "23 97\n", "23 98\n", "23 99\n", "23 100\n", "23 101\n", "23 102\n", "23 103\n", "23 104\n", "23 105\n", "23 106\n", "23 107\n", "23 108\n", "23 109\n", "23 110\n", "23 111\n", "23 112\n", "23 113\n", "23 114\n", "23 115\n", "23 116\n", "23 117\n", "23 118\n", "23 119\n", "23 120\n", "23 121\n", "23 122\n", "23 123\n", "23 124\n", "23 125\n", "23 126\n", "23 127\n", "23 128\n", "23 129\n", "23 130\n", "23 131\n", "23 132\n", "23 133\n", "23 134\n", "23 135\n", "23 136\n", "23 137\n", "23 138\n", "23 139\n", "23 140\n", "23 141\n", "23 142\n", "23 143\n", "23 144\n", "23 145\n", "23 146\n", "23 147\n", "23 148\n", "23 149\n", "23 150\n", "23 151\n", "23 152\n", "23 153\n", "23 154\n", "23 155\n", "23 156\n", "23 157\n", "23 158\n", "23 159\n", "23 160\n", "23 161\n", "23 162\n", "23 163\n", "23 164\n", "23 165\n", "23 166\n", "23 167\n", "23 168\n", "23 169\n", "23 170\n", "23 171\n", "23 172\n", "23 173\n", "23 174\n", "23 175\n", "23 176\n", "23 177\n", "23 178\n", "23 179\n", "23 180\n", "23 181\n", "23 182\n", "23 183\n", "23 184\n", "23 185\n", "23 186\n", "23 187\n", "23 188\n", "23 189\n", "24 0\n", "24 1\n", "24 2\n", "24 3\n", "24 4\n", "24 5\n", "24 6\n", "24 7\n", "24 8\n", "24 9\n", "24 10\n", "24 11\n", "24 12\n", "24 13\n", "24 14\n", "24 15\n", "24 16\n", "24 17\n", "24 18\n", "24 19\n", "24 20\n", "24 21\n", "24 22\n", "24 23\n", "24 24\n", "24 25\n", "24 26\n", "24 27\n", "24 28\n", "24 29\n", "24 30\n", "24 31\n", "24 32\n", "24 33\n", "24 34\n", "24 35\n", "24 36\n", "24 37\n", "24 38\n", "24 39\n", "24 40\n", "24 41\n", "24 42\n", "24 43\n", "24 44\n", "24 45\n", "24 46\n", "24 47\n", "24 48\n", "24 49\n", "24 50\n", "24 51\n", "24 52\n", "24 53\n", "24 54\n", "24 55\n", "24 56\n", "24 57\n", "24 58\n", "24 59\n", "24 60\n", "24 61\n", "24 62\n", "24 63\n", "24 64\n", "24 65\n", "24 66\n", "24 67\n", "24 68\n", "24 69\n", "24 70\n", "24 71\n", "24 72\n", "24 73\n", "24 74\n", "24 75\n", "24 76\n", "24 77\n", "24 78\n", "24 79\n", "24 80\n", "24 81\n", "24 82\n", "24 83\n", "24 84\n", "24 85\n", "24 86\n", "24 87\n", "24 88\n", "24 89\n", "24 90\n", "24 91\n", "24 92\n", "24 93\n", "24 94\n", "24 95\n", "24 96\n", "24 97\n", "24 98\n", "24 99\n", "24 100\n", "24 101\n", "24 102\n", "24 103\n", "24 104\n", "24 105\n", "24 106\n", "24 107\n", "24 108\n", "24 109\n", "24 110\n", "24 111\n", "24 112\n", "24 113\n", "24 114\n", "24 115\n", "24 116\n", "24 117\n", "24 118\n", "24 119\n", "24 120\n", "24 121\n", "24 122\n", "24 123\n", "24 124\n", "24 125\n", "24 126\n", "24 127\n", "24 128\n", "24 129\n", "24 130\n", "24 131\n", "24 132\n", "24 133\n", "24 134\n", "24 135\n", "24 136\n", "24 137\n", "24 138\n", "24 139\n", "24 140\n", "24 141\n", "24 142\n", "24 143\n", "24 144\n", "24 145\n", "24 146\n", "24 147\n", "24 148\n", "24 149\n", "24 150\n", "24 151\n", "24 152\n", "24 153\n", "24 154\n", "24 155\n", "24 156\n", "24 157\n", "24 158\n", "24 159\n", "24 160\n", "24 161\n", "24 162\n", "24 163\n", "24 164\n", "24 165\n", "24 166\n", "24 167\n", "24 168\n", "24 169\n", "24 170\n", "24 171\n", "24 172\n", "24 173\n", "24 174\n", "24 175\n", "24 176\n", "24 177\n", "24 178\n", "24 179\n", "24 180\n", "24 181\n", "24 182\n", "24 183\n", "24 184\n", "24 185\n", "24 186\n", "24 187\n", "24 188\n", "24 189\n", "25 0\n", "25 1\n", "25 2\n", "25 3\n", "25 4\n", "25 5\n", "25 6\n", "25 7\n", "25 8\n", "25 9\n", "25 10\n", "25 11\n", "25 12\n", "25 13\n", "25 14\n", "25 15\n", "25 16\n", "25 17\n", "25 18\n", "25 19\n", "25 20\n", "25 21\n", "25 22\n", "25 23\n", "25 24\n", "25 25\n", "25 26\n", "25 27\n", "25 28\n", "25 29\n", "25 30\n", "25 31\n", "25 32\n", "25 33\n", "25 34\n", "25 35\n", "25 36\n", "25 37\n", "25 38\n", "25 39\n", "25 40\n", "25 41\n", "25 42\n", "25 43\n", "25 44\n", "25 45\n", "25 46\n", "25 47\n", "25 48\n", "25 49\n", "25 50\n", "25 51\n", "25 52\n", "25 53\n", "25 54\n", "25 55\n", "25 56\n", "25 57\n", "25 58\n", "25 59\n", "25 60\n", "25 61\n", "25 62\n", "25 63\n", "25 64\n", "25 65\n", "25 66\n", "25 67\n", "25 68\n", "25 69\n", "25 70\n", "25 71\n", "25 72\n", "25 73\n", "25 74\n", "25 75\n", "25 76\n", "25 77\n", "25 78\n", "25 79\n", "25 80\n", "25 81\n", "25 82\n", "25 83\n", "25 84\n", "25 85\n", "25 86\n", "25 87\n", "25 88\n", "25 89\n", "25 90\n", "25 91\n", "25 92\n", "25 93\n", "25 94\n", "25 95\n", "25 96\n", "25 97\n", "25 98\n", "25 99\n", "25 100\n", "25 101\n", "25 102\n", "25 103\n", "25 104\n", "25 105\n", "25 106\n", "25 107\n", "25 108\n", "25 109\n", "25 110\n", "25 111\n", "25 112\n", "25 113\n", "25 114\n", "25 115\n", "25 116\n", "25 117\n", "25 118\n", "25 119\n", "25 120\n", "25 121\n", "25 122\n", "25 123\n", "25 124\n", "25 125\n", "25 126\n", "25 127\n", "25 128\n", "25 129\n", "25 130\n", "25 131\n", "25 132\n", "25 133\n", "25 134\n", "25 135\n", "25 136\n", "25 137\n", "25 138\n", "25 139\n", "25 140\n", "25 141\n", "25 142\n", "25 143\n", "25 144\n", "25 145\n", "25 146\n", "25 147\n", "25 148\n", "25 149\n", "25 150\n", "25 151\n", "25 152\n", "25 153\n", "25 154\n", "25 155\n", "25 156\n", "25 157\n", "25 158\n", "25 159\n", "25 160\n", "25 161\n", "25 162\n", "25 163\n", "25 164\n", "25 165\n", "25 166\n", "25 167\n", "25 168\n", "25 169\n", "25 170\n", "25 171\n", "25 172\n", "25 173\n", "25 174\n", "25 175\n", "25 176\n", "25 177\n", "25 178\n", "25 179\n", "25 180\n", "25 181\n", "25 182\n", "25 183\n", "25 184\n", "25 185\n", "25 186\n", "25 187\n", "25 188\n", "25 189\n", "26 0\n", "26 1\n", "26 2\n", "26 3\n", "26 4\n", "26 5\n", "26 6\n", "26 7\n", "26 8\n", "26 9\n", "26 10\n", "26 11\n", "26 12\n", "26 13\n", "26 14\n", "26 15\n", "26 16\n", "26 17\n", "26 18\n", "26 19\n", "26 20\n", "26 21\n", "26 22\n", "26 23\n", "26 24\n", "26 25\n", "26 26\n", "26 27\n", "26 28\n", "26 29\n", "26 30\n", "26 31\n", "26 32\n", "26 33\n", "26 34\n", "26 35\n", "26 36\n", "26 37\n", "26 38\n", "26 39\n", "26 40\n", "26 41\n", "26 42\n", "26 43\n", "26 44\n", "26 45\n", "26 46\n", "26 47\n", "26 48\n", "26 49\n", "26 50\n", "26 51\n", "26 52\n", "26 53\n", "26 54\n", "26 55\n", "26 56\n", "26 57\n", "26 58\n", "26 59\n", "26 60\n", "26 61\n", "26 62\n", "26 63\n", "26 64\n", "26 65\n", "26 66\n", "26 67\n", "26 68\n", "26 69\n", "26 70\n", "26 71\n", "26 72\n", "26 73\n", "26 74\n", "26 75\n", "26 76\n", "26 77\n", "26 78\n", "26 79\n", "26 80\n", "26 81\n", "26 82\n", "26 83\n", "26 84\n", "26 85\n", "26 86\n", "26 87\n", "26 88\n", "26 89\n", "26 90\n", "26 91\n", "26 92\n", "26 93\n", "26 94\n", "26 95\n", "26 96\n", "26 97\n", "26 98\n", "26 99\n", "26 100\n", "26 101\n", "26 102\n", "26 103\n", "26 104\n", "26 105\n", "26 106\n", "26 107\n", "26 108\n", "26 109\n", "26 110\n", "26 111\n", "26 112\n", "26 113\n", "26 114\n", "26 115\n", "26 116\n", "26 117\n", "26 118\n", "26 119\n", "26 120\n", "26 121\n", "26 122\n", "26 123\n", "26 124\n", "26 125\n", "26 126\n", "26 127\n", "26 128\n", "26 129\n", "26 130\n", "26 131\n", "26 132\n", "26 133\n", "26 134\n", "26 135\n", "26 136\n", "26 137\n", "26 138\n", "26 139\n", "26 140\n", "26 141\n", "26 142\n", "26 143\n", "26 144\n", "26 145\n", "26 146\n", "26 147\n", "26 148\n", "26 149\n", "26 150\n", "26 151\n", "26 152\n", "26 153\n", "26 154\n", "26 155\n", "26 156\n", "26 157\n", "26 158\n", "26 159\n", "26 160\n", "26 161\n", "26 162\n", "26 163\n", "26 164\n", "26 165\n", "26 166\n", "26 167\n", "26 168\n", "26 169\n", "26 170\n", "26 171\n", "26 172\n", "26 173\n", "26 174\n", "26 175\n", "26 176\n", "26 177\n", "26 178\n", "26 179\n", "26 180\n", "26 181\n", "26 182\n", "26 183\n", "26 184\n", "26 185\n", "26 186\n", "26 187\n", "26 188\n", "26 189\n", "27 0\n", "27 1\n", "27 2\n", "27 3\n", "27 4\n", "27 5\n", "27 6\n", "27 7\n", "27 8\n", "27 9\n", "27 10\n", "27 11\n", "27 12\n", "27 13\n", "27 14\n", "27 15\n", "27 16\n", "27 17\n", "27 18\n", "27 19\n", "27 20\n", "27 21\n", "27 22\n", "27 23\n", "27 24\n", "27 25\n", "27 26\n", "27 27\n", "27 28\n", "27 29\n", "27 30\n", "27 31\n", "27 32\n", "27 33\n", "27 34\n", "27 35\n", "27 36\n", "27 37\n", "27 38\n", "27 39\n", "27 40\n", "27 41\n", "27 42\n", "27 43\n", "27 44\n", "27 45\n", "27 46\n", "27 47\n", "27 48\n", "27 49\n", "27 50\n", "27 51\n", "27 52\n", "27 53\n", "27 54\n", "27 55\n", "27 56\n", "27 57\n", "27 58\n", "27 59\n", "27 60\n", "27 61\n", "27 62\n", "27 63\n", "27 64\n", "27 65\n", "27 66\n", "27 67\n", "27 68\n", "27 69\n", "27 70\n", "27 71\n", "27 72\n", "27 73\n", "27 74\n", "27 75\n", "27 76\n", "27 77\n", "27 78\n", "27 79\n", "27 80\n", "27 81\n", "27 82\n", "27 83\n", "27 84\n", "27 85\n", "27 86\n", "27 87\n", "27 88\n", "27 89\n", "27 90\n", "27 91\n", "27 92\n", "27 93\n", "27 94\n", "27 95\n", "27 96\n", "27 97\n", "27 98\n", "27 99\n", "27 100\n", "27 101\n", "27 102\n", "27 103\n", "27 104\n", "27 105\n", "27 106\n", "27 107\n", "27 108\n", "27 109\n", "27 110\n", "27 111\n", "27 112\n", "27 113\n", "27 114\n", "27 115\n", "27 116\n", "27 117\n", "27 118\n", "27 119\n", "27 120\n", "27 121\n", "27 122\n", "27 123\n", "27 124\n", "27 125\n", "27 126\n", "27 127\n", "27 128\n", "27 129\n", "27 130\n", "27 131\n", "27 132\n", "27 133\n", "27 134\n", "27 135\n", "27 136\n", "27 137\n", "27 138\n", "27 139\n", "27 140\n", "27 141\n", "27 142\n", "27 143\n", "27 144\n", "27 145\n", "27 146\n", "27 147\n", "27 148\n", "27 149\n", "27 150\n", "27 151\n", "27 152\n", "27 153\n", "27 154\n", "27 155\n", "27 156\n", "27 157\n", "27 158\n", "27 159\n", "27 160\n", "27 161\n", "27 162\n", "27 163\n", "27 164\n", "27 165\n", "27 166\n", "27 167\n", "27 168\n", "27 169\n", "27 170\n", "27 171\n", "27 172\n", "27 173\n", "27 174\n", "27 175\n", "27 176\n", "27 177\n", "27 178\n", "27 179\n", "27 180\n", "27 181\n", "27 182\n", "27 183\n", "27 184\n", "27 185\n", "27 186\n", "27 187\n", "27 188\n", "27 189\n", "28 0\n", "28 1\n", "28 2\n", "28 3\n", "28 4\n", "28 5\n", "28 6\n", "28 7\n", "28 8\n", "28 9\n", "28 10\n", "28 11\n", "28 12\n", "28 13\n", "28 14\n", "28 15\n", "28 16\n", "28 17\n", "28 18\n", "28 19\n", "28 20\n", "28 21\n", "28 22\n", "28 23\n", "28 24\n", "28 25\n", "28 26\n", "28 27\n", "28 28\n", "28 29\n", "28 30\n", "28 31\n", "28 32\n", "28 33\n", "28 34\n", "28 35\n", "28 36\n", "28 37\n", "28 38\n", "28 39\n", "28 40\n", "28 41\n", "28 42\n", "28 43\n", "28 44\n", "28 45\n", "28 46\n", "28 47\n", "28 48\n", "28 49\n", "28 50\n", "28 51\n", "28 52\n", "28 53\n", "28 54\n", "28 55\n", "28 56\n", "28 57\n", "28 58\n", "28 59\n", "28 60\n", "28 61\n", "28 62\n", "28 63\n", "28 64\n", "28 65\n", "28 66\n", "28 67\n", "28 68\n", "28 69\n", "28 70\n", "28 71\n", "28 72\n", "28 73\n", "28 74\n", "28 75\n", "28 76\n", "28 77\n", "28 78\n", "28 79\n", "28 80\n", "28 81\n", "28 82\n", "28 83\n", "28 84\n", "28 85\n", "28 86\n", "28 87\n", "28 88\n", "28 89\n", "28 90\n", "28 91\n", "28 92\n", "28 93\n", "28 94\n", "28 95\n", "28 96\n", "28 97\n", "28 98\n", "28 99\n", "28 100\n", "28 101\n", "28 102\n", "28 103\n", "28 104\n", "28 105\n", "28 106\n", "28 107\n", "28 108\n", "28 109\n", "28 110\n", "28 111\n", "28 112\n", "28 113\n", "28 114\n", "28 115\n", "28 116\n", "28 117\n", "28 118\n", "28 119\n", "28 120\n", "28 121\n", "28 122\n", "28 123\n", "28 124\n", "28 125\n", "28 126\n", "28 127\n", "28 128\n", "28 129\n", "28 130\n", "28 131\n", "28 132\n", "28 133\n", "28 134\n", "28 135\n", "28 136\n", "28 137\n", "28 138\n", "28 139\n", "28 140\n", "28 141\n", "28 142\n", "28 143\n", "28 144\n", "28 145\n", "28 146\n", "28 147\n", "28 148\n", "28 149\n", "28 150\n", "28 151\n", "28 152\n", "28 153\n", "28 154\n", "28 155\n", "28 156\n", "28 157\n", "28 158\n", "28 159\n", "28 160\n", "28 161\n", "28 162\n", "28 163\n", "28 164\n", "28 165\n", "28 166\n", "28 167\n", "28 168\n", "28 169\n", "28 170\n", "28 171\n", "28 172\n", "28 173\n", "28 174\n", "28 175\n", "28 176\n", "28 177\n", "28 178\n", "28 179\n", "28 180\n", "28 181\n", "28 182\n", "28 183\n", "28 184\n", "28 185\n", "28 186\n", "28 187\n", "28 188\n", "28 189\n", "29 0\n", "29 1\n", "29 2\n", "29 3\n", "29 4\n", "29 5\n", "29 6\n", "29 7\n", "29 8\n", "29 9\n", "29 10\n", "29 11\n", "29 12\n", "29 13\n", "29 14\n", "29 15\n", "29 16\n", "29 17\n", "29 18\n", "29 19\n", "29 20\n", "29 21\n", "29 22\n", "29 23\n", "29 24\n", "29 25\n", "29 26\n", "29 27\n", "29 28\n", "29 29\n", "29 30\n", "29 31\n", "29 32\n", "29 33\n", "29 34\n", "29 35\n", "29 36\n", "29 37\n", "29 38\n", "29 39\n", "29 40\n", "29 41\n", "29 42\n", "29 43\n", "29 44\n", "29 45\n", "29 46\n", "29 47\n", "29 48\n", "29 49\n", "29 50\n", "29 51\n", "29 52\n", "29 53\n", "29 54\n", "29 55\n", "29 56\n", "29 57\n", "29 58\n", "29 59\n", "29 60\n", "29 61\n", "29 62\n", "29 63\n", "29 64\n", "29 65\n", "29 66\n", "29 67\n", "29 68\n", "29 69\n", "29 70\n", "29 71\n", "29 72\n", "29 73\n", "29 74\n", "29 75\n", "29 76\n", "29 77\n", "29 78\n", "29 79\n", "29 80\n", "29 81\n", "29 82\n", "29 83\n", "29 84\n", "29 85\n", "29 86\n", "29 87\n", "29 88\n", "29 89\n", "29 90\n", "29 91\n", "29 92\n", "29 93\n", "29 94\n", "29 95\n", "29 96\n", "29 97\n", "29 98\n", "29 99\n", "29 100\n", "29 101\n", "29 102\n", "29 103\n", "29 104\n", "29 105\n", "29 106\n", "29 107\n", "29 108\n", "29 109\n", "29 110\n", "29 111\n", "29 112\n", "29 113\n", "29 114\n", "29 115\n", "29 116\n", "29 117\n", "29 118\n", "29 119\n", "29 120\n", "29 121\n", "29 122\n", "29 123\n", "29 124\n", "29 125\n", "29 126\n", "29 127\n", "29 128\n", "29 129\n", "29 130\n", "29 131\n", "29 132\n", "29 133\n", "29 134\n", "29 135\n", "29 136\n", "29 137\n", "29 138\n", "29 139\n", "29 140\n", "29 141\n", "29 142\n", "29 143\n", "29 144\n", "29 145\n", "29 146\n", "29 147\n", "29 148\n", "29 149\n", "29 150\n", "29 151\n", "29 152\n", "29 153\n", "29 154\n", "29 155\n", "29 156\n", "29 157\n", "29 158\n", "29 159\n", "29 160\n", "29 161\n", "29 162\n", "29 163\n", "29 164\n", "29 165\n", "29 166\n", "29 167\n", "29 168\n", "29 169\n", "29 170\n", "29 171\n", "29 172\n", "29 173\n", "29 174\n", "29 175\n", "29 176\n", "29 177\n", "29 178\n", "29 179\n", "29 180\n", "29 181\n", "29 182\n", "29 183\n", "29 184\n", "29 185\n", "29 186\n", "29 187\n", "29 188\n", "29 189\n", "30 0\n", "30 1\n", "30 2\n", "30 3\n", "30 4\n", "30 5\n", "30 6\n", "30 7\n", "30 8\n", "30 9\n", "30 10\n", "30 11\n", "30 12\n", "30 13\n", "30 14\n", "30 15\n", "30 16\n", "30 17\n", "30 18\n", "30 19\n", "30 20\n", "30 21\n", "30 22\n", "30 23\n", "30 24\n", "30 25\n", "30 26\n", "30 27\n", "30 28\n", "30 29\n", "30 30\n", "30 31\n", "30 32\n", "30 33\n", "30 34\n", "30 35\n", "30 36\n", "30 37\n", "30 38\n", "30 39\n", "30 40\n", "30 41\n", "30 42\n", "30 43\n", "30 44\n", "30 45\n", "30 46\n", "30 47\n", "30 48\n", "30 49\n", "30 50\n", "30 51\n", "30 52\n", "30 53\n", "30 54\n", "30 55\n", "30 56\n", "30 57\n", "30 58\n", "30 59\n", "30 60\n", "30 61\n", "30 62\n", "30 63\n", "30 64\n", "30 65\n", "30 66\n", "30 67\n", "30 68\n", "30 69\n", "30 70\n", "30 71\n", "30 72\n", "30 73\n", "30 74\n", "30 75\n", "30 76\n", "30 77\n", "30 78\n", "30 79\n", "30 80\n", "30 81\n", "30 82\n", "30 83\n", "30 84\n", "30 85\n", "30 86\n", "30 87\n", "30 88\n", "30 89\n", "30 90\n", "30 91\n", "30 92\n", "30 93\n", "30 94\n", "30 95\n", "30 96\n", "30 97\n", "30 98\n", "30 99\n", "30 100\n", "30 101\n", "30 102\n", "30 103\n", "30 104\n", "30 105\n", "30 106\n", "30 107\n", "30 108\n", "30 109\n", "30 110\n", "30 111\n", "30 112\n", "30 113\n", "30 114\n", "30 115\n", "30 116\n", "30 117\n", "30 118\n", "30 119\n", "30 120\n", "30 121\n", "30 122\n", "30 123\n", "30 124\n", "30 125\n", "30 126\n", "30 127\n", "30 128\n", "30 129\n", "30 130\n", "30 131\n", "30 132\n", "30 133\n", "30 134\n", "30 135\n", "30 136\n", "30 137\n", "30 138\n", "30 139\n", "30 140\n", "30 141\n", "30 142\n", "30 143\n", "30 144\n", "30 145\n", "30 146\n", "30 147\n", "30 148\n", "30 149\n", "30 150\n", "30 151\n", "30 152\n", "30 153\n", "30 154\n", "30 155\n", "30 156\n", "30 157\n", "30 158\n", "30 159\n", "30 160\n", "30 161\n", "30 162\n", "30 163\n", "30 164\n", "30 165\n", "30 166\n", "30 167\n", "30 168\n", "30 169\n", "30 170\n", "30 171\n", "30 172\n", "30 173\n", "30 174\n", "30 175\n", "30 176\n", "30 177\n", "30 178\n", "30 179\n", "30 180\n", "30 181\n", "30 182\n", "30 183\n", "30 184\n", "30 185\n", "30 186\n", "30 187\n", "30 188\n", "30 189\n", "31 0\n", "31 1\n", "31 2\n", "31 3\n", "31 4\n", "31 5\n", "31 6\n", "31 7\n", "31 8\n", "31 9\n", "31 10\n", "31 11\n", "31 12\n", "31 13\n", "31 14\n", "31 15\n", "31 16\n", "31 17\n", "31 18\n", "31 19\n", "31 20\n", "31 21\n", "31 22\n", "31 23\n", "31 24\n", "31 25\n", "31 26\n", "31 27\n", "31 28\n", "31 29\n", "31 30\n", "31 31\n", "31 32\n", "31 33\n", "31 34\n", "31 35\n", "31 36\n", "31 37\n", "31 38\n", "31 39\n", "31 40\n", "31 41\n", "31 42\n", "31 43\n", "31 44\n", "31 45\n", "31 46\n", "31 47\n", "31 48\n", "31 49\n", "31 50\n", "31 51\n", "31 52\n", "31 53\n", "31 54\n", "31 55\n", "31 56\n", "31 57\n", "31 58\n", "31 59\n", "31 60\n", "31 61\n", "31 62\n", "31 63\n", "31 64\n", "31 65\n", "31 66\n", "31 67\n", "31 68\n", "31 69\n", "31 70\n", "31 71\n", "31 72\n", "31 73\n", "31 74\n", "31 75\n", "31 76\n", "31 77\n", "31 78\n", "31 79\n", "31 80\n", "31 81\n", "31 82\n", "31 83\n", "31 84\n", "31 85\n", "31 86\n", "31 87\n", "31 88\n", "31 89\n", "31 90\n", "31 91\n", "31 92\n", "31 93\n", "31 94\n", "31 95\n", "31 96\n", "31 97\n", "31 98\n", "31 99\n", "31 100\n", "31 101\n", "31 102\n", "31 103\n", "31 104\n", "31 105\n", "31 106\n", "31 107\n", "31 108\n", "31 109\n", "31 110\n", "31 111\n", "31 112\n", "31 113\n", "31 114\n", "31 115\n", "31 116\n", "31 117\n", "31 118\n", "31 119\n", "31 120\n", "31 121\n", "31 122\n", "31 123\n", "31 124\n", "31 125\n", "31 126\n", "31 127\n", "31 128\n", "31 129\n", "31 130\n", "31 131\n", "31 132\n", "31 133\n", "31 134\n", "31 135\n", "31 136\n", "31 137\n", "31 138\n", "31 139\n", "31 140\n", "31 141\n", "31 142\n", "31 143\n", "31 144\n", "31 145\n", "31 146\n", "31 147\n", "31 148\n", "31 149\n", "31 150\n", "31 151\n", "31 152\n", "31 153\n", "31 154\n", "31 155\n", "31 156\n", "31 157\n", "31 158\n", "31 159\n", "31 160\n", "31 161\n", "31 162\n", "31 163\n", "31 164\n", "31 165\n", "31 166\n", "31 167\n", "31 168\n", "31 169\n", "31 170\n", "31 171\n", "31 172\n", "31 173\n", "31 174\n", "31 175\n", "31 176\n", "31 177\n", "31 178\n", "31 179\n", "31 180\n", "31 181\n", "31 182\n", "31 183\n", "31 184\n", "31 185\n", "31 186\n", "31 187\n", "31 188\n", "31 189\n", "32 0\n", "32 1\n", "32 2\n", "32 3\n", "32 4\n", "32 5\n", "32 6\n", "32 7\n", "32 8\n", "32 9\n", "32 10\n", "32 11\n", "32 12\n", "32 13\n", "32 14\n", "32 15\n", "32 16\n", "32 17\n", "32 18\n", "32 19\n", "32 20\n", "32 21\n", "32 22\n", "32 23\n", "32 24\n", "32 25\n", "32 26\n", "32 27\n", "32 28\n", "32 29\n", "32 30\n", "32 31\n", "32 32\n", "32 33\n", "32 34\n", "32 35\n", "32 36\n", "32 37\n", "32 38\n", "32 39\n", "32 40\n", "32 41\n", "32 42\n", "32 43\n", "32 44\n", "32 45\n", "32 46\n", "32 47\n", "32 48\n", "32 49\n", "32 50\n", "32 51\n", "32 52\n", "32 53\n", "32 54\n", "32 55\n", "32 56\n", "32 57\n", "32 58\n", "32 59\n", "32 60\n", "32 61\n", "32 62\n", "32 63\n", "32 64\n", "32 65\n", "32 66\n", "32 67\n", "32 68\n", "32 69\n", "32 70\n", "32 71\n", "32 72\n", "32 73\n", "32 74\n", "32 75\n", "32 76\n", "32 77\n", "32 78\n", "32 79\n", "32 80\n", "32 81\n", "32 82\n", "32 83\n", "32 84\n", "32 85\n", "32 86\n", "32 87\n", "32 88\n", "32 89\n", "32 90\n", "32 91\n", "32 92\n", "32 93\n", "32 94\n", "32 95\n", "32 96\n", "32 97\n", "32 98\n", "32 99\n", "32 100\n", "32 101\n", "32 102\n", "32 103\n", "32 104\n", "32 105\n", "32 106\n", "32 107\n", "32 108\n", "32 109\n", "32 110\n", "32 111\n", "32 112\n", "32 113\n", "32 114\n", "32 115\n", "32 116\n", "32 117\n", "32 118\n", "32 119\n", "32 120\n", "32 121\n", "32 122\n", "32 123\n", "32 124\n", "32 125\n", "32 126\n", "32 127\n", "32 128\n", "32 129\n", "32 130\n", "32 131\n", "32 132\n", "32 133\n", "32 134\n", "32 135\n", "32 136\n", "32 137\n", "32 138\n", "32 139\n", "32 140\n", "32 141\n", "32 142\n", "32 143\n", "32 144\n", "32 145\n", "32 146\n", "32 147\n", "32 148\n", "32 149\n", "32 150\n", "32 151\n", "32 152\n", "32 153\n", "32 154\n", "32 155\n", "32 156\n", "32 157\n", "32 158\n", "32 159\n", "32 160\n", "32 161\n", "32 162\n", "32 163\n", "32 164\n", "32 165\n", "32 166\n", "32 167\n", "32 168\n", "32 169\n", "32 170\n", "32 171\n", "32 172\n", "32 173\n", "32 174\n", "32 175\n", "32 176\n", "32 177\n", "32 178\n", "32 179\n", "32 180\n", "32 181\n", "32 182\n", "32 183\n", "32 184\n", "32 185\n", "32 186\n", "32 187\n", "32 188\n", "32 189\n", "33 0\n", "33 1\n", "33 2\n", "33 3\n", "33 4\n", "33 5\n", "33 6\n", "33 7\n", "33 8\n", "33 9\n", "33 10\n", "33 11\n", "33 12\n", "33 13\n", "33 14\n", "33 15\n", "33 16\n", "33 17\n", "33 18\n", "33 19\n", "33 20\n", "33 21\n", "33 22\n", "33 23\n", "33 24\n", "33 25\n", "33 26\n", "33 27\n", "33 28\n", "33 29\n", "33 30\n", "33 31\n", "33 32\n", "33 33\n", "33 34\n", "33 35\n", "33 36\n", "33 37\n", "33 38\n", "33 39\n", "33 40\n", "33 41\n", "33 42\n", "33 43\n", "33 44\n", "33 45\n", "33 46\n", "33 47\n", "33 48\n", "33 49\n", "33 50\n", "33 51\n", "33 52\n", "33 53\n", "33 54\n", "33 55\n", "33 56\n", "33 57\n", "33 58\n", "33 59\n", "33 60\n", "33 61\n", "33 62\n", "33 63\n", "33 64\n", "33 65\n", "33 66\n", "33 67\n", "33 68\n", "33 69\n", "33 70\n", "33 71\n", "33 72\n", "33 73\n", "33 74\n", "33 75\n", "33 76\n", "33 77\n", "33 78\n", "33 79\n", "33 80\n", "33 81\n", "33 82\n", "33 83\n", "33 84\n", "33 85\n", "33 86\n", "33 87\n", "33 88\n", "33 89\n", "33 90\n", "33 91\n", "33 92\n", "33 93\n", "33 94\n", "33 95\n", "33 96\n", "33 97\n", "33 98\n", "33 99\n", "33 100\n", "33 101\n", "33 102\n", "33 103\n", "33 104\n", "33 105\n", "33 106\n", "33 107\n", "33 108\n", "33 109\n", "33 110\n", "33 111\n", "33 112\n", "33 113\n", "33 114\n", "33 115\n", "33 116\n", "33 117\n", "33 118\n", "33 119\n", "33 120\n", "33 121\n", "33 122\n", "33 123\n", "33 124\n", "33 125\n", "33 126\n", "33 127\n", "33 128\n", "33 129\n", "33 130\n", "33 131\n", "33 132\n", "33 133\n", "33 134\n", "33 135\n", "33 136\n", "33 137\n", "33 138\n", "33 139\n", "33 140\n", "33 141\n", "33 142\n", "33 143\n", "33 144\n", "33 145\n", "33 146\n", "33 147\n", "33 148\n", "33 149\n", "33 150\n", "33 151\n", "33 152\n", "33 153\n", "33 154\n", "33 155\n", "33 156\n", "33 157\n", "33 158\n", "33 159\n", "33 160\n", "33 161\n", "33 162\n", "33 163\n", "33 164\n", "33 165\n", "33 166\n", "33 167\n", "33 168\n", "33 169\n", "33 170\n", "33 171\n", "33 172\n", "33 173\n", "33 174\n", "33 175\n", "33 176\n", "33 177\n", "33 178\n", "33 179\n", "33 180\n", "33 181\n", "33 182\n", "33 183\n", "33 184\n", "33 185\n", "33 186\n", "33 187\n", "33 188\n", "33 189\n", "34 0\n", "34 1\n", "34 2\n", "34 3\n", "34 4\n", "34 5\n", "34 6\n", "34 7\n", "34 8\n", "34 9\n", "34 10\n", "34 11\n", "34 12\n", "34 13\n", "34 14\n", "34 15\n", "34 16\n", "34 17\n", "34 18\n", "34 19\n", "34 20\n", "34 21\n", "34 22\n", "34 23\n", "34 24\n", "34 25\n", "34 26\n", "34 27\n", "34 28\n", "34 29\n", "34 30\n", "34 31\n", "34 32\n", "34 33\n", "34 34\n", "34 35\n", "34 36\n", "34 37\n", "34 38\n", "34 39\n", "34 40\n", "34 41\n", "34 42\n", "34 43\n", "34 44\n", "34 45\n", "34 46\n", "34 47\n", "34 48\n", "34 49\n", "34 50\n", "34 51\n", "34 52\n", "34 53\n", "34 54\n", "34 55\n", "34 56\n", "34 57\n", "34 58\n", "34 59\n", "34 60\n", "34 61\n", "34 62\n", "34 63\n", "34 64\n", "34 65\n", "34 66\n", "34 67\n", "34 68\n", "34 69\n", "34 70\n", "34 71\n", "34 72\n", "34 73\n", "34 74\n", "34 75\n", "34 76\n", "34 77\n", "34 78\n", "34 79\n", "34 80\n", "34 81\n", "34 82\n", "34 83\n", "34 84\n", "34 85\n", "34 86\n", "34 87\n", "34 88\n", "34 89\n", "34 90\n", "34 91\n", "34 92\n", "34 93\n", "34 94\n", "34 95\n", "34 96\n", "34 97\n", "34 98\n", "34 99\n", "34 100\n", "34 101\n", "34 102\n", "34 103\n", "34 104\n", "34 105\n", "34 106\n", "34 107\n", "34 108\n", "34 109\n", "34 110\n", "34 111\n", "34 112\n", "34 113\n", "34 114\n", "34 115\n", "34 116\n", "34 117\n", "34 118\n", "34 119\n", "34 120\n", "34 121\n", "34 122\n", "34 123\n", "34 124\n", "34 125\n", "34 126\n", "34 127\n", "34 128\n", "34 129\n", "34 130\n", "34 131\n", "34 132\n", "34 133\n", "34 134\n", "34 135\n", "34 136\n", "34 137\n", "34 138\n", "34 139\n", "34 140\n", "34 141\n", "34 142\n", "34 143\n", "34 144\n", "34 145\n", "34 146\n", "34 147\n", "34 148\n", "34 149\n", "34 150\n", "34 151\n", "34 152\n", "34 153\n", "34 154\n", "34 155\n", "34 156\n", "34 157\n", "34 158\n", "34 159\n", "34 160\n", "34 161\n", "34 162\n", "34 163\n", "34 164\n", "34 165\n", "34 166\n", "34 167\n", "34 168\n", "34 169\n", "34 170\n", "34 171\n", "34 172\n", "34 173\n", "34 174\n", "34 175\n", "34 176\n", "34 177\n", "34 178\n", "34 179\n", "34 180\n", "34 181\n", "34 182\n", "34 183\n", "34 184\n", "34 185\n", "34 186\n", "34 187\n", "34 188\n", "34 189\n", "35 0\n", "35 1\n", "35 2\n", "35 3\n", "35 4\n", "35 5\n", "35 6\n", "35 7\n", "35 8\n", "35 9\n", "35 10\n", "35 11\n", "35 12\n", "35 13\n", "35 14\n", "35 15\n", "35 16\n", "35 17\n", "35 18\n", "35 19\n", "35 20\n", "35 21\n", "35 22\n", "35 23\n", "35 24\n", "35 25\n", "35 26\n", "35 27\n", "35 28\n", "35 29\n", "35 30\n", "35 31\n", "35 32\n", "35 33\n", "35 34\n", "35 35\n", "35 36\n", "35 37\n", "35 38\n", "35 39\n", "35 40\n", "35 41\n", "35 42\n", "35 43\n", "35 44\n", "35 45\n", "35 46\n", "35 47\n", "35 48\n", "35 49\n", "35 50\n", "35 51\n", "35 52\n", "35 53\n", "35 54\n", "35 55\n", "35 56\n", "35 57\n", "35 58\n", "35 59\n", "35 60\n", "35 61\n", "35 62\n", "35 63\n", "35 64\n", "35 65\n", "35 66\n", "35 67\n", "35 68\n", "35 69\n", "35 70\n", "35 71\n", "35 72\n", "35 73\n", "35 74\n", "35 75\n", "35 76\n", "35 77\n", "35 78\n", "35 79\n", "35 80\n", "35 81\n", "35 82\n", "35 83\n", "35 84\n", "35 85\n", "35 86\n", "35 87\n", "35 88\n", "35 89\n", "35 90\n", "35 91\n", "35 92\n", "35 93\n", "35 94\n", "35 95\n", "35 96\n", "35 97\n", "35 98\n", "35 99\n", "35 100\n", "35 101\n", "35 102\n", "35 103\n", "35 104\n", "35 105\n", "35 106\n", "35 107\n", "35 108\n", "35 109\n", "35 110\n", "35 111\n", "35 112\n", "35 113\n", "35 114\n", "35 115\n", "35 116\n", "35 117\n", "35 118\n", "35 119\n", "35 120\n", "35 121\n", "35 122\n", "35 123\n", "35 124\n", "35 125\n", "35 126\n", "35 127\n", "35 128\n", "35 129\n", "35 130\n", "35 131\n", "35 132\n", "35 133\n", "35 134\n", "35 135\n", "35 136\n", "35 137\n", "35 138\n", "35 139\n", "35 140\n", "35 141\n", "35 142\n", "35 143\n", "35 144\n", "35 145\n", "35 146\n", "35 147\n", "35 148\n", "35 149\n", "35 150\n", "35 151\n", "35 152\n", "35 153\n", "35 154\n", "35 155\n", "35 156\n", "35 157\n", "35 158\n", "35 159\n", "35 160\n", "35 161\n", "35 162\n", "35 163\n", "35 164\n", "35 165\n", "35 166\n", "35 167\n", "35 168\n", "35 169\n", "35 170\n", "35 171\n", "35 172\n", "35 173\n", "35 174\n", "35 175\n", "35 176\n", "35 177\n", "35 178\n", "35 179\n", "35 180\n", "35 181\n", "35 182\n", "35 183\n", "35 184\n", "35 185\n", "35 186\n", "35 187\n", "35 188\n", "35 189\n", "36 0\n", "36 1\n", "36 2\n", "36 3\n", "36 4\n", "36 5\n", "36 6\n", "36 7\n", "36 8\n", "36 9\n", "36 10\n", "36 11\n", "36 12\n", "36 13\n", "36 14\n", "36 15\n", "36 16\n", "36 17\n", "36 18\n", "36 19\n", "36 20\n", "36 21\n", "36 22\n", "36 23\n", "36 24\n", "36 25\n", "36 26\n", "36 27\n", "36 28\n", "36 29\n", "36 30\n", "36 31\n", "36 32\n", "36 33\n", "36 34\n", "36 35\n", "36 36\n", "36 37\n", "36 38\n", "36 39\n", "36 40\n", "36 41\n", "36 42\n", "36 43\n", "36 44\n", "36 45\n", "36 46\n", "36 47\n", "36 48\n", "36 49\n", "36 50\n", "36 51\n", "36 52\n", "36 53\n", "36 54\n", "36 55\n", "36 56\n", "36 57\n", "36 58\n", "36 59\n", "36 60\n", "36 61\n", "36 62\n", "36 63\n", "36 64\n", "36 65\n", "36 66\n", "36 67\n", "36 68\n", "36 69\n", "36 70\n", "36 71\n", "36 72\n", "36 73\n", "36 74\n", "36 75\n", "36 76\n", "36 77\n", "36 78\n", "36 79\n", "36 80\n", "36 81\n", "36 82\n", "36 83\n", "36 84\n", "36 85\n", "36 86\n", "36 87\n", "36 88\n", "36 89\n", "36 90\n", "36 91\n", "36 92\n", "36 93\n", "36 94\n", "36 95\n", "36 96\n", "36 97\n", "36 98\n", "36 99\n", "36 100\n", "36 101\n", "36 102\n", "36 103\n", "36 104\n", "36 105\n", "36 106\n", "36 107\n", "36 108\n", "36 109\n", "36 110\n", "36 111\n", "36 112\n", "36 113\n", "36 114\n", "36 115\n", "36 116\n", "36 117\n", "36 118\n", "36 119\n", "36 120\n", "36 121\n", "36 122\n", "36 123\n", "36 124\n", "36 125\n", "36 126\n", "36 127\n", "36 128\n", "36 129\n", "36 130\n", "36 131\n", "36 132\n", "36 133\n", "36 134\n", "36 135\n", "36 136\n", "36 137\n", "36 138\n", "36 139\n", "36 140\n", "36 141\n", "36 142\n", "36 143\n", "36 144\n", "36 145\n", "36 146\n", "36 147\n", "36 148\n", "36 149\n", "36 150\n", "36 151\n", "36 152\n", "36 153\n", "36 154\n", "36 155\n", "36 156\n", "36 157\n", "36 158\n", "36 159\n", "36 160\n", "36 161\n", "36 162\n", "36 163\n", "36 164\n", "36 165\n", "36 166\n", "36 167\n", "36 168\n", "36 169\n", "36 170\n", "36 171\n", "36 172\n", "36 173\n", "36 174\n", "36 175\n", "36 176\n", "36 177\n", "36 178\n", "36 179\n", "36 180\n", "36 181\n", "36 182\n", "36 183\n", "36 184\n", "36 185\n", "36 186\n", "36 187\n", "36 188\n", "36 189\n", "37 0\n", "37 1\n", "37 2\n", "37 3\n", "37 4\n", "37 5\n", "37 6\n", "37 7\n", "37 8\n", "37 9\n", "37 10\n", "37 11\n", "37 12\n", "37 13\n", "37 14\n", "37 15\n", "37 16\n", "37 17\n", "37 18\n", "37 19\n", "37 20\n", "37 21\n", "37 22\n", "37 23\n", "37 24\n", "37 25\n", "37 26\n", "37 27\n", "37 28\n", "37 29\n", "37 30\n", "37 31\n", "37 32\n", "37 33\n", "37 34\n", "37 35\n", "37 36\n", "37 37\n", "37 38\n", "37 39\n", "37 40\n", "37 41\n", "37 42\n", "37 43\n", "37 44\n", "37 45\n", "37 46\n", "37 47\n", "37 48\n", "37 49\n", "37 50\n", "37 51\n", "37 52\n", "37 53\n", "37 54\n", "37 55\n", "37 56\n", "37 57\n", "37 58\n", "37 59\n", "37 60\n", "37 61\n", "37 62\n", "37 63\n", "37 64\n", "37 65\n", "37 66\n", "37 67\n", "37 68\n", "37 69\n", "37 70\n", "37 71\n", "37 72\n", "37 73\n", "37 74\n", "37 75\n", "37 76\n", "37 77\n", "37 78\n", "37 79\n", "37 80\n", "37 81\n", "37 82\n", "37 83\n", "37 84\n", "37 85\n", "37 86\n", "37 87\n", "37 88\n", "37 89\n", "37 90\n", "37 91\n", "37 92\n", "37 93\n", "37 94\n", "37 95\n", "37 96\n", "37 97\n", "37 98\n", "37 99\n", "37 100\n", "37 101\n", "37 102\n", "37 103\n", "37 104\n", "37 105\n", "37 106\n", "37 107\n", "37 108\n", "37 109\n", "37 110\n", "37 111\n", "37 112\n", "37 113\n", "37 114\n", "37 115\n", "37 116\n", "37 117\n", "37 118\n", "37 119\n", "37 120\n", "37 121\n", "37 122\n", "37 123\n", "37 124\n", "37 125\n", "37 126\n", "37 127\n", "37 128\n", "37 129\n", "37 130\n", "37 131\n", "37 132\n", "37 133\n", "37 134\n", "37 135\n", "37 136\n", "37 137\n", "37 138\n", "37 139\n", "37 140\n", "37 141\n", "37 142\n", "37 143\n", "37 144\n", "37 145\n", "37 146\n", "37 147\n", "37 148\n", "37 149\n", "37 150\n", "37 151\n", "37 152\n", "37 153\n", "37 154\n", "37 155\n", "37 156\n", "37 157\n", "37 158\n", "37 159\n", "37 160\n", "37 161\n", "37 162\n", "37 163\n", "37 164\n", "37 165\n", "37 166\n", "37 167\n", "37 168\n", "37 169\n", "37 170\n", "37 171\n", "37 172\n", "37 173\n", "37 174\n", "37 175\n", "37 176\n", "37 177\n", "37 178\n", "37 179\n", "37 180\n", "37 181\n", "37 182\n", "37 183\n", "37 184\n", "37 185\n", "37 186\n", "37 187\n", "37 188\n", "37 189\n", "38 0\n", "38 1\n", "38 2\n", "38 3\n", "38 4\n", "38 5\n", "38 6\n", "38 7\n", "38 8\n", "38 9\n", "38 10\n", "38 11\n", "38 12\n", "38 13\n", "38 14\n", "38 15\n", "38 16\n", "38 17\n", "38 18\n", "38 19\n", "38 20\n", "38 21\n", "38 22\n", "38 23\n", "38 24\n", "38 25\n", "38 26\n", "38 27\n", "38 28\n", "38 29\n", "38 30\n", "38 31\n", "38 32\n", "38 33\n", "38 34\n", "38 35\n", "38 36\n", "38 37\n", "38 38\n", "38 39\n", "38 40\n", "38 41\n", "38 42\n", "38 43\n", "38 44\n", "38 45\n", "38 46\n", "38 47\n", "38 48\n", "38 49\n", "38 50\n", "38 51\n", "38 52\n", "38 53\n", "38 54\n", "38 55\n", "38 56\n", "38 57\n", "38 58\n", "38 59\n", "38 60\n", "38 61\n", "38 62\n", "38 63\n", "38 64\n", "38 65\n", "38 66\n", "38 67\n", "38 68\n", "38 69\n", "38 70\n", "38 71\n", "38 72\n", "38 73\n", "38 74\n", "38 75\n", "38 76\n", "38 77\n", "38 78\n", "38 79\n", "38 80\n", "38 81\n", "38 82\n", "38 83\n", "38 84\n", "38 85\n", "38 86\n", "38 87\n", "38 88\n", "38 89\n", "38 90\n", "38 91\n", "38 92\n", "38 93\n", "38 94\n", "38 95\n", "38 96\n", "38 97\n", "38 98\n", "38 99\n", "38 100\n", "38 101\n", "38 102\n", "38 103\n", "38 104\n", "38 105\n", "38 106\n", "38 107\n", "38 108\n", "38 109\n", "38 110\n", "38 111\n", "38 112\n", "38 113\n", "38 114\n", "38 115\n", "38 116\n", "38 117\n", "38 118\n", "38 119\n", "38 120\n", "38 121\n", "38 122\n", "38 123\n", "38 124\n", "38 125\n", "38 126\n", "38 127\n", "38 128\n", "38 129\n", "38 130\n", "38 131\n", "38 132\n", "38 133\n", "38 134\n", "38 135\n", "38 136\n", "38 137\n", "38 138\n", "38 139\n", "38 140\n", "38 141\n", "38 142\n", "38 143\n", "38 144\n", "38 145\n", "38 146\n", "38 147\n", "38 148\n", "38 149\n", "38 150\n", "38 151\n", "38 152\n", "38 153\n", "38 154\n", "38 155\n", "38 156\n", "38 157\n", "38 158\n", "38 159\n", "38 160\n", "38 161\n", "38 162\n", "38 163\n", "38 164\n", "38 165\n", "38 166\n", "38 167\n", "38 168\n", "38 169\n", "38 170\n", "38 171\n", "38 172\n", "38 173\n", "38 174\n", "38 175\n", "38 176\n", "38 177\n", "38 178\n", "38 179\n", "38 180\n", "38 181\n", "38 182\n", "38 183\n", "38 184\n", "38 185\n", "38 186\n", "38 187\n", "38 188\n", "38 189\n", "39 0\n", "39 1\n", "39 2\n", "39 3\n", "39 4\n", "39 5\n", "39 6\n", "39 7\n", "39 8\n", "39 9\n", "39 10\n", "39 11\n", "39 12\n", "39 13\n", "39 14\n", "39 15\n", "39 16\n", "39 17\n", "39 18\n", "39 19\n", "39 20\n", "39 21\n", "39 22\n", "39 23\n", "39 24\n", "39 25\n", "39 26\n", "39 27\n", "39 28\n", "39 29\n", "39 30\n", "39 31\n", "39 32\n", "39 33\n", "39 34\n", "39 35\n", "39 36\n", "39 37\n", "39 38\n", "39 39\n", "39 40\n", "39 41\n", "39 42\n", "39 43\n", "39 44\n", "39 45\n", "39 46\n", "39 47\n", "39 48\n", "39 49\n", "39 50\n", "39 51\n", "39 52\n", "39 53\n", "39 54\n", "39 55\n", "39 56\n", "39 57\n", "39 58\n", "39 59\n", "39 60\n", "39 61\n", "39 62\n", "39 63\n", "39 64\n", "39 65\n", "39 66\n", "39 67\n", "39 68\n", "39 69\n", "39 70\n", "39 71\n", "39 72\n", "39 73\n", "39 74\n", "39 75\n", "39 76\n", "39 77\n", "39 78\n", "39 79\n", "39 80\n", "39 81\n", "39 82\n", "39 83\n", "39 84\n", "39 85\n", "39 86\n", "39 87\n", "39 88\n", "39 89\n", "39 90\n", "39 91\n", "39 92\n", "39 93\n", "39 94\n", "39 95\n", "39 96\n", "39 97\n", "39 98\n", "39 99\n", "39 100\n", "39 101\n", "39 102\n", "39 103\n", "39 104\n", "39 105\n", "39 106\n", "39 107\n", "39 108\n", "39 109\n", "39 110\n", "39 111\n", "39 112\n", "39 113\n", "39 114\n", "39 115\n", "39 116\n", "39 117\n", "39 118\n", "39 119\n", "39 120\n", "39 121\n", "39 122\n", "39 123\n", "39 124\n", "39 125\n", "39 126\n", "39 127\n", "39 128\n", "39 129\n", "39 130\n", "39 131\n", "39 132\n", "39 133\n", "39 134\n", "39 135\n", "39 136\n", "39 137\n", "39 138\n", "39 139\n", "39 140\n", "39 141\n", "39 142\n", "39 143\n", "39 144\n", "39 145\n", "39 146\n", "39 147\n", "39 148\n", "39 149\n", "39 150\n", "39 151\n", "39 152\n", "39 153\n", "39 154\n", "39 155\n", "39 156\n", "39 157\n", "39 158\n", "39 159\n", "39 160\n", "39 161\n", "39 162\n", "39 163\n", "39 164\n", "39 165\n", "39 166\n", "39 167\n", "39 168\n", "39 169\n", "39 170\n", "39 171\n", "39 172\n", "39 173\n", "39 174\n", "39 175\n", "39 176\n", "39 177\n", "39 178\n", "39 179\n", "39 180\n", "39 181\n", "39 182\n", "39 183\n", "39 184\n", "39 185\n", "39 186\n", "39 187\n", "39 188\n", "39 189\n" ] } ], "source": [ "per00 = np.arange(2, 6, 0.1)\n", "chiSq = np.array([])\n", "rp0 = np.arange(0.01, 0.2, 0.001)\n", "\n", "chichi2 = np.zeros([len(t00), len(rp0)])\n", "\n", "for i in range(len(per00)):\n", " thisp = per00[i]\n", " \n", " # set the model t0 to one value of t00\n", " params.per = thist\n", " m = batman.TransitModel(params, time)\n", " modelflux = m.light_curve(params)\n", " chiSq = np.append(chiSq, chisqa(nflux, modelflux))\n", " chiSq2 = np.array([])\n", " for j in range(len(rp0)):\n", " print i, j\n", " thisrp = rp0[j]\n", " params.rp = thisrp\n", " m = batman.TransitModel(params, time)\n", " modelflux2 = m.light_curve(params)\n", " chichi2[i,j] = chisqa(nflux, modelflux2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(101, 19)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFRCAYAAABg20SuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xu8ZFV95/3PtxGbNEh8Jo3dYnCQ0YBxEuSiQGJUwiiD\nt2gelcskMqAyRBycnjFeogakx4dABkQmdMTRSJAYJGaeEdDYCCGPGm6ZFnBA8BIbEKG7aY0i3UBz\n+T1/7Dqk+nDqnKrqU91duz7v16tedK299tqrOK/u71l7r1orVYUkSRpfC7Z1ByRJ0pYxzCVJGnOG\nuSRJY84wlyRpzBnmkiSNOcNckqQxZ5hLkjTmDHNJksbcU7Z1ByRJmi9Jng0s3oIm1lfVXfPVn60l\nrgAnSWqDJM9etGjRnRs3btySZjYCzx+3QHdkLklqi8UbN27koosu4vnPf/7AJ9922238zu/8ziKa\nkf2MYZ7kJODdwFLgZuA/VtU/9Kj768AZwD7AIuBO4PyqOqerztuAtwD/ulO0CviDXm32YphLklpl\nn332Yb/99hv4vLnuVCc5EjgLOAG4AVgGrEzyS1W1foZTNgD/Hfhm588vAT6R5IGq+mSnzsuAzwLX\nAA8B7wOuSPLLVXVvv313ApwkqVWqaujXHJbRjKwvrKrbgRNpbssf36MfN1XV56rqtqq6q6o+C6wE\nfqOrzu9W1cer6ptV9R3gbTTZfNggn9kwlyS1yijCPMmOwAHAVV3XKeBK4JB++pVkv07dv5ul2s7A\njsCP+2lzirfZJUmt0ucoe8bzZrEY2AFYO618LbD3bCcm+QGwW+f8U6vq07NUPwP4Ic0vCX0zzCVJ\nGq2XALsABwNnJPleVX1ueqUk7wPeDLysqjYNcgHDXJLUOnONzC+++GI+97nN8/T++++f7ZT1wGPA\nkmnlS4A1c/Tlzs4fb02yFDgV2OziSd4NvAc4rKpunbXzMzDMJUmt0s9t9iOPPJIjjzxys7Ibb7yR\ngw8+uFebjyRZRTMx7VKAJOm8P3eA7u0ALOwuSPIe4P3AK6vqxgHaeoJhLklqlRE9Mwc4G7igE+pT\nX01bBFwAkOR0YPeqOrbz/h0031e/vXP+y4D/AnR/z/y9wIeBo4G7kkyN/B+oqg399t0wlyS1yqjC\nvKouSbIYOI3m9vpNwOFVdV+nylJgj65TFgCnA3sCjwL/CPx+VX2iq86JNLPXPz/tch/uXKcvhrkk\nqVVGODKnqlYAK3ocO27a+z8B/mSO9p4zQBd78nvmkiSNOUfmkqRWGeXIfHtlmEuSWmecg3kYhrkk\nqVUcmUuSNOYMc0mSxtwkhrmz2SVJGnOOzCVJrTKJI3PDXJLUOuMczMMwzCVJreLIXJKkMTeJYe4E\nOEmSxpwjc0lSq0ziyNwwlyS1imEuSVILjHMwD8MwlyS1iiNzSZLG3CSGubPZJUkac47MJUmtMokj\nc8NcktQqhrkkSS0wzsE8DMNcktQqjswlSRpzkxjmzmaXJGnMOTKXJLXKJI7MDXNJUqsY5pIktcA4\nB/MwfGYuSWqVqZH5MK+5JDkpyeokDya5LsmLZqn7hiRXJFmX5KdJrknyyhnq/acktyfZmOSuJGcn\nWTjIZzbMJUmtMqowT3IkcBZwCrAfcDOwMsniHqe8FLgCOALYH7gauCzJvl1tHgOc3mlzH+B44M3A\nRwb5zN5mlySpP8uA86vqQoAkJwKvpgngM6dXrqpl04o+kOS3gNfS/CIAcAjw9ar6XOf9XUkuBl48\nSMccmUuSWmUUI/MkOwIHAFd1XaeAK2kCeU5JAjwN+HFX8TXAAVO365PsBbwK+OIgn9mRuSSpVUY0\nm30xsAOwdlr5WmDvPi/x+8DOwCVd1/zLzm36r3fCfgfg41V1Rr/9BsNcktRC29ts9s6z8Q8Br6uq\n9V3lLwf+ADgRuAF4LnBuknur6r/2275hLklqlX5G5pdffjmXX375ZmU/+9nPZjtlPfAYsGRa+RJg\nzWwnJjkK+ATwxqq6etrh04DPVNWnO+9vTbILcD5gmEuS1MtrXvMaXvOa12xWduutt/KGN7xhxvpV\n9UiSVcBhwKXwxDPww4Bze10nydHAJ4Ejq+rLM1RZBDw6rezxqfarz1sMhrkkqVVGuALc2cAFnVC/\ngWZ2+yLgAoAkpwO7V9WxnffHdI6dDPxDkqlR/YNVdX/nz5cBy5LcDFwPPI9mtH5pv0EOhrkkqWVG\nFeZVdUlnstppNLfXbwIOr6r7OlWWAnt0nfJ2mglt53VeU/6c5utsAMtpRuLLgWcB99GM/D84SN8N\nc0lSq4xybfaqWgGs6HHsuGnvD+2jvakgX95fL2dmmEuSWmd7m80+att00ZhB1riVJKkfo1ybfXu1\nzcJ8iDVuJUnSDLblyPyJNW6r6naaL8xv5J8nBUiSNDBH5lvJfKxxK0nSTCYxzLfVBLiB1rhN8gvA\n4cAdwEOj7pwkaWR2AvYEVlbVj0ZxgVHOZt9ejcts9sOBv9jWnZAkzZt/B3x2VI2PczAPY1uF+aBr\n3N4BsGDBAhYuXLjZgUWLFrHzzjuPoIvt1axAOLx169bxjGc8Y97b7WW2dnsdG6QvM9WdXjZXHwap\nP9d5c32mqf+uXr2avfbaq+d1p9ef6dhs9Xqd129593+7X70+6/Q2el1rwYIFs7bXq535LOvuwxe/\n+EVe+9rXPnF86thMbXS/FixY8KRz5qrbXW+m/xfd72c6NnVOr3oz/Xmq/mzn9iq76qqruPLKKzfr\n8wMPPMCNN94InX/XR8GR+VYyxBq3DwEsXLiQPfbYY4bDGsSWhu6CBQvYaaed5r3dmcwWbrNdc9Aw\nnyuMtzTMe/3C0G+YzxRsT3nKU9hll13mrDdM+HbX6ee8ucpnC8rutrsDrlebM4X5bEE4ild3qO20\n004861nP6hmiM507WwDOVneu8O7u12z/7VVvpjq9yud6v2DBAvbbbz/e+973blZ20003ceCBB4KP\nTOfVtrzNPusat5IkDcOR+VbUxxq3kiQNzDDfymZb41aSpGEY5tu5RYsWbesuCNh11123dRcE7Lbb\nbtu6CwL23Xffbd0FzWCcg3kYYxXmzlrfPhjm2wfDfPvwwhe+cFt3QdNM4sh8m260IkmSttxYjcwl\nSZrLJI7MDXNJUqsY5pIkjTnDXJKkFhjnYB6GE+AkSRpzjswlSa3ibXZJksacYS5J0pgzzCVJGnOG\nuSRJY24Sw9zZ7JIkjTlH5pKk1hnnUfYwHJlLklpl6jb7MK+5JDkpyeokDya5LsmLZqn7hiRXJFmX\n5KdJrknyylnqH5Xk8ST/c9DPbJhLklplVGGe5EjgLOAUYD/gZmBlksU9TnkpcAVwBLA/cDVwWZJ9\nZ2h7T+CPga8O85kNc0lSq4xwZL4MOL+qLqyq24ETgY3A8T36sayq/ltVraqqf6yqDwDfBV7bXS/J\nAuAi4A+B1cN8ZsNcktQqowjzJDsCBwBXdV2ngCuBQ/rpV5IATwN+PO3QKcDaqvr0gB/1CU6AkyRp\nbouBHYC108rXAnv32cbvAzsDl0wVJHkJcBzwpFvvgzDMJUmts73NZk9yDPAh4HVVtb5TtgtwIfD2\nqvqnLWnfMJcktUo/z7//9m//lquvvnqzsg0bNsx2ynrgMWDJtPIlwJrZTkxyFPAJ4I1V1X3RfwX8\nS5pJcemULeicswnYu6r6eoZumEuSWqWfMD/00EM59NBDNyv77ne/y0knndSrzUeSrAIOAy6FJ56B\nHwac2+s6SY4GPgkcWVVfnnb4NuBXppV9BNgFOBn4wawfoothLklqlREu53o2cEEn1G+gmd2+CLgA\nIMnpwO5VdWzn/TGdYycD/5BkalT/YFXdX1WbgG91XyDJT5qu1G2D9N0wlyS1yqjCvKou6Xyn/DSa\n2+s3AYdX1X2dKkuBPbpOeTvNpLnzOq8pf06Pr7MNyzCXJKlPVbUCWNHj2HHT3h86U7052j9u7lpP\nZphLklpne5vNPmqGuSSpVdwCdR4keX+SG5Lcn2Rtkv83yS/NUO+0JPck2ZjkK0meO999kSRNnlFu\ntLK9GsVyrr8B/HfgIODfADsCVyT5uakKSd4LvBM4AXgxsIFmsfqnjqA/kqQJMolhPu+32avqVd3v\nk/x7YB3NmrZf7xS/C1heVZd36ryFZkm819O1zJ0kSZrb1tho5elA0VlYPslzaKbvdy9Wfz9wPX0u\nVi9JUi+OzOdZZ3Wcc4CvV9XUF+OX0oT7TIvVLx1lfyRJk2Gcg3kYo57NvgL4ZeDXR3wdSZKAyZzN\nPrIwT/InwKuA36iqe7sOrQFCs3pO9+h8CXDjbG3ed999LFiw+ZOBpz3taey6667z0mdJ0vz5q7/6\nKz7/+c8ztYdIEn7605+O/LqG+TzpBPlvAS+rqru6j1XV6iRraBan/2an/q40s9/Pm95Wt912242d\ndtppFF2WJM2zN73pTRx11FEsWLDgiddNN93EgQceONLrGubzIMkK4GjgdcCGroXlf1pVD3X+fA7w\nwSTfA+4AlgN3A1+Y7/5IktR2oxiZn0gzwe3vppUfR7MJO1V1ZpJFwPk0s92/BhzR2UFGkqShOTKf\nB1XV19fdqupU4NT5vr4kSeMczMNwbXZJUqs4MpckacwZ5pIkjblJDPOtsZyrJEkaIUfmkqRWmcSR\nuWEuSWqdcQ7mYRjmkqRWcWQuSdKYM8wlSRpzkxjmzmaXJGnMOTKXJLXKJI7MDXNJUuuMczAPwzCX\nJLWKI3NJksbcJIa5E+AkSepTkpOSrE7yYJLrkrxolrpvSHJFknVJfprkmiSvnKHem5Lc1mnz5iRH\nDNovw1yS1CpTI/NhXrNJciRwFnAKsB9wM7AyyeIep7wUuAI4AtgfuBq4LMm+XW3+GvBZ4H8ALwS+\nAPyvJL88yGc2zCVJrTKqMAeWAedX1YVVdTtwIrAROL5HP5ZV1X+rqlVV9Y9V9QHgu8Bru6qdDPxN\nVZ1dVd+uqj8EvgG8c5DPbJhLklpnBKPyHYEDgKu6rlHAlcAh/fQpSYCnAT/uKj6k00a3lf22OcUJ\ncJKkVhnRBLjFwA7A2mnla4G9+7zE7wM7A5d0lS3t0ebSPtsEDHNJUsv0E+bXX389N9xww2ZlGzdu\nHFmfkhwDfAh4XVWtn+/2DXNJ0sQ56KCDOOiggzYru/POO1m+fHmvU9YDjwFLppUvAdbMdq0kRwGf\nAN5YVVdPO7xmmDan85m5JKlVRjEBrqoeAVYBh02VdZ6BHwZc0+u8JEcDnwKOqqovz1Dl2u42O17R\nKe+bI3NJUquMcNGYs4ELkqwCbqCZ3b4IuAAgyenA7lV1bOf9MZ1jJwP/kGRqBP5gVd3f+fPHgL9L\n8p+BLwJH00y0e/sgfXdkLklqnRF8LY2qugR4N3AacCPwq8DhVXVfp8pSYI+uU95OM2nuPOCertc5\nXW1eCxwDnADcBPw28FtV9a1BPq8jc0lSq4xyOdeqWgGs6HHsuGnvD+3zun8N/HU/dXsxzCVJreLa\n7JIkaew4MpcktcokjswNc0lSq0ximI/8NnuS9yV5PMnZ08pPS3JPko1JvpLkuaPuiyRpMoxiNvv2\nbKRh3tnn9QSabeK6y99LsyPMCcCLgQ0028g9dZT9kSS13wh3TdtujSzMk+wCXAS8DfjJtMPvApZX\n1eVVdQvwFmB34PWj6o8kaTJMYpiP8pn5ecBlVfW3ST40VZjkOTRfrO/eRu7+JNfTbPl2yZNa6ti4\ncSOPPPLICLusYTQrGm79dmc7Pkifptcd5txe5/Rb3v1+rnMGOT7Xnwc5PvV+tnrTj833++7yma69\ntf88U196lfU6r9+2+qm7YMGCvs7pt95MdWc6t1d7U+Xdx++44w40/0YS5mkWlX8hcOAMh5cCxRBb\nvv3kJz8Z6B9aPZn//55slP9P5rPtYdsa5rx+z+mn3ny0Nd/HBi3vdazfsn7rbsk1ZvrFp9/jg9Sf\n69y5znvooYeedK35NokT4OY9zJP8Is1Sdf+mszD9vHn00UfnszlJUgtNYpiP4pn5AcBuwDeSPJLk\nEeBlwLuSbKIZgYd52PJNkqTpfGY+P64EfmVa2QXAbcAfVdX3k6yh2fLtmwBJdgUOonnOLknSFhnn\nYB7GvId5VW0ANtvtJckG4EdVdVun6Bzgg0m+B9wBLAfuBr4w3/2RJKntttYKcJv9ilRVZyZZBJwP\nPB34GnBEVW3aSv2RJLXUJD4z3yphXlW/OUPZqcCpW+P6kqTJYZhLkjTmDHNJksacYS5JUguMczAP\nY+S7pkmSpNFyZC5JahVvs0uSNOYMc0mSxpxhLknSmDPMJUlqgXEO5mE4m12SpDHnyFyS1CreZpck\nacxNYph7m12S1CpTYT7May5JTkqyOsmDSa5L8qJZ6i5N8hdJvp3ksSRn96j380nOS3JPkoeS3J7k\n3w7ymQ1zSVKrjCrMkxwJnAWcAuwH3AysTLK4xykLgXXAcuCmHm3uCFwJPBv4beCXgLcDPxzkM3ub\nXZLUOiO6Zb4MOL+qLgRIciLwauB44MwZ+nBn5xySvLVHm28Fng4cXFWPdcruGrRjjswlSZpDZwR9\nAHDVVFk1vzFcCRyyBU2/FrgWWJFkTZL/k+T9SQbKZ0fmkqRWGdEEuMXADsDaaeVrgb0Hvtg/2wv4\nTeAi4AjgucCf0uTz8n4bMcwlSa3ST5jfcsst3HLLLZuVPfzww6PsVi8LaH4hOKEz0r8xyS8C78Yw\nlyRNqn7C/AUveAEveMELNiu79957+dSnPtXrlPXAY8CSaeVLgDXD9bS5LLCpNu/wbcDSJE+pqkf7\nacRn5pKkVhnFbPaqegRYBRw2VZYknffXbEF3/57m1nq3vYF7+w1yMMwlSerX2cDbk7wlyT7Ax4FF\nwAUASU5P8ufdJyTZN8kLgV2A3Trvn99V5U+Bf5Hk3CTPS/Jq4P3AnwzSMW+zS5JaZxRfTauqSzrf\nKT+N5vb6TcDhVXVfp8pSYI9pp90ITHVmf+AY4E6aiW9U1d1JDgc+SvO99R92/vykr7rNxjCXJLXK\nKJdzraoVwIoex46boWzOO+BVdT3wa310sSfDXJLUKpO4NrthLklqFcNckqQxN4lh7mx2SZLGnCNz\nSVLrjPMoexgjGZkn2T3JZ5KsT7Ixyc1J9p9W57TO3q0bk3wlyfQvzUuSNLBR7me+vZr3ME/ydJoV\nbR4GDgeeD/wX4J+66rwXeCdwAvBiYAPNnrBPne/+SJImyySG+Shus78PuKuq3tZVdue0Ou8CllfV\n5QBJ3kKz0PzrgUtG0CdJ0oRwAtz8eC3wv5NckmRtkm8keSLYkzyHZpWc7j1h7weuZ8v2hJUkaSJH\n5qMI872A3wO+DbySZt3Zc5P8buf4Upql7WbaE3bpCPojSVKrjeI2+wLghqr6UOf9zUn+NXAi8JkR\nXE+SpM2M8yh7GKMYmd9Lsxdrt9uAZ3f+vAYI878nrCRJ3mafJ39Psxdrt73pTIKrqtU0od29J+yu\nwEFs2Z6wkiRNZJiP4jb7R4G/T/J+mpnpBwFvA97eVecc4INJvgfcASwH7ga+MIL+SJImyCTOZp/3\nMK+q/53kDcAfAR8CVgPvqqqLu+qcmWQRcD7wdOBrwBFVtWm++yNJUtuNZDnXqvoS8KU56pwKnDqK\n60uSJpcjc0mSWmCcg3kYhrkkqVUcmUuSNOYMc0mSxtwkhvlItkCVJElbjyNzSVKrTOLI3DCXJLXO\nOAfzMAxzSVKrODKXJGnMGeaSJI25SQxzZ7NLkjTmDHNJUquMcgvUJCclWZ3kwSTXJXnRLHWXJvmL\nJN9O8liSs2eo87YkX03y487rK7O12YthLklqlVGFeZIjgbOAU4D9gJuBlUkW9zhlIbCOZpvvm3rU\neRnwWeDlwMHAD4ArkjxzkM9smEuSWmcUo3JgGXB+VV1YVbcDJwIbgeN79OHOqlpWVRcB9/eo87tV\n9fGq+mZVfQd4G002HzbI5zXMJUmtMoqReZIdgQOAq7quU8CVwCHz2P2dgR2BHw9ykrPZJUmtMqLZ\n7IuBHYC108rXAnsPfLHezgB+SPNLQt8Mc0nSxFm9ejWrV6/erGzTpk3bqDeNJO8D3gy8rKoG6oxh\nLklqlX5G5nvuuSd77rnnZmU/+tGP+NKXvtTrlPXAY8CSaeVLgDVDdbRLkncD7wEOq6pbBz3fZ+aS\npFYZxTPzqnoEWEXXxLQk6by/Zkv6m+Q9wAeAw6vqxmHacGQuSWqdEa3mdjZwQZJVwA00s9sXARcA\nJDkd2L2qjp06Icm+QIBdgN067zdV1W2d4+8FPgwcDdyVZGrk/0BVbei3Y4a5JKlVRrWca1Vd0vlO\n+Wk0t9dvohlN39epshTYY9ppNwJTDe8PHAPcCezVKTuRZvb656ed9+HOdfpimEuS1KeqWgGs6HHs\nuBnKZn2cXVXPmY9+GeaSpFaZxI1WDHNJUqsY5pIkjTnDXJKkFhjnYB6GYS5JapVJHJm7aIwkSWNu\n3sM8yYIky5N8P8nGJN9L8sEZ6p2W5J5Ona8kee5890WSNHlGtZ/59mwUI/P3Af8BeAewD81as+9J\n8s6pCp0Vb94JnAC8GNhAs8H7U0fQH0nSBJnEMB/FM/NDgC9U1Zc77+9KcgxNaE95F7C8qi4HSPIW\nmm3kXg9cMoI+SZImhM/M58c1wGFJngdPrEv768CXOu+fQ7PkXfcG7/cD1zO/G7xLkibUJI3KYTQj\n8z8CdgVuT/IYzS8MH6iqizvHl9KsUzvTBu9LR9AfSdIEmcSR+SjC/EiaheSPAr4FvBD4WJJ7quoz\nI7ieJEkTbRRhfiZwelX9Vef9rUn2BN4PfIZmE/fQ7DjTPTpfQrO7jCRJQ5vEkfkonpkvAh6bVvb4\n1LWqajVNoHdv8L4rcBBbuMG7JEnOZp8flwEfTHI3cCvN/q3LgE921TmnU+d7wB3AcuBu4Asj6I8k\naYJM4sh8FGH+TppwPg94BnAP8KedMgCq6swki4DzgacDXwOOqKpNI+iPJGnCjHMwD2Pew7yqNgD/\nufOard6pwKnzfX1J0mSbxJG5a7NLkjTm3DVNktQqkzgyN8wlSa1imEuSNOYMc0mSWmCcg3kYToCT\nJGnMOTKXJLWKt9klSRpzhrkkSWNuEsPcZ+aSpFYZ5UYrSU5KsjrJg0muS/KiOeq/PMmqJA8l+U6S\nY2eo85+S3J5kY5K7kpydZOEgn9kwlyS1zoiC/EjgLOAUYD/gZmBlksU96u8JXA5cBewLfAz4ZJJX\ndNU5Bji90+Y+wPHAm4GPDPJ5DXNJkvqzDDi/qi6sqtuBE4GNNAE8k98Dvl9V76mqb1fVecDnO+1M\nOQT4elV9rqruqqorgYuBFw/SMcNcktQqo7jNnmRH4ACaUfbUdQq4kiaQZ3Jw53i3ldPqXwMcMHW7\nPslewKuALw7ymZ0AJ0lqlRFNgFsM7ACsnVa+Fti7xzlLe9TfNcnCqnq4qv6yc5v+60nSucbHq+qM\nQfpumEuSWmWcZrMneTnwBzS37G8Angucm+Teqvqv/bZjmEuSWqWfMF+3bh3r1q3brOzRRx+d7ZT1\nwGPAkmnlS4A1Pc5Z06P+/VX1cOf9acBnqurTnfe3JtkFOB8wzCVJk2uuMN9tt93YbbfdNit74IEH\nuPHGG3u190iSVcBhwKUAndvihwHn9rjMtcAR08pe2SmfsgiY/lvE41PtV5+3CwxzSZL6czZwQSfU\nb6CZlb4IuAAgyenA7lU19V3yjwMnJTkD+DOa4H8jzQS3KZcBy5LcDFwPPI9mtH5pv0EOhrkkqWVG\n9cy8qi7pTFY7jeZ2+U3A4VV1X6fKUmCPrvp3JHk18FHgZOBu4K2dr59NWU4zEl8OPAu4j2bk/8FB\n+m6YS5JaZZQT4KpqBbCix7HjZij7Ks1X2nq1NxXky/vu6AwMc0lSq4zTbPb5YphLklrFMJckqQXG\nOZiH4XKukiSNOUfmkqRW8Ta7JEljzjCXJGnMGeaSJI25SQzzgSfAJfmNJJcm+WGSx5O8boY6pyW5\nJ8nGJF9J8txpxxcmOS/J+iQ/S/L5JM/Ykg8iSdKkGmY2+840S9i9A3jSrzFJ3gu8EzgBeDGwAViZ\n5Kld1c4BXg3838BLgd2Bvx6iL5IkPcnU6HyQ1zgb+DZ7VX0Z+DI8sWPMdO8CllfV5Z06b6HZjP31\nwCVJdgWOB46qqv+vU+c44LYkL66qG4b6JJIk4W32LZbkOTQLzV81VVZV99PsBHNIp+hAml8iuut8\nG7irq44kSUMZZlQ+7qPz+Z4At5Tm1vvaaeVrO8eg2WlmUyfke9WRJGkokzgydza7JKlVJjHM53s5\n1zVAaEbf3ZZ0jk3VeWrn2XmvOtPtNG89lCRtD/x3fR7Na5hX1WqaQD5sqqwT2gcB13SKVgGPTquz\nN/Bs4NoeTe85n/2UJG1ze46qYZ+Z9yHJzsBzaUbgAHsl2Rf4cVX9gOZrZx9M8j3gDpoN1+8GvgDN\nhLgknwLOTvJPwM+Ac4G/n2Um+0rg33Xae2jQPkuSths70QT5ylFeZJyDeRjDPDM/ELiaZqJbAWd1\nyv8cOL6qzkyyCDgfeDrwNeCIqtrU1cYy4DHg88BCmq+6ndTrglX1I+CzQ/RVkrT9uWbuKsObxGfm\nGefOS5I0Jcn+wKq99tqLn/u5nxv4/AcffJDvf//7AAdU1Tfmu3+j5Gx2SVKrTOLIfL5ns0uSpK3M\nkbkkqVUcmW/HkpyUZHWSB5Ncl+RF27pPbZXklM6OeN2vb02rM+vOeBqcOxJuH+b6OST59Ax/P740\nrY4/h21skr6WBmMS5kmOpJk1fwqwH3AzzU5si7dpx9rtFpqFfJZ2Xi+ZOtDnznganDsSbh9m/Tl0\n/A2b//04etpxfw7bkN8z334tA86vqgsBkpxI8xfleODMbdmxFnu0qu7rcWzWnfG2Uv9axx0Jtw99\n/BwAHu7198Ofw7bnbfbtUJIdgQPYfJe1Aq7EXdZG6Xmd24z/mOSiJHtA3zvjaZ65I+F25+VJ1ia5\nPcmKJP+i69gB+HPYpiZxZL7dhzmwGNiB2Xdi0/y6Dvj3wOHAicBzgK92Vv/rZ2c8zT93JNx+/A3w\nFuA3gfePrhxEAAAGRklEQVQALwO+1DWKX4o/B21l4xDm2sqqamVV/XVV3VJVXwFeBfxfwJu3cdek\nba6qLqmqy6vq1qq6FHgNzRyGl2/bnmnKKEfmg07GTvLyJKuSPJTkO0mOnaXuUZ0Jlf9z0M88DmG+\nnmbp19l2YtMIVdVPge/QrMnfz854mn+j2pFQW6izwdR6mr8f4M9huzCiIB9oMnaSPYHLaR657At8\nDPhkklf0qPvHwFeH+Ljbf5hX1SM0O61177KWzvuRru+rRpJdaP6huqf62xlP86zP/+/D7EioLZTk\nF4FfAO7tFPlz2MZGODJ/YjJ2Vd1O8xhyI82Ex5n8HvD9qnpPVX27qs6j2ZNkWXelJAuAi4A/BFYP\n85nHZTb72cAFSVYBN9D8j1gEXLAtO9VWSf4YuAy4E3gW8GHgEeDiTpVZd8bTcLbRjoSaZrafQ+d1\nCs3XzNZ06p1Bc+dqJfhz2B6MYjZ712Ts/6erfiWZbTL2wTSTtbutBD46rewUYG1VfTrJSwftN4xJ\nmFfVJZ3bGKfR3Kq6CTh8lq9Oacv8Is0udb8A3Ad8HTi4mt3rqP52xtPgtvqOhJrRbD+HdwC/SjMB\n7unAPTT/OP9h5y7iFH8O7TPbZOy9e5yztEf9XZMsrKqHk7wEOI7mNvzQ3DVNktQK6eya9sxnPpOF\nCxcOfP7DDz/MvffeCzPsmpbkmcAPgUOq6vqu8jOAl1bVk0bnSb4N/FlVndFVdgTNc/RFwI7AN4Hf\nq6qVneOfBn6+qn57kL6PxchckqR+9XObfcOGDWzYsGGzsscff3y2U4aZjL2mR/37O6PyfYB/CVzW\n9dXGBQBJNgF7d+bLzMkwlyS1zlxhvmjRIhYtWrRZ2aZNm1izZuZcrqpHOvO2DgMuhc0mY5/b4zLX\nAkdMK3sl/zwR8nbgV6Yd/wiwC3Ay8INZP0QXw1yS1CojXM511snYSU4Hdq+qqe+Sfxw4qXMr/s9o\ngv+NNGt3UFUPA9M3sfpJc6huG6TvhrkkqVVGFeZ9TMZeCuzRVf+OJK+mmb1+Ms23T95aVdNnuG8x\nJ8BJklphagLcM57xDJ761ME3cdy0aRPr1q2DGSbAbe8cmUuSWmWEt9m3W4a5JKlVDHNJklpgnIN5\nGIa5JKlVHJlLkjTmJjHMt/td0yRJ0uwcmUuSWmUSR+aGuSSpVQxzSZJaYJyDeRiGuSSpVRyZS5I0\n5iYxzJ3NLknSmHNkLklqlUkcmRvmkqRWMcwlSWqBcQ7mYRjmkqRWmcSRuRPgJEkac47MJUmtMokj\nc8NcktQqhrkkSWPOMJckqQXGOZiHYZhLklplEkfmzmaXJGnMOTKXJLXKJI7MDXNJUqsY5pIkjTnD\nXJKkFhjnYB6GE+AkSa0yNTIf5jWXJCclWZ3kwSTXJXnRHPVfnmRVkoeSfCfJsTPUeVOS2zpt3pzk\niEE/s2EuSVIfkhwJnAWcAuwH3AysTLK4R/09gcuBq4B9gY8Bn0zyiq46vwZ8FvgfwAuBLwD/K8kv\nD9S3SbsVIUlqpyT7A6sWLFhAkoHPryoef/xxgAOq6hsztH8dcH1VvavzPsAPgHOr6swZ6p8BHFFV\nv9pV9pfAz1fVqzrvLwYWVdXruupcC9xYVe/ot++OzCVJrTKK2+xJdgQOoBllT12ngCuBQ3qcdnDn\neLeV0+of0kedOTkBTpLUKsPecZ7jvMXADsDaaeVrgb17nLO0R/1dkyysqodnqbO0nz5PMcwlSa0z\naY+Qvc0uSWqL9cDGLWzj4U47M7X9GLBkWvkSYE2Pttb0qH9/Z1Q+W51ebc7IkbkkqRWq6q4kz6e5\nJT6s9VV11wxtP5JkFXAYcCk8MQHuMODcHm1dC0z/mtkrO+Xddaa38YppdebkbHZJkvqQ5M3ABcCJ\nwA3AMuCNwD5VdV+S04Hdq+rYTv09gf8DrAD+jCa0zwFeVVVXduocAvwd8H7gi8DRwPuA/avqW/32\nzZG5JEl9qKpLOt8pP43mVvhNwOFVdV+nylJgj676dyR5NfBR4GTgbuCtU0HeqXNtkmOAj3Re3wV+\na5AgB0fmkiSNPSfASZI05gxzSZLGnGEuSdKYM8wlSRpzhrkkSWPOMJckacwZ5pIkjTnDXJKkMWeY\nS5I05gxzSZLGnGEuSdKYM8wlSRpz/z9ifHpwwW3jmwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10db12550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "plt.imshow(chichi2, cmap='gray', aspect='equal')#, extent=????)\n", "plt.colorbar()\n", "chichi.shape" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "make this curve with scipy optimize curve fit" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import scipy.optimize as spicy" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "ename": "TypeError", "evalue": "<batman.transitmodel.TransitParams object at 0x10f46df10> is not a Python function", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-15-68c36dec6cf3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mspicymodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspicy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcurve_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnflux\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0muncertainty\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/matt/anaconda/lib/python2.7/site-packages/scipy/optimize/minpack.pyc\u001b[0m in \u001b[0;36mcurve_fit\u001b[0;34m(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;31m# determine number of parameters by inspecting the function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 628\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_lib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_util\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgetargspec_no_self\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0m_getargspec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 629\u001b[0;31m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarkw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefaults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_getargspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 630\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 631\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unable to determine number of fit parameters.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/matt/anaconda/lib/python2.7/site-packages/scipy/_lib/_util.pyc\u001b[0m in \u001b[0;36mgetargspec_no_self\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0mpython\u001b[0m \u001b[0;36m2.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0munder\u001b[0m \u001b[0mpython\u001b[0m \u001b[0;36m3.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \"\"\"\n\u001b[0;32m--> 326\u001b[0;31m \u001b[0margspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetargspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0margspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'self'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0margspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/matt/anaconda/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetargspec\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 814\u001b[0m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mim_func\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 815\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misfunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 816\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'{!r} is not a Python function'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 817\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarkw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_code\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 818\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mArgSpec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvarkw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_defaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: <batman.transitmodel.TransitParams object at 0x10f46df10> is not a Python function" ] } ], "source": [ "spicymodel = spicy.curve_fit(f = params, xdata = time, ydata = nflux, sigma = uncertainty)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
PaulSoderlind/JuliaTutorial
Tutorial_03b_DataContainers.ipynb
1
22604
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Containers\n", "\n", "This notebook shows how to combine data into different types of \"containers\" (arrays, dictionaries, tuples, ...) inside your program. \n", "\n", "(This notebook does not discuss DataFrames, see [DataFrames.jl](https://juliadata.github.io/DataFrames.jl/stable/).)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load Packages and Extra Functions" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "printyellow (generic function with 1 method)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "using Printf\n", "\n", "include(\"jlFiles/printmat.jl\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Arrays\n", "\n", "are used everywhere in finance and statistics/econometrics." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Vectors, Matrices and High-dimensional Arrays\n", "\n", "can be created in many ways: the code below demonstrates just a few of them. See the tutorial on Arrays for (many) more details.\n", "\n", "To access an array element, just do `A[2]` or similarly. Also, you can change an array element as in `B[2,1] = -999.`\n", "\n", "Notice that `D = [A B]` creates an independent copy, so later changing `B` does not affect `D`. However, if we define `E = B`, then a change of `B` will affect both itself and `E`.\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 100 \n", " 101 \n", "\n", " 1 2 \n", " 0 10 \n", "\n", " 100 1 2 \n", " 101 0 10 \n", "\n" ] } ], "source": [ "A = [100,101] #a vector\n", "printmat(A) #or display(A)\n", "\n", "B = [1 2; #a matrix\n", " 0 10]\n", "printmat(B)\n", "\n", "D = [A B] #a 2x3 matrix\n", "printmat(D)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A[2] is 101\n", "\n", "B is now\n", " 1 2 \n", " -999 10 \n", "\n", "\n", "D is not affected\n", " 100 1 2 \n", " 101 0 10 \n", "\n" ] } ], "source": [ "println(\"A[2] is \",A[2]) #access an element\n", "\n", "B[2,1] = -999 #change an element\n", "println(\"\\nB is now\")\n", "printmat(B)\n", "\n", "println(\"\\nD is not affected\")\n", "printmat(D) #D is not changed when B is" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4×3×2 Array{Float64, 3}:\n", "[:, :, 1] =\n", " 0.641239 0.778994 0.585005\n", " 0.250815 0.388669 0.856596\n", " 0.0243288 0.364745 0.403632\n", " 0.481117 0.539046 0.0905029\n", "\n", "[:, :, 2] =\n", " 0.242738 0.21676 0.245096\n", " 0.36651 0.920883 0.988267\n", " 0.0474819 0.194145 0.837609\n", " 0.819833 0.347735 0.0161131" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "C = rand(4,3,2) #a 4x3x3 array\n", "display(C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Arrays of Arrays (or other types)\n", "\n", "You can store very different things (a mixture of numbers, matrices, strings) in an array. For instance, if `a` is a vector, `str` is a string and `C` is a matrix, then `x = [a,str,C]` puts them into a vector.\n", "\n", "If you later change elements of the matrix `C` then it will affect `x` (discussed at the end of the notebook).\n", "\n", "Try first allocate an array of arrays and later fill it, use, for instance, `y = Vector{Any}(undef,3)` can be filled with any sort of elements, while `y = Vector{Array}(undef,3)` can be filled with arrays." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1 \n", " 2 \n", " 3 \n", "\n", " Hazel\n", "\n", " 11 12 \n", " 21 22 \n", "\n", "\n", "2nd try:\n", " 1 \n", " 2 \n", " 3 \n", "\n", " Hazel\n", "\n", " 11 12 \n", " 21 22 \n", "\n" ] } ], "source": [ "a = 1:3\n", "str = \"Hazel\"\n", "C = [11 12;21 22]\n", "x = [a,str,C] #element 1 of x is a\n", "foreach(printmat,x) #loops over the elements of x\n", "\n", "println(\"\\n2nd try:\")\n", "y = Vector{Any}(undef,3)\n", "y[1] = 1:3\n", "y[2] = \"Hazel\"\n", "y[3] = [11 12;21 22]\n", "foreach(printmat,y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Tuples and Named Tuples\n", "\n", "are very useful for collecting very different types of data (a number, a string, and a couple of vectors, say). \n", "\n", "Once created, you cannot change tuples (they are immutable). (Exception: *changing elements of an array* that belongs to the tuple will affect the tuple too.)\n", "\n", "Tuples are often used as inputs or outputs of functions.\n", "\n", "The next few cells show how to create tuples and named tuples, how to extract parts of them and what happens when you to try to change them." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(1:3, \"Hazel\", [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, str = \"Hazel\", C = [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, str = \"Hazel\", C = [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, C = [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, str = \"Hazel\", C = [11 12; 21 22], abc = 3.14, x2 = \"a\")" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a = 1:3 #how to create tuples and named tuples\n", "str = \"Hazel\"\n", "C = [11 12;21 22]\n", "\n", "t = (a,str,C) #a tuple, or tuple(a,str,C)\n", "display(t)\n", "\n", "nt = (a=a,str=str,C=C) #a named tuple, (a2=a,str2=str,C2=C) would also work\n", "display(nt)\n", "\n", "nt_b = (;a,str,C) #also a named tuple, names are given by variables\n", "display(nt_b)\n", "\n", "nt_c = nt[(:a,:C)] #create a new named tuple as a subset of another one\n", "display(nt_c)\n", "\n", "nt_d = merge(nt,(abc=3.14,x2=\"a\")) #merge named tuples to create a new one\n", "display(nt_d)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a2 and str2 are: 1:3 Hazel \n", "\n", "t[3] is [11 12; 21 22]\n", "\n", "nt.C is [11 12; 21 22]\n", "a3 is 1:3\n", "\n", "(in Julia 1.7+) C and a are:\n", " 11 12 \n", " 21 22 \n", "\n", " 1 \n", " 2 \n", " 3 \n", "\n" ] } ], "source": [ "(a2,str2,C2) = t #extract the tuple into variables (\"destructuring\")\n", "println(\"a2 and str2 are: $a2 $str2 \\n\")\n", "\n", "println(\"t[3] is \",t[3],\"\\n\") #can index into (tuple) t\n", "\n", "println(\"nt.C is \",nt.C) #we can use nt.C as a name (nt is a named tuple)\n", "\n", "(a3,str3...) = t #n Julia 1.6+, str3 will be a tuple \n", "println(\"a3 is \",a3)\n", "\n", "(;C,a) = nt #in Julia 1.7+, extract some symbols like this\n", "println(\"\\n(in Julia 1.7+) C and a are:\")\n", "printmat(C)\n", "printmat(a)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(1:3, \"Hazel\", [11 12; 21 22], 3.14)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, str = \"Hazel\", C = [11 12; 21 22], abc = 3.14)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#t[1] = -999 #cannot change the tuple, uncomment to get an error\n", "#t[4] = 34 #cannot add elements like this, uncomment to get an error\n", "t = (t...,3.14) #add an element like this\n", "display(t)\n", "\n", "#nt.a = -999 #cannot change the named tuple, uncomment to get an error\n", "#n.D = 34 #cannot add elements like this, uncomment to get an error\n", "nt = (;nt...,abc=3.14) #add an element like this or by using merge()\n", "display(nt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a Tuple Dynamically (extra)\n", "\n", "when the values and (perhaps also the names) are created dynamically in the program.\n", "\n", "Suppose `values` and `names` in the next cell may differ in length from one run of the program to the next. Using `tuple(values...)` and `NamedTuple{names}(values)` allows you to still create tuples/named tuples." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1:3, \"Hazel\", [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(a = 1:3, b = \"Hazel\", c = [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "values = [a,str,C]\n", "\n", "t2 = tuple(values...) #or (values...,)\n", "display(t2)\n", "\n", "names = (:a, :b, :c) #should be a tuple of symbols (:a) \n", "nt2 = NamedTuple{names}(values) #or (;zip(names,values)...)\n", "display(nt2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dictionaries\n", "\n", "offer a flexible way to collect different types of data. Dictionaries can (in contrast to tuples) be changed. Also, changing elements of an array that belongs to the dictionary will affect the dictionary too.\n", "\n", "A dictionary is organised as (key,value) pairs, where the key is the name of the element. You can loop over the elements (see below) and also change/add elements in a loop." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Dict{Symbol, Any} with 4 entries:\n", " :a => -999\n", " :verse2 => \"Stardust\"\n", " :str => \"Hazel\"\n", " :C => [11 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Dict{Symbol, Any} with 5 entries:\n", " :a => -999\n", " :abc => 3.14\n", " :verse2 => \"Stardust\"\n", " :str => \"Hazel\"\n", " :C => [11 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "D[:C] is [11 12; 21 22]\n" ] } ], "source": [ "a = 1:10\n", "str = \"Hazel\"\n", "C = [11 12;21 22]\n", "\n", "D = Dict(:a=>a,:str=>str,:C=>C) #dictionary, \"a\" instead of :a works too\n", "#D = Dict([(:a,a),(:str,str),(:C,C)]) #alternative syntax\n", "\n", "println(\"D[:C] is \",D[:C])\n", "\n", "D[:a] = -999 #can change an element\n", "D[:verse2] = \"Stardust\" #can add an element this way\n", "display(D)\n", "\n", "D_b = merge(D,Dict(:abc=>3.14)) #merge Dicts\n", "display(D_b)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: -999\n", "verse2: Stardust\n", "str: Hazel\n", "C: [11 12; 21 22]\n" ] } ], "source": [ "for (key,value) in D #loop over a dictionary\n", " println(\"$key: $value\")\n", "end" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## From a Dict to a NamedTuple and Back Again (extra)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(a = -999, verse2 = \"Stardust\", str = \"Hazel\", C = [11 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Dict{Symbol, Any} with 4 entries:\n", " :a => -999\n", " :verse2 => \"Stardust\"\n", " :str => \"Hazel\"\n", " :C => [11 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nt = (;D...) #create a named tuple from a dict\n", "display(nt)\n", "\n", "D2 = Dict(pairs(nt)) #create a dict from a named tuple\n", "display(D2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Potential Pitfall in Adding to a Dict (extra)\n", "\n", "If you have created a dict with only numbers by \n", "```\n", "D = Dict(:aa=>1)\n", "``` \n", "then you cannot add eg. a string by `D[:cc] = \"hello\"` since `D` is only set up to accept variables of the type `Int`. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Dict{Any, Any} with 2 entries:\n", " :aa => 1\n", " :cc => \"hello\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "D = Dict(:aa=>1)\n", "#D[:cc] = \"hello\" #error since D only accepts Int\n", "\n", "D = Dict{Any,Any}(:aa=>1) #this works\n", "D[:cc] = \"hello\"\n", "display(D)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a Dictionary Dynamically (extra)\n", "\n", "See below for examples.\n", "\n", "Remark: if you have the names as an array of strings (`names = [\"a\",\"b\",\"c\"]`), but want symbol names (`:a` etc), then use `Symbol.(names)`." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Dict{Symbol, Any} with 3 entries:\n", " :a => 1:10\n", " :b => \"Hazel\"\n", " :c => [11 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "names = (:a, :b, :c) #or [\"a\",\"b\",\"c\"]\n", "values = [a,str,C]\n", "\n", "D = Dict(zip(names,values))\n", "display(D)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Dict{Any, Any} with 3 entries:\n", " :a => 1:10\n", " :b => \"Hazel\"\n", " :c => [11 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "D = Dict() #empty dictionary\n", "for i = 1:length(values) #loop\n", " D[names[i]] = values[i] #add this to the dictionary\n", "end\n", "display(D)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Performance Tips (extra)\n", "\n", "Named tuples are often faster to create than Dictionaries. However, Dictionaries are easier to change afterwards." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Your Own Tailor Made Data Type\n", "\n", "It is sometime conventient to define your own `struct` as a container. The `struct` command creates an immutable type (you cannot change it, except for elements of arrays that belong to it). There is also a `mutable struct` approach." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x1: MyType(1:10, \"Hazel\", [11 12; 21 22])\n", "x1.s: Hazel\n" ] } ], "source": [ "a = 1:10\n", "str = \"Hazel\"\n", "C = [11 12;21 22]\n", "\n", "struct MyType #change to `mutable struct` to be able to change it later\n", " x #can be anything\n", " s::String #has to be a String\n", " z::Array #has to be an Array\n", "end\n", "\n", "x1 = MyType(a,str,C) #has to specify all arguments\n", "\n", "println(\"x1: \",x1)\n", "println(\"x1.s: \",x1.s)\n", "\n", "#x1 = MyType(1:10,10,[1;2]) #error since 10 is not a string\n", "#x1.x = 3 #error since we cannot change" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Potential Pitfall in Using Arrays in Structures (extra)\n", "\n", "It is also possible to specify array types (for instance, `z::Array{Float64}` instead of just `z::Array`). This has the effect of converting (if possible) an input array to Float64. While this might have its uses, it also comes with a potential drawback: the conversion breaks the link between the input array and the array inside `MyType`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#A Potential Pitfall when Using an Array in another Data Container (extra)\n", "\n", "Suppose you create an array of arrays (or a tuple or a dictionary) called `y`, and that the array `C` is one of the elements.\n", "\n", "If you later change *elements* of `C` then it will affect `y` as well (and vice versa). This happens with *arrays*, since they are designed to conserve memory space. For instance, even if `C` is a very large array (several GB, say), creating `y = [\"hello\",C]` will require very little additional memory space.\n", "\n", "If you want an independent copy, use `copy(C)`, for instance, `y = [\"hello\",copy(C)]`.\n", "\n", "In contrast, if you change the shape of `C` then it will *not* affect `y` (but you don't save any memory)." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "3-element Vector{Any}:\n", " 1:10\n", " \"Hazel\"\n", " [-999 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(1:10, \"Hazel\", [-999 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Dict{Symbol, Any} with 3 entries:\n", " :a => 1:10\n", " :str => \"Hazel\"\n", " :C => [-999 12; 21 22]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "MyType(1:10, \"Hazel\", [-999 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a = 1:10\n", "str = \"Hazel\"\n", "C = [11 12;21 22]\n", "\n", "x = [a,str,C]\n", "t = (a,str,C)\n", "d = Dict(:a=>a,:str=>str,:C=>C)\n", "e = MyType(a,str,C)\n", "\n", "C[1,1] = -999 #changing an element of C affects x,t,d,e\n", "\n", "display(x)\n", "display(t)\n", "display(d)\n", "display(e)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(1:10, \"Hazel\", [-999 12; 21 22])" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "C = 0 #changing the shape of C does not affect x,t,d\n", "display(t)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "@webio": { "lastCommId": null, "lastKernelId": null }, "anaconda-cloud": {}, "kernelspec": { "display_name": "Julia 1.7.2", "language": "julia", "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.7.2" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
vadim-ivlev/STUDY
coding/Cracking the code interview.ipynb
1
14856
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**1.1 Is Unique**: Implement an algorithm to determine if a string has all unique characters. What if you cannot use additional data structures?" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.88 µs ± 12.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" ] } ], "source": [ "# from IPython.core.debugger import set_trace\n", "\n", "def has_unique_characters(str=''):\n", " '''\n", " Checks if a string has all unique characters\n", " \n", " >>> has_unique_characters('abc')\n", " True\n", " >>> has_unique_characters()\n", " True\n", " >>> has_unique_characters('abac')\n", " False\n", " '''\n", "# 1/ time: 1.74 µs ± 14.5 ns ---------------------------\n", "# unique_chars = dict.fromkeys(str,1)\n", "# return len(unique_chars)==len(str)\n", "\n", "\n", "# 2/ time: 1.04 µs ± 7.39 ns using dictionary ----------\n", "# unique_chars ={}\n", "# for char in str:\n", "# if char in unique_chars:\n", "# return False\n", "# unique_chars[char]=1\n", "# return True\n", "\n", "\n", "# 3/ 1.4 µs ± 19.1 ns using a set -----------------------\n", "# char_set =set()\n", "# for char in str:\n", "# if char in char_set:\n", "# return False\n", "# char_set.add(char)\n", "# return True\n", "\n", "# 4/ 3.16 µs ± 131 ns using a bit vector ----------------\n", "# bit_vector =0b0\n", "# pos_a=ord('a')\n", " \n", "# import pdb; pdb.set_trace()\n", "# for char in str:\n", "# pos_char=ord(char)-pos_a\n", "# if bit_vector & (1 << pos_char):\n", "# return False\n", "# bit_vector |= (1 << pos_char)\n", "# return True\n", "\n", "# 5/ 1.88 µs ± 12.2 ns Array -----------------------------\n", " a =[0]*40\n", " pos_a=ord('a')\n", " \n", "# import pdb; pdb.set_trace()\n", " for char in str:\n", " pos_char=ord(char)-pos_a\n", " if a[pos_char]:\n", " return False\n", " a[pos_char] =1\n", " return True\n", "\n", "\n", "\n", "# print(has_unique_characters('qwertyuuidfsdgsg'))\n", "\n", "\n", "\n", "%timeit has_unique_characters('qwertyuuidfsdgsg')\n", "# import doctest; doctest.testmod()\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "&nbsp;\n", "\n", "&nbsp;\n", "\n", "---\n", "**1.2 Check Permutation:** Given two strings,write a method to decide if one is a permutation of the\n", "other.\n" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] } ], "source": [ "# def isPermutations(s1,s2):\n", "# len1 = len(s1)\n", "# len2 = len(s2)\n", " \n", "# if len1 != len2:\n", "# return False\n", " \n", "# ss1=sorted(s1)\n", "# ss2=sorted(s2)\n", " \n", "# for i in range(0,len1):\n", "# if ss1[i] != ss2[i]:\n", "# return False\n", "# return True\n", "\n", "\n", "def isPermutations(s1,s2):\n", " if len(s1) != len(s2):\n", " return False\n", "\n", " char_counts={}\n", "\n", " \n", " # fill it \n", " for c in s1:\n", " char_counts[c] = char_counts.get(c,0) +1\n", "\n", " # empty it\n", " for c in s2:\n", " char_counts[c] = char_counts.get(c,0) -1\n", "\n", " # check if all are 0\n", " for c in char_counts:\n", " if char_counts[c] != 0:\n", " return False\n", "\n", " return True\n", "\n", "\n", "\n", "\n", " \n", "print( isPermutations('abcdefffgh', 'dcabefghff') )\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1.3 URLify : \n", "Write a method to replace all spaces in a string with '%20 You may assume that the string has suf cient space at the end to hold the additional characters, and that you are given the \"true\" length of the string. (Note: if implementing in Java, please use a character array so that you can perform this operation in place.)\n", "\n", "|EXAMPLE||\n", "|:---|:---|\n", "|Input: |\"Mr John Smith \", 13|\n", "| Output: | \"Mr%20John%20Smith\"|" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def urlify(ss=\"Mr John Smith \", true_len=13):\n", "# 574 ns ± 47.7 ns\n", "# return s.strip().replace(' ','%20')\n", "\n", "# 760 ns ± 34 ns\n", "# return '%20'.join(s.strip().split(' '))\n", " \n", "# 6.54 µs ± 191 ns\n", "# n_spaces = ss.count(' ',0,true_len)\n", " n_spaces = 0\n", " for i in range(0,true_len):\n", " if ss[i]==' ':\n", " n_spaces +=1\n", " s=list(ss)\n", " for i in range(true_len-1,0,-1):\n", " if s[i] != ' ':\n", " s[i+n_spaces*2]=s[i]\n", " else:\n", " s[i+n_spaces*2]='0'\n", " s[i+n_spaces*2-1]='2'\n", " s[i+n_spaces*2-2]='%'\n", " n_spaces -= 1\n", " return ''.join(s)\n", "\n", "\n", "urlify()==\"Mr%20John%20Smith\"\n", "\n", "# %timeit urlify() \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1.5 One Away: \n", "There are three types of edits that can be performed on strings: insert a character, remove a character, or replace a character. Given two strings, write a function to check if they are one edit (or zero edits) away.\n", "#### EXAMPLE\n", "```\n", "pale, ple -> true \n", "pales, pale -> true \n", "pale, bale -> true \n", "pale, bake -> false\n", "```\n", "\n", "1h" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True True\n", "True True\n", "True True\n", "True True\n", "False False\n" ] }, { "data": { "text/plain": [ "TestResults(failed=0, attempted=5)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def first_diff(old, new):\n", " for i in range(0, min( len(old), len(new) )):\n", " if old[i] != new[i]:\n", " return i\n", " return i+1\n", "\n", "\n", "\n", "def inserted1(old, new):\n", " if len(new)-len(old)!=1:\n", " return False\n", " \n", " i = first_diff(old,new)\n", " \n", " if old[i:] == new[i+1:]:\n", " return True\n", " return False\n", "\n", " \n", " return True\n", "\n", "\n", "\n", "\n", "def deleted1(old, new):\n", " if len(new)-len(old)!=-1:\n", " return False\n", " \n", " i = first_diff(old,new)\n", " \n", " if old[i+1:] == new[i:]:\n", " return True\n", " return False\n", "\n", "\n", " return True\n", "\n", "\n", "\n", "def updated1(old, new):\n", " if len(new)-len(old)!=0:\n", " return False\n", " \n", " i = first_diff(old,new)\n", " \n", " if old[i+1:] == new[i+1:]:\n", " return True\n", " return False\n", "\n", "\n", " \n", "def zero_or_one(old, new):\n", "# if old == new :\n", "# return True\n", " \n", "# if inserted1(old,new) \\\n", "# or updated1(old,new) \\\n", "# or deleted1(old,new):\n", "# return True\n", "\n", "# return False\n", "\n", "\n", "# len_diff = len(new)-len(old)\n", "# checks = {0:updated1, 1:inserted1, -1:deleted1}\n", "# return checks.get(len_diff, lambda o,n: False)(old,new)\n", "\n", "\n", " len_diff = len(new)-len(old)\n", " \n", " if len_diff == 0: return updated1(old,new)\n", " elif len_diff ==1: return inserted1(old,new)\n", " elif len_diff == -1: return deleted1(old,new)\n", " else: return False\n", "\n", "\n", "print (True, zero_or_one('pale', 'pale'))\n", "print (True, zero_or_one('pale', 'ple'))\n", "print (True, zero_or_one('pales', 'pale')) \n", "print (True, zero_or_one('pale', 'bale'))\n", "print (False,zero_or_one('pale', 'bake')) \n", "\n", "\n", "\n", "\n", "\n", "\"\"\"\n", ">>> zero_or_one('pale', 'pale')\n", "True\n", ">>> zero_or_one('pale', 'ple')\n", "True\n", ">>> zero_or_one('pales', 'pale') \n", "True\n", ">>> zero_or_one('pale', 'bale') \n", "True\n", ">>> zero_or_one('pale', 'bake') \n", "False\n", "\"\"\"\n", "\n", "\n", "import doctest; doctest.testmod()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1.6 String Compression: \n", "Implement a method to perform basic string compression using the counts of repeated characters. For example, the string aabcccccaaa would become a2blc5a3. If the \"compressed\" string would not become smaller than the original string, your method should return\n", "the original string. You can assume the string has only uppercase and lowercase letters (a - z)." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x1a3b2c1d4 2e3 1\n", "xaa\n" ] } ], "source": [ "char=''\n", "count=0\n", "\n", "def compr(c):\n", " global char,count\n", " \n", " if char == c:\n", " count+=1\n", " return ''\n", " \n", " old_char, old_count = char, count\n", " char, count = c, 1\n", " \n", " if old_count>0:\n", " return '{}{}'.format(old_char,old_count)\n", " \n", " return ''\n", " \n", "\n", "def compress(string):\n", " s=''\n", " for c in string:\n", " s+=compr(c)\n", " \n", " s+=compr('')\n", " \n", " return string if len(string) <= len(s) else s\n", "\n", "\n", "\n", "print(compress('xaaabbcdddd eee '))\n", "print(compress('xaa'))\n", "\n", " \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1.7 Rotate Matrix: \n", "Given an image represented by an NxN matrix, where each pixel in the image is 4 bytes, write a method to rotate the image by 90 degrees. Can you do this in place?\n", "\n", "\n", "<img src='rotate90.png' width='400'>" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "code_folding": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1 2 3 4 5\n", " 6 7 8 9 10\n", " 11 12 13 14 15\n", " 16 17 18 19 20\n", " 21 22 23 24 25\n", "\n", "rotated:\n", " 21 16 11 6 1\n", " 22 17 12 7 2\n", " 23 18 13 8 3\n", " 24 19 14 9 4\n", " 25 20 15 10 5\n", "\n" ] } ], "source": [ "N = 3\n", "m = [\n", " [1, 2, 3],\n", " [4, 5, 6],\n", " [7, 8, 9]\n", "]\n", "\n", "\n", "def generate_m(N):\n", " '''Generates a square matrix NxN'''\n", " k = 1\n", " m = []\n", " for i in range(0, N):\n", " n = []\n", " m.append(n)\n", " for j in range(0, N):\n", " n.append(k)\n", " k += 1\n", " return m\n", "\n", "\n", "def print_m(m, N):\n", " \"Pretty prints matrix\"\n", " for i in range(0, N):\n", " for j in range(0, N):\n", " print('{0:>4d}'.format(m[i][j]), end='')\n", " print()\n", " print()\n", "\n", "\n", "def rotate(l, n):\n", " '''Rotates list to the right'''\n", " return l[n:]+l[:n]\n", "\n", "\n", "def rotate_m(m, N):\n", " for i in range(0, N//2+N % 2):\n", " for j in range(0, N//2):\n", " cp = [m[i][j], m[N-j-1][i], m[N-i-1][N-j-1], m[j][N-i-1]].copy()\n", " [m[i][j], m[N-j-1][i], m[N-i-1][N-j-1],\n", " m[j][N-i-1]] = rotate(cp, 1)\n", "\n", "\n", "N = 5\n", "m = generate_m(N)\n", "print_m(m, N)\n", "\n", "print('rotated:')\n", "rotate_m(m, N)\n", "print_m(m, N)\n", "\n", "[x for x in dir() if not x.startswith('__')]\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ricklupton/ipysankeywidget
examples/Linking and Layout.ipynb
1
31782
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Linking and Layout\n", "\n", "> [<i class=\"fa fa-2x fa-paper-plane text-info fa-fw\"> </i> Simple example](./Simple%20example.ipynb)\n", ">\n", "> [<i class=\"fa fa-2x fa-space-shuttle text-info fa-fw\"> </i> Advanced examples](./More%20examples.ipynb)\n", ">\n", "> <i class=\"fa fa-2x fa-link text-info fa-fw\"> </i> Linking and Layout\n", ">\n", "> [<i class=\"fa fa-2x fa-image text-info fa-fw\"> </i> Exporting Images](./Exporting%20Images.ipynb)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from ipysankeywidget import SankeyWidget" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> <i class=\"fa fa-info-circle fa-2x fa-fw text-primary\"></i> This uses the base [ipywidgets](https://github.com/ipython/ipywidgets) for layout and data, but you can use any widgets!" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from ipywidgets import (\n", " VBox,\n", " HBox,\n", " IntSlider,\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "links = [\n", " {'source': 'start', 'target': 'A', 'value': 10},\n", " {'source': 'A', 'target': 'B', 'value': 10},\n", " {'source': 'C', 'target': 'A', 'value': 10},\n", " {'source': 'A', 'target': 'C', 'value': 10},\n", "]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "790a475697554bbfbee5867c7fa8d68f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "SankeyWidget(links=[{'source': 'start', 'target': 'A', 'value': 10}, {'source': 'A', 'target': 'B', 'value': 1…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sankey = SankeyWidget(links=links)\n", "sankey" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> <i class=\"fa fa-gears fa-2x fa-fw text-info\"></i> A convenience factory function" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def slider(link, i, sankey):\n", " value = IntSlider(description=\"{source} → {target}\".format(**link), min=0, max=10, step=1, value=10)\n", "\n", " def _change(change):\n", " sankey.links[i][\"value\"] = value.value\n", " sankey.send_state()\n", " \n", " value.observe(_change)\n", " \n", " return value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Build up a slider per link to control the value:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "sliders = [slider(link, i, sankey) for i, link in enumerate(links)]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ecbee913b4e44d32abc1c78d4dc8a9da", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(SankeyWidget(links=[{'source': 'start', 'target': 'A', 'value': 10}, {'source': 'A', 'target': …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "box = HBox(children=[sankey, VBox(children=sliders)])\n", "box" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00a23a8e78c6408aa952ec9fc96ad35b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "096faac070cc4679b7a31e158589f524": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "IntSliderModel", "state": { "description": "start → A", "layout": "IPY_MODEL_c20a7f4732574151b1ce6c4f9a2e1e50", "max": 10, "style": "IPY_MODEL_ca9103a303a641c7ad843cbc9b417a52", "value": 10 } }, "0ae2cd3147cb4d3783d51cb7837f47e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "IntSliderModel", "state": { "description": "C → A", "layout": "IPY_MODEL_51dd9f11aa11461f876b483aa6b7ddec", "max": 10, "style": "IPY_MODEL_195bfa2a5c47491c883ba150dc68c5cc", "value": 10 } }, "12a554a0c0224ee39414d2c8647b349e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "195bfa2a5c47491c883ba150dc68c5cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "2cc0e2e252334c9b96cbff3f581874da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "30b65cdd28f649688fcd5f8fb16b2704": { "model_module": "jupyter-sankey-widget", "model_module_version": "^0.2.3", "model_name": "SankeyModel", "state": { "_model_module_version": "^0.2.3", "_view_module_version": "^0.2.3", "layout": "IPY_MODEL_97baf4291f73405d91e6ada159832abc", "links": [ { "source": "start", "target": "A", "value": 10 }, { "source": "A", "target": "B", "value": 10 }, { "source": "C", "target": "A", "value": 10 }, { "source": "A", "target": "C", "value": 10 } ], "nodes": [ { "id": "A" }, { "id": "B" }, { "id": "start" }, { "id": "C" } ], "order": [], "png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAgAElEQVR4nO3dfZRcdZno+wcIb8pLgIQkVfv323BGlEEcQeGIjmJGcGTGQWEARQFFhcgEIul07WdXUMZ2QEUHfAUFRd5EgQbTqfr9qtIxYAeFSEifNXPOnXX/OWet87bm3HPXca2zzsvcmbn3nMn9o4I0oULS6a569q79/az1XWsMGKt/u/bTz3RXV4sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDjQRHZLSKft34gAAAAo+AoEflvIvL/isjfGD8WAACAkfBREfknEblVel/FeovtwwEAACi/KCIzIrJURP5RRL5i+3AAAADKbZn0vjX4mT3/uSMi/9bu4QAAAJTfTSLyDyJy/J7//EnpfZvwPLNHBAAAUHI7pfctwqV7OkVE/j8R+bbhYwIAACit06T31ap+/V8icpjdQwMAACinL4nI/xSR94nI6jk1pLdkXWD0uAAAAErr34jI433+/HUi8v+IyP3DfTgAAADl9i7pfZXqsn3885aI/FcROWJojwgAAKDkvie9bw++TnqL1t6u3fPnHx7iYwIAABgZ/RYsAAAALAALFgAAwCJjwQIAAFhkLFgAAAB7q6/rJm68fa5rdD7s8+71XuN6n4emb4YJn4ev+Tx+x2u8z+fxx17Dkz4P0Wt42mt8TkR2e41rfB5niejljj3nkr8VkQnj2xsAMEjHjU2e6LRzjsvCR10Wb/Eafug1dhb6SURYsIj6xoIFACPm5JtbK9Jm932Jhpt83rnXa/zFoD6JCAsWUd9YsACg5FZu3HyG1/Y1Lgt3Og3Tw/wkIixYRH1jwQKAknHZ1O+4RrzSabwzzcKM5ScRYcEi6hsLFgAU3eqZJbU8vsvnoek0dK0/ccxNWLCI+saCBQBFtCa8Lsk6F3kNX/fafs76k8W+EhYsor6xYAFAUUzMLEmaYbXPw9fSPD5v/QniQBIWLKK+sWABgLFaNv22NOt8IdXOdutPCvNNWLCI+saCBQAW1k4e47LOx3zefsr6E8FCEhYsor6xYAHAEK1obD3Ta/ii11jY11XNJ2HBIuobCxYADEGq8Q+8hoesh/5iJyxYRH1jwQKAQZmYWZI0wqUuC5ush/2gEhYsor6xYAHAYpt48CiXda71Gp62HvKDTliwiPrGggUAi2XN7OFJo/Nxr/Hn1sN9WAkLFlHfWLAAYKFWzyxJsvZlRXuX9WEkLFhEfWPBAoAF8Np6v9fQsh7mVgkLFlHfWLAA4CCkja2neo33WQ9x64QFi6hvLFgAMA8nruse5/PQ9Bp2Wg/wIiQsWER9Y8ECgAPkNFySZmHGenAXKWHBIuobCxYA7IfTVs1r+KH1wC5iwoJF1DcWLADYp4lDXda5Ns3j89bDuqgJCxZR31iwAKCP2ng43WvnceshXfSEBYuobyxYADDXxMwSp3FtmscXrAd0GRIWLKK+sWABwB618XC6z8NT1oO5TAkLFlHfWLAAQESSPK6zHshlTFiwiPr2GgvWX4vI7r36exHZKSIXDGnkAcBgHTc2eWKq8VHrYVzWhAWLqG/7WbD+SkSu3tMnRKQhIv9BRP5RRE4dzvQDgAFJxjpv8XncZj2Iy5ywYBH1bT8LVuzz578vva9mrRvc1AOAAfON1tW8kH3hCQsWUd8OYsF6s/QWrM8MbvIBwAD5PHzVeviOSsKCRdS3/SxY0yKydE8nishb9vzZf9rzZwBQItdsfX2q4QHrwTtKCQsWUd/m+SL3l7pxSNMQABbHyo3d5bwFw+InLFhEfdvPgvVrEVk9pw+LyI+EJQtAmaSNrad6jdPWA3cUExYsor4dxGuwRESC9H6aEACKzWnnHK/hl9bDdlQTFiyivh3kgnWXiPwvETlkMBMRABaB13BBmgV+UnCACQsWUd8OYsE6cs8/+5vBTUUAWCCfh094jbush+yoJyxYRH3bz4L1L0Xkujk1RWRWeq/B+shwpiQAzJPPQ9N6uFYlYcEi6ts8f4rw76T3q3IuG9KYBIB5mJhZ4jTeaT1Yq5SwYBH1jV/2DGA08B5XJgkLFlHfWLAAlN5xY5Mn8h5XNgkLFlHfWLAAlFotD95r7FgP06omLFhEfWPBAlBaKxpbz0w1bLcepFVOWLCI+saCBaCU3Hjn/FTjDushWvWEBYuobyxYAEonydqX8R5XxUhYsIj6xoIFoFSSPK6zHpz0csKCRdQ3FiwA5XDF5GFe4x3WQ5NembBgEfWNBQtA8Y3tONprvM96YNKrExYsor6xYAEotKXrp5b6PD5hPSypf8KCRdQ3FiwAhZWMhbrXEKwHJe07YcEi6hsLFoBCqm0Mp/s8PGM9JOm1ExYsor6xYAEonHojvDPN4/PWA5L2n7BgEfWNBQtAodTycLHPw4vWw5EOLGHBIuobCxaAwnAabrAeijS/hAWLqG8sWAAKYPchLgu3WQ9Emn/CgkXUNxYsALbWzB7uNN5jPQzp4BIWLKK+sWABMLNMW8d6DY9YD0I6+IQFi6hvLFgATCzPJle6LG62HoK0sIQFi6hvLFgAhi7Jwmk+j9usByAtPGHBIuobCxaAoXLj7XO9tp+zHn60OAkLFlHfWLAADE2StS7yGnZaDz5avIQFi6hvLFgAhsJp+JT1wKPFT1iwiPrGggVg4FKNt1oPOxpMwoJF1DcWLACDMzGzxDfDt60HHQ0uYcEi6hsLFoDBWDt5jNN4v/WQo4PP5fEFp2Ha5WGT0/jTXuExl4XHfR4nfRaeEpHdde1c4/LwmMvDw4mGHzgN33V5uMvl8cuJdr6Y5J2my8OGmoabVuXh+rp2rqlp/NAKbZ+3qhnfTjSKHfOeqy8TkTOsRzGAEbKisfVkr+FJ6wWBDjCNf+U0bHfa3uI0THsNv0zz+NcH8t+VBX8FKzzjNTzqsviXiYbPuTxemTSmVtc3dN64fO3kMdbPZQAACsFlU7/jNU6bLw20z5zGn6caHnBZ52Gn7e5C/i4Z8LcIU+1sTzU85jXekWi4qtbsni0TDx5l/TwHAGBoas3u2V7js9YLBPVJ4y9c1nnYa3xiMf9esXsN1hNewxedhktqGzY76+c+AAAD4bLwh+ZLBL0ip/E5p50HXB4fHNSbu0pBXuTuNHRdFm5z4+GS+rpuYn0/AACwYImGq7zGXdafZKlXkodnnIbHXD74ryZKQRasV6Wh5fLYqGv3PJmYWWJ9jwAAMC8+D03zT6bUK2tv9nl4cpjLrhR1wZpb7yt5d9XycPHS9VNLre8ZAABek9fwFfNPnjTr8xhdFjdb/G9LGRasuWnY6bLwPafhkmXaOtb6HgIA4GVjO472Gu8z/2RZ8VwWZryGX1k+BinbgvXqM7y7nrc+KGvC66xvKwBAhR03Nnmizxf3J9FovktBnEk0BOvH4fPyL1gvlWrc4fPwtaQZVvOaLQDAUJ3S3HKK19ix/mRY1ZyGf+GzzuNeww7rx/JSMiIL1ivS+Aun7c/Xmt2zre85AMCIW9HYemaqYbv5J7+K5vL4rNfwtPXj2DsZxQXrFYWYaLjplOaWU6zvQQDAiHHjnfN730Kx/mRXvVweZ52Gls+D+WPpl4z8gvVyqbZ/6vN4df3GTSdZ35MAgJKra/dy609sVc1lcZvPivFaq30lFVqwXi686DV8v6bxQ7w4HgAwby4LN9p/MqtmLmtvcRp/af049pdUcsF6uTSPz3uNdyRZ+72ymhfHAwBe0+5DXBZus/7kVdmy8Iz5YzjApOIL1isLz3gNG+vZ1FnWdzAAoGjWdY90Gu+x/2RVvZzGXU7DtPXjmE/CgrWPQttpXFvLg7e+pQEAxpZOzCxNs/AT+09O1SvR8LzTMGX9OOabsGDtt1Tjo4mGq3hxPABUUDIW6r4gb15ZwX6RaHiyAI9j3gkL1jwKLzqN99Sz9p/I2I6jre95AMCA1TaG031entf9jFKJhq7X8r4zvrBgHVwan/MavuKy+B65YvIw6xkAAFhk9UZ4Z5rH580/4VSxLDzuSrxc+ZwFa3EKT/s8NJNG6/es5wEAYBEkWesin4cX7T/BVK96Fr/nND5k/TgWmrBgLW4aWk7DDXXtJtbzAQBwENJm5zrzTyYVzWXhNqfxm9aPYzESFqxB9mOXdT52fDOeYD0vAAAHINV4awE+eVSyRMNNXsMXrR/HYiUsWINPw06XhbuTLPyxTMwcZT0/AAB7WzN7uG+Gb5t/wqhiGnclWfsyn7c/a/5YFjFhwRpu2n4u1Xi7z8O7eXE8ABTAMm0d6zU8Yv4JooKlGne48c75NY0fsn4si52wYFm2LdFOtqKx9Uzr+QIAlbQ8m1zpsri5AJ8QKleqYfuKxtYz08bWU0fxpzWFBasQ9e7v9md5cTwADEmShdN8HrdZfwKoZBo7tTx4WTN7uMvCJvPHM4CEBauAhYddI165dP3UUuv5AwAjqdbsnu21/Zz9wK9kTxw3NnmiiIjXsLEAj2cgCQtWcdOw0+fxO0nWuYgXxwPAIvEaLkiz8IL5kK9iGu976Veh1PL4LvPHM8CEBascafiVy8JttTy+S2TiUOPxBADl5DV+0mvcZT7UK5jTeOdLP921cmN3eZqFGevHNMiEBat8afy5y9qNlXn7zcajCgDKw+ehaT7AK1tovuJaZPFe+8c02IQFq9T1XhvYvd5pq2Y0sgCg4CZmljiNd1oP7EqmcZdvtK6eezmSrP1e88c1hIQFa3TS8JDP2x85cV33OKMpBgAFc83W16caHjAf0BUszcILXsMFr7geEzNLfB6j9WMbRsKCNXKleXzB5+Fbbjx+QNZ1j7QZagBgbOXG7nKfh6esh3Il0/hsrdk9e+9rMmrv1v5aCQvWaKfhlz6PX6pr+zyR3YcYjDgAGL60sfVUr3HafAhXMY3TaWPrqXtfkxWNrSenGneYP74hJSxY1UnjtGuEDas0/q7BuAOA4VjR2Hqm1/is+dCtZOGplRu7y/tdF6edu+wf3/ASFqyKFp5Ks3Dd8qyzcsijDwAGx413zq/SV0mKVKrhAblm6+v7XZeabnmT9eMbdsKCVflcHn9U1+7lvDgeQKklWfsy3uPKqGb4tkzMLNnXtXFZ/EvzxzjkhAWL9pRm4QWn7W96bb1fJiaPGOJYBICFSfJws/UQrWqpxltf69rUtZtUcfEVFizql8ZnvYaJRMM/58XxAIrrisnDvMY7zIdmRUuz+On9XSKvYcL6cVokLFi0n5yGaa9xfW08nD6EaQkAB2hsx9Fe433WQ7KSadiZZK2L9neJ6jduOqn33kEFeMxDTliwaD5peNJp+NTJN7dWDGF6WjpURK4TkV+LyH8Xkb8Xkf9DRHIROdzwcQEQETlubPJEn8cnzIdiFdP2c268fe6BXCeXtRvmj9coYcGig0njLqft+5OsfdkybR074FE6bIeKyFMisltEZqS3VKmITInIP4nItIgcZvbogKpLxkLda+yYD8Jqti3JwmkHdKGumDzMa/hVAR6zScKCRQus9+L4zl2+ES+UNbOj8NWdDdJbrsb7/LNP7/lnnx3qIwLQU9sYTvd5eMZ68FUxl8XNy7PJA35vn7TZfZ/1Y7ZMWLBoEUu1s91n7T932jmnpC+OP0RE/pOI7HiNf+dnIvL14TwcAL9Vb4R3pnl83nrQVbE0Cz+Z77crXBbutH7clgkLFg0op6Gb5OHm+obOGwc0bgfhDOl9hUqtHwiAOWp5uNjn4UXrwVbFnMZ75v2LbddOHpNmoZIvbn8pYcGi4fSEyzrXluDF8e+X3oJ1ufUDAbCH03BDAYZYJXNZuO1gvh2RaPxT68dunbBg0TDTuMvn4QdJI1wqayePGcAoXqg/kN6CdaX1AwEgIi4Lt5kPrormNNxw0NdN2/dbP37rhAWLjEo1/Npl4c602X1fgV4c/ybpLVgbX+PfuVpEbhrOwwEqank2uTLV9k+tB1U1Cy/W8nDxwV67Zdo61v5jsE9YsKgApRq2p1nnC6ua8e2LOKIPxiEi8p9F5K/2/N97O1pE/ouIPDjMBwVUSpJ3/8hr/IX1YKpqLovvWdD1a4bV1h9DERIWLCpaGjtJHtclY603LNK4nq/PS++rWP2+SvUNEfnfIvKuoT4ioArqN246yWXhbvMhVNnCM7WNC/+VHVV+c9G5CQsWFTkNj/s8fKI2HpYtwvg+UIeLyM+lt2Q9LSJf2NNze/7stiE+FqAKdh/isvDRVDvbzYdOVdPYScZCfTGuZqrhMfOPpwAJCxaVpSzeW8vDxSeu6x63GDNgP5aIyMMi8u9F5B+k9+tynhV+uhBYXPVs6qw0Cz8xHzBVTsPj9Rs3nbQY15PXX72csGBR6Qov9n5AJXxiZXPqlMWYCfvwRRGZGODfD1TUxMySet76oM/Dw/YDpeJpvE/Gdhy9WJeW11+9nLBgUclzGqZc1hlb1Yxvn/d74b02Fixg0UzMLHFZfI9vhok0CzPWg4PirNd4h1wxuai/WNVrXG/+cRUkYcGiESrN4wtew6M+D5pknYsW+JICFizgYNTGw7JkbPoNde2e5zTc4LN4r/VwoFeWaPjcIK69z+N3rD+2oiQsWDTqaXjaafyu17jeN+MVdW2ft+yW6VUHMCpYsID9uEJEPuI1POQ1tLzGZ81veDqA2h8Z1BPCZWGT/cdXjIQFi6rdpNd4X79ef+aFsyIy4bLwPZfHb/g8fNVrmPB5aHqN652GG5JGuLSWTb9tyD/lCBTGF0VkogA3Mh1AqcYdbrxz/iCfENYfY5ESFiyivh17ziV/O6/PHb3/5/3HqcbbnYZPJY3W7w1yjgFFwIJVklIN21c0tp45yCfDqvFOav1xFilhwSLq27wXrD6lGra7LNxZ1+7ltQ2b3SBnG2CBBasMaZyu5cEP+sngs9bvm3+sBUpYsIj6thgL1qsL0WWdsZV5+82DnnXAMLBgFb7w1MqN3eXDeDIkjc7H7T/e4iQsWER9G8yC9XJO48/SZuc6p63aMGYfMAgsWAUu1fCAXLP19cN6MrisM2b9MRcpYcEi6tugF6xXpPGhROOfDmsOAouFBaugOY13ysTMkmE+GVwWb7H+uItSqu2fHrZ05bO1PFzs8/Cw187jLoubnYZp3geOqt5QF6zfFmLSCJcOcyYCC8GCVchC0+LJkGr7dvuP3TaXx2/Umt2zD+jAVs8sOaW55RQ33jnf5/Fql8VbfBbvdRq6XuMu64+FaFDZLFh70tgZ5FvVAIuFBatIadzl8/AJqyeD085d5mdgmMvjNxbtMNdOHlPX7nk+b3/WZeFufhE6jVKmC9aenIau03DJot2zwCJjwSpIaRZe8BousHwyeA3ftz4Hs/PX8OulEzNLB3m+yVjrDUkjXOqycJvXOG39MRMdbEVYsH6bhkeTsdYbBnnvAgeDBasIafu5A/621AD5LD5ofhZGpRpvH/Z5p42tp7pGvNLl8Rt8hYvKVKEWrN8WVNZOHjPs+xjYFxYs+7YlWTjN+okgIpJqeKwA52FU+7PW51/Pps5yWbvh8/C0/XkQ7btiLlhx1udhqxuPH7C+lwERFizTXBY3L88mV1o/CV7i8/iE9ZmYpXGN9fm/bOLQWh7flWr7dq/t58zPhmivirtg9Ury8K3lfDULxliwrNLwyDJtHWv9BJjLa3jc/FyMchpusD7/viZmjkry7h85jd/1GnZanxORz4u/YPk8zjoN0ysacaC/Xgx4LSxYFjXDt2XN7OHWF39vVf4WYWEXrDmWrp9a6vJ4pc/Dw9bnRdWuDAuWz+Os17DTafiU9b2LamLBGnKpxlutL/q+pNr+qfX5WOWy+GfW5z8fde0mvbeAiJutz46qV2kWrJfK4r0n5NuOt75vUS0sWEMsbXaus77gryXNwk+sz8gqp3Gt9fkfrGSs8xafB/XKi+NpOJVuwcrjrNfYqeXBW9+vqA4WrKHc2GFnkrUusr7Y++M1PGp+VkYlGm6yPv8Fu2LyMJ+Hd6d5/LLXyIvjaWCVcsHK42yqYfuKxlZel4WhYMEa9A2dx+fdePtc6wt9IHwef2x9XlaNxII119iOo+t564MuC3fz4nha7Mq6YPk8zqYad7jxzvnWtyhGHwvWQAvP1DaG060v8oHyGh6xPzObkjyusz7/QTm+GU9IGp2P+wov0LS4lXnB8nmc9Rp3JVn7Mut7E6ONBWtgN3AIyVioW1/g+fAaHzI/N6MSDZ+zPv9hqOXBuyz+mdfQsj5zKm+lX7D2NHJfuUahsGANoDQLP1m6fmqgv9duECq9YOXhZuvzH7b6hvBWn4cm7xxP821UFiyfx9k0i5+2vhcxmliwFjmn8R5Z1z3S+sIejCr/LkKvcb31+ZtZPbPEZfE9Pg9f5cXxdCCN0oLl8zibZJ3C/xASyocFaxFzWbhNZPch1hf1YKUaHrA+Q7tr1xmzPv9CGNtxdH1j509cFr7n8/Ci9XWhYjZqC5bXsLOu3fOsbz+MFhasRcpl4Ubri7lQLo8/sj5Hs+vXCBusz79o6jduOsk3WldX+f3RqH8jt2DlvZ/4Xrlx8xnW9x1GBwvWQtO4q5aHi60v5GJw2r7f/DyNctoatz7/Iuu9OD7c6DUE62tF9o3iguXz3vtk1TZsdtb3G4bjShH5xAD/HhasBd2Mo/V+Kl7DD63P1CqXx4b1+ZdFPeuc5TVs9Bp/YX3dyKZRXbB8HmdTjY/K6pkl1vcZBm+ziDw9wL+HBeugb8LRe0dgn4cfWJ+rVYl2MuvzL53VM0uSxtRqr/GONI/PW19DGl6jvGD5PFb7h14qZKEL1iEisuQ1/h4WrIO7+Ubyd1p5jfeZn61ZQa3Pv9TWhNfVNH7IZ/FeXhw/+o38gpXH2bL8Bg7s25kislVE/puI/HcRaYvIqXv+2V+LyO45LRORo0TkmyLyH0Xk70XkX4vIn0tvkXrJb0TkcyJyn4j8nYj8n33+npewYM2/J44bmzxx8Z8K9nzeubcA52uTxtz6/EdFbTws89q+JtXwmPl1pYFUhQXLa3j6hHzb8db3Ew7OUdJblKKI/LGIfFxE/qWI/CvpLUxniMh2EdkpIudI7ytRd4vIfxGR60XkQuktSP9bRNbM+Xt/IyL/957/7p+JyLl9/p6XsGDN64aL98nYjqMX/ZlQEF7D983P2KzQtD7/UXRKc8spiYabfB6j/TWmxaoSC1a+530NUUpnS+8rShfM+bPfE5GnROSlrXnvb+11pLc0zbVTRH445z//RkT+RkQOm/NnfItwoWm8Q66YPKzPGY6M3nsfFeCsTa5v2Gh9/qOulk2/zWn782kWZsyvNy2oqixYPo+zNY0fsr53MH/HSe+rUf9ORBoi8nZ55bf6RPovRoeKyO+KyAdFZIOI/A8ReWjOP/+NiNxxAH+PCAvWAVaNr244jffYn7VNLou3WJ9/ZUzMLEk1/oHX8PVU4w7ra0/zr0oLls/jtlH+zsUoO01EHpDeorVbRP6z9Jatl+y9GF0759/9W+l9Res/yqsXrC/s9b/DgnUwadyVaLjqYC9u2bgs3G1+5kY5bX/e+vwrae3kMW48XOI13uc17rJ+HtCBVbEFi7dxKblDROSt0nuN1W4RWb3nz+cuRm8Ukf8lIj8QkZPm/HdfFBasRS/NwgtewwV9zmxkVXrBysLe9wyGrPfi+PhJr53HrZ8P9NpVbcHyGnae0txyivU9ggP3Gen9lN9Rc/7saBH5JxF56asmcxejS6S3fP3unH//OOn9BOJDc/6MBWvBN1N8ttbsnj3/S1puPo/fMT97o1KNt1qfP16WjE2/IdHwOa+xY/3coFdXuQUrj7M+Dz+wvi9w4FZK760ZpkXkUun9JOGU9Bam2p5/5xHpfQvww9L7duI/isiDIvIWEfkT6b3A/Tcism3P3yfSf8Ga+/ccMefPWbD2TuN02th6qlSQz8O3zM/fKBas4lqlrXNSjbemGrZbP0+oVzUXrDjrtfV+6/sBB+790vsW3z+IyH8VkRkRececf75aem+58HcicoKIXCa99776e+ktVx8WkY/t+edf3vPf6bdg7f33vIQF6xWFp1Zu7C5fpGtbOlVesLyGL1qfP/ZjzezhXsMFLgt3php+bf6cqXDVXbDCk9a3AcqDBevlG+eHsnbyGOsLYimp9oI1YX3+mIe1k8ckjXCp1/BDXhw//Cq7YOVxtt4I77R++qMcWLB6fUlk4lDri2HN5fEbBbgWhs8BlNHJN7dWuKxzrc/jZAGeR5WoygsWbz6KA1XpBSvNwgt17V5ufRGKwmnnLutrYjg0/8L6/LFw9Q2dN3qN613W3mL9nBrlqrxg+TzOJlk4zfq5juKr8IIVnl7RiGdaX4AicRrvtL8uNrks3GZ9/lhMuw9x4+1zvYYvptrhxfGLXNUXLM9XvHEAqrpgPVHlF7Pvi8vCnQW4Nial2r7d+vwxIBOTR/hmvNBp5640Cy9YP9dGoaovWGkeXzi+GU/Y73MPlVa5Bctp+5syMXnEfk+mgryGr1tfH8OB+eX9nxDKbpm2jq1ruNxpvJ8Xxx98VV+wfB5nU21/xvr5jGKr1IKVNDoftz7wIvN5+Jr1NTJLw1eszx/DtTzrrEyz+Gmft58yf/6VLBasOOs0TFk/h1Fs1ViwNDxUX9dNrA+76LzGO8yvlVnhq9bnDzu18XC6yzpjTsO0/XOx+LFg9apv6LzR+rmL4hrpBSvN4/M+j1eL7D7E+qDLoNILlsY7rM8fRbD7kKTReYdvhgmv8Vnz52VBY8HqlWj4nPUzFsU1ugsWX7WaN5+Hr5pfN7PnCwsW9jIxeYTLwh86bX8zzSMvjp8TC9Zvi9ZPUxTXyC1YaR6f99q+hq9azV+axy9bXz+zNHzd+vxRXCeu6x7nm/GKVMMD5s/VAsSC9XK1bPpt1lL2TNQAABA9SURBVM9PFNNILVguC3fWNmx21odaVqm2b7e+hmaxYOEA9V4cH65zGn9m/rw1igXr5Zy2xq2fkyim0ViwNDy0Mm+/2fowy67KC5bLwp3W54/yWblx8xlOW+M+D1utn8PDjAXr5VJt/9T6eYhiKvuC9YTL4nusD3FUuCzcVoBrapLTyIKFBZg4tK7d85zGv/AafmX9fB50LFhzCy/K2I6jrZ+BKJ6yLlixloeLeZ3V4vJ5/FIBrq1JLo/fsD5/jIh13SOTrHWRb4Zvj+qL41mw9m7Lu62fdiieki1YYavP49W8E/tg+GYo0XNhcXPa/qb1+WP0LF0/tdRl4aNew0PWz/HFjAXrlSV5uNn6uYbiKcuC9UQtDxfL6pkl1gc2yrxWd8FK8vAt6/PHaHPaqvm8e73TMGX9fF9oLFh7pfEh6+cXiqfgC1bnXp8HvvQ6JKnGW+2vuU0sWBimlXn7zS7rjJX1xfEsWK+O76xgb8VbsDTs9Bq+UtMtb7I+nKqp8oLl8/gd6/NHNdWzqbN8HrRMyxYL1qvjcxb2VpgFK9X4qNPwqeVZZ6X1oVRVmnW+YP08sMpp/K71+QNuvH2ua4QNLgubrO+J14oFq08aLrB+/qBY7BYsjbtcHn+UaLhqeTbJUlUALgvVXbCycLf1+QNzOW3VXNb5mMvC99IsFOqnEVmw+qTxk9bPGRTLUBesNI8veA3fr2v38vqNm06y/uDxSk7bnzcfUkaxYKHQJiaPqG8Ib3VZ52OpxtutXyjPgtVnhmj789ZPExTLYBcsjc+6LNztNa5JGp138GZsxeayeIv1kLIbjvEe6/MH5mXt5DF17Z6XavszTjt3OQ3Tw7pfWLD6zJAsfM/6KYFiWeQFK7RdFm6ra/fyJAun8Uag5eLz0LQeUmZp+L71+QMLtXJjd3nSmFrtNNzgsviXPg9PDeJ+YcHqV2hbX38Uy7wXLKdh2mv4oc/af55m8dNeW++vbQyny5rwOusPBgtT6QUri/danz8wKC6b+h2vrfenWbjO56HpNd7Rexuc+ITX+PP53i8sWP2zvs4olstE5PI938a7I9V4q2uEDT7vXp9ouMqNh0t8M17oxtvnJlk4TdZ1j7R+wBic3o+K2w8pk1iwUHEn5NuOX9mcOqWeTZ2VNMPqpBEudRo+lWi4yeWxkWq8Nc3jl5127jp+9ae3iMjlXuN9XsMvze/fgsQXGgD0lWgnsx5QZmm8z/r8gTI6Id92vMvjlWkenze/j42rjYdl1tcDQAG5rN2wHlB2hR9Ynz9QZk4759jfx7bVtZtYXwcABVTlBctp+37r8wfKrspvVuzzOFvf0Hmj9TUAUEBOW+PWA8puwYosWMACrdy4+Qzre9l2wQpvtb4GAArIa1xvPaBYsIASm5g8wvpetixpdN5hfQkAFFCVF6xUwwPW5w+MAut72XTBaobV1ucPoICqvGB5DQ9Znz9QeldMHmZ+L7NgASiaJA83Ww8ouwUrPmR9/kDprZk93PxeNsyNd863vgQACijR8DnrAWVXeNj6/IHSm3jwKPt72XSOvNv6EgAooCSP6+wHlFEaHrE+f6D01oTXmd/LhtUb4Z3WlwBAASUabrIeUIYL1qPW5w+U3trJY8zvZcsFS9vnWV8CAAXksnCj9YCyKtXIggUs0InrusdZ38uWufH2udbXAEABOY1rrQeU2YKVhZ9Ynz9QdksnZpZa38uWrWrGt1tfAwAF5LL4Z9YDymzB0vZPrc8fKLv6jZtOsr6XLatnnbOsrwGAAnIabrAeUGZpeNz6/IGyq42HZeb3smFJo/V71tcAQAH5vP1Z6wFlt2B1WLCABTr55tYK83vZsBWNrWdaXwMABeQ1rrEeUIY9YX3+QNktu2V6VQHuZbNWbtx8hvU1AFBAPu9ebz2gDJu0Pn+g7OrrukkB7mWzauPhdOtrAKCA0mbnOusBZZaGJ63PHyi7Wh68+b1sWJKF06yvAYACSrX9GesBZVd4yvr8gbJb2Zw6xf5eNlywxlpvsL4GAAoozeKnrQeUVU7jz6zPHyg734z/zPpetixtbD3V+hoAKCCn4VPWA8pswcrCJuvzB8ouGZt+g/W9bNmq8U5qfQ0AFJDLOtdaDyizBUvDlPX5A2VX0y1vsr6XLatrN7G+BgAKyGv8pPWAMluw8rjZ+vyBsqttDKdb38umc0RbNetrAKCAfB4+YT2gzNLQsj5/oOxW5u03m9/Lhi3POiutrwGAAvLavsZ6QNkV2tbnD5RdMtZ5i/29bNeKxtaTra8BgALyebzaekCZpSFYnz9QdvVs6izze9mw2nhYZn0NABRQouEq6wFlWLQ+f6Dsas3u2QW4l806vhlPsL4GAAooaXQ+bj2gzNLYsT5/oOxWaesc83vZsKXrp5ZaXwMABeSyzsesB5RVTkPX+vyBsks0/HPre9myZdo61voaACggl8crrQeU2YKVtbdYnz9QdnXtnmd9L1sm12x9vfU1AFBArlHhBUvDtPX5A2VXy+O7rO9l0wVrYuYo62sAoIB83v6I9YCyK2y1Pn+g7Hy+5d3297LlgjV5hPU1AFBAvhmvsB5QZmn8ufX5A2WXZO33mt/LpgvWzBLrawCggOravdx6QBm2zfr8gbJLNf5BAe5luwVLJg61vgYACqiuoboLloanrc8fKDvfiBea38umCxYA9JFo/FPrAWVXeMb6/IGy89p6v/29bDZDXrQ+fwAFlTTCpfZDyiiNv7A+f6Dskqx1kfm9bFSaxxeszx9AQTkNl1gPKbPhmIUZ6/MHyi7Jwh9b38tmM0TjDuvzB1BQbrzCC5aG7dbnD5RdfWPnT6zvZbO0/Zz1+QMoqJrGD5kPKbPhGJ+1Pn+g7JghANBHLQ8Xmw8ps+EYfml9/kDZ8TIDAOij2l/eD7+yPn+g7JKsfZn5vWwWP4kMYB/qWbvCCxavnwAWqtK/DYI3KwawL/W89cECDCmjBSuyYAEL5LLwUfN72W6G8AvjAfSX5N0/Mh9SRvEj1sDCuazzMet72SqnoWt9/gAKKsk61X2TQA2/tj5/oOx8o3W19b1sV4jW5w+goCr9LsxZ4F2YgQXyefiE9b1suGC1rc8fQEG58fgB+yFltGDxay6ABXNZ51rre9kql8XN1ucPoKD4Ra0AFiLN4qft72WjBUvjz6zPH0BB+Wa80HpImaVxl/X5A2WXNjvXmd/LZjMkPGl9/gAKKm1232c+pAyzPn+g7Kr8FaxUw2PW5w+goHzW+n3rIWXZCfm2462vAVBmXuN66/vYKpfHH1mfP4CCqmeds6yHlGVJ1n6v9TUAysxn8UHr+9hswdL4XevzB1BQNd3yJushZZp2Hre+BkBZ+XzLu83vYdP5Ee+wvgYACqq2YbMzH1LGOe3cZX0dgLKpa/c8r+FX1vevaVn7z62vA4CCqt+46STzIVWENDzt8/ilet764KpmfDsRvbqk0XlHqu3PeI33md+zBchl7Yb1DAdQVGM7jrYeUkREZcxpXGs9wgEUmPWQIiIqYy7rfMx6fgMoMJeFTdaDioiofG15t/X8BlBgPg/fsh9URETlqpYHbz2/ARSY09a49aAiIipVGnaK7D7Een4DKLC6di83H1ZERCXKZWGT9ewGUHBJo/MO62FFRFSmkjx8y3p2Ayi4ZbdMr7IeVkREZcplnTHr2Q2gBLzGZ60HFhFRWXLj8QPWcxtACST8JCER0QF33NjkidZzG0AJ+DxebT2wiIjKkNMwZT2zAZTEKo2/az20iIjKkMvCF6xnNoAS8Rp+aT24iIiKXpJ1LrKe1wBKhNdhERHtP15/BWBefKPF67CIiF6z9lPWsxpAyZx8c2uF/fAiIipy3eutZzWAEnLavt9+gBERFbNlt0yvsp7TAEooydqXWQ8wIqJClsUHrWc0gJJapq1jzYcYEVERa8YrrGc0gBJz2rnLfJARERWq8KKsnTzGej4DKDHfjBfaDzMiouLktHOX9WwGMAJc1t5iPdCIiIrSqmZ8u/VcBjACEg1XWQ80IqJCpOFR65kMYFSs6x7pNf7CfLAREZm35d3WIxnACPF593r7wUZEZNoT1rMYwIhZpq1jvcbnCjDgiIhMcln4Q+tZDGAEeY3rrQccEZFFLgubrGcwgBG1dP3UUq/xWetBR0Q07FwW32M9gwGMMN+MV1gPOiKiodYM37aevQAqwOftp8wHHhHREEo17ljR2Hqy9dwFUAH1DeGt1kOPiGgYOQ03WM9cABXi8/gl68FHRDTgokzMLLGetwAqpH7jppN4wTsRjXK1PL7LetYCqKAka7/XegASEQ0kjeutZyyACnPaGjcfhEREi9uPRSYOtZ6vACrO5+HhAgxEIqJFKDxdGw/LrOcqAMjKjd3laRZm7AcjEdEC0rirlk2/zXqmAsBv+az1++bDkYhoQXWvt56lAPAqiYar7AckEdHBFL5mPUMBYJ8SDTfZD0oionmk4RHe7wpA4TmNf2E+MImIDiSNnRPybcdbz00AOCBOO3eZD04iotco1c72lc2pU6znJQDMi9P2/dYDlIiobxp21prds63nJADM38SDRzmN95gPUiKiOaUad9Qb4Z3WIxIAFsRrvMN6oBIR+TzOphq2r2hsPdN6LgLAokg0fM56sBJRxdPYqeXBW89DAFhUdQ2Xmw9YIqpo4anjxiZPtJ6DADAQvhEv9Bqfsx+2RFSVnMZ7ZO3kMdbzDwAGqr6um/g8PmE9dIlotEvz+ILT8CnrmQcAQ+U1bLQewEQ0mjkN0ysakRezA6impDG12mv4pfUwJqLRKcnDt5bzLUEAVbfslulVvCkpES04Db9yebzSeqYBQKHU89YHfR63mQ9pIipfGu+o37jpJOs5BgCFtHzt5DE+D03zYU1EpchlcfMqbZ1jPbsAoBRq4+H0VMNj1sObiIpZmsfn02bnOpmYWWI9rwCgdJJmWJ1qeMB6mBNRMUqzMJNouIlvBwLAIqhvCG91Gu+0Hu5EZFWISaPzcRnbcbT1PAKAkVPLg0813uq1zbvBE1UhDY+48fgB69kDANWwrntkkrUu8s3wbfNPAES0uGloOQ031LWbWI8aAKispeunlrpGvNLn4WHzTwxEdJCFp30emvUN4a3WMwUAsJfaeFhWy8PFaR6/7HlPLaLClubxBZfHH3mNa3pL1cSh1vMDAHCAahvD6S7rXOuycLfL2lusP6kQVbU0j897DY94jbkb75zPi9UBYJSs6x65cuPmM9x4/IDXuCbVeLvX8EOv4VGv4UmvIXiNP+f3IxLtvzSPz/s8POM0dF0WNqUaHvNZfNDn4VuuETYkWfuyVc349hWNrSdb3/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCY/n/D6IrH+Zt+LgAAAABJRU5ErkJggg==", "scale": 6.333333333333333, "svg": "<?xml version=\"1.0\" standalone=\"no\"?><!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\"><svg xmlns=\"http://www.w3.org/2000/svg\" width=\"600\" height=\"400\" viewBox=\"0 0 600 400\" style=\"font-family: &quot;Helvetica Neue&quot;,Helvetica,Arial,sans-serif;\"><g class=\"sankey\" transform=\"translate(100,10)\"><g class=\"groups\"/><g class=\"links\"><g class=\"link\" style=\"opacity: 0.8;\"><path d=\"M1,158.33333333333334 A35.499711449676816 35.499711449676816 0.7290919046720612 0 0 24.649647581185206,149.30858519422705 L111.78463168580488,71.47234263204538 A131.66666666666666 131.66666666666666 0.7290919046720612 0 1 199.5,37.99999999999999 L199.5,101.33333333333331 A68.33333333333334 68.33333333333334 0.7290919046720612 0 0 153.97683416605065,118.70505545882523 L66.84185006143096,196.5412980210069 A98.83304478301014 98.83304478301014 0.7290919046720612 0 1 1,221.66666666666666 Z\" style=\"fill: rgb(31, 119, 180);\"/><title>start → A\n10.0</title></g><g class=\"link\" style=\"opacity: 0.8;\"><path d=\"M200.5,37.99999999999999 A0 0 0 0 0 200.5,37.99999999999999 L399,37.99999999999999 A0 0 0 0 0 399,37.99999999999999 L399,101.33333333333331 A0 0 0 0 0 399,101.33333333333331 L200.5,101.33333333333331 A0 0 0 0 0 200.5,101.33333333333331 Z\" style=\"fill: rgb(31, 119, 180);\"/><title>A → B\n10.0</title></g><g class=\"link\" style=\"opacity: 0.8;\"><path d=\"M400,158.33333333333331 A68.33333333333333 68.33333333333333 1.5814342233704382 0 1 468.3294669043075,227.3935758890529 L467.8294669043075,273.6134781869798 A68.33333333333333 68.33333333333333 1.5814342233704382 0 1 399.5,342 L399.5,278.66666666666663 A5 5 1.5814342233704382 0 0 404.49971709055905,272.9397574442804 L404.99971709055905,226.71985514635344 A5 5 1.5814342233704382 0 0 400,221.66666666666663 ZM200,278.66666666666663 A0 0 0 0 0 200,278.66666666666663 L399.5,278.66666666666663 A0 0 0 0 0 399.5,278.66666666666663 L399.5,342 A0 0 0 0 0 399.5,342 L200,342 A0 0 0 0 0 200,342 ZM200,278.66666666666663 A5 5 1.5727910050005203 0 1 195.00000994684956,273.65669328225215 L194.50000994684956,169.80296958699856 A5 5 1.5727910050005203 0 1 199.5,164.66666666666666 L199.5,101.33333333333334 A68.33333333333333 68.33333333333333 1.5727910050005203 0 0 131.16680260694403,169.80296958699856 L131.66680260694403,273.65669328225215 A68.33333333333333 68.33333333333333 1.5727910050005203 0 0 200,342 Z\" style=\"fill: rgb(31, 119, 180);\"/><title>C → A\n10.0</title></g><g class=\"link\" style=\"opacity: 0.8;\"><path d=\"M200.5,101.33333333333334 A143.90679824561408 143.90679824561408 0.3429803389712105 0 1 248.8951849774666,109.71495807859485 L371.903519595718,153.64045880931258 A80.57346491228077 80.57346491228077 0.3429803389712105 0 0 399,158.33333333333331 L399,221.66666666666663 A143.90679824561408 143.90679824561408 0.3429803389712105 0 1 350.6048150225334,213.28504192140514 L227.59648040428198,169.35954119068737 A80.57346491228077 80.57346491228077 0.3429803389712105 0 0 200.5,164.66666666666666 Z\" style=\"fill: rgb(31, 119, 180);\"/><title>A → C\n10.0</title></g></g><g class=\"nodes\"><g class=\"node\" transform=\"translate(199.5,38)\"><title>A</title><text dy=\".35em\" text-anchor=\"start\" transform=\"translate(-4,-10)\" style=\"display: inline;\">A</text><line x1=\"0\" x2=\"0\" y1=\"-5\" y2=\"126.66666666666666\" style=\"display: inline; stroke: rgb(0, 0, 0);\"/><rect x=\"-5\" y=\"-5\" width=\"10\" style=\"fill: none; visibility: hidden; pointer-events: all;\" height=\"131.66666666666666\"/></g><g class=\"node\" transform=\"translate(399,38)\"><title>B</title><text dy=\".35em\" text-anchor=\"start\" transform=\"translate(4,31.666666666666664)\" style=\"display: inline;\">B</text><line x1=\"0\" x2=\"0\" y1=\"0\" y2=\"63.33333333333333\" style=\"display: inline; stroke: rgb(0, 0, 0);\"/><rect x=\"-5\" y=\"-5\" width=\"10\" style=\"fill: none; visibility: hidden; pointer-events: all;\" height=\"68.33333333333333\"/></g><g class=\"node\" transform=\"translate(0,158.33333333333334)\"><title>start</title><text dy=\".35em\" text-anchor=\"end\" transform=\"translate(-4,31.66666666666667)\" style=\"display: inline;\">start</text><line x1=\"0\" x2=\"0\" y1=\"0\" y2=\"63.33333333333334\" style=\"display: inline; stroke: rgb(0, 0, 0);\"/><rect x=\"-5\" y=\"-5\" width=\"10\" style=\"fill: none; visibility: hidden; pointer-events: all;\" height=\"68.33333333333334\"/></g><g class=\"node\" transform=\"translate(399,158.33333333333331)\"><title>C</title><text dy=\".35em\" text-anchor=\"start\" transform=\"translate(-4,-10)\" style=\"display: inline;\">C</text><line x1=\"0\" x2=\"0\" y1=\"-5\" y2=\"63.333333333333314\" style=\"display: inline; stroke: rgb(0, 0, 0);\"/><rect x=\"-5\" y=\"-5\" width=\"10\" style=\"fill: none; visibility: hidden; pointer-events: all;\" height=\"68.33333333333331\"/></g></g><g class=\"slice-titles\"/></g></svg>" } }, "34f6b41d1165415fa6a8ba159d2ff9b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "IntSliderModel", "state": { "description": "A → C", "layout": "IPY_MODEL_00a23a8e78c6408aa952ec9fc96ad35b", "max": 10, "style": "IPY_MODEL_12a554a0c0224ee39414d2c8647b349e", "value": 10 } }, "51dd9f11aa11461f876b483aa6b7ddec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "97baf4291f73405d91e6ada159832abc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "a12233631a234b6b8dd88b2f920f3869": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_30b65cdd28f649688fcd5f8fb16b2704", "IPY_MODEL_eb43f19579044e75b8b8107aab615838" ], "layout": "IPY_MODEL_b4abc2d99b6644818c67a8db108e6854" } }, "b4abc2d99b6644818c67a8db108e6854": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "c20a7f4732574151b1ce6c4f9a2e1e50": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} }, "c59b89e50ac9425b85f2fe15df5af2c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "IntSliderModel", "state": { "description": "A → B", "layout": "IPY_MODEL_ecd6fa6f9c214153a2db315eab5c86f7", "max": 10, "style": "IPY_MODEL_c5f18bfb2f2d42a5826ded2d147e68ef", "value": 10 } }, "c5f18bfb2f2d42a5826ded2d147e68ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "ca9103a303a641c7ad843cbc9b417a52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "eb43f19579044e75b8b8107aab615838": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_096faac070cc4679b7a31e158589f524", "IPY_MODEL_c59b89e50ac9425b85f2fe15df5af2c5", "IPY_MODEL_0ae2cd3147cb4d3783d51cb7837f47e7", "IPY_MODEL_34f6b41d1165415fa6a8ba159d2ff9b0" ], "layout": "IPY_MODEL_2cc0e2e252334c9b96cbff3f581874da" } }, "ecd6fa6f9c214153a2db315eab5c86f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.0.0", "model_name": "LayoutModel", "state": {} } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }
mit
sudhanshuptl/Fun-Tool
Learn/ExtractEmail_&_remove_from databse.ipynb
1
8214
{ "metadata": { "name": "", "signature": "sha256:53e9c7993b1a8d16f3842da2579de65e4efb6075ec0672338f97a4f9d397c9be" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Extract Email from deleviry failure mail & remove it from database" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import re\n", "import pprint,sys" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "filename = \"email1\"" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "f=open(filename,'r')\n", "data=f.read()\n", "f.close()\n", "print len(data)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "74901\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "mailRegex = re.compile(r'([\\w.]+(@|\\(at\\))\\w+(\\.|\\(dot\\))((\\w){2,7}(\\.|\\(dot\\))(\\w){2,5}|(\\w){2,7}))')\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "res=mailRegex.findall(data)\n", "print len(res),\"emails found\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "487 emails found\n" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "#Removing duplicates & extras\n", "ls=[]\n", "for email in res:\n", " if email[0] != \"[email protected]\" and email[0] != \"[email protected]\":\n", " if email[0] not in ls:\n", " ls.append(email[0])\n", "print \"total email to remove \",len(ls)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "total email to remove 82\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "pprint.pprint(ls)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "['[email protected]',\n", " 'CAG3Hmb8Ysvb7QswrjNauKNfA_NasRC8YLg4Le86RYqknDOTS7w@mail.gmail.com',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]',\n", " '[email protected]']\n" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "print \"R you sure to remove\"\n", "check=raw_input(\"y/n\")\n", "if check=='n':\n", " sys.exit()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R you sure to remove\n" ] }, { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "y/ny\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Removing from database" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from pymongo import MongoClient" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "client=MongoClient()\n", "\n", "db=client.Emaildb\n", "inidata=db.data.count()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "for email in ls:\n", " try:\n", " db.data.remove({\"email\" : email})\n", " except:\n", " print \"email not found\"\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "print inidata-db.data.count(),\"Documents removed\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0 Documents removed\n" ] } ], "prompt_number": 22 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-2.0
slock83/FaceDetect
NN Playground-VariX.ipynb
1
409067
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Neural network \"playground\"\n", "\n", "## imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:49.070000", "start_time": "2016-11-19T18:35:39.097000" }, "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from cStringIO import StringIO\n", "import matplotlib.pyplot as plt\n", "import caffe\n", "from IPython.display import clear_output, Image, display\n", "import cv2\n", "import PIL.Image\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:49.090000", "start_time": "2016-11-19T18:35:49.088000" }, "collapsed": false }, "outputs": [], "source": [ "os.chdir(\"start_deep/\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Caffe computation mode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### CPU" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:49.991000", "start_time": "2016-11-19T18:35:49.092000" }, "collapsed": true }, "outputs": [], "source": [ "caffe.set_mode_cpu()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### GPU\n", "\n", "Make sure you enabled GPU support, and have a compatible (ie. nvidia) GPU" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T20:22:43.238000", "start_time": "2016-11-19T20:22:43.233000" }, "collapsed": true }, "outputs": [], "source": [ "caffe.set_device(0)\n", "caffe.set_mode_gpu()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Network loading and tests" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:50.797000", "start_time": "2016-11-19T18:35:49.993000" }, "collapsed": true }, "outputs": [], "source": [ "net = caffe.Net('deploy.prototxt', \"facenet_iter_200000.caffemodel\", caffe.TEST)\n", "#training = caffe.Net('facenet_train_test.prototxt', \"facenet_iter_200000.caffemodel\", caffe.TRAIN)\n", "#solver = caffe.SGDSolver('facenet_solver.prototxt')\n", "#test_net = solver.testnets[0]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:50.817000", "start_time": "2016-11-19T18:35:50.800000" }, "collapsed": true }, "outputs": [], "source": [ "\n", "def showarray(a, fmt='jpeg'):\n", " a = np.uint8(np.clip(a, 0, 255))\n", " f = StringIO()\n", " PIL.Image.fromarray(a).save(f, fmt)\n", " display(Image(data=f.getvalue()))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T18:35:51.080000", "start_time": "2016-11-19T18:35:50.821000" }, "collapsed": false }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/wAALCAAkACQBAREA/8QAHwAAAQUBAQEB\nAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1Fh\nByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ\nWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/APn+iiiiiiiiiiiiiiii\niiiiiiiiv//Z\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36\n", "36\n", "[[ 0.20703125 0.30078125 0.3046875 ..., 0.3359375 0.78125 0.9609375 ]\n", " [ 0.21875 0.34765625 0.36328125 ..., 0.3671875 0.7734375 0.96875 ]\n", " [ 0.24609375 0.41015625 0.44140625 ..., 0.3515625 0.703125 0.9609375 ]\n", " ..., \n", " [ 0.22265625 0.3515625 0.640625 ..., 0.296875 0.4765625\n", " 0.61328125]\n", " [ 0.24609375 0.3671875 0.65234375 ..., 0.1953125 0.22265625\n", " 0.2109375 ]\n", " [ 0.26171875 0.37109375 0.640625 ..., 0.2421875 0.2421875\n", " 0.23046875]]\n", "{'prob': array([[ 0.01360568, 0.98639435]], dtype=float32)}\n" ] } ], "source": [ "#im = np.array(PIL.Image.open('train_images/0/137021_102_88_72_72.pgm'))/256.0\n", "im = np.array(PIL.Image.open('train_images/1/image000619.pgm'))/256.0\n", "im_input = im[np.newaxis, np.newaxis, :, :]\n", "net.blobs['data'].reshape(*im_input.shape)\n", "net.blobs['data'].data[...] = im\n", "showarray(im)\n", "print (len(im))\n", "print (len(im[0]))\n", "print (im)\n", "output = net.forward()\n", "print(output)\n", "if output['prob'][0][0] >0.9:\n", " print \"visage\"" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2016-11-08T08:49:34.007000", "start_time": "2016-11-08T08:49:34.001000" }, "collapsed": false }, "source": [ "The cell bellows checks that opencv and its python bindings are properly installed" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2016-11-16T17:38:38.060000", "start_time": "2016-11-16T17:38:38.055000" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.4.13\n" ] } ], "source": [ "print cv2.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Face detection in image\n", "\n", "This block performs the actual processing of an image (specified in the code btw), and checks for faces in it\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T20:23:46.948000", "start_time": "2016-11-19T20:22:47.677000" }, "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "starting processing\n", "(919, 440)\n", "(706, 338)\n", "(543, 260)\n", "(417, 200)\n", "(320, 153)\n", "(246, 117)\n", "(189, 90)\n", "(145, 69)\n", "adding overlay\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy\nMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAI9BKsDASIA\nAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA\nAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3\nODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm\np6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA\nAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx\nBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK\nU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3\nuLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1vHNF\nLRVkAehopD0pehoAKKXtRigAAFHaijPApAHelxSZAPUUFlHVgPxoGGKXvSCROu5fzo8xDnDD86AH\nYo70m9f7w/OjzI+7r+dIB1OqMSxnHzrn2NL5i+tADhTqYGGf8RTty+opAOzS03IoDjPf8BQA7vTg\naYDzkA/lTunY/lQMeDzTs0wZ9DTWYqOh/CgBzvivjXxRc/bPEerXKnKy3UjA+oLE19gu7Ef6tvzH\n+NfF182ZJCe7Gn0I+38v1IIuY2qJTxipID94VF6UjQ9o+B0p+z63GTwrwsB9Q+f5CvXPMxxmvDvg\nrcuut6nbqMh7YSHnH3Wx/wCzV7QGbqwA9BuBNJBLoWhJzVuN+KzFcnmrUZI4yv4k/wCFJiNBH5qY\nNkdaohm5wUwPUn/CpEeXH3Y/++z/APE0gLWeBQOtMTdtHzJ+Z/wpcPngxn6k/wCFMCQmgHjFNO//\nAGD/AMCP+FJucdl5/wBo/wCFUA5u31FFJiQ/e2AezEn+VKRz1FAhDTadgf3ufpTSP9r/AMdpAJR3\nNJzn73T/AGf/AK9HrzyfagApDQR/tf8Ajv8A9ekw2OHH/fP/ANemAfWkpCG671P/AAD/AOvS4Jzl\ngfoMf1oAQfd/E0UFeMBiPpik2f7bfp/hQAtFJt4+836UEf7TfpTEFA6D6UbeOrH8RS4HvQMTvRS4\nHqaMD34oASjtSkdgxHvRx9aBCCgUpx6UcehpAHNFBx7/AJ0cccH/AL6oAMChelKAM55/M0YHofzp\ngHSik2qfX8GP+NGxf9r/AL7P+NADucUYB4puwcdf++jTsDOfmz/vGgAHSlowOpBz9TRtHv8A99Gg\nYoHFLjpTdikd/wDvo0FBxjd1/vn/ABpCHjrSL0pQBnP9TRx/kmgBelLSbR7/AJmnYB7fqaBh0p2M\nimFQCCMjJ/vGpARTAao4FOo49P1pePT9aAAUoFACn1H40BcHO5vocUAOHWlXoKaAQxO44xjHYUoR\nf9r/AL6NAx4paaFHv/30aUIoGOf++jQA6lppRTx83/fRpQoBzz+JJoAUdKWm7Rnv+Zp2MUDCijFJ\njDfUUALTV6fiadSFQT3/ADNAxaKTaPf8zS4Hv+dMAoox7migAoo496Dz3IoAKKMe5oxz1NAC0lGM\ndWNGPc0wCijHuaMe5oAKKPxNAHvQIDRSY9/0pefX9KYCUxxwadzj7w/L/wCvTG3Y5ZfwH/16iWwh\nP+W//AR/M1NUP/LYf7tS4b1H5VohIKKOc9vypPm9qYBSUvzZ7UhzntQIKTFL83ov5/8A1qT5vRfz\n/wDrUCDtRSZbP3Rj6/8A1qUZ9qoQlBpcH2FBoENxRSnI6DNJk+mKYCY4oxyfrS/hR3piCkI9aUn2\nozx/9amAmKSlznsfyo3Adj+VAhF6UYoHHr+VLnPY/lQAYoxRn6/lS59ifoM0CEI+U/SlApf4e/5U\nAigAxSijIpQQe4oHYTFIV+ZTTtyg4yAfrRkEjnpSCwYpcUtLQWojcUtLS0h2Gkc0Yp1FFx2G4pKf\nRRcTiZox6D8qRh7D8qdSEcj61iMMAdh+VGPYflTqKAE2j+6PypNqgY2j8qdiigBoVSo+UY+lOwPQ\nflQv3RS4pDExz0H5U49Og/Kk70poAaOvandRSAcmnUAIAKUEjoTRRSACT6mnZPqaaaWgAyfWlyaS\nikAuaM570lFAC0uaTNITQMdmopG+X15FKWqKQ8D1zSAZdS+Vayy/3ELfkK+Mrn55fxP86+wNbk8r\nQdRk6bLaRvyU18fSOVkb61XQhfGGFUDHFVj0qUkk5NRHqaRoej/BqUJ4su1JwXsmA9/nQ/0r21nx\nXz78LZjF48shuwsiSKff5GP8wK97mkVerKPqaS6hPoWY2yato3FZcNzD/FLGDnuwq0l5bn/l4i/7\n7FIk0Q2RU0bcVQW8t/8An4iz/vipPttsmA08an0ZgKBmmhqRTzWWt/aiTJvof93zFqwmo2ZPF3Af\npIKLAXs0xjwv1FQC8gIysqke3NPE8b4CNk5qrCLGaTNN3DGdwx9aQSRnlXU/Q0AOpM0Z54BP0FJ8\n39x/++TSAB1P0ozSAnk7H6dNpzSFiP8AlnL/AN+2/wAKAF9qSm+Z/sS/9+m/wpPMGfuSf9+2/wAK\nYD6QdTTTKOyyf9+2/wAKAzY4jY559P50AOo9KaGY/wDLJvxZf8aPm/uH8x/jQIWg9DSZP9w/mP8A\nGj5j0Q/mP8aYC9qKQ7v7pP4j/GlG4k5Uj3JH+NAB0opcc/8A16T/ADwaQwNJSke1GPemIDQOvWjr\n/wDrowfT9RSAPajnuKMH0owcUDFopMn+6f0/xpRk9iPrimIXtR3oxRj3pDA9qWgqccYyOlIA3on/\nAH1/9amA6lxTQD7fn/8AWp2D7UCClPb60YpSCR2z9aQwFFKFbjlPcAn/AApcHHUUAJ2pRRilxTAM\ncD60vajGcc07b6EUAJS0g57inAcZoABTu+KNvuKMHIxt/E0ALTqbh/8AY/76/wDrUfOey/8AfR/w\noGOpab8+OAv/AH0f8KX95/dT/vo/4UgHd6WkG7uBn60fN6D86YxaWmgn2/Ol+b2/OgBaO9N+b0H5\n0Evj5VUn0Jx/SgY6io8zf3I/++z/AIUoMp6rH/32f8KYD6KQbu+0fif8KXn2oAO9LSc+tLj3FABR\nTdx/un8x/jRub+4fzH+NADqO9N5/un9Kdg0AJS0fhRTASloxSc0AFFHejn0oEFFNEimRowTuUAng\n4596dQAlRP8Ac4qTPsfyprKcVMthCD/Wj/dqWov+Wi8fw1LWkdhBSUdOx/Kj8DTAKKBzSZA6kCgA\noo3L/eH50bl/vCmIKKTcDwCM+maC6gcsB9TQIWko3KRkMCPrRuX+8PzpiCkI4oyPUUEjGcjimIKM\nUZ460uc0wExRilooENxyKMUp6il4oATFGKdiigLDcUAcmnUdSaAsJilpcUUDsJSgUtKOtIpIaBxS\n0DpS0DSCilxS4pFWG4yDSgUvTNFA7CYpcUYpaQ7DcUmKfikoFYyUfOckHBqSoIkC4Hc88irFZ8rW\n5mncTpRig9OaXvQMSjH1paBQMB070D8aWjtQIKU0nelpDEH0pTz2ope9ACY9qNqn1/M0tFADdi5B\nwc/7xpdij+9/30f8aXvS0gGlcHALY9zmjAHr+dKetJQAAD3/ADNHGKKM0gEBIJ4GPqaC3Hb8qTPW\nm5oARtp6qp/4DURRM52LkdOKcTTSaAMrxNsXwtrDbEyLKYj5R/cNfIk/3yfevrjxS2PCGtf9eM//\nAKA1fJExyafQlfExhOTmo2+8frTxnGKYeppGh0Hge4a28aaQ69Wukj/76+X+tfREpUMSFXPqQK+Z\ndEuvsOuWF3/zwuY5PyYGvpOdsNil1CWyLlqwOeFz/uir0bEdP0rMsm+YitBDz0pEltZG4+Y/nUwk\ncj7x/Oqo6VOh4pDJBnJzk/WrMcrjufzqsDzmpFPNNAWjK5HLMR9aA5xyT+dRA9qcpqhEjMdvX9ac\nXb+8fzqMng0oIoAXJpCabRSAUn3pjDLqPf1p2ab/ABrQA/pmijNJmmAvSkoooEGecdqTikDfNx6U\ntAw7UUGj8KBAelHrzRSZA60DFoNJlexo3L6igQtFJuHqKA6noRQAooHrSAg9Dml3DufzoAWgUm4Z\n6ik3qB94fnQA+kHFN8xP7y/nTs4OPyoAWik6UtAxaWm5o3p03L+dAhw+lLTPMQZBdQR2JpfNj/56\nL+YoGPpaZ5iHoy/nTgy+ooAcOtFCsMjkUwzRIcNIin0LAUAS0tRCeHH+uj/76FKJov8Anqn/AH0K\nAJKcO1RedEOsif8AfQp6yxkgB1JPbNMBRxTqZvRSVLAd+eKXzE/vr+dIB4paaGH94fnTgw9RTAcO\ntC8k/WgdaaJEDFS6gg9CaQySlqMzRjrIn/fQpPtMH/PaP/voUAS0tQ/arfP+vi/77FKLiD/ntH/3\n0KBkg7/WnVCZ4kYh5EU56FgKUXEJ/wCW0f8A30KYEtFR+dF/z0T/AL6FL5sf/PRP++hQA+kFNEkZ\nGQ6/mKabiJchpY1I6gsKAJaKiF1bn/lvH/32KDcwD/ltH/30KYyWio/Oi/56J/30KBNETtEiE+gI\nzQBJRQORR0oEFFFFAwooooAKO1GaKACiiimIKKKSgAzTW5pc0xnC5J6DmplsIP40+lS1CjAlSCOl\nTVcdhIKKKKoYUlLSUCClpKKYBRRRTEA4zRzRRQISilopiYmBSAYFOxQBxQFhMUYpcUUBYTFIRxTq\nMUBYaqKowBTsUuKKB2ExS0UUDsJgbvqOlLgUEfMPpS0AkJgelKBilxRSKSEwPSlwM0tHc0DsGKXA\noxS0ikhMUAUtFA7BRiilpFWEpMU6koFYwIXAt1ZS0h64JDH6HFWQZCAdg+m6n7cD0opSbZzpWG/v\nCOUA991L8/8AdGP96orq5hsVXzn+ZuijGahGp2xAP7zn2H+NRdDLfzdNq/8AfX/1qUbvRf8Avr/6\n1U/7Tt+mH/T/ABp66jbHq+36j/Ci4Fj5s4wv/fX/ANaj5sDhT+NRfa7bqJgf+At/hS/bIP75/wC+\nD/hRcZL8+ei/99f/AFqX58fdX/vr/wCtUa3ELH/WKPqcU8yxdTNF/wB9j/GgAUuccJz/ALX/ANan\nYbH8OfrTBPDn/XR/g4p6srfdIP05oATDn+5+Z/wpQH9U/WnBGPRW/KjawOCCPwoAZ8/A3p7cGkxK\nejx4/wB05pksZcc9RyvOOf8AP9alQkxjIwfTNTcBpSTtKn4qaTZJgbpFz7L/APXpxPNLQA3a3/PQ\nf98f/XpGyCAJDzx93/69OpjY3L60MBNuAf3hye+z/wCvTCv/AE1b/vkf404moycUgEK/9NWz/uj/\nABqMqf8Ans+f90U4kVj6r4k0zSFf7VcoJF/5ZBhvP4E0XAb4oGPB+tHzHb/QpxyoH8Br5Nk5NfRm\no+PNB1jwvqlpFdmK4ltZlSOVNuSVIAz0z+NfPNxbyQ53rwDjIOaE00JJ8zK+ABUJ6mns2aZTLHKc\nEH0NfTHmxSxJKpkxIoYHd0yPpXzN2r6WsdLvLbSbK3ufIjuIYI45Ua5jyrhQGH3uxBrKpVp02lN2\nuNpuJdsCu/OX/Mf4Vqps9H/76rPs7OVSCXg/C4Q/1rTW3cH70X/f1f8AGs/rNH+Zf18hcrHbEI4D\nZ93b+hqVUi4DKSTyfnbH86asL/3ov+/q/wCNSiJ8D5k/7+L/AI0fWqP8y/r5ByvsPVY8cbhjsG/x\nqRQncN/30aaImx/CcDs4P9aAa0p1YVL8jvYTViYLHj7p/wC/jf40qxRg5xJ/39f/ABqMNx/gacmR\nn/HNaiJlSLghWI7EyP8AyzTjtPVefXc3+NMDelLu5pgG1P7p/wC+2/xpdif3T/303+NJmjvQApVO\nPk/8eP8AjQNoOfLX9T/Wmk9KM8e9ACkq3WNPypCE7RJ+VIPrRmkAFYyOYo8/7oo2Rkk+Wn/fIoJp\nB3oAdwBjauPYUFUPPlp/3yKKTPNAC4X+4n/fIpcL/dT/AL5FIDmigBBjn5E/BRS54xgflSZ4ooAX\nPHQfkKXdnsPyFMB5pc0AOz7D8hSA47D8hSUZoAUkEchT9QKOCPur/wB8ikooAdkD+Ff++RS7sdh+\nVNzRQIdv9MD6Cl3E/wD6qZnpRmgB2fYflRn2H5U0mkzxSGPLZ9PwFODkDrUBmQZyw46+1ODAjIPU\nUXAmEjAY3fpS+Yx4zUYNLmgCTzG9acJGx1H5VED70oOfegCXcf8AIpRIw71GDS54pgSiRsdaN7ev\n6UwH3paAHbj64rjvFfxJ03wxJ9m2G7uh96NX2hPqcHn2rd8Q6uug+H73VGTd9njLKuerEgKPzIrw\nuLRLjWCdS1Ji09wfMOewPTjtWVWqqauzajRdV2Rr3Pxu12WV1tLCyijJ+UOjOwH13AH8q1tG+M8y\nFE1rTG25+eaA4IHYhT1/MVlWHhq0Vx5oQnA6CtzWPCljeaRJFtUSbDiQDkGub6429jreASWrPTtO\n1K11WxhvbG4Se3lG5JE6H/A+3UVc3H1zXzt8PfE934X1s2twxFjNMI5Y2bC8nbuBPAIOCT6fhj6F\nRgwBHTFdkZqRwSi4uzJM+v8AKl3HFNz6UVQh+fSjcfWm5ozQA7cwOM0u4+tRk4f8KUGi4Em4+tGT\n60zNFFxj8+5pNx3Ac0lNJ/er/umi4XJMn1pc03NANFwuOyfWjcfWkzRTuFw43ZCjPrijPsPypM/M\nPpS0XC40xRscmNCfUqKTyYv+eUf/AHwKfRTuFxnkw/8APKP/AL4FHkQ5z5Mf/fAp1L3oC4gRAciN\nAfUKKTyoh/yyj/74FOooAb5Uf/PKP/vkUGKInmND/wABFOzRRcLjQiA4EaD3CinAAHoKTvS0CuNM\ncZ6xofqopPLjx/q0/wC+RTzSGi4Ddif3F/Ko2jRiQ0aEdCCOKl71Gep+tS9gQir+8j46KetT9Ow/\nKoV+8n0NTZrRbEi59hSUUVQxNoz3/M0tFFABx6frRRRTAPwpCM9h+NLQKYgxRilopgJjmkx606ig\nBMUYpaWgLCUUtJQAUUvaigdhuPc0uPc0tFArBRilopFWExzmlxS0UDsJS/jS0UhpCYPtS4NA70tB\nSQYopaKRVhOgpaQ9DSjoKACiiigAooooAxnb3rPlgvJdSglil226EGRQxy3XtnH6H/F0g1JoCUFm\nJcf3mKj9PTn8Md81ahyuQSM98dKtnMjG8UWs0iRTwo7soPyr3rmVuL9Rh7S+H+4B/wDEmvRZOYUJ\n7E1BtGegrPlTDZnAnUpkPzQap/3wP/jVJ/bhXGYdQH+9CT/7IK79hFGu5+nsKVY43UEx4yMkMOR7\nGjlQa2ucD/bpJ/5ar/vW5/xFL/b0a8teBfY23/2yu7a3iP8AyzX8qYbOA9Yk/KjkQrnDf8JNaIfm\nv4/xiA/9qGnp4ntf4buH8Wx/LNdmdOtTnNvH/wB8iom0uwOQbePI6jZmpcENHMr4jB+5dWv4zSD+\nSGn/ANvMTzc2pHtLKf8A2nW+dD0yQZ+yQkf7oqCTwto8g+ewtz9UFHIBjjXo+Myxn6OT/MCpF15T\ngqqn33xD+bCrreDtDP8AzD4AfZAKYfB2jAcWqr9OKOQZCNfnUZVFA9ftFuP/AGesDxPrGuzfZW02\naZCmTIsV8iZHHHD4/Qnj6g2tT0zw7p9/BaTR3CNOkknmq+2NQnDZOck+oUEgAk4HNZuh6LZaxNc2\nl3bXVneW4DSRi5kOAxOOeAemQQSGBzx0EuNgWrOu07xDJPfxRNK75OCGJwePyrqhllDYPIz0rjtI\n8K2elXYnRpZHHA8xy2Ppk11sTZiX24qbWZWlhxLAfcb8qYXbcMo4A9QKcTTGNMQhLE/6t/wFRkv/\nAM8nH4U4nJ61GTxikBwPxG8UT6H9mgtpvKlkVtwYdVPA/HP9K8wutO1bVmEskVxnOOQckn61r+JV\n/tD4rC3eVpUilQKGbcBgAkfnmu4u7+0sYgZEkcDGREvtXLXnJStE68LSg4c8+p5Vf+F7vS4fNG5y\nRlhXO3BLkxzDGeORgivcH1bTprUzvHiI8ZYd6w9Xi0rVtIuDCY2ZUOAVwVOOozWdOrK/vI1q0Y2v\nE8SlRo2KsMGo6s3uPtBI/H69KrV3I4Q7V9HyTtPc3zsQSt9dKOR0WZ1/pXzhXusV1v1DWk7Q6teI\nf+/zN/WuebtiF/hf5of2GdTYA8cqP+BCpdU1zTtDsmuL67iTA4jDZdz6Kvf/ADmucvNY/sjRbq84\nLRr8uf7x4H86810zw1qGvO11e3kgZzlS/wAxP5mtJVIwV5BTpzqPlgdzD8XbVrza9hILfzDhgw3F\nM8HHrjHGfx9PQtK1qw1y1+06ZeQXMakq3LKyn3UrkfjXiN58Ob2B8R3cL4GV6ihpdX8I2FjNFKCy\n3cryIMmOQbYwAw79D/TFZOunZQ3Yq9OpSS03dvz7eh9BQGXzDxDjY3SRs/dP+zSKbgjlYQfaVv8A\n4msHwzqlhr2hQ6p9lhiR45GdG2nYVBz/ACzWLfePPDllciLCSc4LrGNv4eprOEqntZ6LaPfz8jF+\n22svvf8Akd6DLkcRf99t/wDE09TLu/5YgH/bbP8A6DXGWfinRLyVVhFo2eillBP046+2a6eO3tJY\n1ZIIsMMj92M1up1H0X3v/IX7/svvf+RfYyqwH7k/8DYH/wBBpylyOfLX/gRP9KprZ2wyDBAec8xr\nn+VLZAJblVAAEkgAA4A3mqjOfMoyS1v36WBTmpqM0tb7N9Ld15l7B/vR/mf8KAGzy8f6/wCFR5pc\n1qakgB3jMiHHoDQQuPvfpTM0vUUALj35owP735ClKkUmDSAMDHX9KQj0fB91z/WlKmk2kUAJhv8A\nnoMf7n/16QiTtIv/AH7P/wAVTsHPWjB9qAGhZOMyofpGf/iqCrn/AJaqP+2f/wBlTsEd6MGgBNpA\n4k/Ep/8AXpcHP3//AB3/AOvRz3qFru1VmDXUIYHBBkGRUynGPxOxE6kIfE0vVpfmyfH/AE0H/fH/\nANemkHtIP+/f/wBeoPt1p/z9Qf8AfwUfbbT/AJ+4P+/gqfb0v5l96/zI+sUf5196/wAyfB7yD/vj\n/wCvS4HZj/3zVf7baf8AP3B/38FH220/5+4P+/go9vS/mX3r/MPrFH+dfev8yyB/t/8Ajv8A9ejG\nP4vx2/8A16rfbrTH/H3B/wB/BR9ttMf8fcH/AH8FHt6X8y+9f5h9Yo/zr71/mWP+B4/4D/8AXpSB\n3c/gv/16q/brT/n7g/7+CkN9acf6XB/32KXt6X8y+9f5h9Yo/wA6+9f5lk4B+Vzj/aXP9aYGOT84\n4/2Ov61Ab20/5/IP++6pXus21mEwTMGz/qfmI6df89qXt6f8y+9f5h9Yo/zr71/mXbzUbWwRWuLg\nJuOF/dkk/gD9K8i8c/EkxaxCNAu3Jt2+ZxuCSdQVK5wRg9euRkY4JzvGmt69rGrSm10q9ktVGyEN\naMQFxycEHnOeetY2ieCLi7hM+owzRFv4ChVv16VE8VSgruS+9f5mlOpSm7Kcf/Ao/wCZX1Px5qer\nOqyN5MG3DW8cjlHPXJBJHXB9OOldZ4a8c+Ib+SCKa5hjsbdSX8tAGIXsQvPp0xmuQ1vwjJYxFrZp\nJo+4IyRWJo92LDVLZpTL5SSqZFX0B9M1UZqavE6Z0pU3aSPq3zpW5SaLb2zEf/iqeHm4/ex/QRn/\nAOKrKguo57WCeCTzIZI1dG9QRVhJTj2q02YmkrNx+8U/8A/+vUqtn+P/AMd/+vVBJQSAWAz0zVgM\nQcZqkwsWwf8Ab/8AHf8A69OBboSufYVVV6lD88n8adxE2TjqM/T/AOvS5PqPy/8Ar1xviP4kaF4d\neW3eVru9jBzBBzg+jMeB+pHpXBXPxyvGnH2XTLaKLjiRmdvzG3+VMNz0n4hwvceANXRAzMI0kwo7\nK6sfyAJrzN/ENpZQJDKk0jooV/LTIU45Brf0v4i2vi/S7zQr1Esr29tpIYZGkxEzMpAGeoyT0OfT\nJrkb3RrG2iMjnaijAViWOfTbmuavytK52YRSbfKaMvii2tYYrqGJplfOBuA6Yzn06ir1v8Rre5jW\nO4sJFLEKRC4c8+3HrVCwfTBpZ00uWfcSieWxAY59jxz34q74dm02SULMri5hPEb4wp9cDAP5VypJ\nfZPQlFys+Y5LX7Wf/hJjBFauiSr5qpNtQgH6nGcj1z+NfQ+guz+H9PLyB5Ps0YdgOCwUZ/XNedX+\nm/btSa4iSOV5oPspR16qzfNz9CRXo8drJGoRL64CjgDbH/8AE1vSqu7io3t6fqePipWm1GLdvNdr\nl87sfKwz7rn+tCNuUHI59v8A69Uxbzf9BC4/75j/APiabHbzFB/p9x0/ux//ABNdHtJ/yfijm9pP\n+R/ejQ/H9P8A69BBB6j8v/r1R+zTf8/9z/3zH/8AEUfZpv8An/uf++Y//iKOef8AJ+KD2k/5H96L\n+V465xjNITwcH8x/9eqP2eb/AJ/7j/vmP/4ilW2mz/yELn/vmP8A+Irnq1KrnGMU1e/8r2t39Rqp\nPfkf3ouq4ZQcE55zTtw9GrMtb2KK0H2q6jDK8i5kZVJCsQPTsKuQ3EU6b4ZEkX+8jAj9KqEakoqX\ntHr5RNKdRTipJbk+V7Bh+IpCQSDhsj6UzdRmq9nU/wCfj+6P+RV12JM+mfxpA/1/Co9+KQP70uSp\n/wA/H90f8h3XYm3fX8aN3uah3Ub/AHoozlzSjJ3s10S6X6A0OuZ47e3eaWZIo0BZnccADr3rzHWv\ni88Fy0Oj2KXCK2BNMCA30UH+v4VF421abxD4hTw/bXHl2Vswa5ZW++3ce+OmPXPtVKw8CaMHL3L3\nN0pH3Hl2j/xwA/rTqV+XQ3p0HNXJLX4xaoso+2aXamI8ERl1bP4k16boWv2XiGxF1YXKuucMhTDI\nfRhmuOsvCuhaexe1sVDf9NJGfA9gxrn9bgn8K6nD4h0aQxRhwtxCD8jA9iO4P6detKniLvUc8NZX\ni9T2Qbs8uv8A3z/9elII+6w/4EM/1rO03Uk1LTba9iyEnjEgGemR0q4JK6eY5Lkp3AcMCfpQC/8A\ns0wPShs07jHZf/Zpct7UwuqqWYhQBkk8AV574h+L2jaTM1vp8L6jKv3nRtkY+jYJP4DHvTuCVz0U\ng9jg00lh2X868ftvjgzTYn0ZPLJ4KT8j9Oa9J0DxHYeIrEXVlLkdHQ/eQ+hFLmQnpubGWx/D+Z/w\npCTj+H8z/hSE0hPFMBct6L/30f8ACmk4PP6Ugams3NKT0GhwJ3JjHQ9TUuWHZf8Avr/61Vg3zRir\nGauL0JFzJn7qf99H/Cg7+wT/AL6P+FU9T1ODSrF7q4bCrwB3Y9gK801rxvezwees8tvCzFUjhfbk\nDHfacnnvgcGsq2IhStfqKTaSdr30/rbser5K9h+dKGyOMV4VH4v1KN1zeakF3gAG76k/8BzXa6F4\n4ub2aOC4MMLvIEEkiFgecZOCPc1EcZFu3K/w/wAyXKa+w/w/+SPQh+P5UcVlx3OoSRLIkkBUoGwL\ndi3XHTfn1P4U5ZtSbbmS3UkFmU27ZA5wcb8np9eRW3tv7r/D/MLz/kf4f/JGnxSYxWfG2qOwLS2q\nK3AJgbPc9N/1qa3la5tLO5cAF0V229BlCeB9T9aqNVSfLZr1/wCHY4zvPkaadr9P82W6KhWZt5Ux\nEDICksOR/j1/L3pwkUSEAsecHgkA+ntWtzTlaJKKKWmSJjijJPYilrJ8Q+INP8MaVPqepSlII8BV\nXl5G7Ko7k/8A6+KB27Gt+FHPpXg1x8YvFetXEo0TSFhtQdqssLSuPq3TP4VPpPxU8UaHfIniiyln\nsnIBlNuI3X3BACn6H8xUc8b2uNxklex7lS4qpp2o2mrWMV7ZTLNbyjKuv9fQ+oPIqxJJHDG0srrH\nGgLO7kAKB1JJ6CqEtdh+KMV51q3xQQXLW2hWf2rBx9plyEJ9l4JHvkfSqVp4s8VrN51wBLH18sRL\ngflz+tZutBPlb1NlRm1ex6lQP/rVh6P4mttTYQP+6ucDKNxk/j/Kt3rVme4UvamuVWNmYhVAySeg\nFeBfEP4sXV5ey2Gh3EkNhEdvmxMVeU9zkchfQfifZ9Lsqx78GB6VWbUrFZWi+1RGRWCMobJVvQ46\nH618pR+NvEF7p8+nS3872cqMzq7bixA3Dk+hANYY1O7VuZpGHuxrF1dbRNYwiqSnNtNt7JPa3dru\nfaSSIzMFYEqcEA9DTsivl/wfehL2GZoYbxhlmguEDq69x83frXv+laX4Y1bTory30XTCjggj7LGS\nrDgqeOoPFV77V9PxFCeHb5by+5f5nRZorK/4RnQP+gHpn/gJH/hR/wAIxoH/AEA9M/8AASP/AApe\n/wCX4m1qHeX3L/M1e1Hasr/hGNA/6Aemf+Akf+FH/CMaB/0A9M/8BI/8KPf8vxC1DvL7l/matFYu\ngWtvZ3et29rBFBCl8u2OJAqjNvCTgDjrW1Ti7q5FWChNxXl+KT/UMj1pNw9R+dLRVGepyi6Hax3I\nu2aaWdcYeSTcetaA4Oaa0bv96MH6kULEyH7gUH0FWcxIxzAPrUYNPIIgweoP9ajFQuoMcQGHIBqG\nFcOCCzKwOeeM7s9PfJ/KlxPuJDx7PdDn8805ssoAYqfVcf1zRa5SbSIMTrFGoZmMeGkYn7+Acgfi\nAfx/CpJDKRtjbGQMORnB9MemP8insNyFdxzjG4cH9KaEG3DAH68/zpWK5xSZNxbaT0UDdjjuen+c\ne9Eqho+2V+YZOMEe/wDnjNLwOAMCjJpkX6kEryKkjxITkLtG05znnj6YoiknLqGUhQq5Zhgk4OeP\nrj9alOKY4G0kKM9elKxSktrA7EzooLqBknA4bjvxXMa89yl1svdWvtNtpTst7m12eSGPAEgKFlOT\n13bTjgqTitC11DVL2zt7uOwswk0ayKGvXyAQCM4i96kefWCP+PKx/wDAxv8A41UKot0n9xvPCyT5\nZON1p8SOQ0TT9dm099C1m3j1DT7eR4IpwRGytHwpLZJ24PBUbgykHjNdLoXhix0CNfJ3SzKrRiVi\nRhC2cBc7V6DO0DJGcVYM+r8YsbH/AMDH/wDjVIbnV/8Anxsf/Ax//jVLmXZ/cL2Ev5o/+BI0SauQ\nudmPQ45rnmuNX/58rL/wMf8A+NVZtrjVypA0/Tzjnm8f/wCNVMpq+z+4Pq8rfFH/AMCRtkn0ppOK\nzvtGtAcafpw+l6//AMappuNawf8AQLD6/bX/APjVTzrs/uD6vL+aP/gSL4YGQDOeajdgO9UDc6zj\nH2CwH/b4/wD8aqFptW/6B+n/APgW3/xqlzLs/uH9Xl/NH/wJHm+paJbWnxHmulwQzNIVfJxlVOef\n9pjV2+03S5y0koLsMkjGSPp6fhV/xMJYbpry5tbRZHUBtlyzHA/4AOK4hZ45J2bO0E58vzSufyGa\n4qsnzN6nbTpqMFFOP3o6C5/sv+yGtfMVSzAgZ5X/AGfbr0rLGlraW7vFeO0JRhtJyMEe/wDTFLd3\nitZEhYos8eZ5pYj9M1gDXisph3SSD0VeSfXrn9KmEm1pccoXvdx/8CRwd9A1vdNG55HNVq62fSId\nU1CaSSSaOVzwpj249KoXXh1LX791I3+7CD/7NXbGtHb9DkeGl3j/AOBIwa9Z+3CLX/FEG7BGs3RH\nPq5/wrzJrWDypzHNMXiUMVeELkbgOoY+td605Txt4tUHH/E0mP1/ePWcmnXXo/zRnUpShHW2vZ3J\nvFd8r+G5oY5Vd3nUYDZI96vabrNhpkEKTy4YADABOPxqpeqLjSGUkYWVWIz1xmpJNN0a7gFzLmNu\n/PBNZ1+VtKRvhVJJuPU3Z9asUTzXuFCHoSazNdlg1Hw48sDrIgZsY/4DUV5aaXdWdrAJI1VUxuRu\neveszxBJHp3h22t7ObzFkmk3MH6kBOO/tWCim423v/mLHNrlvtzL8pC+FNTurZJdJSU/Zza3s5UD\nq32WT/DpU2l+EDehbvUIyVI+RWJHFXfh/oRa+TU7uRNgtbg7B7xOpz+BNdPc+INOXbaIzeZnABQg\nH6ZFZzqSdaah2X6m9GnFK8zIvvBOh2VpBew21+1y8RkKQXixKcOy4G6Nv7tXfCHj+wW9j0me2v4t\nzbFNxeJJhs/9c1NLrWqyIulIpdI3tT9xRnPnSDkngdK4TxPa/YNQh1K2dSJcNlezD/I/I0YWEqkb\nzk769X3ZjW5L6H0WJEXnyJh+f/xNUH1nSdOj/wBNuo7Us74E86qT8x9QO9eYeM/iVeW6R2GkSCGR\nolaacfeBZQdq56devX8q818Q3M02piWWRnd7a3ZmY5JJhQk57mux0I88fels/tPyPNlJ+1irfzfo\nfT1nr2j6hIY7O+huG67YZg5/ICrvnw4ztfH+favj1bhlYFGIZTkEHBr1XwJ8Wp7ONrDxBcTzQqMx\nXBJdx/sn1HvWvsF/NL/wJm12e2G7th1Dj8/8KZLqEMcDyIjMVx8rNt49ckdhz+FefzfGfw8k2BDf\nyLjlgi8fm31qzYfFnwpqcjwvPNaPt+R7uHKk/wDASf6fWn9Xj3l/4Excz/pHazz2DQNI03IJ/ehg\nTHngkcfLx3/E+tVg2l7C6X92QgwzfbZGU/XJIHP4/gcFbRN1vG1stj5JXKtEuVYdiMcY/GnvatKA\nJltJMcrmDofzq/YxX25f+BP/ACJ+X4FS6vfseovbtKVtmUgfaLrZhlODtIy3pkZxyPpWnb3ds0KG\nCRpY8fKwJfP4nr+dV762mmumZobGZFY7RLESRz65Pt27UyOTU1ZvMhs2X+EJKykfXKnP6VVCTqUI\nNvWyv9yE1ZsLphNJIbu2uJbdSNipkrjHJKjqc/XtijypnuLnZBsDNhbg/fUbQeBjkZz1I+mOKST7\nXIx8y3R17R/aSFxjBBGzkfXNPia7VpGMEYMjbm/fE9gP7vtW12luvvFZDra5kN60DQXSYV2DuQVc\nBscckjqOoHXv2ddNcvGv2UsJVZnQkZVsZAVuehz+me1QzQNdQNBPbwPExyQZCec5znbwafGkkQj/\nAHMQEabFIkJIHHqPYUXW4ymmpyXljqbJHPBPCzqsZZSQwjB7EjqfWr1jKkVuwy5zK5+Y5/iPrULi\nbbIRboHeRXJWbBJGP9noQoB+pqexYm2yyhWMj5AOcHeeM1jVf7yNvP8AQya/ex9H+haE8bdHH4nF\nODp/fXH1qFzEiF5NoVRklscCuH1nxnCDIlj5ax8gSMuS3fj24NKU1FXZ0KLex3bA+dG6shABBz7k\nf4VEqGOOGNZwSWO4556E15jB49ubYutyiSor8EfKQv07nNdp4d8R2evQ7REEmUcgjg/SlGtFkSoP\nc6FwRGeeT/dPOKatvIqoqsigA7gD3Pp9KaYYjzsA+lM8iPtkfjWlxOFxkdndpn98vAOD1JPv64GP\n8ikaG7dtwmSMZYHPJ68Y7f570rRJ6t/31Wbq1/Y6XYyXV3MIoYxyzE0czI9hFK13b1ZalEsaRqtw\niKoAIxktj3rzT4oX1xZ6Pw+77TJz8oKjAx3HB6c5qnq3xU0xVA0+zlmfPzGU7Vx7YyT+lcf4k8bj\nxBarbLZ+QgOT+83E/oKWpapq9zlYA91con8TsBzXr+lXcVs1lp6Auy4XcXVB7/eI/Lqe2eK5Dw1D\npk13bXCPiW34aFzy2QfmH4+ld48tpJeW37stIZFI46c9a8zGTTi010f5M7pQthqjT+zL/wBJZFHq\ndnwHkKPnBVhyCenFYXiM6LZ22naidJsb6S7uJkklmeYYCLEQAEkUZ+duoPar0z6ffRJF9oG9s5Uk\nhgDjPoeeKoeMNJuZvDWi21mokWO7um3ZwFBWE9e3JNZNQ5optq79NLPtY68Q5OJ6RoF0lxoliy21\nkqIuI9jysoA3AAEtngYHP+FbK+c7KRDYttOeGkHb6/WvO/Bt0ukaTHbalqCA+YSsZ+7GPY+9dzC8\nVwokVwwPRkNdkaNO3/Bl/wDJHkyg76v+vuL7RP5bt9iiL9VG9+e+Pve5qWKS6y2y0t1UHCjLD0z3\n+tVo3uYh8ku4f3WqwtxMy5GFPcFTVKhT8/vl/wDJCcPP+vuNBGbAzCme/J/xrnvGvioeFtF86OGJ\n7uZtkKOW257k4IPT37ir0940SHfLz6CvPPiEBfaMJsF5YJAyknoDxj+VH1en5/fL/wCSNE23YxrD\nTrbXY7qa90Gyjkltp5RNHLclw4iZlPzSkE5A6iuNuPDcnmsIwWAPpXoFre30OoywQxuscdldfKFX\n7wt5COe/OOlc9e6lf+TAYAUZ85bYO3B9a4qLnGrJJ6adW+/ds7nCFttjBt9Jufs8kqxOVjOCw7Yr\npUSXV7OKZZQZhgnecgt0JPr61NpN/e3VpcQ3EbktExU7RknHtgVW0KxuToWpXsbENamNhFwdynO7\n+n5Hv06neWnUmLUHdbF22e4gaNGZ4rw4BaONXQfgUB/8erYj0ZrO5W/urozyycMfLCBT7Af1rmT4\nrkTaPs2XHcYxV8a5e6qiBiqKDwg61ChLqbyrQtpuegaSqXF/bsN7CNwcLnqPm6Dn+H+dduk2RkJL\n/wB+2/wrg/DObcQTP1L8n/gJ/wAam+IniO80TRIVsXVLm7dolck7lGByvHUZHOeOK0w7XNL1X5Hl\nTTdafy/9JLHiT4m6N4ema1jV76+XIaGI4VCDyHbsevAB6c4rndO+MyC426jpZSAgkNbyFnUduCAD\n27j+lcdY+C5JoyZHJd/mZiP61eg+HlxcStGl4wXtnrmreJheyOlYWbVz1nw9430bxNI8VhLKtwnJ\ngmjIfHqMZBH0P1rod+Ozf98mvE7vwLqvhYw63p90JLi1ZXJj+U9QDx0IIJB9a9d0q/kvtKtLtw0b\nzQpIVz0JAOK1jNS2MJ05QdmX92eAGP8AwE159468VX8V4+i6UzQyIitcTr95cjIUfgRXdSSMVwDk\n9s8815FfsZNXLMeZba3ZnY8n9xHXNiJONSDXaX6G2GpqpKzMp4Dc3bNMZJJPLiyxJyTsXn+dW0t9\nZ0aIajplzPEyYZo88EfTuK2oLaNZkcquSq859gK1nIMKxkL5Z4Jrlo1JcqaO3DUIPDxT7f5nQeEP\nFCeJ9GFyIylxERHcRqOjY6j2NdBiQ/8ALNq8j8Cs2m+NrmCFmEFyjDb7jkfyP513fiHXjpVtCiEG\n6uX8uHdg7eCWY+oAH5kV6MZpq55soWnyo0NV1yw0WISajcx2+QWVXcb3A67VzlvwFZEHj/w1PMIh\nqYjY/wAU0TxL+LOoA/E1iQeRdPvkjR5CdzSPyzH1J79vyArZitLFbQymGPzOn3QciuZ4pN2SOxYF\n2u2dHHOJYRLHuaNlDK6qSGBxgjHX8KhlvAg5juB/2wf/AAriYZI/COo3eoQyvHo8sAea1B/dxSed\nEnmKMcfK5JA64+mOn1K8MSfeOadCSlObXdf+ko5alNwfKzyW3aWXxxr8sZ3+XNIyK3HLOTzUklrr\nN1Nul8yNlbIYysAB/ujgd+aWPNp4nvpvL2/aHkdnLZLnfn+TVq3+oxDTX3TtCz/KjAZO76VnUk+a\n6PQo01a0mJrVjfzpZzWcsh2x/OolZST6ggGs7XZNTXwncNfqcxFWG5slgSB+PWrGizfZbkCfUpna\nVdsUcgIyevcA9KuanIL7yrRwrJJINwZscD5uv4U4ys7FTgnr1Oz8Go1j4Q0yCYTb/J3kGJsjcS2O\nnvW6t7H/AHZ/+/En/wATVPTWkg0u0hLyAxwop3E54UDmrazSB2HmNj3Ymu5PQ8hqzsTR3KyMFAlB\nPrE4/mKcLgLwyS7hwR5Tf4VH57ngu2Pc0vnsB94gD3qriPJPir45kNzJ4dsZikKAG7YDBZuuz6Dj\nPvkdq4Xw94fuNYZZ3G2FjhAe4HU1m3SXPijx1qCL8rXF1LI2f4csSa9Ek0sabLbWUVjqzbIYi00e\norEnKKxAQRngFiOfSuLFV+RqC3f9d0dlGF+mxlah4PSKykuII/4iAPYVT8JeIJfDuvJKXYQk7ZVP\ndc9fw/xrt9TIbQ4Bb2mouXB3rFeojf8AfRiP9K4vV7DTdPsv7Rn0XWVGVVw2pxnGehz5R78VjRry\n6xf4f/JGmIpJx2PohJg6Ag9RmkaUetZXh67SfwzpMqCQI9lCyiRwzAFAcE4GT74H0FaJn+v5/wD1\nq7Pbv+SX3L/5I89K63FMy/3hmm+cjE4YGjz/AG/l/hWbrWvRaLpsl5MucYVI9wBkY9BnH4/hSddr\n7Evw/wDkilG73I9U8U6PocsMeoXixSMMhAjMTn2ANQD4h+GCuRqRJxnH2eUH9VryzUbqw1z+1bvy\nbs3sMKzZmullQjzY02kCMYA3569q46a6jaQjzd79Sd2APappYtzbSVrd/v7s1dFLqepeNvFFnrkt\numnXDS28Sbj8rLlieeGAzgAfnXMm5VrO1RBv3Suq7ug4Xn8jWHp18scipNLGY8Y2s4P5Cta6vYot\nJiliJKCRwJAhPZe/41jiouTjLz/RkvenHz/SRKH33JQoGxyM9iBgVfjKYjgb/lpD37HJwPf0/Csb\nTx59hLf+a4jtz+9ymAgNa2narpt7EJYll82Ehsso+bt2J7n9adKDOmpGyudRqnxM/seztLdopri6\nCAvIrqisOx6E59arW/xlhlMaT6PIFz8zpfMDj1A2jP5iuLutCuNa8QvIz+XbKFQDrnAAP65rp7Tw\nbo9pEpaEO+Pvvya6HiuV23IWGuux6Ho/iXRNZsBd2891EMH5J5XRsjty2D+BI6+lXNOu9OGnWyve\norrEgYG5I52jtmvKL6zl0i+ttY0tleK0UoyLhlKkk/MO4JJH1969Ei8TaHp1hbCWdBIIgGCRlmyO\nuQBnqD1+tKnWqVJqV0tH37+p5LVZ1Va20raPpK3fyNma+09YJHjvY2dVJVftZGT2HWpUvtNTBF/D\nn3us/wAzXMyfEfw8rGJp5kkJwqtGQT/h+OK6K01iwurJruK4TyFUsz7uFA6k12J1Hs1+P+ZbVdO1\n19z/AMyddSsA+TqVuR6GVMVVl8VaNBK0b3TEr12QSOPwIUg14f41+IU+uai8UTslhE2IYgcFz03H\n/P098DR7u8udZs38lBGZ0ztySBuHfFcVbGVoXcUml6/5nTPD1qdKU5NXSbtZ9E338j6X03XtL1cZ\nsL2KY4yVBw35HmvHPHcx8YfExdHaVv7O01csgPDPwG/XA/Cuejl1ZUtsxrA4YYlV2RwOm0EHv+Nb\n2l2U3nSsHzdNH8k3dgfU+tVUxnu2tqzthhrPU6y1t7azt0gjjVFQYULgCrSPpNyjWeptbtDKpUxy\nuAT9M1wMkF7b3i3d6tnaRxH/AFwIBc+hY4/Wti5SLUdWgvtJ1XTCTGqvEGWR0I4PAOQCefxrCitb\nnTPRW69Dc8PRN4K8Xro3nb9Pv0DQknueFP8AvcbTjqAD2qHxtrcuv6kdFsZgNPgbFw6H/WyDque4\nHp6g+gqt8Top7DTPDmsK3NvI0TlV5KtgjAORxtPHvWfaiGztrZSDEiLk56n/ADmu7E1HCn7u7OKl\nBKrd9df8zRtNNgt0QJF9zv71fiUiVT/CDyK5m58YWcdylvaN5uWALAjaPxzmpH8UGwvjHPBKSBu/\nden1rzacJc2p6cqkeV6ncX2lQ6host5EjRvECV2HB6c81t+G7u4l06MTuJOuxifmIHr69ufeszQd\nastT0VraMNHO4JMZU5PAzx17jtznjNads9vHcQRwkBYV+dl6Y2nr6dB/kV7VKPunjVpJtNbmR8U9\nYk0fwBfyQnEtxi3UjsG6/wDjoI/Gvmmx0jUNbAFv8kecZx196+l/iTpqa94E1K2huEEsKfaFAYc7\nBuI/Fc4/CvLfAtrD/wAI/bu7KmSxJb13Gs8ZN06Cce5rSip2T8zk18GanYwea7RuuGTCk5ywwP1I\nrNXw1etceWw2knGO9ewajJaQ2gfzk2iWJic9hIuazV1nw7cX6j7UsjBuyEqPxArzaFapKWqO2vRp\nqhH/ALe/Q4Pw609tqa2Uaqk0cnLuoIIweDntXceItR1TSPDsVyN9sHkWMpDIwST5T8w9QeOvpmo/\nFfhJLK7tvENjIzW0jAFoj0PYg/55rqDBp+t+GEheNAzfvihUjJzjcB7knOOK9iDtBtnkOn+/ilqm\ncz4J8b6lZygzPK9uOPK3EjBPLBf8K9n0fXLbVVZY5YmkTr5TEg/mP0rg/CPgfT4NTMjy+ZDjcISv\nQ/WrGq+HG0TxlY3WjXMluLg7pIWJZGAPIAyO1TSftFqXKnKnzNPY9JopF+6KWg1MrSf+Qlrv/X8v\n/pPDWrWVpP8AyEtd/wCv5f8A0nhrVqIfD9/5s3xH8T5L/wBJiFFFFWYGEsCtk7pBk54kb/GpQoQY\nBY/7zE1Qv729tZoY7TTWu1dWLOJAoQgZGc9jz6/Q1A+oarscLo48zYSrfaAUDbcgHgH2yB19BzVn\nKapz5TVAKjt7m5mk2S2LQJ5YYuZAw3cfL69zz7e9KDUdR2Gu8STKHKhzwueM9Rx6nk/nQWlDKoIO\nScluMfl/9ekkdkXKj6nGcfh35wMe9Is6FUJO0twAQQc4z0PtUmivva4iPcGP95HtPLHkk4IJwMdw\ncClLyvFGyptzhmUnB9cdPw7UNLmESJkggEYGTj6fSj7RH3cf0/z/AIH0oHq9kCecGw4BGT8+Rz6c\nf56VFcQ+akuCd7EAMV5A4yPpxUvmoQcMMK2DweOM/wAqbFN5kKSEFdyhiOuMjNGgrta2EeaYq5EX\nGflwQMj8emf84qMtcjcRtChflB5ycnvnPQD86nzngc9s+tV1mLRbgpZ2G4LjGM9s9P1oC/kU9BZf\n7B04A5P2WIkenyCtEmsnRnYaBpo3D/j1i6KcgbB27np+dXI7qGVV8t87hkEg89e5+h/Kog/cXovy\nN8VCTr1Hb7UvzZMTTSciqwuWKIDjzgoZ0APcdB7+nr+omLcVVzncWtwJqe1f5iPUVTZ6ms3/AHij\npnI6UpCRp54pucpnrknpQAf7w/L/AOvQVyFUMeOAABUgRNUTHANZ2peJND0p5VvdZtYXiGXjZwzj\n/gIOc+2K5O4+J2k3mq2+laSJrp7iUReey+VGAe4z8x+hApPRNhH3mordnP8AjrxK09+8AZhbxHbt\nxjketZGiaRc6xmd7iOCJOdj8E/hmuzh8G21xdC71DBEbNsiHQ8nknuT1NZmuWf2SWU28FszMRsJj\nHC4xjI5HU9D3rz5z5n2PRhQVPzKF1oVyuVaQSJ/CewH9K5nUNPudHdrmOOF1PUMma6C31qbTNqal\nII4pM7RIeR/9b0J//XHrN9a3mmSyQSBtoyfaiCaduhVSMbXRiwX8d8kW6MIWPC+nr+H+FU9alMEy\nKZAVI9MY/Gs23uy80SoPmRflA79q6S208a2q6eIXe9ZWbeSqqoUFiWZiAMAE8+laS5afvPY5uXm2\nOWe2a6W6MA3u8QXAPX51/wADXa3+mwWvjLxDO85aWe/nOMfKuZWPr1qhaeFbzTrZg8+nmaY4G3Ub\nfCgc8nfhRweTx0HXGek1DRbTV9avLq21iRJLqeSYRxyWTldzE4H+l9s9cVxVcXTjV5lLS3RN9V5G\n04fu4K3R/wDpTOeu5prVDF5imOTqNuP/AK9Ri6kjtF8o4YDiumf4aQXO121idH7hktif0ua0LX4c\nWUMMiS6u7hhxlIBg/wDf40nmGHa1bfyf+RCpzW2h5HceY07rjbjkqKs3okj8O2C/NuN1OcDr9yGv\nRtP8C6O9/KJ9SeUqcFPMtR/6Dck/pXRT+F9GtbEDywLZG4ZI4pTvYc5xIcZCjnvj25KmaUeaMVff\ns+zMKlBycHf7X6SPPPA2r30F69hcAJE9ndMkjcGMiCQ59xxWymmCzJnmu5DG+NwaUku3Yn/J61oy\n6b4ftLiW+SW9eb7NNAE8hVU74mj/AL5wPm9K4+XU2t4TDJmSO3YhQecjqB+RqoSdSpKcU0nbpbud\nsVGOk9bbHXa1d6fc/wBjzLIHJtSUKc9JpQTke4NZXiDybrSD5jb0iAYAHsKytYmuZLDw/LbqkRNi\n5wW2/wDLzP0AosRc3No8F0VHmLtC+5Hc08PFxgnfq/8A0plTleL904i4uN8hPdjXU3Phm41CaOf7\nqm0t8Z9RCg/pWJpulSXetRWkyleQxH+z1r0DWb+SwnSKKeGBUjQAMhbPyiumvNqpGMd9f0PPhTXt\nYuX97/204608G3U7EyERj9aq6r4auNNzKoLRqMkiu607ULi4EnmpGxTnKd/zqleanJqNtPAkFvtw\nVYCbL/lRCrUctTrnSpqOiKHh7wzp/iPSDK88dqbdC08jZx94KOiserL0qy/w90sZKa/aAe6Tf/Gq\np+C9Qaw0PxBmISYtFkClsf8ALxCuP1/SteLxFAmgre/ZcDznQqwVjkBT1I/2q5KssQqslCTtdJbd\nVfqZTqQUI+7dvTt39ex6L8OylpojaS2rW97JaHgxJKoVGztHzKPQ9Pp2rsdq/wDPVP1/wry74eaq\nmp3eoNNEsJ2R7BGAhxlupXGfxr0MQxMMhpv+/wA/+NdMFiGtZf8ApP8Akcc5VE/gX/gX/ANGVVMr\n/vEHzHsf8Kj2r/z1T9f8Kr3EMZuJSTNy56SsO/1rnPFOv2PhzTjI5me6kBEMQnbJPqeeBWeGjiPY\nwtLov5ey8hTnUTfuL/wL/gGtqniHRdFdU1HVbeByMhSGY/kAcVl/8LB8Jk4/tyE/9sJv/iK8dbUN\nY16eSZhbyNnG+S0ikJP1KmrM/guW41a9ZXEULTuUVRgKu44AHpiq9pNS5ZTa/wDAX+hrShVnPllC\n2l979bdke6LqVnLb+fDcxyRbVbeucYZQ65z0yrA/jXD6n8VdOtbmS3ghlk2kqX425Hf3/wA81554\n0tL7RtWhkR5FjaxtYt6nAYLbxqR+YrO8P6JBrc7NPcMET+AdTW1KvehGpJ9DRUW58p1tz8Vr+O4Z\noY4xC/QSknPPseOPrXU6H4/ha+FreuqCSOOVeMbS6q+Ce/3uvHSuQl8HaMYGULIH7OWyRXI+IvM0\nrXPKWQsFt4FBHfESLn9KmNVVKi5fP9DOtQdOrC/aX6Ht3iLVnutOiiRcJOx+YKcEZ4A/x+navP7m\n0Y7ZViZipLNjIC+344qja+I5NR0y3gdlV0bapVsYPHzFf89K6yDRrYQk+ZIC2CXDkGoqyfNqdVGl\ndaHKS2UsrsI4yry4yxGAfQn+prV0cX2l30N3ACVRxkE8EehwenFbyWVp5eyQB177z1qhq2zTrU3d\nngGP7yg5BB46e1QpN6I1nR5Vc9VtboXVpDcKNqyorgegIzUhfHNcx4Wvd/hiweW6jJMfqOOen1AI\nqXXNYfTtKlntFa6uPuxRx/N8x7kDt/8Aq712+2gtJSV/Vf5nlzq04ScZSSfqv8yt4p8b6d4bUxyk\nz3hAK2yHBx6k4wB+vtXjnjLxvL4qmjjaJ7W1jGUhVt2W9WOBk06TSvEN5cz3VzYTyzSklpJYyTn2\nrJPhvWGky2mXnX/ng3+FL6zS6SX3r/MXtaPWa+9f5mQllNO4ECNMT2Vcn8qtN4c1pFydMvD6YhY/\nyrZt/D2t2UqXENldLIp3DbE2R+lem6b4hYww/btOvYpyoL7LSRlz+A79fasp4uK+Fp/Nf5m0KuGf\nxVEvnH/M8OH2myn+XzIpl47qwr0HwxqkmsNas7FJ7eVBIAoIcZ4+n/1q9DvdP8P6yjtdWVvI4xud\no9rg9Rk8EVwI019G8WBdOVfsct3HnB6KxU4+gzUV6kalJ97P8maVVyUZyi7pxl/6SypbzSRyGRjG\nYz94mPY2fT3q9qOpFvC1i+4qv226B/BIP8a5bUNWvJLeL7THsIb5cjGa6nTNNt7zwhpUsyeaFvLl\n8N0JKQdfyrGvFRcJS7/pI6nJ1JWRzscst+xENnJcsOmASB+FdHoV7rGg3I80PGkjf6tvun2x2NdN\nprNbqFihjjXHRcAVneMmUaDPK42tGyupHY5H+NaKq5OyKlQUYts7CTxDCLa2NsFkubhSyxseEA4L\nNjtnj3pBJczNmS6lORghW2j8hXH+Fpd9obx8b5gCuew/yc11dvNufhDU1asr2TIo0o2uy01o0kfD\nupA9cj8jXL6xHJJBNayKBKu1h3HX72O468V2EV0yghYyawNcRJDDcZCupKEjup7fng06NSV+VvRj\nqU4r30tUY1rd5vTE8YwbO6yxX7o+zyf4Vx2oX07PulMccQA2bomUMR/vf55rr7WSIarLHN937JdM\nCe4+zyZ/QmuD1LU9MilOZGuWBxtC5UVFKD9vNW7fqX7Vct27HS6NqIfrGI1AyWHpW7BqGnaFozC6\nuE828YRQxu22TYxwpIPO0ZY5PGB16V5PceJbp0aK3VYIyu045bGMYzWTLNJPI0ksjO7HLMxySfXN\ndsKDvdnLUr3XKj1PUNAgkJkCkDOTitfQdOtY1G1S/qTXnmieOr3S0WG7gW+gUYUM+1wOw3c8fUGt\n5/it5dqyWGiRwzE/flnLj8gB/Os3SqrTdGiq03q9z0vUdUs/D+km/uARFD82xPvN2AH4sBn3ryS1\n1698Q69EbvzGiluWkhhBJjiycsFHQdBn16nmsttZ1DW49ZutQuXmk+xKBngKPPi4A6AV1PgyOO60\nS0lKkNZzyjfnPLDoPT7/AP46KlR9kpt76fkc9GXta815r/0lHexXVuqrE1xEj4+4XGfyrRs5oxMo\nMuFPevPtT8MTXU4kS5TYzZ+ZRn88Zrfn8ONe+FVjt59ssbDczdCKxUY6WZ6aUktUd7qEyf2Jch2D\nxmJvmXntVXwVqD6h4O0+5k+/teInPXY7Jn8dua5nwx4evrDT5xc3MRE0RjCIiryeATg4rb8N2Z07\nQobRZZY4IwDDsCqSGUMxYEN8xcvnnHpXZTktkcVeErXfQ6Ke5MUTygZKKWA9cc145r8V5cagslrP\nHGrWlsdvmHj9xHwMV6hcIs9tLCZZiHRk+ZlxyMc4WvJvEy3VlqMkLMYjHaWsUij5iCLePI4+nasc\nRf2sPSX6DwiTbuXZtPvptLE6X7LLiIBS2Fx5a559c5NWLO11yW0aOSUrGf8AlqlwS4/PpWKZVSZU\nn1SaG1e1hBiEbFSpjUc8EDPPpV601C6GmGEuGQEbZc/eA6H61hTuoI6sKoyoQ9P8zV0ATaZ4nguS\n012rSpGWYqMLJ8gY8fMcn26Gtfx1O39t2CuwEUUDurHsSfm/RVpPDFlHqF3FdkDFqoRjt5H8SqCe\nM5O7/wDXVTx8+/X7WBmPlNaAjOM7i7g/oF/ya6k3yO5hOEfbJRKtl4lsYp1jKXGSflZoyoP0Nakf\niuwMwtGgu2kHVkiJA+prkLXSlg1C0Z5if3ysN8pJwDk1raho1m2vGRr8RtOfMChiNw5BwR1HtXMo\nwudyU+W3U6jXhb3nhTUWVg6m2Axj1kQ5/MUy/wBSabTbSZzlpIVds98gGk8qJPD19bwJv/cgiMyE\nhj5iYGT0yePxrlbrUoY/JtLm9kSed1EEBKlsMFAHsN27HStKEl7Sa81/6SjhxFJ2cn0/Uy9SleXX\nY5xwI4HYMB1O5Rgn6Gp9P8S2sUgW4JC98gVHK3l6hNpzEkooOSO+AT/MVh6hphDHBIFaTUZPUmlz\nRjpudsfEujx2zrb+WjnJ2gdTVvwPdz33ia4m5EEVpj6lnGP0Q15xYaSxlxuLZ9K9U8FwwLbyRR3r\nxTqcNHGsZOAB/eBP8Q9ufenCEYvQmtUnKOp3IPFPMioXd2CqBksTgAfWqa25I/4/7z/viP8A+Jri\nvijqM9vptjpdrPKG1JzG+QMFF256DPJYdPQ10HKld2KPiz4sNayPa+H443wCDeSrkZ/2FPp6nI9u\n54KPx94pjuRONZui45wzBl/75I2/pXRX/gO0k0vfaSN9oRR3zuOeeKs+FPACRSSXetQK2w4jhY5D\ne5x/KsVioW0Ol4WV0cVomvDT9aN3fKx37suvYs24nH1zx7169qmv2YtYz9pVI5LaHazdt0SkZHbg\ng81wnxH0GysUt7uzhEe9irqowAccUJrllpmoxpeKV32Fid4Gcf6LFXJXiqk4TitbS/Q1hJ0Z8reh\nf02/uLO5ilu9deW2BJ8vZ8rZB6EjBx7Uvi7xHZ6jpMmlofMaQLudRwuCCOfwqlqGs2F4n2fRd4vJ\nwd84z+7TqxOOT6ADknpzU+m/DbVJFE11OkJcfcb52X6n1rWNlaUtC6knLSBs6T8QrrT9EtbNrGIC\n1hSCNhIeQq7c4xznHaul8PeP7PV5hZ3aG0uzwN33HPsex9v1qna/DSwmjgkv7mRzGu0xxnapqLWf\nhtaPZy3GhrIs8YybfOd4H9z0bHY8HpwTkdFOrzOxyvDO10d8Hrzb4uSzLaaciNsV/MOR6jb/AI1r\n+BtZnvLWayv5Xe5t8YkI++h6fiMc/UVm/Eiyk1JYIeNiAGIKDvZmzu9sYUdfTrVVWorUmhFylZeZ\nz3gbSLfUNI1MyqZPNgEbbuhAljbH6V1EPg7TI7Uqtrb/ADdtuT+dYmmaPc2Wnan9gvLiECxRQgYt\ntfzkLEAEdRx+JqnpNv4jvLqSJdRbcqMQ00J25HQdQcn6nHccivMpu9SbT6r8jvhBxSTR2Gi+C9EF\nwz3WmQzKgPBJH8q5RLS10q5msWga5tmuZwqI2MH5MYPYdaZo3iHxJa3zK01vKjDa8eckA/XA/NhV\nKVtlrD9tOHlupmBDFSQdvOf/AK5+tdlX+HGL7/5nFWdqsH/eX5SNy01jRYpJNKms51WUbGRYsj88\n5OPWrFodJTR7kQ74XhcGSOU/6vaQxP0wOtYUdjILqEyo7RYyJWuCSR9c5H0qlrrj+xrmK3Y7rl/m\nLOSQgOf/AGXGPc06KSjc66kry5dyq+vTo6rEZU84Fv3WN3PueldNooubyymtL6Uu7ofLd2J2/WuN\nsLpBDCzADCjJPtVu61vRzOhunabYNuyMkqR3z2P61m4tyskEZRSu2bWp38/hXTordpIJJHjaMKqf\ne+Yknr0wR+OaxrzV7t9du4fNYIlw6KF6kAkVm+JNQttS1DTZbcFIJbRVRTxjEjr/ADFd+D4f0Wea\n6vU82aSRnIjXcQSc8+nWsdmrrWz/APSjzcMlOqrdpf8ApbOWsdBuLm680SMz7vmyM11kvh/UjF54\nZWQR7JRHkZX1NXbTxFosls00KmCNP7y1v6HrOk6xpl+LO7V5YoWcx9Dgd66qDlN8rO6pCMPePJ7D\nwpHa+I3k1QL9jiTepmOFOemea7i2utKKCOz+zlQcL5KjAP4VmSTz6la+RBdiC4jlK+ZjJwPTP4du\n1S6RaW2k3bxy3AkmmTlpGBJbsBwOc1zYyNrq/T9GKo28LUdvsy/9JZ0VhbaF4x0640vc4cIdsnlF\nQpA4IYjHFeOXPjTU7S2+wQ3CeZE8im6Q5ZwT2P8AUfnXV+L7JfD+iahdWFzcPJITbEpMyhAxwxZc\n4IIyv415JDb3d0/7iB5Ae4Xj8674RhKHvLYK8pxdl1LN1qFxdSGSeWSVj1aRixP4mruh3xiuCPOM\neR1DBffqcY/OpovCtzJEHmkCE9qb/YvkBkEhbIq4Vo30OWVGclqdTc+PbrXfD66DqC/aFgnEsFyr\nkEADAByCSOc9j/KugQTajbWwuQrbkxxnB46MfXBz+NeZWU4WdMx4YLsPH8Xv+FeqQwzppVnLPBcQ\nxiAP5vlgqSxwBkHAJ64JBwM4FZ4y/s+cvD1o05e/slp96/zGSWNlZ3CSTzKgQhjtYYVc+gUfrk/z\nrU1A6Ve2ttepPDKzkq2JMOnXB4IOCB9K5+6ksbVDDd213diZskrAGAPb+LipNNuLSKBoItJ1GdGB\nwwtwuz3yW6VxUam90/uOyeIjpaMrf4Wen+C7OAeXeRuHYAx5ySQPQk9RWr5AbxZMqxZQQ5fCYVgw\nO5Se5yEP0Ncv4NkntB/owDIxztkbZj8s12Npc381xdMLa1IDgD9+wx8q552HP6f1r0qNZOC0f3M4\nJ4iKcvdev91l5VUEg2IwSRkBSCOnP4V84a94T1K2ubq0WA7IZpFjGHbA3nGAvAGOfxr6OEuo/wDP\nra/+BLf/ABuvPfGt3JpOqLLcQ7Wu1BTyfnHGARk7fr+NXWrt0pKMX32fQWHrQvaSl/4Czh9M0C7X\nwxcw3YzctNGsZJ5UMyr/ADNU7PwhdLOhaWQbSc+VMVyfU8dRW/Jr1tAI4ZVuG3Sxyl1Th9rhtvXj\npTri9CMbwNNDFI3Cug79s5FeZCq7NpO/od861JUoxcZW1+y/I9A8O6VFeeFpdNvy8kbdSTz6gisu\n52wxXRjZBp8B8uAYAIY4BUYHPHPP93/ZrQ8J3l3cQOqRRSBF2/vJCnYHsG9a5TVILW/8YPb3KxeV\nDNsW0Lfug3QkZ/ntrulWXslo/uZxUMRFSk1F6f3WaWjeL9LsNQSCbzC54JXGB9ea6HxQftF3o91a\n/vWxLs2dTuULx+efwFcVH4WstO8TLZosKTKQQjkMmD06j09q9LSyvEe3kW1tA0QwdtwwDjjGfk7Y\nH5VdGqo6Wf3MitW1fuvVfys1YwVhUN1CgGn1UguJ5Lia3nhjjdERwUkLghiw7qP7tW62jNTV0OnN\nSjePp9xlaT/yEtd/6/l/9J4a1aytJ/5CWu/9fy/+k8NatKHw/f8AmzqxH8T5L/0mIUUUVZgY/akJ\nyaUqe4pAue36VZzWEz1qnnBOPWrexgMkY6981Sf/AFhrN7jBiAhLEKAM5Pb3pvlxvsLZJXo2efrU\ndypktZUXqykCmGSctHhNmCd2fmB7DHtzk9OlS2aRTaumTxcKWxgsc8jB/wA5zSBIypUqGI+Viw69\n/wCv61HBNJIqswXaVBBAIz+B/CnYb5sk8uCMenHH6GgTvd3JGVG6gHBBH1FACr0UD6CqkbTkeYuM\nmXaw3EjAYgkZ6dvyqaEyFP3g2np6n3Oe/r2oTCUWt2SsfWolRUPy8cYA7Coo1uPlaSQc53JtHHp0\n/H9KWTzvMXZtILgkkdF7jr19/ccdwXDl6XKGjIDoGmMuAwtYuSM/wj/D9KtyRKVXYqgqykYHTBH+\nFUtFE39jaacp5X2SLgD5s7B19v8ACrU6SSiWLojDbu9iCDgfXH+HGTEH7i9F+SN8Sn9Ynr9qX/pT\nHMgxhQqkjGQMYFIzH1qMeaCnmd85x2P+HH15pXqrnPJNDGaprR8Sr/vY/PiqzHmnQyBJAfQg0pbC\nRtyzR28Ek8zhIo1LuzdFAGSTXzp44+Il/wCJrqS3geS20xThLcNjeM53PjqeBx0HbuT7B8R797Dw\nHqLK/lvKqwocjLbmAYdf7u6vmNmzMT709kQvelr0JjITySasaa9x/adr9lZxceavllOu7PGKp16D\n8N/CstxqtprN4pS3iZpYFPBkKY+Yf7IYqPc59DWU9ItnRSV5o9H8RasNM0thGSxRMDJ5PHeuGh1e\n9kkE91BIwBB8oDH59wPetfxpOIz5TctIcpnpgVzb615sMNtIF2om3f0K/jXDJdDvpT3bZe1HUbPU\noRaWduYV3AyptC5IHHI64x+lcrqMT6baTRM+SeASOSP8/wCelX7N547yQRSLLApzu9TV++0U6rEk\n1zuQ7SY41GM+5rSDUdOhnUXOrrcxfA9jBLqQv72VI4bflVZgu8+grqdLjhOs3zxXLMPsl4xAkyOb\neToOnesK4sWsdMSMrGVzzhyCPwxVvw3GytezFAqrp94FAPX/AEeSsMU705yv0/yK5VGKjYpaNZy6\n7rH2GQmLzFO5xzgA5P6A16Rb2Wj6HbCGAwxnqzM3zsfWsHw/pqWuoQXEaBDI5AH+zsfHPf1/GrGu\naSL9HQSvuGdoXbgfmM0OSm+yOiUHCnBLez/9KNeO5hkf5HBB561LJOGTaPmz1x2rmfDej3dg0zSS\nKYv4VPOD+lUjYa2+pSvJdFIgcIF3Dj2xxn604Wu0mTO9ldETyTxeMLmC1U5ki3EDnB9a02TVpvB1\nzFbyst2mqxFvMuBnZ5UndsZGe31qmsos9ZurqNQ8oiCFm6jA5NW7TXpJfDt9dbY3C3tuFjDhSPkn\n7nvxWOKjKXK494/r/mcs6Kkoq9mnfv3/AMzO1GfVrNvJJsW4BZpbuNOv1bNZMNtKWZrhrJDIxbBv\noenb+Krd7qdrqd+PtVmYjtxhjnGKzlXT9Ut2igP7yElcE84z1+lbKM0tX+H/AATKUa17qov/AAH/\nAIJv6xCsWn6Jie1yLJhzeRKD/pE3q3P1HvT/AAxZSarqTxytb+THDI37mdJiWI2jhGJGC2c+1c7r\n2kEad4eDchNPdcZ/6epz/WtfwReQaNqJ3KRHJGUO0ZxyDn9KzoU37NNS6vp/efmTJ4h395f+A/8A\nBNCLRJLfVXvpnj+0EsMGRB8p46Z68frWjqUlo/LlDhVzhs9h3FZmsGL/AISI6ha3SzWtzD86rIGM\nUmeQV6qT6HB61RlGWZ4/mI5Ck8GlOlJVLyd/lY3oKcnGpKV7X0tbe1+r7GrZ3GnxRMvmwxu4+7u5\nA9/SmwWenO7SRJHv+9vU559QaoRK88H2qcFGRdxAtkZQfQHzM/1qGa9mht/tcyKku0DYOhP/AOqr\nULHXOa6mjp9ppMWj6uiE5SxVZCDjOLiE5/MCst7qxj0CGBrZzHLNKCoQnBCp/iOag0yR5tG8ReVg\nSfYUIz0P+kwVAXkHhu3eWB3k8+UZSdRjKx842nP09uvNZRh+8d39pf8ApJxV5awsuq/KRq6L9nt3\nAsndZm5zuweK9C8PeIJpp/sV4pEqjKyFhhh/nP8AnmvLdBYJdmSZ/wDVrgtjua3/AO2be3uIpYZd\n7RuCSnOB1NdUJSUrF1acHHm6nr9zJi6mGf42/nXgXxM1S6HjW8glYFUVFjXOQqlAePzP4mvbZbwS\n3l1sXhJ5EOT3DEf0ryz4oeH5b3UrLVYI/lIEMwGOCD8p9+Dj8K0wrXsIX/lX5I5LNzsjW8MWscGh\nW6LF8zpuc45JPPNa5G2ZjjGSa5nU7fU5beM2DfulHKq7KR/3zU6LqT3OqRTXEoTe7QFW6Dcf5cV5\n7Sc+Zv8Aq53XaxCVvsv80bvimyhv4TbzIGzbRYz/AAnylwfavHdO1d9GvJ9kYLplCCcd69Im0e8/\ntqOaR12CztAflyxIt4wec+orlL7Rba31q8vpmIikchVHXOASf51phJRVFReun+YThNtSWg+fXL+5\n0b7TCixOX2nHOKz9dtLrVJY3Y7nW1gO44HJiUkfnS3evW1rCLeO3PB3DJxird3rCNdpDhctbQN0w\neYkP9a1SlGUWl3/Q56vLKvBN9Jf+2nO6Cu66liZB5qkEZzkAHkdcelelalb6pKoFrIoh7bC24fqB\nXmX2prPxQk9vgsJVO3pz6V6HJf3EaKrBo0dFcJgqVyASMHnjp+Fa1k7qRvRcGuVlh9OkudJjgkum\nW5/jfdgH2qe10ldOsXWaV5QyFdpkDKc/gP5VhfbbZbrzQL5znIGGC/0/WrUl6ZGjVWZUZhhWAzj3\nxmsUnsdVSMUrs7jwpZLpukQRqoVpN8jgdM5UfyUVg/E27aFdIUEhZJJAff7n+Jrr0KxmMIoVApCg\ndAOK5bx7aLeafZXAj3TW9ypjGepPb8SBW9LRST7/AKI8SnLmqzl3l+kS/a2FuLcHy1Pyr17YFT2u\nl2PnFjaxMTydwrg7m/1tNSWOFLhfmwUaUspH06Y+laupLqtzp8cll9oVyoZgMqSPbbyf0rk9nZq7\nPWU9Nix49022tNOS/tbKKLyjiTyUC5U98Djr/Oua0DS5dXspp4rsRrG+HUgHtkHkfhWmsGrHRLuE\nxIImhYyPIGygx78lj0H+css7Q2Oj2tpEGSW4T94p2xt5hbGOSCxzwBya3UrKxmoXlzPYl1XQZ5LQ\nSQs8qqYVe3SQosiCPBPHfj8sVS0ize11O3iWYrGsyu0LoTsyQQoYnk9e2OR1zxrteX1levBcSsB5\nUbeW0Ww8INxJIHfPTp+lVtM1a2aW3lvrvZJdTqbWFk8zhnOFU4O3qpPIHJ6ms4qUsO0+z/JnBLlW\nCcl/K/ykZHiPSnmgt1MIKliqsTjaRgkED1yKt6jZ3MnhPTY7GdoVW8uOEOMjZBj+v51xEWp3z3t3\ndrNK3nNyJXMhIzxknqQO9dnNfC28KWRd9ub66Gf+AQdarEwcJQS7/ozsp1I1N9CTTdO1GfRpx9vZ\nbhGAT06fzpf7Mv20m4t9VvZp4JFx5Z5YMORg5NZ2j65LHK0Ty2iWzHJZnA4H49a0NV8QLa2n2hB5\ngRhtV8jcc8j8s0Wney6m0nDluyxAz6ZopFmBI8WEQN8xAwOuO/P5/lWba634iW8QNdxSB3VfLAG7\nkcnA6YrV8J6hBqc2yEKWdDIyM4UKwUs+S2AAACetaVyLWC58+KTSwAcMV1K1VvpkyCsZVo05OM7X\nJUYy1TsZPiLWtds9RS1tZxExUEtlRuzjjnirtjPqF3ppOpBmdZgEdQAXHP4en+Rzo311ZXmxlOkz\nrHjPmalan8VPmH8c4qn40Q3vhnyrGfTVMmFy2p2yLjg9S+D0NKOIp+7G6Xn/AEhzjFXle5lT6nbP\ndXMUbB3bT75VIPHFpKxIP4gfifSvJicmu80XQL46uz/aNKKjSryP5dXtXOTaSqOBJnHIyegGSSAC\na54eE9R/5+dG/wDB1Z//AB2uqlXoxqz95fZ/XyOCV2kYgFP21qXvh3UNOsDeymzkt1lWJntr6C42\nuwYqCI3YjIRuvoazRXbCpGorwd0ZtCbfalVSTwCa1NE8O6v4ivPsuk2E11KPvbB8qA55ZjwvQ9SM\n12Fh8NvFOmeJtO+w3UQjkYldUsXMscYAw/QA9MrggBjx3NXYDL8AeH08Q3+oWl1O1pYG1zcXQXKx\nKrrIck8AlY2xn0JwcU+O903RfGj2vh6+nn0WWSOMPPwZMgZJBAxhiccA4rtPF+q+H1s9V8J6YwtL\ne3j+0XNzHGuxp90afMiKMH7oJTCjLfKcCvIrGPz9Rt4h1klVB9SQKySV5p+X5GVF2qza7r8ker6j\neSKYzI7rDnGVxjPuSQAOe5qddRu7Wxkgv72SK0mIWMIsTFyfu8qSfQ8UCSFJXt7ghQfulhwfY1qa\nXHa27sbm9gaNfmAKgkcdc158Wux7t21e5Tl8U3Hhzw2LqdEncOqxRvkB2J7+gwCfwrp9G1sazoNl\nqIxvniDOFUgB+jAA9twIrzD4mSxm30hY8qCZmCH+78gU/oa0fAWv21n4SkS9uEQQXDBdzDIUgEAD\nqfmLGu2nC0E+p51eo5St0PSftHqa8y8du1t42laUlIZoIHU+o8pRn8wfyq7qHxFsLbK2kLXDgsDl\nwBx0IxnI/I1y/jjVptV1yCV40QnT7RgF/wBqBHI/N6zqR/ewv2l/7aKk3F3OiN1ZxlWGpvFJ5ERM\nZPylfLUjjIqqL0Ss+CWD9z2HtXLX7PHqULJEGYWttj2/cpW5p7mCIXN7x/dQ8Fj6Y/x//VhTgowT\nOjC1pToQj5f5nrPhF4x4fjRWBkR2EoB5VicgH/gJWsX4g6aZLaDVog7SQYilAPAjJJB/Bj/497Vx\nGieMtQ0/UblIbqAQzSFgs0JMZbABYlfmBwo6Z7cVo+JPilKlqNOh0+DzbgeXNI0olTYRg7dpxnnu\nSBjHNdvI7WOXntO6MG8MkzoCVeFv4y+3Fa8FnJNp6xQrAyxneWMnzg+xGQT9cfjXPrqbacxR7cSo\nORmr03j4JaCCKyiifbjIrnUJPSOx3qtGOsnqdQ+tf2b4d1eWJxK9vbIygnqfPiAz+JryLVdUutX1\nGS+u5N88hySBgDHTFdJb6t9u0HxGhj2/6Ajk5zn/AEq3/wAa40g9e1Vh4KNSp6r/ANJRx1arl6HW\nadrE+pMbm5lU3duUw+OZBjHPvgdfaupiudP1KEeVe2zuf4DIA3/fJwf0rzvRJRHqKoSNsg28+vUf\n4fjTNZtfs+oyAA7X+ce+ev65raVNS8iIVXFvqejvPp+lQO017aow6r5oLfkOa5LXNTuo57O6t7qV\nJA7yI6OVKE7RxjkHAx17CubtIBPdwxYzucA/TvV7WWzdhR/Co/P/ADinCCiwqVHPQ9L8LfF4oEtf\nEMZcdBdwqN3X+NehHuvPHQ1Y+KF9Bcv4X1WwkF1bs8yiSJtyk/JgfX73Ht7V43vHQ1p6PKz3SWxl\nYRmRZQu75S68jI+m4fjTkla5EFZno2l+P0t3EN3pzRqxwrBw1aOo/EaOwk+zRWEkrkbsMdgA9yax\nv7G05o1uWcZI4AIA5Pr9a3NattFmnhaWSJmMaoxhcZxt6EDt9a89ezvdI9RKdrXOe8Q6w/iPwtdT\nG28h7d1fb5m8HnHBwPWq7aXNc6pFdPCrRrpVqUEqBlZvsCYOCMHDY/Kug1OKxk0n+zrZlEUmA7E8\nAZ7k1q3NvGDDHCQ0a2MKrjsPs6gf0/Osq82rcq6S/wDbTjxcV7KXM+n+Rw/h3UJW1j7N5dplXDP5\ndrEnyrz2X+9sP4V6/YqJo1LSvgjI+dgK8U0iCa28ZXojjLgK3yggHnGMZ/xroJm1NZNw8yN854bb\n+uf6VpUoQcloFPD0Vf3F/XzPWVjgGQ1y49P3rf41b02G3adl8+UsByFnYfyNeWPp2u3eiWt0LiRk\nlZg655XHTPsf61teGLK8ilXfdujRn5diMnHoSeT+A79a0o0acXdpDq4ak42UP6+8qazdPovxLjgj\n2x29zIA2AA/zcn5/vHJO7rySa6jXkSGyaXcRtTLbyWz8yjAyePvVy/xB0oQapHqkfmu6QCQFnLfM\np7knPQVteIZnn8P3IEcu4Q9WjK5O9PUe1a4mlTSVl1X5+pxToxpVITgrO8fz9TFhllaw1QwO5P2V\ncbF3H/XR9APbNc/Hrd9p0sbWF7cRW6nLrNbkjOeSeM9u9TeGdYWzg1c3OSsVorMPbzoh/WtAav4b\nuGjkTUJBJnOwjP8ASuKjFxrTVuq/I9pTUou7sR6Tq1yb6W5hlSWKU7iyqAM98Y/Om65pw1XT4z5x\n3B3dS/vg4/Dt7VHfahBJKS9xFbx9C8jBQM9Mn1Na9ujNYKAuQVBBZc9veuitzpJrucVbmnKPJrZp\n9ujXn3OI0/Rbr7UFvLyQxqfuBiM/jXRXsdtdQbYziEDygwwFG3v+fH4Vbe0mUqpEI3ZJYwJ0+mKj\nurgR6fOiLGqLG2P3SkHAJ6YxXTR55xbcfx/4ByVatWEklH/yb/gHmWptJI8xhy1uHwHC8Nis+Fdo\nJYda9C8JpDrFp595bWkhSTZsFpEMD8FrtU0PR8jbptsOMACFB/SuaWJlCTjy/j/wDeNPEVFzcq/8\nC/8AtTyG8smubDS8bVxatjPr50ldBYPbXfizUdO1WRViNzK8E0hJCEMTtPIGCP8ADvXdXGmabEm4\nWVuvlqQgES8Dk4HHqSa8reaUa09xMnmt55dhjG45yR070Yfmqq7Vt/zbOXD06kJKpNWWq3v9p+S7\nHqx8K2F54SureKdYAjLKGc4yOnfp/wDXFReBvBP2fXRdvcNG0WQY9oKujKQRuBz37ivN18SIlxLG\nlzqEMcylRCjtjn+Htke1eieENVu9O0e/vbuQC3igG1n6ZPA/DJFdNBctkenWakmvuOVMb2N1eTC4\n8zbKFXaODu3e/H3RS28vm6vZyTWMrTCddtwZAoAJAOPUe1dNYXfgHUdFbTJL/wAm7lkyl1LEVZJO\nQvzYxtwOc4Bzng9OR0jxDHHqFrZtbZdp1jD5yOTjNZYylLkc12f5Myq4inKhVhF6JS/9JkT+Jkkm\n8NXbNZPa27Qq0a+YHBYMBkY7Y9a5O11SLSYxH5Bl2ADOcfpXqC6kPEnge+gW2hify2O9uwAzx78V\n54mjQ3kZkEkaEj5twJJ/Wqnyxj72xrJ8+sOmg5PE0bwNKlmeOozxVGLXy92jvZqI85ILYJHsa2Lb\nT7UafNAZokZpOrkenUmqSWEBYM84JUbdvDADPY+lTTcFqkKcZtWudDr2i2d3pVrrGnqwMzhG4wDx\nnn0I71dvfFN+NFk0J0T7NaRLNGY8/vP3igOCf4cMSOBwRnPWtXS5IrbwFqOnyrDuVSylwMIW249u\nQevvXDv9hRtYitpJJjDaiKIg7shZEyc98sRjHYV24nWkrdbfmjzKmlPme6a/9KidFp99BfWpie5C\nOvXPFbWjCzhkeNbxiZABkvkGvMr63kNvFdqCEkAJx2PetHQAvnox6g9Sa4adJJ3TPXliGo2se4aZ\nJbQswh6Km0sP4mNcXc+OdV8IfFObTrq6e40a5ZHMb8+WGVeUPUYI6dDzx3re0m8iS1UFwFXlmPTj\n3ryfx1q0eqeNWnjwVARVI9Bx/j+dd9OVtjkqJOm+bc+mdP13R9Vfy7LUbaeXG4xLKPMA916j8RWX\n430E6zoL+QrNc24Z41HJYY5Ue5wPyrw6wSS61We/gYqYm3xuvBDDnIP1FeqaT8W9Fdks9WEtrdKq\n75VjLxMSO2MsM9eRgetbwd9jGFXlldnkcsRhUmNbyRG4G6Qso9uvB7c5qW3gUxpJ5B87plgPlH0H\n860PGoD+JL650u9imtp5DIGicOjswzwRxwx/SsbS7e/WXfNMBnqBzXn1IxhVlFPTQ9SrJujDlXf9\nD1bw3qQtBbxq2HdgZFHpkf0Ark/FtgV8a3zO6QSfaC6MWYHB+YEYVvWpdDSSG9SVpC3I611/jjQI\ntRtbXWre3ae4ICSRpks+ATkAdSADx6VvSftIuKOWnaEmpdUcraJfR61Zm4tEhUYIkEu8uo/iIwMf\nzr2iydpLOJ2zuZcmvK9GmsZHE94Hj8gfvEkBBUDsc9K0tN+JsDwXd/JCTY/a2t4UBAZUVU5H1JJx\n71tTpu9uphUqa83TY76P/kMXP/XvF/6FJVyua0TxTpOtXc13a3IEbRxx4lG0hgXJHPHRh+ddICCM\nggj2qKSaTv3f5mOHlGSlZ9X+Zl6T/wAhLXf+v5f/AEnhrVrK0k/8TLXf+v5f/SeGtWnD4fv/ADZ3\n4j+J8l/6TEKKKMirMDyI6n4w1lDdrc22k6fJwjzssanuPmILHI7jg0x9T8aaNGLzz7fV9PQfO8JW\nRcdzkANwAeTkCtC/8JaxqZN1cXkBnZvuMTtVfQEA/liskxyafe6ethcbLtImSTaDtYiRh/wIfh0A\nNJwfc5Pr7UrOklH8TsfDviSz8RWnnQZjlTAmhY5MZ/qPQ1dl4krmYr7QPDxg1FLAw3OpybHKL9w5\nG7OT8o74HXjjjjp7jiU0SUkk5GkpQlJ+z2GZqOOXzAflK4JHOOxI/pSg+tQmBXJJYjkkFcZBORn8\nif8A61S7jjbqTKyKgCkBe3pz6fnTlwBxwOvpVUW3lxqsTsCuMFjngADp3+6P1qdAVBBOTuJ/M5oT\nYNLuDyoiszsAFBJJ7Y6/yNNkl2HAKZB+bLY2/KT/AEqCW0WZn3Svhjll4wf0zTmtoXkaR1LOwwSS\neeMfhx6UrstKHcX7UnmRoWA8xdynOO/Ax68/zpZpxHs5GCTu9htJz+lCxxnIwrKeCDyMDt+lNVl8\nsISCVABGc4OP/r0ai9290Z2j3KjQtMUA82sYz0AOFH8zV8TK77VByRnoRx/kVR0ZkOgaeuQc20eQ\ne/yL/wDWqwSJHbK52tgEj2H9f5VEL8i9Eb4rl9vU06y/NkVzNMpJiMe3ftw+fYDp3JP0+lVzcNIy\nhZYi5cthHJBUcdcepFWWVAclR97dyO/rVBo3UOA8WCu0ARdB6delNpmSlG1rD0uC8UbMyFiozszg\nnHbNPiDO5A7jr2qsgAGEQAkkDA5PYfoBV5z9lt1Vwu1h8zD1qoR5tzKcktip4x059bs7eCLVJtOM\nZZ2miySegxwR6569q5WDwOkckYn8W67c5jy3k3Pl5JPBGd2BgdP1HSug1O6ka1lUnkIdp9c//qqA\nTwWsckjMh2AZJxjrxn8/1qIUKcnJuKevZdl5HBCEJTnKUU9eqT6LumX7PTbSylS2s1mfagNxPdTy\nTkDsAGJAY+2MdfSsvXbw22u2zRqEhKlGVRhc5649ax7/AOI0Fjuh03S57sDJaeRzErMe4GCT+OOl\nVdP1aXxbYPJMsEF7BKD5CZ5UDhuSc9SPw96KuGpODSivuX+R0UqNLnUnBW9F/kW/Ec5ksysVzPA3\nUPDIVIP4da8+e68QmQomq3jKP4vPf/GvRZ9O85cvzx61z2oGyspALyZLa2J2gnJMh9AAM49T9K4a\nVOnJ8vKvuX+R11MLQjq4L7l/kY93da7baCbmLU7pjnBzKxOPXOa7RprkeHbG5WWUytbRsx3nLHaO\nfeqDCFbdHVkaAjtyrKf5059ejjt1iaHaijamF2gAdsVriMLSja0V9y/yIo0qDUk6a/8AAV/kcrrO\nsTz69e2iRoVS4dSSOwYitPRJFMlzGMZaxvcge1tJ/jVXW0gi1W+mREUmVyxHUncf61F4VLveXcrd\nP7PvAPxtpTXFUSeF07L/ANtNMLJ+wgn/ACr8kWvB+uXtxq4s7qUOkIzGdoBwFYckDngjrXW6hP8A\nZNOaXO2RjXmOk3H2PWZJ1JAEfbjqyj+tek65f2Aezs5NLtJ1e3hdzLJMCS0asfuyAd/SnWlyVFFR\nvf06LzPT526NPvr/AOlMwYvFMenxNApEgY7mZhyTWjpmp/bYZ5FbEZO4DP3eOf1qoZ9JguhaL4Xs\nSXGOZJznP/bSqera/aeHmlsrfw/pwM2PlMtzwMc5/e+/bFOMpPSMH98f8zKVSS1kyC41JLmaR4T+\n7I2qT3H+c1oRamdN8JX01v1a8tldVwRzHPztPHas6x1bTDEY5PD2mJ8uQFkuT/7Wq5BPpzeFtTZt\nA00xC+tiUEl0Ax2T4J/fZyOcYIHJyDxjOtKWl4P4o9V39TJyZx2o6om55F2meQclVC498DgVgrI8\ncgkjdkcHIZTgito+INO3H/ik9H+vm3n/AMfp8er2U24ReD9JfaCx2yXhwPX/AF9egpzS/hv74/5n\nLJ3d7l/V9bnTR/DfnqJd+nOxbODn7VcD+QFUE8TJbtvt7clx03twP8a6DVPsGp+EIZDolnbSW+h/\naIJIXnzEf7SaMqN0jAgh2PIJy3XAAHCQpF5qeeW8vcN+zrjviscG4zptONrN/m30KcnfRnQ+GZZb\n7VruWck+ZGS5A4yWH/163DeLaSFZwSvYjrVqztbKwUJYrm0dQ6S7smTIHJ/H29ajv7UTo20Aj3pV\nGpSv0Z1U9I2W6I4bvTS+77ZNjPCHpRqX+k2jjkHG4DuBTNL0yJJd5jGR0JqyipdeI3smz5Yt93B5\nB3dvzH5VLsnp0LblJJSMrQ7owad4iEgIC6ehPv8A6VAP60NcxSaFabJnw91N8mep2xf5/GtGS0tL\nKPxHatMCTpqMzY+6DdQYB9+lZMkUNn4ctXZ1wLmYqR3ysXT8qzTTqN+a/wDSWcVZtShr9r9JFy0s\nFaK4iluACyjChsDfT4bKOO3LF9/THzdwfTJ7/SuVyP7cijI+SSVcjpwSM1as9bhEw86FUBPJUsf6\n11ypyT01OuDpzp80mo9Or6X6HtV/dSJrGooOFF1LgZ/2zWZql0rafI0ivIkfz7F5OR6UzVZUm13V\nfJumIW9mUhQPlYOQRyKqZl7zy4+i/wCFY4a7w8Fb7K/JGPJBS5vaL7pf5FW58QSadZOYwGFY+oeI\ntTj1zUILQkJHNIp4B3YYj09uKm1QNDM6SIWVhuG5eveqWs6osGp3ccT5lSd1YuOThiM8YrNRtUty\n30f5o2/duum6n2X0l3Xkbtxr2oR+ILeDa6+Zp9ozlhwSbaMn6c8Vg+ItX893tAArxDceO7CtXUbx\nptatLZZWkk+xWrKzAZG6CMgcDoAcevHUnmuPt3+16tMLm3gDyg/OGf5j2/iowkL01Ll2X+Zc+T4f\naL7pf5GWJoUi3OhkkPXJ6VoavMv9sWrKoQ/ZbXp7wJVXVrBoI42W3VGLuDsLEEYXHUn1NXbu1H9r\nwTzsscSWdqcseuII66m05Rfr+h59eEoYiEb30b+9LuZ9mBJ4hQyRecTPkR5xvOeBmvT9cjM0NrOA\nVl2nr1xxwa8xe9trfVFu4IxK0cm9d+dpOcg44NdPpmuXOqhZruRmflCeAoORjA7cY+taVE3G5VN2\nmiWWbT45PMnEgl7jOP0qzbt58omKERj7ue9NuYxIQzKrEevak3lI93QAZrnS0OlyfU9BsNba/gM6\nGN2U7XTup7g/l1p189nqFqYbkNHyGUnJwQcgg15O93d3OgSx2InN6moRv+4zu+ZZsYxzng1v6Zfe\nK/KC6pYq8YHDMhEn/joI/MA1rCPxev6I82lpKbX836I6i6uzIYreCFNx5ZgAMjr1qX+0Z7+FbSSy\nhttmdrtJnnp8oxyPrWTPaJNb2zXMKlXUEo4ztPaorTTAk6h4rTygcnLZLemRXJaKdj2YvmVzei1Y\nNo9xGUj2RK33cEHAz2rn7m/h1tdzXcUEyYAVh8oHYAf561f1GETaZdvG20EKFI6E7hzXIWvh1ZJp\nL3ULpY7KL5pHzjI9BWlOCabZlOrKL0LPi/Vl06zFjDIrXVxCnmsnQLsUY/ED8j9K5vRpjJrWgLv3\nbbiIHJ6fvf8ADFaepaU2q6pZPBa5WTToHk2vjnYBkZ6cYGOemasaT4PmttasrgFlEVxHJtYqeAwJ\n5B/pWsVGGGa8n+TPHnNywjb/AJX+UjngiQ2EKcebI3Y8gf8A666jVZBF4Z09jwp1C75/7Z29czqO\nhapo5jubiEvCjhmkjO4de/pXWRRx654UtFtLqxMkV5cM6T3kULAMkODh2BOdp/KoxjScJS2v+jPQ\npbMxtPltIZfON4AR0GwDP41H4mVjZwTEtmSRjg9hitHSvCVwL3zJJdJO05G3VLY4/KSrXifQLua3\nto47jSwyuSN+q2y5GOesgz2qI4iiqitL+vuLm5ShqZPgHUxband2zD5Xsbt89wVtpT/KodKttNmE\ntzdq0i+Ycrk4x+FbPhDwXqEHiLzbl9PETWd2jKmo27k7reRcYVye+c9AASaz28G+IdMmdbeXTnib\nv/adsufqDIKn6xQdedppXUf18iIXSTauie9tPD82n3E1pE0RRTgKzAE9B1J71heIdT87T7GyRCEj\nTcSRw3GBj16Gt6y8J+IdTdbVn06O3ZgZHTUrZ8D6LISa6PUfh5bazMLeK6toTYwCKJkvYSGC8kMN\nxI+Zjz/OrWKoQfvTv+n4FSvNaKx5v4T/AOQxcf8AYM1D/wBJJqxB1r0Ww8Cahol9dXhurC4thYXs\nYMV3E0hL20iqNgYkkswGBnrXnksMsEhjmjeN14KupBH4VvQqQqVZyg7q0f1Od7G9aH/ihtW/7CVl\n/wCirqug+HujaFe6frura1ayXg05YPKtllKK/mMwJOOTjAPUd81zlmf+KF1b/sJ2X/oq6rofhRdR\nL4jvLCaMzfbbKRIoCcLJKuHXcewwrc1dDSU7/wA36RFLY6qTxdqmppDo2lQ2+mWk0ojjt7RPLVS+\nARxjgsd3TIz1qvc6nrfgrUBax6tBPMVLSJG3mIjYKgHOCSBzgjAz0pvgu6TTvFaJcC0KBXWSSbBW\nMKNxdWzgH5eG9CfWuZ8aeKV1jxBcTWwiMKM0UUiKVDoGJDEHuc+30r6OtUpUpqCiuS1/U5Ixclfq\ndt44Gm3fhDT5ra20631DVbNpZJwI4DI4khLAscZOcnn+7Xl8Oj3UVxE4nsBtcNuGoQcYOf79Zk1x\nLOwMrs2BgZPQVBkg5rwKkG5ylB2T8v8AglqnNScoy3t0vsrd0eyBBf2aiZrdm28lZ0P6g0/RPD1q\nt6JHk8xR/CJA2PyNcFo3iyK3dVvrdtuMFocc/gf8a6dfiBotjCxs7S6lm6BXVUX88n+VcKo1ouyf\n4f8ABOzmqNazX/gP/BHfFHSzd3enXNtNAhWMxlJp44RgHORvIz15/CuQtNHuI2kf7Tp5xGwXF9Cc\nsRgfx8dc/hWdrusXmu3rXV44LYwqLwqL6D2rPgOEOOvrXVCnVUbOX4f8E5pqq3fmX/gP/BOgGiXK\nQN/pNgCQBj7bD/8AF+1asGo64kttHO/h6WNI0hDzJp7uFVQi5YgscAD1PFcqJfMjAY8Hmr93YpNF\nbyWi4ZpNoO7PPGBjHB/E1FSg5/G0/l/wQSrX0n+H/BO01XxI2lCKTFhLI0aBY47C2YkhF3fPsOAO\nemQOg4HGDL441G9l3Ja6apbAVDpls2OMHkx96x7ed5FcTgMBF5UbegJycfhkfj7UjKiIFRQAOhHX\n86ilgqMFZxTf9eZum4wUIvRI3JfFd1FDABDpRZVYuBpVr94k/wDTP0C9Kot4qv5D5n2bSODn/kD2\nhx/5DrHdSxqu02yYKD8netfqtH+Vf18w5pWtc7q48XXH9kfavI0tnI2gHTLY5J/7Z/jV/wANx3mq\n2y3V5HpR3HIjXRrTge/7qvPIraa7mitbc5aWQBVLADJ9zxXoCW+saNYx3MN7FJbBcuLdBIikY3Bm\n9sgE/dyRgmuWtg4KNoJf18zenVUpXmjo9U0u3m0SezjfS7JrnakjrbW8BdAQ23KqD95VOPavLdb8\nPXGjshmjGyQfJIpyrfQ1217aXrx2erXaQtPOoaKMRu6Bcd+PvZ6g+2O+Oh1bS4tR8MNaJYRQAAtu\nSFYwWA+VlAGR3J6ZLHPQGow7jQW++5tUpqo7KNjxGN3hkSVCVdCGU+hHQ11niqNL7S7PV4tgEvDK\noAxu5xx1wcj696y202a0iVrqFdsq5Uex/lWnafZ5fC+oWLHMsQ82DIGcZGVB784P516SaeqOCScX\nqZvhW0FzrkWQCEBYg9D2x+Wap6s/n6ndSxx7Y/MOAo4AzgVs+GP9E03Ub8hDhdihgcqQM5GMV0vh\nqbQG0KaG7junusEq4mULt68KMHjnLZHuaqzexlOrCknKd7eR5iwBrV8N+HLvxDqYtoHWKJcGWZ+k\nY/qT2Hf8zUeuJZxarcCxnEttuOxtu049x0z644z04re8J+JdN0a1FsYHkubh2aeRsKqqAdoHUt34\nOOTSd0jTf4TUu7S5s7i604OCY2K5fjcvYj6jBpdNtJRHIkc1sh6uyhmOPTqAKqzanPqe2/B2S8hB\n1woJwppw17VZVFsohiU8Mw5z+FccottqJ3wqRUfeR0/hy2h1PVpLVlV4lhZpTyMgjaMehywP4VsM\nws/Esmly/ODbW6qQP4lgQHH1GfyFc9oepN4elWVLQ3ckwMQQy7CSfmznBz93p710eo37ajqX2hLK\nO2nt7KNpWaXMqFoEcfLgEYL7c5/KlVik1btL/wBtPNxjbpTbOMeF9P8AGl1JINocLhs8Y6fzXFdL\nPqFsbNRtCynjeeQvvWX4smtpI7G6AUXxiwTu4ABOQfU7gT7c+tc4NXF3EtrKDsVg2O//AOqniIXl\ndHp0ZcsU31Oni8bXz2/2AmBYCdrAoeF74Ocg+9dFoeuTbjCz+ZGo+WVuuD0z71xlouniRUj06N0J\nwTIxI/HJqWe9g02aT7PGiI3BVOg/wrJT1VjSW251vi7X7a00pzdBnE9u0EYUZJYgjv06jn9K4jTP\nE2o62Y1v7hZFhu4xGBGkYG6ObPCgDnaKo+L72a4uNPtJXI32wlWM8AFmIx9cAVzoiZdBvlYFWF5b\n5B4I+SauurFuCv1a/M8vFTXu26NfmeiXOlo2n668Yx5lkqnH/XxCf6Vx1loYefKySBgfpSaHrGpx\naP4iH22VxHpyFPM+faftUA757E1gnXNUfj7ZIvvGAh/MAVjh6cozmr9V/wCknROrGWrR0nit7ew0\n60sVKvK8nmuM8gAEDP1z+lVdH8SrYRXI8+5jkmjKhhhypJByCeQePfr7CuZk3Pud2LN1JY5Jpg6V\n2KKtZmLld3R07zz6hdxXkmrvJdI2UkZ8lQOwB7e3Su2stTuNVgSK5sPs8q5MjDlGXB5APrnpz096\n8lDYrV07xFqGmDbDOWiPWN+VP+H4Yqk2iGtbnVaRe3GgWLrbQCd5ZXK7gRkDgcD6ZrpNG1fVdXs7\nqX7P5TwruIY9ayvD+radeWwEwTa45jOCUYcY+nQ1sJrdvpsjJDaSukybQYwMYry6ms2mtT16SXKm\npaEVreapdtEJZJoXVSJI1tlZGO44OS2fu4qTUtGtri5jvSXDxgbkRFyxzwfvD+tSrrc1qiySRRoH\nOPKLDcv+NR3msSWtu14sId0YEIDjPPHP6/hRThK7SbW/9bHLPDRjtOVr7XXe/wDKWoILB5p4rydZ\nrkqYx5yDemcEHvzjHIx3z1o8a2UFn4CIeWSK2WeIF4B5jEbWABUlRjpznsPWuBsPtd3q899cysZH\nJcgDAz2GPSvVdLgtdc8H3uk6u4V79ljiJ6gj5tw+gXP4Y712UKWqjzP8P8jlrRbldzlb1X/yJ4VJ\nLpB+VdR1FT7WKf8Ax6uos7Sxsbi0upLi7d7Z0ZlNsoJKkHn94cfrVHV/htqdrNIdKlXU4UyTsXZI\nADjOwnnPYAk10P8AZ08sMczRSRyso86GRSrI2OQQeRUYqjKCs27f15GdLCxqKUHN6ruv8hmjXz21\np5Py+WeGB6GuanuWsNQnEIDDedqt2Hb9K6WLTZ3cKEIGcVleJbfT0iiMEm++Q4fyzlQvP3vfPT8f\nas4z5pWPRcOWJi/YprsSXDCJGZskeag5/wB3OalWO7QpG23YOmKzmuYFIBeQ+xY8VradfWkYZthb\njgeldUUc8n9508uoGLwdfQpHtV5ETLHJC5yBn6KK5bSmVl1U+ZtBtVBIPT99HXXaJpkHivTr/TLp\nzCZcPA4PCOM4J9Rzz9fpXFW2m3GlprcYkjmMdsF/dtkHE8Wf0zVV43pqXp+aOKv/AA2uzX4tC2vi\nZrR5rW6txc2xclf4WUE5q3ba7o0MokT7RH7Mmf5GsDUPLkuEmiUqsigspH3W6EVTbA4A5odKN20d\nUaskkjv7zxtDPZtDZ+YIkALFhjzD6fT/AArkXvGlvJbucne7ljmpdLsWNvLesuYbc4Ho0h6D3x1P\n0qfTPD1/r12baxgLlVBeRuETJ6sfpnjr1wDVRjZWREqjlqzZs/F0NtH9n0+KUlhjfIAvP0yat+Gd\nG13xzqyQQxCysmk/eXbx5BKg8A8biOeBj3xXS+H/AIeaXpKRy6gft10uCAQREp+n8XPrwfSuru76\naysLia1JjlggYxlf4SF4Ap89lZGdrnGrp6GwaG2B2JK6IGJ3YDHBPHUjnp36Cm2yzIShVXbpkuR/\nSvS9R0m3162XVdGES3qRqJbZjhZQBwM9mA4DYwRwe23lLfQrnU7xxZ285uEfbLDImzyW44c9B1zx\nkkcqGrhqU5c7kup6tHEQ9ko2Vl38/mjNju5rNS7JCqqNxZpSAB/3zXUaV/wk3iXTY5UjjsdKQYDT\nzNE06H7xQ7SQCMfMV6Hjqao3Hh6xsb5V1OT+0LmBhI8KcQxt1VMdWPclu23Cjca1TrF5cSia4lJi\nBwEHCj8K6cPSad2znrYpN+7Bfj/8kXtUYalpS6RNpFhHbInlxPHqDqYwBgEHyf5j6151r3g3WtC0\nBBFF9qsULSyTWZ83aT1LAhSBgDnGPftXX3F0ZHDBh17elaGk6tPbSqqSYBPRuldqnZ8rbt/XkYvE\naK8I2Xr/APJHjtlOttotsv8AaH2cPcSndIhOflj4wucdf1rs/DPxEu9NkS1S8trtTxiWUwoPxccV\n12u+BdH8W3DpIn9nXSqJUkt1AVnYsGZl/iyFXuDx1rxLxP4Z1DwjrZsb3GSA8ciH5ZFPcfkaVGnL\nlk4ybV3p8/Q56M4SjKUYR0b79/8AEfSXhXUvtv265mEMcl5cCZFjkLrgRInDYGfuE8evWulr5o8I\neJbnSZlVZcJnLKTw31H51734c8Q2+tW3yNiRQMqTVezSjeJSxcqlS1Td9tu36G5RRRUHQeW6hqV2\nl9NaG3t7qeJvLdE3AyxkDhQGPPUHqefY1DDq91DqQ22ttZ3V1MI1SUuWRGYsSwLep44GcnFS2Mnh\nrxBp1ytsY11K4DMsVzJh1kwcBT/EM88Z9/SmXVn4c0bRUi1mSKO+T53WGTdMTzgAA9Mcen061tKn\nLm5banjpTi+ZvT1IvHpmNnpdjLIk15Lc7kaOMoCAMYxk92Heu1u+Js9jXDeHILrxX4l/t+6iaPT7\nXi1RjnJHTHrg8k+vH07m7+8pFGIXLGMeq/U6qK0cu7v8tkV84FV3lmEsqouSFUrnpzkfjjGf85qb\nPFQNcxrN5eHLE7TtUkDvzj6j8x745WdML30VxSLnzCwMWNpUBs8nnB4P+7x9aWOVzKyMV4A4B6HH\nP8x+Y9eK6albyquwvliAAUI6nAOen/6j6GhJDJC0qAKxZscZyM4HfHQDvilfsaOMre8izIGOQrBS\ne/pTFVkZTvyoXH1Pr+n61Wae4aZwIgqB1wWB5Uk5x7jj9aaHnDJvzy5B5HIweT6dB+Z9qLk8rtq0\nWlQRlirNtOTsJJGT35NRbXUALIOvPy9eOe/XODk+lQzXM0ckKCDd5hbJDcLgZHOO/wDSkMs5BxDj\n5u7DOOvT9Oo60aAua1yvo4K6Np7LgA2seQByTtHf/P1qxJEHTGdvU8Huef581S0dpv7G0/cqFTAg\n4OCBt4Pv2/P2q07nzdoDZwMknA71ELci9EbYq/1ipr9qX5sbgIDgAZJOFGBUDtyaa73BViVQDAIX\nPPfIz09B/nhrGqOaS11LNphd8xUsR8q8dD3NS6jcKsSqBkkciqz3kGnaf5txII0Y5JYce3FVDe21\n0A9lcLPEeTgn9M81vFWRhLV2KN5kRMASVz8vvwcj8qr6e4mEnmEHBAIzkEgYx+dLOfMSSInHzDYf\nwJ/pVPSGcW4Ei7XBO4ehyRWdPeXr+iMaO8/X9EWr/TIJxs2Lycn37Cuf1DRRHCzW42zIRIpHqD/9\nc11JYY4I6Vm3r4dgv3inH5itTXbYbceILSCxWWZm3kf6pRk5rjtatpvEM8dxJD5A2hFTduwuep9S\nSfT0rq/7PS5eOa5RAIl3PgfeC5OT78jmtnQdPjeV9VuAMIcRJ2Lev4dB759KwVONOL5VububqSvL\noZmk+EpbPR41Eq24XJVZgZGbPqMgJ345rnNfs7qOJ9wj4ORsVtp/X+f613ep6gqs+X4APWuW1TX4\nWjCfZ5XVxwoAG4+nr+lc86cd+poqkm9NjhtfMo1zURuJzdyAD/gRq54acwXksLOS5sL53GeB/osu\nB/n1rcufDxvNXvprn5d9w/l7T0GTg/XpRpXhWGy1lppbicwPbXEDFEDEebE8eQCRnG/PUdK53RlL\nC2S+yvyRnhppUoei/JHDWLGZ7hh18sY/77Wu71yIy3EHzEOLG0wfT/Ro6avhLSLIpHFf358w7XJs\nVyBjdkDzeTkDjjgk9sHV1+LSIbyMXFxq8ZW0tl/d6ZvU/uEA+YSYzjqOxyMnrWFSb9vFqL69H2R6\nTlH2ME30f/pTMK1jvBCzyXJ2qOCF5/OuP1RHN7uZ2YtltzHJNejxQadfWz2tvc6vCmOZ5dORQR7B\npgT9ccVBP4K0d2WY6lfhEwMfYEIx/wB/q6oVLJ+7L/wFnLUkm1qcFapd3V2jQoW2DBx0r0GXw1qc\nng28isUW4eW7t2ZFYBlQJNk4PX7wAwTmtvTdA0S1laGG6uSU6g2if/HK2kmtbeya2t5rh3eRX3PE\nEAChh2Y5+8KJpVOVKL3XRrZkOdkfOmp25tdQlhKlSpA2kYI4qshZWDKSCOhFewfEnQ49R0VdUhRf\ntNrjzCo+8h/w4/WvIc9q7pRsZRlc7yW5mm8HYkldx/wje7k55/tYDP1wBXBiu3z/AMUf/wBy1/7l\nq4gV52BS9/1/zLlpY6PwvqCwzSW1wryxEZVN+APXt7101tq2lq5t7m8EMo42yAj6HPTFeeWs/wBn\nuo5eynn6d60dcj3GG5A4cFTgdx/+v9K6qlJT0ZVOq6b0O/8At+iWy7n1K3I7eW4Y/kMmuV1DVp9O\nu5r63CiWbKKWH3V/ziuc0+PzdQgTGRvBP0HJ/lWj4hcebBEMcKW/M4/pUQoRi+5VSvKVraEmjzST\n6Z4pllcvI2nIWYnkn7Xb0kWn3t/4as/sllcXPl3lxu8mJn25SHGcDjoaTQv+QP4m/wCwYn/pXb1h\nVCi5VJ8vRr/0k5qsJSUXF6p3/P8AzN6PRtY/tK1uJNJvkRHUu7W7gKAeSTjpiqX/AAjuuf8AQG1H\n/wABX/wqDTj/AMTO1/67J/MU/S9Hvta1BbLT7d5pm7DoB6k9AK0/ec2628/8zW1b6utV8T6P+VeZ\n2Wqp4h034g67cW2mag9rLqVwWCW7lXUyNgjjH0NdJNFqK2S3EcFwWchVTyjuHuVxkYHqK6A/D/Sb\nXxJqmq38S3txc30s6LIPkjDOxA29+vOc9sAVR8cWk17pTSKSTEBKFHouc/oTWGGjUdCG3wro+y8z\nGftuZ2a+5/5jvGOim5cT2ih1kAUpHyUIGOg7Y79K818RaJeSa9fSRcrJcyEZ46sa9ittdth4Ugut\nQjNz58IXyh1kbHP0Hv27c4rmpY4so6x4R/mUE7sD0zjk9KHGcH7TQ2pQlOpeo1oraX736sqLoTW+\nsQXLndM9jYwRr23fZ4k6/WuX8VeH57DVb+W2t2+wx3TorJkiIZ+VW9DgjGev4GvR9Q1WPRdYsNRn\nsmuo/IgWNFfaRmFAWHHJwTxx+vDvCErT3+sXoZit3IJY88ELuYKfyAP41eWylCkpvqv8y69m1FdD\nx6XUJIdPQS/vHZ3ALdsBfz61V8Qyl9RjJOSbS1P/AJAjr2LWPCWkeJLqWKWAWriFJElt1CbXJkyS\nuMHOBnPPy9a848beE77S7pbuMG5sVgii85FPy7EVPnH8Odue/Uc1p7rqppW+L9CMU37anf8Al/RH\nGk5rZ0S6SKOaNgx5DDB+v/1qxgKsWcnlXK+jcGtmtBHo1nqOk6hbhvtaQyLxIszBCD+PH5VBeX9k\n839nWUkckh+aScMPKiX1LdO4/H8q4a6QGZhnG75qhJ2jA4FYKgk73NnXbWx38XiKw0HRbltCgWV1\nnijlnmUjzSwkOcA5wNnHTqfqYdE8Zy3+pTw6i20Tpth8scI2egGepGQCc84965iwNtNo95aT3sNr\nI88MqGZXIYKsgP3Fbn5xS21jZw3UMp1zT8I6twk/Y5/55VC5E5KV9+z8vI4KdVU5y5u/Z9l5M9Xt\nJ1msVXAdosxMDz04H14xWdFZW51ESNaE4P3S5KH8Ka+oWml6kb26ureO1umyQFlJ9iBs579xU3/C\nW+GhLuGprj/rhJ/8TWLaUna9vR/5HZHGUnHV/hL/AORNXXJYl0kpImfMZflU+nzduccdvWvINeuI\n7jVbpLS5mksUlcW4kdiAmeMZ5HGK9Ng1H+1rO71IXdoIIYz5YDOQu0E5IZATyOw7AcmvMzptrn/k\nN2H/AHxP/wDG66Kc4Rj/AMB/5GE8VCT6/c/8jr7jxPbabJDFFAJM2sDAbtoTMakDGDnjB/8A1VDZ\neKprvXbCJLdI0kuY1OSWOCwHtXJ6xNDLqAMEyzRpBBH5iggMViRTjIBxkHqKl0BmPiLSxn/l8h/9\nDFLlX1Z3X2X+TOVprCP/AAv8pG7B4zn3CO7topImGCFznH4kg1zuvW1tZX0cumy/uLhPMCKfuckY\n/Ss0XLq3zckcVe0mNZ7wzyDIT7oI4zXTJRWqOxXW5NYR6s67kk8iNv43UZP0GM1pQWSRSebIzTT9\n5JOT+HpVgS5OTTlBfk1g5XJc2zX8MMUvL1wxMiWV1InGcYt5Rz7cj9K0bRbfVNoinjZm/hLYYfhW\nXoMf/E0l97C8/wDSaSo7ayRY1PU4Gc1ySipVZPyj/wC3GsK3JE7F7KPRrEKGiinkYIhbsT3JHoP6\nVlyX32BJrO3jZZZVCyyMQcDngYHTB9+nvxjeUoueMcDGRnj/ADxVtEAPPXvWqgows9bk1Kzk7rQs\nI4WPaO1MeSG4VYrmKOYA5CyoGA/A0hOMEHmqd2Rt8xe3pUpamBYuvD+m3HhLUooYxau99bOWj6Fg\nk+Pl6Y5PTFct4M0idfHNrFLdNZ/Y5BNJMgBIVSMbd3B3Egc8fNyCOK6a2uCfDOqfOSFv7bGT0+Se\nsp/EE2kWt+tsime4iUJJkgoQTyMdcAsR74PanhpSTmvP9Imt3oh/xL1nS9Q8Qt/ZJV1UEXEqDAeT\nJzg/xAY698nsBXD9Rmk6gg0iH5SD2r0HJuyY7C44phU7qev3RTu1IY1V4p4HHFCj5K0dI0LVdbkM\nemafcXTA4PlRkgfU9BQIzH5FNhGM5qaeGSCVo5V2upwR6UwcHFAxFbauPQkVp6bfyWlwjo2CjBx9\nRzWesRcSEdAy9OvOe34U+RPIn2Zz068dqN9ATs7jxLhiRxk4wKkVzudfTkVVY7T+OafDJmX8MUhl\nk4ZcjmoWiU9qftZGytBIb2NAEPlkMArFTnIOehr0L7Zbvo0bTl3uGHWRiwX3we9cEeRhvwNb+lX6\nyQfY5wDgcAjIYVz4mLcbo6MPJRlqdpY6VeNaL/aGoFElj/cwXF4sZkxk/LHuySMdwKn0rULxYJLa\n9LiNSQokxu2+9Z2kz29k+9pRGGOWC9W9zVjUdUt7h9tqN5PAauB+9okdydldsw/FOp211bWtrbOp\nMTN5oU9GGFx7dCfxrlRcNDMpU46qfxFWb1Nl7crn/lq38zWZMTuAPXNenSgoQSR5tWTlJtj/ALes\nOjtaBcSM+WYHt9PXj9TWeZ2KBQx2joM9KS5GHBBzuGcelQ5xWhkSF8imxD9+npuFIO1GOaAOu0uV\nIv8ARpXCljlAT1PpWzaW4+0lgBuHrXK6xGJNOjnVcZKt+BH/AOqtjw8t7bac08tzIS/CRseUUY7n\n1z0Hp9RWMqTlrFnVhqiTfMr2Tf3I1bh7hr+CQRZ+zOHTJIBPXkAEkcdq6GbQtcn1QXaWl3ci4sYn\n+0x27FN32VVwO+SAAT/eHQdKxUba2egK8k/zpunvJdalGykhPLlwC23OY2HJz64qsTg2oc8Hqk97\n9bdvQ46+ObpyvFW/woP+ET12S/Hm6JqZBDDeYHI5BH92p4PB2rX9lFI+k6lbzRLs2NauDxwMkjnj\nHOKkg0ua4jnUeSrqAY/LnQ7SOR0PHbmuaeHVdG1EXFpNYFHGHjlvYQG/Nx+lctfne04/+TGlLM6S\n/l+5f5HQJ4a8TWzBF0K+dAeCI2IP/jtW7fwjrU84nudLvRg7tjW7sM/TAqrb+JkYf6TaWqMP+eeq\nWzfzcUyfV7nVka2gtLKGEfff+0YZCfQYVuK54+0X2o/+Tf5nQ8zo21cfuX+RF4l0DVL6aK9udC1P\nIYK0iWsiLFGv8TZBAAHPp79at6d4T1O60ue11PQ9SB86LY62zhiAr4PTtnHPqK5i/trufVLQNcWj\nQ2rKFUXsJI5BIC7s57YxmtiDTptL8LQzK8UpkaJmCur8BZARlTggEjB7fhXVGpU5lFSi9V0l39Tj\nxdelWowkrX5raK3RPt0NIeAbyw0nXXRLiOOeyWNRdQmPB+0QsBuxgnCn0rzy/wBHvdNcC6t3jB6N\n1U/Qjg11UniSTTtMSUQ/azJIyKkzYKAc/Lwc9fXj3zWgNctNRsFD2nlQSYEkcjZCjPO44Htgj+fF\nelSoRbk5PV9r20VurZk6kla55uR8rfSougro9U0C4tfMmgQy2ZAdJFIPynnt/Os3R9Ni1PWbexnv\nIbOKV9r3Ev3UHX8+w6ckcjrWcouLszZNNXMzs3NNDVo6vpo0rVZ7NLqG7WJgBNAcq3Gf/rH3qgLd\nsnJAFIZd0m9e11CPYM7yEK+ua72ICeMTEXEqlSvloSQpx1AyOaxvDug6bc6C+oLI0moxXBjaN3Cq\ni+Wzqw+pUjk9jx3rZT7Rbr5tpLs3gEgjIauOvZu6OvDtxNmK2jdXuGsUtyBgfKF2j0FU71ntdCmu\nRGJGMqoobsMHP9KrWU97eXAW7c7Ac7QODWzqsBk0YpGuT5qnHc4Vjj8smrpQ6sdWpzP0OFj1q5t5\nSUhhB9Dk/wBa6Twrrk02svealOohtbaTy1xgByMDGB169fSueuIVY5GKrpOYS0QICN8z/hnH866K\nbUZXRx1LyVrneQ67BHGxDEAnczMwHPuaytQ+ILQp5Nqi3BH/AD2yUH07/lj61wt7ftcSHDHYPujN\nUmkO0nuelaSqOQlFLU0NQ17UdQZlnu5HUnlAdqf98jitLT7VRoUkzkAMc5/4FiudRcLzXZ2KCXwk\nykZBhkwPcFv8KwaVrIpybkmzlri1+c5Ug/SpbeLYOAcVU+03CLtD5UdA3NW9Mkub2+jhLYiHzPtG\nOB/nFTyy2NfaQWp01jeyaTYzXYdo3ETbSvUEjA/UiucsJnNnrLFiSbMZP1ni/wAat+I7rAitUyP4\n2/p/X9Koabk2Gsf9ea/+j4qqq/3VvT80cVb4G+7X5oZbXgksjbzIrlOYywzgdxQbO2njZ7aQpLj/\nAFcnr7GqA+VqduK8g81rfubWOyk8pdD0zRbYRFpZQZJFJPz9MHIH97nr257D0rTRbabpkdrbIEiT\np6se5Pua8Y8PXCrrls8z42sdue5xxXq1vOZGRARjdz+VRJ9CUrP0N1GyhkYk44H1pz4MBVujdc96\nrRuJSP7o5AqeRsIFyRnnmkWiHR7m4tIIJUl/fxrsYg9WHBH5itjWfGGoParBbokU8nyLsYkliOvs\nOCfoOtc9p5EZuIsjMc7kn03fP/7PUVm5u7qS9YHy8bYR6L/e/HAP0AoQtti5aW6wQCMEseSzMeWY\n8kn3NSOdx2KflWlU5YDPSmp/HgZ5q09yRGB8xVB4x+VRz3JgjzGcszhFJ9TQx/0gnsar3l0gkVEQ\nFw4VT1AJH+H86OozrRqU0F3ZEMN7wJkj2J/xqr8UNGi8ReBzqKg/aNObzQyrk7Dww/kfwrMmujLf\nJzjywIyPdVUH9c113haVNUtL+xuBvhkUoy56qwII/KunC1OVt9m/z1/A5MK+WXldr8T5ulzbyxyJ\nIskLKpEi5xnHIPof8816N8M9ZIuJpRIF8rDyn/Y5/rx9WFeb61DP4e1y906Q7vKkaGVD91wrEf04\nNX/DGpm3g1AxAxRvGqk9S3zqQCfTjP4VtJezrOHT9DWvS0t2Z9YWlwt1bJMh4YVNXIfD7UzqGiFS\ncmM4rr6xnHlk0jpoVHOmpPc4CXwrZHV4dTi0wwXMMokxBOAshz3UjHbPG089zkVDqHhrTtQ1d9Rv\n7KWW4IA8hrgCMhR94Ywe2ME/hXTl7jOQYv8Avk/41E5nJLYgJxjJQ/41ftpb3OdU49iul0LazjSK\nzWONV4RXUBF4AwB2+lLLIJbcSAfxFRz6HrU+2Vo1BW3wQP8AlmcevrUM0ZS2wdoAJwFGBWM2mjQq\n5qCW1ilySoyxBPGc4IP64AqXNQyp5mO5HQdueP8APQ+9Qy4vUdJNsLM7KsYHLE98jr6f59Kg+1oG\nbcwHzEKCD2x1/PP0NLEgMaOxZm2g5J7/AE6UpRC27Yuc7s46n1qdSk4LcPN2opchWPX64yf61Aby\nHaWQs/zbSAOnT147j86leNJF2soYdcEU3YqlmVQC33iB1/zk0O4k49Su10HQ7GbLNx8oJTjGffkf\nrj0p3nySsFRDHjkmQdsccA/zI6VMTzTS2OvSizG5LsU9J/5Aljk/8u8f/oIqd8ZDHqBjNVdKbGjW\nP/XvH/6CKmdsmph8C9F+SNcV/vFT/FL82Ru1RMacxJyahk4HNM5ytq0QvL1YTLOFCAIiYAAwM5NY\nlz4XeJvO0m8a2ugc/NgI31GP6V1M8Kxu1y7qoaNME9Bx1rGkvQX2QtsXP+tkBLf8BXqfr0FdJh1K\nstvqBt3E9uROrK48vLBuG5BHaobCV5GkG3L7zwBzWhFqUCK2ws+xgGLnJGcnJ9Oh/T1rOuLmfUZS\nouLaNSciNIy59skdD9TWFPeXr+iM6W8/X9EW2nJJX3xVeFln1OQHoi4wPrRaWwkJ82+iZkONypyf\nbrx+ZpItNngnllS5jO5wVKsQRWlzbqSXVyrDyUOWcjoO3JI/QD8a27wjT9Nhtw2REvVeMk8k/mTW\nLpUbXGrzPMrbLaMksT1c9PrwM1n+JtWYsbePnIyRnr9axqT6msI6W7lC91WV5DI+1o0PToDWXpDH\nUr6C6kPAnKxx9gANxNUzFe6w+0ZW3H3mA5x7etamiIkFxMBwsZ2RgehA5/ICsoQv7zNG0tEdi8e+\n4k46OePWpBEuD8v1xULTZu5EUgtubPPTmpQSVKq2DjqBWtD+FH0X5I46H8GHovyRDcxxma1G3A83\n0/2Gq9qttG19GXAK/ZocEgH/AJZr1PWuGfU9VWZVkczmCUklFKAsGxszjBJAPT+9Wxr+v3EWqw2/\nyIWhtTklQFzBGzJlseo+Y46n0FZP/eI/P8ondP8Ag0/R/wDpTNtIFGcBcDpSsGjBkRdytw6jpXNR\n+L4Hck28m3HyAMGZjxxgdOTwe9a2lazFqsLvAHRkYBo2GCD7frXXc5gulEcAvbdzugIyO5ToQfpW\ni5DOsikgEcn61BPGkgkYZjYghhn5WB659qxrS9bbHah8MNyMD3A4H6UAtTo1EdxaSW86ZjlUo4Hd\nTkH+dfP2o2rWOo3Fq+N8MjIceoOK9ztbgE8NkdBg15T4+sxa+KZ5FQrHcKsy575HzH/voNSnqgjp\nIt+HfEeoR+HdatsWckVlpg8gT2MEpUG8hJUlkJZcyMcEkAnOMgYzP+Es1H/n20b/AMEtn/8AGqj0\nH/kD+J/+wYn/AKV21Yma82nh6Lq1LxW6/L1N23ZHQx+KNUmkWOO00dmbgAaLZ/8Axqtz/hIr42f2\nO7j0gSR4cMuk2rAKe23y8fp3rkLGINHPMXdGiAKFTjmuq+xWVvYeaLqE3IyB+8G9jjOSM55PFazw\ndOKT5VZ/13Mp4qFNWabd/kSWOs3H20NE2jyqFJ+XRrRSO3aPPes/VfFmof2hKqwaSVTCjdpFox9+\nsfrTreVMSuQPMUkE98Vg38bYjuGkLNPljx0/zming6bi3yrT+u43X9o00uXyNOPxlq0SSJHHpKJK\nuyRV0e0AdchsH91yMqpx6gelRHxZqI/5dtG/8Etn/wDGqxKQ0fVaH8i/r5lczOksPFWovqNspt9H\nwZUBxo1oD1Hfyq9I+F3iM39rd28kWnxXiyA5hsYYt6kHHCIASCD27145pv8AyE7T/rsn/oQra8FX\nn2XxFEol8ppVKI/91xyvHfJGPxqHhaPN8K/r5nRd+wXq/wAkfREGo3P22S1vPLaQKZElMCAuPpjr\nz9Kp6lcTfZGJhtmAOHVraMgg8AYK/Sn206X8Fjd4xIrjIBzjdlSPz4qW7TLzRuMoq/OB/ESCatYS\nhaygv6+ZzuTOf8N35vftFjPDaB7Q9rGEAxknkALjnpxWveWcvlukX2LecFUNjCcE9QPl6VymlM9n\n4paHzHLfMgBHBx8wHqOgzXS6nrC6Sn2sjzJtr+WnXdJ8oX8M/pmpeFot25V/XzGptK9zm/EE/wDa\nWu2mjcNcR7VlKYVY1UDgbQACdo6AY4ro7Ffs8k7jbkhEwBjpk/zNYPhLTS9zPrNxJ5ks7sokBz5h\n43N+LE/981v3eIniPd5sHJ7f5NbRjGKUYqyQrvqRWp26tcjHH2ZDj/gUlSzrGbArKEYOD5gZcjb0\nP1z0/HFZs+pW2m6hcNcyGNTCisQD03SE/oarXHiGwnvAHuo1i2ibJO3eWGV6+x/Wsb++v+3v0Hiv\n49P/AA/ojx3xbo6aPrUkUKlbeQeZEDzgHt+BzWFnmvSvH0UV5pCXcbK5ikyrA5yD1H8vyrzSulO6\nJL09x9oEbEAMqBSRVQscEU8cKBUTfeNCAkzninBaavWpe9AHU34+1+HlmL7mCpJkdz0P8z+Vcv7V\n2eg2b3/heYo8K7C8O0uAxLDIOPxP5Vx6RmS5SJfvOwUfU0IS3OofNj4VASRkZ4gOOM7iCQfwJrlc\nV13iuNrTTrJDtKXH71CoPQcY5A7k+3HBrk8Zo6AiM9a0PDrn/hJNKz3vIv8A0MVQfjJ9qteHT/xU\n+kj/AKfIf/QxWdb+FL0f5MyxH8Gfo/yZnhFcZOc1s2QFuqR4xzk/Ws2xj8yRf9k7q0N22RCPUU5v\noas0Vb5ulXkJXAxkmszzzE6hQNxPX0FX4Dj5z1PPPYVkyGjpvDMEUupTCQuCLG6xsGScwOP5E9+1\nZrXEcDCPk84+YYx/9erHh+8hsdSS6li3I8bwN8+z5XUpknBxjdnoelWJZtJk18acdGvjczyBQw1C\nPBY9OfJ/WsLSU5PlbTttbpfzXcaV0iuUEVvFcs2TMzBRkHGOPw/r/NY7mJvlD4+oPNaGq32j2c4g\nk0q7MlsPJPl6hH82DjJPlYJ6Vmp4g0HcBJpWpICe1+h/9o051JPRQl+H/wAkJx8xxmV1ZVblTg+x\nqjcyEqzKfmH3lPQ1rPf6E0IdLC/dQOSNQTp7fuaqXN5oCjLabqXHcagn/wAZrNVX/I/w/wDkhKPm\nUobhI/CesTN91b60wD6+XccVyN3cPKqsxO48/QVu6rrGmSaPcaZYWF3B5tzHO8k92sv+rWRQABGu\nP9YecnoK5y6IyoHpW+Gi/elJWu+vovXsaNIrZw1HRm9CKRqRj0PbFdgx6n5RT15qMcIK0NJt7O7v\nBDeXEsKvgIURCCxIGCXdQoxn5ieP1ouI6PwHptjPqUl9qsBntLZGZIBg+dJwFBB52jIJODjjIIzX\nY6DbW93qL2rwwEyKIwJlEcUavjcwUAEc54wo471p+Go7Cz0ueDRp7TyJ2Hnw3EhniXKkENsdtrEf\ngcDmq50CGPUopJpVvInwoEsf7tu/pgjjg+55rzZ1ZSqNPTs+v3HVBUlScpK77f0tDz/xxpVxb3kO\noOpMd0i4fk5IRSAc99rJk9Cc4rk2+UZ9DXuNxcppM06382IZD8qTOhJ+Xg/M6DgDHfsMEDjyjxRe\n6feXifYbQQeShikZWUiVgT8/y8d/U9K66VRv3bbGM1bW9zKgDNLIq85jyQSRkDn+maLht13n1VT1\n9hUSSshUq2NylSR6HrRyJMkYyOK3IJJxlQ1QRyBJOT3qyTviI9Kot980MEaP2g5wFBoDA9Rg1Wt/\nNnmjhhieSWRgiIg3FieAAB1Nen6D8HdXvrcT6ncxWGeREB5r/jggD8z7ilsM873cdcCtDTLOR5I5\n2DKCT5RYcNjOefrgfn6V7Npvw10jRpBMsRuZwcrLP8xXp0HQdOuM+9T6z4ZTUbdEwFkiOYyRx9D7\nHipk9NEOO55Yw4LGOQqp5ZRuFaVoQsPnG3uTEn3pBEdi+7N0ArZl0gW0giureRGDB8CRlG4cBhg4\n/EUy4sYPsrW8EB+c/wAUjuB7gEkA+9cLnS2aZ2KNXe6ON1FNJm1GeOd52Rmz9otmDBCTy2wgZ6E4\n3D69qxNR02bTblVkkSWKRBJDNGcrKhyAw/EEEdiCO1exaLZeR4dvLK5QNHdJ9nhjlTcjSM2EYj/Z\nYg57cntWl4j+F3h6+gsLXTy+nGedkVkJlCkxu5OGOcYjxgEDvxzntpTUonJNWla586yHcxPvTf61\n2njD4a654Sja6lRbrTw2BdQZIXJwN4PKnp7ZIGTXFkVoSC9ad3pq/epTwaBHW2MS3+jQJKQVIAYe\nyt0/IVfjdmyFyB5wXj06VlaFuTSJHYYBf5TnrnH+BrRt3VEjd22J5ykkDOOT/wDWrRRtFeq/MKL9\n6X+GX5F+7k2o0f8Az0YJjvjq38v1qS1yNpDbScjPt0Ndf4e8FaZqum2+r6hc3UkRZiIYwEUbWYHe\nxzkEKORt61B4x0/Q9L1Cwh0ZYxG0bF9s7SAEqAB8xPdW79x7V086ehypdivonmF5g+NpK4G3HP1r\nj/FWnwyaML2CQkRzmNlZDwQWU4bG3GR0zmu20K5khuJGjSIpjBLRhhkf1rio7j+0dA121O3dFJJO\nqtJgBS4OFXHJzk9emayqJGlM4fbXY2Vgml+E31GVnWV2wi7AQzHoCc5HHsawdF059V1m0so13GWQ\nDHY89Pb0rovFEj3WoWehwZZoMI+EOTITyMdTgk/XtXOa7uxzFlltTtiTk+cpP516X4P2X3hWCJky\nIS8TZ7/Nu/8AZx+Vc9L4H1DTPIvpQwhEv3mTI4I6lSQvUdcckCr3w9u9i39oxHBSVVPbsx/9BopO\n9S3ka1bfVoyi01zPZp9F2MzUrX7PqBtJR8qOTE+eBuGCCPwHP+ROAq2TIR2HH4gVueIbaI3CSsOS\noGMf7ROf1rAunCSyRht2OpxyScE/rmu2OjOOWtmXbCXzNJktXcgOjx7j9D/SuJuIxBcyxkhijFSR\n0yK6S2u/ka3VNwy8hbPTt/T9awteXZeR3CgBZl5x0yOD/SorK8blUnZtFMsTzmkyahVixyM1KMnr\nXIbGloFzHba5avMMxFwrZPHPQ/gcGvRrqK3sZl+1TC3imJELTBkViBzywGOvfrXk5rr72aTWPDCs\n8ru6KGwzcBl4PH0z+dTKKkrMcZOErnW28EOPOE8XlDnzC424+vSse88VRWWsWf2K+jM1sZJkdMMo\ncIdpJ6HnHHNeatkGiKJ5C7L/AAKWJpQhyvc0nV5laxrwanIjYc7l9P8ACm390jhRERyMtgVkRyNu\nwakJzWjMuoobrSp8zDPQVETjNPjbj2pATnsK7Twyxm0Xym+4sjR/gcH+tcSDk57V1PhSc/ZriI9F\ncN+Yx/7LSZMjl24bB6g4rqfDtnHb6fJeS8eZk7scBF/ya568hL6xLBGOWmKqP+BcV0utXSWmkLaR\nEjKiMD2HU/59abHLV2OVvJ2uruWZuC7Zx6DsKuab/wAeGr/9ei/+j4qfYaFe6koeJQFbO3IJZsdc\nKASatJpdxp9hrBk2sn2ULuU9G8+Lgg8g+xrGtNctvNfmhYilP2blbt93MtbXvb5HPvjIppOWx6U0\nv82Pxozx7mtyhwYqwYHBByCK9U8OXw1CyWbI5QKQOx7/AMq8pzxXWeCdS+z3z2jnCyDcufUdf0/l\nUy7ky7nqUEgPy+g6VOz7nVc9KzrZhvB7dqsq+6R259OKSGVbgSNqZtwhMNyo3kdtud2fqNq/ifSt\nCHlWIGMdsVWSJm1HzvMO1YSuztyQc/pU8JARzimHUeCR04pGYIWGfpULS464pz/NGG7YxxVwVyWV\nZLj/AEuMAnk8j2rOinSe7jCggpdP5rE9SB/hgVajGdQBxnAqlbQiCS4foxlkYj/eOAfyWmlqD2Nd\nJjKjzMcF5XP54rr/AAPKYrtwT98AfSuORCLeBCByxz39K6LQ7hbedSMhlYYIOMClh3dteb/M5Y/A\n2v5n+Z538ctLFn43FxGnF7brLx6jKn/0HP41zmk2sdj4cNze71E9wBHCvDSbRyeei/N1wcnj1x6V\n+0BbiSw0W8TOS0kbEdx8pA/nXkL+d9ntoYoXZY152r3PNdtV/BN9vy0Our71n3Pc/hVrUl2Wiwkc\nKuFSNBgDIP4kn1OT+Vet14R8L4106G3kup1SWe5G2JGDMwHrg/KOvXk+nevds1FTVJmeEfxLzMfY\nf7yfmf8ACmsmcjK06k7ViWNYEABQvAA5J/wqvcBjA24ADOeDmrJqGfJhcCk9gMnOaY2GGCT+BIoP\nXntTSaWgwJ5ppNBamMcUABbmmFxTSTk1GW96QyQtTSTUe7B9qN2elICnpf8AyB7H/r3j/wDQRVh/\naq2l/wDIHsv+uCf+giotW1ez0i1M93MFGDtX+Jz6AVEPgXovyN8U/wB/U/xS/wDSmWc4JqKQnmsF\ndV1TVYDJaRJZxt91nG5yP5D9aYdO10xNIdbw4+6DEpB/SsniKadrgsPUavY09au410+FTIA4OCvf\nHrjrjpXMyXkjxeVaXKIznLSmQBvwGc1aS7lNlc2+sxRGZI3aKYD5XYDIx6NnFc8Q7KiTKDKwyE53\nY+vr7H8+ldtOanFNHJODhJpm7bwQ2unSAiaQGRSxXGW4b1I4psuuWdopihilU4y2QM/zrHgaH7BK\nkjzxLI6OjJFuPyhhg/MPX17VEunx3IJF3eAf7VsnP/kSub2qpuSknv28kc8OaMpJxe/Z9kXLPWrU\nRY3OrM5JLjitGG+ikieb7bGqhuORjHOcnOPSueTRopMg6lcqvp9lUf8AtSrMfhzSiMyXt07DkF0A\nH4gGq9r5P7mX7aPZ/cza07xXYwW80E0cn7yVnE6rnsANw7cAfnWLeqmpTCSORSJmxlT0XvyPaqGs\ntp8jx2C3t3EqjAVLYMADz1Mn0/Ksb+0NLsnVbLU7+Ixnl1skO785a5nUu9n9zN1iI78r+5noEMeI\nsA4KD5CBnaB2+lcxb3RTULkKwG+QjgdAOwqTSfFNpPILWS6nkYj77WKpn64lP8q0tG07Tbe/LmaZ\n9wLAywqB9c7jWk8TGKtZ/cwg3J3s/wDwFmzJLKl5OQg2CVh0x3NTmUwxbmPzHtRcXEDTbd2dx3D6\nE81Df2sNpgXmrWcPyo5UpOxUOoZc7YyOhHesKeKUYRhLR283sl2TOijhvZUYOfZffZGPeRGNYpTd\nxxK8srFpI9y8lc4B4boQfQsKtahcWD68sd1IqGOws/JliJj/AOWCk4K4xw30wBWDNYpOSZfEVjMC\nuwHZdYjUHOeYemeOM8t06kbup6LE90k/9p2oX7HaLvFvdMMC3jHUQkc8H1wRkA8VnPFQVaLjd6Po\n+0fI6XR5ow9p7q1/NlGbTba2BihlmmjkjV08mIswcHh8jj14zjr04rf09njsFeaNIbl/mm2KMM3q\ncd+lYOnwWlndRpB4l07a0gIieK5wSeDz5PHb8hnoK65LS3YEjVrMj/dmH/tOuyGLpS7/APgMv/kT\njq0XTfcrvfeQm6eBioywki5BA68Z/TrXLXzxyawhglBhJMisp9f/AK1dNqNstvY3NzBf2k0sUEsw\njDSrvEaF2HMeOinqa4Dw7OrsrlmUsOSprZVoTuovbya/NIyUXe53VmYljVenoD/WuS+Jtput9PvV\nQnBaJ39OhUf+hV1tvGu0H5T7g/nmuf8AF+qwahokmnafbvfyF1/eQKXSIjnqOpxx+JrRtW1FrfQ4\nfQf+QP4n/wCwYn/pXbVh10GjQywaT4nSWN42/sxOHUg/8fdtXP1x0v4lT1X/AKSjZ7Iv6cwbzYCc\nGRePrVlZU8uK2Ls0i53BhwPaqdlbwzCVpL2O2dBmMOG+c+mQOPxq7JaJcOsX22x8zey+bvYDCjg8\njoc8fTnFdbalCz3RhOneQqOTayrCRvd8ZH4f/XqrfyKzpEpysS7asS27W8GIbm1xllOyTJ4AOfoc\n4B9RWYylTg9aOZRhyrqNR1uN70jUopD3rM0LWm/8hK0/67J/6EKjt55La5iniYrJE4dWHYg5FP03\n/kJ2n/XZP/QhUKRySNtRGYnsBUfa+R0P+Av8T/JHvOlaiq6LFeRKSiyR3CgEHCNgsD9P6V073SXe\n5lyuOXDdQTj+lcD4KiuovCMlpdwgTjesEbEDehGQDg9cluvtW/YXYl3DOA7Dd7Hbz+v8qE7GDWph\n3Fz5Pi4XLrJv+0BVIORh+B7DofzNQ+Jp1uNa+xuzOsEYRUwcNIR1P0yD2pviic2WtQ3CjKKIpAN2\nM7XPX3qnp5nvdR3z/NJuLBwwxncCeR2wScU2+pKR3unSwaZp0EJbiNMAgdWPP8ya57xX4njtJIoL\nQh5xGrbj0X6j1rV1XYtpIIkOEiyD7rya8cH2nVtQlkDgM7/xe5qdlcpK7Ld8818gmnkaWWSVjuck\nkk7auXNtBcPHJ/aVrGVghjaN1lypWJVIOEI6g1cbw9dwCJEKu4G7I7buP/ZTTrrwo8cRfzCXON3H\nU1yOcZO/Nbc6sVhJzlCUXa0V26rzMe4hWPT5bZ9csvJkGcFZuD68R1gjS7PP/Ie07/vi4/8AjVau\ns6ZcWluN8ZMfUNXMYw1dEIyaup/gjhlRqRdnN/cjXOm2nH/E90//AL4uP/jVRnTLTd/yHdO/74uP\n/jVUe3Som+9Vck/5vwRHs5/zv7kaw0y0zn+3dP8A++Lj/wCNVINNtP8AoOaf/wB8T/8AxqsfdjpT\n8nijkn/N+CD2dT+d/cj0HwWtnaveQtqljOHVXCiOQ7cZBPzoOeR0rIstEt28TLDFqlpI6SttjVJt\n2QTj/lnjrjvVfwZerZeKLZ3VyrAhvLxu4+bgHg/d6d+nFbegwTReMtUvY0jMtsxzHIu7LNk4wceh\n7in7Odvj/BEuFRP439yNG90eDVPFkNjHdaanlKY/IZ3CowyzHcRtPAJ5bBP4Cruq+CtOk024a1v7\neWSEFm3SRkouBtIEYz35GDx6Vwf2mafxBLcwFJAkyuhbav3T8pxnpgcitu9vdb1KxVBps8yQ7CzQ\nxOwZhuw2Rwqn+6OOOKfsb6uX4Iyn9bjKKhN8vX4fxVtfvOdm0u1UMp1uwBHHKT//ABul0m2sLHWL\nG8l12xaOC4jlYLHPkhWBOP3XXisuZiwZm6nmqlRKlKScXJ2fkjWVGc4uLm7PTZFuxbbKPfircucE\nVnwHa2R61pS43ZHQ1ctzoZGt028OwBZRjn1rbs5GeMBznI5zXNSkxybu2enrWvZ3OR196iS0JaNU\nPLDf2bKWZRIByff/AOvXRrZxjxXcrN5W1IFXGBtDP830HGf8OK5OWc/ZeDgnkGtQa3cySSTpKoku\nQA46kAAKuck8jAPt2qovQV9CO+uFuZAURtrS7NyoFBUHg8e1VptPeSZ3kPljd8uB1rR2Ztlx26VL\nKu+2B7gVlza6E8xl2ULQiQyoudw25AyPxpt5IGUjjnjFSzcxE+lZd25x7EUbsa1Zks5LPnr0qOds\nyY9BikDZkYn1yaY5ySfWt0WDdKYw+TPoae3KZphPyY96oY/+GlQ80h6URnNAGhZazqmmKy2GpXdq\nrnLCCdkDH3wavHxhrrIqNqDFgMecUXzeuf8AWY3Zz3zmsM9aQdaTinugu1sWby6uLqUyXE8krkkl\npHLEk8k81WPMZp8nIFMQ8EUxDF+4p9DTtxMgz24pE/1ZX0Oaa3+sNAyzGwzz3qq/EhqVR3NPtbOS\n/wBThs4ceZPIsaZ4GScDPtQB6t8IfD1vEP8AhIL6ANucRW7E/wCqBLBnx9QR7YPXNezCbybgRv8A\ndPFc5oVhBb26aeiEW5tliUN/sjAz6nFXTK32TZISZYCY3JOTwOCfqMVle7uNG5NFjtlT0NVJbbJ4\nFUPD2qhgthM3fEZJ/SuhMQGQcDFaLUDGk09J0CyxLIM9GOPxqG30W1ic50+UejsykfoxP6VrNcxJ\nLsUM4BwzorMF9QSoOD7HFPW8hVQ0wMaEZ37WKAe7bdo/OplCMt0UpSWzOM1xZbfV9MKRYjSVmJ7L\n8hX+TH8u3WtfS1ur/VYJ5beWK3tonYGSRDvdsAYCseih+v8AeHvW3c2kF6h4U446dKdY2i2sLKB1\nPaqSSWhL1ZHeLFPbS208aSwyoY5EcZDKRgg+1fKnjDw8/hrxFdafy0KnfA5/ijPK9hz2PuDX1Tdn\nhua8r+JPh+01q0h1F5TFcW6mPeozuUnIBHoOf++qbaitRr3tDwtetOwWcKBkk4ApvRiKt6bH5l/H\nxnb835f/AF6aV2S9Dpk8m20/a7HERXAA68YpJj/oBxxyv9aRwWtrlB97y9wz7c1GHEmllx3Kn+db\nVNkvNBht5f4ZfkSW74kZGCkDoxFX7cATwkyNg7gF6diP54rK3FJzjvWxahZonfAJCZx75WtFsc7O\nm0G3kiTzXJ2OB/MnNeeWF8q3t95gytzDJwB/EPmH8jXoOmn7Lo11ctg+WpbIOe2f6mvI5WYbWHUc\n1nVZdJaM6PwyIrZLq+nUGNUKKSMgHGcfXjj6Gm6Fq81l4kj1W2ES3McnmRB1BUH0xkfhWWLx4rE2\nqH5JQC/v3FNsbyWxm82JYWbaRiaFJV5/2WBGfeseaxTV013PYdU+IUuo2jxJdXNxNco8JSa2jIiQ\nkA5xgrkZweT34xiuH8MXyN4z2qyJHdBoiznAxjOfzUfnWfbeJL6a7ijeLT9rkRnbp8CkAnsQgwfQ\n9R2xTNFu3vfFdnM6Qo2cERRLGvCEfdUAdv69aanepp/WrHCgqWEtzN3k99fso9E8QWLSaclySGjB\n2blwR3PGfxridQIE8aKfmaE5yc5JJ9PwrrtS/e6bIshGAAwYjOO2ePrXKTxxPFHcyyLsJMed435x\nxhc5I68gYFdb2MEULJ8GcfxeSf5modciD6HDOAcpOV/AjP8AT9akLK32ydFCK2I1GOcZ5qS+Tf4Z\ndTnOdw/A/wD66W8bDWkjlo2AFTg8VTB5qdGzXEzoJs10nhWV5nksUALMQyj9Dz+VczkYq1ptybTU\nIZgSMHBIOOv+c0Clewmq2TWOpXFsylTG5GD1x2q7bWyw6DLOw+Z1Yj+VanjmIzahb6kI1X7ZGGIU\nk/NjkZIHPOPwqlKXfRltYiWcxAlVHI7mhg2tGc6i45p9CspGM8+9IaBkchxRv4Cj8aJKYvWmBZLA\nJW54XnIurmPBwYw35HH9a55j0FaGiSmLUA2QAysvP0yP1ApClsasMAl8Tyufuxr5h+pH+J/SqutX\nBlvRHk7YxgDOavRP5K3N0WUF8D6gD/69c/I5kkZ26kkmq2BbtnrfgHWNLsNLubJtKtpbmSXcHkn2\nM67cgIB83GD0Hc9s4o+NdUstUTUWhsmgmNoZJZRMHSYGePZjAAyPm9euK4e1vdOhWPE9/BKowJI1\nVyvrtO5Tg88VcV9PfRtTFrdTs/2NC8T2wjVT50WcMHJb06D8KK017P7vzR51TCyjUdXm000su8eu\n5yRJLGpByaiHD1MvApHpMO9T2lw9pdRTp95GBqHFLQI9i0u9S5tkmTkFd2a0rXJj3EDmuN8EPJJp\ncxfO1W8tc9+5H6iu3txtQdvY1HkJCW0DRz3MrFsPgKMAYAH156+1SxH92wI71KT05qNOEbrT6DKU\nwODjgZ9aswnfEy8E9RUFwMZI798UtvJtYD1GKtaSE9UVxhbv5sVXUmTUJIxxlgB7jAP8ya1p7BFM\nM81/aweaC6o4kJxuK/woR1B71Xt9Pt21KRk1ezJ8sHaEmyO3/POsJYqmm7P8Jf5D5XYuWoEoLkZW\nNmA/IVds2VZssBt+lC2EcMIhGoWqjqzESYJ9vl/zmpYIbS1uEd9UtG2nO1lkwf8Ax2ow+Jpq++76\nS7/4TnpxbjL1f5kfxeikf4f2lwqB5LS5jdgV3bVKsMnPbO0V8/xPcaner5sjOfUn7o/oK+i7zQV1\n2LWorU2U9teWrqsnmP5kZOHA2iPkeYoPXOOgznPi1vp+nWivDHr2iGViMu8d4SuPQeTj88131cTT\ncFq9P7suv/bptFPksumh0/g+5J1u0WLJiSRY0/OvpIdK+b9FvtR0PWn0+aaGNra4aKZrWNYg+1ip\nBKqCy5z1r6PhYPCjAghlBzVuSnTjKOqf/DmdDSpJPy/UyfmP/LKT/vmm5bP+rf8A75NP70yRmCMQ\nT0PeoLGliekch/4AaZJ5m1gIn6Hkrx0qYEmNTk8gUZ+Yd+aBnPOcOw96YTTpeJWHfNRE1mthikio\n2bBpSc81GTTAYzGmFutOYg1G2KQCE0m7vTGJBpQcLSGZDzeT4ZtHZmVVjg3FGKnblc8jpxmvLrzU\n7jVNUEjndEXwiyfvCq54GWya9D1Ys3gjagLMbaIADkk/LXJ+D7CO5upLqZAyQKCqkZBbt/WuVtKF\n32X5Hq1JTjUfI7e9P/0r0Owgs4vscB3TBivQTuP0zSvbxpxuuP8AwIf/ABrnvEOryoSn2p7aNepR\nefx6n8qqaBe3k14YDdSzAjIWQDp1B6VxexSXMdMMZUlK13/XyOhuLWFo2BMp+srH+tY8NrC2j6jK\nzlr2CQRE56g4+Yj3Bx+dVdQ1+9S+eG2MGE4dXB7e9X/C1pNqMes3koC+d5cQQHPIOT/Su3B07Ss0\nceMxVSUbqT/r5F+DRoGjsoiOkLON2SuQV/h6Y5NU7uya2dhHuR+vXK5/GujlXZd2qDGRBIMfilUr\nyVF45d/Ra74wjZq3X/I4cTUlJwk3q4r85HOwNPuYOgGASTnAqSQh4QD8oIyzbsACrN0n7hru52xo\nnT5iCT2Awea4vW7zzoZZI5ZlyMbQ52nt0pvRHNuynfXa3YuJoMlnbau7g7c1gPC4YjjP1qTzWA64\nxURkOSc9ea5ktTfodP4J0lNR1sRseVQsfp0/rXReLfLs2gS2fAQFeK43w1rP9kakZyeGjKH8f/ri\nr13qEmoXSkZZSclj0FZyi3PXY6IzjGCtub+k6n50EfmcshOM10XiOwt7+5aUwSzz/YLeSNUQlVAh\nTLEge/Qn6cmuNtzGAqNB16ENjNdjeulrcSXgOoQsljaorRE7Cfs8fBI+oH/665pr2daMvKX/ALaF\nSr7SFuxy8GuXA0o5sWjt4VeMAk+Tlsjp3cB8g57V6jpkaX+gQPHcWaBrKALKtxHuQiBASwJ4IIIw\nR2FcZpVzay6ZDARYCPz3aRbiV0z8rD5lEZA4wOM84454evh2LULB4rSztTksFngiudoOT38jHH1/\nKtXQbqc8ZWa8r7pea7F16zdCEGu7/E273TDq0G65vbcW0MgMRXU4cNwcMSGwDycf/X4y4tHvVkbZ\nfab5YbCmTUISSM8dH69PSnafo0Edosc1k6lMqymQlQwPIwTwcggirDRRQAtbpBED/ETz+Fbwp1+s\n1/4D/wDbHC3HoiheadqDaj9m+2aYy/2ffblGoQKSTayqCQZM4yeT0ABJwBmvPbbQNas23W99pCH2\n1qzx/wCja1Y5PO8Z3siyFtmm36knOci0mrjZzG1wwjUKpxwDkA45/Wublre3n762j9n18y425UdL\nPpHiC9UJc6ppkqA5CHXLQqPoPNxXV+DtCvLWwmEk+mnMufk1O3cdB3WQ15UOODXSeFr94DcW+c5A\ndf5H+lFaFdw+Nf8AgP8A9sa0bKR0XiO0eyi8QzXFzp4E2nRwxIl/DJI7/aoGwEVy33VY5xjivN60\n9ake61eQgEnheKt2FjFaOktwqux6DqF/CrpRdJNyd2/K3S3mS1zMw9pHUGjFdeJEuhvuUgAY5UbB\nn8+tRmC0hlyixBh03oGU/nWiqp6MTg0ZusWvk6ZokguJJVltGdVY5Ef71wVX0Gcn6knvWRXaw2kU\nURYwWz+fledkm3nPA52fhin6h4Zis7YTMYHWSJ3AQjKkJkZ/MVoiG7bnDDrUtqiSXaJIMqTzzioh\n1qxYruvox70S0TKj8SPTdN0jR49OdrewiM/lkqzDewOO2c4P0qQWNodTE4hYbNvAib+WKZoG8A5+\n6K2rFzJeTIF3YKngZx1/z+FeZBydTc9SUoRo8so31vvbpbsy6kkBywWdSQxOLeT14/hrndVuXi1F\n0tGkCMTKCQVOT1ODzjrXW3NrdzWpitLhIZGGFATcWGe57f0rzOx1TUT4lWG6jaSdXKR7GBBAz0PQ\njryOOc13KMrbnDz0b/A//Av/ALUseIzPqE9ihmRyFEYcjb39DyTz2rqNGsLWxt4o3juPlyM/Z3J5\n75C1SNy73qqlohlDYZHcFcdckjkEHGMY71Zmk1m5eNJJUijxz5ZIyOwpe8+oc9H+R/8AgX/2preI\n7+yk0ySJDIJfJkRA0DpkkcDkCvLfD1m7avGHZTCmXcRyBicdOFJPU11F5DcJN8zFvf3qa2to4Wgu\nMIJpY1LbeMDA4x9QazrSlGNr7m9BUJSvyvT+9/wBZ/EUlhO3k2LzM4CAZwflyfT3/Sr1vrnn6VJq\nD2pCx8sOtWLt9MW1E1xhmAxgHqar2N5p0kEsYuIhuODETgn2rjVrLQ753k73srJL5GdceJLbXdIu\nbb7HJHKY3CEgEZA9vwry6K3kvb4QoVDtnG44HAz/AEr2qW2sE0aaaywWKFVUnJB9K8WlC22pSBSS\nqMQDXdh2nex5eJi01cRoJUYoy/MOoBzVd+Grp9MsPtSeYR8uBzWXrcMcMyBFwe5rSNROXKZSptR5\njLFPXk0wdacnWtTMt2d0bLUba5VmXypFbK9cA84rrf7QtrWy1i4M7faJ5WMbZyZAQBhuOxPX61xD\n1oagk8VraLOjI7LvIcYJDYYH6EEEeoINBLVykDuA5qQMwQgE1Xzxx2qaM5HNAxrHMRJ61AAScCrU\nSB3EbcgnFdrpGlW7x7IYFEnqBz+dZzqKG5pCm5bHCRMFb5sgd8CtMSxSRBUbcRVC+ga1v7iBuscj\nIfwOK3/D1mDbGUjljSqSSjzCjDmdjDuFPJqeyy6gA8nitTU7aLY5Eagj0GKz9LQCMyH3xSUlKNxT\njy6Gnt3DHboBWtNYtGllKIliintxJGgYsThmRicgdWRiMZABxng1kpcxGaSJckocE9jXZDSJRaaT\nc3js0V3GVt2AO7aoHy4APyg9wP4uc0crsZWM+NQbcD2pVyYipxWjfacbC2RwxzvKOpzleARwQDgg\n9fas1SOR7Vk01uQZ0oIYr6isa7PyMp7citm44IPoaxL04yRVR3KiZ1rAJ3bLYwfSopFG5gvQE1Ys\nmC3DD15qqWw3Fbrc1a0QL0Kmo/b3qXc3BIFRscuDjHtVCFbpToulMbrinp92gBe9FApTwBQIc3KC\no04NS4+Sox96gC1pdnHe6g8EkrRRiOSVnVN5ARGc4GRn7uOoqSSHRN+f7Q1AcdrFP/j1SaKMarJ7\n2V1/6IkrKdTuFYtOU2rtWt+vkzC0p1GuZpJLa3W/kze0iw0S51eyha9v5VluI0Mb2ioGywGCRKSA\nfUV13gyHR7vVJbyzs9r2yACTyXTaz5UDmd85G7jH4+vDeHST4l0oEH/j8h5/4GK734eW6ReGLu8T\nImluwhz02ooKn83asZ0uadnJ7Lr5vsjGWH56tpTlt3t1fZI9PKyQSqzB0cfdYMAoH021VvL+Rboz\nvDctDIuyWTA6jkckD3AwD161NBcW9/GsrQzq/BIjuCoz7A5pmvXVtDpZtbhpt0kiJtjmZnTcwUFy\nCMde/X3pfVY2+J/eafUo/wA8v/AmWbC2L26SwOhYENxn9PlIP4EitS8+3yQEkvK6rzGrqxIPAwNg\n/wDrgEVmWmoKhCjAA7Ck1Sf7TG8akbp41RMngOpJA+rAkfh70LDL+Z/eL6lH+aX/AIExy2Nzf/vb\nwMNjBMsrIQOTjAUnuAO3YA9pbjTJEIlty8UkKFsGRt5AwMKQi89uprK0vXbbT91rOd2JCTtJAQgY\nOfXnngcHnntoz+IreDdbW0u6Uq6nauxVbPfgY78EEZbk9ar6rH+Z/ex/Uo/zS/8AAmWdNvJ7p3ME\n20I+H/eKBljhSPkIxkc+pYHjmtjytS/57f8AkVf/AI1XMaFIFQ/aQVklZGwfvqqNu3EnnkgAD6kc\nV0p1CPPD59qFhV/NL7xPBx/nl/4EypeQ3wX55M5/6aKf/aYrktaiE+h6jHMN0Yhd3TBO7aN2MAqT\n93pkfUV0fiDxCmlaTJeGATqhUMofaQCwGRwfWsqORHkZ8ho/MO0cEMM05YWKXxS+8Fg4/wA8v/Am\neD/bfDGf+PL/AMlJf/kutGxj0C6sZ7i2jlt3jljjLx2zAkMHOMNOwP3evGMd88czrumnSNdvdPJZ\nhBMyKzDBZc8H8Rg1q6CD/wAI9fHp/pcH/oEtH1dRcWpPddTKthVTScZy3XXzNpYtOinR/td5/wCA\nq/8AxyqN/Yw6dbLHFcPLDNtlQvHsKgtIuMAnP3aljIkIU8n8qPECeZplgIzGriIE73C5AklHUn3r\nqrpwcHzNq/X0v2OrCRkqyipN3Ul0/l9EZ0xc/cRiB/EBx+dWdMjkgaaaQocDYRndnOf8KYuRbBme\nHOP+eq8/jmptLiYQXRnZCZGjxtdWAAznv71rzx7m/wBVr2+B/wBfM6bVJ0sfA0zK3zS/IvbOeP5V\n5ts3Hn0r0zUoY30Ozt/LLpvJUyRcEgDpuGD97t6j2qomhR3USxnSnkdhgGKDa34bRgnGeoNZ1KsX\npcunhayj8D/r5nLeKNIuNF1xtPuvsvnQwQBjaqQh/dIQeQDuIIJOOSTWMBhjXo1hZwXPi6FvFdvP\nemR1W5+0O/mspGATtIbIGMY64FZHiLw5HptzeLHatFHy0BmDRnbvAB+fHbI5/nWfPHuafVaz2i/6\n+ZzFj/yELb/rqv8AMVb8Ovs1+1Y9AT/I1Da2zx3kEjyQBVkVifPTgA/Wl0HB1+zViAC+CT9KcGnO\n6FXpyhh0pq2r/JHpWpKBp8xI4CgkiuRnYSJBtQ5R2IOc56eo9q7G6tZPsU/mt1Q5BPX0rjJHEW3A\nBQMRkfjXorY85Gd5my2Iwcu2APxNaVzGWsFg7mMjn3FZVsftN7FAqZUHJOelbNwwaZjkYyRilT1H\nLRnCgc1KPlH1pHG2Z1PZiKQfM2K4XudJKOBS9qTvR2pAdU8jX/hKOTyzm1YsXHRmyM8fQ5z9KraV\nq4sIppTcBN0Swsn99TyQRjp8o6YqjotyqvJbyuqxyrg7s9+DjFZsly6gwyxRPtPUrgg/UYNPpYzl\nDmjy3IrmUT3MkqxrGHYkIucD861bXTDcQKehx1rHRdzqvqcV2UIENqD6Csa03FKx1UYKTszmb2wm\ntDlsFfUGqadc+lamqXXmYHvWazAnA6VdNtx1JqJJ2QKC7VYy0YXYcMDkGmxIFGTUgGW5qjMvXs7L\nbQwYIJUM3+frVDBI4610PjKwbTde+zSySyT+RDLM0wIk8ySNXbdknnLHPvmsiKILEXMm0+3WiTsP\nltoMj064mIVYyCegPU/hWrbaTdWthq3mKhDWihSjg/8ALaI9M5H4021trqdVjtgXfGCR2H1roNPt\nLieC+gJUMtsqIhHXEiE5/IfTNY1Zx5Pu/NGVeL9n81+cTz1Y3afYqEvn7oHNbFvoN5KMuFjH+0ef\nyFbkukQpdo3KzEZCnr9PqKsoGRfmOfQ0Vako7HXTpxk9TlrnTDbusZnGScbsU+30tklZZDuI5zVr\nUEFzPsIyOpqbSLYpHLGo5LhQDVRk2tSKkUttjtvDloLXSIEAClsucH1PB/LFdJEeB9KzbVFjjRFH\nyqoAq+j7RimYrYlyC+Tn8TQxwvHSmhxuxQzDBGK0WwPchnO9fU1UjYqcehq7jIPeqEoMbg+tElpc\nEXddJ+y6Y+Bg2x/9GyVU0N7VdQmlvLtLWAQgvM/8IB7Z4z83fP0q5q2H0XTW67YCc+3myVy50lte\nmW1TBZA8oz32IWI/IVjQ1pr1f/pUimu/9bHWTeLvCVkBNb217rEb7o0Ij+VnABbcHxgYZOi9j+NF\n/iwNMtmNn4Qt7YKMjdcAj/vkIP51Y0XSbeHTIkeNepfGPXH+ArR1nwTBfeFry6aMqFjZsr1wKnC1\nHOTil1f5hSpRUXf+aX5lLw/8eLO81G1t7/RI7be4V7lJjhQe4Xaf515TO+l3mtXU/m3UcTzMU2Qq\n/wAueOrrWne6HZ6be2z2UeyKe1L7nJJBCEMfzBqz4L8Bah4i1GJYng+zAgzSxzo5jX3UNkdO+K9W\n81FwfX9DF1Eovs7Hp3h/wXZ674n1y+uWuTBHqEw5RUDP5hJA5OR78GvWAqqAoAAAwKitoEt4dsSo\nisS5AHVmOSfzNOPmZ/1if98H/GuPDO+Hpr+7H/0mJpGHI23u/wDMzqa4JRvXBqQMR0C/98ik3ZHK\nqfqorYgjjBWCMH720ZoxTixJHC4A/uimjBc5RcBSR8o65A/rQPdnP3vy3ko9ScfnVYnirmqAC8Jw\nADjgfSqJrNDQjNUbNzSmmNTGITUZbmnN3qI1IATSbs0hphz1pMDFnLDw5aMq79ogJjAyXGRwPxxV\nDw7FALu78tNoIVmXsGxyPzzV2cSP4bt4ozhnSFc/iuP1xTyyWylE27lAVmC43Ed68+ab+5Ht1ZLX\n/HU/9KItUsbKRX+0YC9yDg1naVcaPZN5kTRRtnC7myze+Ki1J5Z3yqlz2Qd6xru4lY7J9NlUgdfM\nX+XNQoJ6EqdtkWb3RtP1XUZZoZVMhOflP54966nwvHHZadcROyhRLwP4j8orj7FzKoaGB4XVs5Zc\nZ/HvXRaEA9zcTO2cYUjPQ9a7MKn7Tc4sVy+z0RpXku2+icggGGTAH1SqLlIopLq7Yx28fYdWPYD3\nqe8mVr9CXCqsb5Y9hlaxdXujKtuMlFdisCnqij7zn/aPb0ruW8vX/I5K3w0/8K/ORTl+16xdC5mX\nZAp2xQ9lH+NVtZsYksZ02pvdflCjuewA/wA/pnRa6SKJEjX5AMDFZMs3n3EkpJJ3ELnsP8ik11Zj\n5I8+mOCV755qInNdbPosd/cmVYj1+Yg4B+tQX0MFnafZ40j8x2yxXsB71lymqkVtC8MXurj7TsMd\nmpOZT/FjqBXUiwXTv3aKGUdD6itbwfDLB4YQuPlldnj5/hzj+amkvYQWPHGfyotpcbetijDDDLkQ\nSLFIfvRSY2n6Zrb1mMQ6jE0lmc/Y7X54m2nIgQcDpxWE1tvBU4/HjH41tapc3VrqEMasZIRZWvyb\nyhB+zx9GH9ciuWf8aHpL/wBtK6EKy2/mRukVwfm+bEeCflOOVxn8e2auWjxxI8dvaXscbncRG4TB\n9iCD+tUf7QBaPzJLqEKcnzcSAcEcEY9atx30RGU1KHP/AFzfP8q6Ibv+uhpV/h0/R/8ApTLKWNrJ\ny1hMCOTubHP50sqRxwssUQXjBCD5j9TUa3cUoAaWac9gikD8uP1p00zfZzti8pQPu9T/APWH41sm\nczOC0yHZ4nvsOGLWOo9ARj/RZvUfyrkJkMT7OOD1r0/RZ4v7TunQgk2V6QA7HpbydMAY/P8AmK4P\nVm3AgxqGB+9jBP8AWuKP8efpH/240XwozThxvOM9DW54a0m9vLlru1+zLBA6RTPcXUUKguGwAXYZ\nJCscD0rChYK2Dja3BroLJTH4M1UHqNUsv/Rd1RiJSULR3bS77sqLtK5p3HhS+8yR1n0rezbif7Wt\nR+H+sqZPBmr3UTPHLp7gf3NTtm/9qVzbz7i2Mlzz9BXpmg29nF4dtzPHIzOMhYk3M5/KuOr7eCXv\nL/wH/gnTSgp3OcsfAOt3EqsXsMZxkajA38nNdXJ8L4jaNILqNrgLx/pMYXP/AH1Wna6jpzsLeGWa\nKReAkibf6Vdk1CC02+ZPKc/dVBvLH2AFYc+Jb+L/AMl/4J0qjBRPOYvDt/aXixXE+mCPfht+p22V\nHrjzATT9asZ7CR4nKSRy28kkUkcquHT51zlWYdVbjPUUnjiaFtRt2SCRN6Ev5qFWzng4P1rTvbrT\nLfR9G85V3NpNwoZrlCMlrgD5cZ++cg59uozXZSnVjKKk7p36W6X7s4KsVr5Hko61e0hN2op7VR6s\na2PDcXm6kK66rtFsVJXmj0exj8m0Bxgkc1c0ORjPcuTtVCOT3P8An+lQE+XbcnoKx4dYlgkmihcf\nI+44HOcV5+GTc7ndiXaFj0OKYeTJv4DnGR7jp68/n61V1fR9J1Yo11GDMowjKxDDGPT/ACKxrHVW\nvbZQxX5cZI4/D/6wrWguBkKSRxwOBx/Su9HnsyV8KW+nsJNNvLiNt25objEqEd8AbSPrmtW2QwTh\nn2MFAB2jbzj05x+dKXZT8p4HUKePzqk14wJLggZOSOB+ZoEWL2CVyDFah2K5yxAAJ7muSn0rUbW/\nu76WIQoyoEjRgRxw2ME45wfxNbMXiaC5votPspI7m5IOdrnaoHcnHPHYfpV6WJ5AfNIJK7TgYFYV\n6sYrle5tQpyb5lscVJBLqVzGFuNoGTx0zV6LR7QuXg2LccbWaYNz+CjP04qhfJcaPfNLCgKE52kc\nfhVm38SQuT5dpiY9wnU1laX2djrhOFve3KV/fTaVBdW4m3SM5IZcjBB6iuFnbfcsSep5NdVrUUSN\nOk10ou1AaZCQMZAIA9fwrkXILk9RmuulFJHFUm5S1PQfDiB7PH4VzvimDyrpfqa3/CUvmQgdyMiq\nHjiLY8TeprlpO1Zo6aqvSTOOqRBnp1qOrtgAZeRnANd5xEBjfH3W/Kt3Vr21n8LaDZwxSJc2yzfa\nMDCFmkypx/e2gAk84CDooq3BpcDxFzqNorbd2wpJknGcfcxnt1x796lvLG2iVQtzaXI5GYUZcf8A\nfSj1/T6UriOQCNyNppYTzXY3mj2MFvbSw3SyNJjfFtwVPXHv6dulccPlmI7ZoBNPYt2wH2pD6mvV\nfCdqscHmkcnpXk1s22Zc9jXsvhwY0uNunGa4sZsjswvU8q8XwiHxVqCjAzJu49wD/Wt7w8inTY8H\nnFc/4snW48S3jr/f2n8OP6Vs+HJCLRBntVVr+yiTSt7RkGsfuonA71StoSsEcI+8cD8TV7Wzm6RP\nfNRQnYyuOikGqp/CjGu/esddp2ha7fWcdzaaNEBKPNjneW02YbnlSm48MeCxIz7V6Vb6I0tnYR3H\nlkWi48uARqrMRwcgAjHPAzk4OOMVzugan4ei0LTknuNJSRbWPzBJLAH3BRnI65+vNbSaz4YbDG/0\nckY/5bQcfpXZFpGTVzn/ABnazae489MxTlPLkJ3ZIHPIPc5OMccYrkj94c9RW/491PT7oWEen6ha\nSqpZmgtSjAH+8Sp4POMfWucjYPGDnpWFa1zORnzNlSO9Yl6eta92cSMPfNZMyebLtJ4qI7lRM61O\nLo+4qJVZ32ohLewzW1BbopKoi59cZq5cIILbau1ZCOqDGavn1NuXQ5vaUPzKQfemsuRuHWthka5g\nBcBvc9RVaSy22/mrllPX2q1JMlpozOpqQcR0zBViKd/CBVCHJSnrSgdxTSeaBEn8FRj71SD7tRHh\n6ANXRh/xMHP/AE6XX/oiSsqTGQea1dFOb2b/AK87r/0RJWQCS2fSso/xJfL9TKH8WXov1NTw6c+J\nNKz/AM/kOP8AvsV6X4K1HSE8G2VnLf2cd0N7MjyhTkuxGckdsV5n4fH/ABUulEf8/kOf++xVbR/+\nQpD6ZqZfG35fqxwV69vJfmz3OHxLpenMU+3Rrwf9WjSfkQCB+lc74l8ew3OmfYbOxmy7oTPKQpBV\ngeFGc9BySPpUbWqizDkDgZrn/sLanqsMCfdGXc+g6fzrGnX53ax6E6ChG53NvezXdpHKhMfmMgJz\nyNzAH+dSwyySFYXklaOWcICWODHtDZwT15HPTuAeKW3tGitPITBcFWGTgEgg9cH0q5a211ewPauq\n+YoBXN23GDnj93XQjlJLm1tXkj+0QtLKZWjWUPy0asFyxH3jgjqB/jAUtRL5iwpHPM74mcmbBBzu\nwcDJAYjj+H8rdhdzrEdMu4rjfnEckbIxXgDGWZfT9aivoJreQiSykVFUqC0SNlc9OGPGOK0ArQan\nLFCp82MvIGdy8ZB+Xg7iXz7cA/gK1YrsyMqhtrEdPQ/WshwobzQ7sWwGZo3TAyW5yNp6gcc8mq82\np29mxkkuIkCkZy36fX29qL2Fa43W7uS/EWnuG8uaQbx0OFwcZ+uP1rTinCtDhS0cbBV5wDyMn/P9\na47UfElk14JLebzQJHwFUggHHHOPSn2nim5uYpkht47d4sYYfOec88/TpUVKiSuXGnKTsjlPiZFK\nvji9lkjCJMEeMDptChePxUj8Kg0RP+KbufmwTeQH/wAdlrH1rUr7VNTlmv7mSeUMVBc52jJ4A7D2\nHFbmkAHw1cjGQLiDj/gMtN/Z9V+Zy4v4V6r8y4WVcFiCenyrzVbxK4GmWHyjm3P1/wBbJVuCRvIw\npRgOfmJBH41U18iW103Jzm3PHb/XSVvW+OHz/Ixl/Eh6v8jDRXfyYckhQMj3rqtPto/Jj3Ejc4A+\ng7/zFc9aqRKT681vyyPaWsBdMFRuB56HJH860WiubvV2NO6v4Vtp4JZGEkdwzRgDIP7uFRn0Hyt0\n9PfNZi3cjAsucYyeetZE9xJdSMqnDs+4mhLks0ixKxIGAccH8K4ZybZ1RikrGwlwd4cHZKOQVPI9\n6i1LUbrUFuIriTzXeMIHc88EHr/wHFU2SVoY2hYmbHzLj/PvUMcyscsv3eCPT8aUWxuK3MhwVJVh\ngjjFXNEAOsW4YZBJH6GoL3MkrTdicfjRpz+XqVs2ekq/zreJjPZnrEsitboJG+UY69TXF6goOn3O\nyTBVgxGCOc44/M11kn7wxknhcE1zdxH5sl1b7cq4ZQpH8RBAP5812/ZOeJnaVGsQeQHc2zGQasyo\nfmJx1NVNNTyoRgHvwKuzBivJHA7VVPYUtzjrsbbyb/fP86jToTVjVBt1GUepB/QVCqMQAAT9K4p/\nEzqWwop1KYZIxl42Ue4xTagAjBMqAHBJxTbpStw+7rnmp7Vgt3CxjWQCQHYwJDc9Djn8qseIYooN\nauI7csbXIe2DAgiJxvTgk4+Vh3P1oBFC0AN1Hnpmu2SNZLIj1FcRbMEuEJ6Zrt9OfzLbHcCubE9G\ndWHerOR1FDFcBT2qGORDwQAa1tdt9kiyY6HBrI+UnkVtTd4oxqxtJo7PQNJW+0qEwxb7mSeTI3bf\nkCrjknHXdWufDst/qSJHaReY7gN5YV0zn0XIH0HHpR4SvLW38Pwxm7ignZGAMivwC7ZwVViDgL27\n1fWys2eM219b+azqAz3Ei4JYDPMI4Gcn2B69KtXMehQ8T+FbPSLyeC2ufNEKDYZFG7oODx+VLFpG\np6jqOotY22nLbW88kcaNZw/NhiMA7O3vXRXcCeJHeC7mtft0gKQTW15CyyZOANjMrjj3z7VUtNaf\nSlvBGkRZru4bdK+1f9a4/GuLEpuS0vp+qHTpU6uIjGaurP8ANGxoOhX8Ec8dxawAjPlyJCiKc+yg\nfjWva+H1Dyfu4yWyMiFQME55wOf/AK1c/oXirU9almt4fLVo1LFkJC/rWfceIPEI1AxCW7Pl9Vgj\nXJ+mRmuZYeMm1Jf1956E8HhZU2uRNfP/ADPQtQ8FWkuhvqNrDby3UKs5SaBWyR6HgjvXAG6X+xZb\nr+z7BnizgfZ8LjOMYzx3r0fwJ4gvbpn03ULefGNyySL7dDxzXF69oMyajq+nWciQWgdt0smQiAnI\n3YBPsOP05rvjgsPKF+X8X/8AJHmPLcNdWh17y/8AkjjLHWk1C/mt30fSgvkStuS32tkISOc8dKNO\nmga9CDTrVPm3Ehpew93rO0S3e31q7ilUrJHFOjqeoIjcEfnV7TCBdyMOwwK5oUKcarjFaadX5+ZC\nwlKEpxStt1l5/wB47G2kQx/6mMewLf41ZEi/881z+P8AjVC2IEfJqwsnYCun2UP6b/zH7CHn97/z\nLKum77ijH1/xqQuuOVX9f8arLjOTmpQcg8GrjRh/Tf8AmJ0Kfn97/wAwEiAn5Ez+P+NQXTKAD5MR\n/wC+v8akI754FNl+ZRz9OKv2EGv+C/8AMn2EL9fvf+Y67lH9m2aGJG3WrMFJOB+9kGBzntn8fpXP\n2l6yX8KwWsKNIdu5Wkzg8H+L0JrY1FvKGkr2a1df/I0prH0WPdqjOeRCD+v+TXDThGNG/m+r/ml5\nm8cNCUra/fL/ADOuSUArGo4zgYruNRljh8A3G+URLLCYiSM8sdvT8a4CLBmQcZJrT+JGoPb+GtGs\nEwDcTGVseiAf1b9K68tglodVSMaWkNErv+r3Oc0fT/7ftrTStO2vKrzQyT3VpGSq7Rjg7tuMk8Nz\nn6V7L4f8P2HhnR4dN0+MLEgyzH7zt3Zj3JrivhfYmK61u7ljK5umWM/qf6V6OWFenWk27HBQSd5P\nvoCfcX6CmHqaEbCqMN0HY00tgkEN/wB8muLB/wC70/8ADH/0lG1V3ZRJppOaDH/02k/75WmiMD/l\nrIfwFb2MxT78UgIG4c5K/wBRUYy7squQF4JxzSiHacmVycY6CkBlarC7Soy4xjnnnvVP7DM390fU\n1uyWyyACRg4HOGjBqleaVZXFvIssShGHzGKJVfHsfWp5XfQd7I4jUfFOm6bey2jmeeaJtrCCInBH\nUc4rT07VdK1CxjuWvFtd2f3Vz8jrg45FYvhnwpZa02oPJNeCKKcpGXIBIxkgnBBPTpXRL8PtFjxv\neaQ9wTQ9dhp6ajZL3Q1HOs22fbmua1TxRBZzotpCt6hXLMswjwckY5B9Afxrrf8AhCdAGf8AQYyP\neR/8a5jxBceAvDbGOeFZ7peDb20sjMp/2vmAHToTn2pOLE2SaZ4n0a6tg18txaTlivkjEuRxg5Hr\nnp7V0Ags2jDqLgKezqFJ/DqPxrjPClzHqdw+ox2UdrbyyYt4c7ygAwTu785rtdRKQwp5bFvXI6Vy\nVKrjdI7KVBStzGBfaRZw20Yia4A86FFUzuQAXUdM1R1fQLizYyRmV1IyFMjbv1PNaV/dpFYCUuFZ\nZomDE424kU5/SoBq9o/3ruA/WQVwqSvqe5yYmdKLg29X59vJnGJdwLMVm8xSOmXYfhRI+nzMGLDI\n9WJ/nVrxXbWtzF9qs54Wl6OiuCXHr9a4gWV00mBCQPU8CtVCm9bnNz42Ltyy+5//ACJ0N5qVvAuV\ncgAd3OBWDD4jnivJHj2rHn3DN7Eg1X1a2uY7dYIoZZXfliiFgB6Z9ayEtNQUY+x3GPQxN/hXRT9m\nldNf18zmm8bJ6qX3P/5E65/FCTRPM8bjYQpxKX65Pc/7NZ914hEm2XcSQeNwBIH41iyW08WmzebD\nJGWmjxvUrnh/Ws5i2eRzWkLO9u/+RGIqV4cik2nyry6y7o6tvFSREKY2cDB68foapr4oZTzbow+m\nK56ir5Y9jn+sVv5n/XyNm58S3s3yR7Y4v7m0MP1p096kFxJE9yWaNihxYxY4OPWsSrOpf8hS7/67\nP/6EazlBOVjpp4mpGk5PV3S19G/I9b0yCWPQ7NljEsckKuPLmZCARnJQcDr2/wDr1SuZFBbIIA65\nkJx+dW0nhtfCGmzSRqJHtY+cckBQOtczc35KHzByxyB2A96yqrlsolRxtRttpfj/AJlqa8RU4LJg\nZJPb61Y1ieYXCBZZI/8ARbZ8gmTgwoRy3QkHOOg6DgCsLcZAGPC5yBjJY+prcu9S0/UjAtxo2pGU\nQRQs0N+kav5capkKYSQDtz1rimmpxdm9/wBPNG31ypbZfj/mZsevmG5Xe8kyL0VowR/6F/StuLUo\n5EDQWmMnkq4x+VUIbbRJvlTRtVJHX/iZx/8AxitCODSdNMSvpmqqJc4I1GNun/bAetbwr8uijL8P\n8znqVZVNZxT+/wDzLqXjFgoVACM5IJI/PA/SnXUr/Y3coSCMFmOCfpS213ov2pPNsNQRVRgVluFJ\nJyNpBEY7BuMen46k8+kS2wL2V4ikYXN2gP4Ax11wrys/ck/u/wDkjkxMI+61ZXV9L9369jyrwzc3\nMfiC8RpWBXT9QyucgEWs3b8KwZL24m/1j7vwFdXf6toGl6veyWel6g129vPbiSTUIzGDLE0ZYqIQ\nTgOT94c1xlRT5pVJTcWr23t0v5vuZ9EKK6W0ff4D1Jv4l1Kyz9PLucVzQro9LwfBOrKejalZD/yF\ndU8RtH/FH8xozbWCW6vT5HTHzE9AM4r2r+zWfTYIoJmhWKMJgDk4ry7wvqFpYzTQXqMY58BWUZKy\nA/L+HP8AKvVn1NViDdCV5Fc2Jb5rdjuoKKhe+5j2+j3BukkuJmbb947QpJzxwOlX9U0m5uLhJLKY\nw7cZG0Nke2TVF7m6uDJPBOImHyoCuR9cetWIrrUooPPnuFaRMYQLgdeee+RWScnLmOm0eWxyvxEg\ne2h09nl3SHeCcY+X5SO9crr/ADpHhn/sGv8A+ldzXT/Ey/juXsEH+sCMxX0Bx/ga5jXv+QP4Y/7B\nj/8ApXc10rek/N/+ks8yr8cjEHSug8Ipu1Bvauf7V13ga1aSW4mx8q4Ga2xDtTY8Mr1EdffSCO2O\negGc15mdXZdQmnUEq7dAccdq6/xbetb6c6KeX+Qfj/8AWrzyssLC0bmmKleVjrtJ8V29lMTKkoQj\nBCgZrY/4TTTmIeSR2/uoqkbfrnFec0da6eVHKemf8J3aNGd0UpVegEgJ/LNcprXia/1h2VnMVv2h\nQ8fj6msVAAKUkdxTSEWtM1GbStTt72E5eJw2D3HcfiMiva7LUbPWtOS7spA6kfMv8SHuCOxrwhhg\niren6le6ZP59lcPDJ0O08MPQjofxrCtQVSz6m1OryadD12+sDeKV2bj2qlpehmC6MjwgEHOSK5zT\nfiVd2oH2ywiuSAAGjcxk+54I/LFJqvxKvr23aGxtUs9ww0u8u/4HAA/LNZKlNaGrqQ3Oe8XOsnia\n9ZGDYcAkeoAB/XNYdSvkkknJPWoq7ErKxyt3Z2fgyXJ25+ZWx+FWPHkWLa3kA/j/AKVi+EJ/L1Qx\n/wB4Z/Kup8a2/maD5gHKMD+uK4pe7iEdq96geajrWnpIBvAp5BBrOAxV7TJo4LsSSjKAcrnGfbNd\npxHd3J00W7+TE0bLgkm5tnGM5OFAUk4zgetZjXeivkbdRB7EJGaq3evaZJIfI0m3hj7K08jt09dw\n/lUelz2t1qNvaAITcSLEGfJ2lmAyACM0pSUU2+hMmoxcnshY9z3IIUmMN8pYYOPeuYk4kBrtF1LQ\n8PsuZ13DHFsvHIPeX2rMTRNMmwW1C9j9nskB/wDRtZe3S3T+5maqr+V/czGt4pJZf3Yzg8+1emad\n4mtrXTRaiFiy4UyFlA6fX61Q0rR7Ge1mNvPciFQqNI1sqquT/v8APHWt6b4fiKzDreyFUO5kEQO4\nfTNctWvTm7ST+5nTTqyirqMv/AWeW6lZXE11NcjEm9ixC8kVteHTi2APUVqpYaZGGjN1db0zz9nX\nIx1H36nhtLIrLLbzyGREDkNAEB+ZV5wx5+b0oq1048rT+4VOvGE7yTV/J9TlPEkrJqCFTgrzU9nP\nHOwVgASOlV9UAn1/Yw3ACnNbbcMjYYdK6I/AkKtrJl9rKENnykJ9xmhYoU4MEP8A3wKW0uvOXy5D\ntkH61JLHtOev0ouzHVDFWJXLCONT/sKB/KrVq4DFSTiqQYA5zxUkTFJxzwaTdxM0ptA1m+iW4s9I\nv7iF/uyQ2zup7HBAweRWePCPidrgAeHtV/GzkA/MitPxKc6ZoR7/AGFv/SiasXw/IV8RW6gcEnn8\nDXPCdaUHNW69H0bXfyN6UVzJF+38JeJV3MdA1TvwbOT/AArQtPBvinUY9k2kXkS9B5sLqf1FdUul\nQy4ljiRHPUhcZ9629Oh8kqFIUDisvbV3ty/c/wDM9BYZdTzY+C/EFnI8L6LqEiFuHitXbH5DpUEv\nhHXoLFo10LVZSc/8uUmR6dq9M8RaJBq2nSKERp8fIwx1HOK828P29w/j3R4AgiaC/gMiOwGAJFJ6\n1cp1405VLx0Tez6Jvv5GE6fK7JHBSLuG4dRTM4re8PeHLvXZ8Kwht1PzSsM/gB3NO8X+GX8M6kka\nu01tMm+GUrjPqD7g/oRXpc8eblvqc3JLl5raGGo4pKYr4HOaUHIqiCYDio3XuKcDx1prS9gM0AaG\niZGoSehsrr/0RJWcq5GcVoaGWfUJQQMfY7r/ANESV1EXw+mm0OK5juNtyUDGNxx06Z7VzupGFR83\nl+pNKnKdWfL2X6nL6B8vijSQDwbyH/0MVDokPnaioHVRuFWNHieDxhpkMqlXS+iVgexDijwwAdYU\nHuh/mKKj96TX8v6sdNf7TZ9l+bPUFjFxpm0/eKdRWZ4TCf2pdh2DSDCFO+0df5/pWnFuSHg9qZpm\nltfTP5dsI5YiXjnUjL89D79fwFcWG+Jnp4r4Ubcku2UbcgJxV4mdDHeQbSOvy8g06zuThYLu0344\nyo56elSC5sbVyYpGCvw8LKePfPQV3o4Ce8gTUbUXdvhZVHzDuDTrLUF1GE2dyQlyg+RmOA3tSWk0\nMchMEysD1Wqes2itG9zayfOqlsITu/DHOaHVjH4nYidSEPjkl6tL82jznxtr92t9cafBL5cEPyFR\nwWbuc/0riRLLt8tmY4JIHbP+R+lbq6LrF5eNI+mXibmJ/eQNgfiRXQWPw9vblg15cxImw98H1x+d\nYyxNJbyX3r/MtVqD2nH71/mcXEHV1B+ZmUlcc81La3s1qS8UmOfm7g13K/Di5dATdWsZA6CQc89P\n5VgXnhLUrKV4/sksyY6wJuH6dan6xRktZL71/mP29JbVI/8AgS/zOO1GJhdPLg7ZGJ/GtzRww0G9\nUlkYXUHsfuS1U1HR9YizO2nXwSMb2drdgFA7k4rZtr6Wbw1NNuZf9Ih5U4wdsuf1FdEZxlFcrvqv\nzOPEVIzScGnqtmn18rkDXi2ykSskhK4wBz+NVdblle20eT5PK+zHITgZ86X8av3ep2wHlljISOQq\nZx+NZ+vXMZsNL8qL5WtidzdR+/l4x+FdFV+9D5/kTJe/D1f5EUDqCzdRitfU7qaC1mjDsGhjCBgc\nHhgP5GsCNtsK+pFdBcvDc3N1C7HH3SSc/wAYorawt/W6O/BtxrqS8/8A0mRgxand5GbiU5P9416n\n4YsUmsEknt1cyKDiUbiPzrgbHTBp+uIpkWWMoeQPukjofeuil8S6jalY4YoQgGNvlHt75rzq0FOy\nij0KWIrwfvzl97/zOxtNBtzcO7QqeT8jKCB+FYHivQPstrNc20rRv1CISB+VS3GsahHogvY0TzC2\n3yy2dp/yKr2mq6hqdqy38kbxbSeIdoU9AM0qVPq0a1MTUt8ctfN/5nCNLc/ZnIurjeATkSH/ABqh\nPM7PYSSOztsBLMcn/WNV2905rTSDfNccuxj8vGNpBHH5ZrMlPGn5/wCef/tR664xipKy/qxySqVZ\nUpqcm1Zbtv7Xm2emhWmEQH3SBmsfWWkttSCqMdCORjOP8a2tMlT7OmBmRkGc9qydfSOSeObIOfly\nenHX+deitUeRExdPRwNgD4GenIqzM6hsFhgdTVa2PzyY5UMRww9fSpL6QLFJkDHShT5Ytlct5WMl\n7T7bqDyxruU4x+Arbs0NsFDhto6FDjFbuleC5mtYZ47tIJ3QNsYg5yPStf8A4Qy7mX57qFJQOfkO\nD9a8WtX55M9Wnhpct0Yi3YkVlwrkjDbhkke9UpvDNlfTRyqptgXAfb0I74HY4rRu/DWrafIZfKWV\nV6tAc8e4p9peAjLcDGHHp6H/AD/jTpK2sTOpFrSSODm0u6t5jg26Mp4DXMYYc9xuyD/KqP2aW4vv\nJaSPzG5LtICOmeWziut8R2tlqMi3wmEGBtkfaSp7AnA49CfpxXMTWdnFvaPU7eRl6BRIC30yn867\nb3VzmasyhLG0E7RkqSjYypyD9CK6vQ7jci+4rkWOTnn8a09Iu/Jm2E8ZyKyrR5omlKVpHSa3aCSB\n/XFcYASduOlddeaxC8Qij5buxHFZ6PGoyu1Sf9nANZ0FKK1LruMnoblnZ2qWsH2xry3Hkpt8u2Eg\nPyjPV175qeSDS1j3W11fyP6PbKg/MO38qyLUxz5DxIeecn/CrV5aX1vbK+m6teW8WcGI3L9T2BHG\nPrXUldXObyLUSJNMsZ1HyUPV5i2F/wC+QT+QrtLWysWN0LyP5luZXV/QFieM5HevLLiTXoIC731z\nJGnJ3Slh1xnB+tdvLrCajqN/Zxlo5LeaSJs9zvbB+nauDFRbkrdv1RrhJRjik5fyv80b+n+ItF0u\n7dSjqpwMt/EoPr+FF34i0y6n863tjcWP8XnRAMhz25PHSuVl02YyxvdxqYVUBfLALEe4YgfzrVTS\n/tUIFtcGKLALqUQk+3CjH5mojZRseq5u90tD1Dwpe2ktsJLQKCCOBjpWjqdhd3MciQyRoJXleYHo\n8bKBg8dfftivP/CkslhshjJx3FL8XtQvrXQNPubO7kg85pIH2Ngsh25H45/Su+h70LHI5/vbs4Cz\nuBe+INTvVGFnN1IPoUc0aOCzMw/iY/4VHoUflRMx/wCfeY/+Qmq1osW1UB64rljZ1ZW8v1OSrJyq\nzfez/wDSjpIjtTAp6tjk9PWo1fA7ijr0zj3rpILSk9QakViOTg9sVmlnU53NipoixyQ2SKqImXOj\nEbvl9KaTx1xUSPlsEjd6GnsSM4xn+VakkWvfLa6TJnAEBz9POkqloqbTcyN1MmPwH/660ry60+e0\nt4bu0uJHhjaMGG5VAQXZuhQ/3vWrViumLYrILK8UOS2Ddqev/bOvHqTlCnyOD3fbu338zsoq8rku\nnIZr6Ncd+tVfHZOo+Kre2iy62UKRkKMgE/Mfx5x+FdV4WtLO7vg0NtcLt53STBh+iCuT1zUrCz+I\nd3E+m3ssrztukF4ip97qF8vP4bjXpYGUlG/s5fcv/kjHFSvGVmem+CmQaQyDG/dl8HvgD+ldGSfW\nuO8FTRyvemGOaJWIZVlkDggkgEYUY6dOa60lvUflXRWqyU2nTl9y/wDkjloNezsmKrHYvPYUm/3p\npYKuPSqzTjcef1owtNxowjLdJL7kkOc7ydhjLkdaaFwOeal2t6L+dIVbPQfnVgVoxmWfPQMP5CpC\nKVYiHLFlGevNLINu3kcnA570hkZFVb5/Kspn7qhP6VcKMPT86yfEUv2bQ7qQ9AuOtMmT0ZS8Foi+\nHIZVHMsk7n/vtgD+QFbR61S8PxeT4a0tFHAtlZhnuyAn9c1T8Wa+nhnw/c6jIoMijZCjEHfIeg68\njufYGpjsXUai35HAfFDx7daZdHRNLnETbAbiaMneCf4Ae3GCSOecZGDXik87O/JqTUbyW7u3nmka\nSWVi7sxySSckmn6VYpqOqJBK5SIAs7KMnAGcD3PQe5rGpPq9jSjTbait2e7+F7eKHw5pjjC5tYzh\nRjJ2jPT35rSvHAjJ3E+mST/OsvSwI0gswGVIIkTDnnAUdcd6j1TVEs4ZGcpx0DtgV5UYQlTTtq/+\nCaYbDU3BSnH+rvzH+ZITxtI+gqzCxyARj8MVxp8VgEMrWjY6qrkH8M1tDWNml/bmTCj3pRowT1R2\n/V6DXwr+vmaepLugb5VwRyGUNn8683h8Uq2v2WnwwQFZLqOKQm3jHBYAjpXVw+JY9QVk8pA3QATg\nt+WK8vsUKePbRScldSQZ/wC2orWVCm6c3bZP8mebj6NONOTjFL3X+T8zDlleaRpJGLOxySe9NHSk\nxThXoFDlOBT8hhg1H2pAelIAZdpptScEYNRkYODTAKtaj/yFLv8A67P/AOhGqtWtRGdVux/03f8A\n9CNT9r5G6/gP/EvyZ3l69xJpWlwyEssNpFhVGP4AR+hFQWVkb+9igI+Z+a1tCsH/ALFEcMaT3CIU\n4BwOAc84PGGq9pNjJb68rjlxH8wxjBrhqT1a7HTCkrRkupZXw9DaqNke+T1Izj6Csa9SZWkSOCMr\nxubzMn8+ldzcwG4hMZdlLjnGM1y8vh2aN5ldpmUqNjsAdpz1yMVnBJ7mkk1sWtGsIjCjxqQc8I2C\nVPq3rUHi2W3GnIqTxGSGRRtWUFhng54HrTx9q0fRZpot8soYKMDt3OKwvEdyJNIiWZcyeepaQptL\nLgkj+XetqcU9TOs7JouabEsrq/mSDcpyUBB7d+fX1rUktAqMAowwwWZsk/XPWuOTxTLFbB7e1iAh\nwhEjEghsknjGPuiqc/ibVr0ssU+F6lIkAYcdQeuPxrupXSd+/wDkceJs1C38q/ORi+JI2j124DDG\nSCMemBWTXY2PhqfV3S+1S4kS3I+XJzJIPbPQe/8A+utwabpVmB9ls4kKn7xG5vrk5qZTSdkYp2Vj\nzu3sLu7G63tpZFBwWVCQPqe1dPa6Lew+DNUjkQI51GzYDdu6R3Ppn1FbdxNIwYs75A4+Y0+Ms/hf\nUhkkfb7Xqf8ApncVy4ibtH/FH8xxZmeFdAluNft5ZSnkxnzXTr06frXZXwH2hsfdJ4FZvgx1ENyx\nxvyB+FWtSnIlYqeV5wfSsKk3Ko0zvppRppowtZ02a8eN4p5EiXIZFJ4PY4HJqz4c0WSwE9/dzu24\nYRHbOF9T6dKha9spm2zzTRODyEOM1e1RVl8Ptb2sksZmG3dJ94+v4Y4/GtI8z91lznCMOZLU898Q\n6odX1eW5BPlj5Ix6KOn+P41Pr3/IH8Mf9gx//Su4rOvbGexl2TIQOzAcN9K0de/5BHhj/sGP/wCl\ndxW9RJVKaXd/+knnp3uzECs7BFBLHgADk16b4bsW0vSFV12u/wAzZHc/5xWL4esIbOGCWRf9IueQ\nSOi9eK6uaZUtyoPOOtYYirzPlWx6GGo8i5nucb43ukkNrEn3uWbn8K5CtXxDMZtYlyeFAA/LNZVd\ndJWgkcVWXNNsKVetJTl6VoZkgNDHKkd6QGkfpmgQ77xpwHNMQ5Oaf/FQAppOlOpp6UANIqJhVu3t\npLqTy4hk4JJPAAHUmlvdPuLPHmpgN0PrSur2K5Xa/Qn8Ovt1u35wCSD+Ven31supaPPbZ5dCF471\n5Np0jRajbspwRIv869b0yUNGPyrixeklJHbhbODizyK6srqzfbcQSRnPG5SAfp61DvYV694kOmw6\nYzahGGRuAP4ie2PevKZYDyyH5c8A9RXTRqOpG9jmrU1Tdrlc4POa1PDm3/hJtK/6/If/AEMVl8qe\nVrT8Ohv+Em0k7ePtsPOP9sUV/wCFL0f5M5MR/Bn6P8mZ4kMbAquCDmtWyluL26CxoXcjhR3NZKo7\nHGDXbeC9KRp47ov80chRgB2Knn/PrRVtGPMzqpR5pWR3+gLpWkQNa3dygknC7kdSFbAx3GM/jXTW\niaXZYcTIkZGAXk4UegyeB9K4ufwuzzeab2SSL0Y9Of8AIrd1jQm1DRraCBdk0SDp1b1/l+teekm9\nz0bNLYyfHfh4XqjWNIlhkZP9akbA7h68d64zT7jZa6hDOCkgtwdw7fvYxj8yK73R9J1eyiHmtALf\nBDrjB/DrXA6tbSxX+vlI2MSwDaQO7TxNj/PpW01eFvT80edjFaF13X/pUTEglV9budy7sqACavP5\nQHzKVrm7qO4tLkMGZGIHKnFWodXuI1/fYkHbjB/MV0uF1dGU029TQmjyA8fBXkVagujLFyuWHBFU\nYNXsX4mjkiJ/iAyP0/wqcC1fEtvfWwB/vuFP5HmoafVEWJWKt0Xn0phO3gjmqlxqNtCo2yCZ/SMH\nH4k/0zWc+qys3ACr6U1BsFFna+IGLaNoBP8Az4tn/wACJqxNEBOtwbWKt82G9DtI/rUmu6oRoXhx\nQpy+nM3PT/j6uB/Ss/StR8i7iuVUEocMp9DWNCL9j/4F/wClSNY6TTfkdqkWvWtwXW5kaM9QVO0f\nnW1rmkalcJF9luZghUFwGxnP5VRfUbmYiNkVExx6sfatv+3ft0RVYns9qY82fgA/Q8H86yTd72PY\nUY8trk3h7SLmzRJ5558quNjlTn8jVnR9GjTxh/bLvCqS3MabXAz1UAg9iXwB69KzdL1C+uCytMjR\nA8OnRh6j8qwNQ167k+Jnh/SIriRbOO/tDJEDhXcyq2T68EflU1lKVGov7svyZlUlGFmYnhDV4xcr\nADsHYeldr4l0+11vw3cQTTxxyRL5sMrHAVgPX0PSvEoZ5beVZInKuOhFaL6re3ceye5kdR/CW4/K\nuyVD3+ZOxyLELktJXKEkZjbB5x3FR8ZqyRkcg1E2PSuk5Rm7t1pyrk8A0gbFSJgnrj6mgDb8MCOH\nWRJMC0a29wzKB1HkvkV3cfjPSmt8CYpgdHXFee6KyLfy4bc32O6+n+okrJ3OxyeK5ZUo1Kkr+X6i\noVZU6s7do/qa2n3Au/HVlcL92TUY2H0MgxVfw7L5WsRH1yKl8PpnxLpRx0vIf/QxVCy3wahA4HRx\nVNJycf7v6smMv9ocvJfmz1uNj5HByMVu+FrlI7ch1wwY8t0PPrXO2cm+255yK2NDk8u0PRuTwa4s\nP8TPTxPwI6a8u7WPDTxzQAHKzou9f05qudc0O7OyeUMw4MqLw3vg81iTz/M3ll0PcLyDVCSW1mJ8\n9YWb+8qYau7Q4Tpmj0v/AFlld4cc9MD6HNYXiW8WHSb4xlyrQvC+3nDFSOR/XNUnsUC7oWJUdFD/\nANDWHrTKmrXimRkV5HVwOjAk9cVnvUXo/wA0Y7V16P8ANFLwPbkXks7L8qfKCfU16/aO0duo3KMd\njXl2iWk9pZzQwkMzsJI35AYED9eKWJdYGoZ80gD7wDyY/XisKi5pN3PWpe7HY9jhut6481BjjrzX\nK+P9NXUtJYIMTxgyIR/EfSsHxTp+pWwha2nk2NGC2GYc+nFGmf2nHZ+Zdyq0IHAy+c/8Cqo6RuVK\n17WPNNGQy3tw2fmWzuhj1PkSCrWmbYfDd7DKwwLuEZHYlJf8K1DpiaQoVsi4ntLuV0OPlHkvjFc9\npjf8SC/BzzeW+Of9iatVK82/OP6nh4qHLVafeH5yLsYllJWRkVewVOabr7lbXS7fy02PbElwOeJp\nOBViwtbi4PlxQO/0BNWvFejX0WmadM8OBBCVkwRkZkc9M+4rpqTjzwTfV/kEoydSFl1f/pJzLSbh\n1xzWw581buY7QHQMM+m4HNYjRyoPnjZfquK0JH3WU787DaqME9wyj+YNXUfu/wBd0dmGX71ej/8A\nSZGxp/iK1uIYYSHW6LbWGPlY/wB7PuK6ISWZRJSgaYjoAMf5/GvKYJWgnjlX7yMGH4V6BG24+XI7\nKF5BjPX/AOtXFWp8rujsw9Xm0kdlG1iNFCh4JJUYybSQcls5x/hWXPcWdppk0iwlFwWf6AemBXMW\nZiS9OZXVvUx/y5/pUeuXUy6DKuSUyIwx6nJzj8hRCOyKqSSRleJ9ZtNVmihsEZbaJc5ZQu9z1OB7\nACsi4OIbA9xEf/Rj1U6Vbu8G2sj38k/+jHrpas1/XQ54ycoVG+y/9KR6FpFyZYowgxlBz1p2swRN\naIP4ojkAnB/GsLw9dEQRgn/9ddJfCOXT5AEGXG5jnv8A5zXbTeh5rVmclHMkEsiuvVzwUPIz2wab\nfXUUto3kGQnI+V8cVoSJ+4yMbSMHI+n/ANaqB2Nq1hE+0JJOiMfYkZqaiai7l037yO4a/kjhijjj\nuHmiwgK5IyAM8f5+tdDPLqU3h6O7ER3Op3R4+bA6/wAqdeyaXFF55IBbkIWJUN9OlT2Pi3SDposP\nMc3AGVIhZhkZPOBwOa8OCU3sfQKMqa1Zl6XcXcUvlw2Uj/dbdGMocjJHbJHQgZqr4r0SSxs5dYgj\nMYIDSJ6Z71u2mq6TJL5gs0inB+b5ACDVvW7y31bSpdPVgElQrkV0UmjKdP8AmZ4XdXyy280TE7W5\nwO30/KsJxHxsZie+Rj+tdp4u8NpotvFJ5i5nkk8pV6+WOhPv0/OuJNdUXdHnVIOLsxKlgHz5qKtj\nQXEUepz+XC8kVoGTzYlkCkzRrnDAjOCR+NKpLli2YVJ8kea1/wDh0v1IY2wu0jnsatxEnGeAexPW\nuv0y0N9bRuYrTzCudq2EHP8A45Wxb6ekeC9raL6n7HGP/Za4pYprTl/H/gG0KGIkr8q/8C/+1OGs\nI5BcgiByvXggCu0Tw1e6vpzPZp5KquSp53Ec/hWmhiQYEcA/3YU/+JrqvDh+0QvGVcEH5QuUz69O\nOlXRxVScuXl/H/gBOhVguZxX/gX/ANqedaNZJLDIjDZJgoxYcE9Cpri9RvJrHxnqU0ILf6ZKGUdx\nvNeka88ujeL2tlEC21zHvCmBMlh6nGTx6msDxNpuo3TM0enSu4vJxuhtsEp8hUkqOercn3q6lXkq\nRVRJJprdd/kefOq6WJSqWjdfzLvfy7E+m+I7SOExajGHjAyhJ/z0q6viqxLLFZw8HsormNI0jVH8\n+C50u8VAQyF4GGfUcit2y0KSJ95tbhcc4MTf4VjzUFK/MvvX+Z6Kx1PlsqkfvX+Z1uhzRwqZZCCx\n4GDXR+KtJsvEvghYZWVXtpDPFkZyVRiRgEE5A7Ec45rgDcXcI+XT7vao+UCB8t+nFMn1rxJeYiTT\nrq3hUHAAcbgfXA9O1ddPFUou7kreq/zMvrNFa+0V/Vf5lCztMXa2pTYslvKFliO5DmNh0OCPofT8\na0DpLaeVZJkmi/vJ/D9R2o0mS9heWOfSZCPLdgzKUBIU8biuOemSe/erOl6irI8ckSwTqBny1BTb\n7jPA7Z5pwdGpUm4babO/cxp1VUqyd09I7W8+1wjPA44qXgjGDz61YeCNAPtEPkbz8kkedjenBz75\nO4AelRXNpJbEEkNG3R16H/D1xWkqbWpvYjdAy/wjHrUURaOQZ6dKljHOM8f1pkqH1zQiSWb92RIB\n9aXzN6jFRRSgpsYe2aryM0W5f4abYJDpl81goHU4+lXbvUrSwRIZpdhXA2BSxHHHAFVLOJpSXdPk\nxhcj9azNSstQmvWkBkmDn7xG4qfccE/XNcrcZ1OVnUoTjTc0e3eELVY9OjuEZHWUAo6MCGGOoI61\n5Drkxj8c6uBJt3XsoIXrjefTmvZPBOlnTPC1nEU2M+ZSp6jP4CvGvEWP+Ew1l0UFvtkuATx989h1\nr6HL0lzJdEvzPMr3dFuXVr9TvfANxu1eWLJ2Nahhnjo2P55r0FwuOS3/AH0a8u8BO0filUJOX00u\nw7D94B0/OvR5psZ5oxkb1r+SObCytBohuwhjZRJKpIPIkbj9azfKt+7zse5MhOfzqS5myG57etZ/\nn1zvQ23OpPHU03IPINI8qMpA3f8AfJqNpkXHOPWsDclqCYZ8s/8ATRf51KZY8feFQXEimNNjZPmJ\nwOv3hQw6kpFcx46mMXhuZF6yHYBXTGWMZBYDHrXK+LZUlutGtiVaOW+i3c5GAwJ/TNJ7CtdpeaOl\nSNYokjQYVVCr7AV4P8ZfEbXutppEMmbeyHzgHhpT1/IYHsd1e6XN9a2ttLPNPGscaF2O4dAMmvkX\nWL+XUtTuryZt0k8zSOQMZJOT/Opm7RKXvT/EzpTl1+lbPhO4WHxJb7sYclQD3P8ACPzArEkOSp9q\nIiwkDrwVOc+lc8480WjqpT9nNS7HvdsHs1dpmkMjmMfN0GIwDx9c06/tIpvvBcDjd3qja3Nxc6VZ\n3N1IXeWONm5HUxoScDpyT1qle6mVV034PavNpq1OK/rqdOGmvZRb7f5jbnTLVHVGmMiscKhwcmtZ\nobaXTzZSlNpGSoYZrgDq7uXM0bnPRm4FSwSixiW5ZUMR4KbuFz/OtFB3OlVIWsdjZaJaqwkRUYoc\nglRuH44zXmNspHxBtw3X+00z/wB/RXa6frZk1GURlki2AspGOfbNcXZuLjx3aTLyr6kjA+xkFaf8\nup37P8mebmTTpSt/LL8mc7Rmn+W1NKkdq6zMRulN70pBHakpgOJobnmkpaAG1eugDrswPT7S2f8A\nvqqNXbsE63Pj/n4b/wBCNT9v5fqbr+A/8S/9JZ2WiXl4mpwW9rK0f2lz5gHQrz6/hXWW9wNMvpEy\nztnqTWV4I0eYahJqV2jLHDGBHuGMkjPH4fzqHWLt31V0GS/OQO9cNa0qjOilJxpxR1U2qYVpAR05\nJ7VlXPieX7PvG3yV6hmwX/wFc1ey3s2mylcqgIz7jNQQR3mnwNcXltFeWyAM0crMhx7FSMfrShTu\njV1Wtkdlp/iiyurcpLEVzjcp5HX1xXN/EC5i+02Vnb8RiMyHHucf0qobyG5uVuVt2srMopZWl39P\nQ4GegrnNX1I6jqrzHOzG1VJ6KK6KEOWWmxzYmpzRs9x6FHsZl42iVOR34euh8OaXbpGb+ZASD+7D\ng4GOrf59KxdGtTeI8SnAEqM5HYYauj1G4FvZGJFCrtwAOwFbSlul3/yOevpGH+FfnIml1EzlnJwC\ncKPQVSe65PPANZ/2kGNBn2qKaX5mHris0jCxqNN8hGSeMVo6bPY/2VeWV9NdQ+dPDMjwQLL9xZAQ\nQXXH+sHr0rAt3MsoPVc5+taWp6D4nXbFa+H9WJ/iZbKX+e2sq/s7ctSXL13S29Sop30NOwvfDmiN\nK8mp6iUcdDYIOe3/AC2PvTLjxT4WuXbF3qykjH/HhGf/AGtXJzeD/FkzZfw9rJ+tlKf/AGWmjwd4\noA48Naxn1+wy/wDxNczjh27ut/5NE3jUnFWsdLbax4UjmDvdaxIQehsIx/7Wq/fav4Z1MwJFqmoL\ngY2iwQnJPTmYfpXGjwb4oHXw3rGfaxl/+JpV8G+KUYOvh7Wg+cgixl4/Sq/cXv7f/wAmiDlJq1js\nfs3h64QwzX1/IhHKtp6dv+21YXibRYbg6TFpDTTWtnbeQTOgRyTNJJnAY8fvMde1WbPR/EUcDTXm\nhanCsalnkktJFUAdSSRxxVqGVWwM1rSUZS54z5reaa1Vuhg24vYq4RLzzZHAEEXlxgHAJPUj27Co\nkvp9shRQ8bnkn+QqHXdMeScXds5y3DIOgNPso7sgG4VI4wu0r6j2rRYdu3U7li4tN7HJ60jrqTs4\nwXUMPyrProfFax/aYJE6lSp/D/8AXXPV1WtocSd9WFP7UynjPFAwBpWBxW3o3hi71cM0IAVerNxT\n5vC2qidoVs5pMcAqvBrL2sL2uX7OVr2MFTt4PFSA9615fCesRg7tPmBUZPHasbLIxRgQwOCKtST2\nJaa3H5phNJuzRVEmpoFxDbapBNPC00UciO8KsV81VYErkeoBrsfGOtWes6bI0VnZxKzAxCMndG2Q\nSAdxHRuRjHpXnkLIkyNIGKBgWCNtJHfBwcH8KvXF/ZM4aG0nHr5s4bI/4Cq00Y1KXPKMr7GdE2yd\nGHZga9MsL0xQsArFlG8Aj868yd1aQsqBAf4QTx+ddlbeIYoUhuQgdsOGjzxzjH9a5cRBytY9HDzU\nL3LfjC4a8ttMmRMKd4I/75x/WuVMSjkxn8DUst9NMiRvIxjQYVM8CmiQ+tbUk4QUTnrSU5uSGbY+\nrLitLQliXW9LwQSbuIj/AL7FZ0iB1ODgmpfD6sPEulLz8t5Fn/vsUV3+6l6P8mcmIX7mfo/yZWbC\n9OM1veFtXeyne1wHS5dBuJwUIPb8653nb83NKkhjcMnyspyCOxqppSjys6acnCXMj2Oe6jksjDK0\n4LjA8lWJ/NRxT9Ia2hmkVtXnWUj5IpCwzzkcOAfy/Gsa01W3Gl27agrhZolfzEzjJHT2q5b6poUV\nuTHfuznqkjb/AMq82KaurHqe0Vr3N+6vJTuVWwuOTmuVu9W02+sbmGxbzZDCjSOFI6SoMcjJ+9/L\n8Ll1cyX+k3rwq6xCFwHYY3Eg4wP61wOhy/Y7TUrgA+YLUEg9MedEK0nD3PPT80cOLre7r3X/AKVE\nj16AGNyhBMeCcVzq5KnkV0NvY3+rSXJt7aSVZTknH3fxoPhS6RvLICyf3Sa6ITjBcrY6kXN80UYA\nTI61GwA4PUVpXmm3enS+XcwlCRkE9CKz5Bg5FbJpq6OezTsxWALcDrSGPngVGGYHipo2yvOPxpgb\neux/8Sfw0OP+QY//AKV3FYSExHKtj1roddmCaR4a4/5hr/8ApXcVzzsJDu7Z7Vz4b+H83/6VIb3P\nR/Ds/wDamlwwzhWZ1KqD/Fg4H48Vuad4ekjut01snl+jEnP1B4rE8HwQTW1v5OdkF0ApJ5OCDn8c\n0sVjqE0219Uk2/3e5rjk5e0cYu3rc6lWqc3JFLa+t31a6NdjrLpJBKqQQzFicFthx9c1x8uk36/F\nzTLtbK6NnHfWbNceS2wKpj3EtjGBg5NTvrth4fYxwD7VcjO8lsBT7ms3R76LW/iNo2oyw7JZNQtu\njcZV1A/kKKkakaNTa3LLv2fmY1ZV5Wu439H/AJnKf8I5rf8A0BtQ/wDAZ/8ACpofD2tDrpGoD62z\n/wCFJJp0LKXh8zA68ZxVZ7V4AG+UgjOVNd3719V9z/zORqt3X3P/ADL58P6zjjSL/wD8B3/wqvJ4\ne1zJ/wCJRqH4Wr/4VUJBSqjnmnar3X3P/MLVu6+5/wCZYu9OvrAp9ts7i2352edEybsdcZHPUfnU\nSr1PB/Gr0/8AyLFh/wBftz/6BBWcp5FOnJyWvd/gVSlKUfe3Ta+5nUeENHlv9QkkAPlCCZGI/wBq\nJl/rWrB4AvJRhv3ZPQdau+Dw2maatw6ljMkjgZwAAjEZPbp+oroNK8XLNepbPZcu21XikDA/1/Su\nKVSftZcu2n6nXh6UHVlz9o/+3HL6Z4P1ey16zke1byoriN2cdMBgSa5/UtHvdFuYvtlu0THlSRwf\nWvXbzxd9l1dNJ+wEvJIsZkdwNucDIHU9a5fxnK+v+Hxqaw+UbRwGG8MGVuMgj3xx9a0p1JOp7y6L\n82TOjFV5KL+yvzZFpUoawRt3VQetaFlNLaR+bhXt2Yg/Ngr/AJ61xlhdtHCgDY+UV02hagUnNvOB\nJBP1B7Gs4R5KjOmq+akjoiEuYg8UbOOvA6/5+tZlwtt/HuDH+Erz+GatvZx2tzujchW+71yKm8xm\nG2YEj1NdBxnNXckEKERrLu/2jgD8KyNaVm1y+2sAftEnX/eNdVf2Vo8fykKPbpWPq9nCuqXk0k8c\namZySy9PmPvUp/vF6P8ANGL/AIy9H+aJdCu5RHFC6ArECRID97np+tdFcavAQqeXtXGXYDPFef2W\nsSz67DbWzs8IYgsVwDx6eldO0L3g3RSSK6H7qnA+hrKvBKV+56mGqNxsdVceJ7KWzzp+65mgX5k2\nHoOvPr7VQ1HXoLnSmkSLZtQucDqAM1mWmj3sikSmaCE8t5MjrvHofmPFUb4JPb3VnCQY44Xy3XnB\nAH5/ypxim0kbTm4rU5eTWbjW9aM06onlabcxKqDAAEEv+Jqhom3+yrjcAR9utsg9P9XPVzRVMs80\nEoHmC1uU3beR+5cVFY6bcpodyI085mvrfasfJPyTDgfj0q5pRk1trH9TwK0+aq5PvD9ToL3xElhZ\nrDb4DtggrxtrL1DUblLfS2EjHNsxOe/76UfyFRw+GNW1HUo0lsbuGMnBeSBgAPqRXaXfga3urO0i\nSWaNoItgJGeN7Nz+LGsJVqFOUfeXXqu3qb1cRCrUhacbJv7S/l9Tz5tQlOCcAdyRUsc1vdW88Uu0\nIIuqcEDcD/M11svw7mOVWdWT/a4NY3/CF6rbJcD7JIQ6hAV+b+IHt9K3eKouOkl967+p00KlJVV7\n8ev2o/yy/vHIXVoIHDRtvhY/Ke/0NdBDqyPDEkjCGWJQgbGVZR609vCusnfH/ZlyUxwxXqarXnh/\nUra2Et3aPbqfl3SkKCfTJNEsRRm0uZfejfDU1K8U1fpqv/ki/wD2vcFhFLcWyRjqy8nH0qlreppc\n2AtYiTCrb+erN6n9fzrLg0+VmJd4MD0uEP8AWrB092wuYdv/AF2T/Gq5oRe51UsJWnBtwd2YtWbr\n/j3sv+uJ/wDRj1ZfSpVJ5h29m89B/Wo76EpHaoGVikRDbGDYO9j2PoRW3PGTVn/VjldCrRp1PaRt\nt/6V6mh4fmxlO6nIruFZZIFG4BW6k9K820ybybtfQ9a9H0e2uNS2Q2qGRxz1ACj1J7CumnJLVnmV\nEZ9ukL6gLSYsAxK5B5B5wef5Vg+IbKSx1G1+zkySbyUCryWGO1erWnw7tFuFur+9meYMHCQYRQRz\ngkgk/XitLVLax07S5f7OihhnK7A6rlh9W6n8TXNWxUeb3Xc1pxSWq1ODljuzCLiJd0kfzCKTjn0I\nNVLDUYlt2uBLdC5BKmOO1HDcfKcn61ZivEst8TztJsOCW6tnn/Gr8MEsjia2iV1f5s4HP1rhuk9U\nerBqoldlawkvdWvpbq4t2hiDbFcjBkA9R610cESwR5LZOc/hUF5LJZ2UbzCJTkAIpHFVl1SGZSQc\nhBub6CtYO7JqPl0bPM9T1S+1SeW4u5GlZMoo7IvOAKwyMGvRtB0gXFw1yjz20jglXibG8dCCO465\n+ldpb+EtF1GBY9U0i3kdF2rLbxi3b6kIQCfc1v7WMXynnTm5SbPBK1tHB+w6yQOBZqM/9t4q9N1P\n4OadIhfS9UuLdgvCXSiQM3+8uNo/A1zln4R1HRP7X03U4MJPbK0U8ZzG4WVeh/EcHB9qmtOPs215\nfmjGquaNvNf+lI1reMJpsQScwbkGWHXp0qB7hbCVWS6eVT287Of+A5q5YGD7N9lmQSKR3GaZLpVk\nswbyoQSRzsGa4FJJu57ig+VWLa6xEmnm7SIAdC3vVSwvftt4QdSkSRuQqz8j0x75xwOa6C00uG90\nqa3CIflMgX1x/wDWz+VYlpp9rHLmNLcE8EeWp6Hoa1ptRXN3FUhKSsSfEZ5FXR9QM3nStCweTGCS\nCBk+/wDhXIXJLaHaN1P2mf8A9Air0/xvpiXnguKclANOQEED7wYgY/Mj8q8vl50K0/6+p/8A0GKu\nyq78nr+jPKxEbSpvzX5SLEaRWDWRh3GR3Ak9Of8AP6VZ1klXWDdtyMnJpPJjn1HTreVMxyXUasMk\nZBOD/Os+DVk1XUoon0qzZ5WCli82cf8AfysqknzKyvp5ERruLcFFt2vuu9upkvDdRStcGNmGcBhS\nC5nnkDSuwx91ewr1W40m3SydI9PhYKuQuX/+Krgr2dLacr/ZFlx6vP8A/HKyp4lz2j+KNakasVfk\nf3xKBv3hCkRgg8MK2NC8RG01KC7vC0kKkRy/3lQ/z6n/ACazDqMXQ6Np5+jT/wDxynRanbJw2jWO\n0nBG+bn85K6I1Jr7P4o53Ko18D++J6vqtsVsZDbXCqqxrLtAykiEZV1zwMj6fSsjRPEMbRPbzLuj\nwd24ZA/D3/D1GCAal0PV4r7w+bcRRxm1RkhQhioibGVOSSefU8elcUlz9mmuVi+RWYqBk8c11U6t\n76WsVRqOaaas0/Ltfoeh3tiLSNLqINJaSDhlO7Yf7rY/n3/SqZljZT834N2rU8K3EN7plvBNtAaM\nxh8ZKHPb8Atczd+IXtL+exubefzYnKNtIIyD25FaVIJLmWxVr6lolQeoxnvTo1W4mVWOFzzVWKZ5\n8SfZplU/xMAT+QJpEniSdJct8hOVIIP5fjXFVqe7obUKfNOx0pURr8pyMcYHSum8KWUFxLC0sOWL\nZBb2P/1jXDQatbu3zFgo5GRXVeHPENpapukeRXEUk6A8j5cnHtn+dRhYpSuzsxCbVkbvw51W51fT\nl8643fZN8Lpnq24EH9GH5V5Rqk63XifUHUNh7uQkk+rGrvwz8Sy6JrlyJRvtp2zICemT1H0qjrNm\nlp4kumspRNbSSebE7NjKtyAc88ZwfcV9Jg5xvJLrb8HqeJiWuSUfP8NbHe+E7OQeIvtcPlmOPTFj\nO5iOWkYjsf7prrp3mOeYP+/h/wAK5/wnJ/xKCxUB87SQOw/+uTWjPN1pYl/vGcmGX7u5DcNNznys\neol/+tWaZLgHHlxf9/hT7mbrVAz8muOTOlHpe4+pprOQM9T2pxqKTJU845H86g1JGd+ATzgZxTCz\nH0/KnMdxyO4B/Sm4oAbuO7JAyOmRXKarIZfHmiwFQVjEkpGM/wADDP5kV1ZrlLZjcfEe43DIt7Eg\nexZ0x+gNKWwR+NfP8hPHt+NP8Ea3csis32cxDIH8fyfpuzXyozZGa+oviFpc2u+Gp9KtbmGCSeeM\nu0hOAo56AEk9OK4Cy+Gfh7TAjahNLfHncZJPKiI6ZwpzwfRz06Vy168IOzZvQoTm3JI8Z2s+0KCT\nnAA712Hh7wjqYmkvdV0yeCwtImnkE6bC5Ckou04JDMAOOxNen202naTKLfSrCK1ICqWghwzA8jLA\nbmB9zViK8juvNtbsFUu7d3VOMqc4YDB9Pmxx0rjlim3ypHbHDWXNfU5trmaTRY5ncvLIIpWLckkw\npnNcZrmosLmNh0A6eldZcW1/bXkll9knlhWOJVkjjYqSI1Bwce1YeoeH7ydSBY3JB6YibI/SuehW\npqKUmvvXn5nJCvRVGNprbuvPzLujXMN9ZKsbIswXBVq0LDT5fPJlMTKO2a4YaDr1nJmDT71vQrC3\n+Fadppnii6fa9vc26MMM7xkYHsKu9NbTVvVf5nRDMKNrc6v/AIl/mTeJL2V9RuBp0bStEgDtEpP4\n8dhnrXL+H2b/AISfSgf+fyH/ANDFdd4d03VbDWxKLK7UDcN7wsoIwR1/z261276bbXV7b3E+nxyS\niQSCZkw6sACMsRk4P0HtSqYqlGnKN1s+q7PzOTFypSoSftI3tLquz8zwbe3rTd7V6rf/AA70a8y9\nlPNZP3T/AFqjjPrn9TXnut+H73Qrjy7lN0bfcmTlH+hruhVhPZmk6cofEjKLE0lFaOlaHfaxIRax\nfu1OGlbhF+p/oK1IM6nojyOqRqzOxwFUZJNd3p3gfT4sHUrm4duOIwqJn03ZJP5LXUwadb6fEY9O\ns1txjBZVyxHuep/OlfsJs80h8I6xIqNJbfZ0Y4zMwUj6jqPyrpbfwtYy6pFI008k0s3mMi4AIPJU\ne/vnt05417sX0Qy++ZD6DmqkDOL2FkuHjQMQz7cFOD0P9e1ZSlaWrsdVKE6lB8kW/eWyb6PsmdbF\nfRjS2WLvI/J4ONxxn3xivNtdnmt9QaZu/Susiu0s5FtyAyyDO5DkKc9z27d6xdbsY70Ng5PYrzXK\nuWNR3ejOn2FeVNWg9PJ/5E+k3fn2HzIJAVwy9cVZJtJ4pYpHfyyOUZeFA/2s9Pwrj7SPVbGQ+XDK\nVHccZq7c3GqS2BjW1dYycsucsx9x1q4xSlo195f79Qt7N/8AgMv8jO1/VTeXjmP5YV+VFHTFYgbJ\nzzz6VZmsL9pCfsdx+EbUq6ffqR/olz/37P8AhXUpQWia+9HC8NiHq4S/8Bl/kdT4VhI0+WaO3f7x\n3Oed2MfoMj86ZqLtLv78HFdXpsENhZWlokiuVgbzCGByxIJ/Wua1S3aO5d0BZCe3auanWUpP1N8Z\nhZwULrVRX5swPOKj6EGm+aZZyo6Z5NLcgBiR361FaEIN2eSc10HnmzBiNCcAHFVfGZL+OvEG49NR\nuBx/10ao2uDsbk9Km8Xlf+E58QDk41K5z/39asbWrr/C/wA0UtjHjRCMsCalgtnuCYoIHmlb7oUZ\nqNnBICjb/WvQPDOmPpulG7mTEko3AHqB2q6lTkRrSp878jBsfAur3IDTmO3Q9mO5vyH+NXLr4f6x\nCN1vJDOnoDtb8jx+tag1Ge8kkVb+SKWNS2yND8o9fukY9ya2NL8QX0emyTXJ85Yjt3FeSaxVSond\nnSqNNqxyfh+xm0nxRLaz4Drp14Xx/wBe0pqslyV28nmuje6n1DxAZZrOO2kGnX2MHJINrJjP+e9c\nT5/zk54TjPvVU9asm+0f/bjjqpJ2R01tKJoGzyDkfjUcjOUIJOB71Bo8gaIA9zUtxwTzmuyk90c8\ntzkNbmMl9sycIMfnzWbVzVcnUps+o/lTIbOSX/Z+tKT1NY7FapY8llAGTmrw06McEkn1zUsaojri\nMfKfSpbKSPQfC8hg0+GI8fLyOldfbgybSBx715lFrN0I/wDQNiyAYO4A/lmtLQtY1+W+S3fZKHPU\nDGOOnpXlzoyu5M9OnVjokeh3LD7MQRxXjPji0gg1xpIMDzFDMB69P6V1E3je/hu2hfT/ADIlODli\nD/KuR8XTvc6osrQPEpQYDevXr7bhXRh6coy1MMROMo6HPilpKK7jhCmt1p1NagCWCFZAc1MqhOF6\nUlt8sZNG5QcZzU9RscOakBpqJI33Y2P4VJ5cq9Ym/Ki6DlYoNX9DwPEemHHW7i/9DFZnmKDhuD71\nYtbl7S7gu4QrPBIsqBuhKnIzSqpypyiuqf5MxrRcqcordpr8GVWYGolPIP4VpjU7T/oCWH/fc/8A\n8dpBqVpk/wDEjsP++5//AI7Uc8/5fxQvaT/kf3o7HRblZfD1sj7WwpUg88AkVc06DTjITFbrnPOV\n6H2rmNG1+0jkNtLp1lBG56h5cZ98yGtKTxBY6cxZYLOVuqrFLI+f/HyBXP76k7Rf3o6FXm1rD8Yn\nW6rJKug3CWdrLK7L5aLEhY5PfgdhzXJeHfDl9O15Dd2dxAksKpmWNl4EqEjkeimq2o+IBfaVZXN1\np1pIxuJ0VS0uFAWL0f3/AE+ud3wfMJpZXi0+CD5drtGZDxnP8TH0Fc9SVbkdlbX8mvM5ufE4mXLG\nCSvbXya8/LodlbWUNnbJDbxhI1HTGM1G+jQTyBwFVyepqZZY1Co7qpPTJ61qWRjI4b5hXMlUvuvx\nPfUa7ja8ful/mY+s+GLPUtIe2kljaUgmNsjKNXit54b1lJnjTSb51UkBlt3IP6V9Lr+9t2X73FfP\nvxItorbxVN5ahQ4DMB/ePU16GH9otE1+P+Z52Kp1924/c/8AM5Oa2ntLhoLqGSGVcbo5FKsMjIyD\n7UnfFaGuf8hCH/rztf8A0RHWeOTXXTk5RUmctKbnBSfU6aeDTdV0XRFbX7CzmtLR4JYbmK4LBvtE\nzg5SJgRtde/rVM6Bp3/Q2aP/AN+rz/4xWMOaUAZrKNCcdIzaWvRdW328zS/ken+Hbe00W6jtTrem\nziWZdiotyGLEgYGYcZPuQPei+vdDe1lMHiLTVnKlUZoroBc9+IaybQLLqOlygci8gb8C4H9awtMs\nbfUNSit7gOIikjt5bAMdsbNjJBxyPSuadC03NzeivtHuZ/WHCcm+kV+bNbT/AAU+rMfsviDTJQeS\nwiuwPzMIFd54U+HUOlarZX95qltJ9mmSYLCJOSpB7oPSrWk3MNvbJHGjKgXaATnAHbgCtUXGQGUH\n2rjq1a1SLhd2em0euh3Qilq4S/D/AOSOgsNPsorB0ht4oo1G0KqgA15D8R/CttpT/b7KLZBKcvEO\niMfT0Br1O0muHi4dVX0I/wDr1S8R6T/bGkPDK28bSwVPlLH0yc/yrpoVWnez/r5jrVG429nL7l/8\nkfNTcMyk/Sof4PfNdnq+iabY6Xaam9jfPDcFh8t2AUIZlAJMOOdjHgnpzWDPBp0ujzXdnBdQyRXE\nURE1wsgYOsh7IuCNg/Ou9Vlpo+39annSqOLSlFq9u3X5kc//ACLFh/1+3P8A6BBVWxVHu1RzhWDD\nPvg4/XFWp/8AkWLD/r9uf/QIKzkco6sOqnIp09Yv1f5joOyfq/zPYfCzQNplukgXAg5z6bcH9Kso\n+j219FKrQoQ/3yAv5VyHhW/a4h8kEArBMACeB+7b9KSOzu9TjRLhiqHlSjDaPw6/pXnul+9ld22/\nU9GhWXtJWV3aP/tx6RPLol5fpdqYppvMCrKnO1uwPp7UniOOzm8K3sVuBtMLMNo7gZ/pXL6Ppt9Y\nzW0Nsx+zGZHkZ5BhuRkAdSceoFU9S1N9O0aSGWQZ8rDAE4JI6VUYfvbJ9F+Y5VV7dtqz5V+bObuV\nWG+lQEYRtp+o4NX9OvPMu44VU7ApLkDp/niuOe8leZpCx3M5c88ZNPju7gSCRZWRgchlOCK7HS1u\nzGVVWaR7TZSxXVosM7q2OhBJOPyp8mmTou6C5Vk7LI/9c8V5NB4i1e3XbHevj/aAY/mRWnZa5q00\nZaedGjYYCmMc+/tQ4tGJ0WtXE+nkC5KfMflAO7P45rl/FMsw16/jdvl89yuCMY3H0qO/laWJwT1H\nHtU2pw2Goapd3UWsWQjmneQBknBALEjP7vrzWbajUTfZ9H3Xa5z1JKFVN7WfRvquyZf8JWcLJJKV\nG9ApXPvnJ/T9a2bpJo3MtrKI5T+RrD0mS20+eNjq1iVA2MAk3I/7910nlwXMIkS+gZD0ID//ABNG\nIlFz5o6r0f8AkaYfFwjFxd7+j/yM2GXXZA8clwY4W+8Q3Wr/ANnistJm55ZTk+p7VELVd+X1OExr\nzgrIAP8Ax2q9+8M8YA1S1WFcnlJTkjpn5OmcfnVUnFu/RavR/wCQVcbTSs27vbR/5GHYj/idXbZG\nPIuc88/6l60PD0xlSCNcAR6ladAMn/WdT3qhH9isXlnOq20kn2eZESNJcszRso6oB1I6mui8DW8I\n09pcoT9ph3BgDyAcH65b9K5sbUUo1Kne3/t3c4KseeE1Hay6Pop90jL8JxpG097LxHGACcdSfSuz\nl11LeK2MmnTNFKpO5gPl+Yjkc+mfxrL0rSoPsbJbkxEyu6gk4xu4yPoBVm80vUXtLeFLmUKqHcGc\nbSdzHOPoR+FY1XGdRN/1oe84zhOmo93/AOks6O31vT3hLMPLwvAK5/LBH8qs6b4q0Pe1uLxFlk+Q\nB8rg/iTXPJoN7Pos0sZjkuVwAvQYyOnuay9MtNQSaW2MUJkOA0TDazeuc9fb+fY70Y21R11qjSs0\nZXjewFvrt1Ki4WTL7sdcjmuahXHhq8x/z9Qf+gTV6R4g0h7+O0jvZktIorXa7hDK/wApLcDjt715\n+IWt9G1KCTh4r2JG+oWatK70ivNfmYcl4qT6yj+Zhw25SQqPmBAJzx2qyqkyHJ+6MUy0ZnQsxGec\nduM1JGePqc1U3ds7sLBRpxJQBnGKsaVp0Uuu6flVMbXMYeNxlWG4ZH/1qqlwrgk4Fa+iH/ieaf8A\n9fMf/oQrnqSlGEmuz/JmuNpU6uGqqS1UZW8vdZTsZdV1DVIbGC0sDcSthf8AiXwYx3JOzoBk/hXt\num6dHo+lIg2tLgebLGqxB2+i4H0rh/AtgDBeaiy5YEQx4PPHzMP/AEDn61N4m8XzWuk/ZYnAeZcK\n6t8ygEgj2PGOaJRjUslE+fr4ChCu4RV0v67nS3WuWqCVJZ40IbhWl6jPJwTVO51zTmjjH2mBupK5\nDdv0ryE3ksxwRkn2pGFzt3CFseuOtP6rS/r/AIcf1Clvy/1951et6kRbyy2ZspT5in/j3iYkYOeq\n1kQeNNQtkA2wso6bbeNfw4WsF5xHJl43U98HFaujJBdzlXxk4yp7+9arD0lHVXJ+q0k9Ir+vmXI/\nEuranMN6wMvYPaxn+a1p3kk02m2VtEIvtF1cPFI8USx4UBDj5QOBnNTSaTbWNs8/IVR0Hf2q74cs\nZJ7eG5bB8qaZvYErGB/Ks5KEbSirWf6Mxr0YUnBpat/o/M2bSzS3lj8tdqogUewH+f1rfhuhGBz+\nVZK735YintIEjc/1qb3NNjfiv1baD/EeOar6hFHqFq8DMVSQ8beox36fSsD7Uy3Cp1OwBVHXLE/0\nBqe58RWGniVTN9ouIFBNvBhn5cJ9B8zAYJzVS+H7vzRhXb5NO6/NHKy2stncSQt/rI2xn19D+Iwa\nrIbia75faU5Uepq1rF9ezXQurlIYmIwIo8syjr8zdCeccDt1NZ8kCahHnLE/7LYrOSSlpse7CUnF\nX3L1tqGpxXIWNkBH8Z6D14qu63lvqrHcGMz5YLwATUUMd2JivkuVI2nMMePz28fWrUWnrpwedIjF\nBAhlfBJ4HJ6nrW0UrWRFSUk9zS8ba5LDolnpMTkCdN1wCM7gpG36cg1x4TzdJ09Bn5ryYcD1WKsj\nWPENzqWpS3JwASAikA7VHQVLNdyTeHLF3wCby4ztGP4Ia6ZprkT7/ozy8TO7gl3/AEkdRNbfZtf0\ngCUSL9rTkEcEOvB9DzWL4RtFm10ShkCwIWIY4qLQ7p59d0tCxKrdRYGP9sVvfD3T4riK7kmwN5Cf\nkP8A69Y12ot+i/NioR5sRbyX5s6G58R4Mixz2zFABsIKlge4Pf8ACsbU7SHVbJ7vyvKl5+70JHeu\nhm0COIl9y7QOMDnHoKvxWdnLpIs4zEG5YqCM5J5+tc0XFtKme3GE2nz7HmEViJpIwTGn/AsZ/Spt\nW0ZVsFuCyRyAH5dw+Yeorp5fDazBo0RHjzyCdpFXZPDZbTiiodmDkA5APtmuqMtTldJp2Zyng6+M\nVteRzM2BFuBPT78aj9SKqa0ipqLyQgiJ23Yz909wataVZhLbUInJTbDtyR6Sx/4Vkak0sN3JExYj\nqA3atqb96Xy/I8ymrVai81+R1vhrUjDFGoJyrk1u+MNNW6jt9dhAy2IrjHZh91vxHH4D1rzvTLhl\nlCAkZ9K9O0Blv9NuNPkOfPjKDceA38J/PB/Cu6n78HFmuzMOzuB5QDSDj1rNur9LfUHDjC7eGHOf\nWiHPmFWYIVOCD1qe5sUuAj4LkdTtry3BKVmawqODGQXVuLSM5Q+Y43EckZO4j+ldPCUe2vlSE7JL\nZY4pcD2Zsd+oPbvXOW2mqJgQmK9G8L6VHcLtmxjHf0ropQ10Jq4l9jzq302800PqZUw2SOsLys20\nbjkge/Cnp7VaS8i1LU4vLcvEsSxrkEZ7n9Wau3+NYisvBmn2kKKiPeBgF4+6jf8AxVeX+FpCL1Ae\ngNezg6ag4y73PPxiap3fU9M8J6jGllcRSyogR8LuYDPXNa099b4P+kRH/gYrA8MP5d5qa8Fdy4yA\nfWteedicfIQO2wZqsX/FZz0F7lilc3sGCfOj/wC+xWebqInPmr/31U904ZuVXjpwKpF+eg/KvPkz\nqSPZWRcng/gxFNZEK4Kkj3YmpG600iqLGEIcna2fXdQdvYH86U0hoEQ5UxM78Y689MVyKlbG+1DU\nlmy1ztBfB2qq5wAQc/xZJ+gA71PqWqGR3t4yDGWO0owyeT1HU9vwBrm72+MsYeEnexDR7UwzheoI\nzxnr65rzsTiX8MD0MPhU/el/Vy5NfedcbHOzAAK/eIU9yeMDkcE9xWTcXQRj5iDerBz86ggg7T0z\n7VUlu1mkihGBCUwhJIUKSePUlSf0qtBK91GTh2yjAkQr1x/iK8+Wu/8AXVHoxX9aej3HzMJSzmRW\nIBAy7HlW47egqG+eSOZLiLrD80eAAOucZPOMHHvTm8xRCV81QzbT8wUHIA549c1BMHe3MgVmZYwD\niPfnofvfgKl73X5eXmPayf4vs7dCLWbWTWbJLm2SIeXCJXmkwuByAoPbo3Ht+NcrDfRSxhXbB962\n2ktoJd80c7JJlRt2qFDgls9c/Nj8qxJNKwgkXBB6gc4rVyUUrlUKXtLr+vMtW9pBI+5riNV96sX+\no2tpYvDakM5GNw7VmR2wUZ4psdq9/fx2cSlixy2CB8o6496FVcnZGzwkacXKQuiW0yXEc0chjf75\nYEZAxk/p2rsYpijtGZtyxPhcyjoG98+prOW2Ec8rAqSvCsrbRgA+v+7jt+NSyysGnY7yNxOMq/8A\nEPepk22c91/V/wBC5FeujRE87lXIGw9Dt9PSklmhurFbe7hWSOUgOGQ4YfMM/X5RyOazJCQ8a+Xg\nZPLQgfxZ7VmvqcdqUVdrMBn5cjHOefwNNRblp5/1oYylFx18ur7eZi6h4VW21xY4yTZyfMgJ+b/d\nP09fSuvtYktbVIkCqijoowFFZ1kTOwusDLrtjyOnr+v8qtSuVGCc9z616EE3Fcx5lSybSLPn7sjq\nDxjrn8Kr6dfSK0ltJkmM5UnOcdqSaQxRh14AOfqKqyMI9SjuVbiQbHB9+h/StbGXU021CYD5Gf35\nqjeXCupneJJipz8/X8xzVphG3ORnoRR9mWVCW4BH3ap2F5mffXNnfW6+TAtvtbccMWAzx1JJ9KdY\nTrARFcqXhP3WHJX/AOtWNCY7fWDASRuJ210EcMfl/dHPpxU2UlZlxk46oXxDfW1nossdnKHlkXBZ\nOij/ABqhppDabbZUEeUuT+FVtfHlWJUHljUcWrWtnZQR78sqKCF5wcVKioqw3Nzu2SajoNnfIzRL\n5M/Z1GAfqP61zukWLp4ktLS4QgiZdy+wOa2m8RojYEXHc5wau6Tc6fe6zDdlwksSMAG/iz/gM1NS\nVoMujF86Os1BgsRfuBgVzTyZJJxmtS9maaPIJ2fzrnrmbYp7V50VfQ9GTsZeuSwlSVAEhOMjvWdb\np8m5uB2qC8uPPuCc5C8CpI1ZwGc4WvQhHljY86bu7j3lAPBrodWitrj4n69DNtAk1C6VSx4DeY2D\nXMSEFuBwK0vG2U8d6+wOP+JlcEEf9dWrKSvWS/uv80OnJRab7nUr4Usxgv8ALIr/ACuDkEev511U\nTBVAY5XpiuX0u5kFjbtPKzs0Ybcx9RW5FKDg9q5Z3ejdz1KfJFu2xfn0mzliNwmYpMc7TjNRQabF\ndaZcWYBImU8t3I5B/OlmvY4bYrKTtxzisuyWyS+82O7kVn6x7myw/H+lJJu3kaXhrZFKKwfS9buI\nmfcF0q8KgE4UC1lGBXBK+FVPxPvXeapfrN4yuLdOdul32SPT7HMQP1NcFbRvI4+Rj+FdVL+JK/aP\n/tx49Re87d2dBpT4KjI96u3ZxnHrTNH0ySYgt+7jHJOKbeuMmuqk027GM4tWbObuIh/ac0rAbQBj\nPrgVZtLae9uUt4FJY9T6VBO++Vjnoa7rwFYxC3mupFBkJAXPpWNefImzpw9Pnkkyq/g26VEwQRjO\nccmtO08IWxjG8ZcflXWNKBEUHTsKjtxuYYNebKtUelz04YenvY53VvA7Q2SXWnALcJzj+F/b2qt4\nd1iJ7lTdkW88OQVbjkcHr0716hGQ1iICAeK8x8UaKlp4iWdY42WdSSj7gC4x6e39a3Sc42kZSjyS\nvE0rb+zLuR3ARpF/iAHI6j615143miOtC3jYnyk+fjGGbnH5bRXRXUlzDbzXQjCTCPARHzz2JJ96\n4ZdI1O482T7LKxU/MSOScZ79eOeK2w9PXmObEVFblKINKaTBFFdhxi0xutO6CmnrQApc7doOBWhp\nlmbiRiF3be3rWbXU+ESslzIpHKgVnVbjG6NqMVKaTLdtaXMUwCgY4+QKSMd+tW9U0+YPsX5UxklV\n5z/+utyUqiABfl/ibFWJbiC6PmWpL7QA25cD8zXD7Rt3PR9jFRtc8/vtKljjLuoKgfeAxWCGeF+D\nxXqOpoktg5xxtNeWzNmRh2BNddCbkjhxFNQdkTKd2SKd7+tRQnjFTDla2OYFQOcHrSmJYhlmJ9BT\nMkNkVJDG09wqYLM3AGcc9qV7Adh4b0u31Tw0RciMCO4nZZZHK7Pki6c46465rqfCVu0GlzcgM8hA\n49OKoeFLOIaGLGZWRZbiSZGDBgQvl8Zx/nBrpLYLANqbcAnJAxk+teTKpzOST0uzuwUI+yv1vL8z\nnNT0+6Mm2O3hKMfmeR3L+57D9a0fC8OoJIIpZmRCcDJLfzrWur6FVOE3N6epqkmsW9q6tMWV+pUI\ncD8ehp88mrWO6NOMXe5Ru/E+t2GuzWkfnrFE5XItw4IHfr3riviDJPcarBdTDPnxB1cLtDDpnH4V\n7BZ3em6ncRSPEuZF3ozDnFec/GGRW1fTokI2pASAPdsf0rsotc1kjjxMXy3bOK1z/j+i9rO1/wDR\nEdZw71oa5xqEQ/6c7X/0RHWenK1tR/hx/rueTh/4UfT/ADHL0pR1PNNQ8Yp2eelaGp2Wj58/SvnB\nzPbZH/bRKyfDSS3GpvsblLS4Iz7xOB/OtPRWV7rSMD5vPg/R1qHwjGIlmnbI3wz854wIm/8Ar1y1\nvten6nHX3n/hX/pR1mjatELBZ5mCgD593Y9KvL4yg81YVhkAPR3Xbn6Zri/DxbUhPGH2P5pkTPIy\na328PGANPPJk9SzNuJP9PwrnnCEZNM+hpTnKKaLevTail1HHO8phZdyxrKY0P1NdX4TjuJLUSOVi\njI4jWRmH68Z+lSRXNpcaFHNOIpJFXbtdgMnqAM96dpWq2zArGhjKnDI3UUKTskkbSp9WzlvF+nA+\nEdejMz+VZXkc0EZbhS5G4Aen739DXlUX/Is3/wD1+23/AKBPXoXxVjeN7W4imfyronzUBO0sgGCR\n9D+lefRgDwzf8/8AL7bf+gT10pWgvVfmeRj5JuK7NfmNn/5Fiw/6/bn/ANAgrMrUlUt4YsMD/l9u\nf/QIKpLCB945Na0tn6v8zno7P1f5nQ+EoPMW6kUkOkE+D65hcURX8ccYhvhKpH8SNjIrS8JIFedQ\nODbufzjeoruyjfO7gVhzL20k/L9Tekn7STXaP/txb0TVbc6nY29mk0ha4jBZiSQNwz+FZ2qaDez6\nSl15heTf8yZwCACf6Vs6HYxRYaMkMCCGHGDXT39zdRW8KxXMgmO48ufmGCD3HPzA9e1HvKonC2vf\n5hUp1eZ1Fba2t+9+l+54o0bxuVdSrDsRipVHArqbjXNaOnPcRXt20Cy+S0q3LfK2MgHByM84z12t\njODikvirWo7VoFvbhjIOZTPIzjnPGWwOnYdDW/73svvf+Rz3rdl97/yMTuM1oLJuXfFkMvVfaugk\n8R3p8JafH/adx9t+23BkImYSeXsh2ZOc4zvx+PrVG+1DXbCREl1i7EjDfsF6XKf7LAMdp45BwR3F\nJqq1ey+9/wCQc1bsvvf+RQWbzYuTyDjNQCNFnAbhXBGfQ1eHiDV3dsarfDI6faX4P504eIdXKxk6\npfdcHFw/+NT+97L73/kO9bsvvf8AkUpg0KqrDkMST6jjn9K1bR5AuIpHQ46qxFOHiHUJEaNtUvgw\n/uztn2PWuz0Kzkv9Mtr069qt2GIV7e1DFw3cFi2FxxycDmuvC1JxbUkvx/yOXEqu0rJfe/8AI5VI\npLlgJJZWQcnceP51Sv2eSVQqsqEhF44A65/HGfwr0mSWLRNJW5vNQnW7di3kzTGd8JKRsVVIHIXl\nySOuBzxy2u69c2skinVpP4poHtidsikKFHXjGDkHv65zW9avUcOWMVb1f+RjRpYjn5pWv6v/ACOS\nuIY43jVG34GWbtn0rsvAAjaG6WQgDzoNoJ6kbyP5fpXJf8JFrAeQHVb/ACWzjz2wPpzVvTdU1C81\n3R4rm+uZk+2RttllZhncOeT7n868fFQqVKUk7W+fS/kddb2vs25JWSb3faXkdpBctBch85DEnNWb\ny8upjBLEy+WELFD0Y72HP5VjadMDY25OM+WvX6VY1W3ma2tLi3uGi2RkFQSFYFn64INck4rnin5/\nke7ztzptd3/6SzR03xTqULmBbJZgT+9CttBGecdxWpoXiKQ5hvBmdRt3k8n3NcXCNUkuw1nqVpET\n0VtzZ/76z/OtazjZLtmmkDzdGKjAPvXUtLWN5SdnzI6DUPNvVlujMUgt4pGmQH76leePz+nNeVyy\ntLpOpzPy0l3C5+pWbNdV4g8QXVhusYBH5VxAdzEZIB3KcenGfzrkJW2eHL0+t1B/6BNSqateq/MV\nVOOGjJ/zRf4syYDttVOepI/WrbkIM9hUUds6WtuXKbZIzIoVwxAyRyB908Hg4OMHoQS45KZ3ADvk\nZFay3N6DapprsRyzxmTyzySK2fD751jTc9ftMQ/8eFc5gJNzg9lNbvhW3l1DxVp8SEiOGQTuQOgU\ng/qcD8ajEQXspW7P8mcVfGNYetKa+zJfgzuJr5/DPhOCIRkS7SWL8fOSSwP0PH4V5dLdy3l0TyWd\nuldh49uzmO2XgElv8/pXJ6Cqf2zb+YRjeOtXSilByObmbd+rPRfDPgtHtEuL3G5hkJjoK7uw0bTI\n4vKNshzz0qlY3aJAGkZUQjqTgUyPXbaS48q3kWSUH5QpzmuCUm3dnrU4rlsXrzwTpmtRtbm2VGP3\nWUYIrxvW9DuvCPiLyZCfL3HY44zXokvjW7hvQkZeNQ21/KTfJjPOBkD8yKm8QGTx14bltRo0q6jb\nxmW3uBJHl9v3g3IxweByc/jXbh2krM5MQk5WOUW8XVIbeEru3EZAz19eK2o2fQ9FWG0kt3u3uP3k\nZBdRwu5eCNpAK9T/ADrz7w3qLQ6gtrMGDMdgxwwJ9PT/AOvXQXt5H4e0WKNY988l5JIoLZAwiZz+\nYqq0UnGK7/5nj4luU4X7r8pHRak0dozXF/qkkVuvzLEh2bvb5eW+nNZcnjXS1gdIYZ9oUBAUAz+v\nArgLzUJ764a4upWlkc5LE/07CqrSccGrVGPU0N7W/FF1qhVSFgjQbQsZOSPc96ueAAZ9bu1wXJtc\ngYzz5sZzXJAHPTJpUkkt5Y5oztdGDKR2Ip1aXPTcFoRUi5RsvL8Gn+h6vq2lzlh5dvPIx6lYyRWL\n/ZuqwZaGyuwfQQtz+lS2uqW+r2CzRY87GJE7qf8ACqF2pVT7V50Y1Ivldvx/zO9uvJcycful/mWr\ndPEL3Kq1ldIueWMDD+lbXiKPUG8MXlrb2tzLLIFU7ImLN8wz0FcTCXE2/ng1S8Qao1yVtVbKIcsf\neuunGpfS33P/ADOWUsRu5L7n/mVT4d1wnP8AY2o/+Ar/AOFWdQs7uw8PafFd201vIbu4YJNGUJGy\nHnB7daw6Uda3cJtpya016+fn5nM4VJNOTVk76J+fn5m14amP/CS6WvT/AEqIf+Piul8LamLMeUWU\nDOTXJ+HT/wAVRpWP+fyH/wBDFPguDC4asqsOabXkvzZrRly4hvyX5s9Ym1RJlO+TCbeTn+VczBPt\nv/JFxMV3bgUkIY8+v9KxPttxfiOKGUocYyOaiGm3cMwYXO2QHJG6sadPke567rTqRtFHeSaj9huV\nO8lJeSWOea6Cw1wC2ZW2nNeWK9zbENczrMrADHYVYl1Ny6pETtx2rSMWpXRE6ztyyOtg2C+v5ymb\ndgCQoBP31zx6Vxviu9hu9SBh2lEUKrBdvA6cV02jxs2nXZ34dkGfb5lqpJ8M9VvjJNbalpsrYysb\nSurv7cpjP1IHvW1OaUpXfb8jzKfvVajXdfkcfp8hN2uO1d3oGoeUryqf9WQf1rl7zwzrPhq7VNWs\nJbYtko5wyPx/C6kq3UdDxVzQJyftKE8Oh/Ou2leL1KaOk8R2qweIJZVUGK5AuEOODu5P65ptusZU\nbVAPem6jc/arHTGY5eGJoCf91iR+jCktH6f0rlxStO6He5pW8WJVJ555r0fRYvItoZAuVYHnHTiv\nP4V6H9a9M8LkXOkbGwSnTP0rTDmFXocH8droNpOgKGzueVjj2Cf41554VIa9hB4BYZP416P8bLDd\n4WsbnPzWt4YgPZ1z/wCyV5x4URZm34+eMg8V7FF6wXr+ZjjHekm+x33hriTUJwTh5Ao9Bj/9dac8\nnJqjpNqkOmKxupomdmcqsSt39SaJwATi6lb6xKKyxUr1GZUF7pDPIS3Sq2TSyFcn53PuQKh4P8Tf\nnXE2dCR7mcev6UxgxYBXUD1K/wD16fTTWoEYJYsA6HacHjoev+FZWvXklrYMgwHk+UYfBx357Z6f\njWlGcvMOeH/oK5DxZqXkTfMuQo2oCuQ3cn+lYYifJTbNaEOeokcvdSF7n7OZXAlkCyPIuAAB83zD\n2x+tY32p5b5pOFGNpWNs4x9057D2rQt8x2dzdOC0hiILK2SWfqcHnoRWDAC2peQV3M7NuGzaSOgy\nO44BrxWrXkv8z2072i/n0/roXbnKzwNkIGZ4/lXIVsZ2qOnUDmoNKaOWWQyFCzOw+dmJ5Ht75qLU\nrlfswk3HKyoNxOCCDwVH4EZq3oAxGjRllWSQuAjhQP3mOpPtVJbOOz/4PUG/ijLdeXpsh5+a3XYE\nbbhvlhJP3mHp71YMcYdS2za8XO9z2OP4RxwKhUgQuzD+Affk3D7/AKD/ABFWGzIiGPcwQyR/JGB2\n4559ajRu78vMrXVLz2VjIubQRo8Egi5yuUUtgqc55PoSKhbBtI0eUmdQQ0bKRhc/Lg9D1H51vPiZ\nULO53bGZXnA6jDccd8ViXEZSAtG6q0WVZEJJYZyck+xPcdPahw5tP07DjVdOXN5rr3MO4AiVmU8V\np6HaC0sJb+ZCzTLnBHVOwU9ie59Kzri3aSeG3VXZZCCCikkp3IHsAfyNac7rJ50YWMRx/LhYzjOR\nk9Pb8sCs4ppWZ24irGVrP8SQmZ0Ekm8ll6GMHjaMfhg0y5k2ifIG7nG5Md19DSSmFf8AnlwrYwGH\nsP5VUu5ATcYcAbiPlkI7r61ta+/5eR5vMlqvz82U72627SNmMN90kdz61hXEjy3SqpJbAGM5/AVf\nv2LeUAzEkHqwbvVGzubaHVPtFyrsEI2oi8lu1dNOKuclSTsrnWWkJhijiOchQo44FNkwMrgZBxzR\nHfQSDciSxsT/AMtUxn8uKWRc4wSwI5NdcbW0OKV76jNytDJE+VccqR0Oe1ZcsmPso7ZPXuAQf8at\n3bstrJLj54iMn23A1ialdA3aRxEkKCTjsT2qiVubcGoFmISPDEfebnFW0DON0rs5PasS1mGACVH4\n1rQSAjnP50rjaMa/iEOpW7YGRICT+NbxnjhgaSRgEUZJrN1hBiOYY+VhnH1pJpY3uIbaaNZkFvPM\nyFmAYpEzLnBBxketKcuSLk+hnOfJByfQxdU1V72TptjH3R/jWdbI1xcKiKXPpVqTVbUuEGiWBJ/2\n5/8A47XX6FBbRW4uP7KtIpDyAjSn+bmuarXlBX5fxRrS9pJ25H98TAj8LXM5zIpTPvUF74avtOTz\n4iXVeeO1enWk8bjP2aMH/gX+NaRWGRNrwIQRyOa5IYuq3t+R1ypyS0pv74/5nl2m6808It7g/OOM\nnvWXq9+TI0MZyehPpWt4nW20TVR5ei2TJJ8wZnmB/SQD9KybuS2vdEuLtNPgtpo7mFA0LSHIZZCQ\nQzEdUFdMbJqXLZPzRyTxVSyjOLWtt0Y6gDk1MXL4UVAoJ71LuEY9zXSUObgYre8V2kt9481+GGMu\n51K5IAH/AE0bmubZie9eqaQdIv8Axnrk8HiHTZU1K5luIU8q5V1BdmAOYgOh7E9K5MRU9lUU7dH0\nfddkzSlBTfK2Y8kLw2kEbcNHGFP1AxTINVktjtf866e/0W1Zz/xOrBPqk/8A8arIuNEsSCG8QaaC\nfWO4/wDjVc0MTTa1v9z/AMjrldO6JbXUUlO4zADGDmppZrSCJ51uXdANzRsfl+uKxT4diaQCLxLp\nYyf7l1/8ZqTWPDsdhYwh/FOnRpOGVvMiucEjHTbCexHWtIzpc27+6X/yJDqzUXYwfD14994rvLt/\nvSWGoNj0/wBEm4q1pHlyFd2Kj0my0zRrq4vJPEmm3A+xXcSxQRXW93kt5I1A3QgfeYdSKoaTI/nB\nBnHrWt1Oc5R2sujXfukY03qkd75iJaME4G3tXKX0p2nFdH8semNI3ULnmudjh+23KxDpnn6VthHp\nIMUtUjGKnzEJBAY8Ejg16N4S80WJOMRdAfWqF9bebEtu4eQE/ul/hUYGABj/ADiptFS/trFjZlZ0\nVsPbtww/3W/oaxqz9pHsdNOn7KV900dTIHUAnp7UsMhX7vauTl8QNM7LD50LR/fWSP7p7A5qAa9d\nwyZbZIp6si4x+OawVGR0qtE9K06+/eBWPNYvjeEyW0FwFLhbkcL1PB4/Ouau9cuo3jFsW3MqszeW\nflz6g/SpNRudUk0OW5lmeTyyGVskDI6ALgV0Qi7JGVacbOwtqpW3vGYh5DtV/TJ7D2GR+NQb5V1D\nTrdeRAnf0xVjTLSRNA+di0kp3kkdSfWkmizrDOvAMYU+w5J/kv510xVlY8yTvJl2Ky06eJxPp9o7\nSkhf3SgkevqO/NcV4z8Lx6WI7ywi2WrALIoYnY3rzzg/U12VlIiP1LOevOfwqzqUcV9p81pLlklQ\nrgLnB7H8DWkXfQhq2qPEqltIxLdRqxAXPJPpRLA0N1JC/wB6Nip/A4owFXI70mWmNuY1juJERgyB\niAw7iruiagNPvw7HEbja3t71nscmm0ON1ZjTs7o9TiR75fMindTtAATHNWLSyvGR/PmuETBGMj/C\nuI0XVbi1gzE/sQa0z4k1EgoGT5vxrgdKSdkehGuuXUu63qgtbVoFbdLt2j/E154Tkk1s38uyJmdi\n0r9zWMBmuulFRWhxVZOT1JYcAipuQTxwaij6gY57VOGzwOR71oZERPNWtOETajAs7SJGXGWjOGH0\n/GqzKRzWrpHh7UtVikureArawn95cNwinjjPc8jgeopOLaaBNJ3Z1LWEH9pWVpbO0Vqt1M2BIeQI\noGxk5PLdq7EyBWYe9NbTrU4SygxDDJJJLO6jcSqr0J+7uwowD0Xvirt7pcNvPJFLqlmksbFWG2U4\nI4PSOvF51BJVHrr57PyTOnBSXLO38z/MxrhLhiGtmi3f9NASP0pIbW7kbOy2lZTyrHbj9c1qRw2K\nD59Ysuv9yb/43UlvZaA9yHfUbR265BnH/smKI14J63+6X+R6KkmhsZupp4VubMQMg+V0kDAj6ivN\nPiPqiaj4iFvCi7LKPyTIOrtnLZ+hOMex9a9kMFhNIiQalbbV6nEnA+uyt+Sx0/xDbxtc6Zpl/EI1\nKNKhLBGUMu3MeRwR0P5Hiu/D1aTk3K6+Uv8A5E4MVUdkkfLuvD/T4v8Arztf/REdZqdDXtvij4bW\nGtam66dcW9jcY2RrIZgrKgwFKmPjAAGQ3G3pnmuJ1z4Z33hh411fWdMtllGUcxXTI3sGWEqT7ZzV\n0q1NU4pN/dLz/unnYe/so3/rc4ijPHWtw6Fp3/Q2aP8A9+rz/wCMU06Fp3/Q26N/36vP/jFV9Zp+\nf3S/+RN+Vmj4blzc6QCBn7VGM/8AbQU7T3FvHJb4wfsVwOOhPkOTVzw9plkt9piL4n0mTZdxkKsV\n1lvnBwMwjr78UljpmnyX8jDxNpLH7Lcjasd13hcE8w9uv4cZPFc1WvTvLfbtLv8A4Tjrwd5/4f1M\nHw/qbWV6kfGyWRd3rkZA/D5jXezXrXFi0YBKpgkZ9K4M6Fp2f+Rt0cf9srz/AOMV12jRwzReXD4i\n0y5uY4ZJNkaXCmRY0Lt9+JRnaCeoor1Kb9/9Jf8AyJ61Cq4LlLOkNKLkyKHXngyyYX6f5IrqlsJ4\nLmK9WVJt3EiqOAPUf/rNchFeWEjAyOUI5+U/yrch8TIYfstqC7EYzTinJ2sdk6seQi8bWX9p+F5p\nSQpspEcEjruOzA/76B/CvNLeGMeH79ZHAxe2+R/wCavSfE1y1l4KuYXP764ZC30DA/0H5VwAAfw1\neOVz/pdvu4z/AAy1v9m3mjx8ZtF+a/MbNGv/AAjVmExj7VP0/wByGsgqckVpukZ8N2RQlSLu46HH\nOyGqiEFPnwx5571pSWj9X+ZlR2l6v8zp/DcgFxCqkZa0lQge0bEGrLxl/vVk6KwW5dY3ZWFrcYOe\nR+6fnNSQeKW2CLULfcQMebEoDfiPX8qwlBurJry/U3w80qs1L+7+p0NgpjHy8AelVvEOphLO72yy\nLLHGqRlSCuSw3Z464x6dKy5fFCiFlsIWTI/1kgGR9BzWfqUhTSSr5y/UnueprWnCSd2bVakWuVGZ\naXc4ga2Rtsb5yFUZbpwT1IyAcdMjPWo1EofaRhQe4q74ehQzefMyKg4G84BNdQdOguojJGyFPUHI\nqalfklaxVOhzxvc4aaQtJgnOO1QPPJJOXldnJ4JY5JrevdFaR2e1DEe64FYE8MsEpSVCrD1rpVSM\n1oYSg4vUsBtrI2cjOKUc+YuehyKSW2nhiRpI3TegdQwxkHoR7U1GzJ/vLUCLcAXYDk7wR/Wugtob\n/SFW9hiaWzljVprV59jSrt5YqpDFc5IPoOa5mObY9ep6dPDLo14lpqNxfRmzaEW8kWyOA7RlmkbC\n4XBx+HpmqjJLVuxnUbLOo6vFeaRaxy3tiVkgSR0SLyrcxgEDcfvs2RwoKjg5AryvUDIZV3psQjKc\nYyvQH8cZqw+tOlpJaW4URuoVi/zYxu+7n7udxzj1PTJrJd26nmtJy6ChG2pLJKCcgVb8PGW48V6U\noJOLuI49gwJ/QVmkgrmtPwvdR2XiiwnlYqiyjcw7DvXPVX7uSXZ/kxYhN0Zpdn+TOwt/ks4GTG0I\nMflWuL22FnapcnG6Inn/AH3FUdLt4JIXthf2zspLAIsgwCfdB3/nT9T02JobVWvYF2wkZKvz87c8\nKfWvLqyh7RJ930fb0On63BSpyV+vSX8v+EvWsujQuWO1G/hYGonu4pLlmjOR6+tc9/ZMO/5dUts9\nvkl/+IrThsEsrYyyX9uWPCFlkxntkbc1vGdNdfwf+RtUxsJLr90v/kTJ8aRvHBaX6FgxJiwejL1B\nH47xWPp13HJoV4byMyxC7gBQHbklJscj3xWp4lSzuY7WA6pYwyplpCUm+cnAzxGeeDWK62lpotxb\nx6jb3Ms1zDIFhSQYVVkBJLovdxXROUJqKW910f8AkcFTFOaUYt7rSz7+liN3g+0Zt12xsOV9D7e1\nK7AIc8j3rOD4PymnfaCRt61pKld3R6tDG8keWSJnPmKowAFOeBXc/D2zEYlv24eSVYF9doIJ/Akj\n/vmuDj5OD3r1XQbcWljpltuZXXYxB67iwLD9a5sS7UpLyf5M58wmpYaTXVP8EzivGk32i+3DovHB\nrmLObyL2GQk4VwTiug8SMXkDn+Pk/wCBrmc7ZAfQ5rqpr3bGbezPWJUv7+ONbaN0hKD55EBwR1Ay\ncD6mlTT5bV4opZXkUMP3ZYlQAcn29enqaZoWqyLZRu3J28+9R3WpfaL9FcyYPCInBPr9K860r8p6\n8IQcOeTOj1CHS7GNrqJLZllPEe9N0Z/2U6kfyq7oWv2lsszAlzNGFDZA2+wx268e9c7BpzxwtIrW\ncII+7JIZJOeuAPp+tVtL02bDz3G1SWOAnAx61SfJ7yC8JJqxwPiINZ+KLt4flxMZEI7ZORRqF1Nd\n6FZ3EzZka9uSeMfwQU/xYyvq5KEHAwfXNVJyT4YsOf8Al8uf/QIK7HqoPz/RniYvSqv8X6MoGU4p\nA/NMoroGTCXFBbd3qLBo2mgCeC5mtJhLbysjjuprVHia4dNs8Mbt/eX5c1h4oqJQjLdFRnKOzL8u\nr3DqVQLGD3HX86oZycnrRTlRnICgsT0AHWqUUthSk3uMpe9bdr4P8QXRJXSriNAMl518pfwLYz9B\nW/p/g7ToInbUriS5mDAKlq2Ix6gsRlvwxj1obS3OSrjKNNayv6anL+HP+Ro0n/r8h/8AQxSzW00M\nmyaJ4nHVHUgj8DXokkkNu8aWVpa2nljG+3iVGx6Fh8x+pNYWrajrP2jdb6leAEfdWdh2+tc0pNzv\nG23X1OSjjJVa14JK6tq/O/RGDY3LW1wjcDnitq4lilmV8/eGTWQmv6y0nz6xfqByR9of/GlfxPq7\nHC6pejHT/SG/xqZQqN3svx/yPVjVrxVrL73/AJE2oXG5ljjHCnH1NOsomkmG7O0DvVceJtXbB/tS\n94P/AD8P/jW3pGsarNOivqF2+84AM7d/xq4RqLSy+9/5ETqV3rZfe/8AI6eC1fTtJkulmPMIYYY8\n4ddxA7Yxz9RU+naqHCskhGOetY+s+Inks1sRIzME2SEsTuP9a5uy1N9PnCu37ong+ntWdSm5Xl1/\n4FiMHWcKs41La229LdT6G0S8tdd0c6dqUEd1bS/JJHIMgj1HoR2I5FeZeLfBE/gvUZGt3Mum3PNv\nKfvLj+Fvcevf8wNnwRr5g3TYEkR4KmvRtVitPF/hmbTgCski7omI3eW46HjnHUfQmu7BV4Nckn/X\nc7pw18jxXAn0uVlOAlzlR6bxz/6CKh0/fHkSSb2LZz7VqWGj32n3Wp6PewFLpU3BeuSuGyMdcgfr\nWWvyTfQ08XT6mHdHT2w3RBv6V3Hgi6BeSDPuK42yj/4lhlIbB4yK2fB1x5WsxrkYc4qKOljGprG5\nL8ao8+CJj2W5hf8ARh/WvH/As+3WDj5sISy9jivZvjU0Y8EJ5h4luok+uFc/0rw7w7qdrpV+8ggd\n2YBFKjPGf/rCvVo6cjfczxavSskers22FQAQuOKozSDsc+4qVXee2ilEbKjoGG4joRVSUOOo/Wue\ns/fZFP4UQu/NRkjNK4Pt9KjDNjkge2a5manvTuqDLZHems4U/NkfgaeygspPbJpCx69/WugRVVgj\nTyN8qFxgkYzx/wDWrzDV3F/qskyPkM7BBG5U8nHQ+wz0r0fW7hrfSZQmN7jy0B4znqM/TNeYyMs1\n4Ruby0G1WmXg/wAP3vXqe1cOMk9Ir1O3BwTbk/TUg1FgsEMHHzyb2DqVKj6jrxjt2rl4Jdt7LIBt\nABUZfI6Y69uSK6K9dpLnau8KqYCq29Ru4757EflXMhg12dxxuYAkLjqck46HtXmtaP8A4Y9NPbt9\n6/qyKl7dbYJt5yS44Bye2AD9ea6LQyIbS2DFD8oYEhs4L5HtXDXspeFgW4aZS3uc+ld5bh7GBIyZ\nR5cCqMzBPusB0x7Grata/fsRFq0mu3cciMIZAxfGwjKAIAQQetEUqYDStG2JUYlnLdRn19qjZ43n\nlCJEMs4wMv1H4inRM627FfMUGNTjaEGQSPWs9VH5enUtOLld2383uh+54lQbTgxsu6KDpgk9Tj0o\nklaScsVkYF14Mirww545pk8wabDRqAXcZeXd1A9B71BNMw2iEISyp9yMtjp603bm+ffyEr8ny7Jb\nPzKMaiMzXCMm+JNih5CSuSOhx/nNMjDoPlKMGcZxIeMDnqvvU1hBILRsPIMhgf3qrnkn+lNiJ2Ag\nSZzIxyA/b6e1Rpa/6eZq+ZO2unmuwxjcNtTnOwc+cO7Z/rWfdTOTJ5gkO4k44buPf2rQmLeYoYcA\nxrgxAds9j7VizSKChIXgDOMjPJq42f4mUrrv06LzZmX0imZRgDap6rjua2PAumR3l5d3UqBli2om\nRnk9T/n1rFfYkEsjxhyCqgMx4yD6Eeld34OsCvh9LhXa3892fbGAR1xn5snt61tVm1FpE0aEbqUp\nJaX2fp+hsTaPbzxlXjXn2rCv9AvrFTJZkzwjkxE8j6GulEMuABeT/kn/AMTT/Jlxn7bPkf7Mf/xN\nY0qsk9DSphqUl8a+5nnOo3ETaZLIWZc/IQ3UN6EetcmpMkrSNnLHNdJ4uuozrUsPlJMEADM+QS2P\n9nA9qwkmjH/LnCP+BP8A/FV6XPJpafkeYqNJN/vF90v8i9bYwODWnFLheTWUzkCFkQJvTJAyRncR\n3+lTRO54yacXdXM61P2c3G9/+GT/AFNC+lD2EinJ+XvWXby79Xd85/0G5I/78SVLdSH7Oyg9ulVd\nGje5vZiozssbkf8AkFx/Woru1OX9djlrq9KXp/kY9hBJd3qRxjLMfyr0qGSKxtEjA8yUDp2/E1yf\nhPTkkvn89D04z0rtbnw0JVwrlATkDPB/CubETi5cr2PVowkoXj1M0a5qMMhIitdg6hGyRWrceJLq\nFLc2qQuXXJLHIznpWRNo01ri2aRUjLZ+Uf0rXvNJFxYW7KVDwDapbPI/z/M1KdFSVtjW1ZwdzJ8S\n6bqPiKG1keK3hlQ9QxCsGIA/XH51yccJj8M6gkgIYXdvwf8AdmrttU0y5tvDkl5u2FGXKKTjGf8A\nP5VyIGzwzqpl+99pgAz67Zf8TXROcHGPJ3X5nmYqEk/e7x/M5/PpR9aYDg06t7ADCpLa4ls7qO4g\nYrLGwZT70wHOfajHFFr6DTs7o9N0zWLbXrUMrBLgD95ETyPp7UXGmG44UYNeaRvLBKJYXaORejKc\nEV0unePdSso9ktvbXP8AtOpDfocfpXK8O4u8DqjWTXvHa6V4fMe1ny7ds1zXxA1GCW5ttOgIb7MG\nMjDuzY4/AD9arXvxD1i7gMNulvaKeC0Sktj6knH4VyzM0jFnJZicknqaunSalzSM6lRNcsRuO9Xd\nN1J7KYNsEi91PX8DVLHFI3ysDW8oqSszKMnF3R197rMd9ZCK2J3N1U9RVrw/alU8x8F3/SuMhkZJ\nAysR9K7/AEVFa2WVZCq9s9D9KzjBQVkVObm7s2JI0YRqQdxbjjkd8Z7VeUiKZ/LAAJPTitCTSGj8\nNWmq7d5luCuf+eaDK5+pbj6YrLZSpIrjxEUp6dTsoVG6aT6CzWcMk32guAzIFYMoK4Gfx7nvWRIl\nvcTy2zvF5ajllTbu9hyauXQle2dY32tjqazLe0OCtxCAf4SMsG4/Mf8A16iK03OpST6HRf6JNZST\nQzhLmOPaqqgO4DkAggg//XqreXVjc+E7i4kNxJKuwbS4AB3jsMDr7VctbF4IVFkYizcSF4nwqjPq\nRz07d+tcxrIXTtKFvuJlnlMj+mBnt9SPyropxs1YyxFRcsrrcxrFLia9uJUu57dXJbEMhQfoa04p\nHt7RXmlklkYSOWkYsSPlA5P0NZtreJDalQmXIOeaZe6gZV+Rdu1AijOeldN9TytTo7EOY1kZl55z\nmrl5qEdhZtczhyiDJxWbpUAktFkEqtkc7e3481zfim/LTrZxu2yPlwcfe/Af5zTQNGHqM6XWo3Fy\niFBK5faTnGTVNvTPBpzHio89qYDDU06RrMwQ4APeojUsxDSn35BFAEllKIZvmb5G61rfbrSMbid5\n9FHNYHtRn3qXBNlqbRPdTm4maQ9Ow9BUAOTR26daAMVSViWSqKkB7ColOa9f8D/DcQwQ6vr9uSZB\nvgtm42jGcuMdcdu3fngBLdjJ8D+ArTVP9O12Xbbq+xLNSRJIcA/NjlV57cnnpjnu/Fcyw+FhZ2dg\n0NoFVMJHsUDIOAO/Q1qeHJ4Le41WzjgdClyXJC4yGHGf++f1rP16/tpxLZAMv2WQF93A+bJXn6Zq\nXLlm9NibcyTZjWMc97oc7xBYnSGSNi+eA3Q+p5jI/DpVzWGhuNZ1LZcR/Ldyqww2QQ5yOlVrHWrb\nTtFvr2dSTLILSGJeTJsDEEDpj94cn+ZIFZt3K0ninXJIXjV49Qnjkt2O0sBIcMCeCeuRnPTFcFWg\n5VFyu2jfTq0XhounKS57Ju+y/UlubOJ1JF1Ep9w3+FVLfRRLKCLuErnsHz/KrPnRXMfHIq5YmC2U\nyNgY7samKkt5fgjrdCo/+Xj+6JNewix0aeJZ0jkkjKq7A8ZHXgE11mh3dxpuj6XIZSwkeO38w7QJ\nCpKBBkjrgdQOhrkNYKW9lLe6mWiURnyYWBDyMcj8OM9fWqWm6nqGu+CJtHvFZ5NMuo7i3nA5IIky\nrH1GTg98+3PdQhLlblL8EcOIhO6jGo9PKJ32vJLhZ9piminMu0YY7WYnqOOnFaEGtaTcaO9hqqxX\nFvny5UmIcM2ScFT0I44xxXNRy3WsafDcm8kVmjIdAeQwbDAnPrz+IpfC9jFDBfPLArq17IsgkDNg\nEAqcD2roowUFyt7GSXJBRXTQxde+C2ma1E994SvfJBBIt7jJjJB/hfqOPXPPcV4vqei32i6lLY6l\nayW08Rw0bjn6+49x1r6o8M6lKYJLa8jkhkWQsuXBYx9FYHuOMHrj17VlfFbQbbxH4bZYrdZNVgjM\n9s6D5iikbhnHQgnj1Aq5b7bmsXpufN9je/2fqNrdBN4t5Uk2Zxu2kHGe2cVqaPNpDX0nl2N8rC1u\nOWvEIx5L5H+qHbI9vfpXOsSCw96sWN1NZXAntyokAZfmRXBDAqQQQQcgkc1yVqPOn3tbexliKHtI\nu29rb28yd5tE76fqH/gcn/xmtzwtLpL6hc+VY3y7dPvSd16h4+yy5/5ZDnHGe3XnpWM2tXf/ADy0\n/wD8F1v/APEV0Hg3VbmfWZ4mishnT7wjZYwryLeX0T6cd65cTCfsZaPb+b08iYQqcy0f/gb/AMjO\n0u40W4YRfZb9X7K16pz/AOQxXcaHHp8BLR2s6MOvmShsf+OiuAvdSvbS8ISKwHG5T/Z9vn/0D610\nOleOWXSZvtkUDXkeBGViUCTPqAOMd6dSlV3in/4F/wAAunCb3T/8Df8A8iXfGeo2TKLe4guZf4ys\ndwqY9OqGuct9S0tNAvSLG9MQuoFZTeIScrLg58rpweMc5HTHN2+1W9fSZLuQWrysqsWezhPUj1Xm\nuYn1O6vbc20gt0hLhysNtHFlgCASUUE4DH86cKE7JPuvtf8AAM6lOdVrdK6+23t8ia+v7WW1gs7K\n3miiilklLSzCQsXCDsq4GEHr1qsXOFA9D/KoSArAj2oEmFyeccV2RioqyOiEFBWRsaFOTqMhz/y6\nXP8A6JkNUjKrtggEdM+9V7O8msblbiBlEgDL8yBwQwKkEEEEEEjmtGPXLs5zFYYP/UPg/wDiKh86\nm2le9utu/kZtVFNyir3t1ttfyfcbbqHnjUjqeBV7xBaCKT7OCzEIG+YAH5hkdCR0I71Z0XULq+1Z\nIzb2boCAQtlADjI77PrTL/xBd3E80qi1fLHa0lnCzY7ZJTnjFF6n8v4/8AOarf4V9/8AwBmlgwab\nHJHGC+GBJPQjPH4muh0K3kuSwcjayZBA6NjJH4VS8Pa83kSLdQ2jANyBaxqPrgKK3rDxAsly7G3U\nQJkII4V/HoM+tedWlUu1y/j/AMA9KjKtZPlX/gS/+RMltO1FbxY42lHzNkhQQR2we3fNN8XaLiwt\nxsUzhhubHPPH+Fbdzrd9axC8iiAtz1RkQMPcYrH1fxJO2nSXAFvuGNoeBG7+4qYTrcytFff/AMAq\nftLO8V/4F/8AanK6vALSaG3Iw4hXeD2Pp+WKxfuSgehrpDquq6rfolvbWt3cSjISPT4ZHYgc8bCT\n0J+lOs4vEOsXzWenaVbXFygJeNdMgyoHXOU49Oe/FejH2sVZxX3/APAPOnVqN35V/wCBf8A5qU7Z\nM9jzWxLq6P4fjtVLecZDv+c4CgDt05/x9anvbjV7GCN7yxs7dnGVWbTYFYjOMgFOmQR+BrO/t67B\n/wBTp+P+wdb/APxFKSnK147ef/AFzVf5F/4F/wAAotg+x9aA5HBq+Ndu+0Wn/wDgut//AIig67eD\n/ljp/wD4Lrf/AOIq+ap/L+P/AABc1X+Vff8A8Az17im7ijhlOGU5BrSGvXYP+p0//wAF1v8A/EUf\n25dk/wCp0/8A8F1v/wDEUc1T+X8f+AHNV/lX3/8AAOk0y6CtbXynaDjfj9R/Ou3ubeC4tLeUEPGY\n8q6nggknr+Ncf4S1eS+t7m2kt9NMsREgZ7RVAQ8HhFAwCQefUfSsO78R61p2oSW8d0sccWUWJIUW\nMLknhAoGeeuM1zVaE6kk7Wt5/wDANKNSopx542Sv1v0t2R6Ta6NE7AgZB9qxtWltZbhUt5llhhzl\n1+7nv9cVxU/irXNSjWya8YJIdu2NVTdnjBIAJHtXS6v5WkeBoo0aNprmQxjMQ3IoAHDYzz16/wAz\nV0sPKMuaTOurXUlyx6nEahcm9vppznDN8o9FHA/Sqvf8KWkY11HMKxwvHWlRdozTM+tBY/8A1qAL\ndmI5LuBJX2RNIoZvQZ5r16Nj/aNtwciRe2M8/wD668XUnINew+ErbUNStIL28dDCoVkYp87Ee/HH\n61x43Sm35P8AJk1YTqUpxjro/wAmcP4iiVctHIGRiGx3U88VyrgZPrXoXi6zsFk8hdStoHByfOEp\nP/jqGuOOmWmc/wBu6d/3xcf/ABqqo14ON9fuf+RVSrCGj/KX/wAiauga0IpIbWVTs24U+vWu3jls\nL23CShcfwt6GvNobC0hnSQa9p+VYH7lx/wDGq7K2gs7yAS2+pWrZ6lVl5/DZWFfkvzK/3P8AyOnD\n42FuV/lL/wCROpszZ2qfvypwMZbkn3rK1nXEgh8q1O5m5PHT0rNewjPDanAPb97/APEUx9Ntwn/I\nRts+6yf/ABFZRlC92/wf+R0zx9Plsk/ul/8AInA6gWe+mLHLFuasz/8AIsWH/X7c/wDoEFTXOnWj\n3EhbXdPBLdNlx/8AGqj1A20OjWdnDfQ3UiXE0rmFZAFDLEB99V5+Q9K7udScUu/Z9n5HjVasalSP\nLffs+z7pGVSgUlLk10nQOGRS0wE07NIQGm06kxk4HWmBf0fR7nWbvyIAAo5eRvuoPf8Awr07QbaD\nwzDJFZsTLIMSTMo3N7ew9qzdKthpGlpagbZSu+Q9yx6/l0pxvcQs5xlSeMd+1c0qjb0PnsbiJYhu\nC+H8y3qOoTXEws0lclxmVs9F9KiQgXBjThIwAAPWqWno295nOWPJY1JAxYu3PzNWbbORxUfdXQmm\nYYcj+6cD8KwJpXEiyDB2EEZ5HFbjjEbknt3rCnLcrjg9acTow7s7ot6loEd9Cmoaeqjeu4xgYx/9\nf/CsGTQZ4xu3At34rf0TUjAWtJD8jZ2ex9K0pIy5yo696OeUND6yhyV4KS36nFR6ROZOgIq55jWK\nLCjfvAMZ/u1qX15HBmKA7pO7dh/9esdYt75PJPU1rGbe5yYitCn7sdxUyx5OaSeLzY2Ujgiraxce\ngp3lZHtSvqeV7TW51PgUPFpPztkmQ4z6f5zXrvh7a8ahlyV+YbTg8V5N4WnWGGOMrnaC2PXk13dr\n4i+xzW7WsQHl4yG5J9efxrlpyUa7kz6alFzw8bdjX8Y2BsvFem6yo/cSgQyt1AYdCfqp/wDHTXmG\no2xtdSuIT/BIRn8a9ju9b03WbO6026QwvgbGYblVuqnIHYj8q8w8VIqa5cYGCcEj8BXs1ZKdLToc\nkotS1Ok8LQx32iSQsPmU5qHTUOna9Cx4Aal+Ht5bLcSW1wSN4G054rudR8OxTSLLEFHrmsqcbxRz\nt7xOA+NF2w0jw6xQyWzSSeZxxnC4z7/e/WvOrXSYNQjV7CYK/wDFFxux7V7F8R9PE/w31KORGle1\nKXEeDnBDAMR/wFmrwLTX0K4mVbp7qKQnALnKfjjkfka9ajNKKTt/WplXTlCMl00PTNojtYYwxIVA\nMlsnp3PrVdjjgcVXsbeOyslt4gAg+ZSJN4bPfOBT3b8648THlqNCo6wQhbg/zpmc+tN3ZGeetJmu\nVmx9BN9OaQ1hf8JnoRXH2/b34hkP/stMTxfoLKGbUjz/ANMpP/ia6LoXKyr4vvTbWx4bMSeYOMgk\n5UCuFiHkWrCPJll6NGcg/wAI4PP941u+J75NQuYWt3LRsVkVkYqxCjIGD2yR2rmtQvYkYxRhG2gn\n94u04Hyjke5JrycTJSqP+vxPVw0JKkrX1/rb7yhNJG7TOXj6sRuUq2FHH8xWLcbx90MUUMxw28AH\ngfTtWt87Q7F3gELHhXVuvJ449qxbxRGS7jGFDHKEcBc9qwV7Jf8AB8zaTiry0/FeRzUf769ghxj9\n6OPQA816E+JJcxhG3xvwsWTwSfSvOtGuB9uaVh838OTivQrV/OgtySNpLKWeTPUDsB71dXT/AIcV\nL3l9/S/QtD77D95gujEM6p1B7ZPrVWD5FZGEXAZOSxPGDnsKkLhVzmIkxLjahbkEep9ql8uRbhwR\nMFMmMgCMYYH2rDTbTr3Ztd769H0XkV3VwYm+Zh5icrGByQO/PpVSRg8Sl2ViIwR5kmejeg/wqZ3j\nEYLGMldrfMxcnBYe9KVMaqF3jCyJlUCDjJ68etUm9/TyJklqtOvd+ZBbloZCqR7wJOGFvu/i9Tis\n2cgPvwBuQgZXGCTz0z61p2ly8EzTq+xgASzPu3ZIyOFPrVYxo7SgBDtbqhPQEd/p7Uo2vr59Sql2\nnZdF0Ki3IWZsOowzHKuy9AfX61iXN4rP5aM249csDgVq3UDoshyCwyCA3fI9uaxbyPafMx1JB6dq\n2ppM5qt10/B9iOUk2M3B5kXt7NXrGkwC18P2MWApWFcj3xzXkQ5s3xzmVO3s1ezblW3UHgBQBU1u\n39dDoXwRfkvzkMEozio7+5NpZSzlSyohbimsiK2d5qeOUEFSQR0NYRfKwl7yseNXTtcTyTS8u7Fj\n9TUIQV33iHwiJi13pyYY8tCP6VxEkD28pSVGRhwQRg16kKkZq6PJnBwdmWCuYrf/AK5n/wBCapox\njocVAz4jg5/5Z/8AszVLEwPenDb+u7NMV/E+S/8ASYjbtf3R5zSeGZANTnt3OEmtZ1z6fu2P9Kdc\nglMZqpo0irqE4bqLS5/9ESVGIV6cl/XQ46suWnJ+X+R1mnRxQmNo9uQAMg5GK0bzWZIQcZIUdjXK\naFeSPa+bK5OXK5PsK1JD5smP4TXDUjaVme1Cemgx7prmVrhr4xz442nJArVtLicaey3N+GjfHUY3\nD3yKrWhl01S1nM0LEg8Kp5zkdQe4FbkeqatqOlNp93eyS2jAKUdIgCo7fKgP61ceVsr37aGIdRlk\n8OXlrcEsqNsyT1wRXG3M/n6FqLjob22/9AmrZ8X3aWaLYW/G5i7kdvQfqf0rnIznwzff9flt/wCg\nT1tGFop92vzPKx1TmcfWP5mYKeD2P1pnSg8AGuwQ9elPHSo1PFSA4FAh+OKTaD1ozS0AIABS0nWi\ngBRQy5FSm3nWMSNE4Q9GKnFb/hfwPrvi24C6daEW4yHupspChx0LY5PTgZPPTFC1Bprc52JC8ioM\nAkgZJ4r6L8I/CtdMt4H1i8W6I6xQKQvXux5I/AflW74S+GGgeGrKIta29/fjDPdzxhjuHOUByEx7\nc+pNdusYC7T09KfK+g7GbqemwXWmtaGNREU2hVGAB2xjpXj2q272F5JBJ95D19R617gUK/L1Xt7V\nyPi7ws2q2xmtlH2lB8v+0PSsa1ByWm5rSqKD12PK5efmByDxT41j2DJwKpT/AGi0meKWJ1ZDtZWG\nCp9KbE8kr7Yw3ze9cTg9mdsZ8up1GnIq28qWwluJ2B2xxKWZuM8Ac+teZeItQa5vMc5AxXrfw+vI\nLLxbJpVwiieW3DI+eevIH6V2GqfDvwrq2pPfahpKPdSfedJHjDH1wrAZ9TXfQpLl8zkxNRzkmlof\nMAcqtQyOzEAZJPYV7B43+EsGnaRcatock5EPzS2cnzELnqjDkgehzxk54543QPDzWsi3t6gMwGY4\nTztPqff2/rVShynOpXK+n28uj2am6YB5jkqePLGP51hzaLrGr3Mt3a6beTxO3yOkLEMO2OOa6PVr\ncarfR2bMR5jckHoK9I04rbW8cSAKiqAAOwrlr4j2Vkt2b0aDqXbPAL3TL3T5fKvbSe3k67Zoyh/I\n1QcYNfTN35F3bNBcwpNE3VJFDA/ga8Q8eaJZ6PqUbWPywz5Plk52EY6H05qqOIVTS2oqlF0zk80p\nzgH8KQDJqa3cb8YB5DDPqK6TIjYMoGQRnoSKSNN7Yzgdz6V23jO0020tba0gh2XqvuOzO0KRyGz0\nIOBjJPXOMDPGsAqhV/E1MJc0bjknF2Y0fM3HQUwnk1J0X3NbEfh2H+z7K8u9e0yy+2RNNFFOlwz7\nBI8eTsiYD5kbvUzqxp25nv6v8kxJXOs+E/hq21LUW1W+2tDbSBYYifvydj+GR+P0r2XX7uO3sjbW\n8jG9uFZIYkOMtjqPQDg/h9a5zwV4ag07wpbWr39rIz7pHdPMUHJ4IDIDnBHUUW2kzXOtXN22qWly\nsBMMSfvd0YB5GdnX6ZHJrJV6U5bvTyl/8iTK63JYtFudJMf2SVo1nULMGO7JAJBAOff6VzesaLK2\nt/PNPLJdKilmzw28KOOvAx+degwXVlcoxbULcyx/IwIcBT68qDyeCelZWpJZNqemSvqVqn2dpWdQ\nshLDC46J2JB5pvGQ5no7/wCGX/yIlTdtzm7LT2uFW0aBVS3eVRv7nzDk49cbR+FRatpwi8darC77\nFuZnnjI6gljnj65P4V0FlFHcahOLG+tJZZLpmXes6gb2Pyn93g9R3rK8a293Hr4vvNjijW8ePKj5\ntpJ/oD371lTnGpi+VfyvdNdV3SG9IGbcaPPaIZgCGxl8dCfUe38v5PtEzCJJJMyN80aqwyBnG4j3\nwQPoT2GdsaU88UQknlkZ5BEQ7ZHzHHI69altPD1je6pcR28Hkvay+VIm/cCUGPlPXbgD/JxXUqK5\nm5dB/WJKHKjH1mwtZLS2mu7oSzSXMaHzJizFTnJOT612dhptpHoCwxQph2LuUHX5SeSPrXMa5ocA\nu9LTyxkySEjLfwhT/jXS22j293YxbY3UqpB2k9sDvWjivZ7mV/e2Kmi7LG9vtODLGGAuYie5OVZe\neuQgP1pmmXiWupaxbN8znyp4zI+Nw27e3oQKy7PTY4/E92MN/wAsiCWP93n+dQ+JLJ9O8UtdoZjE\n9rJ9n+fIyoLlPw4+gK01Tulr0Dm1eh3Or28D+Hbe6ileC5g+aGQddxHQjuD/AC9RkGbwfPNd2Av7\n8q11ISXWPO0KpKhR6YGT75rG0Fl1h7C5uHYW6QBLdM5EhUYLE47H8ffjmzpWrQaV4h1DTvNiWISC\nZUC84cZIA5OBlR+NVSb1gEujPDvij4ZPhvxpdxxQmOzuv9It+OMN1A+hyMfSuMicDP1r3n42Wh1X\nw3a6nbwyyCwk8uaQ5wqtxkDpgnbz15FeA5wKU+jZpHbQuEDbkdTW14OdYdfMrZwljfsQPT7JKa5+\nB/vA9O1b3hbnV7kf9Q2//wDSSWubFfwJen+RUdx+v26+RDcJtzu2EjuCOP8APvXO43Rn2retbg3v\nh2e3ZhvgX06gcj+WPwrEi++V45OK2RKOs15IbTRFiUSpISkbK6kA9yRn3H6iuTU7Hz610vimdXsr\nWIAncS4YDAIHHHA965gDHWktgQ+TBUc8gdPxNRZyD6ZzSyZBB7U0MBGRTGGfyqWI4FVwewFTrcFI\niqBM55yoJ/DPSgDe0Szv7iGddPgee4mGzy0j3sF4+b2Ge9dJafDfV9inUJYLNc/Mu7zHA+i8H/vq\nn+F/igmh+H107+womnj/AOWsEgi8werjact7/TpiszWvidqeoO32O3js1PT5i7D8eB+lS3LZIaj3\nYzxRDY+Hri3tLVlZio83+8f9o+mfSq+mSSfaEKlHgfPyyMwUH1+UiuSllknlaWV2eRjlmY5JPua1\nbC6NuqqSQjAEEcYP/wCus6kNL9TanNJ2ex02pWcl1JBI7xBEH3Yhx+fJJ57k1z+qsXQQh/lXJx64\n4/rVtr1thWPzCT/E7dKyr1cozEnCgBfqayp35lc1rSjb3T1H4Ry6LY6et3JJGdSaZoj3ZFI4464P\nr/8AXr2SS+sLGyn1S4cJDFH5k0pHOB0H+A96+O0Hz5GR9K0/7Qvbvyre4vbmaFPupLKWCjvgE8dK\n3cLu9zkVjd8a6/P4w1+e/K+XGo2QRH+FMkgE+vOfqTXGNwxHpWxbyEsT6nNVtRtgD56DGT82P51u\n42WhclfUogA9adg49RSD3FPAFQZkbLgZpFPIqUoex49DUWNrUDNXQL/+ztZhmILIxKMA23IPHXtz\ng/hV7xha+TqEUwlSUSR8On3SASOPbg49h0HSpfBug2XiCe9gumlWSKJZYfLlCGQ+YqmIZU5dw21e\nR82OvStLWNOiuNNhe986CR44/LYqNsbMUZd+Fyw8tieBnJHYYoJ63MHwppzalrkSKVG0EgscDPbJ\nPT1/CtHx3e+drZtF3BLUeUFZwxXHGMjjgDHH5nqbukaaujWl1JLJDLkLIsg3BHQruX7wB5ByOM+1\nbi+C9EsdfY+JLuRf30LvDPKtqFUywh1wSxddkkmGRh/qG+oXUFueVk4FMJzVq/jjiv7iOJdsayMq\nr5yy4Gem9flb/eHB6iqoHNMoWilxSHigDoPCugNrOpI8wK2UTjzXPQnsv1P8q9klvILFFgA7YUL/\nAIVwPhJml8OxWgkGJCzrnjD5P+ArdvkbUNGiNvPHBdxyAgydG7EH065/CvKxEnOpZ7I9XC04xhfq\nzD8faKWtU1eLPZZF9j0P5n9a8524JPavVvDuqf2pFqHhjUzFLKu5VcPkPzjAJ75rzXUbKWxv57SZ\nSrwuUIPHTvXVhm0nTl0/I58VFP316fMpEDtWjpGoSWFwCDmNj8y1n4APPSpFCjkGumSTVmckG07o\n9NtUhvoVdTnIzT5bBBkAHisTwrO0lvjcfkOBXSZkeQLtry5pxk0enC043PNdVsGS7ndB8oc59qym\nGDivRdQsreKzu5JhyRwD3OR/ga5zRNMi1G+khlXAkQ7QByPp9K7adZct30OOrRfN6nOUq4qa7tnt\nLqSB8ZRiMjofcVBXQnfU52rOzH4ApvWlUg9aedo6CgkYeBWn4ftvtWtQAjKRnzG4445/ngVlE5Nd\nT4PiCm7uTnhQg/Hk/wAhSm7RZjiZ8lKTOhups7XJ+6drZ/Kqh5LDPTBp1zwx3Y2SDG4dM9jVeOTd\nH83Dj5WFcyR4KjpdGlESlkefvcVNCmyEdqrI4KIuRxU7uFUZ4qGYNPYjmYlCB3rOnQ8nvVxrgHOB\n1qJ8yA8VS0NIXiZDpjoOaka+umjEPmHYOOOv51LIo3YqMxjtVnfCtKK0e5AsfPNTxoM+lPWOpVTH\nai5lKdxQgOKcyYFPRcdaJcAUGN9TU0GZJJ0jYAGMEcdxXQwTg681v95fJDA8cHP+fyrjtEJfUmOc\nAoRn8qtT3ptNSmlSRhIqbAxOAB1rlqQ99pH1uArc2GTl00+49L1CNcC5DkLIkbnHXg7T+ZFZ/im0\nWS/eSUsjSIsi7BvyCOxJGf8AGuWtNXubzTLeOWbMUkzoz552rsYY/Emt/wASQzan4WtNUsZDFJZv\n5LAcgx8AfgD/AOhV00ITqRl7zX/A+R5FfFw9vGnzvVyWlrLt0M/T54LS4SSOebcpyMxAf+zV7BoW\nuT6rpwZIIG2jDGScqfrgKf5187/atRtW3TWpcd2jP9DXe+BPH2jaY80OqvPCHA2kxkgeoP6VrSg0\n7cz/AA/yNZUZXupP8P8AI9J8TNL/AMItrDXEFusDWUweRZy20bCMgFACfbIz618sLHowl4v77r/z\n5J/8dr6qXW/DXjDT7nSLbUoJ/tUDI0a5DYI6gHHI6/hXyNdRG2vpImBDI5Ug+xrt9k3Sb53o12/y\nLlQfJ8b/AA/yPRtJWGINAkzzL5ccgDjaQHQMDjJxwcHmrkgXPCisPT59uqImM7rS3wfT9ylbLtzz\nSc3OnCT3a/zOXCtuGohwetM2oOrMP8/WqlzeMj+TCBJO3Rc8KPVvQVX/ALNhf5rgvLKeWcsRk/QV\nkzq2OnaO82EHT5TkY4ZP/iqQi8C4Gmy8Hj5kP/s1dUUWmlFx0GKLDuzAfVL+eV5Z9MddqYUnyyFA\n6Ackjk5rAu9TOwxNazqOOd4PueD7n1rupIldGXHUYridUgCkoRgjjiuGtRUdUz0sNiFLScbtfJmZ\nc6qrKdtsd2WJ3Er1+hrndT1FnjMaoUL8YDE1rSWbHkyvt9M1i6nbBNrD+E85NRBe9qb1pw5LQT+8\nrW1uVZWXjPPcV32jSt9hjIOfLkU8Rhj37/lXMaaEwuO/TBPHOK6a2hW3t5lIwpXOXBU+vQeoA/Ol\nUbldBTShZv8AyNUoQIwwkU4dMPKFHGfp60kzxLK0n7rcFjb7rPnoPcetVIL9CVYoMLIGykZJwevU\neoqeVzKiKwkIEZXDMFwQSenJ7Vk7p38/TcpcvLbTZ93syIbys6AOANwwAEHBB/rR5JmZAqpzKC29\nixwwB7ACp1iQSlV8v5nO3G5jhx+A9KeEY25jyVYKCeCCSpxjavse9Zu1tP8APZmuqet9/JbooLbz\nRYUBx8jHAjCngeuD6U2bf9rlBmcEhj883XIz7Usluv21I7liAwwNqEHBJ7Ee4pLu3jS8mFt5rQ87\nG8vBKlTjrg1qlq/+B2Mm1ZXtsu72ZRustbttZA+FAVQCSTjn/wAd9awrsS8LKuFx6Dua3JElABDy\nAbk+9LnsewzWXKJ/kCorNwchc5JrWOn4djKabv8APv3MFj5NtLuHHnR4I+j16PLrUNzBEY5AyMNw\nINef3bmWzlSQbGEiYHTGQ1ZIupbdSqO6ntg8CtFT5/69AqVfZqK8l+cj1dNVh6Nn86sxajAx++Pa\nvK4NbmUYm+Yeo61q2uoxzrlJSD6Gs5YexKrpnpkd/E2AHFVtQ0iw1dcyqu/sw61xkd3Ihysgq3Hr\nF0hABqFTlF3TKc4yVmJd+EptzLbuGEPydOv8X/s1ZcujXtqctGSPauos9akRmJGd53H8gP6VJd+K\n9NtYj9rILj/lmgy3/wBb8a0p1ai0tcMVRhz3vbRf+ko4S9d4IWyh3Adx0qDwzEs+tBWO4NbXAcex\nhcf1qLXdfk1abEcK29uPuovU/U96i0C6e11aOSORo32sFZTgjIrpnFyg1s2eVWp80JRi9zY0i5jW\nB7aVQu9iVPv6fpVwSywtgAkCqV3rmrRXpiOq3qpJyrG4fj261o2+v6kYNkl/cGQcZ85uf1pV8NWm\nvawSa6q7/wAjWjXrW5Wop+r/AMi1DrlsABMqqR1yK2otesDZOY2BKjccHIH1rmW1TVN299UulXr/\nAMfDf41Dc+ItSaNVgv7sRqctIJmyT6ZzXPQwlSrNKCX3v/I3niMRGDuo/e/8iiJI9U1C9+0glZIX\ndST90gZXv6Vm26Z8M3+D/wAvlv8A+gT1dbxNqcakJq19IxByTcPgcduayrrVtRvoxFd391cRhtwW\naZnAPrgnrya9DFRk5RirWVtm+nyPNca02ua26fXo/QrMhA6UxhwKlVsUrIHHoak6SAE1IpqLoacD\nQMnBpc1EG4pd1Ah+fSrulqWvkIWNiDx5h+XPTJrPBqWCXy5MnkEYI9qLJ6MabTutz3W28E6XPcR2\nS6nHdyuMytBOWwBjdweMcgcDv0Feo6ZZpY20dralI7eMBUjjQbQK4P4f6W2m+G7SSWMedMis45BC\n4+UHPfHX3JrvbWTkUadERTjNL35Nvzbf5mugYAEp07jH9KcyBx8rFW9R/hTIplCjOfyzVhWSTlSC\na1jsa2uRAuylDhZMcHsfemWlwt0jDaFlQ7XTOcH/AAqdkJHHBHINVJo0iuluNow/DZq0J6bmL4o8\nJQa0huYI1W9QdcYEg9D7+h/yOJtNAWGX95EUkU4KkYIPvXo95pSmb7TANr4ww7H3rPurkm3dLlCX\nRSV4ycjnArGtRU9UVTq8mjPFL66ltPiZYXQbZ5dz5OR0xnZX0auJoELDOVBrwG6sLm/1a+uhAjW8\ncyutxsDBN2TyOhGfX1r17wZqkuo6P5dw26e3wrMeC45w3p2x9QT3pUu4N2vFm2iJcQywuu6IgoQ3\ncHgivMvGvhm20CBdQtJZPJMgRo5PmCk5Ix7cEfl1zXqMa7Z3I6NzUd9YW2p2MtpdxCWCVdrqe9bW\nT0ZDjdXW58z20gm8SxsB1UkDriu/syHxxzXFXGlLovjrVLJBIsdu5SMS/e2kgg8eox+ddVaSuIg0\najj1rw8dFqrbsehhGvZmlcrtTNeM/ES583XIoQ2RHFkj0JP/ANYV6hfeItPtbRzdXcMUi8GMtl/+\n+Rz+leLa7O2qazc3a4CO3yA/3RwP5VrhINPmMsTLoZIOKcuQQwOCDkGhonXqKks7eS8u4bWLZ5k0\nixrvYKuScDJPAHueK9A5PQt3l9PcmMyvuIXOaqEirupIz3uC1viOOOLNugVTtQLnjqTjJPc5POc1\nW8tVHqfepSSVkOUpTfNJ3ZXLZru9O0gaofCzSpugg0x5HBHBP2y4wPz/AEBrmNF0SbWdRW3iOEHM\njn+EV61eQw6JoekWlqvyJasASef9dKf5k1w4ytyzhGO+v/pLNqNO+r2Ox0Oa1NiluHi81eVQkFiG\nJJ/HJ/KqPhQG6S4vcfPczvKyKcEZODj9ap6DZHVNGDyIDKoI3AAEjceRVbQ7GeyluoLa4ltfs9zJ\nFHKjcZBP3hn3OcflXdRiknZ6nLUeuqNHxbbQy6MsltC5mmxBEu3lixwASO/UjPU1naVayNq+oT3G\nNkcMUMZbHynapYfXBXmtHxDd36aEVlnjdSyRPMMAAFgNwb19jzWab8R3Mrsg3b8HzlIBO1eeO4xj\n/IrV35L9TO6vbob/AIfjjl1eTqxju9uAM4KvjP6CovGtv5ljqQMIyJN8eTnJ3DJ/Ims3wzf3tprs\nTXcYFvf3gaN41wNzMAQR1HPT6d+tdRcNFJrF2RgeXK3yuThj3PHT6151W8cwV/5P/bzWNvZu3cwk\nuCbSzZ2IM95bAJjGPnUkevTNFsY7TU7y4i5ZdSlGd+PlrK1b7RNrdrCjGGAXUciqh5zxnke+cU8e\nHvLvbhJ2kxcXTvCVkBBBJ2n9P8813qKvLXczurI1vEc9ol/YX0lysMcKyPIrscMGUDjiptH1q1mm\njNndSSW7grvB+XOQcDuD7HH6iuT1fT2mhYtdSi4thmJpGztBPI9PT9KztOI1GynmsE+xXw/dSIAB\nG/ocfw4PPpwevNJx9xcxSfvOx2ErCPxbOuZp5JFj4VTlMAA598j36ik8YC3g0uWaYxxz53qpmAcN\ntwcDdzkEg4z19qx7OG60q3jt0upZJplHmTR/LJuP8Oc545Gfrx1y+40C3sLMIykXMsyzNIxJ3ndk\ngH+f+cEmkld7CWrNLw3fTaoiSW5FtZQgKgUfOFxtwMdOw4xj3rQm0qGy1iw1NF3Bn+zzbiDw33T+\neTn2FUvCdvb2sN1aW7qySS8lyfkJA4A+uK6TUIJpdBnliYvchFkDYGAUYMcD/gJ/GqjV5Zq3UXK5\nJ3NHXLKDU/DN9YzAOtzB8x27vLU8FgO5UfMB3Ir5EvbaWyvJraeNo5onKOjDBVgcEH3zX11pHiG1\nuLFZkdQpAJVBnb1GPqDnr6V80fESzSy8b6hHFDNFGzBx533nJA3P/wACbJ/GrlfW5UNDl1bDA10n\nhNg2rXHr/Z19/wCkk1c13re8Isf7XuPbTb//ANJJq48T/Bl6f5Gi3M+0uTa3ef4HGxqihOJ0x6rU\nUjFuoqSAlp4SO7AfjmtxG14muXm1FYZBgxqeqgc9+BxnI7ViNndmp9VmaXUHZm3EHGfXv/WqwfIH\n0oQD93GCMionK4OBTmbj8KYAZGCqOScAUANBI6U+Bd8mPxomt5bd9k0bxsOzDFPtsZJP6nFCGh/+\nqlB7Z5qGQbZWFTTYx3zTJuSj+qimxsgrbaGO20hY7hC10wWVMH/VxtyM/XII/wB4VQ0u3iub5FnJ\nFuoMkxBwdijLAE9yBge5FamuXBfxAZp1RBdWsDShBhRvhRsgD0Jzj2qHq7AiXTmjkVYy6k46Z5NV\n9eWKEW0SH5jlm698f4GnaNbLFc3DztsZcIMnHJ6/liqOrSifUJCrFlTCgn2/+vmojBRbHKo5adis\ngAGakhb5nPojfyqurEAipImO5h3ZSP0rVEk9vNgjOfwq+4MsDAqRkd6o2CMQTjr0bFaPkSFfllLf\n7LVtHY0jqiHRdDudamaOExptOGMhxiu3sfhLLcbfO1aOPP8AchL/APswrjtIuptN1ncrFQ4wQa9f\n0XWTNbrubDfWvNxNSpTehrSoxnuY4+C1sy4HiB1b3swf/Z6888X+EbvwrfxxTSpNDKCYpUBGcdiD\n0PI9R7mvfYtQDMMuOmRz1rnvGumxaxpQ85FcRSLKQSRwD83T/Z3fpWVHFSlJKRpPDRUW0eEQX93b\nW01vBdTRQT486NJCqyYORuA4OD0z0rfSa6l0eO9lv7qV5p2fzWJykykFvmzknDI2fV/aqEem205l\nJnWNEUlDkfP8jsOp67lC49W/N81obrV1isow0stwUREYBWLPgADoOor1HTdrnne0TdjpdBi+1xXM\n7uxOn2koEm4kBlglaLJyOA0agdRnauCDiuM1DUrrU51luXQ7F2Ikcaxoi5JwqKAqjJJwAOST1JrQ\nsNMhvJvJfzigKszxruZcjJ+UDLAcDA6dfalCafBEjvFGsiPtkjL5JBycgMOCOB0b9OWqT3bF7VbI\nwyeOaRVJyRmtma9smsniVbYOsOxCkHLNleST7A8gDk/jXefCbSLO4sLq8ureKVjNsXzEDYAA9frW\nVVqmr7mtNObtY8rKNTSuK+nbrS9HaLH9k2BPcm2Q/wBK4nxJoOitbyMmn2sTY4McYT+Vcqxkb2sd\nP1Wdr3OM8Lajb2nh65WWVVlWXzIhnnIA4/EZrI1vXnvrhxEZEQnJG7Az34rKvIUjuGSLoDxVYdeu\nK1jRjzc/cl1pKHIieOQqQyuQwOQwODUlxcz3MzTXEzzSN953Ysx+pNVtx/vilDt6g1rYwuwfkUwH\np6UrdemKb3pgdJoE8tpdIycRyAZz9f8A9dehwqySfNXM+DdLN80N2WASIbNoH8Q/+tiu9Fl83zEc\ncDscf5/z1NeViZLnPUwrtG7MPWdFfUrJo4ziQ/dPYcVyelWFxa6i1re2Mj4foqbl9Op4r1WFEBCk\nge1F1DDaRTXs5VIo1Lu3oBWMazinEupFSaaPJfHttbW9/bwwqqyrFuk29s9B+X8xXHVtaxqEmrar\nc3snBlfIH91egH4DFZUseDkdK9ajFxgovc8yrJSm2iKlBpKK1Mx233rt/DUBi0RWGN0kjOAfy/oa\n4cHFej6VEh0e0+zMHIiUsncHGT+prKs/dPPzGVqSXdiSR4Tv5Z/hI6f4VlXCeVKrjp0z7VqXMwG4\nJlP7yHmsq5cMjLmsYnm0r3LgvYY4zt+dwKarSS8ux57VlWmZPlz1bn8K3I1CL702rDqwVPRCrGTh\nRRcSiFNi8tSSXARSF5aqZYBtzctUpGUYtu7Exj5mOWNCjIzxQoMhLnoO1OTk5qjVihakCkDNHHpT\nhzQZtiDjPFRSNuGKe2R7UzAJ5NA13HWMy2s5eRSyFdpAOD1/+tVK+ujdXDKn3ScmnajMIrYlTySF\nH1NUbVXK4XJJ6mtIJLU7oTm6Vm9EzoIJGj0a0jiHzNcTD/x2KvTPDU8FzpP9k7Dh4ShkbpuPfHsf\n5V5xbRFNGtsZz9olJJ/3Y663wzMYJ0bOBn3q8K7N+r/M8HFyt78d02/xIlh2MUkX5lOCD7VYS2ty\nwJt42PuM5q9q8AXV7kA53MJP++gG/rVa3BSYZHGetS42k0fYUqntKcZ91c6/wXb200j3UVvFHPbK\nxNuibXzjggnqCMj8a+atRuHudSuZ5P8AWSSszfUmvrDw2qjTpLofNIqNznA6ZH8q+U5rKWS4kb1Y\n16UIXou3l+ootKDfn+hvxShddtvmwfstt1/64JWnJfzXGVtQNnQzEZUf7vqf0rB1e1WC4jmLHf8A\nZbdAP+2KA1QOoXgAAupQB2DkVxRbVKCfb/Mxwq/dpr+tzsraJYYzjqTlmPLMfUmpNx9K4gaheY4u\n5h/20NH9oXv/AD+T/wDfw0rnRynv+R3NNJXmpCoxn+lMIGfWrJGkjHSuX8QwbJN6jh+RxXUbao6z\nBHLpkzNhTGu4H8QP61nUjzRsXTnySucExDdevpWXqFsssTAuq59Qf8K1pFw5FVLiMOhwK8+75tz2\nn7NU4txve/V97dDH01fLDA3MbKODtzn9VrrbS6kELRlZMhhhw38+nYfpXL2MaR35hbIaRgy/Lu/z\n2rq7axiMS7hGA5zhwVI7D0/vUT+IIVIcvwr75ELwusrK0RxnbkvuODyOhFLFcvb7GfK/Nk7o8gjv\n1P0/OrW/ZE8hlQLgBRHMq9CT9egxR+4llcq0W3eHIVd52t19fUd6zSeif5fcaSqwu2o/+TP0exND\nqHn7PLEhfZtI81VBIOemR2AqwbtIy8pt5FUnftyqgqevOcnqKy104SYRSd53KMvj5hyOBk+oqtJa\nRx5866EZXAKk4PuMHJ/Sla9tf6+Q+eCulT8r3l8t2au0XUQeE7J4mK5Ve/8AdJzjnB/IUw3cZiWU\nkfJyGLKuefTHuP1rGn1C1hXyLaJ2kchRO3JbnKnGevT9ajFtGqw5cjcfmJ42fln2pwgtNfyCu+Wc\nopaX7t9NTUl1GzBx+7K4xgYODk9CB+IrHvp3uo/lkaNVHG047A9z0pt5e29kvlLHvuccBQTyDwSS\neBj27Cs8rPesGmKjHCqo2gd67KVK+q2POrVlHSW5RuoM6dME3u3mKRjnnDelYMgmUjzEdf8AeGK7\naG3aJfkcrn0PWlcSqufMf866FTlG9jKVelNR5rppW0S7vz8ziAVPAPPvViCQRxnnnPFbN4Z8sVub\nmNiOMStj8s1li71BODdXBPoZDSamuwk6D6y+6P8AmSRXMy87zVldRmXvVMX99nBuZ/8AvtqlW8vS\nMm5nA95DUtN9EVej0lL7l/mXbvVp0tYlRtpkjJJH+8w/pWE7lj1zT7ieWd90sjOegLHPFQZzxVQj\nyqxFeoqk+Zbafgkv0ENPtZfJuY5M/dbn6VH603vVmR0mrW/2ix81R80fzfh3rKs71xKqyL5id/XF\na2mXH2iwCnB2/KwP+fSqEdiYTOcjG7aCew9f1rownO6iUWQ7Lc1LmAt5OMskoB56jIGRUz2/lxvb\nhTsBIb6j1pxLGxgYDLLjHuO1PSVppLoEg5YtgejV9RSpQitFuc0pNnJTRGHcG4O7bj6VXrX1i2kU\nK4UhQMt+PesevlsRSdKo4s6oSurjwanSokFSgVgMhmGJPrUealn++PpUVAxwJoBpKUcUAOFbng/T\n31PxXp9qrFQZQzlSQdq8nkdMgEfjWF3r1b4R6ITBe6247/Z4SPbDMf1X8jSew13PXYt3lHBIIbpW\njay7SM9azUkXCsOBID17EGrUW9MMoJpoR0drLuX5SPcVdARwDgZrFtp4pAMs8b/StWAyYwWWRf72\nea0iNFgemahuIvOgdO/apscUhOAdxqymtLENq/m2qMeoGDWdqViLh49o2hmwzDtVuwYYlUdAxxVh\n1y2OzfoaaM5K6ueZaNcWuj+KtV0C5hRbK6k8lcDiLP3O3AIKjnvg+uG+H7g6B4jZJrmMYmazkgQ/\ndXOA3/fWOfQHr2l+I2lrb7NWkt3kgdWjmMeQUO4lW4B6hiuT7DIBNcJBdSXEEkV6uZyhkMuRkSAc\n8nnLDaDyOfXFD0+ZCe3ke9WN0801xHLJEzRsBhQQVBH/AOv8jV5W3D2rzXwnq02q6tLdFyInUPKM\n9Xx09OpavR4X3qCCPpXPQqc6d+534qkqc0k90np6Hl3xO0iG31iz1SGFxLdDy55P4Ts+7+OCfwUe\nlY9kw8nHavTvGWiNrfh6SCIqJ4mE0W4kDI69M9ifxxXkNtchc45NcWYQ1U0VhXa8TifH1p9n15Z1\n6Txhj9Rx/hXIu5PFei+OrKS60qG7CHdC3OOyn/Irzd/vVphpc1JeRhXVqjEY/LUavxn1p0h+Q1HG\nOK6DEmzRyxA7noBQB0rrPBnh6XUL9L6VCtvCcqSMbm9vpUVJqEeZlQi5OyOo8MaMNH0v58faJPnl\nPp6L+H880eLLwraaSE6G0Y/+R5R/Sti9Ro02R8L3rm/GD+Vp2joDgGzbr1/18teNdzrQb6t/kd0r\nRjZHd+Hmji0WweN1jkMMbsT05jBOfxNS+H7yybWdQR5beOc3JlaMupUhhkbSTz9K5Xw9cabHpkJe\nVnndIyAHAyPKUEdexyMYq9o86f25qEzaU7RyEbCxIHAI445r2aVotpvoedNN7I9Aj+wnzN8lmn7x\ngyllGQSPfpXnV/DPLpWlaj9qUxPN9lly3ozlcfgCD+HvXbW93Btl/wCJQX/e7hmUsBwOxWuE10QQ\neCbOCe1a3mW8O6N0wSD5hz6+natoJckiJJ3Wh3dncWyXmnQyLEk29Bsz0G4bSAOcZAA6dfaubuoL\nhvFWoSaXdKYzdyCaKY/KH3HOMcj8vzxWJ4OW2XXdPgikCxG7SZUJ+bdkDA9Rx+v41o+I7KW38Qah\nd2U32e5aeTO37rgsT8w/z6+9edHXHcqf/Lv/ANvLdlC/n+hHIHstfQtMJGWVZd33umO3blTWjJBJ\naazqUPmvvjuUuQFCgNuG7t/hXEw32oXmr5MSKyRP+852MFB5H/fVdZb217d+IdSMtw6kiFcxHAJ2\n+oOK9CMJXd+xlJpIu3MAu51lyzwY3sink+/0HP51UvdOCX8F5Z4WTIWeLs8fGc/h0+lU01KXQdV+\nyXF26pImUaVvunPr7+/pU2p6jCtpIkcnDAgEffDH0rKDafK9i5K+qFvZryZWtraYW7W/7xJo15Bw\nV2sfcMfyxXD67r+qwPHFLNKJo3VirtuVsHqAa37XVXs4WtbxCJV+bzVOUk7Zz2PPFcn4iQvslZX3\nM+W3fwjnA/x/+tVO20kNJrZ6HcaTqrWmr/6IrzG7iEis3CeYB8x9+5/EV6BZwzPbbdTvFC8uqIRs\nIzyMcDIPpzzXkfhy5mnsILGUmE20olSQrlsc8c9uv5V2lvNF8ryFpZBgB5TuP+A/CsateNNWe5tS\nw8qjutjS0Z7bRdQu7axspLq0B82CQD5Tnqm5uOPpnrzzXmnxgukvNTspXszBPsIDgZ3rn+I5PzA/\nz616nBdb1wDXnfxWthLpdtc4yYpsfgw5/UCop46VWaTRvPBRpQclueS4zx3rb8Jcaxcf9g2//wDS\nSasPNdD4R2yatcA8MNNv/wAf9ElrTFfwZen+RyrcwM5XFKmQQPyoaMqfWpbMQm9hW6aRbcyKJGjX\ncwXPJUEjJx0GRW5I2UZdjnOeaixtNa2t6fNYaxc28tstswfcIkfeqqeV2tk7lwRg5ORg5NUCgK80\nAQk/LU9nHuuYvZgaiC5OBzVzT8C69gKUtENbna6lLE2kMHVXAXgMM81xMESlmY4xnpWzqd0TbLED\n17VmW42D7uazw8bG9SzYMi7SFX8DVGQYjAIwVYitRyuMHP5VQlj864WJSBuIyT0Hufauma0M5IfC\n/wBl0mbBxJdny+D/AMs1IJyPQttwf9g0/V2mmNndSx7VmtIhHjusY8rP5xmqzlry5EcEbMBhIkUZ\nOO3A7nqfcmtG7sLmLQ42uLaeKW3lKEygrlGGVCg9gwck/wC2Kys9yLrYal7/AMS/zm+V1AQBVGGI\nAGfyA+pzWdAonnRCSNzAGuig+wXfhxLVFIkWPKtJjiTPbngEkDnjBJ7VgWsginJb5CAQD6GhdhXt\nqdD4h8H3+kC0823aJ5gAFKY7f0yOTitfRvAVrLGJL25m39cRYUD25Bz+lLBrFzqc1vJfTzXEqRj/\nAFrltpxyeSeuP/1V0FvebF3buMcCtYRSRzKdRr3nr8v0OP1rwbJo6PdW0puLVSSUYfOo9eOo9+Pp\nWUgUIGjUj1x1H4V3mraxHHbOGcMdv3fWuDZv3aeXhDgEemfQ1aOqi21qNum3Q+aB88Zzmus8Oal5\ngjO7t+tcpKwkt5em7aQR74qDRL9racJnjPFcmLp86OmnPlkj2mznDMpOfarkjnyirqcMOpHBrl9C\n1eKRApYb+nNdK9w80YWMbsjpjNeLZwlqejfmWh4Vqct3Yapd2iXdxsilZVzIeQDxVvwqi6r4s0qx\n1C6mFpPdRpL85yVLDge56Ct7xTpFwniZbpLOSRJgpOxMgMBjt9Aan1HS5ZrqZpdGEcgC/wCpiZAh\nHAYAf7p9jz3r2oVOaKaPHqw5ZtNHCX03m3s7LJK6FztMjZYjPGT61WrsI9JFzcJapbGSTO1UWMbi\nfyyTSazoCadYyPLbtFIo6MAPpxir5uhN7nIV7n8NkEHhO1BGC+5yfXLH+mK8NIr3Pwkxi0DTkHUw\nIcfhXNi3aCOjDL3zpr64RVwSRkY9hXBeIr4i3lw3OCMA11GpvKITu6Y9K898R3GY2ANedTV5npSd\no3OPEW93c9uM+9UJV2uRWvA8TWjID8xJOayJWPmtnrnFe2lZHiN3kxAnHSnBB3pmS3FOyOiigYrR\nnHBzTYx+8FP570KMNmgR3ngbxPZaKstnqSsLeR96TIudhwAdw64wB0/I5r0m2vNM1eLNhewXGVLF\nUb5gPUr94fiK8AVmHQ1IlxJG6ujFWByCDgg+1clXDRqO99Top13BWPcobgpqgtJBlvvBvUdvx4//\nAFVy/wATfEKny9DtW4AElyQep/hX+p/D0rlLXxnqMbxvcymaSIYVj1b03Hqep56+uawLm9lubh5p\nGLySMWZj1JNY0cI41OaXQ1niE4WjuIevNNYZpA3qaC1d5xlV12tim1NLgioaoBQK7pLcx2lsyO0c\nixKMjjPArhK9BR/9DiOc5Qd/asqvQ8/MG0o2Kk1xdMMSssoHd15/Mc1Rln5PmREZ6bW4H51cmb1z\n+VUJSV+U/d7e1Zo5KSv0H6fJGkr59eM1oyXibcLXNrI63O0dDV4bkjLGm4mlWiua7LbSux4BzT0j\ndj82QPeqkNzIvRCfwq/DdsxA2HPpikYzjKOyJ3XZAAO9JEhx0pbjICKfvHk1OkWE6kVNznbsiIrt\nHJ/Oow1PlbnHaq7sVU/pTQ4q5K/K8HNRAkDrmo0uMHB6GllIAyDTsaKLWhl6nJvlijz6tirFlNLC\nu1QmD6jpVO7w19H7L/WrcYx2rQ7JJezUTpYpZG0a3LMCfPl+6B/djrb0OaNbiMbm3E9cdK56Fz/Y\n9riPJ+0Td/8AZjra0iYiTbtUE9SanDvV+r/M8HER9yXqzr9VQ/2gjkDMkStnPtj+lUlBVs8cdj3r\nQvQzT2pAz+624P1P+NRKzRM3Eag9RuH8jXROPvs+iy6fNhKfodZoc6x6ReyBlUiB2PPHCmvnKe/i\nDtswDnseK94N4tn4W1xnKkixmII4GShA/MkV87DTnmJYgRZ6HJNd1KUlTfL3R0e7ye93/Q6XVLV7\nmSCU8qbaAj/v0lZbWYXqtdZZQTSkW80fyxW1uEkA4b9ymf1zRPpoycD9K4IRbhG/b/Myws17KK/r\nqcj9kTutM+yJ6V0M+nMvIWqv2NwfuGjlOnmPWoLu3uVDQ3EcgPTawNSFsemK8KW5vLNwyM6EfxIa\n3LHx1qMGEncTL/00HP51N2acsXsz1gsuOtZHiWRl8P3BUj5mWPr6/wD6qyNO8Z2F7tSZvIc+vK/n\nWhrMiSW2nKjq8c92gJBzkAj/ABNVGREoNWMzxFYJbSJPCuEfggdAa584au41KETrbxMy/NIRlumd\njYrk7yya1uWTIIBxla4qkfeZ6kJN0oJ+f/pRg6nEyqs0QxIhyKtaBfX14RHE0ruv8K849P5Crr25\nlRtqFsDtUOk6nJokEtvdWZkjaTMZUfMM9RkdTWd+aNluXFcsvJm41gsiZuZShJ+5v+YZ5HBA+vU9\naYLO0jcBop2DBRiYsFBJyMbe1bVuGuLVZZYHgQDcqSqGzkc4Azg9B9PpTlYhuURtx5ZWCEYHJ2k4\n4BwBj1rO6TsW07X/AM1/VkYssweKQFVSN9zsiYIPQDI9sntVCWGwiUhpIEJKL87FccZP64robnyY\n4cPEEJUMykbGx2UEdzn9favPfE9xGkSRoqq7OWwOTj3J5z/9b3p04cz5dv61Jq1eVc2/X9EaNxd2\n815BFAGnm37tiNkYOCOO4xzXSW+nZhDTyKJR91Yxt2HA4569OoJ5rhrbS7jU1Ds4WIxxjgAf8swf\nyz+FaF1p8GgQFpLsxsVDCEMQZAV6Y4OCe+CPem4XtFPU2qzUZyclp/wFuU76SA6jJFbnzEiynmDn\neck5H1JqzaIN5BP7zv6L7Vj6fHLOzHcQzHc7jtn09/5VsCeK3AhhBdl4Kr2Pua9inDlikfP1JNyu\naEag8YpzRgg5AOOtVYrh9uWCqT2B6U97kAYyKJIgr3FspzwCKxbyx4O049K1pbpWbr3qKRg/PFRu\nVscxJbzR85OPXNRjdkksT9a17tC4MSSR8jkE81jlTGCp655pNWLTuMY8008UtIwpFDQeaTvSUvYU\nDNDSbnyZ2jJwrj9RV+WQtA7rwCD1rItYi5dgcEDithkX7GG3AKFxj/GvTy+nvMyqMu2LtcxooUkj\nAB9ORUd3gXZaFiW4/A45qzpcwVUBwMICSPwP9KaYPOv5EiOOMg/gK+gjrSRg3aRT1ZXm08TMwztC\nsPTH/wCqubA5ro9VzHZuD1Y8j8a55RXz+afxV6G1HYkXing0wcU8V5hqQzff/Co6fL9+mUDHBa3P\nCQQa4zvDDL5VjezKk8SyJvS2lZSVYEHDAHkdqwea3fCZP9sXH/YM1D/0kmrDFfwZen+Q47jv+Er1\nE/8ALto3/gls/wD41Xufw8vJrnwVayFLNbhy8pWK0iiVvnK/dRQOgxnFfN45NfQWiac9n4RsLZS0\nU1tEpODypYZb/wAezUvDUdPdX9fMak7M6+S7lEbMERR12vbp8p+uOasWOoSzRja0an08tR/IVgWm\npzAeTcAEgc7hnP0q1YTqLwGP5Fc/dFNYah/Kv6+YXfc7C13uQXCE+oWm3HiHTbSTyhI08y8EQnIX\n6nOOo5AyR6VwuqeKjqM8mn2MrJZxExyyIcGYjqAey/z+nWrA4jACgAAYGK567oQdowV/68zopUXL\nWTPQ4PEHnDJttvt55P8AStKO4juIi6719mJ/T1rzm21IByuenvW9DqhgFq2fvRnP03sK5FWipxjy\nR17p9r9Ga1KGmh09qAN2445+lWf3f9//AMfqrZTRywh42BVquZr1PqjeqUPul/8AJHFzW0ZnanCl\nxpcsLIspZPuEBxn6HINeRXSeLLXV3todI8xVJCzR6VFsK4652eh5Ga9i1G/s7OE/a5kjDDhSck/Q\nDk15x4ps9F8SRRwvDKrIcrKrBXHqB14PvUzwyS95Q+6X/wAkQ73urieF7rVbbTr77Zotyk0c6GJU\n04QBwytnG1eQCOSfUdzitEa1ezSFJ5WTBIMQyoHsR/jXM2PhHS7HSbhLS6u13XUEjNKyvyqygDAC\n/wB4/pWrqMUsWr3jkbkadyCvOPmNebCVWFSdNWtdvS/93u33O2jKMkubfzNuK/lhG6Byjeg6H6jv\nXmbJ9i1i7tSjxojkx7zklM/Kc9+P1rrHvjEoAPNY+rAalGoICyp9xx1Ht9K1dRyjyyN3BJ8yJ4jB\nPbtHMiyRMNrqe4NcFffDe7e6c2V3bfZycx+aWDAehwpFa8F9NbzGKUbZAcYPer6anKTmPLDuo6j1\npwlOl8IpxhUSuef6j4E12xgMggS5UcH7O29h/wABxn9K5ry2i+V1KsOoIwa9g1eW5Pk3dnNsDHa6\nt09jVLy4NYmij1PR4pmQY83zNuB+BBNdMMRL7SMZYVP4X95xXhvwze+ILseVC/2ZGxLNj5R7Z9a9\notNLi0+yjhULFHGuAFrz+9kPgnV473SJXNrKvzROdy57qf5g9f66viTxjHb2ySpOh81Q8apySDyK\nitF1Wn06BTSppp79TQ1nULe2Rx5nIHrXCeNdTEljoWw5L2Ln/wAmZx/Suc1LXry/kYlyinsDzVoa\nxot1pmm22paVqEs1jA0Alt9QSJXUyySZKtC5BzIR17VP1d05Qna9m9vT1RFSqpaI3PAl5+4uIWOS\nJA2T6Ef/AFq9GtJs4OTivNvC+p+G4tQeOHStVjLr1fU42Bx7CAetelWN3pTqNtpdj63an/2nXJiq\nklUb5H+H/wAkdmFacEbtnK+MdRXK/E2WOTRLNS22QXGVbGTwpz/MV1Vtdafs4guB7GcH/wBkrmvF\n50eT7Ebqyv5AC+zy7tF9M9YzmtcNXafwv8P/AJIjFL3TivB9xbf8JVoyzsTIb6AKSDjPmLjFdHqc\nsl14q1azkuWETX0wZghzjeflxjn0rHs77QLDXbOdNG1Iy2kqXEQe/QhipBGR5IPUetafim5ul1fW\norGGWNzdzKXAyDlzn860i5SxnNZr3La2/nv3Z57+E0BCIZZbtVi8uOFo4BHnLluOnZfu/r+HVefO\n2tmIpbwxmJLiF0UZlTjqeAeRxx6159Y+Irs2BSIWRDAYDgq3HYdKLjWtVm1KxkEQia3g2FkJwy4O\nOv1r0IJqdmZSS5TrfHdvo0cVtd3RMtxuCRxLyZQeoGOnqD9etYcFlplsqvZQatKxBwWhU4HtkjFR\n6ib2bQ2kFkWuI9rfapJCSMEYK+mAfWuh09Jfskdzc37uTh44oh98Y7D1waKk1Gi3vYzqT5E5pHFy\nS3z6vcRrAqBQpUXCgY464Bwe9ZNxGk+pxC5nJwxdgOFz6AfU102t6m8OtgXcaLEyYhjeNHc+zEjj\nsce/es2S7meWOV4LX7MjqCDbRkjJ4Odvris4Oo2ny/j/AMATnVSfur7/APgDL+9gsZLR2UR43Kzb\nccYUg+45P610mmW8s+HYYB+6Pb1qEQpfPG00Vu0andseCM5xnHUe5PH+NdJZReZglQPcDFcGMqSc\n7Ja+v/APRwcq6p3cFb/F/wDaj4rcxR5J7Vx/xEKt4YnBx95MfnXdPEACTuwPeuB8f6n9i0ZxGsJZ\npFVfMhSQE5z0YEdAazoKamrL8f8AgG1atXcH7i/8C/8AtTx8x1u+Evl1mc9xpt//AOkk1Uv7fvf+\neWn/APgut/8A4it/TJPO1GyuDHCkk2g6i0nkxLGGIiulzhQBnCgdO1d2JnL2bUla6fX08jy41Jqc\nYyja/nfpfsjmYwJ2wPvYJx9BV+PRJmniVpBtYByyAkqPocZP41lW8xguY5DuwD8wU4JHcZ9xxXp9\npbaUtlFeNDNKY12uF1CGMMMjBVSpcgjHbrnniu5K5crrY0fCfguy8a6j/aOoz+TDuURWkL7wYIwU\n8rJO4MFjUDP8JzVi78A6DbXM+LSUxkkoHuMlBnjgKASOM5Jrc+Gt07RynTtMREgvzIdg34jfqAzZ\nOQCo47Bia63U/CB+2TTG9jgsmy29sllHXGScAfl0FDTWgWurny/rliuj6vdWStvWKQhH6bl/hP4j\nBqjbziKYEd+K7/4r+HTpuoxXULeZAQI0lHAkUgMCOucEuM5PQV5vipaKT6ms0hnkyT0pA7s+3jA9\nqgt3+XOeaejKzHJxzU09HY1v1Lwidxztx7VTjtJJdQeFG2OU4Y9ADwf0Jq0LqGPjcc+woW7h84OD\ng4wcjqK3lZome2h3vh2007SYU+zDc2P3rkfMx/z2rfu/st9bsjqpUjDKVyCK4HT9VRCu09eoroYt\nViEYLOAO2T19qcdDjcdTn59GsbB5YzxC8m5STwM4GM/1/wDr1yUyGfVWG3LeaQ249cHkn+tdrrF5\naXIdIiziQfOMYHI9+9c5bWsFo2cFmPG4miVP3ro3hGVtS/av5Jyep5J7mrE9/MyFEJRcdutUGuvL\n4HSq73rE9auyRpGlFasdOhkOSx3epPWofuqVNMkvCeMAVB5xzmk2i7omcY3sP4kOfqKyYX8uVX9D\nmrclxtUj17Vq3WjeH9OaCG+1jU1uZLaC4dYNMjdF82JZAAxnUnAcDOB0rlr1owaTu732VyXrsb+k\nGOQJPAeoycV3NhckxgZP0rzrQb7w1p9wI/7X1Z0Y4AfS41A/H7Qa7+wk0YEFb++bPQmzQZ/8i142\nIlZ/C/8AwFnoUal1ct6hYw6jaPBOgZHGCD29K4eCwvdG1KRY4ZLhY0L5CA4Xpnv6jNejxHTSuPtV\n3j/r2Qf+1Kztb0DSdWtgjXd2kqnKSLaKdv8A5EH86nD4tU3Zp29GVXpKpHTc4v8As+9tZhcy+ZA7\nfMBJDKrEdc/cx2qr4jvZbjSbxbt3MsaiNFfPyfvFJAzyO/HuferkN3YWTGEa/wCIYSrYIFiqYIP/\nAF8djVbV7bQZtJnuZ9a1Zg0yK7HTo2Zmbcc8z8/dOTmvU+sR/ll/4Czy+SzPPQCzAAZJOAK940wN\na2NvsHIjVRn2Fct4P8K6AWGqfbdRnUD90s2npHg/3uJjmu7Eembeby6x6fZV4/8AIlefjMZGT5Yp\n6eTO7C0mvfZmalesInLtkHrmvLtf1DzJXReQOpr0jVRoxRt+oXyjB6WSH/2qK4DU4fC+GV9X1YMz\n5+XS4z/7cCpwtSPNdxf3M2xM/dsjlUlKLwajdt7lu5ra+y+Ff+gzrP8A4KYv/kmrel6L4a1bVrPT\nYNb1ZZrudII2k0qMKGdgoJxcE4yfSvTlioxi5NSsv7rPLUTmepwKlTAHHT1qGrmnQLd6hbwSEiNn\nAcjsvet27K4hI4pJs+VDJJjrsUmon4JBBVh1Br6T8LrpiackNhbxpEox8o/nXJ/FLwtBNpMmqW8C\nrcW/zOyrgsvfPriuOGMUp8rVjpeFko3ueNK2RS7veoA2Kcpyea7DmJVHc9aGQE5PFHQcUxvMJ4NA\nDi4U4UEmmFz3NSpZXc0YeOCZ0PQrGSD+NH9m33/Pncf9+j/hU88F1NlhqzV1B29H/kVi2aQAnpVo\nabfZ5s7j/v03+FeieEfDOnWsaXWozwfaCMqrOvyfn3p88O6+8UsPXX/LuX/gMv8AI4ax0bUZZYZW\n06drfIZmdGVCvfn0rqRd2yxqmyNlAxlNwA+mTz+OK7fVTZjTbpYLqB5fLOzDq2fbGea4GSCeTBYR\nkdD+4Ax/47k/Ws6zhpZ/iefisHiZtXpy/wDAZf8AyIkqMw3RuXU9wAcfhjNZs5YHBfKnv0xVm4t5\nIDyEDdsLs/qKpzySr95mHueQfxNQjjpwaKsBC367yCp4yK2jZNIVAPyd6x7GNJ7x4jgHGQQK24jP\nb4QglRTkPEtqStuXobVEQYAwBSvPFb8iPc3rimM/lxg8727GmRK0jbm4HpWfqefbrILeN7qfznU4\nFWZ923aqn8ad5hHC/KoqvPK3TmjcWsmQOjjneKiZGY7mI/A0jmVjhYj9RUZhuG67se1aJG8V3Yks\nI7EZqq25TyxIqSW3kXkkj61TlYoPmf8AOqR001frcjfDXm7/AGcVoRqSO2O5rKhbzbjgkgDtWnGs\ns3Cxnyx2DDn680M0qq1ka1lqCpbrbG1gmjV2cNIXBBIAONrD+6K3bG6twwU2UEeePvSf/FVzVvbt\nkfuv/H1H9a6DTbaV5AqLEc8fNPGD+pqI0ot7fi/8zx8VThr/AJ/8E9HWxuNRtY2gCO0ak+WxwwX2\nx+P6VRis/MkKNEgbvubH8zVdtRuvDuqaVfAhrdV8uQrIHU5PIJGe2K7bVrS3e4iuYUzFcIHRh05r\nqdCDfX73/melltGLwsb/AJvu/M5TWbcWfhu9SZQplCQBSxKNls4OMHop6EVxatbWcjA6OPLIwrLM\n4K/7WCfnHqBjGDz6d142u4dO07ToLgiNJ52bOM4KAYI/77rG8q0ubOOFL7cFYPiSUFd3vGCFb8RT\ndOMUkr/e/wDM7vq1NrVfi/8AMyZltow9zLez2iuqgtBGMcDGDkM3AHJ6dPWiO2sbzAg1yWYnkBZ0\nJ/ICtibQoJEVWktLq2IB2yEI8ZB4GfT0Ocjnnk1RufCdvKRLbyuDgbFnUXCAfR8n8iK2g7qy6ByR\nppRjoipJoUgOft14M+uz+q1WOjTA8X1x+Kx//E1K+h3FoxddNt5+ePsdxJbN9dudv61E7osjKbbx\nIpB6KzMB9CGOfzptDv5nALdEjBNQylTyOKpLdDvT/ODDg1yWOkmQtu+VsGt7Tb3ULfZIqvJHCwkx\nyQMHrXOB8VfstVkhYIzHae/pQ1cpNo9S0/WIdZFq0UmJQ7boycFf3b9x/OpdV0mC1s403okrOOD3\nJ+uD+n4159b3c9lcPfQHa6qCCBxncP6Zq5fajPql9BfKxcs6hQekeMcfnzXPKD53/XQ7udKlT+f/\nAKUdU1slpbYmYBR3PVvoKwr67M4KxxqkY6MwHH+FXrhJbmTzJiS5GTk8D/H6VWntFIwcN6bug/Dp\nXVDCQhrLVnFVxs5aR0Rv+GtYh1HT/KjKpc2+S5G/pn7wx2HT6mrzSSEbwMx43EE7wF7AnqMn8fzr\ngbRntdctpE3tmQK3zcspOCK6y5nlXeS5LIMuGIDbjwAD3A9PrXn4mnyTvHr89f8AgHfhqqqQu9+v\nT+rlDWbxLeKV5XAwMvsJKsx6DB5GBn8TXn0ySajdvPITgnABOcDoB+ArW1a6fUbkqsm6FWy0h43t\n3NVi4hG1R0FdeGo8kbs4sVW55f1/WhZmvrqztBbxXBjUIm3bgHhcdeoNc5Ky+YSMkk8Z7n1q7qsj\nFs548tP1UVlK5SZXznHP0q6cYxWiKxU5SrSu9n/kbQuPs0SWsbYkfl2HVR/jV+J1EQWJQFA7VzMM\nzG4DFgMnkmt2e4iiRY42Bzj5RwSa6IyOOUSSW9CFY0yzHjioJtS3v5Sc7ereprPuJjCWHBmIwcc7\nR6fWoYiI08xup6CplK40i+Lg561I15lCKy/N70LIS1TcqwXkh3CQcPn7wPNQseBzmmyHzLjrkZ4o\nJySKTGlZCUHpRSNSGR0vakpe1Ay3Zs3zKvU46VrXCE2iJg8DPFZmlJvvVUj3ravBIkQZsIpTgnqa\n93L1+5bMKm6F0wjzIldT0AIx1GKkWXZrTzJnYeg+oxipodqiAkYKJxjvxUl5FDHqdw2VVSQQF5Cq\nQD/WvTj8CTMm/eMHXrnz7jAGF7CslVq1qJzdYHTFVwK+ax03OvI6KatFDgMUtJTkGWAJwCeTXIWW\n5NEu2gjnjTeHXdgdRWY6NG211KkdiK7q2v4pIkRcYAwKdd6bbX6AyrjsGA5rljXadpI6ZUNLxOCz\nW54TP/E4uP8AsGah/wCkk1M1Pw9NZIZoiZYe/HIqXwkn/E6nB4zpt+On/TpNTxElKhJrt/kY2alZ\nmdo1idT1qxsQxX7ROkRYDoCQCa+ijObK6YsvmwMNki45BHcV88WMrafqFvdwSYlgkWRTjjIORX0L\nbXlrqzcER3JHzxNwGx3Wtpbi3WgXFt5arNCfNt2+6w7VWjmdWV43wQe/atBYprCQkbjEx+ZT0pst\ntbXLEofLk9KBHF2um3Wj7wWWSDOQVPI+orYt7pXTrV6fTivDAr7gZBrEurGWzJkhO5e6iuWvQ5ve\nR1Ua9vdka0bqSRnr71p3Muy3sCDn9wf/AEY9cnBfFhwea2bi5L2umEjn7Mx/8iyf4V5NWNqkPV/k\ndqZt2Gt3Fi+UbcvdT0NXNQ8XahcQCOyCWxP3nJ3N+HHH+eRXKrKCOGpQ+4nBrrp4qtTXLF6ETo05\nu8lqQXt9dQpJPcLKx6s4JdmPuf8A9VZo1OS4kGxjFEOuDy341vCbbhSeDUE2m2d0PmTy3P8AHHwf\nx9auOJb+Iwnhf5WPsr5jo10euLmEf+Oy/wCFat9eImrXqv0+0OPp8xrDXTrm30W8WA+cPtUBHIUg\nBZc+3cUmsT7de1FJCYgbqXaXGAfnPSow808RK3n+cDnnBpalu/UQ4lBJibofQ1nxubiQxxYJH5Co\n1g1C5jkitnV4SPn3PhV9x71p6HolxYQO9xKskrHOUzjHatK8Y3vE6aE5NWZzevWk0KLcMoyv3ivp\nWN9s2nzRKFkHJB4DD/GvT7izhv7GW3kUFXUjPcV4xqUcVpNPbecxlt3ZHVhkDB9fSrprmiU3aR0O\nn+IIpJJNN1AK0MnSRe2e4qRNO1C0uCIrlJohyjn+IVyERs7uBTa3Ti4UfMrjH5Gr1r4lk0xTbXhL\nr0BU9Kp039ktVF9os+Lr5DpX2eSQ+e7AqgHHHU1wxBPJJJAxVzUbp72+kmeQyDcQrH0zxVU9OK66\nceWNjgqz55XIHFMqXazuFVSzMcAAZJNd94d+GrXUaXGsTNEG5W2j+/8A8CPb6D9KpyUVqZnDadMY\nL+FwcfMAfoa9M0zUTFiN8gjvWhceB9JhTba2UG7P8bHI/PNZE8ElrP5EyMpHKkjqK4sRaeqOzCz5\nbpnZ2N4rY54qfVNIi1a2jZXaKeLJjkTqpPXjuD/SuYsLjAGcV01jfjGCQPrXHFuEro7mlONmcDe2\n9xpetL/aVuX3JtSSFflIByTiur1eW3TXNWkMpVRezbiRwMMc/wAjW3d29rqNs0UyBo+x7g+orkPF\nqXGm+KdTWUvHBd3EpEi9CGY5B/OuiFWNSsk+kX+aPOrUXT1Wwzw9LAdLjEj7GXcRlSQeSetart9m\nGkO0yLbThlZOD86/LnJ9ScY9ulcrol8j2oR4zuGRvQ4P5cg9RU1/dE2cJMW+RblX37cY4xgjoOcc\n16D5faJnJrZnaXus2S6Q8JYkmNo/kGAMgjPPOcVi+HbjU77TgDIIYTEyKRy56gcnpg4PHpRpzgxe\ndJLCjo/yqWQADjoD/QVX8OXHkPPbPMrmFpAdoyMAHkH6g1hUcfZzSMsRf2Lfl/kO12zghtoZhDi3\nEytI55kYHPOTzgEj9KW7gEtk0SL5aMvyKOzdMn9KsXlwsunyQLbLKrgpk8sfTkkY7flUGiW+qXcK\nLeKg8ojkDr9TVOsowbe6OmFJymkjWsraQoiqGB9Mc109rCIogCSCexpmn2pihy+N+ec9qLm5KAgH\nae5rzoxcndnqtqKsiPUryOCBgCS2OnSvC/GetnVNU8lDmKEkexbv/hXs7aNNrSNsmdI2BHmkdf8A\nd/xrzPxP8K9V0K2kvbWVb+2QbpCilZFHclecj3B/AV34en1Zw4isvhRwAQmuv0dD9o03n/mAaj/6\nLu65IkjgjFddozH7Rpv/AGAdR/8ARd3U434Pv/JHBL+LT9X/AOks48xsPevYvg3rFl9p8i8jtTcB\nQsc9wFLR7c4xkcAq2T8w/wBV17HyWNSwyeBWpoutXWg6jDeWEoWSKRZMc4YqehwQcckcHoTXanY0\neu59YLe7rm0zePP5hKq9nbM0T5GBubDgYzn7w6Va1ECArcOttD5UePtM5yY/5cf8CFfO978YvFF2\nm2Oa3swBj9xCDn3Pmbj+tVfFHxQk8QizaawL3FvCsbPLJhHYdW2KAQTn+926DpVNlJK1rnbfFF7H\nxNb2Vnp2rrc6h5wQQQrmMhh1BVTn5gvG44ya8FfcGKsMMDg1sXXiXVLtGhW5aGFusUH7tT9cfe/H\nNZixZ5Y/lUXEMjfHFOh3PLtH1qQQr6UgjEbFuenaltqNSvoTRgd8fjVqLys8gflVKVk8wFT25AOe\naEnwD3xWkZaGmi0Op0nSjqBEsztBa9mzln+g/rW9qGjWM2nNDFHynKyZy2fXNZunGOayVIIzHDjg\nKfmc1pwXMkYNvJjbjnbztFeZWr1JS0ex306MOXVXZyUpMTGN2+Ze/rVSWYVZ1+eFb/bEQQOpxisZ\nrgHOOa9KjUcoJs46loyaLbSgrzUTSJVR5WAHBxRg4yTVuRk5IlaQVC0xJwvFRMctTlHSobJcizqc\nWy4Dqm2NlBGOlX/Fn/IYt/8AsGaf/wCkkNVL6RZkj5+72zV7xWN2s24A/wCYZp//AKSQ1yz/AI0P\nSX/to1sYFdp4b1nfEsMh+ZOOe9cmkQBGRk1p2jeW6hQFP96rqRU42KpzcJXPUrO8V14IGPateCbc\nvzDJx+def6ZfkOqPwwrrbK5Bwc5BryqlNxZ6tOaktDF8SWd7YZ1KwCB/vSKYlb2z8wNctDd3viu8\njhvJHYeYrSMSACBnAwPqfzr1RvKuYSjAMOhB71zMOgppmryGJNscrbhx0x2/rW1LENQcevQxrYa8\nlJG5ZwxwwxxIoVQoAA4xTLu48pG5BxnNPMoRQe44rndU1DaGCjLM2Ao5JNcsYuTOnSKMvXb9Qhwe\nMetciiG6lL+XvGe9d5Z+HorlIptSD+byTCXG3rx056e9an9m6euRFbRJj0jH9a9KlFQR5der7R6b\nHllzYMBuEYX2Bq54NUr498PA9f7Ttv8A0atdZq1gij96kZhA/wBZGgUr9cD9f0HWsPw7Ztb/ABC8\nPjqv9p25Vh0I81arESvQqf4Zf+ksxjujkq1fDt7FYa1BNMB5ZO1iewNU1iQDnmkaJMdMV0SSkrAn\nZ3PpTR44IbdRbqMHBJHc1p3cUdxaPHKqurqVZWGQQRgiuB8Aax9q0q2idsuqbMk8kjg16CuHiyPx\nrxJRcZNM9aElKKaPmnxZoTeHtens+TCfnhY90PT8RyPwrDr2T4r6R5+lQ36od9vJhiB/C3HP4hfz\nrx7YAeTXr0J88E2edXhyT0G/N6mlAJ9TTsjsM/Wl2luprYxLNyyrb2ef+eJ6f9dHqr5hY9Kt3EYN\nvZ+0J/8ARj1WIx8qDJNRDb+u7N8T/E+S/wDSYnR+DdFfUdWS4lib7NCcl8cFuOPc817RbIYiijG3\npxXJeENKbTtHghkAEjEySZ9Tj+WAK61GCxtgEnsK1WhwX5ncj1iVl0268s/vPIfYPfBxXA6CYX06\ncyczGMk7u7bc5+v+FdjqUbz2pXcykg4xXAWM6rc3MIOHBOR6g8Vz4x81N2OzL4ReLpuSvqvzR6OW\nyOM49q5/W9Etr+Jy0SrIekijDZ9z3/GtLTbwXEQO6rssa4GAK8mLcWetOEZxs0eNWunS22qOkmVd\nG446104kVV6DPpV7xPpiwj7cowV+8cdvWudknlKggfL6iu9S50mfI5jh5Rq2e3Qu+UZJPMkP0FSl\n40HzEAVjNcy4CoxqBpZwcsCRVcrZxewct2bEt5H0GMVAssTNWcJUc+n1prXCg4AqlGxaodEa73sc\nI2xqXf0AqpPeX7jCxhBRaXkTDYygN61fUJIuAaa0M2lTesfvOcnlvCTvY1TdXY5ck10txZg5PFZk\nywxZ3OtUpHbSrxa0RmxQ4cMy7vQHvWjG0jDaDsXsEUgU/TrZ7yVpBF+6XgFuMmtuKKNeJ1ZV6bjy\nB+IA/l+NEpCr10nZ7mRFGwfIJLdtzMM/jkVuadLC7gXcIK9CxJGOR/EBkderBhTp9LYL5kZWVSMg\nNzkex6/rTbKXyJQHyYnGOSAfcE+2evp65xTicc6iqx0N3ULn7DaxKlvLPZuN2GZSU9jzg9OCODz0\nIIHX+D/HmlT6XHpuqyvbC2/1M8illK/3WI6EevP+PK288MVuoa4WOEseJPlUHoSM9AQAf/1VraRD\n4Ru5PNvNT0qNh3e6iGPzrVSanoengYtYaN13LfxCsNL8a2dj/wAI1qkFxqVtuXyFEhWRT2ztwpz3\nbA55IxXjz6Pr9tMUm03UFdTgqYm4I7V9Fppl5bwJNpuoW15Y7d6RqoRWX+8pQkEe5xmorkNcXDys\nCHdixx6k11cvOteh0SqNKx5P4UXxGblI5bOcW54ZrhSu0fjya9IMW0ADt2q75BHJGT65pGt8cjn8\naqMOUxbbd2ZzRjoRmmeUnv8AnWg0TDtn3qLY3pVWEfL9KCR0NJRXCdxMkhPBp27mq9SKwxQB0uh3\nKzRy28wDAL37jIFX7KcaPqRikHmWsuDz3HY/Xt+dc1p8piW6kHVYgf8Ax9K3XZb2xyuC6jeh/mP8\n+lEdb/L8jWs7QpvpZ/8ApTOyiPnAy/e3HrjAJ9qqS5YsO2ap6Jqgn08ROR5kQx9R2qyctkZ/HNdD\nnzI4nDlbRVG63uVuIwpKNuw3Q+1VNUvZ7/bBCjRwjl1Jzub1q9KQM56VRlfCkL8ufTrWMqcZSUnu\njSNacYOCejM9kSEYYgn0HWqkhklOAu1aukfNwBj1qpeyiJGUda0IKOqZa4VByFjT/wBBFZLfeNbV\nyMvuPUxR/wDoArJuECSGsI/CjsxH8eXr/kRKxU5rRW5l+zqsce1jyXxz+dZtSrK7AITwBVJ2MWrj\nzhGJY7j6UhdnbJP0pjEA8UJljQIkPCEmoy3yfWp2hllXEaMyr1YDjNNt4PMJLfcXgk9M0mNEMQ+f\nPpTjzzS7fLdh2zxSfxH0NAC0x6f0qN+tADRS0lL3oGXtLdUuWZs/c6DvyK17tpL94hIygswUAfw1\nh2OftGB3FbCEtdRJjLKwI+tezgZfueXzMai1ubNrCg2SSEFfmHPptrIk3T6nKdw2L976CrskkiR4\n2FVV8EHrzWfbiaWadYEJlfO1QK9GtJKKRkt7mTdSCe6dwABnAHtTBxSAEHmlzXy85c0nJnUlZC0B\ndwIz+tJSg8GpExUlmgOY2NdHoWoJc4hmJ8xenoa5dmPoRUlvcyW0oki4YdzWc4KSNadRxeux6aki\nuoVgDxjFN07QLWbVZ57f91IbC9TAHB3W0i5x+Ncrpuvln23JA4+UjjNdDoutFtUmSNSpSwvWOe+L\naUj+VediIThTlbt/kdd6c1dnG/2fd6Vq1qJrZZh5qlUzlZOen417fDafb7dZTCqHrlDyhrzDSJDq\n2r26S5JVlmGOxU5/pj8a9TsmkjxPGNsv/LRD91/f616Cbe5yziouyL9lqF3Y/u7rdImPlkHX8auO\n1rfIWVkZj/fGT+fUUW09vMM8KemG4waje0jWQn7jZ6iqI9RPIePO3OB0CvkH8DVabywcXFu5H95B\n/SrgXPHzMewUZJrA1HxDBAzpHlnXIIYdCKTdgsZ2uxadaoLu0m2PnDwuCpPuM/rVbUdVSKx0cv0a\n0Y9f+m8o/pWLqLy6jfb3bk84HYd/y6VBq67rLRnBO1NPfA+lzPXDiIRnVg/N/wDpJvSrOKsbUWqR\nuB81WkvWBznIrjYLnaDkEBevpWva3qlRyCKynS5TrjVUtjoFvlJwW5+tWlu128msJXjc5p5DAcPx\n71lyl8x1UF0P7GuSG6XEI/8AHZKg8RT41PUASdqzyfj8xqhbeZ/YN3k8/aoOB/uzVLroaTXdQQ/d\nNzJ/6Ea46a/fy+f/ALaFx2hanBNZTWMYUXMkLKueFLkH+taek6iby2GGChhlSelczY6fOupJ9jVm\ndwQUVC5OBngDrWwNJ1REjS30u8j2/Kv7hwFA/CuyVWnHSUkvVpfmy7xsdFGUDnYQQOuPWvKfinoJ\nsryLVbcsqXeY5gOm4Dj8x/KvRrOy1ONXWSxvNudx/cuP6U7VfD8utaetvqGmzzRM2/Z5bAqcccjv\nzW1LF0IO7mvvX+ZzVocy90+astGSAxH0NOXaOW5Nei+JfhLrNrdRtotldXcEnVGTDRn3OACPesiz\n+GXima4Cz6LeRoOpMRrt+t4dq/tI/ev8zhcZJ2ZyquD34pW56V6Zc/DySy0zzLmymhA43PGRz9TX\nm+p2xsrsxjI9qulWhV1g7hKDjudX4G0tDM+pTpuKHbECOh7t/T869HjCTKPOOF64LYH864bwndIm\ni26g8jdn65NdbBOCVYHJFYzb5rhYuOmlRDCiWNj3iik/mBVC9tIpoyga6YHkGSOX8xkVrR3GV64q\nOYhgSZF/nQ9QTscX5klrOYpRhgep4B9xWrbXpOCCDS6pZW9ypyVDjowGCK5o3E1hLsl+7nhuxrCV\nO+x20q/SR3ltf7QFJzWpeajaarv+1adZyMzFiWMn3vXhxXCWWrAsMnB9a147oMpKsMmuOdFN3e69\nV+TR1aTWoyd7Wwm2y+GrEZ5EiPOQff8A1lSR3WlXEXktpFlsb7yrJcL/AO1a0LeeOeFYp13DHr0q\nlfaE7MJ9NkEmPvRsQp/Dsf0rWMactJXv6y/+SOSph5R1jqiRW09BmPRrdFx1NzcKv/o2p9NOnPdM\nbfQ9PaQht0qedxkEcsZM81BZaQ0jqb0lmz9zdkV1l7CbHQpZbeNP3SEgDgcDj9aipCm4yUb/AHy/\nzMK1GSoyctNP8ijDLZ28vkjTrTzWU+YVaU4U9er/AICtK0uLMALHp9ui9ABvH/s1cza+bGm+V98r\n/NI3qfb2q7BcMHUA55rP2MZPr97/AMz0nGMVZI6Oa7ghh3C2g9MZf/4quffU4tQudkel20sP8J3S\nkuc84Afp9eD6+ufr91+9SzEsUe9N0jM4Xj065556A/TmlsEtyqqztMo/gSIFCPfd8v5LXYsLTS6/\nfL/M4qtR7I6q21PawXyLKLHJXzXd/wDvlWOP1rUF4kqZ+zpg+u4f1rDt7lYoQqM6RjgAvgfTAwKn\nS8BbG7IreGHp+f3y/wDkjkbZ5P8AEW20zw7rUbw+F9Llt7tTIHke5XD5+YYWYDuDwB1rDufEUFrY\nae9toGlwSTabPCJVe4JiWR542ChpSOjMfmB5P0A6n4wvFNp+ntu/epMwVf8AZI5P6LXm+pMRpuij\n/pzb/wBHzVU8NSco3T69Zdv8RjOT54er/Ip72IwPoBTxCwHAO7uaIFwnmenSnMzt0PPqa6zQbyg+\nZqhkIY5FOeLHLMc01I9zdeBTEOiHGTUq+uKURHHWnBcd6AAUpA2Macu36025dVgwOuaYFAtz70bq\nbRSKNXSL+eGZYY5CrP8AIm48Ak966a3MzxvbLKwjzmaUj5if8/lXCV1Wj3Uk9kSXyYVwy92X/P8A\nKuavT05kdVCo78rNptN05ykM0aHzBgN7/WsmfQrC3naKS7MDg/ddMgj1B71pr5ctu1sZcHG+CX+6\nf88UwzW+qbbK8lHm7Q0UoX7h/njPBH41lSnKL30NqtOEltqc3c2S4ZFOQD8rAYz6VlzOSdvpxXTP\nA0E8lvKQJIyVYdeRWLqdn5TiZfusefY16cldXR5aetmZ6ipVGWFRipUIHNZlMickyHvzXR+JY92s\n2w9dNsM/+AkNc9IhWQZH3hkV03iEqNYt8nk6bYf+kkNc1T+ND0l/7aWtjK8sL0FPUVIDk4C0PbTO\nflGc9c1rcRYiuo0UCRwjDoa6HSNU3rtD7gK5VNMO4mQnH9a2NP0HUVkWSCGSJRzucYBH0rCtGLjq\nzfDzkpWSud5ZzGT7p4rTngae3GOGX5h7GsfRF2rvdcOGww9DW/CRI/JxntXlS0loe3FXVmcvqLXk\nQOLeV9vJZFLAfiKxrATT3Rl48wfxYzs+me/vXcazqEWlQJM+BtOfqMf/AF6R1sdTsTe2pVZPvMUH\nDe5rpoyUd0cuJoTnH3WYiJNCy5ZQp+87Hn8OMf570pZjyinH95v6CpFCnkDLD+I9qrzajZwPtlmB\nb0HNdp5FinqJKwMxPAGea5jw9cl/H3h2HOUTUrfb7AyrxWhrurCffGhKoq8YHqK57wa5bx74fJ/6\nCdt/6NWprr/Z6n+GX/pLGt0ZINLzWj4bsrXUNW8m9EzW6W1xcOsLhHbyoXkADFWAyUAzg9atfavC\n/wD0B9Y/8GsX/wAj1pKtaTgottdrdfmuxKXU0/AmpNbaibUsPm/eR/UdR+I/lXuGm3SXECMD94V4\nFa6n4bs7mK4h0jWBJGwZT/asX/yPXtPhrUNNvdPiuLW2uljkUMA1wp2+33BXnYuTT5+R/h/8kduG\nnpyj/FmmnUtDvLUKGaSJgo7bsZX9cV82sjBiDwa+tH+zSRHMMp4/56j/AOJrwbxtY+HNG8STxzaR\nqr+f+/Vo9TjRfmJyApgOADkdavCYhq8eR/h/8kViY3ipdjhAh7sBTsoOpJraurTRLnw1c6lp1pqF\ntNb3kEDLc3iTq6yJM2RtiQggxD161gjFehTqKom7NWdtfl69zhasW7pz9ns8cDyT/wCjHo0wgapa\n7hlRKpYH0B5pLon7PZ8f8sT/AOjHptg7pqELIpZg3AHeqht/XdmuK+N+i/8ASYntuk3STxRuI3xt\nB3HpnJrdiG6PAGOa5fSLi4W2hNzchsr8sY7c9cde/eugivoy3PArVnDEZd/LIRuxhcc15frMZsfE\nkMsX3ZnCn8Tg16deSJKHKtx7mvPvECRteW3Usk6EY+ozWc17j9GduD/3iH+KP5ov6bqCr5ckb7o3\nAOc111vdJJGCeQa8V0jVJrRjGwLQZz/u13Ola0skYG8EHpXnVqDi7o7qFdSWp2N1ZR39rJA4Do6l\nSOvFeUXAu/D99NaS5eGNsbW547GvWNJuUmYAEY+tUfGnhiW9gGoWaF5okJaNRnzV9Pr6fl34dCX2\nWZYzDRrRszzuPVrJ+TbsD6hc/wAqkbUNPcYJK/VazI9PtLgeZA7J6hT09qrrDel3WCXKqcAP3rq5\nEeDLL1fT8zVddPl+7OgP1xQNPhcfu5Eb6MDUMWnyyECS5jBxzmMHB/OoHtZ1kby0t5IwflYgKT+F\nCXZk/VKi2bLLaU6nKuB9TSqJbf706ZHbdVB43YDdbFT/ALEigVGII2PzIy+xYN/Kqsw+r1H8X5Gj\nLN5q4a4GPQGjTtH/ALTugkKtJg/M38K/jV/RfBsupsss0Tw256EnlvpXodjpVppVqIoI1jUDoO/1\nrKU+kdzswuAlLVtpGTFoJhtUjj2AqOmMA/4frWbcRNA5SRSpHY966a5vkjUgdRXO6rdm4CnrhgPz\nOKIcy3NcdlVCVNypq0l+JQW5+xuuT/osjYYH+A/3h/Wq1rMk18I3BaMzyrIAeQmOf8+1WJbCS7tQ\nmNqsQSzdhn9asLLa6VFMbW3WW7lzummAIXJyQF6c8jnPFdUYHhUMO6iulv1IS8d/qNxcHlsBEPoA\nMZXI4ycmsy0sTa+IVWCK0nhVkb7PPcIqSZOCpLkZJ56dPwqlp2prY3chvN3znll54/zmuz0640aS\n6F2mt/bZ3URCC6tyUROuADx7fnxVwV5Hrcqp0+RdDY8DWcOjajfkvewwyzmGLKPGiSc7UlB4JKsM\nHPXjupb0AKejDd71y3h/SbCxkv7i4mVdMv49k9uluPKPoQVwY8c9sc+uMbej3UcsLwC5e5aA7fOZ\nNpkXsfr2PvzgZFdqi4mLd25F/wAsdqQrzzU3GecfWm/LnnmgLEGz1AIphjTPcVZ2KT1xRsFAHyNR\nRRXAdwU5SNwz0ptFAFuK4a3ZjFt+ZdrBkDAjOeh9wK1dL1ORm8thGO64jUfyFYIqWGQxSqw6ilyx\nvdo1jXqxjyxk0v68jp0vGtb8bdoibkbUUHH1ArbW8jKZIfNctJJ50KOOo5rUsZVmt+vzDg01CKew\nnia/L8T0/rsXWuA/Tj0yKrvM/P3f++RQ+QOvSqzksx96rkj2I+tVv5n/AF8gkuWVSdqf98L/AIVm\nXF5KWxiI/WFD/SrdwVVCT17VQjjMkmTQ6cew1iq38z/r5Ep3SfvJMFjgcAAYAwOB7CqV1YTrG07A\neX161oyusVuQOvtWi9v5+l7GYZaLIUepHGamXuqyIcpSbnJ6nGUuDSspVipGCDgj0pAxFAx6x561\nIWWNcL19ai8w4xWpbaWQySSsCOpQUN2FYrxWDvFuckE84pZFNrEEOepIra2j0qnfW4niKjhhyKi4\nzKY7lLepqIn1qUjYgXmo8du1WIWom61IOlRHrQAUUUUDJrU4nB6VrwuRdxMWzjmsMMVOQcGtDTSZ\n7xQ2AqqWJ+gruwlZRag+5El1Nq8viGAYHklmz3z0rAlldncbjtz0qxe3InkLc5qn1q8ZiXJ8sWTT\njbUKKXOD0NHHavONBvQZpQeKbIcDGaj3UBYlZ89hUYGTzRupDk0AOzW/4Tmf+1p1JyP7Nv8A/wBJ\nJq53mtzwmf8AicXH/YM1D/0kmrDFfwZen+RUdGdb4BtZGsrm+aJSrusccmMsNvLD2B3D8vavRrGK\n52gpExHfIrxjwffXEE0saXbwpw2A3HftXqVjI7QI7XDBSM73PX6Cr2Y33OnNr+5Mk3lxDPJduPzr\nLn8SaTayLateNcy5x5UCFivvuOBj8fwrn/FM80OmxSpNLHbuSPnON59QPpiud0iRJY2nVQAflUjq\nRmplLlErHV6hrM92fJjJigYH92h6j/aPf+XsKxbra+Ex99tn4d/0DH8KbbytJPJnpyBVeS6iS5hE\npJOGGPU8f/X/ADrLVsB8mEikmA+eXhR6CnG2stQ03To/7XtLaWC0khkimSbIJmlfOVjYYw471HI3\nnMXbr2HYVVjgPmuxHVSBWc6fNZp2a9O1uoJ2LEOjWQtX/wCJ/ppz38u4/wDjVZ82hWltM5TxNpsY\nfkDZdcflDTolxaSL7g1DqEO63RxzgYNCp1Nud/dH/Id7aonis1Uqo8V6WxKgjMd117/8samMQjQk\n+JtK4P8Azzuv/jNcsweIrIo+aPqPatIlLi03p0YZpOhLrP8ACJaqyR2Fov8AxTF6V1/TW/0y3/eb\nbnavyTcH9znJ7YGODkjjOTrfiS4udf1KW1y9s91K8THI3IWJU4PI4xRpgz4Q1ADGRfWv/oE9VNgc\ncDnvmsMPh4qpOUnfVrp/dfQp1p9C94d1a8bU7lZAQTZXbZz0xbSEfrSWepO0OVLbzyXIwPr/APWp\n+gxY1KbI5+w3n/pPJWI1sxU7WZc9getaKnF1Z27R/UqOIklqdel+1zGluoZFJBbPVsHPH44zXS24\nKwKjTkyAc7yOK8ys9SutMmQyqZo16Z6iuqi1Z7uItE6s2F+UYyeRkflV8jTsdEasZK9zT1TUfLgP\nmKFYnYFXkt3rLa5v2AKm3t1Iz+9bc3/fI4q7qFpcJAlyqs+4YdV/gNU4ba6bB8iNPUuNxP4dP0ro\nhDlRw1anNK5qadezR6BcmWSa5b7VAP3UWzqsvqeRx7VyHjvw7BdaX/bNnbyQTQYE8Tpt3L03D3Bx\n+ee1dxZwTLo10HnfP2mD7o28bZeOKsrbxXFrJbzbnjlQo6luoIwanD6Sn/if5RM5PY8M0PUGt1eE\nHodw/rXY6Xqkc2I3mEbnpv8Aun8a8/vLaXSdXuLZiPMtpWjb0yCQa0Y7uMpujbOfvIa1qQuykz0+\nOWeBwrNJEexBqd7vUVHyTxyj/bQVxGk+KbmyUR7lubYdYZecfT0rsbDVdJ1WLMUTJIPvJu5FYtWK\nKtxf3xGJLW3f3AxWLf5uFO+0jH/A2P8AWunlS0bgF1PvzWZdWtuc4mI/4DU31FqceRLbv+74HpWn\na6nKqqJFIHqaLu0iU/8AHyD/AMBNVUljiyrXTBe4CZolFSWprCrKJ0lpqISZG3jawwT/AFrXS9aN\n2wfyrhZb62t4l+ytLM7Njbt2itWC7corN5kZI6Hgj8K5alFrU7qWIT0Orhvgzg7jn8a24dREsJs7\nkh4JFwwzyV6n9M1wqTPwTM2D6AAVrWN1D5hjkLltjnd1GNpzXNONouwYuSdCfp/kdI+n2kyn7Lfp\n14WUY/Uf4VX+yXFq4aRP3fd1O5fzFYEmnz3LeZpurQqWP+pu8gD6MP6imwap4j0IlLjT3ETfxo+9\nG/EV1wp3d0VKS2f4mhqDWo1SadplReBjaCxwADj8qRbw8GGIqP8AnpPyfwX/ABqpFC9xcPdCyS3a\nQ7nZvXvj0qOfUbWD/VMLmUdXJ+Rfx710WbZ5srXdjU+1Mq+ZI5PGAzfyH/1qiOrbQSTwOB7n0rnZ\ntRLZmnkOzs3r7KKwda18RWr7HAnYbY0HOwHufeto6aGdij471n+1NUjjVg0cKnBB7n/9WfxrH1P/\nAJB+i/8AXm3/AKUTVmsxZizEknqTWnqXNjon/Xm3/pRNVT+KHz/IwqfHD1f/AKSQ20Tzssaf/WrW\nh06NDhyHb0zTIoxbRKg6jliO5/wppuG3jnp6dqq7NbDL3Tn2F4lww52+3fFZyrgAVrC4d03N6j86\nuXWhWtjbfaBdbpFlCiNsDepBO4DOccD86fNbcLMzYNMuZxhQo9iaW40m8tY/MkiOz+8DkVpLekFd\nqgADqowf0q7b3hYHccjHzBzuBHfrTTZLRyu3FVrl8kL6VoajGsN7KiYCZyoHYHmsh23MTVDQlFKB\nmkpFABnpU8E8sBPluy5GDg4zTIweuKlJQj5uD2zS02HaS1JPtUsiqhlbavQZ6UscrxTCRWO8HIOa\nrgYIqTODiqSSIbb6mr9sluJvPlcvIx+YseTViSNbu3aPgZFZETZ4JxV6GZkkXOADxWsGrWM5LW5j\nyxNDK0bjDKcGhDzW5qen+fH9oTPmhclMdVHesAnFZyVmWndDnbc+OwGBXReJlzrNsP8AqG2H/pJF\nXMV03iWTbrNuf+oZYf8ApJDXLU/jQ9Jf+2mi2GQrjaMc4ya1baHCZZcsR1HasO1kUPvmk2Ljk1v2\nXl32qxRuMwxkEKejEDJzVSdlcEuZpHU6FYW1tGs00IeZxuUt/CPatprqM/Ls5JxjFVxLFJMSBlsb\nR61LFFGZDGu4yclm7j1ryKknN3Z79GEaceVIoW7sbiUAYxMQR7ZxW1DGf7R8lTlwivtHuT/hWZpU\nUdxfuiAhSxLSMRzhj6VVTXLWx8QX09xcgEhYokU56Z5OM461UYOTsglNQTbdkT61Yx6rqxWYs0EC\nBSmeC55Ofw21Ui0+bTrjzNNuPsy9WjxlfwHalt5JpS81tOs6uxZi0mRk/hkVZEzjiZCv4hhj8K9G\nFNcvKzx6mIk6rnBkEi5TMnPc7RtGfase7tYCpza59Sp5rbRbm6ulggWV5D0VV3DH4dKj1fR/EGn2\nT3DWbPCCcmN1k2qOSSFJIHua10Whz3u7s4DWlSGAhHJ9mHI61T8F/wDI9+Hv+wnbf+jVo1i9+1eZ\nuGGX5cjuKPBf/I9+Hv8AsJ23/o1azxH+71P8Mv8A0ljW6H+ET/xOJ/8AsG3/AP6STVkCtbwj/wAh\ni4/7Bt//AOkk1WvCHhW48Val5CSiC3THnTMM7QewHc0JpVpt9o/+3A9kYGCTgDJr1X4ZXlxHDJpt\nxHJGU/eR7lxlT1x68/zFd3ovw08M6WqSx28lzcJzvnfdn6DAA/Kth7KxN4jxwpugBCkD1xn+QrDE\nVozjypHRQpyUuZjI5gY8c8V5d8XNOEllZ6igGY5DEeOSGGR+WP1r1Wcj864X4kL5nhC6wPulHH/f\nQH9axw/uzR1zV4NHklr/AMiJq3/YTsv/AEVdVhYrfthnwLq2P+gnZf8Aoq6rBrvo7z/xP8onmPoW\nbon7PZf9cT/6Mel02YQ6hFIyhgCflboeOlOL2stvAsssyPEhQhYgwPzMeu4etNVbJWDC5uMg5/49\n1/8Ai6uLsrNfgdVal7SXMpK1l1XZf5HoOl3dlGALdHT/AK6AZH/Ah1/St/7aI4yQO1ec2F3aswZJ\nZSwPOYwP/Zq3W1lGTaXPp93/AOvVOp5P7jnWFd/ij/4EjopNVCxY3c1zNxcm+v0CDIVwxI7YNZ1z\nfwvJtNxKpY44jBx+tW7a4t4lVI1kAzkkp979azqVPdaSf3HRhqHLWhJyjZNP4l0aIl021giEfl7v\nc9TUH2FrZzLaSlT12Hoa0c7hTGXI61F2YrTYv6HrpEgBOGHBU9RXoem6y7wKRKM9Nprx64hKSCeI\n4lX07+1bWh695g2McMp5U9RXPUpfaid1GumuWR6JHaaMrOsulWZWZiXcQLkk9TnGaw/EngexMsdz\np9wLMScbCCyE+uc5H0qxcDURaBoYSXHIjbqfyotdXuPs4h1W0eOFwfknQ449M1MKklc2dGnK11uZ\nVn4CgLobzWGZT1WBAp/76Of5VLe/C+2dC+nam4OPlS4UHJ92HT8qvadZiXXB9ieaTTXj3F2yBG2f\nug9/x5rqnRIo8E8DvW0ZzuZPD0tkeWN8OdbE5RmtxGP+WglyD+mf0rodI8FWGlyLNeSC5mHIUjCg\n/TvW9d6oUJQHOKx7jU3ZTuxj61UpSegRw1OLu9TXmnjiQ7cDBrEu9SdiRngGsm81ZY0ZnkAUdyet\nYUuq3N0StupRD/E3U1UIPoKpVjA2bnUETl3AH1rMtNbtL/V7e1Ofs7SBXY8fjWZdaXeXW143dpBz\ngnr+FR6fYH+0glzC8U64JT7u8dyD6966IwszgrVueLier6dpwvb29jkhf7FH5fkMzZ5K/MB7cA/U\nmpb7wjb3MJVQyHHBFc34e1u20q7ikt7h5LaWVYpEkPKjuf616q6ccCuxJSPPtyOy0PBPEvg3VLBv\nNWEyxD+JPSuXieeylDFXRgf4kNfTrICMEZHoapzaRYTNmWxgc+rRg5qXR7F+1fVHhtl4t1IQ/ZGu\n8QHIKhAOv0616/4GVjovnPvYyNnc6lT+vatKDSdNt23RWFvG3qqAH86tZYcLz6Y61pFSSs2ZyfM1\npYuFuOetBYZ/+vVDzWHU/nTGnbrkcVQF8uueTTDIueprONwTnJOab5pP8Q/OkFj5fooorhO0KKKK\nACnA02lFAGnYy70MZPI6Vf0+byLjaT8p4rDgkMcgYVpM3IcUPYFudFI3B75HpVM8ZJqSCXzrfPfG\nDUE52g+uKtO5i1Z2KUzGWT9MVIoEcZ9aau1MsxFVLq5Mn3eBTuFhJJwX25O3PPvVmTVmSI444wKy\nsmonO44zWT1ZqloRk80U4IxOMc0rxshAI60xjBya2oblvJQE/wAIrGwVPIqYTMR6UmBrm5xn5qhk\nuWI+U5NZvmH1NTITsJ70lEGDtk1HilfIPekBzVEjGGBmo8VK/Ipu2gZHRT2WmUDCr9uUis2Yf6yT\njPoKoVLED17VcJ8ruJq5J9aKO9GRiobuAFgOtMZuMip7a2e6l2JjHUk9BWvNYQm0MCqR3DY6mgDn\nDSU50MblWGCDgg0gGTQMSinBeaRhg0AJk1u+E/8AkM3H/YM1D/0kmrCrc8J/8hi4/wCwZqH/AKST\nVhiv4MvT/IcdyLw26x6urOwC7TkH+L2r2PSpIbrZJEysijJJ4Ax/LFeDxu0UiupwynIr1aa4Sz8I\nqVADzqFHHUnkn8s/pWktw6FXxPqB1q+JjkJtIfkhJHB9Wx7/AOFVLS6FqqxCMYAAznFVSdluqqMZ\nIzUbHLc96xeu4bGqJAjfMCOc9cE5qvcpuAk+ZvKO5eSc+v8AIflVAu3TJ4p63GVDDt1prQDaQCSJ\nZEPNAuEBwwIYDge9YsN81q42nMbHgentWit5b3IxJ+7b17UrAOX/AFLLjAFNuZBHaBODuHOaR5RG\npLMuPUHis+4uFdt7Hao6A00hEW04zjn+lVopPss+wA+U55X0PqKme7H3Y0J9zURR3YM+AT6dqtK4\nbHTaf8nhjUR2N9aj/wAh3FQYU4LNhu1Fk4Twlf8AZVv7T/0XcVnSXIkXAPeuakrSn/i/SI30Om8P\nqP7TlV1w/wBjusehHkSVUESgjgVJ4auRNfSgnJWyu+//AE7yVDDc7HEZCsAOGPb61Mf40/SP6j6B\ncW6lDgDJ9RW54aeGG1MUqLlDwSO1UJYeA2KILg20m4qdh6kdq3TdyTt40jK7kf5CPmB5FVJreRYh\nJBgoc5z1FY1tqJecxxPlf4gD1/z/AJ7VpX+uWlhpE1zdM0aqNoAxliegHr/gDWqlfQTiW7cP/Y11\nl+ftEPT/AHZKRrqKxsJ7yZsRwxtI3qQBnA96hsbuG58OzXELq8bzwkMP92SuS+Imq/ZtCi02Nh5t\n225wD0jXn9Tj/vk1lQ+Kf+J/lEbWx5dfXcl9f3F3McyTSNIx9ycmoUZlYFSQaUofSuq8Ay6fp+rX\nur6jCk4060a4ghfpJLuVEH5vn8M9q6Gw9DBkFxbshnhlgdhuUspXcPXmr1je3Ct5sO8PHzvTtT7/\nAFbUfEeotPf3ckzkk5c8IPRR0A9hTrTTL2e6k/s2MyvawtdPyPkROS2D1x6UONxczR0dl4wtriHy\nr7Ec68bwOG/wNTLrVtM2yN1lJ4Cjqai8Lwp4iOoS6no8eozIipBHE4swCxZiw2JtL+gbqPUDizrH\nw5u9O0+LVtEvLm5Lz4WEQFZYVxnL4PBB+U5xzj1rN0UPn7k0mmzXECNsSLeejnkU0eHwnJRZT7nA\n/IVtWH219NjGpwok5B4WRWDgHG7AJxzwfeo5HkgO0/MOq5/lXO+ZaF2M5NlpCIWskVQMBkHP1rOu\nQQxlQ5B/StZ7hZeFba4/hbof6iqFxOkbFZIJB23AZB/Gkh7aoqwXxjfaTjPY9DW1p92kTl7hf9HK\nsrPgsFyp645rnJfK80Mu5Vz0Kmora9ntkmeOVyFY4HYjFZVKKkrI6Ob2tNwk99Dqns7S5IOlaskb\nnpFMGaM/Rjgj9avh/EWnWkiSXdiI0GWZXkcDtnhPcVwklwgIYw+U55LI5GTSJLc3M0dutwyea+1n\nfLEKF3Egd8DH5iqhRn/N+CMpucf+Xj+6P+RvXt9HK0jXetWuCc7MSBR3x9yq7NaHTP7R/tG1e1WT\nyixSYIHxnGNmTx+FeeySvKxaRyx9+1btpf48IT6YwyZLsTKR1UBCp/PcP++a6PYyX2vwRxuFRv43\n90SfUbyK8JCa3pyL2JS4J/8ARVY5020Y5OvaeSe+y4/+NVTjty6E46VG0bL2q1CS2l+CFyVP539y\nND+y7P8A6D2nf98XH/xqnanLbqNLhguo7kW1vskeNXC7jLI+BuAPRh2rKopqm+ZNyvb0BUnzKUpX\nt5L06HRyDegJ7ioGjPWn2jL9njEueBjipMfJmqNionQ88KA2PxpY5pbmQb2Y85HoDURdkgkfHGFX\np3PP9KsWUe1d3fH60wLZQqF+U+xH+fWpIG+cY6Hr3OD/APqqMZIzipEwDuxgdaCTJ1iQmZT3ZBWV\nWjqqs94FUZ2oBVQQsOtO40RHilRCxqTywWAJxnvV+G1jMeY2JYdQamU1FHTh8PKq9CoF2io5D8uK\ntSxlOoqi+d5zSi76mldci5SSJgw2n8Kn8onr1qmMg1dtpizBCCSegrVHCyPBHrn2rUtI5SApAMuc\n8jO0e/vSJEqbSjL5h6HIwtXFMdugAPPoOv40XSFY2bOKNLUwgeZv4Ynkknj/ACKx9e8EavpVudQe\nykWybkNkHZnswByv4/TrXR+E5rdJ2ubkgyKcIv8Ad+nv716RFdHULJ4Zl3QyLtZCOCCORXmYnHyh\nU5YrRb/8AErHzWQVODXReKFA1WB9w/5BunjHf/j0hq14m8MPpWoSQjLRn5on/vL7+9UfFqlNctw3\nH/EtsB/5KQ1vzqdSEl2l/wC2mi2I4BFNbskoIBI2kdc10OieWmSDhidiAnnHr+ZrmEuEHkgfKFB6\ndzXWaLZZlieaRIhtyNw59fzrSrrBl0XaojsbOaGJndgDHEuF47//AKv51n3Go3D2L3Nmoke4LKqo\neQBwM9gOpzTYZ5Lyw+xyWyRKhO+Ytgyd+nbj3qnc6lDbgJAqkAdACFFccKF/iPQqYzk0hqzX01pv\nJt7U+X9pdBG7cgbsDOCOSevTmrtvofnSR2NtYxyGVSwljRVUY6k7h26fMOfxFcsvirVbdh9nu2gI\n4AhRU4/Ac/jWnp/j7UY2MeolL21fh0kQZx/L8K6ork+FHn1JSqfGyHUtM1Pw9eOzWikjq8eVOPoD\nj8qlsL5NZZbaJD9oP8DdPds9gK6XV5oJtDt7mC4YQDBt3J3bUxhoyD94fdI7gBumK5G5vYdMtZmt\ntq3d6PnZf+Wcfpn1Pf8A+tWkpKycd2ZpNl3VvEa6ZE2n6M7KcbZ7vPzSMOuD2HP+e/PwXl4twlwk\n8iyhtwkVyGB9c9jWe0mSMCrEEwBVMfl2ojFIbl0Wxz3iVEXUfNVVRZx5jKgAAPfAHA55wOBml8GY\n/wCE88PY6f2nbf8Ao1af4nKk22Ovz/0qPwX/AMj34e/7Cdt/6NWoxP8Au8/8MvyYR3QvhHH9sXH/\nAGDL/wD9JJq7PwBeCx03aPlZpCxPr0ri/Cf/ACGLj/sGah/6STVP4a1lLWT7JcHCMfkY9jWVSLlU\nnbtH/wBuLptJpn0LYa0n2fzGPIH51UtNUZ5JCF3JvO49Oe+K4W11WSJo4mkxE52lsZwvc/XFbjXK\nRyW8yRj7CUZVPmHqO/qc49epPauKSd7HpQty3Oqa7jnUlWyfQVz3iG2/tHTLm0IAaWNkXPqRxUln\nqUUtoZhcxq+TiFCAR7n/AOtWfdW2pm4hu5kY2zkAEH7h/wBodvr6+laQT3CTj0PI4FKeB9XBGCNT\nssj/ALZ3VYJrtdftjbaX4liK7P8AicWbAezRXRH864uu3Du7m/P9InmVI8srDelJTjTa6SByO0bb\nkODVkXzkfMOfUVUooAsgvPIADkscCuptbeWKNd8pcgchgKwtEtfMuTO33Y+n1rplPc1lUl0Kgh4G\nBximn3p2eOlNYcVmaEEoU9qxrpHtLhbq34IPIrWl5+tU3kaNg6HDoQwPuKaEdDp2rznZJ58kchHK\ny5/rW42oahqFubXHmxNyy7gQfzrlbXxaLuTytTgilbOfmHB+lab3VrMM2NpLE4/55ZI/KueUGnse\njTqq25vLPrVrZrHbWcrjOAIlDfouT+lM/tq78sG5VkkHG0gg8Vz66rrlo37mG4kGOyk1fsNe168j\nIkszPBjmKUjDfga0Tl1RfPFqyf4DLnVklkWNGAcnqx4FV70fZ7nyri/GSM7kBK/pXO3RQzNMiyRo\nRgxuc4Pt7VPaSP5JInYY6AjNaO0Vc8jGYuUHaLNFdFkuWE32hZx/COn6VZi057eQLLGUyOhXtRDd\nM9vEpm2OG6qnX8q6/XNrWenzSl2laAYKqSWA4H6ACt8P+8T8jz6GLlVm4y3MW3tY5MKk6of89qv3\nWmXc1kgdIL9UOQEbEi+6k8Z9s81Vju8AY0q5mI6EIqmrA1h/lSTTZo1PH78eXn/dfp+eK64pdTpe\n5k2dtp2l+IRJfyMLcSecQ0Zz8pz04HUEYr2Iyo6q6H5WGQfavPraxttW1yzhvbeRkkyd3Z1AJ2uP\nwHPr9a9EKge1XFWMZ6yIgQaMLjjFOMY9cfSkCVVybDGUYqEqQTtzVopx1FMZfUYpisVGQEcioHj4\n4NX2GODUDrzwtAGe6H1qI5Bxn9avPCT2qAx89P0qbDR8xUUUVwnaFFFFABSikpcc9aAFBrQgk3w4\n7is8VPbPtfB6GhAbNnPtBXPBp08+RVGFtr4qOecoWGORRF20Jkr6hK0jt1wO1VnbZwDk0wyTSHO6\nnpCSemTQ2CQgyaY8ZPIq7HbMegqwtix6iouUZIRwcgc0/wAmZyD0raSxVecc082o7ClzgYotiOTy\naUw47Vrm29qb9m9qOYDI8rHapMFR1NXZofLXOO9UpOoGcVpHa4mI4z1qPb3p560qRvI21VLE9gKA\nIWOQKcF4rbsvDlzcENPiFD68k/hW5D4PtjCzs5VV6s7Y/Sk5JCOFeoj1rqbnw9beYY4J3dh/dGaz\n7zw1qFrH5piLR+uKa12DmS3MdV3HFTgYGBXQv4G8QQ2Nvc/YfkuBuiAkUswwO2c9xWNc2N5ZttuL\neSM/7S4pXQ2V+aeieZIE3KuTjLHAFNGT060/yDjJ5pgbUM9nZW6wiWNiDkkLnP4irUvie2BUQWsU\nQB6xeZk/izVzXlkHpSFTigCXUJormQSopDn72QBmqQ4zUrDFMK5BIoYIBSE5GKTPYU5YyRyKQyOt\nzwn/AMhi4/7Bmof+kk1Y5iNbfhRCNYuP+wZqH/pJNWGKf7mXp/kOO5gV2U2oNewWke75IYFVR7kD\nJ/kPwrkPLb0rSsrh0jCEHKjj3FayBHRMSeCPeomJGfUGoYrguM57U5ZRnn0rGwD2GeR3qMgjlefU\nVIGBHXpTM4PBpgQuC0BiAPLhs/QEf1p0SuoPLEexp3Q0CTBpgL5aHrI4PvThBGvzFifc0G7RFzgG\nqclw8zZY4UdAKauwLW5CfkHA71VkugWOM47e9RSz4XYp+tV92zkDLdqq9hWN+GR28F6nzz/aFngD\nt+7uaxFcoudxz3rYsePBeqZ5J1Gzyf8Atnc1lw25uJdoztH3iO1c9F+9P/E/yiU+h0fgu483VLgE\nEEWN3z2P+jyVLGz+ejevB+lN8PG3s9SzNMltE1tcQiRlYqrPC6LnaCfvMOgNaFlb6e6lf+Ei0xpF\n67Y7n+sVZOooVpOXVLo337Jha60I5JZynlRyHaONuecUOJI7dCDuz1Jz8v1/+tV0WFksxb+39Owe\nCPLuP/jVXrSys5FCrr1hnPAVJ8frHVfWKfn90v8A5EOVmNFJ5Kjco2jneprkfEfiBtWu1ijcm1h4\nTjG492P9Pb0ya6nxVZWkKm0j8RadbO3+vLxXXQjhRthI5HJ+vp148aFp3/Q26N/36vP/AIxWkK9N\na6/dL/5EVjf8Ma7Lo/hTUpSPNhGo2imMnoDHcE49D8o/Ks7X9R/t7VZLtNwiwEjVuqqP5Z5P41HP\n/Z+neFLyyh1qzv7i4vraVUto5xtREnDEmSNR1kXpnvWJFM0bAqcGqoe9zyXVvuuke9gfQne1wK0v\nB2Y/HmgKOD/aVv8A+jFqu1yCqBgu4jnHarvhiLHjvw9IOp1S3yPbzFxSxN1QqX/ll+TCO6GR+NPE\n4B/4qPVzz3vpP/iq6z4f+J9YvNWvzqet6tNZpZPuzeSHYSyjcMtwQN2DXmCuduBWnp2r3NjY3Ftb\nwhvtEkbSFuQyoSdhHoSefpVPC0P+fcf/AAGP+QXfc94s9YitZlS6n8UXGLdFcGdVCkMWw373O8Be\nSp5HUc07VfGdxJYTNZWN9EFRUjK3jO0g3AAheDnvuB+tecaXf6vbQrdX8DT3Nx5ksVnEgBcyYLSy\nk8KCuMDH3ewU84/iGXUNbmhQQoVhyDKBjzCeT77R0BPJHXmj6th+tOP3R/8AkQUrO6f9fedrrfjL\nUbZ5Hg1S/g2rlVa4c4IyMnPqcHBHTFa3h7xI/i3w9qPm3czukKrLE8pYKwkjwQCTwecH6ivG20a7\njUghyvUjnFdf4FSLTRrN06GPbp4Dhj63EPNcuJw1BQ5owSaa2S/mj5Fqbe50F5o7NnHJ7E8GsWe0\nvYGIQlh6dalvvEsz/JZwO2BjdtOKwrq41286SGIHsvWunkIuu5YlkuACrxMh9QP8aybi88h2hmlf\nc+MLgc/lSjTNUYYe8mx6BiKb/wAI9I7bmLl8/ePJqkorcOa2xdhs40sZJ3fNyk2wRseW4zj69OKb\npupadZNCfPaTbJ8xkfJ2H5Sv0+4fwPpWpJbzTaVcWptkV5plmMu7OCABxxx096xNV0LzLh7hEKmT\n5mUAYDd8Y7Z6DtQmnoI5qaNoLiSJsbkYqceoNXYZg2F7YwKil02dGPBJptvb3CTqfs7SDP3fWtb3\nA2LCz3I/HWkn07IOBXQ6Zp8kdqnmLhiOQe3tVh7HPaudz1A89ktSjkEU63tgSWboO3qa6O900rI3\ny4rPWAoSMcVspXQFdWCyEMev6VKbhTEVHU96bLF8p7EA81QlZgHA/wB2mBI0yuwhj5Unc2ehwOP6\n1ftsCHjHU/Ssu3XEiAEZY4/PirsMx+ZVyc+3WmBd8wAcDj3NOE4+7gkmqe9kb7uG9xWnpUHmo5Yg\nhiGGVycjjr24J/IUr9REf2PzAXPJNVpLL2rrY7NdgytMawU5O2suYZwF0pjk27TxTYrlomypwa7m\nXSYJOWjBqufD9r18uq5otWZcKkoO8Tmhd/aSqmME+1L/AGeX52810yaPDF9xAPep1sMcYqU0ti61\nedV3mcc+mSDkLmo0i8gu75DL0GK7tbAHoKZJosM4IdMHpk0/aGJwq3cm3bs4qzHeYI3g8cV1DeF4\n+q1GfDB6AfpTc4sCvp1wPMRo3HJFetaS5FsnddoIrzXS/CjzagkLAbGYM7FyNqD72MEc9BXpUNsY\nxsW/uABwAFj/APia8/E0/aySirlzhThFOc0rq+z8+3oZHjSzW509JguWjYHPoDx/h+VcR4003zb2\nKRV+ZbCz/wDSaMV6Rd25uIHimvLh4yOQRH/Ra57xDaD+00Q87bS2H5QR0QhOjUgmv5v/AG0dL2M0\n7VF90v8AI4DQLSIyuZowzo2Bu7V0ssKTAB1yuefeqSIINYKCJFEi53DOSR29KtXd29v5e0A5zwwy\nPyrt5m3exfsad/4i+6RrX6zx2HmvA4hxnzWBVC393d3PsOa5kTiR8Hqc5xUOpXlxcvHNLI7sUxlm\nLYwSB17YFU4pG81TjApx1RNWn7OXLe//AAUn+pelAUfKKiZsYqY7SmcCq+M0zM6yLUEj+HbRynLC\n7AiyOnc4/Nq5hppJn3ucljk1Lqk5W1s9NU/LEPMk5/iPb8OfzqmMDnv/ACpruHQsKANoPapYx+83\nA4qqJQH56YqU3AihZiThR3qkIwtfm83UAgPEagfj1qfwX/yPfh7/ALCdt/6NWsu5WR5nlYcsSTWp\n4L/5Hvw9/wBhO2/9GrWeJ/3ep/hl/wCkscd0HhP/AJDFx/2DNQ/9JJqw6t6bqV1pN8t5ZuizKrp+\n8iWRSrqUYFWBUgqxGCO9aP8Awlmo/wDPto3/AIJbP/41Q1UjUcopNNLrba/k+4aWE03xBNbIILgs\n8XRW/iSu3tNRe4soUEm6IDMeScYril8V6kzBRbaNknA/4ktn/wDGq76HW7uOFFEWmrtUD/kG24H/\nAKBXPVVS6fIv/Av/ALU1jN2tcYl0FkBYjJ5znnNd94Z1oanE2k32GkZD5Mh6yAdVP+0BznuM+nPG\nNqd4V3iLTgffTLf/AOIqxZ+J72zuYJjHZ/unDHZYwqSvcAhcjj0rNyq/yL/wL/gDTtqbl/4PsL3R\n9Rgv0Jd7qFmlRtrHYsqofTOGP515J4r8HSaDi4t5TPZk43MMMn1/xr6Rvol1CBkQqpyGICgbsZxz\n+J/OvOfFOnK9hPbzghXBBz2rPDVKkG29m7237enY6JQjNa7nhJpKkmjMUrxnqpINR17BwBRVyCKC\nXALYb0PFXotMt26g/nTsTzF3R4vLsUJHLnd1rVUcVVhRURUUcKMCrG7Ncz1Zsth+aCAetIMYpTwK\naBleZAecVmzAg81pyntVKaM9SpquUVzCuossWFO0/VbvTblZYJG44KE8EelT3S7ST61Rjj33AFVp\nazFdp3R048XajLnEKHP6U4ahf3ZXe/ljOcIefzqjbQhccVqW6DjjFZcsVsjX29Rq1xl2ix2RYjJJ\n71moFHQsPoa0dW/1KIvUnJrMjidFVjnBNU1dHBidzasbA6jKkST7COTucKPzNdXZXDfZUW4ufNZe\nBuJYgfQc1xl+6xQRuqgNjnFddo8wbT4fvnK/w4/xFXh7pvscmFUuZyb0L7TSKu6O5nUf7FoSB9d1\nCXt28mzNrcRscMUTy5QPdeQR+A+tRvPGow73sak/fVWCqPXKsf5UtoJC+8X8t3Fj5TI+/H0JANdq\nZ3M7DQYITM9wUImRdgyOApPb8v5VvGQHHH5145c+J9R0zxABp8h8tdoePJIY5ycjOPb25xjNetRz\n+ZEjOu1yoLL6GtLmMlaViyXweQPzoDgjn+dMUin8EdeaYhCe2aQPjilxx1zSYUds0CA4J6celNZR\nkfLinECkOADz1piIHTjtUXlrVlwPwqPb7ikB8oUUUVwHcFFFFABRRRQAoxTlODkUwUtAGijZAYd6\nsrZrdtneiEDkyOFH61Qt2+THpVtBvRl9RUy7gi02n2duoMt/bk+kbhv5UqNYKcLMh+vFYQjZ5NoH\nNSpDtkCnlv5UcvmFzoBc2SYBlAPsCf5VZiMMv+rkRvoa5OaU7yBwKSKOaQ/L+ZpezC510nlRAl3U\nAepxWdLq1qjYDFvdVz/PFZX2eUjDyKRjjnOKFso/4pCfoKFS7hzIvjWYu6t/3z/9erEep2rAbjtr\nOSG3TpHu+pqzFZ3N26rb2+Rnk44H403TQuYdfXEMgQRMCB1wRWcLe4u5gsETu2ewrqrHwwgYNcN5\njH+BRgV0MNjb2cY3bIYx6cUuZRVkLqcrY+FpZMNdNj/YTk/nXTWuh21jFuKJCB1LdTUg1EkldPg3\nn/nqw4FZl3dW6sZL66N1L18qM8D6np/OmoTkDaRdN6nmeXYwtO443AcZqvdpsO7U7zaf+eEXJ/H0\n/HFY9zr9w6GKALbxEY2xDGR6E9f6VRt45r24WJDy3OewHrV2hBXYkpSdka0uurbL5enwrAAeHPzP\n+fQfgKyp7+5uHMks0kjHqXYk1dmto9KvYVZFn3rn94MDOf5V0x8O6Y029oCN3zBAxxz2/nUTxCUe\nboaQoty5epqfC7xetks+l6sGOnzuoWZgCsRORhieinj6cnuay/ixq2lf2i1rphVlfkn+769eeT0q\n/dvaaNpMkqxKkSjcVUdTXkd1cveXc054LsWCk5wPSop1PaJ3RrVhyWXXqSRxqgyOlTDB/wAKppIc\n4ParUT5Of0rY52OMfNI0Py1YQZAzQ44PpTEZUnBxVm1ty0WWHXpUbIXn2jqTWvHCVQKB04rOTsUi\niLMDouKd9m9q0RGc9KXyz6VFxmabUntW74RsJJtceKGNpJZLC9RERSWYm1lAAA6k5quIvUUpiHpW\ndWLqU3BdRp2ZKPBPiL/oXtV/8ApP/iad/wAIb4iHTw9qv4WUn+FVmi9qia3Y1n+/7x+5/wCY9C7F\n4U8TISp8O6uMdD9ik/8Aian/AOEX8S9/D2rf+AUn+Fc9c2kjHg9Kg23KDldwFPlr94/c/wDMNDrF\n8MeI84Ph/Vv/AACk/wDiaX/hF/EnT+wNVx/15yf4VyondfvRtTxdj0I/Cly1+8fuf+YaHTf8It4j\nx/yL+q/+Acn+FRt4U8SH/mX9W/8AAKT/AArnvtYHXP5Uxrgt91XP0FHLX7x+5/5hodCfCXiT/oXt\nW/8AAKT/AOJqCXwr4nHC+HNXP/bjL/8AE1gn7RIwGwqueT3rWtIbS9ia0lWOKVjmGY4UB/7rH+6f\nU9DjoCaq1ddY/c/8w0JV8IeJu/h3V/8AwCk/+Jpf+EP8TZz/AMI7q/8A4BSf/E1k3NldWszQmF9y\nttZSuGUjqCO1VpEkVT5scoPqelPkr94/c/8AMXNE68aHrNn4QvobvS7y0abUrQJ9pgaPcBHc7iNw\nGcZH5ilg0/yY9qAAAcknrXKWV3c2O5oGCl8AkqD/ADFXY/Emowv+9McynnBQL/LFFOjON7tO7v8A\nl39AbTNW6BQ4K49xWe8bwyiSPhh3rStr2HVwWj+Vx96Mnkf/AFvemzWrhiFXI7irQtiqupOCFeLJ\nIxla2IZY1UMrnAGTjrWWsCq6k1ehPl5YfeI4ptK2oXNGAQ/Y3S7VZGnO6RWGck47flXN6r4RZY3u\nrB1KAFmhY8qPY9/89a05ZnjIIJ3nuah1W+nt9AlfeRJKRECOOvX9AaqLbZLXVHEBWJwAamRdnzMw\nHsOTUOWHc4pQ+PpWgy0IQ1wEEyoSQCW7Z7nGc1s+DdyeOtBQMGUalbj/AMirzWIkkYLbQMsuMtni\nt/wcx/4TTw9uIk/4mNv06r+9XHNc+K/gVP8ADL/0ljjuhuhx6VcBUn2xTswVVIPzf4V18Gh2sbqy\nxLlTnBUEflXnRhUTbUyW9G47Vq6X4lvdK/dAiaH/AJ5ydj7HtWk4vdMSsz0NbQ4lBdyJn8yUMxPm\nN/ebPU+5pf7PTsAK5qPx6pfDabx3Im/+xres/EulXgUCcxO3GyVSPzPT9aycZdUVa5Y/s9fQGr2m\n2caWeqYQDNqo6f8ATaOjGRkYx2xV6xGLTUv+vcf+jY65cR/D+a/9KiNLUxTZx/3Bj6UfY07KBV7a\nPxowB2rZsVigbJfQUgsVA6Dmr5INNPNS2OxUFsoXGB1pj2cTdVHNXcGjGaWoGQ2k2zctEKkh0+2h\nOUhUH1xWiVzSbKLsLIqGMDoBUZjHpirxjHvUTL60hmXc2qyqeOtcvc25SZhjvXZyFV61z98itOxx\nWsGxNGDLbl0IBAJFQW1mYy7ycs36CtcxDuKTylPWtkyTAe1WG63r93aTj07D9SKZETCxYYzV7UGC\nTCJMZONx/kP1qrsAXA5qwFDb3Zycnb0NdRoVqRaq+Mbua5mJA00YPRiB+teiWtssEYUDCgYAHapm\n7KwuoqQ/KM0/yc9qnCYp4Q5rAoqeQD24pptuelXxGelKIz6UgM77Pz0pwtf9mr4jx2pwT86LgVEt\nh6VJ5PHIzirATFOxSAqiEZ6U8RjI4qxik2+tIZRka4trmOW1jWR9jZQnGRx09+lE/iOS1GXsLsn0\nERIz9QDVkjF3H7xv/NanxmnTqON0PFUYzUG/5V+cjmpvFWqXwNvaae6M3G90I21varbv9rhL5LCz\ntQee/kJUu30q5q65vI8/8+1v/wCikrKrNyrQ9JfoZ06agnY4fV7BobuC/jHyKcSAdvem3do06MV+\n+i7lHr7V07Qo6FHUMpGCD3Fc3JNLbyCN+XjO1j6j1/rXRTd9CmupiT/6mLPUJyP+BGoNy5wVwan1\nCXO2XAwQevTljWDd6g/mFY8DHfrWkItr+u5tif4nyX/pMTZMvIHNOsZBcahHbRYZyeB1Fcs88snD\nyOR6E8V0PhmKWHVrOSHHnblK7hxz1H0wTVONkYMu6tCbfUXU8t3/AJVSZtoytXNcuBcapcyIcrvK\nqR3A4B/Ss5GJGPzojsMkUn7x5JpXQzYUdB19zUbOQnA9hWrY2+9RxkmlJ2QFI6cJIiCOad4X097f\nx74fJBwNStj/AORVroI7QdwK0tCsIz4p0d9vKX0DflIK5cRU/cz/AMMvyY47o8mMRFNKEV1FzpGC\ncLisyawMZ6Gu1TuSZcbGOVH/ALpBr0G1l8+3UryxAPBriHtiK3NJupba2jY8rkr+X/6xUVNdS4nT\nxSsVwPxzTghZhgZZuAPeoYtQs50AOYm7g9Pzq1pcP23VYYIXGQSxYdvT9axLZ6FZ6pIY1+Y4HQ1q\nXNpaa/p7286bXK4Djgg+ua89trq5t/Nhl+WWF9jjsfQ/Qiuv0u9YYP8AFjNcF3F3R2taWPn7xNol\n/oOuXFpfwNG+8sjY+WRc8Mp7j/8AV1FZGPSvqfXdK0nxHpDWmrIhRh8jZAdG/vKex/ycivn3XvBO\np6LfPGgFza7v3VxGOHHbI/hPt7dxzXq0qymvM4KkHF3OZq9Y3U3nJHuypP8AF2p/9iaietq2PU4F\nOisZrIvNcRcIOBu75rTmXQz3NxJQO9SeYMVkrOZAGFTCY8ZrKxpc0xICfSpA/p2rLWfB61Os+Dwa\npCbLMxXHJH41SlTA3AHHqpqWWcYJIyMVlTzR5JRmQ+3FWIhvHx/ET9ahsAGlYlsfhUM8zyHaxzVn\nS2Cu5LEDjtkUPYRuwLleufer0Q285NVYsEAgj8KsmQRIWPYZrEvoMSA311Mc/LEv61c1KyWPS4FT\nbvxzTLRGh0Z5j9+4fj6UuofurNI3B3sMk9fwpyny6Hj16jlUujOlOFiD4IHBz0rc0C7BsigQvsJ4\nDY/XB/lXOMMsikkButdfoOkImnXs0TEtHt455Bz6fSrw6uyqDUWrls3YIHBiPq0W8E+gIOfxO0U2\n9vxY6dNOVV5eqLkncx/HPv8AhUQkYsEIkHGT++JH/fNc34mFzdN+4EqrajLIU4I4O73+noM12XO9\nJX1NTwJp0moeIRfS72WMmViem7t+v8q9cDg8V4r4a8c3eiIIZ4PPtS25ggAbp1+vTvjA6V6Ro3i/\nR9cdYrW4Zbkjd5EqlW/wJ+hNXRkravUwqxlzOTOmEhHQ1MsgI61RDD0x7VIr+ufwraxmXN/50oOa\nrhyKerClYLkhOOKCPejdmmk0AKc0zGe/604nimnr1oA+T6KKK887gooooAKKKKACnD6U2gUATxNh\n+1XYm+as1Tg1ejPRvWkwW4kqhJXI6mo4ydxNSXBHmKD1Ipij5qaEyIJubnpUysQAucD2puD26Ugy\nDTETB8cZrRstNur0ZjTC/wB5uBWUoLSKDwCQDXQL4ocSMvlxxoAFUKucYGKG2thpXNKy8PQRYabM\nzDselbqwxWsQeZ0ijHbpXIx+KrsfKJVVf9mMZqc6xC371w9xL/elbgVCjKT1YPQ6NtTkdCthBtUd\nZpBgflWRc6jaxuXnkN3N7nCisW71We5BDyHaOijhRVS3YXV9BAWOJHCkjtk1doQJSlJ2NC61e5u8\noGwpP3IxgH/Gr2meGb3UHBmYW8Z6lhlsfT/Gt620+y05QYYRuHV25Y1p2j/OGB7CuSpi5PSJ20sK\nt5HFeMdFi0hLKKy8xzJuDsTkseMf1rS0jSG022h88YeRclvUj+grZ12MXN1ADsKwnzW39sD/APXW\nZqGsxhI2k4kf5IIweQPUiolKUkkaU4Rg3Ix/Esqym2Ydg4rsbaQ/ZbZyesCEflXEa6p8m3djktmt\nPxLqc+neH9OSBsNNCELZ5AAH+NaRhzU1FGMp8lVyf9aGd4y8Qi8YadA2YozmRh3Pp+FcmOoxUWec\n1IhreMVFWRjOTk7slAOfWp432moQaXOTVEGhHKCBzSSyDbgH61TWQrxSM5biquKxd06HzJmkP8PS\nthY/aotOtzDbKrfePLVoLH7VhJ3ZRW8s04R1bWHJ6VZh06eXHlwuxPoM1EpKOrKjFydoq5nrFkdK\neIieMVvw+Hb2QAmJUH+2RWhD4Vc482cD1CLmueeMox3kdlPLsVPaD+en5nJiAHtThbZ7V3EfhizQ\n/OXfHq2KtRaRYQ4xBHkdzzXNLMaa2TZ1wyTES+JpfieeNp+/oufwpy6HPIPlgdh7Ia9JWK3iGECq\nB/dUCgyxjoSaxlmb6R/E64ZAvtT+5f5nnieFL1/+XVl/3sCpR4LvW6xxr9XFd356c8GmmdewrF5n\nV6JHTHIaC3bf3HEDwNeH+KAf8C/+tQfBF7jh7f8A76/+tXaeYSTShznFR/aNfy+41/sLC+f3nCTe\nC9USNjHCkhxwEcZrmLqyubK4aK4heKRTyrjBr2hJtp5qj4q0VNe0ppY1BvLdNyHuyjqtdmFzGUpc\ntTqefjcmjTg50m9Dy2OSabMksrvIAFyxJ4AAA/AYFM8wHhxwakK+XHt/AGqpbjBwfQivZR86xl5a\ngRGRfugZIHpWOz9utdJCytFtcZU5GPasm108z3MgbhV/Wr6XJM8SPDKskbMrryGU4IrrtJ1o30Ji\nuExcAfeA4cf41UGiIwwAQfX0rVsdNniQq7h/7pKgEfiKiTQ7iNAzPkY5PINXYLRpUyRtUdKdJYXG\nw+Ww3Y4Ynp+hqnBaa7aE+Xcb1J5DkP8AzA/Q1k9RpomvIjAVZwKyNdnWfTVijG5hIGwB0GDk1vy2\n13qUMYuY0iZSc7DkN/hVWTw+2VKsyupyGU4IP1pppCZwgXAIIqMqc8qa7ttHuhjzIbS5Veglh2k/\nVk2sfxNV5tHLNltHt1X0gnkU/wDjxar50BxuFroPBIZPG2g4PB1K3z/39WrEmjWh27rLULf1YSJP\n+mE/nU/h+zs9O8VaVeyX6xwW19DK4nidG2K4JOACOg9ayxHvUJpdU/yY47o5+1QtMuWb5iGbA5/P\n86rSMDIzc8kmuvXwpAHAXxVoJONv358Y+vlVWfw5p9rMY38T6KXXg7UumH4EQkGj61S7v7pf/Ihy\ns5+BXdDhTz3rVs1jhZXkIY+nar6aDay8p4m0n/v1dD/2hWzo/hbTfPVp9csLg5+4sdyF/H90Kf1m\nmtdful/8iKzNnw48kunMzrhC58vPp3x7Z/rXSWPNpqP/AF7j/wBGx1DHZ2yqFXU7JVAwAqTAAfTy\n6uRJb21peAX0EzyxBFWNZM53o38SgdFNcdetGpG0b3bXR915FxVjN20FAe1SbeOKcE4610MRX2Yp\nShNT+WBQEOeamwyt5Z4o8s1a8vmjywKOULlXy6TyzVsx0bKOUVykUIqKRCRjFaJTI5qrItPlC5gX\nKyb2xnrWfLA7Nkqc10klvk9BUJtcnpVpA2c09q56Cq01vIASAeK7BbMEelH2Fe4FMVzzO9imW4Mj\nIxU9Diqwk7bT+Verf2dEeqAj0xSDS4M/6pR+FWpCuzz7Q7GXUNUhCIfLjYO5I4wD/kV6IsfYVctb\nKKEfKFBxjjFTmDnipk7sEZ/l465NSIo7VbMGRjt34ppiwflJP4VNhkOw+lBQ7uashBxnNL5YI60W\nAq7KUJU2zPSkKntSsBFsoC+tSbT70mOaljGlRSbaft5zyPwpDSYFdh/pkeP+eb/zWpscelRN/wAf\nkX/XN/5rUpHpULdnRW2h/hX5yGkelXn1GOQIZtOtZXVFTezSAkKoUZw4HQCqfFIRnmonSjO1+nr+\njRimTvf24/5hNmf+Bzf/AByuc1vVLKGUNJoGnyBhjJkuP6S1rum5SK5zWITIuxh0PWiFCnfr98v/\nAJIfMzntT8Q2sRt1k8L6Q+Yyf9bd4HzMOMTVnHX9NdiW8J6P/wB/bz/4/VvUtNaaKHaASin8eTWe\ndNKDmNifbH+NdFOhS5ev3y/+SNMS2qnyX/pMR/8AbunZ/wCRS0b/AL+3n/x+us8P6xYfZLnUB4c0\nuM20QVCslz99vlA5mPbPvxXFtYFeShAP51sWrmHw+IAm0SXJZs4yQqjH/oTU5Yem11++X/yRgpO5\nffWLEnnwzpWT/wBNLr/49R/a1j28MaV/38uv/j1ZAwDn5s0qjkDJ/OksPT8/vl/8kPmZ0lpNbXMX\nnDwrppiVsFw91gH3/fVvWr2aIMaDpy/R7j/47WJo1pcQeXcW1zNbSkZLIeCPQjpXTRyq8e2/sxn/\nAJ+bFcH6tEeD/wABIqZ4am+/3y/+SJUmILu0H/MEsP8Avuf/AOOVJBqkNrcxXEOj2CyxOJEbdMcM\nDkHBkpEtbSfeLbU7VyOkchaKQfUMMD86v6l4YntNHs7+1M96Zn8uVILbd5JxnnDZI98enTNZPBQk\nmrfi/wDM0i25JHKTWqv2rNutLDg5HNdxb+G7m60e9vEWdZrST5oJbV4y0Z6OpPXocjtgk9s50mmX\ncVv50tnMsI6yFDtHOBk9vxre0oikrNo4CbTSpPy5FTyWPkeG1mxgi7I57goP8DXUyWkbg5FYPiCY\nRxW1iv3Uy7fUnj9P50c7ehUFrcwBIw6Gu88BxiKOe9lAyAdv0Ax/M/pXAyfeOMV6DbH+y/ChQ/Kz\nYQ57Hv8A1py2LSvJIy/E2qtHex3UB5Y7JR/eA6f1rf0nWlNmJSxJQZ4PWvL9Z1PzpvLibOD1rR8P\n6rsgFtI/IYEEntnpWToe4maSrXnY9FS9uL+5Vjl3zwB29qvR3bS376VJbZuAB5iyfKqg9N2fXHGA\nemaxNN1eGCzlJ4M2V3AfcZWOPwJGffpUkuum9uIdQg3QvsWOSYDJfbnCrzksMntwDknpnJXT0Rap\nprmmyTXtAlsHlcQukKKrksQUIY4G05zjOR8wB6dc1x2oWizQunTcMV1V5qF3qAxPI2wdELZ/Enuf\n8iuev28vOQMV0xZyyUb+6cgqm2zC7AkHt6VYVCyZ7VXv7gNdbsdOtPinATg8VuQK5KUguMVHLJuN\nVmlAJJHFNAW5bhiu6Flb1HeqUkrPnKEH6VEzR5yAfzphcngcVRIhGDV7S5AkhUMFY889DVDBp8TF\nJARTaugOtiYYyRj6U2dzIyQL1dgKpwz/ALsDPNaOh25u9XjPULzWSWpNafLBs3buNYhY2vQIoJqt\nqQWTPGc9OaknuluNckyuUX5QRVe+lhllbZwM4x6VhUvzHizTUrlGS1+dARjiur8OTCG7NtKu6K6t\n2Tg9xyP5frXNXDMrQkDjHeti0lES29wv3oZAefStMNNqauSqjjJFqxubKS6eKKHy2BIwxJ6VzOpS\nTWweNrmTNtM0YJ6lT8yt+R/Suwu7CG21mR7Xyx5gLyDrkHGCM8jP5cVxGtyrNPqW5sEXCL/3ypH9\nK9Kb0Z7UHfUrXuni2ljaKRdkqCRQSO/X9c1asdOlXbdpKq7GBGx8MD1Bz2+tQQamHtooJoI5mh4j\nkbOQD2PqKn8i+1e4it4A0shwQi9B/gKwsm9CnotWeneGvEEuqSm2mw7pHuLjHrjnHB/DFdODnp1r\nmvCvhwaHbl5JfMuJFAcL91fYetdIMDvkV3QvbU4203dEoJ4pwJxTFIHWncYAycVYh4b1HNPVgTUX\nPrxThilYCTg0mKaGp272pWGfJ1FFFecdwUUUUAFFFFABRRRQAtW4n/diqgqeHJIA5NAG1a6aLy18\n1hkg4BqndWc1sT8hYeo7VuWYNvbJGD0GT9as+cSOeaxU7Mpwucbux2NLuB9K7A+U33oo2z6qKiaz\nspPvWsX4Lj+VV7XyFyMxNI0q71vUYrDT4HnuJThUQEn6/T3rsLn4P6892bbS2i1CWJAbgxsEWJv7\nu5iAfw9/SvQfCXhm30PwzLcWBW2v7l9lzMCRtjVN7LuPRVBG7HVgR/CMw+JvG0dnoq6JoSNanlnn\nb75J7kepH9PSumCjf3tCJJ9Dwu+0u+0u4aG7gaJ16g1GkpArXutIubmZpXvfNdjkl85qk+i3ijK7\nH7cNWLlG+jBKVtSo7k9TV/QMtrMLAZCKzfocfriqMljeRgloHx9M07Trw2F6JXViMFSO9KWsXY0p\ntKSbPQF1RHKRH7x4J7VdtrtBe+WGBGPXpXAnVIfMkJl4Y7hgHj2qay1BZJG2uwIGa43Re53RrK9j\npvEeoi2aaQIZAqAY7H0z7Zrhra6klvmu7h9zerdB/hWprF1JLOiwSHaYAknucn/GsmOwlbjJwe1d\nEIrlOWpU97ToWnmkvJGmkJwxCxqeyj/9dbvi9C3hzR5c5AQD81B/pWLBZNA6MRxuUfrXUaxbC98H\n6coUZUqOPZSK0VkYzd9fM87pykg1pnRZM96T+xZz0zTugKQYGlztHWr8fh+9lcJGjMx6AAmt/T/h\nvqd2Q1zMltGf7wy35VnUr06SvN2NqOHq1nanFs48ufrW/omiz3bLMYXYfwKBnPvXo2l/DzR7Da8s\nJuZB/FOeP++eldRFawQKFRVUDoqLgV51XNFtSjf10PWo5JN61ZW9Nf8AgHB2nha+lwXRYl/2m5/K\ntu28IxLzNK7n0A2iunHTCqBRscmuKWKxE+tvQ9KlleFp7xv6mdBotjbAbYYwR3I3H9auhIkHAzUn\nkHuaDGAOTXPKEpayO+EYQVoq3oRbwOij8qa0jfhTmAFMIFTyGysMJJqu0hyambpxUDjJqWjSI3ef\nWmF6UimEc1kzVIXPNJuppJA5pOtRcuxIKeDUSnGaeKQrD93arlncGOVTnoao9+9PB2kVcJOLuROK\nkrHDeNtKGl627Qri2uB5sfHHPVfwNcp8xc5yK9i8R6Y2ueGW8kr9ptT5ibhnKnhh/I/hXmseg3TX\nIWcsVJ5C8V9XhqntKSZ8BmFD2Fdx6MpWcD3lyIo87R95vQV0VvpcEW4qnLHJOa0LbTUtYxHHEEHc\nCri2+K1bucRUisVwDjH0q9DZoozip4oSMetWBHxUNgVhbp6Cni3jHG0flU4SniM9cUgIBbrjG0Cg\n2yHsDVtVzSlBt77vpQBR+zLjpSi3T+6M1b8v2pNhBoAq/Zk7qMfSkayhbholI9xVoLg1IqjOBQBl\ntodg/LWcR/4AKhPhnSc5+xR/lW6oFKQpIp3aFZGVFoenxj5LWMD6VaSygjHyxKPoKuAdqdt9aLtj\nSRAsS9hUgQAU/aO1GOeakYwKQKXBqQAUoUUWAjANLsJPSpFUY9acACKLARBaXZx61IR7Uu0dqLAR\nbeOKCuKl6UhXNFgISOKrvHmrhTioylMCm0Y70zyxVsrQExQIgWE4o8r/APXVoKe1GMnkUAVhFz1F\nOWLmpivNO2HjFADVTHQU/bijaQOopynjoaAGkD0oKegp+QSPWlxke1AyDZz0p2wn3qQrx9KbtoER\n+WQD6UmwAYqcIe340zZg4zQMiMYxTTEDVjYcUhU0rAVvJGcUjRelWSp9KNuSBilygZzR/wCnRD/p\nk/8ANamMXpU8lrBNgSQpJjpuUHFR/wBnWn/PrD/37FRyu50udKUY8100raJd35+ZF5X1oEfOKlOn\n2g/5dIc/9cx/hSf2fZjH+iwn/tmKOVi/cd5fcv8AMrmFwx5GPTHNVbuxEyHjmtP7BZ/8+kH/AH7H\n+FNNhaf8+sP/AH7H+FHLIP3HeX3R/wAzj5bFizLtwVOP8/nVSTT37Ka7WWyhTPlxqgPZRiqj2q+n\n6VcVZEVqinNyjtp+CS/Q459PYjBT9KpS6bcqCEhdh1wBXctbqO36U4WwxjFXsZXPPPsN1/z7zj/t\nmf8ACr2m6TczTq0kEnlqcnK4zXX3USW8Dyn+EZqrH4jgjtR9kjCynhi560+ayuZ1ZuCuXbaFcc8H\n0q+MKMYzXO2+pTzyEPHGxPTBxW3p4e4cx5+YDOOtZRlKbskYRxUb2aG3cUUq7niDFeQe/wCB7V33\ng7VI7izVRIxhlAIKtjB/zwa4woQSCORU+g3TaZqptmOILgl4vZ/4h+PX86qEmnZnY11R6oTKyiIQ\nOu8YZXbOBj1GP8K4XxXd6loes28sCCGEwhRxlZgOGDjofT1wRXf6XOtzAjBT5qj5iD1Hrz9Kh17R\n49f0qWykQrLjdDI3AR+34dj7fhXTycyBOx5Xqdlb3WnprWmR+XAW23VuOfs8h7j/AGT29Dx3ArzT\nV1ea9klBDK2Oh9q9C0y7/sDWJLbUkItJd1texHsp4J47g85/KuW1/SZfD/iGfTrglo1bdE4HEkZ5\nVh9R+RyO1c/Lv3RonY5zTrJrnUIYtpILZYew61t+K9QluZE0i34EeGlkB6tjoPzq3b3NtYwtciMZ\nAwoA5ZvSqmmWb3Fy9xMNzyMWYkdzReyuw5ranPP4cd4N0f3x+tUDp80LcEqwr1JLMBcKKr3ugx3S\nEooEvXp1+tEKjbszNqxxNnOyAtdSPKo+7BjGT3y3pnPH8qlcalqc0ckDqgjI2ovy7AOwHTFX5NLa\nNyrIVIPIIqa1gltJhInB7j2rRwW6B1JPS5swqwiUOSWwM5xnP4VBd2QuoSpOG7GtG2dbhB2buDVo\nweq8VhyNAmeY6hos8crbl/Gsw2c0Z+6QK9fezjkGGQEe9Z8+hwPyqD6YrRTfUR5a8NwP4MiojBM3\nUYr0abQFH8OPwqs2hKD9wflVe0sBwS2Uh7GrMWnOexrshpCqeVAqVdMUcAUnVA5A6advSs+e1aJu\nlegf2aOm2qWo6F50RZBhhSjU1A5O0MhLbvu9q7vwvALaxubxxwqnmuPitHin8tgc5xiu2vz/AGb4\nTWIcPL/KtFqzkxEryUDAsZy9+zFsCQnmprt0gkkEg6PjcKh0mHzb+3jx1YA1q3tgrCYkcGWsqlub\nU56igtWUb2KSWGF4mJAUUollS0kQk8rWlNGI7eKMdNo/lVSSPGMjgjFZRdmjjU052In1SaSyiYuX\nm2hMtzwMAD6cCofsFkYAtzcbpmO4heSSfWtDw/p1vfXj29wCyjkAHGa76y0i1sxi2to4vdV5/OvT\ngnJHqwq+6kjzq18NTXDL9msZFXvJKSo/AHmuw8P+G20uczLK29/vgdDXURxKOqirIQDoB+FaRp2Y\nSk5bj0TC9OfpTtpNLGCOtSduAMGt7kWI9vY04DIpTgcYpAuecU7iFB6DjincjnpTCDjrS8imIduF\nGabnJ+tG8DjB/OgD5VooorzTvCiiigBaKKSgBaSiigAzWjpMBluN5+4nP41FaafLckH7sf8AeI/l\nW/BAkEQjjGAKicrKyKSJ6XcaaOaXFYFDg3pUkEkazxmSTYu4Deei54B/A1DTJYxIhTODjI+tVHdA\n3ZHoZ8VfbNI+xWcbW+lWMfKs25piSCMnr8zDeffrXCz3DzTtK53MzZOauwRNa+FioOTJP8x9azDk\nn3rSrK4o6j3kLys4CruJOF4A+lCt2poQnp3qREPesblDlYk05oIZhiSFG+q80qrUgwOuKLhbuUG0\nOwc58oof9k/40R6FCjbkfj3FXi+O9NM2O9UpsXIhI9GRudw/CrkekIowAfyqmt2y8g4/Gt7R7xb1\n/JdQXAyDjrRzMlwMXVLDyLHzAD8si/zrYsIxPoccRwfKcj8as+I7cf2BcnH3dh/8fFXNGsGjin80\nbIzMxX/aHTj8qU60acOabsXQw9SvPkpq7M6LSRIQFj3MegAzWta+G1yDPgf7CgZ/Ot21t1Cny1Cr\n3Pc1bRQOFH415FXH1KmlPRH0OGyenT1rPmfbp/wSna6dBariONU916n8auKgA+VefWpVj4qVYgOt\nYKi5O8tz1E4wXLFWRXEbHrTxF0OKsBQO1NOK2VJIXO2Isa7qdhRwMVGWxTS1XohWbFd81Az88U8n\ng1A3BNZTkaxiNZqY1KaaelYs2SInJFQmpXqInNYs2iRtTCae3Woz15rFmyENAFJux70mahlEg/lT\ngfeo91G6gkkzTqi3Ub/figVjY0mYLNsYAq3BB7iqN5p6W13ImBweD7dqbaymOZSD3ra1WASW8Vyv\nJxtJ/lXt5bVvFxPm89w14qot0YHkqTS/ZwD0qwAMUbc16p8oQCJVPenhBUuMU3GePWkA0KOlO2gc\nUAYP9aUCgBMe3WlIz2pdvBpQPegBm3mlCjJJNOxz60u0HtzQBEFFO24OKeE+Y8Uqj1oAbtI4o24N\nPxgdKX6CgZETTs5HelK56igIMigBB1oA5JOKfj8Kb9cUALk+goB3DoKBz6U4EY7UAIBj3pQemOlK\nV44o2/T60ALu7UuR2FNK5OR3p232oAOgpvPPpT8DHAxSYoAZjIHNG3PtTyuOetNIzQBHtHfpShV6\n/wA6XHPSkPT1oAXAxTSyg0uM0FQTjmgBpIyMetL+nPpSBMU7GTzQAgPtUiMpOP6Uzb6U7aB2/IUA\nP4z/AIU0jHbilCnrThkjmmAmAeD3HWlwARnOKOnsKUkYpAOG0DgUxx0PYe9AGOvSl655zQBGM9Tg\n/hRgH60vC8Ype9ADdnODSbcHinkZ+lLgAdBQAwqMU3b+dSZ4/wAKTHcCgBmCOhpMVKB7UgXJoAi6\nH+dIeegqbbRgdxQBXdc8VXeD0q+YwRkdRTCnY0AZxgpvlEHGK0jF7UzygBjH6UCMHXl8nSJG9etc\nNHFuTfjI9c16fqManTZ94DJtJwa8tbAciJiAT0BpS+E5sVflRp2ltCV3szZ9COK6DQLiNLsliEXB\nxz7VyCyzRjAkYc9M1r6FBDd6jGkhbcp3YzWeHbjPmPMjF86T7nZs2ZSR3NNuIPtEO1WKyKQyOP4W\nHQ1YeAAfKMY6UiDAxTk9bnvI6zwtrP2m3VnAEgzHNHnoe4/z6iu7VhIA6g7D0IOc14zBctpeoreZ\nIt5MJOM/d9G/Dv7V6Pbajtto1Dc7RXTRndWAxviB4Wj1CE6rApWQALOPUdA31HA+mPQ1xq6N/wAJ\nLokOk3Ug/tSxBFlcFQDNF/zxPuP4f/rk16Xc3ytZXIduDC4+nymuAwRIskZIZTlWHUGrn/MK5yi6\nCY8LIWbbxgjGPwrQtLJYCBtAH0rr7mBdbhN1AgF+o/fxKP8AW/7aj19R+PrWL5WOCMVk7MQ37ONo\nxxQ8J4K4yKsxg7DnqKXGRU2sMzLrT0nG7aA/rWcdOK5+XP4V0nl9/wBKQxAjGM1SbE0c/FasjAgY\nrQjVivPWrv2YY6UqxBf8KHqBVEWRSGP2q5sPpR5ZNKwFAw54xUZt1z0FaWw8nHHsKPJBBPFHKFzJ\na0Qn7uaY1mnYVsm3Bpht/SlyBcxjZjrn86imtQkbOSMAZJrcMHYisPxRM1rpDheGkO0UvZjTOJtU\nN9rgwuQXrX8XSg3FtZqeFAyBTfCFqHu3nccLzUV7GL7XpZAW2pn/AArZWSuefKac5SYzw4h/t2EF\nSQpz+Val/LkseMGQ8Unh+COPVWdmOUUnmorgq1wVJ4LE1zS1kc1WSlqhLthtiwf4BUUwBjXNSXig\nFQpzwKY4zAKjY456TQaNKLbXI2PQkA/jXqSAMgI7ivHjIYryNh1JxXr2lzC506GbPVBmvRw89D06\nDui0iCpRH+VMBwaeJMjGfwrrudFh4HHb86XGaYsnrTtwPPP4U7isHajnNNzS89u1MloUYPU005HP\n8qUjIHA4pOh/oKoQE00sSetOIPUHFNw/p+tMD5YorV+wxMOhH0pP7NjPdh+NeXzo77GXRWsNNi/v\nNT102DuGP1NHOgsY2KekTucKpJ9hW4llAp/1Y/GrKIqjCgD6VLmFjGh0ueTlsIPetK30yCLBYb29\nT0q4BjinjFQ5tlJCAcAAYFOAxSZ9qcDUjF/pRn0pvOaWkAmc9qVVLOBjOQf5UopVcJMp+o/Smtwe\nxpkltEdSfuzjA/4DWcAMVZSYmznj/h3q36VW3Ad6qZMOo4U/IFQGYVA9zjvUWNC8ZeKjacetZzXR\nPSoWnJzzVKAuY0HuB61A1wD0NU/MJ6Umxz9449qtUyXIlkutnQ59hXQ+EHnm1mNsbYgrZB78Vy5Q\nlxtGfWuy8F6bcS3IvmysEWQv+0SMf1pyikiVK50XiGDzdBvEHXaDn0wQafZT+ZEPmJGBg0uv3MNr\npkiTMoeYFURjjd61n6LLugUHII3KQe2DXlZlG9JPzPdyCdq8o91+R2dqf3AA79avQxZ5rMsWyqit\nyFcqK4sLFSVz3q75WAjwBS4wOlT7eKiYda7+WxxqVyFxVdiRViQcVCwrKRvAiPNNp7dOtM4NZM1Q\njH8ahbmpfamNgVky0QmkNONNNZs1RDJUJ4NSynnFQGsZm0BGNRMakJ4qJv1rFmqGbs9KTdSH9Kbn\nFSUP3Zo3UwnmkJoHYkLUgaoic0bsUBYso+CK6ewl+16e1uecjA/pXJKcmtrSZ9kgFdWEquFQ5MZS\nVSk0xpUA4796UnpVq9jAuDJjhhuFVR16Yr6SMrq5+eVqbp1HB9BrD8KMgGnYo288LimZDeCacBno\nKcBg9KMAd6BiY4pu3jNPOCOlIOKAEx2oA9Ac07qOlAX60AN70uOOKdt4NKBmgBB0peMdaM8ds0Dg\ndKAE9aB+NLjigHA9aAE703bk88VLkY6Uwg+woAQDmgjtTgp5pvSgBQSPenA5+tJuGfX3p4yTwaAE\nHXml70uMGl64oATBxmijGKMenSgBPakIwPaloI7/AJUAREGjGOvNPZfrSbePagBMA9hRtOQfSnY4\no7UAI/PPX+lIqgj0p4Uc/wAqbwOBQA4AAY7UZA9M0m7jpzR1P86AAnHXpSq2OvFKMEcEAjnkCgAk\nnp64H+FADuoppUY9DTvmxnvQcnrQAwA+nH1p6qPXGKUjHSnDkCgCNlx/Wl25p+2kxj8KAGhBQFwe\nRT6OvegBmMHijZjr0p+BR2ximAzHpQRinjHQ0uPSgCMjil25OTThS4oAYRj1pCpz0qToPekwc5oA\njK03A71NigjPagDD8STrbaJcP3IwK8ptmJfPXmvQfHd2Es47VernJFcbaaZM1uZwp2+tTL4TjxlR\nKKiyLcScn1rd8OlV1pCQcnj+dYoXqDVqwlkt9TtZAxChwD71nS+KxwQf7xM9X8oHmkNuh54+tSxE\nPErDuKd0ra1z2yu1pG6FWAKsMEHuKlhjuIY0iS8lWNF2qMKcDtyRUnGaf2zTStsAjC4aJla6kZWG\nCCF5H4CqDRmA5GTH3x2q8W44PFNzzjFO4iOFyjrJE5VgchlPStF/supcz7ba6P8Ay2A+Rz6sB0Pu\nPyrOEWxiY8fSnhh34NOwXFnsZrSTy548EjII5DD1B6Go/Lz2rQtr14Y/JkVZ7YnJifkZ9R3U+4qY\n2Ed0N9g7OcZMLf6wfT+9+Hr0osBkhOKNmB0/Sp2jZSQwOQcEUnGMGnYRCE4oESnnFSkYFKACaLAR\neWPSgICPpVjAppx6U7AQmEHrmjygDxxU4HbNLtz1FOwiAR47cUnl9xnmpyhBpMU7AQeSCckGuX8b\n2bS6UhQfdbIrryu7vXK+N7gxacqBsbj92iwndpnH6RrH9lW5hEYYv94mtfQlju5ZZC43N2rljiRA\n23J71Hm4STfayGM+oNc19dTy5wT0bO0Ro7a8mV3A4K7qyfPQygEjjNZMbXmwiSUNk5OeacolLcqD\n9DUO19DBpLRM1rllkVSqjgckUiRs8AKgH6VnCUoMAkfrUsV0Yj82AfX1pSRjUi3qiG5UhgQPmBzX\npXg66+06NgfwOVrz10W6J3SY4zkV3fga2a10iTdkh3JBrrw17HbhJHTEn1/OlAHWn7ge1Jk+hzXa\nd4FR2pQBt4cg+lGCw7UoXpkD61SER72zjBPvT1bjpS7R2/nRwDVIQ7nFBIHGaQn2xSHJ71VyQJAb\nHAJ/WjcvfP5Ug7imjOOCwH1H+FUhHz2BxTwtQI55qVWNeMeiP2Uu2lVjUgOaQDMU4Zp+KXaNuaQD\nQKcKAKXFAxaM4+tN7UuKAFJpM0YAPrUTSkdAKQEoyaaQPMQZ7n+RqnJcuRTbaRpL2IE9z/I1aQma\nyNstLonorJ/I1mvd+9WZXItL9R/0zP8An86xSx5q2rkRe5ba4J6VF5hOcmoNxxU9vCJVdmJwvYd6\naiU2IrM7bVBJPQAc1J5IT/Wtz/cXk05XJyiDy177ep/GrWnWYvLgRb9gJwSBk1ooGbkVQTkBEA9A\nOSavzuXt4opIo4AgOQg+Zj6mtTR7CO/1RrCE/Z1UEtIBudse/aulHgXS+sstzJx/fA/pSlOMNGTq\nzzOa4IIWGMEA5Jboa1V8Va+IFgjuoIIgMKscaDA/AV3sXg3RIhzamT/fcmrkPh7SYDujsIAR6rn+\ndZOpF9Ck2tjzTTdO1bWNSFw7SXUv/PR2JRfck13ltpo0mO3g8wyO2TI57sa3FUIoVAFUdABgVS1I\nZa3bvk/0rjxz56TPUyibji4+dzT05/lSukg+6K5PT2OF+tdVbn5BXmYJ6WPqsYi3xioXGKdnvTH6\nZr0G9DgitSFxUL1KxqFjWEmdESJqjJwetK7VEX56VhKR0RQpYdKjZuaRieTUbMRWLkaqI4tUTPTW\nPNRMxzWTkbRiLI3NQk+9Kx70wmspM1ihC1RMeTTmzmozk1kzRIaTzTSaCaYxxQVsOzTSaTPFNJ5o\nsA7dSZpgalzTsIlVuauWk3lyqc96zxzU8TEEH1oTs7iaurHUT/vrRXU52/yqlxn0qxYMXtth6EYq\nux5Ir6LB1OeB8PnVD2dZSXX9BeB64opR0pSvOc11njCdST3pe+O9KPWg+tACbcnJxilAwOKAODQv\nTPrQAYxQFOff2pen40A9B60AJ1HWgL70qj3pTwR70AJs56il24HykCnUpAoAjK8jvTtmDgjB9xQe\nAO9OIzg5PQUAMI//AF0nXnNOxxTWOGAx1oAMHFJinAnAxQTxn8KADaBzShR1xzSDk4xwacOaAExg\n/X1pwGBxQBk80HgUAAGBjOaDjFL/AAk980Nx+AoAZjvjj2oIA7fpThnBNIw4/CgBuPzo4OOKU5GO\naByM96AE28mkx2p2Kcq5I5oAjA5560bfxqQIBzSHsKAGYox1p/QUbR6UAIhXd7U7oB6emaTb86jO\nOe1Ix25HpxQA4sB60q8igLkEk0sdMBePTjtmlXik7GkBzigB/pikHXpxTuqZplADuM0mBzSgUuBQ\nA3FLjjNLSgZFADMZ5pQOOlLjmgc0AN20+NAzc9KOhxSHK9DQAhHbNJinYxSnimBGF96XGB1qTNVd\nSlMGnXEij5lQ4oBHm/iG6F9rcgzlVO0VqXzxWvh1IlwGwBxXL2rma93vyWfJrR12Vsxx5+UYFU1a\n6PKxHv1G+xghnyzZPWtO3gkvYo0t0Zpyw2gDJNemeF/AWkTaXDc3KtNJIAxzwK7zTNH0vRiptLCJ\nWI+9jmop005XYoYapVacdDkbeyubWyhS7jMcuwZFPxXQ+Im8145MAHHQVgdK1nFJ6HqqLirS3ALS\n4/Kk6c05agAxntTdntUnSkPr607AM8vNNMZHaph0HvS5osIrFWXnBpRMVIyOfbrVnGcUm1W6iq1A\nnXU45wFvY/N7CQHbIPx79O9H2HzwTaOJx3TGHH/Ae/4Zqs1rGw9KqyxvbHdHKQV5FK9guWShUkYI\nYcEUBSOlJb67JO3l3kC3GON5OHHYfN1/PNaWo2K2iwOjsyzAsAeq4x37/kKq+tgt1KOfUmg4Y4GA\nKbjJIpduD17UxBgZwKT9aUD5CST6U0thttMBeg4/Wg53DvSqT0zS9c5poQ3Gep/GuM8e2/mQW75I\nIJBrtAARjFcZ49J8iADjnND2E9mcUIDBCJNwKH9PrQoRhkY/DvTftRXAKK3HOe9L9oWOQP5KFT/D\nzXA43Z5Uotsk2gA/ypT82NoINNSZGIcx8HtnpQl0rMw8rGP9qos0YShKLFjG5/mxVyVYBGM4qksp\n3ZwOadJIWAGOtWtyWndE0eoW1mSRAHbphuleleF5ZJ9IjlZQCxJwB0rirPRbSXTPtcoZjz8oOOnv\nXbeGudHQ9OTgDtXdQWlztwzT2RsCQehp6vk1Ep5x60/r1rrOwkyM4FSC3kKbgpx9Krp/x8op5DN0\nrpFXyYwFPGOh5rOdRxZSjcwGUjgqabgdCO9b58uQ7XiU+9Mk06B+QCKFXXVA4MwxijAq7NYpHnDH\npVV02AkGt4yT2MmrETgdRSDp2/GgnseeKTPrzViP/9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "orig_scale = 4\n", "\n", "def process_chunk(chunk):\n", " im_input = chunk[np.newaxis, np.newaxis, :, :]\n", " net.blobs['data'].reshape(*im_input.shape)\n", " net.blobs['data'].data[...] = imtmp\n", " return net.forward()['prob'][0][1]\n", "\n", "def get_face_prob(chunk):\n", " return process_chunk(chunk)\n", "\n", "def add_outline(img, i, j, scale, confidence):\n", " color = (255,255,255)\n", " if confidence > 0.985:\n", " color = (0,255,0)\n", " elif confidence >0.96:\n", " color = (255,255,0)\n", " else:\n", " color =(255,0,0)\n", " for x in range (int(i*scale), int((i+36)*scale)):\n", " img[x][int(j*scale)]=color\n", " img[x][int((j+36)*scale-1)]=color\n", " for y in range(int(j*scale), int((j+36)*scale)):\n", " img[int(i*scale)][y]=color\n", " img[int((i+36)*scale-1)][y]=color\n", " return img\n", "\n", "img = PIL.Image.open('test_vis4.jpg')\n", "w, h = img.size\n", "img = img.resize((int(w/orig_scale),int(h/orig_scale)), PIL.Image.NEAREST)\n", "imbase = img\n", "img = img.convert('L')\n", "w, h = img.size\n", "scale = 1\n", "print \"starting processing\"\n", "found_pairs = []\n", "next_scale = 1.3\n", "next_i = 4\n", "while w >=36*2 and h >36*2:\n", " img = img.resize((int(w/next_scale),int(h/next_scale)), PIL.Image.NEAREST)\n", " w, h = img.size\n", " print img.size\n", " im = np.array(img)\n", " scale*=next_scale\n", " \n", " i = 0\n", " j = 0\n", " last_result = 0\n", " while i < int(h-36):\n", " next_i = 4\n", " while j < int(w-36):\n", " imtmp = np.array(im [i:i+36, j:j+36]/256.0)\n", " face_prob = get_face_prob(imtmp)\n", " if face_prob > 0.5:\n", " next_i = 2\n", " while j < int(w-36) and face_prob > last_result:\n", " imtmp = np.array(im [i:i+36, j:j+36]/256.0)\n", " last_result = face_prob\n", " face_prob = get_face_prob(imtmp)\n", " j += 1\n", " if last_result > 0.92:\n", " next_i = 1\n", " matched = False\n", " \"\"\"print last_result\n", " print \"visage trouvé @ %i , %i\"%(i, j)\n", " showarray(imtmp*255)\"\"\"\n", " for pair in found_pairs[:]: # copy the list to remove while working in it\n", " if (abs(pair[0]*pair[3] - i*scale) + abs(pair[1]*pair[3] - j*scale)) < 20*scale :\n", " matched = True\n", " if pair[2] < last_result:\n", " found_pairs.remove(pair)\n", " found_pairs.append((i, j, last_result, scale))\n", " if not matched:\n", " found_pairs.append((i, j, last_result, scale))\n", " j+=36\n", " last_result = 0\n", " \n", " j+= 4\n", " i+=next_i\n", " j = 0\n", "print \"adding overlay\"\n", "for pair in found_pairs:\n", " imbase = add_outline(np.array(imbase),pair[0],pair[1],pair[3], pair[2])\n", "showarray(imbase)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Redraw\n", "\n", "Allows you to define a new threshold (provided it's more aggressive than the original), without calculating everything. " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2016-11-19T19:07:14.604000", "start_time": "2016-11-19T19:07:14.341000" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "adding overlay\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy\nMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAI9BKsDASIA\nAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA\nAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3\nODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm\np6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA\nAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx\nBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK\nU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3\nuLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1vHNF\nLRVkAehopD0pehoAKKXtRigAAFHaijPApAHelxSZAPUUFlHVgPxoGGKXvSCROu5fzo8xDnDD86AH\nYo70m9f7w/OjzI+7r+dIB1OqMSxnHzrn2NL5i+tADhTqYGGf8RTty+opAOzS03IoDjPf8BQA7vTg\naYDzkA/lTunY/lQMeDzTs0wZ9DTWYqOh/CgBzvivjXxRc/bPEerXKnKy3UjA+oLE19gu7Ef6tvzH\n+NfF182ZJCe7Gn0I+38v1IIuY2qJTxipID94VF6UjQ9o+B0p+z63GTwrwsB9Q+f5CvXPMxxmvDvg\nrcuut6nbqMh7YSHnH3Wx/wCzV7QGbqwA9BuBNJBLoWhJzVuN+KzFcnmrUZI4yv4k/wCFJiNBH5qY\nNkdaohm5wUwPUn/CpEeXH3Y/++z/APE0gLWeBQOtMTdtHzJ+Z/wpcPngxn6k/wCFMCQmgHjFNO//\nAGD/AMCP+FJucdl5/wBo/wCFUA5u31FFJiQ/e2AezEn+VKRz1FAhDTadgf3ufpTSP9r/AMdpAJR3\nNJzn73T/AGf/AK9HrzyfagApDQR/tf8Ajv8A9ekw2OHH/fP/ANemAfWkpCG671P/AAD/AOvS4Jzl\ngfoMf1oAQfd/E0UFeMBiPpik2f7bfp/hQAtFJt4+836UEf7TfpTEFA6D6UbeOrH8RS4HvQMTvRS4\nHqaMD34oASjtSkdgxHvRx9aBCCgUpx6UcehpAHNFBx7/AJ0cccH/AL6oAMChelKAM55/M0YHofzp\ngHSik2qfX8GP+NGxf9r/AL7P+NADucUYB4puwcdf++jTsDOfmz/vGgAHSlowOpBz9TRtHv8A99Gg\nYoHFLjpTdikd/wDvo0FBxjd1/vn/ABpCHjrSL0pQBnP9TRx/kmgBelLSbR7/AJmnYB7fqaBh0p2M\nimFQCCMjJ/vGpARTAao4FOo49P1pePT9aAAUoFACn1H40BcHO5vocUAOHWlXoKaAQxO44xjHYUoR\nf9r/AL6NAx4paaFHv/30aUIoGOf++jQA6lppRTx83/fRpQoBzz+JJoAUdKWm7Rnv+Zp2MUDCijFJ\njDfUUALTV6fiadSFQT3/ADNAxaKTaPf8zS4Hv+dMAoox7migAoo496Dz3IoAKKMe5oxz1NAC0lGM\ndWNGPc0wCijHuaMe5oAKKPxNAHvQIDRSY9/0pefX9KYCUxxwadzj7w/L/wCvTG3Y5ZfwH/16iWwh\nP+W//AR/M1NUP/LYf7tS4b1H5VohIKKOc9vypPm9qYBSUvzZ7UhzntQIKTFL83ov5/8A1qT5vRfz\n/wDrUCDtRSZbP3Rj6/8A1qUZ9qoQlBpcH2FBoENxRSnI6DNJk+mKYCY4oxyfrS/hR3piCkI9aUn2\nozx/9amAmKSlznsfyo3Adj+VAhF6UYoHHr+VLnPY/lQAYoxRn6/lS59ifoM0CEI+U/SlApf4e/5U\nAigAxSijIpQQe4oHYTFIV+ZTTtyg4yAfrRkEjnpSCwYpcUtLQWojcUtLS0h2Gkc0Yp1FFx2G4pKf\nRRcTiZox6D8qRh7D8qdSEcj61iMMAdh+VGPYflTqKAE2j+6PypNqgY2j8qdiigBoVSo+UY+lOwPQ\nflQv3RS4pDExz0H5U49Og/Kk70poAaOvandRSAcmnUAIAKUEjoTRRSACT6mnZPqaaaWgAyfWlyaS\nikAuaM570lFAC0uaTNITQMdmopG+X15FKWqKQ8D1zSAZdS+Vayy/3ELfkK+Mrn55fxP86+wNbk8r\nQdRk6bLaRvyU18fSOVkb61XQhfGGFUDHFVj0qUkk5NRHqaRoej/BqUJ4su1JwXsmA9/nQ/0r21nx\nXz78LZjF48shuwsiSKff5GP8wK97mkVerKPqaS6hPoWY2yato3FZcNzD/FLGDnuwq0l5bn/l4i/7\n7FIk0Q2RU0bcVQW8t/8An4iz/vipPttsmA08an0ZgKBmmhqRTzWWt/aiTJvof93zFqwmo2ZPF3Af\npIKLAXs0xjwv1FQC8gIysqke3NPE8b4CNk5qrCLGaTNN3DGdwx9aQSRnlXU/Q0AOpM0Z54BP0FJ8\n39x/++TSAB1P0ozSAnk7H6dNpzSFiP8AlnL/AN+2/wAKAF9qSm+Z/sS/9+m/wpPMGfuSf9+2/wAK\nYD6QdTTTKOyyf9+2/wAKAzY4jY559P50AOo9KaGY/wDLJvxZf8aPm/uH8x/jQIWg9DSZP9w/mP8A\nGj5j0Q/mP8aYC9qKQ7v7pP4j/GlG4k5Uj3JH+NAB0opcc/8A16T/ADwaQwNJSke1GPemIDQOvWjr\n/wDrowfT9RSAPajnuKMH0owcUDFopMn+6f0/xpRk9iPrimIXtR3oxRj3pDA9qWgqccYyOlIA3on/\nAH1/9amA6lxTQD7fn/8AWp2D7UCClPb60YpSCR2z9aQwFFKFbjlPcAn/AApcHHUUAJ2pRRilxTAM\ncD60vajGcc07b6EUAJS0g57inAcZoABTu+KNvuKMHIxt/E0ALTqbh/8AY/76/wDrUfOey/8AfR/w\noGOpab8+OAv/AH0f8KX95/dT/vo/4UgHd6WkG7uBn60fN6D86YxaWmgn2/Ol+b2/OgBaO9N+b0H5\n0Evj5VUn0Jx/SgY6io8zf3I/++z/AIUoMp6rH/32f8KYD6KQbu+0fif8KXn2oAO9LSc+tLj3FABR\nTdx/un8x/jRub+4fzH+NADqO9N5/un9Kdg0AJS0fhRTASloxSc0AFFHejn0oEFFNEimRowTuUAng\n4596dQAlRP8Ac4qTPsfyprKcVMthCD/Wj/dqWov+Wi8fw1LWkdhBSUdOx/Kj8DTAKKBzSZA6kCgA\noo3L/eH50bl/vCmIKKTcDwCM+maC6gcsB9TQIWko3KRkMCPrRuX+8PzpiCkI4oyPUUEjGcjimIKM\nUZ460uc0wExRilooENxyKMUp6il4oATFGKdiigLDcUAcmnUdSaAsJilpcUUDsJSgUtKOtIpIaBxS\n0DpS0DSCilxS4pFWG4yDSgUvTNFA7CYpcUYpaQ7DcUmKfikoFYyUfOckHBqSoIkC4Hc88irFZ8rW\n5mncTpRig9OaXvQMSjH1paBQMB070D8aWjtQIKU0nelpDEH0pTz2ope9ACY9qNqn1/M0tFADdi5B\nwc/7xpdij+9/30f8aXvS0gGlcHALY9zmjAHr+dKetJQAAD3/ADNHGKKM0gEBIJ4GPqaC3Hb8qTPW\nm5oARtp6qp/4DURRM52LkdOKcTTSaAMrxNsXwtrDbEyLKYj5R/cNfIk/3yfevrjxS2PCGtf9eM//\nAKA1fJExyafQlfExhOTmo2+8frTxnGKYeppGh0Hge4a28aaQ69Wukj/76+X+tfREpUMSFXPqQK+Z\ndEuvsOuWF3/zwuY5PyYGvpOdsNil1CWyLlqwOeFz/uir0bEdP0rMsm+YitBDz0pEltZG4+Y/nUwk\ncj7x/Oqo6VOh4pDJBnJzk/WrMcrjufzqsDzmpFPNNAWjK5HLMR9aA5xyT+dRA9qcpqhEjMdvX9ac\nXb+8fzqMng0oIoAXJpCabRSAUn3pjDLqPf1p2ab/ABrQA/pmijNJmmAvSkoooEGecdqTikDfNx6U\ntAw7UUGj8KBAelHrzRSZA60DFoNJlexo3L6igQtFJuHqKA6noRQAooHrSAg9Dml3DufzoAWgUm4Z\n6ik3qB94fnQA+kHFN8xP7y/nTs4OPyoAWik6UtAxaWm5o3p03L+dAhw+lLTPMQZBdQR2JpfNj/56\nL+YoGPpaZ5iHoy/nTgy+ooAcOtFCsMjkUwzRIcNIin0LAUAS0tRCeHH+uj/76FKJov8Anqn/AH0K\nAJKcO1RedEOsif8AfQp6yxkgB1JPbNMBRxTqZvRSVLAd+eKXzE/vr+dIB4paaGH94fnTgw9RTAcO\ntC8k/WgdaaJEDFS6gg9CaQySlqMzRjrIn/fQpPtMH/PaP/voUAS0tQ/arfP+vi/77FKLiD/ntH/3\n0KBkg7/WnVCZ4kYh5EU56FgKUXEJ/wCW0f8A30KYEtFR+dF/z0T/AL6FL5sf/PRP++hQA+kFNEkZ\nGQ6/mKabiJchpY1I6gsKAJaKiF1bn/lvH/32KDcwD/ltH/30KYyWio/Oi/56J/30KBNETtEiE+gI\nzQBJRQORR0oEFFFFAwooooAKO1GaKACiiimIKKKSgAzTW5pc0xnC5J6DmplsIP40+lS1CjAlSCOl\nTVcdhIKKKKoYUlLSUCClpKKYBRRRTEA4zRzRRQISilopiYmBSAYFOxQBxQFhMUYpcUUBYTFIRxTq\nMUBYaqKowBTsUuKKB2ExS0UUDsJgbvqOlLgUEfMPpS0AkJgelKBilxRSKSEwPSlwM0tHc0DsGKXA\noxS0ikhMUAUtFA7BRiilpFWEpMU6koFYwIXAt1ZS0h64JDH6HFWQZCAdg+m6n7cD0opSbZzpWG/v\nCOUA991L8/8AdGP96orq5hsVXzn+ZuijGahGp2xAP7zn2H+NRdDLfzdNq/8AfX/1qUbvRf8Avr/6\n1U/7Tt+mH/T/ABp66jbHq+36j/Ci4Fj5s4wv/fX/ANaj5sDhT+NRfa7bqJgf+At/hS/bIP75/wC+\nD/hRcZL8+ei/99f/AFqX58fdX/vr/wCtUa3ELH/WKPqcU8yxdTNF/wB9j/GgAUuccJz/ALX/ANan\nYbH8OfrTBPDn/XR/g4p6srfdIP05oATDn+5+Z/wpQH9U/WnBGPRW/KjawOCCPwoAZ8/A3p7cGkxK\nejx4/wB05pksZcc9RyvOOf8AP9alQkxjIwfTNTcBpSTtKn4qaTZJgbpFz7L/APXpxPNLQA3a3/PQ\nf98f/XpGyCAJDzx93/69OpjY3L60MBNuAf3hye+z/wCvTCv/AE1b/vkf404moycUgEK/9NWz/uj/\nABqMqf8Ans+f90U4kVj6r4k0zSFf7VcoJF/5ZBhvP4E0XAb4oGPB+tHzHb/QpxyoH8Br5Nk5NfRm\no+PNB1jwvqlpFdmK4ltZlSOVNuSVIAz0z+NfPNxbyQ53rwDjIOaE00JJ8zK+ABUJ6mns2aZTLHKc\nEH0NfTHmxSxJKpkxIoYHd0yPpXzN2r6WsdLvLbSbK3ufIjuIYI45Ua5jyrhQGH3uxBrKpVp02lN2\nuNpuJdsCu/OX/Mf4Vqps9H/76rPs7OVSCXg/C4Q/1rTW3cH70X/f1f8AGs/rNH+Zf18hcrHbEI4D\nZ93b+hqVUi4DKSTyfnbH86asL/3ov+/q/wCNSiJ8D5k/7+L/AI0fWqP8y/r5ByvsPVY8cbhjsG/x\nqRQncN/30aaImx/CcDs4P9aAa0p1YVL8jvYTViYLHj7p/wC/jf40qxRg5xJ/39f/ABqMNx/gacmR\nn/HNaiJlSLghWI7EyP8AyzTjtPVefXc3+NMDelLu5pgG1P7p/wC+2/xpdif3T/303+NJmjvQApVO\nPk/8eP8AjQNoOfLX9T/Wmk9KM8e9ACkq3WNPypCE7RJ+VIPrRmkAFYyOYo8/7oo2Rkk+Wn/fIoJp\nB3oAdwBjauPYUFUPPlp/3yKKTPNAC4X+4n/fIpcL/dT/AL5FIDmigBBjn5E/BRS54xgflSZ4ooAX\nPHQfkKXdnsPyFMB5pc0AOz7D8hSA47D8hSUZoAUkEchT9QKOCPur/wB8ikooAdkD+Ff++RS7sdh+\nVNzRQIdv9MD6Cl3E/wD6qZnpRmgB2fYflRn2H5U0mkzxSGPLZ9PwFODkDrUBmQZyw46+1ODAjIPU\nUXAmEjAY3fpS+Yx4zUYNLmgCTzG9acJGx1H5VED70oOfegCXcf8AIpRIw71GDS54pgSiRsdaN7ev\n6UwH3paAHbj64rjvFfxJ03wxJ9m2G7uh96NX2hPqcHn2rd8Q6uug+H73VGTd9njLKuerEgKPzIrw\nuLRLjWCdS1Ji09wfMOewPTjtWVWqqauzajRdV2Rr3Pxu12WV1tLCyijJ+UOjOwH13AH8q1tG+M8y\nFE1rTG25+eaA4IHYhT1/MVlWHhq0Vx5oQnA6CtzWPCljeaRJFtUSbDiQDkGub6429jreASWrPTtO\n1K11WxhvbG4Se3lG5JE6H/A+3UVc3H1zXzt8PfE934X1s2twxFjNMI5Y2bC8nbuBPAIOCT6fhj6F\nRgwBHTFdkZqRwSi4uzJM+v8AKl3HFNz6UVQh+fSjcfWm5ozQA7cwOM0u4+tRk4f8KUGi4Em4+tGT\n60zNFFxj8+5pNx3Ac0lNJ/er/umi4XJMn1pc03NANFwuOyfWjcfWkzRTuFw43ZCjPrijPsPypM/M\nPpS0XC40xRscmNCfUqKTyYv+eUf/AHwKfRTuFxnkw/8APKP/AL4FHkQ5z5Mf/fAp1L3oC4gRAciN\nAfUKKTyoh/yyj/74FOooAb5Uf/PKP/vkUGKInmND/wABFOzRRcLjQiA4EaD3CinAAHoKTvS0CuNM\ncZ6xofqopPLjx/q0/wC+RTzSGi4Ddif3F/Ko2jRiQ0aEdCCOKl71Gep+tS9gQir+8j46KetT9Ow/\nKoV+8n0NTZrRbEi59hSUUVQxNoz3/M0tFFABx6frRRRTAPwpCM9h+NLQKYgxRilopgJjmkx606ig\nBMUYpaWgLCUUtJQAUUvaigdhuPc0uPc0tFArBRilopFWExzmlxS0UDsJS/jS0UhpCYPtS4NA70tB\nSQYopaKRVhOgpaQ9DSjoKACiiigAooooAxnb3rPlgvJdSglil226EGRQxy3XtnH6H/F0g1JoCUFm\nJcf3mKj9PTn8Md81ahyuQSM98dKtnMjG8UWs0iRTwo7soPyr3rmVuL9Rh7S+H+4B/wDEmvRZOYUJ\n7E1BtGegrPlTDZnAnUpkPzQap/3wP/jVJ/bhXGYdQH+9CT/7IK79hFGu5+nsKVY43UEx4yMkMOR7\nGjlQa2ucD/bpJ/5ar/vW5/xFL/b0a8teBfY23/2yu7a3iP8AyzX8qYbOA9Yk/KjkQrnDf8JNaIfm\nv4/xiA/9qGnp4ntf4buH8Wx/LNdmdOtTnNvH/wB8iom0uwOQbePI6jZmpcENHMr4jB+5dWv4zSD+\nSGn/ANvMTzc2pHtLKf8A2nW+dD0yQZ+yQkf7oqCTwto8g+ewtz9UFHIBjjXo+Myxn6OT/MCpF15T\ngqqn33xD+bCrreDtDP8AzD4AfZAKYfB2jAcWqr9OKOQZCNfnUZVFA9ftFuP/AGesDxPrGuzfZW02\naZCmTIsV8iZHHHD4/Qnj6g2tT0zw7p9/BaTR3CNOkknmq+2NQnDZOck+oUEgAk4HNZuh6LZaxNc2\nl3bXVneW4DSRi5kOAxOOeAemQQSGBzx0EuNgWrOu07xDJPfxRNK75OCGJwePyrqhllDYPIz0rjtI\n8K2elXYnRpZHHA8xy2Ppk11sTZiX24qbWZWlhxLAfcb8qYXbcMo4A9QKcTTGNMQhLE/6t/wFRkv/\nAM8nH4U4nJ61GTxikBwPxG8UT6H9mgtpvKlkVtwYdVPA/HP9K8wutO1bVmEskVxnOOQckn61r+JV\n/tD4rC3eVpUilQKGbcBgAkfnmu4u7+0sYgZEkcDGREvtXLXnJStE68LSg4c8+p5Vf+F7vS4fNG5y\nRlhXO3BLkxzDGeORgivcH1bTprUzvHiI8ZYd6w9Xi0rVtIuDCY2ZUOAVwVOOozWdOrK/vI1q0Y2v\nE8SlRo2KsMGo6s3uPtBI/H69KrV3I4Q7V9HyTtPc3zsQSt9dKOR0WZ1/pXzhXusV1v1DWk7Q6teI\nf+/zN/WuebtiF/hf5of2GdTYA8cqP+BCpdU1zTtDsmuL67iTA4jDZdz6Kvf/ADmucvNY/sjRbq84\nLRr8uf7x4H86810zw1qGvO11e3kgZzlS/wAxP5mtJVIwV5BTpzqPlgdzD8XbVrza9hILfzDhgw3F\nM8HHrjHGfx9PQtK1qw1y1+06ZeQXMakq3LKyn3UrkfjXiN58Ob2B8R3cL4GV6ihpdX8I2FjNFKCy\n3cryIMmOQbYwAw79D/TFZOunZQ3Yq9OpSS03dvz7eh9BQGXzDxDjY3SRs/dP+zSKbgjlYQfaVv8A\n4msHwzqlhr2hQ6p9lhiR45GdG2nYVBz/ACzWLfePPDllciLCSc4LrGNv4eprOEqntZ6LaPfz8jF+\n22svvf8Akd6DLkcRf99t/wDE09TLu/5YgH/bbP8A6DXGWfinRLyVVhFo2eillBP046+2a6eO3tJY\n1ZIIsMMj92M1up1H0X3v/IX7/svvf+RfYyqwH7k/8DYH/wBBpylyOfLX/gRP9KprZ2wyDBAec8xr\nn+VLZAJblVAAEkgAA4A3mqjOfMoyS1v36WBTmpqM0tb7N9Ld15l7B/vR/mf8KAGzy8f6/wCFR5pc\n1qakgB3jMiHHoDQQuPvfpTM0vUUALj35owP735ClKkUmDSAMDHX9KQj0fB91z/WlKmk2kUAJhv8A\nnoMf7n/16QiTtIv/AH7P/wAVTsHPWjB9qAGhZOMyofpGf/iqCrn/AJaqP+2f/wBlTsEd6MGgBNpA\n4k/Ep/8AXpcHP3//AB3/AOvRz3qFru1VmDXUIYHBBkGRUynGPxOxE6kIfE0vVpfmyfH/AE0H/fH/\nANemkHtIP+/f/wBeoPt1p/z9Qf8AfwUfbbT/AJ+4P+/gqfb0v5l96/zI+sUf5196/wAyfB7yD/vj\n/wCvS4HZj/3zVf7baf8AP3B/38FH220/5+4P+/go9vS/mX3r/MPrFH+dfev8yyB/t/8Ajv8A9ejG\nP4vx2/8A16rfbrTH/H3B/wB/BR9ttMf8fcH/AH8FHt6X8y+9f5h9Yo/zr71/mWP+B4/4D/8AXpSB\n3c/gv/16q/brT/n7g/7+CkN9acf6XB/32KXt6X8y+9f5h9Yo/wA6+9f5lk4B+Vzj/aXP9aYGOT84\n4/2Ov61Ab20/5/IP++6pXus21mEwTMGz/qfmI6df89qXt6f8y+9f5h9Yo/zr71/mXbzUbWwRWuLg\nJuOF/dkk/gD9K8i8c/EkxaxCNAu3Jt2+ZxuCSdQVK5wRg9euRkY4JzvGmt69rGrSm10q9ktVGyEN\naMQFxycEHnOeetY2ieCLi7hM+owzRFv4ChVv16VE8VSgruS+9f5mlOpSm7Kcf/Ao/wCZX1Px5qer\nOqyN5MG3DW8cjlHPXJBJHXB9OOldZ4a8c+Ib+SCKa5hjsbdSX8tAGIXsQvPp0xmuQ1vwjJYxFrZp\nJo+4IyRWJo92LDVLZpTL5SSqZFX0B9M1UZqavE6Z0pU3aSPq3zpW5SaLb2zEf/iqeHm4/ex/QRn/\nAOKrKguo57WCeCTzIZI1dG9QRVhJTj2q02YmkrNx+8U/8A/+vUqtn+P/AMd/+vVBJQSAWAz0zVgM\nQcZqkwsWwf8Ab/8AHf8A69OBboSufYVVV6lD88n8adxE2TjqM/T/AOvS5PqPy/8Ar1xviP4kaF4d\neW3eVru9jBzBBzg+jMeB+pHpXBXPxyvGnH2XTLaKLjiRmdvzG3+VMNz0n4hwvceANXRAzMI0kwo7\nK6sfyAJrzN/ENpZQJDKk0jooV/LTIU45Brf0v4i2vi/S7zQr1Esr29tpIYZGkxEzMpAGeoyT0OfT\nJrkb3RrG2iMjnaijAViWOfTbmuavytK52YRSbfKaMvii2tYYrqGJplfOBuA6Yzn06ir1v8Rre5jW\nO4sJFLEKRC4c8+3HrVCwfTBpZ00uWfcSieWxAY59jxz34q74dm02SULMri5hPEb4wp9cDAP5VypJ\nfZPQlFys+Y5LX7Wf/hJjBFauiSr5qpNtQgH6nGcj1z+NfQ+guz+H9PLyB5Ps0YdgOCwUZ/XNedX+\nm/btSa4iSOV5oPspR16qzfNz9CRXo8drJGoRL64CjgDbH/8AE1vSqu7io3t6fqePipWm1GLdvNdr\nl87sfKwz7rn+tCNuUHI59v8A69Uxbzf9BC4/75j/APiabHbzFB/p9x0/ux//ABNdHtJ/yfijm9pP\n+R/ejQ/H9P8A69BBB6j8v/r1R+zTf8/9z/3zH/8AEUfZpv8An/uf++Y//iKOef8AJ+KD2k/5H96L\n+V465xjNITwcH8x/9eqP2eb/AJ/7j/vmP/4ilW2mz/yELn/vmP8A+Irnq1KrnGMU1e/8r2t39Rqp\nPfkf3ouq4ZQcE55zTtw9GrMtb2KK0H2q6jDK8i5kZVJCsQPTsKuQ3EU6b4ZEkX+8jAj9KqEakoqX\ntHr5RNKdRTipJbk+V7Bh+IpCQSDhsj6UzdRmq9nU/wCfj+6P+RV12JM+mfxpA/1/Co9+KQP70uSp\n/wA/H90f8h3XYm3fX8aN3uah3Ub/AHoozlzSjJ3s10S6X6A0OuZ47e3eaWZIo0BZnccADr3rzHWv\ni88Fy0Oj2KXCK2BNMCA30UH+v4VF421abxD4hTw/bXHl2Vswa5ZW++3ce+OmPXPtVKw8CaMHL3L3\nN0pH3Hl2j/xwA/rTqV+XQ3p0HNXJLX4xaoso+2aXamI8ERl1bP4k16boWv2XiGxF1YXKuucMhTDI\nfRhmuOsvCuhaexe1sVDf9NJGfA9gxrn9bgn8K6nD4h0aQxRhwtxCD8jA9iO4P6detKniLvUc8NZX\ni9T2Qbs8uv8A3z/9elII+6w/4EM/1rO03Uk1LTba9iyEnjEgGemR0q4JK6eY5Lkp3AcMCfpQC/8A\ns0wPShs07jHZf/Zpct7UwuqqWYhQBkk8AV574h+L2jaTM1vp8L6jKv3nRtkY+jYJP4DHvTuCVz0U\ng9jg00lh2X868ftvjgzTYn0ZPLJ4KT8j9Oa9J0DxHYeIrEXVlLkdHQ/eQ+hFLmQnpubGWx/D+Z/w\npCTj+H8z/hSE0hPFMBct6L/30f8ACmk4PP6Ugams3NKT0GhwJ3JjHQ9TUuWHZf8Avr/61Vg3zRir\nGauL0JFzJn7qf99H/Cg7+wT/AL6P+FU9T1ODSrF7q4bCrwB3Y9gK801rxvezwees8tvCzFUjhfbk\nDHfacnnvgcGsq2IhStfqKTaSdr30/rbser5K9h+dKGyOMV4VH4v1KN1zeakF3gAG76k/8BzXa6F4\n4ub2aOC4MMLvIEEkiFgecZOCPc1EcZFu3K/w/wAyXKa+w/w/+SPQh+P5UcVlx3OoSRLIkkBUoGwL\ndi3XHTfn1P4U5ZtSbbmS3UkFmU27ZA5wcb8np9eRW3tv7r/D/MLz/kf4f/JGnxSYxWfG2qOwLS2q\nK3AJgbPc9N/1qa3la5tLO5cAF0V229BlCeB9T9aqNVSfLZr1/wCHY4zvPkaadr9P82W6KhWZt5Ux\nEDICksOR/j1/L3pwkUSEAsecHgkA+ntWtzTlaJKKKWmSJjijJPYilrJ8Q+INP8MaVPqepSlII8BV\nXl5G7Ko7k/8A6+KB27Gt+FHPpXg1x8YvFetXEo0TSFhtQdqssLSuPq3TP4VPpPxU8UaHfIniiyln\nsnIBlNuI3X3BACn6H8xUc8b2uNxklex7lS4qpp2o2mrWMV7ZTLNbyjKuv9fQ+oPIqxJJHDG0srrH\nGgLO7kAKB1JJ6CqEtdh+KMV51q3xQQXLW2hWf2rBx9plyEJ9l4JHvkfSqVp4s8VrN51wBLH18sRL\ngflz+tZutBPlb1NlRm1ex6lQP/rVh6P4mttTYQP+6ucDKNxk/j/Kt3rVme4UvamuVWNmYhVAySeg\nFeBfEP4sXV5ey2Gh3EkNhEdvmxMVeU9zkchfQfifZ9Lsqx78GB6VWbUrFZWi+1RGRWCMobJVvQ46\nH618op8QfFH2GS1i1W6SGTIZhISx/E8j8Kwvt9yX+d2fPXcahzj0IvKx9qJIjMwVgSpwQD0NOyK+\navAfiG/0u6iezuZGxl3tmY7HXuMdM8fpX0TpWpwatp0V5bsCjggjOSrDgqfcHiqtdXCFW75WXc0U\nUUjYO1HaiigAopB1NLQAZHrSbh6j86WigNTlF0O1juRds00s64w8km49a0Bwc01o3f70YP1IoWJk\nP3AoPoKs5iRjmAfWowaeQRBg9Qf61GKhdQY4gMOQDUMK4cEFmVgc88Z3Z6e+T+VLifcSHj2e6HP5\n5pzZZQAxU+q4/rmi1yk2kQYnWKNQzMY8NIxP38A5A/EA/j+FSSGUjbG2MgYcjOD6Y9Mf5FPYbkK7\njnGNw4P6U0INuGAP15/nSsVzikybi20nooG7HHc9P8496JVDR9sr8wycYI9/88ZpeBwBgUZNMi/U\ngleRUkeJCchdo2nOc88fTFEUk5dQykKFXLMMEnBzx9cfrUpxTHA2khRnr0pWKUltYHYmdFBdQMk4\nHDcd+K5jXnuUutl7q19pttKdlvc2uzyQx4AkBQspyeu7accFScV0xIyOf1prnPc0EvXc4DRNP12b\nT30LWbePUNPt5HginBEbK0fCktknbg8FRuDKQeM10uheGLHQI18ndLMqtGJWJGELZwFztXoM7QMk\nZxWwW6YppelYdxxNXIXOzHocc1ms/NWrVgVIIBxg1Etw6Fsk+lNJxS7sDgAfQUwscH+eKQDQwMgG\nc81G7Ad6cXPTj8qgbb/dX8qQHk+paJbWnxHmulwQzNIVfJxlVOef9pjV2+03S5y0koLsMkjGSPp6\nfhWz4ritLe6N44BkdQG9QB2+lcCktrJMXMjpk58oMRn8ua4at+dtndSnFQUYo3bn+y/7Ia18xVLM\nCBnlf9n269Kyxpa2lu7xXjtCUYbScjBHv/TFS3t3bGwJRhGTxvYkkf1rm/7fkW5aAbpIuxA+Zvep\nhzNaDnUi27o4S+ga3umjc8jmq1dZPpMeqajPJI8scj8qrJt57Vk3nh+5tD99HHtmu2NSL0OSUbGT\nXrP24Ra/4og3YI1m6I59XP8AhXk7KUYqwII7GvSGnKeNvFqg4/4mkx+v7x6yn/HX+F/+lIX2WTeK\n75X8NzQxyq7vOowGyR71e03WbDTIIUnlwwAGACcfjVS9UXGkMpIwsqsRnrjNSSabo13ALmXMbd+e\nCayr8raUjrwqkk3Hqbs+tWKJ5r3ChD0JNZmuywaj4ceWB1kQM2Mf8BqK8tNLurO1gEkaqqY3I3PX\nvWZ4gkj07w7bW9nN5iyTSbmD9SAnHf2rBRTcbb3/AMxY5tct9uZflIXwpqd1bJLpKSn7ObW9nKgd\nW+yyf4dKm0vwgb0Ld6hGSpHyKxI4q78P9CLXyandyJsFrcHYPeJ1OfwJrp7nxBpy7bRGbzM4AKEA\n/TIrOdSTrTUOy/U3o04pXmZF94J0OytIL2G2v2uXiMhSC8WJTh2XA3Rt/dq74Q8f2C3sekz21/Fu\nbYpuLxJMNn/rmppda1WRF0pFLpG9qfuKM586Qck8DpXCeJ7X7BqEOpWzqRLhsr2Yf5H5GjCwlUje\ncnfXq+7Ma3JfQ+ixIi8+RMPz/wDiaoPrOk6dH/pt1HalnfAnnVSfmPqB3rzDxn8Sry3SOw0iQQyN\nErTTj7wLKDtXPTr16/lXmviG5mm1MSyyM7vbW7MzHJJMKEnPc12OhHnj70tn9p+R5spP2sVb+b9D\n6es9e0fUJDHZ30Nw3XbDMHP5AVd8+HGdr4/z7V8ercMrAoxDKcgg4Neq+BPi1PZxtYeILieaFRmK\n4JLuP9k+o9619gv5pf8AgTNrs9sN3bDqHH5/4UyXUIY4HkRGYrj5Wbbx65I7Dn8K8/m+M/h5JsCG\n/kXHLBF4/NvrVmw+LPhTU5Hheea0fb8j3cOVJ/4CT/T60/q8e8v/AAJi5n/SO1nnsGgaRpuQT+9D\nAmPPBI4+Xjv+J9arBtL2F0v7shBhm+2yMp+uSQOfx/A4K2ibreNrZbHySuVaJcqw7EY4x+NPe1aU\nATLaSY5XMHQ/nV+xivty/wDAn/kT8vwKl1e/Y9Re3aUrbMpA+0XWzDKcHaRlvTIzjkfStO3u7ZoU\nMEjSx4+VgS+fxPX86r31tNNdMzQ2MyKx2iWIkjn1yfbt2pkcmpqzeZDZsv8ACElZSPrlTn9KqhJ1\nKEG3rZX+5Cas2F0wmkkN3bXEtupGxUyVxjklR1Ofr2xR5Uz3Fzsg2BmwtwfvqNoPAxyM56kfTHFJ\nJ9rkY+Zbo69o/tJC4xggjZyPrmnxNdq0jGCMGRtzfviewH932ra7S3X3ish1tcyG9aBoLpMK7B3I\nKuA2OOSR1HUDr37OumuXjX7KWEqszoSMq2MgK3PQ5/TPaoZoGuoGgnt4HiY5IMhPOc5zt4NPjSSI\nR/uYgI02KRISQOPUewoutxlNNTkvLHU2SOeCeFnVYyykhhGD2JHU+tXrGVIrdhlzmVz8xz/EfWoX\nE22Qi3QO8iuSs2CSMf7PQhQD9TU9ixNtllCsZHyAc4O88ZrGq/3kbef6GTX72Po/0LQnjbo4/E4p\nwdP764+tQuYkQvJtCqMktjgVw+s+M4QZEsfLWPkCRlyW78e3BpSmoq7OhRb2O7YHzo3VkIAIOfcj\n/ColQxxwxrOCSx3HPPQmvMYPHtzbF1uUSVFfgj5SF+nc5rtPDviOz16HaIgkyjkEcH6Uo1osiVB7\nnQuCIzzyf7p5xTVt5FVFVkUAHcAe59PpTTDEedgH0pnkR9sj8a0uJwuMjs7tM/vl4BwepJ9/XAx/\nkUjQ3btuEyRjLA55PXjHb/PelaJPVv8Avqs3Vr+x0uxkuruYRQxjlmJo5mR7CKVru3qy1KJY0jVb\nhEVQARjJbHvXmnxQvriz0fh932mTn5QVGBjuOD05zVPVvippiqBp9nLM+fmMp2rj2xkn9K4/xJ43\nHiC1W2Wz8hAcn95uJ/QUtS1TV7nKwB7q5RP4nYDmvX9Ku4rZrLT0Bdlwu4uqD3+8R+XU9s8VyHhq\nHTJru2uEfEtvw0Lnlsg/MPx9K7x5bSS8tv3ZaQyKRx05615mMmnFpro/yZ3ShbDVGn9mX/pLIo9T\ns+A8hR84KsOQT04rC8RnRbO207UTpNjfSXdxMkkszzDARYiAAkijPzt1B7VemfT76JIvtA3tnKkk\nMAcZ9DzxVDxhpNzN4a0W2s1Eix3d027OAoKwnr25JrJqHNFNtXfppZ9rHXiHJxPSNAukuNEsWW2s\nlRFxHseVlAG4AAls8DA5/wAK2V852UiGxbac8NIO31+ted+DbpdI0mO21LUEB8wlYz92Mex967mF\n4rhRIrhgejIa7I0adv8Agy/+SPJlB31f9fcX2ify3b7FEX6qN7898fe9zUsUl1ltlpbqoOFGWHpn\nv9arRvcxD5Jdw/utVhbiZlyMKe4KmqVCn5/fL/5ITh5/19xoIzYGYUz35P8AjXPeNfFQ8LaL50cM\nT3czbIUcttz3JwQenv3FXp7xokO+Xn0FeefEIC+0YTYLywSBlJPQHjH8qPq9Pz++X/yRom27GNYa\ndba7HdTXug2UckttPKJo5bkuHETMp+aUgnIHUVxtx4bk81hGCwB9K9Atb2+h1GWCGN1jjsrr5Qq/\neFvIRz35x0rnr3Ur/wAmAwAoz5y2wduD61xUXONWST006t9+7Z3OELbbGDb6Tc/Z5JVicrGcFh2x\nXSokur2cUyygzDBO85BboSfX1qbSb+9urS4huI3JaJip2jJOPbAqtoVjcnQtSvY2Ia1MbCLg7lOd\n39PyPfp1O8tOpMWoO62Lts9xA0aMzxXhwC0caug/AoD/AOPVsR6M1ncrf3V0Z5ZOGPlhAp9gP61z\nJ8VyJtH2bLjuMYq+NcvdVRAxVFB4QdahQl1N5VoW03PQNJVLi/t2G9hG4OFz1HzdBz/D/Ou3SbIy\nEl/79t/hXB+Gc24gmfqX5P8AwE/41N8RPEd5omiQrYuqXN27RK5J3KMDleOoyOc8cVph2uaXqvyP\nKmm60/l/6SWPEnxN0bw9M1rGr318uQ0MRwqEHkO3Y9eAD05xXO6d8ZkFxt1HSykBBIa3kLOo7cEA\nHt3H9K46x8FyTRkyOS7/ADMxH9avQfDy4uJWjS8YL2z1zVvEwvZHSsLNq56z4e8b6N4mkeKwllW4\nTkwTRkPj1GMgj6H610O/HZv++TXid34F1XwsYdb0+6Elxasrkx/KeoB46EEEg+teu6VfyX2lWl24\naN5oUkK56EgHFaxmpbGE6coOzL+7PADH/gJrz7x14qv4rx9F0pmhkRFa4nX7y5GQo/Aiu6kkYrgH\nJ7Z55ryK/YyauWY8y21uzOx5P7iOubEScakGu0v0NsNTVSVmZTwG5u2aYySSeXFliTknYvP86tpb\n6zo0Q1HTLmeJkwzR54I+ncVtQW0azI5VclV5z7AVrOQYVjIXyzwTXLRqS5U0duGoQeHin2/zOg8I\neKE8T6MLkRlLiIiO4jUdGx1Hsa6DEh/5ZtXkfgVm03xtcwQswguUYbfccj+R/Ou78Q68dKtoUQg3\nVy/lw7sHbwSzH1AA/MivRjNNXPNlC0+VGhquuWGixCTUbmO3yCyq7je4HXauct+ArIg8f+Gp5hEN\nTEbH+KaJ4l/FnUAfiaxIPIun3yRo8hO5pH5Zj6k9+35AVsxWlitoZTDH5nT7oORXM8Um7JHYsC7X\nbOjjnEsIlj3NGyhldVJDA4wRjr+FQy3gQcx3A/7YP/hXEwyR+EdRu9QhlePR5YA81qD+7ik86JPM\nUY4+VySB1x9MdPqV4Yk+8c06ElKc2u6/9JRy1Kbg+Vnktu0svjjX5Yzv8uaRkVuOWcnmpJLXWbqb\ndL5kbK2QxlYAD/dHA780sebTxPfTeXt+0PI7OWyXO/P8mrVv9RiGmvunaFn+VGAyd30rOpJ810eh\nRpq1pMTWrG/nSzms5ZDtj+dRKykn1BANZ2uyamvhO4a/U5iKsNzZLAkD8etWNFm+y3IE+pTO0q7Y\no5ARk9e4B6Vc1OQX3lWjhWSSQbgzY4HzdfwpxlZ2KnBPXqdn4NRrHwhpkEwm3+TvIMTZG4lsdPet\n1b2P+7P/AN+JP/iap6a0kGl2kJeQGOFFO4nPCgc1bWaQOw8xse7E13J6HkNWdiaO5WRgoEoJ9YnH\n8xThcBeGSXcOCPKb/Co/Pc8F2x7ml89gPvEAe9VcR5J8VfHMhuZPDtjMUhQA3bAYLN12fQcZ98jt\nXC+HvD9xrDLO42wscID3A6ms26S58UeOtQRfla4upZGz/DliTXokmljTZbayisdWbZDEWmj1FYk5\nRWICCM8AsRz6VxYqvyNQW7/rujsowv02MrUPB6RWUlxBH/EQB7CqfhLxBL4d15JS7CEnbKp7rnr+\nH+NdvqZDaHALe01Fy4O9Yr1Eb/voxH+lcXq9hpun2X9oz6LrKjKq4bU4zjPQ58o9+Kxo15dYv8P/\nAJI0xFJOOx9EJMHQEHqM0jSj1rK8PXaT+GdJlQSBHsoWUSOGYAoDgnAyffA+grRM/wBfz/8ArV2e\n3f8AJL7l/wDJHnpXW4pmX+8M03zkYnDA0ef7fy/wrN1rXotF02S8mXOMKke4AyMegzj8fwpOu19i\nX4f/ACRSjd7keqeKdH0OWGPULxYpGGQgRmJz7AGoB8Q/DBXI1Ik4zj7PKD+q15ZqN1Ya5/at35N2\nb2GFZszXSyoR5sabSBGMAb89e1cdNdRtIR5u9+pO7AHtU0sW5tpK1u/392auil1PUvG3iiz1yW3T\nTrhpbeJNx+VlyxPPDAZwAPzrmTcq1naog37pXVd3QcLz+RrD06+WORUmljMeMbWcH8hWtdXsUWkx\nSxElBI4EgQnsvf8AGscVFycZef6Ml704+f6SJQ++5KFA2ORnsQMCr8ZTEcDf8tIe/Y5OB7+n4Vja\nePPsJb/zXEduf3uUwEBrW07VdNvYhLEsvmwkNllHzduxPc/rTpQZ01I2VzqNU+Jn9j2dpbtFNcXQ\nQF5FdUVh2PQnPrVa3+MsMpjSfR5AufmdL5gceoG0Z/MVxd1oVxrXiF5Gfy7ZQqAdc4AB/XNdPaeD\ndHtIlLQh3x99+TXQ8Vyu25Cw112PQ9H8S6JrNgLu3nuohg/JPK6NkduWwfwJHX0q5p13pw062V71\nFdYkDA3JHO0ds15RfWcukX1trGlsrxWilGRcMpUkn5h3BJI+vvXokXibQ9OsLYSzoJBEAwSMs2R1\nyAM9Qev1pU61SpNSulo+/f1PJarOqrW2lbR9JW7+RszX2nrBI8d7GzqpKr9rIyew61Kl9pqYIv4c\n+91n+ZrmZPiP4eVjE08ySE4VWjIJ/wAPxxXRWmsWF1ZNdxXCeQqlmfdwoHUmuxOo9mvx/wAy2q6d\nrr7n/mTrqVgHydStyPQypiqsvirRoJWje6YleuyCRx+BCkGvD/GvxCn1zUXiidksImxDEDguem4/\n5+nvgaPd3lzrNm/koIzOmduSQNw74rirYytC7ik0vX/M6Z4etTpSnJq6TdrPom+/kfS+m69perjN\nhexTHGSoOG/I814547mPjD4mLo7St/Z2mrlkB4Z+A364H4Vz0curKltmNYHDDEquyOB02gg9/wAa\n3tLspvOlYPm6aP5Ju7A+p9aqpjPdtbVnbDDWep1lrb21nbpBHGqKgwoXAFWkfSblGs9Ta3aGVSpj\nlcAn6ZrgZIL23vFu71bO0jiP+uBALn0LHH61sXKRajq0F9pOq6YSY1V4gyyOhHB4ByATz+NYUVrc\n6Z6K3Xobnh6JvBXi9dG87fp9+gaEk9zwp/3uNpx1AB7VD421uXX9SOi2MwGnwNi4dD/rZB1XPcD0\n9QfQVW+J0U9hpnhzWFbm3kaJyq8lWwRgHI42nj3rPtRDZ21spBiRFyc9T/nNd2JqOFP3d2cVKCVW\n766/5mjaabBbogSL7nf3q/EpEqn+EHkVzNz4ws47lLe0bzcsAWBG0fjnNSP4oNhfGOeCUkDd+69P\nrXm04S5tT05VI8r1O4vtKh1DRZbyJGjeIErsOD055rb8N3dxLp0YncSddjE/MQPX17c+9Zmg61Za\nnorW0YaOdwSYypyeBnjr3HbnPGa07Z7eO4gjhICwr87L0xtPX06D/Ir2qUfdPGrSTaa3Mj4p6xJo\n/gC/khOJbjFupHYN1/8AHQR+NfNNjpGoa2ALf5I84zjr719L/EnTU17wJqVtDcIJYU+0KAw52DcR\n+K5x+FeW+BbWH/hH7d3ZUyWJLeu41njJunQTj3NaUVOyfmcifA2rQ24YGOQA9FJzWevhq9a48tht\nJOMd69qaayt1Z3nQIBktmsNdZ8O3F+o+1LIwbshKj8QK86jWqSeqN6lGnGNzg/DrT22prZRqqTRy\ncu6ggjB4Oe1dx4i1HVNI8OxXI32weRYykMjBJPlPzD1B46+maj8V+Eksru28Q2MjNbSMAWiPQ9iD\n/nmuoMGn634YSF40DN++KFSMnONwHuSc44r14O0G2ec6f7+KWqZzPgnxvqVnKDM8r2448rcSME8s\nF/wr2fR9cttVVljliaROvlMSD+Y/SuD8I+B9Pg1MyPL5kONwhK9D9asar4cbRPGVjdaNcyW4uDuk\nhYlkYA8gDI7VNJ+0WpcqcqfM09j0mikX7opaDUBRRRQAUUUUAYSwK2TukGTniRv8alChBgFj/vMT\nVC/vb21mhjtNNa7V1Ys4kChCBkZz2PPr9DUD6hquxwujjzNhKt9oBQNtyAeAfbIHX0HNWcpqnPlN\nUAqO3ubmaTZLYtAnlhi5kDDdx8vr3PPt70oNR1HYa7xJMocqHPC54z1HHqeT+dBaUMqgg5JyW4x+\nX/16SR2RcqPqcZx+HfnAx70izoVQk7S3ABBBzjPQ+1SaK+9riI9wY/3ke08seSTggnAx3BwKUvK8\nUbKm3OGZScH1x0/DtQ0uYRImSCARgZOPp9KPtEfdx/T/AD/gfSger2QJ5wbDgEZPz5HPpx/npUVx\nD5qS4J3sQAxXkDjI+nFS+ahBwwwrYPB44z/KmxTeZCkhBXcoYjrjIzRoK7WthHmmKuRFxn5cEDI/\nHpn/ADioy1yNxG0KF+UHnJye+c9APzqfOeBz2z61XWYtFuClnYbguMYz2z0/WgL+RIGXewBy3Vh6\nUpNQO7jgsM55wvT8O/b86ZHdQyqvlvncMgkHnr3P0P5UXQuST1sTE00nIqsLliiA484KGdAD3HQe\n/p6/qJi3FK4OLW4E1Pav8xHqKps9TWb/ALxR0zkdKUhI088U3OUz1yT0oAP94fl/9egrkKoY8cAA\nCpAiaomOAaztS8SaHpTyre6zawvEMvGzhnH/AAEHOfbFcncfE7SbzVbfStJE109xKIvPZfKjAPcZ\n+Y/QgUnomwj7zUVuzn/HXiVp794AzC3iO3bjHI9ayNE0i51jM73EcESc7H4J/DNdnD4Ntri6F3qG\nCI2bZEOh5PJPcnqazNcs/skspt4LZmYjYTGOFxjGRyOp6HvXnznzPsejCgqfmULrQrlcq0gkT+E9\ngP6VzOoafc6O7XMccLqeoZM10FvrU2mbU1KQRxSZ2iQ8j/63oT/+uPWb61vNMlkgkDbRk+1EE07d\nCqkY2ujFgv475It0YQseF9PX8P8ACqetSmCZFMgKkemMfjWbb3ZeaJUHzIvygd+1dJbaeNbVdPEL\nvesrNvJVVUKCxLMxAGACefStJctP3nsc3LzbHG3tq91MjQLvdjt+U9a76/02C18ZeIZ3nLSz385x\nj5VzKx9etULTwle2Fs+bjTPNkPT+07YYH/fyuk1DRbTV9avLq21iRJLqeSYRxyWTldzE4H+l9s9c\nVyVsZTVRNS0s1om+qfYIw021Oeu5prVDF5imOTqNuP8A69Ri6kjtF8o4YDiumf4aQXO121idH7hk\ntif0ua0LX4cWUMMiS6u7hhxlIBg/9/jUPMMO1q2/k/8AItU5rbQ8juPMad1xtxyVFWb0SR+HbBfm\n3G6nOB1+5DXo2n+BdHe/lE+pPKVOCnmWo/8AQbkn9K6Kfwvo1rYgeWBbI3DJHFKd7DnOJDjIUc98\ne3JUzSjzRir79n2ZhUoOTg7/AGv0keeeBtXvoL17C4ASJ7O6ZJG4MZEEhz7jitlNMFmTPNdyGN8b\ng0pJduxP+T1rRl03w/aXEt8kt6832aaAJ5Cqp3xNH/fOB83pXHy6m1vCYZMyR27EKDzkdQPyNVCT\nqVJTimk7dLdztiox0nrbY67WrvT7n+x5lkDk2pKFOek0oJyPcGsrxB5N1pB8xt6RAMAD2FZWsTXM\nlh4flt1SImxc4Lbf+XmfoBRYi5ubR4LoqPMXaF9yO5p4eLjBO/V/+lMqcrxfunEXFxvkJ7sa6m58\nM3GoTRz/AHVNpb4z6iFB/SsTTdKku9aitJlK8hiP9nrXoGs38lhOkUU8MCpGgAZC2flFdNebVSMY\n76/oefCmvaxcv73/ALacdaeDbqdiZCIx+tVdV8NXGm5lUFo1GSRXdadqFxcCTzUjYpzlO/51SvNT\nk1G2ngSC324KsBNl/wAqIVajlqdc6VNR0RQ8PeGdP8R6QZXnjtTboWnkbOPvBR0Vj1ZelWX+Hulj\nJTX7QD3Sb/41VPwXqDWGh+IMxCTFosgUtj/l4hXH6/pWvF4igTQVvfsuB5zoVYKxyAp6kf7VclWW\nIVWShJ2uktuqv1Mp1IKEfdu3p27+vY9F+HZS00RtJbVre9ktDwYklUKjZ2j5lHoen07V2O1f+eqf\nr/hXl3w81VNTu9QaaJYTsj2CMBDjLdSuM/jXoYhiYZDTf9/n/wAa6YLENay/9J/yOOcqifwL/wAC\n/wCAaMqqZX/eIPmPY/4VHtX/AJ6p+v8AhVe4hjNxKSZuXPSVh3+tc54p1+x8OacZHMz3UgIhiE7Z\nJ9TzwKzw0cR7GFpdF/L2XkKc6ib9xf8AgX/ANbVPEOi6K6pqOq28DkZCkMx/IA4rL/4WD4TJx/bk\nJ/7YTf8AxFeOtqGsa9PJMwt5GzjfJaRSEn6lTVmfwXLcatesriKFp3KKowFXccAD0xVe0mpcsptf\n+Av9DWlCrOfLKFtL73627I90XUrOW38+G5jki2q29c4wyh1znplWB/GuH1P4q6da3MlvBDLJtJUv\nxtyO/v8A55rzzxpaX2jatDIjyLG1jaxb1OAwW3jUj8xWd4f0SDW52ae4YIn8A6mtqVe9CNST6Gio\ntz5Trbn4rX8dwzQxxiF+glJOefY8cfWup0Px/C18LW9dUEkccq8Y2l1V8E9/vdeOlchL4O0YwMoW\nQP2ctkiuR8ReZpWueUshYLbwKCO+IkXP6VMaqqVFy+f6Gdag6dWF+0v0PbvEWrPdadFEi4Sdj8wU\n4IzwB/j9O1ef3Nox2yrEzFSWbGQF9vxxVG18RyajplvA7Kro21SrYwePmK/56V1kGjWwhJ8yQFsE\nuHINRVk+bU6qNK60OUlspZXYRxlXlxliMA+hP9TWro4vtLvobuAEqjjIJ4I9Dg9OK3ksrTy9kgDr\n33nrVDVtmnWpu7PAMf3lByCDx09qhSb0RrOjyq56ra3QurSG4UbVlRXA9ARmpC+Oa5jwte7/AAxY\nPLdRkmP1HHPT6gEVLrmsPp2lSz2itdXH3Yo4/m+Y9yB2/wD1d67fbQWkpK/qv8zy51acJOMpJP1X\n+ZW8U+N9O8NqY5SZ7wgFbZDg49ScYA/X2rxzxl43l8VTRxtE9raxjKQq27LerHAyadJpXiG8uZ7q\n5sJ5ZpSS0ksZJz7Vknw3rDSZbTLzr/zwb/Cl9ZpdJL71/mL2tHrNfev8zISymncCBGmJ7KuT+VWm\n8Oa0i5OmXh9MQsf5Vs2/h7W7KVLiGyulkU7htibI/SvTdN8QsYYft2nXsU5UF9lpIy5/Ad+vtWU8\nXFfC0/mv8zaFXDP4qiXzj/meHD7TZT/L5kUy8d1YV6D4Y1STWGtWdik9vKgkAUEOM8fT/wCtXod7\np/h/WUdrqyt5HGNztHtcHqMngiuBGmvo3iwLpyr9jlu484PRWKnH0GaivUjUpPvZ/kzSquSjOUXd\nOMv/AEllS3mkjkMjGMxn7xMexs+nvV7UdSLeFrF9xVftt0D+CQf41y2oateSW8X2mPYQ3y5GM11O\nmabb3nhDSpZk80LeXL4boSUg6/lWNeKi4Sl3/SR1OTqSsjnY5Zb9iIbOS5YdMAkD8K6PQr3WNBuR\n5oeNJG/1bfdPtjsa6bTWa3ULFDHGuOi4ArO8ZMo0GeVxtaNldSOxyP8AGtFVcnZFSoKMW2dhJ4hh\nFtbG2CyXNwpZY2PCAcFmx2zx70gkuZmzJdSnIwQrbR+Qrj/C0u+0N4+N8wBXPYf5Oa6u3m3Pwhqa\ntWV7JkUaUbXZaa0aSPh3UgeuR+Rrl9YjkkgmtZFAlXaw7jr97HcdeK7CK6ZQQsZNYGuIkhhuMhXU\nlCR3U9vzwadGpK/K3ox1KcV76WqMa1u83pieMYNndZYr90fZ5P8ACuO1C+nZ90pjjiAGzdEyhiP9\n7/PNdfayRDVZY5vu/ZLpgT3H2eTP6E1wepanpkUpzI1ywONoXKiopQft5q3b9S/arlu3Y6XRtRD9\nYxGoGSw9K3YNQ07QtGYXVwnm3jCKGN22ybGOFJB52jLHJ4wOvSvJ7jxLdOjRW6rBGV2nHLYxjGay\nZZpJ5GklkZ3Y5ZmOST65rthQd7s5ale65Uep6hoEEhMgUgZycVr6Dp1rGo2qX9Sa880Tx1e6Wiw3\ncC30CjChn2uB2G7nj6g1vP8AFby7VksNEjhmJ+/LOXH5AD+dZulVWm6NFVpvV7npeo6pZ+H9JN/c\nAiKH5tifebsAPxYDPvXklrr174h16I3fmNFLctJDCCTHFk5YKOg6DPr1PNZbazqGtx6zdahcvNJ9\niUDPAUefFwB0ArqfBkcd1olpKVIaznlG/OeWHQen3/8Ax0VKj7JTb30/I56Mva15rzX/AKSjvYrq\n3VVia4iR8fcLjP5Vo2c0YmUGXCnvXn2p+GJrqcSJcpsZs/Moz+eM1vz+HGvfCqx28+2WNhuZuhFY\nqMdLM9NKSWqO91CZP7EuQ7B4zE3zLz2qr4K1B9Q8Hafcyff2vETnrsdkz+O3Ncz4Y8PX1hp84ubm\nIiaIxhERV5PAJwcVt+G7M6doUNossscEYBh2BVJDKGYsCG+YuXzzj0rspyWyOKvCVrvodFPcmKJ5\nQMlFLAeuOa8c1+K8uNQWS1njjVrS2O3zDx+4j4GK9QuEWe2lhMsxDoyfMy45GOcLXk3iZbqy1GSF\nmMRjtLWKRR8xBFvHkcfTtWOIv7WHpL9B4RJt3Ls2n302lidL9llxEApbC48tc8+ucmrFna65LaNH\nJKVjP/LVLglx+fSsUyqkypPqk0Nq9rCDEI2KlTGo54IGefSr1pqF0NMMJcMgI2y5+8B0P1rCndQR\n1YVRlQh6f5mroAm0zxPBclprtWlSMsxUYWT5Ax4+Y5Pt0Na/jqdv7bsFdgIooHdWPYk/N+irSeGL\nKPULuK7IGLVQjHbyP4lUE8Zyd3/66qePn36/awMx8prQEZxncXcH9Av+TXUm+R3MJwj7ZKJVsvEt\njFOsZS4yT8rNGVB+hrUj8V2BmFo0F20g6skRIH1Ncha6UsGoWjPMT++VhvlJOAcmtbUNGs214yNf\niNpz5gUMRuHIOCOo9q5lGFzuSny26nUa8Le88KaiysHU2wGMesiHP5imX+pNNptpM5y0kKu2e+QD\nSeVEnh6+t4E3/uQRGZCQx8xMDJ6ZPH41yt1qUMfk2lzeyJPO6iCAlS2GCgD2G7djpWlCS9pNea/9\nJRw4ik7OT6fqZepSvLrsc44EcDsGA6ncowT9DU+n+JbWKQLcEhe+QKjlby9Qm05iSUUHJHfAJ/mK\nw9Q0whjgkCtJqMnqTS5ox03O2PiXR47Z1t/LRzk7QOpq34Hu577xNcTciCK0x9SzjH6Ia84sNJYy\n43Fs+leqeC4YFt5Io714p1OGjjWMnAA/vAn+Ie3PvThCMXoTWqTlHU7kHinmRULu7BVAyWJwAPrV\nNbckf8f95/3xH/8AE1xXxR1Ge302x0u1nlDak5jfIGCi7c9BnksOnoa6DlSu7FHxZ8WGtZHtfD8c\nb4BBvJVyM/7Cn09Tke3c8FH4+8Ux3InGs3Rcc4Zgy/8AfJG39K6K/wDAdpJpe+0kb7Qijvncc88V\nZ8KeAEikku9agVthxHCxyG9zj+VYrFQtodLwsro4rRNeGn60bu+Vjv3ZdexZtxOPrnj3r17VNfsx\naxn7SqRyW0O1m7bolIyO3BB5rhPiPoNlYpb3dnCI97FXVRgA44oTXLLTNRjS8UrvsLE7wM4/0WKu\nSvFVJwnFa2l+hrCToz5W9C/pt/cWdzFLd668tsCT5ez5WyD0JGDj2pfF3iOz1HSZNLQ+Y0gXc6jh\ncEEc/hVLUNZsLxPs+i7xeTg75xn92nViccn0AHJPTmp9N+G2qSKJrqdIS4+43zsv1PrWsbK0paF1\nJOWkDZ0n4hXWn6Ja2bWMQFrCkEbCQ8hV25xjnOO1dL4e8f2erzCzu0NpdngbvuOfY9j7frVO1+Gl\nhNHBJf3MjmNdpjjO1TUWs/Da0ezluNDWRZ4xk2+c7wP7no2Ox4PTgnI6KdXmdjleGdro74PXm3xc\nlmW005EbYr+Ycj1G3/GtfwNrM95azWV/K73NvjEhH30PT8Rjn6is34kWUmpLBDxsQAxBQd7M2d3t\njCjr6daqq1Fak0IuUrLzOe8DaRb6hpGpmVTJ5sAjbd0IEsbY/Suoh8HaZHalVtbf5u23J/OsTTNH\nubLTtT+wXlxCBYooQMW2v5yFiACOo4/E1T0m38R3l1JEuotuVGIaaE7cjoOoOT9TjuORXmU3epNp\n9V+R3wg4pJo7DRfBeiC4Z7rTIZlQHgkj+Vcolpa6VczWLQNc2zXM4VEbGD8mMHsOtM0bxD4ktb5l\naa3lRhtePOSAfrgfmwqlK2y1h+2nDy3UzAhipIO3nP8A9c/Wuyr/AA4xff8AzOKs7VYP+8vykblp\nrGixSSaVNZzqso2MixZH55ycetWLQ6Smj3Ih3wvC4Mkcp/1e0hifpgdawo7GQXUJlR2ixkStcEkj\n65yPpVLXXH9jXMVux3XL/MWckhAc/wDsuMe5p0UlG511JXly7lV9enR1WIyp5wLfusbufc9K6bRR\nc3llNaX0pd3Q+W7sTt+tcbYXSCGFmAGFGSfard1rejmdDdO02wbdkZJUjvnsf1rNxblZIIyilds2\ntTv5/CunRW7SQSSPG0YVU+98xJPXpgj8c1jXmr3b67dw+awRLh0UL1IBIrN8SahbalqGmy24KQS2\niqinjGJHX+YrvwfD+izzXV6nmzSSM5Ea7iCTnn061js1da2f/pR5uGSnVVu0v/S2ctY6DcXN15ok\nZn3fNkZrrJfD+pGLzwysgj2SiPIyvqau2niLRZLZpoVMEaf3lrf0PWdJ1jTL8Wd2ryxQs5j6HA71\n1UHKb5Wd1SEYe8eT2HhSO18RvJqgX7HEm9TMcKc9M813FtdaUUEdn9nKg4XyVGAfwrMknn1K18iC\n7EFxHKV8zGTgemfw7dql0i0ttJu3jluBJNMnLSMCS3YDgc5rmxkbXV+n6MVRt4Wo7fZl/wCks6Kw\nttC8Y6dcaXucOEO2TyioUgcEMRjivHLnxpqdpbfYIbhPMieRTdIcs4J7H+o/Our8X2S+H9E1C6sL\nm4eSQm2JSZlCBjhiy5wQRlfxrySG3u7p/wBxA8gPcLx+dd8IwlD3lsFeU4uy6lm61C4upDJPLJKx\n6tIxYn8TV3Q74xXBHnGPI6hgvv1OMfnU0XhW5kiDzSBCe1N/sXyAyCQtkVcK0b6HLKjOS1OpufHt\n1rvh9dB1BftCwTiWC5VyCABgA5BJHOex/lXQIJtRtrYXIVtyY4zg8dGPrg5/GvMrKcLOmY8MF2Hj\n+L3/AAr1SGGdNKs5Z4LiGMQB/N8sFSWOAMg4BPXBIOBnArPGX9nzl4etGnL39ktPvX+YySxsrO4S\nSeZUCEMdrDCrn0Cj9cn+damoHSr21tr1J4ZWclWxJh064PBBwQPpXP3UljaoYbu2u7sTNklYAwB7\nfxcVJptxaRQNBFpOozowOGFuF2e+S3SuKjU3un9x2TxEdLRlb/Cz0/wXZwDy7yNw7AGPOSSB6Enq\nK1fIDeLJlWLKCHL4TCsGB3KT3OQh+hrl/Bsk9oP9GAZGOdsjbMflmuxtLm/muLphbWpAcAfv2GPl\nXPOw5/T+telRrJwWj+5nBPERTl7r1/usvKqgkGxGCSMgKQR05/CvnDXvCepW1zdWiwHZDNIsYw7Y\nG84wF4Axz+NfRwl1H/n1tf8AwJb/AON15741u5NJ1RZbiHa12oKeT844wCMnb9fxq61dulJRi++z\n6Cw9aF7SUv8AwFnHaB4YvJvD93a3QBuScxknlVxWZZ+ELpZ0LSyDaTnypiuT6njqK6i28UW+mzqJ\nI55N4OWVeGzxjgnBqC4vQjG8DTQxSNwroO/bORXnRq+5dJ39DqdakvdcZW/ws9A8O6VFeeFpdNvy\n8kbdSTz6gisu52wxXRjZBp8B8uAYAIY4BUYHPHPP93/ZrQ8J3l3cQOqRRSBF2/vJCnYHsG9a5TVI\nLW/8YPb3KxeVDNsW0Lfug3QkZ/ntrslWXslo/uZz0MRFSk1F6f3WaWjeL9LsNQSCbzC54JXGB9ea\n6HxQftF3o91a/vWxLs2dTuULx+efwFcVH4WstO8TLZosKTKQQjkMmD06j09q9LSyvEe3kW1tA0Qw\ndtwwDjjGfk7YH5VdGqo6Wf3MitW1fuvVfys1YwVhUN1CgGn1UguJ5Lia3nhjjdERwUkLghiw7qP7\ntW62jNTV0OnNSjePp9wUUUVRYUUUUAY/akJyaUqe4pAue36VZzWEz1qnnBOPWrexgMkY6981Sf8A\n1hrN7jBiAhLEKAM5Pb3pvlxvsLZJXo2efrUdypktZUXqykCmGSctHhNmCd2fmB7DHtzk9OlS2aRT\naumTxcKWxgsc8jB/znNIEjKlSoYj5WLDr3/r+tRwTSSKrMF2lQQQCM/gfwp2G+bJPLgjHpxx+hoE\n73dyRlRuoBwQR9RQAq9FA+gqpG05HmLjJl2sNxIwGIJGenb8qmhMhT94Np6ep9znv69qEwlFrdkr\nH1qJUVD8vHGAOwqKNbj5WkkHOdybRx6dPx/Slk87zF2bSC4JJHRe469ff3HHcFw5elxXQEgr94fx\nEZ/z0H5VFJEpVdiqCrKRgdMEf4UAXBdC5i27RuCA53d+vb/CmTpJKJYuiMNu72IIOB9cf4cZKbCz\nvuOZBjChVJGMgYwKRmPrUY80FPM75zjsf8OPrzSvRcUk0MZqmtHxKv8AvY/PiqzHmnQyBJAfQg0p\nbCRtyzR28Ek8zhIo1LuzdFAGSTXzp44+Il/4mupLeB5LbTFOEtw2N4znc+Op4HHQdu5PsHxHv3sP\nAeosr+W8qrChyMtuYBh1/u7q+Y2bMxPvT2RC96WvQmMhPJJqxpr3H9p2v2VnFx5q+WU67s8YqnXo\nPw38Ky3Gq2ms3ilLeJmlgU8GQpj5h/shio9zn0NZT0i2dFJXmj0fxFqw0zS2EZLFEwMnk8d64aHV\n72SQT3UEjAEHygMfn3A961/Gk4jPlNy0hymemBXNvrXmww20gXaibd/Qr+NcMl0O+lPdtl7UdRs9\nShFpZ25hXcDKm0LkgccjrjH6VyuoxPptpNEz5J4BI5I/z/npV+zeeO8kEUiywKc7vU1fvtFOqxJN\nc7kO0mONRjPua0g1HToZ1Fzq63MXwPYwS6kL+9lSOG35VWYLvPoK6nS44TrN88VyzD7JeMQJMjm3\nk6Dp3rCuLFrHTEjKxlc84cgj8MVb8NxsrXsxQKq6feBQD1/0eSsMU705yv0/yK5VGKjYz9J0+48Q\na1HZkmIHLSv1wo64r0u3stH0O2EMBhjPVmZvnY+tZPhbTUtbmW4jQIZFwB6L257+v40a5pIv0dBK\n+4Z2hduB+YzTlJTeuiLjTcFpua8dzDI/yOCDz1qWScMm0fNnrjtXM+G9Hu7BpmkkUxfwqecH9KpG\nw1t9SleS6KRA4QLuHHtjjP1oha7SZc72V0RPJPF4wuYLVTmSLcQOcH1rTZNWm8HXMVvKy3aarEW8\ny4GdnlSd2xkZ7fWqayiz1m6uo1DyiIIWbqMDk1btNekl8O311tjcLe24WMOFI+Sfue/FY4qMpcrj\n3j+v+ZyzoqSir2ad+/f/ADM7UZ9Ws28kmxbgFmlu406/Vs1kw20pZmuGskMjFsG+h6dv4qt3up2u\np34+1WZiO3GGOcYrOVdP1S3aKA/vISVwTzjPX6VsozS1f4f8EylGte6qL/wH/gm/rEKxafomJ7XI\nsmHN5EoP+kTerc/Ue9P8MWUmq6k8crW/kxwyN+5nSYliNo4RiRgtnPtXO69pBGneHg3ITT3XGf8A\np6nP9a1/BF5Bo2oncpEckZQ7RnHIOf0rOhTfs01Lq+n95+ZMniHf3l/4D/wTQi0SS31V76Z4/tBL\nDBkQfKeOmevH61o6lJaPy5Q4Vc4bPYdxWZrBi/4SI6ha3SzWtzD86rIGMUmeQV6qT6HB61RlGWZ4\n/mI5Ck8GlOlJVLyd/lY3oKcnGpKV7X0tbe1+r7GrZ3GnxRMvmwxu4+7u5A9/SmwWenO7SRJHv+9v\nU559QaoRK88H2qcFGRdxAtkZQfQHzM/1qGa9mht/tcyKku0DYOhP/wCqrULHXOa6mjp9ppMWj6ui\nE5SxVZCDjOLiE5/MCst7qxj0CGBrZzHLNKCoQnBCp/iOag0yR5tG8ReVgSfYUIz0P+kwVAXkHhu3\neWB3k8+UZSdRjKx842nP09uvNZRh+8d39pf+knFXlrCy6r8pGrov2e3cCyd1mbnO7B4r0Lw94gmm\nn+xXikSqMrIWGGH+c/55ry3QWCXZkmf/AFa4LY7mt/8Atm3t7iKWGXe0bgkpzgdTXVCUlKxdWnBx\n5up6/cyYuphn+Nv514F8TNUuh41vIJWBVFRY1zkKpQHj8z+Jr22W8Et5dbF4SeRDk9wxH9K8s+KH\nh+W91Ky1WCP5SBDMBjgg/Kffg4/CtMK17CF/5V+SOSzc7I1vDFrHBoVuixfM6bnOOSTzzWuRtmY4\nxkmuZ1O31OW3jNg37pRyquykf981Oi6k9zqkU1xKE3u0BVug3H+XFee0nPmb/q53XaxCVvsv80bv\nimyhv4TbzIGzbRYz/CfKXB9q8d07V30a8n2RgumUIJx3r0ibR7z+2o5pHXYLO0B+XLEi3jB5z6iu\nUvtFtrfWry+mYiKRyFUdc4BJ/nWmElFUVF66f5hOE21JaD59cv7nRvtMKLE5facc4rP120utUljd\njudbWA7jgcmJSR+dLd69bWsIt47c8HcMnGKt3esI12kOFy1tA3TB5iQ/1rVKUZRaXf8AQ56vLKvB\nN9Jf+2nO6Cu66liZB5qkEZzkAHkdcelelalb6pKoFrIoh7bC24fqBXmX2prPxQk9vgsJVO3pz6V6\nHJf3EaKrBo0dFcJgqVyASMHnjp+Fa1k7qRvRcGuVlh9OkudJjgkumW5/jfdgH2qe10ldOsXWaV5Q\nyFdpkDKc/gP5VhfbbZbrzQL5znIGGC/0/WrUl6ZGjVWZUZhhWAzj3xmsUnsdVSMUrs7jwpZLpukQ\nRqoVpN8jgdM5UfyUVg/E27aFdIUEhZJJAff7n+Jrr0KxmMIoVApCgdAOK5bx7aLeafZXAj3TW9yp\njGepPb8SBW9LRST7/ojxKcuarOXeX6RL9rYW4twfLU/KvXtgVPa6XY+cWNrExPJ3CuDub/W01JY4\nUuF+bBRpSykfTpj6Vq6kuq3OnxyWX2hXKhmAypI9tvJ/SuT2dmrs9ZT02LHj3Tba005L+1soovKO\nJPJQLlT3wOOv865rQNLl1eymniuxGsb4dSAe2QeR+FaawasdEu4TEgiaFjI8gbKDHvyWPQf5yyzt\nDY6Pa2kQZJbhP3inbG3mFsY5ILHPAHJrdSsrGaheXM9iXVdBnktBJCzyqphV7dJCiyII8E8d+Pyx\nVLSLN7XU7eJZisazK7QuhOzJBChieT17Y5HXPGu15fWV68FxKwHlRt5bRbDwg3Ekgd89On6VW0zV\nrZpbeW+u9kl1OptYWTzOGc4VTg7eqk8gcnqazipSw7T7P8mcEuVYJyX8r/KRkeI9KeaC3UwgqWKq\nxONpGCQQPXIq3qNncyeE9NjsZ2hVby44Q4yNkGP6/nXERanfPe3d2s0rec3IlcyEjPGSepA712c1\n8LbwpZF325vroZ/4BB1qsTBwlBLv+jOynUjU30JNN07UZ9GnH29luEYBPTp/Ol/sy/bSbi31W9mn\ngkXHlnlgw5GDk1naPrkscrRPLaJbMclmcDgfj1rQ1XxAtrafaEHmBGG1XyNxzyPyzRad7LqbScOW\n7LEDPpmikWYEjxYRA3zEDA6478/n+VZtrrfiJbxA13FIHdV8sAbuRycDpitXwnqEGpzbIQpZ0MjI\nzhQrBSz5LYAAAJ61pXItYLnz4pNLABwxXUrVW+mTIKxlWjTk4ztclRjLVOxk+Ita12z1FLW1nETF\nQS2VG7OOOeKu2M+oXemk6kGZ1mAR1ABcc/h6f5HOjfXVlebGU6TOseM+ZqVqfxU+YfxziqfjRDe+\nGfKsZ9NUyYXLanbIuOD1L4PQ0o4in7sbpef9Ic4xV5XuZU+p2z3VzFGwd20++VSDxxaSsSD+IH4n\n0ryYnJrvNF0C+Ors/wBo0oqNKvI/l1e1c5NpKo4EmccjJ6AZJIAJrnh4T1H/AJ+dG/8AB1Z//Ha6\nqVejGrP3l9n9fI4JXaRiAU/bWpe+HdQ06wN7KbOS3WVYme2voLja7BioIjdiMhG6+hrNFdsKkaiv\nB3Rm0Jt9qVVJPAJrU0Tw7q/iK8+y6TYTXUo+9sHyoDnlmPC9D1IzXYWHw28U6Z4m077DdRCORiV1\nSxcyxxgDD9AD0yuCAGPHc1dgMvwB4fTxDf6haXU7WlgbXNxdBcrEqushyTwCVjbGfQnBxT473TdF\n8aPa+Hr6efRZZI4w8/BkyBkkEDGGJxwDiu08X6r4fWz1XwnpjC0t7eP7Rc3Mca7Gn3Rp8yIowfug\nlMKMt8pwK8isY/P1G3iHWSVUH1JArJJXmn5fkZUXarNruvyR6vqN5IpjMjusOcZXGM+5JAA57mp1\n1G7tbGSC/vZIrSYhYwixMXJ+7ypJ9DxQJIUle3uCFB+6WHB9jWppcdrbuxub2Bo1+YAqCRx1zXnx\na7Hu3bV7lOXxTceHPDYup0Sdw6rFG+QHYnv6DAJ/Cun0bWxrOg2WojG+eIM4VSAH6MAD23AivMPi\nZLGbfSFjyoJmYIf7vyBT+hrR8Ba/bWfhKRL24RBBcMF3MMhSAQAOp+Ysa7acLQT6nnV6jlK3Q9J+\n0eprzLx27W3jaVpSUhmggdT6jylGfzB/KruofEWwtsraQtcOCwOXAHHQjGcj8jXL+ONWm1XXIJXj\nRCdPtGAX/agRyPzes6kf3sL9pf8AtoqTcXc6I3VnGVYam8UnkRExk/KV8tSOMiqovRKz4JYP3PYe\n1ctfs8epQskQZha22Pb9ylbmnuYIhc3vH91DwWPpj/H/APVhTgowTOjC1pToQj5f5nrPhF4x4fjR\nWBkR2EoB5VicgH/gJWsX4g6aZLaDVog7SQYilAPAjJJB/Bj/AOPe1cRonjLUNP1G5SG6gEM0hYLN\nCTGWwAWJX5gcKOme3FaPiT4pSpajTodPg824HlzSNKJU2EYO3acZ57kgYxzXbyO1jl57TujBvDJM\n6AlXhb+MvtxWvBZyTaesUKwMsZ3ljJ84PsRkE/XH41z66m2nMUe3EqDkZq9N4+CWggisoon24yK5\n1CT0jsd6rRjrJ6nUPrX9m+HdXlicSvb2yMoJ6nz4gM/ia8i1XVLrV9RkvruTfPIckgYAx0xXSW+r\nfbtB8RoY9v8AoCOTnOf9Kt/8a40g9e1Vh4KNSp6r/wBJRx1arl6HWadrE+pMbm5lU3duUw+OZBjH\nPvgdfaupiudP1KEeVe2zuf4DIA3/AHycH9K870SUR6iqEjbINvPr1H+H40zWbX7PqMgAO1/nHvnr\n+ua2lTUvIiFVxb6no7z6fpUDtNe2qMOq+aC35DmuS1zU7qOezure6lSQO8iOjlShO0cY5BwMdewr\nm7SAT3cMWM7nAP071e1ls3YUfwqPz/zinCCiwqVHPQ9L8LfF4oEtfEMZcdBdwqN3X+NehHuvPHQ1\nY+KF9Bcv4X1WwkF1bs8yiSJtyk/JgfX73Ht7V43vHQ1p6PKz3SWxlYRmRZQu75S68jI+m4fjTkla\n5EFZno2l+P0t3EN3pzRqxwrBw1aOo/EaOwk+zRWEkrkbsMdgA9yaxv7G05o1uWcZI4AIA5Pr9a3N\nattFmnhaWSJmMaoxhcZxt6EDt9a89ezvdI9RKdrXOe8Q6w/iPwtdTG28h7d1fb5m8HnHBwPWq7aX\nNc6pFdPCrRrpVqUEqBlZvsCYOCMHDY/Kug1OKxk0n+zrZlEUmA7E8AZ7k1q3NvGDDHCQ0a2MKrjs\nPs6gf0/Osq82rcq6S/8AbTjxcV7KXM+n+Rw/h3UJW1j7N5dplXDP5drEnyrz2X+9sP4V6/YqJo1L\nSvgjI+dgK8U0iCa28ZXojjLgK3yggHnGMZ/xroJm1NZNw8yN854bb+uf6VpUoQcloFPD0Vf3F/Xz\nPWVjgGQ1y49P3rf41b02G3adl8+UsByFnYfyNeWPp2u3eiWt0LiRklZg655XHTPsf61teGLK8ilX\nfdujRn5diMnHoSeT+A79a0o0acXdpDq4ak42UP6+8qazdPovxLjgj2x29zIA2AA/zcn5/vHJO7ry\nSa6jXkSGyaXcRtTLbyWz8yjAyePvVy/xB0oQapHqkfmu6QCQFnLfMp7knPQVteIZnn8P3IEcu4Q9\nWjK5O9PUe1a4mlTSVl1X5+pxToxpVITgrO8fz9TFhllaw1QwO5P2VcbF3H/XR9APbNc/Hrd9p0sb\nWF7cRW6nLrNbkjOeSeM9u9TeGdYWzg1c3OSsVorMPbzoh/WtAav4buGjkTUJBJnOwjP9K4qMXGtN\nW6r8j2lNSi7uxHpOrXJvpbmGVJYpTuLKoAz3xj86brmnDVdPjPnHcHd1L++Dj8O3tUd9qEEkpL3E\nVvH0LyMFAz0yfU1r26M1goC5BUEFlz2966K3Okmu5xVuaco8mtmn26Nefc4jT9FuvtQW8vJDGp+4\nGIz+NdFex211BtjOIQPKDDAUbe/58fhVt7SZSqkQjdkljAnT6YqO6uBHp86IsaosbY/dKQcAnpjF\ndNHnnFtx/H/gHJVq1YSSUf8Ayb/gHmWptJI8xhy1uHwHC8Nis+FdoJYda9C8JpDrFp595bWkhSTZ\nsFpEMD8FrtU0PR8jbptsOMACFB/SuaWJlCTjy/j/AMA3jTxFRc3Kv/Av/tTyG8smubDS8bVxatjP\nr50ldBYPbXfizUdO1WRViNzK8E0hJCEMTtPIGCP8O9d1caZpsSbhZW6+WpCARLwOTgcepJryt5pR\nrT3Eyea3nl2GMbjnJHTvRh+aqrtW3/Ns5cPTqQkqk1Zare/2n5LserHwrYXnhK6t4p1gCMsoZzjI\n6d+n/wBcVF4G8E/Z9dF29w0bRZBj2gq6MpBG4HPfuK83XxIiXEsaXOoQxzKVEKO2Of4e2R7V6J4Q\n1W707R7+9u5ALeKAbWfpk8D8MkV00Fy2R6dZqSa+45UxvY3V5MLjzNsoVdo4O7d78fdFLby+bq9n\nJNYytMJ123BkCgAkA49R7V01hd+AdR0VtMkv/Ju5ZMpdSxFWSTkL82MbcDnOAc54PTkdI8Qxx6ha\n2bW2XadYw+cjk4zWWMpS5HNdn+TMquIpyoVYReiUv/SZE/iZJJvDV2zWT2tu0KtGvmBwWDAZGO2P\nWuTtdUi0mMR+QZdgAznH6V6gupDxJ4HvoFtoYn8tjvbsAM8e/FeeJo0N5GZBJGhI+bcCSf1qp8sY\n+9sayfPrDpoOTxNG8DSpZnjqM8VRi18vdo72aiPOSC2CR7Gti20+1GnzQGaJGaTq5Hp1JqklhAWD\nPOCVG3bwwAz2PpU03BapCnGbVrnQ69otnd6Va6xp6sDM4RuMA8Z59CO9Xb3xTfjRZNCdE+zWkSzR\nmPP7z94oDgn+HDEjgcEZz1rV0uSK28Bajp8qw7lUspcDCFtuPbkHr71w7/YUbWIraSSYw2oiiIO7\nIWRMnPfLEYx2FduJ1pK3W35o8yppT5numv8A0qJ0Wn30F9amJ7kI69c8VtaMLOGR41vGJkAGS+Qa\n8yvreQ28V2oISQAnHY960dAC+ejHqD1Jrhp0kndM9eWIajax7hpkltCzCHoqbSw/iY1xdz451Xwh\n8U5tOurp7jRrlkcxvz5YZV5Q9Rgjp0PPHet7SbyJLVQXAVeWY9OPevJ/HWrR6p41aePBUBFUj0HH\n+P51305W2OSok6b5tz6Z0/XdH1V/LstRtp5cbjEso8wD3XqPxFZfjfQTrOgv5Cs1zbhnjUclhjlR\n7nA/KvDrBJLrVZ7+BipibfG68EMOcg/UV6ppPxb0V2Sz1YS2t0qrvlWMvExI7Yywz15GB61vB32M\nYVeWV2eRTRNCpMUd9MrcAeYzAe3XjHvmpreBTGknkHzumWA+UfQfzq/433N4jvrnR76KW3nlMgaJ\nwyOW5OCPckVj6Xb36y75pgM9QOa4KsYwm4p6HdKTaXKj1bw3qQtBbxq2HdgZFHpkf0Ark/FtgV8a\n3zO6QSfaC6MWYHB+YEYVvWpdDSSG9SVpC3I611/jjQItRtbXWre3ae4ICSRpks+ATkAdSADx6VtS\nftIuKM6doSal1Rytol9HrVmbi0SFRgiQS7y6j+IjAx/OvaLJ2ks4nbO5lya8r0aaxkcT3gePyB+8\nSQEFQOxz0rS034mwPBd38kJNj9ra3hQEBlRVTkfUknHvW1Om726mFSprzdNjvo/+Qxc/9e8X/oUl\nXK5rRPFOk61dzXdrcgRtHHHiUbSGBckc8dGH510gIIyCCPaopJpO/d/mY4eUZKVn1f5i0UZHrRWh\n0BRRRkUAeRHU/GGsobtbm20nT5OEedljU9x8xBY5HccGmPqfjTRoxeefb6vp6D53hKyLjucgBuAD\nycgVoX/hLWNTJuri8gM7N9xidqr6AgH8sVkmOTT73T1sLjZdpEySbQdrESMP+BD8OgBpOD7nJ9fa\nlZ0ko/idj4d8SWfiK086DMcqYE0LHJjP9R6GrsvElczFfaB4eMGopYGG51OTY5RfuHI3ZyflHfA6\n8cccdPccSmiSkknI0lKEpP2ewzNRxy+YD8pXBI5x2JH9KUH1qEwK5JLEckgrjIJyM/kT/wDWqXcc\nbdSZWRUAUgL29OfT86cuAOOB19Kqi28uNVidgVxgsc8AAdO/3R+tToCoIJydxP5nNCbBpdweVEVm\ndgAoJJPbHX+Rpskuw4BTIPzZbG35Sf6VBLaLMz7pXwxyy8YP6ZpzW0LyNI6lnYYJJPPGPw49KV2W\nlDuL9qTzI0LAeYu5TnHfgY9ef50s04j2cjBJ3ew2k5/ShY4zkYVlPBB5GB2/Smqy+WEJBKgAjOcH\nH/16NRe7e6GG7Q7NoOG7kEYOQB+ppRMrvtUHJGehHH+RQWjYFcqQ3UZznp/9aoSRI7ZXO1sAkew/\nr/KlqHu9iK5mmUkxGPbv24fPsB07kn6fSq5uGkZQssRcuWwjkgqOOuPUirLKgOSo+9u5Hf1qg0bq\nHAeLBXaAIug9OvSk0ylKNrWHpcF4o2ZkLFRnZnBOO2afEGdyB3HXtVZAAMIgBJIGByew/QCrzn7L\nbqrhdrD5mHrVQjzbmU5JbFTxjpz63Z28EWqTacYyztNFkk9Bjgj1z17VysHgdI5IxP4t125zHlvJ\nufLySeCM7sDA6fqOldBqd1I1rKpPIQ7T65//AFVAJ4LWOSRmQ7AMk4x14z+f61EKFOTk3FPXsuy8\njghCEpzlKKevVJ9F3TL9nptpZSpbWazPtQG4nup5JyB2ADEgMfbGOvpWXrt4bbXbZo1CQlSjKowu\nc9cetY9/8RoLHdDpulz3YGS08jmJWY9wMEn8cdKq6fq0vi2weSZYIL2CUHyEzyoHDck56kfh70Vc\nNScGlFfcv8jopUaXOpOCt6L/ACLfiOcyWZWK5ngbqHhkKkH8OtefPdeITIUTVbxlH8Xnv/jXos+n\necuX549a57UDZWUgF5MltbE7QTkmQ+gAGcep+lcNKnTk+XlX3L/I66mFoR1cF9y/yMe7utdttBNz\nFqd0xzg5lYnHrnNdo01yPDtjcrLKZWto2Y7zljtHPvVBhCtujqyNAR25VlP86c+vRx26xNDtRRtT\nC7QAO2K1xGFpRtaK+5f5EUaVBqSdNf8AgK/yOV1nWJ59evbRI0KpcOpJHYMRWnokimS5jGMtY3uQ\nPa2k/wAaq62kEWq30yIikyuWI6k7j/WovCpd7y7lbp/Z94B+NtKa4qiTwunZf+2mmFk/YQT/AJV+\nSNHwPr15PqNzZXUodY4f3R2gHAOOSBzx6102oT/ZNOaXO2RjXlmn3f2HXklUkBsg44r07XL+wD2d\nnJpdpOr28LuZZJgSWjVj92QDv6VVeXJNJRvf06ep3U5txXcwYvFMenxNApEgY7mZhyTWjpmp/bYZ\n5FbEZO4DP3eOf1qoZ9JguhaL4XsSXGOZJznP/bSqera/aeHmlsrfw/pwM2PlMtzwMc5/e+/bFEZS\nekYP74/5hKpJayZBcaklzNI8J/dkbVJ7j/Oa0ItTOm+Er6a36teWyuq4I5jn52njtWdY6tphiMcn\nh7TE+XICyXJ/9rVcgn05vC2ps2gaaYhfWxKCS6AY7J8E/vs5HOMEDk5B4xnWlLS8H8Ueq7+pk5M4\n7UdUTc8i7TPIOSqhce+BwKwVkeOQSRuyODkMpwRW0fEGnbj/AMUno/1828/+P0+PV7KbcIvB+kvt\nBY7ZLw4Hr/r69BTml/Df3x/zOWTu73L+r63Omj+G/PUS79Odi2cHP2q4H8gKoJ4mS3bfb25Ljpvb\ngf410GqfYNT8IQyHRLO2kt9D+0QSQvPmI/2k0ZUbpGBBDseQTluuAAOEhSLzU88t5e4b9nXHfFY4\nNxnTacbWb/NvoU5O+jOh8Myy32rXcs5J8yMlyBxksP8A69bhvFtJCs4JXsR1q1Z2tlYKEsVzaOod\nJd2TJkDk/j7etR39qJ0baAR70qjUpX6M6qekbLdEcN3ppfd9smxnhD0o1L/SbRxyDjcB3Apml6ZE\nku8xjI6E1ZRUuvEb2TZ8sW+7g8g7u35j8ql2T06FtykkpGVod0YNO8RCQEBdPQn3/wBKgH9aGuYp\nNCtNkz4e6m+TPU7Yv8/jWjJaWllH4jtWmBJ01GZsfdBuoMA+/SsmSKGz8OWrs64FzMVI75WLp+VZ\npp1G/Nf+ks4qzalDX7X6SLlpYK0VxFLcAFlGFDYG+nw2UcduWL7+mPm7g+mT3+lcfeSmG/cjoTux\n9auWeroJ8zFlUkZ2812OlJbM2VaElZo9uv7qRNY1FBwoupcDP+2azNUulbT5GkV5Ej+fYvJyPSl1\nO5il1zVPJkD7b2ZWx2YOQRVUTN3HFZYZXw8E/wCVfkjn5nGd0ULnxBJp1k5jAYVj6h4i1OPXNQgt\nCQkc0ingHdhiPT24qbVgY55FdDtYbhlfxqjr2phNVvEglKSLcODwP7xrJQSqWt0f5o29reum39l/\nmjeuNe1CPxBbwbXXzNPtGcsOCTbRk/TnisHxFq/nu9oAFeIbjx3YVsanffaNdsoEO51sLQjPfdbx\nnP61w1skl3rNx9pYbpgec988YowdO9JStsv8zSpUekUyiJoUi3OhkkPXJ6VoavMv9sWrKoQ/ZbXp\n7wJWbf6dPazEFSVzwRWrd2o/teCedljiSztTlj1xBHXXLl54vyf6HDJy9tBev6GfZgSeIUMkXnEz\n5EecbzngZr0/XIzNDazgFZdp69cccGvMXvba31RbuCMStHJvXfnaTnIOODXT6ZrlzqoWa7kZn5Qn\ngKDkYwO3GPrVVE3G5tTdpollm0+OTzJxIJe4zj9Ks27efKJihEY+7nvTbmMSEMyqxHr2pN5SPd0A\nGa50tDpcn1PQbDW2v4DOhjdlO107qe4P5dadfPZ6hamG5DR8hlJycEHIINeTvd3dzoEsdiJzepqE\nb/uM7vmWbGMc54Nb+mX3ivyguqWKvGBwzIRJ/wCOgj8wDWsI/F6/ojzaWkptfzfojqLq7Mhit4IU\n3HlmAAyOvWpf7Rnv4VtJLKG22Z2u0meenyjHI+tZM9ok1vbNcwqVdQSjjO09qitNMCTqHitPKByc\ntkt6ZFclop2PZi+ZXN6LVg2j3EZSPZErfdwQcDPaufub+HW13NdxQTJgBWHygdgB/nrV/UYRNpl2\n8bbQQoUjoTuHNcha+HVkmkvdQuljsovmkfOMj0FaU4JptmU6sovQs+L9WXTrMWMMitdXEKeaydAu\nxRj8QPyP0rm9GmMmtaAu/dtuIgcnp+9/wxWnqWlNquqWTwWuVk06B5Nr452AZGenGBjnpmrGk+D5\nrbWrK4BZRFcRybWKngMCeQf6VrFRhhmvJ/kzx5zcsI2/5X+UjngiQ2EKcebI3Y8gf/rrqNVkEXhn\nT2PCnULvn/tnb1zOo6FqmjmO5uIS8KOGaSM7h17+ldZFHHrnhS0W0urEyRXlwzpPeRQsAyQ4OHYE\n52n8qjGNJwlLa/6M9ClszG0+W0hl843gBHQbAM/jUfiZWNnBMS2ZJGOD2GK0dK8JXAvfMkl0k7Tk\nbdUtjj8pKteJ9Au5re2jjuNLDK5I36rbLkY56yDPaojiKKqK0v6+4ublKGpk+AdTFtqd3bMPlexu\n3z3BW2lP8qh0q202YS3N2rSL5hyuTjH4Vs+EPBeoQeIvNuX08RNZ3aMqajbuTut5FxhXJ75z0ABJ\nrPbwb4h0yZ1t5dOeJu/9p2y5+oMgqfrFB152mldR/XyIhdJNq6J7208PzafcTWkTRFFOArMAT0HU\nnvWF4h1PztPsbJEISNNxJHDcYGPXoa3rLwn4h1N1tWfTo7dmBkdNStnwPoshJro9R+HltrMwt4rq\n2hNjAIomS9hIYLyQw3Ej5mPP86tYqhB+9O/6fgVK81orHm/hP/kMXH/YM1D/ANJJqxB1r0Ww8Cah\nol9dXhurC4thYXsYMV3E0hL20iqNgYkkswGBnrXnksMsEhjmjeN14KupBH4VvQqQqVZyg7q0f1Od\n7G9aH/ihtW/7CVl/6Kuq6D4e6NoV7p+u6trVrJeDTlg8q2WUor+YzAk45OMA9R3zXOWZ/wCKF1b/\nALCdl/6Kuq6H4UXUS+I7ywmjM322ykSKAnCySrh13HsMK3NXQ0lO/wDN+kRS2Oqk8XapqaQ6NpUN\nvplpNKI47e0Ty1UvgEcY4LHd0yM9ar3Op634K1AWserQTzFS0iRt5iI2CoBzgkgc4IwM9Kb4Luk0\n7xWiXAtCgV1kkmwVjCjcXVs4B+XhvQn1rmfGnildY8QXE1sIjCjNFFIilQ6BiQxB7nPt9K+jrVKV\nKagorktf1OSMXJX6nbeOBpt34Q0+a2ttOt9Q1WzaWScCOAyOJISwLHGTnJ5/u15fDo91FcROJ7Ab\nXDbhqEHGDn+/WZNcSzsDK7NgYGT0FQZIOa8CpBucpQdk/L/glqnNScoy3t0vsrd0eyBBf2aiZrdm\n28lZ0P6g0/RPD1qt6JHk8xR/CJA2PyNcFo3iyK3dVvrdtuMFocc/gf8AGunX4gaLYwsbO0upZugV\n1VF/PJ/lXCqNaLsn+H/BOzmqNazX/gP/AAR3xR0s3d3p1zbTQIVjMZSaeOEYBzkbyM9efwrkLTR7\niNpH+06ecRsFxfQnLEYH8fHXP4Vna7rF5rt611eOC2MKi8Ki+g9qz4DhDjr611Qp1VGzl+H/AATm\nmqrd+Zf+A/8ABOgGiXKQN/pNgCQBj7bD/wDF+1asGo64kttHO/h6WNI0hDzJp7uFVQi5YgscAD1P\nFcqJfMjAY8Hmr93YpNFbyWi4ZpNoO7PPGBjHB/E1FSg5/G0/l/wQSrX0n+H/AATtNV8SNpQikxYS\nyNGgWOOwtmJIRd3z7DgDnpkDoOBxgy+ONRvZdyWumqWwFQ6ZbNjjB5Mfese3neRXE4DAReVG3oCc\nnH4ZH4+1IyoiBUUADoR1/OopYKjBWcU3/XmbpuMFCL0SNyXxXdRQwAQ6UWVWLgaVa/eJP/TP0C9K\not4qv5D5n2bSODn/AJA9ocf+Q6x3UsartNsmCg/J3rX6rR/lX9fMOaVrXO6uPF1x/ZH2ryNLZyNo\nB0y2OSf+2f41f8Nx3mq2y3V5HpR3HIjXRrTge/7qvPIraa7mitbc5aWQBVLADJ9zxXoCW+saNYx3\nMN7FJbBcuLdBIikY3Bm9sgE/dyRgmuWtg4KNoJf18zenVUpXmjo9U0u3m0SezjfS7JrnakjrbW8B\ndAQ23KqD95VOPavLdb8PXGjshmjGyQfJIpyrfQ1217aXrx2erXaQtPOoaKMRu6Bcd+PvZ6g+2O+O\nh1bS4tR8MNaJYRQAAtuSFYwWA+VlAGR3J6ZLHPQGow7jQW++5tUpqo7KNjxGN3hkSVCVdCGU+hHQ\n11niqNL7S7PV4tgEvDKoAxu5xx1wcj696y202a0iVrqFdsq5Uex/lWnafZ5fC+oWLHMsQ82DIGcZ\nGVB784P516SaeqOCScXqZvhW0FzrkWQCEBYg9D2x+Wap6s/n6ndSxx7Y/MOAo4AzgVs+GP8ARNN1\nG/IQ4XYoYHKkDORjFdL4am0BtCmhu47p7rBKuJlC7evCjB45y2R7mqs3sZTqwpJyne3keYsAa1fD\nfhy78Q6mLaB1iiXBlmfpGP6k9h3/ADNR64lnFqtwLGcS2247G27Tj3HTPrjjPTit7wn4l03RrUWx\ngeS5uHZp5GwqqoB2gdS3fg45NJ3SNN/hNS7tLmzuLrTg4JjYrl+Ny9iPqMGl020lEciRzWyHq7KG\nY49OoAqrNqc+p7b8HZLyEHXCgnCmnDXtVlUWyiGJTwzDnP4Vxyi22onfCpFR95HT+HLaHU9WktWV\nXiWFmlPIyCNox6HLA/hWwzCz8SyaXL84NtbqpA/iWBAcfUZ/IVz2h6k3h6VZUtDdyTAxBDLsJJ+b\nOcHP3envXR6jftqOpfaEso7ae3so2lZpcyoWgRx8uARgvtzn8qVWKTVu0v8A2083GNulNs4x4X0/\nxpdSSDaHC4bPGOn81xXSz6hbGzUbQsp43nkL71l+LJraSOxugFF8YsE7uAATkH1O4E+3PrXODVxd\nxLayg7FYNjv/APqp4iF5XR6dGXLFN9Tp4vG189v9gJgWAnawKHhe+DnIPvXRaHrk24ws/mRqPllb\nrg9M+9cZaLp4kVI9OjdCcEyMSPxyalnvYNNmk+zxoiNwVToP8KyU9VY0ltudb4u1+2tNKc3QZxPb\ntBGFGSWII79Oo5/SuI0zxNqOtmNb+4WRYbuMRgRpGBujmzwoA52iqPi+9muLjT7SVyN9sJVjPABZ\niMfXAFc6ImXQb5WBVheW+QeCPkmrrqxbgr9WvzPLxU17tujX5nolzpaNp+uvGMeZZKpx/wBfEJ/p\nXHWWhh58rJIGB+lJoesanFo/iIfbZXEenIU8z59p+1QDvnsTWCdc1R+Ptki+8YCH8wBWOHpyjOav\n1X/pJ0Tqxlq0dJ4re3sNOtLFSryvJ5rjPIABAz9c/pVXR/Eq2EVyPPuY5JoyoYYcqSQcgnkHj36+\nwrmZNz7ndizdSWOSaYOldiirWZi5Xd0dO88+oXcV5Jq7yXSNlJGfJUDsAe3t0rtrLU7jVYEiubD7\nPKuTIw5RlweQD656c9PevJQ2K1dO8Rahpg2wzloj1jflT/h+GKpNohrW51WkXtxoFi620AneWVyu\n4EZA4HA+ma6TRtX1XV7O6l+z+U8K7iGPWsrw/q2nXlsBME2uOYzglGHGPp0NbCa3b6bIyQ2krpMm\n0GMDGK8uprNprU9eklypqWhFa3mqXbRCWSaF1UiSNbZWRjuODktn7uKk1LRra4uY70lw8YG5ERcs\nc8H7w/rUq63NaoskkUaBzjyiw3L/AI1HeaxJa27Xiwh3RgQgOM88c/r+FFOErtJtb/1scs8NGO05\nWvtdd7/ylqCCweaeK8nWa5KmMecg3pnBB784xyMd89aPGtlBZ+AiHlkitlniBeAeYxG1gAVJUY6c\n57D1rgbD7Xd6vPfXMrGRyXIAwM9hj0r1XS4LXXPB97pOruFe/ZY4ieoI+bcPoFz+GO9dlClqo8z/\nAA/yOWtFuV3OVvVf/InhUkukH5V1HUVPtYp/8erqLO0sbG4tLqS4u3e2dGZTbKCSpB5/eHH61R1f\n4banazSHSpV1OFMk7F2SAA4zsJ5z2AJNdD/Z08sMczRSRyso86GRSrI2OQQeRUYqjKCs27f15GdL\nCxqKUHN6ruv8hmjXz21p5Py+WeGB6GuanuWsNQnEIDDedqt2Hb9K6WLTZ3cKEIGcVleJbfT0iiME\nm++Q4fyzlQvP3vfPT8fas4z5pWPRcOWJi/YprsSXDCJGZskeag5/3c5qVY7tCkbbdg6YrOa5gUgF\n5D7FjxWtp19aRhm2FuOB6V1RRzyf3nTy6gYvB19Cke1XkRMsckLnIGfoorltKZWXVT5m0G1UEg9P\n30dddommQeK9Ov8ATLpzCZcPA4PCOM4J9Rzz9fpXFW2m3GlprcYkjmMdsF/dtkHE8Wf0zVV43pqX\np+aOKv8Aw2uzX4tC2viZrR5rW6txc2xclf4WUE5q3ba7o0MokT7RH7Mmf5GsDUPLkuEmiUqsigsp\nH3W6EVTbA4A5odKN20dUaskkjv7zxtDPZtDZ+YIkALFhjzD6fT/CuRe8aW8lu5yd7uWOal0uxY28\nt6y5htzgejSHoPfHU/Sp9M8PX+vXZtrGAuVUF5G4RMnqx+meOvXANVGNlZESqOWrNmz8XQ20f2fT\n4pSWGN8gC8/TJq34Z0bXfHOrJBDELKyaT95dvHkEqDwDxuI54GPfFdL4f+Hml6SkcuoH7ddLggEE\nRKfp/Fz68H0rq7u+msrC4mtSY5YIGMZX+EheAKfPZWRna5x0enxGyaGEN5aSOiA/ewGOCfcjB6Dr\n0FLaR7SUcln6Zr0fUdJt9etl1XRhEt6kaiW2Y4WUAcDPZgOA2MEcHtt5S30K51O8cWdvObhH2ywy\nJs8luOHPQdc8ZJHKhq4pwmpN73O+nODho7WKcdytmpd2ChRuLMcACup0JNb8T26tM76boUaYWZvl\nluFPUoD91SP4j26Z3EjKuPD1jY3yrqcn9oXMDCR4U4hjbqqY6se5LdtuFG41qnWLy4lE1xKTEDgI\nOFH4V1YeHK7yOavUvpE6DVYtD1LTF0eaEx2iR+XFIh2tGAMAj2+vXvXlXijwZq3h/Rguno1/psbN\nI1xAMkZ6l16rwOvI9+1dbcXRkcMGHXt6VoaTq09tKqpJgE9G6V3Ksk+V7GPM7K+yPGbG4kttEtVN\n6lvvuJiS+4j7sf8AdBPeu68I/EOfT5ktZb6C4jJxy5RR/wB9hQK6vXfAuj+Lbh0kT+zrpVEqSW6g\nKzsWDMy/xZCr3B4614l4n8M6h4R1s2N7jJAeORD8sinuPyNKinyycdVd6fM56VNTjKUXs3+Z9RaT\nrttqsKuh2lunOQ3+6eh/CtWvmjwh4ludJmVVlwmcspPDfUfnXvfhzxDb61bfI2JFAypNOUU1zRNq\nVd83JP7zcooorI6zy3UNSu0vprQ29vdTxN5bom4GWMgcKAx56g9Tz7GoYdXuodSG21trO6uphGqS\nlyyIzFiWBb1PHAzk4qWxk8NeINOuVtjGupXAZliuZMOsmDgKf4hnnjPv6Uy6s/DmjaKkWsyRR3yf\nO6wybpiecAAHpjj0+nWtpU5c3LbU8dKcXzN6epF49Mxs9LsZZEmvJbncjRxlAQBjGMnuw712t3xN\nnsa4bw5BdeK/Ev8Ab91E0en2vFqjHOSOmPXB5J9ePp3N395SKMQuWMY9V+p1UVo5d3f5bIr5wKrv\nLMJZVRckKpXPTnI/HGM/5zU2eKga5jWby8OWJ2napIHfnH1H5j3xys6YXvorikXPmFgYsbSoDZ5P\nODwf93j60scrmVkYrwBwD0OOf5j8x68V01K3lVdhfLEAAoR1OAc9P/1H0NCSGSFpUAVizY4zkZwO\n+OgHfFK/Y0cZW95FmQMchWCk9/SmKrIynflQuPqfX9P1qs09w0zgRBUDrgsDypJzj3HH600POGTf\nnlyDyORg8n06D8z7UXJ5XbVotKgjLFWbacnYSSMnvyai2uoAWQdefl68c9+ucHJ9KhmuZo5IUEG7\nzC2SG4XAyOcd/wClIZZyDiHHzd2Gcden6dR1o0Bc1rkiIYgoUjAUA8csR36/59ajkiDpjO3qeD3P\nP8+aQPMSCyIFYngHBUc4J9e35n0prufN2gNnAyScDvS0sLW+43AQHAAyScKMCoHbk013uCrEqgGA\nQuee+Rnp6D/PDWNBMlrqWbTC75ipYj5V46Hual1G4VYlUDJI5FVnvINO0/zbiQRoxySw49uKqG9t\nroB7K4WeI8nBP6Z5reKsjCWrsUbzIiYAkrn5ffg5H5VX09xMJPMIOCARnIJAxj86Wc+YkkROPmGw\n/gT/AEqnpDOLcCRdrgncPQ5IrOnvL1/RGNHefr+iLV/pkE42bF5OT79hXP6hoojhZrcbZkIkUj1B\n/wDrmupLDHBHSs29fDsF+8U4/MVqa7bDbjxBaQWKyzM28j/VKMnNcdrVtN4hnjuJIfIG0Iqbt2Fz\n1PqST6eldX/Z6XLxzXKIBEu58D7wXJyffkc1s6Dp8byvqtwBhDiJOxb1/DoPfPpWCpxpxfKtzdzd\nSV5dDM0nwlLZ6PGolW3C5KrMDIzZ9RkBO/HNc5r9ndRxPuEfByNittP6/wA/1ru9T1BVZ8vwAetc\ntqmvwtGE+zyurjhQANx9PX9K550479TRVJN6bHDa+ZRrmojcTm7kAH/AjVzw05gvJYWclzYXzuM8\nD/RZcD/PrW5c+HjeavfTXPy77h/L2noMnB+vSjSvCsNlrLTS3E5ge2uIGKIGI82J48gEjON+eo6V\nzujKWFsl9lfkjPDTSpQ9F+SPP4Wae5Vh2Neha5EZbiD5iHFjaYPp/o0dIngzRbYqqajqO7Oc/wBn\nof8A2tWpr8WkQ3kYuLjV4ytpbL+70zep/cIB8wkxnHUdjkZPWsqs37aFoy2l9l+R105x5WmzCtY7\nwQs8lydqjghefzrj9URze7mdmLZbcxyTXo8UGnX1s9rb3OrwpjmeXTkUEewaYE/XHFQT+CtHdlmO\npX4RMDH2BCMf9/q6IVLJ+7L/AMBZFSSbWpwVql3dXaNChbYMHHSvQZfDWpyeDbyKxRbh5bu3ZkVg\nGVAk2Tg9fvADBOa29N0DRLWVoYbq5JTqDaJ/8craSa1t7Jra3muHd5Ffc8QQAKGHZjn7womlU5Uo\nvddGtmQ52R86anbm11CWEqVKkDaRgjiqyFlYMpII6EV7B8SdDj1HRV1SFF+02uPMKj7yH/Dj9a8h\nz2rulGxlGVzvJbmabwdiSV3H/CN7uTnn+1gM/XAFcGK7fP8AxR//AHLX/uWriBXnYFL3/X/MuWlj\no/C+oLDNJbXCvLERlU34A9e3vXTW2raWrm3ubwQyjjbICPoc9MV55az/AGe6jl7Kefp3rR1yPcYb\nkDhwVOB3H/6/0rqqUlPRlU6rpvQ7/wC36JbLufUrcjt5bhj+Qya5XUNWn067mvrcKJZsopYfdX/O\nK5zT4/N1CBMZG8E/Qcn+VaPiFx5sEQxwpb8zj+lRChGL7lVK8pWtoSaPNJPpnimWVy8jachZieSf\ntdvSRafe3/hqz+yWVxc+XeXG7yYmfblIcZwOOhpNC/5A/ib/ALBif+ldvWFUKLlUny9Gv/STmqwl\nJRcXqnf8/wDM17nQdbmcP/Y2oZxg/wCiv/hUP/CO65/0BtR/8BX/AMKzwauaXo99rWoLZafbvNM3\nYdAPUnoBW373uvuf+ZKVbuvuf+Z2Wqp4h034g67cW2mag9rLqVwWCW7lXUyNgjjH0NdJNFqK2S3E\ncFwWchVTyjuHuVxkYHqK6A/D/SbXxJqmq38S3txc30s6LIPkjDOxA29+vOc9sAVR8cWk17pTSKST\nEBKFHouc/oTXNho1HQht8K6PsvMc/bczs19z/wAx3jHRTcuJ7RQ6yAKUj5KEDHQdsd+lea+ItEvJ\nNevpIuVkuZCM8dWNexW2u2w8KQXWoRm58+EL5Q6yNjn6D37ducVzUscWUdY8I/zKCd2B6ZxyelDj\nOD9pobUoSnUvUa0VtL979WVF0JrfWILlzumexsYI17bvs8SdfrXL+KvD89hqt/LbW7fYY7p0VkyR\nEM/KrehwRjPX8DXo+oarHousWGoz2TXUfkQLGivtIzCgLDjk4J44/Xh3hCVp7/WL0MxW7kEseeCF\n3MFP5AH8avLZShSU31X+Zdezaiuh4y+pSxRFJv3hI+Ut1H19ai8Qyl9RjJOSbS1P/kCOvatb8FaH\n4ihEj2q2ty4OJ7YbCDz1XoRk89+OteYeNvCd9pd0t3GDc2KwRRecin5diKnzj+HO3PfqOa3nyurF\nxVt/0OWTftYX7S/Q40nNbOiXSRRzRsGPIYYP1/8ArVjAVYs5PKuV9G4NW1obHo1nqOk6hbhvtaQy\nLxIszBCD+PH5VBeX9k839nWUkckh+aScMPKiX1LdO4/H8q4a6QGZhnG75qhJ2jA4FYKgk73NnXbW\nx38XiKw0HRbltCgWV1nijlnmUjzSwkOcA5wNnHTqfqYdE8Zy3+pTw6i20Tpth8scI2egGepGQCc8\n4965iwNtNo95aT3sNrI88MqGZXIYKsgP3Fbn5xS21jZw3UMp1zT8I6twk/Y5/wCeVQuROSlffs/L\nyOCnVVOcubv2fZeTPV7SdZrFVwHaLMTA89OB9eMVnRWVudREjWhOD90uSh/CmvqFppepG9urq3jt\nbpskBZSfYgbOe/cVN/wlvhoS7hqa4/64Sf8AxNYtpSdr29H/AJHZHGUnHV/hL/5E1dcliXSSkiZ8\nxl+VT6fN25xx29a8g164juNVuktLmaSxSVxbiR2ICZ4xnkcYr02DUf7Ws7vUhd2gghjPlgM5C7QT\nkhkBPI7DsBya8zOm2uf+Q3Yf98T/APxuuinOEY/8B/5GE8VCT6/c/wDI6+48T22myQxRQCTNrAwG\n7aEzGpAxg54wf/1VDZeKprvXbCJLdI0kuY1OSWOCwHtXJ6xNDLqAMEyzRpBBH5iggMViRTjIBxkH\nqKl0BmPiLSxn/l8h/wDQxS5V9Wd19l/kzlaawj/wv8pG7B4zn3CO7topImGCFznH4kg1zuvW1tZX\n0cumy/uLhPMCKfuckY/Ss0XLq3zckcVe0mNZ7wzyDIT7oI4zXTJRWqOxXW5NYR6s67kk8iNv43UZ\nP0GM1pQWSRSebIzTT95JOT+HpVgS5OTTlBfk1g5XJc2zX8MMUvL1wxMiWV1InGcYt5Rz7cj9K0bR\nbfVNoinjZm/hLYYfhWXoMf8AxNJfewvP/SaSo7ayRY1PU4Gc1ySipVZPyj/7cawrckTsXso9GsQo\naKKeRgiFuxPckeg/pWXJffYEms7eNlllULLIxBwOeBgdMH36e/GN5Si54xwMZGeP88VbRADz171q\noKMLPW5NSs5O60LCOFj2jtTHkhuFWK5ijmAOQsqBgPwNITjBB5qndkbfMXt6VKWpgWLrw/ptx4S1\nKKGMWrvfWzlo+hYJPj5emOT0xXLeDNInXxzaxS3TWf2OQTSTIASFUjG3dwdxIHPHzcgjiumtrgnw\nzqnzkhb+2xk9PknrKfxBNpFrfrbIpnuIlCSZIKEE8jHXALEe+D2p4aUk5rz/AEia3eiH/EvWdL1D\nxC39klXVQRcSoMB5MnOD/EBjr3yewFcP1GaTqCDSIflIPavQcm7JjsLjimFTup6/dFO7UhjVXing\nccUKPkrR0jQtV1uQx6Zp9xdMDg+VGSB9T0FAjMfkU2EYzmpp4ZIJWjlXa6nBHpTBwcUDEVtq49CR\nWnpt/JaXCOjYKMHH1HNZ6xFxIR0DL06857fhT5E8ifZnPTrx2o30BOzuPEuGJHGTjAqRXO519ORV\nVjtP45p8MmZfwxSGWThlyOahaJT2p+1kbK0EhvY0AQ+WQwCsVOcg56GvQvtlu+jRtOXe4YdZGLBf\nfB71wR5GG/A1v6VfrJB9jnAOBwCMhhXPiYtxujow8lGWp2ljpV41ov8AaGoFElj/AHMFxeLGZMZP\nyx7skjHcCp9K1C8WCS2vS4jUkKJMbtvvWdpM9vZPvaURhjlgvVvc1Y1HVLe4fbajeTwGrgfvaJHc\nnZXbMPxTqdtdW1ra2zqTEzeaFPRhhce3Qn8a5UXDQzKVOOqn8RVm9TZe3K5/5at/M1mTE7gD1zXp\n0oKEEkebVk5SbY/7esOjtaBcSM+WYHt9PXj9TWeZ2KBQx2joM9KS5GHBBzuGcelQ5xWhkSF8imxD\n9+npuFIO1GOaAOu0uVIv9GlcKWOUBPU+lbNnABdbtoJFcrrEYk06OdVxkq34Ef8A6q1/Dy31tp5n\nlvZPnGEhOMhRjnJ5HXoMVn7Fzd4lqqoxszVunun1K3ljjG22dXUNnBPXoOccdhXRyaHrc2rG8+x3\nl0lxp0LrcRQHYJPsaI2DjJyQPoRWIjbWz0BXkn+dN095LrUo2UkJ5cuAW25zGw5OfXFPFYRqHPBq\n6T3T627ehxV6vNTlfYYPCXiGTUQZtH1EoQw3fZpDjIIHarMPg3WL/TIXbStRt7qJdhDWrjOOBwR6\nY5qWDS5riOdR5KuoBj8udDtI5HQ8dua5p4dV0bURcWk1gUcYeOW9hAb83H6VzV5VJbTj90jWji6E\nev8AX3G5H4Y8V2rhP7FvJEB6rC2D+lX7PwjrU10J73S73aDuEf2d8Z/Kqtv4mRh/pNpaow/556pb\nN/NxTJ9XudWRraC0soYR99/7RhkJ9BhW4rnjKone8fuf+Z0SxmHtrP8Ar7iLxV4e1nUZY7tfDurP\nMXCAR2cvyoue2Pp/nNW9O8J6ndaXPa6noepA+dFsdbZwxAV8Hp2zjn1Fclrdne3cyRfaLJooF2IG\n1CAYPfq9b0GnTaX4WhmV4pTI0TMFdX4CyAjKnBAJGD2/CupVajaipReq6S7+pw161KpypPW629fQ\n0h4BvLDSdddEuI457JY1F1CY8H7RCwG7GCcKfSvPL/R73TXAurd4wejdVP0I4NdVJ4kk07TElEP2\nsySMipM2CgHPy8HPX14981oDXLTUbBQ9p5UEmBJHI2QozzuOB7YI/nxXoUqEW5OT1fa9tFbq2aOp\nJWuebkfK30qLoK6PVNAuLXzJoEMtmQHSRSD8p57fzrN0fTYtT1m3sZ7yGzilfa9xL91B1/PsOnJH\nI61nKLi7M2TTVzM7NzTQ1aOr6aNK1WezS6hu1iYATQHKtxn/AOsfeqAt2yckAUhl3Sb17XUI9gzv\nIQr65rvYgJ4xMRcSqVK+WhJCnHUDI5rG8O6DptzoL6gsjSajFcGNo3cKqL5bOrD6lSOT2PHetlPt\nFuvm2kuzeASCMhq469m7o68O3E2YraN1e4axS3IGB8oXaPQVTvWe10Ka5EYkYyqihuwwc/0qtZT3\nt5cBbtzsBztA4NbOqwGTRika5PmqcdzhWOPyyaulDqx1anM/Q4WPWrm3lJSGEH0OT/Wuk8K65NNr\nL3mpTqIbW2k8tcYAcjAxgdevX0rnriFWORiq6TmEtECAjfM/4Zx/Ouim1GV0cdS8la53kOuwRxsQ\nxAJ3MzMBz7msrUPiC0KeTaotwR/z2yUH07/lj61wt7ftcSHDHYPujNUmkO0nuelaSqOQlFLU0NQ1\n7UdQZlnu5HUnlAdqf98jitLT7VRoUkzkAMc5/wCBYrnUXC812digl8JMpGQYZMD3Bb/CsGlayKcm\n5Js5a4tfnOVIP0qW3i2DgHFVPtNwi7Q+VHQNzVvTJLm9vo4S2Ih8z7Rjgf5xU8stjX2kFqdNY3sm\nk2M12HaNxE20r1BIwP1IrnLCZzZ6yxYkmzGT9Z4v8at+I7rAitUyP42/p/X9Koabk2Gsf9ea/wDo\n+Kqqv91b0/NHFW+Bvu1+aGW14JLI28yK5TmMsM4HcUGztp42e2kKS4/1cnr7GqA+VqduK8g81rfu\nbWOyk8pdD0zRbYRFpZQZJFJPz9MHIH97nr257D0rTRbabpkdrbIEiTp6se5Pua8Y8PXCrrls8z42\nsdue5xxXq1vOZGRARjdz+VRJ9CUrP0N1GyhkYk44H1pz4MBVujdc96rRuJSP7o5AqeRsIFyRnnmk\nWiHR7m4tIIJUl/fxrsYg9WHBH5itjWfGGoParBbokU8nyLsYkliOvsOCfoOtc9p5EZuIsjMc7kn0\n3fP/AOz1FZubu6kvWB8vG2Eei/3vxwD9AKELbYuWlusEAjBLHkszHlmPJJ9zUjncdin5VpVOWAz0\npqfx4GeatPckRgfMVQeMflUc9yYI8xnLM4RSfU0Mf9IJ7Gq95dIJFREBcOFU9QCR/h/OjqM60alN\nBd2RDDe8CZI9if8AGqvxQ0aLxF4HOoqD9o05vNDKuTsPDD+R/Csya6Mt8nOPLAjI91VQf1zXXeFp\nU1S0v7G4G+GRSjLnqrAgj8q6cLU5W32b/PX8Dkwr5ZeV2vxPm6XNvLHIkiyQsqkSLnGccg+h/wA8\n16N8M9ZIuJpRIF8rDyn/AGOf68fVhXm+tQz+HtcvdOkO7ypGhlQ/dcKxH9ODV/wxqZt4NQMQMUbx\nqpPUt86kAn04z+FbSXs6zh0/Q1r0tLdmfWFpcLdWyTIeGFTVyHw+1M6hohUnJjOK6+sZx5ZNI6aF\nRzpqT3OAl8K2R1eHU4tMMFzDKJMQTgLIc91Ix2zxtPPc5FQ6h4a07UNXfUb+ylluCAPIa4AjIUfe\nGMHtjBP4V05e4zkGL/vk/wCNROZyS2ICcYyUP+NX7aW9znVOPYrpdC2s40is1jjVeEV1AReAMAdv\npSyyCW3EgH8RUc+h61PtlaNQVt8ED/lmcevrUM0ZS2wdoAJwFGBWM2mjQq5qCW1ilySoyxBPGc4I\nP64AqXNQyp5mO5HQdueP89D71DLi9R0k2wszsqxgcsT3yOvp/n0qD7WgZtzAfMQoIPbHX88/Q0sS\nAxo7FmbaDknv9OlKUQtu2LnO7OOp9anUpOC3DzdqKXIVj1+uMn+tQG8h2lkLP820gDp09eO4/OpX\njSRdrKGHXBFN2KpZlUAt94gdf85NDuJOPUrtdB0OxmyzcfKCU4xn35H649Kd58krBUQx45JkHbHH\nAP8AMjpUxPNNLY69KLMbkuwcgfMcn2FRPjIY9QMZpxaoXbJoII3aomNOYk5NQycDmkBW1aIXl6sJ\nlnChAERMAAYGcmsS58LvE3naTeNbXQOfmwEb6jH9K6meFY3a5d1UNGmCeg461jSXoL7IW2Ln/WyA\nlv8AgK9T9egrpMOpVlt9QNu4ntyJ1ZXHl5YNw3II7VDYSvI0g25feeAOa0ItSgRW2Fn2MAxc5Izk\n5Pp0P6etZ1xcz6jKVFxbRqTkRpGXPtkjofqawp7y9f0RnS3n6/oi205JK++Krwss+pyA9EXGB9aL\nS2EhPm30TMhxuVOT7dePzNJFps8E8sqXMZ3OCpViCK0ubdSS6uVYeShyzkdB25JH6AfjW3eEafps\nNuGyIl6rxknkn8yaxdKja41eZ5lbZbRkliernp9eBms/xNqzFjbx85GSM9frWNSfU1hHS3coXuqy\nvIZH2tGh6dAay9IY6lfQXUh4E5WOPsABuJqmYr3WH2jK24+8wHOPb1rU0REguJgOFjOyMD0IHP5A\nVlCF/eZo2lojsXj33EnHRzx61IIlwfl+uKhabN3IikFtzZ56c1KCSpVWwcdQK1ofwo+i/JHHQ/gw\n9F+SFaKJuCuBkdqn1W2ja+jLgFfs0OCQD/yzXqetcJLq2rx3EKNK0winO/YCgYgkeWSBg5Azx/er\na1/X7iLVYbf5ELQ2pySoC5gjZky2PUfMcdT6Con/AB4ekv8A203Xwm2kCjOAuB0pWDRgyIu5W4dR\n0rmo/F8DuSbeTbj5AGDMx44wOnJ4PetbStZi1WF3gDoyMA0bDBB9v1rpuSF0ojgF7bud0BGR3KdC\nD9K0XIZ1kUkAjk/WoJ40kEjDMbEEMM/KwPXPtWNaXrbY7UPhhuRge4HA/SgFqdGojuLSS3nTMcql\nHA7qcg/zr5+1G1ax1G4tXxvhkZDj1BxXudrcAnhsjoMGvKfH1mLXxTPIqFY7hVmXPfI+Y/8AfQal\nPVBHSRb8O+I9Qj8O61bYs5IrLTB5AnsYJSoN5CSpLISy5kY4JIBOcZAxmf8ACWaj/wA+2jf+CWz/\nAPjVR6D/AMgfxP8A9gxP/Su2rEzXm08PRdWpeK3X5epu27I6GPxRqk0ixx2mjszcADRbP/41W5/w\nkV8bP7Hdx6QJI8OGXSbVgFPbb5eP071yFjEGjnmLujRAFCpxzXVfYrK3sPNF1CbkZA/eDexxnJGc\n8nitZ4OnFJ8qs/67mU8VCmrNNu/yJLHWbj7aGibR5VCk/Lo1opHbtHnvWfqvizUP7QlVYNJKphRu\n0i0Y+/WP1p1vKmJXIHmKSCe+Kwb+NsR3DSFmnyx46f5zRTwdNxb5Vp/Xcbr+0aaXL5GnH4y1aJJE\njj0lElXZIq6PaAOuQ2D+65GVU49QPSoj4s1Ef8u2jf8Agls//jVYlIaPqtD+Rf18yuZm4PFmo5/4\n9tG/8Etn/wDGq9Q+F3iM39rd28kWnxXiyA5hsYYt6kHHCIASCD2714mK6PwVefZfEUSiXymlUoj/\nAN1xyvHfJGPxpPC0bfCv6+ZSkz6Ig1G5+2yWt55bSBTIkpgQFx9MdefpVPUrib7IxMNswBw6tbRk\nEHgDBX6U+2nS/gsbvGJFcZAOcbsqR+fFS3aZeaNxlFX5wP4iQTTWEoWsoL+vmS5M5/w3fm9+0WM8\nNoHtD2sYQDGSeQAuOenFa95Zy+W6RfYt5wVQ2MJwT1A+XpXKaUz2filofMct8yAEcHHzAeo6DNdL\nqesLpKfayPMm2v5add0nyhfwz+mal4Wi3blX9fMam0r3Ob8QT/2lrtpo3DXEe1ZSmFWNVA4G0AAn\naOgGOK6OxX7PJO425IRMAY6ZP8zWD4S00vcz6zcSeZLO7KJAc+YeNzfixP8A3zW/d4ieI93mwcnt\n/k1tGMYpRirJCu+pPE21NuOAHOKgnWM2BWUIwcHzAy5G3ofrnp+OKhvNUtNNgH2mbZywcAHgHuf8\n9qyrjxDYT3gD3UaxbRNknbvLDK9fY/rWcn+8j8/0MZa1Y+kv0PHfFujpo+tSRQqVt5B5kQPOAe34\nHNYWea9K8fRRXmkJdxsrmKTKsDnIPUfy/KvNK3TujUvT3H2gRsQAyoFJFVCxwRTxwoFRN940ICTO\neKcFpq9al70AdTfj7X4eWYvuYKkmR3PQ/wAz+Vcv7V2eg2b3/heYo8K7C8O0uAxLDIOPxP5Vx6Rm\nS5SJfvOwUfU0IS3OofNj4VASRkZ4gOOM7iCQfwJrlcV13iuNrTTrJDtKXH71CoPQcY5A7k+3HBrk\n8Zo6AiM9a0PDrn/hJNKz3vIv/QxVB+Mn2q14dP8AxU+kj/p8h/8AQxWdb+FL0f5MyxH8Gfo/yZnh\nFcZOc1s2QFuqR4xzk/Ws2xj8yRf9k7q0N22RCPUU5voas0Vb5ulXkJXAxkmszzzE6hQNxPX0FX4D\nj5z1PPPYVkyGjpvDMEUupTCQuCLG6xsGScwOP5E9+1ZrXEcDCPk84+YYx/8AXqx4fvIbHUkupYty\nPG8DfPs+V1KZJwcY3Z6HpViWbSZNfGnHRr43M8gUMNQjwWPTnyf1rC0lOT5W07bW6X813GldIrlB\nFbxXLNkzMwUZBxjj8P6/zWO5ib5Q+PqDzWhqt9o9nOIJNKuzJbDyT5eoR/Ng4yT5WCelZqeINB3A\nSaVqSAntfof/AGjTnUk9FCX4f/JCcfMcZldWVW5U4Psao3MhKsyn5h95T0Naz3+hNCHSwv3UDkjU\nE6e37mqlzeaAoy2m6lx3GoJ/8ZrNVX/I/wAP/khKPmUobhI/CesTN91b60wD6+XccVyN3cPKqsxO\n48/QVu6rrGmSaPcaZYWF3B5tzHO8k92sv+rWRQABGuP9YecnoK5y6IyoHpW+Gi/elJWu+vovXsaN\nIrZw1HRm9CKRqRj0PbFdgx6n5RT15qMcIK0NJt7O7vBDeXEsKvgIURCCxIGCXdQoxn5ieP1ouI6P\nwHptjPqUl9qsBntLZGZIBg+dJwFBB52jIJODjjIIzXY6DbW93qL2rwwEyKIwJlEcUavjcwUAEc54\nwo471p+Go7Cz0ueDRp7TyJ2Hnw3EhniXKkENsdtrEfgcDmq50CGPUopJpVvInwoEsf7tu/pgjjg+\n55rzZ1ZSqNPTs+v3HVBUlScpK77f0tDz/wAcaVcW95DqDqTHdIuH5OSEUgHPfayZPQnOK5NvlGfQ\n17jcXKaTNOt/NiGQ/KkzoSfl4PzOg4Ax37DBA48o8UXun3l4n2G0EHkoYpGVlIlYE/P8vHf1PSuu\nlUb922xjNW1vcyoAzSyKvOY8kEkZA5/pmi4bdd59VU9fYVEkrIVKtjcpUkeh60ciTJGMjityCScZ\nUNUEcgSTk96sk74iPSqLffNDBGj9oOcBQaAwPUYNVrfzZ5o4YYnklkYIiINxYngAAdTXp+g/B3V7\n63E+p3MVhnkRAea/44IA/M+4pbDPO93HXArQ0yzkeSOdgygk+UWHDYznn64H5+lezab8NdI0aQTL\nEbmcHKyz/MV6dB0HTrjPvU+s+GU1G3RMBZIjmMkcfQ+x4qZPTRDjueWMOCxjkKqeWUbhWlaELD5x\nt7kxJ96QRHYvuzdAK2ZdIFtIIrq3kRgwfAkZRuHAYYOPxFMuLGD7K1vBAfnP8UjuB7gEkA+9cLnS\n2aZ2KNXe6ON1FNJm1GeOd52Rmz9otmDBCTy2wgZ6E43D69qxNR02bTblVkkSWKRBJDNGcrKhyAw/\nEEEdiCO1exaLZeR4dvLK5QNHdJ9nhjlTcjSM2EYj/ZYg57cntWl4j+F3h6+gsLXTy+nGedkVkJlC\nkxu5OGOcYjxgEDvxzntpTUonJNWla586yHcxPvTf612njD4a654Sja6lRbrTw2BdQZIXJwN4PKnp\n7ZIGTXFkVoSC9ad3pq/epTwaBHW2MS3+jQJKQVIAYeyt0/IVeSR2chCQplC4X8qy9C3JpEjsMAv8\npz1zj/A1fgkEZiZ22IZQSQM9/wD9Vb042RhJ6mjdybUaP/nowTHfHVv5frUlrkbSG2k5Gfboa6/w\n94K0zVdNt9X1C5upIizEQxgIo2swO9jnIIUcjb1qDxjp+h6XqFhDoyxiNo2L7Z2kAJUAD5ie6t37\nj2rbnT0IS7FfRPMLzB8bSVwNuOfrXH+KtPhk0YXsEhIjnMbKyHggspw2NuMjpnNdtoVzJDcSNGkR\nTGCWjDDI/rXFR3H9o6Brtqdu6KSSdVaTAClwcKuOTnJ69M1lUSNKZw+2uxsrBNL8JvqMrOsrthF2\nAhmPQE5yOPY1g6Lpz6rrNpZRruMsgGOx56e3pXReKJHutQs9DgyzQYR8IcmQnkY6nBJ+vauc13dj\nkGy7ZPJ6mvU/B+y+8KwRMmRCXibPf5t3/s4/KuZv/Amo2NoLuT5YiSAzrheMdWBIXqPvEckVp/D2\n72Lf2jEcFJVU9uzH/wBBqqTvKxNVLlU4tNeTT/IzNStfs+oG0lHyo5MT54G4YII/Ac/5E4CrZMhH\nYcfiBW54htojcJKw5KgYx/tE5/WsC6cJLJGG3Y6nHJJwT+ua646MylrZl2wl8zSZLV3IDo8e4/Q/\n0ribiMQXMsZIYoxUkdMiuktrv5Gt1TcMvIWz07f0/WsLXl2XkdwoAWZecdMjg/0qKyvG5VJ2bRTL\nE85pMmoVYscjNSjJ61yGxpaBcx22uWrzDMRcK2Txz0P4HBr0a6it7GZftUwt4piRC0wZFYgc8sBj\nr3615Oa6+9mk1jwwrPK7uihsM3AZeDx9M/nUyipKzHGThK51tvBDjzhPF5Q58wuNuPr0rHvPFUVl\nrFn9ivozNbGSZHTDKHCHaSeh5xxzXmrZBoiieQuy/wACliaUIcr3NJ1eZWsa8GpyI2HO5fT/AApt\n/dI4UREcjLYFZEcjbsGpCc1ozLqKG60qfMwz0FRE4zT4249qQE57Cu08MsZtF8pvuLI0f4HB/rXE\ng5Oe1dT4UnP2a4iPRXDfmMf+y0mTI5duGweoOK6nw7Zx2+nyXkvHmZO7HARf8muevIS+sSwRjlpi\nqj/gXFdLrV0lppC2kRIyojA9h1P+fWmxy1djlbydrq7lmbgu2ceg7Crmm/8AHhq//Xov/o+Kn2Gh\nXupKHiUBWztyCWbHXCgEmrSaXcafYawZNrJ9lC7lPRvPi4IPIPsaxrTXLbzX5oWIpT9m5W7fdzLW\n172+Rz74yKaTlselNL/Nj8aM8e5rcocGKsGBwQcgivVPDl8NQslmyOUCkDse/wDKvKc8V1ngnUvs\n989o5wsg3Ln1HX9P5VMu5Mu56lBID8voOlTs+51XPSs62Ybwe3arKvukdufTikhlW4EjambcITDc\nqN5Hbbndn6jav4n0rQh5ViBjHbFVkiZtR87zDtWErs7ckHP6VPCQEc4ph1HgkdOKRmCFhn6VC0uO\nuKc/zRhu2McVcFcllWS4/wBLjAJ5PI9qzop0nu4woIKXT+axPUgf4YFWoxnUAcZwKpW0IgkuH6MZ\nZGI/3jgH8lppag9jXSYyo8zHBeVz+eK6/wADymK7cE/fAH0rjkQi3gQgcsc9/Sui0O4W3nUjIZWG\nCDjApYd3bXm/zOWPwNr+Z/med/HLSxZ+NxcRpxe26y8eoyp/9Bz+Nc5pNrHY+HDc3u9RPcARwrw0\nm0cnnovzdcHJ49celftAW4ksNFvEzktJGxHcfKQP515C/nfZ7aGKF2WNedq9zzXbVfwTfb8tDrq+\n9Z9z3P4Va1JdlosJHCrhUjQYAyD+JJ9Tk/lXrdeEfC+NdOht5LqdUlnuRtiRgzMB64Pyjr15Pp3r\n3bNRU1SZnhH8S8zH2H+8n5n/AAprJnIytOpO1YljWBAAULwAOSf8Kr3AYwNuAAzng5qyahnyYXAp\nPYDJzmmNhhgk/gSKD157U0mloMCeaaTQWpjHFAAW5phcU0k5NRlvekMkLU0k1HuwfajdnpSAD+tR\nv7U41n6tq9npFqZ7uYKMHav8Tn0AoC5ZzgmopCeawV1XVNVgMlpElnG33WcbnI/kP1ph07XTE0h1\nvDj7oMSkH9K53iKadrm6w9Rq9jT1q7jXT4VMgDg4K98euOuOlczJeSPF5VpcojOctKZAG/AZzVpL\nuU2Vzb6zFEZkjdopgPldgMjHo2cVzxDsqJMoMrDITndj6+vsfz6V205qcU0ck4OEmmbtvBDa6dIC\nJpAZFLFcZbhvUjimy65Z2imKGKVTjLZAz/OseBofsEqSPPEsjo6MkW4/KGGD8w9fXtUS6fHcgkXd\n4B/tWyc/+RK5vaqm5KSe/byRzw5oyknF79n2Rcs9atRFjc6szkkuOK0Yb6KSJ5vtsaqG45GMc5yc\n49K55NGikyDqVyq+n2VR/wC1Ksx+HNKIzJe3TsOQXQAfiAar2vk/uZfto9n9zNrTvFdjBbzQTRyf\nvJWcTquewA3DtwB+dYt6qalMJI5FImbGVPRe/I9qoay2nyPHYLe3cSqMBUtgwAPPUyfT8qxv7Q0u\nydVstTv4jGeXWyQ7vzlrmdS72f3M3WIjvyv7megQx4iwDgoPkIGdoHb6VzFvdFNQuQrAb5COB0A7\nCpNJ8U2k8gtZLqeRiPvtYqmfriU/yrS0bTtNt78uZpn3AsDLCoH1zuNaTxMYq1n9zCDcnez/APAW\nbMksqXk5CDYJWHTHc1OZTDFuY/Me1FxcQNNt3Z3HcPoTzUN/aw2mBeatZw/KjlSk7FQ6hlztjI6E\nd6wp4pRhGEtHbzeyXZM6KOG9lRg59l99kYt9AVEE322GBDNM5MqZDbsAgKeHxzn0zVzULiwfXlju\npFQx2Fn5MsRMf/LBScFcY4b6YArAuNNjumDTeJtOk2jC7o7s4X0H7n3re1PRYnukn/tO1C/Y7Rd4\nt7phgW8Y6iEjng+uCMgHipqYumqsHG7dpdJf3f7pUKDcv3nuoozabbWwMUMs00ckaunkxFmDg8Pk\ncevGcdenFb+ns8dgrzRpDcv802xRhm9Tjv0rB0+C0s7qNIPEunbWkBETxXOCTwefJ47fkM9BXXJa\nW7AkatZkf7sw/wDaddUMXSl3/wDAZf8AyJlVoum+5Xe+8hN08DFRlhJFyCB14z+nWuWvnjk1hDBK\nDCSZFZT6/wD1q6bUbZbexubmC/tJpYoJZhGGlXeI0LsOY8dFPU1wHh2dXZXLMpYclTWyrQndRe3k\n1+aRkou9zurMxLGq9PQH+tcl8TbTdb6feqhOC0Tv6dCo/wDQq623jXaD8p9wfzzXP+L9Vg1DRJNO\n0+3e/kLr+8gUukRHPUdTjj8TWjatqLW+hw+g/wDIH8T/APYMT/0rtqw66DRoZYNJ8TpLG8bf2YnD\nqQf+Pu2rn646X8Sp6r/0lGz2Rf05g3mwE4Mi8fWrKyp5cVsXZpFzuDDge1U7K3hmErSXsds6DMYc\nN859MgcfjV2S0S4dYvttj5m9l83ewGFHB5HQ54+nOK621KFnujCdO8hUcm1lWEje74yPw/8Ar1Vv\n5FZ0iU5WJdtWJbdreDENza4yynZJk8AHP0OcA+orMZSpwetHMow5V1Go63G96RqUUh71maCjpUtv\nPJbXMU8TFZInDqw7EHIqEU9I5JG2ojMT2ApAe86VqKrosV5EpKLJHcKAQcI2CwP0/pXTvdJd7mXK\n45cN1BOP6VwPgqK6i8IyWl3CBON6wRsQN6EZAOD1yW6+1b9hdiXcM4DsN3sdvP6/yqU7Da1MO4uf\nJ8XC5dZN/wBoCqQcjD8D2HQ/mah8TTrca19jdmdYIwipg4aQjqfpkHtTfFE5stahuFGUURSAbsZ2\nuevvVPTzPe6jvn+aTcWDhhjO4E8jtgk4pt9SUjvdOlg0zToIS3EaYBA6sef5k1z3ivxPHaSRQWhD\nziNW3Hov1HrWrquxbSQRIcJFkH3Xk144PtOrahLIHAZ3/i9zU7K5SV2TXrzX07z3EjyyyHO52yST\nWjc20Fw8cn9pWsZWCGNo3WXKlYlUg4QjqDVw+GL238uRCrlhgMOxp114UeOIv5hLnG7jqa5ZzjJp\n81i54SpNqSdrenX1Me4hWPT5bZ9csvJkGcFZuD68R1gjS7PP/Ie07/vi4/8AjVaus6ZcWluN8ZMf\nUNXMYw1bwjJq6n+CMJUakXZzf3I1zptpx/xPdP8A++Lj/wCNVGdMtN3/ACHdO/74uP8A41VHt0qJ\nvvVXJP8Am/BEezn/ADv7kaw0y0zn+3dP/wC+Lj/41Ug020/6Dmn/APfE/wD8arH3Y6U/J4o5J/zf\ngg9nU/nf3I9B8FrZ2r3kLapYzh1VwojkO3GQT86DnkdKyLLRLdvEywxapaSOkrbY1SbdkE4/5Z46\n471X8GXq2Xii2d1cqwIby8buPm4B4P3enfpxW3oME0XjLVL2NIzLbMcxyLuyzZOMHHoe4p+znb4/\nwRLhUT+N/cjRvdHg1TxZDYx3Wmp5SmPyGdwqMMsx3EbTwCeWwT+Aq7qvgrTpNNuGtb+3lkhBZt0k\nZKLgbSBGM9+Rg8elcH9pmn8QS3MBSQJMroW2r90/KcZ6YHIrbvb3W9SsVQabPMkOws0MTsGYbsNk\ncKp/ujjjin7G+rl+CMp/W4yioTfL1+H8VbX7znZtLtVDKdbsARxyk/8A8bpdJtrCx1ixvJddsWjg\nuI5WCxz5IVgTj9114rLmYsGZup5qpUSpSknFydn5I1lRnOLi5uz02RbsW2yj34q3LnBFZ8B2tket\naUuN2R0NXLc6GRrdNvDsAWUY59a27ORnjAc5yOc1zUpMcm7tnp61r2dzkdfeoktCWjVDyw39mylm\nUSAcn3/+vXRrZxjxXcrN5W1IFXGBtDP830HGf8OK5OWc/ZeDgnkGtQa3cySSTpKokuQA46kAAKuc\nk8jAPt2qovQV9CO+uFuZAURtrS7NyoFBUHg8e1VptPeSZ3kPljd8uB1rR2Ztlx26VLKu+2B7gVlz\na6E8xl2ULQiQyoudw25AyPxpt5IGUjjnjFSzcxE+lZd25x7EUbsa1Zks5LPnr0qOdsyY9BikDZkY\nn1yaY5ySfWt0WDdKYw+TPoae3KZphPyY96oY/wDhpUPNIelEZzQBoWWs6ppisthqV3aq5ywgnZAx\n98Grx8Ya6yKjagxYDHnFF83rn/WY3Zz3zmsM9aQdaTinugu1sWby6uLqUyXE8krkklpHLEk8k81W\nPMZp8nIFMQ8EUxDF+4p9DTtxMgz24pE/1ZX0Oaa3+sNAyzGwzz3qq/EhqVR3NPtbOS/1OGzhx5k8\nixpngZJwM+1AHq3wh8PW8Q/4SC+gDbnEVuxP+qBLBnx9QR7YPXNezCbybgRv908VzmhWEFvbpp6I\nRbm2WJQ3+yMDPqcVdMrfZNkhJlgJjck5PA4J+oxWV7u40bk0WO2VPQ1UltsngVQ8PaqGC2Ezd8Rk\nn9K6ExAZBwMVotQMaTT0nQLLEsgz0Y4/GobfRbWJznT5R6OzKR+jE/pWs1zEkuxQzgHDOiswX1BK\ng4PscU9byFVDTAxoRnftYoB7tt2j86mUIy3RSlJbM4zXFlt9X0wpFiNJWYnsvyFf5Mfy7da19LW6\nv9Vgnlt5Yre2idgZJEO92wBgKx6KH6/3h71t3NpBeoeFOOOnSnWNotrCygdT2qkkloS9WR3ixT20\nttPGksMqGORHGQykYIPtXyp4w8PP4a8RXWn8tCp3wOf4ozyvYc9j7g19U3Z4bmvK/iT4ftNatIdR\neUxXFupj3qM7lJyAR6Dn/vqm2orUa97Q8LXrTsFnCgZJOAKb0Yiremx+Zfx8Z2/N+X/16aV2S9Dp\nk8m20/a7HERXAA68YqOc/wCjjGRwKc4LW1yg+95e4Z9uag3iSyDjuM10vQ50T274kZGCkDoxFX7c\nATwkyNg7gF6diP54rK3FJzjvWxahZonfAJCZx75WmtgZ02g28kSea5OxwP5k5rzywvlW9vvMGVuY\nZOAP4h8w/ka9B00/ZdGurlsHy1LZBz2z/U15HKzDaw6jms6rLpLRnR+GRFbJdX06gxqhRSRkA4zj\n68cfQ03QtXmsvEkeq2wiW5jk8yIOoKg+mMj8KyxePFYm1Q/JKAX9+4ptjeS2M3mxLCzbSMTQpKvP\n+ywIz71jzWKaumu56/rPxElvtPmSO6mnnuIpISl1axFYlOAdw42gjODznrx0rifDF8jeM9qsiR3Q\naIs5wMYzn81H51lDxTqAbJh01sKVwdMtyMfTZg+3p2p2i3b3viuzmdIUbOCIoljXhCPuqAO39eta\nc93oYU8OqUJLmbv31PRPEFi0mnJckhowdm5cEdzxn8a4nUCBPGin5mhOcnOSSfT8K67Uv3umyLIR\ngAMGIzjtnj61yk8cTxR3Msi7CTHneN+ccYXOSOvIGBXQ9hooWT4M4/i8k/zNQ65EH0OGcA5Scr+B\nGf6frUhZW+2TooRWxGoxzjPNSXyb/DLqc5zuH4H/APXS3jYa0kctGwAqcHiqYPNTo2a4mdBNmuk8\nKyvM8ligBZiGUfoefyrmcjFWtNuTaahDMCRg4JBx1/zmgUr2E1Wyax1K4tmUqY3IweuO1Xba2WHQ\nZZ2HzOrEfyrU8cxGbULfUhGq/bIwxCkn5scjJA55x+FUpS76MtrESzmIEqo5Hc0MG1oznUXHNPoV\nlIxnn3pDQMjkOKN/AUfjRJTF60wLJYBK3PC85F1cx4ODGG/I4/rXPMegrQ0SUxagGyAGVl5+mR+o\nFIUtjVhgEvieVz92NfMP1I/xP6VV1q4Mt6I8nbGMAZzV6J/JW5uiygvgfUAf/Xrn5HMkjO3Ukk1W\nwLds9b8A6xpdhpdzZNpVtLcyS7g8k+xnXbkBAPm4weg7ntnFHxrqllqiai0Nk0ExtDJLKJg6TAzx\n7MYAGR83r1xXD2t7p0Kx4nv4JVGBJGquV9dp3KcHnirivp76NqYtbqdn+xoXie2EaqfOizhg5Len\nQfhRWmvZ/d+aPOqYWUajq82mmll3j13OSJJY1IOTUQ4epl4FI9Jh3qe0uHtLqKdPvIwNQ4paBHsW\nl3qXNskycgruzWla5Me4gc1xvgh5JNLmL52q3lrnv3I/UV29uNqDt7Go8hIS2gaOe5lYth8BRgDA\nA+vPX2qWI/u2BHepSenNRpwjdafQZSmBwccDPrVmE74mXgnqKguBjJHfvilt5NrAeoxVrSQnqiuM\nLd/Niq6kyahJGOMsAPcYB/mTWtPYIphnmv7WDzQXVHEhONxX+FCOoPeq9vp9u2pSMmr2ZPlg7Qk2\nR2/551hLFU03Z/hL/IfK7Fy1AlBcjKxswH5CrtmyrNlgNv0oWwjhhEI1C1UdWYiTBPt8v+c1LBDa\nWtwjvqlo2052ssmD/wCO1GHxNNX33fSXf/Cc9OLcZer/ADI/i9FI/wAP7S4VA8lpcxuwK7tqlWGT\nntnaK+f4nuNTvV82RnPqT90f0FfRd5oK67FrUVqbKe2vLV1WTzH8yMnDgbRHyPMUHrnHQZznxa30\n/TrRXhj17RDKxGXeO8JXHoPJx+ea76uJpuC1en92XX/t02inyWXTQ6fwfck63aLFkxJIsafnX0kO\nlfN+i32o6HrT6fNNDG1tcNFM1rGsQfaxUglVBZc5619HwsHhRgQQyg5q3JTpxlHVP/hzOhpUkn5f\nqZPzH/llJ/3zTctn/Vv/AN8mn96ZIzBGIJ6HvUFjSxPSOQ/8ANMk8zawET9DyV46VMCTGpyeQKM/\nMO/NAznnOHYe9MJp0vErDvmoiazWwxSRUbNg0pOeajJpgMZjTC3WnMQajbFIBCaTd3pjEg0oOFpD\nGzTLDE8r/cRSx+grxjU9SuNc1r7TMxKF8KmeFXPAFera4znRb5Y0Z2MDgKoJJOD2FcD4PsI7m6ku\npkDJAoKqRkFu39azqy5Ytl0Y81T0O3t+LG3HQlOlPeUqMYrlfEOryoSn2p7aNepRefx6n8qqaBe3\nk14YDdSzAjIWQDp1B6V5vsrLmPVhV5pWsdNdqk0Lqw4YVh28EX9i6m5bdeRP5JJ5O1sfN+IOPrmq\nmoa/epfPDbGDCcOrg9ver/ha0m1GPWbyUBfO8uIIDnkHJ/pXdglKMrHFjXGcbmzbaNbyaPbRMi7o\ngChZc8+hHpWTd2TWzsI9yP165XP411hXZbIgxkYGKybyVF45d/Ra9GUU1qedzvmujnYGn3MHQDAJ\nJzgVJIQ8IB+UEZZt2ABVm6T9w13c7Y0Tp8xBJ7AYPNcXrd550Mskcsy5GNoc7T26VD0Q92U767W7\nFxNBks7bV3cHbmsB4XDEcZ+tSeawHXGKiMhyTnrzXMlqb9Dp/BOkpqOtiNjyqFj9On9a6Lxb5dm0\nCWz4CArxXG+GtZ/sjUjOTw0ZQ/j/APXFXrvUJNQulIyyk5LHoKzlFueux0RnGMFbc39J1PzoI/M5\nZCcZrovEdhb39y0pglnn+wW8kaohKqBCmWJA9+hP05NcbbmMBUaDr0IbGa7G9dLW4kvAdQhZLG1R\nWiJ2E/Z4+CR9QP8A9dc017OtGXlL/wBtCpV9pC3Y5q18S3Vvo8sf9nslt5bW/UiEFjnOMcuM8En0\nr07TI0v9AgeO4s0DWUAWVbiPchECAlgTwQQRgjsK5LQ7u0fRnt2/s1Y2djIl1O8ZY+6iIjoAOCel\nMXw7FqFg8VpZ2pyWCzwRXO0HJ7+Rjj6/lW86Dc4zjKzV+l97enYznXbg4NeZt3umHVoN1ze24toZ\nAYiupw4bg4YkNgHk4/8Ar8ZcWj3qyNsvtN8sNhTJqEJJGeOj9enpTtP0aCO0WOaydSmVZTISoYHk\nYJ4OQQRVhoooAWt0giB/iJ5/CtYU6/Wa/wDAf/tjBuPRFC807UG1H7N9s0xl/s++3KNQgUkm1lUE\ngyZxk8noACTgDNee22ga1Ztut77SEPtrVnj/ANG1qxyed4zvZFkLbNNv1JOc5FpNXGzmNrhhGoVT\njgHIBxz+tc3LW9vP31tH7Pr5lxtyo6WfSPEF6oS51TTJUByEOuWhUfQebiur8HaFeWthMJJ9NOZc\n/Jqdu46DushryoccGuk8LX7wG4t85yA6/wAj/SitCu4fGv8AwH/7Y1o2UjovEdo9lF4hmuLnTwJt\nOjhiRL+GSR3+1QNgIrlvuqxzjHFeb1p61I91q8hAJPC8VbsLGK0dJbhVdj0HUL+FXSi6Sbk7t+Vu\nlvMlrmZh7SOoNGK68SJdDfcpAAxyo2DP59ajMFpDLlFiDDpvQMp/OtFVT0YnBozdYtfJ0zRJBcSS\nrLaM6qxyI/3rgqvoM5P1JPesiu1htIooixgtn8/K87JNvOeBzs/DFP1DwzFZ2wmYwOskTuAhGVIT\nIz+YrREN23OGHWpbVEku0SQZUnnnFRDrVixXdfRj3olomVH4keo6No+iJagx2EDSEZ3ON5H/AH1m\npBpdu2qecIlGzbwBxUGgbwDn7orasXMl5MgXdgqeBnHX/P4V51OT9pZs7qsUoXRrR2qtlgQpKsxx\n9a5fWJpbfVWgtnYK5MoOccnqfzBrqrm1u5rUxWlwkMjDCgJuLDPc9v6V5nY6pqJ8SrDdRtJOrlI9\njAggZ6HoR15HHOa7ktDgvqTeJXmvbzT4GmV3KiISBTjr+vWuy0TQ4rO1iRgQFO3JHPPeso3Lveqq\nWiGUNhkdwVx1ySOQQcYxjvVmaTWbl40klSKPHPlkjI7Ci9xG74qlto9JlTevmCGVEVRyTjgYFeR+\nGIDda3HFk+XHmRwO+On6murvIbhJvmYt7+9TW1tHC0FxhBNLGpbbxgYHGPqDWVefLG3c6MPTUpX7\nElz4nlsJDbw2DysDjOevf0xVu31zz9Kk1B7UhY+WHWrF2+mLaia4wzAYwD1NV7G806SCWMXEQ3HB\niJwT7VxJqysj0owkr3ZnXHiS213SLm2+xyRymNwhIBGQPb8K8uit5L2+EKFQ7ZxuOBwM/wBK9qlt\nrBNGmmssFihVVJyQfSvFpQttqUgUkqjEA124dp3sefiYtNXEaCVGKMvzDqAc1Xfhq6fTLD7UnmEf\nLgc1l63DHDMgRcHua0jUTlymUqbUeYyxT15NMHWnJ1rUzLdndGy1G2uVZl8qRWyvXAPOK63+0La1\nstYuDO32ieVjG2cmQEAYbjsT1+tcQ9aGoJPFa2izoyOy7yHGCQ2GB+hBBHqCDQS1cpA7gOakDMEI\nBNV88cdqmjORzQMaxzESetQAEnAq1EgdxG3IJxXa6RpVu8eyGBRJ6gc/nWc6ihuaQpuWxwkTBW+b\nIHfArTEsUkQVG3EVQvoGtb+4gbrHIyH8Dit/w9Zg2xlI5Y0qkko8wow5nYw7hTyanssuoAPJ4rU1\nO2i2ORGoI9Bis/S0AjMh98UlJSjcU48uhp7dwx26AVrTWLRpZSiJYop7cSRoGLE4ZkYnIHVkYjGQ\nAcZ4NZKXMRmkiXJKHBPY12Q0iUWmk3N47NFdxlbdgDu2qB8uAD8oPcD+LnNHK7GVjPjUG3A9qVcm\nIqcVo32nGwtkcMc7yjqc5XgEcEA4IPX2rNUjke1ZNNbkGdKCGK+orGuz8jKe3IrZuOCD6GsS9OMk\nVUdyomdawCd2y2MH0qKRRuYL0BNWLJgtww9eaqlsNxW63NWtEC9CpqP296l3NwSBUbHLg4x7VQhW\n6U6LpTG64p6fdoAXvRQKU8AUCHNygqNODUuPkqMfeoAtaXZx3uoPBJK0UYjklZ1TeQERnOBkZ+7j\nqKkkh0Tfn+0NQHHaxT/49UmijGqye9ldf+iJKynU7hWLTlNq7Vrfr5MwtKdRrmaSS2t1v5M3tIsN\nEudXsoWvb+VZbiNDG9oqBssBgkSkgH1Fdd4Mh0e71SW8s7Pa9sgAk8l02s+VA5nfORu4x+Prw3h0\nk+JdKBB/4/Ief+Biu9+HlukXhi7vEyJpbsIc9NqKCp/N2rGdLmnZyey6+b7Ixlh+eraU5bd7dX2S\nPTyskEqswdHH3WDAKB9NtVby/kW6M7w3LQyLslkwOo5HJA9wMA9etTQXFvfxrK0M6vwSI7gqM+wO\naZr11bQ6WbW4abdJIibY5mZ03MFBcgjHXv196X1WNvif3mn1KP8APL/wJlmwti9uksDoWBDcZ/T5\nSD+BIrUvPt8kBJLyuq8xq6sSDwMDYP8A64BFZlpqCoQowAOwpNUn+0xvGpG6eNUTJ4DqSQPqwJH4\ne9Cwy/mf3i+pR/ml/wCBMctjc3/728DDYwTLKyEDk4wFJ7gDt2APaW40yRCJbcvFJChbBkbeQMDC\nkIvPbqaytL1220/dazndiQk7SQEIGDn1554HB557aM/iK3g3W1tLulKup2rsVWz34GO/BBGW5PWq\n+qx/mf3sf1KP80v/AAJlnTbye6dzBNtCPh/3igZY4Uj5CMZHPqWB45rY8rUv+e3/AJFX/wCNVzGh\nSBUP2kFZJWRsH76qjbtxJ55IAA+pHFdKdQjzw+fahYVfzS+8Twcf55f+BMqXkN8F+eTOf+min/2m\nK5LWohPoeoxzDdGIXd0wTu2jdjAKk/d6ZH1FdH4g8QppWkyXhgE6oVDKH2kAsBkcH1rKjkR5GfIa\nPzDtHBDDNOWFil8UvvBYOP8APL/wJng/23wxn/jy/wDJSX/5LrRsY9AurGe4to5bd45Y4y8dswJD\nBzjDTsD93rxjHfPHM67pp0jXb3TyWYQTMiswwWXPB/EYNaugg/8ACPXx6f6XB/6BLR9XUXFqT3XU\nyrYVU0nGct118zaWLTop0f7Xef8AgKv/AMcrL1Gzh05oYYrh5YZkMyF49hUb2XGATn7tW4yJCFPJ\n/Kq/iYD7Lpki8MtuQfp5slds1KEo+83e+9u1+yGlKNSK5m733t29EVpi5+4jED+IDj86s6ZHJA00\n0hQ4GwjO7Oc/4VXW5QWgkYjoPxqxpGGgummJzI0ePYDdmtbHR0Op1SdLHwNMyt80vyL2znj+Vebb\nNx59K9R1OyB0GwhKo8buxQuFwSAM9f8AfFUF0FLmNYjpTSSEYBhhw34FRgnr1BrKo9bGlP4TlfFG\nkXGi642n3X2XzoYIAxtVIQ/ukIPIB3EEEnHJJrGAwxr0bS7KDUPGdsvim3nvGnlSO4+1yOkjA4VS\nxyDwCPToKy/F3hhNAvb+E2wRVBaFtxI27wAQc8+nf86g00exxtafh19mv2rHoCf5Gss1f0HB1+zV\niAC+CT9KcdyJ/Cz0rUlA0+YkcBQSRXIzsJEg2oco7EHOc9PUe1djdWsn2KfzW6ocgnr6VxkjiLbg\nAoGIyPxruWxzozvM2WxGDl2wB+JrSuYy1gsHcxkc+4rKtj9pvYoFTKg5Jz0rZuGDTMcjGSMUqeo5\naM4UDmpR8o+tI42zOp7MRSD5mxXC9zpJRwKXtSd6O1IDqnka/wDCUcnlnNqxYuOjNkZ4+hzn6VW0\nrVxYRTSm4CbolhZP76nkgjHT5R0xVHRblVeS3ldVjlXB3Z78HGKzZLl1BhliifaepXBB+owafSxn\nKHNHluRXMonuZJVjWMOxIRc4H51q2umG4gU9DjrWOi7nVfU4rsoQIbUH0FY1puKVjqowUnZnM3th\nNaHLYK+oNU0659K1NUuvMwPes1mBOB0q6bbjqTUSTsgUF2qxlowuw4YHINNiQKMmpAMtzVGZevZ2\nW2hgwQSoZv8AP1qhgkcda6HxlYNpuvfZpZJZJ/IhlmaYESeZJGrtuyTzljn3zWRFEFiLmTafbrRJ\n2Hy20GR6dcTEKsZBPQHqfwrVttJurWw1bzFQhrRQpRwf+W0R6ZyPxptrbXU6rHbAu+MEjsPrXQaf\naXE8F9ASoZbZURCOuJEJz+Q+maxqzjyfd+aMq8X7P5r84nnqxu0+xUJfP3QOa2LfQbyUZcLGP9o8\n/kK3JdIhS7RuVmIyFPX6fUVZQMi/Mc+hoq1JR2OunTjJ6nLXOmG3dYzOMk43Yp9vpbJKyyHcRzmr\nWoILmfYRkdTU2kWxSOWNRyXCgGqjJtakVIpbbHbeHLQWukQIAFLZc4PqeD+WK6SI8D6Vm2qLHGiK\nPlVQBV9H2jFMxWxLkF8nP4mhjheOlNDjdihmGCMVotge5DOd6+pqpGxU49DV3GQe9UJQY3B9aJLS\n4Iu66T9l0x8DBtj/AOjZKqaG9quoTS3l2lrAIQXmf+EA9s8Z+bvn6Vc1bD6LprddsBOfbzZK5c6S\n2vTLapgsgeUZ77ELEfkKxoa016v/ANKkU13/AK2Osm8XeErICa3tr3WI33RoRH8rOAC24PjAwydF\n7H8aL/FgaZbMbPwhb2wUZG64BH/fIQfzqxouk28OmRI8a9S+MeuP8BWjrPgmC+8LXl00ZULGzZXr\ngVOFqOcnFLq/zClSiou/80vzKXh/48Wd5qNrb3+iR229wr3KTHCg9wu0/wA68pnfS7zWrqfzbqOJ\n5mKbIVf5c8dXWtO90Oz029tnso9kU9qX3OSSCEIY/mDVnwX4C1DxFqMSxPB9mBBmljnRzGvuobI6\nd8V6t5qLg+v6GLqJRfZ2PTvD/guz13xPrl9ctcmCPUJhyioGfzCSBycj34NesBVUBQAABgVFbQJb\nw7YlRFYlyAOrMck/macfMz/rE/74P+NceGd8PTX92P8A6TE0jDkbb3f+ZnU1wSjeuDUgYjoF/wC+\nRSbsjlVP1UVsQRxgrBGD97aM0YpxYkjhcAf3RTRgucouApI+Udcgf1oHuzn735byUepOPzqsTxVz\nVABeE4ABxwPpVE1mhoRmqNm5pTTGpjEJqMtzTm71EakAJpN2aQ0w560mBT1EE2jHymmCsGMS9Xxz\njv3AP4VheHYoBd3flptBCsy9g2OR+ea2dTNwbGSO3GXkKp9ASMn8Ov4VWLJbKUTbuUBWYLjcR3rj\nrxdzuoTXIl1RFqljZSK/2jAXuQcGs7SrjR7JvMiaKNs4Xc2Wb3xUWpPLO+VUueyDvWNd3ErHZPps\nqkDr5i/y5rBQT0OtTtsize6Np+q6jLNDKpkJz8p/PHvXU+F447LTriJ2UKJeB/EflFcfYuZVDQwP\nC6tnLLjP4966LQgHubiZ2zjCkZ6HrXZhU/abnFiuX2eiNq5l2ozEEA9AKyXKRRSXV2xjt4+w6sew\nHvV26mVi2XCqOrHsK5/V7oyrbjJRXYrAp6oo+85/2j29K9GR5iKcv2vWLoXMy7IFO2KHso/xqtrN\njEljOm1N7r8oUdz2AH+f0zotdJFEiRr8gGBismWbz7iSUkk7iFz2H+RWbXVleSPPpjgle+eaiJzX\nWz6LHf3JlWI9fmIOAfrUF9DBZ2n2eNI/MdssV7Ae9ZcpqpFbQvDF7q4+07DHZqTmU/xY6gV1IsF0\n792ihlHQ+orW8HwyweGELj5ZXZ4+f4c4/mppL2EFjxxn8qLaXG3rYowwwy5EEixSH70UmNp+ma29\nZjEOoxNJZnP2O1+eJtpyIEHA6cVhNbbwVOPx4x+NbWqXN1a6hDGrGSEWVr8m8oQfs8fRh/XIrln/\nABoekv8A20roNhmtgS6xXRz97bHgn0yVIz+NWLR44keO3tL2ONzuIjcJg+xBB/Wqi6mo4kmu4P8A\nroBKP++hirEd9ERlNShz/wBc3z/KupEMspY2snLWEwI5O5sc/nSypHHCyxRBeMEIPmP1NRrdxSgB\npZpz2CKQPy4/WnTTN9nO2LylA+71P/1h+NaJks4LTIdnie+w4YtY6j0BGP8ARZvUfyrkJkMT7OOD\n1r0/RZ4v7TunQgk2V6QA7HpbydMAY/P+Yrg9WbcCDGoYH72ME/1rij/Hn6R/9uNF8KM04cbzjPQ1\nueGtJvby5a7tfsywQOkUz3F1FCoLhsAF2GSQrHA9KwoWCtg42twa6CyUx+DNVB6jVLL/ANF3VGIl\nJQtHdtLvuyou0rmnceFL7zJHWfSt7NuJ/ta1H4f6ypk8GavdRM8cunuB/c1O2b/2pXNvPuLYyXPP\n0FemaDb2cXh23M8cjM4yFiTczn8q46vt4Je8v/Af+CdNKCnc5yx8A63cSqxewxnGRqMDfyc11cnw\nviNo0guo2uAvH+kxhc/99Vp2uo6c7C3hlmikXgJIm3+lXZNQgtNvmTynP3VQbyx9gBWHPiW/i/8A\nJf8AgnSqMFE85i8O39peLFcT6YI9+G36nbZUeuPMBNP1qxnsJHicpJHLbySRSRyq4dPnXOVZh1Vu\nM9RSeOJoW1G3ZIJE3oS/moVbOeDg/WtO9utMt9H0bzlXc2k3ChmuUIyWuAPlxn75yDn26jNdlKdW\nMoqTunfpbpfuzgqxWvkeSjrV7SE3aintVHqxrY8NxebqQrrqu0WxUleaPR7GPybQHGCRzVzQ5GM9\ny5O1UI5Pc/5/pUBPl23J6CseHWJYJJooXHyPuOBznFefhk3O53Yl2hY9DimHkyb+A5xke46evP5+\ntVdX0fSdWKNdRgzKMIysQwxj0/yKxrHVWvbZQxX5cZI4/D/6wrWguBkKSRxwOBx/Su9HnsyV8KW+\nnsJNNvLiNt25objEqEd8AbSPrmtW2QwThn2MFAB2jbzj05x+dKXZT8p4HUKePzqk14wJLggZOSOB\n+ZoEWL2CVyDFah2K5yxAAJ7muSn0rUbW/u76WIQoyoEjRgRxw2ME45wfxNbMXiaC5votPspI7m5I\nOdrnaoHcnHPHYfpV6WJ5AfNIJK7TgYFYV6sYrle5tQpyb5lscVJBLqVzGFuNoGTx0zV6LR7QuXg2\nLccbWaYNz+CjP04qhfJcaPfNLCgKE52kcfhVm38SQuT5dpiY9wnU1laX2djrhOFve3KV/fTaVBdW\n4m3SM5IZcjBB6iuFnbfcsSep5NdVrUUSNOk10ou1AaZCQMZAIA9fwrkXILk9RmuulFJHFUm5S1PQ\nfDiB7PH4VzvimDyrpfqa3/CUvmQgdyMiqHjiLY8TeprlpO1Zo6aqvSTOOqRBnp1qOrtgAZeRnANd\n5xEBjfH3W/Kt3Vr21n8LaDZwxSJc2yzfaMDCFmkypx/e2gAk84CDooq3BpcDxFzqNorbd2wpJknG\ncfcxnt1x796lvLG2iVQtzaXI5GYUZcf99KPX9PpSuI5AI3I2mlhPNdjeaPYwW9tLDdLI0mN8W3BU\n9ce/p26Vxw+WYjtmgE09i3bAfakPqa9V8J2qxweaRyeleTWzbZlz2Ney+HBjS426cZrixmyOzC9T\nyrxfCIfFWoKMDMm7j3AP9a3vDyKdNjwecVz/AIsnW48S3jr/AH9p/Dj+lbPhyQi0QZ7VVa/sok0r\ne0ZBrH7qJwO9UraErBHCPvHA/E1e1s5ukT3zUUJ2MrjopBqqfwoxrv3rHXadoWu31nHc2mjRASjz\nY53ltNmG55UpuPDHgsSM+1elW+iNLZ2Edx5ZFouPLgEaqzEcHIAIxzwM5ODjjFc7oGp+HotC05J7\njSUkW1j8wSSwB9wUZyOufrzW0ms+GGwxv9HJGP8AltBx+ldkWkZNXOf8Z2s2nuPPTMU5Ty5Cd2SB\nzyD3OTjHHGK5I/eHPUVv+PdT0+6FhHp+oWkqqWZoLUowB/vEqeDzjH1rnI2Dxg56VhWtczkZ8zZU\njvWJenrWvdnEjD3zWTMnmy7SeKiO5UTOtTi6PuKiVWd9qIS3sM1tQW6KSqIufXGauXCCC22rtWQj\nqgxmr59Tbl0Ob2lD8ykH3prLkbh1rYZGuYAXAb3PUVWksttv5q5ZT19qtSTJaaMzqakHEdMwVYin\nfwgVQhyUp60oHcU0nmgRJ/BUY+9Ug+7UR4egDV0Yf8TBz/06XX/oiSsqTGQea1dFOb2b/rzuv/RE\nlZAJLZ9Kyj/El8v1MofxZei/U1PDpz4k0rP/AD+Q4/77Fel+CtR0hPBtlZy39nHdDezI8oU5LsRn\nJHbFeZ+Hx/xUulEf8/kOf++xVbR/+QpD6ZqZfG35fqxwV69vJfmz3OHxLpenMU+3Rrwf9WjSfkQC\nB+lc74l8ew3OmfYbOxmy7oTPKQpBVgeFGc9BySPpUbWqizDkDgZrn/sLanqsMCfdGXc+g6fzrGnX\n53ax6E6ChG53NvezXdpHKhMfmMgJzyNzAH+dSwyySFYXklaOWcICWODHtDZwT15HPTuAeKW3tGit\nPITBcFWGTgEgg9cH0q5a211ewPauq+YoBXN23GDnj93XQjlJLm1tXkj+0QtLKZWjWUPy0asFyxH3\njgjqB/jAUtRL5iwpHPM74mcmbBBzuwcDJAYjj+H8rdhdzrEdMu4rjfnEckbIxXgDGWZfT9aivoJr\neQiSykVFUqC0SNlc9OGPGOK0ArQanLFCp82MvIGdy8ZB+Xg7iXz7cA/gK1YrsyMqhtrEdPQ/Wshw\nobzQ7sWwGZo3TAyW5yNp6gcc8mq82p29mxkkuIkCkZy36fX29qL2Fa43W7uS/EWnuG8uaQbx0OFw\ncZ+uP1rTinCtDhS0cbBV5wDyMn/P9a47UfElk14JLebzQJHwFUggHHHOPSn2nim5uYpkht47d4sY\nYfOec88/TpUVKiSuXGnKTsjlPiZFKvji9lkjCJMEeMDptChePxUj8Kg0RP8Aim7n5sE3kB/8dlrH\n1rUr7VNTlmv7mSeUMVBc52jJ4A7D2HFbmkAHw1cjGQLiDj/gMtN/Z9V+Zy4v4V6r8y4WVcFiCeny\nrzVbxK4GmWHyjm3P1/1slW4JG8jClGA5+YkEfjVTXyJbXTcnObc8dv8AXSVvW+OHz/Ixl/Eh6v8A\nIw0V38mHJIUDI966rT7aPyY9xI3OAPoO/wDMVz1qpEpPrzW/LI9pawF0wVG4HnockfzrRaK5u9XY\n07q/hW2nglkYSR3DNGAMg/u4VGfQfK3T0981mLdyMCy5xjJ561kT3El1IyqcOz7iaEuSzSLErEgY\nBxwfwrhnJtnVGKSsbCXB3hwdko5BU8j3qLUtRutQW4iuJPNd4wgdzzwQev8AwHFU2SVoY2hYmbHz\nLj/PvUMcyscsv3eCPT8aUWxuK3MhwVJVhgjjFXNEAOsW4YZBJH6GoL3MkrTdicfjRpz+XqVs2ekq\n/wA63iYz2Z6xLIrW6CRvlGOvU1xeoKDp9zskwVYMRgjnOOPzNdZJ+8MZJ4XBNc3cR+bJdW+3KuGU\nKR/EQQD+fNdv2TniZ2lRrEHkB3NsxkGrMqH5icdTVTTU8qEYB78CrswYryRwO1VT2FLc467G28m/\n3z/Oo06E1Y1QbdRlHqQf0FQqjEAAE/SuKfxM6lsKKdSmGSMZeNlHuMU2oAIwTKgBwScU26UrcPu6\n55qe1YLdwsY1kAkB2MCQ3PQ45/KrHiGKKDWriO3LG1yHtgwIIicb04JOPlYdz9aARQtADdR56Zrt\nkjWSyI9RXEWzBLhCema7fTn8y2x3ArmxPRnVh3qzkdRQxXAU9qhjkQ8EAGtbXbfZIsmOhwayPlJ5\nFbU3eKMasbSaOz0DSVvtKhMMW+5knkyN235Aq45Jx13Vrnw7Lf6kiR2kXmO4DeWFdM59FyB9Bx6U\neEry1t/D8MZu4oJ2RgDIr8Au2cFVYg4C9u9X1srNnjNtfW/ms6gM9xIuCWAzzCOBnJ9gevSrVzHo\nUPE/hWz0i8ngtrnzRCg2GRRu6Dg8flSxaRqeo6jqLWNtpy21vPJHGjWcPzYYjAOzt710V3AniR3g\nu5rX7dICkE1teQssmTgDYzK4498+1VLTWn0pbwRpEWa7uG3SvtX/AFrj8a4sSm5LS+n6odOlTq4i\nMZq6s/zRsaDoV/BHPHcWsAIz5ciQoinPsoH41r2vh9Q8n7uMlsjIhUDBOecDn/61c/oXirU9almt\n4fLVo1LFkJC/rWfceIPEI1AxCW7Pl9VgjXJ+mRmuZYeMm1Jf1956E8HhZU2uRNfP/M9C1DwVaS6G\n+o2sNvLdQqzlJoFbJHoeCO9cAbpf7Fluv7PsGeLOB9nwuM4xjPHevR/AniC9umfTdQt58Y3LJIvt\n0PHNcXr2gzJqOr6dZyJBaB23SyZCICcjdgE+w4/Tmu+OCw8oX5fxf/yR5jy3DXVode8v/kjjLHWk\n1C/mt30fSgvkStuS32tkISOc8dKNOmga9CDTrVPm3Ehpew93rO0S3e31q7ilUrJHFOjqeoIjcEfn\nV7TCBdyMOwwK5oUKcarjFaadX5+ZCwlKEpxStt1l5/3jsbaRDH/qYx7At/jVkSL/AM81z+P+NULY\ngR8mrCydgK6fZQ/pv/MfsIef3v8AzLKum77ijH1/xqQuuOVX9f8AGqy4zk5qUHIPBq40Yf03/mJ0\nKfn97/zASICfkTP4/wCNQXTKAD5MR/76/wAakI754FNl+ZRz9OKv2EGv+C/8yfYQv1+9/wCY67lH\n9m2aGJG3WrMFJOB+9kGBzntn8fpXP2l6yX8KwWsKNIdu5Wkzg8H+L0JrY1FvKGkr2a1df/I0prH0\nWPdqjOeRCD+v+TXDThGNG/m+r/ml5m8cNCUra/fL/M65JQCsajjOBiu41GWOHwDcb5REssJiJIzy\nx29PxrgIsGZBxkmtP4kag9v4a0awTANxMZWx6IB/Vv0rry2CWh1VIxpaQ0Su/wCr3Oc0fT/7ftrT\nStO2vKrzQyT3VpGSq7Rjg7tuMk8Nzn6V7L4f8P2HhnR4dN0+MLEgyzH7zt3Zj3JrivhfYmK61u7l\njK5umWM/qf6V6OWFenWk27HBQSd5PvoCfcX6CmHqaEbCqMN0HY00tgkEN/3ya4sH/u9P/DH/ANJR\ntVd2USaaTmgx/wDTaT/vlaaIwP8AlrIfwFb2MxT78UgIG4c5K/1FRjLuyq5AXgnHNKIdpyZXJxjo\nKQGVqsLtKjLjGOeee9U/sMzf3R9TW7JbLIAJGDgc4aMGqV5pVlcW8iyxKEYfMYolV8ex9anld9B3\nsjiNR8U6bpt7LaOZ55om2sIIicEdRzitPTtV0rULGO5a8W13Z/dXPyOuDjkVi+GfCllrTag8k14I\nopykZcgEjGSCcEE9OldEvw+0WPG95pD3BND12GnpqNkvdDUc6zbZ9ua5rVPFEFnOi2kK3qFcsyzC\nPByRjkH0B/Gut/4QnQBn/QYyPeR/8a5jxBceAvDbGOeFZ7peDb20sjMp/wBr5gB06E59qTixNkmm\neJ9GurYNfLcWk5Yr5IxLkcYOR656e1dAILNow6i4Cns6hSfw6j8a4zwpcx6ncPqMdlHa28smLeHO\n8oAME7u/Oa7XUSkMKeWxb1yOlclSq43SOylQUrcxUa2hLcFufXn+VYWsaRd2rtKnzq3IXo35Vspe\nrChkDDf/AAn0qos7SdRn61y+0ctzsWHS2OHj1CJJyJgVI9f5U2eSwunEjsNw9DWh4w0oNbm8gADj\n/WL/AHh6/UV5+lpcSyYSP9a0UE9bmTnKL5WjprzVYYU+VwAo9elc/B4luINQeaIRqo45HLD0ODj/\nAArP1txaRLalgZm5cD+EdhWKkzKMZ49K6aS5VdHJUlzPU7qXxoJgRJCQcZ+Vgw/HpWbeeIFnZJi5\nJB+XPFcwwL8j8qjYtnkc1t7STMuSJ1h8VrCVTyy4GDzg/wBapL4mKnm3VgOnaueopczDlRr33iG7\nu1CKRFEP4F4rP+1zE5LZ/CoKKLsaSR7Zo2+Dw1pyhEkje3Vz5YwykjJyPqTWfeXCZbBOB1zxgVMk\n8Nr4Q02aSNRI9rHzjkgKB1rmbm/JQ+YOWOQOwHvWNWq0lGJpGCcm2Wri+CJ8vygDJJ7fWrPiG4ne\n+iMcrov2KzYsD0zbRnAFYO4yAMeFzkDGSx9TW5d6lp+pGBbjRtSMogihZob9I1fy41TIUwkgHbnr\nXn1JSVSMrN2v+NvNdjbk00Rlw+JLmCYJIBLEOMMob9a37XUbeZNy27R+8RVgfwyMfr9KzobbRJvl\nTRtVJHX/AImcf/xitCODSdNMSvpmqqJc4I1GNun/AGwHrXRHFNfYf4f/ACRm6TepoLc5xs2477lJ\nI/p+lJdSv9jdyhIIwWY4J+lTWl5oA4m0/UkcdBJcpg/lHV+efSJbYF7K8RSMLm7QH8AY66liHb+H\nL7l/8kc7j5nlXhm5uY/EF4jSsCun6hlc5AItZu34VgyXtxN/rH3fgK6u/wBW0DS9XvZLPS9Qa7e3\nntxJJqEZjBliaMsVEIJwHJ+8Oa4ysqfNKpKbi1e29ul/N9y+iFFdLaPv8B6k38S6lZZ+nl3OK5oV\n0el4PgnVlPRtSsh/5CuqeI2j/ij+Y0ZtrBLdXp8jpj5iegGcV7V/ZrPpsEUEzQrFGEwBycV5d4X1\nC0sZpoL1GMc+ArKMlZAfl/Dn+VerPqarEG6EryK5sS3zW7HdQUVC99zHt9HuDdJJcTM237x2hSTn\njgdKv6ppNzcXCSWUxh24yNobI9smqL3N1cGSeCcRMPlQFcj649asRXWpRQefPcK0iYwgXA68898i\nsk5OXMdNo8tjlfiJA9tDp7PLukO8E4x8vykd65XX+dI8M/8AYNf/ANK7mun+Jl/HcvYIP9YEZivo\nDj/A1zGvf8gfwx/2DH/9K7mulb0n5v8A9JZ5lX45GIOldB4RTdqDe1c/2rrvA1q0ktxNj5VwM1ti\nHamx4ZXqI6++kEdsc9AM5rzM6uy6hNOoJV26A447V1/i29a3050U8v8AIPx/+tXnlZYWFo3NMVK8\nrHXaT4rt7KYmVJQhGCFAzWx/wmmnMQ8kjt/dRVI2/XOK85o6108qOU9M/wCE7tGjO6KUqvQCQE/l\nmuU1rxNf6w7KzmK37QoePx9TWKgAFKSO4ppCLWmajNpWp297CcvE4bB7juPxGRXtdlqNnrWnJd2U\ngdSPmX+JD3BHY14QwwRVvT9SvdMn8+yuHhk6HaeGHoR0P41hWoKpZ9TanV5NOh67fWBvFK7Nx7VS\n0vQzBdGR4QCDnJFc5pvxKu7UD7ZYRXJAADRuYyfc8Eflik1X4lX17btDY2qWe4YaXeXf8DgAflms\nlSmtDV1IbnPeLnWTxNesjBsOASPUAA/rmsOpXySSTknrUVdiVlY5W7s7PwZLk7c/MrY/CrHjyLFt\nbyAfx/0rF8IT+Xqhj/vDP5V1PjW38zQfMA5Rgf1xXFL3cQjtXvUDzUda09JAN4FPIINZwGKvaZNH\nBdiSUZQDlc4z7ZrtOI7u5Omi3fyYmjZcEk3Ns4xnJwoCknGcD1rMa70V8jbqIPYhIzVW717TJJD5\nGk28MfZWnkdunruH8qj0ue1utRt7QBCbiRYgz5O0swGQARmlKSim30Jk1GLk9kLHue5BCkxhvlLD\nBx71zEnEgNdoupaHh9lzOu4Y4tl45B7y+1ZiaJpk2C2oXsfs9kgP/o2svbpbp/czNVV/K/uZjW8U\nksv7sZwefavTNO8TW1rpotRCxZcKZCygdPr9aoaVo9jPazG3nuRCoVGka2VVXJ/3+eOtb03w/EVm\nHW9kKodzIIgdw+ma5atenN2kn9zOmnVlFXUZf+As8t1KyuJrqa5GJN7FiF5Ira8OnFsAeorVSw0y\nMNGbq63pnn7OuRjqPv1PDaWRWWW3nkMiIHIaAID8yrzhjz83pRVrpx5Wn9wqdeMJ3kmr+T6nKeJJ\nWTUEKnBXmp7OeOdgrAAkdKr6oBPr+xhuAFOa224ZGww6V0R+BIVbWTL7WUIbPlIT7jNCxQpwYIf+\n+BS2l15y+XIdsg/WpJY9pz1+lF2Y6oYqxK5YRxqf9hQP5VatXAYqScVSDAHOeKkiYpOOeDSbuJml\nNoGs30S3FnpF/cQv92SG2d1PY4IGDyKzx4R8TtcADw9qv42cgH5kVp+JTnTNCPf7C3/pRNWL4fkK\n+IrdQOCTz+BrnhOtKDmrdej6Nrv5G9KK5ki/b+EvEq7mOgap34NnJ/hWhaeDfFOox7JtIvIl6DzY\nXU/qK6pdKhlxLHEiOepC4z71t6dD5JUKQoHFZe2rvbl+5/5noLDLqebHwX4gs5HhfRdQkQtw8Vq7\nY/IdKgl8I69BYtGuharKTn/lykyPTtXpniLRINW06RQiNPj5GGOo5xXm3h+3uH8e6PAEETQX8BkR\n2AwBIpPWrlOvGnKpeOib2fRN9/IwnT5XZI4KRdw3DqKZnFb3h7w5d67PhWENup+aVhn8AO5p3i/w\ny/hnUkjV2mtpk3wylcZ9QfcH9CK9Lnjzct9Tm5JcvNbQw1HFJTFfA5zSg5FUQTAcVG69xTgeOtNa\nXsBmgDQ0TI1CT0Nldf8AoiSs5VyM4rQ0Ms+oSggY+x3X/oiSuoi+H002hxXMdxtuSgYxuOOnTPau\nd1IwqPm8v1JpU5Tqz5ey/U5fQPl8UaSAeDeQ/wDoYqHRIfO1FQOqjcKsaPE8HjDTIZVKul9ErA9i\nHFHhgA6woPdD/MUVH70mv5f1Y6a/2mz7L82eoLGLjTNp+8U6iszwmE/tS7DsGkGEKd9o6/z/AErT\ni3JDwe1M0zS2vpn8u2EcsRLxzqRl+eh9+v4CuLDfEz08V8KNuSXbKNuQE4q8TOhjvINpHX5eQadZ\n3JwsF3ab8cZUc9PSpBc2Nq5MUjBX4eFlPHvnoK70cBPeQJqNqLu3wsqj5h3Bp1lqC6jCbO5IS5Qf\nIzHAb2pLSaGOQmCZWB6rVPWbRWje5tZPnVS2EJ3fhjnNDqxj8TsROpCHxyS9Wl+bR5z421+7W+uN\nPgl8uCH5Co4LN3Of6VxIll2+WzMcEkDtn/I/St1dF1i8vGkfTLxNzE/vIGwPxIroLH4e3tywa8uY\nkTYe+D64/OsZYmkt5L71/mWq1B7Tj96/zOLiDq6g/MzKSuOealtb2a1JeKTHPzdwa7lfhxcugJur\nWMgdBIOeen8qwLzwlqVlK8f2SWZMdYE3D9OtT9YoyWsl96/zH7ektqkf/Al/mcdqMTC6eXB2yMT+\nNbmjhhoN6pLIwuoPY/clqpqOj6xFmdtOvgkY3s7W7AKB3JxWzbX0s3hqabcy/wCkQ8qcYO2XP6iu\niM4yiuV31X5nHiKkZpODT1WzT6+VyBrxbZSJWSQlcYA5/GqutyyvbaPJ8nlfZjkJwM+dL+NX7vU7\nYDyyxkJHIVM4/Gs/XrmM2Gl+VF8rWxO5uo/fy8Y/Cuiq/eh8/wAiZL34er/IigdQWbqMVoa3cyRQ\nC3Yk+X+7yfaseNtsK+pFbV88FzfPDIxH7wrk89z+VXJ+7Y3j8VzBguGVgR1J6gV6z4SsEXT1kNsq\nmUBiGHNcDY6YNP1xFMiyxlDyB90kdD710UviXUbUrHDFCEAxt8o9vfNeZWTnZRPSpLkfvHY2ehQC\n9efyV3knqo44rnPFvhiG3tpruDCSE7tqirNxrGoR6IL2NE8wtt8stnaf8iq9pquoanast/JG8W0n\niHaFPQDNKkpbs1quNrdzz17dTbSdS3LHHSs2Jts8Z9HB/Wte905rTSDfNccuxj8vGNpBHH5ZrDjb\nM8YP94V2xPOqRa3PVgrTCID7pAzWPrLSW2pBVGOhHIxnH+NbWmSp9nTAzIyDOe1ZOvpHJPHNkHPy\n5PTjr/Ou5ao5ImLp6OBsAfAz05FWZnUNgsMDqarWx+eTHKhiOGHr6VJfSBYpMgY6UKfLFsrlvKxk\nvafbdQeWNdynGPwFbdmhtgocNtHQocYrd0rwXM1rDPHdpBO6BtjEHOR6Vr/8IZdzL891CkoHPyHB\n+teLWr88merTw0uW6MRbsSKy4VyRhtwySPeqU3hmyvpo5VU2wLgPt6Ed8DscVo3fhrVtPkMvlLKq\n9WgOePcU+0vARluBjDj09D/n/GnSVtYmdSLWkkcHNpd1bzHBt0ZTwGuYww57jdkH+VUfs0txfeS0\nkfmNyXaQEdM8tnFdb4jtbLUZFvhMIMDbI+0lT2BOBx6E/TiuYms7OLe0ep28jL0CiQFvplP5123u\nrnM1ZlCWNoJ2jJUlGxlTkH6EV1eh3G5F9xXIscnPP41p6Rd+TNsJ4zkVlWjzRNKUrSOk1u0EkD+u\nK4wAk7cdK6681iF4hFHy3diOKz0eNRldqk/7OAazoKUVqXXcZPQ3LOztUtYPtjXluPJTb5dsJAfl\nGerr3zU8kGlrHutrq/kf0e2VB+Ydv5VkWpjnyHiQ885P+FWry0vre2V9N1a8t4s4MRuX6nsCOMfW\nupK6uc3kWokSaZYzqPkoerzFsL/3yCfyFdpa2VixuheR/MtzK6v6AsTxnI715ZcSa9BAXe+uZI05\nO6UsOuM4P1rt5dYTUdRv7OMtHJbzSRNnud7YP07VwYqLclbt+qNcJKMcUnL+V/mjf0/xFoul3bqU\ndVOBlv4lB9fwou/EWmXU/nW9sbix/i86IBkOe3J46VysumzGWN7uNTCqgL5YBYj3DED+daqaX9qh\nAtrgxRYBdSiEn24UY/M1EbKNj1XN3uloeoeFL20lthJaBQQRwMdK0dTsLu5jkSGSNBK8rzA9HjZQ\nMHjr79sV5/4UlksNkMZOO4pfi9qF9a6Bp9zZ3ckHnNJA+xsFkO3I/HP6V30PehY5HP8Ae3ZwFncC\n98QaneqMLObqQfQo5o0cFmZh/Ex/wqPQo/KiZj/z7zH/AMhNVrRYtqoD1xXLGzqyt5fqclWTlVm+\n9n/6UdJEdqYFPVscnp61Gr4HcUdemce9dJBaUnqDUisRycHtis0s6nO5sVNEWOSGyRVREy50Yjd8\nvpTSeOuKiR8tgkbvQ09iRnGM/wAq1JIte+W10mTOAIDn6edJVLRU2m5kbqZMfgP/ANdaV5dafPaW\n8N3aXEjwxtGDDcqgILs3Qof73rVqxXTFsVkFleKHJbBu1PX/ALZ149ScoU+Rwe77d2+/mdlFXlcl\n05DNfRrjv1qr47J1HxVb20WXWyhSMhRkAn5j+POPwrqvC1pZ3d8GhtrhdvO6SYMP0QVyeualYWfx\nDu4n029lledt0gvEVPvdQvl5/Dca9LAyko39nL7l/wDJGOKleMrM9N8FMg0hkGN+7L4PfAH9K6Mk\n+tcd4Kmjle9MMc0SsQyrLIHBBJAIwox06c11pLeo/KuitVkptOnL7l/8kctBr2dkxVY7F57Ck3+9\nNLBVx6VWacbjz+tGFpuNGEZbpJfckhzneTsMZcjrTQuBzzUu1vRfzpCrZ6D86sCtGMyz56Bh/IVI\nRSrEQ5Ysoz15pZBt28jk4HPekMjIqrfP5VlM/dUJ/SrhRh6fnWT4il+zaHdSHoFx1pkyejKXgtEX\nw5DKo5lknc/99sAfyAraPWqXh+LyfDWloo4FsrMM92QE/rmqfizX08M+H7nUZFBkUbIUYg75D0HX\nkdz7A1Mdi6jUW/I4D4oePbrTLo6Jpc4ibYDcTRk7wT/AD24wSRzzjIwa8UnnZ35NSajeS3d2880j\nSSysXdmOSSTkk0/SrFNR1RIJXKRAFnZRk4Azge56D3NY1J9XsaUabbUVuz3fwvbxQ+HNMcYXNrGc\nKMZO0Z6e/NaV44EZO4n0ySf51l6WBGkFmAypBEiYc84CjrjvUeqaolnDIzlOOgdsCvKjCEqadtX/\nAME0w2GpuClOP9XfmP8AMkJ42kfQVZhY5AIx+GK40+KwCGVrRsdVVyD+Ga2hrGzS/tzJhR70o0YJ\n6o7fq9Br4V/XzNPUl3QN8q4I5DKGz+debw+KVbX7LT4YICsl1HFITbxjgsAR0rq4fEseoKyeUgbo\nAJwW/LFeX2KFPHtopOSupIM/9tRWsqFN05u2yf5M83H0acacnGKXuv8AJ+ZhyyvNI0kjFnY5JPem\njpSYpwr0ChynAp+Qwwaj7UgPSkAMu002pOCMGoyMHBpgFFFKBk4oA9FvXuJNK0uGQllhtIsKox/A\nCP0IqCysjf3sUBHzPzWtoVg/9iiOGNJ7hEKcA4HAOecHjDVe0mxkt9eVxy4j+YYxg159SerXY9CF\nJWjJdSyvh6G1UbI98nqRnH0FY16kytIkcEZXjc3mZP59K7m5gNxCYy7KXHOMZrl5fDs0bzK7TMpU\nbHYA7TnrkYrOCT3NJJrYtaNYRGFHjUg54RsEqfVvWoPFstuNORUniMkMijasoLDPBzwPWnj7Vo+i\nzTRb5ZQwUYHbucVheI7kSaREsy5k89S0hTaWXBJH8u9bU4p6mdZ2TRf0yFJV8zzJQT1KKfb+LB9f\nWtGS0CowCjDDBZmyT9c9a4xfGE8ESxW9pCEQc+axIP5YxVWfxNq16WWKfC9SkSAMOOoPXH416EU0\ntTzJWb0MXxJG0eu3AYYyQRj0wKya7Gx8NT6u6X2qXEiW5Hy5OZJB7Z6D3/8A11uDTdKswPstnEhU\n/eI3N9cnNZymk7IadlY87t7C7uxut7aWRQcFlQkD6ntXT2ui3sPgzVI5ECOdRs2A3bukdz6Z9RW3\ncTSMGLO+QOPmNPjLP4X1IZJH2+16n/pncVy4ibtH/FH8xxZmeFdAluNft5ZSnkxnzXTr06frXZXw\nH2hsfdJ4FZvgx1ENyxxvyB+FWtSnIlYqeV5wfSsKk3Ko0zvppRppowtZ02a8eN4p5EiXIZFJ4PY4\nHJqz4c0WSwE9/dzu24YRHbOF9T6dKha9spm2zzTRODyEOM1e1RVl8Ptb2sksZmG3dJ94+v4Y4/Gt\nI8z91lznCMOZLU898Q6odX1eW5BPlj5Ix6KOn+P41Pr3/IH8Mf8AYMf/ANK7is69sZ7GXZMhA7MB\nw30rR17/AJBHhj/sGP8A+ldxW9RJVKaXd/8ApJ56d7sxArOwRQSx4AA5Nem+G7FtL0hVddrv8zZH\nc/5xWL4esIbOGCWRf9IueQSOi9eK6uaZUtyoPOOtYYirzPlWx6GGo8i5nucb43ukkNrEn3uWbn8K\n5CtXxDMZtYlyeFAA/LNZVddJWgkcVWXNNsKVetJTl6VoZkgNDHKkd6QGkfpmgQ77xpwHNMQ5Oaf/\nABUAKaTpTqaelADSKiYVbt7aS6k8uIZOCSTwAB1Jpb3T7izx5qYDdD60rq9iuV2v0J/Dr7dbt+cA\nkg/lXp99bLqWjz22eXQheO9eTadI0Wo27KcESL/OvW9MlDRj8q4sXpJSR24Wzg4s8iurK6s323EE\nkZzxuUgH6etQ72FeveJDpsOmM2oRhkbgD+Intj3rymWA8sh+XPAPUV00ajqRvY5q1NU3a5XODzmt\nTw5t/wCEm0r/AK/If/QxWXyp5WtPw6G/4SbSTt4+2w84/wBsUV/4UvR/kzkxH8Gfo/yZniQxsCq4\nIOa1bKW4vboLGhdyOFHc1kqjscYNdt4L0pGnjui/zRyFGAHYqef8+tFW0Y8zOqlHmlZHf6AulaRA\n1rd3KCScLuR1IVsDHcYz+NdNaJpdlhxMiRkYBeThR6DJ4H0ri5/C7PN5pvZJIvRj05/yK3dY0JtQ\n0a2ggXZNEg6dW9f5frXnpJvc9GzS2Mnx34eF6o1jSJYZGT/WpGwO4evHeuM0+42WuoQzgpILcHcO\n372MY/Miu90fSdXsoh5rQC3wQ64wfw61wOrW0sV/r5SNjEsA2kDu08TY/wA+lbTV4W9PzR52MVoX\nXdf+lRMSCVX1u53LuyoAJq8/lAfMpWubuo7i0uQwZkYgcqcVah1e4jX99iQduMH8xXS4XV0ZTTb1\nNCaPIDx8FeRVqC6MsXK5YcEVRg1exfiaOSIn+IDI/T/CpwLV8S299bAH++4U/keahp9URYlYq3Re\nfSmE7eCOaqXGo20KjbIJn9IwcfiT/TNZz6rKzcAKvpTUGwUWdr4gYto2gE/8+LZ/8CJqxNEBOtwb\nWKt82G9DtI/rUmu6oRoXhxQpy+nM3PT/AI+rgf0rP0rUfIu4rlVBKHDKfQ1jQi/Y/wDgX/pUjWOk\n035HapFr1rcF1uZGjPUFTtH51ta5pGpXCRfZbmYIVBcBsZz+VUX1G5mIjZFRMcerH2rb/t37dEVW\nJ7PamPNn4AP0PB/Osk3e9j2FGPLa5N4e0i5s0SeeefKrjY5U5/I1Z0fRo08Yf2y7wqktzGm1wM9V\nAIPYl8AevSs3S9QvrgsrTI0QPDp0Yeo/KsDUNeu5PiZ4f0iK4kWzjv7QyRA4V3Mqtk+vBH5VNZSl\nRqL+7L8mZVJRhZmJ4Q1eMXKwA7B2HpXa+JdPtdb8N3EE08cckS+bDKxwFYD19D0rxKGeW3lWSJyr\njoRWi+q3t3HsnuZHUfwluPyrslQ9/mTscixC5LSVyhJGY2wecdxUfGaskZHINRNj0rpOUZu7dacq\n5PANIGxUiYJ64+poA2/DAjh1kSTAtGtvcMygdR5L5Fd3H4z0prfAmKYHR1xXnuisi38uG3N9juvp\n/qJKydzscniuWVKNSpK/l+oqFWVOrO3aP6mtp9wLvx1ZXC/dk1GNh9DIMVX8Oy+VrER9cipfD6Z8\nS6UcdLyH/wBDFULLfBqEDgdHFU0nJx/u/qyYy/2hy8l+bPW42PkcHIxW74WuUjtyHXDBjy3Q8+tc\n7Zyb7bnnIrY0OTy7Q9G5PBriw/xM9PE/Ajpry7tY8NPHNAAcrOi71/Tmq51zQ7s7J5QzDgyovDe+\nDzWJPP8AM3ll0PcLyDVCSW1mJ89YWb+8qYau7Q4Tpmj0v/WWV3hxz0wPoc1heJbxYdJvjGXKtC8L\n7ecMVI5H9c1SexQLuhYlR0UP/Q1h60ypq14pkZFeR1cDowJPXFZ71F6P80Y7V16P80UvA9uReSzs\nvyp8oJ9TXr9o7R26jcox2NeXaJaT2lnNDCQzOwkjfkBgQP14pYl1gahnzSAPvAPJj9eKwqLmk3c9\nal7sdj2OG63rjzUGOOvNcr4/01dS0lggxPGDIhH8R9KwfFOn6lbCFraeTY0YLYZhz6cUaZ/acdn5\nl3KrQgcDL5z/AMCqo6RuVK17WPNNGQy3tw2fmWzuhj1PkSCrWmbYfDd7DKwwLuEZHYlJf8K1Dpia\nQoVsi4ntLuV0OPlHkvjFc9pjf8SC/BzzeW+Of9iatVK82/OP6nh4qHLVafeH5yLsYllJWRkVewVO\nabr7lbXS7fy02PbElwOeJpOBViwtbi4PlxQO/wBATVrxXo19FpmnTPDgQQlZMEZGZHPTPuK6ak48\n8E31f5BKMnUhZdX/AOknMtJuHXHNadyfNd5ztAb5hn0Peslo5UHzxsv1XFWbt90CPzsMQGCe4GP5\nitmzWxv6f4itbiGGEh1ui21hj5WP97PuK6ISWZRJSgaYjoAMf5/GvKYJWgnjlX7yMGH4V6BG24+X\nI7KF5BjPX/61efWp8ruj08PV5tJHZRtYjRQoeCSVGMm0kHJbOcf4Vlz3FnaaZNIsJRcFn+gHpgVz\nFmYkvTmV1b1Mf8uf6VHrl1MugyrklMiMMepyc4/IUQjsiqkkkZXifWbTVZoobBGW2iXOWULvc9Tg\newArn1OGU9wab0pxwwz3rrSsjglJyd2el6RcmWKMIMZQc9adrMETWiD+KI5AJwfxrC8PXREEYJ//\nAF10l8I5dPkAQZcbmOe/+c1103ocjVmclHMkEsiuvVzwUPIz2wabfXUUto3kGQnI+V8cVoSJ+4yM\nbSMHI+n/ANaqB2Nq1hE+0JJOiMfYkZqaiai7l037yO4a/kjhijjjuHmiwgK5IyAM8f5+tdDPLqU3\nh6O7ER3Op3R4+bA6/wAqdeyaXFF55IBbkIWJUN9OlT2Pi3SDposPMc3AGVIhZhkZPOBwOa8OCU3s\nfQKMqa1Zl6XcXcUvlw2Uj/dbdGMocjJHbJHQgZqr4r0SSxs5dYgjMYIDSJ6Z71u2mq6TJL5gs0in\nB+b5ACDVvW7y31bSpdPVgElQrkV0UmjKdP8AmZ4XdXyy280TE7W5wO30/KsJxHxsZie+Rj+tdp4u\n8NpotvFJ5i5nkk8pV6+WOhPv0/OuJNdUXdHnVIOLsxKlgHz5qKtjQXEUepz+XC8kVoGTzYlkCkzR\nrnDAjOCR+NKpLli2YVJ8kea1/wDh0v1IY2wu0jnsatxEnGeAexPWuv0y0N9bRuYrTzCudq2EHP8A\n45Wxb6ekeC9raL6n7HGP/Za4pYprTl/H/gG0KGIkr8q/8C/+1OGsI5BcgiByvXggCu0Tw1e6vpzP\nZp5KquSp53Ec/hWmhiQYEcA/3YU/+JrqvDh+0QvGVcEH5QuUz69OOlXRxVScuXl/H/gBOhVguZxX\n/gX/ANqedaNZJLDIjDZJgoxYcE9Cpri9RvJrHxnqU0ILf6ZKGUdxvNeka88ujeL2tlEC21zHvCmB\nMlh6nGTx6msDxNpuo3TM0enSu4vJxuhtsEp8hUkqOercn3q6lXkqRVRJJprdd/kefOq6WJSqWjdf\nzLvfy7E+m+I7SOExajGHjAyhJ/z0q6viqxLLFZw8HsormNI0jVH8+C50u8VAQyF4GGfUcit2y0KS\nJ95tbhcc4MTf4VjzUFK/MvvX+Z6Kx1PlsqkfvX+Z1uhzRwqZZCCx4GDXR+KtJsvEvghYZWVXtpDP\nFkZyVRiRgEE5A7Ec45rgDcXcI+XT7vao+UCB8t+nFMn1rxJeYiTTrq3hUHAAcbgfXA9O1ddPFUou\n7kreq/zMvrNFa+0V/Vf5lCztMXa2pTYslvKFliO5DmNh0OCPofT8a0DpLaeVZJkmi/vJ/D9R2o0m\nS9heWOfSZCPLdgzKUBIU8biuOemSe/erOl6irI8ckSwTqBny1BTb7jPA7Z5pwdGpUm4babO/cxp1\nVUqyd09I7W8+1wjPA44qXgjGDz61YeCNAPtEPkbz8kkedjenBz75O4AelRXNpJbEEkNG3R16H/D1\nxWkqbWpvYjdAy/wjHrUURaOQZ6dKljHOM8f1pkqH1zQiSWb92RIB9aXzN6jFRRSgpsYe2aryM0W5\nf4abYJDpl81goHU4+lXbvUrSwRIZpdhXA2BSxHHHAFVLOJpSXdPkxhcj9azNSstQmvWkBkmDn7xG\n4qfccE/XNcrcZ1OVnUoTjTc0e3eELVY9OjuEZHWUAo6MCGGOoI615Drkxj8c6uBJt3XsoIXrjefT\nmvZPBOlnTPC1nEU2M+ZSp6jP4CvGvEWP+Ew1l0UFvtkuATx989h1r6HL0lzJdEvzPMr3dFuXVr9T\nvfANxu1eWLJ2Nahhnjo2P55r0FwuOS3/AH0a8u8BO0filUJOX00uw7D94B0/OvR5psZ5oxkb1r+S\nObCytBohuwhjZRJKpIPIkbj9azfKt+7zse5MhOfzqS5myG57etZ/n1zvQ23OpPHU03IPINI8qMpA\n3f8AfJqNpkXHOPWsDclqCYZ8s/8ATRf51KZY8feFQXEimNNjZPmJwOv3hQw6kpFcx46mMXhuZF6y\nHYBXTGWMZBYDHrXK+LZUlutGtiVaOW+i3c5GAwJ/TNJ7CtdpeaOlSNYokjQYVVCr7AV4P8ZfEbXu\ntppEMmbeyHzgHhpT1/IYHsd1e6XN9a2ttLPNPGscaF2O4dAMmvkXWL+XUtTuryZt0k8zSOQMZJOT\n/Opm7RKXvT/EzpTl1+lbPhO4WHxJb7sYclQD3P8ACPzArEkOSp9qIiwkDrwVOc+lc8480WjqpT9n\nNS7HvdsHs1dpmkMjmMfN0GIwDx9c06/tIpvvBcDjd3qja3Nxc6VZ3N1IXeWONm5HUxoScDpyT1ql\ne6mVV034PavNpq1OK/rqdOGmvZRb7f5jbnTLVHVGmMiscKhwcmtZobaXTzZSlNpGSoYZrgDq7uXM\n0bnPRm4FSwSixiW5ZUMR4KbuFz/OtFB3OlVIWsdjZaJaqwkRUYocglRuH44zXmNspHxBtw3X+00z\n/wB/RXa6frZk1GURlki2AspGOfbNcXZuLjx3aTLyr6kjA+xkFaf8up37P8mebmTTpSt/LL8mc7Rm\nn+W1NKkdq6zMRulN70pBHakpgOJobnmkpaAG1JbgG5iB6bxn86jp8IJnjx/eFAHeaJeXianBb2sr\nR/aXPmAdCvPr+FdZb3A0y+kTLO2epNZXgjR5hqEmpXaMscMYEe4YySM8fh/OodYu3fVXQZL85A71\n59a0qjO+lJxpxR1U2qYVpAR05J7VlXPieX7PvG3yV6hmwX/wFc1ey3s2mylcqgIz7jNQQR3mnwNc\nXltFeWyAM0crMhx7FSMfrShTujV1Wtkdlp/iiyurcpLEVzjcp5HX1xXN/EC5i+02Vnb8RiMyHHuc\nf0qobyG5uVuVt2srMopZWl39PQ4GegrnNX1I6jqrzHOzG1VJ6KK6KEOWWmxzYmpzRs9yPcr/ACZ+\nUc8d66jw5pdukZv5kBIP7sODgY6t/n0rndItTeXixKcAfM5HYV1eo3At7IxIoVduAB2AroqS6I4N\niaXUTOWcnAJwo9BVJ7rk88A1n/aQY0GfaoppfmYeuKxSCxqNN8hGSeMVo6bPY/2VeWV9NdQ+dPDM\njwQLL9xZAQQXXH+sHr0rAt3MsoPVc5+taWp6D4nXbFa+H9WJ/iZbKX+e2sq/s7ctSXL13S29Sop3\n0NOwvfDmiNK8mp6iUcdDYIOe3/LY+9MuPFPha5dsXerKSMf8eEZ/9rVyc3g/xZM2X8PayfrZSn/2\nWmjwd4oA48Naxn1+wy//ABNczjh27ut/5NE3jUnFWsdLbax4UjmDvdaxIQehsIx/7Wq/fav4Z1Mw\nJFqmoLgY2iwQnJPTmYfpXGjwb4oHXw3rGfaxl/8AiaVfBvilGDr4e1oPnIIsZeP0qv3F7+3/APJo\ng5SatY7H7N4euEMM19fyIRyraenb/ttWF4m0WG4OkxaQ001rZ23kEzoEckzSSZwGPH7zHXtVmz0f\nxFHA015oWpwrGpZ5JLSRVAHUkkccVahlVsDNa0lGUueM+a3mmtVboYNuL2KuES882RwBBF5cYBwC\nT1I9uwqJL6fbIUUPG55J/kKh13THknF3bOctwyDoDT7KO7IBuFSOMLtK+o9q0WHbt1O5YuLTexye\ntI66k7OMF1DD8qz66HxWsf2mCROpUqfw/wD11z1dVraHEnfVhT+1Mp4zxQMAaVgcVt6N4Yu9XDNC\nAFXqzcU+bwtqonaFbOaTHAKrway9rC9rl+zla9jBU7eDxUgPeteXwnrEYO7T5gVGTx2rGyyMUYEM\nDgirUk9iWmtx+aYTSbs0VRJqaBcQ22qQTTwtNFHIjvCrFfNVWBK5HqAa7HxjrVnrOmyNFZ2cSswM\nQjJ3RtkEgHcR0bkYx6V55CyJMjSBigYFgjbSR3wcHB/Cr1xf2TOGhtJx6+bOGyP+AqtNGNSlzyjK\n+xnRNsnRh2YGvTLC9MULAKxZRvAI/OvMndWkLKgQH+EE8fnXZW3iGKFIbkIHbDho88c4x/WuXEQc\nrWPRw81C9y34wuGvLbTJkTCneCP++cf1rlTEo5MZ/A1LLfTTIkbyMY0GFTPApokPrW1JOEFE560l\nObkhm2Pqy4rS0JYl1vS8EEm7iI/77FZ0iB1ODgmpfD6sPEulLz8t5Fn/AL7FFd/upej/ACZyYhfu\nZ+j/ACZWbC9OM1veFtXeyne1wHS5dBuJwUIPb8653nb83NKkhjcMnyspyCOxqppSjys6acnCXMj2\nOe6jksjDK04LjA8lWJ/NRxT9Ia2hmkVtXnWUj5IpCwzzkcOAfy/Gsa01W3Gl27agrhZolfzEzjJH\nT2q5b6poUVuTHfuznqkjb/yrzYpq6sep7RWvc37q8lO5VbC45Oa5W71bTb6xuYbFvNkMKNI4UjpK\ngxyMn738vwuXVzJf6TevCrrEIXAdhjcSDjA/rXA6HL9jtNSuAD5gtQSD0x50QrScPc89PzRw4ut7\nuvdf+lRI9egBjcoQTHgnFc6uSp5FdDb2N/q0lybe2klWU5Jx938aD4UukbyyAsn90muiE4wXK2Op\nFzfNFGAEyOtRsAOD1FaV5pt3p0vl3MJQkZBPQis+QYORWyaaujns07MVgC3A60hj54FRhmB4qaNs\nrzj8aYG3rsf/ABJ/DQ4/5Bj/APpXcVhITEcq2PWuh12YJpHhrj/mGv8A+ldxXPOwkO7tntXPhv4f\nzf8A6VIb3PR/Ds/9qaXDDOFZnUqoP8WDgfjxW5p3h6SO63TWyeX6MSc/UHisTwfBBNbW/k52QXQC\nknk4IOfxzSxWOoTTbX1STb/d7muOTl7Rxi7etzqVapzckUtr63fVro12OsukkEqpBDMWJwW2HH1z\nXHy6Tfr8XNMu1sro2cd9Zs1x5LbAqmPcS2MYGDk1O+u2Hh9jHAPtVyM7yWwFPuazdHvotb+I2jaj\nLDslk1C26NxlXUD+QoqRqRo1Nrcsu/Z+ZjVlXla7jf0f+Zyn/COa3/0BtQ/8Bn/wqaHw9rQ66RqA\n+ts/+FJJp0LKXh8zA68ZxVZ7V4AG+UgjOVNd3719V9z/AMzkard19z/zL58P6zjjSL//AMB3/wAK\nryeHtcyf+JRqH4Wr/wCFVCQUqo55p2q919z/AMwtW7r7n/mWLvTr6wKfbbO4tt+dnnRMm7HXGRz1\nH51Eq9Twfxq9P/yLFh/1+3P/AKBBWcp5FOnJyWvd/gVSlKUfe3Ta+5nUeENHlv8AUJJAD5QgmRiP\n9qJl/rWrB4AvJRhv3ZPQdau+Dw2maatw6ljMkjgZwAAjEZPbp+oroNK8XLNepbPZcu21XikDA/1/\nSuKVSftZcu2n6nXh6UHVlz9o/wDtxy+meD9Xstes5HtW8qK4jdnHTAYEmuf1LR73RbmL7ZbtEx5U\nkcH1r1288XfZdXTSfsBLySLGZHcDbnAyB1PWuX8Zyvr/AIfGprD5RtHAYbwwZW4yCPfHH1rSnUk6\nnvLovzZM6MVXkov7K/NkWlShrBG3dVB61oWU0tpH5uFe3ZiD82Cv+etcZYXbRwoA2PlFdNoWoFJz\nbzgSQT9QexrOEeSozpqvmpI6IhLmIPFGzjrwOv8An61mXC238e4Mf4SvP4Zq29nHa3O6NyFb7vXI\nqbzGYbZgSPU10HGc1dyQQoRGsu7/AGjgD8KyNaVm1y+2sAftEnX/AHjXVX9laPH8pCj26Vj6vZwr\nql5NJPHGpmcksvT5j71Kf7xej/NGL/jL0f5ol0K7lEcULoCsQJEgP3uen610Vxq8BCp5e1cZdgM8\nV5/ZaxLPrsNtbOzwhiCxXAPHp6V07QveDdFJIrofuqcD6Gsq8EpX7nqYao3Gx1Vx4nspbPOn7rma\nBfmTYeg68+vtVDUdegudKaRItm1C5wOoAzWZaaPeyKRKZoITy3kyOu8eh+Y8VRvgk9vdWcJBjjhf\nLdecEAfn/KnGKbSRtObitTl5NZuNb1ozTqieVptzEqoMAAQS/wCJqhom3+yrjcAR9utsg9P9XPVz\nRVMs80EoHmC1uU3beR+5cVFY6bcpodyI085mvrfasfJPyTDgfj0q5pRk1trH9TwK0+aq5PvD9ToL\n3xElhZrDb4DtggrxtrL1DUblLfS2EjHNsxOe/wC+lH8hUcPhjVtR1KNJbG7hjJwXkgYAD6kV2l34\nGt7qztIklmjaCLYCRnjezc/ixrCVahTlH3l16rt6m9XEQq1IWnGyb+0v5fU8+bUJTgnAHckUNPa3\nKCKcLtxwycEd/wDGuyl+Hcxyqzqyf7XBrF/4QHWDIwS1+7zkyKM/TJ5rqhiqMtpL71/mOVSlHecf\n/Ao/5nI3VoIHDRtvhY/Ke/0NdBDqyPDEkjCGWJQgbGVZR601vD2qlpYf7KvioBIYwNyR6cVUu9Kv\nra1E13Y3Nup+XdLEyAn0yRSlVpyaXMvvX+Z04WpRneKmm/Vf5mt/a9wWEUtxbJGOrLycfSqWt6ml\nzYC1iJMKtv56s3qf1/OsO2j8xmLHgVa8oPhcfKappRZ1UqbqQ5mtWZdFWpbYxsQRlezVC0TDkcit\n009UcE4Sg+WS1Nrw/NjKd1ORXcKyyQKNwCt1J6V5tpk3k3a+h616Po9tcalshtUMjjnqAFHqT2Fb\nU5Jas56iM+3SF9QFpMWAYlcg8g84PP8AKsHxDZSWOo2v2cmSTeSgVeSwx2r1a0+Hdotwt1f3szzB\ng4SDCKCOcEkEn68VpapbWOnaXL/Z0UMM5XYHVcsPq3U/ia5q2Kjze67mtOKS1Wpwcsd2YRcRLukj\n+YRScc+hBqpYajEtu1wJboXIJUxx2o4bj5Tk/WrMV4llviedpNhwS3Vs8/41fhglkcTW0Sur/NnA\n5+tcN0nqj1YNVErsrWEl7q19LdXFu0MQbYrkYMgHqPWujgiWCPJbJzn8KgvJZLOyjeYRKcgBFI4q\nsuqQzKSDkINzfQVrB3ZNR8ujZ5nqeqX2qTy3F3I0rJlFHZF5wBWGRg16NoOkC4uGuUee2kcEq8TY\n3joQR3HXP0rtLfwlouowLHqmkW8jou1ZbeMW7fUhCAT7mt/axi+U86c3KTZ4JWto4P2HWSBwLNRn\n/tvFXpup/BzTpEL6XqlxbsF4S6USBm/3lxtH4Gucs/COo6J/a+m6nBhJ7ZWinjOY3Cyr0P4jg4Pt\nU1px9m2vL80Y1VzRt5r/ANKRrW8YTTYgk5g3IMsOvTpUD3C2Eqsl08qnt52c/wDAc1csDB9m+yzI\nJFI7jNMl0qyWYN5UIJI52DNcCkk3c9xQfKrFtdYiTTzdpEAOhb3qpYXv228IOpSJI3IVZ+R6Y984\n4HNdBaaXDe6VNbhEPymQL64/+tn8qxLTT7WOXMaW4J4I8tT0PQ1rTaiubuKpCUlYk+IzyKuj6gZv\nOlaFg8mMEkEDJ9/8K5C5JbQ7Rup+0z/+gRV6f430xLzwXFOSgGnICCB94MQMfmR+VeXy86Faf9fU\n/wD6DFXZVd+T1/RnlYiNpU35r8pFiNIrBrIw7jI7gSenP+f0qzrJKusG7bkZOTSeTHPqOnW8qZjk\nuo1YZIyCcH+dZ8GrJqupRRPpVmzysFLF5s4/7+VlUk+ZWV9PIiNdxbgotu1913t1Ml4bqKVrgxsw\nzgMKQXM88gaV2GPur2Feq3Gk26WTpHp8LBVyFy//AMVXBXs6W05X+yLLj1ef/wCOVlTxLntH8Ua1\nI1Yq/I/viUDfvCFIjBB4YVsaF4iNpqUF3eFpIVIjl/vKh/n1P+TWYdRi6HRtPP0af/45TotTtk4b\nRrHaTgjfNz+cldEak19n8Uc7lUa+B/fE9X1W2K2MhtrhVVY1l2gZSRCMq654GR9PpWRoniGNont5\nl3R4O7cMgfh7/h6jBANS6Hq8V94fNuIo4zaoyQoQxURNjKnJJPPqePSuKS5+zTXKxfIrMVAyeOa6\nqdW99LWKo1HNNNWafl2v0PQ72xFpGl1EGktJBwyndsP91sfz7/pVMyxsp+b8G7VqeFbiG90y3gm2\ngNGYw+MlDnt+AWuZu/EL2l/PY3NvP5sTlG2kEZB7citKkElzLYq19S0SoPUYz3p0arcTKrHC55qr\nFM8+JPs0yqf4mAJ/IE0iTxJOkuW+QnKkEH8vxriq1Pd0NqFPmnY6UqI1+U5GOMDpXTeFLKC4lhaW\nHLFsgt7H/wCsa4aDVrd2+YsFHIyK6rw54htLVN0jyK4iknQHkfLk49s/zqMLFKV2dmITasjd+HOq\n3Or6cvnXG77JvhdM9W3Ag/ow/KvKNUnW68T6g6hsPdyEkn1Y1d+GfiWXRNcuRKN9tO2ZAT0yeo+l\nUdZs0tPEl01lKJraSTzYnZsZVuQDnnjOD7ivpMHON5Jdbfg9TxMS1ySj5/hrY73wnZyDxF9rh8sx\nx6YsZ3MRy0jEdj/dNddO8xzzB/38P+Fc/wCE5P8AiUFioD52kgdh/wDXJrRnm60sS/3jOTDL93ch\nuGm5z5WPUS//AFqzTJcA48uL/v8ACn3M3WqBn5NccmdKPS9x9TTWcgZ6ntTjUUmSp5xyP51BqSM7\n8AnnAzimFmPp+VOY7jkdwD+lNxQA3cd2SBkdMiuU1WQy+PNFgKgrGJJSMZ/gYZ/MiurNcpbMbj4j\n3G4ZFvYkD2LOmP0BpS2CPxr5/kJ49vxp/gjW7lkVm+zmIZA/j+T9N2a+VGbIzX1F8QtLm13w1PpV\nrcwwSTzxl2kJwFHPQAknpxXAWXwz8PaYEbUJpb487jJJ5URHTOFOeD6OenSuWvXhB2bN6FCc25JH\njO1n2hQSc4AHeuw8PeEdTE0l7qumTwWFpE08gnTYXIUlF2nBIZgBx2Jr0+2m07SZRb6VYRWpAVS0\nEOGYHkZYDcwPuasRXkd15trdgql3bu6pxlTnDAYPp82OOlccsU2+VI7Y4ay5r6nNtczSaLHM7l5Z\nBFKxbkkmFM5rjNc1FhcxsOgHT0rrLi2v7a8ksvsk8sKxxKskcbFSRGoODj2rD1Dw/eTqQLG5IPTE\nTZH6Vz0K1NRSk1968/M5IV6KoxtNbd15+Zd0a5hvrJVjZFmC4KtWhYafL55MpiZR2zXDDQdes5Mw\nafet6FYW/wAK07TTPFF0+17e5t0YYZ3jIwPYVd6a2mreq/zOiGYUbW51f/Ev8ybxJeyvqNwNOjaV\nokAdolJ/HjsM9a5fw+zf8JPpQP8Az+Q/+hiuu8O6bqthrYlFldqBuG94WUEYI6/57da7d9Ntrq9t\n7ifT45JRIJBMyYdWABGWIycH6D2pVMVSjTlG62fVdn5nJi5UpUJP2kb2l1XZ+Z4Nvb1pu9q9Vv8A\n4d6NeZeynmsn7p/rVHGfXP6mvPdb8P3uhXHl3Kbo2+5MnKP9DXdCrCezNJ05Q+JGUWJpKK0dK0O+\n1iQi1i/dqcNK3CL9T/QVqQZ1PRHkdUjVmdjgKoySa7vTvA+nxYOpXNw7ccRhUTPpuySfyWupg063\n0+Ix6dZrbjGCyrliPc9T+dK/YTZ5pD4R1iRUaS2+zoxxmZgpH1HUflXQ2Xg6wivraM3M88vmAnaA\nAw7gD1/Ht78bd2L6IZffMh9BzVK3nzqEPl3Tp83JYYdOO3+NJ3EmdfFfRjS2WLvI/J4ONxxn3xiv\nNtdnmt9QaZu/Sut+1LpcsdtOu1ZgSrZ4BBwQT+XesXXdPW6Ukg57EVx8vJUd9mdqlz01y9CbSbvz\n7D5kEgK4ZeuKsk2k8UsUjv5ZHKMvCgf7Wen4VyFlDq1pIfIgldR3QGrVzeajLphxAUgJy3zAlvr7\nVcaT5tC/rKjCzKGv6qby8cx/LCvyoo6YrEDZOeefSiYkynNKm/cAMnPTFdSSWhwtuWrOz8K2z/2Z\nNcRWzbA+HkPOSOg+gzUeou0u/vwcV2WnWi6XpFvZk5Ij/eE92PJ/WuT1S3aO5d0BZCe3auaNZSkz\narh3FXRgecVH0INN80yzlR0zyaW5ADEjv1qK0IQbs8k5rY5zZgxGhOADiqvjMl/HXiDcemo3A4/6\n6NUbXB2NyelTeLyv/Cc+IBycalc5/wC/rVja1df4X+aKWxjxohGWBNSwWz3BMUEDzSt90KM1Gzgk\nBRt/rXoHhnTH03SjdzJiSUbgD1A7VdSpyI1pU+d+Rg2PgXV7kBpzHboezHc35D/Grl18P9YhG63k\nhnT0B2t+R4/WtQajPeSSKt/JFLGpbZGh+Uev3SMe5NbGl+IL6PTZJrk+csR27ivJNYqpUTuzpVGm\n1Y5Pw/YzaT4oltZ8B1068L4/69pTVZLkrt5PNdG91PqHiAyzWcdtINOvsYOSQbWTGf8APeuJ8/5y\nc8Jxn3qqetWTfaP/ALccdVJOyOmtpRNA2eQcj8ajkZyhBJwPeoNHkDRAHualuOCec12Unujnluch\nrcxkvtmThBj8+azauark6lNn1H8qZDZyS/7P1pSeprHYrVLHksoAyc1eGnRjgkk+ualjVEdcRj5T\n6VLZSR6D4XkMGnwxHj5eR0rr7cGTaQOPevMotZuhH/oGxZAMHcAfyzWloWsa/LfJbvslDnqBjHHT\n0ry50ZXcmenTqx0SPQ7lh9mII4rxnxxaQQa40kGB5ihmA9en9K6ibxvfw3bQvp/mRKcHLEH+Vcj4\nune51RZWgeJSgwG9evX23CujD05RlqYYicZR0OfFLSUV3HCFNbrTqa1AEsEKyA5qZVCcL0pLb5Yy\naNyg4zmp6jY4c1IDTUSRvuxsfwqTy5V6xN+VF0HKxQav6HgeI9MOOt3F/wChiszzFBw3B96sWty9\npdwXcIVngkWVA3QlTkZpVU5U5RXVP8mY1ouVOUVu01+DKrMDUSnkH8K0xqdp/wBASw/77n/+O0g1\nK0yf+JHYf99z/wDx2o55/wAv4oXtJ/yP70djotysvh62R9rYUqQeeASKuadBpxkJit1znnK9D7Vz\nGja/aRyG2l06ygjc9Q8uM++ZDWlJ4gsdOYssFnK3VVilkfP/AI+QK5/fUnaL+9HQq82tYfjE63VZ\nJV0G4SztZZXZfLRYkLHJ78DsOa5Lw74cvp2vIbuzuIElhVMyxsvAlQkcj0U1W1HxAL7SrK5utOtJ\nGNxOiqWlwoCxej+/6fXO74PmE0srxafBB8u12jMh4zn+Jj6CuepKtyOytr+TXmc3PicTLljBJXtr\n5Nefl0OytrKGztkht4wkajpjGajfRoJ5A4Cq5PU1MssahUd1Unpk9a1LIxkcN8wrmSqX3X4nvqNd\nxteP3S/zMfWfDFnqWkPbSSxtKQTG2RlGrxW88N6ykzxppN86qSAy27kH9K+l1/e27L97ivn34kW0\nVt4qm8tQocBmA/vHqa9DD+0Wia/H/M87FU6+7cfuf+Zyc1tPaXDQXUMkMq43RyKVYZGRkH2pO+K0\nNc/5CEP/AF52v/oiOs8cmuunJyipM5aU3OCk+p008Gm6rouiK2v2FnNaWjwSw3MVwWDfaJnBykTA\nja69/WqZ0DTv+hs0f/v1ef8AxisYc0oAzWUaE46Rm0tei6tvt5ml/I9P8O29pot1HanW9NnEsy7F\nRbkMWJAwMw4yfcge9F9e6G9rKYPEWmrOVKozRXQC578Q1k2gWXUdLlA5F5A34FwP61haZY2+oalF\nb3AcRFJHby2AY7Y2bGSDjkelc06Fpubm9FfaPcz+sOE5N9Ir82a2n+Cn1Zj9l8QaZKDyWEV2B+Zh\nArvPCnw6h0rVbK/vNUtpPs0yTBYRJyVIPdB6Va0m5ht7ZI40ZUC7QCc4A7cAVqi4yAyg+1cdWrWq\nRcLuz02j10O6EUtXCX4f/JHQWGn2UVg6Q28UUajaFVQAa8h+I/hW20p/t9lFsglOXiHRGPp6A16n\naTXDxcOqr6Ef/Xql4j0n+2NIeGVt42lgqfKWPpk5/lXTQqtO9n/XzHWqNxt7OX3L/wCSPmpuGZSf\npUP8Hvmuz1fRNNsdLtNTexvnhuCw+W7AKEMygEmHHOxjwT05rBng06XR5ruzguoZIriKIia4WQMH\nWQ9kXBGwfnXeqy00fb+tTzpVHFpSi1e3br8yOf8A5Fiw/wCv25/9AgqrYqj3ao5wrBhn3wcfrirU\n/wDyLFh/1+3P/oEFZyOUdWHVTkU6esX6v8x0HZP1f5nsPhZoG0y3SQLgQc59NuD+lWUfR7a+ilVo\nUIf75AX8q5DwrftcQ+SCAVgmABPA/dt+lJHZ3epxolwxVDypRhtH4df0rz3S/eyu7bfqejQrL2kr\nK7tH/wBuPSJ5dEvL9LtTFNN5gVZU52t2B9Pak8Rx2c3hW9itwNphZhtHcDP9K5fR9NvrGa2htmP2\nYzI8jPIMNyMgDqTj1AqnqWpvp2jSQyyDPlYYAnBJHSqjD97ZPovzHKqvbttWfKvzZzdyqw30qAjC\nNtP1HBq/p155l3HCqnYFJcgdP88Vxz3krzNIWO5nLnnjJp8d3cCQSLKyMDkMpwRXY6Wt2YyqqzSP\nabKWK6tFhndWx0IJJx+VPk0ydF3QXKsnZZH/AK54ryaDxFq9uu2O9fH+0Ax/MitOy1zVpoy086NG\nwwFMY59/ahxaMTotauJ9PIFyU+Y/KAd2fxzXL+KZZhr1/G7fL57lcEYxuPpUd/K0sTgnqOPaptTh\nsNQ1S7uotYshHNO8gDJOCAWJGf3fXms21Gom+z6Puu1znqSUKqb2s+jfVdky/wCErOFkklKjegUr\nn3zk/p+tbN0k0bmW1lEcp/I1h6TJbafPGx1axKgbGASbkf8Afuuk8uC5hEiX0DIehAf/AOJoxEou\nfNHVej/yNMPi4Ri4u9/R/wCRmwy67IHjkuDHC33iG61f+zxWWkzc8spyfU9qiFqu/L6nCY15wVkA\nH/jtV794Z4wBqlqsK5PKSnJHTPydM4/OqpOLd+i1ej/yCrjaaVm3d7aP/Iw7Ef8AE6u2yMeRc555\n/wBS9aHh6YypBGuAI9StOgGT/rOp71Qj+xWLyznVbaST7PMiJGkuWZo2UdUA6kdTXReBreEae0uU\nJ+0w7gwB5AOD9ct+lc2NqKUalTvb/wBu7nBVjzwmo7WXR9FPukZfhONI2nvZeI4wATjqT6V2cuup\nbxWxk06ZopVJ3MB8vzEcjn0z+NZelaVB9jZLcmImV3UEnGN3GR9AKs3ml6i9pbwpcyhVQ7gzjaTu\nY5x9CPwrGq4zqJv+tD3nGcJ01Hu//SWdHb63p7wlmHl4XgFc/lgj+VWdN8VaHva3F4iyyfIA+Vwf\nxJrnk0G9n0WaWMxyXK4AXoMZHT3NZemWmoJNLbGKEyHAaJhtZvXOevt/Psd6Mbao661RpWaMrxvY\nC3126lRcLJl92OuRzXNQrjw1eY/5+oP/AECavSPEGkPfx2kd7MlpFFa7XcIZX+UluBx2968/ELW+\njalBJw8V7EjfULNWld6RXmvzMOS8VJ9ZR/Mw4bcpIVHzAgE547VZVSZDk/dGKZaMzoWYjPOO3Gak\njPH1Oaqbu2d2Fgo04koAzjFWNK06KXXdPyqmNrmMPG4yrDcMj/61VS4VwScCtfRD/wATzT/+vmP/\nANCFc9SUowk12f5M1xtKnVw1VSWqjK3l7rKdjLquoapDYwWlgbiVsL/xL4MY7knZ0Ayfwr23TdOj\n0fSkQbWlwPNljVYg7fRcD6Vw/gWwBgvNRZcsCIY8Hnj5mH/oHP1qbxN4vmtdJ+yxOA8y4V1b5lAJ\nBHseMc0SjGpZKJ8/XwFCFdwirpf13OlutctUEqSzxoQ3CtL1GeTgmqdzrmnNHGPtMDdSVyG7fpXk\nJvJZjgjJPtSMLnbuELY9cdaf1Wl/X/Dj+oUt+X+vvOr1vUiLeWWzNlKfMU/8e8TEjBz1WsiDxpqF\nsgG2FlHTbbxr+HC1gvOI5MvG6nvg4rV0ZILucq+MnGVPf3rVYeko6q5P1WknpFf18y5H4l1bU5hv\nWBl7B7WM/wA1rTvJJptNsraIRfaLq4eKR4oljwoCHHygcDOamk0m2sbZ5+QqjoO/tV3w5YyT28Ny\n2D5U0zewJWMD+VZyUI2lFWs/0ZjXowpODS1b/R+Zs2lmlvLH5a7VRAo9gP8AP61vw3QjA5/Ksld7\n8sRT2kCRuf61N7mmxvxX6ttB/iPHNV9Qij1C1eBmKpIeNvUY79PpWB9qZbhU6nYAqjrlif6A1Pc+\nIrDTxKpm+0XECgm3gwz8uE+g+ZgME5qpfD935owrt8mndfmjlZbWWzuJIW/1kbYz6+h/EYNVkNxN\nd8vtKcqPU1a1i+vZroXVykMTEYEUeWZR1+ZuhPOOB26ms+SBNQjzlif9lsVnJJS02PdhKTir7l62\n1DU4rkLGyAj+M9B68VXdby31VjuDGZ8sF4AJqKGO7ExXyXKkbTmGPH57ePrVqLT104POkRiggQyv\ngk8Dk9T1raKVrIipKSe5peNtclh0Sz0mJyBOm64BGdwUjb9OQa48J5uk6egz815MOB6rFWRrHiG5\n1LUpbk4AJARSAdqjoKlmu5JvDli74BN5cZ2jH8ENdM01yJ9/0Z5eJndwS7/pI6ia2+za/pAEokX7\nWnII4IdeD6HmsXwjaLNrolDIFgQsQxxUWh3Tz67paFiVW6iwMf7Yre+HunxXEV3JNgbyE/If/XrG\nu1Fv0X5sVCPNiLeS/NnQ3PiPBkWOe2YoANhBUsD3B7/hWNqdpDqtk935XlS8/d6EjvXQzaBHES+5\ndoHGBzj0FX4rOzl0kWcZiDcsVBGck8/WuaLi2lTPbjCbT59jzCKxE0kYJjT/AIFjP6VNq2jKtgtw\nWSOQA/LuHzD1FdPL4bWYNGiI8eeQTtIq7J4bLacUVDswcgHIB9s11RlqcrpNOzOU8HXxitryOZmw\nItwJ6ffjUfqRVTWkVNReSEERO27GfunuDVrSrMJbahE5KbYduSPSWP8AwrI1JpYbuSJixHUBu1bU\n370vl+R5lNWq1F5r8jrfDWpGGKNQTlXJrd8Yaat1Hb67CBlsRXGOzD7rfiOPwHrXnemXDLKEBIz6\nV6doDLf6bcafIc+fGUG48Bv4T+eD+Fd1P34OLNdmYdncDygGkHHrWbdX6W+oOHGF28MOc+tEOfMK\nswQqcEHrU9zYpcBHwXI6nbXluCUrM1hUcGMgurcWkZyh8xxuI5IydxH9K6eEo9tfKkJ2SWyxxS4H\nszY79Qe3eucttNUTAhMV6N4X0qO4XbNjGO/pXRShroTVxL7HnVvpt5pofUyphskdYXlZto3HJA9+\nFPT2q0l5FqWpxeW5eJYljXIIz3P6s1dv8axFZeDNPtIUVEe8DALx91G/+Kry/wALSEXqA9Aa9nB0\n1Bxl3uefjE1Tu+p6Z4T1GNLK4illRAj4XcwGeua1p763wf8ASIj/AMDFYHhh/LvNTXgruXGQD61r\nzzsTj5CB22DNVi/4rOegvcsUrm9gwT50f/fYrPN1ETnzV/76qe6cM3Krx04FUi/PQflXnyZ1JHsr\nIuTwfwYimsiFcFSR7sTUjdaaRVFjCEOTtbPruoO3sD+dKaQ0CIcqYmd+MdeemK5FStjfahqSzZa5\n2gvg7VVc4AIOf4sk/QAd6n1LVDI728ZBjLHaUYZPJ6jqe34A1zd7fGWMPCTvYho9qYZwvUEZ4z19\nc152JxL+GB6GHwqfvS/q5cmvvOuNjnZgAFfvEKe5PGByOCe4rJuLoIx8xBvVg5+dQQQdp6Z9qqS3\nazSRQjAhKYQkkKFJPHqSpP6VWgle6jJw7ZRgSIV64/xFefLXf+uqPRiv609HuPmYSlnMisQCBl2P\nKtx29BUN88kcyXEXWH5o8AAdc4yecYOPenN5iiEr5qhm2n5goOQBzx65qCYO9uZArMyxgHEe/PQ/\ne/AVL3uvy8vMe1k/xfZ26EWs2sms2SXNskQ8uESvNJhcDkBQe3RuPb8a5WG+iljCu2D71ttJbQS7\n5o52STKjbtUKHBLZ65+bH5ViSaVhBIuCD1A5xWrkopXKoUvaXX9eZat7SCR9zXEar71Yv9RtbSxe\nG1IZyMbh2rMjtgozxTY7V7+/js4lLFjlsED5R1x70Kq5OyNnhI04uUhdEtpkuI5o5DG/3ywIyBjJ\n/TtXYxTFHaMzblifC5lHQN759TWctsI55WBUleFZW2jAB9f93Hb8alllYNOx3kbicZV/4h71Mm2z\nnuv6v+hcivXRoiedyrkDYeh2+npSSzQ3VitvdwrJHKQHDIcMPmGfr8o5HNZkhIeNfLwMnloQP4s9\nqzX1OO1KKu1mAz8uRjnPP4Gmoty08/60MZSi46+XV9vMxdQ8Krba4scZJs5PmQE/N/un6evpXX2s\nSWtqkSBVRR0UYCis6yJnYXWBl12x5HT1/X+VWpXKjBOe59a9CCbiuY8ypZNpFnz92R1B4x1z+FV9\nOvpFaS2kyTGcqTnOO1JNIYow68AHP1FVZGEepR3KtxINjg+/Q/pWtjLqabahMB8jP781RvLhXUzv\nEkxU5+fr+Y5q0wjbnIz0Io+zLKhLcAj7tU7C8zPvrmzvrdfJgW32tuOGLAZ46kk+lOsJ1gIiuVLw\nn7rDkr/9asaEx2+sGAkjcTtroI4Y/L+6OfTipspKzLjJx1QviG+trPRZY7OUPLIuCydFH+NUNNIb\nTbbKgjylyfwqtr48qxKg8saji1a1s7KCPfllRQQvODipUVFWG5ud2yTUdBs75GaJfJn7OowD9R/W\nud0ixdPElpaXCEETLuX2BzW03iNEbAi47nODV3SbnT73WYbsuEliRgA38Wf8BmpqStBl0YvnR1mo\nMFiL9wMCuaeTJJOM1qXszTR5BOz+dc9czbFPavOir6HoydjL1yWEqSoAkJxkd6zrdPk3NwO1QXlx\n59wTnIXgVJGrOAznC16EI8sbHnTd3ce8oB4NdDq0VtcfE/XoZtoEmoXSqWPAbzGwa5iQgtwOBWl4\n2ynjvX2Bx/xMrggj/rq1ZSV6yX91/mh05KLTfc6lfClmMF/lkV/lcHII9fzrqomCqAxyvTFcvpdz\nILG3aeVnZow25j6ityKUHB7Vyzu9G7nqU+SLdti/PpNnLEbhMxSY52nGaig02K60y4swCRMp5buR\nyD+dLNexw2xWUnbjnFZdktkl95sd3IrP1j3Nlh+P9KSTdvI0vDWyKUVg+l63cRM+4LpV4VAJwoFr\nKMCuCV8Kqfifeu81S/WbxlcW6c7dLvsken2OYgfqa4K2jeRx8jH8K6qX8SV+0f8A248eovedu7Og\n0p8FRke9Xbs4zj1pmj6ZJMQW/dxjknFNvXGTXVSabdjGcWrNnN3EQ/tOaVgNoAxn1wKs2ltPe3KW\n8Cksep9KgnffKxz0Nd14CsYhbzXUigyEgLn0rGvPkTZ04enzySZVfwbdKiYIIxnOOTWnaeELYxje\nMuPyrrGlAiKDp2FR243MMGvNlWqPS56cMPT3sc7q3gdobJLrTgFuE5x/C/t7VW8O6xE9ypuyLeeH\nIKtxyOD16d69QjIaxEBAPFeY+KNFS08RLOscbLOpJR9wBcY9Pb+tbpOcbSMpR5JXiaVt/Zl3I7gI\n0i/xADkdR9a868bzRHWhbxsT5SfPxjDNzj8tororqS5ht5roRhJhHgIj557Ek+9cMukancebJ9ll\nYqfmJHJOM9+vHPFbYenrzHNiKitylEGlNJgiiuw4xaY3WndBTT1oAUudu0HArQ0yzNxIxC7tvb1r\nNrqfCJWS5kUjlQKzqtxjdG1GKlNJlu2tLmKYBQMcfIFJGO/WreqafMH2L8qYySq85/8A11uSlUQA\nL8v8TYqxLcQXR8y1JfaAG3Lgfma4faNu56PsYqNrnn99pUscZd1BUD7wGKwQzwvweK9R1NElsHOO\nNpry2ZsyMOwJrroTckcOIpqDsiZTuyRTvf1qKE8YqYcrWxzAqBzg9aUxLEMsxPoKZkhsipIY2nuF\nTBZm4AzjntSvYDsPDel2+qeGiLkRgR3E7LLI5XZ8kXTnHXHXNdT4St2g0ubkBnkIHHpxVDwpZxDQ\nxYzKyLLcSTIwYMCF8vjOP84NdJbBYBtTbgE5IGMn1ryZVOZySel2d2ChH2V+t5fmc5qen3Rk2x28\nJRj8zyO5f3PYfrWj4Xh1BJBFLMyITgZJb+da11fQqpwm5vT1NUk1i3tXVpiyv1KhDgfj0NPnk1ax\n3Rpxi73KN34n1uw12a0j89YonK5FuHBA79e9cV8QZJ7jVYLqYZ8+IOrhdoYdM4/CvYLO703U7iKR\n4lzIu9GYc4rzn4wyK2r6dEhG1ICQB7tj+ldlFrmskceJi+W7ZxWuf8f0XtZ2v/oiOs4d60Nc41CI\nf9Odr/6IjrPTla2o/wAOP9dzycP/AAo+n+Y5elKOp5pqHjFOzz0rQ1Oy0fPn6V84OZ7bI/7aJWT4\naSW41N9jcpaXBGfeJwP51p6KyvdaRgfN58H6OtQ+EYxEs07ZG+GfnPGBE3/165a32vT9Tjr7z/wr\n/wBKOs0bVohYLPMwUAfPu7HpV5fGUHmrCsMgB6O67c/TNcX4eLakJ4w+x/NMiZ5GTW+3h4wBp55M\nnqWZtxJ/p+Fc84QjJpn0NKc5RTRb16bUUuo453lMLLuWNZTGh+prq/CcdxJaiRysUZHEayMw/XjP\n0qSK5tLjQo5pxFJIq7drsBk9QBnvTtK1W2YFY0MZU4ZG6ihSdkkjaVPq2ct4v04Hwjr0ZmfyrK8j\nmgjLcKXI3AD0/e/oa8qi/wCRZv8A/r9tv/QJ69C+Ksbxva3EUz+VdE+agJ2lkAwSPof0rz6MAeGb\n/n/l9tv/AECeulK0F6r8zyMfJNxXZr8xs/8AyLFh/wBftz/6BBWZWpKpbwxYYH/L7c/+gQVSWED7\nxya1pbP1f5nPR2fq/wAzofCUHmLdSKSHSCfB9cwuKIr+OOMQ3wlUj+JGxkVpeEkCvOoHBt3P5xvU\nV3ZRvndwKw5l7aSfl+pvST9pJrtH/wBuLeiarbnU7G3s0mkLXEYLMSSBuGfwrO1TQb2fSUuvMLyb\n/mTOAQAT/StnQ7GKLDRkhgQQw4wa6e/ubqK3hWK5kEx3Hlz8wwQe45+YHr2o95VE4W17/MKlOrzO\norbW1v3v0v3PFGjeNyrqVYdiMVKo4FdTca5rR057iK9u2gWXyWlW5b5WxkA4ORnnGeu1sZwcUl8V\na1HatAt7cMZBzKZ5Gcc54y2B07Doa3/e9l97/wAjnvW7L73/AJGJ3Ga0Fk3LviyGXqvtXQSeI70+\nEtPj/tO4+2/bbgyETMJPL2Q7MnOcZ34/H1qjfahrthIiS6xdiRhv2C9LlP8AZYBjtPHIOCO4pNVW\nr2X3v/IOat2X3v8AyKCzebFyeQcZqARos4DcK4Iz6Grw8Qau7tjVb4ZHT7S/B/OnDxDq5WMnVL7r\ng4uH/wAan972X3v/ACHet2X3v/IpTBoVVWHIYkn1HHP6Vq2jyBcRSOhx1ViKcPEOoSI0bapfBh/d\nnbPsetdnoVnJf6ZbXp17VbsMQr29qGLhu4LFsLjjk4HNdeFqTi2pJfj/AJHLiVXaVkvvf+RyqRSX\nLASSysg5O48fzqlfs8kqhVZUJCLxwB1z+OM/hXpMksWiaStzeahOt27FvJmmM74SUjYqqQOQvLkk\ndcDnjltd165tZJFOrSfxTQPbE7ZFIUKOvGMHIPf1zmt61eo4csYq3q/8jGjSxHPzStf1f+RyVxDH\nG8ao2/Ayzds+ldl4AEbQ3SyEAedBtBPUjeR/L9K5L/hItYDyA6rf5LZx57YH05q3puqahea7o8Vz\nfXMyfbI22yyswzuHPJ9z+dePioVKlKSdrfPpfyOut7X2bckrJN7vtLyO0guWguQ+chiTmrN5eXUx\ngliZfLCFih6Md7Dn8qxtOmBsbcnGfLXr9KsarbzNbWlxb3DRbIyCoJCsCz9cEGuScVzxT8/yPd52\n502u7/8ASWaOm+KdShcwLZLMCf3oVtoIzzjuK1NC8RSHMN4MzqNu8nk+5ri4Rqkl2Gs9StIieitu\nbP8A31n+da1nGyXbNNIHm6MVGAfeupaWsbyk7PmR0GoeberLdGYpBbxSNMgP31K88fn9Oa8rllaX\nSdTmflpLuFz9Ss2a6rxB4gurDdYwCPyriA7mIyQDuU49OM/nXISts8OXp9bqD/0CalU1a9V+Yqqc\ncNGT/mi/xZkwHbaqc9SR+tW3IQZ7Coo7Z0tbcuU2yRmRQrhiBkjkD7p4PBwcYPQglxyUzuAHfIyK\n1lub0G1TTXYjlnjMnlnkkVs+H3zrGm56/aYh/wCPCucwEm5weymt3wrby6h4q0+JCRHDIJ3IHQKQ\nf1OB+NRiIL2Urdn+TOKvjGsPWlNfZkvwZ3E18/hnwnBEIyJdpLF+PnJJYH6Hj8K8ulu5by6J5LO3\nSuw8e3ZzHbLwCS3+f0rk9BVP7Zt/MIxvHWrpRSg5HNzNu/VnovhnwWj2iXF7jcwyEx0Fd3YaNpkc\nXlG2Q556VSsbtEgDSMqIR1JwKZHrttJceVbyLJKD8oU5zXBKTbuz1qcVy2L154J0zWo2tzbKjH7r\nKMEV43reh3XhHxF5MhPl7jsccZr0SXxrdw3oSMvGoba/lJvkxnnAyB+ZFTeIDJ468Ny2o0aVdRt4\nzLb3Akjy+37wbkY4PA5Ofxrtw7SVmcmIScrHKLeLqkNvCV3biMgZ6+vFbUbPoeirDaSW73b3H7yM\nguo4XcvBG0gFep/nXn3hvUWh1BbWYMGY7BjhgT6en/166C9vI/D2ixRrHvnkvJJFBbIGETOfzFVW\nik4xXf8AzPHxLcpwv3X5SOi1Jo7RmuL/AFSSK3X5liQ7N3t8vLfTmsuTxrpawOkMM+0KAgKAZ/Xg\nVwF5qE99cNcXUrSyOclif6dhVVpOODVqjHqaG9rfii61QqpCwRoNoWMnJHue9XPAAM+t3a4Lk2uQ\nMZ582M5rkgDnpk0qSSW8sc0Z2ujBlI7EU6tLnpuC0IqRco2Xl+DT/Q9X1bS5yw8u3nkY9SsZIrF/\ns3VYMtDZXYPoIW5/SpbXVLfV7BZosedjEid1P+FULtSqn2rzoxqRfK7fj/md7deS5k4/dL/MtW6e\nIXuVVrK6Rc8sYGH9K2vEUeoN4YvLW3tbmWWQKp2RMWb5hnoK4mEuJt/PBql4g1Rrkraq2UQ5Y+9d\ndONS+lvuf+ZyyliN3Jfc/wDMqnw7rhOf7G1H/wABX/wqzqFnd2Hh7T4ru2mt5Dd3DBJoyhI2Q84P\nbrWHSjrW7hNtOTWmvXz8/M5nCpJpyasnfRPz8/M2vDUx/wCEl0ten+lRD/x8V0vhbUxZjyiygZya\n5Pw6f+Ko0rH/AD+Q/wDoYp8FwYXDVlVhzTa8l+bNaMuXEN+S/NnrE2qJMp3yYTbyc/yrmYJ9t/5I\nuJiu7cCkhDHn1/pWJ9tuL8RxQylDjGRzUQ027hmDC52yA5I3VjTp8j3PXdadSNoo7yTUfsNyp3kp\nLySxzzXQWGuAWzK205ryxXubYhrmdZlYAY7CrEupuXVIiduO1aRi1K6InWduWR1sGwX1/OUzbsAS\nFAJ++uePSuN8V3sN3qQMO0oihVYLt4HTium0eNm067O/Dsgz7fMtVJPhnqt8ZJrbUtNlbGVjaV1d\n/blMZ+pA962pzSlK77fkeZT96rUa7r8jj9PkJu1x2ru9A1DyleVT/qyD+tcveeGdZ8NXapq1hLbF\nslHOGR+P4XUlW6joeKuaBOT9pQnh0P5120rxepTR0niO1WDxBLKqgxXIFwhxwd3J/XNNt1jKjaoB\n703Ubn7VY6YzHLwxNAT/ALrEj9GFJaP0/pXLilad0O9zSt4sSqTzzzXo+ixeRbQyBcqwPOOnFefw\nr0P616Z4XIudI2NglOmfpWmHMKvQ4P47XQbSdAUNnc8rHHsE/wAa888KkNewg8AsMn8a9H+Nlhu8\nLWNzn5rW8MQHs65/9krzjwoizNvx88ZB4r2KL1gvX8zHGO9JN9jvvDXEmoTgnDyBR6DH/wCutOeT\nk1R0m1SHTFY3U0TOzOVWJW7+pNE4AJxdSt9YlFZYqV6jMqC90hnkJbpVbJpZCuT87n3IFQ8H+Jvz\nribOhI9zOPX9KYwYsArqB6lf/r0+mmtQIwSxYB0O04PHQ9f8KytevJLWwZBgPJ8ow+Djvz2z0/Gt\nKM5eYc8P/QVyHizUvIm+ZchRtQFchu5P9KwxE+Sm2a0Ic9RI5e6kL3P2cyuBLIFkeRcAAD5vmHtj\n9axvtTy3zScKMbSsbZxj7pz2HtWhb5js7m6cFpDEQWVsks/U4PPQisGAFtS8gruZ2bcNm0kdBkdx\nwDXitWvJf5ntp3tF/Pp/XQu3OVngbIQMzx/KuQrYztUdOoHNQaU0csshkKFmdh87MTyPb3zUWpXK\n/ZhJuOVlQbicEEHgqPwIzVvQBiNGjLKskhcBHCgfvMdSfaqS2cdn/wAHqDfxRluvL02Q8/NbrsCN\ntw3ywkn7zD096sGOMOpbZteLne57HH8I44FQqQIXZh/APvybh9/0H+Iqw2ZEQx7mCGSP5IwO3HPP\nrUaN3fl5la6peeysZFzaCNHgkEXOVyilsFTnPJ9CRULYNpGjykzqCGjZSMLn5cHoeo/Ot58TKhZ3\nO7YzK84HUYbjjvisS4jKQFo3VWiyrIhJLDOTkn2J7jp7UOHNp+nYcarpy5vNde5h3AESsynitPQ7\nQWlhLfzIWaZc4I6p2CnsT3PpWdcW7STw26q7LIQQUUklO5A9gD+RrTndZPOjCxiOP5cLGcZyMnp7\nflgVnFNKzO3EVYytZ/iSEzOgkk3ksvQxg8bRj8MGmXMm0T5A3c43JjuvoaSUwr/zy4VsYDD2H8qq\nXcgJuMOANxHyyEd19a2tff8ALyPN5ktV+fmyne3W3aRsxhvukjufWsK4keW6VVJLYAxnP4Cr9+xb\nygGYkg9WDd6o2dzbQ6p9ouVdghG1EXkt2rppxVzkqSdlc6y0hMMUcRzkKFHHApsmBlcDIOOaI76C\nQbkSWNif+WqYz+XFLIucYJYEcmuuNraHFK99Rm5WhkifKuOVI6HPasuWTH2Udsnr3AIP+NW7t2W1\nklx88RGT7bgaxNSugbtI4iSFBJx2J7VRK3NuDUCzEJHhiPvNziraBnG6V2cntWJazDABKj8a1oJA\nRzn86VxtGNfxCHUrdsDIkBJ/Gt4zxwwNJIwCKMk1m6wgxHMMfKwzj60k0sb3ENtNGsyC3nmZCzAM\nUiZlzgg4yPWlOXJFyfQznPkg5PoYuqaq97J02xj7o/xrOtka4uFRFLn0q1JqtqXCDRLAk/7c/wD8\ndrr9CgtorcXH9lWkUh5ARpT/ADc1zVa8oK/L+KNaXtJO3I/viYEfha5nOZFKZ96gvfDV9pyefES6\nrzx2r060njcZ+zRg/wDAv8a0isMibXgQgjkc1yQxdVvb8jrlTklpTf3x/wAzy7TdeaeEW9wfnHGT\n3rL1e/JkaGM5PQn0rW8TrbaJqo8vRbJkk+YMzzA/pIB+lZN3JbXuiXF2mnwW00dzCgaFpDkMshII\nZiOqCumNk1Llsn5o5J4qpZRnFrW26MdQByamLl8KKgUE96l3CMe5rpKHNwMVveK7SW+8ea/DDGXc\n6lckAD/po3Nc2zE969U0g6Rf+M9cng8Q6bKmpXMtxCnlXKuoLswBzEB0PYnpXJiKnsqinbo+j7rs\nmaUoKb5WzHkheG0gjbho4wp+oGKZBqslsdr/AJ109/otqzn/AInVgn1Sf/41WRcaJYkEN4g00E+s\ndx/8armhiabWt/uf+R1yundEtrqKSncZgBjBzU0s1pBE863LugG5o2Py/XFYp8OxNIBF4l0sZP8A\ncuv/AIzUmseHY7CxhD+KdOjScMreZFc4JGOm2E9iOtaRnS5t390v/kSHVmouxg+Hrx77xXeXb/ek\nsNQbHp/ok3FWtI8uQruxUek2WmaNdXF5J4k024H2K7iWKCK63u8lvJGoG6ED7zDqRVDSZH84IM49\na1upznKO1l0a790jGm9UjvfMRLRgnA29q5S+lO04ro/lj0xpG6hc81zscP225WIdM8/StsI9JBil\nqkYxU+YhIIDHgkcGvRvCXmixJxiLoD61QvrbzYlt3DyAn90v8KjAwAMf5xU2ipf21ixsys6K2Ht2\n4Yf7rf0NY1Z+0j2OmnT9lK+6aOpkDqAT09qWGQr93tXJy+IGmdlh86Fo/vrJH909gc1ANeu4ZMts\nkU9WRcY/HNYKjI6VWieladffvArHmsXxvCZLaC4ClwtyOF6ng8fnXNXeuXUbxi2LbmVWZvLPy59Q\nfpUmo3OqSaHLcyzPJ5ZDK2SBkdAFwK6IRdkjKtONnYW1Urb3jMQ8h2q/pk9h7DI/GoN8q6hp1uvI\ngTv6YqxplpImgfOxaSU7ySOpPrSTRZ1hnXgGMKfYck/yX866YqyseZJ3ky7FZadPE4n0+0dpSQv7\npQSPX1HfmuK8Z+F49LEd5YRbLVgFkUMTsb155wfqa7KykRH6lnPXnP4VZ1KOK+0+a0lyySoVwFzg\n9j+BrSLvoQ1bVHiVS2kYluo1YgLnkn0olgaG6khf70bFT+BxRgKuR3pMtMbcxrHcSIjBkDEBh3FX\ndE1Aaffh2OI3G1vb3rPY5NNocbqzGnZ3R6nEj3y+ZFO6naAAmOasWlleMj+fNcImCMZH+FcRouq3\nFrBmJ/Yg1pnxJqJBQMnzfjXA6Uk7I9CNdcupd1vVBa2rQK26XbtH+JrzwnJJrZv5dkTM7FpX7msY\nDNddKKitDiqycnqSw4BFTcgnjg1FH1Axz2qcNngcj3rQyIieatacIm1GBZ2kSMuMtGcMPp+NVmUj\nmtXSPD2parFJdW8BW1hP7y4bhFPHGe55HA9RScW00CaTuzqWsIP7SsrS2dorVbqZsCQ8gRQNjJye\nW7V2JkCsw96a2nWpwllBiGGSSSWd1G4lVXoT93dhRgHovfFXb3S4beeSKXVLNJY2KsNspwRwekde\nLzqCSqPXXz2fkmdOCkuWdv5n+ZjXCXDENbNFu/6aAkfpSQ2t3I2dltKynlWO3H65rUjhsUHz6xZd\nf7k3/wAbqS3stAe5DvqNo7dcgzj/ANkxRGvBPW/3S/yPRUk0NjN1NPCtzZiBkHyukgYEfUV5p8R9\nUTUfEQt4UXZZR+SZB1ds5bP0Jxj2PrXshgsJpESDUrbavU4k4H12VvyWOn+IbeNrnTNMv4hGpRpU\nJYIyhl25jyOCOh/I8V34erScm5XXyl/8icGKqOySPl3Xh/p8X/Xna/8AoiOs1Ohr23xR8NrDWtTd\ndOuLexuMbI1kMwVlQYClTHxgADIbjb0zzXE658M77ww8a6vrOmWyyjKOYrpkb2DLCVJ9s5q6Vamq\ncUm/ul5/3TzsPf2Ub/1ucRRnjrW4dC07/obNH/79Xn/ximnQtO/6G3Rv+/V5/wDGKr6zT8/ul/8A\nIm/KzR8Ny5udIBAz9qjGf+2gp2nuLeOS3xg/YrgcdCfIcmrnh7TLJb7TEXxPpMmy7jIVYrrLfODg\nZhHX34pLHTNPkv5GHibSWP2W5G1Y7rvC4J5h7dfw4yeK5qteneW+3aXf/CcdeDvP/D+pg+H9Tayv\nUj42SyLu9cjIH4fMa72a9a4sWjAJVMEjPpXBnQtOz/yNujj/ALZXn/xiuu0aOGaLy4fEWmXNzHDJ\nJsjS4UyLGhdvvxKM7QT1FFepTfv/AKS/+RPWoVXBcpZ0hpRcmRQ688GWTC/T/JFdUthPBcxXqypN\nu4kVRwB6j/8AWa5CK8sJGBkcoRz8p/lW5D4mQw/ZbUF2IxmnFOTtY7J1Y8hF42sv7T8LzSkhTZSI\n4JHXcdmB/wB9A/hXmlvDGPD9+sjgYvbfI/4BNXpPia5ay8FXMLn99cMhb6Bgf6D8q4AAP4avHK5/\n0u33cZ/hlrf7NvNHj4zaL81+Y2aNf+EaswmMfap+n+5DWQVOSK03SM+G7IoSpF3cdDjnZDVRCCnz\n4Y88960pLR+r/Myo7S9X+Z0/huQC4hVSMtaSoQPaNiDVl4y/3qydFYLcusbsrC1uMHPI/dPzmpIP\nFLbBFqFvuIGPNiUBvxHr+VYSg3Vk15fqb4eaVWal/d/U6GwUxj5eAPSq3iHUwlnd7ZZFljjVIypB\nXJYbs8dcY9OlZcvihRCy2ELJkf6yQDI+g5rP1KQppJV85fqT3PU1rThJO7NqtSLXKjMtLucQNbI2\n2N85CqMt04J6kZAOOmRnrUaiUPtIwoPcVd8PQoZvPmZFQcDecAmuoOnQXURkjZCnqDkVNSvyStYq\nnQ543ucNNIWkwTnHaoHnkknLyuzk8Esck1vXuitI7PahiPdcCsCeGWCUpKhVh610qpGa0MJQcXqW\nA21kbORnFKOfMXPQ5FJLbTwxI0kbpvQOoYYyD0I9qajZk/3lqBFuALsByd4I/rXQW0N/pCrewxNL\nZyxq01q8+xpV28sVUhiuckH0HNczHNsevU9Onhl0a8S01G4vozZtCLeSLZHAdoyzSNhcLg4/D0zV\nRklq3YzqNlnUdXivNItY5b2xKyQJI6JF5VuYwCBuP32bI4UFRwcgV5XqBkMq702IRlOMZXoD+OM1\nYfWnS0ktLcKI3UKxf5sY3fdz93O45x6npk1ku7dTzWk5dBQjbUlklBOQKt+HjLceK9KUEnF3Ecew\nYE/oKzSQVzWn4Xuo7LxRYTysVRZRuYdh3rnqr93JLs/yYsQm6M0uz/JnYW/yWcDJjaEGPyrXF7bC\nztUuTjdETz/vuKo6XbwSQvbC/tnZSWARZBgE+6Dv/On6npsTQ2qtewLthIyVfn5254U+teXVlD2i\nT7vo+3odP1uClTkr9ekv5f8ACXrWXRoXLHajfwsDUT3cUlyzRnI9fWue/smHf8uqW2e3yS//ABFa\ncNgllbGWS/tyx4QssmM9sjbmt4zprr+D/wAjapjYSXX7pf8AyJk+NI3jgtL9CwYkxYPRl6gj8d4r\nH067jk0K8N5GZYhdwAoDtySk2OR74rU8SpZ3MdrAdUsYZUy0hKTfOTgZ4jPPBrFdbS00W4t49Rt7\nmWa5hkCwpIMKqyAkl0Xu4ronKE1FLe66P/I4KmKc0oxb3Wln39LEbvB9ozbrtjYcr6H29qV2AQ55\nHvWcHwflNO+0Ejb1rSVK7uj1aGN5I8skTOfMVRgAKc8Cu5+HtmIxLftw8kqwL67QQT+BJH/fNcHH\nycHvXqug24tLHTLbcyuuxiD13FgWH61zYl2pSXk/yZz5hNSw0muqf4JnFeNJvtF9uHReODXMWc3k\nXsMhJwrgnFdB4kYvIHP8fJ/wNcznbID6HNdVNe7Yzb2Z6xKl/fxxrbRukJQfPIgOCOoGTgfU0qaf\nLavFFLK8ihh+7LEqADk+3r09TTNC1WRbKN25O3n3qO61L7RformTB4RE4J9fpXnWlflPXhCDhzyZ\n0eoQ6XYxtdRJbMsp4j3pujP+ynUj+VXdC1+0tlmYEuZowobIG32GO3Xj3rnYNOeOFpFazhBH3ZJD\nJJz1wB9P1qtpemzYee42qSxwE4GPWqT5PeQXhJNWOB8RBrPxRdvD8uJjIhHbJyKNQuprvQrO4mbM\njXtyTxj+CCn+LGV9XJQg4GD65qpOSfDFhz/y+XP/AKBBXY9VB+f6M8TF6VV/i/RlAynFIH5plFdA\nyYS4oLbu9RYNG00ATwXM1pMJbeVkcd1Nao8TXDptnhjdv7y/LmsPFFRKEZboqM5R2Zfl1e4dSqBY\nwe46/nVDOTk9aKcqM5AUFiegA61SilsKUm9xlL3rbtfB/iC6JK6VcRoBkvOvlL+BbGfoK39P8Had\nBE7alcSXMwYBUtWxGPUFiMt+GMetDaW5yVcZRprWV/TU5fw5/wAjRpP/AF+Q/wDoYpZraaGTZNE8\nTjqjqQR+Br0SSSG3eNLK0tbTyxjfbxKjY9Cw+Y/UmsLVtR1n7Rut9SvACPurOw7fWuaUm53jbbr6\nnJRxkqta8EldW1fnfojBsblra4RuBzxW1cSxSzK+fvDJrITX9ZaT59Yv1A5I+0P/AI0r+J9XY4XV\nL0Y6f6Q3+NTKFRu9l+P+R6sateKtZfe/8ibULjcyxxjhTj6mnWUTSTDdnaB3quPE2rtg/wBqXvB/\n5+H/AMa29I1jVZp0V9Qu33nABnbv+NXCNRaWX3v/ACInUrvWy+9/5HTwWr6dpMl0sx5hDDDHnDru\nIHbGOfqKn07VQ4VkkIxz1rH1nxE8lmtiJGZgmyQlidx/rXN2Wpvp84V2/dE8H09qzqU3K8uv/AsR\ng6zhVnGpbW23pbqfQ2iXlrrujnTtSgjuraX5JI5BkEeo9COxHIrzLxb4In8F6jI1u5l0255t5T95\ncfwt7j17/mBs+CNfMG6bAkiPBU16NqsVp4v8MzacAVkkXdExG7y3HQ8c46j6E13YKvBrkk/67ndO\nGvkeK4E+lyspwEucqPTeOf8A0EVDp++PIkk3sWzn2rUsNHvtPutT0e9gKXSpuC9clcNkY65A/Wst\nfkm+hp4un1MO6OnthuiDf0ruPBF0C8kGfcVxtlH/AMSwykNg8ZFbPg648rWY1yMOcVFHSxjU1jcl\n+NUefBEx7Lcwv+jD+teP+BZ9usHHzYQll7HFezfGpox4ITzDxLdRJ9cK5/pXh3h3U7XSr95BA7sw\nCKVGeM//AFhXq0dORvuZ4tXpWSPV2bbCoAIXHFUZpB2OfcVKrvPbRSiNlR0DDcR0IqpKHHUfrXPW\nfvsin8KIXfmoyRmlcH2+lRhmxyQPbNczNT3p3VBlsjvTWcKfmyPwNPZQWUntk0hY9e/rXQIqqwRp\n5G+VC4wSMZ4/+tXmGruL/VZJkfIZ2CCNyp5OOh9hnpXo+t3DW+kyhMb3HloDxnPUZ+ma8xkZZrwj\nc3loNqtMvB/h+969T2rhxknpFep24OCbcn6akGosFghg4+eTewdSpUfUdeMdu1cvBLtvZZANoAKj\nL5HTHXtyRXRXrtJc7V3hVTAVW3qN3HfPYj8q5kMGuzuONzAEhcdTknHQ9q81rR/8Memnt2+9f1ZF\nS9utsE285JccA5PbAB+vNdFoZENpbBih+UMCQ2cF8j2rhr2UvCwLcNMpb3OfSu8tw9jAkZMo8uBV\nGZgn3WA6Y9jVtWtfv2Ii1aTXbuORGEMgYvjYRlAEAIIPWiKVMBpWjbEqMSzluoz6+1Rs8bzyhEiG\nWcYGX6j8RTomdbdivmKDGpxtCDIJHrWeqj8vTqWnFyu7b+b3Q/c8SoNpwY2XdFB0wSepx6USStJO\nWKyMC68GRV4Yc8c0yeYNNho1ALuMvLu6geg96gmmYbRCEJZU+5GWx09abtzfPv5CV+T5dktn5lGN\nRGZrhGTfEmxQ8hJXJHQ4/wA5pkYdB8pRgzjOJDxgc9V96msIJBaNh5BkMD+9Vc8k/wBKbETsBAkz\nmRjkB+309qjS1/08zV8ydtdPNdhjG4banOdg584d2z/Ws+6mcmTzBIdxJxw3ce/tWhMW8xQw4BjX\nBiA7Z7H2rFmkUFCQvAGcZGeTVxs/xMpXXfp0XmzMvpFMyjAG1T1XHc1seBdMjvLy7upUDLFtRMjP\nJ6n/AD61z8+MMTkHHrXongWy+zeG1mPWeRn/AKf0roqy5YadTmoxvO76GrNo9vPGVeNefasK/wBA\nvrFTJZkzwjkxE8j6GutDcAD8Kk3cZ7isKVRp6M1qUoyR5hqNxE2mSyFmXPyEN1DehHrXJqTJK0jZ\nyxzXReNrhLjXpI41CrGAGx/E3r+uPwrnYwRXp3ukeWo2bNW2xgcGtOKXC8msSKRx0q5E7njJoQNG\nhfSh7CRTk/L3rLt5d+ru+c/6Dckf9+JKlupD9nZQe3SqujRvc3sxUZ2WNyP/ACC4/rWdd2py/rsY\nV1elL0/yMewgku71I4xlmP5V6VDJFY2iRgeZKB07fia5PwnpySXz+eh6cZ6V2tz4aEq4VygJyBng\n/hXNiJxcuV7Hq0YSULx6maNc1GGQkRWuwdQjZIrVuPEl1ClubVIXLrkljkZz0rIm0aa1xbNIqRls\n/KP6Vr3mki4sLdlKh4BtUtnkf5/malOipK2xras4O5k+JdN1HxFDayPFbwyoeoYhWDEAfrj865OO\nEx+GdQSQEMLu34P+7NXbapplzbeHJLzdsKMuUUnGM/5/KuRA2eGdVMv3vtMAGfXbL/ia6Jzg4x5O\n6/M8zFQkn73eP5nP59KPrTAcGnVvYAYVJbXEtndR3EDFZY2DKfemA5z7UY4otfQadndHpumaxba9\nahlYJcAfvIieR9Pai40w3HCjBrzSN5YJRLC7RyL0ZTgiul07x7qVlHslt7a5/wBp1Ib9Dj9K5Xh3\nF3gdUaya947XSvD5j2s+Xbtmua+IGowS3Ntp0BDfZgxkYd2bHH4AfrVa9+IesXcBht0t7RTwWiUl\nsfUk4/CuWZmkYs5LMTkk9TV06TUuaRnUqJrliNx3q7pupPZTBtgkXup6/gapY4pG+Vga3lFSVmZR\nk4u6OvvdZjvrIRWxO5uqnqKteH7UqnmPgu/6VxkMjJIGViPpXf6KitbLKshVe2eh+lZxgoKyKnNz\nd2bEkaMI1IO4txxyO+M9qvKRFM/lgAEnpxWhJpDR+GrTVdu8y3BXP/PNBlc/Utx9MVlspUkVx4iK\nU9Op2UKjdNJ9BZrOGSb7QXAZkCsGUFcDP49z3rIkS3uJ5bZ3i8tRyypt3ew5NXLoSvbOsb7Wx1NZ\nlvaHBW4hAP8ACRlg3H5j/wCvURWm51KSfQ6L/RJrKSaGcJcxx7VVUB3AcgEEEH/69Vby6sbnwncX\nEhuJJV2DaXAAO8dhgdfarlrYvBCosjEWbiQvE+FUZ9SOenbv1rmNZC6dpQt9xMs8pkf0wM9vqR+V\ndFONmrGWIqLlldbmNYpcTXtxKl3Pbq5LYhkKD9DWnFI9vaK80sksjCRy0jFiR8oHJ+hrNtbxIbUq\nEy5BzzTL3UDKvyLt2oEUZz0rpvqeVqdHYhzGsjMvPOc1cvNQjsLNrmcOUQZOKzdKgElosglVsjnb\n2/Hmub8U35adbON22R8uDj734D/OaaBow9RnS61G4uUQoJXL7Sc4yapt6Z4NOY8VHntTAYamnSNZ\nmCHAB71EalmIaU+/IIoAkspRDN8zfI3Wtb7daRjcTvPoo5rA9qM+9S4JstTaJ7qc3EzSHp2HoKgB\nyaO3TrQBiqSsSyVRUgPYVEpzXr/gf4biGCHV9ftyTIN8Fs3G0Yzlxjrjt2788AJbsZPgfwFaap/p\n2uy7bdX2JZqSJJDgH5scqvPbk89Mc934rmWHwsLOzsGhtAqphI9igZBwB36GtTw5PBb3Gq2ccDoU\nuS5IXGQw4z/3z+tZ+vX9tOJbIBl+yyAvu4HzZK8/TNS5cs3psTbmSbMaxjnvdDneILE6QyRsXzwG\n6H1PMZH4dKuaw0NxrOpbLiP5buVWGGyCHOR0qtY61badot9ezqSZZBaQxLyZNgYggdMfvDk/zJAr\nNu5Wk8U65JC8avHqE8clux2lgJDhgTwT1yM56Yrgq0HKouV20b6dWi8NF05SXPZN32X6ktzZxOpI\nuolPuG/wqpb6KJZQRdwlc9g+f5VZ86K5j45FXLEwWymRsDHdjUxUlvL8EdboVH/y8f3RJr2EWOjT\nxLOkckkZVXYHjI68Amus0O7uNN0fS5DKWEjx2/mHaBIVJQIMkdcDqB0NchrBS3spb3Uy0SiM+TCw\nIeRjkfhxnr61S03U9Q13wRNo94rPJpl1HcW84HJBEmVY+oycHvn257qEJcrcpfgjhxEJ3UY1Hp5R\nO+15JcLPtMU0U5l2jDHazE9Rx04rQg1rSbjR3sNVWK4t8+XKkxDhmyTgqehHHGOK5qOW61jT4bk3\nkis0ZDoDyGDYYE59efxFL4XsYoYL55YFdWvZFkEgZsAgFTge1dFGCguVvYyS5IKK6aGLr3wW0zWo\nnvvCV75IIJFvcZMZIP8AC/Uceuee4rxfU9FvtF1KWx1K1ktp4jho3HP19x7jrX1R4Z1KUwSW15HJ\nDIshZcuCxj6KwPccYPXHr2rK+K2g23iPw2yxW6yarBGZ7Z0HzFFI3DOOhBPHqBVy323NYvTc+b7G\n9/s/UbW6CbxbypJszjdtIOM9s4rU0ebSGvpPLsb5WFrccteIRjyXyP8AVDtke3v0rnWJBYe9WLG6\nmsrgT25USAMvzIrghgVIIIIOQSOa5K1HnT72tvYyxFD2kXbe1t7eZO82id9P1D/wOT/4zW54Wl0l\n9QufKsb5dun3pO69Q8fZZc/8shzjjPbrz0rGbWrv/nlp/wD4Lrf/AOIroPBuq3M+szxNFZDOn3hG\nyxhXkW8von0471y4mE/Yy0e383p5EwhU5lo//A3/AJGdpdxotwwi+y36v2Vr1Tn/AMhiu40OPT4C\nWjtZ0YdfMlDY/wDHRXAXupXtpeEJFYDjcp/s+3z/AOgfWuh0rxyy6TN9siga8jwIysSgSZ9QBxjv\nTqUqu8U//Av+AXThN7p/+Bv/AORLvjPUbJlFvcQXMv8AGVjuFTHp1Q1zlvqWlpoF6RY3piF1ArKb\nxCTlZcHPldODxjnI6Y5u32q3r6TJdyC1eVlViz2cJ6keq81zE+p3V7bm2kFukJcOVhto4ssAQCSi\ngnAY/nThQnZJ919r/gGdSnOq1uldfbb2+RNfX9rLawWdlbzRRRSySlpZhIWLhB2VcDCD161WLnCg\neh/lUJAVgR7UCTC5POOK7IxUVZHRCCgrI2NCnJ1GQ5/5dLn/ANEyGqRlV2wQCOmfeq9neTWNytxA\nyiQBl+ZA4IYFSCCCCCCRzWjHrl2c5isMH/qHwf8AxFQ+dTbSve3W3fyM2qim5RV72622v5PuNt1D\nzxqR1PAq94gtBFJ9nBZiEDfMAD8wyOhI6Ed6s6LqF1faskZt7N0BAIWygBxkd9n1pl/4gu7ieaVR\navljtaSzhZsdskpzxii9T+X8f+AHNVv8K+//AIAzSwYNNjkjjBfDAknoRnj8TXQ6FbyXJYORtZMg\ngdGxkj8KpeHtebyJFuobRgG5AtY1H1wFFb1h4gWS5djbqIEyEEcK/j0GfWvOrSqXa5fx/wCAelRl\nWsnyr/wJf/ImS2nait4scbSj5myQoII7YPbvmm+LtFxYW42KZww3Njnnj/Ctu51u+tYheRRAW56o\nyIGHuMVj6v4knbTpLgC33DG0PAjd/cVMJ1uZWivv/wCAVP2lneK/8C/+1OV1eAWk0NuRhxCu8Hsf\nT8sVi/clA9DXSHVdV1W/RLe2tbu4lGQkenwyOxA542EnoT9KdZxeIdYvms9O0q2uLlAS8a6ZBlQO\nucpx6c9+K9GPtYqzivv/AOAedOrUbvyr/wAC/wCAc1Kdsmex5rYl1dH8Px2qlvOMh3/OcBQB26c/\n4+tT3txq9jBG95Y2duzjKrNpsCsRnGQCnTII/A1nf29dg/6nT8f9g63/APiKUlOVrx28/wDgC5qv\n8i/8C/4BRbB9j60ByODV8a7d9otP/wDBdb//ABFB128H/LHT/wDwXW//AMRV81T+X8f+ALmq/wAq\n+/8A4Bnr3FN3FHDKcMpyDWkNeuwf9Tp//gut/wD4ij+3Lsn/AFOn/wDgut//AIijmqfy/j/wA5qv\n8q+//gHSaZdBWtr5TtBxvx+o/nXb3NvBcWlvKCHjMeVdTwQST1/GuP8ACWryX1vc20lvppliIkDP\naKoCHg8IoGASDz6j6Vh3fiPWtO1CS3juljjiyixJCixhck8IFAzz1xmuarQnUkna1vP/AIBpRqVF\nOPPGyV+t+luyPSbXRonYEDIPtWNq0trLcKlvMssMOcuv3c9/riuKn8Va5qUa2TXjBJDt2xqqbs8Y\nJABI9q6XV/K0jwNFGjRtNcyGMZiG5FAA4bGeevX+Zq6WHlGXNJnXVrqS5Y9TiNQuTe3005zhm+Ue\nijgfpVXv+FLSMa6jmFY4XjrSou0ZpmfWgsf/AK1AFuzEcl3Akr7ImkUM3oM8169Gx/tG24ORIvbG\nef8A9deLqTkGvYfCVtqGpWkF7eOhhUKyMU+diPfjj9a48bpTb8n+TJqwnUpTjHXR/kzh/EUSrlo5\nAyMQ2O6nniuVcDJ9a9C8XWdgsnkLqVtA4OT5wlJ/8dQ1xx0y0zn+3dO/74uP/jVVRrwcb6/c/wDI\nqpVhDR/lL/5E1dA1oRSQ2sqnZtwp9etdvHLYXtuElC4/hb0NebQ2FpDOkg17T8qwP3Lj/wCNV2Vt\nBZ3kAlt9StWz1KrLz+GysK/JfmV/uf8AkdOHxsLcr/KX/wAidTZmztU/flTgYy3JPvWVrOuJBD5V\nqdzNyeOnpWa9hGeG1OAe373/AOIpj6bbhP8AkI22fdZP/iKyjKF7t/g/8jpnj6fLZJ/dL/5E4HUC\nz30xY5YtzVmf/kWLD/r9uf8A0CCprnTrR7iQtrunglumy4/+NVHqBtodGs7OG+hupEuJpXMKyAKG\nWID76rz8h6V3c6k4pd+z7PyPGq1Y1KkeW+/Z9n3SMqlApKXJrpOgcMilpgJp2aQgNNp1JjJwOtMC\n/o+j3Os3fkQABRy8jfdQe/8AhXp2g20HhmGSKzYmWQYkmZRub29h7Vm6VbDSNLS1A2yld8h7lj1/\nLpTje4hZzjKk8Y79q5pVG3ofPY3ESxDcF8P5lvUdQmuJhZpK5LjMrZ6L6VEhAuDGnCRgAAetUtPR\nt7zOcseSxqSBixdufmas22cjio+6uhNMww5H904H4VgTSuJFkGDsIIzyOK3HGI3JPbvWFOW5XHB6\n04nRh3Z3Rb1LQI76FNQ09VG9dxjAxj/6/wDhWDJoM8Y3bgW78Vv6JqRgLWkh+Rs7PY+laUkZc5Ud\ne9HPKGh9ZQ5K8FJb9Tio9InMnQEVc8xrFFhRv3gGM/3a1L68jgzFAd0nduw/+vWOsW98nknqa1jN\nvc5MRWhT92O4qZY8nNJPF5sbKRwRVtYuPQU7ysj2pX1PK9prc6nwKHi0n52yTIcZ9P8AOa9d8PbX\njUMuSvzDacHivJvC06wwxxlc7QWx68mu7tfEX2Oa3a1iA8vGQ3JPrz+NctOSjXcmfTUoueHjbsa/\njGwNl4r03WVH7iUCGVuoDDoT9VP/AI6a8w1G2NrqVxCf4JCM/jXsd3rem6zZ3Wm3SGF8DYzDcqt1\nU5A7EflXmHipFTXLjAwTgkfgK9mrJTpadDklFqWp0nhaGO+0SSFh8ynNQ6ah07XoWPADUvw9vLZb\niS2uCRvA2nPFdzqPh2KaRZYgo9c1lTjeKOdveJwHxou2GkeHWKGS2aSTzOOM4XGff736151a6TBq\nEavYTBX/AIouN2PavYviPp4n+G+pRyI0r2pS4jwc4IYBiP8AgLNXgWmvoVxMq3T3UUhOAXOU/HHI\n/I161GaUUnb+tTKunKEZLpoembRHawxhiQqAZLZPTufWq7HHA4qvY28dlZLbxABB8ykSbw2e+cCn\nu351x4mPLUaFR1ghC3B/nTM59abuyM89aTNcrNj6Cb6c0hrC/wCEz0Irj7ft78QyH/2WmJ4v0FlD\nNqR5/wCmUn/xNdF0LlZV8X3ptrY8NmJPMHGQScqBXCxDyLVhHkyy9GjOQf4Rwef7xrd8T3yahcwt\nbuWjYrIrIxViFGQMHtkjtXNahexIxijCNtBP7xdpwPlHI9yTXk4mSlUf9fierhoSVJWvr/W33lCa\nSN2mcvH1YjcpVsKOP5isW43j7oYooZjht4APA+natb52h2LvAIWPCurdeTxx7Vi3iiMl3GMKGOUI\n4C57Vgr2S/4PmbScVeWn4ryOaj/fXsEOMfvRx6AHmvQnxJLmMI2+N+FiyeCT6V51o1wPtzSsPm/h\nycV6Fav50FuSRtJZSzyZ6gdgPerq6f8ADipe8vv6X6FoffYfvMF0YhnVOoPbJ9aqwfIrIwi4DJyW\nJ4wc9hUhcKucxEmJcbULcgj1PtUvlyLcOCJgpkxkARjDA+1Yabade7NrvfXo+i8iu6uDE3zMPMTl\nYwOSB359KqSMHiUuysRGCPMkz0b0H+FTO8YjBYxkrtb5mLk4LD3pSpjVQu8YWRMqgQcZPXj1qk3v\n6eRMktVp17vzILctDIVSPeBJwwt938XqcVmzkB9+ANyEDK4wSeemfWtO0uXgmadX2MACWZ927JGR\nwp9arGNHaUAIdrdUJ6Ajv9PalG19fPqVUu07LouhUW5CzNh1GGY5V2XoD6/WsS5vFZ/LRm3Hrlgc\nCtW6gdFkOQWGQQG75HtzWLeR7T5mOpIPTtW1NJnNVuun4PsVp2by2GOvPSvXdJgFr4fsYsBSsK5H\nvjmvHDyR3JPpXtm5Vt1B4AUAUV+iHQ2bGCUZxUd/cm0spZypZUQtxTWRFbO81PHKCCpII6GuaL5W\nby95WPGrp2uJ5JpeXdix+pqEIK77xD4RExa705MMeWhH9K4iSB7eUpKjIw4IIwa9SFSM1dHkzg4O\nzHRLVyMY6HFU0fnrVqJge9aEMbdr+6POaTwzIBqc9u5wk1rOufT92x/pTrkEpjNVNGkVdQnDdRaX\nP/oiSscQr05L+uhlVly05Py/yOs06OKExtHtyABkHIxWjeazJCDjJCjsa5TQryR7XzZXJy5XJ9hW\npIfNkx/Ca4akbSsz2oT00GPdNcytcNfGOfHG05IFatpcTjT2W5vw0b46jG4e+RVa0MumqWs5mhYk\nHhVPOcjqD3Arcj1TVtR0ptPu72SW0YBSjpEAVHb5UB/Wrjytle/bQxDqMsnhy8tbgllRtmSeuCK4\n25n8/QtRcdDe23/oE1bPi+7SzRbC343MXcjt6D9T+lc5Gc+Gb7/r8tv/AECetowtFPu1+Z5WOqcz\nj6x/MzBTwex+tM6UHgA12CHr0p46VGp4qQHAoEPxxSbQetGaWgBAAKWk60UAKKGXIqU286xiRonC\nHoxU4rf8L+B9d8W3AXTrQi3GQ91NlIUOOhbHJ6cDJ56YoWoNNbnOxIXkVBgEkDJPFfRfhH4Vrplv\nA+sXi3RHWKBSF692PJH4D8q3fCXww0Dw1ZRFrW3v78YZ7ueMMdw5ygOQmPbn1Jrt1jAXaenpT5X0\nHYzdT02C601rQxqIim0KowAO2MdK8e1W3ewvJIJPvIevqPWvcChX5eq9vauR8XeFm1W2M1so+0oP\nl/2h6VjWoOS03NaVRQeux5XLz8wOQeKfGsewZOBVKf7RaTPFLE6sh2srDBU+lNieSV9sYb5veuJw\nezO2M+XU6jTkVbeVLYS3E7A7Y4lLM3GeAOfWvMvEWoNc3mOcgYr1v4fXkFl4tk0q4RRPLbhkfPPX\nkD9K7DVPh34V1bUnvtQ0lHupPvOkjxhj64VgM+prvoUly+ZyYmo5yTS0PmAOVWoZHZiAMknsK9g8\nb/CWDTtIuNW0OSciH5pbOT5iFz1RhyQPQ54yc8c8boHh5rWRb29QGYDMcJ52n1Pv7f1qpQ5TnUrl\nfT7eXR7NTdMA8xyVPHljH86w5tF1jV7mW7tdNvJ4nb5HSFiGHbHHNdHq1uNVvo7NmI8xuSD0Feka\ncVtreOJAFRVAAHYVy18R7KyW7N6NB1LtngF7pl7p8vlXtpPbydds0ZQ/kaoOMGvpm78i7tmguYUm\nibqkihgfwNeIePNEs9H1KNrH5YZ8nyyc7CMdD6c1VHEKppbUVSi6ZyeaU5wD+FIBk1NbuN+MA8hh\nn1FdJkRsGUDIIz0JFJGm9sZwO59K7bxnaabaWttaQQ7L1X3HZnaFI5DZ6EHAxknrnGBnjWAVQq/i\namEuaNxyTi7MaPmbjoKYTyak6L7mtiPw7D/Z9leXevaZZfbImmiinS4Z9gkePJ2RMB8yN3qZ1Y07\ncz39X+SYkrnWfCfw1balqLarfbWhtpAsMRP35Ox/DI/H6V7Lr93Hb2RtreRje3CskMSHGWx1HoBw\nfw+tc54K8NQad4UtrV7+1kZ90junmKDk8EBkBzgjqKLbSZrnWrm7bVLS5WAmGJP3u6MA8jOzr9Mj\nk1kq9Kct3p5S/wDkSZXW5LFotzpJj+yStGs6hZgx3ZIBIIBz7/Sub1jRZW1v55p5ZLpUUs2eG3hR\nx14GPzr0GC6srlGLahbmWP5GBDgKfXlQeTwT0rK1JLJtT0yV9StU+ztKzqFkJYYXHROxIPNN4yHM\n9Hf/AAy/+REqbtuc3Zae1wq2jQKqW7yqN/c+YcnHrjaPwqLVtOEXjrVYXfYtzM88ZHUEsc8fXJ/C\nugsoo7jUJxY31pLLJdMy71nUDex+U/u8HqO9ZXjW3u49fF95scUa3jx5UfNtJP8AQHv3rKnONTF8\nq/le6a6rukN6QM240ee0QzAENjL46E+o9v5fyfaJmESSSZkb5o1VhkDONxHvggfQnsM7Y0p54ohJ\nPLIzyCIh2yPmOOR161LaeHrG91S4jt4PJe1l8qRN+4EoMfKeu3AH+TiupUVzNy6D+sSUOVGPrNha\nyWltNd3QlmkuY0PmTFmKnOScn1rs7DTbSPQFhihTDsXcoOvyk8kfWuY1zQ4Bd6WnljJkkJGW/hCn\n/GulttHt7uxi2xupVSDtJ7YHetHFez3Mr+9sVNF2WN7facGWMMBcxE9ycqy89chAfrTNMvEtdS1i\n2b5nPlTxmR8bht29vQgVl2emxx+J7sYb/lkQSx/u8/zqHxJZPp3ilrtDMYntZPs/z5GVBcp+HH0B\nWmqd0tegc2r0O51e3gfw7b3UUrwXMHzQyDruI6Edwf5eoyDN4Pnmu7AX9+Va6kJLrHnaFUlQo9MD\nJ981jaCy6w9hc3DsLdIAlumciQqMFicdj+PvxzZ0rVoNK8Q6hp3mxLEJBMqBecOMkAcnAyo/GqpN\n6wCXRnh3xR8Mnw340u44oTHZ3X+kW/HGG6gfQ5GPpXGROBn617z8bLQ6r4btdTt4ZZBYSeXNIc4V\nW4yB0wTt568ivAc4FKfRs0jtoXCBtyOpra8HOsOvmVs4Sxv2IHp9klNc/A/3genat7wtzq9yP+ob\nf/8ApJLXNiv4EvT/ACKjuP1+3XyIbhNud2wkdwRx/n3rncboz7VvWtwb3w7Pbsw3wL6dQOR/LH4V\niRffK8cnFbIlHWa8kNpoixKJUkJSNldSAe5Iz7j9RXJqdj59a6XxTOr2VrEATuJcMBgEDjjge9cw\nBjrSWwIfJgqOeQOn4mos5B9M5pZMgg9qaGAjIpjDP5VLEcCq4PYCp1uCkRVAmc85UE/hnpQBvaJZ\n39xDOunwPPcTDZ5aR72C8fN7DPeuktPhvq+xTqEsFmufmXd5jgfReD/31T/C/wAUE0Pw+unf2FE0\n8f8Ay1gkEXmD1cbTlvf6dMVma18TtT1B2+x28dmp6fMXYfjwP0qW5bJDUe7GeKIbHw9cW9pasrMV\nHm/3j/tH0z6VX0yST7QhUo8D5+WRmCg+vykVyUssk8rSyuzyMcszHJJ9zWrYXRt1VSSEYAgjjB//\nAF1nUhpfqbU5pOz2Om1KzkupIJHeIIg+7EOPz5JPPcmuf1Vi6CEP8q5OPXHH9attetsKx+YSf4nb\npWVerlGYk4UAL9TWVO/MrmtaUbe6eo/COXRbHT1u5JIzqTTNEe7IpHHHXB9f/r17JJfWFjZT6pcO\nEhij8yaUjnA6D/Ae9fHaD58jI+laf9oXt35VvcXtzNCn3UllLBR3wCeOlbuF3e5yKxu+Ndfn8Ya/\nPflfLjUbIIj/AApkkAn15z9Sa4xuGI9K2LeQlifU5qtqNsAfPQYyfmx/Ot3Gy0Lkr6lEAHrTsHHq\nKQe4p4AqDMjZcDNIp5FSlD2PHoaixtagZq6Bf/2drMMxBZGJRgG25B469ucH8KveMLXydQimEqSi\nSPh0+6QCRx7cHHsOg6VL4N0Gy8QT3sF00qyRRLLD5coQyHzFUxDKnLuG2ryPmx16Vpaxp0VxpsL3\nvnQSPHH5bFRtjZijLvwuWHlsTwM5I7DFBPW5g+FNObUtciRSo2gkFjgZ7ZJ6ev4Vo+O73ztbNou4\nJajygrOGK44xkccAY4/M9Td0jTV0a0upJZIZchZFkG4I6Fdy/eAPIORxn2rcXwXoljr7HxJdyL++\nhd4Z5VtQqmWEOuCWLrskkwyMP9Q31C6gtzysnAphOatX8ccV/cRxLtjWRlVfOWXAz03r8rf7w4PU\nVVA5plC0UuKQ8UAdB4V0BtZ1JHmBWyicea56E9l+p/lXskt5BYosAHbChf8ACuB8JM0vh2K0EgxI\nWdc8YfJ/wFbt8jaho0Rt544LuOQEGTo3Yg+nXP4V5WIk51LPZHq4WnGML9WYfj7RS1qmrxZ7LIvs\neh/M/rXnO3BJ7V6t4d1T+1ItQ8MamYpZV3Krh8h+cYBPfNea6jZS2N/PaTKVeFyhB46d66sM2k6c\nun5HPiop++vT5lIgdq0dI1CSwuAQcxsfmWs/AB56VIoUcg10ySaszkg2ndHptqkN9Crqc5GafLYI\nMgA8VieFZ2kt8bj8hwK6TMjyBdteXNOMmj04WnG55rqtgyXc7oPlDnPtWUwwcV6LqFlbxWd3JMOS\nOAe5yP8AA1zmiaZFqN9JDKuBIh2gDkfT6V206y5bvocdWi+b1OcpVxU13bPaXUkD4yjEZHQ+4qCu\nhO+pztWdmPwBTetKpB6087R0FBIw8CtPw/bfatagBGUjPmNxxxz/ADwKyicmup8HxBTd3JzwoQfj\nyf5ClN2izHEz5KUmdDdTZ2uT907Wz+VVDyWGemDTrnhjuxskGNw6Z7Gq8cm6P5uHHysK5kjwVHS6\nNKIlLI8/e4qaFNkI7VWRwURcjip3cKozxUMwaexHMxKEDvWdOh5PerjXAOcDrUT5kB4qloaQvEyH\nTHQc1I19dNGIfMOwccdfzqWRRuxUZjHarO+FaUVo9yBY+eanjQZ9KesdSqmO1FzKU7ihAcU5kwKe\ni460S4AoMb6mpoMySTpGwAMYI47iuhgnB15rf7y+SGB44Of8/lXHaIS+pMc4BQjP5VanvTaalNKk\njCRU2BicADrXLUh77SPrcBW5sMnLpp9x6XqEa4FyHIWRI3OOvB2n8yKz/FNosl+8kpZGkRZF2Dfk\nEdiSM/41y1pq9zeaZbxyzZikmdGfPO1djDH4k1v+JIZtT8LWmqWMhiks38lgOQY+APwB/wDQq6aE\nJ1Iy95r/AIHyPIr4uHt40+d6uS0tZduhn6fPBaXCSRzzblORmID/ANmr2DQtcn1XTgyQQNtGGMk5\nU/XAU/zr53+1ajatumtS47tGf6Gu98CePtG0x5odVeeEOBtJjJA9Qf0rWlBp25n+H+RrKjK91J/h\n/kek+Jml/wCEW1hriC3WBrKYPIs5baNhGQCgBPtkZ9a+WFj0YS8X991/58k/+O19VLrfhrxhp9zp\nFtqUE/2qBkaNchsEdQDjkdfwr5GuojbX0kTAhkcqQfY12+ybpN870a7f5FyoPk+N/h/kejaSsMQa\nBJnmXy45AHG0gOgYHGTjg4PNXJAueFFYenz7dURMZ3Wlvg+n7lK2Xbnmk5udOEnu1/mcuFbcNRDg\n9aZtQdWYf5+tVLm8ZH8mECSdui54Ueregqv/AGbC/wA1wXllPLOWIyfoKyZ1bHTtHebCDp8pyMcM\nn/xVIReBcDTZeDx8yH/2auqKLTSi46DFFh3ZgPql/PK8s+mOu1MKT5ZCgdAOSRyc1gXepnYYmtZ1\nHHO8H3PB9z613UkSujLjqMVxOqQBSUIwRxxXDWoqOqZ6WGxClpON2vkzMudVVlO22O7LE7iV6/Q1\nzup6izxmNUKF+MBia1pLNjyZX2+maxdTtgm1h/Cecmogve1N604cloJ/eVra3KsrLxnnuK77RpW+\nwxkHPlyKeIwx79/yrmNNCYXHfpgnjnFdNbQrb28ykYUrnLgqfXoPUAfnSqNyugppQs3/AJGqUIEY\nYSKcOmHlCjjP09aSZ4llaT91uCxt91nz0HuPWqkF+hKsUGFkDZSMk4PXqPUVPK5lRFYSECMrhmC4\nIJPTk9qyd07+fpuUuXltps+72ZEN5WdAHAG4YACDgg/1o8kzMgVU5lBbexY4YA9gBU6xIJSq+X8z\nnbjcxw4/AelPCMbcx5KsFBPBBJU4xtX2Pes3a2n+ezNdU9b7+S3RQW3miwoDj5GOBGFPA9cH0ps2\n/wC1ygzOCQx+ebrkZ9qWS3X7akdyxAYYG1CDgk9iPcUl3bxpeTC281oedjeXglSpx1wa1S1f/A7G\nTasr22Xd7Mo3WWt22sgfCgKoBJJxz/4761hXYl4WVcLj0Hc1uSJKACHkA3J96XPY9hmsuUT/ACBU\nVm4OQuck1rHT8OxlNN3+ffuczKTDONwG3PBFeny61DcwRGOQMjDcCDXnN7J5p2SjY46Dpis8XUtu\npVHdT2weBWzp85jGr7O6PV01WHo2fzqzFqMDH749q8rg1uZRib5h6jrWra6jHOuUlIPoaxlh7Gir\npnpkd/E2AHFVtQ0iw1dcyqu/sw61xkd3Ihysgq3HrF0hABqFTlF3TKc4yVmJeeC54mJt5A46jisu\nXRr21OWjJHtXVWuvS5AYZxTrvxXptrEftZBcf8s0GW/+t+Naxq1NrXMZUae97HCXrvBC2UO4DuOl\nQeGYln1oKx3Bra4Dj2MLj+tRa7r8mrTYjhW3tx91F6n6nvUWgXT2urRyRyNG+1grKcEZFdE4uUGt\nmzgrU+aEoxe5saRcxrA9tKoXexKn39P0q4JZYWwASBVK71zVor0xHVb1Uk5VjcPx7da0bfX9SMGy\nS/uDIOM+c3P60q+GrTXtYJNdVd/5GtGvWtytRT9X/kWodctgAJlVSOuRW1Fr1gbJzGwJUbjg5A+t\ncy2qapu3vql0q9f+Phv8ahufEWpNGqwX92I1OWkEzZJ9M5rnoYSpVmlBL73/AJG88RiIwd1H73/k\nURJHqmoXv2kErJC7qSfukDK9/Ss23TPhm/wf+Xy3/wDQJ6ut4m1ONSE1a+kYg5JuHwOO3NZV1q2o\n30Yiu7+6uIw24LNMzgH1wT15NehioycoxVrK2zfT5HmuNabXNbdPr0foVmQgdKYw4FSq2KVkDj0N\nSdJACakU1F0NOBoGTg0uaiDcUu6gQ/PpV3S1LXyELGxB48w/Lnpk1ng1LBL5cmTyCMEe1Fk9GNNp\n3W57rbeCdLnuI7JdTju5XGZWgnLYAxu4PGOQOB36CvUdMs0sbaO1tSkdvGAqRxoNoFcH8P8AS203\nw3aSSxjzpkVnHIIXHyg5746+5Nd7aycijToiKcZpe/Jt+bb/ADNdAwAJTp3GP6U5kDj5WKt6j/Cm\nRTKFGc/lmrCsknKkE1rHY1tciBdlKHCyY4PY+9MtLhbpGG0LKh2umc4P+FTshI44I5BqpNGkV0tx\ntGH4bNWhPTcxfFHhKDWkNzBGq3qDrjAkHoff0P8AkcTaaAsMv7yIpIpwVIwQfevR7zSlM32mAbXx\nhh2PvWfdXJNu6XKEuikrxk5HOBWNaip6oqnV5NGeKX11LafEywug2zy7nycjpjOyvo1cTQIWGcqD\nXgN1YXN/q19dCBGt45ldbjYGCbsnkdCM+vrXr3gzVJdR0fy7ht09vhWY8FxzhvTtj6gnvSpdwbte\nLNtES4hlhdd0RBQhu4PBFeZeNfDNtoEC6haSyeSZAjRyfMFJyRj24I/LrmvUY12zuR0bmo76wttT\nsZbS7iEsEq7XU962snoyHG6utz5ntpBN4ljYDqpIHXFd/ZkPjjmuKuNKXRfHWqWSCRY7dykYl+9t\nJBB49Rj866q0lcRBo1HHrXh46LVW3Y9DCNezNK5Xama8Z+Ilz5uuRQhsiOLJHoSf/rCvUL7xFp9r\naObq7hikXgxlsv8A98jn9K8W12dtU1m5u1wEdvkB/ujgfyrXCQafMZYmXQyQcU5cghgcEHINDROv\nUVJZ28l5dw2sWzzJpFjXewVck4GSeAPc8V6ByehbvL6e5MZlfcQuc1UJFXdSRnvcFrfEcccWbdAq\nnagXPHUnGSe5yec5qt5aqPU+9SkkrIcpSm+aTuyuWzXd6dpA1Q+FmlTdBBpjyOCOCftlxgfn+gNc\nxouiTazqK28Rwg5kc/wivWryGHRND0i0tV+RLVgCTz/rpT/MmuHGVuWcIx31/wDSWbUad9Xsdjoc\n1qbFLcPF5q8qhILEMST+OT+VUfCgN0lxe4+e5neVkU4IycHH61T0GyOqaMHkQGVQRuAAJG48iq2h\n2M9lLdQW1xLa/Z7mSKOVG4yCfvDPuc4/Ku6jFJOz1OWo9dUaPi22hl0ZZLaFzNNiCJdvLFjgAkd+\npGeprO0q1kbV9QnuMbI4YoYy2PlO1Sw+uCvNaPiG7v00IrLPG6lkieYYAALAbg3r7Hms034juZXZ\nBu34PnKQCdq88dxjH+RWrvyX6md1e3Q3/D8ccurydWMd3twBnBV8Z/QVF41t/MsdSBhGRJvjyc5O\n4ZP5E1m+Gb+9tNdia7jAt7+8DRvGuBuZgCCOo56fTv1rqLhopNYuyMDy5W+VycMe546fWvOq3jmC\nv/J/7eaxt7N27mElwTaWbOxBnvLYBMYx86kj16ZotjHaaneXEXLLqUozvx8tZWrfaJtbtYUYwwC6\njkVUPOeM8j3zinjw95d7cJO0mLi6d4SsgIIJO0/p/nmu9RV5a7md1ZGt4jntEv7C+kuVhjhWR5Fd\njhgygccVNo+tWs00Zs7qSS3cFd4Py5yDgdwfY4/UVyer6e00LFrqUXFsMxNI2doJ5Hp6fpWdpxGo\n2U81gn2K+H7qRAAI39Dj+HB59OD15pOPuLmKT952OwlYR+LZ1zNPJIsfCqcpgAHPvke/UUnjAW8G\nlyzTGOOfO9VMwDhtuDgbucgkHGevtWPZw3WlW8dul1LJNMo8yaP5ZNx/hznPHIz9eOuX3GgW9hZh\nGUi5lmWZpGJO87skA/z/AM4JNJK72EtWaXhu+m1REktyLayhAVAo+cLjbgY6dhxjHvWhNpUNlrFh\nqaLuDP8AZ5txB4b7p/PJz7CqXhO3t7WG6tLd1ZJJeS5PyEgcAfXFdJqEE0ugzyxMXuQiyBsDAKMG\nOB/wE/jVRq8s1bqLlck7mjrllBqfhm+sZgHW5g+Y7d3lqeCwHcqPmA7kV8iXttLZXk1tPG0c0TlH\nRhgqwOCD75r660jxDa3FisyOoUgEqgzt6jH1Bz19K+aPiJZpZeN9QjihmijZg4877zkgbn/4E2T+\nNXK+tyoaHLq2GBrpPCbBtWuPX+zr7/0kmrmu9b3hFj/a9x7abf8A/pJNXHif4MvT/I0W5n2lybW7\nz/A42NUUJxOmPVaikYt1FSQEtPCR3YD8c1uI2vE1y82orDIMGNT1UDnvwOM5HasRs7s1PqszS6g7\nM24g4z69/wCtVg+QPpQgH7uMEZFROVwcCnM3H4UwAyMFUck4AoAaCR0p8C75MfjRNby277Jo3jYd\nmGKfbYySf1OKEND/APVSg9s81DINsrCppsY75pk3JR/VRTY2QVttDHbaQsdwha6YLKmD/q425Gfr\nkEf7wqhpdvFc3yLOSLdQZJiDg7FGWAJ7kDA9yK1NcuC/iAzTqiC6tYGlCDCjfCjZAHoTnHtUPV2B\nEunNHIqxl1Jx0zyar68sUItokPzHLN174/wNO0a2WK5uHnbYy4QZOOT1/LFUdWlE+oSFWLKmFBPt\n/wDXzURgotjlUctOxWQADNSQt8zn0Rv5VXViARUkTHcw7spH6VqiSe3mwRnP4VfcGWBgVIyO9UbB\nGIJx16NitHyJCvyylv8AZato7GkdUQ6LodzrUzRwmNNpwxkOMV29j8JZbjb52rRx5/uQl/8A2YVx\n2kXU2m6zuViocYINev6LrJmt13NhvrXm4mpUpvQ1pUYz3McfBa2ZcDxA6t72YP8A7PXnni/wjd+F\nb+OKaVJoZQTFKgIzjsQeh5HqPc177FqAZhlx0yOetc94102LWNKHnIriKRZSCSOAfm6f7O79Kyo4\nqUpJSNJ4aKi2jwiC/u7a2mt4LqaKCfHnRpIVWTByNwHBwemelb6TXUujx3st/dSvNOz+axOUmUgt\n82ck4ZGz6v7VQj022nMpM6xoikocj5/kdh1PXcoXHq35vmtDdausVlGGlluCiIjAKxZ8AAdB1Feo\n6btc872ibsdLoMX2uK5nd2J0+0lAk3EgMsErRZORwGjUDqM7VwQcVxmoaldanOsty6HYuxEjjWNE\nXJOFRQFUZJOABySepNaFhpkN5N5L+cUBVmeNdzLkZPygZYDgYHTr7UoTT4Ikd4o1kR9skZfJIOTk\nBhwRwOjfpy1Se7YvarZGGTxzSKpOSM1szXtk1k8SrbB1h2IUg5ZsrySfYHkAcn8a7z4TaRZ3FhdX\nl1bxSsZti+YgbAAHr9ayqtU1fc1ppzdrHlZRqaVxX07daXo7RY/smwJ7k2yH+lcT4k0HRWt5GTT7\nWJscGOMJ/KuVYyN7WOn6rO17nGeFtRt7Tw9crLKqyrL5kQzzkAcfiM1ka3rz31w4iMiITkjdgZ78\nVlXkKR3DJF0B4qsOvXFaxox5ufuS60lDkRPHIVIZXIYHIYHBqS4uZ7mZpriZ5pG+87sWY/Umq24/\n3xSh29Qa1sYXYPyKYD09KVuvTFN70wOk0CeW0ukZOI5AM5+v/wCuvQ4VZJPmrmfBulm+aG7LAJEN\nm0D+If8A1sV3osvm+Yjjgdjj/P8Anqa8rEyXOephXaN2Yes6K+pWTRxnEh+6ew4rk9KsLi11FrW9\nsZHw/RU3L6dTxXqsKICFJA9qLqGG0imvZyqRRqXdvQCsY1nFOJdSKk00eS+Pba2t7+3hhVVlWLdJ\nt7Z6D8v5iuOra1jUJNW1W5vZODK+QP7q9APwGKypY8HI6V61GLjBRe55lWSlNtEVKDSUVqZjtvvX\nb+GoDFoisMbpJGcA/l/Q1w4OK9H0qJDo9p9mYOREpZO4OMn9TWVZ+6efmMrUku7Ekjwnfyz/AAkd\nP8KyrhPKlVx06Z9q1LmYDcEyn95DzWVcuGRlzWMTzaV7lwXsMcZ2/O4FNVpJeXY89qyrTMny56tz\n+FbkahF96bVh1YKnohVjJwoouJRCmxeWpJLgIpC8tVMsA25uWqUjKMW3diYx8zHLGhRkZ4oUGQlz\n0HanJyc1RqxQtSBSBmjj0pw5oM2xBxniopG3DFPbI9qZgE8mga7jrGZbWcvIpZCu0gHB6/8A1qpX\n10bq4ZU+6Tk07UZhFbEqeSQo+pqjaq5XC5JPU1pBJandCc3Ss3omdBBI0ejWkcQ+ZriYf+OxV6Z4\nangudJ/snYcPCUMjdNx749j/ACrzi2iKaNbYzn7RKST/ALsddb4ZmME6NnAz71eFdm/V/meDi5W9\n+O6bf4kSw7GKSL8ynBB9qsJbW5YE28bH3Gc1e1eALq9yAc7mEn/fQDf1qtbgpMMjjPWpcbSaPsKV\nT2lOM+6udf4Lt7aaR7qK3ijntlYm3RNr5xwQT1BGR+NfNWo3D3OpXM8n+sklZm+pNfWHhtVGnSXQ\n+aRUbnOB0yP5V8pzWUslxI3qxr0oQvRdvL9RRaUG/P8AQ34pQuu23zYP2W26/wDXBK05L+a4ytqB\ns6GYjKj/AHfU/pWDq9qsFxHMWO/7LboB/wBsUBqgdQvAABdSgDsHIrii2qUE+3+ZjhV+7TX9bnZW\n0SwxnHUnLMeWY+pNSbj6VxA1C8xxdzD/ALaGj+0L3/n8n/7+Glc6OU9/yO5ppK81IVGM/wBKYQM+\ntWSNJGOlcv4hg2Sb1HD8jiuo21R1mCOXTJmbCmNdwP4gf1rOpHmjYunPklc4JiG69fSsnUofMhYY\nrYkXDkZxVS4jDocCuG9mek9UYWlyOu8Mx2jg8iuxs7qTyWjKyAhhhw3Xr1/AVzFjGkd+YWyGkYMv\ny7v89q6u2sYjEu4RgOc4cFSOw9P71E372xUfg3I3gYSMGQY3bBubccHkdMCkiuXt9juCvzZO6PIx\n36n6fnVrfsieQyoFwAojmVehJ+vQYo/cSyuVaLbvDkKu87W6+vqO9ZJbJr8Pu3NW9W7/AI/J7FmC\n9W5CeXId/lkEeYFGQc9BjsBVt5YIpGfI2Eh+PlUq3XnqeorFXThJhFJ3ncoy+PmHI4GT6iq0lpHH\nnzroRlcAqTg+4wcn9KVk7O/y/wCGG9LpLyv+T1NeSNZ1zBIvnQsVDIpwe+CSeh57dhURu4zEspI+\nTkMWVc8+mPcfrWPcalZxjybSOV3YhBPIPmJzxxn6fhUQto1WHLkbj8xPGz8s+1EYLTX8hubs9Pz+\nZqS6jZg4/dlcYwMHByehA/EVj3073UfyyNGqjjacdge56U28vbeyXylj33OOAoJ5B4JJPAx7dhWe\nVnvWDTFRjhVUbQO9dlKlfVbHFWrKOktzMvLcGBtm936jAz+tY0gmUjzEdf8AeGK7SOzCr2pJLYbP\nmUEemOtdappHDKo27nGAqeAeferEEgjjPPOeK0LzT4csVj8tiOMdPyrLWKSPjHI7VLjYalcuxXMy\n87zVldRmXvWYC2cbT+VSqHxk8D3pNJlcz6GhNrU4hKI20sMEisZ3LHrmiRiTUec8U1FLYTbluIaf\nay+TcxyZ+63P0qP1pvemB0mrW/2ix81R80fzfh3rKs71xKqyL5id/XFa2mXH2iwCnB2/KwP+fSqE\ndiYTOcjG7aCew9f1rownO6iUWQ7Lc1LmAt5OMskoB56jIGRUz2/lxvbhTsBIb6j1pxLGxgYDLLjH\nuO1PSVppLoEg5YtgejV9RSpQitFuc0pNnJTRGHcG4O7bj6VXrX1i2kUK4UhQMt+PesevlsRSdKo4\ns6oSurjwanSokFSgVgMhmGJPrUealn++PpUVAxwJoBpKUcUAOFbng/T31PxXp9qrFQZQzlSQdq8n\nkdMgEfjWF3r1b4R6ITBe6247/Z4SPbDMf1X8jSew13PXYt3lHBIIbpWjay7SM9azUkXCsOBID17E\nGrUW9MMoJpoR0drLuX5SPcVdARwDgZrFtp4pAMs8b/StWAyYwWWRf72ea0iNFgemahuIvOgdO/ap\nscUhOAdxqymtLENq/m2qMeoGDWdqViLh49o2hmwzDtVuwYYlUdAxxVh1y2OzfoaaM5K6ueZaNcWu\nj+KtV0C5hRbK6k8lcDiLP3O3AIKjnvg+uG+H7g6B4jZJrmMYmazkgQ/dXOA3/fWOfQHr2l+I2lrb\n7NWkt3kgdWjmMeQUO4lW4B6hiuT7DIBNcJBdSXEEkV6uZyhkMuRkSAc8nnLDaDyOfXFD0+ZCe3ke\n9WN0801xHLJEzRsBhQQVBH/6/wAjV5W3D2rzXwnq02q6tLdFyInUPKM9Xx09OpavR4X3qCCPpXPQ\nqc6d+534qkqc0k90np6Hl3xO0iG31iz1SGFxLdDy55P4Ts+7+OCfwUelY9kw8nHavTvGWiNrfh6S\nCIqJ4mE0W4kDI69M9ifxxXkNtchc45NcWYQ1U0VhXa8TifH1p9n15Z16Txhj9Rx/hXIu5PFei+Or\nKS60qG7CHdC3OOyn/Irzd/vVphpc1JeRhXVqjEY/LUavxn1p0h+Q1HGOK6DEmzRyxA7noBQB0rrP\nBnh6XUL9L6VCtvCcqSMbm9vpUVJqEeZlQi5OyOo8MaMNH0v58faJPnlPp6L+H880eLLwraaSE6G0\nY/8AkeUf0rYvUaNNkfC965vxg/lado6A4Bs269f9fLXjXc60G+rf5HdK0Y2R3fh5o4tFsHjdY5DD\nG7E9OYwTn8TUvh+8sm1nUEeW3jnNyZWjLqVIYZG0k8/SuV8PXGmx6ZCXlZ53SMgBwMjylBHXscjG\nKvaPOn9uahM2lO0chGwsSBwCOOOa9mlaLab6HnTTeyPQI/sJ8zfJZp+8YMpZRkEj36V51fwzy6Vp\nWo/alMTzfZZct6M5XH4Ag/h7121vdwbZf+JQX/e7hmUsBwOxWuE10QQeCbOCe1a3mW8O6N0wSD5h\nz6+natoJckiJJ3Wh3dncWyXmnQyLEk29Bsz0G4bSAOcZAA6dfaubuoLhvFWoSaXdKYzdyCaKY/KH\n3HOMcj8vzxWJ4OW2XXdPgikCxG7SZUJ+bdkDA9Rx+v41o+I7KW38Qahd2U32e5aeTO37rgsT8w/z\n6+9edHXHcqf/AC7/APby3ZQv5/oRyB7LX0LTCRllWXd97pjt25U1oyQSWms6lD5r747lLkBQoDbh\nu7f4VxMN9qF5q+TEiskT/vOdjBQeR/31XWW9te3fiHUjLcOpIhXMRwCdvqDivQjCV3fsZSaSLtzA\nLudZcs8GN7Ip5Pv9Bz+dVL3Tgl/BeWeFkyFni7PHxnP4dPpVNNSl0HVfslxduqSJlGlb7pz6+/v6\nVNqeowraSJHJwwIBH3wx9Kyg2nyvYuSvqhb2a8mVra2mFu1v+8SaNeQcFdrH3DH8sVw+u6/qsDxx\nSzSiaN1Yq7blbB6gGt+11V7OFrW8QiVfm81TlJO2c9jzxXJ+IkL7JWV9zPlt38I5wP8AH/61U7bS\nQ0mtnodxpOqtaav/AKIrzG7iEis3CeYB8x9+5/EV6BZwzPbbdTvFC8uqIRsIzyMcDIPpzzXkfhy5\nmnsILGUmE20olSQrlsc8c9uv5V2lvNF8ryFpZBgB5TuP+A/CsateNNWe5tSw8qjutjS0Z7bRdQu7\naxspLq0B82CQD5Tnqm5uOPpnrzzXmnxgukvNTspXszBPsIDgZ3rn+I5PzA/z616nBdb1wDXnfxWt\nhLpdtc4yYpsfgw5/UCop46VWaTRvPBRpQclueS4zx3rb8Jcaxcf9g2//APSSasPNdD4R2yatcA8M\nNNv/AMf9ElrTFfwZen+RyrcwM5XFKmQQPyoaMqfWpbMQm9hW6aRbcyKJGjXcwXPJUEjJx0GRW5I2\nUZdjnOeaixtNa2t6fNYaxc28tstswfcIkfeqqeV2tk7lwRg5ORg5NUCgK80AQk/LU9nHuuYvZgai\nC5OBzVzT8C69gKUtENbna6lLE2kMHVXAXgMM81xMESlmY4xnpWzqd0TbLED17VmW42D7uazw8bG9\nSzYMi7SFX8DVGQYjAIwVYitRyuMHP5VQlj864WJSBuIyT0Hufauma0M5IfC/2XSZsHEl2fL4P/LN\nSCcj0LbcH/YNP1dppjZ3Use1ZrSIR47rGPKz+cZqs5a8uRHBGzAYSJFGTjtwO56n3JrRu7C5i0ON\nri2nilt5ShMoK5RhlQoPYMHJP+2Kys9yLrYal7/xL/Ob5XUBAFUYYgAZ/ID6nNZ0CiedEJI3MAa6\nKD7Bd+HEtUUiRY8q0mOJM9ueASQOeMEntWBayCKclvkIBAPoaF2Fe2p0PiHwff6QLTzbdonmAAUp\njt/TI5OK19G8BWssYkvbmbf1xFhQPbkHP6UsGsXOpzW8l9PNcSpGP9a5baccnknrj/8AVXQW95sX\ndu4xwK1hFJHMp1Gveevy/Q4/WvBsmjo91bSm4tVJJRh86j146j34+lZSBQgaNSPXHUfhXeatrEcd\ns4Zwx2/d9a4Nm/dp5eEOAR6Z9DVo6qLbWo26bdD5oHzxnOa6zw5qXmCM7u361ykrCS3l6btpBHvi\noNEv2tpwmeM8VyYunzo6ac+WSPabOcMyk59quSOfKKupww6kcGuX0LV4pEClhv6c10r3DzRhYxuy\nOmM14tnCWp6N+ZaHhWpy3dhql3aJd3GyKVlXMh5APFW/CqLqvizSrHULqYWk91GkvznJUsOB7noK\n3vFOkXCeJluks5JEmCk7EyAwGO30BqfUdLlmupml0YRyAL/qYmQIRwGAH+6fY8969qFTmimjx6sO\nWbTRwl9N5t7OyySuhc7TI2WIzxk+tVq7CPSRc3CWqWxkkztVFjG4n8sk0ms6AmnWMjy27RSKOjAD\n6cYq+boTe5yFe5/DZBB4TtQRgvucn1yx/pivDSK9z8JMYtA05B1MCHH4VzYt2gjowy986a+uEVcE\nkZGPYVwXiK+It5cNzgjANdRqbyiE7umPSvPfEdxmNgDXnU1eZ6UnaNzjxFvd3PbjPvVCVdrkVrwP\nE1oyA/MSTmsiVj5rZ65xXtpWR4jd5MQJx0pwQd6ZktxTsjoooGK0Zxwc02MfvBT+e9CjDZoEd54G\n8T2WirLZ6krC3kfekyLnYcAHcOuMAdPyOa9JtrzTNXizYXsFxlSxVG+YD1K/eH4ivAFZh0NSJcSR\nuroxVgcgg4IPtXJVw0ajvfU6KddwVj3KG4KaoLSQZb7wb1Hb8eP/ANVcv8TfEKny9DtW4AElyQep\n/hX+p/D0rlLXxnqMbxvcymaSIYVj1b03Hqep56+uawLm9lubh5pGLySMWZj1JNY0cI41OaXQ1niE\n4WjuIevNNYZpA3qaC1d5xlV12tim1NLgioaoBQK7pLcx2lsyO0cixKMjjPArhK9BR/8AQ4jnOUHf\n2rKr0PPzBtKNipNcXTDErLKB3defzHNUZZ+T5kRGem1uB+dXJm9c/lVCUlflP3e3tWaOSkr9B+ny\nRpK+fXjNaMl4m3C1zayOtztHQ1eG5IyxpuJpVormuy20rseAc09I3Y/NkD3qpDcyL0Qn8Kvw3bMQ\nNhz6YpGM4yjsid12QADvSRIcdKW4yAin7x5NTpFhOpFTc527IiK7RyfzqMNT5W5x2qu7FVP6U0OK\nuSvyvBzUQJA65qNLjBwehpZSAMg07Gii1oZepyb5Yo8+rYqxZTSwrtUJg+o6VTu8NfR+y/1q3GMd\nq0OySXs1E6WKWRtGtyzAnz5fugf3Y629DmjW4jG5txPXHSuehc/2Pa4jyftE3f8A2Y62tImIk27V\nBPUmpw71fq/zPBxEfcl6s6/VUP8AaCOQMyRK2c+2P6VSUFWzxx2PetC9DNPakDP7rbg/U/41ErNE\nzcRqD1G4fyNdE4++z6LLp82Ep+h1mhzrHpF7IGVSIHY88cKa+cp7+IO2zAOex4r3g3i2fhbXGcqS\nLGYgjgZKED8yRXzsNOeYliBFnock13UpSVN8vdHR7vJ73f8AQ6XVLV7mSCU8qbaAj/v0lZbWYXqt\ndZZQTSkW80fyxW1uEkA4b9ymf1zRPpoycD9K4IRbhG/b/Myws17KK/rqcj9kTutM+yJ6V0M+nMvI\nWqv2NwfuGjlOnmPWoLu3uVDQ3EcgPTawNSFsemK8KW5vLNwyM6EfxIa3LHx1qMGEncTL/wBNBz+d\nTdmnLF7M9YLLjrWR4lkZfD9wVI+Zlj6+v/6qyNO8Z2F7tSZvIc+vK/nWhrMiSW2nKjq8c92gJBzk\nAj/E1UZESg1YzPEOnrbus8KYRuGwOFNc+cNXoNzCJ7aSNyvzLwW6Z7VxV5ZNa3LJkEA4ytclWOt0\nduHk2rMwdTiZVWaIYkQ5FWtAvr68IjiaV3X+Fecen8hV17cyo21C2B2qHSdTk0SCW3urMyRtJmMq\nPmGeoyOprG/NGy3OqK5ZeTNxrBZEzcylCT9zf8wzyOCB9ep60wWdpG4DRTsGCjExYKCTkY29q2rc\nNcWqyywPAgG5UlUNnI5wBnB6D6fSnKxDcojbjyysEIwOTtJxwDgDHrWd0nYtp2v/AJr+rIxZZg8U\ngKqkb7nZEwQegGR7ZPaqEsNhEpDSQISUX52K44yf1xXQ3Pkxw4eIISoZlI2NjsoI7nP6+1ee+J7i\nNIkjRVV2ctgcnHuTzn/63vTpw5ny7f1qTVq8q5t+v6IvzXtrcXUEdruuJfMLbUbI6+neumt9OzCG\nnkUSj7qxjbsOBxz16dQTzXn+l6bc6rbl5HVI844AXt/Lj6Vr3WnwaBAWkuzGxUMIQxBkBXpjg4J7\n4I96qcLy5U9RQmlC7Wn9blO+kgOoyRW58xIsp5g53nJOR9Sas2iDeQT+87+i+1Y+nxyzsx3EMx3O\n47Z9Pf8AlWwJ4rcCGEF2XgqvY+5r16cOWKR41STcrmhGoPGKc0YIOQDjrVWK4fblgqk9gelPe5AG\nMiiSIK9xbKc8AisW8seDtOPStaW6Vm696ikYPzxUblbHMSW80fOTj1zUY3ZJLE/Wte7QuDEkkfI5\nBPNY5UxgqeueaTVi07jGPNNPFLSMKRQ0Hmk70lL2FAzQ0m58mdoycK4/UVflkLQO68Ag9ayLWIuX\nYHBA4rYZF+xhtwChcY/xr08vp7zMqjLti7XMaKFJIwAfTkVHd4F2WhYluPwOOas6XMFVAcDCAkj8\nD/SmmDzr+RIjjjIP4CvoI60kYN2kU9WV5tPEzMM7QrD0x/8AqrmwOa6PVcx2bg9WPI/GueUV8/mn\n8VehtR2JF4p4NMHFPFeYakM33/wqOny/fplAxwWtzwkEGuM7wwy+VY3sypPEsib0tpWUlWBBwwB5\nHasHmt3wmT/bFx/2DNQ/9JJqwxX8GXp/kOO47/hK9RP/AC7aN/4JbP8A+NV7n8PLya58FWshSzW4\ncvKVitIolb5yv3UUDoMZxXzeOTX0FomnPZ+EbC2UtFNbRKTg8qWGW/8AHs1Lw1HT3V/XzGpOzOvk\nu5RGzBEUddr26fKfrjmrFjqEs0Y2tGp9PLUfyFYFpqcwHk3ABIHO4Zz9KtWE6i8Bj+RXP3RTWGof\nyr+vmF33Owtd7kFwhPqFptx4h020k8oSNPMvBEJyF+pzjqOQMkelcLqnio6jPJp9jKyWcRMcsiHB\nmI6gHsv8/p1qwOIwAoAAGBiueu6EHaMFf+vM6KVFy1kz0ODxB5wybbb7eeT/AErSjuI7iIuu9fZi\nf09a85ttSAcrnp71vQ6oYBatn70Zz9N7CuRVoqcY8kde6fa/RmtShpodPagDduOOfpVn93/f/wDH\n6q2U0csIeNgVarma9T6o3qlD7pf/ACRxc1tGZ2pwpcaXLCyLKWT7hAcZ+hyDXkV0niy11d7aHSPM\nVSQs0elRbCuOudnoeRmvYtRv7OzhP2uZIww4UnJP0A5NeceKbPRfEkUcLwyqyHKyqwVx6gdeD71M\n8MkveUPul/8AJEO97q4nhe61W206++2aLcpNHOhiVNOEAcMrZxtXkAjkn1Hc4rRGtXs0hSeVkwSD\nEMqB7Ef41zNj4R0ux0m4S0urtd11BIzSsr8qsoAwAv8AeP6Vq6jFLFq945G5Gncgrzj5jXmwlVhU\nnTVrXb0v/d7t9ztoyjJLm38zbiv5YRugco3oOh+o715myfYtYu7Uo8aI5Me85JTPynPfj9a6x74x\nKADzWPqwGpRqCAsqfccdR7fStXUco8sjdwSfMieIwT27RzIskTDa6nuDXBX3w3u3unNld232cnMf\nmlgwHocKRWvBfTW8xilG2QHGD3q+mpyk5jyw7qOo9acJTpfCKcYVErnn+o+BNdsYDIIEuVHB+ztv\nYf8AAcZ/Sua8tovldSrDqCMGvYNXluT5N3ZzbAx2urdPY1S8uDWJoo9T0eKZkGPN8zbgfgQTXTDE\nS+0jGWFT+F/ecV4b8M3viC7HlQv9mRsSzY+Ue2fWvaLTS4tPso4VCxRxrgBa8/vZD4J1eO90iVza\nyr80Tncue6n+YPX+ur4k8Yx29skqTofNUPGqckg8iorRdVp9OgU0qaae/U0NZ1C3tkceZyB61wnj\nXUxJY6FsOS9i5/8AJmcf0rnNS168v5GJcop7A81aGsaLdaZpttqWlahLNYwNAJbfUEiV1MskmSrQ\nuQcyEde1T9XdOUJ2vZvb09URUqqWiNzwJefuLiFjkiQNk+hH/wBavRrSbODk4rzbwvqfhuLUHjh0\nrVYy69X1ONgcewgHrXpVjd6U6jbaXY+t2p/9p1yYqpJVG+R/h/8AJHZhWnBG7ZyvjHUVyvxNljk0\nSzUttkFxlWxk8Kc/zFdVbXWn7OILgexnB/8AZK5rxedHk+xG6sr+QAvs8u7RfTPWM5rXDV2n8L/D\n/wCSIxS904rwfcW3/CVaMs7EyG+gCkg4z5i4xXR6nLJdeKtWs5LlhE19MGYIc43n5cY59Kx7O+0C\nw12znTRtSMtpKlxEHv0IYqQRkeSD1HrWn4pubpdX1qKxhljc3cylwMg5c5/OtIuUsZzWa9y2tv57\n92ee/hNAQiGWW7VYvLjhaOAR5y5bjp2X7v6/h1XnztrZiKW8MZiS4hdFGZU46ngHkccetefWPiK7\nNgUiFkQwGA4Ktx2HSi41rVZtSsZBEImt4NhZCcMuDjr9a9CCanZmUkuU63x3b6NHFbXd0TLcbgkc\nS8mUHqBjp6g/XrWHBZaZbKr2UGrSsQcFoVOB7ZIxUeom9m0NpBZFriPa32qSQkjBGCvpgH1rodPS\nX7JHc3N+7k4eOKIffGOw9cGipNRot72M6k+ROaRxckt8+r3EawKgUKVFwoGOOuAcHvWTcRpPqcQu\nZycMXYDhc+gH1NdNrepvDrYF3GixMmIY3jR3PsxI47HHv3rNku5nljleC1+zI6gg20ZIyeDnb64r\nODqNp8v4/wDAE51Un7q+/wD4Ay/vYLGS0dlEeNys23HGFIPuOT+tdJplvLPh2GAfuj29ahEKXzxt\nNFbtGp3bHgjOcZx1HuTx/jXSWUXmYJUD3AxXBjKknOyWvr/wD0cHKuqd3BW/xf8A2o+K3MUeSe1c\nf8RCreGJwcfeTH513TxAAk7sD3rgfH+p/YtGcRrCWaRVXzIUkBOc9GBHQGs6Cmpqy/H/AIBtWrV3\nB+4v/Av/ALU8fMdbvhL5dZnPcabf/wDpJNVL+373/nlp/wD4Lrf/AOIrf0yTztRsrgxwpJNoOotJ\n5MSxhiIrpc4UAZwoHTtXdiZy9m1JWun19PI8uNSanGMo2v536X7I5mMCdsD72CcfQVfj0SZp4laQ\nbWAcsgJKj6HGT+NZVvMYLmOQ7sA/MFOCR3GfccV6faW2lLZRXjQzSmNdrhdQhjDDIwVUqXIIx265\n54ruSuXK62NHwn4LsvGuo/2jqM/kw7lEVpC+8GCMFPKyTuDBY1Az/Cc1Yu/AOg21zPi0lMZJKB7j\nJQZ44CgEjjOSa3PhrdO0cp07TERIL8yHYN+I36gM2TkAqOOwYmut1Pwgftk0xvY4LJstvbJZR1xk\nnAH5dBQ01oFrq58v65Yro+r3Vkrb1ikIR+m5f4T+Iwao284imBHfiu/+K/h06bqMV1C3mQECNJRw\nJFIDAjrnBLjOT0Feb4qWik+prNIZ5Mk9KQO7Pt4wPaoLd/lznmnoysxycc1NPR2Nb9S8Incc7ce1\nU47SSXUHhRtjlOGPQA8H9CatC6hj43HPsKFu4fODg4OMHI6it5WaJntod74dtNO0mFPsw3Nj965H\nzMf89q37v7LfW7I6qVIwylcgiuB0/VUQrtPXqK6GLVYhGCzgDtk9fanHQ43HU5+fRrGweWM8QvJu\nUk8DOBjP9f8A69clMhn1Vhty3mkNuPXB5J/rXa6xeWlyHSIs4kHzjGByPfvXOW1rBaNnBZjxuJol\nT966N4RlbUv2r+ScnqeSe5qxPfzMhRCUXHbrVBrry+B0qu96xPWrskaRpRWrHToZDksd3qT1qH7q\nlTTJLwnjAFQecc5pNou6JnGN7D+JDn6ismF/LlV/Q5q3JcbVI9e1at1o3h/TmghvtY1NbmS2guHW\nDTI3RfNiWQAMZ1JwHAzgdK5a9aMGk7u99lcl67G/pBjkCTwHqMnFdzYXJMYGT9K860G+8NafcCP+\n19WdGOAH0uNQPx+0Gu/sJNGBBW/vmz0Js0Gf/IteNiJWfwv/AMBZ6FGpdXLeoWMOo2jwToGRxgg9\nvSuHgsL3RtSkWOGS4WNC+QgOF6Z7+ozXo8R00rj7Vd4/69kH/tSs7W9A0nVrYI13dpKpyki2inb/\nAORB/Opw+LVN2advRlV6SqR03OL/ALPvbWYXMvmQO3zASQyqxHXP3Mdqq+I72W40m8W7dzLGojRX\nz8n7xSQM8jvx7n3q5Dd2FkxhGv8AiGEq2CBYqmCD/wBfHY1W1e20GbSZ7mfWtWYNMiux06NmZm3H\nPM/P3Tk5r1PrEf5Zf+As8vkszz0AswAGSTgCveNMDWtjb7ByI1UZ9hXLeD/CugFhqn23UZ1A/dLN\np6R4P97iY5ruxHpm3m8usen2VeP/ACJXn4zGRk+WKenkzuwtJr32ZmpXrCJy7ZB65ry7X9Q8yV0X\nkDqa9I1UaMUbfqF8owelkh/9qiuA1OHwvhlfV9WDM+fl0uM/+3AqcLUjzXcX9zNsTP3bI5VJSi8G\no3be5bua2vsvhX/oM6z/AOCmL/5Jq3pei+GtW1az02DW9WWa7nSCNpNKjChnYKCcXBOMn0r05YqM\nYuTUrL+6zy1E5nqcCpUwBx09ahq5p0C3eoW8EhIjZwHI7L3rduyuISOKSbPlQySY67FJqJ+CQQVY\ndQa+k/C66YmnJDYW8aRKMfKP51yfxS8LQTaTJqlvAq3Fv8zsq4LL3z64rjhjFKfK1Y6XhZKN7njS\ntkUu73qANinKcnmuw5iVR3PWhkBOTxR0HFMbzCeDQA4uFOFBJphc9zTSCeN2fakKMO1ACFs0gBPS\nnKpZgMEk8Yr1Twb4LhhiS6vY99wRlVIzs/8Ar0yJz5Tz6x0bUZZYZW06drfIZmdGVCvfn0rqRd2y\nxqmyNlAxlNwA+mTz+OK9A1ix8nS7vyx86xEqSMj8q84eCeVwv7tmx90QDP5Bcke9RWilY8/Fe+1z\nCSozDdG5dT3ABx+GM1mzlgcF8qe/TFWbi3kgPIQN2wuz+oqnPJKv3mYe55B/E1ijOnBoqwELfrvI\nKnjIraNk0hUA/J3rHsY0nvHiOAcZBArbiM9vhCCVFOQ8S2pK25ehtURBgDAFK88VvyI9zeuKYz+X\nGDzvbsaZErSNubgelZ+p59usgt43up/OdTgVZn3bdqqfxp3mEcL8qiq88rdOaNxayZA6OOd4qJkZ\njuYj8DSOZWOFiP1FRmG4brux7VokbxXdiSwjsRmqrblPLEipJbeReSSPrVOVig+Z/wA6pHTTV+ty\nN8Nebv8AZxWhGpI7Y7msqFvNuOCSAO1acayzcLGfLHYMOfrzQzSqrWRrWWoKlutsbWCaNXZw0hcE\nEgA42sP7ordsbq3DBTZQR54+9J/8VXNW9u2R+6/8fUf1roNNtpXkCosRzx808YP6mojSi3t+L/zP\nHxVOGv8An/wT0dbG41G1jaAI7RqT5bHDBfbH4/pVGKz8yQo0SBu+5sfzNV21G68O6ppV8CGt1Xy5\nCsgdTk8gkZ7YrttWtLd7iK5hTMVwgdGHTmup0IN9fvf+Z6WW0YvCxv8Am+78zlNZtxZ+G71JlCmU\nJAFLEo2Wzg4weinoRXFq1tZyMDo48sjCsszgr/tYJ+ceoGMYPPp3Xja7h07TtOguCI0nnZs4zgoB\ngj/vusbyrS5s44UvtwVg+JJQV3e8YIVvxFN04xSSv97/AMzu+rU2tV+L/wAzJmW2jD3Mt7PaK6qC\n0EYxwMYOQzcAcnp09aI7axvMCDXJZieQFnQn8gK2JtCgkRVaS0urYgHbIQjxkHgZ9PQ5yOeeTVG5\n8J28pEtvK4OBsWdRcIB9HyfyIraDurLoHJGmlGOiKkmhSA5+3Xgz67P6rVY6NMDxfXH4rH/8TUr6\nHcWjF1023n54+x3Els31252/rUTuiyMptvEikHorMwH0IY5/Om0O/mcAt0SME1DKVPI4qkt0O9P8\n4MODXJY6SZC275Wwa3tNvdQt9kiq8kcLCTHJAwetc4HxV+y1WSFgjMdp7+lDVyk2j1rR9Zh1i3LR\nSbZdpDRk4I/Efzpmq6TBa2cab0SVnHB7k/XB/T8a85jvLmxvEvbZtjDklRxWjfajPql9BfKxcs6h\nQekeMcfnzWU4PmOilOKR1TWyWltiZgFHc9W+grCvrszgrHGqRjozAcf4VeuEluZPMmJLkZOTwP8A\nH6VWntFIwcN6bug/DpW8MJCGstWYVcbOWkdEb/hrWIdR0/yoyqXNvkuRv6Z+8Mdh0+pq80khG8DM\neNxBO8BewJ6jJ/H864G0Z7XXLaRN7ZkCt83LKTgiusuZ5V3kuSyDLhiA248AA9wPT615+Jp8k7x6\n/PX/AIB34aqqkLvfr0/q5Q1m8S3ileVwMDL7CSrMegweRgZ/E159Mkmo3bzyE4JwATnA6AfgK1tW\nun1G5KrJuhVstIeN7dzVYuIRtUdBXXhqPJG7OLFVueX9f1oSreXVhYfZorkxp95duAe/fqDzWBKy\n+YSMkk8Z7n1qxeysykk8Cs9XKTK+c45+lbcsYvRGPPKduZ7G0Lj7NElrG2JH5dh1Uf41fidREFiU\nBQO1czDMxuAxYDJ5JrdnuIokWONgc4+UcEmtYyM5RJJb0IVjTLMeOKgm1Le/lJzt6t6ms+4mMJYc\nGYjBxztHp9ahiIjTzG6noKmUrjSL4uDnrUjXmUIrL83vQshLVNyrBeSHcJBw+fvA81Cx4HOabIfM\nuOuRnignJIpMaVkJQelFI1IZHS9qSl7UDLdmzfMq9TjpWtcITaImDwM8VmaUm+9VSPetq8EiRBmw\nilOCepr3cvX7lswqboXTCPMiV1PQAjHUYqRZdmtPMmdh6D6jGKmh2qICRgonGO/FSXkUMep3DZVV\nJBAXkKpAP9a9OPwJMyb94wdeufPuMAYXsKyVWrWonN1gdMVXAr5rHTc68jopq0UOAxS0lOQZYAnA\nJ5NchZbk0S7aCOeNN4dd2B1FZjo0bbXUqR2Irura/ikiRFxgDAp13pttfoDKuOwYDmuWNdp2kjpl\nQ0vE4LNbnhM/8Ti4/wCwZqH/AKSTUzU/D01khmiJlh78cipfCSf8TqcHjOm346f9Ok1PESUqEmu3\n+RjZqVmZ2jWJ1PWrGxDFftE6RFgOgJAJr6KM5srpiy+bAw2SLjkEdxXzxYytp+oW93BJiWCRZFOO\nMg5FfQtteWurNwRHckfPE3AbHda2luLdaBcW3lqs0J823b7rDtVaOZ1ZXjfBB79q0FimsJCRuMTH\n5lPSmy21tcsSh8uT0oEcXa6bdaPvBZZIM5BU8j6iti3uldOtXp9OK8MCvuBkGsS6sZbMmSE7l7qK\n5a9Dm95HVRr292RrRupJGevvWncy7LewIOf3B/8ARj1ycF8WHB5rZuLkva6YSOfszH/yLJ/hXk1Y\n2qQ9X+R2pm3Ya3cWL5Rty91PQ1c1DxdqFxAI7IJbE/ecnc34ccf55FcqsoI4alD7icGuuniq1Ncs\nXoROjTm7yWpBe311Ckk9wsrHqzgl2Y+5/wD1VmjU5LiQbGMUQ64PLfjW8JtuFJ4NQTabZ3Q+ZPLc\n/wAcfB/H1q44lv4jCeF/lY+yvmOjXR64uYR/47L/AIVq314iateq/T7Q4+nzGsNdOubfRbxYD5w+\n1QEchSAFlz7dxSaxPt17UUkJiBupdpcYB+c9KjDzTxEref5wOecGlqW79RDiUEmJuh9DWfG5uJDH\nFgkfkKjWDULmOSK2dXhI+fc+FX3HvWnoeiXFhA73EqySsc5TOMdq0rxje8TpoTk1ZnN69aTQotwy\njK/eK+lY32zafNEoWQckHgMP8a9PuLOG/sZbeRQVdSM9xXjGpRxWk09t5zGW3dkdWGQMH19Kumua\nJTdpHQ6f4gikkk03UArQydJF7Z7ipE07ULS4IiuUmiHKOf4hXIRGzu4FNrdOLhR8yuMfkavWviWT\nTFNteEuvQFT0qnTf2S1UX2iz4uvkOlfZ5JD57sCqAccdTXDEE8kkkDFXNRunvb6SZ5DINxCsfTPF\nVT04rrpx5Y2OCrPnlcgcUypdrO4VVLMxwABkk133h34atdRpcaxM0QblbaP7/wDwI9voP0qnJRWp\nmcNp0xgv4XBx8wB+hr0zTNRMWI3yCO9aFx4H0mFNtrZQbs/xscj881kTwSWs/kTIykcqSOorixFp\n6o7MLPlumdnY3itjnip9U0iLVraNldop4smOROqk9eO4P9K5iwuMAZxXTWN+MYJA+tccW4SujuaU\n42ZwN7b3Gl60v9pW5fcm1JIV+UgHJOK6vV5bdNc1aQylVF7NuJHAwxz/ACNbd3b2uo2zRTIGj7Hu\nD6iuQ8Wpcab4p1NZS8cF3cSkSL0IZjkH866IVY1KyT6Rf5o86tRdPVbDPD0sB0uMSPsZdxGVJB5J\n61qu32YaQ7TIttOGVk4Pzr8ucn1Jxj26VyuiXyPahHjO4ZG9Dg/lyD1FTX90TZwkxb5FuVfftxjj\nGCOg5xzXoPl9omcmtmdpe6zZLpDwliSY2j+QYAyCM885xWL4duNTvtOAMghhMTIpHLnqByemDg8e\nlGnODF50ksKOj/KpZAAOOgP9BVfw5ceQ89s8yuYWkB2jIwAeQfqDWFRx9nNIyxF/Yt+X+Q7XbOCG\n2hmEOLcTK0jnmRgc85POASP0pbuAS2TRIvloy/Io7N0yf0qxeXCy6fJAtssquCmTyx9OSRjt+VQa\nJb6pdwot4qDyiOQOv1NU6yjBt7o6YUnKaSNaytpCiKoYH0xzXT2sIiiAJIJ7GmafamKHL4355z2o\nubkoCAdp7mvOjFyd2eq2oqyI9SvI4IGAJLY6dK8L8Z62dU1TyUOYoSR7Fu/+Fezto02tI2yZ0jYE\neaR1/wB3/GvM/E/wr1XQraS9tZVv7ZBukKKVkUdyV5yPcH8BXfh6fVnDiKy+FHABCa6/R0P2jTef\n+YBqP/ou7rkiSOCMV12jMftGm/8AYB1H/wBF3dTjfg+/8kcEv4tP1f8A6SzjzGw969i+DesWX2ny\nLyO1NwFCxz3AUtHtzjGRwCrZPzD/AFXXsfJY1LDJ4Fami61daDqMN5YShZIpFkxzhip6HBBxyRwe\nhNdqdjR67n1gt7uubTN48/mEqr2dszRPkYG5sOBjOfvDpVrUQICtw620PlR4+0znJj/lx/wIV873\nvxi8UXabY5rezAGP3EIOfc+ZuP61V8UfFCTxCLNprAvcW8Kxs8smEdh1bYoBBOf73boOlU2UkrWu\ndt8UXsfE1vZWenautzqHnBBBCuYyGHUFVOfmC8bjjJrwV9wYqwwwODWxdeJdUu0aFbloYW6xQfu1\nP1x978c1mLFnlj+VRcQyN8cU6Hc8u0fWpBCvpSCMRsW56dqW2o1K+hNGB3x+NWovKzyB+VUpWTzA\nVPbkA55oSfAPfFaRloaaLQ6nSdKOoESzO0Fr2bOWf6D+tb2oaNYzac0MUfKcrJnLZ9c1m6cY5rJU\ngjMcOOAp+ZzWnBcyRg28mNuOdvO0V5lavUlLR7HfTow5dVdnJSkxMY3b5l7+tVJZhVnX54Vv9sRB\nA6nGKxmuAc45r0qNRygmzjqWjJottKCvNRNIlVHlYAcHFGDjJNW5GTkiVpBULTEnC8VExy1OUdKh\nslyLOpxbLgOqbY2UEY6Vf8Wf8hi3/wCwZp//AKSQ1UvpFmSPn7vbNXvFY3azbgD/AJhmn/8ApJDX\nLP8AjQ9Jf+2jWxgV2nhvWd8SwyH5k4571yaRAEZGTWnaN5bqFAU/3qupFTjYqnNwlc9Ss7xXXggY\n9q14Jty/MMnH515/pl+Q6o/DCutsrkHBzkGvKqU3Fnq05qS0MXxJZ3thnUrAIH+9IpiVvbPzA1y0\nN3e+K7yOG8kdh5itIxIAIGcDA+p/OvVG8q5hKMAw6EHvXMw6CmmavIYk2xytuHHTHb+tbUsQ1Bx6\n9DGthryUkblnDHDDHEihVCgADjFMu7jykbkHGc08yhFB7jiud1TUNoYKMszYCjkk1yxi5M6dIoy9\ndv1CHB4x61yKIbqUv5e8Z713ln4eiuUim1IP5vJMJcbevHTnp71qf2bp65EVtEmPSMf1r0qUVBHl\n16vtHpseWXNgwG4RhfYGrng1Svj3w8D1/tO2/wDRq11mrWCKP3qRmED/AFkaBSv1wP1/Qdaw/Dtm\n1v8AELw+Oq/2nblWHQjzVqsRK9Cp/hl/6SzGO6OSrV8O3sVhrUE0wHlk7WJ7A1TWJAOeaRokx0xX\nRJKSsCdnc+lNHjght1FuowcEkdzWndxR3Fo8cqq6upVlYZBBGCK4HwBrH2rSraJ2y6psyTySODXo\nK4eLI/GvElFxk0z1oSUopo+afFmhN4e16ez5MJ+eFj3Q9PxHI/CsOvZPivpHn6VDfqh328mGIH8L\ncc/iF/OvHtgB5NevQnzwTZ51eHJPQb83qaUAn1NOyOwz9aXaW6mtjEAyr15PoKTzCx6U8RCkIx8q\nDJNIDo/BuivqOrJcSxN9mhOS+OC3HHuea9otkMRRRjb04rkvCGlNp2jwQyACRiZJM+px/LAFdajB\nY2wCT2FWtDnvzO5HrErLpt15Z/eeQ+we+DiuH8LGCSPMwDSnBYNzuOAST6n/AArq9Sjee1K7mUkH\nGK4LTbkRXk8YbEiNk1hi7yp6G+HhF1U5K56KWyOM49q5/W9Etr+Jy0SrIekijDZ9z3/GtLTbwXEQ\nO6rssa4GAK8iLcWe3OEZxs0eNWunS22qOkmVdG446104kVV6DPpV7xPpiwj7cowV+8cdvWudknlK\nggfL6iu9S50mfI5jh5Rq2e3Qu+UZJPMkP0FSl40HzEAVjNcy4CoxqBpZwcsCRVcrZxewct2bEt5H\n0GMVAssTNWcJUc+n1prXCg4AqlGxaodEa73scI2xqXf0AqpPeX7jCxhBRaXkTDYygN61fUJIuAaa\n0M2lTesfvOcnlvCTvY1TdXY5ck10txZg5PFZkywxZ3OtUpHbSrxa0RmxQ4cMy7vQHvWjG0jDaDsX\nsEUgU/TrZ7yVpBF+6XgFuMmtuKKNeJ1ZV6bjyB+IA/l+NEpCr10nZ7mRFGwfIJLdtzMM/jkVuadL\nC7gXcIK9CxJGOR/EBkderBhTp9LYL5kZWVSMgNzkex6/rTbKXyJQHyYnGOSAfcE+2evp65xTicc6\niqx0N3ULn7DaxKlvLPZuN2GZSU9jzg9OCODz0IIHX+D/AB5pU+lx6bqsr2wtv9TPIpZSv91iOhHr\nz/jytvPDFbqGuFjhLHiT5VB6EjPQEAH/APVWtpEPhG7k8281PSo2Hd7qIY/OtVJqeh6eBi1ho3Xc\nt/EKw0vxrZ2P/CNapBcalbbl8hRIVkU9s7cKc92wOeSMV48+j6/bTFJtN1BXU4KmJuCO1fRaaZeW\n8CTabqFteWO3ekaqEVl/vKUJBHucZqK5DXFw8rAh3YscepNdXLzrXodEqjSseT+FF8Rm5SOWznFu\neGa4UrtH48mvSDFtAA7dqu+QRyRk+uaRrfHI5/GqjDlMW23dmc0Y6EZpnlJ7/nWg0TDtn3qLY3pV\nWEfL9KCR0NJRXCdxMkhPBp27mq9SKwxQB0ei3ayqbabDccZ7itGynGj6kYpB5lrLg89x2P17fnXI\nwTGGZZFPIOa6Z2W9scrguo3of5j/AD6Va1RLdnc7KI+cDL97ceuMAn2qpLliw7ZqnomqCfTxE5Hm\nRDH1HarJy2Rn8c1q58yMXDlbRVG63uVuIwpKNuw3Q+1VNUvZ7/bBCjRwjl1Jzub1q9KQM56VRlfC\nkL8ufTrWMqcZSUnujSNacYOCejM9kSEYYgn0HWqkhklOAu1aukfNwBj1qpeyiJGUda0IMu7+Z9i8\nhaz2+8a0kGY2J6mqNwgSQ1mzSJErFTmtFbmX7Oqxx7WPJfHP51m1KsrsAhPAFJOxTVx5wjEsdx9K\nQuztkn6UxiAeKEyxoESHhCTUZb5PrU7QyyriNGZV6sBxmm28HmElvuLwSemaTGiGIfPn0px55pdv\nluw7Z4pP4j6GgBaY9P6VG/WgBopaSl70DL2luqXLM2fudB35Fa920l+8QkZQWYKAP4aw7HP2jA7i\nthCWuokxllYEfWvZwMv3PL5mNRa3Nm1hQbJJCCvzDn021kSbp9TlO4bF+99BV2SSRI8bCqq+CD15\nrPtxNLNOsCEyvnaoFejWklFIyW9zJupBPdO4AAzgD2pg4pACDzS5r5ecuaTkzqSshaAu4EZ/WkpQ\neDUiYqSzQHMbGuj0LUEucQzE+YvT0NcuzH0IqS3uZLaUSRcMO5rOcFJGtOo4vXY9NSRXUKwB4xim\n6doFrNqs89v+6kNhepgDg7raRc4/GuV03Xyz7bkgcfKRxmuh0XWi2qTJGpUpYXrHPfFtKR/KvOxE\nJwpyt2/yOu9Oauzjf7Pu9K1a1E1ssw81SqZysnPT8a9vhtPt9usphVD1yh5Q15hpEh1bV7dJckqy\nzDHYqc/0x+Nep2TSR4njG2X/AJaIfuv7/WvQTb3OWcVF2RfstQu7H93dbpEx8sg6/jVx2tb5Cysj\nMf74yfz6ii2nt5hnhT0w3GDUb2kayE/cbPUVRHqJ5Dx525wOgV8g/garTeWDi4t3I/vIP6VcC54+\nZj2CjJNYGo+IYIGdI8s65BDDoRSbsFjO12LTrVBd2k2x84eFwVJ9xn9arajqqRWOjl+jWjHr/wBN\n5R/SsXUXl1G+3u3J5wOw7/l0qDV13WWjOCdqae+B9LmeuHEQjOrB+b/9JN6VZxVjai1SNwPmq0l6\nwOc5FcbBc7QcggL19K17W9UqOQRWU6XKdcaqlsdAt8pOC3P1q0t2u3k1hK8bnNPIYDh+PesuUvmO\nqguh/Y1yQ3S4hH/jslQeIp8anqAJO1Z5Px+Y1QtvM/sG7yeftUHA/wB2apddDSa7qCH7puZP/QjX\nHTX7+Xz/APbQuO0LU4JrKaxjCi5khZVzwpcg/wBa09J1E3lsMMFDDKk9K5mx0+ddST7GrM7ggoqF\nycDPAHWtgaTqiJGlvpd5Ht+Vf3DgKB+FdkqtOOkpJerS/Nl3jY6KMoHOwggdceteU/FPQTZXkWq2\n5ZUu8xzAdNwHH5j+VejWdlqcausljebc7j+5cf0p2q+H5da09bfUNNnmiZt+zy2BU445HfmtqWLo\nQd3Nfev8zmrQ5l7p81ZaMkBiPoacu0ctya9F8S/CXWbW6jbRbK6u4JOqMmGjPucAEe9ZFn8MvFM1\nwFn0W8jQdSYjXb9bw7V/aR+9f5nC4yTszlVcHvxStz0r0y5+HkllpnmXNlNCBxueMjn6mvN9TtjZ\nXZjGR7VdKtCrrB3CUHHc6vwNpaGZ9SnTcUO2IEdD3b+n516PGEmUeccL1wWwP51w3hO6RNFt1B5G\n7P1ya62CcEqwOSKxm3zXCxcdNKiGFEsbHvFFJ/MCqF7aRTRlA10wPIMkcv5jIrWjuMr1xUcxDAky\nL/Oh6gnY4vzJLWcxSjDA9TwD7itW2vScEEGl1Syt7lTkqHHRgMEVzRuJrCXZL93PDdjWEqd9jtpV\n+kjvLa/2gKTmtS81G01Xf9q06zkZmLEsZPvevDiuEstWBYZOD61rx3QZSVYZNcc6Kbu916r8mjq0\nmtRk72thNtl8NWIzyJEecg+/+sqSO60q4i8ltIstjfeVZLhf/ataFvPHPCsU67hj16VSvtCdmE+m\nyCTH3o2IU/h2P6VrGNOWkr39Zf8AyRyVMPKOsdUSK2noMx6NbouOpubhV/8ARtT6adOe6Y2+h6e0\nhDbpU87jII5YyZ5qCy0hpHU3pLNn7m7IrrL2E2OhSy28afukJAHA4HH61FSFNxko3++X+ZhWoyVG\nTlpp/kUYZbO3l8kadaeaynzCrSnCnr1f8BWlaXFmAFj0+3RegA3j/wBmrmbXzY03yvvlf5pG9T7e\n1XYLhg6gHPNZ+xjJ9fvf+Z6TjGKskdHNdwQw7hbQemMv/wDFVz76nFqFzsj0u2lh/hO6UlznnAD9\nPrwfX1z9fuv3qWYlij3pukZnC8enXPPPQH6c0tgluVVWdplH8CRAoR77vl/Ja7FhaaXX75f5nFVq\nPZHVW2p7WC+RZRY5K+a7v/3yrHH61qC8SVM/Z0wfXcP61h29ysUIVGdIxwAXwPpgYFTpeAtjdkVv\nDD0/P75f/JHI2zyf4i22meHdajeHwvpctvdqZA8j3K4fPzDCzAdweAOtYdz4igtbDT3ttA0uCSbT\nZ4RKr3BMSyPPGwUNKR0Zj8wPJ+gHU/GF4ptP09t371JmCr/skcn9FrzfUmI03RR/05t/6Pmqp4ak\n5Run16y7f4jGcnzw9X+RT3sRgfQCniFgOAd3c0QLhPM9OlOZnboefU11mg3lB8zVDIQxyKc8WOWY\n5pqR7m68CmIdEOMmpV9cUoiOOtOC470AApSBsY05dv1pty6rBgdc0wKBbn3o3U2ikUaukX88Mywx\nyFWf5E3HgEnvXTW5meN7ZZWEeczSkfMT/n8q4Suq0e6knsiS+TCuGXuy/wCf5VzV6enMjqoVHflZ\ntNpunOUhmjQ+YMBvf61kz6FYW87RSXZgcH7rpkEeoPetNfLlt2tjLg43wS/3T/nimGa31TbZXko8\n3aGilC/cP88Z4I/GsqU5Re+htVpwkttTm7myXDIpyAflYDGfSsuZyTt9OK6Z4Ggnkt5SBJGSrDry\nKxdTs/KcTL91jz7GvTkrq6PLT1szPUVKoywqMVKhA5rMpkTkmQ9+a6PxLHu1m2Hrpthn/wABIa56\nRCsgyPvDIrpvEJUaxb5PJ02w/wDSSGuap/Gh6S/9tLWxleWF6CnqKkBycBaHtpnPyjOeua1uIsRX\nUaKBI4Rh0NdDpGqb12h9wFcqmmHcTITj+tbGn6DqKyLJBDJEo53OMAj6VhWjFx1Zvh5yUrJXO8s5\njJ908VpzwNPbjHDL8w9jWPoi7V3uuHDYYehrfhIkfk4z2rypaS0PbirqzOX1FryIHFvK+3ksilgP\nxFY1gJp7oy8eYP4sZ2fTPf3ruNZ1CLSoEmfA2nP1GP8A69I62Op2JvbUqsn3mKDhvc100ZKO6OXE\n0Jzj7rMREmhZcsoU/edjz+HGP896Usx5RTj+839BUihTyBlh/Ee1V5tRs4H2yzAt6Dmu08ixT1El\nYGYngDPNcx4euS/j7w7DnKJqVvt9gZV4rQ13VhPvjQlUVeMD1Fc94Nct498Pk/8AQTtv/Rq1Ndf7\nPU/wy/8ASWNboyQaXmtHw3ZWuoat5N6Jmt0tri4dYXCO3lQvIAGKsBkoBnB61a+1eF/+gPrH/g1i\n/wDketJVrScFFtrtbr812JS6mn4E1JrbUTalh837yP6jqPxH8q9w026S4gRgfvCvArXU/DdncxXE\nOkawJI2DKf7Vi/8AkevafDWoabe6fFcWttdLHIoYBrhTt9vuCvOxcmnz8j/D/wCSO3DT05R/izTT\nqWh3lqFDNJEwUdt2Mr+uK+bWRgxB4NfWj/ZpIjmGU8f89R/8TXg3jax8OaN4knjm0jVX8/8Afq0e\npxovzE5AUwHAByOtXhMQ1ePI/wAP/kisTG8VLscIEPdgKdlB1JNbV1aaJc+GrnUtOtNQtpre8ggZ\nbm8SdXWRJmyNsSEEGIevWsEYr0KdRVE3Zqztr8vXucLVh5kJ6cCrGmEDVLXcMqJVLA+gPNVcn+7U\n9g7pqELIpZg3AHetUS9j23SbpJ4o3Eb42g7j0zk1uxDdHgDHNcvpFxcLbQm5uQ2V+WMdueuOvfvX\nQRX0ZbngVTMIjLv5ZCN2MLjmvK/EBOl64LqP7jnkDv616leSJKHKtx7mvNfGEcbQnqWRsjH61Nr6\nM2g7M2NN1BV8uSN90bgHOa663ukkjBPINeK6Rqk1oxjYFoM5/wB2u50rWlkjA3gg9K8ytQcXdHq0\nK6ktTsbqyjv7WSBwHR1KkdeK8ouBd+H76a0ly8MbY2tzx2NesaTcpMwAIx9ao+NPDEt7ANQs0LzR\nIS0ajPmr6fX0/Lvw6EvssyxmGjWjZnncerWT8m3YH1C5/lUjahp7jBJX6rWZHp9pcDzIHZPUKent\nVdYb0u6wS5VTgB+9dXIjwZZer6fmarrp8v3Z0B+uKBp8Lj93IjfRgahi0+WQgSXMYOOcxg4P51A9\nrOsjeWlvJGD8rEBSfwoS7Mn6pUWzZZbSnU5VwPqaVRLb/enTI7bqoPG7AbrYqf8AYkUCoxBGx+ZG\nX2LBv5VVmH1eo/i/I0ZZvNXDXAx6A0ado/8Aad0EhVpMH5m/hX8av6L4Nl1NllmieG3PQk8t9K9D\nsdKtNKtRFBGsagdB3+tZSn0judmFwEpattIyYtBMNqkcewFR0xgH/D9azbiJoHKSKVI7HvXTXN8k\nakDqK53Vbs3AU9cMB+ZxRDmW5rjsqoSpuVNWkvxKC3P2N1yf9FkbDA/wH+8P61WtZkmvhG4LRmeV\nZADyExz/AJ9qsS2El3ahMbVYglm7DP61YWW10qKY2tust3LndNMAQuTkgL055HOeK6owPCoYd1Fd\nLfqQl47/AFG4uDy2AiH0AGMrkcZOTWZaWJtfEKrBFaTwqyN9nnuEVJMnBUlyMk89On4VS07U1sbu\nQ3m75zyy88f5zXZ6dcaNJdC7TW/ts7qIhBdW5KInXAB49vz4q4K8j1uVU6fIuhseBrOHRtRvyXvY\nYZZzDFlHjRJOdqSg8ElWGDnrx3Ut6AFPRhu965bw/pNhYyX9xcTKumX8eye3S3HlH0IK4MeOe2Of\nXGNvR7qOWF4BcvctAdvnMm0yL2P17H35wMiu1RcTFu7ci/5Y7UhXnmpuM84+tN+XPPNAWINnqART\nDGme4qzsUnrijYKAPkaiiiuA7gpykbhnpTaKAJiV/hrV0i7Kt5ZPTlaxhUsMhilVh1FNOzFY6OKb\n7FqO5CRG/I+ldAt8hTkN064rlZJPOhRx1HNaljKs1v1+YcGqTs7EyV4+hcecSEnpx3qrI5IPNPfI\nHXpVZyWY+9UZjJH2qeKybli74z1rRuCqoSevaqEcZkkyaGNDo4tsfPrVW6sJ1jadgPL69a0ZXWK3\nIHX2rRe38/S9jMMtFkKPUjjNZzdi13OMpcGlZSrFSMEHBHpSBiKRY9Y89akLLGuF6+tReYcYrUtt\nLIZJJWBHUoKG7CsV4rB3i3OSCecUsim1iCHPUkVtbR6VTvrcTxFRww5FRcZlMdylvU1ET61KRsQL\nzUeO3arELUTdakHSoj1oAKKKKBk1qcTg9K14XIu4mLZxzWGGKnIODWhppM94obAVVLE/QV3YSsot\nQfciS6m1eXxDAMDySzZ756VgSyuzuNx256VYvbkTyFuc1T61eMxLk+WLJpxtqFFLnB6GjjtXnGg3\noM0oPFNkOBjNR7qAsSs+ewqMDJ5o3UhyaAHZrf8ACcz/ANrTqTkf2bf/APpJNXO81ueEz/xOLj/s\nGah/6STVhiv4MvT/ACKjozrfANrI1lc3zRKVd1jjkxlht5YewO4fl7V6NYxXO0FImI75FeMeD764\ngmljS7eFOGwG479q9SsZHaBHa4YKRne56/QVezG+505tf3Jkm8uIZ5Ltx+dZc/iTSbWRbVrxrmXO\nPKgQsV99xwMfj+Fc/wCKZ5odNilSaWO3ckfOcbz6gfTFc7pEiSxtOqgA/KpHUjNTKXKJWOr1DWZ7\ns+TGTFAwP7tD1H+0e/8AL2FYt1tfCY++2z8O/wCgY/hTbeVpJ5M9OQKryXUSXMIlJJwwx6nj/wCv\n+dZatgPkwkUkwHzy8KPQU421lqGm6dH/AGvaW0sFpJDJFMk2QTNK+crGwxhx3qORvOYu3XsOwqrH\nAfNdiOqkCs50+azTs16drdQTsWIdGshav/xP9NOe/l3H/wAarPm0K0tpnKeJtNjD8gbLrj8oadEu\nLSRfcGodQh3W6OOcDBoVOptzv7o/5DvbVE8VmqlVHivS2JUEZjuuvf8A5Y1MYhGhJ8TaVwf+ed1/\n8ZrlmDxFZFHzR9R7VpEpcWm9OjDNJ0JdZ/hEtVZI7C0X/imL0rr+mt/plv8AvNtztX5JuD+5zk9s\nDHByRxnJ1vxJcXOv6lLa5e2e6leJjkbkLEqcHkcYo0wZ8IagBjIvrX/0CeqmwOOBz3zWGHw8VUnK\nTvq10/uvoU60+he8O6teNqdysgIJsrts56YtpCP1pLPUnaHKlt55LkYH1/8ArU/QYsalNkc/Ybz/\nANJ5KxGtmKnazLnsD1rRU4urO3aP6lRxEktTr0v2uY0t1DIpILZ6tg54/HGa6W3BWBUacmQDneRx\nXmVnqV1pkyGVTNGvTPUV1UWrPdxFonVmwvyjGTyMj8qvkadjojVjJXuaeqaj5cB8xQrE7Aq8lu9Z\nbXN+wBU29upGf3rbm/75HFXdQtLhIEuVVn3DDqv8BqnDbXTYPkRp6lxuJ/Dp+ldEIcqOGrU5pXNT\nTr2aPQLkyyTXLfaoB+6i2dVl9TyOPauQ8d+HYLrS/wC2bO3kgmgwJ4nTbuXpuHuDj889q7izgmXR\nroPO+ftMH3Rt42y8cVZW3iuLWS3m3PHKhR1LdQRg1OH0lP8AxP8AKJnJ7Hhmh6g1urwg9DuH9a7H\nS9UjmxG8wjc9N/3T+Nef3ltLpOr3FsxHmW0rRt6ZBINaMd3GU3RtnP3kNa1IXZSZ6fHLPA4VmkiP\nYg1O93qKj5J45R/toK4jSfFNzZKI9y3NsOsMvOPp6V2Nhquk6rFmKJkkH3k3cisWrFFW4v74jElr\nbv7gYrFv83CnfaRj/gbH+tdPKlo3ALqffmsy6tbc5xMR/wABqb6i1OPIlt3/AHfA9K07XU5VVRIp\nA9TRd2kSn/j5B/4CaqpLHFlWumC9wEzRKKktTWFWUTpLTUQkyNvG1hgn+ta6XrRu2D+VcLLfW1vE\nv2VpZnZsbdu0VqwXblFZvMjJHQ8EfhXLUotandSxCeh1cN8GcHcc/jW3DqIlhNnckPBIuGGeSvU/\npmuFSZ+CZmwfQACtaxuofMMchctsc7uoxtOa5pxtF2DFyToT9P8AI6R9PtJlP2W/Trwsox+o/wAK\nr/ZLi1cNIn7vu6ncv5isCTT57lvM03VoVLH/AFN3kAfRh/UU2DVPEehEpcae4ib+NH3o34iuuFO7\nuipSWz/E0NQa1GqTTtMqLwMbQWOAAcflSLeHgwxFR/z0n5P4L/jVSKF7i4e6Fklu0h3OzevfHpUc\n+o2sH+qYXMo6uT8i/j3ros2zzZWu7Gp9qZV8yRyeMBm/kP8A61RHVtoJJ4HA9z6Vzs2olszTyHZ2\nb19lFYOta+IrV9jgTsNsaDnYD3PvW0dNDOxR8d6z/amqRxqwaOFTgg9z/wDqz+NY+p/8g/Rf+vNv\n/Sias1mLMWYkk9Sa09S5sdE/682/9KJqqfxQ+f5GFT44er/9JIbaJ52WNP8A61a0OnRocOQ7emaZ\nFGLaJUHUcsR3P+FNNw28c9PTtVXZrYZe6c+wvEuGHO3274rOVcACtYXDum5vUfnVy60K1sbb7QLr\ndIsoURtgb1IJ3AZzjgfnT5rbhZmbBplzOMKFHsTS3Gk3lrH5kkR2f3gcitJb0grtUAAdVGD+lXbe\n8LA7jkY+YOdwI79aabJaOV24qtcvkhfStDUY1hvZUTATOVA7A81kO25iaoaEopQM0lIoAM9Kngnl\ngJ8t2XIwcHGaZGD1xUpKEfNwe2aWmw7SWpJ9qlkVUMrbV6DPSljleKYSKx3g5BzVcDBFSZwcVSSR\nDbfU1ftktxN58rl5GPzFjyasSRrd27R8DIrIibPBOKvQzMki5wAeK1g1axnJa3MeWJoZWjcYZTg0\nIea3NT0/z4/tCZ80Lkpjqo71gE4rOSsy07oc7bnx2AwK6LxMudZth/1DbD/0kirmK6bxLJt1m3P/\nAFDLD/0khrlqfxoekv8A200WwyFcbRjnGTWrbQ4TLLliOo7Vh2sih980mxccmt+y8u+1WKNxmGMg\nhT0YgZOaqTsrglzNI6nQrC2to1mmhDzONylv4R7VtNdRn5dnJOMYquJYpJiQMtjaPWpYoozIY13G\nTks3ceteRUk5u7PfowjTjypFC3djcSgDGJiCPbOK2oYz/aPkqcuEV9o9yf8ACszSoo7i/dEBCliW\nkYjnDH0qqmuWtj4gvp7i5AJCxRIpz0zycZx1qowcnZBKagm27In1qxj1XVisxZoIEClM8Fzyc/ht\nqpFp82nXHmabcfZl6tHjK/gO1LbyTSl5radZ1dizFpMjJ/DIqyJnHEyFfxDDH4V6MKa5eVnj1MRJ\n1XODIJFymZOe52jaM+1Y93awFTm1z6lTzW2i3N1dLBAsryHoqruGPw6VHq+j+INPsnuGs2eEE5Mb\nrJtUckkKSQPc1rotDnvd3ZwGtKkMBCOT7MOR1qn4L/5Hvw9/2E7b/wBGrRrF79q8zcMMvy5HcUeC\n/wDke/D3/YTtv/Rq1niP93qf4Zf+ksa3Q/wif+JxP/2Db/8A9JJqyBWt4R/5DFx/2Db/AP8ASSar\nXhDwrceKtS8hJRBbpjzpmGdoPYDuaE0q02+0f/bgeyMDBJwBk16r8Mry4jhk024jkjKfvI9y4yp6\n49ef5iu70X4aeGdLVJY7eS5uE53zvuz9BgAflWw9lYm8R44U3QAhSB64z/IVhiK0Zx5UjooU5KXM\nxkcwMeOeK8u+LmnCSys9RQDMchiPHJDDI/LH616rOR+dcL8SF8zwhdYH3Sjj/voD+tY4f3Zo65q8\nGjyS1/5ETVv+wnZf+irqsLFb9sM+BdWx/wBBOy/9FXVYNd9Hef8Aif5RPMfQMn1q1pswh1CKRlDA\nE/K3Q8dKq0KxVgw6g5rcTPS9Lu7KMAW6On/XQDI/4EOv6Vv/AG0Rxkgdq8z069DEN/EOvNdA2tbo\n9pI9KGzNR1Olk1ULFjdzXK6hL/aczQrnB6sB0FZt3qLPLsD43EDPpV2C4ijRY4kYDuzDkn1qZSst\nC4x1GrptrBEI/L3e56moPsLWzmW0lKnrsPQ1o53CmMuR1rC7NlpsX9D10iQAnDDgqeor0PTdZd4F\nIlGem0149cQlJBPEcSr6d/atrQ9e8wbGOGU8qeornqUvtRO6jXTXLI9EjtNGVnWXSrMrMxLuIFyS\nepzjNYfiTwPYmWO50+4FmJONhBZCfXOcj6VYuBqItA0MJLjkRt1P5UWur3H2cQ6raPHC4PyTocce\nmamFSSubOjTla63Mqz8BQF0N5rDMp6rAgU/99HP8qlvfhfbOhfTtTcHHypcKDk+7Dp+VXtOsxLrg\n+xPNJprx7i7ZAjbP3Qe/4811TokUeCeB3raM53Mnh6WyPLG+HOticozW4jH/AC0EuQf0z+ldDpHg\nqw0uRZryQXMw5CkYUH6d63rvVChKA5xWPcam7Kd2MfWqlKT0COGpxd3qa808cSHbgYNYl3qTsSM8\nA1k3mrLGjM8gCjuT1rCl1W5uiVt1KIf4m6mqhB9BVKsYGzc6gicu4A+tZlprdpf6vb2pz9naQK7H\nj8azLrS7y62vG7tIOcE9fwqPT7A/2kEuYXinXBKfd3juQfXvXRGFmcFatzxcT1fTtOF7e3sckL/Y\no/L8hmbPJX5gPbgH6k1LfeEbe5hKqGQ44Irm/D2t22lXcUlvcPJbSyrFIkh5Udz/AFr1V044FdiS\nkefbkdloeCeJfBuqWDeasJliH8SelcvE89lKGKujA/xIa+nWQEYIyPQ1Tm0iwmbMtjA59WjBzUuj\n2L9q+qPDbLxbqQh+yNd4gOQVCAdfp1r1/wADKx0Xzn3sZGzudSp/XtWlBpOm27borC3jb1VAD+dW\nssOF59Mda0ipJWbM5Pma0sXC3HPWgsM//Xqh5rDqfzpjTt1yOKoC+XXPJphkXPU1nG4JzknNN80n\n+IfnSCx8v0UUVwnaFFFFABTgabSigDTsZd6GMnkdKv6fN5FxtJ+U8VhwSGOQMK0mbkOKHsC3Oikb\ng98j0qmeMk1JBL51vnvjBqCc7QfXFWncxas7FKZjLJ+mKkUCOM+tNXamWYiql1cmT7vAp3Cwkk4L\n7cnbnn3qzJqzJEcccYFZWTUTnccZrJ6s1S0IyeaKcEYnGOaV42QgEdaYxg5NbUNy3koCf4RWNgqe\nRUwmYj0pMDXNzjPzVDJcsR8pyazfMPqamQnYT3pKIMHbJqPFK+Qe9IDmqJGMMDNR4qV+RTdtAyOi\nnstMoGFX7cpFZsw/1knGfQVQqWIHr2q4T5XcTVyT60Ud6MjFQ3cALAdaYzcZFT21s91LsTGOpJ6C\nteawhNoYFUjuGx1NAHOGkpzoY3KsMEHBBpAMmgYlFOC80jDBoATJrd8J/wDIZuP+wZqH/pJNWFW5\n4T/5DFx/2DNQ/wDSSasMV/Bl6f5DjuReG3WPV1Z2AXacg/xe1ex6VJDdbJImVkUZJPAGP5YrweN2\nikV1OGU5FerTXCWfhFSoAedQo46k8k/ln9K0luHQq+J9QOtXxMchNpD8kJI4Pq2Pf/CqlpdC1VYh\nGMAAZziqpOy3VVGMkZqNjlue9YvXcNjVEgRvmBHOeuCc1XuU3ASfM3lHcvJOfX+Q/KqBdumTxT1u\nMqGHbrTWgG0gEkSyIeaBcIDhgQwHA96xYb5rVxtOY2PA9PatFby3uRiT923r2pWAcv8AqWXGAKbc\nyCO0CcHcOc0jyiNSWZceoPFZ9xcK7b2O1R0BppCItpxnHP8ASq0Un2WfYAfKc8r6H1FTPdj7saE+\n5qIo7sGfAJ9O1WlcNjptP+TwxqI7G+tR/wCQ7ioMKcFmw3aiycJ4Sv8Asq39p/6LuKzpLkSLgHvX\nNSVpT/xfpEb6HTeH1H9pyq64f7HdY9CPIkqoIlBHAqTw1cia+lBOStld9/8Ap3kqGG52OIyFYAcM\ne31qY/xp+kf1H0C4t1KHAGT6itzw08MNqYpUXKHgkdqoSw8BsUQXBtpNxU7D1I7Vum7knbxpGV3I\n/wAhHzA8iqk1vIsQkgwUOc56isa21EvOY4nyv8QB6/5/z2rSv9ctLDSJrm6Zo1UbQBjLE9APX/AG\ntVK+gnEt24f+xrrL8/aIen+7JSNdRWNhPeTNiOGNpG9SAM4HvUNjdw3Ph2a4hdXjeeEhh/uyVyXx\nE1X7NoUWmxsPNu23OAeka8/qcf8AfJrKh8U/8T/KI2tjy6+u5L6/uLuY5kmkaRj7k5NQozKwKkg0\npQ+ldV4Bl0/T9WvdX1GFJxp1o1xBC/SSXcqIPzfP4Z7V0Nh6GDILi3ZDPDLA7DcpZSu4evNXrG9u\nFbzYd4ePnenan3+raj4j1Fp7+7kmcknLnhB6KOgHsKdaaZez3Un9mxmV7WFrp+R8iJyWweuPShxu\nLmaOjsvGFtcQ+VfYjnXjeBw3+BqZdatpm2RuspPAUdTUXheFPER1CXU9Hj1GZEVII4nFmAWLMWGx\nNpf0DdR6gcWdY+HN3p2nxatol5c3JefCwiArLCuM5fB4IPynOOcetZuih8/cmk02a4gRtiRbz0c8\nimjw+E5KLKfc4H5Ctqw+2vpsY1OFEnIPCyKwcA43YBOOeD71HI8kB2n5h1XP8q53zLQuxnJstIRC\n1kiqBgMg5+tZ1yCGMqHIP6VrPcLLwrbXH8LdD/UVQuJ0jYrJBIO24DIP40kPbVFWC+Mb7ScZ7Hoa\n2tPu0icvcL/o5VlZ8FguVPXHNc5L5Xmhl3KuehU1FbXs9skzxyuQrHA7EYrKpRUlZHRze1puEnvo\ndU9naXJB0rVkjc9IpgzRn6McEfrV8P4i060kSS7sRGgyzK8jgds8J7iuEkuEBDGHynPJZHIyaRJb\nm5mjt1uGTzX2s75YhQu4kDvgY/MVUKM/5vwRlNzj/wAvH90f8jevb6OVpGu9atcE52YkCjvj7lV2\na0Omf2j/AGjavarJ5RYpMED4zjGzJ4/CvPZJXlYtI5Y+/at20v8AHhCfTGGTJdiZSOqgIVP57h/3\nzXR7GS+1+CONwqN/G/uiT6jeRXhITW9ORexKXBP/AKKrHOm2jHJ17TyT32XH/wAaqnHbl0Jx0qNo\n2XtVqEltL8ELkqfzv7kaH9l2f/Qe07/vi4/+NU7U5bdRpcMF1Hci2t9kjxq4XcZZHwNwB6MO1ZVF\nNU3zJuV7egKk+ZSlK9vJenQ6OQb0BPcVA0Z60+0Zfs8YlzwMcVJj5M1RsVE6HnhQGx+NLHNLcyDe\nzHnI9AaiLskEj44wq9O55/pViyj2ru74/WmBbKFQvyn2I/z61JA3zjHQ9e5wf/1VGMkZxUiYB3Yw\nOtBJk6xITMp7sgrKrR1VWe8CqM7UAqoIWHWncaIjxSohY1J5YLAE4z3q/DaxmPMbEsOoNTKaijpw\n+HlVehUC7RUch+XFWpYynUVRfO85pRd9TSuuRcpJEwYbT+FT+UT161TGQau20xZghBJPQVqjhZHg\nj1z7VqWkcpAUgGXOeRnaPf3pEiVNpRl8w9DkYWrimO3QAHn0HX8aLpCsbNnFGlqYQPM38MTySTx/\nkVj694I1fSrc6g9lItk3IbIOzPZgDlfx+nWuj8JzW6Ttc3JBkU4Rf7v09/evSIro6hZPDMu6GRdr\nIRwQRyK8zE4+UKnLFaLf/gAlY+ayCpwa6LxQoGqwPuH/ACDdPGO//HpDVrxN4YfStQkhGWjPzRP/\nAHl9/eqPi1SmuW4bj/iW2A/8lIa351OpCS7S/wDbTRbEcAimt2SUEAkbSOua6HRPLTJBwxOxATzj\n1/M1zCXCDyQPlCg9O5rrNFssyxPNIkQ25G4c+v51pV1gy6LtUR2NnNDEzuwBjiXC8d//ANX86z7j\nUbh7F7mzUSPcFlVUPIA4GewHU5psM8l5YfY5LZIlQnfMWwZO/Ttx71TudShtwEgVSAOgBCiuOFC/\nxHoVMZyaQ1Zr6a03k29qfL+0ugjduQN2BnBHJPXpzV230PzpI7G2sY5DKpYSxoqqMdSdw7dPmHP4\niuWXxVqtuw+z3bQEcAQoqcfgOfxrT0/x9qMbGPUSl7avw6SIM4/l+FdUVyfCjz6kpVPjZDqWman4\nevHZrRSR1ePKnH0Bx+VS2F8mssttEh+0H+Bunu2ewFdLq80E2h29zBcMIBg27k7tqYw0ZB+8Pukd\nwA3TFcjc3sOmWszW21bu9Hzsv/LOP0z6nv8A/WrSUlZOO7M0my7q3iNdMibT9GdlONs93n5pGHXB\n7Dn/AD35+C8vFuEuEnkWUNuEiuQwPrnsaz2kyRgVYgmAKpj8u1EYpDcui2Oe8Soi6j5qqqLOPMZU\nAAB74A4HPOBwM0vgzH/CeeHsdP7Ttv8A0atP8TlSbbHX5/6VH4L/AOR78Pf9hO2/9GrUYn/d5/4Z\nfkwjuhfCOP7YuP8AsGX/AP6STV2fgC8Fjpu0fKzSFifXpXF+E/8AkMXH/YM1D/0kmqfw1rKWsn2S\n4OEY/Ix7GsqkXKpO3aP/ALcXTaTTPoWw1pPs/mMeQPzqpaaozySELuTedx6c98VwtrqskTRxNJiJ\nztLYzhe5+uK3GuUjkt5kjH2EoyqfMPUd/U5x69Se1cUk72PShbludU13HOpKtk+grnvENt/aOmXN\noQA0sbIufUjipLPUopbQzC5jV8nEKEAj3P8A9as+6ttTNxDdzIxtnIAIP3D/ALQ7fX19K0gnuEnH\noeRwKU8D6uCMEanZZH/bO6rBNdrr9sbbS/EsRXZ/xOLNgPZoroj+dcXXbh3dzfn+kTzKkeWVhvSk\npxptdJA5HaNtyHBqyL5yPmHPqKqUUAWQXnkAByWOBXU2tvLFGu+UuQOQwFYWiWvmXJnb7sfT610y\nnuayqS6FQQ8DA4xTT707PHSmsOKzNCCUKe1Y10j2lwt1b8EHkVrS8/WqbyNGwdDh0IYH3FNCOh07\nV5zsk8+SOQjlZc/1rcbUNQ1C3NrjzYm5ZdwIP51ytr4tF3J5WpwRStnPzDg/StN7q1mGbG0licf8\n8skflXPKDT2PRp1Vbc3ln1q1s1jtrOVxnAEShv0XJ/Smf21d+WDcqySDjaQQeK59dV1y0b9zDcSD\nHZSav2Gva9eRkSWZngxzFKRhvwNaJy6ovni1ZP8AAZc6sksixowDk9WPAqvej7Pc+VcX4yRncgJX\n9K526KGZpkWSNCMGNznB9vap7SR/JJE7DHQEZrR2irnkYzFyg7RZoroslywm+0LOP4R0/SrMWnPb\nyBZYymR0K9qIbpnt4lM2xw3VU6/lXX65taz0+aUu0rQDBVSSwHA/QAVvh/3ifkefQxcqs3GW5i29\nrHJhUnVD/ntV+60y7mskDpBfqhyAjYkX3UnjPtnmqsd3gDGlXMxHQhFU1YGsP8qSabNGp4/fjy8/\n7r9PzxXXFLqdL3MmzttO0vxCJL+RhbiTziGjOflOenA6gjFexGVHVXQ/KwyD7V59bWNtq2uWcN7b\nyMkmTu7OoBO1x+A59frXohUD2q4qxjPWRECDRhccYpxjHrj6UgSquTYYyjFQlSCduatFOOopjL6j\nFMVioyAjkVA8fHBq+wxwagdeeFoAz3Q+tRHIOM/rV54Se1QGPnp+lTYaPmKiiiuE7QooooAKUUlL\njnrQAoNaEEm+HHcVnip7Z9r4PQ0IDZs59oK54NOnnyKowttfFRzzlCwxyKIu2hMlfUJWkduuB2qs\n7bOAcmmGSaQ53U9IST0yaGwSEGTTHjJ5FXY7Zj0FWFsWPUVFyjJCODkDmn+TM5B6VtJYqvOOaebU\ndhS5wMUWxHJ5NKYcdq1zbe1N+ze1HMBkeVjtUmCo6mrs0PlrnHeqUnUDOK0jtcTEcZ61Ht7089aV\nI3kbaqliewFAELHIFOC8Vt2Xhy5uCGnxCh9eSfwrch8H2xhZ2cqq9WdsfpSckhHCvUR611Nz4etv\nMMcE7uw/ujNZ954a1C1j80xFo/XFNa7BzJbmOq7jipwMDAroX8DeIIbG3ufsPyXA3RASKWYYHbOe\n4rGubG8s223FvJGf9pcUrobK/NPRPMkCblXJxljgCmjJ6daf5Bxk80wNqGezsrdYRLGxBySFzn8R\nVqXxPbAqILWKIA9YvMyfxZq5ryyD0pCpxQBLqE0VzIJUUhz97IAzVIcZqVhimFcgkUMEApCcjFJn\nsKcsZI5FIZHW54T/AOQxcf8AYM1D/wBJJqxzEa2/CiEaxcf9gzUP/SSasMU/3MvT/IcdzArsptQa\n9gtI93yQwKqj3IGT/IfhXIeW3pWlZXDpGEIOVHHuK1kCOiYk8Ee9RMSM+oNQxXBcZz2pyyjPPpWN\ngHsM8jvUZBHK8+oqQMCOvSmZweDTAhcFoDEAeXDZ+gI/rToldQeWI9jTuhoEmDTAXy0PWRwfenCC\nNfmLE+5oN2iLnANU5Lh5myxwo6AU1dgWtyE/IOB3qrJdAscZx296ilnwuxT9ar7tnIGW7VV7Csb8\nMjt4L1Pnn+0LPAHb93c1iK5Rc7jnvWxY8eC9UzyTqNnk/wDbO5rLhtzcS7RnaPvEdq56L96f+J/l\nEp9Do/Bdx5uqXAIIIsbvnsf9HkqWNn89G9eD9Kb4eNvZ6lmaZLaJra4hEjKxVWeF0XO0E/eYdAa0\nLK3091K/8JFpjSL12x3P9YqydRQrScuqXRvv2TC11oRySzlPKjkO0cbc84ocSR26EHdnqTn5fr/9\narosLJZi39v6dg8EeXcf/GqvWllZyKFXXrDOeAqT4/WOq+sU/P7pf/IhysxopPJUblG0c71Ncj4j\n8QNq12sUbk2sPCcY3Hux/p7emTXU+KrK0hU2kfiLTrZ2/wBeXiuuhHCjbCRyOT9fTrx40LTv+ht0\nb/v1ef8AxitIV6a11+6X/wAiKxv+GNdl0fwpqUpHmwjUbRTGT0BjuCceh+UflWdr+o/29qsl2m4R\nYCRq3VVH8s8n8ajn/s/TvCl5ZQ61Z39xcX1tKqW0c42oiThiTJGo6yL0z3rEimaNgVODVUPe55Lq\n33XSPewPoTva4FaXg7MfjzQFHB/tK3/9GLVdrkFUDBdxHOO1XfDEWPHfh6QdTqlvke3mLilibqhU\nv/LL8mEd0Mj8aeJwD/xUernnvfSf/FV1nw/8T6xeatfnU9b1aazSyfdm8kOwllG4ZbggbsGvMFc7\ncCtPTtXubGxuLa3hDfaJI2kLchlQk7CPQk8/SqeFof8APuP/AIDH/ILvue8WesRWsypdT+KLjFui\nuDOqhSGLYb97neAvJU8jqOadqvjO4ksJmsrG+iCoqRlbxnaQbgAQvBz33A/WvONLv9XtoVur+Bp7\nm48yWKziQAuZMFpZSeFBXGBj7vYKecfxDLqGtzQoIUKw5BlAx5hPJ99o6AnkjrzR9Ww/WnH7o/8A\nyIKVndP+vvO11vxlqNs8jwapfwbVyqtcOcEZGTn1ODgjpitbw94kfxb4e1HzbuZ3SFVlieUsFYSR\n4IBJ4POD9RXjbaNdxqQQ5XqRziuv8CpFpo1m6dDHt08Bwx9biHmuXE4agoc0YJNNbJfzR8i1Nvc6\nC80dmzjk9ieDWLPaXsDEISw9OtS33iWZ/ks4HbAxu2nFYV1ca7edJDED2XrXTyEXXcsSyXABV4mQ\n+oH+NZNxeeQ7QzSvufGFwOfypRpmqMMPeTY9AxFN/wCEekdtzFy+fvHk1SUVuHNbYuw2caWMk7vm\n5SbYI2PLcZx9enFN03UtOsmhPntJtk+YyPk7D8pX6fcP4H0rUkt5ptKuLU2yK80yzGXdnBAA4446\ne9Ymq6F5lw9wiFTJ8zKAMBu+Mds9B2oTT0Ec1NG0FxJE2NyMVOPUGrsMwbC9sYFRS6bOjHgk023t\n7hJ1P2dpBn7vrWt7gbFhZ7kfjrST6dkHArodM0+SO1TzFwxHIPb2qw9jntXO56geeyWpRyCKdb2w\nJLN0Hb1NdHe6aVkb5cVnrAUJGOK2UroCurBZCGPX9KlNwpiKjqe9Nli+U9iAeaoSswDgf7tMCRpl\ndhDHypO5s9Dgcf1q/bYEPGOp+lZduuJEAIyxx+fFXYZj8yrk59utMC75gA4HHuacJx93BJNU97I3\n3cN7itPSoPNRyxBDEMMrk5HHXtwT+QpX6iI/sfmAueSarSWXtXWx2a7BlaY1gpydtZcwzgLpTHJt\n2nimxXLRNlTg13MukwSctGDVc+H7Xr5dVzRasy4VJQd4nNC7+0lVMYJ9qX+zy/O3mumTR4YvuIB7\n1OthjjFSmlsXWrzqu8zjn0yQchc1GkXkF3fIZegxXdrYA9BTJNFhnBDpg9Mmn7QxOFW7k27dnFWY\n7zBG8HjiuobwvH1Woz4YPQD9KbnFgV9OuB5iNG45Ir1rSXItk7rtBFeYaf4RnuNUgiEhSDdulO7G\nFB5x79q9YgMUS7AcgcDiuDFUvaNcquZTqRjuc/40s1udPSYLlo2Bz6A8f4flXEeNNN829ikVfmWw\ns/8A0mjFeo3piuraSGVcowwa5bxDaA6miHnbaWw/KCOlCEqNSCkv5v8A20qlUjUTsef6BaRGVzNG\nGdGwN3aullhSYAOuVzz71Qjh8jW2UKAsi9vUVcvbt4BGEAGfUZ/Q13Xu7l21Na/WeOw814HEOM+a\nwKoW/u7u59hzXMicSPg9TnOKq3t7dXUvmTTSSMMAF2LEDsPpVeKRvNU4wKdtBl6UBR8oqJmxipjt\nKZwKr4zQB1kWoJH8O2jlOWF2BFkdO5x+bVzDTSTPvc5LHJqXVJytrZ6ap+WIeZJz/Ee34c/nVMYH\nPf8AlTXcOhYUAbQe1Sxj95uBxVUSgPz0xUpuBFCzEnCjvVIRha/N5uoBAeI1A/HrU/gv/ke/D3/Y\nTtv/AEatZdysjzPKw5YkmtTwX/yPfh7/ALCdt/6NWs8T/u9T/DL/ANJY47oPCf8AyGLj/sGah/6S\nTVh1b03UrrSb5byzdFmVXT95EsilXUowKsCpBViMEd60f+Es1H/n20b/AMEtn/8AGqGqkajlFJpp\ndbbX8n3DSwmm+IJrZBBcFni6K38SV29pqL3FlCgk3RAZjyTjFcUvivUmYKLbRsk4H/Els/8A41Xf\nQ63dxwooi01dqgf8g23A/wDQK56qqXT5F/4F/wDamsZu1rjEugsgLEZPOc85rvvDOtDU4m0m+w0j\nIfJkPWQDqp/2gOc9xn054xtTvCu8RacD76Zb/wDxFWLPxPe2dzBMY7P904Y7LGFSV7gELkcelZuV\nX+Rf+Bf8AadtTcv/AAfYXuj6jBfoS73ULNKjbWOxZVQ+mcMfzryTxX4Ok0HFxbymezJxuYYZPr/j\nX0jfRLqEDIhVTkMQFA3Yzjn8T+dec+KdOV7Ce3nBCuCDntWeGqVINt7N3tv29Ox0ShGa13PCTSVJ\nNGYpXjPVSQajr2DgCirkEUEuAWw3oeKvRaZbt1B/OnYnmLujxeXYoSOXO7rWqo4qrCioioo4UYFW\nN2a5nqzZbD80EA9aQYxSngU0DK8yA84rNmBB5rTlPaqU0Z6lTVcormFdRZYsKdp+q3em3KywSNxw\nUJ4I9Knul2kn1qjHHvuAKrS1mK7Tujpx4u1GXOIUOf0pw1C/uyu9/LGc4Q8/nVG2hC44rUt0HHGK\ny5YrZGvt6jVrjLtFjsixGST3rNQKOhYfQ1o6t/qURepOTWZHE6KrHOCapq6ODE7m1Y2B1GVIkn2E\ncnc4Ufma6uyuG+yotxc+ay8DcSxA+g5rjL91igjdVAbHOK67R5g2nw/fOV/hx/iKvD3TfY5MKpcz\nk3oX2mkVd0dzOo/2LQkD67qEvbt5NmbW4jY4Yonlyge68gj8B9ajeeNRh3vY1J++qsFUeuVY/wAq\nW0EhfeL+W7ix8pkffj6EgGu1M7mdhoMEJme4KETIuwZHAUnt+X8q3jIDjj868cufE+o6Z4gA0+Q+\nWu0PHkkMc5ORnHt7c4xmvWo5/MiRnXa5UFl9DWlzGStKxZL4PIH50BwRz/OmKRT+COvNMQhPbNIH\nxxS4465pMKO2aBAcE9OPSmsoyPlxTiBSHAB560xEDpx2qLy1qy4H4VHt9xSA+UKKKK4DuCiiigAo\noooAUYpynByKYKWgDRRsgMO9WVs1u2zvRCByZHCj9aoW7fJj0q2g3oy+oqZdwRabT7O3UGW/tyfS\nNw38qVGsFOFmQ/XisIRs8m0DmpUh2yBTy38qOXzC50AubJMAygH2BP8AKrMRhl/1ciN9DXJzSneQ\nOBSRRzSH5fzNL2YXOuk8qIEu6gD1OKzpdWtUbAYt7quf54rK+zykYeRSMcc5xQtlH/FIT9BQqXcO\nZF8azF3Vv++f/r1Yj1O1YDcdtZyQ26dI931NWYrO5u3Vbe3yM8nHA/Gm6aFzDr64hkCCJgQOuCKz\nhb3F3MFgid2z2FdVY+GEDBrhvMY/wKMCuhhsbezjG7ZDGPTilzKKshdTlbHwtLJhrpsf7Ccn866a\n10O2sYtxRIQOpbqakGokkrp8G8/89WHArMu7q3VjJfXRupevlRngfU9P501CcgbSLpvU8zy7GFp3\nHG4DjNV7tNh3anebT/zwi5P4+n44rHudfuHQxQBbeIjG2IYyPQnr/SqNvHNe3CxIeW5z2A9au0IK\n7ElKTsjWl11bZfL0+FYADw5+Z/z6D8BWVPf3Nw5klmkkY9S7Emrs1tHpV7CrIs+9c/vBgZz/ACrp\nj4d0xpt7QEbvmCBjjnt/OoniEo83Q0hRbly9TU+F3i9bJZ9L1YMdPndQszAFYicjDE9FPH05Pc1l\n/FjVtK/tFrXTCrK/JP8Ad9evPJ6Vfu3tNG0mSVYlSJRuKqOpryO6uXvLuac8F2LBSc4HpUU6ntE7\no1qw5LLr1JI41QZHSphg/wCFU0kOcHtVqJ8nP6Vsc7HGPmkaH5asIMgZoccH0piMqTg4qza25aLL\nDr0qNkLz7R1JrXjhKoFA6cVnJ2KRRFmB0XFO+ze1aIjOelL5Z9Ki4zNNqT2rd8I2Ek2uPFDG0ksl\nheoiIpLMTaygAAdSc1XEXqKUxD0rOrF1Kbguo07MlHgnxF/0L2q/+AUn/wATTv8AhDfEQ6eHtV/C\nyk/wqs0XtUTW7Gs/3/eP3P8AzHoXYvCniZCVPh3VxjofsUn/AMTU/wDwi/iXv4e1b/wCk/wrnrm0\nkY8HpUG25QcruAp8tfvH7n/mGh1i+GPEecHw/q3/AIBSf/E0v/CL+JOn9garj/rzk/wrlRO6/eja\nni7HoR+FLlr94/c/8w0Om/4RbxHj/kX9V/8AAOT/AAqNvCniQ/8AMv6t/wCAUn+Fc99rA65/KmNc\nFvuq5+go5a/eP3P/ADDQ6E+EvEn/AEL2rf8AgFJ/8TUEvhXxOOF8Oauf+3GX/wCJrBP2iRgNhVc8\nnvWtaQ2l7E1pKscUrHMMxwoD/wB1j/dPqehx0BNVauusfuf+YaEq+EPE3fw7q/8A4BSf/E0v/CH+\nJs5/4R3V/wDwCk/+JrJubK6tZmhML7lbaylcMpHUEdqrSJIqnzY5QfU9KfJX7x+5/wCYuaJ140PW\nbPwhfQ3el3lo02pWgT7TA0e4CO53EbgM4yPzFLBp/kx7UAAA5JPWuUsru5sdzQMFL4BJUH+Yq7H4\nk1GF/wB6Y5lPOCgX+WKKdGcb3ad3f8u/oDaZq3QKHBXHuKz3jeGUSR8MO9aVtew6uC0fyuPvRk8j\n/wCt702a1cMQq5HcVaFsVV1JwQrxZJGMrWxDLGqhlc4Aycday1gVXUmr0J8vLD7xHFNpW1C5owCH\n7G6XarI053SKwzknHb8q5vVfCLLG91YOpQAs0LHlR7Hv/nrWnLM8ZBBO89zUOq309voEr7yJJSIg\nRx16/oDVRbbJa6o4gKxOADUyLs+ZmA9hyahyw7nFKHx9K0GWhCGuAgmVCSAS3bPc4zmtnwbuTx1o\nKBgyjUrcf+RV5rESSMFtoGWXGWzxW/4OY/8ACaeHtxEn/Ext+nVf3q45rnxX8Cp/hl/6Sxx3Q3Q4\n9KuAqT7Yp2YKqkH5v8K6+DQ7WN1ZYlypzgqCPyrzowqJtqZLejcdq1dL8S3ulfugRND/AM85Ox9j\n2rScXumJWZ6GtocSgu5Ez+ZKGYnzG/vNnqfc0v8AZ6dgBXNR+PVL4bTeO5E3/wBjW9Z+JdKvAoE5\niduNkqkfmen61k4y6oq1yx/Z6+gNXtNs40s9UwgGbVR0/wCm0dGMjIxjtir1iMWmpf8AXuP/AEbH\nXLiP4fzX/pURpamKbOP+4MfSj7GnZQKvbR+NGAO1bNisUDZL6CkFioHQc1fJBpp5qWx2KgtlC4wO\ntMezibqo5q7g0YzS1AyG0m2blohUkOn20JykKg+uK0SuaTZRdhZFQxgdAKjMY9MVeMY96iZfWkMy\n7m1WVTx1rl7m3KTMMd67OQqvWufvkVp2OK1g2JowZbcuhAIBIqC2szGXeTlm/QVrmIdxSeUp61sm\nSYD2qw3W9fu7ScenYfqRTIiYWLDGavagwSYRJjJxuP8AIfrVXYAuBzVgKG3uzk5O3oa6jQrUi1V8\nY3c1zMSBpowejED9a9EtbZYIwoGFAwAO1TN2VhdRUh+UZp/k57VOExTwhzWBRU8gHtxTTbc9KviM\n9KURn0pAZ32fnpTha/7NXxHjtTgn50XAqJbD0qTyeORnFWAmKdikBVEIz0p4jGRxVjFJt9aQym4u\n7eVbi0VZMKQ0bHG4cdPyps/iOS1GXsLsn0ERIz9QDV8DFLjNVGo46GM6MZu7Oam8VapfA29pp7oz\ncb3QjbW9qtu/2uEvksLO1B57+QlS7fSrmrrm8jz/AM+1v/6KSsas3KtD0l+hdOmoJ2OH1ewaG7gv\n4x8inEgHb3pt3aNOjFfvou5R6+1dO0KOhR1DKRgg9xXNyTS28gjfl4ztY+o9f610U3fQprqYD/dO\neo6imblzgrg0+8ly7S4HJ5z05rFu9QfzCseBjv1rblbEbJl5A5p1jILjUI7aLDOTwOorlnnlk4eR\nyPQniuh8MxSw6tZyQ487cpXcOOeo+mCaHGyBl3VoTb6i6nlu/wDKqTNtGVq5rlwLjVLmRDld5VSO\n4HAP6VnIxIx+dEdhkik/ePJNK6GbCjoOvuajZyE4HsK1bG33qOMk0pOyApHThJEQRzTvC+nvb+Pf\nD5IOBqVsf/Iq10EdoO4FaWhWEZ8U6O+3lL6BvykFcuIqfuZ/4Zfkxx3R5MYiKaUIrqLnSME4XFZk\n1gYz0Ndqncky42McqP8A3SDXoNrL59upXliAeDXEPbEVuaTdS21tGx5XJX8v/wBYqKmupcTp4pWK\n4H45pwQswwMs3AHvUMWoWc6AHMTdwen51a0uH7bqsMELjIJYsO3p+tYls9Cs9UkMa/McDoa1Lm0t\nNf097edNrlcBxwQfXNee211c2/mwy/LLC+xx2PofoRXX6XesMH+LGa4LuLujta0sfP3ibRL/AEHX\nLi0v4GjfeWRsfLIueGU9x/8Aq6isjHpX1PrulaT4j0hrTVkQow+RsgOjf3lPY/5ORXz7r3gnU9Fv\nnjQC5td37q4jHDjtkfwn29u45r1aVZTXmcFSDi7nM1esbqbzkj3ZUn+LtT/7E1E9bVsepwKdFYzW\nRea4i4QcDd3zWnMuhnubiSgd6k8wYrJWcyAMKmEx4zWVjS5piQE+lSB/TtWWs+D1qdZ8Hg1SE2WZ\niuOSPxqlKmBuAOPVTUss4wSRkYrKnmjySjMh9uKsRDePj+In61DYANKxLY/CoZ5nkO1jmrOlsFdy\nWIHHbIoewjdgXK9c+9Xoht5yaqxYIBBH4VZMgiQsewzWJfQYkBvrqY5+WJf1q5qVkselwKm3fjmm\nWiNDozzH79w/H0pdQ/dWaRuDvYZJ6/hTlPl0PHr1HKpdGdKcLEHwQODnpW5oF2DZFAhfYTwGx+uD\n/KucYZZFJIDda6/QdIRNOvZomJaPbxzyDn0+lXh1dlUGotXLZuwQODEfVot4J9AQc/idopt7fix0\n6acqry9UXJO5j+Off8KiEjFghEg4yf3xI/75rm/Ewubpv3AlVbUZZCnBHB3e/wBPQZrsud6Svqan\ngTTpNQ8Qi+l3ssZMrE9N3b9f5V64HB4rxXw145u9EQQzwefaltzBAA3Tr9enfGB0r0jRvF+j646x\nWtwy3JG7yJVKt/gT9CaujJW1ephVjLmcmdMJCOhqZZAR1qiGHpj2qRX9c/hW1jMub/zpQc1XDkU9\nWFKwXJCccUEe9G7NNJoAU5pmM9/1pxPFNPXrQB8n0UUV553BRRRQAUUUUAFOH0ptAoAnibD9quxN\n81ZqnBq9GejetJgtxJVCSuR1NRxk7iakuCPMUHqRTFHzU0JkQTc3PSplYgBc4HtTcHt0pBkGmImD\n44zWjZabdXozGmF/vNwKylBaRQeASAa6BfFDiRl8uONAAqhVzjAxQ21sNK5pWXh6CLDTZmYdj0rd\nWGK1iDzOkUY7dK5GPxVdj5RKqr/sxjNTnWIW/euHuJf70rcCoUZSerB6HRtqcjoVsINqjrNIMD8q\nyLnUbWNy88hu5vc4UVi3eqz3IIeQ7R0UcKKqW7C6voICxxI4UkdsmrtCBKUpOxoXWr3N3lA2FJ+5\nGMA/41e0zwze6g4MzC3jPUsMtj6f41vW2n2WnKDDCNw6u3LGtO0f5wwPYVyVMXJ6RO2lhVvI4rxj\nosWkJZRWXmOZNwdicljxj+taWkaQ2m20PnjDyLkt6kf0FbOuxi5uoAdhWE+a2/tgf/rrM1DWYwkb\nScSP8kEYPIHqRUSlKSSNKcIwbkY/iWVZTbMOwcV2NtIfsts5PWBCPyriNdU+TbuxyWzWn4l1OfTv\nD+nJA2GmhCFs8gAD/GtIw5qaijGU+Sq5P+tDO8ZeIReMNOgbMUZzIw7n0/CuTHUYqLPOakQ1vGKi\nrIxnJyd2SgHPrU8b7TUINLnJqiDQjlBA5pJZBtwD9aprIV4pGctxVXFYu6dD5kzSH+HpWwsftUWn\nW5htlVvvHlq0Fj9qwk7soreWacI6trDk9Ksw6dPLjy4XYn0GaiUlHVlRi5O0Vcz1iyOlPERPGK34\nfDt7IATEqD/bIrQh8KucebOB6hFzXPPGUY7yOynl2KntB/PT8zkxAD2pwts9q7iPwxZofnLvj1bF\nWotIsIcYgjyO55rmlmNNbJs64ZJiJfE0vxPPG0/f0XP4U5dDnkHywOw9kNekrFbxDCBVA/uqBQZY\nx0JNYyzN9I/idcMgX2p/cv8AM88Twpev/wAurL/vYFSjwXet1jjX6uK7vz054NNM69hWLzOr0SOm\nOQ0Fu2/uOIHga8P8UA/4F/8AWoPgi9xw9v8A99f/AFq7TzCSaUOc4qP7Rr+X3Gv9hYXz+84SbwXq\niRsY4UkOOAjjNcxdWVzZXDRXELxSKeVcYNe0JNtPNUfFWipr2lNLGoN5bpuQ92UdVrswuYylLlqd\nTz8bk0acHOk3oeWxyTTZklld5AAuWJPAAAH4DApnmA8OODUhXy49v4A1VLcYOD6EV7KPnWMvLUCI\nyL90DJA9Kx2ft1rpIWVotrjKnIx7Vk2unme5kDcKv61fS5JniR4ZVkjZldeQynBFddpOtG+hMVwm\nLgD7wHDj/Gqg0RGGACD6+latjps8SFXcP/dJUAj8RUSaHcRoGZ8jHJ5Bq7BaNKmSNqjpTpLC42Hy\n2G7HDE9P0NU4LTXbQny7jepPIch/5gfoayeo00TXkRgKs4FZGuzrPpqxRjcwkDYA6DBya35ba71K\nGMXMaRMpOdhyG/wqrJ4fbKlWZXU5DKcEH6000hM4QLgEEVGVOeVNd22j3Qx5kNpcqvQSw7SfqybW\nP4mq82jlmy2j26r6QTyKf/Hi1XzoDjcLXQeCQyeNtBweDqVvn/v6tWJNGtDt3WWoW/qwkSf9MJ/O\np/D9nZ6d4q0q9kv1jgtr6GVxPE6NsVwScAEdB61liPeoTS6p/kxx3Rz9qhaZcs3zEM2Bz+f51WkY\nGRm55JNdevhSAOAvirQScbfvz4x9fKqs/hzT7WYxv4n0UuvB2pdMPwIhINH1ql3f3S/+RDlZz8Cu\n6HCnnvWrZrHCyvIQx9O1X00G1l5TxNpP/fq6H/tCtnR/C2m+erT65YXBz9xY7kL+P7oU/rNNa6/d\nL/5EVmbPhx5JdOZnXCFz5efTvj2z/WuksebTUf8Ar3H/AKNjqGOztlUKup2SqBgBUmAA+nl1ciS3\ntrS8AvoJnliCKsayZzvRv4lA6Ka469aNSNo3u2uj7ryLirGbtoKA9qk28cU4Jx1roYivsxSlCan8\nsCgIc81NhlbyzxR5Zq15fNHlgUcoXKvl0nlmrZjo2UcorlIoRUUiEjGK0SmRzVWRafKFzAuVk3tj\nPWs+WB2bJU5rpJLfJ6CoTa5PSrSBs5p7Vz0FVpreQAkA8V2C2YI9KPsK9wKYrnmd7FMtwZGRip6H\nFVhJ22n8q9W/s6I9UBHpikGlwZ/1Sj8KtSFdnn2h2MuoapCEQ+XGwdyRxgH/ACK9EWPsKuWtlFCP\nlCg4xxipzBzxUyd2CM/y8dcmpEUdqtmDIx278U0xYPykn8KmwyHYfSgod3NWQg4zml8sEdaLAVdl\nKEqbZnpSFT2pWAi2UBfWpNp96THNSxjSopNtP2855H4UhpMBmPSlxx6UuKQj0qRjSPSrz6jHIEM2\nnWsrqipvZpASFUKM4cDoBVPikIzzWc6UZ2v09f0aGmTvf24/5hNmf+Bzf/HK5zW9UsoZQ0mgafIG\nGMmS4/pLWu6blIrnNYhMi7GHQ9aIUKd+v3y/+SHzM5i98R26S7JfC2jkD7uJbvH/AKPqodf012Jb\nwno//f28/wDj9T32ltIBtAO0nFUzppQcxsT7Y/xrqVCl5/fL/wCSI5mP/t3Ts/8AIpaN/wB/bz/4\n/XWeH9YsPslzqA8OaXGbaIKhWS5++3ygczHtn34ri2sCvJQgH862LVzD4fEATaJLks2cZIVRj/0J\nqUsPTa6/fL/5IFJ3L76xYk8+GdKyf+ml1/8AHqP7Wse3hjSv+/l1/wDHqyBgHPzZpVHIGT+dJYen\n5/fL/wCSHzM6S0mtrmLzh4V00xK2C4e6wD7/AL6t61ezRBjQdOX6Pcf/AB2sTRrS4g8u4trma2lI\nyWQ8EehHSumjlV49t/ZjP/PzYrg/Vojwf+AkVM8NTff75f8AyRKkxBd2g/5glh/33P8A/HKkg1SG\n1uYriHR7BZYnEiNumOGByDgyUiWtpPvFtqdq5HSOQtFIPqGGB+dX9S8MT2mj2d/ame9Mz+XKkFtu\n8k4zzhske+PTpmsngoSTVvxf+ZpFtySOUmtVftWbdaWHByOa7i38N3N1o97eIs6zWknzQS2rxloz\n0dSevQ5HbBJ7ZzpNMu4rfzpbOZYR1kKHaOcDJ7fjW9pRFJWbRwE2mlSflyKnksfI8NrNjBF2Rz3B\nQf4GupktI3ByKwfEEwjitrFfupl2+pPH6fzo529CoLW5gCRh0Nd54DjEUc97KBkA7foBj+Z/SuBk\n+8cYr0G2P9l+FCh+Vmwhz2Pf+tOWxaV5JGX4m1Vo72O6gPLHZKP7wHT+tb+k60psxKWJKDPB615f\nrOp+dN5cTZwetaPh/VdkAtpH5DAgk9s9KydD3EzSVa87HoqXtxf3Kscu+eAO3tV6O7aW/fSpLbNw\nAPMWT5VUHpuz644wD0zWJpurwwWcpPBmyu4D7jKxx+BIz79Kkl103txDqEG6F9ixyTAZL7c4Vecl\nhk9uAck9M5K6eiLVNNc02Sa9oEtg8riF0hRVcliChDHA2nOcZyPmAPTrmuO1C0WaF06bhiuqvNQu\n9QGJ5G2DohbP4k9z/kVz1+3l5yBiumLOWSjf3TkFU22YXYEg9vSrCoWTPaq9/cBrrdjp1p8U4CcH\nityBXJSkFxio5ZNxqs0oBJI4poC3LcMV3Qsreo71SklZ85Qg/SomaPOQD+dMLk8DiqJEIwavaXIE\nkKhgrHnnoaoYNPiYpICKbV0B1sTDGSMfSmzuZGSBersBVOGf92BnmtHQ7c3erxnqF5rJLUmtPlg2\nbt3GsQsbXoEUE1W1ILJnjOenNST3S3GuSZXKL8oIqvfSwyyts4GcY9KwqX5jxZpqVyjJa/OgIxxX\nV+HJhDdm2lXdFdW7Jwe45H8v1rmrhmVoSBxjvWxaSiJbe4X70MgPPpWmGm1NXJVRxki1Y3NlJdPF\nFD5bAkYYk9K5nUpJrYPG1zJm2maME9Sp+ZW/I/pXYXdhDbazI9r5Y8wF5B1yDjBGeRn8uK4jW5Vm\nn1Lc2CLhF/75Uj+lelN6M9qDvqVr3TxbSxtFIuyVBIoJHfr+uatWOnSrtu0lVdjAjY+GB6g57fWo\nINTD20UE0EczQ8RyNnIB7H1FT+RfavcRW8AaWQ4IReg/wFYWTehT0WrPTvDXiCXVJTbTYd0j3Fxj\n1xzjg/hiunBz061zXhXw4NDty8kvmXEigOF+6vsPWukGB3yK7oXtqcbabuiUE8U4E4pikDrTuMAZ\nOKsQ8N6jmnqwJqLn14pwxSsBJwaTFNDU7d7UrDPk6iiivOO4KKKKACiiigAooooAWrcT/uxVQVPD\nkkAcmgDatdNF5a+awyQcA1TurOa2J+QsPUdq3LMG3tkjB6DJ+tWfOJHPNYqdmU4XON3Y7Gl3A+ld\ngfKb70UbZ9VFRNZ2Un3rWL8Fx/Kq9r5C5GYmkaVd63qMVhp8Dz3EpwqICT9fp712Fz8H9ee7Ntpb\nRahLEgNwY2CLE393cxAP4e/pXoPhLwzb6H4ZluLArbX9y+y5mBI2xqm9l3HoqgjdjqwI/hGYfE3j\naOz0VdE0JGtTyzzt98k9yPUj+npXTBRv72hEk+h4XfaXfaXcNDdwNE69QajSUgVr3WkXNzM0r3vm\nuxyS+c1SfRbxRldj9uGrFyjfRglK2pUdyepq/oGW1mFgMhFZv0OP1xVGSxvIwS0D4+madp14bC9E\nrqxGCpHelLWLsaU2lJNnoC6ojlIj948E9qu212gvfLDAjHr0rgTqkPmSEy8MdwwDx7VNZagskjbX\nYEDNcbovc7o1lex03iPURbNNIEMgVAMdj6Z9s1w1tdSS3zXdw+5vVug/wrU1i6klnRYJDtMAST3O\nT/jWTHYStxk4PauiEVynLUqe9p0LTzSXkjTSE4YhY1PZR/8Arrd8XoW8OaPLnICAfmoP9KxYLJoH\nRiONyj9a6jWLYXvg/TlCjKlRx7KRWisjGbvr5nndOUkGtM6LJnvSf2LOemad0BSDA0udo61fj8P3\nsrhI0ZmPQAE1v6f8N9TuyGuZktoz/eGW/Ks6lenSV5uxtRw9Ws7U4tnHlz9a39E0We7ZZjC7D+BQ\nM5969G0v4eaPYbXlhNzIP4pzx/3z0rqIrWCBQqKqgdFRcCvOq5otqUb+uh61HJJvWrK3pr/wDg7T\nwtfS4LosS/7Tc/lW3beEYl5mldz6AbRXTjphVAo2OTXFLFYifW3oelSyvC09439TOg0WxtgNsMYI\n7kbj+tXQkSDgZqTyD3NBjAHJrnlCUtZHfCMIK0Vb0It4HRR+VNaRvwpzACmECp5DZWGEk1XaQ5NT\nN04qBxk1LRpEbvPrTC9KRTCOayZqkLnmk3U0kgc0nWouXYkFPBqJTjNPFIVh+7tVyzuDHKpz0NUe\n/eng7SKuEnF3InFSVjhvG2lDS9bdoVxbXA82Pjjnqv4GuU+Yuc5FexeI9MbXPDLeSV+02p8xNwzl\nTww/kfwrzWPQbprkLOWKk8heK+rw1T2lJM+AzCh7Cu49GUrOB7y5EUedo+83oK6K30uCLcVTljkn\nNaFtpqWsYjjiCDuBVxbfFat3OIqRWK4Bxj6Vehs0UZxU8UJGPWrAj4qGwKwt09BTxbxjjaPyqcJT\nxGeuKQEAt1xjaBQbZD2Bq2q5pSg29930oAo/Zlx0pRbp/dGat+X7Umwg0AVfsyd1GPpSNZQtw0Sk\ne4q0FwakVRnAoAy20OwflrOI/wDABUJ8M6TnP2KP8q3VApSFJFO7QrIyotD0+MfJaxgfSrSWUEY+\nWJR9BVwDtTtvrRdsaSIFiXsKkCACn7R2oxzzUjGBSBS4NSAClCiiwEYBpdhJ6VIqjHrTgARRYCIL\nS7OPWpCPal2jtRYCLbxxQVxUvSkK5osBCRxVd481cKcVGUpgU2jHemeWKtlaAmKBECwnFHlf/rq0\nFPajGTyKAKwi56inLFzUxXmnbDxigBqpjoKftxRtIHUU5Tx0NADSB6UFPQU/IJHrS4yPagZBs56U\n7YT71IV4+lN20CI/LIB9KTYAMVOEPb8aZswcZoGRGMYppiBqxsOKQqaVgK3kjOKRovSrJU+lG3JA\nxS5QKvlUhi9KthBjGKNnpS5R3KXlfWgR84q4UHpzSBAuOKOUVygYXDHkY9Mc1Vu7ETIeOa2ioPUD\n8qaUB6ilyjucTNp7A4K4NU5NPfsprt7i1QnIFUntV9P0rRIVzjn09iMFP0qlLptyoISF2HXAFdy1\nuo7fpThbDGMU9gueefYbr/n3nH/bM/4Ve03SbmadWkgk8tTk5XGa6+6iS3geU/wjNVY/EcEdqPsk\nYWU8MXPWnzWVzOrNwVy7bQrjng+lXxhRjGa5231KeeQh442J6YOK29PD3DmPPzAZx1rKMpTdkjCO\nKjezQ27iilXc8QYryD3/AAPau+8HapHcWaqJGMMoBBVsYP8Ang1xhQgkEcip9Bum0zVTbMcQXBLx\nez/xD8ev51UJNOzOxrqj1QmVlEQgdd4wyu2cDHqMf4Vwviu71LQ9Zt5YEEMJhCjjKzAcMHHQ+nrg\niu/0udbmBGCnzVHzEHqPXn6VDr2jx6/pUtlIhWXG6GRuAj9vw7H2/Cunk5kCdjyvU7K3utPTWtMj\n8uAtturcc/Z5D3H+ye3oeO4FeaaurzXskoIZWx0PtXoWmXf9gaxJbakhFpLutr2I9lPBPHcHnP5V\ny2v6TL4f8Qz6dcEtGrbonA4kjPKsPqPyOR2rn5d+6NE7HOadZNc6hDFtJBbLD2HWtvxXqEtzImkW\n/Ajw0sgPVsdB+dW7e5trGFrkRjIGFAHLN6VU0yze4uXuJhueRizEjuaL2V2HNbU55/DjvBuj++P1\nqgdPmhbglWFepJZgLhRVe90GO6QlFAl69Ov1ohUbdmZtWOJs52QFrqR5VH3YMYye+W9M54/lUrjU\ntTmjkgdUEZG1F+XYB2A6Yq/JpbRuVZCpB5BFTWsEtpMJE4Pce1aOC3QOpJ6XNmFWEShyS2BnOM5/\nCoLuyF1CVJw3Y1o2zrcIOzdwatGD1XisORoEzzHUNFnjlbcv41mGzmjP3SBXr72ccgwyAj3rPn0O\nB+VQfTFaKb6iPLXhuB/BkVEYJm6jFejTaAo/hx+FVm0JQfuD8qr2lgOCWykPY1Zi05z2NdkNIVTy\noFSrpijgCk6oHIHTTt6Vnz2rRN0r0D+zR021S1HQvOiLIMMKUamoHJ2hkJbd93tXd+F4BbWNzeOO\nFU81x8Vo8U/lsDnOMV21+f7N8JrEOHl/lWi1ZyYiV5KBgWM5e/Zi2BITzU126QSSCQdHxuFQ6TD5\nt/bx46sAa1b2wVhMSODLWVS3Nqc9RQWrKN7FJLDC8TEgKKUSypaSISeVrSmjEdvFGOm0fyqpJHjG\nRwRisouzRxqac7ET6pNJZRMXLzbQmW54GAB9OBUP2CyMAW5uN0zHcQvJJPrWh4f063vrx7e4BZRy\nADjNd9ZaRa2YxbW0cXuq8/nXpwTkj1YVfdSR51a+Gprhl+zWMir3klJUfgDzXYeH/DbaXOZllbe/\n3wOhrqI4lHVRVkIB0A/CtI07MJSctx6JhenP0p20mljBHWpO3AGDW9yLEe3sacBkUpwOMUgXPOKd\nxCg9BxxTuRz0phBx1peRTEO3CjNNzk/WjeBxg/nQB8q0UUV5p3hRRRQAtFFJQAtJRRQAZrR0mAy3\nG8/cTn8aitNPluSD92P+8R/Kt+CBIIhHGMAVE5WVkUkT0u400c0uKwKHBvSpIJI1njMkmxdwG89F\nzwD+BqGmSxiRCmcHGR9aqO6BuyPQz4q+2aR9is42t9KsY+VZtzTEkEZPX5mG8+/WuFnuHmnaVzuZ\nmyc1dgia18LFQcmSf5j61mHJPvWlWVxR1HvIXlZwFXcScLwB9KFbtTQhPTvUiIe9Y3KHKxJpzQQz\nDEkKN9V5pVWpBgdcUXC3coNodg5z5RQ/7J/xoj0KFG3I/HuKvF8d6aZsd6pTYuRCR6Mjc7h+FXI9\nIRRgA/lVNbtl5Bx+Nb2j3i3r+S6guBkHHWjmZLgYuqWHkWPmAH5ZF/nWxYRifQ44jg+U5H41Z8R2\n4/sC5OPu7D/4+KuaNYNHFP5o2RmZiv8AtDpx+VKdaNOHNN2LoYepXnyU1dmdFpIkICx7mPQAZrWt\nfDa5BnwP9hQM/nW7a26hT5ahV7nuatooHCj8a8irj6lTSnoj6HDZPTp61nzPt0/4JTtdOgtVxHGq\ne69T+NXFQAfKvPrUqx8VKsQHWsFRcneW56icYLlirIriNj1p4i6HFWAoHamnFbKkkLnbEWNd1Owo\n4GKjLYppar0QrNiu+agZ+eKeTwagbgmspyNYxGs1MalNNPSsWbJETkioTUr1ETmsWbRI2phNPbrU\nZ681izZCGgCk3Y96TNQyiQfypwPvUe6jdQSSZp1RbqN/vxQKxsaTMFm2MAVbgg9xVG809La7kTA4\nPB9u1NtZTHMpB71tarAJLeK5Xk42k/yr28tq3i4nzee4a8VUW6MDyVJpfs4B6VYAGKNua9U+UIBE\nqnvTwgqXGKbjPHrSAaFHSnbQOKAMH+tKBQAmPbrSkZ7Uu3g0oHvQAzbzShRkkmnY59aXaD25oAiC\ninbcHFPCfMeKVR60AN2kcUbcGn4wOlL9BQMiJp2cjvSlc9RQEGRQAg60AcknFPx+FN+uKAFyfQUA\n7h0FA59KcCMdqAEAx70oPTHSlK8cUbfp9aAF3dqXI7CmlcnI707b7UAHQU3nn0p+BjgYpMUAMxkD\nmjbn2p5XHPWmkZoAj2jv0pQq9f50uOelIenrQAuBimllBpcZoKgnHNADSRkY9aX9OfSkCYp2Mnmg\nBAfapEZScf0pm30p20Dt+QoAfxn/AAppGO3FKFPWnDJHNMBMA8HuOtLgAjOcUdPYUpIxSAcNoHAp\njjoew96AMdelL1zzmgCMZ6nB/CjAP1peF4xS96AG7OcGk24PFPIz9KXAA6CgBhUYpu386kzx/hSY\n7gUAMwR0NJipQPakC5NAEXQ/zpDz0FTbaMDuKAK7rniq7welXzGCMjqKYU7GgDOMFN8og4xWkYva\nmeUAMY/SgRg68vk6RI3r1rho4tyb8ZHrmvT9RjU6bPvAZNpODXlrYDkRMQCegNKXwnNir8qNO0to\nSu9mbPoRxXQaBcRpdksQi4OOfauQWWaMYEjDnpmtfQoIbvUY0kLblO7Gazw7cZ8x5kYvnSfc7Nmz\nKSO5ptxB9oh2qxWRSGRx/Cw6GrDwAD5RjHSkQYGKcnrc95HWeFtZ+026s4AkGY5o89D3H+fUV3as\nJAHUHYehBzmvGYLltL1FbzJFvJhJxn7vo34d/avR7bUdttGobnaK6aM7qwGN8QPC0eoQnVYFKyAB\nZx6joG+o4H0x6GuNXRv+El0SHSbqQf2pYgiyuCoBmi/54n3H8P8A9cmvS7m+VrK5DtwYXH0+U1wG\nCJFkjJDKcqw6g1c/5hXOUXQTHhZCzbeMEYx+FaFpZLAQNoA+ldfcwLrcJuoEAv1H7+JR/rf9tR6+\no/H1rF8rHBGKydmIb9nG0Y4oeE8FcZFWYwdhz1FLjIqbWGZl1p6TjdtAf1rOOnFc/Ln8K6Ty+/6U\nhiBGMZqk2Jo5+K1ZGBAxWhGrFeetXfswx0pViC/4UPUCqIsikMftVzYfSjyyaVgKBhzxiozbrnoK\n0th5OOPYUeSCCeKOULmS1ohP3c0xrNOwrZNuDTDb+lLkC5jGzHXP51FNahI2ckYAyTW4YOxFYfii\nZrXSHC8NIdopezGmcTaob7XBhcgvWv4ulBuLazU8KBkCm+ELUPdvO44Xmor2MX2vSyAttTP+FbKy\nVzz5TTnKTGeHEP8AbsIKkhTn8q1L+XJY8YMh4pPD8Eceqs7McopPNRXBVrgqTwWJrmlrI5qslLVC\nXbDbFg/wCopgDGuakvFAKhTngUxxmAVGxxz0mg0aUW2uRsehIB/GvUkAZAR3FePGQxXkbDqTivXt\nLmFzp0M2eqDNejh56Hp0HdFpEFSiP8qYDg08SZGM/hXXc6LDwOO350uM0xZPWnbgeefwp3FYO1HO\nabml57dqZLQowepppyOf5UpGQOBxSdD/AEFUICaaWJPWnEHqDim4f0/WmB8sUVq/YYmHQj6Un9mx\nnuw/GvL50d9jLorWGmxf3mp66bB3DH6mjnQWMbFPSJ3OFUk+wrcSygU/6sfjVlEVRhQB9KlzCxjQ\n6XPJy2EHvWlb6ZBFgsN7ep6VcAxxTxioc2ykhAOAAMCnAYpM+1OBqRi/0oz6U3nNLSATOe1KqlnA\nxnIP8qUUquEmU/UfpTW4PY0yS2iOpP3Zxgf8BrOAGKspMTZzx/w71b9KrbgO9VMmHUcKfkCoDMKg\ne5x3qLGheMvFRtOPWs5ronpULTk55qlAXMaD3A9aga4B6GqfmE9KTY5+8ce1WqZLkSyXWzoc+wro\nfCDzzazG2NsQVsg9+K5coS42jPrXZeC9NuJbkXzZWCLIX/aJGP605RSRKlc6LxDB5ug3iDrtBz6Y\nINPsp/MiHzEjAwaXX7mG10yRJmUPMCqIxxu9az9Fl3QKDkEblIPbBrysyjekn5nu5BO1eUe6/I7O\n1P7gAd+tXoYs81mWLZVRW5CuVFcWFipK571d8rAR4ApcYHSp9vFRMOtd/LY41K5C4quxIqxIOKhY\nVlI3gRHmm09unWmcGsmaoRj+NQtzUvtTGwKyZaITSGnGmms2aohkqE8GpZTzioDWMzaAjGomNSE8\nVE361izVDN2elJupD+lNzipKH7s0bqYTzSE0DsSFqQNUROaN2KAsWUfBFdPYS/a9Pa3PORgf0rkl\nOTW1pM+yQCurCVXCocmMpKpSaY0qAcd+9KT0q1exgXBkxww3Cqo69MV9JGV1c/PK1N06jg+g1h+F\nGQDTsUbeeFxTMhvBNOAz0FOAwelGAO9AxMcU3bxmnnBHSkHFACY7UAegOad1HSgL9aAG96XHHFO2\n8GlAzQAg6UvGOtGeO2aBwOlACetA/GlxxQDgetACd6btyeeKlyMdKYQfYUAIBzQR2pwU803pQAoJ\nHvTgc/Wk3DPr708ZJ4NACDrzS96XGDS9cUAJg4zRRjFGPTpQAntSEYHtS0Ed/wAqAIiDRjHXmnsv\n1pNvHtQAmAewo2nIPpTscUdqAEfnnr/SkVQR6U8KOf5U3gcCgBwAAx2oyB6ZpN3HTmjqf50ABOOv\nSlVsdeKUYI4IBHPIFABJPT1wP8KAHdRTSox6GnfNjPeg5PWgBgB9OPrT1UeuMUpGOlOHIFAEbLj+\ntLtzT9tJjH4UANCCgLg8in0de9ADMYPFGzHXpT8CjtjFMBmPSgjFPGOhpcelAEZHFLtycmnClxQA\nwjHrSFTnpUnQe9Jg5zQBGVpuB3qbFBGe1AGH4knW20S4fuRgV5TbMS+evNeg+O7sJZx2q9XOSK42\n00yZrczhTt9amXwnHjKiUVFkW4k5PrW74dKrrSEg5PH86xQvUGrVhLJb6nayBiFDgH3rOl8Vjgg/\n3iZ6v5QPNIbdDzx9aliIeJWHcU7pW1rntldrSN0KsAVYYIPcVLDHcQxpEl5KsaLtUYU4HbkipOM0\n/tmmlbYBGFw0TK11IysMEELyPwFUGjMByMmPvjtV4txweKbnnGKdxEcLlHWSJyrA5DKelaL/AGXU\nuZ9ttdH/AJbAfI59WA6H3H5VnCLYxMePpTww78GnYLiz2M1pJ5c8eCRkEchh6g9DUfl57VoW168M\nfkyKs9sTkxPyM+o7qfcVMbCO6G+wdnOMmFv9YPp/e/D16UWAyQnFGzA6fpU7RspIYHIOCKTjGDTs\nIhCcUCJTzipSMClABNFgIvLHpQEBH0qxgU049KdgITCD1zR5QB44qcDtml256inYRAI8duKTy+4z\nzU5Qg0mKdgIPJBOSDXL+N7NpdKQoPutkV15Xd3rlfG9wYtOVA2Nx+7RYTu0zj9I1j+yrcwiMMX+8\nTWvoSx3csshcbm7VyxxIgbbk96jzcJJvtZDGfUGua+up5c4J6NnaI0dteTK7gcFd1ZPnoZQCRxms\nmNrzYRJKGycnPNOUSluVB+hqHa+hg0loma1yyyKpVRwOSKRI2eAFQD9KzhKUGASP1qWK6MR+bAPr\n60pIxqRb1RDcqQwIHzA5r0rwddfadGwP4HK1566LdE7pMcZyK7vwNbNa6RJuyQ7kg114a9jtwkjp\niT6/nSgDrT9wPakyfQ5rtO8Co7UoA28OQfSjBYdqUL0yB9apCI97Zxgn3p6tx0pdo7fzo4BqkIdz\nigkDjNIT7YpDk96q5IEgNjgE/rRuXvn8qQdxTRnHBYD6j/CqQj57A4p4WoEc81KrGvGPRH7KXbSq\nxqQHNIBmKcM0/FLtG3NIBoFOFAFLigYtGcfWm9qXFACk0maMAH1qJpSOgFICUZNNIHmIM9z/ACNU\n5LlyKbbSNJexAnuf5GrSEzWRtlpdE9FZP5Gs17v3qzK5FpfqP+mZ/wA/nWKWPNW1ciL3LbXBPSov\nMJzk1BuOKnt4RKrsxOF7DvTUSmxFZnbaoJJ6ADmpPJCf61uf7i8mnK5OUQeWvfb1P41a06zF5cCL\nfsBOCQMmtFAzciqCcgIgHoByTV+dy9vFFJFHAEByEHzMfU1qaPYR3+qNYQn7OqglpANztj37V0o8\nC6X1lluZOP74H9KUpxhoydWeZzXBBCwxggHJLdDWqvirXxAsEd1BBEBhVjjQYH4Cu9i8G6JEObUy\nf77k1ch8PaTAd0dhACPVc/zrJ1IvoUm1seaabp2raxqQuHaS6l/56OxKL7kmu8ttNGkx28HmGR2y\nZHPdjW4qhFCoAqjoAMCqWpDLW7d8n+lceOfPSZ6mUTccXHzuaenP8qV0kH3RXJ6exwv1rqrc/IK8\nzBPSx9VjEW+MVC4xTs96Y/TNeg3ocEVqQuKhepWNQsawkzoiRNUZOD1pXaoi/PSsJSOiKFLDpUbN\nzSMTyajZiKxcjVRHFqiZ6ax5qJmOaycjaMRZG5qEn3pWPemE1lJmsUIWqJjyac2c1GcmsmaJDSea\naTQTTGOKCth2aaTSZ4ppPNFgHbqTNMDUuadhEqtzVy0m8uVTnvWeOaniYgg+tCdncTV1Y6if99aK\n6nO3+VUuM+lWLBi9tsPQjFV2PJFfRYOpzwPh86oezrKS6/oLwPXFFKOlKV5zmus8YTqSe9L3x3pR\n60H1oATbk5OMUoGBxQBwaF6Z9aADGKApz7+1L0/GgHoPWgBOo60BfelUe9KeCPegBNnPUUu3A+Ug\nU6lIFAEZXkd6dswcEYPuKDwB3pxGcHJ6CgBhH/66TrzmnY4prHDAY60AGDikxTgTgYoJ4z+FABtA\n5pQo645pBycY4NOHNACYwfr604DA4oAyeaDwKAADAxnNBxil/hJ75obj8BQAzHfHHtQQB2/SnDOC\naRhx+FADcfnRwccUpyMc0DkZ70AJt5NJjtTsU5VyRzQBGBzz1o2/jUgQDmkPYUAMxRjrT+go2j0o\nARCu72p3QD09M0m351Gcc9qRjtyPTigBxYD1pV5FAXIJJpY6YC8enHbNKvFJ2NIDnFAD/TFIOvTi\nndUzTKAHcZpMDmlApcCgBuKXHGaWlAyKAGYzzSgcdKXHNA5oAbtp8aBm56UdDikOV6GgBCO2aTFO\nxilPFMCML70uMDrUmaq6lKYNOuJFHzKhxQCPN/EN0L7W5BnKqdorUvnitfDqRLgNgDiuXtXM17vf\nks+TWjrsrZjjz8owKpq10eViPfqN9jBDPlmyetadvBJexRpbozTlhtAGSa9M8L+AtIm0uG5uVaaS\nQBjngV3mmaPpejFTaWESsR97HNRTppyuxQw1Sq046HI29lc2tlCl3GY5dgyKfiuh8RN5rxyYAOOg\nrA6VrOKT0PVUXFWluAWlx+VJ05py1ABjPam7PapOlIfX1p2AZ5eaaYyO1TDoPelzRYRWKsvODSiY\nqRkc+3WrOM4pNqt1FVqBOupxzgLex+b2EgO2Qfj36d6PsPngm0cTjumMOP8AgPf8M1Wa1jYelVZY\n3tjujlIK8ilewXLJQqSMEMOCKApHSkt9dknby7yBbjHG8nDjsPm6/nmtLUbFbRYHR2ZZgWAPVcY7\n9/yFVfWwW6lHPqTQcMcDAFNxkkUu3B69qYgwM4FJ+tKB8hJJ9KaWw22mAvQcfrQc7h3pVJ6Zpeuc\n00IbjPU/jXGePbfzILd8kEEg12gAIxiuM8ek+RABxzmh7CezOKEBghEm4FD+n1oUIwyMfh3pv2or\ngFFbjnPel+0LHIH8lCp/h5rgcbs8qUW2SbQAf5Up+bG0EGmpMjEOY+D2z0oS6VmYeVjH+1UWaMJQ\nlFixjc/zYq5KsAjGcVSWU7s4HNOkkLADHWrW5LTuiaPULazJIgDt0w3SvSvC8sk+kRysoBYk4A6V\nxVnotpLpn2uUMx5+UHHT3rtvDXOjoenJwB2ruoLS524Zp7I2BIPQ09XyaiU849af1611nYSZGcCp\nBbyFNwU4+lV0/wCPlFPIZuldIq+TGAp4x0PNZzqOLKUbmAykcFTTcDoR3rfPlyHa8Sn3pkmnQPyA\nRQq66oHBmGMUYFXZrFI84Y9KqumwEg1vGSexk1YicDqKQdO340E9jzxSZ9easR//2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "threshold = 0.96\n", "img = PIL.Image.open('test_vis4.jpg')\n", "w, h = img.size\n", "img = img.resize((int(w/orig_scale),int(h/orig_scale)), PIL.Image.NEAREST)\n", "imbase = img\n", "print \"adding overlay\"\n", "for pair in found_pairs:\n", " if pair[2]>threshold:\n", " imbase = add_outline(np.array(imbase),pair[0],pair[1],pair[3], pair[2])\n", "showarray(imbase)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "ExecuteTime": { "end_time": "2016-11-16T14:49:42.706000", "start_time": "2016-11-16T14:49:42.476000" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4782\n" ] } ], "source": [ "img = PIL.Image.open('test_vis4.jpg').convert('LA')\n", "arr = np.array(img)\n", "w, h = img.size\n", "print w" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "ExecuteTime": { "end_time": "2016-11-16T14:47:17.920000", "start_time": "2016-11-16T14:47:17.914000" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2016-11-16T16:28:29.064000", "start_time": "2016-11-16T16:28:29.059000" } }, "source": [ "## Train dataset appender" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2016-11-16T17:17:47.673000", "start_time": "2016-11-16T17:08:38.012000" }, "code_folding": [ 53 ], "collapsed": false }, "outputs": [], "source": [ "img = PIL.Image.open('neg1.jpg')\n", "w, h = img.size\n", "#img = img.resize((int(w/4),int(h/4)), PIL.Image.NEAREST)\n", "imbase = img\n", "img = img.convert('L')\n", "w, h = img.size\n", "scale = 1\n", "width = 36\n", "height = 36\n", "import array\n", "findex = 4327\n", "with open('posneg.txt', 'a') as f:\n", " print \"starting processing\"\n", " while w >=36*2 and h >36*2:\n", " img = img.resize((int(w/1.3),int(h/1.3)), PIL.Image.NEAREST)\n", " w, h = img.size\n", " print img.size\n", " im = np.array(img)\n", " scale*=1.3\n", " found_pairs = []\n", " i = 0\n", " j = 0\n", " last_result = 0\n", " while i < int(h-36):\n", " while j < int(w-36):\n", " imtmp = np.array(im [i:i+36, j:j+36]/256.0)\n", " face_prob = get_face_prob(imtmp)\n", " if face_prob > 0.9:\n", " showarray(imtmp*255)\n", " buff=array.array('B')\n", " for k in range(0, 36):\n", " for l in range(0, 36):\n", " buff.append(int(imtmp[k][l]*255))\n", " findex += 1 \n", " # open file for writing \n", " filename = '0/lbe%i.pgm'%findex\n", " try:\n", " fout=open(\"train_images/\"+filename, 'wb')\n", " except IOError, er:\n", " print \"Cannot open file \", filename, \"Exiting … \\n\", er\n", " # define PGM Header\n", " pgmHeader = 'P5' + '\\n' + str(width) + ' ' + str(height) + ' ' + str(255) + '\\n'\n", " # write the header to the file\n", " fout.write(pgmHeader)\n", " # write the data to the file \n", " buff.tofile(fout)\n", " # close the file\n", " fout.close()\n", " f.write(filename + \" 0\\n\")\n", " j+=4\n", " i+=4\n", " j = 0\n", " print \"adding overlay\"\n", " for pair in found_pairs:\n", " imbase = add_outline(np.array(imbase),pair[0],pair[1],scale, pair[2])\n", "showarray(imbase)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "ExecuteTime": { "end_time": "2016-11-16T17:19:03.990000", "start_time": "2016-11-16T17:19:03.984000" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4327\n" ] } ], "source": [ "print findex" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
mne-tools/mne-tools.github.io
0.16/_downloads/plot_tf_dics.ipynb
1
6648
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Time-frequency beamforming using DICS\n\n\nCompute DICS source power [1]_ in a grid of time-frequency windows and\ndisplay results.\n\nReferences\n----------\n.. [1] Dalal et al. Five-dimensional neuroimaging: Localization of the\n time-frequency dynamics of cortical activity.\n NeuroImage (2008) vol. 40 (4) pp. 1686-1700\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Roman Goj <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport mne\nfrom mne.event import make_fixed_length_events\nfrom mne.datasets import sample\nfrom mne.time_frequency import csd_fourier\nfrom mne.beamformer import tf_dics\nfrom mne.viz import plot_source_spectrogram\n\nprint(__doc__)\n\ndata_path = sample.data_path()\nraw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'\nnoise_fname = data_path + '/MEG/sample/ernoise_raw.fif'\nevent_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'\nfname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'\nsubjects_dir = data_path + '/subjects'\nlabel_name = 'Aud-lh'\nfname_label = data_path + '/MEG/sample/labels/%s.label' % label_name" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read raw data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "raw = mne.io.read_raw_fif(raw_fname, preload=True)\nraw.info['bads'] = ['MEG 2443'] # 1 bad MEG channel\n\n# Pick a selection of magnetometer channels. A subset of all channels was used\n# to speed up the example. For a solution based on all MEG channels use\n# meg=True, selection=None and add mag=4e-12 to the reject dictionary.\nleft_temporal_channels = mne.read_selection('Left-temporal')\npicks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False,\n stim=False, exclude='bads',\n selection=left_temporal_channels)\nraw.pick_channels([raw.ch_names[pick] for pick in picks])\nreject = dict(mag=4e-12)\n# Re-normalize our empty-room projectors, which should be fine after\n# subselection\nraw.info.normalize_proj()\n\n# Setting time windows. Note that tmin and tmax are set so that time-frequency\n# beamforming will be performed for a wider range of time points than will\n# later be displayed on the final spectrogram. This ensures that all time bins\n# displayed represent an average of an equal number of time windows.\ntmin, tmax, tstep = -0.5, 0.75, 0.05 # s\ntmin_plot, tmax_plot = -0.3, 0.5 # s\n\n# Read epochs\nevent_id = 1\nevents = mne.read_events(event_fname)\nepochs = mne.Epochs(raw, events, event_id, tmin, tmax,\n baseline=None, preload=True, proj=True, reject=reject)\n\n# Read empty room noise raw data\nraw_noise = mne.io.read_raw_fif(noise_fname, preload=True)\nraw_noise.info['bads'] = ['MEG 2443'] # 1 bad MEG channel\nraw_noise.pick_channels([raw_noise.ch_names[pick] for pick in picks])\nraw_noise.info.normalize_proj()\n\n# Create noise epochs and make sure the number of noise epochs corresponds to\n# the number of data epochs\nevents_noise = make_fixed_length_events(raw_noise, event_id)\nepochs_noise = mne.Epochs(raw_noise, events_noise, event_id, tmin_plot,\n tmax_plot, baseline=None, preload=True, proj=True,\n reject=reject)\nepochs_noise.info.normalize_proj()\nepochs_noise.apply_proj()\n# then make sure the number of epochs is the same\nepochs_noise = epochs_noise[:len(epochs.events)]\n\n# Read forward operator\nforward = mne.read_forward_solution(fname_fwd)\n\n# Read label\nlabel = mne.read_label(fname_label)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Time-frequency beamforming based on DICS\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Setting frequency bins as in Dalal et al. 2008\nfreq_bins = [(4, 12), (12, 30), (30, 55), (65, 300)] # Hz\nwin_lengths = [0.3, 0.2, 0.15, 0.1] # s\n# Then set FFTs length for each frequency range.\n# Should be a power of 2 to be faster.\nn_ffts = [256, 128, 128, 128]\n\n# Subtract evoked response prior to computation?\nsubtract_evoked = False\n\n# Calculating noise cross-spectral density from empty room noise for each\n# frequency bin and the corresponding time window length. To calculate noise\n# from the baseline period in the data, change epochs_noise to epochs\nnoise_csds = []\nfor freq_bin, win_length, n_fft in zip(freq_bins, win_lengths, n_ffts):\n noise_csd = csd_fourier(epochs_noise, fmin=freq_bin[0], fmax=freq_bin[1],\n tmin=-win_length, tmax=0, n_fft=n_fft)\n noise_csds.append(noise_csd.sum())\n\n# Computing DICS solutions for time-frequency windows in a label in source\n# space for faster computation, use label=None for full solution\nstcs = tf_dics(epochs, forward, noise_csds, tmin, tmax, tstep, win_lengths,\n freq_bins=freq_bins, subtract_evoked=subtract_evoked,\n n_ffts=n_ffts, reg=0.05, label=label, inversion='matrix')\n\n# Plotting source spectrogram for source with maximum activity\n# Note that tmin and tmax are set to display a time range that is smaller than\n# the one for which beamforming estimates were calculated. This ensures that\n# all time bins shown are a result of smoothing across an identical number of\n# time windows.\nplot_source_spectrogram(stcs, freq_bins, tmin=tmin_plot, tmax=tmax_plot,\n source_index=None, colorbar=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
catalystcomputing/DSIoT-Python-sessions
Session5/code/09 Pandas - Part 2.ipynb
1
9867
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Air quality time series\n", "\n", "\n", "## Let us first describe the data\n", "\n", "This dataset is made of the daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30, 1973.\n", "\n", "- Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island\n", "- Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from 0800 to 1200 hours at Central Park\n", "- Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport\n", "- Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.\n", "\n", "** Source: **\n", "\n", "The data was obtained from the New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "df_temp = pd.read_csv('../data/airquality.csv', \n", " usecols = [\"Ozone\", \"Solar.R\", \"Wind\", \"Temp\", \"Month\", \"Day\"])\n", "\n", "# We exclude the first column (= index) because we don't need it.\n", "# To do that, just specify the columns of interest in usecols\n", "\n", "#Let's add a year column\n", "df_temp[\"Year\"] = \"1973\"\n", "\n", "# Let's inspect the first few elements\n", "df_temp.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# It would be useful to create a date column (better plotting)\n", "df_temp[\"Date\"] = pd.to_datetime(df_temp[\"Year\"] \n", " + df_temp[\"Month\"].astype(str) \n", " + df_temp[\"Day\"].astype(str) , format = \"%Y%m%d\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Let's inspect the first few elements again\n", "df_temp.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Check each column's data type\n", "print df_temp.dtypes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Interpolation\n", "\n", "As you can see from the printed values, there are a few NaN in our array.\n", "It probably means that the data was not recorded at this date.\n", "\n", "We have several ways of dealing with that :\n", "\n", "- We can ignore the relevant data line\n", "- Or we can infer the missing data with, say, an average of a few previous points.\n", "\n", "We are going to infer the missing data through interpolation. \n", "Say we have 1,NaN,2. \n", "We infer the missing value with $(1+2)/2 = 1.5$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Let's see how to do that with pandas\n", "\n", "# Get the data to interpolate\n", "ozone = df_temp[\"Ozone\"].values\n", "solar = df_temp[\"Solar.R\"].values\n", "# Get a series of timestamps\n", "timestamps = pd.to_datetime(df_temp[\"Date\"].values)\n", "\n", "# Create a new Series with the timestamp as index \n", "#(or we could have set the index as timestamp in our df_temp dataframe)\n", "s_ozone = pd.Series(ozone, index=timestamps)\n", "s_solar = pd.Series(solar, index=timestamps)\n", "\n", "oz_interp = s_ozone.interpolate(method = \"time\")\n", "sol_interp = s_solar.interpolate(method = \"time\")\n", "\n", "df_temp[\"Ozone_interp\"] = oz_interp.values\n", "df_temp[\"Solar.R_interp\"] = sol_interp.values\n", "\n", "df_temp.head(n=10) # use 10 rows to see how interpolation works" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Let's plot the data\n", "import matplotlib.pylab as plt\n", "from matplotlib.gridspec import GridSpec\n", "\n", "%matplotlib inline\n", "fig = plt.figure(figsize=(15, 15))\n", "gs = GridSpec(2, 2, bottom=0.18, left=0.18, right=0.88)\n", "\n", "axOz = fig.add_subplot(gs[0])\n", "axSol = fig.add_subplot(gs[1])\n", "axWind = fig.add_subplot(gs[2])\n", "axTemp = fig.add_subplot(gs[3])\n", "\n", "# Get time axis\n", "x_date = df_temp[\"Date\"].values\n", "\n", "# Get the y values \n", "y_oz = df_temp[\"Ozone_interp\"].values\n", "y_sol = df_temp[\"Solar.R_interp\"].values\n", "y_temp = df_temp[\"Temp\"].values\n", "y_wind = df_temp[\"Wind\"].values\n", "\n", "\n", "# Plot\n", "axOz.plot(x_date, y_oz, label = \"Ozone in ppm\", linewidth=1.5)\n", "axSol.plot(x_date, y_sol, label = \"Solar Radiation\", linewidth=1.5)\n", "axWind.plot(x_date, y_temp, label = \"Temperature in F\", linewidth=1.5)\n", "axTemp.plot(x_date, y_wind, label = \"Wind\", linewidth=1.5)\n", "\n", "\n", "#####################\n", "# Figure cosmetics\n", "#####################\n", "\n", "# Axis labels, legend and formatting\n", "for ax in [axOz, axSol, axWind, axTemp]:\n", " ax.set_xlabel(\"time\", fontsize=22)\n", " ax.legend(loc=\"best\", fontsize=22)\n", " \n", "# improve plot layout\n", "gs.tight_layout(fig, h_pad=3)\n", "\n", "#plt.savefig(\"visual.png\") #uncomment to save plot\n", "plt.show() " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Correlations\n", "\n", "We will now look at an interesting way to see interactions between time-series data : running correlations. \n", "\n", "Below is the for the formula of the sample correlation coefficient $r$.\n", "\n", "![corr.png](../figures/corr.png)\n", "\n", "The running correlation has an extra twist to it. We select a window of points (let's say 30) on which we compute the correlation coefficient. And then we slide this window in time.\n", "\n", "So the first value of $r$ is given by points $1, 2, 3, ... 30$. \n", "The second value of $r$ is given by points $2, 3, 4, ... 31$.\n", "And so on\n", "\n", "This is where the phrase \"running\" comes from. This running correlation gives us information of how the correlation of two time series evolves with time." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Clear plotting\n", "plt.clf()\n", "plt.close()\n", "\n", "#Let's plot the data\n", "fig = plt.figure(figsize=(15, 15))\n", "gs = GridSpec(2, 1, bottom=0.18, left=0.18, right=0.88)\n", "\n", "ax7 = fig.add_subplot(gs[0])\n", "ax30 = fig.add_subplot(gs[1])\n", "\n", "# Get time axis\n", "x_date = df_temp[\"Date\"].values\n", "\n", "# Get the y values \n", "\n", "r_sol7 = df_temp[\"Ozone_interp\"].rolling(window=7).corr(df_temp[\"Solar.R_interp\"])\n", "r_sol30 = df_temp[\"Ozone_interp\"].rolling(window=30).corr(df_temp[\"Solar.R_interp\"])\n", "\n", "r_wind7 = df_temp[\"Ozone_interp\"].rolling(window=7).corr(df_temp[\"Wind\"])\n", "r_wind30 = df_temp[\"Ozone_interp\"].rolling(window=30).corr(df_temp[\"Wind\"])\n", "\n", "# On the first few points, no correlation can be computed (because there are not enough previous points)\n", "# This gives a NaN value\n", "# We arbitrarily set this to 0.\n", "r_sol7 = r_sol7.fillna(0)\n", "r_sol30 = r_sol30.fillna(0)\n", "r_wind7 = r_wind7.fillna(0)\n", "r_wind30 = r_wind30.fillna(0)\n", "\n", "# Plot\n", "ax7.plot(x_date, r_sol7, label = \"7d corr Ozone/Solar\", linewidth=1.5, color = \"r\")\n", "ax7.plot(x_date, r_wind7, label = \"7d corr Ozone/Wind\", linewidth=1.5, color = \"k\")\n", "ax30.plot(x_date, r_sol30, label = \"30d corr Ozone/Solar\", linewidth=1.5, color = \"r\")\n", "ax30.plot(x_date, r_wind30, label = \"30d corr Ozone/Wind\", linewidth=1.5, color = \"k\")\n", "\n", "#####################\n", "# Figure cosmetics\n", "#####################\n", "\n", "# Axis labels, legend and formatting\n", "for ax in [ax7, ax30]:\n", " ax.set_xlabel(\"time\", fontsize=22)\n", " ax.set_ylabel(\"Correlation coefficient\", fontsize=22)\n", " ax.legend(loc=\"best\", fontsize=22)\n", "\n", "# improve plot layout\n", "gs.tight_layout(fig, h_pad=5)\n", "\n", "#plt.savefig(\"visual2.png\")\n", "plt.show() #uncomment to plot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# What does this show?\n", "\n", "- On a 7 days window, the correlation coefficient changes wildly. \n", "- There is a single period (july / august) where we see a trend (Solar radiation is correlated to Ozone, Wind is anti-correlated to Ozone)\n", "- On a 30 days window, we see much stronger trends. Wind is strongly anti-correlated to Ozone and the anticorrelation increases up to September. Solar radiation is mildly correlated to Ozone" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
guidj/xlab
lab/datio/_1.- Quijote.ipynb
2
55257
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of lines in file: 5537\n" ] } ], "source": [ "import re\n", "from operator import add\n", "file_in = sc.textFile('/home/jjgarcia/clase/spark/quijote.txt')\n", "print('number of lines in file: %s' % file_in.count())" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of characters in file: 305678\n" ] } ], "source": [ "chars = file_in.map(lambda s: len(s)).reduce(add)\n", "print('number of characters in file: %s' % chars)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(362, u'quijote'),\n", " (343, u'como'),\n", " (299, u'sancho'),\n", " (272, u'dijo'),\n", " (205, u'porque'),\n", " (188, u'bien'),\n", " (185, u'para'),\n", " (176, u'caballero'),\n", " (172, u'todo'),\n", " (171, u'respondi'),\n", " (166, u'vuestra'),\n", " (150, u'merced'),\n", " (136, u'esto'),\n", " (133, u'este'),\n", " (132, u'pero'),\n", " (127, u'cual'),\n", " (125, u'cuando'),\n", " (123, u'pues'),\n", " (119, u'donde'),\n", " (118, u'todos')]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get words from the input file\n", "words =file_in.flatMap(lambda line: re.split('\\W+', line.lower().strip()))\n", "# words of more than 3 characters\n", "words = words.filter(lambda x: len(x) > 3)\n", "# set count 1 per word\n", "words = words.map(lambda w: (w,1))\n", "# reduce phase - sum count all the words\n", "words = words.reduceByKey(add)\n", "# create tuple (count, word) and sort in descending\n", "words = words.map(lambda x: (x[1], x[0])).sortByKey(False)\n", "# take top 20 words by frequency\n", "words.take(20)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAILCAYAAABGn0J2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XtY1GX+//HncJBBRzkLwYqnVhMtLEQztRDdNANskUXH\nLLZMSDuYbda2u7Vb216V9t2y2vxaeMBVZr9Z5IG+eYRa103U0OpnrrqWYiUmCOgwICvM7w8v59uE\nIhrMwPB6XJdXzT33577f9+ePrpef7vnchsLCQjsiIiIiIuIyXu4uQERERESko1EIFxERERFxMYVw\nEREREREXUwgXEREREXExhXARERERERdTCBcRERERcTGFcBERERERF/NxdwEdSWVlJbt27SIiIoJO\nnTq5uxwRERER+YG6ujpKS0sZMmQIgYGBrTaPQrgL7dq1iz/96U/uLkNERERELuG3v/0tY8eObbXx\nFcJdKCIiAoAVK1YwYMAAN1fTfsyZM4eXX37Z3WW0O7pvl0/37Mrovl0+3bMro/t2+XTPLt++ffuY\nNm2aI7e1FoVwFzq/BWXAgAHccMMNbq6m/QgICND9ugK6b5dP9+zK6L5dPt2zK6P7dvl0z65ca28d\nVgh3g4qKCsrKytxdRrtRV1fXYe6X0WjEZDK5uwwRERFpZQrhbpCbW0hBwSF3l9FufPnlMV5+Oc/d\nZbhESIgPmZnpCuIiIiIeTiHcDfz84gkJGeHuMtoNX988QkJS3V1Gq7PZKikvL6C2tlYhXERExMMp\nhLuB0WjCZAp1dxntxvDhGR3mftXUtNxYZrO55QbrIHTProzu2+XTPbsyum+XT/es7dJhPdLmDR2q\n/4BcCf2H9/Lpnl0Z3bfLp3t2ZXTfLp/uWdulEC4iIiIi4mIK4SIiIiIiLqYQLiIiIiLiYgrhIiIi\nIiIu1uFD+JEjR8jJyeH48ePuLkVEREREOogOH8IPHz5MTk4OpaWl7i5FRERERDqIDh/CAQwGQ7P7\n1tXVtWIlIiIiItIRePxhPQcPHiQ7O5u9e/fS0NDAgAEDmD59OjExMaxfv5558+ZhMBiYM2cOcC6Q\n//nPfyY2NpYpU6bQt29f7rjjDhYvXsxXX31FZmYmkyZNor6+npUrV7JhwwZOnDhBSEgIY8aMISMj\nA19fXzevWkRERETaMo8O4YcPH2b27Nl06dIFs9mMt7c369atY86cOSxYsIDBgweTmprKe++9x7Rp\n04iOjgagZ8+ewLlAXlJSwnPPPUdycjJJSUn06NEDgPnz57Nx40YSEhKYPHky+/btIzc3l5KSEp59\n9lm3rVlERERE2j6PDuGLFy+mvr6e1157jYiICABuvfVW7r77bhYtWsTLL7/Mtddey3vvvUdcXByx\nsbGNxvj222+ZN28ecXFxjrZDhw6xceNGkpKSePTRRwFISUkhICCAVatWsWfPHgYPHuyaRYqIiIhI\nu+Oxe8IbGhrYtWsXI0eOdARwgODgYMaMGcPnn39OTU3NJceJiIhwCuAARUVFGAwG0tLSnNrT09Ox\n2+1s3769ZRYhIiIiIh7JY5+EV1ZWcubMGcf2ke+Ljo7Gbrfz3XffXXKcq666qlHb8ePHMRgMREVF\nObUHBwdjMpku+brD2lorVmvZJeeWjsVmq3R3CSIiIuIiHhvCW4qfn99Fv7uct6p8X37+XIxGf6e2\nmJh4Bg4cekXjiecICfHBaDS6uwwREZEOwWKxYLFYnNqqqqpcMrfHhvDAwED8/Pw4evRoo+9KSkow\nGAx0796dI0eOXPbY4eHh2O12vv76a8ePOQEqKiqwWq2Eh4c3ef3SpQsvuP9cxGg0YjKZ3F2GiIhI\nh2A2mzGbzU5txcXFjbYitwaPDeFeXl7Ex8ezbds2jh8/7gjGJ0+eZMuWLVx33XX4+/tjNBqx2+1Y\nrdZmjz1s2DCys7N59913Ha82BHj77bcxGAzceOONLb4e6Rhqa2upra1tsfEU6kVERNomjw3hAPfe\ney+ffPIJDz30EBMnTsTLy4v8/HzOnj1LVlYWAFdffTVeXl5YLBasViu+vr7ExcUREBBw0XH79u3L\nuHHjyM/P5/Tp08TGxrJv3z42btzIqFGjLvlmlNzcQgoKDrXoWkUuJCTEh8zMdAVxERGRNsajQ3iv\nXr1YsGAB2dnZWCwWGhoaiImJ4Xe/+x39+/cHzv2Y8tFHHyU3N5eXXnqJhoYGx2E9TZk7dy6RkZGs\nX7+ef/zjHwQHBzNt2jTuvvvuS9bl5xdPSMiIFlmjyMXYbJWUlxdQW1urEC4iItLGeHQIh3NPul94\n4YUm+0yYMIEJEyY0av/hRv3v8/Ly4q677uKuu+667JqMRhMmU+hlXydyuZrxFk4RERFxA499T7iI\niIiISFulEC4iIiIi4mIK4SIiIiIiLqYQLiIiIiLiYgrhIiIiIiIu1uFD+JEjR8jJyeH48ePuLkVE\nREREOogOH8IPHz5MTk4OpaWl7i5FRERERDqIDh/CAQwGQ7P71tXVtWIlIiIiItIRePxhPQcPHiQ7\nO5u9e/fS0NDAgAEDmD59OjExMaxfv5558+ZhMBiYM2cOcC6Qnz8xc8qUKfTt25c77riDxYsX89VX\nX5GZmcmkSZP44IMP2LRpE4cPH8ZqtRIZGUlqaiopKSluXrGIiIiItHUeHcIPHz7M7Nmz6dKlC2az\nGW9vb9atW8ecOXNYsGABgwcPJjU1lffee49p06YRHR0NQM+ePYFzgbykpITnnnuO5ORkkpKS6NGj\nBwBr166ld+/ejBgxAm9vbz7++GNeeeUV7HY7EydOdNuaRURERKTt8+gQvnjxYurr63nttdeIiIgA\n4NZbb+Xuu+9m0aJFvPzyy1x77bW89957xMXFERsb22iMb7/9lnnz5hEXF+fUvmDBAjp16uT4fMcd\nd/DEE0+watUqhXARERERaZLH7glvaGhg165djBw50hHAAYKDgxkzZgyff/45NTU1lxwnIiKiUQAH\nnAJ4dXU1VVVVXHfddRw7dgybzdYyixARERERj+SxT8IrKys5c+aMY/vI90VHR2O32/nuu+8uOc5V\nV111wfbPP/+cZcuW8cUXX3DmzBlHu8FgoLq6ms6dO190zNpaK1ZrWTNWIXLlbLZKd5cgIiIiF+Gx\nIbyl+Pn5NWr79ttveeyxx+jZsycPPPAA3bt3x8fHh+3bt/Puu+/S0NDQ5Jj5+XMxGv2d2mJi4hk4\ncGiL1i4SEuKD0Wh0dxkiIiJtksViwWKxOLVVVVW5ZG6PDeGBgYH4+flx9OjRRt+VlJRgMBjo3r07\nR44cueyx//nPf3L27Fn+9Kc/ERYW5mgvLi5u1vVLly684P5zkZZmNBoxmUzuLkNERKRNMpvNmM1m\np7bi4uILbkVuaR4bwr28vIiPj2fbtm0cP36c8PBwAE6ePMmWLVu47rrr8Pf3x2g0YrfbsVqtzR7b\n29sbALvd7mizWq1s2LChWdcHBQURGhp6GasREREREU/isSEc4N577+WTTz7hoYceYuLEiXh5eZGf\nn8/Zs2fJysoC4Oqrr8bLywuLxYLVasXX15e4uDgCAgIuOu6QIUPw9vbmySefJDk5mZqaGt5//32C\ngoI4efLkJeuqqKigrEx7wqXt0BNzERER1/LoEN6rVy8WLFhAdnY2FouFhoYGYmJi+N3vfkf//v2B\nc29LefTRR8nNzeWll16ioaHBcVjPxfTo0YNnnnmGJUuWsGjRIoKDg5k4cSLdunVj/vz5l6wrN7eQ\ngoJDLbZOkR8rJMSHzMx0BXEREREX8egQDueedL/wwgtN9pkwYQITJkxo1P7DjfrfN3z4cIYPH96o\nffz48Zesyc8vnpCQEZfsJ+IKNlsl5eUF1NbWKoSLiIi4iMeH8LbIaDRhMmlPuLQdzXhlvoiIiLQg\njz2sR0RERESkrVIIFxERERFxMYVwEREREREXUwgXEREREXGxDhvCX3jhhUYnJImIiIiIuEKHDeEG\ngwEvrw67fBERERFxow77isLHHnvM6dh5ERERERFX6bAh3Nvb290liIiIiEgH5bEhvKamhsWLF7Nt\n2zbKy8sxmUz07duXrKwsxyman376qeNUzNLSUqZOncr9999P586dsVgsnDhxgr59+/LII484jrk/\nr7i4mGXLlnHw4EF8fHyIjY0lMzOT6OhodyxXRERERNoRjw3h//Vf/8XWrVv5+c9/Ts+ePTl16hSf\nf/45R44c4eqrr8ZgMGAwGBpdt3nzZmpra0lJScFgMGCxWPj973/PypUrHU/PP/nkE379618TGRnJ\nPffcw5kzZ8jLy+Ohhx7izTffJDw83NXLFREREZF2xGNDeFFREbfffjv333+/o23y5MmXvO7EiROs\nWLGCLl26APCTn/yEp556ip07d3LjjTcC8N///d9069aNv/zlL5hMJgBGjBjBjBkzWLZsGU888UQr\nrEhEREREPIXHhnCTycS+ffsoLy8nJCSk2deNHj3aEcABrrvuOux2O8eOHQPg5MmTHDp0CLPZ7Ajg\nAH369GHIkCEUFRVdco7aWitWa9llrEak9dhsle4uQUREpMPx2BCelZXFiy++SHp6Ov369ePGG2/k\n1ltv5aqrrmryuu7duzt9Ph+0T58+DZzbOw7Qo0ePRtdGR0eza9cuzpw5g5+f30XnyM+fi9Ho79QW\nExPPwIFDL70wkVYQEuKD0Wh0dxkiIiIuZbFYHL8PPK+qqsolc3tsCE9ISOC6667jH//4B7t27eJ/\n/ud/sFgsPPvsswwdevGwe7F3h7fk6wyXLl1IbGxsi40n8mMZjUan/7MjIiLSEZjN5kaHNxYXFxMX\nF9fqc3tsCAcIDg4mJSWFlJQUqqqqmDFjBitXrmwyhF9KREQEAEePHm303dGjRwkICGjyKThAUFAQ\noaGhV1yDiIiIiLRvHhnCGxoaqKmpcdrbHRAQQEhICHV1dT9q7ODgYK6++mo2bNjA1KlTHXN89dVX\n7Ny5k1tvvfWSY1RUVFBWpj3h0nbpybiIiEjr8sgQbrPZSE9P55ZbbqFv3774+/uza9cuDhw4wMyZ\nM3/0+FlZWTz55JM88MADTJgwgdraWlavXk3Xrl3JyMi45PW5uYUUFBz60XWItJaQEB8yM9MVxEVE\nRFqJR4Zwo9HIHXfcwa5du9i6dSt2u52oqCgeeeQRkpOTHf1++J7wi707/IftcXFxvPjiiyxbtoyl\nS5fi4+PD4MGDmTFjhmO7SlP8/OIJCRnxI1Yo0npstkrKywuora1VCBcREWklHhnCfXx8yMzMJDMz\n86J9fvgu74iICLZs2XLBvhdqv/7667n++uuvqD6j0YTJpD3h0nbV1Li7AhEREc924VeBiIiIiIhI\nq1EIFxERERFxMYVwEREREREXUwgXEREREXExhfAWlJiYSE5OjrvLEBEREZE2TiFcRERERMTFFMJF\nRERERFxMIVxERERExMXaxWE9x48fJzc3l927d/Pdd9/h5+fH9ddfz/3339/ohMrDhw/z6quv8sUX\nX9CtWzdSUlIIDg7mpZdewmKxEB4eDpzbv52RkdHomPkpU6Zw/fXXOx3mY7VaWbZsGVu3bqWiooLu\n3btz++23M2XKlAuesCkiIiIi0pR2EcL/9a9/sW/fPsaMGUNoaCjHjx9nzZo1PProoyxbtoxOnToB\ncPLkSebMmUNDQwN33nknfn5+5Ofn06lTp2aH5R/2O3PmDLNnz+bkyZMkJyfTvXt39u7dS3Z2NidP\nnuSBBx5o8fWKiIiIiGdrFyF8+PDh3HLLLY3aHnjgAT766CN+9rOfAWCxWDh16hRvvPEG/fv3B2Dc\nuHFMmzbtiud+++23KS0t5a233iIyMhKApKQkgoODefvtt0lPTycsLOyKxxcRERGRjqddhPDzT7oB\n6uvrqa6uJjIyEpPJxMGDBx0hvKioiAEDBjgCOEBAQABjx45l7dq1VzT3Rx99xLXXXkuXLl2oqqpy\ntN9www1YLBY+++wzxowZc1lj1tZasVrLrqgekdZms1W6uwQRERGP1y5CeF1dHStWrGDDhg2UlZVh\nt9uBc1tHqqurHf2OHz9OTExMo+t79OhxxXN/8803fPXVV/z85z9v9J3BYKCiouKyx8zPn4vR6O/U\nFhMTz8CBQ6+4TpGWFBLig9FodHcZIiIircpisWCxWJzavv/QtTW1ixC+YMECNmzYQFpaGjExMXTp\n0gWDwcCzzz5LQ0NDi871w/EaGhqIi4vDbDY7wv/3XUnAX7p0IbGxsVdco0hrMxqNmEwmd5chIiLS\nqsxmM2az2amtuLiYuLi4Vp+7XYTwv//974wfP57777/f0VZXV4fVanXqFx4eztdff93o+pKSkkZt\nXbt2bXT92bNnKS8vd2qLjIykpqaG66+//scswUlQUBChoaEtNp6IiIiItC/tIoR7eXk1ekKdl5fX\nqG3YsGHk5eWxf/9+x77wyspKtmzZ0mjMyMhIPvvsM6e2devWNRozISGB5cuXs3PnTuLj452+s1qt\n+Pv74+3tfVnrqaiooKxMe8LFs+jpuYiISPO1ixA+fPhwNm3aRJcuXejZsyd79+5l9+7dBAQEOPUz\nm81s2rSJxx9/nNTUVIxGI++//z4RERF8+eWXTn0nTJjAyy+/zO9//3vi4uI4dOgQu3btIjAw0Knf\nlClT+Oc//8lvfvMbxo0bR79+/aitreXLL79k69atWCwWunXrdlnryc0tpKDg0JXdDJE2KiTEh8zM\ndAVxERGRZmgXIfyhhx7C29ubLVu2UFdXx6BBg3jppZd4/PHHnd7rHRwczMsvv8xrr73G3/72t0aH\n9XxfUlISpaWlfPDBB+zcuZPrrruOl156iV/96ldOY/r5+bFgwQJWrlzJRx995PjLwE9+8hPuuece\nunTp4uhrMBia9T5yP794QkJGtMCdEWkbbLZKyssLqK2tVQgXERFphnYRwrt06cLcuXMbtefm5jZq\n6927N3/+85+d2tavX9+on8FgYMaMGcyYMeOSYxqNRqZPn8706dObrPNC214uxGg0YTJpT7h4lpoa\nd1cgIiLSfni5uwARERERkY5GIVxERERExMUUwkVEREREXKxd7An/scaPH8/48ePdXYaIiIiICKAn\n4SIiIiIiLqcQ3oS9e/eSk5NDdXW1u0sREREREQ+iEN6EvXv3snz58kbH24uIiIiI/BgK4U2w2+3u\nLkFEREREPJDH/jCzrKyMxYsXU1RUhNVqJSoqivT0dG677TZHn7y8PNatW0dpaSm+vr5ERkaSnp5O\nYmIiOTk55OTkYDAYMJvNwLkDfnJzcwkPD+eDDz5g06ZNHD58GKvVSmRkJKmpqaSkpLhrySIiIiLS\nTnhkCK+oqGDWrFl4eXmRmppKQEAAO3bsYP78+dhsNiZNmkR+fj6vv/46CQkJpKWlUVdXx6FDh9i3\nbx+JiYmMGjWKo0ePUlhYyIMPPki3bt0ACAwMBGDt2rX07t2bESNG4O3tzccff8wrr7yC3W5n4sSJ\n7ly+iIiIiLRxHhnCs7OzsdvtZGdnYzKZAEhOTuaPf/wjOTk5JCcnU1RURO/evXn66acvOEafPn3o\n168fhYWFjBgxgvDwcKfvFyxYQKdOnRyf77jjDp544glWrVqlEC4iIiIiTfLIEL5161ZGjx5NfX09\nVVVVjvb4+Hg+/PBDDh48iMlk4sSJE+zfv5/+/ftf9hzfD+DV1dWcPXuW6667jl27dmGz2ejcufNF\nr62ttWK1ll32nCJtlc1W6e4SRERE2hWPC+GVlZVYrVby8/NZt25do+8NBgMVFRWYzWaKi4uZOXMm\nUVFRDBkyhDFjxjBo0KBmzfP555+zbNkyvvjiC86cOeM0fnV1dZMhPD9/Lkajv1NbTEw8AwcObeYq\nRdqekBAfjEaju8sQERFpNovFgsVicWr7/gPc1uRxIbyhoQGAsWPHMm7cuAv26du3LwEBASxfvpyP\nP/6YHTt2sHXrVtasWUNGRgYZGRlNzvHtt9/y2GOP0bNnTx544AG6d++Oj48P27dv591333XUcDFL\nly4kNjb2yhYo0kYZjUbH9i8REZH2wGw2O17AcV5xcTFxcXGtPrfHhfDAwEA6d+5MQ0MDN9xwQ5N9\n/fz8SEhIICEhgfr6ep566ilWrFjB1KlT8fX1veh1//znPzl79ix/+tOfCAsLc7QXFxc3q8agoCBC\nQ0ObtyARERER8TgeF8K9vLwYNWoUBQUFTJ06ld69ezt9X1VVRUBAAKdOnXK88QTA29ub6OhoduzY\nwdmzZ/H19XX8r3Wr1er0w0xvb2/A+T3iVquVDRs2NKvGiooKysq0J1w8i56Ei4iINJ/HhXCAzMxM\nPv30U2bNmkVSUhI9e/bk9OnT7N+/n927d7NmzRrmzp1LcHAwgwYNIigoiCNHjrB69WqGDx+Ov/+5\n/dr9+/d3vGUlMTERb29vRowYwZAhQ/D29ubJJ58kOTmZmpoa3n//fYKCgjh58uQl68vNLaSg4FBr\n3wYRlwoJ8SEzM11BXEREpBk8MoQHBQWxcOFCcnJyHHu9AwIC6NWrF1lZWQCkpKSwefNm3nnnHWpq\naggLCyMtLY1p06Y5xunfvz/33nsv69atY+fOndjtdnJzc+nRowfPPPMMS5YsYdGiRQQHBzNx4kS6\ndevG/PnzL1mfn188ISEjWm39Iq5ms1VSXl5AbW2tQriIiEgzGAoLC3U2u4scOHCArKws5szZzDXX\njHF3OSItxmoto7w8jzlzUvV7BxERadfO/zBz0aJF9OvXr9Xm8Wq1kUVERERE5IIUwkVEREREXEwh\nXERERETExRTCRURERERcrMOH8ClTpvDiiy+6uwwRERER6UDaTQjfu3cvOTk5VFdXt+i4BoOhRccT\nEREREbmUdhXCly9fjtVqdXcpIiIiIiI/SrsJ4d8/Il5EREREpD1rFydm5uTkkJOTg8FgwGw2A+e2\nkeTm5hIaGsrKlSvZsGEDJ06cICQkhDFjxpCRkYGvr6/TOH/9619Zt24dp0+fZsCAATz88MMXnO/Y\nsWMsWrSI3bt3U1dXR58+fbjrrru48cYbnfrl5eWxbt06SktL8fX1JTIykvT0dBITE1vnRoiIiIiI\nR2gXIfzmm2/m6NGjFBYW8uCDD9KtWzcMBgMBAQHMnz+fjRs3kpCQwOTJk9m3bx+5ubmUlJTw7LPP\nOsZYsmQJK1asYPjw4QwdOpSDBw8yd+5c6uvrneaqqKjggQceoK6ujkmTJtG1a1c2btzIb3/7W555\n5hlGjhwJQH5+Pq+//joJCQmkpaVRV1fHoUOH2Ldvn0K4iIiIiDSpXYTw3r17069fPwoLCxkxYgTh\n4eEAHDp0iI0bN5KUlMSjjz4KQEpKCgEBAaxatYo9e/YwePBgqqqq+Nvf/sbw4cP505/+5Bh38eLF\nrFy50mmu3NxcqqqqePXVVxk4cCAAt99+O/fddx8LFy50hPCioiJ69+7N008/7YpbICIiIiIepN3s\nCb+QoqIiDAYDaWlpTu3p6enY7Xa2b98OwK5du6ivryc1NdWp3w+vOz/mNddc4wjgAP7+/iQlJVFa\nWsrhw4cBMJlMnDhxgv3797fwqkRERETE07WLJ+EXc/z4cQwGA1FRUU7twcHBmEwmjh8/DsB3330H\n0KhfQEAAXbt2bTRmTExMo7mio6Md3/fq1Quz2UxxcTEzZ84kKiqKIUOGMGbMGAYNGnTJumtrrVit\nZc1fqEgbZ7NVursEERGRdqVdh/Dz3PGu7+joaJYvX87HH3/Mjh072Lp1K2vWrCEjI4OMjIwmr83P\nn4vR6O/UFhMTz8CBQ1uzZJFWFRLig9FodHcZIiIizWaxWLBYLE5tVVVVLpm7XYfw8PBw7HY7X3/9\nteNJNZz7caXVanXsHT//z6+//pqIiAhHv6qqKk6fPt1ozKNHjzaaq6SkxGksAD8/PxISEkhISKC+\nvp6nnnqKFStWMHXq1EZvZvm+pUsXEhsbewUrFmm7jEYjJpPJ3WWIiIg0m9lsdrx577zi4mLi4uJa\nfe52syf8/BO27x/WM2zYMOx2O++++65T37fffhuDweB4pWBcXBze3t689957Tv1WrVrVaJ5hw4bx\nr3/9iy+++MLRVlNTQ35+PhEREfTq1QuAU6dOOV3n7e1NdHQ0druds2fPXvlCRdqp2tpaHaYlIiLS\nTO3mSXj//v2x2+1kZ2eTmJiIt7c3N910E+PGjSM/P5/Tp08TGxvLvn372LhxI6NGjWLw4MHAub3f\n6enpWCwWnnzySYYNG8a///1vduzYQWBgoNM8U6dOpaCggCeeeILU1FS6du3Khg0bKC0tdXrl4dy5\ncwkODmbQoEEEBQVx5MgRVq9ezfDhw/H3d95q8kO5uYUUFBxq+Zsk4mYhIT5kZqbribiIiMgltKsQ\nfu+997Ju3Tp27tyJ3W4nNzeXuXPnEhkZyfr16/nHP/5BcHAw06ZN4+6773a6/r777sPPz4+1a9ey\nZ88eYmJimD9/Pk8++aTTnvKgoCD+8pe/sGjRIlavXu04rOf5559n6ND/27OdkpLC5s2beeedd6ip\nqSEsLIy0tDSmTZt2ybX4+cUTEjKi5W6OSBtgs1VSXl5AbW2tQriIiMglGAoLC3UevIscOHCArKws\n5szZzDXXjHF3OSItymoto7w8jzlzUgkNDXV3OSIiIlfk/J7wRYsW0a9fv1abp93sCRcRERER8RQK\n4SIiIiIiLqYQLiIiIiLiYgrhIiIiIiIu1m5C+LJly0hMTHT5vOvXrycxMZHjx4+7fG4RERER8Uzt\nJoQbDAa3HE9/fm4RERERkZbSbkK4iIiIiIinUAgXEREREXGxNnli5ueff85f/vIXvvrqK8LCwpg8\neXKjPvX19axcuZINGzZw4sQJQkJCGDNmDBkZGfj6+jr6TZkyhb59+zJlyhTeeOMNvvzyS0JDQ8nI\nyODWW291GvPw4cO8+uqrfPHFF3Tr1o2UlBRCQkIuWGNRURG5ubkcOHAALy8vrrvuOrKysujVq1eL\n3gsRERER8TxtLoR/9dVXPP744wQGBnLPPfdw9uxZcnJyCAwMdOo3f/58Nm7cSEJCApMnT2bfvn3k\n5uZSUlK0a1VfAAAgAElEQVTCs88+6+hnMBj4+uuveeaZZ5gwYQLjx4/ngw8+4MUXX6R///707NkT\ngJMnTzJnzhwaGhq488478fPzIz8/n06dOjWqcePGjbz44ovEx8eTlZXFmTNnWLt2LbNnz+bNN98k\nPDy8dW+SiIiIiLRrbS6EL1myBIBXX32VsLAwAG6++WbuvfdeR59///vfbNy4kaSkJB599FEAUlJS\nCAgIYNWqVezZs4fBgwc7+n/99dcsWLCAQYMGAZCQkEB6ejoffPAB999/PwAWi4VTp07xxhtv0L9/\nfwDGjRvHtGnTnOqrqanh9ddfJykpiTlz5jjax40bx1133cXKlSsdNYmIiIiIXEib2hPe0NDArl27\nGDlypCOAA0RHRxMfH+/4XFRUhMFgIC0tzen69PR07HY727dvd2rv2bOnI4ADBAQE0KNHD44dO+Y0\n5oABAxwB/Hy/sWPHOo21a9cuqqurGT16NFVVVY4/BoOBAQMGsGfPnh93E0RERETE47WpJ+GVlZWc\nOXOGqKioRt/16NGDHTt2APDdd99hMBga9QsODsZkMjV6p3f37t0bjde1a1dOnz7t+Hz8+HFiYmIu\nOO/3ffPNN9jt9gs+7TYYDHTp0qWJFZ5TW2vFai27ZD+R9sRmq3R3CSIiIu1Gmwrhl6u57+/29vZu\nsTntdjsGg4Hf/OY3BAUFXdFc+flzMRr9ndpiYuIZOHBoi9Up4g4hIT4YjUZ3lyEiItIsFosFi8Xi\n1FZVVeWSudtUCA8MDMTPz4+vv/660XclJSWOfw8PD8dut/P1118THR3taK+oqMBqtV7RDyPDw8Mv\nOS9AZGQkdrudwMBAbrjhhsueB2Dp0oXExsZe0bUibZnRaMRkMrm7DBERkWYxm82YzWantuLiYuLi\n4lp97jYVwr28vIiPj2fbtm2cOHHCsS/8yJEj7Nq1y9Fv2LBhZGdn8+677zr9OPLtt9/GYDBw4403\nXvbcw4YNIy8vj/379zv2hVdWVrJlyxanfvHx8XTu3JmVK1cyePDgRk++q6qqCAgIaHKuoKAgQkND\nL7tGEREREfEMbSqEA/zyl79kx44dPPTQQ0ycOJH6+nree+89evfuzZdffglA3759GTduHPn5+Zw+\nfZrY2Fj27dvHxo0bGTVqlNObUZrLbDazadMmHn/8cVJTUzEajbz//vtEREQ45gXo3Lkzc+bM4fnn\nnyczM5PRo0cTGBjId999x/bt2xk0aBAPP/xwk3NVVFRQVqY94dKx6Cm5iIjI/2lzIbxPnz7Mnz+f\nN954g2XLlhEWFsY999xDeXm5UxieO3cukZGRrF+/nn/84x8EBwczbdo07r77bqfxmrtvPDg4mJdf\nfpnXXnuNv/3tb47DeoKDg3nppZec+o4ZM4bQ0FAsFgtvv/02//nPfwgNDeXaa6/ltttuu+RcubmF\nFBQcalZdIp4iJMSHzMx0BXERERHAUFhYaHd3ER3FgQMHyMrKYubM1Vx99Qh3lyPiMjZbJTU1BcyZ\nk6qtWCIi0qad3xO+aNEi+vXr12rztLkn4R2B0WjCZFIQkY6lpsbdFYiIiLQdbeqwHhERERGRjkAh\nXERERETExRTCRURERERcTCFcRERERMTFFMJFRERERFxMIVxERERExMUUwkVEREREXEwhXERERETE\nxdp9CF+2bBmJiYmUlJTwhz/8gaSkJCZOnMjrr79OXV0dAKWlpSQmJrJhw4ZG1ycmJpKTk+PUVlZW\nxosvvkhqaiq33nor99xzDx988EGja/Py8rjnnnu47bbbSElJ4f7776egoKB1FioiIiIiHqPdn5hp\nMBgAeOaZZ7jqqquYMWMGX3zxBXl5eVitVn79619f1ngVFRXMmjULLy8vUlNTCQgIYMeOHcyfPx+b\nzcakSZMAyM/P5/XXXychIYG0tDTq6uo4dOgQ+/btIzExscXXKSIiIiKeo92H8POioqJ49tlnAZg4\ncSKdO3dm7dq1TJ48GX9//2aPk52djd1uJzs7G5PJBEBycjJ//OMfycnJITk5mU6dOlFUVETv3r15\n+umnW2U9IiIiIuK5PCKEGwwGJk6c6NT285//nDVr1rB9+3ZGjx7d7LG2bt3K6NGjqa+vp6qqytEe\nHx9PYWEhBw8eZODAgZhMJk6cOMH+/fvp37//ZdVbW2vFai27rGtE2jObrdLdJYiIiLQpHhHC4dyT\n8B9+NhgMlJaWNnuMyspKrFYr+fn5rFu3rtH3BoOBiooKAMxmM8XFxcycOZOoqCiGDBnCmDFjGDRo\n0CXnyc+fi9Ho/HQ+JiaegQOHNrtWkfYmJMQHo9Ho7jJEREQcLBYLFovFqe37D2Fbk8eE8Kac3zf+\nQw0NDRf8PHbsWMaNG3fBa/r27QtAdHQ0y5cv5+OPP2bHjh1s3bqVNWvWkJGRQUZGRpP1LF26kNjY\n2Mtdhki7ZjQaHVu8RERE2gKz2YzZbHZqKy4uJi4urtXn9pgQ/s033xAREeH02W63c9VVV9G1a1cA\nrFar0zXHjx93+hwYGEjnzp1paGjghhtuuOScfn5+JCQkkJCQQH19PU899RQrVqxg6tSp+Pr6XvS6\noKAgQkNDL2d5IiIiIuJBPCKE2+12Vq9e7fS3lry8PAwGA8OGDaNz584EBATw2WefOd5uArB69Wqn\np+ReXl6MGjWKgoICpk6dSu/evZ3mqaqqIiAgAIBTp07RrVs3x3fe3t5ER0ezY8cOzp4922QIr6io\noKxMe8Kl49JTcRER6eg8IoQDHDt2jN/+9rcMHTqUvXv3snnzZsaOHesI0hMmTMBisfDSSy/Rr18/\nPvvsM8fT8u/LzMzk008/ZdasWSQlJdGzZ09Onz7N/v372b17N2vWrAFg7ty5BAcHM2jQIIKCgjhy\n5AirV69m+PDhl3wbS25uIQUFh1rnRoi0AyEhPmRmpiuIi4hIh+URIdxgMPD000+zZMkS3nrrLby9\nvUlNTSUrK8vRJyMjg6qqKv7+97/z4YcfMmzYMF544QVSU1OdnoYHBQWxcOFCcnJyHPu8AwIC6NWr\nl9N4KSkpbN68mXfeeYeamhrCwsJIS0tj2rRpl6zXzy+ekJARLXsTRNoJm62S8vICamtrFcJFRKTD\n8ogQDuf2c//hD3+46PedOnXiscce47HHHnNq37JlS6O+AQEBPPzwwzz88MMXHe/222/n9ttvv6Ja\njUYTJpP2hEvHVVPj7gpERETcq90fWy8iIiIi0t4ohIuIiIiIuJhCuIiIiIiIi7X7EJ6RkcGWLVuc\nXhcoIiIiItKWtfsQ3tr27NlDYmIin376qbtLEREREREPoRDeDBc79l5ERERE5EoohIuIiIiIuJhC\nuIiIiIiIi7n8sJ6ysjKWLFnCzp07qaqqIjQ0lPj4eB5++GH++te/snz5cgoKCpyuWb9+PfPmzcNi\nsRAeHg7Atm3byM/P59///jdVVVWEhYUxfvx47rzzTry8/u/vFo888ginT5/m6aef5pVXXuFf//oX\nJpOJSZMmMWXKFKd5Tpw4wYIFC/jkk0/w9/dnzJgxDB06tNHR9gAffvghFouFI0eOYDQaGTp0KJmZ\nmYSG6hAeEREREWmaS0N4eXk5M2fOpLq6muTkZHr06EFZWRkfffQRtbW1GAyGi+6//mH7hg0b6Ny5\nM7/4xS/w9/dn9+7dLF26FJvN5nS8vMFg4NSpUzzxxBOMGjWK0aNH8/e//5233nqLPn36MHToUADq\n6ur41a9+xYkTJ0hNTSUkJIRNmzaxe/fuRnOf/0vBgAEDmDFjBhUVFbz77rvs3buXN998ky5durTw\nnRMRERERT+LSEP7mm29SUVHBwoUL+elPf+po/+Uvf3nZY/3ud7+jU6dOjs/Jycl07dqVNWvWMH36\ndHx8/m9pJ0+e5Mknn2Ts2LEATJgwgSlTpvC///u/jhC+du1avvnmG37/+99z8803A5CUlMT06dOd\n5q2vr+fNN9+kT58+vPLKK/j6+gIwaNAgfvOb3/DOO++QkZFx2esRERERkY7DZSHcbrezbds2brrp\nJqcAfqW+H8Bramqoq6tj0KBB5OfnU1JSQp8+fRzf+/v7OwI4gI+PD9dccw3Hjh1ztO3YsYPg4GBH\nAD8/R1JSEm+++aajbf/+/VRWVnLPPfc4AjjAjTfeSHR0NNu3b79kCK+ttWK1ll3ZwkXaOZut0t0l\niIiIuJ3LQnhlZSU2m41evXq1yHiHDx9m8eLF7N69G5vN5mg3GAxUV1c79b3QPu2uXbvy1VdfOT4f\nP36cqKioRv169Ojh9Lm0tBSDwdCoHSA6Opr/9//+3yVrz8+fi9Ho79QWExPPwIFDL3mtiCcICfHB\naDS6uwwREengLBYLFovFqa2qqsolc7v8h5lXoqGhwemz1Wpl9uzZmEwmpk+fzlVXXUWnTp04cOAA\nb731VqP+3t7eFxz3Qj+4dIWlSxcSGxvrlrlF2gKj0YjJZHJ3GSIi0sGZzWbMZrNTW3FxMXFxca0+\nt8tCeGBgIJ07d+bw4cMX7dO1a1cAqqurnX7cWFpa6tRvz549WK1WnnvuOa699lpH+7fffnvF9YWH\nh1+wtpKSEqfPERER2O12SkpKGDx4cKO+59/e0pSgoCC9RUVERESkA3NZCDcYDIwcOZLNmzdz4MAB\n+vXr16hPZGQkdrudzz77jOHDhwPn9ntv3LjRqZ+3tzd2u93pSfZ//vMf1qxZc8X1DRs2jE8++YSP\nPvqIW265BYDa2lref/99p379+/cnMDCQdevWMWHCBMcPQIuKiigpKWnWjzIrKiooK9OecBHQU3ER\nEemYXLod5b777uOTTz5h9uzZJCUl0bNnT8rLy/noo4947bXXiI+Pp3v37sybN4/Jkyfj5eXFBx98\nQFBQECdOnHCMM3DgQLp27crzzz9PamoqAJs2bfpRx8snJSWxevVqnn/+eQ4cOEBwcDCbNm1qtG/V\n29ubzMxM5s+fz+zZs0lMTOTkyZPk5eVx1VVXkZaWdsm5cnMLKSg4dMW1iniSkBAfMjPTFcRFRKRD\ncWkIDw0N5Y033mDJkiVs2bIFm81GaGgow4YNw2g04u3tzXPPPccrr7zC0qVLCQ4OJi0tjS5dujB/\n/nzHON26deP55593jNW1a1d+9rOfccMNN/D44483u57vh3Y/Pz/+/Oc/8+qrr/Lee+9hNBoZO3Ys\nQ4cO5YknnnC6bvz48fj7+5Obm8tbb72F0Wjk5ptvJjMzs1nvCPfziyckZESz6xTxVDZbJeXlBdTW\n1iqEi4hIh2IoLCx0z68TO6ADBw6QlZXFnDmbueaaMe4uR8TtrNYyysvzmDMnVb+TEBGRNuH8DzMX\nLVp0we3TLcXr0l1ERERERKQlKYSLiIiIiLiYQriIiIiIiIsphIuIiIiIuJhCeAt64YUXGp26JCIi\nIiLyQwrhLchgMPyod5WLiIiISMegEC4iIiIi4mIK4SIiIiIiLubSEzNdraysjCVLlrBz506qqqoI\nDQ0lPj6ehx9+mL/+9a8sX76cgoICp2vWr1/PvHnzsFgshIeHA7Bt2zby8/P597//TVVVFWFhYYwf\nP54777wTLy/9PUZERERELo/HhvDy8nJmzpxJdXU1ycnJ9OjRg7KyMj766CNqa2ub3L/9w/YNGzbQ\nuXNnfvGLX+Dv78/u3btZunQpNpuNrKwsVyxHRERERDyIx4bwN998k4qKChYuXMhPf/pTR/svf/nL\nyx7rd7/7HZ06dXJ8Tk5OpmvXrqxZs4bp06fj4+Oxt1FEREREWoFHpke73c62bdu46aabnAL4lfp+\nAK+pqaGuro5BgwaRn59PSUkJffr0uazxamutWK1lP7oukfbOZqt0dwkiIiJu4ZEhvLKyEpvNRq9e\nvVpkvMOHD7N48WJ2796NzWZztBsMBqqrqy97vPz8uRiN/k5tMTHxDBw49EfXKtLehIT4YDQa3V2G\niIh0QBaLBYvF4tRWVVXlkrk9MoT/GA0NDU6frVYrs2fPxmQyMX36dK666io6derEgQMHeOuttxr1\nb46lSxcSGxvbUiWLtGtGoxGTyeTuMkREpAMym82NDlosLi4mLi6u1ef2yBAeGBhI586dOXz48EX7\ndO3aFYDq6mq6dOniaC8tLXXqt2fPHqxWK8899xzXXnuto/3bb7+94vqCgoIIDQ294utFREREpH3z\nyBBuMBgYOXIkmzdv5sCBA/Tr169Rn8jISOx2O5999hnDhw8Hzu333rhxo1M/b29v7HY7drvd0faf\n//yHNWvWXHF9FRUVlJVpT7hIc+hJuYiIeCKPDOEA9913H5988gmzZ88mKSmJnj17Ul5ezkcffcRr\nr71GfHw83bt3Z968eUyePBkvLy8++OADgoKCOHHihGOcgQMH0rVrV55//nlSU1MB2LRp0486nj43\nt5CCgkM/eo0iHUFIiA+ZmekK4iIi4lE8NoSHhobyxhtvsGTJErZs2YLNZiM0NJRhw4ZhNBrx9vbm\nueee45VXXmHp0qUEBweTlpZGly5dmD9/vmOcbt268fzzzzvG6tq1Kz/72c+44YYbePzxxxvN25xw\n7ucXT0jIiBZdr4gnstkqKS8voLa2ViFcREQ8iseGcICwsDCeeOKJi35/9dVX8/rrrzdqHz9+vNPn\nmJiYC/bbsmWL0+em5vo+o9GEyaQ94SLNUVPj7gpERERans5cFxERERFxMYVwEREREREXUwgXERER\nEXExhXARERERERdTCBcRERERcTGFcBERERERF1MIFxERERFxMYXwy3DmzBl3lyAiIiIiHsBjDutZ\ntmwZy5cvZ9myZSxZsoRdu3bh7e3Nz372MzIzM+nUqZOj76ZNm3jnnXc4cuQIfn5+DBkyhPvvv5+w\nsDBHn0ceeYTTp0/zxBNP8Je//IUDBw6QlJTEAw88AMDq1atZs2YN33zzDQEBAYwcOZLp06frVD8R\nERERuSSPeRJ+/rj4Z555hrNnzzJjxgxuvPFG8vLy+POf/+zot2LFCl544QV69OjBrFmzSEtLo7i4\nmEceeYTq6mqn8aqqqvj1r3/NT3/6Ux588EGuv/564Fzgf/XVVwkLC2PWrFncfPPNrFu3jscff5z6\n+nrXLlxERERE2h2PeRJ+XlRUFM8++ywAEydOpHPnzqxdu5bJkyfTuXNnli1bxn333YfZbHZcM2rU\nKGbMmMGaNWuYOnWqo72iooJHH32U22+/3dFWVVVFbm4uQ4cO5YUXXnC09+jRg9dee41NmzY1OvZe\nREREROT7POZJOJx7ej1x4kSntp///OfY7Xa2b9/O1q1bsdvt3HLLLVRVVTn+BAUFERUVxe7du52u\n9fX1bRSoP/nkE+rr65k0aZJTe1JSEv7+/mzfvr11FiciIiIiHsMjn4T/8LPBYKC0tBSDwYDdbmfa\ntGmNrjMYDPj6+jq1hYaG4u3t7dR2/Phx4NyT7+/z8fEhMjLS8X1TamutWK1lzVqPSEdms1W6uwQR\nEZFW4XEhvCl2ux2DwcC8efMce8i/z9/f3+mzn59fq9SRnz8Xo9F5rpiYeAYOHNoq84m0ZyEhPhiN\nRneXISIiHshisWCxWJzaqqqqXDK3x4Xwb775hoiICKfPdrudiIgIvLzO7b6JiIho9MS8ucLDwwEo\nKSlxmufs2bMcO3aMuLi4S46xdOlCYmNjr2h+kY7GaDTqrUMiItIqzGaz0+8EAYqLi5uV534sj9oT\nbrfbWb16tVNbXl4eBoOBG2+8kVGjRmEwGMjJybng9adOnbrkHHFxcXh7e5OXl+fU/v7772Oz2Rg+\nfPiVL0BEGqmtrcVqtbq7DBERkRblcU/Cjx07xm9/+1uGDh3K3r172bx5M2PHjqV3794ATJ8+nezs\nbI4dO8bIkSPx9/fn2LFjbNu2jaSkJNLT05scPyAggDvvvJPly5fz+OOPc9NNN1FSUsLatWu55ppr\nGDt27CVrzM0tpKDgUIusV6QjCAnxITMzXU/ERUTEY3hUCDcYDDz99NMsWbKEt956C29vb1JTU8nK\nynL0MZvN9OjRg1WrVrF8+XIAwsLCiI+PZ8SIEc2aJyMjg8DAQN577z3eeOMNunXrRkpKCtOnT2/0\nQ84L8fOLJySkeXOJdHQ2WyXl5QXU1tYqhIuIiMfwqBAOEBgYyB/+8Icm+4wcOZKRI0c22efll19u\n8vuJEyc2eh1icxmNJkym0Cu6VqQjqqlxdwUiIiIty6P2hIuIiIiItAcK4SIiIiIiLqYQLiIiIiLi\nYh4TwjMyMtiyZQvdunVzdykiIiIiIk3ymBAuIiIiItJeKIQ3Ye/eveTk5FBdXe3uUkRERETEgyiE\nN2Hv3r0sX75cp/WJiIiISItSCG+C3W53dwkiIiIi4oE87rCe88rKyli8eDFFRUVYrVaioqJIT0/n\ntttuc/TJy8tj3bp1lJaW4uvrS2RkJOnp6SQmJpKTk0NOTg4GgwGz2QycO5EzNzeX8PBwADZt2sQ7\n77zDkSNH8PPzY8iQIdx///2EhYW5Zc0iIiIi0j54ZAivqKhg1qxZeHl5kZqaSkBAADt27GD+/PnY\nbDYmTZpEfn4+r7/+OgkJCaSlpVFXV8ehQ4fYt28fiYmJjBo1iqNHj1JYWMiDDz7oeOtKYGAgACtW\nrGDp0qWMHj2a22+/naqqKvLy8njkkUd488036dKliztvgYiIiIi0YR4ZwrOzs7Hb7WRnZ2MymQBI\nTk7mj3/8Izk5OSQnJ1NUVETv3r15+umnLzhGnz596NevH4WFhYwYMcLx9Bvg+PHjLFu2jPvuu8/x\nlBxg1KhRzJgxgzVr1jB16tTWXaSIiIiItFseuSd869at3HTTTdTX11NVVeX4Ex8fT3V1NQcPHsRk\nMnHixAn2799/2eP//e9/x263c8sttziNHxQURFRUFLt3726FVYmIiIiIp/C4J+GVlZVYrVby8/NZ\nt25do+8NBgMVFRWYzWaKi4uZOXMmUVFRDBkyhDFjxjBo0KBLzvHNN99gt9uZNm3aBcf39fVt8vra\nWitWa1nzFyXSgdlsle4uQUREpMV5XAhvaGgAYOzYsYwbN+6Cffr27UtAQADLly/n448/ZseOHWzd\nupU1a9aQkZFBRkZGk3PY7XYMBgPz5s3DYDA0+t7f37/J6/Pz52I0OveJiYln4MChTV4n0lGFhPhg\nNBrdXYaIiHgYi8WCxWJxaquqqnLJ3B4XwgMDA+ncuTMNDQ3ccMMNTfb18/MjISGBhIQE6uvreeqp\np1ixYgVTp05t8ml2ZGQkABEREURFRV12jUuXLiQ2NvayrxPpqIxGo+P3HSIiIi3FbDY7/b4PoLi4\nmLi4uFaf2+NCuJeXF6NGjaKgoICpU6fSu3dvp++rqqoICAjg1KlTjjeeAHh7exMdHc2OHTs4e/Ys\nvr6+jidvVqvV6YeZo0aN4q233iInJ4ff/OY3jWr44dg/FBQURGho6I9dqoiIiIi0Ux4XwgEyMzP5\n9NNPmTVrFklJSfTs2ZPTp0+zf/9+du/ezZo1a5g7dy7BwcEMGjSIoKAgjhw5wurVqxk+fLhjO0n/\n/v0db1lJTEzE29ubESNGEBkZyfTp08nOzubYsWOMHDkSf39/jh07xrZt20hKSiI9Pf2i9VVUVFBW\npj3hIj+Gno6LiEh75pEhPCgoiIULF5KTk+PY6x0QEECvXr3IysoCICUlhc2bN/POO+9QU1NDWFgY\naWlpTj+27N+/P/feey/r1q1j586d2O12x2E9ZrOZHj16sGrVKpYvXw5AWFgY8fHxjBgxosn6cnML\nKSg41Ho3QKQDCAnxITMzXUFcRETaJUNhYaHOZneRAwcOkJWVxcyZq7n66qaDuohcnM1WSU1NAXPm\npGprl4iItKjze8IXLVpEv379Wm0ej3wS3tYZjSZMJgUHkR+jpsbdFYiIiFw5jzysR0RERESkLVMI\nFxERERFxMYVwEREREREXUwgXEREREXExhXARERERERdTCG/C3r17ycnJobq62t2liIiIiIgHUQhv\nwt69e1m+fDlWq9XdpYiIiIiIB1EIb4LdrnOMRERERKTleexhPWVlZSxevJiioiKsVitRUVGkp6dz\n2223Ofrk5eWxbt06SktL8fX1JTIykvT0dBITE8nJySEnJweDwYDZbAbAYDA4jq2vr69n5cqVbNiw\ngRMnThASEsKYMWPIyMjA19fXXcsWERERkXbAI0N4RUUFs2bNwsvLi9TUVAICAtixYwfz58/HZrMx\nadIk8vPzef3110lISCAtLY26ujoOHTrEvn37SExMZNSoURw9epTCwkIefPBBunXrBkBgYCAA8+fP\nZ+PGjSQkJDB58mT27dtHbm4uJSUlPPvss+5cvoiIiIi0cR4ZwrOzs7Hb7WRnZ2MymQBITk7mj3/8\nIzk5OSQnJ1NUVETv3r15+umnLzhGnz596NevH4WFhYwYMYLw8HDHd4cOHWLjxo0kJSXx6KOPApCS\nkkJAQACrVq1iz549DB48uPUXKiIiIiLtkkeG8K1btzJ69Gjq6+upqqpytMfHx/Phhx9y8OBBTCYT\nJ06cYP/+/fTv3/+yxi8qKsJgMJCWlubUnp6ezttvv8327dubDOG1tVas1rLLW5SIONhsle4uQURE\n5EfxuBBeWVnJ/2fvzqOiuPL2gT9FozTQsjUIgkDQBBVNQBHQiEswLhEUJQZtYjQaBR3HKJkYE82i\nziTj8ptsTsKgyDZKTxRxgUQlCK5xRzNGnZjEBVFAwYbYQkuE+v3hsV/bBhGEbmmezzlz3vStW7e+\nVee8x8frrVtqtRpZWVnIzMzUOy4IAlQqFRQKBfLz8zFr1iy4ubmhb9++GDp0KHr16tXgNUpKSiAI\nAtzc3HTaHRwcIJPJUFJS8tDzs7LmQyq11Gnz8QlAz56Bj3CHRAQAcrk5pFKpscsgIqJWTKlUQqlU\n6rTdP4HbkkwuhNfW1gIAXnzxRYwYMaLOPl27doWtrS1SU1Nx8OBBHDlyBPv27cPWrVsxZcoUTJky\n5VBnRGoAACAASURBVJGuJQhCk2pMSoqDr69vk84lorukUql2uRkREVFTKBQK7QYc9+Tn58Pf37/F\nr21yIdzOzg5WVlaora1Fnz59HtrXwsICQ4YMwZAhQ1BTU4MPPvgA69atQ1RU1EN3OHF2doYoiigs\nLISHh4e2XaVSQa1W66wfr4u9vT0cHR0bd2NEREREZDJMLoSbmZlh4MCByM3NRVRUFLy8vHSOV1RU\nwNbWFr///rt2xxMAkEgk8PDwwJEjR3Dnzh20a9dO+0/dDwbroKAgJCQkYNOmTYiNjdW2b9iwAYIg\noF+/fg+tUaVSobSUa8KJnjScXSciIkMxuRAOANHR0fjxxx/xpz/9CWFhYfD09MTNmzfx888/48SJ\nE9i6dSvmz58PBwcH9OrVC/b29rh06RK2bNmC/v37w9Ly7nrtbt26aXdZCQkJgUQiwYABA9C1a1eM\nGDECWVlZuHnzJnx9fXH27FlkZ2dj4MCBDe6MkpaWh9zc3wzxKIioEeRyc0RHRzKIExFRizPJEG5v\nb4+4uDikpKRo13rb2triqaeeQkxMDIC7Wwrm5OQgPT0dVVVVcHJywvjx4zFp0iTtON26dcO0adOQ\nmZmJo0ePQhRF7cd65s+fD1dXV+zYsQP79++Hg4MDJk2ahMmTJzdYn4VFAOTyAS12/0TUeJWV5Sgr\ny4VGo2EIJyKiFifk5eXx2+wGcu7cOcTExCA2Ngfduw81djlEdB+1uhRlZRmIjY3gOxtERG3YvRcz\n4+Pj4e3t3WLXMWuxkYmIiIiIqE4M4UREREREBsYQTkRERERkYAzhREREREQGxhDejObNm4e33nrL\n2GUQERER0ROOIbwZNfUz9kRERETUtjCEExEREREZmEmHcFEUUV1dbewyiIiIiIh0GOSLmcnJyUhN\nTUVqaipSUlJw8OBBtGvXDqNHj8a0adNw7do1fPnllzh58iQsLCwwYcIEREZGas//448/sG7dOuza\ntQvXrl2Dvb09QkJCMG3aNLRr107bLyQkBGPHjoWPjw/Wr1+PK1eu4KOPPsKAAQMgiiI2bdqE7du3\no7CwEFZWVvD29sYbb7yhsxH7999/j/T0dFy6dAkWFhbo27cvZs6cCScnJ517yszMxH/+8x+UlZWh\nS5cumDVrVss/SCIiIiIyCQYJ4ffWSi9duhSenp6Ijo7G4cOHsX79etjY2CAzMxN9+vRBdHQ0du3a\nhfj4ePTo0QPPPvssRFHEwoULcfr0aYwePRoeHh44f/480tPTceXKFSxdulTnWvn5+di9ezfGjRsH\nW1tbuLi4AABWrFiBnTt3ol+/fggNDUVNTQ1OnTqFM2fOaEP4unXrkJSUhBdeeAGhoaGoqKhARkYG\n5s2bh9WrV8Pa2hoA8O233+Kzzz7Ds88+i/Hjx6OoqAiLFi1Chw4d4OzsbIhHSkREREStmEFC+D09\nevRAbGwsACAsLAwKhQJxcXGIjo7GhAkTANydzX7llVfw3Xff4dlnn0VOTg5OnDiBL774Aj179tSO\n9dRTT+Hzzz/HmTNn4OPjo20vLCxEYmIiPDw8tG0nTpzAzp078fLLL2P27Nna9ldeeUX73yUlJUhO\nTsb06dOhUCi07QMHDsSMGTOwdetWREVFoaamBmvXrsUzzzyDTz/9FBKJBADg6emJf/zjHwzhRERE\nRNQgg4VwQRAwatQo7W8zMzN069YNpaWleOmll7TtMpkM7u7uKCoqAgDs2bMHnp6e6Ny5MyoqKrT9\nevfuDVEUceLECZ0Q7ufnpxPAAWDv3r0QBAFTpkypt769e/dCFEUMHjxY5zr29vZwc3PDiRMnEBUV\nhf/9738oLy/HG2+8oQ3gADBy5Ej861//eqRnodGooVaXPlJfIjKMyspyY5dARERtiEFnwh+cJba2\ntkb79u1hY2Oj1/77778DuDuzffnyZYwbN05vPEEQUF6u+wfnveUn9ysqKoKjoyNkMlm9tV25cgWi\nKGLSpEl1Xufe2vOSkhIIggA3NzedPhKJBJ06dap3/PtlZc2HVGqp0+bjE4CePQMf6XwiahlyuTmk\nUqmxyyAiIgNRKpVQKpU6bfdPxrYkg4ZwMzP9zVjqarufKIrw8vLC7NmzIYqi3vGOHTvq/G7fvn2T\nahNFEYIgYMWKFXXu921paVnHWU2TlBQHX1/fZhuPiJqHVCp96F/WiYjItCgUCp1lyMDd9wv9/f1b\n/NoGDeFN4erqivPnz6N3796PNcbRo0ehVqvr/QPW1dUVwN2Z9Adnue/n4uICURRRWFgIPz8/bXtN\nTQ2Ki4vx9NNPN1iPvb09HB0dG3kXRERERGQqnvgQPmTIEBw+fBhZWVkICwvTOVZdXY3a2toG//l4\n0KBB2LJlC1JSUnRezLzfwIEDsWbNGqSkpGDhwoV6x3///XfY2NigW7dusLOzw7Zt2/DSSy9p14Vv\n374darX6ke5JpVKhtJRrwonaIs62ExER0ApC+PDhw7F792589tlnOHHiBHr16oXa2loUFBRg9+7d\nWLlypc4+33Xx8/PDsGHDkJGRgcuXLyMwMBC1tbU4deoUevfujbFjx8LV1RVvvPEGEhISUFRUhODg\nYFhaWqKoqAgHDhxAWFgYIiMjIZFIMG3aNHz22WeIjY3FCy+8gKKiIuzYsUM7m96QtLQ85Ob+1hyP\nh4haGbncHNHRkQziRERtnNFDeF3rrx88/re//Q3p6enIzs7GgQMHYGFhAVdXV7zyyitwd3fX6Vvf\neO+++y66du2K7777DvHx8bC2tka3bt3Qq1cvbR+FQgF3d3ds3LgRqampAAAnJycEBARgwIAB2n5h\nYWGora3FN998g/j4eHh5eeHjjz9GUlLSI92zhUUA5PIBDXckIpNSWVmOsrJcaDQahnAiojZOyMvL\n03/bkVrEuXPnEBMTg9jYHHTvPtTY5RCRganVpSgry0BsbATfCyEiekLdezEzPj6+wdUWj+PhW5MQ\nEREREVGzYwgnIiIiIjIwhnAiIiIiIgNjCCciIiIiMjCGcCIiIiIiA2vTIfz27dtISUnBjz/+aOxS\niIiIiKgNMfo+4cak0WiQkpICAPD19TVyNURERETUVrTpmfDG0mg0xi6BiIiIiExAi4fwPXv2ICQk\nBP/973/1jm3btg0hISG4ePEi5s2bh7feekuvz7Jly6BQKHTaRFFEeno6pk6dihEjRiAiIgKffvop\n1Gq1Tr+ff/4Z8+fPx9ixYzFy5EhERUVhxYoVAIDi4mKMGzcOgiAgJSUFISEhCAkJ0c6ML1u2DKNG\njcLVq1fx7rvvIjQ0FJ988gkA4NSpU1i8eDEmTpyI4cOHY8KECfjqq69QXV3dLM+MiIiIiExbiy9H\n6d+/PywtLbF7924899xzOsd2794NLy8vPPXUU/V+br6uT9H/4x//QHZ2Nl566SW8/PLLKCoqwubN\nm/Hrr79i1apVkEgkKC8vxzvvvAM7OztERUVBJpOhuLgY+/btAwDY2dkhNjYWn332GQYOHIiBAwcC\nALp27aq9bk1NDd555x08++yzmDVrFiwsLLR1V1dXIzw8HDY2Njh79iw2b96M0tJSfPTRR836/IiI\niIjI9LR4CG/fvj369++PPXv2YM6cOdpAfePGDfz444+YOnVqo8Y7deoUvvvuO7z//vsICQnRtvfu\n3RvvvPOOdub9p59+glqtxv/7f/8PzzzzjLbftGnTAABSqRSDBg3CZ599hi5duuDFF1/Uu9adO3fw\nwgsv4I033tBpj4mJQfv27bW/Q0ND4ebmhoSEBFy/fh1OTk6NuiciIiIialsM8mLmCy+8gLy8PJw8\neRK9e/cGcHeZyr1jjbFnzx7IZDL4+/ujoqJC2/7MM8/A0tISJ06cQEhICGQyGURRxA8//IAuXbpA\nIpE0qfYxY8botd0fwDUaDW7fvg0fHx+IoohffvmlwRCu0aihVpc2qR4iar0qK8uNXQIRET0hDBLC\nAwMDYWVlhby8PG0I3717N7p27Qo3N7dGjVVYWAi1Wo1x48bpHRMEAeXld/+Q8/Pzw6BBg5CamoqN\nGzfCz88PwcHBGDp0KNq1a/dI15JIJHUG6mvXriExMREHDx7EzZs3da5/69atBsfNypoPqdRSp83H\nJwA9ewY+Ul1E1HrJ5eaQSqXGLoOIiAAolUoolUqdtvsneVuSQUJ4u3btEBwcjP3792PevHkoKyvD\nTz/9hBkzZmj71LcmvKamRue3KIqwt7fH+++/D1EU9frb2dlp/3vx4sU4e/YsDh48iKNHj2LFihXY\nuHEjvvrqq0f6Q7CusF5bW4u3334barUaUVFRcHd3h1QqRWlpKZYtW4ba2toGx01KiuOWiERtlFQq\nhUwmM3YZREQEQKFQ6G0Akp+fD39//xa/tsH2CX/hhReQnZ2N/Px8XLx4EQAwZMgQ7fF7L04+qKSk\nROe3q6sr8vPz0bNnT51lIfXp0aMHevTogWnTpmHXrl34+OOPkZubi1GjRtUb/B/m/PnzKCwsxHvv\nvYdhw4Zp248fP/7IY9jb28PR0bHR1yYiIiIi02CwEO7v7w+ZTIbc3FwUFBSge/fucHFx0R53dXXF\nkSNHUFFRAVtbWwDAr7/+ip9++gnOzs7afkOGDMHWrVuRmpqK6dOn61yjpqYGVVVVkMlkUKvVerNN\n93Y++eOPPwBAOxv+4NaGD3NvbfmDs/Dp6emPHOpVKhVKS7kmnIj0caaciKhtMFgIl0gkGDhwIPLy\n8qDRaDBr1iyd46NGjcLGjRsxf/58jBo1CiqVCpmZmfDy8kJlZaW2n6+vL0aPHg2lUolff/0Vffv2\nhbm5OQoLC7U7sAwaNAg7duzAtm3bEBwcDFdXV1RWVuLbb7+FtbU1goKCANx9wdLT0xO7d+9G586d\n0aFDB3h5ecHLy6ve+/Dw8ICrqyvi4uJw/fp1WFlZYd++fY0K8mlpecjN/a2RT5CI2gK53BzR0ZEM\n4kREJs6gn61/4YUXsH37dgiCoLMUBbgbbhcuXIikpCTExcXB09MTixYtQk5Ojt6HfmJjY+Ht7Y2s\nrCysXbsWEokELi4uGD58OHr16gXg7ouZP//8M/Ly8qBSqWBtbY0ePXrg/fff15mBnz9/PlatWoWv\nv/4ad+7cweTJk7UhvK6ZbYlEgk8++QSrVq2CUqlE+/btMXDgQIwdO1ZvZr4+FhYBkMsHNObREVEb\nUFlZjrKyXGg0GoZwIiITJ+Tl5em/3Ugt4ty5c4iJiUFsbA66dx9q7HKI6AmjVpeirCwDsbERfG+E\niMhI7r2YGR8fD29v7xa7Tot/tp6IiIiIiHQxhBMRERERGRhDOBERERGRgTGEExEREREZGEN4EyUn\nJyMkJESnbeLEiVi+fLmRKiIiIiKi1oIhvIkEQdDbwtDMzKxJX+EkIiIiorbFoPuEm7rU1FSGcCIi\nIiJqUIvMhGs0mpYY9olnbm6u/aw9EREREVF9HnsmPDk5GampqUhKSkJqaiqOHj0KFxcXrF69GgUF\nBVi7di1OnjwJjUYDLy8vTJ48Gc8//7z2/JqaGqxbtw45OTm4du0apFIpPD09MWXKFPj7+wMAli1b\nhr1792Lt2rX49NNP8dNPP0Emk2H06NGYPHmyTj0ajQaJiYnYs2cPVCoVXFxcEBYWhsjISJ1+ISEh\nGDt2LPr06YPExEQUFhbCzc0Ns2bNQmBgoE7fU6dO4auvvsKFCxfg5OSECRMm1PksJk6ciN69e2PB\nggWP+1iJiIiIyIQ9dgi/t/xi8eLFcHd31366/eLFi5gzZw6cnJwQFRUFqVSK3bt344MPPsCSJUsQ\nHBwMAEhKSoJSqURYWBi6deuGyspK/Pzzz/jll1+0IVwQBIiiiAULFsDHxwczZ87EkSNHkJycjNra\nWrz++uvaehYuXIgff/wRoaGh6Nq1K44ePYp//etfKC0txZ/+9Ced2k+dOoV9+/YhPDwcVlZWyMjI\nwOLFi/HNN9+gQ4cOAIALFy7gnXfegZ2dHaZOnYo7d+4gJSUFdnZ29T4LIiIiIqKHabY14c888wwW\nLlyo/f2Xv/wFLi4u+Ne//qVdohEeHo45c+Zg9erV2hB++PBh9OvXD7GxsQ8dv7q6GkFBQZg9e7Z2\nrIULF0KpVCIiIgI2NjbYv38/Tp48ienTpyMqKkrbb/Hixdi0aRPGjRuHTp06accsKChASkoKXFxc\nAAB+fn6YPn06du3ahbFjxwIAEhMTAQBffvklnJycAACDBg3CtGnTHvuZEREREVHb1CxrwgVBwOjR\no7W/b968iZMnT2Lw4MFQq9WoqKjQ/q9v3764cuUKysrKAAAymQwXL17ElStXGrzOvWB8/+8//vgD\nx48fB3A30EskEowbN06nX2RkJERRxOHDh3Xa+/btqw3gANClSxdYWVmhqKgIAFBbW4tjx44hODhY\nG8ABwMPDAwEBAY/yaIiIiIiI9DTbTPj9YfbKlSsQRRFJSUnameT7CYIAlUoFuVyOqVOn4oMPPsBr\nr70GLy8vBAQEYPjw4ejSpYveOffPYgOAu7s7AKC4uBgAcO3aNcjlclhaWur08/T0BACUlJTotN8f\nrO/p0KEDbt68CQAoLy/H7du34ebmptfP3d0dR44cqfthNECjUUOtLm3SuURkuiory41dAhERGUiz\nhXALCwvtf9fW1gK4OwNd34zxvWD73HPPYf369di/fz+OHTuG7du3Iz09HW+99RZGjRrVXOXVycys\n7n8IEEWxRa+blTUfUqnuXxR8fALQs2dgPWcQUVshl5tDKpUauwwiojZBqVRCqVTqtFVUVBjk2i2y\nT7irq+vdwc3N0adPnwb7y2QyjBw5EiNHjoRGo8Gbb76JlJQUnRAuiiKKiop0ZqUvX74MANoZcmdn\nZ+Tn56OqqkpnNvzSpUva441hZ2cHCwsLFBYW6h0rKCho1Fj3S0qKg6+vb5PPJyLTJZVKIZPJjF0G\nEVGboFAooFAodNry8/O1m4O0pBbZJ9zOzg5+fn7IzMzEjRs39I7f/zeM33//XeeYVCqFm5sb/vjj\nD73zNm/erPfb3NwcvXv3BgAEBQWhpqYGW7Zs0emXnp4OQRAQFBTUqPswMzNDQEAADhw4gOvXr2vb\nL126hGPHjjVqLCKiR6HRaFBaWgq1Wm3sUoiIqAW12Bcz586dizfffBPTpk1DaGgoXF1doVKpcPr0\naZSWlmLNmjUAgNdffx1+fn7w9vZGhw4d8PPPP2Pv3r2IiIjQGa9du3Y4cuQIli1bhh49euDw4cM4\ncuQIXn31Vdja2gIAnn/+efj5+SEhIQFFRUXaLQoPHjyI8ePH660pfxSvv/46jhw5gjlz5iA8PBw1\nNTXYvHkzvLy8cP78+SY9m7S0POTm/takc4mobZDLzREdHclZcSIiE9ViIdzT0xPx8fFISUlBdnY2\nKioqYG9vj6efflrnAzsvv/wyfvjhBxw/fhzV1dVwdnbG9OnT9T6uI5FIsGLFCnz66aeIj4+HlZUV\npkyZojOWIAj45JNPkJSUhLy8POzYsQMuLi6YOXMmXnnlFZ3xBEGoc1/vB9u7dOmClStX4uuvv0Zy\ncjKcnJwwdepUlJWV6YXw+sZ8kIVFAOTyAQ32I6K2qbKyHGVludBoNAzhREQmSsjLy2vZtxCbwfLl\ny7F37158++23xi7lsZw7dw4xMTGIjc1B9+5DjV0OET2h1OpSlJVlIDY2Ao6OjsYuh4ioTbm3Jjw+\nPh7e3t4tdp0WWRNORERERET1YwgnIiIiIjKwVhPCH2WtNRERERFRa9AqQviCBQuQlZVl7DKIiIiI\niJpFqwjhxjZx4kQsX77c2GUQERERkYkwqRB++vRppKSk4NatW806LpfCEBEREVFzMrkQnpqayi/N\nEREREdETzaRCuCg+8VueExERERG13BczDS0lJQUpKSkQBAEKhQLA3WUkaWlpcHR0xPr167Fz505c\nv34dcrkcQ4cOxZQpU9CuXTudcf79738jMzMTN2/eRI8ePfDmm2/Web2ioiLEx8fjxIkTqK6uRpcu\nXfDaa6+hX79+LX6vRERERNS6mUwIHzRoEC5fvoy8vDz8+c9/ho2NDQRBgK2tLVauXIns7GwMGTIE\nEyZMwNmzZ5GWloaCggIsXbpUO0ZiYiLWrVuH/v37IzAwEL/88gvmz5+PmpoanWupVCrMnj0b1dXV\nePnll9GhQwdkZ2dj0aJFWLJkCYKDgw19+0RERETUiphMCPfy8oK3tzfy8vIwYMAAODs7AwB+++03\nZGdnIywsDG+99RYAYMyYMbC1tcXGjRtx8uRJ+Pn5oaKiAv/5z3/Qv39/fPzxx9px165di/Xr1+tc\nKy0tDRUVFfjyyy/Rs2dPAEBoaCimT5+OuLg4hnAiIiIieiiTWhNel8OHD0MQBIwfP16nPTIyEqIo\n4tChQwCAY8eOoaamBhERETr9Hjzv3pjdu3fXBnAAsLS0RFhYGIqLi3Hx4sXmvxEiIiIiMhkmMxNe\nn5KSEgiCADc3N512BwcHyGQylJSUAACuXbsGAHr9bG1t0aFDB70xfXx89K7l4eGhPf7UU0/VW5NG\no4ZaXdroeyGitqGystzYJRARUQsz+RB+z5O013dW1nxIpZY6bT4+AejZM9BIFRHRk0YuN4dUKjV2\nGUREJk2pVEKpVOq0VVRUGOTaJh/CnZ2dIYoiCgsLtTPVwN2XK9VqtXbt+L3/W1hYCBcXF22/iooK\n3Lx5U2/My5cv612roKBAZ6z6JCXFwdfXt2k3RERtglQqhUwmM3YZREQmTaFQaHfVuyc/Px/+/v4t\nfm2TCuH3Zo3uD9dBQUFISEjApk2bEBsbq+27YcMGCIKg3VLQ398fEokEmzdvRt++fbX9Nm7cqHed\noKAgZGRk4MyZM9plKVVVVcjKyoKLi8tDl6IAgL29PRwdHR/rXomIiIio9TKpEN6tWzeIooiEhASE\nhIRAIpHg+eefx4gRI5CVlYWbN2/C19cXZ8+eRXZ2NgYOHAg/Pz8Ad9d+R0ZGQqlU4r333kNQUBB+\n/fVXHDlyBHZ2djrXiYqKQm5uLhYsWICIiAh06NABO3fuRHFxsc6Wh/VRqVQoLeWacCJqPM6QExGZ\nBpML4dOmTUNmZiaOHj0KURSRlpaG+fPnw9XVFTt27MD+/fvh4OCASZMmYfLkyTrnT58+HRYWFti2\nbRtOnjwJHx8frFy5Eu+9957OmnJ7e3t89dVXiI+Px5YtW7Qf6/n73/+OwMCG13WnpeUhN/e3Zr9/\nIjJ9crk5oqMjGcSJiFo5IS8vj996N5Bz584hJiYGs2ZtwdNPDzB2OUTUylRWlqOqKhexsRFc0kZE\n1ELurQmPj4+Ht7d3i13HpGbCWwupVAaZjH+AElHjVVUZuwIiImoOJv+xHiIiIiKiJw1DOBERERGR\ngTGEExEREREZGEM4EREREZGBGS2Enzx5EiEhIdi7d2+zjZmcnIyQkBCdtokTJ2L58uXNdg0iIiIi\nosdl1Jnw+/febq7xHhyzua9BRERERPS4jBrCRZFblBMRERFR28M14Y1QU1ODO3fuGLsMIiIiImrl\nmvSxntLSUiQmJuLo0aOoqKiAo6MjAgIC8Oabb6KyshLr1q3DsWPHUFRUBDMzM/Tq1QszZsxA165d\ndcYRBAG1tbVYs2YNduzYgcrKSvTp0wfz5s2Dk5OTtt+pU6ewadMm/O9//8ONGzdgb2+PQYMGYcaM\nGWjfvn2j61er1UhOTsa+ffugUqnQsWNHhIaGYuLEidrlK8XFxYiKisLMmTNhZmaGzZs3o6SkBPHx\n8ejatSvKy8uxevVqHDp0CLdu3YK7uzteeeUVjBgxoimPlIiIiIjakEaH8LKyMsyaNQu3bt3C6NGj\n4e7ujtLSUuzZswcajQZXr17FDz/8gMGDB6NTp05QqVTIzMxEbGwskpOT4eDgoB1LFEX8+9//hpmZ\nGRQKBcrLy5Geno63334ba9as0Qbs3bt3o7q6GuHh4bCxscHZs2exefNmlJaW4qOPPmpU/bdv38bc\nuXNx48YNjB49Gh07dsTp06eRkJCAGzduYPbs2Tr9t2/fjj/++AOjR49Gu3btYGNjg+rqasybNw9X\nr15FREQEnJ2dsWfPHixfvhy3bt1CREREYx8rEREREbUhjQ7hq1evhkqlQlxcHJ555hlt++uvvw4A\n6Nq1K/7973/rnDNs2DBMnjwZ3333HSZNmqRzTK1WIyUlBVKpFADwzDPPYMmSJfj2228xbtw4AEBM\nTIzOjHdoaCjc3NyQkJCA69ev68yaN2TDhg0oLi7GmjVr4OrqCgAICwuDg4MDNmzYgMjISJ3xSktL\nsX79etjY2Gjb0tPTcfnyZSxatEi7G8uYMWMwd+5cJCYm4qWXXoKlpeUj10REREREbUujQrgoijhw\n4ACef/55nQCuM6D5/w1ZW1sLtVoNqVQKd3d3nDt3Tq//iBEjtAEcAAYPHgy5XI7Dhw9rQ/j9AVyj\n0eD27dvw8fGBKIr45ZdfGhXC9+zZg2effRbW1taoqKjQtvfp0wdKpRL//e9/MXToUJ167g/gAHDk\nyBE4ODjobIcokUgQERGBjz/+GD/++CP69etXbw0ajRpqdekj10xEBACVleXGLoGIiJpJo0J4eXk5\nKisr8dRTT9XbRxRFpKenY9u2bSgqKkJtbS2Au+u/bW1t9frfm41+sK24uFj7+9q1a0hMTMTBgwdx\n8+ZNbbsgCLh161ZjbgFXrlzBhQsXtAH/foIgQKVS6bS5uLjo9SspKYGbm5teu6enJ0RRRElJyUNr\nyMqaD6lUd6bcxycAPXsGPsotEFEbJpeb60xcEBFR0ymVSiiVSp22+ydpW1KTXsx8mHXr1iEpKQmj\nRo3CtGnTYGNjA0EQ8M9//rNJWxLW1tbi7bffhlqtRlRUFNzd3SGVSlFaWoply5ZpQ35jxvP394dC\noaizHnd3d53fTXnxsyFJSXHw9fVt9nGJyPRJpVLIZDJjl0FEZBIUCgUUCoVOW35+Pvz9/Vv8zyMb\naQAAIABJREFU2o0K4XZ2drCyssLFixfr7bN371707t0bb7/9tk67Wq2GnZ2dXv8rV67otV29elW7\nk8r58+dRWFiI9957D8OGDdP2OX78eGNK13J1dUVVVRV69+7dpPMBwNnZGRcuXNBrv3Tpkvb4w9jb\n28PR0bHJ1yciIiKi1q1RIVwQBAQHByMnJwfnzp2Dt7e3Xh8zMzO9Gebdu3ejtLQUnTt31uufnZ2N\nqKgo7YuMu3fvRllZGaKiogDcXWsN6H/YJz09vUlfwxwyZAhSU1Nx9OhRBAQE6BxTq9WwtLTUXrM+\nQUFBOH78OHJzc7XrwmtqarB582ZYWVk1OMutUqlQWso14URkOJxBJyJ6sjR6Ocr06dNx/PhxzJ07\nF2FhYfD09ERZWRn27NmDVatWoX///khNTcXy5cvRq1cvnD9/Hjk5OXWu/QaADh06YM6cORg5ciRU\nKhU2bdqEzp07IzQ0FADg4eEBV1dXxMXF4fr167CyssK+ffugVqubdMMTJ07EDz/8gIULF2LEiBHw\n9vaGRqPB+fPnsW/fPiiVSr0XMR80evRoZGZmYvny5Th37px2i8IzZ87gz3/+c4M7o6Sl5SE397cm\n1U9E1BRyuTmioyMZxImInhCNDuGOjo74+uuvkZiYiF27dqGyshKOjo4ICgqCVCrFq6++Co1Gg127\ndmH37t3w9vbGsmXLsGbNGr2xBEHAq6++ivPnz0OpVKKyshL+/v6YN2+edi22RCLBJ598glWrVkGp\nVKJ9+/YYOHAgxo4di+nTpzdYryAIOjPmFhYW+OKLL7B+/Xrs2bMH33//PaytrdG5c2dMnToV1tbW\n9Z57T/v27fHFF19g9erVyM7O1n6sZ8GCBRg+fHiDNVlYBEAuH9BgPyKi5lBZWY6yslxoNBqGcCKi\nJ4SQl5fX+LclqUnOnTuHmJgYxMbmoHv3oQ2fQETUDNTqUpSVZSA2NoLvoxARNeDei5nx8fF1Lr1u\nLmYtNjIREREREdWJIZyIiIiIyMAYwomIiIiIDIwhnIiIiIjIwBjCiYiIiIgMjCGciIiIiMjAGMKJ\niIiIiAyMIbwRqqurjV0CEREREZmARn8x80mVnJyM1NRUJCcnIzExEceOHYNEIsGwYcMQHR2t/QLn\n9u3b8f333+PixYtQq9VwdXVFREQExowZozPexIkT0bVrV4wdOxZr167FhQsXEB0djZdffvmRxyAi\nIiIiqovJhPB7n5dfsmQJOnXqhBkzZuDMmTPIyMiAWq3Gu+++CwDYtm0bvLy8MGDAAEgkEhw8eBCf\nf/45RFFEeHi4zngFBQX429/+htGjRyMsLAzu7u6NGoOIiIiIqC4mE8LvcXNzw9KlSwEA4eHhsLKy\nwrZt2zBhwgR4eXnhiy++0M6KA8DYsWOxYMECbNy4US9AX716FStWrIC/v79Oe2PGICIiIiJ6kEmF\ncEEQ9ELwuHHjsHXrVhw6dAheXl464fnWrVu4c+cOnnvuORw7dgyVlZWwsrLSHndxcdEL4AAaNUZd\nNBo11OrSpt4mEVGjVFaWG7sEIiJ6gEmFcODuTPiDvwVBQHFxMQDg1KlTSE5OxpkzZ3D79m1tP0EQ\ncOvWLZ0A3alTpzqv0Zgx6pKVNR9SqaVOm49PAHr2DHy0myQiaiS53BxSqdTYZRARPVGUSiWUSqVO\nW0VFhUGubXIh/GGuXr2Kt99+G56enpg9ezY6duwIc3NzHDp0CJs2bUJtba1OfwsLi8ceoy5JSXHw\n9fVttvsiImqIVCqFTCYzdhlERE8UhUIBhUKh05afn1/nSojmZnIh/MqVK3BxcdH5LYoiXFxc8MMP\nP+DOnTv4+OOP4eTkpO2Tn5//yOM3xxj29vZwdHR85P5EREREZFpMKoSLoogtW7bo/O0lIyMDgiAg\nKCgIP/74o7bfPWq1Gjt37nzka0gkksceQ6VSobSUa8KJyHg4M05EZFwmFcIBoKioCIsWLUJgYCBO\nnz6NnJwcvPjii+jSpQvatWsHiUSC9957D6NHj0ZVVRW+/fZb2Nvb48aNG480ft++fR97jLS0POTm\n/vY4t0lE9FjkcnNER0cyiBMRGYlJhXBBEPDhhx8iMTERa9asgUQiQUREBGJiYgAA7u7uWLJkCRIT\nExEfHw8HBweEh4fDxsYGK1eu1BurLo0Zoz4WFgGQywc83s0SETVRZWU5yspyodFoGMKJiIzEpEI4\nANjZ2WHx4sX1Hu/fvz/69++v1z5y5Eid32lpaY89Rn2kUhlkMq4JJyLjqaoydgVERG2bmbELICIi\nIiJqaxjCiYiIiIgMjCGciIiIiMjATCaET5kyBbt27YKNjY2xSyEiIiIieiiTCeH3JCcnIyQkBL//\n/vtD+02cOBHLly83UFVERERERP/H5EK4IAj1bi94PzMzs0fqR0RERETU3Exui8JHlZqayhBORERE\nREbRZkO4uXmbvXUiIiIiMjKTTaLl5eX49NNPcezYMUgkEgwbNgzR0dFo3749gLtrwnv37o0FCxZo\nz1Gr1UhOTsa+ffugUqnQsWNHhIaGYuLEidpZ8+LiYkRFRWHmzJmwsrKCUqnE9evX0bVrV8ybNw/d\nunUzyv0SERERUethkiFcFEUsWbIEnTp1wowZM3DmzBlkZGRArVbj3XffBaD/Wfrbt29j7ty5uHHj\nBkaPHo2OHTvi9OnTSEhIwI0bNzB79myd/jk5OdBoNBgzZgwEQYBSqcRHH32E9evXQyKRGOxeiYiI\niKj1MckQDgBubm5YunQpACA8PBxWVlbYtm0bJkyYAC8vL73+GzZsQHFxMdasWQNXV1cAQFhYGBwc\nHLBhwwZERkbCyclJ2//69etYt24drK2tAQCdO3fGBx98gKNHj6Jfv34GuEMiIiIiaq1MMoQLgoDw\n8HCdtnHjxmHr1q04dOhQnSF8z549ePbZZ2FtbY2Kigpte58+faBUKvHf//4XQ4cO1ba/8MIL2gAO\nAM899xxEUURRUVGD9Wk0aqjVpU25NSKix1ZZWW7sEoiI2jyTDOHA3ZnwB38LgoDi4uI6+1+5cgUX\nLlzAuHHj9I4JggCVSqXT1rFjR53fMpkMAHDz5s0Ga8vKmg+p1FKnzccnAD17BjZ4LhFRc5DLzSGV\nSo1dBhGRUSmVSiiVSp22+ydjW5LJhvDGqq2thb+/PxQKBURR1Dvu7u6u89vMrO4t1us690FJSXHw\n9fVtWqFERM1AKpVqJw+IiNoqhUIBhUKh05afnw9/f/8Wv7bJhvArV67AxcVF57coiujUqVOd/V1d\nXVFVVYXevXu3eG329vZwdHRs8esQERER0ZPJJEO4KIrYsmWLzt9iMjIyIAgCgoKC6jxnyJAhSE1N\nxdGjRxEQEKBzTK1Ww9LSstl2PVGpVCgt5ZpwImobOOtORKTPJEM4ABQVFWHRokUIDAzE6dOnkZOT\ngxdffLHOlzKBu/uG//DDD1i4cCFGjBgBb29vaDQanD9/Hvv27YNSqYSNjU2z1JaWlofc3N+aZSwi\noiedXG6O6OhIBnEiovuYZAgXBAEffvghEhMTsWbNGkgkEkRERCAmJkanz/17hVtYWOCLL77A+vXr\nsWfPHnz//fewtrZG586dMXXqVJ2dUB48t6H2B1lYBEAuH/CYd0lE9OSrrCxHWVkuNBoNQzgR0X2E\nvLy8ht8kpGZx7tw5xMTEIDY2B927D234BCKiVk6tLkVZWQZiYyP4LgwRtQr3XsyMj4+Ht7d3i12n\n7i0+iIiIiIioxTCEExEREREZGEM4EREREZGBMYQTERERERkYQzgRERERkYExhBMRERERGRhDOBER\nERGRgZlsCK+urjZ2CUREREREdTJKCE9OTkZISAgKCgqwePFihIWFITw8HP/85z91wnNNTQ1SU1Px\n6quvYvjw4VAoFEhISMAff/yhM97EiROxaNEiHD16FDNnzsSIESOQmZkJAPjjjz/w1VdfYdy4cQgN\nDcX777+P69evIyQkBCkpKdoxli1bBoVCUW+tD/r+++8RExODkSNHIjw8HH/9619x/fr15npERERE\nRGTCjBLC733afcmSJbhz5w5mzJiBfv36ISMjA59++qm238qVK5GcnIxu3brhz3/+M/z8/JCWloa/\n/vWveuMVFBTgb3/7G/r27Ys5c+bg6aef1o6RkZGBgIAAREdHw9zcHO+9957e5+Ub8yn6devWYdmy\nZXB3d8ef/vQnjB8/Hvn5+Zg3bx5u3brVLM+IiIiIiEyXuTEv7ubmhqVLlwIAwsPDYWVlhW3btmHC\nhAmora1FdnY2wsLC8NZbbwEAxowZA1tbW2zcuBEnT56En5+fdqyrV69ixYoV8Pf317b99ttvyMnJ\nwdixY/Hmm29qr/Pxxx/jwoULTaq5pKQEycnJmD59us7M+cCBAzFjxgxs3boVUVFRTRqbiIiIiNoG\no60JFwQB4eHhOm3jxo2DKIo4dOgQDh8+DEEQMH78eJ0+kZGR2j73c3Fx0QngALRjRERE6LSPHz8e\noig2qe69e/dCFEUMHjwYFRUV2v/Z29vDzc0NJ06caNK4RERERNR2GH0m/MHfgiCguLgYwN2g/mAf\nBwcHyGQylJSU6LR36tRJb/ySkhIIggBXV1eddnd39ybXfOXKFYiiiEmTJukdEwQB7dq1a3AMjUYN\ntbq0yTUQEbUWlZXlxi6BiOiJZNQQ/ijqWqddFwsLixa5fk1Njc5vURQhCAJWrFhRZ22WlpYNjpmV\nNR9SqW4/H58A9OwZ+HjFEhE9geRyc0ilUmOXQUSkR6lUQqlU6rRVVFQY5NpGDeFXrlyBi4uLzm9R\nFOHi4gJRFCGKIgoLC+Hh4aHto1KpoFar4ezs3OD4zs7OEEURV69eRefOnbXtBQUFen07dOgAtVqt\n135vVv6ee7PqLi4uerP0jyopKQ6+vr5NOpeIqLWRSqWQyWTGLoOISI9CodDbHS8/P19viXNLMFoI\nF0URW7Zs0bnJjIwMCIKAoKAgiKKIhIQEbNq0CbGxsdo+GzZsgCAI6NevX4PXCAwMREJCAjIyMrQv\nZgJAenq63iy2q6srbt26hQsXLsDLywsAUFZWhgMHDuj0GzhwINasWYOUlBQsXLhQ75q///47bGxs\nHu0hEBG1ARqNBhqNxthlUD34lyQi4zDqTHhRUREWLVqEwMBAnD59Gjk5OXjxxRfRpUsXAMCIESOQ\nlZWFmzdvwtfXF2fPnkV2djYGDhyoszNKfZ5++mmEhIRg69atUKvV6NmzJ/Lz83H16lW9viEhIVi9\nejXef/99REREQKPRIDMzE+7u7vjll1+0/VxdXfHGG28gISEBRUVFCA4OhqWlJYqKinDgwAGEhYUh\nMjLyoXWlpeUhN/e3Rj4tIiKi5ieXmyM6OpJBnMjAjBbCBUHAhx9+iMTERKxZswYSiQQRERGIiYnR\n9pk/fz5cXV2xY8cO7N+/Hw4ODpg0aRImT56sN1Z9FixYAHt7e+Tk5ODAgQPo06cP/v73v+sFZRsb\nG/z1r3/F119/jdWrV6NTp06YMWMGCgsLdUI4cPefLtzd3bFx40akpqYCAJycnBAQEIABAwY0eO8W\nFgGQyxvuR0RE1JIqK8tRVpYLjUbDEE5kYEadCbezs8PixYvrPW5mZobXXnsNr7322kPHSUtLq/dY\nu3btMHv2bMyePbvBevz9/bF27Vq99ilTpui1BQcHIzg4uMEx6yKVyiCTOTbpXCIiouZUVWXsCoja\nJqPtE05ERERE1FYxhBMRERERGVibDeGCIDzyHuRERERERM3JKGvCp0yZUuc6a0PatWuXUa9PRERE\nRG1Xm50Jvyc5ORkhISHa3xMnTsTy5cu1v0+ePImQkBD8+OOPxiiPiIiIiExQmw/hDy5LMTMz01um\nwmUrRERERNScjLpF4ZMoNTVVJ3T7+flhx44daNeunRGrIiIiIiJTwhD+AHNz/UfCAE5EREREzalN\nLUc5deoUZs6ciREjRmDSpEnIzMzU6/Ooa8J3796NmJgYjBw5EmPHjsUnn3yC0tLSFr8HIiIiImr9\n2sxM+IULF/DOO+/Azs4OU6dOxZ07d5CSkgI7OzudfnWt/36wbceOHVixYgV69OiBGTNmQKVSYdOm\nTTh9+jRWr14Na2vrFr0XIiIiImrd2kwIT0xMBAB8+eWXcHJyAgAMGjQI06ZNa9Q4NTU1WL16Nbp0\n6YLPP/9cu1SlV69eWLhwIdLT042+/SIRERERPdnaxHKU2tpaHDt2DMHBwdoADgAeHh4ICAho1Fg/\n//wzysvLER4errNWvF+/fvDw8MChQ4earW4iIiIiMk1tYia8vLwct2/fhpubm94xd3d3HDly5JHH\nKi4uhiAIcHd31zvm4eGBn376qcExNBo11GquHyciIuOqrCw3dglEbVabCOFPmqys+ZBKLXXafHwC\n0LNnoJEqIiKitkouN4dUKjV2GURGoVQqoVQqddoqKioMcu02EcLt7OxgYWGBwsJCvWMFBQWNGsvF\nxQWiKKKgoAB+fn56Yzk7Ozc4RlJSHHx9fRt1XSIiopYglUohk8mMXQaRUSgUCigUCp22/Px8+Pv7\nt/i120QINzMzQ0BAAA4cOIDr169r14VfunQJx44da9RY3bp1g52dHTIzMzFq1CjtvuKHDx9GQUHB\nI72UaW9vD0dHx8bfCBERERGZhDYRwgHg9ddfx5EjRzBnzhyEh4ejpqYGmzdvhpeXF86fP//I40gk\nEkRHR2PlypWYO3cuQkJCcOPGDWRkZKBTp04YP358g2OoVCruKU5ERPSIOFtPpqjNhPAuXbpg5cqV\n+Prrr5GcnAwnJydMnToVZWVlOiFcEIQ69wq/38iRI2FpaYm0tDSsWbMGUqkUgwYNQnR09CPtEZ6W\nlofc3N8e+56IiIjaArncHNHRkQziZFLaTAgHgGeffRZxcXF67fcvIUlLS9M5VltbC+DuDPj9Bg8e\njMGDBzepDguLAMjlA5p0LhERUVtSWVmOsrJcaDQahnAyKW0qhDdFWVkZAMDW1rbZxpRKZZDJuCac\niIjoUVRVGbsCoubHEF4PjUaD77//HhkZGXBycqpzX3AiIiIioqZoE1/MbIry8nKsWrUKUqkUS5Ys\nMXY5RERERGRCOBNeDxcXF2RnZxu7DCIiIiIyQZwJJyIiIiIyMIbw+4SEhODLL780dhlEREREZOIY\nwomIiIiIDIwhnIiIiIjIwBjCiYiIiIgMzCi7o1RVVWHt2rU4cOAAysrKIJPJ0LVrV8TExODpp5/G\nqVOnsGnTJvzvf//DjRs3YG9vj0GDBmHGjBlo3769dpxly5Zh7969SE1Nxeeff478/HxYWFhgxIgR\niImJ0fn8vCiK2LRpE7Zv347CwkJYWVnB29sbb7zxBry9vXXq279/PxITE1FYWAg3NzfMmjULgYGB\nOn1++eUXJCQk4PTp06itrUWPHj3wxhtvwMfHp2UfHhERERG1ekYJ4f/4xz+wb98+jBs3Dp6envj9\n999x6tQpXLp0CU8//TR2796N6upqhIeHw8bGBmfPnsXmzZtRWlqKjz76SDuOIAgQRRHvvPMOfHx8\nMGvWLBw/fhwbN26Eq6srxowZo+27YsUK7Ny5E/369UNoaChqampw6tQpnDlzRieEnzp1Cvv27UN4\neDisrKyQkZGBxYsX45tvvkGHDh0AABcvXsTcuXNhbW0NhUIBiUSCzMxMxMbG4osvvkD37t0N9zCJ\niIiIqNUxSgg/fPgwQkNDMXPmTG3bhAkTtP8dExOjM+MdGhoKNzc3JCQk4Pr163ByctIeq66uRkhI\nCCZNmgQAGD16NKKjo7F9+3ZtCD9x4gR27tyJl19+GbNnz9ae+8orr+jVVlBQgJSUFLi4uAAA/Pz8\nMH36dOzatQtjx44FAKxduxY1NTVYtWqVtt/w4cMxefJkxMfH47PPPnvsZ0REREREpssoIVwmk+Hs\n2bMoKyuDXC7XO35/ANdoNLh9+zZ8fHwgiiJ++eUXnRAO3A3e93vuuefw/fffa3/v3bsXgiBgypQp\nDdbWt29fbbAGgC5dusDKygpFRUUAgNraWhw7dgzBwcE6/RwcHDB06FB8++23qKqqgqWlZb3X0GjU\nUKtLG6yFiIiorausLDd2CUQtwighPCYmBsuXL0dkZCS8vb3Rr18/DB8+HJ06dQIAXLt2DYmJiTh4\n8CBu3rypPU8QBNy6dUtnrPbt28PW1lanrUOHDlCr1drfRUVFcHR0hEwma7C2BwP+vfHu1VFeXo7b\nt2/D3d1dr5+HhwdEUcS1a9fg6elZ7zWysuZDKtUN6T4+AejZM7CeM4iIiNouudwcUqnU2GWQCVIq\nlVAqlTptFRUVBrm2UUL4kCFD8Nxzz2H//v04duwYvvnmGyiVSixduhR9+/bF22+/DbVajaioKLi7\nu0MqlaK0tBTLli1DbW2tzlhmZs27wUt944mi2GzXSEqKg6+vb7ONR0REZMqkUukjTaQRNZZCoYBC\nodBpy8/Ph7+/f4tf2yghHLi7fGPMmDEYM2YMKioqMGPGDKxfvx4ODg4oLCzEe++9h2HDhmn7Hz9+\nvMnXcnV1xdGjR6FWqx/7/4nt7OxgYWGBy5cv6x0rKCiAIAjo2LHjQ8ewt7eHo6PjY9VBRERERK2X\nwUN4bW0tqqqqYG1trW2ztbWFXC5HdXU1JBIJAP2Z5/T0dJ0tBxtj0KBB2LJlC1JSUnRezGwKMzMz\nBAQE4MCBAygpKYGzszMA4MaNG9i1axeee+65h64HBwCVSoXSUq4JJyIioqbhvw60fgYP4ZWVlYiM\njMTgwYPRtWtXWFpa4tixYzh37hxmzZoFDw8PuLq6Ii4uDtevX4eVlRX27duns8a7sfz8/DBs2DBk\nZGTg8uXLCAwMRG1tLU6dOoXevXtrdz15VNOmTcPx48cxZ84chIeHw8zMDFlZWbhz5w5iYmIaPD8t\nLQ+5ub819XaIiIiojZPLzREdHckg3ooZPIRLpVKMHTsWx44dw759+yCKItzc3DBv3jztLieffPIJ\nVq1aBaVSifbt22PgwIEYO3Yspk+frjfeo86Ov/vuu+jatSu+++47xMfHw9raGt26dUOvXr10xqpr\nvAfbn3rqKXzxxRdISEiAUqlEbW0tfHx88P7776Nbt24N1mJhEQC5fMAj1U1ERER0v8rKcpSV5UKj\n0TCEt2JCXl5e871xSA917tw5xMTEIDY2B927DzV2OURERNQKqdWlKCvLQGxsBN8xawH3XsyMj4/X\n+6p6c2rerUWIiIiIiKhBDOFERERERAbGEE5EREREZGAM4UREREREBsYQTkRERERkYAzhREREREQG\nxhBORERERGRgDOFERERERAZm8C9mPq7S0lIkJibi6NGjqKiogKOjIwICAvDmm29CIpGgqKgI8fHx\nOHHiBKqrq9GlSxe89tpr6Nevn3aMkydP4q233sKHH36IS5cuISsrC5WVlQgICMA777yDdu3aIT4+\nHrm5d79GNXjwYPzlL3+Bufn/Pa6amhqsX78eO3fuxPXr1yGXyzF06FBMmTIF7dq1M8ajISIiIqJW\nolWF8LKyMsyaNQu3bt3C6NGj4e7ujtLSUuzZswcajQbV1dWYPXs2qqur8fLLL6NDhw7Izs7GokWL\nsGTJEgQHB+uMl5aWBgsLC0RFReHq1avIyMiARCKBmZkZ1Go1Xn/9dZw5cwbZ2dlwdXXFa6+9pj13\n5cqVyM7OxpAhQzBhwgScPXsWaWlpKCgowNKlSw39aIiIiIioFWlVIXz16tVQqVSIi4vDM888o21/\n/fXXAQDJycmoqKjAl19+iZ49ewIAQkNDMX36dMTFxemF8JqaGnz++eeQSCQAAJVKhby8PAQGBuLv\nf/87AGDMmDEoLCzE9u3btSH8t99+Q3Z2NsLCwvDWW29p+9na2mLjxo04efIk/Pz8WvRZEBEREVHr\n1WpCuCiKOHDgAJ5//nmdAH6/w4cPo3v37toADgCWlpYICwtDQkICLl68iKeeekp7bMSIEdoADgA9\nevRAXl4eXnrpJZ1xe/Togc2bN6O2thZmZmY4fPgwBEHA+PHjdfpFRkZiw4YNOHTo0ENDuEajhlpd\n2pjbJyIiIgIAVFaWG7sEagatJoSXl5ejsrJSJ0Q/qKSkBD4+PnrtHh4e2uP3n9+xY0edftbW1nW2\ny2QyiKKIW7duoUOHDigpKYEgCHBzc9Pp5+DgAJlMhpKSkofeS1bWfEilljptPj4B6Nkz8KHnERER\nEQGAXG4OqVRq7DJaPaVSCaVSqdNWUVFhkGu3mhDeEszM6t4cpr52URR1fguC0KTrJiXFwdfXt0nn\nEhEREUmlUshkMmOX0eopFAooFAqdtvz8fPj7+7f4tVtNCLezs4OVlRUuXrxYbx9nZ2dcvnxZr72g\noEB7vDk4OztDFEUUFhZqZ9mBu2vK1Wp1g9ext7eHo6Njs9RCRERERK1PqwnhgiAgODgYOTk5OHfu\nHLy9vfX6BAUFISMjA2fOnNEuS6mqqkJWVhZcXFweupSlMYKCgpCQkIBNmzYhNjZW275hwwYIgqCz\nHWJdVCoVSku5JpyIiIhaD86+N69WE8IBYPr06Th+/Djmzp2LsLAweHp6oqysDHv27MGqVasQFRWF\n3NxcLFiw4P+3d/9RUdX5H8efIzKgLoEOiEdQ5MfRzH7s0Qjdb0KSRYlFTOYx62iga3kqFTuuu7p7\nsjpump1DhmJqToyVVq5r/qjAX6DubruUm2gK2qaIomMwCI78GmH4/uFh5DoDziDMEPN+nMM5cO+d\nmc+8fINvLp/7uWi1Wvz8/MjJycFgMDi8bODNU07siYyMJCEhgV27dmEymbjvvvsoLCxk9+7djB07\n9pYro2zalMv+/T87NB4hhBBCiK5Ao+nJrFmTpRHvIL+qJjwwMJDMzEx0Oh379u2jpqaGwMBAYmJi\n8PX1pU+fPqxevZq1a9fy5ZdfWm/W8/bbb/PAA8qLHlubz+3oPO8FCxYwcOBAsrOz+cdmo482AAAR\nfklEQVQ//kG/fv14/vnnmTZt2i0f6+MTjUbzfw69jhBCCCGEu9XUVGI0Xr+JoTThHUOVm5t761O/\nokOcOnWKF198kbS0vdx558PuHo4QQgghhEOuXi3HaPw7aWnabn9dW/OFmWvXrrU7/bmj2F8GRAgh\nhBBCCNFppAkXQgghhBDCxaQJF0IIIYQQwsWkCRdCCCGEEMLFulUTnp2dTXx8vOK28fPmzVOs5S2E\nEEIIIYS7dasmHGyXGFSpVO26vXx9fT16vZ6CgoKOGpoQQgghhBBAN2vCExISyM7OVtw2/t1332XF\nihVOP1ddXR16vZ4jR4505BBFO+Tnb3b3EH6VJDfnSWbtI7k5TzJrH8nNeZJZ19WtmnCVSoW3t7di\nm5eXF15eXm4akegI330nP0DaQ3JznmTWPpKb8ySz9pHcnCeZdV1ub8KPHTvGSy+9REJCAs8//zw7\nd+4kKyuL+Ph4AAwGA/Hx8eTk5Ng8Nj4+Hr1eb/26tTnh8+fPVzyusrKSd955B61WS0JCAjNnzlQ8\nv8FgIDk5GZVKhV6vJz4+3ua1SkpKeP3110lKSiIhIYGXXnqJf/3rXx2WixBCCCGE6L7cetv6M2fO\n8Ic//IGAgABSUlJoaGhAr9cTEBDQrnncYH9OeEtms5l58+Zx4cIFtFotwcHBHDhwgOXLl1NdXY1W\nqyUgIIC0tDTS09MZO3YsY8eOBSAyMtI67jlz5hAUFMTUqVPx9fUlLy+Pv/zlL7zxxhs8+OCD7Rq7\nEEIIIYTwDG5twnU6HQDvv/8+QUFBAMTGxpKamtppr7ljxw7OnTvH4sWLrWfbn3zySebOnYtOp+Px\nxx+nV69exMbGkp6eTkREBOPHj1c8x6pVqxgwYAAffPCBdapLUlISr776KuvWrZMmXAghhBBCtMlt\nTbjFYuH777/nwQcftDbgAIMHDyY6Opr8/PxOed38/Hz69etnbcDh+rxxrVbL0qVLKSgoYPTo0a0+\n3mQyceTIEVJSUrh69api3/3338/GjRsxGo1oNBqbx5rNZgDOnZMVV5xx9Wo5RUX73D2MXx3JzXmS\nWftIbs6TzNpHcnNeR2VWV3eV+voSCgoK6Nu3bweMrOsqLCwEbvRtncVtTXhlZSX19fWEhITY7Bs0\naFCnNeGXLl2y+5phYWE0NTUp5pPbU1paSlNTEx999JH1TH5LKpWKy5cv223CDQYDAH/722vtHL3n\nSk8ff+uDhA3JzXmSWftIbs6TzNpHcnNeR2am0y3tsOfq6gwGA3fffXenPb9bp6M4orW54RaLxcUj\nUb7u5MmTiY6OtnuMvSYfrp8pX7x4MQMGDECtVnfaGIUQQgghRPuYzWYMBgP3339/p76O25rwgIAA\nfHx8OH/+vM2+kpIS6+d+fn4ANlM/bnXGujXBwcGcOXPGZvvZs2et+6H15n/gwIEA9OzZk5EjRzr1\n2gEBATbzy4UQQgghRNfSmWfAm7lticIePXoQHR3NP//5T8rKyqzbz549y/fff2/9unfv3vj7+3P0\n6FHF47/88st2raASExNDRUUF+/fvt25rbGxk27Zt9O7dm/vuuw8AX19fwLb5DwgI4Le//S07d+6k\noqLC5vmrqqqcHpMQQgghhPAsbp2O8sILL5Cfn8+rr75KUlKStRkODw/n9OnT1uMmTJjA5s2beffd\ndxk6dChHjx61zs121hNPPMHOnTtZvnw5p06dsi5ReOLECV555RV69eoFgFqtJiwsjLy8PEJDQ/Hz\n8yM8PJzw8HDmzp3LnDlzSE1NJTExkYEDB3L58mWOHz9OeXk569ev77CMhBBCCCFE9+PWJjwiIoIV\nK1aQmZlJVlYWQUFBpKSkYDQaFU349OnTqaqq4uDBg+Tl5RETE8OyZcvQarVOnw1Xq9WsXLmSdevW\nsXv3bqqrqxk0aBALFy7k0UcfVRy7YMECMjIyyMzMpKGhgWnTphEeHk5YWBhr165Fr9eze/duqqqq\n6Nu3L1FRUUyfPr1DshFCCCGEEN2XKjc31/nTyZ1Mr9ezceNG9u27/SV15s6di1qtZsWKFR0wMiGE\nEEIIIW6f229b39mMRiN33HGHu4chhBBCCCGEVZdforC9jh8/zsGDB7l48SJTp05161iuXbuGTqdj\n7969mEwmIiIimDFjBqNGjXLruLqCI0eOMH/+fJvtKpWKVatWMXz4cOu2kpISVq1axY8//oi3tzcx\nMTG8/PLL+Pv7u3LILldbW8tnn31GUVERRUVFmEwmFi5cSEJCgs2xzmT01VdfsWXLFi5evEj//v3R\narUkJye74i11OkczW758OTk5OTaPHzx4MFlZWTbbu3NmJ0+eJDs7myNHjmAwGPD392f48OHMmDGD\n0NBQxbFSZzc4mpvU2g3FxcVkZWXx008/UVFRgY+PD2FhYUyZMoUxY8YojpVau8HR3KTW2vbJJ5+g\n0+kIDw9nw4YNin2urrdu24Tv2rWL7777jkmTJvHYY4+5dSzLli3j0KFDTJo0iZCQELKzs/njH/9I\nenq6S5bA+TV4+umnGTZsmGJby/XWy8rKmDNnDn5+fvz+97+ntraWzz//nOLiYtasWYOXl5erh+wy\nVVVVfPzxxwQHBxMZGUlBgf07rjqT0Y4dO3jvvfeIi4vjmWee4dixY2RkZFBfX8+UKVNc9dY6jaOZ\nwfXrRBYsWKC40LtPnz42x3X3zDZv3szx48eJi4sjIiKCiooKtm3bxqxZs8jMzGTIkCGA1NnNHM0N\npNaaXbp0ibq6OhISEtBoNNTX13Pw4EEWL17Ma6+9RmJiIiC1djNHcwOptdaUlZXx6aefWhfhuHmf\nq+utSzbh06dPv+0LHBcuXNhBo7k9hYWF5ObmMnv2bJ555hkAHnnkEVJTU1m7di0ZGRluHmHXcM89\n9xAbG9vq/k8++YT6+nrWr19PUFAQAMOGDWPBggVkZ2crfvh0N4GBgWzdupW+ffty8uRJZs+ebfc4\nRzMym83odDrGjBnD66+/DkBiYiIWi4WPP/6YiRMn8pvf/MY1b66TOJoZgJeXFw8//HCbz+cJmU2e\nPJlhw4Yp/qMZN24cqampbNq0iUWLFgFSZzdzNDeQWmsWExNDTEyMYltycjKzZs1iy5Yt1hqSWlNy\nNDeQWmvNmjVrGDFiBI2NjVy5ckWxzx311u3nhLvbgQMH8PLyYuLEidZtarWaCRMmcOLECcUa6Z6u\ntraWxsZGu/sOHTrEmDFjrN8YAKNGjSI0NJS8vDwXjdA9evbsSd++fW95nKMZ/fDDD5hMJpKSkhSP\nf+qpp6itreXf//53h43dXRzNrJnFYqGmpqbV/Z6Q2V133WXzF6WQkBCGDBmiuIGa1JmSo7k1k1qz\nT6VS0b9/f8W9OaTWbs1ebs2k1pQKCgo4dOgQL7/8st397qg3acI72c8//0xoaKjNnz7uvPNOAP73\nv/+5Y1hdzjvvvENiYiIJCQnMnz+fkydPWveVl5dTWVlpM10Fruf4008/uXKoXZIzGTV/fvOxQ4cO\nRaVSeVxN1tXVkZiYyMSJE0lKSmLlypXU1tYqjvHkzC5fvmydDyl15riWuTWTWlOqq6ujqqqKCxcu\nsGXLFv7zn/9Y70Qttda6tnJreYzU2g0Wi4WMjAwSExMJDw+32e+ueuuS01G6E6PRiEajsdmu0Who\namrCaDS6YVRdh7e3N7GxsYwePRp/f3+Ki4v54osvmDdvHhkZGURFRVkz6tevn83jNRoNJpOJhoYG\nevb03HJ2JqOKigp69Ohh0yD07NkTf39/ysvLXTLmrkCj0TBlyhSGDh2KxWIhPz+f7du3c/r0adLT\n0+nR4/p5Ck/NbM+ePZSXl5OamgpInTnq5txAas2eNWvWsHPnTuD6Gd3Y2FjmzJkDSK21pa3cQGrN\nnu3bt/PLL78ovidbcle9eW7X4iL19fV4e3vbbFer1db9nmzEiBGMGDHC+vWYMWOIjY1l5syZfPjh\nhyxbtgyz2QzcyKylljl6chPuTEZtZaVWq63P5Qlmzpyp+HrcuHGEhoai0+k4cOAA48aNA9qur+6a\nWUlJCStXruTuu++2riojdXZr9nIDqTV7Jk2aRFxcHEajkby8PCwWC9euXQOk1trSVm4gtXazK1eu\nkJWVxbRp01pdstpd9SbTUTqZj4+P4pujWfM/ko+Pj6uH1OWFhITwu9/9jh9++IGmpibrN4C9wpYc\nr3MmIx8fHxoaGuw+j9lstvtDyJM0X0B9+PBh6zZPy6yiooI//elP+Pn5sWTJEuudiaXO2tZabq3x\n9FobNGgQI0eO5JFHHmHp0qXU1NSwePFiQGqtLW3l1hpPrrUNGzbg7+/f5vKB7qo3acI7mUajsTvl\npHmbvakqAvr3709DQwN1dXXWjCoqKmyOMxqN+Pn5efRZcMCpjPr164fFYqGqqkpxXENDA1VVVQQG\nBnb+gLswtVqNv78/JpPJus2TMquurmbhwoVUV1ezfPlyxZ9npc5a11ZurfH0WrtZXFwcJ0+e5Pz5\n81JrTmiZW2s8tdZKS0vZtWsXycnJlJWVYTAYMBgMmM1mGhoaMBgMmEwmt9WbNOGdLDIykvPnz9tc\nEHHixAlUKhVRUVFuGlnXduHCBdRqNb169SIwMJCAgADFxZrNioqKJENwKqOoqCiamppsji0qKqKp\nqYnIyMhOH29XVltbS1VVFQEBAdZtnpKZ2Wxm0aJFlJaW8vbbbzN48GDFfqkz+26VW2s8udbsaZ6e\nWV1dLbXmhJa5tcZTa615BbpVq1YxdepU60dhYSHnzp3jueeeY+PGjW6rN2nCO1lcXByNjY3Wiyjg\n+h00c3JyGD58uGIpHE9082+ScH3FmG+//Zbo6GjrtrFjx/Ltt98qlnQ8fPgw58+f56GHHnLFULs8\nRzMaOXIkfn5+bN++XfH4HTt24Ovra3PHuu7KbDbb/HIMoNfrAXjggQes2zwhM4vFwhtvvEFhYSFL\nlixR3K22JakzJUdyk1pTqqystNnW2NhITk4OarWasLAwQGrtZo7kJrWmFB4ezptvvsmbb77JW2+9\nZf0YMmQIwcHBvPXWW0yYMAFwT715vfDCC0tu5w2KtgUFBVFcXMz27dupqanBYDCwevVqSkpKWLRo\nEcHBwe4eolstWrSIvLw8DAYD586dY8+ePaxcuRJfX1/+/Oc/W68+joqK4ptvvmH//v2oVCr++9//\nkpmZyaBBg5g3b571au/uatu2bRw+fJiCggJOnTpFjx49KC0t5ejRo0RFReHt7e1wRl5eXvTu3Zut\nW7dy5swZqqur2bp1K/v27SMlJYVRo0a5+d12jFtlVllZyfTp07l06RIXLlygsLAQvV7P7t27iYmJ\nISUlxfpcnpDZ6tWr2bNnD6NHj2bAgAGcPn1a8dF8dkfqTMmR3MrKyqTWWvjrX//Krl27MBgMlJaW\nkp+fz3vvvUdxcTGzZs3i3nvvBaTWbuZIblJrSr6+vgwePNjmo/mC1ldeecV6Twl31JsqNze36daH\nidtx7do1dDode/fuxWQyERERwYwZM7pFgd+ubdu2sXfvXkpLS6mpqcHf359Ro0Yxbdo0Bg4cqDj2\n7NmzZGZmcuzYMby9vRk9ejSzZ89W/Hmtu3r22Wf55Zdf7O7btGmT9Zc5ZzL66quv2LJlCxcvXqR/\n//4kJyej1Wo79X240q0y69OnDxkZGRQWFlJeXo7FYiEkJITx48czefJkmxuwQPfOLC0tjaNHj7a6\nf9++fdbPpc5ucCS3q1evSq21kJuby9dff82ZM2e4cuUKvXr1YujQoWi1WpuziFJrNziSm9SaY9LS\n0rhy5QobNmxQbHd1vUkTLoQQQgghhIt177/hCyGEEEII0QVJEy6EEEIIIYSLSRMuhBBCCCGEi0kT\nLoQQQgghhItJEy6EEEIIIYSLSRMuhBBCCCGEi0kTLoQQQgghhItJEy6EEEIIIYSLSRMuhBBCCCGE\ni0kTLoQQQgghhItJEy6EEEIIIYSLSRMuhBBCCCGEi/0/19EHEtNdTEAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ff8e5f55bd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create function for histogram of most frequent words\n", "% matplotlib inline\n", "import matplotlib.pyplot as plt\n", "plt.rcdefaults()\n", "\n", "def histogram(words):\n", " count = map(lambda x: x[1], words)\n", " word = map(lambda x: x[0], words)\n", " plt.barh(range(len(count)), count,alpha=0.4)\n", " plt.yticks(range(len(count)), word)\n", "\n", "\n", "\n", "# Change order of tuple (word, count) from (count, word)\n", "words = words.map(lambda x:(x[1], x[0]))\n", "words.take(25)\n", "# display histogram\n", "#plt.figure(figsize=(12, 14)) \n", "histogram(words.take(25)) \n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
iABC2XYZ/abc
small/Untitled.ipynb
1
2476
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'tf' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-b694dc019916>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2.0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4.0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'tf' is not defined" ] } ], "source": [ "a = tf.constant([1.0, 2.0])\n", "b = tf.constant([3.0, 4.0])\n", "c = a * b\n", "\n", "with tf.Session() as sess:\n", " print sess.run(c)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
SyrakuShaikh/python
learning/fluent_python_2015/Given a test score, return the corresponding letter grade.ipynb
1
1472
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import bisect" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):\n", " position = bisect.bisect(breakpoints, score)\n", " return grades[position]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['F', 'A', 'C', 'C', 'B', 'A', 'A']" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# avoid the anoying multi-if codes." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
PMEAL/OpenPNM
examples/reference/uncategorized/overview_of_domain_syntax.ipynb
1
64990
{ "cells": [ { "cell_type": "markdown", "id": "c833e469", "metadata": {}, "source": [ "# OpenPNM Version 3: The new @domain syntax " ] }, { "cell_type": "markdown", "id": "58dbe0a2", "metadata": {}, "source": [ "The latest version of OpenPNM includes a new syntax feature with several uses. This notebooks outlines benefits of this new feature, starting with the superficial or immediately visible aspects, then dives into the underlying impacts." ] }, { "cell_type": "markdown", "id": "9db83958", "metadata": {}, "source": [ "## Using the @ sytax to read and write data\n", "At its core, the @ syntax uses the already existing *labels* feature of OpenPNM. Labels have been integral to the use of OpenPNM since its inception, but the new @ syntax moves the use of labels to forefront. " ] }, { "cell_type": "markdown", "id": "7b7830b6", "metadata": {}, "source": [ "Start by generating a simple 2D cubic network:" ] }, { "cell_type": "code", "execution_count": 1, "id": "cf644968", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "openpnm.network.Cubic : net_01\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Properties Valid Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coords 8 / 8 \n", "2 throat.conns 10 / 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Labels Assigned Locations\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.back 2 \n", "2 pore.front 2 \n", "3 pore.left 4 \n", "4 pore.right 4 \n", "5 pore.surface 8 \n", "6 throat.surface 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "Parameters Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "import numpy as np\n", "import openpnm as op\n", "pn = op.network.Cubic([2, 4, 1])\n", "print(pn)" ] }, { "cell_type": "markdown", "id": "b307ddb5", "metadata": {}, "source": [ "This network includes a few pre-defined labels (e.g. ``'pore.left'`` and ``'throat.surface'``), which are boolean masks of ``True|False`` values which indicate whether that label applies to a given pore/throat or not. As shown below, the label ``'pore.left'`` applies to pores ``[0, 1, 2, 3]``:" ] }, { "cell_type": "code", "execution_count": 2, "id": "efecdae8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ True True True True False False False False]\n" ] } ], "source": [ "print(pn['pore.left'])" ] }, { "cell_type": "markdown", "id": "020e24dc", "metadata": {}, "source": [ "We can use labels as masks to view only values for given locations, as follows:" ] }, { "cell_type": "code", "execution_count": 3, "id": "06c66042", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.5, 0.5, 0.5],\n", " [0.5, 1.5, 0.5],\n", " [0.5, 2.5, 0.5],\n", " [0.5, 3.5, 0.5]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pn['pore.coords'][pn['pore.left']]" ] }, { "cell_type": "markdown", "id": "68f2fb59", "metadata": {}, "source": [ "or using the ``pores`` method:" ] }, { "cell_type": "code", "execution_count": 4, "id": "9e4578ed", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.5, 0.5, 0.5],\n", " [0.5, 1.5, 0.5],\n", " [0.5, 2.5, 0.5],\n", " [0.5, 3.5, 0.5]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pn['pore.coords'][pn.pores('left')]" ] }, { "cell_type": "markdown", "id": "2557e12b", "metadata": {}, "source": [ "In OpenPNM V3 there is a very handy new syntax, **the @ symbol**, used as follows:" ] }, { "cell_type": "code", "execution_count": 5, "id": "a785a427", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.5, 0.5, 0.5],\n", " [0.5, 1.5, 0.5],\n", " [0.5, 2.5, 0.5],\n", " [0.5, 3.5, 0.5]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pn['pore.coords@left']" ] }, { "cell_type": "markdown", "id": "efb446f4", "metadata": {}, "source": [ "This certainly saves some typing! It's also pretty intuitive since ``@`` is usually read as \"at\", inferring a location. \n", "\n", "The @ sytax can also be used to write data as well. Let's create an array of 1.0s, then use the @ syntax to change them:" ] }, { "cell_type": "code", "execution_count": 6, "id": "c42f2b3c", "metadata": {}, "outputs": [], "source": [ "pn['pore.values'] = 1.0" ] }, { "cell_type": "markdown", "id": "19382301", "metadata": {}, "source": [ "If we supply a scalar, it is written to all locations belong to ``'left'``:" ] }, { "cell_type": "code", "execution_count": 7, "id": "2705ff72", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2. 2. 2. 2. 1. 1. 1. 1.]\n" ] } ], "source": [ "pn['pore.values@left'] = 2.0\n", "print(pn['pore.values'])" ] }, { "cell_type": "markdown", "id": "3b8b3a4a", "metadata": {}, "source": [ "We can of course pass in an array, which must have the correct number of elements:" ] }, { "cell_type": "code", "execution_count": 8, "id": "57f46949", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2. 2. 2. 2. 4. 5. 6. 7.]\n" ] } ], "source": [ "pn['pore.values@right'] = [4, 5, 6, 7]\n", "print(pn['pore.values'])" ] }, { "cell_type": "markdown", "id": "d0e0de0f", "metadata": {}, "source": [ "One useful bonus is that you can create an array and assign values to certain locations at the same time:" ] }, { "cell_type": "code", "execution_count": 9, "id": "241107f8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 2. 2. 2. 2. nan nan nan nan]\n" ] } ], "source": [ "pn['pore.new_array@left'] = 2.0\n", "print(pn['pore.new_array'])" ] }, { "cell_type": "markdown", "id": "e8ef1825", "metadata": {}, "source": [ "The above line created an empty array of ``nans``, then added ``2.0`` to the pores labelled ``'left'``. This was not previously possible without first creating an empty array before adding ``2.0`` to specific locations." ] }, { "cell_type": "markdown", "id": "7fc748d9", "metadata": {}, "source": [ "You can use any label that is defined, and it will overwrite any values already present if that label happens to overlap the label used previously:" ] }, { "cell_type": "code", "execution_count": 10, "id": "f2fca4dc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 3. 2. 2. 2. 3. nan nan nan]\n" ] } ], "source": [ "pn['pore.new_array@front'] = 3.0\n", "print(pn['pore.new_array'])" ] }, { "cell_type": "markdown", "id": "9eba8d87", "metadata": {}, "source": [ "which overwrote some locations that had ``2.0``, since some pores are both ``'front'`` and ``'left'``, as well as overwrote some of the ``nan`` values." ] }, { "cell_type": "code", "execution_count": 11, "id": "fd048997", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3. 2. 2. 2.]\n" ] } ], "source": [ "print(pn['pore.new_array@left'])" ] }, { "cell_type": "markdown", "id": "a57dc7bd", "metadata": {}, "source": [ "## Using the @ Syntax to Define Subdomains\n", "\n", "Using the @ symbol for data read/write as shown above is actually a side effect of a *major conceptual shift* made in V3. The ``Geometry`` and ``Physics`` objects are now *gone*. There was essentially only one use case for these, which was to model heterogeneous domains, like bimodal pore size distributions or layered structures. \n", "\n", "In V2 this was accomplished by using 2 (or more) ``Geometry`` objects to represent each class of pores, with unique pore-scale models attached to each. Without getting lost in the details, it is sufficient to say that having separate objects for managing each class of pores (and/or throats) created a *lot* of complications, both to the user and to the maintenence of the backend. \n", "\n", "In V3 we have developed what we think is a *much tidier approach* to managing heterogeneous domains. Instead of creating multiple ``Geometry`` objects (and consequently multiple ``Physics`` objects), you now add all the pore-scale models to the ``Network`` and ``Phase`` objects directly. The trick is that when adding models you specify one additional argument: the ``domain`` (i.e. pores or throats) to which the model applies, as follows:" ] }, { "cell_type": "code", "execution_count": 12, "id": "0f8def0b", "metadata": {}, "outputs": [], "source": [ "pn.add_model(propname='pore.seed', \n", " model=op.models.geometry.pore_seed.random,\n", " domain='left',\n", " seed=0,\n", " num_range=[0.1, 0.5])" ] }, { "cell_type": "markdown", "id": "2c493269", "metadata": {}, "source": [ "where ``domain`` is given the label ``'left'`` which has already been defined on the network. \n", "\n", "This means that to create a heterogeneous model you only need to create labels marking the pores and/or throats of each domain, then pass those labels when adding models. You can also leave ``domain`` unspecified (``None``) which means the model is applied everywhere. For the above case, we can see that the ``'pore.seed'`` model was computed for 4 locations (corresponding the 4 pores labelled ``'left'``):" ] }, { "cell_type": "code", "execution_count": 13, "id": "dee10e91", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "openpnm.network.Cubic : net_01\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Properties Valid Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coords 8 / 8 \n", "2 pore.new_array 5 / 8 \n", "3 pore.seed 4 / 8 \n", "4 pore.values 8 / 8 \n", "5 throat.conns 10 / 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Labels Assigned Locations\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.back 2 \n", "2 pore.front 2 \n", "3 pore.left 4 \n", "4 pore.right 4 \n", "5 pore.surface 8 \n", "6 throat.surface 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "Parameters Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "print(pn)" ] }, { "cell_type": "markdown", "id": "ac304b09", "metadata": {}, "source": [ "The power of this new approach is really visible when we consider applying a model with different parameters to a different set of pores:" ] }, { "cell_type": "code", "execution_count": 14, "id": "4bb4285d", "metadata": {}, "outputs": [], "source": [ "pn.add_model(propname='pore.seed', \n", " model=op.models.geometry.pore_seed.random,\n", " domain='right',\n", " seed=0,\n", " num_range=[0.5, 0.9])" ] }, { "cell_type": "markdown", "id": "3efc5427", "metadata": {}, "source": [ "Now the ``pore.seed'`` values exist on 8 locations." ] }, { "cell_type": "code", "execution_count": 15, "id": "dc791939", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "openpnm.network.Cubic : net_01\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Properties Valid Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coords 8 / 8 \n", "2 pore.new_array 5 / 8 \n", "3 pore.seed 8 / 8 \n", "4 pore.values 8 / 8 \n", "5 throat.conns 10 / 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Labels Assigned Locations\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.back 2 \n", "2 pore.front 2 \n", "3 pore.left 4 \n", "4 pore.right 4 \n", "5 pore.surface 8 \n", "6 throat.surface 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "Parameters Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "print(pn)" ] }, { "cell_type": "markdown", "id": "c11ae9f4", "metadata": {}, "source": [ "The new approach was made possible by changing how pore-scale models are stored on objects. Each object has a ``models`` attribute, which is a ``dict`` where the ``key`` corresponds to the property being calculated. So the model to compute ``'pore.seed'`` is stored as ``pn.models['pore.seed']``. The new ``@`` notation makes it possible to store multiple models for ``'pore.seed'`` that apply to different location on the same object. This can be seen below by printing the models attribute:" ] }, { "cell_type": "code", "execution_count": 16, "id": "e1d6a54a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Property Name Parameter Value\n", "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coordination_number model: coordination_number\n", " regeneration mode: deferred\n", "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "2 throat.spacing model: pore_to_pore_distance\n", " regeneration mode: deferred\n", "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "3 pore.seed@left model: random\n", " seed: 0\n", " num_range: [0.1, 0.5]\n", " regeneration mode: normal\n", "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "4 pore.seed@right model: random\n", " seed: 0\n", " num_range: [0.5, 0.9]\n", " regeneration mode: normal\n", "―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "print(pn.models)" ] }, { "cell_type": "markdown", "id": "19860f2b", "metadata": {}, "source": [ "Appending ``@`` to the model name creates a unique dictionary key. OpenPNM recoginizes that the models in ``'pore.seed@left'`` and ``'pore.seed@right'`` both compute values of ``'pore.seed'``, and directs the outputs of each function to the correct locations, which it can infer from the ``@right/left`` portion of the key." ] }, { "cell_type": "markdown", "id": "7e72859f", "metadata": {}, "source": [ "## Other Advantages of the @ Syntax\n", "There are many upsides to this approach, as will be demonstrated in the following sections." ] }, { "cell_type": "markdown", "id": "9c6ede7f", "metadata": {}, "source": [ "### Defining and Changing Subdomain Locations\n", "It becomes trivial to define and redefine the locations of a domain. This simply requires changing where ``pn['pore.left']`` is ``True``. This is demonstrated as follows:" ] }, { "cell_type": "code", "execution_count": 17, "id": "03e2168a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pn.pores('left')" ] }, { "cell_type": "code", "execution_count": 18, "id": "d260c555", "metadata": {}, "outputs": [], "source": [ "pn['pore.left'][[4, 5]] = True\n", "del pn['pore.seed']" ] }, { "cell_type": "code", "execution_count": 19, "id": "cfb0fcbc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "openpnm.network.Cubic : net_01\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Properties Valid Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coords 8 / 8 \n", "2 pore.new_array 5 / 8 \n", "3 pore.seed 6 / 8 \n", "4 pore.values 8 / 8 \n", "5 throat.conns 10 / 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Labels Assigned Locations\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.back 2 \n", "2 pore.front 2 \n", "3 pore.left 6 \n", "4 pore.right 4 \n", "5 pore.surface 8 \n", "6 throat.surface 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "Parameters Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "pn.run_model('pore.seed@left')\n", "print(pn)" ] }, { "cell_type": "markdown", "id": "07e76a49", "metadata": {}, "source": [ "It can now been observed that ``'pore.seed'`` values are found in 6 locations because the domain labelled ``'left'`` was expanded by 2 pores. " ] }, { "cell_type": "markdown", "id": "b97628ac", "metadata": {}, "source": [ "### Mixing Full Domain and Subdomain Models\n", "When defining two separate subdomains, the pore and throat sizes are often the only thing that is different. In V2, however, it was recommended practice to include ALL the additional models on each subdomain object as well, such as volume calculations. With the @ syntax, only models that actualy differ between the domains need to be specifically dealt with.\n", "\n", "This is demonstrated below by first deleting the individual ``'pore.seed'`` models applied above, and replacing them with a single model that applies uniform values on all locations, then applying two different normal distributions to the ``'left'`` and ``'right'`` domains." ] }, { "cell_type": "code", "execution_count": 34, "id": "e332fd2c", "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "'pore.seed@left'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_20732/767852880.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mdel\u001b[0m \u001b[0mpn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'pore.seed@left'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mdel\u001b[0m \u001b[0mpn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'pore.seed@right'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 'pore.seed@left'" ] } ], "source": [ "del pn.models['pore.seed@left']\n", "del pn.models['pore.seed@right']" ] }, { "cell_type": "code", "execution_count": 21, "id": "32853ff6", "metadata": {}, "outputs": [], "source": [ "pn.add_model(propname='pore.seed', \n", " model=op.models.geometry.pore_seed.random)\n", "pn.add_model(propname='pore.diameter', \n", " model=op.models.geometry.pore_size.normal,\n", " domain='left',\n", " scale=0.1, \n", " loc=1,\n", " seeds='pore.seed')\n", "pn.add_model(propname='pore.diameter', \n", " model=op.models.geometry.pore_size.normal,\n", " domain='right',\n", " scale=2, \n", " loc=10,\n", " seeds='pore.seed')" ] }, { "cell_type": "markdown", "id": "932940df", "metadata": {}, "source": [ "As can be seen in the figures below, the ``'pore.seed'`` values are uniformly distributed on all locations, but ``'pore.diameter'`` differs due to the different parameter used in each model." ] }, { "cell_type": "code", "execution_count": 22, "id": "015bbd36", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAF0CAYAAAAKMg75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtX0lEQVR4nO3de5SddX3v8feXEMxwjUqo5IKJHAhYwAQHiI3VItBAReSwSBHFcrENVBCsxyg5tWApa4knykFt5aICAWkQNCdE5RggQBEMba4mXAwFGmASWwY8QTADJOF7/tg7cTKZhHlmZs+z9573a61Ze/ZvP3vvT/YafvPhN88lMhNJkiRJPbNT2QEkSZKkRmKBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKmAmhXoiLg+Ip6PiEe283hExDcj4smIWBERh9cqiyRJktRfdq7ha98I/CNw03YePwE4oPp1FHB19XaH9t577xw7dmz/JJSkAbZkyZIXMnNE2TkGinO2pEa2vTm7ZgU6Mx+IiLE72OSjwE1ZuZLLwxExPCL2zcxf7+h1x44dy+LFi/szqiQNmIh4puwMA8k5W1Ij296cXeY+0KOA5zrdb6uObSMipkXE4ohY3N7ePiDhJEmSpO6UWaCjm7FuryuemddlZmtmto4YMWj+8ilJkqQ6VGaBbgPGdLo/GlhbUhZJkiSpR2p5EOGbmQdcEBG3Ujl48KU32/9ZktT4NmzYQFtbG6+++mrZUZrGsGHDGD16NEOHDi07ijQo1KxAR8Rs4E+AvSOiDbgUGAqQmdcAdwJ/BjwJrAfOrlUWSVL9aGtrY4899mDs2LFEdLc3n4rITF588UXa2toYN25c2XGkQaGWZ+E4/U0eT+D8Wr2/JKk+vfrqq5bnfhQRvP3tb8eD7KWB45UIJUkDzvLcv/w8pYFlgZYkqQa+/OUv87WvfW2H27S3t3PUUUcxceJEfv7zn/Ptb397gNJJ6gsLtCSprs1dtobJV9zLuIt/yuQr7mXusjWl5tm0aVO/vdaCBQs46KCDWLZsGWPGjLFASw2izLNwDIi5y9Ywc/4q1q7rYOTwFqZPGc/JE7u9Xoskqc7MXbaGGXNW0rGhUlrXrOtgxpyVAH2ay1evXs3xxx/PUUcdxbJlyzjwwAO56aabWLhwIZ///OfZuHEjRxxxBFdffTVvectbGDt2LOeccw533XUXF1xwAW9729u49NJLee2119h///254YYb2H333bf7fk899RTnn38+7e3t7LrrrnznO9/h1Vdf5Qtf+AIdHR1MmDCB8ePH89RTTzFhwgSOO+44Zs6c2et/n5rLonnXMmbpTPbJdp6PETx3+HSOOOncsmMNak29Ar154l2zroPk9xNv2asXkqSemTl/1ZbyvFnHhk3MnL+qz6+9atUqpk2bxooVK9hzzz258sorOeuss/jBD37AypUr2bhxI1dfffWW7YcNG8aDDz7Isccey+WXX84999zD0qVLaW1t5corr9zhe02bNo1vfetbLFmyhK997Wt8+tOfZsKECVx22WWcdtppLF++nK9+9avsv//+LF++3PKsLRbNu5ZDlnyJd9DOTgHvoJ1DlnyJRfOuLTvaoNbUBbqWE68kqfbWrusoNF7EmDFjmDx5MgBnnHEGCxYsYNy4cRx44IEAnHnmmTzwwANbtj/ttNMAePjhh3nssceYPHkyEyZMYNasWTzzzDPbfZ9XXnmFX/ziF0ydOpUJEyZw7rnn8utfe9kD9cyYpTNpide3GmuJ1xmz1P/JKlNT78JRy4lXklR7I4e3sKabOXvk8JY+v3bRM1fstttuQOW8y8cddxyzZ8/u0fPeeOMNhg8fzvLly4tGlNgn26GbH9V98oWBD6MtmnoFensTbH9MvJKk2ps+ZTwtQ4dsNdYydAjTp4zv82s/++yzLFy4EIDZs2dz7LHHsnr1ap588kkAbr75Zj74wQ9u87xJkybx0EMPbdlu/fr1PPHEE9t9nz333JNx48Zx++23A5UC/stf/nKb7fbYYw9efvnlPv+71FyejxHbGd97gJOos6Yu0LWceCVJtXfyxFF85ZRDGTW8hQBGDW/hK6cc2i8Hgx988MHMmjWLww47jN/85jf8zd/8DTfccANTp07l0EMPZaedduK8887b5nkjRozgxhtv5PTTT+ewww5j0qRJ/OpXvwLgkksuYd68eds855ZbbuF73/se73nPe/jDP/xD7rjjjm22efvb387kyZM55JBDmD59ep//fWoOzx0+nY7cZauxjtyF5w73Z6RMUbkgYONobW3NxYsX93h7z8IhqZ5ExJLMbC07x0Dpbs5+/PHHOfjgg0tKVLF69WpOPPFEHnnkkVJz9Kd6+FxVG78/C8cLPB97exaOAbS9Obup94GGyuqFhVmSJDWqI046F6qF+R3VL5WrqXfhkCSpO2PHjm2q1WdJA8sCLUmSJBVggZYkSZIKsEBLkiRJBVigJUmSpAIs0NIgNHfZGiZfcS/jLv4pk6+4l7nL1pQdSWp68+bN44orrtjhNvfffz8nnnhit49dddVVrF+/vhbRJBVkgZYGmbnL1jBjzkrWrOsggTXrOpgxZ6UlWvVrxW3wvw+BLw+v3K64rdQ4mzZtKvycjRs3ctJJJ3HxxRf3+n0t0FL9sEBLg8zM+avo2LB1AejYsImZ81eVlEjagRW3wY8vhJeeA7Jy++ML+1yiV69ezUEHHcSZZ57JYYcdxqmnnsr69etZsGABEydO5NBDD+Wcc87htddeAyqnvbvssst4//vfz+23385dd93F+973Pg4//HCmTp3KK6+8ss17nHXWWXzuc5/j6KOP5otf/CI33ngjF1xwAQBPPfUUkyZN4ogjjuCSSy5h99133/K8V155hVNPPZWDDjqIT3ziE2Qm3/zmN1m7di1HH300Rx99dJ/+7ZL6zgItDTJr13UUGpdKteAy2NDlZ3NDR2W8j1atWsW0adNYsWIFe+65J1deeSVnnXUWP/jBD1i5ciUbN27k6quv3rL9sGHDePDBBzn22GO5/PLLueeee1i6dCmtra1ceeWV3b7HE088wT333MPXv/71rcYvuugiLrroIhYtWsTIkSO3emzZsmVcddVVPPbYYzz99NM89NBDXHjhhYwcOZL77ruP++67r8//dkl9Y4GWBpmRw1sKjUuleqmt2HgBY8aMYfLkyQCcccYZLFiwgHHjxnHggQcCcOaZZ/LAAw9s2f60004D4OGHH+axxx5j8uTJTJgwgVmzZvHMM890+x5Tp05lyJAh24wvXLiQqVOnAvDxj398q8eOPPJIRo8ezU477cSECRNYvXp1n/+tkvpX01/KW9LWpk8Zz4w5K7fajaNl6BCmTxlfYippO/YaXd19o5vxPoqIQtvvtttuAGQmxx13HLNnz+7xc4p4y1vesuX7IUOGsHHjxsKvIam2XIGWBpmTJ47iK6ccyqjhLQQwangLXznlUE6eOKrsaNK2jrkEhnb568jQlsp4Hz377LMsXLgQgNmzZ3PssceyevVqnnzySQBuvvlmPvjBD27zvEmTJvHQQw9t2W79+vU88cQThd570qRJ/OhHPwLg1ltv7dFz9thjD15++eVC7yOpNlyBlgahkyeOsjCrMRz255XbBZdVdtvYa3SlPG8e74ODDz6YWbNmce6553LAAQfwjW98g0mTJjF16lQ2btzIEUccwXnnnbfN80aMGMGNN97I6aefvuUgw8svv5wDDzyQSy65hNbWVk466aQdvvdVV13FGWecwde//nU+/OEPs9dee71p3mnTpnHCCSew7777uh+0VLLIzLIzFNLa2pqLFy8uO4Yk9UpELMnM1rJzDJTu5uzHH3+cgw8+uKREFatXr+bEE0/kkUceKeX9169fT0tLCxHBrbfeyuzZs7njjjv69Jr18LlKzWZ7c7Yr0JKkbUTE9cCJwPOZeUh1bCbwEeB14Cng7MxcV1rIBrZkyRIuuOACMpPhw4dz/fXXlx1JUgEWaElSd24E/hG4qdPY3cCMzNwYEV8FZgBfLCFbn40dO7a01WeAP/7jP+aXv/xlae8vqW88iFCStI3MfAD4TZexuzJz8ykhHgb6fioMSWpAFmhJUm+cA/zf3j650Y6/qXd+ntLAskBLkgqJiL8FNgK3bOfxaRGxOCIWt7e3b/P4sGHDePHFFy19/SQzefHFFxk2bFjZUaRBw32gJUk9FhFnUjm48JjcTgPOzOuA66ByFo6uj48ePZq2tja6K9fqnWHDhjF6tHvUSAPFAi1J6pGIOJ7KQYMfzMz1vX2doUOHMm7cuP4LJkkDzF04JEnbiIjZwEJgfES0RcSnqJyVYw/g7ohYHhHXlBpSkkriCrQkaRuZeXo3w98b8CCSVIdcgZYkSZIKsEBLkiRJBVigJUmSpAIs0JIkSVIBFmhJkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWJEmSCrBAS5IkSQVYoCVJkqQCLNCSJElSARZoSZIkqQALtCRJklSABVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKsACLUmSJBVQ0wIdEcdHxKqIeDIiLu7m8b0i4scR8cuIeDQizq5lHkmSJKmvalagI2II8E/ACcC7gdMj4t1dNjsfeCwz3wP8CfD1iNilVpkkSZKkvqrlCvSRwJOZ+XRmvg7cCny0yzYJ7BERAewO/AbYWMNMkiRJUp/sXMPXHgU81+l+G3BUl23+EZgHrAX2AE7LzDe6vlBETAOmAey33341CattzV22hpnzV7F2XQcjh7cwfcp4Tp44quxYkiRJparlCnR0M5Zd7k8BlgMjgQnAP0bEnts8KfO6zGzNzNYRI0b0d051Y+6yNcyYs5I16zpIYM26DmbMWcncZWvKjiZJklSqWhboNmBMp/ujqaw0d3Y2MCcrngT+AziohpnUQzPnr6Jjw6atxjo2bGLm/FUlJZIkSaoPtSzQi4ADImJc9cDAj1HZXaOzZ4FjACLiD4DxwNM1zKQeWruuo9C4JEnSYFGzAp2ZG4ELgPnA48BtmfloRJwXEedVN/sH4I8iYiWwAPhiZr5Qq0zquZHDWwqNS5IkDRa1PIiQzLwTuLPL2DWdvl8L/GktM6h3pk8Zz4w5K7fajaNl6BCmTxlfYipJkqTy1bRAq3FtPtuGZ+GQJDW7RfOuZczSmeyT7TwfI3ju8OkccdK5ZcdSHbNAa7tOnjjKwixJamqL5l3LIUu+REu8DgHvoJ29lnyJRWCJ1nbV9FLekiRJ9WzM0pmV8txJS7zOmKUzS0qkRmCBliRJg9Y+2b6dcc9poO2zQEuSpEHr+ej+Am3Px94DnESNxAItSZIGrecOn05H7rLVWEfuwnOHTy8pkRqBBVqSJA1aR5x0Lo+893L+kxG8kcF/MoJH3nu5BxBqhzwLhyRJGtSOOOlcqBbmd1S/pB1xBVqStI2IuD4ino+IRzqNvS0i7o6If6/evrXMjJJUFgu0JKk7NwLHdxm7GFiQmQcAC6r3JWnQsUBLkraRmQ8Av+ky/FFgVvX7WcDJA5lJkuqFBVqS1FN/kJm/Bqje7tPdRhExLSIWR8Ti9vbuz7ErSY3MAi1J6leZeV1mtmZm64gR3Z9jV5IamQVaktRT/xUR+wJUb58vOY8klcICLUnqqXnAmdXvzwTuKDGLJJXGAi1J2kZEzAYWAuMjoi0iPgVcARwXEf8OHFe9L0mDjhdSkSRtIzNP385DxwxoEEmqQ65AS5IkSQVYoCVJkqQCLNCSJElSARZoSZIkqQALtCRJklSABVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKsACLUmSJBVggZYkSZIKsEBLkiRJBVigJUmSpAIs0JIkSVIBFmhJkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWJEmSCrBAS5IkSQVYoCVJkqQCLNCSJElSARZoSZIkqQALtCRJklSABVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakppURAyJiJll55CkZmOBlqQmlZmbgPdGRJSdRZKayc5lB5Ak1dQy4I6IuB343ebBzJxTXiRJamw1XYGOiOMjYlVEPBkRF29nmz+JiOUR8WhE/Est80jSIPQ24EXgQ8BHql8nlppIkhpczVagI2II8E/AcUAbsCgi5mXmY522GQ58Gzg+M5+NiH1qlUeSBqPMPLu/XzMi/gb4SyCBlcDZmflqf7+PJNWrWq5AHwk8mZlPZ+brwK3AR7ts83FgTmY+C5CZz9cwjyQNOhFxYEQsiIhHqvcPi4gv9eH1RgEXAq2ZeQgwBPhY/6SVpMZQywI9Cniu0/226lhnBwJvjYj7I2JJRPxFdy8UEdMiYnFELG5vb69RXElqSt8BZgAbADJzBX0vvDsDLRGxM7ArsLaPrydJDaWWBbq7o76zy/2dgfcCHwamAH8XEQdu86TM6zKzNTNbR4wY0f9JJal57ZqZ/9ZlbGNvXywz1wBfA54Ffg28lJl3dd7GRQ9Jza6WBboNGNPp/mi2XaVoA36Wmb/LzBeAB4D31DCTJA02L0TE/lQXMCLiVCrFt1ci4q1UdscbB4wEdouIMzpv46KHpGZXywK9CDggIsZFxC5U/mQ4r8s2dwB/HBE7R8SuwFHA4zXMJEmDzfnAtcBBEbEG+CxwXh9e71jgPzKzPTM3AHOAP+pzSklqIDU7C0dmboyIC4D5VA4yuT4zH42I86qPX5OZj0fEz4AVwBvAdzPzkVplkqRBKDPz2IjYDdgpM1+OiHF9eL1ngUnVRY8O4BhgcX8ElaRGsd0CHRGn7OiJPTkJf2beCdzZZeyaLvdnAl5qVpJq40fA4Zn5u05jP6Ry/ElhmfmvEfFDYCmVfamXAdf1OaUkNZAdrUB/pHq7D5U/z91bvX80cD+VP9tJkupQRBwE/CGwV5cFkT2BYX157cy8FLi0L68hSY1suwV688n3I+InwLsz89fV+/tSuUCKJKl+jadyxcHh/H5BBOBl4K/KCCRJzaIn+0CP3Vyeq/6LyvmbJW3H3GVrmDl/FWvXdTByeAvTp4zn5IldT4Mu1U5m3gHcERHvy8yFZeeRpGbSkwJ9f0TMB2ZTOQ3Sx4D7appKamBzl61hxpyVdGzYBMCadR3MmLMSwBKtMrwYEQuAP8jMQyLiMOCkzLy87GCS1Kje9DR2mXkBcA2V8zNPAK7LzM/UOJfUsGbOX7WlPG/WsWETM+evKimRBrlaXIlQkga1np7GbinwcmbeExG7RsQemflyLYNJjWrtuo5C41KN7ZqZ/xax1cVhe30lQklSD1agI+KvqJzy6Nrq0Chgbg0zSQ1t5PCWQuNSjfXrlQglST27EuH5wGTgtwCZ+e9UTm0nqRvTp4ynZeiQrcZahg5h+pTxJSXSINfdlQj/utREktTgerILx2uZ+frmP/9FxM5UVzIkbWvzgYKehUP1IDOfBra6EmHZmSSp0fWkQP9LRPxPoCUijgM+Dfy4trGkxnbyxFEWZtWFiBgO/AUwFth582JIZl5YXipJamw9KdAXA58CVgLnUrk093drGUqS1G/uBB6mMoe/UXIWSRpYK26DBZfBS22w12g45hI47M/7/LJvWqAz842I+D7wQGZ6Hi5JaizDMvNzZYeQpAG34jb48YWwoXoWrJeeq9yHPpfonpyF4yRgOfCz6v0JETGvT+8qSRooN0fEX0XEvhHxts1fZYeSpJpbcNnvy/NmGzoq433Uk104LgWOBO4HyMzlETG2z+8sSRoIrwMzgb/l9weAJ/Cu0hJJ0kB4qa3YeAE9KdAbM/OlLifhlyQ1hs8B/y0zXyg7iCQNqL1GV3bb6G68j3pyHuhHIuLjwJCIOCAivgX8os/vLPXR3GVrmHzFvYy7+KdMvuJe5i5bU3YkqR49CqwvO4SkJrXiNvjfh8CXh1duV9xWdqLfO+YSGNrlImZDWyrjfdSTFejPUPnT32vAbGA+8A99fmepD+YuW8OMOSvp2LAJgDXrOpgxZyWAp4+TtrYJWB4R91GZxwFPYyepH9TwIL1+sTlDSWfhWE+lQP9tRAwBdsvMV/v8zlIfzJy/akt53qxjwyZmzl9lgZa2Nrf6JUn9a0cH6dVDgYZKjhpkedMCHRH/DJxHZRVjCbBXRFyZmTP7PY3UQ2vXdRQalwarzJxVdgZJTaqGB+nVu57sA/3uzPwtcDKVE/LvB3yylqGkNzNyeEuhcWmwqh678sOIeCwint78VXYuSU1gewfj9cNBevWuJwV6aEQMpVKg78jMDfz+VEhSKaZPGU/L0CFbjbUMHcL0KeNLSiTVrRuAq4GNwNHATcDNpSaS1BxqeJBevetJgb4WWA3sBjwQEe8EflvLUNKbOXniKL5yyqGMGt5CAKOGt/CVUw51/2dpWy2ZuQCIzHwmM78MfKjkTJKawWF/Dh/5Juw1BojK7Ue+WT/7P9dQTw4i/Cbwzc33I+JZKqsYUqlOnjjKwiy9uVcjYifg3yPiAmANsE/JmSQ1ixodpFfverICvZWs2FiLMJKkfvdZYFfgQuC9VI5hObPMQJLU6HpyHmhJUoPKzEXVb18Bzi4ziyQ1Cwu0JDWhiLgqMz8bET+mmwO/M/OkEmJJUlPoyXmgdwX+B7BfZv5VRBwAjM/Mn9Q8nSSptzafaeNrpaaQpCbUkxXoG6hcQOV91fttwO2ABVqS6lRmLqne/kvZWSSp2fSkQO+fmadFxOkAmdkREVHjXJKkPoiIlezgnP2ZedgAxpGkptKTAv16RLRQnYgjYn/gtZqmkiT11YnV2/Ort5t36fgEsH7g40hS8+hJgb4U+BkwJiJuASYDZ9UylCSpbzLzGYCImJyZkzs9dHFEPARcVk4ySWp8OyzQ1ZPvvxU4BZgEBHBRZr4wANkkSX23W0S8PzMfBIiIP6JyZVlJUi/tsEBn5hsRcUFm3gb8dIAySZL6z6eA6yNiLyq74r0EnFNuJElqbD3ZhePuiPg88APgd5sHM/M3NUslSeoX1bNxvCci9gQiM18qO5MkNbqeFOjNKxXndxpL4F39H0eSVAuZ+duyM0hSs3jTAp2Z4wYiiCRJktQIenIlwqHAXwMfqA7dD1ybmRtqmEuSJEmqSzv1YJurgfcC365+vbc6JkmqcxGxa0T8XUR8p3r/gIg48c2eJ0navp7sA31EZr6n0/17I+KXtQokSepXNwBLgPdV77cBtwM/KS2RJDW4nqxAb6pefRCAiHgXsKl2kSRJ/Wj/zPxfwAaAzOygck5/SVIv9WQFejpwX0Q8TWXSfSdwdk1TSZL6y+sR0ULl7ElUF0ReKzeSJDW2npyFY0FEHACMp1Kgf5WZTr6S1BguBX4GjImIW4DJwFmlJpKkBteTs3AMAz4NvJ/KCsbPI+KazHy11uEkSb0XETsBbwVOASZRWQS5KDNf6OPrDge+CxxC5ffCOZm5sG9pJalx9GQXjpuAl4FvVe+fDtwMTK1VKElS32XmGxFxQWbeBvy0H1/6G8DPMvPUiNgF2LUfX1uS6l5PCvT4LmfhuM+zcEhSw7g7Ij4P/AD43ebBzPxNb16seknwD1DdDSQzXwde73tMSWocPSnQyyJiUmY+DBARRwEP1TaWJKmfnFO9Pb/TWALv6uXrvQtoB26IiPdQOUXeRZm5pZxHxDRgGsB+++3Xy7eRpPrVk9PYHQX8IiJWR8RqYCHwwYhYGRErappOktQnmTmum6/elmeoLLwcDlydmROprGpf3OU9r8vM1sxsHTFiRB/eSpLqU09WoI+veQpJUk1ExFDgr6nsdgFwP3BtZm7o5Uu2AW2Z+a/V+z+kS4GWpGbXk9PYPTMQQSRJNXE1MBT4dvX+J6tjf9mbF8vM/4yI5yJifGauAo4BHuuXpJLUIHqyAi1JalxHdDkQ/N5+OBD8M8At1TNwPI0X15I0yFigJam5bYqI/TPzKYCIeBewqS8vmJnLgdZ+yCZJDckCLUnNbTqV048+TeVCKu/EFWNJ6hMLtCQ1scxcEBEHAOOpFOhfZeZrJceSpIZmgZakJhYRw4BPA++ncv7nn0fENZn5arnJJKlxWaAlqbndBLwMfKt6/3TgZmBqaYkkqcFZoCWpuY3vchaO+/rhLBySNKj15EqEkqTGtSwiJm2+ExFHAQ+VmEeSGp4r0JLU3I4C/iIinq3e3w94PCJWApmZh5UXTZIaU00LdEQcD3wDGAJ8NzOv2M52RwAPA6dl5g9rmUmSBpnjyw4gSc2mZgU6IoYA/wQcB7QBiyJiXmY+1s12XwXm1yqLJA1WmflM2RkkqdnUch/oI4EnM/PpzHwduBX4aDfbfQb4EfB8DbNIkiRJ/aKWBXoU8Fyn+23VsS0iYhTw34FrdvRCETEtIhZHxOL29vZ+DypJkiT1VC0LdHQzll3uXwV8MTM37eiFMvO6zGzNzNYRI0b0Vz5JkiSpsFoeRNgGjOl0fzSwtss2rcCtEQGwN/BnEbExM+fWMFddmbtsDTPnr2Ltug5GDm9h+pTxnDxx1Js/UZIkSaWoZYFeBBwQEeOANcDHgI933iAzx23+PiJuBH4y2MrzjDkr6dhQWYBfs66DGXNWAliiJUmS6lTNduHIzI3ABVTOrvE4cFtmPhoR50XEebV630Yyc/6qLeV5s44Nm5g5f1VJiSRJkvRmanoe6My8E7izy1i3Bwxm5lm1zFKP1q7rKDQuSZKk8nkp7xKNHN5SaFySJEnls0CXaPqU8bQMHbLVWMvQIUyfMr6kRJIkSXozNd2FQzu2+UBBz8IhSZLUOCzQJTt54igLsyRJUgNxFw5JkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWJEmSCrBAS5IkSQVYoCVJkqQCLNCSJElSARZoSZIkqQALtCRJklSABVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKsACLUmSJBVggZYkFRIRQyJiWUT8pOwsklQGC7QkqaiLgMfLDiFJZbFAS5J6LCJGAx8Gvlt2FkkqiwVaklTEVcAXgDdKziFJpbFAS5J6JCJOBJ7PzCVvst20iFgcEYvb29sHKJ0kDRwLtCSppyYDJ0XEauBW4EMR8f2uG2XmdZnZmpmtI0aMGOiMklRzFmhJUo9k5ozMHJ2ZY4GPAfdm5hklx5KkAWeBliRJkgrYuewAkqTGk5n3A/eXHEOSSuEKtCRJklSABVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKsACLUmSJBVggZYkSZIKsEBLkiRJBVigJUmSpAIs0JIkSVIBFmhJkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWJEmSCrBAS5IkSQVYoCVJkqQCLNCSJElSARZoSZIkqYCaFuiIOD4iVkXEkxFxcTePfyIiVlS/fhER76llHkmSJKmvalagI2II8E/ACcC7gdMj4t1dNvsP4IOZeRjwD8B1tcojSZIk9YdarkAfCTyZmU9n5uvArcBHO2+Qmb/IzP9XvfswMLqGeSRJkqQ+q2WBHgU81+l+W3Vsez4F/N/uHoiIaRGxOCIWt7e392NESZIkqZhaFujoZiy73TDiaCoF+ovdPZ6Z12Vma2a2jhgxoh8jSpIkScXsXMPXbgPGdLo/GljbdaOIOAz4LnBCZr5YwzySJElSn9VyBXoRcEBEjIuIXYCPAfM6bxAR+wFzgE9m5hM1zCJJkiT1i5qtQGfmxoi4AJgPDAGuz8xHI+K86uPXAJcAbwe+HREAGzOztVaZJEmSpL6q5S4cZOadwJ1dxq7p9P1fAn9ZywySJElSf/JKhJIkSVIBFmhJkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWJEmSCrBAS5IkSQVYoCVJkqQCLNCSpB6LiDERcV9EPB4Rj0bERWVnkqSBVtMrEUqSms5G4H9k5tKI2ANYEhF3Z+ZjZQeTpIHiCrQkqccy89eZubT6/cvA48CoclNJ0sCyQEuSeiUixgITgX/tMj4tIhZHxOL29vZSsklSLVmgJUmFRcTuwI+Az2bmbzs/lpnXZWZrZraOGDGinICSVEMWaElSIRExlEp5viUz55SdR5IGmgVaktRjERHA94DHM/PKsvNIUhks0JKkIiYDnwQ+FBHLq19/VnYoSRpInsZOktRjmfkgEGXnkKQyuQItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKsACLUmSJBVggZYkSZIKsEBLkiRJBVigJUmSpAJ2LjuAJDWSucvWMHP+Ktau62Dk8BamTxnPyRNHlR2rafj5SmoEFmhJ6qG5y9YwY85KOjZsAmDNug5mzFkJYMnrB36+khqFu3BIUg/NnL9qS7nbrGPDJmbOX1VSoubi59s3c5etYfIV9zLu4p8y+Yp7mbtsTdmRpKblCrQk9dDadR2FxlWMn2/vuXovDSxXoCWph0YObyk0rmL8fHuvEVbvXSFXM7FAS6or9fxLdvqU8bQMHbLVWMvQIUyfMr6kRM2lET7fev35rPfV+80r5GvWdZD8foW8Xj4/qSgLtKS6Ue+/ZE+eOIqvnHIoo4a3EMCo4S185ZRD/RN5P6n3z7eefz7rffW+EVbIpSLcB1pS3djRL9l6KVEnTxxVN1maUT1/vvX88zl9yvit9oGG+lq9r/cVcqkoV6Al1Q1/yaqe1fPPZ72v3tf7CrlUlCvQkurGyOEtrOmmjPhLVvWg3n8+63n1vt5XyKWiXIGWVDca4SAyDV7+fPZeva+QS0W5Ai2pbmz+ZeqlnFWP/Pnsm3peIZeKskBLqiv+klU98+dTErgLhyRJklSIBVqSJEkqwAItSZIkFWCBliRJkgqwQEuSJEkFWKAlSZKkAizQkiRJUgEWaEmSJKkAC7QkSZJUgAVakiRJKiAys+wMhUREO/BML566N/BCP8fpT/Wcr56zQX3nq+dsUN/56jkb9D7fOzNzRH+HqVfO2aWo52xQ3/nqORvUd756zgb9PGc3XIHurYhYnJmtZefYnnrOV8/ZoL7z1XM2qO989ZwN6j9fo6v3z7ee89VzNqjvfPWcDeo7Xz1ng/7P5y4ckiRJUgEWaEmSJKmAwVSgrys7wJuo53z1nA3qO189Z4P6zlfP2aD+8zW6ev986zlfPWeD+s5Xz9mgvvPVczbo53yDZh9oSZIkqT8MphVoSZIkqc8s0JIkSVIBTV+gI+L4iFgVEU9GxMVl5+ksIq6PiOcj4pGys3QnIsZExH0R8XhEPBoRF5WdabOIGBYR/xYRv6xm+/uyM3UVEUMiYllE/KTsLF1FxOqIWBkRyyNicdl5uoqI4RHxw4j4VfXn731lZwKIiPHVz2zz128j4rNl52o2ztu945zdd87bvVOvczbUbt5u6n2gI2II8ARwHNAGLAJOz8zHSg1WFREfAF4BbsrMQ8rO01VE7Avsm5lLI2IPYAlwcj18fhERwG6Z+UpEDAUeBC7KzIdLjrZFRHwOaAX2zMwTy87TWUSsBlozsy5Peh8Rs4CfZ+Z3I2IXYNfMXFdyrK1U55c1wFGZ2ZsLhagbztu955zdd87bvdMIczb077zd7CvQRwJPZubTmfk6cCvw0ZIzbZGZDwC/KTvH9mTmrzNzafX7l4HHgVHlpqrIileqd4dWv+rm/wYjYjTwYeC7ZWdpNBGxJ/AB4HsAmfl6PU7EwDHAU5bnfue83UvO2X3jvN07DTRnQz/O281eoEcBz3W630adTCaNJiLGAhOBfy05yhbVP7UtB54H7s7MuskGXAV8AXij5Bzbk8BdEbEkIqaVHaaLdwHtwA3VP6V+NyJ2KztUNz4GzC47RBNy3u4Hztm9chXO273RKHM29OO83ewFOroZq6v/420EEbE78CPgs5n527LzbJaZmzJzAjAaODIi6uLPqRFxIvB8Zi4pO8sOTM7Mw4ETgPOrf5auFzsDhwNXZ+ZE4HdAve0HuwtwEnB72VmakPN2HzlnF+e83Sd1P2dD/8/bzV6g24Axne6PBtaWlKUhVfdV+xFwS2bOKTtPd6p/KrofOL7cJFtMBk6q7q92K/ChiPh+uZG2lplrq7fPA/+Hyp/N60Ub0NZpdeqHVCbnenICsDQz/6vsIE3IebsPnLN7zXm79xphzoZ+nrebvUAvAg6IiHHV//P4GDCv5EwNo3rQx/eAxzPzyrLzdBYRIyJiePX7FuBY4FelhqrKzBmZOTozx1L5mbs3M88oOdYWEbFb9QAjqn9m+1Ogbs4okJn/CTwXEeOrQ8cApR8E1cXpuPtGrThv95Jzdu85b/deg8zZ0M/z9s799UL1KDM3RsQFwHxgCHB9Zj5acqwtImI28CfA3hHRBlyamd8rN9VWJgOfBFZW91sD+J+ZeWd5kbbYF5hVPaJ2J+C2zKy70w7VqT8A/k/ldy07A/+cmT8rN9I2PgPcUi1QTwNnl5xni4jYlcoZIs4tO0szct7uE+fs5lXv83bdztlQm3m7qU9jJ0mSJPW3Zt+FQ5IkSepXFmhJkiSpAAu0JEmSVIAFWpIkSSrAAi1JkiQVYIGWOomIyyLi2ILPWR0Re9cqkySpe87ZKounsdOgEBFDMnNTjV57NdCamS/U4vUlabBxzla9cwVaDSEixkbEryJiVkSsiIgfVk+MTkQcExHLImJlRFwfEW+pjq+OiEsi4kFgakT8aUQsjIilEXF7ROzezfvcGBGndnr+31e3XxkRB1XH3x4Rd1Xf81ogOj3/jIj4t4hYHhHXRsSQiDiimnlY9WpSj0bEIQPxuUlSGZyz1ews0Gok44HrMvMw4LfApyNiGHAjcFpmHkrlCk1/3ek5r2bm+4F7gC8Bx2bm4cBi4HM9eM8XqttfDXy+OnYp8GBmTqRyieH9ACLiYOA0YHJmTgA2AZ/IzEXV7S4H/hfw/cysi0uwSlINOWeraTX1pbzVdJ7LzIeq338fuBC4G/iPzHyiOj4LOB+4qnr/B9XbScC7gYeql0LdBVjYg/ecU71dApxS/f4Dm7/PzJ9GxP+rjh8DvBdYVH2PFuD56mOXAYuAV6u5JanZOWeraVmg1Ui67rCfdPpT3Hb8rnobwN2ZeXrB93yteruJrf976e7ggQBmZeaMbh57G7A7MBQY1imXJDUr52w1LXfhUCPZLyLeV/3+dOBB4FfA2Ij4b9XxTwL/0s1zHwYmb94uInaNiAN7meMB4BPV1zkBeGt1fAFwakTsU33sbRHxzupj1wF/B9wCfLWX7ytJjcQ5W03LAq1G8jhwZkSsoLI6cHVmvgqcDdweESuBN4Bruj4xM9uBs4DZ1ec/DBzUyxx/D3wgIpYCfwo8W32Px6jss3dX9T3uBvaNiL8ANmbmPwNXAEdExId6+d6S1Cics9W0PI2dGkJEjAV+kpkeCS1Jdc45W83OFWhJkiSpAFegJUmSpAJcgZYkSZIKsEBLkiRJBVigJUmSpAIs0JIkSVIBFmhJkiSpgP8P6vs+zhRvXYsAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 864x432 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "fig, ax = plt.subplots(1, 2, figsize=[12, 6])\n", "\n", "ax[0].plot(pn.Ps, pn['pore.seed'], 'o')\n", "ax[0].set_ylabel('pore seed')\n", "ax[0].set_xlabel('pore index')\n", "\n", "ax[1].plot(pn.pores('left'), pn['pore.diameter@left'], 'o', label='pore.left')\n", "ax[1].plot(pn.pores('right'), pn['pore.diameter@right'], 'o', label='pore.right')\n", "ax[1].set_ylabel('pore diameter')\n", "ax[1].set_xlabel('pore index')\n", "ax[1].legend();" ] }, { "cell_type": "markdown", "id": "46e1f8e7", "metadata": {}, "source": [ "And now we can apply a model to the full domain that computes the pore volume, using values of pore diameter that were computed uniquely for each domain:" ] }, { "cell_type": "code", "execution_count": 23, "id": "470abf20", "metadata": {}, "outputs": [], "source": [ "pn.add_model(propname='pore.volume', \n", " model=op.models.geometry.pore_volume.sphere)" ] }, { "cell_type": "code", "execution_count": 24, "id": "69e2ad61", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFzCAYAAADPISX/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZn0lEQVR4nO3df7DddX3n8efLEOWiZQJLYCBBg242Fn+06BVx6TCOWIOtIxmnVGxVVHbYsbTiuo0lnXUdOzplZdexu7NQKaJxRWhUiqy6Ig26VkeFG6KN/EilgJAEIU6b9cdEfsT3/nG+qTfhJp+T5N7zg/t8zNw553zO93u+LzIkr/v9fH+cVBWSJO3PU4YdQJI0+iwLSVKTZSFJarIsJElNloUkqcmykCQ1HTbsAHPlmGOOqWXLlg07hiSNlQ0bNvyoqhbvPf6kLYtly5YxNTU17BiSNFaS/GCmcaehJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTU/aK7gljZ7rN27l0hs3s23HTk5YNMHqlStYdcqSYcdSHywLSQNx/catrLluEzsf2wXA1h07WXPdJgALYww4DSVpIC69cfO/FMVuOx/bxaU3bh5SIh0Iy0LSQGzbsfOAxjVaLAtJA3HCookDGtdosSwkDcTqlSuYWLhgj7GJhQtYvXLFkBLpQHiAW9JA7D6I7dlQ48mykDQwq05ZYjmMKaehJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJapqzskhyVZKHk3xv2tjRSW5K8v3u8ahp761JcneSzUlWTht/cZJN3Xv/PUnmKrMkaWZzuWfxceCsvcYuBtZX1XJgffeaJCcD5wLP69a5LMmCbp3LgQuA5d3P3p8pSZpjc1YWVfU14J/2Gj4bWNs9XwusmjZ+bVU9UlX3AncDpyY5Hjiyqr5ZVQV8Yto6kqQBGfQxi+Oq6kGA7vHYbnwJ8MC05bZ0Y0u653uPzyjJBUmmkkxt3759VoNL0nw2Kge4ZzoOUfsZn1FVXVFVk1U1uXjx4lkLJ0nz3aDL4qFuaonu8eFufAtw4rTllgLbuvGlM4xLkgZo0GVxA3Be9/w84HPTxs9N8rQkJ9E7kH1LN1X1kySndWdBvXnaOpKkATlsrj44yTXAy4FjkmwB3gtcAqxLcj5wP3AOQFXdnmQdcAfwOHBhVe3qPurt9M6smgD+T/cjSRqg9E4yevKZnJysqampYceQpLGSZENVTe49PioHuCVJI8yykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktQ0lLJI8h+S3J7ke0muSXJ4kqOT3JTk+93jUdOWX5Pk7iSbk6wcRmZJms8GXhZJlgDvACar6vnAAuBc4GJgfVUtB9Z3r0lycvf+84CzgMuSLBh0bkmaz4Y1DXUYMJHkMOAIYBtwNrC2e38tsKp7fjZwbVU9UlX3AncDpw42riTNbwMvi6raCvxX4H7gQeD/VdWXgeOq6sFumQeBY7tVlgAPTPuILd3YEyS5IMlUkqnt27fP1X+CJM07w5iGOore3sJJwAnA05O8cX+rzDBWMy1YVVdU1WRVTS5evPjQw0qSgOFMQ70SuLeqtlfVY8B1wL8FHkpyPED3+HC3/BbgxGnrL6U3bSVJGpBhlMX9wGlJjkgS4EzgTuAG4LxumfOAz3XPbwDOTfK0JCcBy4FbBpxZkua1wwa9war6dpLPALcBjwMbgSuAZwDrkpxPr1DO6Za/Pck64I5u+Qurategc0vSfJaqGaf/x97k5GRNTU0NO4YkjZUkG6pqcu9xr+CWJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmpplkeSIJO9J8lfd6+VJXjP30SRJo6KfPYuPAY8AL+tebwHeP2eJJEkjp5+yeE5VfRB4DKCqdgKZ01SSpJHST1k8mmQCKIAkz6G3pyFJmicO62OZ9wJfAk5McjVwOvCWuQwlSRotzbKoqpuS3AacRm/66aKq+tGcJ5MkjYx+T51dAiwAngqckeR1cxdJkjRqmnsWSa4CXgjcDvyiGy7gujnMJUkaIf0cszitqk6e8ySSpJHVzzTUN5NYFpI0j/WzZ7GWXmH8kN4pswGqql44p8kkSSOjn7K4CngTsIlfHrOQJM0j/ZTF/VV1w5wnkSSNrH7K4q4knwL+N9Ou3K4qz4aSpHmin7KYoFcSr5o25qmzkjSP9HMF91sHEUSSNLr6uSjvY3Q3EZyuqt52sBtNsgi4Enh+99lvAzYDfw0sA+4Dfreq/rlbfg1wPrALeEdV3Xiw25YkHbh+rrP4PPCF7mc9cCTw00Pc7l8AX6qq5wK/BtwJXAysr6rl3XYuBuiu8TgXeB5wFnBZkgWHuH1J0gHoZxrqs9NfJ7kG+NuD3WCSI4Ez6O5cW1WP0rsN+tnAy7vF1gJfBf4EOBu4tqoeAe5NcjdwKvDNg80gSTowB/Md3MuBZx7CNp8NbAc+lmRjkiuTPB04rqoeBOgej+2WXwI8MG39Ld3YEyS5IMlUkqnt27cfQkRJ0nT9fAf3T5L8ePcjvVNo/+QQtnkY8CLg8qo6BfgZ3ZTTviLMMPaEYygAVXVFVU1W1eTixYsPIaIkabp+pqF+ZZa3uQXYUlXf7l5/hl5ZPJTk+Kp6MMnxwMPTlj9x2vpLgW2znEmStB/7LIskL9rfilV128FssKp+mOSBJCuqajNwJnBH93MecEn3+LlulRuATyX5EHACvWmwWw5m29KT0fUbt3LpjZvZtmMnJyyaYPXKFaw6ZcaZWumg7W/P4r/t570CXnEI2/0j4OokTwXuAd5Kb0psXZLzgfuBcwCq6vYk6+iVyePAhVW16xC2LT1pXL9xK2uu28TOx3p/Jbbu2Mma6zYBWBiaVamacfp/7E1OTtbU1NSwY0hz6vRLbmbrjp1PGF+yaIJvXHwov89pvkqyoaom9x7v56K8hcDb6Z3uCr1TWj9SVY/NakJJB2zbDEWxv3HpYPVz6uzlwIuBy7qfF3djkobshEUTBzQuHax+yuIlVXVeVd3c/bwVeMlcB5PUtnrlCiYW7nlDg4mFC1i9csWQEunJqp+7zu5K8pyq+keAJM+md48mSUO2+yC2Z0NprvVTFquBryS5h94Fcs+id/aSpBGw6pQlloPmXD8X5a1PshxYQa8s7uru0yRJmif6ud3Hd4F3AT+rqu9aFJI0//RzgPu19I5RrEtya5I/TnIoNxKUJI2ZZllU1Q+q6oNV9WLg94AXAvfOeTJJ0sjo5wA3SZYBvwu8nt5exrvnMJMkacT0cwX3t4GFwDrgnKq6Z85TSZJGSj97FudV1V1znkSSNLL6OWZhUUjSPHcwX6sqSZpnLAtJUlM/F+UdkeQ9Sf6qe708yWvmPpokaVT0s2fxMeAR4GXd6y3A++cskSRp5PRTFs+pqg8CjwFU1U5694iSJM0T/ZTFo0km6H3vNkmeQ29PQ5I0T/RzncV7gS8BJya5GjgdeMtchpIkjZb9lkWSpwBHAa8DTqM3/XRRVf1oANkkSSNiv2VRVb9I8odVtQ74woAySZJGTD/HLG7qbkt+YpKjd//MeTJJ0sjo55jF27rHC6eNFfDs2Y8jSRpF/Xyt6kmDCCJJGl393KJ8IfB24Ixu6KvAR6rqsTnMJUkaIf1MQ11O7/ssLutev6kb+3dzFUqSNFr6KYuXVNWvTXt9c5LvzlUgSdLo6edsqF3dVdsAJHk2va9WlSTNE/3sWawGvpLkHnoX5T0LeOucppIkjZR+zoZan2Q5sIJeWdxVVd4bSpLmkX7Ohjoc+APgN+hdX/F3Sf6yqn4+1+EkSaOhn2moTwA/Af5H9/oNwP8CzpmrUJKk0dJPWazY62yor3g2lCTNL/2cDbUxyWm7XyR5KfCNuYskSRo1/exZvBR4c5L7u9fPBO5MsgmoqnrhnKWTJI2EfsrirDlPIUkaaf2cOvuDQQSRJI2ufo5ZSJLmOctCktRkWUiSmiwLSVKTZSFJarIsJElNQyuLJAuSbEzy+e710UluSvL97vGoacuuSXJ3ks1JVg4rsyTNV8Pcs7gIuHPa64uB9VW1HFjfvSbJycC5wPPoXSB4WZIFA84qSfPaUMoiyVLgt4Erpw2fDaztnq8FVk0bv7aqHqmqe4G7gVMHFFWSxPD2LD4MvBv4xbSx46rqQYDu8dhufAnwwLTltnRjT5DkgiRTSaa2b98+66Elab4aeFkkeQ3wcFVt6HeVGcZqpgWr6oqqmqyqycWLFx90RknSnvq5keBsOx14bZLfAg4HjkzySeChJMdX1YNJjgce7pbfApw4bf2lwLaBJpakeW7gexZVtaaqllbVMnoHrm+uqjcCNwDndYudB3yue34DcG6SpyU5CVgO3DLg2JI0rw1jz2JfLgHWJTkfuJ/ua1ur6vYk64A7gMeBC6tq1/BiStL8k6oZp//H3uTkZE1NTQ07hiSNlSQbqmpy73Gv4JYkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkpoGXhZJTkzylSR3Jrk9yUXd+NFJbkry/e7xqGnrrElyd5LNSVYOOrMkjbrrN27l9Etu5qSLv8Dpl9zM9Ru3zurnD2PP4nHgP1bVrwKnARcmORm4GFhfVcuB9d1ruvfOBZ4HnAVclmTBEHJL0ki6fuNW1ly3ia07dlLA1h07WXPdplktjIGXRVU9WFW3dc9/AtwJLAHOBtZ2i60FVnXPzwaurapHqupe4G7g1IGGlqQRdumNm9n52K49xnY+totLb9w8a9sY6jGLJMuAU4BvA8dV1YPQKxTg2G6xJcAD01bb0o3N9HkXJJlKMrV9+/Y5yy1Jo2Tbjp0HNH4wDpu1TzpASZ4BfBZ4Z1X9OMk+F51hrGZasKquAK4AmJycnHEZSerX9Ru3cumNm9m2YycnLJpg9coVrDplxt9Vh+qERRNsnaEYTlg0MWvbGMqeRZKF9Iri6qq6rht+KMnx3fvHAw9341uAE6etvhTYNqiskuanQRwHmC2rV65gYuGeh3InFi5g9coVs7aNYZwNFeCjwJ1V9aFpb90AnNc9Pw/43LTxc5M8LclJwHLglkHllTQ/DeI4wGxZdcoS/vx1L2DJogkCLFk0wZ+/7gWzuhc0jGmo04E3AZuSfKcb+1PgEmBdkvOB+4FzAKrq9iTrgDvonUl1YVXtesKnStIsGsRxgNm06pQlczpFNvCyqKqvM/NxCIAz97HOB4APzFkoSdrLII4DjBOv4JakGQziOMA4GdrZUJI0ynZP6YzD2VCDYFlI0j7M9XGAceI0lCSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnJspAkNVkWkqQmy0KS1GRZSJKaLAtJUpNlIUlqsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1WRaSpCbLQpLUZFlIkposC0lSk2UhSWqyLCRJTZaFJKnpsGEH6FeSs4C/ABYAV1bVJbO9jes3buXSGzezbcdOTlg0weqVK1h1ypLZ3sysGKesMF55xymrNChjURZJFgD/E/hNYAtwa5IbquqO2drG9Ru3sua6Tex8bBcAW3fsZM11mwBG7h+KccoK45V3nLJKgzQu01CnAndX1T1V9ShwLXD2bG7g0hs3/8s/ELvtfGwXl964eTY3MyvGKSuMV95xyioN0riUxRLggWmvt3Rje0hyQZKpJFPbt28/oA1s27HzgMaHaZyywnjlHaes0iCNS1lkhrF6wkDVFVU1WVWTixcvPqANnLBo4oDGh2mcssJ45R2nrNIgjUtZbAFOnPZ6KbBtNjeweuUKJhYu2GNsYuECVq9cMZubmRXjlBXGK+84ZZUGaSwOcAO3AsuTnARsBc4Ffm82N7D74OU4nAUzTllhvPKOU1ZpkFL1hNmckZTkt4AP0zt19qqq+sD+lp+cnKypqalBRJOkJ40kG6pqcu/xcdmzoKq+CHxx2DkkaT4al2MWkqQhsiwkSU2WhSSpybKQJDVZFpKkJstCktRkWUiSmiwLSVKTZSFJahqb230cqCTbgR8c5OrHAD+axThzaZyywnjlHaesMF55xykrjFfeQ836rKp6wm27n7RlcSiSTM10b5RRNE5ZYbzyjlNWGK+845QVxivvXGV1GkqS1GRZSJKaLIuZXTHsAAdgnLLCeOUdp6wwXnnHKSuMV945yeoxC0lSk3sWkqQmy2KaJGcl2Zzk7iQXDzvP/iS5KsnDSb437CwtSU5M8pUkdya5PclFw860P0kOT3JLku92ed837EwtSRYk2Zjk88PO0pLkviSbknwnyUh/nWWSRUk+k+Su7v/flw07074kWdH9me7++XGSd87a5zsN1ZNkAfAPwG8CW+h97/cbquqOoQbbhyRnAD8FPlFVzx92nv1JcjxwfFXdluRXgA3AqhH+sw3w9Kr6aZKFwNeBi6rqW0OOtk9J3gVMAkdW1WuGnWd/ktwHTFbVyF+3kGQt8HdVdWWSpwJHVNWOIcdq6v492wq8tKoO9nqzPbhn8UunAndX1T1V9ShwLXD2kDPtU1V9DfinYefoR1U9WFW3dc9/AtwJLBluqn2rnp92Lxd2PyP7W1WSpcBvA1cOO8uTSZIjgTOAjwJU1aPjUBSdM4F/nK2iAMtiuiXAA9Neb2GE/0EbV0mWAacA3x5ylP3qpnW+AzwM3FRVo5z3w8C7gV8MOUe/Cvhykg1JLhh2mP14NrAd+Fg3xXdlkqcPO1SfzgWumc0PtCx+KTOMjexvk+MoyTOAzwLvrKofDzvP/lTVrqr6dWApcGqSkZzqS/Ia4OGq2jDsLAfg9Kp6EfBq4MJuSnUUHQa8CLi8qk4BfgaM9LFMgG667LXAp2fzcy2LX9oCnDjt9VJg25CyPOl0c/+fBa6uquuGnadf3bTDV4Gzhptkn04HXtsdB7gWeEWSTw430v5V1bbu8WHgb+hNAY+iLcCWaXuVn6FXHqPu1cBtVfXQbH6oZfFLtwLLk5zUNfO5wA1DzvSk0B0w/ihwZ1V9aNh5WpIsTrKoez4BvBK4a6ih9qGq1lTV0qpaRu//2Zur6o1DjrVPSZ7eneRAN6XzKmAkz+irqh8CDyRZ0Q2dCYzkSRl7eQOzPAUFvd0sAVX1eJI/BG4EFgBXVdXtQ461T0muAV4OHJNkC/DeqvrocFPt0+nAm4BN3XEAgD+tqi8OL9J+HQ+s7c4oeQqwrqpG/pTUMXEc8De93x84DPhUVX1puJH264+Aq7tfIO8B3jrkPPuV5Ah6Z3T++1n/bE+dlSS1OA0lSWqyLCRJTZaFJKnJspAkNVkWkqQmy0IasCR/luSVB7jOfUmOmatMUounzkqzJMmCqto1R599H2Nyp1Y9OblnIXWSLOu+t2Btkr/vvsfgiO69M7ubyW3qvkvkad34fUn+c5KvA+ckeVWSbya5Lcmnu/th7b2djyf5nWnrv69bflOS53bj/yrJl7ttfoRp9y5L8sbu+za+k+Qj3U0PX9JlPry7Svr2Ub2flcaTZSHtaQVwRVW9EPgx8AdJDgc+Dry+ql5A78rjt09b5+dV9RvA3wL/CXhld6O8KeBdfWzzR93ylwN/3I29F/h6dwO7G4BnAiT5VeD19G7G9+vALuD3q+rWbrn3Ax8EPllVI3kbDY0nb/ch7emBqvpG9/yTwDuAm4B7q+ofuvG1wIX0bg0O8Nfd42nAycA3uttZPBX4Zh/b3H1jxQ3A67rnZ+x+XlVfSPLP3fiZwIuBW7ttTNC7jTrAn9G7x9nPu9zSrLEspD3tfRCvmPn29dP9rHsMve++eMMBbvOR7nEXe/6dnOmAYoC1VbVmhveOBp5B78uaDp+WSzpkTkNJe3rmtO9ZfgO9r1S9C1iW5F93428C/u8M634LOH33ckmOSPJvDjLH14Df7z7n1cBR3fh64HeSHNu9d3SSZ3XvXQG8B7ga+C8HuV1pRpaFtKc7gfOS/D2939Qvr6qf07vb6KeTbKL3jXR/ufeKVbUdeAtwTbf+t4DnHmSO9wFnJLmN3m287++2cQe94yJf7rZxE3B8kjcDj1fVp4BLgJckecVBblt6Ak+dlTrdV75+vqo8i0jai3sWkqQm9ywkSU3uWUiSmiwLSVKTZSFJarIsJElNloUkqcmykCQ1/X8wdUQD9JXN9AAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x432 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "fig, ax = plt.subplots(1, 1, figsize=[6, 6])\n", "\n", "ax.plot(pn.Ps, pn['pore.volume'], 'o')\n", "ax.set_ylabel('pore volume')\n", "ax.set_xlabel('pore index');" ] }, { "cell_type": "markdown", "id": "0f9eba37", "metadata": {}, "source": [ "> If an algorithm updates the labels then it effectively changes the domains! Re-running the models would automatically apply to the new locations! Not quite sure what this is useful for...maybe catalyst deactivation? Oooh, multiphase flow and percolation! The percolation algorithm could put True/False for occupancy, then a pore-scale model for hydraulic conductance that is applied to 'pore.invaded' domain, the it could update!" ] }, { "cell_type": "markdown", "id": "51b42b89", "metadata": {}, "source": [ "### Mixing Many Subdomains of Different Shape\n", "Because subdomains are now very abstract (actuallyjust labels), it is possible to define multiple subdomains with different shape and apply models to each. So far we have added ``'pore.seed'`` and ``'pore.diameter'`` models to the ``'left'`` and ``'right'`` pores. We can now freely add another set of models to the ``'front'`` and ``'back'``, even though they partially overlap:" ] }, { "cell_type": "code", "execution_count": 29, "id": "7c9056f6", "metadata": {}, "outputs": [], "source": [ "Ps = pn.pores(['front', 'back'])\n", "Ts = pn.find_neighbor_throats(Ps, asmask=True)\n", "pn['throat.front'] = Ts\n", "pn['throat.back'] = ~Ts" ] }, { "cell_type": "code", "execution_count": 32, "id": "59396df4", "metadata": {}, "outputs": [], "source": [ "pn.add_model(propname='throat.diameter', \n", " model=op.models.geometry.throat_size.from_neighbor_pores,\n", " domain='front', \n", " mode='min')\n", "pn.add_model(propname='throat.diameter', \n", " model=op.models.geometry.throat_size.from_neighbor_pores,\n", " domain='back',\n", " mode='max')" ] }, { "cell_type": "markdown", "id": "330f6b45", "metadata": {}, "source": [ "Now we can see that the throat diameters have beed added to the network:" ] }, { "cell_type": "code", "execution_count": 33, "id": "39b237c4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "openpnm.network.Cubic : net_01\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Properties Valid Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.coords 8 / 8 \n", "2 pore.diameter 8 / 8 \n", "3 pore.new_array 5 / 8 \n", "4 pore.seed 8 / 8 \n", "5 pore.values 8 / 8 \n", "6 pore.volume 8 / 8 \n", "7 throat.conns 10 / 10 \n", "8 throat.diameter 10 / 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "# Labels Assigned Locations\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "1 pore.back 2 \n", "2 pore.front 2 \n", "3 pore.left 6 \n", "4 pore.net_01 8 \n", "5 pore.right 4 \n", "6 pore.surface 8 \n", "7 throat.back 4 \n", "8 throat.front 6 \n", "9 throat.net_01 10 \n", "10 throat.surface 10 \n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "Parameters Values\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n", "――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――\n" ] } ], "source": [ "print(pn)" ] }, { "cell_type": "markdown", "id": "fd6705d2", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }
mit
jasag/Phytoliths-recognition-system
code/notebooks/Prototypes/Classifiers_and_HoG/1_HoG.ipynb
1
7568
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Características de HoG\n", "\n", "En este notebook creará un conjunto de imagenes con caras y no caras mediante las que obtendremos las características de HoG que nos servirán como conjunto de entrenamiento para nuestro clasificador.\n", "\n", "Además, estas características serán serializadas para que podamos acceder a ellas las veces que deseemos evitando su procesamiento." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Histogram of Oriented Gradients (HoG)\n", "\n", "HoG es una técnica para la extracción de características, desarrollada en el contexto del procesamiento de imagenes, que involucra los siguientes pasos:\n", "\n", "1. Pre-normalizado de las imagenes. Aunque puede suponer una mayor dependencía de las características que varían segun la iluminación.\n", "2. Aplicar a la imagen dos filtros sensibles al brillo tanto horizontal como vertical. Lo cual nos aporta información sobre bordes, contornos y texturas.\n", "3. Subdividir la imagen en celdas de un tamaño concreto y calcular el histograma del gradiente para cada celda.\n", "4. Normalizar los histogramas, previamente calculados, mediante la comparación con sus vecinos. Eliminando así el efecto de la iluminación en la imagen.\n", "5. Construir un vector de caracteristicas unidimensional de la información de cada celda." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Crear un conjunto de entrenamiento de imagenes de caras que supongan positivos\n", "Scikit nos proporciona un conjunto de imagenes variadas de caras que nos permitirán obtener un conjunto de entrenamiento de positivos para nuestro objetivo. Más de 13000 caras para ser concretos.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.datasets import fetch_lfw_people\n", "faces = fetch_lfw_people()\n", "positive_patches = faces.images\n", "positive_patches.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Alternativa\n", "\n", "Vamos a proporcionar, de manera alternativa a la anterior, nuestro propio conjunto de imagenes." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# from skimage import io\n", "# from skimage.color import rgb2gray\n", "\n", "# positive_patches = list()\n", "\n", "# path = \"../imgaug/imgs/\"\n", "# for i in range(376):\n", "# for j in range(63):\n", "# image = io.imread(path+str(i)+str(j)+\".jpg\")\n", "# positive_patches.append(rgb2gray(image))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Crear un conjunto de entrenamiento de imagenes de no-caras que supongan falsos-positivos\n", "Una vez obtenido nuestro conjunto de positivos, necesitamos obtener un conjunto de imagenes que no tengan caras. Para ello, la técnica que se utiliza en el *notebook* en el que me estoy basando es subdividir imágenes de mayor tamaño que no contengan caras. Y, así, obtener múltiples imágenes. " ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from skimage import feature, color, data, transform\n", "\n", "imgs_to_use = ['camera', 'text', 'coins', 'moon',\n", " 'page', 'clock', 'immunohistochemistry',\n", " 'chelsea', 'coffee', 'hubble_deep_field']\n", "images = [color.rgb2gray(getattr(data, name)())\n", " for name in imgs_to_use]" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(30000, 62, 47)" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "from sklearn.feature_extraction.image import PatchExtractor\n", "\n", "def extract_patches(img, N, scale=1.0, patch_size=positive_patches[0].shape):\n", " \n", " extracted_patch_size = tuple((scale * np.array(patch_size)).astype(int))\n", " \n", " extractor = PatchExtractor(patch_size=extracted_patch_size,\n", " max_patches=N, random_state=0)\n", " \n", " patches = extractor.transform(img[np.newaxis])\n", " \n", " if scale != 1:\n", " patches = np.array([transform.resize(patch, patch_size)\n", " for patch in patches])\n", " return patches\n", "\n", "negative_patches = np.vstack([extract_patches(im, 1000, scale)\n", " for im in images for scale in [0.5, 1.0, 2.0]])\n", "negative_patches.shape\n", "\n", "# Alternativa\n", "# negative_patches = np.vstack([extract_patches(im, 1000, scale, patch_size=(62,47))\n", "# for im in images for scale in [0.5, 1.0, 2.0]])\n", "# negative_patches.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Extraer las características de HoG del conjunto de entrenamiento\n", "Este tercer paso resulta de especial interes, puesto que vamos a obtener las características de HoG sobre las que previamente hemos hablado." ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(30000, 62, 47) (23688, 62, 47)\n" ] } ], "source": [ "from itertools import chain\n", "positive_patches = np.array(positive_patches)\n", "print(negative_patches.shape, positive_patches.shape)\n", "X_train = np.array([feature.hog(im)\n", " for im in chain(positive_patches,\n", " negative_patches)])\n", "y_train = np.zeros(X_train.shape[0])\n", "y_train[:positive_patches.shape[0]] = 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Serializamos el conjunto de entrenamiento\n", "Simplemente almacenamos los objetos *X_train* e *y_train* para, como explicabamos al principio, evitar el recalculo de estas características cada vez que deseemos utilizarlas." ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pickle # Módulo para serializar\n", "\n", "path = '../../rsc/obj/'\n", "\n", "X_train_path = path + 'X_train.sav'\n", "y_train_path = path + 'y_train.sav'\n", "\n", "pickle.dump(X_train, open(X_train_path, 'wb'))\n", "pickle.dump(y_train, open(y_train_path, 'wb'))" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
amuesing1/spectrum
spectrum_display.ipynb
1
4407
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pyaudio\n", "import wave\n", "from scipy.fftpack import fft\n", "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n", "\n", "data_type = 16 # mapped to 2 ** 15 possible values\n", "\n", "FORMAT = pyaudio.paInt16\n", "CHANNELS = 2\n", "RATE = 44100\n", "CHUNK = 1024\n", "\n", "audio = pyaudio.PyAudio()\n", "\n", "stream = audio.open(format=FORMAT, channels=CHANNELS,\n", " rate=RATE, input=True,\n", " frames_per_buffer=CHUNK)\n", "\n", "def init():\n", " line.set_visible(False)\n", " return line,\n", "\n", "fig, ax = plt.subplots()\n", "line, = ax.plot(0, 0, color='DarkViolet')\n", "\n", "def update(frame, line):\n", " if frame==1:\n", " line.set_visible(True)\n", " data = stream.read(CHUNK)\n", " decoded = np.fromstring(data, dtype=np.int16)\n", " sound = decoded #/ (2.0 ** (data_type - 1))\n", " t=np.arange(sound.size)\n", " line.set_data(t, sound)\n", " line.axes.axis([0, sound.size, -7000, 7000])\n", " return line,\n", "\n", "ani = animation.FuncAnimation(fig, update, init_func=init, fargs=[line],\n", " interval=25, blit=True)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pyaudio\n", "import wave\n", "from scipy.fftpack import fft\n", "from __future__ import division\n", "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n", "\n", "data_type = 16 # mapped to 2 ** 15 possible values\n", "\n", "FORMAT = pyaudio.paInt16\n", "CHANNELS = 2\n", "RATE = 44100\n", "CHUNK = 4410\n", "\n", "audio = pyaudio.PyAudio()\n", "\n", "stream = audio.open(format=FORMAT, channels=CHANNELS,\n", " rate=RATE, input=True,\n", " frames_per_buffer=CHUNK)\n", "\n", "def init():\n", " line.set_visible(False)\n", " return line,\n", "\n", "fig, ax = plt.subplots()\n", "line, = ax.plot(0, 0, color='DarkViolet')\n", "\n", "def update(frame, line):\n", " if frame==1:\n", " line.set_visible(True)\n", " data=stream.read(CHUNK)\n", " decoded = np.fromstring(data, dtype=np.int16)\n", "\n", " signal = np.fft.rfft(decoded)\n", " if signal.ndim>1:\n", " signal=np.mean(signal,axis=1) # average both channels\n", "\n", " n_samples=signal.size\n", "\n", " magnitude = np.abs(signal)/CHUNK\n", " magnitude = np.asarray(magnitude)\n", " f = [(j*1.0/n_samples)*RATE \n", " for j in range(n_samples)]\n", " frequencies = np.asarray(f)\n", " #print(np.amax(frequencies))\n", " #print(np.amax(magnitude))\n", " line.set_data(frequencies, magnitude)\n", " line.axes.axis([0, frequencies.size, 0, 500])\n", " return line,\n", "\n", "ani = animation.FuncAnimation(fig, update, init_func=init, fargs=[line],\n", " interval=25, blit=True)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
ceos-seo/data_cube_notebooks
notebooks/training/ardc_training/Training_TaskB_Water.ipynb
1
25295
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:32.377279Z", "iopub.status.busy": "2020-09-29T01:00:32.376860Z", "iopub.status.idle": "2020-09-29T01:00:32.379296Z", "shell.execute_reply": "2020-09-29T01:00:32.378845Z" } }, "outputs": [], "source": [ "# Enable importing of utilities.\n", "import sys\n", "import os\n", "sys.path.append(os.environ.get('NOTEBOOK_ROOT'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ARDC Training: Python Notebooks\n", "Task-B: Water Extent (WOFS) and Water Quality (TSM)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> ### Import the Datacube Configuration" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:32.382561Z", "iopub.status.busy": "2020-09-29T01:00:32.382143Z", "iopub.status.idle": "2020-09-29T01:00:33.657251Z", "shell.execute_reply": "2020-09-29T01:00:33.657746Z" } }, "outputs": [], "source": [ "import datacube\n", "import utils.data_cube_utilities.data_access_api as dc_api \n", "\n", "from datacube.utils.aws import configure_s3_access\n", "configure_s3_access(requester_pays=True)\n", "\n", "api = dc_api.DataAccessApi()\n", "dc = datacube.Datacube(app = 'ardc_task_b')\n", "api.dc = dc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">### Browse the available Data Cubes " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:33.662142Z", "iopub.status.busy": "2020-09-29T01:00:33.661408Z", "iopub.status.idle": "2020-09-29T01:00:33.709380Z", "shell.execute_reply": "2020-09-29T01:00:33.708971Z" } }, "outputs": [], "source": [ "list_of_products = dc.list_products()\n", "netCDF_products = list_of_products[list_of_products['format'] == 'NetCDF']\n", "netCDF_products" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">### Pick a product \n", ">Use the platform and product names from the previous block to select a Data Cube. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:33.712553Z", "iopub.status.busy": "2020-09-29T01:00:33.712131Z", "iopub.status.idle": "2020-09-29T01:00:33.714423Z", "shell.execute_reply": "2020-09-29T01:00:33.713961Z" } }, "outputs": [], "source": [ "# Change the data platform and data cube here\n", "\n", "platform = 'LANDSAT_7'\n", "product = 'ls7_usgs_sr_scene'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> #### Display Latitude-Longitude and Time Bounds of the Data Cube" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:33.719610Z", "iopub.status.busy": "2020-09-29T01:00:33.718669Z", "iopub.status.idle": "2020-09-29T01:00:35.861989Z", "shell.execute_reply": "2020-09-29T01:00:35.862452Z" }, "scrolled": false }, "outputs": [], "source": [ "from utils.data_cube_utilities.dc_time import _n64_to_datetime, dt_to_str\n", "\n", "extents = api.get_full_dataset_extent(platform = platform, product = product, measurements=[])\n", "\n", "latitude_extents = (min(extents['latitude'].values),max(extents['latitude'].values))\n", "longitude_extents = (min(extents['longitude'].values),max(extents['longitude'].values))\n", "time_extents = (min(extents['time'].values),max(extents['time'].values))\n", "\n", "print(\"Latitude Extents:\", latitude_extents)\n", "print(\"Longitude Extents:\", longitude_extents)\n", "print(\"Time Extents:\", list(map(dt_to_str, map(_n64_to_datetime, time_extents))))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualize Data Cube Region" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:35.865746Z", "iopub.status.busy": "2020-09-29T01:00:35.865276Z", "iopub.status.idle": "2020-09-29T01:00:36.038571Z", "shell.execute_reply": "2020-09-29T01:00:36.038996Z" } }, "outputs": [], "source": [ "## The code below renders a map that can be used to orient yourself with the region.\n", "from utils.data_cube_utilities.dc_display_map import display_map\n", "display_map(latitude = latitude_extents, longitude = longitude_extents)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> ### Pick a smaller analysis region and display that region\n", "Try to keep your region to less than 0.2-deg x 0.2-deg for rapid processing. You can click on the map above to find the Lat-Lon coordinates of any location. You will want to identify a region with an inland water body. Pick a time window of a few months so we can pick out some clear pixels and plot the water. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:36.042326Z", "iopub.status.busy": "2020-09-29T01:00:36.041904Z", "iopub.status.idle": "2020-09-29T01:00:36.043570Z", "shell.execute_reply": "2020-09-29T01:00:36.043981Z" } }, "outputs": [], "source": [ "## Vietnam - Central Lam Dong Province ##\n", "longitude_extents = (107.0, 107.2)\n", "latitude_extents = (11.7, 12.0)\n", "\n", "## Tanzania - Lake Sulunga\n", "longitude_extents = (35.00, 35.37)\n", "latitude_extents = (-6.28,-5.87)\n", "\n", "time_extents = ('2015-01-01', '2015-12-31')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:36.047832Z", "iopub.status.busy": "2020-09-29T01:00:36.047171Z", "iopub.status.idle": "2020-09-29T01:00:36.055239Z", "shell.execute_reply": "2020-09-29T01:00:36.054802Z" }, "scrolled": false }, "outputs": [], "source": [ "display_map(latitude = latitude_extents, longitude = longitude_extents)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the dataset and the required spectral bands or other parameters\n", "After loading, you will view the Xarray dataset. Notice the dimensions represent the number of pixels in your latitude and longitude dimension as well as the number of time slices (time) in your time series." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:36.060080Z", "iopub.status.busy": "2020-09-29T01:00:36.059666Z", "iopub.status.idle": "2020-09-29T01:00:40.483818Z", "shell.execute_reply": "2020-09-29T01:00:40.482710Z" } }, "outputs": [], "source": [ "landsat_dataset = dc.load(latitude = latitude_extents,\n", " longitude = longitude_extents,\n", " platform = platform,\n", " time = time_extents,\n", " product = product,\n", " measurements = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2', 'pixel_qa']) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:40.498207Z", "iopub.status.busy": "2020-09-29T01:00:40.497104Z", "iopub.status.idle": "2020-09-29T01:00:40.519704Z", "shell.execute_reply": "2020-09-29T01:00:40.520094Z" } }, "outputs": [], "source": [ "landsat_dataset\n", "#view the dimensions and sample content from the cube" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Display Example Images \n", "\n", ">#### Single band visualization \n", "> For a quick inspection, let's look at one image. The code will allow the selection of any band (red, blue, green, nir, swir1, swir2) to produce a grey-scale image. Select the desired acquisition (time slice) in the block below. You can select from 1 to #, where the max value is the number of time slices noted in the block above. Change the comment statements below to select the bands for the first image." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:40.523521Z", "iopub.status.busy": "2020-09-29T01:00:40.522984Z", "iopub.status.idle": "2020-09-29T01:00:40.525621Z", "shell.execute_reply": "2020-09-29T01:00:40.525185Z" } }, "outputs": [], "source": [ "acquisition_number = 2\n", "# select an acquisition number from 1 to \"time\" using the array limits above" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:40.531815Z", "iopub.status.busy": "2020-09-29T01:00:40.531381Z", "iopub.status.idle": "2020-09-29T01:00:41.271791Z", "shell.execute_reply": "2020-09-29T01:00:41.271336Z" } }, "outputs": [], "source": [ "%matplotlib inline\n", "#landsat_dataset.red.isel(time = acquisition_number).plot(cmap = \"Greys\")\n", "landsat_dataset.green.isel(time = acquisition_number).plot(cmap = \"Greys\")\n", "#landsat_dataset.blue.isel(time = acquisition_number).plot(cmap = \"Greys\")\n", "#landsat_dataset.nir.isel(time = acquisition_number).plot(cmap = \"Greys\")\n", "#landsat_dataset.swir1.isel(time = acquisition_number).plot(cmap = \"Greys\")\n", "#landsat_dataset.swir2.isel(time = acquisition_number).plot(cmap = \"Greys\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">#### Define Cloud Masking Function \n", "Removes clouds and cloud shadows based on the Landsat pixel QA information\n", "This is only for reference ... nothing to modify here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:41.281407Z", "iopub.status.busy": "2020-09-29T01:00:41.280959Z", "iopub.status.idle": "2020-09-29T01:00:41.282615Z", "shell.execute_reply": "2020-09-29T01:00:41.283032Z" } }, "outputs": [], "source": [ "import numpy as np \n", "\n", "def generate_cloud_mask(dataset, include_shadows = False):\n", " #Create boolean Masks for clear and water pixels\n", " clear_pixels = dataset.pixel_qa.values == 2 + 64\n", " water_pixels = dataset.pixel_qa.values == 4 + 64\n", " shadow_pixels= dataset.pixel_qa.values == 8 + 64\n", " \n", " a_clean_mask = np.logical_or(clear_pixels, water_pixels)\n", " \n", " if include_shadows:\n", " a_clean_mask = np.logical_or(a_clean_mask, shadow_pixels)\n", " \n", " return np.invert(a_clean_mask)\n", "\n", "def remove_clouds(dataset, include_shadows = False):\n", " #Create boolean Masks for clear and water pixels\n", " clear_pixels = dataset.pixel_qa.values == 2 + 64\n", " water_pixels = dataset.pixel_qa.values == 4 + 64\n", " shadow_pixels= dataset.pixel_qa.values == 8 + 64\n", " \n", " a_clean_mask = np.logical_or(clear_pixels, water_pixels)\n", " \n", " if include_shadows:\n", " a_clean_mask = np.logical_or(a_clean_mask, shadow_pixels)\n", " \n", " return dataset.where(a_clean_mask)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:41.286117Z", "iopub.status.busy": "2020-09-29T01:00:41.285695Z", "iopub.status.idle": "2020-09-29T01:00:41.751012Z", "shell.execute_reply": "2020-09-29T01:00:41.751479Z" } }, "outputs": [], "source": [ "cloud_mask = generate_cloud_mask(landsat_dataset)\n", "cloudless = remove_clouds(landsat_dataset) #landsat_dataset.where(image_is_clean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">Set up plotting function (to be used later)\n", ">Nothing to modify here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:41.754839Z", "iopub.status.busy": "2020-09-29T01:00:41.754404Z", "iopub.status.idle": "2020-09-29T01:00:41.756488Z", "shell.execute_reply": "2020-09-29T01:00:41.756908Z" } }, "outputs": [], "source": [ "from utils.data_cube_utilities.dc_rgb import rgb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">** Most Recent Pixel Mosaic ** \n", ">Masks clouds from imagery and uses the most recent cloud-free pixels. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:41.760234Z", "iopub.status.busy": "2020-09-29T01:00:41.759821Z", "iopub.status.idle": "2020-09-29T01:00:41.772488Z", "shell.execute_reply": "2020-09-29T01:00:41.772055Z" } }, "outputs": [], "source": [ "from utils.data_cube_utilities.dc_mosaic import create_mosaic\n", "\n", "def mrf_mosaic(dataset):\n", " # The mask here is based on pixel_qa products. It comes bundled in with most Landsat Products.\n", " cloud_free_boolean_mask = np.invert(generate_cloud_mask(dataset))\n", " return create_mosaic(dataset, clean_mask = cloud_free_boolean_mask)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:41.775485Z", "iopub.status.busy": "2020-09-29T01:00:41.775076Z", "iopub.status.idle": "2020-09-29T01:00:42.644453Z", "shell.execute_reply": "2020-09-29T01:00:42.644925Z" } }, "outputs": [], "source": [ "recent_composite = mrf_mosaic(landsat_dataset)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:42.648711Z", "iopub.status.busy": "2020-09-29T01:00:42.648292Z", "iopub.status.idle": "2020-09-29T01:00:43.217365Z", "shell.execute_reply": "2020-09-29T01:00:43.217853Z" } }, "outputs": [], "source": [ "recent_composite.nir.plot(cmap = \"Greys\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:43.221423Z", "iopub.status.busy": "2020-09-29T01:00:43.220763Z", "iopub.status.idle": "2020-09-29T01:00:43.839414Z", "shell.execute_reply": "2020-09-29T01:00:43.839868Z" } }, "outputs": [], "source": [ "rgb(recent_composite, width = 20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot WOFS water detection results\n", "This example uses the Australian Water Detection from Space (WOFS) algorithm for water detection. The base image will use a most-recent pixel composite (from above). When reviewing the results, 1=water, 0=no water. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:43.843192Z", "iopub.status.busy": "2020-09-29T01:00:43.842780Z", "iopub.status.idle": "2020-09-29T01:00:43.845569Z", "shell.execute_reply": "2020-09-29T01:00:43.845096Z" } }, "outputs": [], "source": [ "from utils.data_cube_utilities.dc_water_classifier import wofs_classify" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:43.848871Z", "iopub.status.busy": "2020-09-29T01:00:43.848465Z", "iopub.status.idle": "2020-09-29T01:00:43.959418Z", "shell.execute_reply": "2020-09-29T01:00:43.959862Z" } }, "outputs": [], "source": [ "water_classification = wofs_classify(recent_composite, clean_mask = np.ones(recent_composite.pixel_qa.shape).astype(np.bool), mosaic = True) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:43.963800Z", "iopub.status.busy": "2020-09-29T01:00:43.963384Z", "iopub.status.idle": "2020-09-29T01:00:44.503600Z", "shell.execute_reply": "2020-09-29T01:00:44.503952Z" } }, "outputs": [], "source": [ "water_classification.wofs.plot(cmap='Blues')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot NDWI water detection results\n", "This example uses the Normalized Difference Water Index (NDWI) which is a spectral \"index\" that correlates well with the existance of water. \n", "<br>\n", "$$ NDWI = \\frac{GREEN - NIR}{GREEN + NIR}$$ " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:44.507467Z", "iopub.status.busy": "2020-09-29T01:00:44.506955Z", "iopub.status.idle": "2020-09-29T01:00:44.509102Z", "shell.execute_reply": "2020-09-29T01:00:44.508661Z" } }, "outputs": [], "source": [ "def NDWI(dataset):\n", " return (dataset.green - dataset.nir)/(dataset.green + dataset.nir)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:44.512424Z", "iopub.status.busy": "2020-09-29T01:00:44.512022Z", "iopub.status.idle": "2020-09-29T01:00:44.518091Z", "shell.execute_reply": "2020-09-29T01:00:44.517644Z" } }, "outputs": [], "source": [ "ndwi = NDWI(recent_composite) # High Concentrations of Water - Blues " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:44.521289Z", "iopub.status.busy": "2020-09-29T01:00:44.520881Z", "iopub.status.idle": "2020-09-29T01:00:45.106253Z", "shell.execute_reply": "2020-09-29T01:00:45.106692Z" } }, "outputs": [], "source": [ "(ndwi).plot(cmap = \"Blues\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot TSM water quality results\n", "This example uses the Australian Total Suspended Matter (TSM) algorithm. The TSM value is the mean over the entire time range. This parameter is a measure of the particulate matter in water and is often a proxy for water quality." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:45.110174Z", "iopub.status.busy": "2020-09-29T01:00:45.109716Z", "iopub.status.idle": "2020-09-29T01:00:45.112153Z", "shell.execute_reply": "2020-09-29T01:00:45.111712Z" } }, "outputs": [], "source": [ "from utils.data_cube_utilities.dc_water_quality import tsm" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:45.115283Z", "iopub.status.busy": "2020-09-29T01:00:45.114880Z", "iopub.status.idle": "2020-09-29T01:00:45.176286Z", "shell.execute_reply": "2020-09-29T01:00:45.176734Z" } }, "outputs": [], "source": [ "mask_that_only_includes_water_pixels = water_classification.wofs == 1 \n", "tsm_dataset = tsm(recent_composite, clean_mask = mask_that_only_includes_water_pixels )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:45.180461Z", "iopub.status.busy": "2020-09-29T01:00:45.180046Z", "iopub.status.idle": "2020-09-29T01:00:45.747519Z", "shell.execute_reply": "2020-09-29T01:00:45.747971Z" } }, "outputs": [], "source": [ "tsm_dataset.tsm.plot(cmap = \"jet\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Time Series Water Detection Analysis\n", "Time series output of the Australian Water Detection from Space (WOFS) results. The results show the percent of time that a pixel is classified as water over the entire time series. BLUE = frequent water, RED = infrequent water." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:45.751152Z", "iopub.status.busy": "2020-09-29T01:00:45.750729Z", "iopub.status.idle": "2020-09-29T01:00:46.350647Z", "shell.execute_reply": "2020-09-29T01:00:46.351099Z" } }, "outputs": [], "source": [ "ts_water_classification = wofs_classify(landsat_dataset,clean_mask = np.invert(cloud_mask)) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:46.354960Z", "iopub.status.busy": "2020-09-29T01:00:46.354168Z", "iopub.status.idle": "2020-09-29T01:00:46.494990Z", "shell.execute_reply": "2020-09-29T01:00:46.494508Z" } }, "outputs": [], "source": [ "# Apply nan to no_data values\n", "ts_water_classification = ts_water_classification.where(ts_water_classification != -9999)\n", "\n", "##Time series aggregation that ignores nan values. \n", "water_classification_percentages = (ts_water_classification.mean(dim = ['time']) * 100).wofs.rename('water_classification_percentages')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:46.498963Z", "iopub.status.busy": "2020-09-29T01:00:46.498192Z", "iopub.status.idle": "2020-09-29T01:00:47.046196Z", "shell.execute_reply": "2020-09-29T01:00:47.045733Z" } }, "outputs": [], "source": [ "## import color-scheme and set nans to black\n", "from matplotlib.cm import jet_r as jet_r\n", "jet_r.set_bad('black',1)\n", "\n", "## apply nan to percentage values that aren't greater than 0, then plot\n", "water_classification_percentages\\\n", " .where(water_classification_percentages > 0)\\\n", " .plot(cmap = jet_r)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a WOFS plot for a single pixel\n", "First select the Lat-Lon position. Then the code will find the closest pixel in the dataset using a \"nearest neighbor\" selection." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:47.049328Z", "iopub.status.busy": "2020-09-29T01:00:47.048814Z", "iopub.status.idle": "2020-09-29T01:00:47.050472Z", "shell.execute_reply": "2020-09-29T01:00:47.050883Z" } }, "outputs": [], "source": [ "pixel_lat = 11.84\n", "pixel_lon = 107.09" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:47.055233Z", "iopub.status.busy": "2020-09-29T01:00:47.054001Z", "iopub.status.idle": "2020-09-29T01:00:47.057260Z", "shell.execute_reply": "2020-09-29T01:00:47.056828Z" } }, "outputs": [], "source": [ "pixel = ts_water_classification.sel( latitude = pixel_lat,\n", " longitude = pixel_lon,\n", " method = 'nearest') # nearest neighbor selection " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2020-09-29T01:00:47.069573Z", "iopub.status.busy": "2020-09-29T01:00:47.066655Z", "iopub.status.idle": "2020-09-29T01:00:47.312923Z", "shell.execute_reply": "2020-09-29T01:00:47.313430Z" }, "scrolled": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt \n", "plt.figure(figsize = (20,5)) \n", "plt.scatter(pixel.time.values, pixel.wofs.values)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
tiagoantao/abjad-ipython
notebooks/Ligeti - Desordre.ipynb
1
48953
{ "metadata": { "name": "", "signature": "sha256:26395eb934ae63f36b097fd8eb91dae7f5397b03ac8b9f07771eb9053155c424" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from abjad import *\n", "%load_ext abjad.ext.ipython" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "from abjad.demos import desordre" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "pitches = [1,2,3]\n", "notes = scoretools.make_notes(pitches, [(1, 8)])\n", "beam = Beam()\n", "attach(beam, notes)\n", "slur = Slur()\n", "attach(slur, notes)\n", "dynamic = Dynamic('f')\n", "attach(dynamic, notes[0])\n", "dynamic = Dynamic('p')\n", "attach(dynamic, notes[1])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "voice_lower = Voice(notes)\n", "voice_lower.name = 'rh_lower'\n", "command = indicatortools.LilyPondCommand('voiceTwo')\n", "attach(command, voice_lower)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "n = int(math.ceil(len(pitches) / 2.))\n", "chord = Chord([pitches[0], pitches[0] + 12], (n, 8))\n", "articulation = Articulation('>')\n", "attach(articulation, chord)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "voice_higher = Voice([chord])\n", "voice_higher.name = 'rh_higher'\n", "command = indicatortools.LilyPondCommand('voiceOne')\n", "attach(command, voice_higher)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "container = Container([voice_lower, voice_higher])\n", "container.is_simultaneous = True" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "cell = Staff([container])\n", "show(cell)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAHsAAABnCAAAAAAFuGJDAAAABGdBTUEAALGPC/xhBQAAAAFzUkdC\nAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAJiS0dE\nAP+Hj8y/AAAACW9GRnMAAABjAAAAGgDkZzHhAAAACXBIWXMAAA+IAAAPiAEWyKWGAAAACXZwQWcA\nAANDAAAEnQBuEIPdAAAGFklEQVRo3uWavW7jOBDHhwodEEIMYoMAghAgBVMckgXCYq9cQHBxqQ4L\nqNsmSKkqz8Dq8hB6EhV+Er2Mbkh9RLIpi5ZoG4djYVuUqZ84nD9nRAqqZaVM8tltYSG7EJSKtLgI\nG0ueRGQW3wO75kvO5JH4/zj7Yja/pK/51FhRLryZ+eyccG/dOLJBTgDSC7EZANDLsBPQZW7Hl7Ep\nAEkSdgl2jui8UjBPrcvYKUCGioXkAmwJ3FRFF2Fjt9HyMwd8IVt/ZjBznl3GJvUdkHOxM9mVmOhP\nAlS6lm/9A3BuVpccCtWVDeDHM0CsXMrHm1LQrwCnZl+l7BuqhLIqcX5xi4qK75h54byWVQJqoZ2d\nLSROL6COYJfFyKWOZqcUY6h0bIlsvNNo5FJHswvsNXNNXFKCN9ofoEUaewowmDyMKOIhjp/6x8TE\n2+DOHDyGlLJFGlvjxf606ykmt3G8jj96ikJwDM1Zcx9LNCZ0e6vFC1p7geqNLuO8MXPJarSjNm2D\npF1cUGvSwup7Skk/p+k0Jhs0HJvidmydJopKCptXQT3Fk4FrdWzaso/2tV7f0MUzWxyJGibsskvg\n0lTrwmazMU0khZ5WLYPW9lcO8khFRX0zkUHzcrbG8Ppr/R2E8eOuGHTiXOusJ8CwFlmI0tQCi+fH\nMYxeTH8F+nqrHaFBfXKvEgJ48xDHhJnGRes1Q48jtviCtshdYkk0nv1B62msVhkFY0tp8zU95F1l\n7hjHOK/GCrS9SLRYWIFxtNAD3M/RW43paaTna/7YCn2c4OwQSQMbdJy184bsVXtjc+yoMkDJzeEg\nT27n1LTvB5pdWC51BLvWmAlCWjB1wngHQ8E8hYSF4Soc1N3tStGqJDqaeX5pbINxbIW/3uDDKGhX\nEZvN5uOwZuwaW68n4xiR+okk0b+UNse4paaGb6f0XWSkgdR+lmphc7wBNed5cDa7YjpZyhOdMKKz\nE7d4eO/AFlGnmkJyLsr9BiVrMjWpc8Bsmrv9dNKYhEQRk/uWdaBnlgYlJ1IHsYxFxGXZYxO4sZme\nq6Utvennit+CJhI/SoeyJjuy6h+Y5NHkliHVCsYYGbbBok05B7kiZn2opGfHeCQIyur9L5vGmuRR\nS1bFTH0QgvIM2hzDlisetp3N5vcAV5Z2A+ui+0QY8SrVoi2+VmVCFMew7+sE3cIeJI+S8Uh/N/3m\n5UgDUriz66uT7+bgMwyC665dmzzy+rrSVKq1FpiyGbiENmzn7uyw/us2HOapA+sWSV2p+P4lmm/V\nsVO3RU0StBrbkgb23pzat+5hdn2z2iRCVE6l0fd36JVPc2Yd71p3gh0B45kxgOOyYsPedrqF8Ft9\nhivL3w+xC2LGJ9cBzZW9hSDsxEO27Zmj2VVOiZCR86N/tYFrozHVPA136BnsqkwFd99makyN/b7R\nAtv0Ts1gH1c659q/6DnY76b1BdjvbQy9ALv6P7M/L8Tefh+7qJX9K/TIHu/QgK3US8woDcj+asrJ\n2Eo9xCsaBG2Q62c4J2KXKouDoM9sy/4ujC92oV5jTlfBFeyVq4BSHr/uLyItZ78FmhnsM7H7NI4z\nNfqIs5y92UFiQrNaxQ9KTT5WebB5x9RLXci0/618OQWbXCHzRR1eyS3ojxOwncrv4Nd+5VnYxS35\nx1J9BjaSY6vfeWA/3h5ItMrXa7gZOe+j3z8Da/TAHr9gOslH78yPzX8G5Pox6xtWpfEKp9Wb3wda\n+Rrv4odZ1EaNY8wyeqc3f6jDbXz6WqE+nmNT/lYu+zZn0vfJ2arzKv2jPMN83pRSEkql+ZkSEAXf\newo+Gbtk+CQXmRWWnGQYWSJ8Tpt4mvbF1kvsSb3CwrPCrHfwqRcnPLGlpuV6t0znMYlZRZjcrfPE\n7u2b5wUagZp3VSZe0vHBbrMH1RzXJhcwtSrrpd8qQuf6SlgSnZSmMOVqnmzOBiAGBCumF0+8sPXi\n3Jd9cz32xXSq6IedDTa/pesuvBe2HLg0dd0J98JmX5vTkuvVVOaw7+CHjcPtuL/imY0+lbm/kOOV\nLXGk5cx3WpeyOXaZknnvQy9lR1QJp22lE7BLwcXM91mrfwH+LkEnkhKMsgAAACV0RVh0ZGF0ZTpj\ncmVhdGUAMjAxNC0xMi0wMlQwOTo0Mzo0MyswMDowMNlyAhUAAAAldEVYdGRhdGU6bW9kaWZ5ADIw\nMTQtMTItMDJUMDk6NDM6NDMrMDA6MDCoL7qpAAAAHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3Jp\ncHQgOS4xNJ2zXFgAAAAASUVORK5CYII=\n" } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "def make_desordre_cell(pitches):\n", " '''The function constructs and returns a *D\u00e9sordre cell*.\n", " `pitches` is a list of numbers or, more generally, pitch tokens.\n", " '''\n", "\n", " notes = [scoretools.Note(pitch, (1, 8)) for pitch in pitches]\n", " beam = spannertools.Beam()\n", " attach(beam, notes)\n", " slur = spannertools.Slur()\n", " attach(slur, notes)\n", " clef = indicatortools.Dynamic('f')\n", " attach(clef, notes[0])\n", " dynamic = indicatortools.Dynamic('p')\n", " attach(dynamic, notes[1])\n", "\n", " # make the lower voice\n", " lower_voice = scoretools.Voice(notes)\n", " lower_voice.name = 'RH Lower Voice'\n", " command = indicatortools.LilyPondCommand('voiceTwo')\n", " attach(command, lower_voice)\n", " n = int(math.ceil(len(pitches) / 2.))\n", " chord = scoretools.Chord([pitches[0], pitches[0] + 12], (n, 8))\n", " articulation = indicatortools.Articulation('>')\n", " attach(articulation, chord)\n", "\n", " # make the upper voice\n", " upper_voice = scoretools.Voice([chord])\n", " upper_voice.name = 'RH Upper Voice'\n", " command = indicatortools.LilyPondCommand('voiceOne')\n", " attach(command, upper_voice)\n", "\n", " # combine them together\n", " container = scoretools.Container([lower_voice, upper_voice])\n", " container.is_simultaneous = True\n", "\n", " # make all 1/8 beats breakable\n", " for leaf in lower_voice.select_leaves()[:-1]:\n", " bar_line = indicatortools.BarLine('')\n", " attach(bar_line, leaf)\n", "\n", " return container" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "def make_desordre_measure(pitches):\n", " '''Makes a measure composed of *D\u00e9sordre cells*.\n", "\n", " `pitches` is a list of lists of number (e.g., [[1, 2, 3], [2, 3, 4]])\n", "\n", " The function returns a measure.\n", " '''\n", "\n", " for sequence in pitches:\n", " container = make_desordre_cell(sequence)\n", " time_signature = inspect_(container).get_duration()\n", " time_signature = mathtools.NonreducedFraction(time_signature)\n", " time_signature = time_signature.with_denominator(8)\n", " measure = scoretools.Measure(time_signature, [container])\n", "\n", " return measure" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "pitches = [[0, 4, 7], [0, 4, 7, 9], [4, 7, 9, 11]]\n", "measure = make_desordre_measure(pitches)\n", "staff = Staff([measure])\n", "show(staff)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAIUAAABlCAAAAABG9X9iAAAABGdBTUEAALGPC/xhBQAAAAFzUkdC\nAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAJiS0dE\nAP+Hj8y/AAAACW9GRnMAAABjAAAAGgDkZzHhAAAACXBIWXMAAA+IAAAPiAEWyKWGAAAACXZwQWcA\nAANDAAAEnQBuEIPdAAAFtElEQVRo3u2bvW7rNhSAz5GZhMiNQbQIIHjJQBQo2iEcCtypgHCXTnfR\n1qXoqKnPwK0PoSfRkCfhy6gkJdkSSTmmyMRB0DMEtn7Ij+ePxyQD/WZRVbv95aXA9lc7TgivuytT\naGmrEnOQpFEMJIJRkQbyGSg+gEU+hnd+jEjNKFkoJPuf4pNTdOoDULS4pcHMFC0C1FenoABArk1R\ngZF4ZeSlIABYVfS6FK2GaHsJ0RNUVooaoNGTFFRXpRBgW4PyyhRaFdou0Y6RmcL8bSA6q+elwIEF\n35+iYkehYP4iFCxCvpBCS8wbgSbmupDmiw4U4cO2hAvG/etK2EQXrb2lKhc+oED1SmeuNvggUH+6\nVRQGSapAlxQ9aXoOQ7g6ol0WVeNdFiMEbKkH1ii40PYAGXhQu2wb8EEyQhQpEC5FTTDoFaa7JlR6\njBA3+5wUXdj65rm6wYCpSgvB/mF9imiKWaTutSbgPhRLxY5p5fvxuNdhuqOMpkUqXejCjKwJwdal\ndcTVESdmrYVF+Jqzd0y9G4UJD05ChRZtpJSakUr51hSm8OW9COTHvhJamK5IhQjnhXiKTjDGp8Zm\nFNSGR7Oai40uVgcTSTHm/am9E4UufLEzSXwlF3e4ks82ULh5/xSpJvfYGZXQL6FQNVMW4kpEvhap\nZt7d7Y9fp4wLeydS6yECavsA9cKV2yqwISuKOq8LR/+nvD+9dbQIt+rmE6Tjo3I0hlipSM9S+PPu\n+J163kkNqolVAsYBnMlEjBfESm9nKfx5d9TE8fuRAkz5T4B2enbvzHud25CJKybCHTkUizD09K87\nM/flQtUThdTxgfrVUvj1lg0QFDVdKSMWFK4buPr3VyuOFEwPXtqurdaZkxvaoaXgJONQeG5w4+g/\nSDFE6s4UvkDYWALfASxCbbcb9Hr7eqS6Ych2aOfdmYD7+ilStZ1Ko4DOetGy7jD66UxKwdczuOcG\nwnOmVYv0KIzeK/PJ+M1y/kRrCl3nrGTPGYX03CCGQphh1iZRsMpcrxavDZ2LSygK1w1iKHpq6NvK\nlMDaNkvVcz5SBCzy7702+8Opxb0ThnEUio5K1E5QO9GgqGmpRfSC5OV+MEBILVsoesVQmOhqaIlu\nraNMJFHuLa+84OgGfydSVKeIuR3b3IVm1aBMEPCwPr0S4l5xI3X5O1WPWZd2dcTCwQRx+lW0RRfB\nFejLKaaJCl+yUTR8tHsExWCR4gSRSmHGhV0kxU86TG+/zS+lUSiYyoo2gsLrIJFCHinqy5egs1MM\n7i77Y6J8Gwolnw/kDEUJlDVWKZcv/cZQ2P53xTLTehQd2gzeot9yIsUvs/5X1lxOXC1BLsrwIspG\nCjt+RJhLUZAfz1D0quYsbr98nUK54x/6Z08y2EHS7l2IYh/Xf3YKO/4CX+/f3yHMQhGnf1l4VxMp\nIu1v5CvxC7Ykij1G2t/UUneBOj6J4jamfyt/FI+hy0kUh4j+jdQF/hm8kUTx/eL+Bz3gbyu33usU\nSPeM+Ovq3XehaJ93UDyf2TdIPKN0yTNPCPh43nBpFF9vDs2Z213zdKPryMdXYVMt8p0WT4El4VbW\nB6qTefHD75foK90vup+JVjnZHya5JXYuwbuDvLSNTN7ZVocHMgo9HP6ScVtYn+i81kehmKVQ80lF\n7inmoFACCRHD5xqBmyUwFsWRgUJRXTKXw8pii2bntZQIl/+qyUNBAVQ1LjCzprPLeyxu0zudwm6o\ntcPitK7AK/sLD+KOT6RTzDeC205rhtgN8agDLYkU0/KmnC4MBuHrq9VvogtZam+cTSSVWYevIc45\n0y1Clz1SQGr2D+IaSaVQy62C1jhJFzmLpFM0sNiPFtsOhKRSiGU0kPgDTjko6Oz0obCbIzQqOrJQ\nqNU9k3ej0E7YQNSyyxtQCO0RYsuh1KwUTKuBYJZT+gkUJZEcN5wSzkuhOONZ/mOi7/8DjpKRfw+k\n51sAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTQtMTItMDJUMDk6NDM6NDYrMDA6MDCLSi2yAAAAJXRF\nWHRkYXRlOm1vZGlmeQAyMDE0LTEyLTAyVDA5OjQzOjQ2KzAwOjAw+heVDgAAAB10RVh0U29mdHdh\ncmUAR1BMIEdob3N0c2NyaXB0IDkuMTSds1xYAAAAAElFTkSuQmCC\n" } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "def make_desordre_staff(pitches):\n", " r'''Makes D\u00e9sordre staff.\n", " '''\n", "\n", " staff = scoretools.Staff()\n", " for sequence in pitches:\n", " measure = make_desordre_measure(sequence)\n", " staff.append(measure)\n", " return staff" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "pitches = [[[-1, 4, 5], [-1, 4, 5, 7, 9]], [[0, 7, 9], [-1, 4, 5, 7, 9]]]\n", "staff = make_desordre_staff(pitches)\n", "show(staff)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAABnCAAAAADHgbOrAAAABGdBTUEAALGPC/xhBQAAAAFzUkdC\nAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAJiS0dE\nAP+Hj8y/AAAACW9GRnMAAABjAAAAGgDkZzHhAAAACXBIWXMAAA+IAAAPiAEWyKWGAAAACXZwQWcA\nAANDAAAEnQBuEIPdAAAIq0lEQVR42u2cS27bOBjHSZl2CDcZokVQQxggKJRF4FmEu64KCMEAWQUF\ntMummKVWOQNXnUNoM9fQWXQZD0nJsiRSLz4U1ygXedgW//RP34uUKHCwbkWc2XfyzjrAvos8QihK\ncu8YfOo4wMBbFu/gEii86bjBUA6REkz9G4UXnd8YHGK4OKfIi9ldXGCIzCCZ3cXlJcwMApAs8p3O\nrLUxYAAActbbUqN23WEMRLMwh8vAgACAcYzPaHjvgSHjFLIDA+bB+CIwJACkPCCD+HyG9x4YKCDy\npd35DO99MHBj4K5hHhwuBIP4mQJzkcvAAEsY8HyGtxiGmNQNA/ETgoCYNmB8pLahD8vobJ6aXJn4\nh6cL2mXFZxo7SiOC2LJnCfTpOdYhtNlhAYpDwUsoZQbDZHUJRilcBoYDSg8RKLOmggHtJhTZl4Eh\notwlNNpsaiVxGRgSBDWRgWOg07q7EAw5twWsWX5iNMEYTvCKXxdDI2HecFsAW01CwXBDyBaA1cIJ\nE+BldIKwyXUH5NxK0+Sck4wvRfy61nD6JxJJcWBFlgIQTcCQUXZw1AYxONRpYhBJIkLa851AlEsM\nZAIGZFGMz8HgUKeBQazGRgeqPd/yrRFryCkh0QIYfOg0MGCZJFJt11CsSonQwfo6KmhZaB48O4Uf\nnROGGACYi3pady0gEcVEPhAhC1yODri9kqBg8KRzSpi867X4DRHWTOvWkPuFyJo9DVWjAzeWqesD\nCoJV3YmSMD3p1AkzKcNfInVwN2tGcl0uRb3noB6e3VmpTL5e/VKswZNO7RSR9PvoqNIOhawKCrR3\nalEdhu2Gp5i8gsGTTo0BCzQiZfL4Kz5Am4fR6n9K+jreyV5JYTc8ejwLx+JFweBJp8YAxKo8Ajjn\nk+1cfCzvHBYV4tO9fEUWY/OrO5n96ortaPI1bTVE+tFpYGA8S0D+yR1VVqByYSCQT69GL/rPG54S\nCiqTr2UcFdOjOjUGwk8/k99dWj5pL9Jn5XHpqOCs4amhoDL5U3dOMCg6QVenTpgrMWcDiFTrsleg\nNYdbrUo72ozloeGZXztLqdkPiPebOdJwhjmmEwQdnUbC5OB3wgRyGThaKUkYSC4qCzjmFUNnqWua\nmlCgdGdiDeM6pNvtqYqEVNh+LP4SH2pNoqD0hhQOFNPjw1NMkyou6gTDBJ0BDFSc6UQUDCQWlUKs\njoZaYVCyFF0rocAFhgk6AxgOWNDKYrEuy92jZf5RVAnMcop2klJNk+6r7GeJYb7OEIYCV1bDI0HS\nTgoF5mT4TByOporT8BQPVUyT0qEvNxWDic4QhkNBIBX+lOId7EwlC5FOcDR++0cDancqqGRDJxiM\ndHQY4lPe2MCyj9UHYtjqRKZOBZVsiNBoGhy/hmmkE3TzcPsaJofLGEssCvb6UMVD1VM9wRo86SjW\noJV2gUHxUE8YjHQGMaRR5fwuMCj1qicMaxOdIQwi4sLcFYabsJOkPGHYbw10BjAU4LjMkLnAoCr5\nwTChk1kYWI0hmXi3sAinZXt6evpR/gVY5hxDS+d7R8c1hjLYiPejsUtTVatX7Notd41hUMc5hh2f\n1YoqcfJNsuIsvYVlofGUlH/4soZa5++OjnMMOZRZJ4PKUQMkjjXcz0YxJy+juI0N/TrOMRwyBCO6\n093l0dvq2dy+Ma2TF9XcYujXcY/hUCQRmbeVq67hmsWcBwz9Oh4wzG6nBY1mMWfsFL3L7gM6Rhiw\nYwx1DXe8flC/NQ9Dzu5CtAp6MfTrzMOQs0ep8+QWQ72gcbx+MBtDloZ4HZSld++F+gGdqRi4DkFH\nHfDdLQba+9Y4BvbHZr0OYLMUCObrjGPQ6GiWMZbHkLMHaZmttlohcsd6OjPDUAgPQB0AQYBIqNFZ\nEgO3zOuTZVaOEKxR+MgGFznnYshY0wOOOqshnWUwsOcQdC0TBgiHz+ww3qZjEDpI0VmvR3U8YyjK\n2KyzTPVmidd8ts7xLamz1umkGh31JW8Y9JaJ+i2zIJ+K2TqU8mTLdVbtUCM84IHpqRafiarjAQO3\nzCsI51pmGrzM1XkN8XwdtvlL86pLDP2xWWOZnUPvV//a6qzxJJ1/dK+7wZD1WeYjmzRJeQs+TtKR\nHtBNtkLnbpoOW13rHc8WA/cAbBSbT634GsDXUZ1U6CihZh1+Y6M3nxx1nmGvjg2Gz1ATm6/HLbPV\nMp5K30Z0AjMP6OhA1Bt9rDBszCyz2Z5XEP83SwehWwOdZAMGdWwwhLVlPk+2zGZLbyH8MuHAk86j\nkQ4LIbwdPtAGwyOaa5mnln/FAFw9T9MJuA4z1dlCcPVt7GNL7aNttfQuAPDjq31HU3SuXyZY0NIY\nCvZwBQD686dvIfbIzS24naizIIaC7bfiDvTrbyYOPkvnE8+sEM/QscJwv7lnE0d2Jwmg8NXkUSH7\n9f34PZkNHYBuZ+pYWkNMgs9JP/ScJffhRhQ9cB3+sDACrnMzqJPuSx2AwhcD0vZOEXP+aIPvKU2r\na42U7sMw3CJZ8kC0Ncxzep27pg5t6zzMLyicYTgIW/zx5WaL0LHG5TUO4lk+fHPx9TU6sKPzYq3z\nLgnz/NpvDLK5waDxSfFK4TozetNxgKGgECHafi2BIBJ3mxOHIHzq2GMoMKCHXXtLYAZTHsJ2DI5u\nZz4THXsMvGYt4s7mbpLm8rIzcbdz1q+ONQa5cztrb8NiRGxvZfJOIlcU/OpYD1P3/I8s5+cOySdp\nmT9YbVEdOwzVI4DUa6OlrUZT9medhY6lNbAdD1FMGZ2wVSw28LmKkL51bJ0C64eA+TxXbFp0RMG7\nju1uZ6C1x0w4cu5wRuFbxxIDD06656BQ148W8K1jiYHqYzRylyiX0bHsBmuebUHlfXvYTY5YSMfy\nEQATtqi6aN51LDDwyJSCWXfVnq+OOQbKvZVaPaP8jHTMMRB+ghD0/xT+RXTMMewQi+ACz+1fRMcc\nQxGRCRtU7dsiOv8DeR/UL0GQnbgAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTQtMTItMDJUMDk6NDM6\nNDcrMDA6MDAtPSYGAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDE0LTEyLTAyVDA5OjQzOjQ3KzAwOjAw\nXGCeugAAAB10RVh0U29mdHdhcmUAR1BMIEdob3N0c2NyaXB0IDkuMTSds1xYAAAAAElFTkSuQmCC\n" } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "def make_desordre_score(pitches):\n", " '''Returns a complete piano staff with Ligeti music.\n", " '''\n", "\n", " assert len(pitches) == 2\n", " piano = instrumenttools.Piano([])\n", " staff_group = StaffGroup(context_name='PianoStaff', name='Piano')\n", " attach(piano, staff_group)\n", "\n", " # build the music\n", " for hand in pitches:\n", " staff = make_desordre_staff(hand)\n", " staff_group.append(staff)\n", "\n", " # set clef and key signature to left hand staff\n", " clef = indicatortools.Clef('bass')\n", " attach(clef, staff_group[1])\n", " key_signature = KeySignature('b', 'major')\n", " attach(key_signature, staff_group[1])\n", "\n", " # wrap the piano staff in a score\n", " score = scoretools.Score([staff_group])\n", "\n", " return score" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "top = [\n", " [[-1, 4, 5], [-1, 4, 5, 7, 9]],\n", " [[0, 7, 9], [-1, 4, 5, 7, 9]],\n", " [[2, 4, 5, 7, 9], [0, 5, 7]],\n", " [[-3, -1, 0, 2, 4, 5, 7]],\n", " [[-3, 2, 4], [-3, 2, 4, 5, 7]],\n", " [[2, 5, 7], [-3, 9, 11, 12, 14]],\n", " [[4, 5, 7, 9, 11], [2, 4, 5]],\n", " [[-5, 4, 5, 7, 9, 11, 12]],\n", " [[2, 9, 11], [2, 9, 11, 12, 14]],\n", " ]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "bottom = [\n", " [[-9, -4, -2], [-9, -4, -2, 1, 3]],\n", " [[-6, -2, 1], [-9, -4, -2, 1, 3]],\n", " [[-4, -2, 1, 3, 6], [-4, -2, 1]],\n", " [[-9, -6, -4, -2, 1, 3, 6, 1]],\n", " [[-6, -2, 1], [-6, -2, 1, 3, -2]],\n", " [[-4, 1, 3], [-6, 3, 6, -6, -4]],\n", " [[-14, -11, -9, -6, -4], [-14, -11, -9]],\n", " [[-11, -2, 1, -6, -4, -2, 1, 3]],\n", " [[-6, 1, 3], [-6, -4, -2, 1, 3]],\n", " ]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "score = make_desordre_score([top, bottom])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "from abjad.tools import documentationtools\n", "lilypond_file = documentationtools.make_ligeti_example_lilypond_file(score)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "show(lilypond_file)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAooAAARuCAAAAABxGkn+AAAABGdBTUEAALGPC/xhBQAAAAFzUkdC\nAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAJiS0dE\nAP+Hj8y/AAAACW9GRnMAAAAEAAAAGADDoGyBAAAACXBIWXMAAA+IAAAPiAEWyKWGAAAACXZwQWcA\nAANDAAAEnQBuEIPdAABTJElEQVR42u2dzW7byNrnSYqS+SoReJw2WiCC8TTkGWSSxoTnRTeCWQQQ\nPIusGgG0yybopVYG5g5qdc5FcPPeBhe5Et6Mpj4oiWQVyeKX9Nj5/4BO2zRVX/yxqp4iRToHMIB0\nn127CC8G59oFeN6kcRDE0HEULqni9F3INTqpbB+H6zi9eL4vjouqOHkXco1OajwVqY32Fy7PhQfo\n6buQy3ZSo7pPbbS/cHk6qjj0EL84FUc+UtRG+0uWp5uKOycekNfLHKAFu7ESgoqWJI7jDCjWywxb\nBOE4pccAbU3IVdwMzjJmU1eKxVPnUCEcJRWELfZFc5x15gwuHlQEJrqoyJyQt/rgeRFUvGhqg5n+\neCm6qLgXE8Uwpl81qDgmFFVkgfhASL9qUHFMSKoYip5xcNwCFS+a2mDoqBizh/tYEvlxPHdW8UCW\n0dAUNKL35V+XU+dQwe+W2P1D4587pjZ1BSc4Xgbuv7eqyNaH1SNTeOzRcb4zS/5cRVH0JtK2R4+2\nKVjjlJN8jHqm05bDB14fU/2DbokFsnzRn+L/0dPQ1EasoPGQTXC8TG3y0KpikB3CYw8dML/D+Bw7\njuPG+trPBB2+U05yggFa5hAHh8x1DYv8YbfEVOjn8vYJAkNRO6Y2ZgVNh+wyA3QYt6m4jQ9nFbe8\noPZXW+K1ean++aq4dvaHsJKXJOyWmFLRZwFvz2xwaiNW0HjIqKgomuqkIj9pOqwqxixhiXH76PW4\nkIrpTlxxMtQp7JaYUjEUgaCppB1TG7GCxkNGRMWdGI+XQShZOI4f2uN7vu+4S3170CERO5xykkGX\nYnbJIeA1mlf/tPA8t1tiniyfF4Y8CDT9efTS21bQeMgmOF6mSt+2qBiIXjDvFRMxj+jgeZaJfjTU\ntj/fXvGQMeaG5REs46OsY+opGzj2halrnHmHo5fetoLGQ0ajV1RXnJWKme8EcpHbFraVQ7q2XVQt\ncEeth0HFKXIQNQor98lthIld5i2Hs4qh+XPhqCXvWkHtkNFQcSfVUypuHDc5+B1uhnCdLa9XxYjd\nOrxjk6rIc/gzniYHUaPQWZf/IOl2j0iuInNMIdA1VTQeMhoqbmSrSBVTh4ePh02H2yiDIOMx57a4\nSY1mX0evx/mQqhzup8lB1MgVzVDAF+sfi26J5Sr65FQ0HDIqKvqx+FeGLb7jhStPtLvtLHbpchal\nTTPZhcwGz3F5pHCjzbkLOQyf+BtzeOW5ruOVI43lzPNfdcxPhS0LR0uMb5x1DoLGQVZwNatWkLeD\nRyJsUfMi2SsGDlM9ju3EKBFz8l1YTk/gPg08gfRI4dy7qBzeT5ODqUqS0CrV8+5xTWI8X59l3sDS\n98JYwalGMWObNKqYFFR0/MPWWTN3FxqXZXU28sPl9OVodsu6FpNP/4qjoh4pnFWUOXyIp8nBVCXV\njt2SlyqaEpPbdpdRsVImYwVVO3wYe+JtKkCLiqyo4uaw9uXP2mTCDI/E1umuPMdPNmGcdp17aF2U\n6vmK58NZRZlD18Uc2xxMVVLt2C15qaIpMZcdso0z71b6XuhVNlXwOIpNoGK1AC0q7gsq8uYTQUy8\n5QFMbJNXKjsoQ5TTVUWtixIXb93SLGHguqJtDrVVCrslL1U0JRZkO9dZN6c2DlqZjBXsOYr1KUCL\nirGSToUtXhi4q/CGxxyu1cWMpScrov+hbfVeixgkhbk0n9n7r/Q595m2qy19c6itktcteRm2mBK7\n4fkGk1xtaS2TsYIyJhvnaktbAVrClrjQK6Z8vNqEmbh91rWKW/z0kIamGKe5V9RGDqZ1UXoCnXpF\nPSaxzaG2SmG3CshesTaxCRZztDLFXrVM9RUcYzGnvc3tekW1xB3zFtqlB/+wswtbZMqBYV5ZqVpb\nxMDuxfSvuW2aVWyNSZaWOdRWKexWAalibWIjqFipsV6m+Gu1TPUV7KVi5zZvVVG2Sn4NehPI0u58\nuwuusaiQ77bcr9geMehdXDcVLWKS0DKH2ioVE7CogApb6hIbrKJhKapapi4V7KFijzZvUXFbUvGw\nF3Mwd217vSVex+t1W9jSHjEMVdEiJqk2S20OdVUqJmBRAXW1pS6xwSrqXZD1HMdUph4q9mjz1sUc\n+eflad66Cl4NX3svTYO16bM7q0QMegyiz6PdhrClPQc9TmjNoUIxAYsKeM3XmzqHLZWQQKuxXia9\ngt6yLvXivsHCuEtrUNTe5v7bNhXPd+bwszs9/zKA4lmmT5+rZ8vQXtEQNGgl0ra05tCQgEUFWr5L\nHh46oY2Gvbr9ekrHy1Q2m0DNopItV1vkEVD27dRgP7KK2vRZK+JQFe9bcxio4tuZN+tWgWEqtsYk\nWhQ2sYo2gZpFJVuuQctgStknel0mv3Y1kFLVtCbRijhURe3jFs3SQcUfogdw/u5UgSEqal1QqoUE\nvSpYT6uKNoGaRSXbVBSJKhXXMrvUt69Dlb+Xktni94Ym0YrYRcUfKofF7PeGj1s0i7WKvy9ddSvQ\njy4VqFExb5+le3c8rNvjt4SPG7JY3ZJyuz0nP84MpL48s8Xf58+Fhv1sArX2IrWoGMoQWqnInE3K\nz8n9oTdLJ+d8RXNkFX/Xc5hWRfeY4e/1iVmreGqf4y2RqVvZcNifKnga/0aagTSVZ3n+XGjar1qA\nKVTcyGOaTw93bhz7W4sq1KNGs382NYlWxG4DtMrhl4HNYj9Ax/JYve1WAfsB2uLK0EgVrKd1gLap\ncfuHWlSM5VNmj5FKutsNfBTu4njgjrd6jK6ilsPUKv7nwlv+u2MFGlR863vLcydkc2VoWhV5TPYf\n7HxnzvVUVN++GB40n3KT/JhQRS2HqVXsU4FaFVWfXrgjy+LK0JQqqvL8JwUVUxm3jKxicTTrcySz\nSLsNvKLi26aPWzRLYw5lLCrw/UHbJTam9XceA53DFpslwulUPJbH+/v8udCw3zhFanuSmCO+3zae\niovqaNZFRcY+RqHvezPnUSvmKRkthy7NonKYe15TDmWaK8C+RP7M1e47tQ1bDof7N61LhNOpaBu2\njFOkNhVDJxhTRYsm0Xb5Gn2JIm6gdwondS3OW/o0SxKIHOaWOdhVIGX3gZ8nqK1/1Q7QcvfAIvlu\nFew7QDN9FAsNu41TpDYV5fezr6JiyvZRNC/54cy8uR9E90xbZe+losrB94s5eO05tFYgEV2hl6+5\neP7dRy3Wq1VxPvOW3+3ax6KCndrdBPtFG8VCw27jFKlNxa0IoS+pYhaw+2ghOsGiH74/j6I9q73Q\n00VFmUNQzsE95pC259BQgYzdv/ad3GyPp7g3309Xq2J7+ww47hljvOai6oHn3h0sMESMoWE3+yLx\nIuwiMcvi57+WTIuKMoS+hIpimhbwQXJW9IN3UVH0RfPjsyaMjYrnqaaeQ9WYz/+qz8FcgUpXGH48\nnzfZZ60ZYnNio6so7HuIoqUrph9+ofd3ooMF46jIC/HFEwd35s3ORdC/1tj2UDtxFXpCFe8fv6hA\nwS37EUafWM0dusz/qJeS1eagppqmHD6ymnqx4F1DDmViJrvCY+reTOsKk6Xm9aQqMhZ85Pb5os6z\non2i5jPP471iGEVamYwNoZXTWsWUsU8RH94CT35dpnL68/P/L72JW0rjO/EEKqain/ZNE8FaP3KS\nIPihb9VVbJpqNueQBsF/NeVQZuWdusJ5+M4whXhy9aM+topM9Piiyw/M9vFjv4xE0zbX/GBIulqe\n0LDbaVsqyzH3Z25x9iOnWLwMfAb0wFj9VwDaVAydzYgqBnmgoE0EuR82d/zsX3vfTdvPoiz5dGje\ndapZzCFsy6HMKp8VfjM3MVt4pieDxjW5h9UNtSoy2eu84fa5rmaff7SPH3pzrb+N1ysmLLgXR5Wf\n9mX//Nw/fgroU/Dsm97ELaURX28Z+2rLsZ9uDhQ09m/cm8816Z5KqE0Ed11y+NWdfzYLW6fiX8au\nMCdZuH+YtvdTMZH2eXLk9Sr2ieMu4pFInNRt51y28yKrW/3qVWRsfy+W2ObVksgZAC/GJ9bU7ml0\noz+t5rIqetKPN4ZAoYXsS+h6G4sI2s0ngp1zOHzjObztHEHXk3703Jojbq1iEvG5tDjkgdm+ua19\nxXK9dxeWbVNRkfu38ELdPz4HmImpD290q3Kk0dz0GJ42FdmoKnadrKiS8+DUabDkUBSlXw77DjlU\nq2Te+m7m+J/rjkuTiolc7+ADXr19C27fnnXo7c9k3wI3tD5JuYpq+WXpz/3KLNQV8x4RAO27nAcH\nOcl6NP7hsip2bjl2v3Ad7/ZzS7N377MKOQSDcng3e1O+hTPZR3M+f7xvSLBOxcSpzrfkjN+XU66+\n9p1Id9HMvfnS4RNfneLSl/DPdfip8EaWpU8RkoeFUzfJalUxG1XFTx9tGzPlsdicH5b53XeLvc+i\nfPxoe86nfOYlcvA75qDx/bXriuFJjqSi5/DvWh7bV6ciq9gXDbXvnPKnFT/hItbxU+fw15fzgMQY\nQduRfFq63m1DW7e+QmjcXvGv0H9oTk2sByxE1zCbR59ttSqIwnO4b77TPGGfo0Asdnn9cjCQsQ+R\n4smmrepUTCMRZnWe5TYjbsngQXX0rfuXklJt+aWfiim756dr8KH5tLqwipzta3cmlvfi0nu11BUp\ndRb6d789desMyqLwHHz/piEHd2gOAxn+ImMbEvbwZu6KTtr6hGulq4oZ20a8DN5N1F6EdhXHXFc8\nwr7+dhv43rH/lzPg4C768L1nj6CLInJYHt0+5/DbeDnUkaz3bL1p7IJqVUxGGY4T9k4cfy7h62jY\nAK992l7FlI89Yrrirz4wu0+0qzjm1ZapGLXP6p5DEvqnBwml4cYN9s1vza5V8a8b737f89u9Cdu/\nj1bq/OZjwuduca2Z72+C96XZTquKmSjFjZwye8uo09DTruIOKrbkkLh+dnptZMgCJz04je3aMECn\ndzfOLPpmt0CSnCYeXj7xeB296xfb1vL7nbcQC4ZKKqOKohhbPs1VBrr+/NZuylyhXcVkZBWLXYjN\naGZVi1IJp8+hTOBsE//4923qrA97p/FdSy1zxeTdnb9QBzWIjsTx6celuMnqvNbo+3dRNHawUypP\ndDef+6I8vueJt/QGghtfcFxrnInZefTXkPlA+7rimLfOHipdiM1oZlWLYgmnz6HEbuM4m8Jft3xK\ns3Yag3i7sIX3Ne/4gX/tVwilj59Z57sbhpKypxsvKvGBjXcOtKm4D0dWsdSF2IxmVrUolnD6HErs\nAscvXioOnPW65Wnll4mgp2DAumIrrdegt6OqWOlCbEYzq1qck5w+hypBSTyRX9IyH2hUcYrpxRBK\n5THPFUeaA7X8PUjHVbHShViMZla1OCc5fQ4VMqeUemzx/oYmFSeZXgygVB6jiqPNgZr/nIkMxhyg\ny12IzWhmVYtCCafPocy++BV6Jp5aydoSa1JxkunFAErlMao42hyo+c/bwvugx6DShdiMZla1OJdw\n+hwqxM6mQzqSehUnml70phqTmVQcbQ60W8fyZGbGP8ucR1RxX37Dq81oZlWLcwmnz6FUn/1BdAkd\naVBxmulFb6rlMc4Vx5oDHWLxIIyd+VUsavOIKpa6ELvRzKoW51Smz6GIG1q+26tEwwA9zfSiP5Xy\nGFUcaw50iHduou44VXFSKoczeaZn6qiOpWK/LsSqFuxSOVTwN0Hn4blJxYmmF72plMcctow1BzrE\nh02QcRWz9X6d7NwwFqH7erfhRcgf1zKWiv26EKtasEvlUCGN7d5IXKZexYmmF72plMeo4mhzIK5i\nFmy4itv4wIJDuD/E8WG7ET+PrWK/LsSqFuxSOYxCvYoTTS96U43JdBVHnANxFcUbqdlhE4urfDxV\nrmIcxvzfsQfofl2IVS3YpXIYhRoVp5te9MNQnmmvtohHju+cU6/I8l7xIOYIo4ctU9Vi8hJeQsXp\nphf9MJRnUhV38k1p69NccZPy/jYL4lhOV2XOUPEyKk43veiHoTwXuAadiQioeIuFiqNHX+KeqhaT\nl7AubOl1o2uNitNNL/phKM8Vb4cY/cLfRLWYvIS1EXQQxJ11xJ05Ji58O8RUtZi8hA23Q+zjcB13\nijagookL3yQ2VS0mLyFUlFxTxdFvnZ2mFpOXEAO0xKBiv+mygYt/oWASXkbY8gwwqdjrbDRw+a9Z\nTcG1F3PCbom9KBUPveYoBi755dPRunK9kOxSOZgJuyVWt5gzWelH47oqjveV/NG6cr2Q7FI5mAm7\nJVa7rjhV6UfjugP0qA8qGef80Qt5LuH0OeQUb/EMuyXWcJPYNKUfjWuGLSM/vukFqSjuFzkSdkvs\nRak4GpdU8WUN0OOr+DwH6Bz9ud1dueSjPl9W2DKBirQ1lJWuren0Kk7wAOQub2i3rUU5yeHN0pbD\nYaIBuk9qlwQqttainCRUnIprqjjuyzJUkuMmJ2tRTvIyKq7X6qvqu3V40y0xqGgCKvbKQVTDz4JA\nvEhVPNOt29O0oKKJC71YrbgIN42KxRwuo2J42PiHw0Y+XrDbPa+6iqXvoYejl340RlBxV9dWF3rd\nZHFiNY2KxRwuNFfMxMMM1JMuu4W+uorF0r9wFeO6HS/0Et4XqCILAnF+iyfPu4tuiUFFExd6NflL\nVFFMENPjA4A7PTGGhIo82ur+mJsaFXlaf8a2SdTt2PYkMcdJoeLBpGImQ5VtLPDjTiM0ARX7RFuH\nGhVVWve2ScQ1f2hRMXbGuXW2qmLg9k3JXAtdxfFzaCDslhgBFftEW4caFVVat5Zt3lfFUDw2bwwV\nC4twd2ywKNXBRahYyEEMFuPn0NRM3RI3qHgq/SZcLweV3LI+8uUanS80GlVUab23VbFwoMpFav6c\n46zHUVEuwqVPc1Hq/2W+82RneY4mKpWvhVIJFWUOmfrbP6bIwUSqXtoWsC7Jm1Q8tY/3+OQyu2Rs\n88tYXp9Tq6SReNmGa/ueqUI5Q30bk2n9Kl+dZlGkkgpfCweqWcXUEU+qGENFuQjnH181Yt4ntkoq\nPb2x5FxtoaLMYTNhDib84p6WyRtVLLWP5cBpm9+xUc6t0jGjUjmr7E6tlVoVqVaFZhVlAD3OXFEs\nwqlj7P4fcSro549tyyYqladCqeRcUeSQqb/9OkUOFd6+PVR6xSEqqvZxH9nTG2fGTB/qX52M5fUp\n9IqPquCWBT5nGerbVEqPsle0UbGowpN1rxhL1UdQsbgId8vM7VhfjcqsQr6+q3RguCjFHD7EU+RQ\nYVmY0oXdktdVzEsfZDvXWYfGNAZUR6+P9SpGJaW2dUWLIuVVNTRxY0E28kmPY6io1g2STRinqhns\nW1Zbd7h/E1ZudBYqFnKoa5ZhOVSwV1FL3qCi+vM+DHnrhMZUBlTnsNxU6mOpopZSXxULCeVV1YrU\nomIo38YxgopyES5TXXn0mHZo2Yy9kX35h1O0l+ijCxdFLfMdB4teOaTNOVSQKloM0HoFDCoW2ydP\nrb3wNcc9yfM7GZTxFCUdB2hDyXsO0McisXNVq0VqU1FGLVYqphbrAqXps6Fl8yi/PCacPnR8vlpT\nULEblINvkcMZqWI5bLGrQO2dORtDvoXC11annOG59Gk13Y5hi6HkrWFLS5F21aStwxZxBdpGRWbV\n47f1imo5pjImZI+uWndo6RXzgjT3iuYcWJ7D4F7RsgJ1KnbuFc23qSV5fsN7Rb3krb1ic5FO+XXu\nFRMZQNereOoKnS5X8/K5onb+FJdjind83bdPdIz3K1rnYDOVMqg4mzmP4oe3M2/WrQK97lesq46e\noT4N01K0O1yGpg9r940HFqlZRabufqpRsdAVOiJEt6ncuRn080dF+SrILySmX1C2VdE2B5sjZVDR\n+eHyoO6HvCHi704V6KdiTXX0DMP2FC1V1Js+bN53QJFaVZSfOpa7/OLpQlfoxG7zlTG5CFdqBv38\nUVG+FuRbqljMoe4Mrcmhp4reYcGbZyGTf9upArqKxdLXqVhTHaZlqH/eooImuqs4oEjNKm7V6yyX\ngXghwmo282fObBUecULfV7/JKz+vwgo3nu/7M1/+7Lrn7b5Mjn/WWfBEJDKZwFmKPWeeX0oq8KsJ\nqwSK8JSKOaiPWOcQelY5cBa8PsePuu5rxzsm/7pTBVyZ4SveOvPVMbGm4oRN1Qlm1Qz1z1tU0IRe\nck+Ws3hky/sOKNKuUcVYqSh7RfUm1q3jpsfO8dwV8hir+E7C06e5oPm4XVyEU2ekOn9i73z+qOUY\n7Wyx7BWLOdSdoTU5WPeKMQ9KXDcfGh5d962qZN4p2ldA9oqJywPTXb53sfQ1vaK+NJyvX+nJ96mg\nMUu96WVKxSNb3ndAkQ4tKso0pYqx0i7gduaC8vIE6rAk+VhdXtGJ1+dHHRhUlPOd+Ks2pbdoD60d\nzSrKHAxBQ3uz1Kgo3qkYHofqRzlBjP+58Jb/7lgBqeJGNq6jt085hfNVipql4WuouK48xIJHbuKt\npcc7cyZW0XekgfyEyLaybYpdIVdxm1VXdGKWnBYUdBXV+aM3iVbE3iqO2mlIAdOdOAPzOv34u3cF\npIq8Jdfpbq23TzGFQpCiqmOVfJ8KmqhVsXBkD8fI7ZdLqLgSi1AityfGHh0nX5L66rDj6hRzfvOc\nx8Lvav1wFUXu/Kv8ebEobH80/3xcVKvwGFW36B/iZSrmUPyI/nEtB32LMQeZWOT81rKnRQUCseW7\nnJt8Z1r7FFM4XqXolnyfCpowNL1MqXhkOTNZyKDpcxZFShtV3CsVX0XinnkxPYjjyHGiWOHEy9X7\nOH54H4tbz9x7/vvyfXzmPf9l6fjy55nrOivxw8J1Z9F5n2Xh5zi/N79CtKxu0T/Ey1TMYb5s+riW\ng77FmIOoEj8E/vvmPS0q4Ist9/6SN5sX6+0zK2QrV0Xed0y+TwVNGJpeplQ8ssdCOv9jYJFYy2KO\nVFGFLZu1nNw5zkEN0Adn6ztMjsp8qOH7VFd02Db/QsKhsgj3n00DhdZx2w7QxRx+afq4xWBRM0CL\nGoWVFyT3qYAcoP30kIbHdeBS6WfnPS0Wnq4wQBeP7CFfRXzb+DmLIrVdbZFpFpe4A2edhy1r0Uoq\nYNmJfwthzLEZt7zAavpQXYQ7zipGVLEmhzFVFDUKnXXznhYVkCo6qjm3evsUvsqq3yJkk3yfCpqo\nU7F4ZDmLauQ2gYoHTUUm5tBqMSfvCg/iOotQUVvRCYKM+5o39fKH8EN15T8mUbEmhzFVFDVyK+/q\n7lMBFbaIlvHd42JXofSfhibfp4Im6lQsHtnRitSioi/TXJ3muE+ec5qRfpBhihO5fEbvsK9PxzDm\n+9Nx5yiK5n+qnzeuGzIV+zhh4/S5b9hSl8OYYcv3N9HqWCPrCnzf/KLtIsvEJ/+r1Xe9feZD22ek\nsOX7o15yFbYUj+xIRXp6/HfLrbPS3VfHOe57zwkKU2o++RV3G3kP8UP+++p9dJ4RPyyXwSqfca+c\nX8T/PM+dvW2ePvcNW+pyGDVsKVapsQL3URTwccv1XB6PuNouy7r24UHLL4Pbp1cFH7heoswLnxeZ\nR1Gi4HrJVdhSaYYhRbqPljxHT0RtzSruAtmX5r15Fpw7ZdmhJllpcVGEMecL06WrCWoRzmagsOjt\njcNnXQ5jDtClKul7Mra/FyH2nJ8PTgHtO1/61ZZR28eigu9Fr/iJy/dm7vvBzPM83zGglVwO0NVm\n6FGklN1EUbmhomYVs+KdOYkflJ4mIGaMyVm9UxiTXxEqXU2oK/R4KvZvFnsVDVXix3QfRaHv+xX/\nXH58534QRV+Y9k1Y/WrLqO2j7ZIFuXiREI8LUC7qucy8El7A91mIfXdML7lUsVpy+yJljN1HgWir\nc6aqme5b1hX5BPX0Pugs9k23/MrrLOqnyopO6WrCCE2diGq8Ecdc3SZYKgVr/XhDDsctMofI5yer\na87BUKWb8rH0xI0CoTyMDTfN6VdbRmifM0K8bS7efF7X4ynx5mIfse9WzNgObUgVqyVvLxILPorT\n1ZuVmmrOM96fdW9RcSfuJRdzxQf/NjbhrNx8zfu2MHeUEwq5JvbQdc5S3oXPYBbecc517su1UkS1\nObTNW3gOS9cyB0OVFnyDKz7sL27uIquF43yuOEr7cFa8C7vlczxeB3543VI1Sua56u+e2Pe1sO99\n3Bk5V6yWvLbNH0TBKi0rGstfhNF99UOs7aF2YrFhVR9urUTi+RUgEUE7zps3xwuDQVQJB60iObHL\n4+OH1Wru8Qm0V2lNPuotV/94qn7IeazNwRzN5TnMqjl4IoegLgdDlb4+Pn5lzfzjTitB1Lt9Huey\n6KuVnN/Js8Aonjj+Hu/2Zku+73975GhVauXx9X/XyhMYSl4t9dNm9Q9evlmxbUXDzlf/eKxXqW2A\nPmzjxu+2qFH52MEmWWHuWLqaUNeVFwagREz6Q58PG7PypD+fc+0axg+7ATof4t3qtI7/HljlYKpS\nG+n8rbZNv9pSU3rxJRsRCkVLPu4HXL6ZWTwx1M7EPm/4vg/ywHYpo4ns2034X9pWOUBXS34sNWOm\nYdgvD8M1fPnY/gqhIGtScVe4lVstfJ/njvLTpZhbF+XhkRefz2mqQaeYPos6fDQ16hdtU4OK3yNz\nDmKuUpvDkzkHQ5XST41fpMju3e/6Vv1qy7Gxz+IthV3epcSrwO4XsztTolLFasmXX6rRsGzckEds\nlk/N288ji7dZsXXjN/6qX7CSKzqq1KKofvlhVaH8l8dRvPCB2Q4/4tFUUxXY6l47+lUVjzmIjkQP\nK9605RBE5hxMVfpj9rk+odfOremA6ldb8v2NQ60nz0suJxfvfs+Y7fHtR7qP5u7NHzVyq7ClUvJi\nWVU0zCwyKlR7sfxxsFCRq/aqYTbuxPfF2a+6Ryef4s6X83l5Wu76lUmsk8/6Z4uF3aT/3vP+u6EU\nUSEH15gDn63fWuXwMPPe1uVgqFL83nfnhnQfVnwwnZsjA7XErScWqeBCrjDzFpGBkD6/n4woXLiO\nO7tpaCW1xF0puYqIxBF8aM1D437pur+KH1rDFkHG6vlemd07q6DhmlJxVs3ntXJC3WE6/fS/b9x/\nNu9SzMHvngNrz8HQBreuw3M6ZvT4uFrx7t79j//dNSHWHgNNwtfH1ZKX2PNXPYIb/vHehf7zH677\nH/mnW8OWjuyavxHtBmIAfug1uUk/Bc7N57a9XIshvjaH3dIiByPZ5zv/PBXgc9DPdN9eekYtOPMh\nxH8dPV26wOxd4Hq//uu8YWQVu305357k3nOD7XTtInKYucEfV37f4/2XCxSAietDr+WZ4/t30Tc2\nNM8vD93O+4w9LD3H9d91eXxTd8SKzrgpsk+R77iv/xq5oMUcvkydgy3ZH/7q82A1TFUUCy1ipUXO\non3eC0bdH65Yy/fXvp2Nohu+Eb3w7V96Jzy2is3d/MPqS4dxIGPvxFesZ6Zy1/Ex+NQph48qh2Hj\nacKP8elQJOs9W29665S+48GDL0wZEiiLyZe46HwnL5SqWYNYunrHphCdN+SHuedHDzvTzEuEGt/E\neposxU30raatx1axrcibm9nHtsOesf1DNJcDyO0fXQ9I9mHZLYcPg9dGEtdX3xIXpOHGDfbqRvf+\nKX6Lbn0Rzvr5rQnR59qp/07e3hWpezLybi93T4y/ER+BR193NLfp9lZNPAu4henzb0/NLX1hFTnp\n2wUPboPofldpU3k5WJ3E4u9/9G7A9Dd+FE05bEs53PXPoUzgbBP1ZKWDuDQVOOnBGaddRYfyQXRu\n8/zQamve56MuLytHH2QIfM2YSYXkj3+K0sjba20/eHkVJcljtPLLN4y4M98PbsX5P0pD8hxui31E\nIYd3ox6q3cZxCt+k2KbO+rB3ggs36AvgSiq+IHaB4xdXDbZOLB8j0ZfSxPPZMMJ0GSoOJih/HTVw\n1uvylk6UJp5DY6CLMcZ0+fIqjhluXiuHIln5XZNifB6ynlWaeI4SA12CMabLF1dx/HDz8jmU2J+/\nECyIB/SI2sRz1BhoOsaZLl+8ltOFm5fLoURceGr6gYknBbLeaVUnns8kBhpnunxhFacPNy8b0O73\nh8AZMx6vTDyHxkAXYpTp8qVVHDncvEYORdwwHTQgV6lMPIfGQBdinOnypQfoccPN6+RQwN8Em+Gp\nnKlMPIfGQBdinOnypS/8jRtuXiWHImnc+e3ejZQmnkNjoIsxznT5wiqOGm5eKYfJqE48h8ZA1yl1\nby6s4qjh5pVymIyxJ57PrNSXVHH0cPMKOUzJ2BPPZ1bqS6o4/Vn/PPuVI2NPPJ9ZqS+p4vRn/fPs\nV4DkkipOf9Y/z34FSKhf3gQ/DVAREAEqAiJARUCEF6Ziuqd/xXZ6nmcrvDQV4yCIn+WBQCu8MBU5\n2T4O1/GzveTy87YCVHyZPMNWmFTFy89ZnufQhFYQTKvixZvkeU7Yx+Z5tkJHFTv3+NcZKCZ5sN6z\nQ3+jC2m6qbjrfN/Li1PxGfU4L1nFxHE63Q14tTnLlCo+n3nYS1ZRvH28y01YV+tBph2gn0t0+oJV\nTB1nrV5ASR2oKHjBKjLxvI+w+x2B4cVrhQFa8IJV3IuJYti9fuHFa4WwRfCCVWTicR89noTU/RND\nmX4x5zkc5udQxgKdVAxFz9j9yyPhxWsFFZ9LGQu0q5gk98tQEnhh6DnzsCte50/YEazq/uIHU+cQ\n+BNVqjOvltcuY/DjMipmfnb6UrsvXojYPXIMxzx3imWX5drFGy2aHatXVC+Z3Iv5cVyeItLpceQb\nIA/7dRzzhrhKGc8v+xyWTNsOm935zacB83uMz9OqGAeHzHUrLo6qoni0fHB+JrGCmoqxeOy94XQJ\n3B5JduRCKor54UnFLa9uj+W0cKw679Zh8dFMsgnEA+vCUmPwve7GaZz8heQs4PWuxM3kVFxXVph4\nK/wZT6Ni5TBcSkWR6UnFuOMb4o9pjNMCWSDeeFF4eL9sgnQnrgIllb2+jpOlzCEUJ2Rc+Qs5FVlS\nfP2VaoX7KfLTDsOFVEx9/s8yDwIWjtNrItwzbFl43k3x95l8+crivMEJ1OTcL4ZSaq/ZOBNymQMv\n/typxi9XDFsq7eJ76l/eDO4pglGtME68WMlPOwyh83QJFeP4cOoVEzEb6ZNH2OdD2sm3U68BKoxC\n6mzMGHPD81a11ziNczzfU1ebIV+tV9TaRfWKWSYGrbDcCu+nyE87DBfqFeXj1ZWKme8ErNczrcM+\nH9rIKhfmA7F8H1pxgiCbgG3FAB2fSyz2uh2ncY6NHOrzkqupqLdLeMibIT4//V62wocxyqjl51YP\nw2VUTOSflYobx00Ofp+rXqHNTtpcuHryxV83YXnVJo9vt1yV9bnIYq9RI2ixgqWldzEV29slPOTN\nEJ+fcipboVcZW/NbVg/DZVRU1ZQqpvLBwps+N6SE7bvoc2Ht5NP1kk0QBBnft/LY93FV9K+nok27\nhIe8GdZcx4Fl1PJjWn5hTSsNplnFtcxXhi0+nwSv5BjZ6UqGmPN6Ndsb58LuzPNfFT+hX0GRQcUr\nz3UdrxJVjHW1ReYQODyDeSWHqcKWHu0im3fpchbltCplrIaBJrT8glk1P/1oXiRs8WN5HgjrA4ep\nU6bLgo76xLJme+NcOKx+pqZXTERIsQvb9u3ZOrU5TNMr9mqX0KqMev9qrHA1P72eof4hNkrlm1VU\n4YBU0fEPW2fN3F2oLffWo+a8C22l1WIurNW4RsWNLKPTtm/P1jHnsNuEq1HW7KoTs17tEta1Qkmj\njVUvouVHRcWkqOLmsPblz9UpSVPq8iRbaSpazIW1GteoyMPGdbpbt+3bs3VMOfD+xWdP/vDUDYvF\nfdolrGuFkkZ6/2pCy4+KiqygYhgfNrwU8fbQ4XHXck2hOm7YzYW1LTUqpjKPKa9BV3OQPdCHEVTU\nOqp+7RLWtUJRIz1pI1rqxFRUYYsXBu4qvJnxmbP1lH0p57zaRNdmLqxtqQlblp48Cm37WlKZ2htz\n4BtXsz5XMqpxg5p5F+Khfu3i1bVCMWzRkzaiHyq/dZeLhC3FXjHlnfsmzMTtEe0nV8t5ZHOqaVtq\nekU/PaRhdRLUs1c0X+Wu5hBkO9dZxYMT7zcx09slrGuFUq9oV14tdTq9osxXLXGLKu/Sg3/Y2Yct\nA+qnbalRUVYgqExfLVVsjRqMOezDMGYWh7aSuh439JqY6e0S1rXCi1XxsAnE/52d37YiMEr9tC11\nYcuW/+NXzg4rFfXlXPNVbmMOrYe2z7pMfxVby/j8VSxc+OPdgZg4uOvO11t61U/bUqOiuFNvve4T\ntthe5Tbm0Hpo+6zL9FextYwvRMXlKQhYBa+87hFBcaIrp842c2GLsMUzf6vDc0tXhIJFaEaLGvy5\nFjVYfW9kYWoSLfWZV40besUI2paFOYjkreAVwxZtL2O79CvSv6ZXMVUXX/NekcmJTY+3N4bVM2ik\nXtHID9H7OP8sfC6s2dPiKnc9xSoYvxpukbpWsF7t0tAKvzQlbWyXXkUaiZarLXKEUfbt1EyHuooL\n2Ru9LXwurNlTixpGVdEida1g46l4aoXjtYVnr6IrV3OUfWLIYWIpo3MexcJPrqIaGAtfh6xVsW8O\nklYVLVLXdhlPxVMrvBgVQxlCKxXXsldMu1xluF1K3OXZjKlVZNVOcWwVf1d1WszenROKDftZpK7t\nMrKKxVYYrGLC9vcRn057rbdU9KVZxY28GVOpyJxNesiCvUWiOf92jvx+zo8dplXxl4W3/Hfpc2HN\nrv1ycI91Ol9mI6jiotoKPVVkj7dRFHABvVO9R4qXdVpunXWc8/Rw58axv+2RR7F+k6uoJf1TDtAW\nSdermDH2KYrmZQH5ued5fFsUTfX4qmYV1a30x0gl3e06rym+nXm/h4U7c6Biwy5XVTFl7CHyfN/3\nZk5VwCCKdqxD6/SiWcXUEXFLj6A5R60pLIaqmLF3d757Z5Pji1fxlVXxLJJW7ZIwpqaAnlcU0BMC\nhtH9nmkzwy/X6RX5zGjTX8Ufx9PL+/ucHzt0UpF9jPyZaqXIJs/eKvJRKbK5w2TpSVz3vJRwCRUZ\nbwhpjN3THlqSZmwfLdzqCOzMRKcYRQ+M1Y5+u/n9lVQMnWC4im4vFdmXaD47nqrezI+s1vTtVOTe\nMbaIOEve+MsZd8vnB2VlkYFQUS5fX0LFLOB9VjlqsFvBMCXNK/2lYQr4ibFWyXb+3ThPDTPR9pV8\ncemv/wCtrSlYqZjsoxvfcY9DhR/etzfSEYOKK+HdTvPOgFW/e551nAofG/YKqxs6qJiKhRNh4KzU\nZc19fvZoqRg5J52K/jTyPdeblQV0XZHcF/spYPbZez2diK0q7sRD7Pqr+MussqbQomK650fgeM66\nnv/6/jxUZFYhE4u4d/xARtGKe8cT401u9s7xxUAr7JTdI+8ULIVXVzImUDF9vBO9ll+ctuVRw71t\n4XJenaaAvjYFXEaRmALWTlzM7Xo/c19P+yT8FhVlCN1fxZq7aQwqpuw+LEoYRPvyhPnLjdUA/ejY\nesd6NmyiEvxUKHxs2C1sb4t8l0SMmz6fEVcNDKOPmoHpF6tC6lPAN0LnYpXtVUw+LR3/7Tj3PDTQ\n9iQxRzx8gdmkZMJGxYx95OGxd5JwHn3R1/OTwCp+zq+2yMAiyL1bzCy9yx6sriOo6znFJ7b0U5Ex\nPkGrTNzOBtYVcWVnRHCaAn6s60/tVGSfX/MI7cMlHoXfpmLgxNOpWAiPVWTy2ZxT9uDZPqVOBiQl\npSzP/uz97C+rHdmKzzq+F7d0UvEcClcMFPO25nMhibzPls2QtE8B29ol3T8sPcf1o6ku9FVpfb6i\ns5lCRREe+0UJP9bPhZLIvRtwVlqpyKfklt2uaXYRG3Yr58rPkJvVsmIgn8iJfmvHbA52+tGf24o4\ntF1EF8FPkPnd90u+J6lNRfGgtFFV/MrD45lrHR5nn2bub10aRBtl21VMPs7d1wNi9HoVU8ZMobA0\ncN9hssoiz73r0gpP7ZMNQ7uI6y1zEef4y99Yh9zGoU3F7XgqpowfFacYmbQejH3gBN8Pnfiv1/6u\npFWzitm30HVXdkOzwkLFlO0jb165hDbrFQrzE+XdjeO/6zpKfr/zw21j857bRSx4R3M5RvFz5Der\nTnoCWp/FPYaKlfB4roXHJqQkb3uMzD/uvNeF8b5OxYx9inzX8e46tny9iolYvTQtxix7GCiLuOcD\npfv6W7/pyf/79cYTWcc7Vpw5JkyyW3hRMD8usAoFn66k4JGJVXwqRiYiPHb+p1Vi7H7WXZIz33hM\n7s55FMQNqKjIj8T7KB+Gbv/oUTNNxSQIO4fCrWTsXeA6/l1PDU+pPH24Wwb+TF9a5Q20vI2ix96L\nWqPT+rKMQSreHJvgFB5b3O2WfFw4TvDH0BZKt5Gfn/TyfpOzJjN/FUV9einJKfyXobBvDoV7t9hB\nrvPPXce9sbyw0pduS9wXYFoVV1p43KxixqIbfsLejbmc+j7gfeP3x8fH79o6Ty+elobFGHkbQdti\nTCsJi17z7trjQcP0C3k/mYpP99Xuv1bFjN3zEWnwkCRJeG91sqK2yZP1nq03nXM7X8/JF2P2wcPg\nErNv0Q3vt93apdWhraBX9hmqOGSJ25CcIS1xHISFt9txpi2J62fnt0/VNXkabtxg3/1Friy/Knxe\njOnxXuIjGfsslhVGllBvBUNlfzYVP1WHrJKKbH//Rk7n/LvPI4ZvgbNN/FM+dU0essBJD06XV78q\ntH60h4op+xLdyfmr599Ns3xSagVDZZ+hikNuhzh8i2bBwz4tJsdD2N2DuP4v+4Jl9L1/6kZ2G8fZ\nFNKsa/Jt6qwPe6fX6z/K2KuYiBW8G3n2iaq/my56rbSCobLPTsXUyQYO0Nmft6dA2j2G0/M7HsNO\ns461Cxy/uLRe2+Rb3uGvnQ7fYMyJ7ivt0aJiIu8YvFExvCvim2/TRyXVVtAr++xUZP6QW2eriTE2\n2VcXzwTlp+LWNnngrNf2D9At8K/IvxFzxaNPVRWT/FbdO9/P7xaUAfYfk39RqaEV9Mo+OxW3A77b\nYsxvxLTMZE65p6sNW/iQlfTtnTL2IZrfLFQ35/L/JIUFZHG/OLfx8xjLRyO0gqGyz07FzX6wiqVF\nBfX6iX7LKHbsnfI3keqaPO7VI+owFkTsxDR1GtwKhso+OxXFRHeYiuWlFaFi32UUO+LK29PNTc7E\n09gG1evMgMWcySi1grGyz03FfXwYqmJ5aUV9xb/nMko7+/1BpF1kkiYv9fRGFSft+bu3gg5tFXfr\ndRzHvPmSeKMeDSh+GaRidWlFqDjeMoqGG2qv8piiycs9vUnFaXv+7q2gQ1tFWTzx35rtt+L3RFZo\nkIqVRQU5V+y7jNKOvwmqr26eosnLPb1JxQl7/l6toPMMVNwXvvkcy38HDdCVRQX1ttK+yyitpLH2\nIo/xm7za05tUnLDn79UKOs9AxXV82PkbOdPYqunQEBWrSysybBmyjNKZCVSs9PTGueJ0Pf9IUFfR\nj+PzI4/HULG6tCJUHGsZxY4JmrzS0xtVnK7nHwnqKubFG2+Ari6tOGzMZRSrEoRjp1jt6Y1hy0V7\n/j48HxXlCD0wbDEsKlzgwl+F8Zu82tObVLxsz98H2iruAvUu8p27+bcjT+lhizmGRYWXoGK1p9dV\nvHTP36sW4bVLUKF2tUF1ZsOWuA2LCs9eRUNPT/FqSzvPR8WcQRf+DIsKz15FQ08PFUfhArdDlPNj\n4ittl5zPj9zkhp7+xah42QNT5Ro3iaVxEMQXq/XIKhp6+pej4kUPTJWL3jp7OA3Q2T4O1/FFvgw+\n/UD0YlQ8XPTAVJn+CwWV/NilawwVzTw7FQd+zcqU3PMeoA28GBVpD9BTfA/6WYctBl6OiqTDlgm/\nkh/2TqQTUNFMfbvoz0q7CNM+qMSQ3DmtsHcinbiKitftX6yAiue0wt6JdOI6Kl511mUFVDynFfZO\npBPXGqCvGIta8exUHPaoT0N+57TC3ol0oqbJRxxCoeIo/LwqjjeEYoAehWkfC2/I75yWaoqdxdcw\nBlHf5GP1W7TDlroGnk7Fnod02pdlGPI7p6WaIh5Y71auouKRqc8zm/rXlG46FXse0mlfIWTI75xW\nOKTc9lxlgC7X8aq8GBWHvVjNkF+e1m4d3rSUm+8yxhfmrhW2qD+NlceA+teUrqZdeKv/WV+fQTm2\nMO3rJg3pybSyQDxuK2kqd2GXgQ0TNv51hLq9IBVVq99Pk2ML076E15CfTGsjn/y2OwRubbmPuwwG\nKtZsN5VNtfrtQRyZ0XNsYdpXkxvyk2mphxBmUsX1Wj7yozocq6fUjjCI/vQq5g1cbWFju6hWfz9Q\nxZocW2hRMXacKW6dlc/hVu+Zj/0sCAzDsXxe9RgBqN7kxcWGS6g4+XpVc/1lA+stbFRRHpgPNfWx\nrUddji20qBiKp76MrWIcLmee/8oLd6pFNn6i3su4WB97wV3oil3CEW560Zu8OIBcQsXJFwna6r/x\nD3Hewrvi9iqJOjCBvzaORrb1UDnuqse0jRYVXWeC77bEoSRXMc7cXaJG7FVBRU/tZFn75oapbikk\n+hOoKBpYDG+yhVtUlAxWUea4qx7TNppVTB3xRctJ1xVZEOxMw3HYIVGJ/VWFZ6HiaKO6amCmtXDb\nuqJeANt6qBw7T7GaVZQB9MQqytnEchNWLnuE1km2NNTVVNxtwvWyqWSN8/qhXekpadXA7L7awm0q\n6gVoK9IxS5Wj4Zg206xiLMLcaVXMkvPPRUKLxKwa6koq8km7zzKvqWSN8/phKhaSVg2sX0EZW8Vz\nlln+ALqOZW5WcSMfVGSjYlozI9DWaJi4gpNzrFp6esXQ8SyKj7vYPyuzg4qFxYY7i7q1YVDxVH7x\nzDHzetXeqVbaqjo2SyR60nG1yY0qlj5nULFm3e1QOIKnZ6y1VM9As4qhfJh0u4qspnfRz3uh4j6W\n+PHpD1tfbdoeNyRxvsV+XaqDisXFhq/WGdS3kp5zErtR/D5wPPH8K/N6VRbni3hbY6JDrkLpSSfR\nUrXn+YMGFTO1T7TcGgtQt+4m2EZ5ltkpreoxbaNZRVeeRe0qOjUq6pdMau5X1JslPHSkg4pysSEv\n3Ieu+eiYH/WZ7VxnHZ7z09uicV4/7CqUlvQoA3RNPdQfvWqWtenX0KyiyrJWxdOo7Bzkiw0Mn69e\nMplQReurCmqxIS/cU9d8dIwq7sOQn57hOT+9LRrn9cOuQmlJ91BRa8+6eqg/fq1mWZt+DY0qpjKA\nrlOxMCo7sWt8RJh+3k+oovVVhXyxQV5ZuGXWGdSur7Qt5vRarxp2FUqvs1bGVhW19qyrh0pOa8jG\n6hloVJGplz0sgzBf+3wVFnBCP/+D7JtLf8uZefKSSfFDi9OPXmGzp33UCzvie+HM5VmqNf5CQq78\n38KfHYsSOEvxP3ll4VgFqxx883ZXlvWV78/mK1MtVH56WzRWUVVHq83xKlQLWtKBVnbVLjeez8vt\nG/bV21PVo6YAekNWyxD8OlxF1Stmm028cQvvZzqPyo6zKb48oulUmXKuKIaPRBs/1Nkf8x7GzYO5\nrNhnsi45mLfLXjFxN+IikakWKr+O3UbdaGjXLtpedb2iCHDcyuTqOFestmfdultNQ1Z3bPvqZYuK\n8tNSRfX2pq2IzfMXap9H5SQPW7QVnTYVT/d/6KVsKbehsI1XFcR7K0LDJGI0FTcywqs2Z6EWHVUc\ndhVK26tWxbV+K7vYN3Dr2rOmABdUMVbHMeCb8q1i1S89phJvM8OKTr2Kb2ferLOKjStqzVcV0p0o\nsb4GMpqKvHtZp7t1fS3sVKxcJOl7FUrbq1ZFlpRfE8wPzDqWKta0Z00BJldRVkCqyCf5Iilx/WUr\nG6s4Kjtb32GOvYo/5Iro303107e0rKi1XFVgcexsbVqwnkYVU9+0nFuohY2K2kUSm3YxFqm6oaFX\njN3g1KjqwPzS1J41BbiMijJskXdZiKmrk89Pl3nY8molwxZH/O6v2uay6tNqbd6rn+KatuhTeAP6\n9NxXKa2CwPFW2v6dwhbPc+XuC8+7KRZV5Ln0pIv1tWif15tiLot2MWERtqh2WfEm8c9HQjswhnCn\npnFaq+fPh6soe0Xuons43iCRf/Q4KvOxie9jWNGp6RXze8J+NJ1q2pad1Ypa3dnPtqIK6o9v3zaV\nsJ665SLZK/rpIQ21pd9CLSx6RT3msmgXI9peTe0Sn9+KqR0YKr1iUlAx26xF64tiqwG6MCrvxL/F\nuWN9+aSKTFa4IIRNk+vL+SbqmtwVXxdz1FRuuWwqYT2lqzSFgkgVZUMG1TlAoRYWKtrECPoWE3rS\nDe0Sn1+JpB0YKioeCirmBPxwqrBlLZotUSs6QkXTik6dir8svOW/m+unbdGX803UNXkQZLzZ1TnU\nW8XiVZpi1yXylNda/WqnXaiFjYoWMYK+xYSedEO7rM8n0KJ6YMioqF5uVVCRiZFJLeYUR2XnkGSJ\nfdhiUz9ti500dU2ebuJ1kIfffVWsXd6QefIAYL0eFrb0ahcjFkmrdhF3QAT7Lp+rKcDUKqrL+aer\nLeHKdU7T2IUIW/LrLHL1nf8urja8WjXNZWXYYjMX1rbYBRh10/PitRDXrU21EpBU0pZXG4JZ9XKD\nDFv0qy2e6zTkFNpdEmlvFyPWYUul1L2KZFm9QWFLLvKpV+QT9k3xo+VRWc4dy4uLZHrF0rWQ2l6x\n53KR8WqLWhYpfIWTZK9YLXWvIllWb1ivmBQu/MkjtS19tDQqn+aOhTKRUbF0LWQ5mzmP4oe3M+8/\niqla3YBVo2L1astCrcs0lT+0SLq9XYxYJK23S98iWVZvmIoHeZtQrmLiB6UOQ80YxYqOSknNHQu3\ni332Xe3G1CupWLoWsnR+uO6x3/pn4bM9l4uMV1vUssinpvKHFkm3t4sRi6T1dulbpEr1Usb291G0\nqH6pf6CK8gKDWsyJfVN3IUdl+ZNc0SktLkaGe6SvpGLpWsjS433Wsd+6LezZc7nIeLVF+zoESRWr\npe5VJN5LMXa7iqK5P/c9zzt+k8CUYQMtKqb+QYUtrzzjZQ51nUX9XAhj8nmq6y6rH7hS2FK6FuK6\nr8UFBdVgrwt7LmxuwDIU3nS1xeVBS6nJSIYt1VLbFykIAqGd64qKOlVExFa98jQsbOHnQPObT9Wo\nfEwqyWpvFzt9gFmeatqWQb1i6VrIo+u+PRiWc/vmYLzaYlF+bZfL94qtpS58LmOMPUSR6/Mex5tV\n9eNaznivGEXRF76fqUwDe8UDCxtV3BXCFNHNy7Dl3N/rK9JXUrF0LeRR3YihLecOUrF6tcWi/Nou\nl1expdQpe7wT0z5pn1/t+nivOPf9Bbdvz5i+7pCZMmyg9WUZm13j16yq69oijPm/3u0uk9/am2sh\nwLXClu3hfC3kx9/j5mC82mKRurbLeCoumWDHNYqkSb63qO6it4tMnU/7dlF12ncad2fSvmUU3fPk\nGy99pb/+asqwgVYVMz9rVjEp6SbDmHTuOmKB1/DISKnib65XwfFat7jah0y4nrHJTddCtJYZpGI1\nB4vUtV06q5hUjfOXQiDP12dvdu0iDlvFPk/a9yaKPvKsbJ9/k0aL7+YM62lV8ZAk91rwcaYyyz+G\nMa8W3swYZgRiZV/r6kfE1UpYV/rRAqOlKdSxSN06Rggkc3WKugpZV7elLfK9BDOrdsljDvkZ4WAQ\nNBz7WpaeM9e3vno3VMVOFMOYBruj6fjLuqzaSdq3V+ybenUX9hjxjmcrq/FmLvs4ORL4XrNw/kzs\nNV+KT9zITz/sZXfZ/eUL78S0b9A7G9Jd6Hqf+3xyZBV3TqcbDK5KWN1wIRWlJcI4LzduvpxZGSd7\nxXnQy7jsIq/V2keeG/zR81HBI6t4sFIx+zJZYyT/st41rG4YV8WTcXkf584uYFwN6UNg9+iB732f\nw5+yB3E3+K1982uMr2JicVL84UcjvHtAb4/tPLI/YGF1Q62KYkXtI3fCF2Gle2OTOHOsjAukcStp\n3Hsl7+ivwUo/L/UYom7faHbf8Q0lGW+aOa/QPPo2rOcdW0Xb0jyG3seRx4zdctbpAThhdUNBRSHf\nJ7WmMa8GpJFN4uzixhlJv4Te4l2n0/7ray/8aF6kLqXM2PsolF28v/pthMe9jK6iPdlbb7Z8GDZH\nPibFtfG91/+v26fC8q+MRf9DyufPDRcT5HquuppgNQZl8SWNMyHaxJndfevx0c/RfO46cvE6VpMD\nxT5+4JtW/KySzTPzb6O/RjmAkuupyEn/uhNVfnPfuz5CwoXr+qs/ug/4Yja3i47XEozy8QHZj7qt\nqF2fhN1H3BX/9g82KB0+z70VnblYrVVdvCej+lveIlO0x1VVVDz9thQLjZ6YpL/ftU/PxeAZRxEf\n88Sn5tHXfh4njkm+WSCXcx/qw4TEbjB6mGIy3Ahjn/mI6fJJwevo28VzHw4BFRWMfY1ul/55Wubr\nnP7m+cEq+vA06NSUszk5kfP9sFG+ItmvSzvzk8i/Z9M3Gz8vv4nTUs7Z/Lvo2/A8k9D3r2Hy9VSs\nr7G8nPX0+FhZvP7z8aucsYyUf9Z6GdXwmYfZn/Z7/xXOvCDaj1XgYvPweP7Oz5eFfN4LvmOjyZO4\nvno+kvptvWfrzUVmJ1dTsVzjZ8E+dG+7HhT2x50/4734XN1B0HlSrMIFeSrOz+OC68s57NN4Ap4J\nnG2invHJScONG+zVt42n5moqlmp8yZPvxOcuxzH7snTnfa8jyPBcdGNHlQqTjoW4vCxMW5bmIuU5\nrEBEC+LC4LRj527jOIU7TkMWOOnBuYglV1KxUuNLnnznTF/7Oyu32Kc73/F+G2vVIlUrI18bLqT/\nlq+eXH7Ktgscv7C+uk2d9WHf4T0RA7iWiuUaX/LkK/Dj1gvu9/XHm8cE78TNRv7dXxe5hEuBoPA+\njYN4oGYsn015Aa41QJdrfMmTr8xTJO6t5CPkw/a8lCtuAAzUYOrf9VixPFKKzK4xB+lO5pS9C5z1\nuiznZFxJxWqNL3jyGWC/iZna6a5Rb+aLdZE/h15IKEVmV5mDdGdf/qKe6CJsbioYgyupWKnxJU++\ny1GKzK40B+lKXHz+h/g1vljWV2qaSo0vefKVmHA5txKZXW8OYs9+fxDnywkmbr5mvZPryDVUrNb4\nsidfkSmXcyuR2ZXnIFa4YXrFoekaKlZrfNmTr8iky7mVWPQZzEH8TbAZnkpfrqHidWt8Ztrl3Epk\ndrU5SAfSeKz3offhGipet8Znpl3OrURm15qDPB+oR3STMulybikyu94c5PnwM6s44XKuHpmBNn5m\nFSdczr1uLPo8+ZlVnHA5l0pk9pz4aVWcdjmXSmT2nPhpVcQQSo2fVkUModT4aVXEEEqNn1ZFQA2o\nCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAE\nqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVA\nBKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBF\nQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJA\nRUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIi\nQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoC\nIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEq\nAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERAB\nKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQ\nASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAR\nEAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQ\nERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAI\nUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqA\nCFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICK\ngAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESA\nioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVARE\ngIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQE\nRICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJU\nBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiAC\nVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIg\nAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAi\nIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGg\nIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQER\noCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUB\nEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAV\nARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgA\nFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiI\nABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgI\niAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASo\nCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAE\nqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVA\nBKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBF\nQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJA\nRUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIi\nQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoC\nIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEq\nAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERAB\nKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQ\nASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAR\nEAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQ\nERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAI\nUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqA\nCFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICK\ngAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESA\nioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVARE\ngIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQE\nRICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJU\nBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiAC\nVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAiIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIg\nAlQERICKgAhQERABKgIiQEVABKgIiAAVARGgIiACVAREgIqACFAREAEqAiJARUAEqAiIABUBEaAi\nIAJUBESAioAIUBEQASoCIkBFQASoCIgAFQERoCIgAlQERICKgAhQERABKgIiQEVABKgIiAAVARGg\nIiACVAREgIoGdusw5f8L17vi1jjtkoa+dxyU8tis43zH3Zod813HcZyZP5fGxySzvfjn+Ot5u0W9\nWCk/c8EDy9TGBiqaiMP4cNiHYWnjtpOKhr3LbR2Hpx1DVth23F75XBofElemGQdij3WWBVlpuwUi\no2J+Rq6lBFQ0Ee98/s9Ziux0rNO8z0oLvyVZmuSb0nKXVvo7b+ukmMcp9bKKe35IkuKn1TESfwrU\nfoz/yHjftUnK29vJMyqomJz+yfNLTkokp4oeKzAtUNFEnDksEyruHH7Q4zTeh2znskMW5oPberfZ\n79ww9hO+bb/ZxDsnDjfZer+JY2fH/B3fu/R38SEnjoNsK/98OKkokg1ZvlVsW8c8mXWSf/oQ8gTF\nfrz3Sx11AggVDz7/Q2W7Yuuwjc/i8GP+//S4IZUOFvPbuZs4SGV2hzy/Y3YHVQhZq1MFpgUqmogP\nm80uEWI4ondkccoScRy3m0MsJmr8/7xbCvf8bwe2kW44cZKka/Gjz/jnxd6lv3Oc7LDeyq0yD7VR\n7sjyrbEfx7vDNj6nvgsPWX6MsiCfusrk4o3vp+XtOX7CnGyXnP5//kF2h8X8xL8blZ3K75yd2ipq\nda7AtEBFE/Fh78aHk4rZ2vWlisfOgc8luSZ8A/83DTLRPznsII7fhvekG3HY1RE///2Qp8Xl2jOV\nBv9nc9xRbVV68lyYk39aJq0y5f3xuVfcxaL/PG2PT/CulcNFOv3//ENBRZWfyCNU2an8ztmpraJW\n5wpMC1Q0waPYo4qZGLNScehVr3hgB9krHva5LPuYiQ5HHLSt7D8yl//1rGL+94Ns6w3vwPy1yiMU\no+BxR7VVqZj3ivLTu/Wxm4qTw34vZRQqcuUOu634VW0vkLpx6m/P/z/+kBZVVPmVekWRX55deuoV\n+Z7nCkwLVDSwc9dpnOwCMXtbx+sw2uz5r/6Gj4XxRsjA/x/zueImDUO298NwwyeV/A97P966O6WJ\nvyn9nZOsxZHmB3kr8wjdOPZDuSNPWW7lOcaH4zRNfVrk5IiNscNhKT814jVXK13vd5uM/6q2l4q/\nTg8yuD7+X/3A9xUZFfM7hMW5osjvSWYncsnnirJWeQUmBiq2UAyVD6dgsxAq874pOS7UZXJrOYo+\n/Z3/MREJbDM9l8rWpObnY3Hk9qz0a3mfrPj//Ie0lKjML2SpMbvS1mIFpwQqDoVHNbu1/d/dzc6w\nk3nrdKj8Ejl+D63gWEDFwWQs6/D31NyRdVo+H47KL2FsjAqOxP8HKyDPdJFNsM4AAAAldEVYdGRh\ndGU6Y3JlYXRlADIwMTQtMTItMDJUMDk6NDM6NTErMDA6MDCCRxOiAAAAJXRFWHRkYXRlOm1vZGlm\neQAyMDE0LTEyLTAyVDA5OjQzOjUxKzAwOjAw8xqrHgAAAB10RVh0U29mdHdhcmUAR1BMIEdob3N0\nc2NyaXB0IDkuMTSds1xYAAAAAElFTkSuQmCC\n" } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
cc0-1.0
metpy/MetPy
v1.1/_downloads/324acb7faa1ec1d6ac5849ea2223364d/Smoothing.ipynb
1
3793
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Smoothing\n\nUsing MetPy's smoothing functions.\n\nThis example demonstrates the various ways that MetPy's smoothing function\ncan be utilized. While this example utilizes basic NumPy arrays, these\nfunctions all work equally well with Pint Quantities or xarray DataArrays.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from itertools import product\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nimport metpy.calc as mpcalc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Start with a base pattern with random noise\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "np.random.seed(61461542)\nsize = 128\nx, y = np.mgrid[:size, :size]\ndistance = np.sqrt((x - size / 2) ** 2 + (y - size / 2) ** 2)\nraw_data = np.random.random((size, size)) * 0.3 + distance / distance.max() * 0.7\n\nfig, ax = plt.subplots(1, 1, figsize=(4, 4))\nax.set_title('Raw Data')\nax.imshow(raw_data, vmin=0, vmax=1)\nax.axis('off')\nplt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, create a grid showing different smoothing options\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig, ax = plt.subplots(3, 3, figsize=(12, 12))\nfor i, j in product(range(3), range(3)):\n ax[i, j].axis('off')\n\n# Gaussian Smoother\nax[0, 0].imshow(mpcalc.smooth_gaussian(raw_data, 3), vmin=0, vmax=1)\nax[0, 0].set_title('Gaussian - Low Degree')\n\nax[0, 1].imshow(mpcalc.smooth_gaussian(raw_data, 8), vmin=0, vmax=1)\nax[0, 1].set_title('Gaussian - High Degree')\n\n# Rectangular Smoother\nax[0, 2].imshow(mpcalc.smooth_rectangular(raw_data, (3, 7), 2), vmin=0, vmax=1)\nax[0, 2].set_title('Rectangular - 3x7 Window\\n2 Passes')\n\n# 5-point smoother\nax[1, 0].imshow(mpcalc.smooth_n_point(raw_data, 5, 1), vmin=0, vmax=1)\nax[1, 0].set_title('5-Point - 1 Pass')\n\nax[1, 1].imshow(mpcalc.smooth_n_point(raw_data, 5, 4), vmin=0, vmax=1)\nax[1, 1].set_title('5-Point - 4 Passes')\n\n# Circular Smoother\nax[1, 2].imshow(mpcalc.smooth_circular(raw_data, 2, 2), vmin=0, vmax=1)\nax[1, 2].set_title('Circular - Radius 2\\n2 Passes')\n\n# 9-point smoother\nax[2, 0].imshow(mpcalc.smooth_n_point(raw_data, 9, 1), vmin=0, vmax=1)\nax[2, 0].set_title('9-Point - 1 Pass')\n\nax[2, 1].imshow(mpcalc.smooth_n_point(raw_data, 9, 4), vmin=0, vmax=1)\nax[2, 1].set_title('9-Point - 4 Passes')\n\n# Arbitrary Window Smoother\nax[2, 2].imshow(mpcalc.smooth_window(raw_data, np.diag(np.ones(5)), 2), vmin=0, vmax=1)\nax[2, 2].set_title('Custom Window (Diagonal) \\n2 Passes')\n\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
bsnacks000/IPySigma-Demo
DATA661_final.ipynb
1
9743
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Final - DATA 661\n", " \n", "## IPySigma Lives: Presenting an Extensible Prototype Network Visualization Frontend for Jupyter Notebooks\n", "\n", "### John DeBlase, Daina Bouquin\n", " \n", "#### Introduction\n", "The potential uses of network analytics and visualizations are extensive, with applications ranging from social network analysis to environmental science to better understanding how political revolutions spread. However, many of the tools most commonly used for these types of analysis, particularly Python modules like NetworkX, are not designed to produce aesthetically pleasing, interactive visualizations that support the development of theories and inferences. Much of the time, data scientists using tools like Jupyter are left trying to work with network visualizations that look like hairballs or spending a great deal of time trying to use unfamiliar tools like JavaScript or Gephi to produce useful graphs. These people do not currently have access to simple interfaces that integrate with tools like Jupyter notebooks (formerly IPython) that the rest of their workflows rely upon. \n", " \n", "Throughout this semester, we thought through this problem and began prototyping a flexible architecture to help people create SigmaJS networks from NetworkX objects without abandoning their Jupyter Notebooks. The result is an extensible proof-of-concept for a side-by-side Jupyter network visualization GUI that will allow users to quickly create clear visualizations that can help drive research processes. \n", " \n", "The below sections aim to justify the use of Jupyter as a platform, the focus of the application, the components selected to create the application, and to outline steps that can be taken moving forward to improve and expand on the current infrastructure. \n", "#### Why Jupyter?\n", "Jupyter is becoming increasingly important to the data community for sharing and reproducibility, therefore tools that integrate with this environment are highly valuable. Reproducibility is also foundationally important to computational science endeavors more broadly, both in academia and in industry. \n", "Why Focus on Network Visualization?\n", "Visualization is integral to the data scientist’s ability to use network analytics to effectively derive theories and inferences. Research in social network analysis has shown that dynamic and interactive graph visualizations foster “theoretical insight” thus creating a real need for “dynamic network visualizations” [[1](http://www.journals.uchicago.edu.ezp-prod1.hul.harvard.edu/doi/full/10.1086/421509)]. Moreover, many scientific domains are “now convinced that network visualization is essential to improve their work since it allows them to see complex structures that statistics and modeling alone cannot reveal” [[2]( http://www.msr-inria.fr/projects/interactive-network-visualiation/)].\n", "#### Why SigmaJS?\n", "SigmaJS is a JavaScript library dedicated to graph drawing. Unlike libraries like D3, Sigma is optimized for our usecase.\n", "\n", "#### Evaluation\n", "Over the 15 weeks of the CUNY SPS spring semester, an iterative, stepped approach was taken with the goal being to build a functional prototype to with the above described functionality. We were able to achive this goal, and also able to achieve our stretch goal by being accepted as speakers at [JupyterCon 2017](https://conferences.oreilly.com/jupyter/jup-ny), the Jupyter Project’s first international conference." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running the IPySigma prototype\n", "\n", "### Manual Install:\n", "\n", "git clone [this](https://github.com/bsnacks000/IPySigma-Demo) repo and install both the python and node components.\n", "\n", "#### Python\n", "\n", "The prototype python package is contained in the \"ipysig\" folder.\n", "\n", "1. From the root directory: Build and activate a clean python environment>=2.7.10 with requirements.txt using [virtualenv](https://virtualenv.pypa.io/en/stable/).\n", "\n", "2. `pip install -r requirements.txt` to get the required packages.\n", "\n", "#### Node.js\n", "\n", "1. The node-express application is contained in the app folder.\n", "\n", "*Make sure your node version is >= v6.9.4 and that both `npm` and `bower` are installed globally.*\n", "\n", "2. From the root directory: `cd ./app`\n", "\n", "3. type `npm install` to install the node modules locally in the app top-level folder\n", "\n", "4. From app: `cd ./browser`\n", "\n", "5. type `bower install` to install the bower_components folder (note: these steps might change in future versions with browserify)\n", "\n", "#### Run the Demo\n", "\n", "At the root directory launch a jupyter notebook server and run the notebook ipysig_test.ipynb and then follow the instructions for each cell." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Overview of components\n", "<img src=\"images/ipysig_diagram1.png\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Overview of IPySigma Application System\n", "\n", "#### Jupyter Notebook Frontend/ Jupyter Notebook Server\n", "\n", "To boot up the app using a running notebook server, first the IPySig controller class is imported and instantiated within the user’s notebook session. This is the core Python class of the application and is implemented as a Singleton. An IPySig object does a few key things on instantiation:\n", "If run for the first time, IPySig injects the API found in the ipysig.sigma_addon_methods into the nx.Graph class. This adds custom functionality to any existing or newly created graphs in the current session for exporting node and edge data in JSON format suitable for SigmaJS. \n", "Next, using a system call it fetches and stores the url and token (if any) of the running notebook server. \n", "Using the url and token, an express server process is spun up and stored in a class variable. This is run through several sets of protected method calls.\n", "\n", "Once the express server is running, a “session” can be created by calling the connect() method passing in the graph object and a key name. The graph object reference gets stored in IPySig under this key name. The key name is also emitted via a socket.io client to a listener on the express server which stores the reference in node.js and sends a callback response that tells IPySig to spin up a webbrowser tab. When the browser tab gets opened an event is emitted to fetch the key name to the graph reference, thus completing the connection between the new browser tab and the running graph object in the IPython kernel.\n", "\n", "A session has now been created and the user can use the frontend to display the graph object using the Load Graph button and giving the graph a Title. The title will serve as a means of saving a graph in BrowserDB via a LokiJS adaptor, allowing persistence of multiple graph objects in a single browser session. This functionality has not been implemented yet as of version 0.1.\n", "\n", "#### Jupyterlab Services/Express/SigmaJS \n", "\n", "Once a browser tab session is bound, pressing Load Graph and submitting a Title will emit to the ‘main-room’ socket.io listener on the express server. The jupyterlab services API connects to the running kernel and calls IPySig.export_graph_instance() with the correct graph_name as a promise. \n", "\n", "Once the promise is fulfilled, the JSON graph data is emitted back up to the browser via the correct socket.id. The graph data is then rendered in the browser main_room listener via a call to make_graph which returns the sigma graph.\n", "\n", "In future releases, each new graph will be saved to BrowserDB via a Loki.js adaptor. The user will be able to select from a list of past graphs rendered in that session for easy comparison. The option will also be given for the contents of the session to be exported to JSON.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The Future" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are a number of avenues that could be explored using the protocol and platform defined above. Over the next few months, Daina and John will define an applied usecase to be presented at JupyterCon along with a presentation on IPySigma's development and logic. Improvements will also be made to the code to address a number of issues currently [documented on GitHub](https://github.com/bsnacks000/IPySigma-Demo/issues). Additionally, documentation will be automated using [Sphinx](http://www.sphinx-doc.org/en/stable/) to improve the seamlessness of updates and allow us to create more professional web presence. We have also begun creating a [website](https://dbouquin.github.io/IPySigma-Demo/) that will act as a splash page for the tool." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
c22n/ion-channel-ABC
docs/examples/hl1/hl-1_extra-fullABC.ipynb
1
2995697
null
gpl-3.0
tensorflow/swift
docs/site/tutorials/Swift_autodiff_sharp_edges.ipynb
1
17868
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Swift_autodiff_sharp_edges.ipynb", "provenance": [] }, "kernelspec": { "name": "swift", "display_name": "Swift" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "JNwMxwcaa05q" }, "source": [ "# Sharp edges in Differentiable Swift\n", "Differentiable Swift has come a long way in terms of usability. Here is a heads-up about the parts that are still a little un-obvious. As progress continues, this guide will become smaller and smaller, and you'll be able to write differentiable code without needing special syntax.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "_LTY5_lZbLMU" }, "source": [ "##Loops\n", "\n", "Loops are differentiable, there's just one detail to know about. When you write the loop, wrap the bit where you specify what you're looping over in `withoutDerivative(at:)`\n" ] }, { "cell_type": "code", "metadata": { "id": "mvBQ2eCfTDrj" }, "source": [ "var a: [Float] = [1,2,3]" ], "execution_count": 1, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "to30MPP2TJqi" }, "source": [ "for example:" ] }, { "cell_type": "code", "metadata": { "id": "9NRXNazqTMqV" }, "source": [ "for _ in a.indices \n", "{}" ], "execution_count": 2, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "wPrrZ7qUTUMG" }, "source": [ "becomes" ] }, { "cell_type": "code", "metadata": { "id": "zzwe0d8JTVN7" }, "source": [ "for _ in withoutDerivative(at: a.indices) \n", "{}" ], "execution_count": 3, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "UITuC4g9TYEp" }, "source": [ "or:\n" ] }, { "cell_type": "code", "metadata": { "id": "YRbV8eqATcnG" }, "source": [ "for _ in 0..<a.count \n", "{}" ], "execution_count": 4, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "X5O0DPm6Tfxl" }, "source": [ "becomes" ] }, { "cell_type": "code", "metadata": { "id": "n5c0Dsc3TllX" }, "source": [ "for _ in 0..<withoutDerivative(at: a.count) \n", "{}" ], "execution_count": 5, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "BJpcKJbTTvTC" }, "source": [ "This is necessary because the `Array.count` member doesn't contribute to the derivative with respect to the array. Only the actual elements in the array contribute to the derivative.\n", "\n", "If you've got a loop where you manually use an integer as the upper bound, there's no need to use `withoutDerivative(at:)`:" ] }, { "cell_type": "code", "metadata": { "id": "EDL4ykoZTwcl" }, "source": [ "let iterations: Int = 10\n", "for _ in 0..<iterations {} //this is fine as-is." ], "execution_count": 6, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "GBuKyDDVcb8M" }, "source": [ "##Map and Reduce\n", "`map` and `reduce` have special differentiable versions that work exactly like what you're used to:" ] }, { "cell_type": "code", "metadata": { "id": "vzZl_P6-W_nD", "outputId": "0e058fb9-f6a9-4548-83cb-70475b09f1d4", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "a = [1,2,3]\n", "let aPlusOne = a.differentiableMap {$0 + 1}\n", "let aSum = a.differentiableReduce(0, +)\n", "print(\"aPlusOne\", aPlusOne)\n", "print(\"aSum\", aSum)" ], "execution_count": 7, "outputs": [ { "output_type": "stream", "text": [ "aPlusOne [2.0, 3.0, 4.0]\r\n", "aSum 6.0\r\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "qhHxI3xwck9j" }, "source": [ "##Array subscript sets\n", "Array subscript sets (`array[0] = 0`) aren't differentiable out of the box, but you can paste this extension:" ] }, { "cell_type": "code", "metadata": { "id": "vj5XDwl0XEGi" }, "source": [ "extension Array where Element: Differentiable {\n", " @differentiable(where Element: Differentiable)\n", " mutating func updated(at index: Int, with newValue: Element) {\n", " self[index] = newValue\n", " }\n", " \n", " @derivative(of: updated)\n", " mutating func vjpUpdated(at index: Int, with newValue: Element)\n", " -> (value: Void, pullback: (inout TangentVector) -> (Element.TangentVector))\n", " {\n", " self.updated(at: index, with: newValue)\n", " return ((), { v in\n", " let dElement = v[index]\n", " v.base[index] = .zero\n", " return dElement\n", " })\n", " }\n", "}" ], "execution_count": 8, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "mCkdO-F8XLFo" }, "source": [ "and then the workaround syntax is like this:" ] }, { "cell_type": "code", "metadata": { "id": "GxZnhZGdXMm0" }, "source": [ "var b: [Float] = [1,2,3]" ], "execution_count": 9, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "qC5d-l3nXPxl" }, "source": [ "instead of this:" ] }, { "cell_type": "code", "metadata": { "id": "5YNUPyS3XUQ-" }, "source": [ "b[0] = 17" ], "execution_count": 10, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "G1sCDA9zXWSA" }, "source": [ "write this:" ] }, { "cell_type": "code", "metadata": { "id": "ze-zTQP-XbN8" }, "source": [ "b.updated(at: 0, with: 17)" ], "execution_count": 11, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "bjDuPALzfKQC" }, "source": [ "Let's make sure it works:" ] }, { "cell_type": "code", "metadata": { "id": "uKTN_ET6fNUc", "outputId": "42c64291-0f91-45df-9b8e-1355a4a04a92", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "func plusOne(array: [Float]) -> Float{\n", " var array = array\n", " array.updated(at: 0, with: array[0] + 1)\n", " return array[0]\n", "}\n", "\n", "let plusOneValAndGrad = valueWithGradient(at: [2], in: plusOne)\n", "print(plusOneValAndGrad)" ], "execution_count": 20, "outputs": [ { "output_type": "stream", "text": [ "(value: 3.0, gradient: [1.0])\r\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "6-xCTZXNXf5c" }, "source": [ "The error you'll get without this workaround is `Differentiation of coroutine calls is not yet supported`.\n", "Here is the link to see progress on making this workaround unnecessary: https://bugs.swift.org/browse/TF-1277 (it talks about Array.subscript._modify, which is what's called behind the scenes when you do an array subscript set)." ] }, { "cell_type": "markdown", "metadata": { "id": "nU5-Mheme8Aj" }, "source": [ "##`Float` <-> `Double` conversions\n", "If you're switching between `Float` and `Double`, their constructors aren't already differentiable. Here's a function that will let you go from a `Float` to a `Double` differentiably.\n", "\n", "(Switch `Float` and `Double` in the below code, and you've got a function that converts from `Double` to `Float`.)\n", "\n", "You can make similar converters for any other real Numeric types." ] }, { "cell_type": "code", "metadata": { "id": "vc0eakpEYE8B" }, "source": [ "@differentiable\n", "func convertToDouble(_ a: Float) -> Double {\n", " return Double(a)\n", "}\n", " \n", "@derivative(of: convertToDouble)\n", "func convertToDoubleVJP(_ a: Float) -> (value: Double, pullback: (Double) -> Float) {\n", " func pullback(_ v: Double) -> Float{\n", " return Float(v)\n", " }\n", " return (value: Double(a), pullback: pullback)\n", "}" ], "execution_count": 13, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "W9Tup97yfu-x" }, "source": [ "Here's an example usage:" ] }, { "cell_type": "code", "metadata": { "id": "pNeh1vHWfyOI", "outputId": "a1ececc1-aa5a-4695-81c6-2183737bd40c", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "@differentiable\n", "func timesTwo(a: Float) -> Double {\n", " return convertToDouble(a * 2)\n", "}\n", "let input: Float = 3\n", "let valAndGrad = valueWithGradient(at: input, in: timesTwo)\n", "print(\"grad\", valAndGrad.gradient)\n", "print(\"type of input:\", type(of: input))\n", "print(\"type of output:\", type(of: valAndGrad.value))\n", "print(\"type of gradient:\", type(of: valAndGrad.gradient))" ], "execution_count": 14, "outputs": [ { "output_type": "stream", "text": [ "grad 2.0\r\n", "type of input: Float\r\n", "type of output: Double\r\n", "type of gradient: Float\r\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "hR-ED1-Jf1aH" }, "source": [ "##Transcendental and other functions (sin, cos, abs, max)\n", "A lot of transcendentals and other common built-in functions have already been made differentiable for `Float` and `Double`. There are fewer for `Double` than `Float`. Some aren't available for either. So here are a few manual derivative definitions to give you the idea of how to make what you need, in case it isn't already provided:\n", "\n", "pow (see [link](https://www.wolframalpha.com/input/?i=partial+derivatives+of+f%28x%2Cy%29+%3D+x%5Ey) for derivative explanation)\n" ] }, { "cell_type": "code", "metadata": { "id": "JPXr_xtwYOV9" }, "source": [ "import Foundation\n", "\n", "@usableFromInline\n", "@derivative(of: pow) \n", "func powVJP(_ base: Double, _ exponent: Double) -> (value: Double, pullback: (Double) -> (Double, Double)) {\n", " let output: Double = pow(base, exponent)\n", " func pullback(_ vector: Double) -> (Double, Double) {\n", " let baseDerivative = vector * (exponent * pow(base, exponent - 1))\n", " let exponentDerivative = vector * output * log(base)\n", " return (baseDerivative, exponentDerivative)\n", " }\n", " \n", " return (value: output, pullback: pullback)\n", "}" ], "execution_count": 15, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "CxwAtO-vYPp0" }, "source": [ "max" ] }, { "cell_type": "code", "metadata": { "id": "P_cqKUe1YWQz" }, "source": [ "@usableFromInline\n", "@derivative(of: max)\n", "func maxVJP<T: Comparable & Differentiable>(_ x: T, _ y: T) -> (value: T, pullback: (T.TangentVector)\n", " -> (T.TangentVector, T.TangentVector))\n", "{\n", " func pullback(_ v: T.TangentVector) -> (T.TangentVector, T.TangentVector) {\n", " if x < y {\n", " return (.zero, v)\n", " } else {\n", " return (v, .zero)\n", " }\n", " }\n", " return (value: max(x, y), pullback: pullback)\n", "}" ], "execution_count": 16, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "fwwzgOnNYXUR" }, "source": [ "abs" ] }, { "cell_type": "code", "metadata": { "id": "iNCladNcYaio" }, "source": [ "@usableFromInline\n", "@derivative(of: abs)\n", "func absVJP<T: Comparable & SignedNumeric & Differentiable>(_ x: T)\n", " -> (value: T, pullback: (T.TangentVector) -> T.TangentVector)\n", "{\n", " func pullback(_ v: T.TangentVector) -> T.TangentVector{\n", " if x < 0 {\n", " return .zero - v\n", " }\n", " else {\n", " return v\n", " }\n", " }\n", " return (value: abs(x), pullback: pullback)\n", "}" ], "execution_count": 17, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "OnLo4C7fYeK6" }, "source": [ "sqrt (see [link](https://www.wolframalpha.com/input/?i=partial+derivative+of+f%28x%29+%3D+sqrt%28x%29) for derivative explanation)" ] }, { "cell_type": "code", "metadata": { "id": "bIO0M5ONYiRD" }, "source": [ "@usableFromInline\n", "@derivative(of: sqrt) \n", "func sqrtVJP(_ x: Double) -> (value: Double, pullback: (Double) -> Double) {\n", " let output = sqrt(x)\n", " func pullback(_ v: Double) -> Double {\n", " return v / (2 * output)\n", " }\n", " return (value: output, pullback: pullback)\n", "}" ], "execution_count": 18, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "H45t3grVj2bx" }, "source": [ "Let's check that these work:" ] }, { "cell_type": "code", "metadata": { "id": "liU1ZR8_j5VN", "outputId": "5ad8190f-a139-4540-9d40-95d0c2fb6b8d", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "let powGrad = gradient(at: 2, 2, in: pow)\n", "print(\"pow gradient: \", powGrad, \"which is\", powGrad == (4.0, 2.772588722239781) ? \"correct\" : \"incorrect\")\n", "\n", "let maxGrad = gradient(at: 1, 2, in: max)\n", "print(\"max gradient: \", maxGrad, \"which is\", maxGrad == (0.0, 1.0) ? \"correct\" : \"incorrect\")\n", "\n", "let absGrad = gradient(at: 2, in: abs)\n", "print(\"abs gradient: \", absGrad, \"which is\", absGrad == 1.0 ? \"correct\" : \"incorrect\")\n", "\n", "let sqrtGrad = gradient(at: 4, in: sqrt)\n", "print(\"sqrt gradient: \", sqrtGrad, \"which is\", sqrtGrad == 0.25 ? \"correct\" : \"incorrect\")" ], "execution_count": 19, "outputs": [ { "output_type": "stream", "text": [ "pow gradient: (4.0, 2.772588722239781) which is correct\r\n", "max gradient: (0.0, 1.0) which is correct\r\n", "abs gradient: 1.0 which is correct\r\n", "sqrt gradient: 0.25 which is correct\r\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "bjXglKrIYpUy" }, "source": [ "The compiler error that alerts you to the need for something like this is: `Expression is not differentiable. Cannot differentiate functions that have not been marked '@differentiable' and that are defined in other files`" ] }, { "cell_type": "markdown", "metadata": { "id": "ZaBX70wGjlZ9" }, "source": [ "##`KeyPath` subscripting\n", "`KeyPath` subscripting (get or set) doesn't work out of the box, but once again, there are some extensions you can add, and then use a workaround syntax. Here it is:\n", "\n", "https://github.com/tensorflow/swift/issues/530#issuecomment-687400701\n", "\n", "This workaround is a little uglier than the others. It only works for custom objects, which must conform to Differentiable and AdditiveArithmetic. You have to add a `.tmp` member and a `.read()` function, and you use the `.tmp` member as intermediate storage when doing `KeyPath` subscript gets (there is an example in the linked code). `KeyPath` subscript sets work pretty simply with a `.write()` function.\n" ] } ] }
apache-2.0
GoogleCloudPlatform/vertex-ai-samples
notebooks/community/ml_ops/stage2/get_started_vertex_training_sklearn.ipynb
1
45449
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "copyright" }, "outputs": [], "source": [ "# Copyright 2022 Google LLC\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "title:generic,gcp" }, "source": [ "# E2E ML on GCP: MLOps stage 2 : experimentation: get started with Vertex Training for Scikit-Learn\n", "\n", "<table align=\"left\">\n", " <td>\n", " <a href=\"https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/ml_ops/stage2/get_started_vertex_training_sklearn.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/colab-logo-32px.png\" alt=\"Colab logo\"> Run in Colab\n", " </a>\n", " </td>\n", " <td>\n", " <a href=\"https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/ml_ops/stage2/get_started_vertex_training_sklearn.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/github-logo-32px.png\" alt=\"GitHub logo\">\n", " View on GitHub\n", " </a>\n", " </td>\n", " <td>\n", " <a href=\"https://console.cloud.google.com/ai/platform/notebooks/deploy-notebook?download_url=https://raw.githubusercontent.com/GoogleCloudPlatform/vertex-ai-samples/main/notebooks/community/ml_ops/stage2/get_started_vertex_training_sklearn.ipynb\">\n", " <img src=\"https://lh3.googleusercontent.com/UiNooY4LUgW_oTvpsNhPpQzsstV5W8F7rYgxgGBD85cWJoLmrOzhVs_ksK_vgx40SHs7jCqkTkCk=e14-rj-sc0xffffff-h130-w32\" alt=\"Vertex AI logo\">\n", "Open in Vertex AI Workbench\n", " </a>\n", " </td>\n", "</table>\n", " </a>\n", " </td>\n", "</table>\n", "<br/><br/><br/>" ] }, { "cell_type": "markdown", "metadata": { "id": "overview:mlops" }, "source": [ "## Overview\n", "\n", "\n", "This tutorial demonstrates how to use Vertex AI for E2E MLOps on Google Cloud in production. This tutorial covers stage 2 : experimentation: get started with Vertex AI Training for scikit-Learn." ] }, { "cell_type": "markdown", "metadata": { "id": "dataset:custom,newsaggr,tcn" }, "source": [ "### Dataset\n", "\n", "The dataset used for this tutorial is the [News Aggregation](https://archive.ics.uci.edu/ml/datasets/News+Aggregator) from [ICS Machine Learning Datasets](https://archive.ics.uci.edu/ml/datasets.php). The trained model predicts the news category of the news article." ] }, { "cell_type": "markdown", "metadata": { "id": "objective:mlops,stage2,get_started_vertex_training_sklearn" }, "source": [ "### Objective\n", "\n", "In this tutorial, you learn how to use `Vertex AI Training` for training a Scikit-Learn custom model.\n", "\n", "This tutorial uses the following Google Cloud ML services:\n", "\n", "- `Vertex AI Training`\n", "- `Vertex AI Model` resource\n", "\n", "The steps performed include:\n", "\n", "- Training using a Python package.\n", "- Report accuracy when hyperparameter tuning.\n", "- Save the model artifacts to Cloud Storage using GCSFuse.\n", "- Create a `Vertex AI Model` resource." ] }, { "cell_type": "markdown", "metadata": { "id": "b132d4ef86d6" }, "source": [ "### Costs \n", "\n", "This tutorial uses billable components of Google Cloud:\n", "\n", "* Vertex AI\n", "* Cloud Storage\n", "\n", "Learn about [Vertex AI\n", "pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage\n", "pricing](https://cloud.google.com/storage/pricing), and use the [Pricing\n", "Calculator](https://cloud.google.com/products/calculator/)\n", "to generate a cost estimate based on your projected usage." ] }, { "cell_type": "markdown", "metadata": { "id": "94a148f11da5" }, "source": [ "### Set up your local development environment\n", "\n", "**If you are using Colab or Google Cloud Notebooks**, your environment already meets\n", "all the requirements to run this notebook. You can skip this step.\n", "\n", "**Otherwise**, make sure your environment meets this notebook's requirements.\n", "You need the following:\n", "\n", "* The Google Cloud SDK\n", "* Git\n", "* Python 3\n", "* virtualenv\n", "* Jupyter notebook running in a virtual environment with Python 3\n", "\n", "The Google Cloud guide to [Setting up a Python development\n", "environment](https://cloud.google.com/python/setup) and the [Jupyter\n", "installation guide](https://jupyter.org/install) provide detailed instructions\n", "for meeting these requirements. The following steps provide a condensed set of\n", "instructions:\n", "\n", "1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)\n", "\n", "1. [Install Python 3.](https://cloud.google.com/python/setup#installing_python)\n", "\n", "1. [Install\n", " virtualenv](https://cloud.google.com/python/setup#installing_and_using_virtualenv)\n", " and create a virtual environment that uses Python 3. Activate the virtual environment.\n", "\n", "1. To install Jupyter, run `pip3 install jupyter` on the\n", "command-line in a terminal shell.\n", "\n", "1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.\n", "\n", "1. Open this notebook in the Jupyter Notebook Dashboard.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "install_mlops" }, "source": [ "### Install additional packages\n", "\n", "Install the following packages for executing this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "78168417490e" }, "outputs": [], "source": [ "import os\n", "\n", "# The Vertex AI Workbench Notebook product has specific requirements\n", "IS_WORKBENCH_NOTEBOOK = os.getenv(\"DL_ANACONDA_HOME\")\n", "IS_USER_MANAGED_WORKBENCH_NOTEBOOK = os.path.exists(\n", " \"/opt/deeplearning/metadata/env_version\"\n", ")\n", "\n", "# Vertex AI Notebook requires dependencies to be installed with '--user'\n", "USER_FLAG = \"\"\n", "if IS_WORKBENCH_NOTEBOOK:\n", " USER_FLAG = \"--user\"\n", "\n", "! pip3 install {USER_FLAG} --upgrade google-cloud-aiplatform -q" ] }, { "cell_type": "markdown", "metadata": { "id": "restart" }, "source": [ "### Restart the kernel\n", "\n", "Once you've installed the additional packages, you need to restart the notebook kernel so it can find the packages." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "restart" }, "outputs": [], "source": [ "import os\n", "\n", "if not os.getenv(\"IS_TESTING\"):\n", " # Automatically restart kernel after installs\n", " import IPython\n", "\n", " app = IPython.Application.instance()\n", " app.kernel.do_shutdown(True)" ] }, { "cell_type": "markdown", "metadata": { "id": "2721ef0202d9" }, "source": [ "## Before you begin\n", "\n", "### Set up your Google Cloud project\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.\n", "\n", "1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).\n", "\n", "1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com). \n", "\n", "1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).\n", "\n", "1. Enter your project ID in the cell below. Then run the cell to make sure the\n", "Cloud SDK uses the right project for all the commands in this notebook.\n", "\n", "**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands." ] }, { "cell_type": "markdown", "metadata": { "id": "project_id" }, "source": [ "#### Set your project ID\n", "\n", "**If you don't know your project ID**, you may be able to get your project ID using `gcloud`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_project_id" }, "outputs": [], "source": [ "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_project_id" }, "outputs": [], "source": [ "if PROJECT_ID == \"\" or PROJECT_ID is None or PROJECT_ID == \"[your-project-id]\":\n", " # Get your GCP project id from gcloud\n", " shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null\n", " PROJECT_ID = shell_output[0]\n", " print(\"Project ID:\", PROJECT_ID)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_gcloud_project_id" }, "outputs": [], "source": [ "! gcloud config set project $PROJECT_ID" ] }, { "cell_type": "markdown", "metadata": { "id": "region" }, "source": [ "#### Region\n", "\n", "You can also change the `REGION` variable, which is used for operations\n", "throughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend that you choose the region closest to you.\n", "\n", "- Americas: `us-central1`\n", "- Europe: `europe-west4`\n", "- Asia Pacific: `asia-east1`\n", "\n", "You may not use a multi-regional bucket for training with Vertex AI. Not all regions provide support for all Vertex AI services.\n", "\n", "Learn more about [Vertex AI regions](https://cloud.google.com/vertex-ai/docs/general/locations)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "region" }, "outputs": [], "source": [ "REGION = \"[your-region]\" # @param {type: \"string\"}\n", "\n", "if REGION == \"[your-region]\":\n", " REGION = \"us-central1\"" ] }, { "cell_type": "markdown", "metadata": { "id": "timestamp" }, "source": [ "#### Timestamp\n", "\n", "If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append the timestamp onto the name of resources you create in this tutorial." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "timestamp" }, "outputs": [], "source": [ "from datetime import datetime\n", "\n", "TIMESTAMP = datetime.now().strftime(\"%Y%m%d%H%M%S\")" ] }, { "cell_type": "markdown", "metadata": { "id": "77c385f0db59" }, "source": [ "### Authenticate your Google Cloud account\n", "\n", "**If you are using Vertex AI Workbench Notebooks**, your environment is already authenticated. Skip this step.\n", "\n", "**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.\n", "\n", "**Otherwise**, follow these steps:\n", "\n", "In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.\n", "\n", "1. **Click Create service account**.\n", "\n", "2. In the **Service account name** field, enter a name, and click **Create**.\n", "\n", "3. In the **Grant this service account access to project** section, click the Role drop-down list. Type \"Vertex AI\" into the filter box, and select **Vertex AI Administrator**. Type \"Storage Object Admin\" into the filter box, and select **Storage Object Admin**.\n", "\n", "4. Click Create. A JSON file that contains your key downloads to your local environment.\n", "\n", "5. Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "535223fa4b84" }, "outputs": [], "source": [ "# If you are running this notebook in Colab, run this cell and follow the\n", "# instructions to authenticate your GCP account. This provides access to your\n", "# Cloud Storage bucket and lets you submit training jobs and prediction\n", "# requests.\n", "\n", "import os\n", "import sys\n", "\n", "# If on Vertex AI Workbench, then don't execute this code\n", "IS_COLAB = False\n", "if not os.path.exists(\"/opt/deeplearning/metadata/env_version\") and not os.getenv(\n", " \"DL_ANACONDA_HOME\"\n", "):\n", " if \"google.colab\" in sys.modules:\n", " IS_COLAB = True\n", " from google.colab import auth as google_auth\n", "\n", " google_auth.authenticate_user()\n", "\n", " # If you are running this notebook locally, replace the string below with the\n", " # path to your service account key and run this cell to authenticate your GCP\n", " # account.\n", " elif not os.getenv(\"IS_TESTING\"):\n", " %env GOOGLE_APPLICATION_CREDENTIALS ''" ] }, { "cell_type": "markdown", "metadata": { "id": "bucket:mbsdk" }, "source": [ "### Create a Cloud Storage bucket\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "When you initialize the Vertex SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions.\n", "\n", "Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bucket" }, "outputs": [], "source": [ "BUCKET_URI = \"gs://[your-bucket-name]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_bucket" }, "outputs": [], "source": [ "if BUCKET_URI == \"\" or BUCKET_URI is None or BUCKET_URI == \"gs://[your-bucket-name]\":\n", " BUCKET_URI = \"gs://\" + PROJECT_ID + \"aip-\" + TIMESTAMP" ] }, { "cell_type": "markdown", "metadata": { "id": "create_bucket" }, "source": [ "**Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_bucket" }, "outputs": [], "source": [ "! gsutil mb -l $REGION $BUCKET_URI" ] }, { "cell_type": "markdown", "metadata": { "id": "validate_bucket" }, "source": [ "Finally, validate access to your Cloud Storage bucket by examining its contents:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "validate_bucket" }, "outputs": [], "source": [ "! gsutil ls -al $BUCKET_URI" ] }, { "cell_type": "markdown", "metadata": { "id": "setup_vars" }, "source": [ "### Set up variables\n", "\n", "Next, set up some variables used throughout the tutorial.\n", "### Import libraries and define constants" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_aip:mbsdk" }, "outputs": [], "source": [ "import google.cloud.aiplatform as aip" ] }, { "cell_type": "markdown", "metadata": { "id": "init_aip:mbsdk" }, "source": [ "### Initialize Vertex AI SDK for Python\n", "\n", "Initialize the Vertex AI SDK for Python for your project and corresponding bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "init_aip:mbsdk" }, "outputs": [], "source": [ "aip.init(project=PROJECT_ID, staging_bucket=BUCKET_URI)" ] }, { "cell_type": "markdown", "metadata": { "id": "accelerators:training,cpu,prediction,cpu,mbsdk" }, "source": [ "#### Set hardware accelerators\n", "\n", "You can set hardware accelerators for training and prediction.\n", "\n", "Set the variables `TRAIN_GPU/TRAIN_NGPU` and `DEPLOY_GPU/DEPLOY_NGPU` to use a container image supporting a GPU and the number of GPUs allocated to the virtual machine (VM) instance. For example, to use a GPU container image with 4 Nvidia Telsa K80 GPUs allocated to each VM, you would specify:\n", "\n", " (aip.AcceleratorType.NVIDIA_TESLA_K80, 4)\n", "\n", "\n", "Otherwise specify `(None, None)` to use a container image to run on a CPU.\n", "\n", "Learn more about [hardware accelerator support for your region](https://cloud.google.com/vertex-ai/docs/general/locations#accelerators).\n", "\n", "*Note*: TF releases before 2.3 for GPU support will fail to load the custom model in this tutorial. It is a known issue and fixed in TF 2.3. This is caused by static graph ops that are generated in the serving function. If you encounter this issue on your own custom models, use a container image for TF 2.3 with GPU support." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "accelerators:training,cpu,prediction,cpu,mbsdk" }, "outputs": [], "source": [ "import os\n", "\n", "if os.getenv(\"IS_TESTING_TRAIN_GPU\"):\n", " TRAIN_GPU, TRAIN_NGPU = (\n", " aip.gapic.AcceleratorType.NVIDIA_TESLA_K80,\n", " int(os.getenv(\"IS_TESTING_TRAIN_GPU\")),\n", " )\n", "else:\n", " TRAIN_GPU, TRAIN_NGPU = (None, None)\n", "\n", "if os.getenv(\"IS_TESTING_DEPLOY_GPU\"):\n", " DEPLOY_GPU, DEPLOY_NGPU = (\n", " aip.gapic.AcceleratorType.NVIDIA_TESLA_K80,\n", " int(os.getenv(\"IS_TESTING_DEPLOY_GPU\")),\n", " )\n", "else:\n", " DEPLOY_GPU, DEPLOY_NGPU = (None, None)" ] }, { "cell_type": "markdown", "metadata": { "id": "container:training,prediction,scilearn" }, "source": [ "#### Set pre-built containers\n", "\n", "Set the pre-built Docker container image for training and prediction.\n", "\n", "\n", "For the latest list, see [Pre-built containers for training](https://cloud.google.com/ai-platform-unified/docs/training/pre-built-containers).\n", "\n", "\n", "For the latest list, see [Pre-built containers for prediction](https://cloud.google.com/ai-platform-unified/docs/predictions/pre-built-containers)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "container:training,prediction,scilearn" }, "outputs": [], "source": [ "TRAIN_VERSION = \"scikit-learn-cpu.0-23\"\n", "DEPLOY_VERSION = \"sklearn-cpu.0-23\"\n", "\n", "TRAIN_IMAGE = \"{}-docker.pkg.dev/vertex-ai/training/{}:latest\".format(\n", " REGION.split(\"-\")[0], TRAIN_VERSION\n", ")\n", "DEPLOY_IMAGE = \"{}-docker.pkg.dev/vertex-ai/prediction/{}:latest\".format(\n", " REGION.split(\"-\")[0], DEPLOY_VERSION\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "machine:training" }, "source": [ "#### Set machine type\n", "\n", "Next, set the machine type to use for training.\n", "\n", "- Set the variable `TRAIN_COMPUTE` to configure the compute resources for the VMs you will use for for training.\n", " - `machine type`\n", " - `n1-standard`: 3.75GB of memory per vCPU.\n", " - `n1-highmem`: 6.5GB of memory per vCPU\n", " - `n1-highcpu`: 0.9 GB of memory per vCPU\n", " - `vCPUs`: number of \\[2, 4, 8, 16, 32, 64, 96 \\]\n", "\n", "*Note: The following is not supported for training:*\n", "\n", " - `standard`: 2 vCPUs\n", " - `highcpu`: 2, 4 and 8 vCPUs\n", "\n", "*Note: You may also use n2 and e2 machine types for training and deployment, but they do not support GPUs*." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "machine:training" }, "outputs": [], "source": [ "if os.getenv(\"IS_TESTING_TRAIN_MACHINE\"):\n", " MACHINE_TYPE = os.getenv(\"IS_TESTING_TRAIN_MACHINE\")\n", "else:\n", " MACHINE_TYPE = \"n1-standard\"\n", "\n", "VCPU = \"4\"\n", "TRAIN_COMPUTE = MACHINE_TYPE + \"-\" + VCPU\n", "print(\"Train machine type\", TRAIN_COMPUTE)" ] }, { "cell_type": "markdown", "metadata": { "id": "sklearn_intro" }, "source": [ "## Introduction to scikit-learn training\n", "\n", "Once you have trained a scikit-learn model, you will want to save it at a Cloud Storage location, so it can subsequently be uploaded to a `Vertex AI Model` resource. The Scikit-learn package does not have support to save the model to a Cloud Storage location. Instead, you will do the following steps to save to a Cloud Storage location.\n", "\n", "1. Save the in-memory model to the local filesystem in pickle format (e.g., model.pkl).\n", "2. Create a Cloud Storage storage client.\n", "3. Upload the pickle file as a blob to the specified Cloud Storage location using the Cloud Storage storage client.\n", "\n", "*Note*: You can do hyperparameter tuning with a Scikit-learn model." ] }, { "cell_type": "markdown", "metadata": { "id": "examine_training_package:sklearn" }, "source": [ "### Examine the training package\n", "\n", "#### Package layout\n", "\n", "Before you start the training, you will look at how a Python package is assembled for a custom training job. When unarchived, the package contains the following directory/file layout.\n", "\n", "- PKG-INFO\n", "- README.md\n", "- setup.cfg\n", "- setup.py\n", "- trainer\n", " - \\_\\_init\\_\\_.py\n", " - task.py\n", "\n", "The files `setup.cfg` and `setup.py` are the instructions for installing the package into the operating environment of the Docker image.\n", "\n", "The file `trainer/task.py` is the Python script for executing the custom training job. *Note*, when we referred to it in the worker pool specification, we replace the directory slash with a dot (`trainer.task`) and dropped the file suffix (`.py`).\n", "\n", "#### Package Assembly\n", "\n", "In the following cells, you will assemble the training package." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "examine_training_package:sklearn" }, "outputs": [], "source": [ "# Make folder for Python training script\n", "! rm -rf custom\n", "! mkdir custom\n", "\n", "# Add package information\n", "! touch custom/README.md\n", "\n", "setup_cfg = \"[egg_info]\\n\\ntag_build =\\n\\ntag_date = 0\"\n", "! echo \"$setup_cfg\" > custom/setup.cfg\n", "\n", "setup_py = \"import setuptools\\n\\nsetuptools.setup(\\n\\n install_requires=[\\n\\n 'wget',\\n\\n 'cloudml-hypertune',\\n\\n ],\\n\\n packages=setuptools.find_packages())\"\n", "! echo \"$setup_py\" > custom/setup.py\n", "\n", "pkg_info = \"Metadata-Version: 1.0\\n\\nName: News Aggregation text classification\\n\\nVersion: 0.0.0\\n\\nSummary: Demostration training script\\n\\nHome-page: www.google.com\\n\\nAuthor: Google\\n\\nAuthor-email: [email protected]\\n\\nLicense: Public\\n\\nDescription: Demo\\n\\nPlatform: Vertex\"\n", "! echo \"$pkg_info\" > custom/PKG-INFO\n", "\n", "# Make the training subfolder\n", "! mkdir custom/trainer\n", "! touch custom/trainer/__init__.py" ] }, { "cell_type": "markdown", "metadata": { "id": "taskpy_contents:newsaggr,sklearn" }, "source": [ "### Create the task script for the Python training package\n", "\n", "Next, you create the `task.py` script for driving the training package. Some noteable steps include:\n", "\n", "- Command-line arguments:\n", " - `model-dir`: The location to save the trained model. When using Vertex AI custom training, the location will be specified in the environment variable: `AIP_MODEL_DIR`,\n", " - `dataset_url`: The location of the dataset to download.\n", " - `alpha`: Hyperparameter\n", "- Data preprocessing (`get_data()`):\n", " - Download the dataset and split into training and test.\n", "- Model architecture (`get_model()`):\n", " - Builds the corresponding model architecture.\n", "- Training (`train_model()`):\n", " - Trains the model\n", "- Evaluation (`evaluate_model()`):\n", " - Evaluates the model.\n", " - If hyperparameter tuning, reports the metric for accuracy.\n", "- Model artifact saving\n", " - Saves the model artifacts and evaluation metrics where the Cloud Storage location specified by `model-dir`.\n", " - *Note*: GCSFuse (`/gcs`) is used to do filesystem operations on Cloud Storage buckets." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "taskpy_contents:newsaggr,sklearn" }, "outputs": [], "source": [ "%%writefile custom/trainer/task.py\n", "import argparse\n", "import logging\n", "import os\n", "import pickle\n", "import zipfile\n", "from typing import List, Tuple\n", "\n", "import pandas as pd\n", "import wget\n", "from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.pipeline import Pipeline\n", "import hypertune\n", "\n", "parser = argparse.ArgumentParser()\n", "parser.add_argument('--model-dir', dest='model_dir',\n", " default=os.getenv('AIP_MODEL_DIR'), type=str, help='Model dir.')\n", "parser.add_argument(\"--dataset-url\", dest=\"dataset_url\",\n", " type=str, help=\"Download url for the training data.\")\n", "parser.add_argument('--alpha', dest='alpha',\n", " default=1.0, type=float,\n", " help='Alpha parameters for MultinomialNB')\n", "args = parser.parse_args()\n", "\n", "logging.getLogger().setLevel(logging.INFO)\n", "\n", "def get_data(url: str, test_size: float = 0.2) -> Tuple[List, List, List, List]:\n", " logging.info(\"Downloading training data from: {}\".format(args.dataset_url))\n", "\n", " zip_filepath = wget.download(url, out=\".\")\n", "\n", " with zipfile.ZipFile(zip_filepath, \"r\") as zf:\n", " zf.extract(path=\".\", member=\"newsCorpora.csv\")\n", "\n", " COLUMN_NAMES = [\"id\", \"title\", \"url\", \"publisher\",\n", " \"category\", \"story\", \"hostname\", \"timestamp\"]\n", "\n", " dataframe = pd.read_csv(\n", " \"newsCorpora.csv\", delimiter=\"\t\", names=COLUMN_NAMES, index_col=0\n", " )\n", "\n", " train, test = train_test_split(dataframe, test_size=test_size)\n", "\n", " x_train, y_train = train[\"title\"].values, train[\"category\"].values\n", " x_test, y_test = test[\"title\"].values, test[\"category\"].values\n", "\n", " return x_train, y_train, x_test, y_test\n", "\n", "def get_model():\n", " logging.info(\"Build model ...\")\n", " model = Pipeline([\n", " (\"vectorizer\", CountVectorizer()),\n", " (\"tfidf\", TfidfTransformer()),\n", " (\"naivebayes\", MultinomialNB(alpha=args.alpha)),\n", " ])\n", " return model\n", "\n", "def train_model(model: Pipeline, X_train: List, y_train: List, X_test: List, y_test: List\n", ") -> Pipeline:\n", " logging.info(\"Training started ...\")\n", " model.fit(X_train, y_train)\n", " logging.info(\"Training completed\")\n", " return model\n", "\n", "def evaluate_model(model: Pipeline, X_train: List, y_train: List, X_test: List, y_test: List\n", ") -> float:\n", " score = model.score(X_test, y_test)\n", " logging.info(f\"Evaluation completed with model score: {score}\")\n", "\n", " # report metric for hyperparameter tuning\n", " hpt = hypertune.HyperTune()\n", " hpt.report_hyperparameter_tuning_metric(\n", " hyperparameter_metric_tag='accuracy',\n", " metric_value=score\n", " )\n", " return score\n", "\n", "\n", "def export_model_to_gcs(fitted_pipeline: Pipeline, gcs_uri: str) -> str:\n", " \"\"\"Exports trained pipeline to GCS\n", " Parameters:\n", " fitted_pipeline (sklearn.pipelines.Pipeline): the Pipeline object\n", " with data already fitted (trained pipeline object).\n", " gcs_uri (str): GCS path to store the trained pipeline\n", " i.e gs://example_bucket/training-job.\n", " Returns:\n", " export_path (str): Model GCS location\n", " \"\"\"\n", " # Upload model artifact to Cloud Storage\n", " artifact_filename = 'model.pkl'\n", " storage_path = os.path.join(gcs_uri, artifact_filename)\n", "\n", " # Save model artifact to local filesystem (doesn't persist)\n", " with open(storage_path, 'wb') as model_file:\n", " pickle.dump(fitted_pipeline, model_file)\n", "\n", "\n", "def export_evaluation_report_to_gcs(report: str, gcs_uri: str) -> None:\n", " \"\"\"\n", " Exports training job report to GCS\n", " Parameters:\n", " report (str): Full report in text to sent to GCS\n", " gcs_uri (str): GCS path to store the report\n", " i.e gs://example_bucket/training-job\n", " \"\"\"\n", "\n", " # Upload model artifact to Cloud Storage\n", " artifact_filename = 'report.txt'\n", " storage_path = os.path.join(gcs_uri, artifact_filename)\n", "\n", " # Save model artifact to local filesystem (doesn't persist)\n", " with open(storage_path, 'w') as report_file:\n", " report_file.write(report)\n", "\n", "\n", "logging.info(\"Starting custom training job.\")\n", "\n", "data = get_data(args.dataset_url)\n", "model = get_model()\n", "model = train_model(model, *data)\n", "score = evaluate_model(model, *data)\n", "\n", "# export model to gcs using GCSFuse\n", "logging.info(\"Exporting model artifacts ...\")\n", "gs_prefix = 'gs://'\n", "gcsfuse_prefix = '/gcs/'\n", "if args.model_dir.startswith(gs_prefix):\n", " args.model_dir = args.model_dir.replace(gs_prefix, gcsfuse_prefix)\n", " dirpath = os.path.split(args.model_dir)[0]\n", " if not os.path.isdir(dirpath):\n", " os.makedirs(dirpath)\n", "\n", "export_model_to_gcs(model, args.model_dir)\n", "export_evaluation_report_to_gcs(str(score), args.model_dir)\n", "logging.info(f\"Exported model artifacts to GCS bucket: {args.model_dir}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "tarball_training_script" }, "source": [ "#### Store training script on your Cloud Storage bucket\n", "\n", "Next, you package the training folder into a compressed tar ball, and then store it in your Cloud Storage bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tarball_training_script" }, "outputs": [], "source": [ "! rm -f custom.tar custom.tar.gz\n", "! tar cvf custom.tar custom\n", "! gzip custom.tar\n", "! gsutil cp custom.tar.gz $BUCKET_URI/trainer_newsaggr.tar.gz" ] }, { "cell_type": "markdown", "metadata": { "id": "create_custom_pp_training_job:mbsdk" }, "source": [ "### Create and run custom training job\n", "\n", "\n", "To train a custom model, you perform two steps: 1) create a custom training job, and 2) run the job.\n", "\n", "#### Create custom training job\n", "\n", "A custom training job is created with the `CustomTrainingJob` class, with the following parameters:\n", "\n", "- `display_name`: The human readable name for the custom training job.\n", "- `container_uri`: The training container image.\n", "\n", "- `python_package_gcs_uri`: The location of the Python training package as a tarball.\n", "- `python_module_name`: The relative path to the training script in the Python package.\n", "- `model_serving_container_uri`: The container image for deploying the model.\n", "\n", "*Note:* There is no requirements parameter. You specify any requirements in the `setup.py` script in your Python package." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_custom_pp_training_job:mbsdk" }, "outputs": [], "source": [ "DISPLAY_NAME = \"newsaggr_\" + TIMESTAMP\n", "\n", "job = aip.CustomPythonPackageTrainingJob(\n", " display_name=DISPLAY_NAME,\n", " python_package_gcs_uri=f\"{BUCKET_URI}/trainer_newsaggr.tar.gz\",\n", " python_module_name=\"trainer.task\",\n", " container_uri=TRAIN_IMAGE,\n", " model_serving_container_image_uri=DEPLOY_IMAGE,\n", " project=PROJECT_ID,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "prepare_custom_cmdargs:newsaggr,sklearn" }, "source": [ "### Prepare your command-line arguments\n", "\n", "Now define the command-line arguments for your custom training container:\n", "\n", "- `args`: The command-line arguments to pass to the executable that is set as the entry point into the container.\n", " - `--model-dir` : For our demonstrations, we use this command-line argument to specify where to store the model artifacts.\n", " - direct: You pass the Cloud Storage location as a command line argument to your training script (set variable `DIRECT = True`), or\n", " - indirect: The service passes the Cloud Storage location as the environment variable `AIP_MODEL_DIR` to your training script (set variable `DIRECT = False`). In this case, you tell the service the model artifact location in the job specification.\n", " - `--dataset-url`: The location of the dataset to download.\n", " - `--alpha`: Tunable hyperparameter" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "prepare_custom_cmdargs:newsaggr,sklearn" }, "outputs": [], "source": [ "MODEL_DIR = \"{}/{}\".format(BUCKET_URI, TIMESTAMP)\n", "DATASET_URL = \"https://archive.ics.uci.edu/ml/machine-learning-databases/00359/NewsAggregatorDataset.zip\"\n", "\n", "DIRECT = False\n", "\n", "if DIRECT:\n", " CMDARGS = [\n", " \"--alpha=\" + str(0.9),\n", " \"--dataset-url=\" + DATASET_URL,\n", " \"--model_dir=\" + MODEL_DIR,\n", " ]\n", "else:\n", " CMDARGS = [\"--alpha=\" + str(0.9), \"--dataset-url=\" + DATASET_URL]" ] }, { "cell_type": "markdown", "metadata": { "id": "run_custom_job:mbsdk" }, "source": [ "#### Run the custom training job\n", "\n", "Next, you run the custom job to start the training job by invoking the method `run`, with the following parameters:\n", "\n", "- `model_display_name`: The human readable name for the `Model` resource.\n", "- `args`: The command-line arguments to pass to the training script.\n", "- `replica_count`: The number of compute instances for training (replica_count = 1 is single node training).\n", "- `machine_type`: The machine type for the compute instances.\n", "- `accelerator_type`: The hardware accelerator type.\n", "- `accelerator_count`: The number of accelerators to attach to a worker replica.\n", "- `base_output_dir`: The Cloud Storage location to write the model artifacts to.\n", "- `sync`: Whether to block until completion of the job." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "run_custom_job:mbsdk" }, "outputs": [], "source": [ "if TRAIN_GPU:\n", " model = job.run(\n", " model_display_name=\"newsaggr_\" + TIMESTAMP,\n", " args=CMDARGS,\n", " replica_count=1,\n", " machine_type=TRAIN_COMPUTE,\n", " accelerator_type=TRAIN_GPU.name,\n", " accelerator_count=TRAIN_NGPU,\n", " base_output_dir=MODEL_DIR,\n", " sync=False,\n", " )\n", "else:\n", " model = job.run(\n", " model_display_name=\"newsaggr_\" + TIMESTAMP,\n", " args=CMDARGS,\n", " replica_count=1,\n", " machine_type=TRAIN_COMPUTE,\n", " base_output_dir=MODEL_DIR,\n", " sync=False,\n", " )\n", "\n", "model_path_to_deploy = MODEL_DIR" ] }, { "cell_type": "markdown", "metadata": { "id": "list_job" }, "source": [ "### List a custom training job" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "list_job" }, "outputs": [], "source": [ "_job = job.list(filter=f\"display_name={DISPLAY_NAME}\")\n", "print(_job)" ] }, { "cell_type": "markdown", "metadata": { "id": "custom_job_wait:mbsdk" }, "source": [ "### Wait for completion of custom training job\n", "\n", "Next, wait for the custom training job to complete. Alternatively, one can set the parameter `sync` to `True` in the `run()` method to block until the custom training job is completed." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "custom_job_wait:mbsdk" }, "outputs": [], "source": [ "model.wait()" ] }, { "cell_type": "markdown", "metadata": { "id": "delete_job" }, "source": [ "### Delete a custom training job\n", "\n", "After a training job is completed, you can delete the training job with the method `delete()`. Prior to completion, a training job can be canceled with the method `cancel()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "delete_job" }, "outputs": [], "source": [ "job.delete()" ] }, { "cell_type": "markdown", "metadata": { "id": "cleanup:mbsdk" }, "source": [ "# Cleaning up\n", "\n", "To clean up all Google Cloud resources used in this project, you can [delete the Google Cloud\n", "project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects) you used for the tutorial.\n", "\n", "Otherwise, you can delete the individual resources you created in this tutorial:\n", "\n", "\n", "- Model\n", "- Cloud Storage Bucket" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "b413063dfdcf" }, "outputs": [], "source": [ "# Delete the model using the Vertex model object\n", "model.delete()\n", "\n", "delete_bucket = False\n", "if delete_bucket or os.getenv(\"IS_TESTING\"):\n", " ! gsutil rm -r $BUCKET_URI" ] } ], "metadata": { "colab": { "name": "get_started_vertex_training_sklearn.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
basnijholt/holoviews
examples/user_guide/04-Style_Mapping.ipynb
1
24839
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Style Mapping" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "from holoviews import dim, opts\n", "\n", "hv.extension('bokeh')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One of the major benefits of HoloViews is the fact that Elements are simple, declarative wrappers around your data, with clearly defined semantics describing how the dimensions of the data map to the screen. Usually the key dimensions (kdims) and value dimensions map to coordinates of the plot axes and/or the colormapped intensity. However there are a huge number of ways to augment the visual representation of an element by mapping dimensions to visual attributes. In this section we will explore how we can declare such mappings including complex transforms specified by so called ``dim`` objects.\n", "\n", "To illustrate this point let us create a set of three points with x/y-coordinates and alpha, color, marker and size values and then map each of those value dimensions to a visual attribute by name:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = {\n", " 'x': [0, 1, 0.5],\n", " 'y': [1, 0, 0.5],\n", " 'alpha': [0.5, 1, 0.3],\n", " 'color': ['red', 'blue', 'green'],\n", " 'marker': ['circle', 'triangle', 'diamond'],\n", " 'size': [15, 25, 40]\n", "}\n", "\n", "opts.defaults(opts.Points(padding=0.1, size=8, line_color='black'))\n", "\n", "hv.Points(data, vdims=['alpha', 'color', 'marker', 'size']).opts(\n", " alpha='alpha', color='color', marker='marker', size='size')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the simplest approach to style mapping, dimensions can be mapped to visual attributes directly by name. However often columns in the data will not directly map to a visual property, e.g. we might want to normalize values before mapping them to the alpha, or apply a scaling factor to some values before mapping them to the point size; this is where ``dim`` transforms come in. Below are a few examples of using ``dim`` transforms to map a dimension in the data to the visual style in the plot:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "points = hv.Points(np.random.rand(400, 4))\n", "\n", "bins = [0, .25, 0.5, .75, 1]\n", "labels = ['circle', 'triangle', 'diamond', 'square']\n", "\n", "layout = hv.Layout([\n", " points.relabel('Alpha' ).opts(alpha =dim('x').norm()),\n", " points.relabel('Angle' ).opts(angle =dim('x').norm()*360, marker='dash'),\n", " points.relabel('Color' ).opts(color =dim('x')),\n", " points.relabel('Marker').opts(marker=dim('x').bin(bins, labels)),\n", " points.relabel('Size' ).opts(size =dim('x')*10)\n", "])\n", "\n", "layout.opts(opts.Points(width=250, height=250, xaxis=None, yaxis=None)).cols(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What are dim transforms?\n", "\n", "In the above example we saw how to use an ``dim`` to define a transform from a dimension in your data to the visual property on screen. A ``dim`` therefore is a simple way to declare a deferred transform of your data. In the simplest case an ``dim`` simply returns the data for a dimension without transforming it, e.g. to look up the ``'alpha'`` dimension on the points object we can create an ``dim`` and use the ``apply`` method to evaluate the expression:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from holoviews import dim\n", "\n", "ds = hv.Dataset(np.random.rand(10, 4)*10, ['x', 'y'], ['alpha', 'size'])\n", "\n", "dim('alpha').apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Mathematical operators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An ``dim`` declaration allow arbitrary mathematical operations to be performed, e.g. let us declare that we want to subtract 5 from the 'alpha' dimension and then compute the ``min``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "math_op = (dim('alpha')-5).min()\n", "math_op" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Printing the repr of the ``math_op`` we can see that it builds up an nested expression. To see the transform in action we will once again ``apply`` it on the points:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "math_op.apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ``dim`` objects implement most of the NumPy API, supports all standard mathematical operators and also support NumPy ufuncs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Custom functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In addition to standard mathematical operators it is also possible to declare custom functions which can be applied by name. By default HoloViews ships with three commonly useful functions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### **``norm``**\n", "\n", "Unity based normalization or features scaling normalizing the values to a range between 0-1 (optionally accepts ``min``/``max`` values as ``limits``, which are usually provided by the plotting system) using the expression:\n", "\n", " (values - min) / (max-min)\n", " \n", "for example we can rescale the alpha values into a 0-1 range:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dim('alpha').norm().apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### **``bin``**\n", "\n", "Bins values using the supplied bins specified as the edges of each bin:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bin_op = dim('alpha').bin([0, 5, 10])\n", "\n", "bin_op.apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to provide explicit labels for each bin which will replace the bin center value:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dim('alpha').bin([0, 5, 10], ['Bin 1', 'Bin 2']).apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### **``categorize``**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Maps a number of discrete values onto the supplied list of categories, e.g. having binned the data into 2 discrete bins we can map them to two discrete marker types 'circle' and 'triangle':" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dim(bin_op).categorize({2.5: 'circle', 7.5: 'square'}).apply(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This can be very useful to map discrete categories to markers or colors." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Style mapping with ``dim`` transforms" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This allows a huge amount of flexibility to express how the data should be mapped to visual style without directly modifying the data. To demonstrate this we will use some of the more complex:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "points.opts(\n", " alpha =(dim('x')+0.2).norm(),\n", " angle =np.sin(dim('y'))*360,\n", " color =dim('x')**2,\n", " marker=dim('y').bin(bins, labels),\n", " size =dim('x')**dim('y')*20, width=500, height=500)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's summarize the style transforms we have applied:\n", " \n", "* **alpha**=``(dim('x')+0.2).norm()``: The alpha are mapped to the x-values offset by 0.2 and normalized.\n", "* **angle**=``np.sin(dim('x'))*360``: The angle of each marker is the sine of the y-values, multiplied by 360\n", "* **color**=``'x'``: The points are colormapped by square of their x-values.\n", "* **marker**=``dim('y').bin(bins, labels)``: The y-values are binned and each bin is assignd a unique marker.\n", "* **size**=``dim('x')**dim('y')*20``: The size of the points is mapped to the x-values exponentiated with the y-values and scaled by 20\n", "\n", "These are simply illustrative examples, transforms can be chained in arbitrarily complex ways to achieve almost any mapping from dimension values to visual style." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Colormapping\n", "\n", "Color cycles and styles are useful for categorical plots and when overlaying multiple subsets, but when we want to map data values to a color it is better to use HoloViews' facilities for color mapping. Certain image-like types will apply colormapping automatically; e.g. for ``Image``, ``QuadMesh`` or ``HeatMap`` types the first value dimension is automatically mapped to the color. In other cases the values to colormap can be declared by providing a ``color`` style option that specifies which dimension to map into the color value.\n", "\n", "#### Named colormaps\n", "\n", "HoloViews accepts colormaps specified either as an explicit list of hex or HTML colors, as a Matplotlib colormap object, or as the name of a bokeh, matplotlib, and colorcet palettes/colormap (which are available when the respective library is imported). The named colormaps available are listed here (suppressing the `_r` versions) and illustrated in detail in the separate [Colormaps](Colormaps.ipynb) user guide:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def format_list(l):\n", " print(' '.join(sorted([k for k in l if not k.endswith('_r')])))\n", "\n", "format_list(hv.plotting.list_cmaps())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To use one of these colormaps simply refer to it by name with the ``cmap`` style option:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ls = np.linspace(0, 10, 400)\n", "xx, yy = np.meshgrid(ls, ls)\n", "bounds=(-1,-1,1,1) # Coordinate system: (left, bottom, right, top)\n", "img = hv.Image(np.sin(xx)*np.cos(yy), bounds=bounds).opts(colorbar=True, width=400)\n", "\n", "img.relabel('PiYG').opts(cmap='PiYG') + img.relabel('PiYG_r').opts(cmap='PiYG_r')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Custom colormaps\n", "\n", "You can make your own custom colormaps by providing a list of hex colors:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img.relabel('Listed colors').opts(cmap=['#0000ff', '#8888ff', '#ffffff', '#ff8888', '#ff0000'], colorbar=True, width=400)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Discrete color levels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lastly, existing colormaps can be made discrete by defining an integer number of ``color_levels``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img.relabel('5 color levels').opts(cmap='PiYG', color_levels=5) + img.relabel('11 color levels').opts(cmap='PiYG', color_levels=11) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Explicit color mapping\n", "\n", "Some elements work through implicit colormapping the prime example being the ``Image`` type, however other elements can be colormapped using style mapping instead, by setting the color to an existing dimension." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Continuous values\n", "\n", "If we provide a continuous value for the ``color`` style option along with a continuous colormap, we can also enable a ``colorbar``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "polygons = hv.Polygons([{('x', 'y'): hv.Ellipse(0, 0, (i, i)).array(), 'z': i} for i in range(1, 10)[::-1]], vdims='z')\n", "\n", "polygons.opts(color='z', colorbar=True, width=380)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Categorical values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conversely, when mapping a categorical value into a set of colors, we automatically get a legend (which can be disabled using the ``show_legend`` option):" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categorical_points = hv.Points((np.random.rand(100), \n", " np.random.rand(100), \n", " np.random.choice(list('ABCD'), 100)), vdims='Category')\n", "\n", "categorical_points.sort('Category').opts(\n", " color='Category', cmap='Category20', size=8, legend_position='left', width=500)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Explicit color mapping\n", "\n", "Instead of using a listed colormap, you can provide an explicit mapping from category to color. Here we will map the categories 'A', 'B', 'C' and 'D' to specific colors:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "explicit_mapping = {'A': 'blue', 'B': 'red', 'C': 'green', 'D': 'purple'}\n", "\n", "categorical_points.sort('Category').opts(color='Category', cmap=explicit_mapping, size=8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Custom color intervals\n", "\n", "In addition to a simple integer defining the number of discrete levels, the ``color_levels`` option also allows defining a set of custom intervals. This can be useful for defining a fixed scale, such as the Saffir-Simpson hurricane wind scale. Below we declare the color levels along with a list of colors, declaring the scale. Note that the levels define the intervals to map each color to, so if there are N colors we have to define N+1 levels.\n", "\n", "Having defined the scale we can generate a theoretical hurricane path with wind speed values and use the ``color_levels`` and ``cmap`` to supply the custom color scale:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "levels = [0, 38, 73, 95, 110, 130, 156, 999] \n", "colors = ['#5ebaff', '#00faf4', '#ffffcc', '#ffe775', '#ffc140', '#ff8f20', '#ff6060']\n", "\n", "path = [\n", " (-75.1, 23.1, 0), (-76.2, 23.8, 0), (-76.9, 25.4, 0), (-78.4, 26.1, 39), (-79.6, 26.2, 39),\n", " (-80.3, 25.9, 39), (-82.0, 25.1, 74), (-83.3, 24.6, 74), (-84.7, 24.4, 96), (-85.9, 24.8, 111),\n", " (-87.7, 25.7, 111), (-89.2, 27.2, 131), (-89.6, 29.3, 156), (-89.6, 30.2, 156), (-89.1, 32.6, 131),\n", " (-88.0, 35.6, 111), (-85.3, 38.6, 96)\n", "]\n", "\n", "hv.Path([path], vdims='Wind Speed').opts(\n", " color='Wind Speed', color_levels=levels, cmap=colors, line_width=8, colorbar=True, width=450\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Setting color ranges\n", "\n", "For an image-like element, color ranges are determined by the range of the `z` value dimension, and they can thus be controlled using the ``.redim.range`` method with `z`. As an example, let's set some values in the image array to NaN and then set the range to clip the data at 0 and 0.9. By declaring the ``clipping_colors`` option we can control what colors are used for NaN values and for values above and below the defined range:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "clipping = {'min': 'red', 'max': 'green', 'NaN': 'gray'}\n", "options = dict(cmap='Blues', colorbar=True, width=300, height=230, axiswise=True)\n", "\n", "arr = np.sin(xx)*np.cos(yy)\n", "arr[:190, :127] = np.NaN\n", "\n", "original = hv.Image(arr, bounds=bounds).opts(**options)\n", "colored = original.opts(clipping_colors=clipping, clone=True)\n", "clipped = colored.redim.range(z=(0, 0.9))\n", "\n", "original + colored + clipped" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default (left plot above), the min and max values in the array map to the first color (white) and last color (dark blue) in the colormap, and NaNs are ``'transparent'`` (an RGBA tuple of (0, 0, 0, 0)), revealing the underlying plot background. When the specified `clipping_colors` are supplied (middle plot above), NaN values are now colored gray, but the plot is otherwise the same because the autoranging still ensures that no value is mapped outside the available color range. Finally, when the `z` range is reduced (right plot above), the color range is mapped from a different range of numerical `z` values, and some values now fall outside the range and are thus clipped to red or green as specified.\n", " \n", "#### Other options\n", "\n", "* ``logz``: Enable logarithmic color scale (e.g. ``logz=True``)\n", "* ``symmetric``: Ensures that the color scale is centered on zero (e.g. ``symmetric=True``)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cycles and Palettes\n", "\n", "Frequently we want to plot multiple subsets of data, which is made easy by using ``Overlay`` and ``NdOverlay`` objects. When overlaying multiple elements of the same type they will need to be distinguished visually, and HoloViews provides two mechanisms for styling the different subsets automatically in those cases:\n", "\n", "* ``Cycle``: A Cycle defines a list of discrete styles\n", "* ``Palette``: A Palette defines a continuous color space which will be sampled discretely" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cycle\n", "\n", "A ``Cycle`` can be applied to any of the style options on an element. By default, most elements define a ``Cycle`` on the color property. Here we will create an overlay of three ``Points`` objects using the default cycles, then display it using the default cycles along with a copy where we changed the dot color and size using a custom ``Cycle``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "points = (\n", " hv.Points(np.random.randn(50, 2) ) *\n", " hv.Points(np.random.randn(50, 2) + 1 ) *\n", " hv.Points(np.random.randn(50, 2) * 0.5)\n", ")\n", "\n", "color_cycle = hv.Cycle(['red', 'green', 'blue'])\n", "points + points.opts(opts.Points(color=color_cycle), clone=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here color has been changed to cycle over the three provided colors, while size has been specified as a constant (though a cycle like `hv.Cycle([2,5,10])` could just as easily have been used for the size as well).\n", "\n", "#### Defaults\n", "\n", "In addition to defining custom color cycles by explicitly defining a list of colors, ``Cycle`` also defines a list of default Cycles generated from bokeh Palettes and matplotlib colormaps:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "format_list(hv.Cycle.default_cycles.keys())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Here some of these Cycles have a reversed variant ending in `_r` that is not shown.)\n", "\n", "To use one of these default Cycles simply construct the Cycle with the corresponding key:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "xs = np.linspace(0, np.pi*2)\n", "curves = hv.Overlay([hv.Curve(np.sin(xs+p)) for p in np.linspace(0, np.pi, 10)])\n", "\n", "curves.opts(opts.Curve(color=hv.Cycle('Category20'), width=600))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Markers and sizes\n", "\n", "The above examples focus on color Cycles, but Cycles may be used to define any style option. Here let's use them to cycle over a number of marker styles and sizes, which will be expanded by cycling over each item independently. In this case we are cycling over three Cycles, resulting in the following style combinations:\n", "\n", "1. ``{'color': '#30a2da', 'marker': 'x', 'size': 10}``\n", "2. ``{'color': '#fc4f30', 'marker': '^', 'size': 5}``\n", "3. ``{'color': '#e5ae38', 'marker': '+', 'size': 10}``" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "color = hv.Cycle(['#30a2da', '#fc4f30', '#e5ae38'])\n", "markers = hv.Cycle(['x', '^', '+'])\n", "sizes = hv.Cycle([10, 5])\n", "points.opts(opts.Points(line_color=color, marker=markers, size=sizes))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Palettes\n", "\n", "Palettes are similar to cycles, but treat a set of colors as a continuous colorspace to be sampled at regularly spaced intervals. Again they are made automatically available from existing colormaps (with `_r` versions also available):" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "format_list(hv.Palette.colormaps.keys())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Here each colormap `X` has a corresponding version `X_r` with the values reversed; the `_r` variants are suppressed above.)\n", "\n", "As a simple example we will create a Palette from the Spectral colormap and apply it to an Overlay of 6 Ellipses. Comparing it to the Spectral ``Cycle`` we can immediately see that the Palette covers the entire color space spanned by the Spectral colormap, while the Cycle instead uses the first 6 colors of the Spectral colormap:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ellipses = hv.Overlay([hv.Ellipse(0, 0, s) for s in range(6)])\n", "\n", "ellipses.relabel('Palette').opts(opts.Ellipse(color=hv.Palette('Spectral'), line_width=5), clone=True) +\\\n", "ellipses.relabel('Cycle' ).opts(opts.Ellipse(color=hv.Cycle( 'Spectral'), line_width=5), clone=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus if you want to have have a discrete set of distinguishable colors starting from a list of colors that vary slowly and continuously, you should usually supply it as a Palette, not a Cycle. Conversely, you should use a Cycle when you want to iterate through a specific list of colors, in order, without skipping around the list like a Palette will.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
yhat/ggplot
docs/how-to/Plotting two variables as lines on the same graph.ipynb
1
118223
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from ggplot import *\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting two variables as lines on the same graph\n", "So you've got 2 variables and you want to plot them on the same chart? How do you do it in ggplot? Well good news is it's super easy to do with ggplot!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We're going to use a subset of the `meat` dataset for this example. We're going to use `pandas` to switch our data from \"wide\" to \"long\" format." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>variable</th>\n", " <th>value</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1944-01-01</td>\n", " <td>beef</td>\n", " <td>751.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1944-02-01</td>\n", " <td>beef</td>\n", " <td>713.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1944-03-01</td>\n", " <td>beef</td>\n", " <td>741.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1944-04-01</td>\n", " <td>beef</td>\n", " <td>650.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1944-05-01</td>\n", " <td>beef</td>\n", " <td>681.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date variable value\n", "0 1944-01-01 beef 751.0\n", "1 1944-02-01 beef 713.0\n", "2 1944-03-01 beef 741.0\n", "3 1944-04-01 beef 650.0\n", "4 1944-05-01 beef 681.0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "meat_subset = meat[['date', 'beef', 'pork']]\n", "df = pd.melt(meat_subset, id_vars=['date'])\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll setup our aesthetics so `date` is the x-axis value, `variable` is the color of each line and `value` is the y-axis value." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAIACAYAAABTiaBEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQZFd95/k95z4ys97VLz1a6IWaFkiMMDJIAmmEjDEI\nmWDMjHY9451ldxyeYWHNxob3r3VssP84JiY2Yj2zHgaMxyMbY2yksR4Y8TAjg5AMRrJoWkJSS2o9\nkVqtru6qrszKyse995z949xz77mPrG51dXZVdX8/EQp15X2dezKz6nt+9/v7/YTWWoMQQgghhBBy\n2pEbPQBCCCGEEELOVii2CSGEEEIIGRMU24QQQgghhIwJim1CCCGEEELGBMU2IYQQQgghY4JimxBC\nCCGEkDHhb/QAysRxjDvuuANJkkAphXe84x34wAc+gF6vh7vuugvLy8uYm5vD7bffjmazCQB46KGH\nsG/fPkgp8ZGPfARXXHEFAODQoUO49957Eccx9uzZg1tvvXUjb40QQgghhJxjiM1YZ3s4HCIMQyil\n8Md//Me49dZb8fTTT6PVauHGG2/Eww8/jF6vhw996EM4cuQI7r77bvzWb/0W2u02vvzlL+Ozn/0s\nhBD4oz/6I3z0ox/F7t278ZWvfAXXX399JsQJIYQQQggZN5vSRhKGIQAT5VZKQQiBAwcO4F3vehcA\n4JprrsGBAwcAAM888wyuvvpqeJ6H+fl5bN++Ha+99ho6nQ4GgwF2795dOYYQQgghhJAzwaazkQCA\nUgpf+tKXsLi4iPe+973YvXs3ut0upqamAADT09PodrsAgE6ng4suuig7dnp6Gu12G1JKzMzMZK/P\nzMyg3W6f2RshhBBCCCHnNJtSbEsp8alPfQr9fh9f+9rXcOTIkco+Qoh1XaPdbmNlZaXw2tTUVEGg\nE0IIIYQQsh42pdi2NJtNXHrppTh48CCmpqawsrKCqakpdDodTE5OAsgj2ZZ2u42ZmZmRr1see+wx\nPPjgg4Xr3XzzzbjlllvGfFeEEEIIIeRcYdOJ7W63C8/z0Gw2EUURnn/+edx4443Yu3cvfvrTn+LG\nG2/E/v37sXfvXgDA3r17cffdd+P6669Hp9PB4uIidu/eDSEEGo0GXn31VezevRv79+/Hddddl13n\n2muvzc5hGQ6HWFhYqB2X7/uYn5/H0tIS4jge3wSsg0ajgcFgsNHDqIXzt344h+tjK8wfwDlcL5y/\n9cM5XB/jnL+dO3eO5bxkvGw6sb2ysoJ77rkHWmtorXH11VfjbW97Gy666CLcdddd2LdvH2ZnZ3H7\n7bcDAHbt2oWrrroKn//85+F5Hm677bbMYnLbbbcVSv/t2bMnu87MzEzFMnLo0CFEUbTm+OI4PuE+\nG4Xv+5t2bBbO3/rhHK6PzTx/AOdwvXD+1g/ncH1shfkjZ5ZNJ7bPO+88fOpTn6q8PjExgU9+8pO1\nx9x000246aabKq9feOGF+PSnP33ax0gIIYQQQsjJsClL/xFCCCGEEHI2QLFNCCGEEELImKDYJoQQ\nQgghZExQbBNCCCGEEDImKLYJIYQQQggZExTbhBBCCCGEjAmKbUIIIYQQQsYExTYhhBBCCCFjgmKb\nEEIIIYSQMUGxTQghhBBCyJig2CaEEEIIIWRMUGwTQgghhBAyJii2CSGEEEIIGRMU24QQQgghhIwJ\nim1CCCGEEELGBMU2IYQQQgghY4JimxBCCCGEkDFBsU0IIYQQQsiYoNgmhBBCCCFkTFBsE0IIIYQQ\nMiYotgkhhBBCCBkTFNuEEEIIIYSMCYptQgghhBBCxgTFNiGEEEIIIWOCYpsQQgghhJAxQbFNCCGE\nEELImKDYJoQQQgghZExQbBNCCCGEEDImKLYJIYQQQggZExTbhBBCCCGEjAmKbUIIIYQQQsYExTYh\nhBBCCCFjgmKbEEIIIYSQMSG01nqjB7FZOHbsGKSsX38IIRCGIYbDITbrlEkpoZTa6GHUwvlbP5zD\n9bEV5g/gHK4Xzt/64Ryuj3HO3/z8/FjOS8aLv9ED2EwMBoOR24IgwNzcHLrdLqIoOoOjOnlarRZ6\nvd5GD6MWzt/64Ryuj60wfwDncL1w/tYP53B9jHP+KLa3JrSREEIIIYQQMiYotgkhhBBCCBkTFNuE\nEEIIIYSMCYptQgghhBBCxgTFNiGEEEIIIWOCYpsQQgghhJAxQbFNCCGEEELImKDYJoQQQgghZExQ\nbBNCCCGEEDImKLYJIYQQQggZExTbhBBCCCGEjAmKbUIIIYQQQsYExTYhhBBCCCFjgmKbEEIIIYSQ\nMUGxTQghhBBCyJig2CaEEEIIIWRMUGwTQgghhBAyJii2CSGEEEIIGRMU24QQQgghhIwJim1CCCGE\nEELGBMU2IYQQQgghY4JimxBCCCGEkDFBsU0IIYQQQsiYoNgmhBBCCCFkTFBsE0IIIYQQMiYotgkh\nhBBCCBkTFNuEEEIIIYSMCYptQgghhBBCxgTFNiGEEEIIIWOCYpsQQgghhJAxQbFNCCGEEELImPA3\negBllpeXcc8996Db7UIIgWuvvRbXXXcdvv/97+Oxxx7D5OQkAOCDH/wg9uzZAwB46KGHsG/fPkgp\n8ZGPfARXXHEFAODQoUO49957Eccx9uzZg1tvvXXD7osQQgghhJx7bDqxLaXEhz/8YVxwwQUYDAb4\n0pe+hMsvvxwAcMMNN+B973tfYf+FhQU8+eST+MxnPoN2u40vf/nL+OxnPwshBO6//358/OMfx+7d\nu/GVr3wFBw8ezIQ4IYQQQggh42bT2Uimp6dxwQUXAAAajQZ27NiBTqczcv8DBw7g6quvhud5mJ+f\nx/bt2/Haa6+h0+lgMBhg9+7dAIBrrrkGBw4cOCP3QAghhJCcxv7HIDvtjR4GIRvCphPbLktLSzh8\n+HAmmB955BF84QtfwH333Yd+vw8A6HQ6mJmZyY6Znp5Gu92uvD4zM4N2m190Qggh5EwTPvs05OLR\njR4GIRvCprORWAaDAe68807ceuutaDQaeM973oObb74ZQgg88MAD+M53voOPf/zjp3z+druNlZWV\nwmvD4TDzhJfxfb/w/82I53kIgmCjh1EL52/9cA7Xx1aYP4BzuF44f+tnHHMooOELAbHO826FOdzM\nn0GyMWzKT2uSJLjzzjtxzTXX4MorrwSAggi+9tpr8dWvfhVAHsm2tNttzMzMjHzd8thjj+HBBx8s\nXPfmm2/GLbfcsubY5ufnT/3GCOfvNMA5XB+cv/XDOVwf5+L8DaSH1swMvJ07T8v5zsU5JFuXTSm2\n77vvPuzcuRPXX3999lqn08H09DQA4Omnn8auXbsAAHv37sXdd9+N66+/Hp1OB4uLi9i9ezeEEGg0\nGnj11Vexe/du7N+/H9ddd112vmuvvRZ79+4tXHc4HGJhYaF2TL7vY35+HktLS4jj+HTf8mmh0Whg\nMBhs9DBq4fytH87h+tgK8wdwDtcL52/9jGMOJ4YDrB5fQjzib+zJshXmcJyfwZ2nabFCziybTmy/\n8soreOKJJ7Br1y588YtfBGDK/D3xxBM4fPgwhBCYm5vDxz72MQDArl27cNVVV+Hzn/88PM/Dbbfd\nBiEEAOC2224rlP6zpQIB4+F2I92AKRUYRdGa44vj+IT7bBS+72/asVk4f+uHc7g+NvP8AZzD9cL5\nWz/jmEOtEsTD6LSddzPP4Vb4DJIzy6YT2xdffDE+97nPVV53hXKZm266CTfddFPl9QsvvBCf/vSn\nT+v4CCGEEHLyyOOLgNIQWm/0UAjZEDZ1NRJCCCGEbF28owuYu+MLgFKAVhs9HEI2BIptQgghhIwF\n2VkGAAitjOAm5ByEYpsQQgghY0Gsds0/lAI2yEYSvPT8mkI/fOYpIBqewRGRcw2KbUIIIYSMBdlN\nxbbWEGc4si3by5h44FuYeOBbkMvHR+7X/PuHELzyEuTxpTM4OnIuQbFNCCGEkHriCMFzB075cLlq\nmscJVW8jmbrnL+G/+sopn3/Na7eX4R9+DSJJ1oxsC5Wg8dTjaDz+k7GMgxCKbUIIIYTU4i0ew8QP\nv3/KxwvbqXmEjSR86Xlj8xgHSQwkRuSLtZIzkwRIYgiVjGcc5JyHYpsQQggh9agEiNcQocMBWg9/\nb+Rm2U0j23E0Mrqsw3BdQxyFiKM8or5WZDtJIBImcJLxQbFNCCGEkFpEoiCS0Z0aZbeL8MDPRh8f\np4mHcVyts53+rINxie0EUImJWK8lpJVKo9uMbJPxQLFNCCGEkHqsEB25PVkz8VGkLdVFTZ1t0e+Z\nf4yr/raNpiu19hiTBCKJz3gCJzl3oNgmhBBCSD0qWTOyLU5U0i92ji2JWVupRIyptbmIY5MceYIE\nSaiEkW0yVii2CSGEEFKLOFFk+0SVPlyxXRLlwlYqGZPYNgmSCQQweoxap5HthAmSZGxQbBNCCCGk\nHmsTWUOsQil4b7xeK8pFHEGFDfPvjYhsx+m5R1lV7Jg2MrKt9YY1/CFnBoptQgghhNSTOGK0BhMR\nVph84Fvw33i9ukMc59VGSoJXLi9BNVtAPJ7ujZmNBFWhn2HvK4k3rBpJ6wcPIDzw5IZcm5wZKLYJ\nIYQQUosVqSN92zbxUSnjfXZJEhOx9YN032L01ju+hGTneRDRaE/4uij4xUcsFtLXrZXEZfqvvgpv\n4Y3xjC1FLh6D7PfyZFFyVkKxTQghhJAKcvk45HLawnxUZNuW1avzdsexEdoylRqlyLG3dAzxrvMh\nojFFtt0Fghph07BjrikPKFa7CA88ifCpx8cyPgCY+Ys7IPq9NZNQEUXFhQPZclBsE0IIIaTC3H/5\nPCZ++CAAVKK+GUpBaA2hqpFhEUfQvg9txbbrS9YacmkRya7zikmUp5M494KPspFkNpOaBEkRx/Bf\newX+az8fz/hgFgQijtf0i7ce/SGa+/9hbGMg48ff6AEQQgghZJMzShCvkWAo4hja97PIdkHwDocQ\nKoGangXGFdl2O1+O8mNbgV2XIBlHkD1Ajatair1uFK1dXnE4yBcsZEtCsU0IIYSQNVnTs400GbHs\niy7bSJwESZHE0H4AHQRjrEbinLdObGsN//VDZt+0qkrx+NgI4TEtBqAUhB1nvHZ5xUr3TbKl4FKJ\nEEIIIWsy+5X/DHl8qfJ6JrCTuCIY17SRqASQ0ojteEyRYycaX1dD21t4A1Pfvm/kPiKOIQd9sxiI\no9OfxOguVNawkYg4huiuoPXw907v9ckZg2KbEEIIISfEO7ZQfXFUZFsphAeeLNhI3MixSBS05403\nsp2M7l4JAKJXEs+Js4/WmedbRENMffNezH3x90/vAO18xdHIailmXAmCl55H69Efnt7rkzMGxTYh\nhBBCToi2JfxcstKAxvPcfOSHkO1leItH0frJjwHfB0Tq2XbrbKsEkB7gh4VExtNJsXtlVWzLcqTa\nFby28yQARBG8hSOn3cohCpHtNTzbSQwIMXI72fxQbBNCCCHnIGK1Ozo5sU5YelXJULA/qATBC89C\nLi9BW4E9GEDb45zyeyJJTGQ7DAEIiJX2qd7GaOK1S/+VbSHuvbjWFrEe3/ZalVYysR2t3b1yozpb\nktMGxTYhhDhM/O232WCCnDHksaOm1fkGMP+H/x5T37i7fmNdtDmpSTJ0rSFx3trdilXZXcki24Xo\nslLGXiIlosv3IDz4zKneBqbv/DNgOKi8Lgqe7RobSSWy7ezjHhsNIWrOf0K0xrY/+HejxbKNpEdR\nsXJKeZxJwsj2FodimxBCHIKXnoformz0MMg5wsydX8bsV//Lhl3fWzxWu7iU/X7ltVqrQ9kaklbO\nyOpXd1ccz3Y1QRIAoksuW1cta+/oG5CDGjGcxNCB7V5ZFbNlG4nrOS8I9Sgykfg3K3ht5HqEJ12k\nixeRjnUktJFseSi2CSHEReuRDTAIOe14Xu3LYqUNWZeQOIpTtDl47eOYuu/O4otxbCwmZWoitCJx\nkx7zyLaNDAsAWpp7FDUJkgCgG811ldcTiaoVqyJJoIPQ/FAb2S4tKEbZSNJ/67Dx5gaWie0R96aK\nczeKtbaRrQHFNiGEuFixQMgZQHv17S7CZw+gue/RkzyJxrb/+P/U+6xPAm/xWOHnxh/+e0zf+7XK\nfoVqI1pDdtqVpEKoBNDGRqKmptG+/V/W1tnOEiSB9VckUUl9F0qlTDUUjLCR9FYr+2fUnM/4y0+e\nbL6Go8R2ae5GkazdYZJsfii2CSHEQWh9yqKFkDeNXy+2RRyffBtzK8RO8XMr+72ClUQuH4dc7VZt\nE46v2Hvjdcz95z8oRavTLoxKA0mC+PwLEV90sSO2talWcmzB7OudBrFtn0TViVGtAbuYqalGUo5s\nu41t3Lm3s5pFyZ3zh888OXps6blkr1sfWXfnbo3SfyJJGN3e4lBsE0KIC20k5Awx+e2v19s1ACCJ\nT1qAZl7qN/m51Y6FRS4tVncIiqX+Cp7t9NhCfoMyNhKhVN6qHSjU2Q5+/hK840sm6mxf98N1iW0z\nthoxqhS0n95jTTUSOaj60t0KIVZc69aE2VaKbItBH1PfvBdipVM/tnRMU9+8F+GzT428ltl3jYVV\nXNNKnmwpKLYJIcSlZCORy8cZ6SZjwX/91ZGVb0SSAPFJ+phPMbJt62ZrIeAdr4rtSl3tko0EAHyn\nkopIEvPd0dr4nNOoshXVQpuIN3QaiXYi26fqOc8bw9R4trUy7eIxInJcJ3CT/Hyq1TLjS8V2xbOd\nermDV1+B7LTh//zl4vVtZLu7UrHqmLG7tpW1Ittr1+Emmx+KbULIOY3oraLxk0fyF7QuPHKe+vpd\n8A4f2oCRkbMdEUUjq0yIOIaI3qyN5E0+kUkj19GllyN8/tnKZhvZ7b/rFxGfd0ExemzF9pHDxXGo\nVHAn9ZFtkcSAMk+PrAhfl43EVvSoE6NK59H7uqh/rbUjraISx9DNFrTvQ3TTyHXpvbJj9g/9HMEL\nz6Hx+E9Gnl8uHwcAzH3pP5h5KrVoX9MmkjCyvdWh2CaEnNPI40toPPV49rMoR7bby9VOc4ScBkQ0\nHF3SLYkh4giy0z7hYi8rs1djlVgLWxav/4s3wH/5xUqU3W6PLroE0cWXFQVfnXi13mKtIOKkILY1\nYBYDKjER58RNkAxPuRpJFrGu9WyrPAH1BJ5p9x4AAHEENTEBHYQYXPOLGF6+p3IOK7blaheyu1KN\nnjs/y+UliH7P7BcNMffH/7FQ8WQtG4lIyymSrQvFNiHknCZ79G3RKv8jPBhADgcQdd5OQtaD1qOr\nVCCN1EYRpu67E7N/ccfIczQf+btTj2ynJLPz0M1mJWEwq1GdNp8pRGJrxJ9Io9pCKWOxyGwknvm3\n0iYSrbQRorazpO+fehUgt1183TbfNxH0unNrXUkCFY5nW83Mof3f/Uv03v8B9N/93sr8ZtH44dB4\n18ti3PnZWz4O2V42P9jSik40f+3INi0kWx2KbULIuY2NtFmcigQybSFNsU1OO3FsmplYsVcWr3EC\nEUdrfvbEcICJv/s+pC1hVxJ73tEj1fJ2LkmClV/5GPTUNLQfFCOtAGCrb0hpotQnjGzHRmBqDVGy\nkWjfg9CpjUQrUwM7jWxDCOOtPgUrSSZoy55trU2Nb88DfL/4HXfuYfl//DfoXfd+5zVrI0kA34fa\ntiO9kKwmWcaRmbfhELLbqc5JOl86NAmgXmq5EXEEgVL97TpPudbY9vu/x4Tts4D6mkPnKI1GA1LW\nrz+EEFhdXUUQBPBHlGraaKSUaKUJHZsNzt/64Ryuj1HzJ30fQiMft9IIgwB+qwWZtmgOkwTyDN3X\nVpzDzcSWmb80qmsjmq3Az8UtAF9ryDjOoqm195Qe20wXhc1GA3D2a/3ZHyG5fA+Gv/7J2vHIJIG3\n9+1oTUxANhpoeB60c7xsNgEAYasF2Uwbz6TbZRhUzuel4wl8HwICaLUgWi34YQjh+Sa6pxTCNJIt\nw0Z+X2GIlu8Vxn/COfT9zPoSehKee2ySQEsJLwgBP4AnRGUOhVJobN8Bb3YeAKAh0AwC6FYLvhRA\ns5UdI5tNSFF8H6QQ0FNT8OIIWE2gJybQarWyz6BInwzoySno+e1oHTBlApupzgidqLpIkur4lpfW\nnAuyddicvy03iEFdu9eUIAgwNzeHbreLaD3F98dIq9VCr7c5vaWcv/XDOVwfo+Yv6PXgJ3E27pZW\nGPb7iHo9hMeOogEgXlk5Y/e1FedwM7FV5i9pt+FKq367DT0xmf3sRQPIKMosBHX3JFc6aAFI3jAR\n00GvB+VUEGkBwNIx9Ho9tB7+HnrvuzlPVgTQiGP0owi614MvJYbdFcS9XjauWEp4AAZxDC9R8AaD\nbBx+v49yP0Wd/g2NBgN4/R6SySkMej00lYL0POgkgYxjRIMBxHAAqVV2vtD3Mei0oUY0+ambwyiK\nIFdX0QQQ9XoYuHMUx2gKgURrCN+HfO4A4sf3IdpzZbZLUyXoDQdoxDFCAPA9DFZWkDQn0Or3oKWH\nfnpOL4owmSSF9yHsrkC2JiG7HYg4hgpCM9fpZ9Dv9dAEoJotDC98CyYe/lsAwLDTQRNAvLqK0Blv\nb3W14OEPX3h+zbkgWwfaSAgh5zauV9TW7NV5yS7VbI18lO8dOYzgJf5BJG+eckKgKPm3RZwA0dBU\n7RjR0t1aJ7ylo+bnGruBt7QI/9WX0Xr0hxDpk5qpb/wVGk/sM1YO66v2ayqCSM/4naVnyvS5nm2l\noBpFuZ3dU2oXKVQj8by0SomtVqJyGwlskmTp+nEM0WnX33t6v14a/a1UI9HK2FekBPwAcjDA9Df+\nqmjXUcrcWypwtR+guf8xtH70A1OKzxX+QtQmSOrJKYh+33iwy/OfWkNUawKDK69C7/qboKams/fB\nlg7UUtae33MrvZAtDcU2IeScRiRJ7oks/d+2nBYjnnpNffNeTN/zl2dimOQsoywsrVAVqSUk83TD\nqe+sNcKnnsiPScVaVsO55Eu2yX9T99+THQ8A4XMH0Hhin4maWyEfBBXfsxXaWkpoz6+U/tONZvEe\n0gWDSZCM8+6Y6fGmYVSSVSXJEiTT65fnJHj5BUz+7bcxCv/VVzD5rfvMD6UEQ6EUtDAiP2tsA0Au\nHs13Uo4gB0yZv9UuxHBgFgvuIkeIGl99BDU5aZKoUVPLWylEF+zG6s0fgp6eQe+Gf4xkbj7zpmf3\nK6UR9uV7KHvoyZaFYpsQcm6jkvyPqC6J7SiGmpqq7zQHjI44EpLiHV2APHa0uqEc2e73IFa7mP2q\nqTziRmq17VyYJJj8m7/Oj0nFcVblopTAZ20p0napdCPTw4H53GdCsyZBUkrzGbeR6VKCpF0EaM8z\nDXDs8UqbOtVuUxvPy9uqKyO6C5Ftv9rYRsTRmiUBRTTMosTVyLY2AllKaC+31mRt2O13XgiT/AgY\nwT8cZnWw4eYlSFkR2yKKoBtNc//pnBS2Jwl0owk1N58Py/PzhZUjtkUcIXzu6eI9KAUW/Ds7oNgm\nhJzTZKX/kgTByy+Y17IKB+lj4lEVISi2yQmY/bMvYfYrf1R53RWRyewcZMf4frOKHI6wzSLbSpmS\ne1b0peJWlBeL2XFpu/E08dKtaiH6ffP5zSwUvhF/rmC0Ilt60J5XFLROZFv7gWlMM8xtJEgcsSrS\nyLZt5a6NjQQFG0mNjSWOc3Fch1t/utyBMY1aR2+5FPFFFxdfT4/N/Osyt5GIaGCedjkWG3MPI2wk\nQQAdNqAnp5wnYwm2/f7vZWMo4Pv5PKUdQrX00H/3e9Hc92jx/CrJFkyvNlr411e/Z/RckE0NxTYh\n5NwmFQDesQVMPvDt7DXARMHUGmLbjcwRUoeWsrZ0mxjmwlLNzpsykyrJBK2I4yyqaUVzZlOwuQVx\nDOVYOSq1r+MYx//VZ5Bs255eyBXbvaKY9FMbiSuohSn5pz3ruU4wde/XII8vmair9Wx7nhHr9vpK\nmfG7nm3fyyPnaWS7YCOpixwnSR4tr8EV/+6/5fJxTDz8PUAIRG99G6K3XGIu22zl+2lHCAsnuj9I\nI9tJDDj2Ey1kZX5FZEr/6TCEmpl1hHz6+2M4KCwogHJkO87uvf/OX6guNhIF1TTpqk9PzeKZqdmR\nc0E2NxTbhJBzm7TjXaElsrY2kgiqNVlJXsvwKbbJCRhRXaMa2W4DiUo7MOpiZFiWWo47i0E9MZGf\ntBx5jWPoIEBia0U7nmKhdeHJjA6MjcSNJGsp0f3QbVCz8yayHSeQ7WVjedG6INaz6Ht6bhHH2b1H\nb7kEgyuvzoWzNknJhcWqENVFyQla1hei3s6TANlehv/yC07kOu1UOTGZ7Sec61vPtrGRDCBUTWRb\nimrToHgIpJHtZHrGyf0w15Crq2ah4uJEtrPFh5TQzValgyeUwuCd78Lgbe+Ad4oNi8jmgGKbEHJO\nY9uzizjOo17W+5pE0BMTBS9r64ffN93iwMg2OTF6RD1yV2yr2XnIznIeuVZGdGdisiaBVx47ivDZ\np6BaebnAqtiOoH0f3V/6MJL57RUx6+YcaN83n3NXwEqJ+OLLCgl8WUKxVpn9opIsqYyNxN672rYD\n0SWXF+/HtXHAJnO+uch2wYPujjtrmmMj12acanIyT/J0LR6ulWY4yD3bhQTJalOb3EYSQk3P5osZ\nuxha7dZEtr2CZ1unCZq60TRP0JzouVAKamoG/ffcAJ/t2rc0FNuEkHMb22I6iTOhkbVsjmKo1oTx\n0aZ/7ILnn4NsLyN85slzplpA8PwzeZUM8qYYJbaRCi0g92xn4jExXuXhW9+G3nveZ4RtFOWfS6UQ\nvPYKwoPPFCPbriDT2nxu/QAIG9BBXu1C21rcZRtJVPJIu2LY89J27GmOg9J5YqFS0G6TmzSyrUsJ\nhlboirQqiT6BmLXzMIqCh7xUKUXEUV6zOp03HTby/VyxbT3bQZD5tQulC+1c1LRr10EANTEFNb+t\nsiiSvRGRbbvQiiLz9MJ649PIeoZKFyRSUmxvcSi2CSHnNCJJTIm1OKokmok4Mn+ghXAeP5s/xs2f\nPAJvaXFjBn2GaTyxD/7h1zd6GFuTUTYSrTLRq6ZnIFe7uZhOPcMrt30C0eV7IIZDzN3xn5x68Cqz\nIqjWhHNjuAJmAAAgAElEQVROR5AluVADYCKsVnTazoYFG4mJbM/9yRfy19zkPs8z4tfaXBzPs56Y\nLEZwbem/coKhu72UIGlK65WreZwgQTLdplHyb9vrp4sBEQ3S+/ULTw+yMdlFg12EpN9xd/y6xuYi\nhgPosIHuR/8JhpddUSkhKnqrtZ5tpH59kbZ7t/uoRtMkrrrzJCW0EPBpI9nSUGwTQs5t0j++bsJa\nJmrS8l+m4UYajUrSGsGlmrhnM0Lp2oYp5MSMjGwrnXmydatlxLPjxXZrQItoaISbU5rSfh51s5XV\n0y4kQMZxHsGGsTyJJMHsHf8pj4D7xdJ7VthG173fvFiObNvKPWlSMYTA4qf/D0SXXl7YV1gbRzky\nnJ1Mp3W2veL2SoJnaiMZEdXNLCFhWI1sl8oaAjDlB/v9vFlQthBJ90sXIdZGcqI627LbhZqYKjbt\nQf5kTK5266uRpOI/S7C01y/5toWNvksJAbKVodgmhJzb2MoBbj1fpeC//IKp2BAExYYbynhWyw0+\nzmqUqjbsOEM0ntgHDOubCm0JRoptlYlRY2+Ic1vScGCiqkKYxME4Tj9zTuTUiu0gyEr7FSLDcVS8\ntidNx8XjS3kUuGQjEYM+tJRIrrzavCbKkW1jIxFaGZ+2EECjkfmOM6yNw7l+YbsqeaoBQKCmGkna\n2GfUwtZGtoOwUpYQyJv6xBdfhqV//b9Bex6a//AjNB/7cRqZ9wr7aT9AJASGqrpY6GmNY6WnFKK7\nYkr+2bkqJUiK3molr0N7frawt556FMS2iWxnFV+kBwiJRFBub2Uotgkh5zRWRLplt4RWmLn7L+Ct\ndEzpsyDIu77Z5C4b5QPO/ii329L+DNN87Mdb1q7T/NEPHOtHaUGmdW5b8DzosAHRM1FNORgUy+ZZ\nK0WS5xRkFXJSry8AQGlMff0up/Se46OWXlbCUlt7hdMZVfs+5ErHJDqWIr7mOn7mZ0aWIOmUziuJ\naThNbQAAdkEA8/2CUsVqKKKmRGJWBrE+N8IKbB02iomddtFhEziFMKLY84xdx9YTd8avhQA8D9/Y\ntRtfnttZscH84Hgbf3LeRfk1oihtWmMb+8iKjUT2ViuRbV32bAeBI7abkGlke+Zrf2oq1KSt3BPG\ntrc0FNuEkLMa7+gRTH7766N3sF7sQmTbEUa2YYfdnnXBy6tFrNXl7qzgFMW2XDpmysT1e5VW4CeN\nW5Vji9F4cr8RTECxfjXS0nM2si096EYjsxCIQT8XokLmtbftglDr/N9xnJXdE1ohfP5Zk38QR7kt\nAiaybDtJimiIeMeuvDMlTIRcrnSgm63s2rpkI8kWmdomSKYCUMpCFDwT5GUbhkVps08hsl21aYi0\nUc3sl79UX5Uk/e6qZrNYntN+f0VJ4nhe+pQgqdhIlJSIpYeu56MHkSZI5uMfao3YuQfZXYGanCz6\nvsvVSKKoWEvcjsEp/efaSJRrI4lj4wn3PPO0gZHtLc2I51uEEHJ2IFa75pHsKKyIjGo820i74/mh\n05AjyZIk7WsiiqBbp3vkmwehjUf3RGYZ2V42TVbSaF/r7x9CfNElmPxv38Tgbe9A97Zfe/PXTuK1\ny79tYkSS5O3EBwOg5VYOyRMkISV02DCRUBixnSUx1kS2Xc+2rYgBIH/6YkvmlauB2PNrjZVf/QTU\n/PZ8OEEI2V1BNDObi1TpCDyZClWtjZh1I9uyFNm2VTZGCUStTHfWQuS9rqlN2o6+uwK5slJoew7k\n5f50ayJf1MBJFC1Hla2lwy4GnMj3/3XFO3EEPm4UAondx4lsR9B5dDkyCavxrvPykzue7cLvj7KN\nxIlsiyRJE1PTRcPcPLzFY/m92yROISi2tziMbBNCzmrECfzGoiayXXic7XmFVtIiSSspuNaRcue3\nsw1b8u0EtH70A4QHD2Q/iyjKPajdzileW1U7620VrO0CRcsGgNRGkltFdBgWItuuELcySzhWpiw6\nGg3zDpM2ups+DdAFz7SXiXmzc/HPv5ox3Ql1s1VpBgPARHmtSFQKQunMjlL2bItoWLSQlEnfUzfy\nXhfZLjSqSWvbF7dbsd2CdH39Jc92ho202yc1TlObp6Zm8JwWGEqJBGnpQuceYg2kDvLsvfSPvFEc\nP4DwmaeKT4FqEySdKLyf20jiXefDO3LYPLmwi3nPAxjZ3vJQbBNCzm6UWttTbR/5uo+h3UQzIYyv\nMipFtt1ufGe9jURXayDX7pcUFypxnLe6X0t8rcEJy79tYmxkVk1Nwzu2UNyY2kh06sl1PdtiMMh9\n2I7IyuZBm8i2DkJEl12RJUi6EVNb6SLDk6bJSvZzKeI6MZlfz8tFdIb0ctewTj3broVCyqx6h4iG\ntYmh2flSG4x2fNy1pf+c912uVBdrdrtqtAq18HPPdimybcdnG/M4TW0a6ec2FhKxRrGDJ4BIayT2\ndtPfJ51f/afF8QCY+uY9xYVVbbv2fPEYX/gW9H/hPQCAZNf58BfeKFiudPrUQFFsb2kotgkhZzf6\nJCPbcb2NBEBe+k/rYoKkPcdWjbwCJ1VJZeTTAa0x+a378nOUvN0ijvKkvFFVOU7EiboIbmbSz0j0\nlksRHPp5YZPQykR2bXQ1bGTJcaKfR7YLgjezMilgOET71z+J6LIrEF12BZK5eac8ZZIn31mkB7ma\nR7Z1OeKaijnR6xUTH7PjZbHEoFNaD1KkYtu8x0bo14ht6y1XynzfXE+5kKbEpIv7HauNbKfbyw1h\nRnq2/Xz8SZxF5iElGqlAj4RAZphy5igGchtJkiCZ24Zoz5XVMQEQK+2s/nllnkvzkszNIbp8j9m3\n2UIyM4vg1ZfzHWyCJMX2loZimxBydqP0CSLb1WokVbEdIDz4DCa/e7/ZN8kjuKrZgmwvn94xnyHE\nahezf/LFtfcZ9EcnSA6HaBz4WaFKhhudFHGc2UhOSWzbx+ljXsyI1S68w6+d3pMqlXmHo7dcAv/Q\nq6XtxkZiOwzqRiP3VA96puMjUIxsR7nYtpFtABhccy3inec7ke0YcqUNNTWdHatlKbJdFoH25UEv\n9xmX97FiVeuC53l4xV4M3vGPsmj5KBtJlpCZdrc8kY3ELecX1nQxzbZLCRU28oiy/QyWBKqNbHvH\njmDmv/55IbIdWrEt08h2afwmsi3Qevh7mPvTLxZrcJcQnQ6ULQlYSpAsPG0AoMNm4efhlVebcpcW\n6UELyWokWxyKbULIWU0WidYKeulYdQcbsR2O8GwjFdsvPIfGk/vNC45tJNl5HrzFo6d93GcCMRzC\nO75YaKRRIIowe8cXRoptG4kNDzwJubSYtfFuPvJ3mPmLO0wzlvXYSNwmL2MkeOVFtB79+9N7UmeB\np2Zmq3NsEySdyLYV27Lfz8sCul7o2Cn9F0WFaiKQsuDZ9paPI5mdL2wveLZrxPbKr/wqVm/+UF6K\nbpQNI2tqk1bRmNuGZNf5iHe/xew4HGEjSSPbmQ3GL4vttGReexnBiwcLFVyCV19Bc/9jhfOJOIYO\nQlOxo9HMk1GtZ7t8j+nPststzoGQCNNoeJTWtC6L6TgV2+GzT5sX1hTbbWibDFuu+BiUxXZY+Dl6\nyyXwX88XftZGwsj21oZimxBydpMKA/n6IQz//I7KZlHX1CaOoaXE4v/+uwAAuVJ8hO1GWpOdu6p+\n3NL1J795zzpuYIykosRWQCiT2UBGWHGsgJz67v2Y+MF/M/tpDf/wIfiHD0F0u5COjaTx+E8QvPR8\n/Tjq7Cx1Fp9xYMvZnUbcqKwOG9UFg9LFhiZhmNtISgmS2TntPOhiZNtsFHkCY5JALi9Bzc7l20sJ\nkhUhCmB41TWILn1r0R7i4iYY2qY2Diu3fQKd2z4x0kbSvfXjGLz9nWYutC51kMwj2/6hV9H42U+z\nKh3Dy64wl7XRYkuSQDUaeYJpFtnW+Tkd7Jjs91c7i4pm+v7HMrVslMR0pIzYlml0fc3I9ko7O3e2\n2LRjCIri2tbpzgjC4sKMNpKzAoptQsjZTRrZFlFUX+u5rqlNNCz+sdWqICxcYR7vGC22g5eex8RD\nD6DxzFOnXmd6nNjmG6Mi84nTLbMmQbIoCjyzcHES5+Sgn4sN38fkA9/CxIPfrZxn5stfqq2FngnW\nNWwkot87Kd/5WmR1oU8nTmRbN5qV918oldpInMi2jVwP+nkNbtd3bKuR2HbupXbntjMhVALv+HEo\nJ7Kty/We5WixWOvZRi4ww+cOIDj4TDU6LmVebaPmSUayYxeGl+8xEfggKNo83A6M2jTFQRLj+L/6\nDFb+yX+P/rvfW+zaCvP5ME140jrlw7KNZMQ92++vU7ows5EIiVjIymIk1gqJkPkY1npSs9LJzl0V\n2+XIdqOyvfBkjQmSZwUU24SQsxttxWJS692uLf0Xx4X6uN1f+RiW/pffyaNVbmR72w6IOK6t5S07\nbVPKCxht1dhARCowvGP1YjsTFnFcLP2nFSa+9zdZJBZIhZhtduImSVrPtpc3cCnjLx7N5qmAfW+S\n0QuVqa/fBe+N10duPynGEtl2xXZNZFsrI7RsBNgRYaLfz392I9vWGz8YmAhpQayK7DMsV1chO20k\npcg2ACgr7kZ4tgvbKp5tcw7/9dfgLx6teKLtMW7Dnup2YZq1lL3LQuT1sZXKqtBkixHPr35/04Y+\nWkrosJlHtlU1wdGcI7XB2BfS8avZOXjnXQAgt5GgbO/QGrEbKS9Ftl/odvGNnRea09rOj6iKbZQj\n247Yfq3XQ/kZk2nXLgoNdcjWg2KbEHJWI5TKhXZdRY20k1xRbEfFP6ZBYBq12MfQbplAz8Pw8j1p\n576yVSDJW3D3S390NwOpKB7pOXfaZReibVGExk8fze4NgBEXNkHS2TezLrjdBmuoPE6HuxBaI7I9\nHK679KJJeF1fdLxCyUaCJC5G4JVCMr8dnV/75+k+Tjtz10biiixrI6kpraeFyOap+Q8/xHDv20vV\nSPKW4DptlDISp/504Ro2mmvHUfNeZpH4UWJbSCO2S6LTTZAUyka2k0It8mpkO4GenIQOQ7OgscLW\nzvOoOtsW+zkVAn5qUYk8D7EQlfHFSheSFMs2koMrXTwyZ5oEWbHd/sS/QO+Gmwv7Zc2K7AvOPP2v\nP30cv/v8S6Uxm/lM1lockU0P3z1CyNlN2v0w68hWJkmg/aAo6KKo1pNpBVBB3EmJ+KJLELzwHLb9\nwb9D8OLB/I9+opxybpsvsg2loBqNkWI7E7uVkn6mvUfBA+zJLJFSKGO7KXh60+NHeV3rxHa2OFrL\ns21tLqfIxPf+Bv7PXzztNhI7Jm39v0KUng6Y0nlZMxk/F2FyMMjtBoVmMeniZzisRo6lzGwU/pE3\nMHzr2wqbM3+y27Rm5ODtwqj0XpUiw7ps0wAyn/TIpjZSppH5oPJ6Xic7rUKTOJFtvz6yvXrzhzC8\n8mrEF1yE8DnTUClLkKxp1164Ted8YbpvlCYjlscXaZXV2a47Vy9JEKXnsK3g40sug3YqwrjH1S11\nJIDXB4NiTmV6zkRIzJQ99GTLQLFNCDm7sRHL4RC6zkaSemcLr5Uj2ymZwHEi21pKqNk5+Gkd5eaP\nH4b/yksQnbYR+ZnYXsW23/+903FHpw+toWbnTXWGuuiwO19KQSwvQQ8Hub3DrX0sPXO/aVk43ZoA\n/MC0b0duWRnlFdaNZuW1k4psJ/X2oJPFO7YA7/jSqYvtUbkAbg1owHzG0v28F54zthJnMZJFUtMI\nd11k2yZIiuEgr1ZikbIwT9ovRY5ttLo1cVJi21bBKFD+TtRFx21XyZGRbZF7tsvnctqdCxvZtqLd\n8yp2IpEkUM2Webp05VWQS8fgHT2CEzW1yaj53HR9/5Qi2/0kQeRer2Yh8sjiEp5f6VZet+xMF5wq\nKFaZAUxk+9aJ1shjyeaGYpsQclZj7Q8iGo6IbMf5o920jFjZs51hbSSxG9n2kMzM5tcZDNB4cj9a\nf/+QsZGkf9CzcmPrTOY7nQiloD0fyfw2eEuL+Qat4b/yYiHyJ1SCxve/C/X0k5lolCWxnXUWVImx\nK/g+1KyJ3GaLnlGR7bAmsp1VI1kjuXSEF9/S+sED8I6OrhYjBn2IwSBfDLxJWj96EI3HH6u8nkW2\ns8hskN1H84Fvw1s8Woi86jD/DALIF4DOE4IsgbIusu14tgFUxWxqR1DNVv1nu4ysJglWxGpdpFWu\nbSPRQlbL/gGpOHUi28OBEeA2Iu951fdZJfnnyfMQ7Xm7SdxUo2wkpUW1I95tI5u2FyARsiK2I60Q\nu/NRF9kudNysyqt/+8yz+D9/9mTl9TJHW6abp+0uCpjItkcryZaF7xwh5OzGbcdeF9mOoszCoIPA\nPP6ORkS2bYe8oRNplRJ6cioTIrLfMwIuioreZStMT3fVi/WQtqzWzVbB5iI7bcz81VeL85Wk0UaV\nZCJF9lYzIWhsJKatu1AKqjkBHQRQM2mSnlb5fi72GmVxCDdBc+3I9lo2Ev/11yA7o5sOieHQCLtT\neV+UglxdNZHxMlnDFZvg5+X3odMOiq54SiPRVuTpGr81nMh2WWxrIQtPJyrb7TiazRNHtu01TyBW\n66K32eehLKbd86JalQNCZL55+0SoIHg9v+CDt/Yw916Gb3s7Gk/uz21c5dJ/5ft2xXaqz9uNprGR\nhMXx2cj26820M2RpLnqJwtCpz11XWvEtrRaGWiMWAnefd1G5BDeWowjbwwAr9imPM7+JFPCYJLll\nodgmhJzd2IjliMi2iIaZhUGnj6RPZCNxI4g2+mRFpRj0s6Q9N6lQdDvpAZsnsp2J7cAvRI/zqitO\npFTbRFOV2yaG+dxZGwkyG0kL8H0M01bU2dyXoqq2kctIP30Yrl1n2ybAjkDE0ZpCWgwHp1z6b9t/\n+LfwFt6o7SBajmzDiWzDJgAWbCRpZLtsIwEy0WVtIiIaVm0k1p6Rna9sI3kTnm2k4r0c2T7Bz4Xr\n1Hnw03Ga8VWrkWTfVWsjcRYMWnpZ3W0AQKLM3DpzGF94EeLzd6Pxs5/m9+Beo9nM2qgDRc+2jWz3\nUjFcrhoSa43lIMCvv+t9iGrqcNvItl6j2kuQiv+e9PAHl+7F8nvfn23rJwmU1tgehlixc+csTBMh\nKba3MBTbhJCzm7Ui21qb8mHpH1aVWh9EkoywkdQnSAImqgakkdbhYHRk+zSXmFsPQqeRQS8o+o5t\nVQgnAVIkyggcx7YhhoNcVKXVSERajUQ3W9B+gOFV16D7yx/Nzlme16x8YN1CKImhGs0sMbCWJIH/\nxuvwf/5S/T3GEcJnnsLE96v1vQEUG6HEMeTy8XxsJ9EZ1Fs8Wiu2kZjGSMhsJF4+x6oalbUiOz7f\nlI8rCs1UbK9lI5ESwmk0k7V7d7YD1kZyEn/6Pa/Gs121rlSw16+zBTnjqCZIOu3a7VMQdx/fg7d4\nFMEjP4RaPIrgsR/X+v/V3JwT2ZalbdvQ/vX/KX/BEe/KWQSPSpDspdd7qTVZ+Rz3lEmQ1GEDGsCP\ny555AJ30/RumdbNXrrsx29aOYswGASY8Hyv26YZzjUQICCZIblkotgkhZzVZdHk4rEZAo8gI6Cwa\n1yx4QMtoP60kEBVtJADQe9/NiLfvNNsHgzSimkY3pcw82+VW8BuKrRri+8WmPrbZzaqTzGUj27ay\nC1LRZyPbWufblUlcyxqzpLWXAVTmVXba2VgqJAnU1IxJxBzxREAkCYLnn83baJeJIsjuSmHh4J4/\nuxelELz8Aia+/zfZ5rk//cPa+umF6ysFr7NcGZ+Ik+xJCQDzOXMj2wC0rEa2s5bn7mfVito4j2xX\nbBq2Coh9P8rb7fw6XSvXvjFRjWT75QTJNx/Zzu65LEaFU43Ezo9zD9rz4C28Af/gAejDryN4+vH6\nyjbSy+t11ywG3HGJGhsJAERhA8O9VxWOi5XOyu89Pz0H+NXI9lBK6EaISAj838Fk5dorcYwJz8Mg\nFdGJc83jUYSZIMCE76EbhGbR5Mx/IhnZ3sqs0QJpY1heXsY999yDbrcLIQTe/e534/rrr0ev18Nd\nd92F5eVlzM3N4fbbb0ezaX6pPPTQQ9i3bx+klPjIRz6CK64wrV0PHTqEe++9F3EcY8+ePbj11ls3\n8tYIIRuBHh3ZFtHQRBTtH13Py5uv1P0h9wJomLJdtglHQZBkdbgHQBRlreB1s+V0t3vzNhLv8CEk\n512wdm3kU0FbG0lQtGroGrGtkrwEYBZhdSLbdlvBRuJU1LD3XfJsy+Ulk5RaFttaQ3ba0JOTwLEF\nU3u6WVONQSWQw8HIJEoRx+be6vz69j2x43ftJLaV/bEFqLn5yrHF8wyr40uStOFK3pQlqyZihbQr\nVm3UWEgc/58/nZUEBJA3SHEi25h2tjvn0mED6PeqYjwrvXhyYru2Gkk5klwTadXuOOoQIyLbTjWS\nTCy7+3g+hNZZ90wxGNTX+T5BkmLhtZKNRMCkaMaNJpIduwqHxc4TqYOT0/jHFc92HtlOhIASAonW\nmUCOlcJQaewMA/Q8K7bz3wWdOMa072PC89ANAjN/zliVEPDqFjdkS7Dp3jkpJT784Q/jM5/5DH7z\nN38Tjz76KBYWFvDwww/j8ssvx2//9m/jsssuw0MPPQQAOHLkCJ588kl85jOfwW/8xm/g/vvvh04/\nwPfffz8+/vGP47Of/SyOHTuGgwcPbuStEUI2Apt0ZT3bzh84EUVpjW0jYrT0ThDZ9jMBkHliHQGS\n1eHWOrWRpJHthtvd7s1Htqfv+UuI1dElw05E8OLBEa3qddZiu5B8ZkXPqmMjUTprDJSV5NO6ENnO\nxLhSiC6+DL3rUk+qbXiDko1Ea3jHl5Bs216ZF//nL2Pye9+B9nyo2bmCvQMwZQen7/wzM9fDYf39\nIX0KEce5wHW3DYpiW1h7B5AJMe/okdrzup8j1WxBrnSK505ixOdfgN5Nv2R29334zz5tSidm/nW3\nVFwqXFVixH2NaMxL/1VtJJl9pNHIa3uXxgMA8L2Tqkay+ksfyZNb7TUqpf/WimxXSzkWttclSJ4g\nsg3API1SickXqF0QO9/HugROZ3sxsq0xnc5pUrMgjpzQ91LYqPVsD2UutgETDbesJAkmPQ+hlOjb\ncn7OdXpJggnfw6TnYcUPzPvoRraFhEcbyZZl04nt6elpXHCBaZvaaDSwY8cOtNttHDhwAO9617sA\nANdccw0OHDDF65955hlcffXV8DwP8/Pz2L59O1577TV0Oh0MBgPs3r27cgwhZOsgeqv1rbxPlsxG\nYiPLTtJiNCxGdaV0qgnUi+1MZNc0HXEFkFtqUDWb1e52bwKxznbi0/d+DcFLz1fPqxS0kIWydPZ1\noBrZNkJaF4StjWBmyZFpQxI1MYn4okvSE8ralutT992J5r5HkczvqNxfJo49r1ZsBy8eRPDaK/n+\ndS3dtTbdL6MaCxFKkW1rk7F+9fQz4S0cgffG65h4sOT5dqKiyfw2iG63sl2HDUSXvtX87PsI9z2K\n+Nt/XehcWKEmAp81B4rcaiQ1TWGQJkAGQfXcbsLmSYi26PI9tZ5tt1FRrfc782xXPcuF7eUESbep\nTSa2nQVF+n20Ca9iOKhfELvf29p28vl2NTWT/1sDU+n1Yq3x2NJxPHAkLxkZOZ/PWFYXLL1EIRIS\n8XkXIElFvhsNX0kj14GUOPYrHwNQFNurSYIJz0PL89D1/DSynV8j9jzIURVeyKZn04ltl6WlJRw+\nfBgXXXQRut0upqZMO9Xp6Wl0019snU4HMzP5F2Z6ehrtdrvy+szMDNrt9pm9AULIuglefB6tHz98\nysdn9a9tpQa3QkgUmSYiVjx60jT9AOrrQft+7kO2otv9g+4ICLfFuW4284jpqYhmtY524um91UYa\nrY2k5NnOItuuz9lW/VBJsRV5FtlWeYJk2h0x20fKfP4dgWETC9X8tsxykx3j+JST2Tl4y0XvtH+s\nWDu7bCMJDh6ASKPNwrH0FI5xIttuVN5cN21As7yI1o9+gOZPHikenOR+fDUzV6w5DqQ1oJ0kx/Tz\npJ5+0onyV/8E15YxtJFtrY2NqaZdu40yq9ZEbdm97LyeP7Kx0InQnlf0gteK2bUj23k79/IY3QTJ\nNJnW+T5lfvE4NmUoRyUxn8hGIgQ0gNX331JIltTQmdhWWuPZlRUcXMnfUzdKHTmJr5ZekmAYBOhf\nd2Me2XY+6ytxjCnfRyAFutNGm9SJ7QnfR9cPoCcmC+PvX3YFhFNJhWwtNp1n2zIYDHDnnXfi1ltv\nRaMm0UKs07vYbrexslL85TgcDjE5WU1qAAA//RL65V9wmwjP8xDU1KrdDHD+1s+5Ooc+NKRKTvm8\nNohnI5W+kFlyk6cVEIaQvbTLox8A0+Y60pOVa4qwkXX4QxhCS4nAieAJt1xYFEHaKKnzRzLwvOoj\ndIfKHGpj3/A9ueZxo5BtExH2BSBKx3tCQHoedKMBubKSXVemf+RlL4/WSq2z7pCe00lPTJh7kzCC\nVUJAqAR+o5EtPvzAh7SRYoH8/ianMLjibcAFF0IcWyjct58KUq/fBy7YDdFbLW5fPFa4F5HECIIg\nm7/pv/4rRG+/OtsmlKq8n16pbrMvBCQ0giAwNvOwAe/4cciOEe3u8bYijW40IaZn4Pd72fvTeOBb\nJrIbBtkxnl30xFFmbfKDsPKeFubHXkvKLEcAQQAxHEI2GoX9pM0XmJwEgqD6fdlpPMheowFxgu/p\nqO+xDANTJjK9dy8IKvXRRfp98CYnzfYSdrtsNgvX8AIfEuberYyVYX6P0nYijSNTEQeA8P3qe1qa\nk9r79DyImRn403krdS0EpoI8st1NFJQQCIIAWmtEjjCOpVeYf6U1hsoUD/SDAEPnOnafngamwwBD\npUxpQQDCz7cPtMZUGGImDPHieRcguuhCNB76WwRBgH6SYCgEwk38u5+szaZ855IkwZ133olrrrkG\nV155JQBgamoKKysrmJqaQqfTyUSxjWRb2u02ZmZmRr5ueeyxx/Dggw8WrnvzzTfjlltuWXNs8/Nr\nJxKbLwEAACAASURBVMqQteH8rZ/NNofxw98DPB/+DTeN5/zNBhIITO3cWbs9+dl+xN/5Bhq/87u1\n26MwRAJApmJnbmYmE4jJG4eQTE1DpRUnWpMmmpQAaGiN6dI1o9lZEzkE4E9OQi952OnsE01Pw8Yl\nhdZoSAEFoDm/LXt929w85PYdJ33/OkkwALBtbg5yxBysRXL0DUQAZicm4JWOjycnoScmIObmoQd9\nzKTb1eoKhnC6XgLwpTTZY4nCRKsFK1Mnt+9ADKAVhki0RiMMoLTGjl27INKEwWThMOJUjDSCMJvX\nQTTExA03QS8fRxIEhflOXnkREYAgGqI5OwcdR9n4AGAw6BeaggRA4TPSBxAuHDGR4DhGIGXlM5S8\n8iKiiUlgtQupgamJFhLPvKdKxYjm5qDbyybCPzNbeK/1coABAK81gfC886E7ywjS7f3Hfgx5xV6I\nSy/HrL3XODLjjSKIdOTbdu6A3JZ/FoZX7MXMNe+uvM+DIDTifTAwC7oowuTsXHZuAIhnps37sH0H\n1KFXC2MFANz8QeDmDyJcPIbk2AImT+GzFF90MZJDr0G//AIAYHZurvKZ0o0QAwA7dl8EUfN0SEmB\nIYCZ7TsKxyazc0hC89mImg0kAJrTM9lnQukEQyBLkAQAv9ms3Gc8N5d/NqemCnNk6fs+Zkpj94MA\nLd8Hlo5DaY2BJxFKHzt37kSsFDwhoNLqPcr3Csf34hih5yFRCnPbt+P1VEzPzs9jZ6pVwv4AcxMT\n6EYxgvT3z8zcHHamHVbVa6/j/MkJXDAxgcc6Hczt2oGo0cDOnTtx+3e+i1dWVnDr5Zef4B0im5VN\nKbbvu+8+7Ny5E9dff3322t69e/HTn/4UN954I/bv34+9e/dmr9999924/vrr0el0sLi4iN27d0MI\ngUajgVdffRW7d+/G/v37cd1112Xnu/baa7NzWIbDIRYW6tv6+r6P+fl5LC0tIV6rdfAG0mg0MHAT\nfjYRnL/1s1nncPq+/wrt+1i64srTPof+M0/Ce+VleKtdtEd8NxuP70N4+NDI725jdRUhAN3vQwA4\nvngMcSoi/aML8JWGPzDbeoMhIIAQQLR8HMulc4aDATwI+ACGk1PwhSxctxHHcJ2qw/YyfACrGrDP\n5xaPHoVewxJSmcMowjSApWPHoE7B+Re8/BKaANqLxxCX7idYXoYcDpH0+/A7HRxPt3vHjqH8wDoe\nDiDjCFIl6Hc6sPHCThShBaC/ugpfJRj0evCTBEcXl4DAPD30Oh00V7uQAAa9Xjavk502Ov0+ZKeD\n0HkdAILFY2gCSDpt9Pp9yHY7Gx8ATAyHcKVc3O+jvbCQzd80AG2TG5ME8aBf+QwFi8cQNhqQq13o\nJMZKu41gMEB7YQHyyBE0IYCZOXj9w0iarcJ7LZaXMAUg9n2sAvAXFrLxTQOIuiuIBwMM09cmOm0z\nXqdG++LSErRb/+0T/9z8vzTOCaUgPA8SgJISEsDKYIDIna/uKpoAukojkHLk9wUA8O7rKtdwGfk9\nvmwP/NUeWqnYXu50kJTOI5aPYwrA0cXF2nPb7cu9XuFYf6UDv28+A41uFyGMiLVzKpbbmAKMfSe1\nxERKVe7T767C1oTp9nrZ/LtMCYF2d7XwfegPhub8MGvKw50OtocNLCwsoJck8NPqIj40hhBor+bH\nL0cRQiEQS4lHXnoZF6ZWmcNHjyJIk4yPHj8OHUVAnODocWOfWji2iNnUXrW40sH5nkCsNZZWV/H/\nHTqM/2HbDrQXFvBK+hS+2ykm4ZKtw6YT26+88gqeeOIJ7Nq1C1/84hcBAB/84Afx/ve/H3fddRf2\n7duH2dlZ3H777QCAXbt24aqrrsLnP/95eJ6H2267LbOY3HbbbYXSf3v27MmuMzMzU4h0A6ZUYOT6\nFmuI4/iE+2wUvu9v2rFZOH/rZzPOoZYeoig67XM4fd9dAIB4246R5/XTP2yjtodZt0MjHpLhEJG0\nrdX7SDwPflqNJAGQhUt7q5VzSukB0zNI3v5O9H/hvZg++GxhH7/sIe2bpMg4CDOxHUdDqDXmqDyH\nNrEyHg6RnMLc+mnUPhkMqveTzk0iJOQw367dpj0pOk6g09J4yulUONxxHvwLdkPFxqqhUzEUKZUl\n9GmlTJ1zACpJsuuIXg9DP4CvNQLndSC1jwBIZuYQC4kgGhbHX/Y2R1HhM6j9UlfM0vkBQA4GUI2m\nWcIoBRVF0EqZ8/T7UJ4HPTmFpDUBudIpHC9TMRpdeBGiRgv+Srt4/n4PsZSFe7XjzIacJEaAnQAt\nROZxtt7vWIjieFKbQxyG8Lz1fQ/X+h4L106hFOLyfq0JtD/xL6qv2+NTC0gsZHGfRMEbDhG3lxHY\nz6U7f26uQ/qd0EJWxumOL9G69j609BCj+DsjVgphqh08IbA0GGLaM7/XelEMPy1fOQFgODmJ/s7z\ns/dudTBAKAWiWOF3froff5aepz+MEAXpPlGEAIAHoJseN0g/swCwEkVoQiCAxmoc4+srXdxy4y9h\nZxTBS4X+Wp1SyeZm04ntiy++GJ/73Odqt33yk5+sff2mm27CTTdVH2FfeOGF+PSnP31ax0cIqeFk\nmmSsgzXbdafiQ/T78BYOI37LpcXtts62/bkmQTKrZOFURBCp2HMZvv1qDK/YCz09Y5qdVJp+FH+l\nikHfNI1xksXqEh29o0cqdX0zrKhcq+V4v1dfgxqmc6WpNlIzhyPatZevpT0fQptmNVk9ahgRmOzY\nicG73oPg4DPZsULrYvKckJnPNxNNVujYpkLl+4uG6L/7vVh9/y0IXniuWke7JDzK96emZuAdz6Or\ndYmHIo6g7LzVJUj6AXrvuQFiMMDk975TPDZJEG/fidVbPgzvyOHK50X0eoWW37333Qw/GqLxgwcK\n83JSSJklPdo68NUEQ0Myvx3JzhGfpdNAIamz7gGNEIgvuWz0CUbV2ZYC4YsHEX7x9zG46prqPm6y\naTrXdaX/dFrHfa164romwVFpjWa6vycElqIIF2rzvY20QpD+bmgBiMIm9HQerBsohVBKHFOpiJbV\naiTDdJ9QKgzSz1g5QbLleWhKD4PE7DNM9wulQC/RkFhfrhrZODZ1NRJCyBZh7GJ7DdtM+kfTf/1V\ntH78d9XtShf/KLuiLi39N7jyavSvfpe5DykQn39hrfjVzVb2R1Y3m0i2l/ygbvUEISAGA6ze/CFE\nb93jnKQqmmf+/I9rS74VxruG2J7/wv8L743Xa7fJ7gqSufnKHDYe/4mp8iIEtB9ArnZNp0aYREeV\nJnXqtFoJ0nbtUEl+LtsASMpc7CaJETOu2JYiF7u2rGBv1TS+EcIIsLJ4jiIzBt83/5UXC6l/NqMy\nfyUlmCQIXngOE45oFnGUL1KUyhcKMEmV2veQnL8banbe3HvpfLZBjw7DYhlBmDb0bmOXwT96N4a2\n7ni200l+b4TIq4/YajjlZLl0wZicfyFWP/ArJ3feU8GZc3EqlXVGlP4rLDzWqrMNZJHt2opB6dMl\n1WqNbqzjeRWhrqDxztlZ/JvLLoUnBFaTJKsmEmsNXwh4WqEFYxv5tR/9ODvWCulseOkY3GokA6XQ\nkBK+lOinn9WC2I5NNZKmJ9FNr21re9tzS3aQ3LJsusg2IWTrUVtv9zQi1ngknv3RVPW1qIVSJrJr\nG7E4ok5EEXSjie6tHwcAU89ba/RuuPmEY9LNFjr/7DeKr/m+6YaYmFbdoreKZMcu6EYzryZR0ylR\n2GhxjXjIROoJ6nOPmiPZ7SCZ315p+iJXOkbwSmkSXA8fQutHP8DqL3/UWCqmp832IDQCz2nXboVd\nNveOmBZJXBWRrpDKnhz0sqiy9mSlg6SII6hJ46It1wEH0vc1bGQ2m0rkvnw+lUD0VovNgeIYOu1E\nLJDOtRvZ9pxa6uVH+Eplwk4HYW1pw0qtaSGLUfyTjGy73Ryz0pOlKl1rfUdOK7Iqik/l+Ep5QldI\n1pT+cyPbSC08tbXw089k730fwPAd76wfg+dVyh8qDTQ9iY+cfx6++vNXAeTl/iKlEEhj5WhB41D6\nWR8kCg1PIlIagfNe2g6RbrnAQRq5DoTIItsKxcj2hO+hISXa6XuZR7bziDvZmjCyTQhZP6dYt/ek\niaPRYtNeO1FZSTWLf+hVyOOLxZrEjkCQq12oiTwVMNl1vmmLXteq+iTQQZhZRnSzaR762iivFQvl\n+7Dic5Qf05Y5GyVsrDDx698D0V1BMjtfFaP2Z5GXFMya2GiVCV34vrGRWCGamHbtOgjyxYGQuZiP\n44oIsosx07gktfX0+5nQNZHtkjiOhvmTgpL/2syLKohZEceFua3MV5IUO0SmxxRbrMf5+OI4F7ay\nZjGQJHkDpLCRi20nwl4bWXXtECfbETBtA+4eryaKZWrXfPpzOlmn2M7qbNe1a3fOqxpNU2u6dF0t\nZWYjqY9sy/z/I8SpltXItk7btQMw/mygFNmWkM0mwrn5LDK9mFqjypHtfhbZdm0kGg1Pmg6S6fGu\nGO8lNrLtQWXHmH81MrFdeztkC0CxTQhZP96YI9taQwwGlS6CQB7Jcrssyk4bGAww87U/hX/0SGaJ\nAFAU290V6KlpnC6iK/Zi1bbndqK2gPPYvyy2S+3By+SR7RHCxiaQ1VU4iSIjGqemspb02XltJNTa\nRIA86qt0HtVNErPdWizSdu06CPN7knmHyPrIdm4dsOO03Tvt8VAK8tiCWRylY7eNg7TvVyLzQpkO\njYWnKu4clm0mJU92+MxT8JYWc882imXljI0kvT/Pq74/SZIv9HwfUAkmvvsNeEffyHap7aLoLopO\ndkEnJYZ73g7VbEFZG1NFbJ+ZyHZlTt8s0n4WinPjvo8iGqL7yx81XSyzFwW055mmU9ayU/d7R+ZP\nW0bRf88NSLYVy28qnds0pBAQAJL0OxcrjUAKyCBAMwwzMbyULrCsRcTS+dg/A1Bs8T5QCUIp4QuJ\nvvVsp5Ftrf9/9t483LKqvhYdc65uN6etnqqiiqItBEQFQWwoaUQNikZEkEg0+kwUjdEYc33mfslL\n9L4YSXNfvLlGk5BoEpW8XKNRk4tBBIkdjXQFFp1FCVR3Tp12d6ub8/4xmzXX2mvtc+o0Vfsc1/g+\nPuqsdu61195rzLHHb/w4ZlXTG0I0MVNdK0tle+WjJNslSpRYNHI7uS0x3Cd+gtp3b+teoRSqONJ+\n2+r37kDt+3foTdiIzCbPFOKRxmyi4C4BuFfRD3GmVFuTkCFHcVVK6nw82zmESnuFc/anzQZYfUD8\nZJ/Z1yTbqtiOtpqCVIehJj+qW6Emc9JGwl0v5dlWZJhEcTeJVH/bTkJmoxDclmSaWiCcYeQLn8OA\nTKAhYajJeG6BJxMNiTQhB7qKPJuvuQrRxhPE8dRkTKmFD90H+9l9Wl3nllDP9fsTRYk/mlrdyjZL\nlG0QAu56qOx+EAPf/KreZi5l+6gKJD0PU+/9TUQbN4ljZzs0Hgdlu/DXlp77W2Lym1WlDSJJm7O5\nZJnbDnh9AFylkeTaSNT4iolpsPPspDmVBONJAaJNCIYcWyvboWx4ZIGgaox7IkjsHmllu7uDZCAJ\nuUsJOtL/H0sy3pE53i6lIISgIs+RtZGUnu2Vi5JslyhRYvFYYs/2yF/9OdxHH04tI+1WvvqrbBiB\nnxC5wIc1nmToxqNrxT9cL+W9pc0G2BIq2wA0ieCeVEzVz99FNhKlfhXZSAzP9ppPfwp0MtM5UfpX\nSdxNtkjgC/U3x4ahyCsnRCu4tNVC/davY+BbX9fjjteuT+3PmbSRuK7h2U6UbcRRt4ff9Omq1x+G\niZWAUl2AyGQkq0m2i20knlaPuVcBbcyAqM6SjCE86VR0nv8i+XcMMK4JIvF94ft2XMxcfX2inqv7\nKYqS98zK8WxnPPZqHMRvdy1LwSSZ8yRPZnqGTj3J7JvXon1ZICcIrVdchmDHqUe/v2Vh6l3vLzwu\nANBGI3ciMnP9O8UvUT1tJPLzl7kHx3wfR/zuSEsFBq75PSUEaxxXK9MREzYSixBUDIJ/JMi3kfjy\nXjZtJCqxxKEUvryXlLI9G0UYNKxuSiVX51d/l2kkKxcl2S5RosTiscRkmzZm4T3yYGoZabfzlTSV\nbuH7iUocBKlCuFgp266bUi5JGBRG5i0UiqDxqrSRZArbsnYQnegwh41Ek8RsrnAPZZsoddZ2gCjC\n4P/6YsqmAUCopvUBTL73wwBjcH62Vy+f+NDvCBXQJHIsBvF94XXP8WyTqNtGws0ECs5Qvet2eI8+\nlLKRkI4gqWxgCNb4YWkzKbCRyKJS7jiA44JDFAy6jzwE+4d36evFLarJF2EsZTVSkxTuOIi27Ugm\nDPr+CBOvP7W6PeVxnFJW1ViJkUGep2yTlLI9P/LUuuTVCGWkJW23crdpv3QXpt75vnkdb1GQ723n\nhS8GvIK0j7mQ10LdVLZbzdzvFDYyCu44ibJtXsvM+LLX9rce2o3fePChwiGZNhKbEKxxXcOzLQok\nLUJQNawrkwVkW3myTRuJULZFgWRW2Z4NhYVEQSnb3ztyBHtmZ3UvgVLYXrko00hKlCjRG1EkC/yK\nrSLLkUZiqe5/ErTTzveIKiXS72iVmISB6AooE0DY8Ig8SGIjocpCstRPMMsSarEiWoqQ6dSU5DVY\n44fhPPW4GPNcNhKVbZ15H3qRbUjfMbdtkNCH87O9wqc8siZtI4Eo6GS1GqzZGfG38tZaNB0zx5jI\nD1+7HjxIjqHHH8epfGnzHHCEjaR67w8AANEJW+W5KKgkUPaB52Af3C9ed5GNhHOpyDtCPbYdwHYE\nEVVjZbGYBJi+3ijUCrq+boqwEZIqxCVxnCjTKknGzA9nmfQY1xUNcnwjAzrvMyM925yQed972gYF\n5Oa/AwAcJ7nPlxG6qHOpP/PZa1F0bWxHp5Hkebb1BCizv0UIZnpYbUwbiUUIRl0Hz8hGRKGhbJs2\nkll5vLCAbGej/1xKpLKd9mw3Msq2yvv+4cQk9jZb2Fyt6POUWJkole0SJUr0RPUH34W3+4HeG/Xw\nbFuHDsA68Fx6YeBj4Bv/q3AfVq0Jci3BHVconzlWC2Iolbp7XBCInGNVRGbZCM84C2R4NCHbzQb4\nEvq19VhtG7DsdPEfkp/5zQ531vgYnL1Pij+KlG2VRiKvR5d3uJeNRFohuG3DPihyuNW4tI3EIAmp\nojv1Mz7NkMaYgQRpZVvkbCfKdtfkiyTXINXVMXONAKFqksBPKdvIWDzAYl3YqQo1uW2DdFrJPcKY\nnPgYHuMoEvcL5zoyMJU4Yni2hac8IeKc0vR7ZORsA0LFZkajk+KM56SodCFov+yVmH3DWxa075KA\n0O4c9SXAT6MITdOWU9SQxraTDpJ53zuGtcnEqNvbZmPaSCxCMOq4iJiyg3DYUtmuGGNUZFpZRL58\nwfk4a2hQk+mUjSSWyjYlSc42M2wkjmEjMe4rW0YOqvOUWJkoyXaJEiV6QhGfnuhBHIa+/HcY/vLf\npZZZU5Nwn9hTuE821oxVq6IjX66NxFC2FfGW42V1cRxOKTpvuAakWtWESeQ8V7qPt0hwz0O47aSk\nuE8XByrF1XgNMtkD6KFsy+VUKZqZ7Xoq24aNRE9e1PnCJPpPD8eIQUy85laa+LAY8Dvg1VoSN0hp\nUoAZR92Ko2GlsceStA7kkG3SaQsbUBAkWdIqilGr5zLj2rbBhobQ+IU3gts2aKuVzsomJDUWEoVi\nXRjqSU/KyhIl0X8iZ9tQ9DNWki4bieuCDQ6m/s6Fab1ZANjQcDql41hjgbGYc+Efp2Zw39CaJHm6\n6BxGkW3eLwf6Xs1MBtYWvR8Spo3EIgRrXCcpkGQMjlS2XZo4p9X6QKrWnmWlov2yNpLEs51WtrOe\n7apxXzmEIuYcHqU4yfx8llhRKMl2iRIleiJFXgrAe0T/aW+tCZ2NXUAwM0WEvFIF7RR4tk0Pri6Q\nlGS7JpVr9QC2LEMJ7yRFjEsJ20HjDW9JCtZ0FrN82JuvTTWzAeYskFTKtvfYI7D3P6tXK7JdeeAe\nuI+kPanEsJHoZaYnGUilPvBqd65xvHY9oi3bUmMmvi8TJYzoP85FIgjnXUQy8Wxn4t7sNNlm1ZqM\neezo4k5zW2v8sPBzcyY7Wzrglo1o+8mA44oiWhXvp/OWDUIWhWKCExhWDHMMZvSfkbMNQDbeySrb\nJtn2wOoG2c6mhSjoa7ZCDbiELkv6UMSBkNLkuhVMRlKWph452zxDtmty22daLRz2/a7dGLgmRJsq\nHk6sVdM521LZdgiBLf9TyrTp2XYINQokuztIOsQg24aybXq2TWVbNdP53TN3YnSOCUOJ/kVJtkuU\nKNEb8yDbczW1SeVcA0mjFj/ff0qyZLtaS4hU18ET8qz9tlLZ5lLZNhtdOPf8APV//xqI7ydNVZYD\niljKczcvey2CHaekCiRJHBv51EU2EtUERpDtyo/vRv3WryfrJXGwxg7DPpxp2a6UbTmG6IQtoJMT\noFOTBcp2QraVQhhv2gz/3POSQk+/A1CKaPNWBKfuFMvUMXR6R+Z+0J7tdJmQLoBUx5b3CeFcHMtU\nN20bw1/6Wwz9w1/LjGuZ0CHPxVwPtDEr1nGju2MqvzkSiSQG2UqsIrJAUt17UZQuDM0q22b0H8Rk\nildrgvxvPKHQ6kG0Z3tlPn45JcuibMcAQkL1rxmFdSDmBKiXjSRzfZUV4wMPPowP5hRKmsr2h047\nFafU66noP4cQUCI81zYlqFBqKNs8IduUoMNU0xqzqQ2TTW2SSYBWtsOsZzt5XTahYJyXDW1WOFbm\np71EiRLHDizu0d1wfh5CniXbyhoxM4WhL/1t7jlTfyoPd875FDHXyrbhu1XKdkIGLdjP/gzent0g\nnXax+rgEyNpIeK0uGsWwYmW7/m9fzW+eAqQ87DD82dT3hd8YAGk2U7sqzzYbGoZ/+vPABgbh7X4A\n3u4HkglJyrNtvE9ZMqhITLMJ7nlga9YhOPNsOQhlE8mPXdNNbSR5VZOvxMIhCbNx/mw7ck2KHQfV\nu78HUApWqRjRfzJphsUgMUvGYJLtKARhTFwzo/hSjzmKdCEkicL0LzI0E/9nNrUBEG7bgXDbDvFL\ngmUVN0ui+Z7iFYNlspFEACJCDGW7qEBSeuwdJ9eqowl45peDMJV53d0AyiyQBEQiifZs6wJJSIWb\nompZ2pNtKts2IfALCyRpqpAy0jnbcarw0rOoVuIdShBxXja0WeFYoZ/2EiVKHCuQONYJDl1QxW5F\n3Q0lWCZeTxXJWeNjsA4d6LKNZEl1onj2spF0hAXB8JdrpVY94FRWtOOC+p1l8WzrYWWIJCBUwdRr\n4MxI8WBwn/gJEKT98dkCSSCtgpNOWzfmoa2G2F9aRIQVwgH3Kmhe+YuiOUsYiEJA9d4ZD3+WYyPR\nQ1WRhq0m4GauG80o271ytmFMvpysjcRQ1rOxcmpfQuE9cC+4ZcF//nloX/BysV5ZTmImle20jYQT\nItR8maYSD8nkDjuxdejrypgskEzINqcUJE7/KmEq+OEppyPadpL8JaHHLz3K1rNCyZMqSl1qxJyn\nbSRFBZLyHvNfeYWIpcyCUsQADme+s8zW6E7OtTcLJAHh22YQJDzkooPkdSduxVmDg3BkoaRWtrlh\nI6FUR/up9ZxzbSMxyTaD2Q4+Ofm2alX7sx1CRUPXFXq/lBAoyXaJEiV6g8WFZDrpKshBpyZAjoyn\nN1BxdRnipKwT1sQRQZADP7M+IZMz19wA5hlEqmt8ZvQfS+VQ8wzZ5i2ZUcwY6OzsMVG2U6SB0JSy\nTWKW5FPHUpHPporkkG0zc5p02lpFpc0mqvd8D5UH7hMr4yjdHtyyQMIwbd8xH/71YrKtiWWr2U2E\njWJK8XeabKpfFtQ1SZTtJFoPgM4mB7rTPNQ9wCtVoT8SKos/BfliansWi3g8NSYzdjCKpGfbBxsa\nFmTasB3o+5nzdFMd9fpNZZuxrhhGcQ3snjGZsCwxcVihyjYfGMLMdW9f8uPGUMq2URSbB1UDUanm\nX2fLwqMDw/jTI1OpxZG0ggCCEGdh2kgAgChfNueImOgguXNwEDXb1nnbMU88256pbGsbSdIh0pYW\nFJNsxypch/PUuX/hhE24dMN6fby4VLZXPFbmp71EiRLHDCRmKUUvvU4SQc4x/IXPwfvrT6fWU9lY\nhrDEB+s9eJ8mlNaEIOfESNqo/ud3BJGRD5do0wmJapmrbEuyLf9NAl+rXyxbvS/Hw+oDoBPjy+vZ\ntt3uLGVC0q+BGZ5tqWh3ebdVLrSRr2zG/JnKNmk1ZZJHB/VvfAW179/Zrc6GgSDoOd5W0+6TtYLo\n7RnrmqToYjSzfbsJk/AisatkC2fNBkNZst246hoEp55h5GNnxidJGpmdwfAXPpvy6QPQWd1EppHw\nWg3T73hPeoxqEiPtSKY/GNRKfw4yyrYeh233zp2XsZDLkU1/rMAzaUFLgYgD3x9dj08PrRPnKCCX\n2k6Uc/1mwhC3j43Dt6yUbQQQySCqCDFX2c7YSABpJdHKNk0tr1hWQqbjWBc1OkYaibKZNKIIA3LS\nm2cjySrbYjvxNy3J9qrAyv20lyhR4thAFZz5PpCNADRsJCSOu32+yhIhlR77wLOo3/6/QSLxtyVb\nj+sMab+Dyv33iOIzrXrSpBV2QYGkfjBzBvuZfZpk62Mohd0g2/bE+PKkkUhwx+m2E1CasszoroYw\novgyyrZaT9tpG0n1e9+B98C9oKaNJPBF3ngYwn3qMbFxKr5OZkl3Opowm6SP5eVsKxjHKVS2i4jQ\nXJ5tdVxj8tPl2a7V4Z91ribb2eI4Rc6JTK3Rr0spoY4rlGvOEy+7mYtNaVKMypnM+U5PVNR9bB18\nTtyjeXYR2+6tWlsisnCl2kiWCwwcB70KDto5vwhJxJxjKseLr/Dg9Ay+sn8/ImojW2UScabJdiOO\ncfPT+1LrOboDYoRvWyjbjrHSpgRVmthIJoIQa+R3lPBsCyVbRf81ogh1+fnJs5HkkWlHfv4iy4w4\nZAAAIABJREFUzhBnlO8SKw8l2S5RokRPEBYLxfne76Py4I/T62JDCQSATMFSsj4WHSEVYVOe7alJ\nsZ1UbYU/PBJqrkHctMqZWyDJEqLFOOp3fEt3QYTjIFq3QZNRSBuJamaznMo2d5xu9ZWS9ITBsCVo\nr3lW2VY2kijdpr169/dR+953QDqd5PUBoDPTohW7UplzotJE7KHyxhrRf/UBNF51pVxeoGwD3W26\nM1nipppurtdFia4niggzZJupCYBlJdah1BjsRPnPMCN9jwSZzpimhSUMAZUAY16XzOsl7Zawkdjp\nAsnhf/wbkFYTw1/6O1hHxouV7R42EmLb4F4lv9X4zzEiDrQsG77Oye6mJ/+6/wCuOzILID+tZF+r\nhckgRGxRZFs8RTxRtgPGcP9UYjNpRFGXlQMALErwdKuJh2dmdMt0QCSEVCyqletx38c6+d0ncrRj\neDRZ34xifW4vR9nOJdsqQYhxxDnKd4mVhZJslyhRojfiWCiwYZhkMyuEiWcbQFc6gCrCsw8fwvDf\n/5UmfiSOYP7Iqz3EsUiDIHEkfmqXNgx93IJ27VoFlQ+36RveLf50XMzc8O6EHEYhuGUhXif8kGwZ\nOkjqYVVraF72C+mFhKZfg2lLKCDbhc1uIKwnpo2EuR5ou5XKiOY5UWnE7ySk0CQ1hCA443ly2wLP\nNtCdl60KHNUkJpurroiCkT3evvDl6VxvQFgsbAesPgCeLcIEumwdqTEoG0nWamQlZJuEoVgfx91k\n17gOI3/7GXFP2hnPNgBrckKcvlHg+bfmKJC0LLC16zB79fXF2/wcIuYcLctCp0daywGzVX0O+Xy6\n2UIrjtFwXGQDR4SNxEr9rfD/PLoHHca6CJFNKH44MYknGs2U9UTZSPyY4Zof3g2fMR3d5xCCTswk\n2U6UbUW2c5Vt1k22lY0k5Ly0kawClFPrEiVK9IbK2TYsDwri5/ikUQyyKQVRKAiz8lUrBdvvIDxt\nJ9wn9ohkEGUjiZLjc6OIrJeyLTzEqoBSJNfG6zbI1IQ06XNv/E1Mzs7CX7cB7YsuPtorcXQgBMHO\ns7qWZW0k+t9BkbKdbKMIIyAKBkWEnZt4oas1kcoSBom6aqdtJICIC4wGhwTh7CLV+U1XUqQ9G7mm\nyLayZWTvA20jkZYOy0LnwpcjC6V2s6GR7rhIpNX1Lk95tj26um6KvDmuuHaku2FN3vFIHKfvH2Xn\nmZ0W65uNbjsN5HWaw7MNSoujAVconmg0cFKtllt8OB/EAAJqoaPulZymP21zclqgbLuE4LDrIT2d\nT9tIAKFuJ8eV7y3p9mzPhlIwMD3blKBqWZiNIk2oiVF8GTAGx3EyZNvSx9RjUso2usn0kOPAlep4\naSNZ+SiV7RIlSvQEUR35cprbkCgUJEcu70odiSJw19M+W+3RbrcRD40gHhpGtOkEo0BSRvOpLF9l\nAdCe7RyVl3OtMBLO9UO48bqruwgb3XEK2AlbFnQdlgQZz3baRpLE9aVgqLCmoqw915WqJqG8VhPX\nMgqTqDyrm2yTMBAk3LK6m6tQKn9RKPZsd5PpNNnmbkbZzh6jyGYhY/HaL92FzosuyF2fjDPfs62H\npHz6hoWFxFFS/NjVeCczuVBNc9Tx5PtjTYh7mAa+tr10vYY50khWakObXvjthx/Bfxw+XLj+mVYr\nRXCzUMRUa9c516hjfv4zZLsRRWhEEXbU6zjkVro920aBJCBasGfPnUe2G+rXOWOdRURTm07O61Hb\nuVSkldw3OYVGHKOuftUzjqOa2ogc7/S5t9dq+MRZZyKUNhILJdleyVh9n/gSJUosLZSNhLFushuG\nggAqAtmlbEfgnqeJjyLbtN0CbAvT73o/wm0nJwWS2o9rCdJXoGy7jzwIKmMGCWNpoiVJWLjj1P4r\nQutKIzGU7TBdTKqXszixhJjty+W/eU20TecQnmcSRyChodymWo4byrAihXlKZI7i3XnB+YhOOkWe\nu7eyXZTDrCcFBTYLNjiEeMMmxMMj3Z5q5E8c9LpKJa1Oa2WbgiPxkYui1KinjQTG9hry/aGSbAM5\naroaYy91dy7lewWjXZTHD+Bze/fhkZmZwvUqRk+HgOZco04PZXtfq4XttRrWei7GvIqO1VMIOU91\naQyMSa8i3l02EkowK8l2qkCSkFQTmpPryaReKfsepYgYxyf2PIapIEwRff2apbLNcpRtdR6lbNs5\nSn+JlYPV+YkvUaLEkoGwWBDAXGU7EsSL5dtIlLKtQLWy3UrF89G2zL9WaqRFU0Qw69ke+NY3UPv+\nHWKZoWwD+YVT/QJOaBKDiLRSr20kGWWbdNpJVJ5BcpXS2j7vJeJaua4mqFq5RqZA0iS5lpNLqgFp\n58gsD085HZ3XXiX+KLCJsLqwRnR5trPnz1F+J37j/0a8fiMaV11TbLHoZSOpD2Dm+ncmC9S1VQq1\nec4o7FkgCaBrvVa2Jw2yXWgj6VEgmR3LKkLYU7lm8HuQcfVJ8NXHI0/ZNixW2fd/X7OF7fUaRh0H\nB9ZuQJwhrxFL20gixsBVO3aVQtOlbFOtbKe7S1JU5Hu4rVrFnzz/HGNdomwrJX4yDFJ+8eQ1c/zB\no3vQiVku2XYoRch4bixhiZWF/n0qlShRoj8gSbZICsl6tkNw1zVaifOc9QbZnhVJArTT1pYCNjgs\nEjRgpJdQS6vbgEyvIEQ8btSDURdnsrTS2sdkW9hI8gskdX505hrTVishscbrpM1ZTL3jPQhPP1MX\nFmr1NooMVd9IGzHSUXRb8Vxlu0Dx1ske+co1GxjsuV4r2zkq33zeN57jPzehu0ICOhOb2w7i4dGU\nqk+CsEvZ7iLvmQmDSoMxGwLlke25bSR2LpFcDehJtpnoolgEpWx3OBe/ROQouSkbSeYaPtfpYGu1\nioplocV5qlU6oNJIkveFGecssrc4lGBGku2m8bl86do1OG1AFPe6mftGKeAOJXpyMRGEOvovNSbG\ncP/0NGajKJ9sE4KQM8QArJJrr2iszk98iRIllg4slr7tuNtGIsm27m6oMqM7bYx89r+jcv89GTVW\nNm5pt3SxHBtKyLYmmtqzrZqlWJh52/8lSIx6MIZJt78U6elnsk1I+teBlI1Ekrlszna7aaR8iGvJ\nXE/8aiCbwHDLAnfdhIxGYaozpQZN20hMNdxEYZFf9pcGA7NXvRlsaDg1zq7jqvSXXmkdvWCS2KJJ\ngoK6V20bM2//tZTnXCj/Gc93JpkmayPReejyFwhOaTqtRO03h42EnnYGolNOL1y/kpFtJGMi4nxe\nnm0OICDGZ9+AspGEhOBQZlLaiCIM2pZIA2EMLNvUhvMuK4cab1Aw7iHbQUuep2n84nTphvU4UXY7\nzZJtjybNa5SnuxFFqFjd98SULL4MZIfJLGxCdfRfmUaystHHT6USJUocS1jjh0Eas6llzt4nhUoq\nyXa2XTqJInAn8WQrgkOnJkFbTVgT4yllWxX/kbapbA+BNmeFei7Xc8sSVhKztfG6DanovKS1dqaj\nYT8/lGg2jcQgDAXRf0LZlmRbktysN5oNDiHccZomfyQMNcmOB4eNgxlf+baN2auuEdc1C8vOLeJL\nWp93k+nwlDOSa59jI5n44McS5XuBNgpTjc71fZtZ2Rlil1K2w6BL2Y5H1qSPVWCF0U11XC/3XmPD\nI3rSkQd64nbE23cUrl9OPDA1jWeN5khLjd5kmvVUtk1y/K/nnI//+tiTXduo1JD7htfgfxwaT61r\nRjHqlg2bEvhxnFK2mYzPy6rLgWElycOwI7Y/d3gIL1mTvj8U+fUyZHvISfK0A/n5no1CTcJNTMnP\nvB/HuWkjDiXwZSRh1uJSYmWhJNslSpQAAFR+fDfcpx4HAAx98WZYY4cw+NVbBJFmsmV71rMdhulG\nNqq1eMFP7Uq9pX4nITuyyYf93M/g7PupWEZpykaij2V2+VNKcKZAsp892yA009Rmjug/zsWvAHXx\nk7VJrs20DF4fQOuVr0pyzEOhbE+9831ga9clhzM9z5Yt1Nych3hh4WQPZVucWEX85dhEzNb1CyUO\ncynblIIXeVtt00YSdCn68WiaTHUVSKp9lQKbZyEB4J97HvxzXpg/huOMO8fGsXu6uEhxsZjLRlJE\nxhnnMNfcvnELHplNT/ynglCb1DrUQitzrFYco2ZbsAlFwHmKvKt26BsrHnYOJr9ghIyheMQifg8A\n3r3jJJxQTSfPEEJgE9KlbI/IfVxKtRI/E0ZdpFy9JkAo63nKtmr9XqraKx99/FQqUaLEMYXhybbG\nx1C5/x69ShVJZm0kyrOtwWIgCEBnZ7qSRLjjpJrimISMDY9g6J//Ed4jD4oFimhnH1Cm5zkybSTG\ng3ChFoVjADNzHEBxB8kwhDU+Bufpp4QX2+i8CEiy7bhdpFWT7SjMzZJOXZs8Qmyu6+HZLlJ9k3H0\nXt/VF3u+ICSZMBRNqnJ+rgfSqjgJuz3bbHg0vX0OmWbmpK6AbPczfMYQZpv+LCHCbCcZAxEv9mzH\nPdRlhccaszhjcAAupWhaNtqZczVlS3TVfCbiXKvWkbRpDDsO3nXSdr1PIFuxF2FY3ueVgu8UK4ds\nq31EJ0lpe+E810bSMCbWRWkkrGBdiZWFkmyXKFFCgMk21pwDcQQ6M2WsY1rhTkGlkUAQLMIYqj+8\nC7Xv3QEmi9UUKeGup1VBACmVMlq/MXVYTik4zc+A1r5ws0ByjsK5vgGloJMThp9aFvFZVqLYxxGc\nvU+idsetGPzqLaCBn5Bcw0aSm/hhLCOdds/EjV6EeMHKtkIvIg8sqkCQ27YsoCs4RtFkK2MjySaC\nmNYP7rpoXvG61PrGa9+I5i+8UaynFNGGTUc/+OOMgLGehHjRx+9B5CPOC9NI5kO2d0/P4szBQTiU\noOW4aPMCZTvVoVHgtx5+RPunTeIaMtbTZz4iLSHVgglcnrKtIgE5R8rKkt1ufeYzVES2ge787xIr\nD338VCpRosSxBFHNPhgDQdoKojpIdqWRhCG4o8i0C8Qx7IP7QVvNpFjONdYbMAlytHV7ap2Oa8sh\nVKN/9ef63OJAHCAEjSteB1ar972NxHviJ6j+6D/F37oZkKHMxzFoYxZ0elov4gbJ5YSA1+pAXsaz\nivuT5L0rcSOTRlKEaOs2xHm+Y6lIFxVAJueZg2wv5j2yhO2oMD6vYHlqTGGQo/pTTHzod/S2qvhU\nIdh5FsLtJwMA4g2b0HpVmoyvBPgs7mn1WCx620hYoY0kS7az3HLM93Hn+Dh2rVsHl1K0HKeroUwz\njlC3rJQdQx3XbPNuktqAM93FMQ9KpfYK7qk8ZVuhlfmuzKrjg46dspZYOb/2KJ92ttizxMpDHz+V\nSpQosVwgjRzfZhzLeD+punb8ZHtJtE2/sXVwP+xDBxJl23GBKII9dlAcTpNtYz0ApkiM8QALt25L\nDUVH0mUfZMYDTBUAqq6RwVnnSutJH6tAcmzWxBHYzzytbSQpS0IUCbI9MwVWH8DUO9+XjtyzLLD6\nQK6yrdRq7WHv6pI4PxtJ+6WvBFuzrnvFPG0kLJPs0TXORSh13LIE2S5UtovsJWnPds8JQdH4ZHfN\nhRZ4Hm/4cyi5i0WwQBuJqQDXcq7tU40mdg4OYEPFg0MoWpVqimzHUjWvWlaq+UyeYm6S7akgRNRD\njR+2HXiUFto48pRthXaGbHvGRPfkeg3nDg/jhEoyye7VIXL5pkcljhVKsl2ixM8bGMPoX326K3lE\n5WjriDO/k1gNZAdJ02M8/KW/lWkjkky7DsjEuC70Y8PSRuK44md/SSjDU04Tyw0bA68PYOpXbkwG\nU+DZVmQ/RXYY03aT3DbjfQQ1TvvAs6jc96Pk9ZjKNhPKNgHAanVxHZWi7HrgloVo02Z0zj2/+wS6\n06RUnrOe7kwHyYWgctNfpFu3ZzDxod8B5vIzL1bZznaLTK3vrWxzQsQErcfr7/nryBxNa/oVe5tN\n+HFvJXex6EVcRfRftom6gEmKB21bj1Ep5c041rF9LqXovOB8+DISDxDEtmJZoITANj7/c5Ht//ex\nx/HIzGzXNgrrPBdnDBZPHG1K561smyr2nzz/HPzy9m3YbBRd9uoQ2SsxpcTKQP8+lUqUKLE8kA8B\nd28mWkt5tpViHPhgMktWdZA0lW0mCaKpXBPOtaqpPbC2DViWVra5ZWPigx9DvGlz6vRdWdl5nm2V\nGW0SKs4SNZvkqOH9BCONgzZmtI2EGQoXIkG2AYBXVRtoZd8QRI/X6gjOen7X4VWjGtUEpwvKjmJZ\nPQnzsmORnu1o81bEG0/IX1/0/qs0Eiux2hSiB5nm1hxNa/oUv/nQbhzy/Z6EeLEosolw2WTGZwzf\nPjyGMd9PrTdJcd22tCpsZlyr2D6HUp1E4sv1f/v0Pq0Lm6Q129gG6PZGNzO59ibqto3ff96Zhest\nQuDldJv5r2efhXdsT36to0Bu2si7d5yEs4cG5TY9yHbhmhIrBcfx27b/4HkeaMEXNSEErVYLjuPA\nXqAitNyglKJarc694XFAef0Wj6W+ht5zz4Be8FL9t8hyBaoq0YJzkGoNmJ0B5RyAqO7X12hwCPA7\ncGV2MlUNVkZGgWYDzvAIuOfBrdUBywKVxNF2XVRrNXTBlRYIywZ1HMBzQW079Z5osm/ZAAJUq1VQ\nEHiVCpxqVbTCtp3c97Ef7kFLTSgohdVo6EYqtCZztC0LlMUgrYZQYOsDqFarsGShllutgWSuiQla\nqwO2DTIyAux/pms79R7AdeHU67CO8n5fqmvoVatwFvhZo44Dcta5sLbvQO4RpAWJbd6aev36tTs2\nEIWoDAwABWMgtlX8XeA4sJz8e2wuHO970GcMbB7fcwv9LoyB3P1U4kcEgv/x1E9x7fZt+JVTTtbr\nHQgyGnGOAcfFYemxZvJe9wnBcMVDtVqFZ1mYURY310XV83D7mMjcrlarqLeSHHHX81D1PLiU4gsv\nfQmqrot65hlvGb+wHe1rdi2Kuud17XdxvY6mivIEULEs1HK+86rVKgalWDFYq8LK4R+iiyTv62dT\nibnRn6znOMHPzLZNOI6DkZERNJtNhGFYuN3xRLVaRXsZGxYsBuX1WzwWcg1Js9HVGY80G6gCYO0W\n4gfuRXD68wBC4IQhYj9Ap9mE0lljzwMFwKWCxKJIXyO7WgMF0GEcHoCYWrAAxLYDUq2hQwhs14Mf\nx3CohciyYEM8eIuuc8WywT0PMYCYcdhAalv1uFGt29vNJuw4gh+EiNptuBD+xrzj98M96EURXAil\nj7ZbYJJwqWvDbQdcerbZ8Cgi10W73Ybr+3AB+GEEm9DC62czDodaCKu1rmsHAFYUwgPAHFdYCo7y\nfl+Kaxi+6a2I1qwDFvhZi889H+HQMHjB/h610Hrlq+Cfe37qHE4cw4OYzBEA7TAC0H2MKgAOUniN\nXctCjPx7bC4cr3vQVI47YYifTkxi0LG7OioqLPS70I/i3P068vujLeM6h0j6+jbbbbiUIopjeCTZ\n/kiziVFCMN3pYGOlgna7DZsAHanOTzabqEki/6oN69Fut8GM69pot1FjDBFjsMIQ7Tjuuu6T7TZO\nqdfxodNOOerXTLmw32X3q1arCA0+4dHiz6xKaPI7ndzGNRsrHp5td/T+o6OjXduU6H/08e+tJUqU\nWBSiCKOf+/8AQ2EBjLbTcYSBf/tqunNhHCXdIAFwT9lIVIFkuuEKAN1NUPuEbRvBmWeDDY+CDQyC\nVWuisEylkvSwEHDPE9spv3aRJUDF5LVbIJwnaR2E9LeNREX+yf/TWVmoqmwJhOhW62x4RCdiJIq+\nVZzCAcNGMlBkI7HENbKdueP5lgnR9pMX1eUzOPPsrqSQFCwrt/hRWT+0BaTXdexxD61EG4mZEhIy\njhsfeBD//Ymnluz4ylNcZCNRdo5Z2Z580LG71lfkNa9alibbiY0kRl1ec4dSNOVxVNMYlxC866ST\nAKRtJLHM2jazqrN2jkYUwaEEWxagHNu0uEDStKsUbQMI5doipLBD5KZKJXd5iZWFPn4qlShRYjFQ\naR32YZEOMvKXf4bKvT9Mcqql8lJ54F5Yhw6AsFgXSSow2blQFEim27WTMMDMtW9HLDsU6sYrtoPW\nrleBV2uYfcsvg61ZK3KzVYJFQWYtIAsAXVe2a7fAC4qGSByBO67wNjOWkDdKC/fpB6gW86qIVI9U\nTUA4F63sHQesWhMTFSDJN6e0N9GzHcCy4Z/zQsy+7uru9dQCqAXmVdI+8dUE1X00C0XAFfHpNSnr\ndQ+twAJJM1tbNbWZXkJlXX0rZIsCFVTB43PSHpItXGSc63i9mmXp1JJmJMl2HKEuPfcupWjJyary\ndkecQ1mnHWMy//l9P0NLdmBUZDabWd2M4lw/9XzQK/qPEqIJVl73SAWbFKedAEgllpRYuSjJdokS\nqxXyQWQf2g8AoO0WrIP7k8g8+eBz9zwC+9ABQaTjSKuuANB50YWYedP1kmjHmY6HIZjnGS26Jdk2\nVSv1kLGsJI5uLmXbqyRpJEXbRhHY4BBosyELJBWB6u80Et1i3ijK4pkJAmk1wV0PnRe/FMHpsjhL\nFVIODiHavLXw+PGataIZi+MiPG1n13puCbI+++ZfAlu7fileUt+BF6j/epIyn2SHXvfoSlS2jaJI\nRXzzigd74fHZBppRfjEhk+3GQ87x2Oxsl8KdLcrMJqJEnGtCWrUsXRBokm5dIEkomvJz1GFxt3Jt\nfJZ+NDGJA51Oisx2KdtxlEowORrYpDiNBMaY8rpH6mNQgpwaS42Xrl2DjSuwW2mJNPr3qVSiRIlF\nQdlBLKlsAxCqXByDU6qb1tDGrLAuSGU7RQQrFURbt+noPzONBGGgLSTi2JKA5HUmpFaSWtLrJ3rX\nQ7h9B4IznpcQ7rzXxjnYwKAg24wbKR/9nUZCDDVRW19sxyB3HGi3wF0X8br1id9eEiM2OITWZa8t\nPgGl4v0qXC+JaJ8WKS8JqJVPhuUy2iiOelPgvZRrma6zkhDlKNtH27b9v+x+BB944KHcdYxzUEJQ\ntyx8dPejuO3Q4dT60LCJAN1EP+YcLqX4nZ2np8irUsBNZduhRJP+Tsykqp0o11kyPRmGqWVZZVvZ\nSBaCSzesw8m1euF6RbbdHveTTQisHmR/5+Ag/vJFL1jQ+Er0D1bxN26JEj/nkGTbJBfcskDiGNyr\ngLRbYr3fAQlDQc6jKGUj4ZYNUJqQ7DitbJuNVXiPSDVuKts9yHD7gpchXr8BvFoDnZrsSczZ4BBI\nsyEKjNTDipDeROl4I0z882xoBNbUhCBvmgAQkGYTbM3a1G6kwAt7tOCuC77aUw0cJ7/hj7w/SRSB\n5XTfVAg3b0V46hmF64W9qY/vsRyYxFpZSrLq8mOzs/jc3qfxvlNOxgBjQBBiQyV9nSYKrCcx56AQ\nGdkzUdSl9kaMY9hxcLLrYr3ndtlIYqmMnz86iqebrdRyQCrbRs52yBgogPunpvGvBw6klGsnc+6p\nIE22LVlc/aYtm3HED/BUs4nROZo0FeGS9b1/HbIJgUtIT2XboXTBNpYSKwcl2S5RYhXCfnYfvEcf\nBgCh/ipYFhBH4K4H2k4eaiQMjQ6ScXp780HA0p7tVNtuRXjziAilgCqg7EFUom0npffpRbaVss2Z\nUSDZ38q2avQDAPGIINvctpP8a8cBbcwmExOJcOs2RBs2Lfr8vFrD9Nvevejj9DOCK38RUZ5SaEwC\n2eiawv1nr3177xMY79dKgUmslaUja+344jPPYjoM8eDUNL7w0G5s9LyUokpR3MmQQSjGihBnU04i\nLro7/rezn4ebn96Xq2wrxVmRZYcQPUbVih0QMXrqHN8dH0fEOaoGmc0S16kw7PJEW4RgS7WCumXh\nwenpBdtI5oJFCU6q1nH20FDhNkLZXpbTl+gjrKxvjBIlSswL1pFx2PufQTw0nCLb1thhVO75QbqB\nDATZ1i3Z5U+0ee3SdRpJHAvibarYNFGXswhO24lYeoR7duczwOcoRIuHhkWaBzOa2tD+TiPpvPil\naF18OQCADcsIL9sBJwTBjlPgn/NCAEayi0S8aTNmfuldSzOIFWaBOGoMDObeA1x6gYOTTkHnRRcs\n+PDcdlbcNVTKNkWibIcZZfvJRhMXrlmj/dasoJXKzU/vw0Qm4SiWVo4BafXIfgVEUrkGBNHNKtsR\nS9ar/3uU6jSRTsw0yVaEftBxNGk3bRhOhjhPZWwkagwWCDyLohlFPbs3LgY2IThjcABv2JzfgElt\n08tGUmJ1oFS2S5RYhSBRBOL7ootjs6HtC9b0JEiriWhLxterPdtR4tnOqFOcEK1sV394l3iiGg8x\nTaJziE7ngpcBnIvH9zwfbMGpOxGdeFLhejayBtb0lPAzaxsJnffxjwsIEUWlMNrZ28Kb3njjdUAY\novaD73Yp2yWWANJr3fjF6xZ1GJWUs5KgiPWAbWvibarLgtDGGHEcnfBhZToaUkLAOMePp6bw8rVr\nscaYEArPdqJoZ5XriHGtLueR7Ri8q8DRpRQR49qTrdYr77apnptkOkucJ4N8ZduiBBVuITAmAksN\ni8xtEbFp7zSSEqsD5XSqRInViCgECXzZunsA1vS0WB7HIpc6T9lWFpI4Bge6s4qpJYokO21U7/5e\nt49YpZIUKcuECEVwvn5Xz0tavucgHl0DOj0lxm1G//W7SiRfPxsYQvslrxATBDV+6TfOKtslFg9u\nO4iXwIqzIqP/OMMJFQ+Xb1ifpJEYn98OY3ApRcWiWtnOFhIySZDbUZxrA7FANAGOWY4nmybKddf+\nBhlXyrRnUd3i3fSAq1QSM6u7V9rIZBjAot1k2yZC2Qa6fd5LBXOSUASntJH8XKDPn0olSpRYCEgY\nCjsIFWSbTh2Ry4XCzR1hXdDbByKZhEjfNnc9YeNIHZSAUwr7Z0/nn3Re+cXWvG0keQiMODvueeCV\nCmizoaPz+r6pDaAtCNy20L7oYnE9jAkCr9bSXvgSSwPbxsx171j0YYIzzkK445TFj+duiGFaAAAg\nAElEQVQYImQcm7wKXrtpo25wYxLeVhSjallwaUK2TZIYy3g9l1I0oqjL760826ay/fl9P8OBdkf+\nzVI2kSgzUVc2FLUeEJ1An2238c0DB1M51dpGYs+PbE8FYZe1RJHgipw0LZeybUtS33MbSpbNM16i\nf1C+wyVKrEKoiDluW2CDw7APHxLLVfFjJv5NZW4jjkQBpeclTUD0RgAohffYI4jzCszmQba5ZS0q\nB7vxuqsRqpxpQhGPjOp/i3OTvlcduSrmUuPMeuNr9a5fHkr0D6LNWxGv23C8h3FUiDgTpI5ShDI5\nxKS7rThGrQfZjhiDIxu4BJx3JZkosnxSrab//ur+A7j1kPjeCTnXhDLXs21YOUwbyVONJr4zNp5W\ntnNsJOZYSYbg5hdIin0UiV8+GwmZ0w9uE9rXzrcSS4OSbJcosUpQ+49vwt7/rPhDdiqEZSPaciKc\nvU+kthWNOZKHFfWF5YREokAyT9lWarmzby+mr38nJn/tg+ljmokgRZgjYWReMEh9PLo2vYzQRSnn\nxwRUtQ1POhqavzKUynaJpUbIOBxK4RCCkDHYmc9IO45Rs9Nk2ySAIRf7e3JhXgdISoCL1q7BFRs3\n6PWHffFLWsQMGwkVNpJPP/kUnmo0AYjmNcrSoUi5Ryk6LMZ0GOYr20ZcX5Ysm7nZHcZyyLbwSatz\nesvkwRfKdu/vo/mo3yVWPvr8qVSiRIn5orL7AbiPPQIgaQvOqYXwxO1a2dagQtlmrgfuuCB+RxC8\nWORsc6+SSlwIja6F0eatgOuBZ5s5aN908YODW8WNauYNI1M73rQ5fe4VYCPRJFtd30xRJx8aApcK\nYYkS8wHnHH/39D7wgq6QIRfKtENpSkVW0Mo2oQikak2NAsmQCRuIsmNkPdeqqQ2Q9mSP+b7e3skU\nSN4+No57JycBAJ041pYORZQ9i6IdM+0nV9Ce7QJlW4yBZv7uVrZtQrBGTmqv2Lg8v1TMy7NNaZlG\n8nOA8h0uUWIVQbVM150KLQtszbru7WSiAhsZRbx2nbCRyPxgEgbglYo+FgB0XphEpcWDBZmxvXK2\nFazFebYB2d5cPsCiE7aIZSsljQRIPNtSVct6tsNXvx7BaWcel6GVWF6M+34hIV4MIs7xtQMHC1uw\nK2VbEeEs+WzHxZ7tmHPsmW3AoUlr8i7PNk/IuWkTOSIjAoVnO1Gu1TiHpTqdVraT6L+OtL15lqls\n97aRmMcoWm8RAkoI1nou/uWiCzGywKY2c8Gah2pd5mz/fKAk2yVKrCIo64fOypZNaWavejOitUa3\nM9sCt2yE20/G7OuvBokjQfosC8T3EZ54Epqv+gW9eXj6mZj40O8ASDdm0eclBPH6DfCvezv85z2/\neHw9WrDPG4YVJVYTCfm6OSWL8oQfC+jYOMNGkgomtp2+V+dLHD1uO3QY7/jRPdg7O3e7+KOFIq8f\nfmg3/uTxJ3PWC2WaZsifIv7NOCr0bN8zMYlPPf6E9mwD3Rndqeg+QvQxYs4Rc44fT05pG4lFCCaD\nMHUOnzHDP53YSBSlN5XtWk7jnCyZzqaL5JHvY2HdEMWPcxdIltF/qx/lN3qJEqsJSqExlG0ACE85\nA+2X7tKbccsGbFuQc9vV23LHFc1w1m8AG023DFfQzVgMTH7wY4jXbQA7+bSufO4UlsJGYirBlIpJ\ngJUUG/a/Z1sp2spGQvp/zCUWhWYU4e9/9gyqloVWFOG/PPCQtlgsBVTCSMAY/vPIka60D6VsA4J4\nqqztUMX5xTFqlp3r2daplIayXeTZBgSRbcrJfsQ5JoMA909N46oTNun1+2VBdkeeqxPHuqW5YxRI\nKpie7Wwet3pNJt6xfVtqebZI8cpNm3BCpYLlxnwKJHcODOJNWzYv+1hKHF+U3/AlSvQ5rIPPAfLh\nlQWdnID9zNOisQsSP7D2bJuJImYRkGUlhFsSdE4thFu3gzYbiE5IPNomZt7yy6n4vaN/MYu3kfS0\nihDa92kk+n0wJgj9rsaXWBwOdnysdV2cMlBHEDNMBAEaBZ/phUApzTV5TwUZsm1G77mUohOL9b78\nf6/oP+XTdijRRPiOsXHcNX5EH59xpJTt2SgWDXQYQyuOMeo6OFHWITiE4IAk24HsSCuUbRXDlyjb\nCl7mO+PK7duw3agZySrDF60VaUlVeT1opkHPqzZu0IWWy4n5dIccdGw8f7i4n0CJ1YHyG75EiT5H\n/dv/G/ahA7nrand8C0P//I8gSiWTpJtEaWUbQKrrHZcFklx21VMInncOwh2nFqrT0ZYTF6VML4WN\nhPdqXLMiCiSt7v/3+ZhLLA4pT3Qcg4F3qcOLgVKqVffHrHfbVLZdSsEhHv5qDK04RtWicCnpamqj\nCLZNEmX7yUYDP2029fFjzlOe7UYUYdC2EXEuiy/zLR+K9HdihopS3rWynXwvuZnPx++efx6G3cRn\nnWfDsAnBRhmhWeRlX26cNjCAEypljGc/4FOf+hT27duXu27fvn245pprupZfcsklaLVaS3L+sl17\niRJ9DhL4IiUkB0wWKxI/aUoDoMtGAiCt+FoWuG2liiBpq4lwx6kIT1q+hh3tl7wC0YYTFneQHvGB\nnK4ASwZNK9vti3aBVcv0kdWMNhNk26EUPovBeB4hZmCcLyiGTinbbakUZz3VIWNa5XUN0q0KHWej\nCNtqNbiUws8o2+pQDk082wHnmtgDAEO6HXsjilC3LFBCMBNGWnEHoLs5UkCfy2dxd4GkZSrb3ddE\nNKWhudF+APBXL3ohHErwtnvuW9KJzdHgmq1bjst5S6TBOcdv//Zv99yG5NxDecsWij5/KpUoUYIE\nQUKis5APEfvAcwAAZ+8T8H58d7pAUm1q/tu2RYGeVJyY54G25Qx+GYt1ou07gMU2bMkWFJpYAWkk\nPGMjYSOji78mJfoanZihYlFBtmOmCwdNfPKxx/EbDz68oONHWtlWXuyMZ5unlW0gaYcOANNhiGEn\n49mWSrXaxiE0VXjYMb6TYsOzbVOC2ShCxbLgEIKZMETNTr57FJkedhxtYzFtJMq2YqrZbsFn+pPn\nnIW6ZeUWIY64jraKHC9lu8Ty4Nd//ddxzz33AABuv/12vPOd78Rll12GXbt24S1veQs459i3bx92\n7dqFt771rfijP/oj/Mqv/AoeffRRHD58GJdeemlqWwB49tlncfXVV+P888/HHXfcASApIPZ9Hzfc\ncAMuv/xyvPGNb0Sj0TjqMZdku0SJPgcJgkJlm3baAAB7/zMAAGt8DPahAyBhKHKzMz5tADp1pH3h\ny3Xb6dhMKulziMSR/IdvsPMshCfuOMYjOkpkbCQlVj/aMkda2UjinC6MD0xN49ACiyaVkq2I8k+b\nTV2kKNYznXOtyTa1NOGfDiOMOI7wc8tjqE+Y2sZUtsVrYnLfEL/36J4uZbtqUdiUYjoK08q2Sbal\nEq8mI0BiI0l5tgs+K9trNZFlPccEOxtVWGJl47rrrsOXvvQlAMAtt9yCG2+8Ef/xH/+BO++8E5s3\nb8btt98OANi/fz/+4R/+AR/96Ef1vmvWrMFtt93Wte2hQ4dwyy234NZbb8XHPvax1Pn++q//Gpdd\ndhluu+02XH/99fjsZz971GMuyXaJEn0I0mqCNGYAxkCisFDZJq0Wok2btaebBL6wnUQhWKWSq2wH\np5yBeO16xBs2gVeqYtnpz8OK0X56dImMtm4HW9udK95P0O9JvxdyltBgnGM2XHhBYydObCQBE8p2\nV2MYAPUCUhlzjn95bn/h8U0l2yYENz3+JP7nT/fqZRHnumukpxXupPnMVBhi2HFSCjGT3wiKbNuE\nwjVqJTqSKM/I66KUcJtQNKNIvF5CMJ2xkahzDDm2JvY+i7tap3spZbuYqjjziNdjpbK9qvCyl70M\nP/rRjxCGIX7yk59g69atuPrqq/HKV74S//7v/479+8Vn5dxzz4WV+UyNj4/nbnv22WfDtm2sXbsW\nsXzeKhvJo48+is985jO49NJL8elPfxpHjhzB0aIk2yVK9CG8h+9H9Z4fgISiKQQKyDZttxCdsAX2\nQfGFQTgHabeFPcRxkixnQCuqnfMuRLx+Y+o4/gvOx+QH07P5vsVKT++wZGFqv3vLS2g8MjODP3ui\nO796vugwodx6lMKPY7AcGwkgrA95aMcxvvjMs4XHNz3aypv9TKudnN8oQHQpBYWwa/x4cgo/a7Uw\nHYYYsp2UR1WNL0op28n6pBgzXVBpEYKAcz25mA7zle0h20FgFEhqG0lmUpD9dxY2ofrcRShtJKsP\nL3vZy/D7v//7uPzyy/HFL34Rr3/963HHHXfg1a9+tbZ/5Hmui7bdvXs3oijCxMQEbNW3Qa4788wz\n8YEPfAC333477rrrLnz84x8/6vGWBZIlSvQhSKcD2mgAsgMbieNc5ZlIso3770G0Zh3siXHQZgPc\nccAtO8lyBroK89IH6m+fcwq0/33ZPWFZmH7He4/3KEocBWbCCM2iuol5oB2LKDxwjoDFXZ5tlYs9\nWJQCxIQSzjnPJRCmsl21LMxGEQ4blhSVhgIIsq3aiH9nbBwBY3AoSRUkAgnZjuWxHUJRt20M2jZm\no0iTbUX0lXqsyHSFKmU7xKkDA/q4Ktpv2LFxJAjwy/fcJz3eNLW/Gg9Bb2V7Pg1qspadEisf1157\nLS666CLs3r0b7XYbN9xwA77+9a+jWq3qbczPivr3ZZddlrvtiSeeiLe+9a3Yu3cvbrrpptQ+7373\nu/Grv/qruPnmm0EIwYc//GG89rWvParxlmS7RIk+BAk6IM2G8GsD2rPNgwDwO4I4MwbidxBtFA0R\nwlPPgH33OGhzFmxgSMT32d02kpXuFeY90khWClhRy/sSfYlmHHdlVx8NOnGM9Z4LxrgukDTV1kmZ\nHlRECpV6HHGuvdep9cZ+SkX2jfGaZNuTZNumBNNRjEO+j2G7W1FXhzSV7defsAkOpbj56X06tk8R\nfXU+RXxVQWiRjUR5tmelt1yp14o8q79fvXEDnjc0mHtd1PHm6sB4vNJISiwfzjvvPATq+QjgoYce\n6trmn/7pn/S/b7755p7bqqJIE8rPDQCf//znFzpUAKWNpESJvgT1fdDmLEgo1Cnl2Y5/9D14P/iu\nWNZpg3sVsOERzF75JsQja/S23POEsp1TIJmylqxEkB452yVKLANacay7NC4E2QJJYSNJjqeIqvJB\nZ6E6PRaNwVxeMRRqM0dbJYK4FtWEthMzHOr4GHYSsn1qvZ7aNymQFORZ2VESZTtNti3Dc22rNJKc\n6L8hx9ZpJGLcyTY3nXO2nhxcuGa0Z7fH+bREL20kJY43yidWiRJ9COL7oM0GiC9m7rXvfhu1v/tL\nIPC1tYQ2G2D1AYAQhKefmW5g43nglQq4lzykVouy3TP6r0SJZUAriualbPsFVpNOzKSHmQjPNtIE\nMGAMA5aVIp8mlM0kKCCNIe/2bJv7teMYVZpWti1C0I5jjAeBsLhIXLx+LQCjQJKpAsl06/N2HONA\nu6NtJCpZJFG2pWc7ilC38z3bZla3qU6fVK8ZHSl70xSbkDk926WyXeJ4oyTbJUr0IUjgg8Qx6Oy0\nXmYdPgjEsc7Qps0GeD3xQqaSR1wPjde+EdHW7clBe3m2VxJWgY0kiz/c83iZmNDHaMVxypZRhOvu\nvjdVmKjQYbJDI6GaYMYZsj3o2GjGMb4zNta1vyLm0XyUbaNOI1DNbuIYVTvt2baJyNmeCIIUGb5y\n0yZ89KwzUwWSw46N7bLduiK/DMCNDzzYZSMxlW2HEsSyWFLBtJFMhCEGbRtfvuDFXa/JypD7ItiE\n9lS2d9Rq2DlYbEMpUeJYYIX/nlyixOoE8X1wSmFNTqSW804bkGSbKGVbIaVsV7pbriuCusLJNl+F\nyvbdk5Nox7FuwlGiv9Cah2ebZWwXJtpxjIplwWUM7Y74/MaGzzpkDIO2gwMdH3/+5E9xyfp07r1S\nj7OdIfV6nqjPZmKIIsKiZXpCtm2jqDDiPGXzoIRgS7WGkHE81Wgi5hyvXLceu9av0+fIG5tS5XVO\ntkV1g5q8NJJ1rquvV7Y40zyPM5eyTXt7tv/k+Wf33L9EiWOB1SUPlSixSkD8DtjQMOjMVGo5e/Zn\nuliSZsh2VtnuPihBuHlrqkX7igRZXcq2ImntRaRdlFgcYs5THRGzaEVzk+0Z1bU1JzeoHTNUpWe7\nKXOp0zYSnlKXs1DbZjtD6vVybCJzWnw2qhZFyBhCJgwhjqE400wjmOwkjxLg6VYLv/Xwbnz/yERK\nXe4i23JMQUbZrlBL75dXIFmxhP+7VXDd1XGcOZTtudJICCFL2na7RImFoO9klK997Wt4/PHHUa/X\nceONNwIQVaL33Xcf6rJw47LLLsNpp50GALjrrrtw//33g1KK17zmNTj11FMBiM5BX/3qVxFFEU47\n7bSjjmkpUeJ4ggQ+4nUbYE1PgbkeaCBjvFotkFod9MgYvJ88jM45L0p2omnPdh5mr337cg772ICu\nrgJJs4itxPHBLc88i///uf34l4suzF3fVD5rxnRzmCwmZS1FyDj+/eAhXL5hvc6MngxDDLsOjsQR\n2nKynLWRmPF22Yg/lUYyl7ItWqorgmsjYBx3T0yiSqk+XlbZBrqb6ZhK8ZPNJl40OqL/zto6Es92\njo1EK9sJ1TDXnzU0hPum0oKCPo/cd05lex6e7RIljjf67on1ghe8AG9729u6ll900UV4z3veg/e8\n5z2aaI+NjeGRRx7B+973PvzSL/0SvvnNb+oQ8m9+85t4wxvegA984AM4cuQInnxy4Q0JSpQ4pohj\ngDGwgUHQqQnwgcRvyAMfiCJU7/0hrIkj4HICCqDbRrJKwVd6znYGij+VZPv4YUwWIt8/NYVPPvZ4\n1/qWJMhffObZwkSQiUDG93GOz+19Go83GgCERaQTxxiybTiEoi0V8P88cgT/OS460QWMpbozhhkr\niraRFCjboaFsK4Jftyz4LMYfP/Fk6t5ypbJtku2aXUy2gbSardb944vPg0cpGlrRT2/rWVR3dzSt\nLZZB+j98+qn4m/NemPua5u/ZnjuNpMTqwp133omPfOQjC9q33W7jkksuwRVXXLHEo+qNvlO2t2/f\njqmCmW4We/bswdlnnw3LsjA6Ooq1a9fiueeew/DwMHzfx5YtWwCIlp179uzRqneJEv0M++B+wLLA\nKxVQ30e4cTOsiXFwQkB8H6QaIR4WSlM8PKr3M1uYswJle1VgpXeQzEClPrSihBD9aGICF4yOlj9/\nHyO40jN8x9g4fjQx2bVevTf/sv8AXrtpI9bnfL4mZbfXRIUW/58MQow4DighcClFWx7rp80W9szO\n4uXr1iLMKNtZpTt7zCxCxlGhVBcLUog0ENVK3dxLKdtWStlOU4Es2Tb/1oozpahYVOdkZ7etSGW7\nalmp+9ijFB894zQQQlC1rFTxpAlFsudWtumcOdsllh+dj7xvyY5Vuekv5txmod+NDzzwAF7wghfg\nz/7szxa0/0KxYp5Yd999Nz7zmc/ga1/7GjqdDgBgdnYWQ0NJc4jBwUHMzMx0LR8aGsLMzMwxH3OJ\nEvPB4C2fB5mdQf3Wr4M0ZjH0T18ACUMwqU4zqWzzShXwhbJNggCtl1+KeNPm5EDyocW8Sr5ne7Vg\nlRVIshwbyScfewKHjA6AJZYXqoFKUeJIK461elrkrZ+UyrZSoVUSyEQYYFS2YXdoomwD0GQ44Czl\nTc76w7Vnu0fTm6plycxpKjOxCWaiMPe1qjQShVqG8GZtGWmyTfT/K9TCjGzIc8HoaGq9J6MOs8cm\nhODCNWtyX0feOefybM8nZ7vE6sODDz6Iq666ChdeeCF2796NW2+9FRdffDFe/vKX45ZbbgEA7N27\nF695zWtw6aWX4sMf/jAA4IMf/CC+8pWv4P3vf/8xHW/fKdt5ePGLX4xdu3aBEIJvf/vbuPXWW/GG\nN7xhUcecmZlBQ/7MpxAEgfaFZ2HLAhK7j9MCLMuC4/Rn8Vt5/XqctzELN45gH3wOrt8BGxxC53Vv\nAh07LDYYGhb/r1aBdgskjmHFEVilkhovlWpbdPa5IFu2Hp/XcgyuoeU4IPbRn6df70FFeXxAvCZJ\n/Drq7z5Cv15DEwu5B6vy9USSy2b39xnDkONgIggQEJJ7/Allp5DvH6Niu5mYYa3nwXEc1OIYTYNs\nN1iMe6anceuhMZy3ZhQn1+v4abMJRmnqHKpGIbtcIQZBzbbhUoqKY8OhFJ5loWGQc7VfzXVgWxSu\nYR0Zrnip47qS3FMIVdyzbb2+4jpwKYXruqjaFhoxw9u2b8N127cBADyZMjLgefBsGwOOvaD7mMox\nVF0XjllgmbkHBxwHddftq89KPz+LVwva7TZuvfVWPPbYY/jIRz6CyclJfOc73wGlFBdffDGuueYa\nfPSjH8VnPvMZ7NixAzfeeCN+/OMf46abbsI3vvENfOpTnzqm4z2qb8wwDPHDH/4Q+/fvx7XXXotm\nswkAhQR1qWAe/7zzzsMXv/hFAImSrTAzM4OhoaHC5Sbuu+8+3Hnnnallu3btwiWXXNJzLKOjoz3X\nl+iN8vp1o8M5RoeGEAIYHRpCEMcYPX0nGAFCAPUTNiMCYNUHwCeOgLIYFUphrV0Ly4gIYxZBAGDg\niitB16w9Tq9m+REPDyP2KhjIxKPNF/12D1od2SW0UsH69eu18hlXqli/wNe43Oi3a7hYrDkiIja5\nJKDmdeecI2AMWyoeJoIA7sBA7vsysedx1Gwb1QGREFSpi+3C6RlsGR4W7+1sI6Vstznw2Z/uxZGO\nj8u2nYgvXXgBrvvWbagPj2D9cPLMqshnbbXg3Na+n2HQ82ARguGBAVRsGwOVKkLHwc6REfzPi1+O\nuiR/59br2M84ZsNE9d66fj3WG89I0ha/Hg+6LqaDACNDQ/q8s54H17Kwfv16DFUq6DCOkcFBvT6U\nY926YQOGJ6cw3PEXfB9fsGEDNm/cmFsAqe7B31qzRvi2V1FCUYm58cIXCq//GWecgd27d6PZbOKK\nK64A5xwzMzMYGxvDnj178K53vQucczQaDbzmNa/B8PDwcRnvvMn2ww8/jKuuugqe5+HZZ5/Ftdde\nizvvvBOf//zntWS/VOCZ4pDZ2VkMylD6n/zkJ9iwYQMAcZG/8pWv4CUveQlmZ2cxMTGBLVu2gBCi\nx7llyxY8+OCDuPDCdJX5eeedhzPOOCO1LAgCjOU0FADELHp0dBSTk5OIMh61foHnefD79Kfn8voV\nYyAMMHnkCKpBgOaRcVT9DsZnZmEFIWoAZkFQBRA5LiwAPAjgz84g6viIjPuVzM5gAMDE9DR4QSe6\n5caxuIZ2owk7DDFd8Fkt3K9P78EJWZw3Nj2NsbExdCSxeHp8HDud/lKQ+/UamljIPdhptQAA023R\nkMZ8DoSMgRICRz6WDh6ZwFgOsXtmZgZbqhVMTItGVEfk+/nM5CQ8QsR7G0WpYMDJdhuetEmE7TbG\nxsZAOcPBI+MYCpLXMDk9I485hbFKt0VsttWCwzlixhC027DAwaMQB6en4YKjNTWFltyWArhy7Rr8\n/d59+m9/ZgZjxjVry3uwRimmAbQbDX1NZtpt2PIa2YxhrN3RYweAKTl5nJmYQNhuw+Gs8Lk6F353\n5+k4Mj6eWrZa78H5ol8n4Mca999/PwDgsccewznnnIOpqSl861vfgm3biOMYlmVh586d+OM//mOc\neOKJAADGGO66667jMt55f5O/973vxR/8wR/ghhtu0DPKXbt24d3vfveSDuif//mf8fTTT6PdbuNP\n//RPcckll2Dv3r04ePAgCCEYGRnB61//egDAhg0bcNZZZ+Ev/uIvYFkWrrzySm2av/LKK1PRfyrB\nRGFoaKhL7d6/fz/CsNvjZiKKojm3OV6wbbtvx6ZQXr8cRDFi3wfiGHGnAzCGkHMw2wGnFKHjogrh\nxbYAIAoB30dEaWq8RPo8Qw7w43SNj8U1JJzDAhZ8nn67B31ZWDcbBAjDUBOd8XZbj/Omx5/Ar59y\nMip90pCo366hiYXcg4EkbWriY+7fjCK4lMCR4mojCNDo+KlGLDHnGPN9nDZQR0fu2w5DhGEIP4ow\nJMdEM5br6TDE5qqozbDleR1CMNHu4L/tewa/fYZ4bvlyfJ0w/7r7UYwqpeiwGJQzUQAJYNL3USU0\ndx8iiy7ff+rJqBOS3kZaNHQkIGd6fYVzbK1WEYYhPEIwE4agnOv1HVUoGkWgnBeef7FYbffgSsd8\nihqXEooLHj58GH/zN3+DAwcO4PLLLwelFBs2bMCXv/xlfPKTn8Sv/dqvodPpwLZt3Hzzzcd0jCbm\nTbYfeeQRHcmnCG29Xke73d2adjF485vf3LVM/VyQh1e84hV4xSte0bV88+bNOqe7RIm+BhNRf2Ax\niN8BHAcgBLxaBa/WwOWDj1dknF8UAWEA7rjp48gHI+/RHGM1INy+A/Ho3AVWKwXKVqsK71SR3oTx\nsH5gahqNKOobsr3aoAoPp3IIkkoGUekg7TjGdXffgz8/9/k4sVYFABwJAgw7NmqWpYsb1fsYMV5Y\n7NdhLOmUqDovUopDnQ7unUxSUZICyfxfrALGMOw6iEMOm4i28C6hOBBGOKGSHwOqCguz3SqBpDhR\nNdoxCxCHHAcfP+tMACLxpGkUjwLAes/DL28TSuKo66B9nH5lK7F6sWvXLuzatSu17Oyzz8arXvWq\n1LIdO3bg3/7t31LLtm7d2rXvscC8TU4nnXQS7rvvvtSyu+++u4zTK1FiMeAchDEQFoPEMUino0k0\nGx7F7JuuT0h0RTzYSRyDBAG4mybbuoOk1V/Wg6UGr1QRb9h0vIexZIilsaCpyLb8v2qSAggyFRQk\nUSwV9kqv7c8jYqnyqis8Y5DuLNlWqTF3T07obQ53fGz0KrAJRUcSYtWRMuJMx9i5OfYTRaRVzrZL\nKcaDAKH0igNJh8hs/rYeI2fYWq1gW60KhxCdRjIdhqjktEIHAEvGBOavU2RbFn7V4A8AACAASURB\nVCMWxO9VZCMtx3hdFiH4xS0iJemV69fj+m1bc/ctUeLnCfMm2x//+Mdx5ZVX4vd+7/cQBAH+8A//\nENdccw0+8YlPLOf4SpRY3ZDNMhDHQCyUba6q2AlBvG49uGWLhAODXNNOO0fZttG66OJVFYv38wAV\n/RfEaUVU/Z9xjojzQlVzKTARBPi9R/cs2/GXArcdPpxK8lhKxBkS+/Z7f6wnParhjEspKJJfIB6e\nTorwD/odbKh4cCjR+3Xk+xlxrsmqTbszof8Pe28eJslVX4mee29E5FZ79Sa1ulvdarVWtCKJXUYD\ntsDY2AYeYPT8eI8PezCG9+xnwOPnB7ZnPJ+BgbGNjd9gG8OMBmyzyMLGyMZgC2FbCISE1Gq1hNSt\n3rfqqsrKyiWWe+/74y5xIzMya+mq7upWnO/T16qMysibkZmVJ06c3zmGUBsiHlCKaX2iZZ5v7Cjb\nR3KuJkdC4NqREfzctq3wKLHlNnNJ0hO9Z8AIyZDk7m0AMKRP3PvlWBsi7xd/cwoUGIhFk+3Xve51\nuO+++3Dq1CncfvvtOHDgAL785S+f9RaeAgUuJBCT2cs5iJQguSSaQfp+qlwDIO1WSsrtjQSdF/Va\nqgqsbViyrdXViAswQtLWQJHdvhpoJokliWsRXEr8+XMH8cOuuNaVQpKjGNc10Y2EtMr2ZBBYsu3a\nI050QmwqleARkirbwijbMqMgu+q2S4R9h2yf1mTbqOiJEAgIwXQU4ZcefawnRCDWawSAEmW2Kr3F\ned/SGJ+QviSZdtlI+pFts/5+pL1AgQIKS7refOONN+KTn/zkaq2lQIHnH/SXKdFDRdSxkRiIahXh\ntTeAOPYQIkSPjaTA+QnjDomFwBcOH8HlY2OoMWaV7HiB9sCVQJNzRFJCSJkbs3aucajVRotzW6ue\nBynlslvluJQY933MOPaRehxjQ6mEUNtIXr5uEjXmYUqnhCTOyc/JMMQNY6OYCiPUdVGNtZEImfFq\nB4xZwj7kefYKhiHLvkO2m0lK2MuM4ZBWtbkeEjbP16wRAK4bHcGWSgXf0ike/cj2IGW7m2z3s5ts\nrlT0mtfee6ZAgbWERZPtD37wg323/fZv//aKLKZAgecbSBfZzthIDDwf7Ve8CtUnH++5vcD5D1PX\nHguJvzx8BL9UraLmeZZkG5vBQp7tfzhxEgGl+JH165a8hrZjmViLQ5h7Gw0AGEi2f+bBh/DrV+zC\nKzZXlrz/REq8asN6fOHIUXtbPTaNkIrIXjc6imbCsf9EU9+evh7HtWd7Noqtot22NhKR8TwHjoe6\nxhhOaWIdOAOSp3UbZVPbzBIpUWEMB1uKbE9HMX7hkUdxz4tvs2v0HbKuLC3q50Fk21uAJFfoYGV7\nR62qHnOBSvUCBZ7vWDTZPnToUObn48eP4/7778dP//RPr/iiChR43sCSbfXlSjptyHI191dl95fm\nGlQgCywdXCoLQJtzcCkxnySo6ZQHQCmjwMLK9uF2u68/dyG0kjQJZS2S7akowsZSyarK3TBWnM4y\n1f9ESmwql/Gpm27Az3//UQCwCnXkqMYVxtDQt7uvx1QYYkMpwLNNapXqfjaSEmW2mbHmMRxqpyo3\noBRuc4JllO1YCFQZwwmd3WzsNOZKhLtGA6M2m2jBbviULEiSzXuhHynfoFtrW2vYglSgwFrAosn2\nn//5n/fcdt999+Hzn//8ii6oQIHnFbRyZZXtTgdiZCz/dy/wlJHnK4QEypRiXhOWZpJgyPOssmq8\n2gfbLVwW1TDRxz6UR7gWi2ZX7OBaQ5tzbK1W+irbhoQGy7QzcB3Pt75UskTYHn/nuJYZtcfKXHkQ\nUqKeJBj1ffiEINSKtjmBSYTMkNWAKf93RwhUmYdESrxv105s103JKbGnPcq2wdOabJsrEZEQKHW9\n9kaN3lbNP3lXNpLBx8vXQ6H9lG1CCN69YzuuHhkeuJ8CBc417r//fvzt3/4tPvrRj56Txz+jb+8f\n/dEfxZvf/OaVWkuBAs87kG5lO89GouEq29Flu1Z/cQXOCgQkSoxiShPJ+STBkMcyCRQAcPfBw/ji\n4aP4mc0X43OHDuPuW2620WyAIl7JMuMBbcb3Gs1EbiUcW6tV/Ovp07nbn2uqfsTlPn9Xffa0smwy\nt0OHyJorEJ4zwDqfJKhQquP2lLJdYSq+T+1bZJVtxhBQCoFUfXavSBiyvalUTj3bQuKF42N44fgY\nvnjkqCXboUO2u4cdzftpoGd7AWWbEbWefp5tAHjVxg0D91Hg+YHbvnTPiu3rO29YWceEGShe7kzH\nSmDRMsi+ffsy/+3evRu/8Ru/YWswCxQosAyYy69R/wFJC/2l2Xrj2zD/2sK+daFASIkyZTbjeT5J\nUPU8x6udEuCOEDikfbuGiBlEQvRE2C0WZl/RGlW2W5xjMghsnF43jLIdLzOxJZHCqreGWLrKtiHF\nPlFku8yYfazZOMZo4Nv7hoJj3A8QCoE255noPwAIKLPpJobsutsNMbhudMRG/yVSYGO5hJ/efDEm\ngwDHOh0Aimyb19zrUra3Vit9C20AnVrSJ4PbgBGCICeusECBc4n7778fP/ZjP4af/MmfxG233Ybd\nu3fjL//yL/GiF70IL3nJS/D1r38dAPDKV74SH/jAB3DnnXemw8RhiDe/+c34xje+cVbXvGhle+fO\nnSCE2D8E1WoVN954Iz772c+u2uIKFLjQYZXtRCvbcWQbI3ugbSRi08W2TrnA+Q8uZaZ4ZD5OsLVc\nSotMutRak1TRTSwjITIJGUtBS9sVQpHvvf3NPU/ixy/ahJdsODcqZotzjPu+9UF3o+nE9C0HXKZW\nD0O255Nez3ZAibZ0UMxEai2zcYwxfTXKpwRtrlTm9aUAP/vQ9zAZBBkbSYlRBIxCIvVCu9tfu2kT\nXrVhA741NYXDOn0kltISc58Se3IUctHXPvTydevw8nX9h2VfMDqCrdXBw6SUEJQKsl1gDaLdbuPv\n//7v8dRTT+F973sfDh06hIceegidTgd33HGHbZO888478eEPfxj3338/ms0m3vrWt+JXfuVX8LKX\nveysrnfR39hijSoeBQqcb6BzdZR+8DDaL78jHZB02gLRR9k2New9g5IFzmsIiYzfVinbNcRSQkrZ\nQ6rt4F0XsVRk+wxtJH3+zv+gPocx3z+HZDvBeOAj5CI34i+1Wyzve4o7NhKfEhCkKn8sRSaWD1DN\niYmMlF/bIdseoYgER9nzrSVnOoq6crYZap4HD9xRtrNkvMSUJYXrOMbnmi1sKKthRJ9QJFLaNS7X\nq88I6ev/N/AIwS/t3IFNAxTyAgXOBW688UYAwBVXXIG9e/fiqquugu/78H0fQRCA679pt9xyi73P\nvffei9e//vVnnWgDS7CRFChQYGVAZ6fhP/csyPwcqt/6RwCpZxsApN/nHFjHcNl/C1wQEFDDeami\nGqOi1cTEqew2MJFy3SQ8PBMbCecgGOzZPpfDk23OMeR5oPqYdKPJE4x4Xt86c4P9zSa+efJUz+2J\nlI6NhKLm2HhCLjOebUARck+vpVvZ7uhSInN/iSyZDhjF5koF/+maq609JU85Nq//3kYDNY/ZQUdD\n+Ic9D6Hg2uayOl/lE0GA60ZHC2W7wJrDo4+q1KCnnnoKV155JQ4cOIAwDDE3N4coisC0KEWdz8Zb\n3/pWlMtlfOITnzjr6x2obG/ZsmVRhvKDBw+u2IIKFLjQQeIIJIrgHzkMb+qkui1xyHa//GxjHWEU\nWKODbAWWDiFTb2zCOZpJYofSYiEyNpISpbYsxb39408/g9NRhPVBaVlraCUcI743kFCvNtmeiSJ8\n4+QpvPGSzT3bWpyjxjz9/HvJZTPhGPX9vvGIXz5yFH93/Dg2lsrY02jgjg3rM9u5lGCOyjzEmLWk\nREJgVJ8Au0q0T9XrMxvFGDVkm6gBSUoIfvfaa/CbT+7FsU6nK2ebIU4SDPuefR5ezqCiRwgSIfFs\ns4lrRkbS+2uCPqxfrzNJoRmEL73o1jVZcFRgbWKlhxoXwsjICH7iJ34CJ0+exJ/92Z9h9+7deMUr\nXgHGGH7nd34HQO9AJCEEH/vYx/Cud70Ln/nMZ/D2t7/9rK13INm+++67z9Y6ChR43oDEMUgcgZ12\nFDZH2e5XVmPtI8SEkxW4EMB1VrJPCcCVZ7uk4+HiLmV72POcOLj09sfn5jAbx9hZW56y3REcY74/\nkFCv9vDk4XYb/3J6Op9sJ6p2vMwoQsEx3PXV1dQ2k36e7ekowukoxnCfz1Yi3DQSggpJc85dMuvT\nVP32CUUsJOYTjvU6b9rTnm5GCDaUS7ioXFJk2/VsUwZhLCuk17NtYPZVjxOrnKs1OMq29WyvPCku\niHaBtYyrrroKH/nIR+zP1157Ld7ylrdkfueb3/ym/f/bb78dt99+OwDgj//4j8/OIh0MJNtmYQUK\nFFg5kDgGicIM2XY92wMHJJlXlNlcYBBSgoIg0OpmLCVKlFnl1LWLDHseTkcRKLLKtq0GX+aAZMgF\nRnx/IKFebbLd4jz3MWIhIKAU3RJlCIVAPU7VZEAp2xtqpb7P35Dh51qt3O1JZkCSouYxzMQx6nGM\nx+bquGpkCIAioB4htur8D559FowQXOupnGmjfDP9EQ1ovic7RBozqO6XQ7YJQSLVc905VLO3m8cY\n8dTJUSzkqijbBQoUWDksKdLg0UcfxQMPPICpqSmbSgIUde0FCiwJcQTCOdipk/amjI2kT842GFMW\nkvMQs3GM39qzF//1+hec66WsOQhIUJKNbiszCk8rp7FQnuFQCAz7HiRUdrIh4VJKq0gv17MdCqE9\nwANsJKtsXWpxnmsDaXOOKmMgOhnj8foc/tv+52xVubmvspHkP/+FBkd5xrNNMKQ924/V69hQKuGl\nk5P2dwNK4VECnxA8MlvHxlIJVZa2PwKpB7uUYxMJGLPbDcnO80R7ehByLk4w6ijy1kbipTaSoi69\nwPMJrkp9vmDRn9BPfepTeOlLX4pvfvOb+PCHP4zHH38cH/vYx/DMM8+s5voKFLjgYIYh6dxsepub\nRtLPRhKUQDZdvKprWy004sSWfBTIglvPtms1MDYSgVgI1BhDoMkmoNoFDYGMhLQZ3ctNI4mEUJ7t\nczQgmQiB+SRBJFU29QNTU3ZbU5NtQKnCphrcFXyaibJa7GnM4f4TJ9GN7pSSehzjgKNyZ0ttCGqe\nh1gInI5iXFKpZCwVZjjSPPpUFKGmk4JMhGNKtnvrzgNKYX501fRueISAS4m5JMZIl43EJ0RbakSm\ndKdAgQJrE4v+hH7kIx/Bfffdh3vuuQeVSgX33HMPvvjFL8Lvp8IVKFAAAFD9+t/a0hqgi1ib25LY\nerL72kiCAKX3vG9V1rjaiIRAyPMzkp/vMDYSV50sWxuJ8mzXPA9lxiwpK1NmVVw3G3u5DYqhEBjx\nPER9cqyBwTaSzx44iEdn68t6bAD4vx/bjU8/dxCxkDjUauMLh4/abW3ObQuiitxTz7HjqPmRVub3\nNVt4eHq6Z/+xlNigrSQVRvHg9DS+ePiI3d6jbOtWxuko6onHC4gaXo2cx6866wNSsp1vI3GVbb29\nn2dbSG2ZSf8mmEKcElUxg9+bmYHA8l73AgUKnB0smmyfPHkSL3/5y9WdKIUQAq95zWvwN3/zN6u2\nuAIFLgQEzzwN2m6BdFRBhbGMyHK2UMI0R/a1kZzHCAVHLOWybQ4XKvbMNfDZAwdBCTK+2xLTA3hS\nIJYSNY+hwpgd0CszZtVaV3FOpMSXjhzFfcdPLGkdyqIyeEBy0LZjnQ6mdIvjcnBQl7eYYh73sVqJ\no2xTastmZiP1OZpPElR0BbrZRzdiIWyBS415mIuTTANnItJKdY9QlLVt5WQYYjLIfh59qiw+7hot\n2dbKtlHCTUOjS7Zv27gBt05O6H2Rnu0GJvqvHicZf7qnr3CUGMNUGOG+EydxqY4FLFCgwNrEosn2\nJZdcgv379wMAdu3ahXvvvRcPPPAAggVC8QsUuFDBTh5H5Vv9K1/Z1CnU/uFvVEskTzDyF58BbcyB\nxErZluVKRo8yJLtv9N95jDSzuFC3XZwMO5iJYz1wl2ZtG2XblJbUmIeKq2w7NhK3wpxLibsPHsJn\nDyw+jtWQ9hpjy04jSYS0SvNyYLzLJle847xPWpyj6qU2EtMW+cDp04iFwNPz89heq1rimk+2JbZU\nFNkuM4pGkthUF/O4nqMyK/WY4Hing/GukqmAUjBKMseqpq9GmaQQc05Z0hGObgTZVePjuG5sTD/v\nXjKeHhMV8xhpG5H7+EbZPtbpYEulgrdfui3vsBYoUGCNYNFk+/3vfz/27t0LAPjgBz+Iu+66C3fc\ncQc+9KEPrdriChRYqyDNebDTp+AdO4zKv/wTkPMFH+zdjdITjwE8AUkSZR+JQkArcqJSQf3/eDea\nd9wJIFW2L8QqdkNMOkKckQJ6ocFE1VGds11zSKVvByQFNlfKuHZkxNoN3AHJjI1E37aU5JBIe37N\nEOa3p07jLw4dzvwOxWA/eNylRi8VQ857vs1zyLZj05jXivTnDx3Go/U6vj8zi5vGxixxzRuyjKXA\npnIZ/37HpRBSzRDMO8q2ayPx9YlPQCmOd8JeG4k+KTJXaSiAcpdn2qzB5KX3g0dVsklen4VHCOpJ\nbIdDDXyHbB/tdDBZCF4FCqx5LJpsP/roo5jUE9mvec1rMDMzg5mZGbzrXe9atcUVKGAhJUirea5X\nYTH+qd9H5d++BRKGKH/330A6bbATx1JJC7AKNhFC1bILAcI5SBJBUgpZrkCMjoGPjas7BBewjUSr\nr3sbDbzz+4+e49WsHRiCSqGi5Go61aJEVV23KbXZUqngHdu3WQXY9Wy7yrap8V4K7TUDdgGjCLny\nKZ/oOiHqjpbjUuKPnt1nf46FPKO0EnOSAegIQMdy1OJJZkDS2EgAddz2NZu4YnjYKtvNJME9R47C\nhcnRvmF0FLEUPco2d6P/KEVAFKENhcBEro0kJb+VLjIMpO2epQXItk/6b2eUoJXwnuHHgBKUmGq5\nnAp7PeUFChRYe1jSCPNP/dRP4fLLL8eHPvQhPPfccxgaGlqtdRUokAGdnsLwPZ8/18sAANDp0+p/\nmKdsIVKCRBGGv/x5kHaacGDINgCQJFGEm3OQKIasVCH1ZW1Tv26VbXbhKttmgK9f0x8AHOqThXwh\nwijQlADXjoxg51ANJUptyU0sJWIpepoGXRtJKATKlIIC4EIuubo71KUtRtlOpOyx+wTWHqEeczqM\n8I9O7XksxMDhyoXgKtsmbcSo2+6AZInSDElucY5ESntyAgDH2x18sYtsm2PoEYpESDSSGM2E2+fj\n1rW/5ZLNePHkBAJKUWUMZcfCAZgByfQYV73sdiDNQDeWk37wtbKdB4+o17/79fT1icDOoRok0OMp\nL1CgwNrDov8q/97v/R4OHz6MT37ykzh06BBuu+023Hzzzfj4xz++musrUACASvAgcbLwL54FeKfU\n8BkJO6CRUgBJHKnBR86Vup0k1i4CAIQnStXmHCSOIGpDEGU91GRSSHxf+bUvwNKayLGRAMCMc2xc\nNJMEv7Z7z1lb17mGOS6MELxm00ZcMzJiyZ1RtvMaDCuM2ROWjuC4tFbFzeNjSKREsMT3j0u2I6Gy\nrjtdKrVwfhdQjYxAmuudOFnfy4FLONuWbKv9uQOSZUYxn3BcMzKM60dH0EwSxFq1NjaS+SRBm/NM\nNGAspLWHmOxq5Q9XCrprI9lYLqPmqWr4blUbUK+Lu95azsmxVbYZzY31c/fVT9k2t3dfVfD1a7Wp\nVMKY7xfKdoEC5wGWJIFQSvHqV78an/70p7F7925MTk7ife87P6PICpxfIJwDZ6CcLesxO22wUzmp\nDnodJl0E0HF+mkwHex7HxCc+nFG2kSTqfjwBSWLwiXUQ2j4i9ZdpsmFT/9i/8xyGiJnhtlNR1qYg\npMSTcw3rUb7QMZ8kONxuO8p2mkphEiwCQhFpG4nXlVrhRuCF3PiRt4PnKKELIeTGs82sst097Cg0\nGTVWEeO7d69UnAnZjoXAhlIJI56Hln6PdPTnzB2QDChDM0mwsVTCjloNTc4VUaYkMyApkZ7Y/eae\nJ/FYvW6JbaJtJD4haPIEz843saVS6VGYA0pz/dABJfb1qDKGjTpSMPt8UmV7oGebpOvu3Ubt47kw\nrxUhBK9cvw47arW8uxcoUGANYUl/lZvNJu6++278+I//OHbt2gXP8/DZz352tdZWoADo7AxqX7tX\nEdWzTMKCPY9h9O4/VUTZhVbeiHOpnYQdECmVLzvsqNtcG0kcK7sJ5yBhiPbLXonwupsyu0227bgg\n/dpASraNRWAqzGaNf2d6Br/+xB5wKRFLmVElL0Q8OD2Nvzh0OCXb+nafUqtsVxhDW6dRmCp3Q6Qr\njGaU7bImdbFcuLr7a8dP4MuOzSISAiWmbSRckfuw68SWS4kKY/b2KX2yZAYy4zNUtiMh8YErLsdk\nEDg2kvQ9kw5IUnSEgKctHq0ksap0t4Lc0gOQP6jPoSOESnvRz7HNOdaXSmgmCX5Qr+P6sdGeNQWU\nYjyHbBvS/ic33YBP3XQDfu3KXTnPx/FsD7KRkP7Kt7lf9+v5wvExvH3bVgDAz23bil3DhZ2zQIG1\njkWT7Te96U3YuHEjPvWpT+F1r3sdDhw4gL/7u7/DXXfdtZrrK/A8B23Og508rkjqWSbbMlCKVfDs\n05nbCe9V2G2GtuCQOvOWOENmxNhN2i2QMIQYGrbbxNAQkg2bkGy8CK3bX72yT2KNIORdZLur2Oef\nT6nGQGNLuNDzuJsJR4eLHmU7oMQWo1Q9pirMM57tNL85dpTtElVFKVyKvkqpwRcOH8H/OHjI/mwG\nJEvMeLZ7bSRcStQYs7ef1idLRl2PhcgMSIZcLOk1jLWVxafU2kjaOZ5tk2PtE9Xy2NSebY+QHlLb\n4tmTZI8o+4eAOpEZ0vd/Zr6JK3MIa0ApJnJOfg3ZXlcq2ci/vOcD6EHXATaSiSDAzeNjudvMa919\npaLMGDaUe9X0AgUKrF0s+pr1Lbfcgo997GPYunXraq6nQIEsOE+90GeZbBOtaNPZrkY6ISA935bT\nAI6lhHOY8Gw2nVZOG7LtnToJPjGZ8WXLoRHMve0dAID48itX+mmsCRhF1KiNs12e7dNdHuBYysX/\ncToP0Uw42pyjJhSJTG0kWWV7Lo4RC2mtBMYvHOhBP0DZJcosHf5bSNkeD3zMxOnxDwXPRP8p/3Wv\nsl11lW19Ium+Xq6y/Sf7n8P1Y6N4+bpJ+3vEeZ7diKTQCSAkVbb1YzUTbn3RbiNjjTE0E26V7e64\nw1bXSbE7jGhiFpsJR4vzzICmQUBprh/aHcbsB3MitLVaxRs2X9z394Z9D+/cfmnutu4WygIFCpy/\nWFLO9oVOtM8kuqrA6oAIroYjz4VnO0kgfR90LltDTTiHLJczt1HdgAchUk+38+VvyDY7dQJ8Yt0q\nrnrtQWoiVmFpkkQ3mTM/G1vCcmvHzxe0eIKO4JnoPwC4angIb79sOwBVMtPUNhJX2WZE2SHMsTKe\na4+q7OdBSioAjHWptUrZVg2MxiPe4hzfnlKpO0ITxwpj+O70DKbaHXuyZF6npCuNZC6JMecQ+s88\ndxDfmkpPPrsRCwmfqvhDQ5LN3+PuunZAxfMp5T+x7Y8Xl8t4/67LnWPcRbad48J0rrkp0DH7dXHH\n+vW4aaxXdf6ZzRfjVRvW930u6vmotVcYw8v0CcdSYQckF3g9CxQosPZxIYtHS0YjiVFixeW5NQXO\nQeJYDx+e5ZMhnoBPrAOrz2ZvFxyiVAadb9ibTOSfytFWhFKUSjYWkGjllp06gXjrpWdl+WsFf/js\nPvzTqSlsLJVSItWlQrZ5Nq3EpDlcqFCJGaJHja16Hq6uVNBut5VnO1HpID5J00jMUJ0hdKaUhkJd\nVDGKqJQytyyluxExEgIBU9YIoVXtNhf42A+fwcvWTVrluMQoPnfgIKalRF0T6biPZ7vDRYbszifZ\nEplumMSVgFCcTtRnpS3S94qxj5RcGwnz0ExSGwkhBLdOjNt95inbBvbqgBQZMu+in72j+2SlG2XH\nd38mIES91oWyXaDA+Y/iU+zgTOqGC6wShFCxeUmcr2zHMYInHluVhyaJIts9ynaSQJaUsi1KJUW8\nO66yLRDtuBz1//0XIfXlb0O2adiBrFRXZb1rFUc7amB01FfkCECPJ7jdpWYOaiu8ENDk3FZxA4BA\n7/OtstSzHdDUZuJpEmaOkSGqRKve3N6efwxNssdUGKIexzgdxhjxPBBN7FoOKZZSQkgJSohtSawy\nD/U4xhBTiShCR+eZQpwO5+gIbl9TQNlEBqXMxFq9d5Vt8x5xTzZMwYtHibKBcDMgqW5nhMBw6lYy\nWNn2KUUkpCbbK/dV+IkbrsNHX3DNiuyLDUgrKVCgwPmDgmw7KGwkaw9mGJF0OrmebTY7jcpD/7I6\nD54k4OMToPNzmWZICAGp477C61+I6PIrQdrpgCThCfj4pCqu8QzZToclL9TEkX7Yost7ap6HNufw\nCMnYSISU6OjECaOOXujxf81EEVJDtvNsMyaNJHaKaqyyravcAWRyuNWxTVNK8mBsIe/8/qN4/+NP\nYF+zict0fFyJUcw7g4WJzaAGSsZL7jE0kgTjQaDSY0RarvOOhx/Bf9v3XI+yHWsveL/1xFLlYBvP\ntk+IJeuRM/RpbSSE6uMjMu2PQEqqu5Vtr0vZNlcH2iJf2V4u1pVKWJcTB7gceIT0NEgWKFDg/EPx\nKXbQ7SMtsAZg/M9hR7lau0gYifso3isAwrWCzViGLINzyLIikNGOy8E3bMoOSHIOGKWsS9kGoIpr\nnkcwRFBFyglUnVQLIC1VUfXYxrt9Zsr2p/Y9h+9MTy/8i4vE0415PDqr7EQff/oZnNBq/XLRTBJ0\neJrgkZfcYdJIsmSawqNUt0umNpI8su0qy7NxjP/45N6ex5JS4tlmE5cN1t66cwAAIABJREFUabJN\nmb36YPadSAmGlPQJKbVVQg1kWu+4eVyhVHtXWR6Un24KZ4hWm9ucY1O5jJN6CDN2hj5dG4mvc8gl\nsl9k5nc/c+Agfjg/b293866NPSPUKSorYftYDXjax16gQIHzG8Wn2MGZ5MQWWB2kyrZj03CRxLlR\nfGcKduwI6HwD0vMgSuVsjJ/g1kYCz4MMAlBT0y6EGqDUJDtP2cZ5pmz/y9Rp7K7PLfv+oRC4c+MG\nvHRyAqHgqHks81lrJgmqjGWI4pkOSH7txAl8Sw/4rQQemZ3FQ9OKbB9stzDdpwFzMfjvBw7iYLsN\nCeVlBtLBUBepjUSRUSBN1KgyL1V+XbKtWyCB7N+z02GEPXNqxoBLia36asOw7yERAut06kaJUrsm\nsw8hAUZTG0kr4RjxfZV+ItVApXtVosY8tEVW2Y6EsAkd3VA2GVPgQiEBXFKp4HjHkO10QLTkPE+f\nKvWbaaJu4Hqc55zWWZe0MkLgE4L5JIHX1Qi5llB4tgsUuDBQDEg64JShor+EukEIQavVgu/78NZo\nyx+ltO/6zzWWe/yYqa7WBTGVIACcS7SUUhAhVuR5u8cvePBboAeeA665DqRcQRkSslIB+8HDYFMn\nIS69DABQGhpS2dla6Swx1eyGchmkUgHVxJo6yQxBrQZvGes9V+/Bva0W1pVKuGXTxgV/N+89KAjF\ntRPjIERZtYaqPuaTxP6eEAJDvo9YCkj9etPAP+PX9KJqNbOPMzl+HQCcElQqFUgQED+7viOtFqbC\nENePj/fficY9R48BUKSwroktYenfHnMMJ4MA80kCISWGqlUQQlALQwSMYuPwEOb0MUwIMFypoFKp\nwKMUHc5BCUCdNSbtDjpCgAUBCGO4ed0kDh46DEIoRoMAVZ0NX/Y8HHNUe+IH8HWs4JD+3J1oNjEW\nBAgoBfUDsFKAqueho08oR8slhJwjlNI+PieqKfUDu/fgpolxvP2yHfYxWmGIQD//qib9O0aG8Q/H\njqNcLiOREiP6+Qea0FdLJYxUq0ikRJll33MBo3jj1i14cGoKcF7nkWoVniH1HkO1VMJ0GKLK+v/d\nX2ks9T3oU4ZaqXTW/65fiN8lZxNr+fgVODdYm+/Uc4T5sIN2u527zfd9jI2NodlsIo6Xr2qtJio6\nxWAtYsHjZ1SvLoWp1OkgACCaTTAAnVYT0lHsgmYTAU9W5Hm7xy+YmwORAqGQIEEJ0Vwd3p7HgRPH\nQI8cQueyXfChLtUzCZS0zzWenQFrNcFLJYTtNjxKQTwPcKrdO1yAL2O95+o92IljzAOLOsZ578F2\nHAE8gZSAAFAmFFMJR7vdBpcSXzlwEGVKIDjQ0Gpms91BOyfjeDEItaI6RGlmLWdy/GY7oUquaLcR\nC45Gp412O41//NfjJ7C/2cSurkhIg6caDTzVmMdPXnwRNpVKOB6GGPd9nNBXTMI4fQ+bYyilVBYO\nQtDRBFjGMRiAgHPMRjFarRbacQIZx2i322D6+VcoQ6PdRluf7E231JWXE40GoiTBFdUq/s+dO/C5\ng4eVl14/to+shWeu1ULFY6AAqP7cTUcRxjwPMedodTpoQH2RTPoBTkURoNX4eb0mAAgTjnYc4+lG\nA6Mey7wujU5HebTbbRh6ss5jOBWGePD4CXjO8weU2iuTGLE+dgwk+zpTiknGsKNaRcO5X9TpINZ/\nX0yb63Sng1LX+2Q1sdT3IIO6une2/66f198lawCrefzGF3FCX2Dtobg+5aCwkZxdsONHQBrKnsBO\nHMPQvX/Z8ztELGwjwSrYSEhTx/p5HmSpBNJuo/pv3wLptEGkdGwkvh2WBIDqA99Aac9jgPGAMg8y\nKGU92+eZjSRZgSruwKmtdi0Hp6MIXz1+AoCq27Y2kjOI/jP2g5WsfJ/niV0bl70DnKpWvf/j7Wu2\n8IS2cUyWArx/1+WZoTye83wJISDIeqy312r4v3ZeZj3uTc5tAyQAW9leZSwTK2jyzeuxUsoZIRj2\nfDSSJDOAZ5JK7li/HsOeh1CoAUQ3jeR02MGQ58GjKhHFNFxu1eq48Xy3uwYkO/rnTeUyjjhEJNIZ\n2wAwrJXKEmUY93381pN7ezzLJaqUdqpTWbqbI82xcWcA/C6riYlPnIuTFR2OXGkoz/batLgUKFBg\n8SjItoPuOLICq4vRz38Gw1/+PACAtpppMYyLHs+2/gJPEniHnkvbJfsRKynhHdy/tIXFEahWzSTz\nIJ1MbePdln4AUa1Ber4dlgRUkQ1JktSzzRhkqQwSO/Xk59mAZCKkJUrLQSRUO6CnUyKqHkOHc1V2\noz9zRzsdpWDqx4m7iGvIhU3RWAhmsG4l4wPnE5dsy5587LYT45eHuTi2xI9LiVHft9nR5rY8DHdd\nJmeEYIsmtaO+j3ocZzzb5t8y6/bFq8eeS+I0N5tSdISwQ4cAMKTftz918UXYUqkg0mRb5WwrUjof\nJzaXO5ECiSbLW6vqc9BIYviEZD3bUmBfswkAuO/4CfzSo2lcZ6zbIwHlIQcUGf7IC66x5TMuyiw9\ncTMxiC4M0S5TlVZCAfyna67uOY4+oZhL4jVNts3rVKBAgfMbxafYwaAvywIrD0kpPF1pTuIYcAaz\nDEwLI9WXg02xjX9wP0a++D9B4kSllEiZq3DT2RkM3feVJa2LOgkGStkugzZU1rYddGQMs+/4Jat8\n9+6EOffPbj//lG1xhsq2IoO2EY8qVTKR0qqfalAtrdzuJspveei7+Jtjxwc+DpcS01GEeqILVzRh\n399s4uNPP7Ps9Zv1uckh3Sr2QmS70UXWPUKwt5G+zxZLtl2M+l4P2TbEucJY5oTFkO16nFjybO/j\nkLmaZxoaVYlN6JDtF4yM4NaJCYRc1bszXQ8fSwGPUEu255IEE0GAtj6hAtRrcTJUJ5zdg5JuQ+aI\nfr4eJShRphoxu5TdEmXOwCi1GdsGhmyXGEVTD0DuGh7K/I55/krZXrtfgx6hCzaCFihQYO2j+BQ7\nOBP1rsDSwdfrgTspdapIL9m2yrYmUMZGIrWfl9Zn9L+zGPncp3vuTsJ2bj73INBm2gwpNVmm2u5i\nU0kYs8NX1lLiQqtlUttIXJxv0X+JlGd01cekTRg10qqqXLX3lSnFb1x5RSaNxLVpmM8lXSAx4om5\nOXzimX1oxNmEj6kwssU6y8V8wgcq252cNkgXDR31Z+7PCMGLJsbxC9sv1WvtQ7b9QWTbRz1OsmSb\nGrJNM+tp8QQUSmFXtpC0UbHkVJXX9Hvad+rMje1kQ7mEWycn1Hb9esZS4j/s3gMuJV4yOYk3br4Y\nc3FiTxIMsY5Eeny6lWi1fmMj8e3vlG3MX76NxKyzO0nktRdfjJ1DNZQoRTPhPY8HpKU2c0myZmP/\ngCKNpECBCwXFp9hB4dk+uxB6WpvMNxSZdpVtKVH51j/CP7Av260nOEo/eFj5ogF4xw4DUDYU0um1\noZAwXBLZDp7aA+/EMUj9BSeZB1Eug81llW3pEBTkfBlKrRBKz4Oo1vT/a5K9Rifo+yER8owy6ENN\npgzpYZpIhbpl8LrRUdw8PgaPUEtIXfJpIuvySJMLoy7PJQlGPM+qxd1thkuFlHIFbCTp/YUEKAE+\ncMUu3LlpIy6r1XDTWH41+CBle8z3MdutbOv3Za9nm2NjuYx6HOvHz1e2h6yyTVHSnmdzcgDAKsrm\nSsWcHlB7ttlEQCk2VyqYTxKUmVKXzUlT4qzF7Is7qrdVtq2NRO0/z0bywvExbCyrE1jfuWJi8IqN\nGzCh01KaPOnZvrVSwc3jY5bgV9cw2b5jw3pcWnt+Nc4WKHAh4vz61l9lFGT77MLkY7P6rLKD6J+9\nwwfATp5A5eHvAABEpQqic6yJEGDTU2AnT6jfPXVS3R6F1nLignY6dshyIOIY5f/6n5Fs2WYJMptv\nODYSrWyb31/oC9qxkQitfMsgAKTIJedrGSZLebkwZMrT+2CE4HQU453ffxTv3bnDXsb3aNosGTsD\ng7Oa0C1k84qFSu+Yi5WNwRD2tlbQl4tQF7tEjue6Z0BS8Myau9FIEpuSkkiRUWP/y3XX9r3fyICr\nIOO+j9NRhERKSxxTZbs3y/ySShkzcayUaqekxvVs11iqbJd0nblpkASQRudpkjujX5vUIkTQ0Gqx\nr21BVSkR6dfCvXrRSBKM+X7mZMEQX0LUgGhJ52m7+NmtW+z/+7TXs21QZqr6vXv7799wHQDg4RmV\nmz60hk9+/92G9ed6CQUKFFgBnF/f+quMYkDyLINz8OER0LlZlSqile2RL9yN2v1ft78mao7fUghl\nOelSsUkU5SrYJMyvebeQEt6RQ6BzdRBIkDgC6XQgrRqtyXZzPnu3BXyeZkCyc/3NCK+7Sd3m+5D+\n8uLsziUWSiN5rF4fWHpjyJTv2EgM2klald2v1MaQ7IXItmo7FGgkMSYC3+6jzXnf6vLFYD5JEBCS\n8Wx3H48Fle0kzqSZLLZEZccAVXNdqYSj7U4maSPr2c4OSG6tVjEdReCQ1kYBdCvb6YBi4CjbxsJj\nXsNAWzlmohg7azXcfcvNajuhSKREhTIEulLevUrhElujisciHZA0j2P+FlfYYM+yT/oX0piCHq/P\nya05QTFqfoECBQqsFgqy7aCoa++P55qtFd8n4RxiYh1ofRYkTj3bZoAwmVSqTjfZJnEC2mlniCuJ\n8u0iC5Ht4KknMPJX/x3MDEC226BhB6KmyDY8D2JoqPeObAE1TBNIMbEOYkznosq0UfJ8wkJpJI/M\n1vH43GCy7fpsKQg+fO018AhBW3SRbU2y3CG6xZLtRCoVtt6lbHc4R4eLZUcBtjnHaOA7NhDZo/S7\nZPtQq92jfDcyNhK5aLL9mk0bLZHtxrogwLFOJ2OzMMS53GUjaXGOSyoVnI6iRQ5IahsJF3agE0j9\n08aDPxtHGPY8m1RiyHiZUfiUIpIicyxqDrE17Y6RFD3xfutLptGSDfQs+7Q3+i89Fqp6vt+xNo9Z\nW+izXKBAgQJniIJsOyhsJPmoxzE+uOfJld8x5+DjE2BzdRBTuy4EuCanyUWbAQDSIduEc/W7cQzu\n+FyVjaSXEJJOB0TKvtGAwZOPA0gHLVUbZBuyopVt5kEMjfTcL+PZzoHMs5kIft5VtQMLK9shFxlP\nbjdM2kQ6IAlcNlSDkBJtLhyy7eRsO/uLhLJddBPYvMdJhEQjiTHuB3ZAss05JJb/+e4IgWHPQyIl\nEiEg0Ev83Zzt/2/ffuszB5RyG0sJoe/Pl0C2CSF2aLEb60oBjrbbuWS7x7OdJNhSqWA6yvFsO+9V\nY+MwUX8tzvHBPXtTz3a3jSSKM0OcvkP2jWc7cpVth9i6qTGBQ5jvefFt2KznORRp73+svAHKdkDz\nbSTudmBt20gKFChwYaAg2w6KNJJ8xGJw0sJyQTgHH58ErWsbCaDSRwhBvG0HkosvAQCrLEtClLKt\n7SZiNG3S6jcIScJOul8XUsI7fNBGCrLp0wAAGoUgYUdlaAMAY9ZSkkEXme5JGMkh27JURnzJtt59\nrXHEUnme3/fYbvzFocM92yNNJvPAtdrsk+yAJNPWh0aSloooz3a+sj3ksQXJcqy91cqz7Wc82+rf\n5X2+Qy5Qpkw1Dep9RbKbbKefkViKTMZ0i3PUGOuJ0jtTrAsCRFJmVGGbs00p7j12HH/wzLMAzIBk\nCYmUKpmEpK9DKef+5v+NX94ceze+0Xi23SFOo3yXaerZdk+SsjYSrWyLXmXboLyAsu1GSnZDpZEk\nfcm6GfYsbCQFChRYbRRk28HMGq1+PdcwA2Er2cindszBJyZB59SAJAAQnoB0QjTvuNOSXGMjkUGg\n1Gv9OvERV9mO1IBk1xot2e4ianSujqGvfAHQzY5s6lR6H84hq1W0fuRH1aRW3pd9F5meedcvo/nK\nH7M/y5xL0zII0HrVa/sejvc/vhsndfvhWkIiJDpC4JlmE/M5WeihVpTz7yusp9gl24AiO/U4tmqq\nspFwEADfm5mxnt5ICAwxb2BDI6AIeiLVWod9z67J+LWXTbZ18UtAqd2He/IppbLZmM9ILGTmsVpc\nWWXKlK0o2TaKtKl8B9Jjawjq92ZmwfX6qoxhwvdxKoyc38uS7XVBCVfok1vjeQZUfCLQpWxTVVzj\nEmhDbI3XOhYyMwDpEvOOcyz7EeqStqP0gxqQ7EPUmSrtWdBGUijbBQoUWGUUZNvBTBQvuqXu+YRE\nSgj0L95YLghPIEbHVWyfIcVJAhJ2IMtl68kWtWG1zfO1sq1ImMnaBpyyma41mibIbosJabeU9UQ3\nO9K52cx26fkIb7yl79plNwHw/GxZTY6y7Va29+xPSvxwvnnGedDLwXemp227Xx7cAbc8YqOU7XzV\nOXSIlCE31CGEbl22R3SjIaXY12zh6ydP2n0MeV5fG0nIBY61O1ZFFVLVw3OZDki6/y4VHaGywEuM\n2tpzdy2hEPAoBdFFPUmXst3WRNf1QK8E2QaAd27fhiudwhY3LQRQqm2bc5QZAyUEI76PFufOCQ/N\nkO0So/jdF1xj99HQZPt0ZMh2dkASyBJo10ZS0jndiZCo6dfYEHPTXgmoY+n3OR5lPWjZD4NsJGmF\nfb8BSX2MCs92gQIFVhnFXxkHZcbQSBKMnoe+2tWEOQGJpex9wwih/luqOpTEgBCQvg9RG8KJRgNb\nAJAkAYlCyKCUkmnzekiZsZHA85FMrgcNOynZFlwp0WGIysMPOjXvXcp2pw0iJWirBVGtgTbnIUul\ntI59oeeT58mmFJIxpYznke24P9mu6+dUPgdtdr/71A/BCMFF5RJeNDGBtznRakBaDrOxVEIoOOpx\nDM/xEoeCI5H5l+LdDOUeZZtS1OPYRv8xomwHhjqZ2LtISAx5Hh44fRr1PTF+6+qr8MfP7sdLJidw\n/dgovnHyJP7kuQN4/UWb0BECHiHwdZU4sDI2khIzNpJeZXsmjjHieWjyRBP+LmVbJ64ISDw0M7Oi\nZPu1mzbhtZs22Z89kvVWD3kemkliBxMNwWRIowKDPu85V9k2p1u2TMaJ3Mso2yQ7IBlLgUgqX/5M\nHFvLxrDn2SjESEiM+vnvn4U82z4lQB93kckc72czMZaXWmEjKVCgwCqjULYdTAY+pgeoj89XGGUz\nz7cdPPUEqv/8D0vboZQY+9M/VASZMYjRMfzC9qsxxzyVp+35irhqZdsQV1Gt2eg/QBHiuZ/7efCJ\ndalqrNfI6jMoPf5I2viYo2wDWl2v1hRBdgchu9Su6fd8AJ2bbrVrybOJgDJIz4cISj0nH3Nv+FnM\nv+4NfQ/JsbZStPPsGN+ZnkYzx76xUtg1NAQuJQ63O3iqMd+z3azp1olxRELg7d/7Pv7o2f12eyRk\nZt1CDwOqbamybQimm8lcj2Pb4OdRpQwbv7axfxjPNgA8piMGT0WhtX2Zk+PDWt32tepqEkM6nGPY\n885c2abMKtaupeXZ+SYuq9WsbcKtoQe0su0xzEQxPnPgIBIpQbEyZLsbXpeNZMjz0OTcJm6YQUTD\nX32aVbZdlBxl28BtnTQDr5vKJWd76tkOKEEklAWt2qVsD3ke2o7HvZ+NRHm/B0f/9SPjJgaxH9k2\n6y9sJAUKFFhtFGTbwUQQ2MulBVKkTW85pTHzDdB2b3PjQMQRaLtlFeBwdBxNz8O854HNTEOU1Je3\ntWVQhulf/n/AJ9eBCO4o27ounVGrbJtiGxJ27H+SMZAuEkv0miWlkGWVfCCdiL8eZdvzID0fMigh\n3rItfwCSUcDz0Hjz/2b3aZBs3Q6+8aK+h+SYto/k1Xb/7lM/xL1Hj/e971LwWL2Ouw8eytzmJkHk\nteklUuJzt74Qlw8NYU4f+zHn6k/YVehyz9FjuPfoMQBZsk21b5s6Foamtlion9Xtd6xfh4vLZcwn\nuuBG20gMvnTkqLYn6Cg9rbv+oK7iGz2i4uBcG8m47y97ADrkAiU9INlKepXtH87P4/LhodQ20WUj\nMc/RHLtEyr5xdWeK9OqB+rmshwS7lW3zGpQoRblPsk5AKeYTjgqj+JXLLwOQkmmfEuvYutQZIDZq\nccUo20IgEhJVL0u2s8r2gAHJhXK2aW9du4F5rH7mtzKl+PUrdq3YVYYCBQoU6IeCbDuYDAJMR8/P\nIcm/O3YcXzpyJHebW6vcDdJuA8nSTlCo60umDHPrVJ72fKWGob//impuBCADTbrNZW5CAS5AtKJp\n1WXKAKNg6y9wEnZUTGC7pRooowjlh/41fVitbEs/gPR9HCuVEQ0Np+vKUbuk5wGMofHGu/KHJimD\n9DzwdUtvfTuuByP7eZ9PRyszOHkqjHC4lT05clM+KjmX1BOds1yiFE/qSDu3ddD4cg2mwtASy6hL\ntTQV3EBK/Nw0EgC4tFbDnZs2WDU/6iLbdx88pKL2ZLba3fzraVKfuGQ78NFOlqtsC5SZUoBbOTaS\n/c0WdtSqTq60xHQU2atkbT0g6fqSV+sPrzmGTXOiIiWaiatsZ68yvGfnDlw2lJO2A/Uacymxa2gI\nL1+3DkA2Z/uwPmF13wtpzrZSpCMh0OFcKdSEZJRtU1wTC5E54XNx+7p1eNm6ib7P16f9Pdvm9nqf\nwXdCCG6ZGM/dVqBAgQIriYJsO6gwdka1zuczjoch6nG+VcGQ7e64MwCgnZYlv4uF8VFLnfRRn9wI\nAGh3x+c5yjYAgFE16OjYSABFutMBSaNs65+ZBwQBvGOHUf2Xf0rXYMh2oMj2f9lxNb5XScl2rk2E\nefn52fY+rDcCcJGY08+pX6rH4Xa7L2lYCmIheiL0Olxgo76aUOt6fkJH9xmy3dSfj9BpW42EtP5o\nQNVwu0U0vWRb/X8P2SbpZf8a89LHEqLnUv9cnNiTP951zAwBS6RAyAXmkwSbKxXM8+VZcULOrbc5\nz7M9G8eY8AMEVtmW+O7MLN7x8CMAVBpJlTH8z1tfiHHfBwVs4+NKwxzDq0aGsbFUQiSEspF0e7b1\n42+v1RYcMMy8fs6A5I+sX4ef3XJJ5j4ZGwlRnm1zsuJTmvFsuzahfsr2tloVW6v9WzTdSMl+mC1S\npgoUKHCOUZBtB6aE4fmIehz3fe7JABsJabeXQba1sq0JbWN0FADQ0t+Z0+/+Vf2LRFWcG580ZSqt\nxFy/NgSMMevZJpoEGvVclsuQhILqhkgD2m5DQinb8H00PR9zDqHLG5CUHhvcHEnp0gdFoQjtXByD\nIN9GAgBPzzfxgUcfW/K+uxFL2VNdHglhfbceoXiq0cBTDaVgG6JNCOlRsw1CwTNXPRpJkjZBdqmW\nnqNEpjFx2UE2RghqHsso28Ndirv7fu0+ZkrZpkiExJFOG5vKZWwql/H4bB1/uoxyJkUWmT3ZqDKW\nOYb1OMaI76VkO6fwpqKV3kG50CsBcywnggDv3XkZIiHQ4olVto0yvRjrRF7DpBv9t3NoCG+6ZHPm\nPowQUKSDjZFuHy1ThheMjmBCDz0Pecwq25GQAxNHBsH48wehiHQtUKDAuUZBth34hPQt57jQUY/j\nvkQvHXbLt5GYKL7Fwirbmhg0pb70zbQqHKQDV9IPUmWbUp1UEiiizFLPNrVpJKlnG1BFMmAUtJ4l\n26TdghgeAYIA0g/QZh7mXCKdR5qZl1paciBGxxFv37nwAejCGx58CA/PzOqK8f4ne2eSkjMdRfjd\nvU/j6UajZ9C1Izg2lcsAVPLI5w8dxq/t3oM259ZCAmQLU1x1PBICJ8MQH336hwCU6mweI8xRtt3o\nv8Ah3+6/NeZZK0S3jQRQJw3m/cilREBcQk/ssOXBVhtbqxVcVC7hu9Mz+JMn9y752CnPNrVpJCOe\nZ73bQkrMJwmGPQ8BJehw3hOO0Uq4vWLg0/T5rwZuGhvF7133AgCwHvJTYYSJQL13rGd7EQOahmT7\nXa+fu588+JRmGiSNsv1rV+xKPdu+7xQY9Ve2F0JZlwX1w3Ax/FigQIE1gIJsO/CXqWx/4pl9+H+f\n2LMKKzp7qMdJ/2KSQQOSnbYtmckDaczl3wewQ4Ymu7ids//OjbdCGC81ZQieflKRbN9PCbE74NVF\ntkWpDFCmWir1du/AftBGHXxyvfJsez7ajGGeMhs3mFtK43kDlW0xMor2i1/Rd/sgRFJiMvBzX4MR\nz8OOWhVjwfLJ9leOHsN3Zmbww/lmxgICKDJpbCTuyWbIVW61IViGfI36PkJH2Q25wFQU2Ypy10bi\nRv8B2kaCNJ6u4hAlQ4yMsu36o/MqtRPHsz3snIj4hFrP9sFWC1uqVXsyAQCNOMYDU6cXcdQUOoJr\nzzZDK1GZ1RLq8zCfJKgyBo9S1DwvY1kY8TzsbzbxtRMnrBfePblYDRBCsK2mbBemwXFfs4nt+rbu\nNJJBCGivjYQSgndcdeVAsv2LO7ZjxPOynu2uIViT/w0MLrVZCHdu3ICfvrj/4PGPbtyA60dH+m4v\nUKBAgbOBgmw7MF8OS8Xjc3Xs1kTjfIVStvOfux2QzNmuymEiBLsf7d3WnMfYn34CdDpLbKzqrL+A\njUrYpixbDAOgc+tLnJxtAW/qJGi7pZJBHBuJ3bcwA5IhJCGQ5RIkpWCz0+pXp05i5MufA23OK7Kt\nPdsdSjFHKIRJEcmzkSzg2e6HvY3Goto3J4Ig9xgLAD++aZO97L5USCnxranTuHZkGC3OM6q0lKrh\n75Kqet6xENa7n0ihkzOydoJR37efk0QIq+TOxTGklMpG0s+z7aRHBISi4pwomTWkynZqI6nlnOSY\nNXApMwqmR82ApMBMHGNdENiTCQDYN9/E3x471vd4/fOpqcwJiU0jYWpA0iMEVcbQ5Bz1OMGIfn+O\nej5OOwPWNY/hkVl1RcU8T39ACctKI9BXIPY3W9heq9nbgMXZSPI82wDw81dfNdBz/or160AJQUAJ\nYiHR4QJl53EJdBqJc0LWb0ByIZQZGxjdd9fWLfjNq69a1r4LFChQYKVQkG0H5sthqcgjAmsJJzod\nvPHBh3CiTzuhlBJzSdLXQpMq213bpQQJO6BhB0Nf/2qqHmv4hw/A9QRWAAAgAElEQVSCACg9mXqN\nSavpeLaNsq0Icosx8NH+6QDsZBp/J/2UbMs8ZbvThhgeUTYSymz6iC2tKVcgKxXt2Q7QphQN5kHo\nCvjcUhu2gGe7D/7D7j14Mie/uhvjfpCrbHOplN1QLD9No805ttdqaDpEGFBKNiUEN4+N4d/vuBSx\nkKjHsS6Fkbk2kjHHAuDuS0DZVSIhsgOSxFW2aRr9R4mNhAOAi7X6LKREzWOY5wne99huTMdxrh3A\nvF+5lBjxHbKtPdtcSLST1C/9oskJa18Y9Dn//Weexfdn0/dydxoJ1WS7lXDMJbF97BHfw3QUYcTz\n8AvbL9WDfwSv3rAet+nUi0HpGSuNgFKcCiOUKbUWJH8JZNvvQ7YXC5+odBZ1ZUC9zkQXDg3pqwD/\nevr0wAHJAgUKFLgQUPyFc2C+HJaKvGzitYTTUQSu1c08NDkHl7KvjcQtKHFBwg7g+zbH1j+wL90Y\nhQj2/ADR9p3wDqtcZykEhv7wo6CtplKJNUluJgkqjGLmhlvQeOPb+j4PWa1BVGtovewOtG5/NcSY\njgRjeTaSEGJ0XJNt5zJ4S9WS85FR8LEJ8Ml1SDwPEaFoVKpo/thPqMfKIdXJ5i1o3/LivusbhIXy\n2wNCUGY01zefCJm57L5UNJIEQ54a4BPIEmQ1vKYI8IinFOu5JMFEENj3RGojUcd5zFG2u98Th5qt\nzO3dyrbbPBh0ZTwbwnW809HDhhLP6Br5MqP4j10KZewooyOZFkNqPdstPZwIAO++fCc8ba3oF7HY\nve/0GCkPcosntj2zxRPMxQlGdQLNiO/hdBTBpwSvWDeJFufWAkPsc+6fC73SMMr0Bqd0prQEsk0J\nQaBTaJYD69nmPNOM6lFqbUEfffoZHGq3lz0gWaBAgQLnA4q/cA6Wm0ay1ut+jf2A91GuTaRcPxtJ\nP882CUPlidZNj97Rw3Zb5XsPAhJo3f4qsNOnUPravRDffwgAQOuzajjRUbbXBSW0mAdZ6R/zNf+6\nN2D2ne9F55YXI955hb2/zNhIBCAl2Ow0OjfdivDqF2SGGklTKcxieBTx5Veic+tL0bhsl9p/EqeK\ndp6NpFxBsnV73/UNQr9mUmMv2VguW5/xN0+eyhDrRErUPA8hF/gfTz2NP/7hs0t67HlNtg1pioTI\nnEDZpj1KMBNHqOjhNqVsCyfuTf076vvWZhE6nm4AONJugwJdNhJneJHQTHthpetE9U2bL8aLJifg\nEVVKM+YoslcMD2V+10b/SYFhLx0ATG0kqsnRnAwHlCLkAiHnC17Bck8i5pMEw75nBySNst1MuE0i\nAVS9/HQUwSNqQDDkAh09XGlwNpVtc/Iyrj+f7m2LHdIM2OAGx4UeX5FtkTmp8gixJ2Bv0Wkmefnu\nBQoUKHChoCDbDvxl2kjMl/lifLl5mE8SHFlqC+MSYIiP6Eu2ExDkl9YAaY5xt+qvkkFK1mdNOm3U\nvnYvICWCJx9H+2WvhBifBChF8PgjSB78NgCAzmXJdodzTAR+pnUvFzqXu2d961VOt2QeIDjYyeOQ\n5TLiHZeDb9qsynCgSDltNcFHxxRZ12jr9JNGnCgveJ/HORPMRFHu8U+kBCMEH3nBNfD0zMAnnt2H\nvU70HoF6j3U4xxf37cNXB/iN8zDvKNsGhkx2hLCKtU8opsIIo76nyKowNhJ1P6JJ0ljgZZRr92Tz\nVKeDmudul5nH/V+3bsEu3dQZUNpzVehnt27BtmoVROcnTwYB3rj5YrCcPGVz8selxLAmvBVGbXFO\nt7JtyF+os7AHwSXbDZ02kvFs6wHOUMcCAqmNxNOJIyVGMRcnmecfODaa1YYZRhx1LDZ2QHKR+yhR\numw/dUAJGkmCtuCZQdgXjI5gxPNw2/g4XnfRJvzVbbdkGkkLFChQ4EJDQbYd+OTMcrbnl9lQ953p\nGfzV4fz2xpVAKBZWtkd9v/+AJPI92yQMIUslSD+AqA2Btlso7d2t2hs7HUuC+br14BdtBnQKCW3M\nKT+1JimREBj1/WXbJOIdlyPetgN8bBwQAv7B/Yi37Uh/QZNJWSqDtuYR7bwS0RVXA1ADfp/a9xyq\njGE+SQDfx/xPvEER+xXETBzjVx57vEfhTqSETwjKjMEjBM9pG4YhwIlQZLxEKTpCLJgpnAdFFlmG\n9FnPtaO8+pRgJo4x6vm27ty1kah10R7PtjuzMBWGGPJYXxvJVSPDKFmlmfQo2y48QtARHLeMK78z\n6SLcboNkjTFQqEFEX9tiGCE2LcTsT0XR8QU/5+nwniLmZR3910q4HuBkaPIk42kf0QOSJsu6ypQv\n2e9StlczZ9uFsa64A4TuidNiYOIZl4OdtSGc6IR4rD5nT0gA4Fd3XY6a5+HXrtyFmk4tKVCgQIEL\nGcVfOQcBXZ5n2+T9Dmoq+6Nn92G/9p92IxS8p9VvJWGIT79HqMcxJoOgr9pnlO1eG0lHk20fYmjY\ntjjS+qyyg+gv9PZtL0N084sg9WAkAbSy7en1SYx4yyfbIASNn3krxPAIiBCgszPg45N2s7GRyHIZ\npNWEdGLg5pIE35mZwbDnKbJNCOLLruh5iDPFdBThVBjhVx/bjT94JrWBuMNhPiV4Yk5FJaaxdsrG\nUdHK9nKISZ6ynZJlbm0khiQOe55tYDSxdwYlPWwX9lG2p8IQNeYtKkP50mqtxxriwqMUHS5s+Q2A\nzP/HTs62RwnevOUSjGhVHlC+5LkksUOYlBD4lKKZ8AWVbTN8aY4dIQQlyvRAqSLSrYTb0h8gVZDN\nz1XGMBvHWWX7LHq2DdxW0KU+tskXXw4mSwHu3LTR7qdAgQIFnq8o/gI6UDaSpZNeQ4waA8pd/vHk\nKfzb6ZncbbGQq9pc2eFpAUce5pIEk0HQ10aSWH9vl7IdhZBBOSXbOumDzc5AVirp/bdcCjExCThp\nKErZTj3Erhq6bFAKCK6U85FRd6UAVEEObTYhnRi4xCFVUsqe9r+Vwkwco8U5ZuIY/3Rqyt4eC2Ev\n93tEqddANtbO07nRQsplCe6mdMUlPMZz3elStgGg6jHreW7ESSYJ5LrRUWwuVxAJASklQi6sclxj\nDLNRjNoAZdvFzeNjuGPD+r7r9glBm/OMmm9OCCjSkz9jdflfLtmcaRQ0RTfdnulmkiz4eTPrV8Ol\nLLMf10aSCGGjEU0EIHXIdj2OMzaMgNJFZVyvJNyM8uWQbf8Mhhe36TjH8oArGAUKFChwoaMg2w5M\nAkIeZqOoryfbkNT2AjnI/ZrO3Ki05eBYp4PPHTzcd3soFKHqZ0dPle2l5WwbGwn8QKnKYapsC4ds\nA1ADhyZfmxDE23YgvOYGAGlpyUIJEQuCUkBIMG1TsevUkXmSMaVsl9K1mePe5BwltgKEvwvmBOdU\nRx0bQzyFPaZp6YtrLzDvKWNTINpq0i8xZhAaMe/r2a4ncU8sXJUxW3euLCipn/Y9O3dgLPDBdNtq\npD3fHiEY8T3MJzEqjEFICa63L9fz6xHVyOjlKNvu+4Vr37u5j+f8DpAdBgwoxbyOuRw0Y2GOj1G2\nzX0BRVjHfR9TYWQ99+72eZ0Pnqdsn80BSQO3eXSpFpaqxzLxjEvF1qoaeC4XynaBAgWexyj+Ajrw\nBni273rwITwx00eZlkJVOC9gg+h3KfVMyfaRdhsPz+avDVBku8LYQM/2ZCk/4xlQZKbUldTiHT6I\n8iPfhQxKiLdtR3LRZlvbTuszkOVsqoibWy3LFYgRlQYCpGT7TImupAxEcNUOOewo22a/zFOxg46N\nxH1OJUqXZec51ungS0eO5m6zqR/6X0O8TuoTk1ikNgmXVFobieOZLjO2rCsgZsAvayNR79WTnRDr\ntdLvW0VW2Ui4LqgZ9nuTWUom2UMr1x4hGPZ8NOIEPqH6xFWcUTugRwmEsy5AfUarjCmy7dhImHN1\nwPx+3roD480Hcq0k0l7FSZVto+ybk2VGCC4bquHZZjPj2TaYiZUvv+Kxnrr61W6Q7MbHr7sWLxwf\nsz8v9bF/eedOXDuy/AbGcd/HxeVybgNogQIFCjxfsOb+At577714+umnUavV8Iu/+IsAgHa7jS98\n4Quo1+sYGxvDm970JpQ1YXrggQfwyCOPgFKKO++8Ezt37gQAHD16FH/913+NJElw+eWX4zWvec2C\njx1QgiOdDv7z3qfw61emvt057cVWl6d7CXUs5KIG/PqRDkVKlpdkAgBtzm0LY7/9VxiDQD+yrW0k\n/TzbUqLSpfr6B/eDzU5DlkrovPDFoDPTdhurzyBZvym7E+aS7XJm00qRbVAK0mxCUgo4VhFwo2xT\nECFUXKGGIdcqbYIti2z/sDGPh6Zn8IbNF/ds41LbGYjKd25pojcbx9hULqs6c5L1TFcZs++HRPuR\nAfTN4V4IjSTGsJ+S7QpLTypOhpH1TVtl22M2p7qhM7e7oU5MuFa2KTxKMeorr7avh+pCTbaXOwBn\n7CBeRhkmuG1iHC+amMCnnzsAABnCq5Rt9ft5BM8o2+Z+3RkY5oTUfJYzZNtRti+tVnG008GOWhWb\nnPeasr6oY+tGDrrbzybZNs2RBkt97LwTlqWAEII/uvH6M9pHgQIFCpzvWHPK9g033IC77rorc9u3\nv/1t7NixA+95z3uwfft2PPDAAwCAkydP4oknnsC73/1uvO1tb8NXv/pVq0x99atfxetf/3q8973v\nxenTp/HMM88s+NiGFBzralrcrxMiZA5ZHfrKF5DorN0zI9vLJ5ptLmwLYx46XEVv9fNszycJJgK/\nr1+ZSxXfxp270zlVQy0NcXWIjRqQzNpIupVtF8azHZ7BCYd6YApWn4FwVW3o7G3AEn7pkMdICFw9\nPIw/vflGlNjylO2pKEKb89wsbQGpC2M8/bMihCbb3B0gdAftUj+ysASpTNmyPOWnowiTQWDJYo15\nNnv9VBhigyaL7mCf9WwnSW57Y83z0Ey4Va59rWwDihCXrLItlz0cZxR/V9n2iRrQ3FGrWvWfi1TZ\nZk5pTt66fUoxr+vo864SdJPt+YTbNA9jx5hP1KDqJZUy9jdbYM4VibEgpe95ZPtsK9vdGDlD8lyg\nQIECBZaONUe2t23bhkoXUdu7dy9uuEH5e6+//nrs3bsXAPDUU0/h2muvBWMM4+PjmJycxJEjR9Bo\nNBCGITZv3txzn0FIPZdZ4rq/pch2ns2CnZ5CzDlGvP450TOahLE+37GRkAPJdsjFwBzuFudocd7X\ngxoKNcTWj8uGgqPGvL6qaSIlfErAHU+1IdvQt7nFMmyu3lNO86/1OXuqIpaobE9H0cCkFwNJaVqY\n48J4tk2xRpAqkbGQKDGlxJYos4ODS8FUqMj2Ox5+BIdarQyJE9ri4BK/9aUAdU34EiF7bCQjnp/x\nI///7L15kGXXfd/3Pctd3tr9esNgNuwYgFgIESIB2YBgRqLFGExsSkSipSRKZKLFqjCWykmcUtmu\nxC5LShQtLtGSyrHKJh2FIilSLsqRLcmSGbJiyTIIQBQpkMS+zNLd0+vb7nZO/jjn3Hfve/f2zHSj\nMTPo36cKhZl377v3vvPedH/v731/35+r8BrP9pVf31oUYykIcu90R0qMnY2kILb9XIwLO1RGWc/y\nrGe3IyV27ej3wGZbOyHnMY5AmAEwB7KRFKrV+WPcjPv2Cv0V05Vtt573VNgfLmUjmYhtF42Y5QNZ\nGkIg5Bwv2FQhFxdZbOA8WfjZ5cR2scHwani2i5xoNPDxdz541c5PEARxFLkuyhyDwQBtOwij0+lg\nYH/Z7e7u4uTJk/l+nU4HOzs74JyjW/hF2+12sWMj1fbC/VJ0yRQui9ZVLKsqwyxNkGiFuZrK9mYc\n40NPPgUApcpwkeQSle2nt7fwby+s4u/dfVfl9pEdt15XlXWe7TobSaw0mkLsaSMJZirbW+YP9rHp\n8ebFBslEKfyjrz+HR7mAf/wEho9+e/n8dkJiYhMupjOAf+RLT+N4GOKXHri/8vomF2Uq28nJm6Ze\ngKts27ztQsNYUQyGgu/rG4b1OMoF3K+/9AoeXVrMUzYybSrbxa/jl/wgr2zHSuWfOyfa5jwv9yMn\npXHpPBeDVesEAC8OBliNIjy0YEbZj7MMUZZhTkrEdh263qSy7areQNlGIlyDZFJukHS0rdh26yc5\nz6v3HmdY9gOsRRGGWbrvynaljYTx3KZSrP67GxXJWP6896ws4z1TaSe+TSMBqivbToC7BJ9Elyvz\nv/KOB/JtHpsMuXH85B23Y8feSLnGwqsd/TcN+acJgiDeXK7Ln7qXO5BhL3Z2dtDv90uP6dSNLddQ\nQuRxVaNiDNvULyqWJki1Ri8IsB7F8KYmoclCOZlzPrMdABJok0pRM0UtZQyRqt8euWqc0uhUHV9r\ndD0PGqg+v1LohoFpNJNyZsKdZgyhkNDMPj/LwAd99H/kv4dud+EJMTMEhh07kZ+rb29W+n6AxWYL\n4tiNKNZKE6XQCQIIxsAqhlykeu/1cXDPA9/aBLv3gdK+3FaJmX1Mtlr5oJvMvjbP8xAKiZSzS55n\nmo0kySP7drMUA6XyY3Bb2Z4rWFduaITYzTJ4ngfNOQIpzPntc+YDHxmz1yE4PGE+N74UudDTQsCv\niFP7tRdfxtd2d/E73/oIAOB8kmApDOD7Ptx3DXO+jxiAkBKZ1mgFPhhjuX+57QfwpYDmHP0sw0Ij\nnFmTOd/HSGskMJF398/P4Sbr/Q6kxPFmEy+OxrgYJ7il292Xb9sTHBxAWFg7XwgEUqJheww8z4MC\nQyA9s0ZCIpCy8j2UUsIXPL+p1EKU9kuUAndi276HirHS8ZYL+wdSYJRlCD0v397zPPQabh3NdbcC\nP9/e9HwzAn2Pz5i4xParifv5N/1z8FqC1u/g0BoejGt5/Yirw7X7aS3QbrfR7/fRbrexu7uLlm36\ncZVsx87ODrrdbu3jRZ588kl8/vOfLz322GOP5X/2u10s29iq+BtmCEmmFXq9pdJzxmmKFMCJXg8X\n1texvFyupKnhxP7R7LRntgMAkx5ipSq3AYDfHyBmqN2uXnnVHCcMsFzx1bkSAgutNnaTpPIYidY4\nvrICj3P0FhdnRJz/2utoJSmElFhaWoLevIi4O4el2+/M99FaIyo8Z/GOO/Obor59L/pBiGONZuka\ntI2HO3HDDQilRKfXQ6eiIW++Eda+/vx1tNrIlEL75CmIwr4RY9AAGkGADMDyDZPmzaA/QDeKsLy8\njFbwAoJW9Xu0Fxu2kgkAkQZ0EOTHUMMRPClwQ6cLtrYODeDmhQW8tLuL5eVlNKII7e0dLC8vY9ne\nANw4Zzzny8vLaGtz3cvLy2gHL+aV7Xavh/liE6ilFQaAPTYAPH/hAk60O+Zctpq+0umC+R7mFhfh\ncY6VlZXSMVYWF9Dp9xG2WuhnGW664QYsTll/Vs6dhwoCCKWw0G7jx97xTXhuexv4yl+g1+lghXN8\n6vkXcP/iIo7fcMMVraejGYTw+G7p/WiFAeY7Hdy4sgKlNXqLi2BSYHGhh+WlJfyAH6Dje1iejp60\n+Hzy2W7PzWN5fuLvf+i3PoufffghAEBq/73J18+i167+TLQbDSgAC3NzldtvtDeZNy4v5+v33oUF\nPHzzTfnPluuVnp3qSewPWr+DQ2tIXE9ck2J72nt85swZPP3003jkkUfwzDPP4MyZM/njn/nMZ/Dw\nww9jd3cXGxsbOHHihJn2FgR47bXXcOLECTzzzDN46KGHSsd88MEH8+M44jgGNozl4+ULq+BtI+o3\nhgPjYVUam5ubSO3X0FAKnTRFrDR4FGFrOMTa2lrpmGuFZsvtnd2Z7QCwOx4h0xrnV1crv2Je395G\nP4ornwsAm31jq7mwtY12FM1s3x2PwcIQo3E0cwwzmCTD7uYmJGM4t7qK5lTFYHc4BMsyjLIUu7/5\nL+E/+cdIT56eOVZbSrA0hRYC6+uTwS2vblux7QeIswzbhefFyjQAXlxfhwRwdnUNC8Gs2A41al+/\nw4/GCABsgyEr7NuMIwgA48EAHsrHubi9DRWbtRVaYW1rE2sV59+LfhyjKcyQk504wvrOTn6O9fEY\nTGm8b3kRw9EQ/8+582hmKS7s9rG2tob1rS2oxJx/e2cXACDiGBftNa1vbkKnKdbW1sCyiah/bXUV\nyZQABgBm+w3c+V9ZW0fT/t35vb00wcVojHOrq5CMzazraGcHyXiMi1mG3ThGsrODtd3d0j4ySXB+\nNMJOkuIY51hbW8PQ9hVEoyEWwgbODYd43403XPJ9q0OnCcTU9ek0RTQcYn19HQHneP3CBYzjGP3t\nbaxpjS4AxBHWpr61AkwlzFXYG0Jg9eJF9JJyU+ufnz8Pn3OMErPmO4MBooo1AgAVm5uXQb/633Xq\n7G6bm1DFwTIA1mqmyQJAEASIKv4dXwtIKdHr9co/B68xaP0ODq3hwTjM9bvSYhBxbXDNie1Pf/rT\neOmllzAajfDzP//zePe7341HHnkEn/zkJ/HUU09hbm4OTzzxBABgZWUF99xzDz760Y9CCIHHH388\nr6Y+/vjjpei/O+64o3Sebrc7U+0+e3aSlbw1HiOxoqufpOh6HjKtkaYpEtesZytXMTRanGGQFLZZ\nosLfk3R2O2CasABgEEVoVFgDhkmCUVb9XAAYJAk4gN04QlLRzDbOMgSMIVXZzDGcAFNpCsEYRnEM\nb+pmJ8kyeAwYpgrsvFmjrN2dOZYWAtHb7sfw3d8BFLZt2mE2fd+H4rz0vGGaGv+tHf4xiCN0CukO\nziffELz29TvchzlqdaCL+zrrhUsAKWwbJQmkNo/5jOFXn3sep4JgJjLN8QcXVnFHp42bbGVSW4vL\ngs1ZH6YZduMkP8c4ScAAzHGOnhVcbcYxtJ+FcZJC2GsaWeEntEZkt0dJAm6vT2KyLv0owkLFZ0Xa\nXdz5h0kCj03+7nOONudYHY0ximJIxkrr8TP3vg03SAmmNdbHY3Q8CZWmmHY3NznH63GMKFMQWiNJ\nEnD7WRJK4wb7Feq7Fxcv+b7VwYGZ65Mw1pwkSRAIjn4Umc9wpi7rPL7Nym4LgXGSzDxnK4pMNGJm\n/q1EWZafbxphGxZYzbl9+8+IZVltP0QVUsp9r9mbRVrzs+xagNbv4NAaHozrYf2IN5drTmx/4AMf\nqHz8gx/8YOXjjz76KB599NGZx48fP57ndF8J/83NN+HJrS3sFu6Y+2mKridnhsKwJIYCkILVppEU\nmyrrhsq4ZjjXyDhNrFTe0FbFSGXo+V7epFf1/FDwyvMXGwQ9xipHtrvovx2d5ikjam5uZj8IaZoQ\np/y5riFt4Pl5k6KjOPTD52ymQdE1m9XFFhZh9lsE3WqXHu8//p1goyHCp//TzHOKEw5DITDKFF4b\njWvF9p9ubsHjPBfbboJgSwogMn8fFCrQLo0EmDQgtuRkOE1aaJDkmOyXVORse4WbkLrPgz81WttN\nD3X80tvvw3P9AcYqs7GD5W9SznQ6AExz4tlojPka32FbCqzZyo07fj7OnHOcajbwyYfeue+MbQA2\ndaR8fd95/HgerxdygT9YXcMLg+FlNx266+l6Xmliqvu3sZ0kaHCB3cQ0SReHCk3j56+3entTCjBc\n+dRGgiAI4q3FNRf9d7V5/MZj6Hl+LhABYJC5yvbUuPI0RcI4PK3RtM1S0xRFYl0aiEsRqZsO6Cb1\n1Yn1YZph0S9fc5FUaQS8OvovtkIagB1kUp097NskDG2FxXSWNWCytKdTSQBg11obdivEdlwS23xG\n7G/Yau/l5F8LN1hnStxkK8cQnb4FX/BmbRfF8zuxWLeOgEm+KL5PiVLwGMtj3gAzJOhVGxdZnG7o\njt8UMq90JnoS/XdXp41//Pb74HGWR/+lWuc508Vx4XWpKdMxe9PRe8fCEKGN5TNJJ9U/AiRnuBjH\ntWK7JSSe2d7BM9s7pffP/L98c7FfJOMz13dTq5nnXQec4w9XjX3jcsX2qrW6dD1Z+qy5xtPVKMpf\nh2nMrR/K466t7txNIeBx/oY0dBMEQRDXLyS2K2hJgb795ZtpjSgzOdCzle0ECWfwoPPx1NMUtWNd\nzrUTbHUCyo3WjirEPGAq2/OeX5sRnVjBVSX2i2JMsuoJhakV2woa3IqVbGFpZj8IMSOmASNeGYC+\n9GbEeFwYV+6mDhZxr+lyIvm04NA1wuaprS38r73ZRr1YTW42XApLsTINGKvIs7u7uUAtWgKMWOal\nbyS+3u/jI898GYB5z6cr2w3Bc/tOccIiYwynmk1b2Z4dalOMKKy6KSru44gyNRO917AV/LSisu2Q\nzIjtuRqxfVu7hdO2CdGNMZeMgaOcK30QZGFATRWB4NjMp7tenqB9yXrPPcZLN03FIT+SMwQ2BjJV\nurZynd9U1LzeOc/Df3VydqooQRAEcbQgsV1BMcN3kKb5RL2ZynKa5JVtz07cc8z9i1+DuHAOGTRu\nbjbxN47fWFuZvtRQF/f4eI/Kd1OK2uOnNiu4yoqRFMRenY1EWbGdKg02GmL7e34Q6fGTM/tpIUuT\nIh19O/J7V3ozYjwpTBj0OcdPfeWrpW8IUm1uBi5n2Ez/r70fWz/6E5XbvmKbD6MpYRTryc2Gq2hP\nDzX60tY2/uc//yo++drrSHQ5E93dKFXZfwCXsw37+goDWbT7NkOXJiQCVgja9yorVJ/zcetcVL5P\nwETYJ7mYzxBMXVtDmAjB4qj4quNsJckeNhKJn7zz9tJ1McYQCFErTq8UadeqjoCL/OZMXOY5jzWa\nuKfbtd8eFCrb9ob2YpyAg+U3z4lWtWs0PflzGsEYvssO1iIIgiCOLiS2KyiKzoEd1yxsGkkRliaI\nhIBnEzWKYltsrMN75SUoK7YEY7W+41gptKTYo7JtHq8bB59ohZBXe7LNdo1Q8GobScHTKwv2hSK5\nWIcGHw2h2p0ZqwaA2sp2P01xQxhi4DzdU68t/9pelUdlu3O3hLi8Mep+MDMK3vGsrWhuT4nHYmU/\n95ZP2Ug24xj3z3Xx+xdWEdmKsCNRprL9jvl5nGzM2lQyrUhFgB4AACAASURBVHMvts+LA1mcTz/L\n89zzl8FZobKtcyE5qWyLyvfJ7F/+rEQFT7oj5MbyVOXZdng2LrFObAPAcZuGwguNmwHnb1xlm/E9\nK9ah4IV9L09s/+pjj+If3n+vabwsfKZGWZZbgSQviO3ChM/Z6ytP/iQIgiCIKkhsVyD55Gv6kcrQ\nEMKI7SobSaMJz46Lnh6lzZI4txFw1DdIXqqy7YRmXVOc82RXHV9pDaVNBbOuQdKJiUXfx2pFXFHR\ns83GI+iwOiPYeLYr0lCUwmLgY1eIShuJE5Gb1p9dFEGp9cPvZ7JjkWGagQN47QPfX3o8KZzfDQSa\nrmz3sww3N5vQgJ2aWLSRmPV7bHkJ91ZlnKPQIMmM0PYKn5VxNtsUK9lEjCeFUeR5ZVvUV7bdDZ8T\n2+ZmarqyzTFSmW3+q6ls289EnY0EMJXduzptLAbFoTN83+PZp5Gc7Slkw8J5Ltez7Vsftccnlimt\nNdajiWXGVbYjZW6sLtUgebUnQhIEQRDXNiS2KyhWthNlftlyxmYaJJGmSBtNCFvZVphKzUiSvLIZ\nfuNZoD87Mt4J4IYQJRFXxFkoqirbWmtTeRbVfmtnU+CsukGzKHZvb7fxfL+c/ytffxXjQR8tIZBm\nykxerJvcJaT5r+IcXc/DmPMKG8nka/qLsRthPrnOVJnKdp3YfnEwwPv/w59UX489/u9fWMVIZVgJ\nAmxNDYIp3mz80G234ifvuG3Gs91PU7SlRMA5Blk61SA5sWJUWR6UHdcOuMo2g+TGJqK1xlhlJdHo\n9nOvt3gzUKxsF9/ri1Gcr4H7PA0Lle0qz/Y4U3tWtp0I36uyDQA/fe89pX1C/sbZSLzC6PUqigNq\nrjTxw2OTNf5Gf4Cf/fo30HMTRjlDUKps789GQhAEQRAAie1KinaKxDbQccZmbBgsiZGFDQitwBib\n8XWbaEAjtuR4VM5+tqgL54w3lVU3WAJGMLWEyH2lpecDYDDCpKpynWoFWXP9gG0QtILm9lYLz02L\n7bOvYiNOcGw0gI4iqIpBKg4tRGVlO1YKbSGRsFmxXRT77vXHU5XtlpC1NpKNeO8s0/UoxsdfeRXj\nTGElDPIoweL5i57xY2GIwVRle5CmaAlhhp1kCqMsw5Y9bzGtwr2On7zj9lxAmzQS5Nt9xs03HdZ2\nNMpmbSQen1iSStGMhQbJouD/0taWWatCYk2xsj1daQ5sQ+dLg2GtkHTVWhezd7nc15vHUsUE0P0g\n7bcAdYRiYmC50mr6vO9h2/57PGcjI7ueuVGc9WzXWG24s5HQj1GCIAiiHvotUYHHeO4fdokNxrM9\nbRNJkPohuBU4csq3bWwkRmyJNJ3xfANA85Mfh7SJE3t5uuc8r9JGkiojpqtsLgByzylH9fGLYuxE\nI8T5wsRLAFBJjC3GcWx9FSqJob16IaWbrTyHe/ocLSmQttrITt1U2lasvP7A6VPmmkv5x6b5s05s\nu+dOTx11jFWGQZpilJnK9mfPnsMvfOO5wrWVK5ctIWfyyp1v363TH29s4ldfeNFca6Ey7kTZwws9\nREpBa42skEay4Hu43U4ldQ2140yVvMeAS2WZrUyXbCT29e4kCX73/AUApprtvpFxOfFVlW3GGL59\nZRn/+vz5eiHpxPYlKtvT/Hdn7sRSxRj5/SDZ3jYSd9Pw2W956IpjBhc8Dxt2KJWzTrkbFAWdV7ZN\nGklNZdt9o0GVbYIgCGIPSGxX4E1VtqWtRk7bNFiaIg18CLuv8W0XxHYcI9MmUk5kKVSFYMwYg8Ss\nUC8SKYWuJ/Ms4CKp9fRW3QyY7Sq//iobSTGNpCnkjFVlK07Q0QphPDbXt0fVcvBX34fklttnHnee\n9CQIoRaXZ7Y5Efn+E8dxb7dbrmwX/Og/+7WvzxzbabFaC45Sub2nJQReGg7x/65frDw/YIa1TDdI\nDrIULSly0bqTJNhObWV7ykYibIKGZAyx0jaNxFzkUhDgb91h1kfaxBtjIylXtjtSYtdW4KdzyAFr\nI7Fr9P9d3MCC72M58DFIM2RaoyMltu3zo0zl0XxF7up0cDFO6j3b9pq7dZahNwGP7R39FwpRyje/\nEnq+n38r4sT2VjJ5T51n26XNVF6f/fCRZ5sgCILYCxLbFXilBrVCZXtabMcR0rABYfctNlae90Po\nJDGeXTCIJJkVw1mG1Aplwasr04CJb2sJWe3JtmK7MpoQU57tmjSSScWUY5hlpSrxepZhKcsgx2Mo\nANq/8qqlqWxLJErh35w7P3X9Zd/w9BTJ4gTFP97YrHx9wGw2tsN9G+CaXAEjjnSFTQMAWlJizvPw\n7+ywFMA0TLYLlW0F5FaT4vV7BdtDYKvTCrqU1uFwfQGmQbL8z7AtJUZW6E3bXNxrcZ+FSCmcaITo\nSIlBliLVCsuBj01bta2ykbhjmGuu8Wxzho6UV9UiIW0jYx2usr0fFvxJZfvC2IjtTWcNsmseK2U/\nf3tXtsmzTRAEQewFie0KipMUXeWSY3ZkOBsOkDaa4NDAVPzf/3LHfXiOcWTQENAQKoOearDkuztI\nGYfUqBXLgKlOtqSoFNuptTHwmsq48xRzVB/f5ExPvKdyarjOxUxjKUsg4zFSxqD34cd1YnuYpvjl\nbzxXuo5pMVgcVQ6UJyhW4V5z3ah6Z8cIhcD3nj6F33zonWCF58VKlUacC8bwPadP4k8Lwt54tmWp\nQuzOV2yg8/kkFzqwcYXFce1FfJu1Pa7wbHPG0JUSO0mKKKvybE/GvY+zDAHnaAmZV7YXfT+v0lbZ\nSAAUYu7qpiOyK7aQvNEcCwPc3KxOvgGM2N5vZXvR97Fh12g9jvGjt96Mn7rrDIDJEKf/88WXsZOm\nVNkmCIIgDgSJ7Qout7LNhwMkYQNCA8jSkhUk5hxJlpnKttYQWs94tvnOtqls2ybKvaIBG6JGbGud\n5xHv6dmusZEUJygCQEOKPMkCADa0wmKWQo4jZIxXerbr/NKOSGm0pcQgmVQO822ZLolBV1Esvr69\nxIw71rnxGJ99/ezsufPKtrF4+JwjFGLPBsKe5+U2EQAYZBlaUpT2c1aTYgOdxyaV7ZBzjDNVapAs\nIrmJ/xspNWMjAUzk3naalMfJW7Ef8snQm0gpBEKgZd+3VGss+UFJbFdVtp1IrROSC76Puzrtym1v\nFvfPzeH9J+onMIZi/2K7I40tK1am4fWdvR7utK83UQoMDDv2Pd4rjUQyRuPYCYIgiD0hsV1BMY3E\nNUhVNkgOB1B+AAHj3zYCyoggBUBlqcnZVgpca6jpynZ/ByljkC6ne48JkCEXs9GDmHi268R6Yj3b\ndTaSomcbMCKsKLZjpRFmGbxohKymsv2hJ5/Cvzp7rvLaASC2YrWfuGi/yeuIp84/PUY7tdGLH3/n\ngzMRee71A8A/ffElfOyVV2e2u6mbRUEb8slY+CqxPedNkiq01ui7ynZhv1jrmWg4l98MIB/3XRzX\nXsRNiTSV7dnXNedJbCdJqTLtPOHFCaduu6lsp0iVxlIwqWzHNZXtiY2k+kfA6WYTf/O2Wyu3XSuc\najRx39xstvnlwGzlfitJzHtQWIdEa7w8HOZ/r7OJeJcYukMQBEEQAIntSmYq26zapmEq26GpXGaZ\nFcxGBGnGoFJb2VYKwg6XKcKSGBnnkLZ6WyWW3WNuXPo0iVKQNZV3wNws5JXtS6SRAJMM5snzFTxl\nPNvGRjLr2d5KEnxuyovt0Foj1hpNKeGOWlzHRE/bSMo2lsx6ZoNCNbf0+u16X6yJAHQ2kqK3NxQ8\nbzZNKiYsznte3mA4yDL4nCOoGNbST9NSTrixkTjPtolqLDZIFvE4y6vrVYJ3zgrBUoMk47mP2a3h\nODPTQ5tSYJCZ8y35fu4/rrOROJ/49SwWb2u39qx8X4qWbYaN7bcDjsSm5ziq3j/AvN/X8/oRBEEQ\nbw4ktivwpj3btqI4LVb5cIDMD8BhK9tsIoIyxkxlGxpCK3BoqOlx70mKWHqQqBfbZsofsz7yfdhI\n7AQ8URP95xooHaayPfE/G7Gt4I2GtZXtrpS4aJvNpont9RcFXzJV2S6KWONlLorxSQOoidIrv4bi\nDUiranqlvXEoVo/NuHITzZfo2aElTTtEJ1YKF6MYi/Y1T4vWQZra51vPO5uMKg84R2RtJJVim3Hs\nJmlltR5w1XUnBK3YFjy3LribwVhlCARHSxjhmGqN5SDApm3Onf7mwuG82nVxk0eBlpDYjBPToFx4\njxKt8VN3ncF7b1jZ8/mSc8rYJgiCIC4J/aaooFTZVpPKdknopQmQZcikBwHklW23j4KpymbWRiIq\nbCRIEyRhA9I2V+41lKbOZuLEOGesMsc7tTcLdRMkzfEnQqMxZSNJlIKfZRCRyd/O5GzTXMfGwxVF\ntMPZGIqCrxjTVyW2yzYSnftii5MV8+vTZX/3NJFS4KiobKssvxGYFsOMsdzGsR5PxPZsZTsridlS\nZVtwPD8Y4J+88CJEVRoJZ9hN05nmSMeS7+PCeFzyXM95Hn7lWx+xlW3bIKnMOPaWlBhkGVJtqrIh\n51iNovyzW0fVtwVHhZYU2EjiUlUbcE3HfM9R9YD5BuThhd5hXiJBEATxFoDEdgWlNBI9qWwXPdt8\nOIRqNE3aCAPE5nopZ1sxZqrb2iSR8IqqLEtTpGFoPNtxjOxSOdq1YnyP6L+CDabSs60nOdGAEaXF\nrO1Ua3hJDHABAY20orLtJlvuViSCODEtGMs/bKmermwXo/94aYBNVoj+m94GGDH+lxYX8MsP3F8p\ntsdZhjnPK4naUAhE+bjyvSrLCS7GMZaC2cq2ZAz9LEUxh/nWVgvfaW0NAed4cTCwle3Z43ucW7Fd\nff63z83hqa3tmQbHO+fnbWKLSyMxQ3HmPImtJDHrxcwkzFeGI/iXaCCsukE6KrSExEaczHy74G5A\nLtV82RACP3LrLYd2fQRBEMRbAxLbFRTj51yD3rTYZXEEHTagtBnv3Pncb8Eb9HMhqRhDZq0bcjwG\nDxsVnu0EcRBCKoX2l/4EuDDbZOgquyaXubpB0mPcespntyd5ZbvOplKubJcaJJ3NIhpDBwGkBtIK\nz/YoU1jwvMr4vdK4cStekj0q2950Zds2eFZtA4wwuiEIcDwMoSp88ZFSeM8NK3jfsWP5Y6H1U9c1\nDwLAnPRwfhzhS5tbpcq2u9ZF3wyRKdpQWlLioYUFcw4hsG6tNdUNkgy/f2EVN9VE251uNpBpjdUo\nmrlGM3RpYiNxY+bPj8f55+VYGOCV4RDBHhMYgfJ7cdRoSYGLcTwz9Ce7TLFNEARBEJcDie0KPFaY\nIKknNoySWE0SQMqSJ9dPYvzzl1/BxShGBlPZztIUcmsT6uRpKK3BRkN0fvNj5hhpgjQIIaMxpFZI\nKywazkZSN/TGpKXsXdmWjIOnaaU/13m+HaXKdpogYRye1tC+D84Z4t5i6fnaJmosBcGelW1gYsOY\nTiMp20hmh9o4sVplIzE3QxzM+rqnq9tRpnA8DHGq2cgfCwXHKFNYj+LKWDzARCD+u9U1/MnmZj5F\n0XmjAeQTPbfipLI63pES5+2wlCqxLRnH+SjCh26+aWYbYKws7pqnxbZkk2ZZ0yApcCwIcX4c5et1\nQxDi5eEIfkWsYJGk4gbtqNAUAhtxXEqq+ft3n8HftXnbp/fI+CYIgiCIy4XEdgVy2rPNTYNhFsfA\nyESCsTSBll5paInMUrw8HOH5wSC3kcivfhnodqG781Baw3vpeXhnX0Xr334O8sJZpEEAL0shlK6u\nTOcNgnzWJhFHl7aZ2DSS3ic/jihN8OXt7fLxVXmCY0MIDO10RBZFSKSErxS054NLD8l82aPqfM9z\nnqysbE9H1wFVNpKC2Ga85Ol2lVpgNoPbrU/eoMhnq/9jNRutF3KBr+7s4H/686/UTlD0ufF139Vp\n490ry/ljzvvdlR7+dHMT/359HajwwnekzG8+qjzTLsd7YY8hQctBkJ+3iFeIpnTr2/EkOIDNJIHk\nDCuhj9dGo9rKvWMvP/dbnZaU2Ijj0ho9MD+Pd/TmAQB3dtr4zMPvulqXRxAEQbxFILFdgVdM/njx\nOXhRBMEY4qf+FI3PfgKA8VtrKe2ESIO02cZrUWQaJBmHjsdgvSUIwZEpheCrXwYABF/9M8i1VSR+\nAKE1ZIUFApiIzSoxvfDRn0O2s21ztGe3ey89D/3S88aGsrWBhHH8va8+W9pn2rMd2smHgElbiT0f\nUito36+snhsxK4y4TC5R2bait2wj0ZewkUzEtMcZfu/CamUDJYDKG5LINhAWCQXHU1vmpqNqlDpg\nBO5umuLWVisX2AEXubWgYz3Sx8MQjy0tzTx/zpP5n6vsP+dG48rzFlmwDXrT8XLFBt6okFZyLAzz\n/VvCNHjWVe4B4Bfvvw8frqmsHwVaQhjPdo1vHgANrCEIgiAODIntCjzOkVqBlMYxgtHIiF0AcMI0\nSQDplWwk0np0V6MIijEoZlJJOAMYF9DRGMhSZAsTK0bi+ZBag4VBZY62a4D0CnFvAAArKvWFc7U2\nkvbnPg320gvwAIjCtp1kkkldFKvAZPIhAPBBH4nvw7OVbTFtpQEwyjI0nNiuqWxPjxuP96psc17a\nnmpVspH8mwurOFsQqmmhydErNKg6XANhEZ/zfDrgSM02pQKmwt5P01LV0+csb7Ts2td7ptNGtyK1\noluwBE03dQLARpJcMqPZpWFMC75SGokd1w4gt50IxtAQHNtJsmdl+6ZWE20pa7e/1WlJc8M0fTNG\nEARBEG8kJLYrcOIuy0wDnB+PEX7xj6DAoKyNgqUJtOeZCYGcQbXaiK2dwIntzCaAMMYghEAGhuTm\n25EtTCqhqR9AagXeatekjRhP9UxlOzHCXm9czCvfM2Jda8StFvzxELxgdXipMB3PjaN3uFg8AGCD\nPhIhIRmH9oPK6rkTs21ZbSMpe7Yv3SA5E/1X8JQ7cVrM9HY2G8DkHk97kKuaIL9pfg7fe+okAOSW\nmWl8zjBIs9K13dZq4dtWlvH9p0+h65lKfm2DZUGAF4cEOX7uvnvxi2+/r/K5jo5XLYSNXUabgUFK\n5TcAd7bNuHHJzE2BAmaa/4gJbnDNXpVtgiAIgjgo9FumBsk50uEQMefwowje9iYyKcGsmHM2EmUr\n2ypsYGSTOtaiGMo1SMKIdyaEqXY3m1DtyYjp1Fa2RbNVPY7deq6LcYQAwKzgzOKo2mZihe94rodw\ndwe8sO25/iD/c55WsrMNvrlhJh8WKtuxlPA4y20kr0/ZH/LKtldd2R5mGZqyPBo8nW6QZEUbCStH\n/xUq787LvZFMxLbLRAZsZXvmZiCbqVze3m7jiZMn8uurwrdTGotieykI8FeWl/CdJ47D58JmXFf/\nEyoK5aiien5zq4kTjcbM40VuabYqH/eYqWwn9rPnbg7v7BixLRjLm/72spEcdeqGFREEQRDEGwn9\nlqnBYwzpaIiEcVsZBtTJ08Y+ApihNrmNhEMHIYae+eW9m6ZQDMjArY3EVLYVY9CNJlSnk58n8STS\nu+8D56I+R5vN2kRYEkOFDSRJYnPAgZcGA/zSc8+b7dEYOggRdboItrfyN7otBJ7a2po5vv/VP0P4\nZ08iFDwXh3w4QMKFmd7o+Tg3jvAPnv1a6frGKkPIBZrCDFWZpp+m+dCb3LOty5XtYvW15/nYKIxe\nTwo5227E+mZhe1qqbDO8PhrhI0//Wb49UrM2EkfAeUVro8GJ1Doh5rLB69I+5gr2jKrK9uVwvBHi\ns9/y0MzjHmc4N47w1NZW6fpONxp4x/wcGGP5ayYhWc+N1uN+lOMPCYIgiMOHfhPXIDlDNh4h4Rzh\nzraxgXCeV5RZkkB7JvpPMAYdBBhZn67S2lS1C5VtLoQZd95oIj5zD8YPfDMAIGUCUggIzpHWDJ0x\n49h5SRSwOIbqdI3Y1BrCVoedn5nZbOxxq41wazNvA3xHbx7P9Qf47bMm09uMa+dgSQLYZIa8st3v\nI+EcHgNQk5rhbCR+RRIIYG48nNjOPdt2v8zaIIqCcCXwsR5FebOouxkAJsNzNoo2kkKaimQcT29t\n49XRaHJ9KqsVnHvlKAe59aVObFsxK6p914EQ+bCUKs/2Qej5Pm4MQ3zytdfRLVTQJef4u3ffBQC5\ntYTEdj2u1+L18egSexIEQRDE/qHfxDU0uMBoZGwkweYGuB9AMZ57pY2NxIOC8WzrIMTICptM65KN\nhDMGLqTxfDebUJ0uklMmBSLlxgYgOKtPI7H7qPEIrd/9V+b8cQzt+0j8AF6awmk+V5VmUQTtB4iF\nLHmym0Lgw7fchN85d94cP8vgxWOwNAGzmcORUoBSEBfXkHIBj3HogtguVthHmUkj8QrZz0V2k0Jl\n21aBnR3GPbcYPxcIM3rcVa+zgmfb3QRszFS2XQMmK/m5tdaIsnqrx82tZmUGtrnWyxPbe+VY/8N7\n3mauu6YJc794nOPDN9+E10fj2pHijUtcP2F4qNfDfd3upXckCIIgiH1Cv4lr6AGIvvBHSKSHsL8D\nHgTIGJtUtqdtJGGIkWus1DpvkNRwYttWtkMzKEMH5ivsjHPjueaictx4qjU8rRFcXEOqFPjujjl/\nHFmx7cNLk1w05lVpayNJlIIseH8l47i/O5e/8dmgj8VP/0uwJAGLIwS2QdL/iy+bpk8pILmxkTjG\nBbuIq0x7nJVSRBzTle2gMJ1zmGWV1eWVwMdqZAbCpGqSY+5E61d2dvCMje5LVCFnm7F8kEysFFLr\naZY1gvN/vPMO/PqD31S57ZI2EnZpm8Zt7Rbu7Xbxjvn52n32y7znIVIK8zVi2+cm1JAq23vzd+66\nE997+tTVvgyCIAjiLQz9Jq5hgQMbfoCYC3hKgUtpxLZrzis0SGK+h/jOt+EB38MdSVQS2y4aMBfb\ndlCJE9sJc5VtDidhtTZJE4CpAvv9Xcz93uegoggssjaRJIH2glxsN59+EgAwzlJAa7AoggpCk2Nd\nFNucwRc8tzYkjMGPIiApVLYzBbGzjfTEKdOgadNIHEUPsov2qxqlDlix7U082y0pcxvJKM3yDOsi\nK0GIC05sFzzbbSHRkRJ/ZXkJz+7u5uvjbCYe47mFZJhmGO9R1QaM1aIqtg+4/Mr2pcTsP7jn7top\nkQeh55vrrhPbzrdNlW2CIAiCuLrQb+Iaeozhoucj8jyEKoMcDZExBhQ923aCJGt3kJ44hf9hZQk/\nd+7l3GaRWQHNGQcLQiS9BcAKQx2E0Iwhg6m8Sj4ZyPKlrW388vMvwHv+65Bf/Pfw0gSe1kizdCK2\nXWXb8+HHEfzNdQBAFCdY+MV/BHHhHHQQIFYKfOWG/HV5jCHgBbHtbiZGQ7DEVbYVEMfQfoBEawjO\noYtRdqpc2fY5t6PUNf7jxmZpHUsNkpyjJScV/EGW5fFrRRZ8D1u2EbXYAPm/3Xcv/vHb70fP93LB\n7tJUAOSi3Bw7RVQxPfJy8d4gsX1YuBHydWIbMJMyKfqPIAiCIK4u9Ju4hgVorK0cw1hIhEpBpCkU\nJpVtl7PtGiQBQDUa8MbDPOvZ2UgEY2YgTKGKq8IGdKs9GbdeqGxvJwl20xRi7QLUaAgviSGsSGVR\nBL6xjsYffwHwfcRhE15/F55t8orsOb1XXjA2Eq3AbzyJne/6XsBeixt73v7NjyEF4GkFsXoezDZI\nJkpBWzGfagV+4kRpEM8omxXbHmPYShL871//Rmkdd9M0H5zyQ3fdhW9dXs4r4C42cJpiZndciPab\n9z3M+x78ws1CKY3E/n/J9zFIMxvNt7+BJU5E14lV/xLbDxvJOTpSYt6vF9sNIWhgC0EQBEFcZUhs\n19DTGheFh7FSiL/vw0j+s+9AxmCi/7Q2OdbSpJG4RdRhA3I8Qmat1xnjkwZJO+AmJwiw9UN/Mxfr\nXIhcbEfWb6z9AClj8Ad9sLkeUsbB4wjBs18BH/ShPR/jZhPh9iakFduaMUScQ66t5pVtj3PAJqVI\nbka7e4wh29lCzBg8rcGjMVgcm22cI04SUzlXGum7HoHqTcR20UaSFGwk/TRFqnWpgbLo2T7daWPR\n9/O87DrPthPbWmtsJ8lM9Tbgk5HyRTHuGiWXgwDDLN2zOfJSXNpGwuy1XL1/QvOet3dl26bEEARB\nEARx9SCxXcBZNABgQSusCTu0prcA3u4aES0EkCamsu3SSJw1JGxAjibTGY1nuyi2pxog5SQ6sBj9\nFyllRPx4ZHK+B32w3iJS501+4ev2BBkiP0BjdxeebZwEgJGtZma9RSRKw+cMOhekNh9aCPzEzXdD\nMQZm/eMsNj7pkHNEaQLt+WZojH3Ob7zrm/GO+bnSiHPj2Wb5EBhg0kCZaY10KtqvOGp8mKV7iu3d\nNEXIZ33Hvq3MA8AgTdEWRsxrm5o973m2sp3tu/J8+Z7tq1c5fnRpEbe0qgffANZGQpVtgiAIgriq\nVM+DPqKEuztApwsIgWXOcE5INKRAs9lEkCkkWQaWpuj9s1+Gbnfht9tgwwiB76NhpwHyYkSeHZoS\nBD6aYQjFkO+Xwzkavo9GYbviHAoMXpYiXl6Bt7EBf+UGZFtm8qNcWwUA+P0dZMc4/EYD/urr+SGH\nC0sIP/Rjxgf+J/8RnUYDgTYCuBmYaw0Fx1/YSZZsbh4Yj8CyzFwLY4jTDPOdDtLVTXSaTQjO0QDQ\n8X0oIfLXoThHOwjRbTbz8zPfRyMIMExThMKsH2MMw+EQoechYwyNRgMJ4+gGwcyaLDabGK5fxIBz\nLIaz2zthiNQeo59lWOq0EQqR34zMBQFizgEp0fS82TWvgXOe79u1Nw5zzSYaQTCzb9eK7W6zcdnH\nPyhuDT3Pg5QSP3DH7Xvuf1u3gxPdzpt2fUB5Da81ptfvWoXW8GDQ+h0cWsODcS2vH3F1uDY/qVeJ\nxsf/KaK778Pgvf8lGtEYF8ExxzhGoxFUlkLbb+TZaAQ2GiHKMsRJAiUERjYFww8aEAAy2Mo2NFSa\nIokiZErn+zmiJIVKU2RZhlQDo9EIgyhCnKXI+n2MPd9WiwAAIABJREFUbjgJfvwUMo9je5Dgi71l\nPLK5hp0PfB9UZw6jsxcgw0bpK4qh56Nh0zzGaQaVJBjbhkOVphiNRvAxsRekrTbcLcJ4Zxthfwfx\n6nkMrN0jtscCAA/Azmicv45hnABpirSwz/ZgiKZS2Ipj+Nysn+d5mJ+fR4szbI4jjEYj7IzH8Bib\nWRNfZdiOI5zf3cW8lDPbkaYYxQm2+gNoraGiCCPGMLKvMQCwNRoh1BoeMPv8GhqNRr6vso2wOo4x\nqkhZUdZTruMEI/7mDEVxazgYDJAkySX3/5CNtLvc1/9GUFzDa40rXb+rBa3hwaD1Ozi0hgfjMNev\n1+sdynGJw4VsJFPwQR8A0M5SZIzlk/gEY8iUxvg7/gts/rcfwfDRb0M2v2Cj/SbP12EI98X9rGe7\nOkdb2nHuKQAohWR7C2pnGywaIRESvDsHEZi75J8683bTuHjqZqj5nvEsF6rKADAqVGITpUwmtLVa\nOF9zWLhm1TEVbhUEYFGEO/s7+A+9ZSSel9tOHCEX1Q2SBbuFSyuJ1KxneiUIsWbtKsMsQ7OiMmFs\nJBk24gS9ismVLk1lkJnmS2av0fm45zyJzSSxo+QP10biU9oHQRAEQRB7QEphCtXuAABaSQIGnUfH\nCcZwMRrjlTvfBt3uYPzNDwOeB6VRmkKopVcQ2wwKLBfbWYXYzrSC4AxSCKgsRe+f/BziKEKaZmDj\nMRIhjBgPJqJTtScT72KlIO01O0aFTOxYm6EvWpQ920Hhmt3xdLMFvruD//r1F/G5lROIpTczEKbh\nogEL5/c5t4krZdHrMriLLAY+NuMEmdYYZhkaFWK1Yz3bm3GMhYoGQOfZLiaduGsBgNPNJl4aDG2D\n5H7TSAQ4MHOz4ZCM0dAYgiAIgiAuCSmFKVyetMhStMAQWrF2Y6OBd62s4A8vrJb2z7SGKFgyIOVk\nOqMdbMM5hwDDrBnBjSM3aSQp42BJYqYfQoOPxyYHmzOwgoAePfxo/udIKXidTikH+/9uz+PTrxkP\nt0sLgX0dp5sNyJdfRFAQ/qrdgeYcqtGCWLuA49EI256HWHqlUe+AGQQzPUHSCWrXSOnSSqrSQDwb\nWbcZx3b65KwYbthzXIgiLFZVtu1QnmKGt1sLALi11cSLgwFeHY0qxfzlEAiOn7nvnrxqPg1jDD9x\nx237rpwTBEEQBHE0IKUwBSsMrWmzSY6yYAz3LixgUBCaAJDBTIh0aCnLlW1b8eUMtTYSYW0kmasM\nZylSbdJRUsGN9SMM8+fEZ942+bNS4MdPYfCe9+WPPSUD/OvzF6C1nkTjCYE/+tIXcEurhe5nfgON\n8QinRwN8x/p56EYD2vOhOl3Is6+hkWWIuECfsZm0kFDwShsJMBkEE1kbSaxUZRrIcuBj3Yrtqmg6\nzhhaUuLru30cb4Qz211lu5+mpaE4sRX5Pd+Hxzme2d7G4zcem3n+5XJHu73n9keXlmrFOEEQBEEQ\nBEBiu8Tu+74rj79DmqLFeV7ZBoCO56GfpKXnKD0ltoWEsBF0GeN5ZVuy6nHmefSfkLnYjqMYGQA2\nHCBhHJKx0rj0IrFS8P0AyanySPCWMENwuBX7WgiwLDMZ4QACrXA6GuHvnH3RjI6XEqo7B+/sq9C9\nBTSzFBfjeGboTMhFpY0EmGRPR9nERhJWVK6XggBrkatsV38ETzRCvDIa4Xg429HtPNu7U5Xt7zt9\nCj9gmwL/1h234afvuQfLFUkiBEEQBEEQbxYktgto359UttMEbc5K4747vodBNiu2i55tSAnhhtrw\niWfb58azPV3dTpWGZNw0SNrmxThNkNjouhTMWDk4x43RbHezE7vaM3aLHzn3Mv42VxgrZS0k9tq4\nAMtSeN94FgAQZhnajJmKdqsN1WpBdbrg/V0kN9+OllJYj+KZynZDVDdIApPmy3Hu2c4qGwyXfR/r\nUVTp6Xbc0W7DYwyLQXWDpKlsZyXP9mPLS3j/ieMAgPvn5tDxKGyHIAiCIIirC4ntIp5fGMeeoiXE\nVGXbxyAti+2ZNBIpwV1lGwyKmcxNxlhpzLgj0QoeZ+BSImUMqt1BBOR/TrXKReyv3XEbOFCqkOdi\nV0r8wR//Ib6r1cA3rSybWEKt4dnnwora9u/+NgAgTGK0Gw30//O/DjU3j53v+RBUdw4AEN37djS6\nXazFMZqiLFhDwSs823ZQzpSNZJxV20iKle29xPaxMCzfyFh8bq7hma1t3BjO2kwIgiAIgiCuFUhs\nFzCV7QisvwukCdpClCrbbc/DTpLi+f4gfyzTmGmQFNrZSGyDJJvEyM2IbaVNmocdypL1FhFxgYRx\nK7Z1noiRnTiFZqGyrLRGYtNGwBikLzF+x7sgb7rVjJmvELPMnn85GuMGwZHdeMJs4BzZXA+q1Ua2\nuIym59dWtovj2sue7XKDZJ1NxHi2oz3F9jt78/jRW2+p3CaZaTY9Ox7j21eWK/chCIIgCIK4FiCx\nXUD7AcTGRXQ++wmwJMGclKUGvK7v4ZXhEH/7y3+OcyMz2l2hbCPRYiK2FWPIMInEC4XAdpzgV154\nMbeTJFrBYxzSer0vLCxhzAVSzjF66BFjMymUzotiN7Gj1HPPuOdDex48m+k9yrJS/nWR71l9De+T\n5W1qYRHbP/DDAGNoSYGLcVTj2S5Xtp2g9hhHU4hS9F+V2F7yXWVb14rtUAi8rdup3OaaEm9vt2ai\nCQmCIAiCIK4lSKkU0DZmTlxcAxuP8YGlBTx+bJJm0S7E6/3R2joAZyMpp5HIQmVb2QZJwHiNv7Kz\ng9+7sIqntrYBmMq2xxkgJT5w7lX8RnseETeNlfGpm62NZHL8sFDZnvY8x3/1fVDdeTA7jGc3SSvT\nPgCADQaVTZfaNiS2hMRaFKMpZ9NInNjXWtsc70kaSUfKUoNkbWU72ruyfTmQhYQgCIIgiGsdEtsF\nXJMh0xpiZwuhH+QTJAHk0w67UmI3tePPtYYo6lkpwbURm2luI7GDZDjHn+/s4oYgwP/1yqtIrNXD\nYyaa7x07G3hVeIisTzzT2tpIJm9TQwiMCtF6RbGq7r4392YHnGMzSWYq0w4ejfObiyqaUmA9iiqi\n/yZiP1Y2I5w5zzZDR8rJBMksq/Rsd6TMc7IPIrZPNmaTSgiCIAiCIK4lSGwXmRKWamoyoxOVJxoN\n9FMjKDON2eg/PYn+UzZjGzCe7a/u7uC7T52AYAx/sbtrrCDWc92++16sA4gEh8cYUq0rbCQc3+j3\n8dtnz13ChsHx8nCIlanoO11sePT2ENtCINZ61rPNJw2SY5WVxLzHOHq+h0FaHNc+K/YZY2hLiVTX\nX/+l+Pt334VHFhf29VyCIAiCIIg3C8pGq2D3/d+N5ORNgKxenjvaLbwyNDF8ldF/1rOcMSMsee7Z\n5thOUpxoNDDvexhnCokTnIyh/c5vwep/+hKEfSxVGsmUjaQhBD728qtItcYDc3O1YjXgAi8Ph7il\n2So9Pvi290KuXUD41J/uWdmet5aZ6cq4zzlSrfNx60Ux/teP34iNJMbvnDuPP9nYqLWRAEbMbyVJ\nPnXySnlgfm5fzyMIgiAIgngzocr2FNvf/YNIbrq1Vmj/i4feib+8uIi+jQDMtAZH2bMttALTGgoM\nGizf7oRnz/PyKYiJm/AII0AlYzgdhpCcI9Uqz+F2zHseUls532sojKtsHwsnle3t7/khxHffB2V9\n2XWDcgDgvrkugFmx7W4efvWFFzFMy2L77m4HNzebeHk4xM987RsYpGnt9bWkgGcjEQmCIAiCIN6q\nkNieIrvxBLCHAFwMAnSkLIntUhqJ9CCUgqe1bZCcHM5Voec8Lx/MkmidV3cZY1j0fdw8Pw/hbCS6\nbCN5W7eb/3mvBsOQC6xFcUlsZ8eOG0+3NFXrvSrbp6wfOqsZMf8Hq2sYZOmMGF/wfYxsg+S5cYSG\nrPaMN4U8kF+bIAiCIAjieoDUzj5oSZGL7enoPwhhxDaM2C5WthMrXD3O88Es0zaUBd/HLc0mJGNI\nlUaqVclq4SrOALAeR1isEcwu8/p4RROhtlX7vSrbjDH88gP34529+dp9zo3HM2klDSEQWhH92miE\nhRpfeEsKBDVJKQRBEARBEG8VSGzvg5aUGGYZMq2RKF3yVGvpQbrKNkz0n9s8Sif51D7n6Nsc7KKV\n4omTx/EtiwuQ3FS2kwobyc/c+zZwAGdHYxyrib971XrK5wtxhfk1epeubAOmEXSvHOvXR+OZBkoA\n6NnjplpjwZ89P2AsM1TZJgiCIAjirQ6pnX0gGENDCAzTbCaRA1KCl2wkLHd0j1RZbA/SdKZB8L65\nOfR8Hx6znm03IbLAmU4HoRB4YTDE8UZ1dTpSKreCzOAq23ukkeyF82GfrRHbC74HwRg4gG6F2AfM\nDQuJbYIgCIIg3uqQ2tknbevbHmWqNNJd23HtxkYCaCC3kbh8asAI1n6a1QrOkme7wkPeFALf6Pdr\nB7v8H/ffi5++922V27SU0JzXNoFeik889E68e3kJZ8ejyhzv7z99Ct+6tIieFd1VtKiyTRAEQRDE\nEYDUzj5pSYFhlmGcZaXBN7Bj16tsJH95cRHfstADUKhs1wjO3LOtVKWVoyEEdtK0Vmz3fB+tGjGt\npbenX/tymPc8nBtHpXH2jjOdDm4MQ/T2yvGWJLYJgiAIgnjrQznb+6QpBHbSBBooWUHyyrYGFGfQ\nAJyR5ImTJ/L9As7Rz2ZtJA7JGRKtbGV8lh07wbLOprEn0rukX/tSOF923YTKOc/Dwh7naFEaCUEQ\nBEEQRwAS2/ukKSQuxjHCqQZHJ7YlNBRQmiBZxFS2sz0r2+PMDLSpyqLeTuozrC+FDkLoRnNfz3Xc\n1WkDQKVnGwAeXujhzna79vm3t1uI7PAfgiAIgiCItyoktvdJUwpsxEnZQgKYCZJaQwDQYFCF6L8i\nPufopyl6NWkdkploQFkTjxdwjm/eI5ZvL7KlZex81/ft67mO21pmMqXL1J6m63l7Vt1PNBo4UdfA\nSRAEQRAE8RaBxPY+aQmBi1Fcao4ETGWbFxskWfWMnMCK7ZWg2jstGcNYqVLsX5F/9uA3HcyGUXPe\ny4Uzhr9/9xnc2mpdemeCIAiCIIgjContfdIUAi+Mh2jwqcq2sJVtbZJI9qpsj5WaifVzeJxjmGWV\nSSQAapsf30wemN9fZZ0gCIIgCOKoQB1q+6QpJTbieNZGwhgEM3cxCgy6kEZSxFWla8etC1P5rrOR\nEARBEARBENc+JLb3SVMIXIxjNMTsEgrGTIMkAxRQUdeeiOy6BsnARgPW2UgIgiAIgiCIax9Scvuk\nZXOuw2kbCQABV9kGNGPgFaXtwIr0uui/wKaV1NlICIIgCIIgiGsfEtv7pGmHuVTlTHPGC2kke1e2\nTzWrI/gCIUwON9lICIIgCIIgrltIbO8TJ7Kn00gAgHMGD0AGI7ircrJ9aw95V69XeXyqbBMEQRAE\nQVz/XP1IiyvgF37hFxCGIRhj4Jzjh3/4hzEajfCpT30K29vbmJ+fxxNPPIHQjjD/whe+gKeeegqc\nc7z3ve/F7bff/oZdy4IdRf6XFhdmtgnGbGUbyFj1HU3Hk/gbx2/EyUb1uHXn2Z7bz4RIgiAIgiAI\n4prguhLbjDH84A/+IBqFYShf/OIXceutt+KRRx7BF7/4RXzhC1/Ae97zHqyuruIrX/kKfvzHfxw7\nOzv42Mc+ho985COVVeb9sBIG+K2H31Xpx85tJMwOtanYRzCGD950uvb4geAYZBkWg4ONVScIgiAI\ngiCuHtedjURrXfr7s88+iwceeAAA8Pa3vx3PPvssAOBrX/sa7r33Xggh0Ov1sLi4iNdff/0NvZYq\nEQ0AgjNwAFybwTb7kfchF+inKTxKIyEIgiAIgrhuua4q2wDwsY99DJxzPPjgg3jwwQcxGAzQbrcB\nAJ1OB4PBAACwu7uLkydP5s/rdDrY2dl5U65RMA5uRXZWk0ZyKXzOkWqdp5YQBEEQBEEQ1x/Xldj+\n8Ic/nAvqj3/841haWprZ53JtIjs7O+j3+6XH4jhGq2b8uLQTG+VlTG5cYYAPDQ4gA4PvefAqUkv2\nou0b+8hCEMC7TN+2EOKy932zuZL1u1pcy+sH0BoelOth/QBaw4NC63dwaA0PxrW8fsTV4dr9tFbQ\n6XQAAK1WC3fddRdef/11tNtt9Pt9tNtt7O7u5mJ5upK9s7ODbreb//3JJ5/E5z//+dLxH3vsMbz7\n3e/e8xp6NekhRf6az8F8gV/XQMIYlpeXZydNXoJj9gfJifl5LC8vX9Fzr2UuZ/2IvaE1PBi0fgeH\n1vBg0PodHFpD4nriuhHbcRxDa40gCBDHMZ5//nk89thjOHPmDJ5++mk88sgjeOaZZ3DmzBkAwJkz\nZ/CZz3wGDz/8MHZ3d7GxsYETJ07kx3vwwQfzfYvnWFtbqzy/lBK9Xg+bm5tI03TPaw3SDFBj8CAA\nAGysr9dOiqxjOBgCALwkqb2mmfMGAaIouqLzvFlcyfpdLa7l9QNoDQ/K9bB+AK3hQaH1Ozi0hgfj\nMNfvrVR8O0pcN2J7MBjgE5/4BBhjUErhvvvuw+23347jx4/jU5/6FJ566inMzc3hiSeeAACsrKzg\nnnvuwUc/+lEIIfD444+XLCbdbrdU6QaAs2fPIkmSPa8jTdNL7uNxDmgNBg2AIU0S4ArFttAKANDh\n/JLnc0gpL3vfq8XlrN/V4npYP4DW8KBcy+sH0BoeFFq/g0NreDCuh/Uj3lyuG7Hd6/XwYz/2YzOP\nN5tNfPCDH6x8zqOPPopHH330sC9tBi09sDTNo172EzcYWHE+T74vgiAIgiCI6xaKujgMhAAYyxd3\nP4scktgmCIIgCIK47iGxfQho6UEzBgaAab2vyrbzeM95182XDwRBEARBEMQUpOQOgfiOu8CSGPy5\nF/c10AYwA3P++Te/A8EVppgQBEEQBEEQ1w5U2T4EVG8B2coxM0XyAMeZIwsJQRAEQRDEdQ2J7UOE\nY3+j2gmCIAiCIIi3BiS2DxEGgENf7csgCIIgCIIgrhIktg8RAapsEwRBEARBHGVIbB8iprJNEARB\nEARBHFVICx4inDEwcpEQBEEQBEEcWUhsHyJU2SYIgiAIgjjakBY8RARogQmCIAiCII4ypAUPEQZq\nkCQIgiAIgjjKkNg+RMxQGzJtEwRBEARBHFVIbB8inFFlmyAIgiAI4ihDYvsQYWAktgmCIAiCII4w\nJLYPEQ5aYIIgCIIgiKMMacHDJAjAPO9qXwVBEARBEARxlZBX+wLeynDPB/VHEgRBEARBHF2osn2I\nMGaaJAmCIAiCIIijCYntQ4SDgVOLJEEQBEEQxJGFxPYhwpmpbhMEQRAEQRBHExLbhwin8D+CIAiC\nIIgjDYntQ4Q82wRBEARBEEcbEtuHCGdU2SYIgiAIgjjKkNg+RBiosk0QBEEQBHGUIbF9iFBlmyAI\ngiAI4mhDYvsQ4QBJbYIgCIIgiCMMie1DhDFGNhKCIAiCIIgjDIntQ4SDgVPQNkEQBEEQxJGFxPYh\nwhnIs00QBEEQBHGEIbF9iHCS2gRBEARBEEcaEtuHCA21IQiCIAiCONqQ2D5EaFw7QRAEQRDE0UZe\n7Qu4lgiCAJxX338wxjAcDuF5HqS8vGXzpIRMUzQajTfyMmvhnL9p57pS9rN+bzbX8voBtIYH5XpY\nP4DW8KDQ+h0cWsODcS2vH3F1uDY/qVeJKIpqt3meh/n5eQwGAyRJclnHUyqDVgqj0eiNusQ9aTQa\nb9q5rpT9rN+bzbW8fgCt4UG5HtYPoDU8KLR+B4fW8GAc5vr1er1DOS5xuJCN5BDhML5tgiAIgiAI\n4mhCYvsQ4YyBk2ebIAiCIAjiyEJi+xBhoDQSgiAIgiCIowyJ7UOEM0ojIQiCIAiCOMqQ2D5EyLNN\nEARBEARxtCGxfYgYzzZBEARBEARxVCEteIgwmExQgiAIgiAI4mhCYvsQYVTZJgiCIAiCONKQFjxE\naFw7QRAEQRDE0YbE9iHCGTVIEgRBEARBHGVIbB8iNNSGIAiCIAjiaENi+xChoTYEQRAEQRBHGxLb\nhwgNtSEIgiAIgjjakNg+RGioDUEQBEEQxNGGxPYhQp5tgiAIgiCIow2J7UPEDLW52ldBEARBEARB\nXC1IbB8ixrNNEARBEARBHFXk1b6AtzJ3dzq4MQyv9mUQBEEQBEEQVwkS24fIbe3W1b4EgiAIgiAI\n4ipCNhKCIAiCIAiCOCRIbBMEQRAEQRDEIUFimyAIgiAIgiAOCRLbBEEQBEEQBHFIkNgmCIIgCIIg\niEOCxDZBEARBEARBHBIktgmCIAiCIAjikCCxTRAEQRAEQRCHBIltgiAIgvj/27u72KbqBo7j376w\nMbduK9142UAYMgdmOgEhEyWwqKAEQgBJNHEaiS+JMzgSLzQxhgsvNSoioolMgxfAFFGJCmoQFgyK\ngsDAMaKOl5XhpNu6N9Zu/T8XyypF+jz0qbXbzu9zQ/pfT/M/v5wzfjnn3zMRkQRR2RYRERERSRCV\nbRERERGRBFHZFhERERFJEGeyJ5Bop06d4ssvv8QYw4wZM7jzzjuTPSURERERsYhhfWU7FArx+eef\nU15eTkVFBceOHaO5uTnZ0xIRERERixjWZbuxsRGPx0N2djYOh4Pi4mJOnjyZ7GmJiIiIiEUM67Ld\n3t5OZmZm+HVmZiZ+vz+JMxIRERERKxn2a7aj8fv9dHR0RIwFAgHS09Ov+n6n0xnx72DkcDgYMWJE\nsqdxVcovfsowPkMhP1CG8VJ+8VOG8RnM+UlyDN6j9R/gcrloa2sLv/b7/eEr3T/99BN79+6NeP+8\nefMoKyu76mf5/X727NnDzJkzcbvdiZv0MKX84qcM46P84qcM46P84qcMZSga1mU7Pz8fn89Ha2sr\nGRkZ1NbWcv/99wMwc+ZMioqKIt6fkZER9bM6OjrYu3cvRUVFEUtT5Noov/gpw/gov/gpw/gov/gp\nQxmKhnXZttvtLFq0iM2bN2OMYfr06eTm5gL967d1ooqIiIhIIg3rsg1QWFhIYWFhsqchIiIiIhY0\nrJ9GIiIiIiKSTI61a9euTfYkhgJjDCkpKUyaNInU1NRkT2fIUX7xU4bxUX7xU4bxUX7xU4YyFNmM\nMSbZk0iWTz75hPr6etLT03nqqacAaGpqYufOnQSDQbKzs1m+fHnECd3a2sqGDRuYP38+c+bMAeC9\n996jvb09/Kif8vLyqI8QHG5iybC1tZX169eTk5MDwPjx41m8eDFg3QxjPQYHftbT04Pdbufxxx/H\n6XRaNj+ILcOjR4/y3Xffhbe9cOECTz75JGPHjqWqqoqOjg7LZRhLfn19fXz66aecP38eYwy33HIL\nc+fOBax7DkPsGX722Wd4vV7sdjv33nsvkyZNAqybYVtbGx9//DGdnZ3YbDZmzJhBaWkp3d3dVFdX\n09bWRnZ2NitXrmTkyJEA1NTUcPjw4XCGU6ZMAayboQxyxsIaGhqM1+s1b775Znjs7bffNg0NDcYY\nYw4dOmS++eabiG22bt1qtm3bZvbv3x8eq6qqMl6v99+Z9CATS4YtLS0R77ucVTOMJb++vj6zYcMG\n09TUZIwxpqury4RCIWOMdfMz5v87j40xpqmpybz++uvh11bNMJb8jh49aqqrq40xxgQCAfPqq6+a\nlpYWY4x18zMmtgy///57s2PHDmOMMR0dHWbjxo3hbayaod/vD+/3pUuXzLp168wff/xhdu/ebWpq\naowxxtTU1Jjdu3cbY4y5cOGCeeutt0xvb6/x+Xzmtdde0+9CGdQsvWZ74sSJpKWlRYz5fD4mTpwI\nwOTJk/nll1/CP6urq8PtdoefaHI5Y9EbBLFm+N9YMcNY8vv1118ZM2YMY8aMASAtLQ2bzRbezor5\nwf9/DNbW1lJcXBwxZsUMY80vGAwSCoUIBoM4HI6IO39WzA9iy7C5uZmCggIA0tPTGTlyJI2NjeHt\nrJihy+Vi3LhxAKSmppKTk4Pf76euro5bb70VgJKSEurq6gA4efIkxcXFOBwO3G43Ho/H8hnK4Dbs\nn0YSq9zcXOrq6pg6dSrHjx8P/3n3np4e9u/fT3l5ecRt6AE7duzAbrczbdo05s2b929Pe1CJliH0\nL8PZuHEjI0eOpKysLPyfESjDAdHyu3jxIgCbN2+mq6uL4uJi7rjjjvB2yu8v/+0YHFBbW8uDDz4Y\nMaYM+0XL76abbuLkyZO8/PLL9Pb2snDhwoiSqfz+Ei3DsWPHhstiW1sb58+fx+/3k5+fDyjDlpYW\nmpqaGD9+PJ2dneG/f+Fyuejs7ASgvb2d8ePHh7dxuVwR57jVM5TBR2X7CkuXLuWLL75g3759FBUV\n4XA4ANi7dy+lpaWkpKT8bZsVK1bgcrkIBAJs3bqVI0eOUFJS8m9PfdCIlmFGRgZr1qwhLS0Nr9fL\nli1bqKioIDU1VRleJlp+oVCIs2fP8sQTT+B0Onn//ffJy8ujoKBA+V0hWoYDzp07R0pKCqNHjw6P\nKcO/RMuvsbERu93Os88+S3d3N5s2bWLy5Mm43W7ld4VoGU6fPp3m5mbeeecdsrOzmTBhQvgOldUz\n7OnpYdu2bdx3331X/fLj5XfyorF6hjI4qWxfIScnh/LycqD/SmJ9fT3Q/5/ziRMn+Oqrr7h06RI2\nmw2n08ns2bNxuVwApKSkcPPNN9PY2Gjpkztahk6nE6ez/5DLy8tj1KhRXLx4kby8PGV4mWj5ZWZm\nRtyuLiws5Pz58xQUFCi/K0TLcMDVlpAow79Ey+/YsWNMmTIFu91Oeno6119/PV6vF7fbrfyuEC3D\ngS/0DXj33XfxeDyAtY/Bvr4+tm3bRklJCVOnTgX6L9B0dHSQkZFBe3t7+IuOV17J9vv94T9SZ+UM\nZfCy9Jpt+PvaroHbVKFQiH379nHbbbcBsGrVKiorK6msrKS0tJS5c+cye/ZsQqEQXV1dQP8vi/r6\n+oirZVZwrRl2dnYSCoWA/vWMPp8Pt9tt+QzG7JAXAAAE5UlEQVSvNb8bbriBCxcuEAwG6evr4/Tp\n0+Tm5lo+P7j2DAfee/z48YiybfUM/1d+s2bNAiArK4vff/8dgEAgwLlz58jJybF8fnDtx2AwGCQQ\nCAD938Ow2+06j+l/oktubi6lpaXhsaKiIn7++WcAjhw5QlFRUXi8traW3t5eWlpa8Pl85OfnWz5D\nGbws/ei/Dz/8kIaGBrq7u0lPT6esrIyenh4OHjwIwLRp07j77rv/tt23335LSkoKc+bMIRAIUFVV\nRSgUwhjD5MmTWbhw4TXd7hoOYsnwxIkT7NmzB4fDgc1mo6ysjBtvvNHSGcZ6DB49epSamhpsNhuF\nhYXcc889ls4PYs+woaGBr7/+msceeyw8ZuUMY8kvEAiwY8cOmpubgf4lEfo9GFuGra2tbN68Gbvd\njsvlYunSpWRlZVk6wzNnzlBVVcXo0aPD+3vXXXeRn59PdXU1fr+frKwsVq5cGb6zV1NTw6FDh3A4\nHOFH/1k5QxncLF22RUREREQSyfLLSEREREREEkVlW0REREQkQVS2RUREREQSRGVbRERERCRBVLZF\nRERERBJEZVtEREREJEFUtkVEREREEkRlW0REREQkQVS2RUREREQSRGVbRERERCRBVLZFRERERBJE\nZVtEREREJEFUtkVEREREEkRlW0REREQkQVS2RUREREQSRGVbRERERCRBVLZFRERERBJEZVtERERE\nJEFUtkVEhrBHH32UF198MdnTEBGRKFS2RUQsoKysjE2bNiV7GiIilqOyLSIiIiKSICrbIiJDyOHD\nh5k5cyZZWVk88MADXLp0CYDW1laWLFnC6NGj8Xg8LFmyBK/XC8ALL7xATU0NTz/9NJmZmaxevRqA\nuro6FixYgMfjYdq0aVRXVydtv0REhiuVbRGRISIYDLJs2TIeeeQRfD4fK1eu5KOPPgLAGMOqVas4\ne/YsZ86c4brrrqOiogKAl156iblz57J+/Xr8fj/r1q2jq6uLBQsW8NBDD/Hnn3+yZcsWKioqqKur\nS+YuiogMOyrbIiJDxIEDB+jt7WX16tU4HA5WrFjBrFmzAHC73SxbtozU1FTS09N5/vnn2bdvX9TP\n2rlzJwUFBTz88MPYbDZKSkpYvny5rm6LiPzDnMmegIiIXBuv10t+fn7E2MSJEwHo7u6msrKSXbt2\n0draijGGjo4OjDHYbLa/fdbp06c5cOAAo0aNAvqvjPf19VFeXp74HRERsRCVbRGRIWLcuHE0NjZG\njJ05c4YpU6bwyiuvcOrUKQ4ePEhubi5HjhxhxowZ4bJ9ZeGeMGEC8+fPZ9euXf/mLoiIWI6WkYiI\nDBG33347TqeTN954g97eXrZv384PP/wAQHt7O2lpaWRmZuLz+Vi7dm3EtmPGjOG3334Lv168eDH1\n9fV88MEH9Pb2EgwG+fHHH7VmW0TkH6ayLSIyRIwYMYLt27dTVVWFx+OhurqaFStWALBmzRq6urrI\nyclhzpw5LFq0KGLbZ555hurqajweD5WVlWRkZLB79262bNlCXl4eeXl5PPfccwQCgWTsmojIsGUz\nxphkT0JEREREZDjSlW0RERERkQRR2RYRERERSRCVbRERERGRBFHZFhERERFJEJVtEREREZEEUdkW\nEREREUkQlW0RERERkQRR2RYRERERSRCVbRERERGRBPkPi+1EsOLBy10AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10fd7a5d0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<ggplot: (274447253)>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ggplot(df, aes(x='date', y='value', color='variable')) + geom_line()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-2-clause
CompPhysics/MachineLearning
doc/Programs/JupyterFiles/Examples/Youtube Tutorials/TensorFlow Tutorial Sentdex.ipynb
1
2238
{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(\"Mul_11:0\", shape=(4,), dtype=int32)\n", "[ 5 12 21 32]\n", "[ 5 12 21 32]\n", "30\n", "30\n", "30\n", "30\n" ] } ], "source": [ "# Import `tensorflow`\n", "import tensorflow as tf\n", "import os\n", "\n", "# Initialize two constants\n", "x1 = tf.constant([1,2,3,4])\n", "x2 = tf.constant([5,6,7,8])\n", "\n", "# Multiply\n", "result = tf.multiply(x1, x2)\n", "\n", "# Print the result\n", "print(result)\n", "\n", "# Intialize the Session\n", "sess = tf.Session()\n", "\n", "# Print the result\n", "print(sess.run(result))\n", "\n", "# Close the session\n", "sess.close()\n", "\n", "#Or you can run the session like so:\n", "with tf.Session() as sess:\n", " output = sess.run(result)\n", " print(output)\n", "\n", " \n", "y1=tf.constant(5)\n", "y2=tf.constant(6)\n", "result=tf.multiply(y1, y2)\n", "sess=tf.Session()\n", "print(sess.run(result))\n", "sess.close()\n", "\n", "#or\n", "\n", "with tf.Session() as sess:\n", " print (sess.run(result))\n", " \n", "#this closes the session automatically\n", "\n", "#try this:\n", "with tf.Session() as sess:\n", " output=sess.run(result)\n", " print (output)\n", " \n", "print (output)\n", "#you can't run sess.run(result) outside of the with action" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
cc0-1.0
ljubisap/ml-dojo-part-I
Do it yourself.ipynb
1
10478
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "# Do it yourself..." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Python basics" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Create one string, int, float and boolean variable and print them out" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Most basic Python string functions are:\n", "1. **len()** - checks length of the string\n", "usage example:\n", "```python\n", "len(string)\n", "```\n", "2. **lower()** - creates lower case string\n", "usage example:\n", "```python\n", "string.lower()\n", "```\n", "3. **upper()** - creates upper case string\n", "usage example:\n", "```python\n", "string.upper()\n", "```\n", "4. **str()** - creates string / implicit string conversion\n", "usage example:\n", "```python\n", "str(string)\n", "```" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Check what above given functions will produce from following variables:\n", "a = 'Some test string...'\n", "b = 'WE ARE LEARNING...'\n", "c = 123" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Concatenate all variables a, b and c into one and print it out" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO String formatting, usefull for logging and debugging\n", "print \"The %s who %s %s!\" % (\"Knights\", \"say\", \"Ni\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "string1 = ' embedded string '\n", "string2 = ' This is one string {}'.format(string1)\n", "string2" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import random\n", "# TODO print the biggest number from the three given bellow num1, num2 and num3\n", "num1 = random.randint(1, 100) \n", "num2 = random.randint(1, 100) \n", "num3 = random.randint(1, 100) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO if number1 is bigger, print \"number1 is bigger\"\n", "# if number2 is bigger, print \"number2 is bigger\"\n", "# if they are equal, print \"Numbers are equal, you had 1% chance to get this...\"\n", "number1 = random.randint(1, 100) \n", "number2 = random.randint(1, 100) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO if you are German and n is greater than m \n", "# print upper case lc variable otherwise\n", "# print lower case up variable\n", "n = random.randint(1, 100) \n", "m = random.randint(1, 100) \n", "german = ? (True/False)\n", "lc = 'lower case string'\n", "up = 'UPPER CASE STRING'" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO remove false Beatle form the list\n", "beatles = [\"john\",\"paul\",\"george\",\"ringo\",\"stuart\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO print out all the beatles with the loop" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO make John and Ringo switch their places in the list" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO So as a reminder the Beatles are John Lennon, Paul McCartney, George Harrison and Ringo Starr\n", "# in that respect attach proper last name to every Beatle in the list" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Now just execute this...\n", "%run man.py" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Data - Titanic data set\n", "From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:\n", "* **Survived**: Outcome of survival (0 = No; 1 = Yes)\n", "* **Pclass**: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)\n", "* **Name**: Name of passenger\n", "* **Sex**: Sex of the passenger\n", "* **Age**: Age of the passenger (Some entries contain NaN)\n", "* **SibSp**: Number of siblings and spouses of the passenger aboard\n", "* **Parch**: Number of parents and children of the passenger aboard\n", "* **Ticket**: Ticket number of the passenger\n", "* **Fare**: Fare paid by the passenger\n", "* **Cabin**: Cabin number of the passenger (Some entries contain NaN)\n", "* **Embarked**: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)\n", "\n", "More about this data set can be found on [Kaggle](https://www.kaggle.com/c/titanic) website." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO import proper Python libraries to examine and investigate Titanic data set\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO load Titanic training set. File name is titanic_train.csv\n", "import pandas as pd\n", "df = pd.read_csv('titanic_train.csv')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Data investigation" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": false }, "outputs": [], "source": [ "# TODO Check does any column in Titanic data set contains NaN values" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Plot Pclass and Fare data distribution" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Count how many passangers are over 40 years" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Count how many men among passangers are over 40 years" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Count how many men among passangers are over 40 years survived" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO Plot data distribution " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO if children are considered to be under the age of 16, how many children were in Titanic" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO How many men named Edward were among the passangers" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# TODO experiment yourself a bit ;-)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
AssembleSoftware/IoTPy
examples/SlidingWindows.ipynb
1
6886
{ "cells": [ { "cell_type": "markdown", "id": "a5025450", "metadata": {}, "source": [ "# Sliding Windows\n", "\n", "Many applications require computations on sliding windows of streams. A sliding window is specified by a window size and a step size, both of which are positive integers. Sliding windows generate a sequence of lists from a stream. For a stream x, the the n-th window is the list x[n*step_size: n*step_size + window_size]. For example if the step_size is 4 and the window size is 2, the sequence of windows is x[0:2], x[4:6], x[8:10], ...\n", "\n", "**map_window** applies a specified function to each window of a stream and the returned value is an element of the ouput stream\n", "\n", "**map_window(func, in_stream, out_stream, window_size, step_size, state=None, name=None, **kwargs)**\n", "\n", "In the next example, *y[n] = sum(x[3*n: 3*n + 2])*" ] }, { "cell_type": "code", "execution_count": 1, "id": "03b1bfb6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "recent values of stream y are\n", "[1, 7, 13, 19]\n" ] } ], "source": [ "import os\n", "import sys\n", "sys.path.append(\"../\")\n", "\n", "from IoTPy.core.stream import Stream, run\n", "from IoTPy.agent_types.op import map_window\n", "from IoTPy.helper_functions.recent_values import recent_values\n", "\n", "def example():\n", " x, y = Stream(), Stream()\n", "\n", " map_window(func=sum, in_stream=x, out_stream=y, window_size=2, step_size=3)\n", "\n", " x.extend([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\n", " \n", " # Execute a step\n", " run()\n", " print ('recent values of stream y are')\n", " print (recent_values(y))\n", "\n", "example()" ] }, { "cell_type": "markdown", "id": "90ac779e", "metadata": {}, "source": [ "## Sliding Windows with State and Keyword Arguments\n", "\n", "You can specify a state using the keyword **state** and giving the state an initial value. The function can also use keyword arguments as illustrated in the following example in which the keyword is *threshold*.\n", "\n", "This example computes *mean_of_this_window* which is the mean of the current window, and it computes *max_of_window_mean* which is the maxium of *mean_of_this_window* over all windows seen so far. It computes *deviation* which is the deviation of the mean of the current window from the max seen so far, and it sets the deviation to 0.0 if it is below a threshold." ] }, { "cell_type": "code", "execution_count": 2, "id": "1229e3a1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "recent values of stream y are\n", "[0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 18.0]\n" ] } ], "source": [ "import numpy as np\n", "\n", "def example():\n", " \n", " def deviation_from_max(window, max_of_window_mean, threshold):\n", " # state is max_of_window_mean\n", " mean_of_this_window = np.mean(window)\n", " max_of_window_mean = max(max_of_window_mean, mean_of_this_window)\n", " deviation = max_of_window_mean - mean_of_this_window\n", " if deviation < threshold: deviation = 0.0\n", " return deviation, max_of_window_mean\n", " \n", " \n", " x, y = Stream(), Stream()\n", " map_window(func=deviation_from_max, in_stream=x, out_stream=y, \n", " window_size=2, step_size=1, state=0, threshold=4)\n", "\n", " \n", " x.extend([0, 10, 2, 4, 0, 40, 20, 4])\n", " \n", " # Execute a step\n", " run()\n", " print ('recent values of stream y are')\n", " print (recent_values(y))\n", "\n", "example()" ] }, { "cell_type": "code", "execution_count": 3, "id": "9455add8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "recent values of stream y are\n", "[(4, 350), (8, 800), (12, 250), (16, 350)]\n" ] } ], "source": [ "from IoTPy.agent_types.op import timed_window\n", "def example():\n", " def f(window):\n", " return sum([v[1] for v in window])\n", " \n", " x, y = Stream(), Stream()\n", " timed_window(func=f, in_stream=x, out_stream=y, window_duration=4, step_time=4)\n", " \n", " \n", " x.extend([[1, 100], [3, 250], [5, 400], [5.5, 100], [7, 300], \n", " [11.0, 250], [12.0, 150], [13.0, 200], [17.0, 100]])\n", " \n", " # Execute a step\n", " run()\n", " print ('recent values of stream y are')\n", " print (recent_values(y))\n", "\n", "example()\n", " " ] }, { "cell_type": "markdown", "id": "849a1588", "metadata": {}, "source": [ "## map_window_list\n", "Same as map_window except that map_window_list returns a list rather than a single element.\n", "\n", "(You can also use map_window and output **_multivalue(output_list)** instead of calling map_window.)\n", "\n", "The next example subtracts the mean of each window from the elements of the window." ] }, { "cell_type": "code", "execution_count": 4, "id": "ae727127", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "recent values of stream y are\n", "[-4.0, 6.0, -2.0, 0.0, -1.0, 1.0, -1.0, 0.0, 1.0]\n" ] } ], "source": [ "from IoTPy.agent_types.op import map_window_list\n", "\n", "def example():\n", " \n", " def f(window):\n", " window_mean = np.mean(window)\n", " return [v-window_mean for v in window]\n", " \n", " \n", " x, y = Stream(), Stream()\n", " map_window_list(func=f, in_stream=x, out_stream=y, \n", " window_size=3, step_size=3)\n", "\n", " \n", " x.extend([0, 10, 2, 4, 3, 5, 2, 3, 4])\n", " \n", " # Execute a step\n", " run()\n", " print ('recent values of stream y are')\n", " print (recent_values(y))\n", "\n", "example()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 5 }
bsd-3-clause
tpin3694/tpin3694.github.io
python/lambda_functions.ipynb
1
1890
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Title: Lambda Functions \n", "Slug: lambda_functions \n", "Summary: Lambda Functions \n", "Date: 2016-05-01 12:00 \n", "Category: Python \n", "Tags: Basics \n", "Authors: Chris Albon " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In Python it is possible to string lambda functions together." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a series, called pipeline, that contains three mini functions" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pipeline = [lambda x: x **2 - 1 + 5,\n", " lambda x: x **20 - 2 + 3,\n", " lambda x: x **200 - 1 + 4]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### For each item in pipeline, run the lambda function with x = 3" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "13\n", "3486784402\n", "265613988875874769338781322035779626829233452653394495974574961739092490901302182994384699044004\n" ] } ], "source": [ "for f in pipeline:\n", " print(f(3))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
catalyst-cooperative/pudl
notebooks/work-in-progress/make_master_unit_list_eia.ipynb
1
13571
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Recreating the Master Unit List" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### setup/imports" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import pudl\n", "import pudl.constants as pc\n", "import sqlalchemy as sa\n", "import logging\n", "import sys\n", "\n", "from copy import deepcopy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "%matplotlib inline\n", "mpl.style.use('dark_background')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pudl.analysis.plant_parts_eia import *\n", "pd.options.display.max_columns = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "logger = logging.getLogger()\n", "logger.setLevel(logging.INFO)\n", "handler = logging.StreamHandler(stream=sys.stdout)\n", "formatter = logging.Formatter('%(message)s')\n", "handler.setFormatter(formatter)\n", "logger.handlers = [handler]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Make the Plant-Parts List" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pudl_settings = pudl.workspace.setup.get_defaults()\n", "pudl_engine = sa.create_engine(pudl_settings['pudl_db'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pudl_out = pudl.output.pudltabl.PudlTabl(\n", " pudl_engine,freq='AS',\n", " roll_fuel_cost=True,\n", " fill_fuel_cost=True,\n", " fill_net_gen=True\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "%%time\n", "# there is a warning in here that will scream if don't have utility ids\n", "# for all of the generators. i've fixed this on the PUDL side by requiring\n", "# utility id's to be present in the annual generators table\n", "plant_parts_eia = pudl_out.plant_parts_eia(update=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# this is now integrated into the plant_parts_eia process so this is duplicative\n", "test_merge = test_run_aggregations(plant_parts_eia=plant_parts_eia, gens_mega=pudl_out.gens_mega_eia())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the Plant-Parts List" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "compiled_plant_parts = {}\n", "compiled_plant_parts_true = {}\n", "true_parts_df = plant_parts_eia[plant_parts_eia.true_gran]\n", "for part in PLANT_PARTS.keys():\n", " part_df = plant_parts_eia[(plant_parts_df['plant_part'] == part)]\n", " compiled_plant_parts_true[part] = true_parts_df[(true_parts_df['plant_part'] == part)]\n", " compiled_plant_parts[part] = part_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def plot_plant_vs_agg(compiled_plant_parts, field, xy_limits, scale):\n", " \"\"\"\n", " Make plots to compare FERC & EIA reported values for Coal & Gas plants.\n", " \n", " For each of the fields specified in fields_to_plot, create a pair of plots,\n", " one for 'gas' and one for 'coal' in the same frame, showing the EIA quantity\n", " vs. the FERC quantity in a scatter plot.\n", " \"\"\"\n", " gens = compiled_plant_parts['plant_gen']\n", " negative_fields = gens[gens[field] < 0].plant_id_eia.unique()\n", " for plant_gran, df in compiled_plant_parts.items():\n", " if plant_gran != 'plant':\n", " field_plant = field+'_plant'\n", " field_gran = field+'_'+plant_gran\n", " id_cols = ['plant_id_eia'] + IDX_TO_ADD + IDX_OWN_TO_ADD\n", " try:\n", " merge_df = (\n", " compiled_plant_parts['plant'][id_cols + [field]]\n", " .merge(\n", " df[id_cols+ ['generator_id'] + [field]],\n", " on=id_cols,\n", " suffixes=('_plant',f'_{plant_gran}')\n", " )\n", " )\n", " # this is for the try\n", " if field in ['capacity_mw', 'net_generation_mwh', 'total_mmbtu']:\n", " baddies = (\n", " merge_df[\n", " (merge_df[field_plant] < merge_df[field_gran])\n", " & ~(merge_df.plant_id_eia.isin(negative_fields))\n", " ]\n", " .set_index(id_cols + ['generator_id'])\n", " [[field_plant, field_gran]])\n", " if not baddies.empty:\n", " raise AssertionError(f\"{plant_gran}/{field} found some baddies {len(baddies)}\\n {baddies}\")\n", " #merge_df = merge_df[merge_df['plant_id_eia'] == 3]\n", " fig, (ax) = plt.subplots(ncols=1, nrows=1, figsize=(5, 5))\n", " ax.scatter(merge_df[field_plant],\n", " merge_df[field_gran],\n", " color='aquamarine', alpha=0.1, label=field)\n", " ax.set_ylim(xy_limits[field][0],xy_limits[field][1])\n", " ax.set_xlim(xy_limits[field][0],xy_limits[field][1])\n", " ax.set_xscale(scale)\n", " ax.set_yscale(scale)\n", " ax.set_ylabel(f'{plant_gran} {field}')\n", " ax.set_xlabel(f'Plant {field}')\n", " ax.set_title(f\"Plant vs {plant_gran}: {field}\")\n", " except KeyError:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "fields_to_plot = [\n", " # Simple Quantities\n", " 'capacity_mw',\n", " 'net_generation_mwh',\n", " 'total_mmbtu',\n", " # Derived values\n", " #'capacity_factor',\n", " 'heat_rate_mmbtu_mwh',\n", " 'fuel_cost_per_mwh',\n", " 'fuel_cost_per_mmbtu',\n", " 'total_fuel_cost'\n", "]\n", "\n", "xy_limits = {\n", " # Simple Quantities\n", " 'capacity_mw': (1e0, 1e4),\n", " 'net_generation_mwh': (1e3,1e8),\n", " 'total_mmbtu': (1e4,1e9),\n", " # Derived values\n", " 'capacity_factor': (0,1.0),\n", " 'heat_rate_mmbtu_mwh': (6,16),\n", " 'fuel_cost_per_mwh': (10,80),\n", " 'fuel_cost_per_mmbtu': (1e0,1e1),\n", " 'total_fuel_cost': (1e7,1e9)\n", "}\n", "\n", "# with the allocate_net_gen=True, we got a small number of generators w/\n", "# negative net generation within largers plants that have net postivie \n", "# net gen. Thus we get some net_generation_mwh records above the diagonal line\n", "for field in fields_to_plot:\n", " plot_plant_vs_agg(compiled_plant_parts,field, xy_limits, scale=\"log\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def plot_gens_vs(compiled_plant_parts,part_name, data_col, weight_col, x_range):\n", " gen_df = compiled_plant_parts['plant_gen'][compiled_plant_parts['plant_gen'][data_col] != 0]\n", " part_df = compiled_plant_parts[part_name][compiled_plant_parts[part_name][data_col] != 0]\n", " if weight_col:\n", " weights_gen = gen_df[weight_col]\n", " weights_part = part_df[weight_col]\n", " else:\n", " weights_gen = None\n", " weights_part = None\n", "\n", " plt.hist(gen_df[data_col], \n", " weights=weights_gen,\n", " range=x_range,\n", " bins=100,\n", " color=\"purple\", #alpha=test_alpha,\n", " label=\"Generators\")\n", "\n", " plt.hist(part_df[data_col], \n", " weights=weights_part,\n", " range=x_range,\n", " bins=100,\n", " color=\"aquamarine\",\n", " label=f'{part_name}')\n", "\n", " plt.title(f'Gens vs. {part_name}: {data_col}')\n", " plt.xlabel(data_col)\n", " plt.ylabel(None)\n", " plt.legend()\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x_ranges = {\n", " 'capacity_mw' : (0,400),\n", " 'net_generation_mwh': (0, 2500000),\n", " 'fuel_cost_per_mmbtu': (0, 5),\n", " 'fuel_cost_per_mwh': (0, 100),\n", " 'total_fuel_cost': (0,200000000)\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for part_name in compiled_plant_parts.keys():\n", " data_col = 'net_generation_mwh'\n", " weight_col = 'capacity_mw'\n", " plot_gens_vs(compiled_plant_parts,\n", " part_name=part_name,\n", " data_col=data_col, \n", " weight_col=weight_col,\n", " x_range=x_ranges[data_col])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for part_name in compiled_plant_parts.keys():\n", " data_col = 'total_fuel_cost'\n", " weight_col = 'capacity_mw'\n", " plot_gens_vs(compiled_plant_parts,\n", " part_name=part_name,\n", " data_col=data_col, \n", " weight_col=weight_col,\n", " x_range=x_ranges[data_col])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "for part_name in compiled_plant_parts.keys():\n", " data_col = 'fuel_cost_per_mwh'\n", " weight_col = 'capacity_mw'\n", " plot_gens_vs(compiled_plant_parts,\n", " part_name=part_name,\n", " data_col=data_col, \n", " weight_col=weight_col,\n", " x_range=x_ranges[data_col])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true, "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "for part_name in compiled_plant_parts.keys():\n", " data_col = 'fuel_cost_per_mmbtu'\n", " weight_col = 'capacity_mw'\n", " plot_gens_vs(compiled_plant_parts,\n", " part_name=part_name,\n", " data_col=data_col, \n", " weight_col=weight_col,\n", " x_range=x_ranges[data_col])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Playing with the compiled outputs " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "null_zeros = {0:np.NaN}\n", "count_df = pd.DataFrame(index=list(compiled_plant_parts['plant'].columns))\n", "for k,cpp_df in compiled_plant_parts.items():\n", " cpp_df = cpp_df.replace({\n", " 'net_generation_mwh':null_zeros,\n", " 'capacity_factor' : null_zeros,\n", " 'fuel_cost_per_mmbtu': null_zeros,\n", " 'fuel_cost_per_mwh': null_zeros,\n", " 'capacity_mw': null_zeros,\n", " })\n", " count_df = count_df.merge(\n", " pd.DataFrame(cpp_df#[cpp_df['report_date'].dt.year == 2018]\n", " .count(), columns=[k]),\n", " right_index=True, left_index=True)\n", "count_df = count_df.merge(pd.DataFrame(count_df.sum(axis=1),columns=['total']),\n", " right_index=True, left_index=True)\n", "count_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
ManyBodyPhysics/Course2ManyBodyMethods
doc/src/fci/fci.ipynb
2
54643
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Slides for PHY981 -->\n", "<!-- dom:TITLE: Nuclear Shell Model -->\n", "# Nuclear Shell Model\n", "<!-- dom:AUTHOR: [Morten Hjorth-Jensen](http://computationalphysics.no), National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA & Department of Physics, University of Oslo, Oslo, Norway -->\n", "<!-- Author: --> **[Morten Hjorth-Jensen](http://computationalphysics.no), National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA & Department of Physics, University of Oslo, Oslo, Norway**\n", "\n", "Date: **July 6-24 2015**\n", "\n", "## Slater determinants as basis states\n", "\n", "The simplest possible choice for many-body wavefunctions are **product** wavefunctions.\n", "That is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Psi(x_1, x_2, x_3, \\ldots, x_A) \\approx \\phi_1(x_1) \\phi_2(x_2) \\phi_3(x_3) \\ldots\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "because we are really only good at thinking about one particle at a time. Such \n", "product wavefunctions, without correlations, are easy to \n", "work with; for example, if the single-particle states $\\phi_i(x)$ are orthonormal, then \n", "the product wavefunctions are easy to orthonormalize. \n", "\n", "Similarly, computing matrix elements of operators are relatively easy, because the \n", "integrals factorize.\n", "\n", "\n", "The price we pay is the lack of correlations, which we must build up by using many, many product \n", "wavefunctions.\n", "\n", "\n", "Because we have fermions, we are required to have antisymmetric wavefunctions, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Psi(x_1, x_2, x_3, \\ldots, x_A) = - \\Psi(x_2, x_1, x_3, \\ldots, x_A)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "etc. This is accomplished formally by using the determinantal formalism" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Psi(x_1, x_2, \\ldots, x_A) \n", "= \\frac{1}{\\sqrt{A!}} \n", "\\det \\left | \n", "\\begin{array}{cccc}\n", "\\phi_1(x_1) & \\phi_1(x_2) & \\ldots & \\phi_1(x_A) \\\\\n", "\\phi_2(x_1) & \\phi_2(x_2) & \\ldots & \\phi_2(x_A) \\\\\n", " \\vdots & & & \\\\\n", "\\phi_A(x_1) & \\phi_A(x_2) & \\ldots & \\phi_A(x_A) \n", "\\end{array}\n", "\\right |\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Product wavefunction + antisymmetry (Pauli principle) = Slater determinant. \n", "\n", "\n", "Properties of the determinant (interchange of any two rows or \n", "any two columns yields a change in sign; thus no two rows and no \n", "two columns can be the same) lead to the following consequence of the Pauli principle:\n", "\n", "* No two particles can be at the same place (two columns the same); and\n", "\n", "* No two particles can be in the same state (two rows the same).\n", "\n", "As a practical matter, however, Slater determinants beyond $N=4$ quickly become \n", "unwieldy. Thus we turn to the **occupation representation** or **second quantization** to simplify calculations. \n", "\n", "The occupation representation, using fermion **creation** and **annihilation** \n", "operators, is compact and efficient. It is also abstract and, at first encounter, not easy to \n", "internalize. It is inspired by other operator formalism, such as the ladder operators for \n", "the harmonic oscillator or for angular momentum, but unlike those cases, the operators **do not have coordinate space representations**.\n", "\n", "Instead, one can think of fermion creation/annihilation operators as a game of symbols that \n", "compactly reproduces what one would do, albeit clumsily, with full coordinate-space Slater \n", "determinants. \n", "\n", "\n", "\n", "We start with a set of orthonormal single-particle states $\\{ \\phi_i(x) \\}$. \n", "(Note: this requirement, and others, can be relaxed, but leads to a \n", "more involved formalism.) **Any** orthonormal set will do. \n", "\n", "To each single-particle state $\\phi_i(x)$ we associate a creation operator \n", "$\\hat{a}^\\dagger_i$ and an annihilation operator $\\hat{a}_i$. \n", "\n", "When acting on the vacuum state $| 0 \\rangle$, the creation operator $\\hat{a}^\\dagger_i$ causes \n", "a particle to occupy the single-particle state $\\phi_i(x)$:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\phi_i(x) \\rightarrow \\hat{a}^\\dagger_i |0 \\rangle\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But with multiple creation operators we can occupy multiple states:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\phi_i(x) \\phi_j(x^\\prime) \\phi_k(x^{\\prime \\prime}) \n", "\\rightarrow \\hat{a}^\\dagger_i \\hat{a}^\\dagger_j \\hat{a}^\\dagger_k |0 \\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we impose antisymmetry, by having the fermion operators satisfy **anticommutation relations**:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{a}^\\dagger_i \\hat{a}^\\dagger_j + \\hat{a}^\\dagger_j \\hat{a}^\\dagger_i\n", "= [ \\hat{a}^\\dagger_i ,\\hat{a}^\\dagger_j ]_+ \n", "= \\{ \\hat{a}^\\dagger_i ,\\hat{a}^\\dagger_j \\} = 0\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "so that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{a}^\\dagger_i \\hat{a}^\\dagger_j = - \\hat{a}^\\dagger_j \\hat{a}^\\dagger_i\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because of this property, automatically $\\hat{a}^\\dagger_i \\hat{a}^\\dagger_i = 0$, \n", "enforcing the Pauli exclusion principle. Thus when writing a Slater determinant \n", "using creation operators," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{a}^\\dagger_i \\hat{a}^\\dagger_j \\hat{a}^\\dagger_k \\ldots |0 \\rangle\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "each index $i,j,k, \\ldots$ must be unique.\n", "\n", "\n", "\n", "\n", "## Full Configuration Interaction Theory\n", "\n", "We have defined the ansatz for the ground state as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_0\\rangle = \\left(\\prod_{i\\le F}\\hat{a}_{i}^{\\dagger}\\right)|0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the index $i$ defines different single-particle states up to the Fermi level. We have assumed that we have $N$ fermions. \n", "A given one-particle-one-hole ($1p1h$) state can be written as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_i^a\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_i|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "while a $2p2h$ state can be written as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_{ij}^{ab}\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_j\\hat{a}_i|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and a general $ApAh$ state as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_{ijk\\dots}^{abc\\dots}\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_{c}^{\\dagger}\\dots\\hat{a}_k\\hat{a}_j\\hat{a}_i|\\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use letters $ijkl\\dots$ for states below the Fermi level and $abcd\\dots$ for states above the Fermi level. A general single-particle state is given by letters $pqrs\\dots$.\n", "\n", "We can then expand our exact state function for the ground state \n", "as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=C_0|\\Phi_0\\rangle+\\sum_{ai}C_i^a|\\Phi_i^a\\rangle+\\sum_{abij}C_{ij}^{ab}|\\Phi_{ij}^{ab}\\rangle+\\dots\n", "=(C_0+\\hat{C})|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have introduced the so-called correlation operator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{C}=\\sum_{ai}C_i^a\\hat{a}_{a}^{\\dagger}\\hat{a}_i +\\sum_{abij}C_{ij}^{ab}\\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_j\\hat{a}_i+\\dots\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the normalization of $\\Psi_0$ is at our disposal and since $C_0$ is by hypothesis non-zero, we may arbitrarily set $C_0=1$ with \n", "corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Psi_0 | \\Phi_0 \\rangle = \\langle \\Phi_0 | \\Phi_0 \\rangle = 1,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "resulting in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=(1+\\hat{C})|\\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We rewrite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=C_0|\\Phi_0\\rangle+\\sum_{ai}C_i^a|\\Phi_i^a\\rangle+\\sum_{abij}C_{ij}^{ab}|\\Phi_{ij}^{ab}\\rangle+\\dots,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "in a more compact form as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=\\sum_{PH}C_H^P\\Phi_H^P=\\left(\\sum_{PH}C_H^P\\hat{A}_H^P\\right)|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $H$ stands for $0,1,\\dots,n$ hole states and $P$ for $0,1,\\dots,n$ particle states. \n", "Our requirement of unit normalization gives" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Psi_0 | \\Psi_0 \\rangle = \\sum_{PH}|C_H^P|^2= 1,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the energy can be written as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E= \\langle \\Psi_0 | \\hat{H} |\\Psi_0 \\rangle= \\sum_{PP'HH'}C_H^{*P}\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle C_{H'}^{P'}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Normally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E= \\langle \\Psi_0 | \\hat{H} |\\Psi_0 \\rangle= \\sum_{PP'HH'}C_H^{*P}\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle C_{H'}^{P'},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "is solved by diagonalization setting up the Hamiltonian matrix defined by the basis of all possible Slater determinants. A diagonalization\n", "is equivalent to finding the variational minimum of" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Psi_0 | \\hat{H} |\\Psi_0 \\rangle-\\lambda \\langle \\Psi_0 |\\Psi_0 \\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\lambda$ is a variational multiplier to be identified with the energy of the system.\n", "\n", "The minimization process results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "2\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sum_{P'H'}\\left\\{\\delta[C_H^{*P}]\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle C_{H'}^{P'}+\n", "C_H^{*P}\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle \\delta[C_{H'}^{P'}]-\n", "\\lambda( \\delta[C_H^{*P}]C_{H'}^{P'}+C_H^{*P}\\delta[C_{H'}^{P'}]\\right\\} = 0.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the coefficients $\\delta[C_H^{*P}]$ and $\\delta[C_{H'}^{P'}]$ are complex conjugates it is necessary and sufficient to require the quantities that multiply with $\\delta[C_H^{*P}]$ to vanish. \n", "\n", "This leads to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sum_{P'H'}\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle C_{H'}^{P'}-\\lambda C_H^{P}=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "for all sets of $P$ and $H$.\n", "\n", "If we then multiply by the corresponding $C_H^{*P}$ and sum over $PH$ we obtain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sum_{PP'HH'}C_H^{*P}\\langle \\Phi_H^P | \\hat{H} |\\Phi_{H'}^{P'} \\rangle C_{H'}^{P'}-\\lambda\\sum_{PH}|C_H^P|^2=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "leading to the identification $\\lambda = E$. This means that we have for all $PH$ sets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"eq:fullci\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", "\\sum_{P'H'}\\langle \\Phi_H^P | \\hat{H} -E|\\Phi_{H'}^{P'} \\rangle = 0. \\label{eq:fullci} \\tag{1}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An alternative way to derive the last equation is to start from" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\hat{H} -E)|\\Psi_0\\rangle = (\\hat{H} -E)\\sum_{P'H'}C_{H'}^{P'}|\\Phi_{H'}^{P'} \\rangle=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and if this equation is successively projected against all $\\Phi_H^P$ in the expansion of $\\Psi$, we end up with Eq. [(1)](#eq:fullci).\n", "\n", "One solves this equation normally by diagonalization. If we are able to solve this equation exactly (that is\n", "numerically exactly) in a large Hilbert space (it will be truncated in terms of the number of single-particle states included in the definition\n", "of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator\n", "$\\hat{C}$. \n", "\n", "\n", "## Example of a Hamiltonian matrix\n", "\n", "Suppose, as an example, that we have six fermions below the Fermi level.\n", "This means that we can make at most $6p-6h$ excitations. If we have an infinity of single particle states above the Fermi level, we will obviously have an infinity of say $2p-2h$ excitations. Each such way to configure the particles is called a **configuration**. We will always have to truncate in the basis of single-particle states.\n", "This gives us a finite number of possible Slater determinants. Our Hamiltonian matrix would then look like (where each block can have a large dimensionalities):\n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\"> </th> <th align=\"center\">$0p-0h$</th> <th align=\"center\">$1p-1h$</th> <th align=\"center\">$2p-2h$</th> <th align=\"center\">$3p-3h$</th> <th align=\"center\">$4p-4h$</th> <th align=\"center\">$5p-5h$</th> <th align=\"center\">$6p-6h$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> $0p-0h$ </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $1p-1h$ </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $2p-2h$ </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $3p-3h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $4p-4h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> </tr>\n", "<tr><td align=\"center\"> $5p-5h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> </tr>\n", "<tr><td align=\"center\"> $6p-6h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> <td align=\"center\"> x </td> </tr>\n", "</tbody>\n", "</table>\n", "with a two-body force. Why are there non-zero blocks of elements? \n", "If we use a Hartree-Fock basis, this corresponds to a particular unitary transformation where matrix elements of the type $\\langle 0p-0h \\vert \\hat{H} \\vert 1p-1h\\rangle =\\langle \\Phi_0 | \\hat{H}|\\Phi_{i}^{a}\\rangle=0$ and our Hamiltonian matrix becomes \n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\"> </th> <th align=\"center\"> $0p-0h$ </th> <th align=\"center\"> $1p-1h$ </th> <th align=\"center\"> $2p-2h$ </th> <th align=\"center\"> $3p-3h$ </th> <th align=\"center\"> $4p-4h$ </th> <th align=\"center\"> $5p-5h$ </th> <th align=\"center\"> $6p-6h$ </th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> $0p-0h$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $1p-1h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $2p-2h$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $3p-3h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> $4p-4h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> </tr>\n", "<tr><td align=\"center\"> $5p-5h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> </tr>\n", "<tr><td align=\"center\"> $6p-6h$ </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> <td align=\"center\"> $\\tilde{x}$ </td> </tr>\n", "</tbody>\n", "</table>\n", "If we do not make any truncations in the possible sets of Slater determinants (many-body states) we can make by distributing $A$ nucleons among $n$ single-particle states, we call such a calculation for \n", "* Full configuration interaction theory\n", "\n", "If we make truncations, we have different possibilities\n", "\n", "* The standard nuclear shell-model. Here we define an effective Hilbert space with respect to a given core. The calculations are normally then performed for all many-body states that can be constructed from the effective Hilbert spaces. This approach requires a properly defined effective Hamiltonian\n", "\n", "* We can truncate in the number of excitations. For example, we can limit the possible Slater determinants to only $1p-1h$ and $2p-2h$ excitations. This is called a configuration interaction calculation at the level of singles and doubles excitations, or just CISD. \n", "\n", "* We can limit the number of excitations in terms of the excitation energies. If we do not define a core, this defines normally what is called the no-core shell-model approach. \n", "\n", "What happens if we have a three-body interaction and a Hartree-Fock basis? \n", "\n", "Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly.\n", "\n", "The total number of Slater determinants which can be built with say $N$ neutrons distributed among $n$ single particle states is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\left (\\begin{array}{c} n \\\\ N\\end{array} \\right) =\\frac{n!}{(n-N)!N!}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a model space which comprises the first for major shells only $0s$, $0p$, $1s0d$ and $1p0f$ we have $40$ single particle states for neutrons and protons. For the eight neutrons of oxygen-16 we would then have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\left (\\begin{array}{c} 40 \\\\ 8\\end{array} \\right) =\\frac{40!}{(32)!8!}\\sim 10^{9},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and multiplying this with the number of proton Slater determinants we end up with approximately witha dimensionality $d$ of $d\\sim 10^{18}$.\n", "\n", "\n", "This number can be reduced if we look at specific symmetries only. However, the dimensionality explodes quickly!\n", "\n", "* For Hamiltonian matrices of dimensionalities which are smaller than $d\\sim 10^5$, we would use so-called direct methods for diagonalizing the Hamiltonian matrix\n", "\n", "* For larger dimensionalities iterative eigenvalue solvers like Lanczos' method are used. The most efficient codes at present can handle matrices of $d\\sim 10^{10}$. \n", "\n", "## A non-practical way of solving the eigenvalue problem\n", "\n", "For reasons to come (links with Coupled-Cluster theory and Many-Body perturbation theory), \n", "we will rewrite Eq. [(1)](#eq:fullci) as a set of coupled non-linear equations in terms of the unknown coefficients $C_H^P$. \n", "To obtain the eigenstates and eigenvalues in terms of non-linear equations is not a very practical approach. However, it serves the scope of linking FCI theory with approximative solutions to the many-body problem.\n", "\n", "To see this, we look at the contributions arising from" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_H^P | = \\langle \\Phi_0|\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "in Eq. [(1)](#eq:fullci), that is we multiply with $\\langle \\Phi_0 |$\n", "from the left in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\hat{H} -E)\\sum_{P'H'}C_{H'}^{P'}|\\Phi_{H'}^{P'} \\rangle=0.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the \n", "correlation energy in terms of $C_i^a$ and $C_{ij}^{ab}$ only. We get then" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_0 | \\hat{H} -E| \\Phi_0\\rangle + \\sum_{ai}\\langle \\Phi_0 | \\hat{H} -E|\\Phi_{i}^{a} \\rangle C_{i}^{a}+\n", "\\sum_{abij}\\langle \\Phi_0 | \\hat{H} -E|\\Phi_{ij}^{ab} \\rangle C_{ij}^{ab}=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E-E_0 =\\Delta E=\\sum_{ai}\\langle \\Phi_0 | \\hat{H}|\\Phi_{i}^{a} \\rangle C_{i}^{a}+\n", "\\sum_{abij}\\langle \\Phi_0 | \\hat{H}|\\Phi_{ij}^{ab} \\rangle C_{ij}^{ab},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the energy $E_0$ is the reference energy and $\\Delta E$ defines the so-called correlation energy.\n", "The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian. \n", "\n", "In our notes on Hartree-Fock calculations, \n", "we have already computed the matrix $\\langle \\Phi_0 | \\hat{H}|\\Phi_{i}^{a}\\rangle $ and $\\langle \\Phi_0 | \\hat{H}|\\Phi_{ij}^{ab}\\rangle$. If we are using a Hartree-Fock basis, then the matrix elements\n", "$\\langle \\Phi_0 | \\hat{H}|\\Phi_{i}^{a}\\rangle=0$ and we are left with a *correlation energy* given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E-E_0 =\\Delta E^{HF}=\\sum_{abij}\\langle \\Phi_0 | \\hat{H}|\\Phi_{ij}^{ab} \\rangle C_{ij}^{ab}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Inserting the various matrix elements we can rewrite the previous equation as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\\sum_{ai}\\langle i| \\hat{f}|a \\rangle C_{i}^{a}+\n", "\\sum_{abij}\\langle ij | \\hat{v}| ab \\rangle C_{ij}^{ab}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This equation determines the correlation energy but not the coefficients $C$. \n", "We need more equations. Our next step is to set up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_i^a | \\hat{H} -E| \\Phi_0\\rangle + \\sum_{bj}\\langle \\Phi_i^a | \\hat{H} -E|\\Phi_{j}^{b} \\rangle C_{j}^{b}+\n", "\\sum_{bcjk}\\langle \\Phi_i^a | \\hat{H} -E|\\Phi_{jk}^{bc} \\rangle C_{jk}^{bc}+\n", "\\sum_{bcdjkl}\\langle \\Phi_i^a | \\hat{H} -E|\\Phi_{jkl}^{bcd} \\rangle C_{jkl}^{bcd}=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "as this equation will allow us to find an expression for the coefficents $C_i^a$ since we can rewrite this equation as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle i | \\hat{f}| a\\rangle +\\langle \\Phi_i^a | \\hat{H}|\\Phi_{i}^{a} \\rangle C_{i}^{a}+ \\sum_{bj\\ne ai}\\langle \\Phi_i^a | \\hat{H}|\\Phi_{j}^{b} \\rangle C_{j}^{b}+\n", "\\sum_{bcjk}\\langle \\Phi_i^a | \\hat{H}|\\Phi_{jk}^{bc} \\rangle C_{jk}^{bc}+\n", "\\sum_{bcdjkl}\\langle \\Phi_i^a | \\hat{H}|\\Phi_{jkl}^{bcd} \\rangle C_{jkl}^{bcd}=EC_i^a.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that on the right-hand side we have the energy $E$. This leads to a non-linear equation in the unknown coefficients. \n", "These equations are normally solved iteratively ( that is we can start with a guess for the coefficients $C_i^a$). A common choice is to use perturbation theory for the first guess, setting thereby" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C_{i}^{a}=\\frac{\\langle i | \\hat{f}| a\\rangle}{\\epsilon_i-\\epsilon_a}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The observant reader will however see that we need an equation for $C_{jk}^{bc}$ and $C_{jkl}^{bcd}$ as well.\n", "To find equations for these coefficients we need then to continue our multiplications from the left with the various\n", "$\\Phi_{H}^P$ terms. \n", "\n", "\n", "For $C_{jk}^{bc}$ we need then" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3\n", "9\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sum_{cdkl}\\langle \\Phi_{ij}^{ab} | \\hat{H} -E|\\Phi_{kl}^{cd} \\rangle C_{kl}^{cd}+\\sum_{cdeklm}\\langle \\Phi_{ij}^{ab} | \\hat{H} -E|\\Phi_{klm}^{cde} \\rangle C_{klm}^{cde}+\\sum_{cdefklmn}\\langle \\Phi_{ij}^{ab} | \\hat{H} -E|\\Phi_{klmn}^{cdef} \\rangle C_{klmn}^{cdef}=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and we can isolate the coefficients $C_{kl}^{cd}$ in a similar way as we did for the coefficients $C_{i}^{a}$. \n", "A standard choice for the first iteration is to set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C_{ij}^{ab} =\\frac{\\langle ij \\vert \\hat{v} \\vert ab \\rangle}{\\epsilon_i+\\epsilon_j-\\epsilon_a-\\epsilon_b}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At the end we can rewrite our solution of the Schroedinger equation in terms of $n$ coupled equations for the coefficients $C_H^P$.\n", "This is a very cumbersome way of solving the equation. However, by using this iterative scheme we can illustrate how we can compute the\n", "various terms in the wave operator or correlation operator $\\hat{C}$. We will later identify the calculation of the various terms $C_H^P$\n", "as parts of different many-body approximations to full CI. In particular, we can relate this non-linear scheme with Coupled Cluster theory and\n", "many-body perturbation theory.\n", "\n", "\n", "## Summarizing FCI and bringing in approximative methods\n", "\n", "\n", "If we can diagonalize large matrices, FCI is the method of choice since:\n", "* It gives all eigenvalues, ground state and excited states\n", "\n", "* The eigenvectors are obtained directly from the coefficients $C_H^P$ which result from the diagonalization\n", "\n", "* We can compute easily expectation values of other operators, as well as transition probabilities\n", "\n", "* Correlations are easy to understand in terms of contributions to a given operator beyond the Hartree-Fock contribution. This is the standard approach in many-body theory. \n", "\n", "The correlation energy is defined as, with a two-body Hamiltonian," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\\sum_{ai}\\langle i| \\hat{f}|a \\rangle C_{i}^{a}+\n", "\\sum_{abij}\\langle ij | \\hat{v}| ab \\rangle C_{ij}^{ab}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The coefficients $C$ result from the solution of the eigenvalue problem. \n", "The energy of say the ground state is then" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E=E_{ref}+\\Delta E,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the so-called reference energy is the energy we obtain from a Hartree-Fock calculation, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E_{ref}=\\langle \\Phi_0 \\vert \\hat{H} \\vert \\Phi_0 \\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, as we have seen, even for a small case like the four first major shells and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If we wish to include single-particle states that reflect weakly bound systems, we need a much larger single-particle basis. We need thus approximative methods that sum specific correlations to infinite order. \n", "\n", "Popular methods are\n", "* Many-body perturbation theory (in essence a Taylor expansion)\n", "\n", "* Coupled cluster theory (coupled non-linear equations)\n", "\n", "* Green's function approaches (matrix inversion)\n", "\n", "* Similarity group transformation methods (coupled ordinary differential equations\n", "\n", "All these methods start normally with a Hartree-Fock basis as the calculational basis. \n", "\n", "\n", "## Building a many-body basis\n", "\n", "Here we will discuss how we can set up a single-particle basis which we can use in the various parts of our projects, from the simple pairing model to infinite nuclear matter. We will use here the simple pairing model to illustrate in particular how to set up a single-particle basis. We will also use this do discuss standard FCI approaches like:\n", " 1. Standard shell-model basis in one or two major shells\n", "\n", " 2. Full CI in a given basis and no truncations\n", "\n", " 3. CISD and CISDT approximations\n", "\n", " 4. No-core shell model and truncation in excitation energy\n", "\n", "An important step in an FCI code is to construct the many-body basis. \n", "\n", "While the formalism is independent of the choice of basis, the **effectiveness** of a calculation \n", "will certainly be basis dependent. \n", "\n", "Furthermore there are common conventions useful to know.\n", "\n", "First, the single-particle basis has angular momentum as a good quantum number. You can \n", "imagine the single-particle wavefunctions being generated by a one-body Hamiltonian, \n", "for example a harmonic oscillator. Modifications include harmonic oscillator plus \n", "spin-orbit splitting, or self-consistent mean-field potentials, or the Woods-Saxon potential which mocks \n", "up the self-consistent mean-field. \n", "For nuclei, the harmonic oscillator, modified by spin-orbit splitting, provides a useful language \n", "for describing single-particle states.\n", "\n", "\n", "Each single-particle state is labeled by the following quantum numbers: \n", "\n", "* Orbital angular momentum $l$\n", "\n", "* Intrinsic spin $s$ = 1/2 for protons and neutrons\n", "\n", "* Angular momentum $j = l \\pm 1/2$\n", "\n", "* $z$-component $j_z$ (or $m$)\n", "\n", "* Some labeling of the radial wavefunction, typically $n$ the number of nodes in the radial wavefunction, but in the case of harmonic oscillator one can also use the principal quantum number $N$, where the harmonic oscillator energy is $(N+3/2)\\hbar \\omega$. For our nuclear matter projects, you will need to change the quantum numbers to those relevant for calculations\n", "\n", "in three-dimensional cartesian basis, see the relevante [lectures](https://github.com/NuclearTalent/Course2ManyBodyMethods/blob/master/doc/pub/cc/pdf/Lectures1-2_TALENT_NuclearMatter_GH.pdf).\n", "\n", "\n", "In this format one labels states by $n(l)_j$, with $(l)$ replaced by a letter:\n", "$s$ for $l=0$, $p$ for $l=1$, $d$ for $l=2$, $f$ for $l=3$, and thenceforth alphabetical.\n", "\n", "\n", " In practice the single-particle space has to be severely truncated. This truncation is \n", "typically based upon the single-particle energies, which is the effective energy \n", "from a mean-field potential. \n", "\n", "Sometimes we freeze the core and only consider a valence space. For example, one \n", "may assume a frozen ${}^{4}\\mbox{He}$ core, with two protons and two neutrons in the $0s_{1/2}$ \n", "shell, and then only allow active particles in the $0p_{1/2}$ and $0p_{3/2}$ orbits. \n", "\n", "\n", "Another example is a frozen ${}^{16}\\mbox{O}$ core, with eight protons and eight neutrons filling the \n", "$0s_{1/2}$, $0p_{1/2}$ and $0p_{3/2}$ orbits, with valence particles in the \n", "$0d_{5/2}, 1s_{1/2}$ and $0d_{3/2}$ orbits.\n", "\n", "\n", "Sometimes we refer to nuclei by the valence space where their last nucleons go. \n", "So, for example, we call ${}^{12}\\mbox{C}$ a $p$-shell nucleus, while ${}^{26}\\mbox{Al}$ is an \n", "$sd$-shell nucleus and ${}^{56}\\mbox{Fe}$ is a $pf$-shell nucleus.\n", "\n", "\n", "\n", "\n", "\n", "There are different kinds of truncations.\n", "\n", "* For example, one can start with `filled' orbits (almost always the lowest), and then allow one, two, three... particles excited out of those filled orbits. These are called 1p-1h, 2p-2h, 3p-3h excitations. \n", "\n", "* Alternately, one can state a maximal orbit and allow all possible configurations with particles occupying states up to that maximum. This is called *full configuration*.\n", "\n", "* Finally, for particular use in nuclear physics, there is the *energy* truncation, also called the $N\\hbar\\Omega$ or $N_{max}$ truncation. \n", "\n", "Here one works in a harmonic oscillator basis, with each major oscillator shell assigned a principal quantum number $N=0,1,2,3,...$. \n", "The $N\\hbar\\Omega$ or $N_{max}$ truncation: Any configuration is given an noninteracting energy, which is the sum \n", "of the single-particle harmonic oscillator energies. (Thus this ignores \n", "spin-orbit splitting.)\n", "\n", "Excited state are labeled relative to the lowest configuration by the \n", "number of harmonic oscillator quanta.\n", "\n", "This truncation is useful because if one includes *all* configuration up to \n", "some $N_{max}$, and has a translationally invariant interaction, then the intrinsic \n", "motion and the center-of-mass motion factor. In other words, we can know exactly \n", "the center-of-mass wavefunction. \n", "\n", "In almost all cases, the many-body Hamiltonian is rotationally invariant. This means \n", "it commutes with the operators $\\hat{J}^2, \\hat{J}_z$ and so eigenstates will have \n", "good $J,M$. Furthermore, the eigenenergies do not depend upon the orientation $M$. \n", "\n", "\n", "Therefore we can choose to construct a many-body basis which has fixed $M$; this is \n", "called an $M$-scheme basis. \n", "\n", "\n", "Alternately, one can construct a many-body basis which has fixed $J$, or a $J$-scheme \n", "basis. \n", "\n", "The Hamiltonian matrix will have smaller dimensions (a factor of 10 or more) in the $J$-scheme than in the $M$-scheme. \n", "On the other hand, as we'll show in the next slide, the $M$-scheme is very easy to \n", "construct with Slater determinants, while the $J$-scheme basis states, and thus the \n", "matrix elements, are more complicated, almost always being linear combinations of \n", "$M$-scheme states. $J$-scheme bases are important and useful, but we'll focus on the \n", "simpler $M$-scheme.\n", "\n", "The quantum number $m$ is additive (because the underlying group is Abelian): \n", "if a Slater determinant $\\hat{a}_i^\\dagger \\hat{a}^\\dagger_j \\hat{a}^\\dagger_k \\ldots | 0 \\rangle$ \n", "is built from single-particle states all with good $m$, then the total" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "M = m_i + m_j + m_k + \\ldots\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is *not* true of $J$, because the angular momentum group SU(2) is not Abelian.\n", "\n", "The upshot is that \n", "* It is easy to construct a Slater determinant with good total $M$;\n", "\n", "* It is trivial to calculate $M$ for each Slater determinant;\n", "\n", "* So it is easy to construct an $M$-scheme basis with fixed total $M$.\n", "\n", "Note that the individual $M$-scheme basis states will *not*, in general, \n", "have good total $J$. \n", "Because the Hamiltonian is rotationally invariant, however, the eigenstates will \n", "have good $J$. (The situation is muddied when one has states of different $J$ that are \n", "nonetheless degenerate.) \n", "\n", "\n", "\n", "\n", "Example: two $j=1/2$ orbits\n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\">Index</th> <th align=\"center\">$n$</th> <th align=\"center\">$l$</th> <th align=\"center\">$j$</th> <th align=\"center\">$m_j$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 2 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "<tr><td align=\"center\"> 3 </td> <td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 4 </td> <td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "</tbody>\n", "</table>\n", "Note that the order is arbitrary.\n", "There are $\\left ( \\begin{array}{c} 4 \\\\ 2 \\end{array} \\right) = 6$ two-particle states, \n", "which we list with the total $M$:\n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\">Occupied</th> <th align=\"center\">$M$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> 1,2 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> 1,3 </td> <td align=\"center\"> -1 </td> </tr>\n", "<tr><td align=\"center\"> 1,4 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> 2,3 </td> <td align=\"center\"> 0 </td> </tr>\n", "<tr><td align=\"center\"> 2,4 </td> <td align=\"center\"> 1 </td> </tr>\n", "<tr><td align=\"center\"> 3,4 </td> <td align=\"center\"> 0 </td> </tr>\n", "</tbody>\n", "</table>\n", "and 1 each with $M = \\pm 1$.\n", "\n", "\n", "\n", "\n", "As another example, consider using only single particle states from the $0d_{5/2}$ space. \n", "They have the following quantum numbers\n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\">Index</th> <th align=\"center\">$n$</th> <th align=\"center\">$l$</th> <th align=\"center\">$j$</th> <th align=\"center\">$m_j$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> -5/2 </td> </tr>\n", "<tr><td align=\"center\"> 2 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> -3/2 </td> </tr>\n", "<tr><td align=\"center\"> 3 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 4 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "<tr><td align=\"center\"> 5 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> 3/2 </td> </tr>\n", "<tr><td align=\"center\"> 6 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 5/2 </td> <td align=\"center\"> 5/2 </td> </tr>\n", "</tbody>\n", "</table>\n", "There are $\\left ( \\begin{array}{c} 6 \\\\ 2 \\end{array} \\right) = 15$ two-particle states, \n", "which we list with the total $M$:\n", "\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\">Occupied</th> <th align=\"center\">$M$</th> <th align=\"center\">Occupied</th> <th align=\"center\">$M$</th> <th align=\"center\">Occupied</th> <th align=\"center\">$M$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> 1,2 </td> <td align=\"center\"> -4 </td> <td align=\"center\"> 2,3 </td> <td align=\"center\"> -2 </td> <td align=\"center\"> 3,5 </td> <td align=\"center\"> 1 </td> </tr>\n", "<tr><td align=\"center\"> 1,3 </td> <td align=\"center\"> -3 </td> <td align=\"center\"> 2,4 </td> <td align=\"center\"> -1 </td> <td align=\"center\"> 3,6 </td> <td align=\"center\"> 2 </td> </tr>\n", "<tr><td align=\"center\"> 1,4 </td> <td align=\"center\"> -2 </td> <td align=\"center\"> 2,5 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 4,5 </td> <td align=\"center\"> 2 </td> </tr>\n", "<tr><td align=\"center\"> 1,5 </td> <td align=\"center\"> -1 </td> <td align=\"center\"> 2,6 </td> <td align=\"center\"> 1 </td> <td align=\"center\"> 4,6 </td> <td align=\"center\"> 3 </td> </tr>\n", "<tr><td align=\"center\"> 1,6 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 3,4 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 5,6 </td> <td align=\"center\"> 4 </td> </tr>\n", "</tbody>\n", "</table>\n", "\n", "\n", "\n", "\n", "## Example case: pairing Hamiltonian, the warm-up project\n", "\n", "\n", "We consider a space with $2\\Omega$ single-particle states, with each \n", "state labeled by \n", "$k = 1, 2, 3, \\Omega$ and $m = \\pm 1/2$. The convention is that \n", "the state with $k>0$ has $m = + 1/2$ while $-k$ has $m = -1/2$.\n", "\n", "\n", "The Hamiltonian we consider is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{H} = -\\frac{g}{2} \\hat{P}_+ \\hat{P}_-,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{P}_+ = \\sum_{k > 0} \\hat{a}^\\dagger_k \\hat{a}^\\dagger_{-{k}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and $\\hat{P}_- = ( \\hat{P}_+)^\\dagger$.\n", "\n", "This problem can be solved using what is called the quasi-spin formalism to obtain the \n", "exact results. Thereafter we will try again using the explicit Slater determinant formalism.\n", "\n", "\n", "In the first part project we will consider four doubly degenerate single-particle states, resulting in eight single-particle states as shown here\n", "<table border=\"1\">\n", "<thead>\n", "<tr><th align=\"center\">Index</th> <th align=\"center\">$n$</th> <th align=\"center\">$l$</th> <th align=\"center\">$s$</th> <th align=\"center\">$m_s$</th> </tr>\n", "</thead>\n", "<tbody>\n", "<tr><td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 2 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "<tr><td align=\"center\"> 3 </td> <td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 4 </td> <td align=\"center\"> 1 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "<tr><td align=\"center\"> 5 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 6 </td> <td align=\"center\"> 2 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "<tr><td align=\"center\"> 7 </td> <td align=\"center\"> 3 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> -1/2 </td> </tr>\n", "<tr><td align=\"center\"> 8 </td> <td align=\"center\"> 3 </td> <td align=\"center\"> 0 </td> <td align=\"center\"> 1/2 </td> <td align=\"center\"> 1/2 </td> </tr>\n", "</tbody>\n", "</table>\n", "\n", "If we limit ourselves to four fermions only and states with no broken pairs, \n", "total $M=0$ states, we end with sixSlater determinants\n", "\n", "* $| 1, 2 , 3 , 4 \\rangle , $\n", "\n", "* $| 1 , 2 , 5 , 6 \\rangle , $\n", "\n", "* $| 1 , 2 , 7 , 8 \\rangle , $\n", "\n", "* $| 3 , 4 , 5 , 6 \\rangle , $\n", "\n", "* $| 3 , 4 , 7 , 8 \\rangle , $\n", "\n", "* $| 5 , 6 , 7 , 8 \\rangle $\n", "\n", "For our example, the $ 6 \\times 6$ Hamiltonian matrix becomes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "H = \\left ( \n", "\\begin{array}{cccccc}\n", "2\\delta -g & -g/2 & -g/2 & -g/2 & -g/2 & 0 \\\\\n", " -g/2 & 4\\delta -g & -g/2 & -g/2 & -0 & -g/2 \\\\\n", "-g/2 & -g/2 & 6\\delta -g & 0 & -g/2 & -g/2 \\\\\n", " -g/2 & -g/2 & 0 & 6\\delta-g & -g/2 & -g/2 \\\\\n", " -g/2 & 0 & -g/2 & -g/2 & 8\\delta-g & -g/2 \\\\\n", "0 & -g/2 & -g/2 & -g/2 & -g/2 & 10\\delta -g \n", "\\end{array} \\right )\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(You should check by hand that this is correct.) \n", "\n", "For $\\delta = 0$ we have the closed form solution of the g.s. energy given by $-6G$." ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
hotfuzzy/go
Reading_csv_2_batches.ipynb
1
3779
{ "metadata": { "name": "", "signature": "sha256:cbcf9b2fef76537eccb9b989ad5a4b1a0a0e2b747b98818ab0a02d7c4d46ae56" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import tensorflow as tf\n", "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "def read_my_csv(filename_queue):\n", " # Set up the reader\n", " reader = tf.TextLineReader()\n", " # Grab the values from the file(s)\n", " key, value = reader.read(filename_queue)\n", " # Perform the decoding\n", " default_values = [[\"0\"],[\"0 0\"],[\"0 0\"]]\n", " col1, col2, col3 = tf.decode_csv(value, record_defaults=default_values)\n", " features = tf.stack([col1, col2])\n", " # Perform preporcessing here\n", " ##\n", " return features, col3" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "def input_pipeline(filenames, batch_size):\n", " filename_queue = tf.train.string_input_producer(filenames, shuffle=True)\n", " example, label = read_my_csv(filename_queue)\n", " min_after_dequeue = 100\n", " capacity = min_after_dequeue + 3 * batch_size\n", " # Create the batches using shuffle_batch which performs random shuffling\n", " example_batch, label_batch = tf.train.shuffle_batch([example, label], \n", " batch_size=batch_size, \n", " capacity=capacity, \n", " min_after_dequeue=min_after_dequeue)\n", " return example_batch, label_batch" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "example_batch, label_batch = input_pipeline([\"./Data/samplecsv.txt\"], 2)\n", "\n", "with tf.Session() as sess:\n", " sess.run(tf.global_variables_initializer())\n", " \n", " coordinator = tf.train.Coordinator()\n", " threads = tf.train.start_queue_runners(coord=coordinator)\n", " \n", " for i in xrange(10):\n", " print sess.run(example_batch)\n", " \n", " coordinator.request_stop()\n", " coordinator.join(threads)\n", " sess.close()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[['1' '0 1']\n", " ['1' '1 0']]\n", "[['1' '0 1']\n", " ['-1' '0 -1']]\n", "[['-1' '0 0']\n", " ['-1' '0 -1']]\n", "[['1' '0 1']\n", " ['-1' '0 -1']]\n", "[['1' '1 0']\n", " ['-1' '0 0']]\n", "[['-1' '0 -1']\n", " ['-1' '0 -1']]\n", "[['-1' '0 -1']\n", " ['1' '1 0']]\n", "[['-1' '0 -1']\n", " ['1' '0 1']]\n", "[['-1' '0 -1']\n", " ['-1' '0 -1']]\n", "[['-1' '0 -1']\n", " ['-1' '0 -1']]\n" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 } ], "metadata": {} } ] }
mit
sebastien17/MAVlink_plug
example/Test_MessageType.ipynb
1
3221
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Importing ardupilotmega\n" ] } ], "source": [ "import mavlinkplug.Message" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 2, 4, 8, 16]\n", "['\\x01', '\\x02', '\\x04', '\\x08', '\\x10']\n", "[<class 'mavlinkplug.Message.MAVLinkData'>, <class 'mavlinkplug.Message.MavCommandData'>, <class 'mavlinkplug.Message.KillData'>, <class 'mavlinkplug.Message.RawData'>, <class 'mavlinkplug.Message.LogData'>]\n" ] } ], "source": [ "print(mavlinkplug.Message.TYPE._values)\n", "print(mavlinkplug.Message.TYPE._p_values)\n", "print(mavlinkplug.Message.TYPE._m_classes)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "mavlinkplug.Message.RawData" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mavlinkplug.Message.TYPE.get_class_from_p_value('\\x08')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "mavlinkplug.Message.MAVLinkData" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mavlinkplug.Message.TYPE.get_class_from_value(1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'_PACK_FORMAT': '!B',\n", " '_names': ['ALL'],\n", " '_p_values': ['\\xff'],\n", " '_values': [255]}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mavlinkplug.Message.DESTINATION.__dict__" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "DestinationItem(value=255, p_value='\\xff')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mavlinkplug.Message.DESTINATION.ALL" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
NoonienSoong/Data-Science-45min-Intros
Bokeh/04 - styling.ipynb
7
1759762
null
unlicense
immersinn/ncga
notebooks/explore/Extract Content from Bill Text.ipynb
1
80703
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'\\nSee \"bill_text_preproc.py\" file\\n\\n'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "See \"bill_text_preproc.py\" file\n", "\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pickle\n", "from bs4 import BeautifulSoup as bs\n", "import pandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load Bills" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bill_texts_file = \"data/bill_texts_filed.pkl\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with open(bill_texts_file, 'rb') as f1:\n", " bill_texts_filed = pickle.load(f1)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bill_texts_filed = pandas.DataFrame(bill_texts_filed)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(2098, 4)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bill_texts_filed.shape" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>bill</th>\n", " <th>house</th>\n", " <th>session</th>\n", " <th>text</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " bill house session text\n", "0 1 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "1 2 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "2 3 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "3 4 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "4 5 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con..." ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bill_texts_filed.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Extract Data" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sample = bill_texts_filed.sample(25)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>bill</th>\n", " <th>house</th>\n", " <th>session</th>\n", " <th>text</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>952</th>\n", " <td>908</td>\n", " <td>H</td>\n", " <td>2015</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>1850</th>\n", " <td>656</td>\n", " <td>S</td>\n", " <td>2015</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>1027</th>\n", " <td>983</td>\n", " <td>H</td>\n", " <td>2015</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>929</th>\n", " <td>885</td>\n", " <td>H</td>\n", " <td>2015</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " <tr>\n", " <th>1676</th>\n", " <td>482</td>\n", " <td>S</td>\n", " <td>2015</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " bill house session text\n", "952 908 H 2015 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "1850 656 S 2015 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "1027 983 H 2015 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "929 885 H 2015 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con...\n", "1676 482 S 2015 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con..." ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sample.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Get some Examples" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ht = sample.text[952]\n", "st = sample.text[1850]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hs = bs(ht, 'html.parser')\n", "ss = bs(st, 'html.parser')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hs = hs.body\n", "ss = ss.body" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<body lang=\"EN-US\">\n", "<div class=\"WordSection1\">\n", "<p align=\"center\" class=\"nonumber\" style=\"margin-top:24.0pt;text-align:center\"><b>GENERAL\n", "ASSEMBLY OF NORTH CAROLINA</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", "margin-bottom:6.0pt;margin-left:0in;text-align:center\"><b>SESSION 2015</b></p>\n", "<p align=\"left\" class=\"nonumber\" style=\"text-align:left\"><b>H                                                                                                                                                   D</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b>HOUSE\n", "DRH10271-LRa-136A  (04/02)</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<table border=\"1\" cellpadding=\"0\" cellspacing=\"0\" class=\"MsoNormalTable\" style=\"width:6.55in;border-collapse:collapse;border:none\" width=\"629\">\n", "<tr>\n", "<td colspan=\"2\" style=\"width:408.25pt;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"544\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:left\">Short\n", " Title:        DEM/Emp. Retention Funds/LRC Study.</p>\n", "</td>\n", "<td style=\"width:63.35pt;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"84\">\n", "<p align=\"right\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:right\">(Public)</p>\n", "</td>\n", "</tr>\n", "<tr>\n", "<td style=\"width:1.0in;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"96\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Sponsors:</p>\n", "</td>\n", "<td colspan=\"2\" style=\"width:5.55in;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"533\">\n", "<p class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;margin-bottom:\n", " 3.0pt;margin-left:0in\">Representative Whitmire.</p>\n", "</td>\n", "</tr>\n", "<tr>\n", "<td style=\"width:1.0in;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"96\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Referred to:</p>\n", "</td>\n", "<td colspan=\"2\" style=\"width:5.55in;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"533\">\n", "<p class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;margin-bottom:\n", " 3.0pt;margin-left:0in\"> </p>\n", "</td>\n", "</tr>\n", "<tr height=\"0\">\n", "<td style=\"border:none\" width=\"96\"></td>\n", "<td style=\"border:none\" width=\"448\"></td>\n", "<td style=\"border:none\" width=\"84\"></td>\n", "</tr>\n", "</table>\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:6.0pt;text-align:left\"> </p>\n", "<p align=\"center\" class=\"aBase\" style=\"text-align:center\">A BILL TO BE ENTITLED</p>\n", "<p class=\"aLongTitle\"><span style='font-family:\"Times New Roman\",\"serif\"'>AN ACT to\n", "appropriate funds to the department of public safety for retention‑based\n", "salary adjustments for division of emergency management employees and\n", "authorizing the legislative research commission to review whether there should\n", "be established an emergency management preparedness and response fee to support\n", "the work of the division.</span></p>\n", "<p class=\"aBase\">The General Assembly of North Carolina enacts:</p>\n", "<p class=\"aBillSection\"><b>SECTION 1.(a)</b>  There is appropriated from the\n", "General Fund to the Department of Public Safety the sum of four hundred six\n", "thousand four hundred fifty‑nine dollars ($406,459) for the 2015‑2016\n", "fiscal year and the sum of four hundred six thousand four hundred fifty‑nine\n", "dollars ($406,459) for the 2016‑2017 fiscal year to provide salary\n", "adjustments for the retention of employees in the Division of Emergency\n", "Management.</p>\n", "<p class=\"aBillSection\"><b>SECTION 1.(b)</b>  This section becomes effective July\n", "1, 2015.</p>\n", "<p class=\"aBillSection\"><b>SECTION 2.</b>  The Legislative Research Commission\n", "shall study whether an emergency management preparedness and response fee\n", "should be assessed on each homeowners', mobile home owners', tenant homeowners',\n", "and condominium unit owners' property insurance policy issued in this State for\n", "the purpose of funding the operations of the Division of Emergency Management\n", "of the Department of Public Safety. The Legislative Research Commission may\n", "submit a report of its findings and recommendations to the 2015 General\n", "Assembly, prior to the convening of the 2016 Regular Session, by filing the\n", "report with the Speaker of the House of Representatives and the President Pro\n", "Tempore of the Senate, with a copy of the report submitted to the respective\n", "Chairs of the House of Representatives and Senate Appropriations Committees on\n", "Justice and Public Safety.</p>\n", "<p class=\"aBillSection\"><b>SECTION 3.</b>  This act is effective when it becomes\n", "law.</p>\n", "</div>\n", "</body>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hs" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "<body lang=\"EN-US\">\n", "<div class=\"WordSection1\">\n", "<p align=\"center\" class=\"nonumber\" style=\"margin-top:24.0pt;text-align:center\"><b>GENERAL\n", "ASSEMBLY OF NORTH CAROLINA</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", "margin-bottom:6.0pt;margin-left:0in;text-align:center\"><b>SESSION 2015</b></p>\n", "<p align=\"left\" class=\"nonumber\" style=\"text-align:left\"><b>S                                                                                                                                                    D</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b>SENATE\n", "DRS45321-LRf-105  (03/14)</b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<p align=\"center\" class=\"nonumber\" style=\"text-align:center\"><b> </b></p>\n", "<table border=\"1\" cellpadding=\"0\" cellspacing=\"0\" class=\"MsoNormalTable\" style=\"width:6.55in;border-collapse:collapse;border:none\" width=\"629\">\n", "<tr>\n", "<td colspan=\"2\" style=\"width:408.25pt;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"544\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:left\">Short\n", " Title:        WC/2015 Omnibus Law Changes.</p>\n", "</td>\n", "<td style=\"width:63.35pt;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"84\">\n", "<p align=\"right\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:right\">(Public)</p>\n", "</td>\n", "</tr>\n", "<tr>\n", "<td style=\"width:1.0in;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"96\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Sponsors:</p>\n", "</td>\n", "<td colspan=\"2\" style=\"width:5.55in;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"533\">\n", "<p class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;margin-bottom:\n", " 3.0pt;margin-left:0in\">Senator Lee (Primary Sponsor).</p>\n", "</td>\n", "</tr>\n", "<tr>\n", "<td style=\"width:1.0in;border:none;border-bottom:solid windowtext 1.0pt;\n", " padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"96\">\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Referred to:</p>\n", "</td>\n", "<td colspan=\"2\" style=\"width:5.55in;border:none;\n", " border-bottom:solid windowtext 1.0pt;padding:0in .05in 0in 5.4pt\" valign=\"top\" width=\"533\">\n", "<p class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;margin-bottom:\n", " 3.0pt;margin-left:0in\"> </p>\n", "</td>\n", "</tr>\n", "<tr height=\"0\">\n", "<td style=\"border:none\" width=\"96\"></td>\n", "<td style=\"border:none\" width=\"448\"></td>\n", "<td style=\"border:none\" width=\"84\"></td>\n", "</tr>\n", "</table>\n", "<p align=\"left\" class=\"nonumber\" style=\"margin-top:6.0pt;text-align:left\"> </p>\n", "<p align=\"center\" class=\"aBase\" style=\"text-align:center\">A BILL TO BE ENTITLED</p>\n", "<p class=\"aLongTitle\"><span style='font-family:\"Times New Roman\",\"serif\"'>AN ACT clarifying\n", "the authority and duties of industrial commission fraud investigators and making\n", "technical, conforming, and other changes to the workers' compensation laws of\n", "north carolina.</span></p>\n", "<p class=\"aBase\">The General Assembly of North Carolina enacts:</p>\n", "<p class=\"aBillSection\"><b>SECTION 1.(a)</b>  Article 1 of Chapter 97 of the\n", "General Statutes is amended by adding a new section to read:</p>\n", "<p class=\"aSection\"><span style=\"font-weight:normal\">\"</span><u>§ 97‑79.1. \n", "Authority of Industrial Commission fraud investigators; inspection of records.</u></p>\n", "<p class=\"aMargin1\"><u>(a)</u>        <u>The Commission shall establish a Criminal\n", "Investigation Unit to operate as a law enforcement agency for the enforcement\n", "of this Chapter. Members of the unit shall serve as fraud investigators and\n", "must be sworn law enforcement officers duly appointed and certified by the\n", "North Carolina Criminal Justice Education and Training Standards Commission.</u></p>\n", "<p class=\"aMargin1\"><u>(b)</u>        <u>A fraud investigator employed by the\n", "Commission, who has sworn the oath prescribed for a law enforcement officer, shall\n", "have the following authority:</u></p>\n", "<p class=\"aBlock1\"><u>(1)</u>        <u>To make arrests and take other\n", "investigatory and enforcement actions for both felonies and misdemeanors and to\n", "charge for infractions for violations of the laws of the State, with the\n", "primary responsibility of enforcing the Workers' Compensation Act.</u></p>\n", "<p class=\"aBlock1\"><u>(2)</u>        <u>To act as a State law enforcement officer\n", "with jurisdiction throughout the State.</u></p>\n", "<p class=\"aBlock1\"><u>(3)</u>        <u>To serve and execute orders issued by the\n", "Commission in connection with contempt proceedings. While serving and executing\n", "such an order, a fraud investigator has the same authority and power possessed\n", "by a local law officer or sheriff's deputy when executing an arrest warrant.</u></p>\n", "<p class=\"aBlock1\"><u>(4)</u>        <u>To inspect records of business kept under\n", "G.S. 58‑2‑185 by insurance companies, agents, or brokers doing\n", "any kind of business in this State involving workers' compensation.</u></p>\n", "<p class=\"aMargin1\"><u>(c)</u>        <u>Each insurance company, agent, or broker\n", "keeping records under G.S. 58‑2‑185 shall furnish copies of these\n", "records to the Commission's fraud investigators on demand, and the original\n", "books of records shall be open to the inspection of the Commissioner when\n", "demanded. Any person who refuses, on demand, to exhibit the records of business\n", "as provided by this subsection or who knowingly makes a false statement in\n", "regard to the records when demanded is guilty of a Class 1 misdemeanor.</u>\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 1.(b)</b>  G.S. 143‑166.13 is amended\n", "by adding a new subdivision to read:</p>\n", "<p class=\"aBlock1\">\"<u>(20)</u>    <u>Sworn State Law‑Enforcement\n", "Officers with the power of arrest, Industrial Commission Fraud Investigators,\n", "Department of Commerce.</u>\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 2.</b>  G.S. 97‑88.2(b) reads as\n", "rewritten:</p>\n", "<p class=\"aMargin1\">\"(b)      The Commission shall:</p>\n", "<p class=\"aBlock1\">(1)        Perform investigations regarding all cases of\n", "suspected fraud and all violations related to workers' compensation claims, by\n", "or against insurers or self‑funded employers, and refer possible criminal\n", "violations to the <s>appropriate prosecutorial authorities;</s><u>Criminal Investigation\n", "Unit.</u></p>\n", "<p class=\"aBlock1\">(2)        Conduct administrative violation proceedings; and</p>\n", "<p class=\"aBlock1\">(3)        Assess and collect civil penalties and restitution.</p>\n", "<p class=\"aMargin1\">The Commission may employ sworn law enforcement officers <s>duly\n", "appointed and certified through the North Carolina Criminal Justice Education\n", "and Training Standards Commission </s><u>pursuant to G.S. 97‑79.1 </u>to\n", "<u>enforce the laws and </u>conduct the investigations mandated by this <s>subsection.</s><u>section.</u>\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 3.</b>  G.S. 97‑73(d) reads as\n", "rewritten:</p>\n", "<p class=\"aMargin1\">\"(d)      Safety. – A fee in the amount set by the Industrial\n", "Commission is imposed on an employer for whom the Industrial Commission\n", "provides an educational training program on how to prevent or reduce accidents\n", "or injuries that result in workers' compensation claims or a person for whom\n", "the Industrial Commission provides other educational services. <u>The\n", "Commission may set a reasonable fee imposed for a review of the safety rules. </u>The\n", "fees are departmental receipts.\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 4.</b>  G.S. 97‑87(c)(5) reads as\n", "rewritten</p>\n", "<p class=\"aBlock1\">\"(5)      If any party disputes the decision of the\n", "Commission entered under subdivision (c)(4) of this section, the party may\n", "appeal to the full Commission within 10 days of the entry of the decision of\n", "the Commission. The nonappealing party may file a response within 10 days of\n", "receiving notice of appeal. The notice of appeal shall request one of the\n", "following:</p>\n", "<p class=\"aBlock2\">a.         The Commission reconsider the decision entered\n", "based on the record and any additional evidence that parties submit with the\n", "notice and response.</p>\n", "<p class=\"aBlock2\">b.         A de novo evidentiary hearing before the <s>full </s>Commission.\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 5.</b>  G.S. 97‑87(c)(7) reads as\n", "rewritten:</p>\n", "<p class=\"aMargin1\">\"(c)       When an award or portion of an award provides\n", "for periodic payments to be made on or after the date of the award, a judgment\n", "may be docketed as provided in subsection (d) of this section, in an amount\n", "equal to the sum stated in any Certificate of Accrued Arrearages that is issued\n", "by the Commission under this subsection. If any payment that has accrued after\n", "the date of the award, or after the date specified in the most recent\n", "Certificate of Accrued Arrearages issued under this subsection, is not received\n", "by the claimant when due, the following procedure is available for obtaining a\n", "Certificate of Accrued Arrearages:</p>\n", "<p class=\"aBlock1\">…</p>\n", "<p class=\"aBlock1\">(7)        If a notice of appeal is given under sub‑subdivision\n", "(c)(5)a. of this section, the Commission shall issue its decision within 10\n", "days of the filing of the response under subdivision (c)(5)b. of this section.\n", "If a notice of appeal is given under sub‑subdivision (c)(5) of this\n", "section, the Commission shall either <u>(i) </u>conduct an evidentiary hearing\n", "and issue its decision on the appeal within 90 days of the filing of the <s>response\n", "</s><u>response, or when a response is due if no response is filed, </u>under\n", "subdivision (c)(5) of this section or <u>(ii) </u>deny the request for the\n", "evidentiary hearing and issue its decision within 10 days of the filing of the\n", "response under subdivision (c)(5) of this section. Further appeals are governed\n", "by G.S. 97‑86.\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 6.</b>  G.S. 97‑92(d) reads as\n", "rewritten:</p>\n", "<p class=\"aMargin1\">\"(d)      The said report shall contain the name,\n", "nature, and location of the business of the employer and name, age, sex, <s>and\n", "wages </s><u>wages, if available, </u>and occupation of the injured employee,\n", "and shall state the date and hour of the accident causing injury, the nature\n", "and cause of the injury, and such other information as may be required by the\n", "Commission.\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 7.</b>  G.S. 97‑101 reads as\n", "rewritten:</p>\n", "<p class=\"aSection\"><span style=\"font-weight:normal\">\"</span>§ 97‑101. \n", "Collection of fines and penalties.</p>\n", "<p class=\"aMargin1\">The Industrial Commission shall have the power by civil\n", "action brought in its own name to enforce the collection of any fines or\n", "penalties provided by this <s>Article, and fines or penalties collected by the\n", "Commission shall become a part of the maintenance fund referred to in\n", "subsection (j) of G.S. 97‑100.</s><u>Article.</u>\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 8.</b>  G.S. 97‑26.2 reads as\n", "rewritten:</p>\n", "<p class=\"aSection\"><span style=\"font-weight:normal\">\"</span>§ 97‑26.2. \n", "Reimbursement for prescription <s>drugs </s><u>drugs, prescribed over‑the‑counter\n", "drugs, </u>and professional pharmaceutical services.</p>\n", "<p class=\"aMargin1\">(a)        The reimbursement for prescription <s>drugs </s><u>drugs,\n", "prescribed over‑the‑counter drugs, </u>and professional\n", "pharmaceutical services shall be limited to <u>no greater than </u>ninety‑five\n", "percent (95%) of the average wholesale price (AWP) of the product, calculated\n", "on a per unit basis, as of the date of dispensing.</p>\n", "<p class=\"aMargin1\">(b)        All of the following shall apply to the\n", "reimbursement for prescription drugs and professional pharmaceutical services:</p>\n", "<p class=\"aBlock1\">(1)        A health care provider seeking reimbursement for <s>drugs\n", "dispensed by a physician </s><u>health care provider dispensed prescription\n", "drugs, prescribed over‑the‑counter drugs, and pharmaceutical\n", "services </u>shall include the original manufacturer's National Drug Code (NDC)\n", "number, as assigned by the United States Food and Drug Administration, on <s>the\n", "bills and reports required by this section.</s><u>any billing documents or\n", "invoices issued.</u></p>\n", "<p class=\"aBlock1\">(2)        In no event may a <s>physician </s><u>health care\n", "provider </u>receive reimbursement in excess of ninety‑five percent (95%)\n", "of the AWP of the drugs dispensed by a <s>physician, </s><u>health care\n", "provider, </u>as determined by reference to the original manufacturer's NDC\n", "number.</p>\n", "<p class=\"aBlock1\">(3)        A repackaged NDC number may not be <u>individually </u>used\n", "<u>on any billing documents or invoices issued </u>and will not be considered\n", "the original manufacturer's NDC number. <u>A repackaged NDC number may only\n", "appear in conjunction with the manufacturer's NDC number. </u>If a health care\n", "provider seeking reimbursement for drugs dispensed by a <s>physician </s><u>health\n", "care provider </u>does not include the original manufacturer's NDC number on <s>the\n", "bills and reports required by this section, </s><u>any billing documents or\n", "invoices issued, </u>reimbursement shall be limited to one hundred percent\n", "(100%) of the AWP of the least expensive clinically equivalent drug, calculated\n", "on a per unit basis.</p>\n", "<p class=\"aBlock1\">(4)        No outpatient provider, other than a licensed\n", "pharmacy, may receive reimbursement for a Schedule II controlled substance, as\n", "defined in G.S. 90‑90, or a Schedule III controlled substance, as\n", "defined in G.S. 90‑91, <u>or a Schedule IV controlled substance, as\n", "defined by G.S. 90‑92, </u>dispensed in excess of an initial five‑day\n", "supply, commencing upon the employee's initial treatment following injury. <u>Only\n", "the initial health care provider providing the employee's initial treatment\n", "following injury may seek reimbursement for dispensing controlled substances as\n", "described in this section, and any subsequent dispensing of controlled\n", "substances by another health care provider will be ineligible for reimbursement.\n", "</u>Reimbursement under this subdivision shall be made for the five‑day\n", "supply at the rates provided in this section.</p>\n", "<p class=\"aBlock1\">(5)        For purposes of this section, the term \"clinically\n", "equivalent\" means a drug has chemical equivalents which, when administered\n", "in the same amounts, will provide essentially the same therapeutic effect as\n", "measured by the control of a symptom or disease.\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 9.</b>  G.S. 97‑200(a) reads as\n", "rewritten:</p>\n", "<p class=\"aMargin1\">\"(a)       A self‑insurer shall not utilize any\n", "claims adjuster unless the adjuster is licensed under <s>G.S. 58‑33‑25.</s><u>G.S. 58‑33‑26.</u>\"</p>\n", "<p class=\"aBillSection\"><b>SECTION 10.</b>  This act is effective when it becomes\n", "law.</p>\n", "</div>\n", "</body>" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raw Text Extraction" ] }, { "cell_type": "code", "execution_count": 129, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def cleanRawText(text):\n", " \"\"\"\n", " vtype text: str\n", " \n", " rtype text: str / utf8\n", " \"\"\"\n", " text = text.encode('ascii', 'replace')\n", " text = text.replace(b'?', b'')\n", " text = text.replace(b'\\r\\n', b'\\n')\n", " text = text.replace(b'\\n', b' ')\n", " text = text.strip()\n", " text = text.decode('utf8')\n", " return(text)" ] }, { "cell_type": "code", "execution_count": 162, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def extractRawText(body):\n", " \"\"\"\n", " vtype body: bs4.element.Tag\n", " \n", " rtype raw_text: str\n", " \"\"\"\n", " paras = body.find_all('p')\n", " texts = [p.text for p in paras]\n", " texts = [t.strip() for t in texts]\n", " raw_text = '\\n\\n'.join(texts)\n", " raw_text = cleanRawText(raw_text)\n", " return(raw_text)" ] }, { "cell_type": "code", "execution_count": 163, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 163, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hrt = extractRawText(hs)\n", "hrt[:500]" ] }, { "cell_type": "code", "execution_count": 164, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'ided in this section. (5) For purposes of this section, the term \"clinically equivalent\" means a drug has chemical equivalents which, when administered in the same amounts, will provide essentially the same therapeutic effect as measured by the control of a symptom or disease.\" SECTION 9. G.S.97200(a) reads as rewritten: \"(a) A selfinsurer shall not utilize any claims adjuster unless the adjuster is licensed under G.S.583325.G.S.583326.\" SECTION 10. This act is effective when it becomes law.'" ] }, "execution_count": 164, "metadata": {}, "output_type": "execute_result" } ], "source": [ "srt = extractRawText(ss)\n", "srt[-500:]" ] }, { "cell_type": "code", "execution_count": 165, "metadata": { "collapsed": true }, "outputs": [], "source": [ "text = hrt" ] }, { "cell_type": "code", "execution_count": 166, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "b'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 166, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = text.encode('ascii', 'replace')\n", "text[:500]" ] }, { "cell_type": "code", "execution_count": 167, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "b'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 167, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = text.replace(b'?', b'')\n", "text[:500]" ] }, { "cell_type": "code", "execution_count": 168, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "b'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 168, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = text.replace(b'\\r\\n', b'\\n')\n", "text[:500]" ] }, { "cell_type": "code", "execution_count": 169, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "b'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 169, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = text.replace(b'\\n', b' ')\n", "text[:500]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Test Code" ] }, { "cell_type": "code", "execution_count": 170, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short Title: DEM/Emp. Retention Funds/LRC Study. (Public) Sponsors: Representative Whitmire. Referred to: A BILL TO BE ENTITLED AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency managem'" ] }, "execution_count": 170, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cleanRawText(extractRawText(hs))[:500]" ] }, { "cell_type": "code", "execution_count": 171, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE DRS45321-LRf-105 (03/14) Short Title: WC/2015 Omnibus Law Changes. (Public) Sponsors: Senator Lee (Primary Sponsor). Referred to: A BILL TO BE ENTITLED AN ACT clarifying the authority and duties of industrial commission fraud investigators and making technical, conforming, and other changes to the workers' compensation laws of north carolina. The General Assembly of North Carolina enacts: SECTION 1.(a) Article 1 o\"" ] }, "execution_count": 171, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cleanRawText(extractRawText(ss))[:500]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### (Select) Metadata Extraction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### \"Long Title\" / Description" ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def extractLongTitle(body):\n", " return(cleanRawText(body.find('p', {'class':'aLongTitle'}).text))" ] }, { "cell_type": "code", "execution_count": 139, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'AN ACT to appropriate funds to the department of public safety for retentionbased salary adjustments for division of emergency management employees and authorizing the legislative research commission to review whether there should be established an emergency management preparedness and response fee to support the work of the division.'" ] }, "execution_count": 139, "metadata": {}, "output_type": "execute_result" } ], "source": [ "extractLongTitle(hs)" ] }, { "cell_type": "code", "execution_count": 140, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"AN ACT clarifying the authority and duties of industrial commission fraud investigators and making technical, conforming, and other changes to the workers' compensation laws of north carolina.\"" ] }, "execution_count": 140, "metadata": {}, "output_type": "execute_result" } ], "source": [ "extractLongTitle(ss)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Table Content" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<p align=\"left\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:left\">Short\n", " Title:        DEM/Emp. Retention Funds/LRC Study.</p>,\n", " <p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Sponsors:</p>,\n", " <p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Referred to:</p>]" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[tr.find('p') for tr in hs.find('table').find_all('tr') if tr.find('p')]" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<p align=\"left\" class=\"nonumber\" style=\"margin-bottom:6.0pt;text-align:left\">Short\n", " Title:        WC/2015 Omnibus Law Changes.</p>,\n", " <p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Sponsors:</p>,\n", " <p align=\"left\" class=\"nonumber\" style=\"margin-top:3.0pt;margin-right:0in;\n", " margin-bottom:3.0pt;margin-left:0in;text-align:left\">Referred to:</p>]" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[tr.find('p') for tr in ss.find('table').find_all('tr') if tr.find('p')]" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ATTR: b'Short Title'; VALUE: b'DEM/Emp. Retention Funds/LRC Study. (Public) '\n", "ATTR: b'Sponsors'; VALUE: b' Representative Whitmire. '\n", "ATTR: b'Referred to'; VALUE: b' '\n" ] } ], "source": [ "for row in c:\n", " attr = cleanRawText(row.find('p').text)\n", " value = cleanRawText(row.find_all('td')[-1].text)\n", " if attr.lower().startswith(b'short'):\n", " d = attr.split(b': ')\n", " attr = d[0]\n", " value = d[1].strip() + b' ' + value\n", " attr = attr.strip().strip(b':')\n", " print('ATTR: {}; VALUE: {}'.format(attr, value))" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def extractTableContent(body):\n", " info = {}\n", " contents = [tr for tr in body.find('table').find_all('tr') if tr.find('p')]\n", " for row in contents:\n", " attr = cleanRawText(row.find('p').text)\n", " value = cleanRawText(row.find_all('td')[-1].text)\n", " if attr.lower().startswith('short'):\n", " d = attr.split(': ')\n", " attr = d[0]\n", " value = d[1].strip() + ' ' + value\n", " attr = attr.strip().strip(':')\n", " attr = ''.join(attr.split())\n", " info[attr] = value\n", " return(info)" ] }, { "cell_type": "code", "execution_count": 150, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'Referred to': '',\n", " 'Short Title': 'DEM/Emp. Retention Funds/LRC Study. (Public)',\n", " 'Sponsors': 'Representative Whitmire.'}" ] }, "execution_count": 150, "metadata": {}, "output_type": "execute_result" } ], "source": [ "extractTableContent(hs)" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'Referred to': '',\n", " 'Short Title': 'WC/2015 Omnibus Law Changes. (Public)',\n", " 'Sponsors': 'Senator Lee (Primary Sponsor).'}" ] }, "execution_count": 151, "metadata": {}, "output_type": "execute_result" } ], "source": [ "extractTableContent(ss)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Bed" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [], "source": [ "soups = [bs(t, 'html.parser') for t in sample.text]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Text" ] }, { "cell_type": "code", "execution_count": 141, "metadata": { "collapsed": true }, "outputs": [], "source": [ "rts = [extractRawText(soup) for soup in soups]" ] }, { "cell_type": "code", "execution_count": 142, "metadata": { "collapsed": false }, "outputs": [], "source": [ "crts = [cleanRawText(rt) for rt in rts]" ] }, { "cell_type": "code", "execution_count": 143, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10271-LRa-136A (04/02) Short \n", "ions Committees on Justice and Public Safety. SECTION 3. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE DRS45321-LRf-105 (03/14) Short \n", "er is licensed under G.S.583325.G.S.583326.\" SECTION 10. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE BILL DRH10476-MGf-142 (03/14) Sh\n", " (5) Any illicit spirituous liquor. (6) Mash.\" SECTION 6. This act becomes effective July 1, 2016.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10335-LR-125 (03/27) Short \n", "shall be calculated to the nearest cent (1).\" SECTION 2. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE DRS15195-ML-136 (03/10) Short \n", "(e), 57D941(b), (d), and (f), and 57D942(b).\" SECTION 2. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH20066-ST-18A (01/29) Short \n", "ecomes effective May 1, 2015, and applies to zoning ordinance changes adopted on or after that date.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH20143-LL-147 (03/24) Short \n", " act becomes effective July 1, 2015, and applies to eligible retirees who die on or after that date.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE DRS45308-ML-5C* (01/07) Short \n", "t becomes effective December 1, 2015, and applies to any misconduct committed on or after that date.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH30090-LL-112 (3/4) Short Ti\n", ", 2015, and applies to persons placed on probation or postrelease supervision on or after that date.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH40369-LR-138 (04/02) Short \n", "3. This act becomes effective January 1, 2016, and applies to sick leave used on or after that date.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE BILL DRS15327-MLf-265A (04/26) \n", " this act become effective July 1, 2016. The remainder of this act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE BILL DRS25292-TAz-9A* (03/15) S\n", "Human Services on or before December 1, 2016. SECTION 3. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH40397-MGfqq-4A* (11/10) Short\n", "ately seek to become licensed under this act. SECTION 5. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH40096-ST-4A (10/30) Short T\n", " among the permanent records of that office. SECTION 15. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH20091-MC-99A* (03/09) Short \n", "e used for purposes consistent with this act. SECTION 3. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE BILL DRS15313-RW-18 (04/01) Sho\n", "equal or greater funding from the applicant.\" SECTION 3. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE BILL DRH30495-MHa-162A (01/20) S\n", "4 of this act is effective July 1, 2016. The remainder of the 0act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE DRS45161-MC-136 (03/17) Short \n", "ON 2. This act is effective for investments for taxable years beginning on or after January 1, 2015.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH20101-MK-102 (03/10) Short \n", "ON 2. This act is effective when it becomes law and applies beginning with the 20152016 school year.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH40076-LMx-21 (01/14) Short \n", " corporate limits of the Town of Maggie Valley. SECTION 3. This act becomes effective July 1, 2015.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH20196-LL-149 (03/25) Short \n", "h year and January 2 of each subsequent year. SECTION 2. This act is effective when it becomes law.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH10185-TD-13 (03/02) Short T\n", "for all other nonliquid alternative fuels.\" SECTION 3. This section becomes effective July 1, 2015.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH30049-MH-27 (01/20) Short T\n", "ission appointments made on or after that date. The remainder of this act is effective July 1, 2015.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 S D SENATE JOINT RESOLUTION DRSJR35301-LG-117 (06\n", "esolution to the family of Harris Blake. SECTION 4. This resolution is effective upon ratification.\n", "\n", "\n", "GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2015 H D HOUSE DRH30316-MLf-229 (04/06) Short \n", "rules pursuant to Section 8 of this act. The remainder of this act is effective when it becomes law.\n", "\n", "\n" ] } ], "source": [ "for crt in crts:\n", " print(crt[:100])\n", " print(crt[-100:])\n", " print('\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Long Titles" ] }, { "cell_type": "code", "execution_count": 144, "metadata": { "collapsed": true }, "outputs": [], "source": [ "lts = [extractLongTitle(soup) for soup in soups]" ] }, { "cell_type": "code", "execution_count": 147, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AN ACT to appropriate funds to the department of public safety for ret\n", "\n", "\n", "AN ACT clarifying the authority and duties of industrial commission fr\n", "\n", "\n", "AN ACT ALLOWING PATIENTS WITH terminal or chronic ILLNESS TO LAWFULLY \n", "\n", "\n", "AN ACT to allow a local government to set the minimum wage within its \n", "\n", "\n", "AN ACT to make a technical and clarifying change to the limited liabil\n", "\n", "\n", "AN ACT to amend the process by which the city councils receive citizen\n", "\n", "\n", "AN ACT to increase the contributory death benefit payable on behalf of\n", "\n", "\n", "AN ACT to (1) prohibit the use of discriminatory profiling by law enfo\n", "\n", "\n", "AN ACT to amend provisions of the justice reinvestment act.\n", "\n", "\n", "AN ACT to enact the eligible leave for employee caregiving time act.\n", "\n", "\n", "AN ACT to include per transaction rates paid to license plate agency c\n", "\n", "\n", "AN ACT to direct the division of child development and early education\n", "\n", "\n", "AN ACT to establish licensure and education standards for the practice\n", "\n", "\n", "AN ACT to provide FOR fouryear terms for members of the general assemb\n", "\n", "\n", "AN ACT to enact the corner store initiative act to assist healthy food\n", "\n", "\n", "AN ACT to CLARIFY that the freight rail and rail crossing safety impro\n", "\n", "\n", "AN ACT to provide for a referendum to limit marine net fishing.\n", "\n", "\n", "AN ACT to reenact the tax credit for qualified business investments.\n", "\n", "\n", "AN ACT to allow local boards of education to set a school calendar tha\n", "\n", "\n", "AN ACT to remove certain described property from the corporate limits \n", "\n", "\n", "AN ACT TO provide that STATE WILDLIFE LAWS do not apply TO OPOSSUMS BE\n", "\n", "\n", "AN ACT to equalize the taxation of LIQUEFIED propane gas when used as \n", "\n", "\n", "AN ACT TO update the membership of the FIRE AND RESCUE COMMISSION to r\n", "\n", "\n", "A JOINT RESOLUTION honoring the life and memory of harris blake, forme\n", "\n", "\n", "AN ACT to authorize and regulate the sale of antique spirituous liquor\n", "\n", "\n" ] } ], "source": [ "for lt in lts:\n", " print(lt[:70])\n", " print('\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Info Tables" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tabs = [extractTableContent(soup) for soup in soups]" ] }, { "cell_type": "code", "execution_count": 154, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Representative Whitmire.\n", "Senator Lee (Primary Sponsor).\n", "Representative Alexander.\n", "Representative L. Hall.\n", "Senators Barringer and Lee (Primary Sponsors).\n", "Representatives Stam, Goodman, Jackson, and Fraley (Primary Sponsors).\n", "Representative L. Bell.\n", "Senators McKissick and Bryant (Primary Sponsors).\n", "Representatives Faircloth, Daughtry, Boles, and Hurley (Primary Sponsors).\n", "Representatives R. Turner and Meyer (Primary Sponsors).\n", "Senator Tillman (Primary Sponsor).\n", "Senator Pate (Primary Sponsor).\n", "Representatives Collins and Fisher (Primary Sponsors).\n", "Representatives Warren, Hardister, Malone, and Glazier (Primary Sponsors).\n", "Representatives Holley, Whitmire, B. Brown, and Lambeth (Primary Sponsors).\n", "Senators J. Davis and Rabon (Primary Sponsors).\n", "Representative W. Richardson.\n", "Senator Lowe (Primary Sponsor).\n", "Representative Holloway.\n", "Representative Presnell.\n", "Representatives West, Hager, McElraft, and Lucas (Primary Sponsors).\n", "Representative Collins.\n", "Representatives Ross, Saine, Boles, and J. Bell (Primary Sponsors).\n", "Senator Tillman (Primary Sponsor).\n", "Representatives Hager and J. Bell (Primary Sponsors).\n" ] } ], "source": [ "for tab in tabs:\n", " print(tab['Sponsors'])" ] }, { "cell_type": "code", "execution_count": 156, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method apply in module pandas.core.frame:\n", "\n", "apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) method of pandas.core.frame.DataFrame instance\n", " Applies function along input axis of DataFrame.\n", " \n", " Objects passed to functions are Series objects having index\n", " either the DataFrame's index (axis=0) or the columns (axis=1).\n", " Return type depends on whether passed function aggregates, or the\n", " reduce argument if the DataFrame is empty.\n", " \n", " Parameters\n", " ----------\n", " func : function\n", " Function to apply to each column/row\n", " axis : {0 or 'index', 1 or 'columns'}, default 0\n", " * 0 or 'index': apply function to each column\n", " * 1 or 'columns': apply function to each row\n", " broadcast : boolean, default False\n", " For aggregation functions, return object of same size with values\n", " propagated\n", " raw : boolean, default False\n", " If False, convert each row or column into a Series. If raw=True the\n", " passed function will receive ndarray objects instead. If you are\n", " just applying a NumPy reduction function this will achieve much\n", " better performance\n", " reduce : boolean or None, default None\n", " Try to apply reduction procedures. If the DataFrame is empty,\n", " apply will use reduce to determine whether the result should be a\n", " Series or a DataFrame. If reduce is None (the default), apply's\n", " return value will be guessed by calling func an empty Series (note:\n", " while guessing, exceptions raised by func will be ignored). If\n", " reduce is True a Series will always be returned, and if False a\n", " DataFrame will always be returned.\n", " args : tuple\n", " Positional arguments to pass to function in addition to the\n", " array/series\n", " Additional keyword arguments will be passed as keywords to the function\n", " \n", " Notes\n", " -----\n", " In the current implementation apply calls func twice on the\n", " first column/row to decide whether it can take a fast or slow\n", " code path. This can lead to unexpected behavior if func has\n", " side-effects, as they will take effect twice for the first\n", " column/row.\n", " \n", " Examples\n", " --------\n", " >>> df.apply(numpy.sqrt) # returns DataFrame\n", " >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)\n", " >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)\n", " \n", " See also\n", " --------\n", " DataFrame.applymap: For elementwise operations\n", " \n", " Returns\n", " -------\n", " applied : Series or DataFrame\n", "\n" ] } ], "source": [ "help(bill_texts_filed.apply)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Process" ] }, { "cell_type": "code", "execution_count": 158, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bill_texts_filed['soup'] = bill_texts_filed.apply(lambda x: bs(x.text, 'html.parser'), axis=1)" ] }, { "cell_type": "code", "execution_count": 159, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>bill</th>\n", " <th>house</th>\n", " <th>session</th>\n", " <th>text</th>\n", " <th>soup</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " bill house session text \\\n", "0 1 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "1 2 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "2 3 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "3 4 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "4 5 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "\n", " soup \n", "0 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "1 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "2 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "3 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "4 <html>\n", "<head>\n", "<meta content=\"text/html; charse... " ] }, "execution_count": 159, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bill_texts_filed.head()" ] }, { "cell_type": "code", "execution_count": 179, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bill_texts_filed['content'] = bill_texts_filed.apply(lambda x: extractRawText(x['soup'].body), axis=1)" ] }, { "cell_type": "code", "execution_count": 180, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bill_texts_filed['long_title'] = bill_texts_filed.apply(lambda x: extractLongTitle(x['soup'].body), axis=1)" ] }, { "cell_type": "code", "execution_count": 181, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bill_texts_filed['table_info'] = bill_texts_filed.apply(lambda x: extractTableContent(x['soup'].body), axis=1)" ] }, { "cell_type": "code", "execution_count": 182, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>bill</th>\n", " <th>house</th>\n", " <th>session</th>\n", " <th>text</th>\n", " <th>soup</th>\n", " <th>content</th>\n", " <th>long_title</th>\n", " <th>table_info</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>A HOUSE RESOLUTION adopting the permanent rule...</td>\n", " <td>{'Referred to': '', 'Sponsors': 'Representativ...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>A JOINT RESOLUTIOn providing for adjournment s...</td>\n", " <td>{'Referred to': '', 'Sponsors': 'Representativ...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT to provide further REGULATORY RELIEF TO...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Regulato...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT directing the department of transportat...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Terminat...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>H</td>\n", " <td>2015E4</td>\n", " <td>b'&lt;html&gt;\\r\\n\\r\\n&lt;head&gt;\\r\\n&lt;meta http-equiv=Con...</td>\n", " <td>&lt;html&gt;\n", "&lt;head&gt;\n", "&lt;meta content=\"text/html; charse...</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT to clarify the service area for communi...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Municipa...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " bill house session text \\\n", "0 1 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "1 2 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "2 3 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "3 4 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "4 5 H 2015E4 b'<html>\\r\\n\\r\\n<head>\\r\\n<meta http-equiv=Con... \n", "\n", " soup \\\n", "0 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "1 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "2 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "3 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "4 <html>\n", "<head>\n", "<meta content=\"text/html; charse... \n", "\n", " content \\\n", "0 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "1 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "2 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "3 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "4 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "\n", " long_title \\\n", "0 A HOUSE RESOLUTION adopting the permanent rule... \n", "1 A JOINT RESOLUTIOn providing for adjournment s... \n", "2 AN ACT to provide further REGULATORY RELIEF TO... \n", "3 AN ACT directing the department of transportat... \n", "4 AN ACT to clarify the service area for communi... \n", "\n", " table_info \n", "0 {'Referred to': '', 'Sponsors': 'Representativ... \n", "1 {'Referred to': '', 'Sponsors': 'Representativ... \n", "2 {'Referred to': '', 'Short Title': 'Regulato... \n", "3 {'Referred to': '', 'Short Title': 'Terminat... \n", "4 {'Referred to': '', 'Short Title': 'Municipa... " ] }, "execution_count": 182, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bill_texts_filed.head()" ] }, { "cell_type": "code", "execution_count": 183, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bill_texts_filed_content = bill_texts_filed[['session', 'house', 'bill', 'content', 'long_title', 'table_info']]" ] }, { "cell_type": "code", "execution_count": 184, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>session</th>\n", " <th>house</th>\n", " <th>bill</th>\n", " <th>content</th>\n", " <th>long_title</th>\n", " <th>table_info</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2015E4</td>\n", " <td>H</td>\n", " <td>1</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>A HOUSE RESOLUTION adopting the permanent rule...</td>\n", " <td>{'Referred to': '', 'Sponsors': 'Representativ...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2015E4</td>\n", " <td>H</td>\n", " <td>2</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>A JOINT RESOLUTIOn providing for adjournment s...</td>\n", " <td>{'Referred to': '', 'Sponsors': 'Representativ...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2015E4</td>\n", " <td>H</td>\n", " <td>3</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT to provide further REGULATORY RELIEF TO...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Regulato...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2015E4</td>\n", " <td>H</td>\n", " <td>4</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT directing the department of transportat...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Terminat...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2015E4</td>\n", " <td>H</td>\n", " <td>5</td>\n", " <td>GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT...</td>\n", " <td>AN ACT to clarify the service area for communi...</td>\n", " <td>{'Referred to': '', 'Short Title': 'Municipa...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " session house bill content \\\n", "0 2015E4 H 1 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "1 2015E4 H 2 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "2 2015E4 H 3 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "3 2015E4 H 4 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "4 2015E4 H 5 GENERAL ASSEMBLY OF NORTH CAROLINA FOURTH EXT... \n", "\n", " long_title \\\n", "0 A HOUSE RESOLUTION adopting the permanent rule... \n", "1 A JOINT RESOLUTIOn providing for adjournment s... \n", "2 AN ACT to provide further REGULATORY RELIEF TO... \n", "3 AN ACT directing the department of transportat... \n", "4 AN ACT to clarify the service area for communi... \n", "\n", " table_info \n", "0 {'Referred to': '', 'Sponsors': 'Representativ... \n", "1 {'Referred to': '', 'Sponsors': 'Representativ... \n", "2 {'Referred to': '', 'Short Title': 'Regulato... \n", "3 {'Referred to': '', 'Short Title': 'Terminat... \n", "4 {'Referred to': '', 'Short Title': 'Municipa... " ] }, "execution_count": 184, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bill_texts_filed_content.head()" ] }, { "cell_type": "code", "execution_count": 185, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with open('data/bill_texts_filed_content.pkl', 'wb') as f1:\n", " pickle.dump(bill_texts_filed_content, f1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "ncga (P3)", "language": "python", "name": "ncga (p3)" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
m-weigand/ccd_tools
playground/Sensitivities/Debye Sensitivities.ipynb
1
105344
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from NDimInv.plot_helper import *\n", "import dd_res as DD_RES\n", "dd_res = DD_RES.dd_resistivity()\n", "import scipy.stats as stats" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "ImportError", "evalue": "No module named dd_res", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-780e071b2323>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mNDimInv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_helper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mdd_res\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mDD_RES\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mdd_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDD_RES\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdd_resistivity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstats\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mstats\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mImportError\u001b[0m: No module named dd_res" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate multiple spectra exhibiting various high-frequency characteristics, e.g. an unfinished slope or a finished peak." ] }, { "cell_type": "code", "collapsed": false, "input": [ "def get_spectrum(peak1, peak2, strength1, strength2, omega, s, rho0):\n", " \"\"\"\n", " Generate a two-peak spectrum and chargeability distribution for a Debye Composition\n", " \n", " peak1 and peak2 denote the mean of the norm-distributions for m values (in s coordinates).\n", "\n", " \"\"\"\n", " m = stats.norm.pdf(s, peak1, 1.5) * (strength1) + \\\n", " stats.norm.pdf(s, peak2, 1.5) * (strength2 * 2)\n", "\n", " # we need to norm the chargeabilities because they will be scaled by rho0. Arbitrarily set the norm factor so that it is 1 for rho0 = 100\n", " m = m / rho0\n", "\n", " # we also want to normalize to the number of chargeabilities per frequency decade\n", " f = 1 / (2 * np.pi * 10**s)\n", " nr_per_decade = int(len(s) / (np.log10(np.max(f)) - np.log10(np.min(f))))\n", " m = m / nr_per_decade\n", "\n", " # apply conversion\n", " pars = np.hstack((rho0, m))\n", " pars_converted = dd_res.convert_parameters(pars)\n", " re,mim = dd_res.forward_re_mim(omega, pars_converted, s) \n", " \n", " return re, mim, rho0, m\n", "\n", "# input parameters\n", "rho0 = 100\n", "Nd = 20\n", "f = np.logspace(-3,4,30)\n", "omega = 2 * np.pi * f\n", "tau_s, s_s, f_s = dd_res.get_tau_values_for_data(f, Nd)\n", "\n", "peaks = [\n", " [0, -4.5, 'peak just inside'],\n", " [0, -6, 'peak just outside'],\n", " [0, -3, 'peak finished'],\n", " [2, -1, 'peak really far']\n", " ]\n", "\n", "re_list = []\n", "mim_list = []\n", "\n", "for nr,options in enumerate(peaks):\n", " re,mim,rho0,m = get_spectrum(options[0], options[1], 1, 1, omega, s_s, rho0) \n", " re_list.append(re)\n", " mim_list.append(mim)\n", "\n", " \n", "# save mag/pha to file\n", "m_re = np.array(re_list)\n", "m_mim = np.array(mim_list)\n", "\n", "mag = np.abs(m_re - 1j * m_mim)\n", "pha = np.arctan(-m_mim / m_re) * 1000\n", "\n", "magpha = np.hstack((mag,pha))\n", "\n", "np.savetxt('synthetic/data.dat', magpha)\n", "np.savetxt('synthetic/frequencies.dat', f)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 86 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# load data\n", "frequencies = np.loadtxt('frequencies.dat')\n", "omega = 2 * np.pi * frequencies\n", "data = np.atleast_2d(np.loadtxt('data.dat'))\n", "\n", "mag = data[0, 0:data.shape[1]/2]\n", "pha = data[0, data.shape[1]/2:]\n", "\n", "cmplx = mag * np.exp(1j*pha/1000)\n", "re = np.real(cmplx)\n", "mim = -np.imag(cmplx)\n", "\n", "odir = 'test_dd_orig'\n", "# load final iteration\n", "rho0 = np.atleast_2d(np.loadtxt(odir + '/rho0_results.dat'))[0,1]\n", "#rho0 = 10**log10rho0\n", "m = np.loadtxt(odir + '/m_results.dat')\n", "\n", "mtot = np.sum(10**m)\n", "#m = 10**m\n", "s = np.loadtxt(odir + '/s_results.dat')\n", "\n", "pars = np.hstack((rho0, m))\n", "\n", "fre,fmim = dd_res.forward_re_mim(omega, pars, s)\n", "del_mim_del_m = dd_res.del_mim_del_chargeability(omega, pars, s)\n", "nr_m = del_mim_del_m.shape[1]\n", "\n", "def plot_spectrum():\n", " # plot spectrum, and results\n", " fig = plt.figure(figsize=(15,6))\n", " ax = fig.add_subplot(3,1,1)\n", " ax.semilogx(frequencies, re, '.')\n", " ax.semilogx(frequencies, fre, '-', color='r')\n", " ax = fig.add_subplot(3,1,2)\n", " ax.semilogx(frequencies, mim, '.')\n", " ax.semilogx(frequencies, fmim, '-', color='r')\n", "\n", "#plot_spectrum()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 32 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Imaginary part sensitivities for each chargeability" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def plot_unnormalized():\n", " fig, ax_list = plt.subplots(61, 1,figsize=(12,100))\n", " for i in range(0,nr_m):\n", " ax_list[i].semilogx(frequencies, del_mim_del_m[:,i])\n", " fig.suptitle('Un-normalized')\n", " fig.subplots_adjust(top=0.99,hspace=0.1)\n", "\n", "#plot_unnormalized()\n", "\n", "def plot_normalized():\n", " max_sens = np.max(np.abs(del_mim_del_m))\n", "\n", " fig, ax_list = plt.subplots(nr_m, 1,figsize=(12,100))\n", " for i in range(0,nr_m):\n", " ax_list[i].semilogx(frequencies, del_mim_del_m[:,i] / max_sens)\n", " ax_list[i].set_ylim([0,1])\n", " ax_list[i].set_xlabel('Frequency (Hz)')\n", " ax_list[i].set_title('s: {0}'.format(s[i]))\n", " fig.suptitle('Normalized')\n", " fig.subplots_adjust(top=0.97,hspace=0.6)\n", " \n", "#plot_normalized()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 33 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we try some comulative sensitivity values.\n", "\n", "For each frequency, sum up all chargeability sensitivities:\n", "\n", "$Covf(f) = \\sum_{i=1}^{N_m} \\left| \\frac{\\partial -Im(f)}{\\partial m_i} \\right|$\n", "\n", "For each chargeability, sum up all frequency sensitivities\n", "\n", "$Covm(m) = \\sum_{i=1}^{N_f} \\left| \\frac{\\partial -Im}{\\partial m} \\right|_f$" ] }, { "cell_type": "code", "collapsed": false, "input": [ "covf = np.abs(del_mim_del_m).sum(axis=1)\n", "covf /= np.max(covf)\n", "\n", "covm = np.abs(del_mim_del_m).sum(axis=0)\n", "covm /= np.max(covm)\n", "\n", "invcovm = np.abs(1 / del_mim_del_m).sum(axis=0)\n", "invcovm /= np.max(invcovm)\n", "\n", "fig, (ax1,ax2,ax3,ax4) = plt.subplots(4,1,figsize=(15,12))\n", "ax1.semilogx(frequencies, covf)\n", "ax1.set_xlabel('Frequency (Hz)')\n", "ax1.set_ylabel('Covf')\n", "\n", "ax2.plot(s, covm)\n", "ax2.set_xlabel(r'$s = log_{10}(\\tau)$')\n", "ax2.set_ylabel('Covm')\n", "ax2.invert_xaxis()\n", "\n", "ax3.plot(s, np.log10(10**m / mtot))\n", "ax3.set_xlabel(r'$s = log_{10}(\\tau)$')\n", "ax3.set_ylabel(r'$log_{10}(m) / m_{tot}$')\n", "ax3.invert_xaxis()\n", "ax3.set_ylim([-2.4, -0.8])\n", "\n", "ax4.semilogx(frequencies, mim, '.-')\n", "ax4.set_xlabel('Frequency (Hz)')\n", "ax4.set_ylabel(r'$-Im(\\rho) (\\Omega m)$')\n", "\n", "fig.subplots_adjust(hspace=0.5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAALRCAYAAADycTZGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8U/X9x/F3IxevtE3nHZVe3MTboK13p5WQ4m3eoClz\n6rxQUnbfBFN0G+guWtjNzY3SoHPzp842iE63KSRaddOfM03xMkWgCd6dQkm9j0vz++P7S9qQFkqb\n9qTt6/l45NHk5OTkk3JI8873lhWLxWICAAAAAKALm9UFAAAAAAAyD2ERAAAAAJCCsAgAAAAASEFY\nBAAAAACkICwCAAAAAFIQFgEAAAAAKTIiLDqdTkUikR7vD4VCKikpkd1uV3V19SBWBgAAAAAjk6Vh\n0e/3y+12KxAIKCsrq8f9HA6H5syZo0gkomAwKK/XO4hVAgAAAMDIY2lYbGlp2WlIlEygzMvL06xZ\ns5Sdna3a2lotXbp0kCoEAAAAgJFplJVPPm/ePElSQ0NDj/uEw2EVFxcnbpeUlCgcDg94bQAAAAAw\nkmXEmMWdaW9vl91uT9oWjUYtqgYAAAAARgZLWxZ7IycnR21tbb3at6ioSK2trQNcEQAAAABkpsLC\nQq1fvz4tx8r4lsWCgoKkbqfBYDCpW2pXra2tisViw+KyYMGCYfGc/T1mXx+/O4/r7b672q+/9w+V\ny0C8jo8+iikYjOlPf4qppiamCy6I6cgjY7LZYpLilwVdrpvL6NEx7bNPTDk5MR1wQEzjx8dUUBDT\nUUfFdPzxMZWUxHTKKTGdeWZMTmdM550X00UXxeRyxXTZZTFNmrRA1dUxffvbMV17bUzz58e0YEFM\nP/1pTIsXx/TrX8f0+9/HtGyZqe3Pf47p/vtjeuihmB55JKaLLlqg66+P6ZJLYjr6aFPPjjXGL9nZ\nMZ10Ukxf/OIC3XxzTCtWxLRmTUxbtgz8ubmrfYbLuWnVaxku7527+5j+nne93We4nJ+cm/07Bn/X\nB+5i1evIxPNzqJybu9onnY1nGduy6PP55HQ65XA4FA6HFQgE5HA4VFtbq5kzZ1pd3oArKysbFs/Z\n32P29fG787je7rur/az4N7NCf15nNCq98or08sudP19+WXrtte7332MP6fOfl44+WtpnnzKdc440\ncaLZts8+0i7mx9qlpqYy9eefbezY5Mdv2yZFItKaNeb1rVnTeT0alZ59VpLK9PzznY8ZNUoqKpKO\nOqrzMnGi9IUvpO/c7O0+wwHvnX1//O4+Jl3nHefm0HrOdBxzoM9P/q7vHqteZyaen0Pl3Nzd5+2P\nrFgsFhuUZ9qJvLw8NTc3a8KECYltNptNfr9fU6ZMUUtLiyoqKtTW1qbKykotWbKk2+NkZWUpA14O\n0K2FCxdq4cKFVpcxKN5/PzkMxq+//Xb3+48ebcLRxIkmGMYvRx4pjR07uLUPhFjM/E66hsf49dde\nM/d35+CDU0PkUUdJ48f3Pyh3NZLOTQw9nJ/IVJybyFTpzEQZ0bK4adOmlG0dHR2J65MnT05bv1vA\nKsPtG8pYTHrnndRWwpdfljZu7P4xe+6ZHAjj1wsLTQvbcJWVJR1wgLmccUbyfZ98Iq1b1xke42Hy\n1VfN7/edd6THH09+zD77mHB91FHSMcdI554rffGLfQ+Qw+3cxPDC+YlMxbmJkSAjWhbThZZFYGB0\ndEgvvSQ9+aS0enVnKGxv737//fZLbSWcOFE64gjTtRS71tEhvf56aohcs0Z6773U/QsLpRkzzKWk\nJL0tjwAAYOhIZyYiLAJIsW2bCYVPPik98YT01FPS5s2p++Xmmpatrq2ERx8tHXooYWUgtbWZlsc1\na8w4yBUrkgPkEUdI06eb4HjSSZIt46cyAwAA6UJY7AFhEeibrVulYNAEwyeflP7xD+nDD5P3Oeww\n6cwzpZNP7gyFBxxAKMwE27ebfzOfT1q+3HRdjTv00M7geOqptOwCADDcERZ7QFgEeuezz6R//cuE\nwyeekJ55xoyd66qw0ITDM84wP7vMP4UM1tFh/j19PnN5883O+w46SLrkEhMcv/Sl4T1OFACAkYqw\n2APCItC9jz82ASLerfTZZ6X//jd5n6OOSg6Hhx5qTa1In44O6bnnOoPjhg2d9+2/v3TxxSY4lpWZ\nGWkBAMDQR1jsAWERMD74QPrnPzu7lT73nBmH2NVxx5lQeOaZppXpwAOtqRWDIxaTWlpMaGxslLpO\nMG23SxddZIKjwyGNGWNdnQAAoH8Iiz0gLGKkamszY9bi3UpbWkyrUpzNJk2e3Nlq+KUvmYCAkSkW\nk158sTM4rlnTeV92tnThhWacY3m5We4EAAAMHYTFHhAWMVK8955pMYx3K33xxeSF3UeNkkpLO8Ph\naaeZEAB05+WXO7uqvvhi5/Z995W+/GXT4nj22dLee1tXIwAA6B3CYg8Iixiu2tqklSs7Ww5feSX5\n/jFjzBIJ8TGHp5xiPugDu+vVV82Mqj6faaGO23tv6bzzTHA891zOLwAAMhVhsQeERQwnb74pPfCA\nuTQ1meUR4vbaywTC+JjDE08024B0am01wXH5cjN7btyee0rnnGOC4/nnS+PGWVcjAABINqzCYigU\nUlVVlSKRiFwul+rq6rrdr76+XosWLVJbW1uP+xEWMdStWWMWWF+xwkxKE7fHHiYUTp1qfpaWMgkJ\nBtdrr0n3329aHJ9+unP7mDFmbOPll5tlOViOAwAAaw2rsJibm6vFixeroqJCDodDbrdbVVVVSfv4\n/X65XC499thjys/Pl8fjUU5Ojm655Zak/QiLGGo6OqRgsDMgvvpq53177SVNm2aWNzj/fCakQeZ4\n801zvvp80lNPdY6XPfxw6dvflmbNYowsAABWGTZh0e/3q7q6Wuv/fw73QCAgj8ejYDCYtN+iRYsU\nDocTrYnhcFjl5eWJx8URFjEUbN1qxh2uWCE9+KD01lud9+XmmglFLr7YtNYwoQgy3bvvmhlVb7tN\nWrvWbNt3XxMYv/1tKT/f2voAABhp0pmJbGk5Sh+Fw2EVFxcnbpeUlCgcDqfsV1hYKL/fr/b2dknS\n0qVLu90PyFQff2y68F1xhVnP0OmUfv97ExTHj5e++U3J75f+8x/pj380a94RFDEUHHSQ9K1vmUmX\nHnpImjJF+ugj6de/loqKpIoK6ZlnrK4SAAD0haVhsb29XfYd+tZFo9GU/aZPn66pU6cqNzdXNptN\nWVlZg1Ui0GebNnUGv/33N+vW3XWXtHmzNHGiNH++mTTk9del3/7WLIY+erTVVQN9Y7OZ7tKBgJlF\n9YorzFhbn0869VTp5JOlhgZp2zarKwUAAL1laTdUr9erVatWqaGhQZIJina7XR1dVxPvRjgcVmlp\nqdra2pK20w0VVnvjDTN76YoVZg3ErjOYnnii6V568cXSF75gXY3AYHn7bel3v5Pq6szyL5IZ1/id\n70jXXMO4RgAABkI6M5Gl89YVFBQkdScNBoNJ3VLjWlpa9Oc//1m1tbWSzFjHwsLCbo+5cOHCxPWy\nsjKVlZWltWagq1jMdL9bscKExK7DbUeNMrOXXnyxdOGF0qGHWlcnYIVDDpF++lPp+uulP/1J+tWv\npHXrpGuvlRYu7BzXOGGC1ZUCADB0NTU1qampaUCObflsqHa7XY2NjXI4HHI6nZo2bZrmzp0rSfL5\nfHI6nYrFYon9Jk+erPLyci1atEiXXHJJ0rFoWcRg6Ogw3UfjLYjxST0kM87w7LNNQDzvPDNhDQCj\no0P6619NaHz8cbPNZjNLbnz/+2btUAAA0D/DZjZUybQaVlRUqK2tTZWVlVqyZEniPpvNJr/frylT\npmj58uWJJTWuv/76RKDsirCIgbJlS/IMpm+/3Xmf3S5dcIEZm+h0MjEN0BstLSY03ntv5zjGk082\nofHii1mvEQCAvhpWYTGdCItIp48/lh55xATEhx+W/n8yXknSYYeZcHjxxdKXvsQHW6Cv3nqrc1zj\n5s1m2xFHdI5rHDfO2voAABhqCIs9ICyivzZuNNP/P/CAtHKl9NlnnfcdfXTnBDXFxRKT8gLp8/HH\nyeMaJWm//aSqKrM0B+MaAQDoHcJiDwiL6IvXX0+ewbTrZLwnn2zC4UUXSZ//vHU1AiNFfFzjL38p\nxcfq22xm6Znvf9/8nwQAAD0jLPaAsIjeiMWkl1824XDFCikU6rxv1CjprLM6ZzA95BDr6gRGulDI\ntDT++c+d4xpPOcWExosuovs3AADdISz2gLCInnR0SM8+27nERbybm2QmpDnnnM4ZTHNyrKsTQKru\nxjVOmGCW3WBcIwAAyQiLPSAsYkfPP28+YD74oPTOO53b8/LMDKYXX2zWQtxrL+tqBNA7H38s/fGP\nprVx/XqzLT6u8dvfNhPjAAAw0hEWe0BYRNx770k//KHk9Zpup5J0+OGd4w9PP50ubMBQ1dFhZij+\n5S/NkjaStMceZlxjTY00ebK19QEAYCXCYg8Ii9iyRbrtNunGG6UPPjCBsLpauuoq8wGSGUyB4aW7\ncY3nn2++LDrxRGtrAwDACoTFHhAWR7a//U363vektWvN7WnTzIfIiROtrQvAwHvzTfP/va5O+uQT\ns6283ITG00+3tjYAAAYTYbEHhMWR6ZVXzOyIjzxibn/+86Z72rnn0pIIjDTvv2/+/992m/TRR2bb\nmWea0DhlCu8JAIDhj7DYA8LiyLJ5s3TTTeZD4bZtZkbEBQukb35TGjPG6uoAWKmtTbr1VnNpbzfb\nTjnFhMazzyY0AgCGL8JiDwiLI8P27Wbimh/8QNq0yXzoq6qSfvxj6YADrK4OQCZpbzdfKP3qV+b9\nQpJKS837xwUXEBoBAMNPOjORLS1H6YdQKKSSkhLZ7XZVV1f3uF99fb1yc3Nls9lUXl6uSCQyiFUi\nUzz+uFRcLM2ZYz74nXGG1NwsLV1KUASQKjtbuuEGacMGafFi6cADpWDQzIo8aZLU2GhmVwUAAKks\nD4sOh0Nz5sxRJBJRMBiU1+tN2SccDqu6ulr333+/otGoCgoK5PF4LKgWVolEzLT4U6ZIL7xg1lNr\nbJSampgmH8Cu7buvNHeueS+59Vbp0EPNe4nLJR17rPQ//9M5myoAADAsDYt+v195eXmaNWuWsrOz\nVVtbq6VLl6bsZ7fbJUk5OTkaN26cYrGY8vLyBrtcWOCjj0yrwMSJ0v33S3vvbbqbvvKKNGMGXcgA\n7J699pK+/W2ptVVassR88fTKK9Lll5v3mTvukLZutbpKAAAyg6VjFuvr6+X3+9XQ0CBJiVbDtra2\nbveNd1PNzc3Vpvjgky4Yszh8dHSYb/praqR33jHbLrtMuvlmafx4a2sDMHxs3SrddZf0s5+ZACmZ\nAFlTY9ZnHTvW2voAANhdw2bMYnt7e6LVMC4ajabsFw6HVVNTo1AopI6ODlVUVMjlcg1WmRhk//u/\nZtbCr33NBMUTTpCeftp8oCMoAkin0aOlq6+W1qwx7zFHHSW99poZF11YKP3mN9Knn1pdJQAA1hhl\n5ZPn5OR024q4I5/Pp8rKSk2aNEmSVFdXJ5ut+5y7cOHCxPWysjKVlZWlo1QMgrfekubPNx/YJOmg\ng6RbbjHdw3r45waAtBg1yvRe+MpXTJf3n/zEjGn8zndMq+PcuVJ1tRn7CABAJmlqalJTU9OAHNvS\nbqiBQEAej0fBYFCSGcNYU1OTuB23ePFitba2qq6uTpJpfbTb7erYYQo7uqEOTZ9+ahbR/tnPpE8+\nMWskXnutCY777Wd1dQBGoo4O6aGHzBjp5mazLS9P+t73zFqu2dnW1gcAQE+G1TqLdrtdjY2Ncjgc\ncjqdmjZtmubOnSvJtCg6nU61tbWppKREjY2NKikpkcfjUTQa1X333Zd0LMLi0BKLmW/w584109pL\n0sUXSz//uVRQYGlpACDJvE898ogJjc88Y7bl5JhJcr7zHWmHkRQAAFhu2IxZlEzrotvtlt1uV1FR\nUSIoSpLL5VJzc7Py8/Pl9XoT+0Wj0W6X2MDQ8fzz0llnmRlNN2yQjjtOCgRMeCQoAsgUWVnSOedI\n//yn5PdLZ54pRaPSTTeZiXDmz5fef9/qKgEAGBiWtyymEy2Lme/996Uf/lDyek03r7w88419VZUZ\nMwQAme6pp8yYxpUrze299zbjGefOlQ4+2NraAAAYVt1Q04mwmLm2bJF+9zvpxhul9nZpjz3MuJ8F\nC6TcXKurA4Dd9+yzJjQ+/LC5PXasNGuWdN110uGHW1sbAGDkIiz2gLCYmf7+dzMpxKuvmtvl5dKv\nfiUdfbS1dQFAOrS0mNB4//3m9qhR0qWXmtB4zDHW1gYAGHkIiz0gLGaWV1+Vvv996W9/M7ePPNLM\nenreeWYcEAAMJ//+t/TTn0r33We62UvS+edLHo90+unW1gYAGDkIiz0gLGaG+OQPv/2ttG2bNG6c\n9KMfSd/6llkWAwCGs0hE+sUvpNtvlz77zGw77TQTGs87j3VjAQADKyPC4h577KHNmzcrPz9fmzZt\nSksx/UVYtNb27dKyZdIPfiBt3GhaD2fNMt2zDjjA6uoAYHC995750ux3v5M2bzbbjj7adE/9ylf4\n8gwAMDAyIix6PB4tXry45wNnZWn79u19LqwvCIvWaWqSvvtdsySGJH3pS9Ktt0qTJ1taFgBY7qOP\nzAzQv/yl9OabZtv48aabflWVtO++1tYHABheMiIsxpWXl2tlfP5wixEWB9+GDdK8eZLPZ24ffri0\neLFUUcG4RADoassW6d57pUWLpJdfNttyc83M0N/6lrT//tbWBwAYHtKZifo9cqKgoECPPfZYOmrB\nEPLRR6a76VFHmaC4115mnOKaNZLLRVAEgB2NGSN97WvSiy9KDz4onXqq6Z764x9LRxxhQmMkYnWV\nAAB06nfLosfjUSAQUDgcVmVlpdxutyZNmpSu+nYLLYsDr6NDuuceM1HD22+bbZdeKt1yi3TYYdbW\nBgBDzT/+IdXWdq7VuMce5gs3j0f64hetrQ0ABsr27ebLsRdfNJe1a6XsbGnCBPPl2YQJ5rL//jRA\n9EVGdUONi0ajamhokM/nU3Nzs1wul5YsWZKOQ/caYXFgPfus9J3vmJ+SVFpqxiWeeqq1dQHAUPfS\nS6YL/z33mFmkJenss01oPPNMPiwBGJpiMendd817XDwYvvSSWWro0093/fi99uoMj11DZPz6gQcy\nw3R3MjIsSlIgENDKlStVX1+vvLw8rV+/fpePCYVCqqqqUiQSkcvlUl1dXco+ixYtUk1NTbeP7dqK\nSVgcGG+/Lc2fL/3pT+b2QQdJN98sXXEF/0EBIJ1ef91MhOP1Sp98YradeKIJjRdeaFoeASATffCB\nCYLxYBj/2dOiCYceKh13nHTssdLEidKHH5q5MDZskF57zfyMzyTdkzFjOoPjkUearv4nnpje1zUU\nZVRY9Hq9WrVqlXw+n4qLi1VZWakZM2YoPz+/V4/Pzc3V4sWLVVFRIYfDIbfbraqqqqR92tvbtbnL\n2dLa2qrq6mqtW7cu+cUQFtPqs8/Mh5af/Uz6+GPzH/L735euv17abz+rqwOA4WvTJrPkxm9+0/lB\n6/OfNxOKXX65NHastfUBwPbt0qpV0h//KD3zjAl43cnONqEwHgyPO0465hjJbt/1c7S3m+PGw2PX\nILlhQ/dB9PTTpWuvlb785ZH7BVtGhUWn0ymXyyWXy6Xs7Ozdeqzf71d1dXWiBTIQCMjj8SgYDO70\ncRUVFbrhhhtSxkYSFtMjFpNWrDD/0TZsMNsuukj6+c+lwkJLSwOAEeWTT6Q77jDvv/EPYgcfbJYq\nqq6Wxo2ztj4AI08kIv3hD9Kdd0pvvNG5fexY00K4YzA89NCB60r/0Ued4fGJJ6T6ehMwJamoSPre\n96Qrr5T23ntgnj9TZVRYbG9vl8fjUUNDg6LRqHJyclRZWana2lqN28Vfsfr6evn9fjU0NEgy4x4L\nCgrU1tbW42NCoZBqa2t13333pb4YwmK/vfCC+RDy+OPm9jHHSL/+tTR1qrV1AcBItnWr1NBgJsN5\n8UWzbdw46etfN2PJDzrI2voADG+ffWYaEm6/XQoEOrcXFkpXXy1dfLHpBjpqlHU1SqYr6x13mM+u\n8QYPu12aM8fMOD1S3iszaumMqqoqtbW1qbm5WR0dHQqHw9q4cWNKV9LutLe3y75DG3Q0Gt3pY2bP\nnq3a2tp+1YxUGzea/0iTJ5ugaLebLlCrVxMUAcBqo0dLX/2q9Pzz0t/+Zia9+eADMxP1hAmS2y3t\nMDIDAPpt9WqzDuwhh5jZ7wMBac89pcsuM58X1641w5MmTrQ+KEpmmNR3vmPeDxsapJNOktrapJ/+\n1IxtvPpqM5YSvdfvlkWbzabNmzcndUGNRqOy2+3q6OjY6WPj4x27tizu7HF+v1+LFy/Wo48+2u39\nWVlZWrBgQeJ2WVmZysrKdvMVjSxbt0q//720cKEUjZq+3V//urndm77kAABrPPusaWl84AEzfCAr\nS5o+3UyGU1pqdXUAhqpo1MzMfPvtUijUub24WLrmGhMac3Ksq293xGLS009Lv/hF53ulJE2bZoZb\nTZ06PGabbmpqUlNTU+L2jTfemDndUAsLC+X1ejVlypTEtkAgILfbvcvZUHcco+j3+1VTU9PjmEW3\n261p06bpkksu6fZ+uqHunkceMX2516wxt51O02x/9NHW1gUA6L01a8yyG3fdZb4AlKQpU0yXq/PP\nN62SALAzHR1mzN/tt0vLl5tup5KUm2t6NVxzjWTRMupps26d+Zz7hz90Lttx/PFm8savfMVM5Dhc\nZNSYRZ/PJ5fLJbfbrYKCArW2tqq+vl6NjY2aPn36Lh9vt9vV2Ngoh8Mhp9OpadOmae7cuYljO53O\nRKul3W7Xhg0behwLSVjsnbVrzX+Mv/7V3C4qMrOenn/+8Ph2BQBGorfeMh+E6urMpA+SmQxn1ixz\nOfxwa+sDkHnefdcExDvukMLhzu0OhwmIF19sup0OJ5s2mffJ224zr18y75Xf+pbp0j8cetZlVFiU\npHA4LJ/Pp7a2NuXl5Wn69OkqKCjo1WNbWlpUUVGhtrY2VVZWasmSJYn7bDab/H6/pkyZolAoJKfT\nqU09LdYiwuKuRKPSj39spmLfts306/7Rj8x/DqZhB4DhIRo1sxTW1Umvvmq22WzSOeeYGVTPOWfk\nTicPwHjrLWnRIjN7aLwVcfx46aqrzKWXK+ANaf/9r+lu+8tfdo5jzM4269xWVFhbW39lXFjMFITF\n7m3fbr4xuuEG6f33Tevh1Vebwb4HHmh1dQCAgRCLSU8+aULj8uWdXVQPO8y0NF5zjZnSHsDI8frr\nZqzzsmXSli1m24UXmi+SnM6R+UVSLGbWi7zlls7VAKqqTE+NobrkRsbMhrp8+XJVVlYmbnu9XhUV\nFWnZsmX9Lgzp8eSTZqKD2bNNUDz9dCkYNG8SBEUAGL6yssysqffe29mKUFho1kVbsMDMDHjxxdKj\nj5rxSgCGrw0bTBfLoiIzseHWrab17PnnzcQvZ589MoOiZN4ry8vNTK+/+53pbef1ms/PL7xgdXXW\n63NY9Hq9qqqq0tQu6yq4XC5dd911uu666wiMFtuwQXK5zAeF1avNN8l//rMJj8XFVlcHABhM++8v\nzZtnxqyvWmVmTc3K6vyQWFRkvlX/z3+srhRAOoXDpifBkUeaLqfbtpnJXF580SwtcfzxVleYObKy\nzIoA//qXWQrklVekE080AXIkd1zsczfUoqIiLV26VA6HI+U+n8+n+fPna90gL/pEN1RzMi9caL5B\n/uwzaa+9zDTq8+YN3aZ0AED6vfOOGaLg9UqvvWa2jR4tXXSR6ZJ21llMegYMVevWmeFG//M/ZjiS\nzWaWvLjhBumoo6yuLvN98on03e+a90fJdNW9/XYpL8/aunorI8Ys2mw2RaPRbmcm7e06i+lGWDQu\nu0y6+27zzVFtrWlVBACgO9u3SytXmrGNDz/c2SX1yCNNt7WvfU363OesrRFA76xZY0LiPfeY/8t7\n7CFdfrl0/fXm/zR2T2OjGb/Y3m4mALr7bumMM6yuatcyYsxifn5+j+shNjc393o2VKRfba301FPm\njYKgCADYmT32MDOkPvigaWFcuNBMfLNunTR3rrn+1a+avyt8Hwtkpn//2zQSHH20aU202cwkVq++\natYVJCj2TUWFGc51yinSm2+aHhcLF5ruvCNFn1sW6+vrtWjRIvn9fk2YMCGxPRKJyOl0yu12a968\neemqs1doWQQAoP+2bZP+9jfT2vjII50hceJE09p4xRVmsW4A1nrhBbMsms9nbo8ebZa+mD9f6vLx\nHP20bZsJiT/7mXk//NKXTCjP1PVrM6IbqiQtWrRINTU1Ki4ult1uV1tbm0KhkGprawc9KEqERQAA\n0m3DBjNu5/bbOyfA2XNPqbLSjG086STGNgKD7cUXTXi5/35ze8wYM5GNx5O5AWY4eOwxM9zrnXfM\nF2a3325mlc40GRMWJTM+MRgMKhwOq7CwUCUlJcrJyUlLcbuLsAgAwMDYulX6y19Ma6Pf37n9+ONN\naPzqV6VupjEAkEYvvSTdeGNnS+LYsWZ5NI+HdVMHy8aNpvX24YfN7TlzpF/8wkwqmSkyKixmEsIi\nAAADb/16Mw3/H/5gPjhJ0j77mDFT1dVSSYm19QHDzcsvm5DY2Gi6QcZDYk2NdMghVlc38sRi0m9/\na1Yb2LJFOvZYs0TdMcdYXZlBWOwBYREAgMHz3/9KK1aY1sYnnujcXlJixjZ+5SvSvvtaVx8w1K1Z\nI910kwkisZjpblpVZcYk0pJovZYWaeZMs4btnntKv/61CfFWd83PiNlQ0yUUCqmkpER2u13V1dU9\n7heNRuV0OmWz2VRaWqpIJDKIVQIAgB2NHWs+KDU1mZaP737XjONpbjYfmA44wIxtfOABEywB9M7a\ntWZs3DHHSPfeK40aZVrt16+XbruNoJgpJk8273dXX23WN6+uNutZDqf3O8vDosPh0Jw5cxSJRBQM\nBuWNr365g5KSEk2bNk3RaFSlpaVyu92DXCkAAOjJxInSr34lvfWW9Kc/SaefLn36qdTQYCaAOPBA\n84Fq1ao1y8BhAAAgAElEQVSRNe08sDvWrzdrm06caNb0s9nMFy/r1klLlrAkWibad18z0c0990j7\n7Wdagc85x6zNOBxY2g3V7/erurpa69evlyQFAgF5PJ6U9RtDoZBcLldiP0nasGFD0pIdEt1QAQDI\nJK+9Zj443Xuv9PzzndsPOEByuUw31VNOsb7LFmC11lbpJz+R7rpL2r7dtCReeaV0ww0sgTGUPP+8\ndPbZ0rvvSpMmSX//u3TQQYNfx7DphhoOh1VcXJy4XVJSonA4nLJfMBhUcXGxqqurVVRUJJfLpVwW\neAIAIKMdcYSZpXH1atNN9Yc/lIqKpPfeM13pTjtNys83k3Q8/3zneo7ASBGJSNdcI33hC9Kdd5pt\nV19tuqF6vQTFoeaLX5Seflo68kjzvnfaaaa1eCizNCy2t7fLbrcnbYtGoyn7RaNR+Xw+lZaWatWq\nVbLb7aqoqBisMgEAQD9NnGgm6li7VgoGpe9/34y7eu01qbbWfAt/7LGmdWWof7gCdmXtWjNRzec/\nL91xh9l25ZXSq6+aLo35+ZaWh37Iz5f++U+ptFQKh01gDIWsrqrvLO2G6vV6tWrVKjU0NEgyodBu\nt6ujoyNlP5/Pp0cffVSSCZm5ubkp+2VlZWnBggWJ22VlZSorKxvYFwEAAPqko0P6xz9MN9XGRmnT\nps77TjjBdFO95BLTQgkMdbGY9OSTZk2+hx82t202M5FNvNUdw8dHH0nTp0srV5pxjStWSFOnDsxz\nNTU1qampKXH7xhtvHB5LZ+w4RtHv96umpiZlzGIgEFBtba1WrlyZ2Gaz2boNi4xZBABg6Nm6VfL7\nTXBcscJ80IqbNEm68EJzmTSJMY4YWrZulXw+ExKbm822sWOlK66Q5s41rYsYnrZska66ykx+M3q0\nGZNaWTnwzzus1lm02+1qbGyUw+GQ0+nUtGnTNHfuXEmSz+eT0+lUdna27Ha7vF6vHA6HPB6PNmzY\nkGhpjCMsAgAw9H36qfTXv0r33Sc98khycDz8cOmCC0xwPPNM8wEMyETt7Wbc4W9+I73xhtn2uc9J\n3/iG9PWvm4meMPx1dEjXXmvWYMzKkm69VfrWtwb2OYdVWGxpaVFFRYXa2tpUWVmpJUuWJO6z2Wzy\n+/2aMmWKWlpaVFVVpVAoJKfTqcbGRo0bNy7pWIRFAACGl88+kx5/XHrwQekvf5Heeafzvuxs6dxz\nTXA85xxph48FgCU2bDCBYNmyzi86jjrKjNO97DJpr70sLQ8WiMWkRYvMZF6SdP31Znz2QPWSGFZh\nMZ0IiwAADF8dHWZynAcflB54wMywGjd6tHTWWSY4XnCBNH68dXViZPrXv0xXU5/PnKuSOSevvdZ8\nmWGzfHVzWO3OO6VZs8zyKNdcI9XVmWVS0o2w2APCIgAAI8f69SY4PvigmX2w61QGJSWd4xyPO45x\njhgY27ebFu9f/tJM1iSZD/+VlaYlscsKcYAkM7mRy2W6219wgRmnvffe6X0OwmIPCIsAAIxM779v\nxjk++KD06KPmg1jcQQeZWQidTvPzkEOsqxPDw8cfS3/4gxmH1tpqtmVnS263GY9GyzZ25plnpPPO\nkzZvNktrPPSQlM4l5AmLPSAsAgCATz81M6s++KAJkO++m3z/0Ueb4Oh0mkly9t3XmjoxtGzbJj32\nmJnZ8v77pQ8/NNsnTJC++13p6qul/faztEQMIS+/LE2bJr35pnTMMWYyr3R9yUBY7AFhEQAAdBWL\nmQ9lq1aZyxNPmFahuNGjpVNO6Wx1LC0dmDFEGJpiMem556S77zaz8/7nP533nXKK6Wp60UWcM+ib\nN96Qzj7bvEcddpjpFTFxYv+PS1jsAWERAADszJYt0v/+b2d4fO655LGO2dnSlCmd4bGoiPGOI9Ha\ntSYg3nOPGRsbV1QkffWr0qWXsj4i0qOtTfryl6Wnn5bsdtMb4uST+3dMwmIPCIsAAGB3bN5slubw\n+0147BoMJOmII0x4PO0005J01FHMajlcvf22aT28+26publz+0EHSTNnmoBYWsqXB0i/Tz4xkyI9\n/LBZWuX++02LY18RFntAWAQAAP2xYYMJjX6/FAhImzYl35+TY0LjqaeanyeeyDi1oay9XVq+3LQg\nPvaY6XYqmX/T6dNNQJwyRdpjD2vrxPC3bZs0e7aZOGn0aKmx0czm3BeExR4QFgEAQLp0dEgtLdJT\nT5kuYk8/Lb31VvI+Npt0/PGd4fHUU6X8fFqfMtknn5jJRO6+23T5++9/zfYxY6RzzzXdTM87z7Tw\nAIMpFpO+9z3p1lvNONi77zbLbOwuwmIPCIsAAGAgvfFGZ3B85hkTJrdtS97nwAM7g+Opp5o1H/fc\n05p6YWYt/ec/pSefNBMcPfectHWruS8rSyorMy2I06end/kCoC9iMWn+fKm21nwZ9cc/SpddtnvH\nICz2gLAIAAAG0yefSMFgZ3h8+mlp48bkfUaPlo49VjruuM7L8cebsXC0QKbf5s2mNTgeDkOh5EmM\nsrJMgK+sNGMRWRMRmSYWk266SVq40Jyv9fXSrFm9f/ywCouhUEhVVVWKRCJyuVyqq6vrdr+SkhK1\ntLQkbldUVOi+++5L2oewCAAArBSLmUlyuobHl17qHAvXVV5ecng87jiz3hrrPu6e994z4fCJJ0xA\nfOGF5N/3HnuYiWnOOMOsq3naaWbsKZDpbrnFtDJK0m23Sd/4Ru8eN6zCYm5urhYvXqyKigo5HA65\n3W5VVVWl7Ge32/XYY48p5///d9vtdo0bNy5pH8IiAADINB98YALjCy9IL77YeYlGu9+/oKAzPMYv\nRUWs5SeZEPjWW8nh8JVXkvcZM0Y66aTOcHjKKQRwDF2//rUZxyhJP/+5dO21u37MsAmLfr9f1dXV\nWv//81QHAgF5PB4Fg8GUfW02mzq69iHoBmERAAAMBbGY9OabyeHxhRekNWs6x9N1NXasWcbj8MPN\nZcfr48ebfYaDbduk11+XwmGptbXzEr/94YfJ+++1lwmEZ55pAuJJJzE5DYaXJUukr3/dXP/JT6Qb\nbtj5/unMRJZ+RxUOh1VcXJy4XVJSonA43O1+OTk5Ki8vTzzG6/UqOzt7MMsFAABIi6ws6bDDzOXc\nczu3b9liFoSPh8d4kHz9dbN97dqej3nQQTsPlLm5mTNG8qOPksNg1+uvvZY6aVBX2dnJ4bC01LQm\nAsPVnDlmkqxrrpF+8APps8/MmMbB+P9saVhsb2+X3W5P2hbtpk9Ge3u7CgsLVVNTo/z8fHk8HlVU\nVGjlypWDVSoAAMCAGzPGTIZz7LHSV77Suf3DD01gjF9eey35+ltvSe++ay7PPtv9sceONesH7ref\n6ZYZv+zObZvNTOrz6ad9+/nxx2ZG2f/8Z+e/h0MPNd1xCwuTLwUFZqxnpoReYLBcdZX5P3zFFaZ1\n8bPPpEWLBv7/gqXdUL1er1atWqWGhgZJJija7fZddjdtb29Xbm5uyn50QwUAACPRtm3S22/3HCZf\ne8205mWKMWPMepQ7BsHCQrOdbqRA95YvN7P4btsmffObZk1Gmy15n2HTDbWgoCCp22kwGEzqlhrX\n0tKiWCyWuG9n3U8XLlyYuF5WVqaysrK01QsAAJCJRo3q7HLanVjMtOx99FHq5cMPe78tFjNBbu+9\n+/Zzr71Mq+Ghh6Z+wAWwa9OnS/ffL82YYWZI/e9/pZkzm/Tkk00D8nyWz4Zqt9vV2Ngoh8Mhp9Op\nadOmae7cuZIkn88np9Op1tZWTZ06VYFAINENNRqNsnQGAAAAgBHn0Ueliy4y3VEvv1y6447OGZPT\nmYks/04nEAjI7XbLbrerqKgoERQlyeVyqbm5WcXFxaqtrVVFRYXsdrui0ai8Xq+FVQMAAACANaZN\nk/7+d2mffaS77pK++tXuZ1LuL8tbFtOJlkUAAAAAI8U//ymdc47pJn7hhdJ990l77jlM1llMN8Ii\nAAAAgJHkueek8nIpGjXB8e9/Jyx2i7AIAAAAYKRZvVpyOqWNGyVpGI1ZBAAAAAD03aRJUlOTdOCB\n6T0uLYsAAAAAMAysXSt94Qt0Q+0WYREAAADASDasls4AAAAAAGQewiIAAAAAIAVhEQAAAACQgrAI\nAAAAAEhBWAQAAAAApCAsAgAAAABSWB4WQ6GQSkpKZLfbVV1d3av97Xb7IFQGAAAAACOX5WHR4XBo\nzpw5ikQiCgaD8nq9O92/qqpK7e3tg1QdkD5NTU1WlwB0i3MTmYzzE5mKcxMjgaVh0e/3Ky8vT7Nm\nzVJ2drZqa2u1dOnSHvdftGiRCgsL07bIJDCY+KOCTMW5iUzG+YlMxbmJkcDSsBgOh1VcXJy4XVJS\nonA43OO+9fX1qq2tHazyLGXFG9BAPGd/j9nXx+/O43q77672Gyl/NKx6ncPl/LTi3Nzd5x3KeO/s\n++N39zHpOu84N4fWc6bjmEPlvZNzc+g9b6a/dw7Fv+uWhsX29vaU8YfRaLTbfV0ul7xer3Jzcwej\nNMvxR6V/j+ePysDhj0r/Hj/c/6hYjffOvj+esDiwODf7dwz+rg8c/q737/HD/e96VszCPp1er1er\nVq1SQ0ODJBMU7Xa7Ojo6kvarr69XKBRSXV2dNm/erLy8vJR9JKmoqEitra2DUjsAAAAAZJrCwkKt\nX78+LccalZaj9FFBQUFSt9NgMJjULTXO7/fL5/MlQqUk5eXlqbm5WRMmTEhsS9cvBQAAAABGOktb\nFiXJbrersbFRDodDTqdT06ZN09y5cyVJPp9PTqfTFJqVJUlqbW1VSUmJotGoxo0bZ1ndAAAAADCc\nWb50RiAQkNvtlt1uV1FRUSIoSmacYnNzs7KzszVu3DiNGzdO+fn5ysrK6lNQrKioUHl5uUpLS9XS\n0pLOlwH0m9vtVnl5uYqKirR8+XKrywGS1NfXa/HixVaXAcjj8ST+lkciEavLAVLwfolM1NfPmZaH\nxcmTJ2v9+vVqa2vTkiVLku7r6OjQlClTkrbl5ORo+/btu/089fX1Kioq0sqVK+X1euXxePpVN5BO\nfr9fNptNK1euVHNzs6qqqqwuCUhwOp2qrq5O9PAArBIKhdTS0pL4W+52u60uCUjC+yUyUX8+Z1oe\nFnvD6XSmfHsYCoVUUlIiu92u6urqXh1j9uzZkqRYLDZiZlXFwEvH+VlYWJj4AiM7OztllmCgL9Jx\nbkrSqlWrtHTpUta4xYDYnfPU7/ervLxckvmyORgMDmqtGHl2932U90sMlt05N/vzOTOjw6Lf75fb\n7VYgEEj5hsbhcGjOnDmKRCIKBoPyer07PVZ+fr7y8/PldrtVWlqq+fPnD2TpGAHSfX5OmDBB4XBY\npaWlqqmpGcjSMcyl89wEBkpfztO2tjbl5+dbUS5GGN5Hkan6cm7253OmpbOh7kpLS0u3zfh+v195\neXmaNWuWJKm2tlYej0dVVVVyuVwp+zudzkRz69KlS1VTUyOn08nsqeiXdJ2f5eXlmjVrlhYtWqTG\nxkYtW7ZMkyZNGvD6MXwNxHsnkG59OU/z8vKSZlHvaW1moL/6cn4Cg6Gv52ZfP2dmdFicN2+eJCUt\nmSFJ4XA4aYmNkpKSxB+PHfeNq6mpUWFhoaqqqpSbm6u2trYBqhojRTrPT5/PJ7/fr+eee26AqsVI\nks5zExgofTlPp06dKo/Ho3nz5ikUCiVmTAfSrS/nJzAY+nJu9udzZkaHxZ60t7en9LXd1beL8+fP\nV0VFhZYuXSrJ/NKAgdCX89Pv9ysYDKqoqEiSWSpm3bp1A1YjRqa+nJtdMWEDBsPOztPJkyeruLhY\n5eXlysrKSvxNBwZLb99Heb/EYNvZudmfz5lDMizm5OTsdstgdna2Vq5cOUAVAZ36cn7W1dWprq5u\ngCoCjL6cm3F0scJg2dV5essttwxiNUCy3ryP8n4JK+zs3OzP58yMnuCmJwUFBUlN/sFgMKnZFbAS\n5ycyFecmhgLOU2Qyzk9kqoE6N4dkWHQ4HAqHwwoEApLMAM6ZM2daXBVgcH4iU3FuYijgPEUm4/xE\nphqoc3NIhMXu+n0HAgG53W7Z7XYVFRVp7ty5FlQGcH4ic3FuYijgPEUm4/xEphqsczMrxqqhAAAA\nAIAdDImWRQAAAADA4CIsAgAAAABSEBYBAAAAACkIiwAAAACAFIRFAAAAAEAKwiIAYMiw2Wwpl7y8\nPKvLGjCLFi3S6tWrJZnX/sEHH6Tc73K5dnqM5cuXy+v1DliNAIDhi7AIABhSQqGQotFo4rJp0yar\nSxoQ0WhUDQ0NmjRpUo/7dLfO1o6mT5+u2tradJYGABghCIsAgCElJydH48aNS1wkKRwOy+l0yuPx\nqLS0VJLk9/tVWFgom82m8vJytbe3J45RX1+v3Nxc5eXlqb6+Xna7XZIJovHHx49RXl6edHvHY4bD\nYZWUlGjx4sWJhZBbWloSj/H5fCosLJTdbld1dbUkye12a/HixYl9PB6Pampqkl5nfX19Yv/e8Pl8\nKa2ujz32mCRpxowZWr58ea+PBQCARFgEAAwxsVis2+2BQEAffPCBfD6fotGoXC6Xli1bpmg0qoKC\nAlVVVUkygbCmpkaPP/64wuGwli5d2qsWup6OmZWVpZaWFmVlZamtrU1Tp06Vx+ORZELs7NmztXz5\ncjU3N8vv92v58uUqLy/XqlWrEsdevny5Zs6cmfR8DQ0Nmjp16k5fe9fbM2bMUEdHhzo6OtTQ0KDC\nwkJNmTJFkuR0OnXfffft8jUCANDVKKsLAABgdxQWFibd9vv9mjBhgiRpyZIlkkyr3NSpU3XWWWdJ\nkurq6hKth/fdd5/cbneie+eiRYtUUVGxy+eNh7fujpmTk6O5c+dKMq2G8WDq8/mSnquxsVFZWVma\nNGlS4jnD4bDa2tpSupuGQqHE64rLzc1NqWvH2qPRqGbPnq1QKJTYlp+fL7/fv8vXCABAV4RFAMCQ\n4vf7VVBQkLg9YcIEhcPhpG2tra3y+XyJMCd1ju+LRCJJXUvz8/N79bw7O2bXbV1b++JdVOMmT56c\nuD516lQFAgE1NzfL7XYnPVc0GlVOTk5KDaFQKGl7XV2dwuFw0j4Oh0OLFi1KCpoFBQWKRqO9ep0A\nAMQRFgEAQ0pBQUFKi9uOioqKNGPGDDU0NCS2xccR2u12rV+/PrF9x7DVVdeA1dMxe+oWK5kWx9bW\n1sTtUCikSCSi6dOny+l0qqGhQc3NzVq2bNlOX09cQUFBYpxm/LV0rd/j8ehzn/ucZs2a1avjAQCw\nM4xZBAAMOy6XS36/X4FAQNFoVG63OzGOsKKiQvX19WppaVE0GpXH40m0EObk5CQCXTQa1c0335w4\nZkVFRcoxa2pqdjre0e12J54rHA6roqJCmzdvlqRE8IxEIildUHNycna7JdDv98vr9SaF2bhwONxt\nSyUAADtDWAQADBk7C2Zd78vOzlZjY6Pcbrfsdrs2bNggn88nyXTTnD9/vhwOhwoLCzVz5sxE62BB\nQYFmz56twsJCnXDCCbr++uuTguSOx2xsbFQsFkupK347Pz9ftbW1cjgcKioqUnl5eaLVLz8/X3l5\neT2uk1hcXKxIJLLT156VlZXYXl9fr/b2duXm5iZmQ423WMZniwUAYHdkxXbWfwYAgGEuPrNpW1vb\noD93aWmpli1b1u1aiosXL1ZOTk5ispz+8Hg8Oumkk3TJJZf0+1gAgJGDsAgAGNGsCourVq3SzJkz\ntWnTpm7vb29vl8PhUDAY7PdzFRUVJY3TBACgN+iGCgAY8XqzzmI6+Xw+VVZWqrGxscd9srOzVVlZ\nmZiYp6+WL1+umpqafh0DADAy0bIIAAAAAEhByyIAAAAAIAVhEQAAAACQgrAIAAAAAEhBWAQAAAAA\npCAsAgAAAABSEBYBAAAAACkIiwAAAACAFIRFAAAAAEAKwiIAAAAAIAVhEQAAAACQgrAIAAAAAEhB\nWAQAAAAApCAsAgAAAABSEBYBAAAAACkIiwAAAACAFIRFAAAAAEAKwiIAAAAAIAVhEQAAAACQgrAI\nAAAAAEhBWAQAAAAApCAsAgAAAABSEBYBAAAAACkIiwAAAACAFBkRFp1OpyKRSI/3h0IhlZSUyG63\nq7q6ehArAwAAAICRydKw6Pf75Xa7FQgElJWV1eN+DodDc+bMUSQSUTAYlNfrHcQqAQAAAGDksTQs\ntrS07DQkSiZQ5uXladasWcrOzlZtba2WLl06SBUCAAAAwMg0ysonnzdvniSpoaGhx33C4bCKi4sT\nt0tKShQOhwe8NgAAAAAYyTJizOLOtLe3y263J22LRqMWVQMAAAAAI4OlLYu9kZOTo7a2tl7tW1RU\npNbW1gGuCAAAAAAyU2FhodavX5+WY2V8y2JBQUFSt9NgMJjULbWr1tZWxWIxLoN4WbBggeU1jLQL\nv3N+5yPhwu+c3/lIuPA753c+Ei78ztN3ufXWmKSYzjln5/uls/EsY8Oiz+dTe3u7HA6HwuGwAoGA\nJKm2tlYzZ860uDoAAAAAGDx/+IP5edVVg/ecGREWu5sR1eVyqbm5WZIUCATkdrtlt9tVVFSkuXPn\nDnaJAAAAAGCJ1avNxW6XLrhg8J43I8Ysbtq0KWVbR0dH4vrkyZPT1u8W6VVWVmZ1CSMOv/PBx+98\n8PE7H3z8zgcfv/PBx+988PE7T494q+Kll0pjxw7e82bFYrHY4D3dwMrKytIwejkAAAAARrgtW6RD\nDpE2bZKam6Uepm9JSGcmyohuqAAAAACAVA89ZILi8cdLkycP7nMTFgEAAAAgQ915p/l51VVSN1O9\nDCi6oQIAAABABnr3XWn8eBMS335b2n//XT+GbqgAAAAAMMzddZe0fbt0/vm9C4rpRlgEAAAAgAwT\ni1mztmJXdEMFAAAAgAzz7LPSySdLBxwgvfmmNHp07x5HN1QAAAAAGMbirYqXX977oJhutCwCAAAA\nQAb59FPp4IOl9nbppZekY47p/WNpWQQAAACAYeqBB0xQPOGE3QuK6UZYBAAAAIAMEu+CeuWVlpZB\nN1QAAAAAyBSvvy5NmCCNGSO9846Um7t7j6cbKgAAAAAMQ3/6k1k246KLdj8ophthEQAAAAAyQCwm\n3XmnuW7V2opdWR4WQ6GQSkpKZLfbVV1d3eN+9fX1ys3Nlc1mU3l5uSKRyCBWCQAAAAAD66mnpNZW\nafx4aepUq6vJgLDocDg0Z84cRSIRBYNBeb3elH3C4bCqq6t1//33KxqNqqCgQB6Px4JqAQAAAGBg\nxCe2ueIKaY89rK1Fsjgs+v1+5eXladasWcrOzlZtba2WLl2asp/dbpck5eTkaNy4cYrFYsrLyxvs\ncgEAAABgQHz0kdTYaK5bPQtq3CgrnzwcDqu4uDhxu6SkROFwOGW/nJwc1dXVqaSkRJKUm5urTZs2\nDVqdAAAAADCQfD7p44+l006TjjzS6moMS1sW29vbE62GcdFoNGW/cDismpoahUIhdXR0qKKiQi6X\na7DKBAAAAIABFe+CmgkT28RZ2rKYk5Ojtra2Xe7n8/lUWVmpSZMmSZLq6upks3WfcxcuXJi4XlZW\nprKysnSUCgAAAAADorVVevJJae+9pd1tE2tqalJTU9OA1GVpWCwoKEjqdhoMBpO6pcbtuLBkd62P\ncV3DIgAAAABkuvhyGTNmSPvtt3uP3bGB7MYbb0xbXZZ2Q3U4HAqHwwoEApKk2tpazZw5M3G/z+dT\ne3u7ZsyYoYaGBgUCAUWjUXk8HlVUVFhVNgAAAACkxfbt0h//aK5nUhdUKQOWzggEAnK73bLb7Soq\nKtLcuXMT97lcLjU3Nys/P19erzexXzQa7XaJDQAAAAAYSh57THrjDSk/XzrjDKurSZYV69q/c4jb\nsbsqAAAAAGSySy+V7r1XuvFG6Uc/6v/x0pmJCIsAAAAAYIFoVDr4YOmzz6RIRJowof/HTGcmsrwb\nKgAAAACMRPfdZ4LilCnpCYrpRlgEAAAAAAtk4tqKXdENFQAAAAAG2SuvSEcfLY0bJ73zjlljMR3o\nhgoAAAAAQ1i8VbGyMn1BMd1oWQQAAACAQbRtm3TYYdK770pPPy2dckr6jk3LIgAAAAAMUY88YoLi\nF74gnXyy1dX0jLAIAAAAAIMo3gX1yiulrCxLS9kpuqECAAAAwCDZuFE65BBp+3bpjTfM9XSiGyoA\nAAAADEH33CNt3SpNm5b+oJhuhEUAAAAAGCSZvrZiV3RDBQAAAIBBsHq1NHmyZLdLb78tjR2b/ueg\nGyoAAAAADDHxVsVLLx2YoJhutCwCAAAAwADbssWMUdy0SWpuloqLB+Z5hlXLYigUUklJiex2u6qr\nq3vcLxqNyul0ymazqbS0VJFIZBCrBAAAAIC+e+ghExSPO850RR0KLA+LDodDc+bMUSQSUTAYlNfr\n7Xa/kpISTZs2TdFoVKWlpXK73YNcKQAAAAD0zZ13mp9XXZXZayt2ZWk3VL/fr+rqaq1fv16SFAgE\n5PF4FAwGk/YLhUJyuVyJ/SRpw4YNmjBhQtJ+dEMFAAAAkGnefVcaP96ExLfflvbff+CeKyO7oX7w\nwQcpl10Jh8Mq7tJZt6SkROFwOGW/YDCo4uJiVVdXq6ioSC6XS7m5uekqHQAAAAAGzF13Sdu3S+ef\nP7BBMd36HRYXL14sm82mnJycpEtvwlx7e7vsdnvStmg0mrJfNBqVz+dTaWmpVq1aJbvdroqKiv6W\nDgAAAAADKhYbWmsrdjWqvwfweDxatWqVHA7Hbj82JydHbW1tu9wvNzdXTqdTs2bNkiTV1tbSsggA\nAAAg4/3rX9Irr0gHHCCdc47V1eyefofF/Px8nXDCCX16bEFBQVK303h30+7269rvNjs7u8djLly4\nMHG9rKxMZWVlfaoNAAAAAPrr9783Py+/XBo9Ov3Hb2pqUlNTU/oPrDRMcBMKhTR16lS53e6kLqVZ\nWVmaO3fuLh9vt9vV2Ngoh8Mhp9OpadOmJR7n8/nkdDqVnZ0tu90ur9crh8Mhj8ejDRs26NFHH01+\nMXWsDD4AACAASURBVExwAwAAACBDrFsnHXWUZLNJr74qFRQM/HNm1AQ3NTU1ys3N1ebNm7Vp06bE\nZePGjb16fCAQSATNoqKipIDpcrnU3Nyc2O/mm2+W3W7Xhg0b1NjY2N/SAQAAAGDA/OQnUkeH9LWv\nDU5QTLd+tyza7XZFIpGddg0dLLQsAgAAAMgEa9dKEyeaVsW1a6X8/MF53oxqWXS5XAoEAumoBQAA\nAACGhR//2LQqXnnl4AXFdOt3y2JJSYlaWlqUk5OTMmZx3bp1/S5wd9CyCAAAAMBqr74qHX20aVVc\nt06aMGHwnjudmajfs6H6fD4CGgAAAAD8v5tuMq2Ks2YNblBMt363LFZXV8vlcmnKlCnpqqnPaFkE\nAAAAYKVXXpGOOUYaNUpav146/PDBff6MGrOYnZ2t6667Tna7XXPmzNHq1avTURcAAAAADDk33STF\nYtI11wx+UEy3frcsxkWjUTU0NMjn86m5uVkul0tLlixJx6F7jZZFAAAAAFb597+l446TRo82rYqH\nHTb4NWRUy2JcTk6OCgsLNXnyZHV0dGjVqlXpOjQAAAAAZLwf/9i0Ks6aZU1QTLd+h0Wv1yuXyyWb\nzSaPx6PPfe5zCoVCWr9+fTrqAwAAAICM9+9/Sw0N0pgx0vz5VleTHv2eDbWhoUEul0ter1fZ2dnp\nqAkAAAAAhpQbbzStilVV0vjxVleTHv1uWYyPUczPz5fNZktMdPPBBx+koz4AAAAAyGgvvig1Nkpj\nxw6fVkUpDWGxqqpKbW1tam5uVkdHh8LhsDZu3Kiqqqp01AcAAAAAGe3GG83P2bOlQw+1tpZ06vds\nqDabTZs3b07qghqNRmW329XR0dHvAncHs6ECAAAAGEzPPy9NmiTtuafU2iodcoi19WTUbKj5+flq\nbm5O2tbc3KyCgoL+HhoAAAAAMlq8VdHttj4oplu/J7ipra3V1KlT5Xa7VVBQoNbWVtXX16uxsTEd\n9QEAAABARlq9WlqxwrQqejxWV5N+/W5ZnDFjhtavX6/8/Hxt2rRJhYWFWr9+vaZPn56O+gAAAAAg\nI8VbFaurpYMPtraWgdDvMYv9FQqFVFVVpUgkIpfLpbq6ul3uP3XqVLW1taXcx5hFAAAAAIOhpUUq\nLpb22ksKh6WDDrK6IiNjxiwuX75clZWVidter1dFRUVatmxZr4/hcDg0Z84cRSIRBYNBeb3ene5f\nVVWl9vb2PtcMAAAAAP21cKH5OWdO5gTFdOtzWPR6vaqqqtLUqVMT21wul6677jpdd911vQqMfr9f\neXl5mjVrlrKzs1VbW6ulS5f2uP+iRYtUWFhI6yEAAAAAyzQ3S3/5i2lVvO46q6sZOH0Oi7W1tWps\nbExaTzE7O1uzZ89WfX29amtrd3mMcDis4uLixO2SkhKFw+Ee9+3tcQEAAABgoMRbFb/xDenAAy0t\nZUD1OSyGw2GdcMIJ3d43depUtba27vIY7e3tstvtSdui0Wi3+7pcLnm9XuXm5u5+sQAAAACQBs89\nJz38sLT33tK8eVZXM7D6vHRGfn6+gsGgpkyZknJfb9dZzMnJ6Xaimh3V19ertLRUZ511ljZv3rzT\nfRfGY76ksrIylZWV7fL4AAAAANAb8bjxzW9KBxxgaSmSpKamJjU1NQ3Isfs8G2p9fb0WLVokv9+v\nCRMmJLZHIhE5nU653W7N20XUDgQC8ng8CgaDkswYxpqamsTtOJfLJZ/Pp5ycHEmm9TE3N1fNzc1J\nz81sqAAAAAD+j717j27rLvAE/pXyJEmth9P3g1g20BcktpI+GGhNZCnAvJY4kgrMMMtMYjs7O+wA\nae207JIygCNnYQZmdhzLA8vOmdMSWw6Hxw5LLAVThmlpZKktDC2NfRVa2qaPyFd5v+y7f/y4eliS\nLcVX99ry93PO71zdq2vp519vHX31e9xKefpp4O67gdWrgUQCuPpqo2uUT8tMNKdbZ/T09KCrqwtN\nTU2w2+1IJpOIxWIIBAKzBkWV3W7H4OAgXC4X3G43tmzZgl27dgEAQqEQ3G63qKjJBAAYHx+H0+mE\nLMuoqanJ/WUYFomIiIiIqEI+/GHghz8EOjuBvXuNrk1h8yYsAqKXLxqNQpIk1NfXw+l0pnsASxGP\nx+H1epFMJuH3+9Hb25t+zmw2IxwO5wx1lWUZtbW1mJyczP9lGBaJiIiIiKgCnnoKuPdeYM0a0au4\ndq3RNSpsXoXF+YRhkYiIiIiIKuGDHwR+9CNg927gy182ujbFMSwWwbBIRERERERae/JJ4L3vBa66\nSvQq1tYaXaPitMxEV3zrDCIiIiIiosXg858X2099an4HRa2xZ5GIiIiIiKiIn/0MeN/7RK/isWPA\ntNvEzzvsWSQiIiIiItKB2qv43/7b/A+KWmPPIhERERERUQE//Slw331ATY3oVbTZjK7R7NizSERE\nREREVGF79ojtX//1wgiKWmPPIhERERER0TRPPAHcfz9gsYhexTJuJW8o9iwSERERERFVkDpX8dOf\nXjhBUWvsWSQiIiIiIsry7W8DH/2oCInHjonexYWCPYtEREREREQV8PWvAx/7mHj8yCMLKyhqjWGR\niIiIiIgWvakp4DOfEbfIUBTgS18CPvtZo2tlrKVGV4CIiIiIiMhI588Df/qnQCgELFsGfPObwJ/8\nidG1Mh7DIhERERERLVonTgB//MfAz34m7qf4ne8AmzcbXav5gWGRiIiIiIgWJUkCPvQh4MUXgZtu\nAn74Q+DOO42u1fxh+JzFWCwGp9MJu92Ojo6OoueFw2E4nU6YzWZ4PB4kEgkda0lERERERNXkyBHg\n3ntFUHzPe4CnnmJQnM7wsOhyubBz504kEglEo1H09/fnnSPLMjweDx555BHIsoympiZ4vV4DaktE\nRERERAvdD34ANDcDb7wBuN3AT38K3Hij0bWafwy9z2I4HEZHRwfGxsYAAJFIBJ2dnYhGoznnhUIh\nBAIBHDlyBIAIj3a7HVNTUznn8T6LREREREQ0k/37gb/8S7H66X/+z0AwKBa1qRZVc59FSZLQ1NSU\n3nc6nZAkKe+8bdu2IRwOp/ej0Sjq6+t1qSMRERERES18U1NAVxewc6d4/PnPi1VPqykoas3QBW5S\nqRTsdnvOMVmWC55r+d3dMEOhENra2hAKhSpePyIiIiIiWvguXAA++Ung8ceBJUtEb+Kf/7nRtZr/\nDA2LVqsVyWSypHNlWYbX64Usyzh8+DA2bNhQ8Lw9e/akHzc3N6O5uVmDmhIRERER0UI0MQF85CPA\nT34CrFkj7qW4ZYvRtdLOyMgIRkZGKvLahs5ZnD5HMRwOo6urK2/OIiCGqHo8HnR3dxd9Pc5ZJKJy\nKQpw9ixw+jRw6lRmm/14+vb8eeDy5Uy5dOnK900mYOlS8S3n0qWZUu7+0qXAypXA6tXAqlWZkr1f\n7LFazIYveUZERKSt3/wG+PCHgV/9Crj+euBf/xUo0udUNbTMRIb2LLpcLkiShEgkApfLhUAggAce\neCD9fCgUgtvtxvDwMEwmE9ra2nLmNDocDiOqTUTzzKVLQDIJvPVWppw4kbs/MVE8API7JmHlykyQ\nrKkBLJbyS02NCLJERERGi8dFUDx+HLjjDhEUb7nF6FotLIb2LAJAPB6H1+tFMpmE3+9Hb29v+jmz\n2YxwOIxDhw6hp6cn5+dMJhMmJyfzjrFnkWjhO30aeO014PXXcwNfsSBYZKpzyd72NuCqq8TQlELb\n6cdWrhST4Zcty+/dK+eYGqrUXsbJydweyOn7M51z6ZLo8TxzRvSUqiV7f6bH587N/b+bas2aTHi0\nWgGbTRS7featzQYsX65dPYiIaPH6f/8P8HrFZ4rmZuA73xH/Ji0GWmYiw8OilhgWieYvRRG9f6+9\nll+OH8/dP326vNc2m0XgWLu2cKmtFc8XCoBr1rAnDBCrwqlh88wZ4ORJIJUqv5w6Nbee2tWrZw+W\n2UU9VlMjhvQSERF94xtAe7v4QvXjHxf7K1YYXSv9MCwWwbBIpD9FEb17r74KvPKKKIWC4PHjwMWL\npb3mypViXsG11wJXX108BKrFauV8u/liakoERjU8yrIYAjwxIb4syN4WOjZtwEjJliwpHiqLhUyr\nVZSVK7VtAyIiMsapU8DevcCXvyz2d+8GvvjFxfcZgWGxCIZFIm2dO5cJgNlhMHv/1VdLD4EWiwiB\n2eW66/KPWSzsJVqMFEX8Q18oRCaTxY8lk+X3RmdbsSIzXFYNkNPLTM9x6CwRkXEuXgR++EPgsceA\n731PjJIxm4F//EfRu7gYMSwWwbBIVJpLl8R8wNdeE2FPLdPD4MREaa9nswE33ADceKPY3nBD4UD4\ntrdV9veixeviRdGLmR0gC4XKiQkx51WWM72ely7N7b1XrBDDYNXhzeWU6T/HVWmJiGY3NQU88YQI\niKFQ7ueV++4DPvc5wO02rn5GY1gsgmGRFrtCIVB9nH3szTdLm1e2fHluCLzxxkzJPr5qVeV/N6JK\nUBTRg66Gx0JlYmLm56506Gwxy5eLL1YKlVWrij83vSxfnllMSV1kSX082/70xyZTprc/ezuXEQCK\nItpuclJ88Mvelnps+m1pZiszna++R/bjUvanH1NNb69Cx2bamkyi/VesEP8tS9kWe27lysx87Zqa\nxTV3i6qHogDPPCMC4uOPiy+2VevXAx/7GPDAA1ztFGBYLIphkarR5KToEXnjjfyizgssNwSaTGI+\nYHYPYKEguHYth4MSzUQNm+q9OaeXkyeLP1foHC1XpdVboRA5/ZiiZIIeGWfZspl7uGc6ZrFk5v5e\ndRX/jaDKGx8X4fCxx4Dnn88cX7dOBMSPfUzcFoMyGBaLYFikhUBRxGqThcJfofLmm+LDVSnUEHj9\n9bnDQac/vuYa0VtARPOLooj5NufOlVfOns0/pvakqWWm/dmeU/9pnb6dK7NZLE60ZEnmcTnHsm9L\nU+gWNcVK9rlLluRvs8v0Y7Ptq6F4ejsVa8Ni26kp0f4XLohh1uVspx87dy5zb9mTJ8V/Uy0sXZoJ\njuqq09mPix1bvZohk2b2xhvAgQMiID71VOb42rWA3y8C4r338joqhmGxCIZF0tOlS5kVHUstyaSY\nL1Vu74HdLgJedrn66kyvoBoGGQKJSG+Kkht0CoWf7H+a1aDHuZnGUBQRIkvtCZ9+LJXK/Ft25syV\n1WHZMhEaa2vFh3911eurr859nL3l0Nnqd+qUuBfiY48B4XBmBMLq1cBHPiICYkuLuH5oZgyLRTAs\n0kwmJ8W376dPZ+4lpz6evp1+TF2hMXslxiv9RxIQ84muvTY/ABYqa9fyDyMREc0/Fy5kFo1SA6S6\nmFShx+r27Nny3+uqq2YOldn31a2tFQuv8R6689PkJPDSS8DYGHD0qNj++tfA4cNiZAUgvvj+0IdE\nQPzDPxSBkUrHsFiEkWFxcjIzFOjsWREk1Mfnz+dP0r/SfUXJzP0wm+f+eKZjpTynbtVvjtU6Zj8u\n9Zi62MGlS2LYzJUUdciN+jg79Gk9F2jJksyS+tOLeh+3QqW2Viw0QEREtBidP58Jj2++Kcpbb+Vu\npx8rd+isyZT5Nze7F7PQ4+x93gpHG5cvi0CohsHsYChJxVehvu8+ERC3bRP/PejKMCwWoVXDPP44\n8NxzhYNfsf0LFzT4BajiVq8WZc2ambfTj111VX7o48R+IiKiylMUMfy1WKh8800RPE+cEMdPnCj9\n1k/TrVkj/o23WPKL1Vr4ePZza9YsjiHWiiI+Ax8/ngmB2cEwkZj5tkQ33AC84x1AQ0Nme9ddwM03\n6/c7VDOGxSK0apht24ChofJ/btUqUVavzjxetUosWT19gv70ifql7gOZXriZeuhme1zq86X0Dk5N\nXVnPZbHHy5dnirrs95WUFStyQ9/b3rY4/oATEREtdpcvZ4bITg+SMz2e60q9JlNm1ViLJfd2NytX\n5t/iptCxQsdXrsz/grrQbVlK2b98WYy6UqfZnDqVeTzTsenPzfaR+6abRAjMDoTveAfgcHBYaaUx\nLBahVcOEQsCLLxYPf4X2C/1PTEREREQLg9qDKctiO1Mpds7p00b/FvpZuVIM353eQ6gGQt6D2TgM\ni0VwgRsiIiIiMsrkpFhBVg2P6toVxW57U+y56cfVhV9UhW7LUuq+2Sym0qjTbNRtoWPFnluzhquv\nz2cMi0UwLBIRERER0WKmZSYyfAZXLBaD0+mE3W5HR0fHnM8jIiIiIiKiuTM8LLpcLuzcuROJRALR\naBT9/f1zOo+IiIiIiIjmztCwGA6HUVtbi+3bt8NisSAQCKCvr++KzyP9jYyMGF2FRYdtrj+2uf7Y\n5vpjm+uPba4/trn+2OYLm6FhUZIkNDU1pfedTickSbri80h//AOgP7a5/tjm+mOb649trj+2uf7Y\n5vpjmy9shobFVCoFu92ec0yW5Ss+j4iIiIiIiLRhaFi0Wq1IJpOanUdEREREREQaUQwUDocVp9OZ\n3h8eHs7ZL/e8+vp6BQALCwsLCwsLCwsLC8uiLPX19ZrlNcPvs2i32zE4OAiXywW3240tW7Zg165d\nAIBQKAS32w2LxTLjeURERERERKQtw2+dEYlE0N7eDrvdjoaGhpwA6PP5MDo6Out5REREREREpC3D\nexaJiIiIiIho/jG8Z7Fc4XAYTqcTZrMZHo8HiUSi4HmxWAxOpxN2ux0dHR0617L6uN3uom0NIP3f\nRC1+v1/H2lWn2dqc17i2Sm1PXuvaKbXNea1XFq994/DvvP74eUY//Myuv1LbvKzrXLPZjzqYmJhQ\nTCaTMjQ0pKRSKaWzs7PgQjeKoihWq1Xp7+9XZFlWnE6nEgwGda5tdRgeHlba2toUk8mkJBKJoufZ\nbDYlHo8riURCSSQSSiqV0q+SVabUNuc1rq1S25PXunZKbXNe65XFa19//DuvP36e0Rc/s+uvnDYv\n5zpfUGFxcHBQ2bhxY3pfbZTphoeHc1YBmr6aKpWup6dHaW9vn/WPa6H/DnRlSmlzXuPaKqc9ea1r\no9Q257VeWbz2jcG/8/rj5xl98TO7/kptc0Up7zpfUMNQt23bhnA4nN6PRqOor6/PO0+SJDQ1NaX3\nnU4nJEnSpY7V5sEHH8T+/fthtVqLniNJEqxWKzweDxoaGuDz+ZBKpXSsZXUptc15jWun1Pbkta6d\nctqc13rl8No3Bv/O64+fZ/TFz+z6K6fNy7nOF1RYBACLxQJA3FbD5/Ohr68v75xUKgW73Z5zTJZl\nXeq3GKVSKdTX16OrqwvDw8MAAK/Xa3CtqhuvcW2V2p681rVTTpvzWq8cXvvzF699/fE61xY/s+uv\n1DYv5zpfWpmqVo4sy/B6vZBlGYcPH8aGDRvyzrFarUgmkwbUbnFqbGzEkSNH0vv9/f2w2WwG1qj6\n8RrXVqntyWtdO6W2Oa/1ubPZbDCZTHnHfT4fnE4nr/0KKNbmfr8fvb29Jb0Gr/3yaNHmvM7LM1ub\n8zO79rRo83Kv8wUXFl0uFzweD7q7u4ue43A4crqwo9FoThc3aSsej0NRlHQbq99qUOXwGtdWqe3J\na107pbY5r/W5m5iYKPpcJBLhtV8BM7V5qXjtl0eLNud1Xp7Z2pyf2bWnRZuXe50vqGGooVAIJpMJ\nbW1tkCQpXbKfT6VScLlckCQJkUgEABAIBPDAAw8YVe2qpba3oihoaWlBPB6HLMtob2/nsI0K4TVe\nGbO1J6917ZXa5rzWK4vX/vzDa19/vM61x8/s+iu1zcu+zq9wwR1DdHZ2KiaTKaeYzeb08yaTSYlE\nIoqiKEosFlPq6+sVm82mdHR0GFXlqmG32/NWD8tu72AwqNTX1ysmk0nx+XxcaloDs7U5r3FtzdSe\nvNYro9Q257VeWbz2jcO/8/rj5xl98DO7/spp83Kuc5OiKIoOYZeIiIiIiIgWkAU1DJWIiIiIiIj0\nwbBIREREREREeRgWiYiIiIiIKA/DIhEREREREeVhWCQiIppFLBZDQ0ODru/Z09ODeDxe9PmhoSH0\n9/frWCMiIlpsGBaJiIjmGVmWMTAwgMbGxqLntLa2IhAI6FgrIiJabBgWiYioKrW3t8Nut8Nut2Pf\nvn2avnYoFEJ9fT3MZjN8Ph9SqVT6uWAwCLvdjoaGBgSDwSvqkQwGg+jo6Jj1vG3btmFoaKjs1yci\nIioFwyIREVWdUCiESCSCY8eOIRKJoKurCydPntTktSVJgs/nQ39/PyYmJgAAnZ2d6ee6urpw+PBh\njI6Ooq+vDyaTqez3GBgYQEtLy6znud1uHDhwoOzXJyIiKsVSoytARESkNTWgjY+Po7GxEclkEjU1\nNZq8digUQnt7OzZv3gwACAQCcDqd2L9/P/r6+tDe3o4NGzYAAB5++OF0kCxHLBbDunXrAACpVArd\n3d2QZRmSJMHhcMBqtWLv3r2oq6tDOBzW5PciIiKajmGRiIiqTmtrK5LJJLxeL5LJJHbv3o0HH3ww\n55yhoSHs2LEj55jJZEJ/fz+2bt1a9LWTySQcDkd6v66uDrIsAwASiQQ8Hk/Oc9mCwSBSqVROXTo7\nOxGPx5FMJjE4OAibzQar1Zp+XpIk7N27F4lEAolEIh1SAcDhcKTfm4iISGschkpERFVHkiS0tLRg\nbGwsPRx0+tw+NVBmlxMnTswYFAGgtrYW4+Pj6X1ZltPhzuFwYGxsLKceKrfbjY6OjpxhqbFYDPF4\nHIcOHUJ/fz/a29vzhq2qi9yEQqGcoEhERFRpDItERFR1QqEQvF4vUqkUFEUBgLwQpi5EM70cPHhw\nxtdubW1FMBhEJBKBLMvYsWMH/H4/AMDv9yMYDCIej0OWZXR3d6ffd3h4GH19fen6AEA4HE73RDY2\nNiIajcJisRTsLTxy5EjeMUmScnohiYiItMSwSEREVeehhx6C3W6HzWbDxo0b4fV683oM29ra8noW\nk8lk0Z5FNfQ5HA4MDg6mV1s1m83pW1g0NjYiEAjA5XJh06ZN6OjogMViKVrPZDKZN1QVAJqampBI\nJNL7qVQKtbW1eedJkgS32z17gxAREV0BzlkkIqKqdOjQIc1eq6mpCUePHk3vt7a2orW1Ne+8RCKB\njRs3IplMAhA9nHa7vejr1tbW5gxVVXsU/X4/wuFwek6lxWJBb29v3s8PDw+nezWJiIi0xp5FIiIi\njUxMTMDlcqXvu9jX1wefz1f0/JaWFgwPDwMQ8xfVXsK2tjb09fXN+n5DQ0OzzrEkIiK6UuxZJCIi\n0khTUxN2796dHlrq9/uxffv2nHOy5042NjaiqakJHo8HJpMpHRAtFgv8fj/i8Xh6gZvphoaG0NXV\nVaHfhIiICDAp2TPtiYiIiIiIiMBhqERERERERFQAwyIRERERERHlYVgkIiIiIiKiPAyLRERERERE\nlIdhkYiIiIiIiPIwLBIREREREVEehkUiIiIiIiLKw7BIREREREREeRgWiYiIiIiIKA/DIhERERER\nEeVhWCQiIiIiIqI8DItERERERESUh2GRiIiIiIiI8jAsEhERERERUR6GRSIiIiIiIsrDsEhERERE\nRER5GBaJiIiIiIgoD8MiERERERER5WFYJCIiIiIiojwMi0RERERERJSHYZGIiIiIiIjyMCwSERER\nERFRHoZFIiIiIiIiysOwSERERERERHnmRViMxWJwOp2w2+3o6Ogoel4wGITNZoPZbIbH40EikdCx\nlkRERERERIvHvAiLLpcLO3fuRCKRQDQaRX9/f945kiSho6MDBw8ehCzLcDgc6OzsNKC2RERERERE\n1c/wsBgOh1FbW4vt27fDYrEgEAigr68v7zy73Q4AsFqtqKmpgaIoqK2t1bu6REREREREi8JSoysg\nSRKamprS+06nE5Ik5Z1ntVqxf/9+OJ1OAIDNZsOJEyd0qycREREREdFiYnjPYiqVSvcaqmRZzjtP\nkiR0dXUhFothamoKXq8XPp9Pr2oSEREREREtKrr0LNpsNphMprzjPp8PTqcTyWRy1tcIhULw+/3Y\nsGEDAGD//v0wm3OzbkNDA8bHx7WpNBERERER0QJTX1+PsbExTV5Ll57FiYkJJJPJvLJ//344HI6c\nYafRaDRnWKrKZDJBUZT0fqHex/HxcSiKwqJj+fznP294HRZbYZuzzRdDYZuzzRdDYZuzzRdDYZvr\nX7TsPDN8GKrL5YIkSYhEIgCAQCCABx54IP18KBRCKpXCtm3bMDAwgEgkAlmW0dnZCa/Xa1S1iYiI\niIiIqprhYREAIpEI2tvbYbfb0dDQgF27dqWf8/l8GB0dRV1dHfr7+9PnybJc8BYbRERERERENHeG\nr4YKAI2NjUXH1U5NTaUft7a2orW1Va9qUQmam5uNrsKiwzbXH9tcf2xz/bHN9cc21x/bXH9s84XN\npCiKMvtpC8P0eY1ERERERESLiZaZaF4MQyUiIiIiIqL5hWGRiIiIiIiI8jAsEhERERERUR6GRSIi\nIiIiIsozr8Ki2+1GIpEo+nwsFoPT6YTdbkdHR4eONSMiIiIiIjLW5CRQ5CYSFTEvwmI4HEZ7ezsi\nkQhMJlPR81wuF3bu3IlEIoFoNMr7LBIRERER0aIwNQVs3w5s2gQ8/bQ+7zkvwmI8Hp8xJAIiUNbW\n1mL79u2wWCwIBALo6+vTqYZERERERETGUBRg507gW98CLl4ELlzQ532X6vM2M3vwwQcBAAMDA0XP\nkSQJTU1N6X2n0wlJkipeNyIiIiIiIqMoCvCpTwHBILByJfD97wPvf78+7z0vehZLkUqlYLfbc47J\nsmxQbYiIiIiIiCpLUYAHHwT+4R+A5cuB734X2LxZv/fXpWfRZrMVHGbq9/vR29tb0mtYrVYkk0mt\nq0ZERERERDTvKArwyCPAV74CLFsGHDwIeDz61kGXsDgxMTHn13A4HDnDTqPRaM6wVNWePXvSj5ub\nm9Hc3Dzn9yYiIiIiItLTF74AdHcDS5YABw4Av//7hc8bGRnByMhIRepgUhRFqcgrXwG73Y5YSiSB\ngwAAIABJREFULIZ169alj4VCIbjdblgsFtjtdgwODsLlcsHtdmPLli3YtWtX+lyTyYR59OsQERER\nERGVrbsbePhhwGwGHn8c8PlK/1ktM9G8mrNYaKiqz+fD6OgoACASiaC9vR12ux0NDQ05QZGIiIiI\niGih++pXRVA0mYB//ufygqLW5lXP4lyxZ5GIiIiIiBaqf/gH4K/+Sjz+xjeAP//z8l+jansWiYiI\niIiIFqNgMBMU9++/sqCoNYZFIiIiIiIiA33rW0B7u3j89a9nHhuNYZGIiIiIiMggjz2W6UXcty/T\nuzgfMCwSEREREREZYHAQ+MQnxD0Vv/QlYL6t38mwSEREREREpLPvfhf42MeAyUngf/wPsQLqfDOv\nwqLb7UYikSj6fDgchtPphNlshsfjmfFcIiIiIiKi+ehf/xXweoHLl4HOTmDPHqNrVNi8CIvhcBjt\n7e2IRCIF77UIALIsw+Px4JFHHoEsy2hqaoLX69W5pkRERERERFdueBjYuhW4dAn49KeB7m5xT8X5\nqOywePDgwRn3r0Q8Hi8aElVqr+LWrVtRU1ODrq4uxGKxOb83ERERERGRHkZGgD/6I+DCBeAv/xL4\nylfmb1AEAJNS4h0bh4aGcODAAYTDYbS0tKSPx2IxjI2NaVIZu92OWCyGdevWFXw+lUrBYrEAEOFx\n586dOHr0aPp5LW9ASUREREREpJV/+zfggx8EzpwBduwQ91I0V2Ccp5aZaGmpJ7a0tKCxsRGBQABd\nXV3pCtjtdk0qUgo1KIZCIbS1tSEUCun23kRERERERFfi5z8HPvxhERT/7M8qFxS1VnJYtFgssFgs\n6OvrK/tNbDZbwWGmfr8fvb29Jb+OLMvwer2QZRmHDx/Ghg0byq4LERERERGRXp55BtiyBTh1Cvjo\nR4FvfGNhBEWgjLCoikQi6YVlTCYTBgcHsXnz5hl/ZmJi4spqN43L5YLH40F3d3fRc/ZkLSXU3NyM\n5uZmTd6biIiIiIioHCdPAq2tQColtv/8z8CSJdq+x8jICEZGRrR90d8pec6iauPGjYhEIrBYLJAk\nCT6fD9FoVJPKFJqzGAqF4Ha7MTw8jL1792JwcDBnDK7D4Ug/5pxFIiIiIiKaDxQF+PjHgccfBxob\ngSefBFasqPz7GjJnUWW329NzBx0Oh6ZzFgsNVfX5fAiHw4hGo4jFYqivr885f3JyUrP3JyIiIiIi\n0sK3viWC4urVwLe/rU9Q1FrZPYterxd33303GhsbEYvFcOTIEQwMDFSqfmVhzyIRERERERnthRcA\npxM4exb4P/8H+MQn9HtvLTNR2VMrBwcHMTU1hcHBQQCYN0GRiIiIiIjIaOfPAw88IILin/yJvkFR\na2X3LB48eBBbt24tum8k9iwSEREREZGRPvUp4O//HmhoAGIx4Kqr9H1/LTNRyWFxaGgIBw4cQDgc\nRktLS/p4LBbD2NiYJpWZK4ZFIiIiIiIyyve+B/zxHwPLlokFbZxO/etgSFhMpVI4ceIEAoEAurq6\n0hWw2+2wWq2aVGauGBaJiIiIiMgIv/0tsH49kEwCX/kK8JnPGFMP3cPiyZMn048VRYHJZEJNTY0m\nFdASwyIREREREeltchLYvBl44gngQx8CfvADwFz26jDa0G2Bm3379sFsNsNqtaaLzWaDzWbT5M2J\niIiIiIgWui9+UQTF664Tt8wwKihqbcZfo7OzE8PDw5iamsoplbq3odvtRiKRmPW8WCym6f0diYiI\niIiIrsQTTwBf+AJgMgH/8i/ANdcYXSPtLJ3pybq6OmzatKnilQiHwxgcHEQkEoHJZJr1/B07diCV\nSlW8XkRERERERMWcOAF8/OPA1BSwezfgchldI23NGBYHBwexbt06tLe35/TkmUwm7Nq1S7NKxOPx\nkkIiAPT09KC+vh7xeFyz9yciIiIiIiqHogB/8RdiYZt77gEefdToGmlvxgVuPB4PxsfH4Xa781Y8\n3bt3r+aVsdvtiMViWLduXcHnJUmCx+PB8PAw6uvrMTU1lfM8F7ghIiIiIiI9/K//BfzX/wpYLMAz\nzwBFIozutMxEM/YsRqNRJBIJWCwWTd5srnw+H/r7+7nADhERERERGebZZ4HPflY8/qd/mj9BUWsz\nhkWfz4dIJIKtW7fO6U1sNlvBYaZ+vx+9vb0lvUYwGMTGjRvxgQ98ABMTE0XP27NnT/pxc3Mzmpub\ny60uERERERFRQWfOAA88AFy4ALS1Adu2GVufkZERjIyMVOS1ZxyG6nQ6EY/HYbVa8+YsHj16VPPK\nzDQM1efzIRQKpYfDyrIMm82G0dHR9PkchkpERERERJW0fTvwjW8Ad9wBPP00sGqV0TXKpWUmKhgW\n4/E4GhsbkUgkir6Rw+HQpALZCoXFUCgEt9stKvu73snx8XE4nU7Isoyampr0uVo1zOnTwMqVwNIZ\n+12JiIiIiGgx+fa3gY9+VGSFI0eAO+80ukb5Kh4We3p6EI1GYbfb4fP5sHnzZk3ebDa1tbU5PYUA\nYDabEQ6Hc+ogyzJqa2vz7veoVcP82Z+Je6Rcey1www3AjTeKbaHHdru4pwoREREREVUvSQI2bABO\nnQJ6e4GODqNrVFjFw6JKlmUMDAwgHA7DbrfD4/HMef5iJWnVMF4vMDQklsOdzYoVmfBYLFjedNP8\n654mIiIiIqLSXLoEvO99YthpayswODh/O4x0C4vThUIhhMNhJJNJDAwMaFIBLWnZMJcuAcePA6++\nKsorrxTeplKl1Auorwfe/e7c0tAALFmiSXWJiIiIiKhCOjuBnh7gllvEbTLm880ZDAuL850RC9yc\nOVM8UKqPX3oJmDZiFoAY63z77ZnweOedYnv99fP3mwqixUZRxJdHFy6IcvGiOLZsWaYsXy62/P+W\niIio+hw6BGzZIjp5fvIT4Pd+z+gazUy3sDg0NIQDBw4gHA5DlmUAgNVqhdvtht/vn3dDUufraqgX\nLgC//jXwi1/klpdfLnx+bW0mOGYHyauu0rfeRAvF5cuALAPJJHDihNhOLydP5gY+9fFs+xcvll6P\nJUtyw+P0MFlof80a8e2k1Sq2xR5brWI4OwMpERGRfl5/HVi/Xmz/5m+Az33O6BrNruJhsb+/H4FA\nANu2bYPb7UZdXV169VNJkiBJEoaHhzE0NISuri5s375dk8rM1XwNi8XIMvDLX+aHyGJDW9etE5Nq\nN27MlNpaXatMVHGTk8AbbwC//S3w2muFg9/0Uspw8LlYulTMT1YLIHobp5dKW7Zs5mB57bVirrRa\nrr+eqzoTERFdqakp4EMfEj2Lzc1AOLwwppBVPCwODQ2htbW1pBco59xKW2hhsRBFEUNXpwfI558v\n3MNRV5cJjps2AU1NgMWif72JSnH+vBie/dvfiuv8lVcyj9Xtq68WHrY9E5NJhKXaWrFCcaFSUyOG\nfi9fngl92Y+n76uPly8HzObZ66Aooofz0iXx/2p2iCy2f/GiuFXPxIT48mhiYubHFy6U3y7TA2Sh\nUlPDHksiIqLp9u0DHnpIfL549lnxb+ZCoPucxZMnT+Ydy76/oVbcbjeCwSDq6uoKPi/LMrxeLyKR\nCJqamjA4OJhzbjWExWIuXQKOHgXicXFPl2gUiMWAc+fyz33nOzPhceNGoLERWL1a/zrT4nLhAvCb\n3wDHjuUHQHX71lulvdbVV2dWE167tngAVIvFUlqgW+jOny8eKJNJ0ROrhvBXXhE9tKX8SVy9Ojc8\n3nQT4HCIhbkaGsT+YmhfIiIi1ZNPAvfdJ74I/v73gT/4A6NrVDrdwuK+ffvQ2dlZsALT73E4F+Fw\nGIODg+jv74ckSTn3WcxWX1+PnTt3oq2tDQ899BAkScKhQ4dy6lWtYbGQy5dFj2M0minPPJPfA2k2\ni4V0soevrl8velmISjU1JXr9EglRJCnzOJEQ4WS2//2WLhVDI2+6KRNKpm9vuCEz1JPmRl3VOTtA\nFipnz878OitW5IbHhobM47e/XQyPJSIiqhYvvQTcdZeYp/jXfw387d8aXaPy6BYWzWYzhoeH4XK5\nNHmzYvbt24fx8XEEg8GiYTEWi8Hn82FsbCx97NixYznnLrawWMjFi2IepBoejxwR+5cv5563dClw\nxx1iDqRa1q+f38sAU2Upiuilyg6A2YHw2LGZF3sxm4GbbxZDo2++uXAYvOaahTHWfzFRFDHnM3s1\n55dfFv/tx8ZEOX68+M8vWSLmU2cHSTVMOhz8UoqIiBaWM2fE/RSfeQZwuYAf/nDhfSmqW1isr69H\nPB6vyJDTQux2O2KxWMGwGAwGEQ6HYbfbEQ6H0dTUhP7+fliyJugxLBZ27hzw3HOZ8BiNih7Jqan8\nc9VFdLLLLbdwPlO1uHhRfFsmSZkyPp4JhbMtFHP11SIMOhxiqxaHQwTEhfbHlEpz+nRueBwbE9fN\n2JgIlsX+7JpM4ouC228X5Y47RLntNs6tJiKi+WdqCvB6gYMHxRefP/+5mO6y0OgWFmOxGFpaWtDe\n3g57VkuZTCbs2rVLkwpkmyks9vT0oKurC8FgEC6XC4FAYNEPQ52L06fFwjnPPJMpzz0n5kRNZ7Xm\nB8jbbhMLf9D8oihi7lp2GMwOhC+/XPhLAtXq1cXD4Lp14jYPRNnOnxdfNKjhMTtMJhLFFytSQ+Qd\nd+RuGSKJiMgo//2/A1/8ovi36KmngFtvNbpGV0bLTDTjoupdXV2w2WyYmJiY0xvabDaYCnRN+f1+\n9Pb2lvwabrc7fZuOQCAAW4Exk3v27Ek/bm5uRnNz8xXVudqtWQPce68oqsuXxSI62QEyHgfefBMY\nGRFFtWxZ7jDWd71LDDt7+9sZIivt1CkR+l5+OTNUNDsQFliPKs1kEj3FDkem1NdnAuHatexFpvKs\nXCm+PLrttvznLl0S1+jzzwP/8R/Ar34lti+8IBY9+u1vxXLk2W68MT9A3n67+NKKiIioUh5/XARF\nsxkYGFhYQXFkZAQj2R/UNTRjz6LdbkcikcgZ6llJM/UsRiIRBAKBnJ5Es9mMqaxuEvYsak9RxHyl\neDw3RB49Wvh8dd5afX1mzlL2Y37gm9mFC+ID9EsvZQKhWtRjsw0VXbMmt+2zg+Ett3DxGDLe5KQI\nkdkB8le/EqGy0OgGQCx8dOedwHveI+ZXv+c9IqBy6DMREc3V008D998v/g362teAT33K6BrNjW7D\nUDs6OuDxeLB161ZN3mw2hcJiKBSC2+2GxWKB3W5Hf38/XC4XOjs7cezYMfzoRz9Kn8uwqJ9TpzLD\nWJ99NjPsbLZhjnZ74RBZXy96FKp1eX5FET1+6u0NCoXAl18WtzqYzcqVIpDffHNmYZHsQFhby95B\nWpgmJ8VCSoVCZKHbBC1bJnod16/PBMj168XcWiIiolK88oq43dxrrwE7dgB9fQv/c5RuYdHpdCIe\nj8NqtebNWTxarGtpDmprazE6OpoTFs1mM8LhMDZv3ox4PI4dO3YgFovB7XZjcHAwZ/EdhkXjXbwo\n7rU3Pp4p2UMkZ1qif/lyEX7WrhU9kDab2BZ7rG5ravRbYVNRxHzPZBI4cUJssx/PdKyUu80sWSJC\n8y23ZAKhWtRjDIO02ExOir8rv/iF+HLq2WfFHOusxbFzXH99foB817vEKtBERESqs2fFvRRHR0XP\n4qFD1TGdSrewKElS0R90OByaVEBLDIvzm6KI+9UUCpLj46X1qhVjseSHyauuEu85OSl6O2fbzvTc\n+fOZ0Hfp0pXVcc0a0bN67bWFQ+DNNwPXXcdbSxCVSl2oSw2P6vb06fxzV6wQcyDVAMnbBRERLW6K\nAjzwgJif6HCIoai1tUbXShsVD4vxeByNjY0lvUA551Yaw+LCdvq06D2YmBBFljPbmR7PNodPa6tX\ni9Bnt4s/KtnbmR5XwzdVRPPd1JSYD5kdIJ99Vhwr5O1vz1/t+e1vZ+89EVG1e/RRYM8e0bnw5JPi\nC8VqUfGw2NPTg4GBAXR0dKClpSVvwZlEIoFwOIy+vj74/X48+OCDmlRmrhgWF6fJSTEfcHqIPHVK\nzIFcsuTKttmPV6wQwc9m403GiRaikydFeMwOkM89V3gupMWS6XlUA+Ttt3NxKCKiajE4CPh84jPe\n978PfPjDRtdIW7oMQ5VlGcFgEAMDA4jFYrD+bhlLWZbR1NQEv9+PtrY23VZKLQXDIhERlWpysvDt\nggoNiV+6VATG7B7I9esX5s2aiYgWs9FR4P3vF18WfuUrwGc+Y3SNtKfbnMVssizDZDLNq3A4HcMi\nERHN1fHjuQHymWeAF18U81umu+WWzDzId79bbN/xDi6mQ0Q0H732mlj59JVXgE9+EvjGN6pz2oEh\nYTGRSKC9vR3RaBSACI9utxt9fX0F74toBIZFIiKqhDNnMovpqAHyuecKr/CsLqaTHSDf8x7gmmv0\nrzcREQnnzokVT48cAd73PiAcrt7pBYaExY0bN6K/vz9nMZtYLIbdu3fn3OtwLtxuN4LBIOrq6go+\nHwwG0dnZiVQqhZaWFvT19eWcy7BIRER6UYex/uIXmfmQzz0n7hVZyLXX5gfI227jPGgiokpTFODj\nHwcef1wsYnbkSHXfk9eQsOjxeHDo0KGSj5cjHA5jcHAQ/f39kCSpYE+lJEloaGhAJBKB0+nEQw89\nhGQyiYGBgfQ5DItERGS0kyeBX/4yN0A+95xYdGu6JUuAd74zEx5vv10ESIcDWLZM/7oTEVWjL30J\n+NznxG3M/v3fxZd21UzLTFTyrIrGxkZ4PB54PB7U1dVBkiQMDw+jqalpzpWIx+MwzTJg2P67VQSs\nVitqamqgKApqq+VmKEREVDVqaoD3vlcUlaIAL72UHyBffBF4/nlRDhzInL9sGdDQIILjrbdmtrfe\nKj7sEBFRaQ4eFEHRZAIee6z6g6LWSu5ZBMSw03A4jGQyidraWrS0tGh6j0W73Y5YLFZ0DmQwGERH\nRwcAwGaz4cSJEznPs2eRiIgWknPnRFBUw+PzzwMvvFB8KCsA3HRTfoi87TYxzLUaF2ogIrpSzzwD\n/N7vifnlgQDw0ENG10gfhgxD1cNMYVGSJGzcuBGHDx/Ghg0b0NHRwWGoRERUlc6eze11fOEFsX3x\nReDixcI/Y7Hk9kDW1wN1daLYbAySRLS4HD8O3HUX8PLLwCc+AXzrW4vn76AhYXHfvn0F39hkMmHX\nrl0z/qzNZis4zNTv96O3tze9P1NY7OnpQSKRyDnfbDZjamoqpy4Mi0REVK0mJ4FEIhMe1e3zzwOy\nXPznamoywXF6WbcOWL1at1+BiKjizp8HPvAB4KmngHvvBQ4fXlyLiRkyZ9FisaCjowN9fX1lv8nE\nxETZPzPd9F9aLvKv4p49e9KPm5ub0dzcPOf3JiIimg+WLBFzGRsagD/4g8xxRQHeeCMTIF94QYRK\ntZw8KW778eyzhV/3mmuKh8lbbuFiO0S0cCgK0NYmguIttwDf+U71B8WRkRGMjIxU5LXLGobqdrsx\nPDxckYoAhXsWQ6EQ3G43kskknE4nBgcH4XQ60dnZCVmWcSBrRQD2LBIREeVSFODEidzwmF1+85vi\nQ1sBMWzr6quB664Drr8+dzv92Jo1i2eYFxHNT4EA0NUFrFolVj5dv97oGumvaucs1tbWYnR0NCcs\nms1mhMNhbN68GUNDQ+js7IQkSfB6vejv70dNTU36XIZFIiKi8kxNAa++CkhS4TD5yisicJZi1aqZ\nQ+U114j5kzabmGO5ZEllfzciWjwUBfi7vwM++1nx+OBB4CMfMbpWxqjasDhXDItERETaunxZDHE9\nfhx47bXc7fRj586V99o1NSI4Wq2ZEDnbY3Vb7cPKiKh0ly8Df/VXwP79Yv+rXwU+/Wlj62Qk3cJi\nQ0ND3puZTCZYLBbY7Xb4fD5s375dk4pogWGRiIjIGIoCnDpVPEgePy5CpywDExNAKjW391u+XCzM\ns2aNKLM9LuX51avF6xLRwpFKAT4fcOgQsGIF8L//N/DRjxpdK2PpFhaDwSD6+vrw8MMPo66uDpIk\nobu7Gx0dHbDZbOjr60NDQ0POCqVGYlgkIiJaGCYnxcI7ExOZAJn9eLZjly5Vpl5Ll+aGx+lhcrZ9\niyW3F5TDbYkq59gxsdjXf/wHsHYt8N3vAu99r9G1Mp6uPYujo6OwWCzpY7IsY9OmTTh69CgAsShN\nMpnUpDJzxbBIRERU/RQFuHABOHMGOH1alLk+VvcnJ7Wvb02NCI5qUYNkof3sobbXXsueTqJifv5z\n4I/+SIxYuPVW4P/+X8DhMLpW84Nut85IJpNIJBLYsGFD+lgikcCJEycAAKm5jiEhIiIiKpPJJOYs\nrlwJ1NZq97qKIlaGzQ6P6uNSjp0+LXpLs3tCUylx7ORJ4KWXyq/T2rXAjTcCN9xQfHv11YDZrF07\nEM13oRDwp38q7qfocol9q9XoWlWnGcPi3r17sXnzZrS3t6O+vh5jY2MIBoMIBAKIx+NwuVzYvXu3\nXnUlIiIiqhiTScx5WrECsNu1ec2pqUyAVIsaJGfaTyaB118H3npLlGL3yATE0Nnrry8eJm+6SfS4\n8H6ZtNApirg1hho//uIvgN5eXtuVNOtqqJIkoa+vD4lEAg6HA36/H42NjUgkEpiYmEBTU9OcKxEO\nh9HZ2Yl4PI6Wlhb09fWhrq4u77xYLIYdO3YgkUjA5/Nhv7rkkfrLcBgqERERVYnJSeDNN8XtS159\ntfj2dwO+ZrRkCVBfL4brqeVd7xJbrYIxUSVdvAjs3Al885tiv6cH2LWL93YtpKpunSHLMux2O0Kh\nEFpaWvDlL38Z4XAY0Wg071ybzYZ9+/bB6/XC5XKhvb0dO3bsSD/PsEhERESLzfnzYsXZYmHyN78R\npdhHpKuvLhwi163j4jw0P0xMAK2twI9/DLztbcC//AuwdavRtZq/dAuLqVQKnZ2dGBgYgCzLsFqt\n8Pv9CAQCqKmp0aQCoVAIgUAAR44cAZAJj1NTUznnhcNhdHR0YGxsDAAQiUTQ2dmZEyoZFomIiIjy\nnTsHHD0K/PrXwAsv5JazZwv/zIoVwDvekRsgb78duPNOLrxD+hkfB37/98W1e911wPe+B2zaZHSt\n5jfdwqLP5wMABAIB1NXVQZZl7NixA2azGQcOHNCkAoAIpeqKq+FwGDt37kyvtqoKBoMIh8MYGBgA\nIEKlw+HIWYmVYZGIiIiodFNTogeyUIh85ZXCP7NiBbB+vfjArpZbb+UiO6S9f/s34D/9JzHU+t3v\nBn7wA+CWW4yu1fynW1g0m82YmJjIu3VGoZ4/LYRCIbS1tSEUCmHz5s05z+3btw/j4+PpeYqF6sGw\nSERERKSNU6eAF1/MDZDPPSeOTbdmDbBxY26AfPvbOZ+MrtxjjwGf/KSYq/jBDwIHDojb0NDsdLt1\nRl1dHUZHR3OC2+joKBxl3sTEZrPBVOCvhd/vR29vL2RZhtfrhSzLOHz4cM6tOlRWq3Xe3M+RiIiI\nqNpddRXgdIqSTZaB0VHgyJFMefllYGREFNXatbnhcdMmce9IopkoCvCFLwB79oj9//JfgK99Taz6\nS/qbsdkDgQBaWlrQ3t4Oh8OB8fFxBINBDA4OlvUmExMTMz7vcrng8XjQ3d1d9ByHwwFJktL70Wi0\n4Eqse9QrC0BzczOam5vLqisRERERFWe1invbuVyZY8eP54bHI0fELT9++ENRVDffnAmO99wD3H23\nWLCECAAuXAC2bxcL2JhMwN/+LfCpT7GHejYjIyMYyf6mRkMl3TojFAohmUyitrYWra2tZfcsziQU\nCmHv3r0YHBzM6S5V3yMUCsHtdsNiscBut2NwcBAulwtutxtbtmzBrl27Mr8Mh6ESERERGU5RgGPH\ncsNjNAqcOZN73vLlwF13AfffL8q994ohrbT4vPUW8JGPiHmKq1cDjz8O/OEfGl2rhamqbp3R1dWF\nnp6enGMmkwmTk5MAxLzJcDiMzZs3Ix6Pw+v1IplMpoewTv85hkUiIiKi+WdyUsx7VMPjz34m5kBm\nf3RbulQMe73/fuC++4D3vQ/IWjqDqtSvfy1WPB0fB268Efj+94HGRqNrtXBVPCw2NDTMWoHpq5XO\nBwyLRERERAvHxIToSfrJT4AnngBiMREqVWYzsGGDCI733w+8//1Aba1x9SVtnTgB/M//Cfz934te\n58ZGERRvvNHomi1sFQ+LsVhs1h8sNF/QaAyLRERERAvXqVOix/GJJ0SAPHIEuHQp95w778wMW73v\nPi6asxAlk8BXvyoWrjl9WhzzeoFvfpPDkLVQVcNQtcSwSERERFQ9zp4Fnnoq0/P41FPA+fO557zr\nXUBzc6Zcd50BFaWSTEyIRWu+9jXg5ElxbMsWsfLpPfcYWrWqwrBYBMMiERERUfW6cEH0Nv7kJ6L8\n+7/nL5pz220iNH7gA6L38ZprDKkqZUmlgL/7OxEUUylxrKUFePRR4L3vNbZu1YhhsQiGRSIiIqLF\n49IlMc9xZAT48Y/F/Mfp4fGOO0RwbG4W4XHtWiNqujidPCl6Eb/6VXF/TgDYvFmExPe9z9i6VTOG\nxSIYFomIiIgWr0uXRM+jGh5/9jPg3Lncc97znkzP4333AXa7ETWtbqdOiUVrvvIVMT8REEH90UfF\nlipLy0xk1uRV5igcDsPpdMJsNsPj8SCRSMzpPCIiIiJafJYtE8MaH34YGB4Wc+R++lPgC18Q4XDF\nCnG7jq9/XdzTb+1asQLnZz4jVuFUe7/oypw+DezdC9TVAY88IoLi+98PHD4sAjyD4sJjeM+iLMuw\n2+0IhUJoaWnBl7/8ZYTDYUSj0bLPY88iERERERVz/jzw85+LXscf/1gsmHPxYuZ5s1mstnrvvWLB\nlXvuAd75TnGcijtzBvjHfwR6eoC33hLH3vte0ZPocgEmk7H1W2yqahhqKBRCIBDAkSNHAGRC4dTU\nVNnnMSwSERERUanOnQOefDITHp9+Ov9WHVYrcPfdmQB5112AzWZMfeebs2eB3l4REt+IBA1GAAAg\nAElEQVR4Qxy75x4REt1uhkSjVFVYBIBUKgWLxQJADDXduXMnjh49WvZ5DItEREREdKXOnhUL5jz1\nlChPPgm8+mr+ebfemul5vPdesYjOkiX619cIyaTonf3Zz4B/+ifg9dfF8bvuEiFxyxaGRKNVXVhU\nhUIhtLW1IRQKYfPmzWWfx7BIRERERFpRFOC3v82Ex6eeAkZHxS08sq1eLcKSGiDvuac6btkxOQn8\n8peZ4PzUU8Cvf517jtMpQuKHP8yQOF8suLBos9lgKnD1+P1+9Pb2QpZleL1eyLKM/v5+bNiwoeDr\nzHYewyIRERERVdLFi8Czz+b2PhZac7GuTvRA1tcDDkdm63AAq1bpX+9SvPlmbjB8+un8W5GsXCkC\n4r33inslejwMifPNgguLs3E6nfB4POju7p7TeSaTCZ///OfT+83NzWhubtayqkREREREOV5/XQzN\nVANkoZCV7brr8kOkur32Wn3C16VLYmXY7HA4Pp5/Xl1dZrjtPfcA69cDy5dXvn5UupGREYyMjKT3\nH3300eoJi6FQCHv37sXg4GDOL+VwONLPu91uDA8Pz3gewJ5FIiIiIjLe5ctiuObYGCBJIoSp20Qi\nfxGdbKtW5YfIm28WK7JOTYmhoVNT+Y9nei778euvi2AYjebfg3LVKmDTptzVYK+9trJtRdqrqp7F\nrq4u9PT05BwzmUyYnJwEAJjNZoTDYRw6dGjG89R9hkUiIiIimq8mJ4FXXskNkNlb9Sb2enjHO3KD\n4bvfDSxdqt/7U2VUVVjUEsMiERERES1kspwJj2qAfOUVMTTVbBZlyZLCj0t57qqrRO/h3XcDa9ca\n/dtSJTAsFsGwSEREREREi5mWmcisyasQERERERFRVWFYJCIiIiIiojwMi0RERERERJSHYZGIiIiI\niIjyMCwSERERERFRnnkRFsPhMJxOJ8xmMzweDxKJxIznx2Ix2O12nWpHRERERES0+BgeFmVZhsfj\nwSOPPAJZltHU1ASv1zvjz+zYsQOpVEqnGtJMRkZGjK7CosM21x/bXH9sc/2xzfXHNtcf21x/bPOF\nzfCwqPYqbt26FTU1Nejq6kIsFit6fk9PD+rr63k/xXmCfwD0xzbXH9tcf2xz/bHN9cc21x/bXH9s\n84XN8LC4bds2hMPh9H40GkV9fX3BcyVJQjAYRCAQ0Kt6REREREREi9JSoysAABaLBQAQCoXQ1taG\nUChU8Dyfz4f+/n7YbDY9q0dERERERLTomBQdxnPabDaYTKa8436/H729vZBlGV6vF7Iso7+/Hxs2\nbMg7NxgMIhaLYf/+/ZiYmEBtbS2mpqZyztmwYQOeffbZiv0eRERERERE89n69evxzDPPaPJauoTF\n2TidTng8HnR3dxc9x+fzIRQKwWq1AhAL49hsNoyOjmLdunU61ZSIiIiIiGhxMDwshkIh7N27F4OD\ngzmL1jgcjvTzbrcbANK9k+Pj43A6nZBlGTU1NfpXmoiIiIiIqMoZPmcxGo0iFovlLGpjMpkwOTkJ\nQPQohsNhbN68Of18XV0dTCYTgyIREREREVGFGL4a6t69ezE1NZVT1KAIAFNTUzlBMRwOw+VyQVEU\neDweJBKJgq8bi8XgdDpht9vR0dFR8d+j2rnd7qJtDYihxGazOV38fr+OtatOs7U5r3FtldqevNa1\nU2qb81qvLF77xuHfef3x84x+1Nvjmc1mfmbXSaltXtZ1riwgExMTislkUoaGhpRUKqV0dnYqTqez\n4LlWq1Xp7+9XZFlWnE6nEgwGda5tdRgeHlba2toUk8mkJBKJoufZbDYlHo8riURCSSQSSiqV0q+S\nVabUNuc1rq1S25PXunZKbXNe65XFa19//DuvP36e0Rc/s+uvnDYv5zpfUGFxcHBQ2bhxY3pfbZTp\nhoeHlfr6+vR+OBwu2lg0s56eHqW9vX3WP66F/jvQlSmlzXmNa6uc9uS1ro1S25zXemXx2jcG/87r\nj59n9MXP7Portc0Vpbzr3PBhqOXYtm0bwuFwej8ajebMdVRJkoSmpqb0vtPphCRJutSx2jz44IPY\nv39/ehXaQiRJgtVqhcfjQUNDA3w+H1KplI61rC6ltjmvce2U2p681rVTTpvzWq8cXvvG4N95/fHz\njL74mV1/5bR5Odf5ggqLAGCxWACIVVJ9Ph/6+vryzkmlUrDb7TnHZFnWpX6LUSqVQn19Pbq6ujA8\nPAwA8Hq9BtequvEa11ap7clrXTvltDmv9crhtT9/8drXH69zbfEzu/5KbfNyrnPDV0MtlyzL8Hq9\nkGUZhw8fxoYNG/LOsVqtSCaTBtRucWpsbMSRI0fS+/39/bDZbAbWqPrxGtdWqe3Ja107pbY5r/W5\ns9ls6VtPZfP5fHA6nbz2K6BYm/v9fvT29pb0Grz2y6NFm/M6L89sbc7P7NrTos3Lvc4XXFh0uVzw\neDzo7u4ueo7D4cjpwo5Gozld3KSteDwORVHSbax+q0GVw2tcW6W2J6917ZTa5rzW525iYqLoc5FI\nhNd+BczU5qXitV8eLdqc13l5ZmtzfmbXnhZtXu51vqCGoYZCIZhMJrS1tUGSpHTJfj6VSsHlckGS\nJEQiEQBAIBDAAw88YFS1q5ba3oqioKWlBfF4HLIso729ncM2KoTXeGXM1p681rVXapvzWq8sXvvz\nD699/fE61x4/s+uv1DYv+zq/wgV3DNHZ2amYTKacYjab08+bTCYlEokoiqIosVhMqa+vV2w2m9LR\n0WFUlauG3W7PWz0su72DwaBSX1+vmEwmxefzcalpDczW5rzGtTVTe/Jar4xS25zXemXx2jcO/87r\nj59n9MHP7Porp83Luc5NiqIoOoRdIiIiIiIiWkAW1DBUIiIiIiIi0gfDIhEREREREeVhWCQiIiIi\nIqI8DItERERERESUh2GRiIhoFrFYDA0NDbq+Z09PD+LxeNHnh4aG0N/fr2ONiIhosWFYJCIimmdk\nWcbAwAAaGxuLntPa2opAIKBjrYiIaLFhWCQioqrU3t4Ou90Ou92Offv2afraoVAI9fX1MJvN8Pl8\nSKVS6eeCwSDsdjsaGhoQDAavqEcyGAyio6Nj1vO2bduGoaGhsl+fiIioFAyLRERUdUKhECKRCI4d\nO4ZIJIKuri6cPHlSk9eWJAk+nw/9/f2YmJgAAHR2dqaf6+rqwuHDhzE6Ooq+vj6YTKay32NgYAAt\nLS2znud2u3HgwIGyX5+IiKgUS42uABERkdbUgDY+Po7GxkYkk0nU1NRo8tqhUAjt7e3YvHkzACAQ\nCMDpdGL//v3o6+tDe3s7NmzYAAB4+OGH00GyHLFYDOvWrQMApFIpdHd3Q5ZlSJIEh8MBq9WKvXv3\noq6uDuFwWJPfi4iIaDqGRSIiqjqtra1IJpPwer1IJpPYvXs3HnzwwZxzhoaGsGPHjpxjJpMJ/f39\n2Lp1a9HXTiaTcDgc6f26ujrIsgwASCQS8Hg8Oc9lCwaDSKVSOXXp7OxEPB5HMpnE4OAgbDYbrFZr\n+nlJkrB3714kEgkkEol0SAUAh8ORfm8iIiKtcRgqERFVHUmS0NLSgrGxsfRw0Olz+9RAmV1OnDgx\nY1AEgNraWoyPj6f3ZVlOhzuHw4GxsbGceqjcbjc6OjpyhqXGYjHE43EcOnQI/f39aG9vzxu2qi5y\nEwqFcoIiERFRpTEsEhFR1QmFQvB6vUilUlAUBQDyQpi6EM30cvDgwRlfu7W1FcFgEJFIBLIsY8eO\nHfD7/QAAv9+PYDCIeDwOWZbR3d2dft/h4WH09fWl6wMA4XA43RPZ2NiIaDQKi8VSsLfwyJEjecck\nScrphSQiItISwyIREVWdhx56CHa7HTabDRs3boTX683rMWxra8vrWUwmk0V7FtXQ53A4MDg4mF5t\n1Ww2p29h0djYiEAgAJfLhU2bNqGjowMWi6VoPZPJZN5QVQBoampCIpFI76dSKdTW1uadJ0kS3G73\n7A1CRER0BThnkYiIqtKhQ4c0e62mpiYcPXo0vd/a2orW1ta88xKJBDZu3IhkMglA9HDa7fair1tb\nW5szVFXtUfT7/QiHw+k5lRaLBb29vXk/Pzw8nO7VJCIi0hp7FomIiDQyMTEBl8uVvu9iX18ffD5f\n0fNbWlowPDwMQMxfVHsJ29ra0NfXN+v7DQ0NzTrHkoiI6EqxZ5GIiEgjTU1N2L17d3poqd/vx/bt\n23POyZ472djYiKamJng8HphMpnRAtFgs8P//9u49vun63h/4KwERUWmS4oUNtWnqpniDNCreS9PU\ny9mcA9Iy7yBtyn7TzYmk6M4BPU4I9bKbAxrOdKhT2nS6i2PSBHucZ6KWxNvACU1Ah4pI+aaoXITm\n98d7uTW9N+03TV/PxyMP8v3mk28+gS9JXt/PrbwcgUAgNsFNRw0NDaiurh6kd0JERARoIokj7YmI\niIiIiIjAbqhERERERETUCYZFIiIiIiIiSsGwSERERERERCkYFomIiIiIiCgFwyIRERERERGlYFgk\nIiIiIiKiFAyLRERERERElIJhkYiIiIiIiFIwLBIREREREVEKhkUiIiIiIiJKwbBIREREREREKRgW\niYiIiIiIKAXDIhEREREREaVgWCQiIiIiIqIUDItERERERESUgmGRiIiIiIiIUjAsEhERERERUQqG\nRSIiIiIiIkrBsEhEREREREQpGBaJiIiIiIgoBcMiERERERERpWBYJCIiIiIiohQMi0RERERERJSC\nYZGIiIiIiIhSMCwSERERERFRClXD4vLly6HValNub775ZkpZv9+PwsJCGAwGVFVVqVBbIiIiIiKi\nkUMTiUQiar14OBzG3r17Y9stLS2oqqrC1q1bU8rq9XrU1NTAbrfDarXC4XCgoqJiKKtLREREREQ0\nYqgaFjuy2+249957MWXKlKT9Xq8XVVVV2LZtGwDA5/PB6XSiublZjWoSERERERFlvYwZs+j3+6HV\nalOCIgAEg0GYzebYdmFhIYLB4FBWj4iIiIiIaEQZrXYFoiorK+HxeDp9LBwOw2AwJO1TFGUoqkVE\nRERERDQiZURY9Hq9yM3NRV5eXqeP63Q6tLa29nicgoICtLS0pLl2REREREREw4PJZIoN3xuojOiG\nWl9fD4fD0eXj+fn5Sd1Om5ubk7qlRrW0tCASiWTFbfHixVnxmgM9Zn+f35fn9bZsT+UG+vhwuan1\nPrLl/FTj3OypTLacm2q9l5F4bva2fDrKZMv5yXNzYMfg9/rg3fi9PrDnZ+L3ejobzzImLJaUlKTs\n93g8CIfDsFqtCAaD8Pl8AACXy4XZs2cPdTWHVFFRUVa85kCP2d/n9+V5vS3bUzk1/s3UoNb7zJbz\nU41zs6+vO5zxs7P/z+/rc9J13vHcHF6vmY5jDpfPTp6bw+91M/2zczh+r6s+G6rf74fNZsOePXtS\nHtNqtfB6vSguLkYgEIDdbkdrayvKy8uxYsWKlPIajQYqvx2iLi1ZsgRLlixRuxpEKXhuUibj+UmZ\niucmZap0ZiLVxyyazeZOgyIAtLe3x+5PnTo1bX1vidQwUq5Q0vDDc5MyGc9PylQ8N2kkUL1lMZ3Y\nskhERERERCNZOjNRRoxZJCIiIiIioszCsEhEREREREQpGBaJiIiIiIiywJYt6T0ewyIREREREdEw\nN3cuMHlyeo+pelhUFAU2mw1arRYWiwWhUKjTcoWFhdBqtbFbeXn5ENeUiIiIiIgo82zZAjz+ODB2\nbHqPq3pYLCwsxJVXXglFUWCxWOBwODotFwqF4Pf7EQwGEQwG4Xa7h7imREREREREmWfnTvnzwIH0\nHlfVpTP8fj/KysqS1k/cvn078vLyUspqtdqkdRc7w6UziGioRMcEnHmmuvUgIiKikW3rVsBqBT78\nMLonS5bOaG5uhtlsRlVVFQoKClBWVga9Xp9SLhgMQqfTobS0NFYuHA6rUGMioviYgMmT5T4RERGR\nGt59F7jsMgmKl1wCvPZaeo8/Or2H6xtFUeDxeFBbWwun0wmXywW73Y7169cnlQuHwzCZTKiurobR\naITT6ey0HBFlv3S16LW3S1eNvt527JAxAV/7GjBqlNyvrASmTRv4eyMiIiLqLb8fKC0F9uyRlsU/\n/AE49tj0voaq3VDdbjc8Hg9efPFFABIK9Xp9j91Nuyqn0WiwePHi2HZRURGKiorSXm8iGnr79wPf\n+558EALAlCnyAdnbkLd/f/L2V1+lt36nngqcd57Ua8oUuW80AlrVR4YTERFRtvn734Grrwba2oBp\n05pgtTZh9L+bAe+77760dUNVNSz6fD64XK6kFsLOxiYGAgFEIhGYzeZuy3HMItHwFokAH30E/POf\nwHvvyZ/R+zt2pP/1xo6V2zHHxO/35ubzAW+/Lcc44QTg888ljHZ0/PHAuecmB8izz5bXIyIiIuqP\nDRuAa68FvvgCmDULePppYMyY+OPpzESqhkUAMBgMcLvdsFqtcDqd2L59e6yl0ePxwGazoaWlBSUl\nJfD5fLFuqIqiYO3atUnHYlgkGh7275fB2NFAmBgMP/+88+dotdJ1VKcDjj4a2LULuPNOadFLDHK9\nDX5jxgAaTf/fQ2J32CNH5P289Rbw5pvxPz/+uPP38c1vxsNjNEiedFL/60JEREQjw1/+AsycKb2k\nbroJ+M1vEGtRjMqqsBgIBFBRUQG/3w+bzYb6+nqMHz8egLQeer1eFBcXw+12w+VyIRgMwm63w+12\nx8pFMSwSZY7uWgk/+EAe70xuroSpM86QP6P38/MBh0PGCALAnDnyAZnJPv00NUC+956Ey45OOik1\nQJ5+euoXABEREY1MDQ0yJOerr4CqKuCxxzof7pJVYTGdGBaJBldnk8vs3w+8/35yGOyplXD0aMBk\nSg6D0fsTJvS9DsPJgQPAP/6RHCDfekvGHHQ0dixwzjnxAHneedKtNXqdbLj/XRAREVHvPPUUcOut\ncsH5xz8GHnqo6x5SDItdYFgkGjy33AKsWSP3J08GTjllYK2ERx01dHXPdJEIsH17aoDcvr3z8iYT\ncPhwfBznDTfIlwgRERFln9paaUmMRID//E/gvvu6H0rDsNgFhkWi9Nm3T2ba+tvfgBdfBJqbOy+X\n2EqYGAp700pI3VMUCY2JAfLdd4FDh1LLWiwyhuHqq6X1cSDjMYmIiCgz/OxnMkcDACxbBjidPT+H\nYbELDItE/bd7twTD6C0QkAllEo0dCxx3HPDZZ8CvfgWUlLCVcKh99RWwbh3wne/IOMfPP5fZ0BJ9\n7WvAVVdJcLTZgJwcdepKRERE/ffTnwI/+Ync/8UvgNtv793zGBa7wLBI1Hs7dgAvvxwPh++9l/z4\n6NFAYSFw2WVyW7sW+N3v5LHhMLlMtps7Nz7Zz/XXA9ddJyHyr39NnoV11Cjg4oslOF59tYx7ZKsj\nERFR5opEJCQ++KB8Z69eLd/7vcWw2AWGRaLOtbfLZCiJLYcffphc5phjgIsuiofDadOAY49NLsMJ\nVTJLZ/8ekYh0V123Tm5//3vy7KsTJya3Oup0Q1tnIiIi6trmzdLd9Mkn5YLvk0/KDKh9kVVhUVEU\n2O12+Hw+mM1m1NfXw2g0ppTz+/2oqKhAKBRCWVkZVq5cmVKGYZFIHD4s3UijLYevvALs2ZNcRqeL\nB8PLLgPM5uQFXSk7KArg9cZbHT/6KP7YqFFygSDa6jhlClsdiYiI1DJnDvDEE3Jfq5WlMq67ru/H\nyaqwaDKZMH/+fFRWVmLhwoUIBoNYv359Sjm9Xo+amhrY7XZYrVY4HA5UVFQklWFYpJFq/37gtdfi\n4fDVVzsfx3b55fFweNZZna/NQ9krEgHefjve6vh//5fc6njyycmtjnq9enUlIiIaSQIBuXAPyIXb\nSERaGfvTmytrwqLf70dZWRm2bdsW27d9+3bk5eUllfN6vaiqqoqV8/l8cDqdaO4wPSPDImWzxC6H\niiI/9KPhsLlZJj5JdPrpyeHQaGSrESULh6XV8a9/lfC4c2f8sVGjpCtyYqsjLy4QERGl3+7dcpH2\nrbfku/Yb35C5JEZ8WKytrYXX64XBYIDX64XZbIbb7UZOh6n7ouXq6uoASNfV/Px8tLa2JpVjWKRs\nddNN8XX09HoJi4mnukYjE5dEw+Gll0orEVFvRSKyLEe01fGVV6Q7c9RJJ8VbHUtLk1sdOZaViIio\nf7Zule/WlhaZKyLaM2wgkwmmMxOpep1YURR4PB5YLBY0NjbCYDDAbrenlAuHwzAYDCnPJcpmR45I\nq8+11yYvuL53r8xUesklwKJFwF/+IvsCAeDnPwdmzWJQpL7TaIBzzgEWLgReeknGuP7+90BFBTBp\nErBrF/Db3wKzZ8v6mZdcAjzwgJyfkyfLrS8ztREREY10f/+7zB3Q0iJdULdtk9bEzZszZ9Z5VVsW\n3W43PB4PXnzxRQASCvV6Pdo7LO7mdrvR2NiY1LJoMBhSyrFlkbLB5s3AmjUSEBO7BR53nKyXt3On\nBMMpU9SrI40skQjwj38ktzomdnsePVpaGnfv7n+XGSIiopHE4wFuvBE4eBD4j/8Ann1WfuulQzoz\n0ei0HKWf8vPzk95Ix+6nieWCwWBsu7m5GeboCNAOlixZErtfVFSEoqKitNSVaDDt3i0fEmvWyPjD\nqPx84OabpXugxyMLsM+Zw6BIQ0ujAc4+W2533w3s2wf4fLLuZn29dFfdvVvKzp8PLF4MFBVxjCwR\nEVFHkQjw6KPAggVyv6oK+OUv5cJrfzU1NaGpqSltdUw04JbFhoYGrF27Fl6vN9Y1VKfTwWazoby8\nHDNmzOj2+QaDAW63G1arFU6nE9u3b4+1NHo8HthsNuTk5MBgMKC+vh5WqxU2mw1XXnklFixYkPxm\n2LJIw8jBg8ALL0hAfOGF+PiwnBygvFxC4sUXx39wc1wYZaLEab5HjYrPrjplCvDjH8u5zCVZiIiI\n5DvyRz8CfvUr2Xa55CJsui+uZsQEN263Gy6XC7NmzYLNZoPRaER+fj4AIBgMIhgMorGxEQ0NDaiu\nrsa8efM6PU4gEEBFRQX8fj9sNhvq6+sxfvx4AIBWq4XX60VxcTECgQDsdjtaW1tRXl6OFStWpL4Z\nhkXKcJEI8PrrMvbr2WdlrCEgP7KvukoC4re/DRxzjLr1JOqL6IWMCROAFSuAxx4DPv1U9k2cCNx+\nO+BwAB2GnhMREY0YX34JXH898Ic/yEXU6DwAgyEjwmJDQwNmzpyZ9rIDwbBImWrHDhmDuGYN8P77\n8f1TpkhAvP56mW2SKBscOCBdVB95RMY6AsC4cdIK+cMfyrIuREREI8Wnn0pjwOuvyxj/55+XGewH\nS0aExY7a2tpS9kVbCIcKwyJlkn37gIYGCYgvvRTff/LJwA03SEg891z16kc02CIRoLFRQuO/RxdA\no5EZVH/8Y1nmheMaiYgom/3zn7I0RigE5OXJRHFnnDG4r5lRYbGmpgZOpzP1wBoNjkQHrwwRhkVS\n25EjwIYNEhB//3vpcgAAY8cC110H3HILUFIysEHMRMPRu+8CP/sZ8OSTwKFDsq+wUEKj3Q4cdZS6\n9SMiIkq3V14BvvMdoLUVsFiAP/95aHqSZVRY1Gq1aGxshNVqTUuFBoJhkdSyebP0PX/qKeCjj+L7\nL79cWhBnzZKJa4hGul274uMaP/tM9n3968Add8iajnq9uvUjIiJKh7o6+Q148KB0QX3mGeDYY4fm\ntTMqLJpMJgQCgSHvctoZhkUaSrt3y3/8NWuATZvi+00m+XC48UZZ+oKIUu3fLxdXHn00PkHOsccC\nc+fKuEaTSd36ERER9dWWLTIE44UXgIULZd/3vw/84hcymeFQyaiw6Pf7UVJSAofDAUPCVHcajSZl\naYvBxrBIg+3gQelCsGYN8Je/pC53ccstwEUXcRwWUW+1t8t4xkceAbxe2afRSLftu+5KXj6GiIgo\nU82dCzz+ePK+mhr5Lhvq77F0ZiLtQA9QXV0NvV6PvXv3Ys+ePbHbZ9H+RT0oLCyEVquN3crLywdU\njijdIhFg40ZZbHziROlS+sc/yv5vfUu6GXzyCbBqFX/YEvWVVisD/xsbgbfeAm69Vcb0PvcccOml\nwLRpwNq18QszREREmWbLFgmKiUOOHn4YWLBg+P8uHHDLosFgQCgUQk4/B2QZDAZs2LABOp0utt1Z\nl9belGPLIqXTjh0yGceaNcDWrfH9U6dKN9PvfY/LXRANho8/Bn79axnbuGeP7Dv1VBnXOG8ex/8S\nEVFm+dOfZKZvQLqbHjki81mceaY69cmobqhVVVUoLS3FjBkz+vV8rVaL9vb2tJRjWKSB2rcP8Hgk\nIDY1xfeffLKMQbz5ZuCcc1SrHtGI8uWXcsHm0Udl6nEAOO44CYx33AEYjerWj4iIqKFBesV8/nl8\n35w5wG9+o1qVMissFhYWIhAIQKfTpYxZ3JrYHNOJYDAIi8UCi8WCYDAIs9kMt9ud0krZ23IMi9Qf\nR44APl98uYv9+2X/2LHAd78r4xCtVi53QaSW9nZZl+qRR2RpGkC6r86YIUtvXHRRfJIcta7iEhHR\nyHL4MHDvvcDy5bL9ve/J+MRx49T/LsqosBgKhWL3Ew+l0Whg7OGybyAQQGVlJVwuF4xGI5xOJxRF\nwfr16/tVjmGR+uIf/5CA2HG5iyuuiC93kQGT/BJRgjfflJbGZ54BvvpK9p1wgsxODKh/NZeIiLLf\nZ59JOPR6pdvpQw/JTN6ZMj4xY8JiIBDA0qVLoSgKCgsLsWjRotg4wvPPPx9vvPFGn44XDoeh1+t7\n7G7aVTmGReqoY2vDp5/Gl7vw++PlCgriy12waxtR5tu5U9ZqfOwxoK1N9o0ZAxw6JP+3p05Vt35E\nRJSdNm2Sni0ffACceKJMdHjFFWrXKlk6M1G/O9YFAgHY7XY4nU4YjUb4/X4UFxfj/PPPx8KFC9HS\n0tKrY0QiEZjNZgDocpKc3pYDgCVLlsTuFxUVoaioqPdvirJK4hTG06fLWKd16wiqWHEAACAASURB\nVOKzKup08eUupk3LnKtBRNSzr38dePBBYOZMwGIBjj5alrYBgJISWd9q/nz2DiAiovR54gmgqkq+\nby68UOa5mDRJ7VoBTU1NaEqcbCON+t2yWFpailWrVqV0NfX7/Vi6dCkCgQC2bdvW7TGiazT6fL6k\n7qVr164FAHg8HthsNrS0tHRbLvZm2LJI/7ZlCzB5skxM8+mnMuYJkK4CV18tAfFb35JxiUQ0vCVe\nGMrNjc+gqtMBt98uk+FMmKBe/YiIaHg7dAj40Y9klm4AcDiAn/9cLlRmoozohmqxWNDc3DzgCrjd\nbrhcLgSDQdjtdrjd7lhXVq1WC6/Xi+Li4m7Lxd4MwyJBxh8uWiRdTRNVVwN33ildBogou0S7nJ9x\nBrB+vbQ6vvyy7Bs3Tr7Y77pLWiSJiIh6a+dOmcdi40YJh489Btx2m9q16l7Gh8VwOIxNmzahuLh4\nQJXrK4bFke1f/wJcLsDtjndHi+KkF0QjzyuvSGhct062x4yR6c0XLgRMJlWrRkREw8DLLwNlZcCu\nXcApp8gyGeefr3atepYRYdHpdOKEE07AggULYvt8Ph9cLlfs/pEjR9JSyd5iWByZduwAli2TMHjo\nkOybNQv4yU/kxyGg/hTGRKSeQABYulTGlkQisuzG974nvQ3OPlvt2hERUaaJRIBf/lJ6pBw+DBQX\nA88+K7NvDwcZERYBwGazIRQKIT8/H83NzSgpKYktb2EwGNDa2pqWSvYWw+LIEgzKD8AnnpD/yBqN\nTFhz7738AUhEqf75T7mw9NRT8YmuvvMd4J57gAsuULduRESkruhwhtNOAyoqgN/9Trbvvlt6qQyn\n9bYzJiwCMklNa2srLBYLdDpdbH9tbS0qKysHXMG+YFgcGbZulf+0Tz4JHDkirQTXXy8/+NiCSEQ9\n2bFD1sRavRo4cED2lZTIZ0hREWdGJiIaaRInStPrgb17gWOPlX12u7p164+MCIuBQABTe7mQVV/K\nDgTDYnZ77z3gpz+VKz3t7TKz6Y03Skvi6aerXTsiGm527QIefRT49a+Bfftk37RpEhq/9S2GRiKi\nkSA6g/7ppwMtLfIb87TTgBdeAM46S+3a9U86M5G2v09sbGyExWLB6tWrsX379pTHQ6EQ3G43LBYL\nvF7vQOpII9w//iHjiyZPlu5jWi0wbx7w/vvSBZVBkYj646STpFvqjh3Af/+3LLuxcSNw7bXAlCky\nPmWIh94TEdEQ+/JL+XPr1vhSa3V1wzcoptuAuqEqioLa2lrU1dXB7/fHuqEqigKz2Yzy8nJUVlYi\nJycnbRXuDlsWs8vbb8sPOI9Hto86SqYqrq6WKz5EROn0+ecym/JDD8kSPABQUCCfOTfdFJ8wi4iI\nssNrr8nn+9at8X233hrvkjpcZUQ31M4oigIASWMXe1JYWIhAIBDbttvtWLt2bUo5v9+PiooKhEIh\nlJWVYeXKlSllGBazg98vIfH552X76KNloPHChTJtMRHRYDp4UNZpXbZMJtICgEmTgAULpFfDsceq\nWz8iIhqYr76S35oPPig9SM4+G7j/flmrNxvmv8jYsNgfBoMBGzZsiAVMg8GA8ePHp5TT6/WoqamB\n3W6H1WqFw+FARUVFUhmGxeHt9dflP+6f/yzbY8cCVVUyC9XXvqZu3Yho5Dl8WLoiPfigdIcHgAkT\ngDvvBL7/faAP10WJiChDvPeezHmxaZOMTb/rLvn9OXas2jVLn4wKiw0NDVi7di28Xm9Sy6LNZkN5\neTlmzJjR7fO1Wi3aox2Eu+D1elFVVYVt27YBkDUcnU4nmpubk8oxLA5Pr74qV3P++lfZHjdOfojd\ndRdw8snq1o2IqL1dLmL99KdyUQsAxo8H/t//A370I+DEE9WtHxER9ay9HXjsMempduAAcOqp0ovk\niivUrln6ZcQEN263GwUFBXjjjTfgcDjQ3NyM9vZ2tLe3o7m5GRUVFXjttddQUFCA1atXd3qMYDAI\nnU6H0tJSFBQUoKysDOFwuNNyZrM5tl1YWIhgtG8QDVt/+xtgswEXXyxB8bjjZGzQ9u1ATQ2DIhFl\nBq1WJr3ZuBHwemVx5rY2Wec1Lw/44Q+BDz+Uslu2xNfqIiKizPCvfwFXXgnccYcExVtukbkxsjEo\nplu/w6LBYMC2bduwbNkyWK1W5Ofnxx7Lz89HSUkJXC4Xtm3bBr1e3+kxwuEwTCYTqqur0djYCEDG\nLHZWzmAwJO2LtmLS8BKJAC+9BEyfDlx+ufzwGj8e+MlPJCQuXQqccILatSQiSqXRAFYr4PNJj4hv\nfxvYvx/4xS8Akwn4xjdk1ubJk2XNLiIiUt8zzwDnnCO/OSdMAH7/e5lNf4jm3xz20jZmsaGhAUuX\nLoXBYEB1dTWKi4v7fIxwOAy9Xp/SLdXtdqOxsRF1dXUAJCgaDIaUchqNBosXL45tFxUVoaioqO9v\nhtIuEpH/pPffD7zyiuzT6aQL1x13yAKoRETDzdtvy0Q4zz4rn3NAfEHnzZuzY6IEIqLhqLVVhgs8\n+6xs/8d/AKtXZ2fPtaamJjQ1NcW277vvvswZsxjV0NCAmTNnwu/3o66uDhdccEGP4xUDgQAikUhS\nF9POxjB2HKPo9XpRXV3NMYvDQCQiXUzvv1+6cAGAwQD8+MfAD37AqzpElB3WrQOuuSZ536WXAg88\nIL0oNBp16kVENBI1NsoSGB99JDNYP/KIzKw/Uj6LM2LMYketra0AALPZjGXLlvWqgpFIBCUlJQgE\nAlAUBQ6HI6kbqsfjQTgchtVqRTAYhM/nAwC4XC7Mnj07XVWnQRCJAH/6E3DBBfIDauNGafpftky6\nm957L4MiEWWPq68G5syJb48eLb0oioqASy6Rz8Me5nIjIqJ+io4X//JL6bFWWipB8aKLgLfeAior\nR05QTLe0hcXCwkKUlZVhw4YNAHq31qLZbIbL5YLdbofBYICiKHC73bHHy8rKsGnTJgDSuuhwOGAw\nGFBQUIAFCxakq+qURu3twHPPAWazTAjR3CwzBT70kIREpxM4/ni1a0lElH6/+Y10Pd28GfjkE2DJ\nEulJ8eqr8nl43nnAU0/JkhxERJQec+fGx4tPnAj88pdywe6nPwVeflnGlFP/pXWdRUVRUFtbGxtb\nOHv2bMyaNQt5eXnpeolusRuqetrbgYYGWafmnXdk38SJEg4rKmQ5DCKikebzzwG3G3j4YWDnTtmX\nlyfrx86ZAxxzjKrVIyIa1rZsiYfEjz+WfSaTrJGbMMptxMmodRa7oigKvF4vmpubsWzZssF4iRQM\ni0PvyBH5D/nAA3I1HQAmTZIlMG67LbsWOCUi6q9Dh6RV0eUC3n9f9p14okzy9f3vs1s+EVF/rF4t\njRKJ/H5g6lR16pMpMiIsBgIBTO3lv0Rfyg4Ew+LQOXxYpiJ+4IH4D59TTwXuuUcGFB99tKrVIyLK\nSEeOAM8/L8sE/XuUBcaPB+bPB+68EzjpJHXrR0Q0HHzyiUyW+MwzyfvnzJEhASNdRkxw09jYCIvF\ngtWrV2P79u0pj4dCIbjdblgsFni93oHUkTLIV18Bjz8OnHEGcPPNEhSNRrmys3Ur4HAwKBIRdWXU\nKGDmTOCNN4D164HiYqCtTVocTztNWhlDIbVrSUSUmdrbgZUr5XfoM89IV/5ly2QSm82bGRQHw4C6\noSaOUfT7/bFJbRRFgdlsRnl5OSorK5EzRP1r2LI4eA4dAn77W+DBB2WiGgAoKAB+8hPg+uuBo45S\ntXpERMPWa6/Jj53nn5ftUaOA2bNlzPc556hbNyKiTPHOO9Io8eqrsn3NNcCvfiWNFpQsI7qhdkZR\nFAC9mwl1MDAspt/Bg3KVZulS4MMPZd8ZZ0hILC+X2aaIiGjgtmyRFsann47PmPqtbwGLFgEXX6xu\n3YiI1PLFF7Je98MPS1f+iROBX/xCemlwOYzOZUQ31I7a2tqg1Wqh1WrR1taGtra2Pj3f7/fDYDB0\n+XhhYWHs+FqtFuXl5QOtMnVj/36Zethkkm5RH34InHUW8OyzwLvvAjfcwKBIRJROZ54JPPEEsG0b\ncPvt0r3qz3+WdRovvxxYt07WsCUiGileeEF+fy5fLl1Qf/ADubA2axaD4lAZcMtiTU0NnE5n6oE1\nGhw5cqTXxyksLMSbb77Z5XMMBgM2bNgQa7U0GAwYP358ymuyZXFgvvwSWLVK/lN+8onsO/dc4L/+\nC/judwFt2i4vEBFRd3bvlqvnv/oV8O+OOzjvPJlt2m6X7qpERNnoo4+AH/4Q8Hhke8oU+X16wQXq\n1mu4yKhuqFqtFo2NjbBarf0+xvLly9Hc3AyPx4P29vYuX6erx6IYFvvv88+BFSuAhx4CPv1U9pnN\nEhK//W2GRCIitbS1AbW1wCOPJK8jtnChTDTGJYqIKFscOQL8+tfAvfcC+/YBxx4ra3jffjt7tPVF\nRoVFk8mEQCCQ0srXW8FgEKWlpWhsbITJZOo0EAaDQVgsFlgsFgSDQZjNZrjd7pSJcxgW+66tDXjs\nMekHvmeP7LvgAgmJ11zDJn4iokxx4ACwZo30/GhpkX0TJ8qSG1VVwPHHq1s/IqL+2rJFZjNdtgxo\nbpZ93/mO9K449VR16zYcZVRY9Pv9KCkpgcPhSBpzqNFosGDBgh6fb7FYUFNTg6lTp8JgMHQaFgOB\nACorK+FyuWA0GuF0OqEoCtavX5/8ZhgWe01RZEzio48Ce/fKvosuAhYvBkpLGRKJiDLVkSPSNWvp\nUpkuHgB0OhnLc8cdwGefyb4zz1SvjkREvXXjjTKxV9SkSfIb9brr1KvTcJdRYbG0tBQtLS2w2Wwp\ns6AuW7as2+fW1tbC7/dj5cqV2Lt3L3Jzc3vsagoA4XAYer0+paxGo8HixYtj20VFRSgqKur9mxkB\nWluBn/9cbuGw7LvsMgmJxcUMiUREw0UkArz4ooTGl1+WfaNGSZgEuDg1EWW2gwelJ9vy5cn733gD\nsFjUqdNw1dTUhKamptj2fffdlzlh0WAwIBQK9WstxbKyMng8nqT1GfV6PTZt2oS8vLxYuUAggEgk\nArPZHNvX2RhGtix27bPPpBXxl7+UPuCAhMP/+i/giivUrRsREQ3M3/8O3HMP8L//m7z/f/5HQiMv\nBBJRpmhvB373O1mGbccO2Xf88cApp0hX1M2b2TNioDJq6YyysjL4fL5+PdftdkNRFGzfvj12jFAo\nFAuKHo8H4XAYkUgEJSUlCAQCUBQFDocDdrt9oFXPWlu2yA2QyWqcTiAvD3jwQQmKpaXA3/4G+HwM\nikRE2eDii2WSMgBIXIXqtttkbdyf/Sw+5ICISA3R3hBmM3DTTRIUzz4bsNnk9+nmzXJxi0Exswy4\nZbGwsBCBQAA6nS5lzOLWrVt7fRxFUZCbm5u0dIZWq4XX60VxcTHcbjdcLheCwSDsdjvcbjeXzujE\n3LnA44/L/bPOAoJBWTMRkAlr/vM/gWnT1KsfERENnsTvgKlT5YLhzp2yfcwxwOzZsnYuu3gR0VDa\ntEkaL6LtS5MmySynN90k3eejjRwMiumRUWMWg8Fg5wfWaGA0Ggdy6D4b6WFxyxZg8mTg5JOBXbvi\nizdfe62ERP44ICLKfok/ug4fBv78Z2l1TJwTzmIB5s+X8DhunDr1JKLsFwxKd9NnnpFtnU66zP/g\nB3IBiwZHRoTFhoYGaHoYBDFjxox+Vaq/GBYlLE6YEJ8Nz+MBZs5Ut15ERKS+rVtlUevf/CbeJVWn\nA269VZbe+OY3Va0eEWWR3buBBx6QC1VffQUcfbSslbhoUXJXeRocGREWTSZTj2Fx27Zt/apUf430\nsAgkd0HiTHhERNTR/v1AXZ38iHvttfh+q1VaG6+9FjjqKPXqR0TD1xdfyBhpl0vGIWo0wM03A/ff\nz/USh1JGhMVMxLAo2O+biIh6w++X0Pi73wFffin7Jk4EKiuBigrg619Xt35ElPm2bJEu7xs3ylJs\nH38s+6++Gli2DDj3XHXrNxJlbFicP38+VkSnY1MBwyIREVHfKQqwZo0Ex/fek32jRkkr4/z50uqo\nHfD86USUbebMAZ54Innf+edLy+L06apUiZDBYdFgMKC1tTVdh+szhkUiIqL+i0RkrcZf/xp47jlp\nLQCA00+XcY233srxRkQEHDwI1NTIBIqJHn4YuPNOru2qtoxaZzFd/H5/0tIbnT1eWFgIg8GAqqqq\nIawZERHRyKDRAEVFMqbxgw9knNGkSTI5zl13SbfUOXOA11+Pz7hNRCNHW5uExPz8eFA86qj4eMSr\nr2ZQzDYZExYrKioQDoe7fNxqtWL+/PkIhUJobm6G2+0ewtoRERGNLBMnyo/BUAh4/nmgtBQ4cEC6\nnF14oSy/sXq1TGhBRNnt449lJtNTTwUWLgQ++gg45xzg8stlttMPPpALSZwvI/tkRDfU5cuXo7m5\nGR6PB+3t7SmPe71eVFVVxWZX9fl8cDqdaG5uTirHbqhERESDZ9u2+PIb0a/7nBzglltkbOMZZ6hb\nPyJKr/ffBx56CPjtb4FDh2TfFVcATidw1VXSisiJFTNPVo1ZDAaDKC0tRWNjI0wmU6dhsba2Fl6v\nF3V1dQAARVGQn5+f8loMi0RERINv/36gvl4mxNm4Mb5/+nQJjdddJ8ES4A9IouHo9ddlkprnnpMu\n5xoN8N3vSqvihReqXTvqScaOWexPpcrKyuB2u6HX67ssEw6HU8YzKorS59ciIiKigTvmGFk77dVX\nZfmNigpg3DjgpZeAsjJpbZw8WW5z56pdWyLqypYt8ZbBSARYt07GLV94IfD738t4xIoKKdPQwKA4\nEo1O58H27t3bp/K1tbWwWCyYPn16t8/V6XS9brFcsmRJ7H5RURGKior6VCciIiLqvalTgdpamfTi\nySeBRx8FgsH4448/LuOc7riDM6kSZZK5c+X/JyBjD/fuBd55R7bHj5deAj/8oYxfpszW1NSEpqam\nQTl2Wruh9lVZWRk8Hg90Oh0AaS3U6/XYtGkT8vLyYuU6jlH0er2orq7mmEUiIqIMs3kzcNZZEgz3\n7o3PmnrUUTJT4g03AN/+trROEpE6tmyRlv9TTgE++UQmqQEkGN55J+BwSGCk4Sljxyz2VTgchubf\n8+u2tLSgsLAQiqJg/L/PTo/HA5vNhpycHBgMBtTX18NqtcJms+HKK6/EggULko7HsEhERKS+xBaL\nyy4Dxo4FfD4gOi3B8ccDM2ZIcCwuBkaNUq+uRCNJe7v8X3z4YeDFF5Mfu/9+GZN49NHq1I3SJ2vC\nYiJFUZCbm4sjR47E9mm1Wni9XhQXFyMQCMBut6O1tRXl5eVYsWJFyjEYFomIiDJDxxkSP/kEePZZ\n4OmngcSOQSefDMyeDdx4I2A2c402osGwc6dcwPmf/wG2b099/NZb4xd4aPjLyrCYDgyLREREme/9\n9yU0Pv000NIS3//Nb0pr4/XXAyYTp+QnGojDh2XCGrcbeOGFeMv+aacBt90m6yLu2yf7+H8suzAs\ndoFhkYiIaPiIRGSK/qefBtauBT79NP7YCScAu3fL/TlzZG1HIupZKCQtiI8/Dnz0kewbPVqWtKmo\nAEpKAG1a10OgTMOw2AWGRSIiouHp8GHA65Xg2NAgazkmuv12aQ0591x2VSUCklveDx0C/vAHaUX0\neuMTS33jG8C8ecAttwAnnqheXWloMSx2gWGRiIho+Nu0CbBYAJ0OCIfjP3wBWYbj2mvldsUVwJgx\n6tWTSC2Jk0iddRawaxfw2WeyffTRgN0uIfHyy3lxZSRiWOwCwyIREVF2SPwxXFICGI3An/4kE+VE\nHX88cNVVEhyvuYbrONLIsG6dnO/jxgFffhnff8450s30xhsBvV69+pH6GBa7wLBIRESUPTpOcNPe\nLjOp/vGPcosuIA7I8huXXhpvdSwo4AQ5lB0iEeDdd6V7dkOD3I/SauX/xTPPAOXlbEUkkVVh0el0\nwu12Q1EUlJSUYNWqVTAajSnlCgsLEQgEYtt2ux1r165NKsOwSERENHKEQtLa+Mc/Av/7vzLuMSon\nR7qwAjJe64knVKkiUb9EItIdOxoQt26NP5aTA0yYEJ9JmBNAUUdZExa9Xi+qqqrg9Xqh1+tRUVEB\nAKirq0spazAYsGHDBuh0utj2+PHjk8owLBIREY1MigL89a8SHP/0J+Dzz5Mfnz4dmDEDsNlk0g+2\nwJDaOms537gxHhB37IiXnTBBZjOdORMoLpaxumw5p65kTVgMhUIIh8OYMmUKFEXB0qVL0dbWhhUr\nVqSU1Wq1aI8uENMFhkUiIiJ6+23gvPOAk06SEHnwYPLjp5wi4yCjN84SSUMtcUzuVVfJuqLPPRdf\n6gIAJk6UCxwzZwKXXSbLXxD1RtaExSiPx4OysjLo9XoEg0Hk5OQkPR4MBmGxWGCxWBAMBmE2m+F2\nu1PKMSwSERERkPxj3G6XH+SNjbKsQHTWyKjzzpPQaLPJj/Jx4+KPsfWG0u3ll2Um3wkT5GJGYvfp\nU0+VcDhzJnDRRVwPkfon68JiVFVVFYLBINavX5+0PxAIoLKyEi6XC0ajEU6nE4qipJRjWCQiIqKo\nzoJee7u0PDY2yu1vfwMOHIg/PmYMcMklEhxffVW6tAIcF0b9t3s30NQEvPSS/Bk9LxPNmwc4HEBh\nIbtI08BlTVgMhUIwGAyxFsJwOAyj0YjW1tZunxcOh6HX61O6pTIsEhERUV8cOAD83/9Ji2NjI+D3\nJ6/rOGqULNGhKDJJzsyZwHHHqVZdGgZaW2XCpZdeklvi7KWAtFzrdPEup7feGm8FJ0qHrAmLNTU1\n2LNnD5YtWwYg3t20Y1gMBAKIRCIwm82xfZ2NYdRoNFi8eHFsu6ioCEVFRYP3BoiIiCir7NkDbNgA\n1NUBHk/q41otcPbZwIUXAtOmyZ9nnsnugiNNYqu1okjX0mg4fPvt5AsOY8dKa/X06XKzWDhBDaVX\nU1MTmpqaYtv33XdfdoTFQCAAq9UKn88Ho9GIiooKTJgwITbBjcfjgc1mQ0tLC0pKSmLlot1QuXQG\nERERDZbEcY9nnCEtQm+/nTzGDJCWx/PPj4fHCy+UyXWiGAqyR3u7rGcYvZCQmwvs3Sv7o8aMkfGG\n0XB44YXA0UerU18ambKmZREA3G43XC4XWltbYbPZ4Ha7Y0tiaLVaeL1eFBcXx8oFg0HY7fakclEM\ni0RERJROHYPe/v3SVXXjRuC11+T2wQepz8vLk5AQCgGvvy77OO5xeNmzB3jnHblA8M478fv79yeX\nGz1aLhREw+G0acAxx6hTZyIgy8JiOjEsEhER0VD7+ON4cNy4EXjjDeCLLzove8EFgNksaz1+85ty\nO+20npdFYOtk+nT8uzxwQPZ1DIYff9z1McaPB449Vso0N8vENESZgmGxCwyLREREpLYjR4DNm2Xd\nvMWLpZXpwIHkcWyJjjoKKCiIB8jEIDlhAnDbbfHusGyd7L8vvgBuuAH4wx9kOy9PxhNu3Sr/Zh2N\nGwecc07qbeFC/ntQZmNY7ALDIhEREWWSxHGPs2bJ9vvvA//8Z/zPf/2r6+cffzywb5+MjRszRlqy\nVqyQMXGTJgEGQ++WWsiWlsme3sf+/cC2bRIAo7foduKC94m0WuD004Fzz00OhUZj1xMXZcvfJ2Un\nhsUuMCwSERFRpukpWHzxhYSZxAAZve3b1/2xx46V0DhpEnDKKfH7iTenU5b9AAbWEpaOgDSQYyQG\n7+9+F7jlluRQuHVr98F79GiZnCgnR/7edu2SiWquuYZjDCm7MCx2gWGRiIiIskUkIoFm7lxg3TrZ\nd/rpQH6+hKIPPwTa2np3rDFjpLvrF18AV18tIXL8eGm5HD8++dZx3/HHAxUVA+96mRj2ysuBJUtk\n2YlwWP5MvN9x365d0kKo1SbPPNrR6NHSInj66am3U09Nz/sgynQMi11gWCQiIqJs1FWLXFsbsHOn\nhMfo7cMP4/d37Oh9oOzJ6NES1g4dAk48ERg1SgJte3v81tX2kSPAV1+lpx5Rl14KTJ0qQbCgQP7M\ny+NkQUQMi11gWCQiIiJKdvPNwJNPyv2SEmnha2tLvu3b1/12Omk0EiJPO01Cp04nt5yczv+M3n/g\nAaC+Xo7BVkGirmVVWHQ6nXC73VAUBSUlJVi1ahWMRmNKOb/fj4qKCoRCIZSVlWHlypUpZRgWiYiI\niFINpDWtvV3GBz71lGzb7cAjj0jo02rjt+62NRqgqgr47W/lGP0Ne2wVJOpZ1oRFr9eLqqoqeL1e\n6PV6VFRUAADq6upSyur1etTU1MBut8NqtcLhcMTKRzEsUiZrampCUVGR2tUgSsFzkzIZz8/MofYE\nN5mG5yZlqnRmoi4mBB4aJpMJHo8HeXl5iEQiMBqNyM3NTSnn9XqRm5uLefPmIScnBy6XC6tWrVKh\nxkT919TUpHYViDrFc5MyGc/PzHHmmQMPeek4RqbguUkjgaph0Wg0YsqUKfB4PDAYDFi9ejWWLVuW\nUi4YDMJsNse2CwsLEQwGh7KqQ06ND6DBeM2BHrO/z+/L83pbtqdyI+VLQ633mS3npxrnZl9fdzjj\nZ2f/n9/X56TrvOO5ObxeMx3HHC6fnTw3h9/rZvpn53D8Xlc1LEbNmjUL7e3tsNvtsNvtKY+Hw2EY\nDIakfYqiDFX1VMEvlYE9n18qg4dfKgN7frZ/qaiNn539fz7D4uDiuTmwY/B7ffDwe31gz8/273VV\nxyyGQiEYDAbk5OQAkFBoNBrR2tqaVM7tdqOxsTE2llFRFBgMBrR3WGinoKAALS0tQ1N5IiIiIiKi\nDGMymbBt27a0HKuHlWgGl8fjwZ49e2JdT/fs2dNpufz8/KRup83NzUndUqPS9ZdCREREREQ00qna\nDbWkpAS1tbUIBAJQFAVOpxPl5eWxxz0eD8LhMKxWK4LBIHw+HwDA5XJh9uzZalWbiIiIiIgo66ka\nFqdOnQqXywW73Y78/HxotVq4XK7Y42VlZdi0aRMAwOfzweFwwGAwoKCgwYJxFgAACORJREFUAAsW\nLOjz69ntdpSWlsJisSAQCKTtfRClg8PhQGlpKQoKCtDQ0KB2dYiS1NbWoqamRu1qEMHpdMa+y0Oh\nkNrVIUrBz0vKRP39nalqN1QAqKioSFkvMSpxTOLUqVMH1M20trYWBQUFWLp0KQKBAJxOJ9avX9/v\n4xGlk9frhVarxfr162Njd2fOnKl2tYgAADabDT6fD8uXL1e7KjTC+f1+BAIBrF+/HoFAAA6Hg9/l\nlFH4eUmZaCC/MzNiNtSe2Gy2lKuHfr8fhYWFMBgMqKqq6tUxKisrAQCRSAR6vX5Q6kojTzrOT5PJ\nBKfTCQDIyclJmf2XqD/ScW4CQGNjI1atWpW2BX6JEvXlPPV6vSgtLQUgF5Gbm5uHtK408vT1c5Sf\nlzRU+nJuDuR3ZkaHRa/XC4fDAZ/PB41Gk/SY1WrF/PnzEQqF0NzcDLfb3e2xjEYjjEYjHA4HLBYL\nFi1aNJhVpxEg3ednXl4egsEgLBYLqqurB7PqlOXSeW4SDZb+nKetra0wGo1qVJdGGH6OUqbqz7k5\nkN+ZqndD7U4gEEj5SwDkLyk3Nxfz5s0DIBPeOJ1OVFRUoKysLKW8zWaLdXVdtWoVqqurYbPZOHsq\nDUi6zs/S0lLMmzcPy5cvR319PVavXo0pU6YMev0pew3GZydRuvXnPM3NzU2aHT3b11wm9fTn/CQa\nCv09N/v7OzOjw+Ldd98NALH1FaOCwWDS0hmFhYWxL4+OZaOqq6thMplQUVEBvV6fspYjUV+l8/z0\neDzwer144403Bqm2NJKk89wkGiz9OU9LSkrgdDpx9913w+/3w2azDV2FaUTpz/lJNBT6c24O5Hdm\nRofFroTD4ZS+tj1dXVy0aBHsdjtWrVoFQP7SiAZDf85Pr9eL5uZmFBQUAAA0Gg22bt06aHWkkak/\n52aizq5kEqVbd+fp1KlTYTabUVpaCo1GE/tOJxoqvf0c5eclDbXuzs2B/M4clmFRp9P1uWUwJyeH\nM6bRkOjP+bly5UqsXLlykGpEJPpzbkaxixUNlZ7O02XLlg1hbYiS9eZzlJ+XpIbuzs2B/M7M6Alu\nupKfn5/U5N/c3JzU7EqkJp6flKl4btJwwPOUMhnPT8pUg3VuDsuwaLVaEQwG4fP5AMgAztmzZ6tc\nKyLB85MyFc9NGg54nlIm4/lJmWqwzs1hERY76/ft8/ngcDhgMBhQUFCABQsWqFAzIp6flLl4btJw\nwPOUMhnPT8pUQ3VuaiJcNZSIiIiIiIg6GBYti0RERERERDS0GBaJiIiIiIgoBcMiERERERERpWBY\nJCIiIiIiohQMi0RERERERJSCYZGIiIYNrVabcsvNzVW7WoNm+fLlePPNNwHIe29ra0t5vKysrNtj\nNDQ0wO12D1odiYgoezEsEhHRsOL3+6EoSuy2Z88etas0KBRFQV1dHaZMmdJlmc7W2epo5syZcLlc\n6awaERGNEAyLREQ0rOh0OowfPz52A4BgMAibzQan0wmLxQIA8Hq9MJlM0Gq1KC0tRTgcjh2jtrYW\ner0eubm5qK2thcFgACBBNPr86DFKS0uTtjseMxgMorCwEDU1NbGFkAOBQOw5Ho8HJpMJBoMBVVVV\nAACHw4GamppYGafTierq6qT3WVtbGyvfGx6PJ6XVdcOGDQCAWbNmoaGhodfHIiIiAhgWiYhomIlE\nIp3u9/l8aGtrg8fjgaIoKCsrw+rVq6EoCvLz81FRUQFAAmF1dTVeeuklBINBrFq1qlctdF0dU6PR\nIBAIQKPRoLW1FSUlJXA6nQAkxFZWVqKhoQGbNm2C1+tFQ0MDSktL0djYGDt2Q0MDZs+enfR6dXV1\nKCkp6fa9J27PmjUL7e3taG9vR11dHUwmE4qLiwEANpsNa9eu7fE9EhERJRqtdgWIiIj6wmQyJW17\nvV7k5eUBAFasWAFAWuVKSkowffp0AMDKlStjrYdr166Fw+GIde9cvnw57HZ7j68bDW+dHVOn02HB\nggUApNUwGkw9Hk/Sa9XX10Oj0WDKlCmx1wwGg2htbU3pbur3+2PvK0qv16fUq2PdFUVBZWUl/H5/\nbJ/RaITX6+3xPRIRESViWCQiomHF6/UiPz8/tp2Xl4dgMJi0r6WlBR6PJxbmgPj4vlAolNS11Gg0\n9up1uztm4r7E1r5oF9WoqVOnxu6XlJTA5/Nh06ZNcDgcSa+lKAp0Ol1KHfx+f9L+lStXIhgMJpWx\nWq1Yvnx5UtDMz8+Hoii9ep9ERERRDItERDSs5Ofnp7S4dVRQUIBZs2ahrq4uti86jtBgMGDbtm2x\n/R3DVqLEgNXVMbvqFgtIi2NLS0ts2+/3IxQKYebMmbDZbKirq8OmTZuwevXqbt9PVH5+fmycZvS9\nJNbf6XRiwoQJmDdvXq+OR0RE1B2OWSQioqxTVlYGr9cLn88HRVHgcDhi4wjtdjtqa2sRCASgKAqc\nTmeshVCn08UCnaIoWLp0aeyYdrs95ZjV1dXdjnd0OByx1woGg7Db7di7dy8AxIJnKBRK6YKq0+n6\n3BLo9XrhdruTwmxUMBjstKWSiIioOwyLREQ0bHQXzBIfy8nJQX19PRwOBwwGA7Zv3w6PxwNAumku\nWrQIVqsVJpMJs2fPjrUO5ufno7KyEiaTCeeffz7uueeepCDZ8Zj19fWIRCIp9YpuG41GuFwuWK1W\nFBQUoLS0NNbqZzQakZub2+U6iWazGaFQqNv3rtFoYvtra2sRDoeh1+tjs6FGWyyjs8USERH1hSbS\nXf8ZIiKiLBed2bS1tXXIX9tisWD16tWdrqVYU1MDnU4XmyxnIJxOJy688ELMmDFjwMciIqKRg2GR\niIhGNLXCYmNjI2bPno09e/Z0+ng4HIbVakVzc/OAX6ugoCBpnCYREVFvsBsqERGNeL1ZZzGdPB4P\nysvLUV9f32WZnJwclJeXxybm6a+GhgZUV1cP6BhERDQysWWRiIiIiIiIUrBlkYiIiIiIiFIwLBIR\nEREREVEKhkUiIiIiIiJKwbBIREREREREKRgWiYiIiIiIKAXDIhEREREREaX4/+XtAtMpfVfuAAAA\nAElFTkSuQmCC\n" } ], "prompt_number": 34 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute $\\left[A^T A\\right]^{-1}$ to get data (co-)variances" ] }, { "cell_type": "code", "collapsed": false, "input": [ "A = dd_res.del_mim_del_chargeability(omega, pars, s)\n", "\n", "B = A.T.dot(A)\n", "#B = np.matrix(B).I.dot(B.T.dot(B))\n", "B = np.matrix(B).I\n", "\n", "variances = diag(B)\n", "vars_norm = variances / np.max(variances)\n", "\n", "fig, (ax1,ax2) = plt.subplots(2,1, figsize=(15,5))\n", "ax1.plot(s, vars_norm)\n", "ax1.invert_xaxis()\n", "\n", "a = ax2.hist(vars_norm, 100)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAE5CAYAAADGAFKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XGXd//HPpGWHLFNQRMA2CQj6CG0mbAISSJMqKJtN\nWoGCS9uk+gMftdg+gtICWtLigluXiCKLQjusimIzgYiKAmmKIijSTNiVpcmEFtrSNuf3x9fJ0iyd\nTGbOmTnzfl3XXJnlZM6d07sz53PuLeA4jiMAAAAAgG/keV0AAAAAAEBqEfQAAAAAwGcIegAAAADg\nMwQ9AAAAAPAZgh4AAAAA+AxBDwAAAAB8ZsxBr6qqSh0dHcO+3tbWplAopGAwqPr6+rHuDgAAAACw\nG0kHvUgkorq6OjU3NysQCAy7XWVlpebNm6eOjg61traqsbEx2V0CAAAAABKQdNBbv379iAFPsjA4\nYcIEzZ49WwUFBWpoaNDKlSuT3SUAAAAAIAHjk/3Fyy+/XJK0evXqYbeJRqMqKyvrfRwKhRSNRpPd\nJQAAAAAgAWmdjKW7u1vBYHDAc7FYLJ27BAAAAICcl3SLXiIKCwvV2dmZ0LalpaVqb29PZ3EAAAAA\nIGOVlJRow4YNKXmvtLboFRcXD+iq2draOqArZ3/t7e1yHIebi7errrrK8zLk2o1jzjHPhRvHnGM+\n1K293dHeezuSHF14of0MBBz95Cfel82vx9xvN445xzwXbqls+EpL0AuHw+ru7lZlZaWi0aiam5sl\nSQ0NDZo5c2Y6dgkAADKU40iXXipt3SpdeKF0661SQ4M9P3u2tGKF1yUEAP8Zc9AbaubN2tparVu3\nTpLU3Nysuro6BYNBlZaWav78+WPdJQAAyCL33iv95jdSfr50/fX23Fe/Kn3nO3Z/3jzphz/0rnwA\n4EdjHqO3cePGQc/19PT03p8yZUrK+pkitSoqKrwuQs7hmLuPY+4+jrn7MvmYv/WWdNlldv+b35QO\nPrjvtS99SRo/3l6/9FJp+3Z7Lhtk8jH3K465+zjm2S3gOI7jdSEkaxnMkKIAAIAUWbjQumlOmSI9\n/rg0btzgbZYvlz7/ebvf0GCtfQCQi1KZiQh6AAAgLZ5+Wjr2WGnnTunPf5ZOOGH4bRsbpbo6G7d3\n7bXSFVe4V04AyBSpzERpnXUTAADkJseRvvAFaccOac6ckUOeZNv89KdSICBdeaW0eLG9BwAgObTo\nAQCAlLvtNumii6QDD5T++U9pwoTEfu/WW6VLLpF6eqxV75prLPwBQC6gRQ8AAGSsWEz6ylfs/tKl\niYc8ycLhbbfZWL5vftPG+HEdGABGj6AHAABS6utfl159VTr5ZGudG62ZM6Xbb7cZOZcutdBI2AOA\n0aHrJgAASJm2Num446y7ZVubdMwxyb/XPfdItbW27MKll0o33EA3TgD+RtdNAACQcXp6bPHznh5b\nG28sIU+Szj1Xuusuac89pR/8wJZg6LdULwBgBLToZbCtW6Xnn5eiUamjo+/2/PNSVZX0rW95XUIA\nAPqsWmVLJBxyiPSPf0j5+al53wcesNC3bZs0e7a0cqWUx6VqAD7EOno+sXOn9NJLA0Nc/9srrwz/\nu4GA9PrroxvgDgBAurz+uvT+90tdXdIdd1iXy1RqapLOPtsugl5yiXTjjUMvvg4A2Yygl4Weeca6\nn8RDXDQqvfCCrS80nHHjpMMPl4qLpUmT+m433CA9+mh6vkgBAEjGZz8r/exn1uPkd79Lz1i6hx6S\nPv5x6e23pQsvlG66ySZsAQC/SGUmGtPHY1tbm+bMmaOOjg7V1tZqxYoVQ263atUqLViwQN3d3Zo6\ndapWrlypSZMmjWXXWeUf/5COP17avHnwawcfPDjIxW+HHjr0F9jzz1vQa2oi6AEAvPenP1nI23NP\n6Yc/TN+EKaefLv32t9KZZ9oSDDt2SLfcIu2xR3r2BwDZbEwtekVFRVq2bJlqampUWVmpuro6zZkz\nZ8A20WhUpaWlam5uVigU0le/+lV1dnZq9erVAwvi0xa97m4Lef/6l1RZKZ13Xl+QmzhR2mef0b/n\nunVSebn0vvdZ6yAzkAEAvLJjh1RWJj35pHTllbbAebr96U/Sxz4mbdpkSzH84hd8FwLwh4yYdTMS\niWjChAmaPXu2CgoK1NDQoJUrVw7aLhgMSpIKCwuVn58vx3E0IUcGlvX0SLNmWcj70Ieke++VvvAF\nuxJ59NHJhTxJmjLFxuY9/7z07LOpLTMAAKPxgx9YyJs0Sfra19zZ58knS2vXSgccYOvt3XuvO/sF\ngGySdNCLRqMqKyvrfRwKhRSNRgdtV1hYqBUrVigUCikvL0/hcFjLly9PdrdZ5ZprpF/9Sioqku6+\nW9pvv9S8b16eNHWq3W9qSs17AgAwWi+/LH3jG3b/+99P/gJmMk48UfrmN+3+V75ik7QAAPokHfS6\nu7t7W+viYrHYoO2i0agWLlyotrY29fT0qKamRrU5MLDsvvukRYsslP3yl1JJSWrfv6rKfhL0AABe\n+fKXbfz5uefaJClumzdP+uAHbYKz737X/f0DQCZLejKWwsJCdXZ27na7cDisGTNmaPLkyZKkFStW\nKG+YxW8WLVrUe7+iokIVFRXJFs9TzzxjXTYlW+tu2rTU7yMe9B56SNq+nYHoAAB3NTVJq1dL++4r\nfe973pRh/Hjbd1WVte5dcomt4QcA2aKlpUUtLS1pee+kg15xcfGArpqtra0DunLG7TqgcKhWv7j+\nQS9bvfmmXdl8801p+nTpq19Nz34OP1w68kgb//fYYzZeAQAAN2zbZmPOJenrX7fJwbwydap9795z\nj7RwoXTzzd6VBQBGa9fGrcWLF6fsvZPuullZWaloNKrm5mZJUkNDg2bOnNn7ejgcVnd3t6ZPn67V\nq1erublZsVhMCxYsUE1NzdhLnoF6euxq4j//aV1Jfvaz9M4CVl1tP+m+CQBw07JlNhnYUUdZ902v\nffvbtrTDLbdIf/mL16UBgMyQdNCTpObmZtXV1SkYDKq0tFTz58/vfa22tlbr1q3TpEmT1NjY2Ltd\nLBZTY2PjmAueib71LbuiWFhoP/ffP737Y5weAMBt0WjfJCg//rEFLK8VF9uELJJ02WV24RUAct2Y\n1tFLpWxfR+/++6VPfMLu//rXtoRCur35phSfD2fjRqmgIP37BADkLsex77r775cuvFC69VavS9Rn\n82bp/e+XXnnFetR8+tNelwgARi8j1tFDn2eftS88x7ElFdwIeZKUn2/TS+/cKaVpDCcAAL3uu89C\nXn6+dP31XpdmoP33lxoa7P7ChXYxFAByGUFvjDZtskHg3d3SeedJ//d/7u4/3n1z7Vp39wsAyC1v\nvWXdIiXp2mulgw/2tjxDueACuwD66qt93UsBIFcR9MbAcaTPfEZ6+mnp6KOln//c1s1zExOyAADc\ncO210gsvSFOm2Pp1mSgvzxZul2xdvWef9bY8AOAlgt4YNDRId95pXVjuvls64AD3y3DccTY279ln\npeefd3//AAD/e/pp66oZCEjLl9v6dZnquOPsIuz27X0TtABALiLoJemBB6Svfc3u33qrDQD3wvjx\n0umn231a9QAA6XDVVdKOHdKcOdIJJ3hdmt371rfs4uuvfiX97ndelwYAvEHQS0J7u/SpT1nXzcWL\n+2bb9Arj9AAA6bJ5s80mLUlXXultWRJ18MG2kLsk/e//WuseAOQagt4obd5sk6/EYtLZZ2fGl158\nnF5zs83ACQBAqvzmN9LWrdJJJ0mHHeZ1aRL3xS9KRxwh/fOf0o9+5HVpAMB9BL1RcBzpc5+T/v53\n66p5883uT74ylJISaeJEqbNTWr/e69IAAPzkzjvt5/Tp3pZjtPbcU/rOd+z+okXS6697WhwAcF0G\nxJTscf310urV1u//nnsyZ4HyQKCv+ybj9AAAqfL227ZuniR98pPeliUZZ50lffSjtgTSFVd4XRoA\ncBdBL0FNTbYAq2QteUcd5W15dsU4PQBAqv3ud7Z+3nHHSe97n9elGb1AwJZZGD9e+slP6PUCILcQ\n9BLQ0SHNnCn19Njg7nPP9bpEg51xhn2h/elP9qUMAMBYhcP2M9u6bfZ31FHSpZfa8IvLLrOfAJAL\nxhT02traFAqFFAwGVV9fP+x2sVhMVVVVysvLU3l5uTo6OsayW1e9/bZ03nk2/u3MM62ffyaaMEEq\nL7eZxR5+2OvSAACy3dattjyBlJ3dNvv7xjekgw6S/vhHG4IBALlgTEGvsrJS8+bNU0dHh1pbW9XY\n2DjkdqFQSNOmTVMsFlN5ebnq6urGslvXOI6tGfTXv0qlpdJtt2XG5CvDYZweACBVmpqkTZukyZNt\n0q9sVlhoa+tJ0uWX20VcAPC7pGNLJBLRhAkTNHv2bBUUFKihoUErV64ctF1bW5sCgYDmz5+v/Px8\nrVixQqtWrRpTod3yox9Jv/iFtP/+NvlKYaHXJRoZQQ8AkCp+6LbZ32c+I02ZIr34otTQ4HVpACD9\nkg560WhUZWVlvY9DoZCi0eig7VpbW1VWVqb6+nqVlpaqtrZWRUVFye7WNTt3SkuW2P0bb5Q++EFv\ny5OIk06S9t3Xln945RWvSwMAyFbvvCPde6/d90vQGzdO+v737f7SpdLzz3tbHgBIt6SDXnd3t4LB\n4IDnYrHYoO1isZjC4bDKy8vV1NSkYDCompqaZHfrmkjEwtIRR0hZUFxJ0l57SaedZvcjEW/LAgDI\nXs3NtiTB//yPrRvrF6ecIn3qUzb+8PLLvS4NAKTX+GR/sbCwUJ2dnbvdrqioSFVVVZo9e7YkqaGh\nYdgWvUX9ZjqpqKhQRUVFssUbs5//3H5efLHNZpktqqul3/7Wum9efLHXpQEAZCO/ddvsr6HBhmOs\nWSO1tEgenmoAgFpaWtTS0pKW90466BUXFw/oqhnvojnUdk6/uYwLRlhlfFGGTGnZ3S3dfbfdnzXL\n27KMVv9xeo6TXSEVAOC97dstCEn+DHqHHSb93//ZTJxf/KLU1mbdOgHAC7s2bi1evDhl7510183K\nykpFo1E1NzdLspa6mTNn9r4eDofV3d2tyspKtba26s4771QsFlNdXZ2q4mkkQ61ebd06Tj89+xaI\n/cAHpEMOkV59VXrySa9LAwDINi0ttqTQUUfZd4ofzZ9v3+9/+5s0zIThAJD1xrRYQHNzs+rq6hQM\nBlVaWqr58+f3vlZbW6t169b1brdkyRIFg0E999xzWrNmzdhKnWbxbpuXXOJtOZIRCEhTp9p9Zt8E\nAIzWnXfaz+nT/dsrZJ99pOuvt/tXXil1dXlbHgBIh4DTv1+lhwKBgDKhKBs22AQs++0n/ec/trRC\ntrntNumii6Rp06QHHvC6NACAbLFzp/Se90ivvy498YR07LFelyh9HEc64wxrwbzsMumGG7wuEQCk\nNhNl8PLf3rj5Zvs5fXp2hjypr0Xv4YetCyoAAIn4wx8s5JWWSscc43Vp0isQsHCXl2fr5j71lNcl\nAoDUIuj109PTF/Sysdtm3LvfbV/QW7ZIjzzidWkAANmi/2ybfu222d8xx0h1ddaS+aUvWSsfAPgF\nQa+fhx+2BVTf976+9eiyVXy+m7VrvS0HACA79PQMHJ+XK665RioqsnHt993ndWkAIHUIev3cdJP9\nnDXLunJks/7LLAAAsDuPPGJj0ydOlIZYLcm3JkyQrr7a7tfXSy+84G15ACBVsjzOpM7mzX1dVvyw\n0Pipp0p77SWtXy+98YbXpQEAZLr4d+AnP5kb3Tb7q6+3hdP/8x/prLNsPV0AyHYEvf+66y7prbek\nk0+2WTez3b77SqecYuMN/rvUIQAAQ8rVbptx48fbecBRR0l//7tUU2MLxwNANiPo/Vc2r503HMbp\nAQAS8dhj0ksvSYceKh1/vNel8UZRkXT//dJBB9mwh89/nslZAGQ3gp5sApaHHpL23luqrfW6NKnT\nf5weX1YAgOH077aZ7WPUx6K4WPrVr+x84Cc/ka67zusSAUDycvjjvM8tt1gQOvdcqaDA69KkzuTJ\n0oEHSi++KP3rX16XBgCQiRxn4LIKue6EE6TbbrNxil/7mnT77V6XCACSk/NBz3H8sXbeUPLy+hZP\nZ/ZNAMBQ2tqsZ8t73iN9+MNelyYznH++tGyZ3f/0p6U//tHT4gBAUnI+6P35z9Kzz9oXXLyro5+w\nzAIAYCTx1rzzz8/tbpu7+vKXbZzetm3SOefYuQIAZJMxfaS3tbUpFAopGAyqvr4+oe2DweBYdply\n8UlYZs2Sxo3ztizpEA96Dz3EDGIAgIHotjm8QEC64QbpzDOlzk77yXJFALLJmIJeZWWl5s2bp46O\nDrW2tqqxsXHE7efMmaPuDFqcZssW6Y477L7fum3GHXaY9P73S5s2SY8+6nVpAACZ5G9/kzZssJkm\nTz3V69JknvHj7TxhyhQ7TuecI23d6nWpACAxSQe9SCSiCRMmaPbs2SooKFBDQ4NWrlw57PZLly5V\nSUmJnAya/vG++2xR1PJy6QMf8Lo06VNdbT/pvgkA6K9/t00/9mpJhf33l379a1t64pFHbMxeT4/X\npQKA3Us66EWjUZWVlfU+DoVCikajw267atUqNTQ0JLu7tLjpJvvp19a8OMbpAQB25TjSmjV2n26b\nIzvkEFtj74ADrIXvyiu9LhEA7F7SQa+7u3vQeLtYLDbktrW1tWpsbFRRUVGyu0u5V16xhcT32EP6\n1Ke8Lk16VVRY95NHH5WG+ScCAOSYp5+WnnlGmjBBOu00r0uT+Y45xoLxuHHSkiXSbkarAIDnxif7\ni4WFhers7NztdqtWrVJ5eblOP/10dXV1jbjtokWLeu9XVFSooqIi2eLt1m23WdeLc86xLzk/O+AA\n6cQTbXrohx6SzjvP6xIBALwW77Z57rl20RO7N22atHy5NHeuNG+e9L739Q2PAIBktLS0qKWlJS3v\nnXTQKy4uHtBVs7W1dUBXzrhIJKJwOKzVq1f3PjdhwgStW7dOEydOHLBt/6CXTo7TN9vmpz/tyi49\nV1VlQa+piaAHAOgLep/8pLflyDZz5kjRqHTdddbl9Y9/tNY+AEjGro1bixcvTtl7B5wxzI4SDAa1\nZs0aVVZWqqqqStOmTdP8+fMlSeFwWFX/HRwWCAQkSe3t7QqFQorFYsrPzx9YkEDAtYla1q2zCVgO\nOkh6+eXcuJL5l79IJ50klZbm1lpA4bC0erW0YoWUYSt7AIBn/vlP6eijpYIC6bXXpD339LpE2aWn\nR7rgAhuvd+ihNjTikEO8LhUAP0hlJhrT8grNzc2qq6tTMBhUaWlpb8iTbFzeunXrVFBQoPz8fOXn\n52vSpEkKBAKDQp7b4pOwXHBBboQ8yYJtQYFND93R4XVp3PHmm9a9Zs0aKcPmAQIAT915p/085xxC\nXjLy8uxc4sMfll56Sfr4x6XNm70uFQAMNKYWvVRyq0XvnXfsqtvGjVJbm62NkyvOP1+6+25p5UoL\nQH73zW/2zYy2337Sc89JBx7oaZEAICNMmSI98YQtM/SJT3hdmuz1xhvWW2bDBumss6R77rHJzwAg\nWRnTopeN7r/fQt6HPiRNnux1adyVS8ssvPmm9O1v2/3iYumtt6Tvfc/bMgFAJmhvt5B3wAF93wtI\nzoEHSr/5jQ0NuP9+6YtftHkAACAT5FzQi0/Ccskl0n+HDuaM+Mxgzc3Szp3eliXdfvADqatLOvVU\n6ZZb+p5jeQkAuS7ebfMTn5D23tvbsvjBEUdI995rXWB//GPpu9/1ukQAYHIq6L3+ul1xGzdOuvBC\nr0vjvpISadIkC0BtbV6XJn36t+YtWmRjKCor7fnvf9/TogGA5+KzbbJIeuqcckrf+P/5822YBAB4\nLaeC3i9/Ke3YIX30o9LBB3tdGm/Eu+msXettOdLphz/sa807/XR77utft5/f/a4FPgDIRc8/Lz3+\nuI1b/uhHvS6Nv3zqUzY23HFssrff/IZunAC8lVNBL3617ZJLPC2Gp/w+Tm/X1rx499zTTpM+8hHr\nuvmjH3lWPADwVLzb5llnSfvs421Z/Oj//k/63OekrVvtGFdUSA8/7HWpAOSqnAl6Tz4prV8vFRbm\n9gxjZ5xh4eeRR/w5FfQPfyh1dlo3mnhrXly8Ve/b3/bn3w4Au0O3zfQKBKTly6VvfUsqKrKQd9pp\ndpH1z3/2unQAck3OBL34JCwzZ+b24PNgUDruOGn7dv9dZRyuNS+uslI68USbdXXFCteLBwCeeukl\nCxv77CN97GNel8a/9tjDWvY6OqSrrpLy86VIxMaLn3mm1NrqdQkB5IqcCHo7dki33mr3c7nbZpxf\nx+n1b80744zBrwcC0je+Yfevv156+213ywcAXrrrLvv5sY9J++/vbVlyQUGBXXTs6JC+9jUbF/nb\n39rF1nPOsSUuACCdciLorV0rvfqq9P73Syec4HVpvOfHcXqbNo3cmhf30Y9K5eVWHxobXSseAHiO\nbpveCAZtkpaODunyy61F9b77bNH66dOlp57yuoQA/Congl7/SVhybe28oZx0kl1ZfPpp6eWXvS5N\nauyuNS8uEOgbq7d0qQ2YBwC/+/e/pT/+UdprL5skBO476CD73olGpf/9X/u3uPNO6UMfslk6n3nG\n6xIC8BvfB72uLlvINBCQZs3yujSZYc89bXC4ZOMGst2mTdYVU7LxELsL85/4hHTssdIrr0g//Wn6\nywcAXrv7bpvqv7raxozBOwcfbEv9tLdLn/+8NH68Lf/0gQ/YBen2dq9LCMAvxhT02traFAqFFAwG\nVV9fP+x2kUhEoVBIeXl5qq6uVkdHx1h2Oyp33CG9845NxHHooa7tNuNVV9tPP3TfjLfmnXyy/Tvv\nTiAgXXml3b/uOqsfAOBndNvMPO99ry33s2GDNGeOlJcn3XyzDTOZPdvWPASAsRhT0KusrNS8efPU\n0dGh1tZWNQ4x6CkWi6m6ulpXXHGFYrGYysrKVFNTM5bdjkp8tk0mYRmo/zi9nh5vyzIW/VvzRhqb\nt6vzz7erpy++aF+sAOBXr78u/f73NhtkLi8vlKkOP1xatcq6bn7609byeuON0hFHSPPm2WypAJCM\ngOM4TjK/GIlEVF9frw0bNkiSmpubtWDBArXuMm9wOBxWQ0ODHn/8cUkW/ILBoHp2SReBQEBJFmVY\nzzwjHXWUzS72n//YuDQYx7EWzldesZm/jj3W6xIl57rrbBrrk0+W/vCH0Y3B/OUvbVzEpElWV/bY\nI33lBACvNDZKc+fabJu/+Y3XpcHu/Otf0tVXS7/4hX1X77GHXZg86qiBtyOPlPbd1+vSAki1VGai\npFv0otGoysrKeh+HQiFFo9FB202fPl2RfgPBWltbVVJSkuxuRyXeUlNbS8jbVSCQ/bNvJtuaF1db\na1+UHR32hQoAydiyxVpdUnytMmXotpldjjzSloT6+9/te2rHDumvf7WhKIsXS5/6lM3Yud9+0sSJ\n0rRp0he/aAu1P/SQTbyTqXURgLuSbtFbtmyZ2tvbteK/K08P11LXXzgc1ty5cxUOh3XGLlMjprpF\nb+dO+wB86SXrsvKRj6TsrX3jF7+QLrzQZgL7+tftiu9ee3ldqsTFW/M+/GGbTS6ZGVVvvtm69R5x\nhPSPf0jjxqW+nACyi+PYhaRXX7Xba6/13e9/iz+/aZP93uTJ0q9/bWOvMsXGjdK73233X31VmjDB\n2/Jg9GIx63Xyz3/23Z55Rnr2WQuBQ8nPH9wCeNRRUnFxdn3PA7kolZlofLK/WFhYqM7OzoS2jcVi\nqqmpUSwW04MPPqjJkycPud2iRYt671dUVKiioiLZ4umhhyzkTZpkU+5jsHPOsZD0yCPSZZfZtM9X\nXil95jM2M2cmG2trXtwFF9gV0meftaulF1yQsiICyGDPPWffExs2DB3oRrP0yh572GfmE09IJ54o\nPfCA9MEPpq3oo3LffXbhs6qKkJetCgttDeBd1wHevt16pPQPgPFbV5f02GN229X48dLee9t6fv1v\nuz63u2323ttC42hvXFAFBmppaVFLS0ta3jvpFr1dx+RFIhEtXLhw0Bg9ybp1VldXa8mSJcMXJMUt\nerNmWdeHq66yIIChOY50zz12nJ580p6bONFa+GbNytxxa6lozYu78Uab4ezoo62rTJ7vFx0Bcs/L\nL1uwe/BB+/nccyNvv+++1hL27ndL73pX3/3+t/jzhYU28+/ZZ9uFs4IC+1wdw7XKlDnrLBuXt3Kl\n9dqA/zmO9MYbQwfA55+34O+lceMGh7+iIps3YKjbe99rcy0AuSKVmSjpoCdJwWBQa9asUWVlpaqq\nqjRt2jTNnz9fknXTrKqqUlNTk6677jqtWbNmQKGLi4sHFiSFf9SmTbZOzdtv23o0u+wKQ+jpsXEc\nixZZF0ZJKimxAHjBBZl1BW7zZgujGzdKa9f2jTVM1jvvWNfNF16QVq+WXJwUFkCavPqq1NLSF+6e\nfXbg64WFtp7olCn2fbFreEvmxHLLFusOf/fd1sL3859LM2em5M9JSixmf8/OnTZu613v8q4syAyO\nY909t2zpu23dOvLjkbbZtm30t2RO9QoLhw+C8Vt+/tgu+gKZImOC3vr161VTU6POzk7NmDFDy5cv\n730tLy9PkUhEa9eu1dKlSwfuNBDQzl0uKaXyj/rZz6TPflY69VTp4YdT8pY5Y+dO6fbb+7ozSram\nz6JFNig8E1q7GhqkhQtT05oXt3y5LVx7zDHS+vWZ8XcCSNzGjTYe+6GH7PbUUwNf339/G6t9+unS\nGWfYTMPpuIC1c6f0pS9JP/iBPV62TPrKV9w/Ae3psQt1115rf/ODD7q7f2Ao8aC5a/jr7LThNi++\naD93vW3btvv33n9/C3xHHy0dd5zdysstJALZJGOCXiql8o867TQLeDfeaIEPo7djh3V9vfpqGwMg\n2ZiTxYul887zLgj1b8373e/6Fn4fq23brAXz5Zety9U556TmfQGkR3e3LakS74r5178ObCnYZx8b\nnx0PdqGQjU1yg+NI3/mO9N8OLrrsMnvsVs+IDRukz32u70Lnbbcx/hjZy3HsO3+oABi/vfii9eIa\nypFH9gWF3YBJAAAgAElEQVS/446zVvx99nH3bwBGg6A3go4O66q5zz62dl5+fgoKl8O2b5duukm6\n5hr7IJXsSvjVV9vCu25fpY635p10kvSnP6V2/9//vk1RXVYmtbbSBQTINNu3W+v7bbfZ/9H+kzzv\ntZd9Lpx+ut2OP9772QVvv91m9X3nHen88+3iWTpPMHfulG64wSbV2rLFumr++MfSJz+Zvn0CmcBx\n7OLPCy/YpEiPP263J54Y3Bo4bpz0oQ8NDH//8z/uXQgCdoegN4LFi62b4YUX2pcqUmPbNmsh/eY3\nbZF1ybpEXH219NGPuhOK0tWaF7dli83S+uqr0v33S2eemdr3B5C8P/zBulf//e/2ePx4m4UwHuxO\nOikzr9K3tEjnnmsnoR/+sM2CmY7ZL59+2nqwPPqoPZ41S/rud5lpE7ntnXfsM+Oxx/rC31NPDbxI\nJNlnx5QpA8NfaSnDOOANgt4IrrrKvtzuvHPsk3RgsC1bpFWrpCVLLBBJdoJ19dVSZWV6A9/SpdKC\nBelpzYv79retu9UJJ0h//jOteoDXXn1V+upXbc1LyXpsNDTYBaZsmYnvqaesvC+9ZN3IHnjALiql\nwvbtNg5w8WI7qX3ve22GzbPOSs37A37z1ls2Fr9/+GtvH7xdYaHN9VBVZbf3v59zAriDoLcbb7/N\nWi3p9tZb1iWoocFa2CSb6GDJErtqnWqbN9uJ0RtvpKc1L+6tt6zV8I03UjOjJ4Dk7NwprVghXXGF\ntYbttZd1216wIDNb7nbn5Zetl8Df/mazet5/v40bHIsnnrBWvPXr7fGcORb6CgrGXl4gl3R2Wnfw\n/uHv3/8euM2hh0pTp9p5wdSpzGKL9CHoIWNs2iT98Id2ctHVZc9Nn27r3JWUpG4/brTmxcXX6Dvl\nFJvMgCt4gLv+8hfrphkPMB/7mM1imcrPFC90d9t4ueZmab/9pDVr7G8brW3brBv9kiU2cdbEiVJj\no518AkiNF16w/6tNTVIkIr3++sDXjz22L/SdeqqtvQmkAkEPGae7W7r+euv6uGWLLbR+6aU2KUBR\n0djeu39r3gMPSNOmpabMw9m0SXrf+yy4PvRQZix6DOSCjRut1e4nP7HHhx9uk4ucc45/Lri8847N\niHnrrdbrZOVKe5yoxx6zVrz48hH/7/9Z4MuWbqxANurpkZ580kJfU5NdBN66te/1Pfe0i8Pxbp5T\npjC+D8kj6CFjvfSSdbWKj6cJBqVvfEOaN88+CJMRb8078UTpkUfcOeG7+mob73nGGXZFD4nr6bFu\naQ8+aEudnHWWBX9gOD09NtnTwoXWhWqPPWys7BVXWMuX3ziO/W1Lltjjq66y20ifbVu22Dbf/rYd\nr9JS6ac/tZYEAO7autV6F0UiFvza2gYu7xIM2rwF8eA3caJnRUUWIugh47W12SLBLS32uLTUAtu5\n544uqPUfM+dGa15cLGatem++aYuyn3xy6t7bcezK4Lhx0gc+4J+Wiu3bpTvusHGb8ZkRJRvHcPHF\n1gpx9NHelS+TOI6NQXvnHeuGt327nRjk4vTebW3WTTM+W2RlpXUHP+oob8vlhuXLrUWup0f6zGes\ndW+oiyJ//KP9/3n2WWsl+PKXbfIVuooBmeGNN+ziZrzF7/nnB75eUmKzA592mt0OO8ybciI7EPSQ\nFRxH+tWvpMsvl/71L3vu1FNt4eDy8sTeY9kym3HPzda8uK9/Xbr2WguXDzww9vd7+WXrrvXzn0v/\n+Ic9d+SRUk2NjWs89tjsDH1btljLwvXXS889Z8+9973SjBl23J5+um/bE0+0bmozZkgHHOBJccfE\ncexvfOwxu/3nPxbU3nmn79b/8Uj3d/2423tv6ZhjbIKOsjK7ffCD3q8Fly6xmHXtXr7cgs4hh9hn\nQ21tdv4/SNZ990kzZ9r/o2nTbNxe/P/G5s3S175mwddx7MLQT39qswIDyEyOY7N4xkPfgw/a8Jb+\nJk3qC32nnWYXtHPpcw8jI+ghq2zfbleqFy3qm6Hzwgulb33LxuAMx6vWvLiNG23/mzdba8Pxx4/+\nPd5+W7r7bgt3kUjfyf1BB9n9N97o27a01EJfTY00eXLmf+jHYjbz6ve+1zdI/cgjrZvthRdaQHEc\nC0Q//an0y1/a+EfJWiJqa62V4pRTMvdv7eqy2dcefdRujz02eEB+ssaNs+7M8RmC4/83+ttjD1vY\nNx78QiF7nI2zTsY5jnTLLXYB6LXX7G//4hft8yEbw38q/OUv0ic+YZ8HZWXW9fmpp6TZs+3Cwrhx\nNkHUlVf6N/gDfrVjh/Vc+P3v7faHP1hvof4OO6wv9FVUWAtgpn4vIv0IeshK3d0W7r73PWvV2Gsv\n6UtfshOY/PzB28db87xc027hQuuK+PGPW+tkInp67IP85z+3q/ObN9vze+4pnX22dMklFloDAfvQ\nX7NGuuuugQGipKSvpa+sLLM+8P/9b/s3XL68L7iFQvbveO65wy9r8tZbtr7ljTfaQPa4I46wwHfJ\nJdJ73pP+8g/nnXekv/61L9A9+mhfS3R/Bx5odfL4421Nt732stuee/YFt93d33PPwcepq8umy1+3\nzk4K2tps/7t+LMa7/MaDX1mZtQZnw2QcTz4pfeEL9v9Dshb+H/3Iwmuue/ZZm4Gzvd268XZ22vOT\nJ9uFkilTvC0fgNTYudO+a+LB7+GH+2YtjzvkkIEtfqzhl1sIeshqzz1noeD22+3xQQfZeJM5c/rG\nKL31lnVteP116be/tcWGvfDaa9aqt2WLnXiPdLK1YYO1VNx8c18XRsm6K15yibVgBYND/+7OnfZh\nv2aNhaHXXut7rbjYAl9NjZ3Ye/Vh395u4fumm6zroWTjqRYutJ+jKdezz0o/+5m9V3ytonHj7ET3\ns5+1YJ3OCVziXWv6h7r16y3s9bfXXhakTjihL9xNmuTev8GmTRb+4sGvrc26wvb0DNwuELATgXjw\nO+sse5wpurqsG/QNN1hdf9e7rC7NmsXJS3+vvWZ1//HH7WLAN75hF7uYzAjwr/iMnv2DX//ePpKt\nvfmRj1joO+UU6z2TzT07MLKMCXptbW2aM2eOOjo6VFtbqxUrViS9HUEv9zz6qE0q8Mgj9vjoo+3k\n78wzbWa5yy/3tjUv7itfsbFD559vIay/7m5p9WprvfvTn/qeP+wwO4m9+OLRn3Dv3GktHvHQ9+qr\nfa9NnNgX+o47zp3j8sQT1qq5erV9IQUC0nnnWRfNZLqz9rdjh/S731mLxX332WPJgsCsWRb6PvCB\nxN6rp8eCUSxmwWK4nxs2WLiLt5j0d9RRfYHuhBNszFymnWS//bYtuh0PfuvW2eQ38WMXd/zxVv9m\nzLBWSLdt22ZdEG+7Tfr1ry1E5+XZDLzXXisVFrpfpmzw1lt2saiigsmLgFzkOHZBLx78fv/7gecB\nce95j/X+KSmxC8L97x90EBfRslnGBL2ioiItW7ZMNTU1qqysVF1dnebMmZPUdgS93OQ4FmYWLJCi\nUXuustJOZL1uzYv797+tFWfbNivX0UfbAOubb5buuadvLZ399rPFkC+5xE7SUrGGzs6dFiDjoS/e\n+iXZrKDTp/d170x2+YqhOI6Fzeuus38DyVpbZ82yAJ6OE9DXXrPJam68cfAELuedZ2M9Rwpx3d2D\nW7pG8q539bXUnXCCTRCUreFj2zYLe21tNkPj3Xf3davdYw+7eHLxxdbSl84xXj09tv9bb7U6G4vZ\n84GATTG+ZInVVQBAYhzHuvHHQ9/jj1uvoe3bh/+d/fcfHP7i9w8/PPMuYGKgjAh6kUhE9fX12rBh\ngySpublZCxYsUGtra1LbEfRy27ZtNlbnmmv6Tg4zoTUv7tJLbea7D37QJs34z3/s+UDApky++GIL\neekcJ9XTY62fa9ZI4bD0yisDX99vP1ucPhgc3c+Cgr5QGl8D77rr+lpa991XmjvXWl/dmBJ6uAlc\nErH//vY3FRYO/hm/f8gh1tp1+OGZUbfS4e23pXvvtYsRa9f2BeCiIpvhcdYsC9Cp+vufespa7m67\nTXrhhb7np0yRLrrI9nnIIanZFwDkup07bd3i9na7RaN999vbB8/y2d+4cfb9V1IiHXqoTYK1//4D\nb/vtN/i5/q/l4lJAbsqIoLdq1SpFIhGtXr1akhSLxVRcXKzOXfpDJbodQQ+ShahrrrFZNm+6yU5G\nM8FLL9mHYnwM1xFHWMvdrFkjzxyaLj09FoLDYWtVfPFF++BPRiBgISgYtO5/8fV/ioos4F56qTdd\n/yTrxhYO2xXMAw4YHNp2DXJ8+Qz2739bYL75ZpsAIK601C5QXHSRtViP1iuv2Pveeqt17407/HCb\ndfXCC+3CCADAXZ2dQ4fAaNTOZ8Z6ur3XXoMDYHwG6by8wbehnh9p25EuQg732mif99qnP21DcIaS\nEUFv2bJlam9v7x1vF4vFFAwG1bNL36lEtwsEArrqqqt6H1dUVKiioiKZogFpcfvtFjimT09ta0gq\nOI61fHV12Qd8Ij/j93ed5vmQQ2xc4ty52TGTIxL317/ahEG33dbXKi3Z7JcXX2xjPwsKhv/9N9+0\nbqG33io1N/edLBQU2GRDF11kEwWkotsyACD1tm61rp/RqF2we+stmx1819twz2/ePPagCPsevfBC\nu9/S0qKWlpbe1xYvXux90GtsbFRTU9OAlrqhAlyi29GiB3hjx46+sW6bN9vkJ6zV5W87dlhQu/lm\nC25bttjze+8tnXOOhb7qamsh3b7dJsy59VabMCe+7Z572pi/iy6yMYB77+3d3wMAcIfjWFjsH/w2\nbbIeTz09A287dw5+bnfPj9Q7abiYMNrnM8HUqcNP1pfKTJR0R6fi4mJF47NnSGptbVXZEKPsE90O\ngDfGj7eumV51z4T7xo+3tRynTbNWurvustD30EPSHXfY7V3vskmFHnxw4FTfH/mIhbvp063bLAAg\ndwQCtrTDPvvY7J7IbGOadTMYDGrNmjWqrKxUVVWVpk2bpvnz50uSwuGwqqqqVFBQMOJ2vQWhRQ8A\nPPX889at8+abpWee6Xv+6KNtPOoFF9hsrwAAID0yYoyeJK1fv141NTXq7OzUjBkztHz58t7X8vLy\nFIlEdMYZZ4y4XW9BCHoAkBEcR2pttZlXP/IRafLkzBqTCgCAX2VM0Eslgh4AAACAXJbKTMTcaAAA\nAADgMwQ9AAAAAPAZgh4AAAAA+AxBDwAAAAB8hqAHAAAAAD5D0AMAAAAAnyHoAQAAAIDPEPQAAAAA\nwGcIegAAAADgMwQ9AAAAAPAZgh4AAAAA+MyYg15bW5tCoZCCwaDq6+uH3S4SiSgUCikvL0/V1dXq\n6OgY664BAAAAAEMYc9CrrKzUvHnz1NHRodbWVjU2Ng7aJhaLqbq6WldccYVisZjKyspUU1Mz1l1j\njFpaWrwuQs7hmLuPY+4+jrn7OObu45i7j2PuPo55dhtT0ItEIpowYYJmz56tgoICNTQ0aOXKlUNu\nFwqFdP755ys/P18LFy5UW1vbWHaNFOA/r/s45u7jmLuPY+4+jrn7OObu45i7j2Oe3cYU9KLRqMrK\nynofh0IhRaPRQdtNnz5dkUik93Fra6tKSkrGsmsAAAAAwDDGj+WXu7u7FQwGBzwXi8WG3LagoECS\nFA6HNXfuXIXD4bHsGgAAAAAwjIDjOM5IGxQVFSkQCAx6vra2VqFQSE1NTVq9erUkC3nBYFA9PT2D\nto/FYqqpqVEsFlNjY6MmT5484PXS0lK1t7eP5W8BAAAAgKxVUlKiDRs2pOS9dtui19XVNexrzc3N\nA7pqtra2DujK2V9lZaWqq6u1ZMmSIV9P1R8EAAAAALluTGP0KisrFY1G1dzcLElqaGjQzJkze18P\nh8Pq7u5WOBxWIBDQ3LlzFY1Ge28AAAAAgNTbbdfN3Vm/fr1qamrU2dmpGTNmaPny5b2v5eXlKRKJ\naO3atVq6dOnAHQcC2rlz51h2DQAAAAAYwpjX0ZsyZYo2bNigzs7OASFPknp6enTGGWfouuuuU09P\nj9auXaspU6ZIstbA4RZNT3QRdiSmqqpqxAXq4wvZx28zZsxwsXT+tLtjTh1PrUSPJ3U9dRI95tT1\n9KLue4fPefdxPuOe+NJoeXl5qq6u5pzdBYke81HVc8clXV1dTiAQcO68806nu7vbWbBggRMKhYbc\ntrCw0GlsbHRisZgTCoWcVatWuVVMX2lqanLmzp3rBAIBp6OjY9jtioqKnPXr1zsdHR1OR0eH093d\n7V4hfSbRY04dT61Ejyd1PXUSPebU9fSi7ruPz3n3cT7jLs7Z3TeaYz6aeu5a0FuzZo1TXl7e+zj+\nB+2qqanJKSkp6X0ciUSG/UMxsqVLlzp1dXW7/WAc6t8ByUnkmFPHU2s0x5O6nhqJHnPqenpR973B\n57z7OJ9xF+fs7kv0mDvO6Or5mLtuJirRRdMTXYQdu3f55ZdrxYoVKiwsHHabaDSqwsJCVVdXq7S0\nVLW1teru7naxlP6S6DGnjqdOoseTup46oznm1PX0oe57g89593E+4y7O2d03mmM+mnruWtCTBi6a\nXltbq5UrVw7aZjSLsGPsuru7VVJSooULF6qpqUmSVFNT43Gp/I06nlqJHk/qeuqM5phT19OHup+5\nqPvuo56nFufs7kv0mI+mnu92Hb1U6r9o+oMPPjho0XRJKiwsVGdnp5vFymlTpkzR448/3vu4sbFR\nRUVFHpbI/6jjqZXo8aSup06ix5y6PnZFRUUKBAKDnq+trVUoFKLup8Fwx3zXmcVHQt0fnVQcc+r5\n6OzumHPOnnqpOOajreeuBr3dLZouScXFxQkvwo6xW79+vRzH6T3G8asJSB/qeGolejyp66mT6DGn\nro9dV1fXsK81NzdT99NgpGOeKOr+6KTimFPPR2d3x5xz9tRLxTEfbT13revm7hZNjy+uvrtF2JEa\n8ePtOI6mTp2q9evXKxaLqa6ujq4OaUIdT4/dHU/qeuolesyp6+lF3c881H33Uc9Tj3N29yV6zEdd\nz5OcHGbUFixY4AQCgQG3vLy83tcDgYDT3NzsOI7jtLW1OSUlJU5RUZFTX1/vVhF9KxgMDpqlqv/x\nXrVqlVNSUuIEAgGntraW6YhTYHfHnDqeWiMdT+p6eiR6zKnr6UXd9w6f8+7jfMYdnLO7bzTHfDT1\nPOA4juNCUAUAAAAAuMTVWTcBAAAAAOlH0AMAAAAAnyHoAQAAAIDPEPQAAAAAwGcIegAAAADgMwQ9\nAAAAAPAZV4JeKBRSXl5e723GjBlu7BYAAAAActJ4N3bS0dGhtrY2FRYWSpKCwaAbuwUAAACAnOTK\ngul5eXnq6elJ924AAAAAAHKh62Y0GlVhYaGqq6tVWlqq2tpadXd3p3u3AAAAAJCz0h70uru7VVJS\nooULF6qpqUmSVFNTk+7dAgAAAEDOcqXrZn/d3d0qKioa1JWztLRU7e3tbhYFAAAAADJGSUmJNmzY\nkJL3SnvQW79+vRzHUVlZWe9zQ43ZCwQCcjlzIgsEAgFJQ9WLRZIWU2ewW4sWLdKiRYu8LgayBPUF\niaKuYDSoL0hUKjNR2rtuOo6jqVOnav369YrFYqqrq6PrJgAAAACkUdqDXllZmRoaGlRTU6NgMKhY\nLKbGxsZ07xYAAAAAcpYrC6bPmTNHGzZsUE9Pj+644w7l5+e7sVv4WoXXBUCWqKio8LoIyCLUFySK\nuoLRoL7AC65PxjIcxuhhKMOP0ZMk6gwAAAD8I6vG6AEAAAAA3EXQAwAAAACfIegBAAAAgM8Q9AAA\nAADAZwh6AAAAAOAzBD0AAAAA8BmCHgAAAAD4DEEPAAAAAHyGoAcAAAAAPkPQAwAAAACfIegBAAAA\ngM8Q9AAAAADAZwh6AAAAAOAzBD0AAAAA8BlXg15bW5uCwaCbuwQAAACAnBNwHMdxa2ehUEhPPPGE\ndu7cObgggYBcLAqyRCAQkDRcvaDOAAAAwD9SmYlca9FbunSpSkpKODEHAAAAgDRzpUUvGo2qurpa\nTU1NKikpUU9Pz+CC0KKHIdCiBwAAgFyRdS16tbW1amxsVFFRkRu7AwAAAICcNj7dO1i1apXKy8t1\n+umnq6ura8RtFy1a1Hu/oqJCFRUV6S0cAAAAAHikpaVFLS0taXnvtHfdrK2tVTgcVmFhoSQpFoup\nqKhI69at08SJE/sKQtdNDIGumwAAAMgVqcxEaQ963d3d/z1Zl9rb2xUKhRSLxZSfnz+wIAQ9DIGg\nBwAAgFyRVUGvv1gspgkTJrC8AhJG0AMAAECuyNqgNxKCHoZC0AMAAECuyLpZNwEAAAAA7iHoAQAA\nAIDPEPQAAAAAwGcIegAAAADgMwQ9AAAAAPAZgh4AAAAA+AxBDwAAAAB8hqAHAAAAAD5D0AMAAAAA\nnyHoAQAAAIDPEPQAAAAAwGcIegAAAADgMwQ9AAAAAPAZgh4AAAAA+AxBDwAAAAB8hqAHAAAAAD7j\nStBbsGCBgsGg8vLyVF1drY6ODjd2CwAAAAA5Ke1BLxKJ6M4771RbW5u6urpUWFioBQsWpHu3AAAA\nAJCz0h70SkpKFA6HNXHiRDmOo0mTJmnChAnp3i0AAAAA5KyA4ziOGzsKh8Oqra1VUVGRotGoCgoK\nBhYkEJBLRUEWCQQCkoarF9QZAAAA+EcqM5FrQS+uvr5e0WhUa9euHVgQgh6GQNADAABArkhlJhqf\nkncZQUdHh4LBYG8LXkNDgyZNmjTktosWLeq9X1FRoYqKinQXD1lt/H+D4FD2kLR92N884IAivflm\n55Cv5ecHtWlT16h/byTpeE+MfFwlji0AAMhsLS0tamlpSct7p71Fb9myZdq4caOuu+46SVI0GlV5\nebk6OweefNGih6HsrkUvudfs9eHqWzpaEWmZTI+Rj6vEsQUAANkklZko7ZOxTJ06VatWrdL69esV\ni8W0YMECzZgxI927BQAAAICclfagN2XKFDU0NKimpkbFxcXKy8tTQ0NDuncLAAAAADnL9clYhkPX\nTQyFrpsYCV03AQCAn2RV100AAAAAgLsIegAAAADgMwQ9AAAAAPAZgh4AAAAA+AxBDwAAAAB8hqAH\nAAAAAD5D0AMAAAAAnyHoAQAAAIDPEPQAAAAAwGcIegAAAADgMwQ9AAAAAPAZgh4AAAAA+AxBDwAA\nAAB8hqAHAAAAAD5D0AMAAAAAn3El6EUiEYVCIeXl5am6ulodHR1u7BYAAAAAclLag14sFlN1dbWu\nuOIKxWIxlZWVqaamJt27BQAAAICcFXAcx0nnDsLhsBoaGvT4449LsuAXDAbV09MzsCCBgNJcFGSh\nQCAgabh6kexr9vpw9W13+0ymnqbjPbG74ypxbAEAQDZJZSZKe4ve9OnTFYlEeh+3traqpKQk3bsF\nAAAAgJw13o2dFBQUSLLWvblz5yocDruxWwAAAADISa4EvVgsppqaGsViMT344IOaPHnykNstWrSo\n935FRYUqKircKB6ABOXnB7VpU9ewrx9wQJHefLNz1L870u+Nzfj/du90c58AAACJaWlpUUtLS1re\nO+1j9CQpFAqpurpaS5YsGb4gjNHDEBijl1nGMibO/eNq7+uH4w4AAHJDKjNR2lv0wuGwAoGA5s6d\nq2g02vt8cXFxuncNAAAAADkp7UGvtbVVbW1tAyZgCQQC2rlzZ7p3DQAAAAA5yZWum4mg6yaGQtfN\nzELXTQAAgPTJquUVAAAAAADuIugBAAAAgM8Q9AAAAADAZwh6AAAAAOAzBD0AAAAA8BmCHgAAAAD4\nDEEPAAAAAHyGoAcAAAAAPkPQAwAAAACfIegBAAAAgM8Q9AAAAADAZwh6AAAAAOAzBD0AAAAA8BmC\nHgAAAAD4DEEPAAAAAHzGtaBXVVWljo4Ot3YHAAAAADlrfLp3EIlEtGbNGjU3NysQCKR7dwAAAACQ\n89Leord+/XoCHgAAAAC4KOA4juPGjoLBoNra2jRx4sShCxIIyKWiIIvYRYLh6kWyr9nrw9W33e0z\nmXqajvf0wsh/h5RZx9Xe1w/HHQAA5IZUZqK0d90EOjs71d3dPeRreXl5Ovzww2n1BQAAAFIoo4Le\nokWLeu9XVFSooqLCs7IgdSZPPkkbN76lvLw9Br22deur+vWv79a0adNcLtX4JMPl8L93wAFFevPN\nzjSUZQ9J20e9z/z8oDZt6krp73nBi/Ike+z8JJOOwe7qQK78m2SLTKo7Xsn1Y5Drf3+67P770N3z\nBSTPrXMbum4i7Q48cKI2bmyRNHHQa/n5Z+uWW2br7LPPHvJ309l1M/Xvm3y3xXR0P0y2q+RYy5pp\n5XHz2PlJJh2DsXQZhvsyqe54JdePQa7//emSruEK/Hu5z61jzjp6AAAAAOAzrgU9xmABAAAAgDtc\nG6O3ceNGt3YFAAAAADmNrpsAAAAA4DMEPQAAAADwGYIeAAAAAPgMQQ8AAAAAfIagBwAAAAA+Q9AD\nAAAAAJ8h6AEAAACAzxD0AAAAAMBnCHoAAAAA4DMEPQAAAADwGYIeAAAAAPgMQQ8AAAAAfIagBwAA\nAAA+Q9ADAAAAAJ8h6AEAAACAzxD0AAAAAMBnXAl6bW1tCoVCCgaDqq+vd2OXAAAAAJCzXAl6lZWV\nmjdvnjo6OtTa2qrGxkY3dgtfa/G6AMgaLV4XAFmkpaXF6yIgS1BXMBrUF3gh7UEvEolowoQJmj17\ntgoKCtTQ0KCVK1eme7fwvRavC4Cs0eJ1AZBFOBlDoqgrGA3qC7yQ9qAXjUZVVlbW+zgUCikajaZ7\ntwAAAACQs8anewfd3d0KBoMDnovFYuneLTLInnuO0wEHTFde3t6DXtu69WmNG1fnQakAAAAA/wo4\njuOkcweNjY1qamrS6tWrJVnICwaD6unpGbBdaWmp2tvb01kUAAAAAMhYJSUl2rBhQ0reK+0tesXF\nxQO6ara2tg7oyhmXqj8IAAAAAHJd2sfoVVZWKhqNqrm5WZLU0NCgmTNnpnu3AAAAAJCzXFleobm5\nWU2gf6UAAASNSURBVHV1dQoGgyotLdX8+fPd2C0AAAAA5CRXgt6UKVO0YcMGdXZ2avny5QNeS3Qx\n9UgkolAopLy8PFVXV6ujoyPdxYbHEq0biW4H/+JzBKMx2s+Mtra2QZOKITckWldisZiqqqqUl5en\n8vJyPltyVKL1ZdWqVSoqKuK7KMdVVVWN+G+fivNbV4LeSBJZTD0Wi6m6ulpXXHGFYrGYysrKVFNT\n40Fp4aZE6sZotoN/8TmC0RjtZ8acOXPU3d3tUumQSRKtK6FQSNOmTVMsFlN5ebnq6phNOhclUl+i\n0ajq6+t11113KRaLqbi4WAsWLPCgtPBKJBJRXV2dmpubFQgEht0uJee3joeampqckpKS3seRSMQJ\nhUKDtluzZo1TXl7e+7irq8sJBAKulBHeSLRuJLod/IvPEYzGaD8zGhoanJqaGupKDkq0rqxbt27A\ndo7jOB0dHekuHjJMovUl/t3T1tbmOI7jzJ0716mvr3etnPDe0qVLnbq6OicQCAz7WZGq89u0z7o5\nkkQXU58+fbqqqqp6H7e2tqqkpMSVMsIbidaNRLeDf/E5gtEYzWdGNBrVqlWr1NTUpHA47FYRkSES\nrSvx2cTr6+sViURUVlZGz5IclGh9KSws1IoVKxQKhSRJRUVF2rhxo2vlhPcuv/xySepdem4oqTq/\n9bTr5mgWUy8oKJAkhcNh1dbWauXKlWkvH7yTaN0YTR2CP/E5gtEYTX2pra1VY2OjioqK3CgaMkyi\ndSUWiykcDqu8vFxNTU0KBoN0C89BidaXaDSqhQsXqq2tTT09PaqpqVFtba1bxUSWSNX5bdpb9IqK\niobsf1pbW6tQKKTOzs6E3icWi6mmpkaxWEwPPvigJk+enOqiIoMUFhYmVDcS3Q7+NZo6wOcIEq0v\nq1atUnl5uU4//XR1dXW5UDJkmkTrSlFRkaqqqjR79mxJtowUFwdyT6L1JRwOa8aMGb3fPytWrFBe\nnudTZiDDpOr8Nu1Bb6QvyObm5oQWU5dsQGJ1dbWWLFmS8jIi8xQXFydUNxLdDv41mjrA5wgSrS+R\nSEThcHhA15oJEyZo3bp1mjhxohtFhcdG8z3kOE7v43jPAeSWROtLIBAYUF/ohYShpOz8NrlhhKlT\nVFTkRCIRx3EcZ+rUqc6yZct6X1uzZo0Ti8WcNWvWOKFQyIlGo057e3vvDf6WSN3Y3XbIDXyOYDQS\nqS+xWMzp7u52uru7nba2NicQCDjd3d1eFRkeGc33UDgcdrq6upy5c+c61dXVnpQX3kqkvkSj0d7t\n4vWltrbWqyLDQ0VFRYMmY0n1+a3nQa+trc0pKSlxioqKBs06FAgEnObmZmfBggVOIBAYcMvLy/Oo\nxHBLInVjd9shN/A5gtFI9LMlrquri7qSo0bzPRQKhZxAIOBUV1dzUSBHJVpfwuGwU1JS4gQCAae2\ntpb6kqOCweCgoJfq89uA4/RrPwYAAAAAZD1GfwIAAACAzxD0AAAAAMBnCHoAAAAA4DMEPQAAAADw\nGYIeAAAAAPgMQQ8AAAAAfIagBwAAAAA+Q9ADAAAAAJ/5//bmxIDnljuQAAAAAElFTkSuQmCC\n" } ], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 35 } ], "metadata": {} } ] }
gpl-3.0
trangel/Data-Science
.ipynb_checkpoints/MNIST-dimensionality-reduction-checkpoint.ipynb
1
430802
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "Let's use dimensionality reduction in a real example.\n", "We will examine the MNIST database of digits, which has a large number of features 28x28. We reduce the dimensionality of our dataset to then use our preferred algorithm to predict the data.\n", "\n", "\n", "We will see how different dimensionality reduction method work in the practice.\n", "\n", "\n", "**Linear Discriminat Analysis** (LDA): supervised learning algorithm that takes into account the class labels and maximizes the class separation.\n", "\n", "**Principal Component Analysis** (PCA): unsupervised learning algorithm, i.e., it ignores the class labels and its goal is to find the ``principal components`` that maximize the variance.\n", "\n", "For more information on LDA and PCA see [Sebastian Raschka's article.](http://sebastianraschka.com/Articles/2014_python_lda.html#principal-component-analysis-vs-linear-discriminant-analysis).\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>" ], "text/vnd.plotly.v1+html": [ "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "\n", "import plotly.offline as py\n", "py.init_notebook_mode(connected=True)\n", "import plotly.graph_objs as go\n", "import plotly.tools as tls\n", "import seaborn as sns\n", "import matplotlib.image as mpimg\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "%matplotlib inline\n", "\n", "# Import the 3 dimensionality reduction methods\n", "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n", "from sklearn.decomposition import PCA\n", "#from sklearn.manifold import TSNE\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# MNIST Dataset\n", "We choose the popular MNIST (Mixed National Institute of Standards and Technology) computer vision digit dataset. This contains a series for images of handwriting letters, each of them of 28x28 pixels, see a few pick below.\n", "\n", "\n", "The datasets are large, please download them from:\n", "https://pjreddie.com/projects/mnist-in-csv/" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of train dataset: (2000, 785)\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>label</th>\n", " <th>pixel1</th>\n", " <th>pixel2</th>\n", " <th>pixel3</th>\n", " <th>pixel4</th>\n", " <th>pixel5</th>\n", " <th>pixel6</th>\n", " <th>pixel7</th>\n", " <th>pixel8</th>\n", " <th>pixel9</th>\n", " <th>...</th>\n", " <th>pixel775</th>\n", " <th>pixel776</th>\n", " <th>pixel777</th>\n", " <th>pixel778</th>\n", " <th>pixel779</th>\n", " <th>pixel780</th>\n", " <th>pixel781</th>\n", " <th>pixel782</th>\n", " <th>pixel783</th>\n", " <th>pixel784</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>9</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 785 columns</p>\n", "</div>" ], "text/plain": [ " label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n", "0 0 0 0 0 0 0 0 0 0 \n", "1 4 0 0 0 0 0 0 0 0 \n", "2 1 0 0 0 0 0 0 0 0 \n", "3 9 0 0 0 0 0 0 0 0 \n", "4 2 0 0 0 0 0 0 0 0 \n", "\n", " pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 \\\n", "0 0 ... 0 0 0 0 0 \n", "1 0 ... 0 0 0 0 0 \n", "2 0 ... 0 0 0 0 0 \n", "3 0 ... 0 0 0 0 0 \n", "4 0 ... 0 0 0 0 0 \n", "\n", " pixel780 pixel781 pixel782 pixel783 pixel784 \n", "0 0 0 0 0 0 \n", "1 0 0 0 0 0 \n", "2 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "4 0 0 0 0 0 \n", "\n", "[5 rows x 785 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train = pd.read_csv('./datasets/mnist_train.csv').head(2000) \n", "#reduce the size to 3000 to make things fast\n", "\n", "columns=[]\n", "columns.append(\"label\")\n", "for ii in range(784):\n", " columns.append(\"pixel\"+str(ii+1))\n", "train.columns=columns\n", " \n", "print(\"Shape of train dataset: \"+str(train.shape))\n", "train.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The MNIST set consists of 59999 rows and 785 columns. There are 28 x 28 pixel images of digits ( contributing to 784 columns) as well as one extra label column which is essentially a class label to state whether the row-wise contribution to each digit gives a 1 or a 9. See a few pics here." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAGBCAYAAACZ0uOCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFQFJREFUeJzt3XmwXGWZB+DTQMByNMgia0CgAJEgMFAoaiCBEkF0DIgZ\nQSKGRQqjgKFccEDNEDZnMASQTBQ0uOEyCigKSDlsIiIiDAiMyiKbIIwyglhODOHMH5RTVH3vF7pv\n33vTb+d5/vz1e8/9SDr3d0/Vy+lO27YNAJDLKiv6AABA7xQ4ACSkwAEgIQUOAAkpcABISIEDQEKr\nLe/FTqfj/zFjzLVt2+l21nuS8dDte9L7kfFQez+6AweAhBQ4ACSkwAEgIQUOAAkpcABISIEDQEIK\nHAASUuAAkJACB4CEFDgAJKTAASAhBQ4ACSlwAEhIgQNAQgocABJS4ACQkAIHgIQUOAAkpMABICEF\nDgAJrbaiD7AyOLKSf/aqqWW4xw/j4avfWETv3fPacPT8Ls8FQF7uwAEgIQUOAAkpcABISIEDQEKd\ntm3rL3Y69RcJzQqyxe29lelJfX63B8O009mqz+uOr7ZtO93Oek/mdOrqZfaxJbeFs9M7OxTZd0f7\nQC+g2/ek9+Pg+N/jy2yN05ZWpsv97U924r/yk/o402ipvR/dgQNAQgocABJS4ACQkAIHgIQUOAAk\n5FGqI/SBSn5Oe0OQblqZfjbIHqnMPh1kW4eTc4LsvB6uujI6Mci23iKePeS+MT3KUJo9Owgf+7dx\nPwf5XTMtztc47XdBWttCL0U/jQedO3AASEiBA0BCChwAElLgAJCQJbbnWbeSHxFkp7XxZ3E3zc59\nnuL7YfqNV5Vrc+/8ryXh7Py2XNw46cMTwtmXntHD0YbY3GCLbdV93xTOHvL6K8f4NHnVfqCsuedO\nZbj+lHB2lWbR6B2IobP77rVXJo7nMQaCO3AASEiBA0BCChwAElLgAJCQAgeAhDptW/88+pXtw+rb\nG+Kt4+Z1l/Z55drvSd0/vO/aPdYosqlXnhAPT5hbZre+Ixzt7PSdrs8wVmofVh8Zq/dk2/6gDH/y\n6fgMttCrXlPJf9ouK8Mf7x3Odqb8cPQONELdvidXtp+R4+30F5XZR//yq8r0JkF2STg5tfOuIru9\nctU/VvLxVHs/ugMHgIQUOAAkpMABICEFDgAJrbSPUj0yCl9X+3ziHn7PWXZSET181LxwdNJ50WfV\n/jyc/cI1ZXbflqeEs4c+cHIZruJ3teVbaf8pjKqfPnFs17NLL1vxy2oMhuMr+Uf/cmOQRstqsf/Y\nrVxWa5qmua7rKww2P9UBICEFDgAJKXAASEiBA0BCChwAEhr61dtZlfyz7b1BOqkyHTzy9NGjw8kN\nN/pckX1ivfiqMydOKLJd58ezdwXZlx6MZw9tninDHc4NZ49oLi6y8+PLDoWZ1Ve2H8dTDLG1Nu16\n9COnjuE5SOW0y2oP4d25+4ssnVtEb7x+RMdJwx04ACSkwAEgIQUOAAkpcABIaKiW2N4aZItvektl\nOlq2+WVl9pYi+cae5bJa0zTN74Js9uPxVWdXFtbGxjphel7w53P+a74/1odZYT7zwdora4/nMYZC\nvPa3Z9dff9NoHYRUtonCN/+4Mh09bvr+cPLkF8ePlh5m7sABICEFDgAJKXAASEiBA0BCChwAEkq5\nhT6xkl/68BFluHH8CNGmeaRIzlzz1eHkoqfKbGh2lnd5QxAO7xb6mm+b2vXsk9+8cgxPkt9tN7wp\nSGuPpP1ekZT/Ahkm0yr51e15fV132ce3DfOPB0+QHnbuwAEgIQUOAAkpcABISIEDQEIpl9gOr71Q\nXVgrfbLziiI7aWTHYUgtXLiiTzB2JlXyBduV2QFXBMuhTdM0G3+66+93+WunF9n9XX81GS3Yr/bK\nwd1f5MkTimiLk0d0nKHkDhwAElLgAJCQAgeAhBQ4ACSkwAEgoZRb6PPb2vZr8PvIsni3fLg3zqO/\n1tpzBv0OV7PllpUX7urvuodU8lWD7LSj4tn1d92sDF/y0nj4gMu6/G5N0zRPlNGjZ1dmg2cMNy8K\nJz93U+USDIULNiuzHS5+oIcrnB6mO7zszCJ7sIerDjs/vQEgIQUOAAkpcABISIEDQEIDv8S2aIMo\nnVWZfrZIHjhi3iieJotoYa38s2mapmm+ccFYHmTwPBEsaTVNE/35zLjz7nCyba7v8xAzK3n0+/Rf\nKrN/CLJvxaOLpxTR5YviBaOTgmWz2ysn+HN7dJCuFc5eUrkGuUyr5O/5zdL+Lnz1D8O49t7jOe7A\nASAhBQ4ACSlwAEhIgQNAQgocABIa+C30tdeO0pdUpu8okrdfMIqHWYEmBtmT89fs/gJ/PiGMNzzw\nlyM7UFKdd/wizJ84ZkKRrfWhw8boFD8K0+sP+0KRfTtezm0WjOZxXsDNb629sm2QVQ7MULj6oh0q\nr/S3hT59z2v7+vqVlTtwAEhIgQNAQgocABJS4ACQ0MAvsfWm/HziW1bAKfoRLas1TdM8eerqZTjn\n8cr0jUVy5kZnhJO/6+5YQ2/t6COvzy6XylZGO5/69u6Hzzlo7A7CuJoVhfvHP0d68qvDi+i7/V91\npeQOHAASUuAAkJACB4CEFDgAJKTAASCh4dpC/3K53TjIZgXZ4pveEg/vclGZ3R0/6rOz9VdHfCbo\nx3HHPLGij8AoWdyWj6Zumi16uEL0v3Y0zYbbfG1E56HkDhwAElLgAJCQAgeAhBQ4ACQ08Etsq4S/\nYlR+73j3F8vskN1G8zgj8tARcT7pvHuDdNN4+MdvLqLOFJ+9DIyVVwZZ95/7fenOx4e5xzePHnfg\nAJCQAgeAhBQ4ACSkwAEgIQUOAAkN/Bb6s8+GaWV6xyJpv7JlOHnozHuK7NeVq35w2zKbcWVltXzj\n9wThrpUrX19Gtx4XTs6xcc7AKX//f8uUePLM4K3OYGivmlp5pb96OOOWvr6cLrgDB4CEFDgAJKTA\nASAhBQ4ACQ38EltvVi+jg+8MJxcffHuQPly57r4jPtFzPh3Hp5xYRJ0Tn+nze8F4KZdJVxuynyjD\nZlYU7vGpynT0s+jpePSz5aZv9BOW0eUOHAASUuAAkJACB4CEFDgAJKTAASChgd8ZnX9Xmc1oFlam\nZ/dw5fKxq02zfQ9fX3nw6penF1HnkPt6uC7kNfW4neIXrvFczUGwWZj28nPvpjDtHPVo74ehb+7A\nASAhBQ4ACSlwAEhIgQNAQgO/xHZjkO3cmRPO/nxukH9ySf+HOG+LItr3yN+Go5f3/90gCb//w4rk\nXyAAJKTAASAhBQ4ACSlwAEhIgQNAQp22besvdjr1F2GUtG3b6XbWe3L8XTMtzqdevawML90lnO28\nLdejVLt9T2Z7P0YPkL61nVeZPj7IrgonO529R3okulB7P7oDB4CEFDgAJKTAASAhBQ4ACVliY4Wz\nxMagGdYlNnKyxAYAQ0SBA0BCChwAElLgAJCQAgeAhBQ4ACSkwAEgIQUOAAkpcABISIEDQEIKHAAS\nUuAAkJACB4CEFDgAJKTAASAhBQ4ACXXa1ufRA0A27sABICEFDgAJKXAASEiBA0BCChwAElLgAJCQ\nAgeAhBQ4ACSkwAEgIQUOAAkpcABISIEDQEIKHAASUuAAkJACB4CEFDgAJKTAASAhBQ4ACSlwAEhI\ngQNAQgocABJS4ACQkAIHgIQUOAAkpMABICEFDgAJKXAASEiBA0BCChwAElLgAJCQAgeAhBQ4ACSk\nwAEgIQUOAAkpcABISIEDQEIKHAASUuAAkJACB4CEFDgAJKTAASAhBQ4ACSlwAEhIgQNAQgocABJS\n4ACQkAIHgIQUOAAkpMABICEFDgAJKXAASEiBA0BCChwAElLgAJCQAgeAhBQ4ACSkwAEgIQUOAAkp\ncABISIEDQEIKHAASUuAAkJACB4CEVlvei51Opx2vg7Dyatu20+2s9yTjodv3pPcj46H2fnQHDgAJ\nKXAASEiBA0BCChwAElLgAJCQAgeAhBQ4ACSkwAEgIQUOAAkpcABISIEDQEIKHAASUuAAkJACB4CE\nFDgAJKTAASAhBQ4ACSlwAEhIgQNAQgocABJS4ACQ0Gor+gAA5NZ+aYsyfPe9lemvFcnUzrvCyev6\nONPKwB04ACSkwAEgIQUOAAkpcABIyBIbrIQ2quQbBNnCfeLZyduV2cZnxLNPdXMoBt602gvv/kEQ\nPlMZPqBI9psYT17njbNc7sABICEFDgAJKXAASEiBA0BCChwAErKFDkNij0p+1UU7lOH+x1WmD+zr\nDE/uODnMOzPv6eu6DIa7ai/85uQy2/z8sTwKjTtwAEhJgQNAQgocABJS4ACQkCW2LhwTZGd9fZt4\n+J0nRmHX3+uhwyeE+c03l9n+/xSf4dgDf1lkZ3d9AgbJfpX84kt2LMPpV1Sm1wqy2u/uNwTZbyuz\n5SMxm4O/HU7uN7NcpLukclUG1+O1F667tsw2H8uT0DTuwAEgJQUOAAkpcABISIEDQEIKHAASsoX+\nPBdtH+f733ZbkFa20KPfiZbOjUcnvKqINvn8knB0k26/V9M0Z23zj0V29o4Xx2dg3G1ayR8IN8tr\nf28b9XmKy8J0amd6kf1d7Qpt9F6N/13U/rWQy2a1Fw55zziegr9xBw4ACSlwAEhIgQNAQgocABIa\n+iW2F1Xy9wXZ/rc9XJl+eRktCz7/tmmaeavPK7LTn42vOjHIHv39T+Phdc6onK302CILa4PsS9Mq\nL0yv/N337coieUOwrNY08YNU3zzKpyGvdWsvdKb0dd3Zs+P8ktPL7Lq+vtNwcQcOAAkpcABISIED\nQEIKHAASUuAAkNDQb6FfMS3Op14dP7I09D8fKaJN1j4rHK3tsUcu2jUIe9g2b5obw3TPRT1cgnE3\n9ZvvH4WrXFNGty4MJ3fb6TtFFm2b1+zf71NbGRo3V/KlJ+xVZBNOWdr1ddc4Lf55/Ln71yiybb7e\n9WWHnjtwAEhIgQNAQgocABJS4ACQ0FAtsbWnBw9O/eifKtPB802/Ojmc3GTmPUXWy7Jazd4/6e+R\np4tfsVuY39XXVRlru6x3bpj/bG6Zf3hufI0rguyOkR9pubbffowuzNBY/dQya08Z/3OsbNyBA0BC\nChwAElLgAJCQAgeAhBQ4ACSUcgv9mRMrL4Qb50/Hsw8cV0TrBNvmTdM0T3R3rKZpmuZlQXbGpNr0\nlCCr/E41r3yk4GEPdnkoBkrtcZSdueN5iu699rg3rOgjkFKtXp4Z11MMM3fgAJCQAgeAhBQ4ACSk\nwAEgoYFfYtssyFadd1tlOng8arCs1jRN09ls8QhP9Jx9Kvnl7TlBemT3F/7FO8N4/U8E/23wPPfM\njPP11iuzTuVX9zZ6m+11UA+n+Ncwnd/DFRgWtWU1P8tGiztwAEhIgQNAQgocABJS4ACQkAIHgIQG\nfgv9JWG6Tddfv1tl23y7ILvumPgaa50VbdYeWPmOGwRZbetyWZGct89F4eTjlSswPNYNshmV2YWP\nBP9nw4bn9vDdRuMxlz8vkr078XOO/9rDVYHuuAMHgIQUOAAkpMABICEFDgAJDfwSW/xp3ndVprct\nkh+1Syuz/T7O72eV/KEg27ky+6siOfKRkZ6HQfTiIDusMntOe0OQ1t47fwiycqmsaZqmufOMMpu8\noHLdl1fySPkZ9V+ZHU9usbDM4n/bQLfcgQNAQgocABJS4ACQkAIHgIQUOAAk1Gnbtv5ip1N/cQWq\nPPG0OauNttO3qkxfUUbnHhpOzvjA74vsnspVb23/OUiPj4cXb11EncMeqFx5eLVt2+l2dlDfk/Ej\nf5tmwaQyO/yhJV1fd+kJ5aZ30zTNiaeW2b9UrrFlkN3dfrEyXXtEcH8u3qH875h1ezz71JicoDfd\nvicH9f04COrd0sPjeu88qIg6231rZAdKrPZ+dAcOAAkpcABISIEDQEIKHAASSrnENgjiTz1umnnh\nn2e8tHH3wROKbOsLR36mrLItsUWPR/3z/DXj4Tk9fJL7Y8cW0eYbLApH7w+y8kHCz7mzDZ5j2ry3\nMh084HTeOvHogeWCUbPVFyrXDTwZL3eevO6ZRXZfD3tPi7sfrbLE1r92jB5jPaMTL3YO82qbJTYA\nGCIKHAASUuAAkJACB4CEFDgAJGQLfYTmT4zzOU9Gm5fx1uXkYJsyehjssBvULfTVK/mSBS8rw2Mf\nq0yXW+h3zNgknJwerNHeV7nq+4JsYXtWZfqoIAseJdw0zbxVpxfZJypLw8FTYpsPBX80TdM0x172\npjJ83efj4Wa9Sh65oUg6nT16+PqYLfT+td+cHL8w45b+LvzFV4ZxZ9b9/V13gNlCB4AhosABICEF\nDgAJKXAASMgS2yiLHx9oiW15BnWJ7fa3x/mrvx19nvd/h7Pf+fty1etD/xlf95i1y+zo694RD0/+\nTBCuFY4u+3j5Ptv95Piy5UrY2PnuTnH+D5dFS3exfYNHzV4+0gM9jyW2/v36XXG+1Vejfz89sMT2\n/9yBA0BCChwAElLgAJCQAgeAhBQ4ACRkC32EPEp19AzqFnrb3lp5Zdsge6oye0mQ1R4Vus8Lnml5\nlnysfD81TdNMPL3M/trXdxp+ttDHTtt+L0j37uEKq4Xp3p3yr+zKHq46yGyhA8AQUeAAkJACB4CE\nFDgAJBRvA/CC9go+3phhU3nmabjEVtlqbA7p/tv99v1F9NjJ54ejs8oniDbXVC5rYY2B8pt/L7PN\n9+rhAs+M2lGycwcOAAkpcABISIEDQEIKHAASUuAAkJBHqY7QQZX8wvDPM96anNyZUGQepbp84/me\n3KiSX/D6MtvriFeEs3+644EimzI/vu59QfZ05QyMLY9SHTtnr11mR/9hSQ9XiO879w5+nnqUKgAw\ncBQ4ACSkwAEgIQUOAAlZYhtl8Wfdxo8JnBN8HviCUT5PBoO6xMbKyxLb2Nk9yK5tL6xMHxBkltj+\nxh04ACSkwAEgIQUOAAkpcABISIEDQEK20EfZNdPKbOrVlccELj2piGasfko4+q0+zjTobKEzaGyh\nM0hsoQPAEFHgAJCQAgeAhBQ4ACRkiW2UTQqyh/44Jx5e8/Qyu/PgcHT97co1tsd7ONcgs8TGoLHE\nxiCxxAYAQ0SBA0BCChwAElLgAJCQAgeAhGyhj4NoM71pmuahC7cuw4N+Ec7O6KxRZMPyeFVb6Awa\nW+gMElvoADBEFDgAJKTAASAhBQ4ACVliY4WzxMagscTGILHEBgBDRIEDQEIKHAASUuAAkJACB4CE\nlruFDgAMJnfgAJCQAgeAhBQ4ACSkwAEgIQUOAAkpcABI6P8AW+65eVevwSwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109e52550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Copy the features and target columns to different arrays: \n", "y_train= train['label']\n", "# Drop the label feature\n", "X_train = train.drop(\"label\",axis=1)\n", "\n", "# plot some of the numbers\n", "plt.figure(figsize=(7,7))\n", "for digit_num in range(0,6):\n", " plt.subplot(2,3,digit_num+1)\n", " grid_data = X_train.iloc[digit_num,:].as_matrix().reshape(28,28) # reshape from 1d to 2d pixel array\n", " plt.imshow(grid_data, interpolation = \"none\", cmap = \"afmhot\")\n", " plt.xticks([])\n", " plt.yticks([])\n", "plt.tight_layout()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we proceed to reduce the dimensionality of our dataset.\n", "\n", "Several methods are proposed:\n", "1. LDA\n", "2. PCA\n", "3. LDA followed by PCA\n", "\n", "I found that the third method is used in the practice, but in this case the results are comparable to doing just LDA.\n", "In this example I found that PCA together with a polynomial regression yields the best results. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reducing dimensionality to 14 components\n", "\n", "(2000, 784)\n", "(2000, 14)\n" ] } ], "source": [ "#Note than n_components for lda is < n_class (9)\n", "\n", "method=2 #PCA, read above.\n", "\n", "if ( method == 1 ):\n", " dimensionality_reduction_method=\"lda\"\n", " n_components=9\n", " reduction_method = LDA(n_components=n_components)\n", "elif ( method == 2 ):\n", " dimensionality_reduction_method=\"pca\"\n", " n_components=14\n", " reduction_method = PCA(n_components=n_components)\n", "elif ( method == 3 ):\n", " dimensionality_reduction_method=\"lda\"\n", " n_components=784\n", " reduction_method = LDA()\n", "\n", "\n", "print ( \"Reducing dimensionality to %d components\\n\" %(n_components))\n", " \n", "print(X_train.shape)\n", "\n", "#del X_train_red\n", "# Taking in as second argument the Target as labels\n", "reduction_method = reduction_method.fit(X_train.values, y_train.values )\n", "X_train_red = reduction_method.transform(X_train.values)\n", "print(X_train_red.shape)\n", "\n", "if ( method == 3 ):\n", " dimensionality_reduction_method=\"pca\"\n", " n_components=5\n", " reduction_method2 = PCA(n_components=n_components)\n", "\n", "# Taking in as second argument the Target as labels\n", " reduction_method2 = reduction_method2.fit(X_train_red, y_train.values )\n", " X_train_red1 = reduction_method2.transform(X_train_red)\n", " X_train_red = X_train_red1\n", " del X_train_red1\n", " print(X_train_red.shape)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "marker": { "color": [ 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5 ], "colorscale": "Jet", "line": { "color": "rgb(255, 255, 255)", "width": 2 }, "opacity": 0.8, "showscale": false, "size": 8 }, "mode": "markers", "name": [ 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5 ], "showlegend": true, "text": [ 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5 ], "type": "scatter", "x": [ 1084.9465800998876, -84.73411469396777, -916.6651408083128, -315.08265465742465, 210.41661730177498, -671.9069254575109, 579.7429939666814, -824.7881649521534, -203.02359517489697, -47.97732532061204, -681.3809479554394, 175.0281349603755, 288.9589583955104, -838.7405501722446, -60.25543363147594, 72.34244635488032, -362.8138672215066, -221.03029872409277, -724.8045184663043, 247.9852240157387, 1099.9434116856241, -620.5116272490873, -928.6740859791033, -246.37824808831593, 645.349116189982, -605.13156994534, 817.6198915012071, 378.3182632326518, -688.4026103085763, -338.6102289625216, -162.44135099735445, -27.289070639940135, -559.8641880383823, 767.8198643938648, -582.3072462197525, 122.17415340271596, 1078.8507651621937, -357.52091975904403, 346.5340991281401, -933.4801935511398, -136.32739281016347, -717.850733843038, -619.6539360955328, -521.5288962319277, -155.36637664553672, -280.153233485774, -182.61095463188542, -271.6055017143586, 344.57576947227733, -96.88437078860144, 1643.73594488249, 357.35488647285575, -751.3898321480275, -108.97074304603069, -127.16917364967597, 1203.4173746017536, -466.43919542459565, 247.1053559233921, -880.4686188976618, 273.8170510636726, -643.7367869926126, 353.7349501385593, 1260.2128032337887, 598.355005302794, -623.5346712048017, 342.4733592255332, -980.0989009779729, 36.6464183315558, 1292.478880336378, -224.55794134332913, -359.00715294197295, -905.3865940956921, -33.96309222888993, -17.105619871977623, 944.7238949976166, -488.5678173819108, -949.738976464044, -938.0308966402793, -433.4717539851908, 422.541491455815, 1232.503804671609, 922.6891266110674, 254.69527734714853, -220.06895235644959, -167.36218348127278, -321.2624659356057, -40.328930534053725, 985.1312174028342, 159.65865666899242, 572.3395491579985, -37.21295712746757, -226.68393613737445, 257.6980061446599, -173.89040380531253, 1342.4327165554614, -589.142541649855, -104.94493523139278, -171.64972790335486, -993.4485611306309, -280.48469010662393, 83.24653625362153, -836.1830093434528, -238.7851431036748, -695.2312247535385, -912.61530311106, 455.1618010569416, 283.9141679260036, 262.5192251063672, -196.84930044654962, 32.252432440231274, 723.2540992891627, -946.9033974563492, -870.1767046786816, 1306.6332728476973, -48.24963369057737, 50.04644807558691, 542.781311682643, 762.2385104436157, 1486.2369404770639, 576.5821739650717, 1323.1342877514892, -471.05470462432606, -126.93751423065378, -923.6310595055377, -165.6493896401826, 280.01930231967873, -186.09861318501493, -828.8476470314514, 13.63004904857138, -298.96950536694044, -0.49357791691473096, -442.6413563237365, -634.9203694419414, -286.54253962804586, 68.42724103934236, -411.2809445410124, -542.4915235028476, 538.6186370378132, -140.44158276521534, -683.8809912022202, -531.5289410441507, -279.96227157935334, -359.7943354077627, -439.47112970792364, -367.0393097939374, 12.466233106221623, -31.902428637616076, -371.84148214701895, 242.4404346544429, -235.40797312433955, 395.8129375032043, -857.2660932386434, -656.6209821943609, -17.52505985860273, 268.30985102183496, 708.5629394952945, 323.17552895354277, -120.46862157937595, 88.35706955303013, -287.5488220953352, 567.597631304413, -264.4880770876724, -415.14005673551577, 496.2494458141632, 203.54344959344056, -320.50825606564763, 32.42639893382707, -655.6653817335591, 1133.4091353983551, -158.5829697888434, 289.6987125838369, 86.95970784950855, -717.3437089198842, -955.2983143177707, -259.5645889881346, -468.007209525152, -928.4851802051223, 450.6916800772284, 705.4244250291848, -720.2841153102529, 352.6908051338903, 467.1863156363835, -205.5410086271791, -791.8477992898673, 178.07751773195372, -228.01263237979535, 578.7139382452789, 89.86086392056562, 94.93183879619917, -26.71709331294042, -394.4780175474677, 1228.2945428915837, 84.70646279744685, 289.45610602209297, -239.7147527295656, 319.5430769402789, -419.3826719215365, -299.3809931081096, -10.669683995793264, -620.71580072421, -864.4345778104546, -187.59753482219406, 265.41854950603295, -208.06508820375905, -871.3201741775632, 954.2779175014973, 263.7323250664233, -927.171729160757, 1090.7960209301139, 186.13393280829885, -915.5224857324065, -542.8914118770907, 279.9101701844152, 267.9379824941135, 318.15428213603997, 538.5482846026262, 16.781437702012973, 94.04278602034118, 358.7338663396001, 281.9634159026342, 745.1218194423151, 520.4125442858577, 33.020279088606856, 41.80196827424621, 446.77276841740627, -385.455438434459, -394.6124084050651, -281.7848940613875, 886.8213190940819, -373.1598410709235, -939.0458879380938, 104.87814269662094, 111.42981659219971, 861.4853804168356, 278.6234859179224, 97.48149309507932, -3.6103749122176936, 158.25266992876067, 77.6747824091585, -722.7468067487324, 670.333728177991, 620.814718912203, -0.669049879525744, 894.8975914594793, 129.09702625319335, 41.76987652855319, -379.011933719938, -585.1724358553367, 735.4206417888882, -193.80242526730353, -955.4606447631775, -499.0652269624491, 683.5476439942116, 65.44352040597946, 175.93540354488204, -703.3916187034396, -21.91821938183919, -524.0998075769702, -16.094189592364017, -174.2901556770242, 629.3111586894711, 12.537959364304243, 32.112248127031805, -262.7467897050839, 270.4016077728294, 215.2062553474818, -419.1759317116899, -537.9330881448502, -938.7046325486336, -879.618384584105, -355.531753015159, 245.40159971908204, 4.977785058615763, -194.74267987840938, 171.63617578463652, -980.2971899683721, 584.8800701630578, 311.7229442675161, 159.14610865164775, -413.81804987807425, 311.31566575850354, -295.7802857811396, 1500.447835740891, 294.5607972555106, -444.0840703262379, 640.5606084992315, -428.61421481323924, -399.5369422498651, -229.06309290614286, -987.1509341631946, -165.81976120528967, -347.44363846359806, 1887.8559596168823, 366.05851401579014, -224.51078086542128, 1079.3977782292413, 58.4585044453047, 179.55278995657847, 473.7704149901702, -577.9778223306907, -114.8326831246527, 114.18072677165763, 1768.1611354358572, -455.8040937042279, -305.19874285476226, 491.550620673802, -384.67107770186664, 396.11529745361213, -939.1572163263095, -925.5507429256562, 605.7372387305073, 90.23172605819606, -497.90441839144694, 190.28143492528065, -972.8246490430017, -165.77771232466387, 446.487136720171, -414.40902507937494, -299.41385557642457, 1152.3954316137322, 145.45235735038602, 15.691700907342849, 675.9600873113385, -157.66778205709883, 624.3942688877875, 964.3032967101167, -140.7214346480837, 750.0421354387981, 99.20962742176346, 281.48415797333917, 341.77999916759336, 177.70694632940987, 365.9269429223767, 73.9897666127279, -104.05132577286926, -369.921883377378, 13.107189841669602, -57.05249266679462, 454.3247741644985, 255.69927063815433, 396.82741448320627, -472.92467566244187, -208.9413275778233, -137.7002235248046, -959.4452148456305, -11.683685348507908, 614.8522862532678, 1.2120260542568815, 68.91104441483282, -185.7946360751089, -897.3552182940854, 462.0848035052396, -218.0984439897708, -491.6686507498842, -909.2027245812336, -443.0251481474692, -952.678094898319, -723.4212977359294, 1135.368033439872, -555.8837114724279, 160.48528192719635, -189.54875955576222, -573.9053258117398, -448.44677791122683, 345.0814346496654, -861.7059809561717, 801.2397025586273, -465.64075593808434, -67.89306582350657, -777.688722751699, 500.0091913868915, -439.57105291222695, -298.61087671127535, -42.624243031144886, 648.4900092020487, -62.437309488816894, 308.8712435159608, -83.81600440867854, -515.1512861108818, 354.9665232769963, 432.1265318801564, -732.4879462531912, 36.350438497497066, -487.5467597625772, 603.6096534534249, 32.32695550694218, -198.42429582300474, -603.3572883959924, -325.2744471381925, -69.9868749071453, 316.7531564226175, -259.6591158284248, -117.34383618132779, -607.7444334887305, 697.7071926487174, -22.342019453204365, -931.8411630908707, -775.7778411634232, 1714.0752091455256, -111.69675737273718, 59.40135775651021, 122.97363303259449, 66.20116732276196, 238.97307903704885, 270.8110054866304, -641.8963303105768, 65.88303054950778, -949.6657752841566, -286.22829480518095, -354.3783389215525, -351.92771667214186, -724.2560646744525, -196.92909683571594, -73.77423033475353, -76.9731079453069, -1035.6577641991269, -584.8958658631663, -685.2526063437462, -151.0716903655858, -130.67728535813518, 491.04779477510004, -748.063404808876, -351.2588982767325, -11.888664720794267, 365.1311875949449, 385.2002610129173, 1972.6789401023016, -323.8935051389253, 1550.2002315283441, 24.07269144493697, 378.3728753736031, -37.4380181535408, -30.317263552235204, -389.89290227162735, 1266.1527203103813, -220.59098666896602, -310.146470074988, 225.48803281262448, -139.50626574623874, 1084.9975218278066, -336.7865163915658, -309.50490521677744, -909.171042706222, -699.6868638347605, 3.659861122488252, 516.8254725888235, -896.9402728028142, -68.51153528027038, 444.64040598139457, -797.06946780646, 1099.915742636006, 473.33700620984683, 994.2668515477743, -933.3647042686683, -1001.6101810071573, -388.8873285952456, 145.48110930092093, 1516.3827475531937, -158.65849712576852, -150.95481122975, 176.2005586162481, 1459.7032350584007, -557.4362457017255, 886.6162880128438, 544.5288368724717, -980.1633846639935, 197.45275473692158, -295.0915914190542, 124.63030543687731, -514.3602283079935, -214.32234527573166, -625.209450668321, 1029.9871173366248, 298.6247000091153, -922.3410012347613, -333.59337753450916, 373.89557317377273, -542.062070721149, 282.41316471508105, 495.51927808530286, 60.18481458353392, -374.7339242892287, 43.46006103311097, -825.0351161914921, 159.87686951905334, 64.85155106707445, -395.9951251995275, -218.6347699953049, 505.60888442730635, 220.50329729385714, -721.1589669177845, -904.5377864652776, 78.06019392462838, 608.7331833769457, 661.3321699381243, 445.1055836327457, -281.9148204428481, -251.32863780855052, -126.40433547816598, -587.5604063045935, -525.1982187571809, -402.9990887981881, -459.8221884126042, 731.7469529981945, 40.36950657781429, -14.341433584469357, -914.9219359245777, -885.8609064213348, -154.4401560571821, -921.9443540885834, -561.8557066954971, 348.49183265359505, -291.403220839156, -121.01387585693674, 630.0458937554671, 22.665783282097102, 135.9248179904344, -728.6140242088088, 1395.0056323890028, 196.03286211501563, 391.7551541363154, 26.299257941338617, -632.6207906435037, 905.4753754398683, -220.25346277756134, 1321.7864603524677, 381.83821426684017, 368.0619946739938, -462.02250294203503, -188.09606952915004, -178.65563824532288, -229.47315936189847, -722.50485559567, 65.12577287981998, -662.7983124411674, -97.7476357993289, -292.7875497522761, -948.9318266754141, 246.4839358125372, -450.5454302762527, -110.57389319848352, 1158.7027673958353, -367.69916209694514, 570.4840927359236, -222.21974827319832, -42.83444878518134, -291.1712177849736, 906.0309675883727, 185.4338903977182, 83.6609740873337, 409.3473506220154, -498.38050429814143, -876.2709871937914, 852.9810239768583, 243.80998296668102, -812.9170603397703, 266.5877257184975, -602.2764962990558, -4.104319895875676, -774.9213604824058, 97.87927838348992, 22.839488401193925, 101.1298693157107, 150.87316115910636, 378.9959848902049, -293.3640320720772, -290.99520946002144, -87.85754777777089, -52.883781515758756, 618.7497342408515, -108.80252952361846, -867.6465699164977, -967.5334402030419, -609.3704415979543, -363.06326499168216, -456.9488285212631, 1291.9428121189203, 1.4060968117848347, -267.61120559443555, -103.04180915896981, -36.20521164055077, 627.4766277720084, -573.7384779405266, -237.34294807542756, -170.5000956438513, -447.666073964696, -808.8934706021944, -817.394201501144, -250.6972687937922, -424.721256691105, 841.3276194008265, -248.59942268820836, -939.4384963727688, -63.066957082800556, -611.2675718881728, 899.198875579595, 145.45255878135126, 546.3807966079598, -286.9998786065338, -718.4242388609666, -375.1042686090531, 53.64653176521428, 865.9584222244706, -961.857523411365, -344.4556036811213, -113.3935663441199, 279.8976389264813, 352.3340106846192, -921.8664635536237, 14.891735019842855, -680.7795831618973, 962.7372301697758, -59.37264249662999, -168.9359002892896, -112.07378674442083, 601.4202079754825, -264.6672626444274, -772.127479024573, 11.943501487705035, 1230.6161968206743, -286.70206651250925, 756.0181038106291, 167.4307432572613, -341.0666318401667, 284.3560845705273, 521.9639545846586, -168.70250515560167, -324.83468178511424, 172.48469992043525, -553.5245627607533, -388.4945108757887, 191.254413122144, 855.8005881171745, -757.3731940783041, 134.21113919949175, -529.9407426483061, -787.6881800288871, -792.0789383106357, 1330.9459531133548, 204.00452416602937, -766.9735568981881, 398.77395774717377, 409.5961085932131, -887.140041764027, 317.96706531567685, -606.5193247122737, -409.532980071625, -1007.0312645777414, 145.86537522655297, -712.0602545646686, -79.45899890038226, 57.21308902409689, -453.54249997684155, -493.9608491693509, 59.702863111830496, 1290.5728084769007, 112.35464986434006, 57.52220931666365, -53.87765869488978, -305.80381680931947, -559.8083960295114, 665.3489134365251, -80.18095042956551, -258.36850606216126, 390.62233193136456, 662.2701480428026, 504.53737755005966, 751.7133640025827, 1463.385353853299, 582.653495498345, -946.3582308370945, 262.7320381422718, 168.39241250154492, -675.5107120303942, 324.11736928066694, -827.516146350737, 606.1567204625483, -881.0095651580103, 655.5303001131731, 61.29025691765254, 1092.1823819791146, -406.0352407684751, -1.3210428195453972, 196.9549476925375, -305.0884055196203, -257.92892267412554, 129.33838305584524, -564.2714368889926, 1504.5191488196774, 228.59676806024677, -901.6575133676859, 234.90233910238973, -17.04673934057834, -491.29310057738564, 103.19333500128853, -444.0847147753529, 413.11884267350274, -919.3055662958009, 802.9979119285424, -80.21077310947928, 976.9046603197595, 1154.8720151640068, 287.68983219601273, 365.4836350679425, -365.9269841586507, -289.1847533951228, -159.230874262748, -535.1038251053504, 1264.3513233021326, -788.7436044140071, -906.7036197582688, 675.5273358987838, 551.5654154180078, -409.6140368092123, 206.0960503058078, 487.39756990958875, 760.5293558849755, -154.59798374872634, 1125.6764144764575, -546.2522043988636, 775.3941401538274, 361.09591834962134, 39.81242015130489, 193.28296193845364, -244.0625683596624, -331.2561120059013, 71.32602991182013, -659.7184234305406, 701.2631574360767, -226.48716534060543, 31.40851037920814, -187.90011861322358, 1219.031216194965, -54.208535526100256, 487.13971390604183, -541.0388335155227, 591.1863758848027, -758.15026882027, 663.120501567027, -14.861356490641136, 200.31085526269732, 431.0430985747421, 1544.5406263211728, -740.4533913770649, 1183.5626426398267, -656.9034678816465, -920.3005067991292, 205.97857835484024, 267.42000977346896, -329.618136253641, 712.1983060283869, 179.04287239807667, -138.7387456685748, -700.4206948385702, 166.54585092755573, 1058.371688654428, 868.6559679585272, 168.30503785507034, 660.730832049812, -170.33179334312425, -29.826116331661254, -137.76615569249657, 650.1625238483019, 57.98303414553443, -854.3964383793221, 134.20377309966563, 157.21384654569545, 274.928467305454, 209.2098064723578, -401.62136584366397, 390.1516287057061, 473.39257388602147, -296.8924483976902, 719.6197438656902, -377.7755990348503, 644.7815894485849, 179.46883155019245, -435.4425501483574, -866.9650824749853, -822.0356920144129, 1450.2021341093882, -57.11698756074445, -865.8659877592311, -306.84817982089936, 273.00310631891386, -458.930703273528, 1340.2676365173654, -17.554043079507743, 183.8922328942926, 972.2254185005764, -10.504939104828537, -153.47380738729726, 381.93864680342347, 235.0904853231183, -443.10830762143115, -344.19978979718786, 144.818533826664, -359.287514927213, 478.28503627063316, 11.69668596025575, -189.56804644695774, 273.3899594760516, -283.453230031767, 99.04547041100315, 283.60675716307185, 47.689666479804, -339.80325917494514, -443.16600445429685, -893.1974375155357, 83.86417996451107, 1.4323627378601316, -207.16557637646275, 0.5132598294419495, 146.72241898727162, 715.9064889787002, 279.4680004032068, -252.14533415145186, 722.5282306183584, 9.868419354927859, 28.833015855954642, -782.0820045324347, -673.4603891931274, 73.57014506742223, -655.402218078416, 1247.660669806321, 300.81709693817686, -340.3035201640636, -113.05907625546607, 433.17474579747824, -90.19972869920107, 325.08365702443484, -52.4340588910964, -893.4367428409364, -133.93522003106196, -858.2118450012366, 310.6028456712805, 623.8012128724561, -925.5287935404494, -384.33213001210004, -61.148354753120714, 661.3871358942661, 195.91390080232384, -344.30473504843576, 755.0969265159493, 542.8516916654067, 463.0542491975344, 446.3411169777901, 57.46206280630494, 1247.7193866593802, -42.39476077812364, 482.3083157272682, -325.41257124281594, -207.84913400154775, 141.4710265994497, 365.99519453503285, -418.15452775754505, 302.94776094693333, -495.3769543079884, 1476.4829637857702, 1299.0200688379512, 218.5561417344565, -304.17036590135103, -452.13162940588285, -769.7387044077773, 139.93070934540594, 140.70364620136564, 280.5911414678139, -291.9826567814941, 837.203185141301, -492.26049261039583, -947.4972014042959, 921.3932786152286, 769.624273821088, 498.3514082202602, 42.08982346615551, -590.1890032826985, 427.7670019318192, -528.8880943999134, -488.44871746344876, -332.6190158541802, 131.8090746528644, 450.60650013192156, 475.36515235399514, -863.5337671753036, 24.423023095648233, 301.9683872114467, 356.05969001155324, -467.99349214363286, 543.8151629698683, 368.9354198282974, -941.9466437358236, -665.8462034352142, 761.3780292250947, -270.1848877599331, 952.8028322023708, 379.0604633474768, 247.7473129838736, -434.34281998491304, -557.7305774539778, -685.3826640526969, 271.7489133634161, 1110.9849543626415, 471.04897968255796, -40.13044977364022, -874.9637308969071, -158.139064557274, 834.492144953402, 1.3623433836325063, 946.0772521061838, 506.5063429620256, 23.03527302250103, -4.423593854335124, 136.619371952103, 327.85155874359896, -588.864219483207, 563.2948002873483, 468.75139293886366, -644.1807638339436, -886.2813516325458, -860.5082687970455, -300.20398773671155, -664.4300428026353, 115.04754224482038, 266.7525372438973, 179.6576350729377, 518.1080307989189, 1312.3488135575903, -136.03955655703456, 285.91038301802143, 713.1520483304081, 287.4047666546583, -106.6901480163887, -340.4801592940981, 311.4066639288625, -510.42105321727104, -728.801475938711, -98.23715900134708, -395.0430359278193, -509.6131756493012, 163.36630135020357, -944.978629955144, 575.2666071313841, 77.43396370715865, 697.4927185115681, -310.534297043064, 364.50183334224437, -553.5460549701581, -529.9601227480059, 1349.001887273515, -137.4416450167926, -896.6721440606744, 749.6270401113215, 47.30370730085402, 48.86170636843942, -395.83210212625573, 417.6511929793108, 502.5974556813704, 475.1158142165101, -763.0525498232682, 581.3909524680522, -906.9815135429961, -381.78542461777397, -379.5406264405075, -198.2038147015535, 590.7434162666224, -128.33298418139478, 404.4202455733795, -592.5022546680166, 460.849195195017, 262.84007474154475, -424.40325977961834, 488.33348473362366, -60.51239782786985, -24.965070300443873, 437.37804722751343, -37.73735842700865, -148.73255147197597, -719.8927737688115, 727.1757231649359, -530.4967890878395, 510.63573506779, -516.75724861622, 61.05063925177207, 278.8861065878796, -438.67590613200707, 651.3289136906378, 134.0103175275581, 349.5804425349894, 450.6628068904554, 434.00803825370394, 566.8760208096712, 284.01459714897544, -915.237877948542, 162.36861072285504, 262.8489989649362, -127.67052845928315, 683.3250470577732, 179.25603221834194, -251.81419123131786, 687.1801395510045, 66.67235333595897, -797.8629082916552, -821.2266044778394, -606.9265809803588, 377.2066752071356, -264.9936204509102, -94.8298010380662, -75.74838077631014, -452.8312676271948, 926.6462599600858, 213.71965880609972, -945.2121344450217, -328.020524280183, 145.08601427141036, 364.5098530290482, -119.50058159795478, -944.3961952934254, 1024.3837294387604, 501.008740125577, -0.43837813189917973, 27.00458450786705, -670.323380762526, -581.1125290267769, -165.6192511821137, -464.69163493252, -89.11530195529585, -816.2055154557634, 408.6261729765204, 301.8992534396141, 967.1395359709991, -939.5336214896676, 156.51705338121076, 40.07043476070508, -101.74346465684395, -242.73152772321345, -271.1151071983346, -535.9942802568614, 208.84343003748566, 88.89180929706362, 1284.5082685891173, -2.7595715754559933, -693.5797825538815, 302.9809660320789, -990.5081556048217, 367.4891792142651, 87.70063943675065, -135.0604651340672, 521.2694409871114, 383.0516451889571, 357.2611497289999, -944.4795894727836, -781.8581592401858, -160.2893347009345, -37.137966582952885, 177.4273771363959, -413.84625588343704, -460.86449150892156, -503.9254630020586, -472.63338733428236, -868.73733880857, -436.85883439545904, 154.76898653676096, -385.61660353803916, -529.1654339127276, -978.2612279916303, -558.7082987327118, 396.22290935865686, -231.07229401900773, -700.2799780239429, -583.0583118486368, -135.1452125950354, -155.29763280439408, -178.6864386760526, -376.70808233790314, 36.335520621785776, 945.1962758215672, 183.2009951057966, 1280.7532118028414, -1012.8822015058014, -891.788852146805, -1015.0595806968818, -511.5076140180067, 566.4285048966959, -871.2294910156694, -962.0721737258913, -303.22845412926756, 312.2565322689324, -719.7727606479898, -448.0391354012383, 865.4903698911977, 634.8022649761458, 305.43037220753575, 850.3243960268665, -276.0186632491131, -979.4796449394742, 101.90937806084523, 945.5304832509898, -395.9168868640021, 5.701052577644546, -511.76054562693133, -133.62968224089047, 244.30144404976386, 69.74644315146821, 384.17144694781496, 164.3501525563789, -749.1556936468036, 1051.8265929255065, 157.29530933177608, 255.94215791559125, -382.2087853950853, -568.469211418128, 34.24090012988641, -457.1402866060451, 117.47967683568638, -824.6513216080231, 119.53006251765737, -423.1684614109415, -949.363078792036, 443.3099096020573, -656.7323516470578, 152.07033544357142, -3.1693960860805745, -759.5793720384746, 97.02032063975444, -213.18950723729273, -497.45156924132664, 115.72217696439573, 450.94943615391617, 277.57073192756144, -79.61358209037607, -910.9684685282609, -937.2057313389532, -440.54661910118, 559.0276385205314, -335.95145856298166, -71.61435584301685, 179.33530115774138, -603.1507956588317, 171.10201677063446, -122.61469126540237, 426.3771762565499, -27.374009234110275, -358.2500293240655, -204.10034164478012, 252.60107477484217, 360.0466581915887, 271.3636722928014, -738.4688717911057, -428.0099211116943, -242.81942497629865, 217.56182485473093, 1142.5761616996672, -460.45706874267114, -229.29233074723035, -835.258144453057, -547.024940850413, -416.65588162707763, -117.45753290814423, -134.44543980160591, -44.58467673421612, -100.61817071557634, 233.91106658233477, -187.90607674961882, -536.73659302995, -477.0211685661526, -744.8987514419038, -94.48094794015965, -13.820166931843278, -188.75909579471846, -1.1187233804696746, -416.4955074772275, -321.09176702809236, -509.7693555731636, -962.2981475741105, -158.5476147483871, 1029.6861403619328, 124.91628922501747, -586.1306203460025, 1731.3788047149624, 104.99065437283532, -890.3523818549454, -266.69489782844886, 652.8300314615423, 687.8110549911652, 583.1105740328403, -340.33816923430186, 485.9610490470193, -466.81873266870576, 878.8421017267318, -264.7581619844283, -44.53209339481367, -793.7182793100525, 1049.4936333634519, -102.91262887013161, 1295.3117036967722, -97.6330016687142, -978.2316457476869, -206.00731231042533, 676.1454449906986, -964.5454399840916, 441.56140291357036, 217.7835228258395, 361.25143269166637, 5.869483321798054, -170.45971781260593, 942.4808763851873, 809.3131835840516, 191.86338066460303, 1699.0646984944776, 159.48998798896446, -935.6182453327878, 5.349824472203238, 319.79318967036147, 353.644818606309, 984.7843329166709, 117.98351280244465, 96.63865307646236, -184.7587933748913, 660.5010589444478, 325.9585501787724, 373.774144679886, 1.2079253776635426, 713.7427922410262, -39.97845700981689, 204.17520724898083, -90.24823710453339, -294.5078895290895, -287.33779439096907, -355.8902720546673, -929.1912654297702, 127.80526268198824, -233.95468621788282, 737.6224039837741, -370.18118257689804, -260.15301351542263, 132.620128209078, 194.84939172079683, -856.0833253695301, 721.8768179534251, -769.9636079295236, 803.9175271516111, -897.5556707724769, -730.5380780683412, 163.62067428344446, 569.6557363633053, -558.2303238107199, 395.4718358492809, 471.60599518771323, -35.933887471324965, -335.1090505783162, -137.44111362795803, -862.8781637703037, 422.9334804821053, -130.8674358325569, 238.29549215508038, -359.1092261800012, 570.6431274824259, 356.71479020634604, -557.9947501288549, -417.1908813472144, 258.8336741593993, 521.359071335557, 514.2587228993928, 204.5338001624955, 377.8789665566717, 567.6374623004423, 1221.26484702975, 1015.362270364082, 1281.513252635807, -739.0044649773802, 897.1703720200525, 441.7552331048236, 765.0573897200471, 179.0599912612585, 465.8763659949254, 446.241896149968, -788.9570854126268, 133.09079489155994, 711.0631991400991, -263.03506902771636, -243.4843123124023, -142.46006072959432, -389.373102190939, -769.5173157064235, -356.99831209805524, -384.8501722541894, -529.7884240186183, -236.70716030341003, 753.8419815398902, 342.96489875416194, 438.94648949129436, -291.5033263105798, -707.0466757578462, -358.07746858146834, 968.5234696817984, 383.86333853742985, 1069.3906466722854, 396.39275114480847, 93.39987469717443, -336.82841848730254, 742.6958951815543, -214.74416425548452, 830.0448418453431, 1051.8996157774325, 389.88137526049076, 325.5197277850426, -138.62752506797304, -158.78157070469948, 278.3971288027608, 642.7469173150002, -122.60114002607057, 80.4335454338206, 201.14751978629306, 321.7758297945787, 752.9289224227994, -446.94520282520415, 678.0082045298398, -83.55516354202474, 1188.0651599929986, -172.76049723676311, -996.2032435465215, -207.5327159445225, 526.1583970756174, 539.3997903273581, -350.75455541664553, -548.8092370979734, 799.3292014855597, -14.788040761006073, 151.89824171885456, -160.49783615291597, -820.0330362443982, -300.8219182878276, 415.53768824711625, -549.499855106627, -198.19729582647759, -376.18874709198866, 191.99442775438072, -490.23886387330936, 440.7975825486602, 165.74473492723993, -280.4837536865309, -759.6811881455108, 337.4566346850162, -389.16783860221005, 417.8088290336717, 814.9143010019995, -273.3969167218922, -476.0499289701095, 1104.2682304807186, -309.0052275552887, 638.3402672658832, 584.1731313194975, -260.4226619910597, -780.7482972615485, -46.73957147516572, 788.8676003972218, 13.154217076946338, 155.17157856817457, 1270.7207219141465, 301.134352001396, 180.69230359508157, -413.21274639689375, 1275.14070603918, 616.5208198402274, -701.5030089726689, 262.01006930103705, 2084.1707200855267, 1255.2193603778164, -796.5485574031101, 80.63407610102439, 2044.452809658288, 1731.5746533229315, 184.85285700431356, -411.7645109959541, -597.63479036999, -90.3737332220008, 977.1615881641072, 78.24331357051766, 278.1542428730234, -30.418679118143558, -190.53720111831962, 528.7086836596293, -85.71242412372492, -167.7080536942068, 40.83989077626568, 938.7158242090981, 767.6312500096371, 421.7470060294511, 205.18693431049377, -751.9797611153957, 330.90577614313327, 285.3643218613166, 553.0994140633504, -915.0511955321222, 298.2988467732553, -419.6148929348594, 67.63160812808235, -6.91996999297951, 308.3146043480288, -237.88646788410966, 558.7394381814279, -255.25188402696293, 1327.9941229456722, 396.4694282201431, -862.1154839805196, 192.93985885637386, 566.908846536111, 94.89834339689612, 599.9606513964786, -188.99693544363822, -201.2395982866809, -170.70337319767395, -85.39955298788544, 571.8512348503679, 109.6198745766543, -261.19890734639284, -4.814603932730719, 91.22234440671761, -401.77868438723283, 916.832859190991, -730.4898194109333, -344.8070268072315, 406.8729259265275, 383.9880320778252, -860.2225259119622, -538.9482147592855, 360.99156043707194, 13.421612587019368, 342.2216009073875, 89.69187147907493, 8.786045240761666, 284.67063763789236, -647.9604818646822, -428.6877646539509, -142.8988640399465, -360.1433522803551, 284.29095665579797, -129.27738315331072, -131.48257183893736, -122.45535410176751, -713.3810121793255, -377.60944009010944, 1193.0315672483496, 46.366577830860386, -965.2606942990765, -251.35601539243774, 187.75724852580635, 328.8347555721107, 738.2433420714929, -858.3445255203782, -66.08332317264683, -711.5759903676574, -54.67342473217087, 390.0075825316953, -695.2946995359994, 383.9821897507941, -348.7489309851421, -966.2851512063992, -351.22040542104844, -9.929926462626355, -265.274875193623, 305.35110620372734, -979.2147813438669, -505.23581071367107, -398.1480966992707, 882.7497880290005, -461.2268300285578, -194.43878964979487, 585.7407606989243, -405.82657988771035, 1477.3637916417053, -639.7176522645436, -685.826431935275, -263.9197744812662, -329.8474821564414, -443.0102837337689, -416.81528636093424, 289.68233886902283, 1583.3341817807277, 653.4510212831403, -518.0860909319513, 58.219468646629245, -999.812346784171, 451.287044854559, -295.70160207251274, -416.07819375040174, -250.09875174709873, 95.27949057239252, 1541.860156538202, 528.309387308523, -702.2704741916333, -683.5055824148399, 132.5973648061876, 40.318523594969236, 1866.528379992727, -978.6483935800624, -919.8522096067004, -475.78486748212697, -312.0438364842172, -506.1340745761178, 1171.3422106559192, 1250.8608053048401, -210.15701339307378, 167.3518675162466, 184.13077420339312, -382.33925813185306, -365.25976883073315, 282.78875342053107, -169.025637127732, -390.739102189123, -96.66852040937691, -423.5063665151734, -148.7244868034193, 136.1750506399195, -200.73523071295264, 186.28664772538602, 1598.9591273658043, -279.4822791221321, -341.45522059971466, -174.00165198529004, -1007.2758510651172, -324.34746472974916, -335.8354255855209, -30.045000222173655, -331.22769698577287, 654.4100745183121, -913.7984941832734, -855.7776609404592, -60.71507347998678, 757.2253386727864, -504.79762144275554, 946.2883015880269, 197.9272608924765, -133.00873480118057, -624.8554769462223, 313.28659630364837, -51.81496199544633, 239.0353271087114, 184.6907902837315, 35.85274466457663, -175.29463136893187, -266.6171405227237, -134.8895026016521, -738.9714149570432, -583.702224415247, 191.28181652208573, -748.0537901007515, -675.7781565172769, -52.02926045377768, 797.7984666768062, 165.01016145014455, -350.57010554473084, -329.50778256971796, -617.0221059538786, -362.75739589115744, 635.9360858115615, -604.3338210679818, 670.3886284993036, 6.023656537097992, 117.55684173453905, 113.85285458719267, -127.06238977180914, 272.7614805174185, -515.0759921772791, -186.80229250093655, 367.4381537762647, 202.18617850120475, 184.73246106880384, -286.60418487338023, -469.08405902692226, 1109.2791152009627, -689.5519523754276, -409.94203075660914, 560.4765298669421, -341.9966800897743, -448.9557934814131, -154.42162622093414, 1154.9313351408969, -969.1507547061007, 109.9996442373321, 303.72463962081474, 239.86077196588724, 479.945271406502, -198.76074214308494, -708.2946256761564, -42.53685768758412, -108.06183701469996, -196.96165027282478, 259.28904853883074, 574.2386323511503, 167.4204255562849, 174.270113162711, -240.5230029983204, -335.0898173285438, -17.439026252598637, 787.0426951978097, -906.0158984470357, -94.51365096004022, 229.0859110752598, 99.70531744417352, -872.475534083261, -299.1590664093941, 248.34670866793016, 157.0062043348768, 1281.1217059884204, 889.8645033419123, -987.9786401196732, 128.98871253945214, -202.48609838680292, -197.4619805027896, 392.0894047100884, -533.7997082849075, -152.03508011093805, -667.5473135197346, -72.22173981058023, 353.8176250103997, -72.74384296122088, 547.0330962548105, -60.91997990749677, 97.5260592259803, -198.36183751666667, 628.4246476053285, -409.0247846982915, 32.97283335008309, 903.8057017466174, 831.7549142945037, -1012.4184507309617, -125.2629451563876, -355.2046562626093, -14.66915060540586, 156.56018338337788, -55.206904212386874, -12.64730309028856, 258.7547896736658, -196.90776988972647, -220.7827083309113, 163.09083102662177, -54.265309938727306, -393.538401128484, -857.4561357142023, -163.38868691491072, 566.6798511574727, -440.6722859381095, -475.56439787295295, 959.9303579165801, 388.3363575906262, -971.5600567514496, 261.97502550576337, -373.23981544225836, 69.77845662353194, 408.0307643177792, 157.79700626219258, 86.73810892350052, -854.6649511628071, 103.19716236425859, -859.8817402926154, -155.0859512277987, -1002.6044136922327, -425.11103613898734, 48.32399487913818, 167.52669904666953, -105.51206130926533, -524.0570652240073, 1493.5117379503654, -960.7663563765487, -465.9860402226275, -587.7922054131701, -416.741261528469, -12.92503106105724, 133.58488608306027, -248.4488263348616, 94.39608065299052, -156.06227371149964, 1024.5542823992314, 346.84526042342907, -601.7368525926372, 178.359338588588, 1632.0552668576238, 88.67449942339094, -1023.6599063897696, -1005.7841716366161, 1000.2941503647162, 654.8868270871255, 244.93933752346993, 210.5168462331431, -407.6068613334629, -265.70635430982253, 161.84858903275634, -188.67090687912534, 81.01654191566068, -120.65294145824498, 81.62281580797557, -301.7202401348065, -144.7669405805841, 78.87287560930129, -685.3154678167633, -976.267095004192, 124.4824098184709, -952.2613588983148, -877.9889140096618, 1586.3007504618279, 757.3766834901254, -1003.5328595727295, -747.4097224800166, -488.6702382276743, -62.85514900559917, -4.651034679128159, 80.61846858095342, 1698.170591582545, -784.0661439040325, -512.5806039500468, 1314.1010565673807, -106.76487034260282, -444.2001240557264, 17.4364735151334, -791.1062585430346, -940.4275597575859, -259.80049620583304, 92.6665978626196, -214.67020934715072, -65.56759431820215, -163.8233364976961, 1450.5728739655615, 1160.9468706878772, 1165.5419415901924, 800.972110056253, -28.99801423279456, -624.2718099122282, 993.9902491148496, -553.2707523745615, 226.8459909570059, -56.40234929180064, -329.53927617354066, -997.739969719888, -464.4809515121249, -485.5408364519276, 153.5502767009511, 30.130089347363494, -376.7975543607317, -268.2760002804958, -69.59442837425915, 1151.573729286057, -144.7059606781899, -501.89176470695554, -8.473277746579022, -490.419137506551, -212.4455195560247, 110.95410005172819, -222.4222660818633, -643.39576116445, -183.99527318895073, 218.71338056756724, -26.553607934998467, -90.22774538154638, 1.0696184635165764, -75.3528583703591, 310.8117176587698, -379.1566379020031, 193.8646339100482, 169.13013536632744, -134.14601887629053, -177.05656429894674, -428.79805639680995, 309.3135274266224, -527.3352917565128, 822.0874396182724, -417.38741857551594, 912.7533647068483, 1025.7618511250985, -545.0244193222188, 1186.189166922087, -237.9327572221581, -488.83866904946086, 511.16080638218295, 1386.6541783644102, 63.79654746614216, -339.9263945343187, 220.86211790403019, -317.37931101717726, 1.4632351512710926, -10.851848882985962, -214.94531631841784, 91.54851802662124, 646.0929876536966, -457.64138936355124, -788.5496949123731, -989.7244230456698, -195.30125210181689, -90.59889619824855, 320.32650985718755, 91.15065746329506, -374.2345218789875, -136.44133112708474, 29.68609835914367, -223.80028361169073, 639.9221721026098, 757.6625917049406, 641.4942557400168, -49.49300308546458, 46.94033134628838, -320.0545807935653, -165.01378998367346, -2.8393825482582926, -381.800396517112, 6.958524548556511, -175.27869401590166, -968.2882678849923, -165.6535999392582, 134.92970417519686, -221.0401913965698, -260.83554664429136, -321.4840598424726, -417.7496377701483, 258.49227120938724, -915.8562036217311, -849.5502988711662, -194.74820712764574, -322.4616446483012, 1082.740281398516, 210.14176492212437, -554.0410810637004, -820.7431031302312, -87.56568663482136, 39.3491616300644, 87.36119558222889, 429.6785702742113, -138.54609200205277, 1406.7224972778674, -61.97475828546072, 258.545368707333, -938.1219249981789, -851.7046423721064, 12.669823648479309, 594.7827174310662, -423.3714640414028, -245.33175610565675, 1659.2400768653704, -780.6556641681819, -868.4614591976026, -63.133900079596515, -69.71559940199344, -246.31924885932284, 880.4461104695906, 340.4101360395444, 962.172150566496, -886.8680601676883, 852.3434946637838, -346.3178157181007, 541.8680523913977, -551.7020302485811, 825.5409492312963, -671.038025597264, 98.39391413686376, -418.86612763852565, 86.10804721442912, 439.9554802647515, 1664.5568900529433, -205.25204043628685, -721.7369488777165, -753.975254220206, -152.94562536163727, 69.58156901942655, 531.0651795680549, -163.14104763894022, 158.2329733662682, -433.4328902030863, -225.9328722844743, 1203.8432649551035, 262.8642520869262, -84.73895121495987, 470.06598683781357, 108.39400954418622, 1097.943664413087, -219.15193684042262, -296.03656827207146, 21.72302723886586, 1318.9673461536852, -307.00093570407444, -980.9339123962152, -418.77086877694626, -357.42124729333784, -12.069745646453107, 792.8494425142363, 78.49852277754306, 244.59926459565403, 270.81401416653597, 1297.6095753289394, -196.4429179453321, 90.41122388558716, -422.55759286000807, -299.2222994829047, 20.312732964301233, 199.58271415070806, -389.74072700559276, -459.0099667715629, -135.19330314164728, 1777.988243184862, -37.563218822956685, -529.75083907653, -206.1331982430399, -49.280210313897555, -417.18549190647633, -273.90537321583133, -74.23062439840123, -110.86286621043652, -734.5850050229519, 1697.2194686229104, -158.72472797344716, -838.8613740094386, -888.7597478188839, 121.5678802197159, 72.37473842352982, 365.7000834068289, 103.37215007662482, -849.8785483575706, 116.54295448428769, 96.10084036295318, 114.5169664093629, -437.28270453236917, -295.11657430537986, 277.1097183125544, -242.9767103226475, 480.0333911882899, 444.2378923748086, 66.15784682013579, 1506.1500492688685, 1927.2335243424154, -691.8846072484021, 876.2141461126938, 970.6966625523007, -476.5472902599193, 201.9831564411307, -157.60692428068631, -309.0020227152645, 332.76617663930216, -903.7407439158548, -675.4256735477754, -479.09390382161865, -425.96259628993243, 341.67128954347396, 209.72030295279674, -900.7800758095929, -40.37782629275699, -296.5893558691904, -940.0393592731092, -312.0309457734659, -348.92113352372144, 388.02433806611634, -311.34318361174405, 336.9678529156764, -262.52958363311893, 631.2414314412741, 31.13989916958443, -543.3528256210517, 737.5180739721237, 1195.4139673669235, 219.86897872348237, -609.4877841348364, 86.52996264218743, -240.09117809927875, 771.2392963871364, -409.9297842029943, 2028.0730725048538, 107.10465169100186, 600.2889962353606, -176.26117940418987, 60.200049327374465, -307.32142588631325, 1683.1550372422357, -328.404594241434, 916.5609127792633, 101.43395414283746, -131.16328111887412, 1.2641650783276326, -268.81042020773964, 47.500501555735134, -983.6984330388171, -83.37070462770906, 852.897229501309, 759.1679101560396, 539.3243136650867, -267.22180440117313, 692.0798424424206, 117.98378906080106, -135.51729194835895, 441.56578277615336, -256.62388910475056, -822.5998555764679, -849.9233546754126, -411.5037910948428, 277.5128082492917, -534.0650884048878, 1104.8373066026988, -392.9690321977989, 1594.496514782713, -49.4503766358843, 1109.384497988556, -439.6072833894883, 1993.0467680107843, 278.66784784207533 ], "y": [ 441.7671259308403, -451.8795003706538, 651.3404894841485, -690.5899028886075, -93.56248848014125, 53.59842181708518, 438.4797292946715, -25.36655484920152, -380.19494149758594, 646.7821060621601, 236.1958242913571, 604.7806986223429, -128.50139438865273, 97.00906031016831, -788.7239364738305, -16.53231408488574, 409.99140861204296, 87.2607915524064, -83.05565626270305, -501.80669550240793, 540.5308632829284, -193.85222156308188, 573.2428647815359, 320.07887088337526, 1057.5650366399282, -469.73121155101273, 660.0112098022307, -296.53070740456315, -95.5674092514686, -119.24809761795208, 816.2029809871063, -199.94429032997024, -123.88706805456164, 410.6103390892543, 243.87832199551747, 196.60700005455044, 440.29792872704576, -608.9221283676468, -303.8282573954709, 230.0917641618397, 474.25415557392284, -416.51999503759305, -10.454583262255099, -138.24121367186717, -813.0248613568715, 34.34634959911445, 270.1144716086354, -110.43772350235328, 828.2136928944672, 603.0155351675952, 188.97301254057902, -1047.6060832577691, 97.37560286458341, -812.168741418779, 21.129417467914678, -45.42521178918499, -564.6463204967881, -641.2639435449776, 778.4470799218846, -513.7304920840938, 89.8675038820463, 403.3372690547751, 420.4458904246633, -484.7634037767708, 408.400233167365, 261.3127046137708, 451.93247077431573, 354.63752969626063, 168.8979901856017, 348.7897069515291, -378.179567063794, 152.405006423509, 169.95036641459882, 202.5831534363283, 517.4884995565396, 712.3858647921323, 734.7387850662108, 508.7218534210184, -179.2048359760669, 269.12519406772793, 377.65994763232845, 492.41987613078436, 59.232427868434286, -747.2433949170672, 483.12748145172066, -167.94431872685465, -813.1210702030754, 176.53391422788474, -787.0732254474029, -215.28231107915337, -602.6239039301654, -616.2570633176261, 252.11664571534698, 244.6689329591926, 299.1545337795525, -591.9613176109111, 296.7197430645811, 250.60440408535564, 361.5277878258264, -131.6418260188319, -681.4985665935732, 164.7638099609293, -783.0056810533054, -70.47682882183815, 822.1207721493317, 21.454878783041003, 708.9072471916761, 253.0525307482646, -259.0369757839848, -633.9336514979817, -203.9183653980367, 166.24922683749517, 965.8549212830209, 20.87887223650074, -749.5132311321261, -971.1072863674085, 641.3458908972963, 226.4352686047502, 630.3117554900948, -358.04674719730724, 680.7525632171289, 502.1654519979825, -668.2817741757426, 216.69594162745895, 668.7247341202702, -69.90251055576125, -235.5215810047277, 381.9649232402518, 537.5429300912905, 262.77349673212836, -485.6906628962993, 230.49751175292369, -346.33555997581436, -308.90033285361744, 730.5303978433421, 205.6249775163511, 609.592105921522, 627.7542163069547, -451.1216447416176, -94.27372831135357, 29.204038633916838, -736.2891116734409, -137.3839061203858, 154.63716630405378, 43.61057552123242, 725.2343590869004, -174.2865723618539, -339.5748132563142, 436.5284859564496, -150.31029774210597, -228.31746710243615, 469.1316141059479, -254.67332493701537, -745.524518298792, 54.965112122562665, 72.56888865433962, 645.4927782084765, -503.35724683940106, 104.58246204614409, -173.97395505058762, 1046.8746395770727, -761.0686992198449, -176.2798805692377, -695.6753786576254, 178.86463991516143, -485.06518476685187, -692.4555283558556, 130.14085061782384, 372.74668975013196, -852.5121571505608, 285.1322278187762, -852.5014033244559, 262.7251736641675, 253.46804322514862, 302.4526322496975, -432.1832004879245, 601.8227370071338, 116.18384271789114, 364.2215688068717, 231.62266177626114, -319.70432080986734, 379.8044689807082, -918.7924062692915, 79.25886125779712, -717.7911214785903, -98.34095004269726, 1192.58221319137, -243.13881260219105, 94.0599511451198, 630.9867549178969, 112.91947175644562, 164.6718377429641, -621.4035786712591, -926.5973958823023, -195.06520108610903, -1056.521611383405, 597.4878797978965, 410.48083662582064, -321.7239750299706, 37.51619718484764, 555.6557931209977, 490.9077418504547, 32.16659797419922, -304.520883351794, 837.7080507265682, 324.00110008876396, -135.4034779421982, 419.7553509470621, 503.999170512892, -48.34814300655027, 565.2008104566181, -387.73569319356204, 398.2461285363604, -935.3936017222808, 905.8038732768687, -132.55348990826906, -631.8251767950995, -16.029933800472136, 374.9381939866781, 740.9809620624442, -341.0156191425207, -589.478253136687, -772.9910846165112, 15.44023472730521, 648.3789037696052, -715.1985276183026, -526.3976467880502, -297.1151766686023, 45.144363547738976, -533.6300573965068, 594.8040242617799, -157.0508250773816, 341.73362274859676, 123.73201388312619, 785.386806774625, 296.2578621626931, -816.6466624371915, -416.3899038369667, 353.3740582150945, 114.81031173740331, -604.1204059172883, 928.0135529964309, -1135.808859075271, -0.6507275678776665, 663.4120712068691, 203.53478184814276, -478.85674851881924, 80.36190146628991, 257.07485607819035, -328.6286334540967, 458.7686404059029, 645.9994903518166, 352.1924855208049, 468.3313859075871, 831.3208996533888, 482.3282748661923, -676.4768338423286, -402.0156063299469, 79.04634559052025, -191.5624486135401, -348.3068581408032, 343.74045167956626, -1027.4355668283972, -559.75036783063, 329.8502344649782, 620.2293791268214, -548.3549576849989, -451.7812913570772, 686.3642303064222, 226.73309213290023, -443.4858496901911, -884.3414575816669, 330.80790978923454, 500.84629128798787, -700.5168356948053, 228.54979841558753, 297.4931500148183, 553.8705349847709, 317.58612977657623, -624.4484437161768, 629.1138857200074, -582.963469244008, 396.2281172139823, 314.67819887561404, -437.49389789454904, 49.546852470137935, 173.51850389756254, -813.5049088910332, -601.3884983838664, 530.7316520576524, 828.317803133112, -294.682109837133, 526.5426032212198, -667.2938058989519, 652.1456390904756, 119.13852933858703, -702.2508776431321, 424.9950293074428, -353.97179272094735, 403.0761024268657, -883.3088706977267, 180.15089683302034, 638.2712436001395, -477.5784345770629, -644.3744713240721, 146.25852545538916, -649.3533917020294, 398.6237283753322, 693.8062669548565, 180.70245357094427, -336.2630305366748, -131.1748838352131, -354.87276102857993, -646.8506963512866, 692.6233453101923, -93.7628914803358, 244.6086764900365, 385.94219762294864, -309.43508350143503, 152.37175968903105, 659.2732616446838, -619.7554905933154, -595.8312418562459, -866.9250629351666, 342.3082798751759, 131.26399727282708, 760.7881507637231, 12.062022439586585, -818.2748217709401, 470.85566896095764, -457.052285205175, 148.24505465878673, 376.8782025430681, -766.2263663385468, -15.245157846409413, -542.224100293585, -890.1741445687505, -853.224599718397, 328.18391368151987, -459.6008146163555, 797.9694913664446, -246.52793673942264, 660.2196507754654, -782.5540880149654, 637.0504221742524, -1.1752333413316336, 298.2319079332866, 549.2041423106108, -818.5900405440834, -785.7079124795217, 635.8148595593116, 369.6734019811426, -539.3170082866454, -570.2919109388356, 806.6722205312393, 72.20609593170774, 635.4338200926042, 0.37150382486761657, 396.4680681759044, 813.2451317480067, 527.5114995696574, -779.9021816455538, -249.1309334845352, -490.61661556632237, 369.2585166926969, 228.07144942656734, -359.8478415943862, 391.11650335530084, -827.8803756765926, 72.84938738906732, -923.491686178885, -629.0573860932705, -617.0821217760263, -716.9426495996328, 310.71685643850435, 179.2150214276365, -871.0660581410773, 380.4222385150549, -296.11818119171437, -785.3644991690094, 375.35600049291673, 277.20717108084995, -764.0631600279863, -546.7326936967281, 510.4064260741753, 170.1159571997216, -787.1506213369315, -94.86940630691534, -458.0012784697632, 724.9872032717403, 303.81583832642826, 333.57059753498277, 567.5096300077772, 100.66495022543003, -139.83754102008857, 210.77608058453688, 742.7196292459108, 130.64552943709435, 697.2918767964244, -42.91840428915757, -287.135851100723, -788.7788323622897, 251.42388651148462, 420.97622749099054, 646.6002383600669, 61.742624436878714, 290.9910313960322, 237.2955652497818, -476.62927267472844, 1009.0693574156599, -517.4846522841515, -322.9986173648907, -642.9616739648789, 13.38981940014034, 508.0566719345321, 365.41092219073226, 97.45137791566032, -31.271664213809004, -475.41007387010643, -113.64923110811003, -307.7946232396657, -405.0356687193423, -347.58488477101923, -438.9227816426723, 353.83292121761724, -913.7547719057447, 515.1846729125743, -582.3943870243668, 464.2487250292751, 190.82043068902271, -463.86909068284535, 27.57203144024568, 765.2137518677059, -565.682656814219, 332.03265238576944, -590.5700583737184, 73.96420633094817, -831.7301915881121, 361.818464425109, 337.0499958484837, -453.0240652871504, -720.0205415912369, 694.2779725543371, -117.87520590242517, 389.33097399771407, -838.5570460652032, 761.2216562606172, 244.85460623834945, -420.98718235978214, 406.26598099426946, -66.1376628924287, 474.44203931616204, 454.19213975868774, 65.94132564522775, 620.3645659320945, 357.07400693650413, 407.48883047408265, 308.75973845147973, -490.8773231141607, -782.4671672062261, -891.2593388796822, 293.1674708321314, 37.32128524815625, 329.49416375350415, 114.38369391763919, 327.41960567622715, -481.21905515295714, -395.82303019487796, 54.85454363026059, 77.50293959654044, -163.4731955884334, 371.3306430791319, 363.0931197924392, -6.9791265181655575, 576.1254263073345, -380.40462210121893, 365.5968958769685, -603.753323001459, 238.77659182880012, -140.30904497062983, -549.5880802364012, -494.96584868869405, -207.26552836650538, 98.33119457006376, 223.23033438166092, 131.79059340904757, -156.07302587092101, -150.18502346365952, -103.95243718355303, 835.3081470482642, 374.56431573690236, 652.5552148289373, 233.69989064130073, -239.95968577642313, 479.29738435670083, 457.4922384257974, -40.25240841371939, 33.948112811375125, 582.1550488854007, -532.0210840180338, 93.11093095232837, -55.5408033020349, 649.6214836328129, 782.2287632943912, -798.911840932424, -505.51330863355935, 600.9993303587917, 592.2755704583085, -15.693738796279135, 569.0301807739794, 74.17812391987776, -418.39724294556197, 136.1314692718254, 179.60847471109716, 377.3953256248999, -249.14281198166464, 380.76778383685695, -417.7031686470865, 266.40777495143914, -814.379234570792, -570.2692290693204, -965.3557531991661, 118.1774101301643, 334.06510926268413, -436.14522724004576, 231.8496124117256, -14.194064616545157, -105.015207717101, -10.561994544271059, 7.846621026362037, -483.6767107841637, -16.452425009010824, 281.98890342565807, -189.89358159570622, 580.169761203512, -450.16104803788096, 322.6431235415222, 551.5377459006523, 214.57493677642827, 10.64707111840184, -766.9718005059026, 419.32767021300094, 374.3679858548437, 622.9936786050629, 565.1318837775877, 692.6277737377194, -155.54628253902786, 340.18989790784866, 488.7505657424742, -812.1072087647241, 565.8344252939348, 607.1192884598421, 718.934587046768, -145.16369657228034, 447.26032493422105, 270.94826792611036, 550.8440478025377, -136.86600745565613, 780.9560971701474, 133.8934048894963, 573.6832423985365, -715.6230080251067, 608.1912110938471, -978.6541083858012, -86.28472867746177, -538.1539289862443, -441.47633016199825, 210.10250631919126, -333.88796527916963, -239.4085649842388, 504.433303309149, 298.32048457308747, 569.4992318085926, 263.4913707362963, 648.0387732162625, -460.19203374958, 163.80100743259086, -9.896688271195757, 140.6082278069662, -684.2795589750237, 435.8687939498876, -228.2018281632391, 142.46660597945524, -184.13479859223594, -823.7050437429263, -119.17553625073026, 582.284457308553, 352.8335652796312, -196.72651903277014, -408.9746702702713, 214.62961824275033, -477.82719344937914, 578.9847557184895, 259.27701928263565, -151.67254340820355, -316.1124868887461, 620.4196081488255, -154.2890892865415, -492.2301905268983, -249.76217795005118, -34.50200059406074, 610.8351592308394, 498.0046011805731, 133.45812067405126, -62.962368191772384, -561.9908422646147, 298.78989837159594, -1042.3464032074678, 654.0266118342333, -708.8232569497529, 341.32084513597476, -89.25334340936142, -32.34902261992765, -227.46626818637915, 83.88842227516278, -994.8052454641992, -421.36701494085514, 29.591626951245928, 296.896127449534, 171.11355195501736, -420.1451271807567, 40.780121742876844, 251.52481603980323, -646.7975069286363, 43.50811648816325, -781.4066794865662, -329.0987264915478, 164.75249344182646, -42.01217927408571, 188.93670068433624, 45.75448759117802, -795.3428310849847, 316.3523806901668, -168.40748011848473, -70.13804662041329, -548.1218455742958, 588.3948612107606, 67.07734380255013, 422.6681351743497, -670.3223296253602, 301.654380063, 534.6887587929609, 424.1676067965892, 267.8897012217954, -13.263232682736863, 761.6069692419092, -286.2396898713761, 377.9523980238843, 340.4230181129383, -50.22191837870021, -392.4429477122318, 395.59707724460924, 187.29087685800081, -716.7525204146696, -636.3170056156848, 162.16475192242356, 295.6118973773381, -191.52411988733041, 80.20540437838588, 145.71686397690402, 77.00911456215961, 105.9967110130468, -478.3986502984369, -500.7147169120435, 320.3660212562228, -75.60145140421828, 204.6856199306685, -155.2993266405737, 623.026684097569, 552.3973155216405, 708.0395887841158, 313.778958933651, 326.57500380794966, 418.25502277862006, 818.4443024762083, 420.7514034335199, -866.8903612525083, 154.24843510333125, 516.4115224842928, -495.2485581326082, -231.1081826151207, -344.02458946897536, -704.5424518563843, 310.4123294680087, 854.7584579704132, -601.7849027183563, -753.7544585837825, 203.7089730485688, 489.10789209288674, -175.65224074946988, 714.9586548729054, -730.8889877594806, 218.52758623970874, 16.081407254170387, 725.3444312508284, 680.53602786384, -704.1787361622181, 823.5356806592936, 309.09206180629684, -517.3519250194953, -330.38403293239844, -82.88890212226035, -871.9539632619195, -361.0975529325369, 747.3651578766389, -473.9989049229795, -567.362094655436, 151.12921645721147, 225.91072599945, 255.31210428624345, 757.8158408656611, 653.9262249079858, 587.1402743511284, 582.7872093148486, 737.7774674756906, 408.9552775421703, -883.2188491049853, -585.337099831098, 386.04776280102766, -53.47393039589487, 53.073769917490836, -369.4606137818212, -624.9162913803599, -1028.9956040714242, 916.9861247767703, 123.05049109744238, -703.5395545845887, -88.16446063725829, -807.448810392901, -808.3474521492928, 717.0446258973425, 1182.7492868932102, 655.2275780860639, -54.06807692793534, -31.328788735506677, 158.84216181332812, 281.925349920963, -98.89742711603434, -95.46502854077684, 260.7407170541286, -729.5590721153268, -651.6534272071865, 650.2516753656174, -420.56389772097145, 487.7640995850457, -170.81064457667355, 656.1715407288166, -18.7301950671297, -460.59955563105507, -709.132656372689, 423.3737461778409, 772.7808571462838, -475.1530940096602, -331.53587591566543, -617.9885785454653, -218.82000888954377, 497.9250105742009, -135.47102760560674, -45.011882605650925, -232.4475373173912, 377.78071471335306, -507.4145734931779, -1005.6467095416518, -787.7158230021917, 1007.4603529824976, 470.9430090613332, 824.4737234361392, 432.4867294646812, 448.7593000646077, -310.3909389862496, 458.58915037917563, -836.8772513682841, -843.9329834695394, 477.35986458054407, 107.89786690558086, -109.04379837315592, 347.9228488680666, -289.0205473555603, 893.5184759519136, 124.0057127994602, 656.9340451811103, -528.4211013943981, 866.9457804205639, 295.36126964383243, -40.048989190375394, -650.1133372928379, 540.6035755263622, -171.81920922723242, 707.6138226938558, 647.2879704617071, 640.8974316793825, 216.28455863203288, -817.8568876940421, 310.9679862690351, -173.93924840068254, 110.91108827559472, -786.8678802106676, -821.2219450373611, 376.2399240244877, -648.0815853777304, 85.72133080553257, -350.4343138431086, -330.48057166336866, -785.7798098468743, 416.8598226429589, -949.4325465399997, 323.43474965653326, -145.2766668881695, 866.4629744823078, -97.1749936054166, 694.9847092563336, -819.9470886771296, -101.34090318917998, 1008.0892027603543, 632.8630107244276, -37.388806109750604, 735.2932930691773, 67.34635984960057, -770.0047077759671, -821.5689359035964, 763.1624786922335, -93.72165730550424, 337.71890505475636, -488.33134172068503, 426.16305219916677, -738.5565946532226, -351.96257523646057, -141.92094122487111, 276.021310929662, 950.4076958005137, 466.48816984581777, 390.46321446606476, 951.2181004633919, -571.0425119062163, 909.4717134840768, 215.57736014806338, 665.009210233205, 204.81339572236027, -512.7775754316402, 698.7651851890998, 161.67372676492067, -395.53440082870213, 549.90795557824, 273.057096352164, 526.9717060589776, 70.87157271429653, -1065.9294680509643, -476.3406282716734, 545.7107238243884, -415.4446092409685, -1076.9188028963426, 158.95799768509235, -570.8369038738878, -825.2116910121404, -983.5313092094469, 174.89994153845802, 694.1444512166003, 141.78381942058058, 150.10675789461936, 568.4809725846749, 698.2042287965357, 289.87333027621617, -110.86786434595484, -20.859480524981365, 507.4435311994084, 176.5936991992578, 785.3607062778254, -636.4447356499966, 479.060600404939, -127.13054077408555, 766.7657949677294, -323.03947065927514, 137.0503387361901, 1211.0542397172953, 386.41752596854184, 49.39055633456164, -860.4640116756269, 55.182023728357166, 50.78819326497717, -622.1934038468095, -86.72378812489735, -624.4968219534359, -949.0162274485021, 256.99940832441445, 828.0141171840588, 492.0603199060896, -861.8106308027513, -609.2213809255164, 149.02988605564047, 495.9813462167166, 754.9837738228731, 144.15340997902115, 125.48032317262576, -383.20337497362505, 554.3321412084106, -697.016484546626, -748.1396900009632, -734.002936190929, -28.751641456157472, -184.55300722538988, -1.5131548395702197, 10.761448420105339, 217.63638363108353, -988.1028995980472, 622.1553066181274, -424.1687159816497, 487.6196268259711, -681.4056281256242, 894.7099958346846, -83.35588342153483, -466.27783798494875, 47.859886983683666, 493.4813864273205, -836.2084333104601, 140.99917322218005, 186.2458662368545, 185.30936706504988, 12.760504287728445, 824.3938873293271, 623.1426215135014, -5.985528685456314, 42.51026943236798, 463.2012244584771, 352.8575453452966, 387.7602123519522, -661.2470413720271, 477.79348983946, -718.2257686165623, -646.1516560347856, -865.5509012071905, 63.098882191624014, -640.4749492500258, -354.1695008476309, -529.6343180386143, 357.92420659467257, -252.74083229363885, -564.6133612346466, 873.549727656891, 159.77832915167636, -869.1143538130572, 486.1917155719872, -653.6683964748812, 187.91696835574587, -574.6624775312955, -543.9337088097986, 596.3686752668605, -18.79101545624286, 110.85340834377013, 99.65907712682713, -494.28257325149565, 686.2998930072708, -185.58556074134722, -63.24513997103003, -773.6955356404065, 93.73970622244802, 805.3672721312275, 193.64300400800346, 77.69499294682822, 964.1017092737848, 106.47393173618732, 632.0725157346374, -806.0128825033303, 681.6822970930754, 555.404716884208, 282.6279618939956, -200.94971723827314, -818.2188752157579, -433.10901780501104, -595.0106561463708, 256.0019369015754, -384.0721251735398, -256.9928198888119, 215.00577808452485, -65.86447698054059, 899.7651383737795, 80.41865004552004, 127.9806108157507, -66.9275830430847, 289.1738636899188, -313.4389758961332, -711.614315033335, 301.1219611552517, -70.21586595986008, -116.44123483253523, 103.08729431124527, -731.529779121346, -721.4723766266833, -819.4384607590505, 351.0164230839133, -879.2421517001726, -529.2534510972606, 683.340174595524, 515.8875084916431, -934.4282161810659, -597.9388490256622, 41.10260021495907, 254.59570839733638, 607.7963722043753, 238.0098020560686, -9.006411926117359, -527.335967546669, 10.583842793984843, 574.7181662691986, -149.5690189894572, -585.6912631006169, -613.8042235190408, -266.6413149461953, -959.9693741251994, 337.80006987321735, 754.1348719108067, 42.73945786787088, 423.7773151434727, 323.14285862156635, -976.6930654516707, 273.6754292709692, -90.6912452008326, 435.3293598212621, 51.002656608879605, -439.79200557533363, 224.45371836821056, 519.6037555567627, -488.13077999612733, -193.66831160283797, -367.21654063983146, 583.9975387143395, 57.042007298404776, -158.39567634107567, 297.0877381445899, 469.1731251018581, -111.08393404907486, 164.63657429150197, 334.76599660069405, 228.62205382382456, 120.39810320343386, 40.58922851362614, -236.89408294971182, -399.7156961817234, -848.1784292428779, 363.438415474896, 258.67263577939934, 302.7746221169114, -453.80786581687596, -700.606912372782, 337.3682509421042, 635.9332674471086, -221.7734182859918, 286.130829460457, 70.36592474358388, -191.44745643816435, -595.4791815524914, 570.3115253782917, 270.40292129363, 2.235869178818337, -821.5742596828585, 455.6383346223598, -615.3950196461606, -162.89936325761136, 574.1238139845834, 647.2133027978773, 140.89232906937667, -490.33888466685863, 240.44465137859123, 31.665078607695307, 204.24878707012735, 451.48895321808567, -16.876358710014543, 523.165762355614, 255.01163915582276, 689.8834650592594, 330.22940986178054, 538.4125523777691, -1013.147117399569, -510.0819700708632, 499.220478017513, -148.94474966813831, -262.7940868967872, 442.6841843671723, 459.3125257399553, 294.2922348561437, 182.84151657801033, 324.8673249733973, -461.67190458996123, -556.2474704894505, 414.54443766897816, 561.4637695683886, 446.3679359871222, 522.2822775340601, -68.10961144936422, 58.94100985842533, 217.7578670297532, 293.52685789113406, -91.3947571655234, 432.59568169093336, -415.55032533222106, 352.6741225438587, 505.80594884660195, 1058.708558662035, -479.13001703944957, -389.5541581198306, 235.85500763616122, 375.4622135344378, 194.29906197578663, -816.750086426848, 544.9991944437161, 300.2114714715985, 116.77027760439016, 492.85022129974476, 411.510315686072, 562.9549038121401, -483.725000489462, 357.85214580558164, -827.2524208653517, 157.50854381365477, -902.2882159863177, 692.9267802452479, -1032.7126650050054, 426.6143701067973, 434.0070236324105, 344.95746884436045, -66.77643840859186, 129.07125849250596, -719.7081309822019, 425.09481470307924, 73.57741212017712, -374.68800288258, -156.61206380712238, -36.87595036380878, 9.93687709984432, -81.14306464316945, 608.661975766791, 355.2659236032624, 346.4960728399814, -258.2466823447696, 31.54093248435083, 137.89979236833517, 299.91984828583776, 543.6515127972509, -365.5270537991107, 150.57388243113024, -248.86746794987636, 284.21061256544857, -710.9203341599871, 670.6342041206151, 385.1964390516113, 686.6663425743486, 47.59130148651345, -844.5952930792008, 171.40014896144828, -249.35780753338108, 333.4043829679783, 459.7286349809548, 320.13940389997373, -200.93403593120877, -582.1047026736608, 426.5167172917834, -619.134259019544, -263.05639721176414, -248.08778867493825, 134.48104437403583, -354.5999547012342, -808.3027212205213, 280.815751528997, -421.8355498373909, -511.5607400193844, -117.57271599326894, -345.1030203143068, -548.6298025686554, -5.090248857047973, -522.6087890741037, -77.05780993832687, -401.34014260167993, -651.5253267727887, -600.1397160583165, 357.7806160203756, 245.50604218242003, -973.2140281845229, -740.8999939169286, 175.9126538371887, 342.788443247033, -386.55164414382074, 842.4351975653649, 159.4604040319803, 414.46513993246094, 102.63680805855708, 884.7294480500939, -731.7891939880237, -967.6301843145602, 364.430313344837, -299.37336725738646, -360.47202354027183, -897.3648123039479, 62.765553401068274, 290.3269420148847, -709.0491111044894, 353.027022050115, -442.36173152806225, 762.755207387547, -546.7935437220282, 572.7952391105011, 317.6415827612174, 440.2117628302442, 169.29724300438406, -700.5861947890012, -262.0580070492727, -503.8807415690319, 416.24691710752865, 432.52561673547, -1138.7454011384443, 365.77891575276135, 156.46740752043237, 796.892042168061, -713.2525160199978, 169.14410149085418, 420.85936859614424, -1008.1517285173336, -983.3749565231826, -566.2196395509671, 428.64975497254386, 132.81326453006136, -603.583927825059, -776.1444103337109, 445.99171080279325, -489.84388599931975, -165.07799113837228, -917.2070034636549, 610.8608532684954, 16.288684756516844, 214.95075613272047, -421.0135991096744, 308.301774158306, -853.8124606987877, -522.1625572138659, 730.3353475436901, 417.68718719687627, 40.42392709435862, 425.4959159785659, 481.55412462797335, 130.12536389526096, -681.1114558930597, 95.65818296477033, 550.8599060941527, 81.74074113686329, 290.86806734324216, -374.9260451243865, 66.0804572186016, 628.3203535247928, 133.13384682075917, -420.71741162862173, 565.3132513902394, -364.13209759971335, -665.231114576834, 219.15553000175794, -962.936573035246, 547.0848842929943, 516.5225733785852, -603.5053936434504, 46.7232015285677, -852.2602228499708, 672.3846975471479, -341.41692050766994, -810.3343014765632, 650.8230263711562, 591.81768537733, 176.62690388930014, 247.57457755514244, 31.659923944458875, 296.9434387075352, 103.99504015768966, -87.76131502244061, 436.7730589888517, -544.894960688546, -772.7929931770824, -833.089272998195, -268.7499719577943, -843.5333511426081, -100.48516740764539, 762.970040758263, 368.29248890139246, -97.2822485946646, -605.1252299052933, -414.44154493952817, 25.98091939547723, 330.1904322970822, -193.51563088579667, 251.84935954540586, -739.0208626350761, 653.4670276720952, -350.1941281513756, 623.300142726508, -189.05958442090125, -918.6343387442391, -391.73236597509094, 633.2155072779602, 15.633123461275645, 980.7626019813114, 313.03066718033165, -235.35026837185873, 125.65953831764278, -82.48056613291308, -573.5599386916543, 104.02376401891601, -257.78277755737054, 73.70077376842103, 405.31339731067453, -1001.9510836923193, -823.4704699213921, -427.97600236573203, -700.4041132741512, 100.37796708575955, 278.85878127176545, 153.68539120282162, 674.7098050432677, 152.80127719998904, -965.5528268798022, 760.5716278485604, -251.20145050921073, 504.93621814947073, 18.56858641934653, -58.96358269284292, 173.88049526904172, 655.8786791374239, -969.8032256392446, 148.8514667579003, 1019.3482103256343, 385.8962188534609, -554.763301899466, 148.13190085214646, -395.75620335768224, 469.6701953436255, 462.14039616523013, 901.410484239471, -773.3128950767826, -626.5713309263195, 733.7000632725062, -278.51780953912015, 40.689904698276365, 170.13874307062568, -750.9979984207494, 665.2053869718607, 15.94807890883297, 792.0074629956118, -332.8026009264359, -923.5034475810802, -27.80894322225477, -857.8886449972375, 11.288681891992226, -389.7258274059483, 24.76894764976052, 395.6881869698127, 295.7007146491158, 781.3838227175606, 517.9225722823676, -725.5498642819962, 66.08188053442612, -525.7563411786267, -3.612077160766134, 598.6492794715313, 149.2097386572396, 492.9206687798663, -474.51297440627053, 21.72249579990438, 169.88360526266956, -8.59625102211372, -202.63769435007714, 668.1315702215918, -485.6924654136829, 489.22393990815124, 372.49225130128707, 908.5224438258707, -516.8335447641211, 443.1434276391351, 60.20604494496462, -536.0326356148591, -35.96376048394458, 311.24225242346586, -591.2790655069435, 301.30482276802593, -168.61602944575586, -892.5631521181269, -263.9572469867225, -674.3863788466821, -678.4761479483655, -599.1144882977267, 159.58211067402226, -7.578530937327685, 174.3545536838083, 455.0432204002335, 149.9894648176387, 398.9844838828246, -8.170259242220794, 378.3729430856815, -553.659651369491, -98.34193761116835, 202.99023347972246, 336.72122112932834, -508.1896604196354, 797.2720453962635, 379.5858248987531, -951.7838906692627, -536.7681895029266, -988.7839739689227, -503.46695203536825, 119.67522963393031, 107.12044929862886, 638.3409178541057, -321.20198354939464, 95.58156943361436, -796.0557231611558, 865.9058104205774, -442.364807422085, -3.6579406045691787, -720.1725146886096, 68.67138693380817, -236.379471899456, 270.57028605081837, -577.773563149846, -920.4898580849358, -45.37546171319383, 621.4398462254674, 474.856927973074, -102.29653380856061, -630.2723731794907, -219.79273271538216, -497.5235796295297, 827.052329965008, -474.1888435662366, 92.66088871582303, 220.84967874326284, 429.6830333298121, -288.5379288831183, -707.7281770361981, 245.29301445281422, 42.47617556614085, 35.20941523300952, 328.838057529235, 206.46003945174243, -626.586686093822, 588.6095816539116, 516.9590934363766, -392.0665369975456, -60.57159790768938, 260.1072264201397, 353.20128612221015, 15.80840601100877, 657.946817949684, -705.0678514446024, -89.15337057125845, -882.5484771330472, 422.2906856114247, 323.0742804005689, -496.45543647346267, -30.49043507812732, 730.3592616454623, -133.47143218276838, 158.5183433478993, -115.68181648418789, 312.11205736717034, 351.6569419579396, -258.3778000709758, -523.1960704726818, 97.23996269000635, -819.8520083293761, 298.1133370078869, 453.4679466556433, 21.970459142839402, -787.5251191361169, 282.468365971959, -36.05603263711839, 554.6537501769119, 294.7973165883674, 563.1342390186533, 109.5270578886397, 223.49668212261966, 229.67586730145337, 450.9047242115306, 313.5549808746769, 263.14612975669075, 28.300049472305588, -46.54052469780311, -473.1305126233945, 14.570046024001186, 145.52300947593798, 555.3307240343078, 169.92922987580934, 125.63559913920372, 435.6366881134781, -507.2419354921261, -189.65225237442928, -225.72576953043827, 133.35280244299827, -179.41673797239892, 71.77892150630689, -382.7757923207379, -451.90077825447503, 183.1610490316841, 551.8016190914745, 686.8625848454329, -566.856300743727, -432.98556544433416, -408.42530042267447, -47.68992454715402, 42.59981177990443, 286.2080046236483, -392.63409956553284, 396.08229195718684, 162.63579135750314, -310.66903622952464, -825.1870818269349, -77.46342342554757, 160.56926516237343, -225.38937983507435, 400.43714579054483, -689.517481474292, -424.689836157973, 152.4032396966998, 405.47459714614575, 201.94111591265215, -452.2138064277188, 836.967610569437, -132.77905254372803, 371.212744494412, -416.6521122304722, -515.7277866538479, 232.1552957228488, -491.8320946511016, -196.92543653276454, 630.4351911888093, 136.8123597067539, 393.4458887519988, 425.5027796847736, -197.59345096060517, 309.4522617764474, 392.99588853712885, -283.0023003251462, 535.9845450099195, -88.26553138252407, -231.64263260818575, 220.11615556714256, -88.41386360028551, -381.5857318811505, -126.14699911253447, 142.58155977033803, 397.56348531384435, -18.305869020715846, 126.41618154589587, -998.1723972868414, -248.89275845956843, 67.08329691185239, -106.55574980356816, 1246.7429676192105, 669.9834661291394, -353.16108532237615, 144.21670199889266, 17.460699488131496, -459.8570669150968, -78.39650348737851, 106.16174644250243, 660.7581702180889, 414.2244310964758, -1037.8280906605082, -79.51550576875933, -81.4328678416322, 72.60695000284244, -642.0590782110035, -381.5518891741949, 167.9612564798987, 189.9601635849596, -716.8553272199242, -60.25845450916057, -403.3261199678912, -152.12275998377007, 452.8558184100693, -459.70143865232103, -979.7394135183413, 180.65161316805035, -369.60109490055993, -3.040567075508644, -176.76821055918091, 583.1689320961088, -740.4028464658502, 328.4356768551582, -375.33005880646806, 870.1520792450704, -20.046549738528515, -115.9766459050714, -365.24661354227, 117.43674209287022, 224.37234936628641, -422.29713950464674, 283.3074084097856, -420.24560852227376, 335.4456862916827, 572.3391445993007, 449.05915570621613, -173.89531604390012, 222.38888178194665, 371.6864027013377, 223.45643556830476, 421.69165310106234, 190.45960011007546, 623.2046975020569, 751.9375723287552, 864.5334657951103, -775.0639107243317, 218.19451306126084, 19.931376410065234, 198.58277546950276, -701.1466982664251, 928.8718340387737, 66.18260798507254, 785.2870672246196, -350.53157689076227, -662.5007503291774, 85.63724135661263, 78.39941991427744, -126.4160808891764, -92.82725121175255, -623.7591250748214, -928.3329836781602, -724.4318113520591, 500.7838711800248, -1066.7702994524977, -451.9434124789507, 415.71338892242346, 351.38475270005364, 44.045425066990035, 381.203073527793, -937.2777937237504, 701.3081635419587, -718.3316486406382, 908.2618942838735, -754.8823477143876, -597.066865102482, 445.3971776211622, -77.50371661212827, -939.6990290013271, 39.94926854665984, -187.33989783531518, -762.7535127690827, 263.00244172515016, 221.9450475149541, 611.4481711927855, -521.1924533696648, -36.79502676684547, 515.8537828435594, -763.397840954105, 549.2218669394161, 263.1320467708703, 669.3699249754134, -238.8350588990142, 794.6329569088914, -302.10877008547925, -945.6977263636167, 33.660077805086075, -856.5722943159813, 9.595937986770991, 802.9465991878258, 453.3345355517129, -441.2242035313311, 425.13958758625245, 889.3328425183206, -195.95837387297377, -532.5888361363202, 428.51343687553697, 446.6369611998903, -178.94911509409948, -399.30911496534713, 407.69612295212295, -82.32196125041472, 164.58059505708428, -96.2577928405338, -494.74492102129983, -897.0156844010207, 111.63092171050562, 721.2450869373546, -155.36763493219217, 625.7792336981545, 32.641826024266834, 73.6096940545359, 364.0102053924602, 354.8022799581776, 109.31040496773177, -630.8923659004288, -822.3979257922269, -807.1833826344752, 196.52579228755474, -827.8233537061021, 132.41714416312, 643.1977004695469, -132.14260946189802, 347.0736214987668, -869.1954598468267, -861.3304697969837, -68.69171651080948, -848.5059504104324, 19.584521317182066, 370.74164504765133, 786.8735677267434, 382.11424944248546, 116.10837900288325, 212.73763152122794, -385.5522201073813, 383.17002602787295, -39.96335165680577, -635.2548865135146, -4.103458542724695, 17.27416132382656, -96.16670262416905, 333.0775013612888, 45.87728826336536, 758.9754643752572, 17.980854074970352, 173.42027542280823, 297.3613336614182, 353.1638888113553, 4.832892514359656, 604.2901666231334, 398.72270320952435, -876.1670195650655, -639.797343675912, -366.04906499741537, 738.4111158794772, 356.9669961813039, 471.99473120419646, 311.3925010059109, -327.86212187735345, 1005.1128570567306, -340.6856918089601, 193.5216002191716, -639.3821983942122, 51.606588385836545, -628.3112777461663, -771.0461424352723, 521.2440993009766, 676.3604614521267, -413.520499799017, 716.3630397991841, -897.8727676052323, -882.7051298835355, -610.9591776634583, 412.8324720259298, 211.75714958139451, -911.2793076709313, -309.7270721001091, 487.58070598099107, -748.1941391316154, -878.5132273465822, -953.655408300963, 524.7146920713133, 397.9513620019014, -874.0043188617982, -132.62724593329784, 832.5404085985606, -279.3404196433564, 993.2966733131967, 671.7012758475676, -896.8003099455394, 559.149229318483, -21.82588001880667, 408.02694921041507, 83.79273813865987, -672.7714103401911, -534.3769362879773, -857.9446931642375, -508.8164038942482, 342.9639431167917, -475.2579449846034, -390.085411010435, 398.29770652495034, -584.8247476468729, 489.65684606364164, -495.3066368283408, 673.6514978081002, 347.816231179408, 490.2798775212557, 370.2211358619904, 474.9238020934516, 499.9465707002208, 69.45575371313731, 470.78902172803555, -256.3809819450685, -143.02416893279928, 621.8059686865965, 345.1100727562758, 268.32175388011353, -109.61968736287574, 569.574090617377, -53.58805815248529, -761.1086319849238, 261.04902122571747, 711.4927014042717, 47.099494581611225, 271.47682141125756, -1002.019480584023, 239.17088563185558, 103.24390082624907, 141.3001912506561, 322.32809305594105, 752.1640001565243, 64.16753147349753, 144.23299069200638, -309.82634248434425, -710.3425513487593, -217.2637812636728, 784.5889231932467, -84.3484139486395, 585.3930813450628, -660.5547513272365, 839.8798676917652, -145.83463657772353, -970.7113637719641, -49.16349369050454, 231.4361320865057, 81.2911454630561, 498.2061249366508, 90.8342970870311, 37.28976921057706, -153.13937326660226, 386.3498385496189, -582.7650528486593, -115.02852750258654, 209.00610191167058, 297.8579009193255, 171.39861686040297, -852.1880076052951, -916.9294074941893, -702.8635447172684, -94.22067369776434, 605.1711205967867, -229.7006384223033, 634.1380672567891, -230.55417038085884, -736.0847622040834, -151.08767047585613, 202.95227861641692, 134.0456785407406, 254.25535190575448, 61.95838040319711, 374.90663398677464, -340.52252854276924, 204.68826662663366, -456.7236492560294, 636.3393745743474, -71.80691291711507, -973.6309035733991, 391.6112569915276, 307.96162231356533, -730.4441631883764, -554.9427681864627, -226.4707178478571, -930.8306851254874, -254.21934940881388, 198.1348731937354, -552.3800485628942, -1025.3724799225538, 355.2466371114756, 368.9530272612898, -704.1837055669354, 878.0662337983892, 819.4224700629138, 128.4181557692781, 274.4896352164859, -467.53470741369847, 430.9061865914089, -557.8015516477924, -134.86795642642844, 136.3341680415334, 135.90671006812903, 45.05109234739044, 187.2545983437363, -1028.0087194981427, 263.8253199419683, 744.8677835500262, 1107.9562925091136, 202.27861513508049, -98.1354771366278, 30.27357220924297, -547.7814806952645, 262.81955375054815, 545.6205492443314, -193.28358342659672, -782.8898174666513, 861.783267700268, -996.6393436271347, -940.8736614454606, -504.88154581320646, 639.707528788417, -357.03238048545677, 410.59644885889765, 136.91714950476052, -759.0115174967691, -396.92632677706985, 538.1615988930278, 703.199194500567, -375.2198195708873, -43.00224696330916, 338.4790587336289, -35.4593590420391, -458.3314676710094, 488.80671264437245, 163.2463971495538, 231.32384110509614, -844.2822956435662, -86.5699600718687, -773.1991170088739, 226.74473625521046, 261.6919024887902, 202.49990421118872, 673.9915162593227, 281.7325174159171, -866.8736267066824, -909.0246633678628, 421.3293498120006, 312.9594261974054, 958.2321965101573, -368.3917735423137, 399.7873777431055, -374.41905545768236, -681.119250701988, 323.11902546570764, 727.9437516168815, -736.2525883858079, 248.9471333524848, -146.73730983509827, -938.1187153479801, 264.5206343113965, 26.617986988172362, -277.2654746698599, 1085.3928117786395, 320.4830694791034, 606.650418579151, -641.279659908174, -782.5566327573478, -755.5971900932767, 521.0025088778517, 219.70538587845272, -267.3840788092609, 194.2992432656447, -526.901461113614, -725.2784080282911, 675.3101525829965, 145.72836027953988, 641.2661357600404, -673.7822327117158, 268.07863091743724, -686.9980102161621, 500.2676704824064, -547.8315219790087, -751.6282389910755, -663.3724624509446, 187.3280770015983, 286.42121730698426, -1003.3492106087567, 595.3386063403781, 868.1221695023441, 47.266080529036145, -271.2885018809924, -561.1730520661674, 285.78957352581597, -781.6538490747221, 159.5014024066661, -606.8403282406747, 692.4208647087016, 636.708484997848, 440.58032152203333, 420.0664324481743, -751.0803683085993, -671.3584692152726, 154.82100766536013, -48.11324379327182, 977.4260834945665, 280.3224127411814, -719.7214635888602, -206.71351868754553, -838.516031622602, -743.7227238803123, 416.4330168898061, 160.22111492085756, -885.9942526708741, -441.0806344304027, 509.81052520635455, -658.2106007329476, -1059.0642497990007, -624.1218402424953, -169.06886564147925, 296.993416862927, 209.6102675745674, 47.71436746982229, 584.1005162569173, 33.964545967670674, 511.38325538605443, -268.922032031174, 890.5932015793662, -155.81461374012991, 146.80899626211456, -28.181374624918618, 700.0227420156293, 88.23474493428067, 451.03211873377023, -213.91241905773376 ] } ], "layout": { "hovermode": "closest", "showlegend": false, "title": "Principal Component Analysis (PCA)", "xaxis": { "gridwidth": 2, "ticklen": 5, "title": "First Linear Discriminant", "zeroline": false }, "yaxis": { "gridwidth": 2, "ticklen": 5, "title": "Second Linear Discriminant" } } }, "text/html": [ "<div id=\"dc4c9e1f-f1bd-4860-8833-0bacde1421bb\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"dc4c9e1f-f1bd-4860-8833-0bacde1421bb\", [{\"type\": \"scatter\", \"x\": [1084.9465800998876, -84.73411469396777, -916.6651408083128, -315.08265465742465, 210.41661730177498, -671.9069254575109, 579.7429939666814, -824.7881649521534, -203.02359517489697, -47.97732532061204, -681.3809479554394, 175.0281349603755, 288.9589583955104, -838.7405501722446, -60.25543363147594, 72.34244635488032, -362.8138672215066, -221.03029872409277, -724.8045184663043, 247.9852240157387, 1099.9434116856241, -620.5116272490873, -928.6740859791033, -246.37824808831593, 645.349116189982, -605.13156994534, 817.6198915012071, 378.3182632326518, -688.4026103085763, -338.6102289625216, -162.44135099735445, -27.289070639940135, -559.8641880383823, 767.8198643938648, -582.3072462197525, 122.17415340271596, 1078.8507651621937, -357.52091975904403, 346.5340991281401, -933.4801935511398, -136.32739281016347, -717.850733843038, -619.6539360955328, -521.5288962319277, -155.36637664553672, -280.153233485774, -182.61095463188542, -271.6055017143586, 344.57576947227733, -96.88437078860144, 1643.73594488249, 357.35488647285575, -751.3898321480275, -108.97074304603069, -127.16917364967597, 1203.4173746017536, -466.43919542459565, 247.1053559233921, -880.4686188976618, 273.8170510636726, -643.7367869926126, 353.7349501385593, 1260.2128032337887, 598.355005302794, -623.5346712048017, 342.4733592255332, -980.0989009779729, 36.6464183315558, 1292.478880336378, -224.55794134332913, -359.00715294197295, -905.3865940956921, -33.96309222888993, -17.105619871977623, 944.7238949976166, -488.5678173819108, -949.738976464044, -938.0308966402793, -433.4717539851908, 422.541491455815, 1232.503804671609, 922.6891266110674, 254.69527734714853, -220.06895235644959, -167.36218348127278, -321.2624659356057, -40.328930534053725, 985.1312174028342, 159.65865666899242, 572.3395491579985, -37.21295712746757, -226.68393613737445, 257.6980061446599, -173.89040380531253, 1342.4327165554614, -589.142541649855, -104.94493523139278, -171.64972790335486, -993.4485611306309, -280.48469010662393, 83.24653625362153, -836.1830093434528, -238.7851431036748, -695.2312247535385, -912.61530311106, 455.1618010569416, 283.9141679260036, 262.5192251063672, -196.84930044654962, 32.252432440231274, 723.2540992891627, -946.9033974563492, -870.1767046786816, 1306.6332728476973, -48.24963369057737, 50.04644807558691, 542.781311682643, 762.2385104436157, 1486.2369404770639, 576.5821739650717, 1323.1342877514892, -471.05470462432606, -126.93751423065378, -923.6310595055377, -165.6493896401826, 280.01930231967873, -186.09861318501493, -828.8476470314514, 13.63004904857138, -298.96950536694044, -0.49357791691473096, -442.6413563237365, -634.9203694419414, -286.54253962804586, 68.42724103934236, -411.2809445410124, -542.4915235028476, 538.6186370378132, -140.44158276521534, -683.8809912022202, -531.5289410441507, -279.96227157935334, -359.7943354077627, -439.47112970792364, -367.0393097939374, 12.466233106221623, -31.902428637616076, -371.84148214701895, 242.4404346544429, -235.40797312433955, 395.8129375032043, -857.2660932386434, -656.6209821943609, -17.52505985860273, 268.30985102183496, 708.5629394952945, 323.17552895354277, -120.46862157937595, 88.35706955303013, -287.5488220953352, 567.597631304413, -264.4880770876724, -415.14005673551577, 496.2494458141632, 203.54344959344056, -320.50825606564763, 32.42639893382707, -655.6653817335591, 1133.4091353983551, -158.5829697888434, 289.6987125838369, 86.95970784950855, -717.3437089198842, -955.2983143177707, -259.5645889881346, -468.007209525152, -928.4851802051223, 450.6916800772284, 705.4244250291848, -720.2841153102529, 352.6908051338903, 467.1863156363835, -205.5410086271791, -791.8477992898673, 178.07751773195372, -228.01263237979535, 578.7139382452789, 89.86086392056562, 94.93183879619917, -26.71709331294042, -394.4780175474677, 1228.2945428915837, 84.70646279744685, 289.45610602209297, -239.7147527295656, 319.5430769402789, -419.3826719215365, -299.3809931081096, -10.669683995793264, -620.71580072421, -864.4345778104546, -187.59753482219406, 265.41854950603295, -208.06508820375905, -871.3201741775632, 954.2779175014973, 263.7323250664233, -927.171729160757, 1090.7960209301139, 186.13393280829885, -915.5224857324065, -542.8914118770907, 279.9101701844152, 267.9379824941135, 318.15428213603997, 538.5482846026262, 16.781437702012973, 94.04278602034118, 358.7338663396001, 281.9634159026342, 745.1218194423151, 520.4125442858577, 33.020279088606856, 41.80196827424621, 446.77276841740627, -385.455438434459, -394.6124084050651, -281.7848940613875, 886.8213190940819, -373.1598410709235, -939.0458879380938, 104.87814269662094, 111.42981659219971, 861.4853804168356, 278.6234859179224, 97.48149309507932, -3.6103749122176936, 158.25266992876067, 77.6747824091585, -722.7468067487324, 670.333728177991, 620.814718912203, -0.669049879525744, 894.8975914594793, 129.09702625319335, 41.76987652855319, -379.011933719938, -585.1724358553367, 735.4206417888882, -193.80242526730353, -955.4606447631775, -499.0652269624491, 683.5476439942116, 65.44352040597946, 175.93540354488204, -703.3916187034396, -21.91821938183919, -524.0998075769702, -16.094189592364017, -174.2901556770242, 629.3111586894711, 12.537959364304243, 32.112248127031805, -262.7467897050839, 270.4016077728294, 215.2062553474818, -419.1759317116899, -537.9330881448502, -938.7046325486336, -879.618384584105, -355.531753015159, 245.40159971908204, 4.977785058615763, -194.74267987840938, 171.63617578463652, -980.2971899683721, 584.8800701630578, 311.7229442675161, 159.14610865164775, -413.81804987807425, 311.31566575850354, -295.7802857811396, 1500.447835740891, 294.5607972555106, -444.0840703262379, 640.5606084992315, -428.61421481323924, -399.5369422498651, -229.06309290614286, -987.1509341631946, -165.81976120528967, -347.44363846359806, 1887.8559596168823, 366.05851401579014, -224.51078086542128, 1079.3977782292413, 58.4585044453047, 179.55278995657847, 473.7704149901702, -577.9778223306907, -114.8326831246527, 114.18072677165763, 1768.1611354358572, -455.8040937042279, -305.19874285476226, 491.550620673802, -384.67107770186664, 396.11529745361213, -939.1572163263095, -925.5507429256562, 605.7372387305073, 90.23172605819606, -497.90441839144694, 190.28143492528065, -972.8246490430017, -165.77771232466387, 446.487136720171, -414.40902507937494, -299.41385557642457, 1152.3954316137322, 145.45235735038602, 15.691700907342849, 675.9600873113385, -157.66778205709883, 624.3942688877875, 964.3032967101167, -140.7214346480837, 750.0421354387981, 99.20962742176346, 281.48415797333917, 341.77999916759336, 177.70694632940987, 365.9269429223767, 73.9897666127279, -104.05132577286926, -369.921883377378, 13.107189841669602, -57.05249266679462, 454.3247741644985, 255.69927063815433, 396.82741448320627, -472.92467566244187, -208.9413275778233, -137.7002235248046, -959.4452148456305, -11.683685348507908, 614.8522862532678, 1.2120260542568815, 68.91104441483282, -185.7946360751089, -897.3552182940854, 462.0848035052396, -218.0984439897708, -491.6686507498842, -909.2027245812336, -443.0251481474692, -952.678094898319, -723.4212977359294, 1135.368033439872, -555.8837114724279, 160.48528192719635, -189.54875955576222, -573.9053258117398, -448.44677791122683, 345.0814346496654, -861.7059809561717, 801.2397025586273, -465.64075593808434, -67.89306582350657, -777.688722751699, 500.0091913868915, -439.57105291222695, -298.61087671127535, -42.624243031144886, 648.4900092020487, -62.437309488816894, 308.8712435159608, -83.81600440867854, -515.1512861108818, 354.9665232769963, 432.1265318801564, -732.4879462531912, 36.350438497497066, -487.5467597625772, 603.6096534534249, 32.32695550694218, -198.42429582300474, -603.3572883959924, -325.2744471381925, -69.9868749071453, 316.7531564226175, -259.6591158284248, -117.34383618132779, -607.7444334887305, 697.7071926487174, -22.342019453204365, -931.8411630908707, -775.7778411634232, 1714.0752091455256, -111.69675737273718, 59.40135775651021, 122.97363303259449, 66.20116732276196, 238.97307903704885, 270.8110054866304, -641.8963303105768, 65.88303054950778, -949.6657752841566, -286.22829480518095, -354.3783389215525, -351.92771667214186, -724.2560646744525, -196.92909683571594, -73.77423033475353, -76.9731079453069, -1035.6577641991269, -584.8958658631663, -685.2526063437462, -151.0716903655858, -130.67728535813518, 491.04779477510004, -748.063404808876, -351.2588982767325, -11.888664720794267, 365.1311875949449, 385.2002610129173, 1972.6789401023016, -323.8935051389253, 1550.2002315283441, 24.07269144493697, 378.3728753736031, -37.4380181535408, -30.317263552235204, -389.89290227162735, 1266.1527203103813, -220.59098666896602, -310.146470074988, 225.48803281262448, -139.50626574623874, 1084.9975218278066, -336.7865163915658, -309.50490521677744, -909.171042706222, -699.6868638347605, 3.659861122488252, 516.8254725888235, -896.9402728028142, -68.51153528027038, 444.64040598139457, -797.06946780646, 1099.915742636006, 473.33700620984683, 994.2668515477743, -933.3647042686683, -1001.6101810071573, -388.8873285952456, 145.48110930092093, 1516.3827475531937, -158.65849712576852, -150.95481122975, 176.2005586162481, 1459.7032350584007, -557.4362457017255, 886.6162880128438, 544.5288368724717, -980.1633846639935, 197.45275473692158, -295.0915914190542, 124.63030543687731, -514.3602283079935, -214.32234527573166, -625.209450668321, 1029.9871173366248, 298.6247000091153, -922.3410012347613, -333.59337753450916, 373.89557317377273, -542.062070721149, 282.41316471508105, 495.51927808530286, 60.18481458353392, -374.7339242892287, 43.46006103311097, -825.0351161914921, 159.87686951905334, 64.85155106707445, -395.9951251995275, -218.6347699953049, 505.60888442730635, 220.50329729385714, -721.1589669177845, -904.5377864652776, 78.06019392462838, 608.7331833769457, 661.3321699381243, 445.1055836327457, -281.9148204428481, -251.32863780855052, -126.40433547816598, -587.5604063045935, -525.1982187571809, -402.9990887981881, -459.8221884126042, 731.7469529981945, 40.36950657781429, -14.341433584469357, -914.9219359245777, -885.8609064213348, -154.4401560571821, -921.9443540885834, -561.8557066954971, 348.49183265359505, -291.403220839156, -121.01387585693674, 630.0458937554671, 22.665783282097102, 135.9248179904344, -728.6140242088088, 1395.0056323890028, 196.03286211501563, 391.7551541363154, 26.299257941338617, -632.6207906435037, 905.4753754398683, -220.25346277756134, 1321.7864603524677, 381.83821426684017, 368.0619946739938, -462.02250294203503, -188.09606952915004, -178.65563824532288, -229.47315936189847, -722.50485559567, 65.12577287981998, -662.7983124411674, -97.7476357993289, -292.7875497522761, -948.9318266754141, 246.4839358125372, -450.5454302762527, -110.57389319848352, 1158.7027673958353, -367.69916209694514, 570.4840927359236, -222.21974827319832, -42.83444878518134, -291.1712177849736, 906.0309675883727, 185.4338903977182, 83.6609740873337, 409.3473506220154, -498.38050429814143, -876.2709871937914, 852.9810239768583, 243.80998296668102, -812.9170603397703, 266.5877257184975, -602.2764962990558, -4.104319895875676, -774.9213604824058, 97.87927838348992, 22.839488401193925, 101.1298693157107, 150.87316115910636, 378.9959848902049, -293.3640320720772, -290.99520946002144, -87.85754777777089, -52.883781515758756, 618.7497342408515, -108.80252952361846, -867.6465699164977, -967.5334402030419, -609.3704415979543, -363.06326499168216, -456.9488285212631, 1291.9428121189203, 1.4060968117848347, -267.61120559443555, -103.04180915896981, -36.20521164055077, 627.4766277720084, -573.7384779405266, -237.34294807542756, -170.5000956438513, -447.666073964696, -808.8934706021944, -817.394201501144, -250.6972687937922, -424.721256691105, 841.3276194008265, -248.59942268820836, -939.4384963727688, -63.066957082800556, -611.2675718881728, 899.198875579595, 145.45255878135126, 546.3807966079598, -286.9998786065338, -718.4242388609666, -375.1042686090531, 53.64653176521428, 865.9584222244706, -961.857523411365, -344.4556036811213, -113.3935663441199, 279.8976389264813, 352.3340106846192, -921.8664635536237, 14.891735019842855, -680.7795831618973, 962.7372301697758, -59.37264249662999, -168.9359002892896, -112.07378674442083, 601.4202079754825, -264.6672626444274, -772.127479024573, 11.943501487705035, 1230.6161968206743, -286.70206651250925, 756.0181038106291, 167.4307432572613, -341.0666318401667, 284.3560845705273, 521.9639545846586, -168.70250515560167, -324.83468178511424, 172.48469992043525, -553.5245627607533, -388.4945108757887, 191.254413122144, 855.8005881171745, -757.3731940783041, 134.21113919949175, -529.9407426483061, -787.6881800288871, -792.0789383106357, 1330.9459531133548, 204.00452416602937, -766.9735568981881, 398.77395774717377, 409.5961085932131, -887.140041764027, 317.96706531567685, -606.5193247122737, -409.532980071625, -1007.0312645777414, 145.86537522655297, -712.0602545646686, -79.45899890038226, 57.21308902409689, -453.54249997684155, -493.9608491693509, 59.702863111830496, 1290.5728084769007, 112.35464986434006, 57.52220931666365, -53.87765869488978, -305.80381680931947, -559.8083960295114, 665.3489134365251, -80.18095042956551, -258.36850606216126, 390.62233193136456, 662.2701480428026, 504.53737755005966, 751.7133640025827, 1463.385353853299, 582.653495498345, -946.3582308370945, 262.7320381422718, 168.39241250154492, -675.5107120303942, 324.11736928066694, -827.516146350737, 606.1567204625483, -881.0095651580103, 655.5303001131731, 61.29025691765254, 1092.1823819791146, -406.0352407684751, -1.3210428195453972, 196.9549476925375, -305.0884055196203, -257.92892267412554, 129.33838305584524, -564.2714368889926, 1504.5191488196774, 228.59676806024677, -901.6575133676859, 234.90233910238973, -17.04673934057834, -491.29310057738564, 103.19333500128853, -444.0847147753529, 413.11884267350274, -919.3055662958009, 802.9979119285424, -80.21077310947928, 976.9046603197595, 1154.8720151640068, 287.68983219601273, 365.4836350679425, -365.9269841586507, -289.1847533951228, -159.230874262748, -535.1038251053504, 1264.3513233021326, -788.7436044140071, -906.7036197582688, 675.5273358987838, 551.5654154180078, -409.6140368092123, 206.0960503058078, 487.39756990958875, 760.5293558849755, -154.59798374872634, 1125.6764144764575, -546.2522043988636, 775.3941401538274, 361.09591834962134, 39.81242015130489, 193.28296193845364, -244.0625683596624, -331.2561120059013, 71.32602991182013, -659.7184234305406, 701.2631574360767, -226.48716534060543, 31.40851037920814, -187.90011861322358, 1219.031216194965, -54.208535526100256, 487.13971390604183, -541.0388335155227, 591.1863758848027, -758.15026882027, 663.120501567027, -14.861356490641136, 200.31085526269732, 431.0430985747421, 1544.5406263211728, -740.4533913770649, 1183.5626426398267, -656.9034678816465, -920.3005067991292, 205.97857835484024, 267.42000977346896, -329.618136253641, 712.1983060283869, 179.04287239807667, -138.7387456685748, -700.4206948385702, 166.54585092755573, 1058.371688654428, 868.6559679585272, 168.30503785507034, 660.730832049812, -170.33179334312425, -29.826116331661254, -137.76615569249657, 650.1625238483019, 57.98303414553443, -854.3964383793221, 134.20377309966563, 157.21384654569545, 274.928467305454, 209.2098064723578, -401.62136584366397, 390.1516287057061, 473.39257388602147, -296.8924483976902, 719.6197438656902, -377.7755990348503, 644.7815894485849, 179.46883155019245, -435.4425501483574, -866.9650824749853, -822.0356920144129, 1450.2021341093882, -57.11698756074445, -865.8659877592311, -306.84817982089936, 273.00310631891386, -458.930703273528, 1340.2676365173654, -17.554043079507743, 183.8922328942926, 972.2254185005764, -10.504939104828537, -153.47380738729726, 381.93864680342347, 235.0904853231183, -443.10830762143115, -344.19978979718786, 144.818533826664, -359.287514927213, 478.28503627063316, 11.69668596025575, -189.56804644695774, 273.3899594760516, -283.453230031767, 99.04547041100315, 283.60675716307185, 47.689666479804, -339.80325917494514, -443.16600445429685, -893.1974375155357, 83.86417996451107, 1.4323627378601316, -207.16557637646275, 0.5132598294419495, 146.72241898727162, 715.9064889787002, 279.4680004032068, -252.14533415145186, 722.5282306183584, 9.868419354927859, 28.833015855954642, -782.0820045324347, -673.4603891931274, 73.57014506742223, -655.402218078416, 1247.660669806321, 300.81709693817686, -340.3035201640636, -113.05907625546607, 433.17474579747824, -90.19972869920107, 325.08365702443484, -52.4340588910964, -893.4367428409364, -133.93522003106196, -858.2118450012366, 310.6028456712805, 623.8012128724561, -925.5287935404494, -384.33213001210004, -61.148354753120714, 661.3871358942661, 195.91390080232384, -344.30473504843576, 755.0969265159493, 542.8516916654067, 463.0542491975344, 446.3411169777901, 57.46206280630494, 1247.7193866593802, -42.39476077812364, 482.3083157272682, -325.41257124281594, -207.84913400154775, 141.4710265994497, 365.99519453503285, -418.15452775754505, 302.94776094693333, -495.3769543079884, 1476.4829637857702, 1299.0200688379512, 218.5561417344565, -304.17036590135103, -452.13162940588285, -769.7387044077773, 139.93070934540594, 140.70364620136564, 280.5911414678139, -291.9826567814941, 837.203185141301, -492.26049261039583, -947.4972014042959, 921.3932786152286, 769.624273821088, 498.3514082202602, 42.08982346615551, -590.1890032826985, 427.7670019318192, -528.8880943999134, -488.44871746344876, -332.6190158541802, 131.8090746528644, 450.60650013192156, 475.36515235399514, -863.5337671753036, 24.423023095648233, 301.9683872114467, 356.05969001155324, -467.99349214363286, 543.8151629698683, 368.9354198282974, -941.9466437358236, -665.8462034352142, 761.3780292250947, -270.1848877599331, 952.8028322023708, 379.0604633474768, 247.7473129838736, -434.34281998491304, -557.7305774539778, -685.3826640526969, 271.7489133634161, 1110.9849543626415, 471.04897968255796, -40.13044977364022, -874.9637308969071, -158.139064557274, 834.492144953402, 1.3623433836325063, 946.0772521061838, 506.5063429620256, 23.03527302250103, -4.423593854335124, 136.619371952103, 327.85155874359896, -588.864219483207, 563.2948002873483, 468.75139293886366, -644.1807638339436, -886.2813516325458, -860.5082687970455, -300.20398773671155, -664.4300428026353, 115.04754224482038, 266.7525372438973, 179.6576350729377, 518.1080307989189, 1312.3488135575903, -136.03955655703456, 285.91038301802143, 713.1520483304081, 287.4047666546583, -106.6901480163887, -340.4801592940981, 311.4066639288625, -510.42105321727104, -728.801475938711, -98.23715900134708, -395.0430359278193, -509.6131756493012, 163.36630135020357, -944.978629955144, 575.2666071313841, 77.43396370715865, 697.4927185115681, -310.534297043064, 364.50183334224437, -553.5460549701581, -529.9601227480059, 1349.001887273515, -137.4416450167926, -896.6721440606744, 749.6270401113215, 47.30370730085402, 48.86170636843942, -395.83210212625573, 417.6511929793108, 502.5974556813704, 475.1158142165101, -763.0525498232682, 581.3909524680522, -906.9815135429961, -381.78542461777397, -379.5406264405075, -198.2038147015535, 590.7434162666224, -128.33298418139478, 404.4202455733795, -592.5022546680166, 460.849195195017, 262.84007474154475, -424.40325977961834, 488.33348473362366, -60.51239782786985, -24.965070300443873, 437.37804722751343, -37.73735842700865, -148.73255147197597, -719.8927737688115, 727.1757231649359, -530.4967890878395, 510.63573506779, -516.75724861622, 61.05063925177207, 278.8861065878796, -438.67590613200707, 651.3289136906378, 134.0103175275581, 349.5804425349894, 450.6628068904554, 434.00803825370394, 566.8760208096712, 284.01459714897544, -915.237877948542, 162.36861072285504, 262.8489989649362, -127.67052845928315, 683.3250470577732, 179.25603221834194, -251.81419123131786, 687.1801395510045, 66.67235333595897, -797.8629082916552, -821.2266044778394, -606.9265809803588, 377.2066752071356, -264.9936204509102, -94.8298010380662, -75.74838077631014, -452.8312676271948, 926.6462599600858, 213.71965880609972, -945.2121344450217, -328.020524280183, 145.08601427141036, 364.5098530290482, -119.50058159795478, -944.3961952934254, 1024.3837294387604, 501.008740125577, -0.43837813189917973, 27.00458450786705, -670.323380762526, -581.1125290267769, -165.6192511821137, -464.69163493252, -89.11530195529585, -816.2055154557634, 408.6261729765204, 301.8992534396141, 967.1395359709991, -939.5336214896676, 156.51705338121076, 40.07043476070508, -101.74346465684395, -242.73152772321345, -271.1151071983346, -535.9942802568614, 208.84343003748566, 88.89180929706362, 1284.5082685891173, -2.7595715754559933, -693.5797825538815, 302.9809660320789, -990.5081556048217, 367.4891792142651, 87.70063943675065, -135.0604651340672, 521.2694409871114, 383.0516451889571, 357.2611497289999, -944.4795894727836, -781.8581592401858, -160.2893347009345, -37.137966582952885, 177.4273771363959, -413.84625588343704, -460.86449150892156, -503.9254630020586, -472.63338733428236, -868.73733880857, -436.85883439545904, 154.76898653676096, -385.61660353803916, -529.1654339127276, -978.2612279916303, -558.7082987327118, 396.22290935865686, -231.07229401900773, -700.2799780239429, -583.0583118486368, -135.1452125950354, -155.29763280439408, -178.6864386760526, -376.70808233790314, 36.335520621785776, 945.1962758215672, 183.2009951057966, 1280.7532118028414, -1012.8822015058014, -891.788852146805, -1015.0595806968818, -511.5076140180067, 566.4285048966959, -871.2294910156694, -962.0721737258913, -303.22845412926756, 312.2565322689324, -719.7727606479898, -448.0391354012383, 865.4903698911977, 634.8022649761458, 305.43037220753575, 850.3243960268665, -276.0186632491131, -979.4796449394742, 101.90937806084523, 945.5304832509898, -395.9168868640021, 5.701052577644546, -511.76054562693133, -133.62968224089047, 244.30144404976386, 69.74644315146821, 384.17144694781496, 164.3501525563789, -749.1556936468036, 1051.8265929255065, 157.29530933177608, 255.94215791559125, -382.2087853950853, -568.469211418128, 34.24090012988641, -457.1402866060451, 117.47967683568638, -824.6513216080231, 119.53006251765737, -423.1684614109415, -949.363078792036, 443.3099096020573, -656.7323516470578, 152.07033544357142, -3.1693960860805745, -759.5793720384746, 97.02032063975444, -213.18950723729273, -497.45156924132664, 115.72217696439573, 450.94943615391617, 277.57073192756144, -79.61358209037607, -910.9684685282609, -937.2057313389532, -440.54661910118, 559.0276385205314, -335.95145856298166, -71.61435584301685, 179.33530115774138, -603.1507956588317, 171.10201677063446, -122.61469126540237, 426.3771762565499, -27.374009234110275, -358.2500293240655, -204.10034164478012, 252.60107477484217, 360.0466581915887, 271.3636722928014, -738.4688717911057, -428.0099211116943, -242.81942497629865, 217.56182485473093, 1142.5761616996672, -460.45706874267114, -229.29233074723035, -835.258144453057, -547.024940850413, -416.65588162707763, -117.45753290814423, -134.44543980160591, -44.58467673421612, -100.61817071557634, 233.91106658233477, -187.90607674961882, -536.73659302995, -477.0211685661526, -744.8987514419038, -94.48094794015965, -13.820166931843278, -188.75909579471846, -1.1187233804696746, -416.4955074772275, -321.09176702809236, -509.7693555731636, -962.2981475741105, -158.5476147483871, 1029.6861403619328, 124.91628922501747, -586.1306203460025, 1731.3788047149624, 104.99065437283532, -890.3523818549454, -266.69489782844886, 652.8300314615423, 687.8110549911652, 583.1105740328403, -340.33816923430186, 485.9610490470193, -466.81873266870576, 878.8421017267318, -264.7581619844283, -44.53209339481367, -793.7182793100525, 1049.4936333634519, -102.91262887013161, 1295.3117036967722, -97.6330016687142, -978.2316457476869, -206.00731231042533, 676.1454449906986, -964.5454399840916, 441.56140291357036, 217.7835228258395, 361.25143269166637, 5.869483321798054, -170.45971781260593, 942.4808763851873, 809.3131835840516, 191.86338066460303, 1699.0646984944776, 159.48998798896446, -935.6182453327878, 5.349824472203238, 319.79318967036147, 353.644818606309, 984.7843329166709, 117.98351280244465, 96.63865307646236, -184.7587933748913, 660.5010589444478, 325.9585501787724, 373.774144679886, 1.2079253776635426, 713.7427922410262, -39.97845700981689, 204.17520724898083, -90.24823710453339, -294.5078895290895, -287.33779439096907, -355.8902720546673, -929.1912654297702, 127.80526268198824, -233.95468621788282, 737.6224039837741, -370.18118257689804, -260.15301351542263, 132.620128209078, 194.84939172079683, -856.0833253695301, 721.8768179534251, -769.9636079295236, 803.9175271516111, -897.5556707724769, -730.5380780683412, 163.62067428344446, 569.6557363633053, -558.2303238107199, 395.4718358492809, 471.60599518771323, -35.933887471324965, -335.1090505783162, -137.44111362795803, -862.8781637703037, 422.9334804821053, -130.8674358325569, 238.29549215508038, -359.1092261800012, 570.6431274824259, 356.71479020634604, -557.9947501288549, -417.1908813472144, 258.8336741593993, 521.359071335557, 514.2587228993928, 204.5338001624955, 377.8789665566717, 567.6374623004423, 1221.26484702975, 1015.362270364082, 1281.513252635807, -739.0044649773802, 897.1703720200525, 441.7552331048236, 765.0573897200471, 179.0599912612585, 465.8763659949254, 446.241896149968, -788.9570854126268, 133.09079489155994, 711.0631991400991, -263.03506902771636, -243.4843123124023, -142.46006072959432, -389.373102190939, -769.5173157064235, -356.99831209805524, -384.8501722541894, -529.7884240186183, -236.70716030341003, 753.8419815398902, 342.96489875416194, 438.94648949129436, -291.5033263105798, -707.0466757578462, -358.07746858146834, 968.5234696817984, 383.86333853742985, 1069.3906466722854, 396.39275114480847, 93.39987469717443, -336.82841848730254, 742.6958951815543, -214.74416425548452, 830.0448418453431, 1051.8996157774325, 389.88137526049076, 325.5197277850426, -138.62752506797304, -158.78157070469948, 278.3971288027608, 642.7469173150002, -122.60114002607057, 80.4335454338206, 201.14751978629306, 321.7758297945787, 752.9289224227994, -446.94520282520415, 678.0082045298398, -83.55516354202474, 1188.0651599929986, -172.76049723676311, -996.2032435465215, -207.5327159445225, 526.1583970756174, 539.3997903273581, -350.75455541664553, -548.8092370979734, 799.3292014855597, -14.788040761006073, 151.89824171885456, -160.49783615291597, -820.0330362443982, -300.8219182878276, 415.53768824711625, -549.499855106627, -198.19729582647759, -376.18874709198866, 191.99442775438072, -490.23886387330936, 440.7975825486602, 165.74473492723993, -280.4837536865309, -759.6811881455108, 337.4566346850162, -389.16783860221005, 417.8088290336717, 814.9143010019995, -273.3969167218922, -476.0499289701095, 1104.2682304807186, -309.0052275552887, 638.3402672658832, 584.1731313194975, -260.4226619910597, -780.7482972615485, -46.73957147516572, 788.8676003972218, 13.154217076946338, 155.17157856817457, 1270.7207219141465, 301.134352001396, 180.69230359508157, -413.21274639689375, 1275.14070603918, 616.5208198402274, -701.5030089726689, 262.01006930103705, 2084.1707200855267, 1255.2193603778164, -796.5485574031101, 80.63407610102439, 2044.452809658288, 1731.5746533229315, 184.85285700431356, -411.7645109959541, -597.63479036999, -90.3737332220008, 977.1615881641072, 78.24331357051766, 278.1542428730234, -30.418679118143558, -190.53720111831962, 528.7086836596293, -85.71242412372492, -167.7080536942068, 40.83989077626568, 938.7158242090981, 767.6312500096371, 421.7470060294511, 205.18693431049377, -751.9797611153957, 330.90577614313327, 285.3643218613166, 553.0994140633504, -915.0511955321222, 298.2988467732553, -419.6148929348594, 67.63160812808235, -6.91996999297951, 308.3146043480288, -237.88646788410966, 558.7394381814279, -255.25188402696293, 1327.9941229456722, 396.4694282201431, -862.1154839805196, 192.93985885637386, 566.908846536111, 94.89834339689612, 599.9606513964786, -188.99693544363822, -201.2395982866809, -170.70337319767395, -85.39955298788544, 571.8512348503679, 109.6198745766543, -261.19890734639284, -4.814603932730719, 91.22234440671761, -401.77868438723283, 916.832859190991, -730.4898194109333, -344.8070268072315, 406.8729259265275, 383.9880320778252, -860.2225259119622, -538.9482147592855, 360.99156043707194, 13.421612587019368, 342.2216009073875, 89.69187147907493, 8.786045240761666, 284.67063763789236, -647.9604818646822, -428.6877646539509, -142.8988640399465, -360.1433522803551, 284.29095665579797, -129.27738315331072, -131.48257183893736, -122.45535410176751, -713.3810121793255, -377.60944009010944, 1193.0315672483496, 46.366577830860386, -965.2606942990765, -251.35601539243774, 187.75724852580635, 328.8347555721107, 738.2433420714929, -858.3445255203782, -66.08332317264683, -711.5759903676574, -54.67342473217087, 390.0075825316953, -695.2946995359994, 383.9821897507941, -348.7489309851421, -966.2851512063992, -351.22040542104844, -9.929926462626355, -265.274875193623, 305.35110620372734, -979.2147813438669, -505.23581071367107, -398.1480966992707, 882.7497880290005, -461.2268300285578, -194.43878964979487, 585.7407606989243, -405.82657988771035, 1477.3637916417053, -639.7176522645436, -685.826431935275, -263.9197744812662, -329.8474821564414, -443.0102837337689, -416.81528636093424, 289.68233886902283, 1583.3341817807277, 653.4510212831403, -518.0860909319513, 58.219468646629245, -999.812346784171, 451.287044854559, -295.70160207251274, -416.07819375040174, -250.09875174709873, 95.27949057239252, 1541.860156538202, 528.309387308523, -702.2704741916333, -683.5055824148399, 132.5973648061876, 40.318523594969236, 1866.528379992727, -978.6483935800624, -919.8522096067004, -475.78486748212697, -312.0438364842172, -506.1340745761178, 1171.3422106559192, 1250.8608053048401, -210.15701339307378, 167.3518675162466, 184.13077420339312, -382.33925813185306, -365.25976883073315, 282.78875342053107, -169.025637127732, -390.739102189123, -96.66852040937691, -423.5063665151734, -148.7244868034193, 136.1750506399195, -200.73523071295264, 186.28664772538602, 1598.9591273658043, -279.4822791221321, -341.45522059971466, -174.00165198529004, -1007.2758510651172, -324.34746472974916, -335.8354255855209, -30.045000222173655, -331.22769698577287, 654.4100745183121, -913.7984941832734, -855.7776609404592, -60.71507347998678, 757.2253386727864, -504.79762144275554, 946.2883015880269, 197.9272608924765, -133.00873480118057, -624.8554769462223, 313.28659630364837, -51.81496199544633, 239.0353271087114, 184.6907902837315, 35.85274466457663, -175.29463136893187, -266.6171405227237, -134.8895026016521, -738.9714149570432, -583.702224415247, 191.28181652208573, -748.0537901007515, -675.7781565172769, -52.02926045377768, 797.7984666768062, 165.01016145014455, -350.57010554473084, -329.50778256971796, -617.0221059538786, -362.75739589115744, 635.9360858115615, -604.3338210679818, 670.3886284993036, 6.023656537097992, 117.55684173453905, 113.85285458719267, -127.06238977180914, 272.7614805174185, -515.0759921772791, -186.80229250093655, 367.4381537762647, 202.18617850120475, 184.73246106880384, -286.60418487338023, -469.08405902692226, 1109.2791152009627, -689.5519523754276, -409.94203075660914, 560.4765298669421, -341.9966800897743, -448.9557934814131, -154.42162622093414, 1154.9313351408969, -969.1507547061007, 109.9996442373321, 303.72463962081474, 239.86077196588724, 479.945271406502, -198.76074214308494, -708.2946256761564, -42.53685768758412, -108.06183701469996, -196.96165027282478, 259.28904853883074, 574.2386323511503, 167.4204255562849, 174.270113162711, -240.5230029983204, -335.0898173285438, -17.439026252598637, 787.0426951978097, -906.0158984470357, -94.51365096004022, 229.0859110752598, 99.70531744417352, -872.475534083261, -299.1590664093941, 248.34670866793016, 157.0062043348768, 1281.1217059884204, 889.8645033419123, -987.9786401196732, 128.98871253945214, -202.48609838680292, -197.4619805027896, 392.0894047100884, -533.7997082849075, -152.03508011093805, -667.5473135197346, -72.22173981058023, 353.8176250103997, -72.74384296122088, 547.0330962548105, -60.91997990749677, 97.5260592259803, -198.36183751666667, 628.4246476053285, -409.0247846982915, 32.97283335008309, 903.8057017466174, 831.7549142945037, -1012.4184507309617, -125.2629451563876, -355.2046562626093, -14.66915060540586, 156.56018338337788, -55.206904212386874, -12.64730309028856, 258.7547896736658, -196.90776988972647, -220.7827083309113, 163.09083102662177, -54.265309938727306, -393.538401128484, -857.4561357142023, -163.38868691491072, 566.6798511574727, -440.6722859381095, -475.56439787295295, 959.9303579165801, 388.3363575906262, -971.5600567514496, 261.97502550576337, -373.23981544225836, 69.77845662353194, 408.0307643177792, 157.79700626219258, 86.73810892350052, -854.6649511628071, 103.19716236425859, -859.8817402926154, -155.0859512277987, -1002.6044136922327, -425.11103613898734, 48.32399487913818, 167.52669904666953, -105.51206130926533, -524.0570652240073, 1493.5117379503654, -960.7663563765487, -465.9860402226275, -587.7922054131701, -416.741261528469, -12.92503106105724, 133.58488608306027, -248.4488263348616, 94.39608065299052, -156.06227371149964, 1024.5542823992314, 346.84526042342907, -601.7368525926372, 178.359338588588, 1632.0552668576238, 88.67449942339094, -1023.6599063897696, -1005.7841716366161, 1000.2941503647162, 654.8868270871255, 244.93933752346993, 210.5168462331431, -407.6068613334629, -265.70635430982253, 161.84858903275634, -188.67090687912534, 81.01654191566068, -120.65294145824498, 81.62281580797557, -301.7202401348065, -144.7669405805841, 78.87287560930129, -685.3154678167633, -976.267095004192, 124.4824098184709, -952.2613588983148, -877.9889140096618, 1586.3007504618279, 757.3766834901254, -1003.5328595727295, -747.4097224800166, -488.6702382276743, -62.85514900559917, -4.651034679128159, 80.61846858095342, 1698.170591582545, -784.0661439040325, -512.5806039500468, 1314.1010565673807, -106.76487034260282, -444.2001240557264, 17.4364735151334, -791.1062585430346, -940.4275597575859, -259.80049620583304, 92.6665978626196, -214.67020934715072, -65.56759431820215, -163.8233364976961, 1450.5728739655615, 1160.9468706878772, 1165.5419415901924, 800.972110056253, -28.99801423279456, -624.2718099122282, 993.9902491148496, -553.2707523745615, 226.8459909570059, -56.40234929180064, -329.53927617354066, -997.739969719888, -464.4809515121249, -485.5408364519276, 153.5502767009511, 30.130089347363494, -376.7975543607317, -268.2760002804958, -69.59442837425915, 1151.573729286057, -144.7059606781899, -501.89176470695554, -8.473277746579022, -490.419137506551, -212.4455195560247, 110.95410005172819, -222.4222660818633, -643.39576116445, -183.99527318895073, 218.71338056756724, -26.553607934998467, -90.22774538154638, 1.0696184635165764, -75.3528583703591, 310.8117176587698, -379.1566379020031, 193.8646339100482, 169.13013536632744, -134.14601887629053, -177.05656429894674, -428.79805639680995, 309.3135274266224, -527.3352917565128, 822.0874396182724, -417.38741857551594, 912.7533647068483, 1025.7618511250985, -545.0244193222188, 1186.189166922087, -237.9327572221581, -488.83866904946086, 511.16080638218295, 1386.6541783644102, 63.79654746614216, -339.9263945343187, 220.86211790403019, -317.37931101717726, 1.4632351512710926, -10.851848882985962, -214.94531631841784, 91.54851802662124, 646.0929876536966, -457.64138936355124, -788.5496949123731, -989.7244230456698, -195.30125210181689, -90.59889619824855, 320.32650985718755, 91.15065746329506, -374.2345218789875, -136.44133112708474, 29.68609835914367, -223.80028361169073, 639.9221721026098, 757.6625917049406, 641.4942557400168, -49.49300308546458, 46.94033134628838, -320.0545807935653, -165.01378998367346, -2.8393825482582926, -381.800396517112, 6.958524548556511, -175.27869401590166, -968.2882678849923, -165.6535999392582, 134.92970417519686, -221.0401913965698, -260.83554664429136, -321.4840598424726, -417.7496377701483, 258.49227120938724, -915.8562036217311, -849.5502988711662, -194.74820712764574, -322.4616446483012, 1082.740281398516, 210.14176492212437, -554.0410810637004, -820.7431031302312, -87.56568663482136, 39.3491616300644, 87.36119558222889, 429.6785702742113, -138.54609200205277, 1406.7224972778674, -61.97475828546072, 258.545368707333, -938.1219249981789, -851.7046423721064, 12.669823648479309, 594.7827174310662, -423.3714640414028, -245.33175610565675, 1659.2400768653704, -780.6556641681819, -868.4614591976026, -63.133900079596515, -69.71559940199344, -246.31924885932284, 880.4461104695906, 340.4101360395444, 962.172150566496, -886.8680601676883, 852.3434946637838, -346.3178157181007, 541.8680523913977, -551.7020302485811, 825.5409492312963, -671.038025597264, 98.39391413686376, -418.86612763852565, 86.10804721442912, 439.9554802647515, 1664.5568900529433, -205.25204043628685, -721.7369488777165, -753.975254220206, -152.94562536163727, 69.58156901942655, 531.0651795680549, -163.14104763894022, 158.2329733662682, -433.4328902030863, -225.9328722844743, 1203.8432649551035, 262.8642520869262, -84.73895121495987, 470.06598683781357, 108.39400954418622, 1097.943664413087, -219.15193684042262, -296.03656827207146, 21.72302723886586, 1318.9673461536852, -307.00093570407444, -980.9339123962152, -418.77086877694626, -357.42124729333784, -12.069745646453107, 792.8494425142363, 78.49852277754306, 244.59926459565403, 270.81401416653597, 1297.6095753289394, -196.4429179453321, 90.41122388558716, -422.55759286000807, -299.2222994829047, 20.312732964301233, 199.58271415070806, -389.74072700559276, -459.0099667715629, -135.19330314164728, 1777.988243184862, -37.563218822956685, -529.75083907653, -206.1331982430399, -49.280210313897555, -417.18549190647633, -273.90537321583133, -74.23062439840123, -110.86286621043652, -734.5850050229519, 1697.2194686229104, -158.72472797344716, -838.8613740094386, -888.7597478188839, 121.5678802197159, 72.37473842352982, 365.7000834068289, 103.37215007662482, -849.8785483575706, 116.54295448428769, 96.10084036295318, 114.5169664093629, -437.28270453236917, -295.11657430537986, 277.1097183125544, -242.9767103226475, 480.0333911882899, 444.2378923748086, 66.15784682013579, 1506.1500492688685, 1927.2335243424154, -691.8846072484021, 876.2141461126938, 970.6966625523007, -476.5472902599193, 201.9831564411307, -157.60692428068631, -309.0020227152645, 332.76617663930216, -903.7407439158548, -675.4256735477754, -479.09390382161865, -425.96259628993243, 341.67128954347396, 209.72030295279674, -900.7800758095929, -40.37782629275699, -296.5893558691904, -940.0393592731092, -312.0309457734659, -348.92113352372144, 388.02433806611634, -311.34318361174405, 336.9678529156764, -262.52958363311893, 631.2414314412741, 31.13989916958443, -543.3528256210517, 737.5180739721237, 1195.4139673669235, 219.86897872348237, -609.4877841348364, 86.52996264218743, -240.09117809927875, 771.2392963871364, -409.9297842029943, 2028.0730725048538, 107.10465169100186, 600.2889962353606, -176.26117940418987, 60.200049327374465, -307.32142588631325, 1683.1550372422357, -328.404594241434, 916.5609127792633, 101.43395414283746, -131.16328111887412, 1.2641650783276326, -268.81042020773964, 47.500501555735134, -983.6984330388171, -83.37070462770906, 852.897229501309, 759.1679101560396, 539.3243136650867, -267.22180440117313, 692.0798424424206, 117.98378906080106, -135.51729194835895, 441.56578277615336, -256.62388910475056, -822.5998555764679, -849.9233546754126, -411.5037910948428, 277.5128082492917, -534.0650884048878, 1104.8373066026988, -392.9690321977989, 1594.496514782713, -49.4503766358843, 1109.384497988556, -439.6072833894883, 1993.0467680107843, 278.66784784207533], \"y\": [441.7671259308403, -451.8795003706538, 651.3404894841485, -690.5899028886075, -93.56248848014125, 53.59842181708518, 438.4797292946715, -25.36655484920152, -380.19494149758594, 646.7821060621601, 236.1958242913571, 604.7806986223429, -128.50139438865273, 97.00906031016831, -788.7239364738305, -16.53231408488574, 409.99140861204296, 87.2607915524064, -83.05565626270305, -501.80669550240793, 540.5308632829284, -193.85222156308188, 573.2428647815359, 320.07887088337526, 1057.5650366399282, -469.73121155101273, 660.0112098022307, -296.53070740456315, -95.5674092514686, -119.24809761795208, 816.2029809871063, -199.94429032997024, -123.88706805456164, 410.6103390892543, 243.87832199551747, 196.60700005455044, 440.29792872704576, -608.9221283676468, -303.8282573954709, 230.0917641618397, 474.25415557392284, -416.51999503759305, -10.454583262255099, -138.24121367186717, -813.0248613568715, 34.34634959911445, 270.1144716086354, -110.43772350235328, 828.2136928944672, 603.0155351675952, 188.97301254057902, -1047.6060832577691, 97.37560286458341, -812.168741418779, 21.129417467914678, -45.42521178918499, -564.6463204967881, -641.2639435449776, 778.4470799218846, -513.7304920840938, 89.8675038820463, 403.3372690547751, 420.4458904246633, -484.7634037767708, 408.400233167365, 261.3127046137708, 451.93247077431573, 354.63752969626063, 168.8979901856017, 348.7897069515291, -378.179567063794, 152.405006423509, 169.95036641459882, 202.5831534363283, 517.4884995565396, 712.3858647921323, 734.7387850662108, 508.7218534210184, -179.2048359760669, 269.12519406772793, 377.65994763232845, 492.41987613078436, 59.232427868434286, -747.2433949170672, 483.12748145172066, -167.94431872685465, -813.1210702030754, 176.53391422788474, -787.0732254474029, -215.28231107915337, -602.6239039301654, -616.2570633176261, 252.11664571534698, 244.6689329591926, 299.1545337795525, -591.9613176109111, 296.7197430645811, 250.60440408535564, 361.5277878258264, -131.6418260188319, -681.4985665935732, 164.7638099609293, -783.0056810533054, -70.47682882183815, 822.1207721493317, 21.454878783041003, 708.9072471916761, 253.0525307482646, -259.0369757839848, -633.9336514979817, -203.9183653980367, 166.24922683749517, 965.8549212830209, 20.87887223650074, -749.5132311321261, -971.1072863674085, 641.3458908972963, 226.4352686047502, 630.3117554900948, -358.04674719730724, 680.7525632171289, 502.1654519979825, -668.2817741757426, 216.69594162745895, 668.7247341202702, -69.90251055576125, -235.5215810047277, 381.9649232402518, 537.5429300912905, 262.77349673212836, -485.6906628962993, 230.49751175292369, -346.33555997581436, -308.90033285361744, 730.5303978433421, 205.6249775163511, 609.592105921522, 627.7542163069547, -451.1216447416176, -94.27372831135357, 29.204038633916838, -736.2891116734409, -137.3839061203858, 154.63716630405378, 43.61057552123242, 725.2343590869004, -174.2865723618539, -339.5748132563142, 436.5284859564496, -150.31029774210597, -228.31746710243615, 469.1316141059479, -254.67332493701537, -745.524518298792, 54.965112122562665, 72.56888865433962, 645.4927782084765, -503.35724683940106, 104.58246204614409, -173.97395505058762, 1046.8746395770727, -761.0686992198449, -176.2798805692377, -695.6753786576254, 178.86463991516143, -485.06518476685187, -692.4555283558556, 130.14085061782384, 372.74668975013196, -852.5121571505608, 285.1322278187762, -852.5014033244559, 262.7251736641675, 253.46804322514862, 302.4526322496975, -432.1832004879245, 601.8227370071338, 116.18384271789114, 364.2215688068717, 231.62266177626114, -319.70432080986734, 379.8044689807082, -918.7924062692915, 79.25886125779712, -717.7911214785903, -98.34095004269726, 1192.58221319137, -243.13881260219105, 94.0599511451198, 630.9867549178969, 112.91947175644562, 164.6718377429641, -621.4035786712591, -926.5973958823023, -195.06520108610903, -1056.521611383405, 597.4878797978965, 410.48083662582064, -321.7239750299706, 37.51619718484764, 555.6557931209977, 490.9077418504547, 32.16659797419922, -304.520883351794, 837.7080507265682, 324.00110008876396, -135.4034779421982, 419.7553509470621, 503.999170512892, -48.34814300655027, 565.2008104566181, -387.73569319356204, 398.2461285363604, -935.3936017222808, 905.8038732768687, -132.55348990826906, -631.8251767950995, -16.029933800472136, 374.9381939866781, 740.9809620624442, -341.0156191425207, -589.478253136687, -772.9910846165112, 15.44023472730521, 648.3789037696052, -715.1985276183026, -526.3976467880502, -297.1151766686023, 45.144363547738976, -533.6300573965068, 594.8040242617799, -157.0508250773816, 341.73362274859676, 123.73201388312619, 785.386806774625, 296.2578621626931, -816.6466624371915, -416.3899038369667, 353.3740582150945, 114.81031173740331, -604.1204059172883, 928.0135529964309, -1135.808859075271, -0.6507275678776665, 663.4120712068691, 203.53478184814276, -478.85674851881924, 80.36190146628991, 257.07485607819035, -328.6286334540967, 458.7686404059029, 645.9994903518166, 352.1924855208049, 468.3313859075871, 831.3208996533888, 482.3282748661923, -676.4768338423286, -402.0156063299469, 79.04634559052025, -191.5624486135401, -348.3068581408032, 343.74045167956626, -1027.4355668283972, -559.75036783063, 329.8502344649782, 620.2293791268214, -548.3549576849989, -451.7812913570772, 686.3642303064222, 226.73309213290023, -443.4858496901911, -884.3414575816669, 330.80790978923454, 500.84629128798787, -700.5168356948053, 228.54979841558753, 297.4931500148183, 553.8705349847709, 317.58612977657623, -624.4484437161768, 629.1138857200074, -582.963469244008, 396.2281172139823, 314.67819887561404, -437.49389789454904, 49.546852470137935, 173.51850389756254, -813.5049088910332, -601.3884983838664, 530.7316520576524, 828.317803133112, -294.682109837133, 526.5426032212198, -667.2938058989519, 652.1456390904756, 119.13852933858703, -702.2508776431321, 424.9950293074428, -353.97179272094735, 403.0761024268657, -883.3088706977267, 180.15089683302034, 638.2712436001395, -477.5784345770629, -644.3744713240721, 146.25852545538916, -649.3533917020294, 398.6237283753322, 693.8062669548565, 180.70245357094427, -336.2630305366748, -131.1748838352131, -354.87276102857993, -646.8506963512866, 692.6233453101923, -93.7628914803358, 244.6086764900365, 385.94219762294864, -309.43508350143503, 152.37175968903105, 659.2732616446838, -619.7554905933154, -595.8312418562459, -866.9250629351666, 342.3082798751759, 131.26399727282708, 760.7881507637231, 12.062022439586585, -818.2748217709401, 470.85566896095764, -457.052285205175, 148.24505465878673, 376.8782025430681, -766.2263663385468, -15.245157846409413, -542.224100293585, -890.1741445687505, -853.224599718397, 328.18391368151987, -459.6008146163555, 797.9694913664446, -246.52793673942264, 660.2196507754654, -782.5540880149654, 637.0504221742524, -1.1752333413316336, 298.2319079332866, 549.2041423106108, -818.5900405440834, -785.7079124795217, 635.8148595593116, 369.6734019811426, -539.3170082866454, -570.2919109388356, 806.6722205312393, 72.20609593170774, 635.4338200926042, 0.37150382486761657, 396.4680681759044, 813.2451317480067, 527.5114995696574, -779.9021816455538, -249.1309334845352, -490.61661556632237, 369.2585166926969, 228.07144942656734, -359.8478415943862, 391.11650335530084, -827.8803756765926, 72.84938738906732, -923.491686178885, -629.0573860932705, -617.0821217760263, -716.9426495996328, 310.71685643850435, 179.2150214276365, -871.0660581410773, 380.4222385150549, -296.11818119171437, -785.3644991690094, 375.35600049291673, 277.20717108084995, -764.0631600279863, -546.7326936967281, 510.4064260741753, 170.1159571997216, -787.1506213369315, -94.86940630691534, -458.0012784697632, 724.9872032717403, 303.81583832642826, 333.57059753498277, 567.5096300077772, 100.66495022543003, -139.83754102008857, 210.77608058453688, 742.7196292459108, 130.64552943709435, 697.2918767964244, -42.91840428915757, -287.135851100723, -788.7788323622897, 251.42388651148462, 420.97622749099054, 646.6002383600669, 61.742624436878714, 290.9910313960322, 237.2955652497818, -476.62927267472844, 1009.0693574156599, -517.4846522841515, -322.9986173648907, -642.9616739648789, 13.38981940014034, 508.0566719345321, 365.41092219073226, 97.45137791566032, -31.271664213809004, -475.41007387010643, -113.64923110811003, -307.7946232396657, -405.0356687193423, -347.58488477101923, -438.9227816426723, 353.83292121761724, -913.7547719057447, 515.1846729125743, -582.3943870243668, 464.2487250292751, 190.82043068902271, -463.86909068284535, 27.57203144024568, 765.2137518677059, -565.682656814219, 332.03265238576944, -590.5700583737184, 73.96420633094817, -831.7301915881121, 361.818464425109, 337.0499958484837, -453.0240652871504, -720.0205415912369, 694.2779725543371, -117.87520590242517, 389.33097399771407, -838.5570460652032, 761.2216562606172, 244.85460623834945, -420.98718235978214, 406.26598099426946, -66.1376628924287, 474.44203931616204, 454.19213975868774, 65.94132564522775, 620.3645659320945, 357.07400693650413, 407.48883047408265, 308.75973845147973, -490.8773231141607, -782.4671672062261, -891.2593388796822, 293.1674708321314, 37.32128524815625, 329.49416375350415, 114.38369391763919, 327.41960567622715, -481.21905515295714, -395.82303019487796, 54.85454363026059, 77.50293959654044, -163.4731955884334, 371.3306430791319, 363.0931197924392, -6.9791265181655575, 576.1254263073345, -380.40462210121893, 365.5968958769685, -603.753323001459, 238.77659182880012, -140.30904497062983, -549.5880802364012, -494.96584868869405, -207.26552836650538, 98.33119457006376, 223.23033438166092, 131.79059340904757, -156.07302587092101, -150.18502346365952, -103.95243718355303, 835.3081470482642, 374.56431573690236, 652.5552148289373, 233.69989064130073, -239.95968577642313, 479.29738435670083, 457.4922384257974, -40.25240841371939, 33.948112811375125, 582.1550488854007, -532.0210840180338, 93.11093095232837, -55.5408033020349, 649.6214836328129, 782.2287632943912, -798.911840932424, -505.51330863355935, 600.9993303587917, 592.2755704583085, -15.693738796279135, 569.0301807739794, 74.17812391987776, -418.39724294556197, 136.1314692718254, 179.60847471109716, 377.3953256248999, -249.14281198166464, 380.76778383685695, -417.7031686470865, 266.40777495143914, -814.379234570792, -570.2692290693204, -965.3557531991661, 118.1774101301643, 334.06510926268413, -436.14522724004576, 231.8496124117256, -14.194064616545157, -105.015207717101, -10.561994544271059, 7.846621026362037, -483.6767107841637, -16.452425009010824, 281.98890342565807, -189.89358159570622, 580.169761203512, -450.16104803788096, 322.6431235415222, 551.5377459006523, 214.57493677642827, 10.64707111840184, -766.9718005059026, 419.32767021300094, 374.3679858548437, 622.9936786050629, 565.1318837775877, 692.6277737377194, -155.54628253902786, 340.18989790784866, 488.7505657424742, -812.1072087647241, 565.8344252939348, 607.1192884598421, 718.934587046768, -145.16369657228034, 447.26032493422105, 270.94826792611036, 550.8440478025377, -136.86600745565613, 780.9560971701474, 133.8934048894963, 573.6832423985365, -715.6230080251067, 608.1912110938471, -978.6541083858012, -86.28472867746177, -538.1539289862443, -441.47633016199825, 210.10250631919126, -333.88796527916963, -239.4085649842388, 504.433303309149, 298.32048457308747, 569.4992318085926, 263.4913707362963, 648.0387732162625, -460.19203374958, 163.80100743259086, -9.896688271195757, 140.6082278069662, -684.2795589750237, 435.8687939498876, -228.2018281632391, 142.46660597945524, -184.13479859223594, -823.7050437429263, -119.17553625073026, 582.284457308553, 352.8335652796312, -196.72651903277014, -408.9746702702713, 214.62961824275033, -477.82719344937914, 578.9847557184895, 259.27701928263565, -151.67254340820355, -316.1124868887461, 620.4196081488255, -154.2890892865415, -492.2301905268983, -249.76217795005118, -34.50200059406074, 610.8351592308394, 498.0046011805731, 133.45812067405126, -62.962368191772384, -561.9908422646147, 298.78989837159594, -1042.3464032074678, 654.0266118342333, -708.8232569497529, 341.32084513597476, -89.25334340936142, -32.34902261992765, -227.46626818637915, 83.88842227516278, -994.8052454641992, -421.36701494085514, 29.591626951245928, 296.896127449534, 171.11355195501736, -420.1451271807567, 40.780121742876844, 251.52481603980323, -646.7975069286363, 43.50811648816325, -781.4066794865662, -329.0987264915478, 164.75249344182646, -42.01217927408571, 188.93670068433624, 45.75448759117802, -795.3428310849847, 316.3523806901668, -168.40748011848473, -70.13804662041329, -548.1218455742958, 588.3948612107606, 67.07734380255013, 422.6681351743497, -670.3223296253602, 301.654380063, 534.6887587929609, 424.1676067965892, 267.8897012217954, -13.263232682736863, 761.6069692419092, -286.2396898713761, 377.9523980238843, 340.4230181129383, -50.22191837870021, -392.4429477122318, 395.59707724460924, 187.29087685800081, -716.7525204146696, -636.3170056156848, 162.16475192242356, 295.6118973773381, -191.52411988733041, 80.20540437838588, 145.71686397690402, 77.00911456215961, 105.9967110130468, -478.3986502984369, -500.7147169120435, 320.3660212562228, -75.60145140421828, 204.6856199306685, -155.2993266405737, 623.026684097569, 552.3973155216405, 708.0395887841158, 313.778958933651, 326.57500380794966, 418.25502277862006, 818.4443024762083, 420.7514034335199, -866.8903612525083, 154.24843510333125, 516.4115224842928, -495.2485581326082, -231.1081826151207, -344.02458946897536, -704.5424518563843, 310.4123294680087, 854.7584579704132, -601.7849027183563, -753.7544585837825, 203.7089730485688, 489.10789209288674, -175.65224074946988, 714.9586548729054, -730.8889877594806, 218.52758623970874, 16.081407254170387, 725.3444312508284, 680.53602786384, -704.1787361622181, 823.5356806592936, 309.09206180629684, -517.3519250194953, -330.38403293239844, -82.88890212226035, -871.9539632619195, -361.0975529325369, 747.3651578766389, -473.9989049229795, -567.362094655436, 151.12921645721147, 225.91072599945, 255.31210428624345, 757.8158408656611, 653.9262249079858, 587.1402743511284, 582.7872093148486, 737.7774674756906, 408.9552775421703, -883.2188491049853, -585.337099831098, 386.04776280102766, -53.47393039589487, 53.073769917490836, -369.4606137818212, -624.9162913803599, -1028.9956040714242, 916.9861247767703, 123.05049109744238, -703.5395545845887, -88.16446063725829, -807.448810392901, -808.3474521492928, 717.0446258973425, 1182.7492868932102, 655.2275780860639, -54.06807692793534, -31.328788735506677, 158.84216181332812, 281.925349920963, -98.89742711603434, -95.46502854077684, 260.7407170541286, -729.5590721153268, -651.6534272071865, 650.2516753656174, -420.56389772097145, 487.7640995850457, -170.81064457667355, 656.1715407288166, -18.7301950671297, -460.59955563105507, -709.132656372689, 423.3737461778409, 772.7808571462838, -475.1530940096602, -331.53587591566543, -617.9885785454653, -218.82000888954377, 497.9250105742009, -135.47102760560674, -45.011882605650925, -232.4475373173912, 377.78071471335306, -507.4145734931779, -1005.6467095416518, -787.7158230021917, 1007.4603529824976, 470.9430090613332, 824.4737234361392, 432.4867294646812, 448.7593000646077, -310.3909389862496, 458.58915037917563, -836.8772513682841, -843.9329834695394, 477.35986458054407, 107.89786690558086, -109.04379837315592, 347.9228488680666, -289.0205473555603, 893.5184759519136, 124.0057127994602, 656.9340451811103, -528.4211013943981, 866.9457804205639, 295.36126964383243, -40.048989190375394, -650.1133372928379, 540.6035755263622, -171.81920922723242, 707.6138226938558, 647.2879704617071, 640.8974316793825, 216.28455863203288, -817.8568876940421, 310.9679862690351, -173.93924840068254, 110.91108827559472, -786.8678802106676, -821.2219450373611, 376.2399240244877, -648.0815853777304, 85.72133080553257, -350.4343138431086, -330.48057166336866, -785.7798098468743, 416.8598226429589, -949.4325465399997, 323.43474965653326, -145.2766668881695, 866.4629744823078, -97.1749936054166, 694.9847092563336, -819.9470886771296, -101.34090318917998, 1008.0892027603543, 632.8630107244276, -37.388806109750604, 735.2932930691773, 67.34635984960057, -770.0047077759671, -821.5689359035964, 763.1624786922335, -93.72165730550424, 337.71890505475636, -488.33134172068503, 426.16305219916677, -738.5565946532226, -351.96257523646057, -141.92094122487111, 276.021310929662, 950.4076958005137, 466.48816984581777, 390.46321446606476, 951.2181004633919, -571.0425119062163, 909.4717134840768, 215.57736014806338, 665.009210233205, 204.81339572236027, -512.7775754316402, 698.7651851890998, 161.67372676492067, -395.53440082870213, 549.90795557824, 273.057096352164, 526.9717060589776, 70.87157271429653, -1065.9294680509643, -476.3406282716734, 545.7107238243884, -415.4446092409685, -1076.9188028963426, 158.95799768509235, -570.8369038738878, -825.2116910121404, -983.5313092094469, 174.89994153845802, 694.1444512166003, 141.78381942058058, 150.10675789461936, 568.4809725846749, 698.2042287965357, 289.87333027621617, -110.86786434595484, -20.859480524981365, 507.4435311994084, 176.5936991992578, 785.3607062778254, -636.4447356499966, 479.060600404939, -127.13054077408555, 766.7657949677294, -323.03947065927514, 137.0503387361901, 1211.0542397172953, 386.41752596854184, 49.39055633456164, -860.4640116756269, 55.182023728357166, 50.78819326497717, -622.1934038468095, -86.72378812489735, -624.4968219534359, -949.0162274485021, 256.99940832441445, 828.0141171840588, 492.0603199060896, -861.8106308027513, -609.2213809255164, 149.02988605564047, 495.9813462167166, 754.9837738228731, 144.15340997902115, 125.48032317262576, -383.20337497362505, 554.3321412084106, -697.016484546626, -748.1396900009632, -734.002936190929, -28.751641456157472, -184.55300722538988, -1.5131548395702197, 10.761448420105339, 217.63638363108353, -988.1028995980472, 622.1553066181274, -424.1687159816497, 487.6196268259711, -681.4056281256242, 894.7099958346846, -83.35588342153483, -466.27783798494875, 47.859886983683666, 493.4813864273205, -836.2084333104601, 140.99917322218005, 186.2458662368545, 185.30936706504988, 12.760504287728445, 824.3938873293271, 623.1426215135014, -5.985528685456314, 42.51026943236798, 463.2012244584771, 352.8575453452966, 387.7602123519522, -661.2470413720271, 477.79348983946, -718.2257686165623, -646.1516560347856, -865.5509012071905, 63.098882191624014, -640.4749492500258, -354.1695008476309, -529.6343180386143, 357.92420659467257, -252.74083229363885, -564.6133612346466, 873.549727656891, 159.77832915167636, -869.1143538130572, 486.1917155719872, -653.6683964748812, 187.91696835574587, -574.6624775312955, -543.9337088097986, 596.3686752668605, -18.79101545624286, 110.85340834377013, 99.65907712682713, -494.28257325149565, 686.2998930072708, -185.58556074134722, -63.24513997103003, -773.6955356404065, 93.73970622244802, 805.3672721312275, 193.64300400800346, 77.69499294682822, 964.1017092737848, 106.47393173618732, 632.0725157346374, -806.0128825033303, 681.6822970930754, 555.404716884208, 282.6279618939956, -200.94971723827314, -818.2188752157579, -433.10901780501104, -595.0106561463708, 256.0019369015754, -384.0721251735398, -256.9928198888119, 215.00577808452485, -65.86447698054059, 899.7651383737795, 80.41865004552004, 127.9806108157507, -66.9275830430847, 289.1738636899188, -313.4389758961332, -711.614315033335, 301.1219611552517, -70.21586595986008, -116.44123483253523, 103.08729431124527, -731.529779121346, -721.4723766266833, -819.4384607590505, 351.0164230839133, -879.2421517001726, -529.2534510972606, 683.340174595524, 515.8875084916431, -934.4282161810659, -597.9388490256622, 41.10260021495907, 254.59570839733638, 607.7963722043753, 238.0098020560686, -9.006411926117359, -527.335967546669, 10.583842793984843, 574.7181662691986, -149.5690189894572, -585.6912631006169, -613.8042235190408, -266.6413149461953, -959.9693741251994, 337.80006987321735, 754.1348719108067, 42.73945786787088, 423.7773151434727, 323.14285862156635, -976.6930654516707, 273.6754292709692, -90.6912452008326, 435.3293598212621, 51.002656608879605, -439.79200557533363, 224.45371836821056, 519.6037555567627, -488.13077999612733, -193.66831160283797, -367.21654063983146, 583.9975387143395, 57.042007298404776, -158.39567634107567, 297.0877381445899, 469.1731251018581, -111.08393404907486, 164.63657429150197, 334.76599660069405, 228.62205382382456, 120.39810320343386, 40.58922851362614, -236.89408294971182, -399.7156961817234, -848.1784292428779, 363.438415474896, 258.67263577939934, 302.7746221169114, -453.80786581687596, -700.606912372782, 337.3682509421042, 635.9332674471086, -221.7734182859918, 286.130829460457, 70.36592474358388, -191.44745643816435, -595.4791815524914, 570.3115253782917, 270.40292129363, 2.235869178818337, -821.5742596828585, 455.6383346223598, -615.3950196461606, -162.89936325761136, 574.1238139845834, 647.2133027978773, 140.89232906937667, -490.33888466685863, 240.44465137859123, 31.665078607695307, 204.24878707012735, 451.48895321808567, -16.876358710014543, 523.165762355614, 255.01163915582276, 689.8834650592594, 330.22940986178054, 538.4125523777691, -1013.147117399569, -510.0819700708632, 499.220478017513, -148.94474966813831, -262.7940868967872, 442.6841843671723, 459.3125257399553, 294.2922348561437, 182.84151657801033, 324.8673249733973, -461.67190458996123, -556.2474704894505, 414.54443766897816, 561.4637695683886, 446.3679359871222, 522.2822775340601, -68.10961144936422, 58.94100985842533, 217.7578670297532, 293.52685789113406, -91.3947571655234, 432.59568169093336, -415.55032533222106, 352.6741225438587, 505.80594884660195, 1058.708558662035, -479.13001703944957, -389.5541581198306, 235.85500763616122, 375.4622135344378, 194.29906197578663, -816.750086426848, 544.9991944437161, 300.2114714715985, 116.77027760439016, 492.85022129974476, 411.510315686072, 562.9549038121401, -483.725000489462, 357.85214580558164, -827.2524208653517, 157.50854381365477, -902.2882159863177, 692.9267802452479, -1032.7126650050054, 426.6143701067973, 434.0070236324105, 344.95746884436045, -66.77643840859186, 129.07125849250596, -719.7081309822019, 425.09481470307924, 73.57741212017712, -374.68800288258, -156.61206380712238, -36.87595036380878, 9.93687709984432, -81.14306464316945, 608.661975766791, 355.2659236032624, 346.4960728399814, -258.2466823447696, 31.54093248435083, 137.89979236833517, 299.91984828583776, 543.6515127972509, -365.5270537991107, 150.57388243113024, -248.86746794987636, 284.21061256544857, -710.9203341599871, 670.6342041206151, 385.1964390516113, 686.6663425743486, 47.59130148651345, -844.5952930792008, 171.40014896144828, -249.35780753338108, 333.4043829679783, 459.7286349809548, 320.13940389997373, -200.93403593120877, -582.1047026736608, 426.5167172917834, -619.134259019544, -263.05639721176414, -248.08778867493825, 134.48104437403583, -354.5999547012342, -808.3027212205213, 280.815751528997, -421.8355498373909, -511.5607400193844, -117.57271599326894, -345.1030203143068, -548.6298025686554, -5.090248857047973, -522.6087890741037, -77.05780993832687, -401.34014260167993, -651.5253267727887, -600.1397160583165, 357.7806160203756, 245.50604218242003, -973.2140281845229, -740.8999939169286, 175.9126538371887, 342.788443247033, -386.55164414382074, 842.4351975653649, 159.4604040319803, 414.46513993246094, 102.63680805855708, 884.7294480500939, -731.7891939880237, -967.6301843145602, 364.430313344837, -299.37336725738646, -360.47202354027183, -897.3648123039479, 62.765553401068274, 290.3269420148847, -709.0491111044894, 353.027022050115, -442.36173152806225, 762.755207387547, -546.7935437220282, 572.7952391105011, 317.6415827612174, 440.2117628302442, 169.29724300438406, -700.5861947890012, -262.0580070492727, -503.8807415690319, 416.24691710752865, 432.52561673547, -1138.7454011384443, 365.77891575276135, 156.46740752043237, 796.892042168061, -713.2525160199978, 169.14410149085418, 420.85936859614424, -1008.1517285173336, -983.3749565231826, -566.2196395509671, 428.64975497254386, 132.81326453006136, -603.583927825059, -776.1444103337109, 445.99171080279325, -489.84388599931975, -165.07799113837228, -917.2070034636549, 610.8608532684954, 16.288684756516844, 214.95075613272047, -421.0135991096744, 308.301774158306, -853.8124606987877, -522.1625572138659, 730.3353475436901, 417.68718719687627, 40.42392709435862, 425.4959159785659, 481.55412462797335, 130.12536389526096, -681.1114558930597, 95.65818296477033, 550.8599060941527, 81.74074113686329, 290.86806734324216, -374.9260451243865, 66.0804572186016, 628.3203535247928, 133.13384682075917, -420.71741162862173, 565.3132513902394, -364.13209759971335, -665.231114576834, 219.15553000175794, -962.936573035246, 547.0848842929943, 516.5225733785852, -603.5053936434504, 46.7232015285677, -852.2602228499708, 672.3846975471479, -341.41692050766994, -810.3343014765632, 650.8230263711562, 591.81768537733, 176.62690388930014, 247.57457755514244, 31.659923944458875, 296.9434387075352, 103.99504015768966, -87.76131502244061, 436.7730589888517, -544.894960688546, -772.7929931770824, -833.089272998195, -268.7499719577943, -843.5333511426081, -100.48516740764539, 762.970040758263, 368.29248890139246, -97.2822485946646, -605.1252299052933, -414.44154493952817, 25.98091939547723, 330.1904322970822, -193.51563088579667, 251.84935954540586, -739.0208626350761, 653.4670276720952, -350.1941281513756, 623.300142726508, -189.05958442090125, -918.6343387442391, -391.73236597509094, 633.2155072779602, 15.633123461275645, 980.7626019813114, 313.03066718033165, -235.35026837185873, 125.65953831764278, -82.48056613291308, -573.5599386916543, 104.02376401891601, -257.78277755737054, 73.70077376842103, 405.31339731067453, -1001.9510836923193, -823.4704699213921, -427.97600236573203, -700.4041132741512, 100.37796708575955, 278.85878127176545, 153.68539120282162, 674.7098050432677, 152.80127719998904, -965.5528268798022, 760.5716278485604, -251.20145050921073, 504.93621814947073, 18.56858641934653, -58.96358269284292, 173.88049526904172, 655.8786791374239, -969.8032256392446, 148.8514667579003, 1019.3482103256343, 385.8962188534609, -554.763301899466, 148.13190085214646, -395.75620335768224, 469.6701953436255, 462.14039616523013, 901.410484239471, -773.3128950767826, -626.5713309263195, 733.7000632725062, -278.51780953912015, 40.689904698276365, 170.13874307062568, -750.9979984207494, 665.2053869718607, 15.94807890883297, 792.0074629956118, -332.8026009264359, -923.5034475810802, -27.80894322225477, -857.8886449972375, 11.288681891992226, -389.7258274059483, 24.76894764976052, 395.6881869698127, 295.7007146491158, 781.3838227175606, 517.9225722823676, -725.5498642819962, 66.08188053442612, -525.7563411786267, -3.612077160766134, 598.6492794715313, 149.2097386572396, 492.9206687798663, -474.51297440627053, 21.72249579990438, 169.88360526266956, -8.59625102211372, -202.63769435007714, 668.1315702215918, -485.6924654136829, 489.22393990815124, 372.49225130128707, 908.5224438258707, -516.8335447641211, 443.1434276391351, 60.20604494496462, -536.0326356148591, -35.96376048394458, 311.24225242346586, -591.2790655069435, 301.30482276802593, -168.61602944575586, -892.5631521181269, -263.9572469867225, -674.3863788466821, -678.4761479483655, -599.1144882977267, 159.58211067402226, -7.578530937327685, 174.3545536838083, 455.0432204002335, 149.9894648176387, 398.9844838828246, -8.170259242220794, 378.3729430856815, -553.659651369491, -98.34193761116835, 202.99023347972246, 336.72122112932834, -508.1896604196354, 797.2720453962635, 379.5858248987531, -951.7838906692627, -536.7681895029266, -988.7839739689227, -503.46695203536825, 119.67522963393031, 107.12044929862886, 638.3409178541057, -321.20198354939464, 95.58156943361436, -796.0557231611558, 865.9058104205774, -442.364807422085, -3.6579406045691787, -720.1725146886096, 68.67138693380817, -236.379471899456, 270.57028605081837, -577.773563149846, -920.4898580849358, -45.37546171319383, 621.4398462254674, 474.856927973074, -102.29653380856061, -630.2723731794907, -219.79273271538216, -497.5235796295297, 827.052329965008, -474.1888435662366, 92.66088871582303, 220.84967874326284, 429.6830333298121, -288.5379288831183, -707.7281770361981, 245.29301445281422, 42.47617556614085, 35.20941523300952, 328.838057529235, 206.46003945174243, -626.586686093822, 588.6095816539116, 516.9590934363766, -392.0665369975456, -60.57159790768938, 260.1072264201397, 353.20128612221015, 15.80840601100877, 657.946817949684, -705.0678514446024, -89.15337057125845, -882.5484771330472, 422.2906856114247, 323.0742804005689, -496.45543647346267, -30.49043507812732, 730.3592616454623, -133.47143218276838, 158.5183433478993, -115.68181648418789, 312.11205736717034, 351.6569419579396, -258.3778000709758, -523.1960704726818, 97.23996269000635, -819.8520083293761, 298.1133370078869, 453.4679466556433, 21.970459142839402, -787.5251191361169, 282.468365971959, -36.05603263711839, 554.6537501769119, 294.7973165883674, 563.1342390186533, 109.5270578886397, 223.49668212261966, 229.67586730145337, 450.9047242115306, 313.5549808746769, 263.14612975669075, 28.300049472305588, -46.54052469780311, -473.1305126233945, 14.570046024001186, 145.52300947593798, 555.3307240343078, 169.92922987580934, 125.63559913920372, 435.6366881134781, -507.2419354921261, -189.65225237442928, -225.72576953043827, 133.35280244299827, -179.41673797239892, 71.77892150630689, -382.7757923207379, -451.90077825447503, 183.1610490316841, 551.8016190914745, 686.8625848454329, -566.856300743727, -432.98556544433416, -408.42530042267447, -47.68992454715402, 42.59981177990443, 286.2080046236483, -392.63409956553284, 396.08229195718684, 162.63579135750314, -310.66903622952464, -825.1870818269349, -77.46342342554757, 160.56926516237343, -225.38937983507435, 400.43714579054483, -689.517481474292, -424.689836157973, 152.4032396966998, 405.47459714614575, 201.94111591265215, -452.2138064277188, 836.967610569437, -132.77905254372803, 371.212744494412, -416.6521122304722, -515.7277866538479, 232.1552957228488, -491.8320946511016, -196.92543653276454, 630.4351911888093, 136.8123597067539, 393.4458887519988, 425.5027796847736, -197.59345096060517, 309.4522617764474, 392.99588853712885, -283.0023003251462, 535.9845450099195, -88.26553138252407, -231.64263260818575, 220.11615556714256, -88.41386360028551, -381.5857318811505, -126.14699911253447, 142.58155977033803, 397.56348531384435, -18.305869020715846, 126.41618154589587, -998.1723972868414, -248.89275845956843, 67.08329691185239, -106.55574980356816, 1246.7429676192105, 669.9834661291394, -353.16108532237615, 144.21670199889266, 17.460699488131496, -459.8570669150968, -78.39650348737851, 106.16174644250243, 660.7581702180889, 414.2244310964758, -1037.8280906605082, -79.51550576875933, -81.4328678416322, 72.60695000284244, -642.0590782110035, -381.5518891741949, 167.9612564798987, 189.9601635849596, -716.8553272199242, -60.25845450916057, -403.3261199678912, -152.12275998377007, 452.8558184100693, -459.70143865232103, -979.7394135183413, 180.65161316805035, -369.60109490055993, -3.040567075508644, -176.76821055918091, 583.1689320961088, -740.4028464658502, 328.4356768551582, -375.33005880646806, 870.1520792450704, -20.046549738528515, -115.9766459050714, -365.24661354227, 117.43674209287022, 224.37234936628641, -422.29713950464674, 283.3074084097856, -420.24560852227376, 335.4456862916827, 572.3391445993007, 449.05915570621613, -173.89531604390012, 222.38888178194665, 371.6864027013377, 223.45643556830476, 421.69165310106234, 190.45960011007546, 623.2046975020569, 751.9375723287552, 864.5334657951103, -775.0639107243317, 218.19451306126084, 19.931376410065234, 198.58277546950276, -701.1466982664251, 928.8718340387737, 66.18260798507254, 785.2870672246196, -350.53157689076227, -662.5007503291774, 85.63724135661263, 78.39941991427744, -126.4160808891764, -92.82725121175255, -623.7591250748214, -928.3329836781602, -724.4318113520591, 500.7838711800248, -1066.7702994524977, -451.9434124789507, 415.71338892242346, 351.38475270005364, 44.045425066990035, 381.203073527793, -937.2777937237504, 701.3081635419587, -718.3316486406382, 908.2618942838735, -754.8823477143876, -597.066865102482, 445.3971776211622, -77.50371661212827, -939.6990290013271, 39.94926854665984, -187.33989783531518, -762.7535127690827, 263.00244172515016, 221.9450475149541, 611.4481711927855, -521.1924533696648, -36.79502676684547, 515.8537828435594, -763.397840954105, 549.2218669394161, 263.1320467708703, 669.3699249754134, -238.8350588990142, 794.6329569088914, -302.10877008547925, -945.6977263636167, 33.660077805086075, -856.5722943159813, 9.595937986770991, 802.9465991878258, 453.3345355517129, -441.2242035313311, 425.13958758625245, 889.3328425183206, -195.95837387297377, -532.5888361363202, 428.51343687553697, 446.6369611998903, -178.94911509409948, -399.30911496534713, 407.69612295212295, -82.32196125041472, 164.58059505708428, -96.2577928405338, -494.74492102129983, -897.0156844010207, 111.63092171050562, 721.2450869373546, -155.36763493219217, 625.7792336981545, 32.641826024266834, 73.6096940545359, 364.0102053924602, 354.8022799581776, 109.31040496773177, -630.8923659004288, -822.3979257922269, -807.1833826344752, 196.52579228755474, -827.8233537061021, 132.41714416312, 643.1977004695469, -132.14260946189802, 347.0736214987668, -869.1954598468267, -861.3304697969837, -68.69171651080948, -848.5059504104324, 19.584521317182066, 370.74164504765133, 786.8735677267434, 382.11424944248546, 116.10837900288325, 212.73763152122794, -385.5522201073813, 383.17002602787295, -39.96335165680577, -635.2548865135146, -4.103458542724695, 17.27416132382656, -96.16670262416905, 333.0775013612888, 45.87728826336536, 758.9754643752572, 17.980854074970352, 173.42027542280823, 297.3613336614182, 353.1638888113553, 4.832892514359656, 604.2901666231334, 398.72270320952435, -876.1670195650655, -639.797343675912, -366.04906499741537, 738.4111158794772, 356.9669961813039, 471.99473120419646, 311.3925010059109, -327.86212187735345, 1005.1128570567306, -340.6856918089601, 193.5216002191716, -639.3821983942122, 51.606588385836545, -628.3112777461663, -771.0461424352723, 521.2440993009766, 676.3604614521267, -413.520499799017, 716.3630397991841, -897.8727676052323, -882.7051298835355, -610.9591776634583, 412.8324720259298, 211.75714958139451, -911.2793076709313, -309.7270721001091, 487.58070598099107, -748.1941391316154, -878.5132273465822, -953.655408300963, 524.7146920713133, 397.9513620019014, -874.0043188617982, -132.62724593329784, 832.5404085985606, -279.3404196433564, 993.2966733131967, 671.7012758475676, -896.8003099455394, 559.149229318483, -21.82588001880667, 408.02694921041507, 83.79273813865987, -672.7714103401911, -534.3769362879773, -857.9446931642375, -508.8164038942482, 342.9639431167917, -475.2579449846034, -390.085411010435, 398.29770652495034, -584.8247476468729, 489.65684606364164, -495.3066368283408, 673.6514978081002, 347.816231179408, 490.2798775212557, 370.2211358619904, 474.9238020934516, 499.9465707002208, 69.45575371313731, 470.78902172803555, -256.3809819450685, -143.02416893279928, 621.8059686865965, 345.1100727562758, 268.32175388011353, -109.61968736287574, 569.574090617377, -53.58805815248529, -761.1086319849238, 261.04902122571747, 711.4927014042717, 47.099494581611225, 271.47682141125756, -1002.019480584023, 239.17088563185558, 103.24390082624907, 141.3001912506561, 322.32809305594105, 752.1640001565243, 64.16753147349753, 144.23299069200638, -309.82634248434425, -710.3425513487593, -217.2637812636728, 784.5889231932467, -84.3484139486395, 585.3930813450628, -660.5547513272365, 839.8798676917652, -145.83463657772353, -970.7113637719641, -49.16349369050454, 231.4361320865057, 81.2911454630561, 498.2061249366508, 90.8342970870311, 37.28976921057706, -153.13937326660226, 386.3498385496189, -582.7650528486593, -115.02852750258654, 209.00610191167058, 297.8579009193255, 171.39861686040297, -852.1880076052951, -916.9294074941893, -702.8635447172684, -94.22067369776434, 605.1711205967867, -229.7006384223033, 634.1380672567891, -230.55417038085884, -736.0847622040834, -151.08767047585613, 202.95227861641692, 134.0456785407406, 254.25535190575448, 61.95838040319711, 374.90663398677464, -340.52252854276924, 204.68826662663366, -456.7236492560294, 636.3393745743474, -71.80691291711507, -973.6309035733991, 391.6112569915276, 307.96162231356533, -730.4441631883764, -554.9427681864627, -226.4707178478571, -930.8306851254874, -254.21934940881388, 198.1348731937354, -552.3800485628942, -1025.3724799225538, 355.2466371114756, 368.9530272612898, -704.1837055669354, 878.0662337983892, 819.4224700629138, 128.4181557692781, 274.4896352164859, -467.53470741369847, 430.9061865914089, -557.8015516477924, -134.86795642642844, 136.3341680415334, 135.90671006812903, 45.05109234739044, 187.2545983437363, -1028.0087194981427, 263.8253199419683, 744.8677835500262, 1107.9562925091136, 202.27861513508049, -98.1354771366278, 30.27357220924297, -547.7814806952645, 262.81955375054815, 545.6205492443314, -193.28358342659672, -782.8898174666513, 861.783267700268, -996.6393436271347, -940.8736614454606, -504.88154581320646, 639.707528788417, -357.03238048545677, 410.59644885889765, 136.91714950476052, -759.0115174967691, -396.92632677706985, 538.1615988930278, 703.199194500567, -375.2198195708873, -43.00224696330916, 338.4790587336289, -35.4593590420391, -458.3314676710094, 488.80671264437245, 163.2463971495538, 231.32384110509614, -844.2822956435662, -86.5699600718687, -773.1991170088739, 226.74473625521046, 261.6919024887902, 202.49990421118872, 673.9915162593227, 281.7325174159171, -866.8736267066824, -909.0246633678628, 421.3293498120006, 312.9594261974054, 958.2321965101573, -368.3917735423137, 399.7873777431055, -374.41905545768236, -681.119250701988, 323.11902546570764, 727.9437516168815, -736.2525883858079, 248.9471333524848, -146.73730983509827, -938.1187153479801, 264.5206343113965, 26.617986988172362, -277.2654746698599, 1085.3928117786395, 320.4830694791034, 606.650418579151, -641.279659908174, -782.5566327573478, -755.5971900932767, 521.0025088778517, 219.70538587845272, -267.3840788092609, 194.2992432656447, -526.901461113614, -725.2784080282911, 675.3101525829965, 145.72836027953988, 641.2661357600404, -673.7822327117158, 268.07863091743724, -686.9980102161621, 500.2676704824064, -547.8315219790087, -751.6282389910755, -663.3724624509446, 187.3280770015983, 286.42121730698426, -1003.3492106087567, 595.3386063403781, 868.1221695023441, 47.266080529036145, -271.2885018809924, -561.1730520661674, 285.78957352581597, -781.6538490747221, 159.5014024066661, -606.8403282406747, 692.4208647087016, 636.708484997848, 440.58032152203333, 420.0664324481743, -751.0803683085993, -671.3584692152726, 154.82100766536013, -48.11324379327182, 977.4260834945665, 280.3224127411814, -719.7214635888602, -206.71351868754553, -838.516031622602, -743.7227238803123, 416.4330168898061, 160.22111492085756, -885.9942526708741, -441.0806344304027, 509.81052520635455, -658.2106007329476, -1059.0642497990007, -624.1218402424953, -169.06886564147925, 296.993416862927, 209.6102675745674, 47.71436746982229, 584.1005162569173, 33.964545967670674, 511.38325538605443, -268.922032031174, 890.5932015793662, -155.81461374012991, 146.80899626211456, -28.181374624918618, 700.0227420156293, 88.23474493428067, 451.03211873377023, -213.91241905773376], \"name\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"mode\": \"markers\", \"text\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"showlegend\": true, \"marker\": {\"size\": 8, \"color\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"colorscale\": \"Jet\", \"showscale\": false, \"line\": {\"width\": 2, \"color\": \"rgb(255, 255, 255)\"}, \"opacity\": 0.8}}], {\"hovermode\": \"closest\", \"xaxis\": {\"title\": \"First Linear Discriminant\", \"ticklen\": 5, \"zeroline\": false, \"gridwidth\": 2}, \"yaxis\": {\"title\": \"Second Linear Discriminant\", \"ticklen\": 5, \"gridwidth\": 2}, \"showlegend\": false, \"title\": \"Principal Component Analysis (PCA)\"}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ], "text/vnd.plotly.v1+html": [ "<div id=\"dc4c9e1f-f1bd-4860-8833-0bacde1421bb\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"dc4c9e1f-f1bd-4860-8833-0bacde1421bb\", [{\"type\": \"scatter\", \"x\": [1084.9465800998876, -84.73411469396777, -916.6651408083128, -315.08265465742465, 210.41661730177498, -671.9069254575109, 579.7429939666814, -824.7881649521534, -203.02359517489697, -47.97732532061204, -681.3809479554394, 175.0281349603755, 288.9589583955104, -838.7405501722446, -60.25543363147594, 72.34244635488032, -362.8138672215066, -221.03029872409277, -724.8045184663043, 247.9852240157387, 1099.9434116856241, -620.5116272490873, -928.6740859791033, -246.37824808831593, 645.349116189982, -605.13156994534, 817.6198915012071, 378.3182632326518, -688.4026103085763, -338.6102289625216, -162.44135099735445, -27.289070639940135, -559.8641880383823, 767.8198643938648, -582.3072462197525, 122.17415340271596, 1078.8507651621937, -357.52091975904403, 346.5340991281401, -933.4801935511398, -136.32739281016347, -717.850733843038, -619.6539360955328, -521.5288962319277, -155.36637664553672, -280.153233485774, -182.61095463188542, -271.6055017143586, 344.57576947227733, -96.88437078860144, 1643.73594488249, 357.35488647285575, -751.3898321480275, -108.97074304603069, -127.16917364967597, 1203.4173746017536, -466.43919542459565, 247.1053559233921, -880.4686188976618, 273.8170510636726, -643.7367869926126, 353.7349501385593, 1260.2128032337887, 598.355005302794, -623.5346712048017, 342.4733592255332, -980.0989009779729, 36.6464183315558, 1292.478880336378, -224.55794134332913, -359.00715294197295, -905.3865940956921, -33.96309222888993, -17.105619871977623, 944.7238949976166, -488.5678173819108, -949.738976464044, -938.0308966402793, -433.4717539851908, 422.541491455815, 1232.503804671609, 922.6891266110674, 254.69527734714853, -220.06895235644959, -167.36218348127278, -321.2624659356057, -40.328930534053725, 985.1312174028342, 159.65865666899242, 572.3395491579985, -37.21295712746757, -226.68393613737445, 257.6980061446599, -173.89040380531253, 1342.4327165554614, -589.142541649855, -104.94493523139278, -171.64972790335486, -993.4485611306309, -280.48469010662393, 83.24653625362153, -836.1830093434528, -238.7851431036748, -695.2312247535385, -912.61530311106, 455.1618010569416, 283.9141679260036, 262.5192251063672, -196.84930044654962, 32.252432440231274, 723.2540992891627, -946.9033974563492, -870.1767046786816, 1306.6332728476973, -48.24963369057737, 50.04644807558691, 542.781311682643, 762.2385104436157, 1486.2369404770639, 576.5821739650717, 1323.1342877514892, -471.05470462432606, -126.93751423065378, -923.6310595055377, -165.6493896401826, 280.01930231967873, -186.09861318501493, -828.8476470314514, 13.63004904857138, -298.96950536694044, -0.49357791691473096, -442.6413563237365, -634.9203694419414, -286.54253962804586, 68.42724103934236, -411.2809445410124, -542.4915235028476, 538.6186370378132, -140.44158276521534, -683.8809912022202, -531.5289410441507, -279.96227157935334, -359.7943354077627, -439.47112970792364, -367.0393097939374, 12.466233106221623, -31.902428637616076, -371.84148214701895, 242.4404346544429, -235.40797312433955, 395.8129375032043, -857.2660932386434, -656.6209821943609, -17.52505985860273, 268.30985102183496, 708.5629394952945, 323.17552895354277, -120.46862157937595, 88.35706955303013, -287.5488220953352, 567.597631304413, -264.4880770876724, -415.14005673551577, 496.2494458141632, 203.54344959344056, -320.50825606564763, 32.42639893382707, -655.6653817335591, 1133.4091353983551, -158.5829697888434, 289.6987125838369, 86.95970784950855, -717.3437089198842, -955.2983143177707, -259.5645889881346, -468.007209525152, -928.4851802051223, 450.6916800772284, 705.4244250291848, -720.2841153102529, 352.6908051338903, 467.1863156363835, -205.5410086271791, -791.8477992898673, 178.07751773195372, -228.01263237979535, 578.7139382452789, 89.86086392056562, 94.93183879619917, -26.71709331294042, -394.4780175474677, 1228.2945428915837, 84.70646279744685, 289.45610602209297, -239.7147527295656, 319.5430769402789, -419.3826719215365, -299.3809931081096, -10.669683995793264, -620.71580072421, -864.4345778104546, -187.59753482219406, 265.41854950603295, -208.06508820375905, -871.3201741775632, 954.2779175014973, 263.7323250664233, -927.171729160757, 1090.7960209301139, 186.13393280829885, -915.5224857324065, -542.8914118770907, 279.9101701844152, 267.9379824941135, 318.15428213603997, 538.5482846026262, 16.781437702012973, 94.04278602034118, 358.7338663396001, 281.9634159026342, 745.1218194423151, 520.4125442858577, 33.020279088606856, 41.80196827424621, 446.77276841740627, -385.455438434459, -394.6124084050651, -281.7848940613875, 886.8213190940819, -373.1598410709235, -939.0458879380938, 104.87814269662094, 111.42981659219971, 861.4853804168356, 278.6234859179224, 97.48149309507932, -3.6103749122176936, 158.25266992876067, 77.6747824091585, -722.7468067487324, 670.333728177991, 620.814718912203, -0.669049879525744, 894.8975914594793, 129.09702625319335, 41.76987652855319, -379.011933719938, -585.1724358553367, 735.4206417888882, -193.80242526730353, -955.4606447631775, -499.0652269624491, 683.5476439942116, 65.44352040597946, 175.93540354488204, -703.3916187034396, -21.91821938183919, -524.0998075769702, -16.094189592364017, -174.2901556770242, 629.3111586894711, 12.537959364304243, 32.112248127031805, -262.7467897050839, 270.4016077728294, 215.2062553474818, -419.1759317116899, -537.9330881448502, -938.7046325486336, -879.618384584105, -355.531753015159, 245.40159971908204, 4.977785058615763, -194.74267987840938, 171.63617578463652, -980.2971899683721, 584.8800701630578, 311.7229442675161, 159.14610865164775, -413.81804987807425, 311.31566575850354, -295.7802857811396, 1500.447835740891, 294.5607972555106, -444.0840703262379, 640.5606084992315, -428.61421481323924, -399.5369422498651, -229.06309290614286, -987.1509341631946, -165.81976120528967, -347.44363846359806, 1887.8559596168823, 366.05851401579014, -224.51078086542128, 1079.3977782292413, 58.4585044453047, 179.55278995657847, 473.7704149901702, -577.9778223306907, -114.8326831246527, 114.18072677165763, 1768.1611354358572, -455.8040937042279, -305.19874285476226, 491.550620673802, -384.67107770186664, 396.11529745361213, -939.1572163263095, -925.5507429256562, 605.7372387305073, 90.23172605819606, -497.90441839144694, 190.28143492528065, -972.8246490430017, -165.77771232466387, 446.487136720171, -414.40902507937494, -299.41385557642457, 1152.3954316137322, 145.45235735038602, 15.691700907342849, 675.9600873113385, -157.66778205709883, 624.3942688877875, 964.3032967101167, -140.7214346480837, 750.0421354387981, 99.20962742176346, 281.48415797333917, 341.77999916759336, 177.70694632940987, 365.9269429223767, 73.9897666127279, -104.05132577286926, -369.921883377378, 13.107189841669602, -57.05249266679462, 454.3247741644985, 255.69927063815433, 396.82741448320627, -472.92467566244187, -208.9413275778233, -137.7002235248046, -959.4452148456305, -11.683685348507908, 614.8522862532678, 1.2120260542568815, 68.91104441483282, -185.7946360751089, -897.3552182940854, 462.0848035052396, -218.0984439897708, -491.6686507498842, -909.2027245812336, -443.0251481474692, -952.678094898319, -723.4212977359294, 1135.368033439872, -555.8837114724279, 160.48528192719635, -189.54875955576222, -573.9053258117398, -448.44677791122683, 345.0814346496654, -861.7059809561717, 801.2397025586273, -465.64075593808434, -67.89306582350657, -777.688722751699, 500.0091913868915, -439.57105291222695, -298.61087671127535, -42.624243031144886, 648.4900092020487, -62.437309488816894, 308.8712435159608, -83.81600440867854, -515.1512861108818, 354.9665232769963, 432.1265318801564, -732.4879462531912, 36.350438497497066, -487.5467597625772, 603.6096534534249, 32.32695550694218, -198.42429582300474, -603.3572883959924, -325.2744471381925, -69.9868749071453, 316.7531564226175, -259.6591158284248, -117.34383618132779, -607.7444334887305, 697.7071926487174, -22.342019453204365, -931.8411630908707, -775.7778411634232, 1714.0752091455256, -111.69675737273718, 59.40135775651021, 122.97363303259449, 66.20116732276196, 238.97307903704885, 270.8110054866304, -641.8963303105768, 65.88303054950778, -949.6657752841566, -286.22829480518095, -354.3783389215525, -351.92771667214186, -724.2560646744525, -196.92909683571594, -73.77423033475353, -76.9731079453069, -1035.6577641991269, -584.8958658631663, -685.2526063437462, -151.0716903655858, -130.67728535813518, 491.04779477510004, -748.063404808876, -351.2588982767325, -11.888664720794267, 365.1311875949449, 385.2002610129173, 1972.6789401023016, -323.8935051389253, 1550.2002315283441, 24.07269144493697, 378.3728753736031, -37.4380181535408, -30.317263552235204, -389.89290227162735, 1266.1527203103813, -220.59098666896602, -310.146470074988, 225.48803281262448, -139.50626574623874, 1084.9975218278066, -336.7865163915658, -309.50490521677744, -909.171042706222, -699.6868638347605, 3.659861122488252, 516.8254725888235, -896.9402728028142, -68.51153528027038, 444.64040598139457, -797.06946780646, 1099.915742636006, 473.33700620984683, 994.2668515477743, -933.3647042686683, -1001.6101810071573, -388.8873285952456, 145.48110930092093, 1516.3827475531937, -158.65849712576852, -150.95481122975, 176.2005586162481, 1459.7032350584007, -557.4362457017255, 886.6162880128438, 544.5288368724717, -980.1633846639935, 197.45275473692158, -295.0915914190542, 124.63030543687731, -514.3602283079935, -214.32234527573166, -625.209450668321, 1029.9871173366248, 298.6247000091153, -922.3410012347613, -333.59337753450916, 373.89557317377273, -542.062070721149, 282.41316471508105, 495.51927808530286, 60.18481458353392, -374.7339242892287, 43.46006103311097, -825.0351161914921, 159.87686951905334, 64.85155106707445, -395.9951251995275, -218.6347699953049, 505.60888442730635, 220.50329729385714, -721.1589669177845, -904.5377864652776, 78.06019392462838, 608.7331833769457, 661.3321699381243, 445.1055836327457, -281.9148204428481, -251.32863780855052, -126.40433547816598, -587.5604063045935, -525.1982187571809, -402.9990887981881, -459.8221884126042, 731.7469529981945, 40.36950657781429, -14.341433584469357, -914.9219359245777, -885.8609064213348, -154.4401560571821, -921.9443540885834, -561.8557066954971, 348.49183265359505, -291.403220839156, -121.01387585693674, 630.0458937554671, 22.665783282097102, 135.9248179904344, -728.6140242088088, 1395.0056323890028, 196.03286211501563, 391.7551541363154, 26.299257941338617, -632.6207906435037, 905.4753754398683, -220.25346277756134, 1321.7864603524677, 381.83821426684017, 368.0619946739938, -462.02250294203503, -188.09606952915004, -178.65563824532288, -229.47315936189847, -722.50485559567, 65.12577287981998, -662.7983124411674, -97.7476357993289, -292.7875497522761, -948.9318266754141, 246.4839358125372, -450.5454302762527, -110.57389319848352, 1158.7027673958353, -367.69916209694514, 570.4840927359236, -222.21974827319832, -42.83444878518134, -291.1712177849736, 906.0309675883727, 185.4338903977182, 83.6609740873337, 409.3473506220154, -498.38050429814143, -876.2709871937914, 852.9810239768583, 243.80998296668102, -812.9170603397703, 266.5877257184975, -602.2764962990558, -4.104319895875676, -774.9213604824058, 97.87927838348992, 22.839488401193925, 101.1298693157107, 150.87316115910636, 378.9959848902049, -293.3640320720772, -290.99520946002144, -87.85754777777089, -52.883781515758756, 618.7497342408515, -108.80252952361846, -867.6465699164977, -967.5334402030419, -609.3704415979543, -363.06326499168216, -456.9488285212631, 1291.9428121189203, 1.4060968117848347, -267.61120559443555, -103.04180915896981, -36.20521164055077, 627.4766277720084, -573.7384779405266, -237.34294807542756, -170.5000956438513, -447.666073964696, -808.8934706021944, -817.394201501144, -250.6972687937922, -424.721256691105, 841.3276194008265, -248.59942268820836, -939.4384963727688, -63.066957082800556, -611.2675718881728, 899.198875579595, 145.45255878135126, 546.3807966079598, -286.9998786065338, -718.4242388609666, -375.1042686090531, 53.64653176521428, 865.9584222244706, -961.857523411365, -344.4556036811213, -113.3935663441199, 279.8976389264813, 352.3340106846192, -921.8664635536237, 14.891735019842855, -680.7795831618973, 962.7372301697758, -59.37264249662999, -168.9359002892896, -112.07378674442083, 601.4202079754825, -264.6672626444274, -772.127479024573, 11.943501487705035, 1230.6161968206743, -286.70206651250925, 756.0181038106291, 167.4307432572613, -341.0666318401667, 284.3560845705273, 521.9639545846586, -168.70250515560167, -324.83468178511424, 172.48469992043525, -553.5245627607533, -388.4945108757887, 191.254413122144, 855.8005881171745, -757.3731940783041, 134.21113919949175, -529.9407426483061, -787.6881800288871, -792.0789383106357, 1330.9459531133548, 204.00452416602937, -766.9735568981881, 398.77395774717377, 409.5961085932131, -887.140041764027, 317.96706531567685, -606.5193247122737, -409.532980071625, -1007.0312645777414, 145.86537522655297, -712.0602545646686, -79.45899890038226, 57.21308902409689, -453.54249997684155, -493.9608491693509, 59.702863111830496, 1290.5728084769007, 112.35464986434006, 57.52220931666365, -53.87765869488978, -305.80381680931947, -559.8083960295114, 665.3489134365251, -80.18095042956551, -258.36850606216126, 390.62233193136456, 662.2701480428026, 504.53737755005966, 751.7133640025827, 1463.385353853299, 582.653495498345, -946.3582308370945, 262.7320381422718, 168.39241250154492, -675.5107120303942, 324.11736928066694, -827.516146350737, 606.1567204625483, -881.0095651580103, 655.5303001131731, 61.29025691765254, 1092.1823819791146, -406.0352407684751, -1.3210428195453972, 196.9549476925375, -305.0884055196203, -257.92892267412554, 129.33838305584524, -564.2714368889926, 1504.5191488196774, 228.59676806024677, -901.6575133676859, 234.90233910238973, -17.04673934057834, -491.29310057738564, 103.19333500128853, -444.0847147753529, 413.11884267350274, -919.3055662958009, 802.9979119285424, -80.21077310947928, 976.9046603197595, 1154.8720151640068, 287.68983219601273, 365.4836350679425, -365.9269841586507, -289.1847533951228, -159.230874262748, -535.1038251053504, 1264.3513233021326, -788.7436044140071, -906.7036197582688, 675.5273358987838, 551.5654154180078, -409.6140368092123, 206.0960503058078, 487.39756990958875, 760.5293558849755, -154.59798374872634, 1125.6764144764575, -546.2522043988636, 775.3941401538274, 361.09591834962134, 39.81242015130489, 193.28296193845364, -244.0625683596624, -331.2561120059013, 71.32602991182013, -659.7184234305406, 701.2631574360767, -226.48716534060543, 31.40851037920814, -187.90011861322358, 1219.031216194965, -54.208535526100256, 487.13971390604183, -541.0388335155227, 591.1863758848027, -758.15026882027, 663.120501567027, -14.861356490641136, 200.31085526269732, 431.0430985747421, 1544.5406263211728, -740.4533913770649, 1183.5626426398267, -656.9034678816465, -920.3005067991292, 205.97857835484024, 267.42000977346896, -329.618136253641, 712.1983060283869, 179.04287239807667, -138.7387456685748, -700.4206948385702, 166.54585092755573, 1058.371688654428, 868.6559679585272, 168.30503785507034, 660.730832049812, -170.33179334312425, -29.826116331661254, -137.76615569249657, 650.1625238483019, 57.98303414553443, -854.3964383793221, 134.20377309966563, 157.21384654569545, 274.928467305454, 209.2098064723578, -401.62136584366397, 390.1516287057061, 473.39257388602147, -296.8924483976902, 719.6197438656902, -377.7755990348503, 644.7815894485849, 179.46883155019245, -435.4425501483574, -866.9650824749853, -822.0356920144129, 1450.2021341093882, -57.11698756074445, -865.8659877592311, -306.84817982089936, 273.00310631891386, -458.930703273528, 1340.2676365173654, -17.554043079507743, 183.8922328942926, 972.2254185005764, -10.504939104828537, -153.47380738729726, 381.93864680342347, 235.0904853231183, -443.10830762143115, -344.19978979718786, 144.818533826664, -359.287514927213, 478.28503627063316, 11.69668596025575, -189.56804644695774, 273.3899594760516, -283.453230031767, 99.04547041100315, 283.60675716307185, 47.689666479804, -339.80325917494514, -443.16600445429685, -893.1974375155357, 83.86417996451107, 1.4323627378601316, -207.16557637646275, 0.5132598294419495, 146.72241898727162, 715.9064889787002, 279.4680004032068, -252.14533415145186, 722.5282306183584, 9.868419354927859, 28.833015855954642, -782.0820045324347, -673.4603891931274, 73.57014506742223, -655.402218078416, 1247.660669806321, 300.81709693817686, -340.3035201640636, -113.05907625546607, 433.17474579747824, -90.19972869920107, 325.08365702443484, -52.4340588910964, -893.4367428409364, -133.93522003106196, -858.2118450012366, 310.6028456712805, 623.8012128724561, -925.5287935404494, -384.33213001210004, -61.148354753120714, 661.3871358942661, 195.91390080232384, -344.30473504843576, 755.0969265159493, 542.8516916654067, 463.0542491975344, 446.3411169777901, 57.46206280630494, 1247.7193866593802, -42.39476077812364, 482.3083157272682, -325.41257124281594, -207.84913400154775, 141.4710265994497, 365.99519453503285, -418.15452775754505, 302.94776094693333, -495.3769543079884, 1476.4829637857702, 1299.0200688379512, 218.5561417344565, -304.17036590135103, -452.13162940588285, -769.7387044077773, 139.93070934540594, 140.70364620136564, 280.5911414678139, -291.9826567814941, 837.203185141301, -492.26049261039583, -947.4972014042959, 921.3932786152286, 769.624273821088, 498.3514082202602, 42.08982346615551, -590.1890032826985, 427.7670019318192, -528.8880943999134, -488.44871746344876, -332.6190158541802, 131.8090746528644, 450.60650013192156, 475.36515235399514, -863.5337671753036, 24.423023095648233, 301.9683872114467, 356.05969001155324, -467.99349214363286, 543.8151629698683, 368.9354198282974, -941.9466437358236, -665.8462034352142, 761.3780292250947, -270.1848877599331, 952.8028322023708, 379.0604633474768, 247.7473129838736, -434.34281998491304, -557.7305774539778, -685.3826640526969, 271.7489133634161, 1110.9849543626415, 471.04897968255796, -40.13044977364022, -874.9637308969071, -158.139064557274, 834.492144953402, 1.3623433836325063, 946.0772521061838, 506.5063429620256, 23.03527302250103, -4.423593854335124, 136.619371952103, 327.85155874359896, -588.864219483207, 563.2948002873483, 468.75139293886366, -644.1807638339436, -886.2813516325458, -860.5082687970455, -300.20398773671155, -664.4300428026353, 115.04754224482038, 266.7525372438973, 179.6576350729377, 518.1080307989189, 1312.3488135575903, -136.03955655703456, 285.91038301802143, 713.1520483304081, 287.4047666546583, -106.6901480163887, -340.4801592940981, 311.4066639288625, -510.42105321727104, -728.801475938711, -98.23715900134708, -395.0430359278193, -509.6131756493012, 163.36630135020357, -944.978629955144, 575.2666071313841, 77.43396370715865, 697.4927185115681, -310.534297043064, 364.50183334224437, -553.5460549701581, -529.9601227480059, 1349.001887273515, -137.4416450167926, -896.6721440606744, 749.6270401113215, 47.30370730085402, 48.86170636843942, -395.83210212625573, 417.6511929793108, 502.5974556813704, 475.1158142165101, -763.0525498232682, 581.3909524680522, -906.9815135429961, -381.78542461777397, -379.5406264405075, -198.2038147015535, 590.7434162666224, -128.33298418139478, 404.4202455733795, -592.5022546680166, 460.849195195017, 262.84007474154475, -424.40325977961834, 488.33348473362366, -60.51239782786985, -24.965070300443873, 437.37804722751343, -37.73735842700865, -148.73255147197597, -719.8927737688115, 727.1757231649359, -530.4967890878395, 510.63573506779, -516.75724861622, 61.05063925177207, 278.8861065878796, -438.67590613200707, 651.3289136906378, 134.0103175275581, 349.5804425349894, 450.6628068904554, 434.00803825370394, 566.8760208096712, 284.01459714897544, -915.237877948542, 162.36861072285504, 262.8489989649362, -127.67052845928315, 683.3250470577732, 179.25603221834194, -251.81419123131786, 687.1801395510045, 66.67235333595897, -797.8629082916552, -821.2266044778394, -606.9265809803588, 377.2066752071356, -264.9936204509102, -94.8298010380662, -75.74838077631014, -452.8312676271948, 926.6462599600858, 213.71965880609972, -945.2121344450217, -328.020524280183, 145.08601427141036, 364.5098530290482, -119.50058159795478, -944.3961952934254, 1024.3837294387604, 501.008740125577, -0.43837813189917973, 27.00458450786705, -670.323380762526, -581.1125290267769, -165.6192511821137, -464.69163493252, -89.11530195529585, -816.2055154557634, 408.6261729765204, 301.8992534396141, 967.1395359709991, -939.5336214896676, 156.51705338121076, 40.07043476070508, -101.74346465684395, -242.73152772321345, -271.1151071983346, -535.9942802568614, 208.84343003748566, 88.89180929706362, 1284.5082685891173, -2.7595715754559933, -693.5797825538815, 302.9809660320789, -990.5081556048217, 367.4891792142651, 87.70063943675065, -135.0604651340672, 521.2694409871114, 383.0516451889571, 357.2611497289999, -944.4795894727836, -781.8581592401858, -160.2893347009345, -37.137966582952885, 177.4273771363959, -413.84625588343704, -460.86449150892156, -503.9254630020586, -472.63338733428236, -868.73733880857, -436.85883439545904, 154.76898653676096, -385.61660353803916, -529.1654339127276, -978.2612279916303, -558.7082987327118, 396.22290935865686, -231.07229401900773, -700.2799780239429, -583.0583118486368, -135.1452125950354, -155.29763280439408, -178.6864386760526, -376.70808233790314, 36.335520621785776, 945.1962758215672, 183.2009951057966, 1280.7532118028414, -1012.8822015058014, -891.788852146805, -1015.0595806968818, -511.5076140180067, 566.4285048966959, -871.2294910156694, -962.0721737258913, -303.22845412926756, 312.2565322689324, -719.7727606479898, -448.0391354012383, 865.4903698911977, 634.8022649761458, 305.43037220753575, 850.3243960268665, -276.0186632491131, -979.4796449394742, 101.90937806084523, 945.5304832509898, -395.9168868640021, 5.701052577644546, -511.76054562693133, -133.62968224089047, 244.30144404976386, 69.74644315146821, 384.17144694781496, 164.3501525563789, -749.1556936468036, 1051.8265929255065, 157.29530933177608, 255.94215791559125, -382.2087853950853, -568.469211418128, 34.24090012988641, -457.1402866060451, 117.47967683568638, -824.6513216080231, 119.53006251765737, -423.1684614109415, -949.363078792036, 443.3099096020573, -656.7323516470578, 152.07033544357142, -3.1693960860805745, -759.5793720384746, 97.02032063975444, -213.18950723729273, -497.45156924132664, 115.72217696439573, 450.94943615391617, 277.57073192756144, -79.61358209037607, -910.9684685282609, -937.2057313389532, -440.54661910118, 559.0276385205314, -335.95145856298166, -71.61435584301685, 179.33530115774138, -603.1507956588317, 171.10201677063446, -122.61469126540237, 426.3771762565499, -27.374009234110275, -358.2500293240655, -204.10034164478012, 252.60107477484217, 360.0466581915887, 271.3636722928014, -738.4688717911057, -428.0099211116943, -242.81942497629865, 217.56182485473093, 1142.5761616996672, -460.45706874267114, -229.29233074723035, -835.258144453057, -547.024940850413, -416.65588162707763, -117.45753290814423, -134.44543980160591, -44.58467673421612, -100.61817071557634, 233.91106658233477, -187.90607674961882, -536.73659302995, -477.0211685661526, -744.8987514419038, -94.48094794015965, -13.820166931843278, -188.75909579471846, -1.1187233804696746, -416.4955074772275, -321.09176702809236, -509.7693555731636, -962.2981475741105, -158.5476147483871, 1029.6861403619328, 124.91628922501747, -586.1306203460025, 1731.3788047149624, 104.99065437283532, -890.3523818549454, -266.69489782844886, 652.8300314615423, 687.8110549911652, 583.1105740328403, -340.33816923430186, 485.9610490470193, -466.81873266870576, 878.8421017267318, -264.7581619844283, -44.53209339481367, -793.7182793100525, 1049.4936333634519, -102.91262887013161, 1295.3117036967722, -97.6330016687142, -978.2316457476869, -206.00731231042533, 676.1454449906986, -964.5454399840916, 441.56140291357036, 217.7835228258395, 361.25143269166637, 5.869483321798054, -170.45971781260593, 942.4808763851873, 809.3131835840516, 191.86338066460303, 1699.0646984944776, 159.48998798896446, -935.6182453327878, 5.349824472203238, 319.79318967036147, 353.644818606309, 984.7843329166709, 117.98351280244465, 96.63865307646236, -184.7587933748913, 660.5010589444478, 325.9585501787724, 373.774144679886, 1.2079253776635426, 713.7427922410262, -39.97845700981689, 204.17520724898083, -90.24823710453339, -294.5078895290895, -287.33779439096907, -355.8902720546673, -929.1912654297702, 127.80526268198824, -233.95468621788282, 737.6224039837741, -370.18118257689804, -260.15301351542263, 132.620128209078, 194.84939172079683, -856.0833253695301, 721.8768179534251, -769.9636079295236, 803.9175271516111, -897.5556707724769, -730.5380780683412, 163.62067428344446, 569.6557363633053, -558.2303238107199, 395.4718358492809, 471.60599518771323, -35.933887471324965, -335.1090505783162, -137.44111362795803, -862.8781637703037, 422.9334804821053, -130.8674358325569, 238.29549215508038, -359.1092261800012, 570.6431274824259, 356.71479020634604, -557.9947501288549, -417.1908813472144, 258.8336741593993, 521.359071335557, 514.2587228993928, 204.5338001624955, 377.8789665566717, 567.6374623004423, 1221.26484702975, 1015.362270364082, 1281.513252635807, -739.0044649773802, 897.1703720200525, 441.7552331048236, 765.0573897200471, 179.0599912612585, 465.8763659949254, 446.241896149968, -788.9570854126268, 133.09079489155994, 711.0631991400991, -263.03506902771636, -243.4843123124023, -142.46006072959432, -389.373102190939, -769.5173157064235, -356.99831209805524, -384.8501722541894, -529.7884240186183, -236.70716030341003, 753.8419815398902, 342.96489875416194, 438.94648949129436, -291.5033263105798, -707.0466757578462, -358.07746858146834, 968.5234696817984, 383.86333853742985, 1069.3906466722854, 396.39275114480847, 93.39987469717443, -336.82841848730254, 742.6958951815543, -214.74416425548452, 830.0448418453431, 1051.8996157774325, 389.88137526049076, 325.5197277850426, -138.62752506797304, -158.78157070469948, 278.3971288027608, 642.7469173150002, -122.60114002607057, 80.4335454338206, 201.14751978629306, 321.7758297945787, 752.9289224227994, -446.94520282520415, 678.0082045298398, -83.55516354202474, 1188.0651599929986, -172.76049723676311, -996.2032435465215, -207.5327159445225, 526.1583970756174, 539.3997903273581, -350.75455541664553, -548.8092370979734, 799.3292014855597, -14.788040761006073, 151.89824171885456, -160.49783615291597, -820.0330362443982, -300.8219182878276, 415.53768824711625, -549.499855106627, -198.19729582647759, -376.18874709198866, 191.99442775438072, -490.23886387330936, 440.7975825486602, 165.74473492723993, -280.4837536865309, -759.6811881455108, 337.4566346850162, -389.16783860221005, 417.8088290336717, 814.9143010019995, -273.3969167218922, -476.0499289701095, 1104.2682304807186, -309.0052275552887, 638.3402672658832, 584.1731313194975, -260.4226619910597, -780.7482972615485, -46.73957147516572, 788.8676003972218, 13.154217076946338, 155.17157856817457, 1270.7207219141465, 301.134352001396, 180.69230359508157, -413.21274639689375, 1275.14070603918, 616.5208198402274, -701.5030089726689, 262.01006930103705, 2084.1707200855267, 1255.2193603778164, -796.5485574031101, 80.63407610102439, 2044.452809658288, 1731.5746533229315, 184.85285700431356, -411.7645109959541, -597.63479036999, -90.3737332220008, 977.1615881641072, 78.24331357051766, 278.1542428730234, -30.418679118143558, -190.53720111831962, 528.7086836596293, -85.71242412372492, -167.7080536942068, 40.83989077626568, 938.7158242090981, 767.6312500096371, 421.7470060294511, 205.18693431049377, -751.9797611153957, 330.90577614313327, 285.3643218613166, 553.0994140633504, -915.0511955321222, 298.2988467732553, -419.6148929348594, 67.63160812808235, -6.91996999297951, 308.3146043480288, -237.88646788410966, 558.7394381814279, -255.25188402696293, 1327.9941229456722, 396.4694282201431, -862.1154839805196, 192.93985885637386, 566.908846536111, 94.89834339689612, 599.9606513964786, -188.99693544363822, -201.2395982866809, -170.70337319767395, -85.39955298788544, 571.8512348503679, 109.6198745766543, -261.19890734639284, -4.814603932730719, 91.22234440671761, -401.77868438723283, 916.832859190991, -730.4898194109333, -344.8070268072315, 406.8729259265275, 383.9880320778252, -860.2225259119622, -538.9482147592855, 360.99156043707194, 13.421612587019368, 342.2216009073875, 89.69187147907493, 8.786045240761666, 284.67063763789236, -647.9604818646822, -428.6877646539509, -142.8988640399465, -360.1433522803551, 284.29095665579797, -129.27738315331072, -131.48257183893736, -122.45535410176751, -713.3810121793255, -377.60944009010944, 1193.0315672483496, 46.366577830860386, -965.2606942990765, -251.35601539243774, 187.75724852580635, 328.8347555721107, 738.2433420714929, -858.3445255203782, -66.08332317264683, -711.5759903676574, -54.67342473217087, 390.0075825316953, -695.2946995359994, 383.9821897507941, -348.7489309851421, -966.2851512063992, -351.22040542104844, -9.929926462626355, -265.274875193623, 305.35110620372734, -979.2147813438669, -505.23581071367107, -398.1480966992707, 882.7497880290005, -461.2268300285578, -194.43878964979487, 585.7407606989243, -405.82657988771035, 1477.3637916417053, -639.7176522645436, -685.826431935275, -263.9197744812662, -329.8474821564414, -443.0102837337689, -416.81528636093424, 289.68233886902283, 1583.3341817807277, 653.4510212831403, -518.0860909319513, 58.219468646629245, -999.812346784171, 451.287044854559, -295.70160207251274, -416.07819375040174, -250.09875174709873, 95.27949057239252, 1541.860156538202, 528.309387308523, -702.2704741916333, -683.5055824148399, 132.5973648061876, 40.318523594969236, 1866.528379992727, -978.6483935800624, -919.8522096067004, -475.78486748212697, -312.0438364842172, -506.1340745761178, 1171.3422106559192, 1250.8608053048401, -210.15701339307378, 167.3518675162466, 184.13077420339312, -382.33925813185306, -365.25976883073315, 282.78875342053107, -169.025637127732, -390.739102189123, -96.66852040937691, -423.5063665151734, -148.7244868034193, 136.1750506399195, -200.73523071295264, 186.28664772538602, 1598.9591273658043, -279.4822791221321, -341.45522059971466, -174.00165198529004, -1007.2758510651172, -324.34746472974916, -335.8354255855209, -30.045000222173655, -331.22769698577287, 654.4100745183121, -913.7984941832734, -855.7776609404592, -60.71507347998678, 757.2253386727864, -504.79762144275554, 946.2883015880269, 197.9272608924765, -133.00873480118057, -624.8554769462223, 313.28659630364837, -51.81496199544633, 239.0353271087114, 184.6907902837315, 35.85274466457663, -175.29463136893187, -266.6171405227237, -134.8895026016521, -738.9714149570432, -583.702224415247, 191.28181652208573, -748.0537901007515, -675.7781565172769, -52.02926045377768, 797.7984666768062, 165.01016145014455, -350.57010554473084, -329.50778256971796, -617.0221059538786, -362.75739589115744, 635.9360858115615, -604.3338210679818, 670.3886284993036, 6.023656537097992, 117.55684173453905, 113.85285458719267, -127.06238977180914, 272.7614805174185, -515.0759921772791, -186.80229250093655, 367.4381537762647, 202.18617850120475, 184.73246106880384, -286.60418487338023, -469.08405902692226, 1109.2791152009627, -689.5519523754276, -409.94203075660914, 560.4765298669421, -341.9966800897743, -448.9557934814131, -154.42162622093414, 1154.9313351408969, -969.1507547061007, 109.9996442373321, 303.72463962081474, 239.86077196588724, 479.945271406502, -198.76074214308494, -708.2946256761564, -42.53685768758412, -108.06183701469996, -196.96165027282478, 259.28904853883074, 574.2386323511503, 167.4204255562849, 174.270113162711, -240.5230029983204, -335.0898173285438, -17.439026252598637, 787.0426951978097, -906.0158984470357, -94.51365096004022, 229.0859110752598, 99.70531744417352, -872.475534083261, -299.1590664093941, 248.34670866793016, 157.0062043348768, 1281.1217059884204, 889.8645033419123, -987.9786401196732, 128.98871253945214, -202.48609838680292, -197.4619805027896, 392.0894047100884, -533.7997082849075, -152.03508011093805, -667.5473135197346, -72.22173981058023, 353.8176250103997, -72.74384296122088, 547.0330962548105, -60.91997990749677, 97.5260592259803, -198.36183751666667, 628.4246476053285, -409.0247846982915, 32.97283335008309, 903.8057017466174, 831.7549142945037, -1012.4184507309617, -125.2629451563876, -355.2046562626093, -14.66915060540586, 156.56018338337788, -55.206904212386874, -12.64730309028856, 258.7547896736658, -196.90776988972647, -220.7827083309113, 163.09083102662177, -54.265309938727306, -393.538401128484, -857.4561357142023, -163.38868691491072, 566.6798511574727, -440.6722859381095, -475.56439787295295, 959.9303579165801, 388.3363575906262, -971.5600567514496, 261.97502550576337, -373.23981544225836, 69.77845662353194, 408.0307643177792, 157.79700626219258, 86.73810892350052, -854.6649511628071, 103.19716236425859, -859.8817402926154, -155.0859512277987, -1002.6044136922327, -425.11103613898734, 48.32399487913818, 167.52669904666953, -105.51206130926533, -524.0570652240073, 1493.5117379503654, -960.7663563765487, -465.9860402226275, -587.7922054131701, -416.741261528469, -12.92503106105724, 133.58488608306027, -248.4488263348616, 94.39608065299052, -156.06227371149964, 1024.5542823992314, 346.84526042342907, -601.7368525926372, 178.359338588588, 1632.0552668576238, 88.67449942339094, -1023.6599063897696, -1005.7841716366161, 1000.2941503647162, 654.8868270871255, 244.93933752346993, 210.5168462331431, -407.6068613334629, -265.70635430982253, 161.84858903275634, -188.67090687912534, 81.01654191566068, -120.65294145824498, 81.62281580797557, -301.7202401348065, -144.7669405805841, 78.87287560930129, -685.3154678167633, -976.267095004192, 124.4824098184709, -952.2613588983148, -877.9889140096618, 1586.3007504618279, 757.3766834901254, -1003.5328595727295, -747.4097224800166, -488.6702382276743, -62.85514900559917, -4.651034679128159, 80.61846858095342, 1698.170591582545, -784.0661439040325, -512.5806039500468, 1314.1010565673807, -106.76487034260282, -444.2001240557264, 17.4364735151334, -791.1062585430346, -940.4275597575859, -259.80049620583304, 92.6665978626196, -214.67020934715072, -65.56759431820215, -163.8233364976961, 1450.5728739655615, 1160.9468706878772, 1165.5419415901924, 800.972110056253, -28.99801423279456, -624.2718099122282, 993.9902491148496, -553.2707523745615, 226.8459909570059, -56.40234929180064, -329.53927617354066, -997.739969719888, -464.4809515121249, -485.5408364519276, 153.5502767009511, 30.130089347363494, -376.7975543607317, -268.2760002804958, -69.59442837425915, 1151.573729286057, -144.7059606781899, -501.89176470695554, -8.473277746579022, -490.419137506551, -212.4455195560247, 110.95410005172819, -222.4222660818633, -643.39576116445, -183.99527318895073, 218.71338056756724, -26.553607934998467, -90.22774538154638, 1.0696184635165764, -75.3528583703591, 310.8117176587698, -379.1566379020031, 193.8646339100482, 169.13013536632744, -134.14601887629053, -177.05656429894674, -428.79805639680995, 309.3135274266224, -527.3352917565128, 822.0874396182724, -417.38741857551594, 912.7533647068483, 1025.7618511250985, -545.0244193222188, 1186.189166922087, -237.9327572221581, -488.83866904946086, 511.16080638218295, 1386.6541783644102, 63.79654746614216, -339.9263945343187, 220.86211790403019, -317.37931101717726, 1.4632351512710926, -10.851848882985962, -214.94531631841784, 91.54851802662124, 646.0929876536966, -457.64138936355124, -788.5496949123731, -989.7244230456698, -195.30125210181689, -90.59889619824855, 320.32650985718755, 91.15065746329506, -374.2345218789875, -136.44133112708474, 29.68609835914367, -223.80028361169073, 639.9221721026098, 757.6625917049406, 641.4942557400168, -49.49300308546458, 46.94033134628838, -320.0545807935653, -165.01378998367346, -2.8393825482582926, -381.800396517112, 6.958524548556511, -175.27869401590166, -968.2882678849923, -165.6535999392582, 134.92970417519686, -221.0401913965698, -260.83554664429136, -321.4840598424726, -417.7496377701483, 258.49227120938724, -915.8562036217311, -849.5502988711662, -194.74820712764574, -322.4616446483012, 1082.740281398516, 210.14176492212437, -554.0410810637004, -820.7431031302312, -87.56568663482136, 39.3491616300644, 87.36119558222889, 429.6785702742113, -138.54609200205277, 1406.7224972778674, -61.97475828546072, 258.545368707333, -938.1219249981789, -851.7046423721064, 12.669823648479309, 594.7827174310662, -423.3714640414028, -245.33175610565675, 1659.2400768653704, -780.6556641681819, -868.4614591976026, -63.133900079596515, -69.71559940199344, -246.31924885932284, 880.4461104695906, 340.4101360395444, 962.172150566496, -886.8680601676883, 852.3434946637838, -346.3178157181007, 541.8680523913977, -551.7020302485811, 825.5409492312963, -671.038025597264, 98.39391413686376, -418.86612763852565, 86.10804721442912, 439.9554802647515, 1664.5568900529433, -205.25204043628685, -721.7369488777165, -753.975254220206, -152.94562536163727, 69.58156901942655, 531.0651795680549, -163.14104763894022, 158.2329733662682, -433.4328902030863, -225.9328722844743, 1203.8432649551035, 262.8642520869262, -84.73895121495987, 470.06598683781357, 108.39400954418622, 1097.943664413087, -219.15193684042262, -296.03656827207146, 21.72302723886586, 1318.9673461536852, -307.00093570407444, -980.9339123962152, -418.77086877694626, -357.42124729333784, -12.069745646453107, 792.8494425142363, 78.49852277754306, 244.59926459565403, 270.81401416653597, 1297.6095753289394, -196.4429179453321, 90.41122388558716, -422.55759286000807, -299.2222994829047, 20.312732964301233, 199.58271415070806, -389.74072700559276, -459.0099667715629, -135.19330314164728, 1777.988243184862, -37.563218822956685, -529.75083907653, -206.1331982430399, -49.280210313897555, -417.18549190647633, -273.90537321583133, -74.23062439840123, -110.86286621043652, -734.5850050229519, 1697.2194686229104, -158.72472797344716, -838.8613740094386, -888.7597478188839, 121.5678802197159, 72.37473842352982, 365.7000834068289, 103.37215007662482, -849.8785483575706, 116.54295448428769, 96.10084036295318, 114.5169664093629, -437.28270453236917, -295.11657430537986, 277.1097183125544, -242.9767103226475, 480.0333911882899, 444.2378923748086, 66.15784682013579, 1506.1500492688685, 1927.2335243424154, -691.8846072484021, 876.2141461126938, 970.6966625523007, -476.5472902599193, 201.9831564411307, -157.60692428068631, -309.0020227152645, 332.76617663930216, -903.7407439158548, -675.4256735477754, -479.09390382161865, -425.96259628993243, 341.67128954347396, 209.72030295279674, -900.7800758095929, -40.37782629275699, -296.5893558691904, -940.0393592731092, -312.0309457734659, -348.92113352372144, 388.02433806611634, -311.34318361174405, 336.9678529156764, -262.52958363311893, 631.2414314412741, 31.13989916958443, -543.3528256210517, 737.5180739721237, 1195.4139673669235, 219.86897872348237, -609.4877841348364, 86.52996264218743, -240.09117809927875, 771.2392963871364, -409.9297842029943, 2028.0730725048538, 107.10465169100186, 600.2889962353606, -176.26117940418987, 60.200049327374465, -307.32142588631325, 1683.1550372422357, -328.404594241434, 916.5609127792633, 101.43395414283746, -131.16328111887412, 1.2641650783276326, -268.81042020773964, 47.500501555735134, -983.6984330388171, -83.37070462770906, 852.897229501309, 759.1679101560396, 539.3243136650867, -267.22180440117313, 692.0798424424206, 117.98378906080106, -135.51729194835895, 441.56578277615336, -256.62388910475056, -822.5998555764679, -849.9233546754126, -411.5037910948428, 277.5128082492917, -534.0650884048878, 1104.8373066026988, -392.9690321977989, 1594.496514782713, -49.4503766358843, 1109.384497988556, -439.6072833894883, 1993.0467680107843, 278.66784784207533], \"y\": [441.7671259308403, -451.8795003706538, 651.3404894841485, -690.5899028886075, -93.56248848014125, 53.59842181708518, 438.4797292946715, -25.36655484920152, -380.19494149758594, 646.7821060621601, 236.1958242913571, 604.7806986223429, -128.50139438865273, 97.00906031016831, -788.7239364738305, -16.53231408488574, 409.99140861204296, 87.2607915524064, -83.05565626270305, -501.80669550240793, 540.5308632829284, -193.85222156308188, 573.2428647815359, 320.07887088337526, 1057.5650366399282, -469.73121155101273, 660.0112098022307, -296.53070740456315, -95.5674092514686, -119.24809761795208, 816.2029809871063, -199.94429032997024, -123.88706805456164, 410.6103390892543, 243.87832199551747, 196.60700005455044, 440.29792872704576, -608.9221283676468, -303.8282573954709, 230.0917641618397, 474.25415557392284, -416.51999503759305, -10.454583262255099, -138.24121367186717, -813.0248613568715, 34.34634959911445, 270.1144716086354, -110.43772350235328, 828.2136928944672, 603.0155351675952, 188.97301254057902, -1047.6060832577691, 97.37560286458341, -812.168741418779, 21.129417467914678, -45.42521178918499, -564.6463204967881, -641.2639435449776, 778.4470799218846, -513.7304920840938, 89.8675038820463, 403.3372690547751, 420.4458904246633, -484.7634037767708, 408.400233167365, 261.3127046137708, 451.93247077431573, 354.63752969626063, 168.8979901856017, 348.7897069515291, -378.179567063794, 152.405006423509, 169.95036641459882, 202.5831534363283, 517.4884995565396, 712.3858647921323, 734.7387850662108, 508.7218534210184, -179.2048359760669, 269.12519406772793, 377.65994763232845, 492.41987613078436, 59.232427868434286, -747.2433949170672, 483.12748145172066, -167.94431872685465, -813.1210702030754, 176.53391422788474, -787.0732254474029, -215.28231107915337, -602.6239039301654, -616.2570633176261, 252.11664571534698, 244.6689329591926, 299.1545337795525, -591.9613176109111, 296.7197430645811, 250.60440408535564, 361.5277878258264, -131.6418260188319, -681.4985665935732, 164.7638099609293, -783.0056810533054, -70.47682882183815, 822.1207721493317, 21.454878783041003, 708.9072471916761, 253.0525307482646, -259.0369757839848, -633.9336514979817, -203.9183653980367, 166.24922683749517, 965.8549212830209, 20.87887223650074, -749.5132311321261, -971.1072863674085, 641.3458908972963, 226.4352686047502, 630.3117554900948, -358.04674719730724, 680.7525632171289, 502.1654519979825, -668.2817741757426, 216.69594162745895, 668.7247341202702, -69.90251055576125, -235.5215810047277, 381.9649232402518, 537.5429300912905, 262.77349673212836, -485.6906628962993, 230.49751175292369, -346.33555997581436, -308.90033285361744, 730.5303978433421, 205.6249775163511, 609.592105921522, 627.7542163069547, -451.1216447416176, -94.27372831135357, 29.204038633916838, -736.2891116734409, -137.3839061203858, 154.63716630405378, 43.61057552123242, 725.2343590869004, -174.2865723618539, -339.5748132563142, 436.5284859564496, -150.31029774210597, -228.31746710243615, 469.1316141059479, -254.67332493701537, -745.524518298792, 54.965112122562665, 72.56888865433962, 645.4927782084765, -503.35724683940106, 104.58246204614409, -173.97395505058762, 1046.8746395770727, -761.0686992198449, -176.2798805692377, -695.6753786576254, 178.86463991516143, -485.06518476685187, -692.4555283558556, 130.14085061782384, 372.74668975013196, -852.5121571505608, 285.1322278187762, -852.5014033244559, 262.7251736641675, 253.46804322514862, 302.4526322496975, -432.1832004879245, 601.8227370071338, 116.18384271789114, 364.2215688068717, 231.62266177626114, -319.70432080986734, 379.8044689807082, -918.7924062692915, 79.25886125779712, -717.7911214785903, -98.34095004269726, 1192.58221319137, -243.13881260219105, 94.0599511451198, 630.9867549178969, 112.91947175644562, 164.6718377429641, -621.4035786712591, -926.5973958823023, -195.06520108610903, -1056.521611383405, 597.4878797978965, 410.48083662582064, -321.7239750299706, 37.51619718484764, 555.6557931209977, 490.9077418504547, 32.16659797419922, -304.520883351794, 837.7080507265682, 324.00110008876396, -135.4034779421982, 419.7553509470621, 503.999170512892, -48.34814300655027, 565.2008104566181, -387.73569319356204, 398.2461285363604, -935.3936017222808, 905.8038732768687, -132.55348990826906, -631.8251767950995, -16.029933800472136, 374.9381939866781, 740.9809620624442, -341.0156191425207, -589.478253136687, -772.9910846165112, 15.44023472730521, 648.3789037696052, -715.1985276183026, -526.3976467880502, -297.1151766686023, 45.144363547738976, -533.6300573965068, 594.8040242617799, -157.0508250773816, 341.73362274859676, 123.73201388312619, 785.386806774625, 296.2578621626931, -816.6466624371915, -416.3899038369667, 353.3740582150945, 114.81031173740331, -604.1204059172883, 928.0135529964309, -1135.808859075271, -0.6507275678776665, 663.4120712068691, 203.53478184814276, -478.85674851881924, 80.36190146628991, 257.07485607819035, -328.6286334540967, 458.7686404059029, 645.9994903518166, 352.1924855208049, 468.3313859075871, 831.3208996533888, 482.3282748661923, -676.4768338423286, -402.0156063299469, 79.04634559052025, -191.5624486135401, -348.3068581408032, 343.74045167956626, -1027.4355668283972, -559.75036783063, 329.8502344649782, 620.2293791268214, -548.3549576849989, -451.7812913570772, 686.3642303064222, 226.73309213290023, -443.4858496901911, -884.3414575816669, 330.80790978923454, 500.84629128798787, -700.5168356948053, 228.54979841558753, 297.4931500148183, 553.8705349847709, 317.58612977657623, -624.4484437161768, 629.1138857200074, -582.963469244008, 396.2281172139823, 314.67819887561404, -437.49389789454904, 49.546852470137935, 173.51850389756254, -813.5049088910332, -601.3884983838664, 530.7316520576524, 828.317803133112, -294.682109837133, 526.5426032212198, -667.2938058989519, 652.1456390904756, 119.13852933858703, -702.2508776431321, 424.9950293074428, -353.97179272094735, 403.0761024268657, -883.3088706977267, 180.15089683302034, 638.2712436001395, -477.5784345770629, -644.3744713240721, 146.25852545538916, -649.3533917020294, 398.6237283753322, 693.8062669548565, 180.70245357094427, -336.2630305366748, -131.1748838352131, -354.87276102857993, -646.8506963512866, 692.6233453101923, -93.7628914803358, 244.6086764900365, 385.94219762294864, -309.43508350143503, 152.37175968903105, 659.2732616446838, -619.7554905933154, -595.8312418562459, -866.9250629351666, 342.3082798751759, 131.26399727282708, 760.7881507637231, 12.062022439586585, -818.2748217709401, 470.85566896095764, -457.052285205175, 148.24505465878673, 376.8782025430681, -766.2263663385468, -15.245157846409413, -542.224100293585, -890.1741445687505, -853.224599718397, 328.18391368151987, -459.6008146163555, 797.9694913664446, -246.52793673942264, 660.2196507754654, -782.5540880149654, 637.0504221742524, -1.1752333413316336, 298.2319079332866, 549.2041423106108, -818.5900405440834, -785.7079124795217, 635.8148595593116, 369.6734019811426, -539.3170082866454, -570.2919109388356, 806.6722205312393, 72.20609593170774, 635.4338200926042, 0.37150382486761657, 396.4680681759044, 813.2451317480067, 527.5114995696574, -779.9021816455538, -249.1309334845352, -490.61661556632237, 369.2585166926969, 228.07144942656734, -359.8478415943862, 391.11650335530084, -827.8803756765926, 72.84938738906732, -923.491686178885, -629.0573860932705, -617.0821217760263, -716.9426495996328, 310.71685643850435, 179.2150214276365, -871.0660581410773, 380.4222385150549, -296.11818119171437, -785.3644991690094, 375.35600049291673, 277.20717108084995, -764.0631600279863, -546.7326936967281, 510.4064260741753, 170.1159571997216, -787.1506213369315, -94.86940630691534, -458.0012784697632, 724.9872032717403, 303.81583832642826, 333.57059753498277, 567.5096300077772, 100.66495022543003, -139.83754102008857, 210.77608058453688, 742.7196292459108, 130.64552943709435, 697.2918767964244, -42.91840428915757, -287.135851100723, -788.7788323622897, 251.42388651148462, 420.97622749099054, 646.6002383600669, 61.742624436878714, 290.9910313960322, 237.2955652497818, -476.62927267472844, 1009.0693574156599, -517.4846522841515, -322.9986173648907, -642.9616739648789, 13.38981940014034, 508.0566719345321, 365.41092219073226, 97.45137791566032, -31.271664213809004, -475.41007387010643, -113.64923110811003, -307.7946232396657, -405.0356687193423, -347.58488477101923, -438.9227816426723, 353.83292121761724, -913.7547719057447, 515.1846729125743, -582.3943870243668, 464.2487250292751, 190.82043068902271, -463.86909068284535, 27.57203144024568, 765.2137518677059, -565.682656814219, 332.03265238576944, -590.5700583737184, 73.96420633094817, -831.7301915881121, 361.818464425109, 337.0499958484837, -453.0240652871504, -720.0205415912369, 694.2779725543371, -117.87520590242517, 389.33097399771407, -838.5570460652032, 761.2216562606172, 244.85460623834945, -420.98718235978214, 406.26598099426946, -66.1376628924287, 474.44203931616204, 454.19213975868774, 65.94132564522775, 620.3645659320945, 357.07400693650413, 407.48883047408265, 308.75973845147973, -490.8773231141607, -782.4671672062261, -891.2593388796822, 293.1674708321314, 37.32128524815625, 329.49416375350415, 114.38369391763919, 327.41960567622715, -481.21905515295714, -395.82303019487796, 54.85454363026059, 77.50293959654044, -163.4731955884334, 371.3306430791319, 363.0931197924392, -6.9791265181655575, 576.1254263073345, -380.40462210121893, 365.5968958769685, -603.753323001459, 238.77659182880012, -140.30904497062983, -549.5880802364012, -494.96584868869405, -207.26552836650538, 98.33119457006376, 223.23033438166092, 131.79059340904757, -156.07302587092101, -150.18502346365952, -103.95243718355303, 835.3081470482642, 374.56431573690236, 652.5552148289373, 233.69989064130073, -239.95968577642313, 479.29738435670083, 457.4922384257974, -40.25240841371939, 33.948112811375125, 582.1550488854007, -532.0210840180338, 93.11093095232837, -55.5408033020349, 649.6214836328129, 782.2287632943912, -798.911840932424, -505.51330863355935, 600.9993303587917, 592.2755704583085, -15.693738796279135, 569.0301807739794, 74.17812391987776, -418.39724294556197, 136.1314692718254, 179.60847471109716, 377.3953256248999, -249.14281198166464, 380.76778383685695, -417.7031686470865, 266.40777495143914, -814.379234570792, -570.2692290693204, -965.3557531991661, 118.1774101301643, 334.06510926268413, -436.14522724004576, 231.8496124117256, -14.194064616545157, -105.015207717101, -10.561994544271059, 7.846621026362037, -483.6767107841637, -16.452425009010824, 281.98890342565807, -189.89358159570622, 580.169761203512, -450.16104803788096, 322.6431235415222, 551.5377459006523, 214.57493677642827, 10.64707111840184, -766.9718005059026, 419.32767021300094, 374.3679858548437, 622.9936786050629, 565.1318837775877, 692.6277737377194, -155.54628253902786, 340.18989790784866, 488.7505657424742, -812.1072087647241, 565.8344252939348, 607.1192884598421, 718.934587046768, -145.16369657228034, 447.26032493422105, 270.94826792611036, 550.8440478025377, -136.86600745565613, 780.9560971701474, 133.8934048894963, 573.6832423985365, -715.6230080251067, 608.1912110938471, -978.6541083858012, -86.28472867746177, -538.1539289862443, -441.47633016199825, 210.10250631919126, -333.88796527916963, -239.4085649842388, 504.433303309149, 298.32048457308747, 569.4992318085926, 263.4913707362963, 648.0387732162625, -460.19203374958, 163.80100743259086, -9.896688271195757, 140.6082278069662, -684.2795589750237, 435.8687939498876, -228.2018281632391, 142.46660597945524, -184.13479859223594, -823.7050437429263, -119.17553625073026, 582.284457308553, 352.8335652796312, -196.72651903277014, -408.9746702702713, 214.62961824275033, -477.82719344937914, 578.9847557184895, 259.27701928263565, -151.67254340820355, -316.1124868887461, 620.4196081488255, -154.2890892865415, -492.2301905268983, -249.76217795005118, -34.50200059406074, 610.8351592308394, 498.0046011805731, 133.45812067405126, -62.962368191772384, -561.9908422646147, 298.78989837159594, -1042.3464032074678, 654.0266118342333, -708.8232569497529, 341.32084513597476, -89.25334340936142, -32.34902261992765, -227.46626818637915, 83.88842227516278, -994.8052454641992, -421.36701494085514, 29.591626951245928, 296.896127449534, 171.11355195501736, -420.1451271807567, 40.780121742876844, 251.52481603980323, -646.7975069286363, 43.50811648816325, -781.4066794865662, -329.0987264915478, 164.75249344182646, -42.01217927408571, 188.93670068433624, 45.75448759117802, -795.3428310849847, 316.3523806901668, -168.40748011848473, -70.13804662041329, -548.1218455742958, 588.3948612107606, 67.07734380255013, 422.6681351743497, -670.3223296253602, 301.654380063, 534.6887587929609, 424.1676067965892, 267.8897012217954, -13.263232682736863, 761.6069692419092, -286.2396898713761, 377.9523980238843, 340.4230181129383, -50.22191837870021, -392.4429477122318, 395.59707724460924, 187.29087685800081, -716.7525204146696, -636.3170056156848, 162.16475192242356, 295.6118973773381, -191.52411988733041, 80.20540437838588, 145.71686397690402, 77.00911456215961, 105.9967110130468, -478.3986502984369, -500.7147169120435, 320.3660212562228, -75.60145140421828, 204.6856199306685, -155.2993266405737, 623.026684097569, 552.3973155216405, 708.0395887841158, 313.778958933651, 326.57500380794966, 418.25502277862006, 818.4443024762083, 420.7514034335199, -866.8903612525083, 154.24843510333125, 516.4115224842928, -495.2485581326082, -231.1081826151207, -344.02458946897536, -704.5424518563843, 310.4123294680087, 854.7584579704132, -601.7849027183563, -753.7544585837825, 203.7089730485688, 489.10789209288674, -175.65224074946988, 714.9586548729054, -730.8889877594806, 218.52758623970874, 16.081407254170387, 725.3444312508284, 680.53602786384, -704.1787361622181, 823.5356806592936, 309.09206180629684, -517.3519250194953, -330.38403293239844, -82.88890212226035, -871.9539632619195, -361.0975529325369, 747.3651578766389, -473.9989049229795, -567.362094655436, 151.12921645721147, 225.91072599945, 255.31210428624345, 757.8158408656611, 653.9262249079858, 587.1402743511284, 582.7872093148486, 737.7774674756906, 408.9552775421703, -883.2188491049853, -585.337099831098, 386.04776280102766, -53.47393039589487, 53.073769917490836, -369.4606137818212, -624.9162913803599, -1028.9956040714242, 916.9861247767703, 123.05049109744238, -703.5395545845887, -88.16446063725829, -807.448810392901, -808.3474521492928, 717.0446258973425, 1182.7492868932102, 655.2275780860639, -54.06807692793534, -31.328788735506677, 158.84216181332812, 281.925349920963, -98.89742711603434, -95.46502854077684, 260.7407170541286, -729.5590721153268, -651.6534272071865, 650.2516753656174, -420.56389772097145, 487.7640995850457, -170.81064457667355, 656.1715407288166, -18.7301950671297, -460.59955563105507, -709.132656372689, 423.3737461778409, 772.7808571462838, -475.1530940096602, -331.53587591566543, -617.9885785454653, -218.82000888954377, 497.9250105742009, -135.47102760560674, -45.011882605650925, -232.4475373173912, 377.78071471335306, -507.4145734931779, -1005.6467095416518, -787.7158230021917, 1007.4603529824976, 470.9430090613332, 824.4737234361392, 432.4867294646812, 448.7593000646077, -310.3909389862496, 458.58915037917563, -836.8772513682841, -843.9329834695394, 477.35986458054407, 107.89786690558086, -109.04379837315592, 347.9228488680666, -289.0205473555603, 893.5184759519136, 124.0057127994602, 656.9340451811103, -528.4211013943981, 866.9457804205639, 295.36126964383243, -40.048989190375394, -650.1133372928379, 540.6035755263622, -171.81920922723242, 707.6138226938558, 647.2879704617071, 640.8974316793825, 216.28455863203288, -817.8568876940421, 310.9679862690351, -173.93924840068254, 110.91108827559472, -786.8678802106676, -821.2219450373611, 376.2399240244877, -648.0815853777304, 85.72133080553257, -350.4343138431086, -330.48057166336866, -785.7798098468743, 416.8598226429589, -949.4325465399997, 323.43474965653326, -145.2766668881695, 866.4629744823078, -97.1749936054166, 694.9847092563336, -819.9470886771296, -101.34090318917998, 1008.0892027603543, 632.8630107244276, -37.388806109750604, 735.2932930691773, 67.34635984960057, -770.0047077759671, -821.5689359035964, 763.1624786922335, -93.72165730550424, 337.71890505475636, -488.33134172068503, 426.16305219916677, -738.5565946532226, -351.96257523646057, -141.92094122487111, 276.021310929662, 950.4076958005137, 466.48816984581777, 390.46321446606476, 951.2181004633919, -571.0425119062163, 909.4717134840768, 215.57736014806338, 665.009210233205, 204.81339572236027, -512.7775754316402, 698.7651851890998, 161.67372676492067, -395.53440082870213, 549.90795557824, 273.057096352164, 526.9717060589776, 70.87157271429653, -1065.9294680509643, -476.3406282716734, 545.7107238243884, -415.4446092409685, -1076.9188028963426, 158.95799768509235, -570.8369038738878, -825.2116910121404, -983.5313092094469, 174.89994153845802, 694.1444512166003, 141.78381942058058, 150.10675789461936, 568.4809725846749, 698.2042287965357, 289.87333027621617, -110.86786434595484, -20.859480524981365, 507.4435311994084, 176.5936991992578, 785.3607062778254, -636.4447356499966, 479.060600404939, -127.13054077408555, 766.7657949677294, -323.03947065927514, 137.0503387361901, 1211.0542397172953, 386.41752596854184, 49.39055633456164, -860.4640116756269, 55.182023728357166, 50.78819326497717, -622.1934038468095, -86.72378812489735, -624.4968219534359, -949.0162274485021, 256.99940832441445, 828.0141171840588, 492.0603199060896, -861.8106308027513, -609.2213809255164, 149.02988605564047, 495.9813462167166, 754.9837738228731, 144.15340997902115, 125.48032317262576, -383.20337497362505, 554.3321412084106, -697.016484546626, -748.1396900009632, -734.002936190929, -28.751641456157472, -184.55300722538988, -1.5131548395702197, 10.761448420105339, 217.63638363108353, -988.1028995980472, 622.1553066181274, -424.1687159816497, 487.6196268259711, -681.4056281256242, 894.7099958346846, -83.35588342153483, -466.27783798494875, 47.859886983683666, 493.4813864273205, -836.2084333104601, 140.99917322218005, 186.2458662368545, 185.30936706504988, 12.760504287728445, 824.3938873293271, 623.1426215135014, -5.985528685456314, 42.51026943236798, 463.2012244584771, 352.8575453452966, 387.7602123519522, -661.2470413720271, 477.79348983946, -718.2257686165623, -646.1516560347856, -865.5509012071905, 63.098882191624014, -640.4749492500258, -354.1695008476309, -529.6343180386143, 357.92420659467257, -252.74083229363885, -564.6133612346466, 873.549727656891, 159.77832915167636, -869.1143538130572, 486.1917155719872, -653.6683964748812, 187.91696835574587, -574.6624775312955, -543.9337088097986, 596.3686752668605, -18.79101545624286, 110.85340834377013, 99.65907712682713, -494.28257325149565, 686.2998930072708, -185.58556074134722, -63.24513997103003, -773.6955356404065, 93.73970622244802, 805.3672721312275, 193.64300400800346, 77.69499294682822, 964.1017092737848, 106.47393173618732, 632.0725157346374, -806.0128825033303, 681.6822970930754, 555.404716884208, 282.6279618939956, -200.94971723827314, -818.2188752157579, -433.10901780501104, -595.0106561463708, 256.0019369015754, -384.0721251735398, -256.9928198888119, 215.00577808452485, -65.86447698054059, 899.7651383737795, 80.41865004552004, 127.9806108157507, -66.9275830430847, 289.1738636899188, -313.4389758961332, -711.614315033335, 301.1219611552517, -70.21586595986008, -116.44123483253523, 103.08729431124527, -731.529779121346, -721.4723766266833, -819.4384607590505, 351.0164230839133, -879.2421517001726, -529.2534510972606, 683.340174595524, 515.8875084916431, -934.4282161810659, -597.9388490256622, 41.10260021495907, 254.59570839733638, 607.7963722043753, 238.0098020560686, -9.006411926117359, -527.335967546669, 10.583842793984843, 574.7181662691986, -149.5690189894572, -585.6912631006169, -613.8042235190408, -266.6413149461953, -959.9693741251994, 337.80006987321735, 754.1348719108067, 42.73945786787088, 423.7773151434727, 323.14285862156635, -976.6930654516707, 273.6754292709692, -90.6912452008326, 435.3293598212621, 51.002656608879605, -439.79200557533363, 224.45371836821056, 519.6037555567627, -488.13077999612733, -193.66831160283797, -367.21654063983146, 583.9975387143395, 57.042007298404776, -158.39567634107567, 297.0877381445899, 469.1731251018581, -111.08393404907486, 164.63657429150197, 334.76599660069405, 228.62205382382456, 120.39810320343386, 40.58922851362614, -236.89408294971182, -399.7156961817234, -848.1784292428779, 363.438415474896, 258.67263577939934, 302.7746221169114, -453.80786581687596, -700.606912372782, 337.3682509421042, 635.9332674471086, -221.7734182859918, 286.130829460457, 70.36592474358388, -191.44745643816435, -595.4791815524914, 570.3115253782917, 270.40292129363, 2.235869178818337, -821.5742596828585, 455.6383346223598, -615.3950196461606, -162.89936325761136, 574.1238139845834, 647.2133027978773, 140.89232906937667, -490.33888466685863, 240.44465137859123, 31.665078607695307, 204.24878707012735, 451.48895321808567, -16.876358710014543, 523.165762355614, 255.01163915582276, 689.8834650592594, 330.22940986178054, 538.4125523777691, -1013.147117399569, -510.0819700708632, 499.220478017513, -148.94474966813831, -262.7940868967872, 442.6841843671723, 459.3125257399553, 294.2922348561437, 182.84151657801033, 324.8673249733973, -461.67190458996123, -556.2474704894505, 414.54443766897816, 561.4637695683886, 446.3679359871222, 522.2822775340601, -68.10961144936422, 58.94100985842533, 217.7578670297532, 293.52685789113406, -91.3947571655234, 432.59568169093336, -415.55032533222106, 352.6741225438587, 505.80594884660195, 1058.708558662035, -479.13001703944957, -389.5541581198306, 235.85500763616122, 375.4622135344378, 194.29906197578663, -816.750086426848, 544.9991944437161, 300.2114714715985, 116.77027760439016, 492.85022129974476, 411.510315686072, 562.9549038121401, -483.725000489462, 357.85214580558164, -827.2524208653517, 157.50854381365477, -902.2882159863177, 692.9267802452479, -1032.7126650050054, 426.6143701067973, 434.0070236324105, 344.95746884436045, -66.77643840859186, 129.07125849250596, -719.7081309822019, 425.09481470307924, 73.57741212017712, -374.68800288258, -156.61206380712238, -36.87595036380878, 9.93687709984432, -81.14306464316945, 608.661975766791, 355.2659236032624, 346.4960728399814, -258.2466823447696, 31.54093248435083, 137.89979236833517, 299.91984828583776, 543.6515127972509, -365.5270537991107, 150.57388243113024, -248.86746794987636, 284.21061256544857, -710.9203341599871, 670.6342041206151, 385.1964390516113, 686.6663425743486, 47.59130148651345, -844.5952930792008, 171.40014896144828, -249.35780753338108, 333.4043829679783, 459.7286349809548, 320.13940389997373, -200.93403593120877, -582.1047026736608, 426.5167172917834, -619.134259019544, -263.05639721176414, -248.08778867493825, 134.48104437403583, -354.5999547012342, -808.3027212205213, 280.815751528997, -421.8355498373909, -511.5607400193844, -117.57271599326894, -345.1030203143068, -548.6298025686554, -5.090248857047973, -522.6087890741037, -77.05780993832687, -401.34014260167993, -651.5253267727887, -600.1397160583165, 357.7806160203756, 245.50604218242003, -973.2140281845229, -740.8999939169286, 175.9126538371887, 342.788443247033, -386.55164414382074, 842.4351975653649, 159.4604040319803, 414.46513993246094, 102.63680805855708, 884.7294480500939, -731.7891939880237, -967.6301843145602, 364.430313344837, -299.37336725738646, -360.47202354027183, -897.3648123039479, 62.765553401068274, 290.3269420148847, -709.0491111044894, 353.027022050115, -442.36173152806225, 762.755207387547, -546.7935437220282, 572.7952391105011, 317.6415827612174, 440.2117628302442, 169.29724300438406, -700.5861947890012, -262.0580070492727, -503.8807415690319, 416.24691710752865, 432.52561673547, -1138.7454011384443, 365.77891575276135, 156.46740752043237, 796.892042168061, -713.2525160199978, 169.14410149085418, 420.85936859614424, -1008.1517285173336, -983.3749565231826, -566.2196395509671, 428.64975497254386, 132.81326453006136, -603.583927825059, -776.1444103337109, 445.99171080279325, -489.84388599931975, -165.07799113837228, -917.2070034636549, 610.8608532684954, 16.288684756516844, 214.95075613272047, -421.0135991096744, 308.301774158306, -853.8124606987877, -522.1625572138659, 730.3353475436901, 417.68718719687627, 40.42392709435862, 425.4959159785659, 481.55412462797335, 130.12536389526096, -681.1114558930597, 95.65818296477033, 550.8599060941527, 81.74074113686329, 290.86806734324216, -374.9260451243865, 66.0804572186016, 628.3203535247928, 133.13384682075917, -420.71741162862173, 565.3132513902394, -364.13209759971335, -665.231114576834, 219.15553000175794, -962.936573035246, 547.0848842929943, 516.5225733785852, -603.5053936434504, 46.7232015285677, -852.2602228499708, 672.3846975471479, -341.41692050766994, -810.3343014765632, 650.8230263711562, 591.81768537733, 176.62690388930014, 247.57457755514244, 31.659923944458875, 296.9434387075352, 103.99504015768966, -87.76131502244061, 436.7730589888517, -544.894960688546, -772.7929931770824, -833.089272998195, -268.7499719577943, -843.5333511426081, -100.48516740764539, 762.970040758263, 368.29248890139246, -97.2822485946646, -605.1252299052933, -414.44154493952817, 25.98091939547723, 330.1904322970822, -193.51563088579667, 251.84935954540586, -739.0208626350761, 653.4670276720952, -350.1941281513756, 623.300142726508, -189.05958442090125, -918.6343387442391, -391.73236597509094, 633.2155072779602, 15.633123461275645, 980.7626019813114, 313.03066718033165, -235.35026837185873, 125.65953831764278, -82.48056613291308, -573.5599386916543, 104.02376401891601, -257.78277755737054, 73.70077376842103, 405.31339731067453, -1001.9510836923193, -823.4704699213921, -427.97600236573203, -700.4041132741512, 100.37796708575955, 278.85878127176545, 153.68539120282162, 674.7098050432677, 152.80127719998904, -965.5528268798022, 760.5716278485604, -251.20145050921073, 504.93621814947073, 18.56858641934653, -58.96358269284292, 173.88049526904172, 655.8786791374239, -969.8032256392446, 148.8514667579003, 1019.3482103256343, 385.8962188534609, -554.763301899466, 148.13190085214646, -395.75620335768224, 469.6701953436255, 462.14039616523013, 901.410484239471, -773.3128950767826, -626.5713309263195, 733.7000632725062, -278.51780953912015, 40.689904698276365, 170.13874307062568, -750.9979984207494, 665.2053869718607, 15.94807890883297, 792.0074629956118, -332.8026009264359, -923.5034475810802, -27.80894322225477, -857.8886449972375, 11.288681891992226, -389.7258274059483, 24.76894764976052, 395.6881869698127, 295.7007146491158, 781.3838227175606, 517.9225722823676, -725.5498642819962, 66.08188053442612, -525.7563411786267, -3.612077160766134, 598.6492794715313, 149.2097386572396, 492.9206687798663, -474.51297440627053, 21.72249579990438, 169.88360526266956, -8.59625102211372, -202.63769435007714, 668.1315702215918, -485.6924654136829, 489.22393990815124, 372.49225130128707, 908.5224438258707, -516.8335447641211, 443.1434276391351, 60.20604494496462, -536.0326356148591, -35.96376048394458, 311.24225242346586, -591.2790655069435, 301.30482276802593, -168.61602944575586, -892.5631521181269, -263.9572469867225, -674.3863788466821, -678.4761479483655, -599.1144882977267, 159.58211067402226, -7.578530937327685, 174.3545536838083, 455.0432204002335, 149.9894648176387, 398.9844838828246, -8.170259242220794, 378.3729430856815, -553.659651369491, -98.34193761116835, 202.99023347972246, 336.72122112932834, -508.1896604196354, 797.2720453962635, 379.5858248987531, -951.7838906692627, -536.7681895029266, -988.7839739689227, -503.46695203536825, 119.67522963393031, 107.12044929862886, 638.3409178541057, -321.20198354939464, 95.58156943361436, -796.0557231611558, 865.9058104205774, -442.364807422085, -3.6579406045691787, -720.1725146886096, 68.67138693380817, -236.379471899456, 270.57028605081837, -577.773563149846, -920.4898580849358, -45.37546171319383, 621.4398462254674, 474.856927973074, -102.29653380856061, -630.2723731794907, -219.79273271538216, -497.5235796295297, 827.052329965008, -474.1888435662366, 92.66088871582303, 220.84967874326284, 429.6830333298121, -288.5379288831183, -707.7281770361981, 245.29301445281422, 42.47617556614085, 35.20941523300952, 328.838057529235, 206.46003945174243, -626.586686093822, 588.6095816539116, 516.9590934363766, -392.0665369975456, -60.57159790768938, 260.1072264201397, 353.20128612221015, 15.80840601100877, 657.946817949684, -705.0678514446024, -89.15337057125845, -882.5484771330472, 422.2906856114247, 323.0742804005689, -496.45543647346267, -30.49043507812732, 730.3592616454623, -133.47143218276838, 158.5183433478993, -115.68181648418789, 312.11205736717034, 351.6569419579396, -258.3778000709758, -523.1960704726818, 97.23996269000635, -819.8520083293761, 298.1133370078869, 453.4679466556433, 21.970459142839402, -787.5251191361169, 282.468365971959, -36.05603263711839, 554.6537501769119, 294.7973165883674, 563.1342390186533, 109.5270578886397, 223.49668212261966, 229.67586730145337, 450.9047242115306, 313.5549808746769, 263.14612975669075, 28.300049472305588, -46.54052469780311, -473.1305126233945, 14.570046024001186, 145.52300947593798, 555.3307240343078, 169.92922987580934, 125.63559913920372, 435.6366881134781, -507.2419354921261, -189.65225237442928, -225.72576953043827, 133.35280244299827, -179.41673797239892, 71.77892150630689, -382.7757923207379, -451.90077825447503, 183.1610490316841, 551.8016190914745, 686.8625848454329, -566.856300743727, -432.98556544433416, -408.42530042267447, -47.68992454715402, 42.59981177990443, 286.2080046236483, -392.63409956553284, 396.08229195718684, 162.63579135750314, -310.66903622952464, -825.1870818269349, -77.46342342554757, 160.56926516237343, -225.38937983507435, 400.43714579054483, -689.517481474292, -424.689836157973, 152.4032396966998, 405.47459714614575, 201.94111591265215, -452.2138064277188, 836.967610569437, -132.77905254372803, 371.212744494412, -416.6521122304722, -515.7277866538479, 232.1552957228488, -491.8320946511016, -196.92543653276454, 630.4351911888093, 136.8123597067539, 393.4458887519988, 425.5027796847736, -197.59345096060517, 309.4522617764474, 392.99588853712885, -283.0023003251462, 535.9845450099195, -88.26553138252407, -231.64263260818575, 220.11615556714256, -88.41386360028551, -381.5857318811505, -126.14699911253447, 142.58155977033803, 397.56348531384435, -18.305869020715846, 126.41618154589587, -998.1723972868414, -248.89275845956843, 67.08329691185239, -106.55574980356816, 1246.7429676192105, 669.9834661291394, -353.16108532237615, 144.21670199889266, 17.460699488131496, -459.8570669150968, -78.39650348737851, 106.16174644250243, 660.7581702180889, 414.2244310964758, -1037.8280906605082, -79.51550576875933, -81.4328678416322, 72.60695000284244, -642.0590782110035, -381.5518891741949, 167.9612564798987, 189.9601635849596, -716.8553272199242, -60.25845450916057, -403.3261199678912, -152.12275998377007, 452.8558184100693, -459.70143865232103, -979.7394135183413, 180.65161316805035, -369.60109490055993, -3.040567075508644, -176.76821055918091, 583.1689320961088, -740.4028464658502, 328.4356768551582, -375.33005880646806, 870.1520792450704, -20.046549738528515, -115.9766459050714, -365.24661354227, 117.43674209287022, 224.37234936628641, -422.29713950464674, 283.3074084097856, -420.24560852227376, 335.4456862916827, 572.3391445993007, 449.05915570621613, -173.89531604390012, 222.38888178194665, 371.6864027013377, 223.45643556830476, 421.69165310106234, 190.45960011007546, 623.2046975020569, 751.9375723287552, 864.5334657951103, -775.0639107243317, 218.19451306126084, 19.931376410065234, 198.58277546950276, -701.1466982664251, 928.8718340387737, 66.18260798507254, 785.2870672246196, -350.53157689076227, -662.5007503291774, 85.63724135661263, 78.39941991427744, -126.4160808891764, -92.82725121175255, -623.7591250748214, -928.3329836781602, -724.4318113520591, 500.7838711800248, -1066.7702994524977, -451.9434124789507, 415.71338892242346, 351.38475270005364, 44.045425066990035, 381.203073527793, -937.2777937237504, 701.3081635419587, -718.3316486406382, 908.2618942838735, -754.8823477143876, -597.066865102482, 445.3971776211622, -77.50371661212827, -939.6990290013271, 39.94926854665984, -187.33989783531518, -762.7535127690827, 263.00244172515016, 221.9450475149541, 611.4481711927855, -521.1924533696648, -36.79502676684547, 515.8537828435594, -763.397840954105, 549.2218669394161, 263.1320467708703, 669.3699249754134, -238.8350588990142, 794.6329569088914, -302.10877008547925, -945.6977263636167, 33.660077805086075, -856.5722943159813, 9.595937986770991, 802.9465991878258, 453.3345355517129, -441.2242035313311, 425.13958758625245, 889.3328425183206, -195.95837387297377, -532.5888361363202, 428.51343687553697, 446.6369611998903, -178.94911509409948, -399.30911496534713, 407.69612295212295, -82.32196125041472, 164.58059505708428, -96.2577928405338, -494.74492102129983, -897.0156844010207, 111.63092171050562, 721.2450869373546, -155.36763493219217, 625.7792336981545, 32.641826024266834, 73.6096940545359, 364.0102053924602, 354.8022799581776, 109.31040496773177, -630.8923659004288, -822.3979257922269, -807.1833826344752, 196.52579228755474, -827.8233537061021, 132.41714416312, 643.1977004695469, -132.14260946189802, 347.0736214987668, -869.1954598468267, -861.3304697969837, -68.69171651080948, -848.5059504104324, 19.584521317182066, 370.74164504765133, 786.8735677267434, 382.11424944248546, 116.10837900288325, 212.73763152122794, -385.5522201073813, 383.17002602787295, -39.96335165680577, -635.2548865135146, -4.103458542724695, 17.27416132382656, -96.16670262416905, 333.0775013612888, 45.87728826336536, 758.9754643752572, 17.980854074970352, 173.42027542280823, 297.3613336614182, 353.1638888113553, 4.832892514359656, 604.2901666231334, 398.72270320952435, -876.1670195650655, -639.797343675912, -366.04906499741537, 738.4111158794772, 356.9669961813039, 471.99473120419646, 311.3925010059109, -327.86212187735345, 1005.1128570567306, -340.6856918089601, 193.5216002191716, -639.3821983942122, 51.606588385836545, -628.3112777461663, -771.0461424352723, 521.2440993009766, 676.3604614521267, -413.520499799017, 716.3630397991841, -897.8727676052323, -882.7051298835355, -610.9591776634583, 412.8324720259298, 211.75714958139451, -911.2793076709313, -309.7270721001091, 487.58070598099107, -748.1941391316154, -878.5132273465822, -953.655408300963, 524.7146920713133, 397.9513620019014, -874.0043188617982, -132.62724593329784, 832.5404085985606, -279.3404196433564, 993.2966733131967, 671.7012758475676, -896.8003099455394, 559.149229318483, -21.82588001880667, 408.02694921041507, 83.79273813865987, -672.7714103401911, -534.3769362879773, -857.9446931642375, -508.8164038942482, 342.9639431167917, -475.2579449846034, -390.085411010435, 398.29770652495034, -584.8247476468729, 489.65684606364164, -495.3066368283408, 673.6514978081002, 347.816231179408, 490.2798775212557, 370.2211358619904, 474.9238020934516, 499.9465707002208, 69.45575371313731, 470.78902172803555, -256.3809819450685, -143.02416893279928, 621.8059686865965, 345.1100727562758, 268.32175388011353, -109.61968736287574, 569.574090617377, -53.58805815248529, -761.1086319849238, 261.04902122571747, 711.4927014042717, 47.099494581611225, 271.47682141125756, -1002.019480584023, 239.17088563185558, 103.24390082624907, 141.3001912506561, 322.32809305594105, 752.1640001565243, 64.16753147349753, 144.23299069200638, -309.82634248434425, -710.3425513487593, -217.2637812636728, 784.5889231932467, -84.3484139486395, 585.3930813450628, -660.5547513272365, 839.8798676917652, -145.83463657772353, -970.7113637719641, -49.16349369050454, 231.4361320865057, 81.2911454630561, 498.2061249366508, 90.8342970870311, 37.28976921057706, -153.13937326660226, 386.3498385496189, -582.7650528486593, -115.02852750258654, 209.00610191167058, 297.8579009193255, 171.39861686040297, -852.1880076052951, -916.9294074941893, -702.8635447172684, -94.22067369776434, 605.1711205967867, -229.7006384223033, 634.1380672567891, -230.55417038085884, -736.0847622040834, -151.08767047585613, 202.95227861641692, 134.0456785407406, 254.25535190575448, 61.95838040319711, 374.90663398677464, -340.52252854276924, 204.68826662663366, -456.7236492560294, 636.3393745743474, -71.80691291711507, -973.6309035733991, 391.6112569915276, 307.96162231356533, -730.4441631883764, -554.9427681864627, -226.4707178478571, -930.8306851254874, -254.21934940881388, 198.1348731937354, -552.3800485628942, -1025.3724799225538, 355.2466371114756, 368.9530272612898, -704.1837055669354, 878.0662337983892, 819.4224700629138, 128.4181557692781, 274.4896352164859, -467.53470741369847, 430.9061865914089, -557.8015516477924, -134.86795642642844, 136.3341680415334, 135.90671006812903, 45.05109234739044, 187.2545983437363, -1028.0087194981427, 263.8253199419683, 744.8677835500262, 1107.9562925091136, 202.27861513508049, -98.1354771366278, 30.27357220924297, -547.7814806952645, 262.81955375054815, 545.6205492443314, -193.28358342659672, -782.8898174666513, 861.783267700268, -996.6393436271347, -940.8736614454606, -504.88154581320646, 639.707528788417, -357.03238048545677, 410.59644885889765, 136.91714950476052, -759.0115174967691, -396.92632677706985, 538.1615988930278, 703.199194500567, -375.2198195708873, -43.00224696330916, 338.4790587336289, -35.4593590420391, -458.3314676710094, 488.80671264437245, 163.2463971495538, 231.32384110509614, -844.2822956435662, -86.5699600718687, -773.1991170088739, 226.74473625521046, 261.6919024887902, 202.49990421118872, 673.9915162593227, 281.7325174159171, -866.8736267066824, -909.0246633678628, 421.3293498120006, 312.9594261974054, 958.2321965101573, -368.3917735423137, 399.7873777431055, -374.41905545768236, -681.119250701988, 323.11902546570764, 727.9437516168815, -736.2525883858079, 248.9471333524848, -146.73730983509827, -938.1187153479801, 264.5206343113965, 26.617986988172362, -277.2654746698599, 1085.3928117786395, 320.4830694791034, 606.650418579151, -641.279659908174, -782.5566327573478, -755.5971900932767, 521.0025088778517, 219.70538587845272, -267.3840788092609, 194.2992432656447, -526.901461113614, -725.2784080282911, 675.3101525829965, 145.72836027953988, 641.2661357600404, -673.7822327117158, 268.07863091743724, -686.9980102161621, 500.2676704824064, -547.8315219790087, -751.6282389910755, -663.3724624509446, 187.3280770015983, 286.42121730698426, -1003.3492106087567, 595.3386063403781, 868.1221695023441, 47.266080529036145, -271.2885018809924, -561.1730520661674, 285.78957352581597, -781.6538490747221, 159.5014024066661, -606.8403282406747, 692.4208647087016, 636.708484997848, 440.58032152203333, 420.0664324481743, -751.0803683085993, -671.3584692152726, 154.82100766536013, -48.11324379327182, 977.4260834945665, 280.3224127411814, -719.7214635888602, -206.71351868754553, -838.516031622602, -743.7227238803123, 416.4330168898061, 160.22111492085756, -885.9942526708741, -441.0806344304027, 509.81052520635455, -658.2106007329476, -1059.0642497990007, -624.1218402424953, -169.06886564147925, 296.993416862927, 209.6102675745674, 47.71436746982229, 584.1005162569173, 33.964545967670674, 511.38325538605443, -268.922032031174, 890.5932015793662, -155.81461374012991, 146.80899626211456, -28.181374624918618, 700.0227420156293, 88.23474493428067, 451.03211873377023, -213.91241905773376], \"name\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"mode\": \"markers\", \"text\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"showlegend\": true, \"marker\": {\"size\": 8, \"color\": [0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1, 2, 4, 3, 2, 7, 3, 8, 6, 9, 0, 5, 6, 0, 7, 6, 1, 8, 7, 9, 3, 9, 8, 5, 9, 3, 3, 0, 7, 4, 9, 8, 0, 9, 4, 1, 4, 4, 6, 0, 4, 5, 6, 1, 0, 0, 1, 7, 1, 6, 3, 0, 2, 1, 1, 7, 9, 0, 2, 6, 7, 8, 3, 9, 0, 4, 6, 7, 4, 6, 8, 0, 7, 8, 3, 1, 5, 7, 1, 7, 1, 1, 6, 3, 0, 2, 9, 3, 1, 1, 0, 4, 9, 2, 0, 0, 2, 0, 2, 7, 1, 8, 6, 4, 1, 6, 3, 4, 5, 9, 1, 3, 3, 8, 5, 4, 7, 7, 4, 2, 8, 5, 8, 6, 7, 3, 4, 6, 1, 9, 9, 6, 0, 3, 7, 2, 8, 2, 9, 4, 4, 6, 4, 9, 7, 0, 9, 2, 9, 5, 1, 5, 9, 1, 2, 3, 2, 3, 5, 9, 1, 7, 6, 2, 8, 2, 2, 5, 0, 7, 4, 9, 7, 8, 3, 2, 1, 1, 8, 3, 6, 1, 0, 3, 1, 0, 0, 1, 7, 2, 7, 3, 0, 4, 6, 5, 2, 6, 4, 7, 1, 8, 9, 9, 3, 0, 7, 1, 0, 2, 0, 3, 5, 4, 6, 5, 8, 6, 3, 7, 5, 8, 0, 9, 1, 0, 3, 1, 2, 2, 3, 3, 6, 4, 7, 5, 0, 6, 2, 7, 9, 8, 5, 9, 2, 1, 1, 4, 4, 5, 6, 4, 1, 2, 5, 3, 9, 3, 9, 0, 5, 9, 6, 5, 7, 4, 1, 3, 4, 0, 4, 8, 0, 4, 3, 6, 8, 7, 6, 0, 9, 7, 5, 7, 2, 1, 1, 6, 8, 9, 4, 1, 5, 2, 2, 9, 0, 3, 9, 6, 7, 2, 0, 3, 5, 4, 3, 6, 5, 8, 9, 5, 4, 7, 4, 2, 7, 3, 4, 8, 9, 1, 9, 2, 8, 7, 9, 1, 8, 7, 4, 1, 3, 1, 1, 0, 2, 3, 9, 4, 9, 2, 1, 6, 8, 4, 7, 7, 4, 4, 9, 2, 5, 7, 2, 4, 4, 2, 1, 9, 7, 2, 8, 7, 6, 9, 2, 2, 3, 8, 1, 6, 5, 1, 1, 0, 2, 6, 4, 5, 8, 3, 1, 5, 1, 9, 2, 7, 4, 4, 4, 8, 1, 5, 8, 9, 5, 6, 7, 9, 9, 3, 7, 0, 9, 0, 6, 6, 2, 3, 9, 0, 7, 5, 4, 8, 0, 9, 4, 1, 2, 8, 7, 1, 2, 6, 1, 0, 3, 0, 1, 1, 8, 2, 0, 3, 9, 4, 0, 5, 0, 6, 1, 7, 7, 8, 1, 9, 2, 0, 5, 1, 2, 2, 7, 3, 5, 4, 9, 7, 1, 8, 3, 9, 6, 0, 3, 1, 1, 2, 6, 3, 5, 7, 6, 8, 3, 9, 5, 8, 5, 7, 6, 1, 1, 3, 1, 7, 5, 5, 5, 2, 5, 8, 7, 0, 9, 7, 7, 5, 0, 9, 0, 0, 8, 9, 2, 4, 8, 1, 6, 1, 6, 5, 1, 8, 3, 4, 0, 5, 5, 8, 3, 6, 2, 3, 9, 2, 1, 1, 5, 2, 1, 3, 2, 8, 7, 3, 7, 2, 4, 6, 9, 7, 2, 4, 2, 8, 1, 1, 3, 8, 4, 0, 6, 5, 9, 3, 0, 9, 2, 4, 7, 1, 2, 9, 4, 2, 6, 1, 8, 9, 0, 6, 6, 7, 9, 9, 8, 0, 1, 4, 4, 6, 7, 1, 5, 7, 0, 3, 5, 8, 4, 7, 1, 2, 5, 9, 5, 6, 7, 5, 9, 8, 8, 3, 6, 9, 7, 0, 7, 5, 7, 1, 1, 0, 7, 9, 2, 3, 7, 3, 2, 4, 1, 6, 2, 7, 5, 5, 7, 4, 0, 2, 6, 3, 6, 4, 0, 4, 2, 6, 0, 0, 0, 0, 3, 1, 6, 2, 2, 3, 1, 4, 1, 5, 4, 6, 4, 7, 2, 8, 7, 9, 2, 0, 5, 1, 4, 2, 8, 3, 2, 4, 1, 5, 4, 6, 0, 7, 9, 8, 4, 9, 8, 0, 1, 1, 0, 2, 2, 3, 2, 4, 4, 5, 8, 6, 5, 7, 7, 8, 8, 9, 7, 4, 7, 3, 2, 0, 8, 6, 8, 6, 1, 6, 8, 9, 4, 0, 9, 0, 4, 1, 5, 4, 7, 5, 3, 7, 4, 9, 8, 5, 8, 6, 3, 8, 6, 9, 9, 1, 8, 3, 5, 8, 6, 5, 9, 7, 2, 5, 0, 8, 5, 1, 1, 0, 9, 1, 8, 6, 7, 0, 9, 3, 0, 8, 8, 9, 6, 7, 8, 4, 7, 5, 9, 2, 6, 7, 4, 5, 9, 2, 3, 1, 6, 3, 9, 2, 2, 5, 6, 8, 0, 7, 7, 1, 9, 8, 7, 0, 9, 9, 4, 6, 2, 8, 5, 1, 4, 1, 5, 5, 1, 7, 3, 6, 4, 3, 2, 5, 6, 4, 4, 0, 4, 4, 6, 7, 2, 4, 3, 3, 8, 0, 0, 3, 2, 2, 9, 8, 2, 3, 7, 0, 1, 1, 0, 2, 3, 3, 8, 4, 3, 5, 7, 6, 4, 7, 7, 8, 5, 9, 7, 0, 3, 1, 6, 2, 4, 3, 4, 4, 7, 5, 9, 6, 9, 0, 7, 1, 4, 2, 7, 3, 6, 7, 5, 8, 4, 5, 5, 2, 7, 1, 1, 5, 6, 8, 5, 8, 4, 0, 7, 9, 9, 2, 9, 7, 7, 8, 7, 4, 2, 6, 9, 1, 7, 0, 6, 4, 2, 5, 7, 0, 7, 1, 0, 3, 7, 6, 5, 0, 6, 1, 5, 1, 7, 8, 5, 0, 3, 4, 7, 7, 5, 7, 8, 6, 9, 3, 8, 6, 1, 0, 9, 7, 1, 3, 0, 5, 6, 4, 4, 2, 4, 4, 3, 1, 7, 7, 6, 0, 3, 6, 0, 7, 1, 1, 4, 9, 4, 3, 4, 8, 2, 2, 1, 8, 7, 0, 8, 1, 0, 7, 6, 3, 7, 7, 5, 8, 8, 9, 0, 0, 4, 1, 5, 2, 2, 3, 9, 4, 9, 5, 0, 6, 7, 7, 1, 8, 0, 2, 2, 0, 4, 1, 1, 2, 7, 3, 9, 7, 2, 8, 1, 9, 5, 8, 8, 1, 9, 8, 3, 1, 6, 5, 7, 4, 2, 7, 0, 3, 0, 4, 1, 1, 7, 9, 1, 1, 8, 5, 7, 5, 0, 6, 6, 0, 4, 1, 2, 3, 4, 4, 6, 8, 0, 9, 5, 8, 7, 0, 3, 5, 4, 5, 9, 6, 7, 1, 9, 6, 1, 3, 8, 3, 9, 1, 2, 7, 7, 7, 0, 2, 3, 1, 1, 4, 2, 5, 6, 0, 9, 6, 2, 8, 9, 2, 3, 3, 6, 9, 1, 4, 3, 3, 0, 7, 7, 1, 7, 7, 3, 6, 4, 9, 5, 4, 4, 2, 7, 9, 0, 9, 8, 4, 4, 9, 1, 2, 4, 9, 3, 0, 4, 1, 6, 2, 6, 3, 7, 4, 2, 6, 6, 7, 1, 8, 9, 0, 4, 1, 4, 2, 1, 3, 6, 4, 6, 7, 5, 8, 7, 0, 5, 1, 4, 2, 8, 4, 7, 7, 3, 8, 4, 9, 5, 8, 6, 7, 3, 4, 6, 7, 1, 7, 4, 3, 3, 9, 8, 8, 1, 8, 6, 3, 1, 1, 3, 5, 2, 8, 4, 2, 9, 7, 1, 4, 8, 2, 9, 6, 4, 1, 3, 4, 2, 5, 2, 5, 6, 8, 0, 6, 2, 4, 9, 4, 9, 4, 5, 1, 5, 8, 4, 7, 9, 5, 9, 5, 9, 1, 5, 8, 3, 9, 9, 1, 8, 3, 8, 6, 5, 2, 7, 2, 7, 6, 0, 9, 7, 9, 4, 6, 0, 5, 3, 5, 7, 3, 9, 3, 6, 8, 3, 1, 7, 6, 5, 5, 7, 6, 5, 8, 2, 1, 7, 9, 2, 7, 3, 6, 7, 8, 5, 3, 7, 7, 8, 4, 0, 7, 3, 0, 6, 3, 9, 7, 1, 9, 5, 3, 6, 0, 9, 2, 8, 0, 9, 1, 6, 0, 0, 1, 9, 0, 0, 4, 2, 1, 7, 0, 3, 4, 4, 7, 5, 9, 8, 2, 0, 0, 8, 6, 2, 2, 7, 6, 1, 2, 9, 2, 6, 9, 7, 9, 5, 0, 8, 1, 5, 2, 4, 3, 9, 4, 7, 5, 6, 6, 7, 7, 6, 8, 5, 9, 7, 0, 6, 1, 9, 2, 3, 3, 5, 4, 3, 5, 8, 6, 3, 7, 2, 8, 4, 9, 5, 0, 2, 1, 4, 2, 4, 3, 1, 7, 1, 8, 0, 9, 6, 8, 1, 9, 4, 4, 9, 1, 8, 9, 6, 5, 5, 3, 3, 0, 1, 4, 3, 8, 3, 4, 2, 0, 7, 5, 5, 1, 8, 5, 3, 4, 6, 0, 5, 7, 2, 6, 6, 0, 1, 1, 4, 7, 9, 0, 0, 6, 6, 8, 6, 9, 4, 5, 2, 4, 0, 7, 5, 6, 5, 0, 9, 8, 6, 1, 9, 7, 5, 7, 5, 1, 1, 3, 0, 2, 0, 3, 8, 1, 6, 4, 6, 2, 6, 4, 8, 8, 1, 4, 4, 7, 1, 2, 2, 3, 9, 6, 4, 9, 5, 6, 2, 3, 9, 2, 6, 2, 7, 4, 3, 6, 4, 9, 7, 0, 2, 2, 9, 5, 4, 5, 0, 1, 4, 3, 6, 3, 2, 9, 7, 5, 3, 7, 0, 9, 5, 8, 3, 2, 0, 1, 8, 3, 0, 1, 2, 3, 4, 0, 0, 1, 7, 2, 9, 3, 9, 4, 2, 5, 8, 6, 7, 7, 9, 8, 9, 9, 2, 0, 0, 1, 4, 2, 4, 3, 9, 4, 3, 5, 7, 6, 5, 7, 1, 8, 6, 9, 3, 0, 4, 1, 2, 2, 5, 3, 7, 4, 1, 7, 7, 8, 1, 9, 2, 3, 2, 4, 0, 1, 8, 4, 3, 6, 5, 6, 4, 7, 9, 3, 1, 3, 0, 2, 1, 1, 0, 9, 9, 4, 6, 7, 6, 3, 5, 5, 4, 4, 6, 9, 1, 1, 3, 1, 1, 0, 5, 1, 4, 4, 6, 6, 6, 0, 1, 2, 0, 8, 2, 2, 1, 1, 3, 7, 9, 5, 3, 0, 2, 0, 6, 2, 9, 0, 7, 6, 9, 9, 1, 2, 9, 3, 4, 7, 9, 6, 0, 9, 4, 8, 7, 7, 9, 8, 6, 9, 5, 2, 2, 2, 3, 9, 8, 8, 8, 6, 4, 4, 4, 4, 2, 4, 6, 0, 7, 0, 7, 8, 2, 0, 8, 8, 3, 6, 8, 6, 6, 8, 6, 5, 1, 1, 8, 7, 8, 3, 6, 8, 9, 5, 0, 0, 0, 3, 2, 6, 6, 7, 8, 3, 5, 1, 4, 3, 5, 9, 4, 5, 4, 1, 1, 5, 4, 0, 9, 7, 1, 2, 5, 7, 9, 4, 0, 3, 6, 1, 7, 7, 5, 6, 3, 0, 1, 1, 4, 2, 4, 3, 6, 4, 7, 5, 7, 6, 9, 7, 2, 8, 4, 9, 8, 0, 7, 1, 1, 2, 3, 3, 5, 4, 6, 5, 0, 6, 3, 7, 3, 8, 2, 9, 0, 0, 9, 1, 2, 2, 9, 3, 9, 4, 6, 5, 2, 6, 6, 7, 6, 8, 2, 9, 2, 0, 6, 7, 2, 8, 6, 9, 0, 9, 6, 0, 3, 1, 1, 4, 9, 5, 8, 1, 0, 6, 6, 7, 2, 3, 4, 2, 3, 9, 0, 0, 4, 5, 0, 6, 4, 7, 4, 3, 1, 9, 3, 9, 9, 3, 1, 8, 7, 1, 7, 2, 8, 9, 9, 6, 2, 7, 2, 5, 0, 6, 7, 3, 9, 5, 9, 0, 8, 5, 8, 4, 9, 0, 5, 3, 2, 4, 8, 7, 4, 1, 5, 4, 6, 3, 7, 7, 9, 6, 6, 2, 2, 1, 6, 5, 4, 5, 3, 0, 5, 5, 2, 0, 5], \"colorscale\": \"Jet\", \"showscale\": false, \"line\": {\"width\": 2, \"color\": \"rgb(255, 255, 255)\"}, \"opacity\": 0.8}}], {\"hovermode\": \"closest\", \"xaxis\": {\"title\": \"First Linear Discriminant\", \"ticklen\": 5, \"zeroline\": false, \"gridwidth\": 2}, \"yaxis\": {\"title\": \"Second Linear Discriminant\", \"ticklen\": 5, \"gridwidth\": 2}, \"showlegend\": false, \"title\": \"Principal Component Analysis (PCA)\"}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import display, Math, Latex\n", "\n", "# Using the Plotly library again\n", "traceDIM = go.Scatter(\n", " x = X_train_red[:,0],\n", " y = X_train_red[:,1],\n", " name = y_train,\n", " mode = 'markers',\n", " text = y_train,\n", " showlegend = True,\n", " marker = dict(\n", " size = 8,\n", " color = y_train,\n", " colorscale ='Jet',\n", " showscale = False,\n", " line = dict(\n", " width = 2,\n", " color = 'rgb(255, 255, 255)'\n", " ),\n", " opacity = 0.8\n", " )\n", ")\n", "data = [traceDIM]\n", "\n", "layout = go.Layout(\n", "# title= title,\n", " hovermode= 'closest',\n", " xaxis= dict(\n", " title= 'First Linear Discriminant',\n", " ticklen= 5,\n", " zeroline= False,\n", " gridwidth= 2,\n", " ),\n", " yaxis=dict(\n", " title= 'Second Linear Discriminant',\n", " ticklen= 5,\n", " gridwidth= 2,\n", " ),\n", " showlegend= False\n", ")\n", "\n", "if ( dimensionality_reduction_method == \"lda\"):\n", " title = 'Linear Discriminant Analysis (LDA)'\n", "elif ( dimensionality_reduction_method == \"pca\" ):\n", " title = 'Principal Component Analysis (PCA)'\n", "elif ( dimensionality_reduction_method == \"tsne\" ):\n", " title = 'TSNE (T-Distributed Stochastic Neighbour Embedding)'\n", "\n", "layout.title=title\n", "\n", "fig = dict(data=data, layout=layout )\n", "py.iplot(fig, filename='styled-scatter')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above plot shows how the method results or not in separated classes. The LDA is made to maximize the class separation while the PCA maximizes the class variance. Here I chose PCA that results in not so clearly separated classes, to see this plot within LDA set method=1 above." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>label</th>\n", " <th>pixel1</th>\n", " <th>pixel2</th>\n", " <th>pixel3</th>\n", " <th>pixel4</th>\n", " <th>pixel5</th>\n", " <th>pixel6</th>\n", " <th>pixel7</th>\n", " <th>pixel8</th>\n", " <th>pixel9</th>\n", " <th>...</th>\n", " <th>pixel775</th>\n", " <th>pixel776</th>\n", " <th>pixel777</th>\n", " <th>pixel778</th>\n", " <th>pixel779</th>\n", " <th>pixel780</th>\n", " <th>pixel781</th>\n", " <th>pixel782</th>\n", " <th>pixel783</th>\n", " <th>pixel784</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 785 columns</p>\n", "</div>" ], "text/plain": [ " label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n", "0 2 0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 0 0 \n", "3 4 0 0 0 0 0 0 0 0 \n", "4 1 0 0 0 0 0 0 0 0 \n", "\n", " pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 \\\n", "0 0 ... 0 0 0 0 0 \n", "1 0 ... 0 0 0 0 0 \n", "2 0 ... 0 0 0 0 0 \n", "3 0 ... 0 0 0 0 0 \n", "4 0 ... 0 0 0 0 0 \n", "\n", " pixel780 pixel781 pixel782 pixel783 pixel784 \n", "0 0 0 0 0 0 \n", "1 0 0 0 0 0 \n", "2 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "4 0 0 0 0 0 \n", "\n", "[5 rows x 785 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test = pd.read_csv('./datasets/mnist_test.csv')\n", "test.columns=columns\n", " \n", "test.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# save the labels to a Pandas series target\n", "y_test = test['label']\n", "# Drop the label feature\n", "X_test = test.drop(\"label\",axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now predict in the test set.\n", "Note that the LDA implementation in sklearn contains a predict feature that we test below, if not LDA then we skip this.\n", "\n", "Remember the precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Total of true positives:\n", "from sklearn.metrics import precision_score\n", "\n", "#Only LDA has the prediction method:\n", "if ( dimensionality_reduction_method == \"lda\"):\n", " y_pred = reduction_method.predict(X_test.values) \n", "\n", "#Precision score for test dataset:\n", " print(\"Precision score for test dataset: \\n\")\n", " precision_score(y_test, y_pred, average='micro')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X_test_red = reduction_method.transform(X_test) \n", "\n", "if ( method == 3 ):\n", " X_test_red1 = reduction_method2.transform(X_test_red) \n", " X_test_red=X_test_red1\n", " del X_test_red1\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now lets compare this performance to that of svm methods: linear and polynomial" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Precision score for test dataset: \n", "\n" ] }, { "data": { "text/plain": [ "0.34233423342334235" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn import svm\n", "\n", "from sklearn.metrics import classification_report\n", "\n", "estimator = svm.LinearSVC(C=1.0)\n", "\n", "estimator.fit(X_train_red, y_train) \n", "\n", "y_pred = estimator.predict(X_test_red)\n", "\n", "ntest=y_pred.size\n", "\n", "\n", "#Precision score for test dataset:\n", "print(\"Precision score for test dataset: \\n\")\n", "precision_score(y_test, y_pred, average='micro')\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Precision score for test dataset: \n", "\n" ] }, { "data": { "text/plain": [ "0.87278727872787276" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import\n", "from sklearn.preprocessing import PolynomialFeatures\n", "\n", "poly = PolynomialFeatures(degree=3)\n", "X_train_poly = poly.fit_transform(X_train_red)\n", "X_test_poly=poly.fit_transform(X_test_red)\n", "\n", "estimator.fit(X_train_poly, y_train)\n", "y_pred = estimator.predict(X_test_poly)\n", "\n", "#Precision score for test dataset:\n", "print(\"Precision score for test dataset: \\n\")\n", "precision_score(y_test, y_pred, average='micro')\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Results:\n", "\n", "\n", "For **LDA**: the linear regression performs best with a precision score of ~0.7.\n", "\n", "\n", "For **PCA**: the linear regression performs poor with a precision score of ~0.5.\n", "The accuracy is improved with a polynomial regression, for degree=5 the precision score is ~0.9. For degree higher than 5 the accuracy decreases due to overfitting.\n", "\n", "**PCA on LDA** performs as well as LDA.\n", "\n", "Note these results are particular to this example." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
shareactorIO/pipeline
source.ml/jupyterhub.ml/notebooks/zz_old/TensorFlow/TFLearn/AdversarialWorkshop/Adversarial Workshop - Dropout Classification.ipynb
3
98408
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/ipolosukhin/projects/tf_examples/.env/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n", " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n" ] } ], "source": [ "%matplotlib inline\n", "\n", "import pandas\n", "import random\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy\n", "import scipy.stats\n", "from sklearn import metrics\n", "\n", "import tensorflow as tf\n", "from tensorflow.contrib import layers\n", "from tensorflow.contrib import learn" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Sets logging to INFO to see all information from TensorFlow.\n", "\n", "tf.logging.set_verbosity(tf.logging.INFO)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "BASE_DIR = 'dropout_classification/'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>6</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Moran, Mr. James</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>330877</td>\n", " <td>8.4583</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>McCarthy, Mr. Timothy J</td>\n", " <td>male</td>\n", " <td>54.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>17463</td>\n", " <td>51.8625</td>\n", " <td>E46</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Palsson, Master. Gosta Leonard</td>\n", " <td>male</td>\n", " <td>2.0</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>349909</td>\n", " <td>21.0750</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>9</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)</td>\n", " <td>female</td>\n", " <td>27.0</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>347742</td>\n", " <td>11.1333</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Nasser, Mrs. Nicholas (Adele Achem)</td>\n", " <td>female</td>\n", " <td>14.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>237736</td>\n", " <td>30.0708</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>11</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Sandstrom, Miss. Marguerite Rut</td>\n", " <td>female</td>\n", " <td>4.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>PP 9549</td>\n", " <td>16.7000</td>\n", " <td>G6</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>12</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Bonnell, Miss. Elizabeth</td>\n", " <td>female</td>\n", " <td>58.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>113783</td>\n", " <td>26.5500</td>\n", " <td>C103</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>13</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Saundercock, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>20.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>A/5. 2151</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>14</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Andersson, Mr. Anders Johan</td>\n", " <td>male</td>\n", " <td>39.0</td>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>347082</td>\n", " <td>31.2750</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>15</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Vestrom, Miss. Hulda Amanda Adolfina</td>\n", " <td>female</td>\n", " <td>14.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>350406</td>\n", " <td>7.8542</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>16</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Hewlett, Mrs. (Mary D Kingcome)</td>\n", " <td>female</td>\n", " <td>55.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>248706</td>\n", " <td>16.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>17</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Rice, Master. Eugene</td>\n", " <td>male</td>\n", " <td>2.0</td>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>382652</td>\n", " <td>29.1250</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>18</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Williams, Mr. Charles Eugene</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>244373</td>\n", " <td>13.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>19</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Vander Planke, Mrs. Julius (Emelia Maria Vande...</td>\n", " <td>female</td>\n", " <td>31.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>345763</td>\n", " <td>18.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>20</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Masselmani, Mrs. Fatima</td>\n", " <td>female</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2649</td>\n", " <td>7.2250</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>21</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>Fynney, Mr. Joseph J</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>239865</td>\n", " <td>26.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>22</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Beesley, Mr. Lawrence</td>\n", " <td>male</td>\n", " <td>34.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>248698</td>\n", " <td>13.0000</td>\n", " <td>D56</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>23</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>McGowan, Miss. Anna \"Annie\"</td>\n", " <td>female</td>\n", " <td>15.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>330923</td>\n", " <td>8.0292</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>24</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Sloper, Mr. William Thompson</td>\n", " <td>male</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>113788</td>\n", " <td>35.5000</td>\n", " <td>A6</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>25</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Palsson, Miss. Torborg Danira</td>\n", " <td>female</td>\n", " <td>8.0</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>349909</td>\n", " <td>21.0750</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>26</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>347077</td>\n", " <td>31.3875</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>27</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Emir, Mr. Farred Chehab</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2631</td>\n", " <td>7.2250</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>28</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>Fortune, Mr. Charles Alexander</td>\n", " <td>male</td>\n", " <td>19.0</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>19950</td>\n", " <td>263.0000</td>\n", " <td>C23 C25 C27</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>29</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>O'Dwyer, Miss. Ellen \"Nellie\"</td>\n", " <td>female</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>330959</td>\n", " <td>7.8792</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>30</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Todoroff, Mr. Lalio</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>349216</td>\n", " <td>7.8958</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>861</th>\n", " <td>862</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>Giles, Mr. Frederick Edward</td>\n", " <td>male</td>\n", " <td>21.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>28134</td>\n", " <td>11.5000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>862</th>\n", " <td>863</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Swift, Mrs. Frederick Joel (Margaret Welles Ba...</td>\n", " <td>female</td>\n", " <td>48.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>17466</td>\n", " <td>25.9292</td>\n", " <td>D17</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>863</th>\n", " <td>864</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Sage, Miss. Dorothy Edith \"Dolly\"</td>\n", " <td>female</td>\n", " <td>NaN</td>\n", " <td>8</td>\n", " <td>2</td>\n", " <td>CA. 2343</td>\n", " <td>69.5500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>864</th>\n", " <td>865</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>Gill, Mr. John William</td>\n", " <td>male</td>\n", " <td>24.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>233866</td>\n", " <td>13.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>865</th>\n", " <td>866</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Bystrom, Mrs. (Karolina)</td>\n", " <td>female</td>\n", " <td>42.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>236852</td>\n", " <td>13.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>866</th>\n", " <td>867</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Duran y More, Miss. Asuncion</td>\n", " <td>female</td>\n", " <td>27.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>SC/PARIS 2149</td>\n", " <td>13.8583</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>867</th>\n", " <td>868</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>Roebling, Mr. Washington Augustus II</td>\n", " <td>male</td>\n", " <td>31.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>PC 17590</td>\n", " <td>50.4958</td>\n", " <td>A24</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>868</th>\n", " <td>869</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>van Melkebeke, Mr. Philemon</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>345777</td>\n", " <td>9.5000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>869</th>\n", " <td>870</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Johnson, Master. Harold Theodor</td>\n", " <td>male</td>\n", " <td>4.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>347742</td>\n", " <td>11.1333</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>870</th>\n", " <td>871</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Balkic, Mr. Cerin</td>\n", " <td>male</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>349248</td>\n", " <td>7.8958</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>871</th>\n", " <td>872</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Beckwith, Mrs. Richard Leonard (Sallie Monypeny)</td>\n", " <td>female</td>\n", " <td>47.0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>11751</td>\n", " <td>52.5542</td>\n", " <td>D35</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>872</th>\n", " <td>873</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>Carlsson, Mr. Frans Olof</td>\n", " <td>male</td>\n", " <td>33.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>695</td>\n", " <td>5.0000</td>\n", " <td>B51 B53 B55</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>873</th>\n", " <td>874</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Vander Cruyssen, Mr. Victor</td>\n", " <td>male</td>\n", " <td>47.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>345765</td>\n", " <td>9.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>874</th>\n", " <td>875</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Abelson, Mrs. Samuel (Hannah Wizosky)</td>\n", " <td>female</td>\n", " <td>28.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>P/PP 3381</td>\n", " <td>24.0000</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>875</th>\n", " <td>876</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Najib, Miss. Adele Kiamie \"Jane\"</td>\n", " <td>female</td>\n", " <td>15.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2667</td>\n", " <td>7.2250</td>\n", " <td>NaN</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>876</th>\n", " <td>877</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Gustafsson, Mr. Alfred Ossian</td>\n", " <td>male</td>\n", " <td>20.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>7534</td>\n", " <td>9.8458</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>877</th>\n", " <td>878</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Petroff, Mr. Nedelio</td>\n", " <td>male</td>\n", " <td>19.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>349212</td>\n", " <td>7.8958</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>878</th>\n", " <td>879</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Laleff, Mr. Kristo</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>349217</td>\n", " <td>7.8958</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>879</th>\n", " <td>880</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)</td>\n", " <td>female</td>\n", " <td>56.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>11767</td>\n", " <td>83.1583</td>\n", " <td>C50</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>880</th>\n", " <td>881</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>Shelley, Mrs. William (Imanita Parrish Hall)</td>\n", " <td>female</td>\n", " <td>25.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>230433</td>\n", " <td>26.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>881</th>\n", " <td>882</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Markun, Mr. Johann</td>\n", " <td>male</td>\n", " <td>33.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>349257</td>\n", " <td>7.8958</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>882</th>\n", " <td>883</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Dahlberg, Miss. Gerda Ulrika</td>\n", " <td>female</td>\n", " <td>22.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>7552</td>\n", " <td>10.5167</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>883</th>\n", " <td>884</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>Banfield, Mr. Frederick James</td>\n", " <td>male</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>C.A./SOTON 34068</td>\n", " <td>10.5000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>884</th>\n", " <td>885</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Sutehall, Mr. Henry Jr</td>\n", " <td>male</td>\n", " <td>25.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>SOTON/OQ 392076</td>\n", " <td>7.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>885</th>\n", " <td>886</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Rice, Mrs. William (Margaret Norton)</td>\n", " <td>female</td>\n", " <td>39.0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>382652</td>\n", " <td>29.1250</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " <tr>\n", " <th>886</th>\n", " <td>887</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>Montvila, Rev. Juozas</td>\n", " <td>male</td>\n", " <td>27.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>211536</td>\n", " <td>13.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>887</th>\n", " <td>888</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Graham, Miss. Margaret Edith</td>\n", " <td>female</td>\n", " <td>19.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>112053</td>\n", " <td>30.0000</td>\n", " <td>B42</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>888</th>\n", " <td>889</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n", " <td>female</td>\n", " <td>NaN</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>W./C. 6607</td>\n", " <td>23.4500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>889</th>\n", " <td>890</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Behr, Mr. Karl Howell</td>\n", " <td>male</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>111369</td>\n", " <td>30.0000</td>\n", " <td>C148</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>890</th>\n", " <td>891</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Dooley, Mr. Patrick</td>\n", " <td>male</td>\n", " <td>32.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>370376</td>\n", " <td>7.7500</td>\n", " <td>NaN</td>\n", " <td>Q</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>891 rows × 12 columns</p>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "5 6 0 3 \n", "6 7 0 1 \n", "7 8 0 3 \n", "8 9 1 3 \n", "9 10 1 2 \n", "10 11 1 3 \n", "11 12 1 1 \n", "12 13 0 3 \n", "13 14 0 3 \n", "14 15 0 3 \n", "15 16 1 2 \n", "16 17 0 3 \n", "17 18 1 2 \n", "18 19 0 3 \n", "19 20 1 3 \n", "20 21 0 2 \n", "21 22 1 2 \n", "22 23 1 3 \n", "23 24 1 1 \n", "24 25 0 3 \n", "25 26 1 3 \n", "26 27 0 3 \n", "27 28 0 1 \n", "28 29 1 3 \n", "29 30 0 3 \n", ".. ... ... ... \n", "861 862 0 2 \n", "862 863 1 1 \n", "863 864 0 3 \n", "864 865 0 2 \n", "865 866 1 2 \n", "866 867 1 2 \n", "867 868 0 1 \n", "868 869 0 3 \n", "869 870 1 3 \n", "870 871 0 3 \n", "871 872 1 1 \n", "872 873 0 1 \n", "873 874 0 3 \n", "874 875 1 2 \n", "875 876 1 3 \n", "876 877 0 3 \n", "877 878 0 3 \n", "878 879 0 3 \n", "879 880 1 1 \n", "880 881 1 2 \n", "881 882 0 3 \n", "882 883 0 3 \n", "883 884 0 2 \n", "884 885 0 3 \n", "885 886 0 3 \n", "886 887 0 2 \n", "887 888 1 1 \n", "888 889 0 3 \n", "889 890 1 1 \n", "890 891 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "5 Moran, Mr. James male NaN 0 \n", "6 McCarthy, Mr. Timothy J male 54.0 0 \n", "7 Palsson, Master. Gosta Leonard male 2.0 3 \n", "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n", "9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n", "10 Sandstrom, Miss. Marguerite Rut female 4.0 1 \n", "11 Bonnell, Miss. Elizabeth female 58.0 0 \n", "12 Saundercock, Mr. William Henry male 20.0 0 \n", "13 Andersson, Mr. Anders Johan male 39.0 1 \n", "14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0 \n", "15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0 \n", "16 Rice, Master. Eugene male 2.0 4 \n", "17 Williams, Mr. Charles Eugene male NaN 0 \n", "18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31.0 1 \n", "19 Masselmani, Mrs. Fatima female NaN 0 \n", "20 Fynney, Mr. Joseph J male 35.0 0 \n", "21 Beesley, Mr. Lawrence male 34.0 0 \n", "22 McGowan, Miss. Anna \"Annie\" female 15.0 0 \n", "23 Sloper, Mr. William Thompson male 28.0 0 \n", "24 Palsson, Miss. Torborg Danira female 8.0 3 \n", "25 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38.0 1 \n", "26 Emir, Mr. Farred Chehab male NaN 0 \n", "27 Fortune, Mr. Charles Alexander male 19.0 3 \n", "28 O'Dwyer, Miss. Ellen \"Nellie\" female NaN 0 \n", "29 Todoroff, Mr. Lalio male NaN 0 \n", ".. ... ... ... ... \n", "861 Giles, Mr. Frederick Edward male 21.0 1 \n", "862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48.0 0 \n", "863 Sage, Miss. Dorothy Edith \"Dolly\" female NaN 8 \n", "864 Gill, Mr. John William male 24.0 0 \n", "865 Bystrom, Mrs. (Karolina) female 42.0 0 \n", "866 Duran y More, Miss. Asuncion female 27.0 1 \n", "867 Roebling, Mr. Washington Augustus II male 31.0 0 \n", "868 van Melkebeke, Mr. Philemon male NaN 0 \n", "869 Johnson, Master. Harold Theodor male 4.0 1 \n", "870 Balkic, Mr. Cerin male 26.0 0 \n", "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47.0 1 \n", "872 Carlsson, Mr. Frans Olof male 33.0 0 \n", "873 Vander Cruyssen, Mr. Victor male 47.0 0 \n", "874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28.0 1 \n", "875 Najib, Miss. Adele Kiamie \"Jane\" female 15.0 0 \n", "876 Gustafsson, Mr. Alfred Ossian male 20.0 0 \n", "877 Petroff, Mr. Nedelio male 19.0 0 \n", "878 Laleff, Mr. Kristo male NaN 0 \n", "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 \n", "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0 \n", "881 Markun, Mr. Johann male 33.0 0 \n", "882 Dahlberg, Miss. Gerda Ulrika female 22.0 0 \n", "883 Banfield, Mr. Frederick James male 28.0 0 \n", "884 Sutehall, Mr. Henry Jr male 25.0 0 \n", "885 Rice, Mrs. William (Margaret Norton) female 39.0 0 \n", "886 Montvila, Rev. Juozas male 27.0 0 \n", "887 Graham, Miss. Margaret Edith female 19.0 0 \n", "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n", "889 Behr, Mr. Karl Howell male 26.0 0 \n", "890 Dooley, Mr. Patrick male 32.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S \n", "5 0 330877 8.4583 NaN Q \n", "6 0 17463 51.8625 E46 S \n", "7 1 349909 21.0750 NaN S \n", "8 2 347742 11.1333 NaN S \n", "9 0 237736 30.0708 NaN C \n", "10 1 PP 9549 16.7000 G6 S \n", "11 0 113783 26.5500 C103 S \n", "12 0 A/5. 2151 8.0500 NaN S \n", "13 5 347082 31.2750 NaN S \n", "14 0 350406 7.8542 NaN S \n", "15 0 248706 16.0000 NaN S \n", "16 1 382652 29.1250 NaN Q \n", "17 0 244373 13.0000 NaN S \n", "18 0 345763 18.0000 NaN S \n", "19 0 2649 7.2250 NaN C \n", "20 0 239865 26.0000 NaN S \n", "21 0 248698 13.0000 D56 S \n", "22 0 330923 8.0292 NaN Q \n", "23 0 113788 35.5000 A6 S \n", "24 1 349909 21.0750 NaN S \n", "25 5 347077 31.3875 NaN S \n", "26 0 2631 7.2250 NaN C \n", "27 2 19950 263.0000 C23 C25 C27 S \n", "28 0 330959 7.8792 NaN Q \n", "29 0 349216 7.8958 NaN S \n", ".. ... ... ... ... ... \n", "861 0 28134 11.5000 NaN S \n", "862 0 17466 25.9292 D17 S \n", "863 2 CA. 2343 69.5500 NaN S \n", "864 0 233866 13.0000 NaN S \n", "865 0 236852 13.0000 NaN S \n", "866 0 SC/PARIS 2149 13.8583 NaN C \n", "867 0 PC 17590 50.4958 A24 S \n", "868 0 345777 9.5000 NaN S \n", "869 1 347742 11.1333 NaN S \n", "870 0 349248 7.8958 NaN S \n", "871 1 11751 52.5542 D35 S \n", "872 0 695 5.0000 B51 B53 B55 S \n", "873 0 345765 9.0000 NaN S \n", "874 0 P/PP 3381 24.0000 NaN C \n", "875 0 2667 7.2250 NaN C \n", "876 0 7534 9.8458 NaN S \n", "877 0 349212 7.8958 NaN S \n", "878 0 349217 7.8958 NaN S \n", "879 1 11767 83.1583 C50 C \n", "880 1 230433 26.0000 NaN S \n", "881 0 349257 7.8958 NaN S \n", "882 0 7552 10.5167 NaN S \n", "883 0 C.A./SOTON 34068 10.5000 NaN S \n", "884 0 SOTON/OQ 392076 7.0500 NaN S \n", "885 5 382652 29.1250 NaN Q \n", "886 0 211536 13.0000 NaN S \n", "887 0 112053 30.0000 B42 S \n", "888 2 W./C. 6607 23.4500 NaN S \n", "889 0 111369 30.0000 C148 C \n", "890 0 370376 7.7500 NaN Q \n", "\n", "[891 rows x 12 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load data.\n", "\n", "train = pandas.read_csv('data/titanic_train.csv')\n", "y, X = train['Survived'], train[['Age', 'SibSp', 'Fare']].fillna(0)\n", "train_x, test_x, train_y, test_y = learn.estimators._sklearn.train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "train" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Setting feature info to TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False)\n", "WARNING:tensorflow:Setting targets info to TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False)\n", "INFO:tensorflow:Transforming feature_column _RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)\n", "INFO:tensorflow:Create CheckpointSaver\n", "INFO:tensorflow:Restored model from dropout_classification/linear/model.ckpt-400-?????-of-00001\n", "INFO:tensorflow:Step 401: loss = 0.619374\n", "INFO:tensorflow:Saving checkpoints for 401 into dropout_classification/linear/model.ckpt.\n", "INFO:tensorflow:Saving checkpoints for 500 into dropout_classification/linear/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 0.619366.\n", "WARNING:tensorflow:Given features: Tensor(\"input:0\", shape=(?, 3), dtype=float32), required signatures: TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False).\n", "WARNING:tensorflow:Given targets: Tensor(\"output:0\", shape=(?,), dtype=int64), required signatures: TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False).\n", "INFO:tensorflow:Transforming feature_column _RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)\n", "INFO:tensorflow:Restored model from dropout_classification/linear/model.ckpt-500-?????-of-00001\n", "INFO:tensorflow:Eval steps [0,inf) for training step 500.\n", "INFO:tensorflow:Input iterator is exhausted.\n", "INFO:tensorflow:Saving evaluation summary for 500 step: loss = 0.626126, auc = 0.685425, accuracy/threshold_0.500000_mean = 0.681564, labels/actual_target_mean = 0.363128, recall/positive_threshold_0.500000_mean = 0.246154, labels/prediction_mean = 0.378042, accuracy/baseline_target_mean = 0.363128, precision/positive_threshold_0.500000_mean = 0.666667, accuracy = 0.681564\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'loss': 0.62612557, 'auc': 0.68542516, 'global_step': 500, 'accuracy/threshold_0.500000_mean': 0.68156427, 'labels/actual_target_mean': 0.36312848, 'recall/positive_threshold_0.500000_mean': 0.24615385, 'labels/prediction_mean': 0.37804177, 'accuracy/baseline_target_mean': 0.36312848, 'precision/positive_threshold_0.500000_mean': 0.66666669, 'accuracy': 0.68156427}\n" ] } ], "source": [ "classifier = learn.LinearClassifier(\n", " feature_columns=[layers.real_valued_column('', dimension=3)], model_dir=BASE_DIR + 'linear')\n", "classifier.fit(x=train_x, y=train_y, steps=100)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Given features: Tensor(\"input:0\", shape=(?, 3), dtype=float32), required signatures: TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False).\n", "WARNING:tensorflow:Given targets: Tensor(\"output:0\", shape=(?,), dtype=int64), required signatures: TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False).\n", "INFO:tensorflow:Transforming feature_column _RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)\n", "INFO:tensorflow:Restored model from dropout_classification/linear/model.ckpt-500-?????-of-00001\n", "INFO:tensorflow:Eval steps [0,inf) for training step 500.\n", "INFO:tensorflow:Input iterator is exhausted.\n", "INFO:tensorflow:Saving evaluation summary for 500 step: loss = 0.626126, auc = 0.685425, accuracy/threshold_0.500000_mean = 0.681564, labels/actual_target_mean = 0.363128, recall/positive_threshold_0.500000_mean = 0.246154, labels/prediction_mean = 0.378042, accuracy/baseline_target_mean = 0.363128, precision/positive_threshold_0.500000_mean = 0.666667, accuracy = 0.681564\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>accuracy</th>\n", " <th>accuracy/baseline_target_mean</th>\n", " <th>accuracy/threshold_0.500000_mean</th>\n", " <th>auc</th>\n", " <th>global_step</th>\n", " <th>labels/actual_target_mean</th>\n", " <th>labels/prediction_mean</th>\n", " <th>loss</th>\n", " <th>precision/positive_threshold_0.500000_mean</th>\n", " <th>recall/positive_threshold_0.500000_mean</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.681564</td>\n", " <td>0.363128</td>\n", " <td>0.681564</td>\n", " <td>0.685425</td>\n", " <td>500</td>\n", " <td>0.363128</td>\n", " <td>0.378042</td>\n", " <td>0.626126</td>\n", " <td>0.666667</td>\n", " <td>0.246154</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " accuracy accuracy/baseline_target_mean accuracy/threshold_0.500000_mean \\\n", "0 0.681564 0.363128 0.681564 \n", "\n", " auc global_step labels/actual_target_mean labels/prediction_mean \\\n", "0 0.685425 500 0.363128 0.378042 \n", "\n", " loss precision/positive_threshold_0.500000_mean \\\n", "0 0.626126 0.666667 \n", "\n", " recall/positive_threshold_0.500000_mean \n", "0 0.246154 " ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pandas.DataFrame([classifier.evaluate(x=test_x, y=test_y)])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Setting feature info to TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False)\n", "WARNING:tensorflow:Setting targets info to TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False)\n", "INFO:tensorflow:Transforming feature_column _RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)\n", "INFO:tensorflow:Create CheckpointSaver\n", "INFO:tensorflow:Step 1: loss = 2.20242\n", "INFO:tensorflow:Step 101: loss = 0.615088\n", "INFO:tensorflow:Step 201: loss = 0.612931\n", "INFO:tensorflow:Saving checkpoints for 300 into dropout_classification/dnn/model.ckpt.\n", "INFO:tensorflow:Step 301: loss = 0.612602\n", "INFO:tensorflow:Step 401: loss = 0.612483\n", "INFO:tensorflow:Saving checkpoints for 500 into dropout_classification/dnn/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 0.61237.\n" ] }, { "data": { "text/plain": [ "DNNClassifier(hidden_units=[5, 5], dropout=None, optimizer=None, feature_columns=[_RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)])" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dnn_classifier = learn.DNNClassifier(hidden_units=[5, 5],\n", " feature_columns=[layers.real_valued_column('', dimension=3)], model_dir=BASE_DIR + 'dnn', enable_centered_bias=False)\n", "dnn_classifier.fit(x=train_x, y=train_y, steps=500)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Given features: Tensor(\"input:0\", shape=(?, 3), dtype=float32), required signatures: TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False).\n", "WARNING:tensorflow:Given targets: Tensor(\"output:0\", shape=(?,), dtype=int64), required signatures: TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False).\n", "INFO:tensorflow:Transforming feature_column _RealValuedColumn(column_name='', dimension=3, default_value=None, dtype=tf.float32)\n", "INFO:tensorflow:Restored model from dropout_classification/dnn/model.ckpt-500-?????-of-00001\n", "INFO:tensorflow:Eval steps [0,inf) for training step 500.\n", "INFO:tensorflow:Input iterator is exhausted.\n", "INFO:tensorflow:Saving evaluation summary for 500 step: loss = 0.604655, auc = 0.680634, accuracy/threshold_0.500000_mean = 0.692737, labels/actual_target_mean = 0.363128, recall/positive_threshold_0.500000_mean = 0.338462, labels/prediction_mean = 0.380738, accuracy/baseline_target_mean = 0.363128, precision/positive_threshold_0.500000_mean = 0.647059, accuracy = 0.692737\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>accuracy</th>\n", " <th>accuracy/baseline_target_mean</th>\n", " <th>accuracy/threshold_0.500000_mean</th>\n", " <th>auc</th>\n", " <th>global_step</th>\n", " <th>labels/actual_target_mean</th>\n", " <th>labels/prediction_mean</th>\n", " <th>loss</th>\n", " <th>precision/positive_threshold_0.500000_mean</th>\n", " <th>recall/positive_threshold_0.500000_mean</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.692737</td>\n", " <td>0.363128</td>\n", " <td>0.692737</td>\n", " <td>0.680634</td>\n", " <td>500</td>\n", " <td>0.363128</td>\n", " <td>0.380738</td>\n", " <td>0.604655</td>\n", " <td>0.647059</td>\n", " <td>0.338462</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " accuracy accuracy/baseline_target_mean accuracy/threshold_0.500000_mean \\\n", "0 0.692737 0.363128 0.692737 \n", "\n", " auc global_step labels/actual_target_mean labels/prediction_mean \\\n", "0 0.680634 500 0.363128 0.380738 \n", "\n", " loss precision/positive_threshold_0.500000_mean \\\n", "0 0.604655 0.647059 \n", "\n", " recall/positive_threshold_0.500000_mean \n", "0 0.338462 " ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pandas.DataFrame([dnn_classifier.evaluate(x=test_x, y=test_y)])" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Setting feature info to TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False)\n", "WARNING:tensorflow:Setting targets info to TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False)\n", "INFO:tensorflow:Create CheckpointSaver\n", "INFO:tensorflow:Step 1: loss = 4.1098\n", "INFO:tensorflow:Step 101: loss = 0.611304\n", "INFO:tensorflow:Step 201: loss = 0.602934\n", "INFO:tensorflow:Saving checkpoints for 300 into dropout_classification/custom_dnn/model.ckpt.\n", "INFO:tensorflow:Step 301: loss = 0.600027\n", "INFO:tensorflow:Step 401: loss = 0.598391\n", "INFO:tensorflow:Step 501: loss = 0.59656\n", "INFO:tensorflow:Saving checkpoints for 600 into dropout_classification/custom_dnn/model.ckpt.\n", "INFO:tensorflow:Step 601: loss = 0.595599\n", "INFO:tensorflow:Step 701: loss = 0.594087\n", "INFO:tensorflow:Step 801: loss = 0.593035\n", "INFO:tensorflow:Saving checkpoints for 900 into dropout_classification/custom_dnn/model.ckpt.\n", "INFO:tensorflow:Step 901: loss = 0.592026\n", "INFO:tensorflow:Saving checkpoints for 1000 into dropout_classification/custom_dnn/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 0.591457.\n" ] }, { "data": { "text/plain": [ "Estimator(params=None)" ] }, "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def custom_dnn_model(feature, target):\n", " target = tf.one_hot(target, 2, 1.0, 0.0)\n", " feature = layers.fully_connected(feature, 10)\n", " feature = layers.fully_connected(feature, 10)\n", " logits = layers.fully_connected(feature, 2, activation_fn=None)\n", " loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n", " train_op = layers.optimize_loss(loss, tf.contrib.framework.get_global_step(), learning_rate=0.05, optimizer='Adagrad')\n", " return tf.argmax(logits, dimension=1), loss, train_op\n", "\n", "custom_dnn_classifier = learn.Estimator(model_fn=custom_dnn_model, model_dir=BASE_DIR + 'custom_dnn')\n", "custom_dnn_classifier.fit(x=train_x, y=train_y, steps=1000)" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'custom_dnn_classifier' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-151-ce765d236d8f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m pandas.DataFrame([custom_dnn_classifier.evaluate(x=test_x, y=test_y,\n\u001b[0m\u001b[1;32m 2\u001b[0m metrics={'accuracy': tf.contrib.metrics.streaming_accuracy})])\n", "\u001b[0;31mNameError\u001b[0m: name 'custom_dnn_classifier' is not defined" ] } ], "source": [ "pandas.DataFrame([custom_dnn_classifier.evaluate(x=test_x, y=test_y,\n", " metrics={'accuracy': tf.contrib.metrics.streaming_accuracy})])" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:Setting feature info to TensorSignature(dtype=tf.float32, shape=TensorShape([Dimension(None), Dimension(3)]), is_sparse=False)\n", "WARNING:tensorflow:Setting targets info to TensorSignature(dtype=tf.int64, shape=TensorShape([Dimension(None)]), is_sparse=False)\n", "INFO:tensorflow:Create CheckpointSaver\n", "INFO:tensorflow:Restored model from dropout_classification/dnn_dropout/model.ckpt-1000-?????-of-00001\n", "INFO:tensorflow:Step 1001: loss = 0.608229\n", "INFO:tensorflow:Saving checkpoints for 1001 into dropout_classification/dnn_dropout/model.ckpt.\n", "INFO:tensorflow:Step 1101: loss = 0.610913\n", "INFO:tensorflow:Step 1201: loss = 0.602962\n", "INFO:tensorflow:Step 1301: loss = 0.59628\n", "INFO:tensorflow:Saving checkpoints for 1301 into dropout_classification/dnn_dropout/model.ckpt.\n", "INFO:tensorflow:Step 1401: loss = 0.60301\n", "INFO:tensorflow:Step 1501: loss = 0.595864\n", "INFO:tensorflow:Step 1601: loss = 0.59532\n", "INFO:tensorflow:Saving checkpoints for 1601 into dropout_classification/dnn_dropout/model.ckpt.\n", "INFO:tensorflow:Step 1701: loss = 0.601391\n", "INFO:tensorflow:Step 1801: loss = 0.59406\n", "INFO:tensorflow:Step 1901: loss = 0.594063\n", "INFO:tensorflow:Saving checkpoints for 1901 into dropout_classification/dnn_dropout/model.ckpt.\n", "INFO:tensorflow:Saving checkpoints for 2000 into dropout_classification/dnn_dropout/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 0.585586.\n" ] }, { "data": { "text/plain": [ "Estimator(params=None)" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def uncertanty_dnn_model(feature, target, mode):\n", " target = tf.one_hot(target, 2, 1.0, 0.0)\n", " def get_logits(feature, is_training_or_sample):\n", " feature = layers.fully_connected(feature, 30)\n", " feature = layers.dropout(feature, 0.9, is_training=is_training_or_sample)\n", " feature = layers.fully_connected(feature, 30)\n", " feature = layers.dropout(feature, 0.9, is_training=is_training_or_sample)\n", " return layers.fully_connected(feature, 2, activation_fn=None)\n", " with tf.variable_scope('dnn'):\n", " logits = get_logits(feature, mode == learn.ModeKeys.TRAIN)\n", " with tf.variable_scope('dnn', reuse=True):\n", " sampled_logits = get_logits(feature, True)\n", " loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n", " train_op = layers.optimize_loss(loss, tf.contrib.framework.get_global_step(), learning_rate=0.05, optimizer='Adagrad')\n", " predictions = {'classes': tf.argmax(logits, dimension=1), \n", " 'probabilities': tf.nn.softmax(logits),\n", " 'sampled_probabilities': tf.nn.softmax(sampled_logits)}\n", " return predictions, loss, train_op\n", "\n", "dropout_dnn_classifier = learn.Estimator(model_fn=uncertanty_dnn_model, model_dir=BASE_DIR + 'dnn_dropout')\n", "dropout_dnn_classifier.fit(x=train_x, y=train_y, steps=1000)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Loading model from checkpoint: dropout_classification/dnn_dropout/model.ckpt-2000-?????-of-00001.\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>accuracy</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.709497</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " accuracy\n", "0 0.709497" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred_y = dropout_dnn_classifier.predict(x=test_x, outputs=['classes'])['classes']\n", "pandas.DataFrame([{'accuracy': metrics.accuracy_score(pred_y, test_y)}])" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Loading model from checkpoint: dropout_classification/dnn_dropout/model.ckpt-2000-?????-of-00001.\n" ] } ], "source": [ "# Sample predictions N times.\n", "n_samples = 20\n", "\n", "samples = []\n", "x_samples = np.concatenate([test_x for _ in range(n_samples)])\n", "y_samples = dropout_dnn_classifier.predict(x=x_samples, outputs=['sampled_probabilities'])['sampled_probabilities']\n", "samples = [y_samples[i * len(test_x):(i + 1) * len(test_x)] for i in range(n_samples)]" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def cross_entropy(a):\n", " # Cross entropy is mean of -p*log(q).\n", " return np.array([-x[1] * np.log(x[1]) for x in a]).mean()\n", "\n", "uncertanty = []\n", "for i in range(test_x.shape[0]):\n", " a = [samples[j][i] for j in range(n_samples)]\n", " uncertanty.append(cross_entropy(a))" ] }, { "cell_type": "code", "execution_count": 148, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Range</th>\n", " <th>Precision</th>\n", " <th>Count</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.00-0.25</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.25-0.30</td>\n", " <td>0.750000</td>\n", " <td>16</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.30-0.33</td>\n", " <td>0.769231</td>\n", " <td>39</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.33-0.34</td>\n", " <td>0.810345</td>\n", " <td>58</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.34-0.36</td>\n", " <td>0.805556</td>\n", " <td>72</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>0.36-0.37</td>\n", " <td>0.750000</td>\n", " <td>112</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>0.37-0.40</td>\n", " <td>0.709497</td>\n", " <td>179</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Range Precision Count\n", "0 0.00-0.25 NaN 0\n", "1 0.25-0.30 0.750000 16\n", "2 0.30-0.33 0.769231 39\n", "3 0.33-0.34 0.810345 58\n", "4 0.34-0.36 0.805556 72\n", "5 0.36-0.37 0.750000 112\n", "6 0.37-0.40 0.709497 179" ] }, "execution_count": 148, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHc1JREFUeJzt3XmYVPWV//H3oQUUUdufC/5kFVRETQQc0R9hpIIG0aho\nMhpQjMYlMxrGJC5xGRMgaoyaaIw+ToxB1ATFiCQY1AQNdhJlkD0TkQbGBVkU48I4gsPSfX5/fKul\nbKq7bndX16176/N6nn6oW3Vv16lLP6e/fb6buTsiIpIuHeIOQEREik/JXUQkhZTcRURSSMldRCSF\nlNxFRFJIyV1EJIUiJXczG2VmtWa20syuyfN6TzObY2aLzWypmZ2cff5EM1toZn81swVm9vlifwAR\nEdmZFRrnbmYdgJXACcB6YAEwxt1rc865D1js7veZ2QDgaXc/yMyOAja4+9tmdgTwB3fv0V4fRkRE\ngigt9yHAKndf7e7bgGnA6Ebn1AN7Zh9XA+sA3P2v7v529vEyoLOZdSxK5CIi0qRdIpzTHViTc7yW\nkPBzTQJmm9nlQBfgxMbfxMz+CViS/QUhIiLtKErL3fI817iWMxaY4u49gS8Cv/rUNwglmVuAr7cm\nSBERaZkoLfe1QK+c4x6E2nuui4CTANx9npntamb7uvu7ZtYDmAGc5+5v5HsDM9MCNyIireDu+Rrg\nkVruC4CDzay3mXUCxgBPNjpnNdlSTLZDtXM2sVcDs4Br3X1egQCL8jVhwoSifS996Z6X65fuue65\ne/Nt4oLJ3d3rgPHAbGAZMM3dl5vZJDM7NXvaVcAlZrYUmAqcn33+G0A/4LtmtiQ7VHLfQu8pIiJt\nE6Usg7v/Hujf6LkJOY+XA8PyXHczcHMbYxQRkRZK3QzVTCYTdwgVR/e89HTPSy9p97zgJKaSBGHm\n5RCHiEiSmBnehg5VERFJGCV3EZEUUnIXEUkhJXcRkRRSchcRSSEldxGRFFJyFxFJISV3EZEUUnIX\nEUkhJXcRkRRSchcRSSEld5Em1NfDl78MZ54JCxbEHY1Iyyi5izThxz+GDRtgxIiQ5EeOhJoa0Bp3\nkgRaFVIkj/nz4bTTwr+9e8PWrfCrX8EPfwj77Qf/9m9w8slgedfjEymN5laFVHIXaeTDD2HQILj9\ndvjSlz79Wl0dTJ8OP/gBdOgA118fzqmqiidWqWxK7iIRucO558Jee8G//3vz5z31FNx8M3zwAVx7\nbbiuY8fSxSqi5C4S0ZQpoda+YAHstlvh891DHf7mm2HVKvjOd+DCC6NdK9JWSu4iEaxYAcOGhWR9\nxBEtv/6ll0K5Zv58+Pa34dJLYY89ih6myCe0E5NIAVu2wJgxcNNNrUvsAMceCzNnwuzZsHQp9O0L\nEybAe+8VN1aRKJTcRQjllH794Otfb/v3+sxn4JFHYO5cWL8eDj0Urr4a3nqr7d9bJCold6l4v/td\naHHff39xhzYeckj4nkuXwrZtcNRRsGlT8b6/SHNUc5eKtm4dHH00zJgBQ4e273udcgqMGwfnnNO+\n7yOVQzV3kTzq6kKyHT++/RM7hPf65S/b/31EQC13qWA33QR//CM891xpJiFt3gzdu0NtLXTr1v7v\nJ+mnlrtIIy++CPfcE5YUKNXs0i5d4PTTYdq00ryfVDYld6k4H3wQZpP+4hehJV1K48aFXygi7S1S\ncjezUWZWa2YrzeyaPK/3NLM5ZrbYzJaa2ck5r11nZqvMbLmZjSxm8CIt5Q4XXwxnnAGnnlr69x8x\nInTi1taW/r2lshRM7mbWAbgHOAk4AhhrZoc1Ou0G4DF3HwyMBe7NXns4cDYwADgZuNdM6+hJfH7+\nc3jtNbj11njev6oKxo6FqVPjeX+pHFFa7kOAVe6+2t23AdOA0Y3OqQf2zD6uBtZlH58OTHP37e7+\nBrAq+/1ESu7ll+GGG0LNu3Pn+OJoKM3U18cXg6RflOTeHViTc7w2+1yuScB5ZrYGmAX8axPXrstz\nrUi727w5LC9w++3Qv3+8sQwcCLvvHmawirSXKMk9Xxml8bjFscAUd+8JfBFo6DKKcq1Iu7viijBD\n9Pzz444kzIJVx6q0t10inLMW6JVz3ANY3+iciwg1edx9npntamb7RrwWgIkTJ37yOJPJkMlkIoQm\nUtgTT4Sx7IsXl8/OSeecA4MHw113xVsikmSpqamhpqYm0rkFJzGZWRWwAjgBeAuYD4x19+U55zwF\n/NrdHzKzAcCz7t4j26E6FTiWUI55Fjik8YwlTWKS9rJ6NRxzDMyaBUPKrLcnk4FvfSuM3BFpjTZN\nYnL3OmA8MBtYRuggXW5mk8ysYTDZVcAlZraUkMzPz177CvBr4BXgaeAyZXEple3bw3j2q68uv8QO\nKs1I+9LyA5Ja3/1u2FHp6afDfqflZuPGsPn2G2/A3nvHHY0kkZYfkIrz/PMweTI89FB5JnaA6moY\nOTJsuC1SbGX6Yy/Seu++C+edBw8+WP4LdKk0I+1FZRlJFfewONeAAXDbbXFHU9jWrXDggbBoUSjR\niLSEyjJSMe6+GzZsCMv5JkGnTnDWWWFbPpFiUstdUmPJEjjpJJg3L2xOnRQvvgiXXALLlpXPOHxJ\nBrXcJfU++igsL3DXXclK7BB2gfr447DXqkixKLlLKlx+OXzuc2HFxaRpWI5AW/BJMaksI4n36KMw\naRIsXAhdu8YdTeusWBFmrK5ZA7tEWRREBJVlJMVefRW++c2wjG9SEzuElSp79oQ5c+KORNJCyV0S\na+vWUIa54YawjG7Sacy7FJPKMpJY3/lO2K5u5sx0jDLZsCG04NetC+u9ixSisoykzuzZodb+wAPp\nSOwQZtMOHRp+WYm0lZK7JM6GDXDBBfDww7DvvnFHU1waNSPForKMJEp9PZx8cljC98Yb446m+DZv\nhu7dQ7mp3NfFkfipLCOp8eMfw6ZNMGFC3JG0jy5dwto406bFHYkknZK7JMb8+fCjH8HUqekeC65R\nM1IMSu6SCB9+GIY93ntv+ldPHDEijJiprY07EkkyJXcpe+5w6aXwhS/Al78cdzTtr6oq/CKbOjXu\nSCTJlNyl7D30EPz1r3DnnXFHUjoNpZn6+rgjkaRScpeytmJF2OD6scdgt93ijqZ0Bg4ME5nmzo07\nEkkqJXcpW1u2hGV8b7oJjjgi7mhKq2GlSHWsSmtpnLuUrW99C9auhccfT88s1JZ4800YPDh0rnbu\nHHc0Uo40zl0SZ9Ys+O1v4f77KzOxA/TqBUceCc88E3ckkkRK7lJ21q2Diy8Oo0X23jvuaOKl0oy0\nlsoyUlbq6uDEE+GEE8JSvpVu48Ywrv+NN/SLTnamsowkxi23hH+vuy7eOMpFdXUY3z99etyRSNIo\nuUvZePFFuOeeUIaoqoo7mvJx3nkqzUjLqSwjZeGDD2DQILj7bjjttLijKS9bt8KBB8KiRelfekFa\nRmUZKWvucMklMHq0Ens+nTrBWWfBI4/EHYkkSaTkbmajzKzWzFaa2TV5Xr/DzJaY2WIzW2Fm7+e8\ndquZvWxmy8zsJ8UMXtLh5z8PG13fdlvckZSvhk089AeuRFVw4VQz6wDcA5wArAcWmNlMd/9kzTp3\nvyLn/PHAwOzj/wcMdfcjzcyAF83seHf/c5E/hyTUyy+HUTEvvKCJOs0ZOhQ+/hiWLg3lK5FCorTc\nhwCr3H21u28DpgGjmzl/LPBo9rEDu5rZrsBuhF8mG9oQr6TIxx+H5QVuuy1sDC1Na1iOQFvwSVRR\nknt3YE3O8drsczsxs15AH2AOgLvPA2qAt4B1wB/cfUXrw5U0ueIK+Oxnw36oUti4cWFT8O3b445E\nkiDKfjb5emKbqvyNAaY3DH0xs37AYcCB2e/znJn9wd1faHzhxIkTP3mcyWTIZDIRQpOkeuIJmD0b\nliyp3OUFWqp/f+jZE+bMgZEj445G4lBTU0NNTU2kcwsOhTSz44CJ7j4qe3wt4O5+a55zFwOXZVvs\nmNlVQGd3vzl7/F3gY3f/UaPrNBSygqxeHTa4/t3vwr8S3U9/CgsXwsMPxx2JlIO2DoVcABxsZr3N\nrBOhdf5knjfpD1Q3JPasN4HhZlZlZh2B4cDyFn8CSY3t2+Hcc+Gqq5TYW+MrX4EnnwybhIs0p2By\nd/c6YDwwG1gGTHP35WY2ycxOzTl1DKGzNdd04DXgb8ASYIm7P1WUyCWRvv/9sAnFlVfGHUkydesW\nRs7MnBl3JFLuNENVSqamBs45BxYvhgMOiDua5HrkkTBqRksBS3NlGSV3KYl33w3jsydPVmdgW23e\nDN27Q21taMlL5dLyAxIrd7jwQhg7Vom9GLp0gdNPh2mNi6AiOZTcpd3dcw+8/XbYC1WKQ5t4SCEq\ny0i7Wro0rEc+bx706xd3NOlRV7djzPthh8UdjcRFZRmJxaZNYXmBu+5SYi+2qqpQ5po6Ne5IpFyp\n5S7t5sILQ719ypS4I0mnJUvgS18KK2p2UDOtIqnlLiX36KMwd27YfEPax8CBoXN17ty4I5FypOQu\nRffaa3D55SHBd+0adzTpZaYt+KRpKstIUW3bBsOGhclK3/xm3NGk35tvwuDBsG6d1sOvRCrLSMnc\ncAPsv39ouUv769ULjjxSs1VlZ0ruUjSzZ4ep8VOmaBnfUtKYd8lHZRkpig0bwvICU6fC5z8fdzSV\nZeNG6N07LKVcXR13NFJKKstIu6qvh/PPh4suUmKPQ3V1mCj2+ONxRyLlRMld2uyOO+B//gcmTIg7\nksqlUTPSmMoy0mrbt8NvfgPjx8P8+aE0IPHYuhUOPBAWLdL/QyVRWUaKatUquO66MFLjzjvD6oRK\nKPHq1AnOOit0aIuAkrtEtGkTPPggHH88/OM/hlb7c8+F2ZGqs5eHcePCJh76I1hAZRlphju89FLY\nYGP69DA56aKL4ItfhI4d445OGnOHvn1hxowwcknSr7myzC6lDkbK3zvvhBbgAw+EGacXXgjLloWa\nrpQvsx2tdyV3UctdgFBm+f3vQ0J//nk444yQ1IcN04SkJFmxAjIZWLMGdlHTLfXUcpcmrVwZZpQ+\n9BD06RMS+oMPwp57xh2ZtEb//js28dCWhpVNHaoVKLdz9PjjP905evHFSuxJp+UIBFSWqRjqHK0c\nGzaEFvy6dbD77nFHI+1JZZkKps7RytOtGwwdCjNnhqWXpTKpLJNC27fDrFlhC7b+/eHll+FnPwud\nbddeq8ReCRpGzUjlUlkmRfJ1jp59tmrolWjTJujePfxC79Yt7mikvWj5gRRT56jks/vuMHp0WBpC\nKpNa7gmkzlGJ4tln4frrYcGCuCOR9tLmDlUzGwX8hNDSn+zutzZ6/Q7g84ADuwP7ufv/yb7WE/gF\n0BOoB05x9zdb+VkqWkPn6OTJoYWuzlFpzogRYcRMbS0cdljc0UipFWy5m1kHYCVwArAeWACMcffa\nJs4fDwx094uzx88DN7r7HDPrAtS7+/82ukYt9yZo5qi0xZVXQpcucOONcUci7aGtNfchwCp3X+3u\n24BpwOhmzh8LPJp94wFAlbvPAXD3zY0Tu+S3cuWOZXV/8AM45ZSwjdqUKWFVRiV2iaJhQlN9fdyR\nSKlFSe7dgTU5x2uzz+3EzHoBfYA52acOBf7bzJ4ws0VmdquZ0lJT1DkqxTZwYGi5z50bdyRSalFq\n7vmScVM1lDHA9Jwayy7AMGAg4RfEr4ELgCmNL5w4ceInjzOZDJlMJkJoyZevc/SKK9Q5KsVhtmML\nvmHD4o5G2qqmpoaamppI50apuR8HTHT3UdnjawFv3KmafW0xcJm7z8seHwvc4u4jssfjgGPd/V8b\nXVdxNfcNG3bMHG3oHP3qV9U5KsX35psweHDoXO3cOe5opJjaWnNfABxsZr3NrBOhdf5knjfpD1Q3\nJPaca/c2s32yxyOAV1oUfYo0zBw988wwc3TZMrjvPs0clfbVqxcceSQ880zckUgpFSzLuHtddgTM\nbHYMhVxuZpOABe4+K3vqGEJna+619WZ2FTAnW2pfBNxfzA+QBPlmjj70kGroUjoNHatnnBF3JFIq\nmsTUTjZtgscfD2WXlStD3fNrX4PDD487MqlEGzeGTcxXr4bq6rijkWLR8gMl4g7z5sEll0CPHvDE\nE6FzdM0auP12JXaJT3U1fOELocEhlUFL/hZBvs5RzRyVcjNuHNx5Z2h8SPqpLNNKDTNHJ08OM0fP\nPFMzR6W8bd0aGhyLFoUSjSRfc2UZJfcW0rK6kmSXXhpGz1x3XdyRSDGo5t5GH32kmaOSDg2beCSk\nLSVtoJZ7Exo6Rx94QMvqSnq4Q9++MGMGDBoUdzTSVtpDtQXUOSppZraj9a7knm5quaPOUaksK1ZA\nJhOG6O6i5l2iqeXehJUrQwv94Yc1c1QqR//+0LMnzJkDI0fGHY20l4rrUG3cOVpXp85RqTwNyxFI\nelVEWUadoyKftmFDaMGvWxc205ZkqtiyjDpHRfLr1g2GDoWZM+Gcc+KORtpD6soyWlZXJJqGUTOS\nTqkqy/zmN/CNb2jmqEgUmzZB9+5hYMH++8cdjbRGxSw/8OqrsGWLVl8Uier00+Hcc+ErX4k7EmmN\nill+oF8/JXaRlhg+HP70p7ijkPaQquQuIi2TySi5p1WqyjIi0jJ1dbDPPqq7J1XFlGVEpGWqquBz\nn4M//znuSKTYlNxFKpzq7umk5C5S4ZTc00k1d5EKt21bqLu//nr4V5JDNXcRaVLHjmEpgr/8Je5I\npJiU3EWE4cOhpibuKKSYlNxFRHX3FFLNXUTYujXU2998E/beO+5oJCrV3EWkWZ06wXHHwQsvxB2J\nFIuSu4gAKs2kTaTkbmajzKzWzFaa2TV5Xr/DzJaY2WIzW2Fm7zd6fQ8zW2tmPy1W4CJSXEru6VKw\n5m5mHYCVwAnAemABMMbda5s4fzww0N0vznnuJ8C+wPvufnmea1RzF4nZli2h7r5uHey1V9zRSBRt\nrbkPAVa5+2p33wZMA0Y3c/5Y4NGcNz8a2B+YHT1kESm1zp3hmGPgxRfjjkSKIUpy7w6syTlem31u\nJ2bWC+gDzMkeG/Aj4Gog728XESkfWgI4PaJskJ0vKTdVQxkDTM+psVwGPOXu60KebzrBT5w48ZPH\nmUyGTCYTITQRKabhw8New1KeampqqIk42yxKzf04YKK7j8oeXwu4u9+a59zFwGXuPi97/CtgGFAP\n7AF0BO519+sbXaeau0gZ+Phj2G8/ePtt6No17mikkLbW3BcAB5tZbzPrRGidP5nnTfoD1Q2JHcDd\nx7l7H3fvC1wFPNw4sYtI+dhtNxg8WHX3NCiY3N29DhhP6BBdBkxz9+VmNsnMTs05dQyhs1VEEkx1\n93TQ8gMi8il//CN873tqvSdBc2UZJXcR+ZTNm8N+qu+8A126xB2NNEdry4hIZF26wFFHwX/8R9yR\nSFsouYvITrS+e/IpuYvITtSpmnyquYvITj76CA44AP7+9zA8UsqTau4i0iJdu8KRR8JLL8UdibSW\nkruI5KUlgJNNyV1E8lKnarKp5i4ieX34IRx4ILz3XlgOWMqPau4i0mJ77gkDBsD8+XFHIq2h5C4i\nTVLdPbmU3EWkSUruyaWau4g0aeNG6Nkz1N07dYo7GmlMNXcRaZXqajjkEFi4MO5IpKWU3EWkWSrN\nJJOSu4g0S8k9mVRzF5FmvfceHHRQ+Ldjx7ijkVyquYtIq+2zD/TpA4sXxx2JtISSu4gUpCWAk0fJ\nXUQKUt09eVRzF5GC/v73MCTyvfegqiruaKSBau4i0ib77Qfdu8PSpXFHIlEpuYtIJFoCOFmU3EUk\nEnWqJotq7iISydtvw+GHh/q76u7lQTV3EWmzAw6A/feHv/0t7kgkCiV3EYlMQyKTQ8ldRCJTp2py\nREruZjbKzGrNbKWZXZPn9TvMbImZLTazFWb2fvb5o8xsrpn9zcyWmtnZxf4AIlI6w4fDX/4C9fVx\nRyKFFOxQNbMOwErgBGA9sAAY4+61TZw/Hhjo7heb2SFAvbu/amb/F1gEHObuHza6Rh2qIglxyCEw\nYwZ85jNxRyJt7VAdAqxy99Xuvg2YBoxu5vyxwKMA7r7K3V/NPn4LeAfYryXBi0h5Ud09GaIk9+7A\nmpzjtdnndmJmvYA+wJw8rw0BOjYkexFJJiX3ZIiS3PM1+ZuqoYwBpjeusWRLMg8DF7QoOhEpOw3J\nXZXU8rZLhHPWAr1yjnsQau/5jAEuy33CzPYAZgHXu/uCpt5k4sSJnzzOZDJkMpkIoYlIqfXqBV27\nwvLlYVKTlE5NTQ01EYcrRelQrQJWEDpU3wLmA2PdfXmj8/oDz7h735znOgK/B2a6+0+beQ91qIok\nyNe+BkOGwKWXxh1JZWtTh6q71wHjgdnAMmCauy83s0lmdmrOqWMIna25zgaGARfkDJX8bKs+hYiU\nDdXdy5/WlhGRFnv9dRg6FNavB8vbbpRS0NoyIlJUffpAp06wcmXckUhTlNxFpMXMVJopd0ruItIq\nSu7lTcldRFpF493Lm5K7iLRKv34hsb/2WtyRSD5K7iLSKmbaeq+cKbmLSKtpfffypeQuIq2mTtXy\npeQuIq126KGwZQu88UbckUhjSu4i0moa716+lNxFpE3UqVqelNxFpE3UqVqelNxFpE0GDICPPoI1\nawqfK6Wj5C4ibWIGxx+v0ky5ibITk4hIs4YPh1/+Mt1LEQwYAP/wD3FHEZ2Su4i02ZlnwsKFMHt2\n3JG0n6qqZCV3bdYhIpJQ2qxDRKTCKLmLiKSQkruISAopuYuIpJCSu4hICim5i4ikkJK7iEgKKbmL\niKSQkruISAopuYuIpJCSu4hICkVK7mY2ysxqzWylmV2T5/U7zGyJmS02sxVm9n7Oa+dnr1thZl8t\nZvAiIpJfweRuZh2Ae4CTgCOAsWZ2WO457n6Fuw9y98HA3cCM7LV7A98DjgGOBSaY2V7F/QifVqMt\nYUpO97z0dM9LL2n3PErLfQiwyt1Xu/s2YBowupnzxwKPZh+fBMx29/92943AbGBUWwIuJGn/AWmg\ne156uuell7R7HiW5dwdyN9Bam31uJ2bWC+gDzGni2nVNXSsiIsUTJbnnWyu4qcXXxwDTcxZnb8m1\nIiJSJAU36zCz44CJ7j4qe3wt4O5+a55zFwOXufu87PEYIOPu/5I9/hnwvLs/1ug6JXwRkVZoarOO\nKMm9ClgBnAC8BcwHxrr78kbn9Qeecfe+Oc/tDSwEBhP+SlgIHJ2tv4uISDspuIequ9eZ2XhCZ2gH\nYLK7LzezScACd5+VPXUMobM199oPzOxGQlJ3YJISu4hI+yuLPVRFRKS4EjVDNcJkqm+b2TIzW2pm\nz5pZz5zX6rKTrJaY2W9LG3lyRbjn/2xm/5m9r3/OnQNhZteZ2SozW25mI0sbeXK19p6bWW8z25z9\nOV9sZveWPvpkKnTPc877JzOrN7PBOc+V58+5uyfii/CL6L+A3kBHYClwWKNzhgO7Zh//CzAt57UP\n4/4MSfuKeM+75jw+jdDvAnA4sIRQ+uuT/T4W92cq96823vPewH/G/RmS9hXlnjfcd+BPwFxgcPa5\nAeX6c56klnvByVTu/id3/9/s4Tw+PaY+b4+yNCvKPf8o57ArUJ99fDrhl+t2d38DWJX9ftK8ttxz\n0M95a0SdqHkjcCuwJee50ZTpz3mSknvkyVRZFwHP5Bx3NrP5ZjbXzJqbYSs7RLrnZnaZmf0X8EPg\n8iau1QS2aNpyzwH6mNkiM3vezIa1b6ipUfCem9lAoIe7P13g2rL5OU9Sco88IcrMxgFHA7fnPN3L\n3YcA5wI/MbODih9i6kS65+5+r7sfDFwDfLcl18pO2nLP3yL8nB8NXAk8YmZd2y3S9Gj2npuZAXcS\n7mmLro1TkpL7WqBXznEPYH3jk8zsROA64LTsn1gAuPvb2X9fB2qAQe0ZbEpEuuc5HgPOyLm2Z85r\nha6VoNX33N23uvsH2ceLgVeBQ9spzjQpdM/3ICyaWGNmrwPHAU9mO1Vb+v9VOnEX/VvQ6VHFjk6P\nToROjwGNzhmUPadfo+ergU7Zx/sSJmXt1GGir1bd84NzHp8GzM8+buhQ7QQcRBl1NJXzVxvv+b5A\nh+zjvoRyQXXcn6ncv6Lc80bnPw8Myj4u25/zgpOYyoVHm0x1G7A78Hj2T6nV7n4GoUf7PjOry157\ni7vXxvNJkiPiPR+f/WtpK/ABcH722lfM7NfAK8A2wrIUZfHnajlryz0Hjge+b2bbgDrgn12TBguK\neM8/dQnZckw5/5xrEpOISAolqeYuIiIRKbmLiKSQkruISAopuYuIpJCSu4hICim5i4ikkJK7iEgK\nKbmLiKTQ/wekixDDltWMLgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11ecd05d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "correctness = correctness.reset_index()['Survived']\n", "correctness = test_y == pred_y\n", "counts, ranges = np.histogram(uncertanty, bins=5)\n", "ranges = np.array([0.0, 0.25, 0.3, 0.33, 0.34, 0.36, 0.37, 0.4])\n", "precision, counts = [], []\n", "\n", "# Compute precision per range of uncertanty.\n", "for i in range(len(ranges)):\n", "# mask = np.logical_and(uncertanty >= ranges[i], uncertanty < ranges[i + 1])\n", " mask = uncertanty < ranges[i]\n", " precision.append(correctness[mask].mean())\n", " counts.append(mask.sum())\n", "\n", "\n", "str_ranges = ['%.2f-%.2f' % (ranges[i - 1], ranges[i]) for i in range(1, len(ranges))]\n", "_ = plt.plot(ranges, precision)\n", "pandas.DataFrame(zip(str_ranges, precision, counts), columns=['Range', 'Precision', 'Count'])" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VMX6wPHvJCSUEAgQSIBQQwlI70UxKNIRVBBFAZGL\ngoDl4lWv9+cF1KuXawcUURFFEBBBpIOU0CQQehEICTWEmtBDYJPM748TIISUzWazZ8v7eZ592DI7\n580heXd2Zs6M0lojhBDCPXmZHYAQQoiCI0leCCHcmCR5IYRwY5LkhRDCjUmSF0IINyZJXggh3Fiu\nSV4pNUUpdUYptTuHMuOVUoeUUjuVUo3sG6IQQghbWdOSnwp0yu5FpVQXIFRrXRN4EfjaTrEJIYTI\np1yTvNZ6A3AhhyI9gWnpZTcDJZVSQfYJTwghRH7Yo0++InAiw+OT6c8JIYQwmT2SvMriOVkrQQgh\nnEAhO9QRB1TK8DgEiM+qoFJKkr8QQthAa51VgzpX1rbkFVm32AEWAAMAlFKtgIta6zPZVaS1drnb\n6dOaJk00Q4ZoLBb71Dl69GjTfy5nucm5kHMh5yLnW37k2pJXSv0MhANllFLHgdGAr5Gv9Tda6yVK\nqa5KqRjgGjAoXxE5oaAgiIiA3r2hSxfo0CH/dW7YAOPG5VymVy+oXTv/xxJCeK5ck7zWup8VZUbY\nJxzn5e8PCxfCF1/A+fP5r+/6dUhMzP71kydhyRJYuzb/xxJCeC579Ml7DF9f+Mc/7FNXREQ44eHZ\nv26xQGgobN0KzZrZ55jOKjynE+Fh5FzcIefCPlR++3vydDCltCOP5+o++cRI8lOnGo99fMDb29yY\nhBCOp5RC2zjwKkneiV2+DA0bwqlTkJYGbdoYYwNCCM+SnyQvC5Q5sRIl4MgRSE42WvQ59eELIURW\nJMm7iEKFICXF7CiEEK5GkryLKFQIbt40OwohhKuRJO8iKlWC06chKcnsSIQQrkSSvIsoWtQYhI2M\nNDsSIYQrkSTvQtq1g3XrzI5CCOFKJMm7kK5dYdo0uHrV7EiEEK5C5sm7mEGDoEgRmDTJ7EiEEI4i\nF0N5kEuXoEEDmDwZOnc2OxohhCNIkvcwq1dD377QKMOW6aVLw8yZ4CUdcEK4HUnyHmjHjrtXwxw6\nFObOvTvxCyHcQ36SvKxC6aIaN777cceORgtfkrwQIiP5cu8m2reHefOMNW6EEOIWSfJu4pFHIDDQ\n2LVKesSEELdIn7wb0RpKlYLYWChTxuxohBD2IksNCwCUgurV4fBhsyMRQjgLSfJuJiQE3n/f7CiE\nEM5CumvczMGD0LKlscGIzJkXwj1Id424rXZto1/+wAGzIxFCOANpybuhAQOMf5s1M/5VCvr1k8FY\nIVyVtOTFXUaMgIAAiIkxblOnGkseCCE8j7TkPcD06TB/Pvz6q9mRCCFsIWvXiBydOAFNm8KZM0bX\njRDCtUh3jchRpUoQHGzMtvHygpUrzY5ICOEokuQ9xK5dkJYGw4bB/v1mRyOEcBRZhdJD3OqmCQmB\nuDhzYxFCOI605D1MSAgsWmS07IUQ7k+SvIfp0sVI9IsXmx2JEMIRJMl7mMBAePBBuHLF7EiEEI4g\nSd4D+ftLkhfCU0iS90BlysDZs2ZHIYRwBEnyHqhRI2MjcCGE+5MrXj1Qaqqxtk1cHJQsaXY0Qojc\nFPgVr0qpzkqpA0qpaKXUm1m8XkkptVoptV0ptVMp1cWWYIRjeHtDw4bw6KPwxBPG2vNCCPeUa5JX\nSnkBE4FOwH3A00qpsEzF/g+YrbVuAjwNfGXvQIV9TZkCo0bBX38ZG40IIdyTNS35FsAhrfUxrbUF\nmAX0zFQmDSiRfj8AOGm/EEVBqF3baMnXrGksXCaEcE/WJPmKwIkMj+PSn8toLNBfKXUCWASMtE94\nOTt68ShpOs0Rh3JbQUGS5IVwZ9asXZNVZ3/m0dOngala68+UUq2A6RhdO/cYM2bM7fvh4eGEh4db\nFWhml5Iv0fDrhvz5/J/cVy7LQwkrVKoER4+aHYUQIqOIiAgiIiLsUpc1ST4OqJzhcQgQn6nMYIw+\ne7TWkUqpIkqpQK31+cyVZUzy+fHNtm+4fOMyqTrVLvV5qoYN4euvzY5CCJFR5gbw2LFjba7Lmu6a\nKKCGUqqKUsoXeApYkKnMMaADgFKqDlA4qwRvLzdSbvD55s8p7lu8oA7hMZo0kTnzQrizXJO81joV\nGAGsAPYBs7TW+5VSY5VS3dOLvQ4MUUrtBGYAAwsqYICf9/xMvXL1qBZQrSAP4xFCQkBrY+EyIYT7\ncbmLodJ0GvW+qseELhN4bflrTH98Og2CGtgpQs8UE2N021y7ZnYkQoiseNT2f4ujF1PUpygPVXvI\n7FDcRkgIpKSYHYUQoiC4XJIft3Ecb7R5AyU7UttNoULGUgdCCPfjUkl+4/GNxF+J54m6T5gdilvx\n9ja2B7x50+xIhBD25lJJ/qM/P2JU61EU8pKtae1JKShRAi5fNjsSIYS9uUySP3D+AJviNjGo8SCz\nQ3FLJUvCpUtmRyGEsDeXSfIf//kxw5sPp5hPMbNDcUslS8LFi2ZHIYSwN5fo97h68yq/7PuFw68c\nNjsUtyUteSHck0u05COORtCsQjMCiwWaHYrbkiQvhHtyiSS/PGY5nUI7mR2GWwsIkCQvhDtyjSQf\nu5xONSTJFyRpyQvhnpw+yR+5cIRLNy7J0gUFTAZehXBPTp/kl8cup2NoR7yU04da4C5cv8Co5aOo\n/Fnl3AvnUcmScOoUJCTYvWohhImcPnMuj5X+eEuqhQmbJ1B7Ym0uJl/k5BX7764YFga//WZsIrJ4\nsd2rF0KYxKmTvCXVwpoja+gY2tHsUEyhtWZR9CLqT6rPwuiFrBqwim96fFMgx+re3dgG8LPPYNq0\nAjmEEMIETj1PPjIukuqlqlPOr5zZoTjc0YtHGbFkBLEXYvms02d0rtEZpRSpaQW7ktjjj8MbbxjL\nDvv5FeihhBAO4NQteXfoqjl77SzXLdetLm9JtTBuwziafdOMtpXasmvoLrrU7JLjqpsRRyN4bPZj\nXErO//SYsmWhZUuj68ZWWmsOnD+AI/cqEEJkzfmTvAtPnVx4cCE1J9Rkzl9zrCq/8fhGGk9uTMSx\nCLYM2cI/H/gnvt6+2Zb/69xf9JjZg0G/D2LV4VWcT8p5x8XDFw4zbNEwVh9ZnWO5t9+Gt96CCxes\nCvu2c9fO8emmT6k3qR51vqzDnrN78laBEMLunDbJn086T3RCNG0qtSmQ+idvncz7694vkLrTdBpj\nI8by0pKXCAsMIyUt5x05rt28xoglI3jy1ycZ/eBolvRbQvVS1bMtr7XmhYUvEP5DOO2rtufA8AOU\n9SubbflDCYcY9PsgWnzbgtVHV7Pr9K4c4wkPh5494e9/z7EYAKlpqSyLWUbvX3pTc0JNdp3ZxaRu\nk2gU3CjXn1sIUfCctk9+5eGVPFjlwRxbsrbad3Yfryx7hb71+tq97kvJl+j/W38SrycSNSSKt1e9\nnWP5P0/8ycD5A2kd0pp9L+0joEhAjuWVUgQXD6Zk4ZIcHHGQUkVLZVv24PmDvL/+fZbFLGNki5HE\nvBzD2Ajrdn0fNw4aNIAlS6Br13tfP3vtLN/v+J7J2yYTWCyQIU2GMOXRKZQsUtKIE9nURQhn4LRJ\nvqD642+m3qT/b/1pUbGF3evef24/vWb34pHqj/Drk7/m+AF1I+UGYyLGMHXnVL7q9hWP13ncqmN4\nKS/iR8XnWCbuchxjI8Yy/+B8Xmn5ChO7TLydfDNLTknmx50/UrlkZbrUvLObd/Hi8P77MGnSnSSv\ntWbD8Q1M2jqJpTFLeTzsceb0mUOzCs2sil0I4XhOmeS11qyIXcG/HviX3et+d+27VCxRkSfqPMGa\no2vsVu/ao2vpM6cP4zqMy3XN+z1n9vDsb89SLaAau4buIqh4kF1iSLyeyOQ/JjNlxxReaPIC0SOi\ns23pX7t5jcnbJvPJpk/wUl50r9n9riQPUK4cJCUZH0iz9s7i882fc91ynWHNhvFl1y9z/BYhhHAO\nTpnk957dS5FCRahRuoZd6910YhPfbf+OnUN3sjxmud3qnfvXXIYtHsas3rNy3WB86o6pvLHyDT56\n5CMGNhxo171qH5r2EP3q9WPPsD1U8K+Qbbk5f83hww0fEl41nEVPLyIyLpLdZ3bfUy4pLZFDZ69S\n5fMWNApuxIcPfyhXHwvhYpwyyRdEV83Vm1cZMH8AX3X7iuDiwXard1LUJN5f/z7Ln11O4/KNsy2X\nZEli+JLhbI7bzNrn1lK3bF27xQDwwUMf0Lh8Y2qVqZVjufpB9bl44yLf9/yesMAwwLgeIaOD5w/y\n0Z8fMXvFYYomT2XtwDXUKVsnX/FdTL7I3L/m0qVmlxw/gIQQ9uW0SX548+F2rfP1Fa/TplIbq/u+\nc6O1ZnTEaGbuncn6QetznA1z8PxBWn7XkoZBDdkyZAvFfYvbJYaMrB1Efr7x8zzf+PksX9sct5lx\nG8ex4fgGhjcfzuL+HzN8bQB1sp+4kyOtNeuOreO77d+x4OACvJQXfr5+PFXvKdsqFELkmdMl+SRL\nEpFxkcx9cq7d6lwWs4ylMUvZPfTeLglbpOk0hi0axrZT29j4/MZcr8j9YvMXjO8yniFNhti1e8ae\nftr9E0tjljKq9Sh+euwn/Hz9iI6GGzdsr7Prz11vz7z5tNOnjFgy4q7Xr1uu8/vB32kQ1MDu32yE\nEAanS/L7z+0ntFQoJQqXsEt9N1NvMnLpSCZ3n5ztDJO80FozdNFQDiYcZM3ANfgX9s+x/NBmQ3ml\n5Ss0DG6Y72MXlM41OlOmWBkeC3sMH2+f288XLgyJiTBjxp2yFSsa8+hzMyZ8DOX8ytGyYsu7Pti0\n1mw5uYWpO6Yye99sCnkVYnjz4YwOH23Hn0gIcYvTJfnYC7F2HXCdvHUyoaVC6Vyjc77r0lrzyrJX\n2HN2DyueXZFrggcKZKqmvVUrVY1qpard83xwMPTqZcyVB9AaFiyAy5fBK5ex10drP5rl88OXDKd0\n0dI81+g5dg7dyZTtU/IbvhAiB06X5GMSYwgtFWqXui4lX+L99e/zR/8/8l2X1po3/niDP0/8ycoB\nK61K8K6ucGH47ru7n6taFWJjoWbNvNf3WqvXGNZsGO2qtHPabish3I3TJfnYxFhahbSyS10fbviQ\n7jW722VXqdERo1lxeAVrBq7J9apUd9awIezaZVuSbxnS0v4BCSFy5HQTnmMuxBBaOv8t+WMXj/Ht\n9m95t/27+a7rg/UfMHf/XFb2X0npoqXzXZ8rq1cP/vqrYI+RZEmyy4qaQggnTPKxifbpk//X6n8x\novkIKpaomK96pmyfwvc7vmdl/5U5LgLmKfz94br1KydbTWvNphObeGHhC5T/pDyvLn/V/gcRwgM5\nVXfNdct1Eq4nUNE/f4l5a/xWVh9Zzdfdv85XPWuPruWfq/7JukHrKO9fPl91uYtChSDFzotLLo1Z\nysy9M9FoBjUaxL8e+Be7zuS8UqYQwjpO1ZI/fOEwVQOq4u3lbXMdWmteX/E6Y8PH5uuio9jEWPr+\n2pefn/j59pWhAry9YeNGmDjRmG2TX80qNKNRcCOm9pzKgeEHeOv+t/L9IS+EuMOpWvL2mFmzKHoR\n55PO57pIWE4uJl+k+8zujH5wNB2qd8hXPO6mWzdj7vyYMcb9avfOvMyTHrV70KN2D7vEJoS4l1O1\n5GMvxOYryd9aauCDhz+gkJdtn18paSn0/bUvj1R/hGHNh9kci7uqVQveew86dICICLOjEULkxqok\nr5TqrJQ6oJSKVkq9mU2ZJ5VS+5RSe5RS020JJiYxJl+DrhtPbOSa5Rrda3W3uY5Xl72KQvFpp09t\nrsMThIfDqlXGhVEZb1evmh2ZECKjXJO8UsoLmAh0Au4DnlZKhWUqUwN4E2itta4P2DQ1IvZCbL6m\nT47fPJ6RLUbavBTuDzt/YPWR1czuPdvmbwKe4pFHYOlSCAm5+1amDPz+u9nRCSFusSYbtgAOaa2P\naa0twCygZ6YyQ4AvtdaXAbTWOe8onY38TJ88cekEq46sYmDDgTa9/1DCIf7xxz/4pc8vdlnjxt2F\nhkJCwr0t+YkTYfZss6MTQtxiTZKvCJzI8Dgu/bmMagG1lVIblFJ/KqXyvBi8JdXCicsnqBpQNa9v\nBeCrqK/o36C/TcsN3Ey9ydNzn2bMg2OoV66eTccXhq5dYdky+0+zFELYxpo+iawWGck8ea4QUANo\nB1QG1iul7rvVsrfG8UvHqeBfwaaNu69brvPdju/YNHhTnt8L8M7qd6jgX4GXmr9k0/vFHRUrGjNu\nnnwS6teHsdbtGy6EKCDWJPk4jMR9SwiQeSfpOGCT1joNOKqUOgjUBLZlrmzMmDG374eHhxOevm5t\nfqZP/rznZ1qFtLKpq2fl4ZXM2DODnUN3yqJZdjJ9OqxbB6NGSZIXwhYRERFE2Gn6mjVJPgqooZSq\nApwCngKezlRmfvpz05RSgRgJ/nBWlWVM8hnZusSw1prxW8bz8SMf5/m9566d47n5z/FDrx8ILBaY\n5/eLrNWpA7Vrw7BhkJaW+7LE7iI6IZp9Z/fxWJ3HzA5FuLiMDWCAsfloLeWa5LXWqUqpEcAKjD78\nKVrr/UqpsUCU1nqR1nq5UqqjUmofkAK8rrW+kJdAbG3Jrz22FkuqxaaLlpbGLOWNNm/IBU8FwMvL\nuCI2Pt6YdeOqLt+4zJJDS/D39adbrW53vZaSlsLG4xtZGL2QhdELuXLjCqeuniLt32nyrVA4Davm\nCWqtlwG1Mz03OtPjUcAoWwOJvRDLA5UfyPP7JmyZwKjWo/L8R1WicAlaVmzJew+9l+djCutUrQpv\nvnn3zlLO4tjFY8zbP49utbrds/n5+aTzLDi4gHn757Hu2DoqlaxE9VLV6VarGxeTL7IsZhkLoxey\nLGYZVUpWoUetHsx4fAZNyjfB+13bl+QQoiA4zWTwmETblhg+d+0c/Rv0z/P7eoX1omdYT5vn1Ivc\nffEFfPut2VHccerKKeb8NYdZe2cRnRBNMZ9i+Pn6UatMLeIux/Hb/t+Yd2Ae209tp2NoR56p/wwz\nHp/BumPreHX5qzz040Nsjd/KA1UeoEetHozrMI6QEi78NUV4BKdI8mk6jSMXjlC9VPU8v/dvTf6G\nn69fnt+nlEJlOXFI2EupUnAhT5122UuyJJGQlEClkpXy9L5z184xd/9cZu+bzc7TO+lZuyfvtHuH\nDtU7MHzJcObtn8eUHVM4lHCIHrV78GrLV+kY2pGiPkVv11G3bF06h3amY2hHOlTvYNPvmxBmcYok\nH38lnpJFSuZ51cgetXrwYrMXCygqkV+BgcaKlcePQ+XKuZfPTGvNtlPbmLJ9CjP3ziQsMIzIv0Xm\n+r4L1y8w/8B8Zu2bxea4zXSp2YVXW75KpxqdKFKoyO1ybSu1xVt5M6rOKMKrht+1iXlGoaVD+bLb\nl3n/AYRwAk6R5GMTbVuY7D8P/6cAohH2EhZmbBe4fXvek/y2+G00mtyIyzcu83yj55nacyr/WZ/9\n/7cl1cLSmKVM2zWNPw7/QYfqHRjceDDznpyXbct7YKOBDGxk2xXSQrgK50jyNk6fFM5NKWjXDo4e\nzdv76pStQ+tKrXm2/rO0r9YeL+XF1vit95TTWrPj9A5+3PkjM/fOpHZgbQY0GMB3j35n+j68qWmp\nbDm5hcWHFrPh+AbmPjmXMsXKAHD22lnWHFlDx9COlCpa6vZ70nQaCiUzc4RdOUWSt8c68sI5Va0K\na9bc3ZL384OOHY0Pgaw0Kd+EqT2nZltn/JV4ZuyewY+7fiTJksSAhgPYNHiTXfYGtoeB8weyLGYZ\nQcWD6FazGwfOH2BpzFKiE6JZcmgJMYkxKKX4sdePNApuxPKY5SyPXc7KwysZ12GcdEEKu3KKJB97\nIZZetXuZHYYoAA8/bPTLT8+w+PSqVUYXTmgec3L8lXg6T+/MlpNbeKLOE0zqNom2lds61Qypl1u8\nTFhgGO+1f48qAVUAWHN0DR/9+RFdanThk46f0LpSa3r/0pvBCwYD8Ej1R+hRqwfFfYtz5eYVM8MX\nbsgpkryt0yeF82vYEObOvfu5Xr1g27a8JfmQEiE8UOUBHgt7jN/6/nbX7Bdn8kWXL+55LnJw5D1d\nMO+1fw9LmoUm5Zvc/pDac3aPQ2IUnsX0JK+1ztcSw8L1NG1qJPknn7T+PcHFg5nd2zXXMM6qj71h\ncMNc35ealsr2U9spU6yMTdOLhQAn2P4v4XoCSilKFy1tdijCQW4leXGvU1dOMWX7FPr+2pegj4Po\nOL0j/93wX7PDEi7M9CQvrXjP07Sp0SevMy9Y7eH8ff2Ztnsaq46sonNoZ3YO3cn/OvwPLSdK5IPp\n3TUys8bzBAVBsWJw5AhUl16I2/794L9558F3nGogWbg+03+bYi/YdiGUcG1Nm8L//Z+xFLEwKKUk\nwQu7M/03KiYxRrprPNBrr8HMmUZrXghRcExP8rEXYmX6pAcKD4f27eFwllvLCCHsxfwkLwOvHis0\nFGJjzY5CCPdm6sDrlRtXuHzjMuWLlzczDGGSqlWNFSqFdSypFqLio/gj9g9KFy3NyJYjzQ5JuABT\nk/zhC4cJLR0qCzJ5qKJFISHB7Cic39ZTW3l05qOsPbaW6qWqUy2gGueTzkuSF1Yxtbvm5JWTsrOO\nB/PxgZs3zY7CuTUu35jmFZrTr34/YkbGsOPFHbza6lWzwxIuxNSW/NWbV/H39TczBGEiHx9Yv97s\nKJxbswrNaFahmdlhCBdmakv+6s2red4NSriPLl1g9264ft3sSNzLdct1Vh9Zzf+t/j+e+OUJLKkW\ns0MSJjK9JS9J3nNVqQKNG8OuXdCqldnRuJbTV08zZfsUUtJSsKRZSElLIfF6IuuOrWNr/FYaBDWg\nfdX2LDm0hCRLEiW9S1pVb5pOY8+ZPaw7to51x9fRr14/OtXoRNTJKDYc38DGExu5v/L9vP3A2wX8\nEwp7kSQvTNW8OURFSZLPi5qla9K2cls2ntiIj5cPhbwK4ePtg7+vP2+2fZP7K9+Pf2GjG3Ri1MQc\n67KkWthxegfrjq1j7bG1bDi+gXJ+5WhXuR3JKckMWTiE6ynXqV+uPm0rtaV6qersOrPLET+msBPT\nk7yfT9b7bwrP0KQJbN5sdhSupbx/+Rx3zspJckoyUSejbif1yLhIqpWqRrvK7RjQYADf9viW4OLB\ngLEiZnRCNM0rNqeYTzEAZu+dzbwD8+z2s4iCZ2qSv3bzGkF+QWaGIEwWFgY//WR2FO5t9ZHV7Di9\ng7XH1rItfht1y9alXZV2jGgxglm9Z2W7zHd5//KU95drWFyd6S156a7xbLVqQXS02VG4ryolq/Bp\n5Ke0q9yOt+9/mzaV2tzuyhGewdwkb5Ek7+mCgyE5GU6fNu4L+9o9bLfZIQiTyRRKYSqlYOBA+OAD\nsyMRZjh37RwrD68kOSXZ7FDclnTXCNP9+99Qty6MGGF03wjXp7UmOSWZJEsS1yzXjH9vXuPSjUvs\nOr2LzSc3s+XkFhKvJ5KqU5nfdz4PV3/4nnrOXjtL1MkoouKj2Bq/lSfqPMGgxoNM+Ilcl+kDr36+\nMrvG05UtC//4B7z5Jvz2m9nRiNxExkXSZ04fkixJt5N35mSeZEnC19sXP18/ivkUw8/H+Ne/sD/1\nytajS40ujAkfQ60ytej4U0c0mkvJl9gav5Wo+DtJ/fKNyzSr0IzmFZoTUCSAnad32vVnuW65TlGf\nonat09lIS144hZdfhvffh8REKC17ujutR0If4d2UdynqU/R24s6cyP18/ShaqCjeXt5W1emlvHhm\n3jMkWZJoFNyI5hWa07tOb8Z1GEdoqTsLGH4R+QWHL2S9AUGaTiMmMYbtp7azLX4bvt6+PN/4eXac\n3sH2U9vZcXoHy2OWM6fPHHad2cXO0zvZcXoHcZfjiH05lmoB1Th19RQ7T+9k39l9PNPgGSr4V8gx\n7oSkBHy9fZ1+IFuSvHAKRYpA/fqwZw88+KDZ0YjslC5amoGNBtq1zvFdxpOSlkKdwDpWfTCkpqUS\nnRBtJPRT29h2ahs7Tu2gVNFSNC3flNplavPBhg/4afdPNCnfhMbBjRnWbBiRcZFM2TGFpuWbMrDh\nQD7v/Dndf+7OU78+xZGLxhZljYIbcSjhEEopKvhXYNfpXew+u5tlMcvoGNqRxsGN2X1mN7vP7Ob0\n1dMMbjyYyT0m5+nnvZl6k4PnD3Lyykk6hXYyHiccZN/ZfcReiGVEixEEFAmw6VxmRTlyJ3illM54\nvID/BnD01aN2/YGE6xo6FOrVM/rmhchs/ObxvLv2XW6k3qCcXzmalG9C0/JNaVK+CU3KNyGwWODt\nsskpyRQpVCTXOpfHLCdVp9IouBHli5dHKcXIJSNZcXgFDYMa0iCoAQ2DGhJ7IZY/Dv9B65DWNAhq\nQIOgBqw+spr1x9dne2Famk7jyIUj7Dm7h71n97L37F72nN1DbGIsVQOqcjDhIBX8K5CQlEC1UtW4\nr+x9bDi+gd/6/kbrSq3vqksphdbapjXZTWvJa63lildxl8aN4Z//hAkT7jzn7Q0LFkAN2TzM4/Wr\n34965erROLgxpYqWyrGsNQkeoFONTvc8N6HrhCxKcs8Szwoj52qtOXX11F2JfO/Zvfx17i8CiwVS\nr1w96pWtR/da3Xnr/rcICwyjSKEiRMZF4ufjR60ytShcqDAArae0vue4+WVakr+RegNvL298vH3M\nCkE4mcGDjb1fM+rfH+LiJMkLCCwWyEPVHjI7jNuUUvx+4HcCDwbipbyoX64+9crVo3VIa15o8gJ1\ny9alZJHsF4ZrFeKYBZtMS/LXbl6T/nhxl0KFoHbtu58LCJCNRYRzeizsMaqUrMJ95e6jnF85s8PJ\nllVJXinVGfgc4+KpKVrrcdmU6w38AjTTWm/PqU4ZdBXW8PWF+fMhJsa68v7+0K+f0c0jREEqWaQk\n7au1NzuMXOWa5JVSXsBE4GEgHohSSv2utT6QqVxxYCQQac2BJckLawwcCGvWwN691pVfswZSU+G5\n5wo0LCGaJmgWAAAPY0lEQVRchjUt+RbAIa31MQCl1CygJ3AgU7n3gHHAP6w5sCR5YY0+fYybtSIj\noXdv4z1+MqYvhFVr11QETmR4HJf+3G1KqUZAiNZ6ibUHlpk1oiC0agX33w+ffGJ2JEI4B2uSfFZz\nM29PdlfG5WifAaNyec9drllk4FUUjA8/hE8/NTYKv3V76SWzoxLCHNZ018QBlTM8DsHom7/FH7gP\niEhP+MHA70qpR7MafB0zZgwAe87s4VrwNRvDFiJ71apBQgKkpRmPly+HiTnvgieEU4mIiCAiIsIu\ndVmT5KOAGkqpKsAp4Cng6Vsvaq0vA7fnDyml1gB/11rvyKqyW0n+m23fsDV+q82BC5ETb+87M2xK\nl4ZLl8yNR4i8CA8PJzzDRSNjx461ua5cu2u01qnACGAFsA+YpbXer5Qaq5TqntVbsKK7RgZehaOU\nLGkMyO7fb3YkQjieVfPktdbLgNqZnhudTVmrLkmTJC8cpVYteOMN6NoVoqIgMDD39whhpuSUZA4l\nHOLA+QMcOJ95ImPemHbF69WbVylTtIxZhxcexMcHxqVfvte3r9FHX8jU9VeFyJqX8uKx2Y9xMfki\n1UpVo05gHcICw/JVp2mrUA5fPJy6ZesyvMVwhx1feLbUVKM1HxYGr7+ec9mgIONqWyEcKSYxhtS0\nVKqXqn7Xul4uuQqlbOItHM3bG2bOhO7doU2b7MulpBgzdFavNta5F8JRapS2/0p8pnbXSJIXjla6\nNPz5Z85l0tLgqadgyBCYNs3YbFwIV2XNxVAFQpK8cFZeXvDDD8ZsnHFZLsUnhOswtSUvm3gLZ1Ws\nGPz+O7RsCVWrGi17IVyRrCcvRDYqVoQlS6BLF7hyxei+EcLVSJ+8EDlo0ADWroWOHSExEd580+yI\nhMgbSfJC5KJGDVi/Hjp1MtbEGTdOBmOF65CBVyGsULEirFsHGzbAk0/CNVlbT7gIU5J8mk4jyZJE\nMZ9iZhxeCJuULm3MnS9eHNq2hWPHzI5IiNyZkuSTLEkU9SmKlzLti4QQNilSBL7/3tiWsFUro3Uv\nhDMzJcvKzBrhypSC116DH380thl8/XWIj8/9fUKYwZQkL/3xwh107AjbthnLINSrZ0yxPHTI7KiE\nuJskeSHyISQEPv8coqONwdk2bYyB2e337IkmhDlMmUIpSV64m8BAGDPG6Lr59lt49FG47z6jOye7\nZY3btDHWuheiIJmW5P18ZEkD4X6KFzf66196CWbMyH5g9tgxWLkSpk93bHzC85iS5K9ZZOBVuLfC\nheH5541bVqKi4IUXHBuT8EzSJy+ECerUgYMHjY1MhChIkuSFMEHx4lC5MpQqBX/7m9nRCHcmA69C\nmGTXLrh40VgE7a+/oG5dsyMS7si0lrwMvApPV7iwsZfsK6/Af/9rdjTCXUl3jRAme+klWLwYYmPN\njkS4I1nWQAiTBQQY69QPHmzsLyuEPZnTkrdIS16IjEaNMhL8p5+aHYlwNzLwKoQT8PaGadOgeXO4\n/36oWfPu1wICzItNuDbzrniVTbyFuEvVqvDFF9Cjx93dNklJ8Ntv0LmzaaEJFyYDr0I4kX794Nw5\nY5vBW7ePPzaWSBDCFjLwKoSTe+wxY/bNzZtmRyJckbTkhXByFSpAWBhMmGB2JMIVSZIXwgX85z/G\nzBuZYinySpK8EC6gfXtjzfr1682ORLgahyd5S6oFS5qFwt6FHX1oIVxav34yACvyzuFJ/tZa8kop\nRx9aCJf2zDMwb57sIyvyxvFJXmbWCGGTkBAYPRr69zc2DxfCGg5P8tIfL4Tthg8Hf39ZtVJYz6ok\nr5TqrJQ6oJSKVkq9mcXrryml9imldiql/lBKVcquLknyQtjOywumToXx42HPHrOjEa4g1ySvlPIC\nJgKdgPuAp5VSYZmKbQeaaq0bAXOBj7KrT9aSFyJ/QkLgnXfgjTfMjkS4Amta8i2AQ1rrY1prCzAL\n6JmxgNZ6rdY6Of1hJFAxu8qkJS9E/r34ojEAu2qV2ZEIZ2dNkq8InMjwOI4ckjgwGFia3Yu3ZtcI\nIWzn6wsffGC05mUQVuTEmlUos5rrqLMsqNSzQFPgwewqmzF+BscvHWfMvjGEh4cTHh5uVaBCiLv1\n6WPMm+/QAWbPNrYSFO4hIiKCiIgIu9SltM4yX98poFQrYIzWunP647cArbUel6lcB+ALoJ3WOiGb\nuvQXkV8QkxjD+C7j7fIDCOHJUlNhzBj44QeYMwdatTI7IlEQlFJorW26uMia7poooIZSqopSyhd4\nCliQKYDGwNfAo9kl+Ftk4FUI+/H2hvfeg4kTjXXov/4acmm3CQ+Ta3eN1jpVKTUCWIHxoTBFa71f\nKTUWiNJaLwL+B/gBc5RxKesxrXWvrOqTgVch7K9nT6hTBx54AGJijDXohQArd4bSWi8Damd6bnSG\n+49Ye8CrN68S5Cedh0LYW61a8Pnn8MsvZkcinIksayCEGyks6/6JTBy/rIFFumuEKCje3sZgrBC3\nyNo1QriRQoVk3ry4mylJ3s9XZtcIURCkJS8yk5a8EG5EkrzITAZehXAjgYGwbx8cPWp2JMJZSEte\nCDfSuDG8/baxJ6wkegFWzpO3J0nyQhSskSONf9u3hzVroGpVU8MRJjMlycuyBkIUrIyJfscOCAgw\nNx5hHod313h7eePj7ePowwrhcUaOhOBg2LvX7EiEmRye5KWrRgjHCQ6Gs2fNjkKYSZK8EG6sXDlJ\n8p5OkrwQbqx+fZg5EywWsyMRZnF4kpdBVyEcZ9gw8PeHl182OxJhFmnJC+HGvL3h559h3Tr46iuz\noxFmcPgUSknyQjhWiRKwYAG0aQO//gpKwd//Dt26mR2ZcARJ8kJ4gNBQ2LLF2DXq3Dl47jnYuNHY\naES4N0nyQniIKlWMG8ClS/DEExAZCX4yTObWpE9eCA/0wgvQpAn87W9w6pTZ0YiCJLNrhPBASsGk\nSaA11KsH1avDgAEwebJxhWxamtkRCnuR7hohPFSxYjBrlpHQDxww+ug3boSPP4bz542B2rZtjVvz\n5kZ54XokyQvh4by8oG5d4zZkiPHcmTN3kv6bb8KePcaFVbeSftu2EBRkbtzCOkpr7biDKaV/2PED\nAxsNdNgxhRD5l5QEUVF3Ev+mTUYXz+LFkuwdQSmF1lrZ8l5pyQshclWsGDz4oHEDo4vnvfegUyeI\niJCljJ2Z4wdeZRNvIVyelxf8+99G0u/e3WjpC+fk8O6a9cfWc3/l+x12TCFEwUlLMy6sio+HHj2M\nWTuPPiq7UdlbfrprZJ68EMJmXl4wZQqEh8Phw8YAbbNmMGGCTMN0Fg5vyR9KOESN0jUcdkwhhGMd\nPAjPP3/nA0CWTsg/ackLIZxG7drGqpd9+hhz7T/6CFJSzI7Kczm8JX85+TL+hf0ddkwhhHkOHzaW\nUDhwwBig7d4dHnpILqzKq/y05B2e5FNSU/D28nbYMYUQ5tIaoqNh0SLjtm0bPPCAkfC7dYPKlc2O\n0Pm5VJJ35PGEEM7n4kVYscJI+EuXQoUKRrLv3h1atjQ2OhF3kyQvhHBJqamwebNx5eyiRcZUzK5d\n4cMPjeQvDJLkhRBu4fhxYyXMGTNgyRJjPR0hSV4I4WamT4dRo+CXX+4speDJCnwKpVKqs1LqgFIq\nWin1Zhav+yqlZimlDimlNimlZChFCGGzZ581NiDv08dYDlnYLtckr5TyAiYCnYD7gKeVUmGZig0G\nErXWNYHPgf/ZO1B3ExERYXYITkPOxR1yLu7w9o5g1Sp4+23o0sXYqlDknTUt+RbAIa31Ma21BZgF\n9MxUpifwY/r9X4GH7Reie5I/5jvkXNwh5+KOiIgI6teH/fuhVy/o21eSvS2sSfIVgRMZHselP5dl\nGa11KnBRKVXaLhEKITxa4cLw4ovGXPtbyb5zZ2NNe5E7a5J8Vp39mUdPM5dRWZQRQgib3Ur2hw7B\n44/DU08Z0y1TU82OzLnlOrtGKdUKGKO17pz++C1Aa63HZSizNL3MZqWUN3BKa10ui7ok8QshhA0K\ncmeoKKCGUqoKcAp4Cng6U5mFwEBgM9AHWG3PIIUQQtgm1ySvtU5VSo0AVmB070zRWu9XSo0ForTW\ni4ApwE9KqUNAAsYHgRBCCJM59GIoIYQQjlUg68nLxVN3WHEuXlNK7VNK7VRK/aGUqmRGnI6Q27nI\nUK63UipNKdXEkfE5kjXnQin1ZPrvxh6l1HRHx+goVvyNVFJKrVZKbU//O+liRpwFTSk1RSl1Rim1\nO4cy49Pz5k6lVCOrKtZa2/WG8cERA1QBfICdQFimMsOAr9Lv9wVm2TsOZ7hZeS4eBIqk3x/qyeci\nvVxxYC3wJ9DE7LhN/L2oAWwDSqQ/DjQ7bhPPxWTgxfT7dYAjZsddQOfifqARsDub17sAi9PvtwQi\nram3IFrycvHUHbmeC631Wq11cvrDSO69BsFdWPN7AfAeMA644cjgHMyaczEE+FJrfRlAa33ewTE6\nijXnIg0okX4/ADjpwPgcRmu9AbiQQ5GewLT0spuBkkqpoNzqLYgkLxdP3WHNuchoMLC0QCMyT67n\nIv3rZ4jWeokjAzOBNb8XtYDaSqkNSqk/lVKdHBadY1lzLsYC/ZVSJ4BFwEgHxeZsMp+rk1jRKLRm\nCmVeycVTd1hzLoyCSj0LNMXovnFHOZ4LpZQCPsOYipvTe9yBNb8XhTC6bNoBlYH1Sqn7brXs3Yg1\n5+JpYKrW+rP063amY6yj5WmszicZFURLPg7jl/KWECA+U5kTQCWA9IunSmitc/qa4qqsORcopToA\n/wR6pH9ldUe5nQt/jD/cCKXUEaAV8LubDr5a83sRB/yutU7TWh8FDgI1HROeQ1lzLgYDvwBorSOB\nIkqpQMeE51TiSM+b6bLMJ5kVRJK/ffGUUsoXY878gkxlbl08BTlcPOUGcj0XSqnGwNfAo1rrBBNi\ndJQcz4XW+rLWupzWurrWuhrG+EQPrfV2k+ItSNb8jcwHHgJIT2g1gcMOjdIxrDkXx4AOAEqpOkBh\nNx6jUGT/DXYBMABur0RwUWt9JrcK7d5do+XiqdusPBf/A/yAOeldFse01r3Mi7pgWHku7noLbtpd\nY8250FovV0p1VErtA1KA193x266VvxevA98qpV7DGIQdmH2Nrksp9TMQDpRRSh0HRgO+GMvIfKO1\nXqKU6qqUigGuAYOsqjd9Oo4QQgg3VCAXQwkhhHAOkuSFEMKNSZIXQgg3JkleCCHcmCR5IYRwY5Lk\nhRDCjUmSF0IINyZJXggh3Nj/Axe0EY4jxTDKAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11efdd610>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Precision vs threshold plot.\n", "th, precision, recall = metrics.precision_recall_curve(test_y, prob_y[:, 1])\n", "_ = plt.plot(precision, th, c='g')\n", "_ = plt.plot(recall, precision[:-1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
ozanarkancan/navigation
inotes/nr.ipynb
1
3626
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "StatsBase.WeightVec{Float64,Array{Float64,1}}([0.319088,0.344729,0.336182],1.0)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "using StatsBase\n", "\n", "s = [874, 1293, 1070] ./ 3237\n", "p = [224, 242, 236] ./ 702\n", "\n", "s = WeightVec(s)\n", "p = WeightVec(p)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Single: [0.660183,0.722624,0.679128]\n", "Paragraph: [0.267188,0.243607,0.2578]\n", "Weighted Single: (0.6913868947041041,0.026501546828584657)\n", "Weighted Paragraph: (0.2559030839067544,0.009693677779928798)\n", "Ensemble Weighted Single: (0.717338923963562,0.023886226690260026)\n", "Ensemble Weighted Paragraph: (0.29597361268810246,0.0317401082659962)\n" ] } ], "source": [ "model = \"new grid beam\"\n", "rs_1 = [0.6590389016018307, 0.7001545595054096, 0.6766355140186916];\n", "rp_1 = [0.2982456140350877, 0.20967741935483872, 0.2743362831858407];\n", "\n", "rs_2 = [0.6979405034324943, 0.7554179566563467, 0.6822429906542056];\n", "rp_2 = [0.34234234234234234, 0.2773109243697479, 0.2682926829268293];\n", "\n", "rs_3 = [0.631578947368421, 0.6955177743431221, 0.6616822429906543];\n", "rp_3 = [0.17543859649122806, 0.1693548387096774, 0.19469026548672566];\n", "\n", "rs_4 = [0.6430205949656751, 0.7383900928792569, 0.6822429906542056];\n", "rp_4 = [0.25225225225225223, 0.2773109243697479, 0.2764227642276423];\n", "\n", "rs_5 = [0.6407322654462243, 0.714064914992272, 0.6841121495327103];\n", "rp_5 = [0.21052631578947367, 0.23387096774193547, 0.25663716814159293];\n", "\n", "rs_6 = [0.6887871853546911, 0.7321981424148607, 0.6878504672897197];\n", "rp_6 = [0.32432432432432434, 0.29411764705882354, 0.2764227642276423];\n", "\n", "rs_ens_1 = [0.6475972540045767, 0.7171561051004637, 0.7140186915887851];\n", "rp_ens_1 = [0.21929824561403508, 0.23387096774193547, 0.336283185840708];\n", "\n", "rs_ens_2 = [0.7208237986270023, 0.7693498452012384, 0.7121495327102804];\n", "rp_ens_2 = [0.35135135135135137, 0.29411764705882354, 0.34146341463414637];\n", "\n", "rs_m = (rs_1 + rs_2 + rs_3 + rs_4 + rs_5 + rs_6) / 6\n", "rp_m = (rp_1 + rp_2 + rp_3 + rp_4 + rp_5 + rp_6) / 6\n", "\n", "rs_ens_m = (rs_ens_1 + rs_ens_2) / 2\n", "rp_ens_m = (rp_ens_1 + rp_ens_2) / 2\n", "\n", "println(\"Single: $(rs_m)\")\n", "println(\"Paragraph: $(rp_m)\")\n", "println(\"Weighted Single: $(mean_and_std(rs_m, s))\")\n", "println(\"Weighted Paragraph: $(mean_and_std(rp_m, p))\")\n", "println(\"Ensemble Weighted Single: $(mean_and_std(rs_ens_m, s))\")\n", "println(\"Ensemble Weighted Paragraph: $(mean_and_std(rp_ens_m, p))\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.5.0", "language": "julia", "name": "julia-0.5" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
par2/lamana
docs/package.ipynb
1
6533
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "nbsphinx": "hidden" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last Run: 2016-07-26 14:03:06\n" ] } ], "source": [ "# Hidden TimeStamp\n", "import time, datetime\n", "st = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')\n", "print('Last Run: {}'.format(st))" ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ ".. note ::\n", "\n", " This project is forked from legacy code: *Script - Laminate_Stress_Constant_Thickness_3a3.ipynb*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The Package Architecture" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "LamAna originally stems from a single legacy script (circa 2014). It has since grown into a package of modules and been abstracted to address more general problems related to laminate analysis. \n", "\n", "This repository is designed to analyze various geometries given a specified custom model based on Classical Laminate Theory (CLT). Package architecture is diagramed below: \n", "\n", "![API Diagram](./_images/diagram.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As indicated in the diagram, each diamond shape represents a module. The diagram illustrates the traffic of exchanging data-contained `FeatureInput` and `LaminateModels` objects between modules. The user-related areas are highlighted blue. The package is most extensible in these blue areas. \n", "\n", "## Package Module Summary\n", "\n", "The following table summarizes the core + feature modules in this package, their intended functions and some key resulting objects. Objects that are exchanged between modules are italicized. The Auxillary/Utility modules house supporting code that will not be discussed.\n", "\n", "| Module | Classifier | Purpose | Product |\n", "|:------ |:---------- |:----------- |:-------:|\n", "| `input_` | Backend | Backend code processing user inputs for all feature modules. | User *Input object* i.e. `Geometry` |\n", "| `distrubtions` | Feature | Analyze stress distributions for different geometries. | *FeatureInput object* | \n", "| `ratios` | Feature | Thickness ratio analyses for optimizing stress-geomtry design. | |\n", "| `predictions` | Feature | Failure predictions using experimental and laminate theory data. | |\n", "| `constructs` | Backend | Build DataFrame representations of laminates. | *LaminateModel object* |\n", "| `theories` | Backend | Handle custom model selection and handshaking. | |\n", "| `<models>` | Extension | Directory of user-defined, custom LT models | *Model object* |\n", "| `output_` | Backend | Plotting objects and export code. | Output object e.g. plots, .xlsx/.csv, figures |\n", "\n", "The components of the lamana project can thus be classified as three types:\n", "\n", "- **Frontend/Feature**: user-interacted, feature modules of particular interest that use models based on laminate theory\n", "- **Extension**: plugin modules extending capabilities of the repository, e.g. `models` directory containing user defined laminate theories (`Classical_LT`, `Wilson_LT`).\n", "- **Backend**: remaining Core modules, `input_`, `constructs_`, `theories_`, `output_`; workhorse factories of `LaminateModel` objects." ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ ".. note::\n", "\n", " As of LamAna 0.4.10, only the ``distributions`` Feature module is implementated. ``ratios`` and ``predictions`` will be added in future releases." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Intramodular Products\n", "\n", "Intramodular products have information that is exchanged between package modules. These objects are illustrated as circles in the API Diagram.\n", "\n", "#### FeatureInput\n", "\n", "A `FeatureInput` is simply a Python dictionary that contains information from both a Feature module and user-information processed by the `input_` module. Here is a sample with the associated items tabulated:\n", "\n", "```python\n", "\n", "FeatureInput = {\n", " 'Geometry': Geometry, # defined in Case \n", " 'Parameters': load_params,\n", " 'Properties': mat_props,\n", " 'Materials': materials, # set material order\n", " 'Model': model,\n", " 'Globals': None, # defined in models\n", "} \n", "```\n", "\n", "| Key | Value | Description | \n", "|:---|:-----|:-----------|\n", "| `'Geometry'` | Geometry object | a namedtuple of geometry thicknesses |\n", "|`'Parameters'`| load_params | loading parameters |\n", "| `'Properties'` | mat_props | material properties, e.g. modulus, Poisson's ratio |\n", "| `'Materials'` | materials index | ordered list of materials from DataFrame index |\n", "| `'Model'` | model str | selected string of model name |\n", "| `'Globals'` | None | a placeholder for future ubiquitous model variables |\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### LaminateModel\n", "\n", "A `LaminateModel` is simply a `pandas` DataFrame that combines data processed by a `constructs` object and `theories` model. Details of this object will be discussed further in the [constructs](components.ipynb#Core-Module:-constructs) section. " ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python [py27]", "language": "python", "name": "Python [py27]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "toc": { "toc_cell": false, "toc_number_sections": false, "toc_threshold": "2", "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
ES-DOC/esdoc-jupyterhub
notebooks/csiro-bom/cmip6/models/sandbox-3/ocean.ipynb
1
164419
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Ocean \n", "**MIP Era**: CMIP6 \n", "**Institute**: CSIRO-BOM \n", "**Source ID**: SANDBOX-3 \n", "**Topic**: Ocean \n", "**Sub-Topics**: Timestepping Framework, Advection, Lateral Physics, Vertical Physics, Uplow Boundaries, Boundary Forcing. \n", "**Properties**: 133 (101 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/ocean?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:53:56" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'csiro-bom', 'sandbox-3', 'ocean')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties](#1.-Key-Properties) \n", "[2. Key Properties --&gt; Seawater Properties](#2.-Key-Properties---&gt;-Seawater-Properties) \n", "[3. Key Properties --&gt; Bathymetry](#3.-Key-Properties---&gt;-Bathymetry) \n", "[4. Key Properties --&gt; Nonoceanic Waters](#4.-Key-Properties---&gt;-Nonoceanic-Waters) \n", "[5. Key Properties --&gt; Software Properties](#5.-Key-Properties---&gt;-Software-Properties) \n", "[6. Key Properties --&gt; Resolution](#6.-Key-Properties---&gt;-Resolution) \n", "[7. Key Properties --&gt; Tuning Applied](#7.-Key-Properties---&gt;-Tuning-Applied) \n", "[8. Key Properties --&gt; Conservation](#8.-Key-Properties---&gt;-Conservation) \n", "[9. Grid](#9.-Grid) \n", "[10. Grid --&gt; Discretisation --&gt; Vertical](#10.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[11. Grid --&gt; Discretisation --&gt; Horizontal](#11.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[12. Timestepping Framework](#12.-Timestepping-Framework) \n", "[13. Timestepping Framework --&gt; Tracers](#13.-Timestepping-Framework---&gt;-Tracers) \n", "[14. Timestepping Framework --&gt; Baroclinic Dynamics](#14.-Timestepping-Framework---&gt;-Baroclinic-Dynamics) \n", "[15. Timestepping Framework --&gt; Barotropic](#15.-Timestepping-Framework---&gt;-Barotropic) \n", "[16. Timestepping Framework --&gt; Vertical Physics](#16.-Timestepping-Framework---&gt;-Vertical-Physics) \n", "[17. Advection](#17.-Advection) \n", "[18. Advection --&gt; Momentum](#18.-Advection---&gt;-Momentum) \n", "[19. Advection --&gt; Lateral Tracers](#19.-Advection---&gt;-Lateral-Tracers) \n", "[20. Advection --&gt; Vertical Tracers](#20.-Advection---&gt;-Vertical-Tracers) \n", "[21. Lateral Physics](#21.-Lateral-Physics) \n", "[22. Lateral Physics --&gt; Momentum --&gt; Operator](#22.-Lateral-Physics---&gt;-Momentum---&gt;-Operator) \n", "[23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff](#23.-Lateral-Physics---&gt;-Momentum---&gt;-Eddy-Viscosity-Coeff) \n", "[24. Lateral Physics --&gt; Tracers](#24.-Lateral-Physics---&gt;-Tracers) \n", "[25. Lateral Physics --&gt; Tracers --&gt; Operator](#25.-Lateral-Physics---&gt;-Tracers---&gt;-Operator) \n", "[26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff](#26.-Lateral-Physics---&gt;-Tracers---&gt;-Eddy-Diffusity-Coeff) \n", "[27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity](#27.-Lateral-Physics---&gt;-Tracers---&gt;-Eddy-Induced-Velocity) \n", "[28. Vertical Physics](#28.-Vertical-Physics) \n", "[29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details](#29.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Details) \n", "[30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers](#30.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Tracers) \n", "[31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum](#31.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Momentum) \n", "[32. Vertical Physics --&gt; Interior Mixing --&gt; Details](#32.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Details) \n", "[33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers](#33.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Tracers) \n", "[34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum](#34.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Momentum) \n", "[35. Uplow Boundaries --&gt; Free Surface](#35.-Uplow-Boundaries---&gt;-Free-Surface) \n", "[36. Uplow Boundaries --&gt; Bottom Boundary Layer](#36.-Uplow-Boundaries---&gt;-Bottom-Boundary-Layer) \n", "[37. Boundary Forcing](#37.-Boundary-Forcing) \n", "[38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction](#38.-Boundary-Forcing---&gt;-Momentum---&gt;-Bottom-Friction) \n", "[39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction](#39.-Boundary-Forcing---&gt;-Momentum---&gt;-Lateral-Friction) \n", "[40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration](#40.-Boundary-Forcing---&gt;-Tracers---&gt;-Sunlight-Penetration) \n", "[41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing](#41.-Boundary-Forcing---&gt;-Tracers---&gt;-Fresh-Water-Forcing) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties \n", "*Ocean key properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of ocean model code (NEMO 3.6, MOM 5.0,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Model Family\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_family') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"OGCM\" \n", "# \"slab ocean\" \n", "# \"mixed layer ocean\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Basic approximations made in the ocean.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.basic_approximations') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Primitive equations\" \n", "# \"Non-hydrostatic\" \n", "# \"Boussinesq\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.5. Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of prognostic variables in the ocean component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# \"Salinity\" \n", "# \"U-velocity\" \n", "# \"V-velocity\" \n", "# \"W-velocity\" \n", "# \"SSH\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Seawater Properties \n", "*Physical properties of seawater in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Eos Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Wright, 1997\" \n", "# \"Mc Dougall et al.\" \n", "# \"Jackett et al. 2006\" \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Eos Functional Temp\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Temperature used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Eos Functional Salt\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Salinity used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Practical salinity Sp\" \n", "# \"Absolute salinity Sa\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.4. Eos Functional Depth\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Depth or pressure used in EOS for sea water ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pressure (dbars)\" \n", "# \"Depth (meters)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.5. Ocean Freezing Point\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.6. Ocean Specific Heat\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Specific heat in ocean (cpocean) in J/(kg K)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.7. Ocean Reference Density\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Boussinesq reference density (rhozero) in kg / m3*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Bathymetry \n", "*Properties of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Reference Dates\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Reference date of bathymetry*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Present day\" \n", "# \"21000 years BP\" \n", "# \"6000 years BP\" \n", "# \"LGM\" \n", "# \"Pliocene\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the bathymetry fixed in time in the ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Ocean Smoothing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe any smoothing or hand editing of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.4. Source\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe source of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Nonoceanic Waters \n", "*Non oceanic waters treatement in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Isolated Seas\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe if/how isolated seas is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. River Mouth\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe if/how river mouth mixing or estuaries specific treatment is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Software Properties \n", "*Software properties of ocean code*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Repository\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Location of code for this component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Code Version\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Code version identifier.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Code Languages\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Code language(s).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Resolution \n", "*Resolution in the ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Range Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Number Of Horizontal Gridpoints\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.5. Number Of Vertical Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels resolved on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.6. Is Adaptive Grid\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Default is False. Set true if grid resolution changes during execution.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.7. Thickness Level 1\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Thickness of first surface ocean level (in meters)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Key Properties --&gt; Tuning Applied \n", "*Tuning methodology for ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. Global Mean Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List set of metrics of the global mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Regional Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.4. Trend Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List observed trend metrics used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Key Properties --&gt; Conservation \n", "*Conservation in the ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Brief description of conservation methodology*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Properties conserved in the ocean by the numerical schemes*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Energy\" \n", "# \"Enstrophy\" \n", "# \"Salt\" \n", "# \"Volume of ocean\" \n", "# \"Momentum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Consistency Properties\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Corrected Conserved Prognostic Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Set of variables which are conserved by *more* than the numerical scheme alone.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Was Flux Correction Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Does conservation involve flux correction ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Grid \n", "*Ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of grid in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Grid --&gt; Discretisation --&gt; Vertical \n", "*Properties of vertical discretisation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Coordinates\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of vertical coordinates in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Z-coordinate\" \n", "# \"Z*-coordinate\" \n", "# \"S-coordinate\" \n", "# \"Isopycnic - sigma 0\" \n", "# \"Isopycnic - sigma 2\" \n", "# \"Isopycnic - sigma 4\" \n", "# \"Isopycnic - other\" \n", "# \"Hybrid / Z+S\" \n", "# \"Hybrid / Z+isopycnic\" \n", "# \"Hybrid / other\" \n", "# \"Pressure referenced (P)\" \n", "# \"P*\" \n", "# \"Z**\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.2. Partial Steps\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Using partial steps with Z or Z* vertical coordinate in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Type of horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal grid type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Lat-lon\" \n", "# \"Rotated north pole\" \n", "# \"Two north poles (ORCA-style)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Staggering\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal grid staggering type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Arakawa B-grid\" \n", "# \"Arakawa C-grid\" \n", "# \"Arakawa E-grid\" \n", "# \"N/a\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Finite difference\" \n", "# \"Finite volumes\" \n", "# \"Finite elements\" \n", "# \"Unstructured grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Timestepping Framework \n", "*Ocean Timestepping Framework*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Diurnal Cycle\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Diurnal cycle type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Via coupling\" \n", "# \"Specific treatment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Timestepping Framework --&gt; Tracers \n", "*Properties of tracers time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracers time stepping scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracers time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Timestepping Framework --&gt; Baroclinic Dynamics \n", "*Baroclinic dynamics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Baroclinic dynamics type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Preconditioned conjugate gradient\" \n", "# \"Sub cyling\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Baroclinic dynamics scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Time Step\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Baroclinic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Timestepping Framework --&gt; Barotropic \n", "*Barotropic time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Splitting\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time splitting method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"split explicit\" \n", "# \"implicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Time Step\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Barotropic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Timestepping Framework --&gt; Vertical Physics \n", "*Vertical physics time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Details of vertical time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Advection \n", "*Ocean advection*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of advection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Advection --&gt; Momentum \n", "*Properties of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Flux form\" \n", "# \"Vector form\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Scheme Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of ocean momemtum advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. ALE\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Using ALE for vertical advection ? (if vertical coordinates are sigma)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.ALE') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Advection --&gt; Lateral Tracers \n", "*Properties of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.2. Flux Limiter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Monotonic flux limiter for lateral tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.3. Effective Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Effective order of limited lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.4. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Descriptive text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.5. Passive Tracers\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Passive tracers advected*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ideal age\" \n", "# \"CFC 11\" \n", "# \"CFC 12\" \n", "# \"SF6\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.6. Passive Tracers Advection\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Is advection of passive tracers different than active ? if so, describe.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Advection --&gt; Vertical Tracers \n", "*Properties of vertical tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Descriptive text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Flux Limiter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Monotonic flux limiter for vertical tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Lateral Physics \n", "*Ocean lateral physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of lateral physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of transient eddy representation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Eddy active\" \n", "# \"Eddy admitting\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Lateral Physics --&gt; Momentum --&gt; Operator \n", "*Properties of lateral physics operator for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Direction of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Discretisation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Discretisation of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff \n", "*Properties of eddy viscosity coeff in lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Lateral physics momemtum eddy viscosity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. Constant Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant, value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.3. Variable Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy viscosity coeff in lateral physics momemtum scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.4. Coeff Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe background eddy viscosity coeff in lateral physics momemtum scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.5. Coeff Backscatter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there backscatter in eddy viscosity coeff in lateral physics momemtum scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 24. Lateral Physics --&gt; Tracers \n", "*Properties of lateral physics for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 24.1. Mesoscale Closure\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there a mesoscale closure in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.2. Submesoscale Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there a submesoscale mixing parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 25. Lateral Physics --&gt; Tracers --&gt; Operator \n", "*Properties of lateral physics operator for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 25.1. Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Direction of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.2. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.3. Discretisation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Discretisation of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff \n", "*Properties of eddy diffusity coeff in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 26.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Lateral physics tracers eddy diffusity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.2. Constant Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.3. Variable Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy diffusity coeff in lateral physics tracers scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.4. Coeff Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.5. Coeff Backscatter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there backscatter in eddy diffusity coeff in lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity \n", "*Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 27.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV in lateral physics tracers in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"GM\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.2. Constant Val\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If EIV scheme for tracers is constant, specify coefficient value (M2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.3. Flux Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV flux (advective or skew)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.4. Added Diffusivity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV added diffusivity (constant, flow dependent or none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 28. Vertical Physics \n", "*Ocean Vertical Physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 28.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details \n", "*Properties of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 29.1. Langmuir Cells Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there Langmuir cells mixing in upper ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers \n", "*Properties of boundary layer (BL) mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 30.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of boundary layer mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.2. Closure Order\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.3. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant BL mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background BL mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum \n", "*Properties of boundary layer (BL) mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 31.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of boundary layer mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.2. Closure Order\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.3. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant BL mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 32. Vertical Physics --&gt; Interior Mixing --&gt; Details \n", "*Properties of interior mixing in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 32.1. Convection Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of vertical convection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Non-penetrative convective adjustment\" \n", "# \"Enhanced vertical diffusion\" \n", "# \"Included in turbulence closure\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.2. Tide Induced Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how tide induced mixing is modelled (barotropic, baroclinic, none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.3. Double Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there double diffusion*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.4. Shear Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there interior shear mixing*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers \n", "*Properties of interior mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 33.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of interior mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.2. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant interior mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.3. Profile\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for tracers (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background interior mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum \n", "*Properties of interior mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 34.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of interior mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.2. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant interior mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.3. Profile\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background interior mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 35. Uplow Boundaries --&gt; Free Surface \n", "*Properties of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 35.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Free surface scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear implicit\" \n", "# \"Linear filtered\" \n", "# \"Linear semi-explicit\" \n", "# \"Non-linear implicit\" \n", "# \"Non-linear filtered\" \n", "# \"Non-linear semi-explicit\" \n", "# \"Fully explicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.3. Embeded Seaice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the sea-ice embeded in the ocean model (instead of levitating) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 36. Uplow Boundaries --&gt; Bottom Boundary Layer \n", "*Properties of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 36.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.2. Type Of Bbl\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Diffusive\" \n", "# \"Acvective\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.3. Lateral Mixing Coef\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.4. Sill Overflow\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe any specific treatment of sill overflows*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 37. Boundary Forcing \n", "*Ocean boundary forcing*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 37.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of boundary forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.2. Surface Pressure\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.3. Momentum Flux Correction\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.4. Tracers Flux Correction\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.5. Wave Effects\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe if/how wave effects are modelled at ocean surface.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.6. River Runoff Budget\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how river runoff from land surface is routed to ocean and any global adjustment done.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.7. Geothermal Heating\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe if/how geothermal heating is present at ocean bottom.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction \n", "*Properties of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 38.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Non-linear\" \n", "# \"Non-linear (drag function of speed of tides)\" \n", "# \"Constant drag coefficient\" \n", "# \"None\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction \n", "*Properties of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 39.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Free-slip\" \n", "# \"No-slip\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration \n", "*Properties of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 40.1. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"1 extinction depth\" \n", "# \"2 extinction depth\" \n", "# \"3 extinction depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.2. Ocean Colour\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the ocean sunlight penetration scheme ocean colour dependent ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.3. Extinction Depth\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe and list extinctions depths for sunlight penetration scheme (if applicable).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing \n", "*Properties of surface fresh water forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 41.1. From Atmopshere\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from atmos in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.2. From Sea Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from sea-ice in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Real salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.3. Forced Mode Restoring\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface salinity restoring in forced mode (OMIP)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
wkearn/RasterIO.jl
doc/GDALGuide.ipynb
1
108711
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "\n", "This Quick Guide is based on the workshop in http://download.osgeo.org/gdal/workshop/foss4ge2015/workshop_gdal.pdf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# LICENSE and Copyrights\n", "This document is authored by Even Rouault and (C) Copyright Spatialys 2015. It is licenced\n", "under Creative Commons Attribution 3.0 (or any later version at the licensee choice) :\n", "https://creativecommons.org/licenses/by/3.0/.\n", "\n", "Links to documentation in this tutorial used the versioned documentation for GDAL 1.11\n", "(http://gdal.org/1.11/). For the documentation of the latest version (generally in\n", "development), remove the « 1.11/ »\n", "\n", "Workshop data used and associated rights:\n", "- `paris.tif` : extract of OpenStreetMap. (C) OpenStreetMap contributors :\n", "http://www.openstreetmap.org/copyright\n", "- `world.tif` : from OSGeo-Live sample data\n", "- `ne_10m_admin_0_countries.*` and `ne_10m_admin_1_states_provinces_shp.*`: from\n", "OSGeo -Live sample data (and originally from http://www.naturalearthdata.com,\n", "public domain)\n", "- `wellington_west` and `wellington_east.png` : derived from\n", "https://data.linz.govt.nz/layer/1870-wellington-03m-rural-aerial-photos-2012-2013 ,\n", "Licensed by Wellington Regional Council for reuse under the Creative Commons\n", "Attribution 3.0 New Zealand licence (https://data.linz.govt.nz/license/attribution-3-0-\n", "new-zealand/). For the purpose of this workshop, they have been post-processed to\n", "decrease their resolution, reduce to 256 colors, add collars and convert to PNG.\n", "- `MK_30m.tif` and `ML_30m.tif` : derived from https://data.linz.govt.nz/layer/1768-nz-\n", "8m-digital-elevation-model-2012/ . License Creative Commons Attribution 3.0 New\n", "Zealand (https://data.linz.govt.nz/license/attribution-3-0-new-zealand/). For the\n", "purpose of this workshop, they have been post-processed to decrease their resolution.\n", "- `geomatrix.tif`: from GDAL autotest suite. X/MIT License\n", "- `m2frac10bit.l1b` : from GDAL extended data test suite, X/MIT License (http://download.osgeo.org/gdal/data/l1b/m2frac10bit.l1b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Prerequisites\n", "- GDAL 1.11.1 or later, with RasterIO.jl installed.\n", "- Workshop test data. Available at http://download.osgeo.org/gdal/workshop/foss4ge2015/workshop_data.zip\n", "- A JuPyTer notebook opened in the directory with the workshop test data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gdalworkshop/MK_30m.tif\n", "gdalworkshop/ML_30m.tif\n", "gdalworkshop/geomatrix.tif\n", "gdalworkshop/m2frac10bit.l1b\n", "gdalworkshop/ne_10m_admin_0_countries.README.html\n", "gdalworkshop/ne_10m_admin_0_countries.VERSION.txt\n", "gdalworkshop/ne_10m_admin_0_countries.dbf\n", "gdalworkshop/ne_10m_admin_0_countries.prj\n", "gdalworkshop/ne_10m_admin_0_countries.qix\n", "gdalworkshop/ne_10m_admin_0_countries.shp\n", "gdalworkshop/ne_10m_admin_0_countries.shx\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.README.html\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.VERSION.txt\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.dbf\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.prj\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.qix\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.shp\n", "gdalworkshop/ne_10m_admin_1_states_provinces_shp.shx\n", "gdalworkshop/paris.tif\n", "gdalworkshop/wellington_east.png\n", "gdalworkshop/wellington_west.png\n", "gdalworkshop/wellington_west.wld\n", "gdalworkshop/world.map\n", "gdalworkshop/world.tif\n" ] } ], "source": [ "; ls gdalworkshop/*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Raster operations\n", "\n", "## Getting metadata about a raster / gdalinfo\n", "\n", "### Introduction\n", "`gdalinfo` is the utility you will use all the time to discover metadata about a raster. This will also enable us to get a practical knowledge of most of the concepts of the [GDAL data model](http://www.gdal.org/gdal_datamodel.html).\n", "\n", "Documentation of the gdalinfo utility : http://gdal.org/1.11/gdalinfo.html" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: GTiff/GeoTIFF\n", "Files: gdalworkshop/world.tif\n", "Size is 2048, 1024\n", "Coordinate System is:\n", "GEOGCS[\"WGS 84\",\n", " DATUM[\"WGS_1984\",\n", " SPHEROID[\"WGS 84\",6378137,298.257223563,\n", " AUTHORITY[\"EPSG\",\"7030\"]],\n", " AUTHORITY[\"EPSG\",\"6326\"]],\n", " PRIMEM[\"Greenwich\",0],\n", " UNIT[\"degree\",0.0174532925199433],\n", " AUTHORITY[\"EPSG\",\"4326\"]]\n", "Origin = (-180.000000000000000,90.000000000000000)\n", "Pixel Size = (0.175781250000000,-0.175781250000000)\n", "Metadata:\n", " AREA_OR_POINT=Area\n", "Image Structure Metadata:\n", " INTERLEAVE=BAND\n", "Corner Coordinates:\n", "Upper Left (-180.0000000, 90.0000000) (180d 0' 0.00\"W, 90d 0' 0.00\"N)\n", "Lower Left (-180.0000000, -90.0000000) (180d 0' 0.00\"W, 90d 0' 0.00\"S)\n", "Upper Right ( 180.0000000, 90.0000000) (180d 0' 0.00\"E, 90d 0' 0.00\"N)\n", "Lower Right ( 180.0000000, -90.0000000) (180d 0' 0.00\"E, 90d 0' 0.00\"S)\n", "Center ( 0.0000000, 0.0000000) ( 0d 0' 0.01\"E, 0d 0' 0.01\"N)\n", "Band 1 Block=256x256 Type=Byte, ColorInterp=Red\n", " Overviews: 1024x512, 512x256, 256x128, 128x64, 64x32, 32x16, 16x8\n", "Band 2 Block=256x256 Type=Byte, ColorInterp=Green\n", " Overviews: 1024x512, 512x256, 256x128, 128x64, 64x32, 32x16, 16x8\n", "Band 3 Block=256x256 Type=Byte, ColorInterp=Blue\n", " Overviews: 1024x512, 512x256, 256x128, 128x64, 64x32, 32x16, 16x8\n" ] } ], "source": [ "; gdalinfo gdalworkshop/world.tif" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Description of output :\n", "- Driver: Formats in GDAL are managed by different «drivers». Basically 1 driver is dedicated to 1 format. Lists of drivers available at http://gdal.org/1.11/formats_list.html\n", "- Files: list of files. Main file + potential additional files (world files, etc...)\n", "- Size is 2048, 1024. First figure is Width in pixels. Second one is Height in pixels.\n", "- Coordinate System: Also called projection, SRS (Spatial Reference System), CRS (Coordinate Refrence System), … The string presented here is in WKT (Well Known Text) format. The one used here is one of the most simple one. Coordinates are expressed in longitude & latitude on the WGS84 (World Geodetic Survey 1984) datum (due to longitude & latitude being directly used, this is called a geographic coordinate system « GEOGCS »)\n", "- Origin : This is the projected coordinate of the upper-left corner of the image (the upper-left corner of the upper-left pixel). Here -180 is the longitude and 90 the latitude.\n", "- Pixel Size : The dimension of a pixel in the units of the coordinate system. The first value is the width of the pixel, the second one its height. Here 0.17578125 is in degrees (see UNIT[\"degree\"...] in the Coordinate System string). At the equator, this means roughly 0.17578125 * 40000 / 360 = 19.5 km (the circonference of the Earth is rougly 40 000 km, and covers 360 degrees). You can notice the negative value for the pixel height. This is to indicate that the geospatial coordinates are decreasing when you go from the top of the image to the bottom of the image. This is the case for most geospatial rasters, so they appear correctly in all viewers.\n", "- Metadata : a list of KEY=VALUE pairs, depending on the format and data. Here AREA_OR_POINT=AREA is a GDAL specific metadata to indicate that the on-file convention for the geo-registration is to take the upper-left corner of pixels (to be opposed to AREA_OR_POINT=POINT where the center of pixel is considered). You generally don't have to care about this one. This is mostly informational. For more details (rather involved), see https://trac.osgeo.org/gdal/wiki/rfc33_gtiff_pixelispoint\n", "- Image structure metadata : gives details about :\n", " - the arrangement of pixels. INTERLEAVE=BAND here means that in the file you have first all the pixels for the Red band, then for the Green band and finally for the Blue band. The other formulation is INTERLEAVE=PIXEL which means that for each pixel you have the red value followed by the green and blue values, and then for the next pixel another R,G,B tuple, etc... This can be interesting to know for the efficiency of algorithms when processing big images. You might want to proceed closely with the natural organization of the data for best performance.\n", " - Potentially, compression used (JPEG, LZW, DEFLATE, etc...). Here's none.\n", " - Potentially, number of bits used when the data width is smaller than the data type holding it. For example 12-bit wide data (values between 0 and 4095) will be stored in a unsigned 16-bit integer, and NBITS=12 will be advertized\n", "- Corner coordinates: the geospatial coordinates of the 4 corner of the images (including any\n", "padding), as well as the center pixel, expressed in the coordinate system for the first tuple.\n", "The second tuple gives their equivalents as longitude, latitude. Here since it is a geographic\n", "coordinate system, both values are identical\n", "- Band description :\n", " - Block=256x256 : A block corresponds to a rectangular subpart of the raster. The first\n", "value is the width of the block and the second value its height. Typical block shapes are lines or group of lines (in which case the block width is the raster width) or tiles (typically squares), such as here. Knowing the block size is important when efficient reading of a raster is needed. In case of tiles, this means reading rasters from the leftmost tile of the raster to the right-most of the upper lines and progressing that way downward to the bottom of the image.\n", " - Type=Byte : This is the data type of a pixel. Byte (unsigned byte) can store integer\n", "values between 0 and 255 and is the most common one. Other data types are possibles\n", "such as Int16 ([-32768,32767], UInt16([0,65535],Int32,UInt32,Float32 (single-precision\n", "floating point),Float64 (double-precision floating point). Int16 or Float32/Float64 can be\n", "encountered for digital elevation models (DEMs). UInt16 for raw satellite imagery.\n", "There are also data types that store complex numbers (with real and imaginary part), but\n", "this is rather esoteric and only used in a few drivers, mainly in the field of SAR\n", "(Synthetic Aperture Radar).\n", " - ColorInterp=Red : The color interpretation of the band. Common values are Red, Green,\n", "Blue, Alpha (for opacity channel. 0=fully transparent, 255=fully opaque) or Unknown.\n", "Other values are possible for other color spaces such as Cyan, Magenta, Yellow, blacK,\n", "but not often encountered. Note that there's no color interpretation fo Near InfraRed for\n", "example. This is something that must be deduced from other metada or knowledge of the\n", "product characteristics\n", " - Overviews : this gives the list of overviews available for the band (this may be empty).\n", "Overviews are also called pyramids in GIS. They are versions of reduced size of the full\n", "resolution raster to enable fast zoom-out operations. The first overview level is typically\n", "half the size (in both dimensions) as the full resolution one, the second overview level\n", "half the size of the first one, and so on... So the extra « cost » in term of storage size to\n", "add overviews is : 1 / (2*2) + 1 / (4*4) + 1 / (8*8) + etc.... which equals to 1 / 3. So\n", "overviews are generally and worth building, especially for use that involves interactive\n", "display of the raster. Here, looking at the file list and seing that only one file is\n", "mentionned, you can deduce that the overviews are stored within that file. Only a few\n", "formats, like TIFF/GeoTIFF, allow that. Otherwise files may be stored in external .ovr\n", "files" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Getting those information with RasterIO.jl" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"GDAL 2.1.0dev, released 2015/99/99\"" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "using RasterIO\n", "\n", "RasterIO.versioninfo(\"--version\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RasterIO.Raster(Ptr{Void} @0x00007f8325dca4c0,2048,1024,3)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raster = RasterIO.openraster(\"gdalworkshop/world.tif\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1-element Array{ASCIIString,1}:\n", " \"gdalworkshop/world.tif\"" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filelist = RasterIO.getfilelist(raster.dataset)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(2048,1024,3)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raster.width, raster.height, raster.nband" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"GEOGCS[\\\"WGS 84\\\",DATUM[\\\"WGS_1984\\\",SPHEROID[\\\"WGS 84\\\",6378137,298.257223563,AUTHORITY[\\\"EPSG\\\",\\\"7030\\\"]],AUTHORITY[\\\"EPSG\\\",\\\"6326\\\"]],PRIMEM[\\\"Greenwich\\\",0],UNIT[\\\"degree\\\",0.0174532925199433],AUTHORITY[\\\"EPSG\\\",\\\"4326\\\"]]\"" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "RasterIO.wktprojection(raster)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "6-element Array{Float64,1}:\n", " -180.0 \n", " 0.175781\n", " 0.0 \n", " 90.0 \n", " 0.0 \n", " -0.175781" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gt = RasterIO.geotransform(raster)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "origin: (-180.0,90.0)" ] } ], "source": [ "print(\"origin: $((gt[1], gt[4]))\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "pixel size: (0.17578125,-0.17578125)" ] } ], "source": [ "print(\"pixel size: $((gt[2], gt[6]))\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "upper left: [-180.0,90.0]" ] } ], "source": [ "print(\"upper left: $(RasterIO.applygeotransform(gt, 0.0, 0.0))\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "upper right: [180.0,90.0]" ] } ], "source": [ "print(\"upper right: $(RasterIO.applygeotransform(gt, Float64(raster.width), 0.0))\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lower left: [-180.0,-90.0]" ] } ], "source": [ "print(\"lower left: $(RasterIO.applygeotransform(gt, 0.0, Float64(raster.height)))\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lower right: [180.0,-90.0]" ] } ], "source": [ "print(\"lower right: $(RasterIO.applygeotransform(gt, Float64(raster.width), Float64(raster.height)))\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "center: [0.0,0.0]" ] } ], "source": [ "print(\"center: $(RasterIO.applygeotransform(gt, raster.width/2, raster.height/2))\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1-element Array{ASCIIString,1}:\n", " \"AREA_OR_POINT=Area\"" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "RasterIO.getmetadata(raster.dataset)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1-element Array{ASCIIString,1}:\n", " \"INTERLEAVE=BAND\"" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "RasterIO.getmetadata(raster.dataset, \"IMAGE_STRUCTURE\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Band 1, block size (256,256), color interp Red\n", "Overview 1: 1024 x 512\n", "Overview 2: 512 x 256\n", "Overview 3: 256 x 128\n", "Overview 4: 128 x 64\n", "Overview 5: 64 x 32\n", "Overview 6: 32 x 16\n", "Overview 7: 16 x 8\n", "Band 2, block size (256,256), color interp Green\n", "Overview 1: 1024 x 512\n", "Overview 2: 512 x 256\n", "Overview 3: 256 x 128\n", "Overview 4: 128 x 64\n", "Overview 5: 64 x 32\n", "Overview 6: 32 x 16\n", "Overview 7: 16 x 8\n", "Band 3, block size (256,256), color interp Blue\n", "Overview 1: 1024 x 512\n", "Overview 2: 512 x 256\n", "Overview 3: 256 x 128\n", "Overview 4: 128 x 64\n", "Overview 5: 64 x 32\n", "Overview 6: 32 x 16\n", "Overview 7: 16 x 8\n" ] } ], "source": [ "for i in 1:raster.nband\n", " band = RasterIO.getrasterband(raster.dataset, i)\n", " interp = RasterIO.getcolorinterp(band)\n", " interp_name = RasterIO.colorinterpname(interp)\n", " (w,h) = RasterIO.getblocksize(band)\n", " println(\"Band $i, block size $((w,h)), color interp $interp_name\")\n", " for j in 1:RasterIO._overviewcount(band)\n", " ovr_band = RasterIO.getoverview(band, j)\n", " xsize = RasterIO._getrasterbandxsize(ovr_band)\n", " ysize = RasterIO._getrasterbandysize(ovr_band)\n", " println(\"Overview $j: $xsize x $ysize\")\n", " end\n", "end" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### General form of the geo-transformation matrix" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: GTiff/GeoTIFF\n", "Files: gdalworkshop/geomatrix.tif\n", "Size is 20, 20\n", "Coordinate System is:\n", "PROJCS[\"WGS 84 / UTM zone 11N\",\n", " GEOGCS[\"WGS 84\",\n", " DATUM[\"WGS_1984\",\n", " SPHEROID[\"WGS 84\",6378137,298.257223563,\n", " AUTHORITY[\"EPSG\",\"7030\"]],\n", " AUTHORITY[\"EPSG\",\"6326\"]],\n", " PRIMEM[\"Greenwich\",0,\n", " AUTHORITY[\"EPSG\",\"8901\"]],\n", " UNIT[\"degree\",0.0174532925199433,\n", " AUTHORITY[\"EPSG\",\"9122\"]],\n", " AUTHORITY[\"EPSG\",\"4326\"]],\n", " PROJECTION[\"Transverse_Mercator\"],\n", " PARAMETER[\"latitude_of_origin\",0],\n", " PARAMETER[\"central_meridian\",-117],\n", " PARAMETER[\"scale_factor\",0.9996],\n", " PARAMETER[\"false_easting\",500000],\n", " PARAMETER[\"false_northing\",0],\n", " UNIT[\"metre\",1,\n", " AUTHORITY[\"EPSG\",\"9001\"]],\n", " AXIS[\"Easting\",EAST],\n", " AXIS[\"Northing\",NORTH],\n", " AUTHORITY[\"EPSG\",\"32611\"]]\n", "GeoTransform =\n", " 1841001.75, 1.5, -5\n", " 1144003.25, -5, -1.5\n", "Metadata:\n", " AREA_OR_POINT=Point\n", "Image Structure Metadata:\n", " INTERLEAVE=BAND\n", "Corner Coordinates:\n", "Upper Left ( 1841001.750, 1144003.250) (104d50'47.45\"W, 10d 7'13.55\"N)\n", "Lower Left ( 1840901.750, 1143973.250) (104d50'50.69\"W, 10d 7'12.72\"N)\n", "Upper Right ( 1841031.750, 1143903.250) (104d50'46.60\"W, 10d 7'10.33\"N)\n", "Lower Right ( 1840931.750, 1143873.250) (104d50'49.85\"W, 10d 7' 9.50\"N)\n", "Center ( 1840966.750, 1143938.250) (104d50'48.65\"W, 10d 7'11.53\"N)\n", "Band 1 Block=20x20 Type=Byte, ColorInterp=Gray\n" ] } ], "source": [ "; gdalinfo gdalworkshop/geomatrix.tif " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can notice that contrary to the first example we no longer have a Origin and Pixel Size reported, but instead a GeoTransform.\n", "\n", "The GeoTransform is the geo-transformation matrix, which is in mathematics described as an affine transformation from the coordinates in the pixel space (col,row) to the coordinates of the projected space (X,Y), with col and row starting from 0 for the upper-left pixel (in pixel space, not necessarily in projected space!). This is a series of 6 values gt[0], gt[1], … gt[5] such as :\n", "\n", " X = gt[0] + col * gt[1] + row * gt[2]\n", " Y = gt[3] + col * gt[4] + row * gt[5]\n", " \n", "This is exactly the computation done by gdal.ApplyGeoTransform:\n", "\n", " [X,Y]=gdal.ApplyGeoTransform(gt,row,col)\n", " \n", "When the gt[2] and gt[4] terms are non zero, the image is no longer « north-up » with respect to the\n", "projected space, and you may have rotation and/or shearing.\n", "\n", "To generate a more familiar image with those rotation/shearing being applied, you can use\n", "`gdalwarp`.\n", "\n", "The related mathematics are detailed at http://en.wikipedia.org/wiki/Transformation_matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ground Control Points (GCPs)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: L1B/NOAA Polar Orbiter Level 1b Data Set\n", "Files: gdalworkshop/m2frac10bit.l1b\n", "Size is 2048, 222\n", "Coordinate System is `'\n", "GCP Projection = \n", "GEOGCS[\"WGS 72\",\n", " DATUM[\"WGS_1972\",\n", " SPHEROID[\"WGS 72\",6378135,298.26,\n", " AUTHORITY[\"EPSG\",\"7043\"]],\n", " TOWGS84[0,0,4.5,0,0,0.554,0.2263],\n", " AUTHORITY[\"EPSG\",\"6322\"]],\n", " PRIMEM[\"Greenwich\",0,\n", " AUTHORITY[\"EPSG\",\"8901\"]],\n", " UNIT[\"degree\",0.0174532925199433,\n", " AUTHORITY[\"EPSG\",\"9108\"]],\n", " AUTHORITY[\"EPSG\",\"4322\"]]\n", "GCP[ 0]: Id=, Info=\n", " (2023.5,221.5) -> (34.5374,59.0067,0)\n", "GCP[ 1]: Id=, Info=\n", " (1983.5,221.5) -> (32.1151,59.0086,0)\n", "GCP[ 2]: Id=, Info=\n", " (1943.5,221.5) -> (30.1062,58.9758,0)\n", "GCP[ 3]: Id=, Info=\n", " (1903.5,221.5) -> (28.3943,58.9232,0)\n", "GCP[ 4]: Id=, Info=\n", " (1863.5,221.5) -> (26.9056,58.8588,0)\n", "GCP[ 5]: Id=, Info=\n", " (1823.5,221.5) -> (25.59,58.7875,0)\n", "GCP[ 6]: Id=, Info=\n", " (1783.5,221.5) -> (24.4121,58.712,0)\n", "GCP[ 7]: Id=, Info=\n", " (1743.5,221.5) -> (23.3459,58.634,0)\n", "GCP[ 8]: Id=, Info=\n", " (1703.5,221.5) -> (22.3716,58.5547,0)\n", "GCP[ 9]: Id=, Info=\n", " (1663.5,221.5) -> (21.4738,58.4748,0)\n", "GCP[ 10]: Id=, Info=\n", " (1623.5,221.5) -> (20.6405,58.3947,0)\n", "GCP[ 11]: Id=, Info=\n", " (1583.5,221.5) -> (19.8619,58.3145,0)\n", "GCP[ 12]: Id=, Info=\n", " (1543.5,221.5) -> (19.1299,58.2345,0)\n", "GCP[ 13]: Id=, Info=\n", " (1503.5,221.5) -> (18.4379,58.1547,0)\n", "GCP[ 14]: Id=, Info=\n", " (1463.5,221.5) -> (17.7805,58.0751,0)\n", "GCP[ 15]: Id=, Info=\n", " (1423.5,221.5) -> (17.1528,57.9955,0)\n", "GCP[ 16]: Id=, Info=\n", " (1383.5,221.5) -> (16.5508,57.916,0)\n" ] } ], "source": [ "; gdalinfo gdalworkshop/m2frac10bit.l1b | head -n 50" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lots of information here! The main novelty is the report of GCPs, which stand for Ground Control Points, also called Tiepoints or Control Points. Those are points of the raster for which the geolocation is known.\n", "\n", "Let's look at the first one :\n", "\n", " GCP[ 0]: Id=, Info=\n", " (2023.5,221.5) -> (34.5374,59.0067,0)\n", "\n", "Id, Info are text fields identifying the ground control points. They are rarely used in practice and often let to empty.\n", "\n", "2023.5 and 221.5 are respectively the column and row in the raster for this GCP. As you can see, decimal values can be used. Here it means that the GCP is located at the center of the pixel (2023,221).\n", "\n", "34.5374, 59.0067 and 0 are respectively the longitude/easting, latitude/northing and altitude of the GCP in the coordinate space. Here the reported GCP coordinate system is a geographic coordinate system, so they are longitude and latitude. The altitude is in most of the case 0.\n", "\n", "You can also notice the lack of a geo-transform : the raster isn't projected yet. This can be done with gdalwarp\n", "\n", "If the GCPs annoy you in the gdalinfo output, you can suppress them with the -nogcp option:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: L1B/NOAA Polar Orbiter Level 1b Data Set\n", "Files: gdalworkshop/m2frac10bit.l1b\n", "Size is 2048, 222\n", "Coordinate System is `'\n", "Metadata:\n", " DATASET_NAME=NSS.FRAC.M2.D08128.S1813.E1953.B0804243.SV\n", " DATA_TYPE=AVHRR FRAC\n", " LOCATION=Ascending\n", " PROCESSING_CENTER=NOAA/NESDIS - Suitland, Maryland, USA\n", " REVOLUTION=08042\n", " SATELLITE=METOP-A(2)\n", " SOURCE=Unknown receiving station\n", " START=year: 2008, day: 128, millisecond: 71248670\n", " STOP=year: 2008, day: 128, millisecond: 71285504\n", "Subdatasets:\n", " SUBDATASET_1_NAME=L1B_ANGLES:\"gdalworkshop/m2frac10bit.l1b\"\n", " SUBDATASET_1_DESC=Solar zenith angles, satellite zenith angles and relative azimuth angles\n", " SUBDATASET_2_NAME=L1B_CLOUDS:\"gdalworkshop/m2frac10bit.l1b\"\n", " SUBDATASET_2_DESC=Clouds from AVHRR (CLAVR)\n", "Geolocation:\n", " LINE_OFFSET=0\n", " LINE_STEP=1\n", " PIXEL_OFFSET=0\n", " PIXEL_STEP=1\n", " SRS=GEOGCS[\"WGS 72\",DATUM[\"WGS_1972\",SPHEROID[\"WGS 72\",6378135,298.26,AUTHORITY[\"EPSG\",7043]],TOWGS84[0,0,4.5,0,0,0.554,0.2263],AUTHORITY[\"EPSG\",6322]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",8901]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",9108]],AUTHORITY[\"EPSG\",4322]]\n", " X_BAND=1\n", " X_DATASET=L1BGCPS_INTERPOL:\"gdalworkshop/m2frac10bit.l1b\"\n", " Y_BAND=2\n", " Y_DATASET=L1BGCPS_INTERPOL:\"gdalworkshop/m2frac10bit.l1b\"\n", "Corner Coordinates:\n", "Upper Left ( 0.0, 0.0)\n", "Lower Left ( 0.0, 222.0)\n", "Upper Right ( 2048.0, 0.0)\n", "Lower Right ( 2048.0, 222.0)\n", "Center ( 1024.0, 111.0)\n", "Band 1 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 1: 0.58 micrometers -- 0.68 micrometers\n", "Band 2 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 2: 0.725 micrometers -- 1.10 micrometers\n", "Band 3 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 3A: 1.58 micrometers -- 1.64 micrometers\n", "Band 4 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 4: 10.3 micrometers -- 11.3 micrometers\n", "Band 5 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 5: 11.5 micrometers -- 12.5 micrometers\n" ] } ], "source": [ "; gdalinfo -nogcp gdalworkshop/m2frac10bit.l1b" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Statistics, histogram, checksum" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: L1B/NOAA Polar Orbiter Level 1b Data Set\n", "Files: gdalworkshop/m2frac10bit.l1b\n", "Size is 2048, 222\n", "Coordinate System is `'\n", "Corner Coordinates:\n", "Upper Left ( 0.0, 0.0)\n", "Lower Left ( 0.0, 222.0)\n", "Upper Right ( 2048.0, 0.0)\n", "Lower Right ( 2048.0, 222.0)\n", "Center ( 1024.0, 111.0)\n", "Band 1 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 1: 0.58 micrometers -- 0.68 micrometers\n", " Minimum=39.000, Maximum=165.000, Mean=43.898, StdDev=7.642\n", "Band 2 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 2: 0.725 micrometers -- 1.10 micrometers\n", " Minimum=39.000, Maximum=226.000, Mean=43.882, StdDev=8.992\n", "Band 3 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 3A: 1.58 micrometers -- 1.64 micrometers\n", " Minimum=533.000, Maximum=983.000, Mean=906.890, StdDev=27.716\n", "Band 4 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 4: 10.3 micrometers -- 11.3 micrometers\n", " Minimum=454.000, Maximum=821.000, Mean=563.780, StdDev=61.628\n", "Band 5 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 5: 11.5 micrometers -- 12.5 micrometers\n", " Minimum=446.000, Maximum=803.000, Mean=550.119, StdDev=61.217\n" ] } ], "source": [ "; gdalinfo -stats -nogcp -nomd gdalworkshop/m2frac10bit.l1b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The -stats option asks gdalinfo to compute the minimum, maximum, mean and standard deviation for each band. The -nogcp and -nomd options are just to suppress GCP and metadata from the output.\n", "\n", "Now run" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: L1B/NOAA Polar Orbiter Level 1b Data Set\n", "Files: gdalworkshop/m2frac10bit.l1b\n", " gdalworkshop/m2frac10bit.l1b.aux.xml\n", "Size is 2048, 222\n", "Coordinate System is `'\n", "Corner Coordinates:\n", "Upper Left ( 0.0, 0.0)\n", "Lower Left ( 0.0, 222.0)\n", "Upper Right ( 2048.0, 0.0)\n", "Lower Right ( 2048.0, 222.0)\n", "Center ( 1024.0, 111.0)\n", "Band 1 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 1: 0.58 micrometers -- 0.68 micrometers\n", " Min=39.000 Max=165.000 \n", " Minimum=39.000, Maximum=165.000, Mean=43.898, StdDev=7.642\n", "Band 2 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 2: 0.725 micrometers -- 1.10 micrometers\n", " Min=39.000 Max=226.000 \n", " Minimum=39.000, Maximum=226.000, Mean=43.882, StdDev=8.992\n", "Band 3 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 3A: 1.58 micrometers -- 1.64 micrometers\n", " Min=533.000 Max=983.000 \n", " Minimum=533.000, Maximum=983.000, Mean=906.890, StdDev=27.716\n", "Band 4 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 4: 10.3 micrometers -- 11.3 micrometers\n", " Min=454.000 Max=821.000 \n", " Minimum=454.000, Maximum=821.000, Mean=563.780, StdDev=61.628\n", "Band 5 Block=2048x1 Type=UInt16, ColorInterp=Undefined\n", " Description = AVHRR Channel 5: 11.5 micrometers -- 12.5 micrometers\n", " Min=446.000 Max=803.000 \n", " Minimum=446.000, Maximum=803.000, Mean=550.119, StdDev=61.217\n" ] } ], "source": [ "; gdalinfo -nogcp -nomd gdalworkshop/m2frac10bit.l1b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "compare the output. You may notice that a m2frac10bit.l1b.aux.xml file is now mentioned, but the statistics are still reported. This file has been generated when computing the statistics. Let's display it" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<PAMDataset>\n", " <Metadata>\n", " <MDI key=\"DATASET_NAME\">NSS.FRAC.M2.D08128.S1813.E1953.B0804243.SV</MDI>\n", " <MDI key=\"DATA_TYPE\">AVHRR FRAC</MDI>\n", " <MDI key=\"LOCATION\">Ascending</MDI>\n", " <MDI key=\"PROCESSING_CENTER\">NOAA/NESDIS - Suitland, Maryland, USA</MDI>\n", " <MDI key=\"REVOLUTION\">08042</MDI>\n", " <MDI key=\"SATELLITE\">METOP-A(2)</MDI>\n", " <MDI key=\"SOURCE\">Unknown receiving station</MDI>\n", " <MDI key=\"START\">year: 2008, day: 128, millisecond: 71248670</MDI>\n", " <MDI key=\"STOP\">year: 2008, day: 128, millisecond: 71285504</MDI>\n", " </Metadata>\n", " <Metadata domain=\"GEOLOCATION\">\n", " <MDI key=\"LINE_OFFSET\">0</MDI>\n", " <MDI key=\"LINE_STEP\">1</MDI>\n", " <MDI key=\"PIXEL_OFFSET\">0</MDI>\n", " <MDI key=\"PIXEL_STEP\">1</MDI>\n", " <MDI key=\"SRS\">GEOGCS[\"WGS 72\",DATUM[\"WGS_1972\",SPHEROID[\"WGS 72\",6378135,298.26,AUTHORITY[\"EPSG\",7043]],TOWGS84[0,0,4.5,0,0,0.554,0.2263],AUTHORITY[\"EPSG\",6322]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",8901]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",9108]],AUTHORITY[\"EPSG\",4322]]</MDI>\n", " <MDI key=\"X_BAND\">1</MDI>\n", " <MDI key=\"X_DATASET\">L1BGCPS_INTERPOL:\"gdalworkshop/m2frac10bit.l1b\"</MDI>\n", " <MDI key=\"Y_BAND\">2</MDI>\n", " <MDI key=\"Y_DATASET\">L1BGCPS_INTERPOL:\"gdalworkshop/m2frac10bit.l1b\"</MDI>\n", " </Metadata>\n", " <Metadata domain=\"SUBDATASETS\">\n", " <MDI key=\"SUBDATASET_1_NAME\">L1B_ANGLES:\"gdalworkshop/m2frac10bit.l1b\"</MDI>\n", " <MDI key=\"SUBDATASET_1_DESC\">Solar zenith angles, satellite zenith angles and relative azimuth angles</MDI>\n", " <MDI key=\"SUBDATASET_2_NAME\">L1B_CLOUDS:\"gdalworkshop/m2frac10bit.l1b\"</MDI>\n", " <MDI key=\"SUBDATASET_2_DESC\">Clouds from AVHRR (CLAVR)</MDI>\n", " </Metadata>\n", " <PAMRasterBand band=\"1\">\n", " <Description>AVHRR Channel 1: 0.58 micrometers -- 0.68 micrometers</Description>\n", " <Metadata>\n", " <MDI key=\"STATISTICS_MAXIMUM\">165</MDI>\n", " <MDI key=\"STATISTICS_MEAN\">43.898287936374</MDI>\n", " <MDI key=\"STATISTICS_MINIMUM\">39</MDI>\n", " <MDI key=\"STATISTICS_STDDEV\">7.6418424876281</MDI>\n", " </Metadata>\n", " </PAMRasterBand>\n", " <PAMRasterBand band=\"2\">\n", " <Description>AVHRR Channel 2: 0.725 micrometers -- 1.10 micrometers</Description>\n", " <Metadata>\n", " <MDI key=\"STATISTICS_MAXIMUM\">226</MDI>\n", " <MDI key=\"STATISTICS_MEAN\">43.882075679195</MDI>\n", " <MDI key=\"STATISTICS_MINIMUM\">39</MDI>\n", " <MDI key=\"STATISTICS_STDDEV\">8.9918754785884</MDI>\n", " </Metadata>\n", " </PAMRasterBand>\n", " <PAMRasterBand band=\"3\">\n", " <Description>AVHRR Channel 3A: 1.58 micrometers -- 1.64 micrometers</Description>\n", " <Metadata>\n", " <MDI key=\"STATISTICS_MAXIMUM\">983</MDI>\n", " <MDI key=\"STATISTICS_MEAN\">906.89034126901</MDI>\n", " <MDI key=\"STATISTICS_MINIMUM\">533</MDI>\n", " <MDI key=\"STATISTICS_STDDEV\">27.715692093585</MDI>\n", " </Metadata>\n", " </PAMRasterBand>\n", " <PAMRasterBand band=\"4\">\n", " <Description>AVHRR Channel 4: 10.3 micrometers -- 11.3 micrometers</Description>\n", " <Metadata>\n", " <MDI key=\"STATISTICS_MAXIMUM\">821</MDI>\n", " <MDI key=\"STATISTICS_MEAN\">563.78016566372</MDI>\n", " <MDI key=\"STATISTICS_MINIMUM\">454</MDI>\n", " <MDI key=\"STATISTICS_STDDEV\">61.627940356415</MDI>\n", " </Metadata>\n", " </PAMRasterBand>\n", " <PAMRasterBand band=\"5\">\n", " <Description>AVHRR Channel 5: 11.5 micrometers -- 12.5 micrometers</Description>\n", " <Metadata>\n", " <MDI key=\"STATISTICS_MAXIMUM\">803</MDI>\n", " <MDI key=\"STATISTICS_MEAN\">550.11860615498</MDI>\n", " <MDI key=\"STATISTICS_MINIMUM\">446</MDI>\n", " <MDI key=\"STATISTICS_STDDEV\">61.216671085772</MDI>\n", " </Metadata>\n", " </PAMRasterBand>\n", "</PAMDataset>\n" ] } ], "source": [ "; cat gdalworkshop/m2frac10bit.l1b.aux.xml" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can see this file collects the statistics (as well as the other metadata). In case you are wondering what PAM in the above stands for, it is Persistant Auxiliary Metadata. The PAM .aux.xml format is something GDAL specific (and of course indirectly recognized by all software based on GDAL).\n", "\n", "**Caution**: when a .aux.xml file exists, even if you specify -stats, gdalinfo will not recompute the statistics from the raster file but will use the ones stored in the .aux.xml. So in case the raster file would have been updated with new values, you may need to manually delete the .aux.xml file." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Raster conversion / gdal_translate\n", "\n", "### Introduction\n", "This is the utility to use to do format conversions, subsetting, format optimization, adding georeferencing, ...\n", "\n", "Documentation of the gdal_translate utility: http://gdal.org/1.11/gdal_translate.html\n", "\n", "### Format conversion\n", "Try:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning: The target file has a 'gif' extension, which is normally used by the GIF, BIGGIF drivers,\n", "but the requested output driver is GTiff. Is it really what you want ?\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 1831, 1835\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate gdalworkshop/wellington_west.png gdalworkshop/wellington_west.gif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You get a warning here mentionning that the conversion has been done to TIFF and not to GIF as it was perhaps intended. GDAL is generally not sensitive to extensions, so you have to be explicit about the format, otherwise the default output format, which is GeoTiff will be used.\n", "\n", "To get the list of supported formats, do:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Supported Formats:\n", " VRT -raster- (rw+v): Virtual Raster\n", " GTiff -raster- (rw+vs): GeoTIFF\n", " NITF -raster- (rw+vs): National Imagery Transmission Format\n", " RPFTOC -raster- (rovs): Raster Product Format TOC format\n", " ECRGTOC -raster- (rovs): ECRG TOC format\n", " HFA -raster- (rw+v): Erdas Imagine Images (.img)\n", " SAR_CEOS -raster- (rov): CEOS SAR Image\n", " CEOS -raster- (rov): CEOS Image\n", " JAXAPALSAR -raster- (rov): JAXA PALSAR Product Reader (Level 1.1/1.5)\n", " GFF -raster- (rov): Ground-based SAR Applications Testbed File Format (.gff)\n", " ELAS -raster- (rw+v): ELAS\n", " AIG -raster- (rov): Arc/Info Binary Grid\n", " AAIGrid -raster- (rwv): Arc/Info ASCII Grid\n", " GRASSASCIIGrid -raster- (rov): GRASS ASCII Grid\n", " SDTS -raster- (rov): SDTS Raster\n", " DTED -raster- (rwv): DTED Elevation Raster\n", " PNG -raster- (rwv): Portable Network Graphics\n", " JPEG -raster- (rwv): JPEG JFIF\n", " MEM -raster- (rw+): In Memory Raster\n", " JDEM -raster- (rov): Japanese DEM (.mem)\n", " GIF -raster- (rwv): Graphics Interchange Format (.gif)\n", " BIGGIF -raster- (rov): Graphics Interchange Format (.gif)\n", " ESAT -raster- (rov): Envisat Image Format\n", " BSB -raster- (rov): Maptech BSB Nautical Charts\n", " XPM -raster- (rwv): X11 PixMap Format\n", " BMP -raster- (rw+v): MS Windows Device Independent Bitmap\n", " DIMAP -raster- (rov): SPOT DIMAP\n", " AirSAR -raster- (rov): AirSAR Polarimetric Image\n", " RS2 -raster- (ros): RadarSat 2 XML Product\n", " SAFE -raster- (rov): Sentinel SAFE Product\n", " PCIDSK -raster,vector- (rw+v): PCIDSK Database File\n", " PCRaster -raster- (rw+): PCRaster Raster File\n", " ILWIS -raster- (rw+v): ILWIS Raster Map\n", " SGI -raster- (rw+): SGI Image File Format 1.0\n", " SRTMHGT -raster- (rwv): SRTMHGT File Format\n", " Leveller -raster- (rw+): Leveller heightfield\n", " Terragen -raster- (rw+): Terragen heightfield\n", " ISIS3 -raster- (rov): USGS Astrogeology ISIS cube (Version 3)\n", " ISIS2 -raster- (rw+v): USGS Astrogeology ISIS cube (Version 2)\n", " PDS -raster- (rov): NASA Planetary Data System\n", " VICAR -raster- (rov): MIPL VICAR file\n", " TIL -raster- (rov): EarthWatch .TIL\n", " ERS -raster- (rw+v): ERMapper .ers Labelled\n", " L1B -raster- (rovs): NOAA Polar Orbiter Level 1b Data Set\n", " FIT -raster- (rwv): FIT Image\n", " GRIB -raster- (rov): GRIdded Binary (.grb)\n", " RMF -raster- (rw+v): Raster Matrix Format\n", " WCS -raster- (rovs): OGC Web Coverage Service\n", " WMS -raster- (rwvs): OGC Web Map Service\n", " MSGN -raster- (ro): EUMETSAT Archive native (.nat)\n", " RST -raster- (rw+v): Idrisi Raster A.1\n", " INGR -raster- (rw+v): Intergraph Raster\n", " GSAG -raster- (rwv): Golden Software ASCII Grid (.grd)\n", " GSBG -raster- (rw+v): Golden Software Binary Grid (.grd)\n", " GS7BG -raster- (rw+v): Golden Software 7 Binary Grid (.grd)\n", " COSAR -raster- (rov): COSAR Annotated Binary Matrix (TerraSAR-X)\n", " TSX -raster- (rov): TerraSAR-X Product\n", " COASP -raster- (ro): DRDC COASP SAR Processor Raster\n", " R -raster- (rwv): R Object Data Store\n", " MAP -raster- (rov): OziExplorer .MAP\n", " PNM -raster- (rw+v): Portable Pixmap Format (netpbm)\n", " DOQ1 -raster- (rov): USGS DOQ (Old Style)\n", " DOQ2 -raster- (rov): USGS DOQ (New Style)\n", " ENVI -raster- (rw+v): ENVI .hdr Labelled\n", " EHdr -raster- (rw+v): ESRI .hdr Labelled\n", " GenBin -raster- (rov): Generic Binary (.hdr Labelled)\n", " PAux -raster- (rw+): PCI .aux Labelled\n", " MFF -raster- (rw+v): Vexcel MFF Raster\n", " MFF2 -raster- (rw+): Vexcel MFF2 (HKV) Raster\n", " FujiBAS -raster- (ro): Fuji BAS Scanner Image\n", " GSC -raster- (rov): GSC Geogrid\n", " FAST -raster- (rov): EOSAT FAST Format\n", " BT -raster- (rw+v): VTP .bt (Binary Terrain) 1.3 Format\n", " LAN -raster- (rw+v): Erdas .LAN/.GIS\n", " CPG -raster- (ro): Convair PolGASP\n", " IDA -raster- (rw+v): Image Data and Analysis\n", " NDF -raster- (rov): NLAPS Data Format\n", " EIR -raster- (rov): Erdas Imagine Raw\n", " DIPEx -raster- (rov): DIPEx\n", " LCP -raster- (rwv): FARSITE v.4 Landscape File (.lcp)\n", " GTX -raster- (rw+v): NOAA Vertical Datum .GTX\n", " LOSLAS -raster- (rov): NADCON .los/.las Datum Grid Shift\n", " NTv2 -raster- (rw+vs): NTv2 Datum Grid Shift\n", " CTable2 -raster- (rw+v): CTable2 Datum Grid Shift\n", " ACE2 -raster- (rov): ACE2\n", " SNODAS -raster- (rov): Snow Data Assimilation System\n", " KRO -raster- (rw+v): KOLOR Raw\n", " ROI_PAC -raster- (rw+v): ROI_PAC raster\n", " ISCE -raster- (rw+v): ISCE raster\n", " ARG -raster- (rwv): Azavea Raster Grid format\n", " RIK -raster- (rov): Swedish Grid RIK (.rik)\n", " USGSDEM -raster- (rwv): USGS Optional ASCII DEM (and CDED)\n", " GXF -raster- (ro): GeoSoft Grid Exchange Format\n", " NWT_GRD -raster- (rov): Northwood Numeric Grid Format .grd/.tab\n", " NWT_GRC -raster- (rov): Northwood Classified Grid Format .grc/.tab\n", " ADRG -raster- (rw+vs): ARC Digitized Raster Graphics\n", " SRP -raster- (rovs): Standard Raster Product (ASRP/USRP)\n", " BLX -raster- (rw): Magellan topo (.blx)\n", " Rasterlite -raster- (rws): Rasterlite\n", " SAGA -raster- (rw+v): SAGA GIS Binary Grid (.sdat)\n", " KMLSUPEROVERLAY -raster- (rwv): Kml Super Overlay\n", " XYZ -raster- (rwv): ASCII Gridded XYZ\n", " HF2 -raster- (rwv): HF2/HFZ heightfield raster\n", " PDF -raster,vector- (w+): Geospatial PDF\n", " OZI -raster- (rov): OziExplorer Image File\n", " CTG -raster- (rov): USGS LULC Composite Theme Grid\n", " E00GRID -raster- (rov): Arc/Info Export E00 GRID\n", " ZMap -raster- (rwv): ZMap Plus Grid\n", " NGSGEOID -raster- (rov): NOAA NGS Geoid Height Grids\n", " MBTiles -raster- (rov): MBTiles\n", " IRIS -raster- (rov): IRIS data (.PPI, .CAPPi etc)\n", " PLMOSAIC -raster- (ro): Planet Labs Mosaics API\n", " CALS -raster- (rw): CALS (Type 1)\n", " WMTS -raster- (rwv): OGC Web Mab Tile Service\n", " GPKG -raster,vector- (rw+vs): GeoPackage\n", " PLSCENES -raster,vector- (ro): Planet Labs Scenes API\n", " HTTP -raster,vector- (ro): HTTP Fetching Wrapper\n" ] } ], "source": [ "; gdal_translate --formats" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The letters between parenthesits after the format short name indicate the capabilities :\n", "- `ro` means read-only\n", "- `rw` means read and one-time creation only\n", "- `rw+` means read, create and update\n", "- The `v` signs means that it support virtual files, we will see that later.\n", "\n", "So the GIF driver support read and one-time creation, which is enough for gdal_translate. So let's\n", "correct our last attempt to specify the output format with -of :" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 1831, 1835\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate -of GIF gdalworkshop/wellington_west.png gdalworkshop/wellington_west.gif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding georeferencing\n", "Let's look at wellington_west.png with gdalinfo. A long list of quadruplets is displayed. It is a color table. This image has a single band with Byte values, that point to 256 coded colors. Use -noct to disable the display of this color table." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: PNG/Portable Network Graphics\n", "Files: gdalworkshop/wellington_west.png\n", " gdalworkshop/wellington_west.wld\n", "Size is 1831, 1835\n", "Coordinate System is `'\n", "Origin = (1731543.836827248800546,5461586.738620690070093)\n", "Pixel Size = (28.001501693600002,-28.001034482800002)\n", "Corner Coordinates:\n", "Upper Left ( 1731543.837, 5461586.739) \n", "Lower Left ( 1731543.837, 5410204.840) \n", "Upper Right ( 1782814.586, 5461586.739) \n", "Lower Right ( 1782814.586, 5410204.840) \n", "Center ( 1757179.212, 5435895.789) \n", "Band 1 Block=1831x1 Type=Byte, ColorInterp=Palette\n", " Color Table (RGB with 256 entries)\n" ] } ], "source": [ "; gdalinfo -noct gdalworkshop/wellington_west.png" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see the presence of georeferenced coordinates (Origin and Pixel Size), that comes from wellington_west.wld, a World File. This is a 6 line text file that gives the information needed to build the 6-value geo-transformation matrix. Note that the order of values and their semantics are not exactly the same (World File use center of pixel convention), but GDAL will make the needed conversions.\n", "\n", "But here we lack the Coordinate System. We must use external knowedge here to fill the gap. This dataset being from New Zealand and the coordinates being obviously not longitudes/latitudes, we could assume that this dataset is in the New Zealand Transverse Mercator (NTZM) map projection (for example by searching New Zealand in http://epsg.io/?q=new+zealand), and this is indeed the case. This coordinate system is codified by the EPSG (European Petroleum Survey Group) as being « EPSG:2193 »\n", "\n", "We can see its definition with:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "PROJ.4 : '+proj=tmerc +lat_0=0 +lon_0=173 +k=0.9996 +x_0=1600000 +y_0=10000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs '\n", "\n", "OGC WKT :\n", "PROJCS[\"NZGD2000 / New Zealand Transverse Mercator 2000\",\n", " GEOGCS[\"NZGD2000\",\n", " DATUM[\"New_Zealand_Geodetic_Datum_2000\",\n", " SPHEROID[\"GRS 1980\",6378137,298.257222101,\n", " AUTHORITY[\"EPSG\",\"7019\"]],\n", " TOWGS84[0,0,0,0,0,0,0],\n", " AUTHORITY[\"EPSG\",\"6167\"]],\n", " PRIMEM[\"Greenwich\",0,\n", " AUTHORITY[\"EPSG\",\"8901\"]],\n", " UNIT[\"degree\",0.0174532925199433,\n", " AUTHORITY[\"EPSG\",\"9122\"]],\n", " AUTHORITY[\"EPSG\",\"4167\"]],\n", " PROJECTION[\"Transverse_Mercator\"],\n", " PARAMETER[\"latitude_of_origin\",0],\n", " PARAMETER[\"central_meridian\",173],\n", " PARAMETER[\"scale_factor\",0.9996],\n", " PARAMETER[\"false_easting\",1600000],\n", " PARAMETER[\"false_northing\",10000000],\n", " UNIT[\"metre\",1,\n", " AUTHORITY[\"EPSG\",\"9001\"]],\n", " AUTHORITY[\"EPSG\",\"2193\"]]\n", "\n" ] } ], "source": [ "; gdalsrsinfo EPSG:2193" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let us create a GeoTIFF from that:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 1831, 1835\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate -a_srs EPSG:2193 gdalworkshop/wellington_west.png gdalworkshop/wellington_west.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at the result:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: GTiff/GeoTIFF\n", "Files: gdalworkshop/wellington_west.tif\n", "Size is 1831, 1835\n", "Coordinate System is:\n", "PROJCS[\"NZGD2000 / New Zealand Transverse Mercator 2000\",\n", " GEOGCS[\"NZGD2000\",\n", " DATUM[\"New_Zealand_Geodetic_Datum_2000\",\n", " SPHEROID[\"GRS 1980\",6378137,298.257222101,\n", " AUTHORITY[\"EPSG\",\"7019\"]],\n", " TOWGS84[0,0,0,0,0,0,0],\n", " AUTHORITY[\"EPSG\",\"6167\"]],\n", " PRIMEM[\"Greenwich\",0,\n", " AUTHORITY[\"EPSG\",\"8901\"]],\n", " UNIT[\"degree\",0.0174532925199433,\n", " AUTHORITY[\"EPSG\",\"9122\"]],\n", " AUTHORITY[\"EPSG\",\"4167\"]],\n", " PROJECTION[\"Transverse_Mercator\"],\n", " PARAMETER[\"latitude_of_origin\",0],\n", " PARAMETER[\"central_meridian\",173],\n", " PARAMETER[\"scale_factor\",0.9996],\n", " PARAMETER[\"false_easting\",1600000],\n", " PARAMETER[\"false_northing\",10000000],\n", " UNIT[\"metre\",1,\n", " AUTHORITY[\"EPSG\",\"9001\"]],\n", " AUTHORITY[\"EPSG\",\"2193\"]]\n", "Origin = (1731543.836827248800546,5461586.738620690070093)\n", "Pixel Size = (28.001501693600002,-28.001034482800002)\n", "Metadata:\n", " AREA_OR_POINT=Area\n", "Image Structure Metadata:\n", " INTERLEAVE=BAND\n", "Corner Coordinates:\n", "Upper Left ( 1731543.837, 5461586.739) (174d33'49.52\"E, 40d59'10.66\"S)\n", "Lower Left ( 1731543.837, 5410204.840) (174d34'29.34\"E, 41d26'56.27\"S)\n", "Upper Right ( 1782814.586, 5461586.739) (175d10'22.40\"E, 40d58'35.11\"S)\n", "Lower Right ( 1782814.586, 5410204.840) (175d11'17.70\"E, 41d26'20.14\"S)\n", "Center ( 1757179.212, 5435895.789) (174d52'29.74\"E, 41d12'47.03\"S)\n", "Band 1 Block=1831x4 Type=Byte, ColorInterp=Palette\n", " Color Table (RGB with 256 entries)\n" ] } ], "source": [ "; gdalinfo -noct gdalworkshop/wellington_west.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And let's check that the coordinate system we select is consistant by using the OGR geocoding API:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Layer name: SELECT\n", "OGRFeature(SELECT):0\n", " POINT (174.7772239 -41.2887639)\n", "\n" ] } ], "source": [ "; ogrinfo :memory: -q -sql \"SELECT ogr_geocode('Wellington, New Zealand')\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Subsetting (extracting a sub-window)\n", "Let's suppose we are only interested in a 4 km x 4 km area centered around Wellington city center.\n", "\n", "We will convert first the above longitude, latitude in NZGD2000 with :\n", "\n", " $ gdaltransform -s_srs WGS84 -t_srs EPSG:2193\n", " 174.7772239 -41.2887639\n", "\n", "The command expects tuple of longitude/easting latitude/northing to be entered on the console and\n", "validated by Enter. The application may be terminated with Ctrl+Z.\n", "\n", "Output :\n", "\n", " 1748816.1501341 5427663.38112408 0\n", "\n", "So if we substract/add 2000 from this coordinate, we can do:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 1831, 1835\n", "Computed -srcwin 545 1140 143 143 from projected window.\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate -projwin 1746816 5429663 1750816 5425663 gdalworkshop/wellington_west.tif gdalworkshop/wellington_city.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conventions are « -projwin ulx uly lrx lry » where :\n", "- `ulx`: X of upper-left corner\n", "- `uly`: Y of upper-left corner\n", "- `lrx`: X of lower-right corner\n", "- `lry`: Y of lower-right corner" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data type conversion\n", "Let's look at a digital elevation model file:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: GTiff/GeoTIFF\n", "Files: gdalworkshop/MK_30m.tif\n", "Size is 2185, 2185\n", "Coordinate System is:\n", "PROJCS[\"NZGD2000 / New Zealand Transverse Mercator 2000\",\n", " GEOGCS[\"NZGD2000\",\n", " DATUM[\"New_Zealand_Geodetic_Datum_2000\",\n", " SPHEROID[\"GRS 1980\",6378137,298.257222101,\n", " AUTHORITY[\"EPSG\",\"7019\"]],\n", " TOWGS84[0,0,0,0,0,0,0],\n", " AUTHORITY[\"EPSG\",\"6167\"]],\n", " PRIMEM[\"Greenwich\",0,\n", " AUTHORITY[\"EPSG\",\"8901\"]],\n", " UNIT[\"degree\",0.0174532925199433,\n", " AUTHORITY[\"EPSG\",\"9122\"]],\n", " AUTHORITY[\"EPSG\",\"4167\"]],\n", " PROJECTION[\"Transverse_Mercator\"],\n", " PARAMETER[\"latitude_of_origin\",0],\n", " PARAMETER[\"central_meridian\",173],\n", " PARAMETER[\"scale_factor\",0.9996],\n", " PARAMETER[\"false_easting\",1600000],\n", " PARAMETER[\"false_northing\",10000000],\n", " UNIT[\"metre\",1,\n", " AUTHORITY[\"EPSG\",\"9001\"]],\n", " AUTHORITY[\"EPSG\",\"2193\"]]\n", "Origin = (1703936.000000000000000,5439488.000000000000000)\n", "Pixel Size = (30.000000000000000,-30.000000000000000)\n", "Metadata:\n", " AREA_OR_POINT=Point\n", "Image Structure Metadata:\n", " COMPRESSION=DEFLATE\n", " INTERLEAVE=BAND\n", "Corner Coordinates:\n", "Upper Left ( 1703936.000, 5439488.000) (174d14'21.77\"E, 41d11'21.48\"S)\n", "Lower Left ( 1703936.000, 5373938.000) (174d15' 2.45\"E, 41d46'46.57\"S)\n", "Upper Right ( 1769486.000, 5439488.000) (175d 1'14.35\"E, 41d10'41.67\"S)\n", "Lower Right ( 1769486.000, 5373938.000) (175d 2'20.64\"E, 41d46' 5.92\"S)\n", "Center ( 1736711.000, 5406713.000) (174d38'14.80\"E, 41d28'46.35\"S)\n", "Band 1 Block=2185x1 Type=Float32, ColorInterp=Gray\n", " Computed Min/Max=0.000,928.151\n", " NoData Value=-32767\n" ] } ], "source": [ "; gdalinfo -mm gdalworkshop/MK_30m.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The -mm option computes only the min/max values. We can also see a NoData value being advertized. The NoData value is a special value which means that pixel that have that value have no valid information. The NoData value is ignored in min/max, statistics or histogram computations.\n", "\n", "We might want to generate a more convenient visual dataset from the DEM with:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 2185, 2185\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate -outsize 50% 50% -ot Byte -of PNG gdalworkshop/MK_30m.tif gdalworkshop/MK_vis.png" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- `-outsize 50% 50%` is just to get a half-size reduction. Note that gdal_translate uses nearest neighbour sampling, which is not always appropriate. gdalwarp can be used for other resampling methods.\n", "- `-ot Byte`: asks for data type conversion" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "using Images" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAIjCAAAAAD0QURtAAAABGdBTUEAALGPC/xhBQAAAAJiS0dEAP+Hj8y/AAB4eUlEQVR42uz9V5MkV5YmCJ5Llatx4uYsKEhmFu3truqelR2ReZhfOw8rsrKyDzOz290y1dPVlUWTAQjm3I2bcnLpPrh7MASAQBLJqQ7/ABEgPMzVTPV+du453yEXwS3wYDrts9rp9olFCL4FlTei8pqr7SDmvTGHD8AawG/9pt3+6hcr+ISB+48/P6QIAEw23xG/13VlXvJ2t4FBVyY1DgKpSsWAMH8QonRXCfD9dls3tVWyRq7DG4EJ4lyD7wwHnkcZIABbph0f375Js250G+ZV0I8CevfOcr3JcxWHbeMkCeqGxArGm3KV1BYAIYwQQoi5wutQzIpCGAsI0Xjkl7S1oW2c2cC5ewP4j3eXpeMvf3YQwbLz2Z+jthd9+4ZNuTs/4/Yffz0ZTP/qz9/jiDVWS13lfJ8q+pomF//LbmP+2Av1RwNio7/+n//9Q+YAWHP1zy87s8d7sHm+HNZXL/TTR+JkpUezdF1bRp3O/ufD+uL8OqHjvepifpW1VVHYKOSF8h3LIqL3/M8fT4YuBgBoXzbTIbt9m+biZK7G5/X+k4fx62Wtvvl6s1xPDtVZfbWMnw6xKq23OatrZAEQIQRjzKajhj5mKFuuW2MBEXf/sweIlXJM5s1P/rzz5tt+xxE28lYpssspIQV88YS9uVcLCMAAiuxFuukw/QqekrUT47dNRnOeXG0cXE0DlMxIjgMHACAYdMmnyhHkTg5++m8O5eWAI6iLtGxVGKJ8dXldlGXrIoQADIgiM9gyFo76bl7UUmBGo2kRQWqkrEvNgPhhjZAne518PeEYAEBfbA77r00GdXrFMin8sBveUESDFctdUYlaCoXBZw22VdNWavF8J+3rz4ddd9BVB+ZymUjAFhCmarv3ha+gB1ioXURe38vde6F1wh3LcxXnaY/H09cMsIWMiUnavusNncVJZCvPu74cDgYDAKsJAgCw+a//48/Lhy78aavFZ/S691MHAMCbDan8Yy/WHwnen/3VT8a2wNRDAPry/FK62IptXuyWLdG+QwwwkZvUWEPA7U88AGrblrRVHEXCSiyEliX1OTCQ1OX+AQ+TqIsAQGVNkb4mCR2ZuZnnTMHNiumyaOT1RZrn7VoaI3blPpdFolbZYqcAAODWk5C5GQf9s01jmWWtwgRqUai+z/y69llrbjiiDbV3b1W3FhHraMsuzAOEU7/jOQgAALH1JlRlUg+iQQe95GmdnBu0U2ME0K78Hgaw63/4P/73r+HKROV/VNFf+vHUAQCwRQP2Ix/pf28gD/8f/9Pe5jIIhy5Y5PRXVGmCmuVlVtScuWHo6bDERQoUWex0Bh1qGGpaI6sm5F1TuBACEsLlLgUXuTEV3v4Y3ezwUqQ16rw2JNx44xPVKCE8AAAw5TZPNecRrC+wixZRLJoiqa5WzZ1Nt9Zag6SU9IC6Qe2RBieGEgR1sul4AQ4eaa+83bdMq9TdW1kNoEHCikLXLspv+qPZwxABALjj588Vy15Ongz3uuwic3YncjByWoPF5Xk/cMEs/vP/62+uJKwgTyrjLf70P+w5YOpW/rf/fY4/7pH+d4fwL//tVO/aYb+HZROIdZpjrEw5f7GundHIDga+CLxSVIxazN146ILIU8GRRUJ4cTvAOUVQKs7dqAftYM+tsjGNbp6m96A4786c1+/FuEUAwG6WkgQbZb1WtgJ10C7jbawzUW2ud+Lu9QYAIWvBSOR7h0UH23RLKKGU6uoKNV8GyLUovN1HkBGSvndzeY3DdbjuP4GJvX1Z8Kj9dS6vJ/UX/vQgT9tVw938VTCy25NrpgGS//y//P+2FsBC2wKoTSckSJ/+w5Kf/H8v1R97sf5I8CeBuF5wp+foHUemWtXTvR7OqrbB8WAaxKHZNYyUihvAbjcOCCBtuWlkTnos4v0kW2JbWcv8fk+6UScGWOFHPgAAEM/Xjda3/oIWjVAIe+5r54B0w2wnlBHGJ9sUUFOX23mqX382BAgBQtTn1OkhtUhqaIAQFnSwKrbs5IkLCO6uhkGb9zliJS6RRcw/mIV3PwsOF1eL+Qp7w55ntb7eBgQxB5livQ6XR3j5j3+7fbOnIBrsh5D8n//PlwN0nvyx1+qPBBSHmbxuXE1Qng+BBsy2BCmMAOk8mw07tNDLqpQUAyKEhR4A68cXrZatkTjq4WztEKQNYp7v0YHFodfR9NYnVcVOJnPbIwAANsnbui6lAd1SBCAlxE4lHMotqmoDta6IWSxLext8IABACDAm0XjQc5AU2/O8UQRh4vb9cHo0ct+hBALzDkcwAuBB6MLxvme1gwGsxQCA3COZ5XPqIswobguJt7GW1lrY4cPD9tnX67fcDrs8rVv01X/922uX5n/stfpjAUXuXFeBG9BqJzAiwfA6TYapDPtip7Q2gmuwac4CDIghzQiA2uQGaFUXCzkZ4zyrCEKcMIIo61u3F/XV7WZSnhebol+uuwBgS3G5ctJdIap0wRjFkDUAedM0shYgbIucTSLydWstACB7868BZAEsDWPPFBdLpQnGijCVdUaz8dQh797KOxxxJj5W8WRMFv0/fRIdhQC2bEIHWfD3RGn/4deY+f3BdaWotaAUqKytmDTJV8/bt65pdf3NOjr/aqWKP/ZK/fFAx1GVuBj7zbzqEWABNnVTZ6JCxCCzDbjIFGoV0hhR3h11KRilscXIlKbVEWhpms1uR6K40wmV67jhINAEAwDY4vwqC4ebGAGo5JndLnrZlQq5zFY2iu1mZ4VxyqK1VdVYgcN8u2mUvf0S37AEkEMBs/hoyAsheH9r2LogLlUbjDGbvSugYrBvcYTvPe4it3vIvkbTJ4cOMdhmC69DEdYWh4Ppr3/tRrXFxqBgMO5x0MlFGuTl+tXqneil/cc5G/ZXAj5doM4eKWVvOKLrtDvwAA8OXuTVYtuqRaEpRg7X6XwtwFogLqOhC2KrtbTcKAXIC0BKx0GN5k6nF3WEO0bSxbfuPwp8ncPlcIDBFGcXG8mLuej7AZK1dongmw2Z1TtLGZNCNCCRaqy1FgDBnS0BPnJME3WYrlrs7g0YIlKTHgbSltvgJsC+gwGM3uJInZPjo0HYJ5H8YuYhtQo9vJizsBv5fYc5jt290E6jpW41whwbC9W2V6xfPk/feUDVN6fg9zefatQLAKj3lw+qjPMAb0XQCRAA1mDaZaLtquZOL7LCQFNoBEAZ902ikNkuHNqHpSV+1HGaxarYrCrOqUoiv4+irnmzbv6hba74z3yr59vantYPtttu7Ppu0I1daKxXK1eskkpp3bZlLipp7BszgiwCAOQfkOVswsprgcZjLANoGs3GzNjOwYH/9q3YRgCmAMCZFgZAX78cfvbFgNmejbm1cvmqF+gX4nDZGWFKsdbZy9Zp1jXAmnv9yRSxSG7m3euT9l0+mBrqne80f+yl+qPB+8m/8zZtxM2OxqMIA4BshGnzpJVN0O93QrXTZSUAc+Y4PBq6FFSzpY6fSA00iu36/Kq5nFOfi9rfDTrdSaxeiwg6ZxyU02469vIFnF3il4gQ5ge9bsxyskiQ//U6gCYvqqRuslxae2tGbsNUiwBIU+zHw6B5eU2fHk2FFyZJnkr2sEodN347zWKFkBooADiPyaooEDFZmldjBgMAXdRcPoNZljTKDFRJl9DxzKoVygCIGjyOUoJDdDUOdvUHTIaN5CfLEfr0P4zP14Hr2rYT90IEForCqKKeC4loNBmgUubXmQZACJywM6MYbFM2XiikaEshV1UxX+6gRyPcHYFMY4++Nvdic4GvcxToXaNXl9mc9DlmiIaTTtfNFD7fmEqktN6lRVkXaaNuGGIR3LDjhijtSjCPS7kt9pf+oz0pWjdQVLF9CvQdb0Q12oKlAIj2H9VXFzRqcJ3vZg4A2OJ0GVD1bO6bV9Zr+uekVtEX5EIoAwCYE8aSF/F6m5zretV+6EGVn6w/ggZ//pNsqxgGCW7kEjCSKGC62GbIiwM3YKqR68scMWUsUK/bj7hVxpY1NRQkonnRJG1qejGLYm/o9vvvZNnbzfbVSVhlBVHzyxWbOP2gMHG3E+FtylS2yJoqK6rKNGW1a+9EkduFvzMlrcTbdu6KirudA+04F2m8jwHkdLh5J6qxyiIARIGET2Y/9Z6FrGNS2uIbxjabCzv29d9zXM09Z7tNLbNoj/lnFQC407E6344Pr//lF1l2ttt+4EHZ8lNN5gE5+hPvRdHtetB2OiEHMDnarPJ2V4HjDgcdppRapql0LGUOD0Lq+sjUaZqxFhNDArdYVeulDLs9B4VRFO9NfXK3ugC6Memm6Muzumq3G3evR4KxXzkMN/mq6IkGISlVK7YNlJmwr3Mh78Yq1uqktMy6vmk2Z2FnwJpTg1ALh75q3vJHrLHGWktJ/Nlnn+/POh2IWCJ8lwEAWCmTi+eR2V70krzdzuVp7amcmFYAAIikV5x1HuPTXyVmUyD9oSf1wR9+EnAOosW1ZG5MTNAJkIDyFIwfBjvBO17Ui11VV7tVQTUEnu/w7pgDqKRQqN4KYY1M2mKxzEPPjznrdUdhJ8SgzW0i3lrRZinqim/WrfXch/uxhR5DHOqyLjReKSqFaB1K61Tp9wjydmlPpSVmLBwfd+NAizDMN1GXpto9EG9nT7QyxhhL46PP/nzy5cFkD0LSiN4hAQBjDfbaZ0CaXYNFe01jOG9tSXCtAADEeUJEXNDV3IBtf/ChfWIIx/npgoMTSM1siyq9fFGNvTDY6WDkjwNuZVPL1krKnDAInDByETSJ9M1m7Und5rrFVJHAQazjdeLeIMQgan7jJ9hkaxEzFq5eAR4cuwfTWAhGXYdW67xVqzxKls0uMzIthIE3GdV3zIhFYKUCDuEkdjvD8tXBBHN/NHCQAeK9/UJpwVpjaecnT/9ivN+N9oEioxhFYEUSxYMiufxFY8ssbOVl3umijXnjmsotsoX2shbgk83sfhdQ5Fyf2ZASrpqtR+rcXF1tBKtKSR1v6jPdqrKsKkkBAQMSImkBEHOgoUVdsXaXykhqiwLHiVDBqiFtm4Lc5OBtu31uGlE3yZma9XqzaDRxVF4bx2rR5mUliJ5v26xMS6EBwIIFe0uQ1yxBr51X4qIVHpwXD0YWnJk/QMD0Ozq8AQYKAOjw88+PjugtgTgAiDTZDLvDYnR8dl1bq7Qtq3VPmXfIYEEv/6Wt/9gL8n9B4KDIikG/3wkUyvpbkpizedGRi8T2x/2QKWibfLdtASPd5pKUArUOYayTc0YL5DSZoriAmEeTgU5w0zjNro1vZS11vdlVVkbJ87y/N4t6UYisU5Q1MUZinJcpeHW5q2XVvPZEkIXbJM07n9IihKBo/XhRD1xRhagbUXOA35NYXSkJEEp7T7+csbf/pnw+z6/7sdOdPC1OWlAA1ool+pa90FcfqHq9B4ivdcj8waiL0ma1c/OI4vJC7tpwOhsymVvY5lVtCELYah50gtJyQFGbKy0MRazSJrGxG3dH3ooPefvK0ZEhN17i5lUudvWibHU0Hk9Dn5uMY9UWiDlFXsqqSYjJN4XSN6LZa368Zol9256oirryhXFPRRAgjIGE7y0yAoMoZS4VivO75J3VynJdXlyGfty3BnfZnbdhv72l2Abf7zPfBhOmy1XZWtfGqwvTVR5H8sJib28ycnS9af30qtaIUkw45WGEUw5W2zptMdMgWw1geBANp/G2mMauQkhgRhEA2HI5LxpV1zl50O/3+11lZUMYpm0T66IsjVFomxeNfisJb98mCdwkfu+YY421OzkqtsNG45u/ff9bTziyjFLRcgQ6accUQG6W5Tjizdxibz9qqvUHdTBMQRkAMJ9sePs9wAFDNuwFoU/9mbfeXYZNlraSuoNpTKw1arMUlUWI+z4LAi9EWYZikypTFZp6tpQWYdeLeoOwXgRYY5ca6js3xfWrOenKmlxo73Af+77X1HWOHe5AzdWuMbrKhCoqA7dO4m165u2w5rY8ABFLXQyYtJvAmz3cn7IP3wxiDAAhOnzQx+L6ufrzMTLJ9fWL4POoL88Fn+81ov12BIu4YVzDJ6uQ/RD8gBjOu4c9tbNd30G5JzZpDW6nz7SQRDM6l64WBLsDSrhDmrLoVsVc57UCRDDGBnAYRr2YbVQYcswdoynFElGQMgzlOqmrshseQmMMVEmDK9+BvCWJgqTKF62wd2HE20b+xm2922kQ7jo0NDkNIOzbhr+booH3fw/o+CeRXv/iq2BvQLGrVudN9dPx/tmi7Jfb7Fv1H8iJ6KppAKP7beaDwD7t9PqHe0OvynjsQGN5lTXSuqpunJxBnu+ExzSm2EgOlNV1Jaq1Kld541phmScAUzcMfN/kgAhjDgeLVU0cALYXrk4vrktpvnh6gFa42m0LjaUmrF526kyky0392ojc4Y3PykljAIEFBLQz63ayU3pQu49c7rEfcCzpYGLXZ6uT4fyoC1bk1VXjHn7Wol9ct7tSv88E1H+YbRTA/S7zHaCU+LPRdMRNvRvWjlVNhS2ArFPDsYt0tbr0pCSMMmpb3HXqquK5ZrSqOFHUaN22BBvqg2qryMeEMUoswdahAISr7dmzS9PGQRBwCVWyaRi04AXR6dpUq7qoAd5Q5K2vsUWAWB9tNbYKAACr6vBBa5o9yAdPBscRAAjLvrP2mHpk8fLkeqeudhGxLCDlLtii/uzivPi2n4rDSXd+z4/vASGd7qwfWGWLpFtp6qirXtRRphUyx27ZLFcChMMcZJkvAIuiUDapQy2Q42nbNAgT1zQt8tFW8YYJ11iXcEAEAYDOlxeZnQ/+9NhVSOC63RCkC1RR6l/vqqyxHzLudzbC2C52SLaVgDDk5CJ6AteD7jUdPg2sIm3m8O+8KWqLzXx5Nq+2r9C+Jt1BcPmPL23PTjfZ+y/lTtwfZvNPtYz5Y4B5EI08qxsss1amnqTeNpiCsiXIPIB6dZYp61lMkG2FRnKVa1cWRGXg4C5qlCOp4UymrqNPSYUMYOxQn1m4ab6S0s7CzdF+1xYoFfkyC7nVstEJoiptrH13z3jXH7Aq7nurrQFEGAVZFuTL7nDgYWCQlLyg4XdvODT9zWWx3m7g2jY1zvFhsnhmyAB92/CQ3t7Qnlx8sin/jwDrxp3RQOeOJsnCyVW3SisWRDL35qXmqK6vtsS3GFlMtGy1XivwsOv6fulxOjArwjBFrkuylW7L2AvBKAJAbpumTHpZ98NLultwKiCtRFI7jWqbVp6tl+tbZ/XNSt9IJK/3Hmc4i8rMqyQmLHDc2KPTsTfZ0x4Fu5TdofPdt0W3zxb57noN/5KQ65heinB6toA1Yu9pqIhy12GnJ59q3933At/uv7Qz29tzMuswlGyGy+kuO5HH0wijtb5qCct2WwmWIoKxo2RBkPbACUZhrKkfMK9GXgPIc5lLyqWNZxFlRJbEdTEC0AjhzsPBujb7z53IzaBsIVk3Lphdt726qJT9YHLGvtY8tIlmrUdViQkOJpYgFRxTZ2Q0AW5axMh33x61+flmdb3NM5uGT/brZ9ucIy3gvVQdjSdMr17he2n1AyBhfkMSJxgfR2pHeFBfptgR2S47PAgl79hy0zgqnbc+xoQCohwDxoxy6g72x3zewSEx0qlJ2DKPchaoVpQ4criHDGIIQOxw4Hk9XRVs75vVjjPQKUJlNkDNoqk3hX5X5byRVd/ZazTgPpQamBtqFk6UKyrOgRAGYJVsvy9PT6WB8mrVNCJzH7alW/xmUbz/ehLb6ODQ/eer9j6D9wGgjnMjEpDBZBCTInMbsj4LAnTelnzoNokSVmlQ6dWaeRSDSzjjGHOgnufF071+6k5spArKKa8o5y6jlraLFg89hweuRwDAJGEXaZXOFyX3T9ym6xctBraDptllRabte0r4nSDy1p+q+ZMO5dgbzXjW+6wdPxjfmg5VtVJ+38JSb1Rj3aqqaUh2teslVfI+RWj/qYn3Rvny3hX5EEj3eMdvatx9hFWx3vbX5XUxCNan2HvgVsUqU85qE2WbzILhruU0cJ0GOZz4kT8celli+sK0wiKGFXEcjzsMFb6jW9ePPI9YBLYUxOgyqcp8tUg63JpyQ2xdpZUsa6uNveMIsje5f/x2shcB8RXuOxgw9Unv0eAqeogmD4Pbnq7kqiLWAFhFP7xN0MET0oldOBFW53U2Qev3Y1vcf/SIu/bXH6w3+9SBWWc6VWkXeJIDrMgkFa+25AoKXc23YjIdo93iaoXZTto1cRih2HGBRQHCLR9Enh+NeirNqURlWYtWSuMi1w8C2qoOUeAGoRcwBKBWwpa0qhs2af8lHflM1FvQVdFmtjEWrH3PjiDzjleABw+adXA4bZQ7DLxowoezQcdDAKCtXa8vVRQ4oCsT2w+ShAYP3S2vWnadaFCb3Knetzo0Go4H7X/5L+Zef38fJJ7sHfWzZ3hEOtUiUc3umqvdpimZ51yvUX90FOjt+VmKEfUL6mMLiDsepn5EnBqP9oPAj8ymNQVlZdLKqlEOB68bhVrzGBHEYjemoI1OdsysoCkbQlzAFBpWLEO5zmV1w44bmrwGssi+U3ZGZ8EzysLgmM8H3uwpdPoxArCmTSpnc5H53sAFsQxdQj90mxR1vE5T0NE33yStsa341sZEu73B0fNn5R97Qf4vCO/f/dWefbVRfheN/f1f7qDJC6FkhfzYLVHsco9oWVduBNoxGhAAssA9N4xZjQwP9mJsU9Oh17mbZa2RChwXs6jn5Myj2FWChBTZpPKbWqTzEqApK2VlU6CgKnS6bZQB+BZHbpvx3iIJArav2mHf6y9edCazRwwjBKrReb0sO2kCTieEepNb3vngbdJ2R4OD2h14w8vrTfm+VIdcOtiLQnedwj2+BTR8PNxJGEIUDWnNsMXtiyInvj8c4LUJYq6wwsTyMa2VuekooMyJO0Mf57LI0l6MIOCiUiWIVmqlEeOMAibcJxK5jOuGECuvO1ZfLIq0S7KiLWtbt06d7ha1suY2wXu316DbRhqLbrSS29jGnfQmnVWv0xfdaTCMbowFKlZpm8qy0W44cav10u24H5bj6fLnfuT16qqPGbT1u/4qctjTkB7O4KRkcI9vQe3OfQtjrMb7zXpbW1DXlgTUH/Z6nEhE6l1QS5CYd9uikhYzxMCC15uN1MKCh/MwQpwoDYVGYLQ2xPFcx8GGYEYJdVxzFfiqqtd5ul2jgdoVBSpa6qlVskvVHTFuShJv/he9pgh6MycAULV89OTRjO8qMxw4t/aFdItdKWRjEebcbuei67kfvk169Q+h7zplVua7/L2oF7kP46NhO6X//Ctzr8B/AKYyGMKo6j10NjvFqLKaeF2P2Qw7qixJqbctklqsfQ7SAPYwMGKp43YRVSXQkFgEumhMq6gFay3iUccPaSk1YOxwqnbzvrPbrpLNcn0w2m23ZbgqqzOnLaS19oYeAG84ctOs+TZLCGCMHGQhnvmrs7U5wJQa3wcA4H5oUNlYwn0mi9zB36V+0Yt/8CjaG5jdJn23pAh5YW//871wff7i/EJ9ur0Q3wMSDhF/WJ53o5yMArjeWBQFUSA2IvGalYjqFMloo5pK2LylhEcAbtT1O2CczrRpuOsiAOpyayQyANZiP5x0bF42lCLgASvMNhkQLzLqtKFVuz3fueusbbE19k0dkX1T3fweRRBAEHkeUo+O44gsFtmiNo7CzeShJi7ggb9ZygZwOHI10sC/K6tHN7/UlD84jqqr8/VbRMBe2Dvujx4/LX/5v14re6+dfQBo+AAtxoMGxyyYVesyzwTyJlykab7zhORp5iBgijZWFQlmjIUuIpx6g4gCH7W5G9wUiCKLDCCiEbC42+/UuVQMI4IdB4/ai3XHE2ll0pPWzDeXjdTm7fG5d0yxt2Vn71LEgp4ejNgV33/cb1bnSVPMXWGl8mvykBoL1EqDeMCQFpa+I5C+HRfRZCcRL6uHDMq3KEKHe+Pgs0nnYPY331zfB70fBn/SP4mP/BUPPNQSUzcIsO/nu1rrpiaejxoIuCS+wO0Wu4hSf2zBcTwSEQA27NYYrNJqVwKm1lqmNWehixEHIMT1sUbUG5pn53whNutKrk4WuVAACMHNP7fLeFt59gFtwyJESP+L/vVmEl7tVvmuldnCaHCgHc1oc7k1pTZI1cJUGfhvTds0ytK3Zm82FkCdVOXwbe2M9B88mkaPnkbx+pcv79N434Fwus4nHuFTTJEWjAuB3Jgka2kdhPoD3rpO4MgdtWpX9wLNuFIIxf1RjwAAjqFCgNS2TnLDsJJAqNGNlrKSFghzQoLbqlBedLnetoi1J8VGvF4jhBB6na57S3JH6O7f2x80833ZeVj32ufrtBbCmAUBpJNh6AAjzUYIxYA5arnjjLwmmWmM+1aOj1oAALngkLzljbCOQ73ecG+k/+5lcr/PfBhkoF7FWNkO006ppKIEcBQZ0WgwvDM69LOWBV4G0lMFtyS0vliEbh7IxgMAQOADAHMya4EhBQg5tG3KUtVSY+5R4pgyXdYcd8VutdLbRr/1LbYWXrPkZn3QDTduKILujA3z0eak83RkLxxOQGulLQGkqRsTK4kHVStJNHS2mxKngXurxdu6Dt4W027/X12v5Vv2QiVllhx0ryi+3t43a34HwuFcDrPcM5zqtlZV1gJ2UVYZS/jgYLAXKQGUhXrla4aJdi14NApRlYT+TZCJAID6kai1NRgbhLHc+I7KpOLUc4lAu/VVGld4+y+L+tsuobVvLMnrreeGJa9p4gRHs7DvUQrDJ3G0vGoVAoMJdx0HbLZIlZEaed12vkSeC1V4YzxEZt6pgr7jS/NOTKM3kG6hLyHOs/uI5oMgJK7MQXdEauGYuml0tm2saeuyNiQedAeTHqEuIA0FcVmoBeVM0DjeQ0EYvl2r4Q6sQA1gDNhaVmfQWsdlBvtiy+vLl6pNsqt1/sECUWtvW2LurMnbDZuAmId6s+Gf9r941ANALBJ1KFuNLMHGciu5RyoJBpwYV2nFnO701gWxVeO849t8UKAHa6GRyZm/pVrfbzUfAApnulyOJkMuJRI7nUqzXUtAGAAQYkG5MoJJhhFsNPN6sVoz7jvRzO+NUczeGWbpehxDYwzBolF6W4QeGMYoiHnTJpfN+XlyXXxnDbG9lc0ssreVAK/baAB3xv0nR39y1PMATHJepLsWwGiEjCjmocd5L1e1tYqgqtZM4BuKGK1yDe9UHH2bIxhrC4CcwcQRiv1QXf0nB0KUZZ3+44ebr7ZOLdraQrUVayQKYQl3KMEW2jUBuSXUdQNHeDYYxzvP4y4e7e1B//0nityoqVWNPNIkbt/13ARCEnnJ9SpxMD5fnrfye8vMb2ny7b+Q6XB28CdfxgjA1ovrTZ1VjbJGAZbChF673uxqBWBNucmAeLenVpiiFEC+nyOoP9huNVhkvaNer9cZsHuH5G2MHidy8NPDrsXP+STyiEayLlcrFymL/N4kzAwhBnyfQ+t13Eiq0PjdsOqGjk+DwRSRb33peKi0qD1H1e3sqYOuV2NOdLpeigyXIpkXP9yIcCexvvtTU60WQ8ERANjtaruRjZAWjMXAfMfFMs9ZXFlgUKYN8Mi3hgAA5al5T3H9FkfY7PFlW/NaVMo/Ohw+ePqrT5UjmKoPLA9/6NfDvQmbb3JMpgMHACFXN2lIACGONXYUo9r6oWr5IMaXwLES7li41I08jD9QNkqZElKipN4M96fo5HR7gAuh02K3M1cn8/RjelXsXaLmzY8QAHURDRgAAB4dr1/PrUMsGB11kTPm4goh06YgBUFcFSxCAMAdgdh3cQQRjA2P+/3MC0eX2+1JNJB47H6q/gieTl+kAAAcvxkciZizEZ1x19HJ1gy6gUMNtpqPNrtVCaZKmdw0IJgfeOO2EmVXtI7r4ioN9o0TuEPvvcTqzSRMK9u6KteF/3CE6qvnuJAkLlZie9W8ONl8ZKLMvqkJuJ2hiDB1O8FtNEvG47VEVmoAC4SYbM78fjRXCJtiDkXNxLpxb6b3Um5AvyPIUQDAXBgAQMS600E47nRn8Tj+qlyt1uu+qD/VuMb76YMqNwBoEL7pBug/nHYgnkzE6nrpeJw4vkHJTjq9qmL9XGwyo1kodTibjOp8KVXtg98ngxEMMB9S/25i1d0KCOXb1ijA0OSFmLbbqro67y8mnSZLy8352fVHbDS3eJckgBDr8d7BTx4QAAC9MZ0ZyW4uZtrM0SZwMVXgkKpJvVqRRtDoJiJXbcONeZvMFIBGk+vMApgWMPaCttgfBKGXLBjFUK+BfOyn/O8M/sHs8FULgHvRQt0aErL/VxOv5n1/eXpt9nCOg44qZbMKkB+3GBLVIsocp8TOYCRIDQ3uWL7X7e+toojGBAB0y6mtFb0p1ZAJE1dY1QrBvAH81XCgrstH+9N8nW9252en7Y8w4jejnNFdWw1yD7peZTgCDUgXte/UWWvAArJGVR73MaDOPsWLhSgaQNxzo8YlAGDruxDnFoYCHx+M3fNcGQBoT9MAP/23x0FrtzEN4kAuEkI+SUtCekNMCADuDOigEQAAyHX7w6njEo/iZOsMe95oxIo2qbO1MqAbRLRlscc4zpJd1/Ew5cSXlM4OA+P3CAIwRZ7O4ma1CY4dQGC2VVwualMhVyoD2/86foJeoK6fbs7by9NvfuQ8dfu6AA0hhEA0B0+mewzaa4PbMyCXaWZuhDgnGO0fxQB4QJw2QyqRiNpiXIkJAOhK2vdq7CmADff97uI6tQC2bHB33+5/trUtEt1YPWu/cF5dLj+9lA3q/eQQRU4Fzl63uDW8/ClVK8c5mHmlbdmYjJ8+6jRMJ7JrklJrIzAi/mTQcFJceu5YkMGABMIBFTl9TgHAbs9WlFb6fBu7A02CdldDsk4FmxzUIkX+1a8MXE/benu+WC1efqwr8hrvVrGqXRkeTjno1SUlF0Oc35Wt4c5477M9CgBAg0qAqYGz8QhvoROCbSsNoorf9lMpyLTpTH1PlhIAQBvjOMzvsY4u/PCf/mZOBj8d/rdPb/p7+Bf/4+x5STEaz7qWWABA7uEX5PLUTBvgVyfL4MtgdjxhhLez/VyuLmvOdGNZNDrMMR5vz5xQun4/pE33cZehm1MubZ1soIzsXLBmk4T7TZumWdW02HQ+C4VN8fqXOHHTZXZ+enX92024fcMSfxIgTMEivJE0jQd7urrZEDCKp3FlPIDqOkskFRaRTs9PNuEUADkD1MjM673lkFBs28Ls6XaYbjUAgG0lKl4cP9qvk/wf/z9/t7Y8gPyTGzfifP4/fX59tgAHGxtKbQAgePzZviO9veM9attMDqePRpMOUGS5TVKnznEBCGjvYG+4QdPNb7ZrN0TBMQua0Rjf9HQDclx3uUa0dXCT5Bkud61olDFN7pKuqDZf54mUPHu5fna++jGuyBvY28weACCftDoVflu0G4Mrl9+ZJeIGbJEcHCJg7qYEAITAhU2WRsYiIMhxmrLqvnVN6mvHDwOTbF9XxIv1P0TLL/agefV//peVBVEAfGpiK3/0f/9r+o+nhQ0cqKA32WUamK+3o6OGIaMIMs5o9qDXcxRXXacG2wxlYlpNwlF/IqpRLFxZx31W6Yd7i7emTAVTY64TifuJ1g3R6ZYii5SRoqTVcvHsyuzXZ8Vm/eys/O19QIQRRgAgMknbr7sjw1AryQq4ufUYqFucNvgAwEoUWreuMeJsAaZO8w4CwFG0Vm+dc2EUDRHp+ZtXr86b20av9urn3gwPYP2bX53dkfkTMyPk8H/4K2fdVA2Ee9SB4XFOCuuJM/nkScduNI6rNvRY2HcRYW1gN8sCH/jP56WOhn4wyvvDKle9QcgnvZA6BwgB2KLseAD+qE6YK4TYbV0r10IxgpQhptRtdbIRT6x5ZczZdlH9Dg8cIYwwwm4U98PqstuKmhMhK0XEzbpjXqSBnWIAELu0zmqwgOTOke2NZGhbjetKvE7raU0djDw2v9wJCwCIdAQuX8ZukWTP/uYfF9Ufe7X+KECDv/pzePHsWSqsZo8GM3bhBYbSLTgX8NNhJ9TrjD8czfouAsBMQXVxbV0lpfJHB3shjo9o2ZJw1mnVcI8CBwDQ1Xmx52GAptXSiHWCAiQwpRZhYEi2dZl7jwnd/PPOqPP0t9tnbhU5hBDGhM0eTvpBtd0qslTEGKkcL1cAgLDe2LLLCADgw+BcYKttm+eijSYjDADAfb+91tPoRsW3RUkNcwOmhTQANPbYgQavgm5w+euvvzr7RIvhnc/+7fCb+eU8UQgaOTxG5xMsvANc9ou5234Rdnfe+Gh2HCEAAGJ3i9ZukjJNVDzx9TY88Nd523P8fSVlw2++jtnZal0/8KtVkrdaVgo7LbWUA6GYMMDIIkIxkohrVXygD+4jcUsSjHFvevyzSTeobHEd7RopQMtS3vibpiKcBb0AAYoQNchWWqJcKOgNrEUAiAXDYHVd7O8jAGjLRU57PfdoeAUGAPjeYTRm1mm2+94//K/z5pPURQCch//2KYlflEJTgGa7mHQHw4TwwTDn3vnSu+wwMfGP9+Nb15CHXRR6qmaYqjKlcTsP0hXeM9ALTXTDI2h3ySXrVFW6q8q8FQqwRQis0YRwQhBqNPAWVLHatFKq32maGAKEaPjoz2fjaQRbK1d1kwuNlYDqJvQ1wg+mB3seAGBwYjkHo2UjgbfXNAAAQD4jvVf5jfeirpeSDp52f9bDDAFgbujjJz3F9TnLvz77RCudUefJn//FrHDjbEddzfoxlHa9kU7UHz9QO53hCL0Y77Ohfzf4x5mhK9eRfLu1eA0aVcMjrXtju9lNo9t4BtrVesdXxoq6JrwVhvoUkAsIE+Yhq6GsHFWibPnyrBK/Q8HO3fjV6CdHsw4jQWusUXndGAuIgr3lHiZEtsl6yACA9aSLjZGFRagywc0LCIHepvKQQQh0bn06/Ov+8cWukhZFhw+81nkw4LvQ/NdXn55sdoPor//94ZPsm+dp0oadjI72j/oNG0ClrvHTYR//snXO7GddD16nzxH1uAkOiKI6jqjN2kC39LDXW1/3vTseYYYhOdlY0JRwLcDpsAb71mCnE+ByJcSlAzlLzk8L+TsZEWuxMQT3DvbopiKRBdBStRoAMU6CW8UF24pg1h8AACBsDMJIFZgy4EzetdhgB5Vt4nRtWg4HdPTvQpVLYwF3JsfDDkdD3482Pv9tP+a/crAn/+F/3CtPT042CRt7tdhGQ11KVI1RfkEe9Hqh2uwe8azpvSVEYrnT7W5pDO1NJ95O1MjvHk33y87r11CKmbgk1gcH67phyIl86zGpGcEc7y6c+qK7wVeXufpdI0gDxOtPaF7l3NkT20q01oJFVltMyI2JQtTvT8Mb4TfbnG81YUIb0EKq5vaIK2CD1WWteh2TGg9o/3jz6jJTFlFQePp0b+yh2M26ey8+TYd18CePjibPk6xGXR43EKOyErqa44dRtrkmG3e4eN6Ni/nB0d36K2kQJMv6KiEsHu2NmOC4V7ZsyrLe68wYHy62Tlu0GFGXpsoxtsuMG9aZFBJ0tYyCV3laLX8POXbsjffGcXmhZO8B5Ov61rmxomwEvck60WB2/LATYgDQ2/Wmxa6bCrAo6MuU3g6ugfjx6WV4jERjditq1i9+8WyrmeNEgT99uM8QIFSWnH+Shaz88Zd7Ho897U+sJ6pgL5Kct0CCzgN5Pl86Xn9npt6C35gIqxigSiBK6x0KG4SoVtibjLRkookcBLa9OTEC98dJ6++2uQRPC9dziKa90NZEtmWV5OeR08yrRvzuo29R0B91QWanbffABc1vBXKLTKnvLm90a6I+AgDA47hpGdWNBMy4k2zD8PZCZAiV0uliJ7cNRdnp1dnzCgXR8Ojxkz1iEQCdPP4i3yzTT44lbDpxKAeh/P3Y1edyMHwg/WggS6ffib3+SVSLbmPn1SFCuiaOaGKM1AqrfuEUhrULn3RpfLAvRulEWwwmMzEAgFW2tx/UWJM6WbHQ407zyj1IigZ0m+eX5WKh1oX86C8lot+5JSGTEdNJRUr8QLX9SVrednvWyt5NolDVdnFNeggAcICifQErDMgdHPK8ft0mqlpLs6vtFlzOKOmQbKO4DScPn355UG4mHQC01+qjq1/+H5+ahMYe/tUhEtLa8MhnbNlGD44PfJUTj8Xj7mT0q3xWX7rFhffg0UClZ+7BWhEPk9U1qGFwvda6LjSQ4WjKmsW4gwFkcrPdmMUSD4LlkKbXAmLX1PLrYpTihEtFZXm+SSshzcd/IYlffNemZKpa1qVGNU1XB820G+c34am17euECgkj93UzBp908fJKAZAuvtyxVlEAAGPy5W4lXtROFA9ims9b13vqLPw/+fzLg+arzEIEKT0cPv11+fNPiyPInf7pX++1WOHpl76hgoeKIGd4vUpq5ndnQ3X96DBJao+OD2dudXbZ8V6KauZXdrEbeNqgAju6NS7VyPMoJwC2rloaAAASl2wvprx7vqIN5pumPpfz3C6Dwg7JZrlqflw0Q0JTfBejrC2lMMRY5fnEaPGOV3lTXeLvzw5HvbspJCFVyBqLOHrZ0PEtR6rtrrCmQd5ggqddevK3z6/pbG/P+dkTf5U9l9nBn/vbxX63P6D800r34kf/t/3eHhn1MENYucbGntxOceATEnUbGeH9Y7QwERscPOptkqtLnORnG+pnebNrY9NYX1slyJiVO59GCABQGJ3iIwesEmbN4qgtNQnzTX2ZNfH46tdI6daRapfUP9L1c3xTfvdvWLEjjNGuSSTtdAsj7lySuxo1EjzZ9zCAVhyBWGRit2sBu/kuHs+mDgCAVqYRpkbxaG+kXEQX31RR0PvC9flqQ+rzFv803M/OW4+HP/0m+6QMCZv+uyHt7vu4zZNMe51HHhFFifcJT7zP2oDzL9WZIhMYPJmw8mSx85Uo7NJPcmMXWZinBoHjefEwjsmtXSeu2Y4dk5C2aeuEpZtCA6RbM4bYmpoPdmdVK5sfG83Q8Pubnqy1iKoV26+aaW1N8pqBtzNK2nI3DEBWWcgBVHW+KTILRG9x53j/JnVAYjfbFoYNHve4RYiyB67T9R/2tv/4n1deZhvutF+S5cZjxj365/pTMiQk2v+J8F1iy4tVJetePCFMUT7plKjzhDtcmyQxTn8yOoxhT2RXJzYu5VexXEtKkl2ybhCAz7SJb+RKiVFRC9tE+UUXmQx5fl3u5pm1bTz1+WrSY6RLTxP5o6MZ33Xc73+FRb6v1WZx7FMF2LweZQMWAIzMTruhWs3dGxXNlFljASrSZa9LApBkddvF4HNAAHT41wM/cs3JP//D357SNnAGAT6Q55mtOd7uJZ+SIE+isBcjCqYuspIWZcf6R9PAjaL+tA2YqoqXGwNB/2EvQrphteefFubqvMfUTuBG1BKI43fCHA2wiwBsavxXm8yrVL4oMNSt6yaXr/LQ1WboOC0ezPJrTLD58RJDm0YUfy+xEKLTiaw8F0RjXWSg0q+nHgGoNVsF1Zk4FsQBp9PN2KoCY/y4E94pp+3lVcNGcOtH0+nTAUH1/Ff/77+dVwAloeF+eLX++aqNyRp9SjoacuxF92kMNl/VuNVsm/hjYcMAADPfJqsiv2y6I+p3QgxqeVrOgvS6Nuq8dQoDWy0Vc71pB+/8pJy6SLYrQ+eb7iCSq0U9aE1Cg83zfDiMlB5gnIaYtFflYtvKHz0jqlVUft/2hFjHDfiXw8SNfMcJICDllUavz1AD1Wh1lWw6zFIAbfz9fAeI94d+b0AArCG6WrzYQn+qlnWEAID2Rxhstlg+P9UAYNX6m/2D9dWrAlL8KTEEAA+CXWoBDJ45mWljw0KWZVMQwAFs/SpJjcfHXr2hIdLlZnC4c2a7FmW6paZllSI06HaGkDnE0B6urtaq2QXHg1i2ZLeIbUHz03U0mMzqeohKGdg0r0+L9rfJz+j19/KKT0bu+ODRFzjoa+cgDf38wlXm9uhnsGARa8prctQPCQAddVa/UgDe/iNvwK1Fbcq3i/mWDZ7M0vxGTKYEA6C4x+7etvh6mL/8h/LTO3bTefzvH/gWgMRBjmmOdTiY9fsOyMINcSHii7LD/dE4dV0Emo32grwfXSf+ymSKqlZjj/iT/UDm1K38kpBsl7fR/rRL0HC7vl6SKi/zoBPG3S7ENZQ0T8+v8ua3y8/8gJOrE8+nvQc9zIvJoAmqZSNMrd4UnBJYVGoaKUGRtattsRXW8XB3RGyxc3ab+roU/vSLCbOcNg6+6+V03Nfj5E11+ovsE5xdhALX+Sx0AABkTaiqZZsXswERZo6fOvZyUWruWzreYxjA6/izBd6PWkK2qFEorSwibtDBRspmJbo4i9sm78w6PgHsBy6/TqWkcdxziDsJ8bJUbTZ/lYjfOYX3IYhtHMTly4MwRsExKtcCjGZCY7AWGQtgpVrp6ZikIYLC4KurpQJv/7hHoPrqUtWi0SQ+eLJPoQ8pi8I7jogWuXdukDgtP61N5hYhuc6GDACAji9UK9oO6/fqdVOdP6Zla6+2ro1ddHMyIZkC5ZM4ddm8aFWqG4OYG6g0HFa1yKb2eucnwu8dDRmALFvLaun0KAl7HY8P4nZXN9vNdab+QCkxOu04j4ZAERAiFs+TKm00Zg4CgwttAVlVuw5JJlxl6x3mRFvkDnocjLw+MRYFe7Q/GFIAOhBUKXrLkWbR9O5q682nOfbbmfxJ/IIcOgBAHZfpKuCE0vI3sjEddTZPMhzF/tC57ad1AcZ9pGfJnLSlEBrzKBgSTalSaVSdVA0lw9l4FFkjC4Xdtu2HDFDcH3eGntmu5hfJdaYN/CFEShQcPR4K72ef+QAAotJtUljio5iAKQprkdWNanZ4ENL8+TavadMYjyT5EK8WucaIT/fZzGMAAMQDau/siH9cHUeflGD2Pvwnf/FnPzVMcQQAzMUWh4OILrPmon6I5xcvdqUXcjKM3qhXnNupTFGeYs9Yz+v6nT7e69YU2wX2ejYYB9MA2k3dJtv5wotiV1F/eDSMabq5uFou0tYC+kNwxDn82dN+/aeHNyMDvD0lG8NVxLqOyksE1mIkJUZ0GIrV8rqp7a4K+of9GKfPnm+16ynmD/uvqxoQuuMIG+7/5PH2Uy09AwDn8C/+7Z8cIXtTPUGp0bZteHRxUS/A1otXc+HhFPMqflvhNLJab3OFpXGC0OlE02msRMN7ykbHHbPv97CV20VeLa5U6Hdi5bN4bw/mV4tktUolIPQHaVsyVvLH6Ghws8xkWKQm5LnX9+E6a8BqQEZYHh/s4eX15aK1JmfRweGDKDl9cWXdoJ9U+fjdERgULDK6vF4Nj/7p0+UIO/qLo9C9WzQ1X1TS6QV9Up7n5cNx+c1J4w94xWN2U3quFUcAZn2xXp7vLFc8iPs0no3c3fa86XUCZnqPXZchsEWZputFbpDr98NA90PaivTVy8tVZW46t3//UGUN/EF4t8x0gpuS75zA1LoUxhiLrUSMuGh9db5eW2to7/DBIZ2/eLFsug9m2Nbvt25QvWP5dnc9V4w3n1i0+wbO/p/9O9rejQURq3kmCHg8ubqq947C1VXqdgYYM8/WDgHQK9YHUO386/X5oiauAa87i/s9mlxvdgY5x8Ni1rsZNSLyutCh0IiHw71IDDp6d3q++HpeqZuhiH+AzQbJ9fNgGmGwFgMAinyhUGG3GYp6TWu1paihgtrTevFq3iLsdvcfTNpvTue56hw+fpTrs7bV74y3ou1pmj9flgvS/eKb5BMlCfI6/afd14epO6Eqm56H5+U8nR5HyVdLFDrBTOZbe+wBAG4rx0UbmezOrkpAiNKgE0aeKpNkawPX6T7UDjO1S0CbyBhifJJLTJwx5ji/PP3nV8tS3w6B+P3fC+71YqQyBWAa4iAwQKnZpcUuCZBLndYAtoozdL1yT68F6nT86d4w/+ZFqnH8+c8C33hO0Hl35gzN5s/Lf/qXtB79j0Hz6akiN0Bh4LvR3Z/Mbp2mwIfxN+u15KWGbeUOXDPupi4JEIC2/FW5Xy1CxxelZti6Sqd60xlUVzWODvuuyzyw1SruI9pXiraKU0rqTFCG5HK52VzWQJS9aan7vT9ytvfZF4efH3sAptAjBgI5IC5e5KaIbQtSGoYFcf30RYOWArl7jzzfW16clNhnk4eHFHmDOcXm3bmKorj+9VcvlVWL5rfuD/vXDpuWbw5Gt9nLFzs5eHJM8PLSOWOpaC3rdjgLvZuZiMWmzhZ4W6zX14vCYk47/k6VJEVt5nWC4U9wgABAlhAzW283qcCBwKwuRN3QZrG4ulaMNMoY+IN4rXz65POOGxIA6i7ICFXU0Wm23Oq6Vm1TtAhrA/mZrCxY6vSnkdxstrlyO5HlPkHAPSZ2w3c58rX61dlOAbTZJ1nkfAMsV2fOXbmvXK9LgQSMjpeLXjPXUCOCxlao22lmfn2V5MFOX58lW4Mpc4eYc163c4O6sx6Fo4gAyLLCmmhV18AowZjztrwGurp+9SzR1mpjjbH2DzCQASuaZF2GABBVWYdXJDDrRVk2Tal0XRusLUFlBRaA0O7QnM6LlvDxgR8l0rupHkHo3Wmb9J9+USkAAHXa94o/9lr9kcCe/MnxXdOAbdJ8m5WVwNXOgppsv3ZpMAoO3UrfcoR1I1q8bMzpqtLEJaw/Jh1HX0Bj+5P+sRdQDBaqdUEKLAvJXG0ItsSBRdtBL756vpFto7U22lj4/Tut7l50unown4vQBY3zXa+ELkM4aBSppBAWI3szRBxba4Rt8iyBoNP/2ZENn2/L1gVwfPXeh6J3YwzMefqpTRl5Dd49/umj2+9O8eL5+TaRnWP3arlolkfOaR30H8z83htHzjImlp4koaDgcj4YdpiaRxNHhHuP+wMPBC1xvmvFQpGWOB5ujcFGBbax9fXZvAFilTbGaPv732pI17tafHaVFwd/4ULQL67btMfw8FHs0pKUrUGYEIIQpm5Q1NYst2DccHJgZjOE9lWpAMAbLeV7+shryqjdH3up/mhwO2FwywDdJtdXmwRxsro4vW4jhaOm4xaJvJkRAZIii0hTKtrISrsG8bBV4b4M8GCw4+ODGJlE4iQshalqw7XEPrK1QkgjF5ZX5ytNXEvAGm00+v3PdTGJIP1VMuocYItw0LusRcfQgRuBW+2uCosw5Y5Gbj8ez68ajZnFo/GTo63SjnH2QgIAtJcL4b190bd2nk/WHUHYwk3e24r51eXZdVLOuvnq7DyPhzoSELo+7KIAAKxJunQ7f7XAalFmEjFDo32zHXjHQxIfX9mBSEq9ZZLy2rQKIwEWYcpMixgBXVy/mCuPYCjAmpsCtN/3M7eN8rKzTpic95wQ+RFOUCM5NjTYSuXwxgJ2xxoGs5CXnaDsHeXrwdHRrGsI4F54M5fG6/Fvz/D91IFjzzYGA0D58myx2J3X0bH74uSyHDx1J3Grp3/xACMEALYpNm5IajqbLV8IZYmD470H1vhR6LikE+XbEiem5GqomqomlDIMFnFiEA0waU8vF7VHpc2NtUZbe3es5u8VhrjE405EEQAKuoliGKxIk818ZxRghN1eGMYH/FxNK907qkijXdqxCIDejrJnkUfe48in1SDxIVit2spgACDN2fVql1Ne7q6eQxAfegd5x2kbOsA3Y552a9x3noyX81pKYNTx9x/sh0j6iI8s8opkK4TWhNQ8q7UxiCIMQDBYxxVFu96hMHTqDGOw1v4hCAIAQILu+PGXh3seAFgpsEWAPGI6W1G3gAnxo4P9QZDJQfcbTNmX4YsavzlaDQAAB+9NtaeI0k9WO7uFbXU4oABg80ovrq8T3mB7XU/2eO8hTY4yPA/jGzOMfPIMxxN78c1FKjH3cGc8PBzimgEAAtVQyLW12GkvCn1jeoBQIl2G7C7NywjhPqqF+MMUBdwAy7VEk4XqjcBKg2zY4yDWWVZR2mprLebUBkOUdPdr6nWiSc+9rN+7xPvnfVNrnd9y/NZ/N7D56vo68gDKl794vsl2iollW8TW77qHph5czkxe3jSesLHAL8/OuvNlCxxzxm1TsxDfTu43QiKQBoPcKUQJQthqhDDntN0qmehQoJBVqm0wRvgH6g0R/60UTUxDl4To1HyetL7Z5aUBoTHlBK5TaazV1ha7iY8h/gx/TbzRoes+loX8/lPgKahPr/X7fdTzF3udQQDz37x4ebUVs0erK/A6mAz3hgbFahqe3FXm0b1B/C9nz8pCU0q4F7OoWzceAgCrUCmsJUYTAhK51AIga8EY4NhBVrFBXVCuS6kQAft+1TIi70qYpLf7Lc6EQYOO3ymP95ru2NUAaLOW1CFAhpBcpdgvldUo6MSOtjG0nGFlEXRmaf1DHPl045nX0NnVq6j7RSdfn59szdFfHv3t0pb5YblI2g7H+x02Du/2as91qP8sx9RQ1hn3rXc0u3X1iiJPpTQSe5ES4DutMQCAKcaOrFBrhtHG565oqwaEeZ8iOHCSdypEeU/9eEOC4sfHTngRf8mao0cBWMOU8XwM4ISdAan14lprywedctftgBVO1FRdhEfdHxhIdB/XAACI+W/KB11zcbXY6e7+08liLQgET8PNNz8N0BBB9/YxWdEULJwsE6sU6wyf7rVwW+EKyF8sy7psNY/2ZKr6YVXVGhANWMBUQzn3auQj3hJgWiht3vFISDR858xLIINpWNYf+elfA/t0+LBz4B8cbIY+AsyRrLYrjwNQ/0mdJfXcAg/c+jrsg9m0+6XIDUHBD132niMAAG1xLfHe9tnpovWOjyJnEMtekOMvY5p7BL95Sog0iyWrEoEYZ8H06FC+8Suw1xO1FqQ7mdl1xvqD1UZooH7o143isV2vcJ9LxqxRFl53WAIAAO9PUfZOXQbv9TrzjdI/qhWY0GZ1Gg/+8ijuNAG2CKpdYTkBAPAeZmfXWw0AFtpTPXVA6z1o0o9qALvnCADYao0lofzVWQqhG5KzZ2q8f/zN9W62R9+TpUc6OU03wmCv16fEDdBrJYGMPSFzHY1HsesvOgMsdS0bgwK+S0jsOI4VQMqmTXNpbw7wNNYiYgzgcDpN5NurhbuTrjye5Sc/osYYUUohuwiV353gEEylA+4S4/Q4AGAOoLKNARyEyW5YZAMyppW9omVAfjAhcM8RAACxxbJZsPyqdpzYa18t+g+nPwuW6boXv/dKPJJbSbSw0J/u+XcndVsMgD3oiBRsu5KHMQ6ZHbOy3QogVVJ2eolst0GWVdmuKBoLCGFABIBFssSu71PxjsXg/W7X8XbPf0QTCyLcjymwzbASAGDTEzvditt0nKzXu1VjSg3Mx0voUmWxCyHMrNX4niMfB1WT4syq1NJms6LK7R6O9x9+PfjCef+FVhQjuKZCoGz3YHx7rnZpugTAEKoNKhYoAtZFgDzaq22O1PpKde31rthmO0O3pdG3lSMYUTfsVhHqjyZZ8Y4AgetNb9DOy4/3WhGmpPels566w0GAAcBm2yK5LOPYB9DzlwtvOb9qABFabKdOb4gBAEP8UcdF3HMEAABsbWVjwEIlvE70sNH8s3FA/LePVL/5wiE2C66w22KjdV1yjRAgXK/ERLQSpVXUFMZifLMBMcYbadOratBNiottJcHXmZKAACEMgDHG3mBYoe5Pgl+zd47IVUJ5rlNWVH9s9SiilNro4XBw2B07AID88eI3+ZYMAwIA9cW5dqQyFlE9z3vp3XF5H5d3vucIAADYVty4b2KTRw+NXdZuiPfeeUXpUQQAHM+bQCsAlS1nNtOOw2m8nEeLhCvvIM9zw0NTeYpiAMAeaa/S/kQ1yOKozKpWG2lusoiACcbMmyEcPBJhwN4KdBBjcT9spzLarb9ru3lXqUWE8vHTeHbkPJm4DgBY3Z2lGxlz3FKg8XT1vGqEBVue4R6NBqhB/KMLE+45coPXDn69KUdD79dhbvA77qpJ8p6HAKCam05mLemMx75abUZHOt8kcTXfEX9oF5kBF1+6UTvEAABGrPLBlJ6cXYpB4fJcEA0IYbAWACOMZUl+EkKw6Y5Snb9edSslJob51Lfpd3DkvQW2gMNHP5nG+9GwFDEHqC5Q2HVr17fL0pls2kFy1SqLGTQ8POi3ydKfffRhmvcceQ8IV3oqxZ6rKQC04NwWFNp6x1wEYIUdVmAVrrO8NsttHyUvlnRfs0Q/RNUmD9QCqkFxcyyySrdZ79DfFXk7oIZyLclOUn1bCoYAEGA/Vuttw9lbWibCcZcUCiVz+K695n1PxVrdQqcXo82uA6Dr5FwPaLiriNm9HMPLF9IgMAi5kVcKfT330IFgPxzR3OCeI+8Cx8Nxl/XjfksAAFRNlAwRgEl3RSNcAC17g5eG1qmkow2sJNh2vjmcB11nUZZFKjuD4oro/R4BALW6qLtRRDa7KpxsRuRCdSrDsAVtrQGMMQbmF1per1Nl3jIYzmTSU5XZbtfmowUS0xSb5HEzt0HHgfQX+RqBxljbejNHcru7tpWyiLm9vUu7OneC2JaT0T1HfhugzsM+NagP6LboaJcx41EAzNqsRABARt5CelNvUW23SbY5GLCwN/+aPzVZa0QujZ31pa68GANAe5m73X5HR7Hb8+VkawZVy2ijLZEaWQDqBCNvOcgvdxqCzl0LHCHx0QNzyUhVyx8hx9vVq/2iWE6HkQBd/7KYLaBue1ZVm50vmqpQChEnGu8168XoCPmziBn8cVe+58g7IGHYY8LQuw0f9drLQwIAQE2rJEeAENZsqsnKyuZiGU194IP42Uy8OPfLyxJR6kyYTYwhAHpbhgM69EuR9WL1hK06Mqc+1pIoCYAQYeH+YG3welk4NLjbPnB/FB0Gm1XYKz5+Gh0ivBNHpFgWxDNzVjT1UiM/J6OBSsolc9usMohjdzAJQ4u6R6J76NiPdVrvOfIOkG3Ssn7jBDieTvIJArB1oYQBsJBeWBctFi2TpzvneFLbusgUXJ7sipa3qj8acASBxQBQbIC5QUQBebMg6yQ9fO0ENRBilQVA2PUHE30dtOvEunV6Rwgr3Sm/zje5yT96rCUiNPpp2B3qBSiU/sbo821aEI47XZbTcLnFTaWxH9A4HPQUNBB0+s7HF1zfc+QdqJ3n7b91KCUFLQkAQPX8IrAEVN0UL8s8e57TQRfZB0fNIly8unDR5a7j+DQSD/ZdBOACAMgdiqREFlDvScRcLoLWmxZbKai0CBBiQadDd9vE5sLJiuROH7GtbBebqg4r+dHOCKY0PJz6wTwd+YVIn1XNio4j16W93WXLkWikpf6UVpaY4N+YV6vmofcjSvLpfani27B1rXFbdt48QZHlnQGH7CSZTR1zfUWoOdtUKQqmnwXoIHh2ztabcphue59NWNZHdHLXygW1CaB2uxTCR7nRtLUSDbsZzmqhCEKEOqwzMnnRWEOLWpV3dgT3hna1K0moP3oSFsIk2Isf0MWz6lD8WifpS0H73Z/2GKBXJy0HJS1yxrPKZ/kJmkSifvts1h/GvR15D3TG5xfOXe+AKJve6X968DPn8ip6MKbV9UtfXpeLRIec9x45rCxfrkvsLRK2fzgLEq9n/TtHUFUeNYoxDNhDq5wqpRRyUVNxggAQi7gfkm3eNMgl+a6Vt4yg44e9bJdbzmz10SIrxoSD2Xy96vviZbLbVEEvsN3P2XKJzLUuFQAKZ6Okh4+I67Bx2cMf7YzA2/019wAAAFULg+7kJVtcZM3Dr3/ZGT7f/cWMilTkp+WmrITjhxHDbXv97DwBpmuEdzXiU4cBSEkcALAldZ20GyOwYIm/5FUtW86AO9gaYYD4g26vnCet4rTK3sz8cA5H5VZYMOZj5QtAhPJuwMpvzty92NSXO9U53neYw6sXWWv1UhkLvDMa+1PzFFUE0F73IyOaG9zbkfdATVO+CTm9493fGyc/y18ZfU399bVUjW9VqYIJ3zXU/fqbYoCk24xZcW0DxmxjDT0cUwrKdjD2kQe2ZsrFlZZtLV0HUanBWkAUM8iMKhqEmchf15zhbl9c7QSAluqHM7I3n5gyGj5+MthuGs8oFgc70pk86DrT9up0pQohDQDy47h/sCfHqGTgOD+KIvcceR+IupPDu+I95Hls/5dFlWXrblEQrTq965263BpdrK/C0cH5swXretlkRx8szi4p5gwxhtfHx12QnCLwAEAXrCVNDUg3ltEsM26JMbJaVhn1hGw5UdWbWlYaQ1W2FgAsCdyPOS/cnymOsXV3L5bWDwNRSENNrvaG7svTZLFtag2AMGXy6tDd58Yj8OMYcs+Rb6GpWD94y2UV4+6zrvs8G01njplM57VzWuWix14V3hfqm5KyDlEPJq+6+2dJoGM+7larxveRpRTdiCyoXhp3UzvSWMw5ia02FiNk29T4uBWWkOqtI4s4yVplAYCG+KMUNBweuoGiR/7La9kZdkwlEhN0p3vj4W65zqVpFQAgbtaKtlzMnI/O0rzBPUfehVXI67wpExeXJ6sT8VCcOg+muTve02BORtWFZSjz8WpdxpPOYBE4wRV97F59tp0Osf8b1csujunr80Mwv2bBWoBtdRB1EGZrZQnRxtRYYKGBYvUmgCGxWikJAIiTYvFR+ghmj7vYPZpnLe0N2HVaCSDQFg32D5VgrBEAiI07bdlfzYOx81u0od9z5F0g5rxtRmhv/c2FUJe7n/QveWQxGZYP87lFiWD7deJPDw9myeKgG3Q0cx487rMh6KCzb+Xbk0UY3jg7zKWUlCNTtRghSpQxYCW1yFT2LSo4zt0Jv6ZOi48qNp2OBxPPdzZF3fGal8tdI1CdV60yhlLeSgsA2A8eeOmoHR46ALdHzn88zD1H3gMq5teD192MuHN0qs3uBDkn8klgC+sNnBII7gSjLzYb/Gj0ZbSiR09hKHnkB9wCwpw4ELxl0REhiZ/F0Naa4XyzboELSYjVgAERZNu2eq25I2ZuhTOEiuRjJDTk9wZ9j0TFbidse1quWsbiwPWHnfp6LouLXFhALBp2nqRt43sUAIxmH3Hh19DqniPvwibnX3XK4cO78+ZAlGT3coGejR53nOZ84JG8mfSy6umXj1r5yjuYqqZHAxQTt+ciDgAyjxx0O/nSGoQQINzmVUcniesjUdY2DKVh2miEELLWqHe0svaWIg4vP6bemUSHA5/kXSKw0eVlXanOKIyd3qgvXp1c4lxWBgD7UTCahiezqQsAVv44l8TIe468C1tdDvvJ5+OQYgAtHaCP5X/6SsQ06g1ptnTgYn6FHqOL+T7/qSALxFM7PHRax6G9G17k7di/26zMjnOOpBC7umqqquMzpYRm3FESI7AAmGNrLcJ3h3KS21YMyn2TfEwbdvT0YAbrflAlqbBlDcTrHR94MJqMi6tvTnBaGgDEosloMhbB8YSClVDHP3zdt4DxPUfeg61O3YYFjx452CyYg8a++mYu2f5sGmRX57p/9nIZer0LzTsR/MnwwC5nNGJNRKUHAGDLZad/NzZLi1THHR72vCuSQGMwqDqtjESMYGoQxtw3CCFsAd2e8u7gG144I//qYyjCp/tTp9L7ZJO3whre77WT4d7MiYeBwDpNpAFAPHLw9EHIZ2MHwGbqx6RqAACRe468D7PkArkoCHt2w0NPXDcOgWhwPLInJ6uOWG03lbcW252swlHspO7DnIDTu91dUCWnt2q8LoosTfvJsS6IUKhBxrRYKwV1biizBmHiuQmQGyoYA4C4f1MggLR1+Ud8VDx+3NM744LM1gqAdvf2isF+dyxlc50gx99qC4j2B5O9Tmz7QYhAyzz+wb48AKvhtcqL2T1H3ocVF1uglPzMRVU2detn/3ia8R5ZjNxm0zLM+/LFrnX66hv4nHoA067nAumEd92efnS33dfntS6yydh361qwTiWxrSqrlZBGYwKIcsZ4YIy1GGFrLCKefxPiEI/Qj9FCWYxTpSeR2G22BoD4/uC4vx9kz+SgSkZEGQDA3eO9/pdPfBhjAF2L2v0Y/dbUwWtmoHuOfAu2lb8xo8HVgpfbzkHiFGdVkJ499d2Bf/lysLhcreovf+I9wFnZAYgQ8RDg7m01hqzvQhpT1P5D5+Lv6s6+RQUO+bXy2G6byko0ygBCYCnrQJ4DwhgsWIvIne2wPHYt/YEKI4S9frAWzmRCUnm2WQsAhd2DA7a6+rWa1gK1jbGAeK83OX7Sv50p7TvLYvjD7ENWvfWie458AGb7ck9vA0PUP6Qo26bB49g9DLdnZf3zWf5sTr/4H/6STJ2iiTDcVKzd1evorezdOSMQDkNog7lMr5UiXG2Rw3VWKVG3GhFGNMHUqwGh2/p7i5C5zexxv+d5fvt9sS+JXP/AqTPojsKkqs/zUiMQVcXh7Nl8UTW1lsIai5Abjg+O+ZJ2KQAQQOOXyfAH7YhMnXuO/AD0+m83hzFnk53TP73Sez+ZRUe8NHvur74WpZn+7KePfYZ7+v1nbTMxu6sqoB2LQBdtI9reucVMthSMZlQIZQEIYxKQaJwwf2uExF14g6lE1OHt99QG8Mlxr3+x1Va0y1XKbN0C97r9QbR+9WxRt0KqhFYAQCPfp4sr9cVd15Vr0tCD74dOVOfNn+41tA9DXGUnezNPc1lcbFmn8+Cwj48n6kUplggEhaplEf/Ws2va4evHjwABqKRJvu53O8jKop55hjPRNMpYjLBDscXGeDdbk0U3HT43rGtWJNKUme8+tBMF8egIXQmFmmW5yLhjFGHx7Hgirp9dZsK2YApsLGA/6onfSN6Lndt5+MRZj36AI3pTTV43sdoivefIh6HSbLk5QOHzwUmx129NpLeejw5V75tCr565rQ6+6CEAI9kbo2xq573+YDree/X1515F62xbm4qIqtVKWeww4gA2RCWpsRbAws2oCXTTL4pMgawGTLX5jgAYh6PRuPLincyJ2LaiyoAS6vf56clVIhQgYwAjjIkXmRepPzsMHAAAXTRtwX/glHF1VRy8ZpHZvdzec+Q7YG1xwgfByeasHRw/OHA2LwXq2iY5WznBeb2c/HUAAHqFhm9+RTH+7pKaxfNr1SLXVqbYWqWbpBIGIQMIIxQTxFCVluZ2wuLtZHBDAEwlNafEwpvt533QyKreY1XbVohCIgOOF/RC3lwtCim1RdogTDC29XyjwiAKbzSb5tUlcgb6Wwkb81a9gF4v9l7XW0L1IrnXR74HolGQnuZW56VC8fA3l5JcfnNWh9HekLbL/tiz6eLojbBtlPf+07Qi2XWCaHz47KwNex5qK4OQUaAcjvwhNpet1ca8nsKJLQIMYK3Ru95UFsTa7xgig7jX8Tu7IK6aXFVgqeOPB/sHYblbtcYoiwxBmNCA6izoRuO96GaOCm7U51P87QK3d+T21LwpUzN5EUT3HPluYK42JikHXnzQszTm1cs8LSSwuP/5Z0QzBuqqIAAA1mAEVrF3gkrdGmxxI3pR/LhtvlIxMn7AkWgbpRkJiO1FLzZZa60xtxxBgO5GyBMWB25lsIXv6OYsU69fa9/RulYWuQEhZDiO69VuUytjwGLGKQ3CbuUGDwntP7wZ6JYsBkf+ty9m4a0cDvav1rdeElixU917jnwPbLXBUOFuNJi5y4DYdjKE9a/XvKXd4T64xCxfhsoikAX3ENh38xp2c7aFTVZiB+qsRFjWSeQIMEq2BiHquy5nihGpjTHWAiAAbK292QawPxl6WW4s4A9yBPl7IxdnF+craVsLJBox1JsOm/I6E42xFhBy+h3X191g6I0PhXNTzaLX9cj50OXsW2+CInM5JbbhBEy5XMr2Pu/7PTDzjPHWMa0Wq/NDW/YOmfqn57C5qD1lx9Jb/WJ1GCEoE9fD35IjjfGS0yLLlNq1hPsG/OFQV0VjASz2+z0/9oRVudBam7uz9ewdSbzecM+pVwpZgA+dhEmmT4+CXW6M1mABQKrhfn+GlteZkhIAgAS9/f0Q1xGbdMlDH90wQ+3MB+XbNu/efmhLwAqV1qTedLiTnC0aau5j3++BrVvMXK/dvWJcuk6Xzexz8Uiu+StItsdT+M3Z8YxBful3MHx73ktXDjx7+eLsPPFBpXXQ70k5WaVaGDBNFvZ6PDfb9IYjADdjaywAIAvYiyIn2NspkPpDwxUxM6XKzstKas4aaa2uzeBztHhxWRa1BUA4Hk9nRx1EAqc3oDEBBAAaiwwayb99m5vubUWJKLp6d5GSr4kwKbKLnQkGB+49R74HVmuNtdj+ZtUb9w6e5L3r9tFj/9fX222L9bNv8sdf+HZ3ykcfeogEuz9ltbjyT5WvdFN1PT1vYh8skxagzoUQZVkore7i29uzXKnTApKNXqN0XWvrfMBn5UOfLncDtl2luMvLlUQkGMSuSlZZVWoAoOH44X58dOi4lKg8vPFRTetZkPLbGmu27t3EMaZN52l7Mq/QjiFKsYKgNxv593HND8AIjVXKqWX2J48ZRs6FvlrQ3qyb/v3yJz996u5+xR86H/xN1CGwbGaqVRWxxqxCJleKE0cDkDAiStQZRKv6jiIWMMYYIxY5kse9Kq2/eSEtdr4tyKPunw914g0c3TZdr80NWMJN28ST3NQ3abyj/c/2gtkRRUhdXcxiigBAtS52mk3ee5cltpx3uwishSZLi/Sk2grkgMRWIndvuBfj+5zeD0I1orbIliqoR2zSKU6ktt2xubh+NZn0nfZZ88j/cI7MVNSPviz73CJ0dWYtF7tW8rCusTGZF7pIbmWHvFHJEMIYgwUaNOFIv0pOly2A/lbZMyZ8PPtcJ8fDcL1w3SrLNHaJN+j1J2Rxk9HHXv/gwZOuxwFsPr9CbMIAoKljUSnM3jMkzVU4xADtzhRJmaWZstQb8oxEghw8dCmG+3zND8KqBqHMRvgiMMeEpy9epCgs/quW8d4kgvn50ejD1aG2Onf3hsOEr/zB6RVH7VZVRPJ4IawVjcVCoqwkzpuBRAghAhppEbqRf3WZgwb4wKB2by94Mhx0vE58RvpVJsoWnEHHp4h7NJiKQgPYVrq+RcwisE1TnRmnV7sM0ghAIXzjmd5+SF1u8xkBaC4XQqdpIS3y48FIK39Pswe3YfI9R34AyOSItggswbqp2er0Qrm7KurvjSbHo/JFAfoD1UAWgdpt9YI9HBaf9+v5oCDVpnI6PM2rSgP2/AK7GEnuvv5WIwCEEPMxwl3f7urvmIOGO59NDx5Mp50gWy3n25JUBrvxg+Pxfq8+3dbUlcYaIHa12jtmMRWbrF6x4U49ZG67HnXtxeghqV832Zj1i2bmAEBxvav1trGIj/a7HF1HBwNC7/bQe478AGzZEgcDUtqKRUXTr3Pns457dDjVdKC+Phnvgf5WDbGRDhArtjkJe0eD5fP5fO1UOzHmcnWprEWY1RXucUert+fyGc3dwdBqt4tfnn1X8QjtTx+N+kOqhXFDUm1Ua3nAaWcy6C3LLF3VxgLYcrlhzSr6bNAm1tvKM/mUm20aImbWF9YLXleiYVE+PaQA9Tyrk1oCCx5+MZDNJXqyR98esHGP74W1sla6qp22zbhwzr5quig8+vxn48Tvnv+LmImX0/6bx2lv5+tRoiudbJyz/iS+WlxVvbhak7bV6abRAEgnMYJt3bj9tbiVr6w2xg37fRdRlBX1h9VV5PS6QdgJ6oQB6R+2tlxLFEym3jbe8/eeNMW1thZsm72AYcsm3MGTuG6v1g86ePsrG26u6kDDTah+A6NcCrY6ebkuWkv8cf+nQ0ytCTpvb6D3HPlBWFOUigZRdi5MsC6QauOHh6NRn+z++XS2yh+8NehU5wEDAFuSCBE5MleL66bnHjS5WVBliRaZVBaQTAahXy6vWoEYuWODAVN04tjH1bKovqMKiD893tuLyK6QqBn3W+yEWyAswY0aKdPpgIx1asDKXcrrZDiwqR+tm3Zx1AvFN/PPk6+eUy848t9cHPlmOTLb09PrRLt+cPR5G2HAjaMz/y2S3HPkB4HkRlhUJqyViGLuxwdHj38aYNLO52We/Gz2usKwVmV+yAAAicsnmM9gK5Nf8iMzkL9MGmHqIqxqZS1CjCLHnG13gZMj8qa7xkpECUqzpSzkhz+Ke/y0R822WuHKH2xenu4UApNZ3j/oOp43PJSnFRhrRYUkG/T5vOhEi5Nm/3DibE6kefFrPcIOQQBgkQUEplqkzqP5z5dFi+PJbDAZKgdAeZOGy/u95kdBWAtW6doCKOyNDh98ts8Ea87+5QL3D2evzQiCk/XAAoAtVxFCUS873rx64Z/6kRYXtUXWLTa1NpaQ0I/d7Hpjp/3mndOOsJPo3vqqjNiHj1JDoHyaQFnurDgAEuNNIgHzePJgf98zuDNJTySAAVlSJxrKrzrdaJZsUW86MtdrdHFRTAmPmQZUQigoAf3qF84hunwuUNDZ+2LmY8QAgPFAsrenpd1z5Adh70QuAACTL/kTzJe7/vyXv64f7R113zxMvK3HntVUL1Y9hCJw03OyOD19KHyK15kBna9brA3C8Sx08yKP28315u34BWcE6GZJbPJhd8Q2mVVJme80nQ49Gju20eAdHuxNO51pAHZzUoSVtlYDaFq8xDibdCqp87xoLxZ0mfeonQzyLXKycZN3iEWi+CI42SA2GYXjo7u6IgT4XVXwniM/EmJeBsej9Bl+ful9/sXx+O2gRlaNaa4HzcvGgzqRU+fo0ely8dIcamDSoJZEVEhtDONOltaVQn1l3maDXMuim6WBLD9c7oyciFQpyVdOZ9hB1TbXFlgv5k7dGoIB4Z7TUQIsWFOv83ywYCNBB2fno4jtMuFOOvUkLM7XjOOWYSIEUPabTbpokDMb8e9uAr7nyI+FLZ7/o6x/nun+RK0P3np+2gy//jsmfkPLzb4nnm29OBjP2VFy+gifXa1rSlQvyJZG2SYxve3Zrm007u3yty5tGolSU0ryHeIIO5qZtlFNZfyNS32PM4RcutXmAHciDL2fDa/tdV1Kg0x9xYmtpo0IQ8hOquC06h44qSp+wxIU+OHO4RIpmXvZb1RjqelM2Xd3VNxz5EfDpH//jTxraXTRf7qvKIBVFAGY1UmCXg6rr63fGzv16VWkqhdZo3Hj+n61FP2Ye1khjbLFSTfZJgKgLv23j5sAZBUk1rTfNSU+erwnM1i1Iu5hx29rWWor1t2eF7kBEUjaag1RS3OlrWmkpxnRm9VlDvUZy71+s0Isqagb9UZD1RLX1eWubEsDTn/Y87+nn+KeIz8e1QushYXddQxXpQtmZwYIQC4uXqTN1yv7l8cjernKTtzsH77Cnk6sLa6uK1s1HqnSUljQtdxKAwB2V39LK9PwnecIsMkIJxtuyk63f9AlaZrXFuN4uP9kfxiKhFR///WVatsCOzUAWCGUUOevUq8jSzqYyEX8xHEhD0fjftdIZup8ezavkMt6h4/D72u5uefIj4duboqU22S92HVJdTZGAJCdnF7uQHUeP3yS/fN/W+OXvbP/dG055kfF4qvUIJXptsRaAYC9HbRpWvFOQuYHusD5OKjnmW80iuPusM52CAG4cb/r8C56VSmzvrjMdNvcnG1jWSeM8WrD9w4tcbrlC//pX3AEV+RwjyFg+bNnRbsQ2Ivi/Z+Mv3ciyT1HfgvcraVOz3/BZ8k6UMwK3Z5fDSbhzw7i1c//t5/vdM1h3kKNOF5UqQLQux1Fsn47SIKPOhbzDsjr8jzJky0zWmu52WzXANBusONNzeVz+sokEmWttphgAHC7x/veOjHd/uFQKXuup48fuKCwO+Zg2/zl35woTlnY70VH0+9nwT1HfgfY1c9R9pdy4e8zsyqdVh/9JBw7q6//9m+etdZipAHAiiVYA2CFAATWAvptD912H+57K5s1uNdXlq7n8+VCAhs6nrJG5i/bV1V1KVSrMUEIIad3sN+5eJZ0Hzzo2esrmwTdvk8A7zEOkP/L6eqs5dyNx6MD7v9Ab+c9R34H2PJXu4v8Z9W8ZotXwWB0udR6r5/8l787ry3Abfxq7/57az1+5DSy13COn/Zk29QQOePRvnl5vd5IFLj9g73+gyNK6LPLbb4GpABZC4gPPnvQufxqR3y3+MW2wNybjDAAkAAAYPdP3whDol5/cBjNqLrnyB8QpjopJ4NkqJ7/Ev6N23G+FuLRUfMvr753vsxvaUbodI8WeWu8US86CJN8talscOjzweP9MVxIKrJlIREgijFCfHL0uF+eJIAWpQO+Ozlk8cHr3KPOiwZRJ5ocu7P+D5+rd8+R3w0qu3xR2PkvV382Wj2Gk8VZKb45/ZgRRD8asoZWGYmM6oy53BLYKhxODgTzJuT067pIVSURRpgwSnA8e9KZn66gM7KC8cOJmDwMeP+1BCIlOD00mewNufPD73zPkd8R4jn7E/TVN4czf/SlW5/pGXr5UTMzfzysSNtwqvJKZH20u5YG2KDDDw6OvYsX3ywbU0lAmCBCYx+PZuqr0w1EkwcjYagaRCaY3fVrGp3mwiqfeaNR92M2vnuO/I5QlwP0qxP3EWpXJwIyA8lG/u5X/QAIr5ZiGFDbrLq2rhbbBqA+Vz3HR1fP07kzvrIAgAjB4E/D5TIRwfh44v1ZN3U2+ROj7igiX62fX+6s0hPrfNxotHuO/I6w7eX/1uazNvmZfNZkUG93HzPk/ccDB7Tc1K7joqKCTQeypXF90qGSdVpVLionKy3GGCFkJfEvTxXvP3j8ZTcbHitydT1ym7sLVd/8fCUN8majNvy4Qa33HPldoa4W1l5+/ZuLh1evTi+rn9f1737ND4BGUNdpOnQQj3KFOUhD2MFn/cOjeIE9rK5NDZgSQhDI6vJCxvvD4dM/6e5CyqxzHODbehAFq9OlwMQ9fsQ36ONOF7jnyO8MpQBkU/ljd/FVZTLzsScT/SjQ0AFRyVI2BjcXw54/3q4hT+1kCg0JhqNk1VoARJ2I5WK9NnF/+GeuQXFkEECfYkAAYLB6pnZzgSL38ElPOOrj4vB7jvx+YJqsuDopPvoEvB8JMhxrQW291gRIZiLwfEBOv+c7xhKElcDIAhigwWy6eimZPx4P/D8xjeIE4LbbF+p1F58/2640706efAabWH/crnjPkd8T1OIXLxZ/KIoA24vnTZNXAlHqNRxnAacsODoghR81peXxSEoF1oaT3pPOloeBNz7yw/13vWdz/qy/+WoDfjA5GE2k1R86hOIDpuWeI78nmMXfZu3vfpkPA6GcthqlwgahHxQkZ+c1pVCebKnHw3yxyA1FABbFTwbTOh4fODDsHnvk7alWVrf1z2GzEsFo/7MHgLyxxR/wR7R032fJPUd+X2gXPypD96Ng2yvgW6z4pDtyCp2jZKUAydPyqRHSiDTZrlIFgLzu+CeMRO70wO01/fHbi2vKk2e/eNUow4dHD48PBEbf0aacdN8fqXfPkd8X/nAMAQDT1tNdZpzekSOQroQuEcWSY9dRnus5E72TFoBOHjw40t2h25AHewq/VUZp0vn1P32VSCDx9OD4sxHxv+udbMHuOfKvFLwzrpVtyiYXSLYKY0D+w+mRL1VLxumpsADgOFRWcf9g4IUufXufMfOvf3lyXVtE9w8Pp0d73yfAq13vvcbDe47864AtrmtLOEPN5U5py3vCBgdPjnpSJh3pd/oUAJAbtMuo94Q/5M7onXWuX/63Z4kC7E9+Njo8jL9v0ZVozT1H/lXCbBILrh+QoigMov6UocnsyK51YMv0N9eL2gIQ12SX7vFx3InlO7MTi1/93VepQSwYP/7Sn37/4b7Vsvf+j+458q8ExiBsnbDNGoMwYeFnnd7AW88d2kioXpzmAIgb25nygjyw7K3NxBqc/eM/5BbzKB48eoh/4Pxnl36r1/ieI/9qYLUE2BUGIOz3e10/GlaF4iaAq8rUBoCOY+YfT1kRv8OC5gLn68ogzF3f9xz/B3I0BCXFLcPupJJ7jvwrgqpaQV2hVfB0Cm2Hlon0Z0OZzpcNAHgPjjVW+3t3nTLWaIYAWP0v5aWygBlx2Zw+6X+//m5UXd6cnaHUrcZ2z5F/RbB1Rj1JtbRtng6hWlbhw89NOR5SC0Dc6MHAd8jr+bvlptMBANwT/7TQCPMo2jtGquh8/5LXKSuFCwCQwq09uefIvyY0O880CrBNyoGL8q3dO6Trr4VpLABDm98MH8xEEd3YEbOadxFAtU626waY1+l044Oh+M6w1+ob2dVsugMXAEyRuh4GuOfIvyrYOiOgDCYpenR8QIqk27EN2l4UjQXEeDY32IaD2xcXl4u9GEH699lFJZjj0KDf4T1sv8tlrYr+/7+9+3pu48rSAH7u7YwMkATBZFISJds7My4/Te3L/uXzMDu1O2PvOEiyrESJFDNB5AY69w37IIqiAqHkKgms7/ekoshmV/XHGxrd53AiEepOZbVuaDHYG7FWwyBkZLaowPQYL9eMuYYZaj8nLhOzHO9ERFq7zZtrtevLz59a1f5pO8w1I0fc3Y6U15ij8o2VBmeXrUbUuB0veqSjSdA+kUwHR51SZmMcmTk696U0jNS25dCKDuzlWmzwudVnkogUeY2bS2svliPhw735EicqbfwQCmYUlvLi2op5aUKSQScI6h5ZaytbvZ1dI5/E1YXlMiNCRmaMzsbaFLabpDLvRBv20HR0VjA0EWPEyFp53n46FarXG98skla9oGjmzLZt25M0ZUsj/LErJVfSNkZHEVnFlcX5s0bFyMhs0TkzjGqzILKoz4zUNDOxH5lcEnEibp5V6E221KNnhaY1THrHO1khceeL3lwWJJeOI7ywon4N2m0rae+Rn6qFrzfX3OLZrRRkZNZoEWcscwxeaA+LaWR0n7i2JYk046WaoZ73Mho+3MtvNiaPTh52k/GESnOLN+cP3ah4+UBirbTv/TrQ+fHQSYPW+o3/qJ6POsjIzJFJzy5X1F7CHNkdVo4P3dBKiDPtFI3+84c/3Nbdbr3Mjh/c3o9JK+bNfX1LJqvTXsmTQ1EZVUddW3SlNbeyVEDNvFmmov4877ad9VLqP6uPu4lURFax5MWDoLdu25yktKQQB0/+vZtrIjIrjdVSr+VMu9jKurl0+tXIp3/8M6zY803U3pxtMupGaf3rVjFgtD2ZKCJiRr3akfGCmzcXOWXjVAZ+/PNBRowxs3Frneel0tQP86w5ytxmiw0f2omT9Lab8+cpQUZmkIqPvNWNuj1JEzXyFWlGrhf1v/kqZN+t1Syi0rVHIjowThPGnYVSdek/bzrOu1+msRYtRjIjmXQekl1HRmaajJk25STVJ8eRIs2Il7+Slc2/pkmBmUQ6zgxneJeHZBaLmyuN5vXG+7xIw2wiqq4vdHqesXLNeV4HX2v0SptNIml3bFlRIky1JiJn7hp3l9Y9WVSakTq6N7RFnxgvLxpjz/XK71/zxPvzTns/CiKdjeZMHalkcIqMzCYRHBorXmozrYnIqLTW5nPPnSOmGRHjgydtKZlR2lhZyKTs+e57h4TNfVVlmX/SsU9orn8nTrZ+Q0Zmk8qOrCUlLYORZqzYrK18YzJFjBgRibB9NFLMKLfWb26ax3ZRy/e/zkpJOTp5Uq90Zfbzf7dHp4fIyIzKo+OWOZhITcysVZpr1VbDeX7XS/kHv++0JXPspWuF+XXTtcv88sv86nt5mlQY5TI4be7UsvHe3/95FOfo7zurlIiHzfFhTMSrXy+0vrlF9GIjIvudNBe8Ws+NBVM5K/ryiywiKr5snGaoIOodHaYqHnYKpZJ/+u/tSGvsa2aWIi4LriLitrvQ8EZB9ew/eH39wGWatTYHsnnNJOPyY+jg2Lhx9s8s7RpZ9/SZfzKRmd/3fHX0oBNpwt53djGvJoaJJuaaHSORa9+fv3o33tk5EsTL1wtGZnrTjqEd3l8xZIFSM+j1+77Z2T6JIz8RMjwp9Z8dPS8sgIzMKGbWKkYyUcTLG2vry87mxtlUo2RvbyCItKo1dwenU2sVcTs43WtXvku23WNx3J3oJ1thJkSm4j2r3js9a22AjMwoZtW4SnNiXr2x+dcN+zwL0f5jv7EaTKyCe0tLlZvTtr1ZNPi/3e9vjB/FXZneH6aHvlSKSKfEh8mLyhTIyIziLveVL8mZazZby82XQbBEo+nPeT/xYmPB6r+j+qqee/KkPb878h8ddcVRkGVCayJGWrP0/B13ZGQmMe4U1DgIyV6+tfztjYULSbCubdJuvGvmSdhbW8yNqccp3BB5+75k/QfbYZoI9bKa/YUyCMjILGKmW6rkQz931v70ff2bzYuvbuqS7j394XZcEbvSa7nTD6QDPl949HSDH3Tyl23tX4OMzCBmFmtl2U40LyxvXl9aL7HzO2E6FiV9fO92t7SqT9zDcmn6XMNKKpmrbmnZji8v9YeMzB5mFhcXwnauyalNRiJtB+XCi5FE+y5TLPQ1RWV7acV41+c0zsogbT9+GgVTqkG+X4VO+IIwszi/OE9CE6lGKxzshq5zvsEVoaFPn51kJFKeTJj7roPlJ1sPOnziT6v2h4zMHObW6tVy02NEMmjURo1vFgpnlzEZtgdCxftHgllua90ZvatWrBzc73rrLSmmfRPmmpljuJ6pzXWxlSoxmKxfv/HyaXe5tTff5W7ZpMJSMeXrS++YavRol32Xd9vTRwpkZOZwx6E0a/xZTfqB/8BburBLlafPkjA5fhpScXNRTPrXpu98iVXWq4MHu4eKTSv4h4zMHM1tQ2ay+Bfx6HHm58mFbjmxv7//7eHv9zraqP6lQDq+dD2iY9skIkMd7//2414y9RciIzNHK80N0vbq6VjotHccalJnk4Xhhs/80V4gHWa6Xxd8eWlB+GhvuSZ12v/b/066u76YWjcUGZk5OpOGZRI3+z3FnGbLy43QshgnIhH29g8yYVi11QWTee6bl15rTik5+vSxwR/7vcHf7gQiekfDHWRk5qg044aRhDYxsuuFmpuSP640CkQ6G52G2igt8Lm1tY3K2+pIqHGZ7arr+nCH3/txa8C3u+KdDf6QkdkjJWNhGgesEKg88nOZi3bWIMoH+7Ei3ri2EankoPKWpwJ0GB+tePcnp/zh9s7+bj9U6Xs07UJGZo6WST7J7UoqK35yaDc3yuZwXA5cLp79dEqks8ItzQs6zd9cjDDxqFdhg59vp4ejSdfPxHv9QmRk5mgxTLUuVKue5yXZ0cOGNCcDe1WSafXuDjUpp7Xs8NHG20rCF8SRMx/td/2Y0kn6nhXukZHZI4KYs3DkODoSFHV3I9fpqqVJK9v6fSfmpdWvlr4tpJ3SG91pJNMp7w2Nu/ujMJfiPTscISOzSAtJzMhTxrRm3O8GJetYuo00uf8kIrtx67rjFrzSGytW3R2q9uN2xz/sx9mHdHRDRmaRJq0k44wRzw+T4oIpg3Y4GN73NaN8dLqaEXtzwTrZe9A7fDrMw3GUflDPP2RkVimSjDGu9YlxXJg/kCXztzsZkV2rmWr8ltYSweMfHveP21Il4YdFBBmZZVqTUkryPJ70njYXngaKGa5rRc9Ms2m//K6cG4yGd27/cpD6k0xk+Qd2Y0JGZpuWShpKimTQKU+UJmbyiVWZnDr18yvL4l6lnv/+9992AxmFmfzg3rLIyKzTUkvOORcRaUYy9ZbqBW+hcuETXy/ZauX/ur3XT2WWfkTrUGRk9ilSjDODM+Km4Rjlb8uWuLirsZv376g7O8MkE/nHNKhGRq4CrTUpgzGmTVfnlT+Z3oXrKocnyf7xoR9n+YfPM0TIyFWhSWrOlVaOm3RaLff8yTI9bN99ur3f9eM8Fx/XOhQZuTKUJqXSSaE+2VGF84eLots/3W8fTfIs/diIICNXiFZKyTBo3mqddUvTqZE/+OFfB0GUCfH+995fh4xcIVopnWWivnH2HrhuD9J//Lg9zoQQ4qOWIkSEjFwtWql0MCJ+tqlh8s7hj0/9TMpPiQgycpVoJaWIRZZ5RERKTXYe/bLv50KJj9vQnEFGrhItpU56B2seEdFgf/unn3dCIaT8pIggI1eLVjIYT0Z1k0hMfv2fR+1QSCmk/tjlKhERGZ/yw/DFYYbleMVakWX7v/z601EkhPjEUQTjyFWjVd7pjRPtP/7tl7snsZRCffSe9wWMI1cMJ+ktLrt3/3773lEspLi08sz7Q0auFkZMK9sd/Pjr1kn0B8wzz48JVwq3nMLyZnnnaJSKD3iueRpk5KoxLctyjTQXQopPn2eIsGa9eiRjWpBWn7zlPYf1yBXEtJJSfMjrEVMhI1eRVvIP2M+8gPXI1cMYI/0HzTNwVTH86QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAK9jbvqI/91nBl4S/+RXrc58TfFneyAi3zc99TvBleT0jzHLU5z4n+LK8PmjwIldYjsBFr40jzC5K+bnPCb4s3LIubm2MahHDCLzKWLtl6vNYGI1Vc5gjJHCROf9f+cF2L8mFIsOtLVdP2KcfFK4U01qeK1opm+RaGk5Zk8EQEniFaZWL1flMuK43inItmGDEMNnABdwkXZo3I12wNEk/SlKNhMArTOVrJqKk4ChbGmwch9j6wqtMFU6oO1aWmSlmOl4nkhhI4BWmabWjkTZ4nMQpJ52nAhGBV5iMiR55qQgjlUhzFCEi8BouJaWWoUWSuVba62W4zQqv4ePDgfKU1lKR5Rq5kPjYF17FKfWFlpmSecwpSKXEQAKvMi1Xi0ymLBdMd7qJwDACrzFFnGVBrtPc1KedREiMIvAakzIRMccLSQ/3JlIpPPAMrzFFFCq7oCTPDv0M+YA3Ga5Qi8U4pNLwOEZE4C3MSLVqozC0xWGEiMDbmHalylLG4nAkPve5wJfJLC/lccJU0s8/96nAF8o0VScW1riPmQYuweVkHLI0SHDvDC5hqlTqzI8QEbiM4apYB70UMw1cxnBkmk+wGIHLmbGUKvvcZwFfMmYaSmmsRmAKvHIFAAAAAAAAAAAAAAAAAAAAAABT/D++u0iZrMbJvgAAAABJRU5ErkJggg==", "text/plain": [ "Gray Images.Image with:\n", " data: 1092x1092 Array{ColorTypes.Gray{FixedPointNumbers.UfixedBase{UInt8,8}},2}\n", " properties:\n", " imagedescription: <suppressed>\n", " spatialorder: x y\n", " pixelspacing: 1 1" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "img = imread(\"gdalworkshop/MK_vis.png\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can notice large zones saturated to white. Why so ? Because -ot does only data type conversion and clip values that would become out-of-range. So any elevation above 255 got clipped to 255. We also want to rescale the range [0,928.151] to [0,255]. We can do this by adding -scale" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input file size is 2185, 2185\n", "0...10...20...30...40...50...60...70...80...90...100 - done.\n" ] } ], "source": [ "; gdal_translate -outsize 50% 50% -ot Byte -scale -of PNG gdalworkshop/MK_30m.tif gdalworkshop/MK_vis.png" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can control more precisely the rescaling with:\n", "\n", " -scale src_min src_max\n", "\n", "or\n", "\n", " -scale src_min src_max dst_min dst_max\n", "\n", "When not specifying dst_min and dst_max, 0 and 255 are selected. When not specifying src_min and src_max, the minimum/maximum values of the dataset are used.\n", "\n", "You can also experiment with non-linear scaling with the -exponent value. For example try with -exponent 0.9. This will give an image slightly brighter. For reference, the destination value (dst_val) is computed from the (src_val) according to the following formula :\n", "\n", " dst_val = dst_min + (dst_max – dst_min) * ((src_val-src_min)/(src_max – src_min)) ^ exponent" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.4.0-pre", "language": "julia", "name": "julia-0.4" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
SteveDiamond/cvxpy
examples/notebooks/dqcp/concave_fractional_function.ipynb
3
18945
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "concave_fractional_function.ipynb", "version": "0.3.2", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "hj5vNlJzqoQr", "colab_type": "text" }, "source": [ "# Fractional optimization\n", "\n", "This notebook shows how to solve a simple *concave fractional problem*, in which the objective is to maximize the ratio of a nonnegative concave function and a positive\n", "convex function. Concave fractional problems are quasiconvex programs (QCPs). They can be specified using disciplined quasiconvex programming ([DQCP](https://www.cvxpy.org/tutorial/dqcp/index.html)), and hence can be solved using CVXPY." ] }, { "cell_type": "code", "metadata": { "id": "310PJvINl2JU", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 187 }, "outputId": "bdd451f6-2c9f-4185-8f3f-d8756dd97c95" }, "source": [ "!pip install --upgrade cvxpy" ], "execution_count": 13, "outputs": [ { "output_type": "stream", "text": [ "Requirement already up-to-date: cvxpy in /usr/local/lib/python3.6/dist-packages (1.0.23)\n", "Requirement already satisfied, skipping upgrade: scs>=1.1.3 in /usr/local/lib/python3.6/dist-packages (from cvxpy) (2.1.0)\n", "Requirement already satisfied, skipping upgrade: multiprocess in /usr/local/lib/python3.6/dist-packages (from cvxpy) (0.70.7)\n", "Requirement already satisfied, skipping upgrade: numpy>=1.15 in /usr/local/lib/python3.6/dist-packages (from cvxpy) (1.16.3)\n", "Requirement already satisfied, skipping upgrade: scipy>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from cvxpy) (1.3.0)\n", "Requirement already satisfied, skipping upgrade: ecos>=2 in /usr/local/lib/python3.6/dist-packages (from cvxpy) (2.0.7.post1)\n", "Requirement already satisfied, skipping upgrade: osqp>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from cvxpy) (0.5.0)\n", "Requirement already satisfied, skipping upgrade: six in /usr/local/lib/python3.6/dist-packages (from cvxpy) (1.12.0)\n", "Requirement already satisfied, skipping upgrade: dill>=0.2.9 in /usr/local/lib/python3.6/dist-packages (from multiprocess->cvxpy) (0.2.9)\n", "Requirement already satisfied, skipping upgrade: future in /usr/local/lib/python3.6/dist-packages (from osqp>=0.4.1->cvxpy) (0.16.0)\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "ehIgvu6rmlRr", "colab_type": "code", "colab": {} }, "source": [ "import cvxpy as cp\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ], "execution_count": 0, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "j8E5ouimrBoV", "colab_type": "text" }, "source": [ "Our goal is to minimize the function\n", "\n", "$$\\frac{\\sqrt{x}}{\\exp(x)}.$$\n", "\n", "This function is not concave, but it is quasiconcave, as can be seen by inspecting its graph." ] }, { "cell_type": "code", "metadata": { "id": "AgPgroRVm5Mz", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 269 }, "outputId": "65bd8263-698c-49a5-d7d1-290718e7a43e" }, "source": [ "plt.plot([np.sqrt(y) / np.exp(y) for y in np.linspace(0, 10)])\n", "plt.show()" ], "execution_count": 15, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuUVOWZ7/HvU5e+0tDQNA3dDXSj\nrYAEBFuCd6PG4CiaGBn1ZBKNScysjImZJMvxzMmYM5nJyUw8SY5JnJzxTGZiMhMN0WiIYojXJCZR\naZSL3AQE5E5zh6aquy7v+aOqoSUNXdBVvWvv/n3WYlXtXZuqZy+LX22feut9zTmHiIgES8jrAkRE\nJP8U7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAIl698MiRI11TU5NX\nLy8i4kuLFy/e7Zyr7es4z8K9qamJtrY2r15eRMSXzGxTLsepLSMiEkAKdxGRAFK4i4gEkMJdRCSA\nFO4iIgGkcBcRCSCFu4hIAHk2zn0gzWvbTPuhTsqjYSpKwpSXhKkoiVBREmbGuOGUl4S9LlFEJK8C\nH+5b98e457FlJ3z8/KbhzPv0BZjZAFYlIlJYgQ/3to17AXjiMxfSPLKSI10pjnSliHWleHHNLr71\n7Fv8euVOPnDOaI8rFRHJn8CH+2sb9lJVGmFqYzXhkFFdceyxSWOqeHLJVr7xq9VcOXEUkbC+ghCR\nYAh8mi3auJcZ44cTDv1p2yUSDnHPByayvr2Dx1/f4kF1IiKFEehw33+ki7d2Hub8puEnPOYD59Qx\nfVw13352LbGu1ABWJyJSOIEO97aN+wA4v2nECY8xM+6dPZEdB+P88A8bB6gyEZHCCnS4L9q0l2jY\nmDa2+qTHvXdCDVdMHMW/vLSO/Ue6Bqg6EZHCCXa4b9jL1MZqyqJ9j2O/Z/bZHO5M8i8vrR+AykRE\nCiuncDez2Wa2xszWmdm9Jznuw2bmzKw1fyWenngixfKtB07akulp4uih3Di9kR/+YSPb9scKXJ2I\nSGH1Ge5mFgYeBK4BJgO3mtnkXo6rAu4GXs13kadjyeb9JFLupF+mHu8LV58FwLeffatQZYmIDIhc\nrtxnAuucc28757qAR4EbejnuH4B/BuJ5rO+0LdqQ+fFS6/jcrtwBGqrLue2C8Tz++hbW7DhUqNJE\nRAoul3BvADb32N6S3XeUmc0Axjrnns5jbf2yaNM+zq6rYlhF9JT+3mcuP5PKkgj3L1xToMpERAqv\n31+omlkI+BbwxRyOvdPM2sysrb29vb8vfUKptOP1Tfs4vzn3lky34ZUlfPziZp5fvZOt6r2LiE/l\nEu5bgbE9thuz+7pVAVOAl8xsIzALmN/bl6rOuYecc63Oudba2trTr7oPq7Yf5HBnMucvU48397xG\nnIPHF+tXqyLiT7mE+yKgxcyazawEuAWY3/2gc+6Ac26kc67JOdcEvAJc75xrK0jFOViUnSzsdMN9\n7IgKLjyjhscWbyGddvksTURkQPQZ7s65JHAXsBBYBcxzzq0ws6+a2fWFLvB0LNq4l4bqcuqry0/7\nOea2NvLO3iO8lv2gEBHxk5x67s65Bc65s5xzZzjnvpbdd59zbn4vx17u5VW7c45FG/ed0hDI3sw+\nZwxDSiM8ptaMiPhQ4H6humnPEdoPdXJ+8+m1ZLqVl4S5buoYFizfTkdnMk/ViYgMjMCF+2v97Lf3\nNLe1kSNdKZ5evr3fzyUiMpACF+5tG/dSXRHlzNoh/X6uGeOGM6G2ksfa1JoREX8JXLgv2riP1vEj\nCPWyOMepMjNuOq+R1zbuZePujjxUJyIyMAIV7u2HOtmwu6PfX6b2dOP0RkKGVmoSEV8JVLh3L4bd\n3y9Texo9rIxLWmp5fPEWUhrzLiI+Eahwf23jXsqiIabUD8vr885tbWTbgTh/WL87r88rIlIogQr3\nto37OHdsNSWR/J7WVZPqGFYe5Wf6YlVEfCIw4X64M8mKbQeYmYchkMcri4a54dx6Fq7YwYFYIu/P\nLyKSb4EJ91XbD5J2MH1c/r5M7WnueWPpTKb55dJtBXl+EZF8Cky4H87+irT6FOdvz9WUhqGcXVel\n6QhExBcCE+7xrhRATothnw4zY25rI0s272d9++GCvIaISL4EJ9yThQ13gDnT6jGDp5ZqOgIRKW7B\nCfdEGoCyaOFOqW5oGTObRjB/6Vac05h3ESlegQn3WLYtU17AK3fIXL2vb+9gtRbQFpEiFphwH4i2\nDMA1U0YTDplGzYhIUQtOuGfbMqV5/gHT8WqGlHLRmSP55bJtas2ISNEKTLh3JlKURkKY9X82yL7M\nmTqGzXtjLN1yoOCvJSJyOgIT7rFEivKSwrZkul19zmhKwiGeUmtGRIpUYMI9nkhRFhmYcB9WHuWy\ns2t5atl20popUkSKUIDCPV3QYZDHu27qGHYcjNO2ad+AvaaISK4CFO6pgo+U6emqSXWURUMaNSMi\nRSkw4R4b4HCvLI1w5aQ6FizfTjKVHrDXFRHJRWDCvXOA2zIAc6bWs6ejiz++vWdAX1dEpC+BCfd4\ncmCv3AEuP7uWIaURtWZEpOgEJtxjXamCTz1wvLJomKvPqeNXb+6gK6nWjIgUj8CEuxdX7pCZa+Zg\nPMnv1rYP+GuLiJxIcMLdg547wMVnjqS6IqrWjIgUlQCFe4rSAfoRU0/RcIhrpozm2ZU7j85MKSLi\ntUCF+0BNP3C8OVPr6ehK8cLqXZ68vojI8QIR7qm0I5FyAzb9wPHeO6GGkUNKeWqZWjMiUhwCEe7x\nRPdc7t6cTjhkXDd1DC+s3sWheMKTGkREegpUuHvVloHMqJnOZJrnVu30rAYRkW6BCPdY95W7R20Z\ngBnjqmmoLmf+ErVmRMR7gQj3o6swedSWATAzrps2ht+t3c2+ji7P6hARgcCE+8Csn9qXOVPrSaYd\nv1qxw9M6REQCFe4DPf3A8c6pH8qEkZX6QZOIeC4g4Z5py3h95Z5pzdTzx7f3sOtg3NNaRGRwyync\nzWy2ma0xs3Vmdm8vj/+lmS03syVm9rKZTc5/qSfm9VDInuZMHYNzsGD5dq9LEZFBrM80NLMw8CBw\nDTAZuLWX8P6Jc+49zrlzgW8A38p7pScRTxZHzx2gpa6KiaOr+OUyhbuIeCeXS92ZwDrn3NvOuS7g\nUeCGngc45w722KwEBnTV6O45XbzuuXebM62exZv2sWXfEa9LEZFBKpdwbwA299jekt33Lmb2V2a2\nnsyV++d6eyIzu9PM2sysrb09f1PkxpPeD4Xsac7UegCe0tW7iHgkb2nonHvQOXcG8DfAl09wzEPO\nuVbnXGttbW2+XprOIhkK2W1cTQXnjq3WqBkR8Uwu4b4VGNtjuzG770QeBT7Yn6JOVbG1ZSDTmlmx\n7SDr2w97XYqIDEK5hPsioMXMms2sBLgFmN/zADNr6bF5LbA2fyX2LZ5MEQ4Z0XBxtGUArn3PGMzg\nqaVqzYjIwOszDZ1zSeAuYCGwCpjnnFthZl81s+uzh91lZivMbAnwBeC2glXci3giTVmkeIIdYPSw\nMmY2jWD+0q04N6DfL4uIEMnlIOfcAmDBcfvu63H/7jzXdUriCW/WT+3LnGn1fPnJN1m94xCTxgz1\nuhwRGUSK63L3NMWKNNyvmTKacMj4hWaKFJEBFohw7/Rocey+1Awp5dKWkcxfspV0Wq0ZERk4xZeI\np6FY2zIAH5rRyLYDcV7ZsMfrUkRkEAlGuCeLN9yvnlzHkNIIT7x+stGjIiL5FYhwj3WlimqMe09l\n0TDXTBnNM2/uODoeX0Sk0AIR7vEi7bl3+9CMBg53JnlW66uKyAAp3kQ8BfFkitIivXIHmNVcQ/2w\nMp54fYvXpYjIIBGMcC/itgxAKGTcML2B367dTfuhTq/LEZFBIBjhnizutgzAjdMbSKWdJhMTkQFR\n3ImYo3giRVmkeK/cIbOIx5SGoTzxhkbNiEjh+T7cnXNFPc69pw9Nb2T51gOs23XI61JEJOB8H+5d\nqTRpB+UlxR/u10+rJxwyfq4x7yJSYL4P93giuwpTkc0K2ZvaqlIuaRnJL5Zs03QEIlJQxZ+IfSi2\nVZj68qHpDWzdH+PVDXu9LkVEAsz34d595e6XcL968ujMdARvaMy7iBSO78M9lii+JfZOprwkzOwp\no3lm+Q7iCU1HICKF4ftwjx9ty/jnVG6c3sChziTPrtR0BCJSGP5JxBOI+6znDjBrQg1jhpXxc01H\nICIF4vtwj/kw3EMh48MzGvnNW+1s2x/zuhwRCSDfh/uxL1T9dSo3nz+WtIN5bZu9LkVEAshfidiL\nzqT/rtwBxo6o4JKWkcxbtJmUxryLSJ75Ptz92HPvduvMcWw7EOe3a9u9LkVEAsb34d69upFfhkL2\ndNWkOmoqS3jk1Xe8LkVEAsb34R5P+rPnDlASCXHTeY08v3oXuw7GvS5HRALEf4l4nKNtmSKf8vdE\nbj5/LKm042eLNSxSRPLH9+EeS6QoCYcIhczrUk7LhNohzJowgp8u2qzJxEQkb3wf7p1Fvjh2Lm6d\nOY539h7hD+v3eF2KiASEv1MRfLNQx8l84JzRVFdEeWSRvlgVkfxQuBeBsmiYD01v4NcrdrDnsBbQ\nFpH+8324xxIpXw6DPN6tM8eRSDke13wzIpIHvg/3eAB67gBn1VVx3vjhPLpoM87pi1UR6R/fp2I8\nkaI0AFfuALecP5a32zt4Tas0iUg/+T/ck2nf99y7XTt1DFWlER5dpMnERKR//B/uXSnKA9CWAago\nifDB6Q08vXw7u/XFqoj0g+9TMZ70/2iZnm67cDxdyTQ/0XwzItIP/g/3RMq3Uw/05sxRVVx2Vi0/\n+uOmo9MZi4icKt+He6wrRXlJcMId4BMXN7P7cCdPLd3udSki4lM5hbuZzTazNWa2zszu7eXxL5jZ\nSjNbZmbPm9n4/Jfau3gyTWlAeu7dLmkZScuoIfzg5Q0aFikip6XPVDSzMPAgcA0wGbjVzCYfd9gb\nQKtzbirwGPCNfBfam3Ta0ZVMB6otA2Bm3HFxMyu3H+RVDYsUkdOQyyXvTGCdc+5t51wX8ChwQ88D\nnHMvOueOZDdfARrzW2bvOo/O5R6scAf40PQGRlSW8IOXN3hdioj4UC7h3gD0HHi9JbvvRD4BPNOf\nonIVS3SvwhSstgxkPrA+8t5xPLdqJxt3d3hdjoj4TF5T0cz+AmgF7j/B43eaWZuZtbW393/dUD+v\nn5qLj84aTyRk/PAPG70uRUR8Jpdw3wqM7bHdmN33LmZ2FfA/gOudc73+Asc595BzrtU511pbW3s6\n9b5L0MN91NAy5kyt52dtmzkYT3hdjoj4SC7hvghoMbNmMysBbgHm9zzAzKYD/0om2Hflv8zexRP+\nXT81V3dc3ExHV4p5mpJARE5Bn6nonEsCdwELgVXAPOfcCjP7qpldnz3sfmAI8DMzW2Jm80/wdHkV\nC/iVO8CUhmG8t3kE//H7jSRTaa/LERGfiORykHNuAbDguH339bh/VZ7ryknnIAh3yFy9f/rHi3l2\n5U6uec8Yr8sRER/wdT8jnhwc4X7VpDrGjajQsEgRyZmvwz3WlWlTBGElppMJh4yPX9RE26Z9LN6k\nHzWJSN98He7HRsv4+jRycvP5Y6mpLOGB59d5XYqI+ICvU3GwtGUgM9f7nZdO4LdvtfPGO/u8LkdE\nipy/w717KGTA5pY5kY9eMJ4RlSU88Pxar0sRkSLn83DPXrmX+Po0clZREuFTl0zgpTXtLNm83+ty\nRKSI+ToV44kUZlAS9vVpnJKPXTCe4RVRvqOrdxE5CV+nYvcqTGbmdSkDprI0wicvmcALq3exVFfv\nInICvg73WCI1KEbKHO+2C5uo1tW7iJyEr5MxnkgHfox7b4aURvjkxc08v3oXy7cc8LocESlCPg/3\n1KAYBtmb2y5sYlh5VCNnRKRXPg/3NKWDNNyryqJ84uJmnlu1kze36updRN7N5+GeCuQqTLm6/aIm\nhpZF1HsXkT/h62QczG0ZgKFlUe64uJlfr9TVu4i8m7/DPTm4wx3g4xc1U10R5evPrMI553U5IlIk\n/B3uifSgHArZ07DyKJ+/soXfr9vD86sGbBEsESlyvk7GWJeu3AE+Mms8Z9RW8rUFq+hKarUmEfF5\nuHeqLQNANBziy9dOZsPuDn78yiavyxGRIuDrcI8n0oNmRsi+XH52LZe0jOSB595iX0eX1+WIiMd8\nHe6DdfqB3pgZX752Moc7k/phk4j4N9wTqTSptBuU0w+cyNmjq7h15jh+/Mom1u067HU5IuIh34b7\nsSX2FO49feH9Z1ERDfO/FqzyuhQR8ZCPwz27CpPaMu9SM6SUu644kxdW7+K3b7V7XY6IeMS3yagr\n9xO7/aImxo2o4B+fXkkypaGRIoORwj2ASiNh/vbPJvLWzsM88to7XpcjIh7wcbh3t2UU7r35wDmj\nufCMGr7xqzVsPxDzuhwRGWD+Dfdk95W7b0+hoMyMr9/4HhLpNF9+4k3NOyMyyPg2GWNdmXDXUMgT\nG19TyZeuPpvnV+/iF0u2eV2OiAwg34a7eu65+fhFzUwfV83f/3IFuw93el2OiAwQ/4Z7UkMhcxEO\nGd/48FQ6OlN8Zf4Kr8sRkQHi22SMZ9sypZpbpk8tdVV89oozeXrZdhau2OF1OSIyAPwb7tkvVMtL\nFO65+MvLz2DSmKF8+ck3OXAk4XU5IlJg/g139dxPSTQc4v6bprK3o4t/fHql1+WISIH5ONyzPfeI\nb09hwE1pGManL53AzxZv0dQEIgHn22SMJVJEw0Yk7NtT8MTnrmzhjNpK7nlsGXs177tIYPk2GeOJ\nlBbqOA1l0TAP3DKdvR1d/PVPl5BO68dNIkHk43BPU6p++2mZ0jCM++ZM5jdvtfP936z3uhwRKQAf\nh7tWYeqPj7x3HHOm1fPNX6/hlbf3eF2OiORZTuloZrPNbI2ZrTOze3t5/FIze93MkmZ2U/7L/FPx\nREpTD/RD99wzTTWVfPaRN2g/pF+vigRJn+FuZmHgQeAaYDJwq5lNPu6wd4DbgZ/ku8ATyVy5K9z7\nY0hphAc/MoODsQSf/+kbpNR/FwmMXK7cZwLrnHNvO+e6gEeBG3oe4Jzb6JxbBgzYyhDxRFptmTyY\nNGYo/3DDFH6/bg/f0cLaIoGRSzo2AJt7bG/J7jtlZnanmbWZWVt7e//GWcd05Z43c1sbuXFGA995\nYS0vr93tdTkikgcDeunrnHvIOdfqnGutra3t13OpLZM/ZsY/fnAKZ9YO4XOPvsE7e454XZKI9FMu\n4b4VGNtjuzG7z1OdybTCPY8qSiL834+eR9o5bvuP1/QDJxGfyyXcFwEtZtZsZiXALcD8wpbVt8yP\nmNRzz6czaofwbx9rZev+GJ98eNHR+XtExH/6TEfnXBK4C1gIrALmOedWmNlXzex6ADM738y2AHOB\nfzWzgk8cHkukNCNkAbQ2jeCBm8/ljc37uftRjaAR8aucLn2dcwucc2c5585wzn0tu+8+59z87P1F\nzrlG51ylc67GOXdOIYsG9dwL6Zr3jOHvrp3MwhU7+YenVmr9VREfinhdwOlwzmWGQqotUzB3XNzM\n1v0xfvDyBhqqy/nUpRO8LklEToEvw70zu8Se5pYprP/xZ5PYcSDO1xasYvSwMuZMq/e6JBHJkS/D\nvfuLPk0/UFihkPHNP5/GrkNxvjhvKVVlES4/e5TXZYlIDnzZ1zi6UIfCveDKomH+38daaakbwp0/\nWsyvtQariC/4NNy7l9jzZfm+U11Rwk8+OYtJ9UP5zH+9ztPLtntdkoj0wZfpGNP6qQNuWEWU//zE\nTKaPq+azj7zOE29s8bokETkJX4a7eu7eqCqL8vAdM5k1oYYvzFvKvEWb+/5LIuIJn4Z792gZX5bv\naxUlEf799vO5tKWWex5fxo9f2eR1SSLSC1+mYzyptoyXyqJhHvrYeVw1qY6/e/JNHnhurX7oJFJk\n/BnuXWrLeK00Eub7fzGDG2c08O3n3uKuR94g1qW5aESKhT/HuevKvShEwyG+OXcaZ9dV8U+/Ws2m\nPR089NFW6qvLvS5NZNDz55X70XHuviw/UMyMT192Bj+4rZWNu49w/fd+z+JN+7wuS2TQ82U6dv/v\nf1lEV+7F4oqJdTzxmQupLA1z60Ov8NhiDZUU8ZIvw727LaMpf4tLS10VT37mIlqbhvOlny3lK794\nU3PCi3jEn+HePRRSs0IWneGVJTx8x0zuuKiZh/+4iTnffZkV2w54XZbIoOPLdOxMpCiNhDAzr0uR\nXkTDIe6bM5mH75jJgViCDz74e77/0not/CEygHwZ7lqFyR8uO6uWhZ+/lPdPruOff7WaWx96hc17\ntfi2yEDwZbhn1k9VuPvB8MoSHvxvM/jm3Gms3H6Qax74HfPaNpPWVbxIQfk03NMaBukjZsaHz2vk\nmbsvYfKYodzz2DLm/usfeXOrevEiheLLhNT6qf40dkQFj945i2/cNJWNuzuY872X+dsnlrOvo8vr\n0kQCx5fhHlO4+1YoZPx561he+NLl3H5hEz9dtJn3ffMlfvzKJn3hKpJHvgz3TrVlfG9YeZSvzDmH\nBZ+7hImjq/i7J9/kuu++zHMrd2oSMpE88GVCxpO6cg+Ks0dX8cinZvHdW6fT0Znkkz9qY873XuZZ\nhbxIv/gy3GNdGi0TJGbGnGn1PP/Fy7j/pqkcjCX51I/auO67CnmR0+XLcI8nNc49iKLhEHNbxx4N\n+cOdx0L+iTe20JnUVAYiufJnuKvnHmhHQ/4Ll/G/504jlkjx1z9dyoVff4H7F65m2/6Y1yWKFD1/\nzueeSFGqtkzgRcIhbjqvkRunN/D79bv50R838f2X1vP9l9bz/sl13HZBExecUaNpKER64dtwV1tm\n8AiFjEtaarmkpZYt+47wX6++w6OvvcPCFTsZO6KcG6Y1cMO59bTUVXldqkjR8F24p9KORMrpC9VB\nqnF4BX8zeyJ3X9nCguXbeXLJNv7lpXV878V1TBozlA+eW8+cafVaDUoGPd+Fe/f84Oq5D25l0TA3\nzmjkxhmNtB/q5Oll23hyyTa+/sxqvv7MamaMq+bKSXVcMXEUE0dXqXUjg47vwj2W0Pqp8m61VaXc\nflEzt1/UzKY9Hcxfso1nV+3k/oVruH/hGuqHlXHFpFFcObGOC86o0XtHBgXfhXv3lXu5/oFKL8bX\nVPLZK1v47JUt7DoY58U1u3h+1S5+/vpW/vOVdyiJhDh3bDWzJtQwq3kEM8YPV9hLIPkw3LOrMKkt\nI30YNbSMm88fx83njyOeSPHqhr28vLadVzfs5XsvrOU7DkrCmbCf2TyCaWOrmdY4jFFDy7wuXaTf\nfBjuasvIqSuLhrnsrFouO6sWgIPxBIs37uOVt/fwyoa9fP83x1aKGjOsjKmNw5jaWM20xmomjami\nZkipl+WLnDKFuwxKQ8uivG/iKN43cRSQmdJixbYDLN1ygGVb9rN0834Wrth59PiRQ0o4e3QVZ9VV\nMTF7e8aoIQwti3p1CiIn5cNwz7Rl1HOXfCovCdPaNILWphFH9x04kmD51gOs3nGQt3YeYs2OQzz6\n2uajX+oD1FSW0DSykqaaSppHVtA0spJxIypoqC5nRGWJRumIZ3wY7hoKKQNjWEWUi1tGcnHLyKP7\n0mnH5n1HWLPjEG/v7mDj7g427O7g5XXtPP5657v+fnk0TH11GQ3DM2FfP6yMuqFljBpaSt3QzP3h\nFVF9AEhB5BTuZjYbeAAIA//mnPun4x4vBX4EnAfsAW52zm3Mb6kZ8aTaMuKdUMgYX1PJ+JrKP3ns\nSFeSjbuPsHnfEbbui7F1f+zo7YqtB9jTy4pTJeEQtVWl1AwpYURlCTWVmfs1lZnt4RUlDKuIUl0e\nZVhFlGHlUU29ITnpM9zNLAw8CLwf2AIsMrP5zrmVPQ77BLDPOXemmd0C/DNwcyEKjnVpKKQUp4qS\nCJPrhzK5fmivj8cTKdoPdbLzYJxd2dudBzvZdSjO3o4u9hzuYu3Ow+w+3ElnMn3C1ymPhhlaHqGq\nLEpVWfa2NEJVWYQhpREqSyNUloapKMncVpZEqCiJUF4SpjwaPnYbDVNWEqIkHNL/PQRQLlfuM4F1\nzrm3AczsUeAGoGe43wD8z+z9x4DvmZm5AkzEHU9qKKT4U1k0zNgRFYwdUXHS45xzHOlKsedwF/tj\nXew/kuBALMH+WIIDRzLbh+JJDnVmbg/EEmzdd4RD8SSHO5Mc6Tq1qZHNoDQSoiwaftdtaSRMSSQT\n/iWRY39KwyGi4RCRsBHNPhYNG5FQ5jYc6t42wuEQ0ZARDhmR7GOR7u2QEcrehi2zL5zd170dMiMU\ngrAd2x8yw4we25k1AU52G8p+eIV67LfsuQf1gy2XcG8ANvfY3gK890THOOeSZnYAqAF256PInjo1\nWkYCzsyyV98RxnHyD4LepNOOWCJFR2eSjq7sbWeSeDJNrCtFLJEk1pUmlkgRz/7pTKYzt4k08WRm\nX1cyTVcqTVcyzZFYdjuZIpFyJFJpEtnHkunubf8uqmIGBkc/OIzMjqMfANi7juv+cMjuPrbPju46\ndkz279HjOf5m9kRuOq+xoOc0oF+omtmdwJ0A48aNO63nGDeigmumjFZbRuQEQqFjHw4DyTlHMu2y\nk/ulSaYciXTmNpXdnzx6m93vHOns/u7b7n2ptCPtIO2672f/pDl2P/t4Ou1wZD7Y0g5ctp60czjH\n0eN41zGZx5xz2eMzx3Tfd2SeyPU4P3f0ubOPZ+8fffzose9+vOd+gMbhhZ/YLpf/+luBsT22G7P7\nejtmi5lFgGFkvlh9F+fcQ8BDAK2traf1MX/1OaO5+pzRp/NXRaSAzIxo2IiG9X/WxSCXxvUioMXM\nms2sBLgFmH/cMfOB27L3bwJeKES/XUREctPnlXu2h34XsJDMUMh/d86tMLOvAm3OufnAD4Afm9k6\nYC+ZDwAREfFITk0559wCYMFx++7rcT8OzM1vaSIicro0nlBEJIAU7iIiAaRwFxEJIIW7iEgAKdxF\nRALIvBqObmbtwKbT/OsjKcDUBj4wWM8bBu+567wHl1zOe7xzrravJ/Is3PvDzNqcc61e1zHQBut5\nw+A9d5334JLP81ZbRkQkgBTxAgnaAAADTklEQVTuIiIB5Ndwf8jrAjwyWM8bBu+567wHl7ydty97\n7iIicnJ+vXIXEZGT8F24m9lsM1tjZuvM7F6v6ykUM/t3M9tlZm/22DfCzJ41s7XZ2+Fe1lgIZjbW\nzF40s5VmtsLM7s7uD/S5m1mZmb1mZkuz5/332f3NZvZq9v3+0+y024FjZmEze8PMnspuB/68zWyj\nmS03syVm1pbdl7f3ua/Cvcdi3dcAk4FbzWyyt1UVzA+B2cftuxd43jnXAjyf3Q6aJPBF59xkYBbw\nV9n/xkE/907gCufcNOBcYLaZzSKz2Py3nXNnAvvILEYfRHcDq3psD5bzfp9z7twewx/z9j73VbjT\nY7Fu51wX0L1Yd+A4535LZm78nm4AHs7efxj44IAWNQCcc9udc69n7x8i8w++gYCfu8s4nN2MZv84\n4Aoyi85DAM8bwMwagWuBf8tuG4PgvE8gb+9zv4V7b4t1N3hUixfqnHPbs/d3AHVeFlNoZtYETAde\nZRCce7Y1sQTYBTwLrAf2O+eS2UOC+n7/P8A9QDq7XcPgOG8H/NrMFmfXl4Y8vs8HdgVdyRvnnDOz\nwA51MrMhwOPA551zBzMXcxlBPXfnXAo418yqgSeAiR6XVHBmdh2wyzm32Mwu97qeAXaxc26rmY0C\nnjWz1T0f7O/73G9X7rks1h1kO81sDED2dpfH9RSEmUXJBPt/Oed+nt09KM4dwDm3H3gRuACozi46\nD8F8v18EXG9mG8m0Wa8AHiD4541zbmv2dheZD/OZ5PF97rdwz2Wx7iDruRD5bcAvPKylILL91h8A\nq5xz3+rxUKDP3cxqs1fsmFk58H4y3ze8SGbReQjgeTvn/rtzrtE510Tm3/MLzrmPEPDzNrNKM6vq\nvg9cDbxJHt/nvvsRk5n9GZkeXfdi3V/zuKSCMLNHgMvJzBK3E/gK8CQwDxhHZkbNP3fOHf+lq6+Z\n2cXA74DlHOvB/i2Zvntgz93MppL5Ai1M5qJrnnPuq2Y2gcwV7QjgDeAvnHOd3lVaONm2zJecc9cF\n/byz5/dEdjMC/MQ59zUzqyFP73PfhbuIiPTNb20ZERHJgcJdRCSAFO4iIgGkcBcRCSCFu4hIACnc\nRUQCSOEuIhJACncRkQD6/7ioX0aYNsOtAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "tags": [] } } ] }, { "cell_type": "markdown", "metadata": { "id": "-jgzBqQ6rZPM", "colab_type": "text" }, "source": [ "The below code specifies and solves the QCP, using DQCP. The concave fraction function is DQCP-compliant, because the ratio atom is quasiconcave (actually, quasilinear), increasing in the numerator when the denominator is positive, and decreasing in the denominator when the numerator is nonnegative." ] }, { "cell_type": "code", "metadata": { "id": "uAbu67IemoDK", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 34 }, "outputId": "a1e231df-a97d-43ca-a427-5290bbb8bff5" }, "source": [ "x = cp.Variable()\n", "concave_fractional_fn = cp.sqrt(x) / cp.exp(x)\n", "problem = cp.Problem(cp.Maximize(concave_fractional_fn))\n", "assert problem.is_dqcp()\n", "problem.solve(qcp=True)" ], "execution_count": 16, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0.4288821220397949" ] }, "metadata": { "tags": [] }, "execution_count": 16 } ] }, { "cell_type": "code", "metadata": { "id": "9auLCvH3m366", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 34 }, "outputId": "8511813a-562a-4cae-deaf-504d6c825aa6" }, "source": [ "x.value" ], "execution_count": 17, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array(0.50000165)" ] }, "metadata": { "tags": [] }, "execution_count": 17 } ] } ] }
gpl-3.0
quantopian/pyfolio
pyfolio/examples/pyfolio_talk_slides.ipynb
2
2413820
null
apache-2.0
resbazaz/Weekly_Projects
notebooks/2017-08-03-hackyhour.ipynb
1
2403
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook name: \n", "\n", "year-month-day-event\n", "\n", "(Example: 2017-08-01-hackyhour)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Attendance:\n", "\n", "* **Megan Willi** - @mkittles : speech & hearing sciences, speech tech, natural language processing\n", "* **Heather Lent** - @hclent : natural language processing, machine learning, flask \n", "* **Blake Joyce** - @bjoyce3 : cyber infrastructure, biology, ecology, python, plant metabolism\n", "* **Grant H** - @??? : web development, software, python\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary:\n", "\n", "Projects worked on:\n", "\n", "* **HLT Wiki Project**\n", "* **Planning Software Carpentry for HLT**\n", "* **Cyverse Read The Docs Update**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HLT Wiki Project\n", " \n", " * Heather and Megan contributed to the wiki for HLT program \n", "\n", "https://github.com/arizona-hlt/hlt-resources/wiki" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Planning Software Carpentry for HLT\n", "\n", "* Editing RSVP for workshop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cyverse Read The Docs Update\n", "\n", "* Cyverse documentation is becoming \"Read The Docs\" \n", "* Updating \"ez\" documentation for Atmosphere installer to \"Read The Docs\"\n", "* Documenting the idiosyncracies of restructured text, \"Read The Docs\", & Cyverse \"Read The Docs\" templates. \n", " * How to document the new documentation " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notes:\n", "\n", "* It rained\n", "* Beer\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
Shinichi-Nakagawa/pitchpx-example-ichiro-2016
analyze_votto_2016.ipynb
1
168978
{ "cells": [ { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Joey Votto analytics(2015-2016)\n", "\n", "# ライブラリのインポートと設定\n", "%matplotlib inline\n", "\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "pd.options.display.max_columns = 100\n", "pd.options.display.max_rows = 300" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 変化球の正式名称(あとで使う)\n", "\n", "PITCH_TYPE_NAME = {\n", " 'CH': 'Change-up',\n", " 'CU': 'Curveball',\n", " 'EP': 'Ephuus',\n", " 'FA': 'Fastball',\n", " 'FC': 'Cut Fastball',\n", " 'FF': 'four-seam Fastball',\n", " 'FO': 'Forkball',\n", " 'FS': 'Split-finger Fastball',\n", " 'FT': 'two-seam Fastball',\n", " 'KC': 'Knuckle Curve',\n", " 'KN': 'Knuckleball',\n", " 'SC': 'Screwball',\n", " 'SI': 'Sinker',\n", " 'SL': 'Slider',\n", " 'UN': 'Unknown'\n", "}" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 2015年の一年間および、2016年途中(開幕〜8/31まで)のデータセットを取る\n", "votto_atbat_2015 = pd.read_csv('./output/player_stats/joey_votto_2015_atbat.csv')\n", "votto_pitchfx_2015 = pd.read_csv('./output/player_stats/joey_votto_2015_pitch.csv')\n", "votto_atbat_2016 = pd.read_csv('./output/player_stats/joey_votto_2016_atbat.csv')\n", "votto_pitchfx_2016 = pd.read_csv('./output/player_stats/joey_votto_2016_pitch.csv')\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 時系列分析用に試合の日(game_day)および、変化球の正式名称を加える\n", "for df in (votto_atbat_2015, votto_atbat_2016, votto_pitchfx_2015, votto_pitchfx_2016):\n", " df['game_day'] = pd.to_datetime(df[['year', 'month', 'day']])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# pitchfxデータから、ヒットとなった投球を抽出\n", "\n", "# 条件式(共通)\n", "QUERY_TEMPLATE = \"pitch_res == 'X' and pa_event_cd in [{}]\"\n", "\n", "# ヒットの条件(コード値はRETROSHEETの仕様に従う)\n", "query_hits = QUERY_TEMPLATE.format(','.join(['20', '21', '22', '23']))\n", "votto_pitchfx_2015_hits = votto_pitchfx_2015.query(query_hits)\n", "votto_pitchfx_2016_hits = votto_pitchfx_2016.query(query_hits)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>start_speed</th>\n", " <th>end_speed</th>\n", " <th>spin_rate</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>168.000000</td>\n", " <td>168.000000</td>\n", " <td>168.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>88.904762</td>\n", " <td>82.303571</td>\n", " <td>1707.477292</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>5.484369</td>\n", " <td>4.844280</td>\n", " <td>583.200493</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>73.400000</td>\n", " <td>68.300000</td>\n", " <td>160.046000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>85.275000</td>\n", " <td>79.300000</td>\n", " <td>1362.092250</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>90.450000</td>\n", " <td>83.400000</td>\n", " <td>1762.140000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>93.025000</td>\n", " <td>85.925000</td>\n", " <td>2086.731000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>97.000000</td>\n", " <td>89.600000</td>\n", " <td>2935.263000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " start_speed end_speed spin_rate\n", "count 168.000000 168.000000 168.000000\n", "mean 88.904762 82.303571 1707.477292\n", "std 5.484369 4.844280 583.200493\n", "min 73.400000 68.300000 160.046000\n", "25% 85.275000 79.300000 1362.092250\n", "50% 90.450000 83.400000 1762.140000\n", "75% 93.025000 85.925000 2086.731000\n", "max 97.000000 89.600000 2935.263000" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# まずは軽くDataframeを眺める\n", "\n", "# 初速・終速・回転数の統計を見てみる(2015)\n", "votto_pitchfx_2015_hits[['start_speed', 'end_speed', 'spin_rate']].describe()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>start_speed</th>\n", " <th>end_speed</th>\n", " <th>spin_rate</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>137.000000</td>\n", " <td>137.000000</td>\n", " <td>137.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>89.026277</td>\n", " <td>82.568613</td>\n", " <td>1702.062401</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>5.925583</td>\n", " <td>5.268214</td>\n", " <td>518.460390</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>70.800000</td>\n", " <td>65.700000</td>\n", " <td>232.591000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>85.100000</td>\n", " <td>79.200000</td>\n", " <td>1388.268000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>91.100000</td>\n", " <td>84.300000</td>\n", " <td>1726.547000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>92.900000</td>\n", " <td>86.200000</td>\n", " <td>2124.984000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>99.700000</td>\n", " <td>91.700000</td>\n", " <td>2794.557000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " start_speed end_speed spin_rate\n", "count 137.000000 137.000000 137.000000\n", "mean 89.026277 82.568613 1702.062401\n", "std 5.925583 5.268214 518.460390\n", "min 70.800000 65.700000 232.591000\n", "25% 85.100000 79.200000 1388.268000\n", "50% 91.100000 84.300000 1726.547000\n", "75% 92.900000 86.200000 2124.984000\n", "max 99.700000 91.700000 2794.557000" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 初速・終速・回転数の統計を見てみる(2016)\n", "votto_pitchfx_2016_hits[['start_speed', 'end_speed', 'spin_rate']].describe()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ちょっとイマイチわかりにくいので軽く可視化してみる" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# まずはヒットの傾向を探ってみる. ヒットに仕留めた変化球ごとに集計してみる\n", "pitch_types_2015 = votto_pitchfx_2015_hits.pitch_type.groupby(votto_pitchfx_2015_hits.pitch_type).count()\n", "pitch_types_2016 = votto_pitchfx_2016_hits.pitch_type.groupby(votto_pitchfx_2016_hits.pitch_type).count()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x10af35400>" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADtCAYAAACbBE9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8W+XZP/7P0bYsWduW5D2Pd+zsRRLCCJAUyihQdhml\nBboLdPA8v076tP22/T4tffp9ChRaKBQoe68sICFk2rFjH+8la29L1jzn94eTEGdZji1Lsu/368WL\nSNaRLltHl+5zj+umOI4DQRAEkf54qQ6AIAiCSAxJ2ARBEBmCJGyCIIgMQRI2QRBEhiAJmyAIIkOQ\nhE0QBJEhSMImCILIECRhEwRBZAiSsAmCIDIESdgEQRAZgiRsgiCIDEESNkEQRIYgCZsgCCJDkIRN\nEASRIUjCJgiCyBAkYRMEQWQIkrAJgiAyBEnYBEEQGYIkbIIgiAxBEjZBEESGIAmbIAgiQwhSHQBB\nEDNH03QxgFYA+wFQADgAWwE8CeB3AHQAso7+/DsMw0RTEykxEyRhE8T80c4wzMZjN2ia5gHYC+Bu\nhmH2Hb3vDwB+CuBHqQmRmAmSsAli/qBOur0WwNCxZH3UgyBdoRmLJGyCmD9qaZreis+7RB4F0Hfi\nAxiGiaQiMGJ2kIRNEPPHyV0iqwBcdeIDaJpWA1jNMMwbcx0cMXPk0ogg5o+Tu0Q+BVBC0/RSAKBp\nmgLwE0x0lRAZiLSwiXmDoigKgAiA+IT/RDweXyzPVsvFYqlMwBdKASAej4XibCwUiYyPj4fGxqOx\ncBTAif+NARjnOI5LzW9zTibFyjAMR9P0lwD8maZpKYBsTCTxh1IRHDFzVGadj8RCcjQB5+o0RbUK\nubZWJlWqxGKpXCySyoQCkVwgEMkFfJGMzxfkCPhCGY8vkIkEYrFAIBQIBCKhgC8STvxfKODzhRDw\nBeDzhQCAOBsDy8bBsnHE4zGwbJyNs7F4PB6LxdlYLBwZD4dCYwGWjQfibDwQj0fH4vFYIBaPjsVi\nkUAkGhoLhce8vjGnYyzgYcy23g4AZo7jYin9oxHzGknYRMocTch5BQZ6tSonr0KWrdJJs+Q6kSgr\nVySU6IQCsVaRo9OpFPrsbKkCPCr9evA4jkNw3Aev3x7y+GzOSDTkjEbDzkg0ZA+Fxpz+gNvi8ph7\nRixdH8Xj0ZEMa7ETaYYkbCLpKIqiBHyhscBQfb5WnV+VI9cWZUlkhWKRtECtNBh16kKZRCxNdZhJ\nE4mG4HCNjDvcptFwODgyHh4bGQu4TS63edDmHNrl9dvbOY4jC1mIKZGETcw6oUBsKC6o25ynLa5T\nyLV0lkReplXnF+g0xdkioTjV4aUNlo3D7bXGzba+keC4r38s6O5xukz91pHWT+1B307SvUKcjCRs\nYkYoiso25lWcb8gtX6FS6Ktk2coqrSq/3JBbLhcIhKkOL+O0d+50bvDtVTjGx0fckXC3bXy8q9fn\nbf3UZn2Z4zh7quMjUoskbGJaKIoSFRjoiwr0VeerlcZFyhxdXaGx2iDNykl1aBmP4zjs+fAPph+X\nqPNPvD8Sj6Pd7fIMB8Y6bePjbd1ez6F9dvu/Q/GYNVWxEqlBEjZxVhRFUTpN4bICfdUWnaaoUSHX\nNZYWNpRkSxUnz/klZqh34IB3rX2ntFalPOulSYxl0eZ2efr9viOWYPBQm8u5vcXlfJ3juNBcxZoI\nmqbrAPwawLEphW8B+DuAZxmGWXXC4+4GkMcwzM9SEmgGIfOwiVNQFJVVXtx8XaGxeuOVm761uDC/\ntlKt0IsmJnUQyWLr3+2vLVQqpnqcgMdDk0arbNJoVwNY7Y9G7nl1sN9Uua66IxyLfWBpHflHZCxk\nnoOQz4imaQWAZwF8kWGYvqOLdl4AsAknzRcnEkcSNgEAoCgqp7pi5a35eZVrr9vygxXlJc3FYlFW\nqsNaMEYtPYH14qBmoiE6PTKBEMPCOJrvPf9CjmUvdDDWB5u/svagb8T9mYOxvOgbdu1PwXTCKwB8\nyDBMH3B8Ec8tAPIB3DrHscwbJGEvYNlSpa6saNHtxtyy1Td+8T+XlRUtMpCBwtQY7NruutmoKzyX\nY98eHbaxty7SAwDF40FXY1DpagwbAWz0jXq+4+gYbau8tOFje/voo54hZ/usBn5mRpxaeCpI0/SZ\nik+RVncCSMJeYCiKElaULL6pOL92yzWXfe+8ksIGHZ/HT3VYC5rLY47UsnYFYJj2sfbxYGSnEZTB\nqDrtm5hjVIpzjMolAJa4++23N92yepejy/quaU/fXzmOC8w09rMYBLD4xDtomi4BUISJkgEnkgEY\nT2Is8wYZdFwg8vWVK0sK6m/V60rX0+XLayTi6V96E8mxe9dTpody4/lTP3IyjuPw28GOUdEP1xun\nM74Qj8RgPjjU7+53bLe1m55xdVs/nO0uE5qm5QA+wed92EIAzwF4H8B3AFzBMEwHTdN8AG8C+BXD\nMDtmM4b5iCTseUwsylJXV6y8L19feUFFcfMyrbqAdEqnmbGgl3XuesRze0m+errHfmg22T+5slCp\nKNOecz9WwO6PmA8O7nf32j8YPTD4SNg3bjvX5zoZTdPNAP4PJqoIygG8xjDMz2maXnP0/jgAIYBX\nGYZ5eLZedz4jCXseytdXLC4rWnRvcX7dpoqSxfk80uWRtvZ89sLoA0q/UcCbXp0UVygU/w1ldhq+\nsiJ3NuLgWA62dpPd2W3dYT8y+oqtzfQcWWmZfkjCnicoiqLKi5uuKS1svLmyZPF6fW4ZWcmS5iLR\nELq3/c7+zbJ83XSP/f1Axyj1g/OMvGkm+oTiGgtzpn39bc4uyzvDu3p/FR2PuGf9RYhzQhJ2hqMo\nSlpPn/eN4vzaL9ZWrVkmkypJczpD7D/0pvU+iTlPKpje2P9O66hz66V5MlW1IamFWTiWg/ng4JC1\ndeT10QOD/xWw+UaS+XrE1EjCThBN08UAWgHsx+d75m3DRDH4T0647wjDMPclOx6KomTNdRf+uLy4\n6aqailVVZDpeZomzcRx6/7eWB8r1+ukc54uE2Ycjw3bDV1fnJSu2k3EcB1ubyWJtHX7L0jryfzwD\njo65em1iMpKwE3Q0YT/LMMzqk+4fZRjGOFdxUBSV3Vx3wQ8rShZ/qaZydRWZkpeZDndsc9wQ7dDm\nSqdXVvaP/R2j8QfPM/IEqakN7uy2ukb3D7xjOTT8K3e/vS0lQSxgZB729Jxu7tScrNemKEraVLvx\nwWsu+/61tZWrq/l88tZlKo7jEBg5EMkt1UzruD12q9uxpUylSVGyBgBNZZ5aU5l3g3FJySXVVzS/\nYTk09LBn0MmkLKAFhrSwE3SGLpGbAPRjcpfI9xiGOThbr0tRlLixZsMDFcXNX66j19YI+KTrI9N1\n9+3zXOD+RFapUCT8rRuMxfCLsT5L3j1rp9WFkmyOTrPdtLf/dfPBoV/4TO7+VMcz35GEnaC57hKh\nKIqiy1fcXFW69FtNtRsXkz7q+WP31kdGHiqSFUznmL/0d46GHlxt5E1zgHIucBwHe4fZOryr54W+\nD478IMkrKBe09Hv309ucdIkUGWuWnL/qhp8uabj4YrlMTTL1PDJi7hy7QBLSTqzGTswhp8M7elGh\nQpuGyRoAKIpCbq0xT0vr71OX567LX1r6W9O+/qdTHdd8lJ5nQPo63eXIrF2iyGVqdW3Fql9dev5d\n1+TrK6e98o1If8PdH3luNWoTbl2H43G8wDmDucvPm36hkTnG4/NQen51Y15jwWM1X1x85eiBwQe8\nQ87eVMc1n5AukTRAURSvgV733eqKlV+trVpdmY67gxMz53CbwtLWf0S+kG+QJ3rMYwNdo97vrjAK\nJJl3oWVpGR4Z/LjrsaGPun9JVk3ODpKwU6y4oK65smTJb5c3bd4oEUvJDgHz2O5P/jHyUB6bcOu6\n3e3yPdvIp3TnVSac4NNNLBRF34dHPjYfGv6ptXX4g1THk+lIUy5FKIoSNNdd8MsL197yzroVX7qA\nJOv5zR9wxwvHhxIukRhlWfwrbA1kcrIGAIFEiKrNi9Y23bzqxcpLG/6Wpc5WpTqmTEZa2ClQUlC3\ntLJ02e9WNG9ZJxImdXUxkSY+3fPc6A9VgYRrf/x9sMds+9ZSg0gqSnJkc4djOQzv7mFGPuv/b9Oe\nvv+Xgl1wMh4ZdJxDFEXxGms2PHTB2pvvKc6vm7OlxURqhSPjUHi6hTxNYr0hXV7PGLNUnZU3j5I1\nAFA8CkVrKunchoI/Zevkm2R5OXeOWX2OVMeVSUgLe47kaoryaypXPbZ22VWbxCLS/bGQ7D/4mvWb\nWbY8SQLT8mIsi1+YmVHV/evnrNxBKnAch8GdXW1Du3q+bzk09G6q48kUpA97DtDlyy9bv/K69zeu\nvvESkqwXlng8BsreziWSrAHghZF+S9bdy+d1sgYm5m6XrKfrG65f/kzJevonFEWmRiWCdIkkEUVR\n1KKa83+ycfWN3zDklpHBlgWovXOH/XajKqHl5AN+X7C1QS7W5yycjYFUpTp1021r/lOsyFoqUWTd\nG/KOD6Y6pnRGvtWSJEemUa1ZeuVLl55/10MkWS9MHMdhfPRgVCORTPlYluPwlGfEo99cv+DOFXeP\n3cMFlM0VS25+Q1fSvDbV8aQz0oedBOXFTavr6fP+vLj+oqbpbI5KzC9dvXvcF3v35JTn5ExZA/fF\n4X5r1x21uVKtfMGcMP5RT6j//SGHWrFZpzHWiQHAZTpiGTj01s9MnR/9JdXxpSPSJTLLaitXf2nd\nimt/X1rYMK3iPsT84xzcEygvypmyxTwSGAvtqxQL9AskWUcCIa7nrS4zP1iXXVnzwKTPiTq/Vi+R\na/9Q1HBx43Db+98gKyQnIwl7FjXWbPjOhpXX/4c+t3TBXdYSkw2Zjvg3ZUWm3KuR4zj8wznk1N+1\nIX8u4koljmXRv73H5u+WUhWLvmvk8U6ffqQ5ueL68+/8mkCUZaAo6nqO40JzHGraIgl7FlAURTXX\nXfCbC9fefJ8yJ3fqDkti3nG4B3Go8y1cuOrrAABTz8eeq/KUhb8Z+rxE9FBoHNfk6rFWocKTZhOs\n0TA84UhUck2VIeElkBnK1mbymHZ5giUVtxoMzdopryT4QjFqzrvlCr5A9JpQIrsmGhrzzUWc6Y4k\n7BmiKEq0fNFlj29cc9MNWRIZGcRdgI70bkP/yAEIBBMLXezOodBiyqVSCPR4oKgUANA7HsRLdivW\nK1TY5nFBxKNwp04f+a3QHnB9ZFJp6+fnTD6/xRvuf3/Qocq+WFPd1KSczrE8vgD0mhsu4gslb8rU\nBdeMuUasyYozU5AEMwMURWWft+yaVzatv+MmkqwXLrlUi3VLbz1+u6dzq+Myo35Swet/Ws24RW8E\nRVEwhcOol8rwpG3QUXjrclXUH0Y8NL+6aqPjEXS8eNhselcSrKQfyNcWNJ3TlSdF8VCx/Oq1JU2X\nvpGjKy2b7TgzDWlhnyOKoqTrln/ppfNX33Axj2yEu6AVGhowFnQBAHxjrlhpyCQDPu+SPuT3IV8s\nRp5oom5MkUSCN+yWEHVLfW582ItYMAo2GgdfkvkfR47lMLizx+5lRFxFw7cMPMHMl9dTFIXS5i1L\nBaKsV9T5tTe7TEdaZiHUjJT5Z0gKUBSVtXbZNS+SZE2c7Ej7u7YfFhom9W/s9nlwkVp7/HatSBJ7\nXgqO98GgQFqogFiTBX5W5tW7Ppmtw+wd/dgVKCy92ZDXnDvrM14K6y5oEAizntMVN91uHzy0a7af\nPxOQhD1NFEVJ1i67+sWNa268hCRr4kQsG4fa2ys6ucjTQGgcFVnS47f/x9Lvyb26TqusyUVw1Idx\nkw+8FO6EPlNjNl+4/70Be07WBRp60RJFMl/LULWa5gvF/9SVNN9sHzj4cTJfKx2RhD0NFEWJ1yy9\n8oWNq2+8lE+SNXGSQNAT/UpxgfZTnwcRlsU6pRr+WAxZJ5wr2yyjjvgVVXLPHhPsHw+BJ+Cj4Irq\nFEZ97mKhKHreZsycp0xSUffAnK07yC1dUhKLhB5V6iuu8Fh6uubqddMBSdgJoihKsGrxFc9fsObm\nLXw++bMRk0nEclRA7JIIBHkrcz6fDCEXCPCT0goAgDccZt/NGWcNDfliTcPpp127DprhOmgGRQFs\nlMW4dQx196+d1L/NRuLo/cchFH2xBmLt5y336FgE3f+7F+W3Nk+6f7ZxLIehj3vt7iN8rrzxmwZB\n/tyXgTXSa6oj495/Ziv1lwY8lgVTopVkngRQFEUtadj0lwvW3HQ5SdbE6bR3bLffUaA6a43zJ0f7\nLHk/PO+s8/fUzQaomyf22x15g4F6iXFSsg6O+jDyGoOoPzzpOC7OwvQ6A54wuVd+DsbiG9np8BcU\n32TIXaxPaT9O8aJLl0bGfc9RFLV5oSyuydyOsznUWLPhhxtX33CrkOwOQ5wGy7EImw9FleIzz1zb\nZbM4XVdUaBLdcSZo8iFsD0CzZHJ+52IcSm9ohOSkFvTouz3QLMuHUJ6c1m7A4Y8c/mfrSKC1RkAv\n+n5+tjK1yRqYmD1SsfyajaWLv/DUQinPSpqLU6irWvPlDau+/IAsW5X5w/hEUnT1fOq6USc5YwnV\nsUiEe13ij+nrGxP+xrd9NIi8DaWn3J9dNDGmd2LNNtdBMwTZIsgr1LDuHJhG5FOLhaPofYcxx50l\n4or6ueunThSPLwC9+oZr4tHQIwDuSXU8yUYS9lmUFzetPG/5Nb/O0xYndeSbyGyeob3BomKF+kw/\nf9LUZ859cG3CSxnjoRjCjiBkCZakcR0wAxTg73UhZBnD0EtHUHJDI4Syc29tcxyH4U/6HK42KlZe\nf59BYEjfigsCURbo1TfcWVh3vmW4fdvPUh1PMpGEfQa5mqL8tcuv/mtZ0aLCVMcyUxzHYk/rv+Eb\nswEUhRUNV0Mhn2gQ9psOoGvgE2xa841Tjnv7oz9AKJj4oMqkGqxcdC1cXhP2tb8CHsUDjyfA6qYv\nQyKWnXLsQjEw0ua7VBbPPdPP9zlsbtslxUrNNKbtjQ14IJtGCfWKOxYf/3fP3w6g8PLqGSVrZ7fV\nP7zD7s8vvF5PLy7IiK4GcbZKWLH8mvv1FSsZS8+nz6U6nmQhCfs0KIrirVtx7V+bajc2pDqW2TBi\nPQIAuHjNfbA6e3Go822sX/YVuLwm9A3vPe0x8fjEUuljxYyO2d/+KpbVXwVVjgHdg5+ivXcrltRe\nntxfII2Zez/23ZGvzjndz8ZjMbxEucN5S6a3KUHYEYRI/fmuM+5WC9goO6k/+0xl1mdSfj3oHIv2\nvtNnkwvWKunGWzOuuIlMXSDLrz7vp9kq486Ae9Sc6niSgSTs01hUs+E/1iy96tJUxzFbCvX1KMir\nBQAEgi6IhFkIR4JoYd7GkrorsKf1hVOOcftGEYtFsHXPX8FxHBbRl0CrKsbaJTcjSywHAHBcHHze\nwu3at9kHx1fyvErg9N0FT430jmq+v2raiS93bdGk26rGU7vHy7+y+JT7znb/2cQjMfS+y1ii1gJR\nWf338xMdGE1Hhqo1tNfW/78URV3BzcPdWTL3nUmSsqJF65Y3bblPIp5fm+VSFA+7D/0L+9pfRUl+\nMz5teR5Lai+HgC8CTnNaC/hC1JRvwMYVX8Wy+qvwycFnwHHs8WRtdw2ga2AXasrWzfFvkj56ma3O\nCw15p+0POux2eoc2GHMEovRtE3Ech+Hdfc7DfxuwGFRf15c1XqfO5GQNTMwcKV925eb86nU/SHUs\nyZC+Z1MKUBSVvXnj3b8rMFRpp3505lnVdD2aw3688uHDyJLk4LPDLyIej8E7ZsX+9tewpO7zrg25\nTAd59sSfIUemg1gkxXjID2mWAgOjh3CkZys2LL8DYtF8r+R8el6fPVoeGZ1U5OmYSDyO56P2oG71\nOkMKQkuIq9fmH9pm9Rnzr9PTi4vm1bJdkUTGK1506bc0hfUfOofbPpvp89E0XQfg1wCkALIBvAXg\n7wCeZRhm1QmPuxtAHsMwSRv4JAn7BMubNv/P0sZLlqY6jtnWN7IfwZAH9RUXgM8TIkuSgy0b7gef\nJ8BY0IVPDv5zUrIGgL7hvXD7zFjecBWCIS+isTCyJHL0j+xH99CnuHDV1yESLpzdvU/WceR92w8L\nDKddrvjMSJ9Z+Z2VaZmsx92BWM/bvdZs3ioF3XjLvN3lRp1fk6evWPF/KYraOJNFNTRNKwA8C+CL\nDMP00TRNAXgBwCac9to0uUjCPqq6fMUNl2386nXzsaBTkaERuw/9C+/v+h+wHIsldVeAf4btmXYd\nehZN9KUoL1yO3S3P4b1dfwYFCqsWXQcA2Nf+KrKzVNi570kAQK6mHI1VF8/Vr5IWguN+Tuvvk/C0\np05L7vS4/V0rtNl5krlfrn028Wgcfe8xlrBZL8j0fupElSy6bFXAPfoHAF+f8sFndgWADxmG6QMA\nhmE4mqZvwcSl1W0zj3J6yK7pmCiX+oUL7921tHFTU6pjIdLfZ/teMn8vx2MQnZT0YiyLn1kZs+Z7\n69Omdc1xHEx7B5yOg7Foac0depEkeTVG0tGYezRwZPvjN1r79r16LsfTNP0DAAGGYf500v3FAFoB\n7D96FwXAAOAZ0iWSZIvrL/pZU91GkqyJKUVjEYidnXyR8tTJH8+N9Jvl961Im2Tt7rcHBrdaPAbD\nNXl0c+mC/KzLVMZsXUnzAxRFvXmOO7APApg09Yam6RIAhQDaGYbZeML9dwM4az2ZmZr/10VTMOSW\nVzfWbLhJwF+409OIxLV3bLPdWag9ZaFMr88bbF+kyBLJUr8iMOQNxtuebR11fVrA0g335+doF2ay\nPqaw/sLV+dXr7z/Hw98AsImm6TIAoGlaCOD3AOpnK77pWPAJu6ps6cOlhQ1nrANBEMewbBxRc0s8\nRzS5fzrOcXjaZ/LmXVo7rU1mZxsbi6P77SPWnucD7tLS7xuN5efLUxlPuhAIJdBXrrxTqsjTTfdY\nhmH8AG4F8ChN01sB7AJwEMDbsxxmQhZ0HzZdvvz6zRu/9qQyR0fK8BFT6uj+xPXF4EFVQbZs0hz9\nF4b7LX13N+glytT0D3McB/P+IZdtXyhcWnuHQSRZuKUCzoTjOLRvf+yv/QfeuDvVsczEgm1hUxRF\nlRctupckayIRHMfBO7Q3eHKyHhrzhw7USMWpStaeIWew9YnDI5TlfDm9+FskWZ8BRVEwVK7+Yo6u\nhE51LDOxYPu2KkuX3tBQvX7V1I8kCGBguNV3uZyb1HfNchz+4Rp26b+6Yc7rboR842zv290WcWyJ\nvKr+xrQre5qONAV1ubmlSx4CcHOqYzlXC7KFTVEUVVrYcEe2VDH/Jl0TSWHp2+VtUKsmdV6/Zhq0\n8u5ontNZIWwsjp53O6zdz/mcJcXfN+ZXXkD6qafBSK/9gspYnbGL4xZkC7u8uPnKhup1a1MdB5EZ\nzLa+8TUCvwb4fGWnORAIf1oiFBh0ijmrOTN6cMhl/SwYLqPvMIgWnbZAIDEFRW6ZQltYfw+A21Md\ny7lYkAm7rKjxrhyZhszjIxIywGxz3GTIPV4XneM4POkYdBrumpuuEO+wKzjwwYhLp7lcV91cfcaN\nEojEKA30hRRFKTiO86Y6lulacF0iZUWNm+qq1p6f6jiIzOD2WiPVMeukHYfeGR2xxW9uTOoCCQAI\n+0PskedbR23bNdGqugcKVPpqMkA+C3JLlxTm12w4dceODLDgWtjFBfU3qxR55MQnEtJ55H3bj/L1\nxwf17OPB6A4DSxkK1Ekb/2DjLPq3dtmC/TlUWeN3jbwz1H0hzg2Px4fKQF9GUdQvM61m9oJqYYtF\nUlW+vpK0romEBII+Tj82kHWsUBLHcXjCOmDPu2HJtBdgJMrSMuxufZwZVQtvy61oul1HknVy6CuW\nL9MU1G9OdRzTldDZQNO0CsBvAJQDuPbov7/HMIw7ibHNuuqKFfeUFzdn3NZHRGq0H3nfcn+x8fgs\nkK3WUUfo+lqdOAmV7nwm9/jA+8NOtXKzjm6qm9aWYudi3D0ER+dbKFz1teP32dpfh0img7J45aTH\nchwLa+uLiIzZQVEUchuuglieN+Vx6Uwi0wg0hfU3YmLpecZI9Mx7FMBeABoAfgCjAJ5OVlDJkp9X\nsZE/D8unErMvGg0jy9nJFxxNzu5QKP6+MswqynJndbA6EghxR15oHTV/qIhW1j5QoDHWJb27ztW7\nHdbWf4Nj4wCAeCSAkT2PI3B078+TBawdAICiNfdAQ18MR+c7CR2X7tT5NRuz5NqMKkuRaMIuZRjm\nrwBYhmHCDMM8BCCjJutr1fnVRfm1y1MdB5EZ2o5std1ZqDu+UOZJS78l77blZ9wdfbo4lkXfh4yt\n82mHo7jwu8ai6svmbJ6eUKqFcemtx2+zsTC09MXIKTj9fpAyfR3yGq8GAESDbvCPblwx1XHpTlPY\nkKsrab4v1XFMR6IJO3Z05wUOAGiargTAJi2qJCgtbLzNkFtO1u0SU2LZOOLW1rjsaJGnj21mp+eL\nVdrZKvpvPTziOfRY56iKujm3svnOOe+nlhvqQVGf/y5CqRoSZeFZjpjYE9Ry6HnY21+DPL854ePS\nGUXxINcWZdS3TaJnyn8C2A6giKbpVwCsQoZNPM/VFC2mqHm1ry6RJB3dnzhv1cv1AOCLhLk3pYGY\nvtYw464Kv9kT6n9/yKGSbdJWNy1KaWW/c6Fvuhax8GUY+vhPKNnwffDmQUliaU5eA0VRUo7jgqmO\nJREJNRkYhnkXwEUAbgHwOIBGhmHeTGZgs4miKLlKkdeQ6jiI9MdxHPzD+0J6qZQCgL+b+s25t6+c\n0ZzrSCDMdbx4eNT0rjRUWf1AgbZgUeqLZgNAgjPafCP74erZCgCgeAJMNHzmR+NHU1hfoCmov3zq\nR6aHRGeJKAE8BOACAFEAb9E0/UuGYcaTGdxsKStqurK4oD6jBheI1OgfOuS9SsHPBYDP7Fa3fXOp\nSiM4t64QjmUxsKPH7mMkbEXjt4y8wvTa5xFTXHFaDj0HDb0JMkMjLIeew/Cuv4DjWOjqLgePPz+m\nGwrF2VDoK9YC+FeqY0lEon/1pwF0ArgBE63yrwB4DMCNSYprVhnzyleKRQt3h28icba+3f6aQoUi\nGIvhFYHejkB6AAAgAElEQVQ3nNfUcE5T7GxHzF7TR65AUfnNBv3i3LRrjgqlKhStuXfSfZqqiybd\n1jddd/zfxiU3nfG5Tj4u00gVeYtSHUOiEk3YJQzDbDnh9rdpmm5PRkDJoMzJzZg3hEidUUtPYL04\noAGk+Ptwr1n34KppV+Ibs/nC/e/023OyL9RUNy9RTH0EkWpyTVE9XyjOi0fD1lTHMpVEr/V6aZo+\nXjuapuk6AD3JCWl2URSVq9MU1aU6DiL9DXbvcK3N1WUdcjq8pgsLcniCxC/7Y6EoOl9uMw+/KRyv\nqH6wILdwCbmkyxAqA63MLVl83dSPTL1Ez8hCAB/TNN0KIA6gEYCNpukOABzDMLXJCnCmivJrNxhy\nS0lLhzgrl8cSqYvbFOF4Ll5gncHcFecl1LrmWA6DH/fYPUeEXHnjNw2C/DTrpyamxOMLINcWZcSk\nhEQT9pVJjSKJ1ApDtViUmu2biMzBdLxve6jAUPD4QJdZ/d2VCSVrR4fZO/yRM1BUcpM+b7F+QdXl\nmW9EEvmcbkRxrhJN2G8CeBLA0wzDWJIXzuxT5OgyakUmMffGgl7WGBiStguz/H1r87JzJWefXxyw\n+yO97/TZFZINquqmFaQ2zTwgEGVlxCyyRBP2ZkzMwd5G03QfgCcAvMowTDRpkc2S7KwckrCJs2pv\ne8/y3YI848OObnPuuvVnbGnFwlH0vM2YWVeppLL+wfy5jJFILr5ImkdRlIDjuFiqYzmbhBI2wzCD\nAH4O4Oc0TV8J4I8A/h9N008D+DnDMM4kxjgjYpE0c9fOEkkXiYYg83QJn/ePm+XfPH1XCMdxGPqk\n1+Fu48XL6+8zCIzpse6FmD0ylTGX4gkKAfSnOpazSXThjAzANZjYbTgfwF8wMdH8EgDvAkjLTS0p\nilLecvXPyCUrcUZt7R9aL1FIZM9WZ8Xysk9dfe7osvhHdtj9+UVf1ucuLiD91POUVKkXKfWVyzEf\nEjYmfok3APyUYZidx+6kafovmFiynq60OTINmSFCnFZ8osgT96LE4827aP2kL/aAwx/pe7vPLhev\nU9GLbiNf+vOcQCiBNEdXluo4ppJowr6DYZjXTryDpumrGIZ5CWk8g0SrLtCLxVJSAJs4rQ7mI4eK\ndfM9d684PuAUj8TQ806nJW4vFJXV3Z8/WxX6iPQnkWnSfuDxrAmbpunrAIgB/OxoPZFjhAB+COCl\nJMY2Y9KsHKNEnJ3qMIg0xHEcLP27gaVagT4nCxzHYWR3v8PZysbK6+/RC/RkKuhCIxBLk77Tz0xN\n1cLOAbAagBzAiXshxgD8OFlBzRaRUKwTCsh+u8Spegf2e0LxUa5ky6UqZ6/NP7zN6jPmX6enFxeR\nK7IFisqAerFnTdgMwzwK4FGapi9gGObD0z2GpumfMAzzk2QEN1MSsUxKamATp9PeuZWnunWx8vA/\nW0zZvDUKuvEWMk1vgaOo9N/xONF62KdN1kelbS1ZkVBC+kOIUwyPdgatoX6Yt4t8ZeX35xvK15Kd\niAhQFJX2CXs2AkzbJizLsWm/sIdIvlFLNzdk2eWRScfG1GqWe+ezAU1EwqckJRbYQ484Uh0fkR4C\nrFmX6himMhsJO7FtK1IgGg2HUx0DMbfsLhP6h7Z7xRKPX6Ni4xoVT7ximVpxa0WhSiQSqADgg/12\nb+15/6HoYx4zF27IkWppPZn6SSASGN+R6himkvaXADMRjYZIwp7HvH47uvu3+/gC+5hKGY9q1ZSo\ntlqRc92VBkWWpPCMSTgOlqX4fFQ3f9dgbdkVMO//yFT1BdoglkvIHL4FLN2XpQPzPGFHoqFAnI2D\nzyMD/5kuMO4D07czyHHDXpUyFtGoKUFRoUz+hUuMOXJZXs50nitbp40GffaYQpctyCtZna1jV2Qz\nzzxpU9aFqMI1ZToyUL0wcSyX9l2os5Gwj8zCcyRFLB51R6Nh8MVkTm0mCUeC6OrbFRoPd3vVqlhI\no6YExrys7As3GJVqZd2M30xFQXE46DEHFLoSBQDweHxUNt+RO+Yaibf+7RlT6SWFqpx8FTlpFhg2\nGk/7K/JEa4mUAbgbgBYnDDIyDHM7wzBn3uwtxULhgD0SHYeEJOy0FYtF0DuwN+IeO+xRKWIhjRpU\nnlaUfev1BqU+tzYvGa1dkSwHY/axUz6cMnUBv0r9QP7w1rc8o/I2b+Vl1Qa+aF5fhBInCHnH0750\ndKJn44sAPgDwEdJ4kPFkDtdIl8dr9eXINNO6ZCaSg2VZDAy3xGyufR5lTnhcpWI5nVaUffUV+pyi\n/JrcueqK4PgiAcuOn7E1VUhfpoxFNigPP/GY2bBSKslbVJD2K+CImeFYFgGbz5TqOKaSaMKmGIa5\nP6mRJIfd47NZivJrScKeYyzLwmTpYk3W3R6ZLBjQqFhOo+ZnXXJhnqKsuFLL56dufI8SiHgcouzZ\nHiMQSUE3f9Pg6G0Jtba+Y6rYUpErVWWn/Uo44twEnQHON+Lem+o4ppJowt51tA72qwzDnPVETycc\nx3GXX3TvKICqVMcy39mcQ+gf2uGRZPnGNKo4q1HzxWtXaRR0eYlaKOSrUx3fJHyhEBQbSuSh2oJF\nEjXbkN//72cdWaUjbOnGqlyKRwYl5xufye0IOsY6Uh3HVKYq/sRioguEAvA1ABxN0zh6m2MYJu2n\nX4TCgdFUxzDfuL1W9Azu8AkFjjG1Kh5Vq3jihjplzpevMiolkmLl1M+QOv5ACIKsPD74XMKd0zwe\nD2WLbtSO++3coceeHC2+UC9Xl+nkyYyTmFth77iF47hAquOYylS1RE65bqVpmmIYJmP6sQNBL0nY\nMzAW9IDp2z4GjPrVqnhEraKEpSVy+Rc3G3Nk2fqM62qyOfyQKJRCSgAxx3GYTr95llxHVTfdbxz9\ndJvfsn/vaNUXaoyCKfZ/JDJDLBQ1pzqGRCQ6S2QDgF8yDLNm4ib9FoCbGIbZlczgZoPbax2d7gdz\noQqFgmAGPh6PRHq9KmUsrFFDkK/Pzt600ahUKurnRb0NpzMIkUIhztbp2GhoDKKs6TeUjRXny9nY\nGnn73x+3apopfv6yYi05vzJbJBCePwkbwO8xsQkvGIbppGn6MgBPAViWrMBmy6i1512bcyiUpy0m\nG/GdIBqLoKf/07AvcMSrVERDGjUofa5EdscNBmWeri4r1fEli9kZCouNcrGuukbmabFFRFly0bk8\nD08gQlXz1/M8tq5o699fMZVfVqKV5eaQWr4ZKuTOjK7TRBO2hGGYtmM3jibtjLgW9PrtHaPW7q48\nbXFjqmNJlTgbQ/9QS9ThOeBV5ITH1UoWuVqR9LqrDMoCw9xNp0sHNk84LMqWidWlNEZ3vBpU5pWf\nU8I+RplbJVTmPpA/8Oa/XYLcI+7yTbSeJ0j7oR3iBOOeIOvqs29PdRyJSDRhd9I0/WtMtKoB4HoA\nXckJaXZxHMdduPbmdgALImGzLIsRcyc7atvtlsvGg2oVy2nVAunmTXpFaWFqp9OlA3cgxsolWaAo\nCrFYcNZWtpXUXaOOjPvR8vhj5oJ1SqmuxkAKSmUIW5up291rP1sJ6bSR8J6OAH4O4FkAUQA7AdyZ\nrKBmm8051D5f+7Et9j5uyPSJJ0viG1Op46xWxc9av1aXU1VWphEI+JpUx5duohBEj50HLBuNzOZz\ni7LkqG7+jsHatidgObjdVPWFKoNYnrWwvyEzQNDuP8hxXDzVcSQi0YR9OcMw9514B03T9wL48+yH\nNPtMlu7XHa6R/9RpCmd0+ZtqTrcZvUM7vCKRc0ytisc0Kr64uVGVc+OXjCqJuJisxktAHMLjFdk4\nxJKypiCveEW2jl2WzTz7hE1RPY6i88rTrtspMOyF+f1eVNy++Ph9pre7IdFJoVk6efMdLs5i+NVO\nhJ1BUHwe8i+rRJZejrAriOGXOgCKgiQvGwVb6Ln+NWaMjbPwDDj2pTqORE01D/vbmNjX8Ws0TRef\ndNyNyJCE7fKYD4+YmS6dprA+1bEkyj/mRlf/9jGKMvtVqnhEo6KElZU5OVdfblRkS43kcvscxXnC\nz5M0FU9aFuXxeKhsuiN3zG1iWx7/p6n0kkKlokCVFjsg2T4ehLvFAp5ooq89Fohg6KUOhJ1BSHRF\npzzeuX8UPAEPlXctRdgRxOAL7aj6+jKMvtMD/YXlkJUoMfI6A2+HHYqatN8DYBJnt9VjbTM9k+o4\nEjVVC7sHwBJMLJQ58eQOA7gtSTHNOo7juPOWX7MbQFom7PHQGJi+ncFYbNA3MZ2OEhYYpNmXXpSv\nUOTMj+l06SJOCT+/9OUnv7ywTJXPo1UP5A9vfctrlreZKzenvqCUWC1FyZcbMPTiRKFNNhKHfmMp\nfF3O0z4+ZAtAXjnRuybWShH1hxEPxTA+6oesZGKdlLxSDX+vO+MStnfI2RoZC2XElD5g6oUzbwB4\ng6bp5xiG6ZyjmJJicKT9JZ/f8ZUcuTaln5ZIJITu/t3hsfFOr0oVG9cowdfnSbK/erNRqdPOvHQo\ncXYsT3R80RclgGSuxjYKqy9TxCIbFYefeNSct0IiNjQVpmy5vqJWh4hn/PhtkSoLIlXWGRN2ll4G\nX5cDihodAsNexIJRsJE4OO7z9XN8kQBsKO3r/58iYPUdSHUM0zFVl8gbDMNsAfA2TdOnrG5kGKYs\naZHNsmFz57vdAwcOL2m4uHmuXjPOxtA3uD/q9LZ4lDmRcY2KpXRasfTGLxmURn1t2vVrLgRx3uez\nUeVGgyQy7oNYOjc9TAKRBHTzNwzO/sPh1ta3TBVbynVStSztx1XUi40I2YPoeXw/pIUKiDVZ4GcJ\nJn3RxSMx8CWZVYo25A1yji7rB6mOYzqm+gvfdfT/mwBsBrARQAzAWwAyYhrMMRzHcSsXX74TQFIS\nNsuyGB5tj5vtezxyeSioUbGcVi2UXnGZXlFcQOt4pGBQWuD4nydsbVWN1LXfFhZLFXO64EWT3yBW\nsXX5/S8/55AUdcbLLqjKo3gpmEySYIGJ4IgP8jIV8i+tRHDUh3GTDzwhH1lGOcYG3JCVqODvdkFW\nmlnj3qa9Awdc3dZ3Uh3HdEzVJXKsb+fHACQA/gqAh4lVj3UAvp3U6GbZ4Ejb03bn8Fd1msIZr+Qb\ntXZzQ6O7PNnZY2NqZZzVqAVZG9frFBWlFRoBn0em06Upji86/s2pKavEyIetQZW+cs5XKPJ4PJQ1\nfFkbGnOh5bEnRosu0MnV5blzW1BqijbE0EtHoL+gDGKtFIPPt8G6cwA8AR8FV1QDAIybKjD8aie4\neB8kOikUdZnTf83GWTgZyxuZMp3vGOrEfqgzoWm6k2GY6hNu8wC0MQxTm8zgkuGyjXfvXNm85bzp\nHON0m9AzuN0jEXsCqqPT6arK1YqayrwsMdmRJKN8/5X4SMWWmwqO3f7svx+3FNVfrE9lTAAw2rvN\nH+Lv9VduoQ0iqZhcjiWZaW//0K7fvdvIcZw31bFMR6LZZoSm6TKGYfqO3tYByIi19ycbHGl/dUnD\nxecJBafvOvT6Heju3+7n821+lSoe1agoUXWVQn7NFQalNKswrUuHElPjeMJJ68ZZLpoWG68ayycK\nSnU89Terponj5y8vIQWlksjRaX4305I1kHjC5gC00DT9AYA4gA0ARo9W7QPDMJclJ7zZd6T7kz9X\nV6y4c1HNhurguA9M/85gPD7sUytjYbWKEhYVyGRbNhlzcuRzfHlKzAlKIJqUsJO1eOZcTBSU+lqe\n19EbbXny36aKS0s0Mr2CFC2bZe5+u9962PRIquM4F4km7F+cdPtPsx3IXOE4LrSkYdHHBcZWmVEv\nlX19fb5SoyLT6RYClmUBvnDyOU/F027puEJbLlRoH8wfeOdlN197xF1xCW0gBaVmj6VleJtn0NGa\n6jjORUIJm2GYHckOZC4Nmnp+cFNR+cXrVpaTLo4FxOcPQSQrmHTOc4LkL545VyW1V6oioTG0Pv6Y\n2bhOIc0lBaVmLOQNxm0ZtLLxZGnXupgLDlfA+en+gdcSGXAl5g+bYwxiuXJSWWC+kCfmuLTpFTmF\nSCID3fxtw3hbvfDwMy2mkDeYUbMa0s3Ip337bG2mF1Idx7lakAkbAHbv63949/6BjBw4Jc6NzTXG\niXMmz7mWF+RLwsH0H3vKLV4mLSu7P7/7eY9rYEe3jTQ2pi/sD7G2NtOTXDp/Q09hwSbsIZPbvPXj\nrmdjMdJgWSisrnBIJJVNOud1VbXSca8toR3UU43H46Fi0e06Wfgabcvjh0e9Q65gqmPKJAPbO7eb\n9vb/b6rjmIkFm7AB4JW3D//HGx+0t6Q6DmJu2NyRmEg6uWCeqqgMAZ85oxJfttLAoxsfMNp2qqMd\nLx02x8JpMTMxrflHPQFL6/BvuAy/NEnbAZe5wHHc+IbVFb9fs6zsMZ1GlhFbnhHnzjcej+aIJ8+S\nE4hEiMfCs7bzzFwqqLpEEYtsULQ98Zglb4VYZGhOXUGpdDewg3nT2jry7nSPo2n6QQAXAhBiYkrz\n/QC+AeBZhmHem90op7agW9gAsGN371Mvv9067TeSyDxxShg73WIUlo1mXpm5owQiCejF9+nZodXZ\nrf9oMQWdY7O6i858YGkdHhk9MPij6R5H03QNJjZvuYhhmA0AvgPgb0i4CsvsW/AJm+M4btfe/oda\njpjsqY6FSK4ohKcdsEinxTPnSm2oE1dWP5jf/3LU3/t+p5VjM/5XmhWxcBSDH3U97h1y9p7D4V4A\nhTRN307TtJFhmFYAyzBlFZbkWfAJGwAOd4y2vPnBkX/F4+Qkn88m7TZzIh47bz4HZY1f1qj5t+a1\nPNYx6uyx+VMdT6r1fdCxa+ij7l+ey7EMw4wCuBzAGgC7aZo+AuALsxnfdM2bE3WmXnqz5UevvHM4\no4qZE9MzabeZE1BpvHjmXEhkKtBN3zN695VQ7c+3jkYCoYweaDtX3iGnz9Iy9DOO485pVJam6XIA\nPoZh7mAYphjATQD+H4CU1ZElCfsojuPGtn3S/b22TrMj1bEQyRHnC0+buHgivphj59/0TkPZOllJ\n0XeNHU9ZbcO7+x0ZPkFiWmKhKLrebP1fS8vwTManGgH8mabpYxMSegB4MDH4mJJuEZKwT7B7X//2\n5187+Ih/bGG2SOY77oTtwU6kKCqShgKeuQ5nTvB4AlQtvjtP5L5E2fJEq8lv9mTEnPOZ4DgOna8e\nfGdgB/PDmTwPwzAvA9gJYC9N0x8DeBvA9zHRt/3fNE1/dvS/p2YedWISqoe9kFAUxfvK9Stevee2\ntVsWUnnLngE3/vXaETz0zTUYHPHib8+3gs+joNfJcPv1jRDwJ3+3v/ZeN/a3WRCPc7h4XSnWrSg8\n/rNP9o3gvZ39+Ol3p1V2POnuf94/WH7VV4tPvt850APLjt6gpqB23hcBGzzyqpun6QlXXFqtn68F\npYY+6e5of37vBX6LN2M2100UaWGfhOM49oOdzFff28F0pDqWufL6Bz149NlDiB6dLPHosy24+ap6\n/Oe310KpkOD9nf2THt/R7UD3gBs//e55eOibq2FzBo7/bGDYi+27h+Y0/kRxfOFpv4FVBSUY92XG\naseZKq69QpWn+Jq+9fFus619dN5dVngGHZ6hj7vvn4/JGiAJ+7SGTG7zO9s6ftw36FgQo+x6XTa+\ne+fy47ddnnFUlEyMq9BlanT2TN5Nu6XDjgKDHL/762f43V8/w5KGiQ1bxgIRPP9GB269pn7ugp8O\nvui0TUqeQIA4m5mLZ86FSJINuvnbhlDnItHhp1tG50tBqUgwzHW/dfiR0QODb6Y6lmQhCfsMdu7u\nefmpf+/7X/9YaN7P9Vu2yAAe//PGZ642+3iSPtBmQSgy+fPsD0TQP+zBt+9Yituva8QjTx4Ay3L4\n6zOHcNNV9RCLBEjHnjaOLzzj+Z4uO8/MJV3hEmlZxf3G7ud8rv5t3TaOTcM3LUEcx6HzlYNvDuxg\n/r9Ux5JMJGGfxevvtT3wP09+/Fw0Oi8aIAm7+8YmvPpeNx5+ZBdyZGLIZZO3U5NnC9FYnQs+nwdD\nrgwiIQ8DI15Y7QH87blW/OnJ/Ri1+vHUS20p+g1OjxIIzzh9j+NimZutZoDH46Gi6TZdTvRL2pbH\nD496Bk/o38oggx91tQ3v7r09kyvxJWJezT+dbRzHcRRF3SaXiTVfv3XtxQtlEPJAmxX33rYYMqkI\nf//3YTRWT94Nmy7T4J0dfbhsYznc3hDCkThKCxX49Y/OBwDYXUE88uR+3HxV+nSNxOMsKP5Zdkzm\nz5/FM+dCqtTzaOUDxpGP3vOa97WYK7dUGwTizCivYz08Mjy8q+e+gM0371crk4Q9BY7jIvJs8bXK\nHOm7N1y1ZEWq45kLhtxsPPyn3RAKeSgrUuK85RMzQP7y1AFcu6UGzfV56Ox14qHf7gQAfOXaRqT7\nl5nLE4RQVnTGaREUH7OancbdQ3B0voXCVV87fp+t/XWIZDooi1dOeizHxmFt/TciAQcoio/c+ssh\nzjEiEnDC2vIcAAoiuR55DVfOZoinVVB1sSIW26Boe+JRS+5yoci4uCitC0o5Os2W7rcPf918cGhe\n7Yp1JmRaX4Jqq/TlN1y15LVLN9bWpjoWYvqOdFnwYvSikI6uP+2mtp899mdPQfFmJY8386lurt7t\n8I0cAE8gRtGaexGPBGA++C9EAw6oytefkrA9A7sQ9pmR13g1ImN2mA8+g+LzvgXT3iehKlsPqaYU\n1sMvIVtHQ6avm3F8iXKbO8IOz2uO8s1lumytXDT1EXPL1Wtzdr568N6RPX3PpTqWubKgLwOn40iX\npfe1d9vu3L1/ID3nrBFnZXeNsSL5mXcgV5WWZoXHXLPyWkKpFsaltx6/zcbC0NIXI6dg8WkfH/Zb\nkZ1bDQAQyXSIhXyIR8cR9pog1ZQCALJ1NIKO7lmJL1EqQ424subB/MHXOH/POx1WNo1q7XiHXV7m\njZYfLKRkDZCEPS2fHRzc/eIbh755oHV4Xs7xnM8srkhIlC074891VbXigNcyKwNuckM9KOrzj5ZQ\nqoZEWXjGx4tzjBizTkz7H3cPIh4JgItHcOLVL08gRjyamqnipfXXajSSr+S1Pt4x6uyy+lISxAn8\nZm+g4+UDPxne1fNYqmOZayRhT9O2T7pfferf++767ODgcKpjIRJn90SiJ+82c6Kc/CKM++0pyYiK\nomXgCcQY3vUXjFnaIcrWgieUThoXYGNh8IVZqQgPACCRKkE3fc/oO1jBa/9X6gpKBZ1j4Y6X9v/X\n0Cfd/zcVr59qZNDxHOz8tOfNNcvLvhKJxh9bu7ysJNXxEKd34nL7QJiLK4QiRPwedPzjT8cfEzAN\nonTLl5G3Yj3ClgNZQ+6OSQN/M5Lg+FDIMwypthy5dV9AyDOCkGcYPL4QYkU+gs4+SDVlCNgZSDUV\nM4tnFuhL18hYdoWs8+knrMqGKK9wValurgacQ95grO35vf89sJP5xZy8YBoiCfscffJZ34crFpfc\nGI3Gnzx/TWVlquMhJnv9gx58vHcYEvHEKR6jBFEAEMmVWHTvfwAAfAPdGHjreehXbYT5k/fBURRb\ntObeSQN/MzJFIrMceg4aehNE2TqYmffg6tkGiidEXuM1AABdzWZYW1+Eg4tDJMuFzNAws3hmCY8n\nQGXzXXk+51Cs9Yl/mcouKdLIjcozjg/MhoDNFzry0oE/De5gfpDM10l3JGHPwJ4DA7uWLiq6PhqL\nP33x+uqaVMdDfO7Ycvv/eWqixHmMJzplxKznpSdRc/M3QFEUApYRUFmKIADZxMCfF/FoCHzhueUh\noVSFojX3TrpPU3XR5Bibrjv+74KVd53yHCKZDoWrv3bK/ekiR1MkyNE8kD/4/mtuStXmqbi0Rs8X\nzn5BKXe/3cW83vLToU+6/zjrT55hSB/2DO1rGTrw3KsHr339vbbDqY6F+NzJy+3jEExarups249s\nQyGydBN1UGT5xeBCrmzg2MBfEFycbI+YiOKay1V65T361se7LdY2k3s2n9vaOjzU8fKBu0iynkAS\n9iw41DbS9q9XD1z+xL/2fBSLLaxl7JkiflIL27b/YxhWbTx+W7/ifFB8PnXywB+RGJFEiurF39aH\nmWZJ61MtpnFPYMYbGw/u7GrrePXgtSN7+l6ajRjnA9IlMks6u60DFEVtcrjGHr/rptXXKnOy5mex\n4QxzbNwvftLmBf7hPuSUVH1+e6gHAqWGy6+9ERG/9ejAH/l4TJeucHGWhm3K73nhabus3MSVbKjM\npXjTG5TkWA5db7Z8MrCDudE77BpMUqgZiZyRs4jjuHGKom4cC0S6bvnSsm+Xl2gVqY5poTs27jdm\nd2abP90Kw8qNiI75IJBMbj1n6Yyggm7p0MePgC/KPj7wR0wfj8dDxaJbdEGfjWt5/O+jxRcaFKpS\n7ZnnVJ4gHomh/YW9b/Rv6/xy2B8aS3asmYYsTU+SjWurrr3qssbfrFpaesoOJ8Tcu/+FscHyK+86\n63vhM5sw+PaBMV1x05lX2BDTZur+wBcRHwxUbak2CCRnLtkS8gSj7S/sfarvw467OY6bcZfKfERa\n2Emy9eOu5xc3FnaZzN7Hrt6yaEm6F0ea7zjemWthHyPLMyAUcIYAkIQ9i/IrL8yJxdbltD35mCV3\nCU9oXFaiOfkxtiOj5r4P2n89vKv3jxxpRZ4RSdhJdKB1+FCuVn7RiMXz6C3XLLtCrcomf+9UOcvm\nBcfweDyw8eiC2XlmLgkEItCL79G7zUyk5clXTBWbS7XZuhwxG2fR+17bHtPegW/Y2k17Ux1nuiMJ\nJMlsDr+boqgvWe3+b1yxqeH7K5eUnLmoBJE8gtNvD3YyFgtst4o5ptLTIpX+wfz+119w8bVtroDD\n/V7ve+33cBwXTHVsmYAk7Dlw9BLvj3W04f12xvzHG65acmGWJO2qVc5v/DPvNnMiDgtz55m5liUp\ncg/v6f61paft0VTHkklIwp5D7Yy5g6KoS4ZHPT+79vLmu2ur9Kf05RGzLxKJgRKJEzrXKd7C3nkm\n2TDwY5IAAAs/SURBVCKhMbZv3ytvW3s/u9fnGCRT9qaJJOw5xnFcHMCPlzcXv3v+msrfXrV50XIB\nn+SIZHK6A5DIKxI71wWUOMnhLFiO4cOW4cPv/9HUufO/yMDiuSEJO0U+Ozi4k6KoDX2Djt9+4eL6\n6+toA2ltJ4ndGYBIrkioD0qYLRHHYxHwBaTLaraM+x2Rodb33rUPHvyR29yVXjszZxiSsFOI47hx\nAPctbih4csXikl9cvXnRhSqllKyQnGU2VzAmKUksYWsqqrLHRx2sTG0klz0zxMajGG7fesjWv/93\nlp49T6c6nvmAJOw0cODwyD6Koi7t6rPdtX5VxTcvOb+mjk+6SWaN1R2OCGsTm1Kpo2sFfR27/TK1\nUZ7suOYzx1Cr2dS54+nhtg//k+O41GyVMw+RhJ0mjvbp/ZWiqGcPd4z+astF9dfVVxu0qY5rPrB7\nwmfdbeZEMm0ewuOeEACSsM9B0GcLD7W+96Z94MCPPNZeJtXxzDckYacZjuP8AO5bVJf/xOqlpT+/\n8rLGizRkwc2MhOK8mERw5iXRJ2PjEVJXdZrisSiG2z7YZ+vf/1tr397nUx3PfEUSQZpqaTftpyhq\ncztjuWF5c9HXt1xUt1ouk5D17ecgBsG06lKwiJI6Fgni2DgsvXv6bX37nxlu//DnHMeRlaJJRBJ2\nGjvaTfJPiqKePXB45O6Vi4vvuOzC2iVk0c30xCnhtFYvciCLHafCsnFYunf32AcPvWTu2vVwNBzw\npjqmhYAk7AzAcRwL4C8URT22r3X4m8ubi2+85PzqZpK4ExPjiaaVgSkeR2bqnAEbj8HcvavLMdjy\n4nD7h7862oVHzBGSsDMIx3FRAL+jKOqPnx0cvG9ZU9FNl5xfs1iaRRL32bCUcHqLNAQc+YOehI1H\nMdq1q9MxeOiFkSPbfs1xXCDVMS1EJGFnoKOJ+w8URT2yZ//g3Yvq8685f3XlKkNeDkk0pxHnTS9h\ni3KyJfFoGHwhWfQYj0UxynzU7hhqfcHUsf23pEhTapGEPQdomi4G0ApgPwAKAAdgG4CNAJQAjADa\njz78AoZhEkowRxP3IxRF/XnHrp5NS5sKb1vWVHzRolqjmtTf/hzHm973mLaqOjs4YIvLNYULtmsk\nFHDHLT2f7nebOl41de78PZlLnR5Iwp477QzDbDzpvp/TNL0ewN0Mw9xwrk98dHDyHQDvlBSqy1Yu\nKfnWotr8yzasrqgQichbzPKF0/r20lXW8rtatvvkmsKcZMWUjjiOhWPosM1t7tzqHG57zjl8+FVS\n8yO9kE/z3JmTJu/AsKsPwLcoivrhpg3V9zXWGr+4YXXlsjydfMG+1xxfNK2/vVSlQXTcFwKwIBJ2\nOOiJW7o/PeCxdL9n6f3sT5FxnzXVMRGnt2A/xClQS9P0VnzeJXIjwzDmZL3Y0b7G31AU9dv3djAX\nNdcXXFtRql133oryymzpAuvq5oumvc4/zkajyQglXXAcB+fwYbt7tHObc6TtecdQ68tHZyMRaYwk\n7Llzui6RpDt6SfsegPcoihKvXlZ6Y1Nd/qU1lfrzljcX5S2ImiUC4bT7orl5unhm3GeP2QYOtnit\n3e/Z+vf/adzvTFqjgZh9JGHPnZSPAh5dhfY3AH/LlorU61ZWfK2O1m9c3Fi4gi7Pnb8bzya428xk\n82fxzLjPHrMPHjo85hr5xGXqeNlj6dpG+qYzE0nYcyetPiCBYMQF4GEAD5cWaWqbGwpuLC/WLisv\n0S5ubijQzJdNFUKhCPhi9fTPcwGX0Z+NgNsccY4cbhtzmXa5TEde8Vi6t5Iknfky+qTMFAzDDAJY\nfYaf7QCwY24jmqx/yHkEwI8BICtLpF2ztPTm6sq8lfkGxZKVi0vKc+SSVIY3I3ZnAOIcVeKVn46i\n+Miojn6OY+GxdPu81t6DfufwHpfpyEt+x+BnJEnPLyRhE5OMj0ccAP4AABRFiRY3FFzRWGvcmK9X\nLltUZ6wvLdKIM2mOt901BrFcMe0VMBKVQhyLjEMgykpGWDPGcRyCXmvMPdrZGw6423z2gUPOkban\nxv0Osk/iPEYSNnFGHMdFALwA4AWKoqhCo7KhltZvLi/W1mlU2XVV5bqqqrJcaToPXNqc41FRVc60\nW9iaympZsMcWy9EWp8VnhOM4BDyjUY+5qycUcLeNOUfaPJaud8dcI3vJ7I6FIy1ORiL9Hb20bj36\nHwBAqfj/27uX2DaqKAzA//gxtd3YsZM4NkmTNC3lEGirUlA3FYuKhwQSFUhsKsoGJGCDxAZVQlXZ\nsWfBAlggkOi2G8RjwwIQIFEhoFXRJX0kTes0iePY8Ws8M57LYgwKAlEaGsfT/J80i7Fszd3Mr6vj\ne89NTB7ct+PpuyeH9g4PJu+bGBuY2iv5/l7arLNQbrXMRN8tB3Z2z1To17NfVFNDE/0bMa6b0Vqj\nVrpml29MT7fqK+ery3Pny/O/fVovF35iQG9dvfNmUeCUK40r6JRPACAeiw4/uH/smd07h+7PDvbt\nTPbFJneMpCdkdza5WZ0Fl1ddNxZP3PLvYql+OK1aV3o7e20HtdJ1q1qcvea06rOtRmW2UZ6/tHJj\n+pNGef7cRtWhReQEgEcBROEvi3kdwFMA5pVS723EM+n/YWDTbdO0nEUA7679zDCM3AP7djyya3xw\nKpdNTqZT8clMOjFx757cSD6bNDa6Ht5qG24ivL6WIJ7n3NaTZ7TWsGolXVm8tGA3KldtqzpjVZdn\n6uXCxfKN6S8dq3alW7NnEZkCcFQpdbhzvx/AhwDOdOP5tD4MbNpQWusFAKfXfmYYRmx8NHNw5/jA\noXw2lcuk47nk9lguEY/mEwlzeHwkMzx6V9q8HTsy2yFz3RtgNNxbXozt2k00V5fcRmVh2WnVl9tu\nq9h2rCW7WV2ol+dnq8Wr39dKc2d7oOtdBcCYiLwA4HOl1C8icgjAG5s8LvoXDGzquk7nt287118Y\nhhGJRkJjU3vyD+WHk7uyQ8nhVF8sG49Fk6YZTkUj4ZRphpOxbdHUQCaRHExv70v3x7E9YeKfZusu\nIuvfAWO0obWG59pwWnW4dsOzrVrdbq422naz3HbtoutYRbfVKNpWdalVKxWteml2dWnm57ZjzfVy\nhzulVEFEjgJ4FcCbIlIHcHKTh0U3YXCZJgWRYRgRAAP9yVhubDSzK9UXG00lY8ltZsQ0zfC2aDRs\nRiNh88Ii8u7IgUooFIoYoVAYhhEBDA2tPQ2t4WlPa6+tPc/VXrvddhzbc52ma1mtamEh4tbtRddu\nlhyrVqitXC9or10BUOnlMP4vRGQ3AK2Uuty5Pwi/4+NpABdYw+5NnGFTIGmtXQCLnevcJg8niPYD\neElEjiqlHAAXAazgTtqTfwfq3QW0RLRhlFJnAHwF4AcR+RrAZ/BXifAw3R7GkggRUUBwhk1EFBCs\nYdOW1zmm7RWl1LHO/bMATgF4EsATAI4D8OC/Lyc7DbuIuo4zbCKfBgAROQbgBPwDkg/D3wl4RCl1\nBMDzAD4SkYFNGyVtaQxsIp8hIscBvAb/5PoigJcBvKWU8gBAKTUD4IBSqrR5w6StjCURIt/DAEYA\nZOD31kDn/vLaLymlVro8LqI/cYZN5CsAeAzA2wA+FhEDwAyAsbVfEpHHRSTX/eERMbCJ/nBRKWUr\npd4B0IJ/As8HAE6JSBgAROQeAO+Dm0tok7AkQvR3LwL4Ef6fjN8B+EZEbPgTnOc69W2iruPGGSKi\ngGBJhIgoIBjYREQBwcAmIgoIBjYRUUAwsImIAoKBTUQUEAxsIqKAYGATEQUEA5uIKCAY2EREAcHA\nJiIKCAY2EVFAMLCJiAKCgU1EFBAMbCKigGBgExEFBAObiCggfgdDkXETMfoe3wAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c7ad7f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# ヒットにした変化球の割合(2015)\n", "pitch_types_2015.plot.pie(autopct='%.2f')\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x105310668>" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADtCAYAAACbBE9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4W+XZP/DvOdp7WLKG9zxeiVf2DklYAUIoeySsFiil\nBQIEWt7f201L3y46IYWyyoayKYUACSF7OvE4jveQZFuWLcna0jm/P5xFEuIlWZJ9PtfFBZJ1pFtY\nvvWc5zzPfRMsy4LD4XA4iY+MdwAcDofDGR0uYXM4HE6S4BI2h8PhJAkuYXM4HE6S4BI2h8PhJAku\nYXM4HE6S4BI2h8PhJAkuYXM4HE6S4BI2h8PhJAkuYXM4HE6S4BI2h8PhJAkuYXM4HE6S4BI2h8Ph\nJAkuYXM4HE6S4BI2h8PhJAl+vAPgcBIVRVFZAGoA7ANAAGABfAbgWQC/BaAHIDn28/tomg7FJ1LO\ndMElbA7n3Gppmj7v+A2KokgAewDcQdP03mP3/R7ATwD8MD4hcqYLLmFzOOdGnHZ7EYCO48n6mI3g\nphc5k4BL2BzOuZVQFPUZTk6JbALQcuoDaJoOxiMwzvTDJWwO59xOnxKZD+CKUx9AUZQWwAKapt+f\n7OA40wt3GsfhnNvpUyI7AWRTFDULACiKIgD8GMNTJRxOTHEJm8M5N/bUGzRNswCuAvATiqI+B7Dr\n2I8enezAONMPwbLsyI/icDgcTtxxI2wOh8NJElzC5nA4nCTBJWwOh8NJElzC5nA4nCTBrcPmTCkE\nQfAACE/5R3D8v1NEYqlcIJCJeTwZnyQkAEGGGcYzFA65BwMBtycc9gEIAPABGAIQZKfhVXmKokoB\n/BqAFIAMwIcAngPwMk3T80953B0ADDRN/zQugU5DXMLmJCyCIEQATEZ9boFUosyTy9TaSNBbOJt0\n+iUCgUJE8hRCHqkUkKSCT5AKHkFIfjl7Hk9IknwBSfIFJI8n5JECAUkKhm+TEJAk+AQJPkmCABBi\nGASZyLF/M5FgJBLyRSIBbygU8EUi/h9Xz/GFWcYXYVh/mGU8/khk0BsOO9zBoGMwGHDY/f5ei9db\n2+PztgHoZ1mWie//tYmhKEoF4GUAl9M03XJsnfnrAC7AaUscOZOPS9icuCIIQpuiSStL0ZjL1cpU\ns0yqMkpEcoNQKDFde9kPDRqlIUUu1wilYgVIkodu21F/Rfs7wpkpulhM5/GO/SMe7QEhhkG/349e\nv89t9/kGHq2a5QhEIgP+SMQxFAr19/v91i7PUEvD4MBXvkikjWXZSAzijqY1ADbTNN0CDK87pyhq\nHYA0AOvjGhmHS9icyUEQhDbTXLw8VZc1U6XQ50rE8gyhQGy8+cqfG1K0aWqFTAuCOH1T4ZkM+mzx\nVwe9AzNToJmEsEckIEkYpVIYpVIFAAWAzNMfE4hE0Dk0FOgYcts2VlR1b/MNePryFAfd1sHm/qO9\nn4U8geYEGpmbcWatFC9FUd9UL4UbdU8iLmFzooogCEIokGRnphWfr9em5yvkKblSiTL35it/nmUy\n5GnEItmEnp/PE2BIoPQAiZGwR0PE4yFfpRLlq1RZwUgk66sA01exfv4qJhyB2+IMODv7u6tvX9IW\ncPnaPL3udlf3wCFHU+8nLMt64xBuO4CqU++gKCobw19EotMeK8fwfD9nknA7HTkTQhCEwKjPWZxm\nLFyeojGXyqXq4lRdVpY+JUPC5wli8pp7tj/X/nAqmxWTJ4+xzdYux55bKa1E881fXMEhP+wNNoun\nz31kqMdZ42jq3XIsgQdiHR9FUQoAX+HkHLYAwKsAPgFwH4A1NE3XUxTFA/ABgMdomt4S67g4w7iE\nzRkTgiDEacaClWmGgkVatalUIdeWZqaVZCnlKZO2RHTfgfdsDyn6jZP1etH0e0tjB/nAojOmTc4l\n4PKhr97a7rUP1bqtgzWOpt7Ng232L1iWDcciRoqiKgH8H4YLXykAvEvT9M8oilp47P4IhlffvEPT\n9C9jEQPn7LiEzTkngiAIvTZjTlZ66Vq9Nr1CqdCXZKWXZsgkyrjF1Nx+YOiigW3yDLkibjGMx4Df\nz/xS3e9Ov6JSNZHn8Q14mL56a6vP4Tnstgwcdhzt/djZ6diRQPPgnBjhEjbnDARBiLLTy9akm4pW\naNXG2dnpZaUpGrMw3nEd5w94Yd/6f671OZnx+9YYhzc6W22dG6qNJD+6l448fe6wvcHa7HN4jri6\nBmoczb3vuroHDkb1RTgJgbvoyAEACAVifUFO9U1mQ/68q1Y/VJ2XVZErEcvjHdZZiUVS9EEyBCCp\nEnaDKBRWRDlZA4BMr+DL9AoKAMWy7Lfc3YOPVN++ZP9ge//2vnrrC64uR03UX5QTF9wIexojCEJZ\nUrDg9nQTtcJsyJubmVaawiN58Q5rVPZue7p9o5GXNBcem11O/9OVPNYwN1cyma872N7vtTdY9w22\n93/VV295zm0ZbJjM1+dEF5ewpxmCIPi5mRVXZ6WXXGLU5y7Oz65Mj9Vqjljau++t7o0qV1q84xit\nf3Y0dbseXhC3eFmWxWCrfcjeaNs70NK3pfdw95Nex5A1XvFwxodL2NMAQRCE2ZC/OCdj5rWpusyl\nVO6cYolYPvIulQRW1/iVc324VqUUJszU+jeKsCz+x9VkM9y1MCFWtrAMi756i93R1LvN3mj7yLqv\n/VmWZblGwkmAS9hTGEEQipnFy+7NMBVdlJ9dVa1VGxM/u42Sy93Pknv/5luTkS6Ndywj2dFrc356\nZbpCma5NuOqYYX8I3Xta6/uP9nzSc7jrCbdlsDneMXG+GZewpyCDPrs0P6vye5nm4gsLc2dn83hT\n89rywY8f69mQZzLEO46R/LnraGfkoYUZ8Y7jXFiWheNoj6O31rKlr87ySs/hrje4ZYKJh0vYUwRB\nEERuZsVVORkzrs/PrlxmNuRPaK1vMti79cmOjWbRmDahTDZvOIz/Jbv602+ckxLvWEbL7/Ixlj2t\n+/sbez7q2t3yu5A3OBjvmDjDuISd5AiCkM0oWnpfprn4kpLCBbPkUnVyLPOIgr17Xu/cqPEk9Mj1\n/a72vvrvleuF0uSbjWIZBpZ97e29R7rf6d7T+pi3f8gW75imOy5hJymCIGQVJSsezsuuuLqkYEFh\nMq70mKhDtZv7vydoTxGSCTc1fMKvrY2d4g2LEvpLZSQsy6LncJe151DXB7aDHY87uxxH4x3TdMUl\n7CRDEIS0vGT5w/lZVVeVFi4smqrz06Nhd3SFjHX/wlKjISG/raweT+gPmf6g+YLiiZUoTCD2Bmu/\n7VDnRz1Hun7f39izP97xTDdcwk4SBEFIyouXb8zLrry6tHBh8XQcUZ+OYRnU/fcX9h/kZejiHcvZ\nvNTRbOl5aK6ZTOAzgPEaaO1zde5oft92qPMng232xnjHM11M3+FZkiAIQlxevPyhtRfee00ZtbiE\nS9QnkQSJgEiTkPWYWZZFgzSMlCmYrAFAk6NXanL01xsrMlfkX1D2VtfOlv/nd3rt8Y5rquMSdoIi\nCIIoypt722Wr7r67vPi8Cj6fS9Rnw4g1LBCKdxhnODzQ78Gq/IQc+UdTaonZoC823WWYkX5hzrKi\nl9u20D9nWTYhv0SnAm5KJAHlZs5cmptZ/mj1jAuWy6SqabPqYzwO1HzUe7/Ymppo0w5PdR7t9G1M\n7LXX0caEI+jY3nTEur9jU9fO5j9z67ijj0vYCUSjMuiL8ub+prJs5VqjPiepKtHFS5eV9ld3vS8s\n00xeA4WRBCMR/E+grc98+3x9vGOJh6AnwLR8Wve57VDn/+ut7d4e73imEi5hJwCCIMgyavH9JQUL\n7iwpWJA3mma0nGHhcAitm381cGdeRsL0eNxs7XLsvoXSSrVTZnHIuPTVW5x1rzRsG2jrvi7oH3LH\nO56pgJvDjrPsjLLqlYvW/WZ2+UXLxCIZl6nHiM8XwM2XJ1RT3hrW65FqZdp4xxFP/U29rq4tQ77q\n83+22tL41XZj/rxf2Zp2/ivecSU7LmHHCUEQ5MziZY+uWHjjd7PSShO+HkYiYyTaCJAYZ4oDfj9j\nyZUr0+MdSJywDIum/9T3EAMzxEVV64wAkFF6XpkuY8bT+bOvWNPTsvt+d39XV7zjTFbclEgcpBkL\ni6nc2X+cV3XZSrFIyo2qJ2j/wfesD8r7TfGOA4hdG7Bk4HUMBem3mvqzcm4zShT6Mz7XLMuip2VP\nq6Xhyz9Y6C//xHLJZ8ym36cqjgiCIMqoxfetWHjjffnZldN1EBZ1SnW6otvZjjRZ/FuaNYhCkVi0\nAUt0lv0d/f37BExR+cPf+MVJEASMeXNyNMaC/xNJVfMIgvg2y7KeyYwz2XEj7Eli0GVlUXlz/7Sg\nes3FUomSW6oXRf6AB/1bf+taF+emvM0up/+ZCh6bOm9y24DFUyQYRsO/a61K4flqXVrlqN83y0TQ\nXvPxHmvj9rvtnYf3xDLGqWT6DQXioDh/3hXLF1z/65KCBfnxjmUqEotk6IPEgzg35d062NefOi9+\nbcAmm7PD4W350OrML/uBiS8Uj+lYguQhu+Li2YqUzLfTihY/1t3w5Z9jFOaUwiXsGCIIgigvWf6T\n8xbe8H2DLnvK16eOp7BEE9cWVxGWxVEly5sOV49ZlkXrZ409wa4cYVHVhgldO0jJKDPLNKbfZles\nntN+6MM7uF2S58Yl7BiRSpTy+VVr/rl03jVXSMTyhNnUMVURkhQ+4Izb6+/p63GKryxOjVsAkyTg\n9kXq32joNRtvSlUUp0dlak8sTxGWLr/tJpnGmJ+SXvbd/q4jB6PxvFMRl7BjICuttHzZvGufmlNx\n8RyS5KarJ4NErpe5gn34pqa8P2ltgoQ3/LvQCQS41XTymu8+twsf9PeBALBIpcFyzckl1K5wGD9t\na8YDmdkwCkXf+Pr7gm6XKl07pc+iemstA9ZtwWBB+UZTtEsBkCQPuVWXzVekZL5nphb9zEJveyqq\nLzBFcAk7ykoKFtywZO5VvyjIqc6KdyzTSZq5SLVl3xbfpelpZ1z4CjHDJS0eysw567Gv9lrx4+x8\nCEkSj7YcxVylClIeDxGWxfM2C4TkuVdeesNhtJkE0qm67IcJR9D4Xp1VFFygKKxcGNMNSvqsinSZ\nxvxEVvmF1R01H9/Nsmw4lq+XbLiEHUWVpSv+d8Wimx7Qa9Pjv75smlHKU4jDQdIF4IyE3RnwI8Ay\n+G1nGxiWxRV6A/IkJ5ut8wgC3kgEx9Py8X+/2mvDco0WH/T3nfO1P7NZ+lK/VzEl64YM2Zz+o++0\nD+QW3WUSShST8ppSZaqodOmt3+HxBDqCIK5nWTYwKS+cBLiEHQUEQRCVpSt+t2LRTd9VylOSr3nf\nFEAQBIIijf9sPxOSJC7U6rBErUVPMIDfd7bjl7kFII/VbLlAq8NP2pohJklUKZSQ8HjYNjgAJY+H\nUpl8xIRdx/f5RUnYs3EkHdtb+tz1WqKo8qFJ35TEE4hQvGT9FSRf8DZBEFdy67WHcQl7ggiC4M2a\neeFTKxetu5m7uBhnEg0JnLnIwCgUwiAYTqgGoQgyHg/OcBgagQCOUBCbB/rxm/xCiAgST1m7sNfl\nxDbnAEiCQF1HKzr8PvzD0oXvp2dBedqmGJvXE+ovTdGYJ+UNTo6QL4j6N2qtOtVabe6Mom+euI8x\nkidA0cIbL+TxRe+L5dpv+YccjnjFkii4hD0BBEGI5lVe+uKKRTddKRSMbR0qJ/oE0hRpkOnA6U15\ntw0OojPgx01GMwZCIfgZBqpjiTfEsuCBAJ8gQRAEFDw+vEwED2flnjj+8Y5WrDOaz0jWALDZbrMb\nb52bENvio6G/qdfd8emgp3DmBhPJj/9ZA0HyUDDvmmU8gfh9RUrmVe7+ju54xxRPXMIeJ4Ig5Itn\nX/nasgXXXcS17UoMZhOl2tOwN7TQYPzaL2SxWoNnrN34VXsLAOBWUxp2u50IMgyWqLVYoFLjl+0t\nEBIE9EIhFqpGd12NZVnQ0jA7mjZgLMui650G+O1eEASBjDVFEOlOzqM7G+zo2dIKgiShrTIhpdoM\nlmHR9e7xY4D0S4sgTo1NydYTRZscZaLjRZsSBUEQyJt1+Xy+UPKu2lhw7aDt6LTt2s5tTR8HsUim\nWjhr7TuL51y5lFu2lzgYlkH9x7+wfz9/cpryHnbYPa+v0AhSik0jDkVdR/sxcMCKrKvL4G52oH9P\nN7KvnQEAYCMMGv60C4V3zgYpIHH0H/uQe2M5PB1OuGg7Mi4vxlDrAPp2dCLn+plRfx9ex1CIfrOp\nLzPnNpNUeWbRpkTSVb+ltqPm45v6u2oPxDuWeOBG2GNEEIRk6dxr3lgy9+qlXKOBxEISJPwi9aTt\nlNvhGXCkFJeMqg0YyScR8YfBsiwi/jAI3slRud/uhShFCp54+M9RlqnGUNsg1KWpUFLD3z3BQT94\nkuj/uVr3d/Tb9woiRRUPJ8U0fHrx0lK+QPRqanbl7b1tB7bGO57Jxl0kGwOCIPjzq9a8snT+tSu5\nZJ2YWEnKpPQRDDEMmrXEqC9cyLLUYMIM6Cd2oes9Grp5J1dtM/4weOKTZ2o8EQ+RwPDyY4Ik0PHv\nOnR/dBSamdGbqYgEw6h99ZA11DpLkl9xS1Lt0DTmzyvIrlz9bEp6aWW8Y5lsXMIeJYIgyNnlF/1z\nxcIbL+Nx0yAJiyfRSBgm9jl7a4/Vof5W+ajXXvdua4csU4WiH8wD9d056HirDkx4OE5SzEfEHznx\n2EggcmK0DQCZa0tQ9P156HynAUwocsZzj5Wz0+GpeYa2ZqbdY9JnVElHPiLxGHJn56QVL31GqkxN\nqi+bieIS9igQBEFUlq18YuWidTcIBHFb5cQZBZ0+R0k7nTG/MFPDejxj6dnIBCPgiYaTMCnmAwwL\nHLt+JNZJEXT4EPGFwIQZeNoHIctQwXHQip6tbcPH8EkQBIAJnNkdK9rUa/1MFiyq2mDiC5MyV5+Q\nOeP8ivTS814mCGLa/FFyFx1HobJ0xU9XLV7/sFym4ZaDJLhQOIiOzY8NfCcvK2ZbqAf8fvaXqn5X\n+rcqR107JOILoePtekQ8IbAMC938DIBlwYQYpFSb4aLtsH3RCrCAttoM3ew0MKEIOv5dj7A7CJZh\nYViSdWJOe6wCbh9T/0ZDj9l0g16hzZwy166YSAh1W/75ctvBD2+YDh1spswvLlZmUIvvXLFo3QNc\nsk4OAr4QLr4ypk15P+uz9pjXVY9pQpknESDnum9e4aGkdGckY1LAQ/bVZeML8hS9tZYB65eBYEFF\n9Is2xRvJE6BwwfXXhIO+dgCPxDueWOMS9jnkZs6cu3Tetf+jVRunTQeRqSAS46a89aJQOBnagDER\nBo3v1lqFgfmKwqpFCdNVPtqEYjlZMO/qe8zU4jYL/eWT0XhOiqJKAfwagBSADMCHAJ4D8DJN0/NP\nedwdAAw0Tf80Gq87kqn1dRtFErFcWVKw8C85GTOSYrkT5yRSqo3ZFr1ml9Pvm2dOidXzR8uQzek/\n9I/DVpPmDpMpd9GUL0YmU5tkuVWX/MSQO+v8iT4XRVEqAC8D+D5N0+cBmAdgBoALEMuRwChwCfss\nhos5rXxmVvmF1fGOhTN2SpVZbvXGplbQl4N9/Ynes7Fje0tf+wfMUFHlRpNQGteuaZNKYy4yZM5Y\n9Wetuahkgk+1BsBmmqZbAICmaRbAOgCf4WQxx7hI/PO6OCgvXvb/ls67Zi1JcN9nySjNRCk2N33g\nvjFHFtV6oBGWRWMCtwEL+0Ooe+OIRadcmxLPok3xZMyfV+AZsD5FEMR5LMuOt22cGUDLqXfQNO2l\nKCoIoISiqM+O3U0AMAF4afwRjw2XsE9D5c5efd7CG7/PVd5LXhKxHDTEQwCimrATuQ2YY7ho01DB\nzA3mRCjaFE/ZlZcsHBqw/BrAfeN8inYAVafeQVFUNoAMALXHpkmO338HgEn7DueS0inEIpmqtHDh\nr02pudqRH81JZGGJNupNefcFXS5Vujah/mZYhsXRj+p6+ncaI1TV9xOiwl688fgC5FRefHNqdtWq\ncT7F+wAuoCgqFwAoihIA+B2AiS/ZmaCE+vDFW3nJ8t/OLFleGu84OBNHSLRRPXv0hsNoN4kSaqeJ\nd8ATOvjMQatWcGNqeuH56njHk0iU+hy1MX/uYwRBjLm8IU3TbgDrAWw6Nv2xHcABAB9FOcwx4zbO\nHFOQU33hBUtvfS01JXNy+iBxYqqO3jZ4S6ROLf+Gprxj9X5XR1/992bqhQnSWca6v6Pfvk8Qzp2x\n3jDV1lZHC8NEUPv5P55sO/jhnfGOJVq43zSGGxEU5sz6MZespw6ziVJt6emLWuW+Wp7PnwjJOhKK\nnCzaVH4Ll6zPgSR5yJp5wXX6rIrl8Y4lWrjfNoDKspU/q55xwdx4x8GJHpVCRzQGCXc0nsvm9YT6\ny1LivvFkuGhTgyWZizZNNqU+W6nPrvwpQRBTYoHFtE/YWWklVVVlq27m87md51MJQRAISjRRGWFv\nttvsplVFcdt8wrIsWj8/2mvdLAsUVW4wJ3vRpsmWVX7horTiZT+KdxzRMO0Tdn521c8zzcWjLpPJ\nSSLilAl/vo+3AYvX1EPA7Wdqnj1okQXWaLNK1nCrl8aBLxAjvWTZtxUpGTnxjmWipnXCzs+qXFNe\nsvy8kR/JSUYCqUYSnGBt7CMD/R6sypuUlmOn662zDta/ZO3LL95onkoV9uJBl1meps+qfDjecUzU\ntE3YBEEQOZnld6uVqdNyR9h0YDJSqv12e2giz7HTM+BIKTZP6tVGJsKg4e3D1qGaAj5VeRd3YTEK\nCIKAPrvyEolCl1ANhsdq2n4S8rMqv1VesmxpvOPgxI5OmybY7Q64xnt8iGHQpJ3c4vhDva7AwX8c\ntpjU06No02TSZ1eaDXmzk7oEa8KdZlEUlQWgBsA+DO/VZwF8DuBRAF+dcl8dTdPfG89rEARBrFp8\n811KeUr812lxYoYkefAL1V4A46qut7XH6lDfUj5pW9E7d7T2OetURHHlRq5CZAwQBAF9VuUagUj6\nv6GAdzDe8YxHwiXsY762Xx8AKIq66/T7xqsgp/q68pLlS6LxXJzExkq0DDC+WZEaxuORamUxv9B3\nrGiTVadaq8mbUTTqxr6csTPkzsoyFS58BMDGeMcyHok6JXK2EoZRKWtIEASRm1H+bYVMk6hfVpwo\nIsfZlHfA72ctudKYb6RyNPe6Dz/bYsvL3WDSGLhkHWsEyYMus/zy8WxZTwSJmrSOlzA8Pv1xIwDt\nafdtoGn6wFifODOtZGVxwfwFUY2Wk7B0uhxFo5Vmi9SaMX3hbx5HG7CxYBkWzf9t6GHtpeKiqnWT\neiHMN9ABe8OHyJh/JwLuHvQefhMAIJDpYJh5JYizlBU+9ZhTuboPYLBtOzIX3j0psUeDqWB+YW/x\nsgcB/DjesYxVoibss02J9EdjSiQ7vWydRmXg5q6nCZMhT7K11j1QpNaMaadigzB2bcC8A54Q/Waj\nPTP7NqO0MHVSC+I7mr+Aq2s/SP7wtVR7w3+gK7oYEm02bAdfg6enHnJj6TmPOc7v7Iarc8+kxR4t\nJI8PXcaMKwmCeIxl2UC84xmLaTUlIhJKtBmmIm7d9TQy3JRX4R3LMS0uZ8A7PzZtwKwHOvub33AO\nFJZtNEmVk5usAUAg1cE8a/2J2+ZZ6yDRZoNlwggH3CD5Z87KnH4MAESCXvTTH0NfelnMY44FM7Wo\n1FQwP+mKQo1qCEFRlAbA4wDyAFx97L830DQ9EKO4zlZCcMJlBYvy5t6Vl13JXYGfZsJiTXgsj986\n2NdnmLcgPZoxREIRNPz7iFXBW6nKL6+O295yhakMIe/JP1uCIBDyDaJr51Mg+RKIlKYRj2FZBrZD\nr0NfcgkIkg8kYcVPnkAElaFgCYA/xjuWsRjtCHsTgD0YXh7lBmAB8GIsAqJpup2m6TPmmGmannCi\nTTMWnMcjeRN9Gk6S4Um0oy4Uw7AsGhVMVOdCnF0Dnpqn6y2Z5ntM+oz4JetvIpCokbP8Iaiz5qKv\n7r0RHx9wdiPk7UfP4X/Duv8lBId60Vs78nGJRq41z0m2i4+jTdg5NE0/BYChaTpA0/SjAKI6Aom1\nVF3mjOyMGVxFvmlIoTIreryjmxXZ3dfjFF8WnTZgJ4o2fSoOFFU9kJBFm7r3/BNBjx0Ahueoz9XH\n9NhIWqzOQPbS+5Ex/w6Yqm6AUGFAaumlkxFuVOmzKtNTc6qvj3ccYzHahB0+1vqdBQCKogoATKxI\nwyTLTiu7zqjPSapvU050pJkoxebe/lGVWt0bdDlVGRMvGhVw+5ma5w5ah4s2rU3Yok3a/PNgO/ga\nOnc8BVfXfuiKLgQA2A6+ipDvtL0lRFwbhkcdTyCC2liQVPsxRnvq9/8AfAEgk6KotwHMB3BrrIKK\nBZ02vSLeMXDiQypRoJEVjdiU1xsOo8MokqVN8PX66q3O7i1+f0HFRlMi1gERSDUnluFJNFnIXPjd\nMx5jrLjmG48Zzf3JQqY2zSUIQsCy7IRqzkyWUSVsmqY/pihqH4C5GB6V30HTdE9MI4sigiCk1635\n0cx4xzEaLMtgV80bcA31AgSBOTO+hSNHP4U/MDxAHPI6oNNkY1HVDSeOYZgIdta8BrfHDpLgYVbZ\n5dAozfAHhrCr5nUEQ8NloedXXAu5NGEHezEVFo/clPdzm6VP/73ycZfaZSIMGt+vswp9cxVU1eJJ\n66TNGT99dmW+Nq3kMgBvxjuW0RjtKhE1hmt5rMDwPt8PKYr6BU3TUWvBFEvZGTPW5GTMmOjAaVJ0\n9dQBAM5f+D309DfjUMNHWDr7FgBAMOTDpzv+jlmnLaVq6tgJHinABQvvgWuoD18deBEXLb4PB+rf\nR05aFTLN5eixN8Hptk3bhE1INbzh6+Xf7AjP5xePsw3YUK8r0Ph2a39e4V1moUk5rufgTD6hRElo\n04ovQJIk7NGer70IIAzgegC3AJAD+Eesgoq2dGPhQlECXvA5mwxjGebOvBIA4PE6IBRITvyshv4Y\nVM5CiEVfP7MfdPfAnFoEAFDK9fD6XQiGfOgbaIPX78TmnU+izXIABl3B5L2RBCOW6WWe0Def9U6k\nDVjXzlZYKXcAAAAgAElEQVR7+3thd3HFRrNQyiXrZCNVm+YQRHJM0I82YWfTNP0ATdOHaZo+RNP0\nvQCSZk5YrTKUxzuGsSAIEjsOvoK9te8gO60KAOAPDMHW34Tc9NlnPF6rNKO7px4AYB9oRyDoQSQS\ngsc7AKFQihXz7oBUrEZd02eT+j4SSZq5SL21t8//TT//bBxtwML+EA6/eMBC9i5T5M64Pi5NDjgT\nl5JeWirTpM2KdxyjMdqE3UxR1PzjNyiKKgXQFJuQoosgiNRUbcaMeMcxVvMrrsVlyzdiV83rCEdC\n6LDWIDutEmcbCORmzoGAL8J/t/8FnbYjUMh0EAokEAllSEstAQCkGUrQ7+ya7LeRMFQKPdHgx1lr\nY7MsC1oSGVMbMEdLn/vwsy3W3NwNZo2xmGuCkcSkKgNfrjHPH/mR8TfaVSIZALZRFFUDIAJgJoBe\niqLqAbA0TZfEKsCJykorPc9kyFPFO47RaunaB69/EGX5K8AjBSAIEgQI2OxHUVaw8qzH9A92wKDL\nR3XpZegf7EL/YAd4PAH02mxYehuQk16FXkcL1Irpex2MIAiExGdvyntkoN/Drsod1Qj5ZNGmYlFR\n1U1nbgvkJB2CICFVGzPiHcdojDZhr41pFDGkURsLhILkqVqZaZqJHQdfwSfb/wqGZVBdugY8Hh8u\nTx8U0q+Xt9h+8GVUUBdBKUvFNvoF1DZtBo8UYO7MqwAAVSWXYueh13G0fTsEAjEWVt5wtpecNliJ\nlgTOzNk7PQOOlJKSEf9gfQOeEP3WUXtG1q0GaWFq4q3X44ybSKpOio2Ao03YHwB4FsCLNE3bYhdO\n9KnkuqT4RRzH5wmwuPqmM+6/ZOkDZ9y3oOK6E/+9Yt4dZ/xcJtFgxbzvRDfAJCaQaiVhphP8U6Y+\njrcBG6nugfVgp6NvNxkumPlQQq6t5kyMQCxPilVko/3krQYgAfA5RVEfUBR1JUVRo67PEE9SiSIp\nfhGc2DMaC1X7TmvK+2WP1aH+1sxv3IoeCUVQ99oha6i5SlRQcVsql6ynJr5QkkacrRB4ghlVgMcK\nMv2MpuliDC/n+z0AK0VRf6AoKiZlKKNFLEqOb05O7Om16YI9rq835T3Eeoak2rMvDnF1DXhrnq63\nZAwXbeLKGkxhck2ameQJEv5sfFQJm6IoOUVRN1MUtRnAYwD+BmAOgEYAH8cwvgkhCEIuk6q4hM0B\nMNyU1ydSnagCNRjws5acMxdOsyyLti+O9lo2i32JWrSJE11ybbpYbSpcHO84RjLaOexWAO8D+AlN\n01uP30lR1N8ArIpFYNEgk6ryUjRmbn0s5wRGomWG94ABn/ZYes03zfra0pnAkJ9peKO+x2i4Xm8o\nzkrUjkycKOMJRJCpjHnxjmMko/1A3kbT9Lun3kFR1BU0Tb+FBF5BopClpAqFkqTYwcSZHKREKwZ6\nAQANolDo1DZgffXWQctWnz+/PDGLNnFiSyzXJnxzk3MmbIqirgEgAvDTY/VEjhMAeATAWzGMbcIE\nAqEmmZb0cWJPp8tWHrUdZXkEgt555hQFThRtsgl9c2SFlUsmtSEuJ3GQfGHCJ4uRRthKAAswXJZy\n+Sn3hwH8KFZBRQufJ1Tz+Vy/Xc5JxtQ8yZbaNwb5/KDHMH9B2vGiTbmFd5pFpqTZX8WJAYIgE37l\n2zkTNk3TmwBsoihqBU3Tm8/2GIqifkzT9I9jEdxECYViCZn4K3U4k0goEMFByjxOhZ8X3NVqdx5R\norhiY8KfCnNijyB5CX/NYrTL+s6arI9J2LbJQoGYq/HAOcMgTyptY1ge2bNMkTvjBu6iNAfAFBhh\nj1LCXtQT8IWSkR/FmU5aO2qCTUGbKNJpkfe0/t4/xJBBk1CMQpU6JOULkqrtHSe6gv39UenlGUvR\nSNgJ2+OeYZhIvGPgJI6G5q+89TxL6KJfb1I5u9vZXc/+JGJcmkGyerly1/YWl6zXP6T3I6SL8PhG\nnkheptYqdWJxspRK5kyQJ+j/Mt4xjCTh52wmwhcYGop3DJzEUFP3kbtZ6maqb71XRRAE1OnZxAWP\n/lO965k/Oi27DzqLrpghkekUSgbDi/66hvz4cEerj9/c5db54E8JkYQeAkmJUq3KVCgEPC6JTzkM\ni4Qf4E3phO0PeBzhcAh8fsJPTXFiaPehVwa7lSCqb71fdfpoee6tP1B5+vvw+eMbnPqZak/hxSUa\nks+DUC5G+qpiCVZBAgBOAAPhML6q6Q4FD7T0az2MVxcgWB3DE+VKFYoilVoq5k/pP6cpL8QwgXjH\nMJJofMLqovAcMeH3ezp9gSEo+OPq/MSZArbt2eToTZHxZt32wBnJ+jhZih6X/Pp5Vc1rLzi/+s0H\nQ4WrqZBhZvoZHxqSz4ehKkuAqqwUACk+AJ0ADrf344UdbU653T+k9yOsY3h8M18sn6HRqjSihF/a\ne1aucBg/bWvGA5nZMApPXrvf63LiI4cdBIC5SjVWaVPAsiz+aeuGLRgECeBmU9rXjkkWnnDIEe8Y\nRjLaJry5AO4AoMMpFxlpmr6VpukbYxTbhNkdXZ0+vzuikGl48Y6FM/m27Pqj3aHX82fdtuEbk/Wp\nZl59k6rggkvw+a9+ZLfssTgK1xTLZTrFiAv51VkpUGelqACoIgB6ALQ7vXh3R6tX2Nbp1nnh14VJ\nUk8IpKVKjTJdLheQCTylEmFZPG+zQEh+PUaGZfGmvQf/m50HIUHi0dajmK9Soc3nQ5Bh8cOsXNR6\nhvBmXw/uTsuMU/Tj5wwGp0bCxnBH4U8BfIkEvsh4uggTdnh9riEA3I6IaYRhGHyx6/FetymTX33L\nBjUxhm3mEpUGFz/2V13DR+849//1LZ9xtnYgbxVlIPlj+84Xq6TIuLBUCkAKAAMA+oJhbD3UGQof\narFrPYxPHyTZFIYUF8iUigKVWiLiJca44tVeG5ZrtPigv+9r95MEgV/kFIAkCLjCYbAswCcICEgS\nXiYClmXhi0TAT+Avo2/Csizsfl9/vOMYyWgTNkHT9IMxjSQ2nEOeQTe4hD1tRJgwvtz9y96htEKy\ncv192rEk61MVXbRGlb1wGbY/8Tvfnoa9juxV6aShLE098pHfjC/kwzg7R4DZOToA8ABwMwwOtdpZ\n9852p9IRHNL7iXAKQwrSBBJ5mVqrVIsmd2ph2+AAlDweSmXyMxI2MJy097ldeLHHgnKZAiKCRIFE\nihDD4IetR+GJRPCD9KxJjTkanMEgBgKBo/GOYyQEy448YKYo6q8APgHwDk3TSbVWdc359+yonnH+\nvHjHwYm9QNCLXYce73UZioiZ6+/TjzdZn67xkw9dLZs/CckygsH81fkp0hR5zOsdeB0e9G9v8Qg7\nXS69D0FdmCRTCaGsVKVRpslk/FgtNfxVewuOT9d0+H0wCkX4fnoWlGe5oPoPSxeKpDI4I2H4GQbf\n0hswEArh8Y5W/Cw3H/wk2mXc6BwM3LrlsyKWZdviHcu5jFT8icHwFAgB4E4ALEVROHabpWk6Mc7h\nzsHrc7UB4BL2FOceGkB9yxO9LgOFaCZrAChcdbEye+ES7PrbX6xHnu3yaErYgbxVhWOeJhkLqVYG\n6SUzZABkAOAA0BsI4fMDHcHI4Ra7zst4dUESKQxPXChXKvOVKrEwClMqD2flnvjvxztasc5oPpGs\nfZEI/tjVjgcys8EnSIhIEiQBBBgG0mP/v6U8HiJgwRzPGknC6vXYAVjiHcdIRqolcsannqIogqbp\npJnHdg31t8U7Bk5s2fs7Ixb7s/196kJmxrr7jNFM1scJpXIs3rDR1PT5x+6ubfsDB9sabOmL1eLU\nCU6TjAVfJIBpXp4Q8/J0ADAEwMUw2N/Uy3p2dwyo+kNeXYAI6yM8YbpQIi/VaBVK4cRPBna6BhFk\nGCxRa7FApcav2lvBJwiki8SYr1TDxzB42tqFx9pbwLAsrtQbIUyy8rSDgWA7y7LB8RxLUdRGACsx\nXMU0AuBBAPcAeJmm6f9GL8rRT4ksA/ALmqYXUhRVBOBDADfSNL09msHEQl5WxfrrL/+fZwVc1b4p\nqdtWGwhG3nfWRTKYsnX3G8lJuHAX9vuw829/tiLEk0De4slbnZcq1coTarG/1+6GfVvzkMTicev8\nCOrDJE9PimQzVBqVUSolud2bX/d8Y8MLT9bXrhvrcRRFFQP4B03TC4/dngngeQD7AbwS7YQ92ouO\nvwOwDgBomm6gKOpiAC8AmB3NYGKhvbtuc6+93ZtmLOD6PE0xLe07h9Sand6Dg5OXrAGAL5Zg0X0P\nmlq//GyoazuI5je8bklmZzB3FWUkeYkxspTqFMi8vEIOQA4AdgA2fxCb97QH2PpmV4qX9elDJHQs\nT0LJVco8pUrET7JRcTRZvN6WcR7qBJBBUdStAP5D03QNRVGzATwVvehOGu0Iu46m6ZLT7jtI03RF\nLIKKJoIgiCsuvK+uvGR5Ubxj4URPQ/Mng7k5jeFPu9Th0nUbJi1Zny4c9GPX3/5ilYoyJM6hHb60\nRWppaqk5aVYlMQyD/gYr49/T5VS5wh59gIikRHjCLJFUUaLRyuWChDpxiIl+v599cNf28+nBgU/H\nczxFURUYngJZieHFP48CuBQxmBIZ7Qi7gaKoX2N4VA0A12K4AW/CY1mWvXDZbY0AuIQ9RRym37LP\nrnTw3qxXh8vWT97I+mz4QjEW/mCDqW3Hl56hLWleT0264PCBbd15q/NTpRpZwmc7kiShL0kjUZKm\nAaAJYPjKW2OPE69+1eKW2rxDOj+CujCPbySF0jK1Vp0qkUypgliHHf2djc7BrSM/8kwUReUBcNE0\nfdux21UA/gMgJtPFo+7pCOBnAF4GEAKwFcDtsQgoFmx9rXtZlr1sKn3IpqsDtc/3rlwK8fN7xd6y\nm+83JkrN+ez5i2Xp1XNlu5/8c49Ser605c16pzijI5y7MnGmScZCblBBfkWlAsPdpmAHYPEG8d89\nrX40WFw6H+vXh0hCy/IkxQq1MkehFCbrlEqf39cw3guOAGYC+A5FUZfRNB0C0ARgEMMXH6OecEY7\nJbKepunnTrvvbpqm/xLtgGJBrdQXXHvZjw6YDXmyeMfCGb89NX+3XXGJWvX3rSFn2c0PJEyyPl3n\n3h3etk+/GjTlLTZ1tb9qS1uilqYWT83+Y0yYQX+DJeLf2+VUuyMefYBgdBGeKEssU5RotDJpghfE\nYlkWjx868It321sfHe9zUBT1CIBrMLxwhwDwawCXY7i9ouvYw2iapm+aaLznTNgURd2L4b6OdwL4\n+yk/4gO4gabphG8Lf9ylK+/ePrv8wvnxjoMzdgzDYM/hP9rWX5Wp/e1/PY6ymx9M2GR9HBMOY+eT\nf+6Ri7L5BI+VOP2bB/JX56dKkmCaJBpc3QMY3N7ikvcFhlJ8COkjJN/IE8nK1BqVTpw4UypNzkHv\no3t3ze4cGkrYInanGulT3wSgGsPfGqf+Hw4AuDlGMcWEY9CyFwCXsJNMKBzEofrfW++4qdjwi3cH\nesrWP2hK9GQNDFf2W3D3vQbLoX3+po82OzJL7zI1v/negCSzM5SzojApp0nGQpmmgfKqaiUAJYtT\naozvbPXxmy3uFB/r04VIUsfyJaVKtSpToYxLjfEjA46DyZKsgdFPiRTRNN0wCfHETIa5aPV1a370\nnlyqToyvds6IfD43Gtv/Yr1jXbnpf17tsZbd/JCJTMLa5gzDYM+mv/SKSTNPZSxMaaOfsaYt0UzZ\naZKxYMIM7Ee6QsH9FpdmKOLVBUhGx5DiXKlcQak0UkmMp1T+eOTQ715rbtoQ0xeJopGmRN6nafoS\niqJacZYqfTRN557lsIREEAT/igvvO1JespyKdyyckQ26eplex7M9t14/0/TIizZr6c0PmXhJvsTM\nVlsTaHz3o/6sstUGZx8dcAU/H8hfnW+QqGWJf8owyZwd/XDuaHcq7L4hnZ8I6yIk38QXy2eotSqt\nODo1xq1eT+hHe3aupAfHt0IkHkb6oHz72L8vALAawHkAwhje6XiuTuoJh2XZ8MJZaz8vB5ewE12P\nvSkYZt5xfPvGCtNDz1umRLIGAGPpTFFqcZl57zN/7xWEdWRu3oNpza//yy7J7ozknFdomOrTJGOh\nykyBKvPMGuPv7WjzCts63Sk+BPQhktBBICtVqRUZcsWYa4zv6es90uh0Jnwfx1ONdkrkOQBiAC8C\nIDG867GTpul7YxtedJlS8yrWXvCDrcbUHEW8Y+GcXUf3Qa9G+6X7svOLDQ8+12kruXmjcSok69P1\nNtYFG958x55ZcnEqQPDbm56xpC/WynQxnCZxHLDCccAKggCYEANfzxBKH1wEnnh43DZY24vebe0g\nCALqmQbo52WAZVl0v98In80Nkk8ifU0xRFpJrEIcMyYcRu/BrlD4kM2pHYr49EGS1TKkqECmVBae\no8Y4y7L4Tc2B37zT1vrQJIc8IaNN2A00TRedcpsEcOT03Y/J4IIlt3ywcPYVF8c7Ds6ZjrZsdRUU\nNviWz881PPhcp7Xk5odMPMHUrQHDMAz2P7epj/QpYCpcpO/t2O1xB78YnIxpkq73aUhMCqRUmwEA\nLMOC/tMuFNw5C6SAB/rPu5B/ezU8bYNw0nZkri2Gp9OJ3i/bkXP9zFiGNmEMw8DZbmfdOzucyv6g\nR+dHWMeQfDNfopihGa4xvt/eZ//lgX2VVq+nK97xjsVoPxRdFEXl0jR9fL+9HklQivBsWruOvFU9\n88KLxSKutEgiOdL4vmPB7H52dkWuYcMz7daSWx6e0skaGN5lOOuWO/T21qPh2lf+ZcksvlCnl81O\na379Rbs0uyuSs6LAEIvKg95uFwJ9HqRfcnJ2kCAJUPfMBUESCA0FwbIsCB4BT8cglAVaAIAsQwWf\nxR31eKKNJEloclIJTU6qGoA6DMAGoMXhwTs7WjziTrfb3+c8kmzJGhie3hgNFsAhiqL+TVHUGwBq\nAaRSFPUhRVEfxi686Dvauve5+qPbD8c7Ds5JB+tf6Tt/mYucXZGWcv8zbdbimzdO+WR9Kl1OAX/p\nI4+YB1z7nRZ6a2/uzJt0Gt46w6F/1FvstM0Z7dfr/bIdhmU5Z9xPkAScdX1o/NtuyLM1IAU8RAJh\nkKJTxnUkAZZJmurKXyPVypCxeoZM+q0Z2mZB6Hfxjmc8RjvC/vlpt/8U7UAmC8uy4VkzL/xvRemK\nGYmyeH8623f46Z7rrlDJMsxq+YZn2mwlNz9s4idhx+1oqFp3m36gozVS868XLRnUBSlUxQZzz6Gd\nXuu+Ld0FqwuMYpV0wkVTIv4wAnYv5DlnNIUHAKhK9FCV6NHxVh0GDtnAE/HBBCMnH8CyIMjk/rvp\n3tO6o6/O8p94xzEeo0rYNE1viXUgk6ml49DvmtoPXFeQXWWOdyzTFcMw2Hf4L9bbb8rS6FLk4g2b\nWqzFt0zfZH2cJjOHt/SRH5oPvPScvb+bdaYXn5eqZ+dIj772Yp8sp5PNOa8gdSLTJENtg5Dnnpms\nI4EwWl+sQe76CpB8EqSABxCALFMNJ90HdWkqPJ1OiFPlE3l7ced3+SJ9td3PsqO5eJeARnXRcSqa\nU7H6T6vPu+N73Ch78kWYMPYf+YP1nttK9DK5mL9hU7O1+OaHTXxRdNbXThVOSxdz8PkXrOkFK3Uy\ntVHkH3KgvemflvRlKXJdoVE5nufs3dYBgk9APy8DADBQYwMTYpBSbUb/Pgsc+ywgeATEBjnSVhcC\nwLFVIkMAgMy1xRDpkvf6D/3+oa01L+5YxiXsJCOXqXVrVt2zj8qbkxnvWKaTQNCL2qNP2O67o9rA\nF/CIBzY1W4u4ZH1ONa/9q99v9YczSlcaCIJET+t2z1Dky8H8KE2TTBc+hye096kvbrIe6Hg13rGM\n17RdqT/kGbTTLbtfizCRkR/MiYoh7yCaOp6wbfzeHKNAwCMe2NRkK1q/kUvWI5h59Q0pxdddlHp0\n778sQ45unyFngSwn98G0o6+6HC2b6R6WYeIdYlJo/7LxC9vBztfiHcdETNsRNgAQBCFbe+G9uytK\nzku69eTJpn+gK+Lyvtx71/rZpkiEwf2bmmxF6x828sWJswkjGRx+69UBT4crmFW6ykCQPPjcfWxH\n8/PWjGU6eUqhYVzTJNPBUK/Lv3/T1qttNZ3vxTuWiZi2I2wAYFnWQzfv2eQPeKfvt9Yk6LLVBVjy\nzb67b5ljikQYbNjUZKO4ZD0uM664RjPjpssNR/e/bHH3d3gkCj1BVWwwuw7kk0dePmTxu3zcKeNp\nWJZFy6d17yV7sgam+QgbAAiC4K1afPPni2ZfsTjesUxFzR07PRlpB4bWXlxqCAbD2LDpqK1w/SNG\nAZesJ6z2ndcHHLu/EomEIinBEyB1xhXobPqgT5bvYtJnZRk63qgFQQAsC/htQzCdnwdtlRld7zbA\nb/eCIID0S4sgTp3afT2s+9s7al7aucTZ6WiPdywTNa1H2ADAsmykqW3fxi4rbY93LFNNQ/OngyVF\ntd61F5caQqEIHtjUaCtc9zCXrKPEkJOtSSnMlfolaosktdxnr/8Q+RU369Xsdal1rzRZNIvT3Hm3\nVMG0Kg8SswLaajNcxz7mBbdXw3heLqyfNsf5XcRW2B9Cx1dHN02FZA1wCRsA0NJRs2NvzX+eCYUC\n8Q5lyqhpeKt/0Twbs3JxgT4cZrDhKdqWf9PDBoEkeZeEJRpnawP0M2djyUOPmPkZwqCnr5FhImEc\nnyZx7s0jjrx8yNL5bgPSL6VAEARUxXqkXzZcFig46AdPMrUruzZ/Uvtlx1dNj8U7jmjhEvYxB2o3\nP7r70Afb4h3HVHCg9oXeyy4MC+ZWZWrDYQb3P9lgy7txo0EolXGL3qMo4veBd+wLsOiiNSqhUkE2\nHXzF4uxpcgOAKW+RPFW62hxw8fyWmq7e41vKCZJAx7/r0P3RUWhmGuP3BmJsoLXPYTvU+b8sy06Z\neX0uYR/DsmyIbtn7EDc1MjF7av5uu+FKuayUMirDYQYbnmyw5t240SCSyblkHWU8sQQRv//EbQIE\nljz0iJnQ+9jm/W9bI+EQ3JaDyKi6SayMXKs/+HStpb+51w0AmWtLUPT9eeh8pwFMaMrksxPC/hCO\nfnT4qZ7DXZ/HO5Zo4hL2Kdo6D+/Yc+g/T3NTI2PHMAz21PzBetfNGdqczBRZOMzggacabLk3PmTk\nknVsqHIoOOoPAABcbUchMw3vXixcdbFy9t23mFqOvG719rcwEk0WpMpUoqj8AbP9E76g5okdroDb\nx5B8EgQBYAru9qXfP/RJ+9bGcXdCT1TTfpXI6QiCEKxYeNOnS+ZetSTesSSL441y7/1OhUGllJCR\nCIMNf6+35dzwkEEkV069bJAgWJZF0xvPwGPpAAAUXncnhrpaEAkGYJp3HkJDLuz9zSMMIyvsyZ65\n2sQTiMBEQrAdfBVD/UdDpCiCzEsogapYH+d3El2W/e0tta/vuWCgpa8p3rFEG5ewz8JsyMtfMufq\nD0sKFxTEO5Z4YVkWe468hQGXBTySj7kzr4ZClgIA8AXc+Gr/iwCACBOBw9nO3ri2hDh/SS42vXQQ\nXx3qDUoMGcLCa++AzJgez7fBARD2+7Dzb3+yalPKpdq0khMdbbxOG9vR9oI16zyDQpuXOiW6MHn6\n3IGaF3fc1bmz+Z/xjiUWuCmRs7D0NDcdrNt8n6WnyRHvWOKly3YEESaMCxbeg4qii7G/7t0TP5OI\nFFg5/y7MKv0Wq1MP2ovytMQFS3Ox77AVu+oHfFU/fIKfc8l1aPsgaUs2TCl8sQSL7nvIJMkR8Jr2\nvm6NHJvyk6qMRFH5g+bBPdnEkVcOWQJuf1LvcY8Ew2h4e//zUzVZA1zC/kYNzbs/2L7vnceHPAOh\neMcSD70DrTDrhzuS6DRZ6Hd+vTmHzd4c8vhf6AlGWN3t15WDZVm89NWAbcb9vxGJFUrS7+gDXzq1\nN2Qkm5zF58nn3fddU1vD21Z75+GB4/ebcpfIc7I3mOmX+u1tXxztS8YGBSzLov7tA5+0bK6/O96x\nxBKXsM/hcMOWx7/Y+cpL4cj0y9mhUAAC/skNLiRBgmWHB2Ad3Qe9UumH/dUVGcZ0kxKpKVI88Pc6\nW9a1D6ZKVGqSfvnvaP7380itWhiv8DnfgC8UY+G9D5jklEJ4dM+rlnDQBwAgST4KKm9LVYSuSjn0\n9BGL49hqkmTRtoWu6dzRtI5l2Sn9x8rNYY+AIAjReQtu+M/Sedcsi3csk2lf3bvQq7OQaS4HAPz7\n059j7cpHhxvlFjT4Vq8sMjzxzF5csDQHT/3Xaku/5sFUiVJ9YgAQdDtx4PePYtbDvwVPOH3afSWT\ncDCI3U/+uUchKxDqsyq+1tXA0rxlyE/ucuWvLjSK5OKEHtj11HR21L994Mre2u49Yz2WoqiNAFYC\nEACIAHgQwKUArDRNPxXdSCcuoX8RiYBl2cCRxm3rDxz5dFr1gdRrctDd1wAAsA+0Q600orbxA0dV\nZUtw9coiAwC0dAziqY+ttvRrHtRLlGqyZ8+X6Pj0bQAAKRCAIMmkbyc1lfGFQiy4536Dplwvatzz\niiXoHzoxejPnLZVnZ91vpv/Vb2/bcrQ3UadJBtrsjqb/1j4wzmRdDOAymqZX0TS9DMB9AJ7GcA/b\nhMSNsEcpK62kbG7lJa+VUYuL4x3LZDi5SsQKAFDLZY7CvCFRmkktW74gC06XH/f89ItQ5SN/ICUq\nDQ8AIsEgGl/+G4LuQbARBhkr1yCltCqu74MzOkw4jF1P/blHJszmp+ZUp5z6M8+gjelqf8GWucKo\n1ObqE6ZHmKtrwFX31t4HO75qGtdImKIoM4CdAH4M4D80TVsoihIA+CESdITNJewxyM4oq55fteaV\n4vx5+fGOZTLtO/J0z3VrVbKC3OGGfgzDYOOTdTbzVRv0ErWW63gyhVgO7fM3ffipI2vGpUaRRPG1\nM3BL8+duP7nHnb+60CSSi+N66jTU4/LWvr7nf9q/bJxQ93OKoioA3IPhaREPgEcBzACXsKeG/OzK\nRWw1bXEAABJYSURBVPOr1jxfkFOdE+9YYo1hGOw98hfb7TdkqTPMavHx+zY+WWs1X/WAXqLWTu3K\nQdMUwzDYs+kvvSLCxDPmzU35+s/CaDr0bK+62E9kLs7Tx6Mnqs/hCRx+edcv27bSP53I81AUlQeA\npWm65djtKgD/AfASgLpETNjcHPYYNbUd2Lb74Affaek41DXyo5NXhAlj7+HfWb9/W57u1GT98FN1\nNtOVG7hkPYWRJIm5d9yTalxYKG/c/ZIl4HVGTv6Mj8LK21NlvitSDj19xDLQ2ueZzNj8Tl/4yKu7\nn5hosj5mJoC/HJsGAYAmAAMYvviYkLgR9jgV5c+7ZGH15Zuy0kunXLmzQNCLI0efsN1/R7VBLhMR\nwHCyfmRTnc1wxf06qSYl6ZI1G4mAfuVJ+B19YCNhZK68HCll1QCA5rdfgDTVDNOCFV87homE0fjK\nU/DbbSB4fOStXQ95WhZ89h7QL/0NBElAasxAwZW3xuMtTQqGYbD3mb/3CsIppKlgge70n1uaPnP7\neXvdBZcUmoSy2E6TePrc/ro39v6xbQv9SLS6nlMU9QiAawC4MTyA/TWACgC2RBxhcwl7Aory510y\ne+ZFfy7IqcqKdyzRMuQdRHv33233fmeOUSgczsssy+KRp2ptqVfcnyLVpAhGeIqEZNu9BR5LB/Iu\nvwkh7xD2/98jqNrwSzT866/w9dmQsfySMxK2Zdt/4bF0oODq2+HttaLhhT+hasMvUfv0/yF92SVQ\n5RXh6OtPQ1NUDt2MWXF6Z5Ojt7EuWP/GO/as0otTxfKvn10xTBjNh/7ZoyoJkJmLYjNN4uoacNX/\ne/8v2rc1Ph71J08i3JTIBDQ07Xz/q71vXlNTv6Uu3rFEQ/9AV6TPscm64a55J5I1APxwU61Vv/a+\npE3WAKCvmIfsi64avsGyIHg8RAJ+ZF94JQyzFp31GI+tC5riCgCANNWEoHMAYZ8X7s5WqPKGmwBo\ni8sx2Dj1V3ymFpYIFz+80Wx37Byw0F/2nTrQG950822DzLs25dDTR7oHWu1D0XxtR1NvX+2bezdM\n92QNcAl7wlo6anZt3/fvNTv2v7snmc9WTjTKvXWOicc7+bH44aZaq27NvTqZVpe0yRoAeEIReCIx\nwn4f6p79A7IvvgZirR6KzLzhpodnIU/LgqNuP4Dh8qVBjwuRoB+nLtPliSQI+32T8RbijiRJzLrl\nDn3mRbM1jbtftPjc9uCpP5dp0khq5oNp/dtNbO1rNZagxz/hP4je2u7u+rf339m5vekfE32uqYBL\n2FFg6Wlu2rbnzQs/3/Hy5kgkHO9wxqy5Y6dHr/ticP3VlcZTT2d/tOmILeXS76fIUvRJnayP8w/0\no+avP4dh9hKkVs4f8fHGucvBE0lw8E8/Qf/hvZDqTRBI5V+rHx0J+MCfZm3PdDkF/KU//KHZ4drn\n7Kr/ovf0gUpawQpFdub95oYXe/vav2zqG+9AxrK3rYl+9+BN3Xta34pG3FMBl7CjxD3kcGzZ+col\n/936zzcDweQZcTU0fzpYXFjruWJ1meHU+3+06YhNe+kPtDJd6pTYVx50D+LIk48h99LrYZyzdFTH\nuDv+f3t3Gt3UeeYB/P/alizLtqzFtpD3/RoveAFMCFsg4ARI2mambZrQNk0LoW0Cp+mcOWeWTmZI\np1ty0mSmy6TNShZy0tIwYdoE6oYEKJTFxBuy/RqvwrY277JlW5bunQ82GYydoRjL0jXP7xzOQRdL\n9zl8+J/Hj977vs3QZuejeM+/IrZ4FRTRMQhRKBGdlI6BlgYAQF9DDWIycv1ZetBa/tWdcZmfWWto\nOv9Gt3vQMe3Uj8kxySPxavfn9DUv1XX1t/fe0GqSjhNNF5veq73fWm1ZVCfG3Cz60nGeMcZClheW\nP7t25d/u1GtNQd161TUe6t24boStKk3RX339X140W2Pu2WOIijUuirAGgJZD++GsPoOI+IRPrhXu\n/geEhCnQcfR3UEZrP/nSsfHNXyJ9+/0IUYSj4bX/gOgZR4hCiewv7kJErBGjTiua3n4Bks8HtTER\n2ffvQiDWIweTqgP7e7w9kpiUtyl+tv+LrksVQ+PKquHsbYJJObXyaDa+CR+afl/9Udf59p19LY7F\nfaT7HFBg+0l+zpqHSgvK9wXrCpIq8+uOz21TqgpyTZqrrz/xktmm2faYPipuyaIJa7IwBrs7xerX\nXrMlZW02ROpM4df+u+j1oLn2Zbu2wBuasiYz9tpgH3EMjTW+W72/9YP6vZIkea59P6HA9qtkk5Cf\nl7Pm17eV3Ht7aGjwLF2+UPe87StfNEanpximbVj9xEsXrdFb9xii4ymsydzV/ubN3jHrmDc5f7OR\nsZlTV1dvp6+764AtrTxRp00xqAHAXtfZ2Xas4UnL6eYXFrxgGaHA9jPGWERZ8fbn15V9/kuaKENA\ng1AURVTW/af12w9nGYxxmmm1/NvLZlvk3Y/qouNndkaE3CiXo1uqevlVa0LmRn2UPkk12890Nv1x\ncCK8eiRULXV1n2/b7WywVi10nXJDgb1ACnPX711ZtPUf05IKAvJk5ITXg+qGZ63f2VVk1Maop7U9\nFNbEX+reebt/pGPQk1pQbmQh0/cJG3X1jDefO3iwo+bIY5IkDQSoRFmhwF5AmalFq7PTVzyzsmjb\nakXYwjXbo2PD4O0/t/7d7pUmlWr6Cr19r5ht6vJv6aKNiRTWxC9Gep248OKL3ab09THRhpRIALC3\nnG/rrP/wR91Np2gEcgMosBcYY0xZWrDlB8sL73o4yZRjuP47bs7AkEOy975i37uzbElY2PQO58lX\nzDbVlm/qNEuSKKyJ39UfPtg/2OQY94y6PrY1n9sz5GxrDXRNckOBHSAZKctWZ6cvf6qsaPtahcI/\neWnvaZ2YEA/17NqxwhRyzckv33/VbA2/c7dOY0qedb5IyHy7XHnK0vjH//5Fx6ljT8/X5k23Ggrs\nAGKMKUryN+8rLdyyMyVhadx8fralq3pUqzs5+MB9RTNm5v++v96u2LgrJiYhhcKa+N3oQJ/XfPit\n9yxnTz7e29Y0p65aEIQNAL7JOX9g6vXnATwBYBuArQC+DEAEEAbge5zz4/NTfXAJnrVmt6CpE57/\nKS0p/53s9BVPlxVvvyNcGXHd913PpfYTruzMRvf2zbOFtdmm2PgIhTXxO0kU0Xbqg+a2Ux8813ay\n4pfz0FVLACAIwgMAvgtgE4A7MXlazEbOuSgIQhqA44IglHDO+27yfkGHOuwgwRgLK8xd/93czFU7\n83LWZIfMsn71r2G+9F7/bcsdvvWrM2bsXfzD/WZ76B2PxMQkUlgT/7I31PQ0f3jkYPvpY//s7nPe\ndHBe6bAB/AGTR3pt4ZwPCYJwDMDjnPOaq35Wxznvv9l7BiPqsIOEJEleAE+pwiN/1dFp/kFh7vov\npCTmxd/IZ9Q0vO28+06forRwZlj/6HWzLWTDLgpr4lcuW9cYrzj8flfVmX2Oxrqa67/jhqwDkABA\nB+DKcqcEANPGLIs1rAEK7KAzNj4yCOCxBGPWf+Wkr9hXnL9pm15ruu6c5ELdS/Yv3RcTmZNpmnGq\n9U9er7extTs12qTUm5+3EDILj3sY/Oi7p7qqzjxzufLUIT/dphvAFgC7ALwpCMJWAO0AkgF8sie9\nIAjlAGo453Y/1REwNBIJctnpy+/NTC3++9KC8rWqcPWMTXNmOyj3ak+9UW8X13wjWpucFtQbURF5\nEn0+tJ44yi1nT7zQerLiOUmS/HIe4tRIZDfn/MGp1+8COA/gEoD7AOzgnPsEQcgBUAFgOee8xx+1\nBBJ12EHuUtuF/2GMvddlbXo0I7X4a4W560uUislc9oleXKh7zrp3Z16sQR81Y8/qp96ot4u3PxxF\nYU3mmyRJ6LxwurvjzPGDje//7nuSJLkWuIRvAPgYwFcA/AXAnwVB8GByy+gdizGsAeqwZYUxpigQ\n1u3JSCn6spBRVsLbfmV7fHeJMTpq5uGnTx+ot3tv+1qULiUzcrbPImQuRJ8PlrPH27qqz71rOXvi\nx8NO26IbOwQz6rBlZGoZ4E8ZYz/Lycj64T1bkrYwxmYs3XvmQIPdu+ohCmsyb3wTHrSerGi01lYe\naj997Mfjw66hQNd0K6IOW8YYY2Ebb8/aWbIs+cHyDcLqWH1U2E/farCPl301SpeaRWFNbtrEqBst\nJ45WW2srf9vy0ZFnJUmSz3FKixAF9iLAGGOrSlP/Rhurf3R06b3FOeWf1QW6JiJvY65BseWjI+es\ntZUH2k8fe37qtzsSYBTYi0xs1tKihGUrvm3MK74rpWxtakjYojg/lywASZJgM1f12eurj9vM1e90\nVp46IEmSGOi6yP+hwF6kGGOazDu27jXmFd2TUrauNCpuCSU3mdXoQL/Y8ZcPq52X6v/U+fHpXww7\nbJZA10RmR4EdIIIgpAKoBXABAMPkPgnHAFgAPDR1TQHgSc55xVzvwxhj8bnLNpsKS7+gS81cn7Jq\nvaBUz3i2htxiJFFEV/U5u4PXfWSru/Db7przh6ibDn60SiSwzJzzTVdeCIKgwWSAL+WcewVBWALg\nHICUud5gasOdCgAVjDFlUunqB435xVsNmbnrkkpWmWhkcmsZdtq9lrPHK3uaGyosZ0/8fHSw3xHo\nmshfjwI7sK5dPz2Oya76W4Ig/IFz3ioIQuZ83WzqJOpXAbzKGNNmrC/fHZdTsMmYV3RbXE6+5tpT\nrMniMNhlGbfWVtYOdlvO2OurDzsa6z6g/ajliUYiAfIpI5EdACIAPA7gLkyG908458/7sxZtcppg\nKlj+dV1aVpk+LavYmFekDQmiU97JjZEkCb2tfMTZeLGq39J6xmb++Dd9bZcqKaTljwI7QKYC+y3O\n+e1XXTMB0HPOzVOvswAcBfCZK9f8TaXRLkkoWrnDkJFTFmVMLE0sWZUZEaOj1jvISaIIe0PtQG9L\nY2Vf26UzNnPVmwOd7Y2BrovML2qjAuvaIFwC4GVBENZxzocBXAbgBOBZqILGhgZsAJ4BJh+FN+YV\nb40XCrZoTMmlsdlLl8Vm50XR6CTwJEmCy9o5YW+oaXH399T1tTXXdNec2+/u6+kMdG3EfyiwA2va\nrzec8ypBEH4G4IQgCG4AoQBe5JxfCkhxkw9LHJ76g+h4U9aSgtL79enZJaoY/dLYTCFDl5qpYiFz\nO2yB3BiXrctrq69pcfc56wYut110NpnfH7C0VtLqjlsHjUTInDDGmNoQnxMvFGzXpWUuVevjhKg4\nk2DMWxZPywZvniRJcNm7vY76mtaRPufFwc6OOmfTxSP9HS3nKKBvXRTYZN4wxjTG/JK7DRk5y6ON\nCbkRWn2uITM3PSYhWUHLBz+d6J1Av6V1rL+9xTI+PNTm7u9pHeq+3Nrb2nRyqNtS6a89pon8UGAT\nv2GMhahidDmGjJx1moSU9MhYY3J4tCZZqY5K1qakJ2iT0lShCmWgy1xQnhEXelr4gMve1T7uGmpz\n9zpaBi63NTub6v807hpspZUc5P9DgU0WHGMsRBGhTo3Lyd8Qk5iaoTbEpYRHxyQrIiITw6M1uuh4\nkz4yNj5MoY6C3L7g9HrGMWy3ege7Lb2e4SH7xKjb4XEP28eGBuzuvh77sMPa7GioPS5JUm+gayXy\nQ4FNggpjTB2mikjUp2UVRGgNaRE6g16l0eoV6shYhSpCHxau0ocqww1qfawuXBOjVqjUYQpVBMIi\n1AhVKP0S8F7PODzDLnhGXOLoQN/Q6EDfsG9iYkj0eoZ8Hs+Qd3ysf9w1aB/pdTqGnTZLf0fLhfGh\ngVZJksbmvRhyS6PAJrLDJlPZAEATFW/SqzTa2DCVKjZMqYpRqCNVYaoIVVi4KiJUqYwIVSjDQ5Xh\nKsaYAoBPkiQRoihKkCSIkihJkihJog/S1N9F0SeJouT1jLkn3G63Z8Q1MuEe6R9zDVqHuizdos/r\nBDBAX/yRQKDAJoQQmaAFtIQQIhMU2IQQIhMU2IQQIhP0aDohc/Apuy1+CGATAC2ABABXNuy6k3NO\nXxaRm0aBTcjcTTuAYsr3BUHYAGA35/zBQBRFFi8aiRAyd/J6qofIHnXYhMxdniAIx3DVARScc2uA\nayKLGAU2IXM320iEEL+hkQghc0cjEbKgKLAJmTta+UEWFD2aTgghMkEdNiGEyAQFNiGEyAQFNiGE\nyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQF\nNiGEyAQFNiGEyAQFNiGEyAQFNiGEyAQFNiGEyMT/Ah7xiz6DVR6HAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b2ab2b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 速球系を中心に打ち込んでいる、2016年は?\n", "pitch_types_2016.plot.pie(autopct='%.2f')\n" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 多少変化球を打ってる以外変わらないかも...次はアウトになった時の変化球をみる\n", "query_outs = QUERY_TEMPLATE.format(','.join(['2']))\n", "votto_pitchfx_2015_outs = votto_pitchfx_2015.query(query_outs)\n", "votto_pitchfx_2016_outs = votto_pitchfx_2016.query(query_outs)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# アウトの傾向を探ってみる. ヒットに仕留めた変化球ごとに集計してみる\n", "pitch_types_2015_outs = votto_pitchfx_2015_outs.pitch_type.groupby(votto_pitchfx_2015_outs.pitch_type).count()\n", "pitch_types_2016_outs = votto_pitchfx_2016_outs.pitch_type.groupby(votto_pitchfx_2016_outs.pitch_type).count()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x10a1ee208>" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADtCAYAAACbBE9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8W9XdP/DPvdrbkiVvW97XI7Gd6ew9CKtQyt6r0Bba\nPg+l7a/jgQ46nqeLLlahtGWUQgkECCUJKwlZZDqx4+u9ZVvDtiRr697fH3Z2nDi2pCvZ5/16dej6\nSvrKkb86+t7zPYfieR4EQRBE/KOFDoAgCIIYH5KwCYIgEgRJ2ARBEAmCJGyCIIgEQRI2QRBEgiAJ\nmyAIIkGQhE0QBJEgSMImCIJIECRhEwRBJAiSsAmCIBIESdgEQRAJgiRsgiCIBEESNkEQRIIgCZsg\nCCJBkIRNEASRIEjCJgiCSBBioQMgph+GYcwAagAcAEAB4AF8BOBFAL8GYAKgGP35f7EsGxQmUoKI\nLyRhE0KpZVl21YkbDMPQAD4H8ADLsvtHj/0WwI8AfE+YEAkivpCETQiFOuv2EgAdJ5L1qO9gGpbt\nGIYpB/BLAEoAKgCbAfwNwKssyy487bwHAKSyLPtjQQIlYo4kbEIoZQzDfIRTJZHnALScfgLLsgEh\nAhMSwzA6AK8CuIZl2RaGYSgArwNYj5HfEzGNTbvRCxE3almWXcWy7MrR0kgbgJzTT2AYxsAwzJWC\nRCecLwD4kGXZFgBgWZYHcAdGavzENEcSNiGUs0siewDkMgwzFwBGR5aPY6RUMp1k4NxvGh4AY33b\nIKPuaYQkbEIoZySa0ZHk9QB+xDDMxwD2jv7oB7EOTGDtOPebRi4AMwDZWeeqAXhjExYRDyieJx/Q\nBBEvGIbRAPgMp2rYEgCvAdgK4L8AfIFl2eMMw4gAvAfg5yzLfipcxEQskYRNEHGGYZhZAH6FkbKR\nBsAmlmV/wjDM4tHjYQASAG+zLPsz4SIlYo0kbIIgiARBatgEQRAJgszDJqYciqLEGLlAJx39XxkA\nWZJUptRJpWq5SKSW0rSaB7gAx7l9oZDL7ve5hkMhLwAfAD8ANwA/T76CEnGElESIuEVRlAhAqlmt\nKTIpFKXJMplBK5FqVRKJTi4SaWUikU5Ki3QSmtaKaUpGgZLQFCUWU5REJhKJpSKRRErTEplIJJHS\nIomEpikJTUNC05CKaPA8EOA4BLkwghwHf5gLB7hw4O3+LrvjqgJpyB/y8WHOw3O8lwtzXj7MecPB\nsDvkCzoCbr/NP+S1ex3uXne/86jXPtwGYIAkeCKaSMImBEVRlMqs1swyazTzM5WqbL1MlqkQi40y\nWpSsEIsMqQqlIUWhUOplcoios6duR8efLE1toUcW5Y7n3HAwDN/AMD9sdQ35BjyOcDDsCPmDtpAv\naA96Ag6/02vzOob7hjocO32DHpbn+VCUwyemMJKwiZigKEpfpNPNN6s1VWkKZbZeJstWSyRZBpk8\nq1CrMxnlcoqKUUK+mP+zNnVIv7Eo5+Jnjg8XCsPd5ww6uxy9AZe/MzDs7/QODHe6e52tg222T32D\nnnqe58ORej5i6iIJm4goiqIog0xWWK43XJ6r0ZYky2RmlUSSlSJXZOVrdXq97Ozej/jzY0dTl+6h\nRVnRfh6e4+CyDAUH2+2dAbev1T/kbXX3DrUOdTp2D3U49vA8T5piiDOQhE1MCkVR8mKt7vIyvWFO\nhkpVopfKmCJdUn6eVquIVQkj0r7rbupL//KiVKGe3zvo4R2NfT0eu7tuuM95bKDFutvG9r7H87xH\nqJiI+EASNnFJKIpS5mSUbshIK1qk16WW6zSmclvnIfrxbEWG0LFFQojj8CjXPpB7R7Ve6FhOCHr8\nsB639His7lp3/2gCr7ds5nl+WOjYiNgiCZu4IIqiqPSUgmXmzLKrDUnpM3VaU7k5szxDIVefPMfq\n6PSqjr4cvCozTStgqBFh83nxC7PHm726VCF0LGMZTeAWj81dO9zvPOZose6xHbe8SxL41EcSNnEO\niqJEORmlV+Rklm9I1mcsyM+pKE/SpkgudJ/dO1/s+kEaol73jbb6wYHAK2uSpMnFglVELlnQE4D1\neI/F3Tt0YKDVtqfvaNfffIOeLqHjIiKPJGwCAEBRlKzAXHV9dnrJaoM+o7rQPItRKXXj7oQddFoD\ngf1/8dyck54UzTij7RNL99DnD5bppKr4vzh6PjzHw97YNzTYZjsw1GHf11/X86qrZ7BG6LiIyCAJ\nexqjKErN5M+/PSu9eJkhKWN+Ye7sfLlMOeHH27375e7vJfszaTpxVzzY1NVubf32PJPQcUQCz/HY\n/9Rei1pa3eK0tu1ydNf9w2XrOCp0XMTEkYQ9zVAUpSorWnx/ZlrRMlNy9vz8nMpMiVgakcd2ewbD\n1s/+NHhfXmZyRB5QAP/qau22fLs6U+g4IqHpP8d79aJbUpW6VIrnebhs7R57V+2Bof7mT/pb9v/R\n7xnqFzpG4tKQtUSmifSU/Fn5OVUP3Hjld9cW58/LF4svWJKeELUySVSbVBwIcC5IE3SU7aG4KdHA\nYm/sc8I+U6EsSqUAgKIoaE25Sq0pdynPc0ttHUcfYBbf+qmjq/ZNW8eR10njTmIgI+wpjKIoSXH+\nvLtys2Z8scBctSTNlKe++L0mxx/woOWT3/U/lJ+REu3nioY/W5raguNsS49XgWEfV/ePLisz+6GL\nXjkNeJ18b/O+mqHepo/sXceedtk7G2IRIzExJGFPQYak9NwC86yvZ2cw60oLF5TLpBOvS0/EgUPv\n9H5VZklTSyNTaomlX/U3tku+udgsdBwTxfM8av522FJY8mg6TY//CzTP8xjsbRxydNXutHfVvtHf\nuv8fZNQdf0jCniIoiqLzcyq/mJs986a8rBkrszNKDUKtzREMBVD70W96H8lPSxMkgEn4sb2xS/fw\n4oSdntj6cUOfynetUZOcLZroYwR8bt7C7tzv6K7b2F2//UnSYRk/SMJOcBRFaarKVn0rK53ZUFa0\naLZKqZvwH2okHTm2tf9ONKcky+VCh3JJvudq6kt9QLi29MkYaLO5rTuSgtnMlRHp0gyHguht2tNg\n7zr2bn/L/v/zumy9kXhcYuJIwk5QFEUpqspWfbcob85NpUWLikV0XOTpk8JcGAe3/dry3fyUdKFj\nGS+O5/GtYOuA+a4FcdOWPl4hXxBHX2y2lMz+ZsR/3zzPw9Z+2GLrPPa+rf3Q7wf7mo9E+jmI8SEJ\nO8FQFCWdWbLsvwtzZ982g1laLhZFfrZHpNQ17LR/wXNIn6PWJMSUkQG/H0+kDQ1nb5ihEjqWS1Xz\n0qGegvxHMugITdEcy1Bf85Clcfd71vZDTwz2NtVF9cmIc5CEnSAoihKXFS3+alHu7Ltnliyrkkji\nvxOP53ns3fbb7u/nGRJiXnPj0GDob8vVYlNZYq1j1fFZs1XsWKPVpzIxe1MM9LB2S+OuTf2tB3/s\nsne0xep5pzuSsOMcRVF0SUH1vQXmWfdVlq2YH+sZH5PV1HpgYIl9h6o8KSnup4zs6LU4d91XpJVr\nE+d37Owe8HZvkXhyy78U82Ylnudh7zxq6W3as7Gn4bPH/MODtljHMN2QhB2nKIqiivPm3Vpgrnyg\nsmzVIoVcnRBlhbPxPI89H/2x+wdmTdyPst/pare1fHueUeg4xiscDKPm+eOWktnfEvQ6Ac/z6Gv5\nvL2/Zf/rHUe3/IjnebeQ8UxlJGHHoaK8OVfk51T+d2XZymVqZVLCd6N2dNc5Szs3SxYYjXG7ZCkA\nvN7V2tPz7eqEqYfUvnbEkpP5cLo4Tr518VwY3fU7anubdj/Z27T3L2RD4shL+GQwlSRpU1LKihb+\nesOK+681GjIT7sLXWHIyy7RbGz/tWoD4Xn7VSyXOBrndn7fZtJLL9PGSrAGAokXIKltRbsqt+rPW\nlH+tIaPk+46e+kNCxzWVJOTX7KmGoihqBrP065etuPez9cvvvW0qJesT8srW67da+uL6q7KH5jih\nYxgPd7/TP3BEzRuzKuNykrtMmSQuXnjjhrLl92wxV6x/kqKoKfd+FgoZYQvMnFU+a9WiW38xr/Ly\nNUpFYkx/m4j0lHzVLja5ay0Q9fVMJspD81R8zWY/FxcKo2Fjq6N01nfifn67PoMx6tIKv67PYFam\nFS74TV/z3r+RMsnkkBq2QCiKEleWrXxszsz1XzZnliXkQkmXyj7Q7Rcf+Yf/i1nxuZXYE/amTvXD\ni7KFjuNCjr95tDcj+cE0qUIjdCiXxDc8EGw9sGlTD7vzqx5nP1nWdYKm7Igunpkzy2avWXLH1itX\nf+UH0yVZA0CyPlNWK05zcXFaefBIEL9dSAD6jnQNKMJLNYmWrAFArtJLSpbecV3J0ts/TS9acLPQ\n8SQqkrBjiKIoUVXZqh+tWXrH5qXzv7RCKonLEmRUzai8KuWlTotD6DjOxvM8vFIqbueKewaGg317\nqWCqeUHC1oMpikJmybKS0mV3/SVv1hUvkNr2pSM17BhJT8nPW7Xo1r8smH31Kpk0rme3RZVWkyyp\nU+X5QpwP4jja5MAVDIIyqeIyYfMcD/aNBltxRfzXrcdDlZSuLF9x790ao7kyJW/O/+tvPbBF6JgS\nRfz8xUxhxfnzNiydf/37yxfcOK2T9QkVlVelPd/eaxU6jtPZfd6wNFsXlyO+xs11vbkF96cl8l6Z\nZ6NoEcwV62eXLr39tZwZa35JUdTUeXFRREbYUURRFFVRsvzRlQtv/nZmWlHC7nMYaUqFhnbombAv\nNAC5OD7egn0+r1eblR53M1isxy2DYtccpTzFKMzi5lGmNeUlla+891GpUlcqVyff6XPbB4SOKZ6R\nT7UooShKNq/y8hfWLb/7pyRZn6uq8oq0pzv6+4SO4wR7wO+XG+KnCQUA/C5vuPtTrz+9YEVczqqJ\nFLFUSZUsuf2q4gU3bDNmz5wndDzxLD6GN1NMRmpB7urFt/110dxrV8Tz8qdCkkrkCKZWwhXohmYc\nW4m9Z7fisNsJjgdW6Q1YrDu1ZPV+5xDed9hAAajWJmGtIRkcz+PF3m70BgKgAdyeloFM2dgXeX08\nF4inkgPP8zj+r/r+oqqpUbe+GIqiYK68bLZKn/FmRvHi/+lp+OyvQscUj0jCjjAmf966JfOue3IG\ns7RE6FjiXcWMdalPf/hry6P5aRdMSqxnGM1eD75vLoCf4/C+/VT5m+N5/NvWh8dyCyClaPygtREL\ndTo0ejygQOF75nywnmG8ae3Dw1ljb9XoibO29JatbF9W1p2p8fQhEgvGnIoshdb0h5wZayo6az/8\nVqT3lWQYphzALwEoAagAbAbwNwCvsiy78LTzHgCQyrLsjyP5/JNFEnYEVZQu/9aKhTd/JzOtKGFW\nfBOSWCSBJGu+uM9Tz6cqlWPWaI8Nu5Apk+MPXe3wcRxuSDm1VSRNUXgirwg0RcEZCoHnATFFYZZG\ni0r1yHxlWzAApejCPYwemr/g5PC+7W1wsjbwHA9jdRYMVac+YwZr+9G/sx0URSGpIhWmBdngOR5d\nm+rhs3lAUUDWVSWQp4zvmqajqd/F9TEyFZMxvbL1KFVSuqp85X3flMjVeRRF3czzvDcSj8swjA7A\nqwCuYVm2hWEYCsDrANYDSIgOwmn5hog0iqLE8ysvf3798nueIMn60pSXLDc93zdsudA5rlAY7T4v\nvpqZg9vTMvBMT+cZP6cpCgdcTjzW1gRGqYJsdMIBTVF43tKFV/osWKBNumAcXtHYf6/u1gF4upwo\nun8uCu6ejYDjVP7gOR6921pQcNcsFN43B/Z93Qh5gnCyI0tDF903B2mr8mHZ1nzhX8SogMfPt28d\nGM5iNlw44ClOLFWgZOkdXyhacMO7cnVypLZs+wKAD1mWbQEAlmV5AHcA+AhAQlzUJSPsSaIoSjy/\n6opX1i27+3pJlLdnmopoWgRd7hJZq2t/OE+jOe8wWC0SIUMmg4iikCaVQULRcIVC0Jw2w2SORos5\nGi3+0tOFXc7BkzXue9OzcL0phJ+0NeOJ/CJIxygxeMQYs4vD1eSAPEWF1ldqwPnDSF9fePJnFE2B\nebgaFE0h6A6A53lQIgq6UhO0zMhnd2DQB5Hi4n9qPM+j/vW63uJZj06LuvXF0LQIxQtvXiWWKt/T\nJGfd4LJ3dU3yITMAtJx+gGVZD8MwAQBlDMN8NHqYApAO4JVJPl/EkRH2JFAUJa6uuvJlkqwnhylc\nkPyyPTTmjtxFShWODo8s9DcQDCLAcVCPlji84TB+0d6C0GhFQ0bToADsGhrAe6O1bglFgaYuPITy\niPkxrw6HPEF4e1zIvXEGsq5i0PFG7Rk/p2gKQ3VWNDy1D+pcPWip6OTxjo116H6/EfqKtPM99Bna\ntzf3p5huNNI0GUedQFEUCuZeszB/zjWbDBklZZN8uHYAOacfYBgmd/RYLcuyq0b/sxLAbyf5XFFB\nEvYEjY6sX1679M4bSLKeHIqikFq0QlXjGPCf7+eVag1yZHL8pK0Zf+juwG1pGdjrGsL2QQcUIhEW\n6ZLwi/ZW/KK9BRSAhdokzNXo0OHz4hftLfhtVztuTk2HZIzRNc/z8EnoMf8RxUoJNIUGUCIaMqMS\nlJhGaDhwxjm6MhPKH10CPsxh4PCpz56ca8tQ8vUF6Hy7Hlxw7OtnQ52OYV9rllhnzCfTis4jZ+ba\nWXmzr/63yVy58OJnj+ldAOsZhskHAIZhJAB+A2BGJGKMBfJRPgGjNeuX1i2964ZE2Aw3EeSbZyW9\n3fJZV4Xh/JscXJ8y9gh1WZIBy5IMZxyTUhS+kpkzxj3O5AmFwBvkYyZsVY4O1j1dMC3KQdDpBxcM\nQ6QcyathfwitL9Ug/84q0GIatEQEUIDjsAVBpx+py3JBi2lQFDDyX+cKB0Joec/iLJn9CCmFXEAG\ns7hELJW/YsqtusvadvjTS70/y7IuhmHuBPDc6AVHDYBNAN4HcHuEw40KsrzqJRodWb+0buldN5Jk\nHVldPfXugrZ36CUppph2sHS4XNyf54j49Lm5Y04l6dnSBHfrAMAD6WsKEPIEwAU5JM/JgP1ADxwH\nekCJKMhT1ci8ohh8iEPHxuMIuQLgOR6py8wna9pnO/rKYUtu7n+ni8k3tXHpbd7X3HrwnVttHTV7\nhY4l1kjCvgSjyfof65bedRNJ1tGx69Nnun6YKYvpVmKfW/vdW27MVqvTdLF8WgBA155WK9W/XGtI\nKyNvqEtgadjFthx850ZHd90RoWOJJVLDHqfRMsg/1pJkHVUFZZcZ3rf0umL5nDa/L6BMif0a0y7L\nkM9Zp6dIsr506cWLmJyZa/+hS8nPEzqWWCIJexwoiqLnV13x97XL7r5JSpJ1VKWazMr9VMpQLJ/T\nw4dj3pbOhcJo3NQxkDfjJjJvf4Kyy1fNzCpf+apcbTBc/OypgSTscagqX/3E6sW3k2QdI6UzLje9\n3tkzGKvn81JcMFbPdUL9W7WWgtKvkYuMk5Q366rqnJnrXqcoalr8cZKEfRFlRQuvXzz32q/KZWO3\nThORpU9Kk7Gy7OFYbSXmpRDTPcssBzvsamqNTiqPr9UBExFFUSiq/tIqc+VlzwgdSyyQhH0BWWnF\nRVVlq3+ekpwzpZe3jEczKq9M/VtHbLYS81ygLT3Shm2ugO2AjDNlzybZOkJokQRFC268JbN0+beE\njiXaSMIeA0VR8tKihc+XFFYXCB3LdKRR6cU9mkJfMAajbK84NutI8ByHhjebbYWVd5pi8XzTiVyl\nl+TNuvI7qflz1wodSzSRhD2G+ZWX/3nRnGuWCh3HdFZZeUX6c+2WqG8l5pHEpoGs4Z06S27xgxmx\neK7pSJ9ebMwsXf6kJjkrptNCY4kk7POoKFn+9aXV198qEpFGUCEp5GrKaSgPeULRXaraK4n+bun9\ntT0DUv8ijVw5rRfhi7oMZmlpBrPsRYqipmSLf0JkJIZhzABqABzAyBo+PICPAfwAwGenHatjWfah\nyTxXgblq6cqFt3xPq04mbWdxoKpiQ/ozH/+677/yM1Kj8fi+UAhh7Ti2vJkE75An1LszFCiatShS\ny4QSY6AoCgXzvrja57b9L4D/EjqeSEuIhD2qlmXZVacfYBjmK2cfmwxDUppx2fwb/piTWRqV5EBc\nOolEBi5tNgb8bdBfYIuviXL4/ZAU6aJ2AZDneLBvsNaiyumx1Vc8EIklMFduuNNkrtpkbT/8sdDx\nRFIilUTOd2EooheLyooWPz1rxpqKSD4mMXkzy9ekPtc9dMFNDiaq3+fxqLIMURu4NH1Q35dtvjdt\num31JTRdSr4+NX/uz6fa/OxEGmGfWGD8RPnjNgCGs449wrLsoYk8eElB9S2Xr3rgSmqMFdUI4YhE\nYsiyqyU9nlo+Q6mK6D9Qn8/n16RrozLCtjf2OamBCrmyMIW8qQRgrrys2mXv/AWmUGkkkRL2+Uoi\n9kiURCiKUl699mvfTtKaptSn8VRSVrLM+Ndt+3u+n6eK6CwLDx8O0OLI/xn43T6u80O3h5m9+uI7\nFxBRQYskMFesv8Nkrnrb2n74E6HjiYRE+p4WtZLInJnrf15VtroyEo9FRAdN0TDkL5M3Dg1FdMqI\nD5HfLZ3nedS/cbyvqOpBkqwFpkstMKSMlEamxCSCRErY52tHm3SLmjmzbPas8tW3kCl88a8of57h\ntUH0RfIxPRQX8YTd+nFjX3rq7Sk0feGd2onYMM9ctyCzdPmjQscRCQmRpViWbQew6DzHJ/31ON9c\n9Vh2RglZMS0BUBSF9KKV6oOWbf7ZyYaIlK88osguCD/QanWHugukGiZL8GztHeiArX4zshc+CMvB\nlxHyuwHwCHoGoNCbkT77lpPnDnXuh7NrPwAKfDgIv9OC/LU/RNDjgLX2bYCiQdFipFXdCLFMLdhr\nmgiRRIbU/Hl3SuTqPwR9bqfQ8UxGQiTsaCnKm3Ptlau/sl7oOIjxy82p0G1u3tk1O/n8W4ldKo8I\ndKQmC4Z8QbR9YHeVzL5d8Cl8juZP4Ow6CFo88rmWPvtWAEA46EXX7mdgKr/6jPN12XOhy54LAOg7\n+hZ0OfMhksjRU7sJKTOugUybjsH2PRho/himsqti+2IiIL1oYZGto+ZHSPALkIlUEokoiqLoAnPV\nf+l1qeRCY4Ixl65N+qTPOhyJx/KIEbGRcN0bx3qKK74qeLIGAInSiIy5d55z3M5uQVLe4jFHyb7B\nTgTcfdDlzAcApM+5FTLt6EviOVB0YjYQUrQI6UULr1frM8a30WecmrYJu6xo0Vdnla9ZInQcxKXL\nSCtS7wjpBiLxWF4JIpKBOnY2W01J1xnpONmXUZM+AxR15p93yO+Gx94MbdbcMe/naPoYycVrTt4W\ny0Z24vE62jDYthv6/MRdXsdorspMLZj/uNBxTMa0TNgURYkKzFX3KORqMj82QRXN3JD8TnfvpOqR\n/nAYIfXkd6Vwdg94hhvT6KSU4vjI1mNwW45Cm1mFsXoNwkEvAsM2KJPPXKDS1XMY/cc2InP+PRBJ\nVbEINSooikJGydJrktKKZgkdy0RNy4RdlDfn1vLiJVVCx0FMnMmQrTgsSp1Uwh4M+CHK1E6qhB0O\nhND8Ts9Qbvl1yZN5nKg57Zqqx9YIpalkzFO9jlYojYVnHHN2HcRg225kLXwQEmXiL4WSlFqoN2bP\n/JrQcUzUtEzY5szyG8joOvGVVVyZ8mqHZcJbiVm9Xp8qZ3KzTeo31loKZ8RH3fq8ThtNB4ZtkCjP\n3P6w9/BrCHpHfoUBt/WMn/M8h/7aTeBCfvTs/xs6dz8De8PW2MQdRYbMsnViaWJ++lB8ZGc1xb00\nU17FNeu/sTMjtSD222QTEbdr90vd308OZE5krY5tPV2DRx6uSBLLJjZZqmtfm43vXqQ2ZlZEflUq\nImp4LowjW//0k85jH/6P0LFcqmk3ws7PqfwKSdZTR0XllWkvtFvsE7nvMBfyTzRZu/ud/qEaDU+S\ndeKhaBH06cwVFEUJPlf+Uk2redgURalvuPI764SOYzw4Low9R/4Ft9cBjgtjRtFqtHUfgs/vAgC4\nPQ4Y9blYMjq/9nQ+vwvv73gSqxc8AK3ahCFXL/Ye/TcAQKMyYkHF9efMIEhUamWSqFZXFAhwbkgv\ncZTtmWBbOhcKo2Fjq6N0FlkyNVGlFy+e1de891YAfxc6lksxroTNMIwewP8CKABww+j/f4Rl2YhM\nrYqVGczSh5iC+flCxzEerd0HIZOqsGjWzfAHPNi84ze4dvUPAACBoBfbdj+NuWc1PwAjiX7f0X9D\nLDo1W+1w/X9QVXI5Ugx52H34n+jqq0N22oyYvZZoq6q6Mv3ZT37X/1B+Rsql3M9LceGJPB+7qba3\noCSO69bERUnlasqQNeN6JFjCHu+Q5DkAnwNIBuAC0APgpWgFFS3Z6SXrTk9k8cycUYlK5kQTJg/6\ntG9vNewHYPIWQy47t7Jz8Pi7KDIvgkJ+aqP3ZXPvRIohD2EuBK/fBal4an2Ll0mV8Jhm8O5A4JLu\n56Uv/QKO5UinQxlerpEqSFUt0SWlFi4QS+UJtSzFeBN2HsuyzwLgWJb1syz7AyAyrcGxotUk52Wl\nF88ROo7xEoukEItlCIZ82HHg76gs2QAA8Pnd6LU3IT9r3jn3ae78HHKpGumm4jOOUxSFYe8g3vv0\nVwgEPEjSTr19YCtmXpb6dKe991Lu4xFfWr72DAwHrXvpUIq5OnEnIxMnGbLKjSl5c+8SOo5LMd6E\nHWIYRofR1fEYhikCwEUtqigoyKm6IzOtWHvxM+PHsHcQ23Y/jfysucjNGJk23mGpQW7mrPM2P7R0\nfo5eWwO27X4KA84e7Dr86smat0qRhKtXfheF5gU4WLcppq8jFiRiKejMObTd5xv3fbyi8V904jkO\n7BsNtoKKuy+p7ELEL5oWQZdasFjoOC7FeBP2/wD4BICZYZi3AOzEyAa4CSMtJX9BIu0m4/W78NHe\nZzGr9ErkZ58aTffaGpExRvPD2kVfxZqFX8GahV+BXpuBRVU3Qy7T4JPPX4Br2AYAkIhlU+aC49lm\nlK1OebbHOe6txDzS8belN24+3ptbcD/Z6muK0Riy5lEUlTD1rXG9+1iW/QDAWgB3AHgeQAXLsu9F\nM7BIkkodygFOAAAgAElEQVTkpjRT7rk1hDhW2/QRgkEfjjVuxbbdT2Hb7qcQDgfhHLZCozyzqW7X\n4Vfh8Y7dPzKjcDV2H/4ntu1+Gq1dB06WV6YaES2C2rxQ2uF2XfTbX4jjEJCLxtVKbj1uGRS75yjl\namPifOIT42I0V2Wm5s+7Teg4xmtcjTMMwyQBeBzAagBBAJsBPMGyrDeq0UVISWH1Qzde+d0/kE0K\npj6O57Bv2++6v59nyLzQeTafF78we7zZq0sVFzrP7/KGj7/Sa2NmfSU1spES8aJxz79erf/s5Vsu\nfqbwxvv97iUAIQC3ALgbgBrAX6IVVKSlGnNnkmQ9PdAUDWPhMmXt4OAFp4xYvb6AMsdwwWTN8zyO\nv17fX1T5AEnWU5hcYywTOobxGm8Wy2VZ9srTbn+TYZjaaAQUDTqNsVToGIjYKcido3+zZVd3eRLG\nHGX3+jxeTUbuBUsiLdsa+rIy70oldeupTaXPyBdJZGnhoP+SZhkJYbzvxGaGYRaeuMEwTDmApuiE\nFFkURemStCkkYU8jFEUhs2S1Zo/NNmbJzhUOBqSqsdd9cjT1u7g+RqbSp5NsPcXpUvI1yZnllwsd\nx3iM982YDWAnwzCHGIbZD+AQgDkMwxxnGKYueuFNXm7WjCuyM0oTanI8MXnmzHLtVp9qzDVGvODG\nLJkEPH6+Y9vgcFbxZUnRiY6IJyKxFOrk7IRo/R1vSeTaqEYRRUZDZolMesFSJTFF5ZWt129lX3ev\nTU89Zz8sL8Wfty2d53nUv17XW1T1KGk9n0YUGmOR0DGMx3gT9nsAXgTwEsuycV/nOZ1GlZxQHZlE\n5KSn5Kt2sclda0cukp/BM0Zbevv2pv5U041GmiYXqacTqUJTRFEUxcf5etPjLYlcAUAB4GOGYd5j\nGOZLDMMkxKIcCoXmgtO7iKmNmbHB9GbXuVuJeUQ4Z071UIfD42vNEWuN+Qnx3iYiR6FNSQNguOiJ\nAhtv40w7y7I/YVm2FCPT+X4LwMIwzO8YhonPrZFGyaQKkrCnsWR9pqxWnObiuDN7abxi/oy29HAg\nhJbNvUPmsi/E/R8tEXkKjVGn0JryhI7jYsaVsBmGUTMMcxfDMB8C+DmApwDMB9AA4IMoxjcpFEVp\nNSp9mtBxEMKaUXlVykudFsfpx7wS6oyaR90bxyyFFQ+RuvU0JVcboNSllQsdx8WMt1DXCuBdAD9i\nWXb7iYMMwzyFkZb1eJWiUSXrhA6CEJZWkyypU+X5QpwPYppGmOfhk9In52B37Wm1Jqu/YBCL43rT\ncyKKaJEE8gQY3I23hn0vy7J3n5Wsv8iyLM+ybNzOIDEl52QrFBpy9YhAReVVac+391oBwBnwQ5Su\nlgKAyzLoc9YZKH1a6aQ24yUSn1SZFNflXeAiI2yGYW4EIAPw49H1RE6QAPh/AN6MYmyTppRrzAr5\nORMEiGlIqdDQDj0T9oUGYPP5QjKzQcWFwmjc1DlQOotM4SMAiVyV2AkbgBbAIgAaACtPOx4C8P1o\nBRUpCrlanyg7zBDRV1V5RdrTH/+mb44SCk1mtrb+rVpLQSmpWxMjRGJp3I/uLpiwWZZ9DsBzDMOs\nZln2w/OdwzDM4yzLPh6N4CZLKlWQjhniJKlEjmBqJbr7dwcHmqx2NbVGJ5UrhQ6LiBMURcf9Lurj\nndZ33mQ96tydYOMEBSquJ8ETsVcxY13qJy5OZj8oD5uyZ5NsTZyGivvrXZEIMG4XdecR311LROxw\nHIfPDm30WGD3WMXDam3DLpmjbq+r2pgSlInECbXdHREdAbs97tccikTCjtukyPMc+UOc5hpa9wQO\ndn42rMwv4LOvW6dcWFBi3Pv8b4azlnMqsVwi3rOxxm7u93orJRr1QlOqXkyWUp22hgO+HULHcDFx\n/xVgMuJ9XQAiOvptbdz2mn8OIS2VT6maL1541y/1tPjUxecZ196hYj9+YqhgXZku664FyWEgeYfV\niXffOmbNdfC+2TKtbq4pRStKoD1AicnjE2Bj8SmdsANB3wV3HSGmDrdnEDv3vzDgkPCUvrQCMx55\nTKsyGM97EUllMMLd6wmdccykher+RaYAgA86bNzbm9m+vCEE5iqT9FUGozqRNnAmJsYfDruFjuFi\nIpGw43Y9bJ9/uD8Q9EMqIT0RU1EwFMC+I68OtQy0QFNYiqyb7pCWlVSoxpNcPbYAzfM8zneuLsdI\n6x40pnoAvNXQG3pjS2NvoZsOLdQmJzO6JAVJ3lOTJxQaeyfrODGuhM0wTD6ABwAYcdpFRpZl72FZ\nNm53HHa57S0erxNSiUnoUIgI4TgOx9gPhus7t/v51CxJ6txF3JIlj+jF0kv7UBbBAHe/M6hJ1V1w\nor6hOE2M4rQ0J4CXj3QGqE8bego9In5pUooxT6slI4EpxBUMTI2EDeDfALYB2IE4vsh4toGhvlan\n2+ZK0po0QsdCTE5z++f+ps73h2wQKZLL5wZm3PBLrSYlfcJdUblLViv7j2xza9bp9OO9j7EyW4rK\n7IwBAM/tavbKP2/oLvSK6BXJqckZKjVZiCTBDfr9UyZhUyzLPhrVSKLD5nTZBjDSqUkkmF5rS7i5\n421bx6BNrimaETJde5+idOZcTSRKEnlLVsp2PvOmf6L3T11UoMCigsw+jsPvP25wa2sa+osCEvFK\nY5rJqFDEfQMGcSZvKITBQMAidBwXM96EvYthmGsBvM2ybNxfST2B53nuC+setgDIEToWYnycbjuO\nN2202pwtdDA5S6SbtYSuXrJOJ1FEtsdFLFPAbRnGWHXs8aJpGumrS9RYDXVXiMMv/1PrMrKdg8Uh\nqWxVSrpJJ5ORgncC6PV4gh1u1xGh47iYiy3+xGGkBEIBeBAAzzAMRm/zLMvG/UjC63N3AKgWOg5i\nbP6AFzXH3xwI8y2+Lj+t1JXMCZmr70rWZZqjWmagwrqgu88Z1KRduI49XrSYRtaVMzW4EpqWQAif\nbTo6lNY27Czl5PKVaekmpTh+17X5bGgAnw2NVASCHIdOvw+/LSyBQjTyJ77FYcOOwQFoxCMp4860\nDCRLpHjR0o2+oB9iULg5NR058sRcDaLZNdQ1GAg0Ch3HxVxsLZFzuggYhqFYlk2YOrZ72NEudAzE\nuTiOw1H2fRdNs4OtNodOkT/Tqyq5TTVv1kIdLRLFZA1zQ34pbz3WOahJ00X8qrRYKkb2l2bpAOjq\nPAF8/NaRgewev6sMSvWy1HSDTBRfY53FOj0Wj5bzX+rtwdIk/clkDQDtPi/uy8iC+bSE/NGAHVKa\nwvfNBegN+PFMdyceyyuMeeyR4AoG23j+/Bszx5PxzhJZAeAJlmUXj9xkNgO4jWXZXdEMLhJsAz1t\nHBcGHf/rukwLDa27vB7/AYfT2y/367JCoqwF0tLb12vkGq021rHkLFiU1PLZC1G/0CRVSpF9yzw9\nAP3BIQ+2bKyxmy0hz0yxWrMoJS1JEkfdla1eL3oCftyWlnHG8TafD+/ZrRgKhVCp1uDyZBO6/X7M\nVI1cHkqTyjAQCsEbDp+R6BPFoN/fJnQM4zHeGvZvANwBACzL1jMMczmAfwCYF63AIqXP2rrdPtAT\nNCVnx+/30Smup68h1N23xarVuqgOj0hGZ83gjbPuVRryigT9/pxeMUd8+F9PyiZbx74Ucp0SJ7or\nd9lc2LzxmC3XwXlnyTS6eaZUwbsrN9ut+IIx5Zzj1VodVukNUNAi/LGrA0dkLpjlchxxuzBLo0Wz\n1wN3OAQ/z0GBxEvYFo8nIb6Jjzdhy1mWPXbixmjSTogE6HTba3v6mppMydmlQscynQw6rWho3dif\nnurxdzlcOm9qUcift1ZdPG+pnhZLxj2VLppomgaCOr+7d0iuSU+K+ftZadRAef9CYwDAli4H9/a7\nx/vyBeyu9ITD6A36wShV5/xsrT755Mi5Qq1Gh8+LK5JN6PH78Yv2FhQolEiVyqBKwG+yg34/3+py\nHhA6jvEYb8KuZxjmlxgZVQPATRjZgDfu8TzPrVt21zEAJGFHmc/nwVH2345kg8PN016dX28INehm\nSbIuX69W6pNjXvIYj6TMAl//sW5Ok5507rAyhnRZBlr34OJT3ZVbG3sLXXRogSbZUJKUpIxF8m7w\nDKNUee4a/t5wGP/T2oSf5hdBSlE47hnGUp0eLT4vSlQq3JSajjafF60+L+KpvDNeB23WtuODA1uE\njmM8xpuw7wXwEwCvAggC2A7gvmgFFWn99o6jPM9fT1qKIy/MhVBz/F2nQtExlJoSVtJ6Gq3qfCpp\n5mKxuXhGRrz/zuV6tcpn54aFjuN0p3dXvnK0K0B9PNJduSTJZMzX6qLWXdkbCMAkOTUxZ49zEAGO\nw7IkA76Ukor/7WiFhKJQqlJjploDdziEp7v78J7dCilF466z6t6Jos/rqeF5PiHWHRpvwr6aZdmH\nTj/AMMzXAPwp8iFFXpel4V37QPcPjYashCjjJIL65u3eYOiIPTcHYmNmWN3sNaEvaSZyNqxKTpHK\n4n5vvBPyV6zW731+35jrigjNODNLiplZI92Vu5t9in0NXYVekWhFcqoxQ6WO6Pv5suQzl4NeoD21\njWu1NgnV2qQzfq4WifGtnLxIhhBzPM+jxeU8LHQc43WxedjfxMi+jg8yDGM+6363IkEStn2g+3BH\nT/1xoyGrQuhYEllnT12wz/GhLTeL58rL5Mk7m6X03nARn7lsnazAlJotdHwToTcXgPerw67eoaBW\ngDr2pUhbWCDHwoKsPo7Dk580DuuOsH2FfolkpSnNaFIoE694HAc63G5/7YDjLaHjGK+LjbCbAMzB\nSKPM6cMPP4C7ohRTxPE8zy+d/6XdAEjCvkT2gR6+ueMda3aGz18xI8mwm6UkNeFsr1pXHcy8Y07c\nlzzGQ5ua77Yeaw9pBa5jjxdN08hYxaiwilF1hzj83wd1ruT6rsHikFS2MiXNlCSTJ/4/SozUOOz1\nHW533Hc4nnCxxpl3AbzLMMxrLMvWxyimqGjvqn3HNTxwn0alJyORi/B4nTjW8KY9xTQ0PLNEq1UZ\naOU+i8HPOso8OdesNRUlaDfbWGgJJ/Y7eJ/QcUwELaaRecUMDa4Y6a7c9c7RodTWke7KFanpJpUk\nrr80CK7D7dqdSBudXKwk8i7LslcCeJ9hmHNeFMuy+VGLLMI6LfXvN7bur509Yy0ZZZ9HKBRATf2m\nIbWq21lcKFfc8IUkw792egMbuzKH06rXmPJWZSdkyWM81Bkmra2xwxevdezxEkvFyLruVHflJ2/V\nODK7fe5yKj67K4XW6/EEj9htr0/kvgzDfAfAGgASAGEAjwJ4GMCrLMtGbcbJxUoi94/+73oAVwBY\nBSAEYDOAC+2kHnd4nueWzLvuM5CyyEkcx+F408fDPFXryDeLpPfemm3a+Ik4/FGf0a3UzJVk3L4g\nPT0Bp2ldqoKV69V9R+r5RKhjj5dUKUXWLXMNAAwHhzzY+tZRW7Yl6K2Iw+5Koezp7z1cNzjw8aXe\nj2GYUoxMxFg8ersCwN8BHIxwiOe4WEnkxHKD3wcgB/AsABojXY/lAL4Z1egirL3r2Cs2R/edRkNm\nZJd+EwDP8/j82JsYcPZARItRXXEDNKpzJ2fsrXkDMqkSVSWXg+PC2HPkX7ANdvDB4FCotEDruuW6\nUnV9m864jeXsew6k2MwbbkspUmkMArwkwSgNRqiSMp3WY43eRKljXwq5TonMO6uNHIBdNhc2v3XM\nmmvnfFUyjW5+HHRXCoHnebCDgx9PsBwyBCCbYZh7APyHZdkahmHmYSQ/RtV4p/VVsyxbcuIGwzDv\nADh2gfPjUqeF3bl++T07jIZr1wsdy2R19R5DmAth/eKHYRtox8G6TVg+7+4zzmls341BVy9Sk/Nh\ntXdyh+tfcUmkXvrhu0pFUqlY8dM/7kuy7JT2GGffYMydX5gl0EuJCzwdCPsd8b/4z2QpjRoo71to\nCgDY1uXg3373eH+BE7658iRDZbJRTU+T5H3U4XAcsFmfmsh9WZbtYRjmaoyUQB5jGGYYwA8iGuAY\nxpuwuxiGyWdZtmX0tglAT5RiiqrWzqOvzZ6xdp1Crk7od2b/QCsyTAwAwKg3wz7UdcbPrQNt6LM1\ng4bfNejcx69cZOW/eNUs3cvvNwz+dR8GRBmFWrG2Oan4i/dN60R9koSTBQZlfKLXsS+FNstAaR9c\nnOIB8FZj38jelS46VK0xGEqT9DHprhTKAVv/h93D7raJ3JdhmAIATpZl7x29PRvAfwBEfTG88SZs\nHsARhmG2YaTAvgJAz+iqfWBZ9vLohBd5ja37/17b8NlDcyvWzxY6lskIBv2QiE/N1qApGjzPIRQO\n4cDR14b6B+tlV6/NGZbLjMmH6rjwOzXB3td75L6cVY+a8uSKpNrnf4XcK24S8BXEFyNTpHMcU9Au\ny2BQm6GfEnXsS2EoShWjKDXNCeDVke5KS6FHxC1OMhkLothdKYQut9u339r/9CQeogLAlxmGuZpl\n2SBGpj8PYiQ3RvVTbrwJ+6dn3f5DpAOJFZ7nw1Xlq9+ZNWPNbFECLlRzgkQiQyg0MhON4zgEgh6+\nrvmPXQW5YtnsKrFp7yEptXFbh8gfokOUWCIquPqLmeZ5y+AbsKPmzz9FxpJ1SJm1UOBXET/yl6yS\nO+vfcFhrG0LaDP2Uq2NfitHuyvQBAM/vafHK9rJdhV6xaIUh1Zipjmx3pRC29/Z8cthu+2ii92dZ\ndiPDMCUAPmcYxo2RJP0tANcAeJJhGOepU9nbJx/xKVQCTUGMGIqidDdd/b0jpYULzBc/Oz51WI6i\nvmV72KTnerVan2zQFUz+wdcXUa9urncddmgH6awKZc7ClcnWQ7vhtVqQd8VNCLgGUfOnn6LwuruR\nVFQu9EuIO3t++1Qnr27ky24qJVvKnYXjOPR+2jisPWIdKPSJxStNaaaUBOyudPh94Z8e3H/b3v6+\nfwody0SMd4Q9pfA8P7Ro7jX/KS1c8IDQsVyqfmtruN2y2ZqdEQxlZ/rT3MOhzA5LgKf0ydavPtUh\nTcqfoym45Zrzbjrcue1thLzDaN/yJtq3vAkAmPnAd0HH8dZVscTRAYQGZTFdHztR0DSNjJWMCisZ\nVU+Iw6+2jHZXBiWyFaZ0k16eGN2VH3V379ln7X9N6DgmalqOsAEgzZSXv27ZXdsLc2dnCh3LxTjd\ndtQ3b7Smpw17Z8006OdV5mjcHj+ee6vB1kNneTVlC/Wp5bNivn7yVLP3md/bJEjVmpa3U9rM6VfH\nnohQIITed48Npba4nSWcXL4yjrsrHX5f6H8PH3pgR2/PC0LHMlHTNmEDQFX5qp9ctfqrP5BI4u+a\nSiDgQ039xkG9vt9ZxqjUy6rzDWIxjbc+bHLv6ZYP8BmlcvOitSbxFGsTF1LnwT1BD+vnh2WbBgvW\nlkzrOvZEhHwBWDbWDGR1+VylUKiWp6Yny8Xx8yX+7w31W5+tr1ufSK3oZ5vWCZuiKOnlK7+8o3rW\nlfOFjgU4tTGtRNo8WJQnka1ZVpiiVsnQ0GoLv/RRX79LV8ilV68xadOzorqb+HTFcRz2//Fv1rDi\nqJfUsSfH5/TCtrHGntMX9FSIVZpFKemCdle2OJ2uJ48d+cJ+a/8ldzbGk/j5+BMAz/MBJn/ez4ry\n5rxqSEoXbKja2Lrb6/Hvd+Rmg7731jxTqqlK4/MF8NzGekcblzGsLJ6ry7i9Oj2DtBNHFU3TCIc9\n3gCpY0+aXKtA1p3VyRyQvMvuxuaNR625Ds5XKdVo5xtTdOIYv5f/09XxTqIna2Caj7BPWDLvun+u\nXXrnjbH8A7X0NYS6+rZYzdlhbml1VnJhnkkOAB/saPF+1ARbOLVUlrNkXYr0PFs2EdGz+/dPdimU\nmamGxc3QZRnisxibwJxdDn743ePWAiflnyPX6ati0F2539pv+f2xmqXNzqHmqD5RDJCEDSDVaDav\nXXbXjuK8uVFdkW50Y1prRrrXO7fCqJ9dkaWhKAod3QP8Xz/o7h9U54dS5qw06s358VdUnyb2v/j0\nQFraGn2/56m+grUlqULHM5UNNveHAx80WgudVGi+xmAoi0J3pTcUwm+OHn5ic0d7TFrHo40k7FFV\nZSsfu3LN1x6XRvgCpM/nQQ37b4cx2eGeUaLRLJmfp5dIRAgEQvjrpvrBRq/JJc2fpc6au1hPi6Z1\nhSou2JpZvm9nm3cosMVWflMJqWPHiO1YdwAftdiLPCJusc6UXKDTySPxuC83Nnz61PFja3ieD0Xi\n8YRGEvYoiqLEG1bct33B7Ksn3f4X5kKoqX/PqZC3DRblyxSrlxaaVMqR64Q797f736sJ2PxGRpS9\neF2qQqcnhdI4s/d3f+n1BZupygfyUkkdO/b69rX4ZLu77YVeMb3ckJKcpdZM6CJ7jd3e/8zxY1cc\nttv2RzpGoZCEfZqivDlXXLbivtdMhizVRO7PNu/w+kOH7PlmWrxqSb7JlKwWAYDV7saz77T22+Rm\nf3LlsmRjUWnCL+86le367R/aVdqMDP2iJl6XZSAzcgTCcRz6tjd6NIetjkKfWLzSmGZMUSrH9TXU\nFwrhV0cP/+z9jvbvRzvOWCIJ+yxzKy7784aV939FIh7f32mn5Xiwz/ahLTeH45ZVZxvzzMkyAAiH\nObz8br3z6JBuSJRTqcquXmEQxWlDAXGmXX/4XU9uybUZva7fkzp2nOBCHCxbj7sMxwcGi4MS2cqL\ndFe+1Mhuf/p47eqpUgo5gRRNz3Lg6Aff0GmMJcsX3LhyrHMcAxa+qWOTNTPD518wN8VQWT4z/cRX\n54O1PYE39gzZfAaGylz09ZSCZJM2ZsETEaFOS9aEAx747EjIfR6nIlpMI3NDuQYboGkPhfCzTceG\nUlvdQ0xYplyZmmFUnzYY2tff17Gj1/LwVEvWABlhn1eaKS9/xcKb/1NWtLDoxDGv14Wj7JuOFNOg\ne2apVrtofl6SWDQyl3TI6cUzbzXaesXZXm35IkNqWaWK1D4T17DdiqY3dzgHB/d7Kx/IjUkde7hz\nCJatzSi859SqvwM1vbDt7ULR/XPPONdxyALHIQsoCuCCHLx9bpQ/ugRd79Qj5A6A54HgoA/KbB3M\n10/tRb5GuiuPDmR1e12lvEJVpNGqXmDrH/64p+svQscWDSRhj6G0cMEXly+4+a+W/kO8Wt3lLCmU\nK1YuKTAq5COlEo7j8O+tjcOfWxQOPqNcYV68xiiWReTCNhEH9v7umR6FJsWUtKCB1+VEt47dv7Md\nA0d6QUtFJ5Ozx+KC5YMmcMHwOQn7dF3vslCka5A8J+PksbA3iOYXDyHv9ipI1NOnBO91DKPm11vf\naW+yXC10LNFCSiJjON60583KsrxrH/vWqpvMWbN0J46zLdbwSx9b+926Qj5j4ZeN+aszpuxu4tNZ\nmPcHjTmzJZbjO3t1OYa0aD6XzKBE7s0z0fHvOgBAyBNE77YWZF5ehM6368e8n6fbCb91GFlXMmcc\n7/24FcbqrGmVrHmeR8uHdds6mnuvEzqWaCIJ+wJqjrfd8ca7h+Vfvm3Rl17Y1Ojo4NOHVcXVuozb\n56VTpE18SqMknJymafgH4I/2c+nKTAgMegEAPMej8+3jyNhQCFpEj+z1NIb+He1IXZF3xrHQcADu\nlgFkbCga415TU/v2hmNde1ru4nk+KHQs0TQlEjbDMGYANQAOYGT3Bx7ARwA6ANw5ekwC4Mcsy24d\n7+PyPM9TFHXnPouybPEjPysrUqqm1W7i4+Fsb0Lru6+i8ms/hKe/Bw3/fBagKChN6Si+6ctnnMuF\nQ2j457Pw2XpBicQouPZOqDPNcPe0o+n15wFaBIUpDUXX3wuhm4gMxQVar9PGBQdliliuK+K1uBCw\ne9H9DgsuyMFn86D7/UZknpWAw74Q/DYP1Hn6M44P1vYjqSJ1Wq2DYjnU0da2nb17qMvRLXQs0TaV\nhom1LMuuYll2JcuyqwD8HsAPAawfvX09gOcv9UF5nvdY29vXtGzfcjjC8Sa8zo/eQeNrz4IPjQxq\n2v/zBnLWXYuqhx8DFwrAXnvwjPN7d38EkUSKqm/8GEU33I+Gfz4DAGh87TnkX3MHqh5+DDKtHj07\nt8T8tZwtb8lqhcNSN6hPnqd3dg5EfZQNAOABZaYWzEPVKLh7Nsw3lENuUp6TrAHA3TYIdb7+3OMt\nA9AWJcci2rhgb+jta95a+7X+Y91TpjnmQqZSwj57SOHHyKj6K6M7vvcCKJjIAw/1dFgaP3z3rvY9\nnyT84jGRpDCmoeyeR07epiVShIbd4HkeYb8P1Fmj5OHeLuhLqwAAypR0BIYGEPJ64B+wQ2suBABo\n84ox1Dx23TZWpEolgn7nsDF7tsRW3z8Qkye9yKC44806BIZGZhr6bR5IDecuMOm3eSDVT4810p1d\nA66GzTX/r+dA22ahY4mVqZSwyxiG+YhhmI8ZhvkIgAHAKgDFAP7DMEwrgHsn+uC9tYeO1P9n44Pd\nh/Z0RijehGesmIfTa/mZS9ejaeOLOPDLRxFwOZFUWHbG+epMMxx1I6NuZ1sjAsNOhAN+yI2pJ5O0\nvfYguEBsBrQXw1EBnqZp+OzRr2NLkxTnzAY5+1jOF8sgHV1iI2VJDkwLzr3ezTxUDZF8SlQ6L8hj\nd/uPv33wF527m/8qdCyxNJX+ZWtHSx8AAIZh0gEoWJZ9ePR2IYAPGIbZwbJs7USeoGPfjm0585bc\ny/P8X7JmLyQLA52l/qU/oerhx6FMzUTPzi1oefsfKLzu7pM/T6teCU9fDw7/4UfQ5RZDaUqHRKVG\n8U0PoHnj38BvCUOXxyDk9Qj4Kk6h5ZSS5zkEh2JbxyYuzGNz+Y/96/Nft29v+JnQscTaVErYZ/81\npQF4gWGYpSzLugF0ArACCEzmSTo+37k1e96Se3iefz57zqKE3XU9GsLBAESyka/jUp0ezraGM37u\n6mhCUlE5Cq65Ha7OFjg7mkCLJXDUHUTJ7Q9BolSj6c0XoWdmxixmnufR9MYLGO5pByWWoPjGL0Nh\nHEJhqmAAABACSURBVOlGz5gzR+du6Q7qk+frW17ZGlamaETpawvAhzl0vlWPwKAXfJhHyrJc6EqM\nMYt5OnP3O711r+//Rdt29sdCxyKEqZSwz5gAxbLsIYZh/gBgO8MwHgAiAH9hWbZxsk/U+fnOD7Pn\nLr4bPP9C9tzFuZN9vKmi+Ib7Uffib0FLpKBFYhTdeD8AoP7lPyPvihuhMGWg7f0n0bntLdASKYpv\nHJlFojCl4+ifnwAtkUCdXYDUectiFrP96H5woSCqvvFjONub0PL2Syi/d6QunzWrWnJg9z+sapXK\n5Ox2BZUpGhEADNT0QaSUoPC6MoS8QTT8eR9J2DHgsgy66/594CftOxr+V+hYhEI6HSche+6iFeVX\n3/xXkrQTV/Pb/4A2pxCmWSOr6u55/GtY8PifTv78s5//rFclk6e5gw12Y1FScvraAnCBMHgAIqkI\nIU8Qjc/uR+k3J70qL3EBzq4B1/GNBx5r39n4W6FjEdJUuugYc537d31y7O1X7mzf82mL0LEQExP2\neSFSnFrtlqJp8BwHAAg4B8E525NSZlyDsFci4Ue/xNFSEURSEcL+ENpfO4q01fmCxD5dDHXYh+re\n3P+d6Z6sAZKwJ63rwO7tRze+dN3xzW8cIt9WEo9IrkDYd9qifDx/cuaL9fAeAJyka+/zEPn8Gsch\nCxyHLQCAwJAPzX89BH1VOvQzyQqs0TLQanUcf+vgIx2fNT0ldCzxYCrVsAVjOXrgsCYtc73HYXul\n6sZ715B1rxOHLo+BvfYgTFXVcLY1QpV+aqpc5rLLIM3Ipa27Orx02K0YsG0eNlSlq4LuAFr+fhhZ\nVzDnbV4hIqOvprOz5aP673bubnpF6FjiBUnYEeLq7bZSFHWFzzn4lzm3PXiLXJskEjom4uKSZ87D\nAHsUh598DABQfPOD6D/4GcIBP9IXrIKpsIRqeXfnUFJSsiLkQwgA+re3IewLoe/TVvR+0gqKAvJu\nrwItJl9YI4HnODR9ULuva1/LA9a6HtJhfBqSsCOI5/kARVF3hvy+9qob7v6mLtOsFjom4sIoikLR\n9Wf2UylT0s+4Hea9fl32XPRa9/t5jkfm5cXIvLw4lmFOG36nN3x848E3Gt8/eh/P826h44k3ZEgQ\nYTzP8w1bN/1w/9///PXeY4csQsdDRIA4LAEAg2mhfqjDHh9tmFPQQIvVfvjvu37Y+P7Rm0myPj+S\nsKOkZcfWvx585Znra9957QAXDgsdDjEJyhSDOugfRnLmTImdtcZmXZFphOd5dHzWWHfsX5/f2r6j\n4ec8uXo/JlISiaLuw/s+oyhq+VB3+1MV191xg9qUJhM6JuLSFa5aq21+e68rNW+OxuegyAg7gkL+\nIOrfPryle2/LPdNhedTJIgk7ynieHwZwR/7SdTuZdVd/P2vOIrIGSYJRm9Lhc/e5AGiCQ3IFz/Gg\naLKuyGS5e4eG6zcder71o/pHpuKGudFASiIx0rJjy7MHX3luw+F/vfBpKE5WoyPGL4xAEACSTYv0\ng+12spv6JPXWdLYf/efer7Z8ePwbJFmPHxlhx1Df8SN1FEWtdfX2/N+Ma265R5+TrxE6JmJ8KHFI\nBgCGzBkSS8OHdn2eMar7PE5VfrePa95Su7Wvpuvb1uM9NULHk2hIwo6x0T3nvpk1Z+H72XOXPF6y\n4YsLxFJS2o53+sI8rddl5xWaZMrvoCa14uN0xPM8uva0NHbtaf5D196WP5ILixNDErZAug7s/oCi\nqI8drQ2PF6256u70GbPJiC2O5S9b8//bu/PYNss7DuDfx4kT34kTN4edNM35JG2TtCk9oIRCWzrK\ntf0xjTEuMaQB0yahSQyNIdgEmjaGBttUsYNpYxNoYgzQNljFuQoKqLRJSpuUJ0edy0ccx3Z8xGf8\n7I+Yrts4Ck1iv/bvI72SbVl+H0Xyz0++7/M+P92JP/zNb+O95mRAo6Ec+9zNT/tC9tdOPTv59ujd\nscDCXLbHo2RUsLNISpkAcG8V3/h0/daLH15/9Vf20R2SualEZ0AyHgwDMFdW7TQHJgZi5sY1mmyP\nK5el4kmcfvXU2+6ByR+635/KfqPOPEAFOwd4xMmTjLGrApP2bzb27r1r3UW7W6i7Se5Jq+ISACps\nG9Qu8eqcuXEN/Vf0MdzHpxyTb408MfHm8EN0UXH5UMHOEZlM74CxxvbMzKnjD7dcuv+LlpYO2lko\nh6hKoJMyDZVKhbif1mN/lAVvKD72ytCLzr6J785PzlHT6mVGBTvHhNyOWQC3Vnd0XVDXc+G9Lbuv\nvMJUW18YbbBzXG1PT1l4wpk0VtapkwFaj322dGoR44eGj7v6xh92HB2n3fVWCHWcyXF1PRdead20\n7Ttte6+5VFteQfl2FqVTKRx7/Clv/frdlrnpEyn9poGUuamwc2yZlnActY+7B6aetb9+6gEpZW50\nUM5TNMPOcdN977zEGPun59Txm22bd9zZuufq7eqzOqSQ1aMqLkYqFV4AgMq6zmLH8Gtec1Nh5tgy\nLeHsm5hwD0z+dfLwyIPJhUQg22MqBFSwFSCTbz/JGHvKPdh/l61nx01Nvfu61BpKSlabVCXPZCBx\nHwoux5ZSwtU3MekamHzeccT+IC3TW11UsBUkc7X9EcbYL6beO3xnbeeW65ov2bddU2amLQZWSbFe\nrU8vJqEqUiMV1OoKJcdOL6bhPDpu9ww6/j797thDsfnobLbHVIgow1YwxpiqbstF11u7t97cuHPP\nLmONjW6ZXGEeMZieO+KKm61cO+c4mdJ39+d1jr2YSGHqnbGh2SHn8+OHxE+llPPZHlMho4KdJ2o7\nt+yzbtp2+9ptvXstze2mbI8nnx157Hczazv3VQOAw/eYu+WK9rzLsRORuJw6PPre7AfOv0y9PfZL\nKWXBxT+5iCKRPOE6cexlAC+vaduw2dq99Vtr2jbuWbutt4EaAi+/lIye2a0vn3JsKSV8IzMB7/DM\n4dkh53OuvoknpZTUfSOHUMHOM7PDg/0AbmOMGZp6L7+jqr1rv61nxw7z2iZaWrJMWHHqzK9gPuTY\nUV8k5ewb7w/YvW/MnJj+VXgmaD/fz+Sc3wNgLwA1gEUAdwO4BoBLCPGb8/38QkUFO09leuI9AuAR\nS0vHNmv31lstLe17Grbvai2m1SXnRWMpM6QSURSXaFFZvdPst/fFKpqrFJVjLyZScPVPjgfGvf/y\nDDmfmRPug8u1gx7nvAPAtUKInZnnXQCeBPD8cnx+IaMMu4AwxjQNO3bdVr1+89U1G7ovXMM7y2jP\nks8uNOOE/R/vharW9RgBwOF71N1yRUfO59hSSvhGPfNe4T48N+x+2XHE/kSmI9Ky4pxbAbwL4AcA\nDgohnJxzNYB7QTPs80Iz7AIipYwBOADggGFNTYNt8/avVzbxi6vaO7daWtcbqXifG2O1FdHQUssw\nAIjneJ/HqD+y6Dw2MRAY977hOen4dcgVGF3J82UK9LUAvg3gAc55BMB9K3nOQkEFu0CFZ90TAB4A\ngDJrfWtN55ZbKhpbd1iaO7ZUd3SVMxUt7f4kizKW/PDxUo6dRq78zaSUCDkDiblh91B4JtTv/cD1\nnPcD14ur1TSAc94MICiEuC3zvAfAQQBPA3CtxhjyFRVsgnnn1AgyMyCdubLeumnbLZbm9h1ltoae\n2q4LaulW+P/H1Okza94rq3vNfvvRrObYyYUEPIOO6YgnODA/5e/3jcy8EHT4+7PU2aULwDc459cK\nIZIARgH4sXTxkZwHyrDJx2KMGaybtn/J0tJ+kbHa2m1uaNlY1b7RpCqi3/mhF59b0KaatVpDBQMA\nx9yjrpb9HbWrdX6ZlvCPeyMB++xgxBPq84163vQMOl7Ilc2XOOffA3AdgBCWmn3/BMAmAG7KsD8/\nKtjknJUaTVZr19avVjS1bTZYqrurOrray2wN6kLMvmPhIIb+9JLf2rbTDACnRx6b2HBDe8NKnjMe\njErPScfpyGxoYH5yrs8r3M9EZkMrmkeT3EJTpTzAOW8A8D6AYwAYAAngDQC7AZQDsAIYzLx9jxDi\nc/1Kx0NBJ4CfAQBjjJXXN/ZYWtdfVWZraNOWV7Qaa6wtVbyzohAiFI3BhEQsEAFgBoBUUKtfzhw7\nnVrE/KQvOj/tm0iE42ML3vCIb3Tm9bnhmYOZRs6kAFHBzh+DQojd//Pag5zzXQBuF0J8bTlPlslG\nj2UOAABjzFzbueUL5obmzYZqa6vGVN5Wsa61qaKxRZuPMUqaxdMfPrbUXmL2jR2JVrZWf+ZF7qlY\nEn67NxiembcnQrHTUf/CWHDaJ+ZGZl5JRZOT1GGcfCj/vkWFK+u5hJTSD+DPmQOMMaYxlTdUtXfu\nN9kamnTlFXUlBmN9id5YZ17bZDVZ16qVfOu8qhRaKSUYY6iwdhQ5Rg8GPq1gJ8Ix+MZmvQtzYXsi\nFDu94A2dnp/2n/Secr0ipaQd8MgnooKdP9Zzzl/HfyKRG4QQWV1ClZkZjgN4/OzXGWNFJQZjs6Vl\n/cWm2rpGfWVVfanRZFPr9DaNscxirLGZdZVVxSU6fVbGfa5qurvLIw5n0lBhUwNA3MeSMp1G1BdB\nyD3vj/kXZhfjKU8ylvQkI3FP1BdxBx3+Pt+o55CUMpjt8RPloYKdPz4qEslJmQ2FhjPHf2GM6YtL\nNXXmdS2d+so1a7VmS6XGWGZR6/QVao2usqi01FJcUmouMZq0pQaTrtRg1Kp1BpToDFiJ2bqUEovx\nGJLxGJILYbngnwtFfd5gKpEIJqOR+em+Y0U6U81oMh7xhcP+xJs/fmk47J4fiHhCQkpJXVjIsqKC\nnT+yHoksh8yt0iJzfCTGmAqAAYBJrdWbjbW22hKtvlat1ZlK9Ea9WqvTFWu0uiJ1iYapVAxsCRhU\nDIyBMRUYAwNTgTEmZVqmU6nYYiIeX0wkYovJRCwVj8VSsWgsGY3EF5OJQDIW9UVm3e54KOgC4KNd\n7Eg2UMHOHwVzYUpKmQYQzBzTAE5kd0SErA5ah00IIQqRG5sfEEII+VQUiRCyzDJr3+8QQlyfef5l\nAPcDuBLAfgA3Akhj6ft3nxDiULbGSpSFZtiErAwJAJzz6wHcg6W7TndiqQvLZUKIywDcBOCPnPOK\nrI2SKAoVbEJWBuOc3wjgLixtB+AFcDuAHwkh0gAghBgHsEkI4cveMImSUCRCyMroxdIeLmYs9TVE\n5vnps98khPCv8riIgtEMm5CV4QRwOYCfA3iKc86wdNdn/dlv4pzv45xXr/7wiBJRwSZkZYwKIRJC\niAMA4gC+D+D3AO7nnBcBAOe8DcBvQRv7k3NEkQghK+82AH1Yusj4DoC3OOcJLE2Ybsjk24R8Krpx\nhhBCFIIiEUIIUQgq2IQQohBUsAkhRCGoYBNCiEJQwSaEEIWggk0IIQpBBZsQQhSCCjYhhCgEFWxC\nCFEIKtiEEKIQVLAJIUQhqGATQohCUMEmhBCFoIJNCCEKQQWbEEIUggo2IYQoBBVsQghRCCrYhBCi\nEP8Gas9Kk7HoG7EAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a3d3940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# アウトになった変化球の割合(2015)、速球系に苦戦してる\n", "pitch_types_2015_outs.plot.pie(autopct='%.2f')" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x105322e48>" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADtCAYAAACbBE9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4W+XZP/Dv0ZasZVnbex7vkWlnhwwCgYQ9SwhQCpRS\nKC2lfaGD9m3pgra/rhdoy96bQNgbEgLZw/bxXrIsy/KQtcc5vz/sDCdO7MSSJdnP57q4iI6PdW4n\n1q1Hz/Oc+6Y4jgNBEAQR/3ixDoAgCIKYHJKwCYIgEgRJ2ARBEAmCJGyCIIgEQRI2QRBEgiAJmyAI\nIkGQhE0QBJEgSMImCIJIECRhEwRBJAiSsAmCIBIESdgEQRAJgiRsgiCIBEESNkEQRIIgCZsgCCJB\nkIRNEASRIEjCJgiCSBCCWAdAEDMRTdOZAPYD2AWAAsAB+AjAYwAeAKADIB39+g8YhgnGJlIikZCE\nTRDRc4hhmLMOP6BpmgfgGwA3MQyzc/TYnwHcB+B/YhMikUhIwiaI6KGOe7wEQMfhZD3qbpCpSWKS\nSMImiOgppmn6IxydEnkEQMuxJzAME4hFYERiIgmbIKLn+CmRGgAXHXsCTdMaAIsYhnlzuoMjEg9J\n2AQRPcdPiXwFIIum6XkMw+ykaZoC8EsAHgBTTtg0TZcA+D0AGYAkAFsBPA7gWYZhao457yYABoZh\nfjXVaxLTi8ydEUT0cMc+YBiGA3ApgPtomv4YwI7RL9071QvRNK0C8CyA74+O6qsBlAE4+/g4iMRF\nRtgEEQUMw7QDWDTO8TYA66NwyY0APmQYpmX0OhxN05sApAK4NgrXI2KAjLAJYmYw48QFTQ+Aky1q\nklF3AiIJmyBmhnYAGcceoGk6C0AmAPFx58oBeKcnLCKSSMImiJnhTQBn0zSdAwA0TQsBPAigBICC\npumi0eN8AGswcgMPkWAojiOfjIiZgaIoCoAQIyNKMQARADGPxxcrkjQKiThJzucLkiiKJ+A4Nsiy\n4SDLhgM+v4sNeocGvOGwGyMjz8P/BbgEeoHQNF0F4E8Y2Z2iAPAGwzC/pml68ejxMEb+fl5nGOa3\nsYuUOFMkYRNxi6IoHgCjUZ9TJpepc2VSpVIqTlKKRDKFSChWCAVipUAgUvL5AgWfJ1Dy+QK5gC8U\nCgQivkAgEgr4IqFAIBIJBEKBgC8Eny+EgC8ERVFgWRYcx4JlwzjEfDa4WdCl9ofDIV847PeGQn5f\nOBz0h8NBFpyf5bhAiOW8ATY86A+HBz2h0IA7FBp0BgKDDr9vwBkItDcODdaHOK6L4zhfrP/eiJmL\nJGwiZkZHxKmpxoIqpSKlQCXX6mRSpV4sTtKLhRK9UCg2JKuMWrXKIJNJFBg5PfL2Hni394dSq/5M\nvpfjOAwHg3D4fCGLx+1wBYN2Xzhk94RCvcPBoL3f57PbvN4ei8e1z+rxHOQ4zh3p+InZgyRsYlpQ\nFKVJM9FLdZq0MpVCl5kkU2VJxPLMlGRzqkZtkknESVFLyBPZve8t611JdlO0nj/Esujz+dAy7Ozt\n9/nancFAW5/P197hGm46NND/0XAw2MxxHBut6xMzB0nYRMRJxEkZWWklG3UpGQWKJE2mRJKUqVLo\nMoy6bLVUIo91eCfYved1y12KgdTpvm6IZdHhGva3DDu79vY7Bg8VJR3yDXjqBlr7Pnb1DO3mOI6U\nXCXGIAmbmBKKokQGbdZiszFveYraXCiXqQv12sw8oz4nic/jxzq8Sdm18+XOH6uH02MZwz87G7qC\ndy9J4zgOnj5XeKC5t8vn9DV7+oaZoQ7H3p69na9wHNcXyxiJ2CMJmzgtFEVJstPLNpr0uYvVSj0t\nT0qm082FGUp5SmzmMyJg547nOu5O8WVMfGZ09Pt87O/kfUOpl81JHu/r4WAYjkbbgMs6WO9xuGqH\n2h27bQctL4Z8Qft0x0rEFknYxClRFEWlJKeWpJvoS/TazKpklbEyJ6M8QyJOinVoEbNz+5Ptd+vC\nmbG6/lPtTVb7XdUmnmByt0WwoZEE7uwaOOS2D+8baLHv6D1oeYUsaM58JGETJ6AoSpGXNecysyGv\nRq3UV6WbC4t1mnRJrBYFo23nl/9tv9vAi0nCDrIsfu5qthlvXmw40+cI+YKwHbR0DXcP7hps79vR\ne9DypG/Q0xXJOIn4QBI2AQCgKEpVnL/o+lRjwXJ9SvrCrPRyo0h4/B3NM9Ouzx5u/7FZFJOE/Y6l\ns2/fjUVaiVoWkefjWA6ORttQw5aGFr4/7b1+S+0zw47O/RF5ciLmSLW+WYyiKEVhXvXmNGPBiqsv\n+HlNTmaFScAXxjqs6ccFqZGbIqf5shyHr/luvypCyRoAKB6FoDsQSs+9tDDFXFk17Oj4ftnqm/e4\nHF1f9VtqnxrqbdkTsYsR044k7FmGoigZnbtwU5qx4KwrN95bk5tZmSYUTH+yiie8cCgmNXX29zuG\nw+vytJF8Tu+gO2TfyQvnV1ZJAUCpzZQqtZmLACxy2ttuLln57R2DPQ0f2pp3/jMU8AxE8tpE9JEp\nkVmAoigqzUSvyE4v/5ZJn3NWQfa8LOEsme6YjL0fPmD5YWbKtO/D/ktXQyf14yUR207IcRz2P7q3\nO6/4bjOPd/L3IJYNo699r3XQ1vR5f1ft630d+17gOC4UqTiI6CEJewajKEpVXrTie2kmel1+1twF\nGrVxdg+lT2L/+7/r+UG20Tid1+zxuAN/TnX7zOeUKiP1nC0fNdgUwYu08uS0SW+AD3iHOVvz17XO\nvrZPHJ0H/z3U27I3UvEQkUemRGagdHPh4uz0shuu3HjP6vzseemJcgNLrFBseNpfB1v7uu3G62si\nNqp3WgY8gY50obx48skaAERSBZVeuqoEQMlQb+s1RUs3fdLXeeCpvva9LyVSpcLZgiTsGYKiKF5B\n9rxrstLLvnXh2bcv1mrSpLGOKRFwHAc+O71z2L5QCPV6vij1FNMWp4MNhdH8pmWwsOpH5qk8j0qf\nrVTpszekl65ab23Ydmdq0fJXu+s/+xvHcaTZQZwgUyIJjqIoYVF+zXez08uvKKOXLpBJlaQpxWkI\nhgKwfHS/84aczIhNTUzk1c623qbbKvUiWWRmqOpePWA1p9xiEkW4Tks4FISteUdDv6X2nd62PQ+6\nB7rbI3oB4rSREXaCoigqqbxoxQ83rPneRWWFyypEQkmsQ0pIgaAPKgFv2l4HHMdhj9gfSolQsu6t\nsw5JAosUkU7WAMAXCGGmlxSYChYXmCy1V+UvvGRrb+uu3w31ttZF/GLEpJARdoIRi6SassLlP8lO\nL9tYlF9TMCv3TUfQwJANmv3/CZ1lMk9L0t7e2zP4wUVmhTJDO+WFhYDbx9U+abHRc26dtgXT/u56\nh61pxxZby87fDjs6GqfrusQIkrATBEVRssqSVT8rzF14JZ27IJNHkZmPSOixt4VKml8UVGp103K9\nP1qYLtFdS9Mi8Vz7n9zTnZt/l5k3fR8Qjui31Np7mna80du66zfDjs7WaQ9gliIJO85RFMUvzl/8\n/YKcedeXFy4v5fPJLFYktXUe9Kzq+0iWpYj+FHar0+l7uIQLG5fmT7lyVse2Fruwf7VKrS+I2VZN\njuPg6DposzXteKO3bfevXf2WzljFMluQV3+coiiKys+ee+U5K2/8XmXxqhqJOHK3LxNH+XzDIY14\neub/3xvs6TMuXTLl0bXb7vQP16mpnLLYJWsAoCgK2vQyQ0pa6Y369rnnZpStfqbz4Ie/ILtKoock\n7DiUk1G+ctXib/24qmT1KoVcQyapo8gf8ITlwui/DIb8fq4pQyybarbmWBYNr7U4Cit+MqUtfJFE\nURR0WVWpKemld6mN9BpD7vy/9LbsfILs4448MiUSRxRyjaakYMmD88rOvlivzYi/Xloz0J4D7/b9\nSGqNaD2P8Tzb0Wzt+dF8E08wtTeHxq21PVrJJoNEro3bWrc+90CwY/977/W27vz5gLVhd6zjmUnI\nCDsOUBRFFeXVfGfd8ht+UEovpWdq3el4xIVDUa+hEWJZHFSEKf0Uk3V/i30Y/aVSSUH8JmsAkCQl\nCwtqLl+vy6pcmFV5zouWus9+GvS7h2Id10xAEnaMmQ159PKFl/9xQdX6c+QyNfn3mG5sKBztS3xi\n63bIr62Y0ta7kD+I9vccrsI510Stu3ukJZtordqYf4vGXLTSlF9zv7Vx+xOxjinRkQQRIxRFCSqK\nVv5s7bLN387JqIib+cjZhuNCbLSv8TXc3iStYkrPUf/qIWte+Z0Jk6wPoygeUouWF2pSix/Ombvx\n7G7m89t8rv7+WMeVqEjCjoHs9LL5a5dd9+D8inOXzJauLnErHIrqIk7tQL/Le1amdir7+Kx7Oh0q\n8dlqQQLXLZcqdeLi5dddpTLkVhrzFt7X07TjhVjHlIjI3RfTiKIoqrxo+V1nLbr6jcXzLiTJOh6w\nwagm7I9cfQPaqowz3jfoHXSH7N9QYW1qVcIX86IoCmlFy4uLl1/3aHbVeY8JJfJpq98yU5AR9jRR\nJCWnLJp34cNL5l20MUmmIvVO40U4yAHRWcPr83pDHbRceaY1VDmOA/NKgz2//O6Emwo5lSS1SVay\n8oZrVfqcSmPugp/1NH+9JdYxJQoywp4GdM789WuWbv5k7dLNF5FkHWfYUNR2XLxlt/SaNpSrzvT7\nWz9utKWmXqM/VfeYREVRPKSXrqqgF1/9RFrxyvsosjVqUsgIO4ooihJUla7+7aolm75j1GWd8QuX\niCI2RAGRvzfJHw6jTgOB6QyT7Zk2JEg0Sl2WunTlt+8Vy5RlQol8c9DncsY6pnhGEnaUKOQazbKF\nlz69dMGl60jp0/hFsUEAkZ8efs/aZU/57hz9mXwvGwqj6c2uoaKqu2bUVMjJCCVyXtGyzRfK1KaM\nlPTS7zo6D34d65jiFUnYUZCVVlq+ovqK/8wrXzePfNKLbzw2dGQE6wyF8Ku2ZvwoIwtG0dEF4b3D\nTmxx2MGnKCxRqbFMrQHHcXjSZkWn3wshxcNmYyr0opFdHBzHYZfQG0iWn9kbNbOl1ppbdMusSNaH\nURQPWRXnzJVr0l4x00t+1c188XCsY4pHJGFHWFFe9YYl8y/6c0HO/JxYx0JMjGKDPAAIcxye6OmG\niDf2DTbMcXiutwe/yMqFkMfD/e0tqJQr0ej1IMSxuCczF81eD57vteK2tEwAwM4+uxPn0Wc0uh5p\nSFATlYYEiUCbXpYqUxn+mlm+tqzjwPu3cxwX0X3yNE2XAPg9ABmAJABbATwO4FmGYWqOOe8mAAaG\nYX4VyetP1cxbzYihiqIVP1hefcWjJFknDmp0hP18bw9WJmugFoydz7b6/TCIRJDy+RBQFPKlMjR4\n3Gj0uFGaNHIzTK5Uhjbf0QJ1n/sHhpLzDac9MR5w+7juTz1eY/aS2ZmtR8mUeknx8utvza4671mK\noiK295WmaRWAZwF8n2GYswBUAygDcDaAhCiqREbYEUBRFH9O6dq/rl666dsqhY5srk4gPDYk+GJw\nAEo+HyVJcrzlsI/5upcNQ3pM13kJjwcPG4aPZSEbXVAMcxw84TDub2uGJxzmXPlybdYxz2Hf1on+\n3d0QJI3k8LQNhRBppLC82QBvzzB4Ah7SNhaBeaveml95F7nrFYBAJKWKlm2+jC+UqIXipMsiVItk\nI4APGYZpAQCGYTiapjcBSAWwOQLPH3UkYU8RRVHChVXnPb16yaZLyeJiYgmFg5BQ4H8xNAAeRaG2\noxUdPi/+3d2F76dlQikQQMrjw8ceLTfiY1kk8fmQ8nnwsSOf1rcPDYIChZ9m5eKfbUz3PotnzNZr\nr9WJ9IuLITMdvT19qNYONsQi/8Z5cHcOofnpvQFd9tXaWHSPiVc8vgD04qvWCiXyt5W6rCuc9raO\nKT6lGUDLsQcYhvHQNB0AUEzT9EejhykAJgDPTPF6EUd+O6aAoihxzdyNz61evOkCgYCUrU40gYAP\nKgGPf1Nm5pFjf+hoxSajGcrRynomsRi2YACecBgiHoUGrwfrUkaqse5zDWOeUoUUoRB5Mhk8oSBa\njEIJ5Rz76drTPYzez9oRGvZDSWuhX5oJd8cglPmakRMklD/YHxSqFxaQKcrjUBQPufMuqBFK5G9o\nUouv7bfU7pvC07UDmHPsAZqmswCkAzg0Ok1y+PhNAAxTuFZUkF+QM0RRlGTxvAtfXL2EJOtEFQj6\nkCzkj1ug4yvnID4b7AefonCF3oQHOtvw2/ZWLFUlQy0QYo5cCQHFw2/bW/BqXy+uMpjwenenzc8J\nU4yrxi5hJJcZkHY+jdzrquBuH4ST6UPYHwJPLDjSkEAgUvAivL42o2SUrq7InbfxRX1W1bIpPM2b\nAM6maToHAGiaFgJ4EEBpJGKcDmSEfQYoipItmX/xS2ctuvoc0mMxcfkDnnCWaGxFpR9nZAPAmG19\nFXIFKuRjq+1RFIVNxqPTzX2BAD72ezSmOUVILhs7MNNWp4MvGfk9URSkwGsdBl8sABsIo+md+p6s\n3G+buu0PgyKNlU/JmFedT/EEj+oyK6+xt+/ddrrfzzDMME3T1wJ4hKZpCoACwBsA3gZwTYTDjQqS\nbU4TRVFJyxZe9uqKmivX8Hkz+ia0Gc/vdwfUIvGU75oZCoXwv21NrG59Hl9TNXb7dNgXAvOPHSi8\nrRqUkAdX6wA0c8xgg2HYv+kKgj9XyunclFg5pXLZs4YhZ14Ox4Yf12aUf6uvY/+O0/1+hmH2AFg1\nzpcWHXfeQ2caYzSRhH0aKIqSLFt42Wsra65czSPJOuF5/a5Qsnjqm3rectjh5liwB/t4zgN9oChA\nM9cMNsgiZa4ZprV5aHp0N3gCHuQ5GijzUxD0BdD2enNQKmlS2e1NMFZcFoGfaHYw5i3M49jw45rU\n4sunOKedcBI2YdM0nQlgP4BdGFnV5QB8DOBeAF8ec6yWYZjvTfV6FEXxqqvOf2JF9RUkWc8Qfp87\nrBRNvcb0fInUe2hdFqevyRm3tX1ymeGEaRLm9Tpr7vJ7TIlc4zqWTAWL6FDQ94RKn3PBUG9La6zj\nmS4Jm7BHjVnZBQCapm85/lgkzCld85ezFl99CZmznjk4NhQSRKAS3vvOXoe+ZsmkG6Jb93Q6VMI1\nCd2QIB6kl5xVHgp4npepDOs9Qzb7xN+R+BJ9lWO8Qh0RL95RUbzyJysXXfUdsUhGCoPMICwbnHI/\nxwGfj23Nlk26ocyRhgRpcxK+IUE8yKpcPz+teMUzFEXNiq1aiT5cPLzZ/fD0x7cAaI479sPRhYYz\nUlKw+Fsra678iVKeQu5gnGG48NQb8G7t7bKZN1VPqlDTTG1IEEsURSFvwSWr/e7BfwK4MdbxRFui\nJ+zxpkQckZoSyc+eu3Lpgkt+r9dmklrWMxDHTq0Bb4hlcVDF8YyCyX1Qbftk5jYkiCW+QISCmss3\npRYtr7XUffrnWMcTTYn+mxO1KZGUZLOpvHD5P7LSSklth5lqign7A6ulT31l1aTuhnNaBjz+9nSh\nPHlmNySIFYk8RZQz5/yfGnLmrY11LNGU6Al7vApbU666RVEUv6Rg8X/Ki1YUTfW5iDg2xY7pO/lu\nv0Q97saQMQ43JMgsvlAzlesRp6Y25uvSis/6q0qfkx3rWKIlYadEGIZpx3Gb3UePT3lEXFm86jdL\nF1yyjjQfmNk4NnDG37uvv284eHaubjLnNmypm3UNCWLFTC8udA92/5eiqLUcxwVjHU+kJfoIO+IK\ncuafUzN3w81kR8gsEA6d8bd+4nYMakpSJ9yXZ6+zDokD1bO2IUEs5MzZsCK9dNVvYh1HNJCEfQyJ\nOElVnFfzO6MumywyzgIUGzyjN2Wbxx2wlKgn/B0JuH2chTQkmHZ8oRiZ5efcoMusXBrrWCKNJOxj\nVJWu/ldl6aryWMdBTA+KDZ1Rwn6rr9tuOrdEOdF59a/UWfMrbyJFQmJAbczTGHLm/T6SHWviAUnY\no+ic+ZdWV51/IY9UTJs1KC502v/YvlAI9Tq+aKKteZ3bW+1a9UUppCFB7GRWrKvJKFvz+1jHEUkk\nO2GkEUF+zry7k1UG0jJmFuGFTz9hv9vTZdNdOeeUi41uu9PvrFVRyQZ6Ro3uEg2PL0RW5bnX6rPm\nrIl1LJFCEjaAqpLV980pWTM31nEQ04vHBU/r95/jOOwW+cMi2cnXGg83JMgpu0o75QCJKVPqstX6\nnLm/pihqRnzUmfUJ26TPLSwvWrGJdI2ZfXhs+LRexF/ZbUP8C4tOeaNM07uMLSv322QLXxxJL129\n0Fy47M5YxxEJM+JdZyoKcubdn5NRTl5gs0yYDUOI8GnddfhFcMipyiw/6e6Q/hb7MBzFEkmBNi62\nhHoHOtBXvxXpNTcj4OqFbf9LACgIk7QwVlw65lyO49B78FX4nVZQPAEM5ZdAlJSCgNsB277nAVAQ\nKYwwlF0Yk59lKgRCCQw586+nKOpfHMcNxzqeqZjVI+zC3IVXzS9fd26s4yCmXzDog1Iw+cLmbcNO\nX/98Q/LJvh7yB9H+bp8rreDsuNgS2t/8CWz7XwI32vHd0fA+NHmrkL7oFnBsCC5b3ZjzXT2HwLEh\nZCy+FdrCc2CvfRMAYK/dghT6HKQvugUAB1fPoen+USLCXLCIzihb+6tYxzFVszZhUxRFZWeU36xU\naElR4lkoEPAhWcif9DzYuwM9fcYVBSfdT828VmvNq7g1bj6pCWVamOdde+QxxRciHPSA4ziwIT+o\n496rfAOtSNLRAABpcgb8Q10AAP+QBbKUkTu9k3Q0PH2N0/QTRBbF48NUsPhyRUpGVqxjmYpZm7Dz\ns+deWVa47IRb24nZwR/wcBohf1K7OJwBP9ecLj5p0RDrnk6HMs4aEihMpWOa+qqzFqP34Oto//QB\nhP0uyFLGdnYPB/3gCY7ZJEXxwHEsOO5ouRWeQIxw0Bf12KNFl1lh0ufMTehR9qxM2BRFUdnpZdfL\nZWpSOW2W8vk9fo1IPKm55rd7LDbT5VXjFm5KlIYEPXueQ8bi7yJrxY+gTJuD3kNvjvk6XygGG/If\nPcBxoCgejq2nw4b84Avj+seckJleskGlzymLdRxnalYuOuZmVm0spZclzG2rHMdix/6X4HT1AhSF\nhWUXQyySY8f+FxEIegEANZVXQC4bm1Pe/vzPEI6OmuSyFFRXXIZhdx+273seFCioFEYsKLto2n+e\neOD3u4JqkXjCffchlsV+eQh6wYkvlURqSMCGA6BGP1AIJEp4B9rHfF2SnAV3bx0U5nJ4B9pxuIu7\nWJUKj6MFspQcuO0MZCl50x57JKkNeSptZsX3ANwU61jOxKxM2DkZ5TepEmjuustWCwBYu/h7sDma\nsbf+bYiEUmSnzkGGuQK2viYMDfeMSdjh0cJGq2tuGfNcu2u3oJI+B/qUHHx94GV09hxEurF0+n6Y\nOOHzu8JqycT3SX1ms/YnbSobdytfIjUkMJRfAuuuJ0HxBaO7QC4GAPTsfR4p9NmQG0vh6WtEx5f/\nAIAjXdx1Reth2/8y+rgwRHI95KaEHZweoUktXicUJ6mCfvdQrGM5XbMuYedkVKzdsOZ7K2Mdx+lI\nN5YizVAMAHB7ByASSmEfaIdaacaHXz0EuUyDuSUXjPmeAWc3QqEAPtrxMDiOQwV9DrTJGXAMdUE/\nOn9p1hXC2tcwKxN2KBQIiyQTJ9odGPYk6VQnTIccbkhgLI7fhgRCWTIyFt8KAEjS5SNJl3/COcbK\ny4/82TDOpy2RXIf0RTdHL8gYMGTPzTDmV/8AwC9jHcvpiv+hQYRlpBZt0qiNCXfLMEXxsH3vc9h5\n8DVkpc6B29MPsUiGVdU3QSZRo7bpozHnC/hCFOWuwFkLv4P5pRdh255nwHIscMwikkAgRjCBF5Gm\nYjL9HOsG+92elZkn3LFIGhIkNorHh8ZcuIGiqLh9sz2ZWZWwKYqSG3U5CTN3fbyayiuwYeXd+Gr/\nCxAJpUjVj4y6Uw3FcIxuwzpMIdchO3UOAEAp10EkksHnc47ZORAK+SFK8EWkM8VxEyfsD4f7+rVz\nMk+YN2l4kzQkSHSm/EWV+ux518Q6jtM1qYRN03QyTdOP0DT9EU3TWpqm/0vT9ElvIohXRfk1387P\nnpsR6zhOV0vXLhxs+hAAwOcJwaN40KfkoLt35OaH3v4WqBVjp1lbOr/BrtotAACPbwjBkA9SiRIa\nVSpsjmYAQLe9HjrNjO2mdEpcOHjKfo4OrzfUQctPKKFqr7MOif2kIUGiE0rkVEpaycWxjuN0TXYO\n+xEA7wFYAGAYQDeApwCsj1JcUZFuKlwjjKO9spOVYSrH9r3P4f1t/wTLsZhbcgGSlWZ8te8FNLZv\nh1AoweKqqwEA2/Y+i0r6HOSmL8D2fc/jvW3/AAUKNRWXg6J4qCo6Dzv2vwiWY6GS65Fhmp3lvzk2\nfMoR9lu9ll7TddVj2s0dbkhAz1lCalzPAEpd1gKBSKoJBbz9sY5lsqhjN8afDE3TuxiGmUvT9B6G\nYapGj+1jGKYi6hFGiEZtyrpo3R27M1KLE+6TARF5u3Y80/HjlMC4n7YC4TB+7mntNd20SH/s8f1P\n7unOzb/LTGpczwxsOIQ9Wx/4YXfDtgdjHctkTXYOO0TTtAqjHclpms4HcMqPlPEmO73spnRzEUnW\nxAj25B3T37Na7Jqr5oxJ1qQhwczD4wugMuYviXUcp2OyCfvnAD4BkEnT9GsAvgBwb7SCigajLnsB\n6YJOHHGShM1xHHYJvUGx4uha40hDAiVpSDADKTRpCyiKUsQ6jsmaVMJmGOZdAGsAbALwHwDlDMO8\nFc3AIomiKEWyehZuNiZOLjx+A97djj4ntz7/SEeZow0JriYNCWYgbWZlqiFnfsLsFpnsLhE1RkbU\nvwNwH4DbaJpOmP1gORkVF2SmlugnPpOYLU7WgPcz34AzucB4pIofaUgws/EFIqhNBYtjHcdkTXZK\n5CkAIQBXAbgOgBzAv6MVVKSZ9LkLxaKEeX8hpgHFntgezOJ2BWyVKUfqWR9pSCCPj4YERHSIk5IL\nYx3DZE12BSWLYZjzjnl8B03TCVPJXK3UJ34BBCKixkvYb/dZe003Lk4DRhsSvNfnKpxzDRldz3Dy\nZHMeRVFTEz9FAAAgAElEQVQGjuNssY5lIpMdYTfTNF1z+AFN0yUAmqITUmRRFKVJSTaXxDoOIr7w\n2LHtwTyhEBpNwiMrjcxrtda88vhpSEBEj8qQp9RmViZE56nJjrDTAXxB0/R+AGEA5QB6aZquA8Ax\nDFMcrQCnKju97PwMc1FKrOMg4guPC41J2G9bO3v0t88xAvHZkICIHr5ABEVKRkJ8Cp9swk68zpuj\nNGpTjlBIdmMRR7EcCz4XEhx9zGGvNMBpJcIjDQnyK+O7IQERWVKF9sRShnFosgn7LQCPAXiKYZie\n6IUTeYokjXnis4jZJBj0Qck/Wqnty96eAfHlpQaO49DwSkNvXvnd5HdmlhFJlQUURVHcZG79jqHJ\nzmGvByAF8DFN02/RNH0JTdOTbmAaS1Kpgrz4iDECAR/UQv6Rwcr2sNOtMCfz2j5ptJlTrzEkQkMC\nIrIkihQ9gLgvlzvZG2faGYb5NcMwRRjZzvdnAFaapv9C03Rczw+LRTKSsIkxAkEfNIKRfllNQ0Oe\nocWpmsMNCeTJ8duQgIgemVKvlshTsmIdx0Qme+OMnKbpzTRNfwjgfgD/wkjlvgYA70YxvimhKEoq\nkyjISj8xhs/vDmjEYh4AvO+09WvnZ8pIQ4LZTZykgSwB7oae7Bx2K4A3AdzHMMxnhw/SNP0vjNyy\nHpcUSZoCXUq6buIzidnE53cF1CKxaNDvY1syZUnDW2pJQ4JZji8QQiLXxP3vwGQT9g0Mw7xx7AGa\npi9iGOYVxPEOEqVCmyYRy8mEJDGGz+cKa8RivNzdZhOelyUTHywgDQkIiGXquJ7eBSZI2DRNXw5A\nDOBXo/VEDhMC+CmAV6IY25QJBEI12dJHHC8U8ocFQh72SYMC+xde0pCAAAAIxfLETtgAlAAWAVAA\nOLbTeAjAPdEKKlL4PKFSwE+IzSzENOLYcOijHkufVS5miypvIsmaAADwBaKkWMcwkVMmbIZhHgHw\nCE3TqxiG+XC8c2ia/iXDML+MRnBTJRJJxKQGNnE8NhwKfzxgF5vpWxSkIQFxGMXjxf0Ooclu6xs3\nWY/aEKFYIk4oEJP5EOIEvoBb2q3OYUlDAmIsKu7fvSMRYNwOYYUCEXlBEkewLIst2/5vsNNWJ1EH\nvEHllp8MZsgVoVjHRcSHgMMR900qIpGw4/ZWTpZj4zY2Ynpt3/O8s50aYEtvvFnqeflZb3LRINc5\nHBD6d9tdq2QaVblGmzBtoojocAV8n018VmzF/UeAqfD5XK5Yx0DEVnP7Ds+2prdDGWsvZBctP0dN\nURRM5VVU195XByuvr0rGalr+0gFLYMt79V2LKIV0mcGcwifrHrMSx3Fx/2lrZidsv2cgFA6C7BSZ\nfXodbaFt+x4ZQnYJv/onf1JKlKoj6zWmirmixnfelHr6XSGZRi5IKUsVoSw1bVvPEPfRiwesVR4h\nb705wyDmx/0aFBFB4VmSsGsj8BxR4fW7On0+F+RJybEOhZgmbo8Te2sf7rGwrDT7yu8LjKVzVMef\nI1NrkGwoc3dtP+QqWF985O42uVFFyW9bYmr2BPDzZ3fbi3vZ4PmGNINGIiGZexZwh0KOWMcwkUkl\nbJqmcwDcBECLYxYZGYa5nmGYb0UptimzOzo7vH4XK09KJnc7znChUAB7ap/s7fO1CwXFy7Hg3CtV\nfOHJP1lxCAU8FoGQ4zgcv/VTJBPBfEO1rp9l8btX9g1mN7td56iN2iyFUnKSpyNmgEG/f2YkbAAv\nA/gAwOeI40XG47FsqN/tcbp0GihjHQsRPXtrXx4A/1CwT57KpV36c6k6LXPCj1QcgpzedI7OXvu5\nU19iHvf3g8fjIfWSKnUAUD/0SYNL+w3TtUKsUc5J0SrJ/v6ZheU49Pq89ljHMZHJJmyKYZi7ohpJ\ndAy6PYNOgCTsmYhp/czF53896BXzpKHCC6iSpev0k02knIAVJBvyBa0H3xg6WcI+lnFFgRwrCuRv\n1FsDb29lLNWsXLLSlEoWKGeIAb8fvV5PXazjmMhkE/Y2mqYvBPA6wzBsNAOKJI7jwhes/X43gLRY\nx0JEjsVW5x90bu3TGYWK3a5MXs7Fm5OlSvVpTXvxxXwpx7EID+qTgt4AhNLJ9W/UFJpEKDSlfm13\ncp88v7+n0i3EelO6USqY0ev3M16P1+NuHR6uj3UcE5mo+BOLkSkQCsDNADiapjH6mGMYJu4XY7x+\nVxdGancTCW5o2M41tT9trZ6XJPu4IYnnzt3IlZTNO6MGFZrcvCTvYB+XVXKxpnPbI7acVbThdL4/\nSaekkr63xNjuC+KXz+yyF3aHg+fr0vRaqZRk7gRk83gcAHpjHcdEJqolcsKohaZpimGYhJnHdrkH\nOmMdAzE1gYAP++oes82tpKjsQpl0qz3bm/+tq0ynWlSciLlirrjplc+dhpz5SlcjFzzT5xFIhDBf\nX60bZFn84Y39g1lM5/BalSElT6mSnXFwxLQbDga7OY4LxzqOiUy248wKmqa/PPqQbqFpelEU44oY\nx2B3M8vG/b8DMQ6WZbHrwDMOl+8h6+UXabUftolCluLrJIUXXDulZA0ASSk6+L1DXgBQSOenDHU4\nvFN5Ph6Ph9QLKtXBu5ek/7eMx/2pm+n8xm4bivOersSofr8v7qdDgMnPYT8IYBMAMAxTT9P0uQCe\nBDA/WoFFSndP0wd9A5aAPiVjcpOURFyobXjPmaQ4OHzLdbThsbcH+x9ty++nrzvHHMndGSzrCwCA\nMWextH3nji5VRkpE1joMi3OTsDg3aWujLfj2mw2WhWGZeJUxVSuI0+a+IY7DY1YLbEE/BKBwpcGE\nDIn0yNff6+/D54MDUIzO019rNEMvFOFJmxWdfi+EFA+bjanQixLzJcZxHFqHnTMqYUsYhjl4+MFo\n0k6I2weH3f1MT29ruz4lIz/WsRATa7fs9Xv8H9kvOj9L0+MwJP96i8eWff6PjDmq5Iivl3AIHVlA\n9/XKRGwoDJ4gcpdR5xuE+IEhdXe/G58+u6en0iXAeaZ0o0wQXy+dzwb7IeJRuCczFz0BPx6ydOIX\n2XlHvt7u8+Lb5jRkHpPEdw07EeJY3JOZi2avB8/3WnFbWmYswp+yTrcreGhg4J1YxzEZk03Y9TRN\n/x4jo2oAuAIjDXjjHsdx7NnLrz8EgCTsOOYY6GY7rM9b152llxfmlab99plmq3DuRmnxt+anRu2i\nfPbI739G/iV6y84X+tOrcyLeiFemSYLs1iXGzkAI9z23u4/uCPrXa1P1BpksLjK3xe9HWdJI7Suj\nSIyBUAjecBjS0Vvz23w+vOWwYygUQoVcgXNTdGj0uFE6+j25UhnafFOaUYqp2oGBVpvXcyDWcUzG\nZD+j3QAgCcCzAJ4AIAfw7WgFFWk99tadZC4xPnl9Lny97+89BsNbjv+5fU5qo9XL3fs2ryf1Wz83\nmcrnqyd+hjPHE/OkHDcyyJYqtBhq8rujeT2BSADzpgXaoR/XpD5oGPb8vauhs2Fo0BPNa05GhkSC\nfa5hAECz1wNXOAQ/d3T37kKlCpuMZvw4IxuNHg/2uYbhY1nIjpni4YECm6CvscGAv57juITYrjzZ\nEfYGhmG+d+wBmqZvBfCPyIcUee1dB1+w9rb81GzIjfsWQLNFmA1hz8Gn++h8Z/ieO0qMPfZh9of/\nbuk2rNmkLkzPjmqiPiw5J0fmc/VDqhgpgywI5qk9DldIliKP6tY8Ho8H8/llqvD5UD3+VYtH9QXT\nuUygUi7UGVSxuINyqSoZVr8fv2tvQa5UBoNIjKRjmq+sSU45Mtoul8vR4fNCyufBxx7NcRwAXoLe\nRGRxuxNi/hqYeB/2HRi5S/BmmqaPnaASALgaCZKwB532xg1rbj1gNuRWxzoWAjhQv2VIk9Lkvv07\nRUalIpP34LO19l79Iq7gulsiuqg4EXPlPEnLa9uHpYqRWtjpResVXdv/Yi0472hBqGjTV+fIUJ0j\ne7elL/TOG3WWhUGZaI0pVTedC5QtPi8Kk5JwhcGENp8XrT4vhKPX94bD+HlrE/43Jx8iikKdx42l\nqmQEOBZ7XcOYp1Sh2etBWoI2d+p0ufwH+h2vxjqOyZpoJNEEYC5GbpQ59pXkB7A5SjFFRf+gdTcA\nkrBjqKntKw+LL/uvviRPl546V/Xlrk7vc/sF/Tnn/9CYo9ZM+01Ycq0BPs+AByNNpsHj8eDpFmC8\nglDRps7RCnDH0tT9Qx58/uweW/kgn11vTDMqRKKoB2IUifB/FhvectghonjYbDTjK+cgAiyLZWoN\nLtEb8IeOVggpCkVJcpTJFeA4Dofcbvy2vQUAcL0peksN0bTT3runyTm0I9ZxTBY1mbldmqYLGYZJ\nmI8N48lKK7nkig33vCiTksYi0623rzVkdbxiO39NqrKsyKzweAL4zdONVkHVBompckFMa99+9Zd/\ndWaVnZd++PFQb3OIyvrEayhNjekvChsKwfr8Hkd+h993njZVZ0pKSsw9c3Hugf17H3iltflHsY5j\nsiaaEnmTYZjzALxN0/QJmZ1hmJyoRRZh7ZbaN5radjHlRSvoWMcyW7g8g6hvfsK6rEYh2nzVvFSK\novDcuw1D24fSPflX/8wUDy03j93aBwAqfa6g5dBrg7FO2DyBAKlXz09xsSz++k6t03zAYlut0CYX\nqzXyWMY1kzQ7h7z7HH1PxTqO0zHRlMiNo/8/G8B6AGcBCAHYCuBUndTjDsdxgZq5Gz8gCTv6QqEA\ndtc+3lteHMQ9d5SZBAI+OiwD7INv9fUYVn9LVZSRO21zxBPisydMxbBD+qSgJwChLPaDWh6PB9O5\npUruXCif2dXmlX/MdC3hK5MW643JpMTr1Ox19O1qdg7tjXUcp2OiWiLW0T/eA0AC4GGMbAXcBKAE\nwB1RjS7C2joPPGS1NW8yGXLJvEgUsCyL/XUv95tNFt+Pby01J8lEYFkWDz59sM+qXcjS07yoOBk8\nESU5fs46q/hSTee2h3pzVtP6GIZ2At3cLCnmZqV93NUffv+lQ93zAhLh2aY0nYi0MjttHMeh2en8\nItZxnK7Jbl9ayDBM4eEHNE1vAXDwFOfHJWtvy4Gzl1/3hcmQe06sY5lpmOZPXALhzqFvX1OoM+jm\naABg294u73N7+P1Z591pyE1OicsqdqqsrCS/ewAS+dH7ZQQiCVwNZ14QKtqUaRo+7lhqrnf5sO3p\n3b0l/Qifb0w3qsTi+Ho3jGOHBvoH9jv6/hvrOE7XZPcOdY22CTtMB6A7CvFEXXtX7ev+QOLelRVv\nunpq/QcbH+g6d62d+v6NC1INOqXI4wng3n8fsr4TWuorvubOVFmcJmsASK2cJx3ua3cdf1whq9YM\ntjtiflPLqYjkEhhvWqS331Vt+o2kd+DhjoauLpcrEOu4EsE39t4PWoedjbGO43RN9oXEAdhH0/QH\nAMIAVgDopml6KwAwDHNudMKLPKbl60frm3fcXlG0oijWsSSyQWcv19zxtHX1Mo100fz5R4omvfBe\n49CXg2nu/Kt+Zo6HRcWJKAxmeN0ON0bu3j3CmFMtbd+1rUudmRL3ZVJ5Ah5Sr5yr8QKav79XN2zc\n221bnZSSXJqcQhYox9Hj8QR29dkfPZPvpWn6bgCrAQgxkgvvAnAbgGcZhnkvclGOb7IJ+3+Pe/y3\nSAcyXTiOCyyoPPfdssJlRTwqPqunxbNAwIe99Y/a5lXyqHsuqjLz+SN/h13WQfaBLfYe/aqrVEWZ\neWfUVCBWWNY/7qjU15sU8YJQ0WZaW6TAWiie39fp3/JBfdciSilbajBpEvUuxGj4xGr5cq+j77SL\nPdE0XYSRu74Xjz4ux0ipjt0RDvGkJpWwGYb5NNqBTKe6pq9+nZdZdUFhXnVWrGNJFCzLYs+hZxzZ\nWY7AT28rNUkkwiPH//p8nb1bM58r2HyTmYrTEqKnwiE4bh2JzIJL9ZZvnutPr4l8Qaho01aki1GR\nnvZ59wD7wYsHrfP8Yv46U7pePMsXKIcCfnZ3n/0x7syKCw0BSKdp+noA7zAMs5+m6fkY2YwxLRLv\n1RUBw67+fqblmxfDpLHBpBxqeGeo0/Zny63Xa9TXXFJ1JFnv2Nftu+PxHgu3+gfJuas26hMxWQMA\n+Ny4WUwi12AwygWhok1hTuZpb19qavhuuf4XvrbeJ9qbrAM+X0IUOoqG97u6vtpm6zmjvdcMw3QD\n2ABgMYDtNE3XAjg/kvFNJG4Xg6Jt98H3f52bWXlBKb2UlF09ibbO3T5v8OO+SzbkpORkHi1z6vMF\n8JunGq1UxXmS4muqE/Oe5GNQAu6ErX2HicL5ardjOJiUooiLUqhnSiSXwHRjjd4RYnH/K3sHcls8\n7nXJJm2mQiGJdWzTxRkIsHsc9ifOtDIfTdO5AJwMw9ww+ngOgHcAbItgmKeUoEOiqeM4brixddez\noXDc7t6KGcdAF7un9sHu6vl1/h/dMj8tJzPlSOX6lz9oHLz7taDVcOW9JnNVdUxvK48UVWaGzO8Z\nHPdraYXnKizbO/umOaSo4Ql4SL1sTrLvJ0vS/i8/FPpzF9O1z9E3HOu4psMb7a2ffGrtfmQKT1EO\n4B/HNG9pAjCIkcXHaVkkmFQtkZmKoijphevu+Kay+KySWMcSD7w+Fw42PNazeIFEsHpZvvbYEWe3\nbYj70+u9Vu1ZV6o1Wflxv3PidAxZu9Dx9l6XLrNi3F0VzJ7/Z624Md9E8Wbmwl3/IUtA9E5zbw0U\nsuVGs4Y/Axcom51Dzr8e3L9hl713SutxNE3/FMDlAFwYSdK/B3ABgEUAnKOnMQzDXDOV65zMrE7Y\nAFBeuPyH61fd/EepRD7zfkuP0TfQjr31W7G65pYxx7tsh3Cg4X14vI5gQbbUc+d3qlVCIR//fWE/\nOixOCAU8COWyfrupJpTQ89QT+Ob/PdabXrJq3Dsbh+wtYWR87DaWpSqnO67p5OoZ4nwv7O+p8or4\n55rS9RLBzJgx5TgOfz904PHnmhs3xzqWqZqZr77TcID57M/f7NuaUHVRTldt88fYsf8lhNnQmOMs\nG8b2Pc+yxblh65/uXcR3eVmVzx/Gzv09CIVYnLcmx2+B1t7mVifnrblwxiZrAAizPv/JvqbS5fAd\nhwaHpjOeWJAbVZT2+0tNrbdX6X8R7LA/1t7U7fB5E35l/osea9vHVsvdsY4jEmbuK3CSOI5jG1p2\n/rjDUtsb61iiRSHTYtm8a8cca2rf7tnP/NGWnSHFd6+bb9IkJ/EKczWoa3LgUIMddRbf4BueGnfF\nd3+p89osM/rTB3Bi1b4Tvj5slAc9J83pM4pAIoL5hmrdwN3V5t8r+4f/2dnQ1ep0JuTtwd5QCB91\nW/5j83hssY4lEmZ9wgaAju66PbsPfvDfYGhm3tWbbioDNXqTUE9fc3B//QOWs5a2hy/ZQBs0atmR\n3wGJWIDPd1m8n9b7PCmrr1Gnzl2sAQCKxwPHzvCdYONU7TtWZtHFyZ3b2mbsm/p4eDweUi+pUgfv\nXpL2cAnHPtDFdO7qszsTaRp1S3vb9vctnb+PdRyRMjMmqSJgz6EPfm7QZi6rmbtxUaxjiQaP14lh\ntzWQm/2Z6/rR2tQd3U54fSO7ZLp7ndw7X/e6NQvWCnTJbimOTdAch5k8HQKcemsfcKQg1Mx8R58E\n49L8JCzNT9rCWANb32Is1WySZKUxNWU6W5mdrtqB/r5tNuv/cFz8FvI6XfH7tz3NOI4LNrbuurfH\n3jqj5ipDoQC+3vewTSB63Z5mkolWLMrVHE5KqQY5evrc+PNT+x0PfK3p5SVp5KnVKyTK7AL01+0B\nADjbGpFkSj/VJWYEZXqqLOA99T+9MmmRdqCtLyGnBiIlmTaJlHcuS925uSDlF4NNPS92tvZ4QqGJ\nv3GauYNB7uXW5n98Y+/9JNaxRNKs3yVyvLnlZ//5nBU33iESxn/holNhWRb7RmpT+y/fWGry+EL4\n+2O7cN+dS7FtZxf8gTCUCpH/4fcdrrAvpOEJBJRx4QqYF68Bx3Foeum/cHd3AAAKrrwZMn389ByI\nhqGuNnR+UOvWppclneq8tq4HOosuKpn572CTFPIFYXt2V1+hLRw4X5eq10llcfGp/ZG6Q28/3sic\nd6Y3ycQrkrCPQ1GUYHn15W+trLlqbbwV25+s+paPh0Wi3c7LNhTqDDrFCW1TfIEQ7n+qvidcfI4o\nbd6ShKuTEQ0sy2LX3x+3p5es1p3qvIY9D/eW3ZCqT6SCUNOBZVn0vHFgMIMZdp2tNGjyVKqY7dX/\npNvS9F+mblWzc6gjVjFES1y8G8YTjuNC+pSM67WatPfLC5cnVAnWLush/6DrHfsF6zKS6bz5494y\n/trHzc6Pe/Tu/MvuNQkk0vFOmZV4PB7CbMA30XkZ+Zfqu3Y848hYnJsSqWu7O4dgfb8ZedfPOXLM\n8nYjJDoZUuad+M/Y8K9vwJeMvGGIkqVIv6AI/n4POl+pAygKEkMS0s6b3k54PB4P5gsq1CFA/d9t\nzZ7kL5mu5SK1Yr5Wr5rOgU+X2+V5r6vzFzMxWQMkYY+r19FhoXPm36lNTnvabMiN+xHo4drUa1Zo\nZTVzj9amPlaP3cn98dUeq2b5FaqipfTMnt84Qyer2ncsiTwZXUzAg8WISMLu/aIdA/t6wBONJOCQ\nO4COV+rgd3gg0WWccD47uvsw97o5Y453v9ME4+pcyLPU6NrCYKjODlXRKT8sRI1hUa4Mi3Jlbzf1\nBt/ewnQvDMtEq42p2mgvUAZZFs81NT79qdXyTFQvFEMkYZ8E0/LNOxXFK/9yzoobfyGTKuLy868/\n4MG+usd6Fszh8++9eI6ZN86t0yzL4l8v1/e1yirDeZtvTMjyp9OGx07qL0cUptXuvuFgknbqBaHE\nGhmyrixDx8u1AAA2EIbxrGw4Gxzjnu/rcYENhtH8+F6A42BanQtZmhLe7mHIs9QAAEW+BsPNAzFL\n2Iep8/RC/EBv3tPvxmfP7empcApwvjndKBNEvo4Wx3F4vKH+/dfaW78X8SePI+TVewr76z753093\nPP8qG2dlWFmWxc4DTzk8/n9bf3o7bVy/ukg3XrLefcjq/8Fj3Rbf0tuUeWdfbCDJ+tQo4cjWvomk\nFa5TdG3vtEfimqpiHY6tUSJKlkJ2ijvgKSEPusUZyL22Emnn02h/6RA4lsOxcfNFArC++Nm5IdMk\nwfDdJcauO+cZfwmL/T8djRabxxPRLZKvtrXs3NLedgXHzeytl2SEfQocx3EURW2WSRS6ZQsvWx4P\ni5CHGt4ekitqXbfdUGzUJGeMO/L3BUL43VP1PaGidcKiTUsTvvzpdFGkmpKCvmGIpKcuGcLj8eDt\nFlEcy2G6C0KJU2QQa6RH/iyQCREc9o+JIxwIgS+Jv5e2QCRA6qYFOifL4sGth5zptV22NXK9hlar\nT7kzZyKfWi2N73V1Xtvn8/ZHKtZ4FX//qnGG4zh3sspwqUQif2th5fr5sYqjrXO31xf62HHpxpyU\n7IzxFxQB4I2PW4Y/tGqH8y671ywki4qnxVw1X9b9EeNJSSuZcIeDKW293nbggyFjRboqIhef5Gat\ngT1WeG0upJ1HI+j0I+wPQagQQ2pSwNU2AHlWMoYb+yHPjt/KtzweD+bzypTh86B8ckebV/k507lM\noFIs1BnUpzso2u/o63mzve3WA/2O2iiFG1dIwp6EgSGb3WzIvUoiTnqtomjFtJZi7XN0hrt6X7St\nO8sgn1s+/oIiANgdLvzuZUu3ZtnliqKlRXHRU9HZ3oTWN59Fxa0/O3Ksd9eX6P7iXVTe/qsTzt/9\nwP+AP/omI0nRg77iJnj7bGCe+RcoHgWZMR35l1wftXhVqZloGvp0Uglbqcvmt9QNDxkrEJmEPUGe\n6nilFsZVOdDMMaHztTo0/WcXAArpFxSB4lEwn52HztfrwYVbINHJoCqJ7fz1ZOkWZkmxMCv9vfa+\n8Duv1lnmB6WitaY0nXAS03cdrmHXi63N/7PN1vP+NIQaF0jCnqRuW3NTdnrZJolI9iKduyAn2tfz\neJ041PC4dfFCqWjTlXPNpxp5/OvF2r4maXk499rrzbw46dnX+dEW9O78HHzx0YYmrq5W9Oz4ZNzz\n2dDI3cPHJncAaHn9SWSvvwKq3EI0vvgf9B3YCW3ZvKjEPLK1zz/h1r7DWKdR4Xf5OLFcMqV5EZFa\nivwbx/5MxpXZYx5nXFR89M8XnzhmEKfIxmwLTDSqTC0fdyxNPTjkwZfP7rGVDfLY9cY0o1IkHvfv\nts/nDTzRyPzpI0vXGXU/T1RkFeo0tHYe2P31vq03tXYe6I7WNcJsCN/sf9TOUk/03PODUtOa5QUp\nJ0vW++p7/Lf/p8PiXnKrMn/dpYZ4SdYAINUaUXz9D488DrqH0bb1BeReuGnc812WdoQDfhz4v/ux\n/5+/gbO9CQAw3NkKVW4hAEBTVIHBhgNRjZtDcNKrdVmllyR3bZ9dBaGiTaKSwXDzYkPPj+ab/lfY\n0/9Ie0NXt9s1ZiGxz+cNPFR36MG3O9rvi1WcsUJG2KepsXXXB8X5i27n8fh/y0wtNkbyuffVvTag\nTWn13HlzsVmpkJ501BYYvVMxULhWVHTt8rhcVNSWz4evf2QjBceyaHj+YeRccA14AiHG24jBF4mR\ntvI8mKpXwmu34sDDf8D8nz6AYyd3+WIpQr7olPLgwmEwzz2EUM8+U8dQJzT5Z0FuODqqHWj5HEOd\nX4MvGmlKYyi7CMIkLVy7B+SNbTvBE/CQtrHoyIIgMTU8gQCpV89P8QD46zu1ztR93bbVcm2yQSoT\nP1R36C9bO9p/GusYY4Ek7DNQ27jtpcLcBd5QyP/P3MyqE+9uOE2NrdvcoLYNXHtFgS7VOPeUq0Vb\nPm0Zft+SMpx/6T1moTQxOnW5ulrh7bOh8cX/gA0G4bFZ0Pzak8i94GgXJanOBKnWcOTPwiQ5As6B\nI2VhASDs90IQpZ/ZtusLCJMUEGSUDqVmr9O3f/6XMQnbN2SBsfIKSFRH3x+HrQchEuol2tUqr0gg\nlCgGtp4AABGqSURBVHa/04jsq8qjEt9sZl5XrOTWQfnfj+tdnrd2P7uv0zojmhGcCZKwz1B989dv\n5WVVbQoE/f8uyqvOO5Pn6OltDvYOvNa7YW2asqRwwUkXFAGgr9+F373Y1a1edpmieHFJXCwqTgbH\nAYqMXMz78R8AAL5+O+qf/NuYZA0APV9/And3B/IvuR7+oX6EfV6IlMmQp2VhsLkO6twi9Nftgzo/\nOmu+uspq6CoWwrP1VVnANwyKGju95B/qQn/Txwj7nUjSF0GTtxK+gVak5Czh9+z+oK/o4pJ0b/es\n6GUbE65ep9da2/1AW6f1l7GOJZZIwp6CprY9n2anl10eCPqerChaUTzxd4wYdg2AaXnCumKJUnJ9\n9Uht6lN56OU6R4OoNJS7OX4WFSdrol1a9U//E9nrL4dp4Uowz/4f9v7tPlDUSIVAisdDzoar0fD8\nI2gLhyEzpEJbsTAqcfJFI9UZDSXl8qYnH2F1hWePWd9RmCuhzloEnkCM7p1PwGWrQzjoB08gQaBH\nKQkHwwCPQiz2Zs90w92DrrpXd9/X9hnzp1jHEmukWl8EpJsL6aqSVc/OK19XdarzgqEA9hx6tLey\nNMydf3axQcA/9ZrvAcYW+PfnfnvaudfqFHrjCVX3iMjyDThQ++iD8Hulw9nV1yqO/Vo46ANfOLLj\nZbBtO8JBD9igFxJ1BoTqDAwLn+5zfdWjLf7h4pjEPlMNtNr7mS37ftbxZeM/Yx1LPCAj7Ajo7K5n\ndCnpG3x+zwuL5m6s4fHGjoJZlsXe2pf601K7/XffVmqSSU+dewOBEH73VJ3NR68VFG1eEZeLijNN\nYHgQBx+6H3kXX4f6t74YAnAkYYeDPrR/9iCyVvwIFE8Ij6MJqvQFYMMBuG11MJrL0blnOCzXy2P4\nE8w8lm9am1o/qb+ze2fblljHEi/ICDuCKIqS18zZ+OSKmis3SsQyCgDqmj5yiSV7hi7fWKjXT6JY\n0FuftQ6/25k8nHf+JrNINqU7donT0Pzq47Dv/QpSvRnOzk6fRK6XqDIWgAsHoMpYCKdlLwZaPgeP\nL4BMm4eUgpFGD70HX4XfaYXfM8CmXZIR1tD6yFc2mmU4lkXD1gPbu3Y0X+dosDGxjieekIQdYRRF\n8apKVv8xP7v82+Dtcl6wLlNTkKufcGtD/6Ab97/Q2a1ccplCV1CimOh8Inq2/b+/duaUXHRaXWVY\nlkWX/S/d9PnFCbMgHI8Cbj9b+/LOVxq3HtjMcZw71vHEGzIlEmGjLYl+WDM3p+e6KxbcPplk/fAr\ndf31/OJA3rU/M/P45J8k1igBTrs/3GhBKB5ZdDxzTsvAcP3re/7W/lnDvRwZSY6LjLCjaF5FRvWa\n5fTfLzq3Yu545U8PNfQGHv7Ma08791qtQm9K7CaSM8iBl592qSRz5CLJ6c1JD/e1s6z5vWFjZYQK\nQs0itv2dHc0f1P5P146Wp2MdSzwjCTvKFHKJcsPZpf+57oqFFyarZHxgZFHxD8/U2zy5q/gZNWdp\nYx0jMZajpR62Lzq8mtSi075tsaX5wc6SK4tJk95J4lgOLR/W7u7Y1vQde233rljHE+/I5+8oG3b5\nnBRFXdY/6Lnr4vUVP+gZDMjfaUt25lz4U5M2SU4+O8eh5KwCtLy1w30mCZtzmeT+YR8nVkytINRs\n4Op1epvePvBi2yfM9wMe/1Cs40kEJGEfg6bpTAD7AYzUrhwpZPERgA4A144eEwL4FcMwky7pODof\n94fKktRPvcaKRxbd9qMygYjMgMQrHo+HcNg36ap9x8osuTi5a/s/e3LXFka0zsxMwnEcOr5squ/6\nqvnXlm9aZ2z/xWggCftEhxiGOevwA5qmlRhJ4EUMw4RomjYC+BrAadcQ2XvIsoOiqHmUQHx/0XmX\nXqfNLYzfKvOzXuiM+sIJBCK4Oqn46ikXRzwOl79x6/5X279o/J5v0DN+40ripEh51RMd/1HWj5FR\n9S00TecwDNMDIPdMn5zjuED9u6/+cOdjf7+k9s0Xdh6uA03EF44XOuPXhlq1VNvfbPdEMp5Ex3Ec\nur5qbtz7+Jf/v707j22zvOMA/n2cOKeT+Khzx22O5mnTtE1b2kJbKKUtxxgFNsbWlQ0NtI2xIY0/\ngGljaH+wiUnbyjEYlEkcAgraUEXHGIega6H3laRN0mdt3DR2HCdOfB+Jr2d/2Bnl6Epj53jj30ey\nFLeW30eJ/fXr3/O8v+cn4u22zRTW40Nn2F/UxDn/CJ+WRLYAuAbA/QDu45yrAfwewLOpHMRydN9H\njLGrXOe6/9h007fv0JnqaO31dDKOpX1jSk1Lc3uO77Lo643KaKc4wUKuYOT0O+3/6Dtk/pnP7umf\n6vEoGQX2F32+JFIBIF8IcV/yfgOA9zjnHwshOlI5kJQyBODeqiUrd1QtWfkLft2tV+cVldC3nmmg\n0KjLj4wGoM4d39Wm4aGSvFg4iqyczH2LybiE9ZC527q/+0/Wg+a/0Nrq1FE4fNHnSyLlAF7hnI8t\nyrUAcAAII036jh/84PALT2345MlH7xXvv9Uei1CZZKpVLL6syD/cN66JRwCYM+92o/Vgz1A6x6Qk\nQ/+xD7W+tPfZ1hf3rrAc6H6Gwjo9Mvfj/8I+88ISQhznnD8FYA/nPAggC8BfhRCn03rQxAv6OcbY\nywOdrY/Urt6wpfqyVTWXuos0SQ9DXSN63jsS0FU25l380V+UU1AM76lICFeme2TTm3/AO9KzW7xj\nb+39jbN7cGL3c8tAdOHMNKUz1VXVLF/zaMO6G2411HG6cm4KHHh8W9+chTeMu1ui9dR7gYrrPWpN\nafGMb40bCYbl2V1dewfarX/ob+19a6rHM1PRGfY05eo19wH4QUXz0uerlqx8mF97y4YCg5E6wU0i\nifBX3pD3y1Q2biy0Hthq45uUs0PQpYrH4rDsO9PVf+zcNsv+7qeklLSkcQJRYE9z/SeP7WOM3eg4\n3bm5eukVP2/cuGl5du64vqWTS6WKpTTHk2gIlctmYkMoKSUGT1j7rQfNr5s/7HpESumf6jFlAgps\nBUjWt19jjP1t8NSJB6uWrNxcu3r9guw82qF7QmUj5VJG5exNZfb2dz0VLaYZUdaSUsLe2mu1t1l2\n2tssj/lsbstUjymTUGAriJQyAuC3jLE/nDu4556K5iW31a7ZcHmB3kh/xwmQb9AWRMMhZOeM/4Ox\nyGBSmbv83ooWKDqwZTyOviM9PQMnrG/Zj/f+LuDwDU71mDIRTToqGGOMVS5efkvl4hV31ixfvc5Q\nx4unekwzycCpE3AddYxqy+em1PjF3Pa6q+E7udrconzF1UVi4SisB8xdji7bTsuB7sciwbB7qseU\nySiwZwjj3KallS0rflqx8LLrq5deXslUtMQ+VfFoFMee3e6snn+1PrXnCaPf94y94TrlNIQa9Ybi\nlv3dh4ZO9f/dsr/7aSnluNekk/Shr9IzhON05zEAd+dr9cY5V6x7oGxBy9drV6+fTxOU46fKzkYs\nFgql/jw5CCigIZSUEs7uQbejs3+vo6PvVXub5Y3kDkpkmqDAnmFCbqcDwIOMsV/3Hvr43vKmlm/W\nrtmwskA/i/7W4xCXkZSW9o3R6dYah8+0Bw0NF98ybrKNeENx25GeNvdZx4f2dus2v92T1ovCSPrQ\nm3iGklKOAtjKGHv83MHd3yibv/hmbU3tqprla+ppN/ZLkELXvvMZa1pyelo/HJgugR2PxTHQbul3\ndjv+PdTV/+ZgR9+OdJxNc84fArABiQ6XMQAPALgJQL8QYluqz5/pKLBnuOSSwDcBvMkYy61etmpz\nWdPi63SmulXVy1aZqGRyEdlI28VK06EhlM/mHrG3WQ45uwc/sB3peToSCrvS9dyc8/kANgkhVifv\nLwLwEoAd6TpGpqPAziDJs+4XAbzIGCucffna7xsbm9fra+deUbXk8sosNV1I+Xl52qKUl/aNmTPv\ndqP1wEtDs6+aO6n7eAYcvujgSWuX1+be7+iwvezsHtw7QYfyAKjhnN8F4F0hRDvnfAWAX07Q8TIO\nrRIhYIyVzFm9/q5S3ny1oa7xiopFlxlVWfRZDgD9J1ulp90d0ZbVp6UfyJmurZaFd86f0E16pZRw\nnR0KOM8MtvpsrkNDwr7TfXZoz2RMIHLOWwDch0RZJADgYQALQSWRtKB3JYGU0gNgK4Ct6vwCw+yV\na384a27TVfo5DSvKm5cYstQzvnfRBRkbm1jf7jf82rL6lJb2jcllC3T+AVdYU1aS1l9qPBrDYKfN\n4bU4j7h7nYeGumzb/QNekc5jXAznvB6AVwhxd/L+UgDvAngNAG1ckAYU2OQzIqHgMIDHADzGGNPX\nLF/zLUP9vOUaY/liQz2fP6t+XmEmrfHOzslBLDqS8tK+MVWNGzTWA4/38ZtLxt0FcMyIJygdnf1n\n/QOew65ux76+w2dfkVI60zHOcVoE4Eec801CiAiAMwBcSEw+kjSgwCYXlHzzP5e8oUBvrK9oXnKb\nvnZuS4GhdJGxcUGDtqY2Z6b37I7L1Lr2nU+lUiHUn5Ml43FcygeflBKBAW9k+PTA2RFPqNNv93S6\nzI49LrNjl5QybZtppEIIsYNzPg/AYc65D4kNUh4A0DK1I5s5qIZNxoUxxorKqhYY5zXfqDPVLSjQ\nz2rSmer5rIZ5GlX2zJq83P/Ek721zbea0vV8fqc1HjW+461YZtJe6DEyHof73HDQfW749Ig71OG1\nOjtdZsf7Ppv7KF3MkrnoDJuMS3K54MnkDQCQqymqLm9eeot+TkNzvtZgyinUmDRllTWG2rnFOYUK\n3mM4W6a13qzRV6u6hd9XsQxaIHH2HHT44q6eIVvYO9ITcgWEp9fZMXx6YOeIO2im7bXIGApskjaj\nfp8VwJ/P/zfGmLFs/uI1xVWmZk1puSm/RF+jLig0FVdU1+hmN2iUcBFPrlaTH4uMIkudUg8oAMBo\n0AOvo8fp6wmHxdtt/xr1hsx+u8fsPjf8cWDA2zZdyhtkeqKSCJl0LFH0Li1rarmqpMo0X2MsN+WV\n6EzqAo1JU1peUWgoLc7XGaCeJv2+be1Hpa/DHykprbvombaMxzAScCHotntG/MOOWDQ8EA0HB8Mh\nry3oGbD4Xbbj3kHzYSll2i5YIZmDAjtDcc5nA2gHcBSJneIlgF0ArgGgBVAJoCP58PVCiAl/oSSD\nfFaBflZVUXk1zyvRVuSV6LS5mmKtuqBQq87N12bn5Wmz1LnaLLVam6fVlyTCXa9S5xdiIiY/pZQI\nB3w4vm2721C9qCgcdPvCIW8gFov44rGILx4ND0fDoeHIaMAZDnqGRgLO4ZB3sM3v7OsE4KJyBkkn\nCuwMlQzs7UKIVV/yf2sB/FgI8d3JH9lXkwx3rbpAU6Ez1fK8Yl11blFxsSpbrWIqVRZTqVRMpVIx\npspO/pzFGFON/QymUjEVy2JMpWKMqQCWFY9FR2Lh0VA0PBqKjoRCkVAwFA76Q9GREXdg0OEKOO2n\nZTzmBOCmvQvJVKAadmZT7Hq85JmrK3nrnOLhEDIpKLAzWxPn/CN8WhLZIoSgK9IImaYosDNbhxDi\nmqkeBCHkq6HAzmyKLYkoRXI+4B4hxObk/dsAPALgawBuAHAHgDgS78WHhRC7p2qsZPrLnKYQ5MvQ\njPPkkADAOd8M4CEkVuKsRqKj3TohxDoA3wPwMuc8LU2myMxEq0QImUBjZ9gA/olE29GNQghvcu7g\nfiFE23mP1QkhaH02uSAqiRAy8a5EYl27DvjfDjaVAMznP4jCmlwMlUQImXg2ABsBPAHgVc45A9AD\n4DMbGXDOr+Wcl03+8IhSUGATMvHOCCHCQoinAYwC+BWAFwA8wjnPAgDOeSOA50G9o8n/QSURQibX\n3QCOITHJuB/AJ5zzMBInT1uEEENTOTgyvdGkIyGEKASVRAghRCEosAkhRCEosAkhRCEosAkhRCEo\nsAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCEosAkh\nRCEosAkhRCEosAkhRCEosAkhRCEosAkhRCH+C9Kqn3BP7MmBAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x105390240>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# アウトになった変化球の割合(2016)、変化球系にやられてる(ちょっと違いが出てきた!)\n", "pitch_types_2016_outs.plot.pie(autopct='%.2f')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x10c299438>" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAERCAYAAAB7FtAjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdgHNXVt5+ZrVr1ZqvYkuU2csc2bhhwaAYMBAwpJCEQ\nEkiAUPKRvCkQCCSUUELA5AXTCSQkJBBqXjrGphmMjXEfW5ZtWb3X7TPz/bHSyqtd2StpZUmr+/wj\nzd2Ze89Ku3Pm3nvO70iGYSAQCAQCgTzUBggEAoFgeCAcgkAgEAgA4RAEAoFA0IlwCAKBQCAAhEMQ\nCAQCQSfCIQgEAoEAAPNgD6AoyiLgj6qqnqQoyiTgaUAHtqmq+tPOcy4Hfgz4gNtVVf3vYNslEAgE\nglAGdYagKMr/AI8Bts6m+4AbVFVdBsiKopyrKMpY4BpgCXAGcKeiKJbBtEsgEAgE4Qz2klEJsPKQ\n4/mqqn7Y+fsbwGnAQuAjVVX9qqq2AnuA2YNsl0AgEAh6MKgOQVXVlwD/IU3SIb+3ASlAMtBySHs7\nkDqYdgkEAoEgnKO9qawf8nsy0Ay0EnAMPdsFAoFAcBQZ9E3lHmxSFOVEVVXXAWcC7wMbgNsVRbEC\nCUAxsO1IHfn9mmE2mwbVWIFAIIhDpN5eONoO4RfAY52bxjuBF1RVNRRFWQV8RMDQG1RV9R6po6Ym\n5+BaKhAIBHFIdnZyr69JI1XttK6ubWQaLhAIBENIdnZyrzMEkZgmEAgEAkA4BIFAIBB0IhyCQCAQ\nCADhEAQCgUDQiXAIAoFAIACEQxAIBAJBJ8IhCAQCQR9obGzg4YcfBOC1117u9bw77riVHTuOmGN7\nxH6OJsIhCAQCQR/IyMjkyiuvAeCf//xbTPqMVT8D5WhnKgsEAsGI4o03Xuejj9bS1taG2+3mt7+9\nhQceuI/ly8+gpqaae++9k6uuuo4//OEmmpubMJst/P73fwTgueeeobW1FZPJxO2334PD4Qjr/7nn\nnqW2toYnn3yUDRvWc9ttd5OZmcWjjz7EzJmz+cc/nqWwsIiSkt0UFBRyww2/o6WlmTvv/D0ulwuH\nw8ENN9xCcnLvGcjRImYIAoFAcASsVhurVq3mqquu5dFHH0aS4PTTV5CTk8svfvEbXn75BWbNOoaH\nH36Siy++lNLSEgDmz1/IqlWryc8fz6ZNX0Ts+7vf/T5jx+bwwx/+mOXLV/D+++8CsGnTFyxefBwA\ny5adxOrVTwLwyScf8eyzT7N8+QoeeOBhli8/k7///a8xeZ/CIQgEAsEROOaYeQBMnz6TL774LOz1\nysoKZsyYCcCCBYuZP38BAFOnFgOQkZGBx+M54jinnLKctWvfZ+vWr5gxYyayLIeNX15exoED+/j3\nv5/j2muv4IUXnqexsWHgbxKxZCQQCARHZM8eFYAdO7axaNFxdHS0A9ClBVdQUIiq7mTOnLmsXfs+\nTU1NAEi9qgaFouuBygApKSmkpaXxr3/9g4svvjT4+u7dKjNmzGTnzu2cfPJp1NRUs3DhEhYtWsKO\nHduora2JyfsUMwSBQCA4AqWle7nuuit5/PHVXHHF1cF2RZnGLbfcyLnnns+WLV9xzTU/4ZVXXuLk\nk08LuV46gmfIzMzioYceAOCMM86irOwAU6Yowdeff/7vXHnlD7Hb7SxatISLLrqUF1/8F1df/WMe\nfPA+ioomxeR9CrVTgUAgOAxvvPE6LS3NXHjhRUdlvLVr11BZWcF3vhMY75prfsLtt99NSkpsCkke\nTu1ULBkJBALBUaC+vo5bb/1tcLZgGAaSJHH55Vcya9YcIBCV9OGHa7n33geC1x1pdhFLxAxBIBAI\nRhFihiAQCAQxwmf4ebtpI6XuKo5JnMQJqbOG2qSYIRyCYFiysX0P/6hbg0v3sCJ9IWdlLBpqkwQj\nBV1HcrowHAkgxz5uZlXlS3zQsgWAt5s3Uudr4fys42M+zlAgHIJg2FHra+a2sr/jRwNgdfXrZFvS\nWJisHOFKwWjHVNtAwpqPkTuc6EkOnCctRc/ODDlH76jCs/ke9MYdyBnTsR3zP8iJuVH179TcrGvZ\nGtL2ZvOGuHEIIuxUMOzY0lEadAZdbGrfM0TWCEYS9o8/R+5wAiC3O0n4JDw72LP5HvSGrWBo6A1b\n8Wy+J+r+zZIJm2wJaUuUE8DvR3J7YITuyXYhZggxpMnfhoREmjlpqE0Z0UywjQ1rK7SHtwkEPZGb\nW3sct4SdozfuOOzx4bDKFr6TfTJP1rwJQKHLzh3lE0j67HXw+9FTU/BNmoBvxtR+WN9NdXUVl1xy\nIYoyLRiNNG/esWzcuIH29jbq6+spKpoIwAMPPByzSKS4dwiSy435YCVGgh3/uNzoUwf7gGbo3F/5\nH9a2bEECTk2bx09zv44siQlYf5ickM93s0/mhfp1+A2N41Nmcmra3KE2SzAC8I/LxXKw8pDjvLBz\n5IzpgRnCIcd9YWXmUuYlTqai5SAnfVSNraW5u6/6RkwNTUh+H945M/rxDropKprEqlWrQ9p+8IPL\n+PLLjbzyyn+45ZbbB9R/JOLaIchNLST+910krw8A3ZGAZ/Y0fMWTY7rZ9Enrdj5o+QoAg8BG06Lk\nYhYmF8dsjNHGd7JP4rzM4/AbGsmmcIVIgSAS7hMWYWzYjKm2AW1sFu4Fx4SdYzvmf8L2EPpKoX0s\nU7dWYWtpD3tNMgwse/bjnVkMJlO/3gd0y2IcTeLaIVi3q0FnACA7XSSs34SppQ33kvlh5+vt5UjW\nFCRrSp/GKffWhbd56lk4cDXaUU2CbBtqEwQjDMNuw33C4SPS5MRcEpbeN+Cx5IamXl8ztbZhqqpB\nizBDiZb9+0u59torgktGN998G1lZWf3uLxri2iFIfi1iu2XPvhCHYHiacX92I3rzbpAtWIp/gHXy\nt6IeZ0GSwj/rPkAn4NFlZOYnTRmY8QKBYHhzmOVnAzDk/s8OIPKS0WAT14vc3uJJRJp0GTZr6Hl7\n/hlwBgC6D9+OJ9CdtVGPMzkhn1+Pu5Bx1mxSTA4WJk0VyxwCQZyjje39aV3PSEPPyR5Q/0OxZBTX\nDkHLGYPnmPCNHX/umJBjo6Oixxk6hrMq6nEqPQ38ve49yr11tGpO1rfv4oYDT6IZen/MFggEIwDv\njGL8Y8Kdgm4x450+ZcD7lEdTw6iLuF4yAgLZij3Q00JVA025S9Fq1gePJVsGcvq0qMe4u+JfHPCE\nzigqvPXscZVT7Cjoo8UCgWBEYDHjPO0EbF9ux1RTh+Tzo6cl4506Ca0gf0Bd5+TkBiuk9WTu3PnM\nnRu+BxoL4t4h+IrGY9u8HdnpAkC3WfFNKgw5x1JwBmge/OXvI9kzsSoXI5mskboLw6V72OuuDGsX\n+QgCwSjAZsOzeN5QWxEzjrpDUBTFAjwOTAG8wHWABLwOdC7k87Cqqv+OyYA2Gx1fX45lzz4wDHyT\nJ2Akhq/vW4rOxVJ0bp+7T5BtjLdmc7BHpNG5GUvIsWb02+zhiORyY//oc8yVNWiZ6biXLkBPj41G\nu0Awkijz1GJCJt82uFE/R5uhmCFcDrhUVT1OUZSpwD+Ah4A/qar658EY0HAk4J3Tt+STaPEZfpJM\n4ctSdjm6GcZIwv7pxmDSj7m2noQPPqFj5ZlDbJVAcPTw6X5uO/h3NnWUALA0eQb/M+5bmOIkCXUo\n3sUM4A0AVVV3A/nAPOBsRVHWKoryuKIoiUNgV7/4qGUbO11lYe3/ql+LW/cOgUWDh6kmdBZkamoB\nT3y9R4HgcKxt3RJ0BgAft21nQ7s6hBbFlqFwCJuBswEURVkMZAMHgV+oqroMKAVuOZoG+Q6+g/Pt\n79Lx33PwbFuN0YfooFpfc8R2HYNWvzNWJg4LtB6qkVpqCtjibyYkEPRGjTc8Ga3WG/keMBIZCofw\nJNCmKMo64FxABZ5SVfXLztdfAsLzzQcJvaMK75f3YrjrQHPjL30Rf9mbUV+/OHkaZsITUDLMyYyx\npsXS1CHHvWQ+/tyxGICWkYbra0uG2iSB4KgyM7EIie5wUKtkZmFyMYbfjeFpGZLcgVgyFHsIC4H3\nVVW9XlGU+cBi4CVFUa5TVXUDcAqw8UidpKc7MJv7lgnYlQJ+KO2t63EROiOwOveQlR2d7kQ2yTyQ\ndAXPlr3LzvaD+AyNSYm53DH9UrJtcaZdkZ0ME74e/DsOduqdbuhCIFAwbKj3tHDfnhcwOtNd7bKF\newpWMFZ9BHf1Vxh+F5bUQpImn07KjG8PeLxHH32UTz/9FL/fjyzL/PKXv2TNmjVkZ2fz7W8PvP9I\nDIVDUIHnFUW5AXABlwGJwEOKoniBauDHR+qkqSn65RjzgXLs6zchOV34JhbgXroAzIG3rpsKCQQ5\ndXt2l8tNXV1b1P0XkMONeReFNrZCHdH3Iehmu/MAf6l8mQpvA/OTpvCzvPNJNY+YbSVBnPJi/cc0\n+rq/01ZvBwmf/BnnIaoG3vodNDbspq25BevU7/R7rP379/H22+/w8MOBXISSkj386le/5sQTT6Kt\nrW/3p55kH+Zh96g7BFVVG4HTIrw0OCWHPB4SPvgUSQvoGln3HkBPScY7dyYQELoyF5yBv+yN4CVa\n+XvoU7+LnDR+UEwS9I5maNxd/jyN/sAH/ov23Txd+zbX5a0cYssEo51Dl4oAzmquIimSxI3hx3/w\nbSyTLog6n6knSUlJ1NTU8Prrr7B48XFMnjyFxx57hmeeiZysFivifj5uamwOOoNgW11D6ElhyxIG\nWtOuPo+lGRqaEVlQTxAddb7WoDPoQnUdHCJrBIJuTko7hgxz99P1BE/vqxRGRzla/eZ+j5WVlc1d\nd93H1q1f8ZOfXMpFF32Tjz9e1+/+oiXuM5W1zHQMsxnJ7+9uGxsqOmXKnIX/wH8PaZExZczs0zhP\n17zNa43rMUkSF2SewLezvzYAq0cv2ZZUxljSQqK3ZjomDJ1BAkEn6eYk/lT0E364595AYMWRpIYG\nkItUUVGOw5HIb35zMwCquouf//waTjvtDDIzBy8ZLu5nCFitOE9ZipaWimG14C2ejHdmaLF2U/7J\nWKZ+D6ypSI5cbPN+FXXRbYD1bTt5seFDvIYPl+7lb3XvsbVjX6zfyajAJMlcPnYFGaZkzJKJxUnT\nuGTM8qE2SyAAIMuSyrFJgfvHnsMEjcgpkzBlzer3OCUle7jvvrvxdz7Ijhs3juTkZOQYFvaKRNzP\nEADQdQyHHc1mDSid9qhiJEkS1uIfYC3+Qb+6f7dpU1hbibuSWYlF/epvNFPlbeTPlS/i1D0A7HVX\nIg+B6qNA0BuppkCAw/+l5zLH1Uyxu0fVNLMDc9F5SFL/6yEsW3YSZWX7ueyyi3E4HBiGzk9/eh17\n9uw+8sUDQBqpcbN1dW1HNFxyuUl490PMh+wZGIBzxcloOWN6v7APVHjquWLvA2Htfy66gskJA1M8\nHI08W/su/6pfG9I2w1HIbYWXYh7AF0wgiBVXlNxPhTdwT0nw+/hGUwVLfQbpkgU5aTzmwjMx5wzf\nHJ3s7ORen7DieoZg++KrEGcAgQBTc1lFzBzCmpbwjSOHZBPOoJ9YpfCP5HbnAd5u2siKjIVDYJFA\nEEqeNTPoEFxmC89mT2B64Y/IT5wwtIbFgLh2CKb6yDVP9ZTQtT+9owrvzscx2ssx5SzBMvUiJDm6\nP80ke3jN1HFxpoAYxDCwbtuFZe8B9EQHnvmz0TNim429PH0+Lzd8QrvuCmkvdUdfsEgwepE6nNg3\nfIXc1Iw/PxfPvFnQxwTWI/H9MaexpWMfHiNQr32OYyIz48AZQJw7BH/eWExNoTojXbILwWPDwP3Z\nbzHaAwJ1emspQNT7CYuTp6EkjEN1lR/SNjjKqkONZVcJ9g1fAYFwXlN9I+3fPCemX7h0czJ/nHAZ\n15b+JVijGmBO4sSYjSGIXxzvfYSpvhHoFF/U9ZjWK9AMjSZ/G9fmnUe75ibbksq8OKqfHtdRRp75\ns9B66PVLQML67k1go6My6Ay60KrXEy2SJDHWElr34Jm6d/i4ZVvfDR7mmA+GFgKSXW5M9Q29nN1/\nCu1juCDzeJLlBJLlBC7KPoUTUvsfsSEYHUgud9AZdGE52LM8bv9x615+se9Rflf2DPdU/Jt3mjcx\nK7EobqSvIc4dAmYzHeeeTs/dZ/mQWYNkzwSTLeR1KTn6DGXDMFjftiOs/ZHq/0Y4e2Sjp6aEHBuS\nFLb8FgtebfiUfzd8SJvuok13Ud6j+JBAEAnDZkW3h36XtbTYFXBa17KVkkOqI5a4K3i54eOY9T8c\niG+HACDLaPmhOQX+vJzg73pHBWihmv6mvJOi7r7EXYnX8Ie1N2ntaH2Q0R4JeOdMDxYVN8wm3Ivm\nRqxZPVB6fsnWtmyhQ3PHfBxBnCHLuI9fiN4pya6lJONZGDvh5HbNFdb2UsPH+A0NTXPj9Qm10xGB\n68RF2NdvwlRbjzY2C/ei7jVFrXYD9JhDGK17Ife4qPo+XBGcMk8tRfacXl8faRh2G86zT0Vq78Cw\nWcFiGZRxmrX2sDYRciqIBn9BPu3fPhfJ6cJIToQY5rAcnzqTv9a+HbK3ZfE1sX7XTfg7StB0N4n2\n8eRmnUphDLS3Skv3snr1g7jdblwuF0uWLOXMM8/mlltu5JFHngqe9/LLL9LU1Mill14+4DFHhUMw\nEuy4Top8g5dTwpPH5OQJUfftO4x20VhLfNVDALCU7MO6VQUJPLOm4Z9UGNP+vbov7G9qACWuCmbE\nSSSHYJAxmzBSkmLe7RhLGsenzGRd61YAEjQvZzn34NS7NY1aO1RaO/ai6S4mjvtuv8dqb2/n1ltv\n5I477iU/fxyGYXDTTb/is88+DZPwjyXxv2Tk82HeewBzWQXo4Us4pjELMU/4OkgmkGTMhSsw5S6N\nuvvihPFYIvjVNFMiDpN9QKYPN0y1DSSs+wxTUzOmxmYS1n6K3GMTb6BYZQsTbOGzqneaw7PBBYKj\nzeU5K5iWUADAAl8tmXokgTs/lXVvow+ghO6HH37A/PkLyM8fBwSCV377298zf/6CQV2WiusZguR0\nkfjaO8gdgX+af2wWzjNPhkP0QCRJwjb7ms4wUwPJmhK5s15wmGxkWJKo6VFKM9PSt35GAqaK0FwA\nCTBX1uDNyoh8QT+5ZMyp3HrwbyFtiXHmXAUjkzRzEncXXU6Dr5XS3bfR5ImsxOt0l9PYspms9P4l\nU9bX15OXF5rcarfbsVgs7N9fyrXXXgEEgloaGuo57bQz+jVOT+LaIVh3lQSdAYC5ph5zRTX+8eHJ\nZJK1/9Eydb7WsLbZcRg3HykJTU+PXRRHF8cmKxyXPJ1POqO3MszJfD1j+EoBCIYHktuD/dONmGrq\n0LIycC+Zj5E4OHX9Mi0pHDjCvpYs9V/tNCcnh9271ZC2qqpKamtrKCqaxKpVq4PtXXsIsSC+l4z8\nEdb3feERQQB66358+19Da+6beFSr34lO+FJUPEo2+wvy8U6bgiHLGLKMZ4aCf1y4KqzubcWz9X/x\nbHkQ3R05W/xwtGsuFiYXc1H2qfwy/1s8MvlnjLWmx+ItCOIY+8cbsOwrQ3a6sJRVkLD200EdLzV5\nRq+vJTkmkT6A3JmlS0/g888/paIikPDq9/t58ME/U1q6t999RkNczxB8U4qw7twTLJBjWMxo6eFL\nOb6D7+D98h66oo2sM67AMumCqMZ4ryXy2napu4qFycX9M3y4Ikm4l8zHPX92YL0oQpSR7mrA9d73\nQQ+k9fsP/Bf7SU9iSgqflUWiztfCz/etpskfiDSallDAcSm9f/EEgi7MlTWhx9V1gX3DGEpGV3kb\nebXhE5y6h1PTFpLasoGWtu2h45ocFOSuHJDaqcORyI033sLdd9+OYRg4nU6OP/5EFi8+jrfe+r+B\nvo1eiWuHoKen4ivIw7LvIBIg+fwkvvkB7d84Gyzdb92n/o1DQ0+9u/+GeeJKpCgyEGUj8o7/ZHsc\ni9tZew839e56MugMADA0fDsexbTwlqi6frNpQ9AZAOx0lfFlewnHJk/tr7WCUYKWmRZwAl3Haakx\ndQYdmptf7nuUZq0DCOTH3Fl4Fan179HUuiUQdpownnFjVpAdgyXOqVOLeeCBh8PaV68OLaN53nnR\nPbxGQ1w7BPOBcqz7Qjd9ZJcbc3kl/qKC7sZO7f3uYx89cxN648S0OTxd+zb+Q5aNFiUVj94bWKQE\nMs0T3tYL3kOdSVebEd4mEPTEfdwCEtZ8jKmpBS0lGdeJi2La/8b23UFnAKCh82FHCT8uuiqm4wwl\nce0QTFURCmADpobmEIdgLjoP384nuo8Lz456upduTuL2CT/kn7VraNNdnJG+gNPTjx2Y4SMYy9Tv\no1V+yKEO1VJ8cdTXn5Y+nzeaNgSVJHMtGcxPGqXOVdAn9LQUOlaeCR5vYBYb43j9VHN4bkNXsZx4\nIa4dgp4ZXWKYdcqFyMkFaPVbMKUrmPK+1qdxpjsK+f2EH/TdwBGM3NIa2FxODv2SmFImYD/hL3h3\nPg6GjrX4Ukzp06Lut8A2hvsnXsmalq9wyDZOTZuHTR6cjOjRRLW3kfsrX2KXs4xiRwE/y1tJjjW2\n4cLDBlv/o3sOx2xHEYuTp7G+bScAJmRMcRaXE9cV08wl+3Cs+yykzQA6zjkNPTtzsEwbMuQ6P6ZS\nH5LbQM824Z9sBWuMsxr9Go73PsLcmZPgnVSI+8TFMX8aE8SWX+9/gu3O/cHjGY4J/HHCj4bOoBHK\nducBfr3/8ZC2Owt/NKLqIYzaimmHbjB14S/Ii7kzUJ0HebUxEOJ2TsZiih0FR7gi9pj3eLG92cGh\n/2l9kxvnt1PAErubtWXv/qAzALDuPYB/YmHE3A7B8GGXs+ywx4Lo2N6xP7zNuX9EOYTDEV/znR5o\naeEhpnJHuGIhgO6uR2vahXEYbaJIVHkbueHAk6xr3cq61q3ccOApKjz1/bJ3IFg2uul525ebdMyl\nsd2Qlds6wtqkCG2C4UXPh5SheGiJBwptY8PaTJIJt+6lxd8h1E6HM/7xeRifbw69UUZY2vDufg6f\n+lcwdCRHHvbj7kZ2hP/jI/Fp644Q+Wuf4eeTtu1807ZsgNb3kd6UtmP8AfVNGId1606kzn4Nkwl/\ngZgdDHd+lrcybA9B0HciJaG+0fQ5rzV8gsvwMc6axUmpczgnc2Bhp9XVVVxyyYUoyjQMw0CSJObN\nO5a//vUJZs2aE2ybMKGI66//1YDGOpS4dgiWssqwp2apuTUgjdup46+764POAMBwVuLb/Xdsx1wf\n1RiRNIsyzbGXczgSvrk2TO+GCm3pKTL+ibHdYNOzMnCdegLWHXswTDLeWcUYSfEVaRGP5FgzxJ5B\nDIj0fa89RMdsj7uCUncVbt3HN7NPHNBYPSUqAF566YWwtlgS1w5B6ghfypD9fmybt+M+LhAaarga\ngs6gC61tf9RjHJcynXnNk9nUUQLAMYmTOCFlZv+N7if+aTacaSbMJV4kl4E+RsZXbIv9pjKBmddg\n7xnscVXwYOXLHPDUMC9pCtflrSQtQtifQHA0ybNmkm1Opc7f0us5GjrvtXzJeZnHYZH7f4uNvPw0\nuEtSce0Q/BPGY92xJ2yWYN57ABbPA1lGTpscKKF5aPKUK/qSjRbJzK2Fl7DPXYVuGExKGLrlEz3X\njDd35P9LNV3j92XPBpOAvmjfzRM1b/Dz/G8OsWWC0c7j1W8c1hl0UeGtZ4uzdEA5NF2qpl3LQzff\n/AdaW1tD2q6++mdMnRo7iZyRf/c4DFrOGFwnHUfCmk9CnILs8wWWjZISAwlosiXEIRjuegy/C8kc\nfXnIInsuWh83pAWReaj6tZCMUIBdzsgywwLB0WRT+56oz41UJ6UvRFoySklJja8lI0VRLMDjwBTA\nC1wHtANPE9ga3aaq6k9jNZ6/qADfgQqspQeCbXpSYogsrpSQjeHr1s+RUib1yRlUeOq5r+JFdrvL\nmWLP5/r8Cxhny47NGxhluHUv7zV/GdY+3RHbymwCQX9IMyfRFKHEa08m2nIGXOFvKJaMhiLs9HLA\nparqccCPgSeB+4AbVFVdBsiKopwbywHdS+bhKxyHYTKhZabjPHlpMNpIb92H0bov5Hxz/tf61P+q\nypfZ7Q7I1O5xV3BX+b9iYvdoRELC1ENUMEG28qOxZw6RRYKRgtzQhG3jFiy7SsAfWeZ+oPwoJ/Rz\nGGmHziHbODtjcdjnuK9ELpU5uAmgQ7FkNAN4A0BV1d2KouQDU1VV7XICbwCnAa/EbESbDdcpx0d8\nSWtWw9qMPuwhAOx2lYcc7/dUs62j78kqnzR6eavOi12G83PtKElxvaIXEZts4esZS3ih4UMg4CCu\nyv06KebBKXQiiA9MVTU43vwgGA5tKS3DueLkmI8zJ3EitxVeyhuNn2OVzZyeNp9P2nayzbkfjx4I\nO12ePn/A0vc5OblhqqYAr7zy5oD6PRJDccfZDJwNvKIoymKg59pKG3DU4jZNGTMJTJS6I41MWbP7\n1MdEew673RUhbf9t+qxPDmFbq4/7SrvDRre1tfOXWSmkW+I6dzAil4xdzuzEiexzVzM7cSKTh3Cj\nXjAysO7YE3QGAObqWuSGJvTM2BdWmpM4kTmHVESckVgU8zGGiqFwCE8C0xRFWQd8DOwGsg55PRlo\njnThoaSnOzCb+1+AIkj2NGqLTsK57z0AJJONjPzJ2LKiL6n5U9M5XLc1dKMnyW4nOzv6PrbUhVYW\n8+hQqps5I3t0xvgvz5471CYIRhA+hy0sZSw9Kxm5D99jwdA4hIXA+6qqXq8oynxgEbBbUZRlqqqu\nBc4E3j9SJ01NziOd0o3fH9gzMIU7EMPbhnP/B93Hmofa9auxL/pD1N1PJJ9FScV81r4LALtk5fTE\nBdTVtUXdR6oeHqGU6PVSV9dbCrJAIOhCnjyRxD37kTrL5voKx9FqmKEP38HRwuEeVIfCIajA84qi\n3AC4CGwyy8BjnRFIO4EXYjKSrmP/dCOW3aUgS/gmFeJeujBEvsJfsQZ6hIsa7r5rEf1m/HfY0K7S\n4GtlUXIxWZa+rXqdmmVlU4uPr1r9yMDpY6wUJ4++PQSBoD/o2Zm0n78Cc1klRpIjYq1vwZGJa/lr\ny559JHxdW3xxAAAgAElEQVQYKn/tT0/Bec7p0Lnc5Nl0F/7yd0POMReuwDbn/0VtS5O/nbeaNuDS\nvZySNpcC25ior+1JtVvDKktkWEff3oFAIBh8Rq38tdzYFNZmbmrFsv8gvskTAJCSxoWdY5l4fsT+\nfP42ZNmGSe7WB3LrXn6x75GgnsnrjZ/x54lX9Nsp5NhjsC8yxPj2vYy/7C2wpmBVLsGUMT3kdU33\nouseLGaxviuIMZoWWCK22Y7qsB5dw6NrJJssvYSLjgzi2iFoeTmwfXdYu+Tpzkq2FJ2HVr8ZvX4z\nSGYsU76DnByaBOXXXGzdcwd1TZ9iNjmYUnAZ43O+DsCGNjVE3Mpr+Hi3eRM/HHvGIL2r4Y2/Yg3e\nrf8bPHY37cJx6t+QrIGbf1nVS+w5+BSa5mJM+nHMmvIbTCb7UJkriCMsu/di/3wzkteHPz8X50lL\nwDo41dO6qHB38Fz1fnZ2NOPWdfJtCSxLz+Hs7PAHzb7w5ZcbefnlF7n11jsAWLPmXZ5++nHuuecB\n1q//hLfffgNJktA0jcsvv5K5c+fH4u3Et0Pwj8/DfcwMbJu3B9M5DFnGd8j6omRJJOG4e9Cd1Uhm\nB5I1XM3wQOUL1DUFCuD4NSc79/2FrPRFJNjGYpfDP3AJEdpGC/7qz3o0ONEatmDOXYrTXcmu/Q/R\nlW1Z2/QxB6r/w8T87x59QwVxheR0Yf/4i2DoqbmiCtuWXXiO7VsI+ZE46Knl7aaNmCUTS5Pmsqp8\nHwfd3QEuJa529rlK8OgaF4wdWHZ910zjnXfe5Pnnn+OBB1azcePnfPHF56xatRpZlqmqquTqq3/M\nU0/9nZSUgUfrx7VDAPDOmwUmE/aNWwCQdJ2E9Ztwnv61kPNkR06vfbQ5S3u06LQ7D5BgG8u8pMlM\nTyhkhysgjZFlTuH0tAWxfAsjCjm5gJ7xUnJyoBhLu3M/PVPv2zt6/m0Fgr4jt7SG5CEAyE1HjF7v\nE5XeBq4vfQS34QXg9bo6/Fp+2Hka8H5jNV/PHo9F7v9eoGEYvPXW//HCC8/zwAMPkZiYxCuv/Idr\nrrkeubPf3Nw8nnrqOVJSwh9k+0PcOwQAc3ll6HFFNVJbe7BAvFb/Fb7y9zCPXYw597iw67PSjqW2\n8cPgscnkIC05sC5ukkzcMeFSNraX4NI9LEhScJiO7vrlcMIycSV6w1a0ui9AtmJRLkJOGg9AevJM\nTLIdTXcHz88cJOfp1w02t/rRDIO5qRas8shd1xUcGS0rA8NqRfJ6g23+/N4f8vrD2pavgs4AwKvZ\ne9X+qfS62NrexLyU/pfr3bJlMw0N9bS1teHvlOKor68jPz/UCcXKGcAocQiGxRJ6LElgDrx1z7aH\n8Zf+BwCt7A38ucdjX/C7kPPzx6zA62uisu4drJYMphT8EMsh2vwmycTCZGWQ38XIQDInYF9yJ7qr\nHsmcgGTpTqyzWFKYW3w7JQefxOtrIW/McvLHnB7Wxy5nGe+1bCZZTuCsjEURi5IcDq9ucNOudvY6\nA3OVPLvMncVJJJpF5FbcYrHgXH4iti++QnK68E8sxDdtSkyHSJB77HVJxmG15iwD1DLKysriz3/+\nX1599SVuvfUm/vSnVeTk5FFTU0NRUXem9Oefr2fy5ClkZAy8VvyocAjeY2Zgrq5D6vSy3hkKRkLg\nn+vfFyqZpFV9FCZ9LUkSE8ddxMRxFx09o0c4ckJWxPaM1DksTH2g1+t2Osv49f4ngqUK17Zu4eFJ\n12KVLb1e05PPm3xBZwBQ6db5oMHHWWNH78xtNKCNycK54pRB6//UtLm82bSBCm8gTynTYtDkjXxu\nkT2R6UlpAxovP388FouFCy74Fhs2rOevf32Cs846h6effoybb74Nk8lEWdkB7rrrNp544m8DGquL\nwzoERVHWcBgfqKpq7NWjBgHDYsEzbyaGrqPljkXPDnhSwzDCqqUBoPuA6OWvBbHjveYvQ+rW1vqa\n2dxR2qcZmFMP/8i6tJGZbyMYPiSZElg18So2tu/BIpmZ5pjAbaXb2OVsDTkvQTaxIisfUwzDT3/9\n65v54Q+/x003/Z4ZM2Zz1VWXYbFY0HWdm2++jbS0gTmfLo40Q/hF589rgVbgCcAPfBeIvWrUIGDZ\nvRf7RxuCUUae4sl4Oh2CJEnImbPRG74Kni8lFUSMNBIcHZIihKBGajsci9Ms/LPCTas/4AQSZDgh\nM/oZhkDQG1bZwpKU7ryaG4tm8XzNfna0t+DWNfLtDk7LyGVBauQZcrTMnTs/JJQ0LS2N//znv8HX\nvvWt7wyo/96IKlNZUZQNqqou6NH2haqqxw6KVVEQTaYyQNI/X0F2ukLanMuW4J8UCAkzDB3PlgfR\n6jZiypiBdfbPkM1Ds7RQ7dZINEskj+K17npfC/+z7zHqO8sULk6exo3j+x6WWufRebvOg2bAKdlW\n8uMg4U8giAWxyFS2K4oyTVXVnQCKohzTh2uHFMnnC2uz7ikNOgStej1a5Qfga0fHAGclpBxdOds2\nv86dezrY3aFhluDbeXZW5o7OZK0sSyqrJ1/Hlx0lJJsczOhnpbRsm8z3xollP4GgL0R7U78eeE9R\nlEoCQnTZwLcHzaoY4p1ShG1HaB1Uwx6YARi6hnfL/dBZPtNwVuPd/gj2JX/s11hrW7bwadsO8qyZ\nrMxcSrIpuqIur1Z72N0R2AT1G/BchZvjMiyMtY3Op1qbbGFx8rShNkMgGHVE5RBUVX1HUZQJwCwC\nm8xbVFUdnBp1McazaB5yWweWg4FcBN1mxTNnRuBFfweGJ1TvSO+o6NlFVLxQ/yF/rX07eLypvYT7\nJ14Z1bWV7tCNbQOocuv9cghShw4eAyNjdDoTgWCg+DUXLncliQmFyHLkW6Rm6JR5asm2pJJkip+Z\naFQOQVGUdOBuYBLwLeBRRVF+rqpquHrccEOScJ12Ip7GZuT2Dvy5Y6AzL0GypiBnzEBv3B48XU7t\nX+zyv+vXhhzvdVdS4akn33bkzaWF6RY+a+5e2koxS0zrR/lM6ycuLJvcSAZoOSZcX08C2+jdjxAI\n+kpNw0ds23s3mubEZs1ibvFtpCRODjmn0tPALWXPUOVrxCpZuDL3bE5NmzdEFseWaO8WjwEbgEwC\nJS4rgdgEvh4l9Iw0/AX5QWfQhe3Ym5EzZwWPtaoP8e56ps/9O3VPWFu0Tw7LMq1cVpDAlEQTC9Ms\n3Dw1CZupbyFrcoOGdWPAGQCYqjUsm8NtEggEkdENjZ37HkDTAtpEHm896v7VYec9U/cOVb5GICBm\n+Wj1f2n2u2n16YzUcgJdRPsYWqSq6qOKolypqqoH+K2iKF8d8aoRgGzPwPCGxhH79v4by5QLkUzR\ni9QV2MZQ5qkNHmebU0k1R1/+cmqSibUNsKXVh1mCnxQm9CmzVmoJr7gmtwzPamt7Dz7LwZpXkGU7\nk8dfTF728qE2SSBA01x4faGLHi53Zdh51d5DztHS8XmO4/ptLnyGmzybzImZVs4aO/CgkL/97Wm+\n+OJz/H4/JpOJq666jhdffJ5TTz2dhQsXD7j/SETrEPyKoqTSmaSmKMoUCCthOnLRe2yHGBqHzUmP\nwC/zv8U9Ff/mgKeGAusYfjP+wuiHNwz+tNdJjSfwJ/2kyUeCSeLKCdFtSgNo4ywYNgnJ0223f9Lw\ni72vbljH3vK/Bo+3ldxDSqJCUj+jiQSCWGExJ5GecgxNrZuDbWMyjw87b0nyNPa6K0FPwOI9B9nI\npuuRcq9TZ7/TjUczOD+v/3sL+/fv4+OP1/Hww08CUFKyh9tu+x1Tpw6uRE60DuFm4AOgQFGUl4El\nwA8Hy6hYY95/EMuefRh2G97Z09FTQwuzWCZegHfrqu7zC89C6qNAXaF9LH+ZdDUe3YetDzILAA1e\nI+gMutjZ1sc9e6uEa2US1g1uJLeBb5oVbdLwk+Fubt3So8WguW2bcAiCYcGcqTdRcvAp2jr2kpl2\nbERp9m9knYhJknmj2kKLkR32ugZ80ODjnBw7ln6KKiYlJVFTU8Prr7/C4sXHMXnyFB5//Bnuvvv2\nfvUXLdFGGb2lKMpGYBFgAn6iqmrNoFoWI8wHK3G8/3H3cXkV7d88OyhuB2ApOgc5aRxa/ZfIqZMx\n5Z7QpzF2u8r536pXKfPUcmzSVK7NOy/qkFOADKtEpkWiwdf9dD85qe9RQnq2GfeKpCOfOISkJk0D\nXo7QJhAMPVZLKtMn/uyw55gkmW9kncjOhna+ckd+cKv06Gxt8zEvtX8PZVlZ2dx113288MLzPPXU\nYyQkJHD55dFFLQ6EaKOMrMCPgWICMhbXKoryR1VVe5F2Gj6YSw+EHMsuN+aqWvzj80LaTdlzMWXP\n7XP/uqFzV/nzwapp69t2klyTwLV5K6PuwyRJ/L9Jiaze76TCrTMnxcwlcZpUlZN1Mq0dJRyseRWT\nbGPS+EtITpx45AsFgmHGkR7+rQPQMqqoKMfhSOQ3v7kZAFXdxc9/fg2zZsW24E9Pol0y+l+gDpgH\n+IDJBHSNvj9IdsUMIzH8SV2P0BZVX4YRVi+13t8aUkITYIezrM99FyeZuX9mCrphII/gmqxHQpIk\nlAk/YWrh5UgDlAcWCIaSqUkmvmyNPEOYkCAzLbn/Yg4lJXt49dWXuOuu+zCbzYwbN46kpGRkWR7U\nSKZoLZ6vquo8RVHOVFW1Q1GUS4Ctg2ZVDPHOUDCXVWJqDmjjeKZPQc/omzJgW0cp2/beQ1tHCekp\nc5g1+VfYbYG1w0xzCtmWVOp8LcHzpzkK+m1vPDuDQxHOQDDSOWesnc2tftT20Ai/BBlWjLUNSO10\n2bKTKCvbz2WXXUxCQgJgcPXV17Fu3Qc88MC9JCYGIhgLCgq56aY/DORthBCtuN1GAhvJ6zsdQzbw\nvqqqs45w6aARrbgdAIaBqa4R3W7FSEk+8vk9+HjzZXS49gePs9OXMLe4+5+w21XOXypfCewhJE/l\n2tyVpJj7NwsRCAQjh3a/zr8r3exo8+PRId8uc0q2jWPThl+EXxexELe7H3gXyFUU5X5gJXBrDGw7\nOkgS2pj+VRPya84QZwDQ3LYz5HhqwjhWTfppf60TCAaE013J9pJ7aW7fTlrSDGZM/gUOe96RLxQM\nmCSzzKUF8fPwF9W8XVXVZ4ErgNuAvcA5qqo+OZiGDRfMJgfJjkkhbekpM/vcz0F3B1vamvDp8ZO+\nIRgebC+5l6a2LRiGRlPbFraX3DvUJglGKNFGGVmA5cApBDaV3YqibFVVdWTnaUfJ7Kk3sn3vfbR2\n7CEj5RimFV3bp+sfKd/Nmw2BjMcxVju3TzqGLOvolLcWxJ7m9u2HPRYIoiXaJaPHCdSUfJTArOJi\nYAZw+IDdEYShB8TlpAhJZYkJBSyceX+/+j3o7gg6A4Bar5uX6w5yWX6oiN5btR7WNXhJs8h8M8/O\nBIdQKxVER1rSDJratoQcCwT9IVqHsEhV1eKuA0VRXgO2DY5JRx/vzifwlb4EgGXiSqzTfhSzvpt8\n4akazT3a1jV4eaysq6qbxs52Pw/PSumzwJ1gdDJj8i/C9hAEgv4QrUMoVxRloqqqpZ3H2QQUT0c8\n/toN+Pb8M3js2/NP5MzZmMcsOMxV0TMtMZWxVjs1XnewbVnG2JBzPm8OrerW6jfY2e7nmNThG6kw\nUGoa1tHUuo3U5GnkZH4tLL9DED0Oex4LZt431GaMGrZ27OOztl3k27I4NXUuFtmM5gddA7MVRvJH\nOVqHYABfKYryLgGpjpOACkVR/g9AVdUV0Q6oKIpEYAlK6ezrcsABvA7s7jztYVVV/x1tnwNBb94d\nua2HQ9B1H7ruxdwHBVMAiyxz26RjeKXuIE0+L8syxrIgJbRGQk6PmgVShLZ4YsvuO6lueC9wUA1t\nHSVMLbx8aI0SCKJgXcsW7qnovjXtqK/i7JZzaW2Q0TVISDLIGmeQN3Hg26ulpXtZvfpB3G43LpeL\nJUuWcuaZZ3PLLTfyyCNPBc97+eUXaWpq5NJLB/4ditYh3Nbj+MEBjLkcSFRV9XhFUU4F7gDeAP6k\nquqfB9BvvzBlzcXH02Fth3Kw5nX2HHgMv+ZkTMbxzJr8K0ym6DeFs6x2fpTfe+Gdc3NsbG/zs6ez\npvI3c+3kxGlR+HbngW5n0ElZ1UtMKbgsprMEn27wWZOPKo/O4jQz4x0jogS4YJjzeuNnwd8d/kQm\nlR1Hg7f7u9reLNHeYqD7dcZN7b9TaG9v59Zbb+SOO+4lP38chmFw002/4rPPPh3U2XS035JPgWJV\nVbcoivJdYC5wn6qqVf0Y0w2kds4UUgEvMB9QFEU5D9gDXKeqakc/+u4zpozpWOf8P3wl/wLAMvlb\nmDKmB193eWrYWbqKLrXv2sYPOVA9JaIKYn9JNsvcOS2ZSrdGslkiuQ91EEYa9c2fhTdKUkw/5G1+\nnV9sbwuKBT5fCRfm2fjGAOSIBQIgRMl4QfPxjPHmhJ9kSNQelMmbpCH387nuww8/YP78BeTnjwMC\nki+//e3vqaur5c03/9u/TqMg2jvP34BvKIqykEBCWivw18Nf0isfEYhY2gU8AqwCPgN+oarqMqAU\nuKWfffcLS+EKHKc8jeOUp7EUhq5+tTv30bP0Q03DupjbsKfdz+NlLm5R23m12n3kC0YoiQnhsh45\nmV+L6Rjv1HlDlGMBXqjy4NRGRZS0YBD5ZtaJWKTAc/RYT+/Jf+4Oieb6/o9TX19PXl5+SJvdbsdi\nibyvGKsHqr5UTPuWoih3A4+rqnqXoigb+jnmL4GPVVW9UVGUfGANcLyqql3lxl4i4CQOS3q6A7N5\n8JdVUlIXsmW3HU3vvkm3dZTg8n1OQd4pMRmjw6dz++ZK2v2BG9Yz5W7y0h2cOa5v+xUjgaysU2lz\nbaDkwKuAQd6YpSxb9DtkKXb/S71BIzAR7cZvQFJ6Ipm2+FyKExwdTsmew4ycAtY37SKhrQC3q/dz\nMzIcZGf37/M2dWoR27dvJzu7W2qnvLwct7sFw9BC2k0mnYyMlJC2/hKtQzAripIFnAecryhKDoGN\n4P6QBHQpwTUDFuA1RVGuVlV1A4Hkt41H6qSpydnP4fuKTGHeNyktfzakde+BtSRYFsZkhC9bfEFn\n0MUH5W0ca4vPrOaJedeQn3URoGOzZtJQH9v/5bEJ8C9C53VzUszorU7qYjqSYDRiwsxS80wOpkkc\n7KUqjCNFxzA7qevnB27WrGN56KGHOf30r5OfPw6/38+tt97GggWLaGlpY8OGLUyYUISmaaxZs47v\nf/8H1NW1RdX34RxHtA7hHgLLOq+qqrpNURSVQBW1/nAP8JSiKB92jv9rYCfwkKIoXqCaQO2FYUNO\n5rIwh9CfCl+NPg8JsokEU+ifPd8uIxN6Axtvj999BACbNX3Q+p7gMHHHtCT+Xu6iyWdwbJqZb+SK\n/QNBbMmbZNBcq9PWFPpdNZkNcouMAYWfOhyJ3HjjLdx99+0YhoHT6eT4409k5cpvMGnSZO688/fI\nsozf7+eEE5Yxd+78Ab6bAFGpnfZEURRZVVW98/dHVVU96jfwPqmdxoDS8r9TWv53dMNLVvpi5kz5\nbdSRRh2an3v2b+er9iZsssz3coo4J3t8yDmvVbt5rsKNz4BpSSZ+MyUJR4TENL8XmmolrDZIyRrY\nhy6eKenwU+7SmZViJtMa385VMHT4vFC+W6KlQUL3SyQkGYwt1MmIsNc8XIiF2mkIXc6gk2P708dI\nQtO9yLKN7IylpCfPpCD33D5d/0rdQb5qbwLAo+s8XbmXRanZjDlEz6hDM+jaBy3p0Cjp8DM7JXQD\nydkG2z4y4fcF/p+ZeTrKsfG5rDQQ/lHh4sUqDwAWCX4zJTHsbykQxAKLFYpmGgRStUY+Ijg7CraV\n3EVNw1oAahrWoOkuivIvjPr6g+7QCFodqHA7gw7BqRm8XO0Jvu4z4N+V7rCbWFWpHHQGAA2VMh0t\nOompfX1H8UuHX+eVHn/LFyL8LQUCQThiLn0EfP72sDDT8pq+xQHPTw6txZBoMlOcmNI9hm7QMyLS\nFVqECQAtQrW+SG2jGZ8RiCg6FLeYRAkEUSEcwhGQZSsmOXSvwOOtx+ePbkcf4NTMXC7JnUihPZE5\nSencPHF2yMZyqkVmUXroE+zpY6xh/YwtNEDqvts5UgySM6I2Y1SQZpFZ1KNa1fLs8L+lQCAIJxZL\nRnG9rWmSrWSnL6a6YU2wTTd8VNW9S0Huyqj7OW9MAeeN6b3W8nVFDpJNLtY3+TCASreOXzcwy91/\n3tQsg1nHa9RXyFhsBjmFYlM5Ej+b6OC9ei8HXRrz0yzMi2ORQIEglkQ1Q1AUJUxgXVGUxZ2/vhNT\ni4YhiY4JYW2a7gk/cQA8U+7inXovbZpBu2bwWo2H12rCx0hOh6KZOuOmGJjFg29ELLLEGWNsnJdj\np86js6nFh96PaDrB6EPT3FTVvUdF7dv4tT7kx/gMcOkwwj9nh50hKIqyFDABjyuK8iO6ZwNmYDUw\nVVXVXw6uiUNPh/NAWFtWWmyS0iAQIvlGbXjdhK1tflbmxmyYUYXa7ufW3e14O/cPTsiwcN3E+Mv8\nFsQOv+bis60/pcNVBkBp+TMsnvUQFktKr9dITRrW9S5MlX4kv4GeZsKnWPEfM7CKiNXVVVxyyYUo\nyjQMw0CSJObNO5YVK87hL3+5n+bmJjweD4pSzLXX/hyzOTbxQUfq5TRgGZAL/P6Qdj8BHaJRwaHV\nqLowiLDr20+qetn1nCiqpvWbV6o9QWcA8GGjj2/naXGrIisYODUNa4POAMDlqaay/l0Kc8+PfEGH\nhv2NdkwN3R80U62GXOdC8hv4jh1YMmRR0SRWrVodPNZ1ncsuu5hf/vIGiosDApyrVv2JJ554hJ/8\n5KcDGquLwzoEVVVvAVAU5WJVVZ+JyYgjEL+/Pawt0T4+wpn9Y3aKGbscGg0zNdHEBbmi7nJ/8UeY\nuveMPhIIDkXXfVG1dWHZ7AlxBl1IBph3evHNtcMAqh72TBresmUzY8fmBJ0BwJVXXouuxy6MLtp5\nxq+AUesQ7LZcOlz7gscWcyqybItZ/6kWmZunJvFClRunX+ekLBunZMeu/9HImWNsbG7xB+VAZqeY\nGZcgZgeC3hmbeSKl5X/D42sAwGJOITerdwFLU13vqwSmZh253Ide2P+Nvv37S7n22iuCS0bnnHNe\nmAJqb+qn/SVah7BXUZQnCegZBfX9RsusQZnwYzart6LrbiTJTPGEq2JepGJqkpkbpiTFtM/RzNxU\nC3dMS+KzJh9jbDLLMsUOvODwWC2pLJ79MJV1b2EYGnnZy7Hbsno93zhMSI4BA5odQPiS0bZtW1i7\ndk3IOa2tLWzduoWlS08Y0FhdROsQGghsKC8+pM1glMwastIWsGzec7S07yI5cRI2a+aRLxIMOZMT\nzUxOFMn4guixWTMoyv9OVOfqOWY4EDkzVM+S0fMG9tnruWQ0Y8Ysqqur2LVrB8XF0zEMgyeffBSb\nzX50HYKqqpf2bFMUZVTJRza0bqay9i2sljSK8r9DYsK4oTZJ0Avtfp0XqzwccGnMTTGzYqwNk0jY\nEMQY31w7pjIf5qrQpSPDCr45dpAH9pnruQohSRJ/+MMfue++u3C73bjdLmbMmMXll185oHFCxohG\n7VRRlAsIyF0nEZgpmAC7qqpjY2ZJHzmaaqe1jZ+yWb0peGy1ZHDC3Gf6VFdZcPS4RW1nW1v3k9s3\nc218O39UPb8IjhZuHevnbkyVPvCBni7jn2FDKxq+S5SxUDu9G7gM+DlwO3A6EL12wwinpuGDkGOv\nr5HG1q/ITl80NAYJeqXFp4c4A4CPG33CIQgGB7uM98T+1gobfkSrZdSkquoaYD2Q2hmOGr1uwwjH\nbs0Ob7ONiekYmmHwSrWb36ntPHbASYtPKLL1B4dJIrHHZl6WqIcgEERFtN8Ul6IoUwlUNvuaoihW\nYBiXgIgthXnfIClhQueRREHu+SQ7imI6xguVbp4td7O9zc9bdV7uKuk48kUjmHbnfppat2EYsXV8\nFlniB+PtmDt9QopZ4nvjxNKeQBAN0S4Z/Ra4Dfg+gZKXPwEeHyyjhhtWSxpL5jxKa8duLOZUHPbY\n6kn0rIcAsLtDo8Grx2W1r60ld1FVF5DASkqYwLEz/oTVEruiDidl2ZiXaqHKrTMx0YR1gJt7AsFo\nIVqHUK+q6rc6f1+gKEo6oAySTcMSSZJJTSoelL7fq/MEq6V1YZMhyRx/N7Lmtu1BZwDQ7trPwepX\nmTT++zEdJ9Uik2qJP2cqEAwmAxa3G1zzRgeNPb0BsDTdgi0On2zd3oawNo+3fggsEQgio+temlq3\nYrVm9HlpuNrj4sGDu1A7WlESU7hmfDE5tpET0NAXcbtbCTgEg1EmbjfYLM2w8N8aT1BmIUGG740b\nOR+ivpCVdiwWcxo+f3Nni0RO1slDapNA0IXLU8OG7dfj9tQAMG7s2Uyf+LOor3/w4C52dLQAsKOj\nhQcP7uL2yXMHxdbB4LBzalVVb1FV9SQCYaevA2cQcAbzgHBN6GGI+UA5jv97H8cbazBVVA21ORGZ\nnGjm5qmJTEuSSTNDrk1mV3t81sY0mxwsnHk/+WNWMDbzROZNu4OM1DlDbZZAAMCByheCzgCgvOZ1\n2p37o75e7Wg97PFwJ9pF1rOAL4DzAScwl4Dg3bBGrm8k4f2PMVfXYq6qwfH2OuSW4fcP8ugGr9Z4\n2Nmu0+yHUpfOvXud7IlTp5CYMI4Zk65nztSbyUpbMNTmCARBPL7GCG1NUV+vJKYc9ni4E61DkFVV\nXQecDbyoqupBYlN+c1CxlFUgHZKJLRkG5oOVQ2hRZP6vxsOmltCbvwF80dK79K5AIIg9edmnhRwn\n2HJIT54V9fXXjC9memIqJiSmJ6ZyzfjBCUQZLKK9qTsVRfk5cDJwtaIo1zECMpW11OSwNj0lvG2o\nKXVGltHNtQm5ZoHgaJKdvpi5xbdTVfcuNmsGhbnfQJajf/bNsSWMqD2DnkQ7Q/gekAhcoKpqE4Gk\ntFIsw94AAA7lSURBVO8OmlUxwl9UgK8oUNjeALxTivCPzxtaoyIwKyX8Azc/1czxGaI4vEBwtMlO\nX8TsqTeiTLgSuy1cpSCeiUrcbjjSF3E7qcMJkoThGJ6RO7ph8K9KNx80eEk0SZyXY+cEod8vEAgG\ngcOJ240KhyAQCASCAIdzCCKVUyAQCATAEEQKKYoiEdBBUgANuLzz59OADmxTVfWnR9sugUAgGO0M\nxQxhOZCoqurxwB+AO4D7gBtUVV0GyIqinDsEdgkEAsGoZigcghtI7ZwppAI+YJ6qqh92vv4GcOoQ\n2CUQCASjmqFILvsISAB2AZnAOcChFaLbCDgKgUAgEBxFhsIh/BL4WFXVGxVFyQc+AA6NsUwGmiNd\neCjp6Q7MZpG4Jegf9VUaOzb4cLtg/CQTxfPNYUXNBYLRxlA4hCSgpfP35k4bvlQUZZmqqmuBM4H3\nj9RJU5Nz8CwUxDV+H2x8x4TmDziA3V/58ekecotEJLMg/snO7l2tYSgcwj3AU4qifNg5/q+BjQRq\nLlgIlOl8YQjsEowS2pukoDPooqVOEg5BMOo56g5BVdVmYGWEl752lE0RjFIcKQaSZGAY3U4hMVU4\nA0EAn78Nj7eRxISCUbeMOOwVSwWCWGO1w8Q5Oge2y/h9kJFjkDdJOAQBlFW9xO4Dj6IbPpISJjBv\n2p2jSs9ISFcIRi26DoYOJvFYJAC8vmbWbrwQw+iWoh835iymT/p/Q2hV7DmcdIX4KghGLbKMEG8R\nBHF5akKcAUCHu2KIrBkaxNdBIBAIgJTEySTYckLaxmYcP0TWDA1iyWiE0N4CVXtldB1yJhikZo2q\nty8QHBWcrgpKDj6Ny1NDTtYyCnLOj7uNZSF/PcLxumHTeyZ0LfB/lCSDWSdqJIl8boFA0Ef+f3v3\nHiRXWeZx/Hu6J5OZJDPJTGZyD8EA88SgFcRIKSWg6KqoW2vhFUW0RNAqtLDKdYV1V+EPy9oVNSUU\n6kpZXpBCXRaXpfCOF9Qqr0GMmEcgGAKTO5NMkrnPOfvHeybTQ7pnJsOkz5zu3+efTJ8+p/udNz3n\n1+97znmOyl/n3NN7ouNhAJAkEQe79V8nIrNLe5UcaCxzo7fD+6H/aPXbIiK1S4GQA23LEtpXxBOW\nHT1UYNuvioyOVNhIROQkKRByIIpgw3kxrR0TQ2F4MKL3YG0d8KqWJIb9T0bs8oijU5ZSFKkPug4h\nJ4aH4NihE3f+85vr5tj6rHpka4EDT4XvQ7s8YcOLYtpXqi+lvmmEkBMHu08syNbSHrOgNaMG5djQ\nABx4qrQvI7p36E9BRH8FObZ0lb7RzppIfSmiQMiJjtUJTQvGd1qNzQmda7QTm4nGJlh22njfRVHC\nahW3E9GFaXkyMhymjpIEOlYlNDROvY2UlyTQszei/yi0LU9YUPmeISKZiGPoPRDRMD+Z1YtQVdyu\nRjTMg+Xr6i4HT4koCmWvReaioQH48y+LDPaFfXfnmpizzo2n2OrZ05SRiMgcs3tH4XgYAOx/ssCR\nnlP/vgoEEZE5Zniw3LJTf82RAkFEZI7pXJsAJSeRNCUs7jz1U5w6hpATg/2w8+ECx3oj2pYlnLYh\nplDMulUicios7kjY+JKY/bsiGhph1fqYYhX+3hUIObH9t0WOHQ5Dxv4j4Uyj5zzv1B9kEpFsLOlM\nWFKFUUEpTRnlwNAAx8NgTM8e1TASkdmlQMiBhkaY1zjxm0Jzi06ZFJHZpUDIgUIBzjgnpiENheZF\nCaefrekiEZldOoaQEy1tCcvXJQwcC/82L8q6RSJSaxQIOZAksO3XRfqPhOMGB7sTnvvimLZlmjYS\nqUWjI6HkfdOC6r6vAiEHjjzN8TAIIvY9ESkQRGrQnr9H/P0vBeLRiEVtCRvOG6VxfnXeW8cQcqBh\n3vSWiUi+DQ/C49tCGAAc7Yl48m/V200rEHJgQSt0rh0/iDyvMWHVGTqoLFJrBo5BEk88pbz/SPXe\nv+pTRmb2LuDdhOuym4FNwPnAvcDf0tW+4O7fqXbb5rKzXhCz4vSYoYGIJZ0JRU32idSchUtCmYqh\ngfFQaKtiVd5M74dgZrcADxLCodXdPzfdbevxfggiUvv6euGJ7QUG+iI6VsesPjMhmsXrUCe7H0Jm\ngWBmm4H/dPeLzexWoAuYBzwCXOvuxybbXoEgInLyJguELI8hXA/ckP78G+Aj7n4RsKNkuYiIVEkm\ngWBmi4Eud/9Fuui77r41/flu4Jws2iUiUs+yOjR5IfCTksffN7MPuvvvgVcAf5jqBdraFtDQoPrP\nUtm+/hF6h2PObNXNp0WmI6tAMMLU0Jj3Abea2RCwB7h6qhfo6ek7RU2TWvD1Xf3cu3eQGFi/oMi/\ndy2kpUFnWYt0drZUfC7Ts4yeDR1Ulkp29o3y4Ycnnrz9ppXzedvq5oxaJDJ3zNWDyiKnxP6hEy/a\n2zdY/kK+Y73hND8RUS0jqUFntzTQ2hDROzI+iDy/feJxhHgUtv+2wKH94TtR2/KYDS+KifQVSeqY\nAkFqTnMx4kZbxF27B+gdSbi4o5HNSyYWfzrQHR0PA4CevQUO7knoWKWZSKlfCoQc2fnXArt3RBSK\nsLYrZuV67bwqWdtc5EPrF1Z8fqj/xGWDOk9B6pwGyDlxsDviqUdCFcSRoYjHtxU5eijrVuVX+8qE\nKBoP1EIhYelKBazUN40Q5pjhOGFe4cSTAI70lF+2aIl2YjOxoAU2nj/K7h0FoghWrY9pqjygEKkL\nCoQ5onc45vOP9/Gn3hGWzS/w/nXNPL91fN67dWlC92MTt2ltVxg8G4uXwuKlKiMuMkZTRnPEN58a\n4MHeERJg72DMlh19DMfjO/z2FQmnbRiloTGhsSnhjE2jLFycXXtFpPZohDBHPHpsZMLjwyMJB4Zi\nVjaNl+dY05Wwpmu02k0TkTqhEcIccXbLxGzuaIxYNl//PSJSPRohzBGXrW6mbzThd4dGWN1U4MrT\nminO5l0xRESmoFpGIiJ1RLWMRERkSgoEEREBFAgiIpJSIIiICKBAEBGRlAJBREQABYKIiKQUCCIi\nAigQREQkpUAQERFAgSAiIikFgoiIAAoEERFJKRBERARQIIiISEqBICIigAJBRERSVb+Fppm9C3g3\nkADNwCbgAmALEAPb3P2aardLRKTeZXoLTTO7BXgQ+EfgJnd/wMy+AHzf3f93sm11C00RkZM3J2+h\naWabgY3ufhvwQnd/IH3qe8Ars2qXiEi9yvIYwvXADWWWHwEWV7cpIiKSSSCY2WKgy91/kS6KS55u\nAQ5Vv1UiIvWt6geVUxcCPyl5vNXMLkwD4hLg/qleYLJ5MBEROXlZBYIBO0oe/zPwZTObB/wV+O9M\nWiUiUscyPctIRETmDl2YJiIigAJBRERSCgQREQEUCCIiksrqLKOaZGYNwFeA04FG4JPAw8BXUZ2m\nk1KuL939/9LnPgtsd/f/yq6F+VLhs/kEcDMwAgwCV7j7/qzamCcV+vNRYOwz+QjwXnePy77AHKUR\nwuy6HDjg7hcCrwFuAT4L/Ku7XwQUzOyfsmxgjpT25SXALWa21MzuI9S+kpNT7rO5BbjG3S8G7gau\ny7B9eVOuPz8JXOfuFwAROfycaoQwu74NfCf9uUj45nXuM+o0/QMwaeE+ASb2ZQEYBhYBnyAEhJyc\nZ342h4G3uvu+dFkD0J9Fw3LqhP5090sBzKwRWAEczqhtM6ZAmEXu3gdgZi2ED8vHgJtKVlGdpmkq\n15fuvhPYaWavzbRxOVShP/ely84HriFUEJBpqPC3jpmtJVRhOAT8KbMGzpCmjGZZ+oG4H/iau9+J\n6jTN2DP68ltZtyfvyvWnmb0VuBV4rbsfzLJ9eVOuP919l7t3AV8CPpdl+2ZCgTCLzGw58APgX9z9\na+nirWY29s3rEuCBshvLBBX6UmaoXH+a2eWEkcHL0tGXTFOF/rzHzM5MVzkCjGbVvplS6YpZZGZb\ngLcA2wkHlRLgWsKZHGN1mq5yd3X6FCr05SXuPmhmHwf26Cyj6SvTn0XgbGAnYa47AX7u7jdm1sgc\nqfD5/BjwacIZW32Es4z2ZtbIGVAgiIgIoCkjERFJKRBERARQIIiISEqBICIigAJBRERSCgQREQEU\nCCKZM7OvpFe9PtvXudnMrpiNNkl9UiCIZO/lhIubRDKl4nZSs8zsIuDfCDvbNcBvgKsIFVMvBtqA\nA8ClJVU/y73OZkJdmuZ0/fcBrcAd7v78dJ3XEa5Cf4OZfZRwFWsB+IG7X2dm6wglprcBLwD2pOtc\nDawC7jOzC9y9p0IbNhHq4zQDTwPvcPduM7uJUGZ5D6GC6e9m0lcioBGC1L4XA1e7+wagiVBKpMvd\nX5Iuewx4R6WNzWwecBtwmbtvJtzf4jZ3/zMwYmYb01UvA243s1cDLwQ2A+cCa8zs7ek6m4Cb0hA5\nDLzd3f8D6CaU5SgbBqlvAje6+ybgTuBaM7s0fa/nAm8Azpxke5EpaYQgte7H7r4j/fl2wgjhA2Z2\nFWCEwHh0ku27gDOAe8xsbFpnUcnrvc3MPgVcBLyHcJOU84A/EEYmTYR6Qb8C9rr7Q+m224D2kvep\nOGVkZkuBFe7+PQB3/1K6/GbgrvSuXD1m9t3JOkJkKgoEqXWlFSfHRsQ/Aj5DqGM/yuTz90XgMXc/\nFyANhZXpc3cQyh8/RJgaGjKzIrDF3bek6y8hTOV0AAMlr5tM8b6lhksfmNl8wjTTM19jZJqvJ1KW\npoyk1r3MzJabWQG4glB+/KdppdTtwKsIO/1KtgPtZvbS9PGVhJEB7r4b2AVcP7aMEBDvNLOF6X13\n/wd4Y/pcpQAYYZIvZ+7eC+wys1eki64AbgR+SBihNJpZK/D6SX4PkSkpEKTWdRPm37cRdt63A+eY\n2R8JI4T7gOdU2tjdh4A3A58xswcJO+MrS1b5BtDh7j9L178XuItwAPshYKu7fz1dt1Jp4XsJB5XX\nTfJ7XA7ckLb7zcBH0vf6cfq73UcIL5EZU/lrqVnpWUYfdXfdclNkGnQMQQQws/uBJSWLxm568sVq\n3YjHzG4HNpYsGmvDPe5+QzXaIPVNIwQREQF0DEFERFIKBBERARQIIiKSUiCIiAigQBARkZQCQURE\nAPh/EMVdUm6gVhkAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10537df60>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# さらに詳しく、ヒットの傾向をみてみる.\n", "\n", "# X軸:球種 Y軸: 球速(初速)でヒット/アウトのゾーンを把握してみる\n", "\n", "# pa_event_cd(打席でのイベントID):は、 20:単打, 21:二塁打, 22:三塁打, 23:本塁打\n", "\n", "sns.stripplot(x='pa_event_cd', y='start_speed', data=votto_pitchfx_2015_hits, hue='pitch_type', split=True, jitter=True)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'ichiro_pitchfx_2016_hits' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-39-3e23932a4401>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# 同じ条件で2016年も見る\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstripplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'pitch_type'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'start_speed'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0michiro_pitchfx_2016_hits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'pa_event_cd'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msplit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjitter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'ichiro_pitchfx_2016_hits' is not defined" ] } ], "source": [ "# 同じ条件で2016年も見る\n", "sns.stripplot(x='pitch_type', y='start_speed', data=ichiro_pitchfx_2016_hits, hue='pa_event_cd', split=True, jitter=True)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>Unnamed: 0.1</th>\n", " <th>retro_game_id</th>\n", " <th>year</th>\n", " <th>month</th>\n", " <th>day</th>\n", " <th>st_fl</th>\n", " <th>regseason_fl</th>\n", " <th>playoff_fl</th>\n", " <th>game_type</th>\n", " <th>game_type_des</th>\n", " <th>local_game_time</th>\n", " <th>game_id</th>\n", " <th>home_team_id</th>\n", " <th>away_team_id</th>\n", " <th>home_team_lg</th>\n", " <th>away_team_lg</th>\n", " <th>interleague_fl</th>\n", " <th>park_id</th>\n", " <th>park_name</th>\n", " <th>park_location</th>\n", " <th>inning_number</th>\n", " <th>bat_home_id</th>\n", " <th>outs_ct</th>\n", " <th>pit_mlbid</th>\n", " <th>pit_first_name</th>\n", " <th>pit_last_name</th>\n", " <th>pit_box_name</th>\n", " <th>pit_hand_cd</th>\n", " <th>bat_mlbid</th>\n", " <th>bat_first_name</th>\n", " <th>bat_last_name</th>\n", " <th>bat_box_name</th>\n", " <th>bat_hand_cd</th>\n", " <th>ab_number</th>\n", " <th>start_bases</th>\n", " <th>end_bases</th>\n", " <th>event_outs_ct</th>\n", " <th>pa_ball_ct</th>\n", " <th>pa_strike_ct</th>\n", " <th>pitch_seq</th>\n", " <th>pa_terminal_fl</th>\n", " <th>pa_event_cd</th>\n", " <th>pitch_res</th>\n", " <th>pitch_des</th>\n", " <th>pitch_id</th>\n", " <th>x</th>\n", " <th>y</th>\n", " <th>start_speed</th>\n", " <th>end_speed</th>\n", " <th>sz_top</th>\n", " <th>sz_bot</th>\n", " <th>pfx_x</th>\n", " <th>pfx_z</th>\n", " <th>px</th>\n", " <th>pz</th>\n", " <th>x0</th>\n", " <th>y0</th>\n", " <th>z0</th>\n", " <th>vx0</th>\n", " <th>vy0</th>\n", " <th>vz0</th>\n", " <th>ax</th>\n", " <th>ay</th>\n", " <th>az</th>\n", " <th>break_y</th>\n", " <th>break_angle</th>\n", " <th>break_length</th>\n", " <th>pitch_type</th>\n", " <th>pitch_type_seq</th>\n", " <th>type_confidence</th>\n", " <th>zone</th>\n", " <th>spin_dir</th>\n", " <th>spin_rate</th>\n", " <th>sv_id</th>\n", " <th>game_day</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>723</th>\n", " <td>362869</td>\n", " <td>2904</td>\n", " <td>ATL201607020</td>\n", " <td>2016</td>\n", " <td>7</td>\n", " <td>2</td>\n", " <td>F</td>\n", " <td>T</td>\n", " <td>F</td>\n", " <td>R</td>\n", " <td>Regular Season</td>\n", " <td>16:10</td>\n", " <td>448081</td>\n", " <td>atl</td>\n", " <td>mia</td>\n", " <td>NL</td>\n", " <td>NL</td>\n", " <td>F</td>\n", " <td>16</td>\n", " <td>Turner Field</td>\n", " <td>Atlanta, GA</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>449173</td>\n", " <td>Lucas</td>\n", " <td>Harrell</td>\n", " <td>Harrell, L</td>\n", " <td>R</td>\n", " <td>400085</td>\n", " <td>Ichiro</td>\n", " <td>Suzuki</td>\n", " <td>Suzuki, I</td>\n", " <td>L</td>\n", " <td>19</td>\n", " <td>_2_</td>\n", " <td>__3</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>SSBBX</td>\n", " <td>T</td>\n", " <td>22</td>\n", " <td>X</td>\n", " <td>In play, run(s)</td>\n", " <td>144</td>\n", " <td>140.98</td>\n", " <td>179.89</td>\n", " <td>82.8</td>\n", " <td>77.4</td>\n", " <td>3.39</td>\n", " <td>1.46</td>\n", " <td>-8.00</td>\n", " <td>6.65</td>\n", " <td>-0.629</td>\n", " <td>2.181</td>\n", " <td>-2.433</td>\n", " <td>50.0</td>\n", " <td>6.030</td>\n", " <td>6.846</td>\n", " <td>-121.087</td>\n", " <td>-4.670</td>\n", " <td>-12.064</td>\n", " <td>20.291</td>\n", " <td>-22.077</td>\n", " <td>23.9</td>\n", " <td>25.7</td>\n", " <td>6.8</td>\n", " <td>CH</td>\n", " <td>FT|SL|CU|FT|CH</td>\n", " <td>0.905</td>\n", " <td>4.0</td>\n", " <td>230.071</td>\n", " <td>1884.877</td>\n", " <td>160702_164701</td>\n", " <td>2016-07-02</td>\n", " </tr>\n", " <tr>\n", " <th>946</th>\n", " <td>493517</td>\n", " <td>2256</td>\n", " <td>COL201608070</td>\n", " <td>2016</td>\n", " <td>8</td>\n", " <td>7</td>\n", " <td>F</td>\n", " <td>T</td>\n", " <td>F</td>\n", " <td>R</td>\n", " <td>Regular Season</td>\n", " <td>14:10</td>\n", " <td>448525</td>\n", " <td>col</td>\n", " <td>mia</td>\n", " <td>NL</td>\n", " <td>NL</td>\n", " <td>F</td>\n", " <td>19</td>\n", " <td>Coors Field</td>\n", " <td>Denver, CO</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>543734</td>\n", " <td>Chris</td>\n", " <td>Rusin</td>\n", " <td>Rusin</td>\n", " <td>L</td>\n", " <td>400085</td>\n", " <td>Ichiro</td>\n", " <td>Suzuki</td>\n", " <td>Suzuki, I</td>\n", " <td>L</td>\n", " <td>60</td>\n", " <td>___</td>\n", " <td>__3</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>BBX</td>\n", " <td>T</td>\n", " <td>22</td>\n", " <td>X</td>\n", " <td>In play, no out</td>\n", " <td>499</td>\n", " <td>116.73</td>\n", " <td>175.49</td>\n", " <td>86.1</td>\n", " <td>80.8</td>\n", " <td>3.39</td>\n", " <td>1.46</td>\n", " <td>2.86</td>\n", " <td>2.38</td>\n", " <td>0.007</td>\n", " <td>2.344</td>\n", " <td>2.015</td>\n", " <td>50.0</td>\n", " <td>5.919</td>\n", " <td>-5.971</td>\n", " <td>-126.155</td>\n", " <td>-3.343</td>\n", " <td>4.691</td>\n", " <td>21.671</td>\n", " <td>-28.199</td>\n", " <td>23.9</td>\n", " <td>-7.4</td>\n", " <td>7.1</td>\n", " <td>FC</td>\n", " <td>FC|SI|FC</td>\n", " <td>0.894</td>\n", " <td>5.0</td>\n", " <td>130.278</td>\n", " <td>707.097</td>\n", " <td>160807_163801</td>\n", " <td>2016-08-07</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Unnamed: 0 Unnamed: 0.1 retro_game_id year month day st_fl \\\n", "723 362869 2904 ATL201607020 2016 7 2 F \n", "946 493517 2256 COL201608070 2016 8 7 F \n", "\n", " regseason_fl playoff_fl game_type game_type_des local_game_time \\\n", "723 T F R Regular Season 16:10 \n", "946 T F R Regular Season 14:10 \n", "\n", " game_id home_team_id away_team_id home_team_lg away_team_lg \\\n", "723 448081 atl mia NL NL \n", "946 448525 col mia NL NL \n", "\n", " interleague_fl park_id park_name park_location inning_number \\\n", "723 F 16 Turner Field Atlanta, GA 3 \n", "946 F 19 Coors Field Denver, CO 7 \n", "\n", " bat_home_id outs_ct pit_mlbid pit_first_name pit_last_name \\\n", "723 0 2 449173 Lucas Harrell \n", "946 0 1 543734 Chris Rusin \n", "\n", " pit_box_name pit_hand_cd bat_mlbid bat_first_name bat_last_name \\\n", "723 Harrell, L R 400085 Ichiro Suzuki \n", "946 Rusin L 400085 Ichiro Suzuki \n", "\n", " bat_box_name bat_hand_cd ab_number start_bases end_bases event_outs_ct \\\n", "723 Suzuki, I L 19 _2_ __3 2 \n", "946 Suzuki, I L 60 ___ __3 1 \n", "\n", " pa_ball_ct pa_strike_ct pitch_seq pa_terminal_fl pa_event_cd pitch_res \\\n", "723 2 2 SSBBX T 22 X \n", "946 2 0 BBX T 22 X \n", "\n", " pitch_des pitch_id x y start_speed end_speed \\\n", "723 In play, run(s) 144 140.98 179.89 82.8 77.4 \n", "946 In play, no out 499 116.73 175.49 86.1 80.8 \n", "\n", " sz_top sz_bot pfx_x pfx_z px pz x0 y0 z0 vx0 \\\n", "723 3.39 1.46 -8.00 6.65 -0.629 2.181 -2.433 50.0 6.030 6.846 \n", "946 3.39 1.46 2.86 2.38 0.007 2.344 2.015 50.0 5.919 -5.971 \n", "\n", " vy0 vz0 ax ay az break_y break_angle \\\n", "723 -121.087 -4.670 -12.064 20.291 -22.077 23.9 25.7 \n", "946 -126.155 -3.343 4.691 21.671 -28.199 23.9 -7.4 \n", "\n", " break_length pitch_type pitch_type_seq type_confidence zone spin_dir \\\n", "723 6.8 CH FT|SL|CU|FT|CH 0.905 4.0 230.071 \n", "946 7.1 FC FC|SI|FC 0.894 5.0 130.278 \n", "\n", " spin_rate sv_id game_day \n", "723 1884.877 160702_164701 2016-07-02 \n", "946 707.097 160807_163801 2016-08-07 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 2016年の三塁打はCH(チェンジアップ)とFC(Cut Fastball)を打ち込んでるっぽい、興味深いので見てみる\n", "ichiro_pitchfx_2016_hits.query('pa_event_cd == 22')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
ElReySol/UniPrime
PrimeInvestigation00.ipynb
1
20801
{ "metadata": { "name": "", "signature": "sha256:02508117e2889dfd5b1b5c7dc668498b0d0343fc934de63206bb0abe7e78423c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Investigations into the frequency and occurence of prime numbers." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following program requires a text file named primes_list.txt to be in the same directory as the .ipynb file which in this case is named PrimeInvestigation.ipynb. The file primes_list.txt must be a list of consecutive prime numbers with no space or punctuation separated by a carriage return after each number. It is fine to start with 2 as the first line and nothing else.\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Creates a list of integers from numbers in file primes_list.txt \n", "with open(\"./primes_list.txt\", \"r\") as f:\n", " lines = f.readlines()\n", "\n", "prime = [int(e.strip()) for e in lines]\n", "\n", "def test_prime(candidate):\n", " \"\"\"\n", " Takes an argument which must be a positive integer and returns True \n", " if it is prime False if it isn't. Will only work on numbers not more than\n", " twice the size of the largest prime in primes_list.txt \n", " \"\"\" \n", " for i in prime:\n", " #The number is not prime if it is evenly divided.\n", " if candidate % i == 0:\n", " return False\n", " break\n", " #If the number is not divisible by any prime number less than half it's size it is prime.\n", " #Add it to the list of prime numbers.\n", " elif i > candidate / 2:\n", " write_prime(candidate) \n", " return True\n", "\n", " \n", "def write_prime(candidate):\n", " \"\"\"\n", " Appends the value of the variable candidate to the list called prime.\n", " \"\"\"\n", " prime.append(candidate) \n", "\n", "def find_prime(hmny_more):\n", " \"\"\"\n", " Takes an argument which should be an int. It takes the last element of the list prime and adds 1 to\n", " it and passes it to the function test_prime(candidate). It then adds one and repeats as many times as \n", " the integer argument.\n", " \"\"\"\n", " print 'Welcome to Prime Finder! The largest prime catalogued so far is ', prime[-1]\n", " candidate = prime[-1]\n", " for i in range(hmny_more):\n", " candidate += 1\n", " test_prime(candidate)\n", " return \"Done. The largest prime catalogued on this run was\", prime[-1]\n", " \n", "def frequencyPrime(frequency):\n", " count = 0\n", " hundreds = frequency\n", "\n", " for i in prime:\n", " compare = int(i)\n", " if compare < hundreds:\n", " count += 1\n", " #print i\n", " else:\n", " print hundreds - frequency, \"-\", hundreds, \":\", count\n", " hundreds += frequency\n", " count = 0\n", "\n", " \n", "#number = int(raw_input('How many more numbers would you like to check for primacy?: '))\n", "#number = 100000\n", "#find_prime(number)\n", "#print prime\n", "\n", "with open(\"./primes_list.txt\", 'w') as f:\n", " f.write(\"\\n\".join(map(str,prime)))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "find_prime(1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Welcome to Prime Finder! The largest prime catalogued so far is 2\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 19, "text": [ "('Done. The largest prime catalogued on this run was ', 997)" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "prime" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "[2,\n", " 3,\n", " 5,\n", " 7,\n", " 11,\n", " 13,\n", " 17,\n", " 19,\n", " 23,\n", " 29,\n", " 31,\n", " 37,\n", " 41,\n", " 43,\n", " 47,\n", " 53,\n", " 59,\n", " 61,\n", " 67,\n", " 71,\n", " 73,\n", " 79,\n", " 83,\n", " 89,\n", " 97,\n", " 101,\n", " 103,\n", " 107,\n", " 109,\n", " 113,\n", " 127,\n", " 131,\n", " 137,\n", " 139,\n", " 149,\n", " 151,\n", " 157,\n", " 163,\n", " 167,\n", " 173,\n", " 179,\n", " 181,\n", " 191,\n", " 193,\n", " 197,\n", " 199,\n", " 211,\n", " 223,\n", " 227,\n", " 229,\n", " 233,\n", " 239,\n", " 241,\n", " 251,\n", " 257,\n", " 263,\n", " 269,\n", " 271,\n", " 277,\n", " 281,\n", " 283,\n", " 293,\n", " 307,\n", " 311,\n", " 313,\n", " 317,\n", " 331,\n", " 337,\n", " 347,\n", " 349,\n", " 353,\n", " 359,\n", " 367,\n", " 373,\n", " 379,\n", " 383,\n", " 389,\n", " 397,\n", " 401,\n", " 409,\n", " 419,\n", " 421,\n", " 431,\n", " 433,\n", " 439,\n", " 443,\n", " 449,\n", " 457,\n", " 461,\n", " 463,\n", " 467,\n", " 479,\n", " 487,\n", " 491,\n", " 499,\n", " 503,\n", " 509,\n", " 521,\n", " 523,\n", " 541,\n", " 547,\n", " 557,\n", " 563,\n", " 569,\n", " 571,\n", " 577,\n", " 587,\n", " 593,\n", " 599,\n", " 601,\n", " 607,\n", " 613,\n", " 617,\n", " 619,\n", " 631,\n", " 641,\n", " 643,\n", " 647,\n", " 653,\n", " 659,\n", " 661,\n", " 673,\n", " 677,\n", " 683,\n", " 691,\n", " 701,\n", " 709,\n", " 719,\n", " 727,\n", " 733,\n", " 739,\n", " 743,\n", " 751,\n", " 757,\n", " 761,\n", " 769,\n", " 773,\n", " 787,\n", " 797,\n", " 809,\n", " 811,\n", " 821,\n", " 823,\n", " 827,\n", " 829,\n", " 839,\n", " 853,\n", " 857,\n", " 859,\n", " 863,\n", " 877,\n", " 881,\n", " 883,\n", " 887,\n", " 907,\n", " 911,\n", " 919,\n", " 929,\n", " 937,\n", " 941,\n", " 947,\n", " 953,\n", " 967,\n", " 971,\n", " 977,\n", " 983,\n", " 991,\n", " 997]" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "count = 0\n", "hundreds = 1000\n", "\n", "for i in prime:\n", " compare = int(i)\n", " if compare < hundreds:\n", " count += 1\n", " #print i\n", " else:\n", " print hundreds - 1000, \"-\", hundreds, \":\", count\n", " hundreds += 1000\n", " count = 0" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0 - 1000 : 168\n", "1000 - 2000 : 134\n", "2000 - 3000 : 126\n", "3000 - 4000 : 119\n", "4000 - 5000 : 118\n", "5000 - 6000 : 113\n", "6000 - 7000 : 116\n", "7000 - 8000 : 106\n", "8000 - 9000 : 109\n", "9000 - 10000 : 111\n", "10000 - 11000 : 105\n", "11000 - 12000 : 102\n", "12000 - 13000 : 108\n", "13000 - 14000 : 104\n", "14000 - 15000 : 101\n", "15000 - 16000 : 107\n", "16000 - 17000 : 97\n", "17000 - 18000 : 103\n", "18000 - 19000 : 93\n", "19000 - 20000 : 103\n", "20000 - 21000 : 97\n", "21000 - 22000 : 103\n", "22000 - 23000 : 99\n", "23000 - 24000 : 103\n", "24000 - 25000 : 93\n", "25000 - 26000 : 97\n", "26000 - 27000 : 100\n", "27000 - 28000 : 93\n", "28000 - 29000 : 97\n", "29000 - 30000 : 91\n", "30000 - 31000 : 94\n", "31000 - 32000 : 91\n", "32000 - 33000 : 105\n", "33000 - 34000 : 99\n", "34000 - 35000 : 93\n", "35000 - 36000 : 91\n", "36000 - 37000 : 98\n", "37000 - 38000 : 93\n", "38000 - 39000 : 89\n", "39000 - 40000 : 95\n", "40000 - 41000 : 87\n", "41000 - 42000 : 100\n", "42000 - 43000 : 101\n", "43000 - 44000 : 84\n", "44000 - 45000 : 95\n", "45000 - 46000 : 85\n", "46000 - 47000 : 89\n", "47000 - 48000 : 94\n", "48000 - 49000 : 88\n", "49000 - 50000 : 97\n", "50000 - 51000 : 88\n", "51000 - 52000 : 96\n", "52000 - 53000 : 88\n", "53000 - 54000 : 91\n", "54000 - 55000 : 89\n", "55000 - 56000 : 92\n", "56000 - 57000 : 98\n", "57000 - 58000 : 90\n", "58000 - 59000 : 89\n", "59000 - 60000 : 93\n", "60000 - 61000 : 87\n", "61000 - 62000 : 86\n", "62000 - 63000 : 87\n", "63000 - 64000 : 92\n", "64000 - 65000 : 79\n", "65000 - 66000 : 97\n", "66000 - 67000 : 83\n", "67000 - 68000 : 98\n", "68000 - 69000 : 79\n", "69000 - 70000 : 80\n", "70000 - 71000 : 97\n", "71000 - 72000 : 94\n", "72000 - 73000 : 89\n", "73000 - 74000 : 82\n", "74000 - 75000 : 91\n", "75000 - 76000 : 90\n", "76000 - 77000 : 82\n", "77000 - 78000 : 94\n", "78000 - 79000 : 83\n", "79000 - 80000 : 90\n", "80000 - 81000 : 87\n", "81000 - 82000 : 91\n", "82000 - 83000 : 88\n", "83000 - 84000 : 83\n", "84000 - 85000 : 86\n", "85000 - 86000 : 84\n", "86000 - 87000 : 87\n", "87000 - 88000 : 92\n", "88000 - 89000 : 75\n", "89000 - 90000 : 93\n", "90000 - 91000 : 88\n", "91000 - 92000 : 84\n", "92000 - 93000 : 96\n", "93000 - 94000 : 85\n", "94000 - 95000 : 86\n", "95000 - 96000 : 94\n", "96000 - 97000 : 83\n", "97000 - 98000 : 81\n", "98000 - 99000 : 86\n", "99000 - 100000 : 86\n", "100000 - 101000 : 80\n", "101000 - 102000 : 92\n", "102000 - 103000 : 86\n", "103000 - 104000 : 79\n", "104000 - 105000 : 90\n", "105000 - 106000 : 81\n", "106000 - 107000 : 91\n", "107000 - 108000 : 75\n", "108000 - 109000 : 90\n", "109000 - 110000 : 87\n", "110000 - 111000 : 82\n", "111000 - 112000 : 83\n", "112000 - 113000 : 80\n", "113000 - 114000 : 87\n", "114000 - 115000 : 81\n", "115000 - 116000 : 92\n", "116000 - 117000 : 80\n", "117000 - 118000 : 89\n", "118000 - 119000 : 78\n", "119000 - 120000 : 86\n", "120000 - 121000 : 87\n", "121000 - 122000 : 85\n", "122000 - 123000 : 87\n", "123000 - 124000 : 87\n", "124000 - 125000 : 82\n", "125000 - 126000 : 83\n", "126000 - 127000 : 82\n", "127000 - 128000 : 85\n", "128000 - 129000 : 88\n", "129000 - 130000 : 82\n", "130000 - 131000 : 84\n", "131000 - 132000 : 82\n", "132000 - 133000 : 86\n", "133000 - 134000 : 81\n", "134000 - 135000 : 79\n", "135000 - 136000 : 88\n", "136000 - 137000 : 95\n", "137000 - 138000 : 79\n", "138000 - 139000 : 84\n", "139000 - 140000 : 83\n", "140000 - 141000 : 86\n", "141000 - 142000 : 86\n", "142000 - 143000 : 81\n", "143000 - 144000 : 76\n", "144000 - 145000 : 78\n", "145000 - 146000 : 84\n", "146000 - 147000 : 83\n", "147000 - 148000 : 82\n", "148000 - 149000 : 82\n", "149000 - 150000 : 90\n", "150000 - 151000 : 84\n", "151000 - 152000 : 89\n", "152000 - 153000 : 87\n", "153000 - 154000 : 76\n", "154000 - 155000 : 83\n", "155000 - 156000 : 84\n", "156000 - 157000 : 75\n", "157000 - 158000 : 87\n", "158000 - 159000 : 76\n", "159000 - 160000 : 84\n", "160000 - 161000 : 84\n", "161000 - 162000 : 83\n", "162000 - 163000 : 80\n", "163000 - 164000 : 82\n", "164000 - 165000 : 76\n", "165000 - 166000 : 79\n", "166000 - 167000 : 80\n", "167000 - 168000 : 82\n", "168000 - 169000 : 72\n", "169000 - 170000 : 86\n", "170000 - 171000 : 86\n", "171000 - 172000 : 80\n", "172000 - 173000 : 88\n", "173000 - 174000 : 78\n", "174000 - 175000 : 82\n", "175000 - 176000 : 74\n", "176000 - 177000 : 94\n", "177000 - 178000 : 72\n", "178000 - 179000 : 88\n", "179000 - 180000 : 93\n", "180000 - 181000 : 70\n", "181000 - 182000 : 78\n", "182000 - 183000 : 90\n", "183000 - 184000 : 78\n", "184000 - 185000 : 82\n", "185000 - 186000 : 90\n", "186000 - 187000 : 78\n", "187000 - 188000 : 86\n", "188000 - 189000 : 79\n", "189000 - 190000 : 87\n", "190000 - 191000 : 74\n", "191000 - 192000 : 80\n", "192000 - 193000 : 88\n", "193000 - 194000 : 83\n", "194000 - 195000 : 73\n", "195000 - 196000 : 84\n", "196000 - 197000 : 75\n", "197000 - 198000 : 86\n", "198000 - 199000 : 85\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "count = 0\n", "hundreds = 10000\n", "\n", "for i in prime:\n", " compare = int(i)\n", " if compare < hundreds:\n", " count += 1\n", " #print i\n", " else:\n", " print hundreds - 10000, \"-\", hundreds, \":\", count\n", " hundreds += 10000\n", " count = 0" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0 - 10000 : 1229\n", "10000 - 20000 : 1032\n", "20000 - 30000 : 982\n", "30000 - 40000 : 957\n", "40000 - 50000 : 929\n", "50000 - 60000 : 923\n", "60000 - 70000 : 877\n", "70000 - 80000 : 901\n", "80000 - 90000 : 875\n", "90000 - 100000 : 878\n", "100000 - 110000 : 860\n", "110000 - 120000 : 847\n", "120000 - 130000 : 857\n", "130000 - 140000 : 850\n", "140000 - 150000 : 837\n", "150000 - 160000 : 834\n", "160000 - 170000 : 813\n", "170000 - 180000 : 844\n", "180000 - 190000 : 827\n" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "frequencyPrime(2000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0 - 2000 : 303\n", "2000 - 4000 : 246\n", "4000 - 6000 : 232\n", "6000 - 8000 : 223\n", "8000 - 10000 : 221\n", "10000 - 12000 : 208\n", "12000 - 14000 : 213\n", "14000 - 16000 : 209\n", "16000 - 18000 : 201\n", "18000 - 20000 : 197\n", "20000 - 22000 : 201\n", "22000 - 24000 : 203\n", "24000 - 26000 : 191\n", "26000 - 28000 : 194\n", "28000 - 30000 : 189\n", "30000 - 32000 : 186\n", "32000 - 34000 : 205\n", "34000 - 36000 : 185\n", "36000 - 38000 : 192\n", "38000 - 40000 : 185\n", "40000 - 42000 : 188\n", "42000 - 44000 : 186\n", "44000 - 46000 : 181\n", "46000 - 48000 : 184\n", "48000 - 50000 : 186\n", "50000 - 52000 : 185\n", "52000 - 54000 : 180\n", "54000 - 56000 : 182\n", "56000 - 58000 : 189\n", "58000 - 60000 : 183\n", "60000 - 62000 : 174\n", "62000 - 64000 : 180\n", "64000 - 66000 : 177\n", "66000 - 68000 : 182\n", "68000 - 70000 : 160\n", "70000 - 72000 : 192\n", "72000 - 74000 : 172\n", "74000 - 76000 : 182\n", "76000 - 78000 : 177\n", "78000 - 80000 : 174\n", "80000 - 82000 : 179\n", "82000 - 84000 : 172\n", "84000 - 86000 : 171\n", "86000 - 88000 : 180\n", "88000 - 90000 : 169\n", "90000 - 92000 : 173\n", "92000 - 94000 : 182\n", "94000 - 96000 : 181\n", "96000 - 98000 : 165\n", "98000 - 100000 : 173\n", "100000 - 102000 : 173\n", "102000 - 104000 : 166\n", "104000 - 106000 : 172\n", "106000 - 108000 : 167\n", "108000 - 110000 : 178\n", "110000 - 112000 : 166\n", "112000 - 114000 : 168\n", "114000 - 116000 : 174\n", "116000 - 118000 : 170\n", "118000 - 120000 : 165\n", "120000 - 122000 : 173\n", "122000 - 124000 : 175\n", "124000 - 126000 : 166\n", "126000 - 128000 : 168\n", "128000 - 130000 : 171\n", "130000 - 132000 : 167\n", "132000 - 134000 : 168\n", "134000 - 136000 : 168\n", "136000 - 138000 : 175\n", "138000 - 140000 : 168\n", "140000 - 142000 : 173\n", "142000 - 144000 : 158\n", "144000 - 146000 : 163\n", "146000 - 148000 : 166\n", "148000 - 150000 : 173\n", "150000 - 152000 : 174\n", "152000 - 154000 : 164\n", "154000 - 156000 : 168\n", "156000 - 158000 : 163\n", "158000 - 160000 : 161\n", "160000 - 162000 : 168\n", "162000 - 164000 : 163\n", "164000 - 166000 : 156\n", "166000 - 168000 : 163\n", "168000 - 170000 : 159\n", "170000 - 172000 : 167\n", "172000 - 174000 : 167\n", "174000 - 176000 : 157\n", "176000 - 178000 : 167\n", "178000 - 180000 : 182\n", "180000 - 182000 : 149\n", "182000 - 184000 : 169\n", "184000 - 186000 : 173\n", "186000 - 188000 : 165\n", "188000 - 190000 : 167\n", "190000 - 192000 : 155\n", "192000 - 194000 : 172\n", "194000 - 196000 : 158\n", "196000 - 198000 : 162\n" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-2.0
coolharsh55/advent-of-code
2016/python3/Day06.ipynb
1
6781
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Day 6: Signals and Noise\n", "\n", "author: Harshvardhan Pandit\n", "\n", "license: [MIT](https://opensource.org/licenses/MIT)\n", "\n", "[link to problem statement](http://adventofcode.com/2016/day/6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Something is jamming your communications with Santa. Fortunately, your signal is only partially jammed, and protocol in situations like this is to switch to a [simple repetition](https://en.wikipedia.org/wiki/Repetition_code) code to get the message through.\n", "\n", "In this model, the same message is sent repeatedly. You've recorded the repeating message signal (your puzzle input), but the data seems quite corrupted - almost too badly to recover. Almost.\n", "\n", "All you need to do is figure out which character is most frequent for each position. For example, suppose you had recorded the following messages:\n", "\n", " eedadn\n", " drvtee\n", " eandsr\n", " raavrd\n", " atevrs\n", " tsrnev\n", " sdttsa\n", " rasrtv\n", " nssdts\n", " ntnada\n", " svetve\n", " tesnvt\n", " vntsnd\n", " vrdear\n", " dvrsen\n", " enarar\n", " \n", "The most common character in the first column is `e`; in the second, `a`; in the third, `s`, and so on. Combining these characters returns the error-corrected message, `easter`.\n", "\n", "Given the recording in your puzzle input, what is the error-corrected version of the message being sent?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Solution logic\n", "So all we need to do here is to keep track of which characters are the most frequent at the given position? Hah! Easy-peasy. We'll simply use the `Counter` from `collections`, which I've described in a previous puzzle. We need counters for each position in the input. We're making a few assumptions here:\n", "\n", " - all input lines are of the same length\n", " - what happens in case of ties is not specified, so we will not deal with it\n", "\n", "To create the appropriate number of counters, we inspect the first line and then create as many counters as its length, and store them in a list. This way, we can match the specific index of the counter with the index in the string. To get the most common element from the counter, we use the `most_common(n)` method, which returns `n` most common elements (we want only 1).\n", "\n", "#### Algorithm\n", " - Read input\n", " - Create a list of counters of length as the first line of input\n", " - For each line in input:\n", " - For each character in input, add character to counter\n", " - For each counter, get the most common character" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open('../inputs/day06.txt', 'r') as f:\n", " data = [line.strip() for line in f.readlines()]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Creating counters" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from collections import Counter\n", "counters = [Counter() for i in range(0, len(data[0]))]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reading characters from input, and counting them. To add an item to the counter, simply increment its value." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for line in data:\n", " for index, char in enumerate(line):\n", " counters[index][char] += 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the most common element from each counter. Since the `most_common` method returns a list of tuples (key-value), we need to access the first element from each of them respectively. And finally join them together into a string to get the string." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "answer = ''.join([counter.most_common(1)[0][0] for counter in counters])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part Two\n", "Of course, that would be the message - if you hadn't agreed to use a modified repetition code instead.\n", "\n", "In this modified code, the sender instead transmits what looks like random data, but for each character, the character they actually want to send is slightly less likely than the others. Even after signal-jamming noise, you can look at the letter distributions in each column and choose the least common letter to reconstruct the original message.\n", "\n", "In the above example, the least common character in the first column is `a`; in the second, `d`, and so on. Repeating this process for the remaining characters produces the original message, `advent`.\n", "\n", "Given the recording in your puzzle input and this new decoding methodology, what is the original message that Santa is trying to send?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Solution logic\n", "Small change - instead of most common, we now need the least common characters from the counters. Thankfully, since the counter returns a nice sorted list in `most_common`, we can use that to get the least common element - it's the one that is last!!!\n", "\n", " characters = counter.most_common()[-1]\n", "\n", "That being done, we combine the characters back into a string to get the answer." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "answer = ''.join([counter.most_common()[-1][0] for counter in counters])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "== END ==" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
kevroy314/msl-iposition-pipeline
examples/archived_tests/MSL-Virtual Morris Water Maze TCP Client.ipynb
1
5357
{ "cells": [ { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "'''\n", " Set up some parsing functions first.\n", "'''\n", "\n", "import io\n", "import matplotlib.pyplot as plt\n", "import cv2\n", "\n", "# Helper function for decoding state information\n", "def decode_state(state_message):\n", " raise NotImplementedError\n", " return None\n", "\n", "# Helper function for parsing messages\n", "def parse_message(message):\n", " # For image messages\n", " if message[0:len(\"Image\")] == bytes(\"Image\", 'utf8'):\n", " # There may be a cleaner way to do this conversion, but this works fast enough for comfort\n", " return {'type':\"Image\", \n", " 'value': cv2.cvtColor(plt.imread(io.BytesIO(message[len(\"Image\"):]), format='JPG'), cv2.COLOR_BGR2RGB)}\n", " elif message[0:len(\"State\")] == bytes(\"State\", 'utf8'):\n", " # If we receive state information, decode it\n", " return {'type':\"State\", \n", " 'value': decode_state(message[len(\"State\"):-1])}\n", " else:\n", " # Default messages are returned as-is (with type as None and value as message)\n", " return {'type': None, \n", " 'value': message}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done\n" ] } ], "source": [ "'''\n", " Set up the communication client and begin. Keyboard Interrupt closes.\n", "'''\n", "\n", "import socket\n", "import select\n", "import numpy as np\n", "import time\n", "import cv2\n", "\n", "# Plot inline\n", "%matplotlib inline\n", "# Set up OpenCV Window\n", "cv2.startWindowThread()\n", "\n", "# TCP Socket Parameters\n", "TCP_IP = '10.0.75.1'\n", "TCP_PORT = 5005\n", "# Data Buffer\n", "BUFFER_SIZE = 1024\n", "data = b''\n", "\n", "# End Message Token\n", "END_TOKEN = \"<EOF>\"\n", "\n", "# Set up Socket\n", "s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", "s.connect((TCP_IP, TCP_PORT))\n", "s.setblocking(0)\n", "\n", "# Set Start Trial Option\n", "s.send(bytes(\"PlayerPrefsStrial,Practice - Hills\" + END_TOKEN, 'utf8'))\n", "\n", "# Start Scene\n", "s.send(bytes(\"Scene1\" + END_TOKEN, 'utf8'))\n", "\n", "# Request First Image Frame\n", "# s.send(bytes(\"ImageRequest\" + END_TOKEN, 'utf8'))\n", "\n", "# Loop until keyboard interrupt, reading/requesting data\n", "while True:\n", " try:\n", " # Wait for data and store in buffer\n", " ready = select.select([s], [], [], 0)\n", " if ready[0]:\n", " try:\n", " data += s.recv(BUFFER_SIZE)\n", " except ConnectionResetError:\n", " print(\"The connection was closed.\")\n", " break\n", " \n", " # Check if buffer has a full message\n", " if(bytes(END_TOKEN, 'utf8') in data):\n", " # Decode the message and clear it from the buffer\n", " idx = data.index(bytes(END_TOKEN, 'utf8'))\n", " while idx != -1:\n", " parsed_message = parse_message(data[0:idx])\n", " \n", " # If the message was an image, display it using OpenCV (faster than matplotlib)\n", " if parsed_message['type'] == 'Image':\n", " cv2.imshow('frame', parsed_message['value'])\n", " cv2.waitKey(1)\n", "\n", " # Send a request for a new frame\n", " s.send(bytes(\"KeyUP\" + END_TOKEN, 'utf8'))\n", " # s.send(bytes(\"ImageRequest\" + END_TOKEN, 'utf8'))\n", "\n", " data = data[idx + len(END_TOKEN):-1]\n", " if(data != ''):\n", " try:\n", " idx = str(data).index(END_TOKEN)\n", " except ValueError:\n", " break\n", "\n", " # Wait for a keyboard interrupt to stop the loop\n", " except KeyboardInterrupt:\n", " break\n", "\n", "# Close the socket and destroy the display window\n", "s.close()\n", "cv2.destroyAllWindows()\n", "\n", "# Confirm exit\n", "print('Done')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
jamessdixon/Kaggle.HomeDepot
ProjectSearchRelevance.Python/Home Depot Product Search Relevance Polynomial.ipynb
2
51472
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Home Depot Product Search Relevance\n", "The challenge is to predict a relevance score for the provided combinations of search terms and products. To create the ground truth labels, Home Depot has crowdsourced the search/product pairs to multiple human raters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LabGraph Create\n", "This notebook uses the LabGraph create machine learning iPython module. You need a personal licence to run this code." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import graphlab as gl\n", "from nltk.stem import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load data from CSV files" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO] This non-commercial license of GraphLab Create is assigned to [email protected] and will expire on October 12, 2016. For commercial licensing options, visit https://dato.com/buy/.\n", "\n", "[INFO] Start server at: ipc:///tmp/graphlab_server-34069 - Server binary: /Users/tjaskula/.graphlab/anaconda/lib/python2.7/site-packages/graphlab/unity_server - Server log: /tmp/graphlab_server_1455056183.log\n", "[INFO] GraphLab Server Version: 1.8.1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/train.csv\n", "PROGRESS: Parsing completed. Parsed 100 lines in 0.123565 secs.\n", "------------------------------------------------------\n", "Inferred types from first line of file as \n", "column_type_hints=[int,int,str,str,float]\n", "If parsing fails due to incorrect types, you can correct\n", "the inferred type list above and pass it to read_csv in\n", "the column_type_hints argument\n", "------------------------------------------------------\n", "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/train.csv\n", "PROGRESS: Parsing completed. Parsed 74067 lines in 0.1662 secs.\n" ] } ], "source": [ "train = gl.SFrame.read_csv(\"../data/train.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/test.csv\n", "PROGRESS: Parsing completed. Parsed 100 lines in 0.210436 secs.\n", "------------------------------------------------------\n", "Inferred types from first line of file as \n", "column_type_hints=[int,int,str,str]\n", "If parsing fails due to incorrect types, you can correct\n", "the inferred type list above and pass it to read_csv in\n", "the column_type_hints argument\n", "------------------------------------------------------\n", "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/test.csv\n", "PROGRESS: Parsing completed. Parsed 166693 lines in 0.321425 secs.\n" ] } ], "source": [ "test = gl.SFrame.read_csv(\"../data/test.csv\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/product_descriptions.csv\n", "PROGRESS: Parsing completed. Parsed 100 lines in 0.512102 secs.\n", "------------------------------------------------------\n", "Inferred types from first line of file as \n", "column_type_hints=[int,str]\n", "If parsing fails due to incorrect types, you can correct\n", "the inferred type list above and pass it to read_csv in\n", "the column_type_hints argument\n", "------------------------------------------------------\n", "PROGRESS: Read 61134 lines. Lines per second: 61129.8\n", "PROGRESS: Finished parsing file /Users/tjaskula/Documents/GitHub/Kaggle.HomeDepot/data/product_descriptions.csv\n", "PROGRESS: Parsing completed. Parsed 124428 lines in 1.5747 secs.\n" ] } ], "source": [ "desc = gl.SFrame.read_csv(\"../data/product_descriptions.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data merging" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# merge train with description\n", "train = train.join(desc, on = 'product_uid', how = 'left')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# merge test with description\n", "test = test.join(desc, on = 'product_uid', how = 'left')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Let's explore some data" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Let's examine 3 different queries and products:\n", "* first from the training set\n", "* somewhere in the moddle in the training set\n", "* the last one from the training set" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'id': 2,\n", " 'product_description': 'Not only do angles make joints stronger, they also provide more consistent, straight corners. Simpson Strong-Tie offers a wide variety of angles in various sizes and thicknesses to handle light-duty jobs or projects where a structural connection is needed. Some can be bent (skewed) to match the project. For outdoor projects or those where moisture is present, use our ZMAX zinc-coated connectors, which provide extra resistance against corrosion (look for a \"Z\" at the end of the model number).Versatile connector for various 90 connections and home repair projectsStronger than angled nailing or screw fastening aloneHelp ensure joints are consistently straight and strongDimensions: 3 in. x 3 in. x 1-1/2 in.Made from 12-Gauge steelGalvanized for extra corrosion resistanceInstall with 10d common nails or #9 x 1-1/2 in. Strong-Drive SD screws',\n", " 'product_title': 'Simpson Strong-Tie 12-Gauge Angle',\n", " 'product_uid': 100001,\n", " 'relevance': 3.0,\n", " 'search_term': 'angle bracket'}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "first_doc = train[0]\n", "first_doc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**'angle bracket'** search term is not contained in the body. **'angle'** would be after stemming however **'bracket'** is not." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'id': 113228,\n", " 'product_description': 'PureBond Plywood Project Panels are a convenient and cost-effective way to build cabinets, furniture and other woodworking projects. It provides a beautiful wood veneer face bonded to a strong and flat wood core. These PureBond Project Panels are made with no added formaldehyde, eliminating the concern about off-gassing dangerous fumes during fabrication or when installed in your home. Their smaller size makes them easy to handle and allows you to order just the amount of wood you need. PureBond plywood, in Project Panels sizes or in full sheet sizes, are a Home Depot exclusive.California residents: see&nbsp;Proposition 65 informationDecorative mahogany veneer applied to both sides of this panelB-2 plain sliced mahogany - 7-ply constructionLight weight, all-wood veneer constructionPrecision-cut hardwood plywood panels in convenient small sizesCommon: 3/4 in. x 2 ft. x 4 ft.; Actual: 0.703 in. x 24 in. x 48 in.Grade: B-2',\n", " 'product_title': '3/4 in. x 2 ft. x 4 ft. PureBond Mahogany Plywood Project Panel',\n", " 'product_uid': 137334,\n", " 'relevance': 3.0,\n", " 'search_term': 'table top wood'}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "middle_doc = train[37033]\n", "middle_doc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "only **'wood'** is present from search term" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'id': 221473,\n", " 'product_description': 'No. 918 Millennial Ryan heathered texture semi-sheer curtain is a casual solid that adds freshness and a finishing touch to any decor setting. Enhances privacy while allowing light to gently filter through. Clean, simple one-pocket pole top design can be used with a standard or decorative curtain rod. Mix and match with other solids and prints for a look that is all your own.Sheer panel, gently filters lightNo header pole top panelMachine washableWide array of colors to choose from100% polyesterContains 1-curtain panel',\n", " 'product_title': 'LICHTENBERG Pool Blue No. 918 Millennial Ryan Heathered Texture Sheer Curtain Panel, 40 in. W x 63 in. L',\n", " 'product_uid': 206650,\n", " 'relevance': 2.33,\n", " 'search_term': 'fine sheer curtain 63 inches'}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "last_doc = train[-1]\n", "last_doc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**'sheer'** and **'courtain'** are present and that's all" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### How many search terms are not present in description and title for ranked 3 documents\n", "Ranked 3 documents are the most relevents searches, but how many search queries doesn't include the searched term in the description and the title" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-----+-------------+-------------------------------+\n", "| id | product_uid | product_title |\n", "+-----+-------------+-------------------------------+\n", "| 2 | 100001 | Simpson Strong-Tie 12-Gaug... |\n", "| 9 | 100002 | BEHR Premium Textured Deck... |\n", "| 18 | 100006 | Whirlpool 1.9 cu. ft. Over... |\n", "| 21 | 100006 | Whirlpool 1.9 cu. ft. Over... |\n", "| 27 | 100009 | House of Fara 3/4 in. x 3 ... |\n", "| 35 | 100011 | Toro Personal Pace Recycle... |\n", "| 37 | 100011 | Toro Personal Pace Recycle... |\n", "| 65 | 100016 | Sunjoy Calais 8 ft. x 5 ft... |\n", "| 123 | 100023 | Quikrete 80 lb. Crack-Resi... |\n", "| 162 | 100029 | DecoArt Americana Decor 16... |\n", "+-----+-------------+-------------------------------+\n", "+--------------------------------+-----------+-------------------------------+\n", "| search_term | relevance | product_description |\n", "+--------------------------------+-----------+-------------------------------+\n", "| angle bracket | 3.0 | Not only do angles make jo... |\n", "| deck over | 3.0 | BEHR Premium Textured DECK... |\n", "| convection otr | 3.0 | Achieving delicious result... |\n", "| microwaves | 3.0 | Achieving delicious result... |\n", "| mdf 3/4 | 3.0 | Get the House of Fara 3/4 ... |\n", "| briggs and stratton lawn mower | 3.0 | Recycler 22 in. Personal P... |\n", "| gas mowe | 3.0 | Recycler 22 in. Personal P... |\n", "| grill gazebo | 3.0 | Make grilling great with t... |\n", "| CONCRETE & MASONRY CLEANER... | 3.0 | Quikrete 80 lb. Crack-Resi... |\n", "| chalk paint | 3.0 | Achieving a vintage, time-... |\n", "+--------------------------------+-----------+-------------------------------+\n", "+-------------------------------+\n", "| search_term_word_count |\n", "+-------------------------------+\n", "| {'bracket': 1, 'angle': 1} |\n", "| {'over': 1, 'deck': 1} |\n", "| {'otr': 1, 'convection': 1} |\n", "| {'microwaves': 1} |\n", "| {'mdf': 1, '3/4': 1} |\n", "| {'and': 1, 'stratton': 1, ... |\n", "| {'gas': 1, 'mowe': 1} |\n", "| {'grill': 1, 'gazebo': 1} |\n", "| {'etcher': 1, 'cleaner': 1... |\n", "| {'chalk': 1, 'paint': 1} |\n", "+-------------------------------+\n", "[10 rows x 7 columns]\n", "\n" ] }, { "data": { "text/plain": [ "19125" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train['search_term_word_count'] = gl.text_analytics.count_words(train['search_term'])\n", "ranked3doc = train[train['relevance'] == 3]\n", "print ranked3doc.head()\n", "len(ranked3doc)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "words_search = gl.text_analytics.tokenize(ranked3doc['search_term'], to_lower = True)\n", "words_description = gl.text_analytics.tokenize(ranked3doc['product_description'], to_lower = True)\n", "words_title = gl.text_analytics.tokenize(ranked3doc['product_title'], to_lower = True)\n", "wordsdiff_desc = []\n", "wordsdiff_title = []\n", "puid = []\n", "search_term = []\n", "ws_count = []\n", "ws_count_used_desc = []\n", "ws_count_used_title = []\n", "for item in xrange(len(ranked3doc)):\n", " ws = words_search[item]\n", " pd = words_description[item]\n", " pt = words_title[item]\n", " diff = set(ws) - set(pd)\n", " if diff is None:\n", " diff = 0\n", " wordsdiff_desc.append(diff)\n", " \n", " diff2 = set(ws) - set(pt)\n", " if diff2 is None:\n", " diff2 = 0\n", " wordsdiff_title.append(diff2)\n", " \n", " puid.append(ranked3doc[item]['product_uid'])\n", " search_term.append(ranked3doc[item]['search_term'])\n", " ws_count.append(len(ws))\n", " ws_count_used_desc.append(len(ws) - len(diff))\n", " ws_count_used_title.append(len(ws) - len(diff2))\n", " \n", "differences = gl.SFrame({\"puid\" : puid,\n", " \"search term\": search_term,\n", " \"diff desc\" : wordsdiff_desc,\n", " \"diff title\" : wordsdiff_title,\n", " \"ws count\" : ws_count, \n", " \"ws count used desc\" : ws_count_used_desc,\n", " \"ws count used title\" : ws_count_used_title})" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">diff desc</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">diff title</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">puid</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">search term</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">ws count</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">ws count used desc</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[recycling, bins]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[recycling, bins]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">145727</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">recycling bins</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[over, deck]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[over, deck]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">100002</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">deck over</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[hammer, electric, drill]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[hammer, electric, drill]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">120061</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">electric hammer drill</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[microwaves]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[microwaves]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">100006</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">microwaves</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[plywoods]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[plywoods]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">119996</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">plywoods</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[coca, cola]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[coca, cola]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">120276</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">coca cola</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[greenhouses]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[greenhouses]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">120318</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">greenhouses</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[pipe, cutters]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[pipe, cutters]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">119840</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">pipe cutters</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[buit, themostat, in]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[buit, themostat, in]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">206359</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">buit in themostat</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[mowers, ridding]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">[mowers, ridding]</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">120366</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">ridding mowers</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", "</table>\n", "<table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">ws count used title</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0</td>\n", " </tr>\n", "</table>\n", "[19125 rows x 7 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tdiff desc\tlist\n", "\tdiff title\tlist\n", "\tpuid\tint\n", "\tsearch term\tstr\n", "\tws count\tint\n", "\tws count used desc\tint\n", "\tws count used title\tint\n", "\n", "Rows: 19125\n", "\n", "Data:\n", "+---------------------------+---------------------------+--------+\n", "| diff desc | diff title | puid |\n", "+---------------------------+---------------------------+--------+\n", "| [recycling, bins] | [recycling, bins] | 145727 |\n", "| [over, deck] | [over, deck] | 100002 |\n", "| [hammer, electric, drill] | [hammer, electric, drill] | 120061 |\n", "| [microwaves] | [microwaves] | 100006 |\n", "| [plywoods] | [plywoods] | 119996 |\n", "| [coca, cola] | [coca, cola] | 120276 |\n", "| [greenhouses] | [greenhouses] | 120318 |\n", "| [pipe, cutters] | [pipe, cutters] | 119840 |\n", "| [buit, themostat, in] | [buit, themostat, in] | 206359 |\n", "| [mowers, ridding] | [mowers, ridding] | 120366 |\n", "+---------------------------+---------------------------+--------+\n", "+-----------------------+----------+--------------------+---------------------+\n", "| search term | ws count | ws count used desc | ws count used title |\n", "+-----------------------+----------+--------------------+---------------------+\n", "| recycling bins | 2 | 0 | 0 |\n", "| deck over | 2 | 0 | 0 |\n", "| electric hammer drill | 3 | 0 | 0 |\n", "| microwaves | 1 | 0 | 0 |\n", "| plywoods | 1 | 0 | 0 |\n", "| coca cola | 2 | 0 | 0 |\n", "| greenhouses | 1 | 0 | 0 |\n", "| pipe cutters | 2 | 0 | 0 |\n", "| buit in themostat | 3 | 0 | 0 |\n", "| ridding mowers | 2 | 0 | 0 |\n", "+-----------------------+----------+--------------------+---------------------+\n", "[19125 rows x 7 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "differences.sort(['ws count used desc', 'ws count used title'])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No terms used in description : 2666\n", "No terms used in title : 2152\n", "No terms used in description and title : 1206\n" ] } ], "source": [ "print \"No terms used in description : \" + str(len(differences[differences['ws count used desc'] == 0]))\n", "print \"No terms used in title : \" + str(len(differences[differences['ws count used title'] == 0]))\n", "print \"No terms used in description and title : \" + str(len(differences[(differences['ws count used desc'] == 0) & \n", " (differences['ws count used title'] == 0)]))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stemming" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#stemmer = SnowballStemmer(\"english\")\n", "stemmer = PorterStemmer()\n", "def stem(word):\n", " singles = [stemmer.stem(plural) for plural in unicode(word, errors='replace').split()]\n", " text = ' '.join(singles)\n", " return text" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting stemming train search term...\n", "Starting stemming train product description...\n", "Starting stemming train product title...\n", "Starting stemming test search term...\n", "Starting stemming test product description...\n", "Starting stemming test product title...\n" ] } ], "source": [ "print \"Starting stemming train search term...\"\n", "stemmed = train['search_term'].apply(stem)\n", "train['stem_search_term'] = stemmed\n", "\n", "print \"Starting stemming train product description...\"\n", "stemmed = train['product_description'].apply(stem)\n", "train['stem_product_description'] = stemmed\n", "\n", "print \"Starting stemming train product title...\"\n", "stemmed = train['product_title'].apply(stem)\n", "train['stem_product_title'] = stemmed\n", "\n", "print \"Starting stemming test search term...\"\n", "stemmed = test['search_term'].apply(stem)\n", "test['stem_search_term'] = stemmed\n", "\n", "print \"Starting stemming test product description...\"\n", "stemmed = test['product_description'].apply(stem)\n", "test['stem_product_description'] = stemmed\n", "\n", "print \"Starting stemming test product title...\"\n", "stemmed = test['product_title'].apply(stem)\n", "test['stem_product_title'] = stemmed" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### TF-IDF with linear regression" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [], "source": [ "train['search_term_word_count'] = gl.text_analytics.count_words(train['stem_search_term'])\n", "train_search_tfidf = gl.text_analytics.tf_idf(train['search_term_word_count'])" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [], "source": [ "train['search_tfidf'] = train_search_tfidf" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [], "source": [ "train['product_desc_word_count'] = gl.text_analytics.count_words(train['stem_product_description'])\n", "train_desc_tfidf = gl.text_analytics.tf_idf(train['product_desc_word_count'])" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "train['desc_tfidf'] = train_desc_tfidf" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "train['product_title_word_count'] = gl.text_analytics.count_words(train['stem_product_title'])\n", "train_title_tfidf = gl.text_analytics.tf_idf(train['product_title_word_count'])\n", "train['title_tfidf'] = train_title_tfidf" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [], "source": [ "train['distance_desc'] = train.apply(lambda x: gl.distances.cosine(x['search_tfidf'],x['desc_tfidf']))\n", "#train['distance_desc_sqrt'] = train['distance_desc'] ** 2\n", "train['distance_title'] = train.apply(lambda x: gl.distances.cosine(x['search_tfidf'],x['title_tfidf']))\n", "#train['distance_title_sqrt'] = train['distance_title'] ** 3" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PROGRESS: Linear regression:\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: Number of examples : 74067\n", "PROGRESS: Number of features : 2\n", "PROGRESS: Number of unpacked features : 2\n", "PROGRESS: Number of coefficients : 3\n", "PROGRESS: Starting Newton Method\n", "PROGRESS: --------------------------------------------------------\n", "PROGRESS: +-----------+----------+--------------+--------------------+---------------+\n", "PROGRESS: | Iteration | Passes | Elapsed Time | Training-max_error | Training-rmse |\n", "PROGRESS: +-----------+----------+--------------+--------------------+---------------+\n", "PROGRESS: | 1 | 2 | 0.054827 | 1.934252 | 0.502806 |\n", "PROGRESS: +-----------+----------+--------------+--------------------+---------------+\n", "PROGRESS: SUCCESS: Optimal solution found.\n", "PROGRESS:\n" ] } ], "source": [ "model1 = gl.linear_regression.create(train, target = 'relevance', \n", " features = ['distance_desc', 'distance_title'], \n", " validation_set = None)\n", "# model1 = gl.linear_regression.create(train, target = 'relevance', \n", "# features = ['distance_desc', 'distance_desc_sqrt', 'distance_title', 'distance_title_sqrt'], \n", "# validation_set = None)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">name</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">index</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">value</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">stderr</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">(intercept)</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">None</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">3.36098120617</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.0130126162735</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">distance_desc</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">None</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-0.471115683671</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.0175727545026</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">distance_title</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">None</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">-0.792854603251</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">0.0120369738892</td>\n", " </tr>\n", "</table>\n", "[3 rows x 4 columns]<br/>\n", "</div>" ], "text/plain": [ "Columns:\n", "\tname\tstr\n", "\tindex\tstr\n", "\tvalue\tfloat\n", "\tstderr\tfloat\n", "\n", "Rows: 3\n", "\n", "Data:\n", "+----------------+-------+-----------------+-----------------+\n", "| name | index | value | stderr |\n", "+----------------+-------+-----------------+-----------------+\n", "| (intercept) | None | 3.36098120617 | 0.0130126162735 |\n", "| distance_desc | None | -0.471115683671 | 0.0175727545026 |\n", "| distance_title | None | -0.792854603251 | 0.0120369738892 |\n", "+----------------+-------+-----------------+-----------------+\n", "[3 rows x 4 columns]" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#let's take a look at the weights before we plot\n", "model1.get(\"coefficients\")" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": true }, "outputs": [], "source": [ "test['search_term_word_count'] = gl.text_analytics.count_words(test['stem_search_term'])\n", "test_search_tfidf = gl.text_analytics.tf_idf(test['search_term_word_count'])\n", "test['search_tfidf'] = test_search_tfidf\n", "test['product_desc_word_count'] = gl.text_analytics.count_words(test['stem_product_description'])\n", "test_desc_tfidf = gl.text_analytics.tf_idf(test['product_desc_word_count'])\n", "test['desc_tfidf'] = test_desc_tfidf\n", "test['product_title_word_count'] = gl.text_analytics.count_words(test['stem_product_title'])\n", "test_title_tfidf = gl.text_analytics.tf_idf(test['product_title_word_count'])\n", "test['title_tfidf'] = test_title_tfidf\n", "\n", "test['distance_desc'] = test.apply(lambda x: gl.distances.cosine(x['search_tfidf'],x['desc_tfidf']))\n", "#test['distance_desc_sqrt'] = test['distance_desc'] ** 2\n", "test['distance_title'] = test.apply(lambda x: gl.distances.cosine(x['search_tfidf'],x['title_tfidf']))\n", "#test['distance_title_sqrt'] = test['distance_title'] ** 3" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\"\\npredictions_test = model1.predict(test)\\ntest_errors = predictions_test - test['relevance']\\nRSS_test = sum(test_errors * test_errors)\\nprint RSS_test\\n\"" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''\n", "predictions_test = model1.predict(test)\n", "test_errors = predictions_test - test['relevance']\n", "RSS_test = sum(test_errors * test_errors)\n", "print RSS_test\n", "'''" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "dtype: float\n", "Rows: 166693\n", "[2.1194586905641986, 2.097010919250315, 2.327318656459769, 2.3423416569379105, 2.291363750454904, 2.1292410028129387, 2.3700891659576886, 2.380158719246286, 2.1461522961232458, 2.6725514683935634, 2.4735444612741126, 2.3577916980297187, 2.527370985769263, 2.5464611241149497, 2.2433784781304618, 2.3610473142083634, 2.097010919250315, 2.615135319749975, 2.1428328384749085, 2.1832873644759365, 2.7538729574608336, 2.7335476206465064, 2.1493438560051157, 2.3267645430460764, 2.2512091489393167, 2.503199755290125, 2.097010919250315, 2.2981432458210644, 2.3803635622873522, 2.322596343031413, 2.519767096157715, 2.362660486577712, 2.1974497974380167, 2.309948689847278, 2.313598821940017, 2.341687147636327, 2.4205333515242975, 2.3366063448390766, 2.8853671419333744, 2.8633757709368384, 2.2552865952704444, 2.297532949563152, 2.165997301067405, 2.097010919250315, 2.4552670270468595, 2.3625494876731397, 2.5106462498135387, 2.6188007396757573, 2.61900376832135, 2.2454680169370245, 2.1036340833149754, 2.102527092843549, 2.122092869812211, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.103358463836085, 2.097010919250315, 2.097010919250315, 2.1267995136846127, 2.1269757879601405, 2.097010919250315, 2.4744936795651946, 2.4089294758879447, 2.360521564894908, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.097010919250315, 2.224736363810293, 2.097010919250315, 2.557408344984125, 2.243072745659523, 2.097010919250315, 2.097010919250315, 2.5501178083366147, 2.097010919250315, 2.480335363483051, 2.283461192815867, 2.283461192815867, 2.1872823298107584, 2.1683105172043, 2.3396260222904397, 2.387438457989694, 2.505582843823445, 2.418305094666935, 2.5793821608777128, 2.3349132621118036, 2.097010919250315, 2.5821088945080928, 2.3188142743790774, 2.270976568556923, 2.242832290300672, 2.4621407613916673, 2.338149998696164, 2.3557175413828784, ... ]" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predictions_test = model1.predict(test)\n", "predictions_test" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true }, "outputs": [], "source": [ "submission = gl.SFrame(test['id'])" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\"><table frame=\"box\" rules=\"cols\">\n", " <tr>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">id</th>\n", " <th style=\"padding-left: 1em; padding-right: 1em; text-align: center\">relevance</th>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">1</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.11945869056</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">4</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.09701091925</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">5</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.32731865646</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">6</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.34234165694</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">7</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.29136375045</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">8</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.12924100281</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">10</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.37008916596</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">11</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.38015871925</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">12</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.14615229612</td>\n", " </tr>\n", " <tr>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">13</td>\n", " <td style=\"padding-left: 1em; padding-right: 1em; text-align: center; vertical-align: top\">2.67255146839</td>\n", " </tr>\n", "</table>\n", "[166693 rows x 2 columns]<br/>Note: Only the head of the SFrame is printed.<br/>You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", "</div>" ], "text/plain": [ "Columns:\n", "\tid\tint\n", "\trelevance\tfloat\n", "\n", "Rows: 166693\n", "\n", "Data:\n", "+----+---------------+\n", "| id | relevance |\n", "+----+---------------+\n", "| 1 | 2.11945869056 |\n", "| 4 | 2.09701091925 |\n", "| 5 | 2.32731865646 |\n", "| 6 | 2.34234165694 |\n", "| 7 | 2.29136375045 |\n", "| 8 | 2.12924100281 |\n", "| 10 | 2.37008916596 |\n", "| 11 | 2.38015871925 |\n", "| 12 | 2.14615229612 |\n", "| 13 | 2.67255146839 |\n", "+----+---------------+\n", "[166693 rows x 2 columns]\n", "Note: Only the head of the SFrame is printed.\n", "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "submission.add_column(predictions_test)\n", "submission.rename({'X1': 'id', 'X2':'relevance'})" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [], "source": [ "submission['relevance'] = submission.apply(lambda x: 3.0 if x['relevance'] > 3.0 else x['relevance'])\n", "submission['relevance'] = submission.apply(lambda x: 1.0 if x['relevance'] < 1.0 else x['relevance'])" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [], "source": [ "submission['relevance'] = submission.apply(lambda x: str(x['relevance']))" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [], "source": [ "submission.export_csv('../data/submission2.csv', quote_level = 3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#gl.canvas.set_target('ipynb')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
masterfish2015/my_project
python/Untitled.ipynb
3
581
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
Jiri-Kremser/bitcoin-insights
graphx-notebook/blockchain.snb.ipynb
1
26761
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "1BD94847B63C4394AF1B3AAFABA54F4C" }, "source": "# Analyse Blockchain with GraphX" }, { "cell_type": "markdown", "metadata": { "id": "1C6EE6059BED491E873A4D067054036E" }, "source": "_Trying identify interesting addresses in the blockchain transaction graph_" }, { "cell_type": "markdown", "metadata": { "id": "9D487F6FAEDE4C6B8976FAABA268FCAD" }, "source": "## Basic setup\n\nHere we will create spark session that is necessary for further dataframe processing.\n" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "2C7CCB3C43D2425BAD7017C0F0780AF7", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val spark = SparkSession.builder\n", " .master(\"local[4]\")\n", " .getOrCreate()" ] }, { "cell_type": "markdown", "metadata": { "id": "6BAD062F226548978710E3B28A975836" }, "source": "## Check the data on disk\nGraph data is stored on the dist as two Parquet files. One with vertices and the second one with the edges." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "DABBD04745134831822739BFF782EF9F", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ ":sh du -h /tmp/nodes.parquet" ] }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "0605F16CF90642DE8A71D7A676CE5CA5", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ ":sh du -h /tmp/edges.parquet" ] }, { "cell_type": "markdown", "metadata": { "id": "2DA4D8DC9A01453ABF0832C1A461AC71" }, "source": "## Load the data" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "58F5BF50D84345C193F523A533DEC6E9", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val rawNodes = spark.read.load(\"/tmp/nodes.parquet\")\n", "rawNodes.show(5, false)" ] }, { "cell_type": "markdown", "metadata": { "id": "5C9D921E0A8744A18015E46326C4EB34" }, "source": "#### Number of vertices" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "14CFF48EA8F94EC48BA1E896BA7B0DD3", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "rawNodes.count" ] }, { "cell_type": "markdown", "metadata": { "id": "4C715D1FA97341C98A3A7A3E87747855" }, "source": "### Clean the data" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "71BC35B9AF0244C38005D16168B622E3", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "import org.apache.spark.sql.functions.regexp_replace\n", "\n", "val nodes = rawNodes.na.drop()\n", " .withColumnRenamed(\"_1\", \"id\")\n", " .withColumnRenamed(\"_2\", \"address\")\n", " .withColumn(\"address\", regexp_replace($\"address\", \"bitcoinaddress_\", \"\"))\n", "nodes.show(5, false)" ] }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "E6EE8C40BD2645378DA7868C9B91A1DA", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val edges = spark.read.load(\"/tmp/edges.parquet\")\n", " .drop($\"attr\")\n", "edges.show(5)" ] }, { "cell_type": "markdown", "metadata": { "id": "5C9D921E0A8744A18015E46326C4EB34" }, "source": "#### Number of edges" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "DB8F7E1290F94FD8A101CC98F8007FE1", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "edges.count()" ] }, { "cell_type": "markdown", "metadata": { "id": "D07A81FBF86A4D7FAA6C14469730D4C4" }, "source": "# Creating the Graph\nGraphX library expects RDDs, so we need to do the conversion from the dataframes here" }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "0060C72E46054322B4C6F8AB8AF21F9E", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "// todo: ugly\n", "import org.apache.spark.graphx._\n", "val nodesRdd: RDD[(VertexId, String)] = nodes.rdd.map(row => (row(0).asInstanceOf[Long], row(1).asInstanceOf[String]))\n", "val edgesRdd: RDD[Edge[Option[String]]] = edges.rdd.map(row => Edge(row(0).asInstanceOf[Long], row(1).asInstanceOf[Long]))\n" ] }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "064059438BE447369AAA0E9268B9DC5F", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val graph = Graph(nodesRdd, edgesRdd)" ] }, { "cell_type": "markdown", "metadata": { "id": "56D05A8F5C364252B90D311FB6545A70" }, "source": "## Calculate the Page Rank\n\nThis may take couple of minutes depending on the size of the data. The implementation of the algorithm is described [here](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.lib.PageRank$)." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "F447A11E0445478C86437D6DE93DEA92", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val ranks = graph.pageRank(0.001)\n", " .vertices\n", " .toDF(\"id\", \"rank\")\n", "\n", "ranks.show" ] }, { "cell_type": "markdown", "metadata": { "id": "FC227B64660044C28631DE9832169B6D" }, "source": "Now we can sort the vertices by their calculated page ranks." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "306648DE2A9742788B669AB3E366CF41", "input_collapsed": false, "trusted": true }, "outputs": [], "source": [ "val sortedRanks = ranks.join(nodes, \"id\")\n", " .sort(desc(\"rank\"))\n", "\n", "sortedRanks.show(5, false)" ] }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "A98EF9E40EE34BB88EF64CD145BB2612", "input_collapsed": false, "presentation": { "pivot_chart_state": "{\n \"hiddenAttributes\": [],\n \"menuLimit\": 200,\n \"cols\": [],\n \"rows\": [],\n \"vals\": [],\n \"exclusions\": {},\n \"inclusions\": {},\n \"unusedAttrsVertical\": 85,\n \"autoSortUnusedAttrs\": false,\n \"inclusionsInfo\": {},\n \"aggregatorName\": \"Count\",\n \"rendererName\": \"Table\"\n}", "tabs_state": "{\n \"tab_id\": \"#tab1059669048-0\"\n}" }, "trusted": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": "top10: Array[String] = Array(C825A1ECF2A6830C4401620C3A16F1995057C2AB, DE21D51F82F065DF011CFB3CDCE09C6F71FC716B, D63066643AFA128CE4BEBB2523242ADF5F07A0A9, AA3750AA18B8A0F3F0590731E1FAB934856680CF, 4FA170CFDE2372AC91D479F989DC4DB5AA8D47E0, 9A4E5250E56CA29765635022FB11624116B226BE, 200413B74F3B34198333778C79AF1728AC9A912A, 7773B5B0576CCC2FC79E94098B7D879CCE8BB377, 7C154ED1DC59609E3D26ABB2DF2EA3D587CD8C41, 9B71CA50A249F283DCE5848A6259EFDD2E47FA4B)\nres299: Array[String] = Array(C825A1ECF2A6830C4401620C3A16F1995057C2AB, DE21D51F82F065DF011CFB3CDCE09C6F71FC716B, D63066643AFA128CE4BEBB2523242ADF5F07A0A9, AA3750AA18B8A0F3F0590731E1FAB934856680CF, 4FA170CFDE2372AC91D479F989DC4DB5AA8D47E0, 9A4E5250E56CA29765635022FB11624116B226BE, 200413B74F3B34198333778C79AF1728AC9A912A, 7773B5B0576CCC2FC79E9409..." }, { "data": { "text/html": "<div>\n <script data-this=\"{&quot;dataId&quot;:&quot;anonc29a4e5a0c865de2bd5ba82c3b232f36&quot;,&quot;dataInit&quot;:[],&quot;genId&quot;:&quot;1059669048&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/req(['../javascripts/notebook/playground','../javascripts/notebook/magic/tabs'], \n function(playground, _magictabs) {\n // data ==> data-this (in observable.js's scopedEval) ==> this in JS => { dataId, dataInit, ... }\n // this ==> scope (in observable.js's scopedEval) ==> this.parentElement ==> div.container below (toHtml)\n\n playground.call(data,\n this\n ,\n {\n \"f\": _magictabs,\n \"o\": {}\n }\n \n \n \n );\n }\n );/*]]>*/</script>\n <div>\n <div>\n <ul class=\"nav nav-tabs\" id=\"ul1059669048\"><li>\n <a href=\"#tab1059669048-0\"><i class=\"fa fa-table\"/></a>\n </li><li>\n <a href=\"#tab1059669048-1\"><i class=\"fa fa-cubes\"/></a>\n </li></ul>\n\n <div class=\"tab-content\" id=\"tab1059669048\"><div class=\"tab-pane\" id=\"tab1059669048-0\">\n <div>\n <script data-this=\"{&quot;dataId&quot;:&quot;anon261a2d0edde727e1fa52ec43891678ad&quot;,&quot;dataInit&quot;:[{&quot;string value&quot;:&quot;C825A1ECF2A6830C4401620C3A16F1995057C2AB&quot;},{&quot;string value&quot;:&quot;DE21D51F82F065DF011CFB3CDCE09C6F71FC716B&quot;},{&quot;string value&quot;:&quot;D63066643AFA128CE4BEBB2523242ADF5F07A0A9&quot;},{&quot;string value&quot;:&quot;AA3750AA18B8A0F3F0590731E1FAB934856680CF&quot;},{&quot;string value&quot;:&quot;4FA170CFDE2372AC91D479F989DC4DB5AA8D47E0&quot;},{&quot;string value&quot;:&quot;9A4E5250E56CA29765635022FB11624116B226BE&quot;},{&quot;string value&quot;:&quot;200413B74F3B34198333778C79AF1728AC9A912A&quot;},{&quot;string value&quot;:&quot;7773B5B0576CCC2FC79E94098B7D879CCE8BB377&quot;},{&quot;string value&quot;:&quot;7C154ED1DC59609E3D26ABB2DF2EA3D587CD8C41&quot;},{&quot;string value&quot;:&quot;9B71CA50A249F283DCE5848A6259EFDD2E47FA4B&quot;}],&quot;genId&quot;:&quot;58890138&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/req(['../javascripts/notebook/playground','../javascripts/notebook/magic/tableChart'], \n function(playground, _magictableChart) {\n // data ==> data-this (in observable.js's scopedEval) ==> this in JS => { dataId, dataInit, ... }\n // this ==> scope (in observable.js's scopedEval) ==> this.parentElement ==> div.container below (toHtml)\n\n playground.call(data,\n this\n ,\n {\n \"f\": _magictableChart,\n \"o\": {\"headers\":[\"string value\"],\"width\":600,\"height\":400}\n }\n \n \n \n );\n }\n );/*]]>*/</script>\n <div>\n <span class=\"chart-total-item-count\"><p data-bind=\"text: value\"><script data-this=\"{&quot;valueId&quot;:&quot;anon304f913878fd3a0d709b5446e272e0bf&quot;,&quot;initialValue&quot;:&quot;10&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/\nreq(\n['observable', 'knockout'],\nfunction (O, ko) {\n ko.applyBindings({\n value: O.makeObservable(valueId, initialValue)\n },\n this\n );\n});\n /*]]>*/</script></p> entries total</span>\n <span class=\"chart-sampling-warning\"><p data-bind=\"text: value\"><script data-this=\"{&quot;valueId&quot;:&quot;anon88894f4f8b295d6addafed331a6fdde1&quot;,&quot;initialValue&quot;:&quot;&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/\nreq(\n['observable', 'knockout'],\nfunction (O, ko) {\n ko.applyBindings({\n value: O.makeObservable(valueId, initialValue)\n },\n this\n );\n});\n /*]]>*/</script></p></span>\n <div>\n </div>\n </div></div>\n </div><div class=\"tab-pane\" id=\"tab1059669048-1\">\n <div>\n <script data-this=\"{&quot;dataId&quot;:&quot;anonb83aedb59e2af8ca3002d40d45577eb6&quot;,&quot;dataInit&quot;:[{&quot;string value&quot;:&quot;C825A1ECF2A6830C4401620C3A16F1995057C2AB&quot;},{&quot;string value&quot;:&quot;DE21D51F82F065DF011CFB3CDCE09C6F71FC716B&quot;},{&quot;string value&quot;:&quot;D63066643AFA128CE4BEBB2523242ADF5F07A0A9&quot;},{&quot;string value&quot;:&quot;AA3750AA18B8A0F3F0590731E1FAB934856680CF&quot;},{&quot;string value&quot;:&quot;4FA170CFDE2372AC91D479F989DC4DB5AA8D47E0&quot;},{&quot;string value&quot;:&quot;9A4E5250E56CA29765635022FB11624116B226BE&quot;},{&quot;string value&quot;:&quot;200413B74F3B34198333778C79AF1728AC9A912A&quot;},{&quot;string value&quot;:&quot;7773B5B0576CCC2FC79E94098B7D879CCE8BB377&quot;},{&quot;string value&quot;:&quot;7C154ED1DC59609E3D26ABB2DF2EA3D587CD8C41&quot;},{&quot;string value&quot;:&quot;9B71CA50A249F283DCE5848A6259EFDD2E47FA4B&quot;}],&quot;genId&quot;:&quot;2143859974&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/req(['../javascripts/notebook/playground','../javascripts/notebook/magic/pivotChart'], \n function(playground, _magicpivotChart) {\n // data ==> data-this (in observable.js's scopedEval) ==> this in JS => { dataId, dataInit, ... }\n // this ==> scope (in observable.js's scopedEval) ==> this.parentElement ==> div.container below (toHtml)\n\n playground.call(data,\n this\n ,\n {\n \"f\": _magicpivotChart,\n \"o\": {\"width\":600,\"height\":400,\"derivedAttributes\":{},\"extraOptions\":{}}\n }\n \n \n \n );\n }\n );/*]]>*/</script>\n <div>\n <span class=\"chart-total-item-count\"><p data-bind=\"text: value\"><script data-this=\"{&quot;valueId&quot;:&quot;anon5e72cfa6bfa57282dfa6feff307c8b65&quot;,&quot;initialValue&quot;:&quot;10&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/\nreq(\n['observable', 'knockout'],\nfunction (O, ko) {\n ko.applyBindings({\n value: O.makeObservable(valueId, initialValue)\n },\n this\n );\n});\n /*]]>*/</script></p> entries total</span>\n <span class=\"chart-sampling-warning\"><p data-bind=\"text: value\"><script data-this=\"{&quot;valueId&quot;:&quot;anonc75f17a622f6df2702fb3a8dea1e6a4a&quot;,&quot;initialValue&quot;:&quot;&quot;}\" type=\"text/x-scoped-javascript\">/*<![CDATA[*/\nreq(\n['observable', 'knockout'],\nfunction (O, ko) {\n ko.applyBindings({\n value: O.makeObservable(valueId, initialValue)\n },\n this\n );\n});\n /*]]>*/</script></p></span>\n <div>\n </div>\n </div></div>\n </div></div>\n </div>\n </div></div>" }, "execution_count": 182, "metadata": {}, "output_type": "execute_result", "time": "Took: 4.559s, at 2017-09-30 14:45" } ], "source": [ "val top10 = sortedRanks.take(10).map(_(2).toString)\n", "\n", "top10" ] }, { "cell_type": "markdown", "metadata": { "id": "B4A4BDBC889444F39BEF8D9A2DB1A7F8" }, "source": "### Helper functions\n\nBitcoin address is essentially a hash or fingerprint of the public key. In the blockchain for the addresses Bitcoin uses internally `hash160` with zero redundancy. However, humans tend to make mistakes and in order to mittigate the risk of sending money to wrong address by making a typo in the address, there is also address that uses a checksum. It's possible to convert between the two forms of the address.\n\nWe will be using `blockchain.info` API for fetching some useful information about the top ten addresses in our Page Rank calculation. To do that we need to define couple of helper functions." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "F158F501F8544DBD8453FF6C1738157D", "input_collapsed": false, "presentation": { "pivot_chart_state": "{\n \"hiddenAttributes\": [],\n \"menuLimit\": 200,\n \"cols\": [],\n \"rows\": [],\n \"vals\": [],\n \"exclusions\": {},\n \"inclusions\": {},\n \"unusedAttrsVertical\": 85,\n \"autoSortUnusedAttrs\": false,\n \"inclusionsInfo\": {},\n \"aggregatorName\": \"Count\",\n \"rendererName\": \"Table\"\n}", "tabs_state": "{\n \"tab_id\": \"#tab744741656-0\"\n}" }, "trusted": true }, "outputs": [], "source": [ "import scala.io.Source.fromURL\n", "\n", "def makeFunc(path: String)(param: String) = \n", " fromURL(s\"https://blockchain.info/q/$path/$param\").mkString\n", "\n", "def hashToAddress = makeFunc(\"hashtoaddress\") _\n", "def balance = makeFunc(\"addressbalance\") _\n", "def totalReceived = makeFunc(\"getreceivedbyaddress\") _\n", "def totalSent = makeFunc(\"getsentbyaddress\") _\n", "def firstSeen = makeFunc(\"addressfirstseen\") _\n", "val rawJson = (addr: String) => fromURL(s\"https://blockchain.info/rawaddr/$addr?limit=0\").mkString\n", "\n", "val parseJson = (jsonStr: String) => {\n", " val result = scala.util.parsing.json.JSON.parseFull(jsonStr)\n", " result match {\n", " case Some(hash: Map[String, Any]) => List(\"address\", \"total_received\", \"total_sent\", \"final_balance\", \"n_tx\")\n", " .map(x => hash(x))\n", " case _ => Nil\n", " }\n", "}\n", "\n", "val getInfo = rawJson.andThen(parseJson)\n", "val satoshi2BTC = (input: Double) => input / 1.0E8\n", "\n", "// https://blockchain.info/ticker\n", "val btcInUsd = 4279.92\n", "val BTC2USD = (input: Double) => input * btcInUsd\n", "val toUSD = satoshi2BTC.andThen(BTC2USD)\n", "val formatter = java.text.NumberFormat.getCurrencyInstance\n", "val toReadable = satoshi2BTC.andThen(BTC2USD).andThen(formatter.format(_))" ] }, { "cell_type": "markdown", "metadata": { "id": "2593C099C1694CE8B6C98F072E0B0F63" }, "source": "Now, let's apply the `getInfo` function to our top 10 addresses." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "2967D4FE1DA14F0996DE30AAE7871CB4", "input_collapsed": false, "presentation": { "pivot_chart_state": "{\n \"hiddenAttributes\": [],\n \"menuLimit\": 200,\n \"cols\": [],\n \"rows\": [],\n \"vals\": [],\n \"exclusions\": {},\n \"inclusions\": {},\n \"unusedAttrsVertical\": 85,\n \"autoSortUnusedAttrs\": false,\n \"inclusionsInfo\": {},\n \"aggregatorName\": \"Count\",\n \"rendererName\": \"Table\"\n}", "tabs_state": "{\n \"tab_id\": \"#tab360202904-0\"\n}" }, "trusted": true }, "outputs": [], "source": [ "val top10detailed = top10.map(getInfo)\n", "top10detailed" ] }, { "cell_type": "markdown", "metadata": { "id": "6251CD095E48489E88ABE9F331CBDF67" }, "source": "And present the results in an HTML table." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "12C1B66003C147128E2BC40B169826E0", "input_collapsed": false, "presentation": { "pivot_chart_state": "{\n \"hiddenAttributes\": [],\n \"menuLimit\": 200,\n \"cols\": [],\n \"rows\": [],\n \"vals\": [],\n \"exclusions\": {},\n \"inclusions\": {},\n \"unusedAttrsVertical\": 85,\n \"autoSortUnusedAttrs\": false,\n \"inclusionsInfo\": {},\n \"aggregatorName\": \"Count\",\n \"rendererName\": \"Table\"\n}", "tabs_state": "{\n \"tab_id\": \"#tab434507380-0\"\n}" }, "trusted": true }, "outputs": [], "source": [ "<table>\n", " <tr><td><b>Address</b></td><td><b>Received Ttl</b></td>\n", " <td><b>Sent Ttl</b></td><td><b>Balance</b></td><td><b>Transactions</b></td></tr>\n", "{\n", "top10detailed.map(record => {\n", " val address = record(0)\n", " val totalRcv = toReadable(record(1).toString.toDouble)\n", " val totalSnt = toReadable(record(2).toString.toDouble)\n", " val balance = toReadable(record(3).toString.toDouble)\n", " val txNumber = record(4)\n", " <tr><td><a href={\"https://blockchain.info/address/\" + address}>{address}</a></td>\n", " <td>{totalRcv}</td>\n", " <td>{totalSnt}</td>\n", " <td>{balance}</td>\n", " <td>{txNumber}</td>\n", " </tr>\n", "})\n", "}\n", "</table>" ] }, { "cell_type": "markdown", "metadata": { "id": "D57F8A582AE04F9D91EA083A30FD4838" }, "source": "We can also display the detailed information about any given Bitcoin address." }, { "cell_type": "code", "metadata": { "collapsed": false, "id": "9DB5325B8EA5496088E5C0D3D37A16CD", "input_collapsed": false, "trusted": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": "displayAddress: (address: String)scala.xml.Elem\nres318: scala.xml.Elem = <iframe width=\"1024\" frameborder=\"0\" height=\"630\" src=\"http://bitcoinwhoswho.com/address/1MFXYK1XucKFfhPhW9HDHD3vsM9BKey4qm\"></iframe>\n" }, { "data": { "text/html": "<iframe width=\"1024\" frameborder=\"0\" height=\"630\" src=\"http://bitcoinwhoswho.com/address/1MFXYK1XucKFfhPhW9HDHD3vsM9BKey4qm\"></iframe>" }, "execution_count": 193, "metadata": {}, "output_type": "execute_result", "time": "Took: 2.202s, at 2017-09-30 14:58" } ], "source": [ "def displayAddress(address: String) = <iframe \n", " width=\"1024\" frameborder=\"0\" height=\"630\" \n", " src={\"http://bitcoinwhoswho.com/address/\" + address}></iframe>\n", "\n", "displayAddress(\"1MFXYK1XucKFfhPhW9HDHD3vsM9BKey4qm\")" ] } ], "metadata": { "auto_save_timestamp": "1970-01-01T01:00:00.000Z", "customArgs": null, "customDeps": null, "customImports": null, "customLocalRepo": null, "customRepos": null, "customSparkConf": null, "customVars": null, "id": "580d9f21-537b-4f36-ab14-755f340c0632", "language_info": { "codemirror_mode": "text/x-scala", "file_extension": "scala", "name": "scala" }, "name": "Blockchain", "sparkNotebook": null, "trusted": true, "user_save_timestamp": "1970-01-01T01:00:00.000Z" }, "nbformat": 4 }
apache-2.0
geoneill12/phys202-2015-work
assignments/assignment05/InteractEx01.ipynb
1
5244
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "# Interact Exercise 01" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "nbgrader": {} }, "outputs": [], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "nbgrader": {} }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":0: FutureWarning: IPython widgets are experimental and may change in the future.\n" ] } ], "source": [ "from IPython.html.widgets import interact, interactive, fixed\n", "from IPython.display import display\n", "from IPython.html import widgets" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Interact basics" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Write a `print_sum` function that `prints` the sum of its arguments `a` and `b`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "nbgrader": { "checksum": "4d7fa34d285413499aa7359dda2a2dcc", "solution": true } }, "outputs": [], "source": [ "def print_sum(a, b):\n", " c = a + b\n", " print c" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Use the `interact` function to interact with the `print_sum` function.\n", "\n", "* `a` should be a floating point slider over the interval `[-10., 10.]` with step sizes of `0.1`\n", "* `b` should be an integer slider the interval [-8, 8] with step sizes of `2`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.1\n" ] }, { "data": { "text/plain": [ "<function __main__.print_sum>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "interact(print_sum, a = (-10., 10., 0.1), b = (-8, 8, 2))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "42c776e2480b70e6a45ee325285f2977", "grade": true, "grade_id": "interactex01a", "points": 5 } }, "outputs": [], "source": [ "assert True # leave this for grading the print_sum exercise" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Write a function named `print_string` that prints a string and additionally prints the length of that string if a boolean parameter is `True`." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "nbgrader": { "checksum": "0a454725f1214af3f65e36c5bc4123e9", "solution": true } }, "outputs": [], "source": [ "def print_string(s, length=False):\n", " print 's'\n", " if length == True:\n", " print len(s)" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Use the `interact` function to interact with the `print_string` function.\n", "\n", "* `s` should be a textbox with the initial value `\"Hello World!\"`.\n", "* `length` should be a checkbox with an initial value of `True`." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "s\n", "12\n" ] } ], "source": [ "interact(print_string, s = 'Hello World!', length = True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "414350009853ea9cb00917ef3bec7b10", "grade": true, "grade_id": "interactex01b", "points": 5 } }, "outputs": [], "source": [ "assert True # leave this for grading the print_string exercise" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
fggp/ctcsound
cookbook/07-icsound.ipynb
1
183716
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using ICsound\n", "\n", "*csoundmagics* includes an *ICsound* class which is adapted from Andrés Cabrera's [icsound](https://github.com/csound/csound/wiki/icsound) module. *ICsound* is bound to the *%%csound* and *%csound* magics command.\n", "\n", "This notebook is an adaptation of Andrés' [icsound test notebook](https://github.com/csound/csound/blob/develop/frontends/icsound/icsound%20test%20notebook.ipynb)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Starting the Csound engine" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To use *ICsound* create an *ICsound* instance:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%load_ext csoundmagics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Creating an *ICsound* object automatically starts the engine:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Csound engine started at slot#: 1.\n", "Listening to port 12894\n" ] } ], "source": [ "cs = ICsound(port=12894)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can set the properties of the Csound engine with parameters to the startEngine() function." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method startEngine in module csoundmagics:\n", "\n", "startEngine(sr=44100, ksmps=32, nchnls=2, zerodbfs=1.0, dac='dac', adc='', port=0, bufferSize=0) method of csoundmagics.ICsound instance\n", " Start an ICsound engine.\n", " \n", " The user can specify values for sr, ksmps, nchnls, zerodbfs, dac, adc,\n", " a port number, and the messages buffer size. If a port number is given,\n", " this engine will listen to that port for csound code and events.\n", "\n" ] } ], "source": [ "help(cs.startEngine)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The engine runs in a separate thread, so it doesn't block execution of python." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CsoundMagics: Csound already running\n" ] } ], "source": [ "cs.startEngine()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use the *%%csound* magic command to directly type csound language code in the cell and send it to the engine. The number after the magic command is optional; it references the slot where the engine is running. If omitted, slot#1 is assumed." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "%%csound 1\n", "gkinstr init 1" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "%%csound\n", "print i(gkinstr)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So where did it print?" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading options from $HOME/.csound6rc\n", "rtaudio: ALSA module enabled\n", "rtmidi: ALSA Raw MIDI module enabled\n", "UDP server started on port 12894\n", "displays suppressed\n", "0dBFS level = 1.0\n", "orch now loaded\n", "audio buffered in 1024 sample-frame blocks\n", "ALSA: -b 512 not allowed on this device; using 341 instead\n", "writing 2048 sample blks of 64-bit floats to dac\n", "SECTION 1:\n", "instr 0: #i0 = 1.000\n", "\n" ] } ], "source": [ "cs.printLog()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, messages from Csound are not shown, but they are stored in an internal buffer. You can view them with the printLog() function. If the log is getting too long and confusing, use the clearLog() function." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Function tables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can create csound f-tables directly from python lists or numpy arrays:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "cs.fillTable(1, np.array([8, 7, 9, 1, 1, 1]))\n", "cs.fillTable(2, [4, 5, 7, 0, 8, 7, 9, 6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tables can be plotted in the usual matplotlib way, but *ICsound* provides a plotTable function which styles the graphs." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XlYVHX7x/H3GXYQEcVwyRQQxV0BRRRLBdfMTEvLTDPJNNO0sjIz0zLtUUstdy3LXLLSNHfEpVxBRcVdBPfcFxCQbc7vj37w2JPJDMzMmWHu13VxXS3nzPnoYeT2fO+5v4qqqgghhBBCiIfTaR1ACCGEEMIWSNEkhBBCCGEAKZqEEEIIIQwgRZMQQgghhAGkaBJCCCGEMIAUTUIIIYQQBpCiSQghhBDCAFI0CSGEEEIYQIomIYQQQggDSNEkhBBCCGEAsxRN7du3VwGzfu3atcvs15Av6/ySe2+/X3Lv7fNL7rv9flnw3hvELEXT9evXzfGyf5OVlWX2awjrJPfefsm9t09y3+2Xtd17WZ4TQgghhDCAFE1CCCGEEAaQokkIIYQQwgBSNAkhhBBCGECKJiGEEEIIA0jRJIQQQghhACmahBBCCCEMIEWTEEIIIYQBpGgSQgghhDCAFE1CCCGEEAaQokkIIYQQwgBSNAmbkZOTw8yZM0lOTtY6ihDCQs6ePcvKlSvJyMjQOooQOGodQAhD5OXl8dJLL/Hjjz8SFBTEK6+8onUkIYSZnT59mscff5xLly6Rnp7OnDlztI4k7Jw8aRJWT6/X069fP3788UcATp48SVpamsaphBDmdO7cOVq3bs2lS5cAmDt3Llu3btU2lLB7UjQJq6aqKoMGDeK7777D3d2dxx57DL1ez65du7SOJoQwk0uXLtG6dWvOnTtHeHg4zz//PAD9+/cnMzNT43TCnknRJKyWqqq8/fbbzJo1C1dXV3777Te6d+8OwO+//65xOiGEOVy9epWoqChOnz5NSEgI69at45VXXqFOnTqcOnWKsWPHah1R2DEpmoTVGjVqFF9++SVOTk4sX76c1q1b06JFC0CKJiFKops3b9K2bVuOHTtG3bp12bBhA15eXjg5OTF37lwURWHixIkcOHBA66jCTknRJKzSuHHjGDduHA4ODvz444906NABgIiICADi4uK4d++elhGFECaUmppK+/btOXjwIDVr1mTTpk2UK1eu4P+Hh4czePBg8vLyiI6OJjc3V8O0wl5J0SSszpdffsmHH36IoigsXLiQZ555puD/lS1bFj8/P7KysoiPj9cwpRDCVNLT03nyySeJj4/H39+f2NhYfH19/3Hcp59+ymOPPca+ffuYOnWqBkmFvZOiSViVmTNn8tZbbwEwf/58XnjhhX8cU79+fQD++OMPi2YTQpheZmYmnTt3Zvv27Tz66KPExsZSuXLlBx7r6enJrFmzgL+W70+fPm3JqEJI0SSsx4IFC3j99dcBmD59On379n3gcflFk/Q1CWHbsrOzefbZZ9m8eTMVKlRg8+bNVKtW7aHndOjQgZ49e5KZmclrr72GqqqWCSsEUjQJK7F06VL69esHwOTJkwuKpwfJL5p27NghfQ1C2Kjc3Fyef/551q5di4+PD7GxsQQGBhp07pQpUyhXrhyxsbF89913Zk4qxH9J0SQ09+uvv9KrVy/0ej2ffPJJwfLcv/Hx8SEgIIC7d+9y8OBBC6UUQphKXl4effr0YcWKFZQpU4aNGzdSu3Ztg88vX748U6ZMAeCtt97iypUr5ooqxN9I0SQ0tX79enr06EFeXh4jRoxg5MiRBp0noweEsE16vZ7+/fuzePFiPD09Wb9+PY0aNTL6dV588UXatWvHrVu3GDJkiBmSCvFPUjQJzWzZsoVnnnmG7Oxshg4dyrhx41AUxaBzH3/8cUCawYWwJaqqMmTIEL755hvc3NxYs2YNYWFhRXotRVGYNWsWHh4eLFu2jFWrVpk4rRD/JEWT0MTOnTt56qmnuHfvHq+99hpffPGFwQUT/P1JkzSCCmH9VFXl3XffZfr06bi4uLBq1aqC93FRVatWjXHjxgHw+uuvk5qaaoqoQvwrKZqExe3du5cOHTqQnp5O7969mTFjhlEFE0BAQAAVK1bkxo0bHDt2zExJhRCm8vHHHzNp0iQcHR35+eefiYqKMsnrvvHGGzRp0oSLFy8yYsQIk7ymEP9GiiZhUYcOHaJt27akpqbSvXt35s+fj05n/LehoiiyRCeEjZgwYQJjx45Fp9OxdOlSOnXqZLLXdnBwYN68eTg6OjJjxgy2b99ustcW4n9J0SQs5vjx47Rp04Zbt27RuXNnfvjhBxwdHYv8etIMLoT1mzZtGiNGjEBRFL777ju6detm8mvUq1eP999/H4BXX31VtlgSZiNFk7CI06dPExkZydWrV2nbti0//vgjTk5OxXrN/CdN0tckhHWaM2cOb775ZsE/9+rVy2zX+vDDDwkKCuL48eN89tlnZruOsG9SNAmzO3fuHJGRkVy6dIknnniCFStW4OrqWuzXrVOnDt7e3ly4cIGzZ8+aIKkQwlQWLlzIgAEDgL+eNkVHR5v1ei4uLsydOxeA8ePHk5iYaNbrCfskRZMwq0uXLhEZGcnZs2dp2rQpv/32G+7u7iZ5bZ1OR0REBCB9TUJYk59++omXX34ZVVX5/PPPGTx4sEWuGxERwcCBA8nNzeXVV18lLy/PItcV9kOKJmE2165dIyoqiqSkJIKDg1m3bh2enp4mvcb9S3RCCO399ttv9OzZE71ez+jRo3n33Xctev3x48dTuXJl9uzZw9dff23Ra4uST4omYRa3bt2iTZs2HDt2jLp167Jx40bKlClj8utIM7gQ1iMmJoZnn32W3Nxc3n33XUaPHm3xDF5eXsyYMQOAkSNHcubMGYtnECWXFE3C5FJTU2nfvj0HDx6kRo0axMTEUK5cObNcKzg4GHd3d06ePCn7TwmhoW3btvH000+TnZ3N4MGDmTBhgtHz10ylc+fOdO/enfT0dAYMGCAfFBEmI0WTMKn09HSefPJJ4uLi8PPzIzY2lgoVKpjtek5OToSHhwPS1ySEVnbv3k2nTp3IzMwkOjqaKVOmaFYw5Zs2bRre3t5s2LCBRYsWaZpFlBxSNAmTuXfvHk8//TTbt2/n0UcfJTY2lkcffdTs15Uhl0JoZ//+/bRv3567d+/y4osvMmvWrCINrDU1X19fJk+eDMDQoUO5du2axolESaD9d7YoEbKzs3n22WcLnizFxsbi5+dnkWtLM7gQ2jh8+DBt27blzp07dOvWjQULFuDg4KB1rAIvv/wykZGR3Lhxg2HDhmkdR5QAUjSJYsvNzeWFF15gzZo1lCtXjk2bNlGjRg2LXT8sLAwnJycOHjzI7du3LXZdIezZyZMniYqK4saNGzz55JMsXry4WBP+zUFRFGbPno2bmxuLFi1i3bp1WkcSNk6KJlEseXl59OnTh+XLl+Pl5UVMTAx16tSxaAY3NzcaN26Mqqrs3LnTotcWwh6lpKQQGRnJlStXiIqK4ueff8bZ2VnrWA8UEBDA2LFjARgwYAB3797VOJGwZVI0iSLT6/W89tprLF68mFKlSrF+/XoaNWqkSRYZPSCEZVy4cIHIyEguXLhAixYt+PXXX00y4d+chg4dSnBwMOfOnWPkyJFaxxE2zKCiSVGUYYqiHFEU5bCiKEsURbHud4gwO1VVefPNN5k/fz5ubm6sWbOGpk2bapZHmsGFML/Lly8TGRlJSkoKTZo0YfXq1Xh4eGgdq1COjo7Mnz8fBwcHvvrqK3bv3q11JGGjCi2aFEWpDAwBQlVVrQs4AM+bO5iwXqqq8t577/H111/j7OzMypUrC4oWrTRv3hxFUYiPjycjI0PTLEKURNevX6dNmzacPHmShg0bsn79ekqXLq11LIM1bNiQ4cOHo6oq0dHRZGdnax1J2CBDl+ccATdFURwBd+CS+SIJazdmzBgmTpyIo6MjP//8M23atNE6El5eXjRo0ICcnBz27NmjdRwhSpTbt2/Ttm1bDh8+TO3atdm4cSPe3t5axzLaRx99RPXq1Tly5Aiff/651nGEDSq0aFJV9SIwCTgH/AncUVV1o7mDPczLL7/M8uXLycrK0jKGXfr8888ZM2YMOp2OJUuW8NRTT2kdqYAs0ZVc6enpfPbZZxw6dEjrKHYnLS2NDh06kJCQQPXq1dm0aRPly5fXOlaRuLm5MWfOHAA+/fRTjh07pnEiYWuUwsbLK4riDfwC9ABuAz8BP6uq+sP/HNcf6A/g6+sbsnTpUrMEPn78OAMHDuT/r8NLL71E+/btrWo2SEn1yy+/8PXXX6MoCiNGjNDsCdPdu3cpVarUP/77tm3b+PjjjwkODi4YaidKhsWLFzN37lwAGjduTL9+/ahZs6bGqUq+e/fu8d5773Ho0CF8fX2ZOnUqvr6+Fs/xb+/5opo0aRJr1qyhTp06TJs2zSqGcYoHM/W9/zctW7Y0bIS9qqoP/QKeA+bf9++9gRkPOyckJEQ1F71er/7666+qn5+fCqiAGhgYqC5evFjNy8sz23Xt3Zw5cwp+v+fMmaNpli1btjzwv1++fFkFVHd3dzU7O9uyoYRZtWvXTgVUnU5X8H34zDPPqIcPH9Y6WomVmZmptmnTRgXUSpUqqUlJSZpl+bf3fFHdunVLrVChggqo06dPN+lrC9My9b1/iELrIVVVDeppOgc0VRTFXflrM6FIQLNnmoqi8PTTTzNv3jwWL15MYGAgp06domfPnjRs2JCVK1fK5owm9sMPP/Daa68BMHXqVF599VWNEz2Yr68vNWvWJCMjg/3792sdR5hIbm4uO3bsAGDOnDkMHz4cNzc3VqxYQb169ejVqxdJSUkapyxZcnJy6N69OzExMTzyyCPExsYSEBCgdSyTKVOmDNOnTwfg/fff5/z58xonErbCkJ6mPcDPwH4g8f/PmWPmXIXS6XS88MILHD16lHnz5lGlShUSExPp0qULTZs2JSYmRoonE/j555/p06cPqqoyYcIEhgwZonWkh8qf1yR9TSXHwYMHuXv3LgEBAQQEBPCf//yH06dP88Ybb+Do6MiiRYsICgqif//+8sPPBHJzc3nxxRf57bffKFu2LDExMQQFBWkdy+S6du3KM888Q1paGq+//rr8vBAGMWghV1XV0aqqBqmqWldV1ZdUVbWaDmxHR0f69evHqVOnmDZtGr6+vsTFxdG2bVtatWpV8DdUYbzVq1fzwgsvoNfr+eijj3jvvfe0jlQo2Yeu5Mm/l/kFMUDFihX56quvOHnyJH379kVVVebOnUtgYCBDhw7lypUrWsW1aXq9nldeeYWffvqJ0qVLs3HjRurXr691LLP5+uuv8fLyYvXq1SxbtkzrOMIGlJjuNxcXFwYPHszp06eZMGEC3t7ebNu2jYiICDp27CjLNUaKiYmhW7du5ObmMnz4cD7++GOtIxkk/wfr9u3b0ev1GqcRppBfND1oFli1atX45ptvOHr0KD169CArK4upU6fi7+/PBx98wK1btywd12apqsrAgQNZuHAhHh4erFu3jpCQEK1jmVWlSpWYOHEiAIMHD+bGjRsaJxJWz9DmJ2O+zNkInq+w5rDbt2+rH330kVqqVKmCxtFu3bqpR44cMXs2W7dt2zbVzc1NBdRBgwaper1e60h/87B7r9fr1SpVqqiAeujQIcuFEmah1+vVcuXKqYB66tSpQt/3Bw4cUJ966qmC97yXl5f6ySefqKmpqZYJbKP0er365ptvqoDq6upqyeZbg5gzT15envrEE0+ogPryyy+b7TqiaGyxEdwmeXl5MWbMGFJSUnjnnXdwdXXll19+oV69evTu3Zvk5GStI1qlPXv28OSTT5KZmUm/fv2YNm0af/X/2wZFUWQfuhLk2LFj3Lhxg4oVKxrUiNygQQNWrVrF7t27iYqK4s6dO4waNQp/f3+++OILMjMzLZDatqiqygcffMDUqVNxdnbm119/pWXLllrHshidTsecOXNwcXFhwYIFxMTEaB1JWLESWzTl8/HxYeLEiZw+fZqBAwfi4ODAwoULqVmzJgMGDODChQtaR7QaCQkJtG/fnrt379KzZ09mz55tk/NLZMhlyZF/Dx9//HGjivewsDBiYmLYvHkz4eHhXL9+nbfffpvAwEBmzZolW2jcZ9y4cUyYMAEHBweWLVtGu3bttI5kcTVq1GD06NEAvPbaa6Snp2ucSFgr2/uJWESVKlVixowZnDhxgpdffhm9Xs/s2bOpXr06b731FteuXdM6oqaOHDlCmzZtuH37Nl27duW7776z2YGh9zeDq/KJGJv2oCZwY+R/GGT16tU0bNiQixcvMnDgQIKCgvj+++/Jy8szZVybM3nyZEaNGoVOp2PRokU8/fTTWkfSzDvvvEODBg1ISUkpKKCE+AdD1/GM+bKGnqbCHDt2TO3evXtB74OHh4c6cuRI9datW6YJaENOnDih+vr6qoDasWNHNSsrS+tID1XYvdfr9aqPj09BH4ywTXq9Xn300Uf/1p9WnPd9Xl6eumzZMjUoKKjgfV+rVi31p59+ssvBuNOnTy/4fViwYIHWcR7KUn0t8fHxqk6nU3U6nRofH2+Ra4qHk54mKxEUFMSPP/5IQkICnTp1Ij09nXHjxuHn58dnn33G3bt3tY5oESkpKURGRnLlyhUiIyP55ZdfcHZ21jpWsdzf1yRLdLbr7NmzXLhwAW9vb+rUqVPs19PpdDz33HMcPnyYBQsWUK1aNY4dO8Zzzz1HaGgoa9eutZsnk9988w2DBg0CYObMmfTp00fjRNYhNDSUYcOGodfr6devHzk5OVpHElbGboumfA0bNuS3335j586dtGrVitu3bzNy5EgCAgKYMmUK9+7d0zqi2Vy4cIHIyEguXLhAREQEK1euxNXVVetYJiHN4LYv/95FRESYtLfOwcGBPn36cOLECWbMmEGlSpVISEjgySefpEWLFmzbts1k17JGS5YsITo6GoAvvviCAQMGaJzIuowZMwY/Pz8OHTrEpEmTtI4jrIzdF035wsPD2bx5M7GxsTRt2pSrV68ybNgwAgMDmTNnTon7G0f+k6WUlBQaN27MmjVr8PDw0DqWyUgzuO27vwncHJydnRk4cCBJSUlMmjQJHx8fduzYQcuWLWnbti1xcXFmua6WVqxYwUsvvYSqqowbN45hw4ZpHcnqeHh4MGfOX5tejBkzhpMnT2qcSFgTKZr+R+vWrdm5cye//fYb9evX58KFC7z22mvUqlWLH374oUQ0jl6/fp2oqChOnjxJgwYNWL9+PaVLl9Y6lkk1aNAAT09PTp8+zcWLF7WOI4qguE3ghnJzc+Ptt98mOTmZsWPHUrp0aWJiYggLC6NLly4cOnTIrNe3lLVr19KjRw/y8vIYOXIkH3zwgdaRrFZUVBQvv/wyWVlZ9O/fXwbligJSND2Aoih06tSJhIQEli5dSo0aNTh9+jQvvfQSDRo0YPny5Tbb+3D79m3atWvH4cOHqVWrFjExMZQtW1brWCbn6OhIs2bNAHnaZIuuXLnCyZMncXd3Jzg42CLX9PT0ZNSoUaSkpPD+++/j7u7OypUradiwIS+88IJNP3GIjY2la9eu5OTkMGzYMD755BOtI1m9SZMm8cgjj7Bt2zbmzZundRxhJaRoegidTkePHj04cuQI33zzDVWrVuXIkSN069aNxo0bs379epsqntLS0ujQoQP79++nevXqxMbGUr58ea1jmY0s0dmu/HsWHh6Ok5OTRa9dtmxZxo8fz+nTpxkyZAhOTk4sXbqU2rVrEx0dzblz5yyap7h27NhB586dycrKYsCAAUyePNmmBtZqpVy5ckybNg2A4cOHc+nSJY0TCWsgRZMBHB0d6du3LydPnmT69OlUrFiRffv20aFDB5544gmbaDbOyMjgqaeeYvfu3Tz22GPExsZSsWJFrWOZlTSD266H7TdnKRUqVGDq1KmcOnWqoHF6/vz5BAYGMmTIEC5fvqxZNkPFx8fToUMHMjIy6NOnD9OnT5eCyQjdu3enU6dOpKam8sYbb2gdR1gBKZqM4OzszOuvv05SUhITJ06kbNmy/PHHHzzxxBO0a9eO+Ph4rSM+UFZWFs888wzbtm2jUqVKbN68mccee0zrWGbXuHFjXFxcOHz4MDdv3tQ6jjCCuZvAjfHYY48xd+5cjh07Rs+ePcnJyeGrr77C39+f999/32o3eT148CDt2rUjLS2NHj16MH/+fJuc8K8lRVGYOXMmnp6erFixguXLl2sdSWhM3kFF4O7uzjvvvENKSgoff/wxnp6ebNy4kSZNmvDMM89w+PBhrSMWyMnJoXv37mzcuJHy5csTGxtr0B5eJYGrqythYWEAbN++XeM0wlC3b9/m4MGDODk5Fdw/axAYGMiiRYs4ePAgXbp0ITMzk88//xx/f3/Gjh1Lamqq1hELHDt2jDZt2nDr1i2efvppFi5caLMT/rX26KOPMmHCBAAGDRrErVu3NE4ktCRFUzGULl2a0aNHk5KSwrvvvoubmxu//vor9evX58UXXyQpKUnTfLm5ufTq1YtVq1bh7e3Npk2bCAoK0jSTpcmQS9uzc+dOVFWlcePGuLm5aR3nH+rVq8eKFSuIi4ujbdu2pKamMnr0aPz9/Zk0aZLmmwInJSURGRnJtWvXaNeuHT/++KPF+8JKmgEDBtCsWTMuX77Mu+++q3UcoSEpmkygXLlyfP755yQnJzN48GCcnJxYvHgxQUFBvPrqq5w/f97imfIn2i5btozSpUuzceNG6tevb/EcWrt/HzphGyw1aqC4GjduzIYNG9i2bRsRERHcuHGD4cOHExAQwIwZMzTZFPjs2bNERkby559/0rJlS5YvX46Li4vFc5Q0Op2OefPm4ezszLx589iyZYvWkYRGpGgyoQoVKjBt2jROnjzJK6+8AsC8efOoXr06b775JleuXLFIDlVVef311/n+++/x8PBg3bp1hIaGWuTa1iY8PBydTse+ffvsZmscW2cNTeDGePzxx/n9999Zt24dISEh/PnnnwwaNIgaNWrw7bffkpuba5Ecly5dIjIyknPnzhEeHs5vv/2Gu7u7Ra5tD2rVqsWHH34IQP/+/TV/oii0IUWTGVStWpX58+dz9OhRnn/+ebKzs5k2bRr+/v6MGDHCrE3Jqqry1ltvMXv2bFxdXVm1alXBvCJ75OnpSXBwMHl5eezevVvrOKIQGRkZ7N27F0VRaN68udZxDKYoCu3btyc+Pp5ffvmF2rVrc/bsWV555RXq1q3LsmXLzDog8erVq0RGRnL69GlCQkJYt24dpUqVMtv17NV7771HnTp1SEpKYsyYMVrHERqQosmMatSowZIlSzh48CCdO3cmIyODCRMm4O/vzyeffEJaWprJr/nhhx8yZcoUnJycWLFiBa1btzb5NWyNLNHZjj179pCTk0ODBg3w8vLSOo7RFEWha9euHDp0iIULF+Lv78+JEyfo0aMHwcHBrF692uSz3W7evEmbNm04fvw49erVY8OGDTb5e2cL8pfnFEVh0qRJJCQkaB1JWJgUTRZQv359Vq5cye7du4mKiuLOnTt89NFH+Pv7M3nyZJM95v3000/57LPPcHBwYNmyZbRv394kr2vrpBncdljTqIHicHBwoFevXhw/fpzZs2dTuXJlDh48yFNPPUWzZs3YvHmzSa5z584d2rVrx6FDh6hZsyYxMTGUK1fOJK8tHqxp06YMHjyYvLw8oqOjLbb8KqyDFE0WFBYWRkxMDFu2bKFZs2Zcv36dd955h+rVqzNr1qxiNY5OnjyZUaNGodPp+OGHH+jSpYsJk9u2iIgIAHbv3k1WVpbGacTD2EoTuKGcnJzo378/SUlJfPnll5QvX57du3cTGRlJZGRksZaM7969S8eOHdm7dy/+/v7Exsbi6+trwvTi34wbN47HHnuM/fv3M2XKFK3jCEtSVdXkXyEhIaq5bdmyxezXMCe9Xq+uWbNGbdSokQqogOrn56d+9913am5urlGvNX369ILX+Pbbb80T2IoU5d7Xrl1bBdTt27ebPpAwiezsbNXd3V0F1MuXLz/wGFt/36elpanjxo1Ty5QpU/Ce7dSpk5qQkGDU62RkZKitW7dWAbVKlSpqSkqKeQJbCWu872vXrlUB1c3NTU1KStI6TollwXtvUH0jT5o0oihKwd8Sf/rpJ2rVqkVKSgp9+vShbt26/PTTTwY1jn777bcMGjQIgBkzZvDyyy+bObltkn3orN/+/fvJyMigRo0aJfaJSalSpfjggw9ISUlh5MiReHh4sHr1aho1akSPHj04fvx4oa+RlZVFt27d2Lx5MxUqVCA2NpZq1aqZP7z4mw4dOvDiiy+SmZlJ//79bWofUlF0UjRpTKfT8eyzz5KYmMh3332Hn58fx48fp3v37oSGhrJmzZp/fTMuWbKEfv36AX8tzw0cONCS0W2K7ENn/Wxt1EBxlClThk8//ZTk5GSGDRuGi4sLy5Yto06dOvTt25czZ8488LycnBxeeOEF1q1bh4+PD7GxsQQGBlo2vCjw5ZdfUq5cOTZv3syCBQu0jiMsQIomK+Hg4EDv3r05fvw4M2fOpFKlSiQkJNCpUyciIiLYunXr345fsWIFL730Eqqq8umnn/LWW29pE9xG5BdNO3bsIC8vT+M04kFKShO4MR555BG++OILkpKSeO2119DpdCxYsIAaNWowaNAgLl26VHBsXl4effr0YcWKFZQpU4aYmBhq166tYXpRvnz5gp6mt99+2yY2cRbFZOg6njFf0tNUfBkZGerkyZNVHx+fgt6HqKgodffu3eratWtVJycnFVA/+OADraNaXFHvvZ+fnwqo+/fvN20gUWx5eXmqt7e3Cjy0P6ekv++TkpLUl156SVUURQVUV1dX9Z133lGvXr2q9u3bVwVUT09Pdc+ePVpHtShrvu96vV5t3769Cqjdu3fXOk6JIz1NwiBubm689dZbJCcn88knn+Dl5cWmTZto2rQpnTt3Jicnh6FDh/Lpp59qHdVi7t69y8iRIzl48GCRzpfRA9bryJEj3Lp1iypVqlC1alWt42gmICCA77//nsMshj7qAAAgAElEQVSHD9OtWzfu3bvHpEmTqFSpEt9++y3u7u6sWbOGJk2aaB1V/D9FUZg1axYeHh4sW7aMVatWaR1JmJEUTVbO09OTDz/8kOTkZEaMGIG7uzu5ubkMGDCAL774AkVRtI5oEZmZmXTu3JnPPvuML7/8skivIUMurdf9owbs5Xv6YWrXrs3PP//M3r176dChA7m5ubi4uLBy5coSM46hJKlatSrjxo0DYODAgdy5c0fjRMJcpGiyEWXLluWzzz4jJSWF2NhYpk+fbjc/XLKysujatWvBJplnz54t0ibI9zeDq/JJF6tiT03gxggJCWHt2rXs37+fhIQEoqKitI4k/sUbb7xBWFgYly5dYsSIEVrHEWYiRZONeeSRR2jdujU6nX3cuvxPC61fvx4fHx9CQkIAiImJMfq1AgMD8fX15dq1a5w8edLUUUURqapql03gxmjUqBG1atXSOoZ4CAcHB+bNm4ejoyMzZ85k+/btWkcSZmAfP3mFTcrLy6N3795/+7RQ3759AdiwYYPRr6coiizRWaHTp0/z559/4uPjQ1BQkNZxhCiyunXrFjxlio6O5t69exonEqYmRZOwSnq9nujoaJYuXYqnpycbNmygYcOGtG3bFoBNmzYVaXSANINbn/x7If1MoiQYOXIkQUFBnDhxoqDPSZQcUjQJq6OqKoMHD2bBggW4u7uzdu3agk8LVa9enQoVKnDz5k32799v9GvLkybrU9L2mxP2zcXFhblz5wIwYcIEEhMTNU4kTEmKJmFVVFVl+PDhzJgxo+DTQvkb7sJfS2yNGzcGirZEV7duXby8vDh79iznzp0zWW5RdNIELkqaiIgIXn/9dXJzc4mOjpaBuiWIFE3CqowePZrJkyfj5OTEL7/88sBPC4WGhgKwceNGo1/fwcGhoAiTJTrtXbx4keTkZDw9PWnQoIHWcYQwmfHjx1O5cmXi4uL46quvtI4jTESKJmE1xo8fzyeffIKDgwNLlizhySeffOBxwcHBODg4sGvXLlJTU42+jizRWY/8wrVZs2Y4OjpqnEYI0yldujQzZswA/upz+rf9BIVtkaJJWIUpU6bwwQcfoCgK3333Hd26dfvXY0uVKkVYWBi5ubkFs5uMIc3g1kNGDYiSrHPnznTv3p2MjAwGDBgg8+FKACmahOZmz57NsGHDAJg7dy4vvvhioefkf4quKEt0ISEhuLm5cezYMa5evWr0+cJ0pAlclHTTpk3D29ubDRs2sGjRIq3jiGKSoklo6vvvv2fgwIEAfPXVV/Tr18+g89q1awcUrRnc2dmZpk2bAsgAOg3duHGDw4cP4+LiUtDcL0RJ4+vryxdffAHA0KFDuXbtmsaJRHFI0SQ0s2zZMvr27YuqqvznP//hjTfeMPjc0NBQypQpw+nTpzl9+rTR185fDpIlOu3s2LEDgLCwMFxdXTVOI4T59OnTh8jISG7cuMHQoUO1jiOKQYomoYlVq1bx4osvotfrGTNmDMOHDzfqfEdHx4JP1hVliU6awbUnS3PCXiiKwuzZs3Fzc2Px4sWsXbtW60iiiKRoEha3ceNGnnvuOXJzc3nvvfcYNWpUkV6nOH1NTZs2xdHRkQMHDhTpE3ii+KQJXNiTgIAAxo4dC8CAAQNIS0vTOJEoCimahEVt27aNLl26kJ2dzZAhQxg/fnyRt87IL5o2b95MTk6OUee6u7sTGhqKXq9n586dRbq+KLq7d++yb98+dDod4eHhWscRwiKGDh1KSEgI58+fZ+TIkVrHEUUgRZOwmF27dvHkk0+SmZnJq6++ypQpU4q111jVqlWpWbMmqamp7Nmzx+jzZfSAdnbv3k1eXh7BwcF4enpqHUcIi3B0dGTevHk4ODjw9ddfs2vXLq0jCSNJ0SQsYv/+/XTo0IH09HR69erFzJkzTbI5a3GW6KSvSTuydYqwVw0bNmT48OGoqkp0dDTZ2dlaRxJGkKJJmN3hw4dp27Ytd+7c4dlnn+Xbb7/FwcHBJK+dXzQVZfRA8+bNURSFuLg47t27Z5I8wjDSBC7s2UcffURgYCBHjx5lwoQJWscRRpCiSZjViRMniIqK4saNG3Tq1IlFixaZdLuMli1b4uTkRHx8PDdv3jTqXG9vb+rVq0d2djZxcXEmyyQeLisrq2A59f7NmIWwF25ubsydOxeATz/9lKNHj2qcSBhKiiZhNsnJyURGRnLlyhWioqL46aefcHZ2Nuk1SpUqRfPmzVFVldjYWKPPlyU6y9u7dy/37t2jdu3a+Pj4aB1HCE088cQTvPrqq+Tk5BAdHY1er9c6kjCAFE3CLM6fP09kZCQXL16kRYsW/Prrr2YbYFic6eDSDG55MmpAiL/85z//oUKFCuzatYuZM2dqHUcYQIomYXKXL18mMjKSM2fOEBYWxpo1a/Dw8DDb9e5vBjd2Q8z8omnHjh3k5uaaPJv4J+lnEuIvZcqUYfr06QC8//77nD9/XuNEojBSNAmTun79OlFRUZw6dYqGDRuybt06s3+kvGHDhpQvX57z589z4sQJo86tWLEi1atXJz09nYSEBDMlFPny8vIKtk+RokkI6Nq1K127duXu3bsMHDjQ6L/4CcuSokmYzK1bt2jTpg1Hjhyhdu3abNy4EW9vb7NfV6fT0aZNG6BoS3SyD53lHDp0iNTUVPz8/KhSpYrWcYSwCl999RVeXl6sWbOGH3/8Ues44iGkaBImkZaWRocOHThw4ACBgYFs2rSJ8uXLW+z6Mq/JNsjSnBD/VKlSJSZOnAjAkCFDuHHjhsaJxL+RokkUW0ZGBp06dWLPnj1Uq1aN2NhYKlasaNEM+UXT1q1bycrKMurc/B/g27dvl0+wmJk0gQvxYP369eOJJ57g2rVrvP3221rHEf9CiiZRLPfu3aNLly78/vvvVK5cmdjYWE2WXSpWrEi9evXIyMgo6JkxlJ+fH5UrV+bGjRscO3bMTAmFqqrypEmIf6HT6Zg7dy4uLi589913xMTEaB1JPIAUTaLIsrOzee6554iJieGRRx4hNjYWf39/zfIUdYlOUZSCH+KyRGc+J06c4Nq1a/j6+hIYGKh1HCGsTmBgIB9//DEA/fv3Jz09XdtA4h8MKpoURSmjKMrPiqIcVxTlmKIosi25ncvNzeXFF19k9erVlC1blk2bNlGzZk1NMxVnXpM0g5vf/Utzpth3UIiS6O2336ZBgwacOXOGjz76SOs44n8Y+qRpKrBeVdUgoAEgaxh2TK/X07dvX37++We8vLyIiYmhXr16WsciIiICV1dXDhw4wJUrV4w69/5mcPnIr3nI0pwQhXNycmLevHnodDqmTJlCfHy81pHEfQotmhRF8QIeB+YDqKqararqbXMHE9ZJVVUGDBjADz/8gIeHB+vWrSM4OFjrWMBf+zk98cQTAEb3A9SqVYuyZcty8eJFzpw5Y4Z0QprAhTBMaGgob731Fnq9nujoaHJycrSOJP6fIU+a/IBrwLeKoiQoijJPURTzjXcWVktVVYYOHcrcuXNxdXVl9erVhIdb10ptUfuadDqd9DWZ0blz5zh79ixeXl7UrVtX6zhCWL0xY8bg7+/PoUOHCsYRCO0Zst28IxAMDFZVdY+iKFOB94FR9x+kKEp/oD+Ar68vW7duNXHUv7t7967ZryH+S1VV5s6dy5IlS3BycmLMmDEAmtyDh937/GGaq1evZsuWLUb1zlSqVAmAZcuWUbVq1WLnFP+V/+SvVq1axeobk/e9fbLX+/7666/zzjvvMGnSJIKDg822f6c1s9S9b9mypWEHqqr60C+gAnDmvn9vAax52DkhISGquW3ZssXs1xD/NXbsWBVQHR0d1ZUrV2qa5WH3Xq/Xq5UqVVIB9cCBA0a9blxcnAqogYGBxUwo/lf//v1VQP3888+L9TryvrdP9nzfp0+frl68eFHrGJqx4L0vtB5SVbXw5TlVVS8D5xVFyf9oVCRw1LgaTtiySZMm8dFHH6HT6Vi0aBGdO3fWOtK/UhSlyEt0jRo1wsPDg1OnTnH58mVzxLNb0gQuRNG8/vrrBU/BhfYM/fTcYGCRoiiHgIbAZ+aLJKzJ9OnTGT58OADffvst3bt31zhR4fJHDxhbNDk6OtKsWTNARg+Y0tWrVzl+/Dhubm6EhIRoHUcIIYrMoKJJVdUDqqqGqqpaX1XVLqqq3jJ3MKG9b775hjfeeAOAWbNm0bt3b40TGSYqKgpFUfjjjz/IyMgw6lzZh870tm/fDkDTpk1xdnbWOI0QQhSdTAQXD7R48WKio6MB+PLLL3nttdc0TmQ4Hx8fgoODycrKMrr4yV8+kidNpiOjBoQQJYUUTeIfli9fTu/evVFVlc8++4yhQ4dqHcloRZ0O3qRJE5ydnTl06BC3bskDVVPIL1ylaBJC2DopmsTfrF27lueff568vDw+/PBDRowYoXWkIilqM7ibmxtNmjRBVVWjN/4V/5SamsqBAwdwdHSkadOmWscRQohikaJJFIiNjaVr167k5OTw9ttvM3bsWK0jFVl4eDilSpXi6NGjXLhwwahzZYnOdHbu3Ileryc0NBR3d3et4wghRLFI0SSAv5p1O3fuTFZWFgMHDmTixIk2vamqs7MzrVq1Aox/2iTN4KYjowaEECWJFE2C+Ph4OnbsSEZGBn379uXrr7+26YIpX1GX6Jo1a4ZOp2Pv3r1Gf/pO/J00gQshShIpmuzcwYMHadeuHWlpaTz//PPMnTsXna5kfFvkN4PHxMSQl5dn8HmlS5emYcOG5Obmsnv3bnPFK/Hu3btHXFwciqLQvHlzreMIIUSxlYyfjqJIjh49SlRUFLdu3aJLly58//33ODg4aB3LZKpXr061atW4efMm+/fvN+pc2by3+OLi4sjOzqZevXoFewIKIYQtk6LJTiUlJREVFcX169dp3749S5cuxcnJSetYJlWcLVXyl5OkGbzoZNSAEKKkkaLJDp09e5bWrVvz559/0qpVK5YvX46Li4vWscyiqPOa8p807dq1i+zsbJPnsgfSBC6EKGmkaLIzFy9epHXr1pw/f55mzZqxatUq3NzctI5lNq1bt8bBwYFdu3aRmppq8Hnly5cnKCiIzMxMo5f2BOTm5rJz505AiiYhRMkhRZMduXr1KlFRUSQnJxMaGsratWspVaqU1rHMqkyZMoSFhZGbm8vWrVuNOldGDxRdQkIC6enpVK9enYoVK2odRwghTEKKJjtx8+ZNoqKiOH78OPXr12fDhg14eXlpHcsi8vuairpEJ31NxpNRA0KIkkiKJjtw584d2rVrR2JiIkFBQcTExFC2bFmtY1mMKZrBjRlZIKQJXAhRMknRVMLdvXuXjh07snfvXgICAoiNjeWRRx7ROpZFNW7cmDJlypCUlERycrLB5z322GNUrVqVO3fucPjwYTMmLFn0en3BkybpZxJClCRSNJVgmZmZdO7cmZ07d1KlShViY2OpVKmS1rEsztHRkcjISMD4p02yRGe8Y8eOcfPmTSpXroyfn5/WcYQQwmSkaCqhsrKy6Nq1K1u2bKFixYps3ryZqlWrah1LM/mjB2QfOvO7f9RASdiORwgh8knRVALl5OTw/PPPs379esqXL09sbCzVq1fXOpam2rRpA0BsbCw5OTkGn3f/kyZVVc2SraSRJnAhREklRVMJk5eXR+/evfn1118pU6YMMTEx1KpVS+tYmqtWrRo1atQgNTWVuLg4g8+rWbMm5cuX5/LlyyQlJZkxYcmgqqo0gQshSiwpmkoQvV5PdHQ0S5cuxdPTk40bN9KgQQOtY1mNokwHVxRFluiMkJKSwsWLFylbtqwU60KIEkeKphJCVVXeeOMNFixYgLu7O2vXrqVx48Zax7IqRR09IM3ghrv/U3M6nfzxIoQoWeRPtRJAVVXeeecdZs6ciYuLC6tWrSIiIkLrWFanZcuWODk5ER8fz82bNw0+T540GU72mxNClGRSNJUAo0eP5osvvsDJyYnly5cXfLxe/F2pUqVo3rw5er2e2NhYg8+rX78+pUuXJiUlhQsXLpgxoe2TJnAhREkmRZONGz9+PJ988gkODg4sXbqUjh07ah3JqhVlic7BwYHmzZsDskT3MJcvX+bUqVN4eHjQqFEjreMIIYTJSdFkw6ZMmcIHH3yAoih8//33dO3aVetIVu/+eU3GjBCQJbrC5ReUzZo1w9HRUeM0QghhelI02ajZs2czbNgwAObNm0fPnj01TmQbGjZsiI+PD+fOnePEiRMGnyfN4IWTUQNCiJJOiiYb9P333zNw4EAAvv76a1555RWNE9kOnU5XMOjSmCW60NBQXF1dOXLkCDdu3DBXPJsmTeBCiJJOiiYbcu/ePSZOnEjfvn1RVZWJEycyaNAgrWPZnKLMa3JxcSEsLAyA7du3myWXLbt16xaJiYk4OzvTpEkTreMIIYRZSNFkA3Jycpg9ezbVq1fn3XffRa/XM2bMGN555x2to9mk/CdNW7duJSsry+DzpK/p3+3YsQNVVWnSpAlubm5axxFCCLOQosmK5eXlsXDhQoKCghgwYAAXL16kYcOGrFmzho8++kjreDarUqVK1KtXj4yMDHbu3GnwedLX9O/uH2ophBAllRRNVkhVVX755Rfq169P7969SU5OJigoiGXLlrFv3z4ZK2AC+aMHjFmiCw8Px8HBgf3795OWlmauaDZJmsCFEPZAiiYroqoq69atIzQ0lGeffZajR49SrVo1FixYQGJiIs8995xsTWEiRZnXVKpUKUJCQsjLy2PXrl3mimZz0tPT2bt3LzqdjmbNmmkdRwghzEZ+AluJbdu20aJFCzp27Mj+/fupVKkSM2bM4MSJE/Tp00fm3phYixYtcHV1JSEhgStXrhh1HsgS3f327NlDbm4uDRs2pHTp0lrHEUIIs5GiSWPx8fG0bduWli1bsmPHDsqVK8ekSZNISkpi4MCBODs7ax2xRHJzcytYStq0aZPB50kz+D/J0pwQwl5I0aSRxMREunTpQpMmTYiJiaF06dKMHTuWlJQU3n77bfkEkgXcPx3cUPnbqezZs8eoT96VZNIELoSwF1I0WdipU6fo2bMnDRo0YOXKlbi7u/P++++TkpLCqFGj8PT01Dqi3bi/r8nQLVXKlStH3bp1ycrKIj4+3pzxbEJ2dnZBf5cUTUKIkk6KJgs5d+4c0dHR1KpViyVLluDk5MSQIUM4ffo048ePp2zZslpHtDt16tShUqVKXL58mcTERIPPkyW6/9q3bx+ZmZkEBQVRvnx5reMIIYRZSdFkZpcvX2bIkCEEBgYyf/58AKKjozl16hRTp06lQoUKGie0X4qiFOlTdNIM/l/5vwfSzySEsAdSNJnJzZs3ef/99wkICOCrr74iJyeHnj17cuzYMebOnctjjz2mdURB0eY15RdNO3bsIC8vzyy5bIXsNyeEsCdSNJlYamoqY8eOxc/Pj88//5yMjAy6dOnCwYMHWbRoEYGBgVpHFPdp06YNiqLwxx9/kJGRYdA5lStXxt/fn7S0NA4ePGjmhNYrLy+vYB8+edIkhLAHUjSZSGZmJpMmTcLf35/Ro0eTmppK27ZtiYuLY8WKFdSrV0/riOIBfHx8CA4OJisry6geJelrgsOHD3Pnzh2qVq0qT06FEHZBiqZiys7OZsaMGQQEBDB8+HBu3LhBREQE27ZtY8OGDTRu3FjriKIQRelryi+a7LmvSUYNCCHsjRRNRZSbm8uCBQuoWbMmgwYN4s8//yQ4OJh169bx+++/y3KFDSnKvKb8QuH33383eFxBSSNDLYUQ9kaKJiPp9XqWLVtG3bp16du3L2fOnKF27dr8/PPP7N27l/bt26MoitYxhRHCw8Px8PDgyJEjXLhwwaBzAgICqFixItevX+f48eNmTmh9VFWVJnAhhN2RoslAqqqyevVqgoOD6dGjBydOnMDf35+FCxdy6NAhunXrJsWSjXJ2dqZVq1YAxMTEGHSOoih2PXogKSmJK1euUL58eWrWrKl1HCGEsAgpmgywefNmmjVrxlNPPcXBgwepXLkys2fP5vjx4/Tq1QsHBwetI4piyl+iM2b0gD03g9+/NCd/WRBC2AtHrQNYs927dzNy5Eg2b94MQPny5RkxYgQDBw7E1dVV43TClPKbwWNiYsjLyzOoELbnZnBpAhdC2CN50vQABw4c4KmnniI8PJzNmzfj5eXFp59+SnJyMsOGDZOCqQQKDAykWrVq3Lx5k4SEBIPOqVOnDt7e3pw7d46zZ8+aOaF1kSZwIYQ9kqLpPsePH6dHjx40atSI1atX4+HhwQcffEBKSgojR46kVKlSWkcUZnL/liqGLtHpdDoiIiIA+1qiu3DhAikpKZQuXZr69etrHUcIISxGiibgzJkz9O3blzp16rBs2TJcXFwYOnQoycnJjBs3Dm9vb60jCguQfegMk/9rbd68ufTzCSHsil33NF26dIlx48Yxd+5ccnJycHR0JDo6mlGjRvHoo49qHU9YWGRkJDqdjp07d5KWloanp2eh59hjM7gszQkh7JVdPmm6fv06w4cPJyAggBkzZpCbm0uvXr04fvw4s2fPloLJTpUpU4awsDByc3PZsmWLQecEBwfj7u7OiRMnuHr1qpkTWgdpAhdC2Cu7Kpru3LnD6NGj8ff3Z9KkSdy7d4+uXbuSmJjIwoULCQgI0Dqi0Jix08GdnJwIDw8H7GOJ7vr16xw5cgRXV1dCQ0O1jiOEEBZlF0VTeno6n3/+OX5+fowdO5a0tDTat2/P3r17+eWXX6hTp47WEYWVMLYZHOxriW779u0AhIWF4eLionEaIYSwrBLd05SVlcWcOXMYN24cV65cAf76ATdu3LiCTz0Jcb/GjRvj5eVFUlISycnJ+Pv7F3qOPTWD5/8apZ9JCGGPSuSTptzcXObPn0+NGjUYMmQIV65cITQ0lA0bNrB161YpmMS/cnR0JCoqCjB8S5WwsDCcnJw4cOAAd+7cMWc8zUkTuBDCnpWookmv17NkyRJq165NdHQ0586do27duqxYsYK4uDjatm0rWz6IQhm7ROfu7k5oaCiqqrJz505zRtNUWloaCQkJODg40LRpU63jCCGExRlcNCmK4qAoSoKiKKvNGagoVFVl5cqVNGzYkJ49e3Lq1CmqV6/OokWLOHDgAF26dJFiSRgsv2iKjY0lNzfXoHPsoa9p165d5OXlERISIoNehRB2yZgnTW8Cx8wVpChUVSUmJoamTZvSpUsXEhMTqVKlCnPnzuXo0aP07NlThu8Jo1WrVo0aNWqQmprKnj17DDrHHvahk1EDQgh7Z1DRpCjKo8CTwDzzxjFcYmIirVq1om3btsTFxfHII48wdepUTp48SXR0NE5OTlpHFDbM2OngzZo1Q1EU4uLiyMzMNGc0zUg/kxDC3hn6pGkK8C6gN2MWg6SkpNCxY0eGDBnCtm3b8Pb2Zvz48SQnJzNkyBDZTFeYhLHzmsqUKUODBg3Iyckx+OmULcnKyir4dckHKYQQ9qrQkQOKonQCrqqquk9RlJYPOa4/0B/A19eXrVu3mirj39y+fZstW7bg5ubGs88+S/fu3SlVqhTx8fFmuZ6wPnfv3jXb91c+BwcHHB0diYuL47fffjNoSxU/Pz8OHDjA999/b9ZsWkhMTCQrKws/Pz8OHTqkWQ5L3HthfeS+2y9L3fuWLVsadJwhc5qaA50VRekIuAKlFUX5QVXVXvcfpKrqHGAOQGhoqGpogKJYsWIF9+7do0uXLma7hrBeW7duNfgbvDgiIiLYunUrWVlZPPXUU4Uef/36dVasWMH58+ctks+S8j8V2KFDB01/bZa698K6yH23X9Z27wtdnlNVdYSqqo+qqloNeB7Y/L8Fk6W1b9+eMmXKaBlB2AFjRw/kN0jv2rWLnJwcs+XSgjSBCyFECZvTJIQp3d8Mrqpqocf7+vpSo0YN0tPTSUhIMHc8i8nNzWXHjh2AFE1CCPtmVNGkqupWVVU7mSuMENakUaNG+Pj4cO7cOU6ePGnQOSVxXtPBgwdJS0vD39+fypUrax1HCCE0I0+ahPgXOp2ONm3aAMYv0ZWkeU2y35wQQvxFiiYhHsLYeU33D7nU6zWf0GESMp9JCCH+IkWTEA+RXzRt2bKFrKysQo+vWrUqVapU4datWxw9etTc8cxOVVVpAhdCiP8nRZMQD1GpUiXq1q1LRkaGQZvxKopSUFyUhL6m48ePc/36dSpWrEhAQIDWcYQQQlNSNAlRCGOng5ekZvD8X0OLFi1k02shhN2TokmIQhR1XtMff/xh0KgCayZN4EII8V9SNAlRiBYtWuDq6kpCQgJXr14t9PhatWrh4+PDpUuXSE5OtkBC85EmcCGE+C8pmoQohJubW0HRsGnTpkKPv7+vyZZHD5w9e5bz58/j7e1NnTp1tI4jhBCak6JJCAMUdYnOlvua8rNHRESg08kfFUIIIX8SCmGA+5vBDelTun9ek62SUQNCCPF3UjQJYYA6depQsWJFLl++TGJiYqHHN2jQgFKlSpGUlMSlS5cskND0pJ9JCCH+ToomIQygKIpR08EdHR1p3rw5YJtPm65cucKJEydwd3cnODhY6zhCCGEVpGgSwkDGzmuy5Wbw7du3AxAeHo6Tk5PGaYQQwjpI0SSEgaKiolAUhd9//52MjIxCj7flIZeyNCeEEP8kRZMQBipfvjzBwcFkZWUZ9PSocePGuLi4cPjwYW7evGmBhKYjTeBCCPFPUjQJYQRj+ppcXV1p0qQJqqqyY8cOc0czmTt37nDgwAGcnJwICwvTOo4QQlgNKZqEMIKx85pscYlux44dqKpK48aNcXd31zqOEEJYDSmahDBCs2bN8PDw4MiRI1y8eLHQ422xGVyW5oQQ4sGkaBLCCM7OzrRq1QowbImuWbNm6HQ69u3bR3p6urnjmYQ0gQshxINJ0SSEkYwZPeDp6UlwcDC5ubns3r3b3NGKLV0bJYcAABODSURBVDMzk/j4eBRFoVmzZlrHEUIIqyJFkxBGyu9riomJQa/XF3q8Le1Dt2fPHnJycmjQoAFlypTROo4QQlgVKZqEMFJgYCBVq1blxo0b7N+/v9DjbakZPL+fSZbmhBDin6RoEsJIiqIYtUQXEREBwO7du8nOzjZrtuLKL+ykCVwIIf5JiiYhisCY0QM+Pj7Url2be/fusXfvXnNHK7KcnBx27twJSNEkhBAPIkWTEEXQunVrdDodO3fuJC0trdDj85e7rHn0QEJCAhkZGdSoUQNfX1+t4wghhNWRokmIIvD29iYsLIzc3Fy2bt1a6PG20AwuowaEEOLhpGgSooiMWaLLL5p27NhBXl6eWXMVlQy1FEKIh5OiSYgiMqYZvEqVKlSrVo07d+6QmJho7mhG0+v18sk5IYQohBRNQhRR48aN8fLy4tSpU6SkpBR6vDWPHjhy5Ai3bt2iSpUqVK1aVes4QghhlaRoEqKIHB0diYyMBAx72mTNzeD3L80piqJxGiGEsE5SNAlRDMYs0d3fDK6qqllzGUuawIUQonBSNAlRDPnN4LGxseTm5j702MDAQHx9fbl69SqnTp2yRDyDqKoqTeBCCGEAKZqEKIZq1apRo0YN7ty5Q1xc3EOPVRTFKkcPJCcnc+nSJXx8fKhVq5bWcYQQwmpJ0SREMeU/bTKmr8maiqb7t06RfiYhhPh3UjQJUUxFmddkTc3gsjQnhBCGkaJJiGJq1aoVTk5OxMXFcevWrYceW69ePby8vDhz5gznz5+3UMKHkyZwIYQwjBRNQhRTqVKlaNasGXq9ntjY2Ice6+DgQEREBGAdT5suXbrE6dOnKVWqFA0aNNA6jhBCWDUpmoQwgaKOHtBafuHWvHlzHB0dNU4jhBDWTYomIUzg/mbwwmYwWVMzuGydIoQQhpOiSQgTaNSoET4+Ppw9e5aTJ08+9NiQkBDc3Nw4duwY165ds1DCB7v/k3NCCCEeToomIUxAp9PRpk0boPAlOmdnZ5o2bQrA9u3bzZ7t39y8eZPExERcXFxo3LixZjmEEMJWSNEkhIkUZV6Tls3gO3bsAKBJkya4urpqlkMIIWyFFE1CmEh+0bRlyxays7Mfeqw1NIPLqAEhhDCOFE1CmEilSpWoW7cu6enp7Ny586HHNm3aFEdHRxISEkhLS7NQwr+TJnAhhDCOFE1CmJCh08E9PDwICQlBr9cXWmCZw927d9m3bx86nY7w8HCLX18IIWyRFE1CmJAx85q0HD2we/ducnNzCQ4OxtPT0+LXF0IIWyRFkxAm1KJFC1xcXNi/f3+h4wS0bAaX/eaEEMJ4UjQJYUJubm4FxVBMTMxDj23evDmKorBnzx7u3btniXgFpAlcCCGMJ0WTECZm6BKdt7c39erVIzs7m/j4eEtEAyA7O5vdu3cDFOyDJ4QQonBSNAnxf+3dUWxWdZrH8d/TvrZ2KiBgaWql0oQKqagUaoWWYBVRZ9c40auZZLnYG29mdp3NJJvZvdJ444WZ7CZOjMLM3izZuXC8mKw6iEBFKKllC2oRpwhblEoRGiuWgu3L++xF+zJ1bd+etu85523P95OQ0Lf/nvOUP7z8ev7P+Z88m8kjVeLYeuDo0aO6du2a6uvrddttt0V2XgCY7whNQJ6tW7dOVVVVOn/+vLq7u3OOjaMZnKU5AJgdQhOQZ2YWeHfw7JWm9vZ2pdPp0GuTaAIHgNkiNAEhCLpfU1VVlVavXq2hoSEdP3489LquX79+43l3hCYAmBlCExCC7MN7Dx48qKtXr+YcG+XWAx9//LEuX76sVatWaeXKlaGfDwAWEkITEIKKigpt2LBB33333bRhKMpmcPqZAGD2CE1ASLJbD0y3RDfxStN0d9vNFc+bA4DZIzQBIQnaDF5bW6vbb79dAwMDOnnyZGj1uPuNK030MwHAzE0bmsxspZkdMLNPzOyEmT0bRWHAfNfc3Kzy8nJ1d3err69vynFmFsnWAz09Pfrqq69UWVmpurq60M4DAAtVkCtNaUm/cvd6SZsk/dzM6sMtC5j/SkpK9NBDD0ma/pEqUTSDT9xqwMxCOw8ALFTThiZ3P+/uXeO//1bSSUnVYRcGLAQz3a/p4MGDofU10QQOAHMzo54mM1slqUFSRxjFAAtNthl87969ymQyU46rr6/XsmXLdO7cOZ09ezaUWmgCB4C5SQUdaGa3SPqjpF+6++VJPv+MpGckqbKyUm1tbfmqcVJDQ0OhnwOFaT7NvbursrJSFy5c0M6dO7VmzZopx65du1bt7e169dVXb4StfLlw4YJ6e3tVXl6uS5cuzZs/v/9vPs098od5T66o5r61tTXQuEChycxu0lhg2u3ub0w2xt1fk/SaJDU2NnrQAmarra0t8DeJhWW+zf2TTz6pnTt3amBgIGfdTz/9tNrb23Xx4sW8f3+7d++WNPbGsG3btrweO0rzbe6RH8x7chXa3Ae5e84k/U7SSXf/TfglAQtL9qrRdH1NYTaD87w5AJi7ID1NLZJ2SHrYzI6P//qbkOsCFoyHH35YRUVFam9v17fffjvluIaGBpWXl6unp0f9/f15rYEmcACYuyB3zx1yd3P3e919/fivt6IoDlgIli5dqqamJo2OjuZcm0+lUmpubpakGw/VzYeLFy/q5MmTKisr08aNG/N2XABIGnYEByIQdIkujOfQZQPYpk2bVFJSkrfjAkDSEJqACATdrymMncFZmgOA/CA0ARFoamrSkiVL1NPTo97e3pzjSkpK9NFHH2lwcDAv56YJHADyg9AERCCVSt241T/X1aaysjLdf//9cncdPnx4zue9fPmyjh07plQqpU2bNs35eACQZIQmICLZJbo9e/bkHJfPrQeOHDmiTCajxsZGlZeXz/l4AJBkhCYgItnQtG/fPqXT6SnH5bMZPHsMluYAYO4ITUBEamtrVVdXp2+++UadnZ1TjmtublZRUZGOHj2q4eHhOZ2T580BQP4QmoAIZbceyLVEt2TJEq1fv16jo6Pq6Jj9s7GvXbumjo4OmZlaWlpmfRwAwBhCExChoFsP5GOJ7oMPPtDIyIjuueceLV26dNbHAQCMITQBEWptbVUqlVJHR4e+/vrrKcfloxmcpTkAyC9CExChRYsWqaWlRZlMRvv3759y3JYtWySN3f02Ojo6q3PRBA4A+UVoAiIWZIluxYoVWrt2rYaHh9XV1TXjc6TTabW3t0siNAFAvhCagIhNbAZ39ynHzeWRKsePH9fQ0JBWr16tqqqq2RUKAPgeQhMQsYaGBi1fvlxnz57VqVOnphw3l2ZwnjcHAPlHaAIiVlRUpO3bt0vKvfVANvAcOnRImUxmRufgeXMAkH+EJiAG2SW6XH1NNTU1qqmp0eDgoLq7uwMfO5PJcOccAISA0ATEIHul6cCBAxoZGZly3Gy2Hvj00081MDCg6upq1dbWzq1QAMANhCYgBtXV1Vq3bp2uXLly4y63ycymr2niVgNmNrdCAQA3EJqAmATZemDiHXS57rSbiCZwAAgHoQmISZDQtGbNGlVUVKi/v1+nT5+e9pjuzqaWABASQhMQk61bt6q0tFRdXV26ePHipGPMbEZLdL29verr69OyZctUX1+f13oBIOkITUBMysrKtHXrVrm73n333SnHzaQZfOJWA0VF/PMGgHziXRWIUXaJLtd+TTO50sTSHACEh9AExGjifk1TNXrfd999WrRokc6cOaO+vr6cx2N/JgAID6EJiNG6detUVVWl8+fP68SJE5OOKS4u1pYtWyTlXqLr7+9XT0+PysvL1dDQEEq9AJBkhCYgRmaWtyW6bKBqbm5WKpXKY5UAAInQBMRuJvs15brSxNIcAISLH0eBmD3yyCOSxq4iXb16VWVlZT8Y09jYqNLSUnV3d6u0tHTS44yOjkqSnn/+eb3wwgvhFRwjd0/sLufFxcUaHh6Ouwwg0QhNQMxWrFihDRs2qKurS++///6NK08TlZaWaseOHdq1a1fOZ9VJUjqdDqtUxKi4uDjuEoDEIzQBBeDRRx9VV1eX3nnnnUlDkyTt3LlTL7/88qSfe/vtt/XUU09p8+bNOnDgQJilxuq9997Tgw8+GHcZABKK0AQUgMcee0wvvvii9uzZo5deemnKcVMtzR05ckSS1NraOuWYhaCkpGRBf38AChuN4EAB2Lx5s8rLy9Xd3a0vv/xyxl9PEzgAhI/QBBSA0tJStba2SpL27t07o68dHh5WZ2enioqK1NzcHEJ1AACJ0AQUjOzu4Ln2a5pMR0eH0um01q9fr8WLF4dRGgBAhCagYGQbwPfu3atMJhP463jeHABEg9AEFIi77rpLd955py5duqRjx44F/jr6mQAgGoQmoEBMfKRKrt3BJxoZGVF7e7skrjQBQNgITUABmWlo6urq0tWrV7V27VpVVFSEWRoAJB6hCSgg27ZtU1FRkQ4fPqyhoaFpx7M0BwDRITQBBWTp0qVqamrS6Oio2traph1PEzgARIfQBBSYoFsPZDIZHTp0SBJXmgAgCoQmoMAE7Wvq7u7W4OCgampqVFNTE0VpAJBohCagwDQ1NWnJkiXq6elRb2/vlOOyS3NcZQKAaBCagAKTSqW0bds2SbmvNtEEDgDRIjQBBWi6JTp3pwkcACJGaAIKUDY07du3T+l0+gefP336tPr7+1VRUaE1a9ZEXR4AJBKhCShAtbW1qqur0+DgoDo7O3/w+YlXmcws6vIAIJEITUCByrVERxM4AESP0AQUqFz7NdEEDgDRIzQBBaq1tVWpVEodHR0aHBy88XpfX5/OnDmjxYsX6957742xQgBIFkITUKAWLVqk5uZmZTIZ7d+//8br2atMLS0tKi4ujqs8AEgcQhNQwCZbomOrAQCIB6EJKGDZZvA9e/bI3SXRzwQAcSE0AQVsw4YNWr58uc6ePatTp05pYGBA3d3duvnmm9XY2Bh3eQCQKIQmoIAVFRVp+/btksa2Hjh06JAk6YEHHlBpaWmcpQFA4hCagAI3cb8mluYAID6puAsAkFs2NO3fv1+ff/65JJrAASAOga40mdnjZvYXM/vMzH4ddlEA/qq6ulp33323rly5og8//FDFxcXavHlz3GUBQOJMG5rMrFjSbyX9WFK9pJ+ZWX3YhQH4q+zWA5K0ceNG3XLLLTFWAwDJFORKU5Okz9z9jLuPSPqDpJ+EWxaAibJLdBJLcwAQlyA9TdWSvpjw8TlJD4RTTnBPPPGEUilaspIonU4nbu6zezRJ0iuvvKJdu3bFWE18kjj3kFatWqVbb7017jIQg+eeey7uEr4nb+8+ZvaMpGckqbKyUm1tbfk69KTcXel0OtRzoDAlde5vuukmXb9+XZIS+f1LyZ37pLt+/fr3nr+I5BgaGgo9T0hjz/oMIkho6pO0csLHd4y/9j3u/pqk1ySpsbHRgxYwW2+++WbgbxILS1tbG3OfUMx9MjHvyVVocx+kp6lTUp2Z1ZpZiaSfSvpTuGUBAAAUlmmvNLl72sx+IWmPpGJJv3f3E6FXBgAAUEAC9TS5+1uS3gq5FgAAgILFY1QAAAACIDQBAAAEQGgCAAAIgNAEAAAQAKEJAAAgAEITAABAAIQmAACAAAhNAAAAARCaAAAAAiA0AQAABGDunv+Dmv3Z3R/P+4G/f45n3P21MM+BwsTcJxdzn0zMe3IV2tyHEpqiYGZH3b0x7joQPeY+uZj7ZGLek6vQ5p7lOQAAgAAITQAAAAHM59BUMGuciBxzn1zMfTIx78lVUHM/b3uaAAAAojSfrzQBAABEZt6FJjN73Mz+Ymafmdmv464H0TCzlWZ2wMw+MbMTZvZs3DUhWmZWbGbHzOy/464F0TGzW83sdTP71MxOmtnmuGtCNMzsn8bf77vN7L/M7Oa4a5pXocnMiiX9VtKPJdVL+pmZ1cdbFSKSlvQrd6+XtEnSz5n7xHlW0sm4i0Dk/l3Sn919raT7xN+BRDCzakn/KKnR3ddJKpb003irmmehSVKTpM/c/Yy7j0j6g6SfxFwTIuDu5929a/z332rsjbM63qoQFTO7Q9LfStoVdy2IjpktkbRV0u8kyd1H3H0w3qoQoZSkMjNLSfqRpC9jrmfehaZqSV9M+Pic+I8zccxslaQGSR3xVoII/Zukf5aUibsQRKpW0kVJ/zG+NLvLzMrjLgrhc/c+SS9J+lzSeUnfuPs78VY1/0ITEs7MbpH0R0m/dPfLcdeD8JnZE5K+cvf/ibsWRC4laYOkV9y9QdIVSfSyJoCZLdXYSlKtpNsllZvZ38Vb1fwLTX2SVk74+I7x15AAZnaTxgLTbnd/I+56EJkWSU+aWa/GluQfNrP/jLckROScpHPunr2q/LrGQhQWvkck/a+7X3T3UUlvSGqOuaZ5F5o6JdWZWa2ZlWisKexPMdeECJiZaayv4aS7/ybuehAdd/8Xd7/D3Vdp7N/8fneP/SdOhM/d+yV9YWZrxl/aJumTGEtCdD6XtMnMfjT+/r9NBXATQCruAmbC3dNm9gtJezTWSf97dz8Rc1mIRoukHZI+NrPj46/9q7u/FWNNAML3D5J2j/+gfEbS38dcDyLg7h1m9rqkLo3dPX1MBbA7ODuCAwAABDDflucAAABiQWgCAAAIgNAEAAAQAKEJAAAgAEITAABAAIQmAACAAAhNAAAAARCaAAAAAvg/bEu84pJyYT0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x432 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs.plotTable(1)\n", "cs.plotTable(2, reuse=True)\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can get the function table values from the csound instance:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([4., 5., 7., 0., 8., 7., 9., 6.])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cs.table(2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAFpCAYAAACidE0wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8jef/x/HXnb0ElaA1Yq9SRYpWjRil9khsUXtT1Ndo1ai2qrQl9qqatcWOWjU7qD1LiB2bRJBxrt8fkfPT1gjOOddJ8nk+Hnk8JLnPfb0blXxyXZ/7ugylFEIIIYQQwjYcdAcQQgghhEhLpPgSQgghhLAhKb6EEEIIIWxIii8hhBBCCBuS4ksIIYQQwoak+BJCCCGEsCGLFF+GYcw0DOOqYRiHn/L5SoZh3DEMY/+jt88tMa4QQgghRErjZKH7zALGA7Ofcc12pVRtC40nhBBCCJEiWWTmSym1DbhpiXsJIYQQQqRmtuz5etcwjAOGYawzDONNG44rhBBCCGE3LLXs+Dx/AX5KqWjDMGoCK4D8T7rQMIyOQEeAIkWKlDpy5IiNIgohhBBCvBIjORfZZOZLKXVXKRX96M9rAWfDMHyecu1UpZS/Usrf3d3dFvGEEEIIIWzGJsWXYRhZDcMwHv259KNxb9hibCGEEEIIe2KRZUfDMBYAlQAfwzAuAEMAZwCl1GQgEOhiGEY8cB9oqpRSlhhbCCGEECIlsUjxpZRq9pzPjydxKwohhBBCiDRNdrgXQgghhLAhKb6EEEIIIWxIii8hhBBCCBuS4ksIIYQQwoak+BJCCCGEsCEpvoQQQgghbEiKLyGEEEIIG5LiSwghhBDChmx1sLawc+fOnWPPnj2cO3eOGzdu4OzsjLe3N4UKFeLtt98ma9asuiMKIYQQqYIUX2lYeHg406ZNY/HixZw+ffqZ15YsWZJGjRrRvn17MmfObKOEQgghROpj2PMRi/7+/mrPnj26Y6Q6p0+f5tNPP2XRokUk/f17e3tTrlw58uTJg6+vL/Hx8Vy/fp1jx47x559/EhMTA4CrqyutW7dm2LBhMhsmhBBC/JORrIuk+Eo7YmNjGT58OKNGjSIuLg5XV1eCgoJo37495cqVw8npyROh9+/fZ+PGjUybNo1Vq1YBkC5dOoYMGcLHH3+Mo6OjLf8zhBBCCHslxZf4f8ePH6dZs2bs378fwzBo3bo1w4cPJ0eOHC98n//973/mIqxChQrMnTv3he8jhBBCpELJKr7kacc0YP369ZQpU4b9+/eTO3dufv31V3788ceXKpgKFSrEypUrWb16NVmzZmXbtm0UL16crVu3Wj64EEIIkQpJ8ZXKTZkyhVq1anH37l0CAwM5cOAA5cuXf+X71qpVi4MHD/Lhhx9y69YtPvjgA2bNmvXqgYUQQohUToqvVGzs2LF07twZk8nE4MGDWbhwIenSpbPY/X19fVm1ahV9+vQhLi6ONm3a8MMPP1js/kIIIURqJMVXKjVu3Dg+/vhjAEJCQhg+fDgODpb/63Z0dGTMmDGMGzcOgN69ezNmzBiLjyOEEEKkFlJ8pUI///wzvXr1AhKXHbt37271MXv06MGUKVMA+OSTT5g+fbrVxxRCCCFSIim+UpktW7YQHBwMwKhRo+jYsaPNxu7YsSMTJ04EoHPnzqxdu9ZmYwshhBAphRRfqUhERARBQUHExcXx8ccf88knn9g8Q5cuXRg0aBAJCQkEBQUhW4UIIYQQ/yTFVyrx4MEDGjVqxI0bN6hRowajR4/GMJK13YjFjRgxguDgYGJiYmjQoAHXrl3TkkMIIYSwR1J8pRLdunVj79695M6dm3nz5mnddd4wDKZNm8a7777LhQsXaNasGQkJCdryCCGEEPZEiq9UYOHChcycORN3d3eWL1/Oa6+9pjsSLi4uLF68mMyZM7Np0yY+++wz3ZGEEEIIuyDFVwp38eJFunTpAsD3339P8eLFNSf6f9myZWPhwoU4OjoycuRIfvnlF92RhBBCCO2k+ErBTCYTbdq04datW9SsWdOmTzYmV6VKlRg2bBgAH330ETdv3tScSAghhNBLiq8UbMqUKfzyyy9kypSJGTNmaGuwf57+/fvz3nvvcenSJbp06YI9H+YuhBBCWJsUXynUpUuXGDBgAACTJ08ma9asmhM9nZOTE3PmzMHLy4tFixYxf/583ZGEEEIIbaT4SqE+/vhj7t69S926dWnUqJHuOM+VJ08e87mPvXr1ku0nhBBCpFlSfKVAa9asYfHixXh6ehISEmK3y43/1rZtW6pUqcKNGzfo06eP7jhCCCGEFlJ8pTD37983n9U4fPhwcubMqTlR8hmGweTJk3Fzc2Pu3LmEhYXpjiSEEELYnBRfKczYsWM5e/YsxYoVo2fPnrrjvLB8+fIxdOhQIPH8x/v37+sNJIQQQtiYFF8pSGRkJF999RUA3333HU5OTpoTvZw+ffrw1ltvcfbsWUaPHq07jhBCCGFTUnylIEOGDCEqKoratWtTtWpV3XFemrOzM+PGjQPg66+/5vz585oTCSGEELYjxVcKcfjwYaZNm4ajoyPffvut7jivrGLFigQFBXH//n369++vO44QQghhM1J8pRCffPIJJpOJLl26UKhQId1xLOLbb7/Fzc2NBQsWsGPHDt1xhBBCCJuQ4isF2LZtG2FhYXh7ezNkyBDdcSzGz8+P//3vfwD07NkTk8mkOZEQQghhfVJ82TmlFIMHDwagb9+++Pj4aE5kWf379yd79uzs27ePn3/+WXccIYQQwuqk+LJzmzdvZtu2bWTMmJFevXrpjmNxHh4e5oO3Bw8eTGxsrOZEQgghhHVJ8WXHlFJ8/vnnQGLPV/r06TUnso7g4GAKFy5MeHg4U6dO1R1HCCGEsCopvuxYWFgYu3btIlOmTPTo0UN3HKtxcnLiyy+/BOCLL74gOjpacyIhhBDCeqT4slNKKXNzff/+/UmXLp3mRNZVv359ypQpw9WrV/n+++91xxFCCCGsxlBK6c7wVP7+/mrPnj26Y2ixadMmqlatio+PD2fPnsXT01N3JKvbunUrAQEBpEuXjrNnz/Laa6/pjiSEEEK8CCM5F8nMl5365ptvAOjVq1eaKLwAKlWqRNWqVYmKimLs2LG64wghhBBWITNfdmjv3r34+/vj5eXFuXPnyJgxo+5INrNjxw7Kly9P+vTpOXv2LBkyZNAdSQghhEgumflKqUaNGgVAx44d01ThBfD+++8TEBDAnTt3zOc/CiGEEKmJRWa+DMOYCdQGriqlij7h8wYwFqgJxAAfKaX+et590+LM16lTpyhYsCCOjo6Eh4eTPXt23ZFs7tdff6VSpUpkyJCBiIgIvL29dUcSQgghksOmM1+zgBrP+PyHQP5Hbx2BSRYaN9UZPXo0JpOJVq1apcnCCxIP3a5QoQK3b98mJCREdxwhhBDCoixSfCmltgE3n3FJPWC2SvQbkMEwjNctMXZqcv36dWbNmgVAv3799IbRLGmbje+++46oqCjNaYQQQgjLcbLRONmA84+9f+HRxy7baPwUYdq0aTx8+JBatWpRqFAh3XG0CggIoFy5cuzcuZNJkyaZD+BODqUUkZGRhIeHc+XKFfNbVFQUMTEx3L9/n9jYWJydnXF2dsbFxYUMGTLg4+NDpkyZyJo1K3ny5CFXrly4urpa8b9SCCFEWmSr4ivZDMPoSOLSJDlz5tScxnbi4uKYMGECAD179tScRj/DMPjss8/48MMPGTt2LL169XpiIRQXF8fBgwf5448/+OOPPzhy5AgnTpzg7t27FsmQI0cOihYtSsmSJSlRogTvvPMOOXLkeOV7CyGESLssttWEYRi5gNVPabifAmxVSi149P4JoJJS6pkzX2mp4X7RokU0adKEQoUKcfToURKfUUjblFIUL16cQ4cOMXPmTNq0aYPJZGLv3r2EhYWxYcMG/vzzTx48ePCf12bIkIH8+fPzxhtvkDVrVrJkyUKGDBlwd3fHw8MDZ2dn4uPjiY2NJTY2ltu3b3P9+nWuXbvGxYsXCQ8P59y5c5hMpv/cO0+ePAQEBBAQEEDlypV5/XVZQRdCCAEks+HeVjNfK4HuhmH8DJQB7jyv8EprkrZV6NGjhxRejxiGQb9+/QgODmbIkCFs2rSJsLAwrl+//o/rChQoQOnSpSlTpgzFixenYMGC+Pr6vvLXMS4ujjNnznDgwAH++usv/vrrL37//XfCw8MJDw9nxowZAJQtW5aGDRvSoEED8uXL90pjCiGESP0stdXEAqAS4ANEAkMAZwCl1ORHW02MJ/GJyBigjVLquVNaaWXmK2lT1fTp03PhwgW8vLx0R9LOZDKxdetW5syZw08//cTj/5/mypWL6tWrU716dSpWrGjTY4gSEhLYt28fW7duZfPmzWzZsuUfM29vv/02bdq0oUWLFmTKlMlmuYQQQtiFZP3WLzvc24HWrVsze/Zs+vTpw5gxY3TH0Srpic8pU6Zw6tSpf3wuV65crF+/ngIFCtjN7OC9e/dYv349y5YtY/Xq1eZeMxcXF+rWrUuHDh2oVq2a3eQVQghhVVJ8pQSRkZHkzJmTuLg4Tp06RZ48eXRH0uLQoUN8++23LFy4kNjYWACyZ89OmzZtqFOnDtWqVePOnTvs3r2bsmXLak77ZA8fPmTVqlXMnDmTsLAwc79YkSJF6N27Ny1atMDd3V1zSiGEEFYkxwulBDNnziQ2NpbatWunycJrx44d1K5dm7feeos5c+YQFxdHzZo1WblyJWfOnGH48OG88847dO3aFfj/o5fskaurK4GBgaxdu5Zz584xYsQIsmXLxtGjR+nQoQM5c+Zk+PDh3LlzR3dUIYQQGsnMl0Ymk4l8+fJx5swZ1q1bR40azzokIHXZsWMHn376Kdu2bQPA3d2ddu3a0adPH3Lnzv2f669cuYKfn1+KmyGMi4tj8eLFjBkzhr/+SjxRK0OGDPTt25eePXvK0UlCCJG6yMyXvdu4cSNnzpzBz8+PatWq6Y5jEwcOHKB27dqUL1+ebdu2kSFDBgYPHkxERAQhISFPLLwAsmbNStOmTVFKmfdDSwmcnZ1p3rw5e/bsYcuWLQQEBHD79m0GDx5M7ty5+eabb564VYYQQojUS4ovjaZOnQpA+/btcXR01JzGui5dukRwcDAlSpRgzZo1eHp68vnnnxMREcHw4cPx9fV97j2SNp+dMWMG0dHR1o5sUYZhUKlSJTZv3szmzZspX748N2/eZMCAARQqVIiFCxdiz7PQQgghLEeKL02uXLlCaGgojo6OtGnTRnccq4mNjWXUqFEULFiQOXPm4OzsTK9evQgPD2fYsGEvtOxWqlQpypUrx507d/jpp5+smNq6AgIC+PXXXwkLC6NYsWJERETQtGlT3n//fVLzMrsQQohEUnxpMmvWLOLj46lduzbZsmXTHccqNmzYQLFixejfvz/R0dHUr1+fY8eO8cMPP5A5c+aXumevXr0ACAkJeeLu8ymFYRh88MEH7Nu3jylTppA5c2Z27dpF6dKl6dmzp0WORxJCCGGfpPjSwGQyMW3aNAA6deqkOY3l3bx5k9atW1O9enVOnjxJwYIFCQsLY/ny5a/cKN+gQQOyZ8/OiRMn2LBhg4US6+Po6EjHjh35+++/+eSTT3BwcCAkJITChQuzbNkyWYoUQohUSIovDTZt2kR4eDg5c+bkgw8+0B3HopYsWULhwoWZPXs2bm5ujBw5koMHD1rsv9PJyYlu3boBMHbsWIvc0x54e3vz7bffsnfvXsqUKcOlS5do1KgRDRs2JDIyUnc8IYQQFiTFlwapsdH+2rVrNGrUiKCgIK5evUr58uU5cOAA/fv3x8XFxaJjdejQATc3N9avX8+JEycsem/dihcvzs6dO5kwYQLe3t6sWLGCokWLsmzZMt3RhBBCWIgUXzZ248YNQkNDcXBwSDWN9kmN48uWLcPLy4uJEyeydetWChQoYJXxMmXKRMuWLYHE3q/UxtHRka5du3L48GGqVKnC9evXadSoEcHBwdy+fVt3PCGEEK9Iii8bW7BgAXFxcVSrVo3s2bPrjvNKHjx4QO/evalRowaRkZFUqFCBw4cP06VLFxwcrPu/VtK2Ez/99BNRUVFWHUuXHDlysGHDBkJCQnB3d2fOnDkUK1aM7du3644mhBDiFUjxZWNJWyR89NFHeoO8oqNHj1KmTBl++OEHnJyc+PLLL9m8eTN+fn42Gb9YsWKUL1+e6Oho5s2bZ5MxdXBwcKB79+7s37+fMmXKcOHCBQICAvj6669T9NOeQgiRlknxZUNHjhxhz549pE+fnnr16umO89IWLFjAO++8w8GDB8mXLx87d+5k0KBBNu9f69KlCwCTJk1K9U8FFihQgB07djBgwAASEhIYNGgQNWvW5Nq1a7qjCSGEeEFSfNlQ0qxX48aNcXd315zmxcXGxtKjRw+aN29OTEwMLVq0YN++fZQuXVpLnoYNG+Lr68vBgwf57bfftGSwJScnJ77++mvWrl1LpkyZCAsL4+2335ZlSCGESGGk+LKR+Ph45s6dC6TMJccLFy5QqVIlxo8fj7OzMxMnTmTOnDl4eXlpy+Tq6krbtm2BxNmvtOLDDz9k//79vP/++1y6dInKlSunidk/IYRILaT4spGNGzdy+fJl8ufPz7vvvqs7zgvZsWMHpUqVYvfu3WTPnp3t27fTpUsXDCNZh7dbVceOHTEMg0WLFnHjxg3dcWwme/bsbNmyhb59+xIfH0/Xrl3p1KkTsbGxuqMJIYR4Dim+bGTWrFkAtG7d2i6KluSaPXs2VapU4erVq1SpUoW//vqLMmXK6I5llidPHqpXr87Dhw/NX+O0wsnJidGjRzN37lzc3NyYNm0aAQEBXLlyRXc0IYQQzyDFlw3cvn2bFStWYBgGrVq10h0nWUwmEwMHDqR169bExsbSvXt31q9fj6+vr+5o/5HUeD958uQ0+QRgixYt2LFjB9mzZ2fXrl34+/uzf/9+3bGEEEI8hRRfNrBo0SIePnxI5cqVyZkzp+44z3Xv3j0CAwMZOXIkjo6OTJgwgZCQEJycnHRHe6JatWqRI0cOTp06xebNm3XH0aJUqVLs2bOH999/n4sXL1K+fHnWr1+vO5YQQognkOLLBmbPng0kLjnau8uXL1O+fHmWL19O+vTpWbduHV27dtUd65kcHR3p0KEDkLYa7/8tS5YsbNy4kebNmxMdHU3t2rXNB7gLIYSwH4Y9PyHl7++v9uzZozvGKzl79iy5c+fGw8ODyMhIrU8HPs+JEyeoXr06ERER5M2bl9WrV1OoUCHdsZLl8uXL5MyZE6UUERERZMuWTXckbZRSDB48mC+//BKAgQMHMmLECKufOiCEEIJkNXXLd2Mr+/nnnwGoW7euXRdev//+O+XKlSMiIoLSpUuze/fuFFN4Abz++uvUr1+fhISENNd4/2+GYTBixAimTp2Ko6MjX3/9NS1btuThw4e6owkhhECKL6tbsGABAM2bN9ec5OnWrVtH5cqVuXHjBh9++CGbN2+2y8b652nfvj0AM2bMSJON9//WoUMHVq9ejZeXFwsWLKBu3brcu3dPdywhhEjzpPiyoiNHjnDw4EEyZsxI9erVdcd5otmzZ1OnTh1iYmJo3bo1oaGheHp66o71UqpWrUrOnDk5c+YMW7du1R3HLtSoUYNt27bh6+vLhg0bqFatGrdu3dIdSwgh0jQpvqwoadarUaNGuLi4aE7zXyEhIbRu3ZqEhAQGDBjAjz/+iLOzs+5YL83R0ZE2bdoAMH36dM1p7EeJEiXYsWMHOXLkYPfu3VSsWFH2AhNCCI2k+LISpZRdLzmOGjWKnj17AvDdd9/x9ddfp6jNX5+mTZs2GIbBsmXLuHnzpu44dqNAgQLs3LmTggULcujQId5//33OnDmjO5YQQqRJUnxZyR9//EF4eDivv/46FSpU0B3HTCnFsGHD6N+/P4ZhMGXKFHr37q07lsX4+flRrVo1Hj58yLx583THsSs5cuRg+/btlCxZktOnT/P+++9z4sQJ3bGEECLNkeLLSpJmvZo0aYKjo6PmNImUUgwcOJChQ4fi4ODArFmz6Nixo+5YFpfUeD99+nQ5bPpffH192bJlCxUqVODSpUsEBARw/Phx3bGEECJNkeLLChISEli4cCFgP0uOSik+/vhjvvnmG5ycnFiwYAHBwcG6Y1lF3bp1yZQpEwcPHmTv3r2649gdb29v1q5dS0BAAJcvXyYgIIBjx47pjiWEEGmGFF9WsHXrVq5cuULevHnx9/fXHQelFN26dWPcuHG4uLiwZMkSGjdurDuW1bi6upoLS2m8fzJPT09Wr15N5cqVuXLlCgEBARw9elR3LPGSEhISOH/+PEePHmX//v1ERERw//593bGEEE8hxZcVJC05NmvWTHsTe9KM16RJk3B1dWXlypXUq1dPayZbaNeuHQDz58+Xva2ewsPDg1WrVlG1alUiIyMJCAjgyJEjumOJZIiNjWX16tX07NmT4sWL4+npSc6cOXnzzTcpUaIEuXLlwsPDgwIFCtCiRQvmzp3LnTt3dMcWQjwixwtZ2MOHD8mSJQt37tzh6NGjFC5cWFsWpRT9+vVjzJgxuLi4EBoaSo0aNbTlsbV3332X3377jVmzZqWIczV1uX//PvXq1eOXX37B19eXzZs3U7RoUd2xxBOcO3eOsWPHMnv2bK5fv/6Pz2XNmpUMGTLg7OzMrVu3iIyMJC4uzvx5FxcXmjRpQu/evSlRooStowuRViRvxkUpZbdvpUqVUilNaGioAlTx4sW15jCZTGrgwIEKUE5OTmrlypVa8+gwffp0Baj3339fdxS7FxMTo6pXr64AlSVLFnXy5EndkcRjrly5ojp37qycnZ0VoABVtGhR9fnnn6tt27apO3fu/Oc1sbGxat++fWrcuHGqUqVKysHBwfzaBg0aqFOnTmn4LxEi1UtWfaO9wHrWW0osvlq1aqUA9eWXX2rNMXToUAUoR0dHtXTpUq1ZdLl7967y9PRUgDp+/LjuOHbv/v37qkqVKgpQOXLkUGfPntUdKc1LSEhQEydOVBkyZFCAMgxDNWvWTP3xxx/KZDK90L3Cw8NV7969lYeHhwKUs7Oz+uKLL1RcXJyV0guRJknxZWsPHjxQ3t7eClAnTpzQluOrr75SgHJwcFA///yzthz2oF27dgpQ/fr10x0lRYiOjlblypVTgMqbN6+6dOmS7khp1uXLl1W1atXMs1U1atRQR48efeX7XrhwQbVu3dp839KlS6vTp09bILEQQknxZXurV69WgHrrrbe0ZZgwYYL5N+Q5c+Zoy2Evdu3apQCVOXNmFRsbqztOinD79m1VsmRJBagiRYqoa9eu6Y6U5vzyyy8qc+bMClA+Pj5qyZIlLzzT9TwbN25U2bNnV4DKmDGj2rBhg0XvL0Qalaz6Rp52tKAlS5YAEBQUpGX8BQsW0L17dwCmTJlCy5YtteSwJ2XLlqVgwYJcvXqVsLAw3XFShPTp0xMWFkaRIkU4evQo1atXlyflbGjKlCnUqFGDq1evUrlyZQ4cOECjRo0s/uR0lSpVOHToELVr1+bWrVvUqFGDqVOnWnQMIcSTSfFlIbGxsaxYsQKAwMBAm4+/bt06goODUUoxcuRIOnToYPMM9sgwDD766CMAZs2apTVLSuLj48PGjRvJmzcvf/31FzVr1iQmJkZ3rFTNZDLRr18/OnfuTEJCAgMHDmTDhg288cYbVhszQ4YMhIaG8tlnn2EymejUqRPffPON1cYTQjyS3CkyHW8padlx3bp1ClBvvvmmzcfeuXOncnd3V4D65JNPLL48kdJduHBBOTg4KBcXF3X9+nXdcVKUs2fPqhw5cihA1a5dW5qzrSQhIUG1b9/e/HTyzJkzbZ5h4sSJyjAMBahBgwbJ9xEhXo4sO9rS4sWLAdsvOR48eJBatWpx//592rZty6hRo7Rv7GpvsmXLRrVq1YiNjeXnn3/WHSdF8fPzIywsjNdee43Vq1fTqVOnxGZRYTEJCQm0b9+e6dOn4+7uztq1a2nTpo3Nc3Tp0oW5c+fi6OjIV199JTNgQlhTcqs0HW8pZeYrNjZWvfbaawpQhw8fttm4p0+fVlmzZlWAql+/vsxKPMOCBQsUoPz9/XVHSZF2795tnl0dNGiQ7jiphslkUm3btlWA8vDwUJs3b9YdSc2fP988AzZlyhTdcYRIaZJV32gvsJ71llKKr7CwMAWowoUL22zMyMhIlTdvXgWogIAAdf/+fZuNnRLFxMSo9OnTK0AdOnRId5wUafXq1crR0VEBaty4cbrjpAoDBgwwF15bt27VHcds4sSJ5qemV6xYoTuOECmJLDvaStJTjrZqtI+JiaFOnTqcPn2akiVLsmLFCtzc3Gwydkrl7u5O06ZNAfjpp580p0mZatWqZT6ovFevXixatEhzopRt3LhxjBw5EkdHR5YsWULFihV1RzLr0qULw4YNQylFy5YtOXz4sO5IQqQuya3SdLylhJmvuLg45ePjowB14MABq48XHx+v6tWrpwDl5+enLl++bPUxU4ukPb+yZMkiS7Sv4Ouvv1aAcnFxUZs2bdIdJ0UKDQ01L+3NmjVLd5wnMplMqlmzZgpQefLkkYdVhEgemfmyhV9//ZXr169ToEABihUrZtWxlFL06tWL0NBQMmbMyLp168iaNatVx0xNypYtS4ECBYiMjJQ9v15B//796dmzJ7GxsdSvX59Dhw7pjpSiHD16lBYtWqCUYsSIEXZ76LthGEyfPp1SpUoRHh5O06ZNSUhI0B1LiFTBIsWXYRg1DMM4YRjGKcMwBjzh8x8ZhnHNMIz9j97aW2Jce/D4kqO1nzL87rvvmDBhAi4uLoSGhlK4cGGrjpfayJ5flmEYBt9//z2NGzcmKiqKWrVqcfnyZd2xUoRbt25Rr149oqOjadKkCYMGDdId6Zk8PDxYsWIFmTNnZuPGjfIEpBCWktwpsqe9AY7AaSAP4AIcAIr865qPgPEvem97X3aMj483HwGyb98+q461cOFC81lsaf28xldx/vx5ZRiG7PllATExMerdd99VgCpVqpSKjo7WHcmuxcfHq+rVqytAvf2si7+RAAAgAElEQVT22ynq67V+/XoFKEdHR7Vjxw7dcYSwZzZbdiwNnFJKhSulYoGfgXoWuK/d27FjB1evXiVv3rwUL17cauNs376dVq1aATBq1CiaNGlitbFSu+zZs8ueXxbi7u5OaGgoefLkYe/evbRo0UKWpZ7hq6++IiwsDB8fH1asWIGnp6fuSMlWvXp1/ve//5GQkECzZs24efOm7khCpGiWKL6yAecfe//Co4/9WyPDMA4ahrHEMIwcFhhXu6TjhBo2bGi1JccTJ05Qr149YmNj6datG5988olVxklLkpYe5anHV+fr68vatWvJmDEjoaGh9OvXT3cku7R9+3aGDh0KwPz58/Hz89Mb6CWMGDGCMmXKcP78eXr16qU7jhApmq0a7lcBuZRSbwG/AE/9qWcYRkfDMPYYhrHn2rVrNor34pRSLF++HID69etbZYybN2+aD72tW7cuY8eOld3rLaB+/fp4e3vz559/cuTIEd1xUryCBQuyfPlynJ2d+f7775kwYYLuSHblxo0bNG/eHJPJxIABA6hWrZruSC/F2dmZOXPm4O7uzty5cwkNDdUdSYgUyxLF10Xg8Zms7I8+ZqaUuqGUevjo3elAqafdTCk1VSnlr5Ty9/X1tUA86zhw4AARERFkyZKFsmXLWvz+cXFxBAYGcurUKd5++23mz5+Po6OjxcdJi2TPL8urWLEiM2bMAKBnz56sWbNGcyL7oJSibdu2XLhwgbJlyzJ8+HDdkV5J/vz5+frrrwHo1KkTN27c0JxIiJTJEsXXn0B+wzByG4bhAjQFVj5+gWEYrz/2bl3gmAXG1SppybFevXo4OFh2AlEpRffu3dmyZQtZs2Zl5cqVKao/JCVIWnqcM2cO8fHxesOkEq1atWLIkCGYTCaaNGnC/v37dUfSbsaMGaxcuZL06dOzYMECnJ2ddUd6ZT169KB8+fJERkbK8qMQLyu5nfnPegNqAidJfOrx00cfGw7UffTnr4EjJD4JuQUolJz72vPTjm+99ZYC1Nq1ay1+7x9++EEBys3NTf3+++8Wv79I3ECyQIECClBr1qzRHSfVMJlMqmXLlgpQOXPmVJGRkbojaRMREaHSpUunADVv3jzdcSzq77//Vm5ubgpQGzdu1B1HCHuSvLopuRfqeLPX4uv06dMKUOnSpVMPHjyw6L3Xrl2rHBwcZEsJG/jqq68UoIKCgnRHSVXu37+vypYtqwBVrlw5i/8bSQlMJpOqWrWqAlSDBg2UyWTSHcniRowYoQBVoECBNPl3LMRTyA731pLUaFqzZk1cXV0tdt8jR47QpEkTTCYTQ4YMkS0lrKxVq1YYhkFoaKg8Om9Bbm5uLF++nOzZs7Nz5066du2aNEOeZkydOpWNGzeSKVMmJk2alCoflPnkk08oWLAgJ0+eZPTo0brjCJGiSPH1EpL6vSz5lOP169epU6cOUVFRNG7cmM8//9xi9xZPlj17dqpWrSp7fllBUq+iu7s7M2fOZOzYsboj2czZs2fNW8JMnDiRLFmyaE5kHa6urkycOBFI3IYiPDxccyIhUg4pvl7QtWvX2LFjB87OztSsWdMi94yNjaVhw4acOXMGf39/fvzxR4s38Ysnkz2/rKdEiRLmr2vfvn3TxHmaSik6depEdHQ0gYGBNG7cWHckq6pcuTLNmzfnwYMHfPzxx7rjCJFiyE/4F7Rq1SpMJhNVqlTB29vbIvfs0aMH27dv54033iA0NBQPDw+L3Fc8X/369UmXLh1//PEHx46l+Idw7U5QUBCff/65+QnIEydO6I5kVQsXLmTDhg1kzJgxzex3NmbMGLy8vFi1ahWbNm3SHUeIFEGKrxdk6SXHKVOmMHXqVFxdXQkNDeWNN96wyH1F8nh4eJh762T2yzqGDBlCo0aNuHPnDnXq1OHWrVu6I1nF7du36d27N5B4DFjmzJk1J7KNrFmzMnDgQCBxhlOOmBLi+aT4egHR0dFs2LABwzCoV+/Vj6/cuXMnPXr0ABIbdP39/V/5nuLFPb7nl/zgsDwHBwd++uknihcvzt9//02TJk1S5d5qn376KVeuXKFcuXK0bdtWdxyb6t27Nzly5ODAgQPMnj1bdxwh7J4UXy8gLCyMhw8fUrZsWbJmzfpK97p48SKNGjUiLi6OXr16ERwcbKGU4kW999575MuXj0uXLrFx40bdcVIlT09PQkND8fX15ZdffmHAgAG6I1nUH3/8waRJk3BycmLSpElprmfT3d3dvPP9p59+yr179zQnEsK+pa3vEK/IUkuODx48oGHDhkRGRhIQEMC3335riXjiJRmGQevWrQGYNWuW3jCpmJ+fH8uWLcPJyYkxY8akmidM4+Pj6dy5M0op+vTpQ7FixXRH0qJZs2b4+/tz+fJl+Z4mxHMY9rz/jr+/v9qzZ4/uGEDiWYuZM2fm9u3bnDx5kvz587/UfZRStG/fnpkzZ5IzZ0727NmDPZ9hmVZERESQK1cu3NzcuHz5MhkyZNAdKdUaP348PXr0wMPDg927d/PWW2/pjvRKJk+eTJcuXfDz8+PIkSNp+iiw7du3U6FCBby8vAgPD5fvbSItStamfjLzlUy//vort2/fpkiRIi9deAFMmjSJmTNn4u7uzooVK+Sbk53w8/OjcuXKPHjwgEWLFumOk6p169aN4OBgYmJiaNCgQYpuwL916xafffYZkPjUX1ouvADKly/Phx9+SHR0NKNGjdIdRwi7JcVXMiUtOTZo0OCl77Ft2zbzQbTTp0+nRIkSFskmLCNp6VGeerQuwzCYPHkyJUuWJDw8nBYtWqTYBx2GDRvGjRs3qFSpEg0bNtQdxy588cUXQOIM56VLlzSnEcI+SfGVDEqpV+73On/+PIGBgcTHx9O3b1+aN29uyYjCAho1aoSXlxe7du3i5MmTuuOkau7u7ixbtoxMmTKxbt06hg4dqjvSCzt69Cjjx4/HwcGBH374IVUeIfQySpUqRcOGDXnw4AFfffWV7jhC2CUpvpJh7969XLx4kWzZslGqVKkXfn1Sg/21a9eoUqUKI0eOtEJK8ao8PT0JDAwEkMflbcDPz4+ff/4ZBwcHRowYYf4FJyVQStG7d28SEhLo2LEjxYsX1x3JrgwbNgzDMJg6dSoRERG64whhd6T4SoZVq1YBULdu3Zf67bZ79+7s2bOHXLlysXDhQpycnCwdUVhI0p5fs2fPxmQy6Q2TBlStWtX8y0hwcDDHjx/XnCh51qxZw4YNG8iQIQPDhw/XHcfuFC1alGbNmhEXFydfHyGeQIqvZEgqvurUqfPCr50xYwYzZszAzc3NvMwi7Ff58uXJlSsX58+fZ8uWLbrjpAmffPIJjRs3Jioqivr163P37l3dkZ4pNjaWPn36ADB06FB5aOYphg4diqOjIz/99BN///237jhC2BUpvp7jwoUL7Nu3D09PTwICAl7otfv27aNbt24ATJw4URrsUwAHBwfZ88vGDMNgxowZFC1alBMnTtC6dWu7nnWcMmUKf//9NwULFqRr166649it/PnzExwcTEJCAt98843uOELYFSm+nmP16tUAVKtWDTc3t2S/7tatWzRq1IiHDx/SoUMH2rRpY62IwsKSThtYunSp3c/CpBZeXl4sX76c9OnTs2LFCrvdpuDu3bvmZbRvvvkGZ2dnzYns24ABA3BwcGD27NmcP39edxwh7IYUX8/xMkuOJpOJ4OBgzpw5Q8mSJRk3bpy14gkryJMnDxUqVOD+/fssWbJEd5w0I1++fMydOxdIPKJm69ategM9wbfffsv169cpV64cdevW1R3H7hUoUICgoCDi4uJk13shHiPF1zPcu3ePTZs2YRgGtWrVSvbrRo4cyerVq8mYMSNLlix5oRkzYR9kzy89ateuzcCBAzGZTDRt2pTLly/rjmR26dIlxowZA8CoUaNka4lkGjRoEADTpk0jMjJScxoh7IMUX8/wyy+/8PDhQ0qXLk2WLFmS9ZqNGzcyePBgAObOnUvu3LmtGVFYSVBQEB4eHmzbto3Tp0/rjpOmDB8+nICAACIjI2nSpAnx8fG6IwGJDeT379+nYcOGvPfee7rjpBhvvfUWderU4cGDB/zwww+64whhF6T4eoYXXXI8f/48zZo1w2QyMXjwYGrWrGnNeMKK0qVLR6NGjQDZ88vWnJycWLBgAa+//jrbt283z5zodOzYMWbMmIGjo6NsHPoSPv30UwAmTJiQoo+TEsJSpPh6CpPJxJo1a4DkFV+xsbEEBQVx/fp1qlWrxpAhQ6wdUVhZ0tKj7Plle1myZGHhwoU4Ojry7bffat+ANWkptEOHDhQsWFBrlpSoTJkyVKlShaioKMaPH687jhDaSfH1FH/++SeRkZH4+flRrFix517ft29ffv/9d3LkyMH8+fNxdHS0QUphTQEBAeTIkYOzZ8+ybds23XHSnPLly5u3KPjoo4+0Lf/u2LGD0NBQPD095ZeqV5A0gxkSEsL9+/c1pxFCLym+nuLxJcfnNdbOnz+f8ePH4+zszOLFi/Hx8bFFRGFlDg4O5m0npPFejz59+tCgQQPu3LlDo0aNbP5DWyllXjLr27cvWbNmten4qUlAQAAlSpTg2rVrzJs3T3ccIbSS4uspktvvdeTIETp06ADA2LFjKVOmjNWzCdtJWnpcvHgx0dHRmtOkPYZh8OOPP5I3b14OHDhAjx49bDr+li1b2LZtGxkzZqRv3742HTu1MQzD/DX87rvvZClfpGlSfD1BREQEBw8exMvLi4oVKz71uujoaAIDA4mJiaFly5Z07tzZhimFLeTPn5/33nuPe/fusWzZMt1x0qT06dOzdOlS3NzcmDFjBj/++KNNxlVKmZcZ+/bti7e3t03GTc0aN25MtmzZOHbsGOvXr9cdRwhtpPh6gqRd7atXr46rq+sTr1FK0aVLF44fP06RIkWYPHmy7PuTSiUdti3HDelTvHhxJk6cCEDXrl05cOCA1cfctGkTO3bs4LXXXrP5jFtq5ezsTM+ePQHMe6YJkRZJ8fUEyVlynDlzJnPnzsXDw4PFixfj6elpq3jCxho3boybmxtbtmwhIiJCd5w0q02bNrRt25YHDx4QGBjInTt3rDbW47Ne/fr1k1kvC+rYsSNeXl5s3ryZ/fv3644jhBZSfP1LVFQUW7ZswTCMp+7TdejQIbp37w7ApEmTKFKkiC0jChtLnz49DRo0AGTPL93Gjx/P22+/zalTp2jbti1KKauMs2HDBnbt2oWPj4/537qwjAwZMtCuXTsgsfdLiLRIiq9/2bBhA7Gxsbz77rv4+vr+5/PR0dEEBQXx4MED2rRpY34aTqRujx83ZK0f+OL53N3dWbJkCd7e3ixbtswqe0b9e9bLy8vL4mOkdb169cLBwYEFCxZw8eJF3XGEsDkpvv7lWUuOSX1eJ06c4M0335TNAtOQqlWr8sYbb3D69Gl27typO06aljdvXmbMmAEkNsLv2bPHovdfv349v//+O76+vnTr1s2i9xaJcufOTcOGDYmPjyckJER3HCFsToqvxyQkJDxzV/sZM2aY+7wWLVqEh4eHrSMKTRwdHWnVqhUge37Zg8DAQLp3705cXByNGzfm9u3bFrnv47Ne//vf/6SX04r69OkDwPTp02XTVZHmSPH1mN9//53r16+TO3fu//RxHTx40PzEk/R5pU1JS48LFy4kJiZGcxoxevRoSpYsyZkzZ2jXrp1FloPXrl3Ln3/+SZYsWejatasFUoqnKVu2LKVKleLGjRssXLhQdxwhbEqKr8c8bVf7qKgoc59X27Ztpc8rjSpcuDClS5cmKipK+1mDAlxdXVm0aJHF+r8en/Xq37+/zGxbmWEY5ocZQkJCpJdSpClSfD3mSf1eSik6d+7MyZMnefPNN6U/IY2TPb/sS968eZk+fTrw6v1fq1atYu/evWTNmlU2TLaRJk2akClTJv766y9+++033XGEsBkpvh45c+YMR44cwdvbmwoVKpg/PmPGDObPn2/ez0t+G07bmjZtiouLCxs3buTChQu64wggKCiIbt26vVL/l1KKoUOHAjBgwADc3d0tnFI8ibu7u/l4NnmASaQlUnw9kjTrVb16dVxcXIB/9nlNnjyZwoULa8sn7EPGjBmpV68eSinZ88uOPN7/1b59+xdewgoNDWXfvn28/vrrdOzY0UopxZN07twZBwcHFi9ezJUrV3THEcImpPh65N9Ljo/3ebVr1878pJsQSUuPM2fOlD4VO+Hm5mbu/1q6dCkTJkxI9mtNJpN51mvQoEEy62Vjfn5+1K1bl7i4OKZNm6Y7jhA2YdjzDw9/f39l6T18nuTu3bv4+PiQkJDA1atXee2112jRogULFiygaNGi/P7777LcKMwSEhLw8/Pj4sWLbNmyhUqVKumOJB5ZvHgxjRs3xsXFhZ07d+Lv7//c1yxdupTAwECyZcvGqVOncHNzs0FS8bhNmzaZ99I7e/Yszs7OuiMJ8bKSdcizzHwBYWFhxMXFUa5cOTJlysT06dNZsGABnp6e0ucl/sPR0ZG2bdsCmJu9hX1I6v+KjY1NVv/Xv2e9pPDSo3LlyhQuXJhLly6xfPly3XGEsDopvoCVK1cCiUuOBw4c+EefV6FChXRGE3aqbdu2GIbBkiVLuHXrlu444jEv0v+1dOlSDh8+TI4cOcznDQrbe3zbiUmTJmlOI4T1pfniKz4+nrVr1wKJv301btyYhw8f0q5dO1q2bKk5nbBXuXLlolq1ajx8+JC5c+fqjiMek9z+L5PJxLBhw4DEWS9XV1dbxhT/0rJlSzw8PNi6dSsnT57UHUcIq0rzxdfu3bu5efMm+fLlY/To0Zw8eZJixYrJfl7iudq3bw/AtGnTpPHeziRn/6/Fixdz5MgRcubMaV5GFvp4e3vTrFkzAKZOnao5jRDWleaLr6SnHHPlysXPP/+Mp6cnixYtkieexHPVrVsXHx8fDh06ZPHDncWre1b/V0JCgrnX67PPPjNvLyP06tSpE5C4ifGDBw80pxHCeqT4elR8/frrrwBMmTJF+rxEsri6upqPmpLGe/s0evRoSpQo8Z/+r4ULF3L8+HFy5cpl3jpE6Ofv70+JEiW4ceMGy5Yt0x1HCKuxSPFlGEYNwzBOGIZxyjCMAU/4vKthGAsfff53wzByWWLcV3Xq1CmOHz+Og4MDcXFxtG/fnhYtWuiOJVKQpCbt+fPnEx0drTmN+Lek/q906dKZ+78SEhIYPnw4kDjrJdsa2A/DMMyb3MrSo0jNXrn4MgzDEZgAfAgUAZoZhlHkX5e1A24ppfIB3wPfvOq4lpD0lKPJZKJYsWKMGzdOcyKR0hQpUoT33nuP6OhoFi9erDuOeIJ8+fL9o//ryy+/5MSJE+TJk8c8cynsR/PmzfH09OTXX3/l+PHjuuMIYRWWmPkqDZxSSoUrpWKBn4F6/7qmHvDToz8vAaoYhpGsjcisKek3K1dXVxYvXix9XuKlPN54L+xT48aN6dq1K7GxsXzxxReAzHrZK29vb5o3bw7I7JewDHt8IOqVd7g3DCMQqKGUav/o/VZAGaVU98euOfzomguP3j/96Jrrz7q3NXe437lzJ++//z6QuDQhj5mLl6WU4u7duwB4eXnh6OioOZF4EqUUUVFR5m/E6dKlw8Ehzbe92qX4+Hju3buHYRikS5cOO/hdXaRQSinu3bvHypUrqVmzpi2GTJk73BuG0dEwjD2GYey5du2a1cZ57bXXyJUrF4ZhSOElXolhGOan5WJjYzWnEckVFxenO4J4CicnJxwcHFBKyd+TeCUxMTEkJCTQrl074uPjdccxc7LAPS4COR57P/ujjz3pmguGYTgB6YEbT7qZUmoqMBUSZ74skO+JChcuTHh4OAkJCTg5WeLLINKyP//8k9KlS5MuXTouXrwoBb0d+vHHH2nbti2vv/46ly9fxmQysXHjxmSd/yhsb+rUqXTq1Al/f3+2bdumO45IgebMmWPu68yTJ49d/ay3xMzXn0B+wzByG4bhAjQFVv7rmpVA60d/DgQ2KztYhDUMw67+MkTK5e/vT/Hixblx4wZLlizRHUf8S1xcnLnXa9SoUeb+r+Sc/yj0aNasGV5eXmzfvp1jx47pjiNSmGPHjtG5c2fz+02bNtWY5r9eufhSSsUD3YEw4BiwSCl1xDCM4YZh1H102Qwgk2EYp4A+wH+2oxAiJTMMgy5dugByNp09mj17NmfOnKFgwYI0a9aMMWPGPHH/L2E/0qVLZ268l4dZxIuIiYkhKCiImJgY80M1tWvX1pzqn1654d6arNlwL4SlRUdH88YbbxAVFcXBgwcpVqyY7kiCxD68AgUKEBERwfz5881H2Jw+fZqSJUty9+5dQkJCzAc7C/uxZ88e3nnnHXx8fLh48aKcRCCSpV27dsycOZPs2bNz4cIF3nzzTQ4fPmyr4VNmw70QKZWXlxetWrUCZPbLnsyaNYuIiAgKFy5M48aNzR9PzvmPQq9SpUpRrFgxrl+/zurVq3XHESnA7NmzmTlzJm5ublSoUAGAOnXqaE71X1J8CWFBSUuPc+bMISoqSnMaERsby5dffgnAkCFD/rMNyLPOfxT6GYZhPvR8xowZmtMIe3fs2DHz9+CQkBB2794NSPElRKpXtGhRypcvT3R0NHPnztUdJ82bOXMm586d48033yQoKOiJ14wePZqSJUtK/5edatGiBc7Ozqxfv56LF//9IL0QiR7v82rZsiXvvvsuZ86cwcfHhzJlyuiO9x9SfAlhYY833ssPcn0ePnz4j1mvp22omnT+o7e3t/n8R2E/fH19qVu3LiaTidmzZ+uOI+xUz549OXLkCAULFmTSpEmsWbMGgJo1a9rlxtdSfAlhYQ0bNsTX15dDhw6xa9cu3XHSrOnTp3PhwgWKFStGo0aNnnmt9H/Zt6Slx5kzZ8ovNOI/5syZw4wZM3Bzc2Px4sV4eXmxatUqwD6XHEGKLyEsztXVlXbt2gHSeK/LgwcP+PrrrwEYOnRoso4Rkv4v+1W9enWyZcvGqVOn2LFjh+44wo48vp9XSEgIxYoV48aNG+zatQtnZ2c++OADzQmfTIovIaygU6dOGIbB4sWLseYxWeLJpkyZwsWLF3n77bepX79+sl8n/V/2ydHRkdatE/fpnjlzpuY0wl7ExMTQuHFjYmJiaNGihfmX3nXr1mEymahYsSLe3t6aUz6ZFF9CWEGuXLmoWbMmsbGx8pSWjcXExJhnvYYPH/5Ch2dL/5f9atOmDQCLFi2SJ4kFkNjndfjwYQoWLMjkyZPNB7AnLTna28aqj5PiSwgr6datGwATJ060qwNdU7sJEyYQGRnJO++881LffKX/yz7ly5ePChUqEBMTw6JFi3THEZo93ue1aNEivLy8gMSjxNavXw/Yb78XSPElhNVUr16dAgUKcP78eZYvX647TpoQFRXFN998AyTOeiX9JvyipP/LPsmeXwL+2+f11ltvmT+3fft27t69S5EiRciTJ4+uiM8lxZcQVuLg4EDPnj0B+OGHHzSnSRtCQkK4ceMG7733HtWrV3+le0n/l/0JDAzEy8uL3bt3y2HbadTT+rySJJ2EYM9LjiDFlxBW1bp1a9KnT8+uXbtk+crK7ty5w+jRowH44osvXnrWK4n0f9kfT09PmjZtCsCPP/6oOY3QIanPq0CBAkyaNOkf/86VUna/xUQSKb6EsCIvLy/at28PwNixYzWnSd2+//57bt26RaVKlahcubJF7in9X/YnaaZj9uzZxMXFaU4jbOnf+3mlS5fuH58/ceIEp06d4rXXXqNs2bKaUiaPFF9CWFn37t1xcHBg4cKFXL58WXecVOnmzZt8//33QGKvlyVJ/5d9KVOmDIULFyYyMpK1a9fqjiNs5Pjx4+bTQ8aNG/ePPq8kSUuONWvWxMnJyab5XpQUX0JYWa5cuahXrx5xcXFMnjxZd5xUacyYMdy9e5dq1apRvnx5i99f+r/sh2EY5m0nZs2apTeMsIl79+4RGBjIvXv3aN68uXk14d9SypIjgGHP30T8/f2VTPOL1GDbtm1UrFgRX19fzp07h5ubm+5Iqca1a9fInTs39+7d47fffrPaIbqnT5+mZMmS3L17l5CQELp3726VccTzXb58mezZs+Po6MilS5fw8fHRHUlYiVKK4OBg5s6dS8GCBfnzzz//s9wIibPfmTNnxjAMrl+/Tvr06TWkBSBZzaYy8yWEDZQvX563336ba9eusWDBAt1xUpVRo0Zx7949atWqZbXCC6T/y568/vrrVK9enbi4OPn3lMpNnTqVuXPn4uHhwdKlS59YeAGsX7+ehIQEKlSooLPwSjYpvoSwAcMw6N27NwDffvstJpNJc6LU4cKFC4wfPx6wfK/Xk/y7/+vWrVtWH1M8WdJxQz/99JPmJMJa9uzZY96uZ+rUqbz55ptPvTYlLTmCFF9C2EzTpk3Jnj07x44dY82aNbrjpArDhg3jwYMHBAUFUbJkSZuMOWbMGEqVKsWZM2cIDg6WQlqTevXqkT59evbu3cuRI0d0xxEWdvPmTQIDA4mNjaVLly60aNHiqdfGxcWxbt06wP7390oixZcQNuLi4kKfPn0AzLuwi5d3/PhxZs6ciaOjIyNGjLDZuK6urixZsoSMGTOyevVqRo4cabOxxf9zc3OjSZMmgMx+pTYmk4ng4GAiIiLw9/c3P8n8NNu2bePOnTsUKVKEfPny2Sjlq5HiSwgb6tChAxkzZmTnzp3s3LlTd5wU7dNPP8VkMtG+fXsKFChg07Fz5crFvHnzMAyDwYMHs3HjRpuOLxIlLT3OnTtXzk9NRUaOHMmaNWvImDEjixcvxtXV9ZnXr1y5EkicDU0ppPgSwoa8vLzMB27L7NfL+/3331m2bBnu7u58/vnnWjJ8+OGHDB48GJPJRLNmzbhw4YKWHGnZu+++S/78+bl8+TK//PKL7jjCAjZv3omlmb0AACAASURBVMzgwYOBxKI6V65cz7xeKUVoaCgAdevWtXY8i5HiSwgb69GjB25ubqxatUp6VV6CUooBAwYA8PHHH/PGG29oy/L555/zwQcfcP36dYKCgoiNjdWWJS0yDIPg4GBAlh5Tg4sXL9KsWTNMJhOffvopNWvWfO5rDh06REREBFmyZKF06dI2SGkZUnwJYWOZM2embdu2QOKTj+LFbNiwga1bt5IxY0b+97//ac3i6OjIvHnzyJkzJ7/99ht9+/bVmictatWqFQArVqyQ0wdSsLi4OJo2bcrVq1epUqUKw4YNS9brkma96tSpg4NDyilpUk5SIVKRvn374uDgwLx582S56gWYTCbzrNfAgQPJkCGD5kTg4+PDkiVLcHFxYfz48cyfP193pDTFz8+PypUr8/DhQxYtWqQ7jnhJAwcOZMeOHbzxxhvMnz8fR0fHZL0uJfZ7gRRfQmiRJ08egoKCiI+PZ9SoUbrjpBjz589n//79ZM+e3a52mH/nnXfMB6d36NBBlpNtTPb8StmWLVvGmDFjcHJyYtGiRWTOnDlZr7t48SJ79uzBw8ODKlWqWDmlZUnxJYQmn376KZC4eeClS5c0p7F/MTExDBw4EIAvvvgCd3d3zYn+qVOnTrRq1YqYmBgaNmzI3bt3dUdKMxo2bIinpye7du3i77//1h1HvIATJ06Yz+ocNWoU5cqVS/ZrkzZW/eCDD+zu+8HzSPElhCbFihUjMDCQhw8fypOPyTBmzBguXLhAyZIlzU3W9sQwDCZPnkyxYsU4efIk7dq1kwO4bcTLy4vAwEAAZs+erTmNSK6oqCgaNGjA3bt3CQwM5OOPP36h16fEpxyTyMHaQmh06NAh3nrrLVxdXQkPD9f65J49u3TpEvnz5ycmJoYtW7ZQqVIl3ZGe6u+//8bf35+7d+/y3XffmY+VEta1ZcsWKleuTM6cOTlz5kyKar5Oi5RSBAUFsXTpUooUKcJvv/321HMbnyQqKgofHx/i4uKIjIzE19fXimlfiBysLYS9k9mv5Pnss8+IiYmhfv36dl14AeTPn59Zs2YB0K9fP7Zt26Y3UBpRsWJF/Pz8OHfuHL/++qvuOOI5vvnmG5YuXYq3tzfLly9/ocILICwsjNjYWN577z17KrySTYovITRL2iR0ypQp0vv1BH/99RezZs3C2dk5xTyc0KBBA/r160dCQgKBgYGcP39ed6RUz8HBwbzthDTe27ewsDAGDRoEwLx5817qhIqU+pRjEim+hNBMZr+eTqn/a+/O46Ku9j+Ovw6bqKjgjuKCphaKuSApWi6FSy6Jpam451pmLrmVZerPsrI07y1zF7wqueOSkhtariGFuWGJmRrkgqgIyXZ+fzBwvfdaoszMd2A+z8eDBzNfZr7njQPOh3PO9xzNuHHj0FozcuRIatWqZXSkPHv//fcJDAzk6tWrBAUFkZqaanSkQi9nLuC6detITk42OI24n7i4OHr16oXWmqlTpz7SRtgZGRls27YNKJjzvUCKLyFsQk7v15dffsmFCxcMTmM7NmzYQGRkJKVLl87dcqSgcHJyIiwsDG9vb44dO8bw4cNlAr6F1apVi4CAAO7cucP69euNjiP+S86VwDdu3KBTp06PvDXYgQMHSExMpE6dOtSpU8fMKa1Dii8hbICvry+9e/cmLS2NqVOnGh3HJty5cyd3svqMGTPw8PAwONHDK126NJs2baJYsWKEhoYyb948oyMVerLml23SWjNkyBBiYmKoVasWK1aseOSLInKGHAtqrxdI8SWEzZgxYwbOzs6Ehoby008/GR3HcDNnzuTixYs0atSIYcOGGR3nkdWvX59ly5YB2Tsb7N271+BEhVuPHj1wdXVl79690otsQz777DNWrVpF8eLF2bhx4yPvTnHvRtoFdb4XSPElhM2oUaMGI0aMQGudu5iovYqNjWX27NkAfPHFF3neasRW9ejRg4kTJ5KZmUmPHj2kKLAgd3d3unbtCsCKFSsMTiMAIiMjefPNNwFYvnw5devWfeRznT59mnPnzlG2bFmaNm1qrohWJ8WXEDZkypQplChRgm3bttnt5fJaa15//XXS09MZPHgwTz31lNGRzGLmzJm0a9eOa9euERQUREpKitGRCq2cocfQ0FCZZ2ewCxcu0KNHDzIzM5k4cWLuYriPKqfXq1OnTgX6jzIpvoSwIeXKlWP8+PEATJgwgaysLIMTWd/69evZuXMnHh4efPDBB0bHMRtHR0dWr15NzZo1+eGHHxgyZIgUBhYSGBiIp6cnP//8M4cOHTI6jt1KTk6mS5cuXL16lbZt2zJz5sx8n7OgLzGRQ4ovIWzMmDFj8PT05OjRo3Y3bJKUlMSoUaOA7KUaypYta3Ai8/Lw8GDTpk0UL16cVatWMWfOHKMjFUqOjo706dMHkIn3RsnKyqJfv34cP36c2rVrExYWlu+eqoSEBI4cOYKrqyuBgYFmSmoMKb6EsDFubm65i4lOmjTJrjZoHj9+PPHx8QQEBDBkyBCj41hEvXr1cguC8ePHExERYXCiwiln6PGrr76SNdYM8N5777Fx40ZKlSrF5s2bzXK1cnh4OFprnnvuOYoXL26GlMaR4ksIGxQcHEyzZs1ISEjg//7v/4yOYxV79uxh8eLFuLi4sHjx4gI9n+NBXnzxRaZMmUJWVhYvv/wyp0+fNjpSoVO3bl38/Py4efNm7jwhYR1r1qxhxowZODg48NVXX5ltLa6NGzcC0K1bN7Ocz0hSfAlhg5RSzJs3D6UUc+fO5ezZs0ZHsqiUlJTcnq53332XJ554wuBEljdt2jS6devGzZs36dy5M9evXzc6UqEzYMAAgNy9NoXlRUdH5/67z549m3bt2pnlvElJSezevRtHR0c6d+5slnMaSYovIWyUn58fr7zyCunp6YwaNapQT85+9913iYuLo379+kyYMMHoOFbh4OBAaGgojRo14ty5c7z44oukpaUZHatQ6dmzJy4uLuzcuZPLly8bHafQS0hI4IUXXiA1NZWBAwcyevRos51769atZGRk0LJly0IxF1SKLyFs2MyZM3F3dyciIoKwsDCj41jEoUOHmDNnDg4ODixZsgRnZ2ejI1lN8eLFCQ8Px9PTk3379vHqq68W6iLb2sqUKUOXLl3Iysqyu4tXrO3PP/8kKCiIS5cuERAQwPz581FKme38OUOOQUFBZjunkaT4EsKGlS9fnk8++QSAUaNGce3aNYMTmdft27fp06cPWVlZjB8/Hj8/P6MjWZ2Xlxfh4eG4urqyZMkS5s6da3SkQuXeoUcpbC1Da82wYcM4fPgwVapUYcOGDRQpUsRs509JSWH79u0AuQvoFnT5Kr6UUqWVUjuVUj+bPt/3cgalVKZS6kfTx+b8tCmEvRk4cCBt2rTh2rVrjB071ug4ZjV69Gji4uJo0KAB06dPNzqOYZo0aZJ7BeS4cePYtm2bwYkKj3bt2lGhQgViY2M5evSo0XEKpZkzZxIaGkqxYsXYvHkzFSpUMOv5IyIiSE1Nxd/fHy8vL7Oe2yj57fmaBOzWWtcCdpvu30+q1rqB6aPg7oQphAGUUixYsABXV1dWrFhRaJYm2LBhA0uXLsXV1ZWVK1fi4uJidCRD9ejRg/feew+tNT179uTEiRNGRyoUnJycctf8kon35rdq1SreeecdlFKsXr2aBg0amL2NwnSVYy6t9SN/ALGAp+m2JxD7F49LfpTzN27cWAshsn344Yca0FWqVNGJiYlGx8mXixcv6jJlymhA/+Mf/zA6js3IysrSL7/8sgZ0tWrVdEJCgtGRCoXjx49rQJcqVUqnpqYaHafQ2L9/v3ZxcdGAnjt3rkXauHv3rnZ3d9eAjo2NtUgbZpan+ia/PV8VtNbxptsJwF/1NboqpaKUUoeVUoVjwFYIKxs7diz+/v5cvHixQE/MTktLo3v37ly/fp0OHTrw2muvGR3JZiilWLZsGf7+/ly4cIFOnTpx584do2MVeL6+vjRu3FjW/DKjn3/+ma5du5KWlsbrr7/OG2+8YZF2IiMjSUpKom7dutSuXdsibRjhgcWXUmqXUurEfT7+Y2Mlnf1O8FfvBtW01n5Ab2CuUqrm37Q31FSoRV29evVhvhchCjUnJydWrlxJ8eLFCQsLY+XKlUZHeiTjx4/PnZgbGhpq1iuiCoOiRYuyefNmvL29iYqKomfPnmRkZBgdq8CTNb/M5/r16zz//PMkJibSqVMni26TVSiHHME6w47/9ZzlwEt5Ob8MOwrxvxYvXqwBXbJkSX3u3Dmj4zyUsLAwDWhnZ2d95MgRo+PYtDNnzujSpUtrQI8YMUJnZWUZHalAu3btmnZ2dtYODg760qVLRscpsFJTU3WLFi00oBs2bKhv375tsbYyMjJ0hQoVNKCjo6Mt1o6ZWWXYcTPQ33S7P/A//blKKQ+lVBHT7bJAc+BUPtsVwm4NGjSIF198kVu3btGtWzdSUlKMjpQnx48fZ/DgwQDMmTMHf39/gxPZtjp16hAeHk6RIkWYP38+H3/8sdGRCrR71/z617/+ZXScAklrzaBBg/juu+/w8vJi69atuLm5Way9w4cP88cff1C9enWLTOQ3Un6Lr1lAoFLqZ+A5032UUn5KqcWmxzwBRCmlYoC9wCyttRRfQjwipRRLlizhscceIyYmhhEjRtj8/K/4+Hg6depEcnIywcHBvPrqq0ZHKhBatGiRuzjoxIkTWb16tcGJCjZZ8yt/Jk+ezOrVq3Fzc2Pr1q1UqlTJou3du7BqoZuekNcuMiM+ZNhRiL92/PhxXaxYMQ3of/7zn0bH+Ut37tzRTZo00YAOCAiQq80ewezZszWgXVxcdGRkpNFxCqy0tDRdvnx5Dciw90OaO3euBrSTk5Pevn27xdvLysrS3t7eGtDffvutxdszI6sMOwohDOLr68vixdkdzKNGjbLJhTnT09Pp2bMn33//PdWrV2fjxo24uroaHavAGTt2LK+//jppaWl07dqVU6dk8OBRODs7y5pfjyAsLCx3n8alS5fSvn17i7f5448/cv78ecqXL0+zZs0s3p61SfElRAHWq1cvpkyZQlZWFj169CAqKsroSLkyMzMZMGAAW7ZswcPDg23btlG+fHmjYxVISinmzJlD165dSUpKol27dvz2229GxyqQ+vfPnqa8evVq/vzzT4PT2L6dO3fSr18/AD766CP69u1rlXbXrFkDwIsvvoijo6NV2rQmKb6EKOCmT59Ov379SElJoWPHjpw9e9boSGRlZfHqq6+yatUq3Nzc2LFjBz4+PkbHKtAcHR1ZuXIlLVq04NKlS7Rt2xZZjufh1a9fn0aNGpGUlMTmzbLb3d85duwY3bp1Iz09nbFjx/Lmm29apV2tNWvXrgWyd34ojKT4EqKAU0qxaNEiAgMDuXLlCq1atSI2NtawPBkZGQwaNIiFCxfi6urKli1b5MpGMylWrBhbtmyhfv36xMbG0qFDB27dumV0rAJH1vx6sF9++YUOHTrkXiTz8ccfW23S+w8//MC5c+eoUKECTz/9tFXatDYpvoQoBFxcXNi4cSOtW7cmPj6eVq1acebMGavnuHv3Li+//DIhISG5m+y2atXK6jkKM3d3dyIiIqhZsybHjh2ja9euMnz2kHr16oWzszMRERH8/vvvRsexOfHx8bRr146rV6/Stm1bli5dioOD9cqFnF6vwjrkCFJ8CVFoFC9enK1bt9KmTRsSEhJo3rw5+/bts1r7CQkJtGnThg0bNuDu7s6uXbsIDAy0Wvv2pGLFiuzcuRNPT0/27t1Lr169ZBX8h1C2bFk6d+4sa37dx7Vr1wgMDCQuLo7GjRuzbt06q256r7XOne/VvXt3q7VrbVJ8CVGI5AxLde7cmcTERAIDA1m6dKnF2/3+++/x8/Pj4MGDeHl5ERkZWSivULIl3t7eRERE4O7uzqZNmxg6dKisXfUQcoYeQ0JC5N/N5ObNm7Rv356TJ0/i4+PDjh07KFGihFUz/PDDD8TFxRXqIUeQ4kuIQqdYsWJs3LiRMWPGkJ6eziuvvMKAAQO4ffu22dvKzMxk1qxZNG/enMuXL9OiRQuioqJ48sknzd6W+F++vr58/fXXFCtWjGXLljF27FgpJPKoffv2lC9fnlOnTtnUVcJGuXPnDh07duTYsWPUrFmTnTt3UrZsWavnKOxXOeaQ4kuIQsjR0ZFPP/2URYsW4erqSkhICA0aNGD79u1mayMqKormzZszefJk0tPTGTlyJLt376ZChQpma0M8WLNmzdiwYQPOzs7MnTuXSZMmSQGWB87OzgQHBwMy8f7PP/8kKCiIAwcO4OXlxa5duyy+ev392MNVjrnyuhqrER+ywr0Q+Xfy5EndoEEDDWhAd+7cWUdFRT3y+U6fPq379u2rlVIa0JUqVdI7duwwY2LxKDZt2qSdnJw0oN955x2j4xQIMTExGtDu7u46JSXF6DiGSEtL0126dNGArlChgo6NjTUsS1RUVG6OjIwMw3Lkk6xwL4QAHx8fjh49yuzZs3Fzc2PLli34+fnx7LPPEhoamqfhyDt37vDVV1/RqVMnfHx8WLFiBU5OTowfP57Tp0/Trl07K3wn4u+88MILhIWF4ejoyIwZM5gxY4bRkWxe/fr18fPzIykpiQ0bNhgdx+oyMjLo27cvmzdvxsPDg507d1K7dm3D8uT0er300kuFesgRQGkb7p728/PTMhYvhPkkJCTwySefMH/+fO7cuQOAk5MTjRo1ws/Pj2rVqlG6dGm01iQlJXHhwgWio6OJiooiPT0dgCJFijBw4EDGjx9PjRo1jPx2xH2sXr2aPn36kJWVxaxZs5g4caLRkWzaggULGD58OK1atWLv3r1Gx7Ga9PR0goODWbt2LSVKlGDXrl2GrsentaZmzZqcP3+eyMhIWrZsaViWfMrTYmhSfAlhh27cuMGaNWtYuXIlBw4cICsr628fr5TC39+f3r178/LLL8u8LhsXEhLCwIED0VrzySefMHbsWKMj2axbt27h6elJSkoKZ8+epVatWkZHsrj09HR69+7NunXrKFmyJBERETRt2tTQTFFRUTRp0oSKFSty6dKlgtzzlafiy8nSKYQQtsfDw4Nhw4YxbNgwbt++zaFDhzh58iQXL17k5s2bKKVwc3OjevXq1KlTh4CAAEqVKmV0bJFH/fv3Jz09nSFDhjBu3DgyMjKYMGGC0bFsUsmSJenRowfLly9n6dKlfPDBB0ZHsqicze43bNhAqVKl+Oabb2xiBwp7ucoxh/R8CSFEIbVw4UKGDx+O1pqpU6cydepUq20RU5AcOHCAFi1aULFiRX777TecnZ2NjmQRaWlp9OzZk40bN+Lu7s7OnTvx8/MzOhZZWVlUr16dixcvsn///oK+vleefsFkwr0QQhRSQ4cOZfny5Tg4ODBt2jRZhuIvBAQE8Pjjj5OQkMDXX39tdByLuHv3Lj169GDjxo14eHiwa9cumyi8AL777jsuXrxI1apVad68udFxrEKKLyGEKMT69etHWFgYTk5OfPTRR7zxxhsPnONnb5RSDB48GIDFixcbnMb8kpOT6dy5M+Hh4bmFV+PGjY2OlWvVqlVA9p6b1txD0kgy7CiEEHZg8+bNdO/enbS0NIYMGcKXX35pN290eXHlyhW8vLzIzMzkt99+o3LlykZHMovExEQ6duzI4cOHqVChAhERETa1A0VaWhqenp4kJiYSExND/fr1jY6UXzLsKIQQIluXLl3YsmULRYsWZdGiRfTq1Yu7d+8aHctmlC9fnhdeeIGsrCxCQkKMjmMW8fHxtGzZksOHD1OtWjW+/fZbmyq8ACIiIkhMTKRevXqFofDKMym+hBDCTrRt25bt27dTsmRJ1qxZw/PPP8+tW7eMjmUzcoYelyxZUuCHZuPi4mjRogUnTpzgiSee4MCBAza5jEbOkGPv3r0NTmJdUnwJIYQdadmyJfv27aNixYrs2bOHli1bkpCQYHQsm/Dcc89RtWpV4uLiiIyMNDrOI/vxxx9p0aIFcXFx+Pn5sX//fpscRk1OTiY8PBzInu9lT6T4EkIIO9OgQQMOHjxIrVq1+PHHHwkICODnn382OpbhHB0dGTRoEFBwJ95v376dp59+mvj4eFq1asXu3bspW7as0bHua9OmTaSmptK8eXOqV69udByrkuJLCCHskLe3NwcOHKBJkyacP3+egIAADh8+bHQsww0cOBClFOvXr+f69etGx3koCxcupHPnziQnJxMcHMyOHTsoWbKk0bH+kr0OOYIUX0IIYbfKlSvHnj17aN++PdeuXaNVq1a5b4j2qmrVqrRr1460tDRCQ0ONjpMnWVlZTJ48mWHDhpGZmcmUKVNYsWIFRYoUMTraX7p69SrffPMNjo6OdO/e3eg4VifFlxBC2DE3Nzc2b97MiBEjuHv3LsHBwbz77rsFfsJ5fgwfPhyA+fPn2/y/Q2pqKsHBwcyaNQtHR0cWL17MjBkzbH4ngzVr1pCZmUm7du0oV66c0XGsToovIYSwc87Oznz++efMmzcPBwcHZsyYQc+ePUlJSTE6miE6duyIl5cXP//8M3v27DE6zl/67bffaNGiBWFhYZQoUYKvv/6aV155xehYeZLTqxgcHGxwEmNI8SWEEAKlFK+//jrbtm2jZMmSrF27lpYtW3Lp0iWjo1mdk5MTQ4cOBbJ7v2zRt99+S5MmTYiOjqZGjRocPHiQtm3bGh0rT06dOsXRo0cpWbIkXbt2NTqOIaT4EkIIkat9+/YcOnQIb29voqKiaNSokU33/ljK4MGDcXJyIjw8nMuXLxsd5z98+eWXtGnThitXrvDcc8/x/fffU69ePaNj5VnOIrY9evSgWLFiBqcxhhRfQggh/oOPjw9Hjx4lMDCQq1evEhgYyKxZs+xqU25PT0+6du1KZmamzSw7kZKSwiuvvMKIESPIyMhgzJgxbN++ndKlSxsdLc8yMjJYsWIFAAMGDDA2jIGk+BJCCPE/ypYty/bt25kyZUru1XRBQUHcvHnT6GhWM2LECCB7CYf09HRDs5w+fRp/f3+WLl2Kq6srISEhfPrppzg5ORma62Ht3LmT+Ph4HnvsMQICAoyOYxgpvoQQQtyXo6MjM2bMYOvWrbi7uxMeHk7Dhg05dOiQ0dGsonXr1tSpU4fff/+dLVu2GJYjNDQUPz8/Tp48SZ06dThy5Aj9+vUzLE9+5Aw5DhgwwOavyLQkKb6EEEL8rY4dO3Ls2DEaNWrE+fPnefrpp5k+fToZGRlGR7MopVRu75cRE+9v3brFwIED6d+/PykpKfTp04eoqKgCuwH1jRs32LRpE0op+vbta3QcQ0nxJYQQ4oFq1KjBoUOHGD9+PJmZmUydOpVWrVrx66+/Gh3Novr370/RokXZtWuXVbdg2rdvH08++STLly/H1dWVJUuWEBoaipubm9UymNtXX33F3bt3efbZZ6latarRcQwlxZcQQog8cXFx4aOPPmLXrl1UqlSJAwcO8OSTT7J48eJCOxnf3d09d9Nna/R+/fnnn4wbN47WrVvz66+/0qhRI44dO8agQYMK/DDd8uXLAfueaJ9D2fIvjJ+fn46KijI6hhBCiP9y/fp1Bg8ezKZNmwB49tlnWbhwITVq1DA4mfkdO3YMPz8/SpUqxaVLlyzW+3TkyBEGDRrEqVOncHR05O2332bKlCk4OztbpD1rOnHiBL6+vpQoUYKEhITCvMREnipk6fkSQgjx0MqUKcOGDRtYtWoVZcuWZffu3fj6+jJ37lwyMzONjmdWjRs3JiAggJs3b1pkv8ebN28ycuRImjVrxqlTp6hTpw4HDx5k2rRphaLwAli0aBEAffr0KcyFV55J8SWEEOKRKKXo1asXp06dyt2OaMyYMTRt2pQjR44YHc+sRo8eDcBnn31mtv0etdasW7eOJ554gs8//xxHR0cmTpxIdHQ0/v7+ZmnDFqSmpuYWrTk7B9g7Kb6EEELkS7ly5Vi9ejXh4eFUrlyZqKgomjZtysCBA/njjz+MjmcWQUFBVKlShbNnzxIREZHv8x0/fpzAwEC6d+9OfHw8TZs2JTo6mlmzZhW6nqF169aRlJREkyZNaNCggdFxbIIUX0IIIcyiS5cunDlzhsmTJ+Pi4sLy5cupXbs2H374YYHfpNvJyYmRI0cCMHfu3Ec+zx9//MHQoUNp2LAhu3fvxsPDgy+++IIDBw7g6+trrrg2ZcGCBYD0et1LJtwLIYQwu19++YUxY8awdetWIHu7nqlTpzJo0KACO48pMTERLy8vUlNTOXnyJD4+Pnl+7o0bN5gzZw5z587l9u3bODk58eqrrzJ16tQCtT3Qwzp58iT16tXDzc2N+Pj4Ar1URh7JhHshhBDGeOyxx9iyZQsRERE0btyY+Ph4hg8fjo+PDyEhIYZv1/MoSpcuTf/+/QGYN29enp5z8+ZNpk2bhre3NzNmzOD27dt06tSJEydO8NlnnxXqwgv+PdE+ODjYHgqvPJOeLyGEEBaltWb9+vW8/fbbnD17FoAqVaowbtw4Bg8eTPHixQ1OmHenT5/Gx8eHokWLcunSpb8snn7//Xf++c9/Mn/+fJKSkgBo06YN06ZNo0WLFtaMbJjU1FQqV67MjRs3iI6OpmHDhkZHsgbp+RJCCGE8pRQvvfQSJ0+eZPny5fj4+HDx4kVGjx5N1apVmTx5MnFxcUbHzJMnnniCtm3bkpqamturc68ffviBfv36Ub16dT744AOSkpJ45plniIyMZPfu3XZTeEH2RPsbN27g5+dnL4VXnknPlxBCCKvKyspi69atfPDBBxw+fBjILtDatm3L8OHD6dixo03PC9u+fTvPP/88lSpVIi4ujpSUFMLCwli6dCk571kODg5069aNsWPH0qxZM4MTG+Opp57i6NGjLFq0iMGDBxsdx1ry1PMlxZcQQghDaK05dOgQCxYsyN33O7O2MwAAEkBJREFUD7IXcO3WrRs9e/akZcuWODo6Gpz0P2mtqVevHqdOncLf35+YmJjc7KVKlWLgwIGMGjUKb29vg5Ma58iRIzRt2hQPDw8uXbpU6JbP+BuWH3ZUSnVXSp1USmUppfz+5nHtlVKxSqlflFKT8tOmEEKIwkEpRUBAACEhIVy+fJlPP/0UHx8frl+/zqJFi3j22WepXLkygwYNYs2aNSQmJhqa9+LFiyxfvpygoKDcTbaPHj3K3bt3CQwMZNWqVcTHxzNnzhy7LrwA/vGPfwAwZMgQeyq88ixfPV9KqSeALGAB8KbW+n+6qZRSjsBZIBC4BHwP9NJan3rQ+aXnSwgh7IvWmhMnTvDVV18RFhbGuXPncr/m4OBAkyZNaN68OU899RT+/v5Uq1bNIhtOZ2ZmcvbsWY4dO8a+ffvYu3fvf2SB7I3G09LSWLhwIUOGDDF7hoIqISGBqlWrkpmZSVxcHNWqVTM6kjXl6YfRKT8taK1PAw/6wfcHftFax5keGwa8ADyw+BJCCGFflFL4+vri6+vLjBkziImJISIigoiICL777juOHDnyH1sXlStXDh8fH+rUqUOdOnXw9vbG09OTihUrUr58eYoWLXrf96isrCxu3rzJtWvXuHr1KhcuXODcuXOcO3eOM2fOcPz48f9ZGLZEiRI888wzdOjQga5du7Ju3TpGjx7NsmXLGDx4sEWKwIJowYIFpKenExQUZG+FV56ZZc6XUiqSv+75eglor7UebLrfF3hKaz3yQeeVni8hhBA5kpOT+fbbbzl69ChHjhzh6NGjXL9+/W+fo5SiaNGiuUVYeno6aWlp3L1794F7NFatWpWGDRvSrFkzWrduTaNGjXBy+nefxZ07d6hatSqJiYns37+fp59+2izfZ0GWlpZGtWrVSEhIYM+ePbRu3droSNZmnp4vpdQuoOJ9vvS21jr8YVPlob2hwFDI/sEXQgghANzc3OjQoQMdOnQAsocoL1y4QGxsLLGxsZw5c4ZLly4RHx9PQkICV69e5e7du6SkpNx3e6OSJUtStmxZypYtS5UqVahRowY1a9bkscceo0GDBpQpU+Zv8xQvXpyRI0cyffp0PvzwQym+gLVr15KQkEC9evVo1aqV0XFsljV6vpoB72mt25nuTwbQWn/woPNKz5cQQoj8yMzMJDU1ldTUVLTWODs74+zsTJEiRcyynMW1a9eoWrUqqampxMTEUL9+fTOkLpi01jRs2JCYmBh7W17iXjazyOr3QC2llLdSygXoCWy2QrtCCCHsnKOjI25ubpQrV47y5cvj4eGBm5ub2dYRK1u2bO6G0dOnTzfLOQuqnTt3EhMTQ8WKFenTp4/RcWxafpeaCFJKXQKaAduUUhGm45WUUl8DaK0zgJFABHAaWKO1Ppm/2EIIIYRtmDhxIq6urqxfv57jx48bHccwH330EQBvvPEGrq6uBqexbbLIqhBCCJFPb7zxBvPmzeOll15i7dq1RsexumPHjuHn54ebmxsXL17E3d3d6EhGsZlhRyGEEKJQmzhxIkWKFGHdunX89NNPRsexuo8//hiAYcOG2XPhlWdSfAkhhBD5VKlSJYYNGwbY39yvuLg41q5di7OzM6NHjzY6ToEgxZcQQghhBvba+zVr1iyysrLo3bs3Xl5eRscpEKT4EkIIIczg3t6vd9991+A01vHrr7+ybNkyHBwceOutt4yOU2BI8SWEEEKYyaRJkyhWrBibNm3i0KFDRsexuJkzZ5KRkUFwcDC1a9c2Ok6BIcWXEEIIYSaenp6MGTMGgAkTJmDLKwrk1/nz51m+fDkODg5MmTLF6DgFihRfQgghhBlNmDCBMmXK8N1337F161aj41jM+++/T0ZGBn369JFer4ckxZcQQghhRiVLluSdd94BsochMzIyDE5kftLrlT9SfAkhhBBmNnz4cKpXr86pU6cICQkxOo7ZvfPOO7m9XrVq1TI6ToEjK9wLIYQQFrBq1SqCg4MpX748Z8+epVSpUkZHMovo6GgaN26Mi4sLsbGxVK9e3ehItkRWuBdCCCGM0qtXLwICArhy5QrTpk0zOo5ZaK0ZP348AK+//roUXo9Ier6EEEIIC4mOjsbPzw9HR0diYmLw8fExOlK+7Nixgw4dOuDu7s65c+coXbq00ZFsjfR8CSGEEEZq1KgRQ4cOJSMjg1GjRhXopSfS09Nze73efvttKbzyQYovIYQQwoJmzpyJh4cHu3fvZv369UbHeWSff/45J06cwNvbm5EjRxodp0CT4ksIIYSwoDJlyjBz5kwge57UjRs3DE708OLj43O3TJo3bx6urq4GJyrYpPgSQgghLGzYsGEEBASQkJDAuHHjjI7z0MaPH8/t27fp3LkznTp1MjpOgSfFlxBCCGFhDg4OLFmyhCJFirBs2TK++eYboyPl2d69e1m5ciWurq589tlnRscpFKT4EkIIIazg8ccf57333gNg6NChJCcnGxsoD5KTk3nllVcAeOutt/D29jY4UeEgxZcQQghhJW+++SaNGjXiwoULjB071ug4DzRp0iTOnz9PgwYNmDRpktFxCg0pvoQQQggrcXJyYvny5RQpUoRFixaxbt06oyP9pcjISD7//HOcnJxYtmwZzs7ORkcqNKT4EkIIIazI19eX2bNnAzBkyBAuXLhgcKL/lZiYyIABA4DsNb0aNGhgbKBCRoovIYQQwspee+01unTpQlJSEr169SItLc3oSLm01gwcOJALFy7g5+fHW2+9ZXSkQkeKLyGEEMLKlFIsXboULy8vDh06xMiRI21m9fvPPvuMzZs3U6pUKdasWYOLi4vRkQodKb6EEEIIA5QpU4YNGzbkzv/64osvjI7EgQMHmDBhAgDLli2TqxstRIovIYQQwiBNmjRhyZIlALzxxhvs3LnTsCxxcXF07dqV9PR0Ro8eTVBQkGFZCjspvoQQQggDBQcHM3HiRDIzMwkKCuLw4cNWz3Djxg06derEtWvXaN++PR9//LHVM9gTKb6EEEIIg73//vv07duXO3fu0KFDB44fP261tm/dukX79u05ffo0devWJSwsDCcnJ6u1b4+k+BJCCCEM5uDgwNKlS+natStJSUk899xzREdHW7zd5ORkOnfuzNGjR6levTrbt2+nVKlSFm/X3knxJYQQQtgAJycnwsLCaN++PVevXqVVq1ZERkZarL0rV67QunVr9u/fT+XKldm9ezdVqlSxWHvi36T4EkIIIWxEkSJFCA8P5+WXX+b27du0bduW+fPnm30ZipMnT9K8eXOioqKoUaMGkZGR1KhRw6xtiL8mxZcQQghhQ1xcXFi5ciVjxowhPT2dV199lX79+nHjxo18n1trTWhoKP7+/vzyyy80bNiQAwcO8Nhjj5khucgrKb6EEEIIG+Po6Minn37KypUrKVq0KP/617+oW7cu69ate+ResF9//ZXOnTvTv39/UlJS6Nu3L99++y0VK1Y0c3rxIFJ8CSGEEDaqd+/eREdHExAQQHx8PN27d8ff35/w8HDS09PzdI7z58/z2muv8fjjj7Nt2zZKlizJ4sWLCQkJoXjx4hb+DsT9KFvZzuB+/Pz8dFRUlNExhBBCCENlZmaycOFCpk+fTkJCAgAVKlQgKCiIZ555Bl9fXzw9PXF0dCQ5OZnY2FiOHTtGeHg4Bw8ezD1Pr169+OSTT/D09DTqWynsVJ4eJMWXEEIIUTCkpKSwYMECFi5cyJkzZ/L0HFdXV7p3787EiROpW7euhRPaPSm+hBBCiMJIa01UVBS7du3iu+++Iy4ujvj4eLTWFC9enGrVqtGwYUOeeeYZOnbsSIkSJYyObC+k+BJCCCGEsKI8FV8y4V4IIYQQwoqk+BJCCCGEsCIpvoQQQgghrEiKLyGEEEIIK5LiSwghhBDCiqT4EkIIIYSwIim+hBBCCCGsSIovIYQQQggrylfxpZTqrpQ6qZTKUkr5/c3jflVK/aSU+lEpJaumCiGEEMJuOeXz+SeAbsCCPDy2tdb6Wj7bE0IIIYQo0PJVfGmtTwMolafV9IUQQggh7J615nxp4Bul1DGl1FArtSmEEEIIYXMe2POllNoFVLzPl97WWofnsZ0WWuvLSqnywE6l1Bmt9f6/aG8oMBSgatWqeTy9EEIIIUTBoLTW+T+JUpHAm1rrB06mV0q9ByRrrWfn4bE7tNbt8x3w79sYqrVeaMk2hG2S195+yWtvn+R1t1+29tpbfNhRKVVcKVUi5zbQluyJ+g9k6cLLRIZB7Ze89vZLXnv7JK+7/bKp1z6/S00EKaUuAc2AbUqpCNPxSkqpr00PqwB8p5SKAY4C27TWO/LTrhBCCCFEQZXfqx03Ahvvc/x34HnT7Tjgyfy0I4QQQghRWMgK92AzY8DC6uS1t1/y2tsned3tl0299maZcC+EEEIIIfJGer6EEEIIIazIbosvpVR7pVSsUuoXpdQko/MI81JKVVFK7VVKnTLtP/qG6fh7SqnLpn1Gf1RKPX/Pc+orpQ6ZHv+TUsrVuO9A5Mf99pP9q71olVKBpgWgfzJ9bmNccpEfSqk69/xu/6iUuqWUGm362utKqTOmn4GPTMeclVIhptf+tFJqsrHfgXgYSqmlSqkrSqkT9xwrrZTaqZT62fTZw3Q8WCl13PRaH1RKPflf53JUSv2glNpqlez2OOyolHIEzgKBwCXge6CX1vqUocGE2SilPAFPrXW0aamTY0BXoAf3WWdOKeUERAN9tdYxSqkyQJLWOtPa2UX+KaV+Bfzu3U9WKfUEkEX2XrS56xIqpRoCf2itf1dK1QMitNaVDYgtzMj0//xl4CmgBvA20FFrfVcpVV5rfUUp1RvoorXuqZQqBpwCWmmtfzUsuMgzpdQzQDIQqrWuZzr2EZCotZ5l6ljx0FpPVEoFAKe11jeUUh2A97TWT91zrrGAH1BSa93J0tnttefLH/hFax2ntU4DwoAXDM4kzEhrHa+1jjbdvg2cBv7uDbUtcFxrHWN6znUpvAoXrfVprXXsfY7/YLpCG+AkUFQpVcS66YQFPAuc01pfAEYAs7TWdwG01ldMj9FAcdMfX0WBNOCWEWHFwzPtlJP4X4dfAEJMt0PI/qMbrfVBrfUN0/HDgFfOE5RSXkBHYLFFA9/DXouvysDFe+5f4u/fmEUBppSqDjQEjpgOjTR1Py/N6ZIGagNaKRWhlIpWSk0wIKown0fdT/ZFIDrnTVoUaD2B1abbtYGnlVJHlFL7lFJNTMfXAXeAeOA3YLbW+r/fzEXBUkFrHW+6nUD2WqP/7RVg+z335wITyO4Ztwp7Lb6EnVBKuQHrgdFa61vAfKAm0IDs/3A/MT3UCWgBBJs+BymlnrV+YmEmLbTWjYAOwGum4Ym/pZSqC3wIDLN0OGFZSikXoAuw1nTICSgNNAXGA2uUUorsUZBMoBLgDYxTStWwfmJhCTp7XtV/zK1SSrUmu/iaaLrfCbiitT5mzWz2WnxdBqrcc9/LdEwUIkopZ7ILr5Va6w0AWus/tNaZWussYBHZ//lCdu/nfq31Na11CvA10MiI3CL/tNaXTZ+vkL0QtP/fPd407LAR6Ke1Pmf5hMLCOpDdg/mH6f4lYIPOdpTsHo6yQG9gh9Y63fSzcoDseT+i4PrDNOc3Z+5vzhAzSqn6ZA8tvqC1vm463BzoYponGga0UUr9y9Ih7bX4+h6opZTyNv2F1BPYbHAmYUamv2qXkD3B8tN7jnve87Ag/r3PaATgq5QqZpr/0ZLsybeigFEPuZ+sUsod2AZM0lofsE5KYWG9+PeQI8AmoDWAUqo24AJcI3uosY3peHGye8bOWDWpMLfNQH/T7f5AOIBSqiqwgeyLqs7mPFhrPVlr7aW1rk52LbBHa93H0iHt8mpHANMSA3MBR2Cp1nqmwZGEGSmlWgDfAj/x73H8t8j+T7kB2V3RvwLDcuYHKKX6AJNNX/taay3zvgog07BRzrZnTsAqrfVMpVQQ8A+gHJAE/Ki1bqeUmkL26/7zPadpe8+kbFGAmIqo34AaWuubpmMuwFKyf/fTyL7adY9pWsIywAdQwDKt9cfGJBcPSym1GmhFdi/mH8BUsgvtNUBV4ALQQ2udqJRaTPaczgump2dorf3+63ytyP7ZsPjVjnZbfAkhhBBCGMFehx2FEEIIIQwhxZcQQgghhBVJ8SWEEEIIYUVSfAkhhBBCWJEUX0IIIYQQViTFlxBCCCGEFUnxJYQQQghhRVJ8CSGEEEJY0f8Ds4ghtLylS64AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x432 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs.makeTable(2, 1024, 10, 1)\n", "cs.makeTable(3, 1024, -10, 0.5, 1)\n", "cs.plotTable(2)\n", "cs.plotTable(3, reuse=True)\n", "#ylim((-1.1,1.1))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.57580819, 0.58081396, 0.58579786, 0.5907597 , 0.5956993 ])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cs.table(2)[100: 105]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tables can also be passed by their variable name in Csound:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "%%csound 1\n", "giHalfSine ftgen 0, 0, 1024, 9, .5, 1, 0" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFpCAYAAABeYWb6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd0VOXituH7Tei9GEQURElCaIoYmsCRn4AISq+iSEd6kV6UGnoRQdQgKE06IoqAXdRDFaWjBJAOCUgJJCQk2d8fcPJhJcAk75TnWst1TDKLuY9ReLJnz97GcRxERERE5O752Q4QERER8RYaViIiIiIuomElIiIi4iIaViIiIiIuomElIiIi4iIaViIiIiIuomElIiIi4iIaViIiIiIuomElIiIi4iIaViIiIiIuks7WEz/zzDPOunXrbD29iIiIyO0wKXmQtSNWZ8+etfXUIiIiIqlCLwWKiIiIuIiGlYiIiIiLaFiJiIiIuIiGlYiIiIiLaFiJiIiIuIiGlYiIiIiLaFiJiIiIuIiGlYiIiIiLaFiJiIiIuMgth5UxZo4xJtIYs/sfvm6MMW8YYyKMMTuNMWVcnykiIiLi/lJyxOp94Jl/+XotIOjGXx2Bt+4+S0RERMTz3PImzI7jbDDGFP6Xh9QD5jmO4wCbjDG5jDH3OY5zykWNIiJcu3aNs2fPcubMGSIjI4mKiuLy5cvExsYm/5WQkIC/vz/p0qXD39+f9OnTkyNHDnLnzk3u3LnJlSsX+fLl4/777ydDhgy2/y+JiBe65bBKgfuBYzd9fPzG5/4yrIwxHbl+VItChQq54KlFxJskJiYSERHBjh07OHDgABERERw8eJCDBw9y8uRJlz2PMYb8+fNTqFAhHnzwQUJCQihevDjFixcnODiYjBkzuuy5RMS3uGJYpZjjOOFAOEBoaKiTls8tIu7FcRwOHTrEd999x+bNm/n555/ZuXMnMTExf/t4Pz8/AgICyJcvH/ny5SMgIIDs2bOTOXNmMmfOTJYsWfD39ycxMZHExEQSEhKIj4/n0qVLnD9/ngsXLnD+/HlOnz7NyZMnOXXqFKdOnWLz5s1/eB5/f3+KFStGhQoVKF++PBUqVKBYsWL4+/unxT8WEfFwrhhWJ4CCN338wI3PiYj8weHDh1m7di3ffvst3333HadO/fWMgYIFC1K6dGlCQkIIDAykSJEiBAYG8sADD7hs3CQkJHDy5EmOHj3Kb7/9xt69e9m7dy979uzh0KFD7N69m927d/Puu+8CkCNHDp588kmqV69OjRo1CAkJwRjjkhYR8S7m+qlRt3jQ9XOsPnEcp+TffO1ZoBtQGygPvOE4Trlb/ZqhoaHOtm3bbrdXRDzItWvX2LBhA59++imffvop+/fv/8PX8+bNS+XKlalUqRKPP/44jz76KHnz5rVUe11sbCw///wzmzZtYtOmTWzevJkjR4784TEFChSgVq1aNGjQgGrVqpEpUyZLtSKShlL009Qth5UxZhFQFbgHOAMMA9IDOI7ztrn+Y9sMrr9zMAZo4zjOLReThpWId0pISODrr79myZIlrFy5kvPnzyd/LUeOHDz99NNUr16dKlWqEBISgp+f+19O79ixY3z55Zd88cUXfPHFF5w5cyb5a9myZaN27do0bNiQOnXqkCVLFoulIpKKXDOsUouGlYj3cByH7du3M2fOHJYtW0ZUVFTy14oXL06dOnWoXbs2FStWJH369BZL757jOOzcuZOPPvqIDz/8kJ9//jn5a9mzZ6dx48a89NJL/Oc///GI0SgiKaZhJSKp6/fff2fhwoXMnj2bHTt2JH8+ODiYZs2a0axZM0qUKGGxMPUdPnyYVatWsWTJkj+cCF+oUCHatGlDx44dKVCggMVCEXERDSsRSR07d+5k6tSpLFq0iLi4OADy5MnDSy+9RKtWrXj00Ud98uTuX375hfnz5zN//nyOHj0KXH+XYYMGDejatStPPvmkT/5zEfESGlYi4jpJSUl8+umnTJ06la+++ir58zVq1KB9+/bUq1dP13+6ISkpiW+++YaZM2eyatUqEhMTAShRogR9+/alRYsWukCpiOfRsBKRu3ft2jXmzZvHhAkT+PXXXwHImjUrbdu2pXv37gQFBVkudG8nTpwgPDyc8PBwTp8+DcADDzxA79696dChA9mzZ7dcKCIppGElIncuPj6euXPnMmbMGH777Tfg+nlD3bt3p3379uTKlctuoIeJj49n8eLFjB8/nr179wKQO3duevXqRa9evciRI4flQhG5BQ0rEbl98fHxvPfee4wZMyb5PKGQkBCGDh1Ks2bNSJcuTW/Y4HWSkpJYs2YN48eP54cffgCuX89rwIABdO3aVZdrEHFfKRpWei+wiADXLyOwbNkyihcvTqdOnTh69CjFixdn0aJF7N69mxdeeEGjygX8/PyoU6cO33//PV9//TWVKlXi3Llz9O/fn4cffpjp06cnvyFARDyPhpWI8P3331OxYkWaNm3KwYMHKVq0KEuWLGHXrl00b95c98lLJVWrVuW7775j3bp1hIaGcubMGXr06EHx4sX58MMPsfWKgojcOQ0rER928OBB6tevT5UqVdi8eTP33nsvb7/9Nrt376Zp06a6wGUaMMZQs2ZNtmzZwqpVqyhWrBiHDh2iYcOGPPXUU3+4AKmIuD/9rinig2JjYxk2bBglSpTgo48+IkuWLAwbNowDBw7w8ssv6yU/C4wx1KtXj507dzJjxgzy5MnDN998Q5kyZejQoQORkZG2E0UkBTSsRHzMJ598QokSJRg5ciRxcXG89NJLREREMHz4cL313w2kS5eOrl27EhERQc+ePfH39+fdd98lJCSE2bNnk5SUZDtRRP6FhpWIjzh69Ch169alTp06HD58mFKlSrFhwwbmzp3LfffdZztP/iR37ty8/vrr7N69mxo1anD+/Hnat29P1apVky/XICLuR8NKxMslJSXxzjvvULJkST7++GOyZ8/O1KlT2b59O1WqVLGdJ7dQtGhR1q9fzwcffEC+fPn47rvvKF26NEOHDiU2NtZ2noj8iYaViBc7ePAg1apVo1OnTkRHR9OgQQN++eUXevXqpfOoPIgxhueff579+/fTsWNHrl27RlhYGGXKlGHLli2280TkJhpWIl4oMTGR119/nVKlSvHNN98QEBDA0qVLWbFihV7282C5c+fmnXfe4fvvvyckJIT9+/fzxBNPMHToUOLj423niQgaViJe59ixY1SvXp3evXsTGxtLixYt2Lt3L02aNMGYFF04WNxcpUqV2L59O6+88gpJSUmEhYVRtmxZduzYYTtNxOdpWIl4kSVLlvDII4/wzTffkC9fPj766CMWLlzIPffcYztNXCxz5sxMnjyZb7/9liJFirBz505CQ0OZMGGC3jkoYpGGlYgXuHTpEi+99BLNmzfnwoULPPvss+zatYu6devaTpNUVqVKFXbs2EHXrl1JSEhgwIABPPPMM5w+fdp2mohP0rAS8XBbt26ldOnSzJ8/n8yZMzNz5kw+/vhj8uXLZztN0kjWrFmZMWMGn3zyCffccw+ff/45jz76KOvWrbOdJuJzNKxEPJTjOMyYMYNKlSpx+PBhHnvsMbZv307nzp11LpWPevbZZ9mxYwdPPfUUkZGR1KpVi759++rEdpE0pGEl4oGio6N5/vnn6d69O9euXaNbt25s3LiRkJAQ22liWYECBfjss88YM2YM/v7+TJ48mapVq3LixAnbaSI+QcNKxMPs2rWL0NBQlixZQrZs2Vi8eDHTp08nY8aMttPETfj7+zNo0CC+++47HnjgATZu3EiZMmX49ttvbaeJeD0NKxEPsmDBAsqXL8+vv/5KyZIl2bZtG82aNbOdJW6qYsWKbN++PfmlwWrVqjFlyhQcx7GdJuK1NKxEPEBiYiJ9+/alZcuWxMbG0rp1azZv3kzRokVtp4mbCwgIYP369QwYMIDExET69OlD8+bNuXz5su00Ea+kYSXi5i5cuMBzzz3H5MmTSZcuHW+99RbvvfceWbJksZ0mHiJdunSMGzeOFStWkD17dpYuXUqFChU4fPiw7TQRr6NhJeLGfvnlF8qXL8+6deu45557+OKLL+jUqZPtLPFQDRs2ZOvWrRQrVow9e/ZQrlw5vv/+e9tZIl5Fw0rETX366aeUK1eOX3/9lUceeYStW7fy5JNP2s4SD1e0aFE2btxIzZo1OXv2LNWqVWPu3Lm2s0S8hoaViBuaMWMGderU4dKlSzRs2JAffviBwoUL284SL5EzZ04++eQTevToQXx8PK1bt2bgwIG6FY6IC2hYibiRpKQk+vbtS/fu3UlKSuK1115j2bJlZMuWzXaaeJl06dIxbdo03nrrLfz9/Rk/fjwNGzbkypUrttNEPJqGlYibiI2NpVmzZsknqb///vuMGDECPz/9Zyqpp1OnTqxbt45cuXLx0Ucf8X//939ERUXZzhLxWPodW8QNnD17lurVq7N8+XJy5MjBunXraNWqle0s8RHVq1dn06ZNFC5cmK1bt/LEE09w6NAh21kiHknDSsSygwcP8sQTT/Df//6XggUL8v3331OtWjXbWeJjihYtyn//+19Kly5NREQEFStW5Mcff7SdJeJxNKxELNqxYweVKlXiwIEDlC5dmk2bNlGqVCnbWeKj7rvvPr799luqV69OZGQkTz75JOvXr7edJeJRNKxELPnhhx948sknOXPmDNWqVWPDhg0UKFDAdpb4uBw5crBmzRpeeOEFrly5wnPPPceCBQtsZ4l4DA0rEQvWrl1LjRo1uHjxIg0bNmTNmjVkz57ddpYIABkyZGDevHn079+fhIQEWrZsycyZM21niXgEDSuRNLZo0SLq1q1LbGws7dq1Y+nSpWTMmNF2lsgf+Pn5MX78eCZNmgRA165dGTdunOUqEfenYSWSht566y1eeOEFEhIS6N+/P7NmzcLf3992lsg/6tOnD++88w7GGAYNGsTgwYNxHMd2lojb0rASSSNTpkyhS5cuOI7DuHHjGD9+PMYY21kit9SxY0cWLFiAv78/Y8eOpUePHrpKu8g/0LASSQMTJkygT58+wPWjVgMGDLBcJHJ7WrRowYoVK8iQIQMzZsygbdu2JCYm2s4ScTsaViKpLCwsjAEDBmCMYfbs2XTq1Ml2ksgdqVevHmvWrCFLlizMnTuXVq1aaVyJ/ImGlUgqcRyHESNGMHToUIwxvPfee7Rt29Z2lshdqV69Op999hnZsmVj4cKFGlcif6JhJZIKHMfhtddeY/jw4fj5+TF//nzdoka8RqVKlVi7dq3Glcjf0LAScTHHcRg8eDCjR4/G39+fDz74gBdeeMF2lohLVa5cmbVr15I1a1YWLlxI69atNa5E0LAScbnhw4czbtw40qVLx+LFi2nWrJntJJFUUblyZdatW0fWrFlZsGCBxpUIGlYiLjVu3DhGjhyJn58fixYtonHjxraTRFKVxpXIH2lYibjItGnTGDRoEMYY5s2bp1ElPuPmlwUXLFhA586ddRFR8VkaViIuEB4eTq9evQCYNWuWzqkSn1OlShXWrFlDpkyZmDVrFn379tW4Ep+kYSVyl+bNm5d8bao33niDdu3aWS4SsePJJ59k5cqVpE+fnilTpjBq1CjbSSJpTsNK5C4sW7aMNm3a4DgO48ePp3v37raTRKyqVasWCxcuxM/Pj2HDhjF16lTbSSJpSsNK5A6tW7eOFi1akJSUxPDhw+nfv7/tJBG30KRJE2bPng3AK6+8wrvvvmu5SCTtpGhYGWOeMcb8YoyJMMYM/JuvFzLGfG2M+ckYs9MYU9v1qSLuY/PmzTRq1IiEhAT69OnDa6+9ZjtJxK20bt2aN954A7h+E+clS5ZYLhJJG7ccVsYYf+BNoBZQHHjeGFP8Tw8bCix1HOcxoDkw09WhIu5i37591K5dm5iYGFq1asWECRMwxtjOEnE73bt3JywsDMdxePHFF1m/fr3tJJFUl5IjVuWACMdxDjmOEw8sBur96TEOkOPG3+cETrouUcR9HDt2jKeffprff/+d5557jlmzZuHnp1fURf7JoEGD6NevHwkJCTRq1Iht27bZThJJVSn5E+F+4NhNHx+/8bmbDQdeNMYcBz4FdAaveJ1z587x9NNPc/z4cSpVqsSSJUtInz697SwRt2aMYdy4cbRs2ZIrV65Qu3ZtDhw4YDtLJNW46kft54H3Hcd5AKgNzDfG/OXXNsZ0NMZsM8Zsi4qKctFTi6S+y5cv8+yzz7J//35KlizJxx9/TJYsWWxniXgEPz8/Zs+eTc2aNYmKiqJmzZqcPn3adpZIqkjJsDoBFLzp4wdufO5m7YClAI7jbAQyAff8+RdyHCfccZxQx3FCAwIC7qxYJI1du3aNJk2asHnzZh588EHWr19P7ty5bWeJeJT06dOzfPlyQkNDOXz4MLVr1yY6Otp2lojLpWRYbQWCjDEPGWMycP3k9NV/esxRoBqAMaYY14eVDkmJx3Mch86dO7Nu3ToCAgL47LPPKFCggO0sEY+ULVs21qxZQ2BgID/99BMNGzYkPj7edpaIS91yWDmOkwB0A9YD+7j+7r89xpiRxpi6Nx7WB+hgjNkBLAJaO7qXgXiBsWPHMnv2bDJlysTHH39McHCw7SQRj5YvXz7Wr19Pvnz5+OKLL2jTpg1JSUm2s0RcxtjaP6GhoY7eHSLu7IMPPuCFF17AGMOKFSto0KCB7SQRr7F9+3aefPJJLl++zJAhQxg9erTtJJFbSdF1dfQ+cZG/8e2339KmTRsApkyZolEl4mJlypRh+fLl+Pv7ExYWxnvvvWc7ScQlNKxE/mTfvn3Ur1+f+Ph4evToQa9evWwniXilmjVrMmPGDOD61dm/+uory0Uid0/DSuQmZ86coXbt2ly4cIF69eoxZcoU20kiXq1Tp0706dMn+QKi+/bts50kclc0rERuiImJoU6dOvz222+ULVuWhQsX4u/vbztLxOtNmDCBBg0acOHCBZ599lkiIyNtJ4ncMQ0rESApKYmXXnqJrVu3UrhwYT7++GOyZs1qO0vEJ/j5+bFgwQLKli3L4cOHqVevHrGxsbazRO6IhpUIMHLkSFasWEGOHDlYs2YN9957r+0kEZ+SJUsWVq9eTaFChdi0aROtW7fWZRjEI2lYic9bunQpI0aMwM/Pj8WLF1O8eHHbSSI+KX/+/KxZs4YcOXKwdOlSXYJBPJKGlfi0H3/8kdatWwMwceJEatWqZTdIxMeVLFmSxYsXY4xh2LBhrFy50naSyG3RsBKfdfLkSerWrUtsbCxt27ald+/etpNEBKhVqxYTJkwAoGXLluzYscNykUjKaViJT4qNjaV+/fqcPHmSypUrM3PmTIxJ0UV1RSQN9OnTh5YtWxITE0O9evWIitLtZ8UzaFiJz3Ech3bt2rF161YefPBBVqxYQcaMGW1nichNjDGEh4dTrlw5jhw5QqNGjXTDZvEIGlbic8aOHcuiRYvIli0bH3/8Mfny5bOdJCJ/I1OmTHz44YcUKFCA7777jm7dumHr/rYiKaVhJT5l7dq1DB06FGMMCxcupFSpUraTRORfFChQgFWrVpExY0ZmzZrFzJkzbSeJ/CsNK/EZERERtGjRAsdxGDFiBHXr1rWdJCIpULZsWebMmQNAz549+frrry0XifwzDSvxCVeuXKFhw4ZcuHCBunXrMmTIENtJInIbWrRowYABA0hMTKRp06YcO3bMdpLI39KwEq/3v5PVd+3aRXBwMPPmzcPPT//qi3iasLAwatSowdmzZ2ncuDFxcXG2k0T+Qn+6iNebMmUKS5YsIVu2bKxatYqcOXPaThKRO+Dv78+iRYt48MEH2bJlCz169LCdJPIXGlbi1b766iv69+8PwLx58yhWrJjlIhG5G3nz5mXlypVkzJiR8PBwZs+ebTtJ5A80rMRrHTlyhGbNmpGUlMTgwYNp0KCB7SQRcYEyZcrw1ltvAdC1a1e2bdtmuUjk/9OwEq909epVGjZsyNmzZ6lZsyYjR460nSQiLtSmTRs6depEXFwcjRo14uzZs7aTRAANK/FSPXr0YPv27Tz88MN88MEH+Pv7204SERd7/fXXKV++PEePHqV58+YkJCTYThLRsBLvM3/+fGbNmkXGjBlZsWIFefLksZ0kIqkgY8aMLF++nHz58vHll18ydOhQ20kiGlbiXfbs2UOnTp0AmDFjBqVLl7ZcJCKp6YEHHmDJkiX4+/szfvx4PvnkE9tJ4uM0rMRrXL58mSZNmhATE0PLli1p166d7SQRSQNVq1YlLCwMgFatWnH06FHLReLLNKzEKziOw8svv8y+ffsoUaIEb731FsYY21kikkb69etH7dq1+f3332nWrBnx8fG2k8RHaViJVwgPD+eDDz4ga9asLFu2jKxZs9pOEpE05Ofnx7x58yhYsCCbNm1i0KBBtpPER2lYicfbvn178hWYw8PDdRFQER+VN29elixZQrp06ZgyZQofffSR7STxQRpW4tEuXLhA48aNiY+Pp1OnTrRo0cJ2kohYVLFiRcaNGwdA69atOXz4sOUi8TUaVuKxHMehTZs2HD58mDJlyjB16lTbSSLiBl555RXq1q3LhQsXdL6VpDkNK/FY06dPT76p8rJly8iUKZPtJBFxA8YY3n//fR588EG2bt1Kv379bCeJD9GwEo/0008/Jf9mOWfOHB5++GHLRSLiTnLnzs3SpUtJnz49b7zxBitWrLCdJD5Cw0o8zuXLl2nevDnx8fF07tyZhg0b2k4SETdUrlw5Jk6cCEC7du04cuSI5SLxBRpW4nG6devGr7/+SqlSpZg8ebLtHBFxYz169KBevXpcvHiRFi1a6H6Ckuo0rMSjLFy4kLlz55I5c2YWL15M5syZbSeJiBszxjB79mzuv/9+/vvf/zJy5EjbSeLlNKzEY0RERCTfB3DatGkUL17ccpGIeIK8efOyYMECjDGEhYXx7bff2k4SL6ZhJR4hPj6e559/nsuXL9O0aVPat29vO0lEPEjVqlUZPHgwSUlJvPjii5w7d852kngpDSvxCIMHD2bbtm0ULlyY8PBw3QdQRG7bsGHDqFixIsePH6d9+/Y4jmM7SbyQhpW4vbVr1zJ58mT8/f1ZtGgROXPmtJ0kIh4offr0fPDBB+TIkYNVq1bxzjvv2E4SL6RhJW7t9OnTtGrVCoDRo0dToUIFy0Ui4sn+d9QboHfv3uzevdtykXgbDStxW47j0LZtW6KioqhWrRr9+/e3nSQiXqBZs2a0bduWq1ev0rx5c2JjY20niRfRsBK39dZbb7F27Vpy587N3Llz8fPTv64i4hpvvPEGwcHB7Nmzh759+9rOES+iP6nELe3bt48+ffoAEB4ezv3332+5SES8SdasWVm8eDHp06dn5syZrF271naSeAkNK3E78fHxvPjii1y9epVWrVrRuHFj20ki4oUee+wxRo8eDUDbtm05e/as5SLxBhpW4naGDRvG9u3bKVy4MG+88YbtHBHxYn369KFKlSqcPn2ajh076hIMctc0rMStbNiwgfHjx+Pn58f8+fPJkSOH7SQR8WL+/v7MmzeP7Nmz8+GHH/L+++/bThIPp2ElbuPixYu0bNkSx3EYNGgQlStXtp0kIj6gcOHCzJgxA7h+0+bDhw9bLhJPpmElbqNbt24cPXqU0NBQhg0bZjtHRHxIy5Ytady4MZcvX6Zly5YkJibaThIPpWElbmHx4sUsWLCALFmysHDhQtKnT287SUR8iDGGt99+m/vuu48ffviBCRMm2E4SD6VhJdYdO3aMzp07AzBlyhSCg4MtF4mIL8qbNy/vvfceAK+99hrbt2+3XCSeSMNKrEpKSqJt27ZcuHCB5557jo4dO9pOEhEfVrNmTbp160ZCQgIvvviirsouty1Fw8oY84wx5hdjTIQxZuA/PKapMWavMWaPMeYD12aKt3r77bf54osvyJs3L++++y7GGNtJIuLjxo8fT0hICPv27WPAgAG2c8TD3HJYGWP8gTeBWkBx4HljTPE/PSYIGARUchynBNArFVrFyxw8eJB+/foB1wfWvffea7lIRITkcz3TpUvH9OnT+eKLL2wniQdJyRGrckCE4ziHHMeJBxYD9f70mA7Am47jnAdwHCfStZnibRITE2ndujUxMTE0b95cV1cXEbdSpkyZ5Hcnt2vXjkuXLlkuEk+RkmF1P3Dspo+P3/jczYKBYGPMD8aYTcaYZ1wVKN5p2rRpfP/99+TPnz/5+jEiIu5k4MCBhIaGcvTo0eR7l4rciqtOXk8HBAFVgeeBWcaYXH9+kDGmozFmmzFmW1RUlIueWjzNvn37GDx4MACzZs0ib968lotERP4qXbp0zJ07lwwZMvDuu+/qRs2SIikZVieAgjd9/MCNz93sOLDacZxrjuMcBn7l+tD6A8dxwh3HCXUcJzQgIOBOm8WDJSQk0KpVK+Li4mjTpg3PPfec7SQRkX9UvHhxRo0aBUD79u05f/685SJxdykZVluBIGPMQ8aYDEBzYPWfHrOK60erMMbcw/WXBg+5sFO8xPjx49m6dSsFCxZk6tSptnNERG6pT58+VKxYkZMnT9Krl96bJf/ulsPKcZwEoBuwHtgHLHUcZ48xZqQxpu6Nh60Hzhlj9gJfA/0cxzmXWtHimXbs2MGIESMAmDNnDjlz5rRcJCJya/7+/rz//vtkypSJefPmsXr1n48tiPx/xnEcK08cGhrqbNu2zcpzS9qLj4+nbNmy7Ny5ky5duvDmm2/aThIRuS2vv/46vXv35t5772XPnj06P9T3pOhCi7ryuqSJkSNHsnPnTooUKcL48eNt54iI3LYePXpQpUoVzpw5Q/fu3W3niJvSsJJUt3XrVsaNG4cxhvfff59s2bLZThIRuW1+fn689957ZMmShUWLFrFixQrbSeKGNKwkVf3v3X+JiYn07t2bypUr204SEbljRYoUYeLEiQB06tSJyEhdD1v+SMNKUlVYWBh79uwhKCiI0aNH284REblrnTp1olq1apw9e5auXbvazhE3o2ElqWbHjh2MHTsWgNmzZ5M5c2bLRSIid8/Pz4/Zs2eTLVs2li9fzsqVK20niRtJSHdkAAAgAElEQVTRsJJUce3aNdq0aUNCQgLdunWjSpUqtpNERFzmwQcfZNy4cQB06dKF33//3XKRuAsNK0kVkyZN4qeffuLBBx9MPmolIuJNOnfunPwuwVdeecV2jrgJDStxuX379iVfCHTWrFl6F6CIeCU/Pz/effddMmXKxNy5c1m3bp3tJHEDGlbiUomJibRr1464uDjatWtHjRo1bCeJiKSa4ODg5B8kX375ZaKjoy0XiW0aVuJS06dPZ+PGjRQoUIBJkybZzhERSXWvvPIKjz/+OEePHmXgwIG2c8QyDStxmYMHDzJ48GAA3n77bXLlymW5SEQk9aVLl445c+aQLl06Zs6cyYYNG2wniUUaVuISSUlJdOjQgdjYWFq0aEGdOnVsJ4mIpJlHHnkk+QfL9u3bExsba7lIbNGwEpeYNWsWX3/9NQEBAUybNs12johImhsyZAglSpTgwIEDDBs2zHaOWKJhJXft2LFj9OvXD4AZM2Zwzz33WC4SEUl7GTJkYM6cOfj5+TF58mS2bt1qO0ks0LCSu+I4Dl26dCE6Opr69evTpEkT20kiItaUK1eO3r17k5SURLt27YiPj7edJGlMw0ruyvLly/nkk0/ImTMnM2fOxBhjO0lExKqRI0cSGBjIrl27kq/OLr5Dw0ru2Pnz5+nevTsA48eP57777rNcJCJiX5YsWZg1axZw/Ub0+/fvt1wkaUnDSu7YwIEDOXPmDJUrV6ZDhw62c0RE3EbVqlWTXwp8+eWXSUpKsp0kaUTDSu7Ihg0bCA8PJ3369ISHh+Pnp3+VRERuNmHCBPLly8eGDRt47733bOdIGtGfhnLb4uLi6NixIwCDBw+mWLFilotERNxPnjx5eP311wHo27cvZ86csVwkaUHDSm7bmDFj+OWXXwgJCWHQoEG2c0RE3Fbz5s155plnuHDhAr169bKdI2lAw0puy969exk7diwA4eHhZMyY0XKRiIj7MsYwc+ZMsmTJwuLFi1m7dq3tJEllGlaSYklJSXTs2JFr167RsWNHqlSpYjtJRMTtPfTQQ4wcORKAzp07c+XKFctFkpo0rCTFwsPD+eGHH8ifPz/jx4+3nSMi4jF69uzJY489xpEjR3S7Gy+nYSUpcvLkSQYMGADA9OnTyZUrl+UiERHPkS5dOmbNmoWfnx9Tp05l+/bttpMklWhYSYp0796dS5cuUadOHRo1amQ7R0TE4zz++OP07Nkz+bSKhIQE20mSCjSs5JZWrVrFypUryZYtG2+++aZuWyMicodGjhxJoUKF+PHHH5k+fbrtHEkFGlbyr6Kjo5NvWzNmzBgKFixouUhExHNly5aNt956C4ChQ4fy22+/2Q0Sl9Owkn81fPhwjh8/TtmyZenSpYvtHBERj1e7dm2aNWtGTEwMXbt2xXEc20niQhpW8o927NjBtGnT8PPz4+2338bf3992koiIV3j99dfJlSsXn376KStXrrSdIy6kYSV/KykpiU6dOpGYmEi3bt0oU6aM7SQREa+RP39+xowZA1y/FEN0dLTlInEVDSv5W++++y6bNm3ivvvuY9SoUbZzRES8TseOHSlbtiwnTpxg+PDhtnPERTSs5C8iIyMZOHAgcP1wdY4cOSwXiYh4H39/f95++238/PyYNm0aO3futJ0kLqBhJX/Rr18/zp8/T82aNWnSpIntHBERr1WmTBm6du1KYmIinTp1IikpyXaS3CUNK/mDb775hnnz5pExY0ZmzJiha1aJiKSyUaNGcd9997Fx40bmzJljO0fukoaVJIuPj6dz584ADBkyhMDAQMtFIiLeL2fOnEydOhWA/v37ExUVZblI7oaGlSSbNGkS+/fvJzg4mP79+9vOERHxGU2bNqVGjRqcP39ev/96OGPrwmShoaHOtm3brDy3/NWhQ4coUaIEV69e5csvv+Spp56ynSQi4lMOHDhAqVKliIuLY8OGDVSpUsV2kvxRis6N0RErwXEcunXrxtWrV3nhhRc0qkRELAgKCkp+R3bnzp25du2a5SK5ExpWwsqVK1m7di05c+Zk8uTJtnNERHzWwIEDCQwMZM+ePcnnXYln0bDycdHR0fTs2ROAsWPHcu+991ouEhHxXZkyZeLNN98EYMSIERw5csRykdwuDSsfN2zYME6cOEG5cuXo2LGj7RwREZ/39NNP07RpU2JiYpJ/8BXPoZPXfdiuXbt47LHHcByHrVu36n6AIiJu4uTJk4SEhBAdHc1HH31E3bp1bSeJTl6Xf/O/E9YTExPp3LmzRpWIiBspUKBA8n1ae/ToQUxMjOUiSSkNKx+1aNEiNmzYQEBAgG6yLCLihrp27cqjjz7KkSNHGDdunO0cSSENKx906dIl+vbtC8C4cePInTu35SIREfmzdOnSJZ/IPmHCBA4ePGi5SFJCw8oHjRgxglOnTlG+fHlat25tO0dERP5BpUqVeOmll4iLi9OJ7B5CJ6/7mD179vDoo4+SlJTE1q1befzxx20niYjIvzh9+jRFixbl0qVLrF69mjp16thO8lU6eV3+6OYT1l9++WWNKhERD5A/f35GjBgBQM+ePYmNjbVcJP9Gw8qHLFmyhG+++Ya8efMSFhZmO0dERFKoW7dulCxZksOHDzNx4kTbOfIvUjSsjDHPGGN+McZEGGMG/svjGhljHGNMqOsSxRWio6Pp06cPcP2E9Tx58lguEhGRlLr5RPaxY8dy+PBhy0XyT245rIwx/sCbQC2gOPC8Mab43zwuO9AT2OzqSLl7o0aN4uTJk5QrV462bdvazhERkdv0n//8hxYtWnD16lV69+5tO0f+QUqOWJUDIhzHOeQ4TjywGKj3N48bBYwHrrqwT1xg7969TJ06FWMMb775Jn5+egVYRMQTTZw4kWzZsvHRRx+xdu1a2znyN1LyJ+z9wLGbPj5+43PJjDFlgIKO46xxYZu4gOM4dO/enYSEBDp06EBoqF6lFRHxVAUKFGD48OHA9Suyx8XF2Q2Sv7jrQxfGGD9gCtAnBY/taIzZZozZFhUVdbdPLSmwbNkyvvrqK/LkycOYMWNs54iIyF3q0aMHxYoVIyIigkmTJtnOkT9JybA6ARS86eMHbnzuf7IDJYFvjDG/ARWA1X93ArvjOOGO44Q6jhMaEBBw59WSIpcvX+aVV14BYMyYMeTNm9dykYiI3K306dMzY8YMAMLCwjhy5IjlIrlZSobVViDIGPOQMSYD0BxY/b8vOo5z0XGcexzHKew4TmFgE1DXcRxd/dOy0aNHc+LECR5//HHat29vO0dERFzkqaeeomnTpsTGxia/41vcwy2HleM4CUA3YD2wD1jqOM4eY8xIY0zd1A6UO7N//36mTJkCwJtvvom/v7/lIhERcaXJkyeTNWtWVqxYweeff247R25I0TlWjuN86jhOsOM4RRzHCbvxudccx1n9N4+tqqNVdjmOQ8+ePbl27Rrt27enfPnytpNERMTFHnjgAV599VUAunfvTnx8vOUiAV153St9/PHHfPbZZ+TMmVMnrIuIeLHevXtTtGhRfvnlF6ZNm2Y7R9Cw8jpxcXHJJ6yPGDECvUlARMR7ZciQIXlQjRo1itOnT1suEg0rLzN16lQOHjxI8eLF6dKli+0cERFJZTVr1qROnTpER0czaNAg2zk+zziOY+WJQ0NDnW3bdCqWK508eZLg4GCuXLnC559/TvXq1W0niYhIGoiIiKBEiRLEx8ezefNmypUrZzvJG5mUPEhHrLzIgAEDuHLlCvXr19eoEhHxIYGBgcn3D+zRowdJSUmWi3yXhpWX2LhxIwsWLCBjxoxMnjzZdo6IiKSxIUOGcN9997F582YWLFhgO8dnaVh5gaSkJHr06AFAnz59ePjhhy0XiYhIWsuePTvjxo0Drr+CER0dbbnIN2lYeYH333+fbdu2UaBAAZ24KCLiw1588UXKly/P6dOnCQsLs53jkzSsPNzFixeTx9SECRPIli2b5SIREbHFz8+PN954A7j+LvGIiAjLRb5Hw8rDjRo1isjISJ544glatGhhO0dERCwrV64crVu3Jj4+Pvm6hpJ2dLkFD/bLL79QsmRJEhMT2bp1K48//rjtJBERcQOnT58mODiY6Oho1q1bR82aNW0neQNdbsHb9e7dm4SEBNq2batRJSIiyfLnz598H8FevXpx7do1y0W+Q8PKQ61Zs4a1a9eSI0cO3Q9QRET+omfPngQFBbF//35mzJhhO8dnaFh5oPj4+OQLwQ0fPpx8+fJZLhIREXeTIUMGpk6dClz/syIyMtJykW/QsPJA06ZN48CBA4SEhNCtWzfbOSIi4qaeffZZatWqxaVLlxgyZIjtHJ+gk9c9jE5IFBGR26E3OrmMTl73RoMGDSI6Opo6depoVImIyC0VLVqUnj174jhO8v9K6tERKw+yZcsWypcvT4YMGdizZw+BgYG2k0RExANcvHiR4OBgIiMjWbhwoa57eGd0xMqb/O8nDbh+mQWNKhERSamcOXMyduxY4Pp9BGNiYiwXeS8NKw+xePFiNm3axL333qsTEEVE5La1bt2aMmXKcPz4cSZNmmQ7x2tpWHmA2NhYBgwYAEBYWBjZs2e3XCQiIp7Gz88v+fIL48eP58SJE5aLvJOGlQeYPHkyx44do3Tp0rRu3dp2joiIeKj//Oc/NG7cmJiYGAYPHmw7xyvp5HU3d/LkSYKCgoiJieHrr7+matWqtpNERMSDHTp0iGLFihEfH8+WLVsoW7as7SRPoZPXvcGQIUOIiYmhQYMGGlUiInLXHn744eS7d/Tu3VuXX3AxHbFyYz/++COhoaGkT5+evXv36p2AIiLiEpcuXSIoKIjIyEiWLFlC06ZNbSd5Ah2x8mSO4yT/RNGzZ0+NKhERcZkcOXIwevRoAPr378/Vq1ctF3kPDSs3tWLFCr777jsCAgIYOnSo7RwREfEybdu25ZFHHuHIkSPJ7xaUu6dh5YauXr1K//79ARg5ciQ5c+a0XCQiIt7G398/eVCNGTOGU6dOWS7yDhpWbmjatGkcPnyYkiVL0r59e9s5IiLipZ566inq1avH5cuX9eqIi+jkdTdz5swZgoKCiI6O5rPPPqNGjRq2k0RExIsdOHCAEiVKkJCQwI8//shjjz1mO8ld6eR1T/Tqq68SHR3Nc889p1ElIiKpLigoiO7duye/aUqXX7g7OmLlRnbs2MFjjz2Gv78/u3fvpmjRoraTRETEB1y4cIHAwEDOnTvHihUraNiwoe0kd6QjVp7k5p8UunbtqlElIiJpJleuXIwcORKAfv36ERcXZ7nIc2lYuYnVq1fz9ddfkydPHl577TXbOSIi4mM6duxI8eLFOXToEG+88YbtHI+lYeUG4uPj6du3LwDDhw8nT548lotERMTXpEuXjilTpgAwevRoIiMjLRd5Jg0rNzBjxgwiIiIICQmhU6dOtnNERMRH1axZk9q1a3Pp0iW9enKHdPK6ZVFRUQQFBXHx4kU+/fRTatWqZTtJRER82P79+ylZsiSO4/Dzzz9TqlQp20nuQieve4Lhw4dz8eJFatasqVElIiLWhYSE0KVLF5KSknT5hTugI1YW7dmzh0ceeQRjDDt27KBEiRK2k0RERDh37hxBQUGcP3+ejz/+mOeee852kjvQESt317dvX5KSknj55Zc1qkRExG3kzZs3+Ryrfv36kZCQYLnIc2hYWfLZZ5+xbt06cuTIwfDhw23niIiI/EGXLl0oUqQI+/fvZ9asWbZzPIaGlQWJiYnJl1cYPHgwAQEBlotERET+KEOGDIwfPx6AYcOGcenSJctFnkHDyoK5c+eya9cuChUqRM+ePW3niIiI/K2GDRtSuXJloqKiGDt2rO0cj6BhlcYuX77M0KFDARg7diyZMmWyXCQiIvL3jDFMmjQJgKlTp3L06FHLRe5PwyqNTZo0iVOnTlG2bFmaN29uO0dERORflS9fnubNmxMXF8fgwYNt57g9XW4hDZ08eZKgoCBiYmLYsGEDVapUsZ0kIiJyS7/99hshISHExcWxZcsWypYtazvJBl1uwd28+uqrxMTE0KBBA40qERHxGIULF04+J7hPnz66aOi/0BGrNLJz505Kly6Nv78/e/fuJSgoyHaSiIhIil28eJEiRYpw7tw5Vq5cSYMGDWwnpTUdsXIXjuPQt29fHMehS5cuGlUiIuJxcubMmXzdxf79+xMfH283yE1pWKWBdevW8fnnn5MzZ07dLVxERDzWyy+/TNGiRYmIiODtt9+2neOWNKxSWUJCQvLFQIcOHUrevHktF4mIiNyZ9OnTM2HCBABGjBjB+fPnLRe5nxQNK2PMM8aYX4wxEcaYgX/z9VeMMXuNMTuNMV8aYx50fapnmjNnDnv37uWhhx6ie/futnNERETuSp06dahatSq///47YWFhtnPczi2HlTHGH3gTqAUUB543xhT/08N+AkIdx3kEWA5McHWoJ4qOjk5+6W/cuHFkzJjRcpGIiMjdufmiodOnT+fQoUOWi9xLSo5YlQMiHMc55DhOPLAYqHfzAxzH+dpxnJgbH24CHnBtpmeaMGECZ86coUKFCjRp0sR2joiIiEs8/vjjtGzZkvj4eAYNGmQ7x62kZFjdDxy76ePjNz73T9oBa+8myhscP36cyZMnAzB58mSMSdG7NEVERDxCWFgYmTJlYunSpWzcuNF2jttw6cnrxpgXgVBg4j98vaMxZpsxZltUVJQrn9rtDB06lNjYWBo3bswTTzxhO0dERMSlChYsSJ8+fQB45ZVXdNHQG1IyrE4ABW/6+IEbn/sDY0x1YAhQ13GcuL/7hRzHCXccJ9RxnNCAgIA76fUIP/30E/PmzSN9+vSMGzfOdo6IiEiqGDBgAPny5WPTpk0sW7bMdo5bSMmw2goEGWMeMsZkAJoDq29+gDHmMeAdro+qSNdneg7HcZIv99+tWzeKFCliO0lERCRVZM+enZEjRwIwcOBA4uL+9riKT7nlsHIcJwHoBqwH9gFLHcfZY4wZaYype+NhE4FswDJjzM/GmNX/8Mt5vTVr1vD111+TO3duhg4dajtHREQkVbVr147ixYtz+PBhZsyYYTvHOt0r0IUSEhIoVaoU+/fvZ8qUKfTu3dt2koiISKpbu3YttWvXJleuXERERHjrxbB1r8C0NmvWLPbv30+RIkXo2rWr7RwREZE08cwzz1CjRg0uXLiQ/NKgr9IRKxe5dOkSgYGBREVFsXz5cho1amQ7SUREJM3s2LGDxx57DH9/f/bs2UNwcLDtJFfTEau0NG7cOKKioqhUqRINGza0nSMiIpKmHn30Udq0aUNCQoJPXzRUR6xc4OjRoxQtWpSrV6+yadMmypcvbztJREQkzZ08eZLAwEBiY2P54YcfvO06jjpilVaGDBnC1atXadasmUaViIj4rAIFCiRfNLRv374+edFQHbG6Sz/99BNlypQhQ4YM7N+/n4ceesh2koiIiDXR0dEUKVKEqKgoVqxY4U2nx+iIVWpzHId+/foB0K1bN40qERHxedmzZ2f48OHA9YuGXrt2zW5QGtOwugvr16/nyy+/JFeuXAwZMsR2joiIiFvo0KEDwcHBHDhwgPDwcNs5aUrD6g4lJibSv39/AAYPHkyePHksF4mIiLiHm++VO2LECC5dumS5KO1oWN2h+fPns2vXLgoVKkT37t1t54iIiLiV+vXrU6lSJaKiopgwYYLtnDSjYXUHYmNjk+8DGBYWRqZMmSwXiYiIuBdjDBMnTgRgypQpnDhxwnJR2tCwugPTpk3jxIkTlC5dmhYtWtjOERERcUsVK1akcePGxMbG8uqrr9rOSRO63MJtOnv2LEWKFOHSpUt8/vnnVK9e3XaSiIiI2zpw4ADFixcnMTGRHTt2UKpUKdtJd0qXW0gNo0eP5tKlS9SsWVOjSkRE5BaCgoLo3LkzjuMkv+nLm+mI1W04ePAgxYoVIyEhgZ9++olHH33UdpKIiIjbi4qKIjAw0NNf7dERK1cbMmQI165d46WXXtKoEhERSaGAgAAGDhwIQP/+/UlKSrJclHp0xCqFtmzZQvny5cmYMSMHDhygYMGCtpNEREQ8RmxsLMHBwRw/fpz58+fz4osv2k66XTpi5So3vy7cq1cvjSoREZHblDlzZkaNGgVcfwXo6tWrlotSh4ZVCqxZs4Zvv/2WPHnyJB/KFBERkdvTsmVLHnnkEY4ePcr06dNt56QKDatbSEhIYMCAAQC8+uqr5MqVy3KRiIiIZ/L390++CntYWBjnzp2zXOR6Gla38P7777N3714eeughOnfubDtHRETEo9WsWZMaNWpw8eJFwsLCbOe4nIbVv7hy5QqvvfYaAGPGjCFjxoyWi0RERDzfhAkTMMYwY8YMDh06ZDvHpTSs/sXUqVM5deoUoaGhNG3a1HaOiIiIVyhdujQtW7bk2rVrDBkyxHaOS+lyC/8gMjKSIkWKcPnyZb766iv+7//+z3aSiIiI1zh69CjBwcHExcWxZcsWypYtazvpVnS5hbsxcuRILl++zLPPPqtRJSIi4mKFChWiV69eAPTt2xdbB3pcTUes/savv/5KiRIlSEpKYseOHZQsWdJ2koiIiNe5cOECgYGBnDt3jtWrV1OnTh3bSf9GR6zu1ODBg0lISKBNmzYaVSIiIqkkV65cvPrqq8D1W90kJCRYLrp7GlZ/snHjRlasWEHmzJkZMWKE7RwRERGv1rlzZx5++GH279/PnDlzbOfcNQ2rmziOQ79+/QDo06cP999/v+UiERER75YhQwbGjh0LwGuvvcbly5ctF90dDaubfPTRR/zwww8EBAQkDywRERFJXU2aNKFcuXKcOXOGyZMn2865KxpWN1y7di351jXDhg0jR44clotERER8gzGGSZMmATBx4kROnz5tuejOaVjd8O677/Lrr78SFBREx44dbeeIiIj4lCpVqlCvXj2uXLnC8OHDbefcMV1uAYiOjiYwMJDIyEiWL19Oo0aNbCeJiIj4nP379ye/G3/Xrl0UK1bMctEf6HILKTVp0iQiIyOpUKECDRs2tJ0jIiLik0JCQujQoQOJiYnJp+d4Gp8/YnXq1CkCAwOJiYnhu+++o3LlyraTREREfNbp06cJDAzkypUrbNiwgSpVqthO+h8dsUqJ4cOHExMTQ/369TWqRERELMufP3/yO/P79evncbe68ekjVvv27aNkyZIYY9i9ezchISFWe0RERAQuX75MYGAgZ86cYdmyZTRu3Nh2EuiI1a0NHDiQpKQkOnTooFElIiLiJrJly5b8zsBBgwZx7do1u0G3wWeH1YYNG1i9ejVZs2Zl2LBhtnNERETkJu3atSM4OJiIiAjCw8Nt56SYTw6rm29d069fP/Lnz2+5SERERG6WPn16xo0bB8CIESOIjo62XJQyPjmsli9fzpYtW7j33nvp06eP7RwRERH5G/Xr1+eJJ54gKiqKiRMn2s5JEZ8bVvHx8QwaNAi4voCzZctmuUhERET+jjGGCRMmADB58mROnTpluejWfG5YvfPOOxw8eJCiRYvSrl072zkiIiLyLypVqkT9+vWJiYnxiFvd+NTlFi5evEhgYCBnz55l1apV1KtXL02fX0RERG6fm9zqRpdb+LMJEyZw9uxZKleuTN26dW3niIiISAqEhITQvn17EhMTk0/ncVc+c8Tq+PHjBAUFcfXqVTZu3EiFChXS7LlFRETk7tx8qxtLt6DTEaubDRs2jKtXr9KkSRONKhEREQ+TP3/+5Hfyu/OtbnziiNWuXbsoXbo0fn5+7Nu3j8DAwDR5XhEREXGd6OhoAgMDiYyMZPny5TRq1Cgtn15HrP7nf7eu6dy5s0aViIiIh8qePXvy3VLc9VY3Xj+svvrqKz799FOyZ8/Oq6++ajtHRERE7kKHDh0ICgriwIEDzJo1y3bOX6RoWBljnjHG/GKMiTDGDPybr2c0xiy58fXNxpjCrg69E0lJSfTv3x+4ftQqICDAcpGIiIjcjfTp0zN27FjAPW91c8thZYzxB94EagHFgeeNMcX/9LB2wHnHcQKBqcB4V4feiSVLlvDjjz9SoEABevXqZTtHREREXKBhw4ZUqFCByMhIJk2aZDvnD1JyxKocEOE4ziHHceKBxcCfr6xZD5h74++XA9WMMSk6ySu1xMXFMXjwYABGjRpFlixZbOaIiIiIixhjku8d6G63ukmXgsfcDxy76ePjQPl/eozjOAnGmItAXuCsKyLvxJtvvslvv/1GlixZmDt3LvPmzbOVIiIiIqkgb968nD9/nh9//JHnnnvOdg6QsmHlMsaYjkBHgEKFCqXqc505cwaAhx9+GMsHz0RERCQVBAYGYoxxm1EFKbiOlTGmIjDccZyaNz4eBOA4ztibHrP+xmM2GmPSAaeBAOdffvG0uI7VoUOHeOihhzSsRERE5G657DpWW4EgY8xDxpgMQHNg9Z8esxpodePvGwNf/duoSis6WiUiIiJp6ZYvBd44Z6obsB7wB+Y4jrPHGDMS2OY4zmpgNjDfGBMB/M718SUiIiLiU3ziljYiIiIid0m3tBERERFJSxpWIiIiIi6iYSUiIiLiIhpWIiIiIi6iYSUiIiLiIhpWIiIiIi6iYSUiIiLiIhpWIiIiIi6iYSUiIiLiIhpWIiIiIi5i7ZY2xph1juM8k8rP0dFxnPDUfA5xT/re+y59732Xvve+y52+99aGVVowxmxzHCfUdoekPX3vfZe+975L33vf5U7fe70UKCIiIuIiGlYiIiIiLuLtw8otXm8VK/S991363vsufe99l9t87736HCsRERGRtOTtR6z+X3t3HmpFGcZx/PvDpdSKtEXMBTUyKjMVyygrF7RM0SQSt/KPIImKpMWlgvxHMLMQ+iMiU4xKsdKSsiwwMrTMvO67hppL9+KWWaClv/6Y9+DpIpJ4Fu7p+cDlzDznneE5zDkzz7zvO9wQQgghhJKp2MJK0mhnzAYAAAToSURBVH2StkraIWlCufMJhSOptaRvJG2StFHS0yk+SdI+SWvS3/1523SS9H1qv17SxeX7BOFCSNqVjuEaST+l2EPp2J6W1C2vbV9Jq1L7VZJ6ly/zcCEkXZ/3214j6Ziksem9pyRtSd+BqSnWQNLsdOw3S5pY3k8QzoekmZJqJG3IizWT9LWk7em1aYqPlLQuHevlkm6pta96klZL+qwkuVfiUKCkesA2oC+wF1gJDLe9qayJhYKQ1AJoYbtK0qXAKuABYChw3Pa0Wu3rA1XAw7bXSroCOGr7VKlzDxdO0i6gm+2DebEbgNPAW8BztnMFVxeg2vZ+SR2BxbZbliHtUEDpHL8P6A60B14EBtg+Ielq2zWSRgCDbA+T1BjYBPS0vatsiYf/TNLdwHHgXdsdU2wqcNj2lNRh0tT2eEl3AJttH5HUH5hku3vevp4BugGX2R5Y7NwrtcfqNmCH7Z9tnwTmAoPLnFMoENsHbFel5d+BzcC5Lpb9gHW216ZtDkVRVVlsb7a99Szx1bb3p9WNQCNJF5U2u1AEfYCdtncDjwNTbJ8AsF2T2hhokm6sGgEngWPlSDacP9tLgcO1woOB2Wl5NtkNNbaX2z6S4j8ArXIbSGoFDABmFDXhPJVaWLUEfslb38u5L7yhjpLUFugCrEihJ1OX8MxcNzHQAbCkxZKqJI0rQ6qhcAx8lYb2HjuP7R4EqnIX4FCnDQPmpOUOwF2SVkj6VtKtKf4R8AdwANgDTLNd+0Id6pbmtg+k5V+B5mdp8yjwRd76dGAcWY92SVRqYRX+ByRdAnwMjLV9DHgTuBboTHYyfS01rQ/0AEam1yGS+pQ+41AgPWx3BfoDT6Qhg3OSdBPwCjCm2MmF4pLUEBgEfJhC9YFmwO3A88A8SSIbuTgFXAO0A56V1L70GYdicDaP6V9zmST1Iiusxqf1gUCN7VWlzK1SC6t9QOu89VYpFiqEpAZkRdX7tucD2K62fcr2aeBtshMrZD2WS20ftP0nsAjoWo68w4WzvS+91gALOHOczyoNBSwAHrG9s/gZhiLrT9bzWJ3W9wLznfmRrGfiSmAE8KXtv9J3ZRnZPJtQd1WnOba5uba5YV8kdSIb7hts+1AK3wkMSvMy5wK9Jb1X7CQrtbBaCVwnqV26uxkGLCxzTqFA0t3oO2STFV/Pi7fIazYEyD1Nshi4WVLjNN/iHrKJrKGOkdQkPbCApCZk8+c2nKP95cDnwATby0qTZSiy4ZwZBgT4BOgFIKkD0BA4SDb81zvFm5D1aG0paaah0BYCo9PyaOBTAEltgPlkDyhtyzW2PdF2K9ttyeqAJbZHFTvJinwqECA9aj8dqAfMtD25zCmFApHUA/gOWM+ZcfMXyE64ncm6h3cBY3Lj8ZJGARPTe4tsxzyrOigN5SxIq/WBD2xPljQEeAO4CjgKrLF9r6SXyI779rzd9Mub4BzqkFQg7QHa2/4txRoCM8l++yfJngpdkqYKzAJuBATMsv1qeTIP50vSHKAnWe9jNfAyWRE9D2gD7AaG2j4saQbZHMrdafO/a/9DZkk9yb4bRX8qsGILqxBCCCGEUqvUocAQQgghhJKLwiqEEEIIoUCisAohhBBCKJAorEIIIYQQCiQKqxBCCCGEAonCKoQQQgihQKKwCiGEEEIokCisQgghhBAK5B8FlA7WQSpRawAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x432 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs.plotTable('giHalfSine')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following will create 320 tables with 720 points each:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 .. 11 .. 12 .. 13 .. 14 .. 15 .. 16 .. 17 .. 18 .. 19 .. 20 .. 21 .. 22 .. 23 .. 24 .. 25 .. 26 .. 27 .. 28 .. 29 .. 30 .. 31 .. 32 .. 33 .. 34 .. 35 .. 36 .. 37 .. 38 .. 39 .. 40 .. 41 .. 42 .. 43 .. 44 .. 45 .. 46 .. 47 .. 48 .. 49 .. 50 .. 51 .. 52 .. 53 .. 54 .. 55 .. 56 .. 57 .. 58 .. 59 .. 60 .. 61 .. 62 .. 63 .. 64 .. 65 .. 66 .. 67 .. 68 .. 69 .. 70 .. 71 .. 72 .. 73 .. 74 .. 75 .. 76 .. 77 .. 78 .. 79 .. 80 .. 81 .. 82 .. 83 .. 84 .. 85 .. 86 .. 87 .. 88 .. 89 .. 90 .. 91 .. 92 .. 93 .. 94 .. 95 .. 96 .. 97 .. 98 .. 99 .. 100 .. 101 .. 102 .. 103 .. 104 .. 105 .. 106 .. 107 .. 108 .. 109 .. 110 .. 111 .. 112 .. 113 .. 114 .. 115 .. 116 .. 117 .. 118 .. 119 .. 120 .. 121 .. 122 .. 123 .. 124 .. 125 .. 126 .. 127 .. 128 .. 129 .. 130 .. 131 .. 132 .. 133 .. 134 .. 135 .. 136 .. 137 .. 138 .. 139 .. 140 .. 141 .. 142 .. 143 .. 144 .. 145 .. 146 .. 147 .. 148 .. 149 .. 150 .. 151 .. 152 .. 153 .. 154 .. 155 .. 156 .. 157 .. 158 .. 159 .. 160 .. 161 .. 162 .. 163 .. 164 .. 165 .. 166 .. 167 .. 168 .. 169 .. 170 .. 171 .. 172 .. 173 .. 174 .. 175 .. 176 .. 177 .. 178 .. 179 .. 180 .. 181 .. 182 .. 183 .. 184 .. 185 .. 186 .. 187 .. 188 .. 189 .. 190 .. 191 .. 192 .. 193 .. 194 .. 195 .. 196 .. 197 .. 198 .. 199 .. 200 .. 201 .. 202 .. 203 .. 204 .. 205 .. 206 .. 207 .. 208 .. 209 .. 210 .. 211 .. 212 .. 213 .. 214 .. 215 .. 216 .. 217 .. 218 .. 219 .. 220 .. 221 .. 222 .. 223 .. 224 .. 225 .. 226 .. 227 .. 228 .. 229 .. 230 .. 231 .. 232 .. 233 .. 234 .. 235 .. 236 .. 237 .. 238 .. 239 .. 240 .. 241 .. 242 .. 243 .. 244 .. 245 .. 246 .. 247 .. 248 .. 249 .. 250 .. 251 .. 252 .. 253 .. 254 .. 255 .. 256 .. 257 .. 258 .. 259 .. 260 .. 261 .. 262 .. 263 .. 264 .. 265 .. 266 .. 267 .. 268 .. 269 .. 270 .. 271 .. 272 .. 273 .. 274 .. 275 .. 276 .. 277 .. 278 .. 279 .. 280 .. 281 .. 282 .. 283 .. 284 .. 285 .. 286 .. 287 .. 288 .. 289 .. 290 .. 291 .. 292 .. 293 .. 294 .. 295 .. 296 .. 297 .. 298 .. 299 .. 300 .. 301 .. 302 .. 303 .. 304 .. 305 .. 306 .. 307 .. 308 .. 309 .. 310 .. 311 .. 312 .. 313 .. 314 .. 315 .. 316 .. 317 .. 318 .. 319 .. " ] } ], "source": [ "randsig = np.random.random((320, 720))\n", "i = 0\n", "for i, row in enumerate(randsig):\n", " cs.fillTable(50 + i, row)\n", " print(i, '..', end=' ')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFpCAYAAABeYWb6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsXXfYFcXdPftSpFgRG4qExK6xYomiEmPBEo0ao6iPxi+fRI0dFU3UJGpMTOxgwahBjd0gEAUbInYMKhZA7EGQGDoI0t53vz9w7zd33im/abt7753zPDy8d3en7O7szNnzOzObpGmKiIiIiIiIiIgIdzQVXYGIiIiIiIiIiHpBJFYREREREREREZ4QiVVEREREREREhCdEYhURERERERER4QmRWEVEREREREREeEIkVhERERERERERnhCJVURERERERESEJ0RiFRERERERERHhCZFYRURERERERER4QiRWERERERERERGe0Laogvv27Zs+9dRTRRUfEREREREREWGChHJQYYrV7Nmziyo6IiIiIiIiIiIIYigwIiIiIiIiIsITIrGKiIiIiIiIiPCESKwiIiIiIiIiIjwhEquIiIiIiIiICE+IxCoiIiIiIiIiwhMisYqIiIiIiIiI8IRIrCIiIiIiIiIiPCESq4iIiIiIiIgIT9ASqyRJ7k6S5L9Jkrwv2Z8kSXJzkiQfJ0nybpIkO/uvZkRERERERERE+UFRrIYC6KvYfzCAzb/91x/Abe7VioiIiIiIiIioPWiJVZqmLwKYqzjkCAD3pqvwOoC1kyTZyFcFIyIiIiIiIiJqBT48VhsD+IL5Pf3bbRERhWH58uUYNGgQPv3006KrEhERERHRQMjVvJ4kSf8kSSYkSTJh1qxZeRYd0WC47rrrcPbZZ2ObbbYpuioREREREQ0EH8RqBoDuzO9Nvt3WCmma3pGmaa80TXutt956HoqOoCJNU6xcubLoalhhyJAh2GmnnTB79mxymgkTJgAAli1bFqpaERF1j9mzZ+PUU0/Fm2++WXRVIgJg2rRpNTsulBk+iNVIACd9OztwDwAL0jSd6SHfCI/Ya6+9sNFGG2HFihXC/a+//jq+/PLLnGtFw2mnnYaJEyfi5ptvJqdJ0zRgjSLqDdOmTcNLL71UdDVKhwsvvBB33nknevXqVXRVtGhpaQn+3Kdpip/+9Kfo379/0HLywPPPP48ePXrgsMMOK7oqdYe2ugOSJHkQQB8AXZMkmQ7gtwDaAUCaprcDGAXgEAAfA1gC4JRQlY2wx2uvvQYA+Pzzz7H55ptX7Zs0aRJ+8IMfACg3IWnbVttcKyjzeUSUDz169AAAvP/++9h2220Lrk15MG3atKKrQMKyZcvQs2dP7LLLLvjnP/8ZrJy5c+fiH//4BwDgjjvuCFYOACxevBjNzc1Yc801g+R/3333AQCefvrpIPk3MrQjVZqm/TT7UwC/8lajiKBIkqTVtokTJxZQE3OsvvrqRVchos7xzjvvRGLFoH379kVXgYSJEydi5syZeOKJJ4quijdk/d2KFSuMXiqpCJFnxCrEldcjhGSrjIjEKiI0oievGrVCrPJCU1P+Q+bixYuD5NumTZsg+UZEYhWB2gmbde7cmXxsrZxTRLmwdOnSoqvQCitWrMAjjzxiNHnDF9q1a5d7mWWGKbFasGAB3nnnHacyQ/VlUbEKh0isIkqN5cuXV/6Ob89uSNM0Ek4NfClW1113HR5//HEveV1zzTU49thj0adPHy/5mSA+c9Vg1X3Ks7Tllltixx13xPjx40NWywqRWIVDvLIKtLS0FCL9Rvw/Fi1aVPk7kgI39O7dG83NzXjttddqJvybN3wQq/feew8XXHABAD9tdvTo0QBWTTLJG5FYVYO9n83NzVpy8tVXXwEAxo4di913392qzFDPagwFhkNkDRK8++67WH311Y2m+NcCRA9pmQfZhQsXVv5ubm4mp4skrDVeffVVjB8/Hi0tLbmXPWPGDEyfPj33ck3hg1h98sknHmry/yjifmWIxEoOk/sS4h6maYqZM+1XNoqKVThEYiXBwIED8c033+Ccc84puio1hTRNcdVVV+HJJ5/0kh9LrKid05VXXomRI0d6KZ+KshO5ouu3ySaboHv37oWSBAp8ECvfX5Uo8t5FYlUNXrEqEldffTW6deuGG264wSp9nsRqxYoVmDBhQuHXLC9EYiVB0QNRreK1117DZZdd5m3RORtidfnll5OOGzx4ME499VTnez1s2DCsv/76eOWVV5zyCQn22hXZtsv+XPkgVr5N5kVes2herwZ7L0xeEkzu4bx583D22Wdrj7v00ksBAJdccgk5bxZ5hgLPOOMM7LrrrrjqqqtyK7NIRGLFoaWlBe+8846WWc+bN6/0gwQVPkOBc+fO9ZYXYEesqDjrrLNw5513Vj5/Y4ujjz4as2fPxjHHHOOpZv7BttW8222RZZsiKlbViIqVHCbqi0nfNWDAAAwaNIh8vG37yJNY3XnnnQCAW265Jbcyi0QkVhyuvPJK7Ljjjnjuueekx7z++uvo0qULTjrppBxrFg4+O27fZn9bj5UJvvnmGy/5fP31117y0eHuu+/GqFGjjNIUGYKzfcsvAj6WW/BNrIq8Zo2oWE2YMAGDBw8W9ot5KFYfffSRUVrb/rsIj1WjTAZrjLNkcPHFF+O4446TNsbrr79em8dtt90GAPj73//utW55ILRR3fUt6Omnn8YhhxxSmU0TUrHSYdGiRUYfKA21kB+LadOm4Re/+AUOPfRQo3RFqkZFhSFXrlyJMWPGGBHeqFhVoxEVq1133RVnnXWW8OXF1mPlcg/raR2rMk+U8omGIlZpmuKaa67Bww8/XNoPDhcBn43dlVj17dsXo0ePxsCBAwFUKwgqYjV37lzcd999WLJkiXGZoo5r/vz5WHPNNas+b5KmKQYNGtRqTZrVVltNWz9fsPXvFOmxKkqxuvbaa7H//vvjyCOPJKeJxKoajUisMnz++eettuWhWJmmFe0fMWIEpkyZghUrVuC+++4Tzh4UEatp06ahT58+eOaZZ6zrq0JUrOoQrKIg6zAahVGb4p577sE+++yDefPmKY/zFbfPyqF2ZEcccQROOukknHHGGV7Kf/PNNwEAH374YWXbM888g7PPPht77LFH1bG6FeGnTp2KESNGeKnXihUrrNI1osfqoYceAgBlWJ/HI488gp49e+I///mPdbkq8nvDDTdg5513rlJidbAlo6eddhpOPfVUq7QZajEUeMwxx+Coo44KXk4oxYofg0yJ1YQJE/CTn/wE22yzDa677jqcdNJJ2HXXXVulY/vqLI9f/epXGDduHA466CByfU0QiVUdgn2TLLuJNhRsiePPf/5zvPTSS5UwqAy+DZFU6f3ll18GADz44INeyhVdJ9EbLKD/huFWW22Fn/zkJ15WX7YlVo3osbIt6/PPP8cf/vAH63JVPq3zzz8fb7/9Nm6//XZyfrZ91ZAhQ3DnnXcahbN5sMSqVvrMxx57DI8//rjTecvAXoNbb72V7MkLqVjx7Xzq1KmVv8eNGwdg1Tpyqnyza7VgwQLrelLQKMJFJFYRRo09C3vJ4PuNxHRQZj+B4wKT86B+HHrKlCm21anA9vx8qUbLli0znkRQlGLlQuL4CQ0m9aZcHxOC7EpGXQYz9jkIQVRqDWw7uPLKK3H11VeT0rncw1DmdbZOWXsMTXyiYlWHoBArSsNqFNYtwnrrrafc70uxyu5PHmqHqC2Y3GOeWK1cuRL33ntvq7dEH6TCh2JlW4+lS5eiU6dO2HHHHa3LzlOxcrneLLE677zzsN5665GXEqEQq1BT9UUwuQ6TJ0+uUmHYtL6+o5gX8iDxr732WvAyXM5D1Y+x7crXC6kOkVjVIRpVsXI9V3Yw79Kli/JYU2L1+9//Hocffrh08ChqpWMTYsV7rAYNGoSTTz4ZO+ywQ9X2IomVD9Xoww8/REtLC95///3cy7aBL8XqxhtvxJw5c/DAAw+Q0vomVjbXzOaaP/3009h2223xox/9SJg2r8HXF1zbmqgP4POkEoU82z217xIRq9CiQaOIEpFYFQAfa+WYwLST/fe//43bbrut8rCxZlzdg2FKrH73u9/hn//8J15//XXh/qLUDpM3K55YZX6vOXPmVG1P0xQTJ07E22+/bV2vIj1Wts9MrXmsAPHaZtTzr1ViNWzYMACrvikpQqMRK0qe1P4uZCjQFlGxCofGOMtvwRIrWUOXEYebbroJP/nJT5x9BnfddRc6duxIfvv1AdNOdvvtt8cZZ5yBv/zlLwDMpo/bhgJl17WoUGAIj1Wapthpp52w8847W6tvRSpWtte/FhUr0csPte6UPiLPD/hS6y2a3drIoUBK+jwUK1PbCrudGgq07VdMEYlVHYJVXkwb+rnnnosRI0bgqaeecqrD//7v/1b9nwdMB7ZsKnimIv33v/81Sp/Bt0oSkljx52UbClTV0UdYpUiPlQ9CVoseqwzUulOOy1OxokK3bIirqvHNN9/g2muvxSeffOKUDxV5KFZlJFbUY9g2mFcoMBKrOoTMlGkCX8w+zwbmOiDahlB9DB55eKxaWlrQu3dv9OvXr7LNpINhj1UtUOrj7b8WiVVRoUDfxKreQ4E6xcqVWF111VW48MILsd122znlQ0WeHqslS5bglltukS48XRSxUqEIj5Vu3Fu2bBkmT54ctA55oKGIFdsx2DZWXw0vzw9g6jpZ2TllDx7vFaKWZRI2pRCrUIPy/Pnz8eqrr2L06NGVbSbEl63jokWLSMflTax8vL03UijQhVhRjsvrcygm6UOHAt966y0A+XlM8/RYXXLJJTjzzDOx9957O9fFdIFQXXoZivBY6ep24IEHYtttt8XIkSNzqU8oNBSxYgcl24cuSRIv5KooxcomlMcOAiZrqvhQmPL0WLFlmdxjNp3qe4Fs/W0Hl6hYiXHppZfi2muvrdrmm1iZ5qd6xkMvt+BLsWLhOvjmPSMsDxKf3eMXX3wRAPDpp596r0uoUGAZ17HKruPDDz8ctB6hEYmVIR5++GEMHTrUuS6mxGrFihV46qmnjD4om8GVWNkOyj4WFMzDn5Pl64NYqerI7itSscrbvB7qO4WXXHIJ9tprL8ydOxd/+MMfcOGFF1btdynLxbyeQfWR29DfmbO53506dar8LXom4qzA2vNYqVDGUGC9oCHOMmuY7KBkOiswg69PppiGAq+44gocfPDBVT4gKmwH1exY20GgljxWPGw7gDRNtaFVwJ5Y2Q5u9ahY/elPf8Krr76K559/vrKNJfNFhQIzqJ7xsi4QmiHzCvoMBdaDYpUHseKPrSdiRc2/1te7qnti9cILL2D11VfHI4884kWxcsH1119f+dt04L733nsBAE888YRxua4Khe2g7EKsROG5WlCsVNeH3Zd3KFBUr7Fjx+KSSy4h3ycfxCrEc8e2C5YQFWFeZ4+ptVAge5xIGY+KVWtQX5BDK1ZvvPEGBg4caNSviGYFhkajKFZyrbpO0K9fPyxZsgTHHnss9txzz8r2IojVgAEDKn+bKlYuDd81FGiS3ta8TsmvKGKlUqH4dF999ZW2HCDfUOBzzz0nnBG73377AQC23nprnHTSSdp8fJjXQ9xDNv8lS5ZgjTXWcC5LlJby7LDpqFPddcgrFCgiVrWsWIVuawCdKJjUhWpeZ4/bfffdAQDrrLMOevbsKc1LVqeyhwKnTZuGQw45BJdccgnWWmstbLfddvjOd77jt3IeUffEioWPWYG+YNrAQhIr2TnnGQp0zS9JEq/eIf6aUYlVnz59SOXkpVjNnDkTBxxwQNU2/jrNnDmTlFeZPFbTp08X5skud+F7YKXUnX2ZUB2f56xAm3JExKrIj0HbwPW6hfqkzfPPP4+JEyfi/PPPN06rq9/nn39eRaxUKMK8bpv/wIEDMWnSJJx44omVbUWII1Q0FLEqOhTIwsa8bgvXUF4e5nWKx0rVsTc1NVkTOZ0y19zcrLxfNopAXorV/PnzlfUwQVk8Vm+88UblDZ3PnyVWvp9xSt2pbb7oUOCYMWOwcOFCHHnkkcLjRLNbi+4zTVHWUGD2Lcbdd98de+21l1FaFiE8VqFBHff4c6u1Vf8jseKQ11tVI4QCfbyVU2cFhiRWvpSPIkKBHTp00B5DbRNlWcfqsccek+4rWrGiLk1S9KzA/fffHwCwYMECrLnmmq2Oi4oVLU8XjxX7RQvTtID4evLbfIUCW1paMH/+fHTp0kVbXxUaxWNV92fJNhTKrMC8UFQoUATZwzR37ly0tLQECwVSBlxqx+6y4KouFKg7f2oHPmrUqMrfeYUCRfeAOutIl44K3ySVP6e8FKtaDQWq7jdL8EMTq5CghO18QBYKNHnhzED51p8p+HUWqcQqa7ey4w899FCsu+66mDRpknXddPWxOa6sqHtixaJMoUBTIpDV14bx2yoGU6dORd++fYOFAk2JlWowcnkTooQCVaBekxdeeKHyd16Kla0Jm5oXBb4VKyqx8k0E6iUUKHtJY48TfUGA3T937ly89tprRnUKOViK2lWexIrH+eefj969eyvr4rpUg0yxol5nk4Wfs2/kPvLII6S8ZYiKVR2iTKFA2wbWvn174zQuA9uzzz5rRKxMCAmbr+xYE4+VLbIybEOBNh14XsSKolhR4YOQ+SA7fB5lMq9TB6siZwWy10hGBDPyJXsOttpqK+y5555Va4jpUA/Eioes37nhhhvwyiuvKOtCvR5Z2tdeew2XXXaZUl0yucaifl2XXrXoLQWNQqwaymNFmRUoQogHtFaIlWka9ljd27tPYlULoUAWNqHAWbNm4e67764qV9cRUgbwPEOBPp4lKrEqcygwtMdKlZ5do0tWXx1RyT7M/sILL1SW7SgSIYhVqFmBtmmz5YI23XRTnHrqqTVJrGo9xEdFY9DHb2EbCgyx4rctESiCWIVaIJSiZOShWOVlXmdho1idccYZVb8p96JsocB6V6zKGArkwV4jWZ8oeiZE9bjyyisxZswYUp1qTbGi5OliXrclZZ9//jkAv98KpBIr/nzTNMVHH31EbqMm635NmTJFGE2oBURixUHUsHwsdMmjlhSrUOZ1dr/MN0NRtYDa8FixsCFWb775pnGaMoQC68VjVVQo0LfHShYKFKWh3LtshmGRKFsokIfLZ7NMPVZU2Lwws4pVS0sL9ttvP2yxxRb44x//SEpPPef7778f22yzDW666SbS8WVD3RMrH7MCQyhWRRErG9gOjKFDgZ9//nklJFEvocCvv/5aml+PHj2My/VJrHwsEJqnYuVbsfAZCixyViCFWInuU5mXWyibeZ1SF+oK67J26Gped1WsZs6cWZmQ8+mnn5LKTJIEf/3rX7HTTjth9uzZ2uNvvPFGUr5lQ90TKxZlCgXaEqt27doZp9ERI93DVEbz+uLFi9GzZ0+sv/76AIoNBfpSrD7++GOsscYaVYs2srAhVpTBsBE9VtOmTauQchn49D5nBRa5jpWJx8rnvau1dazy9FidfPLJ2GmnnYTtx5RYUSHqc02IFVtX6nVoampC//79MXHiRPz5z3/WHl/mJT5UaChiRekkRA3LZdVzGWrVY2VSloliRfFYLV++HFOnTkWaplUris+bN68uQoEPPPAAAGDEiBHCNN26dTMutx7XsXL1WC1evBg9evSokHIZyqJYFREKpHqsioaonvw+WwwbNgz77ruv8vufLh4rdqy599578c477+Ddd9/VpjUhVqYeKx34UKDobxXYfpryElJr3qoMDUWsWJjcsEiswpjXVR4rUXkPPfQQttpqKwwdOrRq+/vvv183oUAVRMZRHUKFAk3yCK1YsaAQK9VAycKGWJVluQVVehOPlc96+Fasbr31VnTq1AlvvfVWkPo+++yzePHFF3HZZZdJ8/Q9K1AUyjMhVqL8ZHANBZqsg5VBdr3mzZunrGOtEaxIrAgI8R0lHx6rqVOn4phjjsGUKVOUaVwHNpP0vkKBolBEhttvv73q+Pfee6/QdaxsYGNetxnoQ80KNMnDt8fK1bxuq9AVtUCo72e2KMXKN7H61a9+hWXLluH8888P6rFiF0sNTawoaYv0WLkqVqJV4W+55RZ06dIFN998s7KOtYS6J1ayhmISCiwrsTrkkEPw2GOP4aCDDlKmce1g8ggFygYaWdns8ZMmTaoLj5UpbBUrm3z4vMqkWLG/ZZ9okdVHhZChQJNnyncokPVYmSy3UFbVYMWKFUGJleoalJ1Y+Q4FUhWrN998EzfccIPyemV1O+usswAA55xzjrKOtYSGWiCUhckNCxEK9EGsPvvsMwDAF198oUxT1lCg6o0nSRKMHDkSgwYNapUuSZKqvL/66qugocAQHitRKNBEDaSWW7ZQYGiPFaVeIYlVGUOBPGxDgWVTrDKsXLkyN2LFo4h1rDIUvUCoqv/u1asXgFW+0GOPPbayXXTOqutbVjKvQ90rVjKECAWmabWpWoUQHquWlhbccsstmDx5cqvtbB156B4m21CgTrHSeayOOOIIUtrQ5vUQipWIrIcgVj5DgWVRrFShQEr7tq2DqWKlQi2GAss6yIUmVs899xx22WUXvP/++63yNP0sjSit7TX2OSvQhlhR+gPepmJKrmtVsYrEioNLKPAXv/gF1llnnapvRMlgQgTYBqwiZPfddx/OPPNMbLvttlXbfSpWOvjyWOkQglixCE2sfKSJihWtXrbEKmQosOyzArO/y+yxyiCLKPgiVnPnzsVbb72FZ5991vnZYdNn10PnVTIJBdrUSVSGDKYeKzbsDIhDgSqI2mEtIBIrAqihwL/97W8AVs1W0cFEsZL5Rvhz4JUqShoK8ggFqlQIXd6hiVWIdcx8dBR5e6xM20FLSwsWLVpk3X4o9aCAbxu2xIpSLrWthPZYsVB5rGQKm0+lM0NIYhVSsVLlZ9qWRMez44vvdax8zApkyzedFchbHlTESlR2VKxqDCGIVQZKB2JCBNjGaROP1p1rqAVCfaxjJQLvsZo7d643YmXzpu5LBfQZCly4cCG22247XHXVVU75sDANBe63335Yc801MWPGjMo2H9fSNRRIhatipUIIss6ibIpVmqZWS4xQkBexamlpsX52suNEzxB7D/JcIJR6Pymr88vy4ifpxFBgnaAeZgWyjdN3WEC2zWS/DD7WsRKBJ1YLFy506kSLIFahQ4F/+9vfMGnSJIwfP95L2YC5YjVu3DgAwOjRo0npzj33XGy99dZVA7+uHnyeZQoFqtKE+P6orNwyeKz69esnXfjWFaE9Vhl8ECvRM8TeA4r3UkesfC+3IGsjlBctVSiQh6mxvcyoe2IlQ8hZgZSG7SMUSEWeoUBbxcrFYwVUrzVjiiI8Vq4EWVeuKn8fRNlW8VXV66abbsLUqVMrhEwGU2JVa6HAr776Cvfcc08rhceX8sbeD9lyC6Jr5KIePPzww9ZpdSiDYkXtF0Xtg12wduXKlV4XCFWB2q/rluQAVp3XAw88gGnTplWlbdRQYMMut2Dy0BWtWLEPo6qhUdQ5m1CJLbFyWW5BBz7vBQsWGKWXdRCijjLEcguhFasQdbH1SrHPDyXd2muvTa4Hn6cNsaKG0FV1zz63xL+EpWkqfL5UbapPnz744IMP8MEHH+CPf/xjZbtJn0G1DNTDrMC8iJXLRJDsevLP0GuvvYY999yzss0kFEiBqm+nzgqkKFbDhg3DsGHDsNpqq1WRKVUokEKsytrmdGhYxSoksfLtsaKqJ5QBIi8SAORnXgfMiZWsHmmaYuzYsejbt69wvwi+FCvTfGzvS16hwAwUxYoNT3Xu3JlcDx4hFStVuqOPPhrbb7897r77blIa1bPxwQcfAACef/75qu0mCoXqmTchVizKqh64hgIHDx6MIUOGaI9zCQVm4MnMHXfcUbW/jOZ1imKVgSdSJqFAlWJVawSLNLonSdI3SZKpSZJ8nCTJxYL9myZJMjZJkreTJHk3SZJD/FfVL2Q3ysdHmH0TKxZ5EqMMZQsF8h4rG6gUqSeffLLqd4gBxWYg8KVYFRkKlKWbM2cOOW9TEq4KrRx//PHo06ePMJ3J9X7iiScArFrziAKb9usrFMjCxLxe1sFNplhRntvly5fjrLPOwmmnnaY9VkSsqBCFAtM0Rbt27aqOoxCrDDJiRb1n1H6doljJ4BoKLGub00E7uidJ0gbALQAOBrANgH5JkmzDHXYpgEfSNN0JwHEA9OsN5ART87oIRX+E2cTvo0tvOnjzZfoMBarM67pBJBSxStO01TWut1Bg3ooVq/jK2u/s2bPJefsMBT744IN48cUXheX4uN6yNDbPcRGKlWvfkwdc1rFyXU+M2iaeeOIJ7L///lUzZEXEyod5nVo/G8VKll4GE5+gSGwoa5vTgSKb7Abg4zRNP03TdDmAhwDwS2KnANb89u+1AHzpr4phkHcokC/PNhTo2rnrlBLbNz8RQi23AIQlVnzetWhed8lXhpAeK5ZY6a5NUeZ1n8TKpv366jMoxMpnPxAaZTCv67Bs2TKMGTMGF1xwQVVakWLlYl53VaxsPVYy+FKsak25ojypGwNgP0Y3/dttLH4H4MQkSaYDGAXgLC+1CwiTTiKEed2koVDfGmV5mhArm/SyY/Naed0VqpW8Rb95FBGedclDNzjMmjULAwYMwEcffVS1PeSsQBfFynTldSr4vHwSiyJDgbaKVVkHN1mIjlJfk/Pz4bGaN29eVVoRsdKVEZJYiWDiseLRqLMCfZnX+wEYmqbpJgAOAXBfkiSt8k6SpH+SJBOSJJkwa9YsT0XbwUSi9+GxcnkgdQ9KqG/9ZchjVqCJb8bWY3X//ffj2WefVdazSMXK9N6ECgWeccYZuP7667H77rtXbfdhXqcoVmmaYsCAAfj1r38tPDavbwXWq2LFQrfcgo5s2cJHHuznVWyJlYlq7mPCCf8M2XisVMSKP15VP1EbDK1YqcaqhvJYAZgBoDvze5Nvt7H4BYBHACBN09cAdADQlc8oTdM70jTtlaZpr/XWW8+uxp5gQqxChAJNmDj1LcH2QSsqFOhrgVAK5syZgxNPPBEHHngghg8fLr2maUrzWD300EMYO3asUR115YkAAAAgAElEQVRYuCqHuuNVHZiunOzDqfPmzcM999xT2Z6XYvXNN9/g+uuvr1pqgIXq3tdKKNDmmcozFKgiET4GOx9KBEtKfBArX4oVVSUC4J1Y5RkKzEOxqmdi9S8AmydJ0jNJkvZYZU4fyR0zDcCPACBJkq2xilgVK0lpEFKxcilfd6yofiaKlW6/DfGSHZvnOlY6sNP5R40apawnRbHq168f9ttvPwD+FCsdfClWunxXW221yt8///nPK3+H9Fix98fFYyVCnguEUpFnKJCHbSgw2+YjDO8jD9/EitLufBIrkWK1YsUKcn+eF7GSqZq+PVYunyUrG7RnkqbpSgBnAngawBSsmv03KUmSK5IkOfzbwwYAODVJkncAPAjg52lJqKbprEBRY/HhsQoZCtTBNpTnmr5MHivVOegUq+y3jxmmPtOECgWyxIpFyHWsTN6ETc3r9RIKDD0rUHSMKB8fpMgHSfURCjRtd6GJVdGKlQiuihX1uQn1ke4iQFp5PU3TUVhlSme3Xc78PRnAXn6rFhZFhwJtB0WVYiXLs6yhwLyIVZqmrToEGQFM09Yeq+w35fpSEXqBUJdQYPv27YXbQ65jZfLyEGcFmpXra9Asm2LFEisRQoQCKWWo8uHvi8s6ViLwxEqFPBSr5cuXB//geBlRP9qbIWRkQbTd9IOpFOZt67Fy7dxdiZVPxUrlsdKVY0qseMlfNYiUdVZgoyhWOgJXS4qVDKHXsWJBVaxE17HMilU9hgJ9m9dVCOWx6t27t7YcUVn1pFg1LLEyeZP00ZG4dNKm8isAvPjii/j0009bpTchRqJtJvUO5bEyNa+7Kla6UKCubJPtJnn5Guj5fIpWrHTtwnTJkXpRrMqyQGhZFKuyEitVPmUKBVKfZ1PF6pVXXiGVY0KsfL7U5IFIrDiIHgrTTiDkcgtUArLvvvvie9/7HqksGwmckldZPFYtLS3KDpRKrGxIkokyqkMoxYr9ffvtt1c+z8Lvt1Uu2e+H+VCsTNVNnlhRr73sOn355Ze47rrrSN+n9EmsKaFAUdhadb91yy2I0vlQm5qbm3H11Vdjv/32s54c5INYmbw0+ggF2pjXXYjVyy+/TK6LLE9ZxIbaDngDuwwNZV6vV5i8SZqGAinl2RIrSqjDND2/XzUQmQyoLsRKd06mZI+qWInydvmkDYVIUPIxLdc23emnny493qQdsNeMJVamihVFETB9PmyJVZbugAMOwAUXXIAzzzyTlA8Ll8FD90w8+uijaNu2LUaOrJ60rbpXjz76aGXgy1OxamlpwW9+8xuMHTsWo0aN0icQQGdep9znokOBvE/Mt2LFLkiqq4ssTxePFVD9IWbVtYmhwDpA3ooVtXzdsa5KB4UYqUInJvV++OGHlZ1mnqFAvhPxGQr0pViZKoshiJXqeJNQIHss+8ZqqlhRQoE6ImYbCpQRuMmTJwNQqwGyskISq5/97GcAgGOPPVZ5juy+2bNn49JLL221XUUYfIcCbfMrayjQpD/gj/Wx8joV1D7XZVYgICdWMRRYwzAdDPMKBfo0r+epWJnUde7cuTj00EOlx+ZlXjcxq/MkjN3vMxRo01GYECtTP8748eMxZswYZbm2ihXljTWkYmXbnjfddFP861//UuZtChdiFWKBUAAYMWJEq+15KFYZbJWKIhYIpZShal/8y4mIWOnKmDt3LkaOHOnctxShWLGoZ/M6abmFWsVFF12Ef//738J9skZZRvM6ixCKVahQoA62HitXxUoXCtT9FuUvQy14rABgjz320KazVax0ChSfn+msQF37tA0FAqgK9/m4Zy6Dhy0p07Wbddddt9V2EbEKpVjZwvdyCy6KFVXVVynnAO0jzCNGjKiQYR4hllvgFatf/vKX+OSTT3D00UeTymnEUGBdE6u//OUv0n0mbzhlCgWqBg4bRUWUv80b/sSJE43X+8rLvP7Tn/4UO+ywQ1W5KoVENnDbPPi15rFSHW+rWFHKlt0PioJsqliZnD97z32ojC6Dh69ZgTxExEpFaH0TqyIVK5PQVgiPFX+syMhv2l6px9vOCrzjjjsAANtttx2pHB+hwFpDXRMrFUwk3DKZ1/PwWKnemGTpd9ppJwCrfFVU2HqsALPOffTo0Rg9enRVWSqFpNFmBVKP90GsKERTV47pR7JdFCsWJtetXbt2wkGyDMSK/92lS5dW21WKlY9ZgWwetkpcrX8r0DYUqEIeipWqriLIQoE84qzAOgClw9Ztl6Go5RZ8fIQZUHtSdPWmTq0F3AysLm/Null/qlCTCDbEymYg8EWsbMu1DQVSygoZCnTxDPJ1zIzrKnTs2BEdOnQQ1icPjxV1un4GlWIl6nvKolj5+KSNaSiQUoYqn9DESpQntS6AWKF19Vix3wFtFMUqEisGJr4rFWpp5XX+W062oUAbqEKBuli8K7EyUayy3z5nBfoIK/lSrKjEyrditXTp0kqnbaJY5TUrkEeapth22221x62zzjrS8HwZFCsenTt3brVNRSLKsvI6ez1sCUneswL5+0IhViZwJVaiduNTsYrEqs4RkljxmD59Ovr27astXwaqYkVRA9i/p0yZgo4dO1YZdG1DgRlsp/vmqVjxnU8RswJrcbkFnx6rZcuWoWPHjth8881b5ed7uQVfoUBqOpZY8dCpTscdd5x0X6hQoGpQLbNixdaNXStNtJ+SR1lCgbafYJLlSa0LX5aOWLnOCuRh2g7SNMWbb75p7O3NAw1LrEyWVXD9VuC+++7bapl/W2JFGTio6QcNGgQA+Prrr6v2m4YCbRW1vDxWonJVHYSph0dXlgg+wnh5K1Y+QoHZ9Zg2bRoAVGbtmihWqvvjOxSoMq/Lnrs11liDlEakHqs8ir48KHy5otXa85wVyF6TM844A3vvvbdxGaLB1UaxMn1JciFWomNdzes+iZWqDQDuihUP03WsBg8ejF69eqFfv36keuSJhiVWvhSr5cuXY9y4cVUPNi9RZ9/s05VPqavNIG+qmrRp04aUXlQ/k/Oy9Vj5CAXKfosUqxChwCLN66Z1CaFY8QOISyjQVEUNrfS1bdtWGgp0eZZDKVa6AZQ/LmQo8LbbbsPLL7+MiRMnavPg1XfVfko9FixYgM0220x5LOUZrBWPleg+6ogVC1di9e6771b5r0wVq7vuugsAMGzYMKN0eSASKwY2xOr8889Hnz59cM455wj3y8zcPmcm2SpWMmKlCp3orpvJealCgbpzytNjFSIUaDO4mxArk7c/KrHyqVipiFXolddDhwLbtGlDIuF8fro279tjtffee1fVQzeoZtt8+KPYeyxS4ijPN1u34cOHK/fLwJ7L3//+d+FLMHtsHqFAk/xEx+qO//DDD7Hvvvu2ilTwZeleqFxnBT766KPYd999K7/ryWMVl1tgYDMr8JZbbgGw6uO11HJU23XHuiodug5XFAqkvsma1q8s5nXdLECXWYGyfWXyWBWhWPGhGxfFKs9ZgRSwiq+JYqXL3/cCoVnIsohQIHvuJh/+ZcHW7YsvvlCWQamHrkwfoUAfK6+rQDn2xBNPrPqiAJvOJBTo41uBEyZMqPxtGgr0pdiHQFSsGPAPztZbbw2A1oDYRpH3twJtFSsqsaLMllHlSUlXFo+VSrEKPSvQtKOoRWJlqljZEisbsqsDn+6zzz7Dtttui+eee65qO6tYmbQNn8SKEgrMCCA1FDh8+HB0794dr7/+OrkeMujM683NzZg1axZOOeWUViSACsp9NlFgdB4sSrllUKxEH2YWPeNl8ljVGiKxYn5Pnz698nvcuHHo06cPAFoD4n1JsnJ023XH2gy+JsQKUM+i8qlYlWUdK6rHyuZehvRY+QL1kz0moUDZM5Olo3qsKJNMRO1T1WZtzeuidJMnT8YBBxxQtY31WPFwUZ99e6yydaCoitXcuXMxffp0nHfeeUb1FkHX5lauXIlzzz0XQ4cOxW677SY8xlThFUGlmvNobm4mqcYuHqs8zeuiMkTtxiexahQ0LLHiG/95552HXXbZBQCw0UYbYZ999ql0ZJRBnCVWlM9g+FSsVBB1Bqq8QoQCKeXbEiub8Ajf+dTKrMBQoUAqsfKpWKlCgaaKlWm4ypZYUdto2UOBGUwVK5/QhQKbm5ul33nN4JtY2ShWpspzGRQrWTq+LF+KlWyB0HpG9Fh9i5tuuqnyd9bhmBArttOjECuTzp3a4Yn28cSKEgo0nRVIIVaiztNHKLBdu3bCNWxU0IUCZYqWTSjQZAVy04Ei71Dg/PnzyWWHnBVIIb6qPGyvmwmxspkVaNMmZKD0E1mfdfvtt6Nr167aQdUndKHAlStXOhOnEMSKUka9ESvZs0R9Hky+xmGCMpO0hlWsVDcl63BsFStKOT4VK1WIQEWs8poVaKNYqa4Pa17XfeFeVq6KWMkULJt7afrNPBX4ckwJpSwfimJ17733YsyYMdI8eLgoVj7M675CgTbpVLMCVfnpzpXaZ/Dfi5ORO/bZueqqq7RhIBOkaYoxY8Zg9uzZwv0Uj5UrKHU3IQq+FSvRsStWrMhtgVBRGSEUK6rHqsxEyRSRWAlgo1iVNRTIdwYUxcp05fW8Q4E+iJXLbx4mHSklDRW77ror3n77bed8KNf+9NNPr/odUrHSLbfAQ0Q+VOFEW2IlOye+DfoMBdpODFHlm/3mXwZd+hkejz/+OPbff39sv/32wv2+ZwXa7OfrkUcokO9Ls9/ZtyVN+k9Z/i7XRUeubYiVj1BgrZGuSKwE4BWrUOb1NE2FMzRUEOXnW7EyHYh0nb/sGvgwr7NfuKciz1mBJoqVTYd47bXXKtNQ8qEQx7XXXltbFxYuswJNyYROseJh20nLzmm11Var+u0zFGhLcHQvQ1k9dXWzvVaZujlz5kzhfopi5UqcTNsORbGilEG9Z2xfu/vuu0vzqyfFilIHKspMtiKxEsA1FEhVrE444QR06dIFb7zxBrmuqofWtIOSPcSqgTeUYmX6kPgMBepmBboMMiYeKx1M0vheINQXscrSuZjXeYRUrHSzAoHWxMrnrEDbZ0RFrGSKleiYUAqD7tyLUKxcQoEUIiuqX1Z+1o/loVjJ0vFl6fo9H+tY1SsallipHuy8zOsPPvggAOCvf/2rMm/dQ6taM8fUvP7ll18K66pKY2tCV+VLXXndt8eK8puFriMLrVjZwIZYrbXWWkZ18aVYUdqTrk26ECtKOpFipaqbLD/T86CCSqxMSZ8LfChWOlDSmygwIYgVfy9cr7tPYqU7N98eK1OUmaTFWYEC+DSvU8rXNVCXDk/lsRLllUnSsvJlZajytFGsVGW6eqz4vF1mBeo6spAeK1+gmNd9Eau8FKs8ZwWqQoE8VM+f7MXIBhTFin922H7IVbHSgTIrUAffilUeswL547JjszHHJT8+TxOoFCvXWYGhQoFlRsMqVibEytRjZWpeNyFWKsVKBFOPFY82bdoECwWaDqCitD48Vvz5mXwr0KdipYPpvafmQyFWeXqsyhQKpKQzUaxMiRVVsVIRVVk6/mWQnWXq6rEyeRkry3ILvmYF2nisVIpV0cTKVbFin3VV3Wz3lRGRWAmQPeghQ4HsdtFqu7JjTQcF01CgKD37YVKbzt+3YpXVCwgTCuSvMXUBTRGK8liZ5JNnKDBL5zMUKGpHqtmSvmcFmpjXVfm5EKuNN95Yuo8HP5hnYNcbCj2Q+VhuwYS8UY7xNSuwf//+2nKztCEUKxuIiJVqG6AftzKIlFDb+um2lQWRWAlgQ6xkAzyFVPgKBco6Zlka6oOhA0Wx+uyzz3DUUUfh+OOPr1zPMhIrkWLV3NyM9957T7jQnSvBMMmrSGLVuXNno7qYrGPFv2Wr1CYq+fjzn/9slAcFRYQCqSSQXy9K9QJFIVY+FStRHrrBNi+PVQjFaty4caT6DR48uDJrsp4VK+pxpopVmYlV9FgJYEOsXBYIdQ0FqqBSrPjwAQUrVqzAe++9h+22265yfSjEaujQoXj88ccBAAMHDsQOO+xQmMdKpUilaWuP1ciRI3HjjTcK87rmmmuUKwvLBsYizes8KIqcLfEV5QVUh534/E3bhah9z507V5rG96xA/iPBbJtU1b9sswJFipWPNifKQxceymu5BZVyzcOV9PD417/+VWk7LLGqtwVCfShWomsfeoKFCxpWsaIsW5BXKNDEoCqqN19fFr6J1W9/+1tsv/32VTMZKaFAdpG47HxNlYkMLLHy7bHi6wWgKhTK49JLL8VHH30k3e8zFOgLNooVRV1hEUqxonawFGJBge23AkOsY+UzjJLVk4XIY+UD1PPiw0x5EKsQoUAb5GlepypDIvO6yfUSHeeTWJVZsWpYYqW6KXktEJqhKMXK9pMoAHDXXXdV/tbJ6WmaVg2kutkm/D4RQoYCfQ4qoc3rNiiSWGXpeGIlq49shqZsG0Vp8e2x4hHqkzbUfPi8iggF6uonIs/scTKbwgsvvIBPPvmEVLdaIlZlDAWqVCzAzmNlC9tnoyhEYiVA3oqVq8dKZZTlOwNXxUpXJ1ljNyVWOrgut6AKPfn4Tpkob74OlG0m+1n4XiDUt2JlEgr84IMPcPTRR2Py5MlWxMolFGiTzuesQMpLlWiAoxAr/tlxNa8PHToUJ5xwQqsZfbJQn6rOIsVq6tSp+OEPf4jNNtuMVB9TYpV3KJCFL8XqxhtvxKhRo4zLp4YCTYioSJgw9Qhn28tMokRoOI9V9oFSCrHKGjuFcbOdFHWB0Ay15LESgRIKNCVWuvPM0vr2WIn2u6CMihUPiseKr+8pp5yCrbfeGo8++qjRrC6ZYiVTEJctW4aDDjoIs2fPxvjx4/Hhhx+2ytOUWPkMR4hAnRWoI1bvv/8+DjroIOn+DCazivl6snBdbuGUU04BABx55JFV26lkWKeGfPzxx1W/fbyImLzg1oJiBdDN86IyTIiVrt21a9eu1Rhj2+/FUGDJoXozyODTvC6DrWIl+q2CygSal2KVpmnVQ1i0YqXyWOWlWGVlFQG+XBvz+uTJk/GPf/wDX3/9tTCNLM8//OEPmDt3rpJYsddsl112qcx4mzFjBjns5UuxcvVYyeopqge/f8mSJZg0aZK2PNFzrGpb2T5WZQf8mdcXLVqkrYsoFKhTrHg/ZT2FArN7URSBoIYCTcat9u3bt9pmQ6xkY1iZVayGI1YZAZK9IQPFhgKvv/567Lrrrli4cKE0D75BqcI+oUKBsvrIOga2LJ/mdR/Eii/XJ7HSfQ5H9Vt3vC1MiRVgNrtRl+c555yjDAWq0or25eWx8hEKdKlHnqFAl0GL0q5tPFahiVWRoUDRuOS7DBWoipUrsbI5l+bm5qhYlR0iyZUnGDyxonQyvlZeHzBgACZMmIDhw4dL83BRrGolFJineZ2vq883IRPFymag8LHyuo3HKoMsHKDqdCdNmkRWrHjkPSuQBZVwsx9hNlHObIkCfw900/Wz36pQoKlixS45QbmfNrMCTZ/1EMSqqFCgj3IoKqbovslenHX9hmjGtsmLJltOVKxKDlEokJ8dp1q+QAbTWYH8A71kyRJss802lW0bbLCBtCyTBhVqVqCsPrahQFEaFVyXW1CVm4fHSlcPEUK9odl4rDLIiJUqz7Zt21orVkWa1/MOBerSZ9CFAmXpfHqsdtttN2l5ukGRqljxCkg9hgIpL+K2MCVWKrJFgc9QYFSsSgJdZ6JSbmyIlWsocOLEiZgyZUplW8eOHaV5pGmKefPmkeqVt2JFCQW6mtfZUKCpty0rl0J4fcDmDc0E77//vtTnRC03hGKlI1ahFCvfxIpK+FjIQoGuxEoG21BgqE/aUK63zaxAVrFSPcOyeuiOKYtiJVIci1SsfBIrSh14tLSIvx4SiVUBkDWAUIqV6SdteGLVqVMn6X5RR9WlS5dW9RVB1QGVebkFHbGSDQ4UqDoqn/4qXX6mHYPo+IkTJ2KXXXZxyqfRiFXoUKCvWYE8bJ9jG2K1aNEiPProo8akXVUeC/ZannLKKXj33Xe1ihX/Uqi7XhQSYKpYqerkAp15PTSxAoAnnngCzz33XOW3K7ESRRNsohQy83qZiVXdLreQt2Ll6rFasGCBdD91IJR1YPWmWLH7fStWvomVCUmwHVhFSxCY5KPrLI888kisv/76wn02xKpdu3ZVK/G7hgJ14QtKHjIUOStQlz6DL/M6e9yHH36In/3sZ8r6qOqpG4zZbTNnzsSuu+6Kr776qrJNpFipfLGyeuhgGwpkX+58QGdez0Ox+vGPfyw8vuhQoEyxKrPHqmGJVUtLC5YtW4bVVlutlWLFr7xOgUso8KOPPkKfPn2k+3WkQ1VPFbHysSIuQDOvizxWLuGabL8tsZKh1hQrH9Bd6/fee0+6z5ZY8d+K86VYsXmK/tblr8ondCjQFqbEKoPNs2MDnWIFtFagROfEXq9ly5Z5CQXamtebmpqq+lbXZ7Ms5nUWOvO6DqE9VmUmVnUbCtR1Jpdffjk6dOiAWbNmeVesVPVQSb6ydC4dsoxYuT6oJqHAkIoVvxZPBtn2rFxZ/r7IZgYT9cXHQJHBZOV1FzJpGwpUESvfyy3kHQpkZwWqkFcoUJZPKGJF6a909zEvYmXyosmWTwn1mkC38rqPckzDcJQXYBV8hQJl/XWZQ4ENR6z4Affpp5/24rFSDeSi40w6BRfFipdRfRErvgzR32yZeROrESNGYK+99pLWtwyhwJAdg8nbad7Eql27dq0+zOpLsaJ0wGVRrPj88g4FhiRWusFYpzLyn8Xh01A8Vrr9y5cvx7Bhwyq/TRUrShlUlMW8ziKEed1GZXr99deFqnkkVgVAdgP5zqR9+/a5eqx8ECsXxUqWpynY9OynJmQdpmkoUAWKeT1JEinpKksoMKRiZdKJukjqeStWNuZ1Sh4UUK+/zLyuu+4m95clHmUkVixsFSvVyxZlqRjd9fztb3+LkSNHKuvE1y8UsWIjGaLzLoJYUdRfFUyJlSzvo446yuj4MqBuiRVVsWrfvr33daxUxIoqIds8BLwBHggXCszw4IMP4he/+EXld16Klc5jlSSJ9P7lqVgV5bEyaV9lCwWaKla69u0rFEhFaPP6woULseaaa1YGHMqswHnz5rUKdeVFrETnZbPcgu9QIKtWAcWGAstgXudRFsVKhuixKgCyRhRKsWIJm6pTD6VYnXrqqfjb3/7WajtPIkyIFeX8b731Vm3dbIgVn49sNWmZKqUiVqqOqkjFSodQilUIYqU6tzxCgb4UX5sBzfaTNtQ+YezYsfjmm28qX2fQKVYzZsxAly5d0KtXr6p9ZVesVPt9ECv+/HXEin1JDRkK5FGrxMrUY2WKqFgVABPFSvZJiBDESvUAsTAZGJIkwV133SXMx0WxUvnGsvS6z2dkEBErE1WBVwRdQ4F5EauyeqzY/S6G/RCzAl1CgWyeor9lx8tgS6xsQoG20BGrMWPGAADeeeedqn02n4OigL+fqkGbT5eBstyCb2JVhlBgmqal8Vhl24qeFShDJFYFwESx4gcWG2IlC/+FUKxMGlQoYpWBv0YmHiuTUCB/33SKlahuqjpmyHNWoOl99alY1VMo0NRjFbpDls0K9BUK5PPWhQLZchYvXlyxPhSpWOm2URQr03rwoE44YsuvB8WKmperF9aUWIVU8PNG3RIrqnmd7+QBd2LFgr/5Nh4r0zAZCxfzug2xkpXl6rHi1wmjeKzKoFip8vv0009x0kknVT5lRG0TlPti0r7yDgUWvdxCUaHAUMRKp1ix5ay++uqVySZFzgosg8fK9PzzWG6hkUOBpsSqzB6rhlsgVDQo+VCsZGUXrViF9lhRFSufoUB2v43HKk9ipbrORx99NKZPn45nn30WM2fOJOfV1NTk1KnwdSpCsVJ5rMr6EWYqyvBJG8pgWKR5XXcfdft9EKsyKlayF9MiQ4GRWJmD1LKSJOmbJMnUJEk+TpLkYskxP0uSZHKSJJOSJHnAbzXNQQ0FpmnailjZrLwu68hlxKqlpUXZsYVSrIoIBfJr0ogUKx4qxYrdX/ZZgapznD59OgDgP//5DykvX4pVHqFAnXk9zgp0W26BhegesN/9k93fIkKBO++8s7ROfBtQ3bcQHisdigoF+ionb8VK5OGLocBvkSRJGwC3ADgYwDYA+iVJsg13zOYALgGwV5qm2wI4N0BdjUBVrFpaWryEAlVhLVH5aZoqzaO+Boa8zeuih4P3Q+TlsZLtU517noqVLSjt0oRY5W1et1Ws2BCwriy+zc+bNw+PPPIIli1blotiJasHi1ChwMWLF+Pggw+u/C6aWGW/v/vd72LPPfeU1knXh5p6rGT3OSvbRrHKEHLl9VDmddOJNKJ+OqRi5bvvLRKUlrUbgI/TNP00TdPlAB4CcAR3zKkAbknTdB4ApGn6X7/VNIeLYuVKrFT1sCFW1LJkx4ZUrCh1kxErE/IoIsSAnWIlqyfg5+Hu0qWLthwRqANrkR4r/nqLiNV5552H2267jZynq2JFMa8fcsghOPbYY/H73/++sFmBPEKGAlXlZAhFrC6++GJMnTq1VfnsM6lTHkWKlY9Q4IwZM9C+fXucddZZpVKsZLPKs99RsWqNmlasAGwM4Avm9/Rvt7HYAsAWSZK8kiTJ60mS9PVVQVtQO5M0Tb0oVuzgRAkFuihWJg3QRbGinL+M8LDgO35XxYpdbsHGYwXIyYSPWYEvv/wy/ud//gdAmOnFPkKBLHwTqxtvvFGZB3+NTUKTth6r119/HQAwevTo4B2y7axAKijmdRZ5K1YrVqzAq6++WvnNttus7pRQIA92m20o8O6770ZLSwsGDx5cKmKlIp1FEStKWF2F0IpVmT1WvszrbQFsDqAPgE0AvJgkyffTNJ3PHpQkSX8A/QFg00039VS0GFTFqqWlxbtipWqI7JusqOFR8pDlKYLLrEDKh3wpswJ5YvXFF18gTVMvoUCbWYGA/CH2oVjp3sBbix4AACAASURBVMxlyEuxamlpwYABAyq/fRMrHXgFk6pYyUKBJub1Nm3aFBIKHD9+PN59992q43wpVrp7IDvfUOtYycpnnwtdKDCUeZ1vC6bg+z2fxKqpqQnNzc2lIVaUyIIKjaxYUZ6sGQC6M783+XYbi+kAxqdpugLAZ0mSfIhVROtf7EFpmt4B4A4A6NWrV9CrIrvoIhN0nsQqhHldhebmZuEaW6EaJSUU+Pvf/x6zZ8+2DgX6UKxChgLZN/MQ19nVYzV69GgMHTq08tvknPnrbUOseKJtolhR/FSybcCqzr6IUOAee+zR6jhfHitdKDBvxYqHrWKlUsNt17Fit9lYHXh/VgjFKoYCadC1+yJBaVn/ArB5kiQ9kyRpD+A4ACO5Y4ZjlVqFJEm6YlVo8FOP9TQGVbHyFQqkEit2Wm0e5nUXj5UKsk6eEgoEgFtuucVJsdJ5rAB1x9nIitWcOXOqfuetWOmIVQiPVYa2bdsGf9OVzQrkEXJWoKqcDHkRK6rHilesVH1CUYpVSGIlW8uKV/dtYdr3i443qYfoOfBJrMoMbQ+dpulKAGcCeBrAFACPpGk6KUmSK5IkOfzbw54GMCdJkskAxgK4ME3TOeIc8wFVsQoRClTVg30roUrxOsVKFwo0GXhMYTMrUHSsiWLF7rc1r5eRWOkgI7OqY0336VB2YsXmKfrbVLEaP348+dgMob8V6LLyuqyeIWGrWKn6vSKWWwDyUazKEgrMxkXbWYFJkkhfiEWoJ2JFGtnTNB0FYBS37XLm7xTA+d/+KwWoncn8+fMLM6/nFQoUzTihPKi+Fgj1QazyMq/7Jla+Ot4TTzwR48aNA2AXwmDh0oHlQaxMl1sw8ViZEisb5D0rsBYVK4rHKgSxcg0FsufC5uf6nLOKFX9tiiJWWb9tq1hlxIoVLuqJPKnQcCuv853Jz372s1bH5OGxMukUXBUrkTLmSqxcQ4F8HUxDgRRipeo4ZQ+4j1mBPkKBafr/69msXLkS999/f2Wf7Lxuv/123HXXXXj22WeNBnQTlF2xEg10bOizTKFAX+v2lG1WIA+RYkVZboGH6kVMVa5sW9k8VrJQ4Isvvli14KstTIlVVqYtsWpqapL22/WOuv1WIJVYiWCz8jr1oWcfnuy4c89tvZ6qr4HRxWNlo1iJ8qWszq0jjzazAosyr/v2WH3xxRdVv2Xndfrpp2PChAm47rrrappYmS63YNK+81KsRHXj4SsUWEuKlapOJrMCKSpOrXmsZH3Gk08+id/+9rfOZeRNrExDgfWEhiNWJp9pCa1YqciBKg+Twd9lHSsKKIqVrL6qjlLnsaKY18sQCjQlwRnY8//kk0+qjtO14fnz5wcjVnnMCvS93AKLNm3aBH9r1pH6DL6IlS5dWRQrXSjQxGMl2q/KTwSb85eFAl2hCgX6QpqmmDJlCj7//HPhPh7ffPNNq30m5ytSrCKxqnEUSaxU9RARK12oztVjlSexEuUr6yj4eqkGV5l53TYUGJJY2S63ILvnH3/8cav8VVi8eHGrck8//XRh3qbQEStK3raKVZqKZ0eZzgoM3bmLljcRwdesQFtiZdK/uUAUCrRZx0rVX6jKlaFMipUuTOoDLS0t2GabbYT7VIpVXub1ekLdEisX+TsvxUqlupgoVrqQly2xsgkXijpMG8VKFQos+zpWvjxWGUyJ1ddff93q3l1//fU45phjjOvEQxcK9EGsVPXTDci6erRr1y6Xzj1P83oRxMpkcVHqcgsmihWlnenKcPFYhVSsQrVPH6HAqFjRULfEysVjlcesQLbjyDMUKMvTFLKwhG0oULdPRqwaYeX1+fOrPmCgbZciYpUkCdq3b29cJx4+iJVo5XUWvs3rLPIwr+cdCtTdzxCDmYna40uxKoPHSuQX84G8QoEm+6LHyh6RWAlQax4rnZfIRrFiyYsJnn/+eQDAYYcdVtkmm2lnEgq0WSDUxmNVplmBwCrjOm9et1GsVB95NYGOWFHON+/lFljk8Ukb21CgDqK8TjvtNO0q5CrPmi1MSAl1uQVTxaqeQoEua9/98Y9/JB0nqquqDYSYFRiJVY2j7B4rdl8Zzev8uYuWpRAdl2HLLbesxPNDmNdrJRTo4rFasWIFNt10UzzzzDNVx9l4rHytraXzWPkgVqaKlUn7zstjFSIUKMKQIUPw+OOPK48pOhQoUqzirMBquChW5557LkaO5D+G0hqiuqrOIypW9mg4YlW0YiV6mzUlVnzjzEOx6t27t7B+srJ1b6dAeI+VzTpWZQkFpmmK6dOnC4+jECtRGh/mWBfFKiPaPLF66623SIqVLP9GDwWalpOhXhQr2fOgI1ZlW8fK9vmktjdRXdlPrPFwNa83smJVtwuEym5g0cstsMgeUtMFPEUr88ogU4J8hQJV1yjbZxMKpCpWvj9p4yMUaEti+GNlxMrWY1U0scrS8sTqhBNOIOVBCQVmkLXdPMzrm2yyibYegD2xMh3MQ3h2QnisdMqIrH9oamoitwFXYpXHcgt5EitTxYo/rk2bNkpFtFGJVVSsBPBJrER585Kv63ILOhKm62AokC2roFKsMsgeJtU1Uy23kKbqGZVZ+TbEKlQo8Dvf+Y42HX/PeW9VBttQYAafxIonoqq8s3rbfttOtq9MHqv33nsPnTp1ChoKNH12a0Wx4pURVZ/A7jdRrFjUSygwtGKlIryqvigSqzqEC7HKGovJGw11VqBIOXD1WOk6b3b/0qVLMXPmTGPFikKg+O0moUCA/gBTwgC6fXnPCqS0JV/ESqRYZfVi62SDEIoVD9U90A3IRYcCu3btCoBGWmwVK9P7VyseK51i5TsU6JNYubapokKBrh4r1TVs5FBgJFYChDSvs/naEisTlaClpaVq/9VXX41u3boJV98V1VEHX6FA/rfOR+YaCszbY5UHscoGu5UrVyrbncsgkAexCmlel4UTfUHWTkXI6vHggw/izDPPDBYKLHq5hRCKFUusZHXRXada+QgzJW0IxUq08npUrGioW4+VrKGH8ljZKFZZGlfzuolilWHcuHHSNFk981asVCZJ3vSve1vVmdfzVqxsOj5TYtW5c2csWLBAmBdbB2rnJvKumM4KZPPI0tp+NJjisdINdPyLhm/wfQfvHeTrAgDHH388AGCDDTYglVFroUBW5TFRrHTEKkNUrOwmSwBRsQqFqFgJEHpWIG9SDBkKlHmsdFI+f+42nbBPYuXbY5WXYkUJWWbg73n2xijKX5R29dVXF+alKkcFUZ1NFSu2nVEHspAeK9mLhm+YegwBVEixDLaDeNGhQH61coC23AJVsbIlVjYISayKMK+bzgrkjzNVrPJ49sqAuiVWec8KlBGhEKFAH4oVhVhRBmfV27BpKNCnYsWn4ZH3AqGmHZ9K6RChpaUFnTt3FubF1outkw4+iBV7PJVYuSy3sHTpUrz44ovSa8eS8hAQhQKpxCqUx6qMipVuVqDoWvgOBdoM8rJP2tRqKFDVf4ZQrBoFdUusigwFquohCpGFXG5h8eLFwpWZKW+clFAghViFNK/bftImpGIlCnmYSvU2xGq11VYT5pWhCGLFtjOqp0XVpnTECgD23XdfZd55hwJ9ESvT4zIUvdwCS0aoHivRb9mLh6wuVD+eCcoYCszS66AiVqIyKcstmCpWjYKG81iVIRTo27yueqgfeughXdWFoIYCVZ22SyhQdN1YUDxWqvsn8/kU5bEaNmxYq9WTTYkVC1EY0dS87oNYtWvXTprWBrrBkpI+ZDhC1HdQSTxVYalVj5WOPOiUed8eq7IRK5dvBeZFrKJiRUPDKVZFEys23yxNyHWsZNB9X0x37pRQYAaqmqcKBfLpXD1WAwYMEG4v6pM2Rx99dNVvG8WKPV7mzzKpkw2x4vNmj7eZhcXD9f7kpVhlMFGsdLANBZbFY2XyEWbRMTIPli2xsmkH9aZYZc+n6H6EWMfKBTvuuKO3vEIjKlYC+CRWorz5xhjSvC4DhVhRQoGqTrvMswJlKHJWIAsbYsVeM5ViRe24RXU2nRVoY15XwZUU5R0KzMqU1cUEZTKvhwgFmipWJh6r//73vzj99NPx2WefScujgH+ey2BeZ+ujgo1ixb8YmChWvolVLalfdatY5W1etwkFZghpXpfBlVhR3p51xOqTTz4R5sn/zYPSqYrqTEGZiJVJCIdXrJYsWSJNV5THyrVjlHmsTGBKWE0hek5k5eXlsVLhn//8Jy677DIjBQoIY143UawoL1fXXnstZsyYAQAYOHAghg0bhrfffrsqD1PUWyhQpVilaYrly5dbK1ZNTU1eVGpKWWVD7dTUEEUqVqp6hCBWNoONaygwA0WxyjxhumtvM7D4Vqx8zwq07XBdQ4FlJFY+OsZaU6x8mtd9DeIZkiTBYYcdhiuuuMKYWNkutxDCY6XqV/r37w8AmDVrlrY8CuotFKhTyfh+JSpWNDQcsaJ07tkxtrMCqR6rDKIGs3jxYrz66qvCATaPUCCfr49ZgbrOmNqhsMfZmtdlKHJWIA/ZfbVVrHT58iibYiXKXwXZdQpJrERl+yZWKv+cCdg6mt6b0MstAPRZgao+fdq0adL6xlCgWrHK0rgoVo1KrKLHSgAfocDly5djn332wdy5c1vlzecrIhwXXHABAGDo0KFBQoG6z4pQQ4EmswLbtm2rJHTUDiUrW0WeiiRWoT1Wou2NoFiZhgL5NpzVL+9QoM/lFm6++Wacc8459hVkwNY1ZCiQfQbyDAVmZcrqGxUrvWLF90OqySmiOvkkQ7UUCozESgBXYnXPPfdgu+22w/jx44V5U8zrGYYNG4bevXtLywKKmRUoqwubng8FslPvTfLi6yPqqEXHN5p5PQ9ixW9L0xTNzc2VNlwmxUr0SZ4yhwIp8EWqeOStWPkIBVJ8lhlEbblsxCq0x0p0zU1Dgfx5RsVKjNqhgIaQNZS8PFYXXnihNn9qnWp1VmAG1bISLExDgTpVqgyKVQiPFSXEpSJW1DqJ2qVoG6tahSZWJvdHNpiWdVZgSCVNBBfFKoTHynS5hQz1olipvttHSa+DrWJVllmBtaRY1U5NDeHisfJpXhfl7UqsilCsTD1WbBqqx0p1Hmz5bOdWRo+VD8WKTUs9tgiPFaAmVr7XsfLhsSprKDBvFOGx4rexsFWs8iRWIT1WNn0Em16H6LHKDw1HrEIpVtQB2QexKkKxksFkVqBLKFB0XIhQYJHfCmThGgr0sY6VD2JV5HILMmIV4hMvfJk2ocAiFas8iJWpx8pHKDArT9SWbYhtHoqVbXodfHisTBUrnypTJFYlQFkVK1EdVEqOzIDLogjFKivTp2JF9Vg1unldhCKIVfa3iljl8UkbGWTESvY5Ix8Q9R2y+1g0sWKRRyjQ1GOl2k9VrDLUQiiwHhUrl3PiEYlVCeBbsdI9vL5Cgfy+ESNGYNCgQVXbVN4DKnwtt2Cy8noIj5XuwTZFLXisRNCtN5PVS7ZPBB2xyj76XGuhQB+qJLVME8Uq79Bg2RUr1X62rVMUq1ChQJe8WFDVnd122w0ffPABNtxww1bpdRBdX9mkE7avKItiFT1WJYBv87ouna9QoKicmTNnVv3OS7Gi5JvXrEAWojdgVfkmKItiBbitY6WCr1mBImLF16Fs61ilaZqrYlUrHqs8Vl5nnwvRPdC1XxePle9ZgSE8VtRoypZbbokOHTq02q6DalYg3++xipyM0LLHyerqU7GKxKoE8B0K9LVqOJ8vnzelw6q3UKCpukP1WBVFrLLygXxDgbqB2vQ66xSrrHOneqz4/Nq3b0+qB4uyhwJFZdcCscp7uQURTBWrRgwFyhQ4SlpR3ybzWLHn5xIKjB6rOoNLKFC08rqvBsI/QPybSpmIVV6hQJkcLQPVY1VUKDArHyjOY0Wpkw42ipWJeZ1/66bA5P4U6bHKUGbzOou8l1sQwVax0oWj3njjDdxxxx3G5anqUKRiBbR+Nm2JlWwflVjprn30WNUZ8lasqOAfIBtildesQBV0ihWbPquvLBRI+ZSDSAFQdUa2D7Uv/40Pj5XLcguqOpn4AVnwioMpseLvVZaeiiTxMyvQJ7EaNGgQunXr1qpMSijQx3PsglpWrEzWsdp9992F+6JiJe8T2JfdqFiZo+GIFQU25nWb/LO/XYmVDVwVq+wBM/2kjQim38iidtS1HAoE8vVYiRa0Fb0Vs2VTQoFse+aJtSmxEuWvQh7EqkOHDujRo0erMm1CgWUhVpQQravHSoQQswIp5R166KHKclkUvdyCb8VKRqxkihV/nnkqVtFjVQKo1uXQISSxChEKtAFlViClDhTzuk6xys5ZdW9kilUMBaJSDlWxEp3jlltu2Wobf/1sFCs2D/7+24QCy0as+GtSD6FA3SQT/ngdQnusbJUMm/RlIVahFavosXJD3RIr6toxIkRipTev6xQr9jx1swIpxEpUdi2Y14tabkFVJ9E5iu6ND2LFHl8Gxcr3rEAZsWLvv0tfFBIuipVJf1i0x0qXn+0HpbN6sP/bwjQUaKNYqZZgsZ0V2KZNG4wcORKHH364MO+oWNUZfBMrnx4rnrCVlVipQoE+ZwWaeqxY87rKY0VdOZxFrSpWbAd49NFHK+vkQqzYOmVp8iJWZfRY6YhVVqYIRStWbB1NFSuT9jx//nwAesXKlFhlcA0FRsXKTbH68Y9/jBEjRrTKm6pYUdtSVKxKALYxHHnkkZW/iyZWQHVHUJTHSpeHrrGbKFY+ZgWy99NlHSvdg14WYgWYddasYqVrQ6LrTCVWbFoKsVKFAuvBY8UPHrUUCpT1b76J1ZAhQ0hpQi63IIJN+rKY1317rPh9VPO6D49VJFY1hKwxHHzwwTjggAMq28sYCjRdxyrkt84y6BQrnceKTUMNBVIHTUooUFRntiwZfM8KDKFYyQiDbqDIQ7H66quvpHX1Qaxcl1tobm72+vzIyL2NYlUkTBUrm/7Qt2Lly7xu4hcry3ILNoqVKhRYpMeK2jeq8irSnyhC3RIr9gFgO4oyEqsiQoE6mHqsjj/+eOnxvkOB1OUWyhAKDLHcgihPimKlqhOFWPFkmydWY8eOxQknnCAsU1RGEaHA5cuXG5Wpg65fiIpVdRqK54my34fHyoZYlSUUGFqxynMdq0isagisD6dMxIrPt6zEilqH7H++czIJBfKdFLVs1YMr21evHisTYiWCaDDl89GFAgcPHtwqD1kosG3btlbPVNmIlar9AbVJrHyb19nyXBQr2QBfLx4rExLiW7Hi6y8zr5soVqZkUYdIrEoAF2IlWnm9TAuEllGxEtWbJ1ayN2GZHC0rf+HChZVt9UqsAHOPlYzkUuAjFCiqL3vebL3at29vdU1ciZXrMiOUMvjttUCs8ggFLl26NIhi5eqxqsVQoO+V13lQPVaqe6YL/bLH6eBKyvNGJFYC5BkKtJkVmJfHSvXbp2JFIVYs5syZA0D/4NqEAmvBYyVCCMXKlFip3oj5MuqdWGUo83ILLPIIBS5cuDCIx6oeQoFUEuKiWKlCgaL6APoFQlX9pU/FSufXisQqJ7DEipW2yzAr0DUUWASx4sErVipilT18LsRKVB+dx0qUJu9ZgSHWsRKdl4l5XYRQxEoWCrQhVj48Vr6Jla7sWgkFss8mhWjYEKtFixZ5VawyqPpM1fNsQ6yyvsyEWHXs2BH77LOPMt+iFCtZmezagirFSnV9qWSRgqhYlQRZA2hqaqrq0GUNQTRlOlQo0JfHqlevXujUqZOXevHg62iqWLF5+AgFytKpQjFlMK/XimIlun+izlvlsQqtWC1cuBD33Xcf+fgyeKyA2ggFms5MLoNilUFFSFSKSpYfRaHLYKNYrbXWWkL/IQtTYkVRrI466qiq3yaKFftiUAbFSpdXmdRfoI6JlSwUeMghhwiPZweWPEOBLsSK2nBtoFrokd0v81jZhAJFnVO3bt0wY8YMqWJVrx6rWggFZvcz61xDK1amKFKxylCvipVNv6MjVraKlS2xytNjpWvrOkWGz4eiWPHH+AgF8vdIdX2jx6oOISNWW221FWbOnInf/e53Vcezg1FIYgUAPXv2rCqLzZtSDnUdJxewD5As9MT+H8pjteOOO6Jbt27CB0cVd5ddG4onxgdcQ4GA2VsYS6zyMq/zy2TozOv1SKx07UxHrFRqQJ7QKVaitmAKXSjQZFYgSxJUeVKIVehZgWmakogV5Zpmx1AUK9nLsC4du52dFAOEUayoxCp6rEoAGbFqamrChhtu2GpKsS4U6FOxOvvss6t+23qsQhIrvqGaKlYsKMewearK5fep9ovuWV6ScRGKVVaWL8WKP55fboEfXExCge3atasLYkUpW0WsVFPZQ0MWCqSE0EOEAk0UK6pq71uxsjWv68aPsilWslAgDx+KFVXViopVCSAjVrKGKVKsTAkPBUmSYOutt676bbvyuk9zIA+2oYoe+uyBk731iRQrnalapXj4CgXm9QAWGQq0Ma9TVQpTxUoWCmzTpk2uxCr72+fnbPgyRDBRrIr0iehCgWVQrMpArEKGAn17rIomVj6tKnUZCkySpG+SJFOTJPk4SZKLFccdnSRJmiRJL39VtAM7yIiIFX+T8goFikJ/Lh6rPEKBsv3sBAHR9cnqxs+kkR3nU7GS7atnxcrFYyW6N6bEykSxyptYhfIi6soWESv2hUNErNq1a4f+/ftLP6YdArqXOx+KVdeuXa0Hxzlz5lQN4vyLnwwqIp2XYuUzFOhCrEz6PpnHikdeipXu+tSceT1JkjYAbgFwMIBtAPRLkmQbwXFrADgHwHjflbQBO6BRiFVeswL5vGxCgXkQK51ixRMrfj+bhlUPRbBVrHQeqzKEAl3epGyXW7BpqxTFKkmqZwXy5DEvYvWrX/2KdFwexErXpoHW91G3+OKRRx6JIUOG4LHHHvNdXSlYchGKWD311FPK/apns2vXrnjmmWdaHeuiWNksqGsbCqQQqzKGAvk2yiNPj1W9KVa7Afg4TdNP0zRdDuAhAEcIjrsSwDUAlnqsnzXYwZwyaIg8BiGIFd/YbIhVHh4rfgAVlZM9VKJBUpQmKlZ05K1YuYQCVR6rEKFAG5Lk88WIh67D56+LjliFVvJEMDWvm9ZxxIgR2GmnnbwNjtSXS9/EShYK1KGsihXlZVfVZ7LX94YbbmiVR16KVS0Sq40BfMH8nv7ttgqSJNkZQPc0TZ/0WDcnsMRKtcZShjxDgXxZpgSuDKFAoDrEJ6qHiGyJQCFWsvxNw1u1RKxkdbVVrEIRq7wVK+qzWAbFSkesZL6hvGGqWJlez44dOwJQn5vJUic+FCvdbGVVGvb+UmYz1qpiZRIKPPfcc3HttddWle9zHat6U6yUSJKkCcD1AAYQju2fJMmEJEkmzJo1y7VoJXSKVVHEis+LbzA6hQYohliJysn8C0UqVqbLLdSKef2Xv/wl/vOf/wj3ic7BdVagD4+VyXILeROrkIqVrmy+XbPXrYyKFeVF1LQ/zBYy9kWsfKxj5SMUyNdFhjIoVnmY11dbbbWqPHwpVjqSVovEagaA7szvTb7dlmENANsBeCFJks8B7AFgZCIwsKdpekeapr3SNO213nrr2deaANa8bjrLJW/Fit8vQ1YH9uF2rZcsvW65BUCtWFEedP5YU2KlMkeWJRRo+8C/9NJLRsfn4bHil1vg75vu2vLhJlsCQT2/PIgV5U3aNBRYBExDgab9t29iRbVD+CZWGajm7gy+iRVFseK3mXzSxta8zo+ZUbGS418ANk+SpGeSJO0BHAdgZLYzTdMFaZp2TdP0O2mafgfA6wAOT9N0QpAaEyEzr2cwVax8dcxpmjoTK4piRSVcsuN0C4QC1YqValagLh8VCdEpVqo8azkUSMmbBXteZfJYyZSFegkFUsquBY+VLhTIXr8//elP2G233YzyL2Mo0IVYFR0KzEux0pnX+Tz56IsvxUp3n2tuVmCapisBnAngaQBTADySpumkJEmuSJLk8NAVtAUbCsweahZFESugusGbmEJ5xcoHsZKdlw/Fit/WvXt3iOASCqSETll8//vflx7vEyGJlQhsBxeKWCVJQvZYfe9738P06dOlK2TXC7HSnUOteKx0oUD2+g0cONC4jhRi9fXXX5PzK5pY1YJiVUQoMCpWq0DqbdI0HZWm6RZpmn4vTdM/fLvt8jRNRwqO7VO0WvVtPQCsuiFrr702rrnmGtx2222V/apZgWUNBbIdcnas7HgqEaQqVqJyso6wQ4cOZGJ1zz33tMqHQqxkUjfVY3XllVfi+eefx8477yw8PhTyeuApn/gwJVYiw7Jo5XWRx+qAAw7AxhtvLFU+G8VjJSJWZfRY6RQrk35KhMx7o0p38803k/OjrmOlUsFCEatDDz0Uzz//vPB4GfJQrEQkk0KsqLMC+fyo59Soyy3UJPi1ky666CKcdtpplf1FhgJFfi4KRCpIkaHAL7/8EgCw4YYbSokPizZt2mDfffeVHufbY8We26abboof/vCHuQ1afHgzL8XK1ndnY17n75uKdPH51TKx+tOf/iQsQ1a26TpWZVesgDDEygRUxYqSh+9QYKdOnfDDH/6w8juPBUIpVgyVesejjB6rejOv1yRY87oI/M3My7zO50sJufF1oHzSxiexktVLRaxEpE+3LIPP5Rb4fTIJPRRChgJVYVmdiieDb4+ViFix5bdt27ZmQ4Em9a6XdazyUKxMoCNWTz6pX/mH+g1TEYoOBealWJkuEGqjWFFVrahYlQC6TqqoUCAPCoHh60BRrKgdGGVWoKycmTNnAvBHrPIwr+etWOXtsbIlVhTFql27duRQYNkUq1DEyiaUIvNYFTk4mJjXAfF577jjjnj44YeF+YckVqI8DznkEHTu3JmUh+9QIF+fsqxjZRsKVLVL3tpRlGJVNvO6eYuqEehCMKpQYHYDQ3TMfCN1UayoD6MKVPO6CKxiRSExstmDcss4HQAAIABJREFUGXx6rPg0qnxCQEUWQ8CVWFGOb9u2rXEosCzm9VCTTyj9C9VjxS8+mSdM17Hif2+xxRZ4++238dlnnynz93VulHWsdITJZoHQDKqog+542f4yKlYyYnXEEUfgkUceQfv27aX5+VSsdHlFxSonuBAr0SAcyvxqoliZmNepcDGv60KBorJMFSsVGjUUKEKIzxzx14onVrwqJeq4Tc3r1LAABaGeX5OwWK2EAl0Vq7xfXCgvEqJldlhk11t3nAgqYlVvipXshZcnVXx+VLJIJZS15LFqWMXKNBTo81uBonrK9rMQhQJd1QlKKFCGGTNWrRO74YYb4t///re2Di4eKxFMzOuhO/4ePXrgl7/8JXbccceqcmolFEg5Xkassm3ZumbsNtNQYNu2bavyEaGeQoFlIVYixZ6FL2Ll69woL5c6JcqHeZ3NR4Y8zOu+iZWph0yUn84XpasDf0wtKVZ1T6yog0xRHquiQ4EuilVGrDbYYANMmzatap8ojU6lCPlJm9DEKkkSXHLJJa3Ky8u8TpkV6EqsdB4rlhCJwoOUF5VQxCpUKJAvR7StFtax8rXcQhHEStWWKHnYEqskSYTE2UaJNSVWeSlWMvM65f6bnpMKOr9W2YhV3YYCdZ1UUcTKp8eK+kagggux+uKLVd/m7tGjh7DjNVWsfJrX+bSyDikUVOcUAq6zAinH6zxWy5cvr+yjECtRfShhmTIoVocffjg6d+6MffbZR3ms6I1f5rEqi2JlQ6zyVqzY69ahQwfhMV27dlXmkV1vG9LN9j0U4zTlupioO0V7rCjjap6KVdnM63VLrExDgXkut8Ai1KxAKlzf5Nu1a4eNN96Y9Jbme7kFlcTOE4w8FCvR7zKFAmU4//zzhdt1xIoPBeqIFTUUqEMZiNXw4cMxf/58rL766sqyVaHA5ubmqutZ5Fu36zpWeRMr9rliP/zLYrvttiPlYdsHyvot/hxDhAJDKlYdO3b0Qqx8Kla6se60004zWqcrNBqWWPHbe/fu3WpfqFACi6yeJ598MrbYYgvsscce0mPzXG6Bz0uW36abboo2bdoIlTeRKqiaPWgaClTt58sPrViViViZtIl1110X1113HakMm1Cg6axACrEq+iPM2QuCqq5s2bXgsWLPRdQH6RSrDLrnyxfZZa+VTLHadtttSXnY1IN9zi6++GLt8ZTr4lux4rdRiFXv3r0xe/ZsrcfKp2Llw7z+zDPP5BaNoKA8NfEME2L161//GieffHKrfbJOYOrUqfjNb37jVK8M2cM9dOhQfPDBB9K3L7YOecwK5CEr57vf/a70+DwUK1V9y6BY1fNyC3x79KFY1UookAqTdazKstzCLrvsgldeeQU//vGPK9tCKFa+iJWsz9QRK5frzfZvd955Z6t9ouN1+RWhWPFYd9110alTp6o+2YRY8X1uXooVX3bRKE9NPENnXme3H3fccUazAnv06IFNN93Uaz2z8lSNxxexYgcv14bfs2dPcrm+ZwWqJHiZYlUUsfJZrigv9oPYRXmsTM3rog47VCgw5HILqmNqZVYge92TJMGee+6JjTbaqLKtrMQKkHusevToQcrD9npT0xU1K5Df9swzz2iPyepg+2Joo1hR8xVdn27dunnJ3zfqlliZmNcpgzBPvGw7Bb4+Jg3Xl3md7URdFasNNtgAgNiEz6fRzQpUvRlRFCveUyG6p3mb12W/fSMjNaZtU6f6sWjbtq1QgcrIA/tG7DIrUIeiiZXPWYFlIVaiF0v2PCnnrNou2u/yAkBRrKgLhLoqVqJ9lG3U/ET52ChWIvDH8C+CMlM4dVy1eXGXnYtou+oj20WibomViXmdv2k8a+ePdyFWLrMCWdNrdqxNB8cqVpQBR1VO1nlRiJVvxYovk5X++XtUlGIl++0btrMCTYhVu3btpKFAfokESihQhEYLBZaFWPGKFV8Pavv2QawofRLFY6W75748VqJ9lG38/mXLlmnLzepqMytQVi4Lnmy6ECtbj5WoD5D1a2UyrLNoWGJlqljxg7SvN2DXWYE2nYJuzRoTZOkpcfjQxIpVrCj31CfyJlI8WMXKVk3QQeWx4ju47DiVeT3PUGDexIpVYamftBFdj6eeegoXXnihN+uBDK6KlQ2xclEtKYqVrm8rWyhwwoQJ5DK33HJLbV1ciBUfHdGlE223VaxkK7qLyiwrsar7BUJtmDWFWIVa18qUWNl0CqYeK1W9ZMRKVDffswKzMv/yl79gyZIl6N69u7R8mYTuC7WqWKnAH6/yWPEdXCOFAnXgnw2TBUIPOuggHHTQQXjsscdsq0uCzmNKbc8+FKulS5eqKwvaOlZUxcrm2QyhWA0YMABjx47VHgcAhx12GG677bbKDM5QipUrsTJ5CclgoljpFhMuCnWvWFHM6xR1w5fHSjYrkC9bBJ6A2BIrU4+VqhzVgJWXYnXBBRfg8ssvV74tmShWth2tyW8Rvv/975PKWnfddVttoxArEUw8frLlFtI0JRErPhQoKjtUKJBCrC666CK89NJLOOGEE8j56o4xCQUWOStQFAoMoVixCD0rMKRiZdr36tpikiQ49NBDsffee5PySZIEp512WqtPaLGQXd9DDz1UWC/AfyjQhtzJiFUtKVZ1S6xMzOsUxcoXseJRxCdtbMzrMsg6L1HddDF3V/O6isyYdPxrrrmm9hhZPam/Rbjuuuvwgx/8QHvc4MGDW634nb25mc4KVBErfp9JKFCnWMmUqbxCgaJy2rZti969e0sVEFG+lGNkoUB+jSBVnxWabLkqVqrnS0TaAPF97N69O/r27autr0+PVWjFig8FduzYUZpGtdyOKG/VdqqowMInsbJVrEShQFm/Fs3rOSO0xyrUrEBVQ+TN67azAn2a101DgapBw/STNqprJ1OsKPdtrbXW0h6jg819obap7t2749lnn63aRpkVaFon38SKoliFIlb8uYvKoV4f6gw5QKxYsc8GOzAUSax0q61TXxRE29mBUkWsdthhB0ybNq2iwqhQtGJlmo49VkQEs/269u+DWKnqTfVYUeqXh2IViVXOcJkVSHljK2JWoC+Plc/lFlTmdR4uoUBTxYpClmVYe+21K2/N66yzjvZ4Ub42ihWVKIvIU17m9fXWW69Vfj49VqFCgfw1Ew1g1LCoyVu4jFhldREtURGaRIlg+q1UE8WKvaeqPLM6UO4vZR2rokKBOmKsUqzyIFYqwsxfkzwUKx4m5vUMob6MYouGJVamg7BIffGBIr4VaOOxksFEsQo9K9AXsVprrbUwatQoLF26FF26dNEeL8rXhlhR76fouLw8VjfffDOOOOIIjBs3juSxKsusQD6d6PnNyKnumlDuLbtNRazY62Oy9IVv6DxW1PZtoljx98CEWLH5yRQrXT6u61hRkaZpVV2KVqxMQoEu5nUTxYpNZ2Jez0DpN/JEJFbIV7GS1VNWjqhMV48V26G5mtfZwVWXxmZWoOo+6q6dqCzK+a699tqVDpt6fcukWPkKBfJo27YtunXrhuHDh2OfffZxDgXKytAhlGLFfpLHR/mAXrEqSyjQVbFSbQ+hWLH5FaFYqdK5KFa6OvsgVkmSVFalP+igg6r2FeGxAqr7cpm5X5VX2YhVuWrjEbrF3/hQoG4GGZ9P2ZdboOTD/62CLD+f61iJ8pA92KLjdQqWqE4irL322lV1psCGSPEwHVBYhFggVOSxYuFiXs97ViB/XUTlUIkVlfwCYmIFiD0sZSNWJrMCs/0mipWsT81bsbLpy9m+t6mpSdlPZcdnyCsUqHoZnjhxIqZMmYJdd921al8RswJ5yIiVKq8YCswJLqFAUScRiliZhAJF5nWbelCUAwCVqb8HH3ywtk48RKTPJhSYnevll1/eap9JyMaEWLHmdV9vs6q2xG43GbRZ2M4KNAFPRtj7luc6VtROVHUPROVQVr4W5as7RkT4RR6rsi23oFLsZb99KFamg6Sted01FMgum8HvY2EyKzAPYpUkCdZee2384Ac/aHWM7wVCTa9tmzZthPdN1zeWTbGKxAq0UGAZFCuegLAPtwmoitXjjz+OIUOG4NZbb9UqVqK68ml0swJFxCrb9r3vfQ/Tp0+v2qcjVrazAlnFitoxUAceVZ62szyBMN8K5CFTrHyuY5VXKFDUbqnEKoYC5RDVc+uttxbulxErimrJ5idrM65qvA6m9cyg8ljlEQo08ViZKlb8MaYeXtmYpssrEqucYDIrkCcBeRIrHqoGKwoF2jQoKrFad9110b9/f6yxxhpaYhXqkzbswMPXtUyKlY5YsXBVrERgQ4Emna8JbEKBBxxwAIBVi59SFKsiZwVmoUBT87rqGF0okDorMDSxMjWv85A9X/3798cdd9whzEdmXrclLDxslU1qGtt6ihSr7FrbKlYihDSvU2F6bWWKu079MrkXeaBhiZWpYiUiCS71koEyILONX/YgUgd2V4KomhUoKpffvtFGG5EUK1GeJuZ1E2LFKlZU+FKsbGFrXvehWKmI1e9+9zvcc889GDNmTKtnrkjFysW8bkKsAHGoiA/rA2b3wjdcFStRms022wxDhgzBBhts0Oo4UZ6+iVVIxUpFrET9lI5YZftdiNUDDzxQtao6pR8IqVip6iDLq6mpKSpWZYbukzZ84zIlVq5mORtVgY/ph1asKPVyWW6ha9euePfdd6ve7nmo3phsFCvK+Xbu3Fl7jKos3e/QipUvj5XOvM52vvx9ytpohw4dcNJJJ1WtfwXIr0Feyy2UZVZgrShWVLVY9wLhm1iJcMUVV1Tlp0PeilWI5RYAoF+/fhg4cGDlt6ydqvpNV4+VibVFBBWx8qFO5oW6JVa6qbR8p6EbhH0pVrr0Jm9gPoiVa+dDDQWKzvdHP/oRunbt6k2xUpVvolix14QqhftSrEw6oqlTp1ZM/SrFSpWniUoiC4eLPFa6hVVlipXPUCALvmN28VhlH75l8xaVBzSOx4qaRrU/++2iWN1zzz247LLLAIQlVoC8nrr8XDxWuv2bbLJJ5W/ZPVPNYCxCseLztQkFRsUqJ4T8pI3otylsFCtRHWze7kKEAnnw11RVjuohli0wKTuehW0okE23dOlS7fEiqMph9/FKgUknv8UWW2CHHXYAkM+sQP5ei0KBSZLgwAMPxA033KDMS1aXsoYCO3XqhP79++Pll1/GxhtvbFS2j+UWQkN0TV09Vrr7JFOsRCtv68rl8xDto+ZBTWMSCmQhmsVIVaw6deqk3M+2TVn/qHpZdCVWNooV/8IjmxUYQ4ElQNlnBYZWrKj5sH/vv//+0gfXVbGSybvs/6aKlQ62oUAbYmUbCnT9IHZ2XfMwr1OIVd++ffH0009ryUcZPVaZYiWqV5cuXTBkyBDstddepLIz8B9a5uvCDnKq6f95KlaiMm2uuali5eKxytrbnnvuSU4rqpNJGlvFSvbJFqC6XV555ZWtjtPZFCiktMyKlYxYifo12QtqGdCwxMp0VqDvUKAPxUoXCnz66ae1+bB/X3LJJejWrZtRvXwqVq4eK0r4zTQUGIJYseSVJ1amnXyWnhIKFOVtEgrk7zXb+WbEitrBydpDqFmBfDqXWYG6cthtIT1Wjz32GLp3725UVxlkKoGsfFkb06lcqpctF4/VRx99hGnTpqFnz57GaW37clsvGJVYnXjiia2OW3311bX5Dx8+HH/+85+x+eabC/ebKFZFeKxkhFxlcYjEKieYmNfzVKxMlDQepsTqwAMPRL9+/ZT58B2hzRsGoDevU/LN8jjwwAMr21w8Vj5Cgd988432eFG+ot8PPPAA9tprr6rFTvnPC5l2RCLFytRcTd1H8ViZEKuyfSuQ6rEyLdvHtwJ1ZbhCpy7xZa277rpVfQs1FBhKserYsaM1ySxTKJBtl6I2SplYc8QRR+DCCy+UnheFWOnM61T4nBUYFasSQOdX4DuNelSsZPnZEKsQoUD+ONE9c/FY+QgFZkqQDjpiBayatfPyyy9XzZArWrFSgb+nlFCgq2JVVo+V7VIIIT9pY9NeZFCtrcT/neGBBx5ota0oYuUCW2LFKk9NTU3o3bs3AOCYY45Rpg1NrPg8eYQMBboqVqpQYC15rMpVG48wCQXyHVS2T0WsXKd3+vBYNTU1aT1WOlOqLLxDBXUdKxPzuuxt30ZW5tOaKla2UBGtEB6rIszrLqHAJEkK/Vagy3ILpmXzb/06xYpKrERv8bZoamrC/PnzpaE8XTmUl1F+m0wBrQViBVTXs6mpCWPGjMG0adOw2WabKdOpQoG8gs3DB7GyMa/zzyv1mpkqVm3atJGOWbWkWJWrNh5hal4X7QsRChSVT9kuKtNWsZI9vD4VK5NQoK1iFcpjZXNvKaFA0d+uihVPrFSDrW9iVWuKFTsQigZvdiFLXzBZboHdT4FPYgVUf3EAMJs9bEIGZXn6WsfKFD5CgU1NTWjfvr2QVPH9FJVYhVKsQhKrkOtY1ZLHqly18QjT5RZE+0KGAm3SixqWrhMyDQWaDsqUEJ/sOP466xQrHqEWCA1BrGT5u3qssg5F5bFS5WnisZIRqw8//BCzZ8+uqo8OLh4r2/WJ2AGNzeOiiy7C1KlTce2110rzUl0nFYFI01Q4kInM65T8dNt8gvpi5CtPCrFqampyUrF1dTJJwxMrKqihwFCKFSUUyBN/2+tu2m5U5vVaUqzq1mOlM6+rQoFlVaxEoRhdg9KFAl3PK89Zgfy1yWMdKyqKVqxsV153mRWYlTNr1iwMGDBAeIwMsvMMGQpkBzT2uu+8884YPnx4RW3w8WkZmeqa7TNVrGQvSCHJlU0o0GSbzaxAk5cGKvImVi6KFWVWoA42swKplhGTF0wRbJdbiCuv5wTf5vUyECuTUKCKSORhXqcQK1PFyvQh1d1TGYoiVjYdPMW87pI/C8qg5qpY6RZAFNVDBv6aswMaW09Kp+xiXjclViIUoVjJ/FYi2BArG8XKdeDu0aMHqZ4UUIkV33bWX399aR3KoljxfTKV0OpmEuvqaWJe32WXXSp/R8UqJ5R1gdA8l1uQ5ScLRfkkVnwa0cPCXwtXj5Wq/Oxvyn3z8fajGgBU5nVbxYq9dhTPoA1kihULV48V7/MxScvDJ7EyRVb2okWLsGDBglb7yuixUtWjLB4r1xfa+++/H7169ZLWiQobxWrOnDn48ssvyZ+0KYPH6u9//7syL9s6yKDyWLF57bHHHnj00Ucrv8tGrMpVG4/46U9/is0337wyBZaHSqkRDUR8A6EO0LJGHHpWoCoUqgoF2g7sZTSvq1QyFXz4SVTlyBQrF2Jlm4ePUCAL11mBa665pjatDbEC5B4r/rx+9KMf4d577/2/9s49yoribPdPDZcZE24zgAiMMIBcIoo4oAMSIg6aAyyVqF8CRsAL108loCgiagyaLEFC0ESWl6iJZBkVyCHBQ1DEeCUgoIBX+M6oIKAcMNyiwKBQ54/ZPend011dVV3V3XvP+1uLxezuuu3d1dVPv+9bVVJ1hNXt7FvnxUSMlW1XoErwuh9xCCsdK7bOWO5XjrudMuK8pKQEAFBVVeVbnrecJGYFevPu2LEDAHD48GGpsnUsVt70MlvazJ07N2sxaxJWMTFw4EAMHDhQKm2QdUEkrGRupIYNGyqvXBu3xSqqK9BJb3JLmyBh5UVnHaukhFXQA8VU8Lq7HhWLlYngdVF7gkiTxcpb3qhRo1BYWIiRI0fWHjMRd+Vui4kYq7RbrMLw+90B+8JK5pgMuq5AUbvCLFZR9lF0EI2bf/vb3wCYu94y6S666CKsX78egFqMlZu4Z5KGkbeuQFVsuAJFDxkTFiuRsBI9TEXCSlXwiYLXg+oMSus3AJlex0rmuukIK52lHwBz61i5y86FGKukLVYiV2BBQQGGDh0qVYds3d5zqharoHKStlg5wdTueBcHFYvVxo0bcc455wCwG2PlF9snKkM0vukGr4teQsMsViqoCqulS5fi0ksvFeYNK1vVYnXLLbdk7UThtUy56xPF/KUteD1vLVYmiOoKVBkgwo771em9uf3wszoEWUzC6vfDdvC66RgrXYuVyK0bVrf3s8kYKxmLVVCbVOnSpUvW53yxWIVtQKxSj0x+xlhtnblisQqqZ/PmzViyZAluvPFGYX6/Y+7f3b2GmE3rg5+gDxNWQdfIpLDyK8eWsAoax1Qm0piyWI0ZMyZrtq6sxcpbbtpcgWSxEhBVWCVpsXJw38RvvPEGdu3aZSV4PSyP7pY2UfYKNCmswmIbvJs1hz1YHUzHWIlcgX7Iurh27NiB4uLirGNRhZVJi1XYQ9wrrMJcLip9LYobzM9iJVuHCZe1CJlZgZ07d8b06dN9Z3OqWKzcx1XW5tNxBfot2Prss8/67jUoGrdMugL96otbWHmfBTplq1qs/CxPMrMCvfm8L31JU2+Fle6Cfw66FiuTswJFwet+fP/730ebNm2Mxlg5N0H37t3rpA+zWHnLjrpXoOgaRXUF+u2l5sYJ8pRpq+0YK5W+JTvol5aW1jkWNXjdD5l1esImZATVEbSOVVSLlR+yrsCoswJtEkXAyJQZ9CC3KayCXIEjRozAZ599Vie9KNTCu1dgECrCSlTfxo0bpctx8vghM6HK+32ef/55qbJl2xB0XuQK9Ctr7dq1uOWWW2rX0UsL9VZYRSUJV6DKAqGyAk0ndszvbX/MmDG44YYbsuqXFVYOixYtqs3rEBagLsKkxapz587CPM7K4351A8EC0Wt+j2qxChqY/Nrk5aWXXsIpp5wCAOjdu7eSRdAhqitQVvh6Z+2FiaOorkDV4HXTwioJV6DtWYFBf4eNmzKWNFH+pGOsRATVd8UVV6B3795KZQV9r6AxNUjoFhUVBc6u92JzVqBff6moqMDcuXN9l7BIEhJWmkR1BZqwWKm6Av3K0Qle95tm3KBBA9x8882BeWRdhl6SiLFyt/Xll1/GxIkTld+IZIVVVNO/jCvwsssu822TlwsvvBBffPEFvv76a2zYsCH097XhCpTNO3r0aKxZs6b2WNqElYhcEVaqL0ai/GFl6lqsdNoUZul2IyusROObt++4P7/66qt48803az8H/c46/c+UK7CoqKhOWTYtVt51xpx0UQR13JCw0kRmFoLOQndhb7rezzpBe1FdgUEDivdBFjYwB4mdIItVmCvQiwlXYGVlJR555JFQV6AXWVeg7eD1mTNn4rHHHgvMH7T6uUz/1hFWEyZMQK9evdCvX7/Q8sPqFU3CAMwKK1XC8puYFcg5j01Y6dQTJqyCxo6wlzAbrsAg3G3xLnVgwmJ1/vnnY8CAAb71uYlDWAUJl8LCQm1hpRNjNWLECCxcuBBPP/10Vrqo/TFO0hVKn2L8lHUYuWCx8g5uMh1WVlgF1elFdNNGWSDUpCtQdeAUCasgV6CN4PUxY8agadOmvm2KStDsSRGPPvporSDQtQI5dYQ9jL3fN2hpCxtB4HG4Ak1a0fyw8RvJWKxUyjDhChR9N3efKSwsxLFjx2rLidMVaFJY6bgCZYWVimj1O9+gQQMwxjB69GisW7cuK53tyRomyZ2WGiZqzIRqLJIXHYuV30NUZ2qyToyVqsXK+1nFFShrsYpzVqDoehcUFGDGjBmBdQPZD1DbFqugB4/ph7NfeTIW1LDvWFFRITwvK+i8313FQpKkKzAoj8pxE9i2WKVFWInKc/cNdxyPirASuQK9BI2TUWJNZcsKei7EabGSDVPJC4sVY2wIgAcBNADwOOd8tuf8zQDGAfgWwF4A13HOtxtua6KYFlYmLFaiWYGy5Zh0BYpuBF1XoOjBoxIDpOsK9GuTl6NHj9YRuCJhJbJYqRJmsYoyGNmMsRKV/9prr2HXrl2BU6idelXEUVRhpUpYfuc7/O53v5PKm4SwihrTEvY9VKb3B5Wh2q6CggKlGCt3f/YGSNtYxyqNrsC4LVZ+57yTctIurEJ7A2OsAYAFAIYCOB3AlYyx0z3JNgLoyznvBWAJgPtNNzRpTAmruDdhVg1eV3VxylqsVFyBbnLBYuVnNUzKYhXnABRVWAVRWFgonIWpK6yCFkC0sUBolPSy5cUZYxXnrECdclXy6sZY6VqsVEhSWAWN5YWFhdorm0exWHn7R9rFlBuZ3nAugCrO+Sec82MAngUw3J2Ac/4K59zZpXEtgLqL3uQZabBYyQirsHK8ZV5++eUAULu9hF+7dILXVX6LQ4cO1f4dZVag301qQ1j54a3HVoyVX58wZbFSrRswY7GSrVdVHAX1wSSWWzh48KBSXr9jtoWV+/r27NnTavmy30PUv2XziyxW3oVO3X3DvQ5aLgsrGVegV1j5hRz4EdViJfvSn3aRJTMKtgfgXv1wJwBREMRYACv8TjDGJgCYAAAdOnSQbGI6KC8vB/Cf9YySiLGyIay8wmjcuHHo1q1bnb2/ogorFYvVli1b0LhxYxw7dixrq4uwh53IYqbiCjThGpK1WIncp7L1uN0bcQorv/Li2FrChLBK0hXIGMO//vUvpbxRY2z8XGBhuNsxZswYVFdXY/DgwZHakQZXoGjceOmll3DeeefVfpZ1BZraq85kjFXQb+OehQgAV199NTZv3oyzzjqr9ph7DCkqKtLe+kxVcMo+T9IurIwGrzPGRgHoC2Cu33nO+WOc876c876tW7c2WbVR/C5acXExDh48iC1btgCQu5FMW6x0FgjVcQUOGjSodiaZH7Zdgdu2bcOaNWswbNgwLF68ODBfWlyBYXUDwZY3E2+6okVGowxGScVYhZELMVZheBeUDav7m2++CS3TvR6SF5kV7b14X8CmTJmCM844Qzp/mOUtjcHr/fv3x3vvvVf72YYrMMkYq8GDB+P3v/991rE//vGPeOeddwJd5U7wusz16t+/PwCgZcuWwnRB5YiEVS5ZrGR6wy4A7k2USjPHsmCMXQjgDgCXcs6rzTTPHqodtaSkBM2aNau9mZKwWPnU/H3iAAAgAElEQVSZTU27AmXqDgq4VnUFisROeXk5li9fjm7duvmWD+SHK9DPCqmKaL/HuFxFDjYsVuPHj0erVq2E9aZtVmAUV6AffsLK6wr0WiLchO116UdUC0EcwkqnTSrB697Zce48usLKb19FB9vC6vbbb0dJSUloWvdnR1DKWBg7d+6MTz/9FNu3bwdgb1Zg2pEZBdcD6MoY64QaQTUSwE/dCRhjZwN4FMAQzvke461MkL1796K6urqOGVg1yNuLjsXK7yEcttxCmMVKdvCUsbKIylKxWN1yyy1S6XQsVjZmBYbVDQQvEGpCWHnfNPMtxsorINJmsQoTEKply1qsVGKsVBe4BaLPCvQjqitQJABkCHMFej8HuQKjCKt+/fph/PjxdcItAPvCStZl6bVYATW/hdMPRb97WVmZsA2iNgb1OW/8adpFVugoyDn/ljF2I4AXUbPcwpOc8w8YY/cA2MA5X4Ya118TAIszX/gzzvmlFtsdmebNmweec3di95uym6izAuOKsVIRVrI3r2zbdVyB7777rrS7IR9dgTqxFN4lL3T6lg5+5dmwWJkQVkFp3OXFhSlhJVOWg3fVcBmi9pcwwan7oLTpCvR+FsVYyW7C7NeGoN0QgsoxtY6VjrBSsVh5MTkrMJdcgVKjIOf87wD+7jn2c9ffFxpul3V69OiBOXPmBK6VE4bMhU1yVqBsObLCSkYkiUy3sr9FaWmp9E0TNkDqWp5sCyuRxUp2wUg3+W6xOnHiROwWK922+pWvil9ev61vVOpxu7Fkifogi+IK/Oijj7Bp0ybMmzcPGzZsyEpnWliJ2mjDYiXC9uQPWWHl5wLVaZvqS4TsuohpF1bxvqqljOnTp+OKK66wVr7uxsOy5clYrPzQneYclsebRtZi5cbkgzmtrkDRb6kjrETbEkUZgHSC13V2ApBpR9LCSpUwV+D3vvc9pbxRXYE6wipqPwoTViILSI8ePTBy5EjpcmVRnR0ZZbkFE2O8Q5KuwDgtVqLfO27LchRyp6U5iKgTO1NbvbPvVCxWJoLXk3QF+rnnTD7k0hS8LmuxiuoKFAkr1YFeR1ipxPJEjbFyk6Sw0hHdr7zyilJ5MrMCRUQVVqaQtVgFHY/qElK1WAXNCgTMbMLsJWi2fJKuQKfvmIiJCzvv/h3dY0muWaxoE2aLiDrxgw8+iHbt2uG6667LOm7KFeigEmMlQsb6JLJYyVrvTJrC/W5EXReurRgr7/f1s1h17NgRDRs2xMcff+xbl2i5Bff1Nz0Y+ZUnmvGki9cVKLsJsxeVBUK9mJ4V2KZNGwwYMACrV6+WyuvnCrRtsbLtCpR5UIeVoSOswkSKjLDyWqxMvRC2b98ezz33XNb6fYC5vSp1ZoH7uQLjsFi5x5KogjpuSFhZRHSzFRcXY/bs2XWOmxZWYeXYsljJuAJNW6xEFrM0uQLd5ZeVleHyyy9HaWnNZgV+D9Bt27bhN7/5DaZNm+ZbV1BcAmBXWCVlsZLtN9483jdgUd6oyPzWKm7TXLRYhYkiHYuV95hqG/1mBYqIso6VjHXMj5/85Cd1jsVtsXJ/nyiuQJ3r4+C+X72zAtMOCSuLiGYFBqEqrHRiWuKwWInqdAizpoURtnp/Wl2B3of6X/7yl9rPOgOod8B3Y+pN14+owsrNkiVLanc38BK07pCKsAKAyy67DIMHD8aQIUOyyrRhsRLhtCvo3pV1BapYrHRmBSYZvC5bhk6bVCxW7hfXOLa0CcJU/4u63ILfeRFRZgW6f9/jx4+TxSrXMXXRdN6Ek3QFRp0VqOsKFG20HESLFi3w4osvCtOYtFjZElaidLK4V9UWCSvV76DzEqDiCnSXL5pEwjn3bYuqxapx48ZYtWoVAGDu3LnCvKK2yhDmCgSC3d6ywiqsHjdRg5/TKqxsWKyChFUcMVZBJCmsnO8ZR4xVUPuOHDkSuT/GCQWvWyQOYRWGqRgrUTuCypJ1BeqIieeeew49evQQpglzHwVhwxUYdbkFUf3uCRAiYWV6KrdJi5WIIGHltsIECauOHTsCAH74wx8Glm/joRjFFeiXN2qMlc49ZvvhpRu8HuUBq+qec/cr731mY1ZgEEkKK2fciBp2ElYPENy+o0eP5pSwIouVRWwLq4KCAqXB2a8ck65A0bojohvM5AajYWmScgVGXW4hV4SVjsspjBMnTvg+WNzWsSBhtXHjRmzevBnnn39+nXOivF5suAJ116Bz+lKnTp2k60xCWJmwWPlZ6lQesF4hJSOsgvpGixYtstLEabFKclag00/jnhXo5ujRo7TcAlGD6QXV/CxWbdu2xSOPPIJly5ZJ1xHVFSjzdqniCjQ16OuKJpk0JoWV6QVC0ySsbLxJBlms3PvfBQmr4uJiDBo0SPi72BYQQed0XooaNWqE999/H8uXL0ePHj3qpN29ezfeeuutOvlyVVgdO3aszjGVe9Hvwa0rrIqLi7PSpd0V6Peb6gSv+1msZPtGlBgrN2SxImoxbbHyWyAUACZOnBh446V5SxvnvC2LlRvnu9m0dInSy8ZY6fwWbmElmhVoWlhFHdxUVl4Ps1ipijwdoRGEaWElolGjRujZsyd69uzpW0+bNm3qTNUH0imsZMr3E1aqFivvZ93lFkQWq6j7TYaRBldgkjFWXotV2oUVWawsEmeMlUpHS2IdK9Gbi6lB37vYqmw+GeJaIDRNFqsoM1hNEmSxct9fYS4jL6oC1sbsSh1XoFeMyV4DU66kqEQVVqoxVn7CSjfGyiusGjRoUFt+Gi1WfuiM93FarPIlxoqElQ9du3aVSrd7925s3bq1jonYIY7lFsLKsTEr0LQr0JTF6oILLsD111+PhQsXBubTHQDjirHS2RNOJKyaNWtW+7eqhSQshifq4CYbjyXzUDl69GidYyaFlSo2XYGyad0cP34c69atk0qrWrZK/qQtVjJb2rjzuK2ifuO804dtu8XjsOoH5aUYK3XIFehi9+7d2L9/P0455RSp9I7ZPajzmLZYiVxtKogWlJTB1DpWDiZjrBYsWOCbXsUV6EfSW9qoCquXX34Ze/fuzXILqVqspk+fjn//+98YMWKEUj5Z5s+fj48//hh33XWXMF2QK9BN2oSViCjCStede/z4cZxzzjn4wQ9+gNdff10qTxqFlfeFTbUNMhYrd55bb70V69evx/jx4+tYrICaa1hdXZ13Fqu4Yqxk0+facgskrFwExSeEEZew8nY63UFW5wZxp+vevXtomiRcgar5rr76ajz11FNW6hMJK9EAYcoVWFlZWSedan/5zne+g3nz5im3R5ZOnTrhvffeC00X5Ap0U11dXeeY6Jqp/s5Jr2PloLvJdRpjrGQeulEtVn55VUR1q1atsH79+jrHDx8+DOA/1yPfhJU7nd86VqbqoxgrIpC4hJW3PJkHpd8N6V1BWJTWL92FF16IJ598Ehs3bgxMI+MKdM7HaeZ235zTpk3LWlxTNp8Msq5AWYuVCNECoW5MB6/HBec8VBikzWIl0z/jdgWmAVVRFCaYdVxNurMC3Rw8eBCAWFiZfPjb3EHBj6RirGRnBaad3BxpU0YaLVaicoK2QJG9eRs0aIBrr702tM40Waz8XIEq+0/ZcgWatliJ2pnLwuqrr74SplEVVnE/qNyEuQJFeK+hTWGVRlegahlRXYFBY/iBAwcAxGexMvXy2bJlS+W8aZkVmEuuQLJYWcS0sHKv2wPUHZhvvvnmOnlULFay7cqVBULD8kWJ1VBNH+QK9P4upoPX3eSysHJ+l6CAd9sWq7S6AlWFlc0+r1qmTPne+4ExFmkdKxlXoIq7MoqbTAWdFwF3ngMHDmDPnj3Sm3GbElZRZwU6n3Ntr0ASVgZQsVjpzgosKiqqM0vLOzDLxsPoWKxkBhuRxSqOBUJFON9NJP5ExLVAqKngdT9043OSxv2bBC2poSqsbK9jJXMvpd0VmAaLVVi5NlyBbrzj1jPPPINLLrkEY8eOBZA7rsDmzZujdevW0ulNBa/rXB83Qc8qElb1ANuuwLFjx2L79u11Op3ug1LHYuVGVmTYtFip4ucKZIxh9OjRUvlzdRNmN7lssXIwJaxM9rlrrrkGADB06NDaYzLXMQ6LldNv58+fH9oelXaYQNd9ZtsV6MbbxpEjR2LZsmW13oNcC16XxYbFKkxoe9MD2cIql5ZbyJ2Wphjbwuqee+7BySefXOecbvC6LYuVqF7TmzCbGpTnzZuH5cuXY/LkydL5VOsB7G5p415rJ0lhNXDgQCvlygirsFgcLyZdgZdccgmqqqqytpUSXUeTFqswJk+ejGPHjmHw4MFK+cLaoZs/qtXBa2W2IaxU7sE0C6t27doB0P+dHUxZrHSE1YMPPggA+PWvf00Wq/pG0EU2tVegc8x7TjTIOmnjjLES5YljgVA/zj77bDRp0gQdO3YEUFfUFBYWYtiwYVli04+kLVai75sGYVVZWYmlS5daKVvkChTFjMRlsQKALl26ZP2+ooezs2hrXK5Ad544Y6zicAWqppVZIFSlb8TlCtTpr0VFRdi3b1/oxA8/wixWtvDWcdVVV+HAgQOYNm0axVjVN2xbrILO6T4oo84KNOUKjGKxkr2xNmzYgH379tUGPQcN7GEDV1RhNXXqVN+yZC1WssIqqVmB48aNk55xpIrIYnXSSScF5osrxsqPoEkIAFBSUgJA73rkkjs3TFjF4Qrs06dPnbxh45wpYWUSXVdgcXFx1vggi6kYqzC85fg9M5s3b14nLQmrekrTpk1xwQUXKOfz6zBOh7YdY1VWVibVLhnByDkPHUSdwcJmjFVBQUHgG7uKqIziCrzzzjtx7733hrYB0Pst3N9P9EC3Gbxu88Eislj17t0bANC+ffvATcrDypRB9cEmEm7O1ihxWKyixObYeHjFHbz+5z//GcOHD1eqM5+ElS6mYqyCygw6JvodKcaqnuHXYT766KPaQV+3rIqKCtx22221szlMWay8wqqqqgqrV6/GqaeeKtUu067AOGOsdPZJ1KnPXXafPn0C6zURY+XmyJEjgedsDkw23yBFFqunn34aEydOxKpVq/D+++9nBZCL2mT7QSUSuFGEle46VjrpbbsCdctUcQm1bds2a7Z0nMLK5D2RBmEVh8Wqk2B/0lyyWOWOXTnHCLrwKjfIjBkz8KMf/SiwTN0YK68rsEuXLujSpYt0u2SD12VdgWlYx8qmK9CbV/Rg0FnHyo1IWNkcjJISVu3atcMjjzxS+/mBBx7AihUrQtsk0+f69OmDt99+u04bZJARVnGuY6WDbWFlwhVoI6/KeOSEGNiOP4p7b0sbFitRPWvXrsXq1atx8cUXS7WJhFU9wG/QNfHgD3s7NWWxUm2XKWHlkNRege42qSwaGKWesHNRB1C/ZQfiIClXoBcnHgOIHmO1bt262oeJSVegE2OlY7Fq1aqVUjuSdAXaCF5nTG1WoE49KuMqWazM1FNRUYGKigrpNqUdElYG8Ov0Jt7Gwt5ORRYr0Y2YllmBUSxWuiThCvR+d50tbWSvk6qwmjlzplL6IGwKK5nlFhxkhZVMn4vynWRirFQsVs8//zwWLFiAX/7yl6FpTZFGYWWqDBFdu3bFhAkTpKz4+Sqs/ILXbVqsVNJ7X9rTCAkrA9iyWHmFk8pegaK2ufOJXBZB6DxwTFuswpZHCEI3eN2kKzCpGCs3I0aMwJw5c9ChQ4dI9TnYtlg1a9YMhw4dQmVlpTCtu1+IRKbt4HXRfeWIP5XJBBdffLGvm8RmjJUNTLsCbQXYP/roo1Jp61PwetQZqU2aNKndvNqvHhkKCgpw/PjxxPtxGCSsDJCUK1A3xsqN38KKYe1K0hU4b948bN26Faeffrp0Hje6MVYmXYEii1VU652ssDpx4kTt2l4msB1jVVVVhU8//RTnnHOOdL5Dhw4FnrNtJRX1aefNX8cVqJo231yBUfL58dBDD0XKn+ZNmKNgMsbqn//8J7766iuMHTs2srBy0pOwqgfEZbEyFWPlxpaw8uYxNSvQb6NpFZJwBapYrIIYMmQIAOCss84SplMRViax7Qps3bq10l5nAOoM4m6SXMfKQSd4PUpaVWwLK90yTVmsioqKcMMNN0Rqj21X4N13341Zs2ZlLdcSB37PIV1h1b9/f+U8QeTKkgu50cqUoyKsVNZLihJj5XDuuecCCF5Isbq6OrQML6bWsXKI820sqE1xCivRAqFBlJWVYe/evdiwYYMwnWyMVS4JK922mrRYmQheb9y4cZY7L+j+jdvtE4QNYeXG9JIpUcrRxbbF6he/+AW+/PJLjBo1ykr5QSS1QKhs+rRbrEhYGcDkQGg6xuqmm27Cww8/jA8//ND3fFwWK9Mrr+uSBleg7ht3q1atQq953BYrJ5j87LPPNlKeG2cGnHf1bFnS5go8dOhQ1n6CQStim7wfvGNT0tYw1b4/a9asyGXItEUXP2uOaWztaCDCpCtQth4ZnLGUhFU9IM0xVo0bN8akSZNQVlbmm07WYhU1xsp9UzoLkTobw6ZhVqCusLrppptC04tWBDc9QMRtsfr888/x2WefoW3btkbKc7N+/Xrcd999mD17tlZ+kbBKYoHQwsLCrOsd5NpUEVZpfsCYcAX+/Oc/xzfffJOV39R3tm2xSvO1CcN9fzjfLarFysRzMlcsVhRjZYC4LFZJxli5iRq8vmnTJmzatKl2y580WKx0trTZv38/WrRooVRP2LmoyAplU322SZMmaNKkiZGyvJSVlWHGjBna+U3GWJlcx8oh7cIqLcHrohfMtFisciX2Rxa/PhjVYmVCWOXK75wbrUw5SQWvm9j7zZbFCkDWFjnuPCUlJaisrKwtM6kYKxWLlR9BokpUpy1Ul5+IU8wmheg7Jjkr0CFoTS6TwiptswJNlJ8mYdW1a1cAQOfOnSOXlSb8+mDUF/n6ZLEiYWWApISVCb++LYsVAPTr16/276qqqsB0cT7kgwLHbbqG4hgEgiYnBBH39O04efnll9GlSxcsXrw4MI3t7y8zKzCoX9i0WCUdY2UCVWEVFMtmwvoxduxYbNu2DT/96U/rnEvr7yeD3/0R1WJl4p4jYVWPMLmNiCjGyjtTQ9S5ZDuezRirgoICzJo1Cw0bNsTIkSMD06bBYpUWYbVo0aLa/cdUmDBhAgDgyiuvlEqfz8KqsrISVVVVOO+88wLTJDEr0EbeXHMFRkUnxuqUU07BnDlz8Ic//KFOWSba07FjR9+yevToAQBo37595HriJsxilZSwIVdgPcJPWDmdcMCAAVnHTS23ENUsO3r0aADAuHHjpNLruAIB4K677sLhw4eF6y+lIcbKptBQGYR+/OMf48iRI8orot97771YtWoVnnjiCan0+SysZLDd5+ISVmGk2RVoolzZOqZPn45rrrkmK4/t2XaLFy/G2LFj8Y9//MNqPTaIK8ZKlZYtW6KwsDDQCpkWSFgZpKioCAsWLMD9999fG9D76quv4vPPP5cuQ1ZYRY2veuqpp3Dw4EGUl5cr51VxQTLGQtvqBPHqblOjgu4CoabqlE2vOnA1atQIgwcPlnYJ1ndhFacrcPLkyXjjjTek86YlxiqNMMYir2O1evVqDBw4EEuXLjXZtDp06NABjz/+OLp162a1HhvYsFiZ6It//etfsWrVqtQLK5oVaJCTTjoJ119/fdaxhg0bZk1FVwnotGmxYoyhWbNmSukdZF2BsixduhRTp07FfffdJ51Hl7RbrOKiPgSvi7jiiiuwYsUKobvQTRRX4G9/+9vAdKWlpdi5c2dgXtOkKcZKt/yowqp///54/fXXtequL4TFWJ188snKZZoQVmeccUbkMuKALFYGkbEWqLgCRdOMw4SV6UHRprA6/fTTsXLlSu2FIFUI+h5pE1a2H2r13WJ17bXX4s0338TKlSutlC8rjl577bU6G0unxWIVNTbI1qxAWTFM6BNmserevbtyme6+uHv3buzdu1evcTkACSuDqM7MCkMUvG5iqQVdTAurOEnCFZhGi1V9F1YFBQUYMGAAvvvd71opX2ZWIFAzTX/+/PlZx9ISvN6yZUu8++672L59u1b+sLYNHDgQ5eXlmDx5slK5U6ZMqf27pKREq22EGL8+6I4l1tnA3T3GtmnTpnZnhXyEXIEGMSGs3B1atLBkkMWqRYsWOHDggNYbhQjd4PW0kfZZgXGRVuGbVlR/LxXB5u0faVluAQDOPPNMpfQqdTVu3Bhvv/22cpmtW7fGtm3bsGrVKgwdOlS7fUQwfn3wk08+qf1bZ6mf+jTm5O4TMoWYcAWK3nRlgtfXrFmDSZMm1ZlaHBUSVmbqVDlnk/pusbLN448/joqKCrzwwguhab3XIi2zAm0Tpe937NgRY8eORbt27Qy2iHDwew6VlpZGKjPNfdE0ZLEyiO2ZCjIWqx49euDhhx+22o58dAWqCo1OnTpJp6UYq/rHaaedhrVr10qljSKs0mgNdUhz2wgxfuPDxIkTcfToUQwfPlyrzLQ+E2xAwsogMsIqbLBp3749Ro0a5ft2kGSMVT5arHRXXj/zzDOxZMkS6fRp/L3q+6zANBFFWE2YMAFLly7F5Zdf7nve2XIlCWwFrxP28euDRUVFuO222xJoTe5BwsogpmYF/ulPfwo852BiA2Zd0igUZDHhCly4cKHS2jRksSJEeB9iKsJqyJAh2LFjR9aSLgCwceNGLFu2DD/72c+yjscpZsLqat68eUwtIVSx8eJVXFyM/fv3Gy83jZCwMojpWYFeTC4QqopbeMgMzmk1+0ZxBU6ZMgXvvfceevXqpVRnGt/MSVilhyjCCvCPfenduzd69+4dqV1RCbpPtm3bhiNHjmiFTqTxXspHbAir0tLSrAD4fIaElUFEwqqoqAhHjx4Vbu0ShnsmRtzCRXVAS6uwirJA6AMPPBC5zqQpKSnBvn37Is32Iszi7Xtt2rRJqCVm2LJlC1auXIlJkyb5nteZqk/Ei40X96jB77kECSuDiN7A3n33XSxatAhTp07VLt8trHbt2qVdjg6FhYW48847UVhYKJU+SVeliLTNCoybt956C0888QRuvfXWpJuSEzDGrL8kuK0DkyZNUl7XKW10797d+HIvDjorfhPqTJkyBcuXL8f48eONlUnCygNjbAiABwE0APA453y253whgIUA+gD4F4ARnPNtZpuafkQWq65du+KOO+4wVtcXX3xhrCxZ7r333tA0v/rVr/DGG2/UWU06TQwYMAAnTpyolyuvn3baabFsHUTI4+57tmf0pknkq7BmzRrcfffdeOihh5JuSr2gpKQEGzZsMFpm1JX8c4lQYcUYawBgAYCLAOwEsJ4xtoxz/qEr2VgA+znnpzHGRgKYA2CEjQanGdsxVkCNGV13JeQ4mDlzZtJNCMXZENf9kLH5NpWrDzMiHqh/hNOvXz+8+OKLSTeDiMCpp56adBNiQ2Z617kAqjjnn3DOjwF4FoB3IYvhAJ7K/L0EwGBWD0eLOIRVWVmZ9TryHcZYnYfZ7Nmzcc0112DNmjXG6rnqqqtQUVEhnPIedJtccsklAGhftKRxroPNFb4HDBiAyspKoxbtIGgmHpEUw4YNQ9++fXPe1S0Dk5j+/18AhnDOx2U+jwZQwTm/0ZXm/UyanZnPH2fSfBlUbt++fblpU6OXQYMGWS3f4bXXXgNQs5lw69atrda1e/dubN26FU2bNkV5ebnVuojocM59xZPTZ8rLy9G0adM650+cOIEvv/wSxcXFie4LWd/59ttvsWfPHrRu3TovrkN1dTW2bNmC0tJStGzZMunmEIQxXn311TiqkTIYxRphzBibAGACAHTo0CHOqq3Sq1cvHDhwIJZNJdu0aYPGjRv7PoyJ9BFkkerWrRu+/vprNGnSxPd8QUEBBeqmgIYNG+bVtimFhYWRZiYTBBGOjLDaBcDtHC3NHPNLs5Mx1hBAc9QEsWfBOX8MwGNAjcVKp8EqxKRgCYIgCIIgAMjFWK0H0JUx1okx1hjASADLPGmWAbg68/d/AfgHT+tCRgRBEARBEJYItVhxzr9ljN0I4EXULLfwJOf8A8bYPQA2cM6XAXgCwJ8YY1UA9qFGfBEEQRAEQdQrQoPXbRFH8DpBEARBEIQhpILXc3c3XYIgCIIgiJRBwoogCIIgCMIQJKwIgiAIgiAMQcKKIAiCIAjCECSsCIIgCIIgDEHCiiAIgiAIwhAkrAiCIAiCIAxBwoogCIIgCMIQJKwIgiAIgiAMQcKKIAiCIAjCEIltacMYe4FzPsRyHRM454/ZrINIJ3Tt6y907esvdO3rL2m69okJqzhgjG3gnPdNuh1E/NC1r7/Qta+/0LWvv6Tp2pMrkCAIgiAIwhAkrAiCIAiCIAyR78IqFf5WIhHo2tdf6NrXX+ja119Sc+3zOsaKIAiCIAgiTvLdYkUQBEEQBBEbeSusGGNDGGNbGWNVjLEZSbeHMAtj7EnG2B7G2PuuY70ZY2sZY5sYYxsYY+dmjjPG2G8zfeFdxlh5ci0nosAYK2KMrWOMbWaMfcAYm5U5zhhjv2KM/Q9j7CPG2M9cx+na5wmMsW2Msfece9xzbhpjjDPGWmU+07XPExhj3TPX3Pl3iDE2lTE2lzG2JXN9lzLGWrjy3J659lsZY/8rzvY2jLOyuGCMNQCwAMBFAHYCWM8YW8Y5/zDZlhEG+SOAhwAsdB27H8AszvkKxtiwzOdBAIYC6Jr5VwHg4cz/RO5RDaCSc/4VY6wRgDcZYysAfA/AqQB6cM5PMMZOzqSna59/XMA5/9J9gDF2KoAfAvjMdZiufZ7AOd8KoDdQ+3zfBWApgO4Abuecf8sYmwPgdgC3McZOBzASQE8A7QCsYox145wfj6O9+WqxOhdAFef8E875MQDPAhiecJsIg3DOXwewz3sYQLPM380BfJ75eziAhbyGtQBaMMbaxtNSwiSZa/hV5mOjzD8O4L8B3MM5P5FJtyeThusGggEAAALoSURBVK59/WA+gOmo6QsOdO3zk8EAPuacb+ecr+Scf5s5vhZAaebv4QCe5ZxXc84/BVCFGl0QC/kqrNoD2OH6vDNzjMhvpgKYyxjbAeDXqHl7Aag/5BWMsQaMsU0A9gB4iXP+FoAuAEZkXMArGGNdM8np2ucXHMBKxtjbjLEJAMAYGw5gF+d8syctXfv8ZCSAZ3yOXwdgRebvRK99vgoron7y3wBu4pyfCuAmAE8k3B7CApzz45zz3qh5Oz2XMXYGgEIARzMrL/8ewJNJtpGwxvc55+WocfPdwBj7AYCZAH6ebLOIOGCMNQZwKYDFnuN3APgWwNNJtMtLvgqrXaiJt3AozRwj8purAfzvzN+L8R/TL/WHPIRzfgDAKwCGoOaN1Ln2SwH0yvxN1z6P4Jzvyvy/BzXX+XwAnQBsZoxtQ831fYcxdgro2ucjQwG8wzn/f84Bxtg1AC4GcBX/z/pRiV77fBVW6wF0ZYx1yijckQCWJdwmwj6fo2agBYBKAP838/cyAGMys4T6ATjIOf8iiQYS0WCMtXZm/jDGTkLNBJUtAP4K4IJMsvMB/E/mb7r2eQJj7LuMsabO36gJVl/POT+Zc17GOS9DjcAu55zvBl37fORKuNyAjLEhqImtu5RzftiVbhmAkYyxQsZYJ9RMYFgXVyPzclZgZobAjQBeBNAAwJOc8w8SbhZhEMbYM6iZ8deKMbYTwN0AxgN4kDHWEMBRABMyyf8OYBhqAhgPA7g29gYTpmgL4KnMzKACAIs45/+HMfYmgKcZYzcB+ArAuEx6uvb5QxsASxljQM2z68+c8xcE6ena5xEZMX0RgImuww+hJgzgpUy/WMs5n8Q5/4AxtgjAh6hxEd4Q14xAgFZeJwiCIAiCMEa+ugIJgiAIgiBih4QVQRAEQRCEIUhYEQRBEARBGIKEFUEQBEEQhCFIWBEEQRAEQRiChBVBEARBEIQhSFgRBEEQBEEYgoQVQRAEQRCEIf4/D++DTM1OFQMAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x432 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs.plotTable(104)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sending instruments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can send instruments to a running csound engine with the *%%csound* magic. Any syntax errors will be displayed inline." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "error: syntax error, unexpected T_IDENT (token \"asds\") line 2:\n", ">>>asig asds <<<\n", "Unexpected untyped word asig when expecting a variable\n", "Parsing failed due to invalid input!\n", "Stopping on parser failure\n", "\n" ] } ], "source": [ "%%csound 1\n", "instr 1\n", "asig asds" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "error: syntax error, unexpected $end (token \"\") line 3:\n", ">>>outs asig, asig <<<\n", "Parsing failed due to invalid input!\n", "Stopping on parser failure\n", "\n" ] } ], "source": [ "%%csound 1\n", "instr 1\n", "asig oscil 0.5, 440\n", "outs asig, asig" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "%%csound 1\n", "instr 1\n", "asig oscil 0.5, 440\n", "outs asig, asig\n", "endin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Channels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Csound channels can be used to send values to Csound. They can affect running instances of instruments by using the *invalue/chnget* opcodes:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "cs.setChannel(\"val\", 20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also read the channels from Csound. These channels can be set from *ICsound* or within instruments with the *outvalue/chnset* opcodes:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(20.0, c_int(0))" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cs.channel(\"val\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Recording the output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can record the realtime output from csound:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "cs.startRecord(\"out.wav\")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "cs.sendScore(\"i 1 0 1\")\n", "import time\n", "time.sleep(1)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "cs.stopRecord()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Lecture WAVE 'out.wav' : Signed 16 bit Little Endian, Fréquence 44100 Hz, Stéréo\r\n" ] } ], "source": [ "!aplay out.wav" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Remote engines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also interact with engines through UDP. Note that not all operations are available, notably reading f-tables, but you can send instruments and note events to the remote engine." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Csound engine started at slot#: 2.\n" ] } ], "source": [ "cs_client = ICsound()\n", "cs_client.startClient()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "cs.clearLog()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now send notes and instruments from the client:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "cs_client.sendScore(\"i 1 0 1\")\n", "cs_client.sendCode(\"print i(gkinstr)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And show the log in the server:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "instr 0: #i0 = 1.000\n", "\n" ] } ], "source": [ "cs.printLog()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stopping the engine" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "cs.stopEngine()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<csoundmagics.ICsound at 0x7fca3a1ae668>" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we don't need *cs_client* anymore, we can delete its slot with the *%csound* line magic (note the single % sign and the negative slot#). The python instance *cs_client* can then be deleted:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Erasing slot#: 2\n" ] } ], "source": [ "%csound -2\n", "del cs_client" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Audification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reading Earthquake data through a web API (might take a few minutes):" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "prefix = 'http://service.iris.edu/irisws/timeseries/1/query?'\n", "SCNL_parameters = 'net=IU&sta=ANMO&loc=00&cha=BHZ&'\n", "times = 'starttime=2005-01-01T00:00:00&endtime=2005-01-02T00:00:00&'\n", "output = 'output=ascii'\n", "import urllib\n", "f = urllib.request.urlopen(prefix + SCNL_parameters + times + output)\n", "timeseries = f.read()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7fca00beb048>]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAD8CAYAAABZ/vJZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8FeXZ//HPlRUI+44shiWAgIqIgAsoIAhuWFtb1CpuxdaldvGxUuqurUvV6lPrVrHoj4rWtg/UDUEBrRubuLAEIgQhbGEPRAJJ7t8fZxJOQk6WOSeZE/i+X6/zysw998xcmbNcs9xzjznnEBERqamEoAMQEZH6SQlERER8UQIRERFflEBERMQXJRAREfFFCURERHxRAhEREV+UQERExBclEBER8SUp6ACi1bp1a5eenh50GCIi9crixYu3OefaRLOMep9A0tPTWbRoUdBhiIjUK2a2Ltpl6BSWiIj4ogQiIiK+KIGIiIgvSiAiIuKLEoiIiPiiBCIiIr4ogYiIiC8xSSBm1tzMXjezlWa2wsxONbOWZjbbzFZ7f1t4dc3MnjSzLDP70swGhC1ngld/tZlNiEVsUj9s2JnP3MytQYchIjUQqyOQJ4B3nHO9gROBFcDtwHvOuQzgPW8cYCyQ4b0mAk8DmFlL4C5gMDAIuKsk6ciR75zHP+DqFxcGHYaI1EDUCcTMmgHDgBcAnHMHnHO7gHHAVK/aVOAib3gc8JIL+RRobmYdgHOA2c65Hc65ncBsYEy08Un9sO9AUdAhiEgNxeIIpCuQC7xoZp+b2V/NLA1o55zb5NXZDLTzhjsC68Pm3+CVRSoXEZE4FIsEkgQMAJ52zp0E7OPQ6SoAnHMOcDFYFwBmNtHMFpnZotzc3FgtVuLAwaLioEMQkWqKRQLZAGxwzn3mjb9OKKFs8U5N4f0tuUKaA3QOm7+TVxap/DDOueeccwOdcwPbtImqM0mJMxmT3w46BBGppqgTiHNuM7DezHp5RSOB5cBMoKQl1QRghjc8E7jSa401BNjtneqaBYw2sxbexfPRXpmIiMShWHXnfjMwzcxSgDXA1YSS02tmdi2wDvihV/ct4FwgC8j36uKc22Fm9wElTXHudc7tiFF8IiISYzFJIM65pcDACiaNrKCuA26MsJwpwJRYxCQiIrVLd6KLiIgvSiAiIuKLEoiIiPiiBCIiIr4ogYiIiC9KICIi4osSiIiI+KIEIiIiviiBiIiIL0ogIiLiixKIiIj4ogQiIiK+KIGIiIgvSiAiIuKLEoiIiPiiBCIiIr4ogYiIiC9KICIi4osSiIiI+KIEIiIiviiBSOBmfrEx6BBExIeYJRAzSzSzz83sDW+8q5l9ZmZZZvaqmaV45aneeJY3PT1sGZO88kwzOydWsUl8m7tya9AhiIgPsTwCuQVYETb+EPC4c64HsBO41iu/FtjplT/u1cPM+gDjgb7AGOAvZpYYw/hERCSGYpJAzKwTcB7wV2/cgBHA616VqcBF3vA4bxxv+kiv/jhgunOuwDm3FsgCBsUiPhERib1YHYH8CbgNKPbGWwG7nHOF3vgGoKM33BFYD+BN3+3VLy2vYB4REYkzUScQMzsf2OqcWxyDeKq7zolmtsjMFuXm5tbVakVEJEwsjkBOBy40s2xgOqFTV08Azc0syavTCcjxhnOAzgDe9GbA9vDyCuYpwzn3nHNuoHNuYJs2bWLwL4iISE1FnUCcc5Occ52cc+mELoK/75y7HJgL/MCrNgGY4Q3P9Mbxpr/vnHNe+XivlVZXIANYEG18Uv8UFbugQxCRakiquopvvwGmm9n9wOfAC175C8DLZpYF7CCUdHDOLTOz14DlQCFwo3OuqBbjkzgV2p+woMMQkSrENIE45+YB87zhNVTQiso5tx+4JML8DwAPxDImERGpHboTXQK3aktemfE12/YFFImI1IQSiARu2cY9ZcaveOGzgCIRkZpQApG4o4voIvWDEojEHaf8IVIvKIFIoLK27g06BBHxSQlEAnX2Y/MPK9MBiEj9oAQiIiK+KIFI3Nmx70DQIYhINSiBiIiIL0ogEpjtewuCDkFEoqAEIoHRHeci9ZsSiARm7/7CiNPW5Kp5r0i8UwKRwHz+7c6I0+6auawOIxERP5RAJDC630OkflMCERERX5RAJDCVPTJq6fpddRaHiPijBCKBqewUVl4lF9hFJD4ogYiIiC9KIBIYddsuUr8pgYiIiC9KIBIYq+wquojEvagTiJl1NrO5ZrbczJaZ2S1eeUszm21mq72/LbxyM7MnzSzLzL40swFhy5rg1V9tZhOijU3im/KHSP0WiyOQQuDXzrk+wBDgRjPrA9wOvOecywDe88YBxgIZ3msi8DSEEg5wFzAYGATcVZJ05MikSyAi9VvUCcQ5t8k5t8QbzgNWAB2BccBUr9pU4CJveBzwkgv5FGhuZh2Ac4DZzrkdzrmdwGxgTLTxiYhI7YjpNRAzSwdOAj4D2jnnNnmTNgPtvOGOwPqw2TZ4ZZHKK1rPRDNbZGaLcnNzYxa/1K1iNcMSqddilkDMrDHwT+AXzrk94dOcc44YnrFwzj3nnBvonBvYpk2bWC1W6thTc78JOgQRiUJMEoiZJRNKHtOcc//yird4p6bw/m71ynOAzmGzd/LKIpWLiEgcikUrLANeAFY45x4LmzQTKGlJNQGYEVZ+pdcaawiw2zvVNQsYbWYtvIvno70yERGJQ7E4AjkduAIYYWZLvde5wIPAKDNbDZztjQO8BawBsoDngRsAnHM7gPuAhd7rXq9MjmIv/HctZz82P+gwRKQCSdEuwDn3XyI36R9ZQX0H3BhhWVOAKdHGJEeO+95YHnQIIhKB7kSXQPxlXlbQIYhIlJRAJBAPv5NZZZ2vc3bXQSQi4pcSiMSt8//3v0GHICKVUAIRERFflECkzmVv21fjeeavUo8DIvFGCUTq3N6Cmj+udsKUBbUQicghu/IPsM/HZ/NopgQiIgL0v3c2wx6eG3QY9YoSiNS5omJ1oijxafu+A0GHUK9EfSOhSE09+PbKoEMQKbWvoJAdYYmjqNiRmKDHnVWHjkAkph6ZtZLed7xdaZ1P1myvo2hEqnbp858yNOzU1TPz1Ut0dekIRGJKXbRLffPlhrI3rGZt3RtQJPWPjkCk1jz6biaL1+0MOgwRqSVKIFJr/vf9LL7/9MdBhyEitUQJRGrF/oNFMV9m+u1vsiZXpxekdunyefUpgUitGP34B6XDWVvzYrbcK15YwLzMrVVXFPFJjcyrTwlEasW3O/JLh89+7INKatZMzq7vuOrFhTFbXn337fZ8dvq8d2FvQSGhx/OI+KMEIvWS3x/NI82wR+Zy5iNzefPLTYx4dB6FRcXVmi83r4B+d83ivjdWUFBYRG5eQUwbPDjnuOc/y8jcHLujT4k/SiBxbv6q3COif54DhcUUFTuKY3QX+h0zvo7JcoKwdP0u8g8cek+dc+TtP1g6ftWLC3j5k+zD5vtszXZu/ccXHCwq5r43lpN++5sA7NlfyI1/X8Ka3H30mPw2u/MP8qc5q0i//U3Sb3+Tt7/axO7vDlJU7CgsKib/QCFb9uwHYMpHaxl43xxOeWAO33/644hNWNdu28faGnSCuWn3fl78KJurXqx/fZgV66is2nQfSBxbt30fE6Ys4PwTOvDnywYEHU6VKjsd0vN3oZsLU5Nis8+y/2ARhUXFJCXGzz5QcbHj9SUbuPikjqVxzcvcSuvGqfTr2AyAJd/u5OK/HGqZ9sT4/mzY+R2PzMrks9+OJDevgHmZuczLzOWywcfy6LuZ/PvzHDbt3l86z+uLN1Qax4n3vltm/GfTllRaPy9sB+Xsx+YzaWxvMto1pnubxqSlJnHViwv4OmcPANef2Y1JY48DQu9BSmICCd5d20XFjr37C2nWKLn0OsKm3fvJ3raP9s0a0CA5MWIM+w8W8eaXm7h4QEfMgr2MPWPpRp4Yf1KgMZT3wapcjuvQlDZNUoMOpQwlkDi2+7vQXunXObt5b8UWRh7XLuCIKledG7AKCqt3iqUqc1Zspcfkt/ny7tGkJCaQvX0fvds3jcmyq8M5x9c5e3jmg2944kf9+SpnN68t2sArC75ld/5BPlidS7fWaUz9ZF3pPOef0IE3vtxUZjm3TF9aOjz49++Vmdb9t2/V7j8RwR8q6Wrm2flreHb+GpbeOYr+986mSYMk3rj5DM58ZF5pnS/uHF1mZ+KsP85jbL/2PHLJiWRu3sP8zFwuHtCJ9NZppXUefTeT5z9cS/NGyfRs14S7Zy7jz5cNoGFK5KQTC7FuLTh35VaGZrSO2Y7NjKU5dGvdmCunLKBr6zTm3noWAK8u/JYmDZI59/gOMVmPXxZvF9HMbAzwBJAI/NU592Bl9QcOHOgWLVrka137CgopLHI0aZBUuhdVlS179vPyJ+v41aieh82zNW8/2dvyGdS1JRA6z5yWmkijlEN5ek3uXrq0bHTYB2z73gKaNEgmJSmB/QeLuHLKAi44oQN3zFhWWuedXwyt0x/Jmlq9JY9Rj8fugnl1jOt/DPsKipizYgtL7xxF80YpMV/H6Q++z4jebWmUksizH6zhtO6t+PibQ92xdGudxhofzzg5mqW3asSbPx/Keyu3cuGJx3DL9M+ZsXQjV52WzrTP1nGwyPHUZQM474TQD+TXObtp1jCZzi0bHbas1VvyOLZVGilhR7dvfLmREzs1L1P/hf+u5ZT0FpzQqXlp2cn3za6wA8WMto2Zdt1gHn13Fe2apvLk+1k8Mb4/327P54bhPQ7rK2v1ljx++dpSvs7Zw80jevDr0b0i/u+5eQW0bpxC9vZ8srftY3jvtszL3EqnFo3o0bZxaT3nHF0nld2JyH7wPL7dns+wR+aWjvtlZoudcwN9L4A4OwIxs0TgKWAUsAFYaGYznXPLa2N9fe+aBcDwXm2476J+rN22jwVrd7C3oJCF2TsY0rUVf/3vWrq3SeOXo3pyWvfW3PzK5yxYu4N2zRpwxZBjWbxuB306NKNhSiKnP/g+B4scr04cwuBurTjlgTkALJx8NjvzD5Q2bb3qtHQmndub1KRECouKKXZw8v1zaJSSyGe/Hcnxd4dOQSxYu6NMvGP+9CFf33MOjVNDb9sn32znxM7NyiSoIAXRAd2MpRtLh1duzmNIt1ZlphcWFXPN1EXcPKIHPdo05oZpS3hifH/aNm1Q4fIG/34O3ds05qdndmdYzzZs31tAzq7vePnTQ0cS4ckDUPLwIXt7fun375NvtpW+j3/7OLu0Tv6BQlZvyaNH28aljze+8tRjeemTdTx/5UBG9WnH1rz9pTst2Q+ex859B3h3+WZ+88+vaJCcwN9/MoSurdJIS03ivjdCPyPzbj2LD1bncmfYzll5q7fuZVC5I8KSo8WGKYlcN7QbS9fvomvrNJ7/YA3TF37Ltr2hRLR0/a6Iy12/I5+hD8/ltjG9ePidTADm/GpYacvC+f9zFuu259OxRcMKT1We+chc1m3PP6w8KHF1BGJmpwJ3O+fO8cYnATjn/hBpHr9HIFM/zuaumZE/QPHsjZvPoHXjVIb84T0GpbfktZ+eWmb6xl3fcdqD7wMw9ZpBnNmzTZ3EtW77vjKnMupaRtvGXHNGVyb96ysWTB5J2yYNmJe5lateXMgxzRpwxanpPPTOSq4f1o1J5x7H8o17eHf5Zs4/4RgOFBbT55impRemJf79eEgXLjm5M+Oe+ggI7ZiFJ6AS7Zs2YPOe/YeV+zW4a0s6tWjEP5dEvhY19ZpBtEpL4R+L1pNXUMgFJxxDbl5oZ+SJ91bHLJagj0DiLYH8ABjjnLvOG78CGOycuynSPH4TyJH2Q3HxgI78a0kOAP07Ny+zF7T6gbE4R5lD/I+ytnFCp2Y0aZBcWrYmdy8jHp0PwNxbz6Jr2Dnq6gg6gZR3XIemrNi0p3Q8fBv98ZITufUfXwQVmkhMrP3Dub4bHRxxp7Cqy8wmAhMBunTpEnA08aHkhxEOP4TOmBxqAfWjgZ15ddH6MtPe+vlQUpKMHm2blCYPgOF/nMftY3sz/pTONG2QXHq9p6CwiJPvm8MbN5/Bsa0aMWPpRs47oQPJiQkszI6vjhPDkweU3UZKHnIkOFjkSEkKrtVavB2B1NkprCPtCKQuPDG+f5lWQ4PSW7IgO3Sd5qu7RzNr2Rb9MIvUocz7x5Ca5K+l2pF4BLIQyDCzrkAOMB64LNiQpER48gBKkwfA8Xe/S7canvISkej4TR6xElcJxDlXaGY3AbMINeOd4pyrn1e6j0JqjSRydImrBALgnHsLCOYOKhERqbb46QdCRETqFSUQkTi14t4xjOzdNugwRCKKu1NYdeWB7/Vj8r/rb4+uEt8aJifyXVg/S0O6teTuC/sy5k8flpb1bt+EV34yhH8sXs/v31rJ4t+dTavGqcxevoV2TVNpmJLIU5cPYMbSHH44sDMLs3cy9eNsHv3hiaQkJrB80x6mfpxNYoIxfeH6isKo0F0X9GH6gvVkblFX6xKduGrG60c0fWH9+/MN/PLVQ81OB3RpTuvGqby7fEu1l5FgEKMeyqWeeveXw+jZrgl/+2gtd/9nOR/eNpzOLRuxO/8gObu+o3f7JqX30Twz/xteX7yBqdcMomPzhjGLYfd3B/l/n66jqNjx6ZrtfJO7ly17CgBYcscokhKNN7/cxPBebWnfrAHLNu7mvCf/G3F5j//oRFZuyuPZD9bELEaJPd2JHqVoEgjAtr0FfHegiHeXb+HikzrSrGEy3bxeUN/6+VDMYGH2Dsb0a8+gBw71jfPGzWeUdtG9NW8/WVv30iA5kbSUJHq1b1KmI7T7xvXlkVmZ7Nl/qNvsD28bznVTF2kvME7M+dUwbpz2een78eFtw8naupfTe7QmwWB/YTGNU5N4dv43fJWzmz/9qD8TXlzAR1nbSxNGvMncnEduXgFnZLQ+bFr+gUL63DkrdPQycQiXPPNJmeklP0x3z1xWYfcgqUkJMetZWfxTAolStAmkIiU3GZZ/c1ZtySM5MYFZyzZz/bBuVXYhkH77m3Rvk8Z7vz4LCD0L4p2vN/Pbc4+rdJ0Pv7OSj7/ZXmmnbBeeeAyfrtnO1ryCmvxrR73+nZvz6vVDAOj1u3dKy5fcMYqWaSms35HPnBVbuPr0rlUua1f+AeavymVc/461Fm9dWb5xD4vX7aB9s4Z0a5NG9zahXmF3f3eQE+8Jde45NKM1H67eVvq9SL/9Tfoe05Rp1w2m/72zA4v9aKYEEqXaSCDrtu9j93cHy3T77Mf2vQU0TEmsVm+5ry78lhM6Nee4Doe6ay9JKv06NuWWkT35yUuh/7OkJ9IDhcVkbs5j+sJvuefCviQmGP+3NIeZSzcyNzO3dDl9OjTljvP7sCh7B4/OXsUzPz6Z/AOF/Oq1I/uu8YnDuvFc2CmYj24fcdhpoxWb9vDPxRuYfN5xgT/IKF5t2JlPUkICzRoms2XP/tLneBwoLCbBKPNogpc+yaZr6zT6dGjKyffPKS1v3TiFB753PAWFxfz8lc+5/sxujO7Tnu8//XH51UkNKIFEqTYSSLy46KmPGNy1JZMqOGKpTHGxKz0NV50P2IK1O/jhs2VPYVw+uAtf5ezmqcsGMPTh0LMHbhmZwfVnduOke2cfdvoi64GxTPloLb9/K/LDiOrSp5NG0r5ZA/IPFDJz6UZG9G4bsQt3ib1tewsYeP8cWqalsOSOUWWm7SsopGFyYul1oR37DnD9y4tYmL2TBskJ7D945J0aa9ogiekTT+XcJz88bNqoPu2Y7V13TUlK4KPfjKBNk1Tmr8plwpQFDO7aks+8Rzssu+ccVm7O4/XFG7h4QEdOSW/pO6YjsSsTCfN/N57ua76EBGPBb0eyM/9g1ZWBk49tUTqcmGBMu25wmedq3Hl+H+59Yzk/HnIsjVKSyLx/LPsKClm7bR83TFvCXy4fQFJiAr0CftjVyvvGsH5HPhntmpSWNUpJYvwgdbhZ10r2Sys6pktLLfuz0zIthcFdW7EweycvXjWIG6YtZmf+Qe44vw/XnhE6lVi+77pe7Zpw+ZAulT7TI0gvXn0Kw3u1Zcm3O3l/xVZ+elZ3GqcmseLeMazZtpfmjVK46KmPyM0r4PkrK/4NP7NnG766ezQNkxPpMfltxvZrT1pqEicf26LMdzZISiBHqLZNG1R7j7vkQVD9OzevMGldc0ZXrjmj7DWBtNQk+nVsxge3DS8ti9XzzmuifGdy4clDgpOcGPpMdWlVvcYFvzg7g1O6tuTU7q0YmtGGmV9spFVaxU+XvHlED6449VjaNmlAt9aN+fELn9GrXRMyt+Rx6+ie/PHdVUDouR2/GtWTHfsO8MHqXF5ZUP2mztWR/eB5vPjRWu75T+hBVV/dPZrHZq/ilpEZpU/GHNClBQO6HPqxb5iSSN9jQo1v3v/1mWUa1lSk5HELS+4YVfoguXgSfxFJIBb97uyoP6DJMXoOdE0E3ZmcVKx5oxSeu+JkBlbzFEtSYkLpg89KTqqHX5LKfvA8CgqLcA4aJB96zwemt+DYVo244/w+pa3NbhqRwe78gzRrdOhZN2OP78DoPu3p3qZx6eNgX//pqfygXOuz6njt+lMpLA6dZrvqtHSG92pL80bJNGmQzF0X9K32cpo0SC7zPJ7KtIyQTIOmBCIAtG6cGnQINXbDWd2DDkEqMbpve1/zXTygI//5YiMndS57mqainYUGyYnM/5/hh5WHJ48Sw727+l/5yRAapyZxfKdm1Y6p5KmGJdfWSphZaaOCo5ESiNRbt43pHXQIUguG92obVeuiqpzavVWVdZISjI9uH8Hg37/HA9/rx6WndGFn/gFa1cMdrdqkBCIxkxLAKSyRaLRMS2HHvgOHlacmJdCuaYMyiUzJ43D6xkvM9OtYd62wHvvhiXW2LjlyPXXZgArLH7lEn6/qUAKRmIl0I97frj6ldPh/zukV1Tr6d25O9oPncfGATlEtRwRCNzhWZGw/f9dvjjZKIFLrwu8pmTisW1TL0s3iEksVNfse1rONeiWoJiUQqVVJCVam2WW0TX0T9MWWWpacoM9YdSmBSEz1bl/xjXzv/GIoD33/+KiXr++2xNrvzivbVZD2UapPCURi6vWfnVZhee/2TfnRKaEuRZbdc47v5Z/W/fCuyUWicd3QsqdV778o+h2do4USiMRU+bvZ21XQnUpSov9dvMsHq18rqV3hNwpK5aK6D8TMHgEuAA4A3wBXO+d2edMmAdcCRcDPnXOzvPIxwBNAIvBX59yDXnlXYDrQClgMXOGcO7yBtsS9ZfecQ3JiAm9/vanaXVlUR23eXCYiNRftEchsoJ9z7gRgFTAJwMz6AOOBvsAY4C9mlmhmicBTwFigD3CpVxfgIeBx51wPYCeh5CP1UFpqEilJCYzr3zGmj20VkfgSVQJxzr3rnCvpTvJToKRx/jhgunOuwDm3FsgCBnmvLOfcGu/oYjowzkJt5kYAr3vzTwUuiiY2ERGpXbG8BnIN8LY33BEI7zt5g1cWqbwVsCssGZWUV8jMJprZIjNblJubG6maiIjUoiqvgZjZHKCi2zInO+dmeHUmA4XAtNiGVzHn3HPAcxB6ImFdrFNEjnw3De8RdAj1SpUJxDl3dmXTzewq4HxgpDv0fNwcoHNYtU5eGRHKtwPNzSzJOwoJry/CGT3UfFdq361RdrVztInqFJbXouo24ELnXH7YpJnAeDNL9VpXZQALgIVAhpl1NbMUQhfaZ3qJZy7wA2/+CcCMaGKTI8vL1w4KOgQRKSfa7tz/DKQCs72+Yz51zv3UObfMzF4DlhM6tXWjc64IwMxuAmYRasY7xTlX8lDj3wDTzex+4HPghShjkyOI+iaS2vToJSey67uDQYdR70SVQLwmt5GmPQA8UEH5W8BbFZSvIdRKS0SkTn3/ZPXu7IfuRBcREV+UQKTOJSXoYydyJNA3WepcYoLx+R2jgg5DRKKkBCKBaJFW8ZPgRKT+UAKRuHfN6V2DDkFEKqAEInHvzgv6VF1JROpctPeBiPjWs11jVm3ZG3H67F8O45vcfXUYkYjUhI5AJDA/H5lR6fSMdk0Y06+ibthEJB4ogUhgEnR3uUi9pgQiIiK+KIGIiIgvSiASmJ7tmgQdgohEQQlEAtOjbeOgQxCRKCiBiIiIL0ogIiLiixKIiIj4ogQiIiK+KIGIiIgvSiAiIuKLEoiIiPgSkwRiZr82M2dmrb1xM7MnzSzLzL40swFhdSeY2WrvNSGs/GQz+8qb50kzdZQkIhLPok4gZtYZGA18G1Y8FsjwXhOBp726LYG7gMHAIOAuM2vhzfM08JOw+cZEG5uIiNSeWByBPA7cBriwsnHASy7kU6C5mXUAzgFmO+d2OOd2ArOBMd60ps65T51zDngJuCgGsUk9dfZxbYMOQUSqEFUCMbNxQI5z7otykzoC68PGN3hllZVvqKBcjlKpSYlBhyAiVajyiYRmNgeo6Kk+k4HfEjp9VafMbCKhU2N06dKlrlcvdeCuC/UYW5F4V2UCcc6dXVG5mR0PdAW+8K53dwKWmNkgIAfoHFa9k1eWA5xVrnyeV96pgvqRYnoOeA5g4MCBLlI9qZ9apaXQtkmDoMMQkSr4PoXlnPvKOdfWOZfunEsndNppgHNuMzATuNJrjTUE2O2c2wTMAkabWQvv4vloYJY3bY+ZDfFaX10JzIjyfxMRkVpU5RGIT28B5wJZQD5wNYBzboeZ3Qcs9Ord65zb4Q3fAPwNaAi87b1ERCROxSyBeEchJcMOuDFCvSnAlArKFwH9YhWPiIjULt2JLiIiviiBSKBuGZkRdAgi4pMSiATql6N6Bh2CiPikBCIiIr4ogUjcadowOegQRKQalEAk7iSoH2aRekEJREREfFECERERX5RARETEFyUQCVz2g+eVGf/NmN4BRSIiNaEEInFndN+Knh4gIvFGCURERHxRAhEREV+UQERExBclEBER8UUJREREfFECERERX5RARETEFyUQERHxRQlERER8UQIRERFfok4gZnazma00s2Vm9nBY+SQzyzKzTDM7J6x8jFeWZWa3h5V3NbPPvPJXzSwl2thERKT2RJVAzGw4MA440TnXF/ijV94/igC9AAAH1UlEQVQHGA/0BcYAfzGzRDNLBJ4CxgJ9gEu9ugAPAY8753oAO4Fro4lNRERqV7RHID8DHnTOFQA457Z65eOA6c65AufcWiALGOS9spxza5xzB4DpwDgzM2AE8Lo3/1TgoihjExGRWhRtAukJDPVOPc03s1O88o7A+rB6G7yySOWtgF3OucJy5RUys4lmtsjMFuXm5kb5L4iIiB9JVVUwszlARf1rT/bmbwkMAU4BXjOzbjGNsALOueeA5wAGDhzoant9IiJyuCoTiHPu7EjTzOxnwL+ccw5YYGbFQGsgB+gcVrWTV0aE8u1AczNL8o5CwuuLiEgcivYU1v8BwwHMrCeQAmwDZgLjzSzVzLoCGcACYCGQ4bW4SiF0oX2ml4DmAj/wljsBmBFlbCIiUouqPAKpwhRgipl9DRwAJnjJYJmZvQYsBwqBG51zRQBmdhMwC0gEpjjnlnnL+g0w3czuBz4HXogyNhERqUVRJRCvJdWPI0x7AHiggvK3gLcqKF9DqJWWiIjUA7oTXUREfFECERERX5RARETEFyUQiStv3HxG0CGISDUpgUhc6dexWdAhiEg1KYGIiIgvSiAiIuKLEoiIiPiiBCIiIr4ogYiIiC9KICIi4osSiIiI+BJtb7wiMfHvG05jxaa8oMMQkRpQApG4cFKXFpzUpUXQYYhIDegUloiI+KIEIiIiviiBiIiIL0ogIiLiixKIiIj4ogQiIiK+KIGIiIgvSiAiIuKLOeeCjiEqZpYLrPM5e2tgWwzDqW2Kt3Yp3tqleGtXTeM91jnXJpoV1vsEEg0zW+ScGxh0HNWleGuX4q1dird2BRGvTmGJiIgvSiAiIuLL0Z5Angs6gBpSvLVL8dYuxVu76jzeo/oaiIiI+He0H4GIiIhfzrmj7gWMATKBLOD2OlhfZ2AusBxYBtzild8N5ABLvde5YfNM8uLLBM6pKnagK/CZV/4qkOKVp3rjWd709GrGnA185cW1yCtrCcwGVnt/W3jlBjzpreNLYEDYciZ49VcDE8LKT/aWn+XNa5Wto4pYe4Vtw6XAHuAX8bR9gSnAVuDrsLLAtmdl66gk3keAlV79fwPNvfJ04Luw7fxMbcQV6X+vJN5A3/9I66gk3lfDYs0GlsbL9o343avtH894ewGJwDdANyAF+ALoU8vr7FDyRgFNgFVAH+8DfmsF9ft4caV6H9xvvLgjxg68Boz3hp8BfuYN31DygQPGA69WM+ZsoHW5sodLvlTA7cBD3vC5wNveh3MI8FnYh3iN97eFN1zyQV7g1TVv3rGVraOG7+9m4Nh42r7AMGAAZX8wAtuekdZRRbyjgSRv+KGwZaWH1yu3nJjEVdn/Xkm8gb3/kdZRWbzlYnwUuDNetm/E75vfH8X6+gJOBWaFjU8CJtVxDDOAUZV8wMvEBMzy4q4wdu/DsI1DX+7SeiXzesNJXj2rRozZHJ5AMoEO3nAHINMbfha4tHw94FLg2bDyZ72yDsDKsPLSepHWUYNtOxr4yBuOq+1b/ocgyO0ZaR2VxVtu2veAaZXVi2Vckf73KrZvYO9/pHVUZ/t6868HMuJp+1b0OhqvgXQk9OaU2OCV1QkzSwdOInS4C3CTmX1pZlPMrOSZrpFijFTeCtjlnCssV15mWd703V79qjjgXTNbbGYTvbJ2zrlN3vBmoJ3PeDt6w+XLK1tHdY0HXgkbj9ftC8Fuz2i/B9cQ2pMt0dXMPjez+WY2NGwdsYrLb7xBvf/RbN+hwBbn3OqwsrjcvkdjAgmMmTUG/gn8wjm3B3ga6A70BzYROmyNF2c45wYAY4EbzWxY+EQX2k1xtRlATddhZinAhcA/vKJ43r5lxOP2jMTMJgOFwDSvaBPQxTl3EvAr4O9m1rSu46pAvXn/y7mUsjtB8bp9j8oEkkPoonaJTl5ZrTKzZELJY5pz7l8Azrktzrki51wx8DwwqIoYI5VvB5qbWVK58jLL8qY38+pXyjmX4/3dSuiC6SBgi5l18JbVgdBFQD/x5njD5cupZB3VMRZY4pzb4sUet9vXE+T29PU9MLOrgPOBy70fJpxzBc657d7wYkLn+3vGOK4axxvw++93+yYBFxO6oF7yf8Tl9i0J7qh6ETpPuYbQha2SC2V9a3mdBrwE/KlceYew4V8C073hvpS9ALeG0AW+iLET2usOv8h3gzd8I2Uv8r1WjXjTgCZhwx8Tap3yCGUvzD3sDZ9H2QtzC7zylsBaQhflWnjDLb1p5S/+neuVV7iOam7n6cDV8bp9OfwcfWDbM9I6qoh3DKGWhG3K1WuDd4GY0AXonFjHVdn/Xkm8gb3/kdZRWbxh23h+PG7fCj/TsfqRrE8vQi0RVhHK5JPrYH1nEDqE/JKwJoXAy4Sa4H0JzCz3gZ/sxZeJ17Kisti9D9YCQs3z/gGkeuUNvPEsb3q3asTbzfvwf0Go2fFkr7wV8B6hZn5zwj7EBjzlxfQVMDBsWdd4686i7I/7QOBrb54/c6j5YYXrqEbMaYT2/JqFlcXN9iV0SmITcJDQ+eVrg9yela2jknizCJ0nL9OcFPi+9zlZCiwBLqiNuCL975XEG+j7H2kdkeL1yv8G/LRc3cC3b6SX7kQXERFfjsZrICIiEgNKICIi4osSiIiI+KIEIiIiviiBiIiIL0ogIiLiixKIiIj4ogQiIiK+/H9/PtggB6XRqAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import ctcsound\n", "data = ctcsound.pstring(timeseries).split('\\n')\n", "dates = []\n", "values = []\n", "\n", "for line in data[1:-1]:\n", " date, val = line.split()\n", " dates.append(date)\n", " values.append(float(val))\n", "\n", "plt.plot(values)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Csound engine started at slot#: 1.\n" ] } ], "source": [ "cs.startEngine()\n", "cs.fillTable(1, values)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instrument to play back the earthquake data stored in a table:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "%%csound 1\n", "instr 1\n", "idur = p3\n", "itable = p4\n", "asig poscil 1/8000, 1/p3, p4\n", "outs asig, asig\n", "endin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Listen:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "cs.sendScore('i 1 0 3 1')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Slower:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "cs.sendScore('i 1 0 7 1')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Quicker:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "cs.sendScore('i 1 0 1 1')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Other tests" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another engine:" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Csound engine started at slot#: 2.\n" ] } ], "source": [ "ics = ICsound(bufferSize=64)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ics.listInterfaces()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "%%csound 2\n", "\n", "instr 1\n", "asig oscil 0.5, 440\n", "outs asig, asig\n", "endin" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "ics.sendScore(\"i 1 0 0.5\")" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Erasing slot#: 2\n" ] } ], "source": [ "%csound -2" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "del ics" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "cs.stopEngine()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Authors: Andrés Cabrera, November 2014, François Pinot, June 2016" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 1 }
lgpl-2.1
gamaanderson/2017-AMS-Short-Course-on-Open-Source-Radar-Software
Texture_and_Dealiasing.ipynb
2
775926
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "##Calculating Texture and Dealiasing\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "## You are using the Python ARM Radar Toolkit (Py-ART), an open source\n", "## library for working with weather radar data.\n", "##\n", "## If you use this software to prepare a publication, please cite:\n", "##\n", "## JJ Helmus and SM Collis, JORS 2016, doi: 10.5334/jors.119 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/python3.4/json/encoder.py:192: DeprecationWarning: Interpreting naive datetime as local 2017-06-18 17:46:25.330017. Please add timezone info to timestamps.\n", " chunks = self.iterencode(o, _one_shot=True)\n" ] } ], "source": [ "import pyart\n", "from matplotlib import pyplot as plt\n", "import numpy as np\n", "from scipy import ndimage, signal\n", "import time\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "radar = pyart.io.read('./data/csapr_test_case.nc')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Data available by FigShare Here: http://figshare.com/articles/Data_for_AMS_Short_Course_on_Open_Source_Radar_Software/1537461\n", "Download and unpack into the data subdirectory of this repository " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "nyq = radar.instrument_parameters['nyquist_velocity']['data'][0]\n", "\n", "display = pyart.graph.RadarMapDisplay(radar)\n", "fig = plt.figure(figsize = [10,8])\n", "display.plot_ppi_map('velocity', sweep = 2, resolution = 'i',\n", " vmin = -nyq, vmax = nyq, mask_outside = False,\n", " cmap = pyart.graph.cm.NWSVel)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "266.757094145\n" ] } ], "source": [ "start_time = time.time()\n", "data = ndimage.filters.generic_filter(radar.fields['velocity']['data'],\n", " pyart.util.interval_std, size = (4,4),\n", " extra_arguments = (-nyq, nyq))\n", "total_time = time.time() - start_time\n", "print(total_time)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "ename": "NameError", "evalue": "name 'ndimage' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-c3dda5c466f6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfiltered_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mndimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmedian_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mtexture_field\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpyart\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_metadata\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'velocity'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mtexture_field\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'data'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiltered_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mradar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_field\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'velocity_texture'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtexture_field\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreplace_existing\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'ndimage' is not defined" ] } ], "source": [ "filtered_data = ndimage.filters.median_filter(data, size = (4,4))\n", "texture_field = pyart.config.get_metadata('velocity')\n", "texture_field['data'] = filtered_data\n", "radar.add_field('velocity_texture', texture_field, replace_existing = True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "display = pyart.graph.RadarMapDisplay(radar)\n", "fig = plt.figure(figsize = [10,8])\n", "display.plot_ppi_map('velocity_texture', sweep = 2, resolution = 'i',\n", " mask_outside = False,\n", " cmap = pyart.graph.cm.NWSRef,\n", " vmin = 0, vmax = 14)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "n, bins = np.histogram(filtered_data.flatten(), bins = 150)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "peaks = signal.find_peaks_cwt(n, np.array([10]))\n", "centers = bins[0:-1] + (bins[1] - bins[0])\n", "search_data = n[peaks[0]:peaks[1]]\n", "search_centers = centers[peaks[0]:peaks[1]]\n", "locs = search_data.argsort()\n", "location_of_minima = locs[0]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.59590638749\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAF/CAYAAAA1uN8hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WmYXFW5t/H7SUImSAgBmcMkcBQOKKAMB9Awc0RBXxQR\nkaBREESQ4wCIQCIawAlFj4DKfBiMAgoKmjAEVGQGBQICMgcIQyAJAUI6We+HtZsUTVd3VdLVu6r7\n/l1XXV21u/aupwvS/a9nrb12pJSQJElS3zKg7AIkSZLU8wx5kiRJfZAhT5IkqQ8y5EmSJPVBhjxJ\nkqQ+yJAnSZLUBzU85EXEYxHxz4i4KyJuLbaNjoipEfFgREyJiFEVzz8mIh6KiAciYteK7VtExD3F\n935SsX1IRPy62H5zRKxd8b1xxWs8GBEHNPpnlSRJaha90clLwNiU0mYppS2LbUcDU1NKGwLXFo+J\niI2ATwIbAbsDP4+IKPY5HRifUtoA2CAidi+2jwdeLLafCpxSHGs0cDywZXE7oTJMSpIk9WW9NVwb\nHR7vCZxX3D8P+Ghxfy/g4pTSgpTSY8DDwFYRsRowIqV0a/G88yv2qTzWpcBOxf3dgCkppZdTSi8D\nU8nBUZIkqc/rrU7eNRFxe0R8odi2SkppZnF/JrBKcX914KmKfZ8C1uhk+4xiO8XXJwFSSm3A7IhY\nsYtjSZIk9XmDeuE1tk0pPRMR7wCmRsQDld9MKaWI8NpqkiRJPajhIS+l9Ezx9fmIuJw8P25mRKya\nUnq2GIp9rnj6DGBMxe5rkjtwM4r7Hbe377MW8HREDAKWTym9GBEzgLEV+4wBrquszXApSZJaSUqp\n4xS4qho6XBsRwyNiRHF/WWBX4B7gCmBc8bRxwO+K+1cA+0bE4IhYF9gAuDWl9CwwJyK2Kk7E+Azw\n+4p92o/1cfKJHABTgF0jYlRErADsAvy5Y40ppbpv222XmDSptucyYcleoxVuJ5xwQuk1tPKtke8f\n119f+s/Xqu9df7j1y/dvCX/f+/71/M33b8lv9Wp0J28V4PLiBNlBwIUppSkRcTswOSLGA48B+wCk\nlKZHxGRgOtAGHJoW/1SHAucCw4CrUkp/KrafBVwQEQ8BLwL7FseaFREnArcVz5uY8gkYS23ePHjk\nkZ44kiRJUmM0NOSllB4F3tvJ9lnAzlX2mQRM6mT7HcAmnWyfTxESO/neOcA59VXdvVdegX//u6eP\nKkmS1HO84sUSeOUVO3kAY8eOLbuElub7t+R875aO79/S8f1bOr5/vSeWZIy3r4iItCQ//8iRecj2\ntddg8OBuXmNikE7ov++xyhHTppH8RSotFgH9+O+d+oaIIDXLiRd9UUo54K2xBjz+eNnVSJIkdc6Q\nV6fXX8/duw03dMhWkiQ1L0NenV55BZZbDtZbz5AnSZKalyGvToY8SZLUCgx5dZo3D5ZdFt75TpdR\nkSRJzcuQVyc7eZIkqRUY8urUMeR5Rr4kSWpGhrw6vfJKHq5dYQUYNAheeKHsiiRJkt7OkFenefNy\nJw8cspUkSc3LkFen9uFaMORJkqTmZcirkyFPkiS1AkNendrn5IHLqEiSpOZlyKuTc/IkSVIrMOTV\nyeFaSZLUCgx5daoMeWPGwMyZMH9+uTVJkiR1ZMirU+WcvEGDctB77LFSS5IkSXobQ16dKufkgUO2\nkiSpORny6lQ5XAv5DFtDniRJajaGvDp1DHnrrecyKpIkqfkY8uo0b97iOXngcK0kSWpOhrw6dezk\nrbOOJ15IkqTmY8irU8eQt+KK8NJL5dUjSZLUGUNeHRYtgtdeg+HDF29bfnmYPbu8miRJkjpjyKvD\na6/B0KEwoOJdGzkS5s7NAVCSJKlZGPLq0HGoFmDgwLxtzpxyapIkSeqMIa8OnYU8gFGjHLKVJEnN\nxZBXh2ohb/nl4eWXe78eSZKkagx5dei4Rl67UaMMeZIkqbkY8urQ1XCtIU+SJDUTQ14duhqudU6e\nJElqJoa8OtjJkyRJrcKQVwfn5EmSpFZhyKuDS6hIkqRWYcirg0uoSJKkVmHIq4Nz8iRJUqsw5NXB\nOXmSJKlVGPLq4BIqkiSpVRjy6uBwrSRJahWGvDoY8iRJUqsw5NWh2py89uHalHq/JkmSpM4Y8upQ\nrZM3eDAsswy8+mrv1yRJktQZQ14dqoU8cMhWkiQ1F0NeHQx5kiSpVRjy6lBtTh64jIokSWouhrwa\nLVwI8+fDsGGdf99OniRJaiaGvBq1d/EiOv++IU+SJDUTQ16N5s2rPh8P8nCtIU+SJDULQ16NXnml\n+nw8yJ085+RJkqRmYcirUVdn1oLDtZIkqbkY8mpkyJMkSa3EkFejWubkOVwrSZKahSGvRrXMybOT\nJ0mSmoUhr0YO10qSpFZiyKtRdyHPJVQkSVIzMeTVqLs5eS6hIkmSmokhr0bOyZMkSa2k4SEvIgZG\nxF0RcWXxeHRETI2IByNiSkSMqnjuMRHxUEQ8EBG7VmzfIiLuKb73k4rtQyLi18X2myNi7YrvjSte\n48GIOGBpf47uhmuHDVt8fVtJkqSy9UYn7whgOpCKx0cDU1NKGwLXFo+JiI2ATwIbAbsDP49480qx\npwPjU0obABtExO7F9vHAi8X2U4FTimONBo4HtixuJ1SGySXRXciLcBkVSZLUPBoa8iJiTeBDwK+A\n9sC2J3Becf884KPF/b2Ai1NKC1JKjwEPA1tFxGrAiJTSrcXzzq/Yp/JYlwI7Ffd3A6aklF5OKb0M\nTCUHxyXW3Zw8cMhWkiQ1j0Z38k4Fvg4sqti2SkppZnF/JrBKcX914KmK5z0FrNHJ9hnFdoqvTwKk\nlNqA2RGxYhfHWmLdzckDQ54kSWoeDQt5EfFh4LmU0l0s7uK9RUopsXgYt6l1N1wLLqMiSZKax6AG\nHvu/gD0j4kPAUGBkRFwAzIyIVVNKzxZDsc8Vz58BjKnYf01yB25Gcb/j9vZ91gKejohBwPIppRcj\nYgYwtmKfMcB1nRU5YcKEN++PHTuWsWPHdva0mkKey6hIkqSeMm3aNKZNm7bE+0dupjVWRHwQ+FpK\n6SMR8T3yyRKnRMTRwKiU0tHFiRcXkU+UWAO4Blg/pZQi4hbgcOBW4I/AaSmlP0XEocAmKaVDImJf\n4KMppX2LEy9uBzYndxHvADYv5udV1pVq/fk33hh+8xvYaKPqz/n852GrreALX6h4jYlBOqElmpXq\nQ2LaNFKVDyxSvxQBvfD3TmqkiCCl1OnoaGca2cnrqP1f18nA5IgYDzwG7AOQUpoeEZPJZ+K2AYdW\nJLBDgXOBYcBVKaU/FdvPAi6IiIeAF4F9i2PNiogTgduK503sGPDq5Zw8SZLUSnol5KWUbgBuKO7P\nAnau8rxJwKROtt8BbNLJ9vkUIbGT750DnLPkVb9VrXPyHK6VJEnNwCte1KjWOXl28iRJUjMw5NVg\nwQJYtAgGD+76eYY8SZLULAx5NZg3L8/Hi26mOrqEiiRJahaGvBrUMlQLLqEiSZKahyGvBrVc0gwc\nrpUkSc3DkFeDWpZPAUOeJElqHoa8GsyfD0OGdP88l1CRJEnNwpBXgwULYJllun/eiBF5aLetrfE1\nSZIkdcWQV4O2NhhUw7LRAwbAyJEwZ07ja5IkSeqKIa8GtXbywGVUJElSczDk1aDWTh64jIokSWoO\nhrwa1NPJ8wxbSZLUDAx5Naink+dwrSRJagaGvBrUOyfP4VpJklQ2Q14N6u3keXatJEkqmyGvBvV0\n8kaOtJMnSZLKZ8irgZ08SZLUagx5NXBOniRJajWGvBq0tTlcK0mSWoshrwYLFjhcK0mSWoshrwZ2\n8iRJUqsx5NXATp4kSWo1hrwa2MmTJEmtxpBXAzt5kiSp1RjyalBPJ2/ECHjlFVi0qLE1SZIkdcWQ\nV4N6OnkDB8Lw4TB3bmNrkiRJ6oohrwb1dPLAIVtJklQ+Q14N6unkgSdfSJKk8hnyalDPZc3ATp4k\nSSqfIa8GbW128iRJUmsx5NVgSTp5hjxJklQmQ14N6u3kOVwrSZLKZsirQb2dPIdrJUlS2Qx5NbCT\nJ0mSWo0hrwZ28iRJUqsx5NXATp4kSWo1hrwa2MmTJEmtxpBXgyXp5BnyJElSmQx5NfCKF5IkqdUY\n8mrgFS8kSVKrMeTVwE6eJElqNYa8GtjJkyRJrcaQV4N6O3nDhsHChTB/fuNqkiRJ6oohrwb1dvIi\nHLKVJEnlMuTVoN5OHjhkK0mSymXIq0FbW/0hz06eJEkqkyGvBgsW1DdcC3byJElSuQx5NbCTJ0mS\nWo0hrwZ28iRJUqsx5NVgSU68sJMnSZLKZMjrxqJF+Tagzndq+eXt5EmSpPIY8rrRPh8vor79HK6V\nJEllMuR1o96FkNs5XCtJkspkyOvGkszHAzt5kiSpXIa8btjJkyRJrajbkBcR60fE0OL+DhFxeESM\nanxpzcFOniRJakW1dPIuBdoiYn3gTGAMcFFDq2oidvIkSVIrqiXkLUoptQH/D/hpSunrwGqNLat5\nLGknzyVUJElSmWoJeW9ExH7AAcAfim3dxp6IGBoRt0TE3RExPSJOKraPjoipEfFgREypHPqNiGMi\n4qGIeCAidq3YvkVE3FN87ycV24dExK+L7TdHxNoV3xtXvMaDEXFADT9np5a0k+dwrSRJKlMtIe9z\nwNbAd1NKj0bEusAF3e2UUnod2CGl9F5gU2CHiNgOOBqYmlLaELi2eExEbAR8EtgI2B34ecSbq9Od\nDoxPKW0AbBARuxfbxwMvFttPBU4pjjUaOB7YsridsKTzCJdmTt7cuUvyipIkSUuv25CXUrqPHMTu\nKh4/mlI6pZaDp5ReLe4OBgYCLwF7AucV288DPlrc3wu4OKW0IKX0GPAwsFVErAaMSCndWjzv/Ip9\nKo91KbBTcX83YEpK6eWU0svAVHJwrNuSdvIGDYKhQ5fkFSVJkpZeLWfX7kkOeH8qHm8WEVfUcvCI\nGBARdwMzgeuLwLhKSmlm8ZSZwCrF/dWBpyp2fwpYo5PtM4rtFF+fBCjmDc6OiBW7OFbdlrSTB3le\nniRJUhlqGa6dAGxF7sKRUroLWK+Wg6eUFhXDtWsCH4iIHTp8PwGpnoJ725J28iAP2UqSJJWhlviy\nIKX0crz14q2L6nmRlNLsiPgjsAUwMyJWTSk9WwzFPlc8bQZ5eZZ2a5I7cDOK+x23t++zFvB0RAwC\nlk8pvRgRM4CxFfuMAa7rrLYJEya8eX/s2LGMHTv2Ld+3kydJksowbdo0pk2btsT71xLy7ouITwOD\nImID4HDgpu52ioiVgLYiIA4DdgEmAlcA48gnSYwDflfscgVwUUT8iDy0ugFwa0opRcSciNgKuBX4\nDHBaxT7jgJuBj5NP5ACYAkwqTraI4rWP6qzOypDXmaXp5BnyJEnSkurYfJo4cWJd+9cSX74MHAvM\nBy4G/gycWMN+qwHnRcQA8rDwBSmlayPiLmByRIwHHgP2AUgpTY+IycB0oA04tBjOBTgUOBcYBlyV\nUvpTsf0s4IKIeAh4Edi3ONasiDgRuK143sTiBIy6LU0nz+FaSZJUllpC3odSSt8Evtm+ISI+Afym\nq51SSvcAm3eyfRawc5V9JgGTOtl+B7BJJ9vnU4TETr53DnBOVzXWwk6eJElqRbWcePHNGrf1SXby\nJElSK6rao4qI/wY+BKwREaeR57YBjAAW9EJtTcFOniRJakVdxZengTvIixTfweKQNwc4ssF1NY2l\n7uR51QtJklSCqiEvpfQP4B8RcVFK6Y1erKmpLPUSKoY8SZJUglrm5K0TEb+NiOkR8Whxe6ThlTUJ\nh2slSVIrqiXknQOcQV7WZCz5WrEXNrCmpuKJF5IkqRXVEvKGpZSuASKl9HhKaQKwR2PLah528iRJ\nUiuqJb68HhEDgYcj4jDyCRnLNras5uFlzSRJUiuqJeR9BRhOvpzZicBI8qXE+oWl6eSNHt2ztUiS\nJNWq2/iSUrq1uDsXOLCh1TShpenkrbBC/rpoEQyoZWBckiSph1SNHhGxfUSMq3h8aURcHxHXRcSO\nvVNe+Zamk9ceDue6jIokSeplXfWXJgK3VzzeEPgaMAE4qoE1NZWl6eS1mzWrZ2qRJEmqVVchb2RK\n6b6Kxw+nlO5IKd1IvrRZv7A0nbx2hjxJktTbugp5oyofpJQ+VvFwlcaU03zs5EmSpFbUVch7ICI+\n3HFjRHwEeKBxJTUXO3mSJKkVdRVfjgT+GBF7A3cCAWwObAu8Lfz1VXbyJElSK6rayUspPQRsCvwV\nWAdYG7gR2CSl9K9eqa4J2MmTJEmtqMv4klJ6HTirl2ppSnbyJElSK3KJ3m7YyZMkSa3IkNeNnujk\nvfRSz9QiSZJUq66ueHFt8fV7vVdO87GTJ0mSWlFX8WW1iPgvYM+IuIR8dm1q/2ZK6c5GF9cMnJMn\nSZJaUVch7wTgeGAN4IedfH+HhlTUZOzkSZKkVlQ1vqSUfgP8JiKOTyl9uxdraio91clLCSJ6piZJ\nkqTudNujSil9OyL2Aj5AHq69IaV0ZcMraxILFix9Jy8CXnsNhg/vmZokSZK60+3ZtRFxMnA4cB9w\nP3B4RJzU6MKaRVvb0nfyRo92yFaSJPWuWnpUewDvTSktBIiIc4G7gWMaWFfT6IlOXnvIW3PNnqlJ\nkiSpO7Wsk5eAURWPR1Fxlm1fZydPkiS1olp6VCcBd0bE9eRlVD4IHN3QqppIT3byJEmSekstJ15c\nHBE3AO8nd/COTik90/DKmoSdPEmS1Ipq6lGllJ4Gft/gWppSTyyhYsiTJEm9zWvXdqMnFkM25EmS\npN5myOuGnTxJktSKugx5ETEoIv7VW8U0Izt5kiSpFXUZ8lJKbcADEbF2L9XTdOzkSZKkVlRLj2o0\ncF9E3ArMK7allNKejSuredjJkyRJraiW+HJcJ9v6zWLIdvIkSVIrqmWdvGkRsQ6wfkrpmogYXst+\nfYWdPEmS1Iq6Pbs2Ig4CfgOcWWxaE7i8kUU1k57o5C23HMyfn2+SJEm9oZYlVL4EbAfMAUgpPQis\n3MiimklPdPIicjfvpZd6piZJkqTu1BLy5qeU3uxBRcQg+smcvIULc0Ab0AOrCTpkK0mSelMt8eWG\niDgWGB4Ru5CHbq9sbFnNoSe6eO3s5EmSpN5US8g7GngeuAc4GLgK+FYji2oWPTEfr52dPEmS1Jtq\nObt2YUScB9xCHqZ9IKXUL4Zre7qTZ8iTJEm9pdsIExF7AGcAjxSb1ouIg1NKVzW0siZgJ0+SJLWq\nWvpUPwJ2SCk9DBAR7yQP2faLkGcnT5IktaJa5uTNaQ94hUcollPp69ra7ORJkqTWVLVPFRF7F3dv\nj4irgMnF408Atze6sGZgJ0+SJLWqriLMR1i8Ht5zwAeL+88DQxtZVLOwkydJklpV1ZCXUjqwF+to\nSj3ZyVthBUOeJEnqPbWcXbse8GVgnYrnp5TSng2sqynYyZMkSa2qlj7V74Bfka9ysajY1i/WyXNO\nniRJalW1RJjXU0qnNbySJtSTnbzll4e5c/P1cAcO7JljSpIkVVNLyPtpREwA/gzMb9+YUrqzUUU1\ni57s5A0cCCNHwssvw4or9swxJUmSqqklwmwMfAbYgcXDtRSP+7Se7OTB4iFbQ54kSWq0WkLeJ4B1\nU0pvNLqYZtOTnTxwXp4kSeo9tVzx4h5ghUYX0owa1cmTJElqtFr6VCsAD0TEbSyek9cvllBZsKBn\nQ96KK8ILL/Tc8SRJkqqppZN3AvAxYBLww+L2o1oOHhFjIuL6iLgvIu6NiMOL7aMjYmpEPBgRUyJi\nVMU+x0TEQxHxQETsWrF9i4i4p/jeTyq2D4mIXxfbb46ItSu+N654jQcj4oBaaq7U1tazw7WrrgrP\nPttzx5MkSaqm2wiTUpq2FMdfAByZUro7IpYD7oiIqcBngakppe9FxFHA0cDREbER8ElgI2AN4JqI\n2CCllIDTgfEppVsj4qqI2D2l9CdgPPBiSmmDiPgkcAqwb0SMBo4HtihquSMirkgpvVxz8T3cyVt9\ndXjqqZ47niRJUjXddvIi4pWImFvc5kfEooiYU8vBU0rPppTuLu6/AtxPDm97AucVTzsP+Ghxfy/g\n4pTSgpTSY8DDwFYRsRowIqV0a/G88yv2qTzWpcBOxf3dgCkppZeLYDcV2L2Wutv1dCdvtdXgmWd6\n7niSJEnV1NLJW679fkQMIIeqret9oYhYB9gMuAVYJaU0s/jWTGCV4v7qwM0Vuz1FDoULivvtZhTb\nKb4+WdTaFhGzI2LF4lhPdXKsmjWik/f00z13PEmSpGpqmZP3ppTSopTS76izI1YM1V4KHJFSmtvh\nmIkmvUxaT3fyVl/dTp4kSeod3UaYiNi74uEA8hy312p9gYhYhhzwLigCIsDMiFg1pfRsMRT7XLF9\nBjCmYvc1yR24GcX9jtvb91kLeDoiBgHLp5RejIgZwNiKfcYA13Wsb8KECW/eHzt2LGPHLt6lpzt5\nq62WO3kpQUTPHVeSJPU906ZNY9q0aUu8fy19qo+wuNPWBjxGnjvXrYgI4CxgekrpxxXfugIYRz5J\nYhzwu4rtF0XEj8hDqxsAt6aUUkTMiYitgFvJV+A4rcOxbgY+DlxbbJ8CTCrO3A1gF+CojjVWhryO\nerqTN2IEDBiQr2E7cmTPHVeSJPU9HZtPEydOrGv/WubkHVhvURW2BfYH/hkRdxXbjgFOBiZHxHhy\naNyneK3pETEZmE4OlIcWw7kAhwLnAsOAq4ozayGHyAsi4iHgRWDf4lizIuJE4LbieRPrObMWer6T\nB4u7eYY8SZLUSFVDXkScUOVbCSCl9O3uDp5S+ivV5/3tXGWfSeQ1+TpuvwPYpJPt8ylCYiffOwc4\np7s6q+npy5rB4nl573pXzx5XkiSpUlcRZh5vPyFiWfK6dCsB3Ya8VtfTlzWDxZ08SZKkRqoa8lJK\nP2i/HxEjgcPJixhfQr7qRZ/XyE6eJElSI3UZYYr15o4EPk1egHjzlNJLvVFYM2hrg6FDe/aYdvIk\nSVJvqLpOXkT8gHwm61xg05TSCf0p4IGdPEmS1Lq6Wgz5f8jLmHyLvAbd3IpbTZc1a3XOyZMkSa2q\nqzl5dV0Noy+ykydJklpVvw9yXWlkJy815YXcJElSX2HI60IjOnkjRuSvc+d2/TxJkqSlYcjrQiM6\neREO2UqSpMYz5HWhEZ088OQLSZLUeIa8LjSikwd28iRJUuMZ8rpgJ0+SJLUqQ14X7ORJkqRWZcjr\ngp08SZLUqgx5XbCTJ0mSWpUhrwt28iRJUqsy5HXBTp4kSWpVhrwuLFjQmJA3YgQsWuRVLyRJUuMY\n8rrQ1taY4VqveiFJkhrNkNeFRnXywHl5kiSpsRrQp+o7GnXiBeROniFPkhpj1iy48Ua45pp8ewBY\nbz0YMwbWXhu22w4+9CFYc82yK5Uax05eFxp14gU4XCtJPenvf4f994ett4aVVspB7owzYJ114JJL\n8nOmTIETToAPfhBuuAHe+958+9//LbV0qWHs5HWhkZ08h2slqWeceSYcdxxMmACHHALrrw8rr5zn\nP1daf/18Axg/Pn+Qv+UWOOggeOGFHAClvsSQ14VGd/Luuqsxx5ak/mD+fDj8cPjLX+Cvf4UNN6xv\n/0GDYNtt4brrYIcdYOBA+Na3GlOrVAaHa7tgJ0+Sms+iRfCHP+SA9txzcPPN9Qe8SquskoPehRfC\npEk9V6dUNjt5XWh0J8+QJ0m1W7AALrgAfvADGDoUvv51+OQnYUAPtCtWXTUHvbFj8+/+4457+3Cv\n1GoMeV1oZCdv7bXhiSdg4cI8RCBJqm7hQvjUp2DmTPjpT2HHHXs+hK22Wj4hY9ddYc4c+P73DXpq\nbQ7XdqGRnbxhw2DFFWHGjMYcX5L6ipTgiCPysijXXAM77dS48LXqqjBtWp7n98Uv5nAptSpDXhca\n2ckDeOc74d//btzxJakvOPnkHLouvxyGDGn8640encPkgw/ms3WlVmXIqyKl/AnOkCdJ5TnvPPjF\nL+Dqq2H55XvvdUeMyCd3TJkCU6f23utKPcmQV0VbW54r18j5GIY8Saru73/PJ1dcfXU+Wa23Lbss\n/Oxn8KUvweuv9/7rS0vLkFdFI+fjtTPkSVLnZs6EffaBs8+Gd72rvDo+/GHYeGM45ZTyapCWlCGv\nikbPxwNDniR1pq0tL43yuc/lkFW2n/wkn9H78MNlVyLVx5BXRW928lJq7OtIUis5+ui8AsHxx5dd\nSbbWWrmmL33J39dqLYa8Knqjkzd6dP764ouNfR1JahWXXgqXXZavPtFMa4gecQQ88wycc07ZlUi1\nM+RV0RudvAiHbCWp3YwZcOihcMkliz8EN4tllsl1HXUU3HNP2dVItTHkVdEbnTww5EkS5OvRHngg\nHHYYbLll2dV0bqON4Ec/gk98AubOLbsaqXuGvCp6o5MHhjxJgnxyw6uvwjHHlF1J1z7zGdh+ezjo\nIOfnqfkZ8qqwkydJveOee2DSJLjggt75vbu0TjsN7r8fTj+97EqkrhnyqrCTJ0mN9/rr8OlPw/e/\nD+utV3Y1tRk2DCZPhuOOg2efLbsaqTpDXhV28iSp8Y49FjbcEMaNK7uS+my4IXz2s82zzIvUGUNe\nFQsW9E4nb401YNasPBdFkvqTa66BX/8azjyzsZeQbJRjj4Xf/x7uvbfsSqTOGfKq6K3h2oEDYZ11\n4JFHGv9aktQsZs3KnbBzzoEVVyy7miWzwgo56H3ta2VXInXOkFdFbw3XgkO2kvqXlODgg+HjH4dd\ndim7mqXzxS/mD+l//nPZlUhvZ8irorc6eWDIk9S/nH12Pjv1pJPKrmTpDR4M3/te7uYtXFh2NdJb\nGfKqsJMnST3v73/Pa+H95jcwdGjZ1fSMvfbKQ7cXXFB2JdJbGfKqsJMnST1rxow8RHv22fDud5dd\nTc+JgIkT81p/dvPUTAx5VdjJk6Se89pr8LGP5cuWffjDZVfT88aOhZVXzmcLS83CkFdFb3by1l0X\nnngiv6Yk9UVf/GJe7Pjoo8uupDEi8pp53/lOvg6v1AwMeVX0Zidv6ND8CfDJJ3vn9SSpN11xBdx8\ncx6mbcV1SjB1AAAeIklEQVT18Gq1yy4wYgRcemnZlUiZIa+K3uzkgUO2kvqmV16BL38ZzjgDhg8v\nu5rGisiXOrObp2ZhyKuiNzt5kC+R869/9d7rSVJvmDABPvhB2GGHsivpHXvskRe5v/LKsiuRDHlV\n9XYnb7PN4K67eu/1JKnR7r4bzj8ffvCDsivpPe3dvG9/Oy/6LJXJkFdFb3fyNt8c7rij915Pkhpp\n4cJ8VYtJk/Kc4/5kr73gjTfg6qvLrkT9nSGvit7u5G26aR6unT+/915TkhrljDPy79DPfa7sSnrf\ngAF289QcDHlV9HYnb9gwWH99uOee3ntNSWqExx6DE06AX/4yB57+aO+9YfZsuOaasitRf9ZP//l1\nr7c7eQBbbAF33tm7rylJPSklOOigfC3XvnRVi3oNHAjHHgsnnlh2JerPDHlV9HYnD5yXJ6n1nX02\nzJqVQ15/t+++8MwzcMMNZVei/qqhIS8izo6ImRFxT8W20RExNSIejIgpETGq4nvHRMRDEfFAROxa\nsX2LiLin+N5PKrYPiYhfF9tvjoi1K743rniNByPigHprt5MnSfWZMSNf0eLss3v/Q3IzGjQIvvnN\nPDdPKkOjO3nnALt32HY0MDWltCFwbfGYiNgI+CSwUbHPzyPeXBv9dGB8SmkDYIOIaD/meODFYvup\nwCnFsUYDxwNbFrcTKsNkLcro5L3nPXDfffmsLElqJSnlS5cddlg+kUzZ/vvDI4/ATTeVXYn6o4aG\nvJTSX4CXOmzeEzivuH8e8NHi/l7AxSmlBSmlx4CHga0iYjVgRErp1uJ551fsU3msS4Gdivu7AVNS\nSi+nlF4GpvL2sNmlMjp5yy6br2M7fXrvvq4kLa0LL4THH4djjim7kuayzDL5PXFunspQxpy8VVJK\nM4v7M4FVivurA09VPO8pYI1Ots8otlN8fRIgpdQGzI6IFbs4Vs3K6OSB8/IktZ5nn4WvfhXOOQcG\nDy67muYzblwepbnttrIrUX9T6okXKaUENOUqQgsW9H4nD5yXJ6n1HHYYjB+ff3/p7YYMgW98w26e\nel8ZU2NnRsSqKaVni6HY54rtM4AxFc9bk9yBm1Hc77i9fZ+1gKcjYhCwfErpxYiYAYyt2GcMcF1n\nxUyYMOHN+2PHjmXs2LxbW1t5nbxLLun915WkJfHb3+Yu1f/9X9mVNLfx4/PVP+6+G9773rKrUauY\nNm0a06ZNW+L9IzV4Oe6IWAe4MqW0SfH4e+STJU6JiKOBUSmlo4sTLy4inyixBnANsH5KKUXELcDh\nwK3AH4HTUkp/iohDgU1SSodExL7AR1NK+xYnXtwObA4EcAeweTE/r7K2VO3n/+xnYfvtl3619pgY\npBNqf4/nzoVVV82LaHp2mpZUTJtGKj6wSI3ywguwySZw2WWwzTZlV9ONiNIvP3HqqfC3v+VgLC2J\niCClFN0/M2v0EioXAzcB/xERT0bEZ4GTgV0i4kFgx+IxKaXpwGRgOnA1cGhFAjsU+BXwEPBwSulP\nxfazgBUj4iHgKxRn6qaUZgEnAreRg+HEjgGvO2V18kaMgDXXhPvv7/3XlqRaLVoEn/88fPrTLRDw\nmsTBB8Nf/wr33lt2JeovGhpjUkqfqvKtnas8fxIwqZPtdwCbdLJ9PrBPlWOdQ17CZYmUNScPFs/L\n2+RtP7EkNYfvfx9mzoTJk8uupHUMHw5HHgnf/S5cfHHZ1ag/8IoXVZTVyYM8L8+TLyQ1q2nT4Mc/\nzgHPs2nrc+ihMGVKXm5GajRDXhVld/JcRkVSM3r6adhvP7jgAhgzpvvn661GjMhzvn/607IrUX9g\nyKuijMWQ222xBfzzn/Dqq+W8viR1pq0NPvnJ3I3audNJN6rFYYflNQXnzi27EvV1hrwqyloMGWDk\nyBz0rut00RdJKsfEiXle2Te/WXYlrW2ddWDHHXPQkxrJkFfF3Lmw3HLlvf6HPgRXXVXe60tSpRtu\ngF/9Cs47Dwb4l2OpHXkk/OQnsHBh2ZWoL/OfahWzZ8OoUeW9/h57wB//WPqyTpLErFnwmc/A2Wfn\ndTy19LbZBlZaCa68suxK1JcZ8qqYPRuWX76813/3u/On5fvuK68GSUopr4e3997w3/9ddjV9R0Tu\n5p16atmVqC8z5FXx8svldvIiHLKVVL5f/QoefRROPrnsSvqevfeGRx6B228vuxL1VYa8TixYAPPn\nw7LLlltH+5CtJJXhscfySRYXXghDhpRdTd+zzDJwzDHw9a87NUeNYcjrxOzZ+QzXqPnqcI2xww5w\n113w0kvl1iGp/1m0CMaPh699DTbaqOxq+q6DDoLnn4ff/77sStQXGfI6UfZJF+2GDYMPfCCvji5J\nvenMM2HePPjqV8uupG8bNCjPy/va1/IIktSTDHmdKPuki0rOy5PU2x59FI47Ds49t7z1QvuTXXbJ\nJ9uddlrZlaivMeR14uWXmyfk7bEHXH11HjqRpEZbtAg+9zk46ih417vKrqb/+OEP4ZRTYObMsitR\nX2LI60SzDNcCrL02rLwy3HZb2ZVI6g9+8IN88tn//E/ZlfQvG24IBxwA3/pW2ZWoLzHkdaKZhmsB\n9twTLr207Cok9XW33ppD3oUXwsCBZVfT/xx/PPzud/Dww2VXor7CkNeJZhquBdh///xL18vfSGqU\nOXNgv/3g5z/PIwjqfaNGwZe/DN/5TtmVqK8w5HWimYZrIS9fsPrqcN11ZVciqa/60pdgxx3h4x8v\nu5L+7fDD8/qodvPUEwx5nWi24VrI1408//yyq5DUF519NtxxB/z4x2VXIrt56kmGvE6UfUmzzuy7\nb76Q9dy5ZVciqS/5wx/yVS1++1sYPrzsagR289RzDHmdaMZO3sor54WRL7us7Eok9RU33piXS7ni\nCq9q0Uzau3nf/W7ZlajVGfI60WwnXrQ74ACHbCX1jDvvzPPvLr4Yttyy7GrU0eGH5y6r3TwtDUNe\nJ5rtxIt2H/4w3H03PPlk2ZVIamX/+ldeaP3MM2GnncquRp0ZNSoHvRNOKLsStTJDXieacbgWYOhQ\n+MQn8nIqkrQknnwSdt0VJk2Cj32s7GrUlSOPzKsq3H132ZWoVRnyOtGsw7WQh2zPPdfLnEmq3/PP\n54B3xBHw2c+WXY26s9xycOyxcMwxZVeiVmXI6yCl5u3kAWyzTa5t8uSyK5HUSubMgf/+b9h7by9Z\n1koOOggefBCmTSu7ErUiQ14Hr78OAwbkodFmFJGHWY47Ll9fUpK6s2BBPsni/e+HE08suxrVY/Dg\n/N/sqKNyE0KqhyGvg2ZcI6+jnXaCtdaC884ruxJJzS6lPDw7aBD87Gf5g6Jay777whtvwOWXl12J\nWo0hr4NmHqqt9N3vwre/nTuPklTNz36W18O75BIYOLDsarQkBgyAk07Kc/Pmzy+7GrUSQ14HzXzS\nRaWtt4bNNoMzzii7EknN6uqr8/SOK6+EkSPLrkZLY7fd8oLVkyaVXYlaiSGvg2ZdI68zJ54IJ5/s\npc4kvd0NN+Sz8X/zG1h33bKr0dKKyF3Zn/8c7ruv7GrUKgx5HbTKcC3AppvCzjvnYVtJavd//5fX\n1Lz4Ythuu7KrUU9ZY4384f7zn4eFC8uuRq3AkNdBqwzXtjv1VLjoIrjmmrIrkVS2lGDiRPjWt+D6\n6/OHQPUtBx2UT6I5/fSyK1ErMOR10ErDtQDveEc+y/bAA/NCp5L6p7Y2GD8+X+/05pth443LrkiN\nMGAA/OIXMGGCl7hU9wx5HbTScG27nXeG/fbLv+BdR0nqf157LS9y/PTTedHcVVctuyI10rvfna9r\ne+ih/s5X1wx5HbTacG2773wHnnkG/vd/y65EUm+aPTtfyWLYMLjiClh22bIrUm84+mh49NF8Yo1U\njSGvg1Ybrm03eHCem/ftbzs/T+ovHn0UdtghL61x4YX594D6h8GD4Ze/hK98BWbNKrsaNStDXget\n2skD2GAD+O1v4VOfgltuKbsaSY2SUp6XteWW8JnP5A6+Cx33P9tsk4fpv/71sitRsxpUdgHNplU7\nee0+8AE491zYc0+49lr4z/8suyJJPemZZ/L825kz8/w7T7Do3yZNyv8PXHttvuSlVMlOXgeteOJF\nR3vskZdW2X13+Pe/y65GUk/5859h883hfe/zDFplI0bkBZIPOgjmzCm7GjUbO3kdtPJwbaX99stX\nwthhh/wJb4MNyq5I0pJqa4PjjoMLLsjXoP3gB8uuSM3kwx/Ol647+OA8Nzui7IrULOzkddDqw7WV\nDj4Yjj8edtwRHnig7GokLYnHHssf1u68M98MeOrMj38M994LZ51VdiVqJoa8CosW5e5XX7qQ9+c/\nn5dX2Wknr3cotZJFi/JVDd73vjzH9uqrYeWVy65KzWrYMJg8GY45Joc9CRyufYu5c2H48L53ltq4\ncbDMMrmjd+qp+exb2/lS83r0UfjCF/LvpBtvzEukSN1597vh+9+HffaB225zzUTZyXuLvjRU29F+\n++U5G6eckhdOffTRsiuS1NF99+UPZe97X76Szd/+ZsBTfcaNy0vr7L9/nsup/s2QV6GvnHRRzZZb\nwu23547e+9+fL2Tu2VhS+W66KQ/J7rQT/Md/wMMP5ysaDHKsRXWKgDPPhHnz4Itf9LJn/Z0hr0Jf\nWD6lO8ssA9/4Rm7lP/IIrL8+nHQSvPJK2ZVJ/UtK8Mc/wvbb565Le4f9m9+EFVYouzq1siFD4LLL\n4J578hw99V+GvAp9ebi2o3XXhfPOy/N9/vnPHPZ++EN49dWyK5P6vqlT83p3xx4LX/oSPPggHHJI\nnjwv9YTllssfIq64An7wg7KrUVkMeRX6+nBtZ971Lrj44ny925tuymHvtNPgtdfKrkzqe/75z7xI\n+SGH5IB3112w774Oy6oxVloJpkzJZ2mfdJJDt/2RIa9Cf+rkdfSf/wmXXpo/+V17Lay+Onz603D5\n5Xb3pCWVEtx/fz7hadttYZdd8hVppk+Hj3/cs9zVeGuuCX/5C1x4IRx1lEGvvzHkVegPc/K6s9lm\n8Pvf5z9M22+fL3y+2mr5lPzJk527J3WnrS1fU/arX4UNN4Rdd4UnnsgLkz/xBHz5yzB4cNlVqj9Z\nfXW44YZ8+8IXYOHCsitSbzHkVeiPw7XVrLpqPjPrmmvy9W932w3OOQfWWAP+3//Lnwpnzy67Sqk5\nzJmTPwTtvz+sskoOeCNH5m1PPJE/LO22W54QL5VhxRXzKM3jj8PHPpbXYFTf50yQCrNnw3rrlV1F\n81lpJRg/Pt9eeilP5L3kkjyvaLvtYJNN8vu23nq5c7HWWg5Dqe964418Znr7ZcZuvz1/3W47+MhH\n4OST8xCZ1GzaT8Y49ND8/+sVV8Daa5ddlRrJkFfB4drurbBCXmxz3LjcvZg6NZ8ZeMcduWvxwAN5\nDt973gPvfS984AMwdiyMHl125VLtFiyAJ5/MixPfe2/++sgjuQvy/PMwZkw+O3bzzfN6dttuCyNG\nlF211L3Bg+GXv8zXut1mmzwXe5ttyq5KjWLIq+BwbX1GjoS993779uefh3/8Iwe/X/0KDjwwn7X7\n/vfn4d7VV3/rbaWVYIATB9QgCxfmDx7z5uXbCy/AzJnw3HP5a8fbc8/lDzCrrQYbb5xvO+0EBx+c\nux6rr+7ZsGptEXDkkXnkZc894fDD84eVZZYpuzL1tEj9+FSbiEiVP/822+S14v7rv3rwNSYG6YT+\n+x5DHt669da8fMQzz8DTT7/11n5W85Ah+VPm0KF5uGv99eGd78whcN68fNJHx69vvJH/4A4alH9B\n1Xp/+PB8sff2G+RlY159NYeC5ZbLnZn2r0OHttYQdEybRho7tuwy3vTaazBrVr7Nn5//O7f/904J\nFi3K73vl10WLFv//MHRoPqFh5kx49tn8dd48eP31t99eey1/f8YMeOqp/P/X8OGLbyuumOfNdXUb\nPdoPHn1OhKeWduLJJ+Ggg/K/q7PPziffqXlFBCmlmv8a+Xm0gp28xhg8OM//2G67zr8/f36e67dg\nQb7/2mt5svrDD+eTPu68M4et5ZbLF9xeZZXF9wcPzqFgwYIcAtpvlY/b77/++uLH8+Yt7uQ891z+\n/T98eF6MduDAHCBfeSVPTp47N++33HL5Oe1/J1JafIO83wor5ICwwgo5ULaHljfeyP9/vfRS/jp8\neO4Urb56Dh0LFiwOKRF532WWyUFjzpx8mz07Px4xIt+WXTa/ZkTePnRo/v935Ehg23xlkxkzcpB+\n9dX83Pbnv/LK4uMOHQrrrJO7VKutlrc9/3y+zZu3OIS13zo+7mxb+8/cfhswYPF7M2RI3jZ/fv4a\nkesaMOCtXyPe+r4MGJBPCFp11RzM28P3kCH5/jvesTgQrrJK7hqvuWZ+f1spoEu9acwYuOqqvDj+\nbrvl65wfdVT+XaDWZ8ir4Jy8cgwZkv9wV9pkk3JqqWbBghyMXn01B4b20NB+vz2QvPxy7la99FIO\nhgMG5Nsyy+Ru5Qor5K+vvrq4q/nii4s7VkOG5GO98UY+3qJFOcAsv3y+LVq0OHjOm/fWYPX664vD\nIORws8kmOUguu2wOXu1dshEjchgcOTLX8vjj+fbMM/lqKO94R+6gtgfJ9p+jPVBWe9y+beDAxZ26\n9q6dpOYUkafV7L57XtNx443zmeJHHZU/LKl1OVxb8fMvu2zu7Cy3XA++hsO1KkGzDddKpXO4tmbP\nPpunLp11Vu7uHXJIXjfVjnj56h2u7dOzTiJi94h4ICIeioijunpu+1Dhssv2VnWSJDWfVVeF738/\nn1G+9dZ5zt4mm+RtDzxgVm4lfTbkRcRA4GfA7sBGwKci4t3Vnt8+VOsnldpNmzat7BJamu/fkvO9\nWzq+f0unv7x/o0bBEUfkKyD99Kc59O28cz4r9ytfgT/8IU8RqVd/ef+aQZ8NecCWwMMppcdSSguA\nS4C9qj3Z+Xj18x/q0vH9W3K+d0vH92/p9Lf3LwJ22AFOPz2fjTt5cp63e+qpec7eVlvBYYflId7L\nLoO77srzk6vpb+9fmfryiRdrAE9WPH4K2Krakz2zVpKkrkXkZVY22wyOPTaf8HXzzXlt1EcfhRtv\nzF8ffTSfcLbuuvnM/TXXzLc11oCHHoK//GXxyV/tJ4J5Teee15dDXl2zBgYOdNVvSZLqMXRovqpR\nx/O8UsoLjz/6aF4S66mnchew/VKAjz2WVwmYM2fx1/aVCDoup9TZEktLuq19BYDO1LN90iTYdNOl\neON6SZ89uzYitgYmpJR2Lx4fAyxKKZ1S8Zy++cNLkqQ+qZ6za/tyyBsE/AvYCXgauBX4VErp/lIL\nkyRJ6gV9drg2pdQWEYcBfwYGAmcZ8CRJUn/RZzt5kiRJ/VlfXkKlS/UslKy3iogxEXF9RNwXEfdG\nxOFl19RqImJgRNwVEVeWXUuriYhREfHbiLg/IqYX829Vo4g4pvi3e09EXBQRXnSuiog4OyJmRsQ9\nFdtGR8TUiHgwIqZExKgya2xmVd6/7xf/dv8REZdFhOtaVNHZ+1fxva9GxKKIGN3VMfplyKt3oWS9\nzQLgyJTSxsDWwJd8/+p2BDCdOs8CFwA/Aa5KKb0b2BRwGkaNImId4AvA5imlTchTWfYts6Ymdw75\n70Slo4GpKaUNgWuLx+pcZ+/fFGDjlNJ7gAeBY3q9qtbR2ftHRIwBdgEe7+4A/TLkUedCyXqrlNKz\nKaW7i/uvkP/Irl5uVa0jItYEPgT8CvAaK3UoPvVvn1I6G/Lc25TS7JLLaiVzyB/Shhcnpw0HZpRb\nUvNKKf0FeKnD5j2B84r75wEf7dWiWkhn719KaWpKaVHx8BZgzV4vrEVU+f8P4EfAN2o5Rn8NeZ0t\nlLxGSbW0tKIzsBn5H6tqcyrwdWBRd0/U26wLPB8R50TEnRHxy4gYXnZRrSKlNAv4IfAEedWBl1NK\n15RbVctZJaU0s7g/E1ilzGJa3OeAq8ouopVExF7AUymlf9by/P4a8hwi6wERsRzwW+CIoqOnbkTE\nh4HnUkp3YRdvSQwCNgd+nlLaHJiHw2U1i4h3Al8B1iF335eLiE+XWlQLS/nMRf+eLIGIOBZ4I6V0\nUdm1tIriA+03gRMqN3e1T38NeTOAMRWPx5C7eapRRCwDXAr8X0rpd2XX00L+C9gzIh4FLgZ2jIjz\nS66plTxF/hR7W/H4t+TQp9q8D7gppfRiSqkNuIz8/6RqNzMiVgWIiNWA50qup+VExIHkKSt+wKjP\nO8kf0P5R/A1ZE7gjIlautkN/DXm3AxtExDoRMRj4JHBFyTW1jIgI4Cxgekrpx2XX00pSSt9MKY1J\nKa1LnvB+XUrpgLLrahUppWeBJyNiw2LTzsB9JZbUah4Ato6IYcW/453JJwCpdlcA44r74wA/5NYh\nInYnT1fZK6X0etn1tJKU0j0ppVVSSusWf0OeIp9EVfWDRr8MecUn2PaFkqcDv3ah5LpsC+wP7FAs\nA3JX8Q9X9XOop35fBi6MiH+Qz66dVHI9LSOl9A/gfPIH3fY5Pb8or6LmFhEXAzcB/xERT0bEZ4GT\ngV0i4kFgx+KxOtHJ+/c54KfAcsDU4m/Hz0stsolVvH8bVvz/V6nbvx8uhixJktQH9ctOniRJUl9n\nyJMkSeqDDHmSJEl9kCFPkiSpDzLkSZIk9UGGPEmSpD7IkCepFBGxsFgn658RcVlxmbx69p8WEZsX\n9/8YESO7ef5jETF6aWpemuNExMER8Zni/oHF1RLq2f8rETGs3tct9l0+Ig5Zkn0ltS5DnqSyvJpS\n2iyltCkwBzi4zv3fXOQzpbRHSmlOrc9fSkt0nJTSmSmlC4qH48jXjq3HEcDwJXltYAXg0Hp3igj/\nRkgtzH/AkprB38nXZSQitoyImyLizoj4W/slzIpLcV0SEdMj4jLgza5WZXctIi6PiNsj4t6I+EJX\nL1p0175X8fjAiPhpcX//iLil6Dae0VngiYj/iYh7itsRFdsPiIh/RMTdEXFesW1CRHw1IvYmX0P2\nwuLYH4qIyyv23aX4+Spf53ByKLw+Iq4ttu1avE93RMTkiFg2ItaOiAcjYsWIGBARf4mIXYCTgHcW\nr/e9iPhgRFxZcfyfRcS4ivfy5Ii4A/hEZ6/T1XsqqXkY8iSVKiIGArsC9xab7ge2TyltDpzA4suW\nHQK8klLaqNi+RcVhKrtrn0spvQ94P3B4RKzQxctfCnys4vE+wMUR8e7i/n+llDYDFtHhYuoRsQVw\nILAlsDXwhYh4b0RsDBwL7JBSei+5A9deY0opXUq+rNh+RSfzKuBdEbFi8bzPkq8NvfiHS+k04Glg\nbEppp4hYqXiNnVJKWwB3AP+TUnocOAU4HfgqcG9KaSpwNPDv4vW+AUSH9yFVvIcJeKE47rWdvU4X\n76ekJjKo7AIk9VvDIuIuYA3gMeCMYvso4PyIWJ8cONp/T20P/ATyhboj4p907oiI+GhxfwywAXBr\nZ09MKb0QEY9ExFbAw8C7Uko3RcRh5BB5e0RA7ho+W7FrANsBl6WUXgMoum/bFzVPTinNKl7j5Sp1\nVgatC4DPRMS55MC4f5V92m0NbATcVNQ3mHyNS1JKZ0XEPuTh7/d08lq1+HV3ryOp+RnyJJXltZTS\nZsXJBH8G9gIuB04Erk0pfSwi1gGur9iny7ASEWOBnYCtU0qvR8T1wNBu6riE3LV7AKgcJj0vpfTN\nLvZLHeqpdr+r/dudA1wJvE4OiItq2H9qSmm/jhsjYjiwZnH8EcC8TvZt460jOR1P6Kjcp9PXkdT8\nHK6VVKqiE3Y48N3I7aKR5KFJyMOh7W4E9gOIiP8ENu3kcCOBl4qA9y5yJ6o7lwMfBT5FDnyQhyk/\nHhHvKF5vdESsVVk28Bfgo8VcwWWLY9wIXEeey9Y+R7ByuLg9/M0tam1/D54pfuZvkQNfZyr3uQXY\nNiLa5zEuGxEbFN87hdwZPAH4ZcW+IyqO9TiwUUQMjohRwI5VXrOr15HU5Ax5kspSeXbs3eTh0n2A\n7wEnRcSdwMCK550OLBcR04GJ5HltHf0JGFQ85yTyCR1dF5GHU6cDa6WUbi+23U8OXFMi4h/AFGDV\nDvvdBZxLHgq+GfhlSukfKaXpwHeBGyLibuCHnfzM5wJnFCeXDCm2XQQ8kVL6V5VSfwH8KSKuTSk9\nTw7AFxf13QT8R0R8gDzMfEpK6SLgjYgYl1J6EfhbcYLIKSmlJ4HJ5HmQvwburPLedPo61d5LSc0l\nUuqpVQUkSUsqIn4G3JFSqtbJk6S6GPIkqWTFciVzgV1SSgvKrkdS32DIkyRJ6oOckydJktQHGfIk\nSZL6IEOeJElSH2TIkyRJ6oMMeZIkSX2QIU+SJKkP+v9H9pR9n9z74QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10d34cc90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize = [10,6])\n", "plt.plot(centers, n)\n", "zmax = n.max()\n", "plt.xlabel('Radial velocity texture')\n", "plt.ylabel('Number of Gates')\n", "\n", "plt.plot([centers[peaks[0]], centers[peaks[0]]], [0, zmax])\n", "plt.plot([centers[peaks[1]], centers[peaks[1]]], [0, zmax])\n", "plt.plot([search_centers[location_of_minima], search_centers[location_of_minima]], [0, zmax])\n", "noise_threshold = search_centers[locs[0]]\n", "print(noise_threshold)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "likely_noise = filtered_data > noise_threshold\n", "likely_signal = np.logical_not(likely_noise)\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "z_masked = np.ma.masked_where(likely_noise, radar.fields['reflectivity']['data'])\n", "radar.add_field_like('reflectivity', \n", " 'reflectivity_masked', \n", " z_masked, replace_existing = True)\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAGaCAYAAAB602AGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXucleP6/99XTVMzNdNJxKSDDiokJAmFGDJoR1IoJGNT\neyt7QjadfLc2BsOvbGZXKGRXJEoZ5RCRHEoyRaLDDCmdZmqmpsP1++O6V2vNNDNNNTWr5n6/XvN6\n1noO93M/z1rzfNZ1X4dbVBWPx+PxeDwej8fj8ZQ9Fcq6Ax6Px+PxeDwej8fjMbyB5vF4PB6Px+Px\neDxhgjfQPB6Px+PxeDwejydM8Aaax+PxeDwej8fj8YQJ3kDzeDwej8fj8Xg8njDBG2gej8fj8Xg8\nHo/HEyZ4A83j8XjKGSJSQ0SmiMhSEUkXkXYh2/4hIntEpFZZ9tHj8Xg8niNNuOhjxOE+gcfj8XjC\njmeB91S1m4hEAFUBRORk4HJgVVl2zuPxeDyeMiIs9NF70Dwej6ccISLVgYtUdRyAqu5S1S1u89PA\n/WXWOY/H4/F4yohw0kdvoHk8Hk/5ohGwXkReEpFvReS/IhItIl2ADFVdXNYd9Hg8Ho+nDAgbffQh\njh6Px1O+iADOBvqr6lcikgIMBy4C4kP2k7LonMfj8Xg8ZUTY6KOo6uE+h8fj8XhKiIiU+kNZVfeK\niYjUBb5Q1Ubu/YXAMOB0INftVg/IBNqq6rrS7o/H4/F4PAdDaWtkuOqjD3H0eDyecoSqrgXWiEgz\nt+oy4BtVrauqjZwwZQBne+PM4/F4POWFcNJHH+Lo8Xg8YUaVSlVLra3tO7cVtvpvwGsiEgmsAG4v\nsN2HVng8Ho8nLCktjQxnffQhjh6PxxNGiIiWtoEWGsLh8Xg8Hs/RSmlqZDjro/egeTweT5gRFXHY\nPWgej8fj8RyVlJZGhrM+egPN4/F4wozS9KDtTWv2eDwej+cYoNQ0Moz10RcJ8Xg8Ho/H4/F4PJ4w\nwXvQPB6PJ8yIKk0Pmsfj8Xg8xxDlQSO9gebxeDxhRpVSzEHzeDwej+dYojxopA9x9Hg8Ho/H4/F4\nPJ4wwXvQPB6PJ8wo1SIhHo/H4/EcQ5QHjfQGmsfj8YQZ5SG+3uPxeDyeg6E8aKQPcfR4PB6Px+Px\neDyeMMF70DwejyfMKA8J0B6Px+PxHAzlQSOPSg+aiNwkIl+LSLaI/CYi74nIBW5bDREZJyK/i0iW\niPwoIg8U0sbLIrJTROoWWD/Mrc8WkU0iMk9E2rltt4nIbrdti4gsFpGuxfSzkohMEZFfRWSPiHTc\nz3W1EJEPRWSziCwXkb8Us29oX7JF5Bd33U33d/9KAxG51X0GW0RkjYg8LiIVQ7bXEpGpIrJVRFaK\nSM+QbcXelwKfQbb7HBvupz+Pi8if7u/fIevrh7QT+NsjIgOLaauhiHwkIttEZKmIdCqw/Z8isspd\n+0QRiXHrfwg5xy4RyQ15/6CI1BWRd0Qk0/WhfoF2nxCR1e56M0TkaRHZ7yCKiPR27d0Rsq7g9yNb\nRDoUcXykiIx1n1OWiCwUkStDtrcTkQ9EZIOIrBORSQX/bwq0V+T3uASf/SXu3m8WkV8LaftREfne\nfT+GFth2sWsz9Jp7hWx/WUR2FPheidv2QiHfk22uvQuL/wRKn6hKVUvtz1O+EK+PXh/37Y/XR6+P\nx4w+QulpZDhz1BloInIf8Azwf8DxwMnAaOAat8szQDTQXFVjgWuBnwu0URW4HkgHbilwCgUmqmoM\nUAf4DHgrZPs8t60GMAp4XURqFtPlue4ca13bRV1XBDANeAeoCSQCr0rxghLoSyxwGTYn+jciclox\nx5QWUcC9QG3gPKATkBSyfTSwHfuMbgb+IyItQ7YXd1/2fgbuL1ZVVxbVERG5C+gCtHJ/17h1qOrq\nkHZigDOAPcCbxVzbROAboBbwT2CKiBznznWr63d74CR3H/6fO9dpIef5FOgXcu5/u/O+h333CmMs\n0NJ9b9sC8UDfYvqJ++49BCxh3/s4L/TaVXVuEc1EAKuBDu7cDwOTRKSB214DeAFo4P6ygZeK6E9J\nvsfFffZbgTHAoCL6utxtm1HIsQCZBa55Qsg2BR4v8L1SAFX9a4HjYoCpwIfAvCL64vGEFV4f8+H1\nEa+PeH0MxevjUcRRZaCJSHVgOHCPqr6tqrmqultVZ6jqg263NtjDawuAqv6oqgUfNtcDvwJPALcW\nPI37Q1V3AeOBuiJSK2Q77ov7KlAZaFxYf1V1p6o+p6rzgN37ubzmwImqmqLGR9gXv1cxx+zti6r+\noqr9gE+AYXt3sNGdz8VGOxeFjsiISCMRmetGSj4QkdEiMmGfsxR+bS+o6jxV3aWqvwGvAYFR2qrA\ndcAjqprjrn9a4FpKcF/2fgYl5FYgWVV/c31JBm4rZt9PVHV1YRtFpBlwFjBUVXeo6lvAYoKicQ0w\nVlUzVXUb8Dhwo4hUKeI69qKq61T1BeDrws7tvqtbQ47dA/xexHUEGAk8C2woeL5C3heK+4yGB+6J\nqs7A/j/Odu9nqeqbqrpVVXOxHxcXFNFcsd/j/X32qvqVqr7mzl9YX8er6ixMBA/kOxKgRMeIyN3A\nxUDPgEgdSapUqlpqf57ygdfHffD6aHh99PpYUo4KfYTS08hw5qgy0IDzgSqY5V4U84F/ORd2UaNr\ntwL/w0YxmojI2YXtJCKVsQfZalXdWGBbReB2YDPw44FcxAFQATj9AI95C7gIQETigOnACFWtiY3g\nvSkitd2+r2P3qxYmWrdQzCjmfuiIjVIBNAN2qWroyOx3QElHLhUb5dsgIktE5K/72b+laz/A4sLO\n5dz1vYFXimnrNOAXJy4BQvuu5H+IVcB+hBT2XTvgeykW6pENrAGmq+q0kG3fiUiPkPdtMZF4oZDz\nKXCWiKwXC2N6WPKH2IwWkdFF9OEE7DP8oYhudiD4WZeEg/keHyzHi8hasZCmp0UkusD2e9z36msR\nua6wBkTkXOzHaXdVXX/Ye1wIVSKqltqfp9zg9XH/eH30+hh47fXxKNVHKD2NDGeONgOtNvCnqu4p\nZp+/YaNV/YEfxGJ8Q+OF62OW/2RVzQbexx5KoXQXkU2YW/ssIDSOvp3blgs8CVzj2jlUfgTWicgg\nsTjkeOwfPeoA2/kdExQwQXnPjaigqrOx0akEdx/aAEPcKN88TJAPeNRFRPpgD8Jkt6oakFVgt2wg\npoRNTsJGmo4D7gSGhD54C6EasCXkfZZbV5ALsZCSKQfQFuTv+yygr4g0cCPWgfyNgg+6g0JV/60W\nPnAOcHPoQ1JVz1TVN2DvD6DRQP8iRrDmAqepah1sdLMnIWERqtrPjSjnQ0QqYf8/L6vqT4VsbwU8\nQtEhFqX1PT4YlgJnqmpd4FLsHj4dsv05oAkWmvUI8LKItA9twHkCJmOj258fgT57PKWF18f94/XR\n6yN4ffT6eBRwtBloG4DjRKTIfqvqdlUdqaptMMGaBEwWkRpul17AkpB/rsnATaGjJ8D/VLWmqp6g\nqpep6sKQbfPdaFtN7IG9T4L1waCqO4G/AAmYiAx0fc84wKbisPsEFg99gwvf2OSE8wKgLhYfvlFV\nt4ccu+ZA+y2W4PoY0DlkFHUrFvcfSnXsQb5fVHWpqq51IQBfYCEK3dz5HpJgkurzRZyvultXkFuB\nKaqaE9L/QOJyllgifXYRfQ8I6jgsBv9j4HssBhsO/HMqFvede56iQ3juARar6oKQdXt/PKjqr6q6\nyr1eAozA3cOicP9XE7DciP6FbG+C5Qj83f1gKazfpfU9PmBU9Q9VXeZerwTuJySfQVUXquomVd2j\nqjMxod0r8G4E+VVggaqmHO7+FocvEuI5CLw+7h+vj14fvT4e5foIvkhIOPIFsIP8I3ZF4kbuRgJV\ngUZudW+gqVgVq9+BFGwkKiHk0P2OkjkX/91AR9lP9amSoqrfq+rFqnqcqnbGYvcX7O+4AnTFEnDB\nRjgnODEN/MWo6hO4kUQRCR25qV+wseJwI6+pwNWqGuru/wmIcA+sAGdyYG7/QlHVxzSYqHqPW/0D\n0Lq4c7nr7EaB8A0NJi7HuodqOnCKiISOMJ7pzhHIZximqo1Utb7bP0NVMw/12gqhErCtiG2XAl1D\nvsftgadE5Lli2ivye+0evmOx0bPrVXV3ge0NgA+wcKDXiut0KX2PS0JJQmQO5Bn3MHAK0OfguuPx\nlCleH/eP10evj0Xh9bF4vD4eYY4qA00tsXkIMFpEuohItHMTdxaRxwFE5BERaSNWGrUKVklpE/Cj\niJyPfcHOxR4qZ2Kxv6+zbxhHSfqzCXsAP1jUPiJSWYIJsqGvC9v3DBGp4q4rCTgBeHl//RCRimIJ\nzf8Pc5cPd5texWLV490+VcRKrca50aOvgWHuHp4PXE0J48JF5FLcCIuq5kvqdeL8FjDCXcuFWPLw\nhJDji7wv7rOtKUZb4O9YEnVRjAfuE5GTxPIK7mPf+9YVGxH9uLjrciPHi4Ch7n5dh31H3nR9qyki\njV3fWgJPYaNvhbHPA99dZ+BaqwSu27V3l1gZ7MB130P+Cmmh3IaFuZyJie/XWJ7EP117ncVi5RGR\n5tjD9e1iLv0/rr1rVXVHgT7HYSOho1Q1tZg2AvsX+z3ez2cv7n0l97ayiESGbI9w2ysCldx5Krht\nF4uF1oiInIwlqL8dcmw3EakmIhXEQktuxkb5EZHLsLCUbhpMRC8zfJEQz4Hi9bHI47w+en30+ngM\n6SP4IiFhiao+jT1gHgbWYaNg9xBMjN6DlThdD2Ri5W0TnNu+N/C2qv6gVjFonar+gYUIJIiVZFWK\nfggXti0FuEQs9rgwfgRysJCJ94Ft4ub3EAtHeC9k317Ab8AfwCXA5c4lXlRfzhdLmN0CfITFh58b\nGK1T1QysvO5DIffqHwQ/95uxxPINwKNYYnhe4ARioQ1FVSN6GIs7nynBkIoZIdvvweKq12FC+FdV\nXVqS+wLciJWLzcJG9EZq/nKw+W+E6ovAu1hIxWLg3UIelL0JEcD90APLP9gI/AsbMQuExRyHlbDd\nioUzjFXVMUV1rZB1Odh1KbCM4AigYKEPK7DPcyzwsFqVLNvBEsJ7umveUuA7nAdkaTDf41LgOxHZ\n6vr7JhZqE2jrPyLyH/e6AVbu90xgbcjnGZibpy82wj4sZFtWSFsH+j0u7rPv6LbNwEqE52J5DQHG\nuO09MLHNIVgK/CysItZWt1yE/XgJ8HcslGQTJk59NVhaeTD2w+AL2Xe+l54cYaIiqpban6f84PUx\nX1+8PuL10evjsaePUHoaGc6Ilk2FTE8YIiL/A9JVdfh+d/Z4PIcFEdH7L9nvQGyJeeKjRFT1YEou\nezweh9dHjyc8KE2NDGd93O8s7J5jFxFpg42W/ApcgU1a+lixB3k8nsNOlUqFFVnzeDxHCq+PHk/4\nUh400hto5Zu6WAx3baxC1V9V9bviD/F4PIebcI+N93jKAV4fPZ4wpTxopDfQyjGqOh2bqNPj8Xg8\nHo/D66PH4ylLvIHm8Xg8YUa4Jy97PB6Px1NWlAeNPOqqOHoODRGp7yrvHFJSpIg0FJE9UsykqGWJ\niFwgIsvFJtjsIiIfi8gdh+E874lIUZNlhu53kYgsK8XzdhWRNe6zPLO02vWEB77Mvsdz5PH6WOrn\n8froOSyUB30My4eHB0RkpYjkFChnWtwkiyVCVVe7iSfDpnznYRKHEcBzboLNaRRfHrpEiMgwEclX\nilhVryquxHHIfp+qavOQtlaKzZVzsCQD97jP8qDzIkqhHx6Px3NE8fp4yHh9LAFeHz1liQ9xDF8U\nuFpVPyzrjhwBDkgYRCRCVXftZ7f6QPrBd+mwoxQyUWdJcKO7pXV9h9KPknwOnoMgcrd/NHs8xeD1\nsQi8Pnp9LA+UB430HrSjELGZ3pNFZL2IrBCRfqHhFG7Up1PI/ntHtkJDL0TkRhH5qkDbA0Vkmnud\nICILRWSLiKwWkaHF9Km6iIwVkd9EJENEHg3pz20i8pmIPCkiG0XkFxG50m37F3ARMKqoUdCQPvcR\nkVXAbLe+j4ikuzZnSXCC0xXAKcC7LoQjspA2Cz3WbTtNRD4QkQ0islZEBovIFdhkjTe6fi50+34s\nIneISGUR2Swip4W0U8eN8h4nIheLyBq3fgImIO+6tgaJyHQR6V+gj4tFpEuBdZWBbKAiNtHmcrf+\nQRH52V3vDyLylwLH3emuN7D9rEL6keT2vdbts0lEPhKRgiOb94vIYiBbwjSE52gnclfFUvvzeMoT\nXh+9PuL18ZinPOij//KEN0WN3CQCCUBroA3QjfyjbAXDFYoagXsXOFVEmoSsuwl4zb3eCtyiqtXd\n+e4u+EAM4WUgD2iMzVgfD/QN2d4WWIaVLH4CGAugqv8EPgX6uXCE0JntC9IBaA5c6foxGOgKHOfa\nmOjabAysxkZYY1U1L7SR4o4VkRhM4N4DTgSaAHNU9X1sDpw3XD/Pcs2pnVJ3AG8CPUNO1R34WFX/\nDD2/qvYK6V+Mqj4JvALcEtLHM4GTgBkFjt2hqoEJQFqpalP3+mfgQlWNBYYDr4rICa6tG4ChQC+3\n/VpgQyH9SBaRZsDrwN/dvXkPE6jQ4aoeQGeghqruwePxeI48Xh/z4/XR66PnGMIbaOGLAG+7UZrA\nXyAOvTvwjKpmquom7MFYnBu+0G2qmgNMwz00RaQpcCrwjtv+iar+4F5/D7wBdNyncXvQdQYGqmqu\nqq4HUrAHVYBVqjrWxfaPB04UkeP318cCDHPtbwf+CoxU1R/dQ3Ak0FpETi5BO0UdWx+4GvhNVZ9R\n1TxV3aqqC0L6WFw/Xy9wzTe5dSXhXaCZiDR273thYleiEAlVnaKqa93rScByTPTBfgg8rqrfuO0r\nVHV1EU3dCExX1TmquhuL5Y8C2gdOheUuZDrR9RwGIndWLLU/j+cYxOvjvnh9LAKvj8ce5UEfvYEW\nvijQRVVrhvyNddtOxCbODFDUw6QkvE5wVOsmYKp7wCMi5zkX/joR2QzchY3wFaQBUAn4PSCWwAtA\nnZB91u69MBM+gNCp4EsSZx96zQ2AZ0POt8GtjytBO8UdWw/4pQRtFMbHQLSItBWRhsCZwNSSHOju\n+SSgl4gIJmT7Ta4OICK9xcJtAtd0OjbCB3ZNK0rY1ImEfJ/cD4Y15L+vawoe5CldKu2sWGp/Hs8x\niNfHffH6WAReH489yoM+HvtZdscmv2Ox0QHqF9i+DQitH1q3mLZmA3VcyEAPYEDItteB54ArVDVP\nRJ4h+FALZQ2wA6h9kC79kiZBh+63GnhUVScexPmKPFZEGpB/lC+UYq9NVXeLyCRM0NcB76rqtqJ2\nL2TdK9jo6TwgR1W/LO58BfqcClwKfKGq6nIAAqOZa7BQlJL04zfgjJC2BTgZyNxP3z0ejycc8Pro\n9bFgn70+eo46vActvCkqXGAS8HcRiRORmsCD5H8oLAJ6iEiEiLQBrqeIh4aq7gQmY676msAHIZur\nAZuc+LTFRhD3aUdVfwfSgKdFJEYswbqxiHQo4XX+gcXmHwgvAA+JSEvYm4R9QykcOx0LL7lXLLE5\nxl17oJ8N3UM5lND3gTCO/YVv7HPNqvoFdn+TMSEqKVXdcX8CFUTkdmyEMMAYIElEzhajiQSTvgv2\nYxKQICKXikgl4B/AduDzA+iP5xDxRUI8nv3i9bFovD4G8fp4DFIe9NEbaOFNoHpQ4O9Nt/6/wPvA\nd8DXWPJt6EPwEeyhsgkYRjCpOUBBEXkd6ARMLjDCdw8wQkSyXJv/K6ad3kAkVtp2IyZqdUP2K3jO\n0PfPAt3EKkalUDj5jlfVt4HHgTdEZAvwPXBFEcfmb6iYY1V1K3A5cA02EvsTcLE7dLJbbhCRrwvr\nm4vH34qFQsws5hpGAg+7kIv7QtaPx0boXt3fZYScMx14CvgCC5U5HfgsZPsU4F/Y55wFvIX92Nin\nH6r6E5aM/f+A9Vjy+zUljfX3lA6HO8RRrNrYYhf2syBk/d9EZKmILBGRx4/YBXs8B47XxyL67PXR\n6+OxTnnQR9HwmY/Rc5CIxXP/AkT4qkFHNyLSC7hTVUs6uuo5xhARfb/9T6XW3hWfN0NV841qi8iv\nwDmqujFk3SXAQ8BVqrpTROq4ggYez1GL18djB6+PHihdjQxnffQ5aB5PmCAi0UA/YFRZ98VTthyh\n6lIFQ5Huxqq37QTwxpnH4wkXvD56QjkCGlnm+uhDHI8dvCv0KEZsos91WNhISUsPe45RjkAOmgKz\nReRrEbnTrWsKdBCR+WITzLY5Ihfr8Rx+vD4exXh99BSkPOij96AdA6jqSiC8sx09xaI20We1/e7o\n8ZQOF6jq7yJSB/hARJZhelBTVduJyLlYQvwpZdpLj+cQ8fp49OP10XOECQt99Aaax+PxhBmHMj/L\nN1u/4JttXxS7j6ssh6quF5Gp2KStGViCPKr6lYjsEZHaqrqhmKY8Ho/H4zmiHKxGHk36GDZFQkQk\nPDri8Xg8B0HBROODRUR00am/lUZTALT+8aR8fXO5HBVVNVtEqmIlwIcDjYCTVHWoiDQDZqtqwTmk\nPGWA10ePx3O0E44aGc76GFYetHAxFo9VnnrqKW6++Wbq1i1uXk5POJOenk5aWhoDBgzY/86eI8a+\nU/+ENScAU12fI4DXVDXNzeszTkS+B/Kw0uCeMMHr4+Fl2bJlzJs3jzvuuKOsu1Is8tHF9qKemxs5\nrVNwY/wcWyZaHY1tfa8EoNItJW+/Um/YWWCWsT3ALjdtdbVLjmfrR+uotuEuW9FymfXr9/cA0FXD\n8vVPexWcxeDwkpKSwuWXX85pp512RM/rKZ6jSCPDRh/DykDzHF6qV69ORIT/yI9mYmNjadKkSVl3\nw3OYqXQYJ9BU1V+B1oWs3wn0Omwn9njCmIiICKpXr17W3QBAukyxF8mDgytbuemYMt5k6wfHEXmp\nva3U++fgcVNmQbsFSO0OaK/uVP13DjSZCFW6BtvLirXX3abacoptk2+GA6CLgUtcgzo3uN8GIDYb\n0iDmtzEIoJ/PQBe8CMDO8VX39iNvIsRUz0b/vAuZcDO0XJrvXDw6BI04PAMOzZo1IzY29rC07Qkf\nDpdGhpM++l/r5YjNmzezZ4+fBuZoJjs7m+XLl5d1NzyHmSNUZt/j8Th27txJVlbWET+vTLgZUvrn\nX1kPmN+WvGZB46tS71rIw02g5RyqsQqaZJnxFDB6smLh7RrA+ei3AyEjDt5uaNtSQ9qPdSkzAQ+c\nM560Wyt7P8IZhS2XWdvjboV2C4L7vvcM2qMv9BsDTeOQ5zfAPR/CPZl2zm5T4dc4eDAG3rkasmLJ\na7MQgO2TFhL7SA48OgTZJTDxpuB9WDGGPcOiDuFOGsuXL6d+/fqcfPLJh9yWJ3wpDxrpDbRyhPeg\nHf14D5rH4/GUPkfKg1ahV+7e1xrf117Uy2RrzxuI7GkhhnJbRwAi6WgGU/wcmN8WkoDUfgDIwklA\nEtoMqOXiDx+Ks2XyArhwTtAIm9822IEp3d3SGXaBsMgeLq7xs5CQyZHDYUJ3uHa6ve89Nniu0X3N\nYLt2NBBn/Wr1FcQ6I3cLkHYZZMUQ+WBzO0+XmXDOXHhyELrsSXaOf528iRDZEyoPHUOFYbno/dF2\nfKcc9IsDN9i8B81zrOB/rZcjNm3axO7du8u6G55DYOvWrfz0009l3Q3PYaY8jA56POFEXl4e2dnZ\npd7uPjljSxbb+RZFw6sQefEsmN+Wamkb4ZIqsAZIWoQ0ao1+t8I8WfGzYVxvGDDK2km7DDaCDs1B\nhkej/+0KK5sj01aiL7kTf9YJeWEeALpuRrBDjw2xZdJI15+ethzmDLfEUTDEtsmNwPRJaKKbk7fb\nVPg20Qy+PuOh5+vwZXv4tKMZhLFZ5sn7KAHG32F9DRhsWTFQE/imAzKkPRI/G26LNcPw2gVQZ6B5\nDatC5NmfQyTI+blIh2DX9zy+f4Pt559/pl69evvdz3N0Ux400hto5QjvQTv6iYmJoWnTpmXdDY/H\n4zmmqFSpUql50KTpkqBnqhvQcil5ddcBUPl/iu64k8iUz6HPK8BUSG9h+WEZ5gGTHcPRB2qb8VIv\n08IM+4w348d5urTlDOSuBHTGdvN6ZcTBEpBzQds5wyxlYLBT6S1s+aqFFcrjjWyfqc4jNu5WW9//\nSljZPf8FrW0A7XPMY9ZyIIx4yLxr8bPtdVaMhVF2mWkGZa9UZPI2tE8jC9/MioUnnoG3LoD0FmgG\n0C4b0i5DLqqDRmVZO0DkgyMgqRkMmIhWuIOdT0DkdmDYCGRwsJ8A+se+RfSaNm3qPWieYwL/a70c\n4XPQjn68B618cDiLhHg8nn3Jy8s7pBw0ueR9e+GMrK0XDSCyJ0TWGwTz2xJ5i4X5yWcC94yG5L8E\nwwzbLQi+/igB7ZdsHq56mTA9EV7ujCyeif6Uau2vVOAktHY03D4WzrYcL83oDr0mQcDRFGgTYEob\nWw6IsX37JFi/L5pp7z81Q037VoQFudBQINv25dJZUGVusMBIICctpb95yN5LgHGZcInz1A0YhbZM\nhCltzVC9bybMbmXX9GMCfNLQjm23AJ2yCD6/A4aNMM/gkJHQPgkyeyILusJtXaHdTJjVkLy668ib\nOIRq965i+7oGSE7w8jTaio78/PPPnHjiiTRo0OCgPkfP0UF50EhvoJUjvAft6Md70MoH5SF8w+MJ\nJw7GgyYJufneb73rSqrOBKmWQrWJk2FtP8hyhTwy4iC9OboEOKMyMBNqrYeNdZBXFP3fe5bHdfwN\nluvVchl8Nhz+OhTmt0XnzwDiXGhhIsyoDTOutrDDQObCtdNhSzQ870rgj7vVwiJT+kOt42xd+ue2\ndIVJNGORvU92OWgDRtmUvLFvQ8xGW9e6CjzW2cIf2y1Abu1sx25LtGvr4bxw9TLtb35baLXIlhlx\nsGy7ef5is6DqIjsmOQmSkqFuazPO6mXa9ac3hxXueq5fBi172/FZsUSe/TacMBjiZ1O5AmyvClU+\n7Ag9xiOsNk9fE/i1+q8H9Dl6jj7Kg0b6X+vlCJ+DZkhgTsJLZ9nSzeMCoKPvLYMelZxt27bx448/\nlnU3PB4mUB54AAAgAElEQVSP55hix44dJcpBS/5WGNR5FQBbnzUvTWRPC82r9sj3ZpAcXwVOmWtG\nyZCRlj9WrTG0G4WcoejERhCRDm88BvUyUYD5o6HnSkiLRrreiM4ZAw1TzWABGPKYlbm/azHkApdu\nQJqAxqYGwxfjZ5vxEygKEptl547NMqMtpT+sbGzbWi414y7WXXPtT2y5wQqUsLGOLRNTg0aXqwap\n49zNyHB5cfFzzDs2IRF+zYFuX9t6MG/bgFF2X9Iuc8fFWbGScbda0ZHFSTBlhRmfbl436QLaZ7Cd\nOyPO7uXy1vCQefzknjlwUnNkQRJ7roxm53iIBFgBjWIaQW3QGD93oOfoxRto5YgaNWqUqgdNRt4f\nnCMF0KbhXf5dfnGGmct35n82iSeT7womTI8+4t06IKpVq0azZs3Kuhuew0ylcjA66PGEE5UqVSoy\ndylvs2nHc7+49+vMMKs8Jwf9FGiyAhY3hmZArPNIBSovxs90HqYFln/FMJdL9hN8/SJ83NEMqNw6\n8DUQtwplA3JtIgA6ZTtySxV0/gIzVibnIA9Go/e3Qs9ZDCTCcufJS3LG3IBRNvDYezF8HA2fdzRD\nrd2CvSGYTOlqf+tq2ftAWOQ3zlDLjYaNIG/noE+usOMCeXXpze19xh5YnI302oD26m7tJzdHrkxC\nE9taP7JiLUcNrE8tl8KwSZCVavt/MByuHwhJyyBxFHJzY+gJmgR8NRMW1jYjsuUyy7UL9Lvn6/Br\nEzR9AXI/sHoW/CWbGe/cQINn4fRWIOd8sfcz1G/OP7AvhCesKQ8a6Q20csSmTZsOOQdNpl0THK0L\n5cI58MchNX34+cEtT3PLwP932mVB4aHbke3TAeI9aOWDyHIQX+/xhBN5eXls3bo137qd2bL3dYVY\nSHrWXstKkG+2ol8lw7suNDBxFHL3RejjWPGPgCfrdMzzNKWrGVjpzSH6SxhyqxXsSOlvnq9pnSF+\nJnKbea50lcvnujQBbT3QDJT05vDGP9F+j8O2r61kfbep0MPlmnUzI3Cvt+rsVLjSRYr0GQ9vjIFs\nV8Y+zryAjHfhkLe/CHMI6uMWoCLov4DWy+z8gUqUgRy0IXFAV/TXRWaIpTcPeuSGjNw7p5rcUgXO\nBd0wFBJHQ8u5Vg2yW2eIHYhsfQZNXIE83Qjd3BdZMca8hEuiYaezHJMHmxctebAZeddPtvvWbgG0\nyIHHzUBM+DAFLhgAD6aQ9217Iq+dDGmdkKhNyANVSmWuNU/ZUx400hto5Yjq1atTseKBf6mlyxR7\n0ecVW74yHP7ZFx4eE4xjL6SaUrih1xQR7jDtyPbjUPAeNI/H4yl9Ah40idoEE82rlNUKKiyATgJf\nRgD3AONT4M9X0IEV4K2pFn0xv60ZC59JMLQvNhvec4ZTw2VwWh24vS+y6Bm03QWQdit8m4j0BmiN\npmE5WY2SzHvUJsE8assbWijg/LbmicqKRU60n26a3gJGtIDF54ZciYtqSbwMdiVA/FB7P7+thUze\nPhahJ9ot1dbf9aIt702x5RjnYZt0gy1/A769BOJ/grdvgGbfQ8XG8LeBSJ3h1o/l2MTVo21eN52f\nCvO7mjGVdhn6cXM4ZXww4mZ+W+tXj/Gwsrl524bMQe8bDBXHoKfOgPmPQVQOpLey/VP6W/hjmqtY\nOeQxu/fdpsKJroDJ/LaQ8C08+m94vzeRFzeHIYPRGjewczxUJsfmWnugtvUzKqTKiMcTZngDrRxx\nMB40+VKg3SDk9+Ho5TfAS3fB3wZCnzHoziigPrJBkA1An8l7j9Np4e2JOlrJyclh2bJl+9/Rc1RT\nHhKgPZ5w4rS/b4G5ay2yojrkXQqRXwFNsOSmT++Cx261cMTE0XD/QDMwlp4BTw6C2CyUBfDSGPjU\nNfrKDRY6+GsDWHoWTOmKDssFZsM4Abajf2ZaflrfTAuB7AecRDCUcX5bmDQceWI3GnE1ADrOhQxu\n7Glzi9VbCQ1dZY12C0LmH5uYf7LqPq/AsEmW89be9fFy52H7xU04tm67LWdd7Y67AFYC7W6Ffw+C\nISORei+gXZ5Bd263AiLO6yZLxqBvrTCjqdtUM5oWJcD/9bV+JY4ywzWtk/VnYx3kuQ3okFbIR4vR\nPkPhheG2PTYL0jrbfu0WmAE8crgZq591sramXgmPj7BztVxq1/pJdTj7S4ipAwNGIVmfUKFuBHpP\nKjxQm7zoXCIfBnZG7a28qR9dccjfH8+RpTxoZIWy7oDnyHEgOWjyrphxBtDwSfT+aDPOWi5D+73g\njDOQDW6fXGzkMDYrOILoKXWqVq3KqaeeWtbd8Bxu9uwovT+Px1MkFcbnUqFbLlSIZPKARPK214L2\nELkHOPl4uOtzeHKsGQmp/czAeKM3xL8Is8+AcUCvJ+HqFy0M8JHOSA/M81MR08ZczFiJnwNvP2R/\nfcbDriq2vr4LZ/w80UIifwPa/Y6+s96Mwd/Wo7dsDOZffdUTye1pBkycFdSgz3j7y+wJXyZZf9st\nME2OzTLvW0p/OH2i/QUqLk5pY38ro+0vtb/9PTDJ/iBY8h8gKwZNS4ETVphxhutvlblQi2Ap/qwY\nC3Gc3coMrgsWW//mt4WYKrZ9Snd0yUTIiEMnzrV1z3VHXou0dh6auTdMEoAuE21i7PTmZpTtON5C\nOee3hc7zLLyzei14+BlbnxGHXhyLLpsBowZA8w1Erj0eZlxNXnQu2/paHrqMvB/ZsOFwfcU8h4Ny\noI/eg1aO2LhxY7EeNDneJRqPdTHqy4Fs4BrQegr9QvY9YbWNaDHWHqT1MpH6iehL0cg/c+CSg+uj\njLz/qAqbPNJ4D5rH4/EcOjLyfiTOQvRy34xmEdBuzivQ5Gw4szF0TbYf+W/0tgNGDIZpPaFfMiz/\n2UrbZwCnYB62M1ZBmzoQMQNlhhlSsVnWxhcJ8FM08mIOetkFwcmWa2KGT7IzQt5znbsy2ZYun0vS\nXShhoNjGP/uiIwabF6nPUPOyjRhs7bzYynLCb3e5YBe+bMv5z7tl2/w3Ysirtqw3yL23c+GKPZIR\nZ4OuLu9M/rUSPbcv8lxDYDf6xDw4qQNMaYPWBSJi4OMkK5XfnKAHrF6mpUW0ASJmIM0T0KSR1ucb\nZyK3A3U7oPOT0bTFkNEWPmtl50+eCWkuv27iTVbwJH6O3cev29u0BCuj4c2boMIHcPuz8M5QJHIi\n2uZ7iGxt17KsthmLWbFEnv05LJmN1r+SnPpQlQeQ3GjIWYPWrr3/L5DHc5gR1fAoQyoiGi59OVZ5\n7rnn6Nu3L9HR0fnWy+BH7cXYJOSFPVbed/AAmDAIWi5Fu7ybf/8TVtuL9/4CzRZaVcStQFQTWz+l\na7A0MKAT+hTaH/njhKBQBXDGGbFZyMWmEHv+G4VEbUJzayLnfIE0soetXjLQ9g1UpQoU+mi5NHju\nE4KVSyTDefvquhUbg6fV44+O79769euZO3cu119/fVl3xROCiKCqsv89S9SW5pVixZ1ITii1vnnK\nBq+PpYfkRu/VmbyHnqRSb5CTRsC6P2BPJ2jzPox5Bpa4/W8D/esF9qbzPLhiIoy8w95PGGSGx7je\n8Oq5UEUh+XlbFyikkREHZ0w3nazVxMIiF7eGcX0tHHLNCtu/m5sv7bMOcOFcOzZ5sDP0sq29rBhk\n9xvo3RtMf0c8ZHlmAD9ZiKP0Nd3UWa6NzS50MTNwA1wZY5cPJhUT890fnbcoeF6wXK9WXyH31UEf\ndjtFbIfFbe26AwbfLx0snLMmVpBrWmeEd9EbI2ATFip54RzoMx654E506C/IxY3RbxdB9dbQItU8\niDVcv9stsM+p5TLzrMVm26BwoFhJSn9b9nkFrnrbvJvXTofL/wG1bkN6NELnjEGuvgNtcpYrnNIJ\nRidZQRZn0MrIeWjURLTCHWzrDNUu/5OtHxxHtW6gEf5/rrQIV40MZ330HrRyxKZNmwgV+b3hiUnA\nYpv7ROfEwtJE6NW86LjsXxug0Yp8A/x0FjRcCNWBvJ+hGnDvk1ZV6RRXYYo+5hmDYJJwbJYtBz1p\ny8B8n4E5UJqYqOir25FXt0PLZcg5BfoREJA3epuhd+NMGDg02PaIhxCmBEMua7jjIt1ySxMzJLNi\nEW628/V6regbGAZ4D1r5YBdZZd0Fj+eYQr45e++cl3sNswdH2MZuU6HDc3DhGOSj/6CTWtnkx5e1\nRofVNiMkrRPckApPDoCGOXD+DDsupb8tb3EnmjHElluBNWfB+dMt1LEusPtn+Lg9nG7FKaQDQGP0\nk0zTs186wFUzzPAYNQDWHQ+PuvacRuq1n0FLkBfmwfGg62bA6oTgHGUZcci0McELn9XQ9PEZ5xkL\neATH2VKTG9r739bZMmCEuYqT8sZKeAh0bbL9VggMogYMx/ltrdx+6lDk9KHomJlQK8Em5R63BDa1\nNqMtcbRVdhw5HO1zAaych/4GcnZr9OMVoM1h6wp4eqTpcnoLaFDFDKs2dcwAzYgLzsf2RQI81dfW\nvdHbpjOY0h12Z8DcjWjjqTBgPNpoAGw4HuphoZ8TuttnGT/HCpikASMXUKHONnT9feh9x7HN5uEm\n5zWh6qyxRQ4ye8qO8qCR3oNWjnj22WdJTEwkKioK+ehiW1nxE1gMXAXUwcrqRpf8c5AcZ+RtBdYC\nTaNgXS780tFGwAJGVMDLdZMzyJZBi3WwtJ1r6He3rIcJUX3g7O9tJC9xtC0vez3/yZd1zP/+FDd/\nyxb33p2SPLf82i0z3DLgvGvhKjkdZ/PXhPN8KX/++Scff/wx3br5IizhRGmPDuZQenMKRtM0bEcI\nPSXD6+PBI4Mf3TswmNdmoRlm1VzFwkAxjdhsuPde2P4bvOjKsp/eEz0/2nStjWtsC7D6ajP0Rgw2\nXQuUlc+Is+IVDZdZBMjwU9CeVS387qk7YOwgGyzMzoUfnHbFZlmKQKAa4ZSu8FZ780BVDNHIKOAX\nitZHgEUN8l/4weojmEYG9LHnZFiUgDyzxzx3NevAqTOs7+ktzLs1+WS4YQ3SuTH6X1dkpEEVC5Oc\nFm0VIkfcAp/dZsZiuwXIN8PRnTOCvxMy4pBr66BfA/f1NQOyz3gL4wzkv+U1hue62+uU/vDBlfBr\nE7hqqhl/GXHwRGs4KQK+u9FK8XebGvyMM+KCnrToDlbVcsAoO1e9THjvGevvpx3Rlz8hJx6qzhpr\n50vt76s+HgLhqpHhrI/eQCtHDB06lAceeIDo6GhEBXIPzBgrDvlF0FMUGee+5y7akcC0MrfbnCsv\nzjERuWsnnPcTpG+E7DuxqleLoUUtWFoZ2IzlscVhAgnwPsRFwpDzoE9jqPQ2NjIZBUSamAEkX2TL\nBBeuz8+2mFjTlukuF3j+WvjgL8Bq4LZZNiqXOCqsKzqtWbOGl19+mUceeaSsu+IJobTFJ5tvSqMp\nAGI4J2wFyFMyvD4eONLv2b3RFNtOH0KlWyBy/E22MVAWP70FpPS38L3za8L1Y6HtdTDdpQHkAa9h\ng5fX5UBiKsxJNCNp+3oLq3t2EsRNtOIcX2yHnFoWzvj+TSBuUDFQMXF3E1j4M+cpfHkie+ca43gg\nYRWsbsCLy+GuX+E8Zwt8eT2mgW+6Nk50y7PcMlDMzgoS8uJFpaOP9WJgynL44Gy3X54T9QtdKoHW\ngZNdOGRKfzO03hkOoy6w93N7wlvu9fg7bM63rBjLyXsvwUI8M+LMMGq51Nan9LfX7RbA60nBAiP1\nMpE/JqE7BwY9eItd6f1BT5ohBvBjAvRuCD92gWqnweRE87IFwk17jLeQyHtetP7UyzRDe35bqFQF\notbDyubBdmvloF2jzVC7Lmrvd0cv+RjPgRGuGhnO+ugNtHJESkoKd999N5UrVy71tmWZ+37PtsUM\nV6E3Yyvc9akZVpmnYMK2FWI2QLu68MFqmNEFWtaCk/bAziyothQLQ8zDhOsHYDOcZ/N38oYLP6ju\nUuGquYHD7S60vmo9W1Z0A5uBCarj3IDLypugUgZWcSo6ykboKDpXLpzYsGEDH374ITfccENZd8UT\nQmmLzyY+Ko2mAKjJJWErQJ6S4fXxwJB+NqP0tvYD8htmSSMtdytpZDD0fX5bK2rR5q9w1Xj40+3b\n4HWIxrQoG5juwiE/ToJf1lsJ9wrDLS8rYrvNedZlJtIF1KVRcTpw4VAzXFKiYQcWsVIRZnSGetXg\nzMDsNIG0badjl1cK6iPAZS5Ev/KXBPUxZP/zKtmyNPQRoFLAWTTAeZC+6mmFPyK2w1eCrHEZMrsE\nrZZgIYYnATclm+HbboGFVWZvt9fvdTVjKCvWjLCWy8wQmt82X944mzsgbYAo0GnYb4ZawLkTkdye\naJe+5hUb19vOMyHR5l97eozlld90DVyyHC5fbcdGAc/fZV661P7QcrGFXJ421zx0gXzBQHsrEyGx\nOyRMh9vHBr2vf5lOZESOVc4ESBoZ1tE24Ua4amQ466PPQStHbNy4kcMl8trctdscZJ2QALR4H5Zu\ngR23QEQ0VPwBe2BeBNmzb+KDyq9DPUhyc8Z81NA15gootVgKrLM2AAa4EcOo74DdsGc7VNgJWRlQ\naRvsdrll961xxzuBinfFIJ/Ng/NqQaX3sZCVrRx1UwLk5uaydOnS/e/o8Xg85QzJdZ6vrFHkvXoH\nlfNy0BjgH8C8VubtafgBTAG6uXLySSOh3lz4/GyYfxx88bRVCqyHGUJRf1qbedfbj/gfgF5TzZOS\nvgIaAisb782B0gtfhsuioX2qGQU5neDthpDVBBr9DAuhRfWg7u3o6fTRDW5yETD7Jj6o9jo0hYRv\nLAr/jc5wwlLIagqxGyHmKzPw9upjvC2jvnPtbHa3woX0V9hpy+L0EZw+gmnkboLFtwDOde8XgqY3\nD4Ye0twMl5hpcFF/Cyf8MQG2Y/vEz4FFa2FqJVgSDY+MsH36vGJetG5T3Txt42HKMnRcbyvhXwur\naJkRBy/dgd6ODaiGGniDh9qy/gykRwL6dEd4sR98eX/QAPysUzB/LS8avj3LjLF6mbau1ZvQ7nLr\nU1YMpE4CugfDTjPiiHwbSFxP3qWfEHmLGa1yzhfeSPMcNryBVo6oUaMGFSocvqnv5H03CHEWsBWW\n1gOuh8ppQFMsbv5UQKKg++uQBkTCkmtsdE93Q1RdeOQbGJcOQy6ycItH3fybl7iiPVGuCuOOX2GP\ncwbuiIGKToCe/TFwwUAULK0afD/kPBsYow0W/jG/LdKuMToXpIFlYeuqqNK/OaVEdHQ0zZs33/+O\nnqOa3eUgAdrjKS1kghV5ohtseyuXqvUyqfzvHKtkeEk20iDBStE/PQb+BZw7EeKXmcEVKFx16sXw\ndRrErTIv21U5UHURcle0eXKuam4/1he3ClYQBPO+pHWyAh/z20LGP5HGz6Dxs0O2X2bLWjnwczRL\nwYyfZVA5Eiuv3xQrJBKF9akCppEbYMltTiMbOI38A8a5cP+ARqatgpFuWrKourAjUHgrcI+c9OfT\nR/LrI3XZ61ELaKSkWcERTbccbcntiUa5kM4vQf6q6M0C8cDX6+H7GLihjlXBvGqGGTzz28I7lZBz\nQX/ehGyrjGYMRX4Zg64BpmQF72NaJ7v+aT3hnLlWdfGSGRCz0YyyQK5Zt0lmFN440/qb3hz9Anhw\nCiz7ExmzGB0VDdujrOBL+wQ0vqFNtp0RZ9UdU2bZuepGQ623nTE5G8ZHQ/RGM+jj51ifUvpDaj8i\nh+VAy6HkvXoHkeNvQia4CJwwLzB2rFEeNNIbaOWIjRs37n+nQ+C8zfDleohzI3aZ/TfaA++nM2zF\n927HH0w5YtwI34ZFwTZy1sLD6VZIasd3kAA8ZHNJstP9P+auhYiqZpBVaQ0SARUrw2YXkryzly0b\nvg5kQ6YbGWyxy3LenmwP6UtN3EY8b317Kd7FdTwcUv0qDNm+fTvp6ell3Q3PYaY8VKjyeEoDidoE\nqVjlv3G9qVov01UAxIpRZCShVZPtB/bTnW2///cMfIVNsDzN/ch/OxrWNzKvTtJIeNwVo5gzCWpN\nhHG3ImkVYfBidAXm2UnrbcbC8tbQK9X2f/UZFOBON8nz3gIXP3Pef6Np+R2krYbM3cC9G23S5j+i\nrQx+JlYMJDeokdnk18itq+Dhn2DITsj9DuKj82tkzmoz5iJOADKg2gWwewdku2kD8ukjkGnp4bTY\nZfv3cfly3dx80yN6R/PSJiD+Jnh4DNpyouWXbQJGDkT/0xUaxkFOJmzsAJOHwpLhMGKoGV1dZsLg\noUhcApoEDDkX/e8CGBCDXt0dYRJ673nwN2xKgNhFZojFu0IhE7pbYZE3egdz1tJbQMpAe78d+OgC\nuGSehVN+Hgc3vIkuOs5CG7NibXLtSYvgXytheUOr3nhbV8jq5KZJ6BsMs7zqbZiVBO3mWn7i043Q\n1DpQKxMunw50t3nULp6Fzr7S8tNO6ri38JrPTzsylAeN9Dlo5YinnnqKe++9l4iI0rfLpdc4cpJt\nbpjlLmn5zFnYKFwkNlpYDUiD86pAt6ZwZxTsbgTRWyHrJ6jkBKGmm3btj/OhUk0Q117AQKvovGYV\nfnPrXVRLxRpQtQFE1LL3PdzA2pub7PwzOlreW5UN8Lzzxg2KO95eJI7em0isg58onZtyGNi0aRNp\naWnceOONZd0VTwilHV+/lgml0RQAdekVtjH2npLh9XFfZMLNe/OHeS9kUmhXmVEiJ6J/XwnfngEX\nf277xc+253yg+uI/xsDSHOjzEfx2Epz4KlL9KTQ21XKb+tmE0VI3Cf1whs0JNu5Wm4rm6TzY1MXy\nqsAMgQGjgh6jQB4WQLMBcDzkXApV6sD3bqz0zD+xglq/YoVIpgX18e+nwFbnEdv1rXnFdrm8sIPR\nyNgz7XVR+rijC8zeDBe7XLZ9NDIwZ+nI4RaGedVAmy9umava+FknuG6evc4FuQd0faoZWUuB65dB\nWjNo97sZYBlxNoH0D0CXieapenhMMFkuK8YZarOtPH6Mm34gKwZeugM+7WhttFzqSvg/ZsvNi+GK\n72DgB3un7WHAqGBF6fQWdpybV475be2v21R48Q4YlGLfpYw4m4InIQE95wLrS5VcuHSWeUsXNLR5\n6IY8Rl7ddUR+2BHus5uqC8M3CqesCFeNDGd99B60csSGDRsOWw4aQHTKCFq0HEKf02BQOnAdFkaY\nCawCdkPedfDSKui10HKNd9WCynXg65PgypNgWwZsaQHVh8EJayGrA9AqcAG2UBeqsasyRJwEUW7g\nq0JT2J0DW5bYeQPVquJdrH2bFVB7mmsr4i5bpl2GtE+A9rDngfAvXe89aOWD8hC+4fEcLIGQxrzt\ntaxs/n055tEanWQ5Semd0I0VoVpjZOY2tOUbbt6uLKT9fegIJyZXTIS6PSFpKVT8DHJ3oN26B4tG\n9BkPU7qij62Hlq4CYXpzmL8dhs6BtKlm6J1WB2mJhVFOSLSQvEB+E0CW5Syds8sGMZcKVhTkDGzw\ncpX95V1nu+96G3b/AFHxZtDNPMnWX+QGI/mfLaKaYbpYiEZKg/wamfWTFQjZstTOWVAfN39j46lV\nnaetoEbq/BnwYLzNfwrw0TNoTZAXq6D/A4bMQzq4UMjlreEUrIBJTBW4fhGsaQ3JycigJPQRNxrb\nbgbcMts8muktrIR+Sn8z1kYMtna2tbZy/bFZVpUR4N5sex+4x8tb2+cbPxvaDoDjYiH2eGsTzHCb\n39YqT37f0L5D/VZaqGbLZRbK2GO8/V4JFA2JzYKU/uinE5Ean8Ergp46ED680sIfr1xpHtmsWCJH\ndYWsTLY+EE21x3OQc76wz8Hnpx02yoNGeg9aOSI5OZmBAwdSsWLF/e9cAPno4gNy3csysZyzr4Gq\nZ0HsQgBy5tv27MY2yrd7M1RrDtnLQXZDpRNse003OJLXDCIXA1Vgo4tC1F22jG1my41OMGq2hi0/\nQe3W9n61G9i7yhllS/cAbkANF9Yh7+Sw5/GjZ7Rr8+bNzJo1ix49epR1VzwhlPbo4CpGlkZTADRg\ncNiOEHpKhtdHQ5pb6F/ej2apRI6/yX7Qf9YJKuUiPXKsguINqUj9RPTzGbArAXLmmhdl2CSoPwPW\nJcDFycHQuVZvwsKF8I+vIGmJ/dgfMMrC89pg5fPj55jHZdaVFhWyFmiXY56iJRPNmHP5UHIP6I5k\nC6/s1h1ZNgldnQqpiWZsdEqFvw2Au2fB8Cvhio2wuBYsh5wNkBcDO46HyussvzpAcfoIJdPICGfk\nFaqPkF8j14O8aW47fQMLK2y5zO7DuFttsmiwa/pzheWHgX0ma1rbZN6BYiLxc8zozYq10NNKCeiv\ni8wAywVOmWuG0t5iIV3tPLHZSI1UyBZ0951mhLm51IjNChrB3aZCvZVwyTCoHANTH7FiJMlJUGs9\nclsdtP7AoAFWbyVsjYa+Y61vsVnI9Ek2afZPZ0D/FJieCK1nBOdR+zwRxlxg5x/X20r99xhv/QYX\nLtk7WMCkXiY6LfwHfo8E4aqR4ayP3kArRwwePJj/+7//K7GBJqP/ag8ax6HEVkuqQAzkXW0RDIEQ\njEBYY0RV2PS9lQTe8QHE/A1oDVwBucfBrkCoRwsrJrJrG9Ryk1ynuRHAdBc2MuhXYB1Woh8s+Ros\nAdpVeuQ6Ex05111bBRfKctY/7H3HRnD8Oqi7yibmBHRZ8YZcoLQzU7qif9Qv4Z05MNauXcvzzz/P\niBEjDkv7noMjXMUHwluAPCXD66MNEpI0km33tSc6DSqcnWNhh4HJngeMMmPgvWesWEX8bIifg8x1\nRS7+HQ2pg2DIcDM00i4LzoU2PRF2T4aBw+CFdyxkssf4YP5YICTuJgtVJMlNgJzhZnsOzM21sQ7U\nWm/Lq2bA6gRkxB7086ftPKsTzNMXmw2fDbcS/IHcpz+m76OR2cuh1jkWuhh1YlAjIwN1oh6wRbYr\nnb/LOYx2Zpmmxp4B7IC0P6yISL0YGPQlQW2E/PoIwZSEG4IaqRWSLS8rULTxf52tamWt9db/3zvA\niSm/gNkAACAASURBVHMth+z5nfDqS3Z/Wi61MMDJiTZnWrsFdk8nDYe+A2FKV6RtB3QaSA/Q11Y4\nQyszWFzFebL4ozGcsMJ+k9TLtL8pXW3/IcOR20Cv7g4v/wXW/2ZhmK8nWdn/xUkwrqH1ZX5bC4cM\nVHXc2BNGXGDhma1n2PUF+pDS36ZTmDoT3TTR1mXEBY1UFwbJgFFw0SewZDN8f499D+PnBL8XUO4N\ntXDVyHDWR2+glSOefPJJ/vGPf+y3kqOc84UlSkMwhr5eJnrCHwd13r2ljyfkkutCOHK+dBudsIxw\nBUOGuhL7ea6ycW1nH2adb4nOAcOuypJg2eCowMSdrZ3qBEbU2k63ZcAejSRooAUqXK10tfsD8elZ\nzmIMCMAtr1uNY4CqLlM7zQ1L1nXXle7iSwIP4yld4ZsGUB34uqO9d3061JCHLVu2UGNGDeiJTbQJ\nJhQO7ffCIbXvOThKW3x+YXBpNAXAKYwMWwHylIzyrI8y8v69OpR36SfmNRvXG6I7QFJn83LlYpNI\nx8+2Z227BcgcK9KhJw61H9y9F8MtzgP00EwrEPLWBfbMrzkNUh6AaR2RSdeg96xEBjVG+wFJzjj5\nbX1wWpZuU62QSGo/+5HecCGyIBsdVRF5cCfaZ7XpR2p/m9g5ebAZI5USzBh5RdFTL7Q2tncA4LwB\n0Xy5BXKvszyxLJcjRj2oFAOPuPL4Q2ubkbbxG6Ai1P7B9DGUKi5MsVCNrLEOZl1duD6GLnMJ6uOI\nh8zYis226w0YrA8+uXcQU+4GXZts9/+HDmZwrQDWLrL71meMfUZTukJ6Vah+nBmCk0zHJG2MhUe2\nW2CfozOO6DHezjtgFCQ+AKmPmwGUFRus+Bg/x9YBXDgEKtSH81fDJ1fDvyfZ5NlZsZYjVmOuGZQL\na8OlG+DsVKTjnegg94jsMDFYbr/PeOvHmzfAk4OQ34dbmOPwZ2Dg0KAB6gYDSG9u/e8xHlL7k3fp\nJxaCu8RyIMtzyGO4amQ466PPQStH/Pnnn/vdJxA7TdyLcApoK/tRIMfnIuSi60oWDigj7w+OLiYD\nU7qy9crXiYyFTR9C7TRYdy3ELIask2G4M9AiGtkyMtYSn7PdZJo7N9myejNLnN5REX6o5cIztrtZ\nsafE7T1/QUNlZ7YQORluP9k8boH4+5SfF/LldqDfQhsdvDDHwjXOnWgP2v4p0CkVHX0vkP/huvFr\noXYbZ7xt+RkGD7ASyVkxlvjcHrsHowZAm8/z319K9rCWVe65Ebi0icDPQDvMeNzuPo9xvaFeJjLt\n/7N35vFRllf7/94J2RcgIRFMZBFQCLK5AAqCikQ2pRREYytWoKEqatCgRV+j4KvUEiXUoCUiKlZA\nFhEFQZYiq0jFhDUoAVETRCABJmQmGZI8vz+uezLQ2kr78nvfIDmfTz7PZOaZZ5/7us8517nOrdr2\noA9/ctt1VnvtQlCoqrM6+ykz034HRMuhil9KcNQymAsU7lOj5sQi1XvNuR3zsBtnpnUcdrfFuWaU\nNpI1RhPnVpaGmD4JcwU4B4HUaZjunSAGnIND4I4XcbKDoLA3zrYcqDcc7nkQVuRBcr4m5Ctu1gT8\nqeukZOhqC9124FwiT8e5KQhoienXEl7ejjMiU/uPduEwBw78QiqPt03T8W2IhS88rL5E/5Z9rmVV\nKEQdBFeE8G/CcQguheoWUJIHkZdajDwO5lvRIhtaen+ZdbqarYfS1kCZxcj2clpNloPT1GLLSRto\ntCrxZ2BkVC4pnwLTbteHLSze3TlHma1PeslByknF+SoH5qcLq0ZmcvTODGKbISespBV8HQ4/dPbT\nAQ8hvET30dmdZx2vKL+Ii4+CammRpLWB5CL/enOHy0EaMUufb+4C3wNNvhUGFybAsnA5nQOWq9H2\noCJ91n+R/p+VjdPBtlvw9T1bkgoDc5Ql7JCn1guJRTiFRzDPTsG5PccfxM15APPWRpykbG0zc7wc\n85nDCY6fBV2e52S/6whOAVMBTsiFGWg513YhYGSdg3YBWUxMDMb860CB32mwjtn7BlLtoHzLHGDE\nT+7HTHpML+anwhfhkPo6RJdSnjSbqgo1lS7vDKHWKQsuhbBiOBUhtaqKeIixgbtPrEL/tSe1POWC\nEBfcY4uqS9v0AkprlLScNbf8+HlVwanfgHsf0Fwc/XoR0KeVPm/k6/2yOBy6oujhlfa826370W3G\ndHRwTgHsVQ+44ygjeONIaAKcAOJnw3xEqfDVNfRY/aPb+9Hjbmbvw0YD3l4Qv5Zr9sHf1qP6vsMe\n6A9cPR1+v1zR4WgXZvOzOJOeOuv91Fmd1Vmd1SaTcwbeJyYT/Os2NbQy07InzqFSOEqN40N+Z5z1\nQJMoYUFaNmbfDJx9c2B3G8zNnXBGdQD3d5D0JA5jMb/MxFm3Cse1BbMvFb4MhqYN/BP9A6mQlgl/\n2wN7Z/jpjkPTYDyw5i4oy1cW50RLjffmCGQ9DxOm4Dzthoy/yEnwqUvOHQ7NU6AhUD9K3yv2wJ9f\nJ/KNkRzdBtHdwbMCgpD6YnApRBwWPlYHSUjLBEpcC87ESJ+K429tjbXwET8zpBxY3A/n2WXqIQY1\ntMVTv9HydIwEOHoFNFqPmkZvCZcD5BMludItfOy/VM5rDJhB4Dx4P7Els+DVwTB4MgQXyCmKzVWQ\nEVTbtx+4YrbolRnPw+PzIKIU1gyQsiOobnAf0DpP1zJjkoKTXhSszCyF69ZCHpBSAI8gp/AYUH+6\nzi8OZSqvR/dh7NMwczgm0zbcHmrFXnyUSZ/gSPIqZTkznofR0+He13GGDIJT+XpGfHVmQ0eJwpqW\nrednwWAYMQsTmoLjiiaycCJeMvRcVxjMODfVfzp/at/r7P/G6iiOF4g5jsPjjz/OH/949hLy5n3r\nzBlF3842K2OmGrgFf8PLrlpss3VkzTZo6Q2H+t9BdaB6mh27FEwUlLWBFrOgbX3b7Bpgr136/m+H\nVb/q5Zc59tExp6Vr6aMxTgnnZCO7zwgILoMqKyVc3kDy/I22AV2OwYfPa4C+arvO2XX2g6jZeiXk\n54IXnmoLzx5E9JFCoF0vaLMWtgz0RwMBp/Xef769XKNrWB81/64PZMPFW+DgA0CJrkHbSsi/EYgD\nk+HGeaR5Dd2yzkn737FzTd/I5+5zsSkA2vJ2raVw1NnZ2YWEj2bQAr1IXoV3zHSCDxVD6l+Vmbh1\nOxw7Igr+6+lwu6U1LhgMc1MkDQxaN22K+luNmIF5txqWBciJ89i/F0dpoj8mSwyEWzLgVAUmbCrO\noFGamEe7/I2sXdFa79pQNTI+iZyEXUD4QDmQ/e1E/zulskyWg/OyEbVy4hMwdzhm5jKcSfb7u+De\naHijLfAJbOsLLi+036Kg5YlLIPIHCWi5bIbNfc1p+BiOHKcq5OyAMLKdfb3fOmg+jPSxWnzOJkCK\nmqidjD7zPlQF/R0+AvwwTtva3kUYOW0UZt0MnMNLRd/ctg8CWwqbfDVnu9vomswdDms8RH0DQ1vB\nGwX2uPsDr02EZzIwC8twhkTAt62g+3Zl4w4egQNtdD+6bdGft0BRXidXWbjDiLEyH9gCPZvAur6Q\n8AUU+eYB16C69r7LlXFLzZbCpDnib1D9WboCn9NG1Vw3M6YlzlwwCeDMDVezcZAwi9GzaMrScXoP\ng3azYP4knfOskfBFZ8yfN+J0Ggv3T8f5DZjtboxl8FxITlptxcjajI91DtoFYtXV1bz44ouMGzfu\nrNZPXqTndWV/IBCcemd3b8xUfc87Qg2l63+GHLQ7N0HG8yztuISrDkBUa6i0io6OpWOE9NAy7FME\nMsEoK3UCOTkA27K09NWMLW2mZSTwN1uT5QOfxLUARK2C726A4BjYWqWPko5IaKRehP6P3QpMsEXR\nb1bWnE/1jadJaP0btuGg4UpH+wzKAboDlwO/z/IXl9tz+PviYfMXO1aEIanidfb7pb3gi0sh4A0I\ngjnJWi0lDwFZa+DTgeLCOx6c8Lrf0/+WnWvw2cmgc7EpAK5gca0FoDo7O7tQ8NFMekyZiTUDcAaH\nY345EHLmwU6knOGjla3oDUGh0DpP2bHrbFNpn0S7K8qfNZo5XJSz3W38lLndbTBfTtGkeug8Ufbc\nO2BJbxh2uKa5MVtt1sW9To5BxiQo9bDUDUkx0CIE1VD91wxY6IUWFjvmPqnzOTkFAKeNPT6LTd7L\npGocvBhlkn4lCvzSheoSfTpGVkRBsBvKY6F+W4uPIGyAGkViCpH4x8rTMPJ0fIQzMfI0fAT4wdaH\n+zDysgN/h48Aa9QugOhS3acVl6kWOxmY4IVnV/rFO3xCHIUJcpj7HoCF4VAC00N1/Vp/Ba3zoTQK\nObtrxLYhsQjGTYbJ43T/GrWE0HX+GsCmtn5uO1CBGCvxwF/HQZeptM/10rgljGgH6euhKBwFOVsA\nm3qdoRDJ7jawqyeMzIRP0uWI3ThWn700A07uw7zQAqf7pdB8jwRkUrOl9Oi125s5XOfY/309X6nZ\nsLIvZpob56FwrTdjtDKpQxdRFjCbiGyrjvnpheGk1VaMrM34WOegXSBWXV3N+PHjeeGFF/7lejWC\nHqs8kAhOZ0uxG7TgJ1WIzFWfwmoBDBUS7DDpB6h++58PQN7XDcFf6fWxHhDYBur7hCO/HS2gHDdZ\n0UZQZA5go4BmW7/ZZOVC4Uk1oQZ4doeWQ2yw8LVm/v1FJWnZ/A0td9jsnvcYNC5RptCUvQvv6fda\nveDfHzzNHAMecA8QTeQLA1c6ELENRQyvQ87n8xNFi7AiH39Pz/xhvaFhezgYAI29ELYV2DcE0lvA\ntvfhmwLmNIWUImAPcDOKpnbbAZEttc26hpn/K1ZbwQdqNwDV2dnZhYCPPmp8WdPJRHw7ztLE3tIy\naQ/kp2JiwGmdKUesWaiogqDJu09db0VvO/GOgLTFkmkPVP8s590jmkj7BCtW9MZ0tGNlg3th9h0w\n+WOJQOS7MQvDcV7F34x5v+3yfBKNudcBw91w5yiJgDQbgFOVA4UJyihdlOPPIK3oDQccOBCrYJ3F\nSHqs9qsl/+l28LYialUB3RrDHDt8x67R8gyMPB0ffccEZ2Dktn6zATkpcCZG/hg+wpkYmXuJ+qh5\nj0F8dwj4cCDsbotp9gzOO0YCID7myvxUUQd3t7EU0Za6P1cAu45AuzhYGita/mogEMpu1lcLQmDm\nLphahmT+TwAfnyaC5et3NvMeeKMZHALv7QoChzWWeFjgh1gK42vw4W+hN9y7BpJiYcFezRGKhgHZ\n4zBXPI2TEQABedp+fnsYMl/Uyq0dMOO3qwXA7jbKFqZPUvbzoWKcyeHwwkQ5W5nj/WqWThxs7KDv\nJO1RnWL9TjCnub7vezaT9sDuNng/6UtwNzfEL70gFB5rK0bWZnysq0G7QMxxHOLi4n56RV9W525V\nDJs1BrLm6/VNHpy//usJv9Pg7yYRP9Hs/VQfWNVbTaobWnFEptvlzHu09FFM9hfQx7ILChHwFJ6E\noa3VhNrYTNx4e4ihlmJ/eCOENoLyo7CgQO8VVQGJcMdegVZyS+DyJbCrF86K1+Ai3xE+/K9P4Mes\nHRAG4WshqhgKbwYnBB6OgKlHEbCHdhYVc9Ac+GgAZI3FXBUN062DWwyHG0q5MiEcgg8immdIADht\noceDUNSMlCMIlJoArs4QkyvQTpLEc52dn3YhFEDXWZ2BpYYD3idsVil7NCZ2AowGPJ1wvkfO19BM\nnJn3wAOr/Uq9G6SAyIJsNSNe0RvzeCjOK6GQNgeyBkG373GSraiDZ4KyG/XKhSubUtU3bWMHuPFp\n+PU8oL6EogaG4+xCIiRFA6D+PsxjbpzkURJkemsZzjN5EG1rlJPyIWQAvJQqOficSgwjcEIdyc4n\n7YEOCTC3F/xyGewE8+dqnIzUmiba/GY5RJdSOuB2Vh6B0L6wthr63qRdNLwMlQ/8EtVXzdx0Bj4C\nZ2BkoXXa/mKTiWdgZAmE/kr4eLotKICUL4Em8KsyYC9kdIW9h5Cj2W0LzoLXwJMqB2SmdUjarfPL\n0LuiYXN33ZNdCTrGt1N17UfMgqvXQiFEbIQhETCvD3RrAlMLgPeAdlbVMelp+PMEeGysXwjkUn2e\nXwHNgWd3wn+1hVODIegD4AoX3LYeGjTljczxcM1szXTnTITPlV11ng9Qu4OZ9+i6PzVRxx0KTByP\nM2gUJuQ1nF4tMP91AGfzEehcjJMbCysG+h3q9EngipXjVrDO3/PtzllW3CRKr0HHvqFnjRhJ8HLg\npadhc5caWu+F4KidK7sQMLLOQbtAzHEciouLf3o965gdcBla+GgNSflq9rhgGPDP69D+HQlZU2gD\nFiHxGsQPD4D8WPjeA8c61+zXkILzcQGTr4O0PuA5oI8im2tp2RiUHIS42/S6wnYDKLV90jwd4e7V\nkNYZUnznFAWcgJVhsDICnl0LVN5llaKy/2Vt2E9ZjfLlXkOpF8JbQmUJPBkGC45DtBvyFzwBJ8Kl\nggWacOxu4+/fdgTiTwJboSIF0Vg6A//dD3pnwpRJ8LUUTpwmezH3fXzmMSweirnWQ53VWZ3VWW01\nc/dMSPP/H9zJDROP4CTmScI+dRrmkU44xbMgdbJfynzoIvjjFMx/gxM5VuISJUBhc5z0SXBJWzkT\nB/rAZRtht2iRJhscM0YT5+RlmL+ekuqiKwraboNTlZp0N0O1bhe54PAA7efuLjiVHki21LTs7gAk\n5OVS9KgbbpmjZs79l8KnA3DuAN7th3llGZCKkyGao9myDBLAOZGHM7YTBI+HOZf46ZE5L8Cp0dBt\nC5GNcqE0HnodgL/Gwl/tmH6sMzRCGDlxO07XcE7dr49Ox8jSfcKfkoN678cw0tNRr1NPw8i2bsiv\nByu9QH1YeRTV2lUmKAv0cQq0W4d5ojtO9mrIGwAZw3S/7ovDid4HYzbC7vIaWqqZ4eC8Ey3n7K8D\nIXoJBMOKvVBdBb0PwMkr4PKVkLQPVqZ1hytz/dTUBYPhv/vCHrg3AjoeBTI3cepv1xFUEQZfeKBo\nNAR8B+89qq7d3bZgprtxnin3O1WZ6bpHvlYBSfl2uUc4nJSP2TkD57lwmD4a59VwWO+WUElnO4e6\nZo6fbtljNU72KejWFwpaqQ7R2xLStkPqMD2HmePlnE6UQ8bQ52Heg3IGh8VwahYEu8MwnuE4Ye7/\n7MdUZz87q6M4XiBWWVnJ1KlTefTRR39y3QMuOU8ttgJd+YdapoCHBBL/kwJXs1H7WGppFgNCEEVj\nO6q9ioWlNot1cwMtywqhQRKULoLoZ/We2/aVPBwFccfBrIeKjmfuK8bgp3/4koiWqcKDr0PGpP+R\nQ/YP5zbpMdFOSoD1EHUYin8tha3yWIgsh5BAIHucwA5q6iWcrdeSttbg8sIbzYGmqKj5o8FQ6oG/\njICqJZB9QIpZf1Kjm+rro//xQOrsf83ONX1jK1edi00BcBVbay2Fo87Ozn6O+Ghu/FgT94tTJHO/\naakcr+dmwD1P+yfLhenKpEyZoMxWKzs57v++GkI336dsBShbMXSRsi2+OuWJ4zHvBeHsTxelfH6q\nFP46WHpeYYIctM6vwq4xmMu7Q0vkbAF480TdH7xcDslfp8B1GXzdy2JkA2DnXfDoDHh6LGbzFByf\nBseycNUo3TkLc30czlI5CqZFJ2ho+4QdO+2izOsA9a3iYTDc6xZDJPkiCDoObLLr2RrtpQ1hdwk8\ndKnwESDwSy1Px0jHRjKNpTqejpExvpHhdIxsav9/0Nac+cRFdreVSvCYlup5tsJyFPd2ggcy/UIq\nQaEw/mk/3bRygJpBZ41RPeCds2DK7arNyoWo43DoNniiAP7QDsKu3SHaIUCf5ar9SywCCqAQlrZQ\n4+2pO0f7G0pnjpcjN70DPPYKnOiBufNeOeAzRykjl9lc62zuonM6rV6Mpybq3iyegfN7L+TfD6/M\nkMCLT6HRlxlb0RtengJV+3Rs12ZLHGToIn02YhZ0LsY8AU7pWH9d5IqbNTeYPtpf/2aXZX1HEvHS\nJkhe9bMU96qtGFmb8bHOQbtAzOv1MmHCBJ577jkAzPhnaz7zDQZnk2b3OWdOVY7/+9P+PRqg97h+\nC8fyIN4yVAJeHa0Xt9ju8L1DYarq4UosLeOUbWLdcBcE2Rrhj6ZqmWqV60ckQYbtBVNxRMvIr4Dv\nbXbM10zax5v/rxlqTOk7l7d/uo3A2ZjZa1SQvBjwwpyrRKV0eUXLHBAO9Nuk6N3QRQI222gzqmkG\nc/vBgK3AIGDpQIFQ6jSoLIX85Tjel2r2FbBeqf46J+3/zs41+HxG63OxKQC6svdHj80YE4g0ywod\nx7nVGNMFyEYK35XA/Y7j/O2cHUid/cf2c8NHc6My/t5P+hLybhnOg0dtc+KRSt8s665M1gaJdJgY\nqHkSf/e032FYMFi1P8bWlr0yQz3OPjiCuSNOzahBtWCAGToCh1trpNPNgnk4KyxQdP0DXLkVXvpE\ntPH+Y+GPU+CuTEi/X2IYPmn6BmulCOhF/bxmj9NYnjoN83IjnFetJxRdCl8OgMsVSTRBA3DWqx7L\n/M7ByX1RmBRdKlGNrDH0+aMck7dtfV18Tzi6CuL3jtbEv6hI+AhnYGSDA3DkKuEjnImRp+MjnImR\nkd8hVctmtudM1pgz8REwPcFZjBzk61S7R2GCVBAvyYOhi9TE+bVy1WzNHI7Zmy5Vx81NMB+HwWbj\nrwGMdsFtSySTvx3mtBc+NouEHSXQ8VK3GCa/mK91fbTJZdfBCXj4oCiRKQZ/EDMtG+6eB9cshG9L\nIOlinUe0C2ZMgU2xcswWDBat8NZOOGvXSSDkNSvisrstTJmg8y1ep/NaMwVnBRB2RM7ZnbNggz3/\naJcyb77WOXs7SQHSd/3unKXn2udEpmXLscuN9QcTssZoOyNm4R0+m+DfT9Qz+zNz0morRtZmfKxz\n0C4Q83q9TJs2jUdCH9Eb34pzbW69EwDnnY+0/CfOma8nDROf0NKJO+um1X9vx3bqt9DwSTj8OFxU\nCFjc46vOGohvWAt/GEdC/GRyrbxw8CWwoz5c76MpXtxZQAsa+G5bArtRjRdI4h5UyP26Va/0KTze\nMptTjSAoHyiwTTx90UBbjP6fCIT4zHxjBBzrkex+BESHwMOtIThM75nfuwVYSflW5ne1Buz9HgF/\nmzBY6FEYtV45fBoAi5+BN6JwDkz8j4+tzs691VbwgX8JQI8AVwFRjuPcZoz5BJjkOM7Hxph+wGOO\n49x4zg6kzv5j+znho1l8K2SNkUjCV60UmEqfJCdlQ2/Y9b3UANcM0KR4xFsw5CEwN2qcbL4HOoXC\nDZmS2rf6HbTO01j6cYr+P4bUGTMmSRrep567u63ojje0tA2q50BBCmzbBL+cA+++LGGLg0fgYku5\nGDVWk3tXNLxwM/RygScO8xtwlu0Tpe2xsfDRFHCvw/yiJ85zaOKfNQZ29VS92a+82l5htZYj1uj8\nD7RUJvCL9vB5L0ri1tLwSXu9fmXPrx/CtPzOov4BCTP10ekY2cDWWXOxLRVInwR/7QsfDIRW1mvb\ni+oDAhE+wpkY2X+2Pj8CJKHv5syD9WBm2OdwnsE5tRTTZgDOm0cwv4nDeW+fPvO2hIvB3ALOkRzI\nSYVDbrg5XM7ghx2gVQFMA1pD1H7VuSXFwObv4dmWKJN32Q7ds7Rs+EUGdAgTk+QksGMgdFoC6+7S\nNfapMh6tgLAwiKj2y/xbkRkce2/SUY3czHv0efJqZWsPzMP5KgfTMRXnKfvsrbhZ/ff+1BxnbKCo\nr8mr9FzZLC/934ft12j5XSc9ez3W6XlJLNJxJBbpOey2BdalwJ5Yf2Nrn+NY3lMMou90HZ29V5zN\nT+q8sNqKkbUZH+tq0C4Qq6lBs4FHXwSyJtJnBihW8M++/8CfMY6B4dPhCjccLsdYESpa2uV+RSKd\nH5r+0+0kLzKsLENOy+8lg8v3KNMUCRQKeA5HAL0n0+tL6PUD5Hdr5aesRCtj5Nz6Z1jj2/Itqmfw\nNYMGuCfDfuQW3bDnHHjEKl79GVyjobglxHywhOJkMC8uofAkdGySCoMgYKgHZ6fd/AvDoJfA7R+E\nUH7sevkaTCca7t0Hz+arEWjqaiSZn99Zztnc4Rqk98bAZzDkr7DwGnstelhaRH9L/ek5A5aOJf3k\nyz+5/zo7v63q/3MBtDEmEXUgeg61dgX9Euvb1w2oaWFbZ3V2bswsvhWwmbPpbsx4K2nubQnkaSzc\nHwy/2yJaHHHCql8HQ8Q0jZcjZmlCm1gET4/148LxnpjUdjjdLM0wWmqKzByOuWsYTpMh8EywHK+c\nB3Dunoe5A8zFKTi786CJGxocgh3hLA2FAU+9XkM/M2umCAt650D7EGgYB9NGqclxzmop+d0/HQZN\nh+5unMVgngTnoXlqD2CO4GTH1YhsMNRK+E+yzZC7bcGs2ojjjocVvYlptxYGqZ8mB5FTY5M0FObC\nBjh8LfQK1lvxLSw+bqUGHxlmg5eVodLpBzmsABkjtaxC+Ahwhf3skcnwZ70sHg1UgJO4BLMwnIbB\nEHCVWwIn9wHHXBJZGboI52AUnEjBvF6Ns/NpSH0cJzEA8odLLOx265w1Waf7vKE3DDkMmyA6GMbl\nwbbbrHNWHygPk/Pia62QB2z3QClSQXZFq8/bSzPgkVG614lFsOVbmD4W+lVjuqbi2OtmWoGzuCf8\nAjlPvgzW7ra2xGAwzu5yqEzF6bEO0lZrmzkPQP/3cX55CvMeOKGWFrmit/Y38x7wxOmZPNpJvfnm\np/ppkUn50GcJNHbr/Icu0lyk/yI9AxOf0HvHe8LFutfegvYEt9qBeUAUoX+XpXQh2P9PjKwt+FiX\nQbtArKKigldffZW0tDSOfWho+DmYNsDtQIwbM4h/KYcPYIqNHIdnxNWmMAGzdYLS/6esKtb0kVAa\nj3PRD/7vXeuh7f2iYiTafiwrDbQthc9vguF5sPBbKLsNTD1wfSXpXGcXNGgGRIIZ78YJswDipfAg\nuQAAIABJREFUy3Q1jBNgQo1UvaSZrWpStqrPze2nfTdpj45zTQEe2/flfStL3PsAVAdDVBFEXI4o\nLIHoZ3jVN/BiMxiIvw4AcPr/9DNrPpTs/sMXKUoYewB4OUuqVpPGaoCfdR14YYil5Cy8DA3mPdxw\nd07NJMR9II558+Zxzz33/OR+6+x/z851dHAd5649Qk88/3Bsxpj5wPNANJBuKRzNgA2AAwQA1zqO\n8905O5A6+4/t54CPxopUOY80wlSr9peEAmWEXNGa9LqilYlZB9w/StmNrDGaCP/QEjMIOVMrLoPh\n4VBvKeZ3fXHyJmoiPHUenMiTk+ITFClKgYNgBgE3qxjLGRKIuQOcz9E4++BYsi+eTvs4aH9MhIVo\nXzvM7ZatMC1dGb1olxxKX+3YJOskvttXeLFhoCbr0aX28wlaDpqj+quhxdAhUxP40gFwDMz1qIl2\nqm1z0wS29YA7l/kxclYnPz4GeCCkhR8jzXNWuCRsDmbYHTib/BR4c53ml84vA/yNvE/DSHO7/7uA\nMDJWgUzPL6HsG1gZJXwEiLCM0IjLUX7hiYnCsJwHFMQMAzPOrcwi+Puabe6iOrydSH4/r1xtCyKB\nT4BImJMAKZ/dBbfMhlZuuGqdjiexCO5WXfdTZfBsI5RpGrRJ92N3WwiNg0vXwSULYXcn6FOse3Yx\nqmlcOUHPxt5OuhfRpXKgFgz20w+T8u3/gyDZ9v/Z3UZOdc4Y6LDFHwBelA6v9rN1dXLiahzKzV00\nJ0mbolpH3/yk2xYoSdH9B62Xlg2/nQfv9tN3h22Hg0dw+jbDRGbV3Mfz3UmrrRhZm/GxLoN2gVh1\ndTUlJSVwg6FhKFTfBmzIgpJ88IDDHOCf11+ZQqMBMRj4rc1MVbXCuWMy/BZF4noDHjAPHCAAj/jn\nAI1akmH7jd1iGR5hjSWaERwDr1XDa4kQ9h54YiAgDtgOBsDXzHpSB0WcAHbYxi31gW+BGPDaSCKv\njGTh93o5TPoZPPJgOENtNvz63UgRcfIOwkbYIuQvAW8vaLFWYPEV3HsMXB9D5vWw4DCMm96Mr2+C\nrFyYWgVmv21qHeTBOfUTA8XVwJvjmHr9ZKbOv8svRXx3jj+C59W1XVgAtLHfe3g5bLXn7YqCa0MJ\nv6WUR7vs+Nf7q7M6+xdmjBkIHHYcJ9cYc8NpH70OPOQ4ziJjzO3ATKDP/8Ux1tnPy8zdMyFrEN5G\njTDPj4MVVg3w/gKp/f1+GHhbYn4D9K3EHKyH45vUfjRYGarC5jhWpILhG+GrfTBiC87EAXBlAiZg\nAoyrwpmdb2lp0Vo3einsG4ATkAnv2zrd8UU40S54cwqskFOUt0udVupfBQEfgHcIBOdliRp3DEnn\nZ0xSxgbgcLkm7St6w+y+fsrgTUug/RJR3L9uBXdNFu0+Ek3rdgIxCVA6ANMSnDfBCYU574Yzcxe8\n21r46C6C7UNhwXfCyKpNEHkITl5uL+p2qAoFNlt8BOi/CGfz17AxoybW75wUXnt9/dHgDIx85EGd\n/xkYeZ8wJmxEe+UK1lt8XIUyUHEw5GPgI8gcn8GC2zNIfwsO3AgtVoDTJxzedMsR+w7R/tqtw1kc\nB6k5GG8qTnZveHOcHJRLPdAKUtYjbJwyERb3gw5rYXsvqForjGwFz76FlI47IIdncxf/sjABquvB\nwUD9H0pNHSIehKMX7ZOTtKDcz7hJypcj5lMITUP9cTxxUBouARFXFOa3oThZYyA+VDTY9En6jq/0\nY3cbGLRM+31xFGSNhfRJ+l5VjvY1s0hOZ9YYSF6F2TQP57VhfqduXgdRcLt1xvlTGu5kiJg3/6x6\n0dbZ/9xqEz7WZdAuEPN4PLz22ms89N7DfL8WmgwH1oKZOhDz9jzgx2uujC+wUNAKAgsEQB7UaDO8\nBNZLDvF4BDQIh4RVUPSX5UrXe1CGyxUFWSOpbgiuLyEgBNgq5kXDp5AQxgtAY/B8Ax5Lk68KgkAr\nIhL7gZbre0CP6cAeqLYK9QEnoNqOj98CzYej7NchveckalsAnmQIqAeRqwA3UAVf36vPWtRDNWzW\nDp2EvZdBj6lwqhVUp0IFEHQIwl0IABMsPeRqu69P/dfQ3D1TA3G0S9E6n0DJ0EWQMUHNLXc34+sg\naLEBpjeF0VsRsAPsHu1XxfLZxQlweD5Ofuo/3Kv/iZkK3WcnpO43+J/YuY4OfvI/+H4uYgP57C04\n49iMMc8Dd6NC51AUJXwPGOQ4TrRdxwDHHcepT539n9v5jI/mbhVKef8ykuDPO9u6nT0KPKVlK8sB\nykRNmKLXMcA35X4649BFNTU85pXmOE0q4clVWrfbFszuCTiupZogN2qpurQG6/zS6m+nYp4Fp95Y\nTMOX4DvjV2n0AGPCoQA2rYVrPUBX4BswY2198h/miSK3wtYfFaTAlTkw8dew4Tf+2uZGuZA3UPXQ\nIMphGLT9AnJ6w/WntF2eXi7n7tbtkmx/YyTVARLIaHbEj5FRz9lj3APVFRDQDEqm6a2qIAiIBdPu\nTHzsGgVBmVBtVZADTmhZ/YTwEaC5L8F2SPjo2x5ARX+LjwBucN8OP4RZfARh5HGgASxtJHpi16XC\nx5CH4NhvlcwKdwH9bTAxaY+k+O/KhIcyoEGYKIYZz8OvNuoaWFYOSflyeELjVKe1uQsJ+9dSdCkk\n7Icig0o1ugL7OvvrCudNkEPY8xdQ+Qzcdzl0DoNrl+r+LEkV3dT2v2OPFTTpsVqO2FW2n11atrKv\nQbbWLRCoF6bnNWOSP6OWsVHOdqM8zOMdJXRjn0eSV+lZfnqsX2GyMEGZxszxcuImjdV7y9NFux26\nSMfYaSm8f7syk4lFOFumK+NshUecB/7M+Wi1BSPPJ3ysc9AuEHO73bzwwgsMmziRKiDRtlOJnQ3m\nI0tx2AdO7plOmvGEK0LYfgl8hgp3o7D1YsARGNJQg3RmPNy5H1YGWFDzgeP2AogDTxKEzAHzOlRa\nzZHi+7RJDxBhH/WStRDZDFgI1b5m8UsgNBdcPSHMBpF8AcFD+EvrGnUEQqEsDSKesft4R31WAOJ8\nTTkPwA92O7G7wBsF4esQeN4C3nuhbL0ilmWp0KAXeNZCWH2gHE7kQsVB+LULVj62A35o6R/gR8yC\nm2fDnl7Qbq2Krz8QzcXcAtXPnObEtd7JwzPak9YZEozkkOuFQ+BC7CShlxzcBYM1gOe2hInVONV/\n+le3+6zMHDbgiI5qHKMIZaR9Fn4qK1hnZ9i5p2+cO+sJ//TYjDG98FM4vgDGOo6z1hjTG/iD4zjX\nnMNDqbP/0M5HfPQpBXv/kEHQcDDLv9FEOXO8xrPEItH/2gHZ3WHURthTrkbTudbZKkzAPBQqIY9C\n2/DYRx1Mn4R5MwYnO1BiTCAgmTkKHpihCXDaFEjNgS9S4eg+YZIrSsucVGVBANMS/viLcMYVwM4J\nmpFFeKD5G1C6fL6/Z9YXqZLdr+4EAXmYFp1w3o6V+MNvMySqUYqyaYkoc+aBey+CP0TAr3+Qo9Zi\nzUA5FUMtO+JALh4bcAy9GQiFyt9A4Ck4/JDgFixGDoKSRyDS1oyfjpFem3Q8HSNtnJIEoFFXoBzK\nfm+394zwEf4OIw8AX8IPT0LcDqgOgHpZQC/gGzj2AERcD2Y+lLSGkBshxO4nLAQqj0Hx5+qx1mIB\nkGYDmdNGwZDZsHKg7uPVlrXySS9d40dnyLmeNqrm/tNtC0OaT+eNtrAtFBbslRryG92AQ60UwHw9\nXY2yN/QEswAenomp+Eg0y6Q9ful7n5BIYYJEaB7I9DNa0rLlQPlaA8wdDsV2ohRmn61JWf5at/mp\nqjOMGaWM16134sT1hzuWwY7m/mbqhQly1q5dqn34hM2S8rWf7DSob0sZklfVtNxhcxd9dvUmv9DJ\niLeA89NJq60YWZvxsc5Bu0DM7Xbz+uuv89CAhyj7FIJug+DscRoQRlmvpenSmvVPT6Wb4wZ2Qdv9\namSZlQtDW8EzuXDCZrgqD4ITCBGtobIMGhjgBNAKWKh1PJaGWHUTfFgOdy6EMpv5CgDCOgo4ymwG\nKd4nVNgMKmypWUgIVFTotY1XkZAKbp9cv6U1huZCsU08NdqCnErA01fLQ8HQYikQCNVD4ZuTMPEz\nmGSjiFFF2lZZY4j9A0K5AzaK2Qsql4HLQOUXcFEgajCdjGSDh2+CJVYaqwhoD8wYDQunYOxxnuGk\nTTVU3ac+NsWN1M8t8rjl2r/yul8FCmB7a9iWD9sm/0cKT+YjU1M3Z/YbiIgXSBz3KKoZ5IEwN6Rn\n/uxkfv9/Wm0FHzgrAHrUqlRdjXTVQtB05H7HcXLP4aHU2X9o5xs+mrd/VdM2xDmYgdm0Q+OMK8pf\n/1SYIEftUDPVCe9ECnlzh8N9y+DBsf5aLl+/MsA0ewaWGa1/xRx/b65ePXHe2WdblkRAi3BY010U\nyn3AyExNwNOyYd4E0Qt3AoMzYcFglj3fngaJ0GE/lMVB/FaraujrVenLkvksaQ+mUwbOtQKXth/6\nPxrRDh7ZDCcuAVoo6FZeABHtFISL9PUi9kUnP4K2YfBFlfARIOIdYDOUfQARtm+Zz7Eqa3omPvIu\nVJwQPoKEDKMQRiakAs3BbXE14JTwEYSRjSy0nI6RhyxWt1gK1Xfo9UgrtjEpSPjo25brEoh/ljMw\n8ngeUAjR/aBkM1xUDNwcBtHFUqvMmKQg5n7kyD40X3S/I1Nw9s2BxSmiIhYmkJAdQ1E9qEpRAqxe\nhPbdaI4abXO8l58e6IqGH76Bz7qBt5tWTF6lbOXE8frfp76YWKS6x+V9hc/XTYfqzlCZ61eLBDFl\nqux9CreZtBGz/O0IfI2uR22El/rpOHzOd2ECZtEynMvHan+uaAUWXo3FGRugushuDk7EHWoRsLgf\nZuYylZzMTZEA26v9pGo9/HXK/zKS0FCFph1PQ84nq60YWZvxsc5Bu0DM5LWEN/fDQ0AT6xxUeuD3\nWbA6VYW0UTZq+UNLHJfWMW5DlII2lNhWZSWbIaYzZOVL9CN5L1Q2VP8Vl5X7DbPlXRHuVhBWwFPf\nCbQSI2HzIUXBsmYj9UaAO4ADyqjF5tv3FgMXAR+juqxm1Egqf/UBXOZLLj8OxVZR2DSxp3ZUziJA\n5EZUHwc8bLf9dCzEWLGPPnGw8hR0dfw8/LvLINKCUFUQhNvC6HrvAx0hrT9MbQh4IWEbFF0KNEFO\naST+pp/BiCIRDOZFN1wDznQl2J2t19bcH+9xQ6mtt1uYCKOPoOhr9Wgpg929XAN+//fgvhjYt0D/\nJ6/28+9brxWY2GPlCAIagL9ZsPEdV7I91j1ALBDYSlTMmfcoIjl0ESxP/4eMap39uJ1r8Fn/06ud\ntV3PPwegOjs/7HzCRxN2TBNi0Dgyc7ifsvbfo9SI+pgdpEa85e8DdmkcxC+FjwYoCzZxvERD7otT\nD7QS1KQ6c7wEGbLbwSsLVG92aZxUiGeO8qs6uqJgf09olKeG2PEDcHaKxcA+KzYCmsBHl8J3OyFh\nmX4w14TBYY+olodawa3bMVOqcP68HCoHYEZW47y8oUYQIuqR9pwYrXl8RaGCbbNsq7IR30PocQiy\n3VJKWgtTIttYfASeOlrAszvg6zuVHXJ5oYfVFjkdI4ttO5rYfDR2f4mfr3UaRn5lKY+X1Qce1+vT\nMbLSRjcjWlt8hDMw8qlI0SxjNsHDl6sZ9spT0LYC5vaDlm44+Y0wsioI6ADhq+HOS2DBOqicBOnr\nYWoEbGsO/RdDUTjQGagP7gAIz0MY1QJNeesD6fPlEHfbgknsiZOYCW0yoBSqUuHYDqifBEGrEJYd\nGOfPaI14C/PcAZyikVARBX97EoqaqSn07rYS5SoJhzm2DtwVBX2X6Ln6EM3Uv0d42Ngezwm79ABr\nBwpvZw7XPgsTIPMXsPkevX55igRS7rMYv7uNHLkVvf3Zr8IEf61cdKme9dQcYW/GJHmyrfOkcHlR\nMdxog+Yzb4ScF7Tvr9qrVyDg7Dl/8Lm2YmRtxsc6B+0CsICHPDgjr4CFLog/ysPtBQDZSRDRCDkQ\nV7ihap/kck/LnBi3ntuS1VD/O/AMhLK9kB0OT3ypdVyXCHgqLSA5wRCeAKcuhkjrUNULh+P5ENIQ\nvNv0XsNVqAC5HHHagRMWgMKKoZ7NlAVsA08PCNsAJTlQjYAw1NaL1c+C8ucUmQxfaw98bZZfban7\ndnhXhdAuC0xRhVByGYSUQmQlfo7kXri3BSQ3U5YwECjJFc8/tNgqTl7WCk4WQKR1aqoPc6qB1ou+\nTNHHi6uhfDUEXgMhcZC6Ad64GdEVChPEvQdI2oNz4yeYtwxDGsH0xrpWDVYA9yBwOAk8Lz46p6og\nagYE3yWqyLMT4akMMGGiY/iEU8IQ+CUAu057DcrqxQGXIlpjMQJ3x/ZNSDygKGekr3/CP1Jf6+xM\nO9fgs+FcbMhaD2ovANXZ2dn5hI8m7Bje8hjRGt9EtTSL0pUNiJkjhypzvBVlaKuxcMFgmJ0O73WH\nBYMxIek4nYfZhtKT/Cp4M6ZIRMFXu1WQInpkj9WYZ0IlePUKanTtc/xyUiE9Ez5JxySAs7TcT3W8\nrKWaYO/Og9CP4doJRLXU2D+0tQKKHaOA6jDoXKxsxiPLVOsENQIjJcv0b7DNdL1QpNYqngAI/RoO\n94SwEolgOTY71fgLydhHlsMWN1zXCDyHYG01XLsDqi+G2FmoCmYtYLd9op/wEYSRAdvOvP4lOXAK\nuKg+nPgUgj8Xdnpsxi18LcJHkHP6W9Wg8244VfnKHkYV6q2yJhYfQfhxBDgOc26AwpPwaCcoXQSn\nmttauE+tEmMZlpfZCiILYC94O8PJT+BEL4gvlSJlUJwc2mvWQn4KsK2zgoSbu4hG+lI/OTgPZcB6\nqEhWFu0jB1LykMPXGNWIBXnkjHWaDmUNIeGYnL+vEZAXIwd2P5p3fIMwsCly0gpRkLUF/pYGJxFW\nJqJJxw5LzcxcJlrtIJvtux5oniMn8G373PoolVljLJU12pYrXA3dvrftFhZh3p6Hsw94Zph+B4tT\nlPlNLPK3AvDVrvlq9Drmas7G+eOk1VaMrM34WOeg/YzNFBdjJghAnKbhJBfAnFsFFOG+x9FKzTMX\nGO3+h9qjAy6tGLYNgo9DzH6ofhBOvQHBLqgMg3proGQ41LvM7jdQQBMaB6f2QUCiHDOA8lgIOwFm\nGYTmQ3lbONFSzk9QGZy6EsxuqLpcDhdAkFW7DT0OQbZoumQxrLCHOqy5loEVwA1Ki5k/tKe6j4+5\nD9Gv6jwKLoN4G110W4p4RDTQppUkn79FdMVvsTVZAoWQZeDqCtFhSHlqwwRI7wfetdAzDN72MPlq\nuD8fwt+Gkgch+jtdm7nPQsolYZLoPb0QOmmPBmkfNeMXs2EJ9AmF+W2gQTXKwPkieDHAOmAZ6tDR\nzB7j3xDgJEDUdihtB2wHuqmIe8AG+91IBDJf24tSiaKFrREovW/ljbtbOtJHv1Dk29d3ro7y+E+t\ntoIP1G4AqrOzs/MFH02YtOedYTGYiydKAOSBTDlccVYUIXm1JrDdtmhCGu0SrdGnbOdT1mv/Cjy9\n0p9lWJ0qqmLMETWJfhKcby33PT9VY+Tz/ZRlKErBjKtSfdqhPNtHy0raPwnsRH3SfPs/0BJGhvPB\nEOjuhaiDEByGxt7eSBjj+hKICpWi4xXAdTmQlE/XRtOZ208YCXK8Kiz0+Cj3rktUT2baQWAIVFcK\n36psELLSDREJwkeAcCtgEpoPP9iS7qhvFQR1klQvFhwNFce0jdBvLD4uBPYIH+FMjAy0++KGTRDc\nSa+9eVCm1/e+HM4fAvT26RgZYUui6I0fH9F+qAdzesAv42FPJXR8dzT8crowMnkVpNredXEFrHdD\nu60Q4oLww3C4K8RshxV9VV7w2dHRcsx2t9XxxdvsUc4DEHtY93eJ7sn0pjC6CCk5fo6abfsyXnOQ\nA30bwkfsce+163g5Izs2pBQWhtvP2yAn1BJOCEPOXQzK8jW3QcyQw/DhXap1nDbKj+ELBvtrLDdZ\nIS/7nBBdas/P1tb5BMRGzFK2+PueUpxc093fSshXe76it67jzHv8YiFvrq2R4T8fJPhrK0bWZnys\nc9B+Rmbe/pVe+NQCV1wGSWVK8xfAnz6C3w5XX5P6na3jUwzc4IYV/SDahXPVF/7tbb0SgOkhuaSE\ng/eYLSQ+DnGPoULiTnB0LUTMgrBVcHg4hDYFp1Lreo+JKlHthvpXQLaVkbrXkZRwpRsqrMPw5RXQ\nrbFeH/scgqOgar+yc1XBik6WW2bMGwY2f6++Yh3fgT5NYWVLMBNtVMkDfG5XTl4Ft45kciu4/yII\nteB17FIwN0DsKeAry/+4Ile0EdCg7EED+SXxYA7DHcs1AKdOEw3huEeDfyBUXwlHP4cG2yDoJLge\n0dge0QvMGuBwvJ0QlGoSkZbtlwjus8TPc/+cGtl9YlHReTsEHMeQ1PEgBDK7kKO2DmgCfYJEIY0O\nVhQ483r9370xbDwE1/8VEiqsElYrHTcn9V0iESD5HLmKeIHOit6aVAFO673+58M2nXUGfYjxhOOE\nublQ7VyDz8afXu2srTu1F4Dq7OzsfMBHX1PdGvGPxf003nXboono0Hkw8Wl99kCmxsEVvf2T1bnD\nMY8XQxg47+2DzU2ge7jokKFxcopKgP1HMHfE4Qzuh9m+DMrBeQN4YRhmzzycZ8rhplBYgWp8AKd1\nJuZoOs4HRzRub+6ivxW9Ib89HIGPt0JUJFx9lXAruCEEF6Fx+HK330mMsL20FovuMT1OtI0hFWAO\nifIXcQTCJ4NnG4T1Ao/tC116sZahTeVc1QsXBoZ8B8FWJCT72zPxke1i7H1pS467NYasPLinEgJ9\n1PtysTVAGDnaKoMUnpQoScd3gBvtjerhVsYHYAVqXj10EZMvWcKIJAVLfRh5fITFx2BgZ2fhIwgj\nY+z98KIsU31gsKXip09Se4T0SfDKdcq+FYErTrV4DfdDxX0ic8QAjXqBec022y5M8It5+BQR461X\n6EV4VYQcxPoIr9rZY3IjWf/9QJI9x9aoXU+IzqNrkPAxuZmWAIWlkBgFozdBQqClY/oUq7va7UXi\nx8kqu6wPjLFsnRYFymrtDFcm7/7pWq/P8pr+q2bmMpycWNvo+mbM5DicazvoN7O7jTJmOWN0/olF\nmHkbcf5k1UzTsv1zOxClc9JGnIsUpKjtTlptxcjajI91DtrPwExnG+55RGpC7G7rH+SGLpJDkX+Y\n2xbCgNHwq2iI9FVYJvTSd2zU0qcOFHC3B2eEAKgqfy3FV0O9H6DhBjhhS6eCS6UaVf8NKLe0/+og\nqOio6F6YdbYq3QKNiq8hsqMybF8hmmXb7wWEYB3AYoi6Us04QTSIhraezfWVKIQAAYFaHl0Pz1v5\n36k7R4sHDpgrbAE4wN/ClXUCim+DqFPiz7/uhXGXooG2BA3IBchxKaKm7wohYWfWeG1CgHAS/R+m\ndctOQVgTMCmIlnIcjo2ChtPgwDxoUW3XrQKmjoNHJsMjWTA0TYBZgjJfUQgQwux712lfSxvBgC+B\nqcAYu50qFNFsAHM6CXDuXCYQT4rx19R1awjpWwRKA3yhp2AEnCHI0bvannN7BExfdfY3GfXRNGx9\nhzP+j5hJj/kjg7aI/3QH7kKycw0+m356tbO266i9AFRnZ2e1HR/NoAWQWIT3lTSCo2yD4W5bbBPf\nMTB3BmR1wHy0HedV4IVhyhIsSYWetmlw8ip4fJ4cMk8ctM7DPNoR592P4NMBsLEDxGxWLU60y1/X\ndrhcma0w9Bo0ZvnGrhFvKaB2aZyaX78yQ5mjxCK/ul/G8/DyYdJbw3ODIGSJDWRd2kvn0WGLnUS3\nhZI4NR/OeN7uYy1VK8EbDp5YCLDMj+BSKG0J8baFTPm1+jzEBc71wqC4rqpXC4mBE1v8+Oi2woIJ\n39htNVTG7ZQLImwbUNdXwseIBPUTnWnbjo6wzPSAQOEjCCOn7rRF5C9P8dcAOnGwzzbHXiZ8BDAF\n0Gy9AqDjbIs1TiDMO4S91oi58fcY+RlyikAY05iauujiS8CshIZ/AbqhBtWNwfSGr/tCi1PIY/vL\nXdB/NqS9rufne48wyeccfWO36TuGSITfkShYGQxcDFFuKI3VcbcN0pyjKMTvpKXZuOzm7+H3TeGJ\nApiah/qs+fZVhfD+hN1uU7v0KUjOvEdO/8TxOtbCBDlrgcAHA/34GOSB4njMSwdwnomF5ntg+zXK\nDvZZLod25nC48zn46CE9mx+nwO05fqZNYYK/Vm3aKJxVszHZgFuZPeeiH37091kbrLZiZG3GxzoH\n7Tw3s+YGceJP7rN8+wegZa4GzN1t4EYbZ3gqHLbAqVlACAQdBeaP9vcQ+WjAGfRGM+kx9eqaFs70\n6+C3a/S+J0bFzqBooBMI0d2hZCtEXipwcaogMFxqTvUiwGObYgaEQFA0/H4XTLVO1UkrKnLyG4i1\nvcSy8mGEjX65LEVh8yFI+cQeXDNYerkckMZeaGWjfUXvuGGXRQJf5A2g/XQ/9/xr6GpVoJKbwrM+\nIUSfuEcY8NI4GDNZg17UYShqpQF3CVAIfRJgZQMgHA3UuUAruLdCx7kVZRMBfrgXGreNhw5/02Bc\nmAAHcwVgcSj71hg/lXEFft77EUgo1TUo7YaynfuhwUY4fpv9P9zf5iA6GJJidV0KT+p6PXy5IoND\nW0GLWdA1Dj6Lwi8HnYg/KhmIKB6tkFpVYQIEF0B8GLg9Aqooy/UvAo52lsOWvBqarYUqFbwTVgBb\nxctxBvmlzcxxg9Pg5/kbr63gA7UbgOrs7Kw246MZtAAA7we3E3zbfL3py4CUDoB7R8lBu3NUTdbK\nPHcpzq+MRD2iXeobNtCtOp75qVBfCn7cFAovVkCXEEwmOM8hGlhLYK4XngwGt+13tjpVioyfpWuf\nlgpmxm/H2Wbl1mucqiI/Pk6z604t4OFrIfOXsPkYXF8PjcsvTMRc9wjOzgmaNG/uAp3vR0uPAAAg\nAElEQVRC4banIXYyIKwzJ6WUWBmqMoKgAijpCVFWudd7zF6v0zAywOKg53vYUR86lsNT3+m9qfWA\n1nCyXPgIwsgsK3Q1IgkaBkuBeLPNmKV8grAuDJY2hZsi5chdmW/xEYSRPlXg5FXQb7rqr06jv3eN\nEJ50a2wx8v274MbZwiVfgHHEW1B9GE5afHxqIlFNM5jbT0rPKy9GohvNUGbra+A4uOvDqXCIXifR\nk9DjEHkbwtm4AuHwVkS7D0QYuQtRLEt0bnxvt1eFHKYi6BMhh2vFRpj6FXRNgs8OweTrYXexPluw\nV2JlLi/M3OXPMC4okJM2tDUMyMOfPfMgXA5GGBmGMDMYKO8MV+bqWO0xkIDa6tw2We99CzSy8wgb\nyOV4vJ6hP8yDJeE2yOuGE+FqP+CKlrPXqCXckKn/k1dJ0OR4vAIbm7vU1Ls57y3B/DEedrfFufGT\nf/Yz/T+32oqRtRkf6xy089QC5lkqX1x/+M0yRcEmj7ORQ5fA7S9TRJfb3B1O5HLHEiix1IaVVwKt\n7IDdfN8/SLb76Cp9bk5jd4km+MnNoP8UoDEc7iLnrF45VEaggTIQ6pWp5uxTy8GfuUuF1hkN/Nmv\noEo0wF2xA3KUHtvWXqpPACstkD3VVlSO5KbaxkwrClJ6JVRt1esTl0BMjD3ozjoGsMt7X9frlJEa\nBEEZqhDknNyKZObNYTjRChoXwOe9oMNaONAZLsuF1dC2FPKbKNs3t58fDNPXQ2kU+oXb0WJpD+h7\nMZz8ED5qD8keiE0EKuP9HPSsMfDn2zX4f0JN8XXVMAicp+vro1ZGlepQAfDC8Nawbxbc9LCux1d9\nFfVzef0RwehgiJ0Oc/qJ2+9rjdCtMbxxkBqQjSqE0irkaIYhoRYfhaMzctL2ewQqpSiq6MsqHtLx\nkQBMmageQFUISAcCxfGKcE9Mw4l1MHtbC3zhZ+mknWvw2XwuNmStG7UXgOrs7Ky24qNZcwMA3pvW\nElzPrdqf23MkzNF8n+pmoksxf9uG87LB3AnOm8Dy5spq2b5OLBis7EP6JExgqrJs/ZfCi72he6ky\naqfKFQxaM0DZtWGdRG0sAS7Jw4zuhLN+jrZXmCAxhu1DlJV4YyR8bQNIm7soOzN3tPAysQjKcnl0\nJwy8Ap4vtgG4ZLfofyUpkuTfmAdHO8Hvnvb3sxrxFn2+zWX5AHjkU3i+FYT/EQ7bTFTgKUnSH7tM\n1MHyWGXDqgvhszZyoH79GeTYZtHRl6EAahlw5Q45lWm3n4GPIIx8qq1eZ+X5A5ozdwsfQRh5wgZA\nY2LQmA7Cxp32n6wxwkcQRm6363gRPoLw4OO75NQ1LtBnVQgzDqExH+AkzOkiLPpVNLzjgtF5COu9\nyOHKhfW27r3tdojqZoOzieh++Oqxns8QZfF0EfNg6FppA4wnEU7ugclXi6I4NQ+WDoKhf4SbE1Xf\n7vLCZ+HwdS9dv4yuwu/ESP/cZPMhOWYTP9NcY6ELZfECUV2aDx+LgStPuyYeoAI5bD5nzh4nl6Pj\n99W7bQKGhPmbX59EQcwuS3QeVfgZOYdtaUHWGM3lXNEwNU3rXLFD12jEW5q37LJ9UpNX1/Rdq61O\nWm3FyNqMj3UO2nloZvyzmM6P4rzzkT9L1Hu6fug+Wdh3Rtf0hyElQ0qJryJRkON36f2H5sGl68D0\nhBN5NbLvxmMpD/YHP7n+WkY3gIhECLDAcyxTFMayz6E6Rlz66goVQTu7RL0IT4BZ1pn5zWdwvDnc\ndhQ+u9Ue5+f2WC+PB5ctAr4cS/tbBFFrebhM35960WkX4DM43Fb8e9MMYqy0PiftdkEDaJx97cUP\nPIfwd/2MRPSIUqCql1+e+aU0Da5JKKMVCewRN/3rYfCGjWbuLlbkrSicGgc16ric2ZzeAgSXF96I\n6QzNcyEjS3RTVxRsOcz6qxTRm+qCpxppW1uTYfEJbfvZHVLLSvkEhiQo2vfk/2Pv3OOjqs91/125\nTO6TEEgMJHINSsLdC4nITYVULhUtYMU7VKGtdAMttLWnYsF9aveGKrTabhCh2lasQhELokFULmJA\nKPdwvwQSCAkJZCbJJJNM1vnj+a0s3Lt713M+VONpfp9PPpnMrFmzZs3kfdbzvs/7vDfBL16Abb1h\n8QCRscIK2SDPyYFeXjWNR8RB2K+BtpBlw6EqAePgNYhogc636SkESI+HkgRcoOmJACiEKm5d9R5J\nQ8AV0P4p0+PTr4VFnRFp24hLmB1AT0culmjEgHXbe7r94df4qq+rDT7br8aOzMqh5QJQ6/p8qyXi\nY9jjAez7R4qcpRaBnYL1chN2/GgRpMlLNc6jdrPkW52NKcKCJ4Utr82SJHGf6QV78nk41lnbZR92\n50utvAdr4hBVzzwn1Jtz9xDsV/doX7Oexfp6P+yh6kmzjy6BeQ/CmFh4cKYO9ruLXYlaEFmmP/SG\nhgMXDIDlA+EDhCEjgKP3i9idHKKL8w7AUyM10+p1sL4L9tdvBZ+X+YmbyOuo2Hv5ECT/CEiES09J\n3h9WqaRldArUFgs3A6WuVPHVUng4DcLWwBCDTdu/jqSC1cAAE7B9ZarKdCwSPk6aAX6YHvZf8RGE\nkY45V2Iy7ogVRy0CwkjHSGMf7lTr+Cu2SUKzxkAY+dwM3T6CMDyN5tEy6eeFkRsMJhX7hVurfO65\nT7gsIjSjv1F6tEeJ0exDbm/guDlQDJPihKEFpUqOLjsonBv0JpREINJXAum1UBKELWNh8G8gtgFq\nr4VJ10Nuez3v9ZGQfwYez4aef4R3xgpzZ28H2qpFYOIn5j37UeXPqSx2h4ST5qEo3IpZGkpq7kN4\nWWvO85AYOBgAPyQcBn8P3B5zp/8v/or7PKh6dtdaETRQAmP8ahG1nQOhzsxge/dOVdIKs6DnJj0/\nHYKR4GkC/tr/M14CLWW1VIxsyfjYStC+gst68hllTIZtcrMx5bi9U+nA8qmqYJzppIvkTcBW4Nvm\nn3/AaazvA5fAfh34t3tl9uAYjTjN2wAv3AknobILeA5AMA7iyiA0Bp7Yp6A3o7+C8VMBVdWuXB4/\nVBsASa0HwqHhNuM4BQJxZ33zXdhlNCGnYgWOAPtRVisjBvaJQYw4Bxua0H8YCCxuMe/vYlkz8Wg2\n0gCBUw9z+zwiHaBA2QV4d4wuCqKMJGEbcAoS6kW8Mgxozc2B/ZUCoYW7JaWgK+TUwrZ74LFNqjgW\nV8PsHrikJxn4MxCEFTdqf4PfhOn9lMUbtUbAke+QQM2kZNVx2DIB3j0BO/4DsqcItObkqGJnRcBL\nhZI3AvSsBDtTJHH5JfP+PCgLaAA5KxEOBSAnEbaXo94341qVftkAoB9lEP2GwPUw57AKAVIAOAxP\nXafsbUkvSD8AJTdf8X6rgSNGupF9SMCz5Al9P30JzTOT/nP/mtWomGlH2Fj1lpzUALt/y4sTLRV8\noGUDUOv6fKul4WPY4yagmXhj/6wtDNooY6oJsbC4DxT2wNr2BuQ0YR+ZK0nhexPha8aa/MbNqrDd\neRrufRqm/EimVnnvu0547zwPH9Tpb2fI9Kxnse5KwfYs0bbF6a7sy6kmFKfrovbtMXD9WiUCK1GM\nP9TfVTIc6K2Yn75Wybg+baDoXvj351UpM8OprcBS7Ol1EBmt484owWIidvFmWHlncyWpMptmmWD0\nAPh9uaRzyy/B/EyYVKaZmsEE9ax5aoWPIIwMvwbanoGG4RD5OxST84DH34SXJggfQRg5dgUs/NZn\nMdKZe7kvwIhzuvk3MfJ0mQjCZdwKWCcU1y+jsoJpTaCr+ZzLURx3pHZJZcLHM+r1Gp8pvMrrqKre\n5W/BneuM9D4ZnrmoROQze0SkBraDN07DxOXzZKPvJJg3jYGKtQCsM0O7Cys/K0kcfy3kX4DR+Zpj\nWlgpgpYA/DQOflQACb1hRj89BzRg+0IvaP9XSLpFffExnaHPH+FQA65BViWMawerjJNzVrJRn5yF\ncdfAqii9ZxLRtVU4wtdimnvXEorA3xUmhcHyC2a/ZWo5WFSDq/SJQYTtpm1yTU4q00iHeU+6fZnZ\nhyEsoPvz74BBa6EyU+0Hzv9gtY412Bk8O1UdbWkkraViZEvGx7Av+wBa1//dsrofEGgUp2tA5dH+\nChYhBEBOVmblPXJvfOxlSf3CekPwWndHP5yJHTETe9NmBYlfvEHYvwT0vCeWqhHV0er/ZiFPtZM9\ncH2C3BRDYyC2EJafgpLuMLut5B2RNRDsIIv5mApovFbGIfF9FRQpAk5C5MfAey/r52x/mLtQBGLd\nnVAaq0wqKEtXiDJTxcCxgAI5sGEUstkNIGJaBAl/LiPhz2WSRpzBtcuv1E+OjRtUncpaEXrtSgQ+\nqWVQnqnnVgPphjSdUTbvmV3wp+Nur9eCwZDggelePf6zXbovN03nBZBkMgZlx2L0erlpclcMfUd9\nYvlFAjmvRzr5yT3NftprtMHgd2FEZ0g1Sp3iagHUcwegsQbGXoRBr8D1ByDsuCQbhZUIaCvM9yII\n6QbD8zoCCXqdnBTYO1rb7R0q4pjuzL+ph6fMSILpjTpPCZch1APGXQR66PhLQrDlWv2mAjezCpJy\n3PaaO6Qzo0QXZ3OelWwGsPz/KUaaa0Cr2NzvSFkfaZGx9Kou6yr+tK7WdTWXk8SrHhaLfQDsjjM1\nh+zefvD6/4L0FZL/Fadj/65c5GzrXCiZCE/P1P/+7+9VwmbWs/B+rWJCZa6SY/nDdT9ohMiMF8xg\nX437IJCC/YtaWPYw1so3RLTOjNZjjox88ivCjYwSxaBSFO+DQIfdLrb12m+wcgx4u0HsJVUtDrfV\n6015ASuwVPb8r0QJf7x+zQud0wc23AkzXuYpHzx1LdhFwjtPXylKppbD8iggJAdh762m/+ostDsi\nG/6GWD0n6RZjrFVk8LE7wscfvKzeOQ/w9p3CyGOdRVpB79PByGOBZozcMAo23IwwsoRmjOSDMikg\nHIx0zovBxxyHeDj370PE6SSK4x4krzuTKUxJERlZfkSY5rREfP8TJW7zOmkmXEKxMJQoYd22i2ZE\nzk/mwOGh8IvZUv7cvpacODg1XsnHYZGatwaqgnk92seyg7AuT/iVa2SCr4+Ej2tg63gRuey2wtDs\ntmB5IH0nhDWB/yQ0+KGx0uzPGUFQ5eJeTjLkpGn/+WekWFl1HPb2Q5WxMhhhm3PqEK4AnBoE/k4i\nZwWlCAsDOuZF+2FEvfk+piJ55CngzYE6p04i98oe+toAJJlM7WiTbMg05Cwd+PFCCNN1heevYP9q\nN3TYjXX+/+/o/8+Aj60VtK/IapYdzntSF7VFRst8GQXRVFxHwRQUME5lKmtZMADungPP5sDiU2rs\nLQca+mNt/VgVNNCMmZlPY12eK9AFeGAxnIGqGEkXm8KV/fO0g4RsiDyLAHDfUMjZBB6orRA4lSfJ\nmIJbtatJF2F5gzm2svt1py9BGSKApE1uoOuCOyzS6XVybjsX6o60EaBC5KGwUqDgC8JE41Y4vZtA\nAmB0Ia7Er8Ds4zwKlE6VLZvPymGqIH2zCM2cHJiyETaUQ1aM7lu0B0iAEW1cffs7Y42xyYap7kXD\nkilqBF4L1blqFo9bKfIFIn3fNJgX+Wv1kI2yIPFDIArWDYXHN0Dt63D5Adhyp0Bq5XEdx6v9ZN3c\n5i/gu049gt+K1L5X1QlQQMTSF3T71ib31PN9QZG+4mrdP3ULZMXDoWrYO0GvtWg/0BYq7oHOywWM\nBaXgT4JJ7WD5RZE3v1Np64Q7R8YZnr16ts7HWxN0QHUx0OggE+6ctisdwLymh684gP2veth6COzh\nLSNmXO3s4KdXY0dm3UzLzRC2rs+3WhI+Wr9/wDX9yN0hKeDP52ggde4ODT6esMSd8VTYQ+6M35uJ\nlfA89p+QGcjjj2qHMwvcpGNGCfi8WI+NxH6sAub8HGvP89h/qINO0fDI09ru0BQNCgYorYXxOxUf\nso2DhtcP98x3MTIVxR9nHuS2oc3VMcfggujXwdcdfrZGzzs8VO9h2SOaaWU2tybpt91xpkjm6PlQ\nAVUZUHfGmGh1kZNxvI2bpDKJsVo/BBIl0oh/G3gQxbwuMOlTWN5kti+733Xuy9sofATF0y5mm424\nsv70K24n81/wEYSRDhY6GDnduD7mdYLRO8zxpiJ87InrcNwDdyxL+hX7rkItAGVQUg2nJkGX11XZ\nKq421acjgEcVJK8HntmhpN8z15nXe9cMe8vbCH8JQAXMz4EZWVDcoP3kF8GcfqqcZcRDZr2Mx0o9\n0OVteKqbkqecAOpg+n1u9Sz/DFRN1Ric+CNgh4E/HdKKJc0H4XiCqfZtL4VxmXr++O7gq1cSsuC8\ni5nztus48s+ohWBEus5hXkc9Nr67UdAch3Fx2s6fAVtuFJYut8y5627Op6OGSjSf3ylcCWo6Im/h\n6HvYBXdeWzoifM71SiJUr4P4SN1uxcj/ebVkfGwlaF+BZa35ugKXt0JzZL4zX/+cTuXHkSZ0Nxe6\njtZ8CxA1BvqthRO94dBh6NhgbGMzYdRqrGHdsNstwGqaBcPkD2xfnArznmTSb3ozJ8e9YO+0VRWx\nsChI3oECQ9dMzfRwZtrk7oCDQ8Aqh9M99NjrE9Uw7jVajsmvwH2Ldft0fxG06ECz0UZzxQsYF63f\nq8z8NBJwAS8DZb6CkFOmTBkIEO5b756/vE6abwJIrpdOc8+YQ8Ca7XQNTlCFgqOR8HEciJFMpeC8\nwG1OjjtfbOFuBeAld5ihoL8zcoZrkV4doCKVYGwZni1Qe6MqkmFR+n3Lm7BllPrbspOhdxVEpajH\nL6a3+sq8W+CPOfDyS/DBTQh0r5BYjEiDtbfppfwn1PNw8ybtb0Z/nRNf0LXgB/j3vnAuTICS214y\n1Wd2wYo81/Fq9Fr1r2XEiwwW+5WR9AUFmhsaTGUS2N4EOWGw3SHiIGB3XLCc4dhOL1s8GoEQMxQG\nbmo+z82OWY51coK5uqmQ3bL9ryJo0DIAqKWCD7RsAGpdn2+1FHy0HlpG8A/fIvJhsFbXwpNPK2mY\nUaJKV95G/V05EQY9jRU2F7vHvSI5/tGQswAmv4r1633YNz+mPrUIIx188ml4fq7ic9JmEZML3XT/\nwmkyCgngDokGdxhwrxXCkZX3wMaBijfbUByxDAbGoDhyPqDbJahylr0WfP3lrnsK9UF3zYTh+7Dy\nwN4C1liw14D1fAj7P8ysr+GvMekALD8uyV7vHZIvVt+imJ64BRiJXA6diqAzU/KT0VDUFuoD8L2X\nlbByjB6cysmsOTKXKk6XWyDmPTk9Y5UuPoLByATzRzzCx0SgDHKKdbej7CgwmAUuYZu6DeEjfJaA\ngQiAGR/AGISPaeb8HjaPlcL0a1wiM7mn2/t133oRlikb9ffKY8IS/93os3rHmJB0OQ5roPJ6SLwO\nztRBugX+SIg4C1sj4ZZqnd+tkaqu1f8VGtrCzg4wehfcVQ5tw2FloxT683OEU05LgNcD3wyHr+3T\n7Q1nYO8DOta8TjB6PSwebMhXEfyip5yn8zrB6DVqR3DOm9OKsGg/rBsjXJ23Xa/jJEFXHjN9eMdh\nUrZJUlfqHGcVw6EsdI1wDF3LfXg/3PyaOzrgMMBQ6LpJtzPM+XbMxBLR9aCDlyHzHMePgFaM/J9W\nS8bHVoL2FVjWmq8rK9lzsyQV+3GDNOiiN4CaeZORJCEDRace6B+5BPhpFnz8hpn7MlfPnfe0MqCn\nu8mB62ZE7D6IVZAOAq/NJvSD+Wy7qOAeucm83tha2R0DFNXJevjiCc0EAYHNlBd1O6NEwPPMHBj3\nph6b8YLIJijQnzTHmQhZJuM3uSdMNzNVBr9jer1QdmtVBzTzBAhOdq2IY9I0V8bBk0Fvupm0kpuv\nOHf9kDQkiBvcggigS80xnTfn9VMX+/ypML+LgrPXo0DuZMvuitMstG9thOWmlY7vL5REJamM+oBI\nWeA8VBhjkIx4ndfkC6qA2X6IvEZzbIJ+lAFOgv77ocQL/AoYL6BYtF/HPSlTWcrgI+BZpvOTnQze\nKB1CbppxqeoEs7fI7cqppBVXu30DzmPF1Wqmfnq79jE5GyLPaUzCC2eUUZzcUz1zXo+pXPYTyRu9\n1RxzAq7bV475zlym2cwloQL8t5nzXoXbS4F5XiLuKIIU9N0+brbfB/ZqsEzvuj35y40dVxt8dl2N\nHZl1Iy0XgFrX51stAR+th5YBEPzDt/A8+DIcmKh5jzcsUeUqf7gcFp9YAMsewfptW+xX1mOljsZe\ng4yqAG5bB/7RWNOasDsNNr1jXlWr8ofDGxNU4fqmhlATDcw0lbPidEn7MkpUXRp6Gr43U+Rs1rPa\nx5xnVW3yI8deZ2aXB+FLDi5G1qMeq0RgDapMPLRfw6tjjItj9mG91oJZMgvpBcy9Ah9jIJQE4S+L\nqI1aYxQEecYluRuKfWV1Ou7T3aC4s0avLHlCGHm6h3r4tg+Evf3Vn+tY4X9nvpt0PUlzz3lWmGIw\nCCP/Jj4CbBY+gjDSmU/qYOQgMxmhuBpKuqIEWhDh4zaEfw42xphzVMhnep8wlnoJgL+nzu/8gcKJ\nwkolLtt44FJQicxZW4Qpz/RCEr2MEpg+n8Un4W4fxJ8Chsn1cuFukas1A/Uatbs1DNzbF2qK5HxZ\nuQfiSyC+FjgKo+PkqDziMrw3Fiash1UXJV+ck+OqQ7KTRZxy0kzisi1M6gTPHNC5dRyb5203Usci\nU1ELugRufHf9zuuk/eWfkXHXohMw6Vp3/A3ofqdVosRJFlehiqVT3d2CPpg8NNqnP24/fXd0bVKE\nS8BTcBOgZ/uDvRvKwP4T1L8K0S9/+fgILRcjWzI+thK0Fr6ssStFZJw1bJOyJTtxG0xBpC2T5soT\n+xAQOQH08EDYtw0mZgpseu0WcXCGEFemyI7/ht3w8MsuOCx7ROC7/FuQs019Q/caS8Slt8pJaOU9\nyiiC9u3zCnTHr4YHX1OvnCPJ+O1s7e++V6EyXc9Nfc2VF26TIUeZUb9FJAP1UF8uYLls5B9eW/Ng\nZmRBYQ2kHYVIQ+oSvyY3rc7bJDVcuBtWOfMbMxHgHEPktQKBuMf8pAArUJN0MtLpd9X5HHcNrLKA\nAGTVCtD8wLiOAqCkMFh6VME/3QMluUDZUJ3fya/Askc49fsJtH0PErZCZR6Ed4WPYwQObTwaROoM\n9Y7yQ12SZurUJaqB3NcFunwfGABkiMgesgRGs7a47pEZ8a6l8NRdML2zC+bF1e7MF6/ns7bDS+4Q\nGDnyx7xOup3XUdvlpgmrZ26BRafVTF1YCYcqYfEdeq11Q5Ux9aea83kQ9UEcRJIZYEsXl9z5guAP\nN+c8iAs+zmfiWBoXm8+iEp34aqi7SwAEXy4IXW3wuZrt3TfQcgGodX2+9WXjozN2xa6egRW/0DXx\nAFXMcnco3v/oDfhLH8X/Wc8q1u8aAs+a3jPHGOhKNUXBAOFI9iF3GHRhD5cY5W2Et+dCjKlkfbBO\nRLAbkLRZjo59RkqtcbS38PEUiu0jced7ORWfIG6vNqjakIpGnqQCq18W5vbarZmYC2VixDt365im\nvKD3Wpyu9+HE96mL1Vaw8h54Yy6cK9dz5v1Ezx+/Wu8HRESd+3q9pttdULxbNNtUIU0Za3NAckWn\nKpgMCeeFkRGO3L9eCT0QRnptsBth0THF7rSjeiyyQvgIwsjCFLeStuoCwkf4rLV8d5Qku9L58RSw\nFzdm75PE3+sREWomdPUwPVuJxIrHoO1St9LUpQkR5jpDSN+awOKDwoMnDqovrzodfh/nJgQ7NAkj\n6/dr3lxcOcSdgso++vuFWHjmfZS0TjM4nASTvDr07LYisxFxMvlyCJiTaF15TJjn2O/ndVQSdXym\nXvtcmPDTF4TbYuCYOefZyUpwzshSP/hbldqmsEIVRZ+ZkVpQaiSUDcZd2UmsBxE2FpvzXCUHy+WF\niKA5Vcru5nOpRNcvVSihfIrmcT3N1c2DUDe6ZeAjtFyMbMn42ErQWviyxq4UaM35uYBr2CZl+pwA\nmIYufp0ZVM4/ezJupsWZ6fEW8GNcaceAtfCreS65cmQY6+7UP/mv5sFHsyC4RwA093m4do+22ddP\ngaINYhR577sZ1ZPlqqLN2AdrYkXQwJhjOA4X6dBjk+QfnuN6bDtQpVkqoBlijTVgVUMbh4iaFR6l\nni1QEG34VFb/IGtjywTOt7wCoEOVKLg5krn2mKzmULhpkwDIgwJhD0RwY7TNuGhYMQQ862k2E0mo\n1wyxhHBXNpIRLwCiPQq0jwD/y4wMKBhAzcPziYiDhneVAQx5oKmDjruxFuL2Q+h2qC2VPXLDCQ3x\njFsBTV+DsHpoiIdHtsGKQbDuDkkuRpg5cS/fIbll/0ZoatRYhG0XIbcNdH4Nzjykxu0Fg0WqepsM\nalijpCQgMMpN03MafDoOK0Jglp0Mdo0slJ3KW8F518bYIYCzd6r/oKDUzFlL1cDtkpA5NyeV4XW0\n/IP/bM5rCBEzxzGsh7ntJB0cgrfb/e5Pj4b5w8DzJWcJWyr4QMsGoNb1+daXiY/Wi9+GwixqBs4g\n7l1DXr7xsf43z5nYv3miRrY4Drwx5SJcXj8seBJrnpJ69uSRWOffwb65r/CmsIeSfj4vVsTb2JPP\nQFU3Daqu6oa1AHgb7JgVImrPLYXHZmLteR5G2Ni7f6nX83mFkVNehEkTlPAztuj0RBevJbgJuRRE\n1pyYEgL+hPqlByInwd5r4aV5IpALntSolPHvwm/vlCRt1f06/vzhqtwdHKLj9vqFj6CKW7912kcH\nM/flXDnWN1Owv9dHkr4zuAOYQRjpOCj32OQqPmKQ0yTCyLyASFioHpL7q+87zCgmws3vP5n+ZHAx\nstEU9qxwFx99QShpjytLdzCyyEgUUje5x7AP1xXYDHTeO1SYMnGrznV6seL7IdM+sPgO42ZZCA3f\ng8jVwE3o+mXbUKl4Vt5DQ2UyvAI1aep3j/JBfV9hUVwG1BwD26NDiagRjqbOBxuObgsAACAASURB\nVIZCMBU8v4fVw2CpBRU9XDI1PlNuig336zgzzSiaw43QrRaizBw6h4zZNWo3yE1zh1o78khfEBLP\nQHwnDRwPi9LnYEUokbypycXH7GQ95771sHWCMUlBFbdVjrlbOCLEtTR7CTwVZ8YUmJ5w57PJuQzb\nnWsXx4AshPrmHdv/neb71BU435rE/HurJeNjK0H7Ciwr5pLretd5t9scnYzI2RkEGLuHQvUmiB8K\nbNIFbgmScRxHF71OP1QKCgqdUyW1WNpJBKZNKrQtg8XGpr9DChy+wjff68fKS4E2YBetE/l4bqmR\nJp7Aeq4L9rtL4admVspBdNFdjVsNubK/qGgoxCr4P9Wk5uHa+/TU8CgIM5mvwGnJ60DZqXs7u0AT\nOA/15yCinf6OSXPJWt+3TKXLMQapRkHMGdpZioC8K66s7jBu9eY4CpztYUVvmLgD0utFiHxB6ekX\n7pab5fyblClbuAf8l2crW7pwmj63ggFkZc/h4/7QeE72ylZI7Rf1XmjzPQg8A7UpGvwdXwK1XTVD\np+2H0PTvEHYv0Bl+GYD4x+HhVM1MK652m6kzIs08unAzc8c0ikfEQlNIvWkerwCpoRx2hUTGZu0Q\neIzPFBA1lLtgHul19x2shL9arlNXQamyjk5m0OvRMOxJHWQYQoVIrNcjG+QVd7i6fKdHobASSgJy\nl8yI19/+KHRR5YwoKEMXXaXm+3wQaKuewFmLvnyp49UGn91/f7PPvfrTcgGodX2+9aUTNJ9Tgjjk\nEhJHXZG3Ub9/8YaSeXN+Lrx64GNJ3wESorG+Boy0sb9ticBdWT3LKMG6tR/k2tgvbREhmvKiXmf8\nalj1PFwCnhspYlfTD84hBckHdZqzVthDlbw2u0UiUhD5CqJYDsKcj4DhMVAQ0AVxAGHpMvOc9ggH\nPCj+hKVCg3EGdmaSrbxHx9EjGmsm2FPrRMx8CVjjTWNYG7APAJMegx8s1X2JJ3S+QBjpQftNQnHN\n0dGDMLJ4KHTfBCXCR2+UZOi197kkLMwrfAyLgPBYFx9B8TtwXv3Mvr3CSEfiGBHr4iMYjHSklF3M\ne6805+8kir+OmcVhXAw/rnM1Ik4xfdYWzdNMMIqW8Znwm/4wbKNUG7OdkTlNY/RdKk7Xd+HCWtLD\n4WBbsHqCtUdVtNhyg5XnIdhRlbJADwg7B/GlUpnElUPYEuAR2PcuVHwPenlgdQd4KAXGboO3BgjL\n6sol7wTYUQs32CJXDT6RrlC9iBdAdbRw0THvAuFXUpiSn14PZEXp+QWXXPxyFCcD26miWVwtknYo\nAIuNVHPqRzC9t0jh5GzNPc2K0f7BTfoWlBrpqkffzRE2bIjFvUYpAYaZz8rBykp0rVeuStyLpZoN\nB60Y+Z9XS8bHVoLWwpc1dqVuONr71E3SI7dFwbISBcvB5nYyirR7ypqlec3kaDtq8A3hlsHbo4yL\no2MOAp/OVo9a5xMQ7AZDVriSxeJ0+HQiXCrXcUWnQFldMyjZvnXKsC6cBn+Y4FY/jtFs896sZQcR\nzBhgPczPVpYNVLG6tB/a9BbIVBfBxiQFyqJqSLkMNabxOb6TO/gzLELVo50myC3cbYZkGrAgBNyN\n26sXgcA4ADT1h2t3wxkYdwFWRZjnBFAlMkbbp9vKaE2KdHXnxdUiG9nJshSm7RgY/wb02aOLhnkz\nYDtU3A7WcYFrQje4+L5GEDTVQ9N2aOoFjUXQFAbxFyDmIgS9qrbF7AT+BN+OhH9bAFEB8F0r0F0W\nkhVx9WkdcqQXakukzw8L17mK7yyCFhHrul+lBXUsEXHqD0gKg6YI4e4v99A8gLXJoJPP0ryzGVku\nIDnN0PO26/0XlJqsn3GdGmcqfI6mf+FubXclkC0YbIZoO1lBR05TjZvhDqCLmACMM1bIq07pO5xj\negsARnX+4uPI1QafPX9/s8+9+tFyAah1fb71ZeGjNToAo2Zi71uMFbFQlY6EaPWGNdRBj2ipJoJ7\nsLr0w36xM0w8jZUOdu5MWPq8/m8rUR+ZMwfRTsEaAvYWU4HLKBHBKTRDKn1ezVHr2w177wkI7yZC\n1hP1OS940iWKk1+VZP6du3XfDa9JwdAJt1IWwI0pkVcMfnbWNswcMWAQwisHo0pw+7kdmVka6lFL\nLhcGek64bQH5w6FNijDS4COTX8XyTRE+fjga1oyUcgNzbpwRkCHc5OFOczzoWOabHuuC88JHEEYm\ndHP7rzcmGct5XIyMN+0DgVJt22Ri586gwcdTKO46o1h6mveYTPPsSRKBmv4Qt1v3JyKiW4U7Ly3V\nnKcIozBpr/2t6K14fx3w4HZVjhIA/5l5xlzmeVj2GES8Bn5oegzKP4SoDurBTrxOpCpiBwTaapSP\n1aRk5jW7wfd9iF4KEfUQ9gZsOAGX0+BrP4bGTFW3Gmsh0FfnJCpFZMxJ4loRSjxGp+g8hur1WINf\nZHZXSETLwcVLQdfsxK75bBXNDkn1E52i/RyqdyWk47sL83z1kloWVwszFwyWFNLpYy84L0nolm9o\n+4LzInHZybC9Bvd6JRklv3cjMubMMXWusYp0/udfr2M4Gg0f3frl4CO0XIxsyfjYOgetpS9n9kv+\nQMhbL0ledH9XshGPJBnl6B+3JBMiylRpMHp1hiG9fjgiYQ7AtEXAUIFIXjUideNXQ/5IBU/PCQ0X\n9Xlh3ywsJio4BFKw/pCMtdQ4P2YswD5unjtqtQB0N8q8Xan9d0wj4s1rVaFj9Usat2Aw/P4mCF4S\nabDiFJwTr1Pw+uUe6BitTGFKLpRep0bivnsgcw38cC8cRVmxG2zJ75pf1wG/agSKGUi/XYQA/dzu\n5oGjqy6g92nkollOMPRDSZRmmSw/pUDt9cDIjvBKb2PzCwLrZHPx4UsQOTbVrJeDUHmNiOYr7USm\nwmMhLARNx6HtDEhZJUJ2/PvgeQlitmrwNJehfzHEPwfRCyF6OMTsg8nhkiGGRUDtGZ2/hK4iZ2+c\nFtg4GcLGWt1O9buZwplb5JIV9KGeP2P60T2k8x8WLgBKaDCEtAFu8shhC0SyZvSX3n58d32O47rI\nnj+3vciZ4xy5xHjIjM+EBQNg6136bEc435Nw871xpD2Ok6bffIYlAq78M0AqVIw2hiU/UpbS+9sW\nGWtbV+v6Si1rtEZf1E0z5OzNKYrrt6yD29YpKdcGEQmA6Q0yutgJ9quxIlwBZHv+0r0iZ7k74J27\n1UuWj2Lj8m+J1OTfoWragYlY/UfD6w/LXGTyq6rEdd+jCh2oerdxiuz95z0plUJEGYx7TT1Nv3lT\nsb0c2Hy/8LJtjDCyOB3eLVNMKUaYOBgxCBtX4RHEVVw4tx2r81OZMGiz3lMA4aPpK7PyUkQmfQnC\nx+ImWPaw8NGXAC8+JmyNQRiZZl7f2f8+c0670myoxBswe7uLkcFLmuUVYfAxItbFyI7RLkY6+Ohg\npIOPDkbmtkcX9g5G9jfH4GBkDLr4L0L4GDTH9jq6/vCY4+yPzm0S4Dck8bzum7IROl+S/G9OjhJ2\n/qapqkLOeB6mLBHxz1MF6eNS2NkNXgroPYEIT8Ro97uZsBOCt0FTFNQgaWOYmVycVgsdDoF3B0T0\ng7Y/EO4lGnmh3Sj8a6wVgaovF8FqrIXYDClcQMnNyBThHAjjGmuUxPz9TTTPTmtqFD6W2Dq/HoNz\n4VFmzEB7/eQbyaQjc5y3XRg7dYs7iLuwQuRt3Rg3kblkkMigz/ROZtXqd45jIObY7Nebz82P+gNT\ndP5Xmj7E2LfN+2rFx6/Maq2gfQWW9cQiOD0FFscqmI+thVEzRYYiyhQYS5E9a8ZrLhkBBU+A9XfD\npbfghzHgD8huuCKgINsbDYS+bAwtitMFeDOMGUjnJcpsOlnOJVNglrHm74DACDRP7YczJeFIPC5w\nBGnqE4/rNZ0xAA55czKEp8ygZCQZaPDpB0zWz1SznAyW13xVIl+WNG6rMRVJt6ByF7Q11ZSFh4yk\nwtjNEoMyqyFEEtMQEJXCfFvZqlWWCJhjy+tU9eAKyUGNOZh0GFcvkvZiH3jyMCy6wex/0xi5mY0b\njd0uFo7JZre4GjaUaG7KkjuU1Yv0qjetpiOk/gTOb2qebUmUcxoB71D4bjn8qhAiEqGpCsKGQlO+\nMqQnYgWGV/bjxXfS/JeYNGCXMo/JxyAwTOc2hKpij12nSlnBJbgx3GQUT+t3Y60AJ1Svxuj8M3rP\nj10nqUdGvMiRUxlzHLFWHpNRizOrrdA0ZucX6faCwXB3so79TWBqoc7rqRGabTMiDjY4Vc4k4DIk\nHJSpyIgUOXR9XCrwKjivc7vyOPi+88XGkqudHdx7NXZkVl9aboawdX2+9UXjoxUZoOZ3CiJx8Ypj\nLHhSlSrA+kFf7KUWrI+Fn5k+rezD8L1H4NMn9Hf+HVJg/G4kFn/Bvu+SzKjaIMK2cBpW7yGQDva7\nm+HyENnrO5JJR/6WuwO8PqwPn1c1LXeHsGj8ahHC1x92t31xggLlm1NhzGK3ahZr8G7sNlgw0HW9\n64FIR0dg5kC4YxuMinGNTM4HhGPZSMr3M2N5uOBJvfZNKeoLm7LENQB5faJw8f4FWGmzdN85sJ9D\n97/fR4lXy8wjrQDaZ+o9hQV0PFtwe6L70Dwbcu9o4SO4GJlgnJSvrPCAMNLBRxBGOvgIwsiFh0T8\niMWdo+oYdsUgfNyPSMA2mG5MoTZEAQG5Gc/epmQcmJE2hRq7sr0KKVQ6CiOXXQeJ76FEZ89MEevi\ndKgbAj+KBQ+Ms90RNvlFSrwVV0PWPmhzO1z6ANoeAl6B83uhHeKOmMMOAgU3wcUS6H1ec1hjXgT6\nQsMCYdiZOmhTokpaqFbkrMmQrVC9DLriL0g66emrdgC7BiZuhj/k6DkxaapORqe48sioNuZ/J0Ky\n0kivCPT6M+4ct7xO7pgaR3EyuScMDRN2+4Kq1m27CANi3Z7CYCU8vMc9N6PWaPYoAaPoScC9DgyH\nnEid/xXD3B68UWug4APwmvbIVozUasn42FpB+yqs7zwikrRrjK7al3UWSI16y50Z9qwxo+iJAqtj\nFpKIwGfsW7Df6PfPAJcDCrrf3Qbbh8LXamHBeu1jxgsCn0FPiwhmlMjef+U9ynTlj4Tsw9hhC7Bn\ngb3ckLN2ezTYOuW4CFgx7lDpqkwRw9JMGYMMRJW8apr7vPq+q4ZdfyTcvlVzSj6OkfX8vO36cYxB\nCmtUxZlu5BOj1ugnVA+xHSXF81m6aE+oNefIqZo5M85KzWtXAvtEMt4YAcHB2mfVVL1mQakCa0Gp\nKkQA8/vJGZFSSSiXDFJAXrQf+GCM+gEBjozGvl7gM3+wmqRz00TOXh+pTepTRajiTkHcGeB6aH89\ndP25VCPthipR5r1e2/ctBOs6KKwysvNNULFH1a/Ol4zixpx3uxHKt+nYAqUQM056fn8HCJQISOwa\nmNwN7t2gTGDPSler39BBbl9OMzroAuE77aSbtyIEPoWVugDIba/399wtOvdrb4Mmn85tQoM7uHTt\nbdp+pEkkfBIvW/+9twMV0OeP+k4AjAtDssazwEHZODs6/o9LNYsuN81kg82a80mLjLetq3V9ZVbc\nG28S16O/yFne+67MPneH+sRyFkBSpYhMRomZQfZj+OlSrJwpImfngIXTsH33i5zlmUHPXn+zO7Hd\n415YeZNmme0aoiThrGexLkyBPaPhP+ZCcboqbl4/VpuJOqaRH4vMGdLIkidgeK3w77uL4RvbNGcz\nhJwX28ZoG2NmxEBUrfIZTeHQbbBlkm6fNfLHLkDtUNg5FH5ai3X7aGHksof1+H2PaVTNohmy9195\njxqLf6fgbn+wThj5OjBqnTBy4TRNqXbMjswYGYoCRlFi8PEm89hx9B5qXXx0MPLjGBEzByP/dNyt\n0BTWCB+duZcOPib2EkYSZfCRKzAyA2GjM/bEmUt5DKhWXF83HLb0E1n7QT8RwIJSKSeWHVTv2XZL\nPdlZkZBTAatiTR/0d+HU7bhuz16/qqIByf/zOglL7luv246BSXQ2VL0n06ygaYf0ApHXQxy6lImc\nokO9Zi8knZdoqP5h2Lsd2Cty5j+h/UXEqQ+t/pLuC/p0O3ozRFeBv5v625oahVmH6nVt4DFql6YI\ntQxExKkC1+DTfkL1xj8lWQ6ajTVKTGbES2ECbr92Xkd4/XbdDo8VrvauEjnrXaX+uAYfzRnal8w1\nyKwtKpIlXJaUNCNehPgpL+REAx1he7nOf24aPJqhzz47GV7/AVyIV+WuFSNb/molaF+VlW90YcO2\nmezkcIHl4aEw19geRweUQkvNhEG1MLsWbjZXuTcchZvXK3N3Sy0M2Q+3v4u96xbtr+dmBejfLIW+\nr8GpTmrczR8uIJ1uXqMyXU3Lt74mQLpvhSQv//qYwK88U/vpjiuhPHxcblUvzxaApR2HPwMlZt5Z\no+bHbLkdypN0uJ9MgO2VCj7HwhX8HZfAQW8aKZtHg5bfG6sM0fhMBd3oFNfSNv8M+BNQBE9H6bZE\nYCMikIfNTwqMa6+GXn8kPD9YcsrcNL3OVNOPNTtBFrmzj+j+6dfCqdGw7ARM2YoykfnDBUCFWViD\ngTRYYYL0/MHwE6NFjzLXALGmMbthGsR8A8oegbofA6fB+i1QCpk/RJKdTrCvMzQdha7LoV1fiHkO\nUv5FwdxuVGavyvQOJHSDiASwi4AAVBkXMKsJvFkCFCtOVbNXeovENVwQUbPCoaEAYtOkzQ9W6rcV\nB542MhIpqobRprpZYCpZCwaI7C0dqv1/+1O44UO5Yo0zJOpwo85Bo0l/Fle7tsfTr9e5mn69/vZ6\ngJPm8w/CijRlIfM66aLk41Jou1zVuox4V0r5VQagsKv407pa1//Nsl78NsHGWOykCXDbx6aH9ieQ\nfwfWpXXCEK9fFbNbomUpn7dR2+UPx3oG7GnA/QtUWZr8imsykrwC+1d18Oh6yRl7gbX7DZjzB1gz\nEXqC9f0Ubd/LkLkxSyRzjCnHergfdj5Yv26neO7M0/Ql6PYjTwsj3x5jZqV5VUVbYqzyO+8WJg6r\nhVenwrRaOVJeWwuPL4eqaO1n4n5h7rSFIncFA+CDOhEtgIlzYN/NqvTNeAFW3G/G1aTrp9MmeHyO\nqnuj1qkPbfxq/Z27QxjZFl3NH0P4mIkwMu24cPzPkFWGElUGI8uTpBAAFx8LK4WRDj6CMDIjXvj4\n2q0uRkYluxiZf8bFx2aMLMJtl9iIi4/lQIrwMXhJ8drByIx4oyw57zodguKw87OuC9z0AYQthS4X\nMkWwZ7ygc5G7A/pA29XaR0lA+xm8Vlgya4ved1gmNA2AhhFQ/u8Qvhx4BNosh5h7gfcgtATKxsCl\nTGgCku51J/z439Hv9ie1v7LNwqdXoyVrDPeAP12GIzFp0HiXKmttPpDr47tGKRQRBzVH9FzfEbku\nB0p1f4MPLu1U4nN6d81Tyz/jKm8corbsoMhueJRLGEtsmHBYCcegX9tGepVAPR4FB69oERjXUeqT\nydnuOc8/A9vrIJSrBLCvHrqsht8Vu20HviCMdarKX/H1z4CPrRLHr9iybvwEq0s/eKQJ+/IUZTYL\nBmiQ9Uv3apvDb9D0oxis297D/lBDT86fP0+HW36LfXoeVvcD2Md6fXa/nQLwq3vhzrWSPXZEpAwE\nsKC5MKUoWHuQW9CRqcqsPjVH88HeMda6CUgeASJrL81TUM7dAS9NgGpI/1D9XAl+AcSpu4x+/vfu\ncZ0c51rmWxEwb48IDmgGTJPJXIE04842z/iAImnaHatfUiG9Vq9JOgKetrKABzh9v7KOC3fD4lzw\nvKLsYHYybEhCMpNEXOv3Cu0/N80NuouahsKwTVhTarGPb9aO//VOFidKXw4CtsTFUPmonBajU1wp\nQ2ONeguaaiHxtJKxAMEECGtQn9qLh2BaNIR3kM1wZXdtZ4X0d+IAuFwIdhA87dTzNr27XivSC9WH\n4dU2MK0jRK2A2rEQtgns2yFsg6pr0ZkCYitC0o2wKJcABv2STTrymurTcMorQAERzuAlkbjwKL1u\nKKjnbkiQpDF4SY/90afBoFacLjwmrtcAbqeh+vFsuOVNAdD47tr2yhk2+UXuQO6C87pIcbKuM/rD\nfdd9MTHlass3DlyNHZnVi5Yr4Whdn299UfhoPfkMZJQQnLYYzwtTRXCenaseqUV18Mk011r+Yj+R\npzenyGFx3tPax6650A3spKexds3FPgHc+7T2E0AKjFnPwtvXY/1bDMRoWxZOM+6NL4jI/OINyFxh\neqKHCzumvCCy9b+XugZU/jpZ++WPVP9z9mEXI5/bqn0N2ij7/q+twOo1EfunqIfMmb/m88LlzXD/\nX+H1pyC+m/bfAaybwX6pDlKj4WgsnMkUoXpqnp738AyI6C983I60dolIqbJlKkxYDM/Pg1lzYBtk\nXYZDTajck4jwMQD8YZ6Ox5cAf7qT9L8YrEIYue8B3f7vMNIyiTIHIx18BGGkg4/ONo5r4KFUXBOv\nIcghF5rnaqX7oaQa0uOFkVO2Ch8j4oRjuWmwoQNQC+knoWQIrhNyEQQnqpoESqwtOmD6zwqz9HlX\nvQb9YUWKMHTBYLUDhmplWX/TCYi8Bn5wHhakCo/qLwHFwrvYSqhPgOQ34NJ42F8F1mbI/gbElUrS\nH4rU64c3ABkQ3U4Eq8GvXu3GWilGolMgsFPVM8YJ92reg1AXYXNUG+CIvm4AMcbELCLW9ATGumMP\nCi5B1nlIzJaU1HE5LihVz3ioHtrdZLA6U71tjkrFae/wtFf7weRs/XbG2jgtAs3zR7cAqWoN6Bit\nvvN522Hv3bDdL6fmQW+rsjYiHf7yDWh6FdbktGJkS8bHVoL2FVzWbe/B+SHwb/fCQ2/IstiZRfN+\nH+zux/7Lc86ePcvq1av5l3/5l7+9T9uS3HALcI1xM3RMMnaj232QXt4xb+gP/G62bo+fDyZDlWUC\n0fZyXEeqVBTwtw+Fnsa9aqd6vUAX1vd2ViYKFBgjU8C3HqL7QVmCm4FyiECyGT7tMdpvx5XKmR8C\nJjMYlBTA6zGAF440gwb8RrRRNSa/SP1SzpDmKRvd7Nf2KrO946BZi4D4mGzk9z0gWZ6/wxhdfJzu\nBt1g8cpYpn4Egftkf5wRDzkJAje70dje75SkAoymPVxGH5bHdYgKCxcQxJTBD16BuY9BlEcW/IFe\nAqGwBggm0dx/mDIQatbodsQQkbOmemX3GosgoUSzZqIPaR91SZB4VgQtrEGkMOTV/BlPG5GqunLX\nphlk4x+qFwA583YyzTweOwS+owLAuovGZKSbKnzhUZ91k3QywdnJypiO766KWHG1PpvJ2Xrcsfe3\na2BqgS4Uphbofq/HyFEs1/IZvhgAaqngA18MAFmWFa2Xsev/ka/zz7q+SIJmn5uD1fSyKlB5G0Wc\nfnkHJBiHxVFvwUcDsQr82HcZ7+537oFvroevrVB17dAUeMr0ns06IMIE2JuR9uwEWN8F+1OELVvA\n+g7Yl1ZgMVGVqsFA1R7NFFs403Vt/HSiTEOyDzfLJJslh46D8MkhSjiOXqt42LEIAqb/7f4FSioW\nZqkit9OQwOk3AKOgZx+sZPSPA9g/q4PTPSC2TMd6tr8qcSHcZOU2lNRMwnU17A/c/67O4fj5QCa8\nc5ysZDhUDTnJsD3jipPfH81WyygRRhrzlRH1imVfj1bsDZS6CT0HI32D3aHLDkY6+AiK3w4+gouR\nfsfW32CkPwF3FprByBFt4J07FeMduaTXo30s3C2MLHFcdpOAGFicDVOP6Fw8daMSaPlFZjbm3Uj5\nM+9JEbSjuwmNE+naFZIpx48PKu7nVMidOTwKLu0Ab1/hUGMtNFzSsVrhIp++vUpUbjoMZWUw/jYR\nqWseBf984RlAWIYIkPc6OR0DhC5AbA/tK6a9cLnuDHjP6vHo3RC4Sberr4E2J4W5dUlKjCbcADVG\nDZLY30wQqtZw61A9PLFPipLLTWAfVK93235Q8ZFeN+gz43EiTPWuRvtqPKg+uPpUnWtvlD4DZ7TN\nR3eoIuqofYqrtd347koI57Y31bUiVdpmbXFx9o9jYPURvc4/M0a2ZHxsJWhf8WX9/gHsh/74mWrZ\n31rnzp1j48aNPPTQQ397P2u+Dv3WikQFkfa8CGnRe6Bq2DGkjW8yXcdlAYFUtdk23GxjgvS4OFhV\nhzuv7fWpMGmx9r/eVLPMbKzsZAV6n/n6OrO4nMbbn+0SSBWarOmVIOEAU8F5WHXRvCGHSFWY4z9s\n7o+BdXmuNX5BqV5zbo6kck6Gq9ivxxcMhjYeuRwuaoCEY+DvAVnFInNd9sA4v1vhGR2TChmnYdYC\nyB/O9OcG8twt6hFr01tB+P3LkHcNVGxXL0BTPYROQsR1Ao5QvapfIBIV8ghcIjqJzC3dDt9Ogst3\nQdwxgVJYg+QZnhoBRqCHyeadhIRzsuNvjNZnFN1ObpFRPj03oh7CiqCxCzTEafZMUzjYYQKg6MsQ\nkyey5YwyONzoDvtsatR9Vrj61aLaQONREeuag2CHQ7iRrlKuZu9AqXGMRLr+mDSB0y/3CHy23gV9\nVioDuOq8SHN2MvStU7UuO1nz5vKLdDHiDAVdtEdDsEHP2WAA2J72j40tVxt8Dv79zT736snVByDL\nssLQwIqJKCqEARaKCJ8AfwTeag3qV2d9EfhoPfkMgEvQJr8qsnNktJKB836iGWf3vSpC9uh6OB2L\n9ZEP+5sRqk4FJmJXbFYv2UNLmgcuW97R2CVAAKx0YDDYg27VC+cPhw1z4ewJESVwjUDyh8Pzc1Wh\ni3BnjTUTM68fts6F0j1YX++HXb7ElTtWdYNfPqbkpdOntvImySmXTJGT5Lo66GTKIWmz4ZOHYeAl\nrDkD4cUIbKdKN/1eVXzunw/D98Pe3pIAdtV7ogL9ozm2/rExUG96yqpoNtngJKwYCRM/gXHtYFUT\nwsNhCB9BGLkGCFf1asFgV7btYKQzUsTByJ/tgp/dKAMM5wI8zWDIzqCR9/w/hgAAIABJREFU/F+J\nj2j/zeNnHIw0+JgR7ya8HMOoCeulSvB63PhbWOFiZNgHMMmWEsIfUuISoPQuGVzktofZPdH1Q58d\nsPUOjQMKQe2NIiWOTDC2GwTPCyc8J6E2TfgSnSKnxYrtEFMBdUYyb4cgukKE6tMQlAfglj7CnrbL\nwR6kKlp9EgTjhKfR1yhhWPERtDsC5dkigL6jLv62OWHw8QjU3AJRl2X1H18KViOUmTFBUW1kOhIW\nobl0wfPwUQPc2UFkMlQPL5bAI41uBTAuHfzHhPHVaXrt2hIlNA/VQxef+txqi4WVSdnwrY063wkN\nmmGX11Ey1qZGeLVUveSNNfDd3doO9HksO6htVx53iRzAum+A59f/eHyElouRLRkfWwnaP8kqKiri\nL3/5C9OmTfubj4ctCWBXPA2j56vX6QiuRHEn+hY7lsMBJM2oBo5BVpE7XHHfA66LX+QGXBfJd4Ap\nMcqa/WQObIEEk3FacofAwyFfq2+E31407lJAxST1nL0+UgFm5TGRofwi1xhi9hYkGUmF9Apl9LJi\nVE3JidQFv1Mx8wUFKFfOQvnZLu3LMbFYdlBOSw+lqPI0a4cIoi8ojfh+08i8YDCMaKv+qqk1QJ8Y\nXdSsvEcXGzfMp96AaXWRmcni17VGyKtg3XQcwntAzEeSK4bFyma/4jaBUEQdeHxqjo6shcc3w9yH\nwBMNYU3adygSUvdBTXvJPWLLoT5HBC0UqcHY9QkQ5YfGazXkM6LOkLR6aIxSX1qkAfBgqshaWIMy\nhp5rJVOMbqfs7VF0rm4NmNfvApHnBKC1xRocHt9Dsg9PG/W1xXRxs5/R7XRs3tslBbnVfNcuBdXQ\n/MEgVU29Hv00VgqEL5jcwLztbkbQqX4WV7vA4xB4h6R91Qha4d/f7HOvbP4hALQZ1dvfBvY4mUHL\nsqJQLeAuYJBt20Ou5uv+s65/ND5a1xhniRkvuHb30Snw51slDwT4JAwmnBU5y96H9Ucb+xtxksJn\nlMCyh7Fyu2G/h2SHeRslh7yum6k8nYBgN6zvg/3qHj3mODYWZmE9MhL7yFxVw9p1g58bKaTXhzVn\nIHbxt2H5UnBS5+nAwCVYHadg/wboulmErWCAO56mOF2ZqVHrsLyjoYOp2tmb4bcmME80wFD5GvTu\ng3WXSmf268BBWRFbj6ZItrkcuSmDKmX9ATsVdpVJUVGMzD2MJTq7gbj+ZBXuxheEfTcB1ys2zdtu\npPhdaVafMOWzTscJRe5YEgcjV9+ovx2MrDC+Jg5G3rde+AguRjbjIzRjpNcjfITPYqSD5VdiZNMV\nZlDDIuEnx4WPkzpJQjdlo0yfCiuhT43rDpx/BnKrICkLHtsEyztn6vMByVU/SoZiqL7ZEJxwVa/q\nHWfocPD4zQiacNOHdlxKkfhOEPpUOGaHQ3idCNiOArhwDvIeUXKxoTNYpSJv4Q1KOgaSIbwrRP5V\nhMtZoUjty3tWCcrYMmg0560mTcnOmhRIOC5yGEzQ8VV103VCfCcRpLAoqI2HmCq3Kgim+hkOHIFg\nrPC4obNG3ID7Hr3Xq7/N+z7UT5Rctbha53lODvRvhO8dgUXdRGrXVKnC6jhSxmYo2Tk52zVcmb1F\nMlVHrloSAcFHRdDgnxcjWzI+thK0f5JVXFzMRx99xIMPPvjfbuPMveGDOjdD+cgcSTcqkZQD3In1\nDgBVQ8WNYJ1xL/qresMDpnqxoTOu7X9voBxGfGqOq1qgkh2nvxtrdBHvZNA+ahCQzNriHuc7Y6XX\ndnTWjoNffpGGYK64AtC8HlXHwn4DNfcogHm8yjSmBeGDahGsUL2yX+fCNB+srq2CayBRmblIL1Tu\nAe9paMgV6XirEsYmini17QfhFYjA3rRNBzBzINTK6vbeznJnyjqv656gD5qKRYCaOkDosrJysUeh\nIQMaYqFxAEQWSP6YugmqsrT9sgJ4pA/Yyap2td0NgQwIDwpsLCPtazwqQGqM1uDruHKo7gIJpmev\nNkVEznctpBRC1bXK5tWkCXSsEPiuA+9R/Y5OUeYvvpOymTVFAoKmeskWvddBzU4NErXDdax2P7D2\nuADb1EsErSmkDKKnvchXRJxcN6PKYHeEm+XraJLbQZ8+t/pLhtRGqL+iOloXBYP/LG19YaULQE4W\neEONejj+kbbCLRV84B8GQB7bdvLM/+02Ua2Sx6uzvgiCZj2aIgOPJdPgp0ulZ857v7n/y/rmKLk3\nznlWz1m2HrvghHq85v0EzoyGXiuwOkzE/mEtPGyITD5QWov161gRHM8JEbrYIRCxTvv95V5VzZZM\nkbHIvAehSyzWo2CHzN83xEoeueU/HXxyuUgeQMEArPHR2O/JYMT+8wmsYd2wdwIHwHo7hP2NBvjU\ngvFRMnG6BHYAKH0Lbu8FCzNFsi4BbcC6z1jkn0N9awUDNKz7Wwt0zNevFRZeiY/gznOsgorrIfoA\n1Hshrkyx8dINwsgNnZFkPgrh49KpMHYxIz41ku1K2PuAMLKxRq6BVoQw0hl3Ai5GvjNWuPjcLS5G\nzugvfAQXIwvOu73TDkYG7nPxEVyMvD1e+NhYo8SZg5FtPHKOHH+tZIjlBVJD2CERu7IEiP1URIk+\nkFgJJGcqiTl+NVRvYsuNqvA9ka4EXEakTK5iTRAMJAunatJ03tocgIo8VdbsMGENqN8s4jx8kg6V\nZTDISFQbo12cjT4mbLvcSW6NTZHCuYg6EbfYcskZg32UsASRtkBbJUsb4sw1jl8JTysEVZ21XWQb\nJWAdmaKzGmtEzKxqCL9G+FVbCuFmDFGD8c+JrgDPLRD8RJLGuAxVxuyQrj92hdxEpNcD/7uLXqfJ\ntBI4veKNNTD/ggj0yBDsT9T5XXbQTVo65meL9ith4c3VMfwzYmRLxseIq3lQravlrsbGRnw+3/+4\njb0uBuuWAJQlww374dPezf0BxCOZYj6y4gV4H0iAi30h6hBUp0NEKVzOgrg0eLurKi19C1FGsBo5\nVVXDhizgQ5ifI3tZu1EB3g5BbgEsiYP73oUSC3LiPlsZuW+9/nYyfYWVsPwsPJVlepY6uttm1kue\nWPEY/Mb8Rxf75Q7l84DPkIND9eCr1fBOMNb610C0Bz62wFcBt7YDXwjid0FDOHyzFOypuo7xn0Dz\nYh6r1SDSggHggfoxAqrqIsjtBlX7ICob6vcLHCJCEF2ogH+5E0R0FFCEPGAfheggxJRA+R0Qe1IS\ni5Mr9TsmXkDCZbA7Cohiy4GPBGrxlyV7tEKQshsa2snGP2YnXLhH2waSNROt+hrtI+gTEDWFq+oW\nd0YELtwHAWM6EjADO8OjoHqvNPQgeUZjHDQlQ3QRBLtC2GEI7we1l3ScEcchMgieoSJ4Ee9CIMed\n5fNvJcr+hqP5cBgHya2RMMgYjzhz14probBYFdX5AyX9Ka7W55rX0c34OpVT72+tL3z2y//rCv/7\nm3zZa5JlWa/Ytl33nx+wLGu6bduLWsnZV2NZa74OSzSjmYGY2VTlrvti1xQRkQ9H6/fY9dAGbIdo\nFWapGnYBOHwPNnVwIFaywy79sOc9DWNkFmL9AOjTGfs/Dst05J7R2DOAa9Gsz8I+MHUfjN8M0UOw\nn67F+sMU7AlAv3WSL47yy37fVFms76RgR70g1UKqMjrWd02165IJLIfrgGjseeFYo8NhG9hFdXBz\ntGSOkdHQ7WM43F3k7CCSQBacwM7v5p6suiGQtw7+MEFtAF1wjUEqkIlWPJL5NwIn4eIA9UtFhevi\nvt4LgXRh5AKjMOlbqG05iUbVlMIGM9Nq/mBhZFi4yJMdghvzwbdZ+AguRjr4CNDrT8LIjHiYugMq\n7ld/koOR2ckiWj/u6GLkC4Xq8c0wphoORh4FsqMgVKl28vpL0Ka9ZI9L7oCmOvU2E4CmfcKWuiTJ\n9WINUYo9i/zhIxJgzs9JXysb48JKHU+4qdIlVkLMYSUc65JEigJNSjLG+MCOF3mzQhC8FZoOK6GZ\neAoCmeA7BReK1UsWUS9cbXMA6iqUKKxNkfIkyifi1RBnzEPQ300DVDlriBem+q5VRe3KSlv0ZR1f\nvVfvtTZF1zAAkQnCxfi+wq6IWEkmE/pC42aoS6DZPjCyVj92mAhfqBQaE3QeQ/XC2oSuRjlSbSSm\ntnFZNvPWPmqAYe2U+CxPgowUmNtZBi7vjNXrOISs2K999PmjqmuEgzVCFVRHwfRVWS0cI68KPrZW\n0P5J1tmzZ9myZQv333///7idddKSdKM7ygTGA5GperCmTDp6aG4qLhoMwYuwqzMMLdCg5egUbbI1\nUtm7BYNh8C4ksejt7uupC5+1BvaegvtO6vaGM+olKqx054Vlx5lm4aCkjlOdFMp57XtEijsIEuSW\n+PR2mNPPfR7oueMz3dd15pK0NfK+mPbKUobHSuIx/QT8x83KZoVqVS2KrIDGa7Tf+E5Q/TG0vQbo\nBzw1j6zsORyqgvoHda0T38nMSQmaTGpf8BxQNq8uScEedLvNSbBWQd2jyg4GkgUUEXX6efMtGDkB\nOrwM/gcFTuENkLgQGArlt6pa5vFL8lHX3bhDBYy0MkVkrzFaIAf/h73zjpOyPNf/95m2M7O7swV2\naStFehHBgthAE8WDkBgjFpKoEQ2ak6JGU0yOmuiJyYkcNT9jPBqjidGgiDEasaBYEBQQBRWX3tvC\nwpaZ3ZnZac/vj+t5GbCkGDyHKM/ns5/dmXn7vPtc73Xf133dTt7YLtJo/dLEmzwEOruoYANQp7/D\nNdC+GiJNOrZgF9kUB7pDYLmOJ1sqjX8wBh1vivx5Rd2+EoFONq4+a1UhFVTXBWH2jmK9RfeCat2G\nlBYdJHeW6/10IzxlXc2gc2+8+hWBj9fzJxZyctV6ZdXKQx9fhHB/Rwffb/Pz0Ud/PpYIYQo9Tn7F\nWrvkPZ8tsdaO/OA1D46PMj4ufDTHpuAH55D+wpOET3pGb74xRsZT8XIRspYxsCKN+X4Y23g3Jj4V\ny3S44leY38/HfvYcmHqHMiJbesDOCXJfrB+MuXQEzAbbf5oIlEforAMJ4/bzuoFueRi9XRm6q3/m\natAGKBO3FpifhGm/lhvwkOUyCfHG3VOVbXscqPBsfV292mN1MKlEePZUBr4XkkwykYYX/JhFQexP\ngaP+DN8eABX9Mf8dhHMs9sIOtRJIoSZZ066BqiWqtR6JpIwhJHNsd31TXkXBzMXQNErzZXy566s1\nSg/d4Rrh4ymVMOZZWBh12/EjjGzfCevg2r3MjurKIP6OMNLDRyhipIePsBdGvoqO3cn09sZIDx9h\nX4z08NHLtngW7ie6jFKhA0p7CyMLOeHjPWNFEDqatJ1gTOTEczgs6wWhV4GXbtB9cN3PwPyR9Z8v\n7qdnGBoXKggXWiZ8ygdFhrwMVyAN0dmQPUHY42EiKKjoz8KqzdD4DJx0LPA4tN6m7Xguj2UN0HK4\ngoie2iewo6hAwa9+4YGOYobOl9Xn4ZZiXXbBD/mwAtPkVZrgL1GwOlMK2U4KbAacyWihWp/n2vX8\nYH2Qq1JmDbS/bBRKuhdNtsr7qtH1uJ6Q2qCsWi4pXOztApahGCyL6zrWBZ3bZLVq6o/0i9x5pmee\n+dYVI4uE7NJX4aweRdy94dhPF0YeyPh4oLcBODj208hms7S2tv7tBed/iVN3okjgyonw+KUw/HWB\nKijCeh4Q/BIPjRfQ7BimbFNoguxlo3Vw3bZiPdeJj6BbNYS0+rt2wgo1ffZcEnuVKUX/QBcRplfO\n1mSyvE0TyszV0LREluu3LdGEM31E0SKfqEDKkzXeWw++27WPLdmibS0oclQVUq8Yr2i2h3EWuw2K\nSvlKXMFyAu4YrkkvFBPRKesFpScKeHLt0PEcdGoHjgSOeRVuug6AHUdAYkFx3809HElBRAYcAPhE\ndqKrwDfRSTYGOrLkExiEWwQ+1g/vbAWS0D7ZAVajAKTxF9A6Utm4RA9JQtp7quateqSIX7hFAJvu\nLxlFqpO2mSmHcLO2V/CLrJU6CYZpcMTOxXvat+hYMuVOQrlNEclcEtIVkmxUrQVT70C6BNgiwhju\nrB/vmixoEAB5Mp3xLvsZWy8QGgBQonvjC4sE4r4SAZfnVjbERTavO0b33PAHde94dRhepjXxVwUH\nB8c/OFYA3wEeM8Z89//6YA6Of2IsGEU4kJTz4ZYe8Ph4EZspzljjkivhup9h72yEu6dK1njbGZiV\n81Sndd79Wv7VqVIOZJZiUpMxp4zA7r4ee+T1mF1XQ91WTN0YGFqjvpug9ZZIbsjgqGrPbvsmzC/X\nsQxpx4xzx3l2FFO4GobWYMaO0b7qB6neLAJEJEdkyAqRu8II8PfFvFki18gzgMmb4ZGk5Iu1YTgj\niL1WGTfWJ+DrBrPLj30c7JcN1IYxl1g1U64fDOfdz6lvwalJ4LWJStk8cqk+2zhWxzkcGAKzPgPV\ni/RWp2P0IB+u0Vx83TbJ1X63BRY2QI+dFK3pd+3c46BcV16c5/xoHvTwccrQfTHSw8e9MbKHl2aI\nsg9G7o2P78XIi3oJH4c/WMTSz5Tp2D0CuHux5uFIN7h9oAJm6UYRiI5mF1DLQ2ib8CH9DFLejJsj\nCe2WHpxaChWbVLt8+uNaH7RuslqkKhtTlioXFn6EEsAOCD4PsbnKdCV6KKDozwovN5XCspNh93ho\nvl1YVtYALBRmNfUHnwsu+rLCw0J3yPVzQckoUCmM90oEPHIWTAqrQbhZ8IuMhrs4yeIWvUcfKV9C\niSJG06IyEBB5C6TdNUoKPzOuRjy9S88d0TqRLE8NUtZbGBxwTa1BstOWgm73WEhBzBJHtLa0wYsp\nkbYFDQqU15UJJ+99Vz+zN6qhNcAP1v3DM8fB8eFjv+DjwQzap2Rs2rSJ+fPnM3ny5L97HXPHZXKU\nCiHTkDyqR3sbLrfws0Hws3XwH4P1MD0sJs371DnFaIxnf77Vs/MdDj3mF1PvCxrgvJKiWccDzXDJ\nADjuMZhzLJQ5HL/8ELihuyatqfPgPi975oe7TtJDuCdxAz20730M3z7U2ddvkWYboGKA5HJDGov9\nS8I1AopsHMLbwe8yZ97IJZUxDFaB3S5Jny8FtdXu2jz7JYjFmT74SU5dB9Ro28GYsj+ddkH54zLz\nyAcFAPkgxGZAYawAwrRJxpGNQnutiJq3n0AHPPQsTJgAnZuU+TJ5CL8GdIXkAAFWoFwSiFy7i7q1\nFwuIO7YpM8YWZbpMSHVmvnzRGCQX1n7zQaBOxLJ6dTE75kU0Cz71oWmvUeSv4JqoZqOuQLu0GH1M\nV+p8jTN28Vy5vJoyP8UIbKAUdi2GULm+88Q6FZq3FPQdD0Dn4isRID28pug65jlw3rcS1l+gLO6Q\nTk7ec/G/RnRw7f7YkBt9+VgihEustSONMZ2B36Jc+/nW2m0HM2j7f3wc+GjOmAk7J5BZECX0+Ufg\nqQmS920DMw5s6G5lqjyidtxuuOd4+OZ8WNcIGwZhzt+NnQ2c7OSHQ1aIWE16DDP7HuzoK5XxisUx\nY8dgS66HJ34Cu9aCvy8MnOUs7wfBZ8IwfBo8czVmmOSF1LlC5ptHw+khOGQpVIwQwaqcK1L5n5fA\nLfdA21r1L3smBVMi2tbCq+HXHXCYe6I9YS7cOhqODqnH2UXO+n8tkHwMgodDr0P1OgLMScPEsI5n\n/VKRvmd6q9WA5yZ56V3a9kr0X1ABl78l4vONHprP0o2woUpYNNV5rgypLmYx9mDkcCCkHqFPnVF0\nKPYw0sNH2BcjPXyEvTAyDmwXPsK+GLk3PsK+GNm2UcTBm2+jbZKvezjm4aO/pFjT3VErouUvgfat\nro/nMEi8CVRCbTsyQ6kAXp7I9MFPMnM1/LpK+NRYqSCpCTgXxZyMM/JBqJ4LyeEiY2wAFkJ2IaRn\nKAPmkbdkjQKOG1bCttZiqUPE9UmLXACJGcK1itsU0KTF1aINU1awfYOMQzpixZq1tq4ieN52wi1F\ni/1wi/afrlRQsuBXTZqX1fMyfB3lYLvqnHzDIbNKNXOtvdXvNNFdAdFsKTCwWOvtPZPYPFzm6vZv\nrlZvtdR2fR+pBj3LtG2Et0tluJXvED4GY0WzEK8Ora5MNfujuypAfulLMH2c8HFhgzKzMyd8DNn6\nAxQjD2R8PJhB+5SMTCbzN2vQ3jdmngmX/hZmTZR98ECku2+Fm49Q0eqUoTLW6Nchcnbvu5oMxvWE\nhZWQqIOt3RDYbQdWyO0pFoL+eU0W0b7wzXp4ol3SintWwSunw1/SMH2U6rhuOVbA49UTXTREDRqP\ncUqZb/Z0D+G99XPVCGVjZm+EKwaLoLRtlHOgzcuIBNTA0fghu1bEK90I/pWa2LK9IV0vTb3NF3um\n+KIiLMF2FfaWH4G09T9RY+/ybU8yeTZUjBUZzGfUHDq2XgRvx1HKYJXt0OQe2wQMUkQvXSnDj3zQ\nafi3qm9Lp3dFzgCWbQKcEYf1QXg9anOwQkSpy8+h01UikKbN9VErUVTOa1TKFoFLWYNMQ0oSInul\nLzrJZEYAYv3qEePL6P1gEiqW69xN3pGznmBDOjfrUyTQ5AWW+Zjkjdave6BQre0Fy3W9PTnsggaR\n50C1AHqX6wEUjOn98kNdfVyrpDz5pEicJ+UABzgbZf8MejCZvUk/nuy17rcHZD/K9w3ffvz5OIe1\ndpe19gzgEWChMeasj3mXB8d+HG2XRwnd9F0RoUwUamfBot5wTh5+eD5ccysM2i1b9BnD4bZvYi5C\nxOT0x0RasmnJGsH1Tnte2DEMkbMrfgVbesgCf95P1Ah52jVw5rTiOlPuh+rpmMOugmHTJVUcvUjr\nbh8Dv3wU0kD9INn0LwPeHQM705JDNqFtbGuEE7bBCddru68AY0owT+Ux05DN/nkiZ7yZFDlbBuZo\n4PQ41GZE/pYnMePA/CasWrejtW9WpGHsBszx6uvGglFw0W+1/861Mol6BX7ZDpf3l7zM+KGpi0jQ\nF2s1T00Z4vCxm8PIWmA7lL8IvC2M7J+Xi7CHkR4+thT2xUgPH8t67YuRdw0UPt7r/Mj3xsi98fG9\nGGnzImCFPGQXaJ41fv3El8vcyu8eJXLb5KSYn+tqk5MKqpkQtC4XrgQ8+Wa4FkoiEI8xczX8ppfr\ni7m6WF4AwoaCs//3Z6H5BBGwRB1kh0H6Mgh+T5+39HY1XH4XDMxA2w7Yul2BwdLXiu7FfBvKF8uJ\nkRaomQOFkFQfmYSyiPl1kB4mDPNtK2btoo3C5EIQzDLhXyih35mocLS9ViUF5VtFyoLtIq5tXZ0y\nZbczHFmvY/PMRdq76jg6YpBxQU5/ia5nwWF+ICoZ6RUjZcbV0Vh8jvH5dU+EqtSGxiNni5IicUOq\nZao2dY6e1zxy7pGzm4/TZ/EMZK7Q/ibNOvBx8tOAjwczaJ+SsWHDBhYuXMi55577d69jTn5Wf9z5\nb+pllkI2wuuBauixHVaeCi8XYMLTcGpXeGYC+GcgQteAiEstsBvKgUQnuPYQTRRT5zjJRYOyHA+N\nL2qoM816ePeVACVg2yHhatrAFRb3KjoTvXI6bLUyljB+TV65dj3ge9K8zKpizVUuXHRiCvdUU8pA\nZych2KEJ1Z8R4fG5AuVCBIJx1XDZnBwHM1GorQA6gG79oOcayu9VbV64BrLzNJG3dxXhaT8MKl4X\nAOTCIkmhG4HTIHUCRLbo+BqP1PGFEsXi5EBakb4HfgOTjoIynwCIDZCaVDy3kgSYHGS/A00vCrR8\nbhvlfQXCuP34s4r6Va0BG1Akz5+Vht5zrQq36HgzpQIf6xdZ64i5nmlulvOs/MOuV0ygHIIbJB2p\nfgGa+xWX92clX6lwyll/CZhS9fXxorP5Dueu6QqiQ1UqVncBZBY7yWIspOxtS0FynJmrVbh++CNw\nVk99fs9YFc179YzDO+/nbMR+jg6u3x8bcqMPH1+E8D3vDQL+CAyz1oY+eM2D46OM/Y2P5vx7IR7D\nVp6NryKpOrJ7LxSpeWQqzB8ue/05MczMEkkZj54OP/oipj6IHZuGcatEVEZbbLfTIV6OmTlD5CrS\nqJ5pt98KpUvVEPorSajTZGGeCmBn3ybJ270XYI6arPWOmQZnfRsqC5j/CmOfaFSt2/af6PMUcOws\nEbWT+mJfWqsas5Elcn+ceaYkkNXOTn8YmIj6nZlvh/XeMkT21idhYhTzwwIkDDbxMBw1HK4bokbV\n5xRguw/657BDsiJ+C7rBKVEdh8tY8euo1CU1qDYtD2yCHh0iY78/DMpmCR9BrrLUINl/FAUvHSEp\nB64YUaw78zDy9MeLc5eHkb5AER9hX4zcGx9hX4ysTeyLj/B+jPTUD94o9FOrlEBnyfSqlkF7H833\ngQHA25rT23tqm5lmqF2qTFP+SKjIAD98BP58tjZ4P7Qe5wKh8yA/EFgvHEqfD+HfqD4r8Dv3XW0A\nRgNdoH18MZvl1aVFdmv/uwbC+rWwfTecfC7EfqUG09YnTOq0HAol4LsbGAg7vq7DiThfnODuYoDR\n+l2/s7xwOFMuYpUpLxqD5MI6lkR3/fbKFbJRSPSEyE5I1TqCGyg6N/qzImO0aD+BNFSvUv24r0mK\nmUA7RA6TjDTdWCRruXZHnndA1SgFMKPOuM1zz9zb5XhBg7Jj43q5OsaM7gvPnKW+qVi7Xd8EX3kL\nStvBTv10YOSBjI8HM2ifktHnyI1/Xw3aXsO+eBrc/G968RJcuw3oVwtfBgap11jZ8/rnZzQ8Vwv+\nO5FlcCWKJpYDZXD5EOcaNBxuXCSQGddLD9QT6mFhu7Zz71o1XMx3QEu9emS1r3TZkp2ylp0yVGB1\n77uaWK47Rg/3XVLF4tr21cW/s8sh964m13BL8fzyQUXf0o2aMANrFP0ruEhZulKTZ7CvZBAeOYuu\nUx1B2mu+vBHIj4XIGpjxJRI4XXsHdByiCR30u7AbcpNcz9W3XfTvKuBliPwWNdjeADXz9yJGleqT\nljlUEcpVbapNzwchcYLIWfwQZdLCj4H5qbbR/LxIUsBJHXLuXIOJJ9tOAAAgAElEQVSrlC0LDBDA\nWJ8klzsPExD50zr/jkoo36JlSpe7yOB21/AagVCh2lkH99HxeHVr4RbAXdfcLmgc6qz2q0Ugo40C\noORCgXmmWceba9cxGr/aBITcA4S/RNm1Aei9Ve7Se02q040uCtih+2OYW+/R9QIo/52q1fAczg70\n4d+PPx/TuOy9b1hrV6DHqAs/vt0eHP/sMOffC0DmCZEztiFDj0vGS9I4DGWLjqqBoVXYB9dK8vfQ\nZLj999g598C8r8KQ5djZYJu/A199GrNkBva2pGSSU36v7NLGNBRGYO9firk0ipmgycPOvg0eu1pE\n66jJ2DuR1vCOq+FrITh3BXYbOoaZZ2KXoePsgY5xQ1/s7xDB+2xcOqVHpsJRNZjLrJpiR8D0BfuD\nDGwpaB/3pqGvJJxMlPmIvcknP+sfpuA7AZGz7kDYyl7/sQDmpxHMN/uqTq7JHUsK+EV0j7nHtWvV\nboaBtXAcbD0aHt0KZ74BdJKd/nObEC5uBI5wX0gPoJcwMnGy8LHPfUWM7PSC8LHPzCJGphqEj01L\nNL95GFmW3hcf4f0Y6eEj6O/3YqRnEpXuVKxHzu7QXB5dImxoHSyClAsruBlugeShEGgG1qsdjacI\nibyECOiQ5fDSWK5dAA2HCuPTntvjPG23uR9kXwQcxnAGUu6cAXSB3LFQ6iwXkjUQalfQMlOuY/YV\noBHYtEv40X5s0YAr2ggsUFC1/QeQHi93RhPSsQR3S9YYcmoLk1ctXLtTeQTS2k8gLfKaD0HlRi1X\nO1tYmQ+5eu2Qe14ICedMQPV4waSrq6uFks26ppEmYWe8p54ZAr0g2qCAbnqp1CTG75yTo5DbqCBm\naaOk/74Spz4plZppWVwqkrZw0ZJ/T9/YrkXjlylDdG+A7qupc+DSV8DvOjGZuw/sLNqnAR8PZtA+\n4cPs6CKTj/wmHv71Ns4555x/fBuLDZe3wy93AJ8FpjwCd5wtVa1nKwyKCr4KvO1ej0FkzT20U41K\nJ13ErzypicLLonma+BMLKohtzkj/nnDFqyVVarIcs8pgLUyoAeSfm9SkETSBFTo0WbW8Af5KRZfs\n85BydvD5Fk3M4fXQ7KJrlRsFOPHeziBkB1RuEGkJpGWwsbufc3bqqQky1AJlJ0FoMXCSznN3TFGo\nI6xIUWKdiF+4RQASTAqMqEQgtABl3w5HwP174DRoPVZAUr5NWbdovQDP9ILpf4bTR0KVy34Vgi6C\n+BUoAFnk8Fx9C+weo14pbRudg1SSPT3pfFFF63xZV7TcLPJU0uLqz0KusXWJ9hN+DUiDPcoZi0Tl\nYtXh5DGmrVhUbcoFSIV+kox2HOLqCpqLtXemAIGhKooORNV/pm2giyCGZelfcASx7FB9j569/z2r\nik5jW9ok15i5WvdSPKMocizk2iX0hBu3wTE5WLiXlbDdj46O+zs6uGV/bMiNOvZ/hBDAGBMA8tZa\na4zpCRwDrHmva9XB8c+P/YmPHkHjil/J6XD2ZzE9/xv7XZ8I1ehFmH5jsF8ar6bVM8/U8nVbZTN/\n03gZecTiqh8Dbefek+H4aLEPWF/kfBhLYAZNwC6aW2wk/dAFOpbVT2Mvdzb3VcCY6bBsMlTO1TH8\nDsyfCjBDsWT7upMjnlnAXumDN5MwaTGYMZjTwM5Yqnq3w8Yo6zcM1Y9d77JlN+XgjoAI3JNJ9VYD\nWfgnUvDFozC7esMysGsRMU0Br2WKNoafCSsLd+hcMGPgySiXv666nslLgQcf0XJ3nK3WMtvHQv+X\nhY8p1Dv0bYSPUMRIrybMYaSHj9cdI2z0MNLDR9gXI9+Lj/B+jHwvPnouve/FyNJ3hI/pPiJC1bOB\nMKSG7YuRXj2WV4vc1kNZI8/5sBAU1DGePf3d3gqrJKLDyfMyCah8S0Qt3QvJD99FzxZpvWalpI3h\n1yA5RthUvkzHRFg4F14tsrQsCtt2w9guCm52WQw7RkKXfwNOgsKz4OvCnsfkpjEiTaEWYV3oEEkd\nA2mdX+sh0GkN7Bohu/zq1c5dcjnYOjBr3HG6DGmuGwSWgB0GjUOc23EPYV+4BeyJkoWCiJ4X8PRl\ndN38WSePPIT39UoLtLua9c3QcYyOMxuDaI9i7fafdgoTvzNMqpKYFan/ShVcsFTPJ3VlupemnQi9\n73NNy9vg2hEKmq8KQ6kF+5VPPkYeyPh4MIP2CR5mRxf9PreGla/W/uM1aG70eAt+GUdSjFbgxrMF\nwjVJ9TV7/FLNgH8CBgGnI1ljBdCNYpNqZw5Bh8An4S9OFFOGyHJ4XE9YH5MlfWCzM+twzn+BKNiX\nIPG8JqNYSJmXL1TvVWcVh9Q7wKMiQ4GoJBThVqBRwBNpUnYoWycJQ/UikY3IPOjyU6j5vLJF6UoV\n8IZb1Cesap0DnPky7PDlnXVwKwLevLTeA5ZD9BciQyVVkHb9WDxdOi2QGKbfOSdbSbp+Zq0/ht0n\nC9zKdihi12muslXVM3R+a1+RiUi6k0hkp+VygCwpgchAiB0D1QMlWTQB4CUZnpgGHbfJK2rob9Tf\nZQ2qKSjfVrQqNgWILAPfW86VCigcDvQGs0WAnC2F0vXKyJWtF5nL17jauERxvVQtlK3U3+ERsuPP\nxnRu6TUqKM9tE/BXvlUsrC64/ZgQJFfAzrm6pq/ugnP9UJ5VBOy2JVC/u9jculeZe5hxss6Za2Cw\ne9jB7+7NgwNjjN8Ys8QY8xf3utoY85wxZpUxZrYxpvKvrPs1YCew0f39PHAW8JAx5gf/KydwcPzD\nw5wxE+IxMg9cDOPnw5Fvw70Xipx1mwtNPSR97DzNmXcMFsH6dW/VhN00Hn74NEy7BnPq5D1kjkmP\nwRWPw1+GS4J4yFKRM4B7T8Zum4657jgZkVzxK7j3Arj3AuxDYCaJnJl/B+ZOxvRFJK4Z6A522U+w\nQ64X4Rs4C8Zb7A9FzszbIZGk1qWyym8fAQ8djd04S06Rrzm3hsEuWzYtgH2lUVh2fFRNs1d0wvSa\nABvicEUWe5/ImfEybX3B3BWCXmHMXbLcN/fk1Y5gLfSYrofaySsRybr1bGHkHTfAYUk48WXh47KR\n8DR6IqxFRKwCEREQpjqM9PBxa16ZsCHVMvHw8PGdpvdjpIePrS9D20sfjJF742PscMkV98bIXFIY\nmS2VI7A/K3wsDARaNMdXrYKqN6Fqno412qg53+RFzgJpqHjNKUb87pxcjeAs58ybWK2sXC4prEjW\nKFAa2iacpQGyXiucEdB+hctgjYLozSJnmZ4qBcjEnPmG62Vm74cNK5z7sZOOdrkTEn9AUkmA06Dp\nF5A4SuYd0Yai0iXvAsL5gcUgpSfj90X1XFCS0PHlwmD7AV1FZjM9IbAeqNQ5RZpEOq17BmqvAfOK\nrm/HISJbgbTD46yTkLr67ZDL1pkCVI+QxD+yuyip7Njm1omqvjzhVENe4DKxVhnVLVlhY6ibnre8\nwOUVIyF4u4Kak/oBJXDjO+47ne3miwcO7CzaxzkOBHw8SNA+ocMjZ/RegX24Eb/fT0VFxUfa1paL\nLfZz7udQC+snYta0SQpzzKsCU4BfJNXIuh8CnjwMno9AaySSghwKRN3DckDSjU73KQOyKKkapFhI\nEb1oHcxytrGFDmVaykdDeJQ01t3WSSIRX1V0lsomXEaoVA5Ppl6TmK9Dk1typH4H0ppAM+UCovgh\nkDgFNRxFUr5wiyJ2kSanE9/u5AtB1aOlK+GuHqj1QApYMZYZG5ylb2+I3ASFhcqkFXwijOElkmmU\nzxM4BH4HuS/IoSrXTSQplHAT8TyI3QjcJUvh3LFQ+ywM7QW1N0rjnw8CL7kvarT7XQmFb7tM1qZi\n5i7cItIHknOA3m8+1GnufVrGLNZ5to9kj0Y+lATfShSxXKH3SuIQHyAJSaRJYBbaJnJbvk3RyOwO\nZ/BxlCKIXuPOcGcXMSxz17kVqlc48ug0/1XrBIT+uGSUPuciNtRF6E2pvvNbT9Rrzz74YdfH54aF\ncqXyLPw9x7QeLVLexu48cMHnf8kk5HKgHvDCpD8AnrPWDgDmuNcfNq5Ej8wnAr8EjrPWnof+0y/4\nB0714PjfHlt6EHphLJhG1Yq1j5Bkb9wcmYFcd5PI2LjnlenaPAK2++Glq+GMpzGnAbM/i31uOvzx\napG5G67RtocvErGLxUVgFoyCs6MwehF2wY3Qe62ybwCvT1amqm4aZgzY/0BW+FXI8GOYXBaZ9xOY\n8RMRo+AE7BEZZdEmRrFfD2DOADNkhNZdCwSsMn8LRkF5WPLIRFomIQ1LJb/c5pZdfhhUb8XOXwoD\nyuFzJTIeCTt3xwjqv+ZMpeyYtOb6+/3a3zDY+s0mEnUoPn77I/DORIj0wxz9HRi+FM5IFs85A6cu\nQ61qKoSPg5P6m5FI+hiFRLmzyA8o6+/h44IGmYd4GPmU3RcfTbcPxshUw/vxsfDs+zGyfJMw0p8p\nSvqaRqm2K3GKAnah2QpU4krUg+3QeaWIhHFJxp3jdCyZclTv7EcZSqBjnkhd7RNShoBeh1sk6wOg\nUjhQGKiG0f40BLQ68WvBdobQJuFSaJEIYTaqc6t+C4Yth8guRx4DQFgSRMZC4U5gB5TdI6wObJZR\nSNVaSSRjm4WdvjVSrYDD/2apOzzZvz8LwcVSjiRcM+5QHGXTKnXM/oyCjuWbivhr/aox85e4oGZQ\ngVz/ocLr6DGy7c8kFNz05aHpDWUbvZpwgJp6na9pAP96XePWemhaoGxZvo+kkXVeE+oO3Tfzzi5a\n99/1WSlOZjr3ZfKwNQBmkmoB92R1D8DxacDHgwTtEzZMl00y9zjvfsz8dQLGHT3JZrMfOYNmRqb2\nfb1hBoUvlmKXRLBvHIv9wxRM/GU5XJ0IvDlSdQgRWF6O5BsNCHw2AUnY2h/oB9NPgN0XKbJz4iOa\ntLoX9LujUbKMbFwP5rEB8LwzASnEizKO8r763dEMZYvB18+5IXYSYJS6atL0MGV7kjXSy5t8sQF0\nuEWTaWYUcDnsPlYTPl3B97LT4dcp0xZcrChiuAUu3YSIZwZSh73M+HoVByfqgMcFABVzndb8QaC3\nJvrCQChfA5zreqKtcADgCJT1I21IJZI/Vgo8aIBl26HjVBd9uwJl8MLAaZD5rghfrsRJCTPad7JG\n9vvhFmnXS3fq2hSCkoGCJv9UNTBCy5euh+Tn921oTRgYBME10HaUth1uLTYN9RpvJ4docX9Wjao9\nyYg/DoH5kN6h87F5p+l3kcnAEh1XSVygGXLRy1y7snBxV5cWjEGivlizNmUo5JpE1kZ3FSBNGQKD\nq2FhKyxvgq2m2JAzUfKR/hX+18bHTdCMMXUo130P4DHVzyORLe73F/7KIXZYa5uttRuB1dbaXQDW\n2iQS7R4cB9jwTUphghPIvHkcfOfpIgl78Hg9StQPkk3+t2eo8fTUOzALdkAz2EdnwVeuhBTY+4DZ\npyi7tg145mo1HvZ6XM37LGwfg7kRZdqqwWy6VaRp3BxockU937pSWa54DFu/FKrA/iaNPfR6eHWq\nJIrLEKlakcYuA5sCLiqB8VZujt3mYv88V4YeU7Pqg5Y2klLWbVXTajt3Tw2a6TNCx7sxDafPwjzR\nBsEw5qrDYWkrDM1ifh7GnIckk1sREXwd1aWdGcaMcX+nXJZtUhiuS8J5SRHT82dgnnobavLQPgLz\nZQtbJ8t05bImnjscYeJwWD7MYWQI4aPDEg8jPXz0LOM9jOxVti8++koU9PogjPwwfOw4/MMx0rOu\nzwedUsIRKAbpONNOoh/ZpcCl72UpLkriwr9gUqSh625UP+bUC6O7OrXKbuDhohlHuhJCtwsDA8ud\n6mS7SGPwt86p2I3YEzq+TE/J8dkoBUrsy5IdrrsCVnUFlroMlHMELpRIBRJYAvSSqqWta1E1kg+J\nnHnnW/BL6WEKWs521TVIOEOOTFSktXmYC9yGtY+cZ3zl6vlS1TLU8rDRG5G3pYIhIjzrcEGA+CqV\nTdi9auFCCb1XsdwR0ULRHdKf1bGYTNHspaNZap7kFmXQ6spg9g6pSuqbJMeduRouXQQTXoDlrTA4\nqO+IpK5piaMR5qkDM5D5acDHwN9e5OD4VxmmlyNS9YMhXo7d7sOuOA2AQCBAZeWHZmQ/eHsTUgLg\n94zC5ZHiMoNSAvfXA1AbgJOT8HpUevv7tMxZXeBRbwUHNBd1uB5pLpIzKgqzzhCwtCxXlqW1Z9Gx\n6s9NMLocxvoUDQQgJUlANu7kHXloPway28D4NAEXgkBak2hwFSS7Otvf3S4rNVhAkK1zfU1aIVMr\n2WCyFkJhYAR7eoNVrYOdFypqVhtG9XROyvdCGxxVrsxWW1fgXDDzIHGOs9I/TceyZzyLwKsSuAv4\nvoApslsWvOFyKE1D8ylQtRh8C7XssB7SywfqUYzHuVw1fR6q74bCaZAJF8lnttT1k1ktTby/EjLb\nBKYdMUXgcmEtV9YAqc4Cp/Y+TgsfE8jYYx2Qh4EWF7VDRCof0jLVq5WJSzsQK/gEWlXrlKX0ZCj4\nXf2CT+6QpqBIYeIUHUPOHX84rShpPrvnqsnRKg+dRkDrKvXRGeyH776pLFo8A4+Mh4q7HBELwLWj\nVIf26Fb0AAQkeoF53mBP+VTWvt4KfBeI7fVeF2utCxGwA+jyV9aPGGOOQOBV4v7GvY58+GoHx//l\nsK9D6N9vgy2zRJjmfVbujW1rJT0EzF8mYPteA/WDsAsWwb1b5dCYuxV77yWqSXtxAmTTmP8E2/0S\nkbtnrpZl/bJ7sE1gk9dj3rgVG5kOfxoFrWMwncbA18H+TvJI4jGMfyocD/bptZhHe8L9P8H2nAVP\nTcB6TolDVsDrI9S37P+lsRcDg8KYo8Zgt4EdlcL8RwQ7Mw0PRWBcBF6pwZwLnNgXOxGoBtvlbpg7\nVdub/Vnsaz7M/1jsZQaGl8PuEHaJy+SdCPyHFJT0Q1m1tejuPrIAKZ9IZMQt3xdgsjKAhxSg0Q9P\nprHnh5WtKw9r3TKgXxJaozDb4eMSZOXfAfSEiyzUb4fbtivrUVcmjOy4UHOeh4/w4RjpuS5+ED4G\ns8B6PaB+GEZ2lEPNGxCtKt4/hRLIfU14lvma5u3gs9B6mchSeAmY3qpptnl3Pmc9Av91NtN9cNsq\n+I/NLgA5SOQitlkBQQYKc0oXQP5YXW82AIdD4QaIA5VjIXWxc2GOK0MXdpiavV0Y3ncu+EP6zswy\n4GGwN2uZVDWUjNT68QHq/1m+TAHZeG8gr7IGgiJCoRaXLRsEFc/pmpi8PvPa3JTEi30/Cz5HAN8C\n+zVnsNWg80xVa5nImmK9eyAqcp16ByIDhKn+jMNbv+ILie6q70vWFPHca76ddLGOqFOH5A5XWx9/\nicxFKodAMAF11bpHAtV6XBkWg0teRi7bQHkIlntsIAOn9tREnp4A4T/+nZPLJ2scEPh4MIP2CRkm\nmFLE8tAaGFqDTVVhVxTvg737oPnuT2Fq3c+EFL5J+vGGb1IKs3s35rKC5BzbGvfZl++PSXznp/B9\n362zai08fTx870qRszxabyhQ7ZyC/MhSeChwHNy3SwRtwuNw+IOSb4Aevm1OKf+uGf1d6IAzKuRA\nZfya1B4BSvtruYgrzvWvV/TNK7QNpJ2eu58mvWxU/cQqXtfn4JbvDME2Zw9frX4muYiTeNQCboKN\nbBFxsnn1LSEKDAGStZy6QFHOEhclyzlw2Xm5oompznJKZCnwuDJctKA6hA2IpC3VfrKlAgmTh/gY\nZ3lcB9kTRChXrhXBIo0eGvpB80QnzRhf1Mtne7t7I6/tNvUXUQqtU/F0e42Ax5Nr1L4jAmZ9iiDm\ngyJnlRt0DuCO2RVm+1wxc6RJIO9FH03B9dGJiPD6Cq55dlryx2xUko98UCS6rEFuXMF21wg7qs/K\ntxWPP+yMS3LtcsIsJF3T8GYXMQ7Az4fqYWZwiRzOJvWDY0rh2sGScJzqrkuPCJLabv8b/1T/h2N/\nOVR9kEuVMWYisNMVK39geNQ5Uvw15toA/Dcwba+/vdcH8JX9dA5zx2XYk68ksykqIvbns1U3du+F\nsHyqpIwxPa3Zh1CNWDwmueKCUXDbN7GLp8N996hB8zfUw8zORfLG+sHQhDJYp+ThyuvhBzerifVD\nk6G1L+b3eWxkOvboS3RML94KFSOw78wV8Rk3Bztlk9wbX5ugptJ2LjwxEPOfh2H+XcdmfhxW7dst\nOezOWfDTjMjZYmBE2AUMdd72iUbsw0iiuLgRc8xUHWPFCHjFJ8J3jRHBqolD3xymu9a3N69V9rAJ\nZcyqZThCFdhvajIxvy3ouGYDEffbk4XlDGZzQJm+irVw/ZXw/HB9tjIKi7Tso1l45Yvon7U/wsfj\nYWGhiJHxjOa5jiZJxrNx2eW/FyNrE1DI/W18zJRrnv+bGNmgdXYPksQwH9T8bt3DfPBJoMRJFB8S\nFvmzUP22yA15YMbZ4HquXb1NmJKsgcQ3FMhM1ojEpCY6h8beUPo0CmC+pWPw3QJldwJnOBxZpu3k\nQ9Du/PK8PmXbO8P61xFO9QYudEQNZaKsXzXoka0iP+k+rj7cCYzih7j/Gc+xsROYpapDtz6VI2RL\noXS7ztuTdYZ26nf2KOBwCL0tK/1kjQiZ17agfbBaCJRtlbyS9dpPZHbxnLxjTXUS+fJlFbjNlLus\nIdom6HnDl9XrzGaZkmXjwsSOJtWmbcnquWXqHL23Ka0sWnlIKpPRXWFwDugEDNVrgPBz7lpMP/Cy\naJ8GfDyYQfsEDHPka9B9hGoCtk3Gbnw/QQ8Gg0y5JczF/r3kil4254sWGnUf7iFdg6PYirWwoS9m\nWg2+81Oa8E7e656MoGjhu30VkYzH9F5DP2hcAxG4uad087iIFktQBmOnC970h9b+MC8jMFrQAdeN\nht1z2fPfE4hqstnSQ+8N6QZnLXFFz/Pk/JfdAUG/Uv3eetmoA45mCLseX4FmNzk2SGboexaMm4yy\ntSIJXo+TUAKaBoHvMDW1ZAF0ehnS57kmk15JXzzGlKE72T0XqhsFOlUOEGpfliVxIO2yRxuBMIR+\npM8zoyC0CrJXFeuvIk9C48XSq4cSkm2knJVwsB36DwY7kD2ZILMMKjwjD58AMupkKh5ZLd2sY24+\nVGQrstOBxlqIJNTAs/VYbd+XFRiFEpKW7ByjzFjpevY4VVEpMGzprc8CR0jKGNkt0tVlHiSd1MXr\nQVP7jvbv9YvpKHcyEJdF88heLuz6z23Wer6sCF6X14oZuERfaN+i5qxHroN4V6iqlqtZOXoomdZP\n/YPiGUWgpwyFLQv1mgZ3/VaDaTTYyQdWFu2fiZzNA+b/9UWOAz5vjDkd/VfHjDF/AHYYY7paaxuM\nMd1QkfMHDmvtSf/EIR4c/wejrdNdhH51KVx6qxo4VzfCkOWYOuB/5mN3zsLUTsBuA3PiGGxsEfzx\navh/54ikLRgFsaVQl5AdPmnJDynHBCfARcDxeWxyMqbHDGzXb6rGzcGR/aNrYD1uDpyobB7bgGqR\nO7pPFbk64XpY+xPVsB05F/79BezKCdDcKGXIs2E5PH4VzEUTsGNQps19zpAVsHYE5jywz9bsIWtE\namAx6qc2YhZ8ZgK2ymXIALLlEAjqWB9Hk87wpRAZgf1eEnOFHB/tnWCOdkT2Th/GzeV0LsBaH3YZ\nmDE+7G1JzO1RkbYdrk7bq9dOCR85FG7OwYm7ULAP9sXI9+BjPRDfsS9G/j346J1eMKna34L7Tj4I\nI/fO0HgY2eU1t3yt5mhwwbiJCmqW7QBKwMyC8FdF6LomkLvxVqBCShnPoTDVSUG34G9h5y16dKh9\n2ClalgDOVIqBqr0OvAaFMbo2wUpJGksbhSEF1y7Hk/J3BVLD0Ry/AZE0Z/RVtkMY5Bl2FYJFhYnn\nphhukYLEkxgGd7uG1K6tgKcwyZZBcJfOJbYJChXOYOvPwFhghYy4Uu6aRXaLzDV3h/K17ntx9dfe\nNfFnisSsrKHYk83kXX/TvJ4vwi3C3rIG6DJd2wmerOPNlEO+BGK9FPAOlOve6VSQwuSmdyV1/God\ncCJM6Qs3LNX3s2UNJFrhXqt7kzykvwThFzjgxkfFyH8lfDyYQfukjJ1pTGqyiqr3Gr4fp/D9OMWA\nB+OQa8NeDTZxpTJeXdbC/UloNNhbirVmdv1SOPtuqNuK+SqqAwD1a1lltPxtSU28t2cEookUDH0Z\nXpgI/dZoluwK3w3AlgQCnIXIhKO/ojYdF8KpHTAvWHSqmtRfk0mkB+wYDI9XqeFz+aHQYyMMKdUD\ndtVhznI9q+ihDWlys371YPEKlgNpaBoAZo1cmTK1mqBzYQFLbjzQINIWXaWJPh/URJgPisiUbEaZ\no9GQ+rJArOsq1JQ0BFSv4QvVmoCDbZIjshTore36sgLByBbIXoykjgAXipzl+rj+Kg9B4DatV7HZ\nadcrIT5KhiHBdp3f6lXAW5D2pCcb9StXouWb+ut1yE3oniFK+VYBhT8jBymvEbYvr++q4rVihNEr\nRM7WKZPVUQmktc/mfpCqc1muYbqepQ86wPPD7qMkl0n0KO6/aq0KzaFYeF3mGoLnwjrfdKUzKXER\nyVxYhLu00ckzPwvBSVrOtEnamGyA6iO1fB45O5pSyX3iGZGy0d10X139SrEW7fK+yEkt+o/8k/1r\njBOA7+/1895hrf2htfYQa20fZFfwgrX2fOAJij1aLgT+/GH7MMacZYz54of97N8zOjj+mWGuuVHG\nIJPdG4uB+uEyA9nSQ48gp1rYNAH75lLoslZ1YCAb+7tnqIdV574iQJMeg2xaRh7jnsdc0hcuzqtf\nWtoo23apon/md9WYc2ugew1m/HnKcN1yD2wDc7NV5mpOTBNBM/r5n59IEnjkXEzdGExsAubmAlTV\nwLg5akL9MJjf5bBfyMCiDszXAVujerIjRsBqZ+ZhGjEP5iUf/N6VIoTDUGuBX+n87DKwa4DVrbA8\nhx1xJZw2XTVsm0cII4+PwpScMmlHTxdGDp0ronkL0NyI/ZhgeYsAACAASURBVOnbql37DqrBBuzE\njFQjpz8mjIyXyzDkMPYEu7YkECmrZw9GDt4ifOw4DiY5/F2wvYiRybWwY9gH4yMdYIYqe2ZGQmjZ\nP4aR/sz7MTJXJUOn6CrNvx7G5F2/0HQFMqk6Rq+DVcgcJARUQNN2eKJV5MIUoMKrKTtDBKj2LvUs\n87m5n7CuAyudquQEmYJYZ8YRbhUOgzJZwTXgWyn82GlgdQ65JJ8sMy5w2a68snUVzui84sWi+qN6\nNXRaoePPlO/bMzX8mGuRs004Xr5VWN/eR9crFylKH5PnCx/TJwN1UouYvIigVzfW1gVqZml7/sxe\n9d8Ia8Mtrodck6sXdNUp6UrhtSnos0Aa0sdCYpKTQKZUW5hxhlzhGgUrx/rk/tmrDK6qhEmHqO5t\nUj84/Rm4dljxXAcHYWs39HxDUeJoXjzwsmgfZfwr4ePBPmj/4sN8xmW8liEw+noNhR8rPGZei2Oe\nDQo4z8/DLYtg2VRp4FuBbz8ikB4/Xw5Xr4B9wKXVjg0LLJsQ0CXSksCMXgTTroFz3sYuiWB+9j0V\nmsdjcNLLekp+ayT4lqjebLHbRjVyuXoAGA43l2ly6LOUPTb8p7aoMeeQav102qW+HoUOOVa90yQH\nK3+JsicVA2DXKxDsoihiar1AyPglXwi2Q/g2NNl3gczntZ/QKij0EqEJJvWwv0e6l4bMAGWB0hUq\neDZ+2dTHNqnhcqBDwWfOBjbBW11EKr/wajHbFVlTlI14hCO4DJWWngu5kRB4EbKnaKLnJWCEnBz9\nWTDOAMUjYYG0auVYCn/oBGesglgACucowpmdqEyURzADKS2bPrnYdNsUBDyR3VquECwWgoddbZkt\ncwYr1VqmJK7zTVWrWXW2rqiF7ygvAghIpljSon14TmGljap7izYWo4OtvaHTEkj00+epahE7X16N\nQTuv1Hey4wTwpdSjLl2pRt2hKjVVjR5TdC6rHKyai3yHwCi5BUp7Q6ZJxdLlfSXxuGGhCNvpj8vC\nujwPiUPhVE++Ccw+86PNQfu7x0vz/tiQG1XwocdmjBkLXGWt/bwxphqYgf5zNwDnWGtbPmS93yGJ\nRy2KOHox1pOBV621E/fjKXzqxz+Dj+aaG4svJj2mDNPMM+Gn98Bn75Zc8PF7RDoA7v6GTEAmPaba\nsrtnwOJGqC9VL7F+YKeMF+mYcj88ORV+53qm1Q/WOof0xXw3j81Mhp/PgGaXdXoWOPtuzNivYRu/\nA6f9DL62SGToocmaWFM18LMrdQwrJ4hUdadYD33kXMy/jcH+GgUkq1w2qxq4P4l5swR7iV/Ln4jw\n66Rp8Nur4WgwV+SxfbIiSeVhyQ9HL4Ig8PWLi61hBjUp2xeLw7OTMWeA/XkS6nw63kP6wlrJOu19\nCH/H1WDjs2DTBOHeMJQRHL0IBr0sUpYH3kH/ZStQr7Qm1CvM4SO8HyPfi48LXC32GRX7FyNDcaAB\n0s7sIrxe877JC4NsZ839Pkc6Cv5ifVXZDqkfUtWK/7L+BvjGdexYKddBs0vbTAyTSVa2s4hW9Vx3\nLZ5VLVlwMfAyxRrtBoTRLSi7dhq0nqzjD6QlL8xVSSGzrglWdsD4VSio+FWXubsDst9wOBwGW1f8\nt/AyaN455R02FoIQfRvYAIWxUqh49vnZaFHxkQvr/djmokoFnGlKD4j2BP9rIk92o9rRRNc5d8o0\nJE6QCsjkVYawd/04OIflVj2TdMSEtb6srp0XdM2NUtPwku5QWKMyhorBujeCMT1L/aZeLWo6muGF\nzirLmL3JqUpQsGDKUOjzGJI41cIrJ8DRPeBzf/ro+AgHLkYeyPh4kKB9Aob5w5ex5z+Ib1IKe0cK\nJkcUZbwqCxdsErFKrYXLz4dz3UpbgV/fBtfdhFm0DnvLPElKADMN7OVpzBNB+Iu0c/Yh6e2Z4cPO\nbsTu6ClTkjHT5eCVXyNjkBXISLQBRWBSCPB6sCciw1aYdYL+HN9TeBW8C87qCX88Hr73llLwlwyQ\nVrprRgYcJ0ekt/eVSE+dapDeOj9Qzn4d72jiKz8U4m+5firo4b58MbAQmq+SLCC4GEkfwjIDia6C\nQhdNzMF5kBynCdD6i5HEcIuTM2yGk0Ow8HigCU5dC3/oDF0eQKByroiW9TvwuYpiwfPl2o9vIRSO\nkW1x+8lOe78CuWQBdFVBdlsXl8EqF/nL9YEfPAffHwE1bVrOBgR8hS7gu1v7Jyy3qfJlxWbc4RaB\nZ2mjiGf1Cgg+6PYLJG53FsKe/KW0KAPxAMdsEQFt6yLiliuRXMaXkplHtLFodxxIQ+vRslL2wMvr\n8VISL4Kqt5+OSv3Oh7R8XmojSvsrGlh+qL5zE1BjzvaNUNpL37UN6b6IdnV1iqXKsF6wVH1eznta\nTTl7hsF/J1AJNx+mB6D6JtWu3bDwwCForftjQ25U8OEA9M8OY8xzwAXW2u3udTfg99bacR/H/j6t\n46PioxfAy7wYJbR4JGbnXOz/PKMg25YecN79sp2ffYqyZKMXiWQ9MhUunoZpvxoA2zxdToStS0VO\n4uWYujHwOYt98KniDkcvgnsvwHyxL/ZO4Py74dWpqmOu26om0t86QU2mOztCWBghgtIM9F8qTHp1\nBvb5pSJH8ZgyT4f0VQ1YD/aoOuwyMFcCaUkPqUK9z44NwyOuEXUE+NElGHuPYuAAnwc7IQmrgvDv\nQe2/6WZYcL22D/Cj2+CnV0BH7Z46PN4YA/2XYi4dAX1cZPEvfhHERBoGhYV5fYHh00SGvQBmfg3s\nRvgIRYysdOf0xkSIPanPHEa+Fx/h48fI7JddbVrbXjdSel98zIxRRis+HGJvQ/wrUPYcNB6m3mOV\nGWAcIlP9IBOC9DOu1U2NsMiXdcG6F9VTLLgMEbAR+p3rpjY0HO62UwHsAPtlF4RcL6ljuFVKC4/Q\nLF0Lb66Bi8ZD9A/uOvdCSpNKJD9cCJQosJmNFklZIC18Kt+qWjMbcPVrK7Veqp8wvWqdniESpzg3\nZid99OrY27oqI9d8qOrVQwlhpd+paTpc3VhJHFoGO0xbJ3yM7oTdg7WOZ5jlmZKYfBHDTUFGI8YP\n1SPV/y5XKiwOdFcdWlkv3QOFvP62OTlHlmdVwx10PWffdXVoNyyE29y/5eiu8g/w2tTcsFC/P2kY\neSDj40GC9gkaZkcTTHZP18sc0boVkbHcSsivgp3nwnrATcw4u3vqge8l4ckoZl4rdlwePhOG3nfD\nnKmY2/OQNhQ+p5COb1JKNQTzo7IMduBBNcXG1OsROL6NIpme14jT2N88UFbopz8Or52tCWVFTtHB\nXJMiPwDt70J0kEAnvUiRoWAcqJO1cGKdZARtfTTh5JKyZC9xk2J7rZpqZgaIaGSjxaxWNgrRuUCl\nImrGSSPiw0WMzBpJL3KHqwA3OgjaV0MXHwLaRkjGIDfXRSOvQE0rfyBCxS8gPhNiV0HLRgV1h1yA\nyOEGRMh+6V6fQbEucCm0Ty5GJ4NJqFojEJjxGow9CXpvddt4ea+boCsiXIdD8hyRHa92bc99UhCo\n2DL3+g7gUslcclV6bsqVCLTaa6D2brAngHkUMucrwpqsFXB0HFL8nsq2urq2mArEQ07ymOqhRtam\noOvtNd/0yJ9nIGKcdKMQFOD6Oum7DLRDxVj1ePFtg8BQ9fMJrtK2/c4yP1zjMmxxEbR8BwRrRMAG\nBfRQc/MRcnvc0lYEnilDi9b8AMM7f4QH4QMUfOBjB6AVwGBv8jbG+IB6a+2gv77mwfGPjH+KoC1G\nzZaHgb1uOCwYhdl2D/anYM51zoSXnyNr/WnXiAz95FaZWtRthat/pmzaHVfDG8Phc287x0IkRUxJ\nrmj/6y2RvPrBIllzZsBoC5uNepw9aLHf2oW5sQZ711IRw/rBysABHDoXr+k0dVthqbJnZnYO+9WA\nDD3ubBTh2TpZhG4rMu/YOzvnn6oasmEo8xeukVSzT1RSSOfEaJ8FXk3DEWFJNj/3KPzoB9BrN7yK\n8Oo4FHisACYm4cEo5p1W7EP3yUhlyv3w5lRlCG8uQMJg++QwObCTXHD9jV77+rZ5GOnhI+yLkXvh\nI/xtjHwvPnpzbL5Gc+M/gpFe82VPem5978HHB4FzpewIpEWwyrfKHTLTrH0BVK5E9WdNkO0G2ZkQ\neV5SxV1Todt12mYmJkULlQgHd8hBodsFwLPQsgMqpyKS9TLSpLWwBztT/WTqUbFBdXSZGGzeCm9l\n4PR+kiZSiQKke5E8GiBzrWsz4HDHly/WeJU1QHSRq4l7CFgB6Z+7UgSH0Z5yJLa52KMtUVdUplif\n8LPqRFnnm02unGCg2s6YgtrddMR0rSO7i8HQjFOn+Frl7NzaW/LLpv7aX/yQ4ndERN9zLgEh59rp\nLxHpA/a0I8olFdjMLoeSw3QffO8tkTAvGzu6q4xErjsGTvwTTB+n93qGIVsCKxs/Gj7CgYuRBzI+\nHqxB+4SMPS6Mi1EEcRh62O+OgCzeAX3nQU1SpY1DUVRpBfAkImyXRSEdwUZPkv3yzE6Y+FQ1Ba33\nQ8rs4/YIwM9uk9Y8A6xB0km/+z28SZHB8e51tftdAxe59PoNCwU2F8+Rk2P/vBz3AtXwpoFIN0WD\nIl0h85rApGIwGBcN4iVFkPIhadnDS6DzQkXpfDsg9IirCXNYaf2K/HnmFJEm57q0wVn/LtCyqU56\n3XqyIl6BUh1HqAq65IC6ftAEr5QKFEFgYG+EjpU6Dh7W+7GLgUvlQtUf4H732f3A48AgyC4ElkJy\nQPHSBts1aZc1ONdHBKjLdoKvQSBZGIgigscggnc4e2rcojslfShtUGTP+nW+mXKdo1mjzFvuCpEz\nT3Pf1kXXs6McahfJXStVrW23dVVxtNe7xovWArT3FKnr9K47Vu+au7oHr98cOHJX6XT2u3WNQfvJ\ndFc2Lrxaspx8EJpf0Wv6QHqNwC47AEo3Qek7Im7JBmh+R8SspV4gldkuS2FfCfzQZeR+PlR1HL8e\nKXAaFdU9d9gB1JTz43Rx3M/jeeBZY8xXjTEXAU8Bz338uz04/tYwL54E144nk4jCsOlyXDzlbYjF\nsfeshf5LVWt20SVQPxgzrkbEaEsP2NgJvnATTJqBObwv3HSdNGv3XiBydvqVyjr91zkiZy//Rus+\nPlk1YN+fIXfGm4321R3sJUbyxW2osfSCW+HrF8LEu4Uxb4yRZPDnh2FiE2BOGnqvxfbJwTaw/+We\njF+fDO82Yk5ENWw4hcfv87B8qghnX5G2PeP4qGrrvpPC/qGT7PirwbwQFkaWh+GIXXD1jSJL/VEd\nWSsyVFmD8LEkgh1YIXLZ1EN93voh4rfOB08bTNpgh2QxJ9aI2C5BhC9D8R/Sj/Cwv8PI4Yi0tSJz\nhh5Qv3tfjJzvZNxeIGlx5oPxMXa48NHnh/AyqQ+iDS4DE/jrGJmulDzfnxV2RJogPk6ZqlxY2atc\nRNtI1kCnp4WVkcUiZ5nNwso9BlqrIf6CaqjpLfJYCcK9XzqzrN9D9oewawdwDHQ7BrL3AyOgHUTO\n3gJGK4BY6MUeB+NsVPXN2VIFL3Nh2FIFa5tUlpA8R9k+FiIb/8lAL8j+SMt6TsGFYFHW6GElXWVO\nYs+CrFMJexk2b7mYM7LiJeFxsF0JV69tTbhVGaqsc4gsaRE582SJnoTRO4ZAuhis7CgXOfM56/89\n0spSZ7TVVcdp8yJf4LJiu9kTDDebXG+0RmXWUushMADS9bovACo2udrGQ0TUnjpDplpn9dF7XTPC\nVa8v2tu7DoxatE8DPh4kaJ+kMfOH8Ph42KInTev1MRsGnBeEnSfCy1FZqXYFHrhB8kPQnRoBVqcg\nvQRiS2BBCntZFFs3Tc1AZ+gf03wmhd09V05Y516hmrbVbv2XJ8IFv4WmfrCuGnon4YEvCczXALf8\nFvrDfc1OdjZKmYwhneD4rrDar0khnoHDWmHnfEkzAHKHQNUpkrZlXTeKcKt6tXgZolxYE22n2yhG\n2pYCYUnyfBtdz7MKCLloY3ALMMLZ6J4AqaPkWmXyzro+DMHnZDf86HZEbOsHQUbRpXCLtrP7OjCL\noQAiYIfrmLa3QscP9Xfwe1o/vhJ24Y6tCwQvACoh+gQizWFJAFOdNCH7s7BjpI5xRAWUOc14JiqS\nlnOy0ibPkWyEzj3tNdEMiagF23ROtk7Xp3Wkon/VqxTRq3pXcphwi0CgabgakAIkR2ndtq76ibj6\nRJ9f0biSnYqmJmuUPUv0gMIwFYx7mUDPWRIEcv6spB7pSr2ObS7ezqEElC9VRDHc6shlM/i7ODBb\n4/rNAaHD2UPCQfKclnoIdSu+FygVaVuckbQRoF8H/GknnJoQkG1pg6c2/N8D0D/bfHPvn495fAv4\nH3S3DwfustZ+6+Pf7cHxd41YnND9X4JJjxUJi7PT5+0R+n3DNeoJNvpK1ZF9+VuqL1v1RZh6t/qY\nPfAlZdemXQ3Dp2Eab1UmqtcD2OuMSN2vP6N6sPR0uM/ZrfqWylyk81LMw3mRpAfXYmemseMugTt/\nDzPPxL61VnLIEbOwP/NjXwfzaBg29IXByE1xRFiSx/xaEb2UbO3NMGAY2Cv9OscUssd/HBmHPNsB\nZ04T0Zz9LckVB4mY2cvTInkRYE41LPk32cD2BJ74rs5hOJqTjwLmp4R16SWwJQVvprAXRrEN00Tk\nhoEdnoFJi7HZWbouFeinEdgEPOEwMoOaafZOwotf0md5hJENelge4h7gPXwM14i40aGH6vhKzYmp\n/8/emYdHWZ/r//POZCYzk8xkMxAhQlgDaCW2FsQquCCIeLQeKUpt3epSq1XcWm0vQfFU20JbUXtO\noS5oVRTxWCgUQawKLkCxhH3XgAkmhKyTzExmMvP+/ri/77x4Ttfz06qV73XNNZmZd5/J937v57mf\n+6mH8DlSHfwlfEzmgT9sXP7+Akbmtn8YH609xhijWZK+7oDwInGCeohxmBti6A3NzfkRoPbrMgg5\nAWpHQvwU1Z2l8sD7iLmeraiPZyv4KuGoayBzKVCpmjlaVcBDA3AtMFx129FeOn8SppepcV/s6Cms\nKMiDYV5javKQ8CV+q+SInpSp+37BZKi6TE+1VmFkTlzBwrzt5n+l0DX2iJUq25VX75IvkBoleR50\nlqlZdf57ws8up5XBdn2vybBxkh6sa+ZNab/BJmXSwMVHjwkgpwNya3Sydk4rhGR/WfQX7RXx8uTK\nndNjiF86InJm91GANKevziUyXL8VT7lMZH46XP30joso2DohDXanggLPfEUZ2j90qI7bfhwqS4WR\nn4bxecDHIxLHf4GRbVC9NwSrx0iSArC7StKNMwKwfCNc+B9wboHqAJYswJ4H1FZAg5kd9sEVATfd\nXdsB0REnCGQql2A9a8I0W8B+OgRnv6SagwnTJNc4DRG93WPghNfh6WthxVisIROxrwqJpPmBWphf\nqUlg0yUQr4Gmo9Rwc+H7bj3QWxfIJtZ/NDS/CqWnw/S1cGd/GUCwUyTKF1PKP1ynCTRcBznXATcC\nAWg6XRNW4AOBTfsxIgx5BzUpd1RC4Ua3x4gnI4AKHURAUqgIoi8G0RFQ0hf43dfhwmdI50BrBrrf\nRH1TGqDoPEgBvuFAJYr2nYQKjYeD50kdF+PN9hMqQPbMQFLHMQi8KoBqaPmGJt3IJkkvZ82AK6+E\nsgKTqasw2TSfQCfaS2SrO2CyZca1y9cpAGoerM/y690ib9vjSltCje62UiFdo+6Amfj9rgQxE8SV\ns3olO3V08rlRN4MWK5XVcKTG2BubCT4ZERC19IeSPZKDOFHEjFcg500JRFP5JntXIpKV7hIQRvso\nOpzoK0vjdKmu3c7jYNAuuYE6LqFTT4CTiqD5LSg+Hehy9fdf8sJvGmU5vKIBzqn4x+aij1q+Efvb\ni/3dI8RHL+Gw/o4J++9Z5sj4+8b/5VJafeMk94fwh2Nw+lJJAye9iHV9DfbqRmV3pt0nmeEPlsEX\n56onWls1lFWJcFw/S4TusUuhbQD87CqROIA9U0TStsdgWKecGseZWrABYJ2IepMFkLJjHLBrL9bc\nvrBb+iv7JoNPf0iIgD3ehbXNh32RR4To0F6RtOJGrGeLsM/p1nItqN4MqSLtKUkY7dc6W5Dk8GLV\nqNGxF+uGAaaP27dcjGwPQ8MArEXd2LNyYNctcCFg9RKuTVoAt82CKdNgUBB2x7miQa6wD2yA7SkI\nd0F0yBhJO1sOCiO3gB0H/ttYxK5F/4RbEUa+a/CxAPhPYSSzvvYhfISPDiP90Q/jY2GNbvqLzuND\nGFnytgxArEOqWw60um6Ch2Nk3gfq6Zn3ATAbWh7SNgESkyHUDtSOgTUjyHx/Jq3bIFMrDM5p0fxu\ne6Hg28BIsMeCdRdSgDjCrzmoZqwSMjvBMxml3vah9sCFOjdG6vjbByvbFKyDDfWw+WX4zllk+5+x\nFqI/VDYqmSciGtoFDacLr4LNEDZZvmi5arFbzpIDZkeZ5IXxErcezJFAxk+UqyMJaB4hs5P2EaYW\n7WRINChA6fVDMgq0qn4slaf9pv2mBU/axTynFs72at9+E3wONgsjHcv/QKtbv50olEFL04ngP6Bt\nZXyQKZYKxbsTrBMUSG3bLqljYg8EBor0p7sUwJxRLXkjSH3iyYWuRthXqmBBzrfh9/fo838VjPw0\n4+MRgvYvMKwhcdhiwKAZReoqgbNegpfPxrolhl22DRrfU2HUuFfgmodVyD09BC98XetOeQaWngv9\nlkh2Me4tRVkr9ir6OAAYbmM/bQkEd5TAqjiUQPiPEE2jjNyZwH+Z6OO2IXIMixXLqXA/LB0jgBkZ\n1s12V4syZ49tlfSsPF92sC2bITIY2i3JOr7klYwjM9Ck9Q+pEDcZFgglw8ZxaS1Zw43Y1Zq8ijfJ\n+rajp2mkuVhkKdpL62bfXwcUykre3wmJQVC0VmYeTRfAUWHg3a/DuJV05R7Eeh5a+7qGGYE2ZY3Y\nqUhbzttIO98q+WMqpEk+tI4ssUrlCRBImOPeaZ4vkq2w1aH2AP79ikIuXgnn9ISiLnTzsxa36fUQ\naLtDmaiDXwC8qgdztO55jTrXrrAaYFppiA+RkUdHTxU/O/3NCmvMsR4UmYqXHEbMkLTUqWfIxMAT\nAjvq9nzpDriulk6z7PZjyDaedpweHbDxGqByGnVaaUUQnRsCJ+LZNFrNqj0Z7SdxnH4LXlMTECiF\nDTlwol/SksQhRQvz+8Iju0TC7G5XdpIogUKP5D/WFTDrJr1/2xf//vnoowafxN9e7O8eAT4WAHod\niaMX2ba96398Vgl8FZho2/boP7f+kfGPjX8UH7NBu6/PUi8zxwlx3gTXGOSBG0TS2iMib9uGKrs0\n9WG4/hG4c7rm72E79Nwegd9PlCLj7slYNQuy9W32XmNL/9hlqj/b+QtAWawsUTrnZqzSn2M//Xus\nEyZi/ycwaqkChqdOwb6rEZpLhTO/7YIRuVhOKb3TS21hQpm8O3+h2rdHwb5N/7fEUc1baQa2GeMO\nwBqP5J0rQjB0M/z2C8qQnfcSvHQ21u0xmaDkpqDHJmnHnAbdG7/g4uOaETB7quq1/ag2rczcJlbs\nxfr3AdljsO+0hI9dcVgL4XcNPsKHMdLBR6enyGt8CCNPPurvx8dhxRBs+/MYCf8DHyvJyusdjAw1\nCg+9KQXYfJ3CNQcjMz7N2YFWYVJnP83Z/pgOvbNMp1HWB0gPhEg7M+sOcvV+HY93pxtMLagxWbeH\nzLG0Aiepl1i0lykrSAgvM17VlwHK9O00y49E2bWexrRkBcTOg8YdsK0BxldJMUMANb0GklcLB20P\n+MdA8nXtp7NUtvfJ41UT1zbKJW7Ng0RuwcUsT1p9QePlBudatXzLF4WBzvXjNOisM+UYcS3jjwlz\ninfoOBzJYtsxem1lRCCd7YJLwNI+XR/HPKQ7AJF1Ot7DDbraByuA2R3Q99nRWxLU9LuqEQ80Qbqf\n3uuOCcs9OaqvLz5ZQczYl6VkGgzE8vXbun4T/LIefnnsP4aP8OnFyE8zPh4haJ/xYY2Kwx2T9SIS\nhVON1f0elM06CJQDE96ES78OZxfDKa9g3RhQpPP8+cZ56zJFFCNRrMlV2Pk3u7b6X9kkK+JxrwiE\nHWB/7FI5OPacmbUGJob+ProZWouhzz5tA/Q8YCYjbemc25PK0rUn1afDX+QWt/56G3y1HQqHSYJ2\n4dGyTwdY5oVzNuvvnIQKn8N79Tr4XVRI7Ezkph7LNn27clpML7TBKppOHAfhdfosHdBEFt4vQErl\nacJ0skLRPlD2J2AKYPdgTuNBLohp8j2qWg5W4f7AawKBol+iaF8Aka+des5c4zoU+jqAn6CuGqYO\njfMReCZQpPAypMOvkLPVvY/DZd+A/ivNtsu07fhyCA4HhkP7ecbSfoCAoLWvCJlDZLMSCr8kGvFy\nTe7hA8p4JfNEOEufhqYpIpvtx7jAY3sFnKBsY25UhiGeZgGFr9NIR6JGIrpFUszOUuPguEnn6NQC\nBFpdg5ZEPwFyy0C3bs02WgQro6iiA2DxHnq/5xLZQrdVkG3eWjAMmta77o4gQtnVLBKXbBEw/Xg/\nTKuCbUbaMfdMeGzbJ0vQkh/Fhszw87EAUC5wCfpvOA6ZMltI8LwFeBp4xrY/0lP53I5/mKDtHkRy\n8B78d8xw38vcBuemsN/4D5GCKyUvxBoNYSPHW3tyNrDHqTFlsMrrRNomLdA3fUBW+NYtxrQDlIlb\nMwLqjB39b1fBwhOxrg1Janh8NXRWQV61lB2DzHORqSM7Ta5N9iVJrEkBEapeqE4LsIJgr27EeqQE\n+5FlMhABOKjbNOvGAPb3TCavqFTvTbMhbGP/wiMTlPaIgpCNKJB5ELdeeloMDt0Jv34F/mu6soQ9\nTKbu/puxdv4C+83DzuHKJ2QQsvACuPURY/yxV+89cIOObdKLunY9Z+q1g5EDET4eLNY/p4ORfwEf\n4S9j5OXlfx4fz3rXlf0fjpGH46N9igiug5Hd/YSPldJ8twAAIABJREFUjvV9KiIs9Bi1aqxU7xXv\ncImA47ybytO87y8FolKXvNcNpb+HrqHgfU/L5zUapcRxEH5VLWIoA+ohM17uxgyBWB/XPr/rB6b+\nqQq4R99XOxC5kSzJJIFEZIWweRusyIdbvmhKDkZKtZJaq5q2whsl0QzMEzl18N3pO2Z7dKyOYUdL\nf+Gi7VGwMpUPrcOhZL1k+54U2T5n8WI5CgeaRMJIuyqfw9UhTqPswIvASbonyXgh8CzYE4VxsVIR\nsdxW4VpWWnlYHXfKxOUj66DzBLJ9Rz0pqWXa+ygY6+0JxY9B85WQatHvPlimoGV3TJjo/K58EQUv\nHXMRgD25MtryRSDphYfe0fv/Chj5acbHIzVon+HhuTGuxpg1C2DUErlz/TAmchYEvANVLzX9UTj7\n13D8PjjntxCJqm/LAASqd/5CABuJYvWrwh77FbhkDvzbM2o6vblC5Gz6VBg6E57sK8Bu7i0QOhcR\nsy5EDuuApmL9/XZfiE6EX30NBsyED2R7vmI/9PuDHIMmvi115tqoJotEo2q78gz4nGkmpPAAFUWP\nNz/pUCOE9qsoNtoLgguBmzTZRe8Hxgh0aAWrVhG+zn5GFtCuiSx3O/iMs3HGK4OLRKF047Fh0Ok0\n5PRDj2okii+FoSsOcrEhMHZaTTJLtkLoEgjdC0VLEPAVav9sRMQroKieUwfAGgQuP1UxMkNMgfR4\nJIdJmHqxjZCaATnL4NgGKHRqtdq0j+i3IDgZgdTrApTAdskK48VQ+oqygY47VKyUrKviwREuGDl9\nVZyJv/08t71AvpG+Rntr0ndkj/6YqSE7IBABAyQfKNLqW4naBniU8XIKo+P36jtoP0aA1N5Hxx54\nT4XowSa3vs/K6DtwiJoTPey5kqzMsm2AIp1WUo5WyWZlD8P9BUbpLjdS2B0Db0hE7fAR8UPxtYpS\nHxl/edi23WXb9mO2bZ+FQkCnoh6g5bZtn2Xb9rwj5OyTGVZE2TPfpUg+N/VhmPQi9tkTsK/cb7Ji\nxm1x62gYOhfr22dr5d77RM7Oegnum6BeX9ZoqO2NdTlYd2VU/3XndGXNXolAeR1W9S+0vfWI1Lwx\nGq58VeTs4vkiNi2NWD88HusilDW7HDiqGnse2D/ahD3Tg3V1APs7qaz5B/XVWcmgNa8Y++hu9RgD\n4VdtBuv3OSJn/UIijj8wWbufbcS+z+Nuq7Y3nB8TOUsjo6dyYMGjqpW7ezYM2CJM7BtQNuxEYNtQ\n7DMnw/qTRc7mXg8T5ig79sVnoCEEr1fAm1+ASTNhTl+ZbE19WI9TB4qUdZnHBmB9schhHXBsqfDx\nchG5tfUiZGvq4dR1fx0jHRVA63b1QXPw0dcpfIyXfBgjD8fHRCEuRhZC0xDhY0t/E4hrFybES5Qx\nykmIeHgNYUuG9eyYWnSMQhLEf3sGrCAPbDCZmy0iGeFa8Cw25lxvGTXGeISPbYacVQBGYeK/Fag2\nrWOeQy6PlwG5ps77QUTuqhGGPqHlCvwwNMetTwZU1wYUfg+ogcAdwEgpXvKW6TwdIyt/VMFap+7M\nefZH3fIAj8l4pX26Vp0maBg+oOuWNIZihxtjOcTJ+dsfM+dr1CS5UZEzq1ZBz4IayJvn9i71piD8\nlGlHgL7jyK9NLSCG4LXJkRMk1QSR4vz10DgRQhtUX99zvT5r2axgZmKPaxrS1WianOfAUy1wwzbX\naKu7EzztMLXqCEb+tfFR4eMRgvYZHvZ3urCfrFaBcjFQ2xv7wQScE8Oq7pBj1+UvKYo3ep56sFz5\nBFT3hV9PzvaSoS4Ew5bAKydj/2cIijbAErjij8A7wOaDcNZUhi6HpVVoEvbugdY4HL9OIQhzQ08c\neq8BVsOcd5E75NC5UBiUJOQEtylibJSyFamLYOFuAdGObtUCPbYVvvy6mnDuLFd0sLMWomugYJXS\n/d6Umh07DoecpuyLvx3yl8qBMZWHSFICCn4lWYInpRv+nC79Hf2G0aaHNdGGGiF1HPjfhdz3JbFL\n9gfPYODfEcAj6Yk9EHq+gbJfILnF7ZAcgYqvN2rf9EWZMqOZDzVC4G3zWYUigtbtkFmr2rXOBYi8\nTQdrpTbdDdAF2xKQ2EG2lwtA+FEk42gA+1awlgI7XIOP9hHqhdLRW42jHTMOb0qErKO3AMLKuI02\n/TF9lvYJfDrKBKqO42J3ruv26IxUHgQPydWLNa6VPwETQfxA2bnYCJdshet0/JGHgOGm/82v1EDV\nt1Kg4/uRtulfIcexnITkqJ1DVR+QHCybf39Ux55fD7ymmrVki4kSviedveUV0AC07YKb/NC8AYbm\nwsPDIDpdnz2765MzC/moHKr+CS5V2Ladtm27wTzSf3uNI+PjHp3r9mDtfwmevRS+WqOszgM3KNB2\n0joRrklXSsq+5Brsi8wvpagUbnpAy5zzItbFqCYNsA8uxb6uCVIJrA/ugT9OwfpTLvir4HRbJOzO\n6di/q4YZ5p/o4vmwZwrWfRnor2iIvRph1Ty0TrARNlVh9UZSzB+8jb1XvJDyOqyHMyJpSx6Fx+fB\n8wnoBdZVNvQLqS7tayE4FqzLwb42oRYwmSpIVqv2bOISYd8fEnDpW1h7OuDSTfCtl0Tcnj4ZdgEP\n3q5g5U8mq95uNcqSnbHEODqeDMdskCvjIrjiAPAKwsi3YKkPZvYBXt0jjCyuU1uC49Fc3Qa930V1\nZqthTgz4QQj+4wFhZBlsvETk7PwCWD1CNWh3VchUK+KHebVw5w699uTCGYdcjOxqVr2Xg4/OXO1x\n/isLXXxMhQ7DyFbo+WPhY/Fu4aIvBr5DppFyb9fQqWmgFCLBZpOp6dIy3lzgHCTdjMVZU6/AWGid\ngmfUAGMMtrRDYJkk62w0x7YRmAF2Dm5Ac6cCqPEuyHyPrFSx8DwUjGzVOWXW6plCaD8K9rwnYsJa\n8LyOsm+V0PBTSC1GRK/QOARP0rOnHJqH6D7ASkO0ymS6YvrcMevK+Fw5YU5CgUdfp/qZZXxAuWrR\nc7brs0QhdPcUaUuGoeB9I/HvQoHLviZzGSLbyDvUbIjwGBHHaG8TSK6QEsX3M2Fp5jykrklA2FhP\nFK3U8uElEFms404UqnwhOkwZ0lgPiNfp99NpMq/eXBH/WD00mvuZSQNVu333OxD/QAECOw2pfwaw\n/I3xecDHIwTtMzo8zxjte6ZKRcybERGLFUsa8qJH/23DdsD10yCCkqunTpNbVN4SqA8p6hdHBcs7\nESDtAErh8XZYehQqbjakZFwfaDI9SngXyRifvlYZux4ws0yRlfdGmTqzJmDMVGiKQyFc0QW3rdZn\n97+rXhunPK/miO1JvX95OfwwCOvPEFk7vlPkItVLN/NtxygL5bgkORNetFyRr5aBikIVPKCoYXc/\nc7yt0rgH9xiZX5du+oNNRupX57ordZQJ1KyM6p9oROd48ltQD1svgdIXtFzTCRC/XtktyqRh9y82\n1zOAMmEBXBljjTJLPAe0gf0tQ74Aj5Gb+Oci56rnDKC0QtBMxscmIPc1sH+IJuyeyFikEMgF6wWI\nfZMsOfQa3bw/bDJKdTpux1o42KSoX2tf42rZqeua8YqsWRmBVLDZBSjb68ohwwfIOl6G90gCQiEk\nLlCRdvtkNd3uiohAF7wv0La9IpKhTYiMjofUg6bvjFNTVwFd10sKyU5DXKtNb55W0wA04Dpx2V6X\n+IFAJ7+viD2F0PiqyXjm6H7s/TJJIZ3hP1pZtQsqYdz/6ChxZBwZn/Zh/eYSAHzfQMRj4QXwjZuV\n3cK8V14H0+7Hbv86TJ4uffarXxFZSu/F+srVsPY2eONM9St79lKsV3+hzNu4lXBGIOueaN8G1kCw\nZ1jCiGn3aPtrRijTFYli9QZ7pkeZtdK0VB8/6i+cKkKkcADYfwR7aQJrxig5NG4Btg3BnpyU6Uif\na7Dyr4EvAOuR/X4qoWxXeCkA9jywJgWEY/NNg8bbv6UsS81BSfLfOlnHsxddl0kvChuDwK0z4cQ5\nEFgC5zwDjSHY3FcYmQSWofMsBvLh8fdg6UCEqXFh25XDgDSM/COwshg2hpQpCwKDdMM7shXm91Mg\nkmbgzqmwLw5hGZA8thVejcOKfeD7TylOajvUD21cH7nvvV4pfAyUwrHNqiniHRcjrVrNhckeULDM\nxcjOo/VZ5CG37sxRmlADsTOljIiVAvX6O1xn6q9CIj62xwTswqYFCxAaAKy4Fu6YSfMH8Foc7K0m\niLkQeA5ajoPgowYjnOGYYvU1v+GnyToZUwPslPOjZ7l5fRKwETIbdXzJ24ULcWMgUvAy9B9oiFkA\naFOtNxeJ5PjOg9RPgWq5OToKkVS7em529NNx+Gp0OwVu1tDpfebIIf1Rk6VsVM2XJ6XgX6aXu54T\nDLWjUpgkQ5Lzx03POE+XSgxaK+SqjDHqihcDayDvx9Bzqnu5uq43fzxn/nYI7kgpedhpsnYVQBkU\nzHezqYF9hnz2NseXC7E6yO2neyzvTvMdeI3E8RU5HU8NQW6x7u069kF0pfCxeeMn73j8rzyOELTP\n4LCGmDvHr+bCn0Lq7DgMOG4m3PAA/LYC+8mQZBY/mqrM1R+RWcW7aPLrQGCzGwHEWygzFoehTXBh\nN/RuhYnL4MKBMGeE3H3OWaTI3erzYU4Bit5cPEcT7EG4fb2Wa09KF7+2HkVptwJrRMBezlVB87SR\nEPbC2hREj4e6chMVjMB1jbqRvsTYv4YHQGoNtAwQcUoNlITPH9XElihUlsfXqYabbaOAhDIpngxk\nbgQKNRkm+mnS7DwaWsYKiHydmlw9KWg5VgYZyTyBk6/TTHibgCufoCMMsQWqecoYghNcAk3XIVL2\nOpJeGMDhTkg6xe7DITaObOSPNdB2IxR/D7fWrFWRSxLA+eAzDlbNi4FK2F4O8W/pvFvGasIngOQr\n52k3vhhZwA02m75jLQLUVJ4if8k82evHSqFwnzJoaZ/quoqdFgQxiJWJvDl947qMKUtXoa6jlVZ0\nzvYqOpeTEGnMMTV0QWNGEl5oLIT3AYsUrQVEnsuAe4y9cgCBdkDXMligiGH2eu6TeUr8RL3MSUBo\ngWvBnPbp95A4TrLGlj9oOW+jtt/xriKHPber91nStAtoWQdNb6qpqzM+KQD6qCyEj0zwn8Pxy6vw\nP3yt5HXbhigbVlCFdds4ZZGuXiAXw/I6Ebj3qyR9//J8uPJJ7J9tlKvGirFQUKVaY8eif9tQqJgL\n370ZJtsy4GC+iN0VwCmr4OBE1TO/mMBquEYW+uuRrf0xaeyuWdj3W3D0KgisEklL71X2bNKL2NPe\nxvq2Lcw6ZoCOMw72crB/rnoz6zrghq1Qm4FmsC45R8cXB/umJJwK1p/8kiXmI/ypAs6YCbc8AM+H\nJE1840zJ+b2IsL2D9htHJG8rwspmYAGQhqF/BGrhwoBeX7wMLuwJ87+kG9hrXoGzyuDKY5G4KY3m\nt1bgVRf7hhXD6nMQfu/TZze1q0PB3DNFxB6oBgphbTlE+2v7PaIuRl4S0U22xyt8jJXKTMrByMg6\n4cTByZrXHYx08NGpc/JktB/qgU0KznmS0DnK/Vn5Ok09W5l8VLpzXddB2wu+R1AAYD90HxA+OPJA\neyAkf2Ts5F8/LIj2E9OHtNK8Ho7qti8yx/N9YIwhUItRVm0HMB483wMqdL7hp8R/44shWgx7a+SM\nHP2h1ncyiMW7gNPAd6M+Z42wO9ik+qqMB7ztKm1w2sHk10tuaHtcV8vcdq3Tfoz6cTYPMuYcFZKT\n5oRcA5BUniSRwWZtM/AesNyoTAIiqxkf9JhrMp41CoxG1ulYGa/HocU6nuCNOm8KjXfO67j16vVA\ngSn3qDHlEZgMaFKP5kHuPU3OOkkxuwwWx3uISILMtShX0LJwqNrWlCyXTLL0dMkmP8nxecDHT/vx\nHRl/YdgzLLhsOnz1eeiA8GPoBvbWqWpI1YZSRXtQdK8SyRD7A10w1Fi+jqwla+tLARCE7SXwQkK1\nYndVwQsNApM1Hwh0ajvc4uXeK5HF/tFAGDb+u+SKg9IiWKu/Bnd5gHyRuvIwpM6G3pZI3Nwz4aZj\nUGPQZlibga5abT9UDj8x7kktm2WZnl+vm32QO2A6AIE+IhcZrwhF44VQ8CJ0TlVmzLPT1HsZSYTt\nlTVusNnt9xUvUVFtKk+a7rRPBCXQZhyUulC557lz8OQqspbKc63pu09X086D00wvl4T25bhT+X8I\nPAedp4P3GyhS+SOdR6Fx1Mo4ko16Zfow0SwaIHa7IXEJGDxK32PeQQPEecAa0ygzplo230rgfGhd\nbAgcAnJ/1K0fK6xRRDW/QWCb9ystZyUlM8xrdOsM/DGtExvmRlD9UaOxb5FEw2N673QHwLNA17Nt\nFPj2KJOWmCBQyvSF7juA141EYyOkdiK5RwOklkP8SUTSDBhTg6ShD+p3bu2B4Erp8XPmwcEb1VDb\nseb3dZrah4Pm91IK3v66cSgZKXt9yytJUKIa8gaZvm5p9VdrWwnFf5CBzCcycj/Cx8c0LMvKsSzr\n1Y9vD0fG/2UkL31GxGvbUJGbGT+A8FLsWSvg7gVYj2ZEym67X7Vobx4vEvfkt0TGCqrg3dF6bwtY\nhbdhn5mE5ACsS6uy27Z/9yz2tmply9ojkteftA6qE/D4CAjL+IOGAarAOABMCWCdfAt07BWBfGe0\nZJQnrVOt2KIp2tZVlt4HrBsGYF2hujLrfLDnNaq2rT0M/UKSQoL2W9wI3/BjDQB7390weLMClPmo\nRikIfG+qXgOwR+qIDoSRTQgjD8JIp17MCWqWA4Ngewgokd3+6vMhmqu/y/OFk9uaXTXInChyfWwD\njgVOcmt3huRIMnbXCIORx8ul0VGh2J1QcwXMHwE3dQMnCB/ttFQnz09w8RHkohvsrVYsTgYmfpzm\n69yofL66A8KIZC/hoz/qYiTDgZ1q5+IxQbfugFv/m/OesKbHXMjbLGljxquben8UzTWRKATliFjw\nto7Dk9J2OnuAfxXwPUkcGQJcpqyWfYquDYV6P3m8cCJ1lN4reACYq+NzTEXYofNOmIwX480hFEHf\n/jqnjE/ZKf9BiA0G7jSKmJ3gaQOqtO90AHgPPCXCEH/YtOJpVOlBzgM6xwKTJYuXaJfdAaBWy7UN\nkBKlOxf8693sWX697g3Ce5Q9zPRUrRlrpSzxpkzLApTR4ySTdUuYx1r9douBzIPQ/qA5374qacQE\nZVmLsmllYI9FJA45WwabjOoE18LfH5WDc/cBHb/H67bKycmTw2OqHWIvQsfvhKWxUp1ny2bdF4XX\nQerXn1AW7XOAj0cI2mdx/PAqqFwqOcmDX4PjIToIReHeQlG/9UA93GVS8zQgSUkzUAKzToWzepso\n3w5M0TSaNPcBtXDq8xDJhZlV0sT/dDhMeUXrlOfrUVeO/Gn2ab8XL4NHxkC8QFmKx7aKbA19F07d\nBrfvkQxke5ekHFPehtl7gTbIXKR6tJ/UqQB6/CK49wDkVcKP4mqwmPG67oqpEPjOBqtajknpgKSD\noXchdYpOO9gEB89T/7KGCSijVKueKR6T7m8dDt1DITZZkbFc0zemdJurPWcIMPd2CEo5mgkqGtWd\nZ5ymCoGN0OMJReEAMgsQyRiOsmPXqug39xpgJ4R+A5mfI1IWkCSjax9wmpFzmOLipjsgNFMuTZwE\ne9aDXSuQCDZp4qdKGUVri7JI9in6TgqHC6T8UdXUZXxmMk7Lhj/YJCDzPwSJywXKBF0dfn69iAyY\nmoMD2lbQSF6tNAKRGp1DTsJk/wqAJwxwt+raBEzzT88CgT199R3EAV+BuQY9VcwdvJFsM1L2ke2P\nYx3S9XFcLakBRuq78ibV24bywwrZjW20r0YSDk+JLIR9TXqAnMk6zM1Ij826ISmsgdQtf+H/78gA\nwLbtbiBjWVbhJ30sRwZYPffDbffj/+JbImcLL4BHb1Nz56kPS54I2Auek8HG3BtEqFacKSKXRC6E\n9irJES9apuVbZ2E1erFuwa1bbg/DwguwhlWpEfW4lVizA6pzCwdgRACmLpIU8lc2rBfBYuB8uTCC\n7P5TCRG3LVNEnt6TdN+6SJJHfp7Evg1YAfb1wNczOp8gkD9ANvzjwP7hu+qP1qtUJG6fcaWc9KIw\nL4iCiAbb6EDZMqciJIhIVC80IcWV5bqwH8wpM8vtQ/XWB/W4fbUwrLcxshsREkZu7xC+Rvxw7WuI\n9O0DlsHQjcLIs3tBR0B9GWs7YOEe7fPUN6A2KpJ37xYoeQ6mvAGzewHzhZG55cqu3bxauJxbDtMP\nqqlwvF7zl5Oh6ugpjPSkhI+hxS5GAkQHuBjZMMFc4xq5HMdKjRzPXKPUQNVpZcZoLs/0Mg2tTVCM\nkcA3Z5IuJEukmgcJT53RPQrafwrcA8k+CBvWmjrrRXptl4P/XuGEbwlZbMlijVFWdJlassAy1ZFT\nA56R0LQEav4A0VNk7x8vlitk2g+Ml3Ijcx4qMRjuyhZzEhDYreBrZo/uBayM9sFI1UUz220REy+R\nY2NOwpQKHBSxymv8M/+cZcAOKV88TuB1vHDes9icY4W5hq2qL6MV9YMzNWae4fppRgrMdVh+2PZb\n0b1GhV5a67W/7oCCzP6YsqhO7aBzvukuHa9zDSiHoiq1b+A1uXh6U3p0B9QYO7/uk8+efRbGR4GP\nRwjaZ2xYo+ICqG1DZO6RHKgIHwiAkigimAZ2wL0O4PRB0anjgTLZiQNcuxnmnIZkFs6jUNu6Yhhs\na9JjXB8ZeCydoHUf26pMGX6UwdsB9Bco3f0OhDqAXJG4aSP1vLEKZg6EYSUwfK9A6KwIKsDaICnj\nKc/DHX1gdjW8NBE2jtFys0YoouM9WXr4lgGaNHKeMXVoe83Es9wU5QYk4WurUGubwjcFRAyRDj43\nKmMJbwpKJ0PyEHTs0Loto41cL6RHQQ0C9VtmcrBGy4KJJlYD9WbfZoLM2Q6YbgfJwbreLEeTLWT7\ntGWWm0LhMUjSAeQ6WTQjZ2wfbOSVBlhYBH2rIZCj6GTaT7a2zmnkGVklImNfCPFbtd0ic2NV4pCk\nlKkryEh+whiRMtvrukKBwKpwu9t0Or9eWStvCoI/U+YsC5oJY5Vfr+tMJQR/idt3xynkHqnzZx8w\nG4Ijzc4qIHUvIrROL7vTzPYga/bSHZRkNDZYn8dGqKYC9F5gi8A8dBDyTA+gxNFQ9BCULBYgFZjI\nZud6KNolYA06hC0k8PUZ8E7M+wQihIGP8PHxjk5gs2VZj1mW9ZB5PPg31zoyPp4x9WFlwGbdKYOQ\n8fP195oRcM8vYIfJcg2cDzPuhIfUr4wVZ8JgU9fcHoH7b4bnJqhPWW1v7MC52L9dhX1QtV5MelHP\nkzMQBIspatvSHYCbp2u/K8Yqc7bGkiX/IuCB82WRnz9A2ZY/eLHXrQJPtQhZWUhOwouAZDWM82Nd\nZ8jaONWyWT/vJ3lkHMkjV5tjbgHrZmXYuPIJZQdvngY9gsIpp0doCcZpGJd0JVFQqRAohpFlMHGR\nMmHl+TCnEmXA4kjtUQIcLbwb1wfau4SPK1vhwj4qBVi426yTRBjZCtsHy3gh2W6aTVdr+78/H86K\nwsYzpDJZUw/3euDCo+CsIuBV7W/U82ogfO86Ze1emih8vPJY4WO4v0vO4iVQsgfSv3Pl6TQA1ZrX\nknlQ+o6LkcEmEwAbIlzzxUx9d4vwMl4MqQbJ3SnTtQw1K9jnPcb8/nrDW4eg5Xq58jpW/74OKPoR\n5PwYIpdC2zyjKgkgGaOZq+xvucfADrIZIVoh5w5omYkw4Mcme4QyRL5OJH8cA0cNg/7Gfdm/RXL9\n0EzTa7RKTpWefQhXAiKxVtrtueb0Ao0PUbAzOtZct+GQvEsB3qS55S4yWOnIITvLhMm+ThPIfBSs\nN8yBNkj1QUCBVGqgc4ohi6/rNdUy9KIaqJDhl9MGgUKDp2Xm9RDIPc9cu326LlSabZl53/cz8GwE\nz1qdV9FC47p5tEilr0nnCQpiFr4J/vv1PTmZU+9YnYtjOJP3nn4/gVaIH9Yy6J8+Pgf4eISgfRbH\njB/A7y+Aq5+H1XtE0A7Xuucj0ClG2bRiBCiN5v1Nqvu68li5Q63YBzd9AdWjpYFxQH94fCc8/r4e\na+ph+PMwcT+88TV49EwY1xfJGxsl82CNDm/hHj13NwtErnkFXq4X2N1apSLqkTXwwmh4+asI8EwT\n4doO+JO5Hy58VCAGUJtSDVXikCYNp7FxR0+IXGJ6mPUEztdkG1wiUlLyNmCIULBZRKZoiyJM/v0m\nQ/ZDRYZyEmCdoOaevgEiMYlC8FUi90Y/vBjSvgv2qig72gtlfnbikooEMBx8uUbKUa3vJTNN71MG\nVIDnPFyi8gSKOtYDlZACaIDITPOd15jnanh3EsSalKkKmgbXhyqhbSgkLpbLE5hC5kNGhrHIZNpa\nlcXLSSjb5GkwRh4PStriWy9Atow66aid2k5XoRSzOQn1kPF06TipIZvpo9U4cGG070NQPcF4sE9U\nhs5ZLpsdu0jXj+l63/eG2WbCrD8cEbrLyEYMc5bJzTHQpv3lJCBmGoyG9msZx864KyJZSuk7H76O\nTk2dY4FspSGwwdQItJrM32V8cuOzQ9D+G7gL3RasR3mJd/7qGkfGxzOm3QcYd8NbH4FblskkauEF\nynj9erJcHNsjaskSmKLs1QM3iNitq5DUcGyVPn9smbJQf5wiOWRtb3jsdBG/B25QvdrkJAydq6bQ\nOxIwYzpW1z3adv9SOAD2CrB/klDd2BdDWF/WstZFpXCxT8cDauR7izEHWZSCJ4bCMdV6/acY7AXr\nu7b2GRoNQbCfMo6NAM2IJPYvFQkd9wpMeAvmyaCKExFh2o1UHyC8q0e4mEJkqhDWNsP8CcqEPbZV\ni97kQ6SuGTWaPuhiZHlYhGziMgUko0lh5PzeCHcb9R5rZPjxxWUuPq6ph35Pa70vFMvC/LGtwDB4\n4Rx4uRDJ//oKswe/pNKBa16B/QmtD9DSWwbwc+AXAAAgAElEQVQOvpjmvUCrMmDBq2XkFC8GzlcG\nzEpr/ov2cjEya9deYG7eO6UOaRloMmXGIdfqCw0naht5joArHzlQNsGwDSI4jvzfs09SPkBzeQIK\nLkCkJ0HWLIsdxjyr3iw3xqzzOsKaQih6Ss85v4XIeK0fWmUkijXaRvSLsKfVSPTz9F73t+Hg8dB2\nse4bKDP7wHUvzq8XSe0OyMmyOwY9VpjAXV9kSmVkgiVbdY4tg13ikpOAgsdFWHM2CEuzChDMOQwx\n2NiqY8ibZzJo5+u8qHJrt0mY6zEHGYY5gcrx5nicub1QPd5o0HvJ75q6vgrzfZv+cLYH4mO1SrGp\ny86vh5InDYk15xE73jgpJ4xh2DJjnNZT916JoyGyAPzrIGKu4Wc6iPnxjv8vfDzSqPozOqwXzD/E\nmWhyewWYEoTdcf3zb0KgU26e95pnD1lv0bsGCBTsTmmNb9gm8KjrQVaHTwfMNI4/N/aHB9+VtCN+\nCTxpSNftbyHgAxFCLwK6EnjP6KNnrIU5J0nb/LVlivrVdkB0CFwYgxcslAEs0/nc1CDQu7G/JHZ1\nNuTtkE665Em3eLk7YKJeCyE5GnxXgHUFRM+F8BZoGgUlr6Lo3FEmmpWA1LnSe3d/VZNP8yDXETAV\nchtW2l4o7As88gDcOZWYD4LToPk8TepF693GytQrY+a/HhGPtWQBiSF8uJh3JCIcCWjfKIWNr6+c\nqIK5KHM0Ek3O3wduQXrp6fDCc3DqKdAjBbHRckFMDjZ1dAllu9qPgeIFshDOSRgb/jE6RqeY2D5O\n0pLuCboG1iEdc2o5dCx2e7j49sgQxZGqWN2IjBdq8vd0KavlTekzO8dc5yrzHRUpsljwY7Av0Y1C\naBd0zQD7cQg8AIxXzYGnwRzjRnO8i4Dhkot6egIV0HyXMl45cUhG3KbjjnGJE7UF3WAQAHYItLzX\nGGJcoeO3jzJ2019QcXSw2ZVKdh8NseugazmUjvvrc9NH3YTT7vlRbMlsr4GPvBHnh7avppyDzcsd\ntm2n/tryR8Y/Pv4WPlq//Lb++M4ceG2MFBbtEWXGQL3NZt6urNJt92P9pJ+aQv8+B3tcDtTH1FR6\nFcqanbQO6517sAfNkkyyN1j3peE1L/bKaph2H5bnWVjgwW4GnozB2JBqy2p7m6gQynB9GUkjDwDj\nwBoAtCBSNw5YgaSFvfQ+e4HbZokEnhHQuolGSTRXjFXfsC1gPZHGnunV9opRE+6gDaP8sHAyVC5R\n/RmoFnsrLl7uBj6Au74E93Zi+qEBZwPbpex4uRPIh9R5ylqlu+CmvfB4AgUV0yg4OghmxoRVvgj8\nrBqusOEFI/GfNOgwjHTwMReRxH8EI3uRxUfiMhRxMPKAB8K7jYzbK6meM5J55qswGNkdgNAKYWRe\nowwpSl4Fdqh2ybodEYIaaLlKAc14uekPmnAxMiehx7SjYPYjj8KwHcz5t5mc36L+m07WLe8DFKSs\nMtjQgRvYM6oPcs1zwLy/Exgp+3zPZISVJ+G6O6J1u9Yqi2SPNQHJLXDgELwVhHGny2aeQqksor3V\nAyw6UGqRku0IfwdDZL+wxL8YOE2E0rMRmAv2g2D9jGyNHkD3VHPv4XPNP6y0iG1OnGx2Liv/P+mw\ncx4iZ03/LpE165C59qcY581yI1EM4DpB9zTbOgl4Dbe/qiOea9D2U7eaIGeFWR6t3zAWQvUQ7y0i\n7jTN9qSM4qdVPU8jK7RP+0I5LLdf7daaN5lMW0GNztdr2iWlroLYZxgjP834eISg/QsMa4clQpZE\nJKxVf4e9kk9s70D/4B/AyKNUaEwx0AwzKyW56BGVW4/vRQQgTm1ZWpHDqaZ/2aC0tO5dPRTBm3qC\nMnAr9sPaTtzGElHtv+kbMHu3ZCC1HXBGvqKH29uQaUk3jCyAtU6ELQmHBsi1sSMAgSZFsoJlxl2v\n1kgLN8vswpN20+3+dboJ9x0CfgLxh5T1yfRUXVjOBkSSxqvY1nMjUCM7+HTAzZjZHk20hfuMtjyp\ndVb7VDOQ/G9FknLbtU5nGRS8qt5pvhfM9U+gSdoQNfuSw4CpAhdonEm4J+5k7KyLIWyV5rPxWu7+\nt2FKMVRUAzeJ2LQdownTyujZ9gqYnWP0xwzgFGofqXIRLzbKkj90EHfCf0LHHS8XkOW2GjD+QOt1\nB5SZo1qZse6AwCmnRcDjNP307NP2MgXQWWoKqY/RNsN1pl5srSQenuUIZHqam4SngUpInA6Bu811\nnK3zpVDXLz7WvQ903MKcCGigVRnSRD8IzNO2sj3phmud7lEC0/hR0FEpia2dVhPPTK5rH+1YLf81\nAPrIwafv317u797evo8PgCzLOg39Ypw4cR/gMtu2X/849vd5HX+ToN3/PbhhJgzcp3qy2t5Yp5Zi\nL00oi7apCo4DjpsvaaFjtz9sO1z5JNY3m7BXN8Kw7VjXnYr93UNav+dcuP1SrLdyocPCvqvR2PTf\nJzfIBHDndNVDVxhyNmyHatMCynCpeAWRryCSeI2XKyMtyNhjeQGMyqh+rRjYl8B6NBf7IfOzdYjb\nqcCDXVhLc9UbbQvKzO1Fma2zbOzLuqCpGF4+VyTvpHVw2TTCr0K0BAUegZkni0Btz6CA2H/Al06C\nXUk5JjqtZeJnQb1fWOr7DcoW9TXnchBu8ogoTRoIPeNq8huvF0ZuaxY+wv/AyH8QH7c1Q/Ro82Ub\njLSO1TbPyxNGdsek/shJCCMLalz3QgD/r9HcVyGZf9E34eDvocdyGYtEVpDN3LAIMvsUzLLHKtPm\nTQkPu8JQ+qaZW98DayRw02aY+jDvfXMO5c8Ia5Mj3B5iOa/KSMv2Gox0Rq6Oh40Im68x7++TkYb1\nKHAR2Plg34ja0CwHRipr5Btvltuj3xVlsOu/4XfNcOsk1bk5GB1sgo4TJYGPlyiQ1xVWdjFjas0L\npuoapK6XLJNF0P5dOSpmA4izId4GlsmWdUUM4VumWnZPxhiQJPSIHW/wtV6BTqemK16srJXVgYv7\nrWY/bea9RZCZrNfdRSYIul7Xh1Z9n92jdH0dQ5FMA/BLYW1+vYK1GY8kjjnbRVZB3020l3ufY6VN\nixvM77tQLtEZn9ZN+0TmC2tkENMVFlH3TvqECNpHhJGfZnw8InH8Fxj2EBv+XRkxktDbkKSaKzTx\n0wPYB6e0wFsXIB19M1AKtzdCvyfhx/uR7OwD8/lubYt6mP2+gGzGWtjthf86BBFbhO221QKJSYOQ\nhr83AqAe0HYt3P4ncwzAhD7gjwiIRpbCyDyBz8tfNsdjwOTeDrd5oidXbo6pxZpYuwNupivwgWmM\n3KzJJjNck0iyB2TuE1HJ9HTdnAgA4zWJJp4yUsDTBBppn5bPbddECKZp5VeAq4FDJ7BiH7Tvks1w\nlhi0GGlAmXFOdHq6VJIt2KXeAM0T5jEbZddeBx40y+5Ek2I1WeOL7jvc+qzO+UarDlSWQtCJwRS6\nRcdWxtgsR90+bjkJCLwqeUJstI7Ncb2KngiNtxjZQpH2Heuh65QpMBN2QuQOBOK+DpGzVL4IklXr\n9lnDkNxUyPSoKyfrtAUiYUXnQc/5pg1AtfnNmPOg0pAzB7B2KjNp32o+vwwB+XOKBCfDigiG94iQ\nOfV1oHNqOfHDNygkcPvFFQq4qDeNR98VObOSbo+eZJ6+29J3JKf8p47PjsTx58A427ZH27Y9GuVE\nfvGx7/XI+F8jGUH1ZpNexDq1VN/ElU/KsfHi+VinotqxWXeqAfSZV6k27bb7ZeZxaikM24G9924Y\nt1Lk7Plr4IIA/Lcl+aBDzr65AI5dBcFGrJAhZ+V16kmWqcJuBnvPKvUkK25UFu3i+cKWY1cpW3bs\nKmXUriuFURmsSQE5MsbB+rH2STHKvA0A6mMiaifnYk/sEsELKBNn/xHs9WBPs7CuDsDXYvClJfDQ\nSPU+8w5kahVcmAe9g3pMHSq5/kzTV40S6B2GQ1NQjVopEITgs6qNnrEWBS3zET6+CSSFj+2mIOqb\n6+HnWyC3VBg5Y63wMZILa3NwMbJQZDEnT6Yg4OJjeb4yew4+AtSNRxiZhJt6ysTB2iNs9RcrgBnY\nYkydMiIjzrzc2UPvxa8XRiZ7aLnMfWqBFx9oMMwQirbTIToTmpZDw81SRYQaNad3HWMs+Vt1c984\nEdVnT32YKwbPIW8NxMdBYpQyVlaHDKHsU0ymBkTKxiDca0MqkR3AeOiaS7avl7UUBSrnCGc8lVo3\nhY7TZwKW1hv6HcSP09wdPgUG7ILUDBEJcGuouzuFjaFGkxnqEsZ1RdSjrPsO1W2nfeZamExZ82id\nP4XATQqaOoqSnISpU68Q/nra5D4ZH2gMT6Jks2fpgILA0V7KLHY49WTOCBhy1mowuVL1YyBZp/UC\nUuM41w9TB16BKMAYmYl4FuiztGmq7dTVgfaZyhNBLHrXBG4xJigBsvcwmUq3LUNLfy3ji+n3BBB8\nQ7+rvJH6rUWf/yfLHD8H+HiEoP0LDCsShza49x2gCeo6IPMdCLbJkGNOJZCEN9rguOcQESsFvGqY\nCSo69v0OCCOCUQw0QjgKq89QvdmzE1QTdstxqgl7uV4Syd+fr+jhhQHtJxyFcBN4fiN9fHm+nj1L\nwfuUtPiTBmndqSfA0FfNMR2E986Gx7ZBoBS6/wR3bFVmI+133fXy6zXJNJ6pzIzvUUNINroRLU+X\naWjdhZpHHzTWvZWH9SbpQnIBNIl29oBoHxG/QJtcmQr2AU99HYBpRrLnix1mbx+QaQZrtB/HFpi1\niHDtRHKR4QhsHK05uARuuaQc2cniMkiNBfs683r4YVr/AOzaBJ1p4wC5RudUYJphRt7Xcfk65WCY\n9ovM5DeoPis6ViCRCongOMTDmbx9Mei+XBG3ZFh6/a6wcV1EN4GdJpLr65SzF4jcJiMCZScyd6hS\nbpqJAkOUqlCEtMJk7wDaRAQTp/+ZH7YBINuLyOwTxp64ULLWghcV/U0cbUhdq6Q7kZk6P+d8GGnW\nH447Kdcbk5ATIG+Dqbcocts4eNbqmjQPgvgP/syxHRnOyLFt2/Elw7btXUDOJ3g8n7th7R5E8gcz\n8df3EOF6+R7sjXux35ul7JEx7LCPnq7P+zapAfRDbyi7Vl4HX1qFff5VkhFuGyIXyNreMgrxVGM/\nHYKrbs5KJAk2QutomHYf9pPVWCcN0DpBVIu2ay/W2aOV8QLIWarPixvhg9EiXJNeFPkabMOogEjd\n6kZYlITju7H3AsfPgl5ydeQrIckdTwS+mStzkoGoNu3btuSVQbCnx2B9I1wagzPb4eQmOOdF7h0M\nL7wnfNx0otqOOHb4G8cAB2BxHVT9DrdG7aDIXF2HcTzugWrKWlGGKy28G9fXtdmfNFD46JsHLzcK\n564cZvAxKCnin8PIX28D73J4uUV4PMk0ta7tgMhyYxbSpPdKnlJZQjgFt5lWIFYGQuvUfiXth9gp\nEHNurB/VDbXHxPE7yoR/ni4IPm1IV5UwsmCDcQc+AD03kFVzdAcgsA8Cw6B9tJyMO4cApwPDdjBt\nJOT0UvawrQLdY5haKwBqdBxOZoiNuD3PAlo2bpbLWuj/2HxWiLD0NOP4m0CZtCFq3xI3xl++Q9Bx\nCHYPk8mTZ6NRSRhb/B6zjTzeyP+KDA4V1uga5LTodVuFarp9nSI5uUbml8mViiR1qyGfhgCm8tzv\noLtI5MfX6ZpXsRG6T1AA0/YIY5od0VvCBFfMNXDOP/ArlSEAwi/HEXqHOYax+s4ImGCoIdhOD1Z/\np8m4pd3jo0L1dQWmrszaonV8jyK8dQxJuoSB/qhblw3Got+jYGtilDGkMQZnR8afHf9f+HhE4vgZ\nHtYJcUlH1gPvHA/5e2CB6dEV0mRxVw+49xiIrAQ2QvLHMPy3sP1o6G0m6zoLTaZpshE6gNmbYem5\nkjI6vVumjVQ/tJPMTXpth14/nsK1LDbbvbCfoofPTlCmbdpIPU8aKFAcVgJTXoM5J8MVfWW9P9yC\npjxIbxIxyz2oSaL9GGMLG5HO3+PVOVnGJKN5nCaRkIkcxSYfprFuAZ7QpOpNiXw4mnFvypVKOrb1\nnT00ucWKoYcNHHUCqWEbIFeNjP1FkGyR/NJKCwyL9pC1w81q6PvqmnMZihJeZpZ5TtHLtM/YCIMm\n5324Gafz1QssWACpmabguF7bfTEIo6JQdr3Z1yJckEtAwykqYgbJEpPGYjh4CNr6uQ5T8RJNsE4x\nN+jvw2WDoUZl0BzCFtokl6nwASNxyBOpcQxJHIOPztNFosLrJfHwxUTKUgN1zT0m+k2V5CupkDT5\ntCLiOlvnlHoQ7EdMbcBic03HSNbhTSli6ZDX6FgI/4ysm1VigiQ4BPT9UwgMh4OXudlXB6xjpa5U\n08rI8Start/U4dck/LU/P0d95PKN4R/Flsz2Nn6sEo7H0X/+U4AFXAJ4bNu+8uPY3+d1/DV8tHYP\nouOdPeRfhIJJt92PNa5U5hlPfwXy/gDXrRVBGrZdxGjbUFhyDZw7VyQOZCYy7T7Z3zcMkAV+eR3U\nDFDGa/R8mX8A9mrUnPqqAXByCntSK2zLg6gHZj4Jv7lG6/sCMABl7wBOsbG/e8i1w/9uDIZ1gq1i\nMet84HQb+04L6ztg351QHVp9NfirsL4K9lUxuDQEK8C6XCYk9ALry+a49hqzke8ay/47QtjPAW+E\nuPB9Yc8Dpt/T9CKZWtUNAp6GQ9OgqBS8q4BG6B3T8ttTKGgJ3FRkzD0+MEZZuBg5baRI37YmLVPb\nIdL22Nb/jZF/Dz62J+Hat1yM9CeFj+BiZHivXrcfA5bfNK7OBe9OzdPWHhk7xUqheBOwBtovVSCr\n+3ITfFuEZIOnmLm8SVmT0q2uosBKKwCXLIScTsnUc48GJgCJIA0b4hQOk1FJd6dwN/K+9htqNITg\nDZQBWks2qJmV/BtlQ5bU7YDE3aa++zXVSuc8YD4r0HPzecKWfEMi0z449By8XQcXhJQNCx4SGSpe\nBSR0Lbwp1x7fUePETVPnZNiVyXsTwkl/p/Ast124YaVd0ufY7vs6Tf1ZjYKmnn1Grug4UQZE+vLq\nXdVO4FWdc/QUt97bkZhm+71dCzxnHC5rtX3ayAYwu4ea61IJnYsh71IFPNMByHtbpRcdZVC0UtvM\nFIiYNw92CVxkJsLWIdp/45kyCHOuaZcJKicKZSrTfbSuUbuRUXZ/A6wFfxkf4dOLkZ9mfDySQfuM\nDM/d8ezf1unLP/xhKgHDNsFbanoZvB0i94JdBff0gMhbwDaYPUqNMbfnAo1QVwh1YbjiGFS7FhQ5\nW1MPM78IV1RKP19ndr02BBNb4N73YVxPt1l1exJuykO9ZbzAsVr3hYwcqdqTAp/HtkJdXxG/2g5t\ne2SBZBqzd4swNuyE7jchE5OW3/dl9WopPVmRu0Ap5G5UI0hrJbScIsOQ8AFjrz8BqFAmzL9fdrFU\nQ+ZGkxnZKMCIFxs9dqkyJR4zYWe8ikD6Ok0/kyHAsB2c8xI0rzGXu13ZNUdumV9vXKqcSOFGFOky\nUgWWA/sgPsN8HlB0yve0JH206ZjpiWqsyoAE2E/pta/WvGdqunZ3QWc+msRfh8RUBHD1kq+UbBVQ\neFMyweiK6NxjPXSdfEay6BR5dwdMbUDMdXIq3u3KIjxd2l6wWfuImPu5wKsQXqi/vUlzDSp0jHnb\njVmHIck+81ux0noQINvHzPqRqY9A55g6yny2XA6a3U7WywASDTouqxbyjNs3ZSKD0VsFZBSKWMZM\nlDJ1qxqzOt9B1zG6efBtgY6JOiaHhHmTxvQkaZpspyH8lLb/TxsflXzj45dwfBvYDtwIfBfZIFz3\nV9c4Mj7acfw6/FOAP50Aox6GqQ+rgfRl00XOvpOLdd2pMPd6SR6dBtYtKGM2bLuyZa9OFDmLRJUh\nm3a/tn/NXPj6LFgzAnvPKuyqm1XzVdsbe0E19rg0xEuh3IP1XEDk7PpZWN8PiDidD/Y8sPNmwQIL\nXomofuwnCZecrTMRoiDY09+V1PGPQF/JHq0fHq9s2RZkRvJkDE40jo9xsH6QUcatGegF9iqwNvlF\nzpzatd0iUQ9VQuR6zfUzesHWk4H9gA07usC7wGynAOqS6slJjGzNGcCFRyujtnA3TFwit0eAiZth\nSjXcu1cYCeqVFvHjNsQ2GBnxKwi05gPh47YmkbnZKalhVuzTZyMLhKHtuxTI6v6TMNIfFh7aZ0Du\nRRAZCnnlENwhqaQvpgxJy1jVYIUPGPl+oZpLJ682wctW1P9sp+ZpT1rza36D6nN9W4QT8RL1Pgse\nVMCus4c5n9fGwG/ieNvl5dJ9CIJ12ldbhQJeOXGjcjBOg/ZEhGnjkYrlWoSbTsuVAr3nSZus1bmy\n2QeUTeoChsh9MPyG6rKsN0Q2W8bB7t3aVnAJUG3ImTHp8sd0Pi39hf+2Fxq/RNZq30oLs6y0mznL\n9v3MGBl/niT1JdtNlsljspAJESaQcZenwRyzqf0u2ODW4QXmoQxYmchZh0PIEDEFpLgx0vyOMnPN\nhpjrV6/vLmeZWW654f+LIPCilCGxEbp/CDbp+80UKLCaydW1cwLM9FRAs2kUdF6vY+wo07LJfwPP\n6WT74cUHGpOQFPSYKRVOZKTBx+//E2WOnwN8PELQPgPDIWee78ez5MwaEpceYAu6s9wZgg64ewNw\nLTT/SLVbeZUQOwvIgYX7TcFyMdneLEO74PFtSLoR1P5eGSXXxEmDRNTS1xgyFiRrp7uiQZG+8nwV\nMM+uRtr6Zm3r8RCwT8XTTi+1l9uBOkUOp54ggHp2AhQ3wKUt4DkgLX1eowhZeADsyYWHLTi0WpOt\n/03oGq6b/8brBSSxYmg5FooXG+vbsVC6GTqHkrW19zSY5o8BiPzaZNIqDZGIacL1JhR16uyhS1rW\nbs7p0TjPmb4qoXpl9SK7oGSDG4WzDJAQUIEx9UiS8H01p+z+L9O0fiearE3E0lpvjtEpknacH0+S\nXAXM+6YwmgQMPBVCXyErmQy0oIm+RpKLZFjLNQ6D1grVadleAy47BUKejOrSosah0zHXSAdEOGOl\nxnzFSCDjR4F1SJkr1ppIXqtkFtYh97fq2OwTEIGzjWMW1ZJhxEtU05AcB939yEYWOV+ZNhIirtmM\n4BgImZsH6hGg58oQhoC240y0bYc5e1IoEhzapail4/bZvkvfX9EXZLXfcrUkOdE+IqURY6PcVah1\nk4MVXe1c/L/+LY8MjW/btv0z27b/3Tx+gUDpyPgnDOuX34ZZd+K7BrjqTVh+J5bnHmXCFl4A/4+9\n8w6Tsjz3/+edtjOzO7ONXRZYmrRdpEuzgR0VjyWosR17NMUYPEGjyVETTGKMxHJikh8c1GgsMUoI\nGiRYAWmLhd5kgaXJssu22d2Z2Wnv74/v885gkmNyrqjRE5/rmmtm3nnL85Z5vs9939/7e//o93D6\n3dh5X5Zh9vhceP0GUR0HrdNOXjlN6w5aJ8Pt2ie0/WNXKlftwmuxDs/IRd6mP6ii02e8nutI8ggx\nED8y5t4G0jtV0+yNBNaOGcpFu2C/DLeb/ZL/7wV8ww/tceyNy7B+2Q/7lUZF7QD7R8A+F/b+ZVru\nB+unQRmYHxgD8HKn+BdZVol9tUfHNlE1RsPD24UjDb+H0GmKQPlKoOlCGOmC+hgak9zIoErIYTmt\nP1AO3xoiLEy06H36aEhcpcgXIIwcDQtPyGHktUcbfOyPZtDNQNFfYiR8GCPDPhlur4xRvly6Fdpf\ng/y9EBomfCzoC788pNqjefNkvLmSkPeyHExNF+i46bBxSq5VlMzXauh5q4FWM4b7cwyLZL4okYFN\ncOiCXI62z9Rc9UUhlYfmAwAeGSrpbTJm/K3KbyvZoYl7KiCDLXMx8JyccnxZ0R2ukmMx/ji5fLTf\nqV++34Drp8Y4uAph6pWQuIicqFUFueibH4osGDiUnIqhQ/sDWs7Re8Mo9TG8V+fob5Mx5hhihSZV\noPk4Yzx1Fy4mQlovv/4IrMOwdQzd0bPI5JFBThTM0BibxxtaYKH5nxyRox06QDb9wf8TiDujqPHH\nh14A7gMeFoayHZJPki0Il+mC8A3ab/wCs5827dO/VtcsXqj761oM1GvuE2hSPTYncphJgb8PuCZo\nHgAQ2ar5Q+lWUWJTflOc3GlTDJ5/0f68/UP4+IWB9nlqJcALY1UDBmBPXCAVCwqYfLDyfFHawqeI\nB5+JaNU3zoGePhW/JIAAqFUAM20ghFYD2+DhCORVKtq1+iBYHjhzoTx4uBG4NMPUdVA6F6YegK19\ngeMRJ79Q+8WoMr6yR1SPLc1oMG+FeS0wMgIPb5F30U6BbVQRMxvkrencr3y5ofkwPag+d54J7UPB\n3qMJtO2WJ8/fpn6yR8UvA00Cj/xViqhFx4uzHZlp+tZXkRfXTwF/LorkTmqATuXJCGw3g2XIDZn9\nQEwevfx60fIaxssz6H/TeAfR/r0m0pIpBJ6DwDvy7Lkc7yBko0fsQYaHo0g0BIHJw2QjZHQnS1+M\nT4ede6EzibxmdQK/Q6PlATtsokzxHjJ03QlRYBIhAUPDucpFixfqd09I/Ptkvs4tfYRsMKiOTiIs\nw9fuZgZlv+lzP0ON9CtaGSvRKzoCAf965aIFG5UHZy03US5DJfGsIltyIFapYqLJpeZaOOC6gKyA\nCFVmmaOHtBh8P1c/mkfovnviJqfNeDGJK0E8UKvr741A4CT91O008AShZDQUVgu0MdpKHb10vr5l\nEO0Dvjk6r+jTn5KH8PMTQbv6ryy75hM/6hct174+G2tDFM6cBdMfxP4ZMqy+Iw6QFfwBPHYV3Ho/\ntBmj7LGTVe/MqYG2pQpeGSxp/hn3wlMPZvPT7Bcew+42S0aavwxGrJOh9NjJEiCptaW+OBbsZ5cp\n+rWlGt6IKzJ35iy4zad6aHN3Yv1AiVH2a+ugyg9FyyC6TP1YPgn79o2wsBB70U7VTHsjgX1JDOvS\nSdCzTMbXrxCOtZhXDKxhYH0d+GMUa9kFINoAACAASURBVEEKGuLQbmgCm4KwAd46BxqH6z8PqmXp\nzhPV8Eu94LReKA+7L+CG2aZKwSt7gbUy8H57lhQaVx8UPrVsVOSrppysANfUdYqslT4ujGQ0OXx0\nDLW1MsQcJ+c9HyB8csO8auEjwF0fQGedDARXGhImL2nYc9C+U8bbTTa0Hg+uEYqWRXor7zrthYSJ\naAGwR87MQBO4liJhi3PJlnwpXKsxL//XppZWXKJOiZAiLaFNOQZGeR0w+3k4cSkNw4ShiVDO2Zdx\nGcOvTuu7MkZoYyRiiiw2uU/9ZCz631QBavpBcg4auybomnjeRGNzK3BI435yJsKHBebc+qm/0Ri8\n75bCMIe0PJMHkVuFdV2h3F8nEYamk9Xf1n5GCbhZuFdoRE1iJTr3WImhRObpPKNlOp5Dz08WaF4A\nwDZTA9V8pt7U6TQMley4XCHjNO01ETjzW2q6+VwEmSvJ1RqdbK7Rw3x4bK8x0TMj+OFO6vq6niRb\nn9bTJSMr44VDM8gag44z1jHW4rX6m8cboeB4MYb83SF1vMk/76t5hetFCZd1hTTn7Pqawf5Pq/0L\n4OMXBtpnvFlTY1KpWrtQtI2VflNHplFUFE8cxkWh9hxww3HdIHacpOD7Pwl5T0l5cfZWuKI7+qMf\nACrg9D4ykOaFREWkHNgF3l/Kq3dGX3hhHyw+TwB0eisabGJoNBiBvIxpYDhUb0X104qAdiVXz4vI\nEzjvEIQazO8BWOiCpmvEs/eVQPdHwD4RrvNqcADYfLnALzzYVLyvl5fIrlB1e9utROXANKnwRb4C\nqe/Lw5X2yTBLhIxwxXII90WUwGMVeYndo+M4PPR4kVEu7DIGWeoyePYyagfL6+QuMopMKPJVtoVs\nfRdWGzrDETQEl6nBQj0CwCFkZf6ZIGWr+NUIWMw2yWHkjJI9CNAXoAnDUnnWBu+D4BvI24j67u3U\no5DfqPN1koLTQwTW6f4yOt1JaBqt8/C1q25Oey/IXyTPa7Axl+Ds7NMb1SDc3tNE/IyyWGaI8hsc\nhar8tYo6Bfca6uZ5Ws+VEc3SqYsWMqUSOs/Sd/sEGbF8Gdy/MOe+FFru0XVyIoyZGpRLdhW5QqN9\nTYJ1pSSUneOB6vwQF80m0Ufb2xWa1JAHXc2iBIEUHEH7Dq6B4vc1uYiekf0rZo3WT6V9xg00y7Iu\ntSzrJaC/ZVkvHfFagsr5ftE+jfb12SRcwCPHw6wZktK/5W444XXssrPhjNexJyeUZ1YSFaXxV2dB\ndRB720JFzEoOQLgd6ymjrDPnJhgzR2qQp18Kc27Aypuh/K4SJOH/VAlcFFQkbXRAioy7JABiHwDr\nXDOIh9vh8m/KaBuL8tkWWepnJGQcT8bh+NBNippVHoCkJUPudOBuH1QGVC9tJ1DSqFy1mNnnOODE\nnJoj5wSxL2lR/puTXzf7RkjAicuhdKwMnuaVcjJOWixj6712KFqKFBobgAJRGCdWQPvR5tyPAu/P\nTc5ZSPgYHSaMPL0VOTB3mb6NQLXPyslhpBP1+Sh8bAfWwkIjynXt0VD4fejoD54x8BWT47ViNISH\naDwrGa1lmS5I5UMyDPGvGJq+O6dmmzlXqQN57YbFUG0obkP0SvUAlkJymsnNHQ/0EzZkvFLGtV0y\nBCkFLpxP0swik0HoPl9RusByw1jZpsLYoAiTldb+kt1UeoY4wk5TZsWdBKaYWl7bkLFijDYmk6uF\nNkV1Q7M534uB2WJphHbDoKOM4qEfqBN2hfcKK6Nl4DpCOMShtqe6ay7QPEjXp/EY8O/Q7/mG2hr6\nIPfXy39T5xF8n6yj13Yjtkcrom6ayJ09UMv8b8pISkxCTuy4DDmnEDTIuWi7zf66mchclTl3J42i\nn+qBem9DeLwNvA+Y34qMcBmqE+c4g1v75pgkgQbtK69dzKOQMeCt0TmcKx6uaJrLONtj9UbdskZ9\njl2eixr6Gv4JxsS/AD5+YaB9HlozKjj6RhyWu+Q5POM1cfer/AKrXirKmUmL2pj2AVWSs694Hy73\nQ4MfTfr/LQA94FWPkp+/ZcuDN80LIR+QhhvXyHi7dDnc8hbUWCaK1oUmxmcHYOONEg3dciPshq2T\nzP7dQAccSMP60+HEBfCtAdAeEkA1TYWpC0Q1u2g3JJdDyxVw3wF5J5MRSPaEFfXybiaawW9qd3g6\nIWScwIFe4G+CtlcEIOFXtLxxqBKDgw0Q/LnxWvkhcaeMMv9Bo1boV9HKriJ5J5PBXB20bhZw4Xzu\nP/qZ7MAbfk/rNA/S/qwO46VDBkmiDzKmHNpCHYp+AQyBzATgx2TzydJeA0hxvezLzcA6hFzUaCkc\n7CLnJSyC2hR0eMmqRfoXmeRv0/ytAtP0MfKeWj4tDw0FV6Ve7b2MYWYKmjZfbCJ9LTlaYzI/V3w6\nu/89ZL2SQFb0hDqylA2nTAFGYCMR1EQh2kcCI509cknVbf2PoEj6FdmLj9bgX7hP1zUzRb+5Ljbr\nLUGGcb2uj+9+KHkGQmvMPe2p8w/Vqp/hfbqvswdAfl+wjs5dK8sDERMUc8XUHzC010r1M9AsPr7n\nUkiO4YumthL4GXraZ5nPP0Ml1ad8xHZftI+pWaeI+u69EkWq+u2EP8aw3v2Bcs1Wj1dk7BofnPEa\n1hnICJp5h4pRr5pqKI1PSmI/DhweBf85V/L6v52L3fsseOUsURJPRM69nmXY33TD81FFuc4Da/gk\nRcAumIU1DOwXG2UgNZeJ0jghDZsbsZ6wVQz7/Z3QbYCw7FcJWD1eMvvXgHX52Vi/9GJPiWEPTWD1\nBOu5jIy3ZFxiJCeaiNkwNO58gCJmMSAO1tXGQGydpH48dJOMnyajCrwLuttAEdQk4bteyHTCpnFw\nej5wcgDcwsiwDyYcFD7SIYycdwhubJYB99BaFad+NQl0QagVYeS4gAzIV27UBPtIjOwBB8qBdpOf\n1iWlR9qguiCHkdar0G8pHLpJTsq8SjlO80o06W9cLedSMiKsTO0RRhZWQ+cejYeho8QiCL8iinv+\nUjncfGvEAAm9IBzLTDCCISOVIxUvMsZEuTDSEVTyxBVlwQ1cOJ+zF0i0K9DflLA5ViJR+CF2jmFh\nhEQJ9C/SNffWHhHJqtGyzqtR/UuAChPZixvhDT/ETEQvdTtkfkq2UHXXdr3YA9YvIPocvL8C4UOd\n1iv8CbBO16P0zZxIiOPUy/TUdQqfBaFB0HqyMCt/vvCso8KwM5aDb4OceAmT30WrsN9KGYPlKoSP\nJ+Vo/JZRi0wdK+PTF0HPhB8ifXL/6baTc9RBRwq/ebDOxRFrifSG5OX63DlaDk6+Y87vajRvqAem\nQF53sqwQKsVSAkgNVE66ldb9AkiMhfV+8HTL9SdaALvD0NIL3BETLfumuWZe3dPAJjl9I8uUKtC2\n9VPMQ/vsto8FHz+XBpr15kn/7C58Ks31agfW9DRcNMcUFd2G/QDYC8DiUnktP2jEfmkdHDDk6jwN\n2PdXwv0l4sl7xsDaoHLQmq4EXo7lDKl2eLgO5h2WAdZ+FPQqUA2WeUngaHi4E+4fCDVxU2NtP/Ba\nDM6ZbfKgZkPfgMCxAHkLOwCPDL9ePiVRv3WKInGBNui44AjPTDnYp8P3j1Ef8hZA6Wx5KUe8A/kv\nQqxQXsKHC+G1U5VL5F2dA4y8dtX5ynihfI2iKqkAMNlM1Otz1AxQ8rQnLsPMa+RoS0z+kZVB57Kl\niumjTKTOeJVst4AqdgLy7hkPjLXQbDcSebockK5CBtkhE1FbKjpfcrHqmjheyqRJvE1VS2GLQkNz\nqDrigTCfBwUh/wC6h3U6XqrYePoOQuEqKHxW+XquhOgtniC0vAOrCpRA7hooYzPt0/k4OXmJcoFM\nNlJoAAh/jp/PkZ49p1/rtZxDoi6mDKCmvcpXiJuoW7BRy6JDoWWA8agWmfNYonX8LbqfrrZcsWi+\njDyT3zFCMI4ncSICJD+0j1d0LmHOy1GUDBghk+mj4Mc7oCAOrpRqEMUbwXuEVzSvVeeS8quftlt9\nSBRB3mQ+vZb3Mb4+gWbb9h7btpcAlwFrbNteYr5vRWXuv2ifRjs1irUoKuXGLw2AK97GPuZuCX9U\nHoAXLsC6UyFl+5i7Jfyxerxet9ytPLL3bsA++RYZTk7Nsf++GPrNgbPnY61ZBK+A/Q6S7Hetw/oP\nsOYFIRIWdXETyll76CaJiAzdqpy2+ijWlwZgn+uGC+dLnfF7QNsAKEFskClt6usAsBeDfa+lvpwW\nxDro0f6/6hLuTfVDpT7bB3RcewZw6hw4xS+5/U2KpnHMMtEn/32OInluSN4IvifAWw135gMB6NWl\naEGDDR0peDUDrIgJH33KH4skhJEEZEj1suXYnJcUPt4aEkaSZ6Jt2xBGNiJ8LDIJ3n8nRuY1QPQS\n42gzDrbCKeCdq7y2vAVQ+iSctBNKV8Id26BwKBSfAuHjIR2F4BbhVnqlaI/NX0eUOTOuJcYD66Dt\nUojfbKJYNdB+BTmBDdPSXlM2xahDZwKIIbF6PC+eKNZLZoPYC4mQjts+UPuw3cojTntVrJoFwHPK\ni2ICWQZJ/vdRlAzAD8F7yFIvWSDxs3gPI1w1BaiHvHPNMOcISA2BvB/CIJ/2lTFKhI0zZYAGXtP3\nkjXCovAqYZ1l8sn2d0gl2p0no8w+QaVcwCgJO9hucD/TXf3zrdG1BNPnGtEqPQd1zZP/dcR/tp+p\ncWb2EWw0QlQf5OYZrX3lKO6oUF+pN7nc/fS7t1YFpn3t5KT8McZsm7lmfsRaKdJ27t2GyQJYblP/\ntAj8tysC5px/UbXmZt9/V1g5LKwC7JmSXC57KiDWTTKYyz2zEsr9/9TavwA+fu4MtD83zixv7K+v\n+H+hveTGfuRPipYVDMC6chTWLOCbt2BfexbMPxO294XCUXDmH5nQIHpiXr3+aN8eJTApfRySXbDp\noMAgZOgbDEI0hS4gCq8eAHZom5o4WQOOHnDrbiAAB4JIYMQxHCqANy+DbTGB0l5yNEi3ctmWX2QK\nWu8RXcNyaxDs2AP01x97Zg1c/CqUvoGoJFNgq6UoHEUqFOr9DdxzSJST+sHgvdxIwIZU8yztE38+\n2Q18zxvjaYHhhXfJiAqYwcweZsDGcOpdhxTdSQbVJ44th2FraV4tykiiSNSIRH6uFojtMd6udepv\nMogGRCfa5bR+iIZQD3SXweCdAiyWxzD4vrj4yW9A0tH3GWUUKLcZqrgDDDVQ2yS6CxPI5qZ5thpq\nwmKtFzHRJqdOS/gRvR+zD9xBFVJ1Gw6697CMtFSe1o91E7Bki3vXkcsJG6n74dQdy1IEHI58vdnn\ncl3/sndlyHmjekXLjDHYBN1XSW2UOhmlqbNUxyyTp/p21EPwRcOjr0M0zzqjWuWH9guNmpU5bspE\n5LLJy84zWiPwe2idKLXbUrDJeJxj9eDywKGAavgkJxnaKTIUnYR5bxhSi6DwIUi2fwoews84xfGI\n9jty4uEAGeCFT/yoXzQAOm4IymiacxP2A8CuSYqQXfukome/vRL7a01wwutavr8X1hV+OKoM7v2B\nVBtPmqXcs5JnAbBuysCA30iG/1g/1IKdXChjKhJWIeoHwE7eopn5qIXKbTs0QJL4M4wROHQrDO3E\nfm0d1tO2omRngP04Mg49CzWuvB6WIuTbaOxvBut7xnhrt7AeycDWqGiSxcCxpqA1KP/s7IWK+L0F\nHLSwfghMelbG6KNnwtYbFN0bJRyhEr61E+4cBnf2FN75FkClW9Gst45FhlUBUjcuha0dZAtUP1yn\nbR6OaF/4gA1w60oUETyAsNX5V5SQw8d3+JsY+dSEnJGQKQH6w70ZFcCe1stgJMAk2BpTH17ZC97F\n4H5ZBujOINxrnHC2y0TQVkG7yV/zdgojiSunOnAz0AX2NKkiUq/xNbBfLIKSZRpDi/aIoVARBeIB\nFvZfSvSA+pvun3OO+VsNHlYp/5cbTdQqhhxqjjphvaE6PmGWGTzjObPeBDkNuUr99t+u6FPn1Qhr\nl0IEY4j11bKuqKZF9jBU3LoeSmuN3L0fzVlalYuX8ktCP7wK0q9BebvK/cQbFRFsGCVaZzZ3rA4a\nL9c+HcP5yJxsIMuacQpOO5jIUmOwmYhWZ7Uib4mQmCuOtH9HhQzgZD6U/w4wysO+dmCJcD4yPmfE\nOcyVzie1nj0NOW/XidLqYGSgScfqmiBxmZBj2H1Z+fKZWuVD7o3nWCUALW8oQls4GMIjdUzPKpQL\naCJy+fW6Xq71YnB9Ku1fAB8/VwZa1jhzeOXO8h2DsP79sY/edtCmT6hXn1yze9wt5ayHboKdYN8e\nxy65Hq6fDROWyoAqBGaPgN5Rai4GDsyk+m2pP7lmG1GQ8+GH+2BfscAg7EMAYf6gC88Q351yoBTu\n2YhkiUuQN2YXLDxGhTUpQ8DiiGIcGCjg74MG2BOBcxBQmUn7jLdkMN6zBqYulwrQqJfgCQ9sLoFz\nD0t6f54zKFQNVN96qT+4Db2yCiiA0g9g5J9gxNNQ8G8SGPGPV+Jq9AxREO2pGsiidxp6wTZgsqJX\nnf3lOerqrUHcegcaJmkADDRDSQaIhEmawpVWQvQ3gGSpka93y7iz0uKT2x4ZEzwMqUvQYO03xuES\n4EWwrzM0Ryf6c7OUmjLdgQmQd5sWh//byMEXARPNn9SJNgKDXJB/PtAduvaQBbTAcvM8xCH8JHQO\nh+KnRGHJDAF3owbmdFS5Cvl9ITkYms+W5DDIGEr51af83eSKXy4w6opOXx42n/3qB6PIKU0+qXvl\nbzXgisDaW6t9d4XA3d1cm8nAf0H4e8bw2qNBPrRJkUX7BHOcPeZZdCiW5PabPEfPWv5eyJ+i6Fus\nxHgpgdj9wDf0eaiJyA0vgd6Py3MOAqZEiwy2riJTFiAuz3NXOfiPoH180T7UPLZtJ5wvtm13Ad5/\nYn/+ddrvg5LXv/ZJURxvmCNjafojwowf3wVn/0GKjFV+rTd0K3bDQok9x4CXz9e6r5wqXL1hDvbb\nD6jA8w+vx+oF9nvrIBJSVOvlqaLc56+Dlx9ULtkqMwM8EawAMMqPdaEfll0qUY+Ja7Bf+i3WrGFS\nVWwB690fYH35bJUDGGcbOqQ5r2FgT4tKLv+Ww9hzF2H9PIhdS3Z7ahE+XWyKb999C4Dk/Ftnwdzr\nYNBS5ZO9HoR/ewaAmnUz4cCNrK6HezbBPevgniQQgD/Ww73virZIOxp/D+jzwrPQ2FoOdGk7jkby\n+20GH91HYGQHEgbpQBh58cYcPl6EnJztQKucpjPeUqTunp3Cx7zXcxh51mbh463bDUYOGqhjH4SQ\nqV269Xjo1YQw8mwYuU5UyJM+AEYoDzdplP18DSaKNlX5YQmHajjEsBvGi6LosB5A9bw6K6BlgvLb\nqAeiMU5Zot9b34WS3yt9wJ0QRhbvgrbRwhK70uDwarFP4qN17kw0eU1GDIS4ue7nyWFnD5OBCMhI\nmwDMhvyv6n5EfyGjAXTuiT6Q74PBXrBeIyuE4VpKVmafBSrIXfaucDx/rdZxx6F9B/TYZfKvukR7\nzHhllDZ9TduXzctF41xt5OqSbSPnzCwiW88tVQ3em00f/Vrud8rDYAwvM1dK+YVp/iaVGKIKOUXj\n4P2F1gkdUKmbkg1HXBsgfzI5hceRJg8ccx36qZSNw/hp2ZgT66JC97ptsuaHffx6JlfXKz9z6wgx\ncACiB0yUrwJhdx20jdP1ObJ9Kk7Mz0f7h/Dxc2WgATIGACsc+3D07Non/2JVa9AmrDvu+dwZZ1aT\nySEMRwSeL5wJy4PQVAKhZ2ARfOttNPivBDpqYdHxAtw772LrNKhIkIu6HECevgQ8nlFtl/vHklV+\nnLodpu5GgNeEvH/9zfsIyFwAlyyCl89DBlNfbccu1L/XhsP0R+FdBGJpskbatUfLOJvnQepYoOjY\n8XBrDzgxCTVFCHDGmmO+U0uvPXB/Iew+XdSRA6XAdRu1zh5zfIynq8LUXxmvAaj7fPG0A7UmHF8N\nmdtEAwy8I6OqfQB4DkHDcBV1LH9Sg2aLk5/Uv5boy+Z+GGndtDdXFDT/WYFYyq9jWIeRUXaeMTRM\njpSVIutZs8xjmBgPDbcCftE8XP+Fom7rwfsrYCQE7jLXufsR1LqRkPcL2FYH7W+hws2Qi9gZY63r\nSWAplF5nlhtlp5I1AirrLXk8PSVkjXRQhCv2DfHUXXuMAVVBVsKfdcgIc3LQnFy7Nt3T1Fdz/Ux2\ny4EBq3WNHBl8p6hoyi9VSeeZAOP9qwJaFVm0UroGWerLBKBIk4hYrxxAJU9TvsDqFsiMN7Vs0tpP\nIgSH3xE1CGDk08qrBIgdhMYisDtF6wgNgETPXMkEkEhNzPGC1oDn13zy7fMTQTtsWdZ5zhfz+fBH\nrP9F+xia1aoJkPdKYOIarJ1z9UMkJINl5h0wdiXWz7vBHQ/C3ONhzg0y5FJT4RuzRGV86Casp31y\nBM59UJgzdJty1nbOxT7jejE0lk/Cei6lPLBhOiYjZsE7jXLGTVwDb4M9aJa+D0CGVDOqi/b1CyFu\nyTj7LnBjGntKDGvMKKzZfqwvm/OahGqcVRtl4soDOqehNtYUFEl7IIX9FlglqL91VXDJbNgSVNmZ\nCXcx7TVgAxLq2A7sHA03PQTT7oJrZjN9NNzjN7+PBfpClwW/6YCHPwDSEFqBMNEtjAR9ZhBSZOwP\n9AAq4Kw+wsf2BMJIBx9XkMPIKx/9C3x89iw5hz6Ej32Bo3MYWVOUOw6DgA21sAOq98sRO3sI3N8K\nB8YA/7ZR6x0lQZTNl2usD/SSweGZBJHByqNK+eUMS/tM7a4K8PxWTsqMW060lmFGgXi7MSScSNK2\nmSSD8MZJ4KkVRtrd5AANv6ISJ12hnKiG1YGMOr+w1H9QdEe7QKIidKG5SqvyqjpHy1HmYEgmDxlY\ne8jVw1xgSrBMAdddwGpFBePvwnZHQbHe7Pt3+hoz2OiLgPUoBH4GrFcf/Kug+yKw25VCAZAyueqe\nnka9eRikRh9B7wc4CWFUBcLHLoSXS/Xu2a3zdsrk4IfYhaYsgU/n2TxJhlkipOvfFRI1tb2SD0cW\n++neZcvTYJavJ5fZVKe3tFfK14duMcsny7jzhpUG49Rrgxz1cfpomPt+ju107dEwIQTxw/BaK6QP\nSUm76WIdN2Ii2Z6eYqI0PwzeH37OMPKTbf8QPn5uDLRshOyue0XdAJgxC14wXC5n2f/Q7B3DPsHe\nfXwta5wBTH9Q4DT9UbjzefEK3PKURRJADHptAwYCxWvllWsDGqH8eUnnT0uZfRWgQSQNVBnKoluF\nqWk2yx1Dzgcs0v7pA6590N5Xx5ztNct3mO3OnK5jzrlJ4NOMKBxp4DSJjACcHoVqr+nHQdOnBBCA\nCa1mnxuAt+CtyTDnVFEZRzwNtzYib+TLw7VNJfRqh7cnSwEyWCkjLb1NKkSdx0LhboiMEJWj/QQN\nVrFSRZICzQKMjFfUPjCqSqO0H56dCfffCkDecCh7WhG3QHPOw8UogZi3VtGWjCMG4jf3wDFs1iHg\neQAyI3P9AHklAeVXVQCFZmBbakoCHELGyFfMvsxgUj0eCt4E8iBvJAIhQ9sAyDN/ieQ3yA7cri7t\n19spCkWiRXlY3mpgv0mA3qQonDeqdS1z77KiH5CjpjiA5HjSMBTLfooUOkUtOyqg8wJT/Lk3WH1N\ngVMUtSveBZlfkKVQWsuVvExF7pomzlU+A5CNPgYbDMj7IXWuUeu8EMa8metL2gcN54l2Uzxcz29l\ngdRLX6iVwTb2DTkfblyt7WL18po2DjeFvc8W8LjyoG1L7jLYP/+EPYSfHwPtq8B3LcvaZ1nWPuB2\nVHb2i/ZJtqdvhLWTsTathBsMf7nygPAx3A7tJVmZfXb007LHrtf393eq7tmeOCy+FHv+c4qGPXAW\nzPi69re/l6JVlQfAXgYnLMPukZYn7I9BeO8GUxPtEfDtVP7ZMGDJDMng3xeXEdiCil5P8mI/4lbN\nsqlR7NvcWDeqiLQ9KIm9Cazzwf5P5bZZT6RlHEVCEJyEfb3JS5t4EPtrHlgRVU5a8QMwYg0EA6La\n/z4omXojysAGFC0cvBa+OV2sjFq4sdHgYyuwBR2rArDJjjHtRyGDJIRwy6gf04acSGsQc+Q4YWQk\nIVn+2UZMhGZkWB2JkX8LH52cWwcj3cAumJAih7ttsPBY4ePMGrixFm4tRef2u+E69gZYfwqku0T9\nDg2AxHoZHtZoRZC8tRA5Q46saJmMMXuacpocw8idkKrgoQtEbUuHoSIAXPskl7wBp72uvDBalaNm\npbVPtqum5ociKxP15tqD6H6/NYZbBcKwUTJ+3HEZLym/odP9wUSqtqFoEmhcOw85CmuAdZC8H+gL\ngR4wpI+5T874d6XWD0zWOixBUS7H8ecIaSyWFL/rA+UoBypk3CYOIwVGZz5VR47S6OR7OQrDR7Jk\ninIlXzJOlDA7Xde8wmn+NiT05hUrCHRv4v1NvU9z7vZAHbPdiH3Fq6H920hOf4r5fZTopNG9ULoN\n2s6EQ2cZ4ReTb+cy/5GWYVA0VdiYvVU9VJvvwoGKNN+wX04IEPUWIDpYkdJgpSJsiQj45/HptX8B\nfPxIA82yLL9lWTWWZa2zLGuLZVn3muXPWZa11rx2W5a19ohtHjPrTzXf+1mWlbEs66Yj1nnEsqyr\n/pcnKm771xYJbEAJzpGwwCYSzvW7+97sZ/veO+HlC/7Xh/pMtMeuNwap+YcHGmHlTA6cU87jpwEH\njdfsj8BaNOgXooEaaB8E88aZfbWY91LotQsZOkXwcBJRMnxAH6hu1zqMRp5QY2yE9sDUV8yfeD+S\nIR4E01yIqhE1SdUHzb59CGx6QU0pvBqCrR6zz0q0LlqvphMB3onqwyt7cq/2crLRP3za7po6eSvX\nejRpjryvSXT+iXrvqtbkOtgoY6j4JeVZOaCT9kLZQkVf2nuK691RAbGBEF4JXDifplvuJ9lPBT8P\nXSBlo47uhi/eJSqFt5NsMrBrublNjwAAIABJREFUPcSGobpkl5hzW6ronD0W1SRpk+pTXiuUbzDU\njn7aB9sg+Tttz0gI3waRGmAB+K/Q7jJDREXYaUP7ELPtSEgeImc4+XUsqkyNGcz3+4Ah8hQ6Yikp\n8+5QNh0PprWfXN2xVsObH4XAxwG1ftrW7obAtTX3/Ug5eqfGXMtgc6w8KWalu4wEtGmJ8dp36mSz\n4D4BebRc1zv0lFneijyFD0P4RbCNVH+HeeY7B8lDWLbF3B/kpV3dojyNh9bKKzi0RDSOiQZIp48G\n9wgpvHlegHBdzqsIkqbONEHkTrBuNbSRLxq2bdfatj0BGApU27Z9rG3btX9ru/8r7Z+JkR2HlsJv\nr1TE65iMcpVn3KtoViCK3fgf2E+/jPWjOjkwL35G9dFGDpDhdYpf+WsLLoXH+mmn5wRNBO11GPYs\nVstCfX98PEzKgz8UKTI3DtEd7/2BsHfoNhkQJUD3nYrIbZghZgQoorZJuWxcFJQiZACYMAvrZ174\nAOzro7Aqgf0jsG+uk4jIY32kXrw7qv0nBmh/FwVl7KW/YqJ5a3TupwU0Qb7Z7L8eSECv30HoTYQh\nQyG0TdGneRFkZO3RevRBRlCReQXMqxFFzI4yGNmHHD4aI+OSRcLHLEYafPwQRsJH42MlH8ZIHzDG\nYOSp5rc+uVSFSkdwxJH292n/6bPNoZol3hE7CL6RclQF+pn8qSJTmuWrwoCiOlHDkwP1ObxKan+J\nkMSmCg6Zyf3bwJYqnjkeOicoGmMXGJbJKSYH+DzhXOFak/uFKYfSj5xCcRxYbdSPi5QH5YnJsPMY\nI823Bo35q4EqGTmJc8k5LM2+6TIUwApoGQhbbHPvz4Muk5dtV5LNB8u8iAy19WjO1M98nqyanu4E\ndOwSRtopKTsCsMQwZOrIKRdDrmA2ZBUUHYPKbyJoaa8po9Oqa+U4MdNezUGcNAPL5Om7EyYfzWsi\nnifrGI5wVsgInXUVmbzBIrF6rNeQY3ib0gwihrni7y6HdHQtFBzQvYmPNkI0XaI07u/QczV1gXAS\nhJPPnwV3G7VN+yBY9VI07grl2CUut1hMsZ9+gY9O+0fx8SMNNNu248DJtm2PQmSAky3LOsG27S/b\ntj3atu3RwDzzwrKsYcg/dAzyWTitAbjZsiyHe2n/vR20Ai1YKeOtfvl8GPcslNTKK/jQTfKwban6\niwia9eZJ8lh9jpoVjsmrWGpCLN+Yi7VgLlSMgnVToblMxUIfukmD/MBy2A+7pyIP3zsILJrKaZ8C\nHLxMhtt+wEKeQDcc8Jj1HSBwaIt9YesYdLcC6Bh2OSSg/XjgKzB1r0RGqgPABpjXCexGXkpMn7Yh\n4IqZfdcjEDnafF+LAGWJOcZY058amNCkifTD++CxLWa7GFmjk0UaQKrzYGRc0vfFy6B1C6QWyouT\nt1WremIQ+pE8fLFKKK6VmEgipChb8R+NceLSwJVwKJZA8m3wFUP0VAhX5zjYjgph2mcMkZGiDcaP\n1WAYNwZDqprs4G2lgAnQVq2oUKS3lnufRtfKcPG9F6uOG3uQAXIbRPaYP+kCqWwFX4SBaShwcgAP\ngdehf8QRSPRDCcI15MQ9DgFz5KH0t0JXi0DbThtKn1O/pYocdbHevBwv31LkJfSb82s11M4qoA68\nf8xJJ3dWyCvrGMXesMAuaOZXLrfh/PdUhAuQ12+3omN8h6zRl3FB56WKJCYrc7llLBU4JCPKEcw7\nXYtv36yio239wF8Gj1gyxJz8sxd26PPQEoHS9NFaHjajUrMptulKQ+tWgZf1hgzFsMll+8Tb5yeC\nhmVZ5wBfA/7Dsqy7LMu665M/6mej/dMw8ucPkr8IURbPeA37P3arGPXyU2V8rQnKYAHsC86SEVXU\njLX6QezAs9ouukzG2aB1+v3s+XDFLfDy+VhbZHjZX3VhHboBRqici7XPA/tGqVD02Qu1bTgCO0Zh\nDUTRuQvnQ/Olohse3glDt6pe2geouPVbYC/aCRdk4JkZcFkGFnbBbg/c5sO6BKyzBsgQOOgRBXLN\nEUm4PUWFtBeDtWyuct0cw+24JpgUhe/OhMcezUXGMBExMzVq/1I5tzaj3+eZOxdEOWZjzDaOmFYV\nmsT3BZpFPSRgljnZJc3CyKl7lWcdaiCLj/Py+DBGGjn9v4qPkMPIJea3/ggjtwBuYeTqerEAth5v\n+tVhXmuBlyS4NRgz5jYqtypTA7El0LldZWgaJqtmJX6NxdY7clrGSjQue3aDZXzdtlusAs8hIHMj\nswf8kfbVYO8RTloesIdC5w5TM9OoEkdGAK2ivHujirpQj3DJOBl9EX220nLIuYzDMKsi6TgdW4WB\nvr1mH1Xk6I6LoWu9BD3CNlStyv1V8iYD24/ISRsJrkLIPAmZpWTrc2YjW+tkHHpCMnDz+0H7LuNo\nPUllX5z8rqyR5jgpnwPmkKUjEkd4WmPYNpu0zLXdnGOTyWf3gdVDho/XOAYd0ZDgXlOPzvQt+Bu9\nO1G/QJPk+TMTIH+rsNJphbuFj6k9ksrPYtvJJj9wP+SPleP0hR257UK+XG7kGX3huteNwnZx7nnw\nhiUaE+mv56zw1xB+CgIOM+i8zwnL5BNu/wg+/k2Ko23bjji5iV9kU3mxLMsCLgaeNYtSQD5/KV7Z\nCLxOVovnf9kmrBSVorRBg78PRZWevUjRtFl3ZIVDrB2Dctu9cqrOYdCOv7LTz2azX8l9tuYajH4b\ngeOjYN+omjGURcHTAEdD/0NoUn80ukORsKJiE5/RYH804kU7Sb+nms8FCKCOBJvNaODrMMtLGwQe\nA9FdLIf2IthaiYymAnPMtUhFK9Kg/e9AADQQOE7bsQN4z+z/OMB1GUyJQmCg6CNr5RG8cBDgMwqO\nX0IGZoc5x7QpB7BLnPpYCTQfZxT5SgUYXSHVKcnkASMl8x5YLiGPYiNUkchHNDqXkYQ/w0SUSgbC\nqrUEe4G9FjxroH2TDIGiPTLuHKMjXiSPWOpk0R9SfnmjMl7jZesrT5lWNsU+XVD+ItkaXixFNdIW\nk6WAMJKsPG4GsnlXtCnKtjMDkb5mORDrIkfVcFo/qVtlgXAC+qdiaIGdYG1BFCCMGtQQGUBZg8xJ\n2o7rXBylKttJLh5FzsCsAk6St7ArpOhVsFEDuZMn5opB0zLw7dLLnTT3whh1LYa6YXvkkU2N1vZO\nRM7fJnppXjsc+jXY31btM4C8/vCBSwByZ0zGlcv0885hApuhJTLGZp0o4//hjbDVHPuVvfKUprs0\n2fhGBWQG6jqBygLkmdo1zUfmH3xS7XNioFmWNRs9WTcjN9DF6Gn5l2mfNkZaVUfkXm+pwnpiBawf\nDtc+AXYMTntG43m4XcvOni+WybVPYi9G+DH9Eb0vOEsG3cUb5ND86YNwZp3EO1aPh61RGIDUg3sB\nuy04diHW1cjIe/l8qTcOAPuFuKJzTmsBCgbA5knYT+9UzcwrjTdm+iPYj7oUWQvZkLKw2l3KQZuQ\nUdFpUzzXfg7smW7VPOsFPB/VFR4AnG5jzU2LXmmXCUeeSsCfZui8jkM1Oc8pz5WW2T1QFlQPVBvt\neGQyu8xdKESYWYiYJCXmvRDhY355LgoWwEjmDxTWlQNnCSOz+FjEhzGyjb+Ojw18GCNdl8HkPTmM\n3K99XDgI6q4x+Fhj+pHWsaYVQ/JqOTHttPArWqa8X3sUxEvBtQkOjZaoUtREr46kIjpOttgwqRc7\n4lmBCihxAzO/ywyTw+tOSkE4rxgCK0VZDzRLITDtuBqKcsq6sVIZE7SiiFWNVIMbp6mf3qgMM1cb\nMnBaTV6yn2zZmkx3ZEzVQex7QHfhZF5fKL4V0nthW5KsoEhkKTlnXw05quVkMwGebfpZr8/Jc+Tc\nA+VedS6G0F7DLFliCm5vIhdlXXLEtXNyweoUEaSVD+NpnZyb0fG5ep3eTj0L9kHwDNZ8w/Lk8vdS\nxcLAtn450az2C8XUiZZpHuKUxYn3N+UMjtVxoyadwN8KfY+gMCaXK6cuHdbcpiUBs8bnGCWzThTb\n5MJBcONKvd8/Ro7qx8vBO0AU0KaBRnQOaB9r5g+fgtGjk/qYXp9g+0fx8W8aaJZluSzLWod88G/a\ntn1EJgYnAods294JYNv2NsCDpp2/+LNd/RSYYVnW3533ZgUMLy8S0mCbAM78owbFSAhePQemPCPP\noUMDBClVnbxE9MbPU1uWwI4Esl8zFwfJvBCQt9DROTnFp+Kb/z4H7noInrtVYBVC12URsLkWnkKA\n1LscZj4Kr34TXr5M3rtj9mj9BAKQzcjDl0AGUaP5fAABy30zpUT1/I1QXA4Vk6neryRljkNANAKB\nxFtmX6WoXwHguj/Bpsu07u6Zood0oKjnylJw16ofaCJ9617Tr0rkKTL5djTC7gvg0VM1UPje0eCU\nv1HeHH9rbtLffoIiW6ljBTidhjoXLxYIhA4AfsnvFtRDyvFuzrgX3JBfqfps8SJF10rN71Y6V3ut\n+FZRJz2roM2waP1tqpeSOgvJ0S8EWpUE7G8Fz5umJsrDwMWqddZ0KbhGAotFQbQrgZFSQCy6GBlY\nJh/LexsM7AOhsQjgWiEJimzVkfPojdSlzxxCkbF6CWm0HCVjzH9Q1yrQDAXbjXCHkwiP+s4e83m1\nea8C+oL1MyOX7KxXRK4GDKJmxKog0k8GaayXEskdyf9EKFcU3GMifK6k5I4jkwyF0KTR5q/KlTcA\n4/FF98SqBes6SL2viGDgvVwfAk3Ks7M3y5gP+3JAsrpeBdGvGQLX5CuP46Y+UNOe814+PED14twR\nOQJKf6d72zYdSqagidEXDeA427avBJpt2/4Bucp0/zLtn4WR1sqN8Mpp2KdejPWtKNzwC43X2ybL\niJjzDTjh15LKB6zBN0B7XE7Onz6I9aJXuWPXPgHfv1i5Z6MWQp+Fcnqe8RqMCUpSfwYw2MZeuVD4\n2m2WOjG5TtL32+JYX/HnonPv78T6mnEsfhs5DXeC1RMoacQqfgBrElhTwL7LjfUHH7S4VAftFpfE\nRKaAfa8lTDGOImsAWE8F4QQ5L+1vHobZbqlHDkM1Q6f5wGWigsEAPPAnqGuAs4HhQE2tkeRHxtf6\ny+CBR+HX35ZhVoKwr8dAGWUBchGwLwEtDcLIV8x6982EilphZHG5sMtgJMehaNyRGPk/4eMIPoyR\nW6o071lZCtQKA4Fb3wHvi2YfhcioM87XSAJe2AePDFXkxMqoDmpHhcbJcJ15dtKKtgBwlZQJkyeA\nv0WGgTcq52e4zpRbQTnenAic8RoHpsgBlnFrLA8sOULQw6uiyv6twjwQzTFeJKOgcLcMDKZA5FYV\nOi57VzU8bRdZRgbrUSmaDpNfZgw6155cJM7bCRSZumgjJbcf8EBVGVm13/BkYAJ0vQiui8mKaGRb\nP2RkxSFilIoL6zSvCDQIS/xtOk5mCrmSMnXmVYWMbsyEerGiWRlHAr8K4bezHboWaVNLvb2XEbWq\nhJhxSmSiumcg+qOvXeV+4kVAHoR+IcMYJMriUCb9B4+oV9oqpk/3dyB6lIqae8NQaJy5noPwTk89\nJwVxSeuvrtdvN74uo2zqKiChdJMTX4ZfHqmgHJHzO2wb2f7XTH77reZ6fIGR8A/io2Xbfx/b0LKs\nQhRovt0UXMOyrF8B79u2/eBHbNcPeMm27eGWZT0BvIp8G+/Ytv3EEevZNTU1vPPOO4wdO5Z169Zx\nY9WN8PwIOHOD1AV7A9vCcFQEGr2w6hJV35u2HNrgvd7vMea9qfDNebz6YifdunWjtbWV4uJiOjo6\nKCgoIB6PEwgESCaT+Hw+MpkMbrf7r3X9U2/DvxZj468CH152r0bljXcEGH5LTH7XWqCxDQaYePPc\nsfC9mTDjIWhs1sS6L9CJPHRfeQquuwJ+9EvoGg/jl8HBSWya52dY6zBRO3YD710E5zyvz9vRY9QL\nsEtg/rlw2q+hRx6cvgJ+NFbHdsQxdiOQ2A8rzoUVB/Wnfi2FoZhUQb9t8gI69UNcvSG4T39mL/Tf\nALuDwP97Ch65AsLI37wWcfi7Q3AnXDkELhgEPYPQsgqKd6tIdWqXcqA8AchfA135Mha8b4LLgtiZ\n4msXrYNkT0h7TIHrMlE8xlQBC7/JshN+LkMsIQCIFUOJUW9M50m+3rtL34NOZkkddFwk4Y3gTiAs\ngPMkIGluqa8TPFGI3wd+x3uLrkfyFH301gF/AEaAfawENQq2I92fMLANnt4K41ww2Na2iYPgOx7i\nK4xDqAcyapvkWXQNR8+NyUfsHCzQOVKil4hedl+wDinnINvWk1NE66k+pK4Gz2qz3yojnAK40+A6\nDC2jwBvTuXt6QWavwNzXCXltOfDxdEFBHXSVCYjcCQi8DlRDskSgk8yHRAHkH5JRaa2E1m8JQK1p\nEFkJ3h5g71IAwd8JrSWQPxza3wVPITwGXHcMrNgJO7tgXAi2xmFzHbyfhpEeaA/Ct/pAqQX7GqB7\nHA6/CQMLYFsTDBoG61qg33DYcweM9MI7P/5/jB07lrFjx2Lb9sfC6bAsy7Y/RpKgNZMP9c2yLD8y\nEPLQv3GBbdt3WJZ1P9KXSwA7gWts2277G31dY9v2eMuyVgPT0Ei9ybbtgR+13f/F9klipGVZ9osv\nvkg0GuWSNb/kN+ll/Pvz88GOw5xL9Uf/w0Vw9vMyEOLADS/DfddpZlfbG057E2omwhM/gvPT8Pom\naOgGE9fCrj4wYhv87nIYuwomnACbLaj4DYy9Cn6+A94fogGmz3a4ejC0WPBgAqb6cs7BciR69ENz\ncvfZcNiC3wLtLVBWrHEsDvRZBK+eCiN9ih453uwyhCUb9kGyN1S+C18ZA7+x4PB22DtE+yhDRpMf\nfZ9uQ40FCxNQ0AlnlkpF8cWxMG4lfG2ODNZGhCdHoRn1fz4FIzZC6D54aTX08UD+Mlg/CV4aK2wL\nIpzaeRFc8jw4BXndQPcS8DTD81fDvz8L3/8erDhbGNkdbd+fHEbuhp8e9z/gYwO56JyrN2T26X62\nabv+cdg9DLjtKbj6CjgFRSr3Q3A3RAfAsa0wZzI0v5ubrCfC4O0LsQawkuAtFfsg2k1GU2dPCLao\nFqYrY57LjMHIGug4RcbBpNvf44IfjuH27mDtlOPMlRFl0naB/z1IDdO43dYbSjZBulD12RgHXZUq\nwm3ng9UiLEr71E9X0qzXDnRBtA6CxjhM3mVyqrsBpZA6DjxLIHO8jut2RETyoLEOnnPD19cag+lc\nYLuMN9cUlApSBfSE+PPmsZuC8PJMnZO/FVhu1oub43boOjsFjl1+s3wXwucq04cVYH/P0EO7IWzN\nU360J2YEswKaV2QKFC2z3JCOARnNOfwmNpHMh4IPdO+7Rhk6ZBryXkUO7PXIMO2v/QVaFEHzvgNN\nXxa25rVBx8ngDkAyBvZW6MozKs0BGYPBgdBow1MboXtIp/ilwXDNy6oBeGFvqCiEgfkwNAkd7YYd\ntB8KLOh8HPJPgINHg7cMEjOgrAha/vt5wuEwXq+XU0455TOJkZ9lfPy7DTRzsDuBmG3bsyzL8qDH\ndYxt2x98xDb9yIHPEFSkbSnw9p8baOeffz6bN29m6NChbNy4kV3VuzQQ9kdeomHo+zGIBnAMUlIa\n5aNifQnjxo3jpbf+BOMtytYWMnHiRFauXMmxxx7LihUrOP7443nrrbc48cQTWbZsGZMmTWLJkiWc\ndNJJ2Xdn+VtvvcWkSZNYvnw5J5xwAitXruS4445j9erVTJw4kZqaGiZOnMjbb7/NuHHjsoble++9\nx5gxY1i7dm32ffTo0axbt45Ro0axfv16Ro4cyYYNGxgxYgQbN25k+PDhbNq0Kfs+bNgwNm/ezNFH\nH80flr0FpWVQl4HkECjZDqnB4N7B+ZOr+cPqbdA6EHrUQlkL1HdCaSG0HBBYtvmgbSSkt0LbKAhE\noKsvY4YeoG/fvsx/aTectE6PTTeUJ+DI7ecj4C/Jh0Mp6N0FO0NQGISaPnD6FvigU0DZiAyDwyg6\nd4hcHpvf7KcC2Ie8g43IA9gG+OT5OfVoWOgoZW3vBtWHVXe9GFxNkCmFE3xmUGuFtgCEWqG0GJrb\noDgELYehuAyamqDCC00RCJdB5IDWa4hD9zTUu6HCB4di0N0PH2SgpmcQaqOc0x8am6CbHxpjUJ4H\nLY3QrRAOH4bintDUDN1tsx8/NOyAch8cKoDSXnC4GboV63aUF8LhJujph/pGlUCob4aKnlAfh4oW\nOFgOPRrMexEcPAQ9+sCBiL7v74BeBXBwnREsyYP+5XCgEXrnw74PoHe7sOKoEOzJQN88qGuDviGo\n64R++bDbD/3DsKsZjuqCnfkwIA61eTAwCDv2wcDB8P52GFQF7x+GwQF4vw4G94PtzTCkN2xthOoM\nbE1CdTlsaYEhvWDrQaiugM2HYEg/eH8HVPWHzXuguj9s3g0jesH6fTB0MGzeDiP6w7qdcExveHs/\nHNMH3q2FsUfB29th/EBYvRfGjYea1XBsAayMwfjBsGorTKiG1Vvg+Gp9P34ArKqFccfAu5thyDHw\n/nswYhy89zaUV0HjdhgzDpavhrx+4D4AfYZC/fswZjBsfB+G9oft22BYH9iyE4anYVM+VPeDbfug\nqhJqIwMZMmQICxcu/HjB58cfx57M/r7LX/TNsqygbdtRM44vB2agf+zrtm1nLMv6CYBt27f/jb7e\nCTyCpopOROi/bdv+nNEXPp72SWGkZVn2SSedRGdnJ29H9jBmewPv9TgKChqgsEOT2iAKpwfQpDKI\nnHTePNgxEIpb5OXoKIdUHDJhaPJDZTO021Bow74SSBdA2S5oGAC+NkiFwdsIrjKgQZXufc3Q0hfs\nDiAM/nZwhyHdCO4y6OwAX0gSt3kh8HRAn3xYGwMrX9zh7gUQ7YTu+RDogB0h6NEJ+fkQiYI/H3ZF\noFsYElHNnAuiUB8EXwyqArApDiP98EEcuoLQEYGyMLTFoDigiKHth44YeIPQfz1UtGk26kEViXwB\nSCfh3b5QWA4lftjbBWG/+MzBBFS9rXWNsAMJhGkhwArAgW7Q6zC0+6C4DQ6XQHEMOmNyMjrk1zxz\nb6JmX3nmnuWb+9ZllvvIVUtqRxmJCZhUBstcZp0UOTKtT7dhWAp6F0JXB/j8ct4FEhD36rK7Wk2f\nO8Hjgi43+GN693ghdQis3rqtXhckW3U7Eza8aVg6p3ZBsgt8aU3uPV5IpcDjg2QCfG5IpsBnQSKt\n71025LVAohBcQUjH9Z5MgM8L6Q7wpYxtuses3wcSbeDrgkSp1kvs02PV5dbxE3ngLYEOLxQkoWsr\nuELC5Z6VkNyvS9zlgrxm2VhBcwsC3SDeCnkpiJdpmhLLh0AcYh7wN0EsDIEMxDrAXwmxJgikodOG\nQAHEUhDIg2gUghGIBiBQCtEUBG2tF+yCqAcC+dCRhGAedKQU3I21Q4EPImnVb4ukVE8v2gmBkB7b\nQiDSBPndoSMKgSKINkPYgrYOCIegLQ7BMoh0QZEFkQgEu0FHKxT20nQwVAydh836CSgM6HjhfDjc\nBQkvWObdl4KSQhliB1LgSULKp+Uje0KkGfI9EIup/7FdUBCCaBvk99K7vxd0BceQn59Pt27dmD9/\n/mcSIz/L+Oj5GzvvBqRs2261LCsAnA78wPx8GrD1o4Dnz5tt29sty9oC/BsyrT7U5s+f/+Hje2Ow\nKqjLUoHoBENRBKlvAC55Ehb+GIat5WDeQdU7+30E++Qlf2+XnH6RTqdxuVx0dXWRl5dHR0cH+fn5\ntLa2UlhYyOHDhyktLaW+vp7u3buzb98+Kisr2b17N/3792fHjh0MHDiQrVu3Ul1dnTU0N2zYwPDh\nw7MG2rvvvssxxxzDmjVrGDduXNbgW7FiBccdd9yHDMfJkycTPullGHQydL4OK46FM5ZD4ek88x9v\ncNmfTgbfQlrrL6So4ncw8BzomgmP/T95M68HvjkeTqqAhSOg6QyILIK5d3HZit9z9dVXM/HRR/nO\ni9+Fyllwxxr4FXA1miLcBswF7Kth6WZIXQHnXg9bNkHfX2nGvOo9mL5KxYnPRo/yNxCv+0xUf+QM\nVKvrZrPfC4FHga8jUs/NEJ81hIV3b4f7y+Dq7vDSJvgK8HOoqIb6JXD91ZBYDHd/FX50J3xnGjz4\na7i7P9xxEL5zK/zkfrjtFrjvAfjeRfCT38Kd58BP5sG3r4IHfg3/eTb8cDHcNg1mPQ93nwJ3L4Wa\nuVGumwHTL4b/evL/s3fecVJWZ/v/nmk7M9sXFpa+9CKBxSggKmg0omIgxh59bSgm0Si22GIjiT1K\njMaILZoYLKjBSBTUKNgQNRQJIIJ0WFhYli0zs9PO74/rPDMLmvIazas/PZ/PfGZ35mnzPDPneq77\nvu7rhgtOhnt+Cz89FK5/A64ZDTfNgSu7wE1r4PJCuHkVnDsZ7noULjkSbpsNV6Tg5x3hgqPh18/A\nRd+GO16EK6rg1vXwgxNg2mNwcRXc8T5c1B9uT8JFRXBHJVzYF6bOhcmd4M4EnO+Du3vBef3gN3Eo\n6ArrrT7Xw3+AsxrhwZ5wyhKY3kvB7d9/CKeWwSPvwSkN8PhA+H4UHk/B95bAzLFwbBU8nYJjusJT\n2/X83Gsw9nvw0hw44gCY/QYc3hNe3AyHtYOXN8C3xsDcl+HgFphXAaOHwdwGGDEY5tbCgV1FqEa3\nh3c/gv1L4L2dMLQnvL8Z+g+CD9coE7X1PejdBTb+HboNhuUF0CcEjX+FzoNgfQF0y8CWMFSMhx3r\noNvpsPYP0GUEbHsPIk6WWLFATpupakUlS/rJjCTjpJVPbYET+siN6urBcNI86OscMpc3wz2uSHzo\nG/m5wXOa9HkOm+eoj1DJEmgaDMXHqb5VpUZfnvFJdVN7SPPeRhG/TxzGmOOstU8Cj1prdwJPGWNm\nAWFrbcM/Wu//t/HfxMhXXlEPCfPKQcz/1jZCdUthYTVscI5BEaR4CCG5XZ9VsK2D5P+j5sKoN+G1\nUVC6GqZcK6njgydjRl2amSqDAAAgAElEQVQkeeHvgC0JzN1h7AUJ6LNJUsdlA2FXoZ7POhRODkA0\nDbf+CNJZeOC38F4r/OhuePsc+EEA7pkL20bDlhicG4Zn3oEd7eDRMrilWHf2R0bgtnooKYM1LXBw\nFI7ZBUtL4a+7wF8MNzTAH0thx1LoOAi2NMDYEtjeAOcVwSONkCmDa7cBFXDlGjipF7ywAyaXwsyd\n8Eo59NoBWypg+HZ4rh3cMVKSsw6lsPgQuPMU6Po0FHwHenWCLrUwpgO8ugVOqYRfvQq3/1y9Pjej\nYGaN+/ut78KS/WHU3+DgBxV4vPF2GPAC7GrSHXHVYyJcBhlRrUf/1yLGsA3VHscQWduCpOMrkWoh\nCewYx7zqWQpYL+ou47Dv3aN1QkAcvl8GveNQ/3foUQKrekA/H6yw0KsQlvuhWxVs3AH947A6BgOa\n4cMoVJdC7QdQ8i1onA0da+CjZhi0Bj6ohs1l8MHW4ZzbeQFrEtC1I2xZp+1uXQ89fBLvdG0Hm9dA\n90bYUArthsCGBhiwCTYsho6HQW0tVB4OaxZDHx+sTeiWbksddOgODa9Bx6GwdTF0K4aNz0PXwbCx\nI3SNwKZy6GrU07Wrgc1R6JKGjfuDrwKenA0/miBi0vkR2BqFTkfA1hehNC21RMl2nf7uwPY66NwD\nthdAZSPsyEL7QVDfB9rvhA0joVsSds6HokOgIQEVERGe8mJofBfK28GuD+WU2VAqnt5YDKVh2GWh\nOAo7fdAhLhVwtBTMGmi/EWLNEB3g4iQ+aPYpDm+3Q0kG/LVgKqE1IGlkySpIdpPkv6UPlL4EqeEQ\nHwSBWig/AZJLoHkJtBsN6T9BskbtAop6QawWfPVQsr9csJd3Uv3Z1EUwuUalJt+ogMdXwaSXnTdA\nHxjUDr4Thsw7Kh2p/LvkrNYHoTmoCfh16kfXNBHgbxQfZ7258t+dBv/PxxcFH/9pBs0Y8w1U3eJz\nj99ba2917z0EvGWtnfZPd6Do4LPW2iHu/yFItHaGtfaRNsvZtseSa0K9IKrJqggV6j5yjoClYBvc\nc6n0840l2L4f5hpSf1l6nv07w4yLqzg6AvYhYEEcPgpg9yvBd3YcdkJ2hjR0vmlx7O3AaQ58u25S\ngXhJk1I7qQim53A4N0324OLcPnx/jMFig/1FVDr3VShs8/w5UHOvMnEzLpUm/thn4BvPwftHCbDn\nHCKr5xlHw4/uVePsTiir5hVGr3J/VyAZQKcIbIzr/wxQHFHt1/zh8PQozZgvu4PrhX4KftgxXoWr\nP3YFsf6UjCjCW8i5FTYOkTQjWexMOYJaprEbdHwI6k6G9h9IL58JSjIQr4B2LcCYDtSu3EZ4h+R4\n2aC2EW6AyEagVj1GUlFp9M12FcUGX4LYeO0/uk3mJOkCCM1Tf7VMSLKFwE7nZtWswmhwr08F+ssZ\nyryLbhyq3Lmaj1TLD5MzC5kVg+4DYKDfOT0tR8KqWrfOUGi9Mx+4BQiOgZa5UNgfhQqrtFyynz6r\nL6PzFtzoPtPr5DXzA7Rf5pMr3GaA245zfEwPk1TUMwVJRXV9ChpkoGL3UVF0yXptZ9ukfC1gNuhq\n/ZZAy0Cdk9ASnetEmSQdmbAaUKdjUH6rjr/uEPCPhmhz3jQmWgvJXq6fHXDlKtWeNSZlq10eEkEr\nKYCLBsMTa5WdPL8XNIcFTMPSrpgcEbR0AYR+7T53NbT8AAInydbZ96M8+Hym0cHbP4stue1d9IkR\nQh/SIfQG7rHW/mSP9/8MTLfW/vEfHONCa+0w7/mzO9ov1/hvYaSHj6ZDHB4/Avu7uZjTx0CvuUqb\n+xEx+O77edOs+cP1GLRC8/b84ZqnRy6AQcvh4Dfg7rPgsfvVHHrvqPqc2Ur45Vlw8f2y4e+6Sc7B\n6TBUr8Z8rzesBrtmEeacGuy9i+DRgZhfFGA3zsMMH62eZavB/AjsY0iC8KcyzPvOUv/mBHwrjDkv\nA0/7VdvUM4U9P4g5UGZZ5oc6P/Z2YDCYE2QYwmrk5Hg6coTcrFo3Vrt9LYjDSRHt/zBnvNXb1bTd\nXieDFO98PHgqvDdac1nFL6HTRXBHCoqyCl+fGZZxST+r3oevRaXbXhGHN8+BM+7N90e761Kd1+ue\ngKeiqg+/8Xr45jxhZIdteXxsRkRrT4wchfAxHdd8XoGwOBWBA17W/Y6HswXu/XpE8OogdrjOWfM6\n9XO0z0uKliiVXK6gQXP9zn75+rKW7lCxBLIngu8x1SY1uVsoDz/r+0LVAdC4XuZZrcVObp6VbN2f\n0BwdrdM8X7RV+GoyqtEGaBwPJSvlqGx9IhfJDsLHQMLVnyFc8HqgBWOqQWvpCYULUZBsNjLFKkN4\n9DC6ficAj8P2H8Lzf4f/GYjO4cPABe65mry9vlc3Xe2eq9B9xCLybsgdVbudKNMxlW6Q63B4J/k6\nuQkIBz3H5DJyTbkpkylIIC4ik4rqHiHePm8QEmiVqyNV5PurrYWdR+laBRLC6EBCUtJdPfO124Vr\nZPQSnQNNR0HkKAU3I0fp3O1aJsJY9yYEyyG1U98zX4FiJO9VC/PmrBM+Dk2oDcPURcLHFzbL3XHa\nIXJ0LAnBxWUyT/HFZZwGOjeR54AnoGU6JPpCuzkySvmiY+QXGR//aTGytfZ9a+3e1toaa+0QD3jc\ne2f8K+Bxy631gMf9v8Ra629Lzj5xbKyGD6KS2iVR8W4cgUVqG/z4ARGGDttydsKAbIb/fxrTHFF1\nlsDmdxH4URDzrTh2aZ6cAQLK067VJD71PPVdefZweOo4+CgG2QVqPpre4zfSbMjeHMGcGMP8uQU6\ndxAB29gFwsMEAqffCtdPVH+cX07Vdbj0Vt0MjFmra/CtF0Si142Bg95UE7OfvgCbL4XZD8BrUwRC\nG7vA8TF47Bz4+5h87553R+lavzpGk1wIimcDveCMcjntXd4dQt3y4JAJi/QkesK2sc6B6psiCeV/\n0ASYGKYJLTna3XCHHQC40sNUCVA5hmzlNqK15PqTeKBhMtpHcojWSZS5mqtFbtkyaegzIWjppNdM\nFlisPi6BhHT6yQ7a3q6eEHF2z4HlkD0fGIBsgGsQIQ0DFwG75GqYs+19GNbUQ3q9I5le3cZQBFD9\ngbVQUAqFI5wLJMAIkbPsBwignPFHaJtAAFx/FY+UeQDliqNzgOOAIes5gnoOVeiaFNbmwSPYovPV\ndBSYVVDi8gH2AOiwQMTHc8sC1Q8WLpTtct04XUuvyLxwYd7AIzsC1t6SX682BOH2ENxXwFTYA7YV\nwx+cjn9kJ7lSFafgjVr1d7loMKxP5F2rjPsujChW4814hT5HQw/VUqTOhfjPyDdK/ZIPa23WWcN3\nBUYbYw7y3jPGXAUk/xH4uLHDGPMi0NMY8+c9Hs9+vkf/xRn/Jxh5wvOYn/bRPPohuoL16EZ+a2+Z\nZpU0wfjn1EdzziHCg9OfxxRNUlh/5Bvw3hC9fuJZcOYr8LeYyNle82QYMnY6zDlU++m6CSJgzuqN\nvQfsa3VQWiOjjFANfLcAO381PLYv9unVsCgB3RZh54G5NSvd+eigCNQmNHltBpp82NeAsMUeloFy\n1ID6MLB3rRY5643I10SpCc0PwXQBewM6ptOsTD/iyFzknoiyiTNVSGtGgznLYn8JxJ0zQ5GbgGcc\nDu9HYW0UNu9UnW63NGZWGDMvjLnUTY7NRtt5MAYVm4SRG7tAu3rhY6yDMPKwl+GdqDDy0ltVVO1h\npIeP7x8FO/4BRt43RdsdHctj5AVTtc/Jd+k6rELkMYIEtG/osx/TXkGqRJ1kgJmXoLm/zCqiTwgT\nd/WGnb0h0KI5LhMEm1RAs/VFPSe7q07KlxGhSxZDVSuwowPJnZrnizcL48INebdGk9GcnZv/33UG\nI9VAQuSssZ8zyAgBa5Vpidytbcbb6fVEmSzpQ0sU9Gvs5wxIZrttVaNUXRh4WG6+2fO1D8oguwtW\nrgBqYdd+yBd1ESJS88nVbQG5GrOtH0D9XIS9l0GrZ5C1Ttb4xS+Br4/OmefMnBiG8HaRO6Ya8u6U\n6PhSg0XOsgU6T6EmqO+n+4BkoUizb662lejk1luk7ZRuyAcowRHYhPqXZR1eNfVxBiboniS+RfNB\n5FQItKEFofZSkrQbDe32h9J+UNomjzHtEJG0VGcRtvN7QUNWhOwa5xa9zMlpI52ExYHO2mdjN31H\nsmMgeX9+mx8zY/kSjS8KPv7bjor/J+ON72tCGxuBdAfYMAy++RzcOBXunajJCtQwExQVO/JP/2eH\n+58O32VxfI/EMT1Eysw334Lxstazj4G5JYP9DdiFImX2rd0NRczFQwXGJz4iwvMcKoh9Grj7GPjV\n1Zi/ZOAlP77/yVs1Zye57V3XCnVGxcrLBgpsjvwTTH4g11STLXE4Z7KAux4YuhDeiOpafDQalg/L\n96bruxbeG41573rMgSepcWl3oMsquX69cgdc9LyAp6QRTn3AZUrnOutiaPLD1VlNIN/rIGvXxHYo\nHg301OQVbIbw84q0WT+klmsyrZuoCa74defaiCZIz0UwFc07VLHPXLa9kf+/cBuUPi8gKmjS5OpL\nge9tAQ0AA1wT5yowaYFVS6X+DiRQxiusDJvJCGQ8R6Zkdy2TGKboWbonypQ9joDmYVTcjAPACYoi\nchn0/QBKs3JQygQhNkTHkB6IpKQ1iFiNgIKhEBwKvA2NnktjtZb3gCR0lcvyxSC+Txt75Gr3GX5F\nvhHnYnLuWGknPbaD8w5egeXO6KM+3xC7sI683fAKXSdv8val9ChZmSfM8fZaJ1WoaxReA1lnTGv7\nyImyGqj8iVwaD3gSiqrzv4PakCQZI6vUw+WAlKJ/Te5zdXWOoVMXKrO2bIccHNN/kzSyYVYeFD17\n6OYqXd9sf0UHzU6IHwUt6z8f2YYNfPrHK2vg2jn5xz/dj4qcZ6FOSxhjTkdi5ZP/xSEeCVyNqklv\nA365x+Pr8XmNibeJWF1yI/Too9/l2Ah8x9Vn3X0czDgac0tMCopBK+DF62FbAntdO7jiDsxVaBsA\nP71fQb2uPrkgvj4aasKw6iTMgZXwmGusVA72hXnKCPUS0bHvIJOKN2Iihd+IwCPdoTiM+U4NvJXA\nXuODwkWYp7PKeD2ujJc5HXjPYPYFe54R3tyehM5gz0xCv96YG62IHKgGfTzKwK0C6kXmeN2oLUAc\nzFMZKU3iYJaENJeWg/21wdxlMb+1+tzffwGyf5R7n2eHfvHtcMSRmL8VwN4p6JSBt/1yY9oJ9oxW\n7KhW6BEWRj5wCfzlaOFj37XCyGUDJF/sugnuPUc4NnQhZFbrOgyM6b02GGnajYap5+Uxso/Dx97A\n5DvgzUk6tyWNcrEuQm6U65B5U7G6BkweBgWVcp9Nx4BRUPihiE/qKJetaREWBhJuvm8H+KG1RE6+\n0W0ypkqHNYdbv7JjAPfWbSO7Q6/7UyIQuYbSMa0b3qlenVmfVBWh37trVyMykXABvaJalF36LnCC\nlo/saPMdr3JNnREGl74F6R/odapQS5h9gKFglgqXW28BOkLBtTCwhZzLY2Kg5mrKILWL3RwVU4vJ\nBR0DqASQe6FgBMI+b9mEzFIK17jP4JQjHvnMZfYOcv870hRcpfV9bdwPww3keqB556OgCcIL3b7c\nsiajZVKFIsvRlfn9BhIuAOrLB4mLat322zub/aHQ7mLwTxcha+983WhVCWgmJgw8c5CC39eMkOce\nSE3ijR5FUP0QzBwFV/SC1nqRPbuO3UZzRwitdPcCddA6zZ33z2l8FfDxi03QRi7IF+VOPU+TVDMw\nZbJev+0SeHUMNtWGqBz7TN6e/8s+PqyBJTVkb45AF7A/8WPXOTL118jHFreTjeQaxz6jCOg+KPM4\nAGVAZh8IL/lhqFVUco9hritwGbawAOTIZwQKk+9Scfbg96WZ6wl8+1Z46yh4bYy+gsc+Ay9Fod9C\nXbePKqDvIszvsvA9i501S1HO0pgif8c+IxnLgYhQLhsIv5yY7yuzkVyfL6/DfTat1HzfpRB7GXxe\nT7MSoEqyinCDJrTEVt3kFzS5nmRISuD1QPPkkclCqNoBXD4VX9zJMrLOPngfRc/MKgg/o+2yDjWy\nXEmuASoJ2fd7Da8T5Yr8tRyshtgtR7vebOsFdumwskTpsCMAZZI52iIECJcBY52lb0LW/FRB4U0Q\nvwjWpKDBKANVssBN3G9rucatQBiyd+uZHto+a9X4OgMCkip3fmcDnoQTEaJMm0wZa912Zuc/K/1l\ndRxYo3VNGsKPySbZG1knbwk3OLth3OdbDMwXeJduyLs/ptrn143M2MNhMgG+Z6WVL/iTrlHiIb0V\nLNGNiU0LZHx+fV+OnPnx7zfAqPaQqoPblyqTNuNDZdgAygbp2eeiktmgIsiBVpHO+r6w/d82yP3P\nhtf/7dM8xgyAa7+Tf+w5jDHtjTFl7m+vbmqhMeZw4FJgglUD5n98fNYmrbXzgf2ttXOtta+2ecz9\nzE/I10OjApqHXqM5du0AKHWZoGAc5kc1FxcBI/+IPSMKLxwOF90KbyVgYxa+tQNmHoG9p06ZmpJG\nZZ4O+B3mLwH4/SQ4cTp0mKWehO9o82Zkb+cW2EUELoLm87/FNIefGtW2ZqagOCu8egfM2WFJErM1\n2LN2QEUd9F2ErXcZsqXAmWnoAmbYOMySEGZfYN8QJgL2CoM5A8wUq4Bg2GLPTsB9rSJch6Hauaoa\nqAA7PqUU0mpl2OxSdxxdwI5JYH9gJENcNlAZlSpEqLYBK7rpw77khyeDsMaPPcX9DAZllUW7rkDH\nkg7DtRcKIyffBa/sL3x88DRh5LdvhVH3CiNXIXwsacxj5PDnYNCKHD4ycoFaGbyGVCSxCmxkumSe\nm+tE6mYcrRv/IpSFjMtQghAc1h36rVVj5USd5sVEnZsTfMKZ8ELNyS19Id1Nc29RLXRwUr/GbkoE\nFm4TXtUN0sdsHQH87VKOXSf1yvb+LmDZ6oKjb6mBdDpCTgYfiLuWNycCZcoOZYPaXyAhYtK0Tz4A\nlizWPBtI6BizBZLb+1JgXgcWQ+AxyQRJAHPV4oYyFNT0sHgrJEOwzOo4os+6djKPAg0QdEFTBgBj\nIdhfmNmxv067F5ukAd0zHYQcrZ2D8Nb9dHx2sILCLNJ71KKs3MPumArISyffljok/Fgbh8yMyGy7\nV5R5yo2RKGDQhiB5mbdsR3K9u4ItbjtZF1BNKOMYfhkyb0JLVX79e78JF70laX+2EebvhFAF3OyC\n1gc8qef5tXBfHHrHFPicuhD2r4L72lReNbrgtK9e2B5qUi+1RDvdf8WG6JpF/wui968CPn5xCdqR\nf4JLbsR2sMoKXX0NxFdp8gvh+olEVfzsjannwWEvYePl/0cH/emHGecyWluQ1AQEnB/nYf98dAZ+\nfYfIbGKYso6vnaMb/9cOwc4BO8WQve4fbPg1oHq1ooOHvazHg6dJcvr6IXBoDPaNYZ6LYVoeVxS3\nD3D8NapT8wOJbdA/BhtqsKf7YIMR4eu7CCJ1ULVO4HQYMNLCkhr47fUCn3oEPl2R3CCgfhxz1qvO\nqHElrHKSh2idonlZvz6qybgsjF828V5Wh10ChF3dFOlLtXP2+e10480ouHXiZGXfCiHRQzr6ZLGL\n4lWJLEW2o6aZTsoQby+tvpfdMVlFukIxkZWsX5Nn4Rq9Fu8qm//IDgFh5DnJQLzm0KatVe8HAj36\nSxLIfCABkTHQy0Lpnx3J66nXmaBoVUmp/vcyQKxD4NGADFnaDhdxa20F5pKrASh8RZ873h6ohtgv\n0PenWu8nhyCgqHXHDiROFDFNDNN5BkfSNub7tZi0nu2hAqp0GEyxbgyCr7c5rlZlzYIt7hq2ASuT\nyUd2Y5dKLjKySgDkjZFV+s48+Hc4MKseaVe1qtdLwpl+/Kijnq/sq+dBFYoKNq5UljZW1aYPjSOR\ngR4i/dkdChREqiDRtmz4yzM6AX91vbveRg6CLwO/Rrd/LxpjFhpjfvOvNmSt3fb5HurXY88ROgkR\npfnDNb8HIjDiTei+TnOoHyjpoL8bOii4NvkuzMsRSQ8PnJuvwWoYLdOQyTPlYPBhHFN+EpQ0Yi4E\nZrUqA7UUzF3A/E7Kfp2XhQPmwaFREaSlYL47Gr7boMxVHJgD9toY7APmRLTN8ZVqrt0FzBG9VYP2\nobzK7C8QSdmMgovjgV7zYBXYs4yyWFd9hHkqDJcVwBqjfYdRNu0xMHP8yu5VAOUKAJqxYFeDeTkM\nYTAnjYa9KqH/OnhuCkyfAq+dDUM2wJQrchk4loK5PIwdG8cOb4Ui1dLYa4wwcvIdwsdJdwsjXz9E\nxPnQGBwTw8yMwZQrhY8/u0YY2UXHSv8YfFiD/YEP+wODGTVOmclIna5jKKaM22agvlIE7ZqJKgmo\ndcc3Cpr2BjK6ub4hpTksVK6eZ74CzeUmqxq02HAIDtTNtakVWWodqO+U9e0eFCtbB+1WuACbRzCB\n9Dpl3po6a+5t6grZoUhNsgYpKlz/Ug9PG7vrOVqnLJvfta/xJzXHNnXVvhOlUD9AAULfLtixnysF\nSCAb/FIIPofqz8YgTKwBrkX49RC0vg2hJAxs1HqpQx2RG+MaKU9s80OqgdQHUDICqJW5pa8/Ilhh\ncv1DAZG7X0LHOyD8O4cNA9x7HRFJa2D3uu0Gtx0vqOcCzibrSiDQ+751CgLnygVGAovzDcMj9fl7\nmfgBOqZUof4PJHTek8PzH8vLrtVdDGvnwinl+SDkZofxD66Gny1X1uzvJ8NJy6HvSkkbvXG1y2AO\nqpDS5JW4snOJ7Xo9E8oTwWCjnlsqte/mxVBw6tf4+J/i4xeXoIEiXW6Y62PQsYMkcqBIoR9swb/f\nJuCLPuxjAilzv7sjrI2JxAB2YSQnbfyH62+LYFfoAQg4pp4HB90rx4h93hLonPjJ62dnRDA/B3b1\nxm6L5CWkZz6siOOUK/OkcSmw2Chj+csY5jcxePh6kecKYOYRmLFAfVTNTUuaMPvXCBjDlZhl12Nn\nJbCnGUVse7vt7kKA5gFZSPK0k0sgWgVshHd7O2njUy7qV6nncJvEabReEZ1sH9j6s3yPLZCpSEsH\nKGhEvb1mf5/TtitCVrIBwg4fPVkitcrg7DYSEHlJ28wERSjAkbRWgU5hnWswWe6igmMERK1lAqrY\neEjs56SWp6r5pu1KblJPjlekzrh+LOnJQEdYsxwa4sAiCPzJLb/WkbLL9LqZhYjeWPIg00MRwqwn\ndZwLlEJBf2CoMnElLhsXfM5FHWtdhu4gbXe3FosDnJRzhTNqQZnGdquUeQotcd8rz5ikVp/TAx6A\ngg1O0z9AGcFkvzbfx6DAKdETsuOhw+Mi2l5dWiYkA7MDZwqA5qyTtGfK28qMecM2KTrb8poifY0r\nFUFsTOozzmkj1bCORIZcdLClSm0NUtXAB9p/0VBFqmmrt/+MR9b32T32HP+obspa29da28NaO8w9\nfvT5fcKvx6cap11L8FQ0N19yo4wj5hwC19ygWqc1R8mswmyT3d3GLnI1GLQCW3CCsj2Lh4mcjVwg\nKeDJvWH+cOw7t8ODN2HfWAQzT8JOBG5+WtJCwL44HQ5biV28GoqtyF0ckZX2i7CPLILySuzEVthX\nc7q5JSqZ42/cMXcBisPKzH0ngy3LyjHypZgMSEaD/VUcFiVUY5YYDeOzkmTGgaLeMiBZKrxkMApI\njQZmt2LHBZWB+01KxlozgU2qW7OPGmHSTkR8yivhbheIHHOfsOf10fqsqxFJ3BfM9VFl9h4qkFnJ\nvqgJ9oHuM22vEUaCzmsEBUqXImLTZR3mlzE4KSZ8rAI2RT8ZI0+oFEZ2RmRx8Wptt2mc7n06zZWK\nKDVMt4ofanuTh+lmOx2DxCqRqILFeaMJ61dAMuscbQMJkYziBcLOYicjTYcld7Q+YWZzFVQUwdXb\nV0n50eRqs4s0bxc06qYcdB08RQUJ8E2ByOuar4tXOXyqzQfYQk35TFA2CInBUL5Sr+8cLEKX6qrg\naLYAkaAahFtb802jU0WQPFsZwoLbIV0JS1cDi53EsFaP4j+0+R0tEq7470YYGYaCjvnPQA+33gqU\nGVuECNtiLV/8nHvfYYc92b0/VuvGB7vSg3C+dp0yEdtAwmURy1XqAOSMQaiVmsS2IZImo0cm6IKo\n1fn30mEdY2i9/g9u1P2QNzoB0WnCuvm1upeaulCki6b8coGEzncgCrEVkvqPewkufE1Yemybrl1F\nLiAdqxSeEpezpKcuafkG+DtC07X6f8cLn08ZwFcBH7+wBM2+tx/2RrUKsBP+jL2oWiShDk1QAM17\n9Hp77FQB0pdxrAbuPB5uvFATO2Auj+5mAvK/GeaEShGi+cNFmJLA7ybBgQ7Y/sHIXhYROQPs3Rdg\nkpPgvDckz/j9JAdsCEDqUeYLF6GcABTXw8ph8MPnRbpGvKmIack4bGaaMnTfvw07rZ2yfCdO1zXb\ntQg+HANjYrneaAzQc1MS7tkOc7MiO0d0h0A/2biGmgQAHZbIoCPUpJvrrF9EoPBtOft5o6mzk14U\nCIhK62FE6I8EOgOO6HnZueg2RwYalCFirchSulzH1nKEpHCBBJqIi52hSBEUb9SPP7xF4FPfV9a0\n6bBIWt1eAsDWMmjqrohhdJ6rz6olNwmbVQiYZmuSTx8M1WkoXafjoj85WUX4LWCRA65FiFTVQvom\ndE6dlMI3lHwBr9PKM9Nlw1xCOvsseWMSb9TAjp8ItBsd+DR1VlQvWyqCnHR1c4Hljpi1MRGhzBl/\nPC+9ulejBnmJY6AVUscoM5kOu6wiiq7uOhgq5jh5TG+BexWQPUfLzHfXeWOz5Iu37wexTUBE17Gg\nEcyLbllH5m89EB77FsxYBQUu8R5bAQV7Q7JM34O2I9QkEmcC0Houn9v4TySOez4+z2GMaff57uHr\n4Q1zYxsjsZJGkYJjnxHRGrkADntJ7028FWwHNbhqLIHfnKN6pxMf0fLfewOyNdrGzjrJHUua4NVL\n5Dq4oUaZnEBCdZ1U5wMAACAASURBVFF2Hgyenq9F29gFe8Mbwqx1CcztPaGlRo/T3F3Z1Amw73SZ\nhBwbhkQd5ocH6v8fyQSEOh9mix9zShgGtWDO6i2TjkMi0CEMmxVMtL/1SVVRDlx0FsTmiZCtBnyL\n5O74ECJQa2IiYBPkFim5JNifgukMth7oZuGNmAKV594GA+aq0XUFcCCYqySJJAF2bBI7qRWW+bE/\nieXIl7moEnNFBtM4KR/wnHS3MLIeLVcOpt31EK7EznZ1d1fFoEwYaeY+r9q5ge9jSsZB103Ye4AR\nt0kKWd9F13VTVNegrB62jIH7p0LnhaovL4WB25T5uOQ1HUbhXhDvks+y+BNSdLR7C0pf0I2+F4yM\nV+QzZ6lo3j0xVZg3++DBB/hxkwJVuRrt9S5IGoPipTpXOSOptVJ9ZK9RmUBoAdDgDEj6uUbKq7QP\n69fcHN4FdovUF5mgnCGtT+vEK/T6tl9I5meP0ef2ufqx4HPC++QQ7cd3JfQDZbZqnZlHQrhofU5S\neJCw2de2LtthfXwrIltDET46R1/Od8v9yv3v1VV7mbQR0HQobDte+Aa6V0iUOSLg6seCzcrqhWIK\nYib7kcfjBp33eIWCg7l6d3RtgrG8EVmiLE9wQfXjtr360scHSO5fcD45TAd44tsKZk56GbI/hv4b\noW5+Hk+b/5xfdlCFMPWaEQoANCaVlW1eB9kKGY/A7jgOWgZkJvJ5jq8CPn5hCdqew3bcqv5mEWDz\nMGxfi+374ccXLGn6+GtfgmFXRLAT/gxX3KFIIZC979ORM4DsnRGyd0bgTGcE9sREOP0+GDgtn2H7\nd7ZzX0RmJA+eBr8/XuA0GlewncWuiwj8JqD3xoXhyD8JGPtZeLY/TO8G37G6gXg1CmdfIxvhfSph\n5km6ZtfcgPnweclojnozL+2shKuHw8SQiFlRD2heC5FXnelG1LkqFikyZzKa3LPBPODEnMFDokzB\n5GRhPmJIdQdmdlR/kOwOp6tucSYiRfoBJ0crWmj7iCClwzLsMBlN8M1VKNNUJ+ALOpKVDQIuk1S6\nVhNvuEEgEd4FpU7GV7oaCCtbBuzmlkgDMBTSp6seLrAF1leoHzgfAG9D6iryoFGlDB5jEFkb4QrB\nj9e24rC7u9J8bZ8yCD4Kdpz27Tsf4hP19859XAQTRdjoKqKVdtcoskqgmipyGURXB4fbl6+VXB1c\n2xGv0HPhMzoncTeV+VN54LHtBdKhJkh2hqYD9HqBEw5EgNgTMKFUgHLnR3lnxlZHwjziFV0JpWPh\nigSMLJdD1cgq2JiCM1xUMOOyc2kHOk2dJesIRCG0H6T6iZwl6iAynq8HzDfGPGmMOdJ8mRrdfImH\n6TxFWZ8R92IGnyRiMONoqSUGrYATXoCua9UDbc4hCoDNOBqaKlQ60BsYPB0TP0lZt798N+/SeBFg\n6jBXVkKHMPZcZPS0z0nKcO1dIwORjV3g4Fnw+iHYO3zQf5YmlxevVybolijmOydi+jh55PhK7G8N\n5vqUsmkRsBNbsSc7WcM+ldhDkpIgTgBzfwbzeAY7rk2px7UXwrn36zPGgb8mMTd9Q1mtM5QtM7dE\n82TojgyMd68/nobvZYRLiw0cF1Ug9O5LtO0GYEVH4eOJDoC7ZTB3hzBvFmBPicHKIHZcK/aMVtg7\nA3/zYzehbOCDp6kvWTmwLSGMPD6DPSyB2VfHY+egwGZJE2bqG8peXjwUXu2MvSCJGXM2zDgejrpG\nkadjd2A6nwR9JFHlL0dD5Z8wIybBgqNUBnAQLO8KP18ul723iiDVCIVdld0oaFQQkFrN4ySEk+AC\nilnhVCYItiqf3WquEl76MsD9Ewn3ATZq3vfcH0NN+cxQ42hIHKHa4tRgZdEaeiijg7OQj84RFrat\nw4psF1765sq8pGirO17yN/4FLrhWskH9KM0DiHQ0AA874uV3ssFasPNhZSf3/iNO3TFX+wgtET6l\nimRPnwsgel+zARDpSL7NzVrkAjkWETVPzriOXD12sntevu/L6Lvt76gAsDcCayA2WmTYa7HjcyZd\nvhT51jXuOKLb9HlbekqdE4q1MTQjnxVtLYP4sQqYxiugoZqcb4Pneuy1E9jYDIfPUp8zDyP9Dtc9\nBUykHsoPVQ/Ra0bAXyaIzA0qFEEDcjJOmwHjHEC94XfEtKBcRiSeOdtXePxH+PilIWi7jUErPvn1\nxhK47fn/7rF81uOKa7EHX/jZbe/G66FmHUx6AOYdKqD+NGPZALjuCQHhO0hiMiqBeXeXwOcxoNLK\n+GN8JXZqDDs2Dk0+zMuuG9f5T8DVMZj4ApzypFyq9kFgf/YT0DMDASvJyEFvapIcAj9bDU8C79dL\nmhbbJK16wd6uD1iDJvmmzpq42lrTZkJQvF4RNhvSzX8goYktVgm024YvCfidqYibfJqrYOdeInQh\np6+2fmWGwguhcLkyXskhUDwDeFvZtbZ9zIIxJ1msVmbOl9JxRRdIIpEo14QYfgWoddkzz+p3bf7U\nJ4c4c5MhkO4EPb8B7RxRaX0b0pOQxf4AkchsAcpuHaVMYWEdOTIXORWBgOdSdYKONXm2Xjfb2a3m\niwYVjTd1hq2u8De8VIARiEPJHHIgF9woohXrJ+csX1uXp7UyTYm8pOP0bhK8IvFAq2rzWot3d7yC\nPFD76gXUyWJZ6scqITVj92VLQmqmOb4QmlbLtSy5QRFCr16u7ZjxoaKE6RjcvxIK+0q+k46pT1Aw\nBolFkEnuvl6q8ePb+iyH9X12j8959AfuA04FVhljbjTG9PsX63w9Ps2Yep76dt12iebMH8ckjeu6\nSa66XTdJMQEw5whlzLpuEpmbdh4c86Rkfa8hk6Yd84QHl76h5XYtwq6ervdmivSYHwITpmNvUP8w\n+ziY76JatB7jlI0rniVy0mse5sKsthUHirPqi3aikwzeksQOSknGeDuqQ346qDqy1cCRIZGm1cC9\nfuwP/PA/YRl+zEGfueNqyTEj0+GkDSJJVyvBRAQZiOyLsl890/B3VOf2QgCa3I9hM8Kew8DMTKse\nrO5ASHSW++VjETg+Cyv92Ata8+e/X0p4tsWP3bsVO64Vc0UGpiUwlZP0+a8Cc1lYWbSEgTTYe2M6\n52GwV6PSjTDYn8Sweycxf4hgPgpiLzXwqydku79yGAQc6e2rO2yTfg4zo0CZs/OfkIT1TeDv8LP3\n4K3j4NAyyPSUm6Pxg28smL2gcbjmcc/KPet3mFIsstXUGUIf6f9EOwgUS7VQ1gv4rebDVImwtqhW\n20kVykikpZOCk61lCiAGm0WAKh5RX0t7DDnreNtHjossdqSjAKiF5GE6pnADlL4ChdOd9N8vnAk1\ntel3WoYCkDXAZY7ovQvBB3SOC3wwMIksGQvI1W97+Bjr54KAXuZnJgpShp1UcQIy6oB8X7Qa9381\nkj/2J9c3LfSk6ux2HgAxV8NV7NrrBHaKdKZ76nVfxgUfG1ztnje25vdjNu7+s09217UItria9i3K\nSmbbZH9yZLYROr6i6xWudM7ObnjuxbTK3XjbG8KxypG6nv4U2ON237eXlV3WImz1F8goxueHkrd0\nbxHZQb72Dsi648/skVn7rMdXAR+/fATt5inYyD+58gdc+987ls9h2CtuwZ77289ug2HAVsJl02Hj\nYMwPK//lKp94XK+MVQ3c/hkB7LUxARBgL0/Cfa3YvZMwO0X2vghmdgQzNyzXrftXq8i6M5Kf/PVw\neOo47GuuHm5jF8xvs9Bk4Hn1m2HZAElOmoEq3Ug/+HdorVMDzmCJUunBmAhZotzVezkJoT8lAIlV\nybUqG9Q6fte8Oh2GqiAMnI7kgTsgukTvh5rUp6uDkzYkS/JGEemBLpPWCXgbQs8C1aqt8hyWkt2V\nXWr2jCYSKrouaHJZojJltlKFIkT1xwO16veCK7hmgCbh5GgtF75cnyuwE9ZugZ0tWrZgKESOh+w0\ncoXZvl06juJfaJ3tNYiIgYjaZXo/vZ/OLbUCGVDGigk6Zq/WK7ReoB2tg8ib7jx4JK4hHxHMfeU8\n2aSLQjY5YlS4UM/ZjuQcHoMtKuT2RmQVqml7S/vzLP+9zJlnS5zYrs+a7qNC9/cy8NBAOA44LN9B\nAoCok6DEKyCbEYHbmJIW/7Ae+m7d+JGW8eQZfhdT8HrEsRHi7yoy2LxO4Nfya7lVxbd+9omjrP+z\ne3yew/WLmWOtPRE4G8Wb3zHGzDXGjPp89/7VG80/+wbURTFXLIG79teLxz6jGrSum6DPPZLFzTha\ngcwpV2ounXKFJJH7Tpe5x9lPaL1By+GC47UOaJ3nJsG3r8XenMgTo/pKmWLEwf4C+Mv5cFAWamZJ\nntdrHgD2Bh/m0BoZevzAL3XEUuDBBByjH5V9rQ7zczCXDcVO8StIV4/qnyvAbkIkC3SD3BnMDVkR\nU4BByzG9T1I92m8klzRXZjGDgb3DGJeZ5+ICYc4Sv8jbwwY7G3my7Qv2WwmYG4BUAo74M8z6dg4f\n7R0+We1fVoCd4NrezI5gEgaWyNTE1Plhix8CYE9JYA4fLYORcuCIDHZUAur8mGVBtbC5rxUWtMId\nI+Fg17x3WRB7QgJ71UfwVFKErGE07L0Q1o9TdnD/Gph0N7Y8A0OyMtZ6LKXeaF2Bg5Ex1m9gRRrK\nQ7rxDldC6+sQr1V2Kd7ONatulBGWN5earHpapQcqIFm0CaLLFKjighfYdSSElkLHGVCyREqEDnNF\nQEo2CGN29pIVvjcCCalNCm9yQb9qRD7S7u+xeQVFsp+OIbxTx9Syn9oCBBI61lgH4V6yAyR+4Ajf\nB8hZePbu26QKUlvh7xYRswHuvQFAWPuMrneEZyOSQE5237MaMHcjsuFtfwQ50xB7MvmM2mzy2bf+\nLpvYHUKbocjVoxfVSuLomyuS6QUlve91xilsABrPbvPWQLABySA9s7G2I1WkfYcbdL08KWixyifZ\nsZ+em9+AHQOg8QEpRJ4aCs8eqPrpIx1kFbvateLeeo6/Krm/l1lbVq9ygUkvw3yXZcupS1w1USYk\nsh1ucPb9QYjVKkiQOevzc3T8KuDjl4+g/ZNh/+dR7BV7WtV9tYfdppqyF+4sZ+ELZTnb5E87st8u\nIntZBLOgQNHEnX4oy2LeLMD8LaQoIyh7ljCY5UHsh4Ox1eWYS7OY29OYU2OQisCoaQL7eKWKzp/x\nYX+WEMAVh+VGtoucS9Wv1kJdGbyaUgreFxDZCiT0HKtUwXLxJohVSIsNyry0Fgu0EmX5Qmd++gJz\n+4NNO6LQR26CuajKfBfxikFonjOxKFaEKzAVacqrlCXztZKz/w0962yGk2pwaYv0fjoM5e+KBMUr\nNIHX7S/y1nSUJvCWYUBHRdzSw7StwreAMAR+qwm/ZycoHY9A4gTgbfCNcM9TgEVOanKuGkG3X4Qk\nkNXkawW2qv1AzpTEK5AGuFnbMs0IQN6Gju8KLNNhTcg56/wDXBPwYhVde5G88EIdR7ZA2UJ7AHK7\nrNb7gZ3KmjVUixTv6ONIX5tInKcPTwwTYAR65N2vMq3AHrEGf4Eema2SNxb3hvJvgT8Kgb3zjbLb\njvlbnNSxE5w9CBILgDiU/knZvtLfQsVVkD0KKpZ80i/iqz2cJfEFxpj3gEuA84D2wMXAP2vk+fX4\n347Jd8nB8bQnsTcOgeoXRcpue16Np70xaIUyaZ7J1sYu8OLhImu3XQEvHo6ZaiXLG7QCs/WJXE80\nM/ja/DrBsObi+cP1I691NVh7gbH3wx998Mo4YcqygXpEEMlaijJKwXH6++iw6s56RmUk8hDwulE2\nazCwIAHdMrDayRUfUv2YuRARrvKsGlSf11sZtJvdZBVaLbOO93zYqTHMrJRI2akZ7e81VHO2f0Yk\n8LvkTELM5WH4Zhb2C8MFFqrb6bNEwFyaUbZvX0fMfh3FjmrFhi3sncLMikKzD3q6tgJ1fhiVgudi\n0C0rR8w6PyZhsJ0ymA0BYeS8AswWP1RmMddHIWIxG/zKSK4PYG5I63wkHD7eu0jZzD9UiAjuncRe\nuB1+HlTtXh8kaRsJIyrldjzxZUmyw5Wa90LlunyZoGrTEmUQcCqFrA/SHYE1ynx4vTUTZWCT6Huz\nxClSGpypRdiRN9RkOhuEyqfkkkiDCJVpdu69DQgnPUliG+l+tE5qiYCz6wcFMUNNrr1N1kkC28Eu\nz23Sr2wfE2DXZNUrgyMta9VrzYyHvbyYWQJSdyKyNldBWBaJpGU7qkYu7ERX8YkIn7aSC1LmzK1K\nwTzqtunZ+q/IuyeGYlDxl3xd3m6ZmQHaZ7zCGXG4n2Vwu7YTWK7PzEh2G9lS2OUkjtEFwsqCprzq\nBJw6BhG1eK2uW8n+EO2iOv22Y7ELqrbudPiZgW3fUV+zQFSS1Mzh+eVLnP/ejA/VxuGwHi67GoXw\nh1C2FgpPh/KlED4aio7l67HH+E/x8UtH0DzjkK/H/240NzeTSCSwsz59XdtuI2wxvymAP/uxfcqh\nzEI6n0mw7dphHzUCKu+1u3zY0wOKmB75DLw8CWpmqS/OjX5s4yzYcQj21ihsjsJ1U6BvBA6Dpl5A\nCHr+VdtqNJJweE6LTd1FsnxOU0+Z9NG+uMDJn9LyoSYROV8KZfIaBCZN3Z21/mhtL1sq2/pAaz5C\nF1opbThr9T8jJVMwqxTxIoyieGXAbIg+oeXMu6iYeSPUf08TbbDFTdj1mlyDLQKlrB/sPop0psOQ\nPsIVOY/RtgOPwbr10PB6fj+efS9jUXZsl86Dlw1MlGr97KkoflOGJBwfONBpQ4rM+Qh8ypD5SBWS\niSDgCe8SUat8Kr+OB66+jOoDfOvYTSaZ3k8mKU2doX646gja9j0zGZ2HYMydV7du8HURubYj4WrF\nwu2BOpHr8FIY0gLNK8As4mPDk1rsPACmLILJA3Ujc+ZeImZn7iWiFt/y8XW94RJqtLiy15LbIPs2\nRG4A/3P/eL1PO74sJiFIZFWKesMcaa192lqbsta+C3yGUoCvR25sG4d5ZYms8QGG3AZTrhUxW/VD\nySC7bsK8cocyY2c+Amc8IMK2sQu8NkY9M7fXwJn3Y1+brgzcNTdAURbzM2D5JMkJIZ8uPy6ad9vt\nmZKhxkWIENlK95gH7wBl8/Jyy3onKaxAvTG9dTa71waD+TAIT/uVsdvppJURsL9zEsG7AyJWTnJl\nzg6LyPTrDZVWpGpyFH4VdEoNn2T4q4ENBrt3q8jTO6ierBzsT5Pwuk+GIN/IQtVO1ah1coQrYWBM\nGsqzMCKDWVCAafbBlgCELaTADkrBmoACk8uDqlMbpCbXZmYBPBOAUWFlCsNAzwx2YEoSyavi2Lv8\nWh4gYoWP5agR9rIBMl5pvwh7Sj1cFILhYdUMzmiHfXU1jIxJRPUhvF2bl3hvsmo2nG6R/K+5v4J7\nRWuECQWNmnf9KQW10gXqZ5UOS+6WLoAqC9v+Ss4uf9fRwkMapChJFkPsx64soEzGWHzgcK8W4eQE\n8lbzaxFeva33zaN6zfcBMF9Ki4Yeaj0TG+5qxouh/CPhdTosV8iSJQosFm8Wmdwx0GWjtkLx1ZAI\nwtJBwDk6ruD5iPx0dM2sE8rGgWtzcyhQI1KVHY9mswTCSoBq8E1zn+UJ91pC+wtdrH34nBI248oo\nvIbNAQ9Twrp3MKukwMn2R6TVEVZfRmSsqatrTdBN16DtCMa0ftanz++1FfLmeC+zFa91x+L6ysU7\nQOIF6LsaMi+Rc/IENaEG1VUDRB/T8/PrYaqz4e9alH/mA/7lCHeHymugdabaAn0e+AhfDXz80hG0\nr8enG9FolEjkMyJnIE1/F5mRANApDd3SmCUhfE9oprCzImS/H82tYv8aUaPtSos5fDTcc4TeCEkS\nw1vjBOqVMTXAvu4aWUk/6wqiiwA/jJsrIPrZUkWJUiWKEvr3zbsblb6vjFTxZmjtINehwE5NhFkf\nlPjg6vlO8hiSrMPL/kS3iTSZjMhGrAN5q/q1iLwkgLGuV9m9joRV65E4WO/ZQ8k1skx2kB6/4q/K\nnIWW5CWZ4eXuOPo7O+KNztlqp5pPh9eQz36theoaKAuCvRha5kLqCWTteydwhQ7TN01a/+J33XGH\nlaVq6YQigOvISzR2ISK2FmhjFEcZMBdannXruBG6OC+pzNn5e2OCwMN2BWpc8bk/XxMYjEHLD/R5\nfa2SkpqNezSmRp83dQDsGCYDl3gtJLZC8TII7REZbHJWxYGETDyyIZgdUgQ5UQfZtHqgJcv42PAK\nn73nVDtFJZMdyLlnsgKywNYroXIZVL7x8e181uNLVIP2U2vtFGttrnLCGHM8gLX2ps9971+lMcX9\nuJOLsIun5R0cN3bB1FwDk+7S+9POU5ZpVkKka8oVkjzOH64s2gnPw4Yo/Pws15+sSfPsZU9gj3Ru\nBwOnwdreIlGdkUnFu8g1cTTY2+Zg/zRP9WIgotWUgBn7KAvVWKLjG48MpSZmZHkPqj9bjUjVLcqa\n8YQjZ+XIRAQk99sM5pyomjkfCPbyJObOam3zO1bHcprRsoO1TXtKDJYZ6OOI4SZtw1wehQtSOWm+\naTLK7u0DbDRQ1k4Swtd92EFJzIyIaqLDFts3hT0kDsv82nZxVpJ+wLwRklTxmJiIWqWb7FbpmMwD\nWcwtKZHagIUGH6SNMnOX54/HDknC7Fb4TgZzR/s8RoZqRH53IoI8fzh03AHvfAPOuhBuv1RZxOPh\nnA/g0reh5wsyhYh0UmDMax+SDuv/RJmCbeUfQcFyKNtP+BhscdmvVmBkRIFOVzflycF27af5unCh\n5I4584qZiIjtQljiyQvXIXv6KiThH+HeG6H3vTqpgkanbKkWdgdbhJG7ujlzLb+2YduDecrJ5N+C\ndjdB+CZyZlclb8CgLu54yhwu1gKzoWA8EIbQ7127l2pXv94nj0H1k0SiWEGubIExLqh4O/lygQRw\ngVvuInav3V7senuuQIoUb3kXEPatkws1Vfn1PMmpPym5aGuJnm17HX/BHnXPXuYvViFzDpsGukJ8\nE8TW569322cQGQtEod1okbhsK8Q2KqgbOCG/nGetX+KIoge7mY9k7AWQaoUtV4pINAId9ofoy5Cd\nzec+vgr4+DVB+4qMlpYWWltb//WC/+bI3hwhe5nImdmxAzsoJflHnT/3mu+VJsy7uz62rh3eCj0t\nTHgeM2ocpg8Y13OGZQNhazvdMNx/DlwxWTcXiWEiaR2AYRD8PfxsARy7FCZslntVqFyyCK8pdaxK\nTS8DO4EGTfKtxbqB569TuaR93m7YnxA4mKxqzsKviDglBrqaqsWS6Nk+QBhiZzu7/TIUaatBgACE\nHwNWkOtflnSFt4XLJfkLvi7L+HRY0cfYEEUK0wUI2MKKlDFTOn7Cbttugl+3FerXi9gU9nBO+Ytd\nostFOD2TkcbhAp7kaPUnK9wCiesQcRyrbbfOBe51n+Vx8pHDE4BaKOxIrsWAZ0vsSSop1f4Kf5eX\nH4KOLVUkGYf1ueLvNXuAzArtz7oaNZNxx+3q9nLbcvc7xjXGtAvzAOTbLBfMohd3l354w3Oy8hp0\nnrmXosqnd5WTY9cikf2b9gKb0WPP0eh+Nrlgm8s4+jICf6+h9Vd0XP4Jr13xXz+Kr8gInopu2NdO\nkkRx0l0yCGnyyQxk2QD45hI1a+4QlmvjsoH6u9H9GLq5NPND92OZLoI3rQfcfLyycFtwNcB1Oat7\nU3CJMl+NsmwzJx+J+cZo1XQtBdYlRAx7RkXWAOYcin1oHrwG9vy1IhehGvVHOwORipf82PsS2HcR\nyapApOsXYDdJ/mjvjWGvMCJAPwnB0+6XGLDwDpjbwL4D9qyYSOCpUeyPY5IcjifnigzAc0E4KgKD\nMrAhIAL3LtAxC7X1sN0HR6Uwz7mc+fKgaqPLs5I19svAIJE20rjsWQZbnsXMjohsrQxihySx5yR1\nzGELDX5sQCTMrAzCmRHsIJmmEHZasrCFyoyyaw4jzYLnhY8nOoxclND1vPFCKHDB0f+5FX7yAHSP\nqZ3OaCACQx+DnyyGywy82xlWViuISZmkckW1IguxCgXAvF5p1g+2O3z7hTjZmHNLLtQc7msVZgVe\nId/QGTSXr3WvTUA4NBdJCzsiYw3Y3TXxbT0H4uoJGmiVBLDumzqGXdXkbPjTYRHEeB9H1Ia6DFyt\n298Icm1n0u/A0iXkenZGbkAKlBE63uwTOrbIL7WOdaUSXh/VgiaXkfNIJVo++Jz7jCvIk7TH3fYA\nZkL56+w+BpDD5G3DyVvyh9WeINVe+JcO63oUu04ZXj9Q2xXMUqDG9SMNQ+Atd3x7SCIBrMvYhdpD\n0VsiuMXrXbnFel1rb3hBSc8OP1uhMpBju8HBEehiJG28uAZ8aYgV5XugeSPozFQc/8e7BfCN1XPT\nucLH+llfWYPf/wgfvyZoX5ERjUYJh8P/esFPMczLMgQx250spDgr4HohgNkSwOzYocfWesyOHdLu\nNxjMUxnsL8F2vU3R03qcU9cO1Up8717Jae6fqMhvwxio7gDbUJPFTvCikbRj3Bw4aR74+ihL48vK\nhS/UpAybr53MQsrWgi8KjFxA6xpnMFImYAo4GWKoUdmbukPUeNk3Fwgr6mXelY1wdL0rXB6N0v6L\nyBOcMe7vkVovtF7kxbbPN2mO1okAhhfm+814hiI0wI4jgFJNxqxAYBMGJkD7w6FiKwK4Koj+ARih\nSTGFW34CsBVK7hPZDDU6qaMXiWxF2SGPCJ3gjrmafKNO3HYucK8tZreeKjn5iidJ3Kj3zS92/354\n0btsgc5z4XIZmeTaCrQZseE6rngfSVGLNwkwjR+KV0Ohl8l092ieiUdrsSPaIYh0yRdBexHC6FKZ\ny3zSKHH3YgVtiGIm5HrfjdBXraw/tB+vyG3LFGAaFL7yydv7LMYXXeJojDnCGPNroKsx5k5jzK/d\n43e4r+HX4zMe9V0wK2Ow3aWtum7KORrbk90X3vUBNYOd/HDkAvU76zUv7/I4aDlcNBWejIncATzo\nNE6eWYg355C6iAAAIABJREFUeoPdPB37w7gyaUW9sbeD7ZbGXhtTT7MJYB4Nwe33i3StBu7aC3Ng\npY6vszZlDss/20dX53ZhxoUVlDoRNayOk5dSAubXUWWifh2FaQnsTTERnz/6sD9NYvd3mazLozA7\npZq1Q6PwZhA7LiYnxtOy2t6IrCSEO32wwchw4/sZ+BvQrR10U+0Z/USa7DExZcTWBOAjcgFI6vzQ\noBpsW6kaM9tPZMs0+GQe0slNTjt9kHIyzp0+bK8U5rwM5smQ3lvZxj/dKxMoz0J5NoePHOAcko8N\n6xpfcqOu5Tn3iqQ8NBHqojAKBc0iQCf41WB4qAXGLVAd96ONmg8TZZKd131TBiEgZUlkhxQE7bIy\nlQi6+jUPt+LtnZnHEZJCxrsqG0U1khSGEYnpDwyVfDB9MMKWBmeutQJ4GJluhPMtcny7ZEfvyf7L\n3Vck2JJv7hyZ4YKE1Qhnd4lg5ZpIA4FjYXCGfMnBrxRYbXyWfE8zyKlirN/1u1wh1UkmqEAgYxCe\nT0FYV9Vm/bXklCO+G1BmzWXpfF7g0ruk9wA10MGT9jtJaNthssLJ+AG6Dwitlzu0WdVmO236igVe\nkTEaKOCcaUU9gtsMz4TFywxG6rVffwjia2Qmk22F+oXQukbHFd6jrjvrAqr3u35sASeI2jbJ3a9M\nUDwm0lEY6TseUj+EhtkKBkd28LmNrwI+fk3QviKjubmZZDL5rxf8FCN7fBQ7JoG91Kco4E4fJm6w\nZ7Riu6Xz9sbe6JbGjm7FVmZUHH7Jj+TU9WML68epF9rU8+DnUyHdAZ74Plx3nHr6LBsIQ4DjOmjC\nrAD2guxZknTwgfqYmU6KivlTzpWqqxyWEmWQjUH8iD8SigkEwg1attnVXqUj0tiX/j/2zjtMyvLq\n/597+syyy+5SdmkC0pGqBrBii8TgK/G1R2MSNZJiizXRqBGNib0k/gzWaJLXHqOxQTQGokasNBEQ\npMMuC9tmd/rM/fvjez8zS7FFiXlfONc11+zuPG2emX3Oc875ljWo41VJ0fSSejepqUMiIlmgL9i9\n0UW8Rn8vJqpHZLrsz4K5SRh6u7ew7x5xOjRfQiDhOEURjfJ1wEFOadFLCo8AT0Hj72DzZorFUfAU\nt606CI5GieVBYHRpelcIQ+z3wAwlOS+BMhrCzvelcCZFbhqroHB+h8/MS1Dz3Plw8MdihJ2M/Wiw\nl2nZYBs0jtryo481dCCa+7Udc5HOi6/gSNy4c0FJKSq6zql6OWPy6Ebo8q6Kssi74llsHSmPQO22\n5QtDxQrZNDQtgPaVMDYHu0UgUKZkVL47mMO23VZpo3pq/phFvoj4X6DiuB54G52Rtzs8nka3Rbti\nR8RBN+r5rQYVWg+fCq+Wq7i5RR5kZFPY0F3Yvz0Ld/1IN/S9nSGRZ2Zd0SolxopW2DgZuwyM72Fx\nzxrBDDxQ6+SXw43fgFFt4hl3kH3nvKckgX9JCvt9H2YAmBOAvWbDlKCabs+cqekaYH/nBECubYCW\nAdg7wT6FoJhNyKqlf0y+aSMkDmJnIsGQKLAQzDthFV8pg70gK17WxSEVhQeAeSio93IiMLyAuSeG\neS0Mj/rgqwXY5JNn5yuuEGozmlYdkoeWJujk+GdVBRiluYCNWuif01TuQwR1LC9AZUGjg6y2YT5U\noWW75SEAJA2sCQj+X26x1wJnRjRB+5MfjsyqWVnu5g5NPk0FARr8W+RH+0ujQvcIq8/z8JeELHno\nm9B5IGzuruv2b6cpJ+6LrtltQDf4bhUs2gwnhsXf9aZSvoIk0wMxKESVp9LlwNAoyToILtWyJl9C\nMrT0FzIlW+ZUd930KldFUVgjNwxY5XhY/9Tr9JPQFf2Qvx5ApVN89Bp9T6kgi6zQtSuQctL9r7hl\nxlCcarXsA/QVzL79PHTVeQryb8C8Jeh8pNx5AComQWEV+CYCR0GhXq97/LGcM7SuWA2d30c5fiLF\nYsuO0O+5g1Fz89uoKKX0/qiD7IMoN/ZjyxjqpnCuCUtKht2eUnHI5alOdWpQFpdbAjzSYWq5VQSr\noNsfS59ppBnKX1GTsWqZYKAVs7ddD6DdAe880ZfGd5UbUw1Ck7Sv1VTtO72ldJ1LbCs+4kXBoWui\nXnP373qqWLP95T9v7Az5cVeBtpPEjpygAdguXTB35iBqxTt7P4iZEcZ4IiEbHPRxhmuLdstL/XGN\nHyZsgPvTEhVZjhLZ6slKQN9Y6bq+wLVXwA+eh1umwZqNRUNG2sD3CLy0jzpvhXFS8iv4ockJaGRf\ncf5oY6F2xjTyCS2bqpRHlmdwneguuKH1S7mRCMK970/RC8W3ykEdV2nZ7P4OhlBHqaBb6YjAfQVb\n8KTvqUWywx4GH7etSjeRSSElyBsQGfsHkPoJJTGQCVD7IUSu0z6YpXumpMcpiyDMo1NlzId0fJvG\nUBT7KEoSewnAO401kjemWev7PInhxYiP1YyKuhRFk07GsGXSmO4KLwcdsX4ljWBCHVpvWljkrU2k\nSOb2uYTaerk+j0BK66S2k5SgJDTScLImbyYnv7LkOuHx/eESLMMztv6kyLtkHY5DywD5w/UaDY1L\noPlpfQZl10JlX6BWJOj8v+Zc8b86rLXzrLW/AwZYax+w1v7OPf5krW36pPV3xb8Yf79QSoZQUl58\n342A62PifYGEQp6bDKPeLPmk3fhTFXCNJ8F938b474aWARLb8Boc76mrYZcjgYrWChgUxdzZRYVJ\nUwM8MAy+0YwZcRJ27WwY6WCJTyF4pCcOMgDYmJIib1ftx96MvNi+AixOwaoU5hzlJTPFFXhRJIO/\nHNgDca++WVCBErXw+zRmUQh2y2F+KtsXXk1o3+uRB9oZjlC80BV+AJV5/ez4b/YMN4nLGT32KsdW\nFVQkBSh6p5m4TwIkoOkbwPN+aPOpMGv2CVY53DVA++eU36oKmFkhSPnUqHwmJZ+4pQa7HkEsZ4VK\nk7aUeGnEfdvmx4fSmB+gHNk+BtN3MqbTmZqkff1JQVnrjpQgzOgFSgqr4ZiFQA+4fxncMxEaayR/\nnh4GnXYXrC29Xl6PgRhkylRonftGEutMiJsGCH6Y7KIc4RVq0c0IOVKHhDQK+j07UEVV49lOyGJv\nV9R4wiHNulabF/W7WeiKr78Dk0RPIKXCIhsrbb/oH3ap9t/5t6gQWumUjlcCEyFwOIzqgqZzXWHN\nXRK/Ss9wOa0ZCWmBIPYBoTWsn6JqY5G+4ApOjzJAnaNMRNx2OnCzqdH+g44LxwzgKU0Fi+rJlGgS\n1Em1OdlFEMRwvHRut4hJFP1KPeXolKPvF/yQ29q7lBLc37O4SY2V8EghLYuaYI0zkh4O1WNVjIX6\nbGffHcLz/vT4jNnB0HoUhM+RtQE4uOckqEDn2J8VhHVny5FfVH7cVaDtJPFFc9C2F4WDyyn8l7Tt\nC2dGKZwbpXCww0YEgAYfdlIS26ULAGaNH9snjzlogJLigwkRtquEtzcndNONw3m/geMfg0unwZsx\n+eEMBFbAQ7UwPg0bB8B164S3D5QhcnC1eGn5oMRCQl0h0wTlu11BIeemWgUpW2UrZDLZ3k3wxVgD\nRS5UYrC7eK9EBUWtsPup87Rs8Bk05Zql5JQ8zEEfASa4ztvrFD3HmOGe5wCrxNdiOuK5Xa/9tPwK\neATM/Y7T5lH5wlBfCwmnB5AGKq6A6CRonQXMdc+u+IpuguCLSDK5n44/M4qiR1nuYOAE17HDiZWc\n6grSiTrO7P6oMPPCcdc8r5jcMP0ebAN7w5bfiViDoBWBlIONuEjuD755bME186J8vZ7bah1xOVXq\nspoX5Q/XySWEZDWEXYeu4ApQn7uX8iZowQp1hePvSPEx9i5UL4bYK5BYrI7h5reAJ8TFKKSl4Nkx\nivS6le551bbH/UXGf7pIiDHGOefxjjFmwVaPXYYEOyKm/RTmprCBH4tj1nudHm/7sBN+jDkugWl6\nFp47Gg6JwK0/1nrGXYyufh7jP1M/W3fH1GeueF8PWCkdnvYA9uKECp2yuVquZjn2+z4Y3q7iquP6\ni4bJbNoVPSwDhkbEMVvfgLktov/x7s9i33STrfVAEswlEUnFN4L5dV6G1V8B1oE9N4WZVlAx5SB4\nHJfFjszAt8Lwqh/zeBR7sl9iIzOiWu+CrGCSh8WE5vgvqwI0AvbKoKZnTkzEvBOGFQHMSxGoyMKK\nOOadsKCIf/ELDrnBj+2RLxVmKQRTPCmLWRTEvBOWWMgdKRVaTT4hSF6KYl6LYE9J6LymjAq6fVOa\nxD2YUC48tENOjlgJhXgTNe/5r70wN4WxkxOCifbU+WO0FYx0/jhBUxcNg92WCVZ610XwHjwRgM09\noW2ymk/Rd+DBOhVjuXd0rasYDf7d9XrZAVATghvHgS+jBpmn+li2UfDDWIMKuUCSophTfIRyZ2GS\n8kCuh6774biuvYF/UvQaS+0jnnfSk2UfCtG12haV0O1e5wU2AkKXoaKsxollNYO5HZjuFBenolw2\nXdtmDiQugQU9pbIb/CP0ORU4B8JDtD61ypHZu7S+uWlLDzce0fHmxgITIPUrHbt5Vi/nqqBwjiuS\npnRYz8tlte69jAb6OnuZlN5b5ii2iehmIXF8s0RHAOXt7JGUOHBbRSgB8eHi2Uf763wBdFkMnW9V\nU7Nsoz63pg65zPP59JQcMx2Ui9NNMisP1Mv3LvuCnpsWQO5ZIVFalkJhmWCw2a3KjHrvhx0NL3Gx\nM+THwI45vF3xnxY7eoL2UWHmtkDAqBO5IKjEcq5es+VWaliXpaC8gDkvhv0HEEhh10eUyKNokvbo\ncSJANwKv7yfd804woVZCD5FVcMUx0O9+Ta4KaUEUf1iAe4+GjbPVBcwlYMU4dZF8fnGY2mrFV0uO\nguq3BcvLRaBTtWAcobgSFUPUQQzFS4afQAnK0E8FTi6iC2T5enXwilOj16FwvCtMPNGPoZC9HoKO\n0Oy7FrgKOj8JjJc61Zol0Gc8pJ+G8CTo2weqW4GJbij2iLZVUQNMguiDbn9D9ffCRKj5pwqz0O8h\nVIeKqyEQcLyz6DMQHSN7gUxMBWnUyecH14p3FwQVl16cADRD4M8UJ2smIp4WNWDmAFdv+X3YOEaG\np/RzFgVOKrjd3e8FUiq6OgqOeBHd5H6og/bDJLkf6QrBMplHBxaoy9d9P+ftUgaL2mBoQDcKmdi2\n2/TCM+z0wivusmeA68UXidCklNxzESf3vwPi3yD/+3nD/RfzX1/qUeyM4XhnHt/MPgycTcncGaD6\noRIf7ccF7G+7YU4Ae/VyTVkWXoVdcBO0Ho2dDbzxD8y8A2GvC7AdVTUmPaSJWBOwdzfM2RZ7bFiK\njT0isKgMe6Rf1+V3Uth9I5gnsthXrgHOwt7pRDyOORjza+RfdojMpO0MMNfm4H8CsMKvCdHPgF5A\nMoI93RV0TWBP8MHhPvhHUMudnYBhMcyNCHb4RwM3pVVc3RTE9gSm+3VOmsBelsY8HC7eRNtJWcz/\nC2IG+CX6cXcQqqs1hcMP+0uww+QQTPHonAqzSRnM/JAk8YdnMW+EMJEA9sqgOH1VBRVtg7PyO0sZ\nFYIRVwCvCUAOzNIgtn+u6Bvq8dDMAqlBmjfC2HHpLXMkqGH5zxRUR7A/NfCn/SCelHjLT26Ajd01\nKb31LDgfHlolP6tkDm77AL4FnFqrRmWqixqYmVkQnqgb8Oa3gTcuItPjhqInWqhd1+OmASomcpGS\nLHxmP01UKpZqQhNsLxUBWWcfE/kJOu9Xim8WdlY3Bb9yUsEvrjeVqGk5FyKPAuMhXQ/hFsfregpx\nFZcA3xbiIns7BMPAQcBVQD8ouwBGXAO+K5D/JxSLhk1LoGsEKjoDTyCu9SQEyb8cCleAb6jyoCeR\nH0ENO39GiJToW2pKtte6PLkMmvaGqmaK07lijBHiJtdfy+ZDTi3aQSGj4yl6inrhy6rZaH3Om3WT\nisJAMzQeL+XNhuFbTlcS3Uq0ANAx1h+t/Fo2CFo+dIiUBATKJS5m8yURrVBVaUK2dYTcufOHVcRn\nu+g7EawCNuuzXYfyo8+bHt4B1GtSmjyfLbl/X1D8h+fILyQ/7irQdpLYkRy0T4ycKSYe26WLhEIA\n+rhbXq9T+M08vOnHfDciA+vqBtijG6bvz7GPrsM8dQ/2R0eoWxgH/nIv/Yeezj/Ggm2H5EqY10u4\naV8Y0uNhem9dVKr3gvhsqP06tK/XzXvTAmivAJLOa2wVtA7WON4mXOG2Rp2q0PrSFCcU18W64Bd2\n2w6hWLylHTyyU50uTv6sgz+2ACeA73wkHjLJFT3POCWklejCVkcRPpE6GiJLoBwtH3aiHKt/Ab6D\nULFUC+k5EA5DOg3hMRCcRRFmCah4WgmhFIJhzIP0PHUU7UA3wRuK4CoTtUqxqJwH/B2Cv1RS8g90\nBdjErT5j77gjSJof1db+jFPHfBE6z4LUX7b/FelUp3PX2kdCLvkjtalMI+RWqeDNRSB3huMGdoj6\nKJThpKFRcdYxcu2Q6wNVb7qubzNFvkO3iCuaHbyye6vOa1kdRUjKFg3BbUVJd8qw1ro5J8cAD1tr\n132Zx7NTxLFPqriaeSj8Zj848w7M7ZuxUTAv34JdMRfmj4Ezj9byXgH3wj3AmWI/eHH78Sq8+gxQ\n06wirkJvpoFux0CPn8IrB8LMwXBqDDMaKSUuuAkGXIg5P4K9EEyfEBYEZwTBC88JwvqzdJ1ePVm+\naBfGsCsSmGgM9sxDgw++beQThiZmLLOYI0KQNNh7fcXJmV0GHC74o31TDzMrgl2QhAuj4p4dCMwI\ny9S5Gk3epiDZ/lsTmBlR7JEZ6J/DXB9TPvpVUqIeL0Xh1nb4UYs4tHsKQmkDYFYEsPcYeCyBeTYm\nhcXBWRlPN/ixI7Mqyn6ax27wQ1xwRtPgE4csYrHDMuK0rQgI/gjYPu4crAnInmZBEDpZQS5BvDjY\nIkeaN8J6755B9T8a4PGjMe2v6rN78HQYtBKyKaFOVg/kpMAyjsnBDfVwQSX0mQPLM47vG4dkRpYi\nuTnSXYqMgZbdbqBtMfgjQDdI+cVr8rhEhaBTBt4dbLMzZnY5LzEWqmarOKtYqu8DlwB1ghJ63mbl\n65xwlg8iG9D1eKh7OC4ZNRC+GRVeKQQXcU1BbgPO1Vc3OAUhGsZA9mQovA7zd4PCNPB1RhyyCUA9\ndPW415OAxRA/rKRmyRRnmzNBXp3MUt+heqJEMJhAyW4H6PK8oPW5HlDlQYQ9nnbHyZqL4DJk/XAv\nNM+Dys7AHCjsA+lKCLSombq9yEUgUKum78YxaiiG/htalwJvQ76z49f7IfwtwSY7hi+mc7g9COWr\ndTBokxNh2azPMvgWRZRImbtPiM6mqEzNXCirh+Y5wLVabsfis/53xReVH3cVaDtJlJWVfSkTNPq4\nzuOBaUE/Uo1FvLR5IlZMSKQMtrIAr6aV8M8AKIOGNDwVhteOhkPA3PE83Af28RTcdRY35OCANVDf\nBgOXwrqughSk10M+LIPGVGd1nar/Ca3DwL4BgUZgOJiwkk3gfcEFTAF8jVCIyHAx3yAInQe7izZq\nwuP5wpicLu62kxJVqlLPuYjERgIbBOmIOIhD4l6IzdYFL/gEShZzUMHjdZkugeZLRaiPNEsdiWnA\nOUAz9A1A5Al1rXrVgrkHeBrCs1DRNtRt5wGg1hUf3n7GC74YdiIlxoNdumPw1UNksTPvRPvjIAT1\n3A0qZqqgyQfV2SMCdrLULTtGEvHTu2R1wTeVwBQItkLTYZo+piuUrGveVfL+qMgHJfqScx2zhkqo\nGgm+Vom/RNrh/hgcMx4694U/N8rDxQ8MaoVs4qO3vU2s1OdkR4CpU6EJsBYYc4XOGXMhOB2CY4C+\nUBX8iG19jtiB5OUvOsqBmcaYJuBh4DFrbf0nrLMr/oVo++BdOu01EPP6LdgJ+21/oa8/q2lKRVyF\nXF1fqF0Fvedif7MHnD8ArrhKxU/XubDGCXfMnlzaxq1nlXhke0pB0Q66Ed68EOZfCH9LYRdGMBcA\nswJSley9DkaOK157zAHdsOsm6yJ1OCrg9oxhB4Dp4S+KYdg7xT3jkAjmJ674+opTepwJ9u4U5oEw\n/NVgJyfgzhjmqizcFsREQ5Linwl2egLzWgTwqTM0AN1dH+buSBsMppsfngkJwgmSzf/QLdcUg73K\nYXge8/swfC0H1wTh+wV4rDRRNM+GtfzXVDiZDX54IyhYftxgd8+pKPPMp5F6ox2XxqwOaGoW94lL\nlzLQyWLmh7AHplX0PRHDTnaF4xMx5U3nq2ZHZeB+pxYJcEYZNJ2FrUpgesWwtavE2fswDi9cqElr\ndhn9LXxwpFAGE9zUp2IfNS59L4L/MEj+EwJ7qLGZ/AC67Kubf/8KNbcyvaGwVtOeQhRMRjf74bga\nltG1QovEnnP8LTSF8jXLe7OsWXkzUQvknel0owq5XJWKD49/XVQHboHs+RB0XG2mQP0+UHMiRT5W\nxRBKYiATIbgQbBRGLgdfjYRAsk9D8Gn9Dm7ZR6BwMZQfj3JjBLJzIHgmRdVkewxUb3LHVI/yZKXU\nKyNuuhZ7Wn/LjdXNdKo/RBxn2nbSe47N3PZGu3IS4tw9qNcCzRQbqqGEzm22TPY/rWOh80o+MUwP\nYLAKpdQ6qHac+UAZRGsF3/eF1bAMVEN6rb4DEwbA5qWfvH0vCjVuejcJ3Te4Y9vDU66sdZz7uZA7\nQsdT9c6n3/6nPo7/HTnyc+XHXRy0nSTa2tp2OAdte2G7dMEOrII2o4QUseokLg3CsCycGhNu3/OC\nadjqv65bHntGAnPMZOzDYPe6suRr01rORYsgPxZOaYW7DlUCSDdprB8sFwyu8xpo2h0Kd8OKCt3w\nbx4o2J9/FOQr1A0MVsjMODgAygfp4pWqVAJKVuvRVqOLZrpCSlaZCiCi7YOw2SFnsBloUnetaDRd\nCbHLtJx5ERU/s6C1HiWAfoJ8ZC+Fypuhs6dM5XXtmrXc8nr9qdckdbBCV8tMur4FQTYmUiRcc66O\njxlO0bHZqUY1AyfIbyX7IEUsf6FG+wguozSBc1G+HjLjZHQaSCmxZrprApc5EGxXnY/tISUK44Ex\nUD1f3cbkUBVpFWuUwK1f0zOA+BjBKcJVgqSGe25ng9sJT+DjWLedBY0lWEYuri5lojslBUo3sWz7\nkTtHnmjKSkico3NWNhoqz4Exfbfe246N/3QOWvE4rf25tXYP4EdAD2C2MealHbvXnTjuOxX7+nI4\n41U49kns0ONht2ex0xNSbISS35l/wLbr73mXnh2G11zT4bUoKqjikzWpq0vAxT+G/a/UNO6dBMxE\nsvjVSAL+e0nM5QPgQ/HczN4dtueaWvZOxAvrCeaivEyfbzCwt4oz+yaYnmBnNmDuzkISTcI8G45F\nUlw0r0XgmYRgfz2BP/kxJ7ri7KpY8T3YWxOYC3PwzRy2f1ZG130KMpleCCwNYp6IqUjcLy+p/VgW\n1rXqb3ug59tS8KhP+10T0BRsz7yKvjafK0592HHOgDplJOzxflAwSJfL7Li0uGwTHSwhZaTwWFlQ\nfhuelZrkUdmSb9qKAFRaTEOHf+Dt5cgqoU/sGQnM+YKgFvmBZ/4GDhcF4FtvQeUweGwodDsYJr8o\nLhpA+1tqBCZWQ/T0x6j+QMgFuwE6vwxdZooy4Muq6IjWOt5a2HF7e8roGdTEy5ZBe3cVGZnBJeXe\nXARidYCDtOeDJQn45N6ouTiRohcoiyW4YU92f0tBzUOoCdCMJjxD9HdOoOhb1rIPzB8MzfUqysIT\nVSQk3W1x9lGt7zsfuNit1wzchYo9gH5g/qicxiS3n8XAXCfA0Vwy2AYIPK/jz5QLhZPtqvebD1Gk\nGlCnpmbqPLYMr6FaqQI45yCinmdZdLPglKkq1xxuhdw4nf+KwbrH8VQYPykyDl3ifYOitRBf5PiG\n1dpPNkbJOmgx4sLf66aMlW4KVw+N0wRrbD8Y+p3Z4X1sFdthK3whsTPkx10F2k4SXxYHzQu7d2fs\niEolrh55KV89FhS5uqqggm1wttgt3Gb9ya7rOeRKJfTbIpiXb4GD4OaFcMV4ePwD6OJuEBoqYdjL\n4gg1D5NXiL9rglF3Q7qPLrLtJ4P/Bef90eAw2HkVBZ5hsc9NgGIbNV2rWKoEFGxXgkl2Ea6+clVp\nqpaq1PZbhslrJtsb2odBdhoq1FahjOHEVitGo4vhSgg5amn2fIpKi9kbShe5TTNg4MHQfyTQFypr\ngGYI3yn0Ik+5bZ0A1GuKx3iwP5K3CnUiQNvDtL9gAoJXaD/MUIJIng5UQnZvikIhXgTSKj4bBwnq\nkg8JJx/aKBJ1wQ8VZ0LXiVBT4+AwS7bF2X9U+CulKtW+VveQgZi6pP4QfG8VVA7XZ5pP6/XkBlhn\nYXg1mIA+w1w7zFwNIyo+3T49ccuPSjBbhCeWMhWyMxChfMWn28//8diIvimbgZ1Ms+tLiDZnEnWi\nI5ye9rKMq18fBxsny2i6x2w49V7dsK8ZAycGJav/ZkYS/Wt7ydPsZiAzF3MAkmgfdhdMOwUAM/jG\nbXZtn3I/uPrPrrtSBdOENwQ3vDlXEtWIp/TaMGdgfa8fs8GP+Q6YbwCnuwttNdBY+tqYKUhu/7aI\njvGaJCzyYabGMHeEtO9v5rA/A3N9DHt+CruvCiAzI6oipsmHeTaCvTGlqZMTHDHN7mJU7oqqNgOj\nc1BdiS0vyAamqoC5LoK9NQGVecn5x43Mpavy8IogmHbPjOCSkzT1orwg7tiozJa5rEe+6HFm1gQE\nWXTqm2Z+CLM6AGsLpd/fCWlbfbbKhx+XI89IQLeCJpLr3OfRAnPKdX0MPSBT4raV8Oxh8I1Wh4Ro\nB/9/QZfx0H78cTTtDrnXNbVJjdXUKrjSQRMHiHOWdDkhWKNJmN+xJ0LOBsWX17bTFUKZBBOSry9f\nKE5TrFG5s6WfE3/KU0KR9EPJ7NuUDKkrESKkGQlhrULFwzxUPHnFRB3E2mAkUBlGk7a5ED0KomGw\nlznNNGr9AAAgAElEQVSzd9x+HgGOB8aLg5Y8HeXCp7Tv5n7yeiPClhi+iHIb/Sj6r3lRvt4pF7c5\nKkRnLZc6WA3NZBfUQO1HqfBzFIiPi6z016g4RMrE8eUquELluodp7Q/Tm1W4RboqPza9oRyZblIx\n1tQLHkrob57v58eGR3Wo+9ilFI4a6ylbpp+GwA907xLYpev7L+XHXQXaThJfKgetQxQOLsf2qsYO\ny8JBBcyCkDqUg7NbLGeedR3RNR3AAc8kil1IOy4j89Fgdy5aAAf8E55ohdeboG6wbtDf7aNEUjlc\nSaN5ToyN46RSZPpCapESg3F+K76wfo+9C4k6XdAy5YJv5KK66NpOmpLFO0x1gpu0XqBJUyGTL4mF\nRBvVpSl7ErgLMt/SJKv9O1rXnoySzyT3GA3Ba9U5TO0DzIDg2Y7wPAa6Xix/1U09kMR+PWRbIPBz\n4HhouhslJXff1vYD1AH7o5ZnCSLvLqNUkHh8qxNUjEZfVCIJtlGaLD3ipn7bieAmpDz5fQf96AfU\nQOYX8jGzznQ62wna+0sx0ue66/6MS+TlFI1pP0t4JOcJ7obQH4ZQBXy1C2yeq9d9fjAh7cMrqAkD\n46HhdjeQXYlEXMZD/Egou1lw1KarIb6/luU2kdI3PA1cJ82aHRX/6UbVXhhjfmiM+TvwEtAVOMNa\nO+rj19oV/0qETgLuuFDTrSt+KZ4RYComb7uwe60Yz23n29rqFHYP0JPHmjCDndLj0iA86Fcx13gS\n5g8x8YIPB+7OwMCHYKBRUbgczLgDsaeD/XpOHCmAw19SwQCaXjkhk2KRN98vE+2eQF0Ce3FQ218P\n/CwrD7QpYH4WlZhJFRL9mImsWwa4ZU+KSAr/Z1nB6hcZ+MAH68EscFL2vcBekoQ5fuiTh0U+FV99\n8sIwr44Lb7bBL6GPXwk2aYdnMd+32ElJzNIgZkMARlvs4SnoWpCox0tRqSh1MJ0280NFexlyBgJW\nQlh7Cu5vR2YE7d8zjd0tV1rnhYAmaUmD+SCIeS2i7W8V282RDT4d9w+BijjmVwnoAfct0svXvA/Z\nnvB+WnnRDgdGiY+9NusmM07dOFMO/mM0ActFHFfredEHbF4FQbhK+c2DK2YcjzgT03b8GV1vk9VC\nV8RHCGGSKXNiUHlNbSIrgMVOmfF1Z4Tt1IE95UXGo5x1AlSMV35hIiqclujv6dsh+CbMC0E2ja7r\n/dwyE8BcjtAqE932Jjo1xhnAFOW+5JGQ+472G90Mrf2Uwzwum5fvQhtRTp1EcUpW8VH6fM0y+G7v\n7jxOfwlMhc23at3C8UKSFII698lq3WskuunexPNKy/b7iO1/TER76LkQgO5xOKUK/l89bH5VTc1w\nlWCrgRiEm5UjW8+G3M8h/mvgXIm1MFdN21xE9jNVt0PocWh3vqb0g8Z50L4EuGrHFxc7Q37cVaDt\nJFFWVkY4HP7kBb/AKIqBbO/vDvJh93Wdz6Ytv4p2cgIevgzu/p26pn/oIMF35F3QYzD2+AycthJG\njIWxQCdN0YZX6xEbCt0mQPqvujnPJSRJmynXxegiPwQmQFlvp1blBD7iw2VYnFgnr5j2/upeZWPq\nBsZ7qktWvl5iEi3DRJ7dPFYX12BCEA6TF3TSgzkE79AUq+CHst8Ci5En2uuoC/eUk9kHCmdC5Lvu\n/dai7uF1wCzYrRaqZwIpiJ7jMPrNwBjofJSWbwda57gJ20pkpn2MnkHbYY5gC+0HO4jJXJ0bHI/O\nBtCFdyIUnEG1B7+oWKNltuvbwpZkZy/JtNUqkUeXaT/mMFfA+ZXkw1XqBL7qunUmII5ZthUWdIZH\nv6quYVk/Ldd5rD7TGgd5rRq5/WP5uAh5/LR5H7vYFuEN5kKffXefOgq+L+6xg2M34Dxr7XBr7ZXW\n2kU7fI+7QvH40ZBzU57cZBVWyW5w1JWapt3pyDu9gKmL4I1+4qatOgXT5UAIRsSneguJiyRmF33E\nOC4GZ72HXTQXpl0qoY/tRblQGeaP7kJQVBcqhb0fzI1gLkNF2pP6Uto/68HbB2J/kpIYyTR5ldnj\nMpjZ7q70+AJ2odvWW8DxDupXVZD/2jods701gflzUF5mgy0MLwiO+Ff3T9DoCiCAnMEemNXzsKya\nZJ2qMXeEsMOzRcQGSePeZ0FF0h0B5axJScwbYak0Onil7ZMTJ9nBG+2oTBGCWOTc3ZrQ1K6qIHGs\nAMp9nnjIqIyOucmn/LhnuvgoFnveeY3/GK74A+aaUDE/2klJzKIg9r9jsGgo9p4Y3Hwv6w4DjlHj\nssuTUBGCtogmK6BmZP81ut4WfJqqZfdUIZao1U15ehi0j9Q1PNcO3Zp1858PqaAIpEriFLHGEh+7\ntY+TkXcFW7BdeSTSrLxaVicIZOYoSc2D6AORJ913cTwqjuYgzvMIoA5Cv0aNyDotVxgt4SvfP2DU\nJk1usp7/aB2kvWJqCJpYPQjJByHyc0rIlkekaOwrAPU6hpp7BOOvPwtY7GT2x7vvnNdgXUlRfCof\nlIoiaILo28qSZeuiYONE3VNkyqBlpPKk9UPZap1375zmIlJb9CaY5QOU/8r6qRHZOwjnjdFn0tRL\n3DNTLtGsXDvYdv6lSH6aSZuLasfz2/RvYNPsDPlxV4G2k0Q8Hv/SJ2hm8+Zi0WbafCU/tPkhqCoU\nf2eDX48x02HiedhrYs6HJAbPnQPDzoNxKzH3hiUn/fjRMCQBhSO5zd0fHPAMnL1EF6bI16Dm9seI\n1kJqmaAb4Zfh8L7Qthia/yrlRt9CeaXFaiHdoMla1CWnjGs2J7qXJjGbhqjAAHXdOq90Uyc0SQuk\noLBZiSrbGyWaRxxUwUsSlai7V4vUozoD14HvUuBmBKnrh5JQs7Yx/39gcxWsWYWS1hBIpqH9UvCd\niow7h0BFGCWnqZA4CqlJDkXwkb6a5NlOULZBnbv2I6DseR2/N9VK9gaWgO8oHWtoviaKwYVaxp9V\ngknto983TtQ2fauUaDqvLEnof5YIbQee+MJ6JaVb31cR93odfOAXmT3dIJ6ECUDGkeA6D3b8s1Uq\n1CsOgdhYwTOZAKQEyfFBERLqu94ZsF4H/lOg6ltQfjYUHoVlLbCJkqpjcDRF8/KdLYwx3id0A7Da\nGFPd8fFlHtv/6Tj42U9exhlYs+Rbn7zspIf0PGruxy/XBPZyMId3w/wkC5NbSvL78cnyI/taDg5/\nCd412NV3YX5pMWd9Dd5PYC9q0DYaHXRxAFJenJvCXAbmexFxz37Z4e61Y1GY0fGZywvQbGC9K2YG\nANdnMNMKmEVB+ZvNDwm++IpPjcArnTLiSRlY44e9CtiueYl3jMpImr8qC9WbYYSDIG7ww9Ig9tCk\npl7j0tAjh/15WiqQr0Ww+7nG4npUbPXJQbN/Sy+ziC1NuBx3zPw8WvpbjlIRF/cVJ2rm7ojk+QFz\ne1TH1KNDN2yDX8Is39w2P9punWE2MHgA3HwR3HQ6fCUBtTDnGKAXjPqjfNACe+rmfn4ZtEZ1DfXX\niEdV1k/NTfIS2crXC+qYqAV/q/JjYi34Bupa3zRA0zZfVr9nYyUIZetg5Uyf5z1aX1INTFc66PxG\nlK8ehbJ3gTQkDnc+nGnEk54rPhRTUW48iiLKw/e0nm1neG0FhPs6heRJkPu+BpztRwsFwRCgL0TP\npFjAUSMlZFaB73a33hHyNeUR6LQOEgeKIpDqrPXaalFCSKHc+rr7fCqFuolulhl1fAQ07Oeawym9\nVnCInehn1PfLfYzo1ePL4G5XAhz8d3ggAPkE+AKiAoSq9XmftRsEvwIz64UcivUS+qTwVYmNBFKC\n7neq071BGL2/4NnK/aHVYJ6Ql133H+r8rJsHG+olDta1r+CvdHYCKQ98tvf4vz2+qPy4S8VxJ4kv\nRcWxwQ9dtv+SrcpjFjZDD5docZO1lFEiuus6mADTh8OierhtrxjkYXwzrI3Cuv+JYcPIdHQkUqw6\n5BkRcd+E6fvCzFUQegsujwA3HkewAgI9oSUEkRo4YSC0BaD8Omg9HLKDIbxQF91QHAo9oZCXilXk\nA8E2kl0kAx/vpeIkU64E5D3TDOEKTck61asT5nl7BUZIzTDYroImeTZUPQZcQcm8egy6yE/Rtpqf\ndlOwgyiqXI0+FsoeV2OcZqASohNRwvJUGU+A5DQIr5KHTHAERaIyq7T9QFoTwVzUQTAnQNOxJWn8\nYMIpJ3reJispFiQJJ/JmCprCZcrB1kIg4CZifXV+WveBSAyycfmn5Oug6SgIhV1CqIZco24UAqig\nGt5d+fjxZer0AizaDKft8Tm+i58hfDuK1fwZ4j/c4wXgIWAy8DZgt/N6/3/v4ewkEZ8Mt47D3NBN\nBdP5YK/4AwR6Yf8GDOoFa3thJk/GPt4KC08S/PC3o7EjV8qY+oFLsW8Ce83GjDhJ0MGKVhi+GHPS\ngdgLUSF4/Ve1z7NDsDKJeTWCfcDAjTPV4ABYOQDWLMc80hfucLcT48Iy3OoYVVt1aZoQ72x7kQRO\nCck+4ESwt/gw14zE9knD78PY76UwRGBWRFDJm0NwqVa1ZyckAPKywf4og7kjhKmKwCs+qTfGDbwW\nxER82FMSgh6u8MOGCFAFe2qqZuZrkmbeCWMvyAiG/6EPDk1r6hg3mD9EsVPS2F+lpMA4IypO2msR\n7KAsRFxB1cldUJp8EgX5VaIEhYyU/nXMG2HsoQ4OsH9BUzPAXuwpVLrwcuRfhsGezzC9M0zdKybe\nWQ2Mn+dy5KUx2BvY9zU4/UY1BBuBDMRjUFML/2gU6uS2Gvjq+/DncboGm4BgjwEHbbQ+XZPS5dB5\nua73bY4TnGvXa5HmElqiU50acx4fu9pB/+K9SvnF+p2ASLlTLewKgb0hfbAzYt5H07XAy0BnvZ4/\nwikiP4CmYf1Q7uyHeF1Dwfcm7DMI+EDpMThNz73GQ9l52lbiQCdY8hTKbVP1c3gIgj8+AiwWHSLg\ncmy4Wc29WD9NxoJdXfE5yqEqKiHZVTDJpmOh6h5oPEfvs9PuUOZ3PmLLdX8Q7wm+Lmqu+sNg6qQY\n7fmC2pCQPplyvZ5th9wmCOdh+GxY+V24cROwCXqXw2n/BuZvOt2Bs/0po3IHCWz9h+fILyQ/7pqg\n7STxpXDQtiYzO5J0Ec7o/d4xvIR15iWwaCpT/66b9O9aODcCrxwHrRmEOY/iVJyicPD/6F8iCjTD\n1BQ84VSbrq4AO8gSegnW1ELFMK1vc5qktRzhDscZIXsk52itcPllfZVAKlepA9g0oIQJj7pCLdju\nJmOuG+jLq6ALe+MWShyuyAoloKrfU7QcaD9Px80UYAI0Xiofl8rjkRJjGBVYi2HtG/JT9TmREeYh\nCMgsVIA9Au3TIDoafH2dfPDZ+jtj2MajJbAC4fKboWyjkmdspt5XNgYtB1PC8jfrEXtUUJdIM3Rd\nIphLLgHZJnUXPVPobKuSTMEvWGJmUskUM9cug/HgAE29wt30d/ue1j25QlDVmavg2EHCzzctKBVt\n972n70KsF6S7az9v52EpguZ4hqlle8Omt9QdTqyVUWfLMEiMguhCqDgVuA6WzRH53HcprKyHZcDK\nFqivhwakl9tjCPQaDanfQuZscQqp3fZr/HnjP52DZq2d7J77WWv7b/3YMXvdFZ8r4tvCDz8xstu5\nRn9E2OhD4sPVLMccegb8yWDP9sNhMXg1ITgjruhqRPywSyLY+4GDCnB9BqxgluZwpPxY5dQckwa+\nF5Yi5JERqLQwz2BOL6jo2IA4Xvc465YRSNgDNEmrBnNVTIqJ68CekpC644cB6FqAxwqwug3WBLB9\ncoJPxjXNYkpIeWlUDrMmoKLQwb/NB1JstN3y8jPb4Mf2yEl4pMmHWRSUFD8Uedbb41wDpeIMBPtf\nEdjydy8iFg5fqhz5ga6D37Xw3Z7wUH9dMyfUohy5DHhtX7jkCuWId4FRaNozBw54BW7rCnao5a8x\n2FiuvOhvgMp5yge5iIS2us8XdDHRTYVatFZiTvn+bhK0ueQVmqpUkRZ0055smSs0Mmp+Wr/UkH0F\naB+kpmhbrSD/kfcFgQzFnRBHBJpOEfcr8hN37KORt1pXJE5R2eFEDoa3P4AsUOnolL2O0nOhHjhX\n+YtVQD2kl6ACvxnoB+3XI7SLd8prgIlSagzHoWFy6b2GEsqDRKSyGP2jzmvlSk3fuj8KNc9DaIYT\nsYpr+hRKQGSgECHRWiFt/LtDfgiYPaByL+VJgK5zwKyWeJYn/jFvDKxtg0sHqXFZEZIP7BF55cTH\nl+leaW1cE7NCDmozrhAMKD9W+vQ9CZTpd3+4NJ1rq9XkLxuDspf1/pmm3knr7bBpGiycJTva1nnK\nlwFEsuoGZC6Hxnshc5POa/aCbb7unzt2hvy4q0DbSeLL4KAVIYteOBw+bcLcm/khOHwp5tcxTdsa\n/IKpgIq3526BsTChh6SCK0KwqNHdoOeAFxHEb34SnpoKX0f6sXujEcx/AweA3cPtdyOc+Dy0zYPO\n70L8OXX0cn2UUAJdVUgEUpDpCdk3VRRkmtQxy0XUSfRlBPkIJiC/2F2o47p4bxzv+GeOZJ3souLN\n+oWxpw5Y6bD2j0iWmOlQtgKodTLwr0P1c+6ceVMv5ytSSEOfgdBrJCWlq8VaNz2Pop9ZCMQ3q4Tg\nEAfdGKoOH7chmeFVFKEHydP13NzP7bdjwvuIyLni8rNc5NocHt8T9/g0cdehn37Zf1dsbQS6s8b2\nJIN3yezvwHivAe76EfZ9qSvaixNwn5Olu+9gaB8Du3fDbr5SEDjfXIg2YH9t4Lmj4bQH4CtWsLz7\nx0n5b2MKJryBOfQMFUsR4PAXMbeFYNkPYNNyzJywYHsLwRwyGXPC1+Wz9mZGJteHB+CHx6p4qR8A\nz/sk4jQAWN8AvX3w5yTm+wVBF/+BII3fyKh4u2QFXBmC1IGarB2dw0yNYQ9JYX8HzPFhegGvaYJl\nLzK6W0wZzAVgz0iISxZBfmunJASD/FVC5taHlpqT9sy0eGPfLmgS1eaD0wvQuwICYFYE4U/+4gSN\nJzLwF7/4auPSmEnoXOwuqCSbfNrOM0FNtwKIU1ZVEJ9teFbwxbhP2+ifLU7QOop/mNcipeXiPik7\nTtgAueEqcr3lrorBzMGaFK6bxpywGljDu8DrG8Qza83AMTUoNyxy53sdsC/wAWrUVQNTSvnRTrL0\nfxhqNqhYyB2l65zJ6wa+8RDxpLzpV2qTbuiD64FoKUcWfGpgZssgVyMbG5N3/p8dckUhqOViH+pn\n66PI5QrNFpS+4Ae7N1R5DcZLKPmFgvw3J2gdvo2gnsCobynvMQPKOgMHiS+WBZjutjFJv4dHA+Mh\nuwSogbIzdX4yh0PuG6V9JY7Xc7iKT4yEN836F0BL0c/Q8LP5T15mm9jBt4G7iopSfN78uOtc7iQR\nj8fJZrft2v07wix2Y6QGf8kL7bgY9rgu8Pd9sWOPhwPDMDKMbTwZhsUwD0fhwRjEVFRVhOHqBTB6\nFqwzcPlI5CrRgoRLp05XwrnmVoGg90CQhwyYtOsCT4L326DTaGh0EL1cBKKuyMrXq8OXGgSdF6hL\nlqxTx8ru5vxBXHicNF9exZ2voKlR2eqS6lKnenUCUw4eEVotPH3yMF38s5dBpEVqSV7EHqVowukb\njwpNJ1vLBHmMre0LG7Pu7zMoGiuHPc7aEsePqlTRVlgC4fHAEBGgOUHrtuyjvxX6OqPR3io8o41A\ns1OmdF3E7P7uGFaignGJ+HbmF8L+V/0BqpZqotY+SIm9MFBTLVCi7tRXhVnYQZtyDq9fcQ9E3nXy\nwN2k8Jh7R1O13nNg82zoUwfpdzQtG+7Wv2OU1Bt9AQis0ec0OgUjq0WAX9vh6141ErIvqHsI4Bvl\nxFsijvAdge76urChRfd+fXCClDVQMwRqbqao/OV1lk0B0udv85X//OH/Ah87IIwxUWNMF6DbVvj6\nfjj07a74N8SesU9eZuvI/Qt3jZ8lfvnjT72ouc9NuboO+PTreN5tn+JbZu5x56d/DiZY8cduC6uJ\nt8EnWOGBKeiRgYpG2GCwnQrY05xH5wo/psGPPSkrWP4buru1ozKCS0atzKY9oZBxgiV6/DEA8+sY\n5v2gmooBi2nwFydoxalZk0+TvnInHpID+4PN8M5IaN0IlbNVrJ32MvbsUTC8HTt9rqT0ewumOKEW\nblsA6yrhr3WasBBC+XFflBfXj4XdgRXoIrcATMLJ/79q4BRIThRXyfjFUwqkINAOrBW3mlGyQ+m8\nQDzfZJ22ldndWc2E1LyMbhZkL7LBTStGlIo7f0rXTi83+rJONGR/1Eg8TPL0haCmOamfo7y1GKgR\n5xsQ8qMGknMAl+sKS2Hh05Sk4c8FpouDHQQ1HydC+noITkI5bSIEj+/wxVksJEzgPO0jubeOFyC1\nWvkq0U1+qv6sVI8jGyhyxstehsCfdUzMkq9o4GndYzSOE389sU4TSICwm6nkEkKRtCwFu8pBImNQ\ntQziLyrX2YzgkGWLIfNPqPobHLIGeFt86wvGwOG7qUj/1R4SCbF58bRtDhLLhTRJ1kGFFZIlWivB\nmGyrUDDR/pDYXZ8PM1ABPES1XUVYvxr0VQoD/UYrR+bvBy6G0Ex9nuCEWs7c3n/n54ydID/uKtB2\nkujUqROh0GfXnfP9pf0j1Rg/dXhQx255dRdPCsPlR8CqJKwGBj4DP74STnSE9ZUx7C+AxoEwBOIH\nw0WLEMasFjgCrl6J/rnGA96EZTVw5Xm6MK+Ac6uAmXqY+wzPWmAPFQHZCsE0AuVKAHnX8cpFxDuL\n91KREXMKRtkm/V69VMbXoASUiwgn31bjZHS7KalE3hfUL5RQIRBICY4RSKm4S1WqY9jSBwLvIh8X\nEOyiHyXOV2dKksCLZZrc51HoGkBSvSsla2teAR6B9F1u+SHAHAgf5Yyj++p3z++MidDZdcub+wJ1\nSjjBNmcYPVTKVQCdn1SxlusBuX3Q1Xm081ibAklXJDb3g+hBSgKFnpK39wq0rntLgTGfFvE88L47\nr4N1DNGFkHgU0gtU9AY36zOMNEsxErYrEPeRUeW+6p4x56eJis6fftmUmzAGn/j06/wfi6lI/28I\nwtl7j6eB33zMervi88QV18L+v8N8cCH8aT9J1AcjMqm+4g+aWJ3yY/jlVXDhDzHDx8Dw9zFfAfPG\n83D9LYL/1SVgGFAbg30i8PcLsUuugh+eAXvMxux2E3btbAmBtFZgL/Vhf7YA811gIdhX78acEoEf\nvw6LhsrX7KagZPCfu0UcswecgEZrOeaSiKTyb/HJWPpvWagCuxwZR1+fxVSDmZaX2fULAU24jlgH\n81MqJnqCuSssTt0UoSFp0yTN/DomOf31YH6rfGPO17F6Mv92UhKOdF2bt1BuqCpgVgTgxagIsSlg\ncFbCIT/LwrCs1BmbfeLiNfjhm3kVYGsMdCpou0fk4cgsZlZEPDMv56UM9sS0Creqgn4ftSXVwLwW\n0bTtYuf1+U4Y87cIvN1XMMUMUt98+FS47zhNTM/7DWbPMRLI6gb3t8MBy4D9gEFAd5iTdesOQjBQ\nP7DnuyrUMvrbue1w7ptgPhgEb8GwJ3ST3roU4h9C/APgoJLUfnw3YD7QoHy43qeCgSjknAdazT/V\nwDIF5xma0PWyrVaCVIGUcmSyWs/pyhL0MeV4XJlyNTdjbygfWD+C8K9CfLA4+qw6A0sgejxCppwK\n/l/A6BbgEkherXOcuFwqj/m70FRrFYQvpshbywymJPjkCruCT+899x0VSYGUcmbXJWAHirfd7Y/g\n8wROvGbmMeg+ZYiDwKd0bMG3dOzZCqkrmgwU1kJyhe4zAmVCyKQ2QSHhlgtAqBWYq/OQWKz7DusX\nDDXdXUXxR6kpf1yEPwtn7bOgo2d81iP5PxlfSH7cVaDtJPGlTtAcbNGcF8PcHNUFcvj7ShKbwbzX\nLjz9XWfBxGfgolthn2dltnr/VG3kAOCQ7mrZhFCy6YQupuvQhfaBafrbg7dCM9wWcUVaGySPcty1\n92TS2H0/XSRDVVD9AdAsL5BkF3X98k7oI+78YPErgbQ7TxGPc1bwqRjzZ5VYKtY4c+veSma+bIlg\nDRLlCKQ0XQu1uovtCMgeBvELgL7yREnejuAc/SD5KJqWRYAHYNW3YKOBwvnAFCg7VSqN1Kgg8yT0\nGQ8c5HhsS4BJUJiEunpDgQmQOVAJdLPj4bX0d/w6J10caZHBZuB34qoFfqDpH6tch3AJBO+E5P5Q\nN1pd17LeSiwBZ6zpSTlvLzzeX2awnqMdCirrrk4mD7n1KnjbV+lznFCrfbUa8Mcc1KZCjzwqElsz\n+v1vbc4L7QAVjCagv6c6a2roOx8VxCn1AJoQ6TsDKnbH6Fzmou681upGJBeBxLcgfMVHv79/NYz/\ni3vsiLDW3uqw9Bduha8fZa3dVaDt4LC//A+xmjMHYiZrImd/5gqP5WCvSUv+fh2S4l+IfNbeQjyv\nQ4K66UuCWRCE14Kaai3yw1eQ1P5ZPszlAzA3SwzEk9pnfAF7ZQJzegF7P4Iwfi+J/a1PyIkGv6CD\nDvJo98uIz5Uyght68d8WIiqa6JaFl9qx30nCigB2uDOgHp7FPB4W9HFaHgIWe6kfsmBPSMmjbEZU\nhZpTYzS3R4u8M7MotF1jaTMrUlRytPumipM5QLL6D81WUeXxrK87TMWYHwlinfYAtuuNcOyTyof7\nohw5BvXnB6ELmB95vG1Ahdn/mwqPXySfuv6ast22BHhuGZnTxFvyO1W/ULnWT22C5CiXw1yxlIso\nP0bfAeOaYaG48me7mwYF1yo/Wp+ul/4MbB7mTJwTUP2G1kk7ZcPABih/Rbk13Owk+g8U/D+6EBVj\nYSSZ/yNgFbQeT8k6phaYJ9rAu90h1QOivwAWQ+xq8C1xOcUpODKLoll0aLYmdu1HuBxZL84ZdSoW\nQ3Fo2gPaT5K4h/UjaGU/igrL2d5IvdEbUFdC6Az3c4tyZFkv8cj8YQj3hMjwbb4a20TcNYkL2/Tj\nBEgAACAASURBVLmWly9XIRx2fL1IMzy/Wp+rfwXUhdSQTjcpH6ebVAzu21U50R/W3wNl8rXrPFyf\np81D+1Dwf0XvY80SIKX++tK0oKH9UPM3HKbE36tF9yljILbRFejO2/WLjp0hP+4q0HaS+Fc5aIX/\nKtuCS+b702c307DDs5jNm7G3JqRI9QPkX5Zphpse66Bc9RLmioQMVBcNFXxj6nS9Vo28fdoG6oLY\nDXVVZwNl3ZWgrr1CBd2I85TsV8FtWWAzPFgHx/eDumG6mU81CHKX2gSb9xBhlzzgV8IwASWN8EYZ\nUAPQX8kjtLGkwlSIIhXFRnmfFByFzuTUIctFSqP+4jnMgm8eUCfBELNMHmmd6oCnBRmMXgxchaCG\n90PaKS9yLvSNQncLvjOdf9kSJRBqRUxOXKTlivLB6BiJiHdWD1KKnOGMmwfLPLPgd7CUOEUxEN8q\n/Z77jqCQ9nbBFxiCkqUTKvG7e7PWpaX3GazQNDJa67xYEiqcQPtJVbpEV6lzGm3UvirWqAMbbYTU\nMZL+tX7BSCPdBN+4b5E+09frlFwiXTWd+8TvYu6Tl/GieCvnbgA8WOu/I0zgi3vs4LDGmCIrwxhT\nZYz54Q7f684a590i76u6t+GiV/W3KQ/B11bCaQ9gTrZw3i2aaC0KYmcAxz6JvawftnCl+Ga+uXDs\nW5jpEXh9P3Uk3gMz4Ocw7ae67r7tg1cOxGTOhJ5qtZv+Y2C4Fc9s5qHYd+ZC+SfI/j/1GZuC7lpr\nflOQUEhAfDlzPpgzrKZ/bT7BD+f4NHn7fgFzbhRuS2lK9bSDGqZ88N956FrAvBPSMikDX9V27KgM\nPBbUXedGPxxTJtGQygL0z8mIGrCTsjDdr8JpcBZzeUHG0kErWXePZ5Yy8i47LiM+HGA9BUcv3P+j\nnZgS5NEr0tzybPBLXOT8/eG8BByTkER+tzxc+EM4OQGn3QP9FsO9F8LXnlGB9s8j4ZAX4NR7tR1X\nnH3Vout0D6AwVhPRilZxjzugY5Mnw0XvSDiibTEEXhXMsXw1VAwW78oXg+AETW1CXTVVijUoP9oM\nZCoFay9b4eCL/ZUf8yFB6KONsl2JvuLQEJVqvnnTufZhQK1u6sNxHVesAeXBGWh6Vgs8XVItrpiJ\nElo9xSlP2VmwZyOEfwlMcnDIE5C59Hzt1+4vs+WWX6GiNgK+GbKZ8c3SslRqH5EWpzTZBrnRypP5\nIPIJfUrrMsdN/3pD9GytnxgMXKttQOneAAR1BEEcywYJfhjuBqFmTTBrnoeax51whyt4ytcJvVOx\nVPm+Yo1MtFNjVYzm+gD7iqc/vBruTurn+Icqtj+pGFnrLIKqx7rn+o9e1vtWF9Pp0I9etv0zeIx+\nltgZ8uOuAm0niU8zQfPdlvzI18whScwh275u3mr5dAcwYUPp5x55dU4b/CK246ZsMwdjHwbWnaSb\nhP1fgmMeg5emwlEvCNqxaKiTCUKdwd0Bs1HbeCEOw6dDp2/Canh2HEpe3eG0AeCfoQTTWAM/XQyJ\nd5V4qkZCtifUj4D6YcLQh9c4rxMEf4zVSSyk4BfePFsGNgRd3pNBtWewGVsqJadCWJO5SDPE5gs+\naF4peZ+wBOHpH3GPZjALIXuXO0dPARMEy4isAP+dwO1aZ8MzUB8GZsn0Ofkjt06t9hNbSpEn1j7W\nmUZPgfZ9tEzoaWAe5E5UoVQ1G9rHSwY/kHbdwmPRRTelYjPRraRcWYSCOHx64GUIXQ0DZ0g5MdOq\nJFPI6Tn+obxYPPnmXESwThuCYJU71jpXtH5CeJDT0zpQVnx+V1BXq/Pny6kY7LVKzwcUoBBQcZdb\npe9Ny0LdBGRjKHlPgfY0vIeUqQLuOTvLwUaXQOzXWjblpqjRzwCf/D8c37PWFmek7ucdwTjYFR8V\njx8NgHn01U+/zvDFn37Z9Q2QX469IIs9y8AeswW5+2AM5CZDT7C/Q1OjagSDBHgmAYe46dHxFnNh\nDjMFzEMhzA/cRKxlrqZcvwD759kffQy765bQTk7Ku2wAmpa9FFQxWYVggvumYGoe87uIpnFr/NBm\nNIGbnoDVAceDRs8jEJesRw7+lMTcF5RICIgLtiag7V6QlahV/5yKtNUBzKIQds+M1BsXBTENfsw9\nMb22xq/tR60gix4nzRPKAvHi+uQEmywvaPs98trfnmm4PY35dR4eK+HLzOkFHfPwxXDTGXDPVOW4\nx4+WwMqMkzR1203n56916EK2Gyroj30Shk9nfDVcXoAnDJw7RMq39y0C/6NwbQDePlTNttw42PyW\nruuVw6A8q3xpVzmfq72ch2imlCMz3VXQZB2ColOd/maWuWZnLZjLhUjIu2lTbL6an8neui6bt8A8\n4aZY/dDnVYNy0iT38zzI7g30dSbUUxDiYSi82wuy5wIrNX3L9VDzkhlaJ1ktTnjn94UaISVPL+ah\nydgJ4ibbvTUFNAU1CM0iKTTmg07462wkr3+6+HlRRwvI7eM+sAfcsU9SvjB/g8waKNsD0uvlJ5dr\nV258vUlc9059ITUMcsPUUAy1I07cuxR5cB3DEwrxhLfOHbTtMuUDlCPDVSoGcwkVh/HlUjYGCbEV\n0tCyCMxcNbHTTWr49pmk8+vplYX/P3tnHiZVdW793665qruaHmjmUWYkDAo4gwbEAa7GiMYpeh2i\nJjGJRkxMTNRgrhnECCbeG43DDTHRqEQxGgUlCA4IGiYRkBkZGmh6LLrmqv39sXZ1NQSHa/R+yYX9\nPPWc7hpOnTp1aq+93ne960XOxj6gMUWrw3TVI/puChh5ePxj+HiYoB0i45PWoB048l/UrGvq6jA7\n6jHPfbx9mgeUhjBLg9jSPGYU2GudDOT5CLZ7TgXdlWAqgWnf0w0UNTZjYHtXuP0JOOMNyfeORbKH\nSqD3Vmwsyuaj4fJOf4D5MHE35I4F0uB3gcWqF6GbH2Ysh5u8YN+FxtVgX4GBLprir3CZr76KiuXj\nrndLizJOTd31eMfn9PyybSi9fxzkO0L+LBmG+DYXM0vhOj0nG5Qc0p4LnAyJWyB/q4qgY+PdyVoL\n9uvAAOe0uNjVqf1CZKtrADr00+OUQ/gh1zA7CWUrFbnM9gZCrhHzs8CbikZanyb8zI0CnEyJSEq7\nhYqCJtupJi0blOSjULPmj8vm2MwS2MYmSQ7SajM/DCK/g/L5kN4L/mbZ75Zudvb2bj3oK0TlXA2X\nd7P7vxHSo6Xnr++nerbm7q6ZaglEh0DZCdDgLIQJys3z2CY5QzavgeYX9Pe+rQfPphWklgViVagj\nO9goVIm04mGbXi6hFxSJ9a8SGd4z5oP380mHx/vp3T7j4THGtOKIMcaLq8U/PD67YSMny36+ZgwM\nD0kOdyTY37wKD1+FvS2OvXWRanu/dw9cMBN+/SNNXKvbhLu/+LrITb/l8DejXmhjblCgzJeEUe55\nb7oVV4ErzO3/8Q70uBBUgr3OYL/vw65CssSr5cZoeg9X37UK4KmR2nbPwUsely0z2B1IvvjmQSz/\nx2Wwk1NwqlWj5nVqPs0OsBckVAOXdCYYN0fAb7ET49A5h3nfJ0v+qIXj0zCgHZyVl7xxgZiDafBg\nZgcxSSNytc2HqfFhj8jKNKRG/c+o8cErXhia02OdcyJepXl43dva0wzQPpYGizb6BQnkEh/UeDGP\nRjArA5gaRyYr8tA7IhnkSvdTG7wGfvAgzB2PuSWO4ULd3wD0iiuIWYpUIVHgxUkwNwKp5+B4WFwP\nd+wFusmmfdgiiAXh3AqY0axd3edTCcApW+R8nEuJtMW3uxYszTKt8NQrqJmOKuPW0gHilUWMzIYg\nsE51Wy29VYudv1MNn0uWqbYKJPnPhhz2HKMAIicDYyF5LcQukZV9fo4LOm7RHGxHQvCbujbTTvl7\nVAn41tIaZPRmwJcAzlaA1Hoh3UOPtVsGNLqsnst2MUckzuzV60KNymD549BwhKR8qahIXqHmqmA6\nVTfPKT4yqn3LjBTueu4VCQ01QeId7dOXBM8qEaLPuVh3AbsajtLW30JrK5dkOTQMUTaupZMk+9Ej\nVFbgi4ikrXGvn9CjWApQuxhiq9Smxl+mMo9CCQIUlSWFLFvhOznYKGDjQcUoLngbWqNgdMkakYw9\noz94f590HAr4eJigHSKjubmZbPYj9F1HfXCGzf41jLngIA8cXQzpmEXNH7zv9T5sVZWA6ogs9rw0\nLFWjUHtTrdywEmCmWmy/adBtC1wwE3PxmdDHkbbjQpK9tAxX1LAGhXJ+OBXe6wml0PsRV2v2BWA9\neJ8BSqHuKui6B9LjwD8fVlwMD46F8lI1Sfb3USSr4ypNeP5BEO4sPba/RRNjzq9ooC/lmnIOFTHa\n10l/+1sELp4FzghkkEDHdlPvtPoxysA1HCkS0txDco9UFELzIfqcI283IoOO+3VLn0drnxXPAti5\nHXa/CCzQxJ8/34HLWt1C80W+7ESRnMy5DtDciDsXRM9uuWnFuuqzdXhHdXPB3vqMdSORHGSigLN+\nKMS+LgBO9tTnbhykOoECkJqsZCyF6GlkD3gSEOiupqb0lqNjchCQk5tichAwXIAWOxuix6rlQeku\nkcaCNX9hdCvV9gvuc2TaXHah9tom2klP37wO4u8X69FyZSKk0R0q9o7cCHtnwo57VaKRQmvEBLrE\ndrj7WkfBzMVJR5OfUcevfyGJ4xzgcWPMOGPMeOBx4MXP/F0PwZF+DJgyTfb2U36iOwtZ3HvP/6CX\n/f3wf7iLo/3565g78zAwJKdAWw2DW+A0vzJg3zgRJkUgk4SNyCBjV1wW9GcD3S3mkSAMikChbuyN\nD3EZSIL5iRWBehXVeFWCnesefy4um/hjLeZnYcx9AZmL9N4fr+yYpAw/rgjDKOTQeEkSbgvIVOSn\nccyTAcyjEa0uq53ZR60HtgEd6+SyuMkn63xQT7RVqPZscAbKXXare1bZNNefzI5LYL+ZUMYuZJWF\nc/3U7DdcY+pC/8/uWe2jvcPOmPql2WeAzjnsaSnsUWnsuV7tv9YLm+NKV/S3mB/m1YC8D5hrT9dk\nlQDCTgr6Y2DkG7LT7wd8Dpj4nCY4L/A4nNsDftgeur4FU16FxwbA85+HWQ3QNFCukDdE4axX929z\n4oso0JXrrWxYfK0CZ560iI8/Luxri5G+JDScqHnX5LTd1xHo5TJFIWFkNuxcIF35QFMv1Xwnj3Om\nGGltzb0iO/QS6TOzHDErh8ASoCMsbQ/WNZsmqewdu/S/b5FzVZ5LsbZ7Bfh/D8wRpsa/IVyODYFM\nKdQPFD75kpCtUOBz3wBl5uxENacuXMv5OkicrGBuLlCsQc9/U+cs6p6b6l48r3FHwIxX2a1YF6i+\nD3KNWjsUnJrTUfAOlLtmslzv1fx6MQC6z/20n9qgbcEsy7TxpUnWQtkA12A8q/cs9BdN1soRuaVa\nzcUr/wR1l8CGObD7XhmCluhSI4iwsRFoXkCxH6gLfHoOwO1PexwK+HiYoB0iIxqNfnQGLfkRl0P3\nNmEVp5Xfr4Hmh4z81WHMbrea8FnJO2IegWNZM2aK+sHYb+yFF6fAw1fBrT/BHpGBzgu1an4gif1q\nUjVsc1F0sAdwx61Q21dyx7cfYtYYYPcIjnFxikExKE3CutPBlEDmdOmtUw3wfF/IrYTrt0jGUXm0\nIoTpdRD/ixb1WacgLkS8vGlNzqEm3Rd0kT9PYb0w3OnE45rcATouUwYrUyJZQ8ku18SzE4T3IpAY\nCJ7FrgC7J61NqwPvI4eqnPbdtQN0GAp8V4TI446DgUiLXy6imA1B1TJN9tmggAxkUOK/W397ciIr\n8WrdPAnk0oVknnWnwJ7hyqx5jwCO1mM2BhXDgUTRXTHvJKHW64hsEhIX6TyZ1QKCdv0h0gma+gis\nE7sgPqL4OigSsmS5GoHnduu1Mb9qzo7tJG09KANXsRg6Pu0ymX+TDXJpEpoW0FpXeOAIFZS5DtAO\nVr5WEPTWAzVPQPNind/8WGA25O+F0ON8Iget/0Pju8B84KvAtag74Xf+vx7R/+XxypSD318WU7+w\np0bC1b+C62dLJr56oIhU4xhd0Lvi8OUH4I2rsYsfkAtk9HnYO1ySw/cmwmsuJezmvULFhPnjh1zo\n0/4Tzouot9ngDHbJQswfszAEzElgfhNSNssZX5gZQTWsvj++/34uclLGb8ThLbCzkeFHCGz/DHQF\n++ME5rocPOlMPB4I7i8dnBlXP7fVstFnZhw7JoX5eUROiYNz6rP5nF/E6/gULA5Bl3YiWE8We3Ga\n9c685Ek/5vmI/neEqrV+bFxSz309JIxs8IiA1baZePpnMNvarAazRhLKBlnr28EZEVHQ/T6LmYZU\nJfuMzq3PYu9egT2nVJGjH54B27zYt5F75wNJ7Hfiqp17/FIFMMMoewaaCzsB42DWmXBH+77sOAFe\nanaNrYHE6cLC60dIavfiROi3EbwdNVeHOztTiQ1gO6lxdfJF8FQB3TTnR3cII4MxSfISlbo/We5q\npRE+Uq6AZOR93ed1+JmOikBV/ZfUDqHNRXwNb3fKB+dUbPYCSUcMe6gkgJDMKltVNp2A2SKLDFR2\nzrcGGK4atFhfJJt0LVQAInOhciFEVymYGtkFqTNd3XQO8kPUvy1RBY2nSE3S3B1aLoaqk0VkvQOh\n5GzwfblYLpHuIMIZroPQVq0DEl2lzknthG2doOxzOt8Nk4WjgfbqrwrFNYbHKWZtKWRLlMEMdHY9\nYtF2cAnsfRuCK9Q+p6QWquZKNZSokbIlf5CfdAHPfQ4Au7tjP1iyKdFm27IYSTp3IwOW+2HLVKlQ\nDmGM/Ifw8TBBO0RGc3PzR9ag5U8t/fCdbPPima8Z1g4pV7SvqgqzQ6tlc3cxc9vWmv/vGlaDIopR\n1yj0gevkxHV5RDbS598Gp/0Bnv0RfD4AE+Yp+jkrhFkawJ6QJloAnwCKjL05WmTt5itdu/syFp8J\n1Alsrn0LHm0QMXt4NRy9DXaH1dgzWAF3d9aEVXAfzIZ0K5+v2qXKJcVi5nC9esDU9VUkMBDTLRvS\nhF03AjLtlZUyOUXiWCvCFmrUc0MNiqxlukG6TDKIbAXEJzjZQ4pW58V4f2CFm5wboaYr7FqLMmxb\ngJD6rLALgUx58fhrj1ZrgMBKSP47mJucs1VIUpNAs0hjslwLqXzY9XUp130lI6FyuACjAApP9ob4\nqGLmKnChdPzpiLJ88WqdI+uVNCbvB4YWDUTaNuKM9oHgGmjo666VZS6KuFfAw0qongWe2SJjEzqq\nxgykpS+MuJNQBN0xFY4t3FXHbV8B36+hwwwom6nz6/k2NG7VWsePtt2A/j2h/zHFbgcgFe2B47PE\nnH92F8fCsNbmECz/wFo72Vp7v7vv8PiUR+nmm+Cs2yQ3nDAP+/pyaADTt82Trp+t7ZvuB3HFTG3X\nfnQgzVxspZK44DHsDR5ljlqGQ38LiWrsZV7s9oXYL3lkKvLNEOQ2wp/cRVYwDJnwAYHAPmDusvox\nNeh/zovA0Quxt23C3pLEfsmDGYJkgweOSwLYZ9xjr3jhvAxmTljE8gUP5o/7ZwbtVXFYYSR9PE2T\nl3k0okbRL7mlz3qf6tXyWXgnjp2YgPMy0D2HmReS2chQ9VDDZyHrMnNR188s5sHMC+kxn8X+yitJ\nYtaIWAFs9mFWBlQ7tyAk0uizag1Qc8APNGswrom1PTeuz/D5gIjvSWUw+3j46U1w3gNqRJ4ATp8G\nJ+Yl1QQYG1KWtVAHNPY5FQzV91VGbf1Y2NMBem+APUAApi6WMuHO9VKWdIiJkMU2QrtBMLVRwbVc\nCmyNMkPZOKQGiYwV+nfl/FJkhOuFj/HBysaE65wLcicnx29U8NLkJHtMRYUXgbjIW6YEGq4Ssdkz\nRljmzUD9mcLQ2HhouEQlBXwJzH0igx7nzLgiDPkFiCiUA5epx2imrzI78dG0ynX9LcpO7Z4k8xBz\nkztvM5RB8yWV9Uu9A9ZJ+HwrhI/xahHZ1CC17El1UL1zskq17qCAY6yHAqW+lIirPw7RDSJBNg2e\nbqrp6+qCkxHXKSvnXBjL14iMhhr1vSR2ybSl5H2Rx3AdxJ+GxCyRs4LKxBcpEq6Cu2SBLBmfagkT\nm8GzE8xLEL1CJi+V64HfQs1UeLsJWtCl5kPdObq6v3sN+ICmXl/S5mC4+WmNQwEfDxO0Q2R8rAza\nR4z81WFFMUFEraChb/Dg+XML+aeKoGrm6W+zoY3Hus8qYnhCRBHFWRHXN+YZeDMCabfSuOkumHMR\n5htWPXCu/i4A9uwUrPfAcQFiR6BobC2qWu35B3BpfZqA6AJZolfBVwbD4CqRsY4JWF0HVSNF1m4s\nh0gfeLdSk2qhubEnApFjoHk85NbCntOK/cv8z0GqTNHDEtcPJuVW8pFalx1bpUk9U6JsUeJEgVCi\nUpP67pFFd6hkOfhfkywRwOwDZkPLzcBagV3iDtW0sQK65KBqD3AZ0hc4GQezEWFLOovbiDu+9tB0\nCjT3h/pZwFgV/sarof7z0NJDRCa2XmSmIIEMdpFNby4F0+PSufvL4IrBAvBlPoGKF7l3xashNliA\nsHdAMVqaLHd2vhFJKRK75AxGWDKLZD/1TfM7y/1sXAYirQyoV9FieHULvLgTHn4X0jFJbfIeRWFT\n5fouQo0Q/IsD3neVCSwpuFm68pu8I5vvt7m+C7+OvANJx4fp7C61siAqTgeR4rGQmgO+Lnzq41+l\nBs0YcxawDCfbMMaMMMY8+9m+6+HxgaPbDm239IEJ8zA1f5HN/fAQ3HYD/OWb8MDVImzNUdjeFVM2\nEcaoB6Vd8CFGHUPctgKYk1GArNsO2ef/YQosnwjH5LUqS47BftsH79Yqs9cFZdAOGGYU8O4YKO2D\neSOI+THYtxDBWROHmXEZaLSt83wXZYp8YO9yJOiLOezEFPaXBi6NYH7uJvIT81CDiOcxeezoDHwr\nBP+W0zEl3OfZ7YGqMsxvXD1ZyELUiowNTQv3QhbbO6vAopM6ms0+OTLWeLW9Lynp5DofJqbllXku\noGxbzCOXR9fMmqPz+9v+13qdjb9q0VrH5jjmNDQffv1JZUZnXA8nrMSOTcO0KVCax/xXWKRvAnDG\n/SoW2oEm6HeBrRs0kXVYAC17dH8tUKc6tDd3wR3vwFULhIXZdVAyAIKVcKeD5uZ1YDojR+NmBdcS\nVa7+qdn1Dq1VHXOoCULrtW1xQblIrWs3N8hhZIkCj019hI8NR8Du44Ql7bYpkxVqlNLDv0GGVtmQ\nM7e6GzxPKMCZvR78/wEs0L5HdAZzqTt/ryBpesjJGMudgqJcnzPtcNnXIpJYPwsYDg1P6r1yfpG/\n0hMgsUMYmR+tz1E1RtgW7gQlPUWOsvUQqhNJenEnTHO4loqKtO4dIIxs7l+00M80Q6BMWJtvltlK\nYJjwu3mN/F+SvR3JyulxENkq1LmXLSleMs1pBZxtTt+Jf5/OWXN/J89c60h1iUxPwnUqPQCKMv42\nddcHtghtQUHN3e/BXtSWJgNafwxAaxJ36ZV8558bIz/L8Y/i42GCdoiMpqamT9wHbb9sWFet3m3n\nYhDAtJFyeF6QV6vtnlWT65UHkMKKPMxLSHN/blygVp2HXQ2w929aYNQC06+D6jxmSkgkLmmKxdQn\nLlQBdA8k46hDgug6tKKuQZq1BLAPPL+Dm5bD5H4wu0lglK7XZFrSS899+F0os+rrEqiQLW1sk1z/\n0lEIORNK64HkOcV+LYEYRJ8SAYhXO3miH3ZPhn29RZL8ZZpETU7ywtIjoMNyRfJKXtDEmj9GIBFZ\nWTTnKNkMWSf/8yUlN6Qn7BgMe4+CzFQk0ZuNtPRno7RPo7T7qaiIZOZYKDlNIJIpUfTRH9fxBCtE\nlnwRqD5eE1aguwhsPqeJfuYunbtsXEXh+WbYExUAlXRzUdW+kkC+161o1e9zxdmeiJwdjU/vZbzg\nd5HHdEMxM8dsV2iNAM7koGwhsMU1CX1Gl8exnWBCTyeX7OrIsYsOBl1Lg0K0MO/VoiDUgFoLzADK\nde7rU7qECvLGKrTmTACNi93r2167jtx5nnD/L+Bfchhjuhtj5htj3jXGrDLGfPOAx280xuSNMR8n\nAHo7yts2AFhrlyGx8eHxWYztXWHCOkzNjyRfnH4DdvL5cObTsKhNlmzqbfu/roPLbs0dd9DdmooL\nsXevgMgYTMWFmK+BuQXYCfZ7BvotF0koi4FR6toWGtK+5bZt+x0mHSlKVGP+3UkVLwB7k1FmrgIZ\nkYAyaW2PZQjYKWB+HlET54e8cBaqb9v498/lyTgkDGazX4RvFdhL/K39N+3ElF63z4PZ61U9WoVq\nvTgi7xoe56CsUc/bbESQnvBI8rjZJ0n+Sg9mYRBbnhdJSxo1pK71QtII61zWzEYttnMO80YIOzkl\nY5Kvh9SjbbXkkvbXntZjBFplmqYvUpasa/PY0DxmSRPm3ImaBF8di3koLyL5TgobzcMxOewX0nBG\nvihndEEycu62CRG3HCIuCVhxgYKVgyvh8t6a85/aAGVnwHTn5jfyr5q/q06QvDHdIAyJHwHmZGFA\n+VZhn/VAdKfUDCVrhAftHtMcHusCpe8VMTITEW76yzTfB2JQvVolASYHhKDsWc3r+Z7CNG/GSRSH\nAafJldiTh7pfA9+VJHJFGPKudxdNqBJogXvNb5WZqz0SwnvccXUV4aod7ByafcLscB14yyE02mWj\nosI4jw9+6xOpLYx1iJzN3KUWBbZFio/rR+i8VYyGyEB4b4jKBjK9JKGsWiszLYD4ECVzS3sKr2On\n6D2TLhDsb5GE1HhlXpYq0/dQNhdiI3Xuu5WqLHRtFhgAwRORJN8t0wrOmRn3e23p4ExN6pEKZ476\nnvKeCILPncIoWnZtRWSsINitpIih+cIfDhtLDmR2/wLjnwkfDxO0Q2R80gyaZ6ZUxgf2P7MDywVa\nQP6UKPl/kyuE7ZwToeufUd+YHkVjEltVJbljSAXXrQ2s1/lEvvpnML97Aia9AeuHY3/igc9QxgAA\nIABJREFUxd6eEokLOfnG8Rn46+mK7mxAEcImZI9bixqh7kIg1A2tuPvCXcNh+jJNXlMXw1IjQNqe\n0e2hcdpWDFfUKbVTk2TJLi3wozuVlSqb62q6BrWRB54hl8VsSICTDSma2GGOIm+5lLJImRLJPVq2\nK4rWPFqSxgaXXQMVS3tWILIVkq7dvC0QqVojjX3pYOgYg2SBKByDlM4rnHuj6y/jSwkIfRFNnMFK\n5yaJ62Gzx9nouqB7Ni4CVTZABLa0p87XVwbr3O30gKdM4LC6Xm6Y/rKinND41AAzOQbSXZwLlmM4\nmd3F9ygk+GOb9J2l90J4LdROdbV0jmSV1Lri74L9fgi8gWL9GTj7/qMlrTQ5kelIraQy4XqoeNv1\n6fFJvtI6nBLMOQzTieJkmECA49WlQzAInXsCX1Kj0pZrIbkBaudA8HzJND/t8RmbhGSAG6y1R6Iq\nja8bYwaBwAk4FeHwxxkZa23jAfcdxAz68PiHx4SXP/AhM9etvu5zNWrbu8KZT2Nv2IuZbmH1QEyP\nu2XHPvU2uSseu0R1vhOuwv6x9gP3feAxmLOq4QK/SF9ZTJmunYh0XZxuJVz2mQNemwCWxkXU/htl\n1x5BK7xVYKca7IP7MzB7jwd7fxz7QzSXz01j/wvM9VJhtD5vbFJOjyfnMbeAGaPfPJs8mN8FsQln\nGvFbjxpYfyOAmRNUDXUFMMJCfRV2ehy6W+HNOXkZefTOYh6MYCelsUelMdt8qkfb5FPgsGAYUp2j\n1aK/exayYPtlFJQEeNhV7NR69flnxoWDKwOqx3bPs99yKZGoa3y9NKjPNzgjh8oLZmJWvgCbPDIk\neTyo9++ckwHJHR5NXO+j2qp5wHrouh0RtJUIJ48EesCwvXDhIpG0K46Exz8Pk/uC/z/hCi9EnpdR\nyJXzIFOrzgq7B6kOy8Yg85YaJje4OqlkZ+FVwNWZZUOw+6sHx0iTFzEy3mKfyaYxIk+1R0PzBGC4\nyAmIXHicIUXLcXqv+qtVapAvmEZ1g2GdYd/lKJPTiPC0IK2/jFbb/FxAEv2K4WoiXerkgtYr/Gjq\nJYmhzSpg6YvA6IikjDcOhxM6wftJPadbqbJpXxksZUhhhOp03kCqk9Eu25iNqXyhfqjWBclaKVNs\nTmuGrCtJzNeJrKWjwnNPBvx1Os7yLTLrKmBkshxiq/V3c1q12DYHu+/Qd2LyMgarXO/6qm1xGOnu\nA4q6fkc+LdDhgIdAMfFyIDhA2/Jh4Pkm1F0KddMhOR2aFolY/zNj5EHGPw0+HiZoh8j4WC6OB4xC\nvZlZGoT1HjyTE3huT2Dq6kTcaryYDQ2YDQ14XnWr9O5ZRRw3O5lI76ws+dtk4QqjIO/In1Qm4hYT\nGDO3v1yrnowL8Lq1uUz3eeB4N3N1QiEd0AxSDdEAyscnEEmrBrop6/KSgZNa+jKrD5w0W+5VU16V\n82MOZdH2hUQ6wr0huxDSJyjC19hLb5MdIfe/+n7Ack2ILZ1gz/ma3BNVuq98q4qWS2ohsLPYFyQT\ngfAOFe0WTEOCzSIXea8DL5c1y4ah8pfQdA5yoXIB8pb3YOfJjmy9h2bHV9STxbdM5yWyDio2QLux\nTs7QokxVpFaRwcRAgWDWyS8CnV2mLyig8JcVbXjvXq5sY3MbJ6gTElC/TLb3Nisg8EWkt4/00X3B\nz0F0vEDceiGzUWQuvhbiG0UGPd103pJDVOi8r6PIFUDJfEUI6SnnrUR7EecB2+HUKsi8CLzh+rW0\nQQ5fQsYpQKvUAtw5vAxYAJn3tN5rh/q1JtxpzLhbazVmIbvXCPEe+rMgAY0M5DMbn2UNmrV2l7V2\nuft7H7AGCb4AfsH/zOTjXWPMxYDPGNPPGPNL4I1/6MMfHgcfU78PT14Nt96JHXUVvDZO901+Qpb6\nPUNw9ELY3sZZ99tqMk1Z7AN2Ctz4ICwok+Rx13Lsq2BvT2L/AzgJOGIhZvxw7O3OsfDRg9ezmf/O\nauX916TqiEMLoeNG7FxHmGYf5DVfA2YkMdPQj3B3H7gor/8P7DO4A7glILOSkZLR21W0qjTMzRl4\nxaPjrkAEZxUwPoe5zIoQ/TQJm/0ihZ2tMnQhwJcGT6OT3Oclacy6PmYrA9Avj/lpANPgVTuC3hlh\nUUj2/mZBSFmv8pywb50fvhlU4LHWq7qzmNG2Ig8PJ1t7o9mhacwvlF1jm7J15vkIlNqi4QjoeKpz\n6hd6SRx7SVwSy4UOo7tnVcP2Paum1ZXIybEejqmGHQZFnQLuthbVpFUDLz/EhXk4aQP490DV02hi\nHAA/HKT5/5EW4cibu2BImTDC31FZqGS5CEWut9z/PHmn+FgufKzYeHCMLOBjcEURI31r9PrKla5E\noLfIRNo11k5P0DbYKMJS+YTwpXqey3xlYOUOiPweqR46oXKHcgX8mvs7N8YSYWT9m9C0Dn76vvYZ\n3SnCFOsijG3ZDsm9wrRIN2HYUxsgVS/8W10vjJzyKiyO6fECyapfJmMVb1BZx7KAcNjXH6L9hHsV\nn2vze/ApmFpoFxOsVl14fqXKEFrcz7kgazRZKNkD9NS5LanVewEcZcH/O0i87dofdNJaI+9X0LJA\negstBsx2RGTPZn/cdNtyRBicUXLx55mEgpFydpC2fkdQ8xvAXMtnMg4FfDxM0A6REY1G8fs/uv2C\nZ/IBzajfBu736td4ZU5Sizlh7MQ45mdBFTm7yF8rCcu4vjMLQpifR1r19GZH/X5EzSwJSu5RV1es\nVWujvTfzwpABMzkk4Nrmg4QR8ASQbXC9u/UEvBCrQsTs6A7QG6i5CDqEOelvwB1vQNcNrb1hZuyE\nWc3QtRSG/h5+MEi2tLmUm1Cj0uGXHgHlEyUbTEfBzFKmp/ksRbCq1ohgpcoEJGXbimACmvzCOyB4\nqmtw6SnKIQsjtEZSycA612OmvR5v/op7Xi9gAXimQof/hOpq18SzES0whju3x17AlqL5SNMCKD9a\nYFr3tt43EIOSd6Tx92YEuqvr5eyUbpZFfTYOf9wg2ecVg2HaSfA5p2VI1kLSZcTMBtWuFWrL7LsC\nvIIkNJ9yPcwGQWiw5KPeMdpaJ+XIe3UM/hYBs39UcYKPPgX5J4DFkk1WbNJrAPZ1FaCWr9FniixR\nHzi2yN3K/xwitVuUhWzNxDWCv6e08wVgKVx1HqDzMVByJ+ybD7tfgj1/hd3PwBcisGwMtBsticvP\ndvAvP4wxvYARwGJjzNnAdmvtyv/BLr6BYvEp4DF0Sq//lA/z8HDDnuEmloLN/uOXfvCTO4SwA8+H\nfUYE68UH4dafiIgdMw3eHI1Z+CAc5+SPpS7MXX6QOrSdYJ71q6fa9b+C4c8rmzZlAlwakf0/wPQb\n9nuZGaZ92tlgJoC5OYK9Ma3lTpfq4iqv4Bj5a9uqmLCzURRlfETbwjmozqmx9biEZI/3+VTXDCJu\noxDZ65yDi7LwusOfmyPCqmd1LIRdTfS7wLoQtCtTjfMTXjWhHpfAjk5h+2d0TF+02M5ZOUG+4cfe\n5cU8FYQGZfDMrAjM8MvWf7MPc60zAokZeMGr90uC/bYPMyWEPdNbNA3pA+YHQfVNA0kioZh9A7UG\nKChJCudiaBqejIvEbfPB2DD2t0bXRU+kKvHC4g4ID9s2EB7pHl85Fq69Uuf4j9OhQ1girGoF3u7I\nwLC/wvPDJWkf6ymSluzOovqj3UYoWyQiUDdSc3j9+crMNHUX1hyIkdmgCFEuoDYswVMlPwzXCfd8\nSWj3iCszWAYlTzvr+lIF7bIhoFwNp3HZuabucOQS8AzXfa3mWacJI31J8G8XaUmXSV5Y2hNuPcbV\nZfdTzVvBXMPbrCbdvhIRqAV59Rh7xl27E2fDV9sr+zi0RcSteQ20bNXz49slW0yuhs5LhcO0mWHj\n29Xapt1gKVeStToXvojWIdH3aTX2KPSbA6dO2SWJZ2EEYgqEvuOkhXsHiLhlSqDdfKl+Iu8Dy0XC\nQ/OBRjCr3HlaDMyGvU2QckHOgmqxnmIPtPJhUPGoSkB2/zeEH4DEHPBcAdfsgug58PYEuKf9wXuS\n/quM/9/4eJigHSKjqamJXO5/Zq5me2clV+mCti+4ZewKFWLb25Jys5oVabXoNwtCmCyt8kc2IvnG\npEgruJhHIyJ51bnWLJq5OYTtVSFQBen7xyUEjrclMZt8mMcCcqraiVIcPVGErAfq9dIBEbcJwNgt\ncMYbmLce1P4aL4LAcHjkGgHVCGAc0A52lMOaKAz/M2zdB81GxcO5MmWBUg1gZkB2mNyYMhdrcgzX\nS7Oe/7qIRaCl2AemubukCA1HuD5pnURigrFio+R4tSZNk5e7VO2VwC6RCf9rigparwhgU2+IXQnJ\nn0Lt12BbSrVwnEYrCSEkYlc7UUCV9xYjgL4SKNsiYunNCIAyJY6sdRP5ClTKFMS3rVijl6gRafVk\ndfwNrwqY8ep1md3KylW/I8mGOVLkLDROpCufLUos8+6SKAtImugvg/rlIqwl7wtIyrY54A+5xt0D\nwTMMNe5GQOV/Whr5inVFY5W8HxIjEWHd4qKBbdwi7Uh3rrZAcxPs3ap+LgXASSHdQQtARzlxeiKS\npwAYpw7uVqrP89/b4Y41YM6EoU992K/okw2P79O7fdAwxpQCTwHfch//+0Db4qWDdAbef1hrW6y1\n37fWjnS3W6y1H20ZeHh8omFeiEumOO17cOYzcMyCVnLDTpQpGx9Rps0N+1/uD1d/ZtYfYNU/f6Iy\nM57l0DIcc/oYzG+DMgVZtxHTt41Dx0n7v9ROboSh0zCdpsDDPoz/HthiVSP31MjWRteFHpp2J5g5\nAcx/Z0WuzsliZoVETIa02XGjwYwBEwZzZw4zCrk17lpefM7gFtWxVQCvx7FHtJHTXyETKlb6RDY2\nGzgjL9v6LijwGDOqDEkAvRPgbZJr4vk5WG0wD0Yw88KYxUFl0Srykjf+MgK9rWrfhuYlVyyMy/KY\nK10G7jWD/UoC9nmwl6YlVTw7AY+kpRQ5CewJKbljXhLH3ugkmzFP0Ya/8L0vDf4dOTOPRkQAXU2b\nWRnA3JnHXGxVw12HcHIokvtvv0iftRT42la4YyocHYcvvaACo75xeONq8CQ0d/aE4DxUStAJJi6C\nby9SVsfm1C+UcplledOQGQPxcSJmkU3CNZMXRnryrmb7AzAyXi18Sc5zbWDiui/YCPTS8zJDdBzh\nl4vBzbKVMsCqmyDDDZOHipdh5ekQ64Ns80+D+ktpDVzu6wQtg1zdmVeY3rwGGt4WPpbsck2oHVYH\nYq5MoVbOwad3gYodkoGWe2DfORDsBv3WKbCZ3KDsWDYm9Uh8F/ie0n7yAbliZnq54+8v+d+0vcLc\nVIPMRkABTONTlo2hMihpt8V994VLoxGVeCwA8zL439b7nPhHCP8Jqp93ctIWnSe2SAmSPcW9fjet\nrXlYAQyDzFYRgw3uIS+KDWTQ/Y0AA4rfgcfFRpJOxjm5nzKKAHesEz7+M2PkB41/Bnz8kMM7PP4v\njY+bQSv0oQFgrwc7MQmNHkzCQMgP6z3YL2TUCPpzwPAAfD8Pf/Zi7o+IHEWtsl+NBjsjoSjlY0kB\nTzSPnZzA3BuGwRSLq4eA6ZnAbq1Sli3kpCUrfbI5Xukh/7Mwnj/EMfdm1DOrDoFPjzhsjgh4zgDz\nk7jS9EcOV3S0cgfmKyHsnWeosH7GTarn8C5Tg+UdfaHbDtb8JUHvmWpqXRaABtcrzRtQjZNvBXRc\no8k93kk1VqEekPoj+CNyI2xJQcW7On0tnTThm5yIVrqkGG1Mdlbmp+U4mYHYUmWHGC4p376OkjZ0\nfE1koXJ9kXR1qISmI5ysbxCE1kL+NLkZ+veq1qzQLyVTIvnIvgjEuysb6HtOk2tJDbALEmOg+VkZ\niXRKw9slMCwJJ7vLxTpyFqiQfCPSXoQvvt01I612GS+vrIW7ThCgBSp1LDYrWUfLeogHJOlo2S6p\nYyClcxHdKNlL6W71PfPnZcRSyHpZryKrLdWKuPpqxMUz3STV8GQc8XWtCViLCsO3Ah3B7KLVN78e\nJV8LFZntEOh4cIrGBVBVDomfayFRVi3i+tIq6P0SHJNVtJQsB28O8ymMf8T+d+Eb8Oqij9i/MX5g\nFvCotfYZY8zn0BlaYYwBLen+ZowZba3dc5DX//lDdm+ttWd9wsM/PD5obO9KujZCYMJFstEv1KQ5\n0w7CbnvVDfCje/T3m6OhC6r1CvfBrP4RNvyYek0OeUx1Wac8D5Mm6vkHygq9fdQUOgyc64WlSbhx\nECyaqDq35ujfHaaZEsbWA9082CwwdDn28eHa9xDVppnRMgkx46z+7+rBhMH+3sBdEfgq2PvjmGsi\nylSdBuYMC75h2O8Y+EsaJoL5NpBAksBNiKx9K4N52C/ydRIinw3uBxWSS6S5NaeAYx/gRAsDLLzl\nxFtLvTDYYrtnMUkj847n/NgvZPT/0Dzs9Yhw9chibgjAzyPYX4C5xQMVYKqN+r1t0hLLzAyIjC5x\n+rP7Atifp0USl2i9Zrb5VLNd64VoVmoSF7BslTkWxjYfDM7JSXJlQPLGfR4da0UevjcFvnurJrrZ\n10BzmcxFzgbaxWWUsnIK5hYnPR2MUkbHu7YMHcKwLyFy2xs1Cq+GGSUwYxZsPgvabVXmaR/qbblv\nk3DAPx78z6q5s79ZGMlKYZ+nShgZqlGwMlXuiFBdESNBmJmtgFwMGsZDxSqZZ2UHCdPCr8HuqxSk\ny4aAWtnWpzvo+cOaIdEPsik1k67YpFY2viR0WKLndbwHmi6H0h06NhODzKkQma2AX2gRsAv2XQUN\nS6REMV54Y6+WPvlmaA5BtEL1e1U9RM4C3YV9gZgCoaYR6gbq3IS7KrMWclLFZgPNSbj9aK01yvpL\nCpl3NWiJ58CERIjDLqvX0kl4V3EfMr5yCprMJGX/yrahNgY9ihgH7v5ecsakEbGvLcgS/7faB42C\ntcLV5kNBzATCxxacrf5W4XY4K6Ke7gRnLIJplSoVaU5LeWP/CoPHw+ovW8ylH8ln/kfjk2LkvxI+\nHiZoh8j4uDVotnMOz+0J8reHJdWYAGwE+90E5gE//JvFPOOXzOMtL2ZzXrLDM3LYL2YwfUIKK0Fr\nY2vzQFC9ZTb7seMSKpK+MK2IYMjKdng0MMmHqYurt1pdHTaax1QAC3ywCjwv7cP2z2FqfDAsDudM\ngz1rFRG9NI65Lg+LPTApAzP8smteBQwPqQj+HOCa+2HQO1pYfGGZ3re3kz2OAJqgaiYMCsPKySIh\nqQbwhVR71DJGssZ2G5XCP7IeMo6geHbKvj3uJt+SXSoANjK2JNSkSKM/DmWLJZkMNkKimwAptEYm\nH/4WJ/sI0epOmCwvFlfvfBfSa8B3lACAkyUXyZRA0K9J3HoFgE29BH6eMkW6Sv4D6r8mEhRZB+yC\n8B8g202f1RdRS4IV9TCoBtqNALLO/jdVdJfK59QgOudIXKyLHqvyFw1JEjWSe6wD+nuh8hRIbFFv\nHbNP0cQsKnjORETOUlGdJ08O8gPA8x6tdr8mr/o/sxe5Vn7Jvf8AiP7UXcBvIsa1FUWBT6PVEIRG\nYI7sgSuQ1iCkr5wQAp8SIN8EqfHF85FuADrK4exY1wz0ws3AUcglbftH/qz+V8eY43UrjDvv2f9x\nI4R5CFhtrZ0OYK19h2ITAYwxm4GjrbUHLtkLYxqKIFr+PpJo//7ph8enPjZcCL0uhCunYbZPwb5L\nkbRdOU2ZtsFrJadKsp9M0JyNiNd9V0FZM0yeCBesgdUDsY+HoIuBbRuVkbPNwBhZ6wPsmYh5KI99\n/7fw83tg+nXYyY/BnAsxZ1hs81+AifsfawWqIXMeIPbffZhvy22xtbqji7ug3q7FnluiDFgXiqRx\nhYGjrVwhjwtgHqpurcu1fwRmxkXUGrVys2+BOd8Kb+aC6eOBSjBdKWIOqA5tgReaYvq7HuxVCdjs\n04VcncMc48Us8cumv3NORC1ptIJKgr08hZnkkSLk0ghmo19Zs4SBV7w6FnzYS5WzNw0BTMJgfR7o\nnhXZ65+Bvga2O1OSSxJFB8nC9/ZoBHtnLSyOikDOa/OlrjbYSe49d7rv+7InYfLT8PBlmPOHw88f\nhD/lZTDyC10D5iSwQ+Iw4XkFMF+cBGc9p/kzjFQnl9+v93gf6AG9n4X8RcqahNpDdin4/VJT5OZD\n4mRo97oIWC4FBIRHuRT4XMDyYPgY3SH8tF6pKkxO9yU7K+NWuV7BS/8ICDQK86oegcQk4WiiUvi6\ntAnOMHp/bxJMVo95MwqmZkog0Eu4Wr1aWbVID2W7cu56bDlFLpTBZle3XSMDraNqwDhjk4oAxLZB\nj56QK+B+N9nrj+oI5Sv0nokO4HcyyUCFMjdZ1wama38ZjXSrlgtkYpcCml63lgjXFTOKtl7SxIZJ\n0HQtmK+orydufRDdAWHXEzUQguQIBTDDdU7mX8jd9ELBTBzO9nKPDVSqqAERshTCyxZ9hfgRZhdK\ns/1l2kZcnX+hVn1xPVRtFBCsadsi459g/Cvh42GJ4yEyPm4GzSz0w9is6sWuz2HHprFXp9Tn5ZaU\nQGCu9PzmgSCs9sCfjayQoyEBQ3VOdsrrpLHnRAtr/AK6xa6YuXtWmns3bFUVZmYA8yPly831Ecy8\nAJTmyd8eJv9UGHvzO9iR7dTk8wIwLVPg6l8JRBYlsWeVivglPdgECvuc94BmmyOrtWDJhFVDMXgt\nxMfC0hFw/zUKA3YFLgV8sKYJCEK2uyz30yWSadiAbGmb+8Ow18FuVeYqN0CTuDejLJe/RZGu0s0i\nHqEmiG5XlifWRQYd8cqinrylk4qqvRlJL0LL1J8sH4SqRQKqZLmLAFZDZSftKxeA5h7aT7xaxxZZ\nJ9lgOiLwyQWgaZVseRMnClh8Kag9wUn/1kL0bWW6sm9K1jciK6lF/XyRsdLN2i7zwapmaNlSbMSd\n6CApReod1bw1/s25OGfkEDkoqAhgvhledTOOLyUwCTrvgnC9yFgwJkD0ZFCz7o7Abr1PJiKgbR4K\n8R9q68lJB588BS0oyt1tF9DTGa5cBqQgNRNqdhdVTRmKdkqFv7MIHMMPaTHhX6o6xOh6OZm96Wrr\n2napXv3lT5+PfMYujicAlwCnGGOWudsZBzznoz7UrdbaV4CJ1tpXDrj9izYg+Ccf64cDYOY+iDnh\nK/r7x3rIFqzup35//9esHgjrNraSIPsW8OZoSQPnXAj/+WDxNY9fqH06OSJNfTDXDNdcORe49H34\n0dNw8jTN+wA/vkrb6WdjpoG9y6iv2kYwD6m2iu1dMd9r84PZiMxBjsoUO9lOoEggB6/B/CiiOrNX\nESF7BvVYA+yVIpi8hH7I7nXm+Yhqt1Z7JFMEeMLAs8CMpHAI4MqcLPxnReQG+ZJHtVldS+U8/JVk\nkRj5LeZnIdWgVYCZ48fsExGzvUVY7fEpzHo/1odkkV2Ac7KQMa3taMwoRA5fD2BqfJI4zvSL7K0M\nKBNW44V3gPERtQaIeVrruQE9L34bvB4VOVznl2FJNA+ds2oofs1qYe1badjcIPI9/Tq5It/tzld5\nDjtzuf4e9Rh2z/Mi0IXm5g9fBhv6SpFyzUP6/6bp8NIkfV8JoJ8MMvxlIhvJKsiUFdUUmWZhZK63\n6tS8A4WR1l02ea8wK7hHxhalrqbZeoVzwVjRjCntmlh7nRyy/Xt6n4qXnWxwrN7T5PQ664EhPaHq\nbQVAQ5uFkdm+ztSrg8vQDRI+5j3gSYPvdWFkboAChXmvMDKyUO1ezGqIPS0siy8DHofa+ZB8X0S1\n4R0RsB6/g8+Xat3gS4oYhveAZwnsWwHNKxT4A2FsLgWRVe7z5+Bv3WV5n2ko1o9lQyK0viSkR+sz\ntlsEZbegTFhSJM6TkTNk8wRoGOJq5nNt6t0LBK3QguBbRVUPIaj5vkhZgVmUohiEQfiYAkrGAlug\n/XLIvQzpBbD3ZbjrKDljL/ZB1wCQhsxMPrNxKODjYYJ2iIyPU4Pm+VlCE3XSgUKNF3OfAMVsEsGy\nC8HcZLFXZJQVq0cykpOArqgAvMYLj2cknQhZ7HUGe66Knu3QtOQZWYO9OS1i5mQf+XvD5O91aHsq\n5L8bJv/Fktbjs387Tn+U5mFcBvu1FOabIVgTwfw+AGsbBHJLvXLtCiMZTgWK3C69WpmzsphAa3tX\nuPh1+OU98MBN8H5f7X8AUAVz3y86F4YaFR3scIIKm8vXgOcYTXzejsoala0TaSnZo/sDMW2T5QKQ\nRHtFAcu3SHIRjCm6tW+AJl+Tk14/eBTs+ZImj8QkaHKujmXbBFR766HJ2RpnIiI3ZUug42MiLM1D\nZZiRKgfPYkUcy7ZpsrefV2Qu6ySUmQiSAq6FdtOdRfKLkiC2vK1Jv+FVaOkH+e2yCB5cKflF/ESI\nnahIZsN4HWPOr74xLc/K6TG7F5IvQtI10Ty2k2uQGYHUMCdP7CvAyQwRqcw7kE60R5G+nmA2qMUB\nCKitVxm1TInLPk5Hco1r3GvGArOdDNTJJFOInMXczYcmwIKZ1X4tW47R+U+V6TP5y9Se4akNcuui\nCWXk/mdlnR97fMYujq9Zaz3W2uHW2hHu9sIBzzniQ6KDAJ2NMccDZxljjjrw9umejcOjMNKPHeTO\np86B3Eb1Hnu0UnK2p6fAm50xe9vUmx2sa096OWwbjvkqUFmrxtNjMuovBti7XMqr4JgAsHqQJJPT\nr9Pt8yGZf1znXlMgiy8YzBAwJ1Vjr/LCkQtVI3V2cVdmCJjLncxuUqbo9FhoxDvSZcc21cLTnmIv\nzAq9j70kDu3zmu9R4NBeFYcscpUE+KLF/CYENUbNoUensOelhQldkFnGEmBlXPVmPwtJpVHrhdsC\nMMqRo9NkoGV/4sUsCUiG/0xAEsMGD2a9X1jTF1jgw6z3Y34WgtOzcsacjUhn+5yyg6OAq/8qe/6b\nI+ADs9kPL8dbHR7xu3Vgg0fHc+otmDdkLGKW+LVv595ofykzGAZlij3VKi7E/Nt4viRYAAAgAElE\nQVRwzK8V1OTEvOrF7x+svnZzLhQOAlRUw4R5kkJOvw5unwqzL4TBa/Scp86Bd8dK0ZCCqj8IG/JZ\nla35WtQLs6G/5s5oH/XZBM35FX/WXJqOCCNNnlZzrULD5WzIGVcFhY+ejDDC5ISh3gwkvigSVXux\nnp+YJKUIFF+/Zgtkc9A0SiUJZUsgskw46E23kQouVhbP65LDpbvgSSB6lMoYKjahwN8W1btleomM\n5crUaNsfdyTqLbBpOSZuuVy1aukY1B8PqUEKkhYknt4MJJ+ExDtaNyR2SUVCCuYn4MSMHCZNQGUT\nnm5qaRCM6fwVyNbuScj8pBw4VvVnvmTxFt0h4pspce1r/gh2vPs8HWk1Hgs/pc/HWkHadmSg5UOK\nknL3dx6VKgKtvURbXLYT4JGt4P8lDIork0bBtr/gqPwpj0MBHw8TtENklJWVfWgGzfMH5xrVAKz0\nYtb5RYQuysLLXnjJqGD6ujy8aeDHftjmw34nLvJ1VAbKF8rI403n4jgK7F0e9aUp9DwrWAt3rITu\n6plme2fxfFngZ5Y3YRY1Y2c9Xzy22xN4ZiTwvNqM+foMaPRiq/NQkVfh+CDX8LpzTuB7VVwAlQDe\nm6hFwChE2D63BX7wIKwcru1GdLv1RwKhNAKgfjBxbrHnVvYEZb6a35M9sO/LqqEKNSpa6NmpOjJv\nRk5JgZiAwHqL2+bumthBxCEV1UTsDaqRsjej/cU2acK2MQj+xZ2DXDHb1CUIJUdC1Vzt178B9Uyb\nUJyc00NFcnZf7oxJ7lbN2Z4orCyRLCVQ4ax2zwbK1WOtfI2yW9V/czr3r+j1pe/p2F5u1CTcboQA\nuLQnbDvOEawyMFGZjOT8sti1XgFdtqOAvNwjl8bSgQJtE5BeP9ZV56e5u6Sd1uPAty+K9BVua4sm\nK+E6kblgzD32hB5nLXKjOlbfA3Ngx5ziesyLJBoRJNlIuf+zQPuzUMatk+yffUllPxM75PIV6yCj\nkMOD24BbUd757oPcDo9Pe/zufADsHLC/eRW+dpUIVLoP9O8Ds8+AP7sVx1OqIrEbwVzVR3Lw8oVS\nOEyYJ0J32mNajBdq2Ja6C/tyN1dfDnTbgUlfredNmKds2q13wrgHisf1di32VWTxv1aZJjrLCdK2\nNQV+d4yCf2eBvRvsdxweFQjdc37Yk8T0HYPdUHyZGQXm36sVBHzah/mt3BDNXXk1gn7II8liUkYi\nZk5Yig6A8y1U56EP2LltjqW33BjtNxPCuQvTMLLEyQyB8hxmaQB+lmqVZZo5YdWVXZeHcgthi/1G\nHNs7KxKZRI6OC1GdWoNMUWzIivB2QWRvjh/7C6DUYi4+U1h7qmreuN8rSebEuM5Vb1e3ljXCOB/q\nrRay0D0vC//ng7DSJ8J1tJXV/gNBzGafgqgn5BQovSWBPT6peraMwX4to9fsHY7pK7LMr38E866W\nWcibo6HjRpG0+RNh7njo7IL/Q4EAfDWjrJH1ikhk41Dp2rokdkHuLRdMex9qxyn7Vf2u5u1EpTDF\nk3OZnryMPaI7hKHejDDXdBYmlDkHRvuqZOcep0bJLtUhBWMOd5MwogISnYSRJS8AIdW9+VdpH8ly\nGXTtvlw145VzIbwX0kPgPITJka4ieM1DkRnZFvXr9G9RC4CG8VDxQ+Fkzi8Dj2BMhlpbq6H9SGXI\nghXCyGyFjENAeOdvgdRSCJTp89e9Dce4nmelPV3zbp+OJZ+TI2P9UJmahBohsssdV1DBzJZT1GYn\n8L5zagQ8K9ToOrAESLFfux56Ah0h/ywkdkPNViWSC/LGLCJlTQgro0DHAXoNZ4PtBh1WKrhMOZy9\nl9Zo55qEro/Moxyq41PBx8ME7RAZjY2NH5hB8/y5hfxFETXohNat/ZUH+32fIqKjkCvVQx4VZY8C\nao3co95wPVweHyVwSgDf9sORbtJPAm/44SGvatB8FrOoWSQqaVTUfH4ez/wYZp0fs80HN0/Y/yAb\nUOTvpkvVFHufirfNlCzmNxnoFNn/+es9mBvc5yhEZd9t04y1izvO7b00Y1/wGJy8QARt/kVKp5wC\nc7dKX+0vg/YnSf627zhpxvNhgUqkK7Q7TQW6Jg/xDiI+BaljIKaMUahRZhhQtJE3adeU0iUOMyW6\nr2KVipLTUTV9DuwRGOX8sDUAzatVNB3dCfUXSdbgjxc/XlN3vW/lekdoemoS7/EoDFoJ3kWutgr3\n/YQUEcuUKKpotrvC7FuVGQxv0Htv3wd0Vnbxjb1w0l+gbwropmiULyJZiy/psnNefZ58XHLHVINk\nLZlmESCzT1HHbImildbrzltcRd+ZCCQmo6hfCHjASVkaoeEoSV1SUchej6bDJAr59QKG6bktKAJY\nIGMF+UYvoO8xmkHLgMqC4taBcdk2fY68H6qPFzGt66uWA9SB/R3Y8Z9NudX/hovjPzKstU9aa08H\n7rLWnnLg7bN518OjNDxp/ztWuSZKc8HU/EXGG8f+EH72J7j1UTj1NvUFA5EsKErZAPP5iWCrsQNu\ngL9+Qzb8ox5rdX40Y10BSf8+2j58qRbqb46Wk+TqgZBwxTf3HKvtplpMtzHKTPV6QKoL5+ZoL3Pq\njCGotnkDcKrm8dbRF/hlGjNGjxXmb/sIkg7+yYgEvuSWL/VgpoRUb1wY38pgv++TxBG9lzkb7PFJ\nye4nRSRHfNRNvAu9sNtNykNzcl4cnZKN/pEIp2qQe+NKjyz+F4RUb7bEDwl0zjbovXjBA4Nzai3w\njh8uymH6oOctex4zAezdK9Sc8xWPXCt/EFQrm+qcMnINHrkZd89CNC+XxmcCwscagx2axp6QhMGO\nDC57XsZcIQun5uWS3D8r2eYxKdjUZjJwDpF2Ia096uxsRJDPRseaHCNCfsrzMqAZvAZ6hqFlhJQD\nE2DWsbDeCyX9JM8DyJ2jOqzm3nLzDfcWjlUNVz/RdJnmVJN3AbZGvS4dVTuaXEDP4XiXndkO8SPk\nZFxQpHR8Dah2GNlFTaprBzucnQ/LmtTrK98OcIG+eA+od8uKXEAGXQWVC4uFj6WLdDO/F0aCU240\nQmI8RFYKT32bXf13T/XtLN8qKWUgJlwc9qRO0cnzhIud1onIRno4V8WKYtPupGuFYNJaa2Sdw3Gh\nl1puLYTfFvlrv1yZynC9Mne14yB7hnOfXISki1P1WT15qD9LAdPEiQgfdwELUF32buSQ2VpZJVLW\nFRGyfkDXs2DwMSJuXiiSuwVgXtOfqXLh+31B2DcGXukD0RyQhpIuSK7yGYxDAR8PE7T/o8Nze0KN\npWckMD0TlJWV4fMd/Gq0/TJ4/twiotTbivy86FPm6TQEKrNd0fUQ9As+IQdH5FVPtskDL3gwXw/r\n8S+6mfpdVAvQGexpafiilT3/kHLsca45dY0X27ES2z4nkgfkz49gj1OqyfOHuLT14zLqZ7PPYFY1\nqolnrVfRy8EZuXkNciStwQOD8yKDfYBYEttvGuae9piH8pjLBdaYWjhxHlwxU7dnJ8GfL9JCZmg9\nPHUTM0JK3adqVfibdSSoR0HTfTQkNquppC+pSTOyxxGUEoFJIK5oYLBRcsOm7rD2bPB1Ad8J0qo3\njRJYUe0kEJ1lORzrocmvYYiz+/VD/93QqRw8D8De4cB2RcyauzszkRLp+tttU/Gz/zXk0IReH92h\nCd6kHTh2QqQEvd6ORCTnTVcHtlYE0HoVXcxMloRh7la95tkWOTOWD1Y00LdBpM4fF2EzOWXKjNcV\nPu9Sds2X1LnJlEgis3e4zh+4rKPLSIYL/cxmI0fGWeB7Bny7RZzC9a4nXDkicVsQwf4t+K4vFjf3\nBjoG9X8lwDBgl4CnEsTengVmQM29qN6tu+oQVzXDt9w5nLuVoi7yMxqfpcTxUx4/NsZ82RhzK4Ax\npocxZvRHvejw+ATj2CVw7BL1Qhu8FlP/IFz1EPzpBFm2jxqmhfq/t5nnnzpH28VO6rgyKSORbjtg\n8tPYvz6vTBpI1tZ2HG1lmDEb1bH97moZToDIGcAD10HHjZp/756lxye8jOWx/e3nz7eYG9GPvnsb\n04tRyNl3mtQYZrImVvN6QO/7NwPPJUTCCrLLhU7euAp41gOPpIpujA1ArYHn/JjTkHX9y149vlNK\nDjs2Cb9JYf/THcRiDwS8ECnD/C4od8eYR4HHo6XU4E9emZxE8wpCnhfBTjXCxl+4fd+AMnuXg70m\nrWzmTpRtyxrsha6lzMSJcHIeM22I8PHkfLG5dtboVutVOUChNc2CkHCtvws6jk3L8n9eWPfvAHPt\n6dhz45i9XgU/e2e1rfFqP0dk9VzANHgwNV7Mr/LYHYiETr1NJQPjc8p8NrDftcL1v1KrhjNehxeA\nM96AW6czbDnUlouQtRuhzFmyFqobnXX+XmFAwzvO1TAvghSu09wfr5YUz5dU4HJfR2WY0s0ifowD\njwvcGWfXn2mvXp4N78hB0re7mEFrPksZNBsWptSfpfePvF/E5XS5y3pt02O1UxWE9DuS73XSSl9E\nNV90gvDv9ViyXNmjdtOR1G+qgprpHpA9SzL+3JVq6L19nxpgF/qaeXzCQu/mYtlBvk7zdNkw4WNi\nlz6XdzPgMoypcndMlTrueLUyauUr9Fgm8v/YO/M4q8u6/b/vs58ZZgMGhk2WYRcBcQEXwAUxpUR7\nFKWFTA213NNKTVAsqeRRzNxQsTADFTNKM1AycAnQABEHEBCQbWCY9TBnP+f+/XHd5xywfHp6kn6Z\n3K/Xec1ZvvuZc1/f6/O5PtcH4d4SYLir4XbS/pyRF44I08M9apHZVkhBzDTQvjv0DgoTvZB3emzB\nYWROqeLctRp7OxlmEdy5WtgernKcLMzBNpKf8Pgs4ONhgvYfNEx9vYjZS84WKddXpu3/XINmNvrh\nAw+2MqMI3FEpONLVEsTA9EYylDDwubSAZKVXzgp1Xk3kx4GtXyqZyTQv5qYs9ud1IlXvCRDYbzBt\nwfNqIaRij1Xljz2hVGDyu0JRtOel/flGnfZH/kIkOG4wC4OSoDist9+JwjrHni4IKeoImO+l1GD1\n0qt0Y5ACRqcFkHdWQvtqAdCIFYoKj1ihG5VZVyliWPt5Lq+F8hUyiGg+ArZXKbJVNkCRQlMig41k\nETQeqX4svrikfaGhAoDcJNlukyJb3WqhZCD4d0kqGKiA5tGSQKRDypalihVJiw1zNVvD5Xy4PawM\nXvJqZeTKt8GekzXhl+wUSEWOENAV74XoWNWxJUu07USpiFsuQ0QT8CfgaWj3kLJnhGTdz1agSjK/\nXKQz8qKkn11L4LqjBUJnLhBJjdZK7w9Q8Ta0+62Ils2IvKVaJPmwRzjAzSjL50sosxZsUnQ11wMu\nUQL2ZEj2RXVlFyJi1dFJHDMQXovI2Y9RBPEd8tFBhiopmsWVi1WJi3YCqIX47a6/S79C02pq1aw6\n1t7JQypUd3ezB4LrnOz1sMwxNx4ETgC+5F7vd+8dHp/wsB33FF7UuIjKAdkwFp0uc4ifTtCc9uRk\nNSzufMBG7p5zUF2auewsmDlec17uBnzeRKkLQFmw3LJ3AudcKxnctJvh5J8ro7anurBM54mY8y6E\n+edhRqLPoZDJSoewY33wNgUzkgPjhiOBna62LLfNJSHdGB6HyAZgrpTU0K5FNWBuH2Y8wqO2QC8w\nc+Xma+8Be24SZvnzNc/msYz29Z0o/CAD9a2SPX4zAU0Gerparg882GsT0BbVi12swKW5EswVVu6T\ng1BwZ3IKNoG5L6Br97k0dmAS/uLBrPBr+RiSR97gg5B6ppmLwP4oqszZG0E4wpEpR9jsmTH1cqvM\nYnulVAOXNtAmi70R7CUpSR9BZMwH5pdFMjuJGxmO+CTLBLC9FNi0ndIiyfcn4Yxbsd+I6xxHiWia\nDffq/+i+64SNXXfCriJ4/A8i6ec/D/3h5Gdh8mLV526vUrPiQIVqtkGSdl8RJDoUXI6tF7wnSjmx\nv6OkiYGo8DHs+k8Gu0oWH6hQrXLzaBGnxiOFkf4WqTJSRcqkNffQdtfUQdwrfMz4hSl7TnYlCBE1\nf84EtN+c43Gst2SLGb/wsWwrlP0IAmsQmVkPlEPJL1Fj5+6QOhm4UKQwEwD7ivDxzX3CidIAzK6B\nz78qnC/qKnlk2Vw12i56X/hITIqWRAP4S4T78XInD82IcGUdSfWmhOMhV9tlMpKEcgpwDdBRJmPN\nZ4Gvr0oPwg+gQOxQHTdnuh9XD2CbsLEYd549BG95dfK1TtoIZPe49bdqG4FWBa3bdIfkV8Bb5zKp\nSSAA9gAl9Gd0/FP4eJig/YcMU+9mtNEiJvaHqlXgbb397VtCH5tBozwDw1KYRwIiZNt92D6uUPwY\nC8eizNNVinRSAQzLCCCaDIxOqwHn/GPhDDA3ZWG/B3NLJQzPKHq536NI4rHIJORjRvbJA2yDY0ba\n+YEpzHUZOHkpZosfU+eFSou92WB+GZK18oHX4icZkbG0wV73niKRFVls37TkI3EXpeyThvkxOOX7\nMNiBz2BH1GZeJTORcS9o4vPCzNVw9gKYuQoCvxDZyCSg4lhI7HIujxmIdZHxh69IevmmU+V02NwD\nIqdqci2pluW8zThbXR+EV0LZIAi018Tsi4P5UE0x22/QPkwGKkvVcyVVrAJfT7OMOsKvaKIO73PE\nroMcq8INmtiLawu1XeF69XnxzYTo8WiiHi5Slu7prmNGxh3xAYrc+eJQcRWUjJFhRm4s2y0gmrxD\nRLX5BGUAbXvYc6rq6UxSEdHWjc5q2WXQvCmBq/UUCsJzmcLmbjr2VO7rdVIUqiA7XHUJDavcZ1UU\n+p8NpxAtLIfijtC+o7Jou7eJrLW47fniep3aIK39TiCW0LYinSUPATlQklG0sKaBfGTQ/PKjDrqf\nzDjELo6f5Bhurf0mDs9d4fTft4s9PP7PIzUHGLgee1EP1YVdNAeaV6v32XEBue79wZGwwS5acu0E\naJBLo90F1AyARWOwN3ng8+4HNu8xt85qZeQeeg1+i6SGzdXY3yyVdD03RuzWdvqshrfAjJwod8jl\nuq2w18Qxi7wQVi2avSyKudWteyywC+w8sFO8rlm0O45dwElF6lm21C1/XlbL+MA87LxXX5Jtvr3X\nwBCrrE9nETE7ypGVszJ5IxJABDBtZALyhhcuSKm27Ibb4M1SGXCsDMBbiMAMTmJPT8gG/+qozLJ8\nVnXOm1FD6zOBsWBfq4P7/ApS5urqdnsxNcJVKi22b0pW/XVezD1peNavGrLPp5Sx65SBX3l0niuD\nEDOSNT5WJCljGh37gBTM8ap59q3ArX7MyqCaaDd64BEvdgFyRt7tk0TyuaI8GTaPhnWePdPu2qcx\nH/oUEE0D3Sx2VErf4Z1AdVSN0afdAtfOLPzfDV8CG0ezcwi8XF4w1ioNwLqEatFa+8P+9SIn3haR\nNDtUGBmrFWHL9IPmaskUfd2VQSuphuhmZ6JRKolgVRIqhup1IAq2ShhpA3JtNBnN6f0GQMVu4WPl\niyIzgSbhYHifCBgII1u6iVyFmkQ4Yu0UzIx0QdG8hcBysN+WZDJ7JthB5FvggPYZXgtFjyKpBlBT\nrwDmjJHKph35lJwvW0dD/Cxgjkhh0CluYrVS4/hLlT0LRJwJyR4RzFSRlCWelEobss5F2WSdJHQB\neat82xvKVsmBGFAAswkFMZsQwQq552VSlhQDWxOwe4Ni8RnAflnLtmyAdajV4Lpt2kekq7uX2Eu+\nqXYwohp3+oP9FZgzwJ50aMoAPgv4eJigfQpG3sDjY4apr1cU8fNFKnJ+3+Vth83CLtsMl13P3T+I\n/s0MmucbMdV21XnhnKwaUvosZq5fGbjfGb1X44HlHlkIV2agzuOKmDNkTy2B7V7JLdqoiSedMmpy\n/WsvdMoqqveywd4G2UnhvzoOIO/Y6PlGDHN0TKSu0SPAeMYLRaP0+k9eeMdg7rYwPHOwlAZkWbww\nrIjhor76u8UHEaPI4YAUdropSEj6pjA/7AXXqSGGubhSzlcrXoK2UXhtNJwFkRIVv9Y0QIkX7t4j\nEPKkVZ9WNlr68JJqmXCEKnVD7w2KrPkr5OzUppds6kHRv3CVatvajRIIhasEOPFySTGyrv4r3KD3\n97VA62pNznu/q8LhUBM0TICGvtLqe52k0HoEQMEWiDkTkUAr+NZBZIxqt4rWoMl6xAEXsVbZK/8O\nCM2TwUhrFTTcpH4wm8YXzDKmDIex3eHR7mD2O2tjR5z8rSKDOYOT4j6KFKadEUguOpgqViPqaCXY\n02SJHGoSIKWKXX1df0hdKpD0bNDxeYMUjEH6Q+sa2HMl1P8IGn6IgKhcRdC5DFkQuVRlt7lo7Tl6\nnULAFO6nBtjBiADds0KulqUDoP1fYF0v97s742/+G38iw+P95B6HeCSNKQhFjDGVFLoXHB6f9Jh2\nC8m5YIZMhsYNsHgyZvYR+uzRCQqevToOMy0rg4euO+GhswpSx1zG7fXT9bfCZUp+3BN6zFJQakcX\n2L4Zc+4BDYwiMu/IBfzyaoMDhn0CGUOtfxF2ZOHEwh2sqSZPcugMzD7AFXLfZsxlVk2Tb6tTQA+g\nEfUse8zAGkf6vmx0e+Oz2B+4GH8YORi6+iKz2wt9Ra4A1WONT0C3tAhkyMIcL7byeuy8J2S4EmqB\n6v1qHF1isd9y/cpeDGPuCyo75nqf2btNIWvX1+oRA/OY0z13dtnB99x51Bi5J/rA1Hkx7/pl1FEn\n6aV9AhluDUhiv+NVk2+fVVuadwMKclZQaG3gs7DYDxOy8IAPemUxl1nYYrAPgn3YyIzkImCEhTZZ\nSTtvq8u7O9qLEurZNqwIO9XdX+zPbR+VOVRmFNj8ShQWJNXmYcQKZUePnYK5shLzG1e3dwzQSfg4\n8ll4olWk5M61+tt+pG6G0yGRNOOVNBH+NkaGOro+mo0idoFSYaSvWHNxuEr4mCs58Du3XeuF/V1g\n29uQNJA8R47I+4a6GvDXhZH+KKTa6ThKdgofTdplo1qFSdYjYw++hlx9n5Lk32S0bPwE8O9DhlIR\nBSZTX9acWxoQOevaBs7vLZI27yxgAyS3i1wxuRB89KaUJSx21yLRwRmDtcjRMufemBiilgWRU1Xr\n7U3peFo76BjTRwPlYF5B5KsrVL6LcHAhJP8b0qdC5HxovBUablPfz1wJRBDo1FEKkyzCczsISs9x\nPUJRLJeOOr54O30P8X0KWD/UV0Fs2hxai334bODjYYL2KRlmbVP+uee7MTzfjR28wAqFAsz8MPR1\nYaRnJ4O3Gvuth//KxdHz4xie2w/YRtzAbz1qXrrd/c0VcYNSC2FE2tZ4sde5/jI1TnIyJ6AeaT/z\nKCo604tZF1CR98MOXG+NY8ai2rgff+T4Ac8zUbk5DnLgshuZfSwOyCWsdjX2aRedPDmrAuvlXi2b\nNvn2AOa5IuyJiYM33jOt6GBINXbmZtUFAMrodUpjfp/BjAsJMNceEPG9cbokM6cDR8LydhDxiqgN\nmQfPbFXzZY9XLo37twlIgl3l4pSO6hFc52qw1rtLvkkg1ZSV3W7rBtW6Na/T5/4K8jbusbYiMJXD\noeJEaHeOIn3eoKSK0UpJHUt2qR0AGwSEGb/AJtIF7CpN5Bm/smaxLiIo+YjaL8CzR+QtOhhCLwHr\nIXKpjsEXlzwj+iFkojD7PZjQA/pk4OKuknt6sjqW2LFgroG2d2vddEiEtXWHXluvjstkRSB9JdB+\nDLQ9RtfPOrDMBESS9lep8BlcXdxWnW/ZWzIRaf46NA+AeA0quM644u9+eoQn6SvsVCaiVgp4JhV6\nwBSj4KMHYIjOwWQEQtFeOrcFzUBX952UIyezwX/1b/xZG/cDzwMdjDF3AW8A0///HtJnZCz+nswm\n5j0B24fC5AcKssFfeGTwAJj9zhH37ToIDBURm3kVpmVynnDZ+18/eNulEdWzdZwlwpAOHeSCaM4P\nyaL9yErMSUM1P+/bXOhl9vkiSQ3v88NQt/+cPHE88F/rsS/GJaW7TIzMPgHm/vaqLcv1bduMMmrD\nM9jbUK+1uzyw3WAWhjG5Hmi93X676d7H3FGEWRKAl7zYKZ68izCAne4V4cmN3aPAa6BTKWw3unbd\n0lJmlDuyNtId/2tgrgd7p0/n+pIRgTzAoMTeg15XI4zpDLZnSjXRK5UtNPODkiyGwTyUVj+0N0Pw\nfFw9Pl8sgl/5hFc5nBqYVQD0117h08MefSeNHjknvwXm2yK1eWfMl4zuDVb6Mfe3LxxkGhGwldH8\n9bLj3PMVAdWy7fbmvzPaZOGPSUzTHZixlXp/eEYB4Stfgh/dpOW+QL6A6fI3hZET3f9N61YwAWf0\nsU+Eq7i7iFusFkI5W/acaUijnkd3CCOTDXoeKBVG+uKFRsnpfcJIEEb2/QKkzpOc3xsEm3R9Qk8Q\nRiZLhI8l1cKinDFJqFk9T7OOEDUMdiStHEn7Vjt5o3NLplYSRV8MyrZoncwH6v1Z0yBpfEtSdWn9\nfQqchnoXnIhL75c002QK5iAt70tZEy8XRoIyhaEjJCUMV4nkmQ8pNPluEmYnS3RsjAC2QsVS3Tcw\nHppvF976GnWtrMfVf0+C+BUQHAKdglo/hmMRtTrf1t8WSspSQOtZuo8ItXdkt1Hfz6JtujfCxUYO\n4+M/h4+HCdq/8TDdRcRs35RkEh/9/GhnAnJdkQDBgZW9xZuPbtr1evNv1qD1tZKyTHeT8CSnhV+E\n5CevIZBe5J43IFnHJjDfdOAZF9ljhKKI9o9h2SJ/zWLveR1eN9K4P+OFaxfDl7JweQY2cRBJMye4\n553RuWwC+32wH87CXlcEX5uquou2c6V7edlTcJ4CAfBur0jagBTmTWfJF3H/4rnebiCr4tNjklA6\nuaUdmFJU8xwKNznkSNpgqNoGng7QH94ZCpwKz8XhWmeiNnUvfO5FTZ7BCgjfJXlGslGRpfBeTbiZ\nhOrIMs4EI+Nqr5ZkVU8VcDcOnqC2FWpSvZb3ONVpRX4P17wDH37gdOn10JUAiQwAACAASURBVHKC\n0813lOV+Qx8IuPeCEUj2kp6+qE4ZqRwpsUmRnfTRyjoxXN9neoAApP7ragJa8jiwWttr6QsdV+m4\nZ7t+NzYtC/3YbgGNf4COhdF6pIrVDDSy1tkX16ruIPS83Kn8UZ1rosERzr6qxYu1U4QxJ+0INzjD\nkxtkDez5iWSj4X1Qtg7MkXKDDDmJqL8jEILU54E9rlzxQmFtDGido+Pdc70+C+CKpU9VRLT0USi7\nGIo+gMC18IWVkDgRKIKkyzbawf/e8o1DKeEwxniALcB3EejsAsZba585dHv9jI9Fp9PmtnexHSfA\nHfdi310Ksydhnj7ABfHmqdhTr4dnLpA0cUyl6sxCrvjH1a9Z5kKPzcoq5WrWWkrAVorIuWFGIZn7\nccgMxN3U52zlASheDaURSRJ/P06Eqcfm/Dbs1Cj2XuAClzJYMxTzSEiYtVYZsPzYpffMr7OF+rnl\nXtgYg0qrzzcBv1Wwzrgbc7sAZdqWO1nlbeQLaezzT6smC+DPcWHciBWYysnCtOt+CIPqC+f8XBH0\nTAl7t/vkAnlfAM7JYu9bnZdngvZv3wY7IYltQM3DB4G9Ni77/deQO/GKoCt+dccVcue60ScS1SaL\nWedXDfhrKKLks7DbA90ywqvdPr3fGalZYmBfnou9ejD2tTqVNixybsWv6frY/3b7gYLjcsjKwTKH\ni2cdcG8wIKXygIEH3HdUZPOtCRgE9kZE2jpl1Nuu3R0wWq5RA8qQNLArPLdPGHnDn2U9/5U9EO4i\nY6zwXR+Pj/F9DlscRi6rdZm0ClePFhT+hauEj9YrjGw3Shj5zp8h1iDsy9arbCBXW+bfpKxZxg8s\nUgAu2UvBy/0dZRxSVKdtdliiv3vOEi5QDmxzlvkhSQnNi5Bqo4cvDm3fV6uc09pAF6Maut4uXpze\npkDpvn7AL4AzhS/WCzYCTX9xPePeh3brDzDR2qWfr9fd1pQMU01eS1+n9HAKmyJXL5e6BTkt5gzd\nm3S+qbMheaWOM12h68JCtSCgibz5RxZHDhbKvn//q8JIL1BaVqiFK/ueWg10fB5KXoXnhkBigv4v\n/2bPxk9wfBbw8TBB+zcfdhFqlvk7IzJWX69C5kWoWec9brmZRfBeHfZnm7GrwthXz8TuLUgJD3Rx\n9PwqKrdGwD7kAK7OwDp/PhJoqt3jShQJDIF9NI59ug67aSk2MUMF1jn3qVcPANgxkkaYb4wUEHUW\nwTP+cdgrPAVC6FyfzWkxgY6LKNrXwK5cLYDvuhMeu1xuUumQpDpFo0QYXX9Ne1pccpaUpCf2Gr+0\n/JC3E865YdGoZqfmJ0VOa3/AjQ0oitgI9uaTBNKAPSKNubASLtkKs25imXMa5Fi4b4OiY5ccKUnD\nbdvBrIbs3RBaKvAp6gLmaCg+VmQm3AVKXFYmHZVOf2xHSO5T9ihQoWxcfIUIRNEq8BZpQk6UwE/L\n4Ijeyu54shBaq+W8KWi+WLLC6Co1jDZZ7aO5h5MPejWht1aK/LV2gvojNcFGxuh79q06oEfNHmi+\nQsXQRXXqRdPaSRFPm4aGRYX6AF8x0FV2+gCtV0DEGdUEI5JneoLOWrgM7BiIH63XAXeTlc2oHi/U\nkXy9XEnu5mIH2GMdeHQELncRxgXQ2lPHREYSmVzkkWbw3wYsg/BkoL/8Q0DR2+YegBfaniPs7eK6\nVYdfRwXTI6B4iyyWW4+AXR7UyRMK2YJDMDKf4ONQDWttFnjAWrvOWvsz91h3CHd5eLhhAu7uZ/co\nOC0Es30w42bs1YMxTXeohvbD3oUVLnlV1npvo+DdyskyeRi7GLZvVq+rm6dq22fqYX8cF5nbiebE\ntwqbs8s2a95fH5fEPOsInbNptzOjmC9Xa5m94/RZZ0Qa1haeA3CW+pqxC+wUA8+6bdzzuvAol+06\nNyyZ4FjyTbfN3TLpyB9bBdgzU2pEfSSy8M+5P94InKFzpN+LMOINbeMHwKMhWNkO+mSx30tKPeID\n80AAe68yVXYT8FsP5ttDRNhGIVyMoWvUISTyl52q4y4J6RwHobqyl7xQmRGx64xckIdnhJG51ja3\neFXn98WMzvFXPpHgRo9q7V4WztqHwG5aCjOv13dY2iKMTMWhpQTboDgmDchV8hvCSHtUEt76lqSL\n49QPDVAfudxIG5gYhpOKFMgENdJ22TT7X3FlMqf8WTXio+PKuF1YCT+/iXVfga9vRT7tCbhvX8FM\n6rqjhY8l1ch8aqlz+j0aAn2FiyYg4pXDSJsWPsbroHmtMNLjlfwv7hpQVwwVjtYvFUYOGwXhSqBO\nbsl2mzASrzAyfbxzSy6XesW/VeUEAHVHCSs9Sag7xtWrecG3G7L9gOEUasT3QfKCgruif7+IWnCd\nsnwt+hcj0BZWROG5rpLvZwOQfAAi7ieaw6u2G2V8kirW8Xm2iUBmO4uotu5Qdq3lfYjv0blGK2Ww\nsr8KbFegySWwztTDHwVqdXyRD6D5fd0XgMtSXu6+9/GQuhu4R4bG5WXAhVqvTS106afsWfpHkooW\nv4TAtEqPff0g6M6To6HNMXwqMPJQjU8CHw8TtH9gmG/d96/dYa+lkuLF0KMCGFNUsJO3S+HnZ2H/\n271uKcFuHPQ3N9XU1ETbCa2FN9LA+wYzSABjFyHwrFkNf1SE0b6FwDeE5CvnP18A9REr4ARJV+xt\ndXCGzUcrs2e0wf5R9VycYVWD9suk5BxfR/tcAFQrS2gudufXU7bOdEY3BpfMgZvu1v6GrIKzX4SG\nLnDRZXDDZQKfe9IquF4RBL9VUfV4CvUHTh5iflKk5XK1A59PYXtXYNu1ww4tw7Zrp0bci8PYmVHo\n8TLZyWG1AuiZxjbOzctpLv8QyMkxOsm56ih3wzC9P6S+4IjG1xWhCbaFcCdnBFKlSGBkqfT1AG+E\nJW0sHQDvtdXDVwT0BDtQZhXN66Q5Lx0Ce+OwbSOETwFPV8kXy08QgUhGJIcwp2hfqSLVxRXVQcl5\nrkDbKxv+QASibeVo1TJKksf6c4BtmtSDTbIOzpE/X6OcDb1xreNZK1D1FcONK+C8vwA7wCQV+UuH\nRPJychEyAtbyMxTty/hd37cSZ8Hsc1LPHSKV3l5ar7GXqwnoCuZ1gccHe4CnocJZ8MfLBeglfaD9\nchdVzUDDj1ENQa6+bj10PBO6uZcm4xp+jtB2GSEgZgPsfgf2LITYLcrSBfeqCP6wg+NB4xVjzPnG\nmEPjlnJ4HDTsxkHQdSeJs0ugbDPm7izceJbm7dwy5VMxV1XLkbEt0L8ezn8eM7/8YGkfSObYplqZ\nsd/egamYiF22ueCY21KK/dNmzcuBzcqgjH0flnUqZLfGz1WD6hZnE5uTJz7kGljfn5Tpx1sU1gmj\nfmfnZbE3u3+dEJhbgK+GCjd2bcFcbUWIbnJ3lV/MYL+eUNuW3HmMR+QzDOZBP6YmIJz53TzsdSfB\n9Eth/gQRGYD0OKiV0Ye9OAataUi0QonF7Papn9xGP/aSlLYd07HYlauxL82Di+bqOj2N4uJxXR9m\nyQ3TblkNe4qU4XKZNgaBvdsrw5IKsO0z2J+8IeytM5Lzj1Wm0l7hVTPv18jjqrkIuSX/NA4nL4Wm\nUaoXPP95GcPMukq1hVGBkTkOEamJSWhSzbh5OgRn/1QGJJ0yELaqHZ9UMNqyg5Pw0wS8Ec3b8tvv\nxuXE3Ohx5C4qU7ADlCn21picjwNRnhij64Vr03OjI+Of6wy+UcLH9HeVtfp7GPlGWOQrFSlgpK8I\nUsOAnsLHn+8QPvorhJFrV0PrXuFjqBJKRjmHyKAz0NopjPT0Fj5mAhCqF0aC6qa9Kede3KI6rtYB\n0Dhcn/viwol0J63riysL1dxTzxMlwhXTCbI+OPsPMtaaWCSiZTIywcoZfeQk9Y3DhI9J16In2VcZ\ntmy9iGm4k4K+JdUKYoKCrZ4MlOwAkwb2ODXIM4VjTX1e2cg23SG4XXVtvkYnEV2PgpEhVxN3nwKW\nxPWZyepn3bIB2uOwPA775kBiOSQWQuIWBWHXpyVztN/j8ND4p/Dx0HuYfIqH6RCDN+MwIAQjwZw5\nGXPMn7F/OeGQ79sz64AarQGzsIsnQ/1SzE9OwlZk4OwATFgMRy8pNK0YsYKCf+oB2/pVlAfLysB4\nXd2ZyUcmreuDQSPYk5fCjOkCsa47YfIDKgYvbYE21cCKgh3zyS9o4y0l8N4o7HRl3DxzYmQnhTHl\nN8J2JEU5x8J3Atjm1bBzqOoOxqNGnsd5lW27wkjO0cXAz4E1x8slKleI3lICD18A87+kmrCKStWH\n7fbCmTGssxK2JyVgtBXhqq/XNquKsLVRFXg//zSMHq8C6Y+MXLQQEDE78PmTl7hXP8EsvxsqgWRv\nOHETO16Blz4U+GQSkF4Jye6aSGdG4fvAjhSUhqBNW5EQby9X4FwHXbsIoFqScFJAUZ2Gdc4k4zgw\nEbDdgC3QvAeqBoF3hySBNiPnx3UJ6OR+zdkMFD8HZoyLEpaqNs4+D3RSOwBwGvekpITpYjAxqFgN\n6XOlZQ9EBKCejADH58AERODig6C0k8CzpgF+c7widOEqnXu7W4HuYG4EolBUIpBNPwmRPq4xtcf1\nsBmm7diM2g+k6mD/O+B1fW88GTCbgOWK4pUD9FPWLzbB2STX6prG+sgOuHwb+J8DliGwyf00tgKT\ngA3KzrV0U1PsLrhlFkBiSUHmEURZQ4CJ6+ByC4GXgW0oSnwIRkvy7y/zbzKuAG4AMsaYnPODtdaW\n/n88pv/4kasyt1/0wMnO7rylRPb3LaVwNJqjrr7+4BUjcd3MHwn4atRAOW3gLx4F4aiWNf/kBzAD\nh2IXDIWFKfgBMEc/AjNwKHYMmIvBrkaNq90wF4Htdz3m8nuxYxdgmIgF2BaHVQYmBuHZaEHqGLZK\njTxRBmNd8KytAnjmolEiPy8ZYdTzHuw3U5gmD5wbFFnZsRRz1CjJFHNyxqXAPKBtHWy5tGBJBzKC\nciTVvBmS6/A9Yey6IFSWqHa6M8rmPQTE/dj1cWXHBs+A2jHCpIHrdZ3nTVIvTX9IAcXZk0SaFp+o\nncy+DJYdj31zMsxzuNfGqsZtvweOGgWnZGG5B/vKasx3h0j1scCrWuzj0LlhRJIB85UQdtQc+L4j\naC0l+v6XHQ/HLoG+78JWsD02Y0ZWSyXyvh9SYC+Mq/fosJzmzuHe6e76pB0O5xQoTZ78+3nMrFMm\nECgoU0Dr1QyAmsGwtwP49gojo5vY4Rc+Zn2ut1iDMOLe9jCiDMbwMRi5Tfjo8UHpUa6eKwDNuyHT\npHnf64eLNris1jpoboTeXaHtAMhs0742eqFbb8DVefkrIPScyE0g7sxLklC3TMHHVqc2Aak9Yv3l\n6JtxQctUsX5fiRIRmFCTnIsDEWXTiupcW5tWZQ4XjodHa8g38/aWQ3i9kyQuhNjjUs6kIlD3JoST\nwr1kiZNiloN3MKSanSFKQjJQwiKYJotIVhzYKtOrTmVAD1fyEAGzXySvNKrAb+YDZR/Zo2MAKBoN\n9tsQvwbCQblNpop0LSoAz2hgFbBBJDBBPnahHq0vwPXHOoOQr4Idc2hKAOBTg5H/FD4ezqB9zDCl\nLrX/qPPifg3sh/+apg6e82PQKYuZOCrfF8zcn8H0HoW9zM0a3VaLKIHA57kv/e2NuXHlXXXQMatJ\nfifYF+PYt4FvzdACNYOVHcsRotRe/V1znMjSH3rAI5cKCM5/XoTwtBd0DJfOgP2btc3bwHNfTAXN\nA7OSd7RxhdvDhiqi+CBwqlXBdDVyp6qRU5ddimQa88+D107UDcfMq6DvKvj15fCtx+DYSviDZBV2\nYEp1ZiGrR8Rdr1MXKjvWrh02FRaoRDyY2MT8+x8d+eX/xmcHjR4dINMbAptgE7x+AczfKPAZ9wq0\nPVpZJeODW/oo5V8agFLrJH4tIhLGB/5qGFisCOO05foqE05Clw5B5i1I9ZBEwieTSx7cCntd/xFv\nQIYdA4uBJmg3FIq7QHiipCGJDooMVhwlGUn5QNRcc7D+rT1ZkS5PTKQrUaKMlb9V7yfLnd1vq4An\n18MmWqnC7ESdjmvGSNhbouxZqkUkMXsOpI7V/ZfxQpseApbIUEUWc85U3iRENmo9T1DkzHih+EjY\neSwwWPV3AGyDUqfDb3lGUos2tc4uP6P1sm5W8+8AOiL//JB7nIKAbDmwVc1HPUXAIy6DVouafSLg\nqUMBxt0TXQ+fKg4ZKfs0DmttG2utx1rrt9aWuMdhcnaIR/IZNF+f/aLIwsB1mP335o1BAM2hs78m\nUvLDx7ANX9b7l/wiX7fFr73Yy+qxT21WEC4GZvob8NSAwnYenA9nXw8DW+UUPOIA0tc/JMwYu1jZ\nttJZ8HunnlgwUeYa45oLuFK+FEbslusg5DM0VGYUcPttYdP2gqR+hLlebGdoOXu9F3OXw5RzR4lI\nIcJIn7TuFk9eCju7a0Kt2qa/s7+m2q1voxrpL3sKNXQnxmFAo4yoFiBy9xV3npfMgSumKmj5+3OF\nf8cu0d8Bq5S1enICXPILmDIdvne3NGYrjy40eb7hMu1rLdinDGzxywk57M7pLTBjhkrGWOeF55KS\nUDa48z5Qxgkigr2WOoLmfm4jl8Bd06BbNeYpi/lyNfb4lCz6KzO6xreFRBBBteuhj9xA+6wMVlyv\nuJy5lnkwWFimMvOxrXJM4g7h4va9uuaBTcw9RRiZ9cnxeNwrwrMcPpYGwFP61xiZSRbwcdTCAkYm\ndqCJGefcWCWM9BVD0QS9v3k3JBw+FnXVNjxe4WO8Tni4v6eyStneziV5LBR/CK19oKiBfC/O4jow\ntQpsWmdaFW0LxX8WZoaahJVZP8QGO9mkw7birmrY/WiNsmeJRtWaZeudrHEJ7H3QBXajwq+2x0gG\nCdp/OqSaPd92kc1cg+VAhconio+F2ClIalgL+7a5eus4sAzavaRtBSMKnvricob2RyH0KtAEsRxG\nbgPzAISv0evQ7dD2fuF/vk/oO9CyRM2ot7ivYpv7yJuCxz8dxOlfMv5ZfDxM0P6nUbZZjn5jF2si\nLW2BgevwfDVWMLU4RMNe6r6azmDaTMZe7ZV2P14Hy78Lb54I/hhkwJZb7Fefwr56cPbM8w1nMnK/\ngVNLwOPDrnX1XfMmwREvwowb4cilIkLLjlc0DgSMsy+A7F5oikHJXr13w93SRCbdMuNeEPjOukqa\n+15LBZgRAy97BEjjfZJtbEaSlafTiop2cvKPGNiLEurhtgtFK6ffAeP+IDex9Dg45w+KzlUjN7KS\nbAF4SrKYNQEVWPd24dH5x+r8vxGTjHJNoBD1+2dHdi94N0nqFgESMLOHmnXODQtc/KVQVC3QmL9R\n0R5vUG6PvAlFNdpUuApmb1Yzy64lkG6Q4YavvSbUTD+gTmQrk4CNfeHqfnCEy8DF92miblilwuGm\nrMiOdaV1XjertrxfaIRJk9bNlEoCkvG7YuQiZ+6B3K+ae4i4hZokvUgVK+MU2u0khYNkbmLTapPT\nOeuijnVQPgCSEwo931J7dF3uz7j+cGl9lg6JFIY6uqJdBz7RncqIdXlbcpR4GWpC3RFaEspqlQ6B\nyMkFp8d2b+vYghFlz9gK9ID4ExC7HxG1PyEgi+szypTBoz8EJwHvOAMRNDlmUaSw9zW6ltOzkBwG\nlBz66OAn9Tg8/vNG6YN/0JMPx+Xfs9mpmsdnnaYa4T9+Dqbcpb5mudE9BL+6EXvMVCkKfhTFjHRR\nlyOcZD08F0a3YM+foIzPzomYunuhohI+qIPn7oV7zlJ91edmwH+79EtpC+bcS+HtOmzHWbL5B4hV\nghklI6eB6yFZjX3MYG+PY6d+kN+/fQjsDxKYtuQt8+0ihL3HueM/PQSL1YLF7nRZrmlT82ZRduZC\n1YONWKHfexiRqqYOENG1sktRvXPuui0AAn74RVthfDVgK0V+dtUJE2dPgm8+AuV7hYUAY34lhUhp\nBE54QZq64Uu03zpg2CoYvESyv5YSuH0CxF3t2gcIAxvAjvML92KScdrL45JZPoHS+iGLPT5Z6Bu3\nC+Etbt9fWCO1yWuj4fEbMdXAX4zq2/qmZExSkZU0cWqhvYGdGZX0f4sP3vdL6rjFh70kiT0QKyMe\n+IJ7nSNmaQrkGldCANglSxW8TaCWvG1gYlyvT34W7llbwMgD8XHH/oMx0uOCZDl8nDK8gJHZtAJ8\nOYws7i4ZY87MfGNfGDQYEq8IH9NR4Y2/VL04Y1tg71JllLwtIm7ecmhcIeIVai/rf7zOlbnK2eBH\nVR8W6QztNkHkWuGS182xqWFgdxdqvK1rn7PK52R/GZGzYGdodwr4LoT4Czr2cJXIXEm1cDpYoX5p\nyWLhbnK7ziFYCaZYtXhZF7TMJoSVrZ2AZv3LlyGcpIecK0GBVtY4TN4JJWtRL7ZvQ/QlYDxyqqxF\nPdXKgf4Qv0i15+WTyQc6/QiDQfjYASliIsfDTQ3OIKSEQzo+C/j4H0fQzPTv/HPrH/NnPRk/F7zV\n8NJJIi6dgYHrMWddhO06Q0B1iIZ9JArrotBTk6L9eR0Ur5YW//znFdGD/ARoXj3l47eVi7rNb4Zy\n1+csMPQgWUo+K3bZI5IlDFqlm9gYioJ9iABnPwKkDe6zne7vOS8oUhhHvXIqgO1GdWwLkNGIw2oz\nHnjely8SNxe5ZVYGFDlcH1ed2gzg9VGY/xKomitHwguTFVGsKcYsCalOYoADlcFJ7LBkoWE3YC9J\nYX8UhTdjBa3817J4fhU9aLl/eKwC3nTXoz/4l8HYlfpoeX8RkKnLwf8gXPRHOL+Pon+5zFlOX15x\nlF7viMiOd/5GmFML9e0hsweSg7QtTwpa31P0bVkt7Lfwdq2Apa2LCJb2VSbNt11F1vWrXUPo7pDu\nJvKTcRO5t6PWzWXksmEdj7ccKNfrWBdN5MGICqWzCYHi/iqIXSL3J3+l+rzc/hcBTDYNsWEifQDv\nA9N7u+MbIrACuPQDtSowZxWilDkHy0CpZJI27Zwsj1LfuNQwoAxa94g01QFr34HQBCiZUPhq4p2c\njXM56u2y1UUO3waC0PJbBEBN7rFcBJTuKAzYUfKQBAK6aly92lad130t/EvGYYJ2eHzsaClVturX\nLygjVdPfZcsmKYNz8i7Nx4DJzMMMHArnzVCT4R9P0Jz98B35zdnxl2FGVMOIFao5Lo0USNOyzdC8\nWjjSADRUFow2Jlg1xP72YhGQKdPV/BkcKSnFfv+A497ugTcnq7/ZTRlZ9XurRZCODsMTKczKgEjI\nImSO1VEuk3Yecjkcj4jEBxQMrXbfoUzdqVZZrKfPgrum6MP6DoV2A2eCuRW5Li7UcyqtZIQ3t8KF\n31EQEBTAqRkghcglc0SEQHejMTQ57EfZuuSmvOEVte46tUHvBXQ9c3Vidi3Y34B9arOMPBagDGFO\nVvkzj+SSz3hUS/0W8IzBLAlg7lavODaDWe9I9+pxmJGSnTL+JcxTGZUrfCcqO/4xRdi7nJzzfb+I\nmjPOMiuDWq5nGpOTOraxuk9w5iE0eqAki+2TUg3bwoAIXc90oUBmi0/bAdWljYlqgs5hZEAYCXDT\n2wWM/Cg+zn6vgJEfxcdF2woYmcPHHEbG/izi1fqecGNZLby5EVJuP3vCwqB0VBjpLRdGthmiGupt\nlcLH0iHKnEU/FGkKtXc1WmH1+/Kk5FBMOdT31vayARfMrBYZ9HVXHzZfZx2/r0jH/swZ2qavvWrl\nMgnJH7+yHBo6irxl07BoD/R7GW7dIjLmTUou6WmnY0zUKQtZdIQwN7rT1aT1gvQQIKh/vyTystr9\nUyieqIyedc6LLT1chq8TMEllBuF6hH/vQEszxLZB6zYkH0G15zQhZ+ZlCmCGUU/u7kDpJAV6S3rp\n+27Tk0M+Pgv4+B9F0P5ZcpbfzqlOkNvvRck93HO+9Rj2uCECpUM0PD+OYe4vUgPJKV5F0QDOfx57\nt5s0PbE8ebJBiz31T3+9nfNj2LVOw/5QEo55F55y4NnB9aWp6Q+TZykyOPoF/bLTHfSZFwHMNnS3\nuhHtswtwFKpvcI53xMPQcxM8OUEF5WFk7duAwOIhsO9sFqC+5QqfNyOL/7fAjARK1MiaoSEHcFYy\nkziYC8E+LPMPMwrMY0XYn3kwFwJborIgjnjk4JiTJ+72Yjb6pak/UDOfQrKOXH+Xf2CYnSoCsGdb\nAfB6dKNQDstbYXkPGPchBJ6FO7dDl7Aigzv2C4SaaqDsXah4G4r36vWTdfp8eYP+XlItqUeot7JO\n0Z1QPg6+3Kqs1LV9oG05HOlxAFCsiFsumuYrUiSuTXd9VlIt4hOuUsTQZhywbS9k2Xyt6kOWaYJs\nVMXNwQrXLLSd1gtXCVACQ2SXb3ur7qw0oKhmrBZa3oF2C91x75ChxrJaRUXfTqpQenaN1hvRLCLW\n9hg157QZAc2HcfWGMz6tl0mImPqKITUGiqdA+TUiaSHAHwSugZK35ThZ+n5BdkITxE+VNDPtgNWP\n/hLS3+w2CL8AsZMh+g1In6B7qjAKPPtwmbUeUHEr2FfA/9dlnofH4fEvG7ka6NQcoOtOzOhRhQ+7\n7pTiY9otsK0Be7FHtustpcokAWwtktPQKc4edewr2CmDRaoA87nLsPVLMfOfgb7VeVt+QPqo+efB\nLS9hfzdPGaYPx4mATP4ZdvRZMOtbmGX3Qq9KzMNZCNdJUjkwo+VHgj3Hi701odo0kOHJbD/2awbz\nOLAyKpOLB3tgcr+37a61Sq5f1yjkUPioK0GYZkSqZk8SJs26SXXUpfXQdSsMzuSNSkxbNAeArs/w\nYrjrbmX73kMy+1xd38glsPxE9fr67ec1QSSRycl+FMRsQpNGWxTcfHiaMmk7kQKlw15l9Y54UVLH\nvtU6ljjCwu2bsVtWY67P6vpsQsvFUPawkxpX596zD3vgL6OUaWwEJmUU1HzGC1+0mJ8Uqb782bgM\numJGJlq5kTbYYQllNSMeWeovDmsf3wop8wYidBEP7FMZgb0sWpBIZRGrdAAAIABJREFUbheGmogH\nc3kR9FQWzdwA9IIuCXT/sBthZA9gRAEjP4qPd64TJoa2HYyPd66D+1YXMLI0AMGeBYwsHwdlfYWR\nmQTcMAhGDoI2HYWRJRuFkd6gSNCBdvW+YujRCP4SPY+2VfAxul4uiYFSkTRPUEHL2BbwOPljvsnx\nMbola+N6upmknt+zVrXhlxwpZUvzCu3H/zthX21A+Hj2Ah1P7wUioKUBZ0b1AhSdDaHPOfyNCs8z\nCedumXGBUXdr43tHZiDdJkD7a8T5Ow0B+kHZ8xDeJBJVtlk1a9YL9FeGLtSM2uyMFkaGz4TifkAP\nCM2E8FpIjpU1f0uzkmM+lEVLAAwF33Xg+znYuzg8PqHxH0XQ7M0/AT4houYiabbPDAHblLvgyQmY\naWv0+XU/w/j/7zLHXI3b3xxhJHcYhCbnIytloftGEfzwOi2T5O+6yZkpGck5LtgOY56D05/VtltK\nFGl8/XTJOGIITHYdrRWzYYFOGWrMC/pF5lQPt02DJy6HxqO1bk1/eOdoZRoHrofm1QKeS2fAjTOg\nz2rMiGpJO9rKTMTmIo6bgQscGJxq1T9nF9grDOaGSoHoywiAH40rO/cWmJsz2EtSklzUuSjfYJdB\n2y23RntiHLMygKnzYgekMDV+sl8sxo4uyDz+3vDcF8OsbcJsaoSYwfO7VmVZ+yOCVgfUo1DSQPT+\ncMALO3vB8pSig4u2CSz8UUh11QSZTcBlfQVOdIVZp8PMddLh+0sh3FOEq/FdmHuEJnuAul3QFBBx\nSbdKY59ymZ1bNin6BiqM/tCdqk0rqtfhJNVzFfWHsoGwMOBkjgnp6wMRAVEy4jTxAS2baBT4tO5Q\nw8yZq7TdHft1bt4iHa8dKsIV7qSI59jucN1WGPlreHmnIlazToeT16hWLidr9BWJjHaIiFAGK/R+\nfJ+OPV4jMw9qRQ57uX/J1gQkfgps1XXN+mUosr9KxdyRzg5Ms8AeV2e/DdbtgX3LXdFz/4Ipim83\ndCyD8o4QmwPmMXTD9TQwFPacB2MvhzN2/a//hf5P49OSQTPGPPm/ee/w+ORHci5QMwAbnApvTYSt\n1ZLotZSIuN3jGEjXnZqj+2yVcuK+m6ChC2ZItT6ffx7m5jWYN58BJy3kl8cpa9Vjlub0XQg7zn8+\nn51j3kTMxZUKvC0aowwaKFM0owd85XrsFR44slKOwHe9AcdWYsLI2v7bQfCH1O9smXPhCYO9c3PB\nPXCKV0SmkXx/TrPEBfEGgX3zRUniAdYVCSfHLoZIDC6+W8c7FsxvHXhNSsExVs7FDzlSN3AdVM2F\nM56BcB1Md9b1UDinBnRtR6yAOZcXMmjumDkSBeuSkLf77RUudPfN1aN13SnMfA2VFoTrdG1HrIDW\nofC6R+f7NnK1rAZOTKk2bY0PjsmKlL0G9Fmta/AW2O94YRHYWUXYKwx8Lg3rYqolmxpQdqxnWmQr\nbjCLQ8LIbhn1DE2bgqX+FVllyUABzt1ezO4Das4qM5LHDkwp+LnGJ9XPFuf62CkLGdh5EvlaMeoR\nPkIeIw/Ex7FHwNe7CSPb1B6Mjy+ehiZ8h5GlVhiRjgpzGt8tYCSIDNWshWhEuFXUVQoT0Dq3btHr\njQ53jFeEJ7JZGOnZ5GqevfC7uI4jUELe4MNfre88GVHLnFitMLJ1ozJ1NiCyd12hlSAgQhnfBynX\nTiDXyPqdc3VMO5PwxAbN2esMpEYVjjlWq3qzRKPKFTIJkU1vUCQyk1DW0WQQXi1UHHL3O5DY4A5g\niTCupZtqyFNFUsd4Uq6Wr72W2QM0LIQ9G2DfEv0ftrpbQ18jlJ4JwTLwzBI+BkFGXD1UrpBYKHy0\nww9dCQB8NvDxP4agmenfwTxwhSa66Xf8/RU+buzoosl54wG/rkVjJPubdosse99wDlSTZxX2X1+P\nZ84/Rtg81xSWN/1jynrdHlfULRLH/jIOJ0+F9+rUsyWAnApy5GnQux+7bbtltSbjRlRMvvEY+No8\nEZwdXeDs32A77hGADXkXXrgcvvyGoqPTbobffAne+hIcgXLYR1GYYK+fAhc8ogLpMgrAkwO185+H\nU18sPMdJOSZYyVXWgrnaYm8Dc28WFvtVr/ZrI+vitS5rNg9lu2KoJ9ppITgvrXNo9MDX/ZiIgXFB\nmXt0bKsMWhuLPTMmcAlZuUuVZMmOVG2mbdcOO6j8734/pr4e+5WoHK3iRqDUKY35wlDJHEuAvfBI\nFUQHoqyj7aBrdjoypBgOO/fDE5tguXNS8k+WrKBkNTQvhJFZuLa0MFl4vPCzD90x+MC7RZGzlqS2\n8YaRsxVogvYGFeHLpmXzP+N4AUWPRhGeUKUAo3wgtGwAb399vqwRzkxq234XKUw7G+LyAVqvfKCW\nDVaIKOX08lOGi6Tt2A/PnlU43lkRrf9KE4xbAMt2K4J4hjve0gCMXCBpZK73mb9U59DhJB1n4wpX\nL+AK+NNRgUjJToifIFeqyDPKovlwk9gC8L8gAhyISBqyv0pAmxgA+4aqn5uHghqpBYg5ACrd7uz1\nH9FrrtU20p8D4q6Gbhr4T/27/zafyPi0EDRkA5QfxhgfcMwh3+tnfQSG0ua1mSIN5z8v6aIbZtBE\n2D4U++5Sycv3HYBlWydLtrfseOyT7WQUcfO92BcPqE261IP5XhimTZUNP8CJBazjz+Pgm5cp07PL\n9WMb+4r+5px3z/4N1AxQ9qsRzGPu7vbkqXIP/i/1OmNhSmYdw4rgS2lJFQFODGGvjmKud9maixzv\nGYmygu8uLahLGoFpU+HBy0Umc4YkbcHEHpOVfs+0eoyBAnlhZMl/A+old/4LEAjm8YqB64STR9dD\nKgwnvStsPHkx5tV74dxnIdoB+qH5viQs58w2QH1MxG7R6fqsDB1X150KYl4xFb46S1nNgevgorn6\nbJeOmTgFonxWFtsrLSUMYG9fIxlqhb5XOy4O7Vfrez4HzJNR59DpTLMqsiJccaM6sVwm7Ex371GS\nhZcM5n2f7hfqvNj2GZE5gJbhql07Uf8fpsavvytdCqoiC8NSklDu9ur1XzywCm5rhDM88PU0xIai\nIHBvhJFdKOBjJ2j3yF9j5EfxMYeRM9cJb7LOTCuHjyXVWr9NHPZ1UlnhAzuFLcsjwseSamFkshG6\n1Urp4Q0qC1U+UM/NkbLfrzhKOJWOuLY5QRHCTAJssoCR/lIFKAkLv9o5YyyAAUE4IiTlSLAttD9W\n6+XI3pThEPiFyBoZoAh29oEzimWqRdDJLSu1vq9Ix7N/m5OC1kC0VgTOdALfq9AwFiJ3FmSIwY7A\nHGSjX6xasWCTSLCnnYKaLcOgqQc0z1QGrQHdzuS8hIpXQWCv+99cre8yHYJdF0DzG8iJcgNEvw6Z\nX/IvGZ8FfPzUEzTPfR8hRb2W5Btu/p/HzKtUfDJwnSbl0hZYezT86URNqjfNFIkBzM13FrJhLysz\n5nnt7xeqmBnkv7rc+tZp6u0iFBXsEBJIXPczaHHSvdKIkOqZL2HOqj5om56vxvB89QCr+F8YON1F\nQKNJsFa9WgC7R+Em+9Wn1FvnJ/dKUvLqvbD8RgHJjdMl6Uj21i/9T6MFNmUIkDagSTe4V8XTALO+\nJRcr0HHXDIAdXTBXgr16n/Lu1cCrBjPdYh/3wEkZ7Burdd6XzFFd2mvIlctnFZ17vivmugz2Th98\nKa0s2G8SkmZ8HWW59jRg1jYp4rcyiJkXhNk+bEUWszDMPzr+lqujWRzAbp6LnWixl1jslZaxR0Cf\nF1BW8aI5UNsb+m2DHlGR6u7ickenwbYR32waAIFFUPFL8C+F+ZsUTRtRJT09FFyd6OcIVa3eP60U\nNtdIW9+0TsCRjirS1/K+nJ5Cla6XzEYY8hs1WH7X2TTnCqaHWQFF47uuxsyrSGA6KhAKVMhUxJdr\nu5fUMpmEjuW+avivTqq3u24AvOMC2fu36TzqL5e748hnRcwGlAmQzqgSsVvWWKg5KOoKsd0QXwwd\n1kDgIWej7DJpgVYZgQSicpQqWSsJYnCIc6yqAoYWooNFdVJjefvLbdJmoOxHAp4Eii5mgfBd5KVO\nNKEmpLcC8ULz0NafCrQibp1FP4dF5x3a6OC/+zDG3GKMiQBHGWMiuQewl4O8+A6PQzZWOvI02bn5\nzp8A33gGuln12srVU+UyNDdPlRtjab1wpaY/fCmj908LyeZ9LHDm3IJTY2fUhHr2JG1nwUS9X9Mf\nhs8QTsy+rFAXnSM25z+vZRxE2eleaClVE22AC9dDtwzmv/3KBMVEnHh/s1wIL0LNkV93tcz31Em6\n1xZIxVXrHAM2jCsczwWP6O/Mq0QCQHXKuT5i01zt1RYffEnP7Tzga1Nh6XFw4iuYNpN1/GtuVF+4\nsWAm12NOqYYPRmG+WI19MY7pPw4GvyVL+xtmiozFkJvyA9Ngd0wuxzkrWFBLnN+fq2Pc0UWqnBk3\nu+/uvLwxCiFXmnCGVZ+yN0LKLN6DnJDH6pzMrai354xB0D4r0vUauome41emMSYpIyGbrxMzK4Kq\nG+vp7Pe/YGG3T2StIqt9Pucm/dLlmDpP3hzEhl1D7fYZzJshzM/D2L5p7PEJTKPKDNgJjOvA7Bp4\nuVFzfXIJdFlIASNz+LjochHKj8HIg/CxXQEjQcqPdFQujPE6+OkHwiVfEVTugh0GvhEWHh3ZoGXr\n33Z13UGRtfge1ZftSMG2/cJGm5aDZLoVBrdK6p+OukCo69UZdgHHX++F7VWFYGJRF60XqoRIjfad\nSSib9vMdcOliSR+b3xf569oGyCiIefeJyiI+4lrunLkASOjcsmlhZeMKaLceKn7nyhX8CuiGdoP/\nfdniByPKQhb3g2IUXIwBbJX0P1kiopb1q0G3L+6CoBnInFeYXppwSWJXDhDvBNmOwHBIPiYcrmmA\nDguBKpGJtkDRM8LIz/L4pPDxU0/Q4GCSZn4QhfnnHURUzPj5H7uu6bMW02dt/rXdcwTYSgHTcldr\nNmKFHJm++bie52yFd3SRde/NU2HEbhGuLVG5Mv2dkZ0swmD6O1nBNKt99g+pJgtkoztrskAwFNOv\n5cbpAqB7HjvYdhfIPum2eUJMcgnAPnAtts9G7ht9Ga2nLsJuHPQ3m1mbA8oYTDUwexLmnErta9nx\nrjU9ihwesU3vdUG1aFsQUeu1BFr2Fq7Z7K8pMnjJLxTtPFKF53kgKnGT/Ze9mAlDMQ9bTLs7YOcB\ny6RNob6sMgP3JOEBH2ZFENu/HNuuHdnbHfnyqcmo2eLDtslCL7DXJuHMZnjH4HmtBc9L+/H8WO6O\n/8gwawKY+4K6kcj3RNPoUWrZOQw48RG9MWkNZmylZsXvPw7HQqQDJN+R3C74gDht7PMQPUcT5Ydf\n1aS8Y78Kmb89VBG9ZCM8nZHj1aJtcGJ78DdB5/ay7wVnT3+A0UaiUaTGG4R2oyShKA2omXZxPyjt\nVyBaviJHgnyFQuW3OqgY+eV6EbniHlq+dACkOktSscPJeyJ+mDJUUc2TqiRV8ZcoYtiSlC3yi+O1\n/xFVcPlieDmlzwa2dZm7SslLMgmBBS6Y700BawqukYly8CyXa2O0r8oJU+9AeAiqdVgvAApEtGy8\nHFKbFTHssBpaXRuDIIou9u4Hsa6QOlAqnFAEN90JWi6G016H/UvlBJlFjTr/FePfPYNmrb3LWlsC\nzDjAPrjEWtvW2sNtSg/1sH8Ow5zBJP/0Oc2x025RvVVuhMHc7/5bB68Wlk05QFlyyWOYmW9gf/UM\nvHyHbuwXOR2Ys+c3f7kj33sLUE1wn9WYx10XtrGLYU91Iet0zt1O5r5Ox9Q0SvLLBvImUXYe+n1X\nOXwKzxVWHYfqmLZWw4MJ7NN1ImaLUCuYzpV54ylGrMi7NtLgPr/uZ8peDXHa67N/A5c9XrgWS4PY\nqzzYqX74lRd7iweeTEieOXsSZK6GO5yc0dWYG2d1zhesjjmMMLrERXRizv3yTUeUr3tc9wSLxsC2\n0QrU7eytVEQ0Joxstxceu1TEbNotBYzcU63M4u1xzEyLfRDsFAOPeyVvjLks5CDgvrjIWbmFXmkR\n2zVOEvqjKOYmK4Os0XH1mXPqRHN/EfRMYztloH0Ws8WH2edVti1u5OR4Txg6ZbC31SmoeW4YnvWr\nl1rEg2l0hVd9U9huaR3vmoACqZVZWOGDL2Zg2fHs7ApnVIg0ldU7YnXEIxAfJXwEuOPev4uROXyc\nuUrb2rEfrmwvfMxhZJELBCzapqBln+7Qcb+IFggfUy3Cx4wjPbM3Q4dREG52Fv8B4WMyohqyTAK2\nOmwsHyDL/kSjujdYJy8c55OFf1FXySSjbYSPNq26OF8RmGLVlH1jIDw2Gr7ZEa6sgyHzHN5fKaVJ\nTb1eX14j6ee8s7Sd/dsKgdRwTxEsaqH0z2oB4N/qeqYmobXKNZXuBtHbwF+mW7dwUOtk3K1psEVm\nZZmA3uv4OvjOEynzUOgjXzoa6r+n2rNgBDwbgB4QaJGSZf5GaL4IWn4H9gmt/68anwV8/FQTNDN+\nPvbtudgbwXwg8LGvAaUtB/dq+eh6N9+JCSvkkSMr5jTZsXvui8EFs2TlHkMZq5MXF1buX6+IZded\nyqxd8gu9v7W64FhVgZpc/0/HfupC7D3k7XXtU79XdPCVqIw2cv1ZLpqbL95m89GqL9jRBbvK6ds/\nOgahRp/rw4VeN0BjYyPWfnzU3651jxzp6x5Sn7Si/8feuYdHVZ1t/7dncpgZkiEkJhwSzkFJRA6K\nEFFARUCEqlSkYlstB6FVW9FCq7aiwlushVfw/IIKihUsYi0qIgGKgAeIIhEx4ZAggUQggQA5zSST\nzPr+uNdkYrX9+l19tR9XXdc11yRz2HvtPTPr3vfz3M/9DBFgn10XjYzm5CmD+Mo0KMpU9sKkgcca\njJSnKaK44EGdK3+19PbFgGeLQPFCIATOzUb1CAAVjkAHMJ9uIXyHV8YhiWH4s3WQuitOGbWA82XH\nxl4iaya1CTOoXgAyWg5V5lgnuLQJalyQEFZdnhdca2v4fxrjm6Jk8OvGEWDmlTB3lM5jd1Qbkg6c\nhta22L3eNp/0rlKzZ8/1MGWzpH9LPoNiH5xs0C25L0zKhqkblY1qqIKTlXCg0Mocjos8NdYpUna4\nnRo9h+u1uFc1iGj5jchJaY22u+iUMl7ZW+Ty6G0nEPK2h1GddH9hucDGZTX6oSqB5ttfCMzqyiD2\nCwFVdjLcuVUAutUlM5OCStWgRWrRth1FqatTsOuHaujdWAt1r0mikfiwom+8AKwT6MQEwf84JO+X\nvv7EBPVmCyaB8zTEdkYXT+eoiDnsVt1ZU6zAK7FMclJnpgLZHYD0kZBpr6kCydqu8xFUToLyWVDb\nVRHGGVvVv8cVr8xdDNbI7lvID/3/TtAiwxhzt+M46Y7jDHIcZ0jk9s3u9bvxlTFrrrBh8nzMn94C\nwNzuYP5cjHNHX8haDJdskXlHcgV0KdY6CJLQDxZBMn9dI6OmuL5yGSzaAnuCURl7pP5s1Vit8S+O\n1/0NNoO2a4Du/VV630MPSrWRDM7Cc6OaqZg1mJ+6cUbdgPN0I47XkrE2wMR4EbJk9IPbNUOPt0GO\nhxllwseIKnP+DAUutw+FOxZG57huAnS3tdzWMMu5EGUE/lIPo+Pl7Dizu4pZu8ViJjTg3ICwfzhw\naVgEaWoI515t1rlBOOn8Btn3fVGh85GTJ6zOLtTxrxoLV1ny2pgmJUoTqvHOHRbF0owy6JGPiVsM\niR7MdKfZGMVUan8MD4tInR/Cudsjogs4Gz2Q4VJbhQM2yzUsCJ0kUTTtm+CwG0661MoGJNn3GozH\nwLsyCDED6tUA/NImZd4yypRNWxWA/oisJYYxP29hrpUUhj3JqhMMOsrMlSFDknEroT+sz9JaH/qx\nrbV2I3xcTdQm95/AyCmbobBGhKAlRjbWCiNBwcG/DFAWa08hnD4sfAxVyREx0u7FNAkjp5wtjHzR\nqlNSltvDyoIajySFV60WWWuskyQ/obNayvjPUUC0VYbmEK4XoSutgfePCyOri4WN9aXC1CZg/Hp4\nJwSvfg7hW3U8h4LwyEXKolU1AKdgYltIDCkA6o4HdonsJX4ffI8Df4KYlyXj978OcYdEbGNroy7G\nThj4tUQ8dAF6QpMHWn0ufIuvkjLFVwENabp8idjnpz8CTAVznRweGz3afvnVcPoyuTomD7IZQITf\nnp0t8HH1N68w+U/AxzOaoAE0N2kEnPwF8PM7rfvSl3vBtaz3AmD6E7iW16kpdGT81xT1VSnoqehY\nMeoXtidZ37xnJ8OG3oqgZZRpYcneo8jkDVaLP2kT/OrL5PBvDUGcy9ZJftIB3SLX/F6gnU+LdigI\nB/Q5mofug/7vC4S2TIBXdHVp/vpVshD+tReng/37xejzSUlJuFxf/3G7fh1QxsqDyF1LA4QvgLdG\nw2PjlU1b+mxUVjJ9gR57bLbOd2K5zDL81YoQrr1YUdYlN4EzRFm64BBMMSKz77gwLziYGUStlY84\nML4J55bBOLtPEX7GC/OfIrzKS/jXXsxfvcqajffBiH04F3ygjNgbtTonfVtjurT5kjzR2XMK1roV\nOR3RBJfcj7m/DjOg/mvPx9eOTdb1anTga8l3qA+cuByyTgA9Nsv18zME9LcvZNEARfZOTVK9mucU\ncFrZqwd2aBuLBivKOHWjCFBpDZQZLSL+OAHTX2ugfSZ0aAuts2TYUVcmXbrTBG0L4cR7ivSd3heV\nRYIIxyWvQO+XtLAOOgveukbkzXFrkTWNkjU6bmnwm+pht208PWmfiFxpDYxoC0/GSHMftE6UswYK\nJC9PkOY/twR+kKn9ltbA9H5APUzsqgzb3JC1CW4lZ6kDi+HA6ygM5xHZcoUgPB6cIh1Do0f2xyG/\nCpZDJcjaeq8ko4m/E5DEBKHV7+UWFrcLuAa6zLULXltgHYR/IXCqt/1eQlXapjsogFvYRfNNLFDk\n0Bptk/wPAh3/acNxnIeB94DfAjNb3L4b3/TI3kVcTF3UUj/XDa8p+2N+RzOBMRf1hsVTcX5+CYwN\nR4OKz4+Clyfo/bvBbLVavPMXK5D2WQVOyhDZ4efkqc4sfzTmkXehobsee2AlnPOmnntqIaTaH+qq\nsdpuRD7caY2yV658DCv0Xi+YyfWYu2IwvwwJ80augIZ8qUi+qIDqoEwzvCircw1QOQG2Xay1dfJ8\nbd83BO5dq+3+z4O6TwY+CKpf2odEjakywfnveBlsVKLsYX4c/MgLE+MwPwrg3B4WCdzlklz041jM\nZJsBPKmb2YIWLhDmlabrviBL2cxtA4R/Cyw+ZhbBIzPBBPS6SKbxDwskI904VZnEiWAK8qNGYUGg\n2sFcEwOPxopMz7RyxD87UBqGGbfqfxCRA8kU2zfhnHTjfB4rEhWRLsYYnKAj2WOkn9kui5EPf6Ig\n8IB6nH2xqmVr36S6s1X1yrZ9LqVK+gb45A2fLPuHBIWrP3BBG5j4MWz1Q9cPJGcfHQM1VZBVuhkK\nfFGMHLaYRZ/BiQtk8HFyoIJqLTEyIyGKj9nJUYwsM8KaqgbhYzBFGJmZAf72ss6PayOcqfkEEnqq\nDGBVkfDx/ePa9oi2cEd3Zbq6rhQ+bTilzN0ju4WHEWyMSP8jpKzhZFQymd1KgckrO0j5cm+Rnlt7\nSNuePxhGr4XQreBaHv0pX7lGxzDpXEh3qx7PNOkYHbcwMmUyHPsEDmxHgc6D0HYphAdKUdLosW1m\nWoHLB1VdoP5eiL0awnuB7cJE/qRWAMEkaHU3xPyParUzrftiMto22+FkN+Gp54jq00EKlUaP5KIP\nXABNB/QzCDwG/3QH5v+Q8a/i4xlL0FpKGAHMTy9WBOqeBdLDRxouA8yai7m/Lvrah+7T/dqXMSe2\nSF4w/H5FtV66WAtt22LYUq9IWGRXNQh47rSvheh99h4VOE96QYuvl+YsHYDT+W8u6rMLcdKB9luk\nwS8fLeCaMb95YTcl3mY5ndlxkR4PVigqePnfz9CFn/kqcftHGbTww17oY+sWIvO9EKgphg990GAX\n9fn3yKERRB5jgpoTCGgK+ymCmTvMRg//ItCZ/oSAZrCNYl6DImctp7lb0krzNIrIpYZxjsSIeL09\nA9emapzdp3A9Gmg2YzE7LtJ5Ob+JvzecY5UCru816fwe7CnpzvU+nGd9OGkBnLaH/u77I8NMsn1g\nuvM3ZZ8aMS6D34ikzCsHhl8PF2yB/5oC2YVkJ8PCOhGmwvbgexECk9XEsrRGj8/YqsU9IwFMLfTy\nQ+cESFmq6GNOe7jMCyeOwReVcLpQYOE/W3b1SReJtKX0hwXVcmgsqLSk710RpHGZcHiiasea6gUK\nplHSjIokSPkjXLpRWbfAEck7MhLUn+Xly2HQa5JiEA/39ZI88cUKbXfbUUg+JuA6L0/7rq/U3G/v\nBOOaoO6aKJhmJALnQMrd4Pm99PLJQOCYXKTqxwsYXMuA1eDfJf19Q7Vtdp0g8CFJ8kMATkHbTQKV\nij/of9oBe6E6ExIXQ/UYqP29mnIHUkTIqjPBc8KajNQJjJrq4cR28GySU2QIccFvY5wpGTRgLHCO\nMeYqY8z3IrdvfK/fjegYsRF+vRIz6ZBs6/NHS8XxA+SOaOulzc9OYH52Asa9hvO7bgpEJleIHHyB\n1vAPRuNcfIu2WZWIueB+zLjxsNsGI/9rivYZV6y1/5FRCsrdtEiYG++N1r6BepLtGgCbRjcbXZB7\nhTJrTcVqnN0GGBkr3K6cYAOkaHtpHqkvPgQCqcrw5bY49ndmNCswnEyk2AhW4DRMFZ7FerSovFkH\nTzeIqE2pwzyPGmJfCGZVELrVw2ZrhPGwV2YabZDaY6uCh85L6plm5gT1+F+DklZmF8K86SKFP1ir\n/+P66jpi2wBl+GbfI5v+qkSYMzs6/20D4Kx8Wf9fiILCxeBc0Re6I6nnb8FMd2BdSLgZRJjWiNQk\n1rWYls2lD8XIDj/GiNz1boCkMObyIFSrXY9p36TM2NkhvbcGePrsAAAgAElEQVQIYWRGGZybqufe\njlEm1u6P9k0ibYCZWkJZcBpdq8AMToCxHmHkz4CRK1hVpDrnNefA4MPg36q+Zc0YWZUIT/59fHTC\nUPl2FCMX7hSmlNbIzdHUyoBj8OqoVb/3NAw8AQePQyhWGJnY3SpELhKetc4SyVtQLQl+QaUk+pH1\nclwm3JYOw1OUOctIUL8yV7x6sPX5C9y6UwTuVKEUKKsOw3tH4ZLX1SonHAMTO6tuLjZVEsacdpAR\nC1UjofZ1uKOjzkXnBHh9MFyRBNceg08HQlYC/OoTEcU28yBlusiZG8UXj++F4yUiZ64/QMOPoPVC\nSN4lQudyC8/ihwJ7wdUZuCn69XAFFOSsWAwkqUVNsD10nAtVq2xz6z56TbCHVCU1/RUEbvRYdUo3\nWHlQ2/NMV+atnDMPI7/h8S/h4xlH0Jx75uBc8IEiTKXpitwtmRJtvPzjxbrP3oPT6ETfeHA4zkWB\naCPqd2bAlgk4twyWra59DznvyYFp1kPws+3aByiDdrAf3D5P+/RXf1mfX5UokvfoSmW64oohzYPr\nYVtjNkQkzemxG2fAEBGwVUHtHxSxBGWkMspwOo/+yrGbQJtm7bbzEz3m+vU/V08VyaA5/fRa1/I6\nXL8IqF4NMC85ahh9jeq/zDr7xs8z4Y83wkVvKjN0uK+AJBkrdk7Uub9hmaKEs+bq/+esjn8w8IcF\nIl4rtmCKaZabmNXR2jfnz2EY24izoEnE7T035vx6NcjsgBb+F+Mxw+oFNi1GeHgC4e+1+tJjrk3V\nInV58TDJKxvidRMUGbxmimSlhxbDuVuaDVP+0TAX+VVofVcweqHxN8Pl1sL/s7Og7nrImnSlnui0\niMFVMGcfXPQpXNINeAdifyiAWBoUeapOjAJNJHM1eSOEp+nx76dJ7tD+PDiQLmJWX6H9lhlx99oS\nRSun94PxXQQMvV+CpQUCB5AU0R0Pj+6PSiCvWq3n37IE6soOcpEqqBVIbDsikrd4mOQYs7drW5e8\nAj9OFbCOaKvHQh9C7IWKFkZGnHWGrCuVvCMjQdHBhTuBIJzaq489qY+uzZKB1oshFCn66gKBTGns\nw3WQkgvOBmCvepm54qFqJVSVgDlLEcI2B6D8Eag6Gyp/B4lFkjS6mvR8IMX2deugr3IkDlHTVrb8\nie9C28uAU5J+/PPNGf71UVX/v3f7hkcxVkXz3fh2hwl54WgdDZdvFtmZ/gTOjzzwcZ2yQ38CGrNF\nHCJOgYc642ywvT0LshRQnHInFPTGudjWhT3uqC6trwe2DcB5caUaYoO2Mf0Ja19vpf/vD4VDwOOT\nRUQmvSD8HPeasPCSjbB6FOb5CmFndiHO82Fh9GwjiWWPfHhzKhzNj9rmA848A6eGKLN223yRn6mL\nFfzrUiyHxpeJYnEkMzUYzO4Vwo4AcjDE4k2GS0E2j8W5zh44EAsHE/T6HCPTjacl+2dsWN/yzx3Z\n/P/OoyDpjzzCupw8XTln71E/NybY7FtfzSUmKGxc8KDIWsRpctxKeOFBGX8EUO+z7mAeDcAFBl6p\nw5mXqubaQ8BZF6vFsavBbJsjkw/AqXBDjUtYV20NPbo1YkYG1DP07JAyZrkeyfxBWbA2YYhBDowZ\nLkz5GmHk9Cdg4hTY52DytmhhbgSTFIbDMt3iLNsaYcoigseBnUPhmQbt3wZeqxNuxIkR0fmkO1x3\nlrBq9nYRoKxJV+p6x1/N4B0wpw2M3gzn7qAZH29YC4N3wNJaYdqrJ4WPZyPc2l0lfIwoTtw2k3Xe\nIPDEi4jUHoRAa2FkXalUHxkJwix/nJQeM7cK27YdsX3WrI3/Ywdsr88E69B4HHaNi+LdkW461nGZ\nCjpuGSmSNnu79ndLNoQqRAK3HVX2zjTJjHtWEvhqFMSMTxaGuZNEHAt9yrjllsCsnwJH9RU7Kx5a\ndYYqdJobfBD+FSQNlByxsre+7+ET0LoQsbkgUAK1y6DqE91Mgs6N5zSU3wflQ2SudaKfcDG2Fk6P\nVQA4fAJarQXHyigBjp8DrvVwzXZIHgP0VJcJgOxvSWHyn4CPZxxBA6KWvhGpRkRzfnCqMl7+E5LV\nXfcKzurvgXsTjHpPzlBX9I2SNMA8sxVuXYTjevDLWbdtA+CtsVrwI00gtg2AJ2bqsbdGQ0kKLJsM\nVSkCq0kvKFMUKR4+aYt+f2PlEMlAQnct+ktuguw9mPeeiTYCzd4DIzbiTByCeTlqINJyhF/0woEK\nzNOImAVQts7KKL+SqQNcDwS4c+0xvC+rgLg5+5hjoFgkz6zxqo/Kh1Ye40X6+uxdMH65BNQJwHu9\n1dhzSgsZ54gNApzcYXK2yh0mQO2Wiim24PIbJJf5aRhGhRUJfK8O81sb6U0Iw+YYGYH8LoT5SVCk\nbHU8PBlUv5Xu4KyKx/Rt/beH+NWRFwN5MZjdDyri+sgouP9OAer5y2G1T1m+Kj/Oiz/ENS6A68+1\nzYTatan6K5t0Hvfh/MnzZWLe8jzHGXqfZdgchk0BKPwRukhJRpW66RBzLoQeB2c+xK6H9T5UPA4k\nVgtkrrV1GqU1IlaNtYq+1ZbavmjH4OzTApvGOtWidQgruufEWCBogLs+UNatLADDO6koet758Ic+\ninxNyhZwFFTq9eF6EcxZA6Whb0L/39UrmsHr87bqAebsU1+2xcOg7Z8lbSwNRc9FbZlANM4vmePK\ngypy9qQCI2F9osBn9stQtReS4sFvJRQxAJ0h9iVrFJIPtAbvBmi9U5p4NgPrFEkMAKH6aKK77hfQ\nZh/EFFoZpOXuJ0YIfJpiFV10NUCTrblsSBT4BNIlrfGeUBE0vwK2K3kevWz8brQYASDfcZzFjuM8\nbm+P/bsn9Z80GlZE/zZFW2Sdv9En0hNROKwaK7v9uxYqg1T8gNbpJ2c090kzw8bDRbaRshdJHce9\nhmm72Jo+3aTtgAjHqrHQc7MaOUPUTr7Dzqiy5M1BuuCf8VC0jxhgfrerOfjpXJ2K07UvzjyDk90X\n4oplJQ+Ym+vhrinC3G0DZN1/zBaQ5uTBp/ZX/xHClP6pOClDMDMrREBbyvWHxCk4+LqNVNmIizMC\n6FkPI2pE+F5yYK0LnqmX2uMdV3MdW6RGu1l6uG2AZKUVQLsieOs89YD7+Z3KwK0aq3MSGbPvh0nP\nqjbtki22ZQzNpMbphVocWFv8yHkA7Z+xjcqKjb0X54hbuBipre7YiHPYjbNEph3OrjjMlDoROPt+\n50AMnJLVPiddmIccOOCCU8m6nrpojcy+zl+Oud+nc/ihDwpvxVkXi3MgBufJOJzV6qPmvF/Faz5Y\nlLoZWifh/C5e9YaeCeBbTnwbqNwhsrH8YvUBK2wPF+RKzsdHg/4uRsY+FcXHRZkwbaswcsZWHc7o\nzarhcj2u/0c1CSNd8fDhbgjUykY+eFzW+9uOQnUPKUaWFAjTMhLUnxO3HstOERY21skleVK2iFju\nIWXJPKlQ5UBhPGBrryOZveeGydUxO1n7yj0k52RPKqwcrserukJMnh5rqod9KKh6skHbd2JgznGg\nn87TC+fZBPhpkTN6An2gW1toNRQ8z1uFSR9wXpWjordSwUkehNBKCJTIFMuFlCb+1pB2K6Q+pyBk\nfLViCE2p0GQ1isEkBS3j/CJxJybYFjxthZHx1cJm7wbUauKgvsLfYeRXxr+EjzH/95f8fz5y8qKW\nwbuBhbZYeduAaATvYBx82IC5K07Zj8W3SSP+2FwRqy51cKvdVkHvqDQBILkIMrySSt2wCBbPFPhU\n+GDhTEXIFq+EqepD07ygZu8BfzXOeFvB2gvoPV8OUUfzYdYT0b4ofT2SDK4fIs18QTHOkO6SPfQL\nyN2pZb2Zvwq+SJXNThAt8h2iskfXLYGvkTkmQa4bxljd/WxH4AOY5ytwVaZGe6+kW9BKBvMXoGMd\nHPapALimSDZG86yM9mB3OX6NSFUEkAqBd5Vf4NhtC6ZyiD6bpC2wYIiyf1+g+rA2AS3OT8bAeIMT\ncDAxSLZxSjITJ9cDWWqKaa4L4toaau5p1nJETEOczR7MkCacT2NVWHTDCrhmLRxLkZvWIUTadnRu\njm2YnOWwZDY8MAtnfyaM2IUzOPCl8x5+wPu1pPlvx+gQIrM1QF0ipAQEPilw32GYexXwMUx0KTJI\nHUzLh4nWNezWnSJmWcl6T9U+SD8bAvECoEQXdOtpe6NkAPU6zLbAai9Mz4TAQZjTEfzvwMBUeHs0\nJD0XdauasBHmDbRRpAYRLVe86tEmfAqLzoEuS/X41I1Q5kDtSPAPUKRwuF9A+aceNvJ4FHrsA04o\n++Q7ADHnqaYgvlRA+GoDTPuE5qauSy4D8sDfGekieoKZDP6XgM4QXgn1mwUqrbZD3X9LgmjccGpd\ntA/aEXuqfYg7Z/XR5xtaCcmrgaFAECrvVc1ZYimU99a23CHN111ri6xPQXW6pBzxHYBPgHZQfUyf\nzbcWHfzmpRf/W+N1e4ucGKfF39+Nb3pk15JACebKzri21WFKi9Wz8ibrYBghNotvtzVSVbD4YT03\nPWLPL4MLZ9sCTD4wxGbbVo1V0HLSMpGzWQ9pWzl5ws/Ftyms70ZNmT/uqff8aLmwctdQuKoOnr04\nuq/SdM0lexfOk2BmoSu7KXfCwzeLoAEsvFM1zl77nhenqrfmB6MxyUD/VMi9AmeGF9MBkactKBN1\nEjCp0C4VZ5oNOEZUD93BXB2Cnm7VpD1TD2vi4eM4+CAR52GDufM4jEjFeTheWbZ3iqFjd8XCP67D\nXOxT/zQPOIFUGV4EMiGhSJdjNeUwalH0PLXuC9nKHDLrwegxVfkhIx+694UtCC/7GLjEQIELs0XB\nTbNUyhZzV1Dkqn0TzsdxurcOimyOwSEG85Mgzigbd7fErFlxcn1IzaVR1swMUFTLfLQCBr0P7w6D\n4W/CRoRXpQgjAb63HPNwTxgwC87L1HXVjNHQO59pb6VxqrKchdugcLAPHqmDkxXQdxru8kWUW2VC\n/FE4UQXHPNC2D8xMRQt3WUAe+01wR+zXYGRCFB+3HVWw8tadkOWCOXlACiTuB8cPtxyApT4YkAVx\nMeBJUbbKZeCa1lC9G5wcyfQf7Q7+vYAP7suSaUinF4VnQ9aJwOWWaO4jOgnDnBhIWaY6sSUF2s6q\nIgUXIxm5nPaaL/v1f9cqGXINTFSQ0hUCJx/C7WQ4QioUW4XMY5E01AG4r5WCuBzU5ae/Hlw/ACym\n1a+E+Hgoq4f0g8DN0WXBFYbKekiOh4Z6mRzH6OfBkdOQ5UHXjnuh9V6gNZy8zzpdVls35KEQ+ADi\nmkTgnHNtf7eAav3q0yD+Emg9AcLHRAK/TUJxhmDkv4SPZ0wGzbngA5GVt2dInnjcarzPt7a6BVki\nFREAWXy7IlURC+CSH8Ed4yWzWHi7Hqvyw6kA5HXBnJoPV78pIKpKhI2DIDYAL0/TRf2eofDWjfDC\ng9rm5jFw1zwB4NTx0ejeNcD+Lvb/nphHKrTtjyxxeWC8gA1EKlc+qKafX6Bbowfnh90xv7fhPQ/S\npPcM4Fy2TgThdPdmiSBt0K+uJCiE6gDmI2XNXLfImdI8Bew4CZUGM7keuiyGkiCmRhI/OqTK/TKA\nrnCfCkUjj18AToWcp7qiWwPKmuWOEjF8OkXzAAFjm1TItzUHwSGqHygGdgzRY5/RvH1T7iX8sBcz\nP0h4vI/wYL+sfwEz2y3NfMcmySp2uRQdhi85OEaGSUlRVHBoEKfGBVkhnG7z9T25bI3qEyrQfBpg\n+IeIrFWiLFanWert1lAEn/qI2py1GN1p7u3zdePkbofTQPpbwC5knNIJrZDV8GgttNqGWAWwdQDc\ndx6k10vC0Wym0RkKK+XmtD5R2TJQH5YDjVD0qZpjhiqsbMMHt+0SkCwpkH29/w1It0tBpxehuknk\naslncF0nRQfnFGuhu2EtzM6H2Fd1bnJLNI/RedpmYj20ex0m5ML6WgHP9H5gMlX87Y8DXycIpElC\nyCDNy3MCEt4WmVvyGSLjGyA0RRb4LALzSwjUQ/0n4LwEjITdK6HIfjSt2gIDwXcIYj+CxC/09SkC\nCpHcw2e/vvHA4U9g30rbkHoo4FF/GN9OZcoqzlXxOCib1hQrctbYykYObcYt7iOgLYQ/0XZbmKJ+\n4+NMqUEzxjwPrAS2G2NeMMY8b4x54Zvd63cjMiLy7NAyMAvr4K2xWsuz96jn1g3LopLE3GFw6yLd\nR2T6ry7Qcxc/jPEv1o+obIKkeDl58N+TYdBmeHAyDNwcfd+nndXnqzXqj1maDmfv1POvjxFu9twM\nb3eRnXwk4FmabmWPWzCL8mHsfJmBgGresu9Xf89VY6HGJ5fIyHu3DYCOMs9gqzJvtFEw0fmrJR4/\nN/DHBrkgtlCDRFwPW7amcW4AfrNBC0nCG3BeLRx2wJOKGTEFkzFf5Kyhu+0vViF5ZAcUYJwL5pNi\nBTZ758HPnxM5dqPFosov4vsTcMIzcC6/U86PbYA0j+YfKaE4UCHFzbO2LKMNOOkiZ/RCToqFscpe\nFcTKqTgvBgoc1cv1VlsZJy9e2bEjbkx2g+rI9sXiPO4Thn4eI4wcFMSZ4dWxrBqL872+0bkcges8\nMLxOZKkZI2+ZpcBjoAgevl7476+CzeU0VEv6d8c5iJx1S1X2LRd87VSDzHa4pFLGVukfIk2cm6/g\n46PHodUamGjTMVsHwH3WwCMjAZ7qJ+wpTISJ2bBigDDSNCrj5IqBDwuhwRFGxhwG4oWRyzxaE5/q\nJ4xMP6XeY0sKpAzJThaWbT8quSMI7x49KUzsvQquS4cyn1776DHZ4RecEMZNsOYlAK/2EXaGOoic\nRVrZuK8DLoha+b8RVBB0yDqY+T7QE7Zmwx2n5c4YKLH9zJA0kSQIrNTp2xdRjnhoNvZI3ACux0SY\n8uolQAmiEsLW9pQf3g4HX0dPHpUDcvwnkLba1l/HQfUBuTy6QsLFpj00N9iOsz1K/RuAU7qsSvvq\n8vSNjv8EfDxjCBoAvayWoyFfOvvsPdJhZZSptii4QgtGRpkck25YEc2Kzb63WV5B9h6RpG0D9G09\nXq7HTwMPzFJWLQE9N2IjzrS6qHXuw+OjvUsiDSi3DdA2F96ua/qhB/XaRI8WqghYLrFVmn2sBCQn\nD95P0d9diqOkZR04z3jkavgZimh+gWrXWiZweuRjVivC59ziwckYgvNzgzO3CfNGvsAl8vr4JAi6\nlLf2Vwm0358arSOwr3OGALFGlvt/IVqsPfseuHe2QKgJkdwlNwmItrskP0xHtsWDwVkQFnh9ZPd/\n2RpFHa9o0jYDMlFx0gJykfyTB6fItj7oEYI2YZx7w5JpDKjHWRMPw0IwPgyfx2JSUlRHt7yuWZYY\nGc77HtWv/T5WmvgdQ6BxNCycrM/4OsiKhTcvQxm0DVDXEegM7ETEKgDMu/IrX0Gzxis56NeMcIOD\nyy0N/MGJKCp4GvWJa4/OWwXc10GkLDtFC/Oqoqgm/q0rJdtYkS1Z4nPDYFxHuTKaRskdu7mhoYv6\npbnj4S0jffysgdK+l1bD1VuBblCWAdtr9RxW0pHTXtHBlEU6/txD0tDnHgLqgBOKIs4sgoEGln4O\n1W5L1Nwik/44zd18JgDqXgeuPBGyum7qp7arlRb0ef313hGdoC4Tjl8AJz+ClAeALvpKBoD4X0H9\ndgjP1k+v0Z7Xg8esu+NmIAg1t8FpVPAWBmrxcoK2NCCyFmdvfnThShdtx1MIYRf4KtU4NeGogCe2\nDlrZymZ3ktwr488DbxFQosbWcZxpi+W3MxzHuRr9at62//dzHOe7RtXf5sguJPRHYMQ+EYVBi3Wx\n3cVK65bcrPV7+hPwcT+t+d+3dWh3jFct1OQCrfOOBbWr1gjjFszW+tUVXaT32amasg/G6EfhRq+r\nSoSr39Z7V43V/lMRmQMRt4KeIi2l6cLVlqTgwQWa393zJLV8+SbVto3YKOz1VuDcmyrs6rtGqpLX\nRWr4AlgWq1o2gJnbRMhaC/+ca4DyoMjISVTjVmzft3e06qJdsfBRot4XMUCp8kvmf+N8bcOk4vzC\ng9MLNY2OKE72WSfHjDJ4apoyZC9Naz42swC5Jb7nbiaKdNsifD43VY/1T5WLZQBJDrcCvcC51b7+\nM+CwG/ObIBx2qfVMRwMDmzCXB5UlS22SC/KSGBl5tAljhgWlRPGijNuRGNWfAYwPy6gsJ0+fbXKR\n7q+DV60xxxxbQVPXCliHsjdx6BefuBkeuRJ+WEdSFsT+BR4NoRKP1T7Vo/fpR8JrclYE1TgHK3T/\n+XmIHJ8GuqEomxeoieLjtqNfxshxPWDufpGhFdm2ZrujsmP1J4WPxT7olw6xYXjikJQmbpQdKq22\nDsL79VxZGiw9LoXItqOSVA7eAfMGi4CtDwF1cEcbzaEwBK+WwX1dYPC7kGWxcOnnUN2g38PUjTAv\nG+4oVv23U6TMWX0FpHwGlfnRn647Hias1XFFmlUfr1KWMGWTznfMYjkINwLOu1C2TgFDN/q6pAEH\nbKaPoRBYDFv3KgbchLJacShtE+lzVo/wsfIY0M62p0mHyhuFj8EkiD8MtamqTQMIpWiDsW0hcbSu\nOZw1wFHNwwV0+87h+EvjX8XHM/Kaw7m4L+y6Tgv355nRRR5EhnKvkGNSRpn+Xni7Xjv7Xth1oRbf\nGQ9F3xOXCT+dpb8fmK2sWsgLQS9sG4B5xacGUAVZyrL9YJ5em47AyIKI09Mae1y4Qs6Q525RdixS\n21aaLAnBihsFXP5qmPoEzuAJ2kYP+8tNFgAAyvysGgubLsZsyNfqVh3ErLEZtmCFInzY6OAmR31I\nANzdFUlMB5oq4V0UjSvI0jnYDbz+ILjy9fgjDSKYg8NRbfz1i6Gnp7l5J7lXQGaJZC+l6doGknaa\nrRUCwUwwc1ySP/bO1/5zh2EetnMO2LnGeppllnwITmGcHBobkYTjXRdsd+E86xNwLI7FdA1hejeI\nzLUJwz5Hja3zTyvLuMaDmeXCWeMT2XzDiYL0uLdhANCkxfexA8A2uOM88OWhzOApe77iYM1Z4FS3\nMJqBf9j0HAQSFdsg9q/I0qgGraS7tE2a5F6Y016EJaedgGd7pSJ2XZbDnB0w4V1YfxRGrhawJHZX\nb7JnAlBnIFgOm8PR/ZbUSAe/qgjmVMH6SPDAMp1pRZB4AJZ2h5n51uTDDbSDMqtL2B4EYkTCUt4G\n7LxI07xf7SOituuHargZiRSGtqkOrtUREZ1IE8+zD+rxmUdhTr5IYl0pJPeDNh8DRyE0GWJ3yzWY\nRXAcZb5OIa6YaKfpx8oalylr5uZYc1mknwBujhGr6RMLdBmoucWOlENjXSo0PgTutgKdQBqcPFdS\nxpigrPbj2kjm6fJDsACw17fN/gPfIvicKRk04AFgILZzozFmJ7rc+m58i6PVs5YcReqdStPluvvy\nTVEVSaT1TE4e/PR+4eKqsVqjQQ6KOXkwcL5aqURqu5OR7K0M+MTWY4/YCKfSdHGdbq31Jy1Thi4n\nD349Sxha0BNWXh9VrYDI2sLbMZu34HSYIHy8/069txIY+qZeN3gzeALaV0aZ0gA7hkRxNicPs0VZ\nJvM8kF0oeSLoQr/Kb3uCrtFjJZYARVx4OyBzla3AB5fCiVph4enuUJWI02mqXlvlb+5raSbWYyaE\ncH5iDURGbBSx7OmB5dYA5Hu29cGkZxUE9QA3WeXHzywW7Rii/XxgiWMuKonIxPYLRdjqte6O56Jf\n2BE3nG0t7zs2qu7sbg/OHz1a/NobzG/qIRacfbHqk7bPLbnkrjg44MIpiFN924B6HV9wCKZkDc70\nOrigRJ93ijCSOmW77tkDTEApmHJ05e8FMiHxMZ/6fY0CHn9FWc8FsyGtHDw7Gd5JplNUy3J/bshK\n/z7gH2JkdrKyUxkJ6oG2vUIYuaQA1p9UtmrbUbjKfvU9qcLIrHhYfwDKYuEX3WDMJvhTEfzxpPpx\nzqyAOZ/CzDK7bxtDKK1BUnvrSjzHtr/BB48etM+7JW+cc0zvLfRBn3dRcDcDuEoYOb2vMLLoGhmj\nmAZdG8Q8L5IW00oSwRpLrFbt17XA9L4yAandC7XWhTj2I30krQDWiVztQpcrIUTWvEDtSuBe/R9P\nhIRdg9t+XI1EywLaA8kj7fENVJ12jM1C1mcpeGncImO+CkkeY/3Cyji/ersFK+z3IUmY+22P/wR8\nPHMI2ogNtnkimFa290mkWXRGmTJUsx4S4Ex6QY8D/H66/p5/j/5fcjNsGg3Lr9RziV4V9yYgcLh3\nlmy5q1tkZQJEGzVXokWk+86on2j/zeCvxgwar35h2wbAaV9UmnH9Ii3cjWlaiK5dDvdPbz4GE7pT\n297fN2o9n1zxZRv63Ct0XDl5Sjksvj16Ds7KVxSulZpdmg8fgdq+0q1XrdGCX9EGcFT/9cFonPOG\nCCg8W6BWun/nv+KUBXvURhiHLYYnpsPHPt1mPaQ5jHtN0pkdQ2DVeAGgK986QFhnrAAC/kkvaFt9\nPQKxZW5ZFv+GKOgA4VVerTYJYRU1NzpwRZMIo8eC4fcMzpEYnIJYgc1yN5RJvuL8d5wkK2c3qYC7\nfRNkhzG/D0DvfMy8YmUYp9bBL5/j1UQ5N+GDR7sAV3jVJqEzYgutYXRkAbfDuTwABT2/ZDLTcrji\nDGmDDG0PEAUwL/rMByK2kSByNDo3ukCsD8FAK60oa4DrutrvWDysPyQHqrpS2d7f3AitXNCnk6KI\nsX7JDhfujFr5Xtdo91+CSEaGjqc6A6hQ9rAwUceeVQLpjZKW4AbOgepr7XGnAOfbuVyo57eOUZas\nqR4+ulxOkq0PCnRYBFUXwdWH1YzT2w52dEQE72I4vVPui8c/gpjf65zF1kDFaC1EO0+LmJ2wpyoZ\nkbEQejzJHk4sFxBC4GMDnMQhwIrIHAGSfwG1P4FgZzDtBHqNx8FJ1HlrlWG/e7GySgbJYFyN4OsH\n7FUNXHqLbX5b4wwiaCFjzKm/eSz8ta/8bnwjw2zSlTfBFGcAACAASURBVFbDx4OidWbZhVECNlj4\nxLjXonLDca/JLZgJ+rs0HZJXRGvFdvtEuB6YpXWhP5Ki9dopLL3qNW0nojRZcrPMpED1VyCFRa+d\nsNtm7SLkMdInc9Iyyexz8lSzFgkqNaGL+5BXqo2pT8D+vpi3tyhgmYwyYrnDlAW7aI3MNwqylLXJ\nKFOLk7euVducgp7RptCRaEsbMDMQibtkCzTEQrsqOCx7eyon6HUn0TksD+rvkfEwMhbzpwoRJ3+V\niOXK3rDPB5daw5RbVkoV8+zFMHeUauQ2b8HcHWzGPKptA/DMFTq/JlVEsBcwKiwVy1I054+AQSEZ\ngwQcTPtGOByDsyYeE0CZtF+5wWtwCmLV2yzo6Gq8YxjqtmDmx0AQzP8IW5334rXtAxXRIHd2oTDy\nAnjVYkTZ+RYjmxA+VgKXAq/PhEoF7A4FFdji1uv1vZgzC97RvNd3lOkGvYGBIlhdP0DfnZ4tPvP+\nQJlk+dPel+y+qsEGAlMUSF1apEDfdW2BeGWt5g8WRppGYeSpQriqD3TxQd83ZAIydaOyZ6PftPgY\ng2rsTiDg6ArVkbmcC12XIdxsgCwD1MtlmThl3RiIvocZ9t6tc5O1Se1hGo7IaMsdL2lj2qe2ofYp\nCI2VPHDbUeFnaCpsz5IKpe41ZdoaqoVl9SVQNQIq1gkH3z8d7cfZoOlQguSMcdo824EYLsAFNLKa\nOPTekD3NfqDVQOAcSHgWqnoLI112ruYIBC6Fhg4iY3WpahzuSQVXBvgyhO1UAJuh9hicxZmLkd/w\n+Jfw8YwhaJHeZWQt1n3vzVpUfOUCh+w9UQlhlV9AtORm+GhoFHR+Z3uV7O8Cf56mx45YJ8QitGA0\nof/daHvjXtMX8bAPfjVdhc8N6LbHbvtWW5C98Hb48UrN66lpArirlsNnQ+FEAJxy1XKBIg8RF63p\nC0QaPeDMAXKRnCMiL4QWNQPXq63Ay88K5CLELjJy8mDh7ZJh5AIfjIbVoyChEi7ZCr0bcf7UGJVa\n5OTBzfdrAV8TVBPpz+eLkOXkKWp672wosoXBT86Ivu+2+VF3LqTpN6uBxDXKIkYahoeCkLYGpz86\nxucbFTE8aV0jI3NplJ7e3BWjpqD7ZghQnkYykpUObHBDjQO7XJhfNmCmNYBTgZk0CjPdh/ntpzCp\nETxh6ewL4nSOStMx/sWKtI57DQYh8tQbaMhUneHBfgKMTKCHkNy0b5E1OSwpi9lx0d/9nk5a75BY\nbb9HPkR0atDKGYCJbaCsRn8PXg2vFkHiCWneMxJheDtlwkiA4W0A28vMFa9Fu1U61Hlgsk2Sd1wK\nE8+RtGROoTXj+NxO5lwUKjuKQDUNKIHCgO5JFlEra29fPxgBzlFUV5GMghXn6vta74Vzdgtsq/Yp\nClh9AKo6yv4+sBemlirSOWMrrKgTMA4/DEcrIWU2sA3iEqWrpwSqOkHqe4r2dUdRvgZUSVuNooYu\nO/Xj9pS6bTvMRlYTgwAnYF97IXK3IghsV31Z3BcQd0Dn0MTZDF8c1O6HcJwimWGrrU/ookhnsALY\nozl88068Z/T4zHGcHwIxjuP0cBznceD9f/ek/uPGiI2SOU56QRfHIGx6YjokVgo/blimHmk2g8W2\nAXIcfP1BydKesvVmOXlSeVxlM28RE8LIOgLw1yt1tVuJMmmgH2EDWjMeng0jFsFdC1UnPnMe3Pas\n9v3QgzirnxVxisghWxPF3ci2PAHbIHujMkoZZXJPDqDMYJoH5wUTzfTNv0cYOeshveeGZVEb/CKb\nHXxmvAKGycpm0SZVuv64ejiapDXPC44XzLPFXznNzhzUyqcqEdPpTl13PDVNJRUBVI93skIuxpOW\nRTOHwQoFNEdsVK1f22LNMydPcwyiWwebEXzOJQLY3ramGR4WPta4JHEcF69s4W7bFuenbr13sgu8\nRnLH5W743MH8xKV5LvVhBoxSTV6PEKZ9E4wJqW7c4iP+amFkk/0s6oCEzGiphBcom6bztPB2yB9D\n16XQpgwtlN2Ilk1kp4nUl8tKfmsmcAiqz5eag9Po2qrJfm+qgc5SlhDQv4NfkfQ+8QQ8mq/a6YU7\n4dWgPsPhnXSR7T2tNTzWDyl9oegQXLpaeJhuL7nm1IrkvWrnmh6HsC0JyXhrgJ6QtQ+xHS+QAIW9\nEC4mAGPQNUOlfW86wtgeOleb28rIC9TXLHBUtdZVHSW/r30AfK/I1Ti3BHx/lmpmhQdaPQn+ZcL5\n1Jfk2hiPjKwSRoqE9UJSRRfCPRfimsnoea+dTjU7iLevjfykGojiKR5UMoDIlztemb5QleL/oSo9\nxvvW1CRRx+JJhVMFCrKmPADHj7WoovlO3vh141/CxzOGoAFa0BZP1YLemAYdd8Lc2bLXj9j/3mHl\nhyM2CHRyh0FSOYTKrQ1woZ6/dJHyxCXox5iKFotIWOIQMHGRQGon+pZ70lT4HIdAa/BmEZQPJ8AF\nu7TdMp8sa2ffq2jerqF6TyQb1hiAo5nNmRnnJ4hwXbYGLlqjouZeYJblS34xYqPclSJE6I6FOrap\n42HOWoFw22IBgr9KwHe5ra6NSPtGrIWzkiBlqB7fHCOZ5BZsVPWe6DmuKdZjL0+DkcvhWL8o4M+/\nR+6VBT31GcydpblFCNDTqPF29WhYOll9XyJ2y/6qZhAyd8XIQQsElBMlUQRb1J20RS5eS26W/MML\nnNVdALQbSDCYkSFl2kafhoLOymI2AHMHwZIYOUHui1Wk8eWboDIdbpyucz1ioyQ71igCd5HcOQuy\noLMXqu0Fx6V1X/r6mf29MPt78Y/G0iugOp5oBqsUIY0lAKU1sGgYpEeCAXFQnQIkykQjO1mgklWt\nyN+KYXDeaWV2wvV2kayCJd/XtsqaYGkbNee8ri08aq8pshIQ6DQhkLTZInqgKGgaOl/Y16QRXWkP\njYHTmbDtRkjzCkj3y4XLk6m5eNvpmsM5JDlE67sFEFUN0tG/dY1kG2U5KrJO2QOhMVD+Cxul+yME\nl4JjY0kBRMAi9fUR2UYqAhx/Z2XVGoFMNnFxvMAn1h5GKgKf5lDVOVA7XWADEO4FoWo18TZNmkOr\nCjlWOTECI9MEVXuhbqeag56qV9Sxkm8ffM6gDNrP0aVKPbACXYdM/8b3+t34ymj1/kKtYXcsFDmY\nuEiEIdb+CDaNVj3z7HsV+Js1V2v3Wh8U+fSDW3mjLuaHLIenrxROnYt+BK0RRp67WT/YNWMUpEwp\nh1+2+MgbgNtmRQOMf7wRVtyodioZZXDUh+kxP0qsdp+nNSbO7qcxLYqXs+/9chuaXspE8eOVki/e\nf0AYOGKD3COvWK7t3jFP67y/KqpkKcgSjhYDX1QoO9UBZaeq46BDglrxJMvp2OljnRsjxK+DzbqV\npsMJaxl07XKRrHeGyjis32bbvHpPdN/+Kp3rUFDS0YiRWUaZGoBPekHBy1BQ1wOPhKIyR98QeLAB\nkppgV4yIV7ewzs+IDXJO3kpzP1G8wDtu2O7G/LLBtuGpEHE/BBzdDH+27WK8RjiZjjDyxunwgA0A\nb0SY0QfhYzrCyA9v1PXBzIX6bM96k5q2CmpNfReG70bXOxXonNXoe+PfKhzjPOAzq+ZoQBmscpox\ncvgXLTDS1jhWpwhTB9rg5YhOkFUHlAojS2tUe9ZwUgHDmhJ4vwm2jJPU3x8H1RdC1hErU2zQvsoc\nhHvtUFA2DfgECiNYeFr7p9T+PxAFrJNRWUzpUHhooVy+S/T+hD6W2AAn84WTrpBwxg8EJiig6reB\nV3KgbDxc9gU0dgW6QOuzoW4AUK9AqLcSvDfpYr0U8UkfVvKIMDC5s+6PIB45COhv5+HQzDXxAUlX\no2uxkRCXB3F1UsQEj8u4xNNWJRUxPgU4G5IUGPafLamry632NdheqOX83c5D3+j4T8DHM4ugAVSl\naGFLKofnZmoRvuR+LRZLWviMLpsMO3qLRJxKE7gAFJUr65aMoj3dsDp69MO1RarNNumvXQkXpSld\nn1KuH7OX5nQ8K66XE9U996tv2hMz4cq3ZUISKoeMzbp6jGiw3Giui2fC7HsxzwSlVfdXidgkoyLv\n6U9A4XnNUhSW24jluNc0j8vfhEW9RYCq/FbzvkwEZjeYE3IgNM+jsEvHkzAhjJn9voCps0cFyKXp\nmve2AZIg+qvBs1PRsedmattugCLtK+zV67cPEigllsO7Q6AyVRk1kK7eWweT5+NcOwTnUQ9Orwma\nWy+RUudC2/NlsMwSnZMu2OFoTqeGaB4jNqg1QRuZj5hcHRs1Ds4Rt3qmTX9Cn8N2YC3QWeDK2SEV\nRZ90ad6nAiImly2H0oA+8z2IpJ9GEd5Jz6qwvsueqIT0/2HsOu7AK8D3Eauw0gyaaM7/l9YoAji9\nn30NMDwW5vWVdMMfJ528P072+LklEJcsctE6S/KChiQ4cEhGHviAE7A9EV7tAFuv1He6MIyIWeR7\n3g6t3q0R0ESifwkImMrG6P/vv4+zamWUtH9oQ5k94LpiGYLUlEDM2+BfpZ41ThjwQPg9yU38cdA1\nD9Z3sPsfBjELoXwqxF0B7h1Q7wczClwDgXxIOge6jdR06hAIJSNCFn8O0EUmIl2e1mkN1+tn1RZl\n3uqQbsCL/VxLoNUmSCqxNWYnbdbsoExAALzfB+9F0KY/cI5kJ00NAtTaURBaF1UjfdvjTCFoxpha\nY8y9xpj+9vYbY0zwm93rd+Nvh7nnDzBrLsHXr48+GAB+sFaKkYIs4WFEZrhsstb+jDJluyIWpUOW\nQ9ci2HKjfmBgDSTQ/5lovSzLhEveVM+sllmvBlpkWzLlAlmVCOOXY24cJZyZaQnkpGWw19q4RzI2\nqQhTnpoGY2xZwYEh+iFmlEGnNSI3T06xjsi2fUCWdXN2pSlYW2hr5XKv0DVCvv1KRo7fkwrVQREb\nbwVcGISqWszDQYx3RZTw3DZfBLEytVlBASj4NWwR7OsXNUnxV0ePfdxr2tekZZrPuNdkGvaGGoI7\n43+g+vP+wJKbZfT1eiy8jhpStwEutA6VR2Lg81joFpaz8VwXXDnfZhaVYTMvA/uKZcv/MnJXPunC\nvFQscnZ8Z1TO9/06zDX10LER55QL506EkZ3tZ3DZcmHGduBjFO/3omuUSc9Ge50uvh0ahsIg8ByR\nodX6MqROqkSfdQWKrJ2S4mJNCVrkI2qNBpot9okXPpbWaN0qa48w8oTUJNP7qTasoFKGGgNTRXZG\ndNK2W2eBL11ZtItjYO3nsOJSS7hKlAmbNRC2fh/hn5tmN2U627+vQHh4FVLTVNpjHwTkjYEXZuPc\nWqfA/QybAd0QgPaQ9aFwqbEj8I7qm2OfkLmGdxXQB3yl0aba63Ps76oG2l4LMZuAx6CujUjZyU9t\nZsu2ePEC2TaTVovwro2dLn2g1Ujo8itIelpkLVCvjzFDpxY/wstwC4uK4EUiYeE6EbDG2qiCxHFD\nTA6kXKwgZu1B9VBtOKz6tKpVKmdpw79n/Cfg4xlF0IzXZjSy94golKYrIxZpWL34Nmhdpx/Ox/2i\nkbOUcl3VnUbEqhJFkyK1Qm77XMSDtMn+nejVa1PK9QOuQWSgAVg6TRe9j860ILBB2bG754lMjdio\nbVXa9xQAO8Zo230smEx6IRrin/WQ5Jut8m2PlEQZoKQWaf8BpMnPKNPfdy9UcfZfrdPg/Bk67pKg\ndPmfDdF9JOFzOAny3JJZxBWrXm01cvBachPOLR5lz9YOUk+bt8ZqQW6/GcrTdPFekKXavKpERU9z\nh8Hg95XtApG64BCcX3gkkXtuBuZlSRTNX+y5CKDozfAwXK3nnClGZOvSJmhvm4A+9azOYU6eLI0/\ntMXSoIbalyRA+7Nh9DyFcCLAWAMczcfZ6MW5z4M5uxHn+AwthMkoG/oRek8d0aJn7LnqlooJtMH8\n+CVM6OvdGv/eyE6G+hGQ/iqKl2QQDS/ZrgCFaVB4GmaetvNJU8ZsyWcw4QMtGCM6CYTeukYkLNYv\ncuGOh+pi8NTAiVZ6bWK1PfYmYD8M3mv319tO6lJE1DxpAsUDaKXvikCqm53H1W/ChXXQui/Gv1jF\n+wU9oX0m9Ic7voAX+8u1MXWHnA/ZBglrRIBAj3c8Ksthq7OAA2DuBm5WxM9fL0AAgYD3TWAvmNtg\n3zpNPZZoHXp7kH2wTY1VdYTAKmhaLFz3IuDpBXTr06JY+Rpttz5RDlXxbXQeG6oVLWyss3URqF4g\nMSQJZGI31aQ1xULqI5BNM4/+brQYjuO88Q9u37k4/jvHi1PltHiwH9x5P/Q4KNzoWqSAVk4eXP62\nyENiuQyymrB4Q7QWDKI1ZhHp/yFsyrpI92leBS8rgA03Rl9zrJ/w6ZfPCYcfmRnF499NV8+wGQ9F\nJW7WcIh9/fT3iI2qicsuFI6VdtH7S9Nh+ww9fsMy3efkSZNYg2rXcvJUIz5vOvzxemHzrIea6/Oc\nu1BNWQR7TSq44sBJEA7uniDc+hA1oZ60TK6WoLqxZ65Xc95zgLY7tc/L39RcTqNz3K5IctFJL+hY\nIi0Cxu/SdgtcOL/3YL4A52epMhX73DLdSmGdeVlKGjO+odkN2fkZqhmDqHv0+ymw8E6cnO6YXFsb\ntxvMuX5lAfvN0rzaw3VnoTY7E+NxnvVhzm+Az4hi5HlEMfKEemXSGmXUnl0g+ee8VAVuRy6HwZtJ\neBuaztGajA+R0aAlrt+HgYUou7Rb2FY/ArlSRlxAW2Bk4dnCyJkRUoj6n62vVe32nH0KApZWCyPn\nD1bvzoZK1W4FjsJ+N3RJgsqwMDXxgN1XKfT51Da6LkOBSoB+6PrmohaB/E7o+u4apDpph75v22dg\nciugyo9zRV8d6whYYUS8XPEQ+4YwMbUAOAVtPkMZth+I/MwaCNMi15/7YasBRgJ9oXwDuPbBqS7N\nJf2QBKa/DK/2rdPPJZaoygTs9k/BictUbsAsuT82IBhuALq0Bm8fcLW2390geDaJDLqsQseJkYlX\nYx14u8h0xY1VzbQXaSPJBj0TwTdS+Nj+O3njl8b/Fj6eUQQNgLYn4Hu2GDl3mKI52wbAHxcow1TQ\nG6Y/gfM/72nB/Lif9PR77fubECh0Rd+sBqL694jEAvua/QG93tYM0ZporjgnD6Y8p0Vo1lxl78rQ\nfjbcqIxNAEUcQT+InDxl2O6brYW7NB0CPhU4L7wdHp0eBZwbFkXn+3mm9h1ryZEbgU8kcvnWtUoj\nGP2inRuQ5LFHvmQSZeVwpBK2OiKoEXOVLyr0S1s9QTr3xberXq46IIDJyYO9YwRAbrQYNSBQP+/N\naDQSZAjS04NzLV9qBeD8zGbMbgBnnsG8VIz5LZi5LslFZsyXK+OaeNjnljXwOhTxbJaQ+uCqOwVs\nATBPdoH9QF45Awvhk772cxsDFN6oeQcdXbWfdGGKtsCz0yRd7A0rLoBFl6Jj6gn0TYMOdTj3hXEm\n/pPfwxbD2e/g7He4YS3UeCQ7pAaBUOT74rbfBTfQDVako0zPCdn8FsYA/eDRw8qwjcuElA/08oZK\naNVFxOLo2VAfD3uLZApSHYk6Z9j7JqJZ3t7AiTQY/rbOY2MaHLlRRfv7+mmO6UDBGLmeApgtOH2m\nYnpN0cXJxbuoD0j/31irnjLObjC/AE7LQji2BgK/lDXvZ7Y3DEdgUTuobA2V4+HUvZB0E7ieVI+V\n5ANwS4mNDh6UfXBrOx0/kH01tG0rwKMefY9PQfI+8O9SdNJ/E7S6WuWjrtZgJoPrJmSrfxToDN6P\nwLiAvVCzR9mzcL2ihTe+J7vlWL/kjTE+keCy/uC+EGrX2Q/43wA+Z0AG7b//we2Rf/C+78Y3NWbf\ni+fWhZixPsnyIuvz6lFROWHuMAVeFt8uwrZ9KBzvZ7XFRcoMBRDGFiFM86LHsX/vt48DlASiEYyR\ny7UOdwI62CBk9h5l67YNkOzw1kUQby8rp0/X9iLyxgQ0z3kz4Ypdeh+oXU7uFfp73GuwoovMR94d\nJizyBJSlCqA1bdsA3Rfa48rJUz35rr6wZQLm2pBs/m9AUsLqIHxUDVfUSXGyG9VQn0SS/ausiuVg\ndwUuf/mcjvPjfpr7U9MgAZwZB+GF2VHiGUDzWng7/GKl5t9B+zRDQioJKLbBx7uAHo2SUa5G2LUV\nzbmzR82r11v7fU+qArK5w3Q+pj4hs7GXAX8VxrsC8+kWcMNvf+njvo7wyeXAZ/DqFcgc7fzFck7e\nF4P5VZ0wsjpN5LpGGIkbZn5OM0Y694Vx5iMDrowy+MHbwpdEONwOaodKwZH+ZrmIa6ciqIDtMUB/\nyDoBV62G50s1F44Qvd5KQITJSh0HplqMLJeFPW4o7AMDPdDnba1r1T0hIag1u1UXbcZ/NmS3goPl\nUB9A5h7jaQ6GAmxPQQG/ZGDvNOHiomn63JqA3TfCoUw43E/nI3+M6vA7e3B+aqBNKs6cVNUgdj4B\nuWoyvf0oBPPUhyzu0P9h783Do6qy7v/PyVBJFUmAhIQhUQgBZRJBERAFnEAxtCOgYEsrbUM7tKAN\n3a2+osLr0GIr9Kt2gyiKA8jg1AgKToAiIMo8KAmTCUMCgQxUhQx1fn+sc3PRtp37q/70PE89lVTd\ne+vec8896+y9114bzBigEuKfFT5GsoSPp8/WeJ8QhEgnaLca6ARlt0LGOkiZB7OzYV8Q6j0OTFZ9\n0B2vu2Ugchw2GqtC1AlA2VqouQrSNgsbo431nvZ3yLxANEfORWuOBmidula/Wx1SfxzeKgOyukw4\nOXENDFwAdzgqY+0RmLRVjJPk8yHUxqdZ/hDt54CPPz0DzWuJEXm2GqZrEvS4SMfmwRNDsX9P84tY\n93pOE8C/hggIst223s3x3BAe7c2TD/XojkE0cWxCXsk8wK6WV+4ix3mfMEqry41A0+cEYkdLy7kc\nJOZc7KSNPxAl4urH4YYJ8vK92h8m/xaGT4B3++tajg7ivNpf1+QlsC5zOWXjblVicg6YXydqol7e\nFfZ3woythe4roE0a7M+H0jWKhJWlKOJ4aqKSnk+/Q/ssPFs1bt7q73voznpN5QeOzdOkNs0lCfd9\nA7Z2whz3APbDU7Grg0T/HCT69yBmtMRI2AgsdbSLuKMSuo9qZl1AgLUQ7K4/SpXrrERFdAoy4Yxl\nMGIyrA2pyMnuIt2XbZoUL1+Abwj1fQOuG4U11ygaNzNBxbIXniNDc6Nfk8vzCpu7d8BbRyTb/w2a\neflXGGt03wvk0SuogAND4fYUd3xP9TODulyuS61qn5AmCoZUyajzkqYEYNomWHsC/PZNea6iR2BV\nlY6/vgYGd4dp1YiKkazfZzsyTFq78fu72Robh3op12HOxVqcLe+qOkj7Ouu+bmoLD90lI7q3i7yO\nu0WLk0khVoYh+getCxJOBxZDzLnuN9ZCNMHVSukrUZCqflDqmEtJ70PqLBldG6YDr4sWeeQ3MGcl\nqqtzRH2zG2g8CNKnQslwIBH2HAGGC3xoAyU3w75xEPeSvIrsg1YPalvziM6NRODvyKv4vOgYIF9E\n2SeK3E10qajdm0J5PCTMgsATsGy/AP7iD2F1ofr9h2j/TQPNGPOEMWafMWb95z7/gzFmszFmgzHm\nr192ftbad77s9b12xi/tazX7yEjA1f4DPev/vAseWCAjoRTNp68PloNuaW9/5w/R/JONPPtOqEgO\nQmR0gfDMM8iS8NkL3ra4d48y6f0/d6CMC4B1EWjggM1zMHmwsKmtjKmWS1Tw+pXzhJODnoP/GeUL\nfh3KkJG2orfK4Vz6nMsNctd49DtAUo5UFSNg/hYvsZFfWeVhZxXCme9DQT1dSw6Yfpdrv3d76TjL\nhsuRetUCGXwBoN5qaJQhjHxmCLbvNVqT3DcKDnZWTtqoh6AoFyqLMUM7ySA8BbgtXufyjxqYHpYa\ncXJU65hOr2JvLxZ37PQlqrdWg8Q98vW9uQqV1+m5WHP7efOUOzbflf15/jxYJqXA8SsdRnZppftX\ngTBybT5Uxqi4dWWvOnysvszhYxXCklbCSHtctc4vzkJ9Fz0KFUF7sUDqtXA5XqB7vQphxCU6981x\nrpZZK9U5q8NIzzm+CzE6dgrXB69RDnYdRr4NK6rFGkkJAOvg9x+4YZQA6+ur3trCfXD8CXD7auS4\nLERKGkUIh/cClyKG1Ka2ijZPfUj39aFxonGes073dcY44eUTv4ESsLdtkwDbTISnA6cwORtWhqH2\nWlHmaQKMQ+yVQ1ICTigHe5bysgGKUmBUW5i+F1IvBSbr8sMZKC8QaOZSB8o+BhpoibMfaDsWSuZp\nH0DUyX9A3GrgdagaADHXCyPNG0AptL0RGWSX6VgcguhiwM3yoRJF0qJHpBhd7UTQh7VXxG/8BgjN\nVMHxaJkilXHNfzh8hJ8HPhr7IwlNGmPs1z0Xs7W1JvFbx2pENyhSNAtg6m81eaeUQ1HEn6BjMjSZ\n7EJg8zEa8QfwBRRAwBSLPCyxKGSfiiarPSinqBxNJOlumyoEYknIMEsDJjwOd/1W3705Qp7DCDB3\niF8CYOE5ApzR98JTA31jzMuBA1E5R98rNS7QMaaNkMFyIEP0lUTkBcxIFHe+mZOevxDspBB8kgNd\nL4LweIFUSrk8c+Pu0EI8q1AiHAeBxS0ESJdPl5c1qxDarZMU8aiHfeWu09bDvhxs2ZfTAGOmuHDa\nQkR7PAh2aAj+9Dj26WHaZrq2sblh6B9S9Kz7StjTS79lilXIc3Q/yFgso68WgUctMqr7uj4rxM+t\nymuFmb9OlMpCsEuBSSGpSSHKxKLDyHN35CC2Q4MvvZbPN69Gmk32x211uSGunjxPAHMPo3FShTyR\nW4EKmNxKVMCFu1y+WBhfuOOQ1BxTApogQXVkvGLV9y2H8e8g+kWJ64c9CHiGuj5Y01/3ceINWpwk\n4nuEU8ql5tZ/ikR3ALq4RPOgO2Z3i+1QD1ZDJBc+QefToi+wA2ruhEgaxNRCIBfmugTs5Xvg0UQp\nTzU8C2Juh8j9epya1gcSoWqLoze+A/FzIfI6L/vbOQAAIABJREFUBI9HCend4fCl8GwZXLFBp1Zv\ngfoukiUjK344dYVedgAtbgSegkPOyCt1tzQmwfVRA/XNvtGKkpn2mpibJ2n4jFuhhUy7VL0DLL4c\n4h34xAS+el4yxmCtNV+54ddoxhib/Oj3cSS18uv4zLkZY3qiWWa6tfYE99mZwK3A+dbaamNMurW2\n+IuP+JlzPQ64BxFmHWcMa61t+f1dwS/t6+KjefoK/fHoVJjeUQvNDiiX16P5geiHHtZ5DsmqVvrc\nU9dr4g66HVHfStB3Ryv6HUIGm6fAWArEddbvnDdPeNsENx8jPF4BnO3+DmdojrpnLNwwUY5OExT+\ndF+plIFX+suh6DFnVvf2WSAFmVpkX/qcRrRnWBYDh3qLcXL5dOVXJwKtZqi0QI5bZOejqNaeRUAl\nNPgVHATzlMX+ba0Ukh+5Rjh5TI4ERNbmKz+87XpY19Vh5fXC4pKQzuM3szHxudhXKzF3usci0VH6\nOyC8OqYWEi32gThMDlpntLPYZ+dDTS6cf5OYQUGxUGzrajirFmoSMbehWqk9UcSvslh5csUheMEd\nqyl1ar3sRbgYi3DmWJRHOGidzsczOiaF6HNAi3KAnm8B3cC8HYbsWsn3HzLYkZWKYNZbDcvgwBDN\nqRNXw6T9KCUkE9/BvRd4TwWgC8rhoZ7CyC/ER6jDyBFL0RosjOZ8l5LQp4lKynj5aOc1026Vxap3\ntvBJmNsBGcMb3ZgI4ld2TgfmjdBOUx9SH+bg46PHivKir+/2wtzsops5YK6w2AkGRoUAqB2sUgMt\nxsD+KdCoMdAJDl4PMa0gIV2FsSeuhq39JURVvy+ULYC4/j41P9hY70Uv6D1jHPC6cs7qATwIVSmw\ne6DwKzxLudY0ABarrmh0OCQ0hup9vt+jRXM4vFOP6y40WccDwebAb4A12q5knNYYDU+AaJyGy9/W\n6J5NWgMjO+m9WxN4uwoSLvt6+Ag/Xoz8MeNj3De7lB9Ze8kZOwvPER0ir5VUqLqvVN6WpzqVhApN\ney0PeQpDQaiK6FZku20L0OruEAKbBHxxjxI0iXhScRXIS9QFgdBS/Ilp4m998ZHrJosGUZAp79bE\nGzSht9sied65AxVir6OhnCPvVM/FEIjIc3jfGLh2gq5p2HTRQMqSpeDYKAe2lWOu0/23jzrp3ZnA\nB2GY1ANOW6WJCmC/k+Uf/meYs0XesPddIlGLLU4oJB1G34vJ7oSdeBP830OYwz2xVfXkZUrKwW79\n6hyt6PAgMUvLoC0wLx5OtpgN5dixnQEZaNGhQWKujEAuUnW8MRH7YC95EMsroftmTE469qoF8HbI\nVxZLdfc2HRngu4o0CXsUw+VdtWJvhigi+QZ6QsFWGRKLDiLqaTbYuG9onG0zPlU22f+853wt9Gf0\ngs1HYO4idy6efL0DoIXx2m5UZxjxJnU10rzFT3e3OGqXKiPuwQ3yuC0/CP/agzKEPZGb1YjO2BpF\nWQGunIWZauEKg/1dBHOn7pUd0R3OCgjgX2sjmk8i2N3azT4KZqKlWaQeKWuhezM4aQFsuAxiroSP\nVsBJvaE8U7laoc5Szxr+pjyj08JSPmzQB6qeg4QsgUSrBBlQDe6AyjchaR8cul4UjeA9UJUhg68q\nBC+WOY/s28DLUHW36JMp06HkFXVVfAvY8bGAa+PffT6+S7VgB9CyBXpe10Dx9RA4BByC+idAShKc\nOluLigGtfE/air2Sbk4Yqi7+uuDzfbfy/x71AmvtUmNMi899fC1wr7W22m3zleDj2jTgDkTbOA+4\nGp98/Uv7IVvHlTBsiuj0HVb7JV6S8nSH6qM5JxVhYv08n854AGgdlKBSOpq7PMelt7TwVn9eDpkX\nPbGroetqn6FSio5bhObBfu54Eye6FIF7fXwcP074A6L7v+Lms7Jk+IfDwIJMLZq9emogel5yEfRb\npmO+NBCeyYT/mQptnBjVUqBwsN4bIsN1NzDkATj3f+HJf8F8nFz9EWjTScqLE29wcvgpWICscpUu\n6JSo797OxVyfi73lDqUvbGqrbliIctoSgY41MsT6gh1aJQXi52KxeWAy0by/AYgYzOi+MB14+yHs\njErMk4lyriVHoSCKGQF0q4VIrPLJ8odDo0I/BaELwoRUFMXZjkQuqtw9q3X9v7yrRFea5YqB0Bds\nT1g0D4Y5Z5tXI8y2A9bXYCrjITmKeSoBu7wrdFrN7W1VGzM5BSYdgyblYxHWxeFT71srt+zq40WX\n9zDyxEX4dWiTgY8kp19Qrve+zR1GtoTMAomHLIpAd3xhramfwLAcuGily/E6jIw6b4kS0e8TAbb3\nB1MItzwE7Z3SdRe3XWUv7Mgq6J6L+V/g5eGQBdZRU80EsWzsFTFcPTfE8r2KNnZ4HlacBoVTYB9Q\nb4JYJal9VZvt8E5hzIc5ULNE11K6WlR/0xg+2Se7MTgS9p0KiUWQvBvKXoeUbhD/O2AhFLeH2MYy\nTOsth/T7gB1Q9jiEsuW8PAwkNID4fdAiAQqPwLqdsnOrEFYWuEcgmAisgaoLoLwTBDdIwOu1NOh3\nrDOit4tyOrKTHyFdPh/MAOB1sL/iB2n/LYz8MeHjT5PimJ0n6feyZPiz43YXo4n718/JC+jdvJQM\nv26ZJwSSidwI4EfY8tznQXzgKUYPeZHbNx2BUFM0+W1ET9V2t885QX+RHQr6HsKLZssYa7dFtJPu\nK3X85V1FzyhBYLOpre8Z3NTGp0bu7ixA+us4eRmXd/WPM+BFd51l2AeLsbumiApR9CrmYSuu+Zi7\nIbZY11amGlLkAANDKsy5AXgrVobfqIdlnAWRcba0WJ6k2nxJGp8dVm5SoiJf5tSjEs7+Q4v2TCHa\nMwV7UTX2mBpsuyps662f3agLmGWJEgBZgibHxwZJ+ardFlE7+k+B58fAy7PhkyFwRRgyw/osuUj3\naQU+tfSPU6VYCfChc5BUBhlcCJPWI2rdvzMu65qxhikbDDVRQ2Tf5xw/ntfZRVzMfIOZb1hhBBjV\nzsg4cDEaOzvxc8UaiFo3qrOiaJlJ7pz3AgXQJ1H8700l8pL1PRZudmIv41ZA8wBQBvwLOQg8g3TO\nGJ+Ocear8K7RfXwsKProQjBvasDb/3F0RqjLk4z+NYgtCmJv2k9hhQqQpgRgeXconw9lg6QCdXgx\n1CRISKNypRKH9+TC5O6QnAepK6F4maiF5c0gYw7QBkJToexYfX6oOVQvgdKZUNIRXugJ7Q9ARoGU\nK8+Ih6quQKWAI1Auif74WWL77PlY3dn+eF8kcx9aD4RR4UyOB9sIOANi0iChTOd94B0VrV50igRb\n5uTp+je5BcIi57b6oYwzQFP49/X6eq010MsYs9wY844xpstX7qEWtNa+gdgYO621dyJXyy/tB2j2\nymdh8HNUjAzBzlRFpDyDZ+HZwsg3hmiu2dtKuJeHHFVJ6HOPkr0lAieHfepiMXrAPGytRQtqL2oV\nQAZcJlDRyqf3b0FKgKVu313AuMcVpbhhgo7lUe49afy+b8hR6eEmiFLmiTiMvVcYWJYshkm0CEY8\nLjx84BY4br2O82Q/OPZV7IJ8GSP5QIt8OaaWIgOs3RbY1QjajpaoSjOEw/lAciLmzo4STXr3bBX3\nzpaD05zizqkZ2MZT4N67YJ0TMFmTq7ICHVBpmQfiMKNqpWRcbaA4Voabq7vGBVHoC/ZPYZgdD4Nq\npV68JFHnc1I1pEe1H0hKvyxNfXD2FOH4lOFSXl47BF6YDcdnCB+nT4TBs0W59ITR6gPTpmrMeBh5\nstV6JAkG7z0KIzN3wpJqTHEM7InBHlMDmwzc/xCT64t1EJ8iFgXzkVOs1B2zvhsX3vhqCdMOwpiP\nfIyk9qhzckb83DJISdD341ZoP4qhMA76WG03cY37DmFkjOuahTvhlCiyQo4+jwpEWVx4Doy7VQqZ\np0iJkEynEt0HzEcBRcseVX6gva5aNV5frcT+MwY7NgbGh3goC9ZepMOvOkt+iT3uVKNDIZoKFXPh\nyEdQvx3c3gFST4bkZ6DeeqgpB/M4RCZAkznQ4Fw4nA3BA3qVNwP7InChGKjmDOHjnFiJigWOgcN/\ngaq/QSRDmjfls9TdeR+79L4WbjnqHs3wUY9t0/pQMwpq+kGgDGJ2w+F0OV67bYGKHcJ/ryzApN0w\nd7929mjU9lf/P8DIr9d+EHz8SRpoNu6oQfGvjpqU6+NTBxf1F5gsRBO3x7vOBN4e4j+0NRE/7L0T\nAVVzRGH0dL5L8QsNh9D2AZSPdvSorwBejyiSVgvEOMPFk8Bf3lWvshRN4BlFKmJ9JALWZa+Ou0WT\nxwOj4ZrJ+q0JY6DFap97/8RQGWavD9a2ZSm+umGJk/3JBz7Oxf5rpkD56qfhtE+Upwbi9+9GXrn6\n+aIA3rcQZju6WwQpJ0bcMQ93goJMzJgcbQuwPx97D/B0JeasrzbSAOypKXplKkEhZlZYr79GsLcD\nSa6+y5pK7Kw1Auu/XaMC4RM7anHxlwm6/pQyzLmiolCQKeroLqAIlh6CPkuA90KYc4F2taIm7MZ5\nQ4OiPvQCblv/2fHkmgkbiIgzXl0Mwcb+NmaV8SV6a8HsMX7eVzpM2gE3bJIyYEEFfi2VAkgu0DZj\nVkHaVDdEqsSrbxuDxhQwrJ2AL+ZpvS/bL279sPYwqS+cczw+NfcMREGac7EWG6MehmFPSVTlAwdA\ngLkO1ZkDzG1uX2f42Vf9aKj5RxpHfiMjZmwDCDR0gmcDdHtipotTn7FQNdAi60W/jH8Yqm+F6nHw\ndAqEIjAqBVKup67mSsosqD8RUq+Q1xWguh5cWF/ge/UxMPMsCXrEHYGi+VKVCqdD4iGIrYLEv2vi\nqofOseNwOKa5Il7Z6FYEp8igq40HDinBOZIGMVG94lNUSHvyGTJAV0RhkZs+6uaHn1eLAxpaa7sD\nY4BZX3O/SmNMLJBnjLnBGHMJP2zu+C8NSBqA8KuwFVTliVly6jwfI2OBPXkqM+JN37uQgZaS4Uvs\nLwr5KreeM9OT3A8C77nP3nTHyULlTmLzfJo+aLW4dJz2qezsG40BZGSMnOBynl1yaLstUntslSf8\n7L4S066THITjbpFRNuphiHMnVx/97zkvQfm3Dyyoqzlm2uRKvXF5U4lodFyjXOdhU6E0A8beB7Pu\nEsXxihwdowPYh2LERqmfB/s7qYZbciJ256t+f+4YrpDEJ/nw2mhFo1aBnZCv+TeCanLuBrMyHtuj\nEirF5gT/N8yyROwdYfgoVvTF9FpoYKE4FvNyEP7vKez1/bA9Bim6+eJ5MG4UfBqSmvLEG/wSKeft\nUFmbquGYHrlae5QA2xw+ThXY1JWwmWV8fGyJj5GRdMyncXAoFtqq/qidBrRcwoiQmChjPoLcOLSf\nR3X1DHSPRhtL3XqrrEpzcHI1rD3PbTcfP/e/XNG2SevFcEgugLYWqNXv9TnWL0mT/aIf2RnVGe7q\nBnvqwaAO+JTJjkj8w7GTTEouttAJtGSKumiuxtEhLfbmCOYhRcvMSuULUpOIaaZzrR6u8jfhArg9\nSRhYMACOQTjEDEifK9ysaazcZxMHh1Og+hVY1RearIVhEyD4rvK/aA71NkPKeAhMgPpXiTlS1FV9\nlRmATAtXpgsjg8sgVAwVV0DGaVI4tjFgp0LO32WE2evFXmnVXJiZ6B7RY06EorlKRYiLKI8chI21\nKRA8AeplqX8nttD96pMImTV6ZgOPojXNz6f9IPj4kzTQAOi2TJGCgkwVKQYZMoXAyfP0kDfHr22W\nhLx4vZ7zw95eWB18usdWNLLDOP1Q/IVwEvIGlgIfoAV6Ib7C1Rnu95Lwa685aV8Wni3wKUuGKbPk\nqZo5QtuMvhcT+5giWP+8S8m+HdZrUrhygo454EVNLs0T4awD8vT1fQNmD8fWThHgzRnkR+f+OgiW\nDIbYHJh7Icw+U0DX9w2JRrRHHsWCTDh5ifbJBJ4bjeklugNvVQp0mgHxiVKdilmj5OYzcrTNlYlQ\nugZz4ZxvfAujg5w1kgj0BBtIgfUh2JYKz/aA9yLQ8jmdV1ahkq1vHadrzJ0nD1fHKszlVwtYLoGr\n20H3hq4ey/DXsCVg/+JyPSPoPqQWwi1hzMQw5oycLzw3G7LYkGXhxZYz34FolaG63NDuaaMFy3I0\ndrwk51L/vU+KPH+BJ+DEZyH5ELIaCp3q4hZIrpVxUFYlOuOwdrA5AoRh0V5FdR7oCTNOlXew5yLI\nXayI2xOrYWu+++0uaFH1an9RV5d3VV9NvAHT6qjr2SkBF1umV/RO9/qzXl4zZ0WwrZI4uEZSu5dv\ngwuWQr29kNIbUo+HmtOkcsheiH8EAsfB+VuUI3YYqH4GxuzS+T3cDg6vBHZAdApsmOXOdwTUf1FK\nU0ktlRu2/WJFFks3Kcp2JBniTlJpgeHAulOVg1YdgvRHoCQCxaXA68C50OVGMAsg/kSBFUhyeN85\nEH9AHs2aRNEyYxIE8JcnwLp68OqpMPlkFJ4DeOoHzs39Lh7BfLRI9l5frxWg7BWstR8AUWNM2tfY\nbyRyK9yIRuOvUVbDL+0HajbOQixUxaO5oEuJz7Rot0Wffdgfap1IyLGIYp/k/k4u8qX126GlSSya\n9zLxy8Zsxc9/DeAv2PriM1E2IgxNR8WrA0jh7+5RmrOLkbHlGX/gRKySodhF4Vy9NluwxK9F9s+B\nKg2yFLj5PH12g7MWhz+CucbN6/noWFmF2Iopwo5RL+u93WZY5cQ4ZvwK2qyuWw/Yl6WsaHoBV18j\nw+40hyMrhJGsyVUh6ZlVWg94DJUtzvi6yZ17ENgAZlKCDLWZYP6aqCLTQfxi09dYURwXJ0JHF7Ys\nj4E9Bj6NEf5eNwpCi4X3HmXRcwKOmOxqlbnwxjU3Sdhi5BHoUa3+7ggTjnX4GKu+sSXA3jWK7jl8\nNHeF4a0xcGlYzrxKA7NiVI/t0zhFILuvhPX94YiciPWyoKontF3ixspGFLHzfiuBukhZQYWEJwJP\nOFXDVJS7n+f2qYLkWEVvNpUIT/sei9ZlR2CRcxSnBODAZUoFiJ0hWuYdKyBmP8xy7BbaIHXqlDJh\n5JyLNZZWgRnjhMHeCGP/EHa5e7WYNxPhxRg5sZciR2ZPJ9IyK0RkD5RthiO7YfAuME2d8nBvSL0H\nUUqBhnmQPhzS3oEDqyBhOsTf6Cj1zXVtB4ZD1bnACvhkHGxYC3QDO16RNBsLkfqwsQe8O9CViymB\niiYy4Cauhvf2SuB83akqgWM2QMnbsPM3aDbuptSExisgsACqrxeWhtNhXxcoPxOqkiEaI0MyJkG0\n0YtSIZSjtUj3JqKP1l7Jj6P9DPDxJ2ug2Q9P9f/xqIDzh/ghyyAKq3s5SSWo3kUsmtD+GPZVpWqQ\n56cEGWPZ1Ik1AAKPAD6XvtZt1xJ1eXsUwYjgg0pZiigkPRb7idngG1Dnv+jXhVl4DnbnnYqAVBYL\nQOeeIPpaIfJsJhepfMDNKIo152JFz25DE887PXzQeeIaHePJfqI/1PSDeM9ATFGB6EwwnXPr6COm\nTa6KW95ric4JEp0TxEYayqt0d7W8efMiEOgERZWaqM6IStAjpQzm52Iyvl4k7egWHRSCk6oxf6lW\nfy5FE3Q6imKWAvNQ5DBxia57eVctKHKQ5C+oJskmmFYJ8U/iJuVemBwwfzxRVL+bwbTqhclNVDQN\niD725Xl03Z83rKjU5J/7BnzUT3LBfTLRmChH48lT1kSRmE1eAn6WNqEELk1Bi5XmUN5A9IyCCk1+\nm0qAEIw8AaiCwjTldXVv4uq21KqGzcQ18PZ+2JmCwCQbceo9GtCmNphx62BbL6JPu/v4/lfnCta1\nl0OwXDVcTBzMP09Ru4ShsGExHL4T4t6D2Leg8kztkvK61LWCY8C+AuYcGNkQll6ohO3wXjg8S8M4\nCeAQfHo/FF8hMKk3COJPEZ1zwE6o1xwavw2RVEibBvWdGGvnJWCuUSQu0l/Anv0KmLE6ZvEVSrxe\n94YUpgjKIEtsBIld9R4TEsCBAN/7e/ke5TxM7vH1u+pH245DJSe819drLwFnQV1ic8Bae+Br7Fdr\nrS231n5qrb3KWnuJtXb5tzjrX9r33AIXzNaCe2Oq6BAbe0M44kepuiz2S8z0dZJwexFNPILmlnXo\noV2H8HEjmpOTEFskDT8XOMvtt9C93sCnuDVAWFYInLxT2/9+LNw7EWYOlZrx8q5w/kt+VOr8FyV3\nvryrVI+HTZfU/bDpomkuRDhRiiaXk6bA27lg07EbZoj2B8LfAS8qlzulXPs/PtqX8c8EmpRCqDs0\nWgPHq+aZnYYKPY+7BdZ1xXTPgY/CcHe1jBqnVGkeUU6vGWuhfbpy035lZaR5AiGO6khRpUQ5MqnL\n/zWngHk+CssN/MtITfiTWOFgpcH+Ooz9dVjO0W2urzsvlmFcgNg/21H+W0q5MHLWQP3dDMwn8TAp\nXv2wE8asQPi4E9VLXVXsY6TDR3t9FebIXZhbgWwrAa8+6NxeURqCx+ChNayohPNeFVNhWPv/gJFH\n3HupDKvxH2rMlGeg6wIubYwwMk3bLHSpKFlJKkFDLIxsBwRl5Ax/U+9pz4mBsqlExuKuEAplDURr\ns6xCuE9BD9NtOCarlyyUhlEVBF/pQkgda2FlHLxgxLpp76iNM1EqSD5wAFLekPGU2kPGYcMTVAB6\n32LRFGMWQ7Q5VDaE6EpdT+OBELwbIrdC7nYoba++ik+BhPmwY62WjllAdDoU3CjjrPFqSO0EBzOd\nQbpCBlTSXnikPYzfDT3fhUMnwOm3QPhGXUp8d0UXTTtFSb26b4HjIHw6xLaEqnoQXwZ8DKFjIRqQ\nSEi4EK5uLpXJ6mKtU1JcF3WYrntgr/1xCAx+4/YTwsefpIpj3T7WKIn4hHnQNKj6XbFAkzC8E/LB\nw0tgboI8NKAkaE8dyIuCBJGxtRodJ81tF8CXG85GIHM08MSiSb7W/e0pBhU55cjpI3wj7QlnPA97\nyl9Ut9sMZ76nvKGUMrj/t5qwPCDcBfTJ0DHOf0nb7+mlyNZB4KWQziWCAOsvLvl61MMuYncF/G88\nJNwJF86AmYMFGA2BzBnyLt57+5f2dZ3S4pO6NtMM5S41BTuiUivhIF+p6vhFzRw4ANvjILMByS9B\neS/Xn15+VRBNLj2WyUCsWqPrapQD88KYuSF5JsN3wEkT/FyK/sCJYYHUDVFsyxrMEwHobokOCX39\n83tK+WcHLoMnNumzMStgck8YkYdTQMO/X7UIODPQmDs6zy3V/X/Efb8TkgMCoM0NoE+NcqAyixRV\na+eAKneejLesZBgzH/gIGI/oQiBQBnh8NOY6/Rm985vdC9N4F4y9h/CAybSeB4XDkLpTKtgTIVIK\n1Z9Acg4cKYHEAUBjceOLcqDROXBok4Q/WCqwHdYeei+HvMEaom1765hLS6HnPcAOODQFGvwJyrtA\n4nkQeAY9m/1REdxSsKVw+GadZ0IY4ne6vn1KilIr3OKwrKWkf6s+FUc/JgGi6yCmI8TVc8U4YwWK\n03YKXOdsVeTOEwoZ3uGbz4nft0JVnYTy99FG/JtK1QygN5rhioCxwDPAE0AnXAbn15EDNsa8g+7E\nbOB5a+2G7/HMf2mufSt87Byhak2IwFu9of1iyYoXZIqqlxwUxT8PzUkVaD738oEqUISsJZpL9+A7\nJzPQojvNbZOFcHKn5NPHp+hvqtz2HY/6O4AwdFcrCORJOTKlTAqILh/MZHfCXt9PxqWXIuDRFhee\nA7ua++rJS905DHQiIXOHKCIHwtjnRkOvGRLtCrp9FveX0TfgRWHwE0PhwxLYMxTeO1sYmTdYcurP\no/OacoOYLn3ToaEiKV7+kjkF0RLPCWFusdiHDPxfFZwfkFFWXelTOiPpcrI2dFG6TEezuxzsryth\nZKJoj0OisDUG++sIZoVbGafXYo+v7+NMyVH9mo6Khp/+Jua0Toq2tciHfTmYubXwUSx2VEjzqady\nCRJsOQojWeCiRiOrhZcfJWB7VGKmhqCdiza9GyOsnwn84Sa4ZDIs/Jr4CN8MIyPCRxBGZiW5HOEI\nZJb7kZ1NJco9W74XBrSGMeNR3a+eCCMveQ+GPICJjhY9s4PEQeyTyEi+FtgoZUwzvxYSXb7f1hg4\nxsICo3t2WwuYczHV106mxTQoPF/XZl8AboHIET0vJhbi5kDctcAgKHkKatdBoy6iEbILeAfaxsPb\nLSCpEHYNVgnPYG/YuFgqi8cNR/L4vaGyrdIBJufoWhelofXqLKcuuUOU/5oX4W+NYXwjNy6cIqRX\nKmNtJ2hxUDmAHpbH1ROLpTzeTz2oTIMGMXAoKidx3+Zw+d0wStpuTOz9DeejHytG/ojx8ScbQatr\nF8zTu3XGWUkryAvpwQ+giagCn1Pv1b9KQBGyvfgGWjEKeTohBwrQQrEQGW1OdrttDdzeECZ4tV4O\n4Bf0rEUS/o+OEGA8POYLa399xiAafa+KSnvFq49OwgYBXHKRKBwzh+qzix+QAXPzNdp+FQLFWAR4\n796l+h7n7YAVp0B8IwHFksEq/LkBvQoy/Ujel7To0CDRoUFF3kbVQh+rCXqpU6oCKUr+hxZzZ0Sv\nWWEZZJ9v2TWY9ysob9PbN0qbQvI2aLsT5TjMv0j0y3adsFs7YN8PYtPSsJfKw2j23AUtW+mxau/6\nb2cl3F+F7V2JeSJA9O/Bb2acbTXQA5LD8tKN+RjGrIdX+8GIZa6/t+Mb52nu/RR8amxrZHB6LRPf\n2xwrgOneBEamwKJkoAIKQzB+vYyH3Hmieyzfq9w1GgAno/F73Gro/p4ojQnOOAt+c+MMgLH30KfZ\nZEKVUPjRRAFqE3jVKhcssgbqvwHtn4XSDcCFUHIrcD5k5IYBSG0OPDGOq4/R+Y5eCvX2QOtnILtY\nAiMAXQGbBJEpuoy8+yGmm+gXDEKLuOww9ITJXWWcRYDKBfLw0cT1c1Plj3n00szX4flaiYIEm8oQ\nqzlGdXIi9QWcgaaw6ABcc5wMNI9m+rvZLQjYAAAgAElEQVR237zL/mst7nt8fa5Zawdba5tZaxOs\ntcdYa6dZa6uttVdaa0+w1p78dWu1WGvPAM5EJXomG2PWG2O+3NvzS/t/1gK/flzRFs84K8jUc/N2\nxKcwJqE5qQrh4S58Sf2dyInZBm3vkXoK3Xe1yFlUC93qw/j9CIsKINMrYZOOH3EDmDoCInmwzVEs\nhz8C994kgymlTMJU57+o/ze1wRy5Sx6erELMnAY+Pr7gfv9MYH+RcN5zhKaUKUr2p5t8eqczHlje\nVTlts97T9t1XQlwcLA/BLXfAB4Ph1zdJ7bFxviT6p03VMRsiA+IJ5a+bXkCfKGZqSLXJPjSizn0U\nwFyoVAHzVILqtZakSy6/f5Wia5noeCVIIfCviZLxnxwWpfHCI9A5iG1ZI4phjVGNUk+cqhYoh+QP\nED5uiShqGEFlcQoyMf+02KY12GvCmDFh4WNzdz+9e3rKDLi/CipiZFD+thabbDF/D8oY+yRe5/lu\nDDa7uq7YNjsdz3B3Z+gBLabBmDXCSEJOAKQI3ZdCNwY8jGwKnOTGRIh/x8h0lGqSAeW1ykPre6yj\nNrp1VkoABr8jjLl8gauNhvv91u4YmQgjiyplrAfBPFurcj9PIobNtWBzwxJo6QnsicX+KR57U4yo\nqy8Y6GfFGhr+CFw4mfhPoTAwRD+4SqVhit6C+Fo4eaEKR8dWAw9C90sg7dNWJLdUXVNuH0e3DxCj\nC2g8VTlo2cUyzo4slhhXc4BK2L9C+Fh1Gqw9DcZUw6JewPMTMZtKmdwTOFf10sqA0Nkwvi16Tma5\n/vKWA4XC5ZlHXMmZWKkwx4VksG1yxto71b7Dck6ejLMBx0D16XBPq29unP1X2s8AH3/SBpo1FnsV\nUC8DTgqrIjxowitAE+kh/Al9O5rY6ruX9xB7Muk9UaTGY+oloUiWq+Xxal/oc0B1q8ZvdhNBGJ92\n4HkIQZSR7J1SqVp4jnj1m9pi9x2L3SdXhr3yWbh+qtT0uq9UPRUvqublsqHfZu4QWFOJWblA26SU\nq+bKgBf9+i8Rd64Tb5DhdE4n6DEFNreGQL72242MtHF3qBbM2+di3z73a/d59OkgbIqFdw2mC5rQ\nDyJv3X9oMTdGVIdsJrDdwGkhYm6MYBrvIubPEWxaGuaZEPbxGPXB/s6ayANQ3ho2V0CfI0BckTyD\nzT57fJuWBp/GYYdVwfCHRW093Bk2d1Zi7yfx2LQ0on//FkbLRpR3CL5RcAh6Rl2xzUZAGGa0Ql7m\ncmQcos8Juf0y0H10BhhVwAFoW9/RG4FJh93nAX0HUrOivS8nTAM0e8e6Y+9tJarGqIex+TOwr/OZ\nnLJv1Da1ZdGgMObRMHw0HI4Lw5DXyO22k0ZdIKm5EpU/7AutN0NRRzC7oGQd8H6ImCNBWNWbS08f\ny7QOsO1S2GzADMkg/gKwtZpwjpRCwgUKulbPEYa3OlH0GJoDYyfC32bD9Q9w4AMBc8XbEPsKbO4I\ngb2tRCUuRs9cT+o86g/0hBHvQM9N8PdtkjdOOU75dHGfQuV+0Wbapap0QYtpom9kuUI03yZ69nNv\n1to91tpJwO+Rv3fsD3xKvzSA11rAA7dQ1RAxDjLzZKxVoOcsgE87LMWPxGS7/dugbb3yM83xnYZu\ncUlHIAu6lWtBd2kMdUIQhQZFtza61zrkIL1ksubELot1TuArNoJqXvZ9UyIfG3vVCRuRVYgtuULP\n+sv4kaADaCH+x8cl8tH3DeHiPoePp85T5MhLdei+UnngoBqfHVZDaRxc+aCUGGvz5TTdjVgaG3Q9\nLMqU8FLvGhjs5tj2wDa3jGpqFRW7Stvb+8Ki4bsi07TIl5rk4E+xd1Zil+erptbDti4qx8VRzP+F\nhJVdE+SQfCSAPTcCr8Vh5s2C14fIsE7V75SnIawJuH6oBP6vGxREsedGMG8miGVycY3q4g0MCyNL\ngc2dMc0GY+YFICmKvS+CbVqL2RYHZ9RiL6rGVMRAo6jOdVmCVClnonuUVai1zZdgJDthxulonVQf\n31D3oqBhd95OKKMOH4NyhmcGZeyVVbn9XSRucymQrFpq5W1keKyodsdtpO/YDqxyjoBeM7DP5mPH\nxirN43ZdE6vAPBOC7BDMDsNGMDdZrWsAWwh8akRN/dvZkO0w8o9T4U+Pw3U7iX0L/nJYRZz7Hgut\nPlF+2IG2sCAEpJQRzIdppwcZed5YVrh1wZpfgbkSYi/NoHwbsFjMzEYJkHAjlF2gJWwCEMqCjoeB\n1FbCyJQy7PH1uWoFlGdB7StycAY+xmdxNUDPcWc9K8nyo1JQDgtiYdJRYtqV+6F9CVTs1P8pAdFW\nR6yUamTc76H6fH5p37B9F3z8SRtodc3zmh0s0t+eTDBoYJYgKoe3+N2CHvStfJba6HkNDwDr4NJy\n93cNXJqpsHJBBQIlT/0RVGC3AD8HLohAbkcbeKu/X6tlyvX/duq2LIhNuEN0jjaJolt4+UtpaLJK\nyXCgcgP2zkqfnlELJEZ0jseih/KhcaI2dnE88U1toO3HENtAfdPQ/e4t93+z3KSjW1MLp1vsbZXQ\n0xltgN3a4Ut3M+NsHY/b/gM/18D7/jKkGrmpreg2VdRN4ouM64sukoP/t2P/LYD5W0BUlLxWfi2a\n6m8WMfu3dm4QzglS3h55jJ3K1IR9Aow/Z8LSS1zNmAZofCXxmZpmdQuf1gisU9F4iZXxWRgnIy1z\nj66xWw0av47ZQrGcAXV9cNj9Vn00bg6kwiOjYc7FmIvAnPz+t7vWKcMx82uxL+TD/nx464icB/c3\nJ/Z16PQv2B6VEMfWDtBgB6S2htSps2HMa9DmADwxlLmj1sNqSFiBnr8Pixi8BFrPg+BYCK+Hysch\nPk+qjp2mQtlsqF8KjAprrM9XfmRaFFKWKncstT30TEZlNtLz4LFx6ssS5HhJhREfC9DHdlP0sby1\nPII1YRmAiY1U1NSjxJQnyDs4bo2Sy3807dsmQH/R67/YjDHtjDF3GmM2AA8jKabMr9jtl/b/oNnG\n+wComgFUFsGkMT5dP4IiZaWo3pmnnvcxisZUIYdTGp9llHiy8FVoPtwDlMjhsbnEOZE8WnoQPf8f\n4xuFoHM4WiH5sYE+JX/Aizo3T1DrsUFyJgZR0eblXSWn79V9TMI3NgF2F2M6DJYDsyhDasleeROX\n58R9s6Ru+4H7/7zX4NR18ElH/fa+HIlxRVzuTk9di3k+UcJLz8Up+uWEPGxupY73lMHcE4UzrUqa\nzA1JeGOBwdxiMf1yoFEO5sQc5aY1ysGeVoU9O4LdACYVeM4pRh4EqiulrlgJ5q4QnB6FITWY/Kly\nnuHuS0v37jF5+lnMugBmWaIMsw1gT6qCrXFiWEzvKIz8ZIhSLk4+yimVaDGfxmF7V8KnsZi/yXNl\nj6v2x9WjwKaOKpOQO69ORbsc6oyz27vC7Z9+Fh9HnoDm6Z1ofeRFbbPQ+OtJnRIyBRpbBRVQWCWn\n2sJd+OM3FhlgHsVzr4uueYbJYfe+bITWQPGJmIaDMdfkYC4Cu2kNvBiDHVilEjSjdW1mVEhrwfRa\nzPO1Osa2YuyDxXB6VFHOqxBGdgCTMxgmNue6TOW//2kt3LcdtneV4nByIaR2zZDjuWMQOq5k0jXr\noT20fQMSCt0z8mkRndcDx0PwRqgsgOoOkPJ/0OpcRdlSn4T6TVB0uSBTY7wUEjIk9vHHRGi0eoyM\n7+2tFLhoiTyge9Q3Xu77nDxf+XKa8SmOCQ0VVTuvmQze5Xvh9rZimFSeCa8chlDmj8SJ+TPAx590\nDhqAefoKqoY+R+CeMfrgLxMEPAH892MRGHiFF72Ik8e9b4kWzslolnF0x8ywBubcPMm6Aizykp3b\noIHvefGzkWBIlfusFGjhePGFyGv08BjsLff/+zU0dyv5ymKBVN83oHK1wLHKnWeklSSHnxkC10+F\nfWmS8q8FnkJ0gekTdbwqyeXbd/Ll5aqugrLHYO5afV79LQ0z73zbuPNtCGZsLdF+SV+6fcy/DmNv\nELfdXOg8Usmvwq5cOO8B7L231+W4qR8kT8y7Z8P7Rb4a56oR2Ov/+e/n8/YZ+qP1Ym333hB5W898\n5ztdJ4CJhOADd26xQC1kboXCDNjfDGoPwcMhGP8JvlBIT7BpR8ny7zyKdh1EdNkSeQdB9I3xn1Jn\n0F3aSF5B0pETISQZ/vIMdw4HUW7YlUD7oIz0Jjuh3WbMn077yvvxn1rMpAj24Xx5jb0yDLtCsLo3\nRzovJu45iD1RitRHtivHq8EF66E0R17bRCfZ/PsQ20+A7P3omWsKkRTRIpMLIXAJnP6KT0lZdBAl\nc6/qLeD541R5v0uhKhYCS5HBeiywEfockpxy7mH0/G5ECqordH8md5LaZVay+jajXNG7QEN5B+sf\nB1Vl8FKJn4MGMO7Ubz8Xfu/8+qe/jyO5diXf27l9vhljlgMzgdnW2i+pKvhL+y7tu+AjIIyMImMp\nFS2EP0bzSTZ6jiJo8dwSLSOa4NcQ9SIbQfx8NJebNrITTPoYf+HcHpLXufmqPlqAJ6H5bLs77l73\nWZrLHa8ADnZWJM2p0LKukxbDuxFe73bn/mA/zfWFKPqSBZR1dgWsfyNH6PkvyYA4b57wMQR0a6Vc\n3ZQyTPJDyj+KANuKofHT8GlLzPCLpLLo8pPMeP2u/cB99usw5vUgdqpReZsTLfam/Zie6dhCMH+w\nEpiY7HKjnRiV7V+FeTMgp2l4ieNGKn+NVFcKxak9EkSUxwtRfbWFZ8MxOdo2Ql1RZVt+EwycTPJc\n5EBsA3QIYyZaSLSQbLHptXBMDeYvIWgF9oqQj5HjbtFxL3S/25M6xUK7EPifasyj8diJYcyIkL7f\nDXacc3h6hc/DEd+5HRY+wpdgZGt8Q9+LyKaidZOHj1CHkQOcGrGHkZc2grkerf2QG5vevp5jdCmK\nMp4ITHpcgjBnvSYF60TgH1WYGbofJtPlFF6LqI/T3N8NdRy7FHitEnN3IvaPR+A6RTbtTJRq0vdN\nAIrqLSZtFUR/DwffUKHpjAiU3xGWkX0tdeV+1m4LkRKA7DI0jtOhtBZiPwRTK4xMfVLrz9ltoMF6\nIL033LpAYjijHtZ6cB5MyARPjJJsuPojMUmW74Xcj/HXpGeob/vE6PuFu9S3zZNUOLy6TCkB1WWi\nOJ7XDK5ZLKyds1X58ACXH/ftcPJHi5E/Ynz8/0UELTB9CIxxBS+L0YDcgh76AwgMShDftCk+/7rA\nvXsCHweoozsmH5LnJiUANIdFuxRmb1uA763zal95+293v+O8FaQVyUhcPkSTRpnHpfxsszvdRJdV\nqMl44TlwUtAv8Pihk5r5qDMMfg6eHqTtACLQLRVsN4t9ZCT2kZFEHwv66oRTZKxN6nEDtjr43Y2z\nzpE6PrMZE8XeGkvMgIhvtH1++zYR7JgYzMNRWFKlyT4HTHyuQAEwGZG6HDfiLCRZWN4UM3oHrBgn\nQHd9bnI/+zvm1IgmrTYuuSkJce9Xfn391C9rNhjG9rK+py4khUUKpDaYfqbqrnRLRP3S8bPGGbj9\nqlr5XmMnZ705BJsTYPw+ND6SgGyYux0Z/7uQkV4O5d5CKQsohkHNYEIMyr08br08zod6fadrjY4M\nKgq6G1E/Vobgr+Mo27+YivekUEwIxu6G9A+hwftAVY7Pby+vxM6phNaQHQUGLoMbl9FnLWTMFi3y\nlVOAp+Ddg4pALgoBV+B7srIKYX0L6BGGZVKS9BwgbV+Hq2tgZj/IfR+Ni07IubIF0ZOzZXQNaK1E\n9dNnw1nvyiu42fHuq8ogkKIIWlmVlDHHdvtOXfezbdba7tbaib8YZz/OZq98FlDpC0qRk2MvdYtC\nahG7ZIt7FeM7miLu1RQ5irzU4RJI3gjdLJDsIhsnwdqB0Ccd2AjlHbUQrEsv2Oj+Tsc3zgLAgYgW\n5Mfi1zCbORUCnVQs+HkkmrHRGTOFyMh6eozU+TwJ/+VdFc15ZqDw850eWjjXAs2hTz1gXR5m012K\nxAG8X4m5CGiZDrFdoLwZ9sliiX7cFhEL5UFnrOQDHb0aHC5/rFtUxs8zqYqmXAQUG9UPPSekqMxx\nVgbv7wJiv0QQu2N2WMbA4Cpdw25EoQu668xxjsyPhkso5VPRIXF9QSWiYd41kfLB+NHQgVOwzxon\n9hGDeSSgnKoNYIc6w8rDyGtyJJ51YaWqP28DLqmVYuT0sKJng6KYV0PYBypVT/QDoF/YRVAjcg5G\ngKygjHug8MR/x8iFu9BayVtveeOr9Kix4RltLf3xsTkiw2z8PoQR9WFuMvqtVMQyqfCuCb9sUjXc\n2gQ4JgMm/xYCYdjWC9NF986sC6jPT3F93gFoGq0TQrH/APsQ2FVg/lGDWZiov7fGw+ww9tl8Gbbo\nPhxIXUxsMcQ6QY30NyVbX+6xYNq7qFsEyAsx/E3ITgYuXEa3HcAqyHoDKjLh1izgKRlni6qhQWvg\nQjB75sOD1Rrr9fMgVMLIFBjVFjCdqT5JxhkoXz73Y2RU90WCW6U6j0UZoixOXA3nvwynzlYemmec\nBVLhrCSYtUMiXwt3wW09ZMx9W+Ps59q+Kz7+5A00e+WzkFXI4eeBPhP8XLAS5AVMxq9SfwABzRZc\nPB5R6dYhkNgIye9Bt6M0LDZ5+WxtNFA3e8pJHyEZ4VRoW6TvWY4mjpDbZhk6n3Oe08PxBWIhda3/\nFF+CvyxZHsT3hsDNEzWhZ+fBiauhOihhlIXn1NE1l1/2xQ+N3doBWx2k/MFrOXTo0Bdu802bXe1W\n47X52Ftj5I1yhbLrIoFHb7/F0R9viMH8bwCahLC3VWLX5mviyCqEgVOIuVP7RoeE6iiJthBYN1pJ\nyIeACyfDBic48pzERsz91XBPP78mWbL7vZcgZlHF93LNgAyjDAQu3YDTIDgTns+Dc1+GFXH4EdnP\n90FLq+v0qI5eZLQCjUlX8JoKNHYaIK+gVwy2AXIGVKFx2wRmbXG1xgLA2yfAuzLOvm307DPnuzOo\nRP9rX4NNbUlJgaTToHEreQ1vC0L5ZWCalmP+WavtE4H4RChKhcfHwPGK6DGtB6/lyqjaewH86iOI\n2wNx98Hy3yCv3s0T4TRRduyZ74iW9JdBjKwH8R8ATVVYtV2qvHinz0bjIQkt2IYhWkqVPPftUlUL\nr62rnTO2m6gZT2yEpBaQkCrDb+EueRl/lO1HTnE0xsx27+u/4LXuv/Orv7Rv1bIKqdest3LRPDZH\nKYo4b0POIG/qTkVlTdqgeac/mqPau9cqMUvKE4SNay+AzdUw8rCey0Vl1Ck/LmqA8PZ1d+zZ7jdj\n8Z1V65CB8jFw9WThWngJrKnUgjbnKCpiT+CYNVqgliVr7muYAfmdVQOsAuXkttusueGJoXXFkhe1\nAOL6YxcWa059BchIFHUNYF0YYsrEvJgchhOCmFQwD0Ux1zqlxlvjlB/2rIHh1RKR+DQODsZgX3ay\n/C8r8kWi69O1RnT+CJL3X4XEQu4PYe6vxax0nseG7jobOmXIDs5o2J8v8bDuK7H/A/bqI6I6Ztdi\nJidiYofDb2YLlyqACaMwv43q/xrlwZmDMcLIbfgYOfYu7EtAspXx8ZCBjlFRHEeFZJTlA5tiVBfs\nyUTsxFgpPWbOkCFfH3Cl4ZgfoW3YXWemGwO1YinU4aMTNWEdui+Z7hid3f+fdPZVRD2DLcGNv6Ab\nL66kQluvPEQ6zPBKHDVAuFAfqIR73kUMnGJge0jH6wD2j9USBVlCXYSThsCiGDF9IkgAZUulCo53\nrMLeXqzc96diJMl/TA525RLMCX+E2T1I2wvjkoBBMHE+lI+A+o+EMQ0qnNJ2CxnagXx4fAwrbtwp\n1suAF8lKgtqL5ISNSYC790DFtTB/H9ihQE4Y7hwHnxi4YSNEO0FmGPNCPH2bQ/xy6LNrNR2fVRDh\nkY5I0K4Lcr5sd/3j1sC3u1X/jiFyUM7sB6vjVGy89oiiaXGOWXL5AlEiY71I54+p/Qzw8SdPcYSj\nKG5tFsuTtA099CvQAnAVvuCGJ0/bGSUOX4HUnTwvThXyyEdg8tnyMmQlwaLuSOHx6JuajRbby/A9\nQo4KSVP0QFS4V/sg5s8H/qNQhXn6CszCqQqbn75E/OIZA/3fqwJW9FZi9SedZaxN/mLK3+dbRUUF\n06ZN4w9/+MNXbvt1WswLhwGwh4fD3VMFSEGwvzoNTlytQqmf3+c5twCfauo8V7b7Tf4G103GGn+/\nOsrjNqCdxRbVIznWUTkG7lT+2nE5mBtqsWclw1Py3i7KAU4Pi6JwohWYTolgM1P5rs287qLgSQiA\ntqBxcy51OWW21xePYVNktJ8J+vLWoEXGCjRWvGO3RmO2NVo8efkgroYaYZy8tdPj7QWcHP7O0dGj\nW8yAiDzH40MyTrvAjCNw7sdgj4W0rP2AE2jx9vldBNvoARh9HTzwKAybTm3zPKJxED8VKlKg3p2w\n8WO5Hts+8jIdkmFz91YwaJ1v/APm+kkwYBRsVf7nsPaQ+zKEL4fQu/jFcIuBmAw5MVx9p+qUIp7I\nV97DgNbQt7GOuemwjDcQ8GQliepR5iLlcTE/Iorj89/HkVy77PuncBhjmllrdxtjWnzR99baHd/n\n7/3c23fBRxBGHt69mHqd0LwVQHPOduBCNI9V4NMUPQXaQyjfay91xYeTa7WY3H61jDJP/nzuPh2z\nbVjMAOqj+bs5wsYqhI9N3W94bJNY9xvpwKv9RVUcfS/mzkTsS2BagZ1TifldIvbgDF8af9h0Ob4G\nvKj/B07W/DlthL4rS4ZokQyCzqjQ9I4cReZeVk60/cN+zMyG2AfehferMb/ro2jHmGLMzenYyyqh\ndyLmOhlgzKySgMYCrXLty6gW6QZgqMvTmhQPQ6LYP29XFO/N4brWIPBGR21zzjrRJw8C6VY5Xn8K\n1AlTsLtY+diXzxCdrdlq+P1s0dh73CyjMFd0SwB7/OlkrllNYRvgki/AR1c0fHI2jIgD7n4cM3yA\nxLUcRprHgnB2Nfa+eOWDN62FPbG6Rx9IXdI8E8K+9SrcM9C/n3lQ3RHK8yE1z42dTHzhEA8jvbSS\n+m6cuRpnNMGnO6YjJ7SHkceieneegeGt41ojYy0b4edO97u17l4vAhK60i12JSuKkePzL2H9TqM1\njg6C0kpapqvMwUz3rNzknrM9bsrMd+ft8vfByfFfCPaxSka+liqBr/ZQWqV857SS3pjKebAgFvtY\npcZpQaZq2fa6CXtVCTRLh1kdiTTMY28AsmeCfRPemwUNuJBUXiZxPaQmtMI8u04GZekaONzJLwT/\nvyHoDrVtREectgnapqpkD/3882Vpb51DShkH6hcxJ0+Y56UZlFXpGe6WDKaeHsljpqnUz2094HAE\nUhO/m63wo8XIHzE+/uQjaOC87g0WU/Yuft0yx1VmJ75wQ1M0KXTELzrtceczgWwlRK69RPukBJy0\nazXMKMcP0QO0hpE1MLkGeRaDaDKpwPfkBBBAmc7wxFDsgyFM0JuBv+A6+l4jNcQ9veD9XKkQHsqA\nAxmwqL9q2exCk/VeYOhkzJGvHlfW2u8tggYQvaQe7I/BRKZCvTXYF/KVODz2PchD0vSf32dICGqM\nFK4AhtZKpWvEZLhuMnz82Vyt6NAgtlcl9qpK2GTg1M6Ud0QGcSRdida/F8WSaBBqYdG5QJ+dmMvk\njbTvPQYfgPk2kvNf0Oy5FnuuVSTNm/RPQ7NZ8/9snPH/sXfucTbX+R9/fuZmzmEGwwgjtxnFJJdW\nEaFyKbGpXKLrkjXd0fLbahcblYoNu91IlC0jUSnThVRUQkIuM4rJpRk0k8EM58zFzOf3x+vznTO6\nbO3GRvk8Hucxc875nu/5ns/3+/28b6/36wXYWlZNGZ4cxNlAlaQQ81ac9sFOQs33rgGfXPe7qyCj\nFwZkAC0E67Qt7DENzsDBelB/CZMCUF8Ztck1ocYfpPlTMTgzp+1ScDbldjjHj2n9J7pt2kaRgzL2\nSYDK64BCOMJCLAsJexsyxm2EkROODs4OGEjOYHQ0UE9Mlj0XAz7wl6D7d3aKNs5DyYwLl0FEDqTn\ncNlb6kHr20QwxgHvwpQMaFZJx9LiBf2dVEFd4ucEZ7/FYa3d7f7u+L7HL3x4p8a3R7VlVE6GwubI\nkfUq/bVRMqhiJdnTpvISjB8gBzlbwdngZDmBjWZBdjWJFC84jBzCoGPby3HIkhhCLMcHXPY+C61j\nHqFDU+SYBwn1oA1/DPt31I/sVeCCYBiIOXDf0Rqi+TGyI/HueFOmCSqZ76j3n3hJ31WcqArV6uUh\nivjq8dh7I9TP7d8nwowvEWyxkYVu2Qro5q2HWSWCDMaXlq/Z5hLKofp2bCRsj4TLka171NFh7ndV\nul7TdaxbtsHrflXWKqgimXMRLf/oMswtChrIStCclAKT+0HfV7A1S8U8OMOPvSSIbV+EeeojstsB\ndcB0jIfwRExdsI+FQ5WAzkEXSOmyE/P3QDmax/7TwCYwD/tUIVrrSEFaFMPr4fqtQeCmUgVni4EF\n/dTf5enm7YHDOwSTI8ed00PIZlW0kfsIMU276ld5n6MHqz2IbKQPfUdekipBjdz1UsNtuxlYjpLm\n2ah9xYcCtxXutdNXs6oZTGwP2/sC7/hhSw1VJP9vBPyjv+bhm0ydizgwg8De8Q32jBJslyJdf88i\nqGodK8jrs2CePaKALquMqXcHoKQXLEph8BdQ441RmENpImbxIcKZ0xMhJhomjYQ54dLTe9rPtKJt\nBKroXuqTAKzSlOWxmNOA6n8BM2MD9uFCmNhBx74/F4aMgBf9tHVkd+ELFJxxBWR4MgqgwAyEzorN\nh/wcasyXLfcg/vnFTog6SsHZyr3wpmM6HtNWwdmp8Z+NY2UffxUBmjdikwgZly2wYBdaCOLQVb+B\nEIsjaHHZTAjisQ3GrxYul3BhiedvIwT/CIfRZW5/e2DqDkhZ797zepQ8inQ/IaHP9GZw7TSYOArG\nTPj+g390hhbvr13T7tgRIX2ymLgt104AACAASURBVBw1O3sYfu93fdE6JDj5IyMu7udXkCoO+4Ae\nZCWIVAIETclCvUMFBtPkaE2+8j4zUGburHjNySI0V/EcFXDahtUxT4pNi6s+gkXjMGMDgh1sAl4L\nk0F7MxeuqgVRzjhd5ChyPSP0LIT9OUjYy4cxFwcxvef/vB/vsUt6RsPnYIw/NmILVEEzPqgbkCTA\n0LcU0NdBsNkG2ne3+pIWiDmAKrrF6FoF+AqRwgD29uMTWNh8Hzbfx9RNKbDCD89fw4KWML6mOrYr\nBlSA5CMmjIZa0sSzbSuz5BIFVDUKYcGRXmx4BDJ2QsszofnlYO4AMs7+7pe3DJAQPY3uHjnMhcD2\ncfDZlBBFc79put/qo16MZgF44xqaZSkTmJ4HQ5fK8HhVs1Fr9dqkjjJGcc+6+/tEHCc4xNEbxphD\nxpgC9ygyxpQZY/J//JOnxv9y2NZaJ4rnoQRQAXAIErLQfeQRXgFsgRhvu2zKtc+6RUqTKj1P/TGE\n67ab9juI2Qe8Dvgg25H5ZpSg+7UakCeJjvGHUTBYCznj1Tj6Gn1suBjvcFDB9tMVDHVfKra9t8Fu\nSZOzebfrO8+PVRITtB5/jhAmHqpl+m3QcUWoV3az69U94GzNhZMgORrOTsJOMFAXkWscMJghiSIN\n+XNLzMxIQeQG79I2mxAEMxPoUYYZYqFKGTQqwT5noMDAiqGqhFXNVN943XU0O4ASuJePFQFKjJWo\ndRAFiKskBM3QEvUVt1utOdoM1FwHnSLhAp1P80+/bKQPsPthZ2eJXH8kYgr+WoJ5sQzO/pZ9fGsk\n9sP7FQQG1XNFJnB6mQLhDVHYTLDnFYkFcmI4tDiCGXkEpqXoughHumw+qNwQarSB0j/o+mGFm+s4\nQtqz9dxnPEKPeOQvJaFkwAa33awUfcfpzkbmIX+qASGegKqOuC0IMUWEJGzecfttEQVd10E4jKoH\njd5CiYiVQUFpB03TdTP8MaiSGOr9+wA4K16BeN9KgqrWFfLHPmcUxHUHVkdgJgH9/ELrxBZAbAEL\nzkiC5hOxtarAQB/2H4VKBtjlkin4C9j09dj8NEiGlMZQIwJoIhuZvlO8Jh3PDFIWADMTbPMhsC4O\nGq5TYiK9AbSZxuho2TJqA7U7wxdT4JEp8PQzup9LgVrLoO0K9W0u7gpZMOg0MRfHRjkfd6to9xfv\nErJk6FIhx/o2gdJwvf5zq2fHZfwG7OOvJkCzra1u3p1ogS5A2ZQ8QvCCeEKN0Vlo4W+KMvK7oFss\n0BiyKwGVIDuoClrq+co2DKocCthi9iAHvZQQtjuInEmn00EMWqDOmQPnbhS1/fewOJaPGZNVNq8/\nQpWIG6bpxi+oBZtai8kxm5BOTc11kC34ipnwfz+427KysmNaQQPXp9Qcadb4gLOWC1byeYrmfi+Y\naxMx6w9+57NmYhlUL5PGS9h9ULd1iFWsZeDoY3/YR9nDPuxOH3bCaMrm+yib78NucUQodYGvwjDP\n7oDUa6A72HEGthRqDseOkBHKBDs+TM3Wx2o4IeefepNbXwDrC2Ae3ufoezspYE9C14lXkNorUprY\nKNHiEuO+oxPKJp4GD3/58HfJSI7DMDGT4bSAmsrvcTDVbwVnFYfdqXNFPJh/BqBJHtTJo/jiRdRZ\nBYn7Ie9FCDwBaY6dizv6Yd6Rs2QKDPyjP5M6QscPgYYHMBMCmO7Dxcp2CEjvJcP+t3FKUvR9BV5v\nAf3nkDEQZp0T0pYbfFaIfWpMW2ULe34oA+WNX7XxOc4GyFpbxVobY62NQVf1VcATx/dbT43/auyD\n2OpQfDVCfRx0ts5zgC9EibLukqc4SosTIUk8Eq2+TaBbgpIfWQUiEEjr7rbfiqRZvZxgnF7Proac\n9CByIOsTQp0k7IS7p4gIq91qmHkj9v1MTMuhqigN6aF+oea4SkAsPDQKzlknyY0artfIs/WfEuo9\nX50jqRuPBXJxsTTCnkSaZxtGwq4AfFwkZ7tRKQyIgpplQob8s7gc7mYfRfT45xTLUd+EyD5aFMMR\ng50YJohgHLDSyMHviKj7B8+Gl1PI6OvT/Pd9Rce7JEzB6G6wQ4zmJw8JUwN0XCaYn+vrYkCqknbo\nt9o7RWhi5leCFgukY7bAL7r9I2CTS6DhlpB9vKmo3D7aiBFQUBiykc/IRtrbwdxcJtr5YSXwQAkU\nGuzMl5Rw9uRNzl8EZ0HkHmjh5T0PogC0FNlHD57osSyeR4gs5hBqMdnlft/kcUpMT7kdCgoFEQ10\nls/jwXD3Aeu0xvc5zdnIBOSHdUWB3NpiiAhCq4CCyH0Vju15lCQdOAcemAGXTioXC6e5zqldrB5A\nOyAoH8ML9je5YDYb7NT1YoAcCQx9DFN5OmbcBt03FwQUELZbrSDwwfMhejl2XRpsbaXE9qwUJQ5i\n8iAIH5y7iKT9cGQG5MyExV8DO1rD7+cwej8SnW6yzMnK9GJmOnQaG8C8KPtMcoauqb6vyPdtvhHe\nT4ENrZTEzI+Bs2DWRfJnY6OUzOzbRIzHWQX6P6MMlhyGoePhlc85ccdvwD7+agK08lEV7DKgjtZ8\n9hGCczRAmPu2ep+9aCF5H2jkDNBOaBsJE89WaXzWN8oy5BdXyBx6FTUvE9SEEKRxDaIM98r3PnST\n5Mf+28P2GIHsfKdz9sXZunhGToCSHGUEG22DurUUpHlNm/uADcug+cQf3rcxVK9e/Qff/2+HTfMp\n4/RxIaZGp1DF75IkbBNL2d982FZVv/O5st9X1uf/UOh67pZCr4DmbP9PLAl6I97qkQfmkxkyoDsL\nRdE/5kFlnKqjDNkIICsBu7Dvf/+jAXuWlWNRG52Hg0k/8omjR1lFyOW4e+CGQAg7Xw9dT0jegQJ0\nbXkENz4gFpKS/rPv/K9HhMVcgtjPAOr/xJLTrBQ5L8Mfg4fiyFsPnT+HSkvBVxsqL4eeJUnl/Yq2\nq8WscX16tReRX6yMvZkZha08CTvUUYS5e9k8F4DRY5wAvMNzHKRcQzD7khB8Y+BGGaTLFjr4VRSk\nbAzxBJ0ax2ZYa8usta8Cl/7Sx3JqfHfYrrrXouaLTIdiZdOBUDDVghCJQxQMOw1BrXe6KlltWFIm\nFtX0PFiQLRbU7g10j9EAJZG2QJ9IVCHzlnQPWpngtnNCyzQCtjeQYznldiUlAXYklvcFUWBUgfCI\napMzVBUIAi+khNArnpCxSxISj+t3WwYLe8gW9I6Cfn455F8LKk+kD86KVhA3LxzTEcH4e4NZGqXP\nJYC5S8dt0qOw1wVEvz/KYtKiRaXeHLivWFWpTYRQD575HTxbzIdviObeXILYGZNQX20boFuZArhl\nEUKIvFcAYdeEftvg2dhGR7BDApK6edoHjUpEzf+2D7M1Entescgt6pRinqgEWWWyj57odwX7aP4Y\nHbKRVyNnv3eqGJUHH4G1kZjVkVI2ji0QzK6gFkTWEuGIS05n1IG3dsO+a9yc1ydEBhLu/tZGidht\n7vx7CXPc+fub1nTTMlHf9dR9MOlN2b32KKFeC+gE2YcctLbAzXNr99cHvPganBar/6+fB/PeUu92\nFjTzQcyzQfW6rasB+bHqic9Woav8PAMM9omxczcKuvcGMC+Wii6/divs4lydw4OJEAk2eayIdSIK\nNZebO8GkkZhvwoXomdoF3i5R0DRjsgg/1sSxtxac54de70FpL1hTF3r2cWXIawMMi4LAVYQYUGMX\nkRwH9rZi7EfrFXzNmFxOMGdSA5gLE2H4ZMivofPdfWk5Oc+SDjD+dCUtx62CURsFbZy52Z2r2hC4\nHAYuPcXceKzGf2Mff1UBmu1qYQuYoUBQAsAx4UAXdPNvJVR9ygJ86iMD5NgFKXeO5291DZThcuoW\n+BWczdoGCUVQEAN9ot1n9+F6o5Dh+dx93yHgwXGCZ3ztsYd8/yj7m09B2sXRupGueEl9Z48Nh4Up\n2nc4UClHN+hBFAyGU87wV05i8e19l5Vx8OB3K1nHbERGYy8agTljqAxQ0jbM16f9eyjhp2GYZ90E\n9n1FmcaLNn5HvPrfjbDrg/CmUYYwD+xYV32be4MgkYNnQ5tl2GcV+NqL/VqofsIwWT+hty/GYqtZ\nbJOtP/mYy/ff2z3O7gTvFkI1H9Tx6fp0vRsxUZQbI5qiHo+LAvB/m/niiy/+4+/8r8abFSCnM366\n4Le97SmxcA5/jEHJUDsAGf3hm4bwtY9yUhTznmH7eRD82tDtK2S4A51JyYYlz76kBuv5V2rjSjlg\n9mF2zNPzqgEZpO5LYfgGsLXgT8+Uw2gKGsNAl6XNL4ZVnlZMVOg4T1jjc5JU0IwxfSo8+hljHiKU\nwjo1TrSxBdgD+24FmrqEhddDHUTBlEd/Xg2mfoPgiTlQUMO9ngWDakK2gWntRak/8H2hS9p+5r4n\n3CWYitzzPAThrkpIPgbkML7VC/q5tXv2TfobFDLDXILEmz96GnYWYl93PQWLu8rJXXCNkCaHgNyk\nEFKmBXLc3yQkmt1kGUzxw4JizIDQGsxrYdAyH1oUYR8uxL6fib2tWAmmINghAeyDYC8pCfWNrdFh\nmHPBXhKENY5ExAdmbRQ2KDp3ooHNudAqzWmw7VNAct0cGDMBm5kKjcugfYmc/keLdTyvoUSsD5gW\nLhKU966BIStEt+4JR38CNAZbvUzVn/eMgpQIi9keidkeqaDvqwidVx+qJnr2MTlD9vHZ79pIe3U4\ndnyEoKXXBdR/lt5UyeIaOUoc26CuGSdE7vU1bb/BwWR3ufeO1FLVqswn/2VPZ/C74O5MQj2Pb/US\nY2UQqBsv2OEmoFaebGR9t/06oJZLGnQA2um65C8BzB0BOLQD6h4AX67IWL7sBBMDEO6QKZ2AL90y\ntWMotskkRWcRaaqSLQT7WSYmUZBEdudit6+Hdnuwd+5QkF4XzB/iseMLVUWd9yKMuQ/q78T8OVq9\na4Wac/vWDAwDoXM0PD8Lcz+qYm4phJq1qO2DSm/CkstEdd8zHQV0LdfBdX789cC/DOmebulMtwOw\npH8ANlWDO9tj1k+Gv/XXfTFmAjZiBLbxWGixXtfOyvOU7B8Uso9shp671LPWLVZok/Q8FSjsv6Dy\niQ5U/w3Yx18Fi+NR+3nMQRE+QYQU2zka71wJ3cjFaEHYS4jyNwkJ+SWILnhYQ5V8O74ksoT52yC7\nAYJ5HEDGzssK9kALajEigFjVWVk+LyO48rzyyo1p7c5P2Hrsp+frtUj32oBUzDX9hflObagbrt1q\n3az5MXr++zmQimApUZT33FEDKAU78Oh5PHDgAHPnzuXmm2/+2fP77XFUEJacoaqGJ4xYz4f1BX7o\no5qHumgBzinEBn9alS9sXgDmGQUArzYs71kgeYsCvCvGCBYx5XaJfs+8EXNOK6qc45ee2OwV5fN+\n1PHcM17/jByjLPLe787lsRymQVC9ciWF6t163a9b92zk0HiwkLReGH8qzA7Hkgr7uzB/0Br69Olz\n3I7t2yOsr5NBmP/TyEiMbz/saAo1cjCPO2jkBR2gx0ewswa8F4QPxsG9Y8jbCXErgD7od68CnnkL\nYgsoeaUfkW+Bvcz1XJy2C3NvPGXDdBzmcXdND56tSuzS9nIANhISnd8CfVzBccEusCvB/BV4B+wt\nx+b8HnOGqrRjsSc3eh57lipvGGOeBbxJPALsAJ621uYcj+/7rY5jZR/B2cjWCGXyHmQ3JuS0NYBm\nGZARge4fT6bGs5e1odmXouZu+QLQGvoUuGCsqfbTdp96P7MP6X1AjnoXQpDJXPedpSgxNeV2rd1Z\nCaqgRPaE/hY+FeuvnQvMHAJ/miFGxcQh2v7yRfBaL2mgBYFXr4HL5siB3+q+o9gdW677vo7AuQEF\nfzeUwrxw7Jd/gZV9obg1bCyCP1WCLzKlx5niL+83I9MRSfQsEv383X4FRvGOMThPrJN0c2QSneSL\nkAk83B+zYx52QENJibzWS8mly17B/LEj9pKgWBkPGfW93WyxL7yBadATcNC6iELMM5W07SN+bL9i\naHQE84gTxY4GepQpqJ0ahIY+yGp4tI28YbiqWbe9VG4fyUrAXB5/lI0kvSmmb7RstAf/A2zRpKNs\nJFGE4JeOQPyDS9XLlFEPJQC8pJhHz1+FkEZeKaooejJE9bKhxWrMPH3IjnLU9/cPgZZz5Kd9Tgil\n9JlEys38eaqAAdRfCumNMGMay8ZuAjvFH9LfA0h5RsimetkKPNOb6fUxD2IiJ2P/Sqhqu9udx91o\nPkozMdMbYHtHwPYAJB+Wnt5+916PRAW0eUoy2Gz396/Ipv/OMXW3Ww3tVmM2vIkd7IcLVyhAXtwF\ns2ge9lE/gQDcswWmNke+5grA3wuAYdUWMbUZcPZOVURn3qjfs76n2CrTmyogXzBZ/mR6M2i9TPOw\n1B3LFhGULNiv4GxVJTh8GCqfB7bJsfN/TlgbeQLbx4jjcVC/5LC3W8wCg7kcCEK36soKZMegykQd\nFFR9QqhH7RC60R2T1ZJcoBJMXe8EFtvA1F2ULyiD8mFWOMra5Oh94tBC40OZogbLYH4KPD4Svq4h\n2uB/XYu9/gXsOh+mdRDzp5YSWr58LKx8R4to96XYRQXwwVC47FVY1V5GZm1r3XyT7mH0eshPdgFj\nFfjsbLjsS+heXdkrs9NgG4RurOPRg1Y+3wv7YmKDcM9YBWhBzTtD3xK8rffR24fdKUfffqBmW3to\nOqbuUOgYjTk/iP34xwMAO9koO/luDXgjCGmXKiCOzVdPwl5gdYwWqu5LYdA0bHYSBfEoYP99e0L3\njIYCzWbweD8FCEEgCuo9Y8i66TgFafuBs8B0ilb2NHUczBkptq8xD8Ld92JaDhVsc2IZdhvYjwez\nY8cOUlP/RxW0CuOnBmcANlgd03MHzA5g7y6UY9AwQW822KeexUcvhaXQoQAYDObxADZuiDJ+wL4X\n+5H1LV25761E18tWhjA5A9oFYK1fWdZsSFiuvAm4akGdCvs6RsHZb3lYa//wSx/DqfEfDgfvL74A\nouagNbGL+1sqqBrOBpYzOcbro91yYOUhkQlQB/ad56CO+SjJmYBozcNRwnAdCtJau315Djpum+XX\nwCVz9HzwbN37M2/ELivCLJfKr01fD7QSkZYPbGYqJjhDZCE9Fymo256kIO+vw2EDjK4MyV0E0QIY\nFglTcxwF+Qrg6f7Y+VfClIHw9yIY1Bb+WATLgEsqQVQm5qpEbG3gOYupbsqZbakO/LGStNqa4kSm\nTbnYtF2ci7myBhCGfbgQc2e0iERGTsB+2FB2/Y0rdOyJAVG9I1ZGtmkOAWz8ZfDGm9i6rtLXMBNz\ne6L0Vu/xC1lRxUqI+voizBeRsCEM27kQJvrhtBrQJgAf5sBbl8IKZyOzeslGVrCPwHdtZB0ftuc+\nmBJQkLrOecSPjym3kQkByA4nRMBSX/93fBmhPxprO75qDaev03VUBZ2v2HwFqocQigZ0Lqfcjrkz\nGj50ifbeSBPvgRkQnAHv+WHGFG2fnIGJnAx1ypSw9SrBJTuhUTWoY2G3S+b+bmfoHqgbD81THQLj\nHT2cvAP3TcZ6gVld9aNRHcwtCCK6GzgrEZs+AvPUo9gOfszlfuxDLhndNRH7osP1No/HZi2HPZ3U\nzxiXK3K0TZ3UYzfzIujlxxYCIwOCIy7uAtPnYef6ITFAkwl+obnOAL5pDUeawfUzYJGf4a1gapOd\n+h2DZ+v4v2kFNddjhrXCZo/VcSSkyn9Mbwqzl2mOmgLF0HaP0wMthdh4KL4Sov737sWvcvxc+/ir\nq6ABmAUKhov7ugvNq5jtRRCyPEJEHgEUqHk46Dpu+y+BWtCsSNnAdrUdTCoCEg5AdjFqSIUQ/t2j\nio0CInzCmp+xET45G54cpWxJfgycvUiL8KbWDvZQAJPv02vNU/VarWgt3NkNtP95yjClNVrG4p3C\n/K/cA7GV1NyZXANS3kcLYi7YG0NzuX//fubNm0dKSsoxmd+j5rpWUJnFL3Nhw7kShmyL4AgN9mFz\nQk59uXD07HDsNpSV80ace+4Tg+APjbCprtJYHawZAmfMCWHbPwX2Oh2d5C2weRl7m8PXzdVHuCQb\nhp0NUx06hDZAnTw43zFFvtoQ0nPodkDNs+3q6JyPPOf43SNhDweltXNltLKfX+ZC9XgdT3PF+gDc\nWFbeu5ebm8uyZcvo2/fn9dIdz2FqBSEjAI0cLLLJevhK2jM2x4e5OKj+xZf9mCUB7KN+MbFd9iom\nuRW2jb+838BjoPve73n8Zsk03PCMDFRWghyPxstEGBQObIBu7v5d+QbU6wTZnU7w7OBbx2JPblx6\nXDOE/0TZDm//R/1vrb3zeHzvb20cS/sIIRtJFLKFF3K0iHQtZAP3InTIOvdeNSAL2h6BVTUI6XwG\nULo3gVDvVx66h+ujwKxmLTA5Ib3R/ap80HOR2Hw9eHtsgdj7CuIUwNRF6yKoujDA3eceXL1etmzt\n7VNg0HDSaipozC+C8Rth+4CQ1uG4VTAr1v3uFSnQ5SHM3yth310CN9XE7G2t5GFHsIOL4dwo6A5m\n5BFsTBlmbRR8AHZsoYiuHvFjn80FG6/1rpdfQVom6s3uG63Ky/5cJSyHTQwFYRs6w8rzMJ/eJ0hk\nc+Q/dCjFXhsORp8xRfdJamCNez8aqKoqDQlgr5OGmb1DgRSJqOLT3dlH11NEbXdOPnY20k4rt48t\nl0G3sG/ZyG/bRzjKRvZtonkdle2ugTjkPxUQYjoORz5JFXddZDna97bL1MfmzxHRU/N1MCNF53Jx\nVwVeuZOxLzgnYUkCDIyWcHd+rJJxD54P90cKgVPXwU0/QBm5cYvhm0TM7xqqdy6BkBzCNmC9Sxpu\naAVTRsAjk6FTKnwyEOoooPLOh/1TMeb+KOy+5TC5nQhkfEg77Qkw48FOVo+7TRGxibn5Uuzl4QrI\nkjPgybZwdiXJKE26R31xb5fAvR/LL1zcFfOnltgXDOZaq9aNxU4LL72FfMJREyExoKrsctj3uZ8a\nZcDUUTDvvhAktuZ6qJeNad1T89dutWwjKEBL3qL599AqOdCnfkgLLbmGWByPdWL6hLWRJ7B9/FX1\noHnD9rEQB1Hvgr2fEJlHODJGceiGjUeLh8eS15gQ1evvoU9lyOikfjOAVSX6bLYfVc+KKc8algd+\nO1rrtSNBKPSJRtyHMoOLu2gBWoVupnrZ8Ocx2rnJ1QLSbjUciYbPHBb8kDv+rnNg6zJmbg4ZmjFt\n4bYEeDDJVQdi+F506/GsoFE1U4tm3XiVz+shw74hCJlH9yyVdQtRgplBqKl6EsokVUeGON2PCXz/\nvWIaBFVNcsxZNJ+jCubrwMvue2MXqZqyuAslrp2h4X549TzIuxAeOkvZ1GGR6Dy3Ww2je8CtQyA/\nh4P1YH5zeCgM+jrNn+M6soEW0YLO3GExz8ZhJpdqLtwom+8rD84AAoEAn39+ItMrcVRgDmA/PR+b\n41NwdttU+EAZSVaMw17ZA6alYL7YCrH52H/64WYgqvOPf89tT8G942S0V54nxwN0j1dC0KoasGS/\nGOfqOZKBYxmcHZdxkvSgIXfxHOALBCprTYgu6dPj/u2nxn81PBt5OB/Zp63IIa+C7MgWZA8boWRb\nLQRV2wkEYZVjSSUc+lRHSU4fxHyJ7OEht31t1BPVCPjGBWd5bpvkLXp80FnOZ71sl7DMh6fjtD6/\n3AGSUlXhGP6YArfkDFGN19+m7Y8Etd9bh8NaJS6T40ReMq29kCbJcULDzN/mfkMCkDIN80AlbGEq\n5B+GRSWqlmwC+2Ym5v6oUGXoqwi4Iwr7JNgpAegVLVhhHhAdr56kFdEwq0j/31cCraIFVWzutpl/\npbbPQr1xrZdBelPB8vLAXlGiOZ8drv64ifFaD19fr4CiLvD4EPU1Tb8de+YIAMyGKNmP4X647YjQ\nGNFAO1eZ9MTA1yNYW7SzkY7dtuF+ONjiuzbyKPv44NE28vnYkH3c182d/xqEzm8D5At4+p2gNbnF\nMgUHPmB/DgRqCfWyqTUMmabAZcVQuGey7HzyFtiRCM30eXNhohKYezphUiNFonIXmEdK1K8c7c7t\n09lqUPOYMINA/zKduzgwf4sWQUddRKRRmAsLB6o6FlugIDutEJsHJjVK2/k7iWDmzDSdrweAVmmh\n4Ox2BMtc3AVWhcPISZjL49X/1qmS2Dc9XTuAhxZL8/bxkboORnwjQfBLgupr6/6Ogse4lbonYvKg\n8XJdL3/xU8P6Qq00i4K6Lv7RX+es+zua476v6LmrTIqmv2mIUCeoc7TALxv5ZHcFZyfF+A3Yx19l\ngAZgL5IDVjIbLXoebbCPUMDmVb1AuPRDFZ5vhgVfo6xPC/WklZ/MOEICnx5bVBAFCC3XaYHajgzH\nQRzG+krdJF+vE6nICiAtJxSofdhFGPva0+BTvz6zdZv27QPel0ioNz7sB2FHYOFBWOvFMwVu2wFH\nz8XxYnH8zuj+pgxxY+B3HC1+6kZZtyq6ZD8RY5SdjKqFa4Adfi2uc7/7OQC704eZaKGbFV47HgZF\ny58YVB26RUNxG2DuQAAiF0DkYYhYrcxaeCU4vEaUsvViUAYztkAC4L+fQ7OVatC1R+CcHVAjXbwU\nx3OU/cNXrjlWdo0CWjsuHPuxD5vm+15YYeXKlTnjjDOO74Edg+EJWX+7ImofHya4yLPuhfSmgqm8\nFAlvXMm0LATHabHs31bPysf7I9WDcOA+3Uv1loXE5x2Mgyow83klN44bZPW3OVoAF1lr/2mt/Qdw\nMdDKWvuctfa5X/jYTo0fGZXrIke6MXRbiypkG9BZ3Yoc7C+DcvK3IDuaoNdjtgJ7hDBhC1DfJTO/\n1P4IoHuvAZDRWmzGVZCtTHf7nX+laORLfPq/3Wo4sohulZE9zl8H990E02+H2yfCh53gjzeFmJm7\nTQz1yG3QvsdvVAVtbg8FEMNbgT0MKenu+FonyQfo8xI2djpkD4QzfVA7GtNRiSMzOlH7d31n7FeF\nxrQBcsMFz1+MUA4znGEu1ebgngAAIABJREFUMHBeJSURV0SKnj8R2eS1AUHPbntJcNL27phn3aQE\n5WYwR4DNCgCtq/aY9ZMxf2uBeTlS89ZyDsz1K8jpMU29eUGj4Lo58FaEeuReBGqrHSMmC2JehbSa\n8Fk3KG6PElqlIfvIhu/ayKPsYwUbWdE+1ngFamzSuS93eCtKNHhM1p4J8JLau9x7tXLUT5a8RQQi\np2VC/TT4V3+sL1UBRndEnhZYrv3koSRmAhKSfnU5zI6UIPSigLgHDjaErDj1r7XRZ+y1YZilPlVD\nry7Uds3dOewYr4TC75YrKP4sU7ZkTS52uev/+8BduwU91Zs2w2Ka9lRyeYkCRftgmALzZcsVBN9Q\nouAvDvklR6Jhx1CxZH7c0wX4aJ67v6M52h6hgHRxVxjwAAxfCOPuxbwWCbEFjJ7rZ1p74IDLxv9x\nnqgpr5+u57H5kN4M+2iukuaLuyqxkdNTPmjfV9SjnY1+cxywHewyaD37lI08xuNn2cdfbYAGQEeI\nKoHic9Gi0JFQYLYXGRFvUVmMFowqHA3bKEDwjlLk7G1w+/kSXdiersv7hFTsc9z7u9wjCt3s/7zJ\nNUVDTAEcvgRlMRrPkZZLhKsIHYDRX7jvdDcPUTqUBdtUgl68C8oioO/p0LIQRq1BWc4ehOCabpSW\nlh4/FsevE/Vw8ESaBTQfn7X+wSpF2dNOwwxn8NKKMC+XwSJoO4/yfofvHa8bPbLhgzCY0Rn2XQcT\nIuGVIgjuBXL9mu/WUKUDHGoEtIc3LIz3wagSPYjNV8+ZYy7LOAg1P4azVkC2Y/OsXP9/u1CV9ajy\no314wWDwhK+geeOH4Kpl//DBbZO0zW1PYX/XATvcz7TMICklQJtlP/1Llvph8RnYPxbK+GR11v1b\nBd1fZ4FNg+SuP7KfE2mcPBW0akBFDZEY99qpcYIPe5GVLYsH4mBJO2ibSUi/ytMKPISgax3d8wba\npsBVSVbVQYGcR8gVg5KQxcgWeBT+jaYJ3hdPyIG/e6JscUFQwUr/MeVi9NO8oDAXCAvC3iR4wQ/F\n0GcTxMwkJLC9CAUJteSr1quiSlrWIQVn4zdBQgFKXtbLhufHqZIw8wYlB7ODkL4RuwnsxuWy383B\nPFiq37Df/YYeZaKtv7AMnihRkqnAiJZ/pcG8WAoRhQoi0qMElXwbQb2bI/KGIc/A36doHmLy5LTX\nBZZGSn8rxS8CkyXuez8Mg2fCFex5QJggcK1o9pkTpspPkPK2AXMX8Lkqhjs7wtZm0HklJL7jbORz\n/eBgSrl9DNbgOzay3D56pF/ORp61whHL1EbBz5mAraVzvxMF9lnovBajc74NrUVVK1wPBxFRSvVa\nav1YeZ6rqmZg5s8TFBDEF3DZCMx5nQQXTQTmhIs1s0WpJH72C5VjUvyqvF22ExbmCYY4GQl7JwIH\nDPauCDgvWkHXJ8A7AexC9ZyZ8zopiNmRCMWJqnxuRuQsjyHUT4LOi334M+0TkYDYR90+HJkKhZ2w\n/xcJaVU1N/P7C+IYWA7LB+ocFwKXpGKujlei4PT1kHGrC4ydI5Q3EPLisV1jYHI/6sVASiWg00a4\n+s3Q9fDYcCU5Hh+pa6B7vOtNew72xamnLjlDDJwHOuv+i6O8RzTQXbtKv/4kCc5+A/bxVx2geRpL\nAIQnqbrjJ6TLshMZI0/JPhfIgmFOmDAmHC0yCe6xB6gHMc+hm/Ygcga3oEzIFjVcEo6Csp0oyDsI\n2GCo760LFHjov1cRdv9NFIHVgZJzHWQxFwWEWehmqqbjSt/nNGeAsHCIzUJwrs61xOLoP/oGCwsL\no1q14+MzedUfc4uDrBUUYqYE4KKPfvpO7qyEvSpMxt6Je5t53w9ztFMCgin8fiMdX1KQaipD1R1Q\nXBkGf4EYLttPg2KotAYCzSGquqigp34OMWuh7Q6g8joS3gbWQZ+16FpoIPpo28keVwbHnzP8fv9J\nUUH7sWEnjMZOGC3IY/V1UAopiT7dj/DThbijgFU1ITJOjlybZXD9W3o9iJrqkZjub874HH8D9BCw\n1hjznDHmOUSmPuG4f+upcexGfcGzCIdVzVAgtgYFKaXIbiahJOZHQBb0iUUJQa+/uwohAogLkZOe\n695bDOxeJyc1i5Bd3IsSmh61/yH3XXthSUP1DVOKbO0aYM028Engfm4PVcbK7WwxoaoMgmn1dUm2\nqFUw/ivIPtdtM/MGObHJW4TeADgzGqafgRlhYbMIHewdAdnmuSXYW4LYTLAPbAhV/m+NFLTtmTDs\nQwG93+iIqj0XlGHHZwpu6NHtu0ocw/ookdQroKqPV6VrUYZ5pDQklpytKp39xDEIPuEvlwHiIAoW\nesu1sHcGBX1LJCR0PXAjBcUQkyz7GIj7ro307GPc7yDcH7KRFe3jUTaygWPnDEeuZrw7f4U58o+a\nIl/KgzZ6QVo8kNla56uijisoMBv6ONz7JqZpT8zhkSKGyY9VRfVrvypCh6brWtitHizTEYh2OprT\nAtgH3N9NwCsN4c6q2OsKVe3sEpS49EIUDBcCiwrVYtHBj5mEgvN+xZh7OyiQ2k2o56+Wo82v7uY4\nD3jjzNA5/bgQeqdi+xWLvbNeJ0wSmCvALIqC3bmYLfPg9XqCSkZlqsesdypMusddJ6kSsb5thqSC\n7HJVz2YHBHXMqQV1fKTc8RZctlGB5Bd+GDEWZg7BvHRYME1XSbPJY0UCE1ugCuKtfl3ziQGhnaLc\nedgOhefAQ405ucZvwD7+qgM0ANIh6jOw92/TTeUJGtZ2f2uhi7QeyswlwNSaQB4UnKvXqEWITjZO\nva0Uw/bLga3LlIVoD+yDVV4c5BmdpqjnzOmmEIWyfW2gsoMxTKssXRmKIWYPUEkQDVqjhbgOWtSq\naH9T1iszmJ4H4e8RohH25xwdlLpx5MgR8vOPr6hF2cM+yh5WtcSD7f3YsH8uxP65UJCNuFxSK8PX\n1cB2sNj+3+9Ie7A5MzoRBtQico6qiXuvgoizJJwaA8qsBoCOCnZLi2DYmUA9ZX5XuXObfY7+zu0B\nJXdAnzBCGb4TdJxMFbSfNAY/B43A3BOQ8/TYKGzMTwukzD3j5djVg+3VUXLg1WvgtUuV0X8H7EoY\nc+wVJk4NwFo7C3Xkvuwe7awtd2FPjRN82AgL6WD+BHYU4PXctkdQPK9ik4psVydgi6PV9yCQbQlR\n2IMCO5dMbPuFq1wF3fZx0DYHRke77Q661790+3+fcvHqgqbILgNtnfZaQo7o20tyYXy0+36vD7wA\nyBa1e2yUbGSjDLff1m4bH4J8vdcBc/Vl+q4JI8A46ZanDCwsUfVsgR87wXlw5/lUmUlvKlr1rXKd\nbIqqZfTzS7PrkkoidiowmKsSBYXrjSo8YyzmD2CmRUnLLA/MOCuGwEmIffH1cGhbqkDgiSJB0ABW\nN+RgFdi3FsouhYkHgPpp2PNKdFxdfKrqOJ+CNsDKOnAdXPASrOkO0UlwpFIFG/kt+wghG1luH889\n2kb2CUMVVK8HMRcFZrm4nbrz58FOo9z7QcTimEdIQqYq0HlRSEZoM9C2TAyIG1pB8gYFIbc7xsbu\n7wiC2Hg5FOaKiOVQGPZvRaqcVQfqOZf2tF3w54OYd6OV8H3eHwqsPtDvpkNBOWzRvpsG7xaKBOb1\ncMztie685SqYaw4mUdevnYsgq4N9CuLeCUDfVzA9BkDPg9Iei0ZSC/PWK9Bvt1rC4tdmKKirkqgK\nZbvVQAbmVvT50zJ1bFkJmFs66rUqNaH9NMxtO0IkWFUSFXG/fo0I5oY+hl33d4mxLx2q/c68QULf\nrZcp0f8+sDKIuRXY5ZefswbYDJ+7osVJk8A8ScbPtY+/+gDNtnD6SZ4BuhAtTLXQgrAHLSRvAzu1\neLEVqA8xn0CCJZRJdJpKAB9cpSxd26rQrQBSneB1QpYzPgV63vYdQvogHn27ZyicEHHKpw7HHwMF\nxRD5Giyp5I7NyxB6dMe7hKNfvAtafujebwrEJf2gU3s8K2jfHjZYnbDrg4RdH8SsOYhp+sOafDap\nOvSKhuYBSGtA/4bK5uUs/feEOma4X+fu0h3QHXpWg0a7oe1HCrALqgGFvVRVLPOxci9cuDQkPE44\nmksni9CtOhRlAUUyVvaKE3uR+rVU0EABlpnwEcYTqs2P/fcfqPjZ03bBvWNkZNfoGrD/55dxOgSs\nArs2tP2480/s83rUOEkqaMaYMMRn29JauxCIMsacd3y/9dQ4lsOzkSWzkaMdhwglQPZqF3ARagnY\niWxnG/d+MfA8CoA8rbFdQFX44HcwvLUIOhIKUDB1CFYdhPFf67NpyU5sOIjcF1CVaBUK8g4BCUpG\nziqE7DqCL/o/BfZAs02EiL4auM/uFeFBz08JaSEmuL//GCfH+KKPJH7dHJgxGT71QfcwkXs8P0v9\nSSDh6FsdGcWtYHpGY9IcjG6LWBpNApg4V+VqDvbxIFQvUy+a0+CiI9gZRkHU4BJ40+m7PWcgE+xI\nBYQA9sZw7Bqgc7401YLA4B1UPQg1stUDNsgC/fqJKGOi1TZ1xfprl2tuTJofugZYdRF0zIdBGXBL\niea9oBrwTS8o89HyXdnHo2ykm3fPV+lWHSjS3A+rjvyOLH0PfveZfSgxegj5O8WEkt+e/1QFJQEq\nBnCLuyrwvW0S9uYwQfOau8A2K0Hr+Uq3pLRbLdKN/Bj5UCWICOQqq/PzWqQIVeo3gPrO56kO9u5C\nTHMHT8wIOs24eGnGxQFv9ITIaFUuP1qP7VyM9aWGetNaTIJrjkjgvCPQbo/60xYi+GryFnjZwNJY\n/ZY4sKNRRayDX7/jBrVemO4OBnl6IubQZMyzPuzfCnVNVElUAPfoDIgpg5cN5toA3BqAlFLMCxs0\nB2HrISqga/mmSdA0WhI9LRaIhTI5Q8f0mV/oLEejT1Owwx18y/mjxX/gO3I2J8X4DdjHXyXN/vfu\nf7PBPgLmHrSI1KBcpI8G7m8LtOhkS7APYFWZ0/qop9cpAvwSsV68Czb0haJcQehMBKzcDx0XQdkQ\n3Q+Ld8m4jFqFjIhnqKqihWsPIZ2ZbLRYeNnIOEKVO1DTr4VZ36DFLhwZxQSw9X547vbu3cucOXO4\n6667fvY8/tQRdn0QmwfEpWpx3ZEIQ6fD2qGYBEE3zGMog5PgGJG2+7VodOc7lcCwPwbV+NzEiS/G\nRGMes/ChEfRgrx+W9KJb2SKWtER6WCvdQuSxlFWjPMCmFJ3vPe49YFASzOx2YtwP/27s3r2bp59+\nmrFjx/7Sh/KzhrnobTggWkWT+J/prAGYf12rrOq7OTL87SnXr8PBo2wa8NzxP6fHnEJ45bHYkxvt\njiuN8FNAGWqEbmaMiQMWW2vb/MhHT43/YPwv7CNAYXOI/opQ/9ghyqH3rIGYABSEUw5hGxYNUw9D\nzE5X8XKO3rBYePR8mLdDEjX1qkDkNJjm+tjmb4W0rtDxDb03+Czo+S4hen4fIajcl4RsZB4he3gA\n2W7veTF0K1KQseAbQsQUTZEtfe8aMdllJYi+fK+jxR9Vhp0yEs69Fu5tFqqGBV3QlVoIw5aKne/8\naMwA1LuEs2Pngi1Jg5ye+v9ZMN2B247AsghVXKoDs4owf60kp97TNNsP9slciRzvBnpNx3w9VNtf\ncwQ2RGCvC0Azv8g/7vDrd3UNwLwWYvS4JQpzBQou8oC968sZCs2NFjvZKKH5r/50K1sEcLSN9Owj\nhGykZx+h3EYOSoJZldxrB0XQNatmhYtoOfJxvPORgIJ5T/euoi/jvT9mihAUANd+VN7TZZq7ShUI\nxleK6OTzY6TnZZ0odAW2Y3Dz3hzs3/8FVzWBre0EESw0cOFuJQCrx8OiQjgnGvMHwR7NBAsvSy/N\nNAe7GwVKOwvVI1gdQUrvAho7xsYFpZAejn0sU8HWACTBQCosFyOkuR/splRM/6thXpiuJ9y1uaVQ\ncNi96zGNWokUJT8Wur8joeyRaD76jy0X0jb3nw25iips9lhVyeplK2htvBw2d9K1/kIHwUYPt4Ln\n/DT7AjLOwUktJEHpNvlaPkhz4cJlDY+vnTxhbeQJbB9/9RW0isP8HxQ3A+okhVTsu6PFqSnCwzsc\n/KoIZfoogOwI0QfHFAGVoFmYcNr5bh9R1WFVAZQVQYfaUHK923cRXBgJf2olw9StMiR4uN88lHGq\nhgLGz4EoaLbH4fsPoGMMoJu5NiTsdJmOHOSQOkZx/jUKM+H/fvB3/y8raOb8oASnSVUz7NyBwttP\nGaHF9cEe2jBDAZddjALT0zL1e09rHerVqzDsblT639AKc2e0yvRHnIHsDebpAEydx5LdKXBWHrzY\nQw6Gl9FtgObbEcAMqokMf7FsSgzK0J4Mw+fz0bRp01/6MH72MDUUnNl1389W+W8/G/SHxEUvBOq2\nDlWZq4qrBh+YE1cq7tcy2lprb0VAIKy1eUDkL3tIp8Z/OuxZcs5Knwf7F3Qf1awlh64asjVdoKAU\nVUwOQdsDjrb+S0m+DAuDaY30fOVe2JQvEquhTix6YltV0wDe6gmzdkL3+pDaSX+pCs0OINu2DyUg\ni1z17QhQLNvbzP1PNRQ4biUElQQWHEZ20wvqPBbBledhuraCdqsxj4OZIc0y3gyDzhdD40qYu10V\nazGyH2uAztEw8yLMddGYmy1UsyHYWyf1inF3d/gyVw74aZnqR7s3AvtkLubBMgDM2ijs3XIazO2J\ncuYHODmdxzrAJ35IzsDO8GNfy8X2jtBxdPArGMl0c7OjtZgO+2+Au6IU5M1ywVkQweN6g7nWYseo\namd6U24fl5RxtI307GMFG1luHyvYyFmFbttqer2vpx/rEEITO8pHivHYpHe593IJMWdXcY9GOt88\nOhzqrhP88S9DYMAQHZOrCJLph/o7ITsJhk5UT9XcG2T/66Ig6C/a3kwuw76fqbmKOwC1q2N8YP7p\nh+t9UJyIebKGg6RGq/+suSqjdsQ3unh8iAimOVCaiXkhCrYWSuOuDZI8eA0FdkPCVfm8KhE+LsT+\nFfXOLR8IC4uVaH40FxZ3xT4VJv21+UU6F2HrMdOiBYcd86DOXWwB5uKemF2Tda57p8Jav4Kz+VcK\n9jknHDt1PXbVdFXSarqI9uaxUOjEr+8YIfbGN65QNS2iNRldKe/PpP42Bexxuj96fnj8g7Pf8PhZ\n9vE3E6DZsyy8NoqoB0dRfMY2ZQXzEN1vPRT0tKe8aTImh3JMdZ+aorWvVwUmthLZQNuqsOFayDcQ\nyBKT4rNZUJQnCIKH6TYR+tu9fsg4cQDahkGzncBOSAiHtIth9Gmw6Wqn6h4F05Jg3xDUG+f2t3Iv\ntK1NuX4FAZRB+Tfjf9GD5g37sQ+uGwFP3KQFI90PXcbAoGkw4yaosQx7fX/MUh98kQl3jGDRXX4Y\ndbYydx+vE+XwHkPY9CBh8xz0zcPW10WQkCfAPv2BYCLp68XItBvMoclOP26ZDPYeIAsS3oGYLZB6\ngR7DWysDSBUoqAEFdZBD/+VxSaQc01FYWEhGRsYvfRg/e5TN92HX/WeBWfnIj1E2vO46sVk1XCIo\nRyPgIKQ7xmL7+5PU8JwkEEeg2BhT/i3GmHiUMTw1TrJhz7JU3jUK8yTgS4KSnJBm6PvIyT7LPXyw\naq8IlSiFURtharojr4qRTtrQpZI6ebu39v+nVkowDjkDykrh+ni4pzEUfKn3S67UutwnWsK5HklW\ndjWgEoyuq+rYmLYK1Aiqx41iGBSrAAEItS3Eo+u/inve9xVVS669DLsQ7Io0kXvsBuYG4dkS7EMB\n2YGOKLAZoAoZ5/hV0QJYYgSN3I/6xxKAAZGqyq0BqiRiEvVZouNhVZigihGO2XEAqpZBqKJUL1sC\n0tdOE2v0mAfVGzc7AGv9JDzlx17oVyD64TqY3E8VskR3DN2RjfzAfecmsAOdduZuIBrMiDLZx4at\nJQLu2UhnHyvayOGt4bPzK9hIZx/Lma590PNN5Oh/Aqnny8cpKIZJnmSRD3gPBn0Dn53ufquXGPcS\npwcJadMOnAMjJ2BGH8GODWjffV6C9Q0gfBv4fQpKOi7DrkuDwlxR2z/qXaNhmAcaQ+cjUDkOgvsk\nND3XzU0QbJ1S9RjeNURBUM0yadU9WaM82WtvDtM18ERD+CpMAtnNBGs1f2kBN5ViP1ovaGkblyTu\nGw3np2EatYL7h8DpRzC3l6oadnm8iHKSUjEPV8K+owqnHZWLTSvExL0Aw/rDzBuwc8HuTlWVdXFX\n6BJQwFcrulwSgK2tZP+ufhPOmS4Uyrz7dO31fSVEq5+VICbM2ALdC5PGad7f6qXjno+S4yfr+A3Y\nx99MgAZg73kk9CQcZXB8SQrW2qCFsSrgc3opCUCMjELLuZBxSALR4zfCG70FX4zcDbFnQqU4GJwI\nYRGQshKySsSwGOGXDEbVXSFtFoq1AOYXAzmw63otbn9tBv2XqGJXNkSHOfIDKO6l3rjpXRQoroog\n1GS7Heg65+jf9q3xP62gPX4zPDIZZqfAaL/muRR4Di0OZwOXLsJe75e6/cwbWbkH7GYFugcvgZjN\nwFaw14sQJGxOQE25oIBsIfBRC3jsUqiLRJC3+OCjgBpxB8wWPCMHOAipZ8NXAdjeCLoH9Ugqglnb\nURDexD08iNwJPnw+H2eeeeYvfRi/6LCnfS0mtvoBNcODzmEU5TCrkzY4g5MpQPsn8ApQyxjzIOL5\nO8XieDKPqaMoPGObHOdtyInz9ARroSqLD/V+VfzrdzatAozts0ulLXn4czj/JQVwRwIw/yvFEZHx\nUKm6bGPWISUxF5TBgl1iU+5WGzgkVEr3BrDiSvV+5xdDyUD4uB8U3QjPdNH3TeoIw1pBszjk9DdF\nQUhYLTms56Zilz2NcX1H5m6/IIGNfHB4h/qENiECiqscQ2CeKNxtcgkccH1knUqwj4J90zE1Aqwr\nUtDUHawvFXtdAPNUqbZbDnaUS/5dWYZdvRz7eEP5HOu2wdc5UHOR5rqt29/K83Q848eRbSBQFQ6u\ngeLBEPM2MMMPHcHcW4b9AMyzR8rZB+1ClHye6ofrp2PXrsfeHiZo5oDZ0GyjbGQF+1jRRiYVfY+N\nrIdsZBTwe3ctVAHCxSzdPBZKb3Hsm17vXDV4ojWcvpcQWVo4oUAvxieafq/S9mEX7B8ioKtfqJpJ\n96hvsDQJioJi6W22UVUlG6/ErJN4tZ+IrdGeUQLN68PH1bGfuCDbq2FccQA6RarH68JS7B/ClPC9\ntli+xFx0fj8Be224jjfTXUsZAZgThn3kI33/HiMCkuaIWXrmRYJILp4BjfzYceEQW4BtNULEIQsH\nQhsw57RSwPx8HDSIxl4cKdjm4NnScWs+UAQyd8VLJLxTKmYQgkR6/snCgdBvOuwYqmTCv4ogLlcV\nxuGPKUldYymM+UjBf7e3VIV7bhycv4jihmCu1u+y152kdvI3YB9/UwEaALdMJGo/FF+AKmil2yC/\nlwyR5+AVo+CnWHCK9DzKIQAFdQA/1JghnZWJX6tq9s4BREqBqlwJbi0+ElBF7WB9BXXta8qg9E3S\nY98geGs3BHfAP75U4PZNcwV16fuULcwokoHyqPUphmYFhARFwx3k6wdGaWnpca+gmYuDmIuDarj+\nl19Bmg9Gf01IR2cnMhrbgTM2CtOf3pTxOb3Iexh8a6BKAyhoghb/nCD2WoO90WCe92PiHAZ8ux/Y\nporbo37M16cJWrksWo9RiVAfSoZo3nqUgrkT/D0gbo4eh7MRt86QFXo09kF4COpzIo+ioqJfRQXt\nZ48KwbStUQPb1MIusPf9cof0WxvW2ueBPyOjsxvoba2d98se1anx3w57zyNwy0Si94N9BDnSGdco\nAEtGDk0uoQRnVdSPVF2vLalLuQbaqhIFXUV5ULmh9j/9AiUt+54OIz4QG2NYJWhSCnXLoE0UpJ0N\neR1ld1fuhbTOCvA61IYV3wjJkhynJOhGxyZoj0iUOj0PpmYqmUoecrAPoipCcga8PRD+NVSOuA/o\nZjHDWoE5DHUbK4BZEXRzYaAb8ECJkBuL78BOWy/Y4f2R6g+aXR9zv+B1ZnukHN531ut7tkdIRDrR\nVeH2qz+NVWFw36WwJIeEAzAtGfVv7SJEsjFkmqpFn6BE1NZxBPtBdBfJBhTE6HfZlELYH6YK0bII\nwe22+8XS5yWrxjyoykpd4Joy2ccqzkZWsI8VbeTh7G/ZyMY+aOBTIFWVUI98HFAL7msr1FBpkTu2\nbDe/jeDwTij+BvbWg7QL3LXjc5/NSpDv5enF5sfAyx2g2nIFGiMnOKr4fDEW9n/JaaVtke7ZXwgR\nsWQiOGgXH2R/BTXzFKzeIQp+LkqD6HjJAdUFe3O4etpBwVEi8E2moI+LgaqZ2PmCN5qOQFc/dvt6\nzMBOEqO+Wz0RNj8Npj8M9cIwV4D9swJ1NqPjzo9VL1hJoYL/F4H1hdjr8qDLdAXVWQmY4qEw5nls\n2VhIBDsjEy57Bd4eiL0jgHkoGvuEu1G3BzQ/Dafrenz9QZGr1MuGKbdj5n0ETZyERHpTKOyEGZKo\nuatQNbOXnfj+zsk8fq59/M0FaLaaLsior6G4HVps8mNVRatPeZBFFLALMmq454eArZCwT+/FhMPU\nr+DeJrA3SgZj/jYw4YIp5n+h4AwkDBl/QMamINMtYukKxmKjXDawLgxvBmdkQGQs9F4BDybpvaQi\nCO5RI/U4x7yTUQ0FjUXAXrC+wA/+5rCwMKpWrfqD7x+LYd91ULXqwItTaHa/n5J2qgoWdYHPLtBx\nkoMW+uQt8GkneD0Ozl5EpRzY10OQ0NGVEVnL2QEYN1Z9gq4B2r6cCa+j4DQOLfSHc6B4PbwfpofD\nsBfv0cM7DzuAjEcg+AjU2gQ08WkBjc2HAbOxlU6OxSo6OppmzZr90ofxiw4T65yoEl9IeuGe8dgx\nboP/ATHIcR0nTwUNa22GtfYx9ziVOTjJh2cjzbMoGLtkjiBSILvoUb87+GAzC7NikQ11JEwJVaBP\ndSUxK9eDoR8q2TgqXpspAAAgAElEQVSlwtVxXy0ocND1YFU4FA3vHoIe9VVdA8hLEbqktBHkfy4b\nOreH7GLdMkk67Q5TQrNamJKagOy4l2ytA7wThMtehb8PUWUmQtUI+5TBTl0PO/xQu5Kc9Ggr+P2C\nYhE1nFGCTUuDpCcVQHREAcEmoHekbFPnQuy1YZiOiMihaiZcFwWvhAmGl6e+JV5yxuj/2Tv3+Kiq\nc/1/10wymQlJgEAQSQQxqBAQ4xWUAiqCaFREEYkXKoig1gt4oFZbQKCKFhRoadWI4KUIIpTaGlAo\nVYMioGJECFQJ94ASSSCJmcl1/f541mSw5yj+zoESJO/nsz+ZTGb23rP2ZL/rWe/zPs/4t+hgYUs/\nuCVBzJGxpxLxCVvVUxTui7JheSz7fzaO6nVQnCvVaMpRjhw3WRN+9D67AViE/FXDOfLbfXDTlEiO\nDFJH+Ts0P4JyZDg/fidHDnpZ262vQ1RA7KJLkHpnDewogwILi/aiv1VSZ1IdaAnxp4OpgcviEHBZ\nBuxvoX6o1kTAZPNP1T+18HxYMk2gOqVA1Z+ua6E0A6ozYFkv7O9DsAUBrvMBU6jeu37AttZQutrJ\n6Wvx2lyWIePqj9xrmucKIAYK4dYh8JsqzNmpool2QiC261rMe5Lqx+EdO7ZQYxnvh48L4Z0MzN4J\nkFKAjRsFl8UIeAUKI7L4O0IR4+1Ls7Vg0CoJ03eYwHPLdFVtF/aH5RPgTQfAov2q/A2OxT6GzK1B\nKpKzB2v/+WA+maB+utlLoSQeuzZHff8Lm2k87xmGvbwbnPsq3+bBiGUc/3EC5McTDqDBd0EaScDA\nV6HROboxtkX/7GGaRtB5m7mVogKDQAbyQTt3KbT2K2H0aQ1n/1V/Wx4vUBWdJBGR2mpVz0yUkk98\nKjTaDPZbVdLiq7QimHQpxKbCQudG3ylBr/fGiNqxuwzRBxy1gI763VR/f+/Uf6oHzSS7rWQ4mx4r\nJ/FF+O0mOLhWQHRIAqJLVARhwY3i2F8CvA0VxdDsQwHYsZ2Ar1xCe3YCZmSNPmMi4pifDlPaEmlQ\nfm0MfJOuvoI30A0283UarYZGq6GgDXCFmDgAgXEI2FYHBRTHTYaEEsx5H2LO+/Coj9P/NSoqKsjL\nyzvWp3FMw5YEsFX/1r92wzjMfRz/4AyOK4DWED/BqAQKofJs93shEf+qSrTY1gyIhU1nA5+he7EP\naBLxIQN49BP93i0oAHWgFiqLBLri2kPZDqhaDTH73AQe0d3nJkN5vr7CCT546gCMaAK1JfDOJVD9\nrRZEkw6oCjfrC0iIISKsVVelQYt8Wb8QbfCMVLjIDz/L0cESSqD2W1hRqYnx4FiJL9zgE9i4MRZ2\nZsCQaFU6EiUOQmKhepzycuHcWAlHfKTKjOmaKsr9A5XYPiHR6D7IjfhxbezBpkvhnk+1YFtR7Ma5\nDapadnkPsu4VIDkPvKdBVDGc9A7Maw3xTrbenDke00NqgVxfg2mF5gSVsD8DhlS7a/LaGPApR5IP\nXJVdlyPD+TGcI+vyYzhHuvyoalC8aIYFaHM9ZQk+bZnvE+n/SwQugcDJ2hLOVitIbW/qfFupBB6d\nCJXttJUBF7wKhU4eMq8DdHYy+1ctFjX1IyQr396PHSEQbR6plTpjWCjllu3wvjOSDormaJ9G1cz7\nLCwDMyId1sfpcyXVYOZFSwEyLFy2p1B99Es9EWXRuR0E2h5IV5/ai4kQKMQWz5OS4xlTwRTqfNM2\nYYKZmJxZsNIDgx7DvpsvM+4+SfB8JfbkalgzWkBvYyFkN1ZP4/obtI+miMZ6kzv+wFoBxSX9BeCX\n9YqYZ28Am5ClgsPyvrCwPyZrP/xmlsyvu35AqFPkX/y4r56dAPnxhARoALaF+3Ku7Knk0/xT3VS+\nQhftIFKOqqFO6re33yk5elUxm/6pwNWjn8BZieDdpurZ0xvg2kZamfJUQ+gb9aZtKBFYO5AnunvU\n11C8ViCtulxgomiZEpA3RmBuQ4kqcI3ehjlbJPvPNvchNiJe96Emof9D/CcqaAA2ZSoMrcbuzpHR\n94K3GN0cbBwEPhM1JfkzNMa1AbjnOSiCkivA3xy2T4SEG8HMhZWXgS2eh90RgHX6L7ILQ9jrG0GK\nqyQWgL3cYh/+nV4Xju5gWmQI/F2ia1X0JNR+Bad+BQktUSaqBCaO1CrUuMnYTy466mN0JMLv9/8k\nVByPZJiPtUBhzz/Ok05DNEQ9iHB+9J27isqTUH755hzlHBAI2I1o6xsRJT0sy14uq6lxXSAlHtKa\naXs+KNBWs175Lr5KNDpbCr7m4I2VZU1wr2iQ/h2qjJXm637/yOkuL3r10+NypPHCx5UOFJYSWVwt\nRJP1Q+T/TdJwEY1eL4f3ncVH3x7gCUBJDJR6BL6+ydfEfozVhDksxFHtF+3RD2ZWM8yzNeopAuzn\nOfDXIPSYJ4rb4FgYkQedXQXGly6K4x7UP/TwC8z5eAzbmwIHYFQ8qn6FwU+X9+CNWCgQq6bkaghO\nhGYvOyGOGrCPrVeFsAj4wvmnpWgMTp0Dc/YAzQKYZhNEBVxXLlGLFhkCnZdE8mM4R9blx3CO3J0s\nmuG4yZr872wHX/YUeN0JtIRmn0Czt9ACN2gO1QU4CJ5N4HlL4AzAM4uID2kQeHycqkxJTvq9EtFk\nv8gXPa+NX+dQkoD9bYUA0D/KBaAmLVeFcmAl1OQLYD0DrDoVep2mylWxU7hMBTsa7M9FO6VDFVwY\nEOXzAT/2ngroUiP7n4uy4fwk2Fqo97+br+rcn2IwbTKw0wBfPqz3yiJh2eVwwyjsPdv1e226xDsC\nbtH4Tp9okAMWC6ynTNUCwJjVcDBXYO7FRCi4VYO0rJfEQQCuGiVPNV8+9g4PLKmEhDVaXO6zQmqc\ne8B2HSWT6sbpkFguleRiRBl9eDz25liS/gQtS44PO6GGOIEBGgBXroLRkyUrHJa/T3Y/TwN6oBtN\nuX5f7uiOTtyRoR3VuAxKJDFJAlQ/r4Yndmpl6uAX0PQs/S1sLWxroLIUvJUQXQ5FuaJExp8LUW2U\nkLyxSkKn14gi8Nm17rjh/jgvEZPqOH6QnlddXU1paekRG7b/KTwzgpiWo2F9FGT2VQIa2Jf3o1UB\nTHTUl4JY9xl2BOHdnmBb4NhqnNoFtn4GDIez1oIhE8+AoEwcAXbX6tq0dJ47l3z3HOyOgLYbYrHj\nY/nmI7BDISoTar7WiiuoV4EmKKkVIerEsl6YhydJur2eR2Vl5QlfQfvJR0MFrSGOcRwK0kgCTvpU\nk/8Aqq6cjBYyg+65Mi1i4tVzq/dqERO0kAkSump+vgBHZbFyI0CTNOXFmrZa0PQlQtwNECiA0E4Y\n9Q2UfKa/VZUo3/oSJDASOFm9Z5nvw4xGUkWuo7+3oc5ahT4rsPnzRO9bcn+kAvYnYH85JFTBczOx\nfwVzdqqA2lKDfagCM6pW/mZ3g70DuAAoNdi7vAJdicDeHtAzAKsv1KS8CMzgdIHZf5Rrsl+AVAY7\njYRr7oDdybT8AppuhdrdbuADKEfudI+TodEGOLWn9E62/h5u8gITytVfttxV7p5xx2kLdHQ5snVP\nSNgva4APymVe3RTs+Fj4u3JkOD+Gc2RdfgznyK5r63Ik8wdD3BZo/57ONQ4tYDdDc6Zm7nvRHi0k\nh0FYADyvaKOZ+478y/3tkYmi9oW91yp1/qw+WVsqENsDWiVBZgwUJUkF+rQkzDkZGuv2fswtqU5i\nvxC2roDd+yVl3899jg1AVUhKjWtzsDdEQ6gQm52NuQnMrihdzzk5qlx+XIiZ1QybHRI47FWhcV6a\nL5uDr1OxTwH+HBlaT5iGGZMqQY++UwXSmyJAWYAqXq+OFg11+r0AmJQe8E067O2Bvb4KU/EaNm08\n5svR+iz7QvCHaQJZCaWizo73wewnNP5DXxLds+so6PYk/L2zFCH7zcMGkS3AuZ/CyJmY9mMorR1B\nyd0/EXB2AuTHExqg2U8ugncvxswE+yv3ZCURkLYXJaQwle6gZGRLvfJI+9nrMGipgFpMUyiPU5Xo\nlgI9N/1TiE+D2fmQ961WkKISITpeTc3+XlAdA/E7wXdAnpOeGK0e2hr9fKVQq41XveEMQh19gaB7\nnPTfPtZ/C6/Xe9QraLUPHFLBeqyc7DEj2XaLpJbjUyF4iVQvSUTc+CDQ7D3xWgavotFeSPsFnFIC\n0bOg0bVgd+fo5thHRjpmvU9Nws+MwV5qsW2+e6MxgWJMoBhOL8I8XE7jPhDqD/t/CR+dAdsS4Euv\negdJPOSNee3h+ufg0XFqFq7nERMTQ1pa2rE+jXoV9nzbUD1riIY4whHOkXXCIGEvqzbIqzMZUe7L\n9PflUUAQ4n0w6RtVtUBVnwHtoE0cjF8D7wShsIm8Q5ucpx6m2z7W6/3NoWSTQJj1QPweqIqF6JME\nIELNlBvD1MDiSrgzDWgshkZBJ5S3TybihdYaRwm7HPNrp7SXUiAKXAAwAZjpgTvuhRDYlYWquMwH\nHorB3uERhXE+df5bNK2Fq7PUEvEP18hVBJySqvwWQkqO7cBMiFVlJRkZDV8KNdfB2FtH8tcE8A6H\nRSmHWAWEFQ93AmMnwuAdmNnQoQSaL4TXaoA9hZiFC7ALQ5grwEyrkSrl02Mkzz61HPosFb2zGszb\nAezjQG4I83A5jFCODOfHcI6csQshwXCOzGsfyZG48drcU48PmRvVCccEifSb74Mhxe65JLSofBB5\nzjo6K3e5xuH3r4bSnpAO5iVnzv2r2Ehf2fOV2sLm1E5h0VzggPMz8qEzNyWBvzckJWIzyiX0kRtS\nj9bfouECMHd3h7UhGLAYk5EBe8FO92ImIbPnlcDQl7C3eASMgkmYVTGStT8jVTTHZ20dMLdFYGZa\neaHNy5GwywawrxVKrbFxvqiUzXP1neuzQv5rOeiL3isL85Af+97zsHyCnm+l1/HrYTD756JkDn1Z\n1gugKp37TjP9Xmh0PgyfiVm1ADZk6jPsSofBL1D2RlDHb4jjKoy19WNSY4yxx+pcTKnB3use30Ok\nQhVG17uBMkjeCwXN0I2nCXVm0skBKKiElf2ktJjWTD1pCWHxkC/h0fNEVfQ4ikZ5AcQmQ005eN6D\n8iTwnQFVpaqYhQoF7hZugetbwNXvaJ9rmulcOIdIM24QbLPvH7vt27ezZMkS7rnnnqMyfv8epk1Q\nUsO/bwZLglT1l1oXwHnLnMDJyUDHgPw6AD7KhP5T9f7do+sU+uylo+r2a3/x7A8ft717U6NcceWX\nnKVEV0MkGQTRCmO4rxDE+XcUGMpbSMK9Hsf+/ft56qmnePzxx4/1qTSEC2MM1tojYqJnjLF8cST2\n5OIMjti5NcSxiWOdHwHsvS4/guxSwj1IjYlY1FQiymPY1aUC3X+9sPJq5cSJa5QXU+KV0yaugYIr\n1AZQW63qWm2FetNANEavE++q+RpqfRAVD7EpMNkZJp+dDQ+cCjNSEe0yLFcfXjf0AXNHYMqmiZGR\nthlzTTr2yRDmTj92/Vzomg5PSQHFLKmRyl7TJPjA9aU9VYFZG4PNKMesi4F1XqkDhkVTioGTczAp\nPWRevcd5oTnVPPtEOeYPsTrmQ37l7WGxdFgN76bqM2ZsgTUhoG8L2LNPEvQZb4lamFCinixQD1PQ\nAcmUAjE/3hoNZfkCiB8D28p1vqO8omf2rsUO26/XlzgeUDhH7kegFiKGxuEcGf69DChvocfN9kXa\nQSqJADRQrk0CXoIuibJG8L7jni8gsqgcNkCvQTYIsfsgDsxwARCb7zzmUqXESIoH0v0CW+l+ydu/\nCAyaB1syBdaGuEriSa/D1haw7wLM72KhbzWEDHamVwIlneVFZp6uxl5Vre9Dt3Ts+HKJgrzqwQZR\nb1jTpMj3aI8b7y/TJUDyRb5A0+QJqs7NcNd1LBIJAcyUJEiqwY7yQnGhrmPaZkxChuT5b4wVUhv6\nMgydpX65hCzM18N1fRNKBBIBlp0BI98QKGulnjvTB2xonuiTYTGVbk/CU4sAqPzzHfjOLIf7Rh12\nDnU0o97myHqcH0/oClo4bLzFPHbIE2En+xp082mmnwWno5tUDM7DA+gs4ZAuiaqm5RWpEXrZDlWP\n0hJVTTtQq4QSnaREFBUr+dlvv4TyNGh6mUBbVCxUfigaR2me3v/7rVKvWlMLHfaim8VudLNbo3P6\nIXGL/0QF7dAI94OZJ/dDZ/D9vJx3gqJxbioDBhZBOrA/iH1lqLbNkQqcXVYoCskFAmXh7XBhhrht\nYLpuoj6UAFqjpLAbJSIQuA5TXwqQMlVUAMy+IzUMRy1iYmJOeBXHn3w0UBwbop6EjbdwEMxjEOrq\nntxGZFK+kUhlpBDR1GpQnopH/WkoHy7bKfXiSZ9o4XJAO4lrVbVSG0Dcqcp9nhgBtUDLQ85jL8S0\nhdjW+ntVCfyqtf7WO8G9aA0Qi4DFQfd72I4jbbMkzAHy2ovamO76w672wTSk7hgVwn4xGmwSzJcK\nhrm3BvNYjEDqiFjsZC92DnBblqiQAVfJGdIDuztHVZ8HXcUt5MBZXjSkWUm0v6c+bc4rZxM3E3Uu\nNGoDa2IQ0F19oYBRIPw4Hbb2UK/Sn7WyaJchc2zAfDta4GHeKeqdux3Mr2IFCppKoIQqMI8kaV9f\np343R55DJEeGI5wjwz1xUQGI2qcceRDNjcrcz9bofFu639cA7aFrS9gZgm0XoXlUGMSHLY3CfYKr\nL4R/Xg1/GgHJYNflqvdrgxP36BaLudUvEbIMP3yMDMa/KscMHgj+HOiYo2tyei7sTIL7m8lg/DwL\n70XBu16YUClglVAiKf9XozC3+iWDfz6YRbGwXkbVFKEx+qBc9MgCMM80EwC6LUvWCX1WwCW/gVcG\nwkV+bHY2dmY+3JYlwNQxCTaC/c3nAusjZ8LXqepjS8iCtG/hhlFSeJx+L3QHyzzIGi56ZDBJgDtt\nk+isQ9+RB1pKAXSaB3eNx65Ex8rroD7BP0yDPj5YdjnW48AZh1/gPu7iBMiPDRW08PF3u1XCSWBu\nQTeNFCI3KYisKO1wj/choHZQW3KFANXqr/Tyri0FzgaeKoWpAe2gqQ/KtmuFMCZJPPraKCj+BzTq\nCBXrROcwNUpGgZYwZ4eS2fKoQ84lyR03EeylFnPeh98rcrFt2zbefvtt7rrrriM7aD8Q5nTpJ5sx\nqXB6NbZ7AskvQcFpqNu59ZsCaY9MxE4ee2SPHW5q+2dspKm9nLqJAqejG/BWlHjORDQV0HU/qIf/\nTqGsL1FcXMyTTz7JE088caxPpSFcHPHVwfwjsScXqfV3hbAhflwc6/wIypFl70MgE7yr0WR7H86z\nEoGxAwicFSDq4zY0eXe9aGGVx896R1gmnRKUH7u2hLRGQIzk32sqlCdNVEQKvvpb9TSHdoL1QYtu\n8JSzshoTFsioRJPr1kQqfN9crRcN/6Mm56eox8zOATMJ7L1/gqd7Ymo7Yi+shB4++VaNm4zJm4Cd\nXo6ZFYv9jQNec4BTclV1OXm8Jun9oqFjDiazB/ZpLRbyEXAtAhu/CkG0X9WsgVYiZO8YLUTuHw99\npwggtW8nSmH6mwJPU8bASxNgRwgzwF9njG2mogpeIvCPctEbA66q1F20wDq/twmVmCfEN7Wf5Qug\nQSRHhqX2W6D8iHvfSpQfQTkyDHYPHvK4JRFhli2HPAYe+Fq+dPhQRXMvmsOc7q5Lofue4J4fN12P\nVw0XpXSZxtAMElgznVRZY3YQ9nohykIUcGEMZlEN9pdeUQNLFsLe5hB/CSYVgZ1k9erxERACM7dW\n5t2hQoHxUlVWmfow3L5U9FWQ8Eb/qapatUyHQcMw+bM09uGICmEy/Brb5qnQbh7Mz1Q/XFESrO4m\n0+h/hmClB7POh/0FsHAgzFgAu9w12VauCtnuZPU0hqNXFua6O1QFHOcRWJxusRONqnJNXVmyUa7A\nW1577MVnYd514OxQEbVjFPU2R9bj/Bh1rE+gvoRNsZh9RjfrsWCuR4kmBt20aoisFnlRJSasnHiI\nguLynfBcLxi90jUur1VFLSVedMVhZ4jKENVI9MbqKPh2t8CYiYLaaPBWgSdF1bQ1pTDiXeidjG5u\n8UQ43/uALmC2Guwn35+8PR4PCQkJ3/v3oxH2S+m5erKC2KQa6PA5BTlnkbwECm5eoZvkNlTq33xA\n72nf5Pt3+CPC87LLGOflaEVpL8S7xFPqjMYB2HI1bH9T1JRS6sy+yXW/d/k/ncZRD5/P19CD9lOP\no7yyZ4x5GLgVqAU+B4ZYayuO7lEb4ngOm2Ixlxn4Gvmd7UX30BqUi1ojgNbmkDclwpAK6NpLi5dX\nvQFd/aI1Du0I3f+p9zzgxEISWsNJroLmS5TcfpzbX9kO8PoEzmJKobad/p6WqFxLDMrRLRF4CFMt\nOwPnvAmTJmry2jgdZofgRT9mZi2UGvi2Jfy2EGuBfbUQDeZWP/bZCdgVIcwqv8Dc3a5vqBi4IF3K\njRsmwALgjSro10MKj4OAj8A+5xJQiiMr+YGba1WlCQLtwF4WgupHoN0ULfgmbhHXcRXgbwE3TxFI\nDPil/td9tOT0HdPH3A2MjMXeUwU9oiM+bc4cm2LgVh82iAy1r03FlrrWAZcjS8PXrA3Kj6AcCaJL\nDkV3ibBtQRsEHkFiH4dSSQ8BaDMceK7rB4wnMocKz6Pi3Hv+MgJeHy7fL1Q5My9Ww/ooCbSMrcXe\nvV9VwN/ogPYNd+x+87Avg/ndQOx9XvjFyTAqAZOpMbJ7wFxbCwOqJAZyrRe2eiS7f1dzbK9yaBkL\n69MlhhIA0+1O7BQjUPjqaJ3U7kL450zs9iCmICAAGRLt0b6RDp1SJQaT21+gsCgJ+oCZ/gF20DBM\np1nYNaOwI6fJ5uHRBaKlfp0K/ebBgGQtMjzTBe7OUbVu8WhI2yTKLUBKAWb62dgzfwYX3CsgONS1\nh3wzWudxxTwqXkb/kz/VOIo5sr7kxwaK4yERVq0y96N/kjh0EwrfSNqi5tkgESPGAupoAQUpMO9K\nPe7aEgqC0CUaJm2X/G9aInifkQAIRHrNGqVEOPb+AxDYr+c8MXCeF7okqSp3g+Nrx5fqmGE1yUNv\niP9T/CdUHL8v7BzgzhhonooZV07BdcD6oMa0NbrxtG/yfwZngG7sITCZPWDCNEh0oi6VSFXqTLdd\n9qaOvxkN4kpgBbBf1Ugbq62+RlVVFRs3bjz8Cxvi+I2jSHE0xpwK3Amca609y71q0NH7MA3xU4k6\ne5pmaOFyM6qCxKOqFQi4hRc0dyt3jdgiimOf1rC8ChZ9CxlvAj6Bsxmf662Nd6pq5onSz+pyCYEc\n2KSKmokCAlK79ycpR07/FGZvJEKf+xQBxQARA+Tuq+DV0eodCgLzJmMfQyIQ8RZOLQPTElqBedSv\nCf8T5RKn6FYKeR5JmT8jKiPno0XG3cnKH/nAGVWqhr3o1POc55R5OwC7azEz/JiXarB374ee1dhn\nwA4rh9v8cI6F+CIYtEoLlzvRHCS0D25/S7T/Ak3AyVfPkR2L6JPnVgo09osWTS/ZVc8qpqqyNrYW\n0x0Zb0/yYNMqlR8X9gfvIfkxnCMvezOSI+OJ5Mj9iD1Ug4BjWCCkHXWCIJS5MQ+gcT4dgfjOaD5V\nTmTiUkkEzMchMNIxR9W/N6oFLKsNJFnMKORH1jEJO9/RGy9A/m/zqwRSCjKx11apgvb4Z3DSZ6JI\nZgvx2Wc9mDwf/MUrj9UNyFdtgZG6JcBw5yOWD/bzp2BzSCAsFfUUTkmC7RbzmwD2b4Ww1i0K16br\nuGX5mNuT9AU1hfosF6j6x9OzBPwKp8HE8fq8FzsqZCo6rumh79Tix/U4bbPUN3dOg6kPY2ZJStz+\nwYgSuTsZ8jqLavn4OOyfQ5h7oCzjDvz/lJBLfaieHZU4AfJjA0D7t7AtLLajS0J7UQLajXjtoEsV\nh+hxlYBP1a3n0lHTLKp4pSVCh8bw4Y3QxaMK2uqvYEga/D0k1cfqclXJgnvVi2a8UH02eK6AiiIl\nqTcOSpq41CtKCDVOsrgFlJ4GfKqVzR+K/3QP2qFhPwzA0litPDafKgVHL7pxf3YOAOai4A/t4kdH\n7fAAdko+9tZYqSZFAde4raYd9H5LW1SgbqVv3s9g/2WwvyfEbxWNJ0x3ra8RHR1Nx44dD//ChmiI\n/zlKgCog1hgThe5uBcf2lBriuImvgBqo7IQm33vRQmYZAm7xRMARsMnxdDaVwaIovf6Bk7TwOKQp\nzPha7xu9El4H4hZDmV95MTpevWaBllq0rCqBRjtlR1NbEcmPCT7oUAodLJGJV0d3DluRPHzzXPmZ\n9UAiGd2BbeXYaR74pgbOlEqffboQ48/ETIiVpHpTgQL6zdN7AkjF8QLAm6qJ+Un50DZWdLpd+aLC\nFalfjaVGCoq/AXuXV8d+L0ogpEOsjJMv8suY+vGLoRS6fISrpgEHekiZcFM5dl2uAOLC/gJjvwYz\nww10SK+3v64QuHlrNAyOxb7gwY6o1OvygSojG5wn+up6hfNjOEeG+7FPU34M58j4rRC/GYGtkgQo\nbCcmz0533X1oAftTBNZrEMg8H4HnOFTlBIH6g+494Ypah08FSPYAu6Iwvwb7S69ofBv1+Uwn1+t3\nV60AbnY2psyDeRAZPaf79bOiLXzdGTyuhLdHm51mRHX8WyH26oHYlYXY/TkSiWsKrBsOYwZLROSt\n0RJzuTQb4rPlsbYoG1IC+r53XQudXc9JEPnfvX4K9vchmDgec3sSJhns3HzM4zXgyRW4rJgKEx+G\nvA4Y73ABrU7zYEkGZpiVOfbEhzGdgDmzYP6vJXyStgm76mnwpWs87hmg78w162HSUrjsLRj6MhUT\nYomvrD/UxuMw6k1+bABo3xdeoJnjc3ck0gzdxv2MR/+Ue2W+ufBL6OARdeO5SwSmhnaEjnNhjVMw\n3F2q565LVONsRZGqaTWVEGirfrQdSZHVw99uEhg7ezlMOV/HWdnb0TlKgTKw1xy+0lNVVXXMKmiA\nfNoujIWHxotQ458AACAASURBVJHdFqZ4YGU12PPWafvwCN5EBiwWlWXAYlFdXhujrd0WzHU9MNf1\ngA+C9E6C3kka3wSrrbQSJcTEwxzjGEd1dTUbNmw41qfREEczjmIFzVpbBDyFplZ7gAPW2vpvANgQ\n9SJsZws+8G2CUHPkf/UVqrCE76Eb0SQ9HuIPQG8Lz3WHG6rVApDWTLkwrwhqB8DYU1VdK6mEmru1\nmBnVCMp3aiGzqkSeogC+DGh0Jpy5XEyVBJ/UjXeXwbor4Ya2MKQtJG9GOeBKoPUWTagTnejEH0fL\nrDrFo8l3YwMffS2K3YDF2JWu6rH6ZBkg+4ENmZhE9/xpOQI7H5RLmj2hFPNiLXYlmK7q77LPh0TB\nawXEW8xMq8ct/Nj7yrG3R6kC9BejifkFr7K/J2w7Twu8JAJftYMCd8wvotVb9Ibol+zKx/aogoG1\n6mtrCuYm4ByLXVaI+V2NAGMRMkW+uUbiJTnRTkmQSI5st6UuR/JBUDmyAvo1juTIOjbKyBcEEBf2\n1zmGRdU+harroOpyIgvYle67EUR3m/D9KCyAEkTgbfnVsKYnvDKccG+R7VVZB8js7x3vMVWbvdj9\nXp2BHedVlatjElTK9JnmIbi9UNL0LfywOQRvBrWvue4As38Of3XMnYAMqQmB+TIavknHPGyxT4Zc\nlaq9qIgl8aImAubnV0qwpakUNdmSCZ/fg3kpBqZNwM5xFMzKVOz92zEPpIuO+u5oCZ10Xau+uvv9\nUnA8NR9WG32GdD/2zFHa74DFUojMf1/n0m6eFgTW/VLiKq1cJTClACbeSsxLDpxd+u6P+n8+buME\nyI8NIiE/EGazwU4GMx6tDu5DN5tKoAKGtIM5xe55L3SI04110RYlodV7YWp39Z6NeBf2D4PZefBg\nJyhcI5PO4lxI6CCq44dOCv6yOHmq7S6D9lFw2iIn718ENIbPesLZr0OyD3bfcfgx27p1Kx999BE3\n3XTTURmnw0WdaMf8WFama6U0LfHouNnXSe2DxqvYPQ4A73TT47WfUjVCD0sqI2aqkzzA469D1i/q\ntdR+MBjktdde4/bbbz/Wp9IQLo54A/SR/Pqd9N0maGNMKvB3VA84iAoXC621c4/gURviCEZ9zY8A\nlR3AtxrdY/ehteZS2c8k+ASiVn8Fmwzc0DTy/j5tdP8N/z3BJz+zUCFUFsmAuqZCVMawsuPotfB4\nO/CdDNNzde8uqBH9P69I1brkcuWX5TuBy1Frghd4dCKMvke9RjiRjfnuZDa+DvEXQNSpkOgogn93\nk/2CTPUhvYEAQjECESflY8amYtdkYZKGSxVyUzkM+FheWiH3epCce78oSd//2Yl5PJcrIPAgUv57\nuTV83pgujWH+ldD2lRFwy3Nw3wuQkylwke/2NTVKfWiJYK+rgkHR6kf7Ndh+Iegrg2Y7pAKui1HV\nDbBb3OctJkJJLSbSQ/ZON1irhFg1wrF20DhPOsVd21NbQJN9mhMVtYMi7TR+Hey/VYvOMTuJKHke\n2gcVpr4ePOS5cC/bra9DbgbcPBWmup6vxEJM9yQJg4CAcjGYZ6rhvShVpyachr3L6G620ol/DHgf\nahpD2zjMvaka31NSRdVsiq5NTiXcuAt2J2OWaaZu74/WcTYAg+ZhumfWvcc+AwzPwvS8U6+tuFPV\nr2/SBdjzOggkdsiC7cO1n48L9QUGWFeOGRkrX7YWfgmfvFio9+wB3gphHvOLGntKLezyqEDQCsn5\nb0+F6aOk0rgH+OMwVdquT8W+WEjlvjb4/tkTs2sptYPrX+Ws3ubIepwfGypoPxRBMCPBTgBKncQ9\n1CHvObWiaMR7gUrdzFLi4IZ2MGKFEtDolVqB2j9MHPyRHaCyROpTNRUQf7qqZY1S9F6Aj92+Vn8l\ncJbgg/i9SAoXOHs7fHajvGPMp4f/vh/LHjQAWxKA+UqK3XNhTcrRAWfAd+T6MYVa7fpZjhJP8adQ\n/Ck1d0Dxx9qaeCT5POkT955nb4Ta+i2131BBa4gfjA+AKYds/z3OB1ZZa/dba6uBvwAX/8fOryF+\nEmHbWwiCbx1UdoX4D9ACpg/oGMlnc4phU1Aqx4u2RSb9y3YoH4Jy3NBUmU7/sQAanSrxLG8MWOeN\nlvctTDkX/vatFi8TfAJn8y5RrkxLBGqgoAUsjwW6oeoMwLAXVGEY+Yb6ypqC/SJLYh7FQGwZXFUN\nvnxMKthnCmFmR/lPdZmqSlF6tgQzOs2TlPspqdjRwMRbBdgSgbaxMK0rrAoJTIQ90CZFSfp+Uawm\n30HAly4Pq1+FNPnuFw09YE0stN0EjHgOM7lc5zC/SibMY2ux/aIwt1jso0GBs37REv+YaTWh7+8X\nAFyGlCIBrrEwtFrVl3bzVMkxhZEc+U63uhx58HLqcmQTTyRH1pG8avfBqp6wvic03qIeNB+UxoLv\nL/JspTUCxnGopw70mQvRAne4fy0ZuGSVtgGL4bfDZCb+W2R5kLYJ+2iFjl2WL9pfcSG2X5T621MK\nsLOMKmAvl0MrsHd4YPw+GP01bE9VxRQwE6pECf0tksE/pVrj3saPvSwaO+5DVdqCyFsNdF27qxpq\nHgSyhmPfex57i4HRkzFp6QLhe3vA+gswPcAMGoL5VZXAWUqBAGUfYMn9ktZPKAVfPjYHzN1JquDW\n5MMDK6T2eepA7E0e7BdZ6lELg9PhWbCwv/Z1aTbmjVkCZ2VZ2L4RZZ76CM7qVRxH+bGhgnaYCAMg\nOx1Mb/dkDYw9AyZ9g0r5LoakyedlQDutNs0rVxIZcArMzheFo2kBxKdCbY1WCffFQ+LXEJuqFcEx\nq2DKxdrHoKVKZpsOAqfBDRYWFSAedx90s6sBe84Pj1t+fj7r1q3jxhtvPOLjU1/D85AqafYv7u42\n9WHJFgPBdyDYzL2wLbzt0ziP2Eld34S9vP59F8PRUEGrf3HEVwe/ORJ7ctH8v60Qng3MRV00IeBF\nYK219o9H8KgNcQSjvuZHcDlyPVTeDr4/IMU+L3WiHUM8MCcPercWsNp0UP1n79+oloAw2BrXRYuY\nU7vruQtjpdwY10bVs0H/1Gtmb9Tf518Jp85RrpyRq4XRRc0RvbIzsqIpBG4thw2xEuHYXSuQFERC\nEM+4StrMBdDpazh4n6onbo5rpljss0ZVkbz2mojvAfrNw/gzsU+Uq4/shVrJnz9fCff54Jt89adB\nhAK4qVwAzu+OOaYQBizGVA7H7ssWXS1tkyb1d90BlxdBe79en+zUIy8AorIxt1wFTWslK+9ABPlu\nC6gCCMDQauxw5/h9RiomALZI+6OVnrZ/yVd+BEh/k+A77rSbIZCFSggj8hDgauyucSIQ4wbqQFCq\nk8CQBJjTiki/fthvNA5oE4DNwYiwWVjC/4bXRd8DjTOoHy2vvQQ3Jsq/zjSboL9tcLL7o2rVQxif\nrUpYt3Ts8yGo/RhOjgN/OlwgsGWaZurz9hoIty0Q0MHZDgBmWCp2VTa8k4F51mJHGjglV8qOn1dg\n/hQj1c45F2Ie82M/RlXI05w5+XRRC82IWOx542WNcHKOrucbmbIN2KH988pAUUTzOmj/iYWiT0b7\n4eHxmOQJcEo1dvrbuja7k2FZL8w5/4X99VbZP3ifh6WGWk8sZoMG//uslupD1NscWY/zY0MF7TBh\nz7GwHsxlYJc7ika5aIscRDfy9ko+I88RCEuJh4RVkBkr+sbsfK0OJvgEzh50ntJ/LlaiCbQEKpR4\nurhqeNtcvbdrS9SAuxUWxQBnEym8Nj48OIN60IN2LKKj2+adoq3rWngXeBdq/ND0KW1VJZARpWsV\nvwPiv6zf4AygpqaGzz///FifRkMczTi6PWifAS+jesB693TW0fooDfHTjnAO8r3o2CT7gSCM9QMH\nxTTp3VrgKiUOOA1WXuUYJ/ERQDY7D15O1/MXN4ebPwB/c1hbDrurJAaybGdE8TF6Fmwf4qTcvarO\nUYru+wEdm/OAJwdK/KLaD133Sv7+VyFNtqNCqoKVlkJOV9HZAHMPqnIMc/O214fDxh6i1m0rh5IE\n9YJNiBXYmrVUoiAzfJjrUO/anysFAprnCjRNiFXlLSBwZronwToHzlIKRHXL66AqyfvlsqA5H8wQ\nsAWoKgeiAf7dYCd7VaVrhYBZU+BLp1g43wG696LkRXpGqsDEtQgo5PDdHNl1bV2OrPFHcmRVibbM\nWCg5XzmSrTfDBzfDe1eDPwg2GPFCS4Q5W4jcdyoRMGur78R3wFmAiEDIuMcFVPr8Ay5TT5YZnI55\nwo+ZazGxE2DyBAmt/AIZbx/MxT64DXblY87JwLRNx75WiHkhBprvhwNiwphgpvoKP8gVeBs9GVZV\nqIpala1zKUkQMF99oYRj/mBgU7l62JqCeTsG2/9KKURf6Lzoho2CX46SgiLA1bGwKwr7m0qBL2cy\nbppmwvqQAO38wfB1M1UJrxwEQ19yx4/Xd+B0+ZjZSfmwOApm9FKlbu1SzJejVRHtuhaGzoqAs11h\nE7sTLE6A/NhQQfuRYf7sKmnLBdZIBAIR2uOmKOjtVwJauAWKRijptImDHWXQqhY8CUowl0SLp/3z\nz5V0mnhk1Ll6r+PqO3WjB84Ur355MaIMFKAvVDLQBuxpP268tmzZQm5uLgMGDDjSw1JvwzPAVdAu\nHaVm4CXXwYe6YRd5oeltel3t41ATDZXxMNfJIg/vVH+/hwAVFRXMnTuXoUOHHutTaQgXR3x1sPjw\nr/vR0ZR6a8TZED8u6nt+hH/LkV2BJtCh2ol4FEHvlgJjo1cq783eCI+eB8Peg64nR8QoPF4IfiVa\nI0BtdYT2v7tM71tTJbuZUq/EnlZ/BaXdkOJygIiCYEtU8Xm3Jwx6GVolRfrH/nSqZNnb+CH0Glx0\nMfzTL9GHv1bAWTGSSU9EBsfIR4z1HtHmUoEmOZrcg6pfu5MhtgdEZUNphvrAHi+EYBImuwqyoqF/\nLfax9ar4XJuE/XUIhqzVfvLaiwJnkyBZ1Dg7B5koX+TXcXbp3AFY4JUdwNsBWG1EgxxTi02rwsyP\ngdOQQmGq6127O0r0xrQa+LvruzpzlOiFCaXwdpAiN2k9NEcGnXBWLwNrLkfT1kuImFWH6YsQ6Wfz\nEqFFNnbPh33qDqJ5zIKbBcpm/7yuSgTA16karwNe7LOqI5hwxc+XJbXFrYWiCG4Auy1XYxftxih9\nOtzYHR48T+99ycIXRn2CAFe4Cugb7vH5maqoNpqK6TMSm9ATrv9AtNYS5wtQkgCL2kMHHEh6Gf40\nS397/EqYPVhCIeHPH++Ad0KJPltRJswIwYTFmGsGYf8+H9M0E/vzbpiXPtCCQUoBjJssgPfShLpq\nLSUJsCSjrs+O6aP03PIJMFbeTvVdFKTe5sh6nB8bKmg/MuytziOtN7oxeYFgREK4QzUsN0ogA9rp\nubwigbPWflE0aksE4P70tZJPVi9o6lNPWt5+JaAEn9t3pVYKlxci75Cv0A3NVf/xgln/475TVVVV\nlJWVHZFxOF6idmEAuz9HN7qEEiUft2LYaB8UHNTmmQjRYyF0uiiOI3Ye6zM/fDRU0E6AOIoVtIZo\niKMR4RxZ9TLY1UCchEF2l0GXRFgegrMSYcDpEp1Y/ZUWJpfthGFnKBcSAwu2w33/gr+4VmBPlEBd\n15bKkWtCyOcMIOjAWQ3qLWmDRLEDiOIYRPLjCSWa/BZI6dA82RZ7z3ZRDKfUyvl6ezXm2iQoLoRr\ndqs36/VyKSgGgVAhtmcIO19CFDTJwQzpgbkmXZP4jzI1Ef8iHz7MkKjHWPUZmQfB3hmtyWDPkHyz\nTkvC/q0Q87lKSmagUxxMKMFMRdY0DpyZGVJtNFc4Kt5VXuzMt7APVECpBzvRSEgjNyQT7GongLJR\ndEfz+yrsI1Hq0XoD7DBvxMR6YX/lR6jLj/+eI0Ona1sTD2w/BxLOUfXr0EhCC8lBIiC5HZH7UKV7\nvgABtoPAFa9Cs32qJJXEy7C5JEFqlC9Hw0se2SLs0bnad/MFzt4s1/i97cRbFrWHDz0at9uBohBM\n/hw+rISvyrEjBV7p5Maze6Z69DqB6ZQpT7yl+RoLgK4fqHfs4gyNzfs9MJenC5yBnntslsD+tePh\nqsUwqb+orbjP+WGGVCkX9sdcM0i+eTdtho8ysXOX6BxeK8TsWCnq4z/7wsiZ0G29vq81+eqt250M\n/8rAvAAMGQaruwkcrr4QbpDheH0HZ0clToD82ADQ/j/C3mrrklDYR4s4gbRNbeTDstxhppJKGXGm\nOFGg4e+rgtamUDTIPR69ZkcZXLJCSQxgzbdKZskBmNdHcsEPhK3ynDoWPqBFINIAfZjwer3Ex8cf\n/oU/tcjroC1tM7TZX2egWdVbi32FADdpa/4FkmO+Esxsg9mqrT6G1+vlrLPOOtan0RBHMxoAWkMc\nh2FvtfhecyBtIdAYCmIk4BF/ADx/kjjI785WNS0lDnYNgQ0lEs2iAm5qJxB3fQstZN71kXLlVW/A\nmJ1owdIrUPZAuoBbvBdZ33yKfNk6E6novNVXk9yuayNG0o94MLekRoCJZxd8FI19DQGF3cmYB3+G\nWeXHTKnFLKrCPJIkGtuZ2RA0mAd/JrPoNIvJaqMJdTg2lcvY+FmLvT2EfcxRFZ8PweWxEqO4ZCoE\nk+BvHpjWFdt+INw8FXNlKnYasMz5nL0Qgz2rChanYB8NYedI6MK0z5CRc1+/FABTwWT4BUTirJQb\n9zg6Y7VRN83rjg63LyThkGtsJD+22V+XH/89Rzb/5pAcWf0pfPapAFYZksgPe5oVEJHPD3ucVaDK\nZnjxOQzO4oBO5RAoh2WX6zzWVkCrJF2jlaJ22rfddysfXcdiNIbnZsHHAmTmMT9cVIt9IKQxPqUW\nGvvVOHd1rKqdUc7PLKEU+xtkj7AB7Kx87fMMgUNbcrOqjJNHYa+ohAm9YXgWtvUo+BwpMF6cgflD\njQDzmeNFc3xupqpaGwuhPEderH4kp//MSsx/IbPpRxAQWwmMexy7+DVV/wa/IGB4UTZMfEQgrChJ\niqB7wK7Jkn/awv5UxgZVeeQEBWdwQuTHBoD2vwjbxoE0L3WTfrbApiJgn3rRonbpJR4vvLUHsn4G\nlXvhqQOSzg8rWY1eqUSVVyTVxxtOEoAbmgaZ72p1MK8IbkhAN7qD6Ka3OigKxCu3HPZ8T8QK2ndi\nYX8whcQvgfi/Q6P7IP1aOAk4eJc2AsAct1UAb/94Cul/Ompra1m/fv3hX9gQDdEQDXEMwvcn0Rzt\nQqA1zNnlqlxNBMrWlisPzt6oHqcEnxYxiYGSfykH/uMAjF+jHDignYDYA02RtxqAF2b8S3L6CT7X\nHx7OyUtRRadJQAqOEx9RNWMZdT5Wdj6YpOHwkge2JcMF1RAolMfYRwZ7hwd7iwcWeGBdNLbzlTJJ\njs7AfvoUvO+RVPq9Bnt3FLzbCrypAoIj33A+agZ+4ce8ZLFxozBP+OVbdatfUvLn5QgcPOiD+xfA\npHHYZa4K1AfXx2TgugPw3q8wf4lWL1nQ0S4f9EmIItOPPXm8qkL5QO8CHR8Exgq9mIct3BgrABHv\nh4DVtqxXnaJjOD82uk/5MZwj66pic5AIC+73AAJWYfpiW8T0CRtVl6Gq5ulE6JC4x/8C9sTqekx8\nWOex+HH5jZ2aD8WFUm3sMhVau16xizR+/KNcfYFRIayrrtHCj1nmla9Y0kZomQtzO0CLbIHTtE06\nhlNWtKN1rub6VMyD6FhZv4h8ttGTYYgPLqqFTcMFvl6frGroqmzsfV6pMi71OF+5zXBakvbx+EWY\n61PhomxJ9a++UNXQhBLsJhlV2xxUBVt9oWiNeR2k1LgzA/Nios63u/tsfxwGbw7XuXddi++rFvoO\n/+LZ/59/y4Y4zqIBoP0v4ztCEo73Pu9KGHuWlKm2N4UhZwqcAXhjwETJnDM6QcmpbTYs+lYrigk+\nmV2DM6IGsvtIqWr5V0pSz12MVgfDN7oyIPPVw55rVFQUCQkJR+aDH0dhv26N/bq1VkRL4hmZDiPT\nEQe+JZw8Tl47gZOB9vDZtdqCAW31NRoqaCdANFTQGuI4DTswkhu/vRLsC0CFWCGf9RWo6v6eGCWv\ndpMYyO4yUf69gC9Rfdzhfu6wofXCsIfXASeeVQnbBsG2IZLb312GGCZhGXeAfUFNakEU99FTMXd2\nhxVBVcI614oi57NQ9iXYJGyPYZgZMap4nJQP50tUxET9TcAoCEwdLXnzf+TCskrMOAsDArBD9DnS\nNqs683kO5t4aSKrFRE/Tsb7IlwLh7cDWHnquy1RYVAmp5eo7ewb1uRU76l2rJFgyDXthhapBaVbC\nI8nA+z0EKP42AfNircDGlanqqcoB2vuxvYLYXkF4vRzzTDPMs7XYgZUCn/CdHHlofgznSFL4To4s\nC9NIA0DSFlXDmgQg+2pt5Wh+UkOkFBcEvgR2IPCcDFxQDgd6aLxKElS5vFeVLM5P0v7/OFqVsw0a\nJ3MFmPf8en9CKSbV0Rz3gM2Ixm7Oho2XwNobodgDv+oj8BWuou5Kh/PR9e07VZTP1qMEKm9bgHlz\ngca+zwrXr7cZc5fVGC3rJVsE0LWOGy6AOD8TfjFLFMf7F8BlNfpu5LWXf9qS/tB/Klz6gaq2oR6S\n7V/YX1L/IJC3rBd0moc9N1XAbcgwyOuMiXke0wfKRvRVtZEGcHYi5McfFAkxxviB95Cwuw94w1r7\nsPvbfcA96F8w21r7kHt+NnAu8GtrbbYx5lQkRn+/tXame81M4CNr7UuHHKveN0H/e3R9TRS4vCIo\nPR2tLMXDlHRVwJp4RN0AaFcBj2yRalW4R232Rpi0XdSPUi8kuy9LSpwoHgPaKemE/WQGLXX8+zgi\nNIJ+YKN+eNw+//xzcnNzue22247o56/vYU46pKGsYxJMkhdbycl6yhMFhU30uO0eqDlNjx91nmiT\nTgGbUv++k6FQiIceeogZM2Yc61NpCBdHvAG66kjsyUV0/W2CPt7jP5Ujj+f8CMqR47poMXJqdy04\n3pmmgakukmhWdAIs3AU3uPtzVCNV0MILlrvLYE2h6IylMbCyr6iTC7doX55ZMqxeVIsqD/9Cqnct\n2knAIa8D5rIMVU46Rc7TjK3FzsqC5gfgwxthe6oMn58MwYceVVDa+JVv7xovYYaNzmD4Y+Sa9GEI\nPjJwcg0mOxbiarE3eTTB7+Tk/H9XI1n8i7MwXw+XguCyXqpmhZy64uBK6F6rSXxJPLT3S9yjc6UU\nKE9JVT9WEFVWOqK+s2g/VIVEcXyuHLrFqtK0B1XsEsGulGmymVYLazx1/mD0IbLoOykWCqTY6HH9\n9YVNlB/huzly0inuPeHFzLDwx1cIgMF3Tam97ncvkR61QavUfxbu/crrIBC1M0Og6hqLvcVg5lrs\nGCPRjp0Zem0rIkbQ+zQGZioQZ7HPL4FzDKb0KlUVg0hopdovSfsBi3UNckQ9BV0jTsrHzG6NXTID\nXhiNmW6xDxuN9em5kV7GnEydy8iZEp/pmAS78qU++ckEbGCeAGGfFQJaIJGP6aNg+r2Yp9tiW3WH\nq/6Kmd8U2ydK3mtbMqHSGZi/WA1ro7B/BTMIKkbG4rtnus71jw9wvEW9zZH1OD/+YAXNWhsCLrXW\npiNW96XGmJ8ZYy4FrgU6W2s7AVMBjDGdgJ1I3HbwIbvaB9xvjIkO7/rIfoxjE6tv0sfI6gX2FcAL\nvZuqGlZSqYoZwNlzYZ3RSuC9rdUUvbsMftOBSKNtMygIitqR4JNoSLiqlmykBjm1O/ROQCtc4djW\nDlP9w9+t6OjoE7IHra6CFnSJNEpbQo22uKQAbaOgrbtO3q3gzYFJZ8OkUE945+ZjefrfGw0VtIZo\niPoRDTny+2P1TfY7OfK+80TjX7ZTgOr5PKgqBF8CGC/YalXGTBQs2gvffKz9JPhgUXitrUZUyW0D\nlENLKpUrO86FKec7MFeEwNkBZFHTeosoZENfws7Mx8y14MmVyMfdYG/3wDtxsM5djoDbRxs/9PBp\nQl6TL7GNvc6Hq+tamVynospO2ma4LQbaxmIzyrEPbYNT87GNpkqsowBY4JU0+/bh2CCYFk6AwhQK\n5O0BEzSi8TVNgnQ/pjsQZaFbrCpLQQRM0rP1nhbZOs+mwCYHwm4UODOdEN1xJQJteY1gVVCUvCIE\nzFohUROboy0KaBPJj+EcGQ5vjsuRoZ7wydUwebp6yhoj6f0gWkA+eMhWRqQnLRGBOKcKWacemddB\nVbNWSQJgnlzs7hzsfd9ojD8x6qlbkgEDnSdaD/T68H6ausrj0vkQWA+/byHj7tNyoGMOtPGrd+/a\nJEzJcL3PFOo9zyD7hLTN2JGOw3nHVOwUI5B7aXZECn/AYv29NAPz5VLMTQ6cubD7cwTKBizGVEzQ\ndR73OIyeCr+bhrkkFfvWrAiwWxwln7fVF8I9w2DkTPUrDirGPl2oXrski+9LrVQcj+CsIf53cViK\no7U2bLIQbvEsBu4CJltrq9xrwu241UAjtJp4aBQCK4CfH4FzrlcRTkDzfy1O+JuXCmS1iYNQoapf\nNXfL12XZTlEdh7RRYkn/OyRXQ2ksdCiHG9rK0POtDCWliW71cMw6eM3RO5Z/S50HGu2B2YMPW0Gr\nrKw8sXvQ/G57ebq23T21Xbwfuq/StmKEttOANT0BsLfNPZZn/b1hreWzzz471qfREEczGiiOx000\n5MgfjnCOXPwvgbQEHzyVq2raJzVQUay86I3RYmTJF9CvMaxoApPWwpxv1HO25iCsvBGq7lD+7NpS\nxtYJzlfr/tO0CEoFagXoghZAK4HqoKoZ807Bvvc8fJkO7/fATsmHt6vg0SKYWwZxopvZHa7nqaMU\nH8m6F/uaJvPcMEpAAQeCrpinqk8BcHouZmSslAivTFVl6GNUidmSgymbhvlVFfxsvBQJ8xphZjWD\njYWi2vWpEZg5OUeVlE5gb4iGM7MF9D4GkwrMvhQzthoTnYGZaCFUKKGM88OlKyeq0VSm2Jwbqwpc\nr4DA8fJlMgAAIABJREFUUQipCgYdHTJts7ZDc+TC/pEceYvLkd9ere3upfDQAvVJAcy7WdWl967W\n/psEIoIgyURUNcvcczXu+QemwK2vCvx8ky4Q3AkJYIR61KkZ2jnCj+aPwLQJsKcQ2lq9toeqVaYP\n8OhAnc+uKPDskqrjWT3kR9YPqTWudOOzDNkZnJej6lifL6S8OGCxqmcxo3VNmwpMmzGpML1fna2C\nSQU7JV8y+dc7muLyCbDwfKlRDliMTR0m+uXER7Tf5rm6Lst6QfNUmBeUqMnswZiuqVKGnPgwNnWY\n3t+3DabbndjiB3XODeAsEidAfow63AuMMR5gHVrHeMZau9EYcwbQwxjzOPpXH22t/dhau9kYE4Uo\nH//1b7v6HbDU0Tt+UjHoDEvWBkPWGBg+ApaNhRErYEp36FqjRLJwCzzYCarLodr1nXVt6Vb8ypxc\nfxEcvAp2hpRoEnwCdQPaSYK4qgQ6WGC/VCPZixzlD4zDNvl+kBYVFXVCVtDCYfcFMJcF1egLMMjR\nKQZkiaIAdTQEe5oVSKvH4fF46Ny587E+jYY4mhE6kk2QwcO/pCH+19GQIw8f4Rz50ufw87PgsVXy\nPpv+qWiKQztCSo1ojf7mUFshEPZAunJgiQ8GtFbePKcarloeed/olbD+FlhbpJz5wJkw41tgCwIB\nlUBsAE7ar0pIn02qlvT5Qid33QEoioOL/fBmEPP7APYv7WF3CPCr4rRsKVAIV2XDH6ZhXpCEPolA\nMFPg4B6wf3d9X2mbIDEJ0zUVuwXsU59B3oXYWGBYFYzrJR+2ll5sVAiIVzUr4FfFxpcMQ1/GPpau\nSl1yBvYx6mTy2RAL1yGqZjUSn1hXIPn+zeqRMgP8MNc14/m262dNPuxJ/c61sfOBxr30yynub4P6\nC1BcnCWQBKoePbRA+3YUUbtkWsQHbrej8l34JviC8OHVeuxFSxdhq6AioLoFePfBznYCK1Mfhun3\nYue647w9Gi4A9qSKkvkq2OwQdt5a0Tr39oAFUnk0yZnY1SHs6hCGBTL1nr4KamuxkxF7JqEU+4/N\nkJqO6a4xNHeDXeuqXU58wzzaGXvHBCkpFmSo8vZ+D2xoHlSthZEXwoZZWn3vlIQJpWJXX6hrklKA\n6ZeKzXoSThosULhnFjYRAdBhH2g8V6RrbPM6wFkZME4VQbtgAvTKwiQNx058GHvxWZgLR0AYnLVr\n+mP+1U6cOGI5sv7mx8MCNGttLZBujGkMvG2MucS9r6m1tqsx5gJgAW5aa60d9T372WaMWQN8L2+s\nqKiIrKwsRowYwezZs7njjjt45ZVXGDx4MPPmzSMzM5PXX3+dgQMHsnjxYq6//nrefPNNrr76at5+\n+2369u3LihUruPzyy/l/7J17WFT12v4/X44DAoqKqWBqaAl5QEsjTbQ0SqnMIpUOlmhkauYBLTNR\n0DSVkvKQIZqaiaFlVh5CLcVDeCZStBSPoMhJHBSQ0/f3x7MG6t17/3b7fTXZOvd1cS2YWbNmrTXD\nPHOv537ue/v27XTv3p3du3fTuXNn9u7dywMPPMDBgwe57777SE1NpV27dhw9ehQfHx9OnDhBy5Yt\nOX36NM2bNyczMxNPT08uXrxIw4YNycvLo379+ly+fJk6depQVFSEs7MzZWVlODg4MMS3grg0W2In\nwaA24PabFBgLEetTW2yE9xbJ8MHUJlDLC2xjgQp4oCFs6AMbzsKzCpLzq2fVTHlwqR4kF8DO56De\nTuAY0kErKobUbqjAYnTZP3/DlpaWcvXq1X/3Ut/asNgLA+wUpya1NQGdIXKFmtot+2e4lTpolrma\n0tJS7O3tKS4uxmQyUVhYiIuLC5cuXcLd3Z3s7Gw8PDw4f/48jRo14ty5c3h5eXHq1CmaNWvG8ePH\nadmyJUePHqVVq1akpqbSpk0bDh06hJ+fH/v27aNjx478/PPP+Pv7k5SURNeuXfnpp5/o3r07mzdv\n5tFHH2XDhg306tWLb7/9lieffJKvv/6avn37kpCQQL9+/Vi5ciUhISEsW7aMgQMHEhcXx+DBg2/y\nWbTiZuLvqpE7d+4kNzeXBg0akJeXR4MGDcjPz6d+/fpcunSpalmvXj0uX76Mu7s7ZrMZd3d3CgsL\nqVOnDoWFhdSuXZsrV65Qu3Ztrl69iqurK0VFRbi4uFBcXIyLiwslJSU4Oztz7do1nJ2dKS0txWQy\nUVZWhslkory8HAcHByoqKrC3t6eyshJ7e3u01tjZ2aG1xtbWFqUUNjY2KKV49d5KFh0R0c7EzjD3\ngBAqN0chYaHesPEs9LpTFCMDG8Jy4MMHofPa6guWbo5wehDoqxC0RWbbQFQqYVvFRZlLiFGFC9Kb\ntC2G481kxWbHICYT5e+HNhthwt+XAGWw/H1oNwVGNoYfR0g347AhLezoIWQiNBY2h0n4sydgQkw/\nWoN6qx06Z7QYejxdijpph/KoQPveDc+ZpGu1aiK49UTPsBWZYaJJnAzdCqE8SGSJtQplbm7aEHSY\ncRGxlRHCfKwENcCEfuwaaq8j/K6kC/aQBjS6R6W8n7xKYJ0xO4e3XD4A9BrD5MJ/ryxXdYSHjDeZ\npU7+sUYmi+slZjchVyDB0AC5fnA4Ep6Prp61qmN8D3no++oOhRNC0jCWttnwS3txSgzcKs81yVus\n5GPDxMVxnzd4IqHex/1kzk4FVG/vGQ1DFTo3HfBEfWQSEjt0Mnx6AZ4MFFv9lp5w3A/V00M6cauA\nwhL0+Ergfhi1FhUWDMu9oaxS7PEzPNFu8agWIZLlNjAYCEYzXrqjgcYsoxPg5SkS2BYB6P3xYO4k\nr2X4DHQp0t1sHYBWyPvHd710J0OXy2sQESlzcRohcsHllEa2QfEr7NIwah5lQ+dTXl5ORUUFSinK\nysqwtbWltLQUOzs7rl27VlU/HRwcKC4uxtHRkaKiIkwmE1euXMHJyYkrV67g7OxMYWEhtWrVwmw2\n4+LiQkFBAa6urhQUFODm5salS5eoXbs2eXl51KlTh7y8PNzd3cnNzaVu3brk5ORQr149Ll68SP36\n9cnKyqJBgwZVy8zMTBo2bEhGRgaNGjX6nx9lVvxF/GUXR631ZWA9onzOAL42bt8HVCql6v2FzUwH\n3gL+6dCUjY0NdeqIa4PlQ7+0tJSKigoKCgooLy8nKyuL0tJS0tPTKSkpITU1lZKSEpKTkykqKuLH\nH3/kypUrfPfddxQWFrJq1SrMZjNLly6loKCA+fPnk5+fz+zZs8nLy2PKlCnk5uYyfvx4srOzGTFi\nBFlZWQwaNIgLFy4wYMAAzp8/z1NPPcW5c+fo2bMnZ86c4cEHH+TMmTO0a9eOU6dO0aJFCx6tdZLX\nuoPDJIi4BwInw4xnYMw34NMNtp6AgT3hoyPwQF84kQaNF8DIO+FMFNR7H94dAEM3wYJQOPsbTH4R\nsiugXy+wN0Pv3oi+fjZiSvKCA5i2Q9dGqNUP8txzz3HhwgVCQkK4cOECL774IgUFBcTFxZGVlUVo\naChZWVm8+uqrXLx4kaFDh3Lx4kWGDx9OdnY2I0eOJDs7m9GjR/9pOXbsWLKzswkPDycnJ4dx48aR\nk5PD+PHjycnJ4a233iInJ4e3336bnJwcJkyYQE5ODhMnTiQ3N7dqOWnSJHJzc4mIiCA3N5fJkyeT\nm5tb9TpERkaSl5dHVFQUeXl5TJ06lby8PN57770/LWfMmEFeXh7vv/8++fn5zJw5k/z8fGbNmlX1\n+v5xOXPxYnIBBgfBsXrwWQ7aJgoG3wWThldtb/r06X96nmnTplXtR25ubtUyKiqqan//uP+W47Ec\n36RJk8jJyeHdd9+tOh85OTm88847fzpPlvNmOY+W96NlaTn/o0aNIicnhyNHjlS9bllZWQwdOrTq\ndbW8zhcuXOCVV16peh+cP3+ekJAQzp8/T//+/cnMzCQ4OJiMjAyeeeYZMjIy6NOnDxkZGTzxxBOc\nO3eOXr16ce7cOQIDAzl79iw9evTg7NmzdO/enTNnztC1a1fOnDlDly5dOHPmDP7+/pw+fZqOHTty\n+vRpOnTowKlTp6r+T3x9fTl58iQtW7YkPT0db2/vqvvPnDnDAw88wLlz53j44YfJyMggKCiIzMzM\nqvf1yy+/XHW82dnZjBkzhtzcXN59911yc3OZNm0a+fn5xMTEUFBQwMKFCzGbzSxfvhyz2UxCQgJX\nrlxh/fr1VZ8Xls+Pa9eukZqaSllZGcePH6e8vJzMzEwqKyu5dOkSWmtKSkpQSmFnZ4etrS116tTB\nzu7fXuf6z2G4ql2XHyv+FtzoGuni4oKzszMmkwk7OztsbGwoLy+nsrKSoqIiSkpKKCgo4MqVK2Rl\nZVFQUMDZs2fJzs7m999/JzMzk8OHD3P69GkOHDjA8ePH2bVrF2lpaWzbto3U1FR++OEHDhw4wLff\nfktycjKrV69mx44drFixgh9//JHFixfzww8/MH/+fL7//ntiYmL45ptvmDlzJqtXryYqKoovvviC\niRMnsmzZMsaOHcuiRYt44403WLBgAb98MgxTMJi6wtHv4MxySPkGUmJh6kLYMhfmz4R9C2DRV3Bi\nKQz/EB4+CG1/h2Y74NQWGDMBopbCgwfB+SCMfAdWxkPG1/DaUmAlsA2YivQqF9gJCVtQBI6r4fQ6\n9HcrIG0ruH0BzfdB5AxY0Qg9ZBM89Dnop+DcT+CTCMVLIGgj+I2BWt7o5ktg+Ab0HUvRR2bA/hXo\nhZvQa76ALU+Bz+cQvws9Ph79/C7wWgc+28A2HiY+DXtOQMYSOBUJLZMg+QJsd4N6CeC0Azoch1cz\noOgR6LQf7L8Hr10wYiW8txd9/GtI34U+/hX60m6081fo55PRh9bCu7/AxEQYmQIla8AmCbqvg4I9\noL+Fyr1QsQHMJsi9DPN/Bbcj4JEn0sInf4X1pTD+SfT6j+Ce5dD4E/i0LfiMhQ5Tof1k6DYTbD8E\n03KI8YaT5+H8bnh0ArzfXHrK3wEpwGrge+ALIMkB6s2FnhPELabeWqhMQE/7DBJrQ6dZ4LBfZseu\nTQH7y+AVD1e3w/Z42JkIR5ahpyyGujOg9TloNQn91looXQ4/X4GT2TAoAzZkwLkcsItD7/sBmsfC\nlU0QuQi6z4eFzWCfG7pXLDp1Cvqt+WA6Ak3HwO5s9NJZ6IPfoHu9j35mPUz0hD5m9LxZ0G4iNHof\nDpyA8i/R6QlwfjE4X4Fj30LTmeDRBx5/BU1b2L8QCmfCT2fg/DzYeRw+KYVZd0DhVBgRB0cXMf8R\nNxw6dILLCQx9dAELbP0YPXo0ixcvZvz48SxbtoyIiAhWrlzJe++9R0JCArNmzeLrr7/m448/5vvv\nv2fhwoVs2rSJJUuWsGXLFlauXMn27dtZs2YNu3fv5ttvv2Xv3r1s2rSJgwcPsm3bNg4fPszu3bs5\nduwY+/fv58SJExw+fJgzZ85UfX6cOXOG7OxsLly4QH5+Pvn5+RQWFnL16lVKSkooLS2lvLy86vPJ\nxcUFk8mEi4vL//Zj9V/jNqiP/99vFkqp+kC51rpAKeUEPApEIma2jwDbDSmHg9Y67989mdb6N6VU\nGvAksPd/3l+nTh2GDh0KwMiRIwEYO1ZUIG+//TYA7777LgBRUVEAzJgxA4Do6GiAKme7Tz75BIC4\nuDgAli5dCsDKlWJLv3r1agC++eYbANavF815YmIiAD/99BMgVy0B9uzZA8DBgwcBcUYEOHbsGAAn\nT55Ea035xXLs4uw4Pg+a28Klr8H9DDwcAWVu8M0m8PGAIZtAu0LQdOh0N+x4A77vA6X94S4vSKgP\nDRvD9jVgqgODp8LxCug9Cgpy4bdBSL7I66WwdDZMH0ex30/82uxX6tSpw5tvvkmdOnV4/fXXUUrx\n0EMP4ebmxosvvoirqyv9+/fHxcWFp59+mlq1ahEUFISzszM9e/bEycmJbt264eTkREBAAE5OTnTp\n0gUnJycefPBBTCYTDzzwACaTiY4dO+Lo6Mh9992Ho6Mjfn5+ODo60rZtWxwdHbn33ntxcHDA19cX\nBwcH7rnnHuzt7WnZsiX29vZ4e3tjb29P8+bNsbe3p2nTptjZ2dGkSRNsbW3x9PTE1taWO+64A1tb\nWxo0aICtrS316tXD1tYWd3d3bGxsqF27NjY2Nri6uqKUolatWtjY2ODs7Fz1QWFra8uCx14mJCSE\nVbVXMWDAAL70+ZL+/R8lIeEStra2eHh4VD2fnZ0dDRs2xM7OjsaNG2Nvb4+npyf29vY0adKkan//\nuP+W42nZsmXV8To6OuLj41N1PhwdHWnTpg2Ojo60a9cOR0dH2rdvj6OjIx06dMBkMnH//ffj5ORE\nx44dcXJyonPnzjg7O9O9e3dq1aqFk5NT1evm6upK3759q15XNzc3XnrpJWrXrs2gQYOq/q/c3d0Z\nOXIk7u7ujB07lnr16jFhwgTq169PREQEHh4eTJs2DQ8PD2bOnMkdd9zBnDlzuOOOO5g/fz4NGzZk\n0aJFNGrUiGXLltG4cWPi4+Np2LAha9aswcPDg3Xr1lG/fn02btyIu7s7W7duxc3NjR07duDi4sKB\nAwcwmUwcPXoUW1tbTp48+af/o8OHJbzn0KFDAOzdKx8Tu3btAmDbtm0AbN68GYANGzYAsG7dOgC+\n+uorAOLj4wH4/PPPAViyRFRjsbGxAMyfPx+AmBhxxZo9ezYA06dP/9Pny6RJk/70+WP5PHrjjTcA\neO2117ghsMiGrguyr+O2rPgj/s4a6efnd933/+9GZWUlc5mL7ae2LAEuNYN7S+C8GzzdHN5+Fpq4\ngZOC0K0Q2RvcnWH4FthTAfFvg6NJ3PPrKtidB9mlUO4Av7jDV1Hw2W8Q3xRoA+QBTYAu5VBshqZ3\nwmYX+O1uaOUF9TpCoBOcHQiXXoAsH6i8A8y1YMKdMHEMuEaD3gSJ3eBYKAwbCysDYVcFZNaCns+C\nWwKkdgK3utDKDZKcYVAtMH8BX4ZDgCPcUxvqOcI7LmBuD+vrwy/3QMN0CDgF+z0lS83ZXcYXmrnD\nQgVnNdRpAL+6QboneLrDrkrIqwtflUFjFygrATdnWFIH7nAGG1ewS4OKO6H9cfilqcxJlDvBRnvI\ntYepduDkCM52UH5CzErqnARHV3Cwg86HoLgILo+A4jxoeQbOtwLPa7D7TbCrB7b7wMYEby6GudPh\nmjP0mgtXGkK9NLnMoOtC03wxMrkM1CuFEd9A/60wLBLiX4e0NmDjDm3XgEMtmFAfok7DhUBId4Y1\nGk7Wh7EO0OIipDeD3DvAoQC+qwOuz0GRCfyvwS+eUHFMLnPM7AQutWHOCEh5CGaNAidXWNIE3NPg\nh20wZThcngdja0NZAcx0h/hXIdMfJk6Feb3hCT94yhHmlsHIbvDzZZjtDruvge9iuOIDv3cDusFz\n42DzB7DHASaUw+JMuG8vvHoRup+C6Dlw92LY3x9mzYKZ34ru12s4hQeScR0/GVBUzJiEUgqlaqTB\n4M3HdauRNbc+/jub/TbAMqTTZgN8rrWebThNLQH8EIX3WK31tn+xjWbAt1rrtsbfbYFDwCCt9fI/\nrPdfZyP876BiFQ/UhuQNoDrApE7Vtvlp+SLF8G8oUsgBG+UxoffKbY0rRQ7p7w5mBa5lcPSauDp6\nucJrZxEtNsjwbWED9B0X/+l+WK6aPvHEE3/HYVtxg1FZWcmiRYtuHDmw4j/GdbcQ/r3F9diU4O4T\nNdZG+L8df1eNvFXrIwClYrDlFSC1cEMfkSs+bvh0RHf98+OWHBHZ42EztKkrcsglR6SuRncVc62P\nLBb0xcjcE0DsOJkNW9NXZI0rw8UNsTAI9i2F4DzY+bQYTix2RE9QqGGghxRBxAqZUTocJ/b0TsCE\nydWW6utCJMD49Wbw9Gm53zMe8kNQL2j4SaG/RAKHY0bAVT9xWgwA7TgZIiJRE4EeZejoRJE6Hkbk\ncV09oKMx23YYcEhHtfMWZ8ZLNqgVJvSh9Si3IHRyOiryLvQoObeqj5hhqNlaHBEBFVcPPdhG9jEg\nXnK10mrJORolF7osLoSAnK/4JjAuWf5O80GtknkoHXZGbrPIJZM7wb420HeTZH+t6Vu9HVMxnGgh\n9vNh82T+2ytTzofZDWr7yfEhtvJguCu6Ixb5ocvhYBiklKA+Ncl9HWKrLPrV6x7oBcj82OVTsK8T\n3N1JYgoC7SCrCIL3ixlKYg95Tv+9ss+BW2S/LgSgZlfCARvJyJu7UySYiT0kF60gUiSSAfGynSUD\nxRBkeLTIGhN7yDJiumwv6h3ZNkD/kTA4TX4P3ALhw8S4xewGqR25uiWbWi7yHU33+e5f/+P8l6LG\n1sgaXB//vwTt78StWICgOgvGv6EEdFIBg1qIacjO56TDn3xByJqFvCVnwStecMUkF71+zZdB6E1B\nYkFs8yMib7wfSBoHg2eDC2jnf37+Dhw4wIkTJ+jfv//fddhW3EBUVlYyfPjwqi6xFTcf17347G9/\nPTYluP9QjS1AVvw13Or18cdysH0RTAvg2TulDgY2NSJn8mWW21wq+aCv+gop69dMZtNC762e17as\nOzUXcQq0kDRfxGkQIDROzDXqJMk8UQc/dPxcuCcY1aUR+sx6lH2QBFIPGIKq/yl6ni1kpUCqn2Ry\nvaAgLFa+hCd3Qo3xQL+LmIf4lqLSHNBT01FDvOULfR3DjKKBSQwm7vJAPQ36XeNEGNlcRL0IvldR\ns8WNUc8BWsfLl/jEHnAUeHOruEg+ZMyGnQyQLK9u5ejww4ajoYfMmmVUioPjJVBG+dfDjWyf0cng\nLDNdFtMPi1+CXmRkhoHMyQEUGc+X4SnkC8A3VZZLhsgyfIYYfgRuAVejM3G0vZAWy4yahbBEvVMt\nMVsXAhMmVxMeC4z9Ua8bf18yTFIaG7d3Bf1+teGLes0PPRxY+T0UFaGy+qErJ6NORop7ok8s6u4w\nsd8/nyMujkoMVlV/D3RFrJDA6b2ERGYY7N4Sdn7aGzUA9A+IQYwT8Hg0qmE4+kMhxDghodlm4wpD\ncifIN0K3H16PGvo4+t1fYYNcDNAfH0LNyoNkMXC9FckZ1OAaWYPr4w0YnrDij7BYDNNfEQOo3vKn\nl4uQLi8X+XFzkMJisQy2cZRiY7ETDm4JBZWwJAUxCAHwQsgZgC2oIvVPSZq9vf2N0QBbcVOglKJd\nu3Y3ezesuJG4rhJHK6yomUjur1HzFLUA5kLJMGi/vLoeJmfJ715/KF9nrkDIRgh+A1b1qlak+NaF\nDhoGpAF1kCnA+xGFSSny5T9iBqzpB8EJEL5XvlgXTYbW2XDVXr78+yEh0gSBzwL0g7bQLB0V2xo9\nIAcueIBdCawOk85OUxP6G8Ab9DgJTtaNgeRG6IbAr9egfSfpwIx4HC7VR48A/YFxQHUNopDWygiY\nNoKuZ9vAliLUDwNgo0IfLYFOJmjiKV2lkwHStVsnhEHl26F6+qE790MHJ6CWOaIjFsF5cS/WS43n\nW2EEYZsCUDOM7wvnjO+nRgeLiBliXgHVJndr7pel71V4aKsQrbBYVHAour+MkqhlFcCn6ERD3RG4\nRT7L1vSVjpnZTdwLoZqwZXhKB2phpHQ0QbpTbmYhm20C0PeMhglzhJi5yz6pAaDPxwN9UE/6ob9I\nR8cnieFJQWO4WIp+vQgVGSkkzvcqHOkrr40FJaC+qguf2kq0wk9hYrmf3EkiF1oBW4ogYmuV06Me\ns1HcHUOXy3pmN/Q24PlodIYnNDoGn0SCKQgW9RNi3Xu9dG+jw9Fu8bBnMKx/gtKnv+cawDO3Njm7\nIbgNaqS1g/Y3wu0ThdlQCSh/wBYGNZduWnRXKUTJF2BOV7CZC9dehvG/wIxWMOEY+NaTouXlAh95\nI120esjVwVJQMUXobr3QD2/70/Pu37+fU6dO8dxzz/2tx2vFjYHWmqFDh7Jw4UKrPr2G4LpfHfyx\n2/XYlOCR7TX2CqEVfw23Q31U8xSutpDlBveLESGh9wrxAlGYpOVJZ83LRW6PSZHuWVMX2JUl6yVn\nieTxaDskc+vdxdLVcc2WjEsjcFh9twu9PUkIw9WVMDENVfAp+mOje9QV1FAtNvYblcgHX/CGu0Af\njZasrGhgP+hfxY5dLdPwuxLJYecgyDRker3Xw09BsK4XTN0IPrFwOkwcGy/lwFY3GOkIP5eIW+Gp\nIhjoLAd0GNQwYJ/RPRogkkrul+cGQ8qYliIEzdJhKgbVAnSGdL5UtwDJ14oZIQ9KvFscJVfMkcw1\nEGkewJKXoTxIJJjvGS9QH5nrVaHG94jtdiK7BIkGANjeTJZR78gycEu1Y2FaK5FT/hyEWlaB7m+L\nmgj6rGHlvzhctm+RNw40On1Bl2U7P4RI1+r7EuiVKQTKBOSmSzzA5RQhe3d5wIEN4FkKdZ6GK8b9\nj06WfUn1E2Kb+If3Xmsk6HpXSrXc0fcY7IwU58q6SAfV7Crdw7rJIgc9HCKB548HVHdDB/yh41lY\nF/VTIXp5AiSFiMPk27PBwXDLzJDz9a/GU24l1NgaWYPro7WD9jfDzR/MyVA6DOotqL7dXAoZhdIp\n+yAF4nvBxydl3uxAhaHDv2YQNFcgEbkyeA9SdNpulw/m9v/oSmPtoN1aUErRoUOHm70bVtxI1HB3\nKSusuN7QIzRunygamo2u2BZwuwKj/KQ+BjaVGmkuFQIW3FIuaKblSX3s0hAm74FJrWHcCYS83A8s\nHwwH24NvIQxYDplNYfY4dE4slISJvXm5C5ycLjV01DzYEw7poL9bJaTCKxNO+6HT41Ft+8PacNRY\n0IOBtimofgFokuDrALF//ywInWxIGaNBTwpCrStHT90opOzngagpoHuPRv00Bx2M2OBHTxByMDBc\ngpBXgZpm5HYNroQdeSj3EDTG8d2XJB2mT0D9eC96QzT0RfZvdiV694dwWIiPTgKS4iAjB8yuqN0O\ncHYOBIBeKlI+tVVyzrTB13Q+1bPuP4TIbf5GSsR3RqZ6qh9ESZaXWnpa1gnuJff1N4br/fdK1y4N\na9M6AAAgAElEQVRwC3hloqPCoE+8xBM8auSTBoC+Ixa9Lgy1tByCLqM+qQeBHug1fcE/CVUvAA2S\nL7fKeH1Pe0NyEfh6ikyxVjTUq4TThiV/fW85+LRWkhPX2gi9nl6BnrULCgLQob1gzEbovBc2hcOY\nIbAgDnINmWpcOpz2k+5r1AQUzujkTuAfD6tCxJAGRMa4LkSIuJsZHtiNDo5CuUeivYHXZ6PeLqLw\nc2dcJonR3O1Azm4IboMaaSVofyPMr8sVUC8HBQGQNwSm7oZCWyk8a05IEVpzXIpPRqHMpqXly0+b\nuvJ3zCHEIwzgCtBqO5xuDx/2Eg14nz8/77Vr16w5aLcYDh06hNba2kGzwgorbhmYX9d4LVaYS8U0\nJG8IOMwFTyeY3UEuUD7ToFoC6d8IzNekuxZ+SOpjSBK45kFhKyRz6zLSNYqYAb82lVk0NzNEvQWr\nRkPcHPDYC34/QX0/Wbcc2FcKHwDFHiKXtCuRmaF3bGTG6DMgZjSMmoM2p0PEcnSUp+R3HSwCfzPq\njfrwu4L7QZufR/VJgMOg369E+4AaMAe9D+nQ2K2HAe+JcYRXEnqRJVfMEX4/CRu9Uf09oG85ysn4\n6pYeII9tDPpFe3AKR3UFIjR6SB6MKhSit75ESObqJpLnBuhxoIxGl+pq3LbKeCGMqDSyS+S8ASyL\nREVo9Gh5ULVRSLpI/X4LEvKTCSTMEElfkxQhvJau3TnDiXT0ZCFMvsfQnyXByQC4KwnVMQxd1zAf\nSWuEbm6DitOS5+YcILODXQrRXscgaq2QWVMr8PdEPeWNvhSP6j4G/dE20Och0JAWLg4HkmTuLN9D\nOo6lIRDog/Lrgk7sIcTZFIZqDTpsHioIdINj6N3H4GKQSCtfSoAJk9FMhjUTpFPWLB29qxDqeqKe\n8kCvKKmeX4uWdfTGdDlXb4J6ty0uva3kzIp/D6vE8SbBa7HCt271DNqSNJk1860rUkYLSTOXQuCd\nUPciKFv4xQRdf0Tsg7sADZEwSJsG4FaIdir6h+c6dOgQFy9e5PHHH/97D9KKG4bY2FiGDBmCjc1f\njjK04gbiuss3lv/TrOL/HQaurLESDiv+Gm63+gjVNXL9MxD0tQRSd10Nb/pJYHV0VyFmvnXhAVdo\nngCxPWS2+6gRqMyTwKX28kXa9yjUy4ZJUfBWBHz3vJCENX2hxUR4yh5V+rlI33aIMYU2fJjUunL0\nGDuRy/nvlWDj7+2F0DwfjfIJr5Y6emVCpnSbWF2EGuWMjimC5s6oryrQWa/B8Dixxm9qgnSqjCdU\nH9AOsahur6J7FIOXDSrYVEWcLDNnqg/oLSmy/64mcPqDU6O7hzhETqgAQL9onAyLU2NPQzppke6B\nkBOQ+SuAhgaRqhuPer6fbGe0kTptmUn7WG4nNqF6G8VA/RTD8GRCtYNj6HLpeIRJvIlaWhfd3xYe\ntsycHZXlfOn2sa4XDFiOmuohr8EWY4bMf68QwTdGw1dz4DyoORXwtbFvJYY5x4474ZErsF4MStQY\nD3RCirw2PweJ02NhEKoj6GPrxXTFrgQeNElY985XYEpC9TE1S682DCk3iVFMzhjZB4BBhkmK2VXW\nmx8O+c4Sxt1sM6Q+S+kj23HovknWy/BEH7c4s9weqLE1sgbXRytBu4kIXCvvic1noXQUNI+jirSF\n3isyDnOpFKPLr0FhOvgnC2H7yAf5gHUBjovEkdhxELrsH67K7Nmzh8zMTJ555pm//RituDEYNmwY\nc+fOxdbW9mbvihXcgOIz7zpGKIz4tMYWICv+Gm7H+gh/rpH6IES/KbJG/0ZyQdMyb7bzOahjA3UW\nw+lBUG8l0Bmpjx5IJw3ELMQBsXsfsBxCl8m8VEUMfPYGjGsIHeOlI7RqIAzZJR2p7pXofR+KdHB6\nJZQo9Ae/SEeodjpc9hZLfstMW+gysWfvvRYVZEJPuyaW+Evs0XeJW6F67y4oUOg8sdm3OBPiZPwA\nHCuR7fwUBPclVRt1+DjLOg7pIveLLoYcG3j5qMyhfSwtMBVsEsdBgLqG62E68OhklPcUSFDVzwnV\nLo6W2bJLQgoBuFcIqwowOm0OBquzkDALDOMMzK6oF7zR36WIU+aKEsmKG5iKGidDhnrfh7Kfj4xG\nv2Ar5zJ4LaQa82iGg6SeZ9y+xyBwR0Smyc4e8MwuGD8afI+hVm5Eb0uHWmehIB8++hJ19Uv0xlWo\nXgPQX25ANQgS05DQnyA7COUJeoc4OVYRxQxPkTZa5soeMs79qokym9bbOOZykzhYLhkor5ObGYZ9\nCp2LhNxt7IKasYvCYGdcRsrFc51tOdm3F2psjazB9dEqcbyJSOwrBVd9pHCIgdIhYD8QRoWKfCP0\nXiFoaflQfhVq7wEcgbOIXt3F+Om8HXZ3gxGzpQD9D1hn0G49tG9/HW3YrbDCCitqIBL7atRH8t2p\nKBDevA+WLK92Ow68s9pEZMoB+bveZ8DDSP5sKXCxPTQ7JFJHkFy0mBHy5T58hphK1GsGg0yotWVw\nYQB6lUIt24XeUoReNRHm9kV5haNBJI5OoGa1QUcAR7zhVBF6oDOUBAipaBiOficcguPRaT6oc20g\nzRZ9MAV1KRLtlQSnjNkm8wjpoMUUQexM2cclA2W2qrUJFjyCWgN6uo8Yh2SlgKcfZAIOoKeWQMx8\nIw/MFT2+CMYjBIQg6batKEENMGzzdRLMiUSrnKqumtoqpEHPML6n1jbIl7e3kLV0xLnQBHovcBdw\nxJjxsnS9ygxdpL2p6m99aD14gd7hJ9ly/VKh32T0MskeUz5z0Jvj0cNOQ11v6LgXFTgKvQc4l47O\nKhQS7OktncsM0MnpgBu4mlALd6H91suxZ3iiQyfD4UjodxWWH4XgBHTv9YCbZMM9ZhZyFrwfLgRB\nrRR0n3moxnHoRpNRFyLRL3cR8r7PsM3vCPoxf/A/B79/Ck+vFmK2ph/q8wRIikP7R6Puj5DuaI8i\nSCmB4LWU3n8IhxbpuPxiSBpvU3Jmxf8O1g5aDUFVaCegt8IG43P6oTIweUhodfgOKUaf1TdWLATa\nA3ZOcKZYroJVAL8+8Se71p9//pmsrCz69u37Nx2NFTcaw4cPJyYmBnt7+5u9K1ZwA64OTh93PTYl\neGd2jb1CaMVfw+1eH6G6Rpa+Bvb9IHYShPpCWQ5UXoO+B2BzFuCM2KNnA72ARzfJLJBXprgTvjm7\numN0sD2M2AVnPgCPjiL5uxAgroRORpem3CQujGeNOSQnYH+OdEvim8AbDvKFfNQ8keDd8zmEOEp+\nmVuhkK2MSjj9KIzbJYTpGyMXza0QFVcPDtjILNrv6agR3pKp1VFMM8jwRHUOElv+1ojT44MmOJeO\nesZbJHq/BcGKUgmTTu6E2mAHF0RdoYca//oTDBfD0GXS5fM9Wm11f9iQZFq6eDuM5Q9lsuxjXx0W\n/XkYal05bLL702OqbPwt8tKhhnHINbHr198Z8kmzq2SdGTyOwhLU+yY5J7EjUHGpci4eiEa1H4tO\nn1KVj6bijAw6gPtBDQL9qbHdVD9xhfwQWP4DJBXAyD7Q0nj9QKSM9wNPTa6OEQBxXrSEc1tiAN7r\nCS85Qr/JEgFgkW5GREJSGQywh+ej/5zxluEp59XsxpUQcbt0mfTrbSdn/GeosTWyBtdHawethkCH\nGd20WIVbdzC/JbefXiTzZ12PAFmwJwv5gPFC5s+ygLC1sOlxmUWLfx6eXfmnbTs4OFg7aLcY2rdv\nbzUIuZVxGzhUWWHFfwIdplGxqsr9ONZBJI5eLuBxTcjZow1hc2vgDFIjc4Clj0MDJ8grhueN3NCD\n7aH1Iemk5aaDy0U40g5CNsABJFC4QRDabzRsmFM1o6S+tke/+yuqvx96qQeEpIu0rQMiy4tGjEPq\n9BVJXZSCpqDigM7bwNOwrX9MMrW4EIDuZ1jr35eEGhcghOOSH/pUCqp1GHo14gipQNX1QGdUyvy5\n/150ojfkB8G0IfBZJ9TjYegLoNsWQaKcKPW6hCiT1go10A+9xgw7je6XhagayknCxX1RvbBBzvm2\naXJ73Uioa4LgtSiPMLHYryMEjN5rpeN0Z6aQWIOYsdMgZr+niywweK/cvjBSSKpFelluQocDrQMk\nX60rqLqgMzzRixXqiwgxWanbBe2/C8INUjQjUnLbMjyFOJld0auMkOv+HtDdBZVogvmgn31YAru7\nYpDPyOq5MlfjuFqHoBN6CoFd0xfe2INqHYAeMxu+jQSTGXUtEp1lyCNLOslxRU0AW2/oGw3JnSg9\n2BkAhzSja2YlZzcGt0GNtDoM1DBYiJpbd/B9Apq9CqG/w+w74dMeiHTDImO80kLkGpsfh7jXRPJg\nkDP1+QtV27x27RpFRf9oHmLFfy9++eUXKisrb/ZuWGGFFVb8bdBhusoNOWoPdPhJjEL6HgDqwGZH\npHNmi+SD3lkk9TKtldRKU4Pqjd15BmJHSHet8TGY9waKENQriFzuS1nSezQqsVwI0cjT4OAneVkm\nJBctuZPMWwUizo+JPaEkAH1mCmqQMfcVl46OTpTOkMqBEyEyp+UEaqQJJkyWLK3PgMS7Ua+AmtIW\n7qsUJ0SvTHGT7Ap0cEaNAVUcIq6ElxBL+AxPmQ2rMOSJaT6Q5oNuPUTmpNJ8xADFK1PISVaRmHQ8\nvB4848EzHnVlPerKevQHv8iMXVor+alIh4p0VMn3aO8h6AXAnEghLqNSoaEfyi1I8sQWRso5sVsv\nnchAI+QZ43UYP1qs+j2ByaPFuv6hJJm3M7uiX+onQeH7QmDyaPSL+egZtrCmL+rrStl21ATpcPpr\ncaA8GCbn8+XJ0inU+XB1NXpHvJiM+DjDtCEiWWyNuFS6FcrrXzsdpiTIufPKlNdvzf1CoIuBw+1h\nXhc5v46TIWKFrBe6DJ5eKdLL1sCavpRmN8XBlI+DSdqIVnJmxf8FVoljDYbv59IhOTQQHAeCikLk\nA7ZI7kYpUOkE5cUy+Gz5HaSz5tYAfcdF9u3bx+XLl+nZs+fNOAwrbgAWL17MwIEDrRLHGoLrLt8Y\nFnM9NiVYMKrGSjis+Guw1sd/hKU+gtTI93bD1DuMG1yQmuiAyP7tnMBULHNoFcCq1+CBT+GrKLFg\n19Og4z0w6yl4Y4+QG69Mye2yzFjNHwKr4uCDazB3GcSGwYB4VHEI+lQKOPjBJ6UwwAEmDhGr9aYm\nySPrVyruf6+DbjQZNkv3R8Vo9MuqOnzaBEwejUqZgz5oSPdy/SR0+osKuGCLHoHICt0Nw44PgcRe\nqL2SOaaTEHfDQOCBSvRsGziZg3rFA/21kDflL50m7RYrz7E6DD4YIsQHUL2M+w17eC4anamuslBO\noD+Vi75qrrPIF3f2QIXloZFAa0tuGpeQrldiT+l6uHiLbBCMuIN3hOQ0DULfM1rO/Zq+Mh/nZQMR\nM1BpkTJ7dtlbCKvFmMR/b/UyfIYcB0DUYZheAC0eEldGkPm+OZEwOBq2hUvndGcPsEuT+6MXVO/j\nZW9Iugb7hgtJt0gXE3tCeRAsF1fOKofHiBnVJLT3WnSx+79+496mqLE1sgbXRytBq+H4B5I2CmiO\nFJm6SMG5gsgdQT4w7JzgWjG8sRj897Kj3Yvk5+fz1FNP3YQjsOJGYOTIkcyaNQuTyfTvV7bihuO6\nF58XF1+PTQlWDK6xBciKvwZrffzXsNTIo/WgNMgwF6yNXMxsiFzIdHYCXQx7ukGD7XCXUSMb5UsH\n7ds0OJAAXXZKl2fUPJTrHPRjzaDZMdQUE7qxWKmrw3HSiQLUBC1h1r7HpJt0yZgdy0hCeQVIx2yX\nIYnzypQv/4FbhejZrUe5BQlJOh0msr/PkG7Mwxq9a5HMXo2aVxWWrZoGAcjz94itJlaAKo6TYGvD\nNEU/PNogOj6gPYRwrJ0u6xpzYRicQu83TqbFQr+HEDflIYSnSo44zLCTN2aulItx/xYhkyrmXvSG\nj4TUthQipe6ZLMYq7kBpinQbu3tDC8T6vrafhG6fMqz03T2k8zbfILkghiBflaGjE+XxLQLgYS0Z\nc8VCUtVihLyeKoIZB+C387ClD+pVk+TW9RkC78bBXUlVBidqIui3S6CBCTVDoxcZw3fOAZCVgnrS\nD70ACSX/DLhkzB6uGggxI1BdQyh0M0KnY0cY533bX3nb3naosTWyBtdH6wxaDUfaS8ZsWoC8f3SE\n3K6WIl2yKy3A4wTs6AZNtwtha1Ms4tXArYB1Bu1WhJ+fnzUDzQorrLjtkfaSRp2R+uhwGq78DLU2\ngvoQuZAJMiMVPQG6bhfCpo0LmHl1oV4+2H0G2KJaBUEDxK0xqAgi3pFuTfMBsExIlU4xSFg6cEHJ\n/eEzoAnQYD36hyA49zi8UCSW/T4h0MQTUoLgiViImoB6AfRnQWgAhx6QUYLuPQFKX0YP94Vdb0Hs\nHJH+gTgZBq9FLwyCgHiYuFWes7BE5ui8MtEbAG/QD0TDayNgUichGvcDP5aIoVhwKwB0mkGomvtB\nR2DsNXmeEEdZGplfOs14/hTDBCOxh7EUNY72Ne6Plc6bXmMYkc0YLcs1feEe4Lu2xotlPL/vMfn7\n7AhgL+wPk47UffuBo3BPoRyXYV2vBvZDN6oQkuoShraJho2eYm7yWSmsc4AjiLyxSyQ0PgLu90oQ\n9uS7Jfw7byBqAEAAmiR5P2zZJVEEbrHoLz3BywyJPaXTucBPupMvxaILzKg5o9FJy6T7ltiT0hWD\ncTgcgssVY9bMSsysuM6wErT/EuimGlWuUMZFA/2KLNXiE0LU2m6H1G7QfbsUpSyg50rY8jwlJSXW\nGbRbDKmpqVRUVPz7Fa3474TZ7WbvgRVW/NdANzUuZJYrXIKBYCi1B4eLiMxx2XOytKU6oDlmMEyN\ngtOtYIw7JD6Gbj0K3osDBx8I/QnVPgyeqECvXCUmEp2XQfJRISL+e9FLQ6B1X9THzdCPOKNmFKFH\n9YImRei6oCIGQFgZ+n0/CDU6Wi7e6Pb9YEECfDAEdT4OPaVE/udDl0HAHEiaKVE6/nvhhTfAHCvd\nN7/1QiwSDTOLxeEiwwwfBqFG4PLLb8Cnc1HF4WiLo2K5CdqmVJ+wVAmi1uZ0+AVoJQSLdCN0+nDQ\nn09wV6TLtSoEoiajGodIRwkjN+yFXbKsZTyHRXq4MwC9EyBV/o4xiFuaj3SgnvJAZ6+Hvdfgt5dQ\npxOgkUYPUdJxm3cvDLJHZyTBgQDoGoZ+aDIsixRTDq9oeOxlIahjnpb3QNMp6M1twOsUnHwReiIZ\naY8ESbcMIGKrOHreicykTRkIO2ygsI+Yu4z6w3GbXWX7UbaQMoLSEmccOsTg4GfkmlnnzG4OboMa\naZU4/hdClSsYJExN2wxGfYJIN9zM4HNInJnOyrq6qSY5OZni4mIefvjhm7bPVlxfLFmyhBdeeAFH\nR8ebvStWcAPkG903XY9NCbY9XmMlHFb8NVjr43+Gqho5azCljcEhqwE4Zle7FuYjMsgcIOUJWHEJ\nDn6ICmqDfqsYhv0oxAfki6BByFSXV0UGFz1BSIZhEMKavtDUJKYfrUH7TpZu05EAMaHwykQ9bdj3\n5wOPavQIJfNZdiWSETZXwbAhqMQ4eFLDToXemI76sDl6hI24I46bDWVOMitmkD1sUiDXT7p6h43j\ntwQ8L0XMNCwIXSbL8GGyfM5ZloMMmaTjInncy9JRU2+JhF6vMx5vSCJpYnTgooWc6N7lcvvOHqjv\ndqFnlkArk8yabY6UHDWQ7l9mCDxrELUNc+D3dDmORUZMwJEAaJKCetMPvTlerP3dzNBr15+eGxBz\nkgDZL30pXsxXnACXD6B/OzicAqHLUbNS0SXx1bNqIJLTy96wqB+8lIAKBJ1nEME70lHdvSVc+0ET\nvNmP0qe/p2wF1OppGM08fhp9yJpr9ldRY2tkDa6PVoL2Xwz10hL056GoIuO99dXzUhRmDJYAywZy\nPrdv387Vq1fp3bv3TdxbK64nRo8ezbRp06hVq9bN3hUrqMHFB2p0AbLir8FaH/9zqJeWyC9xg+EK\nlNYHBzPSSQOROtoijheDm4DLYAjaAcEJqB/L0KnjUclzJJx5HdJ1qzBs9RN7CHGLNjpPw+PEDdHs\nKqTN3iTBzW6F0NgD9XEZOrBC8tAu2KIu2aDzX4ApCXDFMKtoZsj+Tmto4yRuj6PmQa+J0K4OjIiR\n57tWLCYo3kUycNfEG44YJMzdQwjgg0bulyFV5Nt7ZDlvPqT5oJ41ZtmmGszJ1jABOWN0mCzHZckE\n+z4MSnJQ/T3QFbFGhpu5au6qalbM0jkzxiuwSB7998KHcdIVe8Aw6ShNkW2Y3apn8zI8Uc8GoY9G\n/9kAJGYERIdDWGx1fptbodxvMQapi0hK14XAyKeg+XaUawEkKPRL/WROEOSxC+KgwXqRp67pW206\n4iYSR06HoUZUoEtD0F9/T1EguDQorHpvVT5qHRn5T1Fja2QNro9WgnYLocpa/7GVcLkFJPZAD1/I\nzz//TGlpKd26dbu5O2jFdcPSpUsZMGCA1SSkhuC6F58Ou6/HpgQHO9fYAmTFX4O1Pv7voa4Zb/1K\nJ65+XYxzIqI6sQUKGkC9bHhwADgNgDanpXNmCZhO86mSuKlOAWJZHzUBSr0huwT8TNIFmzhE5qvC\nh0G5gmZKOj+JPeBub3H9G+gMRcbMltlN1vffi2oRIKYfAfEiIQQJVnYzw9zB8ncm1YTyHqDfaoh/\nDrrulk5QijGbFtNH1g/eL2TH31u6eWESrKrmSsdM/wBqVhl8ZLgAP2O8t5pIJ0yXG4ZifcQZsirA\n2uBzaowsLeYguJmNZaGQwtjhQqrMbrJvdyWJ5eSHpahpDmKjXx4EWX9wZJwRKSTXIJWquR+6ZTTs\nCYfZXarDtXt/A/d6SKeyVjSsDBeianaDuzzEnfGlcgmN/d2rmugZRisk3i3nZ9Q8aPAFrPgM9fRg\n9O/h8NynEBkDUS+ix9SnbDk4zHut6r2khy/8S+85K/4RNbZG1uD6aCVotxhU9h/eZ67Sfv8xeT0l\nJSX06tXrJu2VFdcbY8eOJTIy0mr+UkNw3YtPi1+vx6YEJ9rU2AJkxV+DtT7+36GKnat+v7KuWIxE\nDu+GDU/Dva/CsffgwV+FUMW0FYK2KRw6x0oHafxoVPkcdN0hct/OADHx+OQBeOGofPHv4CxzYlBN\nQDI8UXProxca/4I+seKO2Bj0jnghHuf8UNHAtwh5MbsaOV3DhUBuA+oAhYAzYNde7OmzgyTT63yO\n5KTdixAUC+42OmP7jHMQjeS7GYHUVR0ui5xzpDGDVv9/EK8LAdAoCQqMgOsFZfDOz5IXdskG+h8T\nx8PvDOmjrzHj5i9zd6peQPVxGYRMuX8o69TqL9sMNp47uQvUPwSmPAj/RghW8Fo5Xl9j5s2tUIhy\n9ASZJcvwFJnnGNDTc6BsP/TMg9e/QNl9C7vtJefMgjEG0f69DTgbg3qhy+F0GLq+sxAzU37V6lbb\n/P87amyNrMH10WoScovBImv8I3Y77sbW1vYm7I0VNwpt2rSxvqZWWGGFFX8R2snI7Sp2xqWPE5wa\nwdXAzjhHgHrtU+icDxdNEDpZiMnKcJnrOh0muWK/zYFHK2FcHLxh5HWdDIBBSFZZc+C+JLGB9woQ\na/qOfqjXQL8A1M2pMvbQTVKEFCXLbBu+R9FTO0mHx8ssMrzgteI+GbgVxsyWLlohkAHUdZN9/Bk4\nWgSx8yQgetgQMTl5WXLG1IFIsdtf/p6QR0D1Bx24EexKhJQAxP6ZmKkuBsF6uYvcHjYfzG4og+/p\nAHsgAHb2kxtyE9A5sUAnSGuFjuiHWpNQJR/UrEWVz5HHzhWSp2sZ5PWdBPSLholZYi+j0+UDMb9B\nZQiKELQlky44QdaxEL0MT+lSNjXB0MnoIsA8ARY2g/cy4ZWN6AAjl601kBQC04ZIdy94LTQ8I9LH\ntFboK6Mo2zAK5VoErsZxmq0zZlbcPFgJ2m2AkpISysrKbvZuWHEdcfjwYZ599tmbvRtW3CjcBg5V\nVlhxM1BF1BhPrbPjIDWStxs7M+F4XWrvby8EIWYE3JWEXm8QJUKgLujGXeGbH1FJc9B3IXNMKUES\nGP0DUGKQD7dY+GCvfPEfHi6dNucAIQN1Edv88LvBvEIIRoYn6n0TOHmj1xsduNdGgSdigPgb8rsz\n4AV4bheCFv20BDBHREKUYUzSMb76YJ1AJc9Bh5cAJejXEMLnHQSYqsOVP5eFesUgZobZCCPEmENF\nG9JHQ0GpJhoB2a8miAnKXUlwMAxWtQXfVCFSryDyzeCB8tgoHwn3ThbSpxbuQpvT0b+vBecJkOYp\nhC5qQvW8WOdYIWeWebNm6SINzfCUOTaAQON8WTLjQpfDR5VQ/1cxSykOQX8Cqg8wAPSSgdJte6QN\nOvFXdOvOlB0E1WocTAeYjJ4w6z96T1lxE3Ab1EirxPE2wM6dO9Fa07Vr15u9K1ZcJyxfvpzg4GCc\nnZ3//cpW3HBcd/nGH+Q1/2eU1P2HfVNKPQ7EIFMtcVrrmdfvCa243rDWxxsH9WAxXPgYHnkNZXbk\n2lfOOOxvL2RhycuwvjZsfk8IQMQMkdlFvSMdnZgRqBe8xUTEJkUIQshK1JIi9C+xQibSfKCxhzxZ\nOqhXjKDpL7rAuF3wcwlEzJBu16kUIU3BayFkpcTlHEPmz7ojhiapxeCHmJ28P066bRsMW/yY0bBi\njhhwpPpJ1873aBXhUQ8Yhhr7jfmttUJyJB8M9HaZkVODAtCfIPJJgA8NSeSYjfK7xXxkQVz1iTQZ\n83UW0jdq3p//jnpHlhmess+nW8k5jZwjYdvvxsF4w90xuZM83gjExveYrBu6HNp+JYHWaYZBVnNn\nWNcLdWU9ekiePM5zG+RcQ3XYiW5bCuW+8lrGjJAu5pKXKc1uSmk8EjINELrcSsxuIGpsjazB9dFK\n0G4DbNmyhcrKSgIDA2/2rlhxnTB+/HgmTpxI7dq1b/auWEENLj7wDwVIKWWLXJPviQin9ifdrcAA\nABUCSURBVAEhWuuj1+9JrbiesNbHG4uIiAimZoxB2TqiHWIBKF0wCvuBoDadEcJkdLrwPYbq6Yc+\nH4/yDkG/h7gLHg1DPQa6Uy8Im4ca4Y2eBBQDWUUQ+LuQg7lzqt0gQ5fBM7vg+WghH76pMCAehgWD\nQ3chiSMjJDbnHuDl1TJ3FTNCCEvgVlTnIGhbgX7KVvYDqu3/45vI303ulmXYfFkahE59XQmATvhS\nbj9hmJSkCDNTr5rQvxrW8wAvGdtfMlAMUlJKwNUwqnouttrFEqrNOXyPoS5EiuW/NzIvZ3ZFBZnE\nXRFEytnUhBoEulU/IbVzIsUCP0M6a+qNh2Rfl22s3v7CSDEwMSVV2fOT6geL/GBLIxhtRsXskjy4\n/eJ0WZrdVObLLF05N7M1y+xvQI2tkTW4PloljrcBHB0dsbGxudm7YcV1RJs2bbCzs/773rIov6Hu\nnJ2AE1rr0wBKqVVAH6pSZ62w4vZC7dq1KZ1UC3t7e+BN1PCPJIg4Fa5+6Iz9i+AwLEakiG5B6H5d\nYMnLEtbcGvg8DLXQINCvbIQnYtE/HkO9HgTFoEetQ3UIQQ+4G+KAw95w1BvMa2XuK8NTum1OCDk5\n8TqseQciposk0gNY/wSMmoeKktBnHTEZ1Xoyul8JZFSivnVEDw0TuWFaKwDU95IpoH84LQ6MHY0D\nHiAySP2h0QkLNWzx9xkEzSsTNvQVOaA/VQRNBYfCJjsYaUgcMcFko+sVY1juH24DU6JEKnrVTzLK\nfGLh/jCY1At1fCN6uBFdkGTMvvlL900fzoQpyyFfZsvUoQT0AmOf14LOSEK1CEJvSxeCVj8F0v1g\n8F45b6l+UOoMKzqCpy3470IPiIfDIVz9sCm14jbh4LsJkPX1xTv/L28bK24mblyNrDH10foN7zZA\ncXGxlaDdYvh/7d1xcFXlmcfx76MSQjAxQdHdgoqmOhDQle5CU6u4ikUCui5rQOjY6FoHZq1VdHAr\nWkHZXW2VBdbBtlDEkbaiFDbVllqjtIqILFhhFAJaGKMFd5CuYIAEE+DZP96T3IiAGG64597z+8ww\n557ce899b46eJ8953/d5165dy1VXXZXpZkhHSefc9J2f+UkP4M9t9jcDX03jJ4pkle3bt9O2h9If\nvQ0A699I17VT4C6wQd/mk2GFdP5uQ1jsuGhnqOz49nR81yZ8fCncPhne+B5cORa+Mhs/I0peavvg\n9fNh70RorAtl6ruAT5kI+y+A2YPDWmKlRPPToqGUo+eFSoO3zAi9bVPuhiJw5sOUiXj5MigrgiHg\n9YVw9hb4/VD40TgYPx3vPyrME+u7NFR4rIkSrdEhEfNlhLXJiqLhiB9Ev4AvlcJVb6b2G6Pfy5AT\nQnERwP47Lyyg3bJWGsBTVXBhVP58yIvAi6metJ5b4OrncAgJYmU1tnBBqK44fibMXoA1gg9Z3No7\n6CyBrQ/DaQ147RrY3AfvOR/mVcKPeoceO9sW5iNVVsPPxkKvBrhkFfzpcfybBdhfGuCbU+m6Y1wo\nWKJS+bkhXTEyxvFRCVoC5Ofnq7clx/Tr10/nVNpLY+VE2iguLj7oTUxf3QW4F3vmKrxpDHm/uhLO\nbGL3uqHhD/7x0/EuQGMp9vR+fEkPqCoIa4zxz/h1ncKwvV8Sqi2OHAPbt+E/7h6KVlRWA9UwrDoM\n0ZscJXw13WFFIbw5MMwzaykzX74SL5+ZmqMFYX5WfSF29lSgF35hQ+gtayqAZ68MwwRrLoe5Vakh\njZPCd7V7ou8ZFVxo3V8bFRqJkisrmQaF4bLh0ahEn7YMziYUBwH4GKh4NRQNKV8Z2jhkSdhGSZwt\njhYAP+M/gWtDYZVem+BbC+Bno3DAdj8NDMMXvhKOW9s79NK1rGM2fiZM6AH1faCuNMzp++XYMMTy\nO1Np+sEkNv4Myr4zHOszDjZPDe1VYiZHJjbxUX/hJUBjY6P+mM8x69atY/jw4ZluhnSUoxm90bQU\nmpce7hVbgNPb7J9OuEsokkjbt28/7PN+9a9bH9uaj+nadwe20+D3zXwyKMwDzvuP5TA+rNnle8Ee\nfQ72bMOf7x7u9j91D6y7O/T6vHk+vnBEGBZYVxqKe7R81ogK2F4Fv5gJ3TfCXQ/DG/3hteHh3+lh\ncWf7ywT82W2hmuOKv8brBoVCGNdFI7HunhK2NZeHXrlC8DlRxcObwrpn3lJQpH5i2J86Clu9INUr\nVlkNC0fgldfCtGgIY1lR6rnaPjBzaNivegwrGYM/XRQ+88YnUotQ1xfCRUvwsv8CeuCj92D3F4Q5\nezVFYYHqb4Xhjn7pYqz3cGzK1/DJneAZwnHHV4QexWG/Cj115SthbhW+uQdeMYnmH0HzzyFv9Q5Y\n9wYsvk9JWS5rb4zMoviov9oTID8/n7y8vEw3Q9LovPPOi+ZLSE46muEbXQYBg1L77z9w4CteB84x\ns16EQUzXAmOO4hNFstpJJ52E2ZHVL/ALUoWZjnulnrzuoWz/7jsK8OPhhMsgf+Y4fPEemPpASFIu\nqYvWONsSCowMq8buLcXLFofKkMMegdHAyEFwP9iiZvyWMTDvfNi2MQzhe6tXSIgmPBiGNxYCRnj/\nm1tgyoOht2rqRKz7NNhl+FKgaGkYBgghaRo9L2wB/iGsl0Z9WPjLti4IRTdqoqIiX4/miK0aE3rl\nACaEHinmXh+250ZVEGffgteuhEmE4iYrBqbK5Zeth2WDofxVuBioXAo9B+Gbl4Y13Db3CK+5bxKU\nN+ArtsFNg+GawfDag/h7S0IvI9H3vfY5vKKAhiGz6Hpz+DVwwyWt52Vj+Rls6n7PEZ1PyVLtjZFZ\nFB+VoCVAQ0MD+/fvz3QzJI3WrVvH0KFDM90MyULuvtfMbgGeJ5QRfkwVHCXJPq8H7VD2X1wEH4bH\ndtp74cGpwML17Hq8G3ljoNNKsA8IFRRvfAKf0RsqV+KLNoThegtHALeGJO22UaFXbe+FYWjk6Hmh\n8MVFS0Oys2Ig/PYfoWddmFcWDSW0prF47TbonZ9aGLpwE3Y++E92htdVVochhx/1CEkewPJoeOLQ\naBjgOVE5/Ruj3rIfPpH6si3vaUnMKquxc8fiDZPD2mUXv4zt+Q1+a134rPqikPhNeBD7Xj6+CuyO\naImB5SPwXhuAPqmqjxCKiwB495BIzv4O9M7HOg2H4fDJogKazoITJ9djjIMdALNwc7g0dZg//nEj\ndXV17Tqnkmxxio9K0BIgPz9f62XlmL59+6oHLZels0jIQbj7c8BzHfspItnhUHPQvoi2FQHt0vWc\nOOt3UD4I3gFKoOn9M+EH0PlfJ+A1Y2D5yanS/dc8Cb3mwMjLQ3GM0X1C8vbE3TBiU+g1GjszlNjv\ntQHOXxOKlJRtCEMQWQx9h8M1t2Mvvwt7DH98aUiUevbBuo/Fa+pDwjRuVlTAg9BrBa2L/toJz4bv\nUv7v4ee1fbB+oZfNz41+PxdNDscp2hmSs/rC0NZZ4/AJzYQaC0BRfZi79hh411HQH7y2D9xUH4qA\nTJ2IbZqDf38S/N+pISGrL4INe1rn1fkjq2leU0Derrfg9FLy3vlyOHZN2zllnx3GWFJSwplnnnlU\n51NirgNjZFzioxK0BGhsbDzi4RuSHWpra7niiisy3QzpKB2coIlISnt70A7F/5C6Nlv/RugGed0a\nwuyWx4E90FTQCPyGzrMWwEMNeCmhJ2zFYihbj5Xfi/9iBmydEHqZtpaG7bLBYW2vzfWht622d1hD\nrTL0fvmM34YPrnwx1Z5ts2HLWFg0BhZNx64Gn7kJTikNL/hyVHZ/yr6wXzYi9d6fRIlZXjTG8SJC\ncrg5lMJn2eCQXAGcGk0MunEenLERn7Ml9BCWXR7WibtzH/7kgtaiJ84abFMDvnAPXJBP0xvhRnLn\nr4dho/ZKQ1iUuyRqyzl/Cg/OOfzvf8eOHbz77ruHf5FktwTESCVoCaAetNzTr18/9aCJiBwld6ek\npKTDbmKGSpApdmoj9ov9dGYXu+pPxNdOhaKd7Lrt4TAksgqOu2kXPvdpmDQvLPS8ag7cAD73+rD+\n2vjJsOp+GDw79F6Vr4Tzo3L2Uydie6fji6IiUuui+WeV0SLTQ17E71sAJ5a2Jmatc8WiRaet6oJU\n+xuieWo9t4TnPpoD5+7DHzweTtsUhjwOidZRezaa27MwSvDKV6YWhP7zJnxmaZjP9vwYvKKA5nnQ\nfAd0rXkP/rKFvC9H89lGRMnmIy+163deUlJCr1692vVekbhQgpYADQ0NquKYY2praxk8eHCmmyEd\npUPXqRaRFu6e9h60w37eh20TNoeJ/wb1hZy4+DG4DrhhHjAcK32OXSu/Tddy+KSqgE5VYD2XhyIj\nL9wPP64IPVjRotStSdbc6/HKyfDB/Z/uZZhbldpOvR3mTG9NpKzm+NCaaLSgd7sp9b5754Rt3+i5\n/KgC3p+qUq+JhkiyYmBYXHvhCHhpAoxtwItPobllsemNhGGKtb2xmhlwM/Cl6lCVEfBLX4pe+BJH\n4+OPP1YPWq5LQIy0toszZpKZeVzakmuWLFlCUVERAwYMyHRTJE3mz59PRUUFxcXFmW6KAGaGu6fl\nFryZOeUN6ThUsKIgbW2TzFB87Dj79u1j2rRp3HnnnZluSiv7w9+3VlZsKT8PhHL09YWwYiC753Tj\n+OvgOEKvG4At+Ci1PlqLluSprE2dg4nTw/bNaNHpCdFfuyWfbYs/G/XAPVUF5y+CPgUh8ftwD6wO\nlxV/MLyxORrp2PzzsO26Y1zqQFEPXOtx2yxdkG51dXWsX7+eioqKDvsM+WJiGyNjHB/VrZIAu3fv\npnPnzpluhqTR+vXrueyyyzLdDOkoCRhfLxIXH330Uaab8CmpniSgPvXQriYMGXyqiq5cCXdFFRCj\n3rOmed3Ie7IB+gHvbGL3fee1vvf468I2f+Y4mnZGUx7OOvI2NW0FXjiFwhm7Qxt/uhL+JWpXQfTH\n8qqmsL1zRdhWVmdkLTL1oCVAAmKkErQE6NKlC126JOC/5gQpKyvT2na5TP+7ihwT7s7JJ5+c6WYc\nEX+mMnoUba/+9PP2/Wg44lrg7C10nfM7+GlI4uyaqJesfjJ5D0S9hXOrPn2AuqhoyLDFqZ8tGBm2\nQ38XffQd0RNheGTbgiitF67Wn2WmkFVxcbHmoOW6BMTIWA1xzHQbRETaK63DN4alcYjjb+M7hEOO\njOKjiGS7WMbIGMfH2PSgxfUXJCJyrFka7w7qL/vsp/goIpKSrhgZ5/gYmwRNREQiCRi+ISIi0i4J\niJHHZboB0j5mdpuZvWVma83stuhnA81spZmtNrNVZjagzevnmtkaMxse7Veb2dVtnn/bzO5ps7/I\nzEYgx8QhzufT0blcbWbvmtnqNq/X+RQROQjFx9yjGClJowQtC5lZP+AmYADwN8CVZlYKPATc6+79\ngUnRfsvr3wf+FmiZFbwMuDB6/mRgF/C1Nh9TDrza4V9GDnk+3f1ad+8fnc9F0T+dzyTIT+M/kQRR\nfMw9ipHyGQmIj0rQslNv4H/cfY+77wNeBv4J+AA4KXpNMdCy8MheoCvQttb+cqKLVbT9NdAdwMzO\nAhrd/cOO/BLS6lDnEwAzM2AUMD/6kc5nruuSxn8iyaL4mHsUI+XTEhAflaBlp7XAxWbWzcwKgOFA\nT+AuYJqZvQ88DNwN4O4bCPMNXwYejY7xBtDPzDoR7iK9BrxtZn0IFy/dSTp2DnU+W1wMbHX3TaDz\nKSJyGIqPuUcxUhJHRUKykLtvMLMfAjXAbmA1sB94DPiuu1eb2cho/xvRe24/4BifmNk64CuErv2H\ngLMJF6r+6GJ1zBzmfLYYAzx5wHt0PnNZzO/sicSV4mPuUYyUz0hAjFQPWpZy97nu/nfufgmwHXgH\n+Kq7V0cvWQgM/JzDvApcAhS6+w5gBfB1wgVrece0XA7mgPO5A3gbwMxOIKwI+vQRHEbnM1doiKNI\nuyk+5h7FSPmUBMRHJWhZysxOjbZnEMZiPwlsNLNLopdcRghKh7McGAesifbfJNxZOt3d16a90XJI\nB5zPEaTuBl4OrHf3D47gMDqfIpJ4io+5RzFSkkZDHLPXwqgSUTNws7t/bGZjgUfNrDPQCIz9nGO8\nBpwVbXH3fWa2FXivA9stB3fg+ayPfn4tqYnPn0fnM1fE/M6eSMwpPuYexUhJSUCMNPc4r6MtIpIs\nZuY2oyFtx/PxBbi7pe2AIiIiGZLOGBnn+KghjiIiIiIiIjGhIY4iInGTgOEbIiIi7ZKAGKkETUQk\nbvIz3QAREZGYSkCM1BBHERERERGRmFAPmohI3Jyg4k0iIiIHlYAYqQRNRCRudGUWERE5uATESA1x\nFBERERERiYkE5KAiIlkmAcM3RERE2iUBMVIJmohI3HTKdANERERiKgExUkMcRUREREREYkI9aCIi\ncZOA4RsiIiLtkoAYqQRNRCRudGUWERE5uATESA1xFBERERERiYkE5KAiIlkmAcM3RERE2iUBMVI9\naCIiIiIiIjGhHjQRkbjJ0N1BMxsIzCQUMd4L3OzuqzLSGBERkYPJQIw81vFRCZqISMx45q7MDwH3\nuvvzZlYR7V+asdaIiIgcIEMx8pjGRw1xFBGRFv8LnBQ9Lga2ZLAtIiIicXFM46O55/5EOxGRbGFm\nzqod6TvggGLc3Y7ws88ElgFOuIH3NXf/c/oaIyIi0n5pjZExjo8a4igiEjcdeGU2sxeAvzrIU/cA\ntwK3unu1mY0E5gLf6LjWiIiIfEEdFCPjFB/VgyYiEiNm5qw+iruDr78Cry9L7c/64Re5Q1jv7kXR\nYwN2uPtJn/M2ERGRY+KoYmQWxUclaCIiMWJmzlvb03fA80q+SAB6A7jd3V82s8HAD9x9QPoaIyIi\n0n5pjZExjo8a4igiEjeZuzKPBR41s85AY7QvIiISH5mJkcc0PipBExERANz9deCrmW6HiIhInBzr\n+KgETUQkbjK0ULWIiEjsJSBGKkETEYkbXZlFREQOLgExUgtVi4iIiIiIxEQCclARkSzTKfeHb4iI\niLRLAmKkEjQRkbjRlVlEROTgEhAjNcRRREREREQkJhKQg4qIZJkEVKgSERFplwTESHPP/S8pIpIt\nzCztF2V3t3QfU0RE5FhLd4yMa3xUgiYiIiIiIhITmoMmIiIiIiISE0rQREREREREYkIJmoiIiIiI\nSEwoQRMREREREYkJJWgiIiIiIiIx8f/iBzBtV2n/qAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10cd29910>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display = pyart.graph.RadarMapDisplay(radar)\n", "fig = plt.figure(figsize = [15,7])\n", "plt.subplot(1,2,1)\n", "display.plot_ppi_map('reflectivity_masked', sweep = 2, resolution = 'i',\n", " mask_outside = False,\n", " cmap = pyart.graph.cm.NWSRef,\n", " vmin = -10, vmax = 64)\n", "plt.subplot(1,2,2)\n", "display.plot_ppi_map('reflectivity', sweep = 2, resolution = 'i',\n", " mask_outside = False,\n", " cmap = pyart.graph.cm.NWSRef,\n", " vmin = -10, vmax = 64)\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "gatefilter = pyart.correct.GateFilter(radar)\n", "gatefilter.exclude_masked('reflectivity_masked')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "corr_vel = pyart.correct.dealias_region_based(\n", " radar, vel_field='velocity', keep_original=False, \n", " gatefilter = gatefilter, nyquist_vel=nyq, centered = True)\n", "radar.add_field('corrected_velocity', corr_vel, replace_existing = True)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAGmCAYAAADrt7ypAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VEXXwH8nlNBCVxAEglJsoPIBio1iQV9RLNhABaNi\nAZSmQXqHRdAA0vQVUQQssWHHAqIUebFRVMQCIkUhtNBL5vvjzJKbZXezCRuyxPk9z31277Q7M3fu\nnDlTxRiDw+FwOBwOh8PhcDhim7j8joDD4XA4HA6Hw+FwOLLHKW8Oh8PhcDgcDofDcQLglDeHw+Fw\nOBwOh8PhOAFwypvD4XA4HA6Hw+FwnAA45c3hcDgcDofD4XA4TgCc8uZwOBwOh8PhcDgcJwBOeXM4\nHA6Hw+FwOByO44yIFBOR+Bz5cee8ORwOh8PhcDgcDkfeIiJxwA3AHcBF6ECaAIeBRcAM4G0TRkFz\nypvD4XA4HA6Hw+Fw5DEiMh/4EpgNfG+M2W/N44HzgeuBS4wxl4UMwylvDofD4XA4HA6Hw5G3iEi8\nX2HLrRunvDkcDofD4XA4HA5HHiMi5cPZG2O2ZhuGU94cDofD4XA4HA6HI28RkTWAQde5VQe2Waty\nwFpjTM3swnC7TTocDofD4XA4HA5HHmOMSbQK2idAK2NMBWNMBeBaa5YtbuTN4XA4HA6Hw+FwOI4T\nIrLCGHNOdmbBKJx30XI4HA5HThGRqPeoGWMk2mE6HA6Hw3G8ibaMzEf5uEFE+gIvo1Mo2wLrI/Ho\npk06HA5HjGGieDkcDofDUZAoIPLxDuBk4C3gTfv/jkg8ummTDofDEUOIiMmIYnhxZO1ZFJGp6Nz6\nf4wx9TzmXYCH0YNC3zfGJEcxGg6Hw+FwHDPRlJGB8vFEwU2bdDgcjn8XLwDjgZf8BiLSHD0YtL4x\n5qCInJRfkXM4HA6Ho6AjInWBnkAimfqYMca0yM6vU94cDocjxsjL+RDGmC9FJDHA+CFghDHmoHWz\nOQ+j4HA4HA5HrikgcwZfByYB/0VnvECESXPKm8PhcDhqA5eJyHBgH9DTGLM0n+PkcDgcDkdB5aAx\nZlJuPDrlzeFwOGKMfOhVLAyUM8ZcKCKNgNeA045/NBwOh8PhCE8BGXl7V0Q6oZuV7PcbGmO2ZufR\nKW8Oh8MRYxyLYPrCXjnkL1SAYIz5n4hkiEgFY0zaMUTF4XA4HI6oU0CUtw5oUnp6zAwRdJw65c3h\ncDgKEE3t5WdIZN7eBloAX4hIHaCoU9wcDofD4cgbjDGJufXrlDeHw+GIMfKyV1FEZqH6XQURWQf0\nB6YCU0VkOXAAuDsPo+BwOBwOR64pCCNvIlIU3SzsMjRJXwCT/RuHhfXrznlzOByO2EFEzP7snUVM\nPCfmOTYOh8PhcAQSTRmZn/JRRJ5HB9FeBAS4CzhkjLkvO79u5M3hcDgcDofD4XA4jh+NjDH1Pfef\niciySDzG5VGEHA6Hw5FLTBQvh8PhcDgKEgVEPh4SkVr+GxE5HTgUiUc38uZwOBwOh8PhcDgcx4/H\ngM9F5A97nwjcE4lHt+bN4XA4YggRMfuiGF4x3Jo3h8PhcBQMoikj81s+ikgxoC46EPiLMZEl7YSc\nNikibUVkqYiki8gGEflARC62dmVFZKqIbBSRnSKySkSSg4QxTUQOikjlAPOB1jxdRLaJyAIRudDa\ndRCRw9Zuh4gsE5Ebw8SziIikisgf9tykpqHcWvdnisjnIrJdRFaLyA1h3Hrjki4iv9t0184u/6KB\niLS372CHiKwTEZ+IFPLYlxeRt0Rkl4isEZE7PHZh8yXgHaTb95iYTXx8IrLFXiM95tU94fivDBHp\nFiasRBGZKyK7ReQnEbk8wL6PiKy1aZ8lIgnWfKXnGYdEZK/nvpeIVBaR2SKy3sahekC4o0TkT5ve\nv0TkKRHJdnRcRO624d3rMQssH+kiclkI/0VF5Hn7nnaKyHcicrXH/kIR+URE0kTkHxF5LfC7CQgv\nZDmO4N03t3m/XTJ7o7z2Q0RkuS0fAwLsmtkwvWm+y2M/TUT2B5QrsXaTg5ST3Ta8S8K/gejjpk06\ncos4+ejk49HxcfLRyccCIx+hYMhHEekMFDfG/GCMWQYUF5GHI/F7wilvItIdeBoYCpwMVAMmANdZ\nJ08DJYAzjDGlgeuBXwPCKAncDPwI3BnwCAPMMsYkACcBX2EPr7UssHZlgWeAmSJSLkyU59tnbCJM\nWbGV0DvAbKAc0BF4WcILG39cSgNXAHuBb0Tk7DB+okVx4FGgAnABcDlZDxqcAOxD31E7YJKInOWx\nD5cvR96BvUobY9aEioiIPAC0Burb6zprhjHmT084CUA9IAN4I0zaZgHfAOWBPkCqiFS0z2pv430R\nUMXmw3j7rLM9z/kS6OR59kj73A/QsheM54GzbLltDFwFhN11yJa93sAKjs7HBd60G2PmhwimMPAn\ncJl9dl/gNRGpYe3LApOBGvZKB14IEZ9IynG4d78L+C86nSAYq63d+0H8AqwPSPN0j50BfAHlygAY\nYx4M8JcAvAV8DiwIEZc8wylvjtzg5GMWnHzEyUecfPRSIOSjP7IFQD7eb4zZ5r+x/ztG5NMYc8Jc\nQBn0w7g5jJvlQOtswrkbWIZWmssD7AYC0z33Z6OVSnn0NPQvPXYlrF3DCOK+Dv34Q9mfA6QHmH0M\nDA7hPktcPObvAq977i8EFgLbgO+Bph67mmhFsRP4BBUo07NLS4j4dANm2/8lgf1ALY/9i8CISPIl\n8B1E8OyFwH2e+3uARSHcDgA+CxNWHVSolvSYfQE8YP+nAj09dk3QRkGxgHDmAveGeEZhW26qh4lH\nVVtGsyvLk9FzQrI8L1T5yEGe/gDcGMKuAbDzWMtxuG8CbWz9ESZ+04EBAWbNgHVh/LwADIkw/Q8B\nfwEn5TYPjyHvzZ4oXoA53mlw1/G/cPLRaxe0/sPJR3DyMWT5yEGeOvmYT/LRPr9AyEe0Po7z3BcC\nVkbi90QbeWuCTlF9K4ybxcAwOyweqleuPfAq2vtRS0QaBHMkIvHoR/6nMWZrgF0htBLcDqzKSSJy\nQBz6seeEN4FLAUSkKvAeWjGUQ3v+3hCRCtbtTDS/yqMC4U5y3xnRFO3dAq3gDxljvD26P6CCPhIM\n2juYJiIrROTBbNyfZcP3syzYs+wUgLtRQRmKs4HfjTG7PWbeuBv0PA4/cehRIcHKWo7z0k4fSUcr\n7veMMe947H4Qkds9941RQTE5yPMMcL6IbBadGtVXsk7bmSAiE0LEoRL6DleGiOZlZL7rSMhNOc4t\nJ4vIJtFpUk+JSIkA+4dtuVoqIjcFC0BEGgGjgFuNMZvzPMZBiFavYgz0LDqOH04+Zo+Tj04++v87\n+XiCykcoMPLxY+AVEblcRK4AXgE+isTjiaa8VQC2GGMywrjpAswAOgMrRecUe+cnV0d7IF43xqSj\nmXd3QBi3isg2dKj8fMA7b/9Ca7cXeBK4zoZzrKwC/hGRx0TnPV+FVgLFcxjORlTYgAqbD4wxHwEY\nYz4FlgLX2nxoCPQ3xhwyxixAhXWOF26KSBJaSY62RqXQ3kov6UBChEG+BpwBVATuB/p7K+UglAJ2\neO53WrNALkGnqaTmICzIGvePgPtEpIaIlAH860UCK8FcYYwZaXRKwv8B7bwVqDHmXGPMK3CkcTQB\n6Gxsl00A84GzjTEnodNQ7sAz1cIY08kY0ynQk4gUQb+facaYX4LY1wf6EXraRrTKcW74CTjXGFMZ\naIHm4VMe+3FALXS6Vz9gmohc5A1ARMoDrwP9jDELj0Ocg+KUN0cucPIxe5x8dPIRnHw8oeUjFBj5\nmIyOCj8EPAh8CjweiccTTXlLAyqKSMh4G2P2GWNGGGMaosLsNeB1ESlrndwFrPB8eK8Dbb29LsCr\nxphyxphKxpgrjDHfeewW2166cmhlftRi79xgjDkI3ABciwqYbjbuf+UwqKpoPoHOv75FdGH5NitU\nLwYqo/PRt5qsO9usy2m8RRfbDgeu8fS+7kLXGXjxT+nJFmPMT8aYTUZZBIwF2tjn9ZbMBbMTQzyv\njDULpD2QaozZ44m/fxH1TtFF/ekh4u4XtlPROf/z0CHvz615Tt9TWGyZm4iW12A8DCwzxizxmB1p\nWBhj/jDGrLX/VwCDsXkYCvtdTUenxXQOYl8LXZPwiG3MBIt3tMpxjjHG/G2M+dn+X4NWgjd77L8z\nxmwzxmQYYz5EhfAR4W97nl8GlhhjUvI6vg5HlHHyMXucfHTy0clHJx9jAmPMYXSku68xpo0xZoo1\ny5YTTXlbhM4VD7mDlRfb4zcCnWNe0xrfDdQW3W1rI5CC9mBd6/Gabe+anTbwENBUstklK1KMMcuN\nMc2MMRWNMdcApwNLsvMXwI3oYmDQntHpVtD6rwRjzChsD6SIeHt8qgcGFg7bY/ss0MoY451C8AtQ\nWDyHDwLnkrOpBEExxgw3mYtm/bvyrATOC/csm842BEwJMZmLqEvbCvdH4DQR8fZMnmufgRWYA40x\nNY0x1a37v4wx6481bUEoAuwOYdcCuNFTji8CxojIuDDhhSzXtmJ+Hu11uzmwAhFdnP0JOsVoRrhI\nR6kcR0IkHWc5qeP6AqcBSbmLTvRwI2+OXODkY/Y4+ejkYyicfAxPzMhHKBjyUUSuB77DTpUUkfNF\nZHZEnk0+LdTL7QV0R3fhaY0OxRcBrkF3yQEd7m0IFEXn//dBe9pKoGsCDqLzs0+2VyW0NyHV+h9I\niMXABFnkik4N+TBMfONtPNYBVxKwcDfAbT3rtgQ6//43oEh2cUEXOdZEd3XaiU4HADgVFUJXWTfF\n0CkxVa39IsBn87AJuj7hpQjfQwubr5eEsJ+FrhkogU7H2A6cGUm+2HdbDq1MGwPrgbvCxOUBVEhU\nQXtWVwIdA9y0RefqR5K2Rfa9FkN7nrYBFaxdObSyFXQtwXI8i8E9YcwlyIJsG2YpdEF2HX+6bXgP\noDtX+dO9AbgpRBzLBJThBUBXIMHaXwNUsv/PsPHsFybNk226Swaxq2rLYo8I8y9sOc7m3Yu1uwZY\nY90W9dgXtvYzgSH2f5y1a4b2pgu6y9484HmP3zY27+PQb2IndkE4ugB8J3DOsdZRx3oBZmcUL7RN\nla9pctdxKztOPgbEBScfnXx08hEKiHy08SkQ8hH41pbp7zxmKyLym98vIZcJbgv8Dx3634juIHWh\ntetjP8QdaOX5ucduEp6dpjzhNULn6JdDd1sKWkGj0wrmB5hVRYfR64fws8ZWRIc9v9WtXW90zr3f\n7ShgKzo14X3gtDB50B44ZN3uss95Aagb4K6x/UjTgH9sXlWzdqeRuZvWp8AU4L8ev+nAxSGe/zlw\nwLrxX+977MuhC+f9cbs9B/kyE9hiw/wJnbeeXZnw2TSmASOD2H8EDIqwfNVAhcse+/wWHrvawM9o\nj98aoGuIMOYCSUHMMwLTbc3jgA9t/HfaMpwU4HcFcEckz0OF6yab/7+hja5CHvtJwCRPejNser3v\n8w5rP8Dae+12esLKUTnO5t03C5JHn3v8TvPY+6+7rV03dPrJbrRXPYWsu6LNRxtJO9Derls9dp9x\ndHnOkg/H68Ipb+46tvLj5KOTj4HxcfLRyccCIR9tfAqEfAS+tr9e5W1ZJH7FOnY4EJFXgR+NMYPy\nOy4Ox78VETGBOwIcC2UAY0yON1pwOByZOPnocMQG0ZSR+SkfRWQqqhj3QkexH0FHYbPbQfaEW/Pm\niCIi0lBETheROBG5Bj2w9e38jpfD8W/HRPFyOBw5x8lHhyN2KSDysQs6TX0/OpV6Jzq9N1sK52Gk\nHLFPZfTcmwro/OoHjTE/hPficDgcDkeBx8lHh8ORZxjd2Kk30Nvu6FvKZN3hNiRu2qTD4XDEECJi\ntkUxvHK4aZMOh8PhKBhEU0bmp3wUkVnoRjyH0XXKZYCxRne8DYubNulwOBwxhps26XA4HA5HcAqI\nfDzLGLMTPfvvQyCR0GcXZqFAKm8ikigiGf7DSkXkAxGJKENEZI2IXJ6X8TmGcNJFJDE6sQr7nOIi\n8q6IbLeLtB0xjohcLCKrbRm5/jg/u7p9rhvdcThOYERkoIhMPx7h56TeEJFmIpLjQ7JzEp9jCKOd\niHwcrThl86x8q+cduUNEhorIZhHZkA/PfkJEnjvez3VETGERKYIqb+8aPcQ9Ip0yZpQ3qzTtsZXS\nJhGZLiKloxG2MeY/xphIK+gYUciPxuhhmWsARGSaiAzJo0e1Qc9HKW+MuS2PnnGEYMqtiHQQkS/D\n+XNkYTAwzpaRyA55jBLGmD/tc4/puxGReSJyb7Tildfk5TfoRt5iGxFpKyJLrbzaYDsIL46BeK0R\nkRbHEEReF5kj4Uer3ohWfHIdgDEzjDEt/fdWlp12rOGG4LjW88GU2xOtns5PRKQ6evbiGcaYKsf7\n+caYEcaY+48ljGgNPkSbAiIfp6BHQ5QC5tvBmYg20oyll2GAVsaYBOBc9CDDvvkbpX8tNYBfjDEZ\nx/m5URu5EZEcbcaTU/cxSHX0INajEMtxjk9uCFuXFoB3FDFOeYtdRKQ78DQwFO3kqgZMQHcjzGlY\nR5Vpu3A9txiiWI+Go4B8j3mVV3kVbsh6/jhyrJ10OWp3HuP3kN9UB9KMMWnBLE+wbyhkmc6Pd1QQ\n5KMxZpwxpqox5hrb3l4LNPfbi0j7cJ5j4gL+IOthj6PIeqhlL+BXdCvNlcANHrs4YDSwGT1wsRN6\nOKH/ZPl5wL32/+noAZpbrPuXgTKh4uExvwA98FQ8ZjcCP3ji4I/jFuBVoJy1SwyITxVgNnrg5Grg\nvoC09PakdSlQ1dpl2Ph3RA9M3I8ekjgb6AmkBsR5HJASIr/PtPmyDT3c8jprPsiG6z+Q8Z4gfhvb\neO1AD7oc47G7BFhow/0TaG/Nr0UPftxhzQd4/PxJ5iGXO4EL0YNd/YesbrXu4u17XmufOwkoZu2a\noQdQPm7f04toZZPdO0my4c2z4b9s3W4DlgAnh8i/cOVxLdDA/m9nn3Omvb8XeMuTj4vsszYA49Ez\nPkAbg6MDnjmbIIeeomX+MHqI6E6gqE3PUGCBNT8NuAhdFLvdpq2JJ4x5wBDr3l+mKgIz7DtbAtQI\nkRf+vPR+b4OBr2x8PgYqWLtiwfIYGGbf9177/HGeMv8w+p38RuaBqXEBcfd/3x1sGp6y4f9q030P\nWs7+xh5amoMy1d362wB0sHaB3+A7UawLzZYoXoA53vV5Qb3QBeXpwM1h3MSjB+Cut9fTQNGAMuWv\np15CD/lNBabbby3JPud5W+b+st+mt8zfjzbi/fXP+da/vx5IB3patxeSWSd/DzT1hFMT+MKGMwet\ng6aHSFdg3F8EygLvoQdcb0UPua4aSfgcXW/c40nTb0DHgGevCxGvScCTAWbvAN3s/yrAGzaOvwNd\nPO4GetOLKuArbV7NRUdM/HbV0N0n/0Hrr/HWvAPwpf0/36Zpl03HreiB0q084RSx/s8NkZ770fou\nzabjFGseWM8XCeI32b6jnehh2S2seSFCtyvGonXjDmt+iTW/mqxtge9RmRKsnj4D+MTG+WfgFk+c\nptl39IHNlxYRvJPA7yFkmyMg/SHLI9ooXuZx+wmwxHP/JXC9/R9UvqOyNQ04x+PvZPTg6woBcbnC\nvqvDNq+mkim/vO0OQQcq1qBy5kWgdMA30sG+ozTgQaARsAwtp+PD1EUDOfp7u9s+ezPQ2+M2MI9H\nW/Ng7bMOZMrZLWj9dORZIb7veeSgjUH4MvWvkI94Du8+yi6/I+eJ5B/A5fb/qbZg9vfYtwEq2/+3\nopVAJXv/IPATUBXdPGau/WD8hWYukGT/nw5cjlagFVHB8nRAPI5S3qzdr8AVnvvXgcft/0dRAVnF\nhj0ZmBmiEM8HnkErgnPRiqa5tXvMpr22va+PTl/EhnGa/f8CMNgTl8o2T8rY+8JoRXB+kHQUsWnp\nZd01tx9lHWs/AHgpzLtaBLSz/0sAF9j/NWw4t6HCojxWQAFNgbPt/3po5dDa4y+wQd4eKxA9Zk+j\n5+yURYeZZwPDrV0z4CAwwqavWITvZBpQ3Lp/wIZZDK1QzwcSQuRBuPL4ItDd/n8WFcQP2vuXgEft\n/wZohRln8+BHj10jtOHn3xG2IiogTgrz/Xg7P+ahwuBMG34ltKJvZ+9vR4VbOY/7X9DGVmlUYK1G\nBW0hm6apIZ7tz0tvJb0aqGXzci4wwtqFzGM836kn7AxU+SuLNoqzPCvI993BloP2NvwhaGNmvC0D\nV6JltEQOytRAmwfX2Hfg/8ayfINRrAvN5ihexLBwOtEutEF70Fv+grgZjNY7Fe21wF9OCF5PDUQb\nyP6GYzHgLbTBWxw4Cfgaq8wAt9gy/X/2/nSguv0fWA9URRtXV9v7K+y9vzNlEdp5UQS41H4bQev+\nEHEvj3ZiFrPfz2vYzqnswg/8loH/ADXt/8vst3a+59mhlLdLgT899+XQRnNltK77Bm0cF0brt9+A\nq6zbgWQ2buug9fjl9nt/DK3HCtv7H4Ax9p3EAxdZfx3wyCo8ctrePwa84rlvje30DZKWFmij+jy0\nfTAO+MJjH659UhdtaPvlUnUy2wuB7Yp6ZLYr2tk8i0M7qjaS2dlwVFuAgHoaKIkepdDehnGeTYO/\nw3Ia2mHYxN4Xj+CdBH4PQdscQfIgZHm0z91r3RRB20frbPyL2zLjl4fh5PsEYKTnmY8SovMObfes\n89wncnS7IwktZ4k2Lm9w9Dcy0ZaHK1GF+i20bqli03FZiOcP4GjlbQpafuujneR1Pd9qqHZdoMzt\ngNYFnew7L+Z9Vojvex4RtjHIvkz9K+QjJ4jytoZMzT7DFs5wAvI7MkeLPidrL92VAYXmqEahx+0N\nwLee+3CV4xDgefs/Af2gq9n7H8kqNE9BK6A4byFGe+8OASU9bocDL9j/q/zpCvL8QOVtSID9h9hR\nPKAVsCJEOJcCGwPMZmJHwwjoQQni/wvrpmKA+RPAGxG+7xTgKfs/y0duzTqQVSCKzW+vUGwC/G7/\nN0MrtaIe+0jeSaLH/h60oVUvF+X3OzKFTRK2MrdxSAJmecr5eSHC6Aq8GRD/K+z/zsB7YZ4f2Gib\nCwz03N8FLA7ws5DMkdG5wBMeu9FkHfluRYiKJPD92bC8PXoPAR9ml8fW371BynyzUM/y+PMqb794\n7OpZ9yd5zLaggiuSMrUn4Fl/A41DfYPRuHDKW8xeaEN3YzZufsUqS/b+KuAPT5kKrKcGAvM895XQ\nRlUxj9kdwOf2/8d4RioCnh1YDyRzdOP7I7T3vTraACvusZtB+JG3LHEP4uY8MmdKhA0/2LccENZb\nwCOeZ4dS3gQdSbjU3t8PfGr/XwCsDXD/BJmNxIGe+PQjq5IlqJLc1NYL/wSLK9krb1XQtk0pe5+K\nHRUNEtbzZFUMSqIyK6hyHuC3Flo/XU7AqBw6chG0XREknK3Y+pkgbQEC6mm0s3Z+gJsp2M53VFGZ\n5rGL5J3MC7AP2uaIIC1HyqO9n48qdxei39ErQEu0AzuoQm39eeV7lvijo1VtwnwzwZS3RI/ZZ9jO\nXXtfh6PbKad47LeQdRQqFdvpG+T53vLtD6uKx/5r4NZweUzo9lngO8xSVgL9kYM2RgRlKs/kI9pG\nn4sqlyvIrIPKoyOBv6CzCMrmpCzm5iKM8hZra95aG2NKowW+BdDQbykid4vIdyKyTUS2AeegPQ+g\njXLvTlR/hnqIiFQSkVdE5C8R2YEOzVeIMI4zgZtEpChwE/CNMcb/3ETgLU/8fkSVtEoBYVRBK5Pd\nAfH1L2Y9Fe2Fyg0vAnfa/3eiaQtGFbLmF6jwqxrhc+5FK5ifRGSJiFxrzU9Fp0AchYhcICJzReQf\nEdmOjsBEmu+gvc8lgG88efwhmWUAYLMx5oDnPpHs34k3H6ZjK3QRWS8ivlBz0kOUR3965gOXikhl\ntEfpdeBiEamBjtp8b8OoIyLvichGWxaHBeTJS0T2PkPhTVsVjv4u1pJZ7kAFv599aGPFe18qB8/e\n5Pm/1+M3uzw2QcLK6S5z3nTsBTDGbA4Sn0jKVJrJuvZzDznLh1yREcXLEVXSgIrZrNupgn5bfrz1\nOxxdT4EqCX5qoCMDGz3lcjJaXiFnMqIGcIs/HBvWxeioVBVgmzFmr8f92mCBhIq7iJQQkSl2o5Qd\naAOwjF1jm6PwReQaEVksImk2nv8hAhlhtJXzCqrgArRFlUTQ9FcJSP8T6FS3QLLUkTbcdahcPBVt\nrOb4kzLGbEA7rNqISFl09HZGCOen4Mkj205IIwLZbIz5Fe0AHAj8LSKzROQUa12NEGVGRHqKyI+i\nu0tvQ6fsVgzm1vs4z/8awAUBedyWTDlrOLp8Z/dOvO4hdJsjMC3hyiP2vhnagf2FvZqiI73zPOGE\nlO/GmK+BvaI7oJ6BjnzndPMYr0zL8s7RMliYrO2UQJkWeJ9b2eyVZxHlsYfc7P4aaRsjuzKVl/Lx\nIDrl+mxUye8kImeiM9U+McbUQRXuXrlIf9SIJeXtCMaY+eg0Jx+AbfQ+iw7RljfGlEM1Yv8HuRHt\n5fPj/R/IcHRK5TnGmDLoiERE+WCM+Qn9yK5BC9JMj/WfaG9rOc9VwhizMSCYDUB5EfF+bNXRKXKg\nH0StSKITxOwdoL6InIOuMQslIDYA1QI2sajB0RVm8Acb86sxpq0x5iT0HaWKSAkb99NDeJuJTk87\n1RhTFm2M+PM9WFoCzbagldRZnvwta5X9UH4ieSdH/BhjDhljBtuP9iK0J+juwIhlVx6tEN0DdEGn\nvKSjFWZHdF69n0moQlnLlsU+ZC2LLwOtReRcdP7320HyKRze/FiPvmMvNcgsd+H8Ro1s8jjUM73m\n/k6PEh6zyrmMTiRlKhx5kkf+gKN1OaLKInT06cYwbjagHUd+qlszP4GvJfBVrbPPqOApl2WMMfU8\n9qFkRLA6cHpAHZhg9BDYjUA5W3f7qREkjHDh90AbfI1tHdYUrQclJ+GLSDw6XWwUus64HLpGKtKN\nP2ahylENdCr6G9b8T3TU05v+0saYVkHCyFJHWvlYDZWL64Dqx7Axg79j9RZgYZB2gZ8sZUdESqJK\nQ6h6OgsRm+O4AAAgAElEQVTGmFnGmEvJzGeftQpaZkTkUnRK5S227iuHrj/y53sksvlPVM4FlrFO\nIfxk906OqrpCtDmKB4lbuPIIqqw1J1NZ8ytzTe3/SNqbkPk+7wJeD9IZkx3e9AWrLw6RVdHJSXiR\nmB/tMHQeRxr2LnIml8PFLdsylVfy0Rizyd/BbozZReaSrOvR9479vSGb9IVFROJE5NZsnC0IZRGT\nypslBWgsIhegUwcM2tiKE5F70J4QP68Bj4hIVREpR3iNuBTaANwpIlXRiisnzER7ty5FR1T8TAaG\ni24Ni4icJEHOYbEjdQuBESISLyL10Wl1L1sn/wWGiEgtUeqLSPkg8fgb3YTCG/ZeVGjNBL42xoRS\nxhajysXjIlJERJqhjehXsk8+iMidIuLvBd6BvpvD9rlXiMgtIlJYRCpYxQM037cZYw6ISGNU+fV/\nO5vJ3IzFzybgVNEzMLA9ns8BKf5n2/d9VZioRvROPOlqJiL1rIBOR3tgDgdxml15BBUEne0vqKDw\n3oPmSTqwx/bgPeQNwL6/pegIXKoxZn+YtAZNkuf/B0AdEbnDvpvbUIXwvRDuj3W3tKD+RaR5mDz+\nm9DKP3BkBG09cJeIFBKRpOz8hAkrN2XKy1HfoKNgY4zZAfQHJohIa9vTX8SOGvkbyrOAviJSUUQq\nWvfhRs2zfCu2YT8HeEpEEqyQP11ELrNO/gv0FJEGVkbU8tdxHP0NvQxcJyJX2e+lmK3nqhpj1qL1\nyyCbhktQOZATSqEdIDusnBrgSUdOwi9qry1Ahohcg043jQjb2NqC5s1HRg++Bd0EIV1EHhc9v7SQ\niJwjIg2DBPM6cK2ItLBypwc6GrAQ3ehpIzDSvvNiInJRiOgEq8feQtc4P4LW56GYBdwjIudahXY4\nOt095GwiP6IzOVpYf/tt3P11a6h2RSlUUdgiIkVFpD+6HsnPJiAxoKM3MH3vobLlTvuei4hIIyvT\n4GhZkN07OUp2hGhzBBs4CVkeLQvRtYGN0M1KfsSO8qAzZiAy+f4yOvuqHeHfZyTMArqJSKJop/5w\ndPpuTkZ5Q8nriOV4mDwO1j4LxvfAZSJSTUTKoKOp4eITLm7vE75MHRdEJBFdl/81uubRr1D/zdGz\n6nKEfb/J2bjpHMouZpU3Y8wWVLtNth/YGLTXcxP6IX3lcf4cOhXrB1RYvEForX4QWonuQHciCuc2\nGLPQXpvPjDFbPeZj0aHzOSKy08a1sTdJnv93oD0tG9Ddq/obYz63dk+hyugcG8fn0MWggWE8D5wl\nOqT8psf8RTR/QjYWjB4EeB06grgZ3TzlLmPML57nhMuTlsAKEUlHN3y43Riz3wqY/6BCLw2dJ17f\n+nkYGGzzph+686M/PnvQKYMLbHoao+sYVwKbRMQ/tJ6MridZLDol4hO0l+1IUAHxzMk7Ae0peh3N\n9x9RheuofIygPIIqaaXIFAiB96A7hLZF13k+iyrPgXF6EV23lZuDZL2jilvRhlMPVCj1RHdA2xrM\nPcHLQE565EOFVYnQeTwW7T3fKiIpYZ51P9rpsgU4i6y9UzmNd07LlJdQ3+Ax40beYhdjzFPoxg59\n0Wk/f6L121vWyVBUDi2z11JrdiSIwCCDmN2NKjM/omuQXsf2ZBtjUtH6ciZad7yJbjgBuplIX1sm\nu9sOoNboToP+uPYgU/a3RRuuW1El09+zHDL5Afcp6MYLW9CG8YcBbrIL39g0paOKzWvW7R3oTJJw\nzw5kJrrc4siMGNtAaoWuffodlXfPkqmgHMl7Y8wqdDRlvHV3LbpO7JAx5jAqM2uhebgO3cgiSxiW\ngcCL9h20sWHvQ99Tov0NijHmM1Q+voG2D2qim0tFQjz6/jejimZFMhvQodoVH6NrIH9B12PvJev0\nen8HdZqILLX/s9TTdnTiKhvP9fbZI9DyCwH5k5N34iFomyNIHoQtj7at8Q2w0hhzyBovBNbYNmdE\n8t12wn8LZBhjAmV/INnJo6moDJyP5od/1k4o95E8w2seKItDEapd522fbRUdUAk2Ovop2q5bhnZ2\nvBvkeRG1MWx9EK5M5VoeLgCe9FyhsIr0G+h6wvSAtEZLvH4iOm25moiU91+RePTvZOcoIIhINXRx\nciVbqTpOYESntbxsjKmR33FxHB9ExGzI3lnEVAGMMcc6kupwOI4BEemH7vZ41FR8x4mHiDwPrDfG\n9M/vuPzbiKaMDCYf7cj7e+hGaynW7Gd087RNomtJ5xpjjmkkUETWEEQJNMbUzM7viXRAoCMbRBfR\n90B3NnSK2wmOrUC6or2kDofD4TgBsb3pSegaKccJjp1OdxM6eugoQNgpws8DP/oVN8ts9OgCn/3N\n6R4ER2GMScyt35idNunIGaILm3ei2wQHzvN2nGCI7m60DZ1mGG4KoaMA4qZNOhwFAxG5H52K+GEE\nU+wcMY6IDEEPXh9l13U68oE8lI8Xo9Onm4vuOPqdiFwNjASuFJFf0OnZI481DSJSUkT6ichz9r62\niES07thNm3Q4HI4YQkRMbvZgDkU13LRJh8PhcBQMoikj81M+ishr6BrMu40xZ9tBmIXGmHOz8epG\n3hwOh8PhcDgcDofjOHK6McaHHsruP9cxImJmzZuIuCFAh8NxwhLN3jtXGTq8OPnocDhOdJyMPIr9\n4jmvUEROR4/5yJaYUd4A3BTOvGXFihWcfvrpFC8e7GzL48/wqlUpVrcuAGbuXEBPQfTzaa9kdk6s\nQZkH/gCgzJO6sWtbT9FeG6+/M0bqcRk1eulRS2uqVNFwN2TuSdR3j/6mWLdd/0/dvt8arp2jdoNa\n6U60A3rrmZv7BmolsRcoBDz1dDLjb/yvuh3cGoA9U6cCenAMQPM8LMd79uxh27ZtVK1aNc+e4cg5\nWY9BOnZcTegIxMnHvGX79u1s2bKFWrVCnX/uOBHYsGEDZcqUoWTJkvkdFYcHJyODMhA9quNUEZmJ\nrrfrEInHmFnzJiImVuJSULn55psZPXo0NWtmuwtp1JE3hK/aZN5/YZWrxhs20PGr2vwRv1otftCf\nMTOaE3eZHsnWrYUPqsIkK1NNL1W+So30cXcfGDwugbPS9RiO5/vrofcfttCNgEY3g55T7UP9R5b7\nlb9T0GXkdtnpxjh489FH+V/NHTzWdRpnjwG2wrJhUP8wkAxLR+tc40TgN/TkygsWA0WA2fD5IGjx\nK1z3xnUAXJl+FgBdhhzz2lYAFi5cyKRJk5g+PTfHvjnyChGJWq+iiER1FXwN3Jq3Ex0nH/OeL7/8\nktTUVMaOHZvfUXEcA0lJSbRv356mTZvmd1QcHmJVRua3fBSRiuhZmAIs9p83mK2/WBEITjjlPStW\nrKBWrVoUK1Yse8fHgPyg38G3dhPdBqn6e88rnQDYdNZ6Piz7Nl2KZp5DOfcfHXnr+Nu57Jwxg/vQ\nE2VXAG1XWkf2d+CtR7yx/cK+AKR0HMpXSZnml/jgo2T4oV69I2a3Ll8OQJ3uRQA4mHAQgNRBap+G\nnuwJcLr93Q8suqoHk98bQ0ZRaO27jncvfZc3L4KbtkHtMbVZPXi19p0sgqETK9D3f2mq1Rl4qTZs\n75vMOUN1lK9Fn8w4mqE5L+979uxh69atnHrqqTn268g7oi2Y1kQjIEsiTnk70XHyMe9xI28FAzfy\nFpvEqoxMJF83LBH0yIlL0MHEL40xb0XkN1YEghNOec+NN95ISkoKNWpE97xnGWHLfQtr4NcNZ9vf\nS/RnXgtoNgNohc5BBF4rBWcA9e1R9wMfg4FDgbvhUHU1m4+Odv2fDe5PoCJQaQoMe0DNzrF2bfyK\nWbIqZqf8fSobF+mQ2zTrdtsAHbnbWVrvp13wJv+7ZDUVrXK49Gxo1asyU0ZuoqUN9y+g1puw8ia9\nXwX8WKECb0w4nbG3L+F/zZtTaO5c7gAq7YL1paDqLvikFPR/tinTO37BYaDuFJj5APw6OvlI/lXu\nqYrd/RGU/8WLFzN+/HhmzJiRrVvH8SPagumPaARkqYlT3k50nHzMe7744gvefvttnn766fyOiuMY\nuO+++2jXrh3NmzfP76g4PMSqjMxP+Sgik9CxglnoyNutwO/GmIez9RsrAsEJp7xn+fLl1K5dOyoj\nb6Ps/OXk4ZlmK3urkvU50ADYBZQDGq6DYdWgTx/gXNhwK1R5DdWI7OjcoKuLMmDJAdgJI1tNpNcT\nD3PoCSj8N8yvpG4Wlp4IQK+OD+P7WEfUetjRtMIjgAcB/4wXz7q4Eo9pD9xH5XdzWSo6Tg56ihrA\nQvt7Gjx7t/6dN6YtM/fP5Jp9N3DFlzvo0V5HBvkNZg6BJsCpwPiWLene4GNIgqEXVqBvrzQWPAab\ngF+B5FSgIdzTsxOlmsUx/uTxPPV8S/rV+4rdh3ez/GlYZB9/j/3dCpwc4lvYu3cvaWlpbuQtxohV\nwQRHCycRmQpcC/xjjKlnzZ5Eu1UOoDOC7zHG7IhiNBzHgJOPec+2bdvYunUrp59+evaOHTHLhg0b\nKF26NKVKlcrvqDg8xKqMzGfl7WfgLGNMhr2PQw8HPyNbv7EiEJxwyntat27NhAkTct3wf14Ef3V4\nux0poztwCIaOTab4XuhxwMdXw2AJOjp2dzrwBnzeAVq8ButvhWZ9a7O6jK5xq5xWmR4l21Oln492\nr9kw/dvoWAUs5Y4XAPg66UtmVbML2LrpT5/pOoJVabGOrlWZMYNVVarQ5+7MjUpS7HKzrt/ob5EZ\nOjp3TuPzAfiu+RL6vZJMXAbU6eYjHm3FAhR7T39ntIJ2A4Gr4eCFUORr4HtgJ7z0GGxp2ZLukz6G\nBOAdoCG8eR7ctB1YAcO/SqZ3I59qtPEw4KdkzurmIxG4YCAMHAgDR8DKJzTfACq9o7/m+szvYsmS\nJaSkpDBz5szgL8mRL0RbMP0WjYAsp3OU8nYpWhJf8ihvVwKfGWMyRGQk6qdXFKPhOAacfMx75s6d\ny/vvv8/o0aPzOyqOY6Bjx47cdtttXH755fkdFYeHWJWRgfLxeCIi7wGdjdFZoCKSCDxjjMn2oG6n\nvP2LWL58OXXq1CE+Pj5iP4vtCJt/2dmZHrvveifTbd9THCx5EP4PhndNpPfMNbp5B8ASONQJ+j+T\nTLHOOjWwsbU6zf7W6Qd7hsBcdMfHgVfBwP0weHwye0qom5G3qt/tFaHsLOvRjtittxGqavc7+a22\n/p6+PTOeA15QBa9RNw2n1Qo1H9SgKAN+PcBKOz1zk3U//+lkKqRBqaE+kpbBs/VVj+zVsySjRu+m\nUyrsaQNPAw8DO4H3gE4DgavhswuhOdD7rGGMfLkPXR/uy52Lh9LwV2AtZFyuwxufAaNHX03dOWfT\nas4YWn0L+xpAsUkw9SF4ZcRVzDlrDimtXziSlo57bnMjbzFItAXTr9EIyFKLo4WTFRLv+pW3ALsb\ngZuNMXdGMRqOY8DJx7zHjbwVDDZu3EhCQoIbeYsxYlVGBpOPxwsRmY9uVL4EXfPWGPgf2qw0xpjr\nQ/qNFYHghFPec9111zFlyhSq2J0eQzGxa1c61db5h4s6Q5PNwCzwPVePgxs2UKp5c7p2TmV/M3gg\npQMft/iU9rc/xLOtxgDQs/z9NO/lY369emw7fDsjJ/ZR7e8P2GA7NfcDNRcDr8HGp9TsJ/t8/8nx\nzezo3rzHdKbjDuC8EdbyCv1Zbffnr21HyAasVkXtLquoAbx8qj7g5Dv/BqDkSB/tnwPaWQdfwYir\n4Il9wGgY1hf6zIIRd0AlG9c6wKpeyfR8/Bn2fLmbyosq89bITSwA6gGlgSazYOcdUDoFJnSFPRdd\nxOEVd/J10pe02FmcLg9N5c9GUP13dCeWisAX8OIT0P5XSOnVhl2NT+ezuB+46rk/2NX5Blp08XF5\nOnAY/iyrm3H2r16dey69lC4vvxz2PTqOH7EqmCBXytu7wCxjjBvejRGcfMx7Pv30U+bMmcOoUaPy\nOyr5yqj69QHIsEsSAGp77G+O8XL44IMPcvPNN3PllVfmd1QcHmJVRuaz8tYsiLFB178ZY8wXIf3G\nikBwwinvWbZsGWeccQZFixY9yu7pq68GIP4MnWrbafhYOAgry+puPCW7A4/B9lPgmmebcsP4rST3\n0sp9u1WCJiYm0jtpDRSBiTuS+Wekj642/Jl2e/99333PIx9/TOFxMPARtRv4Jrx9kz4nDnhrTDL3\n9FDla0bdunRbtYpHx+luI1P+mgJDYVKfx9g6YwYXb9hAsz4wY5iG5S9Bd27NTNuT5fX3gL33z8qs\nCuwG/HtS2b1IOHVNBQC27k/TONdVBe4lVJkDmO67jinJ77IUWAd0mgc3vn0H01JmUSYDJsRBWaA+\n8BXwUArQALZcBiWAEovh7QthtQ3zSuCUgbB0INz/SmPa/9icPSWg9E7YXRKMwPm9fbQcCj32PUSN\nP3bSecYMJtn4POy+nXwl2oJpdTQCstQmcuVNRPoADYwxN0cxCo5jxMnHvGfr1q1s376d0047LXvH\nOWTsgF48Oig6x8XkFWNvuQWAg/Zs1P0L7WLwChUgLe2Iuz4xXg7dyFtsEqsyMph8jBVEZJExpkkw\nu5g6pNuRt/Tq1YupU6dSuXLlI2aj6teniGckrtOFY+FkeLmkDgydvQB4B5qffDU3D0qk7PrJjGq9\nm8e7LWeoVdquGdKERbUWMebZmvgK3YZv23PIKB8DV8PGD1Xp2p/xN891ncZMoEzPkux6ZDdTmjen\nR9+5rLNT06vZdWxjdkE8UOlxGLe+Ic82bMh560pjCsXpMNer8FDzJ3VuouW9JD0n4OOKer7byvKZ\n2tsbCQkAFLdnwZWx5gn2KgFUAEr8DXwK/J7GuBbwwiuN+c4soZj//ICFQGmY+FEyY5J9VPkvOrh9\nLtAE3to+i1kpMDQOto1KZksh+M1Ayd2wv6uP+F5Q8SegOjQY3YA1bU7jsTtTafBDA+4+71t+aa3B\n7Su9j677fHAtNP20KbfsvpDODXycsuxUptX/i37136PT7W0ZxwuU4x7aPwGdZmrdY9rGtmB1RMax\nvMWv7ZVTRKQD8B/ALRZx/OtYunQpc+fOZcSIEdk7DkNK69bs/OgjAMr06haNqB0XDqxZA8C+VasA\nnU0CEJ+WRkL+RClXDBkyhNatW9OyZcvsHTtOWP4lLZ2Quwu6kbd/ET/88ANnnnkm4+wWuhlWmWm1\nfDm/AWuTkuhy2lRm9oXK6LKy1cC8Yckkb/Px8mg9SbB2dw1v+MnJZPTyUXxQMus+LMI/t/zOzAMz\nGVoomVK71E2fPc/Qs2pnBjXx0XtpMpd19nFd9yJ889RBPrWV69j/+xmAtX3WwjggDu5YlcTgqVOp\nPRU4FaZepeG1BYqlA3vg10pQ6zkw94Oss4lcrz81Zmceh/DocD3OcZdV4irbdHecCouSdIQMoLj9\n7T2mLQAzK89kbzv4GP2CzgcqTYNvO8BrE+06uod93LwOMqpB3H54Jx7OBmpt07i8fw5cBRRZBV/V\nVUVxtk3HUhvuIXTHo0bvw/DlyfQ+5KNt8bZM7zGTO5OSmNVpKuevbsx3hZcwdnEPHr17DAM+S6ZQ\nNx/99wCjgIPAWfCVfyoocLH7no4b0e5V/CUaAVnqkP3Im4hcDYwBmkZ6SKjj+OHkY96TlpbGjh07\ncjXyltK6ddb7c36gc/Hbif/5ryNmbpr78WHjxo2UKlWKhIQTSeUs+MSqjAwmH2MFEfnOGHN+ULtY\nEQhOOOU9TUQYDPxw0UUAXLlwIZ81b05cQgLxZ53JwzV97HgAnm/Zkl/MOfzUdClflP2CjzrpasrN\nz3ThtM0lqDbIxx9AiUcfZcukSRSuWJFqdqrFX4mJ7O5xG8M2+KCRnot2EF3y5h/m9etZ+yro9MS+\nv6fBYeBL4GcYOqoCfeek6f1D6vbzeOg5qAGPDvgWgPb+oYXd+jPq8YYAPP7oUgAe2PbAkXT3fmQK\nADXsZidN0psCcMN4HZ2b5tPvdsJ/lvG/evWovHw5k4c0YVEJ3cR/WA/oswaYCNwJzISUosnE781g\nV+k4Lunno8l0+PUuVcy6/wnNX7uaues/YvzT0GUb3HN/J0alTmAd8EGFCvRdnQbvw/y7YCNw2xy7\n7u596PJHF8ZvH8/yvjqkvwlIXAYpg9tQMTWVYcD9LVvS/bGP4TCMaAlPdIePnoKr/wdrG0ENHYDk\nmY8epNMk/+RKR14RbcG0KhoBWepy1G6Ts4Cm6OD638AA4AmgKHpSBcCiSM6acRwfnHzMez788EO+\n+uorhg0bliN/o4b3oujXP1Gsbl22VYij2NzvOWSnGRa7+nK6DNHpkk+1aHHET/fPP49exB1Z6Ny5\nM9deey3XXHNNfkfF4SFWZWSgfIwlnPL2L0dsuZwRB+0GAM0h5Zk2xKem8tvEnhTNKESp0a9y85o1\n1P0UWAhPL72ewhUrEpeQwOGEYnyS8CMXHz6LSbteYW27tfT5XEeeTvpCN2w9nJZGxv79FL7yUjoP\n8nHtiKuY8/gcfiukO0vKUOiXkEy5R310/0zjtfRyaJgCXAZdH+7LlYuHUg+YNSyZRn18tFgJT54N\n28cnM+xsuwGJ3WUyJSWZz0r+yLt3v6sG/ianf9cTYHjPRAAetNNByn+s5r/a2RQzgSHdi/DqUwdp\ncyiOwZXKAdB3eBrcB28Wgg0PPkjnkZPhY3jjNvhv/xv48O634RQY17EdLWfMIAFYCzR50sbjfnjl\nNOjaqzKb9m+iacWm3PB1GbpdOpuUx+AW4PU2bWidmkrNLXDVc1fRMOF8hpf2UaJVSfb8tJsu33Xh\nyc7jWQGkTkxmZFsfQ8tC6W7deCT9aUa+NpGiTd4h6eOPmTw8mX0TK1Hx7r9pOdzHEmDoB/VZ+J9l\nzHjwQQC2TJ7MAPd95RnRFkw/Ze8sYs4kdoWTIzKcfMx70tLS2LlzJzVr1ozI/aQnepFuB3d+KLaO\nc/dV4wMWAzCv97wj7iY//ngWfxkHDrCvfDG694/tNXAnKps2baJkyZJu5C3GiFUZGcvy0Slv/1Kk\nr5bHocP03LKOwJIhsLwfzO2bzNVDfUwfm8yQ9T5oDZPefoy/n3ySsm3asHf5cuITEync6Dx2lYLi\ne+G6QT6qA/uA/7ZsyZbrzqPstM/Yt2oV8YmJ3Ll8OW8/+ijvVP6JOWlzeM/uLNmqj/4eGgaFv4XU\nBtBmFeyvCxMHJNOtm4/DZXV64n/mQVozsHuM8Ixdy9al3VSYD/yftThZfwYtUCVyWYbuPdRoyOUc\n6qvTJPueqwrfwHt1t8mihccB0MAqc3ajSn62v5uBG14C7KSxZXZ6aP35MHRxMr0e1/DSgXJDgTvh\n1US47QngFJjw26PUGjuWlt3hvaeg1QhUc/0Tdj4GpefB8MXJVOnlo8MU6HU4mZFVfTzZGnp3L0Ld\nUnVpVfla6jzsI+kJmDRCBxYPAmN7Vabf3tvYOnYsr1WpwlMbNlAEWAXcBpRNgf1dIX4fDB2nZ+6V\nGOBjTtc7ADg3RYcdy/ZPjvmF8ycisSqYIH+Ek4icDVyG7kNkgDXAl8aYlWG8OULg5GPe8/7777N4\n8WKGDBkS1p3MFSbOUbnjV94KH+IoZazeAN0LqONv51K42qlUHenjj/7JGIEiB6HTMFcP5wWPPPII\nLVu25Nprr83vqDg8xKqMzE/lTURKAXuNMYdFpC46EPihMeagta9njFke1G+sCAQnnKJH32f0bN1K\nXXy8Nfpq5j70EQ1GN+Dby76FHTDiBtgxMZmRW3y81x9aHYa9hVQ3+hZ4IgXGvNOc7Tc0pux2WFji\nV97Y8Aa1S9ZmxdDVxL8Pv14LL6NKVpwd3dm9YAGH09PpvWoNAE/Fw6NAoV6wdSSMH5NMsR4+kufA\n8I6J9B62hrXtdNf81W3aUC01lZu3aRrGjFPhuPkkva/8uY7wdb0/VQ0u1J+3y8ANz8DbneE3u5ZP\n5s4FoPs/NkP8i9o+0Z+hKzXsElYZO1B6Ij8PXsK086fx5BMX8djVC+Ei+P4KeOjZpszsqLu11pwD\n5etUoO8DDTmwqDWFdj5MG6B3UhKpZadTt1Rdbp+wkb73pkEheEaS6ZzgY+sTmreN0M1SSu2AfWWg\nmA+Gm2R6N/BBRVjfAMZPTOaeh300W3YqG6v8Re2U2qx+ZDXjTobto5Pp38rHijN0pO9KoOgKoDLs\nrAilDwMLgPNhXYJOVT0bqPYcR6aXpmzVtP/w4y6mvv5MToqVIwzRFkzR1HDO5vgJJxG5C+gCpKGz\nrTeg2x6fgp5hUxEYa4xxC4BygJOPec+WLVvYtWsXiYmJR9kNe1Jlat+GKjMmzkkmPQH2x8P6otuZ\n3GXyEbdjB6hb8/1PHNywgcPp6RS7/QYAim7fx45TirGx1J4j7sd1Ghc2Xk8N1vD22kXZ8Y9nHoPT\nM0yZGGLPaC1n7/0uvae8dvT4H2FHHM0B3Zf5JLsU4v4TrNy5kbfYJFZl5PGUj4GIyLfAJehnugA9\n4+2AMaZdWI845a1AMaxiRQDOSEujc6/KpB9Kp0/qSVyyZg2X9YHmw6AX0HI6UAZ8feoRf+N/dGdD\nYMQ7dTm4YQOluz1MucF6FlqRn/TE7eefOsimhg0p0bAhlSdP5rd62quYceAARduqYDr8rs6H3Ldq\nFeuHteWmR6ZQC3hzSDL/6eejIjAFKNuuHYWr6SHTO97SxVnFb9Mwdg3WuJS3RwtMLPo+ACv66cna\nH/gPAOfIABkX2d+37O9++1sHuHU9/FJV7z9DNweJ99iDKqwA3fvpb5NquibuwY5f8AcwsBe8PxKu\n/QmWngkN34a/b4BKE2DkjmTu6e2j0gr45RyosxpunHAHz6bMQoBCQFLXO3jrnFlMvQ8+HdOWxj1m\n0vVJVKE6H3x9dZ1d+/lQcnZJkhKTOGN1HEPvfYON8/6CDTB4QgKF0tP5u0oVZpTeT9rUNHrdN4xN\nHVczrdQ0Rk1uyJe3nMLrye+yAzjz8fIkFE5g0PC1dPgAaAkHC0GRdwCBe17qBIC5ZDcvPJp5CLgj\nd1aNehsAACAASURBVERbMAXtassl9TiuytsjwAvGmPQQ9qWBDsaY8C1WRxacfMx73n33Xb755hsG\nDhx4xCxQcSq15DcKV6zI/lPKsHuAj35B3sloEQoPSKbrwJFM7NoVU7IYO0tDXAYk/L2PjPR0fmmg\nB9SM3z8e0z0zjE9FWNlfZd/hQmoWv3EH5sABdtc6iRJ74LahKiNP7a7CcOR3lwDQwXZavmLD8m/u\nf5b9/b2hrgvft1TXhZezs1oO/PGHmttdJg/bDb38G3v5zwwpf4KUv65du3L55Zdz3XXX5XdUHB5i\nVUYeT/kYiH9apIh0AYobY0aJyA/GmHOz9RsrAsEJp9xz1of6nm/8/RqGH/BBYai8oTIvjtxEPWDa\nyGTq9PLR5n+wqJEOQA3pXoRxhfQUtsPp6eyYPJnSSUkUrlCBuk8+eWSwqsFWqDyqMr1HbuLgoGQK\nLf+NnamplAD22yMG9iXfRZW/Mti1YAFx8fHEXdaY9ATo/4+PlGLJdK3m4+btKgJaPPYGALus8lfY\nKpzxdesCsGP2bI3Thg34DzRYNzaZ4k+/itjpjpXQ8+DSk5I4tGULCbNns4vMATb/8reD9jduiApD\n+qnQ8++96u+RvPMf+ORkSB33AFMOToFH4PMisDIpiX0//8z+VavonJbGYmAPcNMcWHcVVDsAE/sn\nM6TtDNbU/4v42XDO0nO4tfS19E/ywTxgNzT/+2oumHopJ//Yh+7fgK9DPT5rewpz6s7ht5t0B8pX\n27Sha3Iq/IpOMCsMz2xLZm65X3nj5jeOTBNlKqQ8Al33wb5icE9SEo3Wr6dwo/N4pJaPZR1g/oMP\nkjF5MtsTErgnPZ1qr0KXzV0YX3086ddDwlS0xkqDDj93OFKOnBKXe2JVMEH+CidHdHDyMe/ZvHkz\nu3fvJjExkQl9VGnb7+/pm7dE71s2Jn7/0VMkQ+Ff77anVBwldmXocTfA3/bA0ApL/zqiNJ1vlaol\nVapQvl07MuwImBQvxuF/NnOomk5DKbxuMwDbXn9d4zT8YSp/t5l9P+sCgD02HP8xBTtGPg1kjqgV\nt7I3zo5M7b/hUgCKvqadr4e2aLdohpW3ds8wvHVS0xgui5s2baJEiRKULl06e8eO40asysj8Vt6A\nh4GngXuNMStFZHng+atB/caKQHDCKefMsdMiun5Qn59OWsbgRjqVrsm3sLaBKhpnvgdnxtXn9ht+\n5sWqlYm/tSQ/9f2Jp9tdT5FzzuTQL78RX7Mm6bbXbmvS5ZR42Mdl6NS89qkwog08kQpft4G5w5Mp\n39uu/WrenMPp6RSuUIEiVasiRYuyd9kyzIEDHNywgYTmzdn2+usUPnAAAxRt2JBCCQnEJSQg9qDw\n/atWEV+3Ljtmz6ZY3bpkHDiA2b+fjPR0DqWlUTQxkVJWiJRAlTb/yFqG/fXfA+wlU4nzc9j++r9O\nr/tdwEnoerfLgCsOxTGu/2N0zvCR8msbOqWm4gP+fqYL/9d5POuBPi/BMz8ns3e4j8f2w8B4GPg+\ncAp80AAWjU2mx6M+nh+UTI99PmoXqs3TQ1fT6nG45/dOvJA0Af4Pyu+twNaVaVT+sjKfjNxEvX5A\nTdiZpGvZGo2BpT3gywHJXDLIR6M30TmmXwMvw8vl4FLgv2OTGbLJx6hPGvJ456WwCz7qDD8NSKbb\nrT4tCJ9Ak8NN+KjfIsq8CSUXlqRP6knctWYNRYDpF110JE96LliQbdlzZCXagmlZNAKy1Cdf1rw9\nCQxFS99H/8/emcdFVbZv/HuGYQbEcQFUHC0hNbOUylcrlzJbxDa1sk2tjExxQZHFg4oiqMgRUBS3\nzNQWLEsrrdfETGxRs6hMrF5eM7EUN3Bh2GZg5vz+eM6ZIVv07WdKxvX58BmYOc85zxzOnGuu577v\n60Z0Q5ygquorF3Melwvq+fGvxzvvvMOePXuYNm0ai6bEc7oJNCoVr+mOkf8rFkeJBdLqxj44vYTo\n0wWd3VcIOb7bj7OkBMlkwnzNNUi+PrgM4DKAl60Kp0UsN3rZqgDR4ke1290Rsso94m6hN9f20kSZ\nZBbK06i5OoNYLNXFog5dxLlsNiSTyb2gqtoFU7qdM7UFVqjbbpnR0dH07t2bAWe1b6jHpUVd5chL\nwY86JEnqDcQA21VVVSRJaguMV1V13DnH1hVCqCen/w1fSxIngK9TZOKvUfj0ISFErgOu2IwwygiA\n6U2hcaJMnySFAuBwQhwVS1ZgjhqOsQbOJAkhFhAeTuT8FfAqlI8Cv8Mwb5mIWA3UtvkW+DFBZlwH\nhZSpwdxSWMieaTJlyQpeHTpgslrxCQ0FoEy7uftqf7s0IlAdDhwHDmAMDMRLI5XKfLGGYtAEnU5K\nqu4SicgwNGnv3QtPVA2EiHMCekZlE4SpiG56cqLWOBAC0IgQc/o+f9IIbLR27IaI9BMf4PG5sCxa\nCOO5CyPJOpwFQOwVsaSMTse0AJQXOiOn5kMBOKLhyvggjj58lGXdYEQVpM6ViX9EYVZ7MHbujPxS\nPp3e6cTeq/by1TDxHromQ6pR5pHJCuGzerN1ykecANrG+lH+VDnLQmFECTAbYdzSDzY2hXsTYWMS\n3LsLFq0ezxbpOG+3ew0eBL6GKQdkAovBkaTQHbhtOSzMi6BsdSihpaMJA7xSAAeeHFRAvbv+83i+\nqKvEBJdMvH2jqur1kiQ9iPBLikYYloRezHlcLqjnx78eJ06coKKigjZt2px74z+BJZM8KZguAzQo\nFsLMZRAplSCe9z5TheTrQ43WW8dQfAbwiDG9P+vZ6Y76gqgeYdNFmc6reiTPXlCAKTjYza8GTZSp\ntTgaPDysizqAJdGCVY/MPnIBzshfg2PHjuHr61sfeatjqKsceanEmyRJXsAcVVVj/sx447k3qUdd\nwneS5I4ctQPCxivY/SB2YSSTx2axE6AN2NrBba/fxCN8znWRCikvBfP8oUMcPj2Puf0ew/WNMAAJ\njIjgZHY2g1eswL4CYu3gVwQhB9pzMMebLX3fwQZcCQybC6uiFRYkyIzbLwSdkgres2QanRbsU5qW\nhl9EBA26dcPRphl2jaS8EILO22pFMpupKS7GfuAAqsOBwWLBYDLhcjgwBgQgmc2odjtVJhM+HTpQ\npok7H0TUTBdu+qOX9mNGiKByhEDTPDrcos6O54LXX3MB1R06MO2FApK+kHm46jM+avkReMMXT8LO\nBJkFXx5iREo2KyZDzNgsZiAifC1T0rkNoBl0y8+Hn2Cql4zJpcCCoyjhnZkQ+yMv+ZRzEAWeE33b\nHl2Uz+ou0JO9vGSx0OUdG7sGQlBFEF5+MGp2Xz6SN+NVBRlGmcOJCkfSRcBtYgDM6QCZDWRCnlDY\nujiWstHpFAO2m2E985kM3AGcqZBJuFPB9NA8JuQ7eObbMcjXLeLBvcKBMqJ0NE3WwK7HYHIjmaX3\nL6ffujBWxazmGyAPia71XxgvCVzn3qSuQ/+o3Q+sVVX1jCRJ9RdTPeosPvnkE7777jsSEhL+kv2P\nmu2J3s1NjudUKxFR860U9W0+JwVPGkwmcLqQjmtVa7oo08SVLsr0xU9vvXxBE3H633oETh/n1NIh\nva1WVIcDp27ooYk0PUKnR9rMmnGLX8+e7nkfmV33e4amp6fTo0cPHnzwwUs9lXr8hfi7c6TmMNlT\n+pMrc/WRt78JaiQJvaP8dTtgTQ/YeUsCmZ/MZIW3SCnMVh7g3fHvku0jxMzju6H0Bmi0BaYPm8td\nh6Lp5QBSYKFDZmygwmB1MKsHrKayHfiKFjVsvwU+tFi43mZj52KZ1B8VXOmQGRaGb45ollYGGBNl\nSmfPI8LhIABYOE2mW7LC54kyPhXio1VtNmCsAbWyivLt2/Hp0AHjFa0p//gT7AUFGCwWvK1WXDab\nZ6XQXNsPC1y5uXgBWs34L0SbQZsLgL7OJiG+OVbq42uN8671u5/2931Ai2PaC++Lh/xh8GlcHJV7\n9lCak4MlSSY0UWFlxmBSY1bTDPB9AfY8B91j/SinXESt2iF6zQVC38/7kjFpM6eA22wwZZXMrGKF\nZItMwM9VjHlsPnk9oOtseGkSnEEUhwcBixJkgmYq/Jgic+Vkhd7AaeBT4OfbbiOoV3fG+ijsmQah\n1QiPoraACZKbwrS1kDxInJOoL8TJyewATwPD0x7mprh1yGvA7ws/TqWXk9WnDzEDckmpkkmITSP9\nvru5NScH3bDz3vrP5h/iQq8qfnXuzc4bXbgkkbdUYCCis8hNiID4u6qq3nwx53G5oJ4f/3ocP36c\nysrKvyzyBh4DlLPh0jIoG5a6qGpgoMYofq8uKsJgseBlseByONyLnJKvD5LTU0NXtuVDVLvdkzoZ\nGOiO0OliTo/U6RE4d3qlJg71v2tH3PS/u2pj/g48UB95q5uoqxx5KfhRhyRJSwEr8CaixAAxHfWt\nc401/JUTq8eFQY1W2xYIXLcb+AG6Ay+/vgRyxZf6h4B3T7wLCTBkNvyn9VxoC8/36EFHRyizHpV5\nGnjVBLSE7ODP4Dj0jlkNTcB3LvA5rLgFek6HaSttDDgG945W4BpITZWJvjaHUWdg1CZoBWxt8B2J\nxxy02AzPDRqDyQF74uLwPnYGp83GFOlFpjtewPbvjZRt3YpvaCiS2SyIRou4gSANb6sVb6sVY2Ag\nksmEwWLBUVSEo6gIM0KMeSOEmEP7seMRaACliIiaXXv00350GBGirRpx4Vdq274FsAo2toB7fhzI\n3GHwdFIXXmj4IVfn5GAEYgIU7l4Iq+9eTQCwG3jpOQj9EKLajIXpUPaQOLfdz/SGa2F7yXa+AW7L\nhA8t8HCkwv4kuDZW4YH580naKZMDUAJPb4QHgFblcBSoaACfL44l/lqFwcthcZZMQ2BkKrzx5ZeU\npM8DfwhNhvXeUNkDtrWA3U1BzZDBIAScfZbMM8oYbB0gAtHeIT5unRC6NbAlvZxNgNetN7ExCiar\nCq8aXVTk5PANcN8ice4WSxKLpXrPi3r8MSRJsgKoqhoP9AS6qqrqQHwk64tQ6lFn8fHHH7N69eq/\n/DgGl/hpUOYimw/IMX0tUii9RB2cT4WLhqUunLUWNFUvA6qfD9Vm8egygNPbgOv0GZzHT+C02XA5\nHDhtNiSz2c2ptevdTCEhmEJCMAYEYAwIoLqoyC32QIg0p82GlyYWvQID3Zy822rlvokgyRKSXLd5\nICMjgw8++OBST6Me9Tgf+CA89u5AZKncj/gqeE7UR97qMFy1vizPANZsDCX33j0sBboCvQHLhwjX\niq9hzc0i+HIIUQP28DFE8dYWwAwj7zcSX1PjNu4I3geZ7VcSZXsGvoFXe8HLs/sC8O9Jm/HOgaDc\nIOamHmXwKdjZVDhOqcDJDh2YNKWA6qdgaXg4Xs2bITld1JSUuNM0CBHtALztWhSuqAiX3Y7BbMap\nFV3bCwt/QTC1oefeB2ruWXrErUZ71CNuehqpHplrcNbfpfr5RIi2Gjw5XXq65QjNQn/elzIT+irg\nD7G5sbQfLTqNj6wGqmCnBbpPgJJ5sCQggF4lJTw00Z/v5pzkBHAN4J0JK6Ig/AuEtWdv4BhQCdPl\nuUxPiWbRU3AmVaZVvEIvhGDbhRCo5Y0WQ/xBYiYreB8RL7TPa88+dR8bZwnheBtwHLhC+xePTu9H\nrmMTjII1TeGxNfDMm2NIXLuI4Pdg5/1wBHgoGRItMg3LIG6swqzrrEz5sohlLWHEC5D+nFgkADgM\n2K6dxUuvL2FJ6CEOAyMBr/rP6a9woVcV8y7EjjR05aK2CngfUW6aizAq+VRV1Zo/HlWPc6GeH/96\nHD9+nKqqKq688sq/ZP9ZU+Op9gYvpxBv1d5QYxRpk9VaSoi3RnJ6DRwnRZuA3+NIPYpWvESkM9Y2\nK/Hp0MFda+5lsbjTIXXBprtKmrT+brVr47wsFk/tud1OTUkJV9o83T+ersPX4rFjx/Dx8aFx48aX\neir1qIW6ypEXkx8vJOrFWx1E1tChjOuSLX6PgdXLerOzn2gU/d8r4WobzLTAob6iznHp0xkAZA4B\nZU9rjgQcYk8rkQEob4BZEVaGFxVxF2Db2pZpd+wn/GeouQKMKcBwyFgizEkGJCq0OwbvtICB3wPL\nEJ2lu8G++2B1hkx0jKh3s2wR811/F/wUHo6zdTMq17yDb+fObvesyvx8fEY+ieHL73EcOIApJATV\nbhePmnmJ/cABJLMZgxZxA0EwZzcL1cPEuojTo266m6QOvRWAHnXTebCy1j7GLIfnh4sIHnji1ZLW\nC2fiPeLW0MXYhSHczYlmkDpSgUpQunemVX4+IUDPqXBkhhBQlvdg3/3Q/hj81AJeA+QvgFPAXZBn\ngCc3hrLx3j0UAQ8UBnByfglvzINHv4fMqYMYv3Ytx7TTXrFYpttohZ+nyUQ9oUA7GHfFZLYfTeFL\nBXbK8GB8EJmpR3ECQ76HhfMjsBcU0Do3l8fWwJLHRGT2UWBNqowarzClAoKSg5iYepTot8D1EBj2\nQuS2SLKGZ1HkA9YCKOsADZ2wwQv6AJbdUHODOE/G06A2rv+86rjQxPTFhdiRhm5cXHKSJMkXuB24\nB5FM/DPidrRJVdWfLtY8LifU8+NfjzVr1lBYWIgsyxd831lTRbqkofgM+Dd2izPncWGnJQU1Qyqv\nQvUT7KWLObO2Muk6fcbNkeCpSwOR9ngyO9v9t5fF4l5A1VMmpVqlCLpoqx11q72tzrtTRhcxc16A\nm5MBJmmpl3UZkyZN4sYbb+TRRx+91FOpRy3UVY682PxYG5IkdQAWA0Gqql4nSVIo0F9V1ZnnHFtX\nCKGenASyhg4FYFnbb9ibuJfIJZEMHZvF1cD81nNp3GUbBVXtAZi5OYOEvjGcaX2K155ewe7e0AZo\nGgvcBB8/KkRJv73wQSfYMPppsp55STggxkN+Kmzq0YOHduyg7Ux4JwHmzerNgCkfYYqI4OTSpViB\n4aJdDDnzIA/wYyV38Ix4boZMnKSQsjyYxgMGUN3Yh6i+CpmZgwBwFBaKFIyAAFStDQCAXXu+uqjI\nLeb0/H6T1eomGKfNRk1hIS3wuEXqQktfB9SpRY/A6ZE3na508WbSxhgRggbgCSAbmKJAoknGe4KC\nITiYoMJCwl8D1xNgyICInBgWbs7A+AO80w4KOndm8QOlHLziIOtGiShfXrrMtNEKvIJIEisCZzp4\nLQIawfYnYQfif1SJEJlHEG5HX/fpw225ufgDa4KDmbyoEHrBosaiD4kVaFcMfAbGd4zUPF7DS3eJ\noqIO8UHsSz2KJRa2p0PPFGhT1oaslIP0twGJUDkXXkiQCZipMCQNiISg6UHkph6l40ltQp+KfnCt\nn9+GvCJfhAEPA8GQfR0MiQcehf1doK12AusFnEBdJSa4tOQEIEnSVQghF4YgqZsu1Vz+rqjnx78e\nx44dw+FwcMUVV1yU42VNjcfgAq9qUbtWY/SkVLpOC4dJXUjpkTc9GqaLMZ1PT2s93/RInC7ETNqj\nXRNdxsDAX0XeznaxNAUH47LZ3L1Xa9eg1+UWATqOHz+O2Wyuj7zVMdRVjrzE4u1jIA5YqjXrloC9\nqqped86xdYUQ6skJvpEkPh4yhNuzs3EBN0TDggYy48oVuBH4DjJTYX16PxJiN/HIRH96BvTk3fbv\nsv0h6HkECABccMoHsoBpP8EPV8Jqi4V5TYxMuiqUiU9/xIpwWJjUhYHp+/CdOJrbpyp8Fh6OwWKh\n+vBhjFe3xXXwEONSsxn59kiixj3PJ8CIj6HNpjbMSTnIF4tjaX3Ui9J5i3knVgjK8YlfUQGMEr4m\nRO6LpGVZAxrmHwKgXEuBdBYX47TZ3L1jdFLSyaWmuBgvvbAa4XbghRBmP2vn6+x0Sd2M5OyImw69\nzg2g3GqFoiJaan8fnCdWW5NqRFQxZVEwPoWFFC+UGTlW4W1WEnX8GXgb0XugDOgLK+6A8OfhnZHC\nHCR1dl+WTNpM2+UwsmIkrwx9lR3+5Yyf1ZuP2n8EZbAmXETqPpsv0368QkmizARvRai6+4FXRJP1\nF1OP8sliIQi9gVnA3n5D2f3DJ4xs3grzjh3cA4xI70fu+E2wBJ75eAwrb1jE8gQY/m+gH2zzgtv3\nwar2MOwM+M3wY9RVo5gzOp0aYD+in/iuzGEkRq0i5DQot3bmhvx8vuvfH2nDBnaFh/PakBXsvxPa\nLoDvx8HGJM8K9fk2rb1ccaGJadeF2JGGm7mk5NQIT2cOgDJVVe1/MKQev4F6fvzr8dprr3Ho0CHi\n4uLOe8yiUaMYG7IUgKSpJqbZ//ylnTU1Hm+7qHXTFzpddjverVqh2u1uIQdQffjwL8bq7XbUoiJc\nFgt+WgaJHjVzN9622X4VcTtbCHppfd4a9uzpzoy5TmsrkDqjOwD3zNnL1NJS6iKmTJlCaGgojz32\n2KWeSj1qoa5y5CXmxzxVVbtKkvS1qqo3as/tVlX1hnOOrSuE8E8mp2pJ4jvt9+sBKRvoAmlrZeI6\nK6Tly7ScqjB0D7AGmAhsB/9t/pyMO4mjGZhOAd9A+y3tGb7eB6/8fIzAs9p+P0GIn3XzRzBv/DL8\nXoG5r4YR/VwO3w+CLeHhNF6xgq2Zw7iqpgXTOiosuA+84+Iwp6UxCHh+hsyppmJ/KdcIkZP5sfgC\n3yhZoXSajLnSxaErDVh/qGLw/PnsQDScJiwM4Fd593prAN3m2J13r22n+0X5avPXUyTLAZu2rY9G\navr6oD7mKu1xt/ZYimjIXY2nkfdJhOgLBgoR+c8D4oMY+0I1wSUlNAN2zJO5d4LC9rAwokfloAwU\nPd9ciPrCUqAlsK5vDI9szmCx5uYYgogSXgHcuQG4AbZeCbvDwijbsQNfm43S+TIz2irU3A9jFowk\nyNkE30p4ZLJCtsVCd5tN1J6Fh2NdsYLhMU1ZmHGKg6ky/4pXCNsAJ/vDVmDQcXA2h+undWLvoL2k\nRfRg2I4dNKuG7qndeWzqTj6KeoLun+4j6fbvWZlezq3ACOUBupiuJemwwsZ0uBbYAIw7DDmtIKwK\nkhfK3BGr0CsZoY6PQEk6LJkjk/CcuBbUJv/Mzy9ceGLaeSF2pKE7l8RtciSQhFhj0ddRVFVVr/r9\nUfX4PfyT+fFi4ejRo1RXV59X5G3conF02CsS+O0tG+NbCXYzRE3/c4tYi6ZoLpQnRXqk5OuD8/iJ\nX/Rq06NnBrNZGHodOIBdE1XO4mK3GyV4Im969MwdbdN41XHgAC013izRttEXUvWm3zXavr2sVhoV\nFVFqtdKqqIjnZ3Tnnjl7xXy1RdcvFOGxMER+F4AfAgK4WjvWI9p1O0er4a/Wooh6lLBNrVq6py7A\nNT7RZMKnuhofQNWO1VqbS12u1bvcUVc58lLwow6tRjwSeFOLvA0CnlVV9Z5zjq0rhPBPJadq7YZ2\nCpHW13QBLBoHYz6F13vB48cga1I4kZNXCKVQCH57/SgfWc7u9rAxOJiowkJumtaJvRP2wnuw8Ul4\nJNaPY+nlNNwO2T2FBX1P4CXgk7g4uqalYQXiMgaTHbOaRZNlzqx6hYpJTxJYDNK3og+cnjLhbNea\nCZ1F3dUDOQ+wQn6XZtkwc1wA/466mgVTd5LbtSuSyYT3jh2cyZBJbKvwxUD4IDgY39BQqgoKUO12\nN0lUFxW5e7rpJKSnh5i0v5vgibCB0A01CMFUoW0raQYogWNGA+D4Qcy9+dq1gPAqByjBU+Pmq+33\n7ChdVaPFdCwdzX48NXLNEPY/W4C7EM3K9yHsgRIzBjMiZjUn8aRxGhHi0gk0RZjIfBAczOQFhazo\nL4RizOs38XXw52y9BXLnyzTduJtxOTmkBgTQcMxwoioUkp+3cLXNRmGjxYSUjuZfwL+BpYCCSLls\nghCjpyfL5DT+jh86H2TXvXuYlyGT2F9hXkx/Jly/gUxJJipYwXuvN0fnVlOOENV37xHX1E/9xZw/\njIgAYOzYpaJK6Rl4cOYTvJ3wGqwDboOI8THcszmDAceBbdDgLj8qpHI4AOqN/7zPMNRdYoJLJt5+\nAG5RVbX4Yh73csU/lR8vJrKzszl27BjR0dF/uN24ReMAaH+0AS4DjE8Sgk2aL6GOP///0cJnn8W2\ndSuNBmsRopMiVdLQRKT7qZVV7m0lXx8cP+zHYDa7I2UVX4jEsaqCAoxatEwXab6dO4vH0FAx3mzG\nWVpKtcaJALFnXU9p3boBHtMT3exE52mAe7RF1hxt/8bAQPd2sdu3u/e1TJJwAC2A/TrfFxSgmkwY\nHQ5UNAOxgABqSkoIAQo14XmzJurCzvN6T9W+Q+n17FsRjkmh2vFP4jHh+kl7b3U1ang5o65y5CUW\nb20RFgfdEdU8B4AhqqoWnnNsXSGEfxo5Sa+Ka+XTJ8Xf3YHlwGeDxvDS60s4YnTxYqrMZG+FOa91\nZeKSPDKVQUT1W8vLw8WYp04DKaDOEd+rB0VDx7tC+X7XHrgHlt0CVUOGuFfsrDt2oAJDT0ID/Ejx\nX0iIVrv2Q58+ADhyczGHhWG+5hoAfu7gg3X7IbJCPuetmfvofBhSX5KJv1dh5g3gmyTTOFFh+Hp4\neQA8NRdSHCIaZ875HMlkovq2GzDt+t5NCrbcXAwWi7sJqL2wkEb9+lG8ZIk7VVKHVXvUxVUFv0Qp\n4KWRg2PEQAASXSIS9IGW/fLfWuP0vftrj/oN34wQc74IN80WiMzIQ4ApXuZkqkLCz9BnTT9yDZtI\ndslcG6vgixB5LoSorNHGlyFSI53aY0+ETf9AhOj6cL5Mi+/PMLb9Ujqd6cS05L24gKKwMLbf1ZCe\nW8ow5+TQEJFv5oUQhXaEGG2OiBie0ubsA/y3f38q8vKYMroIZGCBGNinph/3xW6iPEMmcazC9LZz\nWTB4Jm/OOYkN6AS02w50AOV5mWFTFFq8AJyGTrZO7O2yl4xvZGKeUYRhzpcwd3IYppAQKls1pnyq\nQu6s3nx0z0fu/8s/TcRdaGLafu7Nzhs9uSTibTPwoKqq5RfzuJcr/mn8eClw9OhRampqaN26Ifqe\nKwAAIABJREFU9f80bn5iPFH+gnMWFMtEzjh39G3hsyInxqt5M05qZNTw8/0YrmkrTE3wiDi9/q12\n6qMOp81GRV6eW1y5TUc0QaUvlOqOkhV5ecR98dvVQmndurk5GoQodNpsGEwmakpKMAYEuDNiXIhF\nzVJt/2VjBzJz7G+/7wxJcvdYtSMWG40IrjTg4TbvsDCqc3Jogycz5n8RcPqC7Altbr7aMVzaMVsC\nxdojwOD6z9NFRV3lyLP5UZKkFYj2v8dVVe2sPTcdGI64vAAmqaq66f97bEmSQlRVPSBJUkPAoKpq\nqf7cOcfWFUL4J5HTekli4CtgeMLA9KZ+TBtug0HA97BuuLBpOwW0Ow5qc1HjdWU1FHjDe0kyQYkK\nQ96AmkchNSCAhAkl8AiwEz4dBmsWRhI0NospE2DrPCEg8iyLmNRwDHwAc2PCiE7JgcOQMa8P0bm5\nLJosU2CtoM3YLKoAU9eu+PS7EwD7TEFMcVodm98HIl6VLolI1zhnJgBT54o0ksB4GccP+92rgLXJ\npjI/310Qra8K+oSGUhHoQ+VUcRy9hs0LIc70lEkQkTIDHsMRALlKO2Erxd/lk8Wj3unliLa9q9a+\n9ZU4vW+cD3AlIhqlJxvvQpQQapmiJCR1obFfc3JNmygYBx1WwJ5w+ByRqmnU9uWNiGI58BT7+AL/\nsVi4wWajCni0GOLfkEm9WiH9LiHIrkRY832lzWdPQADNSkrcgtIL0VJgBZCGp0+dGQ9JDQA+BH4e\nP55h8+ezC7jDAX0W9GNL7Ca8FsCqcTCsDA40hJCfgUVAAsy5vSsT/53HA6se4N0n3oVt8MVTIv10\nVZ8+xGzJZfISmeZjFSoRojRSgVnzrUx5vUgkjydDWm4P4JcrsZc7LjQxfXohdqShF5dEvHUBVgE7\n8ayZqKqqjruY87hc8E/ix0uFl19+mZMnTxIVFXXeY+YninRHx8YPOR5+O2mj0s5rXPrMeMx20Uan\n2mzAy1aF5OuDWlmF48ABjIGBqHY7xitaY9frAb7+HvBE13SBZgoJoaa42M2z1UVF7nRJHU137AA8\nJQW7F8pI2uXU+KUPAU/ETReJ9vx896Kpvshp0LJdEmJLWD5JPPfseV6XGZKEH4KL7do+9f3rGTDG\nRJkJDRRm1jL8nPIH+0+q1U7JYLFgttnYguB3PZThrR1Lfw8t8RTg1gu4i4e6ypFn86MkSbci1t9f\nriXeEgGbqqpzL9Bh9WO5a91qPfelqqr/OtdY47k2qMeFxXrtZrPpSeh3k4vWNhv75sHqRSYkh4Od\ni2P54B2VOZsz+LY5zJojs/DkS+B1lIendeL5RIWePwE/grEMjjYsoemJ8TzcYT5Bu6HXYVjVKoth\n0eBn8GNG+q2cKD3E3ugxPNHrWaI6vcg2cijNgeVaDVfHXBiXnEZyi6ZUBQTgO244Dcpc1BSdQApq\nhrF/fyYM3MD0MOgPdHmvHHrBg03SCNoAkT9F8vTYLAqAU5Nlagzg1agRLpuNmpISvK1W0UR0xw4h\nxPQ8fZsNSUuVaFBchR2QrFZqiopw8kuxBULA6A2jdDFnAhb4iNSIa7Xn7tKKqodO9QTWfRE38rMv\neJP24wK+TpSZICn4V/gTPeckZYtlioD7Ryt8Djz+rgHfUCu5oVod30BoEC7EzR1bYNtdUKTN04UQ\nzU6EEKsEgm02aoD/AMsCARSIhlgHPDz/YdrFrWN9kkzTRAUD0Fxb5VQRZPMjgpQiEGJPj/ZVa+8B\nYOEsmbFTFFYBfnvg51BgE1Q1qsS7xsBXRhdd/i3aHYSU5cNeiL0ylvRt6UzclgfrwXikIRHDY1j6\naAbdXoYpZ2RMDpj3oAWfDQqNtWNWAB/IEEwR990GNxwXc4hbuIONXUDaJaHeXE+O/1AsQ2Qa5yMu\nVQlxKdejHnUSd999N07n2Y1nfhtzk4Voc3mDywCm++4kbdS5I256ywBvg6eXm7fdBSYTOF2Uf/EF\nBrOZSs2FuWFgID5OE1UNDLj+1RFpx243Z+olBrrYApEeabBY3OYm+mu2/v0BKNmwAYD88u/4l/wu\n3laru/WOt25ycpbpijeeaJkxZjjxJxTmVcnYEv+3Gr+YWkIpSZLwQohBp82G3eFAAuxJCr1n9caL\nj/DH4yR9NlJatRLv12RCdTiQTCaxIIyoW/dGWzGyWHDY7fg4HO6aeRvihnTit3ddj384VFX9RJKk\n4N946YItgEqS1BHxlbWxJEkP4eHHRni6Xf3xPurKat4/YmVRE26bgbBFgB02RcNnreey4NNZ4rXg\nErp+BlTBxtvhX8BbCPEx7BXgODhjwCsRTieJqFzn12DREzDmW3j1Ohi6CuYOE4d8AOhQY+Bdo4v7\nOsPMJ2WmTBQRrumaw2KLYzD6JoWW7VoT+/YQvJzgfaYK1W7nzqVL+RgYuQgYARkpMm0TFYzanF7M\nGMzqBqvJeKMPN+Tm8lWPHhjMZhxFRe7i6Zvz88lKe5ibHO2omaK4xZLvkCGAWDGTzGa33bHuPKmn\ngDgLCmioncIaxA1YT7nQHSarADQy866V2oE4ze40Sf1T4V/rNSfiRq8LxdPjxwMwxjqfmTI0mSxz\nbYrCjcCEzGFMjVpF230weMNgusSs5uDCSKxZm/EvKKCpNhcjIhgIIkKlpzyateNUIiJ81wKTFst0\nHa0waC5kRottdHGqauMrtTkfRjQFSdTeuy5mnQgnzjKgvfb48TyZkAkKdwLL5svklRTwfvg74AeZ\nWTLjkhUMZWJyI5eN5CpbE2R/BbpDxMQY2m7OIK4atnrDh1ky3SIVjgHHLBamfW6Dr0BJ7Ywckc++\nMcLw5e73oM9/+hEXu4l7PxNzW5A1hMhXX+VyxoVeVfz4QuxIw21cksjbr1YU6/Hn8Y/gx0uMVatW\nYbPZiIyM/MPtlNnx7mbaXk5Pzdv5YO4dd+CjZZyodrs73XF0ZuZvbr904kQAId4MYDp4AseBA3hb\nrW4zk9rGJSAiaJLJhEGrBQeP0KtdG6fXqunP6aZh7ro5m80dMndqx/LS9tcgUXx3+LMGLSnadyFV\nMywDoKiIGpMJP4eDCkQiRwkw+Cvx8tmp+LMCA0UtX1GRWB3S6uk+BhoFBdHz6FHseDjSgPhmXA08\nrj3Xov4zddFQVznyt/hRE2/vnhV5ewY4g+iYFaOq6mn+JCRJGgA8iPiKvqHWSzbgdVVVd5xrH/WR\nt4sAKVW7LpbDnuHwdt8YcGbwxN5wlPQi7oqNZmUwDNglcoy4Dgot8H5cHHekpTHqJ4jcEAn+WXTa\n1wmv7cLpqSoJOttBNUNyhkyXtR+wa2FPuCaLqlQZn9zdTOzoT9rdR/nudpUH/mXB79PvWQ0M+QoW\nvVTF6Tff5KmiIka/DOrqGrx+2A/XtmXMjfNZMEwsnQPwEFAMp5vA/PR+5N66CV6HrJjVdAfOBOxh\nZ0AAvtqNeNKrggjQMud6lxczcso6lgPqDJnqqQpe2dkYBw3C0KY15Zs//FWx9fX5+RThMf+ofSPW\nL1y9pNtlsWDUG3xr4k3v9+avjfXB40ip18Dp6ZRmRPTqZ6uVVZaNzJq5j6hbEii+BRJ8ZuJERNWu\nilrFuq5dmds+D5tpLbGH4WSrLBoiRLm+X5Vffrgq8axg+iAEmQuRcpnjn0vN4lgWFVTTlPm/qJvz\n1d5/E20fNUAU8PjP8NYVQuRJ2vtzIMjpKKKO7RXpGEkzIcUoEzdeodEJ8E/zJ2nOScagYKgAvMDg\nZeD4j6XMyXwee7rMtNUKLe4x8uBmuM4b9g4ZwlORCsNmdGfW1J1UDxkCIUuZJ/eneERHFozJp/0C\nMeH190MJm/gc+PAWuHOzeP9ZQ4de9gLuQuLsNhd/Q7yvOU5uoJbnkKqqJy/dlOpRj99HWFgYLtf5\nffK8/3vIfT/TUyfhj4Xc3DvuAIT5yKjZ5yd6qs0i2c+nQsyrqrgYg8XitvNn/nyqtNpxb6tVGIho\nAstlt7tFm6GWCYkxMFBE7+x2XDYb5Zpo090fdQfJSsCo7VuvRXfabDQND6ciSSwA8yfFmwHB6S6H\nA1VrjWBE9LWrRnC3HyJsn9wFpn3lOc+lyQpTVRVKSsBqBYsFg82Gl8NBjclEzggHaQuP0gT4CfDu\n0AFXQQGGzp0x5OdTCbwdF8eDaWkck6R6Afc3xUXmyCVAsvb7DCADj5n7/wxVVdcD6yVJ6nE+Qu23\nUB95+4vxsyRx5WxInwRSnz60zs3lsQpAX2izAc8henwtBaphslHmwbHi5thtH/y3PcztG0Np2BGu\n9L2C1B8V8e1/DHAYZt4AjYYMYdyIbBb0hkmxfpSHlIu8gJGwvKVIK1wJpAIdgTfmyCT0VsQ3/QNQ\nEQXJi2XaHHDxcvvPeXBZOdfm5bGvf3+8O3WkYvOHtMjLwxdoDIRthpf6wmNAekAAPycOInzc89yc\njXD7cMKCT2TGjddu8sIAktStYsXu1sni+W1WK95WK1JeHtXBwagOh7vI+vRA0cvXR9uHCY94a4gQ\nN+ApetaFnB61aqY9ltV6To+u1c61179N6sJLPgGvNxPHOAkUWiy0tdnc7pO3AXLaw0yIW0c74DNg\nTXg43e12nszOZgNCuKkIQeXSfnTC8sNTsD10IrwxR5yeJgjS8saTImrW5uWjjfECEoCRgwZx9I62\nWLcfolF2NsNWQfowGAU8lfYw8+LW0RCIzhzG/VGrONinD31yc+lSBlNWyswaoDDvRZkTzSDlRgXD\nzQZcO1xkJPahcW4uPyyWuXa0wj1A8sJIMsdmsRwYOR1C7mpP913d6PZRGVds2IA3MGAromZzDBzX\n2kvcBXSM9WNZejm6t1fEZfgZhwu/qrjtQuxIw+1ckshbIb9Ok6xvFfAncbnyY13Ciy++SFVVFWPG\njDnvMekzPcLtp6YVLBiz4ILNZ16/fnhr6YG6fb9eJ+7VvBmOH/Zzondb/N/6HKjVwFuLutm1CB38\nutm36nDgtNmoKij4lclJdVERqsOBQRNFktXqTtX0tlpptmPHBbHcTzabkRwODAEBuBwOXDabu25N\nr6nuCvRG8GZilkzAe7spyxHF916IxVDJZEIym/HW3v+HTZoQdMMNdOp7MwDypFTmJ8ZTlqxwGyJs\nMkFVyRwwAICo9ev/3++lHudGXeHIr/G0jwLhwH6uyNv5vva/QpKkDohkqiBVVa+TJCkU6K+q6sxz\njq0rhHA5ktPPWmqALhRWtZ7L0WtFc83umzM42b8/E5Zs4I1WIoVu7Oy+3D1pM3GfQfv32rNv1D6+\nbSW+0IfsgiU3C1009KQfT746lPVF6zn6+FFhodQLcYfbgvCyfxAIhBPNoNkZ2NlYpNwN+haOXgcv\nd+1K17w87tgFC96VMbjgdIpCwhpI3S+KmX0rRT6+viI30Xs55deWgwuWFMRx6s038bZaeU4rhj6C\nEDs9V4FhqIG5yXHsb15BVnkWdACCIOXxYECkatQUF7tJxWmziQJthwM1IIAGXbtSnZPjFkwgjENM\n8Ivn9DRIfWlft+kHjymJHrHyA3d+v2+t11xAZVgY0WtyeKOJEIFPbQB2wQaRzUr/avjBG9ptgfbb\n2tPrP315ZO0i7t0Ie+4Vqa3eVisxRUWsQxDPGTyCrRSRv1+KEGcWbZ4jv4A3uolvuY9thDfuFe9R\nF6bNEOmIrRE6vxqhyb3Dw3G2bobx+BmyW33DpKk76b8KEk/JdJmgMMAFfAbbesAxRO/vGYtlxoxW\nuCIFGAoPr3mY66V2+P37c3rl5tK9xsBxo4vAiZDcXMZYA4/GK3yMcN1sgxCTnbXzvhOwxcUxZcwK\nTr5YAlOAEviwlXi9DLFQUKmN/y+QFB/EkdlHuNxwoYlp64XYkYY7uHRWyPW4MLgc+bGuoUjL/LBa\nrefYUqROAkgqmBx/Pn3wj7A4KsrdnNupWds7tRpy4xWtcR4/QdV//uNOe6zcsweXzeaJymmoLipy\nizaXzSYWS/V2A3l57td08edlsbhdJQ212vE0fUpYY59v1PD3MFtzvnRpqZ4SgtcMFot7fr6dO6M6\nHMT0yGVB4RC3wIyYMwcQPeNq8GSk6DXyxh49OLV/P2p5Oa2GDqUiLw/gdx0263HxUFc58rf48TfS\nJluqqnpE+30C0E1V1cH/32NLkvQxEAcs1fq8ScBeVVWvO+fYukIIlxs5FUsSPRLaYzaY2Vu9F+ds\neBchILqh1aqdguqm4su5H2CtgOQGMO17yO8InT8FGsCU7TLPRYro0zPp/bh5xa2khk2B6eJYM68K\noEdJCd+Gh9NixQoe3Qccgdm3if5ubQGvBXDLOPgsB9I+l2lQXEXH+fMB0HOHl8YHEf9DL4yBgRia\nNMZmEQLOWANHWoLf1DbM/zSFz0MPMTVzGB2jViHbISNVpnLBcozVMwCwV0WRmO7gJ81X7gqgy+s3\n8dTqILixI+pnu6nMz3dH3Bx4mmk27NMH89q1OCMiKF+6FPCIX90+2IxHoDXWHs+A245YT1esrrW9\n/sks79+fxhs2cFRLB3mgsJDOC8VrBWPFY4dJCHV3PaweAIPLYcn0OE5mZ/PeqDa8NHUn9yW0Z99d\n+7hn60De938HnoGMTJleicLcxA+PBXJtsamngOrC5gxC8Lq6dsWSl0cjPO6REkK0/Yxo/lEN3At0\nbQMvHYRrED1tbAtlUmoUOl4dyoilwZz56naGHorGD3gnLo6ItDRSO3RgZEEBG4DSIUN4ODubVofh\n4dUPs65kHVgh0hDJlqs+4onHDtDOZuPHgACyX2lFu/w2ZMvvcv2n7emd15NxUatYuTCSqLFZvAYk\naI11Cm+A4Pdg4/1w7wpo/2N7YmfuY2fmMFYZVoE3BB0MArjsBNyFJqYPL8SONNzJxRNvkiTdrqp/\nvCgqSVIfVVVzL8Z8LhdcbvxYF/HCCy9QU1PDqFGjAPhEW3y9tdZ5l+Ik1DSV9JnxxCb8WsTMSvNE\n4n4wHQNg5fiV/9M89DYCBosF1W6nIi8PL4tFCJgQ0cbAqaWS1HzwidjWbHZH55yak7PjwAEMFgs1\nhYXu9Ecd+qKpbvQBnrRJ/8jR7p5z/hoH/1cbl3gBrkFdvLmbgGvP12jRPVNICNVFRTQKCwOg4dq1\nFAHN4uIoWbECALMmLvVFW0NwMIGFhZQBq+4J5V/v72GFNle9f129gLu0qKsceTY/SpL0GiLgG4hY\n+05EJLDcgFhnPwCMVFX12P/32JIk5amq2rV2jbgkSbtVVb3hnGPrCiFcTuRUrN30NwJPfwQEwtbr\n4I65YI8GcwpsnQx3rAd6whIljhNLlzJtvmapPxCRrP0TlPeHlCyZWY8rZDZbyXCeYR1woPVcEg5F\nY4yF1GWLiX91tGj+VQ5shw+nweK0h1nXYh3+twUwObiEHxs3xmo04h09HHmAwvJOMFzz7M30hqj1\nwEHgNli4NIJDoY15drTCi4tlUg8rJKWZaD5+PM+kpbEiXsZhgmeTFWzAWxERZLf6BnnqTn4Cyjt0\nYNKKAvgXpGSKVMmaeCFAdTHWoGtXkaJRVEQDRFRKXwVsqN2cG2rP1x6nR82cCGFUGw3wOC/q23sh\nUg+rZ8hcpbUj+D4ggICSEnd6RgUQdRwaGP1I8S/HC4j8DFy3wF6EkOqcAlMsMs0iFaLmwpFoUWN2\n76zeLJzyEV9qx2+DiDRVi1NLJZ7aNAkh3OyAFBFBx6VLKUOIOBuiNYFu6OJECLmBn0KnzZ1YnLyX\nYuCh0dApsBN7p+4lNWAxlUkHSTqmwETxZjIHDyJKXgvfw9RTMjNMCjc2vYmsxz8neXZfNnfYDCeg\ndCQ0ssGCiCFcmZ3NgUSZj8/8xJrM10hNl5k2UGHWbVZeXR7Ijd934uqY1TwGbB0/HsnXh5MvLCfh\nixJmXiXuanmAcY5MQh+Fkm5CgMYPGkOL76z0/W4KR9GKzw+BQ5if4X2ZfObrKjHBRRdv6YjM4i2I\nS+II4mMQhMiCugvIVVV14sWYz+WCy4kf6yr0yNurqxbQfYrifv42fYl/o3hQ0377/zA9Uwi3pMZi\nbNphmbirFdRH//f/W+aAAe7ygco9e5DMZhwHDmAKCcHLYqFciyhVFxUJ8xKTye0yqdeO10511HF2\n+x6plqmJYapo/WOeqGDWzMR0QehyOHBqzpVBGjefb4uA30Nqrf5vOleriPp1l82GpU8fXLm5DAF2\noNWvhYdzZv16fEpKcHbujFd+PlciSvKXRkTgs3QpRYgbzh+1GKjHxUdd5ciLyY9nQ5Kk94FI4E0t\n8jYIeFZV1XvOObauEMLlQE4tJ7Xky9SjgJDmvXYBb8P0V+diPhTNpGJgHiwoHEJMizdIaxhNVBeF\nPQMh9Cuo7gLeJxHdnJ+Co00g6D0YXDCY2JjV/Bd43IW4w60FKuHjYUIk7E6SiYlWmNOnK355eQQh\nsienJcM8p4xNqmba8rlktO+DpDXdPPP0nXxR9jWbR29mqxbCumOv9mZWIcTAKcjMlvE+U8WL/p/w\n2FoRz5LX5ovtXoSOt4fy1L178OralYkxebAX0nxkxk9V8AakJZBcLtMkVpBaqZ7CoadmIFoEGGo1\nCHUVFLjrvhryS7RECDo9cgUwIEU8zrPL1CQpv9heAmK17hyrosXfJeAujNZr3XwRNWq3AL2WiAPn\nPQmbgIR9QCC80RQe/QqRu7gb0hwycwdkEzu+PV/e35LRMatpqJ173Q0yQJxGdBNqIyLadrpDBxwj\nBhKw7wyOpUu5Sju+qv0EIQjLDGwaNIar87dwfUEBD7fypfKtSha/LTMgVWEb8FOHDlRFDKTJaeiU\npHAEeBTweRmiFifQ5bOZrE97mHUN1zHZKZNyuyLcWswibbNo0CCinlxL9gDYny5jSm6DtXQ0hdpl\n4PMlDN42mNVPrRY5n59B9//2ZuOIj2jqBNbCe4/B/e/Bx/fDV6ykO8/QHJh/SwKZkTPFh8KFcFPZ\nA/4VwvOzRCnh744LTUwfnHuz88bdXFxykiTJgmg52BOxlgFiWehTYL2qqmW/N7Yev43LgR/rOp5/\n/nkAzpSI/rgNj1dRcoUP07oopIQHUx7z2O82ogboP6c/vWqupeHxKva0reL5n553v7YrHXJTPM3L\n5El/nHqYNXQo8Ms2AKaQEHddWHVRkft38IgygGpN2DUDnvuda6Z2fzodE+8W46bP9piG6cfytlrd\nx2iuRcyGx+JOc0maa2LaWS0GzgepkoT+lUZvDaS7MnuFheGn1bc1QyyInkYshKoBATQoKaG6c2dq\n8vNpD5TExeG02cj56iv6P/ccw4cP/5/nU4+/DnWVIy82P9aGJEltEW11eiC+Jh4AhqiqWnjOsXWF\nEP7u5NRyUksAslOP4gLu/gpYD9uToOdpKG4Ct24MZdu9e2gG3DdtIO/f8Q7Jt8O0j6C4Nzwwozv3\nT93JlK1QfQdMvVYUXBX03cvbPq9xIBXeBqLfAGVGZ27Izyfs3/yykOsm8J/tz8nYk5xoLlINExfK\n+G/4miKbjSvvvg0AVQLvaij3A9mksCkOvpklM2aKwiKEjc7qBBn71k8w3n0rE7wVsn4Mp/rwYbxb\ntUIKasawFIUFmqulsdsNuAxQvvwVAKa8XsRGcSh2p8o0yNuPs6SEqoICTPrqnzZtu8WCwWTCKzAQ\nu+Z8pcMXIYBaAfvnC/IL0L7rRyYr7tqwN7XHiiFD3Pn8eopFg65daaMRWqH+/8ITtdPTNmr7vpoR\nJPIY8DrgO1kmNEVhm1bEbUiVuTZeYfzkNoz1fZz9n9Rw6+YMDiGicXcBnyDOvy5CG+NxzXxoGxy7\nHY4DH4SFEZCTgxci6laNEJj6vOzAj63ncvCW/axcuIi1QTCoEFgHJ2KgWTFkRgwiYu1a7knvR0rs\nJrpvg4yPZLzy92MMDGRiyitUvF/OzHEBJBwsgRpIam4i8ZCDG7fexJHdP7Ex9Si74uLc52DUnWlg\nh8k/y6T8qEALWLBnCOPkbPgWdj0BN2+EiMwYkjZnUAh0rzGwxSj+szcDWY0WEz97NM4x4HUGUq9Y\nzITS0WwDwt4C/88uDwF3oYkp50LsSEMY9TVvf3f83fnx74DDhw9jMBh4edV8HCZPycAEu8LzqXBw\nocysMb8vumq7ThqPn+FaLeVQb0CdmyLjmL0YS/To36yRm//II+76tYq8PHxDQ901bV4Wy28KNT2C\nZssVWcjVWYIje0YqvJE5DICO5S0A8P54N501MfTtNLGduvt7d4SvNE00GDf06EHljh2oJpO7cbfL\n4cAYECDaEJjNbnOTmnyxiKunPHpp/dR0xJ/HNZshSe4sExDJQ40QHP2TJuBOInjRC8Gnes+2xojF\n36ba2CdUleLiYgwGA/7+/tSj7qCucmRd4EdJkvwAg6qqtvMeU1cI4e9MTt9IEv3igwhv/TQHvjrB\na4ErmDkHEqYj4vlBUNhc1C8Zf4TTV4nI0YaICMY2WEr7Bu15YeY+bq+AYcuG8VzUKq4FmmbC0ShY\nD4zcDH329CPoOyuvjVwBvvDfULh6KoSEtaeg1z6SsmRCIhWG74BZPcTq1P4+j9OxcBeuVq1Ysvcr\nwkcPpvlR8eW62mzg5EyFIdr7eDcsjITXPkWJfQyAg139SW+YzqIvRd+zMy19aHIaan4+hMtux6CJ\nJP1mXl1UhGQy4czJYSyiqfSthSLKNv5qrd9MYCCm4GAchYWodjtetayNa4qLBVmUlODUyMBHy8Ov\nRETaAB47CVn+QuiUIm70esNNLzwkoAu7gFr/Kz221wTh82KgVsE0HjdL3YVS34dLOw4IQTljchvi\nUw4yajMiG3o1sBdeTYd+wJtxcZRt306HHTswa8dSgWNJMi0SFVKndWJU8l7Wz+7L5urNvD5NRAEr\nEYYpKiJypxdkd9Tm/tqIEaxZtoxPEYL16ViYtdrKkKIiggu0E5ALqTGLiV87mrK+0PAEoMCsdJiy\nD2gOmc8Oov3atewBJhUgOod/C8mTBRE6WYk57jtOtDAw7YzC9hkQu6w38oiPsCP6D37JNqYKAAAg\nAElEQVQDPJwN3Ash37YncsZVlOXkMC0W6AXfDoSx6f3IHbBJ9FF4FLBBWrZM3AiF7BZwK3CldrtS\nG/49P/9Qd4kJ6gY51eP/h78zP/5dsHjxYkwmE0WlP9CwTPRws5vBuOVzdtzrz9rYtb87dk6KEG5V\nPuBTJYQfiAbequQxNgGxYBrXWMG7UHQpTWsYLV74TlgyezVq5N6vXpMmmc1uh0mXzSZaAmhmJjXF\nxZ5ebVoT7ueApQEBuEpKMAQEYAoJwRgQ8Kvm3QaLBUetHnEAzqIiN9ed0ZpgGwBV42Sd770cDgzB\nwSJt02ymprhYGI9pTpZ69A4gdvv23z13yWYzRocDJ4Jj7Z07U52fT8IKmJVgpWNREd8jgnzVCC72\nxlOSIJlMXOdw4EDw9xFFoUmTJowYMeJ3j1mPi4+6ypGXkh8lSWoKPAUE47FrUFVVHXfOsXWFEP6u\n5PSNVt8WAjyv1XBN2VzEjXtvYvvjn7uNKpQMmetjFO4CVk2WGRuk0OVUF55KjCQq8xnRWfk6wA+O\nNBNOfg99CT/8C9qtgL7H+rK5bLNQItcDP4LrOVjASqKOPwPz4IvZ8GLfGNocfI+7Cgro9iPwHSQV\nyDidLk4cOcFV/i0w1oD3sTO4bDZO3NQa/5MwNEkRZhkLoUtJF76Sv6LKB1bGxXEsLQ3/BOFIKZUL\nQ/7qw4fdpKLn1uvEULppEw0cDvoBXaK9Gd9uPK23Fopx2qqht9WKS7Mq1sfpK4vO4mJqSkowd+iA\n44BIYfFzOPBDRMf05Aw9nVLvhwYiitdUz+HXnvPFE5zU4aj1ut7ouwEibt0YjyFKCULc6XVo+n59\ngJr+/ZmQuQFOQ+xnsXQanY4tPBxWrMCCEJQ31Dp2CIKc3p4sU5yi0CIujq5paezT9u/UfvRPwRGE\naOsK7NOO2fV1iHrWj27l5TykzT0bSN0Yyrh79zAYaGyHe2YN5H3pHbFicBh2TofucyErGiL3wfb2\nIg3FHyGAzcD9DiAdsiYLUQXislwZEcGR6xozy6SwZCTExvqxIr2c+4BdQBeg6VuwcHMEY0cvFQ3x\ntkDUpwkcvGU/p1ufItd/E6XhkGW1Yhr1JK43NnLK+Tijv5vCm33+j70zj4+qPNv/98yaTDIhkLAF\nkaBg3MJbKa60ItYCVYtWabViq6WtK4sKOAgoCIoMi4qiYrXWqlitSxWXFqziBvhqtBbcIipBISok\nIclkmzPL+f3xPPd5zqCtfVt+EizP55NPZjnnOWdOMs91rvu+7usezuQVq+E+cC7Y89YA2PXA9Jdd\nMZEeo9hL3vb0safi4540tm7dyo13XEe0qJCiZrBD0KxZTOS6ezmqtpbjv+RvsGTWNJI6YhiycbN2\nqSCEk5AOgC+rfkA9550P6fGwIoNv3DqF/tUpMtE8fFnwp0xw1VenCgO+zGBE8DJdV+cSMMmU+aJR\nFztDYhBSV+fWv4kLo5A/774ypIZOyiwCJSVka2oMDmpX6Ja1a8mrqMBJJt19nGQSNmygEmW4dYbe\np4vn+t2g752KUbh+2aWw8AbwXR3DmhXnsjjEYyaguvNIofC0vayMUG2tq9BJoDD7wr3fl041OitG\n7k58tCxrHep2fwPqFtNSp+P8/iv37SyAsCeC08168SkEPt7nema/dRncCvOJMWF6nO4NBbRVtSqy\n5QNfVx+vaklZT6Dvi0ACpm2OMX9bHGc2zI1GueqRhGIRA2DxlOFM/tVqbnhwNA3fO4hLJsUpBMJv\nAo+oie4ar3jfi8ccQ9natcyeOZB7rtlIM/DuVTEuycSZGbqE3933EFPOOht/BjLr3wXg0okruP0E\nSE+axMWnLWHrMP3ZDr6WS9+ZwR/HjQOMkUha16n5e3THymRdMpZJJLB0lK552EGUftxBq4625Y36\nnttyIFNX50YMO6qrSVZXEyovx6qpIQwkQiEiQ4aQTSRI1tSQr4Gqt77mH2FcJ4PgEjppGSD/QXkY\nh8k6TF81L/GTx2EUCLRhsmtComS/DKavTEa/JqSvdfRoLr1lBQ/0VUTyc1SWrBCoLSnhuPp6PkP1\ncmtaGqPXZ9Drmjj1wAF6e7+eMw+VeUvrOT5HSTD/Dnw6bhxD77qLc4AfL4qRCkJw5q0MTiTYH+Ua\n2o4ytfEDB07vx+bgZt64Gga/Bu2HK+L5MCq7JgQ2H0XgHJQTar+74YL7J7Ns9GIYAD/8+w8pCZdw\nwI3PM31BDdf/diS+lSu5ZBXc8tQkei9ZwpJrh/GjGedyHL/glOn9uHhVdzqqq2k4ZBI3fuca+Dn8\nZRCMWo8y4jkZngVG/wE+/ik8MGQIl/9S31DsgQRuVwPT07tiIj1OZLf0ectzHKfjq17bO/61sSfi\n4542li5dSiQSYfvn75P1QVEztOfD4CtNDfU/Im8deaoMwZdVWbaMX2Xdwkn1OLhT9PDzntCtQTXf\n7qiuxj7yIEK22teXBX+iA6cgj9RbCqezGl9TtbWEKyoI9+9PctMmsokE6fp6IkOG0LhsGQWjlRNU\n+/r1pGtq8HtqyVO1tfh0oDXtqTcPV1aSrKkhrB0pA6WlJDXxk5Y+cg7+0lIy1dUugctiMDKIwkZp\nL5C1bYKJBKlolIkax+8eM8Yln+1actm7tpa6IUM4RhPKoZ5rfG1pKS1zf0XJRepvIHLJJApf21GF\nta8MGcL+ev/fRCKcungxF1xwwT/+Y/+LY65lcaXjsMiy3PuJZFkZ07du/Y/n/m8bnRUjdwc+yrAs\n6w3HcQb/W/t2FkDY08Bp5PyRnHzFKlJXx5jcJU71JVDxEdx05Vh+uXw5BS9Av5X92DBvM0V/geZR\nUPQ2bDxENQn8yQeoMsUimBOPctV7Ce7vAwcDcxeezmHzn+eqz3fwdCDLqCvg4+vUcbujb8r320zk\ntALa/tDKjRerft2/mTSJyiVLOPYPwAnwZnd4B5W5mTBjNANau9Gjb0+6bwenvYOm3nm0FsC1eXFu\n/zWc/zoc/fTRXHLlOs64As4qPYsj1tkE+/QhE80jkFb7ZRMJ0n1VC2z/B1uUY1VzM/6iIuxNm/Br\neUagtBSnrDupNaqJaPv69S6QiMzDV1VFBpVQTKEWZXGXLEItzmWYfLL0ZQPTJkBkhmBI3A5MxqsB\nQ7TyPb/lNQEgyX4F9I/cZUrTbAuTddvmOX6rnqNNn39Sf54gpvh6BwpsGisqOLi6mk38jszwe9hn\n9WocFFFLYqKMck4bUarMQhTZ+XjpZZw5/nruGjGZZT9ezLO/hu/9AW77KVy4FtYdYzJ2xcBq4If6\nd4c+d9tznXvqY/pQmcfNqMXsuhGTWfbQYtXE/Un4YfqHPHHQE0z4eALzx99MwVtw46EQnjqVe4pe\n5okr1/HbykqO3rCBY1dB/Qi4vbycRT9p5vkFDQyaAh8uUscrXA8/ePhU/jzyMea9FKNsWpxzb4IF\n9wxhqgZg9qC1ADovMMFuI29fAKX/BKj+28eeho974tiyZQt+v5/lv1UtdNoiEJoc54o5cN3yCtaO\nO4CQL+RuLzJKkUz6soawOZaSXFqOee7PqPdDtvoNSkIJEE3ojNymLW7NdqCkhHR9Pe3r19Oha8El\ncxYuLyeps21SJx7E1J7JHOFEwg1SeuWGWT2PFQq5jb+95QtC7sSJEnClkjKCKDwWbBaFSlofK6Mb\nbidRkss82yaFcvdbN3KkS95k5FdWsuCwv7vPpZ3MYh0kz8i5699yJoeixB5p1L1CD30uQ//D78vN\nluXWwRfr42UqK91rs5fA/d9GZ8XI3UzepqBuxZ7A5BNwHKfhK/ftLICwJ4HTyPmq/8iq/FXqhYPh\nwxGw/2uw6HCYsgP6LezHn+ZtZnAWmn3Qq6GAtnmtcDAM+3QYRYEintjnCRgCWyugz4Pw/hlwQBxu\naIvR5eo441Lw0/PH8Ycz71KebTvMOdy4aAyHPPwwr8+LMa09DudBa19law9KQHsninTMvAJuvw4W\nl/dj/Nln8nlPBSZ9N2dpX7+ey/6g1MNH33I0Y7LH0jErTj6waekEAPbbHiGvLUsm6MNq7cDKz8PK\nqOe+rCJ0MjJamiHad5FSZBMJGpYvBwxpCg5RzpigCE4KRYRaNQCV2jYBz/agFm1ZwNsxPdFEQimE\nrcWzX5tnO6l/644hiTswpE4iiDKP9I0Tq/8QahEPociQZOFkJPW+NkZ+KXOc+yTcdrLKInYHhq6E\n20cqZSOe/XwYKWO+/qxZVIaxGLgSuE1/xkZU9jGo9x3TAm8XqhK2Qj1ns95GTFAsvW1Wfw6fnutA\nTObxdWDjvBjTWuNcs6yEAfX1bJsZo/yaOG8Cm8ZczO/uv4WaEPx56lR+vHAh9UDFRpiwcgLViWpW\n7VjFBwtgwIMwY1uMqybE2aKv2QE3wQ/qTuW+OY9xW0kJ178OiZuaKY+U8/41G9VJ7CHrAex6YHpq\nV0ykx0l8ra0CeqPuoZYDZ6FlIKh/rWWO4xz4dZzHN23sSfi4p45TTzoBX1GYbx1eSTIMZW81kezd\nhWAKJh4Xh41wesvpAFROfSSn55k07fZnlMlJOmDmFclk1qfeB5WNkyydEDswiphsIkHeoEH4QiEa\nli/HSSbJ2rZrLhLSWbLWtWtzHCkhV2Lpj0bd/m1+TcRSGBKYSSQIlJTkmJA4NTWI1UcL0KYVNZJh\nkxFAfbnTmph5Lf9DmP6myZISdRzbVj1aQyEKbJtkWRlOMkm6vh4rFKJw6FDs2lp6ajL6C8/1XWBZ\nrnlZCugIhQjpUgrf9BgN8+IqKxeNsi6R4CCU3YAOBbp3xfnABM+8iy0rp5Yun1xFDhjljdwXRCZN\nYoDukTti73fyXx6dFSO/TnzceViWNR64FnUr53bMcBxnv6/ct7MAwp4CTtZ0ixs3juGS6x7ms4Gm\nNuqheTGs6XFiO1C3KZ+h7tLXo+6KgUPnHcpb0beUZm0w8C58PFbdvPsaIEIBv+nWytmPQsHaAloL\nWlXxUT+Y9kyM/HaYVRKHYvjpinH84Vd3QSF8Ngh6vQw7vgNXLZ3AgvE38whqsTnjbrhk2UwufeUa\nbj3lFLodcSAdOj0VaVOA0pEHIybHeXlujKmXx+FjeHMgXDhXkbng+1ug/z6u/MOXNTr+VNAAUPDz\nJtJ1dYT793fdr4JlZarp5tattG/YQKa6mjzMYihFyrJQigNkK8ZcxMJE97x1amK972DIlrxfSy6h\nEzcqycwFPNu262NIZsqnHxdhiJMQnZTnXLMoMrgBRarSeh8hRD5Uhq5A77cVpaA9DsjbBgtPVTLX\njD5uoZ4jobePomruSvQ8XVF1dFkgOC1Gv/lx9xp0YCSQ7SjiKORUsokiqJbPH9DXLqyvVzGK3A3U\nr5W3qhfieVCBiphGN6r/jTV6vgk2PBmCk6+EDXOhciUMfGkgGyduJNMDzh43jqJvBbn9rNuJ3x6j\nqQv0eP5DTnz4Yd4DjgcKX4B1w2DV4hiXTI5zBzBFC9qdkZ1/TYBdD0xP7oqJ9DiZr5W8nQOci0r4\nV3neSgB3O47z6NdxHt+0safg4546Fl0zjcamZuyIj0jXQjeDJhmyfaXNzcwYE+bOz9kPzHZgatvk\n9VRQEbpw0kgqIy2eujYhdokOku+952Z2pL5NShPS9fUENeEJlpWZMgRNzpxkEn80qurT5PiezyiG\nIwCFQ4cCYNfWurVuHdXVbnZNHCN9eNIBnkwaep9wIuG6IwuWiIKkCNMWJ1BSQta28ScSFOj3A6g7\nVsFKf0UFJdXV7rnLvdV4x2GxZRHSx0miSKXsF/YctwsKI7ugMFGIGZjgKxhslPuBlGcuyezJ57dQ\nGCqB1G7Au8DCKQW8tEid5WF7v5tfOTorRn6d+LjzsCxrE3C44zh1X7nxzvt2FkDYE8DphlGjuGzw\nSn5/HZzTAfflwdlZiPvUTeh5DxzB7858lW9thVsWTKLp8ccBmH5fDc3fgTuGD2fyk6vpdnU3Gsoa\nGNY6jBcufkEVNm0F/HDTb8Zy5PLlHPkXmP5BjHn+ODUXwh+HDCFQVUWqspL8U05UkcCngX3hGjvG\nyMvjrBkzhktOfpj5tSpjct+1arGpAP4wfwJP3PUEJ4wfScgXYt8dEUAVVmc3byG4fDltV8eomBVn\nQ0WFK6EIXPwz9/OHkwaYMn5IRKGgFUKblddjprnZLYB2dJRQooLJmhqlt9+wAR+KfEm2y9tMW0YK\n039NFtQizELsBSWZRyJ9AH0xWaSVS2L0mKTA14ex75eFWzJoHRii6Nc/HZ7tQC3+/4OqMN2yIMag\ny+O0622kb5ytP5/ILJOo7J4POEwff6M+X+lvk0CRNT+qRk+yhmHPNll9PrOB6/VjOc+dr6NkEMVW\nWfrHBT3by28hgI0o0BOHzbOvhJvnwoQ4KhDRCI9PhE26buGclSv5nb4m+6GSw8+PG8fBd93Fm8OH\nM3nKappOgi53wC9WXsxvH76FhZWV7LNhA81Tp/KLhQu5oaKCs6ur8QF9moCnoe6nyknzc30eszr5\nugCdF5hg94CTZVljHMf5x/Z8e8f/aewJ+LgnjiWWRXakUtI8XZgirzCf/ofvR3EmQjippJNdd+Aa\nksyY+kWL/7mLTYuAsGY6GX/uNhENZq60sj1LKuxza9uyPvDVNblNsdP19Srbpk3BIFfCKITLm0ET\ngxKx85cheCzbOskkXepNa5bx+v/quv79SdXWqnIHTRiFFIGW1+vjOskklnahBEPegqisWB/bZmso\nRJdpl5KaE3eVMiUY+aONwryEfq0Xuv/qtTEiH26n6a67clQ3XkIpQV4vSZWWDH/V5zIMcz8g22Qw\nGTbBVGnl40mWukodCXom9VwiOy0Exs2BRVcZ/Lx87/fzn47OipG7mbytAn7kOE7rV268876dBRA6\nOzjdMGoUAIUrV5KZOpX9Fi5k5E3wzER1037iX+HNE9Q9riyxAxph/r63AjDtzougCN4cBc8ccwyD\n167l1YoK8ioquPSPK3gwD85ohPuL1c39iQ/D/45RboUA4eVACjafC/3agCdh/U9UbdOLwADgT1fF\nuKQ8TvyGSmKPKz35iv3g9RtiLN/2CN+1vkv/bj0AKG6ExmJF3pJheCb1CsdfvY6quSM5fo1F64oV\nXAZctyRGtwaVacv4DThlfeYnnDQ6/uzmLbRqKaQvFCLjiRwCRLS8Qvq1eCWPHaioVqv+EVmGDO/i\n6vPsJ4u6NNgGZWzilUXKkMbZIUyD7iAKNMAQPql582GydHmoqN5QVKZKCqdlgZdWA3meY6T1Z5A+\nbz2B54GGsjIOqa3NmUMil6LlT+nXQnpOqfdr0tdJoojeDGQQQ+rk+kmRt0hDwvp5HrlZxWZ9TZIo\ncGvQ12eIPvZaYH9Ur7x84MJZcNPVsHh6P56Zt5kDPoF4X4gl4dmwykj6ZsaYeEIc1sLz0+HNq2JU\nzonzPe3KFqqDG0vhkgeBY6CxL6xENSefOhtmz1afrbMTuF0NTCt2xUR6jGb3GJYAp6MU3KLWdRzH\nmfN1nsc3ZXR2fNxThnW/+hoMfHcgF2t59vabY2zNfE6kJZ+Az0/X/AKCKZUxkxFpUzhZWgcXXmcI\n3FU3TaOgVeGjZN9CtlGmgMFIML99dU3Kgj8aJeWpncrU15NJJHIcIDPalERMw7I1NVBSklOe4HWh\n9EogEYMxjGrkZOBNOR6wffhwQNWkC0EU6aXXqdmnW/yAMSnxRaM4ySQB28ZBqUMay8oorq2lHePS\nLJJDqZMTapmPke1LWYMEaxsuuABr2TL3Pcmw7cDUhIMJdMo9RUI/jpDrEA0miybnI69nySVwQgZl\nOzm+kD857g5MwDdVUsKMnSSsiyyLKXu/t0DnxcjdgY8yLMt6DOU3uBoTJ/mXWgX4vmqDvQOsd9Tf\n9bJ7V3LePXDuwoWMvBH4GXx/JWyaNInGE+D4y7vxR2DAX2DAYuC38PcxVVzSfBEf/gTm/+RWVkSj\n9Fm7lu/dC1c8pVymZufBGbPg/HvO56w7VIv1H6w/ldenxQjfCL0v78b8zTHePBf6XQpPR4B6eHJ+\njGAcvneFIgZHz4nDwbDstg64GRb/cjij71VAcnJ0FC898jwhW4FLW0RlzbI+KP6oiR9/chAH2TY/\niz3BpUNWcAlw97QYgbRxwAqm1PZ2SD0uaFWF1iFb9X5zPtuOLxp1JRnJDRtI19RghcOEbJuAlmNI\n5EtqunwYApJALYph1AIsES8fuXb/XtmkEJBCYNX0GA+hjFrS+qcZYySSxizKQrgkcybuVVI/VoQx\n8sjqeboDH+jHrShwkkVdZJYR1GKexGS8WvTzj1Hf1OLaWlfSIRk+9G9vRFAyemlMBu46TEZP9Phy\nLSTj5q0VFOOUCMZ4JYupC/Q6Xab138RGBREKUC0FEkB7NIqjz78P8PjVav558zbzDPB+XzgaoEoR\nzB7ARCuuWGAJvD58OCfPifPm8OEces2hTL91ChecNZn503qxYOEQ3u8L944bx0DgPGCpHaM78NmI\nyVw4cgp7xx41HkfhopSytmCUUHvH3vG1jucsyyVus7apBtVv3nguoWmqHKEs0JM3qv7Glnc2u8Yi\nwZQiW6mgwrjSOrA/+NCdc5HGucZiJYv0ZXPr3WT/cFK9HkypAKhk5axQiOR77wHgC4fJaKLlJJPK\n5bG+XmXgdO24Y9vKHEwHRdP19QRKS5WUUhNByYxZ4bBLxARzI/rxk9fG2FJZyZbKSj5BZe0yiQQ+\nnbGzwmEV+AuFlNS+rIyMbhcQLCtzSWQAJZuM6B5twcpKWgBHE7cMCjfkJlOwqUC/5qDwtgGFN1Kj\nLRjYsWwZOzzH6kDhmAQmg+QGING//44ip97X5F5gZ9OTiJ4jgiGUfsw9gOwvgU85vhh+WagWQHKs\nOeEwi7TByg2e3/P0z96xd+w0HkPVvK1BlRm8rn++cuzNvH3FeMKyGP020BPm73crfZsvYuyn0NBb\nS/Cegl4v9WLZ/M8IAJfOHMjiazbyfZT0C+DnL8DSP1zA+IHL1Lf82/Do8fDe/BjTT49DH7ht1lSy\nts3Fxyxh+xmqN8rgLEoaeQywEBbnxRg4S8n/Ri8E/gdGvD6CVYNWQR8Y9tQwju56lGtL3HdSnCOA\nb30E0x6fQsOn9ezfpYdbLC0F1EfPiFMF3DZzIOdes5EZ70L8IIhOi2GHYEdXlaGTedMBVeMWaVOg\nJC0DMomEK+dorarCp62NLY9EI4VavL1SRDEUkfcl++OVLIDWxaMWYNm+BCOh2I5pKVCByuCAylJF\nPPNLdi3tmQ+M+YjUvaU92+WhSI0QqEJ93tKSIB8TlQvocyrCAEY9Brhk/w8wUg/JjEl9WgSTtQt6\n5s2i3CRL8aQzMJFQPK+FPNsEPdfZ1seyPPsFMHJP15FM7/85KmPYpOcMou7EEyipS0Y/L0Tdnefp\nfSpRUsyqfa7nuC2X8RqwL3BGBrgNXhwPx74OlMCd5fCrj2DhfvBLoNu9cPUvQ/Sybc5vgwtOnUz/\nT1dxuZYVdbaxq6OKj++KifQ4hd2SeXvLcZxDv85jfpNHZ8XHPWEUTi1kxaJW5lw7jNJQKaXhUkqt\nYrZmPueES+5m/lWHMrrHSTQ1NFOQ8VMYLXBNRlJBhZGFLXBJNI4zRf0NhLhlTv5uTtYtkM6tfwum\n1GuQW0PnywINTW62LFVb67bakbY7KV2PltHSSV8oRNa2ldtzXR15FRVuvZsQKsmYgZJLZnWmLKNb\n8IAyOSnX2+wYPTpHqukLhVQ2rabGxUUwAcAgyhSERCKndEECmJI1E4xD79cNU9bgzXq1o7AuhcF+\nKVVowQQuJRgqGUQJTPo8jyWzKMonCbp66+QF99w6O308uT/IYO4nRG0jQWPJygmGCh636NfaUQFP\neQ7GYCVdVkZBbW3OuQJM+i/6TndWjNwd+Lgrxl7y9hXjCctidB1KnH0vnL7jdG6e+ggTFp7OnVMf\nwQZ6Pg8bj1PbD9wGpODdPnCQDVcXhjjFthmAcgCc8JthnHXeC4wBqoE3+R1NofM5z7Z5aOxYBi9f\nTh+g/1twz6HwaWUlr/78AJZNfYQ7ysu5sKaGO+fGKLkyzhh9jhcsPouHtj7EtH6X8af6pxjVaxTh\njJ9r+8eZtVE1125rbOHRh//ML875seuIlQxDcMVLTJ20Fmy4+WfgzFTZtvQnWwBoP3gfF8h8WdX3\nxpdVPXAy27YTKCkhE9TLY0MTVjhMNpGgff16AiUltKxcqfq+1Ne7EkghOiJbFDIhC5uXIMiiKnJK\n9HvexVbInRAe9Jwil5QMGpgoZMazj5eQgVqEvSULblNu/XoeauFuIdfBUUip9J2TiJ0QRCGarShy\n0wUTEbQw4JPEECufZy5QQHMFcJPns8q3Rq6ftwddAHWNvZk4IVgydi7ozuhza8JkJQXoWjFZUXGs\nzMMAuxDaj0aOZP+VK0mhsqAH6uMUoqStrwCnLFU9CoegIqXN02McOS/Oy6NHc+iKFbw2P8Z+0+KU\noQhrTWUlQKckcLsamB7bFRPpcSq7hbz9BljqOE7n+2PtgaOz4mNnHgdceQC1HUqy3z/Sn+E9lDyw\nWypCazhDKOtnnj/OjHSMl5tfIbTOomtRlEHfOhjQdd35GRa1LuKWLZO46MYbc+a/+cpptOcrgicS\nyVQQ8jpy2waI/FJInKX/jOF25diceutd4/Ro22R1rZsYlwTLytx6tWwi4fZJFcKWqq2lfcMG8rWN\nvWTcfF6CFY3ik1YAmNq1/MpKVwopjpYyJBCbqa11zU7ybDsHPwWvRMEhxh5BFA6KdF9UNhkUhkjQ\nEkygsxGl6PgE41bpxU8pecDz3GssImMNChO/q59LOYGoeLz4uDOxk/d9nsfG5sWQTSmJSKHuA/wY\nFZFsIyoX6dtqh0L0tm22688rAVuAKY7DAt2yoTPi264YnRUjdxM+PgXcDTzlOE7bTu9FUB2eznEc\n58R/OEdnAYTOCE5P6DR3zdixTJy7nKf3U1Kw3kCfNdA8FObdGmPWRXFuBK74ROeT5V4AACAASURB\nVO/4NO43/LkzVFr96UmT1OK4bBmzL+9GNBBls71ZpYiOhFt+O4nBS5awEXht6QSuHX8zHwHvA1tn\nxbj07DjcDY3XqjzruYvhB02n8kO7gi37QH220T3vPnYxf2x+iuE9hnPzpzczofcEuraEaPh8B/sX\ndSf4eRMt+3ahuQiOGB/n1KXAYXDLHydxcdESbvDFCCehoZsCHyFsBa3GWVJkJcFkFsfvI9vY5B6/\nraqKgO71lli9WoFMfT3ovjU99XZFKMkEKAmCZHtK9WtC6gQoRNZYhFl8pXm2zOGti0t6Hvs9r4nB\nSZhczXuzPkahZx4BCyE1UlMmi7fU3kktWTEKnOS85ByK9bm36f0/xZBQmRfMYi7SEJExesdnqEyY\nN5IoEkxpZSDEz8GQO/SxpAYvjKm1k6yjRCWjmBo7KSxvQYFuM6apuZioCDkUAPRjIpBSX+egSPg2\nfS5n3gJcAE/pP06lnv9mYBpK/lKD+r4dexfEb6gkf8OGHKvnzjI6KzDBbgOnd1GluJvI1fIP+jrP\n45syOiM+duYx9vqxvLbjNfoX9Of76cOoL4HWbBsFPmVEkg5A0p/hhIsW8cb8GA1FGVKfthAMBogW\nFFDUrAy52iJKdVL6cUcOebvitmnK7EsDiDz2ZxQ+Ss2bZNuEuIHC0GCTarkDkHznXbcJtxiNtK5Z\n49ar+crLVemBJnCQ2zPVa1CSqq116+Us23ZJl2XbBHR7gazX+KS01H0sbpVWOJyjpBHDEzm/bCLh\nSvO9+CgZN6/JiJQVtKJwUgy0vGqaHeXlhGpqKMKYZXWUl5Our1fnEwqphuPkqlsEb7ylGCK7lN4k\ngsNCxOT4EiwWcitZNMnUyfZCROv1NpJ1k/mlNEL2wXN+YRRWSgmG9w5d8LEYk12MTo/R+sTTFG/Y\nwHn6u/6WZXHoN+R731kxcjfhYw9gPDAG9W/6Ker2qxfq3+dB4BbHcbb/wzk6CyB0NnD6rSZubWPH\nMvH65Spt9gRcv2Eklz28kkQUBk7rRfX8z/jxdSP4QcdhXHpEXPnA3w6bLoO3Udzsf4Gzn4Z1J8LR\nCeiIQuXMgSTSCT77wWcQgc8Oh16vQfpwCLwM2DD4pcG88ZM31EQtqPyuDa/1hDnxH/Kd9ME0dVHg\nIJG/cBK6NMHT+X9jVc9VxD+N8WroA/o392TFIyu59KTTaOrqIxmG2mAjB9YX81joFV446gWWPnQB\nVQd20Cuk6FVxIxR8sJ3WAd3J64CWQgVChS0mCxfavB2nrLvbnwaMxXH7hg2EystpXbvWjbR1wWTd\nOlALnIUxDCnAZNhEfgimDg6MRAFy6+W8Eod8DBB4v5WyyHqzRLKvZNcgt+eLaOClpYBY/wvZ6Y4h\nT1lU0bbUk7WgCHjrvBjBZ16l1+rVbvQxot+PYhb8Jn1cKb4OYKSUYvAyHZV5s77kPfms3ppBMBnD\nVs/vAAY8khjiJ+0KgiiyJfPuIDei6AVTceoUQJRoa4P+XaKP6aAyzmNQ2bdCVIjpkJkDuSB4GoWz\n4nwKLGgo4J5urbyzKEbFlLgKmADS26WzEbhdDUy70k//NHYLOJV/2euO49R8nefxTRmdDR878xh7\n/VgADs705YPQ5y6epckQwI8/o2q1G4uV9L85kqEg6eelZ1+hT34Xyr9zEAC9P4Ue81WZwnsLYq7T\n5AU3X0DXQLEKXqbUXImoqotLhlXmTZQtvqx6LmZfXkklgFW7nXRdHVYohF1TQ15FBY0rVoBkz0pK\nyGoSF66sdM2/pFUAGMmkN1uX1v1Wxa3S0jVrgEvIZB7vENml9GcFJaeU8xEXRjAZKSEvYMoCvDXa\nUgMOXwzw+YAWrfaxMlkSq1eTqaoiU1Li1uAFq6tdHEuh7i/E6dJrMiIL3P/q14/H4LI3wClBVzAl\nGt42BBJMFYIoGUB5LESsSD+XwKcEQ6VuXgKXCQy2igGakFwpC3FdoUOqVECafp0M/Ak4ADjjS77/\nXkOUey2LbcDkTrpOdFaM3B346B2WZfVCmXUDbHYc57N/ab/OAgidCZwWHn443aqq+DnQdUoBrT9s\npWMYvAq8MWYMzQ8/zFVz4IGr4Mx34eGDYMxb8IvZF/O7Q25R38r9ga4wR5lUMhI48nEgCi8fDz97\neSCbqjbCd+GaZ2PMPDiu9lkHz4yDI4AuK6FtJESmwYfzYWDax5pAlieWxqhJfkJZfhmhrN+tRfNn\nVM+2YAp6fg43BB5lVK9RFDkRAs1pdmzfwXNFrzK6x0mudHLWgDjTtsaY/3EckvDYDTBpej8uDZxJ\nYFsT6R5d2N5dRRa76TSZ066ihsl3jNwjUFqKv7TULcB2bJuWNWsAFfULVlQQ1pbwonEXctUdQyak\nt1sGI62oJ7c2TIaDWYS9GnTIXaAl2+R1igK1uEqUUCQVXgMSPNvLoitA4W3aLUMycF6pRQ260HrS\nJLovWcIOFJH5FNxGqEFUhE6kIl7LfyFhUsfm6OtRirpWAipC8sQ1UkBTwE0MTgo816MN87cIo1oU\neAvAsyiy3Y6p9xNjFalBkPkFIL3XRq5pdqd584AjgZdQhPB4oOIVePYoBXQXrt+HJYO2kEJJKt/C\ngP63UW0WmoHTOsl6AbsemB7ZFRPpcTpfBCfLsq4Azkb9STYAv3AcJ/klu//bw7Ks7wIDHMf5nWVZ\n3YFCx3E27cpj/LeMzoSPnXmMXjAagMoCJX20fRmi7X7skCFUoDCyqFmRqq1FbSTSCbpuzyPsD/BG\n/vscGTmMrE+9Pz8dx5ngcI8O6K696XwO2VZMW8QcV+STXXeox9GEqRH3ZZXJl0gpxdwk64P0+x8S\nKC0lVVuLvWmTW98m2bGQzkDZmzYR0Fkyp7bWJVAFqCbY0ttNSIH3i+wDty+bZPiCZWVuOwKRR2Zt\n230MigBK3zghciQSOfVc3t5u8lvKCgSbBGMkaOqVXApONB1zDOHjv0vjklvJq6igo6pKlVVEo+Qn\nElio5t75gwaRqq11awStcJhgIqGwXUtDhYB1wyhtvBk4IUxe6WS7vpZi1pUkV9UjhE7Imw9VY1+G\nwjBpIJ7EBH7hi/1n05jsnquCCYUI2LarzunQx3r62mH8aMYLNKPIG+QSuEUeA5R2IDorRubqOJZ2\nD73suefoTKOzYuSX4eOeMPaSt53GwsMPB6C8qopfTCngz4taebGkhPH19RTfAQXVBdyxqJUy4Ljl\nQDncNRTGPYXr639fH0VIKoHngLMXAt8Hfg+cCplh4J8D3X5ewpryeg5qgdcK4fC1cOcxavGrOmom\nc165htuA2GzYPFt9qc+dezRDS4ayvmm9CzDiBAnm8UfRRno4xbQHFXjtaGrmz4/+lQN+diBHWgcT\nSKvIY2ELzDw2zrVHQZcLLqD20C6ExscpnR7D+Ww7bft3B5R8JBWE3m+oTJtYHYPp7+YdrlUx0LJS\nWYdIts2PWlhtlPxPCIFkbBwUmeuNkfT5MREsGZJxApWxkoWykNxaOG90TrJdOzfj9Foae6N0XvOO\nsN5Xjikg5SUm0ltNyKKQ1I9R3FzaD9gYcBHpqE9/xjBGlpnFyD9k/mnADZjsV6Fn2wI9h/Sukzq+\nQn2NpI+byFGFgEqGMYRpUC7ZQ3HolAhji2duIZTiECbEze85BnzRKEb27YpquyBEUerqmvR1kGss\nQN+K6ntfqefqLASuswITfBGcdFbsOeAgx3GSlmU9CDztOM7vd9UxLcuajeLaFY7jHGBZVh/gj47j\nDN1Vx/hvGp0FHzvzmHjLRGpaa1jftJ4hXYdQkT8A25fJCXCCwscXM3/j8MLDchQrz76wjm49ujLo\n0AMBRcLmW3HIwNLaGKkgWG9/qLDusIOwHKVGEZKXDkB3LXKSb5vl5LYOsFpVXzchbzJSb73rZt/8\n0SjZZJJkdTXB+npX0SEYlAL8ZWWEamtdnIFcpQXk2t6nPBJLyd5ZoRB+j0OlN3Pn85A4IMegxCsf\n9B7Dq3YBhR3eOvICcssW0phWPS0lJUSGDCGxejVR26bFs50NBHTWUdojgMoatm/YgD8adQmtD2XZ\nl8b0efPWxtnk1t6J1FJwzov13uCj3A/YGOWNkFL5TFLfJvXrQvik9l3uOeR+xtYZRCmREHwXRZJs\n34oK1LZWVAAw7b333IzbIsuiOyrwmiwrw6dNUazhw/eSt39x7CVv/+HoDOA0t6iIvIoKBlRVMSbt\nIxXIcp1O3xfW1FAKbAauuBK6JbtxZN6xnD3nMRZfPRiAsC/MuuPXAfDAUENK3jxqJgNfuYaeQNXB\n1zJ/xQyGPTiMF5peYEr5FA64aBHn3aE3Phke7A1nJKEmrG7sX5kW46L+cSakJtC9I8L2PBUpjAai\nhH1hitr8bp+1VBBK6qG+xBRGJ8PQ8yObD5wmCgd0J5w0tv8zm+JQDAs7YkxtiLOwW4xkGDIzbyBv\n1qUE0gqgQMkxRbvvfLbdOFz5fey4517yKirIP/IIWv76LJbu9ZYGqKjA3rSJ3iLzQMn15PFm/biA\nXHImgc1mciNZso2YfYCpj5Mhi64QNIlGerNtQvBE/ifyjnYMIZJzlNovya5JgbKQsRC5ckKRYghA\nfKKPW44qzO7ARPhsjCTUwbQhEL19PqapqI0CyB4YQuM1NUl7ztObjZRWC96sotQHyGdy9GsCbh2o\nv9MOzzXD87m82UAhWRKxlL+B1NdZGFlrFxRoe+vxWlEZyWbPdkG9bQQFyH30eYZQ/Q3f1vue0gnW\nsF0NTLuyu/UYvkDeuqH6zB+F4vp/ApY4jvPXXXVMy7L+jupJ/7rjOIfp19bvrXn790ZnwMfOPI6b\ndxyDugzi5g9vZta+MRqCbYR9YcIZf47bYyqoiFRhi1KpSK/S4kb4ON0EkSDdQgp50gG4/pOlLEj9\niovzl7BmPpw7cyA/6XkaIRtTO6cX7wKt9/dnFFHzZ0xbgNDm7WT26U7IVvLATCJBW1UVmUSCgO7Z\nBtC8cqUb+CywbZcctel6tVRtLX7bJhMK4bftHOMprwHGzuYeUvvmrY9zksmcnnBWOJxTL5dFEbyA\npy4uVVuriJ2ue/MGFb2qlgAKB6UJt2Cw/AdLcE/6iIRROCStaQQ7HMBfUUFGy0BTtbX4S0sJl5e7\nPe6cZNKt0bPCYdo1uSsiVykjJEpebyTXmAw5nn4s0k5vfZ6XSIuixTtvKwZDxWlaAqSCz3JOKZQL\nqEhABc/lPiJFrprIm1H1Ol8GUQZoUuYhLYt6oerjL+0k60Znxcid8XFPGXv7vO00CqqqeLesjNmB\nLP7n4frXobCmhsXT+/HIwtO54lHAB5Pvy+PWOY8x9kk49/2DeKP/GySzSXgZaIQ3D76Wc1tg1vR+\n/On4e2kEzqspYf6cGVAH02e8QPsCmHnRIs67Hs5tPVcxtb/CGRuBjfDQ3BiHAL+cH6ff5n50S0XY\nGmp0iVv3jggFSb9LxkRf39BNPU+GldwxkIZN+e2sfO5l8joUCdscaaQtAovXDmfphxcQTMFZ+5xF\nQSvk//lVCmdcSiqoAKqwRclBpBDbn8qS7tuddH09yU2baPnrs2Rqa2mtqiKzTYUenSFDXFepgupq\nets2KZTUIIRamOpQN+tdgb4YUpaPsa4XAiJadam5EsmkELg2ORamZk5q1SB30ZO+aLI4ixNWhz6f\nlGdeiaSJuYm8Lgu35BtFVtmBIn82akF19DnnozJtQlyLMDVi3s+Tr98r8HyulPqXcudbgAFDkYK0\n6mMKYIp0UkiiRPC81yGAyfCBIWFy7QpRRDFArjsl5JqeCLh4s5JeAAITpZTsmRBFIZZh/VmFSErt\nRAcgnZUk6+egsm8Veps/fQP752R34c/Ow3GcBmAxKiFcCzTuSuKmR9JxHPfwlmUV/LON9469498d\nx807DoAiJ8KUgVNIhsHO6kBhWpEoaY5tOQYbARfjPu2eYX3V23xevcXNiDX624gtasXKz2PavjFe\nmhfjvPBpFDcapYv0O/Wal/g8X7rt3dU2D+//Ic6b72KHIBX24Y9GCZaVkVdRQaq2lqYVK2heuZKC\nIUMoHDoUv23TFo3SFArRAuTV1BCsqcFv24SBiM7YyPoqjoYSJANT3+1omWSwrIysbvYtgVchPC6h\ns231EzJh1EwiQaq21iV5rgslxrnRKw90G3hjzLskaOjH1IkJweyJwdNGYB+UcimEIjciJ/VKStuq\nqgiUlqr6etsm1L8/AU3q3g6HqcJIGIVEyTHaMPgo9wHy41HCusQtQy7plCyjt1dsEQZnhWTJY8nY\niXRUhgX4bdvFce/rojjynotcY6k7tPS80oYogrq32PmmfvE3EB/h/x8+fp3DsqxJ/8prXzb2kjc9\n4l1uI5hIKMfCi3/GVXVwy58m0dCjnonXwaAugxj2Zh5nbToLxsOMVbWsAqiCiSOXwxZ444Q34FBo\nOgnm3zuDdYWwuddmfj9vM0OBV8rraRwDDICRL0D+GiheBY9eBgfc+DyRXxcoFnMPdBwKS9sfIHwb\nPAnEsmeSDkBtey12xqbAF3F70CTDCoSyPmguUkDiz6jf4hQZ7hrheyO+Q8avth/QVEyCNp4fpdJq\nqSAc0dRXEbFEgqxP7Z9c96qSe9Ruxw4p+WQy30fgE2VkEjhgf/JGfY+iq1Tj09TWrW4/mejw4aSG\nD3cXxC6ojyea80LPD5gvUzu5X66o/vHKQ6TOS34KPduLhEGcHcH0L5M6LakBA5P9ksVYmlYLuUno\ncxKi40eBjLhHyXHENARM7VwAFf3qggIMOfY++jMV6HMX9ymRZbhSj5ISVxIpUo+LMcRG3nP0vo2Y\nbKK0CJDrXYQCADEsCXrmFbOWVozmXj6zSGSEdMtxRUop117+FiID8RZ+gwFQGZIlTHv289o1p1Hy\nyWIU8f1cXzORXEoj9r0jd7wN/NHzs/OwLGt/4BJUIrgMKLQsa+wuPo2HLMu6HSi2LOs84Fngzl18\njL1j78DO2pycPYqQrfAxTYauAaXtSAdw+5pK82whV1mfCnYmwxDO+Dn08EPoM3Af/BlF8sK+ML4F\nSomS1uiT9UFhcxZ/xsxX1KyMT0DNJXjccsudRNoUBv9k27dIHnWQa2Ii9WXhgw8iXV9vXCZXr6Z1\n9WqFQ9EoAU92TYhDEkMOvFgqQUnZVtZeS/eGy2rpozT/zup2A5JtkyxgoKRENerWv8HIKC1N6rIA\nJSVuYDW807ElSyXZwEZyzcVsTF27ODa3YWSMfhRm5mm1jj8aVT3wdIbNF43Svn692zTcCoXc8/1W\n374M6do1R3UigT/vNRNilyL3uorKRQKFsp3UjHvfl+BvO4boZTEELIip1xcKJeckhihZz/sZzxx+\nz7bejKr0yxMH7EwoRAp1f+Gd/zMgre/FvqkE7hswzv2S137xr+y4l7yhiBvAFXWqiXBHHqwrhaqt\naZgN/AAeiT3BFb0f48TJ93PTkhjXTx7J+bPhvtnw4M+Bn8CbQ4H10OV14D715f7LRPXlvvDpQZzy\n9CB+M2QIi388HL4LRz93NLwHv4v/kCNrapj4wHjYCNfPhbXA5tM3M6sjxumfKjer11r+xiHRgykJ\nl7gNRAFXwiEuWsGUei2QVlFBfwbsulZeXLmG4kYFLs1F0LslwuDQwWyv6EJbRBEz50ffI3jS90gF\n1Tbt69cTToLdrzuBNExPxwnPibN5SDcibYYwpoLwo0SCy65ZyaWR32KFQuQfeQStq1eTwvRzE6Ih\nNVJCWGwUgZAsldQ7uQsUuXVgNsbkxOsQKXp1B5PFSnvmkCUsgCEfUjvnLWK29TmLPFJIl5ASyG34\nKXJGIUGSxYqibIQGYfrataGkId30/j30tgP08UN6255AL0/NQxc9780YsiQRQanTk0xYGkPWZAgp\nk/55jZhMpoCpkKgGfX2bMRFWIYXo8xX3TW/zVfl74Tk36TXnla4IsEnEUwrXvVlPATCZu49+vsPz\nt/gQOO1KePQbBk7Of/BzMPBjz8+XjCHAWsdx6h3HSQOPAsfs0vN3nIXAI/rnAOBKx3Fu2pXH2Dv2\nDhkthQrnysN9CeBnR7qRAH63tswOGQljxq/w0a8XqoJW9fydtW9R+8FWMn61TUHS7wY781N+ElF1\nb/BJPx+Opd2WbWgtgKYuai47BNO3xakrzlB04a8IJ9V728rz6Ds9Tv47WxhfGaetNI9gWRkdf3uT\ncHk5vlBItRJC38zr5tySgZE6ZS82Sl2U4KIEKIUwpVBrsxMKmcyV53GgpAS7poZgWRlWKGSagEv9\nusfQxNuHTshTJpFQJiHkligkUTV2EhSVsoRGFJ7Iut+o3xdnY6nnExLUgcrA5dk2kfp6nNpahT+J\nBNmaGvw1NTStWKHM0nTtXl5FBW+nUry6Y8cXAnuC1XK+kJuNk+cifQSj/BFZp7hASj1cEuMuGdLX\nWnDPSwilrGLnFkReItfh2UfctIUUyo16q57fr69lOyoLK+ohwVf5fKGqKrLfUAL3n2Ck92d3DMuy\nfmpZ1hNAf8uynvD8PI8xX//nc3QWHf3u0vTPvnEaAFefHYebYPZclTFKbtrEJTU1tALdX4HbHpnK\nrxcuJLAKOBCW7ws/Qd31lANHNgC3o1adsyC4NMjb16dIApUt8HQh3HjdCI5d9DovTvk2V12xim8D\n+W/D0WuGsW7EC/AmdFvbjYajGrjpNJg4G+YsjuKPRrGn/oyGYBs1rTWUhJXkoVeoJ/ntCjC6NeRK\nQbrqDtVSTN3upNhR10jJPt1VJs1RoBJMqaihFFULWBU1w+ir4wyaUkA8NJ7svDgTX4TgY0FSPVNc\nY8UI/fFZKqqq+GD4cNJ1dYR/dCJNXSCw+F5XltFRXU0fDQalGCmgd7RinBflpl7Ij3SPi5IbuZNG\n2GAifPKeRNPAZJ5kMfQWAmcw7lJCAsWtUUiKyPe80bUoRtYp0TKxHJZFVLJbXkdJqR3znpv0TBOX\nLgGWIErP1qbnb0BlLT8uKWFHfT37oEifRAYlyyeLurhUhjARQjk/uQkQOUc3TI8873Vx9PXvhqnt\nA5MlFDCUKCOYVgpSxyD1d+Km6Y1Wypxe8BISmsS4ZXbDmMx4o45y3FPnwSPT1fF3l4HJrtbzP7Ar\nJtLjTL5Q8/Y/wHLgcNRlvxt41XGcW3bhYeVYXfDEGbRkc+/4P469NW//eFy7cBqf5DUS8oUo8EVI\nk1HukdrOP+tTBK09XwU0w0mFmeGkwjqpF69rbCQcDpFXFMFyVIZMSKHUs4nxiC8LDyefYfqsN6gH\nmufGmNpXtRXgHVj82nCaRx9B10vVa8FJk6jvm0fIVu137E2byBs0iGwiQaa5maYVK3BsO8coypUi\naiwN1tfn2OPLepjCqFe8WSbIdXfMosiFZNO8pEwybWJYkkkk8HnaC0jmzdENwqVGL1Nb6wYSs3q+\nQGkpGU20fCgi50skXEwVrMqiTMk6MMTFW6cnn0UyUSWYQKLX8r9FS1D9mlBalZU0PP44BZZFwLZd\nR0zZXtoESaB2Z6MSr+RflD8SKLY8fx8wNXJZjGukvLZzYFmImwRBBYvltUIMcRVclcdBz37pUEg1\nafdsU4wJeHpdMuVzyWfanW0EOitG7oyPX8ewLKsfqgX0fCCGySskgL/roOo/n6OzAMLuAKctlsWd\nN8S4uizO02fAocC+98LTP1M3xs9eG+P8GXGmjZhM9Yi3OTLyP/R4/E3OWbmS14DXy8qYcVEtD8+E\n5Zf8lDNu/AP7AN95DBpPhZsWxbjqojjMAX4JBbcX0PrtVhgKc/4Y46ofxFlziLKTH7sVZveBnlOn\n0lLkY6oV54ZUjJmtS7mk33gAHt/+FENLlVlbr0yxazssBdK+rAIjyYiFdAAtHYDmT3fwpzUvcubY\nU8j4cZttg3HEkiajoDJ4AE1/eoy8igr+fnw3Br+WYuK+y4lfZyJRzy0+C4CjdvTlla6fcH/7/Vz/\n0ki30WeXqiqaUU6L8t8okjuRLsiQ/15xrSrALHheDbi3dgpMRsv73y5kLX+n5zv3hPFaHYPJ9sh/\nYiGmVxnkRu0kW1esX8vTz7tgag/6o7oUyzFEZiJDMlUyfwQld5AauwSqqbWjP0MPYEIwyJxUiihm\nUfZKFr1GK2EM8EgGVFwf5ToISZZecCItlbmk8bgfQwLlswvJ89o/SwbNwhinSGNzcRu1drpmQgQz\nO83tQ9VEhlD1kkL2pCLD+/8jr520G9a0zgpM8OXgZFnW5cA5qEv4BvArx3FSX7L7vzUsyzofuJrc\nr7njOM5+u+oY/01jL3n78mFNVf/W08tV+5yScIlb71ZqFeNYuG1xLMfUuHmbZqcDKoj51Asv0Wff\n3gyoHEAgnSuzFPMRqXVLBVUteP5WFV7ccLDDfhNvJ3yVcqXkzy/RvmEDAB/NPZ3BdT1pz4dYfZxb\nQ6rEwMqor0X9XXeRJ6QJs36LAcWXjSxGjueVTwnZAVM64MVAby1boLTUlUzKc+nvlk0kyNo2PpFJ\n6sdiamKFw66BiC+RwKdbGpBIKIJo2xCNuvuktAui1+RDaqbls2bJNfaQz+WtoZM5BKcluNuAaquQ\nTST4e3ExrcEgR370ESFtBpJFuTt2sW3aMcRX5hLcypSUQH29S8ikLECIpCyQso8oSuSad0elTTKa\nyEkgFM92NpDxmL7YoS/2rXMXTE3UghjSBuSYxqDPMR8VIBbiJp/TB8QuC3L1o30orKnZbT1SOytG\n7g7ytivGfz15A3h49GgSxx7Ej6fEeRAoGjmSy45bycDWgWyctpFfnHsxW7+9kaGzngegwrY5cz2w\nAkb4R/DbK1bxEjDj5YFsqt/Ioa8fyl/nvEWvK2F4l1GMuGMTVzxZTcdA1bNqyCfA+3DDktFsHXUA\niwYsUqvWVnhxLBz7FMx6P8aZl8a5f0nMJWJ2CF5ufoX+Bf1dw5K2iCnGBmNaAoqc5XUoqYfVkiLx\neSM9enenUVs9duSp96XY2rFwI45ZH8R2xDl/3/MB+J/aYiLz4/z6siDHcEoCowAAIABJREFUlBzD\noC6DGPhZhIZr4nwLGHd5Ny77rUXB+F8RauzASSZpfOghfNEoXWtqyCdXl++tDbMwZEoWHu9/gvQa\nE9iRDJIs3JJBEiLkxxiJCBjIYpjAkBzZV8xBJCIntVdC9ERSKKOY3MakokmXBVTIjIMyZemJaU4u\ni20Ek3Vrwzgw9sRk+CSDtg0ls5R6vs2obG+I3Lo/eb4zAZIaAqlz815fkXlK9rIUU3cmMlc/inTJ\n3CKDFGImspECFHgUogAs37OtOGJKbaGcoxjNBDCyU7l+3mhlIabAXSKQEtn1EuoQ3wzydv+umEiP\ns9gtkcUPgKMcx6n7yo33jq8ce8nbl4+ZS6e5/duCKUWw6rONlFrFBNK4bpIS3EwHVBZNzEUkE5cM\nQ31DI/nhMJGCfNr1HbfUlYeTZn+pmbuj8QEmb/4OG4/uxvqm9ZycPYrfp57inDlv8fmtU1j0wSLi\nJTGCM+LkT53KHYXPckrh9wmmFOaGk5D+ZAvNf/mLS3C8BlAS1PPWPXkdCWUUYrJE3oydSOTludfZ\nUJ77bTsn8yQECMjp+5aqrXXNTwKlpW5mDjz1cPozADlZPBIJ/NrGXlQq6SFDcKqqlLJi6lS2L1tG\nfiLhlgbI5xCCJ7guahu5j5Bar1Zw5Z+tTU3QrRuhTz5xP1+hZw4hg14FCkB7NEqh7hMn74kTtJQW\nRDF4JxJHqblvw9xr2PraRPTx5W8p9ylZcolg0DNXGtwediQS+EpKyCQSrssoQKh/f+xNm/BrMpfn\nmVeCr2ACoGnALi+nsKYGYLcQuM6KkbsDH2VYlnU6KvvWE09OwXGcon+8l963swDC1w1OC+ZN46wZ\ncfreBgThBx+fyp9PfYy/DIZR18BdM2FcAvgN0AhNc6FLDarIpjtcMwh+DfScAs4iuHFWjOyLrzL5\nqdUsPmk4k5eshlq4bRQcjWqqNLOhgAWLxjN+dhw2Qe/kPswctIU1i8/igUkPsCWQJQFcf9P59Gsr\nZnOkkUO2FVNfAlen44xIj6AiWkGBL0Jrts2NMPbKKDYmWTdQ4JDxm+f12xp4YuUqfn7OmYTbs6TC\nPtoiJioZTqpIYDLfR/MNt8KsiyjVt12tBUpyUvTKh4T79wdginMr1+WNZ+LgODfcPZrIihWkpsdo\nvP1OwvX1pMrLcWybUG0tPVCLlzgyCXiIk6HXVlekg6IRB0O25H0vIHkNRmQIcfE+l/e9dr8yJNPm\nlU+KXEEig0KkRK8vi3oKReakmFmAJ4yqdQujMm87MPV8+SiwkayWEBSRSoiMMIEChCZUZLFNzzcX\n9b83CKOnl4id1/pfsl2yqIORgQYwvfGCKFDKx7hthvV1jmLIsvTekcwgmIhlGpUhkwxollwpqcgs\nwWTfpL1BKyaSbHvmFFIaYSdgw8hq2zH/M0I2AX76Na9ruxqYlu+KifQYy24hb6uAHzmO0/qVG+8d\nXzn2krd/PGYunUaz1UZ1oppoIEr/gv4EUL3dGv1tFPgiOX3evH1Rsz6FfY4Fz6x8kbL9+nDIwP1d\nFUpHniFvUjPXnm8IX2EL7OiqcLaoWbXoKWpW7y8LPMVbxW8xsGEgk7KnueZhwfe3KIfHUIi2qiqc\nZJLkhg1u9knIlPRmyyYSX+inBoZAeO3wAxiVieCct9G0zOF9X4blkVT6PI+lr5o3CweKLGV0Fs67\nr5A/2c8fjRKqrXVJj5y73J0WYIp8xNk5hFrP5T9e7hFCGBl+Iwo/t+nPltSZvjeDQeo/+4yxKKwq\nBNf5WkoovBk1kegL+RIyLO+J8gRMiYPXVETuNeRc5V7D1uRYTEZ2Dpx6s2tSs5eqrTXZNYBolEBJ\niWpKrts6uKQOQ8DBEH2pkZNgp/f/w3tfNH0vRgK7Bx9lWJb1IXCy4zjv/p/37SyA8HWC04J5qs6t\n14w4Q4GrFp/F+qb1vDXxLZ4uhRP/F+iAwc8P5vZZb3Agqijk7RGTWTZ7MTNej3FtRZx1I2ANcHna\nR/bWLLTCoivAOeYYWLuWk4GDOuDOPPjVjfD+JXDAlfD7uTAYeH7cOPw9utM2P05vYOwdQBruuhB2\nDB9O+oQjaC6Csg86eLzXu9TZdYzo/n3lHpmEh5qeYlSvUS5QpYKw78fKQCScJKeBd2vWpqG5md6l\npYTbszQXq6Jr2U+kk+GkMkdpKTSkDiDvjQ/xFxXR0b87+VubaO+jKrQ/6NJI345isnNvJVxeTv4p\nJ9Jy34NYOsJTQK5MTxYSr0W9AJCQOq+cwo9pigmK0ORjAErkd7IQyoIr+3sXLzCOU97opEgJJRon\nC7cszjkFwBiZokgnxDZYCpIznv2i5JqaSA2XD5PRkoydkMYuKIlgVP+2UH3ipHlnIcrcpAaVKWvA\nLNpRcmsexJlRrP0jmD5qrfpziyRTMqIiZWzT+3XR596AqeETq2W5bmL2svP1kgyoRIF7YqyN5W8g\n9tESJfR7XvfWJXolJd6/g9dB9Mcohwz4eglcZwUm2G3kbTBq2VyH+TdwHMeZ+HWexzdl7CVv/3yM\nWTSGNfVr+HXvc1wjL6l3E7ljKqhcI4va1Aoj0knZrm5HI3l5YYqD+W7/NlGjSAnC1qI29t0RIZCG\nulIjwSxsUZgZaTPlCK1a1/h5pI2B6xpUXfiBB7o34G2vveYSHZFYgnEhBGN+5TXbENwUSRwY/BBF\nhBh/yPAaioDBSDHxktftnWriMomEW99mb9pEoLSUQEmJMTWBnAycLxymo7ra3cbetElJKD3nIZiU\nRQX8tqMIkrf1gDegKZ9PFBkR1PovgUJxp24D0hUV5FVXu71aBUskmJmHqa0Gg31SMyjX3Xt/IuYq\nQo6kpjvpeSznL7Xrcm47l2WAIVxC6gT3vKUboEmdzrZJTaJdU2NkpNJIXcsnRWHjzTB6MVbel7GX\nvKmxm8nbGsdxhv47+/5Xuk1WzIhTMSPO1vJyBsyBYZPvp86u4/z7z6cfMOX1KfRb2Y85s97g8Lsh\nerf6gl2xShO3X8aZUR3j6LthSgLuCmThYJjvxPDPilG0di2XAZdddSoFMwtITprE0m0xDrgUFgdi\nrFh4OpW3wYV33cVp8+O0Lo4x8+WBsBUoUcYUy4ZuIbYjzoJN11M7II+wL8ygLoOY3xQnQRtV6Xc4\npftJFLX5ac220ehvc22JBYza8xUAZX3weXszq15ahy8LzcU+8tsVENWUtBF85lUcC5yr46qB6bYO\n8ttVP7h0QP0kD9sff4/uBFOQ7tHFPcZBdcWKIJaVqUU7rR77hwwhoD4OYDJAUXIXRrnRl8VV3Klk\nCDGQbfIwWRtpDC03/LJwhT3be8mdN0opJEgeC3ELeuaTY4s7IphFXzJB4rjYQW6vG0fP343cbJFX\n+imR0BYUgH2q59uBaiWQwEgtoiiiti8wVR97fxT4SQG4AJyAlCzYAlARDImSa9WGAh/pwya1agnP\neUsLAgGZZkw2TADH24BViJQ4iILK8hVgMpgioxTJiLwmhNkbLfZGLbOYGjohbXIjAKrb9Fkvq+fL\n92B3rV3lpLUbb/d/A/wVeAXVY/11/bN37B27dIy9fqyLj43+NlqzbS4mOpYiVo3+NoIpKGpTTbsD\naaVOEZOuVBD+9srf2frJpy7pSgWhLtzGlZPnU9Ss8G6f2593SV80oYhaKgiNxer9jjxV3pAMm8Bn\naTJCS+U+hPr3p600T2VZdP2SFQ6T3rDBdYqUH5EMCj5Kpkfk/FIf7JUPClGQm3QJpu0sLxdlRRZl\nMgIGHx0P0ZLMWaauzs2weV9P1da6GSMrHMaxbZKbNrmOloBL/GQUYgJv3fU59cZgNXyRdKZReJTy\nPBeJvWTqBB981dW8hVpoSlC42dVzbZrJxWsLFYCUIGFA7yMqHHF+LMbcL4jyJww0R6NujX4rSnop\nLpAZIVeYOm8/qrebmyGLRukIhVQwuqQEq6zMlaeCJnraCMbNaIZCbs2bT2fgwPzfyP2A1K2DubcR\nPHCAa/dgfIQ9Hh9lVFmW9aB2nzxd/5z2r+z4X5d5u/744wGY/JfVEIfDDjiCv216lc+vgFN/M4xp\n573AhyNHUrlyJe9PmsTFU5ZAAfx0yjhWdHuQop935Z1BW8gAExefxYjJ9/PKiMksO3Yxz82E1Uti\n/D/23jxMqupa//+cGrtpqhuoRrBFaWKw5asQVIxRjIpGIINoAg5RE5HrgIpKmAoZBREoGUQBUWOc\nEnH4oVdNjIIDcdYLIQYw2qJ2G6AB6cKG6qnG8/tj73X2LuK9mnsxgun9PPV0d/U5p845VbXXftd6\n33f1vD7Oefr1/o6qkvj+DncfpiaJq9bA1uPhvltiHDYhzrbevdlWcjaLrphFfFuMdz7ayYB772X7\n/BhDxsW5eNrRpPIpysPlANQ01XB2xdkc5CrTkq25HRyV7EIqbBy1DqptxS0p8kTXq8Pv0/xZMz8N\nHEtTiQo4k/xxbh8PCyZ15z86XQCo4NNel23aN8KOLtDt73ny6TTJLkUFgm3pJZcJqmpd6Vsf4QuH\nyadSNK5eTTCRIIwCMELla4+iMtjuSgJoRBNmC5Vt6qJkqaR3mzhCYe0vlSO78tMOU4mydWxyTDuj\nuXcGzHZvEkqkF+hQ9vVSDZTzFqqhaOnsNgd7m23IcQWIyrkJXRBMXzUBMo3AUdZ5plCAT84rhQJ6\n21AB0qaUCsDbgXpfmvX5iAVyewxolB5r2/S2ef2/jvpYApQ/Q1Xn7Oyu0B8luyjUVXsRIdfkx+jn\npJomldUQBkgL+JN7JcFXji02zy6mDcQv/0Xz277OKj64Lw6kxy/5Wipvf3Fd95h/5Wt+k0db5e3L\njSG3DKGypBKATpl2fOLsoCLQhdI9Cqh9GFJ/t2804GrMtLkADJ06lONS3QiVFvNW0YesGLei4Ng3\nLppIJqh04vJtKmo1erqmEmP8Jdq6bEDF40xQVeUyQU3ZrNmCv7yc5jVraHnjDS+ZVYxJqAW01gnw\ntFuBaBRHu07a5lshTDywq0u2Vts2MxHwJkAvhDG2AjznSFAVOKHsAfjLy8nV1+MvLy+gV8pwUynP\n4CSfTpOrrvaqexlUXLPp+EKPlNghcaQEE+MFSIn0QvTdWUxcadLPixFJkXVMScKCAcZg4pGA3bB1\nDEkairukMF9Ecy1VyvbJpNeDVfrg+SMR8okE/ooKQnV1Bbo3qRTaVFOSSQKVleRraw2VVYM/qYB6\nZjCaNilDNOS2yYtct5jHeLpw/b76IxFIJMgDU//NY+TXER9lOI5zv/614E1wXfcLe70FvmiDb9JY\nOHMiY/+wGoBHw3D+blhc9l+c/Bp0GQOTU9/j7E9fJn5GHW8siHHLtiXwZ6g/B57hXh7+EzR1aOJ9\noBcweOxyBgLb3zochsLpW2H3IXHKHoNfbgFaYVyHcXSctZxrnx7KFc8sZuZ7Megb55B6WFce574l\n1/LQT5Yz8+4M746Ao34bhzPguHvhW+Pi9J0JuWkbWXrRRdT178bcv8eZORf23BFBm1VxqNPFa87d\nfsmT1F07kIPwKVH2zDij62Hy6ItZ9eZGnrzMYdVhqyAFs2dW8oc5R3Bd+hgagiroCHADRQOJJOGz\nqA9/roii1kLHLVD7OO9+ROSowwmUlyt+fnk54aoq0rW1+OvqCrRgwi8XPra4OoEBMkLlsCd8Mcqw\ne7XJ9jbnXCzy5RTF4VBerwkDtMQNMUOh/W97jAWzZMtssxEwujSpLonxiIDA6F7HFdAmjbMlWMgx\nRZ/WiLFEFu66rekLAjcAv8UEX5m8g5gqndAYZTKX127AaO3q9f9brfsrLQOE2rgDY+csiwQ5Xl5v\nJxlJeX+wzlcCpejTBNDtwgROFwUUI/ocpUIp+kgJlnu7ZgYx748EV7lHHfX1Peg4/zIA1zYKxrPa\ncfJprGR6W6uAtvFVjqcnPM2tgwez/ocHUxJuxyG5LuBCTXulH+/RsQudt8NVc+b+w749Mz05/swz\nOPPMM//hf9Nun0hOJyxdx2jehFopjs+gfvfnDOtFhpiL5fwQ7N4NXybvVVPshFQQ7TSZSHjPeawR\nbQJia9UkWWazFWyapTgcQqEcQV4LDJOEaJS8uEbK8TV4Q7tQCnATMxPbodIJhz1KZTaRIBCNeolM\n0esJZb89xuVYbpPEdlv7J8m8dvo6hLUStrYVfXQeWI9ispyN6RcHhRRCMOuRoPWctDFK6HOR/7fq\n+yJ67izgC4fxJ5OkqqrUudfUeM6QrgbYvkiEJn0dHfjHuCcA14eueurXCWn3Tqm6uamU+izoexvA\nuE9KzJV76GqnS7RpjAeMIxHCySQpDSxtGm3b+HqG67rD/7f7/vu9d7cDryrgxnylwdl5MjAMbv5l\nHO6A2KoNXDI2TtMxTQx8byDlzfDmwLGsPw14CKqADrPhp8AHwMTtVxOvj7H7EChbBwvei0Er9Orb\nh9cDaygb/guqk9Vs/THcOHoePACbyuG1KTHGjVrMuEcuY9oV99AN6P5edxLfg3y/fgwGNk2DzrVR\nrvv2Q3TbAt193dl6+5V86+9+alObSftyFLcoWgioifSw5X8mXVPD3b5n8E2JwVz49UGr6Pyd77B6\n52q2XwSfjQBGnk+/yDGeAFtcuDJBY49su3JlgiaTKP/L+cE96nBFoywvI1hRgZtO0+744wlEo0Qw\nFMcsqhK5AwPcZGIR+qFteS8UQDG4EOqIBC6b222LcqWHimQXgxiKhVAjpEIlxxRAJ4DIxQQVoSTa\nwULE5bv09rv1awjoarDOxzbSEOpCFtNovAkTtEowwaYRFUzkPDMokDgXBW58qMqaDDE1+QxDe9yN\ncXwUTVyD3hbrmlqt3+Uaxc1TTEHkviYxAvMI6jsk7+/BmPdD2hSkMLo8qRzKsHv/iKunUF3FPTS/\n13YZTHZZ6DZyzzqhqoCN+t6EgUcPQHrIN4A2eSEwEXgDQ5lso022ja98/Oq554gEIsy5ai4pf449\nTjORQIQ9pTBtzNzPBW4Al112Gf10Q+PPG0WtJvY1laifooWz3SwlfkrstFvySMPwbEAZf5QOHowv\nGvXmtSagubJSZTsiEQOgolFFq8PEJJt5YVdc8nv9LjHSxQAHYbTY24RBATd0YkzT87KJhEedtIeb\nSnmVprxu/J2uqQHw6JS5ZJLi3r1plu30sZOhEPX6Olus87ClB1JNSlOoeQtRSC3F+hlG+QkMsLaT\n1j0SY1oqKkhTaErSiFlPiKwggDKNaQSPReQZnWhQlUMBsEx1NYHycmXiol8vCKSqqz1N+y5UfO+o\nX1cqar5QCEfTS51wmFBlpadxk4bqAG40qiqv4TBZXVFzLHql3QYii6K3BvT7GAD8ySSZaFS1gbDe\nx7kHYHyEAz4+AuA4TpXjOC86jvOu/ruP4zhTvtS++wsV46umhfzacbhiAepTXQxPX6cWnVKp6Z2B\nAbcNZnXiOdbNgWMnwMCOA1l11ir4/6B2BixYci1dpi+HRIIpb0HN9+AV4JIJwE/gwVNg94gRLBzx\nKsNP/4Tpc9MsXDmI508o5tnMk0ztGuPo6+N8OmIEiVVHc+MVYwC4exqsGziWLj8MMOOaOFOXxeiy\nA0YdFaf7u915aPYnDJnQiWm37IJpMVxH0SM7JvK0tvPxfrSByuvu4oYXYeZfYrQbF2fcXcDfId4u\nRiALL+xZz7N/fZblL8CFY2DZQnVfXpg3lOOW/pmys8+m8aCigkDT/tNWcpEizyUrkMWzUA6n8ITh\nZZ/lcf0qfOQbZMmvJqLAbbcBhnfuYhbvtgmIzccO7PW3dzzrdwFFsqgXgCeLfgluUpERl0rbUEPc\nl4RuJ4BMAKUERduaOWttI+BO3KiCmJ5vthZPgoSdXRThtVjlgwkeQp2xq3NyzsXAxcCd+v8RFJCS\nACR6gBL9P3ltMMBHXCkl+yeZOxFay7lINe5TfV3NqKqga/2/SD8nGVRxlvwMI6KX+yhuYbb9sixG\nhJ4iAFKAJpg2BfaixG6LYOv3KvRrg1nk+IDzv+J5bl9TQu7fFwfSYzhfHy2kbeyb0Uab/OrHhAkT\nGDRoEGecccbn/j80NsTUijHm77RioTS2V/FStHBCjfTlFVATgzEo7C8no2nJPQStipr0/RLaXF7r\nmiShKXFO5lB7yJdc5nyhRUp8lNcQ5oQ8JxRGoegLKHA1QHDTaQK6WbhQIn2RiKH0WSOfTJpqHUob\nJ5TLiK4cSVJOmDi2JkviqsRR+5oEbEmsBsM8keTvGyiq/4/0djtRMWoLhUlem8UjryvxUsBeK4ZC\nGrDaLMjaItivH9n6eq9K5qurI19RQXFdXUHLAQdVvfMnEnQCEpWVZOrqCKXT6tqrqrwqrNzvXDLp\nVTedUMhznLSbp4Oi0uYTCY9SaR/HH4moSqhu1xDQLR/k3tkGOBP/TWPkcArjo+M49wI/Bj51Xbe3\nfq4T8CjKRLwWOM913YZ/ONg/ORzHeQVlY3Cn67rHOI7jABtd1z3qC/fdXwLCVxmcnnAcEqiOtL+Z\nGKPb3DgfA+cAlQ8Dw+DY2cey7rR1kIB7fgY3v9aTmqc3qZXy80A3eOJ8NSH8dNo5nD/zSYavVMeP\nr43xk8lxegG+F+B3P4Ats2NUr2tk+oqlPD0lxnmz4qqRwzboubQnmzpuYkkiRnVFM4u/vZi1g2H4\ntKPZeNZGKIWtVXDIEhQ/8zBgE/AS3FoSY08p3Lbj1wypGELXUBeOvzrO/JtOZMjUNwG4YSnQDPHx\nEJ4WY/SP43xyAnSfALPKY/zNv5nl31nO0a8czRUzN3LdkzDvlpNInfN9L9DYDUqlB5xw9sFkFX15\n8G/4CAB/qfGV9GlRdi7ow50dpxNqgjRyaDVEqySOT1J1k0nSnmhC1n5Cq2y2nrPt5cHQH6VqJceU\nyUoolWAoerYwXMCVPYTCZ0/ypSjg0VUfWxwYBVjY1yImIEL3czEBSs5T/pbsqM86TgpVveyoz0+A\nTbP+vQVjCiMgU841o7cp0X83W+co+jqht7oYaou0dJD3qgvGwET+txPVkHw7BozZzc3taqeAUaF1\n2v185P2WwCnVTNscRs5RzErA6CPkvsl9rgL+pu/HVwng9tfABF8PeHMc5xI+J7HpuvtUzvdvM9rA\n21c/PvzwQ6LRKB07dvxvt1l4+umkBn23oH8c4PVidVzFRpF+cPL/9o2mFx2YtgMAqfseBcCtrSWr\nF9wCiAQAuamUaqKt+6h9Xo9LKKT2o/9vtw6w9y3BVO8kXsn8aifKwFSawGjgxIkyV1+v/p9O46ZS\nnkmJPNdaXY0vmSTYuzet1dV0T6fZgUn0SW9Pu3eabbph69Hta5ZbWLzXubdgYoMcu0kfs6WiwtOP\n+az/t+jj5SIRfMmkBwTlnokLpsQluTcSH8O9e5PdsAFfVZWilSYSXkuHDJCKRhW1tLbW082JBg0w\nvfB0u4B8MklYAzpbQ2gDOgFwom2zzWaCFRVk6+uVOYq+pjzgl8bq1utKkrUNvHnH/j7qbX3QAm+3\nAPWu697iOE4M6Oi67sT/62s7jrPWdd1+tkbccZx3XNft+0X7/tvQJi8GngKuLo0zZAlcCTxz/fU0\n/xzuCcIr09cxOjYFjofLPoXTFg2EcZDvA1wD7c4s4WdzoOhTOH/mk5wO8DG8MwjOmBznuRkxHgQ4\nBC5+EV5urWb7/9tKZQ4W5B+hawM8Btx+MPxx1ia4QGXsFp+9mCs/uJJ+K+Hcsh/Dw8DT8BrAt2HW\neVGW3Bfj1juHcNd8OGNGnNfTf6F3WW+SmSTda/IM/Rje/OmbnILiKd2+LQaDIHYj9JkZJ30C/AHo\n+3Jvnmh5nuXtlzPug3H8ceZGrtsKM8+B9v37458Q91wkfXkD1Hx5FZRk2Pz+YAZ8Rx5O8JBDlABX\nP/LJpJpcdu32rHaFNicuheKMJBOjNG4GM0nb33TbQCSLqR4FrZ9h6yF0P3nIkCxbAX+dQiMN0XHJ\nfhIoZJ8gxrI4BxyEqoDZ14p1nbZhx95CU6ELCpCzq0nS1Fpoh0Egrl9bhOYNGBqlNMK2z1P0FMUo\nIxMJ8MWoipot7A6idG9Ca01g6JpRfc+36/PZqp8XXdxOfV5iRCOAXSaZZut3uQ+SGZZAJ1lhMAC3\nBaMtFI2jLa63PztJCmlEHwO/fIMDbuT34eNrGsdbj1OAG4EhX9/ptI228T+PZcuW8de//vULt7uv\n8QlAATCppAllMuc3QA7w+sXJtq6jHiJL8OWh7OyzPe1SoLxcMVa0psynY6kTDpPdi7bo2+snFH7v\nhcK/tyNzCGO8Ed7rARr4hEIFsUqAm2jacrqalqmrw6+17kABcMtblL9cKER+wwb8kQhbMUk7aUsj\nrWxkvrLbzdjaLKFRglkriDZd1gXvoPrq5jEJTYk14bo6/Mlkwb0Q7TtAcTJZYB4mCcESDEgUuqlN\nVS3esEElX3V1LI+RTjRr0JWurcVXWWlkFLZ5SCRCtr5eAStd1UzX1HjATe6/VOSyiYRZa+nX8fTt\nlZUG/FdUqGNEIippWldn2jBoACs97A40+uRXFR9d130VQ+CRMQR4QP/+AKr2sy/GTsdxvi1/OI4z\nDFU4/sLxjTcseUJ/ICXT8cPWc3iWJ3GAazrfRhjVRPu348dz7bxZzD1UgaxtN7dn3UHqGPcWwRE0\ncfKnUH8QlDegvpkvQN+n4dq/X0vl4//FBcDwI+DxXnDBmGeY134MuVsGsqrHKpbcEuP8qXE4DXyn\n+uCNPNufDrJtEiS5i77AVa1xPiiCI96CHwCZwTBn/mV0HBfnol0ws5NaqJbsiLJq8sM80Rk23RxT\nRtzfg/6/hvcuh+vcuPKRz8Hp4yAxXy243+m7gaenq5TChQ/N5xqAu2HaAijZdgeMK2FOSlEjxZhE\nqm5QaFYimcNUWBmlyOQdiEZpra4GVF+YVG0twaoqfNXVXk81UIt+28peqjpCrbMnJDuISB8VKKQy\nCmUPCqt7MlH6KKzciaOj/VwONUmLXkxofZIRFJAotM49KIAiZhrAjZgxAAAgAElEQVQHWceS1xTX\nQzuI2rz+vektQhWRwCZVQOmv1opq0i2gV2z7RXMnzppSrQIjzJb9wQRvuYcSPEMoQCc0RlCgbYe+\nFtt8BgxgFQC+E/XeSga1PYY62c66Zql02pVJOa6AaNlOgJ1QSaXiKlVaO1srgE+as7YD7j8JLpgM\njY7Dfxwg1YuvEXTtk+G67ij7b8dxOqBoJ22jbeyXY+TIkXTu3Pl/3GbMSy+RnT2RVr+ppoGKk4Gs\n+hnMqPgorBUBdvI8KHaL06Rm41x9PaHKSlo02CmqqvK0Y7lk0qO/ZVMppW3Sphh7x0iRAYSt54XV\nIHHLto7PU0gbtA2pMrq/WCCdVnFEu11KdScoFSwUIAhqkJCpq6O4Tx+vKuem06oSpSs+xYmEVxmT\nRKVUs+wkrMRMu0WMHSckVsm1C2PFD/TFJARFTiA6aomzEmNkrZCzjg/GJVnWInJfsxUVlOqG42Ds\n/veEQhQnEjSJPi0UIlhezp66OuMUCqRra0GfW6vu9yf3MVBergC6AHZtZuJPJslqABgA8uGwotXq\nqqznWBkOExC6q67U+iIR/KkUuWQSt7JSXU8yiS+RIK8BtvTNLfQM3f/HvzhGdnFdd4f+fQeKgLQv\nxihUW50jHcepA2pQree+cHyjK28jF49k1e1XMvRleBm44Nfw7GVP0nVPV4o2wT1TYBCwYkGMRGcf\nhzcoLdFJQHRynDWoDrMjNsLJK2HJohgJYFcHWDRuGHddBvSBLtOXM2r1aopysMYPn44fT3phhutn\nxlnVugrOhlFHxOFMoALWBfIsOuU+pr01iweBI+5RzkiPF6kKRt33ILoEbrhjHL8cFycxJcZTnWDa\nIuh1Iyxd9DDshp8AsbI4izbGoD28cjm8OCnGuEPGwRp48SZY5ozHD6z51WB+ehcMicOFm+H292Kk\ngTkzgG0wtdMobm43yms1IM1HxaQkG4CiZvN1KW5RBifBjM44duusnKV0nxc3lfKadaZrasigFvpZ\njH39HgonUwkyYkQhk6tU2UTjJpO3AA5bt+W3HrKfAHfJogk9T6gWEgTEtKTEOpZM8iWYVgWSVfPp\na5DjJCkEhJL5AyuDiaGopCg06bCrUbZmTwKtD0WJnIqqfEngET2D6N1EjG2DM2nMLVVHub4AplF3\nEJMtTGGAmLyWBNImjMZMdGrStFvE4QI+mzBgNWf9XmRdr1T/5N7aldCMPqcGDE3UxTRqF72fnJfc\njxKMG2hQXhz4zQGWXfwGjWYUs7ZttI39ctxxxx2sX7/+f9xmTnwiOb/RfKfCCpAJKCtuMdvaiU57\nG+/5SBGZrVvJa6phsKJCmXusXasqK+EwRdrJEExVTmLS3jFS4obt+Ps5EjsP6AkokTgkAE4oi67W\nY4FOGmPiWE5T+0DRKNM1NWQTCXyRCC3r1+OEQqRqa0lrip5Prwlsir6dZJXzsanwtkkZFPZ/k/WC\nnRiVGLkJZXEr7smg4pQNVu3qpCSN5XmXQrDoRyUCm4BQXR275R5WVZGJRAjqSlgqGqVY3w9/Oq2A\nk5xvJKLoi9a1CBB2UynQwN1vuUnKkPfTCYcVeE+lPLqlL5kkb1EpZbtQjx5KC5dM0n7AAALlqs1U\nPpnEX17uGaQEolEy0ShOKEQ6ZKey28Z/NzR/fZ9kgV3X/ch13TNQpKgq13X7u65b+2X2/UaDN4C7\njr6L6etinPMHYBA8fxismrudmU/FGAQ8ctJJTG+IM+XyOM91UF/i76/vxmUT4Hyg/0Z44GiYdWGU\nUf3izFhwIZ0mwJErVlAJNFbCE9d1ZwPABvjDrTEa5s3jogUXchv3qW/pnbBwONATPumlwMs1XEqn\nNMTWAT+Hiplq0ow8rKosJbUlnH71fFYC142I85duC+Eq4GQFzWceE+FloG4U/FfZZhKd1JtZOjvO\n/IvmM3lDjDMWwfYKHx1ehstufY7Q5PMhDDsOhevK41RtVW5KzIH14c2E0gqwNZWoRzCjsouddqlg\n1Vjq8xqcghJjy9/hFtULzl9a6vHci/v0AfB415L5asBkesRJUSpjMmmmKJxAwVDwBMTZlr/ybZIJ\nWmiNMuQ5ASxSRXIwtAqpBgn90AZNNnATMCdBUABPEarWLkYjQsmwM5oC0uR8bLqHVJOEg27TCgWE\nNqNaBYjpiFShivT9jKL0cEEMABT6pQAl26kMjJW/PCe0z4MxgKsjsBkVwPwokIY+ntBJBCzLrCYO\nluI8KRXTFAroijh+p35e9vOE4vpvW2sgoD0PNEYiBDBAWgJ5sz4vyTo3AvfOVY3PD5RxoNMmHcf5\nvfV4BqhG9VBvG21jvxxXX301fXTM+p9GcQvEbpjLDbG5tG9UWnBhqUilTQBaIKskB3Z7HdHCOXU7\n8ZeW4i8tJZ9MUtKvH/5IhNJBgwhXVanFdzpdYBcv5iXpUKggPoEBP5I8k+cl7tnAROKMDAFuohmX\nZJrEKul7JvFLaJX28GsDE5tG6dNVQ1DgU2QEQnMX0CSva7Mu5JZJXJDzlzhiVx/luBkU6ehUjBO0\n105Hu3faSVLZV56TmC4JXXl9m6afC4W8qhXJJBkNypxEgtZQSOkSo1Hy1dXK2EuAq14DybU4oRA+\nDZh8KCCWC4XIJxI4FRX402mCyWSBcY2rPw+A0snpz4nca3ukamtVFVdX+4IVFYR69FBAu77ec64E\nVGsBYPYBlNz838bD94AnrceXHDscx+kK4DjOwSgft//zcByno+M41wOzgNmO4yx2HOf2L7Xv/iKC\n3teC7Gb9ISzZDWyBxFEweeBY7jx3gSqtNaJMPF6GpafCNfdA3WVQ8SLcfgb8Yc5AhiSPYVT3ONOb\nY8xoF4cfwTuHQt+lQA00zoeDdpXwnaV9eGbqm3TStf/f+WHHjBhjG+LwPeBnwDJwrwPnNeAVSE2C\n8C6Y00lNxNNfSsMf4J25apXzHnDjbJhLjNGT4hT9EWb9CAKld1A0+hOCM+N0Bs5bA48dr675P0eM\nIHbvvTyNMmfpngMS8PZBcMI8OH88zASq1gG/gz0LoXQBdBoaZfIDl3mc/UmfxlnUPkZrkQpGpTp9\nlQ0okAaQKvYV8P3dllYVYNJpWt9/H184TGt1Na5uUAlq8ijWnGuhIUgjTKl2CZ9cgA8UumSJXS+Y\n6o6APx+FtBCpWtktBeSYcoxGTP8Ym84nAVCEzhIAd2Eok7JdCAOexJJZKksCJqWyJee6B0MplCAh\nQM/WoIHRwsk9GwXM19s2YoxXsvpaxIVMMpIl+jqEXppGVdSkcimZVwn8HVGAqBWjSwyhuAIHYQBh\nGSb4SoVN9G7isCX3WoC6ZIilqbecp2gFy63fZTHh0/e9vXW8PYAvGqWdFm1nUIBNjE+stZIXjDti\ngOK+pk/uazH2XfviQHpcyddiWHIq5iOQBT5xXXfzv/IcvkmjzbDkqx/XX3895557LieffPKX3mfm\nwon4cwqcyTdM2Ciuo4Cb6MMFyEkMFd1SuqbG07lltm5VhhWW+YRUUDJ1dZ5JhRMK4U+nPTAlw46R\nnydBkO2lL6htyGGbhdkVO6GryzHyFM6vwYoKz2URVJUpVFFBuq5OmZtop0S3tragDZCDSfDJvC3D\nBp95a5+8tZ1cj015DKL6kdSimEntMAlVMUwT0Co9TTtiYprcH1vaYFPyxX3Sp0GWz2qkHurRw3OC\nLK6r82QHPsBXWUm+tta7zwIknFCIUDpdkEwVt8lgRQUB6dWmNW8kEuT0PjkL3IcqK/FpCmbz2rV0\nGDYMgJYNGzwKpbRyKKqq8j57Gf0egfo8BoFJX9E8s7/GyM+Lj47jVAK/38uwJOG6btxxnIlAh31k\nWPImiuC3AWu56LruA//jjnzDK28ls2Ho3UOhAaIPw+JVCwBYc5QCbn8cPx7+or68U5tiVLwOfA/y\nw4YxJHkMeR+8fSXsfjRIu3NL4Hno+xksvQYYDvdPinHdyZN480dv0mkVzD3oDrJ+uHgN/Gh6HIbB\nktUj6TS5E5QqYivHw6ZJEF4BPf7WkxvmgX/Wr1h5Miyaex8twIhxJdw4HZZNgo6T4hRNAP4EmVtj\nTNx+NY92e4szgfNWwF3Hq8n1vBvg4VH38m1gDNB9HrAQZt8b43Xgw/FwPcqpsPVYWFAWY9Ddp0IQ\ndtUlcN54h3tanlBi7BNg9OA49R1ydGiwgs+nu9VE4lfAzWlqJfvBR2Q3b1EGJfX1ZLZu9dyysvX1\noHuTCCc+h6q6CHAQCqMEC1ngC6UB6/+u9X8wE7KAm6z1kAnYplQIGHBRk7oYmQi4KMYEOzmGBIpG\n1MTdXj/fARPQ0MeQdgjS+kCqXZLJFBApAmkXAwzlem2dggBJuS8hfY43YYxBhKZYTGEvOjCg2LGe\n36Nftxmlim3BVD3thuEuxslSxqEYQCckDTvYC+iMYAKkmMrIeyDBehcKoOWsR6neTtS6OQp70u3R\n5707FFJV1UTC01CKRkGCoNxDOQ/pvXfZmsKqY9vY98NxnAAww3XdP+nHa23ArW3s7+Oaa66hd+/e\n/9Q+ZW9+RDilNWyu6gXXrjFfUH0Lp8zvvjxeW51ANKoqIOXlBMrLSdfUGGpkKEQgGvXAgOcsGIl4\nFRNJfkniUqpZMr/59vopNEQBKRlUjJE4lbd+2n3VpAInyUk7WeqEQuTq6lQlsK7OMzLJ1tcb3ZY2\nXCnFaNAkmSdVNAGF8rvEVtuV2a5a7b1GkOvLAkei5DAy93fBMFhsI5RSChN9kojNWccS4CaANQue\n66NP3g9tLpOpria1YYO6D9Y5BYF8ba3XO8/BcnfWRjViPhJA0R6dUMgzf8lpExRA9foLh8noNVYg\nGqWoqoqMdiEFiI4YgS8cxk2nKe7d21t7BaJRQj16eGBzb7qljDk9/r3Z7Y7jPIzqOFHlOM5mx3Eu\nRbXXPdNxnA+A0/Xf+2KEXdcd47rufa7rPuC67v1fBrjBNxS8OY85lDwKyyfB4+c/zif9YdbmGLcP\nGMD2y5V9ePenobWdDyrVPr48LO0P75TA6J4rqKuA6ybGOX1cCX3emsXEe0eRHgHPd4SRwPajof3s\nOJ987yPuPg44EY7fczW9pvRk9osxei2BRStjTCt9jF2X7uLmSRWMGVfC+rCC2ROn3cy1J29iphNj\nyqFxBgBHciknPgFN3ZqYURrjcuAQ4NSyU3nsFphxURwWQWtpCz+bdjQHH9GNK5th+IPgu8kHv4NF\nQPtNQCnsGg+TTopzNfARMPqEvnyMct0ce22cJ694maluDLrD91euZFPfTVy15ltcueNKlv3neHpU\nZ3BbWml5+7/IbHyPVHU1rT064+TyqsloMulldNxUinRtbUGgccJhSCTI614xvkiEVDRKNhTyaJF7\n8/LFXEOCSgpj9y8TuJ0Xkom4CTXximjbnqSl6mYHLjCCZMlUiv5LKCUSyAQgCBAUYBVGgaMyVPOP\nJEaDIBVFH4Ye0oF/pKdIAAtjApZsk8PoyyQoNwLTMVnVgzE0yRLrWm09gVT8SlCBrEy/Xqk+hlS+\nijD92lwUfVeqblEK+7pJhrLY+n87vU0rhl6JPh/pBCQgS+5nk3XPMkC9Pi/Ry4GqTMs5tuqMs5wv\nGGqMJAIExEnLBrl3u4HFukp9x35ODzmQaZOu62aBnDYpaRttY78fzlMOVb+q4t133/2n9nOPOtxz\nl4zoSS7R2ee5ToZTFk3ShWAqj5Mz38p8Mkk+lSK3Zw8hvWgOVVaqKo5esAsdTkCd17Q5FCIXCtFq\nxVMojI8CcvKYmJSmkJYORoZgJwxtqUEJhunSEWMQJiDSH4kQrKhQMd1aA7Rs2EA2kSBdU8NuTIIx\niQGD0stU4i0UMm/ECbOdfgSsbSXOC5BzgQ+AFzHJyDQqTmZQotsAxowLCqt5ct0CWoUdI7EFULTG\ndBqiUdK1tZ55i1xH2LqPttsy+n7lgCa9HgpEo/gqK3HTaYqqqpQrpKY3tqxfrxp/W9RIv9auFffu\nTengwYqKmUoR7tGDrDa+ydbXe/3eUtXV3nsjveiEhiuAMK8dLEOVleQ0mDsQANxXFR9d1/2567oV\nruuGXNc9VAOrXa7r/sB13SNc1x24L3q86bHccZwrHMc52HGcTvL4Mjt+I8EbqIrXhe/CysPgt7fE\nuHpCnLFTVtP1OaXdWfzkCH41KM7B3+pGKxD5VRx3Ukx9qTtA11FxPmwPg7sMZsv8GJePi/M8cOZ0\nVb16BHj/jhgD7r2XIwDehheXxNg4axPTP13I7PmVAIx/qjPJXjD7wt00jWpi6JSe/PI1iP58D2Nm\nw4RxcTgWQkthzs2nsuhn9zFvNEz/UZxzR/+cnsCzk1/mojFBnjoIln02nr8OW8vGso1c1WcLB3/Y\njTk3V/H7QJ4TjzyVhRM68UBPiF+pJpD4qzHiC2LMnNqffj9QK9fzV8HwB4fjB7pfH+epQ6AOGHn3\nWA5buZK7iu9iafGzLCt7kXSHItr166e403V1hN/for7sfnC6dvZ6ksjI1NV5TTnDlZXelyObSHgZ\nOEcvvu3KmEy0GQygEHAn1SmhSUBhkJEKloivwWTPbDAoDlRS6ZLfQQUFqeJJgMhgwJlo3ASgCbtc\nMpS7KNQFZK3joZ8T8wyhRPpRoEd6xwlFUBwqi/baX659Mobq2YyqdFWg+syJBVJUH1N6ucl9lvtq\ntzAo1seSjKANcNvr89iK0dkJlSSrr9eu1EGheFzcO6WKJhq0PIa2I58FoefswRDKgxhht2Qz8zrA\nyPsuCxRpcWCfh2RL5R7Kex4Efr0fA7gDGbzp0QRscBznN5rH/6W5/G2jbfwrh/OUmgem+M/i6KOP\n/qf2HX3jXAJZ5dCcDil2SkmTMTQRB8pAFoK7W3H9Pg/c5NNpwkce6cVPWVBLv9S8pruJa6CANlmA\nS5XOCYc9kCVD5AL2Ak/iKpiKlgAhqT6JPlkATdDaXpyGJUZngaB2lRRqXyAaVeBArwH8um9ZQDtk\n2u0AmkIhL5Hnw7gRyxDWh619E7AmjI+gtY/o+o4ATsbEFmGfHKy36YBK7EmcE3Ao8gJh4Ug8DqNi\nlrymsG/aJRL4gOa1aymqqvoHur4cOw+e5j+v2xQAXhuAbCJBu379yNTVEa6s9O5ZUVUV2fp6D7CH\nq6rw6YqcVOWEXuvTAC2n34fkSy95jdZTtbVeCwKh5DrhsEfDlWNmEwnvuHYT8P11HODxUUYrMA94\nC8X4/TPKP/4LxzdO8zbtdkVDvem4OJcuuoa7VyxVC+UmWFRyH6dzKX+aEuO6vnEOPqIb29ZuUd/G\nM+G1jvCnW2LEJsQJ3gAL3hpA+erVXPIZsAzoDLsvh7tvihGeqppyv3hHjOjvXmX8VW+w4xfQ5VFg\nozre8HXDuT9/PwBPjIHtE2NkA3DUrDhnLITaMVD5BNz9M7giDc+H4MyXYdHiYXRdsYILNsOiQ+/j\n/YEb+cmqBfQDus6CpVPgpXlDuX7845xyP9ACi7bFGP3zOG/3gudviXHJhDgPzY7huNAyOU4Z8Byw\n8nUo+c8SwqOK2FWdMCvi78K8ZTHGp+M03KS2/XRKjOumxlk64XrSNTW0rF9PuEcPr8Fjtr6edscr\nQJiuqaHp9dcJVlQol8nyckKVlQCk3ngDX2WlN2H4QiHQ/GqZHG3OvSz8xSDE1qrJNrI9GJAHKgCI\nbb1r/c/u8yb7y2QsWreQ3l9MVcBUkBoxRiJ7m6vI8QVsyUSfxmQLO2DoIrspbEoqNsmSfZRrEe2a\n3Ug7BVyLok6WYqghfhSIE8fLz6xrF2Ar4Fe0bVIRk/dBKn1lwBYK++btxpjA7MFQJHehQGMjJjsr\nwVUAmwQwUABNQJu0DxCXtCZUEAonk7SGQp642h+JkE0kKDnpJJw33qAR03POfk9tsbkYwLTTr30Q\nhn5pf9Yu30fz377m8y/dFwfS4xq+Fs3bJRi5J/L7l6WEtI3C0aZ52/dj2u0TPXfI4jfe44NDDuGS\nSy7hhBNO+KeOs3DmRMIaFdlNu/0Z9UdrO59Hm8x/sqXA0EMcmgWweT1S6+tNhU1XRkRTLotyN532\ner856bSXEBMwI3EDTGXKNsPC+t/emjOZQ+34WGz9LU6PDagKoLgk5rRBiRMOK0dKfTxpCF4K7IlG\nIZHwXlNe1wZUouGWGCsadgGVezf1FpDpA/4CfIiyGpCYLDFIYrW0EJLeoGFUvJDknjBeZP0hSUVQ\ny0UBx8JA8QEpMZbRyWlXx7Ccbp2Uj0TwJ5MKVFrVL8+0RJugCG3SH4l4zbntPn9FVVVeQtNn0R5b\nq6sJ6zVXoLycvDa4admwwUu+S9PvkK7U5WtrcTQYbF27loDeX8Db1D172Fdjf42RX0d8lOE4Tg1w\nvOu69V+48V7jG1V5C41VX4K/pT/kqZNhngZujcCMjiEauJQ8CjzlhsG2w7bAKdBpbScaOsLJL8CA\nCXGC98CcOXDh6tWcDGzvCF33dOX+y2FxNMq3psa5LgNvAwOvjpNo+DHHfnwsAI+djwfc+jy7Db6l\ngBtAdvMWAKbcfSqvjIFVwNKfQXrkSFgOr9wWAz80fvdw/mNcCSyG0fMuZeKqBeyWi+wD1yyD43Lf\n5pSVcPNw4CP4+cw48V7w5rQYB02Ic+gz8JLzF0XbmB+jAXh5TTHzxp/E6/ObuL8ywZpBMPCvA1nx\nI3i8HCqmxuEK6LAbts6IcUPrEmZEQuT0pFE6eDDpujpaq6s9Wke6pkbx8uvrFW0infYyhVKV81VW\nFjTxzCWTEI16i20JBLZDIpjqkFSdbLdI4ciLxbHdHsAOLqJBk4lbJmwbEMo+QQyQ6oQx4AAFaCRL\nKe6NIf1/0dEJFUOAhDhWpVHAIWw9bNFyCFN5kqAifLP2KOAh96czqlVAVO/TguHPS9uCFr1fEqM3\na8VUphwUuBOtA9b9dVGmHsX6msV4RMxJxBQlj3HgksqbgGZpA5HX91ECaxhFuRGKaEeM/XQ71Gcj\nmEyqSqRU19JpSCQIVVaSqq4m368fgWiUzyKRAgMWobjYgL4Lhu4ilTz5bO3S57hgP62+fQMqbx2F\nvy9cftRb3jbaxtc+/qa/9y3FGnAd04vrr7+eXr16/dPHGjNtLtkAXHPzXK6aM5d8w25SYWhu78P1\n+8jrVZY/ky9YbEsfr0B5uddeB0zFLdyjB65u0OzXC3tZ4Mv86I9ETO8165wkvuUpbBFjx0d7jghh\nEoV2Oxusfey/hS3jwwDHPGq+zmtQ6a+o8OKPMDuSKGCQ04Alj4pXpZiYIUk3cToWAGfPZfK7JBjB\nSCCOBwZSGGcda5skhqWzCxMzBOiKDlzWBA4mbki8E528nGMmGqWdBciJRAik06RratT5V1aqdVIo\nRKiyEle3hxCAZlfQBNRlEwlSOhEu1dbiPn0U/VHr19xUCicUIvz/etFhyBDVIqC8XLGfLDpkWmvi\nAtEo/vJyj5KJpmOma2oI9+6tPm/pNIFolJJ+/difxwEeH2VswihJ/qnxjQJvAB3/+A7HZ77N2ZuV\na6O/Hso+VAvDlTediA94LRTC/wJMPOlm3vs2XHvw5XTYCvwd+tcCH8AND8PB0+EZ1Ipj7tztXD4m\nyJGJBEM3wY4gnIDS6LT/22TWla1jJVA3LQb1cOyaDFevXMmC2wawYUGMqyd25ayHHmLYrDgvXfEy\np8RheyRCP+DDd8q5/cMY77T+DbrBi76/cvf8JtbfAtnxysChK9C1AbXaPUTZFd8/CCb/FpbPh9dQ\n8r1XIx+y+6YYHAurGlfxTqcd/LbhCWaMgdbftPCXoZUcCgy5FwZN6MRZN6xiU1UVf1pyLRfdBfFD\nodfrfRjbMc6Eg0cx/dU0ja+/zp5Te9F4WBkBbUDiplK0rF5Ny0m92HKYjwd+sEc5ZumeIeJwJLxq\nn8W19kcikEh44AzUl0h6lIloGAygsEczhQEpg+kZZ+u9JDNmWwGLC6RUoFr18RyMxqoFE0BCGHOO\nrPW3vH4jxhijyDqubC8VKBvElGF0YwGUEYgAVwmKtpFJFuXC2KKvczaF1cmQfpRhQOIeCk1DxN5f\nzkFAmfRrk0pVEUbrthuVWRW9WAdMEBaXLtHNCSCzBeSiP8vo1xPqqU/fwwAGfDaDotpUVhKsqsIJ\nh1WGsLKSYO/ehHv0IFxVRWt1tQp2ySS5aNRz/RQ9oFAzQyiq53ZMxnkPppVAAKNlbBtfybjkc54b\n/q8+ibbRNvYe8TmKnVPcAgs3LyF2w1xG3ziXW2+9lWpdJflnx/UzjH/BNcuW0a4xz5hpCsyNmTaX\na26e69HVfNqcQmKjADB/ebn6qatw2fp6r8oGEK6qwh+JFFAoZdEvlTUZMu/K/5yKCi8+2g6TAsxS\nGCql3Sxb3IElUSqgrwUVL4tQSTOpygVQ1MCgbsodRlWcJIYL06YonfbAj1TF2mO0dBlUbGlPof5N\nkpwS24pQcU1idDFq3fcyJhaXWPuLdEF0b6ITFyoo/KMuW3RrHfT/cqGQB/TCAJEI+URCGXzpZKM/\nEil4P2wH0UxdHY5FXfTAeW2tB7hkBLVrZ6qmRrWPKC/3WjBl6+sp7tOHwBGHk2/Y7WnapEG6mJ4I\n8M/V13vGJsGKClV5syq5Ut31RSJkdXuBhaefTtv4Skcz8I7jOHf/s/KCbwxtcrXjMGhMkMzhGaan\nY4z/VZz2n8KOg6DLC8AW2DZcVRUagFPWocRrB8PzJ8C3gP4Tu7I9v52eoZ5sGr+JbBkEtsGSGSMZ\n1eFOtVo9AfWN3wmP/Ui9dm2/flSsXcsQ1KRw+PpuzOmzhYZhw9hyeiXzy+ez/Tw1EXR/D2iB7cfC\n46jJZsRuuPCeC7li7HL2ADfOOJZ1J67jkYFwwcew5lvwCaoh8ZXjgOPg4KO6MfL5i5j+izhDHxhK\n79v68/MtY6h6GBZ8EOMn0+MsvzVG8fTuFO0pZnTsUp6Nww8XwsoxarL6ySIgBQtaY9yXe4YbZm7k\nXDQV7g/An6BhPvwJOOdjuPFbCoStmXIav2/+PWe1O4sHY0jYE+QAACAASURBVL/ncWBnVRW+6mqy\n2tnIc0cCr0zv1w08ZfEtmTEw1SowfddKMf3S8tZ2NhVEApFMvpKhsxtly9+2JkDOrplCpy7hyEv2\nMWXtJ1W5XRi3RwkAko30YWzt5VwCqODi6ucFeIm5ilzjZusaSlGBpgMmEyjnvQFlkCL8+z36HDaj\ngpkELAm8Ui20ewCht23AVCJt8BnU9yZlPd+qH7aZSASzABAdYh7jrinmK6Krk0bgoi1oQYHFPOq7\n6eoqbbCiwgNwEswCOmPoSgPUZBJXU3CgkHoq4U9oMM2oSpy4Th6M0d8BXPt/nAf3NSVkX4rDruNf\nRwtxHOfnwIXA94FXrX9FgJxuSNo2/snRRpvcN+M+x+HT2TEmtsR55CY437qn77//PocccgiRz3Hg\n++/GoLmD+Omu7wAw8pZbPnebW/r0oaR/fwBPeiAaI8CrwoByosxu3uK5NQtjRebCvK6KuLqqA3jN\nnSVGSmwpAHSRCGiHxL0pksJGsSmX4rwIao6WhKSAJpnnpYJVYm3rxbeKCnJ1dQV6djcUoiid9ip7\ncq4+FKtEHDBFcyaxrwi1/hFQKawYiTVibtYBE18kWSjXKvFWqJLSn1SkAAFrG5EvCGVT2CySCPbW\nHhoYiXt0cyhEcZ8+pNeuNVprbe2fDoVw0mlcDZaEaooVwxxQ1bkePcjV13uV1nw6TVgb2Uil1gmH\ncUuKSP/5HUI9eiiqqmZJCYADvJjpj0Q8wCafq1wySWTAANVYXXq+6Wpc89q1BMrLmbR1K/ti7K8x\n8l8ZH/cejuMM/5yn//1aBdxUPoa6a2BGVZye67vBx9BlAfz0Dz/nj8Pht/368dKwYZwEDH1xKNlz\ngE5w5jr15d8+eDtzboFN39vEE2UQaAQyMOq4O8GBhTHYdBqwE3666udcN7ErnwFla9fSST3N/RNj\nbOu2hV2DBing5p8Pm6HrPF1BysG2Y6Hrn9WEMGIFnHj7iZy881BO26x6k6z71jo4Ay5oArrA8VNh\n2Fvw+JyBfDAfJt50M9se3ML0bXHwQdgX5sYbxrBkybWwHsY2xHl+5EiG/yrOxM1XM/q5S2EX/HAQ\nLB8Df+3Xj5+MAf4ODTHITo+z8fSNfHBrjDuGDSMBPPUT2DAf7ro5Rm/glvP6cQ7Q4fqreWnnS7gz\nYEbs99yJrmbpjGWostLrTyJVOLGqzdbXq8lHUybB6KPkd3ENtPvKiNmIACqb0mEbk4gLpFTuHOsY\ndnlcAKOYb4ihRxFGVyauibbhhYAg+/z2NsxIWtsJbz+NccOUSpZUr4QmYlMqpeImlkP2l7QRpW6t\nQX1+/q5fZxsm0Ehwto1cwGQT5dw/0z/tqiH6GI2oYCXHESF7iXUvJZDL9UtQDVnHkWBrO4nZ1xlA\n9Y9r1q8nGT8ZwYoKivv0oX3//p6IO1hRQXHv3jiVlarPDSYb3IzRKwgIlgqb3RpBwN11m9gvxwFM\nm3wDWAC8j2pHuEA/xqAcvNtG2/haxn2aKvmb5iegpRC4ASxYsIBNm8yEMF8DLudlh7mOeshYOnki\ng+aqj/POLr5/AG6LL76Ylx2Hv+h9Gu68k5b162nfvz+BQ7spLZPugeazqHNuS6tZRGv5gVDpAK+K\nUgD40mlyumm2fN8lPkoz7XwyiRsKFQA3e25wrL8lNoGxyrfjpK2RBjO3t2DmdleaVVv7AbRLpz3W\nioCYlLW/LZnIo2KMHxXjSjAJug76/1K1k1Y3KZTlwHMYmYX0a/0MQ80U4FZqnbeDinu27nx3KORp\nvdHbS6wjEiGYTHqyiSyq8taqgZu8v47Vx80zWbPAdjCRMLIPvV4SEAYqBhZpNkq6psbo6kIh/Jk8\nwUMOIV9e5n0m5POTra8nVV3tfU6cUAhp3B2qrKS4d29K+vWjee1ab82Wqq72qJrtNG1y9iGHsD+O\nAzQ+FgwtLdj78e/TKsCJqQnysczzPFh6B/kfwbbmLdzxZIxFY++j27fL+YD7mPD2WkY/toLA23B0\n4NsENsGC5TEoh17VwBvqS73s5fFsCIWYN/AktbIcAFTCWcAPJnWn5KUSlix6mMlzt3PlBDgR1X7g\n8Jdg58JbuacTjFmxkoqr59Nzc08WvzsCxsB/DhnCyDFjeRLwfcfH2cCJu06l9uzN/GBunAcPBd+9\nsP4XsNsPC34ygODUIPNuAl6HVVetUtbwf5sMpfDH+fBIOQweu5wFKwawuMdi4n/oTddwVxI9y+ix\nDJ4pg6nVMYY2X8TNK+HCj+G+mWl6/aAPzIUOf1fnPnNtjFdyf2XPypU8i6LJPV1RQWZynEVLrsVZ\nu5a+1XDVrDhNP2vCicMr3Aeoik+2ogJ69y7I6OSSScI6UyR/25QA25nJtvyVIXomAWwywYkLgi0+\nFspHxtoWDE3P+6xQqFkrwlS+JIBJdlIqRu2s/YQmUkphfznRj4l2zNbRSSAQSmMe02NGaCw7UZWh\nIKZaJA6W6OekV80EVBG4GGOrL4BJ9GkCEkWzl9H72McDY6MvIFqafksvONlOsqySkS3R15zDBE65\nPwKehXYK5j0RHV4Haxv0ftIw3a8/L+Ko1lpdTdPatV4wydbXk3/jDWTIcYrBW8QIABbPLDk/aU9Q\nr53OlvVUFNbl+6n27UAbrut+4rrun4AfAK/p37cB3TD5gbbRNv6l46KFF/HCggtpuf56hlb8DHfe\nP1Yxx44dy+PP/ZbHHacAuMmYqMHejYsmsmt2nJNvWMXgPzkEsrD0qqu42XFYdsNEFl98MX0eeohS\nvZ8vEqFsxAiKT/u+B9DcVAqnWNlo+TqohbeAMicUUnokPUTrBni0Nhk5/T9HV3FsI5IcCkzInCjb\n5KLRAifKvWMkFLbrkflU5lhJStr0/r0fkXTa2942JbFbGsiQuboBI3+wQZyt5bPj0d4mZMJaORKl\neRM5gcRuuVY7idlgXbuYokgMbwbTaw1TyfQqecmkF4OhMLHrhEKQTHp6QB+FgM0+b0ko5lDvUbq2\n1ntfQblFSvJbKJNuKqW0g0EfuW6d8eVRAM7v88xO3HSafCrlNeJ2wmEP/MvIp1IUVVV5bSnKhgyh\nXb9+tFZXk66t9fR5beOrGY7j1HzO4+Mvte/+QsX4v9BCnJhD5hYIfgzcB2/fpLw2TwAeWHIti09b\nzKw/xphyVZxjnvkun6z7kF0X72JNHzj+RaAbXLnySu7adhcfzIEjboAX5ygtUkeUdqZvClgAD0xS\nC9t3vjeFRYNm8bsZKp38MWoiGLQE7hql9v3RKogPhMCAAVyyejU+YPGCGNPzcR4fD0PzsMmn8OGQ\nCZ3oH+3Pczue49cLMwzfiUJFwIWrL+Q/xi7njBxwJzx3DQz+M9AH3g3CjyZ155PWT3h3IRz1EHA4\n8BY8MhouaESlnP4TjnvqOH76Ti2HJRI0TInhT7ZSv2wZAJXpNJfMA/Iw240RWPEigWiU3YP7Ek1A\n0aw4yQEDmHjMa8TfPZ3cyX0Zf3yckhdKmPL7boDKCjqhkDcReHS3aFTZI2tTE1D9X/zS6FK/j3tX\n3YTGIJx1W/8mk6kElxyG1lCEqca5FAqQ5bVCGBqkbV4iE7Srj90ZFVCEXtdRP98erdPC0Epk4hcQ\nKoDFttuTLGIPTOPvDhh7YskCynmIeYof9TnJAaNRbpM2ZVG0dxIoBDSJLlDuWSsq2Eig2qGPIxVM\nEa2DsUgGU9WToC/3vtg6tlAkbfqqZEWFmhNAJQZEON4OBVxFl5cOhSiqqlINSDW/3xeJsOe550hV\nVxMZMEC5s9XWeoFQQGozCog1YmguUtWEf7RxliXQESiQd+H/YS7c15SQhfviQHqM4Wtxm/wzijrZ\nEXgdWAOkXde96F95Ht+U0Uab/N+P26ZP5NbsI8yZ/Qmbb44xYVJhf92TZp0EQObJRvqdehwVC++n\ndFqMVBhcB9o3wqiT45CAWaMVpSw36TI671T7S9+2xLx5dJoYA+DqbnFmNcd4pPEZRn56sucS6Y9E\nvCbdgKq0FRfhtijv3LxuvJyqqSGXSJDfa+EszrtCocwnk0bHJMeksHeqVO78kQhOIkE2FCKQTnvx\nFdT8K0lR22BKzETsuVNik/SN64BKiAmok+1l3s1a/7PdKoWpYbeM8QO5SIT2yaRXFRPwKG1t5Nrk\nWC4q5kvidr1+nKf/L5p2uS82c0SSr9LzdW9zEomJtuM0mL6kdqKwSd9XKNQfItdl3T9fJEJxMqkS\noLqC51VOq6rIVFfji0Y92mTZ2Wer9zyVwhcOEzi0m0oClCgIm/epHoK5oA93+058kYjX9D1dU6Oa\nqVutJuTzKABPtHJiViJVvlwy6YG9yVY18H8z9tcY+XXERxmO45RbfxYBw4Co67pTv2jfA77y5jym\n7vk948fD03Bi6ERO+DXUL4hx+SPf5SejFsOrMMUfZ20EivYUs+vcXSy5YyQHAdVnAGG4q8tdUKma\nYnOYciz6FLj9thj9x5WwIgzzJ8Els2H4Ulh08SwGRAZz8QrovAJOeALemxbjyvyVnAWcAbw3EGLv\nQY/Vq+mIMjcJjY1z93iYf/epzOocpeev1YKzYXYDr5//BplfZugPsAkW/D4G34HlRy3nWGDR+cPg\nNHhvyBDlh5uCozbDRRUX8NFCeBKYuDvG0X88mjWj4babTmTh0EF0XdqVaZPnc8qfPyI6YgR7Ro7E\nqdtJuqaGjueeyzHpNPfefCr0h3g2Rtm2VoqqquiyciX373wEXx7qKytJ1dRw4yOdSa5eTfNNt3Lz\niApi85vIa8qklw1KJvFryqS0CwhEo57FbT6ZhGTSAwrSZFkAgWTbxFlS9GQSQGygJdk3mdwFKMjx\nbFt4CThSRZIebaLlErdHm4/fhAIbEoikEiegoNF6jSwGoAilwzZREX1dEEOvtEXhoiMTXr6YfIgZ\nx0GoQHkjKjlgd0AOooJmmXUPbP1CHtN3Ru4dQE+M1s/BaObkvkhVUiqR9sJAqlkeRce6PtExCA3V\nvs+SqQyjQFMGIBolF43STge/sKbX7vrd78hs3UqoooJ2/frRtHq1WsBUVJCLRslXVNDeOleprvn0\nc+jspbyGAOwIho4rlJyn9qPq2wFMm5Thc123GeXYfYfruucC/1wTrbbRNvbRWDD7E9bdMY7G9uCs\nMt/zh/V3/tToKZzy/e9yWFFHSmbEcB3VeLt9I2QDsF7r20tGXUb+hsvo+BnkG3aza24cgD0dfJSN\nGEHu0504uTxnNZ1F2fs7uablh8qgQmuU8uk0+YbdODnVrNspLiIbALekCKe4yKNQCmXSbz0CYmii\nF9pSqfNMwig0+vJhVYDCYbU4R2mtpGea3YpGYoDdC7QYYwK1BxWjJE6L4UgDCrgIHVHMS7LWecg5\nSVJV5mqJ6z7dB82NRiGZpBEV88QUTOiOuzE9RsGwbiT2F6MmmR+j4kw7Cvul2j3cZAjbRYb8X/rO\nlWJitYOp3MkxJAaGdIsAH7p9AoZiabsgh1FVOzHWCmvqpYDbcHW1AsgaTIk2Mltfr/r+HdoNJ5dX\nbQWaFOj3J1UPQV8eMlu3ep+NlvXr1b6JBL5w2HOT9OlKnFR5bWCXTSQ8YzAnHMZfXk44keDW/Sg+\nwgEfHwFwXbfeemxxXXcR6uP7heOAB28ADbfAVafN4+7RUP2LD5iUitGuGeZe8F9qsRqG98YqLvQz\nV7zM6Gun0OnOO9kMPBIKccxb3yV9Ptx9pfoCLdkc4/4pMS6a1J0J18d5dX4Tw34NI1GVt66bu7J8\nFMTGPcfbw2DbMCABowfFOfG6u5S74LgSej0M2V7wswfVArEcuGEqXLEe3hz+MmckEsQ/jdFrNuRf\nyPPbygT8Cd4FNp8EYw+KwwPAR6qJNitWMOso+NW4p9UsdhfwtMq6PD09hlNZSTQBG3+xkSYgmUny\n6dl9ubr8Ej64dA1/PfIIWtv5oFOZ19Qx9dBD1F50EYMf3M6ihcMI/+Uj6pctY+d3u/HhghgTZ3/C\nrtlxOp57Ln7Nl65KpxUHOxRSdsBVVSpjWF5OSLsbZerq8IXDXtYmm0h45f9MXZ1HfwSrL1so5NEs\nRDQMBuDI39L8WmiVEijAZNmkb5hk2mSCFWAlgMgWUwtIsYNZFlX5CmD0XmIIUoQqK8jE67f2K8W4\nUMrrt8OADLkO21lTDE8EAIn7lgRA0bDdhHJRzGIAnB2QJLAKSLG1EO2s3wUMV+rjSAXPdhuzXcKk\nelZkHUOypZK1lMyovD/STiClz8XBNA4vQSUufKhAFU4kSEWjBMrLvZ42kQED2LNypcpEJ5MEq6pI\nbdigrKgTCTJ1dd79symzopXwhUKk9PsU1kEwos+/M0ZoX31zjLaxb4fjOCcCF6FMe+EbEm/axoE1\ntneFl5dcy7yr5qknVoIz1sF5X0Wgs4KnAPDyK2+zOdVANqAAG6if6T++yCsjR3LzL8CfU9W4/Psf\nsaNXGSeiNG+BLKS7d8at6EzDvHk8PeFpRv3mN+TTaU+HlE8mFUDrUFZwfr48OE2t5Bt2m3YBVsVD\ngJejW/Jk6+sVmNPGEqDodrZcwLWed7X7s2ih8tJmAONKKQtZiX12LBJ7fKH5Cz1Q5lsfip7ZEdO3\nM4rRh8l2ksgEkwRth3GoDESjii5onY8kJcXhWZg5koSUvq4Sl3Mot8k/YBKx7TFSB3l9qQ7a1cYw\nxjlZji+JVz+mv5ttomZr9+VnSr9n2VCooNG4bCMsFQHJdiy1X9efTqsG59EozWvWeH39pEobiEZV\n+4EPPqLp9dcBVcktOqavFz9D2uQkWFFBXmviUjU1qkF3fb1JpkOB02VY0yUz1dVech7Y7wDcgT4c\nxznOcZxj9aOf4zgjKfTW+29H4Is32X+H86H6IHXYBe90gr4vALsSzD46Dq/BiXefytArXub+EdBr\nGcy5StHEFg2ZxYa34IkFMSKr3qFzjUvoLqAJWnepRdxf3m/kk6pPiDwGr5wHd1+uvliXPApLVp9D\nJ+5kB6oAdsNs+OHmczi2tYrTiLNsSYzFo+KM+C0EHoSmX0JJCuU08T2gO2wLwUmv9aTmhDhLpsfY\nM/JRDqEWwqbXF0fAhe9cyInvFnFUw73M7lvJZbW1RFWsoQ/w4vwYf3U/5NCGbuQvPZ/5Zz/E0z3h\nkYFj2Th4ARvf2sjT4yD8q+tIvvUoDBpAJghOWRGBT1OEL1IsplBFBflkkuTAvpQxhMyjr5KurWVX\nRQWdhgxhafGzbHwbZr76Xd5fvZoOVVW0bNgA4PH0wWSH8skkvnDYK/tLUPJFIqr5MnjuSA7Qkk4T\n0GJmoSq0YDRuOcyiWwCNDUIEaEk2cW/dm0zAAuCkj4wEInGzkl5hdj8cMEFNQF4JJpDUY6iCAhzL\ngcNQoPv/Z+/M46Mqz/b/PbNmYUJIgssAkqg0SoVaRavgRm2VakWrtNVal9L21eKCshjcd3RccEfb\n+kNr3dpKa7VVwK36al2IS8EtboQCYctgkiHL7L8/nnOd80za30/bosj78nw++SSZOefMmXNmnvu5\n7vu6rlvvQ7TCGnefwfg29goEVfiNP+1WCtL3dWEqb4PwA4KogqoEbo8fGHT+on/a3H/c9yxXzz73\nuB/ju07a/YDUykBaCAFU8DOgvdaxyjH3TNcH65opcK7AtMFYn8nQG4sRisXIPfMMkYkTvabvgUiE\nTGur+TsWo2jRfuzqYhTfzlnXpiqZ9LaRzlE6Dbu6utv5CYrAnx2Hw78A9LTNfwb/8TgLOBf4Q7FY\nfMtxnJ2AZzbzOW0d/wvHVT/zaZIf5laUPNdaX0/FrAThy5vY69CvsW15FUUH8kEI5QxQixx2MDlg\n4HlN5AIG0EUbGhj8ykrenjyZQW+vJzdsMGfva6pworfedPEsGFhGcKVb1dhmMPl1htKGq3cTSAy5\n/9v6okhDA3m3SXI4HqfoAkFVZMDog+XIG66ro+g2xlYisQjk3EoLuInSWIxiKuXNf4o3ir320FpE\n8UBgztZ3KTb010iLdVHAlz7Y2jHFcFXGelyNGPgAymbOiLEBpclVO6kbwrBJhrqPCQiKAhrGd0Ku\nsI4lUNZrHU8xREnb9fjVRl1juThrKMFKKuUlO7W9kraSeeia29cpiN8MvBiJEHJ7u4EvQwkPGeK1\nHci7ACxUW0t+3Xr63n2XaEODqfRGIqRbWkzMdLfPLFvmuU4CnrZSnzslCkSZDNbWkk8mvXj/RYpL\nX6Rz+Q/GddbfOaAVw/j9xLFFa96cDxwWj4A9gXGX78u3LnyRxYkj+GHTo3wVaDrrOO648QEqgNjz\nwBg4/5dN1P7pDZLf3p2qMxK8O+k0bnroNuZgKhBdFzTx8TU3cPFrGfONSsLyQ2D43+HuHeDkD+A3\nO8PqSZN4Y78BzDvrbq4dNYrc0qVMxPRbOxrzxbw9FuOi11Om5AemHd8ZwHq45jtjOOecZk5uO5lf\nnHU3251Tw4Zvb4ByeGQvmLgRTpl3Ciec+XP2OxuYgJlZXofxsQkU0r18d8WunL7dHZxcfTLNG5r5\nUfBwpn8lAe9AotDEOecnuOX44+m47z6iwBNjv8bA7wzlG+t29CYCcZv1Jc6uWuXxoCsP2J9CALJv\nvsPZuzxCDTVsOGgDfBOuCkPQNZAQdzrsAkA1GVVmJ59KERC4c/n6uWSyZAFtU/EUIDTh2ZkwBQWB\nHQEGex9N1go4EXzwZjtQKpgIWKhvjX1OjvWYzDgi+MFKRiXSvSmAbOeeQwq/55qybXlMa4oAJpkw\nCAO6FJzUZkDVR7sa1w1MBi7CAJUqSnvNqY+ZHRA06RbwQZ6eU3YS/EAk6qTdr04B3P6G6hpE3fcY\nxdA2BXR1PWzdWyU+DWcdvt1zh657bS0DjzySj+fNI+By7/Nuv6C07K5raylLJr3qnu6VgqLoOXpe\nyyFlW22Qrcyv7g/wb4G3Tc3nT2yKA7mjic3H6d86Ns3Yqnn7z8fxc0yickRgGJeuTrBb2W68+b03\nOebxY5i/3Xz2mLMbB+y/N8NqjQEEgFM0AM5xL30oB9kwRNPQXQmV3eb39d2/4sdDTmLwsx8y9Xe/\nA+D2c2d5ejiNfDhAMGu0SWAad2shDnjmJPn2do8aqcSoqncF123QiUQopFKentzrqeoCByWt8rKV\nT6c9Aw2nnz4rbP223ZWxjqMkpOJRod8+Yn8IlElzLKMujf6VrTR+/AhjEn4p/OreQPBonlivJdAn\nirzi+xvAi8Ap+Fo+vY7WCDLb0nuzNfJqI6CKoRwo1Wanf1Pvgvs6klMIDAYwVc5gKmWSle41z1vb\n2po5+16E3dcNuM24e5csITZ+PGHL+THf1UWwqopALMbGp58mEIsRbWgAoLu5GfDbUNgN3p1o1Pu8\neG153ASper3p8wKmqqp+eJqB/p3WOl/UGLm54qPjOAHgu8Vi8Tf/1v5flIDw74K3q/ecy6CuKZzy\nG+AdSF8Ct17axPTTEly941xunHIZa2atgbfgO787jj9c/wAfBOHCyZN5YNg8g3FDGGD1NNw5Bw7E\nNHk8Cqhrh7nXNXH41QleAr4/De6fYyaWCZjKxQ7TYNUcGHIVHBM6hvk/mg/3AHvD3D81ccLVCWKX\nALOg8oJKVl7XzaDn4J4DYPGtZzBiTQVn/leCb915FI/v8zBLDzPZo98AJ+Vh14WjeecrS2AtdOwB\nN13fRGR6gnPXA9fDydudzOSz7uaKqw5hj4FfJZqG2SvmEC+Ls3zScm7bAx65+FAW7rOQW/+7ieKa\n9RTjgwm0d3qleDB857QL5OygkU+lSLvufhecA1fe61vPlo8eTSGVIuM6Gqk5p774kYYGiuk0fW7p\nvZBKGTdBt9+IAkrRtdTVZKbgYPfusl2vbM5yH/6kYlfbbKcpO0tn0yJVDdM+ek6AQwAuam1XhgEh\na/HpearWyV6/C1N9K2Aojg6+MYmABpSCLwUg0TtE/RQoknbsdUxVT1SSXnxgCL52Tvx+BYaN+MBF\nYBZMELGDnFoo2NdMQEzZQwVA/db11vXUftI0SNQuKmXWvY591nVUT72Ma5eca239B+2E9BR6rzqG\nQJi/DPJBtRw3lenU4kHnILqKras88l+di76ggQk2T3ByHKcRmIHJiXnJ8WKx+PXP8zz+p4yt4O0/\nG6feciqpbIpGhtFbDuEs/CH5Z2LhGBMuf5VgLMbDP2zgyOr9KQtFKLgTdCRjgFsoZ6pkoRwe+AoU\njGQhUDCmJb1LlpA9YHf6Lr2BQeecTaC90+vFFShQYjAh0KbnCh2dJYAsYFVH7MeBksqbDeDAMF8i\nLkBT4oxYzEuekkyWgDn1GrPBnobinow67ARZ/xip2Nw/6dpBKVALYOZkMSRkDCa6oQilikWa++1k\nouK6AJKOr9iTwjcVw3pO4E0xQlUvAbJe/B6v/VsGQClzRVVHgTWBLih11JRZjO4hmPspuYFiYwd+\nbCvDsF9C8gtwjbuyq1aVNPaOuEBN/QDLR4/2QFshlSJSX0/Gbb0jzWUgEvGSBQJpeav3m7YrT6Xo\ntt6TKKW41+TsreBtkwzHcV4tFot7/jv7brEahJGPf4Vd3x/NTc/P5pQ74c7vw3WXwC7PjyB7/XCy\ndRCevpw1Z6+BhXD9k03sN2gH+AAWnHoqe86bZ1wZWzEis7eAwWbB/TjmyzPjxpMhClMqEpx7/Q9Y\nPmYMN3wwkR/8GY5ZZADeDjcD28OQFUAXzB8wn9sun2qMskfBlEKC2O8xHMeXoO26bnPRKyE5cSI7\nLlrOmZkEPA0Te0fAYPgQeBBYc2UTs3eq552RS8z5AdUpOGR6glEAi+H2q2HsWXfzyNwZNFQ2EM7C\ndm0FLt1mGj+avZyTnzuZ0xbCDh9VcfDsfQhmCyYD8+6HRi/UpSK9GQPGjSNUV0fQbQQqukVkzBhq\nAU6HbdvaGHjyCSXl90AkYlwl29sJudmiUF0d2bY20q2tONEo0YaGkgaRmjwK4AUc2+7f5oPn8IXK\nmnxtOp948Fnrf7k7alsFBLvJtE0jtGkOWVzDC3co1WTiawAAIABJREFUo6igtM46V1V6bCOObfEp\nENtY2wgcVOJXewZYvwOYibwXvyqWwQdeaWCOe/4yBIlhgp40gAJZCiJ6P+AHNPtcbI2a9leVLdRv\ne1sDp30FfHT/dM8EVJXV7cGvupVhaChd+CDRA62ZDDE36OhaVVOaDa3Ap7AIzNu9dBSsa/CzsyFM\nlVMN2wVi7T49ti315hybQohtf382w/gd8BpwATDT/Tln853O1vG/fdRHh9Ee7SFQgOoOOHbA4Xxv\n8WAmZTJcMDtJ81PNJFNdhHIGpFV2G41boADpqHksHYWeAQGP7ggG1BUyGcq+ujuN55sl5fgrEvQO\nMVBE4E7D6e4zFu+xspLngtsM9iojtp27mC1F10AC8ExKAtGoZzzhuM2ds7GY1+e0AB6tMpdM4sTj\npvrmAsD+MVIVqLwLNFQdEkCz5xNJG9TaxjaqUtxRnLPNQ2rwgYBADPjxz3Z5LLe2UUKxp9/rKHmp\n+P0B8Fv8ZKIStlj/Fyg1KfGMRihtGaDtdLt1vRRrbH24AGbUeqxgUUEj7j0U8NM16LDef28sRmdt\nLUHXlTscj5Nrb/dojDKoiTY2eo+rDUDabdouczi5kBZdJlS+vZ20G1dtbaV3DWIxIpkMQbmE48d8\nu98tfDG0b1t4fNR4wnGcGY7jDHMcp0Y/n2bHLbbyNvLxr/DBk+8wqeMErpk3j2Fz4MJgE5dPSPBg\nI7REIjx8z+5MmraSmW1t/OK8JspmJ5g6o5Luy7rhI9ju3u1YfvUaoglgV6AXLlvRxEVTE9AKmRFQ\nvaGSC35xOjvNSnAoUP0IfDwRBt0Dj50Ib7o9MS5amTKfhBdh9WGw/ctw1dfgGNzqHDDkz/DU4fCT\n50ew7C/vc8kFMHjqVE4bfBN9F8Cd5zXxwdNhbrzsCtNl8iq4eG4TAzbCwAsTDMG4WM4FpqUgE4Mn\ngKOmhZk1fBqhHPSWQ3kvtEd72HVlBRtqoGYDdG/sptPJUrt8Nd377coFdQkSq5uIpUzWD4CagRSW\nryQ0zDDGnXyBzkEBnAceo3z0aMLxOH0VATK/f4y/nTyK3R94z7N1l4ja5lerJ03v0qVeuwDPwMQF\nfQpGWJOIFv2i2tmTbBQfgNjmItKiCXj0Umpbr4yh3cvNbklg89JtO3xlC8vwwaHthJnG14wpe2dn\nMe3KlwCm3TrAwXjPVLnH6nNfK40BgBKK67eDyTdsh2+3PxAf0CYpbY1gVwVVeRL9Mutuvx1Gl2af\nt8CuglXO+m3TXDe6r68Gq9LWaT/7NUWFybjvR65d1dY+ysQqaOva6V7YzqPKuNrVVr0HZYxFrYla\n2+h+yplSdJ0ipi3Ijvzr1MlNnVW8clMcyB3ns3laBfy7GcWt4x/H1srbvz/OvO1MAKqKFR4Ai6ah\nO5qnqidIPghVXbBm3XpqqquJFcOcXpHgxkwT2bABX4ECZNzVdiiHV5nrLYeHu5/gxxv2p6+mjIqN\nBT6uDTBwdR+BSIRs1GyoYwj0iZZZCECgvZOgmyS1q2r9E6t25S1gmZiIPaNqWiGVArcSVwCvGbbd\ncyxQW+tVYAquSYj3OuCZhwQzmRKbe/2tRKh0ckqK2nOwbfCluKfXUcLMqw7iV/LEDglj6f/xAaFt\nqGLHciUfc5hYsy1+wlcATMlD6eO1tlBcENNFzyvW9fCPrQ0UU+xedEoiegwU99rbFU4wa5iUe+9C\nuNTWTAZiMaL19Z6sRXq2XDJpeq65bCW10pGtv9ZfAmeeaZxb+VNSQJ8XVQEBrzqn9Y29zlHCWH8H\ngXRjI5UtLf8ydfKLGiM3R3zUcBynlX8i3ysWiw2ftO8WWXl7xnG47bAlTOo4gd0XL2bYLLhnGlze\nnqCrEVZPnMjAWWdz7LGvcP6MNk6aPJmLcr/kJ6uh+5RuLq2OwGuwZvAafnnqqSxoAkZA7/dhcf5t\nrghD1wiIvAA9T3Tz69GP0zZxItXPwW8mwtcf3BuGmg/0jOZmxqRSpoxwGVBjJg7yMAaT6X/11FP5\nw6mncsSbR9B8ZRN/2e99OBEu+Tt8fO+90AFlq+D0XRPc+MMruGTyHGpCNfAwXNqbIHdhgp0wzSfL\nlsBIIB+DOy5o4vCnoXFAI+GsCUqBApT1QU22wqOH5EKwbO0aFr+6hNxeu1L9USdz3zOBKROB3DYD\nPQeswPChpN9+h0IACtdeS/iJV0wlrq6OjS+8QOG5V+hraWHk9Pu9rBCY0r6sjJXpEce6rLERMBNK\npL6+pAlpwG0bAH62Sv3ElBlRlQz3fzXxtHuThazntJ9N6ZBVv4KBKi12VsluNxDp9zfWscWx1+Sv\ncxEY0fsA81kQtdGmJCrYiOOvCtRATBAUIBJAVTaviJlslrvnVeuew0D39yBKaadqSq3RiZ8txd1P\nOjibHqkMqIKuXCLBD35ynpSrp0CmAmWP+3q6p2Xu9dBxdA1EvdQ9r8G3+0/jZzmD+AsCBVgNgUQB\n6l58Uxq5Y4ruKoBuA0GB83r3eH/+AmQWt/DxqOM4pzmOs/2/mlHcOraOTTl2XVlBS6qF8l6jVwNT\nUavqCRLK+aBq4QsvsiHVRaAAN2Sb+HiQAVfZsF+BA7NteS9kbv81wTm/5ie936Svxm8ZXdH8IRuf\nfpreJUs80AY+4CsE8BwtQzkIVA/0NXBur1QNVchsR0Bt42nhXKqbng/EYiZuRCKeHEENomXJL8mC\nKJoBDMgrusfNJZMe2BNYU5LMpjSCv4hU3BB7JYWfSLSdgMGPwTazJmw9FrJ+C6jJbKrM2t/pd6wI\n8B6m8qaer9vh2/7XWedo0+QVg2RiogSgzk+0fMUWAT0xYHqtbe2kqZPJUNGvObfXPselT2oUcCtt\nyaQBba6Ffzgep3LsWNPfrbaWcDzOgHHjcCIRj0JZSKXoaW4299Pt6ea4LqOqzKnHrka2rY2MK02A\n0jWXKolp6//+LRW2jk0ydikWiw32D6aU9IljiwRvAE/d0sQDM+eRPukwfnM1nLgYGA5VKXh+/zBn\n7Z1gMLBqGjwwfh4bBm3g+l800T0CKjMZWAnsBiufG8aEV+G2O6ZS/hCc3vQoZwJV7wOPQcOQEbzz\njSWsP2RXVhxgKmmvh17h4r81cXPiCALnwDvjx/PezvDODcDrLm97IYwHbhs6h0D1QJw77uCAPyb5\n2fkJhi+Ga3cAPoCTkkk4AG6+vYnsCTDvdBi3chobyjfAaDij6gzOvRCO2FDJ/DFjGL9oAhMugXuB\nba5IcMOzTcy67E0vKDlF6KoygaG33AC6v8fzDB9Uwx77jGZAV4Gu+oG015mKXLS3QPGNd0i//Q7B\nbIFs2OjUcu99SGbiRNMOwLWqVfPtcDxOoL6+pIljwa2+OZGICQaxGPlkkvCQIV75PlRbS9rqCQcY\n22I3oIA/mWpRr0lU/d9s2qSGJhy7KiRTDvDdtP6Z/6pt0y/AYC/sRauzxduavDWRK4jpHHoxAMUG\nkAPwQY+qTnoduSB24QNEUTYlZta1yAJXYhwl89aPaBhqVK5rpQAoAfT27t8bKBVoC4jq/et6bcTX\n+umeyABF2VbZ7csYRu9PzdKL7nsTQBXNpoZS0FsA8vX13v+6X7X4TdVVvXTc92ovJDLW/VBWVCBa\nLp7g6yDD7rnX4Wsb9ZqbO0gVN+HPZhonYzRvfwVetX62jq3jcxs3TJhAVxUcEPwqveXQml5hemGF\njRFJV5UPqg4dty/l21TRW15aZRuw0QCwcNb8H8mYuBqbfAIDTz7BNEjOGkAHENl5Jyr22ovoLrsQ\nzBaMVMFavQvQFR3zOsXePoLZAsVggGIw4GmP5NasmKrKiXecaNSLyYFIhIANvKRrs7RxWszbOqxQ\nbW2J06C2F5hTTIN/tMlXXJF5iM0wsdkQdi9QyRH68LXS4CdIbVCl+CgwqLgvEGjHbjvV9iXMOk1J\nRMUwxYkYpXFVFTasYwqw6JwVUwfgxzkZl+n8BQptOl45hgqptj+B2lp6XFqrXa1TgrtggS4wa6be\npUvpaW42zo+qoEWjhsmUydDT3Gyqsepp2tbmrcmkkZOG0tM6up8nwOuFqvPVNVFyVg7cSsKWt7QQ\nBH6xmROcW3h81Pjrp3zsH8YWB96cZx2+/he48hsJrtwVxs1I0A4QhSU/gVtiML8wn69u3JuVwJA+\nYCVcdXcj9zY+Qw9QvLzJWFR+BF99+3ye2hP2v+km+BAOXWcA4Pg/TqDhWyPY/aEx8BrM3ibBA2PG\nmKs6GKafneDR5KM8d42hMQzFGIz89mcGvD11KawGMrPWMmVCgs6rm5h5wF9ZD/AC/BQ47t7JDAC2\n++t2nHlCgu+ddRxx4C+3NJG5FK7aFf60+wLohQdqumlsbuaZnRfwp0ug9fomPgQejrzEkzeezBt9\nbxNNm4Cw7UsruXf1g/yq6/eEclB706O0bkjy+stLyYcDFAJQ80EnqT8/ZqgRrn1/IZOhrKdAvr2d\nYFWVFygK7jZggkDFmDHG1CST8egbmjgKqRTBqipvEsp3dZl+JG5gKB892ghn3e2L6TSkUt5kalPl\nZJWvXjSaKqThsitttgmITalQILCzhKJsiBYoyoSqOgIvdkVPmi0dQ0BPE38vPggRmIniZ/zUQFT7\nl+FnDRW4NHF2W/togrcpKhdgNHeiiAjoKeDsAAy33oeDb+qRxBdbq22CqncKsjb9RZO2TTtc526v\nxuZqsi7wJK2C+tplrePjnk83vlGJrlXGdbzS627EALwefJ2chvRven+6XnYSwL7O4Gs0lL0VDbQP\nvzJnv8bTmzE4/Suc/U/62RyjWCzW988ofhoqyNaxdWyqccc5RmLZWw4ryjrocnrYoXwYThGe7HqO\nTMQALjFWFj73V3o3bCSchZ4K81zZhj6vUpZ3EUkhYCpx6agP/ESlLAaNHq4YH0wgEqEYDHj7AJ7J\nSSHgG6HkY2Ve5Q3wpAcFS5eUd2mQGqqwFdyFuN3UO1RbS9AFaKq0acGv44muJ8Cm+OioUicHaUpN\nvhSH+y8c+5tZqRqm7QTmlBTVXK0YZZuT0O857eNYx1CizaZzar/3gfmYeV3b2owcB7NGq8GnzGvt\nYUsMPsaPfdKE6xi2wZb0capc6Xr0YoAbmFiWBk86Emxs9ABy2AVucn0spFLkUynTD9e9j7pPokP2\nLF5cUjnNuT1Pc+3tHmVWIB3w1m+At9YDc7/D7vpL10nrjip8UKp7Y8tHNvfYkuOjy0jZE6hwe7yp\n39tB+AXg/+8IffImX7yx4iAY9iScvw5THz8AaqpqufisQ3ix7BkorOE7x77CRb+Ga/YbQ+Hog5nU\nkqDxWPOlm/n1BHMfbWKbqxO0xON8/zJTGVrzE/hdy2SGzZvHURcvgP+Gfbr2h7/DxauaOOdHCa5+\nby69B06hfAnQCgdcCZzfzDkvAj1Qka+k56ZuKrsr6Z7VDW8meOQgmPj7BE8cDTt9DJVXVnLH7NN5\noClB4zxYs/ca5jXCE5PLmZAHbkswFjgbqLx9b3543/vcDFzSAzwJ334MGJtgzqJD2WvQKADqInW0\n9K5gRHYYZ25/H5fVNBmL4188zMDvHMWwTA/bOAGc7j4GvLeKTCplnCBdEXR21SoiO+9kAMuwoeTX\nrTdVs1WrPMqG1/OjtZViOk20vt7P3kCJcBrcScINPDbXWtkkJ5PxuPdZdwIpAsRi5NJpQhZHX5O5\nTZeU65SAlECbJlKdmYKNAoMyeFrcq1JTiQ/QFHhkbKH/c9Zjou8J9CjQCRR0YSZATfoOJuuHdW4C\nDrJHjmA1LsUHQjYAuQa/qbYdPCSkFrCKu9vIAEXnmsSvYIlKWu7+XWldxwylvW90/AilDl0B932q\nF5/ulxQb0pUp2Ha55y9TFrU2CLpibr1GAFMhlB5QoNsGkqpSigqqz4s+DxqqoNqLg4i1j8CggONb\nfEruwtZRMhzHObhYLD7lOM4x/HMu/+83w2ltHf9LR8/ChXQfOYpBVPNxroNoIMoDq3/HhO0meNW0\nih4Dor41biw1ZUZRPXi9AVpd25ZR1odnWmKDr3DWB2XgPx7KmWoaEde1MlAKdQIFHwjmQqaSZx8n\nUD0QJ18g39Xl0efUHkAxVJIFe1Fu/60EqbRSuWTSGIypyhaJGODjyh4ASKW8aoSjbSxnxBA+s6N/\nv1Dbjt9uKaMKlaiXWvhr/tWcrljTvw+r5nuZlCi5phY1ZdaxNe/vhOnzpjWD1glYrwG+oUrK2lZa\ne5li2VVDxRS9P7UOAt8ZWjHHo1ymUsbtE0yFy23jUEilvG3TLS0GcNfVGcCfyVDm0icLmQzRxkbP\n/M3r8+dKU+y+gP0dLXPJpKeJEwAMuFW9dEuL//r4UgsolZoU8dcjRes5xd47HIdTt2px/51xCIad\nMgS43no8BZz3aQ6wxYG3toMg/iRs/IaxYN95PVALG55O8mLZM+w1aC/aM+1cdOGL/PYE+N5HzTy/\nYzMDgKNfBXaGU351ClNGJmAe3PL8BIo/mUcr8K0H9+bbawfzJYCvAe/BA0fOg064tJjg6nPnsk3X\nFMZdugfLRr9GQxauCEPg6iaGhBOc9DT0rO6GKfD2tt0MTwBfdr8UBxsXpFvPPZVceztRpwB/g4EX\nN7HH0ieY/OxrrD5wHg/UwT3XwCM3n8IeZ/6cw++7j5p7zHFmj6xnp9ZW3sHc9TMSEXbPGsF1stBB\nfXQYy3NruXBYE0U3lVbW2EgqBq2vr+KjDWv5jst7DsRixqlKQGvnnTzjEtn5Z1z3Io1iJuO1BMin\nUtDW5gUWJxIhPGQI+a4u0i0tJWAtn0pRMWYM2bY2r2VAIBIBF7h5bQnq6iCd9iaGnBs4JDi26XCi\nUSgA2O5T4E8+mlz1eIjSnl4F/OqYQIMEylrsa0Gv11a/Gw3b6VJBQKYqmsRVJZTmSk6H2j+HATQK\nQgKgdkZSdI0LgMsx3/py63EFN3H3B2A0Z3rPafdx9ZTLutt04ANHnb9AkQKy6DGO+x7W4WdQFXjt\nlgsFdzsZkXTgg1+5ctomMT1uPxwoXfGriilwqFClCqXukV4z4l4DBRvRNAUyRWu1DVG0QChYx0jF\n4+DSfTfH2FwZwU0wDgCeAo7gn7NStoK3reMzHzdMmABA7y1NQJ7uQg+RQIRULsXx8WPNRnlTlavq\nMr3aHnv+BY44+CCiA6sBA6gE3PJBA7LskQ8a4xMwDpKh8jITQ6sHEnDpi8FtBpvn84YWmYmY44hG\nKTAYzBboqwgQzgIbOk1FxXViln5JbpJasKtCV3TjrxbsagvguBopJV8lXyjRyNmL/0iEgJp/y3QM\nX7Yg2pwNRRWblNjTtlrkK3Ep8KeYZicnodQ8TMYjmsOVJLUXq3JotvuuKf6swBi5TcVPtCoZqJim\nWJzG0OY7KW05ZAM2sTf6v3e7jYLma71vXYu+SATSaZNcVXyLRMi3tfnn7dr3B4GCu2bKJZOUjxrl\n9clVPzbdr2hDA5m2NkOVjUYN8HaNTFStKx9lEvu672oToHWdTFIGUFo1FEDV+SkuSsICvpv15qTu\nbcExkmKx+CvgV47jHFMsFuf/O8fYotwmV7s0ph5g59tgwWnwLhCcPJl95s3j8ViML6dSrJs5k+Ou\nvZY7ZjeROy8B1zQx+pwEE9+CO79s5G7heJzvtrXRCTxyUxOXr05we34mP9vjWi5c18TFUxPMPf54\nJt93HwP64NbLmjj9+ARUwrJ6aJgN4fYw2euy/CoAJ+JOZDdizEu+CW8dBMswDnxrgFNmbQfA6IGj\n+e25i6jJBfhLqMAd1/+ASDDCJWfdzbcv2o3fX2a6eseBAa9BRX0lPY938/Tx8Papp7Jxh4Hc2PUr\nGmON1EXqqIsa849UNkVttBaAykAFg9eb4FS7vkBnRwfp7m62GTKEvpYWQi44izY2etzo/NDBnoAb\noNDR6fGnM+5ve7IPx+NeAFHJX8EE/OCi/nG2U5KG7UBpZ4nUj8b7fLhATnon2b2DnwkS4IFScCVQ\nooncnnBskxLps2ytXCU+7VKxWzVtBSGPz45f+dLriRZoZwpjGOAhgCQKn46hc1elSuel51ZgKB8D\n8IXFqiAKxGXwdYKinYq7DwZM7YDfh2c1MMz9rUxlABPU0u45y3BlIwbsDcbQT9rxtWsD8CtuAkzl\n+EBLmjSB5ALGkcuJRo15DX7GE3wgpoxpEPP1kv4iCmyMxRiQSpF3z6kXHyAGKc22qpIJ/uJA72sQ\npfdR1+qQTzFHbmonrUutz/5/Oi7OZLY26d7Cx1a3yX9tXHfFLF4q+4BULkVjzNDSMgUzg9cGqskE\n8kTzQa8dQCgH61etp2bwICqKZtkqh0l9c5yiqb6JahnK+dRHNnQa45F160s0ZAG3x5pokeoLZ/9d\nCEA47S9FC1YMtWOmdErFdJpce7snPdAoZjK+gYW7n+38LKrcP+v1pRis2Ni/oiZ2gp2IVNy1E1/h\nfs8pBiq+2Y7Ptpux5nbFds3JWNvZtEbFO/t8tV0PJgYMwcSqSkpfO+P+lp5O7A+7gidGjG3CpVWL\n7bZptxyypR2KaQWXUQSQ12fBdfHMu2BcVEgnEiHa0GCcJN1WTeAznoK1Zm2XTyb/oZm2AF6wrs5r\n4RSOx73PhNZnuWTSfH6SSQ9M9q+GCpDr2ipxroSnKJPJ+noGtrYy5VPOS1/UGLk546PjOGcB8zAf\nrzuBrwLnFovFhZ+07xaleYvfDi8CO98IN552FzdddBRHA852g1k8q4mLnkyxDHik/H2q74b9zktw\nGHDBxwmO3VDJQ1+Gn5xrQMe5bW18qQf2ug8uLxrgtu2119J8HPx4aoJRj43mzOvuY9C0MCyA03+U\ngGXwm3pouBhWnwfZ67J8Z9pxnLQBnA64rrERdoCbnSbY1li6p4GlwJEpuO3qNSy+eg2LGhdx76mn\nUugrcMCNcPz0+7n7xLs5+tI9ePP8N/nSLLcq8gHwKvRc2821HzXRAUTuuINCAFK5lAfc2tPtpAtp\naqO11KUriAaiVHXBxgHGlCQbDfDhhnZeevVVepqbjYtRVxfheLzEQEQNSHMhTBByq2KZtjZCmjhE\noayr8/nb0q+5FA+5JOXdiSLrVujABDSb3hFwKSAyOcmpYaTL4w/GYl4WUCNv/a1qis2RFyCzP9x2\njzIN0Tmk8ZKIWrQICaXBn6xtwCjDDlXZBCakH1ClSM1HyygFBXrtoLWPAKjOXQBPowici7G0V1Ct\nwA+ONhDsP+wgur2772D39Ua421TiZ0cz+GBTGkB75DDgr4gPRm3bZFFJU/jXThlTAct8LGaAeSrl\nOaTJrljZTrslRA++ni5fW8tG6zopMNvgV8YtOl/7mKqoimIrkTxsYRPj1rF1bB3eOH7O8TxQeIK6\naJ0H3DQigQjBPETzQa8CFiiYJOefXniedLK7xNY/kjHgLpj3QVxvua9Zs6toAm4FK8HpgSILsHm0\ny7QxMgnljFbO1r3ZoEu28N4x5ebsGpaoSgd+AtQ+BuDp4QL9FrzFfrFVbQXykYgHZLSYV4xVHOg/\nR9pzp111y1n72I6V2lZaccUI+7VsDZkok7YOXCZgcisuAn8HfuU+VomfbK2yjqNz7canBtrnp6sU\nxcS/Ar42XNtoTaHYZPd5jWQyhN0WDLlIhJyrLcslkx5wAzwaY8Bd76jJttZZ4XjcM66RBMXWsuVT\nKV+/psQ3eGunssZGQrW13voN3M+km+wUGFMiU9dV0gn7Xuh+6BrUuS0G5m51Zv5PxuRisdiFoVHW\nYOpAV3+aHbc42uQxjwDr4Kxf/og5Dx3K74Hvzk6wHjhvaBMzPkjAqw9DLRyyoZLVNd1c8us5tKx9\nk0mt82irh3m0cSNw80+P5+4vvcOJF78GXMvR5wIxGNEzgmPf/xZvLvoyb0xqZlnj+zw4GK65dA++\nX3iN1QHYfgFwD+zWsAN/CADvu5zzl2DgNQl2HTuacpbQdNFuvHrZm6y4s4ljViRoHwaFoyEw+w6S\nA+C4qw7h8N8vgvXwWuE1tm8ZStvVK3Eeg+U7m+rbVdc1MbOY4APgrluaWNLzNuNqx5HKpYiXx4mX\nx2nrbSMe2tb0sMkHyYUMJ7+9DmIpqCfAkF12ga4u4zbkGpKE43GCdXVekOmrCOC89SGAJ5qO1tfT\n19JS4nQUiESMS6Rb1tfoczn0xUyGQF0dfS0tJaLZdGtryUSSd5tYBlyhLgCpFEEButpaM7nEYuRa\nW0sCiW2334tfYVNmD3z6BfhBKEOp9b4W9crm2RbG+i3uPNbjOg/pscqt50QpULZSOgK5HkpHJuAg\nKqeyX0X+MYgp43gNpmrm4PPRpVtTxU1AqQrf5bEDaMAAP/CD4GBKaTHStAUxmrMy/Ale+gBp7jbg\nNwpfjtEaaH9VvASM7Abg6P2n0xCJgEsXiWUyJeA8hN8oVq6Yqtbp3kfd7KYytsqGllGqB+yjVKOg\nhYmqrtXu43LirHTPeZHjfKrq26Yctpb0Px79Fmhbx9bxP33sNWgvIoEIrd2txEIx4uVGLlAZqDBJ\nJVev1ltuNG9VXfCt/fdjQFVlSS82mZKoCienygEbDW1Sz9lOjcEqs4z3emxpcQ1Eystw8gUTNyvL\nYIORKmjfQixG3nUFBFdHnk77i/WuLt9wpK7OVGsUv9V423WeFOUy6GrfRLFTvNY2odpasi4gVOuf\noGtoAqX0RZmHiHKuxKOtg1P1zNYfB6znwdc5F/CNovrLHJRElVGGKj4CTNJHS0unJN8I4CT8xGoP\nftJQCVS9dt46nuJnhbWPXWVTMjaKialyTRajpcOl/qsKF8aA4aBrCJOJRKgYPZqe5mbTx86VsDjR\nKEH3vpQ1NnqtlOxEgO0Umm1rI5dMelKUzLJl3mfNiUS8fnCSxKj9gNwm5Vyaa28n7erMbcds/bYT\ntmoVYDuN9gfYn/fYZDFy88ZHLYcOB35dLBbfdD4lGN5iEsxOr2Pq4O/Dgz8BvgnTTlvIh7eewSMz\nZ7IzcF/bg2zfM5TffB9uuX8yPWu7GfgURCt/SiAhAAAgAElEQVR/zvCXdmL2QfXEX4IL/gzTHoEz\nf3wfuwzYhd7GRn72GlAP3efBn694n+c2vsQfYg9w6s/KaBsM3wdeu/A1Gv46gu1XAa/AhZ1N/Gxq\ngt5qoAJGNjfz8DWwdswYrj5sCV9fAN+9+j2uvr6JSycluPHsSdQ9BdeNGUPLeXAH0NbbxltHw7JG\nuP658axOrcS5AqiCZuA27qJiRgLaYOdr4codEnTluogGoqQLaZLpJMl0krpoHclCB8lChxdgJJ7m\n9Xf46OOPeXnJEiINDd4XPdvWZiZzTdjZAo77bQ1WVRFpaCDb1uZtp6ydQFwxnSbf3k5PczO9S5Z4\nDUaLLq+6a8ECsm5lDyC9dClgmkJmWlu9ql0gEjHl/rq6f+DiF1xDFa9xqXssu6wveoM9iYhGoQle\nVRtVlQCvagOlFR5N2KqCSbwM/iQnXnil9Zh6ogQwYEbPKSCJimEDwYGU0gR1HGUu1dtsIH4m7HwM\nXTgGXF811wOSCqACLAJnyhQqdzvUfV4WwLJsLsf0xAFDIRTI1blKy1eJAZ9J9xzk6lXlXtN265ro\nteXYJe1cHp9zrxHS4gcf6Gl0AN2RCPnaWgPcMhlIJsm6bmpZDLhLuuen96bPhMCo/lZF034NZYDV\nZ66XzTdk/b0pfv5fw3GcoOM4rzuO8+jn+Na2jq3jMx3pQpoFaxaQTCeJBCJEghHaMybGdRd6cIo+\n6AoUoLLb/F741H/TvbGHfNDETSVAg3lTZYumDWCr7jCvUwhAcc16Ch2d3sIZ8F0e3XiYb2/3Ymyx\nt89vjr18Jbn2do8yl3O3y7ttdwqpFPmuLr8dgFud0cLedoMGPDAnB0INb7t+i9SC1QBaOvZwPE6g\nttZLgKp/me3WrBhnx0vRJ23XR9thWW6NokZKyyxKvLRo4Cf6FPvkcmm3D9KwW9VUYGLQu5hWSnpc\nwM2WSCgOy6Ar5h5LSckq/AStGDZ5TGyQG6OuhRwYB7gmJJILFOQvUF/vna+0aBVjxnh6NgHmSDzu\nJbb731swEhMl0fW50b7RhgYGjB9PxZgx5rrW1RnXb5ciqWPZshcxoHQtBMR1ne1hm79pCLzD5qm+\nfdbx8XMarzqOswg4DFjoOI4+ep84thjNm9PrwF1wz2lw4io8lem928APF8Eth8C+wINzZzB9ynWc\nfu0xzJ8435QVFsJTx8HB9wG7wL17wpWPjeYbHx3IthffT6ShgZe/P5zjZs5nNPClxZgywtvw1S/t\nzb3HvsKvR15J95Q17LSugrNCCcZXTOCZvgUwGhLnj6JpylJuXdFE96OPscvSpRz5EVz/4/FMb3qG\nNybA7quAFsh9HUJPA88C5wDvQ/ieMPvFD+aOGQtofBXe2xO+ed5w5s9ezoUXHcXjuz/McX+azB3z\n5jHv4iZ+G3qOWChGupAmU8iQyqYYUzOGVDbFLmU7kw7m2TZpvlaV3bDxyafoiUYpVFUR6+wkl0wS\ndbMzAnLhIUNM0Bk+FDZ0GnqlO7ErkIhHry990HVAAgi4LkpgVYxiMaKplLdYDroOWVqwB2prPV1c\n/6BTzGSI1Nd7Qt1sWxvZpUs9QKJqla1zE2Dr/ynShN+FD5b6MJO6AIo48LY1rqpjMiuxq19R63HR\nLhWExMVXZk5ATH1iFKiq8DOOBfwqoV1NVPVIrx3FaDaHATdVzQVgzUhzD/qqDNy4YdH1JX11bGMU\n6RGCmApVFF/XpueVWeyyrq1MXIIYC+VeDFAbjK/ni7rHHIABUQHrcVkly+wlj8lKhjIZzzhF7QyU\n1RwAbBw1ir6WFoKxGIVkEmIxwqkU+dpazxIZSl09bYqmnfFVBU66Nl2TCvdnsPv+N7q/u/GD2idV\n3jY1n/8Kqzr9n44Lksl/em6O40zDNE2JFYvFiZvsBc2xQ5hsYj3+uqxYLBbnbMrX+d8ytmre/vUx\n6bpJns4tXh4nXUgTDUQ9zVv1xiDhrAFu0TSsaVvHtjU1RBxDYZQeLRv2K3WFgKFPOkXTI9XWlqlS\nYoMt6ZDy7e3eQtvWMqVbWjxKoxONepKGEkDmGotJm67jgqmaFYMBir19ZJYt82iWkjTY9Lqgy5QB\nvDiuc9P5OtEomWXLvESa5k/Ny/oiS2stUBbA0ApFo7e1yuDHOQEeu2ZiSxegVNNmgz+74qMYJlaH\nPacXMTGpDp/il7W2lXRB8U+MjB5KE7Z6DPzYrHWCjiMAk8SPFbjPaf0ijVugvt6rbgpQqRoajsfN\n/UmnibpJc9tYRvdbny9VT/OpFOWjRnmauJ7mZgaMG0faNSXR2ql36VLP8ES931QltPWNNltIQ6C3\nxv1faxFb/wh8ovbtixoj/1/x8fMYjuMEgd2BD4vFYofjOLXAkGKxuOST9t0iaJMHzT6I5vNhzK1w\n4kuwdIhZEbQBxz64N7z0CmesgswQmNPbxiPAXTPns/9MQxP7Ti7Ae8cVSBwPTSvghx8B6SW8fNgS\nYsDlySSPL3qHj4btzeuRVzjmL8fQ1tfGi+Ne5JaDX2HKlQfy7D7nw37mfMLnhjn9ogVMAEYBF1wa\nhq9D96THqFq6lHdHjWLfJ2uY/r1nmHPDoez+zkKuHQJdNzVx86FvcMTiCAe/FeWAyodYUF/PD1tb\n2WHVArafAb17QvkGmHPcLjw497tcNeU6DgZmvDaPBxLAnASkYURoBLFwjFQ2RV20jlQ2RUNlA4Es\nDO4KejbIYL7g769bR3tPD1/ffntPICsRazge9yaH4pr1XvbHFkA70aiZyK2KGLIqbmsjglmY1+ID\nhO5UyhO5ZjCuR5oowkDBragJsDkuFcSrurnArXfpUjMB4k/CAlj2ZGMLpe2KC/h0BzCTteiTCih2\nfxdV58Sxz+GDCwUNAamctb8AkLJ00nVVYAJFDN/8QzQNm+6pSVJgowqfrhEG/g93cTo/4luDGtnu\ne3G++ec+1oxcxfJ9PmTNyDaqV9Zw4I2HeNlNHacSQwWUM6VAmMxYRD3pcV9TbowCXApmApgx6/ks\nvluXAGwnPmVSDcHVtFzXKjJ2rPl8NTfjRCJk4nEKySQbUynjAlZbS2csRjGZxMlkCCeT5l66ASef\nSnnA1nbilIuYRp+1je14hns+21NqTQ2lnx9pAv7sOBz+OS6eNylt8p8d33GGYrJ9VwLTPoOXeBTz\nUVrK5mPWbB3/i0cql2LhLKP7n3jNRCKBCHWVdRSAqh5fFVzeC2zo5JGnnubY/fdnoNvOJp9KQc1A\nb7sSg5HOPvqqy4gGy7xqWaiurqQq5EkRXFYK4MWzQCxG0V1gi1milj3gzm+77FLyfpTolGRB2wWq\nB3pNmdX3TXr1granlDGj/wuuoZhivpguOZ1XJALJpOe+DKXVF82pZfhMFoEAVXRsBoiAms3MsOOs\nKJmKJQJEtst0AROnlOCUKYpe60PgHuBafEMqG6QoPur9qMF4BQZ8qhqXwTBQJDuwK01KHCvxCWaN\nUMCl+bsyj0Btrcdgyrumb1pv2YnqbFsbTn29B7bAtFoC00pApiWBaNRz967Yay/S775Ltq3N+6wM\nGDeu5DNg9weUCUpm2TJw9Xh2YtOOODLtkpbPdgPVmmej+/cOmLX45z0+6xj5eYxisZh3HGctMNJN\neP6z+sM/HVsMbXL6lQfy2unQvA+Mus180bYBXj32FY6IHkHXEIi8D/dPvJ9TuuEB4KwHYB+gcEeB\nXYGmPNAJN89r4rynmnga+NIFI/jDg3tzf003r7/1Cj1Hw9kz5/Pif73IhW82sd8M+On5z3Ly0pPh\nLTjl56eQmpPlocmT+ejmU+gFfnrxa/AbaDpxKTsCTc8t5cXss9Qsq2HaGQu5+mtz+RoGTAViMSY1\nPcrCkTneBc77WSuPA+ShKgu3AgtqoGvhQq774DrT/+uGJjr3wMxIeShcDe9v8z4tqRZSuZRngdzW\n28bbmQ/oqTABJr/kHfpef4NQbS3x1avZa8QI0q2tHvdZ2Z/MsmUmE+M6UH78u9/hRCKkly3zgk4x\nnfacjJQpDLqNQZUNq8Vf+KvJo00zFK1Ck3LAmtDscr4TjZqgY1E5ium0xyOXKYcmetHbBO7soaqV\nqi4CEWn8DKEokn34QCZrHStGKYVOE78ogGAmfb1ej/VcBT733nY6VFsAabFsgKF9bNdKgNP5EddV\nzWXfUQcQrA/xt0mLWb6P0SdWrzR5sb6q3hLDDlX+BuFnHmOUato63P/VTw182oo4/UnM9000mS58\nTV0nftNtNdRWsOzAp10GgOrjjycwdiw5t/efU1/vBalAJEJ01CiKY8b4wc/VPebr6737GMYIwm0a\nZAe+K5gAIpT2yAMfTAfxe+7JbSzsvocU/kLEpud+nkPW4Jvi5/8xbgBm8tkBqyHFYvHoYrF4cbFY\nvFQ/n9FrbR1bxz8MATeAR855hFg4Rnum3au2VXcYZkowW6CQSjHx4K9TETSziqiEYGiTgYIxJwnl\nzE8hlSK81m2to0bZLpME8LTh+VSKqKtjkgShrLGRfHu7JzHwqmUuCFRlLrtqFX3vvkt21Spv25Db\nXgf86pmTL+BEIp4bYV9Li69d03sQULCcMDXybnUIzPvSIt9zRsTSksdiXjJPQ5UoKE2mBvCBkZKr\nEWvf/iZYdisB8NcLAoNiTVRbx4jiUxwVZxuBWZSCQkkJFAvUAkEmVXrNCvzKXR4TH+33CaXxRDRD\nOyEoM5JwY6Onaxswdizlo0cDeO2SAM+pu3LsWFN1TSYp/9reJT14w/E4obo6Ig0NlI0eTTgep2Kv\nvUylNZOhfPRo8xnp5xyqz5P6vclp0jtPShuUq/WC1hySSEhGEsbERVv7J5YOwC2fM3XyM46Pn897\ncJwE8DymA9RMYIb7+xPHFgPelnYuZY9p8FgsBhGzWFwEBB6ARysfpWoeXHvSWHDghUr4L4Bvw93A\nMb3HcFAGuAu+9dujCBTgR6cnOOoteH/4+7w+/hWOmgbUmg/vC6NGccu2MPiVlfzxOmMacveAuznl\n+VP4efrnjLloN749bx6pbIr51/+A5XObCHeE4VAzkbQNgptPgyM/Oo7hfx3OCV1TGAVUzdiFs+58\niJMug5cn/zc/KMBtbVNZe10T7+0AbDBfkFeua2Lw1KlwFdx46xlc2png8rkzYC0svwYCc2D4muGc\nsePpNFQ2sLRzKfHyOMt6ltFYvrOvdfvqrgasJZN8lM3y8osvApBrbTWArbnZq2o5kQg9ixcDJjuY\naW31+8JEoxTcCSDa2IiadOfb241L5fjxBDATXhHzZZZuS2DLphmCBaAiEQJuQBN1AEyWKGABzHA8\n7gGcLH6DZ03oojmCmWA0ISkTZguq5SQp2kMvflXNphnalEllppQVrMWn59nCZWUGBYLClNIWRUGR\nFXIZhsqpaa8cH5SKknLRyCsJADP2uYCOoR/zdNsCgkuDdAz9GMD73bjoy/RV9ZYYgqgKZYM48LOM\ngzBSUgExh9JG3MrbBTB9Cm2AnMUEty78oKxA341vHBIGyseOJTZxouc8Wuly/nPJpMksxmIMGD8e\nMMmEssZGyseOJbNsmQfuBHz1GpX4+jZVZDfig2JdA92zKvda6xg5DPAUDXQl/udUld0OoDkWo5Mt\nZ3zU28uTH3/s/fQfjuN8G1hXLBZfp3QtsinHIsdxDv2Mjr11bB3/0ph4zUSS6STx0LZ0BHvoGJCn\nqwo6qn1nvz/86c98/NZbpjm2qwlnQyfBVB9OvkAmAk6+QDBb8ABObsVKY/5lGYyogbYaKefa26k8\nYH9vIZ93qZSA1wdVVDqZhIkuqabMAMFtBpvKWHmZ0etUDzQulZYuKmC5Odv75pJJw7RxnxdNE0ys\n1T4BK/6qCmfrir0qHn5817yspJ3a5dgsG/0W00XGVfpb20YxsUkukerbKVMwrR9sgKikqIDHMkzV\nTcfzONv4SVmtJQbjSzAqMQlKxXQZi0kfLiaM4kIQSEUifOw+1tvYaCQRbrNtMEBNYEqxTCAuGIsZ\nyqNlQFP+tb0p9vbhbDeYYtztERiN0j1sILlhgylWlpmevKkU4d12JdrY6LWNKLgtJHqXLjUtnjIZ\n73MYdI1wcskkhWTSa28Efp9baQZVkdMaptd9v1pfyf1abXvWYmK9QNzW8S+N7wCNxWLxsGKxeIR+\nPs2OX3ja5A9+/GPi7MSzFz3LNZPGMCHVTN2HTVQ9kICdgcfh1Oens8PXQ8z8TgLi8OT1Tbw6PcGG\nGNx96KHM/9p8+AXQDuMGNDLsnAQjUvBwDFqA3kvncMmvpsHT8CZw2aEf0X04XPNkC0dOg8IcKPwE\nfsnP4Xb4r87DGcubHD/+fj7cA3Z6GQpTYG5ZE/vOSMA3gL/Avju+yfKTljNkZ3h5MqSvfJcDbzuQ\nKRc9S+NFSR4eOoc1M9dy+YgEhaFzoDCN/YDnnniD0+YtJB+FFdzCtUD9rHuZ/dt6hne2wlz4afWx\nfJBZy2UXvkgnMP28Z2iMNZKih7pcBd2VJrNYdLVtO61cSbi7m2gqZezck0nSsRg5l7oRjMWINjTQ\n3dxMwQ0mkYYGL/sWqq8n09pKOB6n6lCzJutraaGssZFsWxvpWAxSKQ+YgG/TLoqgaA5qkhkCwpmM\nAVjNzUQbfVtnCajLR43yzE1EBVSpQMeBUhF1jlLtmRb7qgradv96XMBO9sLSz4UwE5faAYheoQAV\nwgCcsHVcGXeIbqDjaIJUUBBPX/1hBLCK1u/buIvZb/+I4ydPpq/K0COH/31H8pV5mif/lcZFX2bN\nyDYOuvEQ0lVmWpV7ZgC4dKiRGF2w0jDjBGxWYTjsEnD3YoxGVrjnuBLf/KPDPbckfuCz6bCiHJZb\n+4APZvuAfHMz4XicMrevYDGdpmLMGJOZdgXdIVdDqf40YJrMZ5Yto5BMeg6QBes1Uu7r1mKCcB0+\nkBONUvcuiP/5k5ZBz+lzsoJSZ7FKoNYNvvc7Dj/4nKiT/wklZKdolJ2s/5/u/AfoORaY6DjOYZi1\nUZXjOPcUi8UT/+0X/cfxV+APjuPoIw5G81b1/9ln69g6NulwFjqwHo4JHEMql6Kl9wMaKhsozwaJ\npl3KZPVAipkME/fdl/IVKwwLRSAGN66kUgTigz3GgHTgSizl2ts9jVIxGCA6clffFMU9llwA1STZ\n07q5VTnA65Wq4VEv332XAbW1UF7mP+dq8MIynnAp5U40StjVxUlTZVfTRL9UWwGbXhlydXgeYOwH\n8rJtbThurFdiVIt/G4DZ5Xxto+tpJ9cUS/PW86rUaY5WFSjrbh/FzOMyI5O2GkwsGw6cRalTsfRy\n5fjtbKLu61ZZj+G+1npKzVK0XlnnnkMK14k5kzEGJbGY0Qr2A+gDxo2jd8kSuhYu9NY3xXSaynHj\nzBprz909I5pgLEZfFIKhMs9MJ1NdRjBm7nk6arSZTt4kD3Jr1nv7ZpYtM4kC17Gyr6XFUH9dPWa6\ntdW0JXA/Z4rNit12HFRcL2LWMXYFVOsdrHscwDQj79/S6bMe/xNokxiWbwQfK3/q8YUHb954Ar7f\n3MxdQO269bQcBy8DJ7bAHeOuZ1ZLE+9NgZ1nwmMkWDFzJr8YFKAQgOYDFlIP3Fk1l67Zy/kWwJUw\nEjhqCbB+Gjc+28RZRyf44bdGkNzvfcpmwDlHNbPmAgg8hEnPu12R7xr0jOnpsS3s1A6XxiMEFmU4\n7sH1cAEUdjQVv+N4lvLxcMjaQ7jp+jounZ7gaGBEByRua+Kr509j7VS4+YImNqycRm578yV5duzu\nLBmykA6gfgbwbbjtoDWcM6OSG06YyJLIMD5kI6OSy1l8dRPnHZBg36fitGfaqUvXMbhYQTYMufc+\nJOTa9f+9pobOSIR9urtxMhm/MuRSEvtaWqClxUzwbW2GIpFKEXCzcurdBi7P3s3gRXfZxZsoqK2l\nr7XVm0gFnmQQIrBiO0bJmSnq9jMJutQTLxC6ZiaRhgZ6JPLFn+z79xWznZIK1uPgV+my1nPaVxWn\n/gCwBl+kLKqmKAOiBNo9a7RSrbbOR3Q+VdgE1qQ/k9GJ7It1PAd495A3uealuQxc+SFlVeWsGdnG\nst+/z9q7VjPhxiN59qwnGLhyEH85axG7PzSGxy57mMMuOoqvPLQXs98+HzDA7bqquUzvmuJVCxsx\nAUhUELlVypgE/IAYxgQz23Uygsm2KSOqgAuQiccpHzWKYiZD6plnGDx1qhHzu5qLvnffhXQaagYS\nra/3dBieXbbE8rYmMpkkg6+9UwuEQfjZUJ2LNIe22yT47pIf47uIgam+tbt/l1E6et3r0R6JUPc5\nBqfP0gWrWCyeB5wH4DjOgcCMTQzcAOZgWOtvFovFrZq3reNzH5Oum2RE6cD8DfM5ovoI6qJ1VKZ9\nTXg6CmU9ZjH8yMKFfLeujnLXtRF8PVogFqPQth7A0xJFGho8Q5LIziZd4uQLkC9QDBrDk2JvH5nq\nMsJrO71FtqzbgRLaVlCAy+136gFIlzKnkQsBoYC3wM+HAzjdfZ6ZCeC5DIbjcdOWwKJL6gfMPBNw\nQZwTiZBpbcWJRom47QcEJm1XSgBqaw1QyGQ81o10aKKtKxYqESmjErvS1o0PDLSv1ggS/9jb9+/L\nWY5fXVOMXgX8HJiLDyQr8Bkw9hBFUL3ixHYRoNP5gokfgzH6LlUec/E4obY2Aw5d98hAKuWBONue\nP1RbS7Shgd4lSwzA+uqukDX3t1A3kGC64DWMz0TMZzOSMQ6nUXfB5uQLph/ghk5Pl1moG0igPUZf\nSwsVY8bQtWCBubexmG/2lUqZ1k7WdYbS+C26qK5JBrOOKWDWOuvx5SIlGrh4nAo3uT97yBDOW6Vm\nRJ/t+AI4RW6K0Qu84TjOU/gArlgsFs/8pB2/8LTJB0bMY49334XxMO+GJgJA5bx5DAZO/Ahuv3Mm\n1MIeUxI8NXMmHcAY4GeJa5nVlOC0WQnGtJg08KzFU/jp6Ql+OXUq86+Gk35xIOc910T7wTDqsgQv\n7Akz9nufu2bOhJOBbtjudhjfOoELe5q4cF0TuUnw+tBXWA/mG/4yVFx4Nsc9OJkj582je0dD5TwO\nmDd1KlTDrHMXcX/qfkLA11prmb17PQuif+PIV6Fz7Fg23L0tl1wIofvAuRWmT0pwxHnDqX0Z801p\nh1TVXLqruuneb1f2qOrlrt/exvSrnuG8gQmOeeEY2tPtNFQ0sFNoGOmoW3X78k4mu1Nfz4htt+XL\nxSKOqxUq4H/4s67uTBURjxbn9hPRRG/TGoPuhN/xu98RbWjwOf6RCGl8egSUluDBBy9eBa2+3ufx\nu/QBwM9Quq9fOXYs4E/sNtjoxXczVNXF7tcmyqJaAogyKW2THBNFAenFt+eXqYfAqNyqVOFRFU5V\nwaj1uHrXONZ+yj6KVigRt93HRmBo7cg21oxso9OiSBZuLFA2tJzHL3iYnrJu1o5sY/VuK3n3kLfY\n48G9Gf7STiy86I9cNnQOa0auIoih6V5fNdcDpQK0HZhMmmgxfZS6ignc1Vh/5/B7xdl6tjTmMxKp\nr2fjX/9K+df2pnrSJHPPXF2FBPmhujq67v+N99mKNDTQ+cc/mqbwy5aRXraMjKsRiboLl3ws5mVM\nRa8RVbIS2Baf2qKePQLbutaiwhYp1bbZrSGSGECnnzCwzdSp/A8en0U58e/AW1uB29bxeQxnuoMz\n3aS9nF84ONPcFFgSbmueyoEDDiQWilHnVJMLGQC0cYD5nQ8bd8mjv/ENBu2+u+8e6SYO811dxpTE\npVPm2ts9amRBSal8wejMwwGKwQC5kAFuAKEV6wlUG8K2wJUqbt75u9UxPRewQJZ6fOVTqZIm3wU3\nwAazBZzyshL6oxo0g4nzkYYGz5xMz2soWSrgKF2U3Cd1XFXxwNAwyzKZkl5tXfhOhIqZ0lVpLlZi\n1DaFEnBQctc2yRJQ6MaPoeBr1nQcsTEcYBfgInxAKCMRAcpqd1uZmQgEluO7O4sSqvcmhk4bvlkZ\n4FVMi+k0ZePHUzlmDHm3upltayPtspUqx4wh09rq3WswWspsGHLbmM9GMWhuaDpqnExjKQiv7fQ0\nmkXHXHf1BtQovPuh11uwp7nZrMciEdKWtq5y7FjCqRRV+I7atmun1lBQCrqT7n3Nx2Il96wnFqPQ\n2EjB9UDoddtAbR3/8ngEuBwDUV61fj5xbBGVt1BdHYt3hq+Q4JJbm5h0eoKqj+CWHeFnd17Lgt1h\nwixgn2vJRps46ooEjwVgD0wvtRtmTmRi+hG4GX4/fjzT97yJ+4H5//UsGZ7lb5iF+gEbKrmjpptn\nlvVwxl/O4JZJt3DznOM586D72L6rhgnT72cJwNMwsxO4HK6NNbHjhQkGY7oLPApkjzMrl8yyZTw2\nGN4+r4nvdPydu2/YgQ1zE3ypNcn0Ga1EF0Lh8P255HvTWDjCLBS/dw78YMEP2H3Re5zTuxx+ALm9\n4FqmwFGw7+gEB88A/g+c3H0yj7Q9QlusjXh5nBGVO9NR6KEyYEgK6ShUuNz5D/N5UtXV7DdsGPlU\nyjSCVoByM4vq+RYdNcpMEq5ZiHjT5a47peMCvUh9vSfSjgDpZctwXBqkwIvMIWoprcRp+om49rng\nC1CzVuZGNLqMO0nm3SySnB61OJfmLIBvAKL/VWlTVQ18sCIDDlVcNJGrebcAoQJQBT79U5TCKKZy\nU4lfvbP70pRhJsyIe2491raqFNnASOdzC3cx/KUPKesqp6+ql8ZFu/HGpMUkf7OebQ+P0/tDUyMr\nZApU9FVSvXIQHUM/ZuFFj3hGJrss2o1Lh87hKw/BtK4pHsC0zVNsykoVhg4yEANuHAzAUYVyo3UN\nRJNU1a4I5NraKG9r8y2eXVDe19JC5bhxZFetIrpwIUk3E6kmo7YrGkChtZVgYyOh2lo2vvACoXic\nYFub3/wUP6NbbZ2bLKqhtBdPDhOEPsYYlUiLKTtq3e91+Ho/af8KwLqbbiIEzHYczvscqJOfFyWk\nWCw+i2lcsqnHMuAZx3Eex096b20VsBu7krYAACAASURBVHVs8nHu7bPMHyPB+YMBbf+XvTOPj6q8\n/v/7zj6ZTBIyCYQkSiJikE1BbHFpFVtRW8W24retS1W6ue8aV3DXiGu1ri2itS5fl1qt/VGsoG0F\naxEVEElRCQLDkkyWmUxmv/f3x/Oce2/Q1n5bQf1+ffLK687cufvynOec8zmfz0+bf8q9vfdyzOZj\nmF//PqmsRo3olEEkrRy3sgFHCuDpl1/mxGnTiOhgkVsMexCc20XjL31YKZWiOLTSZqP0FaEYVfC3\nUmUIywRfVaViMXSxQrqleLKacCLb3m4zQct+vNGonWHzREP4iso5tCKDsQJmLodXQySl7w3q0oZg\nc7O9X3DYB6X5amqc49KZv4/qh4qJhB2YzeI4VZINEzIMqRMXdI27bMHtOIjTJo6UG50i9tMNy5Sa\ncoH8uR24PAr6fgfwMxzSNOnTYbAOqhCUSf8vWUT0too4dtCHsosShAWn7t3Q5G3Z9nbCEyYMqkOU\n6y3BZ280Smb5cnx770k+ANGUyrQVferZ8b67gZyWBPDt1Ehu5TsqcB4M4tEOfmb58g9p+fliMftZ\ntfJ5JQOhCUtYvNiWK3JLOLgRSAVgQGdat3VgPUJoA+T0GEyYM61cjtjMmXhuv50BXbe+I9r2tJGG\nYXTgqCUVLMv60vbYj2VZ8/7ddT/TmTfjeQPGwzknPsvC8eO5Gajsg/unTuWpXeCMD+DW9a0cehFc\nfwPwJyi/po2dn4Vv3Aa/2ndffnHZKH787LMqj/5tOO/IRSz8gVOAugVYMWMGLcDi6jSdV7bywB0/\nJ0oZD+4Fe/361xyTPIadwzuxNzDpFaAJHqqEm26EC37axo8vrKYOaP0dfG8x3H3ssYx8Sb1gf7mz\nlQ3PVBBKhhlyzmheuBHWXdnKbePHc8SbRzBQBtTDIb+Cd25uhSrY7bxHuPDrS7mysRUWwk7LG8ne\n2so181t555JWrqpr5aq+Vub1zwOU0Hcil6Cn2EvEU4a/oAqxK5LgGdFIKZlkdEMDE/TL7WYk8kSj\noDHwUlvk0dEUf329zWhk47XzeQLNzfgbGhw9m2CQQHOzMjJa5DMXjWIFAnY2R9gABctecg3UpV7A\nyufJtbfbhdtSXA3YRdbh8ePx19eT09tJovDWknmTbJdkytxsjeJguDNnAiMQTHsO1Vm7s3pudq0s\njhHIMJiVMo0DfRSHUoRKpeMs4RROi+MmUUGpU7t0ymXMqbiLsziJUDLMljFxWhaMY92U93hj+mtE\nL4wS/876QeD0bEWG9mlvAypbB/DGf73GS2cvoLexm1kbzrVlCPyozJkQdVTiZKZ2RYl4g8pkVer/\nJKo4e7g+pxocHbp+oBCL4W1pIdDUZN8D44Y2kvPnk1u9GiMQUJ/b221mzmJHB9mlSwGVsTMSCUwd\nwfOigh/mihUKsqud93wgYIuWC/mI3MMIg51wuZ5u7l1hOhWtPcH6g2O8gyiISBbojUZVnVxNzYeY\nTL9o/7StBRaiHpdylM8c/adrfNG+aP9mu2jXVjhaf2mAulIV9MIe2Z3YmN1IIpcgFozRU+zFW4J0\nBLIh5bjlA2rQfOTXDiRSXj5IHgA0A6MmHhmUldL14EYwaDtuHlM5iLJNjx4dmx41zwgG8Tc0EGxu\nVkHPpiaCzc0EmpsJNjfbds7eh7axltdjZ9i8KZXRM8LKOSwEVXmImc+rbVRU2Jk9sdsencETVkwp\nhRBKeXDq7YxAwB4nbCsrYOVyKmCLU2vsZiDMuD5vy14IgzNgEkQEBzoJDpkJOGiZctc8CbgFcWrX\nwAm27QLMZnAwVdA6goKRIHIIx8ET2CA4plUCgW60j9RbV+HU8kkdJGCTg8i1y7a32ygSNzlNdv6L\nGL95Ue3PBNZuIKB9aZEEKG3ttLdpplJk29vJLFcSYKVEwkZNgRMolee00N5uB+bd112aW9JBMov2\nuQQCdtZSkC5yXTw6yC417PK8hvlf1SzgQMuyJm4Px80wjCf0dMVH/H+sxhvw2RbpNp43uOVwCF9w\nAcn58zlsxQomvAlP7ale9i7UoPJsoGF5I7MmbOCUPNx55smsGGMx+8x7mQtcdjPcueZk9rznHpbO\namVzHVTc+DjHd3Rw952tXGe0wbHAQrh7yQXsPGcO3zwXfn+LGiDuNx+OWnEUTx34FEyCV7yw6MZW\nxl3Yxrdug/azNWPfbH3gRwOvwS9mKuHwsYvhlX3V57XA401NXHJPB3TCxuPhiVmtTLqqja8uhOte\na+WSoW2wBSKJCOnytCpQ6oR9+vZhWvlXmdf5GPFsnEKwQHWpmnN/afD0mSMIeoIcVPVVNpa2UBcY\nBkB5P1S938erb7/NwMAAB44eTf8rrxBsbqb/lVcItbRQTCQINDXZwp6+WMxmpsqvXYsRDBJqabGx\n+JIpE7y/1DOZuZzCzAcCNougW1SzCLYBEX0Zf339IJ05iToW4nHC48er6YQJ5NauHUSoImxYIjAa\nTCQUXEPDPiyNxZc6NXAyde6on+Dni6hOXIzNznp+HKew2cdgmKCb/Uq2J2QnQddn2adokUk9nN/1\n29VjriWUDNtO1mnTzuMPs54lW5HhwNum2ULci06dD8cBp6NSywG9YwkdCu2WxnZMfEr1O3s+uTeb\nx2zkuaueoYQyUr36WDajOuleHBavNThVtGtRWH+RUzBwagK26nPpj8VsBjUA2tuVjIDWrpHnRQYA\nRjCoBGpBRRMTCVVbGAhgaDiOZDAlyylZyQp93OL8CnOn3Ae3ho8QsohD7mYr68cphBfNOmGctOGt\nOgLujUZpnbeCG386mQs0K6u7fdICpHN0lPaTaBcsXvxpipBGASzLSn3csl+0f9y+EOn+6HbnD38I\nwBkNcyENI0IjaIo08e3cFHJBaOu7n/pQPc0RlU3ryncxdchXyXtK+PBSpETDFi+GBXf96jFO+s6R\nRNPOINhbUaGcqHAIo2RSTCQoJZP4GxrU4Ly6EiOdpRQN2QLe4DhuhqXmeUvOMXtTWZsIzK2jKlMj\nELBhk2LnrIjO4m3ttPsjy+vB7O1T6+jjE903K5O17bIIdGfb2wlocihwBvuyjOxXoJNuWyzCzuKQ\niJMXyucHIVvctVDu2iiPa56MBSTQ6ZZzEXstMjWSdROiES8OAyU4dtRC2dYQ8D5wM4p3ABxW6jxO\nSYW7Nl6WEYRNGmVP0jjEY3GcLJQQsJgolEoa8Gj5B29NDYH6egKLFqkAsx7jCJu2u34ws3w5hXic\nikMPtTO4vp0a7Xtqa/5pAW53llTuhZDeBEePJjl/PsGmJttJtDo6bDISd/2/3Ce5D+66N5m6yw7s\nwLUulQk0NREaPdp2EiXAEByzO1ZGPdsn33gj27bPqo38KPtoGMZaYLJlWYl/sNp/1AzDqLcsK24Y\nRtNH/W5ZVsfHbeOzDZucAOcuAEJz2DRHDSjveqyVo/7SpoDND8Nfz4bbp09n0+hnOeVmOPGuE+l9\n4gnufSfBB13f4vqrnuHp/kmcXnWPepu/0camoeqBrAUW9fyJOy6H4tZWzjm4jRlz5vALgIsUy+RK\n4MTVJzK5ZxjRV05kXnwe44CDf3QnN7x1LEvP/jUHLm/k/gkbAPh571nsNO52pr+vZNN7gZsvncp+\n3Yv4+ZVncdoVt3PGr4+AV+6gdDV4NwLlbbAfzD0IPqCNJ4ENM2bg220kp4fbOL/nfOZ3zWdJdglL\nypaot6oazqg6g2fjz3L/T2FdahnVnmpyZo6gJ0gqpMZKe3h2Jb1TJaN7GygMH4LRl6N8v/3sQlaB\ngxQTCQJ6kJ1buxazo8OWBhCiCaor8Qslcjhk473FoSvE47bj5ovFMOvr7Y7KCAQIu5y2knbACvG4\nWqaryx7YDyxdiicapX/xYvtRMDUMRI6xlEphuaAJA3rQLwXYhXhcFTtrGKfUOklGTBws+e7GxQtB\niVvgWxwvcGCQMJj6X6CYwigJDoRTWCv9ehrFcTTu5wEgzuwN53LxmGt5+ewFhJJvs2VMnMoNQ3hz\nxlK2jNlId31C9bo3oLwXsWKC/QQn3ajTSG8c/hoTf/clfnvTY3x57lcY9ZdRnPC9U9g8ZiPnLbgZ\nCyV43wXshDJ8Hv25F+X0VOvrsw4YiaMPl0Fl72LA7okEXYkE3fp5GYbKXoEaHBRWrFCRPv27mUjY\nBtlIJLBiMRWF1bpCwl4pUT83O5Yjr+sUqUs0VCK1bgesEydCa+nPRRzYZAXKgY2iot0SHAg0N9vQ\nItOlQ7gjmmcHwSa3VzMMYzxKmTKmv3cCJ1iWtfJTPbAv2v+qtqClk5ZoC/53/RQosM5axzprHS8X\nXoZ+5czlzBxd+S5yZo6GUAOLev5ES7SFqC9K3szTW1VFOAPTvz4VIxqkGAlT8kJIO0XF9RscbdOh\ntbZNE8Y/s77Wrj/LB7QOnK5JC2ccR85bUEPoUi5HSYSUNdxOgpc2UZcL3mimUhiREGZvH4WNGxW8\nUQdLAeVgoiCTRjCI2dvn1NiBvT0pUZB94RJ89mqqeTkWySja0Lh8Xmm8pVIEx4+nsGIFdfk8G3Bo\n992lAgLLk2Nw17eJ4xBC2VQJjAoMXuxuAIccC5w+XGqWpRRBUBYiLTACuMq1P9mnaLqGGBzrFKdN\nbL+0MpTz1oeyh10MDhK6P5vt7cq+JRKUtbc7WnauMUr+nnvItbRQNX06meXLFevkj47H05e1JQWE\n5dvK5fBWVKjgua5HxHUvfbEY2fZ2CvG4zR4K2DBJK5cbpD8n5GkSrHQzRbpZO8GpMZQyCkE1AVjx\nOJ6WFtux9Dc04B1ai1Eyt0vh9D9r29lGWsAfDcMoAfdalnX/J7pxy4rrace/u43PbObN+KUB04A1\ncNUbrcyKtBF5L0LUF+WFGzazG1B9foT0jDSRJyOkPWmIwXV3q0i/+c2vMOrSNrLAMSuBXeFvIdj7\nt3Dlu63MPr6NeUPhxOvh1mwr54xtg6OAByE1E6LvQ+8u8CqwZuZMhs+dy89vOpRnzp9PpQ6//LVc\nkaN4t8L3L5rJ/nPnsvrOM/j26Xdw0Ptw1S5Kee8DoKkEnV64G6VBV7cMqqtjdGcStO2uBsWrYzEu\n+1OCu+ddwCm7zVEj6UYUmaju3Y6KHcWzm56lECg4Aij6Da2mmqgvyoTKCXTluzgg9lVlNErw3gvL\nyZgFDp6wF8X1G5Tzk8uRWbFCRdB0Bk7mizCkr6bGfjmlSWGt6QG6+yh2ddkZt3xHhxLX7uqyIRuZ\nFStsVsFAUxMlEWjWUcaS4P51Jq2USuHN5+2shwiZBlta8GjhU3ESJYIJ2DV7tuaOXkZq5KQDkw7b\nDVUUYxNBdVyjUB33Jhysl0AtwIFDSsQRVMfYg9KKESdBoB0icCkdoh8H9ifbPm7mTIatqqevsYfN\nYzayetrbZCsy5CoydDckHCaTk4AfAlNx0mESghzAYd+QDFwUh5/ZD9XrY1RqUe+/7L+GmF6toI/p\nJWCCvg4dKOOVw4EYjkVl4zbq6yB6chbK4csD6/X9laxqSTNyAYTHjyezYoUd4S2bPJlce7sirdFy\nE1K4Xouqq3M715KFi+h7IIbS0sv1O6dqw2DDrt+jep7UYshgoA9YqwcygeZmW8bAzQwXnjABM5Xi\njIcfxt0+6ajizZ9g7cB5ixbt8MybYRhLgEssy1qkvx8IXGdZ1ieXUvw/1P4nmbeL776IG7xtWD/5\nbNj27dWurqhg1rkpaIZJ6ybRke6gm24mRSYRz8SpCdTQle8ib+aJ+qLEgjGCHmUbmsuaSRVTjI2O\nIW0O0NhXxn2/fJQTvv8dor4g/oKyb0a804ET1tVipLN2tsETCJALq96/4HcgkuCQiYBy5rwllXET\nBkdxikBlUQS1UNL1bO5tmB61rmS9iiLwLZmXigqVZcvllAZYb5/t+En2TDJlYiNB28tk0hF11gic\nnF5HnACPrs0raT0xryaoaAbWaSITfyJhk4C5ERECCvGj+l3RUxVYogTUyhnsPLkhexIQFRs9gIoI\nSXmCIGakPnkNcBOK70CyEyIBBIPrpaU+X0o63M6OOJLv4TBCS11eEidwKOgcH8qmNOtjeRcotLTg\n046dBHhT2o4IX4CMaQDbiRYnu9jVZWd5hblS5rufHbmn4sgVu7rw5vNU4sBQJZiJ65pmXMfl1qaN\n4tQoStC6W48Tyw86CGlSp255PViZLKf5b+dnoVbOuPoGtm2fFRv5bk8P7/X22t8XdHR8VOZtuGVZ\nmwzDqAVeAM6wLOvP/8kxf9LtM13zxgLo+5rTKc66Kc2dN2xm0bHHMrwjRvrQNLwHl983h3GhcdT1\n1HHJjR3stHgxZ13axhrgUKBjHDwcgleAyJ8jhOb9nnlDof/kk0lcDCOubOPON1vhN9pxKwEvwa+B\n/YHJc+cy4wp4/vz53F1xF3fo6tuLbjpUXcDX4Mtz53LaVXDx6Xew6PZWzF1gN5Tj9p0rJxFpjVD7\nkHbcuqDuv+vY2JTgjBfPoPUKLUy5336wK/ym+i1ujrdy3/UoXFoLihPdhKc6n6IQLDi9XAAIQsSM\nUB+qZ7/Yfvyt528EPAHeTq0iXtxCMAeNezSzd/NuyhDU1NiGIzp1KhWHHmpDNEItLYQnTLAx86Vk\nknwABso9yrnyK3y9UTKVIXMVRlv5vA3LsDv/fJ5QS4vtFNr4+mDQ7qCEzjig1/FGo6rYOR7H7Ohw\n2L10PZ47uiTFuYLf9+pIpjiUwaYmh/ZZX7I+V72dOG7SsSVRENg4ynGLqFtt10OJ8YHBjFhSgyeJ\nMHDgeGIEAjgCpBJVFIfyvCmXARBKKuR4Vmu2bRq3ge6GBNUbY2BB2UAE2iA8uoyyvoijVl7CAa1L\nmlFopQTIry9AMBmmr7GbvsZuGvTBRvWxZ1EiYJtxyEDK9f8eKKfOh4orCPykgsFGrwww9H3Or12r\nnglXcXVhxQplRES8tKND3TfB7ut9VONAZaSJYyfzRGxUxLrFAAlM1YOq3ZMkpTh1XlTdngwuNuPI\nBfjr68m2t9uaSG5mth3VhLznk/j/lFqZOG4AlmW9hDN++qJt76b4irj47ou4+O6LmH7jdIzr//G4\n6eQ7Tt5BB/bJtktrWpm2aRrL0suIBWL4i3460h2kiilWplaSyKvAS85UPUPAo96HjdmN5MwcH2TW\nE/QEyYbga98+iIDfTy6onLFMGIy6WopDlUCyx9SD1epKrEiIkl/R9Rf8DhFKLqip/MGWIzAsZwxj\nM0pqMgkzn7dJH2QdYal0t5LW+irE43ZNmwSVSsmkI+xdMm1kC2DbeRnUC7TPE41SSiYJ6lp1qS8v\nxON24Eqyb/mODrvEARQKpglt27QjW9DnZQQCNqRRII4wmHlS8iVlKOdAAqICixdnToJyFQwmGCvH\nqZUTR1CgkyWU/Z6NQ3ji19uQQKq79ksgmwLpFDIT+T2CGn41oiEErm1E9H+9nl+DqhkvoIKeBcCj\ns3BSf5cDwhMmkF+6VN3/VArfTo2DBNw9uqRAHLRSMjkoIyf3QLJu4rgJOqmUStn2F5SdzuKUQdhs\n4tjDRxvlEtPXKq+vcwY1JsqBzV66bSsEParGM7VjkfH/rj0cNWwYh7a02P8f1SzL2qSnncBvgO1C\nWPKftM+289YDlVfBZVYbnh97GAnMmA1n/vLXdEcSKiS/Bi6Kn8rKvVayeeJmlv4XfO9tCHXB6hmn\n0Qc0vQjH3Q9n/x76bkpz4YoVnHgxfPueewCIX9LK6bPboFn5SmyEIzqP4ASUw7fPX+AA/wGUZcGz\n21yeu34aLIRvnj9fZRMOhrPPgbtnwR+Bqze2UX9RHZdfNoqmh+DIa1eS9qfhA3gK4B6484bNhOfA\nT06/g64r4BtZOKftWfa5cR8OuHgBm2pL/ORiGFEYoTzAAdRIOogaacvovwikIW2mWdm/krUDa6kJ\n1NAcaSZn5libXsv6UC9vdbzH0o415ILKABWHVpI/YE/MkYqeItDcTFDjmMGh7PcEg3b2Ll8VUgYt\nncXyeihFQ3iH1qosXSyGpWveTI3ll8JoEZAUXRwxVoWNG7HyebLt7XbkUAabJXQhtC6eBuzok+xL\njI58l3XN9naMYJCgzib6amrIBwJ2hMnQ9XASbUqiOjIBN3fiZJkEgicvikAuJamVRWVsYjgF0RLN\nM1GGSZwRyfK4RbQDwCVjrgVg2Kp61k15j2xFhqZXR9L06kiaF4+iLKXHvB444LaD4RLIrBlggLST\nNhIwvng1gvsUpeoidgpt09gNHHLVkYDKwh1206E2O5iQsEhWsEKfYwMO3KUbqNO/RfU1fB/lAMku\nwensfTpY4IlGlU6PLoaW58wWqK2vt50xCWKLoTddn+U+1Op9ybHKKYtzDMoBBCcRKdp0+nLal6sK\n6I9G8ebz+FesGMS0VuzqomzyZAD+0LxjNGzcekz/6f+n1NYahnG5YRhNhmE0G4ZxGeox+aJtx2as\n0g7aMDCuVZ9v6GpT87r+wUqf03b1j7PcuPYWXkm8gr/oZ012DQCpYoq0mcZv+In6onQXugl6gnSk\nO+yMXNATpDnSbMMpU+ESLzz9ImlPwc665YLKgbMM5YBlwtA3RBGHeEwtM6A7EMNSTpzpUfN8RfV7\nwe/8G+GQM8AWNkddfuAOEBnhEHndgXlMtS1/zrTp/2UwH2ppsYOh3ooK+12X0gRBnUjz6OCmmUqp\n7FpDgwqW6rp1yQIJmUmwqcl22qQO3l9fjycQYBNK+9LnqnO2AgF8ugZOHCmh+Be9UwlYBhhMEOXB\nKSWQKTh99rY1c0IgUuZaTkITHcDlONBKNxkZejm35ptkBt0oGnACe27SEnGrxeyWUPanzrWOLCu1\nejaRx/jxdpDTD4RGjyY4erS6N1WVSthdO81utsqSlmsSx8zM5WwnThx1ydwKc6mcRxBl2yr1sUkZ\nghyn21GV8ZA4enKsUb1OVpPJ5VavVmRiqZSNwvIVwTu0ljsDrQDcPvsitnfbXvbRMIwyqdU2DCOC\nwgB+5rQQPrvOmx41z58FL7WCWTL5GirSxl9gn3v2gXdQ+LbngQOBD2DybLhyfivv1MD41Ls0/wJo\nVLT6N30DZt/RyhaAw+GRq1vJAqdf3EYxCLSo6Am98Px5z/PVKydxyLuwYn94+byXIQ4XHr2Uuy5e\nAJ3gmzGDAWBNELhYdTI/eBnu8rSyuXEzayat4crOVmbH81x/PUwqTeIY4MnL9IU/A8bfDL+4rpXq\nWdVs2h2Ou3wJpWiU5X3LWXs9rNtlnROvlh7HLYDiwRYuqQvUEc/EyZk5Fm1dRKqYIpFL8Leev9E8\ntpnKfRoxPdBf4SGQV2yUvqLSGTHCITyBAGV7763ISb76JZV6r6khF1QGSYyRpfH3YrgKwypt50yc\nKH99PQNLl9pZM2FLMsUB05BMcdxkEB+eMEEZiFhMddauaJ8UTbsNkr++npzWT5Hsm3/yZII6Axge\nP96ORBViMYqBgN1JSaRP5mk/2O7IJbonRgac6FnJtb406aTFKRiK6gSH6GkFTmdeDtzFA5w67Tyu\n1mLa2YoMoWSYYavqCSZDLDp3PqFkmMoNQ8hWZKneGOPls19Qg7LJrmeiiAPcF4siwH53mlDwLDn0\nPsIEk0r4e1vmLmHZBFW7Kcc8gAOx9KDgh393nXcPiqoZlAyEN58n/corAB+ZwbJ117SOkRyqZDP7\nGQxtjKDe0RgOV4vJ4BJA2YZEawdQxiuEIysgNRpBlNOeAuq2iRxKMCLb3k5y/nwK8Tj7P9zxoXP4\non1kOwn1CjyNilnVAjM/1SP6X97EcbshpmvCdTsieIT6UDF4+ZNuP4mTbj9pBx3dJ9eMaw0uu/Mi\nCp4ChaoC6VKaAgUoQcEqqM9gTwHi2TgBT4CaYI2ddVudWk1Xvov2VDs5M8f+3z0QM+onE3bq1XJB\nVccmjpm/ANkyD71Viq3SW8K2j+K4CbOkMAeK7Sz6lO10Z0+sTFaRVOTzNnukUTJt5w8USYmpB+5Z\n7XSJ0yR21K3PBgrGJqzR4iS6GabLJk+2HTYrl7O3KUE2kUkAlSkCXT+eSpFZsUI5RK6gqthYt0ap\n9M0iSyPkIyKILYFM0XiTDFUIJxskNlPYEAVEIhBNgQO6HbKdUcJZwmAp9epCTCYSBuCgRwI4WTf5\n9zJYskCOT7J/UjsNDonJtvI7YsM6RS5g+nQFf9TBwOT8+eTffY/iesWZIOMdccyFL8CrM6WATSAj\nn8MTJuDRy3jzecpx2Jgl0yZOsjvTKQ5cBse5dpNgyHigF0jpshep9wSVESxt7cSfM6G7DyuTxUhn\nyc5/kc95Gwb82TCMN4G/Ar+zLGvB9tiRYRhHGIbxhmEYPYZhpPR/8l9Z9zPpvBlPGBCDiUO/xKGP\nw4F/hZ4gDHkarh3bBt1w9+VLuHxIq4KH6BH1igvgZ1fC7EPayADf/MMfuCTbCi8oOv11d57BtVVt\n1D0OvAE/ubyNhhzwAPiWw53XtdIFzJ8Ad5x3BotnL+OKA29Rkf17gGegrRV2vRl6T4ezpz7JQ2ed\nxaiVkB4K3wSu+U6MU7/XBk0Q/w4M6QGehfOA7/oO5htX70Md8J134fEQ3PH2TJYH1xPwBHh8xgyO\nAmbdnqI91U7zb1H0d904b5yETqTaNozqOfywmc3kzBxr0mvImTmW9iwlVUyRKqRoX97O+pVqWJ3T\nPVc64mjSSCtFQxSCHgztuRQqQ5S8ap3eKuyIY7KpknwAkhUq6uivryc4ZnfKJk9WNLgaN2/m85j5\nPJnlyyl2ddlZFnHipL5ODEbWJSxJLGYLTnq0jok3GiWy336OcHMqRXj8eJvKGbCx5FYuZ8MwLRd8\nTFgiSziSBYZ29iyUwejDMULSBOMunZ0YhiE4tWzlKOMBTuROnB3hSpfbB0qHDaDp1ZH252xFhrpV\nDUz87y9Rt6qepldHUrlhCMNWNdCyYCzW5ZaScXQj4iRVKBZFhHDKcVKFEfCYHnZ/aQJ/nflnjjz/\nu+QqMrxz8HI7ophF1bIlXeeFqlnSCwAAIABJREFUPrcEqtZNWL3KURk5UB18EuVURfVvmSefBNRg\noaSLqwHb8AhUo6RrMYakUoNqAQXiKFIL4pgJa6RfH6N0YuI0i1GXonQ5B4kECwykD5VllaRlEkfS\nwdLUznktZeCrqRkkIH/HccexPdvnGTZpGIYPeNqyrDMsy5qk/8+yLKtnhx/M/5EWa9WgLl2M+vA3\n4fzq87nhe2081/sczzU+B9qHMy42MC52IJTGLIN7O+/d8Qf9H7RrTtc1NUmYVDVJjar9UO3XuXYd\nFeoudoMXCp4CeTNPzsyRyCWIZ+IEPUGiviipYoqgJ8jCJxaSt9SwO6NH4dvWsRV9yjHzlhznSmrT\nCn5lC31Fla1LVjjbKXkdKKZnhEK7FDZuVAHN3j5lq9ZvwMpkFQulXzl/whpphEODpHNE42vQ+72N\nxIERdjTgrExW2cVAACMcUkLiQysdGKh2/CRAKn2HlCB4olG8msQpPH68Mim6P7evD072S8ioJMDm\nJjARohFhkwSnZkwINUD11+KQCTxSauC2da5wzVuP4hoAZQPkP48T0BOHTAiusq7l0cfWh7ILIsod\ndm2jm8EkKGCr9tgxUnHwzGh0EORQdOBSCxeqc9PXvLS10xZ9B+wMnGTchBTOTKVsqKRXB8CFYVKa\nZDDdRF7SBlzXG9fvbnZQsef9+rtN0OOSJ5DaO9nv5wU2+XH20bKstZZl7an/x1mWdf12PI3bgBOA\nmGVZUf1f8XErwcc4b4ZhhAzD+KthGG8ahrHKMIzr9fzHtbf4hmEYaw3DeMO1zly9/Df19ybDMEzD\nME53LXOnYRgnfNzBveF5jVtXtcLvdDlPN4pBpAf2vAhiZ43m2lmo0fJ8GP8zGLiuFd6ASd1w5c3H\ncF13G+wOCyYsYNjsR8geD8XvAqYakP4lCBwOIx4bwem7tTHy9/DuJa1U3n47oXdh/IZzWQT0nQ3X\nnAuZxlu49zyoehbmdLdy2jm3c/c4Jc792K2t9F/9I+7dEx47HOYDW4YBY2AOcNylbSz56hL2/xU8\nviss/NlP2Ti5lrE3v8SpN2xmdXIEdb8GdoF1B6xzMifSc1Sr47b5a6XGKYZdgbo5tBmARD5h4/vj\n2TjhXcNU715Nb5UyJF01MFDmYPTzAYVdzgWdCGJ20kj6Kh1nz1dUDl9/uY4i6l6r5FU1ccX1G2xZ\ngfCECeQ7OrByOXLaIZMBsHwOaK0bqS8Cxc4kMACPLt4Vg2Xp+oBce7vdsQWECUuLWkpRticYpHy/\n/YhOnUqopYWAdvZAwfNyon1SU6OExVMpgi0t+PVjlmSwdpgYDy+OPox03l0op8DUt6gTB65RCXYk\nLIu6pSlUZ3kKJ3EKJ+HTn0FlxJpeHclbM/5Gb2OPLRFQt6qeKXO/ok7gWhgWqnd6X3HsK3GsktuS\niBOXAdMwGb1gLIdcdSRvzVjKked/j4lPfYkgcKXAN/V5ePVU4gNJHKpl9Hl068+SrRTDm9TrSoSz\nFAjY9QV+l+BnJdCQzxPUsgHgCIMJ9MSDE+0UvR8xNMKc1c9gWKVsX1i0enHooqWJMy730rPNNkzN\nsCaDJgkygDN42l7No5/hT+J/RzfLsoqAaRhG1ccu/Dlvn7aNPPaWYzn2lmMBqH6wGpYBETjuCnj4\ng4dhIVSXqqEXrEkfJjCZ95V5/+EV2LHt9tkXcVteQbOuf66FS5paWeZdRiQTgQro9uoeSdINruKo\nnJmjPdVOwBMg6AkSz8RJFVVf1JXvYvz08Xh9XruGrbcKm/6/5HUcsGxIzTM9yoYKLBKUrZR/N+GI\nwDCDOjnmr69XsEUX8QQoh0tsZC6ogqeeaBQrk/3Q4FigdBIME0fTiijZAKNkQnWlqs1zEUuAst8e\nU303PdjBTsnyiG3219erz8GgU2u3YgXEYk6JQyqFT5ciCMAjjVNCIA6SmCvJTonGKTi1V8JQLOLd\nkjmSjJs4iG4GyyxOMDSNqk+7gsHaceBk/ARCH3StA051AWBrkbqDgWGUbSyhHKMSanwQRKFBPCjd\n4Pd0INjWjHPdt9SiRUqgOxYjPGGCnbU0czlKyaTtqEkQ2xMI2NpugmAxdUautK2zlEoR0scp11rq\nAaWMQ7KO7usn10ZIWcAhAhPZALTcBGBzGEjLLF+OV2d5Afzf/Bo7gh7r82oft2kbgLctyzI/dslt\n2j913izLygJTLcvaE8VVMNUwjP0ty/quFq+biILEPAVgGMY4VIXWXsAPXJvaCpxpGIZd6vJxR/XM\nfwEHwzlj2ohfDUfdd4Diax2LettGwNltJ3HpAhS9UC+wFsZd0gbDgWXwyJBHlJPTAy9+E14/fho3\nA3fPnEn2TBg/axwTgVsfbCX1k34YDe3fgNOntfH+Ta3kdlXotL7LWvkjUD5jBlf84lzW3HU+11/Q\nwgVfaYMNKuP2xJyjmNf5GI0b1Av99u2tzHwZrt27DV6GKcBjU6fy0gFwzaZWvvszGOKr4o737+TS\nF+LM+gv8ctzPYBUqnZEGXkbhvHZGMWgcjYLDHAPHWMeonkRGufKGeoAYFKIF0qRZl1nHfrH9WPHm\nCnrbe8l5S8T9vTYcZKAMEjFlfMTgFPxOVLFswDE8RZ/zueRVUcRMWDlzAObIRnw1NZRNnkygqYnw\n+PE2wyRAXmQBhF0ylVKZtWBQEZY0N2NoiKVg7KWgWqQFBCIJChIZ0MKm8hKKyKl/vy9RSqXILF+u\nHDsN5aw49FBbd0XIT3xNTcpRbG9nNOqySuhD2LPA0RPz8eHM3HCUA5FF3X/Dta7UAFg4TobwiQiZ\nSQk4k5O4ctWlnJs8ld7GHqo2DGH0grGAyswFkyFCyTCjvjKa2BO1TrhMVEwFXyi0XT04tFJghzmH\nrarnwcfuBqBjynscctWRnDrtPKo2DCGsz2EITmF2EceYgTKAffqzhaJmbkHFEmS0Pgzl1OZRhCRR\nl2SDG2MvhzUUJ3uJPmwRga3EqV0TYhlxgIVFEte2hKms4PpNirXlNZGxncQ/gq5t53XRfTiVIphK\nKSZWKQrXBeZftI9taWCFdlTu0P8/+7QP6pNun5qN/EetCYVGKaCYFZPQHe5WL6SrzYm0Mq92HtYk\nC+sq9f95aJcO3MnZKVXDd/H32rmusw0yUB+qZ1Jpklro68BEVGcgGDwgrf/WpNfQ3t9ulxWkCiny\npTyLn1pM1iqQDpZIB0s24kQgj+KgGZZjH8UhywecgKbUq7nr5kCtP1CmlsuWqZpxCSra2qm9fSrL\nVVIQTY+p6qEsXecksDojqPTYfLGY0oALBDB7Va9sC4Pn83Z9njhtRsm0g7E2iYr2WPz19VBd6cgi\nVKjeuLBxI6auUS92ddl9saBdvBouKVkbGQ736s+VqH61H0dHTdAnblQEqP5epEolcCewSKkOEJvp\npuqXqYkaKl2OE9iTgF1pm+UlOOjHsQMi4u3OTOVc23Cfozihfhxhci8Q6+gYdMzlQHbpUjIrVhCd\nOnXQeCXU0sLA0qUEm5vJrFhhcwLIvzhJhXhcyQl0dNikN76aGvzt7ZSlUgS19I40OV63D1Xa5jep\nb5dzknp197jGzUJZcjGkiiNXiMcJjR5Nbu1aO0AQ6FV35rYrtn/d2/+C1gr8P8MwLjYM4zz9f+6/\nsuLHwiYty5IAgmTAJdiOYRgG8F/Ao3qWwIK3dWc7gRdR6cF/qXmAZUPgutYmxl1YzZJdX3bYCERE\nam9Uj7AzPHkmcAkcvgX4AG79c6sKh5wG/sV+Xrmple/f9iiXroF7G19j8qxxRBtjRC6Hcy5po/uX\nCVgMfwauWtrKrH3aaFreyHvACde0cdQ5sPXAkVx/KNy0/iZq29vVU/0CnDPnKM6/4CnO9n+P3uva\nOBi4f9ODfP/BmfRPgeusVr7237DXokUkgcuMNvDADd42jm48Grrgzt+3UhheUFfufphz075qVDwE\nLim0wnjgLmAJ8CA8knzEGYX6UD2J0CpVod7MCqAWFvQsYNPwTVjNFsv7lpMzcyQNdVszYWV8xCET\nAyVGKBdURkSKs0te1enngthGLheEzlqN7d+plvzatZRc6fWiLriV7IURCOCtqCCzXAnJB3RBtNTK\nSYYu2NysjIOGSwpEElydx8aNeHVnJuuauRxGvNNexl9fT7ClhbK997Y7R6GBl47QTKUoBgJkUdEz\nQSHKAy1N8i3yewjYHcVMKQXN4liAo5ciy4rDJp29kKgI3l4yQC+eP59l33uN3sYe9nhyMtmKDO3T\n3qZjyntkb8ux9uw1EIDmpaMgoohHBonsCH0k0PzXUeCD3RdOoHp9jPZpb3PIVdOpW1VP1YYhtE9b\nyc8X3Ey2Imsb24g+J4kuirB4JcrA1unXMKEeUYaiHlGA/qYmkjhQVJFmyOllwTGanTiRzxCO0yac\nPG7HWa6PQG2ECQt92n2u684260nE1XItI4MHES6V6GREIt96vk3io+Uq8gHFork92/8CwpKnUGOo\nPwFLUUDf1z+tg9me7dOykdIeST1C987dTK2dqh7gkcAArPvSOvwr/XA8jFg2wllBXsLtIj+7/Vqs\nNUbal8a6RTma1hWWupqjYM2ua3h91uuM8o6C98H/pn8w/k7Un4NAGRQCBXJmjnX5dXTlu1jYuZD6\nw+rZkt/C2vRaTXoyQMmrgpNS8yaabeDUtxX8yl6KvpvHVHa14IecVzmByQroCg7Y2Tp/QS1f0rT/\npWTStpFWJGRv15tSA2E326NAHz2BACW/x3YkbV04j0LRWBENj5R6O6+HQtBjC4b3lzs23lNVSS7s\nsZ1Ft/yOZN080SjJP/yBXlSmztaHw7Fbgk4pRz1mORz4OjgQRKkXT+HUNxf0VEilpG93k5RIwE2c\nCrErQlYVQsW+r3TdercDB8pGiwaan8HVB8J2Kevh+l2GWzGcTJWclwQ6JahZh+PcpfX1iKFq3Ewt\nkyN2BbCvd04TgQjpm+i6gSJaM6NRih0dyi7qbK0Hx+mqQA2J3Tq0ImFQRGUD3ecjsd4B1/mKAHmJ\nweQmZipl8xi4W2b5clvuoBQNqfpKj5Nl3l7tc24fpV2NumWCtBU1o49tvo9bwDAMDwqMMRK427Ks\nVa6fvwJssSzrPQDLslbreoeXUWVe7nYjysOc+4/2VSqVSCaTXHPeCKZfv47b+i9kTuZ+en7Qo8L4\n3ags2wgUh38KRVTyO5jRDiNuHcG63dbx0/6fco63TRGaNEFh/wKzvtHGn86HG/a6i97GHo5ddSmP\n3tnK7Ktf5vVf1rNrPM5vbz6GjTfvRDvroQ82NWzgoDZ4txV6boUhW9q4ZnaM31+fYEZ3hLbqNOVn\nncVpFbfzVA+8OKSNocCw+4H9N/Po+rlMmgszL2pjpr7YNX8F/+N+CpECjIJF6xbBK/Cj69p44toD\nmG5NIbEzXHB4m7q6KyDvKcFhwJdg1K9GsWa3NQ5BhbBpSEVtVH+O4eh+BaHYU+SFjhdgCkzKTyJf\nytMSbVGsW+GdKHkVjt8ysNm2Cn71Agp0pKiHvWuKa6nx1rA6tRqAmkANNcEaghVVVPVCcPRocqtX\nUz51ql3gLIxV4ETswhMm2Jo1bjILgUsW4vEPOWZiTESgVCiQTQ0/CDQ34xfWSRddLs2NFJe/g0fT\nIQebmhysdj6P0dFBRD9S4lSJI5HCQSFKpzYEZxSWQ2WGJNm1TZDbJjeRGjmJyLkJT8SZk1o8MS51\nq+rZMibOHk/uTSgZJpQMsfDv/49p10xn6dwlrJvyHmXJCL2NPXhMDybmYFXTEKzdZw0YMHrBWKo2\nDCFbkaGvsYeqDdVsHrORlgXjuHTMtYSSg4+vAcdIhlGO2zq96REodskWnI7fRDl80oyODpuuv1hf\nT3k8bmuwidaawDCDOILgYqzFmatARXElqya6NfJ4u5mzMijjLDUXAp0p4WRF3fBOWc/dJAch+/dG\no4jGVmbDBry1FeSKRW4+5BBOevRRKir+JYj6/6h9ihT//1EzDONFy7K+Boy1LOvCT/t4dkTbUTYy\nnU5jWRY+nzLbHo+HRzofYWJwIm+MeIOnXnrKiZTEgFeh0FKAh2FdVL25xrUG+OH8y27gfD6sxfRZ\nb8fUHjPou3WNhXGuwaW7tGL8wVCdVCcUagoOR7p0TmIntRjkZo8qMdicV9Pe3/XiOdHDyIqRxDNx\nVqdWs1/NfgQ9QWL+KhJmLzF/FaGsQ0LiMR1nLhNWNnKz1QV5iPqixDNxov4oUV+UKGWkIxBNuSCU\nzY14tQfgi8Uo+R32Po8JxagiMcGj5kvNuT9nKlISvf+S34ORzlKKhuw6dgmySvBVjhf0NlydYCqq\n1skFdd1edSXWug3gYt0tJRL46+spaB1WTzSq5F6iUZXlSqXs2ugqHNCHIB5kdyk9X+j2hSDEnQUS\n58idAZJsmxdlD0QvVTJnQmoVR42I5zFY0y2PYz+2zTiJze3Bqc8L4DiKEuALM5gJUxinwZEwEIdO\nas6KqNF5FMjm8+R0MFqYJcsmTyazfLkth5RatIjIvvvavAG2BmAqBbmcbfsEaOWiLLBRM+BkON1o\nF6nZFw03tx1EH78ELb040E/APg5DHDVdtiJwSTOXo2SamB7YVGWyc79Bf38/Xq8X0/wfowI/tn1e\nbeQ2bbhlWQf/Oyv+yyLdhmFUAn8ALtKaPRiGcTfwd8uybv0n6zUBz1mWNd4wjAdRgndfBpZalvWg\naznry1/+Mm+89hq1fj9b83kKdSiHrR6FDN0ZVY3aiGJVqEONIHcGPoARseGs69tEXW0dm7duVqIb\n76PSApuhOQNry7HDE3sl4fUa8AV8+JN+xvVn+FsVfLkXVvrLqWiIktyYYkShn43l5VSWSmQyGTr3\nhIp1Fezek+S1CgNrmEXdGjXY7dSHuxFY3wS7dKhOYHUM2BWq3xtCU1cPf68ppz/Sj5E0sFosdnoV\nenYup+yDfvp3i1C+3mRrU4ah78DW0TB6tXqx2nfSxy/poayepnAYMiRE5Mdhl5AUkADTTfD5fATM\nAB6/BwpQFiqjkC8QCUYwc0W8QR+lfBFPwEexUMTr95LJZzB8BgEzwIAxgFk0yZChylOF5bUIFwIE\nDC/F3j68hkHJsvB6vZRKJYxMBiscxhcIUCqV8Hq9FPN5tZxh4C2VMH0+tXw2i8cwsHw+O2PiDYUo\nFYsY2Symx6M6BcvCME3wevGWlWEWixDwY5RMTJ8Ho1DC8nsxcgXI58HnA9PELJUgl1PHpSF9Vfpy\nCtxOEllBHIdBoH/ueiwZ5LvpjyXCKLTIEuUTR8XNtiWGTTTX/a7564wRNFnryANdjGLLiE1ko1ko\nQrhQRn9VEo/HS6ArQLYho4sNDMhZ2N5oFCJro4SLYQqFAn6/n0KhgBEx8CZ8BLwBavo32EQtff4m\nUuEkuyW7SaLGQ936+vSpzdnOVFI/jknX/DKc6N8ADgFM1DkcUq71qnCMsRCl9KAS55369e10za9F\nYcyGowx1re4GpDsYpl+Poa7vm/Xym1Dv6QbX+ttOh7rW3wLUGgZbLYthXi9bLYuhHg9bi0WGAslo\nlN13353XXnvtExUgvfPkT0536/R77tlhIt2GYawCfgTMBY7Z9nfLspbtiOP4NNr2tJGGYVgtLS2k\n02nKyspIp9NszGxUHYnQ6UmhrbujcXUoLfUttG9uBz/sXLYzZWVlZDIZwuEw2Wz2Q9NQKPSh77lc\n7kPTYDBIPp+3p4FAgEKhQCAQ+Kfz/9F3v99PsVi0+yn57vP57Pnu728m3mRizUTeSL/haMyYUBuu\npTPXCV7Ya/hevL7x9cEdu4zqpXPXo/ugN0jACDBup3GYpkn7pnYMDPweP1jg8/iwLAsPBiaWslOW\nqic2LIMiRSzLUvpxpSw5K0fUG8XUfyECGCULn2lgWZaIF6upFtO2LAs8hnI+LB1Q0obQY1n6++BX\nWiQNLI+BYVrqd9f28RgUPWq/RS/4TLdPq87HMvXUsjBKJSzTxPD7sYpFLNNUdXder9pmqYSZzWJ4\nvVhFx4UQp8gNWRfnx+1M+bb5Lr6117WuOHZuEioJbPpcy8t5yDIScDS32a7JYDsuEjluu+3evjh5\nhW3mSzBW4J2Fbbabx8mIyXlKDZ8s7/P7MX0+jKIKi/u8XkqmqcYjoRA+y6Lo9eK1LIqFAh69nIwP\nfK7jlfNzz5dpgMEC49I9uLsNt4Mt8/3bTg2DgmEQ8HrJmSZBj4ecZREKBFTgORAgr9/nbE8PwXCY\nUCxGJBKhurqaJUuWfCZt5I60j9s2wzBuBF60LOsP/9N1PzbzJs2yrD7DMJ5HlYG9pKOH3wYm/Q/2\ndx3wJCrq+KH26quvYtxqcO+5eQ5/CXgTJ1QiRSw1qJFXGjWqfB81imyGdes3QS1sbt9Mbb6WzsM7\n4WW4+ka4fC5cPxMa+mGXfngDOPx8OD15HFfe9zC7PTCEk0/KMPFb3+W+3R6H2n7u+3E/PcDpz8H3\n//vr3PCrZxhxLVyXPJuOtttgzk849oL7OHMx7DP5GN467VU+WPE+bQvgbeDZ706gvm0586+FiUsm\nMvd3bzDxBz3c+RC809XP17vgt1j86cDJjH91KQ9c08+PfwC3nppmj+en8MPla1nCFvY8ehpv/vFN\ntu69VVVLfAN4EWbvdBpXLv45VwQO5Irel5QC+IPA4cDvUArlz+u7dBeqymINcCzscRm81Vqk+Kci\ntRNryf0xx15H78WSJ5ZQdXgVm363iS8dPZHVv1nNXkfvxeLHFrPLt3ZhzdNrmHj0RF565CWGHTGM\nzuc6mXDUBLY+t5VxM8bx5n+/yZE/OJz5v3yeEw76OvOeeYbvNTfz2Pr1nHDYYcx78UV+cNBBPLhw\nISdOn87c3/yG4yZP5uGVKzl2t9341cqVHDN2LA8uW8bxkybx0MqVHD92LA+9/TbHjR3LvNdf58Qv\nf5kHli7l+EmTmPfmm5y41178cskSfnrYYdz3+98z87++xdxHn2LmjKOY++jTzDx6Og889jQ/+vrX\n+cWLL3Li2LE88MYbnDR5MvOWLeOYhgYeXruWC1AsVSeiRp4no0hGTwXu0L9dA5yJoghqRYXKL9K/\nXQ1crH+7ALgFOB+4GTgXuB04C/i53uY9wCnAL3FGuz90TadyEw8F7sV38jTi93Rw5JDvcl/NbTRv\n3JWeUoK9p+/Lovf+wK5Hj+bdp1ZjPGDgO9lP4b682uEtesc3QfriFHvsuhfZ6zOELg7T+dBmXu5Y\nzbShe3Jg1aHk/34D1qSzeWfZcv5YWMjVBbhQn9NZwJ36ujwEfB/4BWpk/iAwXT9uJ6GinV8HnkWN\nPv+ISj28ChyEgiXvg0pT7I16D/cC3tK/L0UVDr2LgmG+rbezDFXuuhIlXbAaGIeSKRin1xuFiu3U\n6vVH6q5CsoTDdLdRg3LiKlFOpRhxcT4l8ypF8/WWxarycnz9/YSmTiXb3k5FPE4SuETTNxvGJ9v3\nfwbgHP9umw3MQvnIN3/E71N37OHsuLa9beTq1asHfTeuNGAMSoFIIAIVOCmBFOou6GLcZZcvI3Jd\nBBrg9aNfx+/3k8lkCAaDDAwMEAwGSafThMNh+vv7KSsrI5lMEolE6OvrIxqN0tvbSzQapaenh8rK\nSrq7u6msrCSRSDBkyBC6urqorq6ms7OT6upqtm7dSk1NDVu2bLGntbW1bN68mWHDhrFp0yZ7WldX\nRzwe/9B0+PDhbNiwgYaGBtavX29PGxsb+eCDDzhh2QmcueeZnPT2SURWRkhPTHPYB4dy9g/O4ZBF\nh0Acfjjlh7z+wusclT2Yp6IvqChQJeqFl6jQ6ygMfAVctu9l7Lrrrvz973/ngbcewOw2aaxvZOum\nrYRiIaweC3+1n/7OfnZtHMnGTXGqhlaxddNWhgwbQrozTboiTbArSOXQSvo7+xm10yg2xDdQM6wG\nNmQYXhUjsSVBXdUQ4n091FVXE+9OUBeLsTmRYGhtjK1bu6gfUsP6vi4aqmJsSiRoqI6xaWsndbW1\nxBNd1NU48zcmuhheU8Omzi6GDqthy1b1++atXdQNrSHepeZv6uxUyyUSDBtaQ9fmLmqH1bB1axeN\nQ2rY3JWgLlzGlnSauvJyNnV3E0un2ZTL0VBfz+Zkkuq+PrZYFsMrK9mSSFALdIZCNGSzdjCsG9X/\nfgA0o5AbjSgg1U6o/rkeFYyrxwmuxfV0q2u54ahgWhOKVHW0no7U02a9XDkKo/wTVL/vjv1v0sez\nHthFH1cTahhZx+DcwC4ozbhGPb8BlVWUIWi1Pr9yvd2h+nij+nu1fvWq9eMV0o+bwBTDlkWmvJyo\n10sqnaZm1Ci6OzqobmigP5ulLJ8nG4ngXbWKbDhMdbFIH46AeZl+xTXRKiF9PLU4VTP92IlmvDjS\nO+7YhQSdRTIh5FpO5lvl5dDfj3/YMHzRKKX+fhW8jkYp/v3v4PdTNmYMgaYmrLEjSV/ZRnjKFADO\n1ayaX9jIj2ynAucbhiGKvADWv8I4+U8zb4Zh1ABFy7J6DcMIo6KKV1qW9aJhGIcCrZZl/VNj7I4q\n6u+Po/g7Lrcs6yHXcpZlWRi3Guqpq0Y96QU9bUY98cL1vTNqBNeMesoqgCb46yRYPLuVc3Zr46Vj\nYeUlrcy4ro2nUANlz5PAG7DPiANYMvll3pukogq7PwQ3/QC+BVxz24nsnh5G685t9B6vhB4O+RtU\nP1FNU6SJM2cvY2bRw+0+k+L06Zwz81kIwcJDYfVFrcRuaCNxUSunHtcGY2CuB2b+Be7bH34yF8q+\nFeGB6jT7oPhJDv05bD4N6v4Gt7XNIPzkk/z0NhixdQTr8uu46t4os05JgR9u87aqgu0h0DULaq4H\nDoBb9oVzb8FhF3QLogRRvVM1XBlpZa13C8/GnwWge99uZbT6YVRkFKliipZoC+2pdoKeIDlTwRNr\nAjWkiikCngD14XqbqSuRTzB5yGRyZo69h+xtM1xWF8oY2qEYsgobN2IEg/jH7U7+9TfV/dZYbn9D\ng824JEXbpWSSktYS8cbnd4/vAAAgAElEQVRiaplICLr7FG2xTtt7NW7c1rzZqZGiT9UJlKIhVTNQ\nUlARf85UujpaogAUkUZJY8tHp1IUUEYghurcojiQBGHGklo3ySR59fJpHOUGyeIJBDGFQ6wh4IEg\njm5aFYOLp4UJyw/cWHEXrclTOWeKIj/ua+zB+76P3rHdRDMVrJ62ko4p77Hnk5PpmPI+oKQG1k5c\nM4hLefj7jez55GQOuG0a2Yosb834G0/f9igXj7mWbEWGW169xo5aumGGPlTWS+oAxFis1+chlMpi\nrLtwoqa9KEMnCHlJCPcEAlQL66j+rR4Ha+8WeA2ixlZieKR3k+vU59qGREOFGCair/s6HDA5rnOQ\niKtEI93wzxKOAawB2qNRylMpMiI2HosRWryY03X/qaPbn1hU8e4LLvgkNgXAKXPm7PDIomEYsyzL\numpH7vPTaDvKRop9HLTelYZ6aMX+yahLGBSEKq4I1kVq3QcNgxOvAevSzwdBycc14w79WHdDpD/C\nKbucQjTj5fYt99Nd282c3+zL+ZqlD1DjCxGskNFpGPzdfgrdBRgPl/tauepMB1Jq3GIwqX8SUV+U\nvJmnPlRPV77Llh4QyYH6cD1r02upCdSQN/Mki0kSuQT14XrblkqpQrjgpbobW1oAFJNzMOdAHqXG\nTmCQuSB2vZqId9u1ca5iX2G5lG1Ik20UfYO3J3Xs3pKab1jg3dCJVV+LN6VsuCcapff227FiMcom\nTya1aNGg+2Dl8zakMIhDVhJEPZppHMZgsaXC4izZKrE9nm3mS/8uwTQ5JSlZcKsoBVCvQAIVrAu4\n1nXD7WUqKBuxy1kcqKTUeYvyjrxSktAWwg+3pIEgd+T8fXrZEMqOFgCrqYnyjg66gWBLiyLBisUw\n83lVx6jHNlLWUezosGGMwKDPcn7VqK7ArbMn16lfHyvRKJ5UyslG6u8A/vHjyba348vnbQiphZbx\nEbIxLcEkYzchkitoZsyQJqrzNzSo2r5UCiMQ4GJdH/5ZtZGfhn38JNrHEZYMBxa6xOqesyxLFPi+\ni1OE/XHNbSmuRQUzPrK1PTAeesD/F7+jxBjBwa7367WHoxilfDDu/XGwJ/xpEnz5HFUcXP1WNQf+\nAp6qfou6m1XocwBUOMUHS8a+zN2TYGQX7D4b2FVZy4eBeVPmAfD88VB1DXy7O0J6b3jrxm6emb2M\nB286FPNpkwIw5NlnyX4LGA8HvQI/vqGNbwCjbmiDV6DNA5cub4QhsGrKZZR9K8KF1Wnera9n501w\n6CbtuP0Jjlh4BGfv8iSZGTNYcjasa14Hh8Ez549iXGgc7AzpX/wKRsB7s2D4uX4uL2uFP8O5t+Hc\nzQQOKHqIvm4JYA3MLm8jX8rz/I3dzLuxm8y34O6r1bJr0muI+qK0pxQTV1e+y6ZSXtm/kpyZI1VM\nEc/EWZNeQyKfoGAVWN63nKAnyG/jv7WdPm9JURb7tDaMNxrFY0Jo4p62s+VvaLCFRJm4O0YgQCmZ\nxBMMqtq1+nq8FRXk167FXLfBYfzL5Qi1tCgiktGjlXjkTo1YmSwDZUqrTgTEhYSlEFR0yXldECza\nKsLilUFF2UB1vBnXZ8Gs1+IYoZi+vGKIZLC/VS+TRjktKZwxlYVTYO3WixOhUDEmbiz+eclT7dq3\nbEWG3sZuVqxYRmbVAHs8OZk9npxMX6MajRxy1XRCyRDrprxnb6Q6EYMwTJn7FbIVWULJMJduOJfH\nb3uU75z9fbZoKYJzp1z2IXo7ES13I8uD+ryCqBjKRpyXW4ha8jjGTMRLxY8EGK7ZyaQY2q0BlEMZ\neLlGbh2goL7ubLOO5Vq3BxWdTaGin6JEVMDRrKlE3SfRextw/SbsZlLvaOrz9Uajqq4iFrOlL75o\n/7j9X3DcdNvhNnJQq8OhaB2AQXSx+gGPJCKDVhmXH/cvHtLnoCVhTp+SDkiXp7np/ZuYnWwj0aaC\nf08ftk2v1sNg/Jx24ArhgnK7k/x/9s49Por66v/v2c1ek01CNggEkCDYoAIqggpWLbYFqwW1UG88\nVfRRUUFFLi4CAgIiKxcVRItVpFa8Pdhar4BVQOXSCmgBlRQ1QWANkg1JNptkr/P74ztnZhKx+uuj\nVftwXq99bXZ3ZvY7m5nv+Z5zPp/PYdah8Be+Zpt3G+smr8PtcBNpVolLSWwmsgkq4hVsr9tOMptk\ny6Et1KfriTRFzH6rFfEKPA6P6U+Fu2ZXeXZkrV5wolgpgVXKZUj7a1ZQJjw2Tbe2s3PwxAfKsjSd\no45tV9FMeFoGiiKkorVvawqqaG43mepqMoEA+eeeqxQGy8pUQlZaCWAJkcRRc77LeJZ5tg220gJW\n+xlp1C0+NIHFIxN5f/iiSqRwpiXwEr7zXpRSkryXtW0jUEcJyuwBkd1kfGL2Gk8TFiVCfL+MVfh0\nGOdfj/IfImSSAFyVlcQMNUkAd2mp2Y9WWkaIWEmyshICARMGKTxA4Qs6sRSeZX1hF3gRlWgZfxpw\nBIP4Bg7E16sXrl690IxxSIsK3e1GKy1FKynB37evGbiJZW3BZU4wSP7w4eQNHoyvd28lbPOfwUX7\nt5mmaRdomrZA07T5mqYN+br7/VPYpK7rO/gSyIeu61d9nS/Qdb0ShYSS19ux7pnDm0tNpkUVRdT0\nqlGBxwmoFdYhVHmkEegLNadA0R07WXL/LXTnfo7NPZaIq5aaSTVM/32ITzc3cN/xIbZOhnXPPc8D\nDw+k4cneTBp4I6mpId4vDrMVuOxOcG0G1gJvwIe5BwjNhtqp8PiHF5L7zgoW9oNx1UD5Ku76dQnj\nMhFYCYdWDIXnX2DDaLi3b1+yv/op6QWPsPCPfenGal7ovY82QPfq2fApNB9/F38d/g7seZ7dp6sJ\nbttZ0OfPL6JfAOE53di+EgZVD2LNWaqx+07fTugBU66NMCw1jJdHeEn1XsEsX9hi836GFbRlsGaX\nPJSyhMGJeLLHkzz5V7j+jvEMHbeA2dtD3P3o89y+upzdH+xWGLZc1EzQAHGn0gOsclVBGqrSVeBF\n8RGyLuLZOJsObaKLt4vpnHINCUHd6VAL3+3bVXPSmjro2gl3rJlMdTWOYBDd51Xk7cIC3IWq0Wjm\nc9XxRRQodaOPjEgkixhJprraJNI2F3lxZlo6pEY/5Bkr81Qk0rLSFwyapOCDlZVmxinpduNIJvkc\nK5snfDjJIySM93TU5Cx9XiS4y6CcSLFxSQsmHVr2jZMsYBILny7YdS8WFn98/Y3krIH71zzG1rM3\n03P9SVSe/jF/vfotrjvvVuo6HaKu0yFqOx3itGVnUtvpEB8O3k67DzpymtEfrur4CJWnfwyb1Xj+\n576nuHb4aBZunm2uHFtnItPG+UkVUUzk9PwoB1GE5XBFollgGRqWQxa+nzhLHUuIpKbVd2RQAbMI\nlth788h4Bf8vFTTZT/gHKSDmdkMySQ6w2+0m17iW7EqgLqz2iR7UNNOEcmTFySSZSAQnmP13mjZu\nxAs8oGlm9e2bNJH2PmLfb/vOfCQwyDOINZ41oINrv4uUR4lg8RnqAjZKBPGcuLnPyDDot+34OsP6\n3po2X80S+gQd4vBm4QeKKgDMfDXErMhC9SIFG6dubLmzkHuE+y2lHDcK4JoF2oIW0tDDhqrlOOv+\nXn/yeliHJQzjAFfSRSonRft0e7MaJxU5UG0MEtkE9WkFsfY4POR4CvEkWoqD5dVnach3mAJhUlGz\nB3eggi5fk6UA7ciqAE76s0LLipsEZiJG1ug30CgpK3j0JKwgUaqBWYfhbwsLiG/YgDMWo2HDBrxl\nZaSMtj96MqkebjdpY44V3xEz/KgPdSlK/v1zlL9oQiXSYqglXi6Wn7EHauIjhY8lJiJfCSzxkgQK\nlDUNi2cm70trGTkuWIGhvf+bHFMqfXIryXGgpV6c+DUZkyhP2itygvbA+B49kcBZXEyqvJycAQPI\nCQZJRSL4+/alubxc9ckVNUm3Gz9qLSHtEiRglGDOa3xXLlZfPYxxGRRQcgxxGcBELCUrKxXUMZnE\nU1ZGTjCIv7jYVAIHBY10FhejGw3E3V27qn66hiK4iMc179qFt0cPmrZvx11SQrq62gxQvw37T/CR\nmqbNRTFIVqAujZs1TRug6/rtX7Xv9+rs52oaoSt2qBVbIczY/wt1t3VCnda7qLtdyCt/hM4Tcple\nFKLw/vspWaaOs/TUpfAo3NkU5rF+Sxg7OMxRc8L4yicx5qbfkjt8Cxt+AlfNDnNCDK74HbjmwB1/\nDfHn22HpZFh+yXK4Cgo/hZtPWMHlb17OuDcgvDQEPjgpEkF3AkPg7TNdXN58ORv69mXvyP4UTQ4z\n9U9RXKtX89tpF/L4AzepLM4rsOgkaHtJPctmPk/RH4s49g01OfQJAxtAewEmJcKMmgNrHGu4Y5Vq\nQoqO4q/F4Ln4c/zXihXK3ZfBfR+G6HrMsep3E+yey/YA2I7iuxkOfdibw+gwOAeSsLD6d/QqL2fs\npVMtsLeoVbbFKnmIiGlb1Ox7tOonR1vArRqduh1u3Fmn2eC0tlBVvTznnIkzlSXVTgVneq6XTPdO\npDwOs18coJqROlSmJ6dzpxa4ZqnSpQq8CkYJOLp0Ilmo/hZ4CVgtD/LrLZUte5NlPZFAMxp5u0pK\nlIPp1YsMUJRMki0rQzd+Sg2rwXYca9KupeXkXI0FadiPhUkXxUQPanKtx4IHSg8Zqb5J4CeSyOJQ\nBA44mqvIW7+U13/8Cn8fvoUea3rirffx6MolVB2/n8J9bWj/QQneei8d3u/E6cvOpMvmblSe/jE9\n1pzAvZtntxBLeXTlElOoVByayxiLOLp2qEBVZP1dKHy/XanqM5STEJipSPTHsKCNebbtBZZpd4Ya\nqpDgN45fYvssg0XnCdr2c7fa3xBXNfvwtNa48ieTNBrjCWDRg+zb2fsB5RQXcxDInxYip1cv/H37\nmg7pEBYC65s2O2Tqf/s4Yv/B1mwEbsekVA3wUyztdAAP9PG1jC17Te/FD9WG3jMUgFGeUQBMKQnx\nYsOL6MfrLDkBHq15muQCo4Jw+2GSKu1QZZnWGDwN+BPqt/uSLiDaPk0RcSWjZEADUrkpCEIVVdRk\na4gTp0qrYo+2hz3ZPWZPuVg6xhsH36A6UY0jq2CSkmBM50B9oVKPFCXLJp/6TO5h8WkCeZRG4YDZ\nSFyqcXYTiKVm/Bwi4Z7OUX97EuozR1ZV/KQqqMWbVaK0to5MLEbu8OEUXnoJOcXFuLt2xde7txl0\nFCSTZnDmQM3tWjKJE+UXD2Al4ATN0ICl7uxTP6VJL5Aqk+ShBZEiSU+wWtz6sZKfCRRM/g7b63os\nX2Wv8tnRIfK+htV5qQmr+iYJSDuUU8ZRaBxL0BvSqUcYKxjb17ndCl1TVgaoClZOaalSz5ZktFHV\nkpYBmttNNvrFnh5+4zvszcv9WOsUCXrB8uMEg3jLyvAYPW4TFRUtFBt1Q+Fb+u/qiQTpaFStxYy+\nu2JNO3aY400YwWbiwjPJdGqL2wjovtBE/Bu2/xD/eD4wSNf1ZbquP4pSqvjl19nxux96K7t7IipI\ni8DNl6xQp5GHkv1vQK0EJWWeD/Eece48EOaBWf0hAbtzdqtV3wnQPBnoD4teDXHxEhg74Sqohpv+\nexlnrFKNiB4PQPuP2/PcZPDeEubxecMY9SyQhpv+dBM8AbHJcLSvM5wGu95tgM/UonEf4Jrq4p6J\nz9FjxovcduEWrh2zmJr8ByEF028r4lX38wTw8x5AdyVEMd4fpsNqCLqDLHp0BMdPyGWOHqJPbh+I\nwyt3osoQPpilhRniGgKnwKTSEPSGZTOg6BC4nnBBV1h6+qu89+PdLPokpBi6Uiu3yz71Q6WksurY\nT018jun+MC8MhXHF19IbuO+82WqfA6groy3K2XVAYR6CKPbwUcb/JG68n6M+izvirK9bz5yDYT7X\naomUWI286/OVnLEnoThpzpSSlJU+c6AcR7LQSzxXbZt1gObzmgpcjsICNJ8XT1NWBYIFKmgTp+Rr\nsrKPkomsMTqKOrIqiMwEvGYQ5yopIZtIULBxI4nBg8nEYhSOGEFDWRnukhJTgrgO5QB2YzmgOCpb\n+A9aKkk1YgUSsoYS4rALlXVsa/xbBL4RxwrOsqgJWCAdElxIZjCLEkh5+u0XGTxzKCeu7Ev7D0rQ\ngFdmPs9JK/sBcNLKfrT/oISq4/fTY01Po6dbETcMGs/veMyc9MWB6bSEpwj8RSZ+OQ+RId5j/NsF\n24/xubRRkP0CKKciGUOwAq5CYx9BQ0uVEts+Aq3x2z4TiI7kKMSR2U0yoLmoYFzWWpKTEBOStgP1\n+0pg7TM+yz/3XNoZ2Hp/P/Xb5g4YYFZNj9jhTdO0hZqmnfBdj+M/1bRnNdYcswY+QwUrMiGButHa\noiagGhi2VEnh368t577QY9/NgL8B01416vKXwG9v+i33zJnE2/WbzQbjex8MUXlX5T8/SBxVlgHr\nxgd181+IuqkL+GIXPlDKUo9iYf1kwvNhEbqCWIRnA0eY8qWoooptzdsI5ATYEN1AjEaz/5umQ7PX\nQosIT1uaf4MFh8w4lay/wCYP9ywmsEhQgZ9U5ZwZqy1QwqPGIIGgVN8yTpVgTRZ6yRYXUHjpJYAx\nvuJiOPk4s3rjKSsz6QWZ0lIajYDAgZq/JRkpwVaipAQ3Fg0hD0s5UmrEkvgDi8ucMY4nST/xJ9IP\nTpAZxSgxMYE0iiKkIFp027HsPGc5hpiddy1+WOLiGBb/TeCaXtu+dZg6QS3Mh6qkZaXVAtCwYYNS\n8URBF9PRqGqLJC2PjHHW2o4jsE4/lt+yI1qkDUCOMa5cwNUqCMwpLjZbFqSrq0lWVpKurPwCn1Eq\ndOloFF/v3qQiEXy9eqkE+EnHkTvkPBI+9c1uYxHh6dqV9GGCziP2BdOxkK9gAbq+0r53wdtIUBWl\nK1EB2+9h8bnw0HsTMXXLOwEJmBCYYEIfHr5jk+LAdUJJzb2lFO5mXxTkZm+YJ0bDp/OBjUAt3H1L\nGSN3wmPzz+UXHw0zMy6RgmpWXwxzVoRYfPRi+KlKxM31h+kZ7sljZy2BE+Aft9xC59vg+YUpuo2D\n/47FWDJV3cg31d9I9qdQmlsKYyAwJswVb6ux/W74cBgMbw+G7bN3c/N9K5i59VQW1f6ebeltsAvO\nWwMb5mM23X6RF6EDzK0Lc+d1bg6UlcGbkDotBY3w4Y7tuIGbS8NKgikXS9ZIZs33sEhdKXDPAY6D\nu2f1Z+qPw2qxfRLWylgap0hJKBdLggiUk+qA1VArhdWZMwl/jvyZ9dE3zSan4lyqi6Gug5dsMmlm\nDyVTKJnFFhj/pmazGag9o9jsd5j7uJMqiymm6eo9d1JV3qQJuUBBdKeDnOJixZv72ZnUAY2rV5OK\nRIitXUu2vJyGDRtMnpS96bZkAmVyLMLK7uWg1k8SvLmMn0MKmPux+r6I05Aso3DfJHMmwZQ4HanA\nuYCwuryZUH8j3nofY7iKW0+fytXDRwPQZXM3lq1cQuE+Fbn+9eq3aP9BRwr2taH9Bx25EYXmEoii\nOEeBq0hVS0jLOupyOmicg2QYxdGKKjlYwm3iaGwFAEpQcf/hmMHNxj4xWsJCmlCBWZVx/k3GdnYI\ni/yOUt3M54s8O7mchStQYBxDKqut3YyGgs/qiQSJigqVMDiqLZ5zzsTTtSuF11+PNidE8aTQYc7m\nf2//AZW3D4GHNU37m6Zp1xsy+kfsGzZ9nuHnU9DH0cfCpzVAkaMI8mHK+Ii5/dgXvhaS83tr9el6\neAY63N4BgPM43fzsucgfv3J//Q4dPayjT9ctcq1Msi9hQipzm3K/uO90Yz/hzIk4mEbLVbzht6nH\nwgcahOaqZJXJi3s/9gHbGz+g2auCtIY89ZBATvyjBFlSVXMn1Ws7RNIOq5RnCcjMJt4Z63gCtfQ2\nq/eTboMb7lLb2+GaGSek9+7D1bEjWryZ1P79CvJZUkJ8yxYcbrfqgdarFx6Dq54G3H37ki4pIQs0\nBQIm9y0Ti5nJTfnZhDog/tUu3S/PEgTKs1TxJHaWYO0QcDdW8lQqZuInsrbvdhv/QrsYiYbVKBws\n+L38LZYyHpIIrUf5rwhWQIlt/NLLNmFUrQSGKO87AgH0LVvIRCIm901M+PCyJmk9DjdWElTOV5Kb\nGL9tCmjcsoXGLVuIb9xI45YtJCorzeNobjeOYFAlVA0oZCoSMSkmrbls2WQST1PWFMABlVhIdCgg\n0aMTvttuJPPjk5g/exLfhv3A/aPY3cA2TdOWG21itqIUh7/Svvuh22zPoPE8OXCg0n7tiKoUdYRN\nCy7nhuPmqQlxF2ollwfz28yHcrgofhm9dsN9r4SU1O870Mfbhzyg6Npr+HQq/Nf7cPRLwM+g7ny4\nuLycgz2hdHM3Huu5hB0Grnj+desZvBsmnx7m5MZTueuiEu6++mqWjIR3Z+5keibE+6Uw+rz7mflQ\ngPNrYP9CNe+P/hxeLy2lClgKbDtmG8yE228H/ggsh7nd32bC2xP4O+Arh71tYfwpa+ma21WdXwJV\nzgEVxP4UngxBnz/1oeiyINMfTXL7leV8dAH4f57Lxx3gvneG49uOSvd0MfYbh5pFZKY6BRXcSraw\nC4x8byQV8QrYq270/n/vT3ok4IfJjSEVtepY5YhC47dvQM1Yn6FmpTaYCqE9mxQZvipZxdnBs/A3\nKkeRG1dOydcE/kaV1fMZqbOUrYQhQZa9gahMblKpy7gcJswSrIajCY86Vk5aOSNxPgmPen2gnXJE\nTT6oPaaAhM9Bw5JH8F59NYXXX29CKB2AM5lUQUQwaDoKeysl4XxV9+3LflRg8zkqMJAA4aCxTcr4\nCWUCFiKxVNlE9dAOO5FAys6VyzG2mYgqpOrA9VyFBizYPJtHVi7h0ZVLqOt0iPt5jNLN3QAoW9OT\nE1f2BWDSvnGmiqTwACSYknSPTAppVHV5Gy0zkoewYCpi4gAFRphFrVvkfERTQTKhbVCXq3D8wIKY\nNqOKvxnbsewEIAkwC7B4EvZEuThO4S0EjG0EDhq0bSvnIIhgUyGspIScZJJst054unalccsWWtv+\n/MYvvPdN2Q89eNN1/Xe6rp8BXIFS496hadqTmqb9x7YK+HeafrGOfvEXE7Rdqrq0uBn06brJ2bpF\nH8nMEQF26jv/XcP8xkybqMEbsD65HhJQ4ish1DlM6FhLXOQfs/7xT45wGLOX9HUUgMlIRDbMa/jS\n3fTpOvokHX2CeiZjHEs02xtQDkIye/kgHZ4HtR1EibeE8lg52+u2c0LgeBN54klYVTGpmGUdFpRR\nXgsNQKCOOWn1SLlaQimF+y2qkuIHBaniyEJdgfLJKZdKgNp9sVTytPc/xllcjObzkqyoIBWJkN67\nj0R5OXkDBuDv1w9XWRmZWIysAb1zBAI4DXSLIxDA4XabSBN/LGb2R/XxxcqbXNWSfEticaMlT5y1\n7SNBlkx1XhQ6RYI8e1Aj+4MFl6wzvksCtmYsdIjsL34hS8sKV53xniT/JGiSwqyYB0hHo9SjBENA\nqUgCJmTSYfCpRSAkayhwy3oC43vsPefkkcQK6Ox8dTHxkTJuUY7EGFc6GlWCJdGoCv42bjRhj3oi\nYR4nm0gopeUePXCXlJCoqDCvGY+1GdByDfdt2A/ZPwJomiaXV38UaPs5oL+u609/nf2/V8EbqOif\nT1HBThNQBU/+5kkDowjcipWC+BQohT8d/RT8D4w9OszDZwA9Yd70bUSBPxyzmaP/Cg+dgIIA5kPX\nyiA7gHZpBxetXMJD8Ym4Zt7KCagYp//as7no+ctYd+nfmHJThKdGL+MklGzYUbeGeQ2YOTzAtCUx\nXipSwxiVhZqj4PLKSrrVQcOAAVz/h/Hc2THEc3cDV8BA/7ksn1vF/JPmM3oB8Bp03gg182HTTZvM\nQKjn5z05YyfqDn0BLn8ZtsW3UdMhCoNg3ksDOLUySOMTcaZefTVjQytVwFsCD74QgrdRFUajQgmo\nMuR21Kr4Irjp0E0s77CcqjlVkAd5c2BTv030eqU3ZMA7JqxWx59isV7jWJ2ZI9C+rr3FzD0IVEOk\nOUJuKhd8KhNqx+9L8AUKzlhTpJxJxqkcR31+Szx+OgdSBV5SHgcN+Q4yTuWERFJZlLnEsYESJxHI\niR0SIqRsZ8a6aV11zbiiUQUZqKggXV2thFV69cLdty9OA+PtQ/0UvsGDzT5gDUBzaSlN27eTCAbJ\nQVWVJCBqQAUJwqfKtx0njXJY0ltMFCuzWNBIwd9L5lCqTilUb7m3sdQqReFKnF7BvjZUnv4xnnov\nZ983iMJ9bag6PkLp5m5oWPARmdwleHMb/2K7+EelcR7SpNtrXA5Fxjm0w+KyiRaAHW8vjkeqlU7b\ntmCRvQuxIB6yjaiW7ccsJrTYF1o6bM34fUUJ1B6kYft9vFgQF2lg6sCCpgKmsqn+3odqu65d0TJZ\nxQeJRmnqWEC3dZ+1qPgesZamaZoThQU4DjVD/B0YZ0jhH7Fv0PQpOlunbWVoyVBoAv023VRcbG1z\ncr+davG3afo8XVXE4rlQr/yh/hsd/df/uliQ2S5BKmkvoSbko/+F4zixsk8JIBf6Z/qjz1DVOlfM\nBQ2w5vM1uJ1uSnNLKc0tNZOO7qQFV7QnH6VqJj5U16wqR8apHq0hk5KwFPMkrONKkNd6W3sAqWuK\nayc8OlB+OOlW1TZf796mGIW7a1ca33kHT2mp+ikDAdr8+tcQi+EqKVFUhKFDyT3jDDVmt9vMB0uy\nUiTu87BEriTQEvEPF1aiMxfLXzqMz0SlsgGVRJ2FFeQJYkUqcS7b/uKvG7F8nqhFy75SlcO2vcu2\nvQSXdvGrQuNykL8FPilBnCSkAbKxGHok0qI9AqigTqCTMZQvbIPyueIDhXIhYxM+vt3ERwqP3ZlM\n4oxGcdiqfhKgabZtc4yg0hkIkKisJJtMKvVLw2RskhA3z8fRUhnVfi0eMct0Xc8Ct+m6HtF1/c+6\nrr+g6/pnX3f/711W/awAACAASURBVFXw1mvNAsaFV6vK0TXAUXDfquFQBe0b26vK0dPAyTCKUWoF\nGYHoONTduwfumtyFs987m/JJIaqAIXP28MxpatPcZ3JhF9R8HOXC/fB0TpZ7558LwOhJYc7ZCt4p\nwIEk8+97ioJnYMPtcM+ovpxxB1yxEzIjRjD2ebgyFmPpFfALDK7OVjUhlR6Ee38zlInXbeS3Jy1g\n1Pgww2rg3mlDuaD+RLaVlvLKAOh62rGQD/ctHM7joCJDQz99Z85O2KAEVLrs7wK9oEtOF2Z4gJ0w\ncchGah6MQh48NWsZd2wMwQdw94wy9nUCknD3dWWKOyjQyQGohq4lwDpYfNxidZdPhvfPR80MCfhw\nz3bWjYRpdwC5sGgqCoYqWL8c1KzlhaqrqghXhwjHQpAHrnoXQXeQYncxo9qNYlziQnqMD1OR3Guq\namWcyjG4k9D+k2bTOUgAJllBgU1Kzxt5FnWt+nwrsyMOSKSX0zkKftLkg+2NH+BKYcI3xeElPNBY\n7KXZ7cbZ+zgTu18wVBHi9USCgqFD8d18Dcm+fYkOHkxzebmJL3cEg2QrKwkMHAjRKHGshpyiEpmH\nxWs3OQFYjgMsQQ8J3DQs2KBkIQVimTFej0c1rpaAQ7D4aVRfuAPHRwhvns2iNQtMWOWdH0zheq4y\nOXuC/cf2WjJ6AgXZZnz+KaoQXosVQAntwy6zLxAXEQyR13KujagVvMg729dIXixhFsHq52BJLGP7\nTDKIIi1t58OJOY3vy0PdnxJ4YhsvWDw/OywnVlJC8Oqrcc5Ri1xRmGz+N7YIEHjTN/H4LkzTtHuB\ncuA84C5d10/RdT2s6/oQFED7iH1b1vXLP7rvBhe3h+Z++QbfY9PDulURa71C/VePOUm3SE1DAQ+4\nPvwX2KzSC0ayb9WwqW4Tp8w8Be1NjUBOADzQM9ATj8PDGcEz6F3Qm8JaRauocB4wuW7xXHXf5hsQ\nAoFPSlAnlThnRvlLgTs6M5YCpbQQkP5vEqwJd04Sn2kyJjdO5gpJsjb5FKyysW838zNRn/T17o12\n+kmkjyogd8h5uDp2JP/cc8nEYoozFQjg6NIJb1kZji6daNq+Xfk4Q8TEzrZowvKDMl0J1DCOhcYQ\nbnnGtq8EMRLwpVEJvFuM9xuxhE5kKRTFCsIkSMyifJpA8qWiJQlU2Rbj+SBWtUuYJV5U7C+UAUGV\nHEQFrbKvu7RUtShqJUaSxkD6lJYqQZBYjHRlpfmb1NNSzRJsYiSG2QVVPLb3PK22yRrfp0ci6JEI\nXoMXLufZGlPiKikx+/2BCtxSZ52EfkI3vEZkKuu0f5f9kP2jzV7TNG2CpmmdNU0rksfX2fF7FbwB\nFlbqL8A/4N4fvQM7YP3cKqv748ew1LdU3fF5EHwTcME9r/ZlT5c9rO++nl/MDTPj7WPpWVnJRyUl\n7LszRLxDnA8vgL0/hTc6wsW3wdqjVnHDZfN4DFQAdQ6cU3gW3Q4BZ8HWqSFKt2yhp9aT68eNx79i\nBXde7ObZAQMYVad6Xz9xb4gl/aB0DdzX9jGKXniBy6OX89o98OyIEbAPbn3kBeoKYPLSSs7bCH/5\n8W6KzgoyauVKOoNFlC7FLGfMiofZM2EPM58NsafXHmZshiFbhvD67UAJnOw/lSc7wqzGMATh9mXl\nzGkbZt0MuL68HH4O/Bp117+DCsI8KDikyAa2UQvz34+F65eMp8veLqxfEIJfQGok3PwMlsKGpKSc\nKE6FJ0h4xCPkxiH3QC6p4hS/bv8rLut0KZGmCH856hO2Lw5xzvgnCf1KwVvEMSTdUHWMF1dK/e1r\nsuSKwaqsObJq+3iucjDxXEvmuNmrnNMhUdHA2i7jVI6pxFfC1ry97NEO4ElY3+/IQjQI6Xm3Krnk\nHp1weDw07diBv18/fL17U/eCamQeGDgQX+/eZGMxMsOHkyotxVlcTOH111sNwrGCNJEFrkEVjPcZ\nYxP4RgoLZijCJCJ4oqEmfckQSpAlqpQJFEj6LazgS8cKlCbU38gfli0zq3ejuMrMIsaM75GGqB6s\nqp29EieT/TFY8BENqxm5PaDCOKY0JxWTLKiM2Q57DBi/j/wuebQMqDxYQaQEcpK5lGWVXYunCYUQ\nrsYisgvEVcYCLcncdbSUmRZFUDuXACB7ynHqe0rUTZB1GO0rUoqUDXwrmP4fOmwS2AGcqOv6dbqu\n/63VZ6d9FwP6v2CL9y1WakL/waaHdfQF32B7DpmIDTVnUav8/x2T2b0ZQDc4h0DP13tye+Ba+vj6\nMPSo8+nq70rb25cTTUSJBiEVCHBcvB0pl/KFct9KVV+UIqWBt/gxqaRBy2pb66qHQCmbfC3VKO39\n4GqdjWi6UoduyFP+VZKg0k5A11RSM+lWnHMZTzpHzY96MonvJ2fivuE3FI0YASjEAjV1ZosfJ2YH\nIqBl+xdZR9uraoIsEbRIM5aiMFj+QPykjoLuL6QlikX6vYGV2BOlyzQWnT+Juhy8KL8kXLE4FvLF\nKKyalT07VWA/VoJWqoF+VBVLc7vR3O6WQh6BgPIntvGBEsWSz8VXt7N9bqdgSBXTDgnF9rckgtN9\n+5IuK1N94wyeYqYVj02CQd2AuXpKS1Uf3WDQ5OgJzDO/Vo3Y06Se7T0GJVkv1Jhvw37g/lHsUmA0\n8CaK77YV+CJH4zD23Q/dZqPrYN0pgBsmfRyyuudkDGWhWuB8WLROBURxqbi9AdTDbS9vYUjtECou\nsU6sLTA+EsGVgm3j4dkFITo/AEvmDUO/B8Y+OJUP+ygO0T/mA93grmSYOSeXQgSOnh1mz4AB/Hnm\nTsoHvc+hWSGmJJNMfG0j6QIlbZ51wOjXYdMggKu4Mg7Hz1nNz/8CxStWQGe474EQWQc8PBg+HqD+\nQzVPRJn1QIgrJuRSdw1wLSoadAEHYaY7xN4imJYbhh8Dr8KLwRfph9rm3U5/Y/z2Tty9vEzdoYYs\n4py7B9HmNqAHXH/peLXqLkXluzWongqvDQUqYGFI3fhXLoKz1ixgT9MepncOQx7MKy1l9o1B+CkK\ngnkyVsfNTlDzeJSa30UZ0zVMvCQO3aDLmDBdbwxzXnUPeni789De35EPDHlB9R50pSyMPViQEeGr\n1eerv5t8ymEJvl+gIaJm5MgqcqyuWdnHRr8FI0l4YFXVKmKpGAFXgM5aOzQdDgQzbEuqalyXCjXT\nmJnG4ztROHQo6epqhe0e/Rvz2oytXUvuGWfg6KF4ZCKpW7NiBfkoyKQ4Hel9lkQ5AVGblCCsFit4\nqMWaXEX8TEjV4jhABTBx471bUKtfyZLJtsInazBui9YNSsXR2fjz6vxtx7A6Qqmx/wiFeQOT1kg7\nVJ5B5mVxujJGe9auAXXJ7EMFs3G3m89oCZ+MYnHT7GR1MXtPGyFhZ2gpJIPtfBzGw2uMU5TKHFht\nH8TEdfmw+ATuSIT4hg24XvsbrPubauzusKAlR5p0f7Xpur4McGuadqqmaWfJw/is9it2P2L/Gxvw\n5R99GZTy/7LpE3TSM9PwK74oW/v/c5wZOvocxYHLdeZSk19Deaycnc07mdgYZlvzNuY0hVkxbgV3\n1Ndz7vgnAXh+wrHcNnkuNa5G3EkLZdIabhbPtZKWdpSJNNYWmKNQFDJOtU0sYCFWhBcX92T4IPkR\n1clqDqVrydf9JJwZ/I0Qo9EM1ooMcnd9vhIbi/QsMGkIklTNOJWCtNa+rdl+wOSpx2Kmr5RGz4VY\nWjFCK5A5W0JyeV+SitI/VcNCmYCay2toyfvyoyj/zVj+RCCQktzL2ra3q1G6Wm1rR3UIQwQsXxJA\ntVYUf1WGWnO2pntlDA6gBELurlZ53N+3LzkDB+IfOpS8gQNNSX5PL9XSI4vyU+In7WIqYuJPxT8K\nkqaJLy7yc4JBcoqLcaBa5wi9QNr7uKBFiyaBRzqLi00uo+bxkKiowNuYJROLkVefNa/FI1DJrzZN\n035t/HmOrutdWz2O+TrH+F4FbwCvLQ4xY+BC5vYI88pPYM/Ve+BcOOl3qJXgy3BzvxVwJTxwV4ib\nOtzEfVkDw18LLx54ka7PwtN3hbjlx7s5/7YivI3w7q4GK7MxGM6Z+Bzay3DP5tn0AM54B360Dj4s\nhdlzghxVWcniU+DCRghu3Mgq4OEJq5h4c5h7gYdzFR9oOTArFmbPT6H/J8bi906Y+rsoMy8KcPnv\nYEcbGDs4zJRbw1w3W9HPLl4Nu6fCnO5hehf0ZgPAVMADXT7qQt1YmFYX5jGg7gbY1Bm4AKqvgfzb\nYF5NiIM/hs9e28eN5eWQhHCol2pw7nIwoXQCW46B316wQAXBb6HEXpxQvFRVVRilJoHbh49mx83w\n6ZwQzAeGw4NPhii89BKujkYZ9eYo+BuMrBgJP0OV6nZAbn0uuYlcFXA2AzthOGrtcLCdA12DGzpf\nSw+g4+s/anFDi4OSypozY2UWwXIyohApAVzCY00M7qTFaavNyxD3ZMg6VBAXo5GBRw3E7XSzK7aL\nD5If0eiHingF9el66v0Z9h3toMmVodEP+921fBKo5WA7B/VnH0fDqd2oK4CteXs52M5B3s9+Sk5x\nsYKnGBOYKEJ5UDj7LBZ9QkMF9uJApG+M4NLFqXQ0/haowyFaCpjIBCywkRxgMbAJFSRJgCf4fWkz\nIHDKJtvxNCzitTgXu7KkSOs7UM5CxEDao4I2sARGRRHbHgjZq2LSMsFe/08AbZJJmt1u6o3jtMYH\nyNjld81B3fat11TyXe8CWwMBk5IpkJjDTWz2zGYC+NztpjYQ4GAwSFOvXriGD6chEEDv2/cwexvn\nFlNnLHALO3/km7QfeuVN07RrUdnENcCdwGpgxnczmv87pt+tow/55pvG/6dbU1MTZ245s0VD7n/V\n9IU6cUecnsmeBHICFFHE7DYhNel+BtqjavL4+F61btk6bSsAi0YvMlsDQEuRkpTL4q61+C7NEiKR\n+91py2gJtSDmy5jBW9LoyQoQS8VwO9xsb/yA6mS1OlY2ya7mj/Ak4G/tDxBx1eJttlrwSIK1IU8J\nntQWQvXRXpp8Cs3S5APd6cCZyqrEl00G3wdUu900oAI4QVcILUCCNQnoBCYoVAQdK8gTOKXdmlHJ\nwnm0VEsWPyr+LmnbXoJEe3Ao/sWO2hBUjAR09obi3bFg+QGUbpw0J2/B0Xa7SVZW0lxejqukxAzU\nhGOdrKykaccOmnbsIFFZiZ5ImAInYME5BS0j4xCqgmwjYwY45HbjGz6cnGDQ5CamIpEvoEzs+4jY\njObx4Ovdm9yzziT/3HPJO+MMVYXL9X5hX+FN2qG6Ihr3bdgP2T8Ck43nlf/qAb5XwVt9AbS5KcyM\nR8bBh3De21jYKpH364KCA74DocYwi2OLGTsxrFaV64BCCO8O0ZCnbuIaamg27rY6YPppYYY9P4yr\nAXzg3gva8zBlc4gDP1Ff549GaZwa4qaDMPLhkfQDtgwfzQZg5GMjWbi9E9fdBq+g+ratm6pQiTTB\nlFXAWTDs42HkxWLsuBZ6LQD6wYwHQpzc/VQODB4MAXgV6P9Of9besYnTgdfugfdHw57Ze9gDzPWF\nmHYHFLyvbtaHnprIkyNGUHkPtL0jzIIHQ1y1aTQFk4AOkN2xA4ph7fmrmH/UfPpmYII2QeHJRqFE\nTXarcR4FPHBPiNtXws9WLqEnMGJyGF6FCb+dwI0/C9NzbpiS12HpdUthDBw3djk8bxxjNHgcHuJZ\no1bjh/7u/gQXQK/bIG9CGFcKZt0UphT47ZIF/KX+Tfa7a1UWz9NowjdcKeUIwIJ0SNAm8BA7r63J\np/6u9jTiSUDEVYvH8GpxT4bd8Y9YVrmMLYe2EGmKEE1ESWaTrI++yfa67abS16s1r7EhugFPAoo1\n1WrjoLeRiKuW11KbKW/6CLfTzdupdznQDj7r01ZBAS44z5x0pel2AqPVhPFaQwlzSksB4cr5sTKH\nzViNvaVi5sXKCIqTEucjQdG1QF8sR2OvPoFFoAbLIYlzdNCyAicmxGw7jDKLqgzqxljF4RViObO0\ncV6OVsdKo6psVbaeP2AFUKLK6cNSgxQRU4zfBeM7RKytGcUfSAB7aQm1BKuK5kctDMS5+o2H9PVp\n7fABE8oi/9fm8nKTv5FNJkm+8rpqbLprF+mfncr+dhlSnm9v+vyhB2+oAvGpQKWu6wNRdfvWiNsj\ndsS+F+b1ern//vu/sePpYR23000gJ0A0HOXNzLsMaTuEopwieF9tM2Ps3BaBFkC9pqpeMV9GcbON\nDbKOlpw0XVNBmFQ7hOeWckG9X/HYRAwMwJNx0uSDSPoACWeG9u52JLNJYukY0USU7XXbiaViJJwZ\nYqkYyWyStgdVcBfICeDIWhC4ao/ykRXOAyQdGfbqB0i6VRBX62xU7X/2qoWby1Ak9JaVqabPRmJM\n2sn6aekbjE4NZnWsDgthIQlICbhEsEsCPgnsPChdO6Eh2Nv8gCVMZVdodGBRE6BlYlQqc+IjxReD\nBdGXsUigJrQH6XOnJxImX8xVUkLegAF4unbFXVKCMxDA36+fGcBJ1dIZi+FNJtGi0cNSPMWPC4c8\niyW0chCoKSuz4KlGolkqaprbTaHt95Pksqw7cmwBY2uT88gpLiYVidC0fbtqJ2Ak5F11zTTkqSS6\nXcjkm7YfuH+Mapr2GnCMpmkvtnq88HUO8L0K3vKfgkOLQ7AGJushOBn8vXNJHAUzQsClcNc1oBut\nX4tSRbSva8/dAVj8/tXqzQR8Eqjl5drXmLYfwgUhvOPg908/xI5pIciBJyY+h+9t4CA8uCTElgvB\nFW5HuwWw9oEQvokTVTDxFDw4djmPnj6Vxx5fwmnAOWOXM7b3PopuDHJzVi0ie6JoZCfvOJU515cy\n7MNhFHuKyQLXPXw2C9cMpt4NHbYd5MfVp9GwcSMzBig42qajNrGob1/+B5W96Q7Md0Dvg5CeHIZf\nwj9OgPemhmjYsIGbr15B6QIYd1sRN9wY5rFfL4Eu8FERZO4JqeVSW5hZGaLRCfPPm094XQj+DHwA\n4XgIjlWL57Zzwrw5HEY8AKfc2Ydi4IGNIeZXz+fsv57NZwAfwUN3TKSug4IEcDL07342rgfV1NGn\noA+EYJI7xKa6TUxxh3jQEaIEw5lgZIhehE0nbqLPzUspiUC+7qdeayTrMMRFXJkWvdg03YJSCglb\nYCACjYwmoiqIS1STcGZwZ528cfANYmnlfCriFWyIbiCRTfBi1YtsqtlENBmla25X5VQTUSriFdQW\nwv7MAdpnCulY76djspBidzEbohvYXredRDZhcuZ8Tar64i0rMxf6eVj9afKwsn9JrJ4sQsYWOKML\nlY8QXlhrERGBQwpmX5yWE9WG4k0sGWWwHFRrWIe9CpbA6nEvjs4OmbSra0nPOeGjicqX0VaxhQlc\nUiqEdvMb+Hhxkh6gINmSU5LFko32G99daDtnMfleCXQ/A7SSEoKxGB1ROg3tUMFga9iKODHxJQ5U\nJlj+j75evRRJHEhWVCghmlYmDtAup33EvtSadV1vAtA0zavr+i6MKeSIHbHvmzU2NjJu3Lhv9Jhb\np2012xf8PH0yJwSO5/qjr2VU11H0mt4L7V6NWTVhtApLNWHR6EW4UuDOOs2FZdahgjhJXkrAJ7w2\n6Quna5B0ZMyqmgR0ugYVyb3Es414HB4iTRG21b2rKm3ZBBWNFQQ9QSoaK1hWuYxENkF9up5Pjs6Y\nPvCAv5EK5wEyTijM+HE73ESaImyIbiCaiJJxKoGVopRfVQG7dTIbUevJJImKCjKxmGrs7PGQdLvN\nTgoCBRT/0YTyEzFU4i4PK3AT9EkSC8EiJr6iAQUgAst/iqKk0AuEaw5WNUv+TmAFejoWxSBt29de\nTfPZvsfbakxmmx8j0LHDIgGSkQiax0Nq/37VFsCQ8Dd7whnbSXAoiBoPVmB4uMDOgQoC8wYPxltW\nRqK8nNjatSRfeAFvZSXtbT7YHnCC4mCCCtLcpaUKJpnJ4nC7TcilFm9uAa0Us1+zYFWPZy34dnq9\n/YDtPOAOVJw9H1jQ6vGV9r0K3gDu6hDmuYUw59dhZhqE3UWzDFhkCN5fcDnaSph5TYCF99Tw0twq\n8oH/WrYMRgAjYekVS9kW2AZbIXRUmMRCeCRHXUVvn24U8fLgrkvgxnPCHANcuW8cB8fDxWPCXDtv\nnjlB+m+DazfPptmvbuDaESNYNf9cmvObYS2U/QWeueUWog+GeHf/33jsv1zcPfE5ltYuZcIa2DRo\nPeNuXI0GHDq+LYv3Leb2WIwZi2DZ1VeDC7pt2cKoA/DMnBCHgOrj7wI/SshkG/x5VoiHHS8zcf5G\nHng9xMI1g6kZU8MTJSV8fAkMaxjGL6Yey9RTw7ARniiGaeeE8b8HB0uBp19h07Nw/2L4xZQwHAPS\n6Wcf0CXShW2xbfg2Kwz7sclj1W/1wE0senMEnefNo2xSey68A8KVIV6+bj1uh5uL37uKbRO3MffB\nEHN3h8EBd3UM86D7ZS59HYIvvYdnCay4+mqWjAM+VK0YNrfZS7VeSzQR5YPkR3zatJdEVk0hwm1L\nuZQzEJikvQGptxk+12op9XRmR/wDPA4PgSYn0WwtyYxqgBrICZDMJoln4uxu3K1m1SDUpGrYVLOJ\n493d2dO0hyqqmPtRmOVVy9nU/C7vuD4CVFWxLKDWmlsObaGjsx0FdbZJKRCgZsUKGt1uDqIm131g\nin04sGAfUvFJoBxSPZZARpCWFSNxNBKY1RnvyaSdQBVR+2GpLyaw+HQyEWex+thI1cweMokzFAUu\nqbjZieIOrDYAHpSTcmAFpOIshTRdb/wOUonraDgIWZpI4CfyyUXG73G4SagBC1Yp53UIBYusxnKu\nDiOgihmvBfYpGVfZR2CpH3P4yhtgwnvs5u/bl1R5uSLqV1aaDiuRTRApgcmfh00e5jdpP3S1SWCv\npmltULX614xsYuV3NpojdsT+ifn9fu69995v7fgTvWGWf/p71h56k4p4BRfnn9+iEdjdBgfqnjmT\nmHnzXCLpA8SzjcTSMfZnDgCW7xEBEnl4EjbuG046a+3Milu91kjSkSGRTZCv+6lOVLOrYReJbEIp\nYKKqa5GmCNtqt+F2uKlOVtM1tysPffIQ0aRKcK6qWkV7dztzHMlskkQ2QVd/VxLZBGsOvkZdgWrV\nEzCm0Ux1NalIhDZX/AZXSQn5556Lq6SEnGAQLZnkkNtN3O2mEauyBVY1SHyNBHjipyQ4skMshePV\njPIBN2NRCCQ4E/RJipZ+VgRJ7Nxo6RUqQmSSfJQgTcYnnWKkkidIGfHNYnoigb9vXzLRqNn7LnMY\nfyNNsx2GUIl8h/sLW2JWzmQ9IVSEg4EAKVvlTHxWji2RKmrRwqeTc2/AUJZslWDVneriE4RKJqBg\nk3IO6epq9KZmJXJzlPqsyaeqse4k32sf+V2YrutJXdc3A2four5e1/V1tsf6r3OMnK/e5N9n1Zep\nLnURgLkw7SC8WRTnrBlhMkBwPtx065PQBab9IQZnw5Y2UF9WBuXlsAz4BbxWCJfcVkTNmBp4BTwr\nYdDuQazpEGYGMOMT2HsMdF4HzT+BG4aPZtegnbxw3XraoC7kvlPC3Ds9xK2OMCc8AuuugZ9shbkD\nz2Dt4zcSdkLodejyRhfa3H8/fYD2PMYlXEWHjTDj4oUMnTaO4wHvGxB4BSgI43rORSUptt8MvWuX\nUV8IJ759LOzejfOltzhtchfGrHuZgQ+dy5XrV8FbMDEdZvFMuOl0GJMN88ApIR4/ejVXLI8wpQke\nueE5fgLc9BNYeCE8Ov9ceG4VTXfBuXedzVNT1vObYJCro1F6vwe41ERzMvCjD+G94/aQAt7aMRjH\n6jDTgT0lcaZMWA8nKL3vKlcVw/KHcdHEMEUb4R8D4nzCAh7wQ4owscUhJRVbAV4PNOw8nw0/+4i5\ndSFOWBZmc2kp092X0J0wR/s642+EdzIRSnwl7IrtoozOJDzKAbmTFvHV26ww9poO8WwjRSk/zV5I\npBOUJz6it/943q7fzH72k2xMUt6gxCRSjhSurEvNbkKeAjN6mKWHrZJZE5ALaxrXMMg/iGmJMKOK\nRpGfzmdjdKN5fdYVQNuDaqJKVFSQO2AA3h49aN61C//GjUQDAepjMVKoiVWyfKD6s0jvN/HZRVhc\nNsl6HS6QkYBM8PMPoWiMv8BSjpQuDuJcRKHKLmdsV7iUSpqIowg/IGn7qaQpqmD8RXY5gBK082BB\nWMQKbd8rMv4NxjnbMXMSTOYa29uhnAI1BSvQsvdoyxrbVKPI4Q1YgqiHY6xIllWapseN7/X16oVj\nyxYyvXqRjkbx9epFTnEx2USC+tWr8RnvH86KUn7FvSzmi+zxI4au6xcZf87QNG0d6hJY9d2N6Igd\nsS+3hoYGxo8fz+uvv/6tHP/ehhAHO1l9RhPA9FiIPW0O0P+Y5VQ8eAm3PzSJNsBV91+luHIpP7uz\nUVUVi1dwbG53szk3qGMJR1zUmePZRnJdftKogC3SFOHY3O6AQpfE0jGz+lbiK6EyXkksrRbgLs1F\nVbqKZF2S/m1OJ56JU+QqYndyN8e6j2VuZRjSCm3jcXgI5ASoaKwgkU3Qr00/2hxS1b7cuBFMlpTg\niMVIfvSxSowVF+Pq2JHm8nJySkvJVla2gD1Kn1GBAUrQIsGZtAmQOd6OShFVYkGM3IfqhypVNM12\nDHmW7eX4IqQNVqNtUT1u7VfEr7dGoUiAWYNaXnyGlRAFSFRUoBvKkznFxbiF8xaN0rhlC56yMhxu\ntxk8tTH2zccSNWstQlJkjFUCSU8sRioYNBuqa0ZLAgnU7Jx3MXFh4of1RAJvWRnZWEw18e7cFudH\nqkqoJ5NQsY9M107kFBebcM8vM2fmi1zNI6ZM1/XP/9V9v3eVt1Ez1fMjRhJsc9++qqIGzJ/cBS6A\nyHDU1bwWHhk0ntu3lNPmcRj75FT0Y5VGdc3RNbAOZv4mAKqVG1tGquelx8DYecMoeqWIV4Ae5W8y\n8br1PH5nl67y8wAAIABJREFUiC6zwZV28NPNcOuPwuqq/hh+sgiWnwIPjQmz0ql4R66XXcyas4fa\nSSH6r4CxD13FdeEhzB4SZMYyBcHw7oSHXp1I03mw4gxIkeLYrUrFb0UhPGj0kqIKLtq4kTHrOvL+\nxT9ixIRVaqMUTGoX4gag5+aevDMXxpwV5oopwLGw4wa4ZhkMAuZcU8pVwNrPVzGy7Uh8lbB+zHqW\n3RPi9YuijFgBvAR/7K4mn3bAkt/ewtqhQ1k3K0T/1at5ZlZ/Jkxqz5Q/RLhcv5w+qT6U1QENsPbg\nWhV4dIJXhg9nSzDIUuAZ4C5HmFpnI280b2ZfgWIurTqwivp8eOXBCTivvYT5+x/g3ntDLPhoIQe9\njfRxH4/vybb8QjsdTcfsFyIZxqRbZUZy45hEaoBoVonVeRwelVnMJokmolQn1CTidrhxZV2kSKmZ\nOxdrVmqHVbbxo6IpQTG0gTW5a+jv7M/SfUvZ37yfoDtIr4JeJln7YFulSunp2hV/v37mBHkI1GSH\nBQERVUUnajL3oibOA1hqky5je2lQKmIbkiUUWeVGrOzYFaiWfVJxs0ND5LUcVyCQ4rREHEUylTpq\nQnfRUn7f7rTs8EXJQnZEKTnmYzUOzcUKQjPG6zzjc4GUyDhb92YT6Ggb4zuCWBzAHCxO4eGs0Hhu\nNo4rVGqXMT4vVieO9rRIeH+pOY2MosBXAuefh3PMb2gacBxZB9S4FN9ydk4I50f7/tmh/iX7oXPe\nNE2brWnazzVNyzWyiS/ouv4t5F+P2BH731tubi4LFnwttNK/ZGNnzOWu0XOpdTaaPLbnDr1M10w7\n9jwQwt+okCavsBmAtZ+vJe7J0C2nM9eNWcyJWnel4phRPtHXpAI3Z8ZSfsw6INfhV+9lEypIa1ZK\n28lskmQmaQZq4ksT2QSJbIKabI3ylw6ocdYwd79KbtZQAy7la3OzueCDbXXbiKXUcUq8JfQu6E11\nopqGPDWemiLFd0r4HDgKC3B374anrAx3167oJW2V6EVxMdlAAMoUukW42VL5EihiDMsH2aGN4iMl\nqBIUiSQCR2OhVaQqBpacvvg0af4tx3Fy+ASgUBBEjEz8nPg18TVgiX2Byu3loipUAst3G6IhTdu3\n07BhA3UvvGAGQNlYjEwsdlgUiBtrfVCPFRRmUegSeW4xblGKtJ0fWJQO8alxYzs9GDTFSr7MhA+n\nRVQ6VNolxdp5iQYVDUaQUoW14Nm1D3/rxnHfgP2Q/eM3Yd+roRe/DndPg5uM4OYfbeFPF7iYd+UA\nFs4KcducPRSVqgtn0pi7ACi8MIeXArD8CvjZ5tmA6rW58MXBtH+jPTnBIHMXhVjTaQ3j7zobOi1k\nCHDJxOc48ahT+VUG7j1fXYTaxvcA+ENOVkWAxXBfIMQ8fwgi8Oexl1E+Zw8DgaJbYXjtb2iYFKL2\n6Wc4u/Jsen7Wk+1125m6K8ofB0GfvTDnpRCj5s3D9wmMSAEhoEzdNCPWg/Olt6g4bTe7h0P3pTBx\n3UaWt1vONcth7EVT+exOmNspzDLgmZk7GTDOBesBF3x4Blw3qz+TmkNsASb/vpLjJrXnuJ/05rhH\nt8J7KOXLQWFufgQufms41MP4t49l07QQy6aHGO27n1tvfIFr7gjT/4+wKbmJXXOrwAvvHreT4Y/V\ncHcBcCKU5pbS/iAMe2YYY+euxBmNMvpzQwnwY1jsXUzvgt7kOvy0eeU9JnQcQ8nOOuYXzyfUHGb+\n/DjBLfsI5ARo1+gnvx7eHfIWTT5oeyCLr0nBLvIMgpI7aTmn/HolKpJyYQZpsXSMynglvQt6KxiI\nK0DQHSSeiStHJLOoqFYI7q/QeL8dFp5OqnBO2KRvApfi1N1ceCX92vTD16QcUjpHOc1M906kClSY\nkFNcjFZSohpvBoPoqMlVMohgBWdNWI27RZpfJnrJhomQyAEsUY9CVACYAB5HCeRItkxw+sIXEAiK\nKDVK0CbODGz9XLBw/aJGifHagwp4xJn6beeDbTsZex5KCCfXdnwxr3GcmG0fCbJacwjExNE0Y/Xk\nkUAzjYIV+2zHlnZ/co6t/YWdGxAvK1PVNlTW011aivuUk8zAvM2kEJlfnom3rAzfgAGmCpzAqds1\nqvDz2+K//dCDN5QG7eXAFk3T3tE0bYGmaRd+Z6M5Ykfsn1gsFmPixInf+vcsGr2IeTfMY/aYuey4\ncwf59SopOE0Lk533CJfWnspjtzyG2+kmN+Hkg+RH/HFByPSBgkaRBtxZh3pt74taryluW3WyGrfD\nrfjk2QT7m/ebUEmASFOEWDqmRMfs5SEHavL3oxyPC3ZmdhLPi6sJN0e9TmQTJLNJjkm3o9hTbCpQ\nigKvtC3Qm5rJ+VE3VVHa9bGptOgMBMy2K5LM82OpJAvCQpAp4qsEAmmHS8rQpd/ZYqwgLWHbTqpp\nWdv36LbXadv2YPkgCQplupelhR/Lb0o1D9u+LpRfDCSTuGIxkpWVJDZuJGnAI+3mLi0lJxgkHY3i\niUQowGptIG0CWpv9XyZceifgikZxRqO4KitJV1bioaWys4yzdQVOxgEKutm0YweN77xDkw/qT+xE\nXY+21Bc6qD+xE3pJWzKd2uIqKSF1Yjfr2Icj4X0L9gP3jwBomvblyjBfYd+r4A3g9r3qefbdgwB4\n4o5NAIy4I8zo5VBzIMqfbrmFuROmMPPKAHObwvxyHozcDL/cqph+z5SUsPiOT/jvjlcy+e+V6oAf\nw/IpCkr6zHRV7Vr741UMmT+Eqluq+NVmaFi9moqpSkZ/0Z4QiwbD2HFhLrgjTGou/GniUwA8fcst\nAHTZ3I0bTwgz+eFKnp6ynp2n7OT6OXvY31bd1MOeHkaTDxYMGACbYPa9IR68N0RlHpw0rSfD/jaM\niW9shH+oVnVLPriFGW5YeBksem0E9z03m8vnn0tsKFTPDfE/nRYSuDkfZsCidIjV00Jc+GwDP78x\nzGXAO2fDzLlVdN/RBfevzmPdhbDw/cEs+HOIi4BnL10JPaCiYTfFM8Mk7u3CK3Phsmevps0UFCNl\nCsxbHOKh5ycSOm87n7f/LyIP3MTsz0PcNn0bD7dVQdOwPw3j9gRwP7x3f4ixG6dy/bPjOfrJrSy6\n9AHG3bma4JZ9jGnzW4q2FDGq7SgOzg+R7daJqX/vx7W3hUnnwBkFpxOMQl0bh6maJY1IQb2WvnDV\nei3RbC3FnmLKY+UKthGvMPlyLUxW+XYimB+1wi8ynmVGdhqftUXdEUcDHWBPcg/1+aq9ACjIZH69\ncpqxgArmnGeeiru0lEwsRnN5OXnRqKmglU9LSWINFVBI1izHGGYSBemTahfGduJ8UsbnkmW7BOiN\nFbBJbzYJ3ATLL8FOChX8CJRRxiSYenlAywBOsz0LHARjDK37wXUwftY8VDDf2fjuw1XZxAR3r2H1\nYxOZZnmIU7SbjC9texanKgHxoVbnJE7Zzpk4nMl1JypZkhEVzL5g5DNOlVXMf+FvJCoq/skR/2+a\nruvLdF2/ChgIPAFcbDwfsSP2vbNAIMD8+fO/esNv2MbOmMurNa/Rp6EPqanXsLeLmrW2TtuKMwNl\nvu5fCM6kZ5vMSeIznRkV1OU6/FTEK4ilYqYoVywdIz8nH4/j/7F35vFRldf/f99Zk0wmCZkAYRBJ\nBBpRSJWCG27QVtxQ61Lr0oq0FRcQZHEQEGSVERc2F9p+kW8r7iuoBaxSrIBKRA1UiIAJCGOAhCyT\nbdb7++O5Z+4NAmKLit8f5/Wa18zcuctz78w8555zPufzcaf8ZaglRGOi0dSGcaIma8EayuSbhdl6\nIGKbDlhVp+6nvnDspo0jh5xa1e6Q0WQySMcdEM1JQ6/cm9J701wuGlevBozeLqOSI+gOmZ+tVTX5\nXPq0BHavYVbWRJbHDdxOayKOqPFe9t2EGbRZJQoaaa21KugTuRxSIRSTzyQotLYsWM2N8o25KF+X\nCXiiUezRg4MRpMJoDRzF11l1Vg+UP7T2vsu+5LWwYzuN6yJE7u6ePVtVCA9mLUbWVRKXgk4BFQw5\nY8o3tqlRr/stXowzciBhgmMGvK9p2guapl2sadq36sA7uoK3T2FbJ5j7Mxh4zwq8wMtTA61KyPWn\nq+f7BhsLjLvI6Vf6CQ5SoobpoRDlP93CycOCPJgNU26dzwOv96bwHvAc/yL2BPx6FdAGlp66lEQH\nmHIGXAUU7oUz1bzCncvVsx9wzoIFHSFtBqwrrIMH4LbPxlP9Wziz4jz+5HKBDve8AR2Daruec/oy\ntad689wNMOLuILdPDLJkQoBfZ11CeVM5vYK9mHyqi/jw4Zw+Zw7nAyM3wo6+HbivI6xMX4Z3EZw7\nNsh9t4xkeUE13d8uxj0tyIjcIIGLNlAH2L6AT4GbgVsDS7nrjiAnArctX86otCD97obOCzpTMhh6\nrOnBjXWwfOISLh/p5JnrFzJXC/DYngB8ANcMC7K90MZNwOzLpjGvdh4TEkF+swduuQsm3bMCt81N\nixvC06HthzuZfek0Pj1nDWP+sIamdY30eLMHdxYshuvA5/JRFaniC8duXnG/z8ifLufPPh8taerP\n3fjCq3i2quqnCDzaY0n05hbsCZPAJE/LwWfLIZKMKG2aulKqolUqkHN6iSaMiVACMjtmNCLwSaGE\nTKKyinmYEVOI1urWOTBzS5DV1asJpydo9Jhsl7pm9BzsqcNdWEjWgAE4/X6ai4paBSziLNIwKYZt\nqIpYJabgplDlpxmHFyhlkzEUqXolUHfA0okXwSREkb+D0PdDa7iJBC+1tGb3EudlozWJCZgOUqAr\nAoUUjZ4DzTYCfWyDSSAi+8xBBXqHQlHI9ZEA1mNs185yHTRjWQ7mtZZsYiYHt90YUJxIBFcohBPo\nHAoRefFF4p9vo9qnEgmNHnCt+gRXYSGRsjK0RJJGjxncfdf2Y6+8aZr2P5qmrUG1aDpQ02ubQ291\nzI7ZD2O1tbXcfffdP8ixvQ4vJ2aeSNwBGxo/A+Cex8cqTTZbgoZMyN1aR1pLa+KupM3USpXX9VqT\n0ky1qfCh0FNIOB7Gn+anPl6fglOCuU5nV2dT5NODuuGRjF4WJluUOCvJqiVVa0TJvhJq4rXU5ijf\nuLdNgnoDQ+iIK/+t5bdN6YZFKypwGyy/cuNvRZ1Y4YD1mP5J2CVtmEGcVOVcmAFXParyZl1PKm9S\nsRMTshQJCKUPzgqLlPYFLKeevt8+wGSDzsREn4gGm9VcxmUVHbhMQK+oQI9GiYVC2MPhA0I35fhg\nInLkniAfM/aWWxzZvyB94NDt2S1GFTQZDpPZty+url3w9utHIhwmo2Qb2Zv3kt6sZCxqMxMphtN4\ndTXpzSpx8F0QkxzMfsz+0WJFwJ9R3TBbNU27X9O0nxzOhj/80PezLveo52GGFspv7g0SeGQDPSp8\nXPfuYLKmqEzOE2Pzmbg8zPg2Afi96je6c8MGqk6azokAq+HLnj0ZrYplXFFSAgYqoloKlQbLQRPq\nzuLnY/PhXzDlQi8fb26ALfDAL3qjAWvHwLIR17FpHCyqXQQb4BWeBOCGijNYOLoDDESV7a6H8wHn\nzpFwOoy5Yw1foXThes3qRe20II9fsJi5k9azfsB62kWjxObMofe7io1x9vMBdpXs4wpg9R1qnG8/\nFGDdRHh3coBN/lI1uVwCnApXvgtPnaC+zDdR/UiUw/PAr4MD4Wcw5wEY9cx2ev8TSqZshI/g0jci\nxIbGIBvu7BWkaGYQPoJnT5rOTF+QeRMCUAtVE4AzYdDTg+BU6Ps6PF37NGdN7oX3Kzh58WLmtgRY\n+/O1vDQYtgyAP0/ZCL+EqmK4OfNKCj2FlOwr4arPjoNC+GV1NZPCQSZ3DLLkxlwau7ZNab3ZE6qx\nN9w+rZWwNyhnJnh7r9NLoaeQPFeeuczhbZ0yc6FmMQ/K+fhREZIIrrlQfx8/0B46V3VWd/hCG5ml\ncP3v7H2HljT4KrOJ5nSD2cuY4SPl5UTKynAbN/rWChiYzkMzhmI3htAOFaQIpFEkBYQdqw4z69aM\nKTR6jfo6UgxTIgMggVsjZlNyEyaLpTiSNpgMlOIYJSDKxIx5rRAQSc7ajUvpQ8latEFlAcVJ7C+m\njbFdJsrBeDFRrDmYfQo56vIfEBoiJk7SZhyzltbN23XGtRJZBrk+UWPdJIcO7KzmMZJCUnkT4hLr\n71HToXnlStLWrNl/8//a/g+wTeaivt5aVHK3Stf1A6F0jtkx+8EtOzubWbNm/SDH7p92BgDrGj6m\nwFOANkaj++1B/DuTPLjlQabGg+zrmk2NkfqQhGajRyEEJLlpS6qqW5Vei8/tS/W1uW1uosloquoW\njoVTvW8A25Pb1Qu52xclaidq0swDTsZkhdqHYotyQswRI9QSYlnlMnY0f0lzOqTH7Cl4Z9yhxtWc\nDgmnDaffT0bv3tjc7q9pj4nGmzXASrO81zGZjiXZaA3OpD0AVOUN1NzfZNmfFSopQZ+GCW+0olak\nmieVOyE0kfWFCEUsDRPpYsPs1260rH8wFIobcIRCuKuraYtZZZMYOg8zeXooHymSONL3Lj5SzkPY\nMwWUJBOyHo2iR6M48vJSOm7fZNJCID1wB4JLurbv5fWiImpeeOGw9vlt7EfuH9U56HpS1/UVuq7/\nBkWlcROwTtO0VZqmnXWobY+u4E2HhvvhTxN7pBbNeWw0AI8XqJunKRkK8ljZpjK1TvBxtUxuNi82\nflTx6moaroOmzY28BJTnwvA1a3ip5g2GbRgGnwHvKGKJk1+HyvMreflKmFgS5slzHyW4QFXyNmKa\nTALBXtCS1Yzvr3DSjCDbb93OjC4FPNcdPHM8pMWUnvhqDxCCy4FzgZ9uOBOAj4p3UgcsOAN+gcHJ\nUgtzgRHpQe5buJBTnoO+M8A2wMYkX5AdwCh7kLmzbqByToBeT/ei6TrovKwzNwBVhgDmsydNJ3o6\nPPnsaXR55afMffIGhp8Bdz4LNefD45MCoEP9ZadRdgLQHZ66En4+HtgD28/Yxri9Ae70BOF6WA5Q\nD/eNWMSC38HLl8LsqfDcpPXcetMofl6hKGF5A64qhV9N7MGZQcAJA6eeybiuQdrf/iA3pl1Coutx\nkAmn3wtDcocwqyzAhRnn8lriXXJqwVXbQsuytxnR68VUv1tThnJOuqaokMPxMHmuPPr6+lKcXYzL\n5qI4uxhQjirXlmvO5qBmKCeq5ANmeiwN8t/JN6tyXtjeZrtafzupaGhL0xbcNjcra96lOlKt2MLc\n6pyTedlwUhc8ffsSKS/H4fORRMV/EqS1YLJBSgVLQyUzpUplpTOWQC4N0zmJQ2lGMbKuMZZL8CIT\nvUAiwphOrQbT0Qi0wxoTi5yAZBkFu28lM5GJwoHZoN0WlSjoBBynLl+KvLM96u59/6yj9LnFLO+l\nUGrtaZNtRd9GgtjDSezJWOUYkiUVCYdc4LiKCnyWZe0B94svkvmXN8muSaoKaziMs2NHktEoTevW\n0X5THfbX/4Xvyxay124jMiVI5tVXH8aI/v8zXdd/pev6aSjStxxgpaZpR57Z5ZgdsyNgNTU1jB37\nw2hRTRw5k3A8zNnOU8mNZYAPbpoCo/XHmNYhwNj0ADEnrI9+lmKYzNzTQsIOn+pbUzBKgay5bC6i\nySj+dD8ne0/C6/DiT/fjtrnJcmThc/vwp/lx2VQj78A2A80yjvDyS1OXNaDLhRSVchbkJswuKpEY\niJNgj6YIxZoy1KMhU43LHkuaxByRiGL39flIhEIpyn4nZgJQUCo2zLncgwl/FH8pNPpW2ZxHMXvB\n99dCi9E6aQnm7YLDOL4ESW7MQE8CQ0GTSusDxrilWpaBSi7moPx7F9TtRhZmsOjCJPza3+otr9NQ\ntyFVmPp31lYH6auvRQV4DmOfh2oNAFPL7UBi3JGyMmpeeIHGmUHCixcTraig9sUXaVq3DvuGbRSW\nxWhbY6cpwxCID4fRK/fijkDuv/eSVVGHc3cdmXtaDnqMY6ZM07Q8TdOGa5r2ETAaGIr6KkcBTx9q\n26NKKkDs99olRE/eSIe7YHKzHc6Ga/8M3TuW8ExhKZXd4a4d0O/5C5l+eRCyoWw8ON+FB88dz2o7\n9H0ftDt/yy9z32fuo8fRyGIKH4XoHbBx6Eb6Pd+PRWfDIJmvK4CusMl4OzkWIHBRkPAD5o3j6e2O\n5+RamJ0DI2rgL21up/PmzvQPbocVMKyiAu86oLGRQY8OAhbxXs+ewAbeBO6YBcG/vsvO+cN4fug8\nRrwBf70Eui2AYbFhsGcejfMDvDk0SFEL6g79Y2NAxXDVBzDkgyHcOX8BLAY6QcZzUHPtdt4A9JIS\nLl8PFIxn5hyY9FU/Jp8/jd0z1STy2z3Q5nF4dHMLtMDAu4IULYPSTCi+FyUZOAGeGbQQ3kbNGu/A\nDe8DfigYidIX6AmPn6Ju3rs0rGVrAXQtDfJWMfxyoqqIxQPgeBTWOtay6WroXgPDFjdRHalmUPUg\nvO29VDRW0MaXQ2OyiYGxc2m0wbkz5rBuQoBH3vfzTt/PWOpYylWJq6AZim1daU4Hf7ofr8OLAzs+\nWw5ej5dwPIzXqYS3ASJNERptRiO2QD9iqH42mXUdUDmw0izTNBqf+2glWHZB5gWpgNFld/FpbCt5\n9jxcNheZ6Rl4GqFx9WrchYU0rF6tKOg3bEjR7LswHYNAEF201oHLxAxUrPh0MCtJ0sB9Da3/uLJv\ncVT1xnHrME9fHIbowUmWEOOYdca+5Ti0vkwp+OT+5sXMigrVcwamU8lFBY/CBBk1tmk8wL6sts+4\nPk5Uv197zB4/GfdelIP0Yn690gMYsxyvhtaSBwezbxqT1eqWLCENaHjxRbK/xXaHa0cBnOO/Mk3T\nBgLnGI8cVFvvv37QQR2zY3YQy8nJYebMmT/Y8ZfcvST1unJeLT5bDhWeL7EZUYsjDr0dJ9Fsh+NH\nB9k9PUDbvfCS/hIn+gPsSuymo609tqSpwdZJa08MUlU4f7q/VX+4VN+WVi9VTkJYpyQbKDAFa728\nDSlBsH3ufRBRaJc8d16rfW7XduO2uWnjyCG9WfVJ2Xcq3+zIy8ORl0fL5s1EKiqw+XxobjduI4jT\nLYcVmKBU5Jot7+OYhCayTLokfo9JCmbtA7eyLYq0jsD6Nct+hcRLTBiaJZAU2R5JNkpFywqxFBO0\nimwv8gdYLrFoo8q6IplwIJNtnZbXWcb+01CJ41xUQOfw+UhWV+PE6PNzuXBFo8TCYWxeL8loVOnu\nVVeDoT93IMs9wHkdzOJVVaqC53KpBPJB5Hb+W/ux+0jD1qA6YS7Xdd2a3CzRNO2JQ2141J1+5pvq\nOfD61z97/eJSgNTN0srsg8sG1SskAmsvWkXHxYu55xmovQP+MjYA/wudFq1lZIWP5pnw0Nwh7BgK\npEEPgH/CWaOCcJbxB31cMfxl1QMyx/5NPV1UYmbevQbUkz6w6KRF3DgWRm7YwOox8OVJ0xmfFsAz\n8GJ+sr6REc/Any5Rx/vrEPAPnce4lgB/HBqkv7GbB/sDfmh2JNWMsQkW+BeQbAMPDwWaYNjeYcya\nH2AfUPNYQEWfX0H304vZsboBLob2y6AUoAF+VXYdd1wyh+AnAVYCgzYPovhl6Jd9oQKK3wVDPhnC\no5OBq6FuJPA+VB4PnAEtvwX+blReRjpx9z+HZ30+thfDL98GHoK1Z61l6iMBEncAN8DrUwNQBvPy\n5/F01dMsCS1hWeUy+thPYkfzl+QkMsj+qoWIGz669VZqc2DdeZn0TZzEOFeAovSuFNu6Uprcyoq9\nbwGQk1BslZkN4EraaafnkOfK45S0k+id25vi7GK66d3ULLgPMzISukOJyCUSEBC5BzUj7kXNxLmw\nomEFpXWlLK1ZSnljOWXhMjaHN+OxZdCQCVpjC95LLlYCpHl5KRhIOmbFLU1d/hQ9r0AgmzGrUQJj\nFNiFZBFleOKMXkD946XBWyAeAodIx2zc3t8BJC3b1KEm/AaUE5EKnGaMSRKu4uDEuQl05GDZPQno\nmjEzntnGtRBYiR2TN0biZIFuCqAni0P3xlnNWhk8mGUY5ymEMuKwa4A9vXuzff4wEuEw9cuWkZj/\nN+LV1bSUlpJuNHHXL1tG7LJz0D1paG43LS5XCpJ6pO3H3vOGEmj5CLha1/Xuuq7frOv6wh9sNMfs\nmB3CqqurGTdu3A89DACeGPYEy6rfUsGWW5E/RF3qv9yUATWTAjRlQEm73UzxBdA16KS1p7TpM77U\nd+Oyuch3tccZUz26OYkM8rQc8rQcOtrbU+QtotBTSO82vcl356uDNmDi88H0g5JB01BRgTgEcSQx\n2N6yHa/DS2ldKaV16h7N6/DidXhxR1R1xhlTfW+url3QIxGllVpWht0IIPRQKAWJlESh+EArkmL/\n+V2CqWbM5GIU1UQkc7wgUMQfSuJUUBzS0iB+TcdkOBb/Iz5ZWhISxn7SMFshhMxEfO6hpl4hJ5Pb\nEjAbgqXyJucmiJY0zIqjEI1YmTYPZqlr9g1wyEQ4TKKsTEE2KyqUPy4owGEcK7N/f2wndiHhTSOr\nNol3dwvxz7cRC4VoWrcO9tWh5bel4bQukJtNw+rVNK1bp1i4D8Cu+d/aj9w/ip2o6/qU/QI3AHRd\nP2Q26YcfutXagO0CG8l3P0zR9xSMCsIEePjFATw3M8D67jB/agA+gbf/CIRg4JMDKZoG750Lg4G+\nBmHIuDODOB9xcpXR5fpYQQHvtVV0lnf/owSAqfMDBx3O6JCCbJ7a5jQA/t7mMyiAppkBOB4effY0\n7l3xEIV9u8FF8NrJwG6Y9XCA+S/fCnerVHPfT+DUz8YzfWCQrzrAsNsW8qfr4BalTMDvnjOPOXPu\nEOYAJWlQNydA+E6lPV4Y68aM+wqovRpsdTDSKCVEk1FmhIP8rgF63x5UNXoPXHdxKU/e8ii8DW9e\nCLPegb3j4LrZz0AhBGJBmBog/0/dIAmDRi+D04FXYcHZC7hjIfAaXDb9PMiB/GXASYqwhRp4Y8R1\njOpnsGarAAAgAElEQVQ6kgunBZlQUc0/AV6H/Pp8uq3sxuThQaqAB4+HdvcGmft6gJevhgfe6s0z\nD+yjf7v+TNwV5ES9E7Yk7ClIY+KeIBOznqcpA05KdKLRo/qKMpqgNLmVPHce6+vWc0K8PY64Wp7e\nDO32qOcOe+1k1cMJ8fYUZxeT587DE/OYOIm2mCrT1qhGUmdCG5WgNT9/EzS6G3FGnYSaQ7jsLgo9\nhdgTBhNmdhpJm8o4uQoKaCopSflAwZpL8COEJNYAKILyneIABBIhVP/yeYux7DLgNOM0dEyIo7wG\nM1MpmUQwYSKSe5V+ArEGTDplMB0ZfL3SJ8sEhpmOGThKn8HhWBxVVbNh8sl4MR338cZ7qSyKVlwM\nBdUUhxY1lksFUSinxVHnH+Z4Dsv2Kblx7RBMYUe7aZp2oaZpmzVN26Jp2sEnwf/QdF2/Q9f153Rd\n33Wk933MjtmRNp/Px/333/+9H1e7/+t4hvNnnI/X4SWSjOCMGf1idvjpXerGpt/kIBE3dLS3T5F+\nfanv5nRNQSS77FEYA2FtTm9Wz+6IIpTwROzku9rjdXopzi4m32a0DlSjJlqBTkjjlUArfJiBmxM1\nCaeBEycr9q4gHA9TFaliXc06ysKK/CLmVI+I2wLtNGR1QOmQ6ZFIKuiRFnUw/ZdQ91thjmD6uIjx\nLMlMYZuMWdaThKn4NyvkUAK8hOUBpv+zJjxlXJL/FUhl0rIPMNEqUrEDs8q2P4zzUJZipjS2EwSL\nEHnJOGOory+GuqYCJ3VWV2MHWlwubC6XIkXxeknv2TNFFqNVV5Pweg+oLfdtLf75NvV8VGL6Dt++\na/9osTxN0x7UNO3vmqatNB7vHM6GR1Xw9vTgb16n1+Pqedrmb76eNeep5w0G9d2431Zw5qinqRkD\nLIB9GdXMOCXIgvYLeKFfP2xn2xj7ZjG7hsAvI1BQ2kDeVvj40g+5qQ6W/nQpfAJjxwbhbLjnNx8y\nZe4Qpp29BV6Fy6NQeSm8zLvc+oSqeBrKB6k/mlg2cN8p0Dtu46lrYdn086iIfMmyymX0BHYB9w4P\n4v0E+gN7Xg2xdFxnHgV4CfIn5TNrVwCXzcVL90DhJ90U7Ot5eLUA3NMD9HivB0Th4lVw2jVn03Yi\njBnXmb3dgIHwh3uDPHPFnwheDTc9D7VnowT2NpKaHa6InsG6QUATTO7lYv04IAcqfRVMvj3Iq717\nc+/CAF2AKX/xUplZyRZtC7yo5OiGAdMmdONOR5BSwD7w55wCLBiygPEnBHi+/g22a7uJOWGQfxD7\n2uzj9co3Ulox7oia+P3pfvITOUzxB0jYDW2b5iTuiHIKObXKSWVUteANQ2FDDr/IOhd/ml/NelaR\n7v0bsiU1J7OqiKKI9zgOOuudiTlinOg9kWgiitfhZVdiN/aEcqz2WBLN7cbp96dw6cIaKRDG/cWy\nD9R4LMtFr0YchQ0zQHsdVXkTgVAspyDN1NInl7Ts10ZrR9Ri2a6R1kVIaC3ULU5NHKC1iVwkB9KN\nh1TWBKYprJkCWxSGS3l9IEseZPmhbO9+78VpC2kJqOymZHVtQN3gwepalJRwXF0Gba65BldhIRl/\n/C3RW67Adu5pRIDcG24g88ZrcS//ED0aJfOss7D7/UQ4PNHvb2vfZeVN0zQ7MB9VHTsJuE7TtO5H\ncvyapp1p6Ls1apoW0zQtqWla/TdvecyO2fdve/fuZcKECT/0MNCeNIO5eTvm8W7iY3JWbqIyuptf\n6TrOGJwyw+htMya1pE1VuprTITeWQU0bUoLeUvmSAC6zQSGIcmqhs96ePFceea48NSm2Mx5Wbnxx\nBhIh2C3LjQRoLCtG57TO5LnyFIlYRiGFnkLcCTtJmzkOuaFPhMNKW7OwEEdeHno0StzlagX9F/ih\n+AEpAIqJH63H9HfSq51A9bzJPA9mQXH/YM0aeGFZX7jMZB2rpmqDZRvx4VaRb/H9MmaBViZoXT0T\nUrAkZkCWa1lH8suHC1c8lImQ9v7mDIdbBQGSjJV7BbvXi6t3b7z9+hFun5byKU2ZNvYUpFF9Thfs\nxd1Jv/xiGjtl4/hJF3x7k+gaZPTpQzIapct3UHWDH7d/tNhiYDNQCNyHauAqOZwNj6rgrRo4feE5\nfHXNz5i3ZDAE4aYFMK4gwMhhyxl3YhA6Qlr5XiZ4gnQCFpwHSzOXsn2C+tG/D/wloP5gbV6FWPcY\nPV+FHRfApqkw7H54BSAXMhwqpHr52q+P5Wnjn1PeVT1HDqexxbjkxdnFTH0kwGMPBLhpAZAOl94N\n6wtgekOQz/vAtZ+AZ2qApY4kN84H/7YuPN3labafu50vxgWUTlYUpl/sxwaMe7CR1besYvwWmDcY\nXptZyVuOj5nXbR69gPLCLdz0NjAYugPBuj+zsdNGZm+5GnrBzmu+gDsU/r3teJg+0E8dsL33dgL/\ngFmzzyKnDngXFbxVA8VwVzxIn3fgsQ8DTHozyh8m96J5HKz97VrOnNyLuy8q4R/17zJgtIeJc8Is\nmYD6uefDo9PP49EBA9hy+RZoD+nTA4zSgrRfDPMnBzhrWJAZUzZyxYhFVES+JN/VnhlagJIpG1MZ\nw5Y0FZx1aFAwSVcUfCU7VcO206bkBMIt1D77HDV//Rs1Tz1F7I23sb/+L9ruhb55fdXsl4OaEYX6\nSUDtNsxoosk4byfqjlyom5phe3w7A30D8af78bl9eGwZuG1upfW2YRvJaJSWsjKaSkpUz5rXS7Vx\nWCn2acbhpeIlvW3SLyYFP+vwBMkiOHw7cBGKlVR6tKx9arJOOqbzk8BNMpHiwGKY5Cg6JlvlgUxu\nKazaONYAqwVTJFyC1zhmjIxlDC6gGyYUpBaTzrgZVSWzGV+HJD/qLNdJtpP2DEkYZ2KKiouOz+FW\nAI82+47ZJk8Dtuq6XmEwQD6L4lQ6kjYfJdL9Oerr+j3w2BE+xjE7ZkfE8vLymDZt2vd6TNcoF7Nb\n9ktCl8Ol41exyrGKXHJZsWcFd3VZwpPDn2TAzAFM/SrIZHcgJVkSpomEHfIiGXjDZtDWpsaUEXDG\nFHuuN6x8lfurOrJrkrSpgUJXJ1x2l5q8ZeIU5WkrLl5e12H6RYk+mpQmqj/dT8e0jurcbC4i9gTO\nmBqDNckZC4VIhMN4+vZFj0Sweb3kRqOtaOzFR1lh+7Jcgh+RnxH0ivgcDbjNWF+CqwzMwEqmROvN\nr/g1OZaOmfAT4I4gPA6kqybHElKxJkx/KG0Nwl4piBVrMjXTWK8eM3aWqp2MywrRl4BVbmGE9CuG\n0o+TY9pQX1e8qopEOKxkCSIRpeVmsH1+11bRs+d3st8fuX8U8+m6/hcgquv6KkMbtf/hbHhUBW/7\n27RDcaIexN47BAxyf5s+6Ofkv57Ple/DqH+s5C1Hkk2fljLmoeu5/iEYOu4J1Ss2XbFA0gRcr17v\nzoM3Zw9iwcULyAPevANIwjOTAizIWMCQu4L87YT3YRvM/98ACx+AXmvgkZYArw8YwP+eAmNOD3LJ\no1B4SjfeH/wvJTVQqaQMej0MbIC9xw+mA/BTwLYK2KTY/QBW2Fbw0PsBCmfDA5f3Zu7P4bkeULQe\n9rXdB7+Gc198kRIvdHuiB0+2h/XnrSc/kc/4P4YoeBxFAfwmVN94DpRAh6uOY8bzBXAx6g7bA3wA\nt7cN8qdfwAuT1rMF4B1Yf/N6iEAkGWHJg418MNj41X0FW86FVbevYuQFywmuCEAOnDjewLN+Dmkz\ngvz27lz2AFeMBJfdxcxwkHFnBuk39UziDuWIMpqUI7InlBPKrlHTXbS8HK2xhYZ33qHhnXeIVlTg\nCIXQqqvRSkqIVlRA+U46ae1NYRaZEUW4W+7sEyiAezqqNNOEmvkE41gPnR2dqY/XU95YzvkZZ+CO\nQKeWHJXZ7NiRZDhMzmWXKRFSv59kOIwPU0zTqhuTxMyqSTuBEHEIJFAgHYJplwAMYJn6SlI9dS2W\n9SXbqGFWwcBkn8T4SiUzKDwtTZb3dZZLhGWs34XtX3lzYjJr7cGMqRMoGb5dqHOTapr0zgnDlzhF\nP6bzE/mAOlSgtw+zEtq0cKG6L/F68TRCQ5YN7ZTuRNyGwKwL0vv1AyC5eRt2n4+mdetIhMO4QiFs\nxph+ZNYRMy4G2GksO6Km6/oWwK7rekLX9SdRmcxjdsyOOtuzZw8TJ078Xo85uGAwIzzB1gt/As6r\nr05Nvm8+ArnOXMY/OpaBW46DS2FSmyANmcon5kUycEdUewEon+lpVAGTI66WO+taiG7dRsM/3iYW\nClG/bBktZWW4m5OkN6MCLmuEJJTF4rTEGUjpSNoLhB3KBs6kaiko8hbhT/dTFi7DnbCnkDG2pBpL\nwhDpTisqomndOiIbNpAMh1MapxJ8CbzRKrQtryVZKcLYVn8p/vUxTMSI+C+JP6V3ThKYkru1tiyA\n6X+tPc1SVWuwvBft8u/LpL2hFpOMS5A0iYKCVKXPZSzXXC7s0SjtolGVAI1GUzqtCSBhsEHavF70\nggI0Az2U8PmIbdiAt18/0k8/De9uxUvQkKmgvBG3+o1F3KCFlAac1mgwTH6pcDAOn4+MPn1wGkzo\nPxL7XvyjYZIjqNQ07VJN03pxmHqoR1XwdiWq8nbb7Q/yTlYzW2cP4p9DYMYXQaKXwsCygQypGMKw\ncxdCbzgxbmPIJhinBzj17ly2AROGBvnDX+DfQNkVMLk+wPQr4PjnFdHDs/fA4PlANtx16hLmz6zE\n1tvGLrsiUuT38HF3JQ7w/PFw/WgPTIMxW2H8rgDUgH7ZZbQDho5YxK6uMGA+XPwJzH8zQG0OlP8B\n/Ib006wHVGMxYHDuw8hzlh/8IhiA75KRB/748X+NoYIn+RnACGiY/gg99vXg7stKuHMB3LzPQ2Uv\nmPXKWeROzyUP6D0XVk1Ywc2VwCcQcN/EzEceI/hYT4a9NQzOh2m3ByEMX326kwd/XQ8ReKM7zEoE\nKLsHsMMtY6HLAij+AiKDgS0wMyfA5Zm/5OePwwcTArTb56FuJKwD8oP5TJvhI1j3Z2gPl2+BHvEe\njGsboAPQM7snsyf2oFd2LxY5FkEExv47gD/Nz6f6VuqzFMzDKhcQKS/HnpeH3esltmsX7qIiQMHx\nM1BqAFmANxSiefFi0oJ/Q5+io1+uKxXzBtTduwighGlN1yiUiSHUHb4xM3sdXjbUbaAsXEbEbWL5\n3RFU8FheTiwUwun3EwuFcBUUEMMU3hatMw+ts3pWpiyBgkiwBmbmUNArMWAA0NcYehombbFg4psx\n4R5Cnyy9X2DCNusxRVA1TAcZx4xrpadAnKKMJ43WOnGSCZXGb+kpkJhZZPWkv02WZ2NqwGK8Fm4q\nKXYLNPRwLP2bV/ma2Yzg7NtYU8lhIRv+Y/uOCUu+C46V/a1R0zQ38KmmaQ9omjaSAxOWHrNj9oNb\n27ZtmTp16vd6zCeGPYF+d+u/4vjaAHVndmHeRLil4I8Ep59Hz+yevFD5MmtPbmFQySCur7meHc1f\n8mVabSqpKQGcVNpABXci6h2tqCBeVUVTSQlJg5Rp3+LFeN7bxJK7l6AHdfRhOpRjRgLiPMB0TqAm\n2QZAU/1uRMHn8uFz+3gt9BoeWwZF3iLcEVLyBUmbQs0k87Kxud048vJIO/HEVPAj/iOL1kyP0jcm\nfd0SY9pozZ0iSBDxPbdjBoKi6wZmgCaIE4EzYtm/xKWyTPrW5SH6qaIjmrQsl+l2/2lX5IGs9Qjx\n+ZK0daJQq04UYkeSsNmYga1U2gRK+U0MygC60ZstidzYwVf9mv0nQWnse6ro/cj9o9h0TdNyUNIA\no4G/AHcdzoZHVfB2UOvwzav8N5Zc/Z902Bzacl/NpeKMbbgnBIiU2hhcA4nJEPZC4wT4JTDos0Es\nvgOGr7iS8uO2wBRYci0MGRVUk0cE7np/GpmL4dI90HAe3HbRLC7lZibOD0AV3BuN8syUjZRMhOQQ\naJraSP77MO6MdQxv/0eqAAqAf8PQq/rCAPjJ5CDJcdtJhMPMy5gHx4HjNeAjGFQ9CJ/LBxWKXGpM\nxyDLgcd3jSE3mcu/h8BDfwvg/gTmv3ArXccFKYl/Rm55Lu2nBXngwaG8Bly/HIa/ks3Z1dUMn93A\n8/2BBapKN8MeZOVjo8lyZOGyu3Db3HSr7Ea3aDder3yDQk8hP9W6pvrdHHHwVas/ms3tJlFVRTIS\nIVpRQcPKlSQNWv50TPanjigQseZypb4Tz1cehS6uRQVogisQxeokSvRPUmky8wPlTeV4HV4KPAXY\nkgaLV62B5y8qwun301JWhs3rJWvAAGIG7bENkwa4DpPFSjJ+EcvhYpblkkV0WB6ybAXwHioQlD+w\n9KEJoaYEXVZnEcVkuBLBUfm8BlXxakH55WbL9hLQCRZeYCWCrBFHCmaTt1T+pLG7CAUddaJgkUID\nnY7JALkHM2iUbGiD8XXVopyYF9PhSa+eVNLk+onjsxvHssJP6zF78UWwPGPlSpzhMOGXXsXTqKC6\noG58XFGVkWwsKSEWCmHPysJVWEjebbfhuOwyIl4vcctv7EhZnMR//Pji83JWvf5u6nEA24VZwMd4\nfaQ12H6H+hoMXlyOA646wsc4ZsfsiFhlZSWTJk36wY6vPayh/UvDG4ZJ7YIMuw/W132s+tFQPd+7\nWnYpX2nrxPHpnchP5JCwKx+ZsKtH3AHOSJKkTSUXHXFIVFWlCEL0aBSqq3FEo7hCIZqWLGGmpnIq\nmWMycUadyvGHMfB2mGxZcpu0j5TjUMyW+bhtbsKxMMXZxVRGlUyAK6rmTxEQBzVGp0FJ31xaiq2g\nAIzKj1S0JCCShGUUs8omiU3rHZvVj2F8Ph8z0LHCKaE1NNLa6ybLrK0BkkwV2GMTZnBXT2sdVut4\nrKLh1v52a5ITzMRmFsq3uVC8atmYfl98sLXKFjG2lRy0JD+jBkukwCiRfRQVUW+smw5ECwqwYZR4\nqqtxG2Ql8epqHKGQIk8Lh3ED9cuWEd26TaGdXnmb3H2tq6nOmIJiJuxgc7mwdT4O3d+WaE4a7v7n\npH57R9p+5P5R7C1d12t1Xd+g6/r5uq730nV9yTdvdpTpvL0AnPn+NF4EXnnoGbbaoevdMD4tQJvR\n82nsuxTny05qH4bZwJPjOnGZ/zJuGhpkMHDa3bnseO9E1v9hDT1Q9+GT8oPwD0j8AqY8EmDgXUH4\nDbAXHl83hq7M4v7zoKPEug44d+uZbPpNKTMberF70np6XtGNFWdvYTFBgkBLURkbgbXAmsGD6XDu\nCr5q2sn/FK/kz7/5kM+BfVn7CBfv42OCnA6c0y5AlCAT7woy8TrgU9h+8SI6vwOv9g9y5nHncYXr\nDIoJkv8qSt+tN3Qug3VF8CGQ+Q7gVn/stis2gR/KgJ6vwuRtAXaMClL6CBRPgdjtMT6Zv4MrgR2X\nKWHna1nNRd3hktGAHoSnoeos9Yfu9AksuByGVC3i/r5F3DwN/gGwGe58Dug+i9HvjeaciicZ+bO/\nwE0wdM4TcD1k9HiHrAe8XDsS/jQjyO/eB9rBPe+Wwf/ArMRdfO4G+gXp824frtKvZEvjVtbVrKPQ\nU6iqWckIF7a/EK/TS1W0iraR9sSc8CbvM8CtdB/Sd9UR73IczroWtHCYjN69sXu9aCtX4sSsQmVh\nBjW9Kip4RtPY4nIxctZdTP0yqGbdQlorUNtQTgnMKMcSvRRmFOJP91OcXUx1vJaOek4qs2nr2oXI\nZ5vQIxHsXi+Rigoyevemcc2a1GQtk74bFaxY40M5jDULKcHH/uyPDuBSlMNowmRfFJ04oTAWKIlA\nISWAkQZvKTQ6MGGd4sjEX4uTsfboSXVOHKI0OMv4MD53GvsQfbY4ijlSeuME7/9tMnsi2n049hWq\nGns4JmNIPwxsfvXChWRfdlnKIbnDYVq+g+Dtv7Hjf3I8x//k+NT7tW+u3X+VEqCbpmkFqBrztcB1\nR3IMuq5XGC+bUY3Yx+yYHbWWn5/PlClT/qNtfzblZ3w08aP/+NhzNI1ek3uxnvWMPTvI2I0B/p3+\nGZFkhFBL6ypGOBYmYo+QT3tAwbq9BkmgVNzq2thSYt5RFzgNsopYKJTqHIj6/cS9XrLKyohPCnB/\nYSH33D6UD/TPWFq5VO1ISEtsmE5KmrIAEuC2maD6Pm364HP7CMfDRJIR6rMyyGxQCU4ALZHEHbEp\n6KTbTUbv3tQtWUKyuhrd5SLpduMMh1OwSel5E78IrYM2yb0aQ0nBKe2onjch2JL+MPFf+1fsxBeJ\n77WyXEqSUFoSwESptGAmWJOYnRZy6aSn3IpIsRYw9f2Wy32LnOOh+uv2Nyvq9ZtMyMkOpx1C2isO\nx+T3l9y+EwqPI60pScx99NWHjgb/aLGNmqbtQRHTvwu8p+t63eFsePRdWYud8C3W7Xow0alD2G2X\nzvr2G32DLQcG3A+bJsDouUNYk/UYp98N180Mkv4e9HvkQkIdode6XuwFFvWHsp49+fTqEibfNp8P\ngZYrgBPBZrPx7yLoswPuWAb331YEp0LbRZD8WXf6fXEh3WfDtN/7mHRbkD7ATc+epv6ZDlg4+xl6\nvgMvX301bwGvAnPuv4CqB4FRsOssyHsf7p09CN6DIRG46smrWPa7fNzAjdPggwdgx7XATsgKLGDf\nC9VM2FTNkgKY7oZ/ngtNaxup/H0ldIdbFsPkc13wHMz6U4BTTziNmBMm7AvCM6q3rSZeS3lTOdXR\natY2rmWfcx/+ND9ep5dQcwi3zc2naV8SM2auuAPqsxTkwhFXWR4tvy2xUIjGlSvJQmWr0jCbmJsw\ntV+2PBTAkZdHTi0MKxim0lTb1TmlGqmqULOpOCcHSuc+Ad3SulGcXUyhpxAHdto4cnDEFe7bHkui\nJZJoLleqETsZDtO4Zg3pxu4aMUWkw5ji2RJ4CUsWkApCpaol8EpxYDZgKaryJlDEDEwGLHEMgosX\nxyBIGLtxbcRBiHMTJykZxVrMvjKBjSQs4xVSlANlf8SB5RzgMwlz5HpEjMtsoHCoM44r32UaKiMp\nPfQiRioONcdYVo/6DURQYHWBkH6BqcdjM9bNNfbpQ/0UnKhYPlpRgd6sADP1WSpjvC8XOLU72b+6\n4gBn891ZJBk5Yo/9Tdf1OKoithz4DHhO1/VN3+sJHrNjdhRZKBRi8uTJP8ix3w4O5MTME3loZYBu\nK7qxo/lLXDYXoeYQ4ViY8sZyIskIxdnFgAqY/h3+jLgDNrdsJeJWiJ6IW/mkuEPNXXEHOPbUUb9s\nmaqoRKMk/X4aUW0FjrIypV02OYjd68URh5O9J3GV/ypym3LNJmEpMdVjRiQGDGOfXWU8CzwF+Nwq\nXZbvak9eJEMxQkeM6p8dWjJsRLcqKnlpM0grKsJZVISrsBC715vyMZBSIgDMOV/yrPtzqUivtwRm\njxqfCSzSCmcUNmcrgRfGaTVbXgsRitVXgpmIlfWtfXGyX2t/+YGCJKmKWXHk1uSp3LtIb1vE2Jfc\nT4icTo6x/yzMpKy0PSQx5QkiZWWp/cu9ShKToTmOYp4kHE7pz3qjUaIul9I4Xb6cZDiM3eulKg++\nymwiFFcs4ZX5EDnxOBr3p1SX8/qOKm//F/yjrutdUYFhKSovX6pp2ieHs+1RHbx9AUxpF2C6I8jw\ngqHwATz+cIxpj42m7fDhvD9jO1XrGyl6H8J2RdIxZtUaPhgzBtdc6Pw8cC5c/+n1TJwXoMtdQTzv\nAPPg1E9Pg2r1w79nFtAXdjwCF82+gu5VOfA/sHrSejI3QXnnLfz62dOwAUOAe+4po+di+DXQ9adt\n+ap+J6yCjy/48LDPbf3l6wGQbptwbiNNtY1cA5z57GmUXAf3n3oy/xw+HNpDB/9xtC0rI5IBnAyJ\npW/z59HL+GAETHi3mrUZikL+4w0fwi6IFcD0x0YT6w8jrnqRCcDt/wtL7lnB8fs81Llg5vxhOJ93\nsihzEVwOp75yGi81vkQ0GaVNDLgRTr8Pjl8A2GHi1LCaDerhF8AZwHnAsPJhnLnyPKUT95EBzRgO\nd90b5OOSDxl3VZDOts4wEUrrStkc3syGug24bK5UtNG/XX8W7Vykso3NIaqiVWzXdlOcXUx9RoJG\nd0IFcDaIdMiGfXW0lCktGcmW7R0zBg01IdkwhbE7jQoSr6rCngCPLYNeOb1UlU2iE6F5qsKMsAQy\nmYTqaDW7WnYRSUaojKr+RXtCMRVF0m0ko1HsWVnYjQxnWlERHtSEKj1eYBb53KjJdS8mlr3Fsp4V\nciG4d7EEim3yHMx2BOmrE1ijQD+imIgXgUs2YQZzkuWz4vbrUfFsNSoI2okKcKz6N1jGJJAQK/Wx\nC7OSGMPE+4MJWxQtNtlXhjFOD60D8CSq0pzO18lNhG2z1ng+FLOkKNhYnezBLLpfIS2tKUl06zbi\n1dVkoW484lVVNJeWkigoOCgN839j0WT0iD0OZLqu/13X9SJd17vquv79C1wds2N2FFmHDh3+Y9jk\nf1N1A1hy9xJ2teziidjLhFqU7wu1hChvKgcgHA+zvnY9CysWUt5UTqg5RH28noQditK7EnLWsiux\nO3Xz7IgrP5neDEkjmYhBrkQoRNvhw9mHCdUH0NxusuoNSQGbmyJvEfnkm45DMP8JcEacKRxhZ60z\n4XiYcDxMqDmUmm/iDoVKkQRs1AWu2hbsWVlobjd2r5eWsjI1h5aVES0vJxEOg8+nCL+McVXTGtpo\nrVQJIYlVIkCCrWGYEH4rrFIQJ3LuVu1TeS3wTanOiT+VQDCMulWoQfkgIfgS/yh+XPyiBKRS3ZP2\nDo9l7DJO8Zc2TOikMCuLCZQSzIDNiuSxmhCrOHzfjEM5LIKy85XmcZauvLctqVpaQAXqzaWl6l4r\n3EIk3YYjDk29u5BeXPyNx/+29n/BP2qadhyKwuAcFO3Gv4HnDrmRYUdV8HYtBqVLz578atR1dF1t\nfjZwqGJl+sMzh7+/p3797cfw8pRX1YtrYG7PnvAlfNUJPo5+yMQZ8NStt0ISHtsQoP0umHpJEOGU\nFFIAACAASURBVNbCQy0BZs8OMH4N9Ir24gPgw3YfM3bR7Tz+gIKE4oAv9m3CvweWnAK9v4TOD8Ht\nGzaoY25pPRb3hpHUPPUUNMGQ4p38YRK4X4f7+8Dd00vo+qZB7vCKCgROAILT4d6lAVYDD3Z5UO0o\nDtOBJTdB2jT4+Z/7k/0ajB46j9iFMeiq9vHx5x/CDbD2l2vhHagqgPL7SPHsfjkCuBr4BC6afh5+\nQHse5vnmcUntGbxZDOTCfV/ABXMuwCGeQWLa9xS0Yk31GmK2GI3OxlT5pnhbGmNPCBBqDrE5vJki\nryIiCcfDLKtcRqhZwUeaMlR5PhYKpWAgBuEVbWbNSk2COmoSFgIPLRrFvnMvObVwoe+XdMvohqfR\nA5WoZivJMIoS1V5SM5/L5iIcD6f03XJqFeOS9ORp6WlEy8tJKypCc7kIr1xJxOcjgtkeILh4K+ww\nDbPFztozJplFOyZ23W5ZtgJVX7c6IgmeBPFpZc+y9ghYg7UWy/ZCrS9BjvTlVWKKgUtAJVVAgai4\nUNh5N62rcmmYPYjpmA7JZhxzf2dxIDUOqewJhAVjDEIAY+2Fa0I51FxjDNX9+lEP7PT5UlICUt3z\nYCKBqvr1ownVi7GnIA13BELx3V8bS6KqSj0fATHT/59M0zS7pmnfhRzeMTtmR8R27dp1RAhLtKc0\ntKfMW+gO93RAe+nweHpudV7JyE5D8af7CTWH8Kf5UwEcWRBzxAjHwrhsLvJceTyz81mqk7VEkhGi\niShVei22pAqUPI2mrprN6031AzuApjlz8EwNtBKtBkjW1pFVD0V0oq+vL0XeIrq5upGv55ObzE09\nYrpy7B6bB5fNhT/Nr3reDLhknERKXDzqgkaPuslvyU1Dy29LS2kpiXCYtKIi7Hl5OHv2xGGQkCWj\nUWKhEOm0Dtok8QmtyUkEViiwRln2KK0reLKNVO+sbQLim636pVYJWOm5k15wYYSWwA1aa5dKkCaw\nSKmAiX+MWpbLOjJOCcLEJ8o5H8rjyDqO/ZZJUjcJJA2xblDJdaffj+Oss8i5+mrcZ52FVlCQCvCi\nLleKjKVdNIq3Xz88vXuTCIdp9Jg9llbI7EGIP47ZN9sOYDiKRPxMXdcvPtxg8UdzyZcaEgAPLxrA\ngxc+yB2j5rAFuHPhQjJ+4uGJqQHWj4G1Trh01izwQxVPsq8TPH3j00y/McjvPgCKIegK8JvpzZAD\n3WfBa2PgvLLzqMAQP9ZgR3eov+Xibz/QnbB++HoG7YGPwx/Sa0Mv/vqn87hlB7AMttu3gxsuexxm\nd4K562/A+0+Yx5PMXq0m1BG/+ZBdQJKbv7b7x94LUDLrKub+9QZ+teI6GoDPJ8B6YNTEHgSeA9/w\nIOc3QOkA1ev2+G/hjVK4rAbm77yVpScvJbgxQOe34aH7+/H5+RC6E8IT4ZNusPcM4CPIC8LL/fpB\nT3j1F9BnbD5PtYVxlQEG/Hk73eeiCr2b4Vd3BzkFGJcToOkEWNG0gpATZuYGWH6Dcd5psLBiIf3a\n9lMlKREjs8MdfecwsyLIlsYt+NP9zNsxj5J9JYRjYfzpfjY3bKY2M0Ftjgrg7MXdcRcUpPrIwJwM\n01GZMYE3pPTUIhEymlTVrH+7/hRnF5Nvy1cZxmYjo+gGItDD2YPcZC5nZp9JnzZ96NOmDwDVkWrK\nM2tJ2BW0riFTTWZ2n49kOEy0ooL0nj3R3G4aUBOo6I3J+MB0KH7jvYzRqrsmjsmJyTSVRPGtn41l\nYsYk4XBgVqSkkiZMWHJMK6uk9M5FUYGQZB5ljBkoVKmwawm8MmF8Jm0REqxlYWqiW/vTZKKRaptk\nSd0oByjvpYom1bpaVAApDlWYvoSkRL7nQ94eVavUoFTmDsReKcsyjJXCsTDLqt/CESdV4fX07Yve\nr5+i237xRdyFhWQYTu1I23cJm/w+TNO0ZzRNy9I0zQNsADZpmnb3DzKYY3bMvsE6duz4jVIB2hiN\nW+fdetDPz5p2FrkbctFvVLP8g9PGqg8+PvSxxzw+hlW3r8IZg1p7E0tCSwjHw1Q0VdDoaKTR0whh\n8CQ9RJIRysJlqtLVEiLUrB4CWZTqW9RlsDsakDWb10ubwYNN3bB7gyl4nMPnU3TyXm+KvRKg0FOY\nevjT/HgdXrwOLx67h3xXPoUZhbhtbtVSYAhz57nyCMfD7E1rUsgUC528M6baDESc25GXhx6J4PQr\nL6i5XCSNXnaZq0X/TCD2UlmT5CGYAY+VkflWzGqX+E0JAsUfOvfbp1VKQKp6sp01ISr+VchGhCBs\nf9q7DEwyLo/xWki6oDXJCpg+TO5ZpPVBWiwaUTDJJFDt9aZQMmHje4xi+mdJaEcLCtBdLvB60Q9Q\nfWtYuVJdQwM94igo+No6YtLn7Q1DTbyWqkgVlXblsVPyFH1OIb24mNiuXTjrFL7FGYNEff1B9/uf\n2o/ZP1rsVOBvKOjkGk3T/qpp2h8OZ8OjirAkA/gn8PLVTvq37Qh5MLFXkHh/2EiQ2fs8quzQwIEb\najBJCuZdrf4AuYeJVF0yfhXZU2BuNEDpvxtw3norbYcFmebz0eHhasiHjEs9DMx9gg5PQIIg820B\nsmYEqQNuIsiQwYO51xfgLzsW81X+wclprrtrMM9cu5ARY4GRi+lQeRwjXruZ7s5iugI3bQQWQY+M\nHmwcs5GnvVA5YAAjlveB89XMeuf8xfy7jTrf/H/AzU/cwUbPo2BX/TvrM6F4BnA9OOc6YWiM27Z0\noMNXT8AVUJcNPVb1wF1UxCu/OI1AtyCzfg1jZsN9Dz5M1biR5I2HUXetpOkUyJgC2Cq58XXgy6Cq\nwBkzywVpF7CcFfwE8AwNknEX0A8mtx3CghOC6qfZDlgDTz4c48bxK1Twthc6uzoTbgjjWu+i0l2J\nM+5kVd0qyICqlir8cdNpeJvtRF2Q1gLJzdtSlLS1qL4pCeRaMCf9CGpic/r9xKuqcOflkZ6Zhi8z\nhyJvES6biw11G/DYPDTSCBHlJEOJED2ze+K2uSmtK8Vlc6UyTS6bK5Vpymwwmsa7diGKIr3Qo1Fs\nXi9NVVWkRaPUGj/XRlSVSCZYDZPQSxqjrbBHqYoJc6NUFZcZ7y81zlOCF9E9y0EFNlKtk31Ze+ys\nbI/ilMKYQaNkCBuM19J7Bia1sYiJWrOYurGuQCCF1MSJWRX0GK8FbNiAKcHXwbhOB6IzlgyxBIIC\nVZFWRVA/s02ooDhhENmIeLewddUY1ygNaPH5sK9cyReAvawM18+6pzLWVnN27Ei0vDz1/lBO7khY\nNHFgOMePyE7Sdb1e07QbgL8DY1E5pgd+2GEds2P2dduxYwfTpk3j6aefPug6zuSh6SPW7lsLPzHf\nj9GDEFE6bYey0rpSOs/qzLDpM5muaewbCfd2DvDX3c9y59oTaLzkNCa2C9JYrsKGUEuIcDysWKEN\niyajVEWqiDgjdHK2V9IBiaSatyoq0H0+GhYuBL+fuMGELEzMNq8Xm9tNvLoa/G2xJcETsYM7j2gi\nitvmxutQRGLRRDQVKLpt7hQbpsvuoiqikAnhWBif25eSCYg7FBwzYQfcNhzt2hL/cidOv5+M3r2J\nhUKpqo/T7ydRUtJK/kZItayEXlItE39mJexwAwuA8ZhJOSujs4fWVTQwq3LSMyYmVTBp9bP220lA\n58YkDQOzNULaCKwkJGCiU2R/4vetVcQ4Cs1iZXoWuGQzqj/Ni0LuyDHBDABT9wVudyo41qNR8HrV\ndczLSwXKsVBIfffV1ehuN2lFRUQ2bCD9rLOora7GHg7j9PvJLC4ma3eSlgxbKxynCMY7I4qgJGLx\nk9+l/R/wkei6/qmmaV8AW4FzgRuB81GSAYe0o7Ly9q9Jqh+s1b9of/s7nPtXOLMFynIbOeHeIG2A\nFwsK6DRLEUqO2HszvAAzTi+AtXDrvaMgAwI1QZIbNjBw3UDIgqtHOslebOy3/PAYQX/9NrSdoSj9\nh+2Bt4ALFy7k98ODbC3eid4O6Ahl4TIG3LKK+TNuJXEfTPMGeObyhQCMO05VE/M/83Pro6PI/8zP\nqcDDowbQ+CDc5LwEbHANMHLGclaNWMHtvYPcO+YlAE6eDflBmPlhANe5cRgNj5UEuPw96PUGcD2w\nHGIFMUb97A88Pvorrnobpl8IM7QgL0zZyNDfP8En2/bCqTDmbSAdtD1jyfsK6qYD7SFjBXAW0ANm\nfWyIoDtgvCuA5z4PK2wrGPkFnAiMvw9mtg3AMph45wI4Cbb9FgjDfRPhxn/y/9g79/Coymv/f/Zc\nc5skkCBxApIIMYoQlcYLoEWworVHtJV6gdMWOK1XVARkkKugICMXsQiC9QC19dIWqoV6AasUK4Ka\nogVEY8AkAmOA3IdJMtf9+2Ptd+8drNrzaz2lPaznmWeSmXdfZs+ed71rre/6finRSnjpLhjjH0Nt\nRi2N2Y3UuevACfHsOO6EG3erm4ZYA5sbNhPqCFGcWczrHTvodlQyPG0VFUIO4vPhQapDDjmMGYzY\ntVf0aNTUO/FG5aEcT54nj+KMYkACNxANuppIDdFUlKLMIgAOdRziUMchQu0hmhLNpv6cokF2Fxbi\nOv9ckuEwiYYG3AZ2PxeZqBWcT005qnEaLGiGyrrZqX4VaxaIU/gOovWm4BuKpSoLy1Fk2LZRlTxF\ngKIYr5TDUyLhGhKYdWDBKNVPUDlK5bCg8+ShnKyqACo9O6Xn5qAzlDIHy3GqymkP41lJ74WxnJBi\n7VLMmAksiuWwcd5qiXSqbT/H2/G9bmkNDebfuSNG4P2shdZs+EayD1dnX07CBZGLz+JQSRrRi84i\no7yc7CuvJL2szMwg/y0slf8HzaVpmhu4Ftio67q9r/+knbQTynr27MmMGTO+dEx8eJxVZ6z64gF+\nOlPcGqvxOwp/AoA2S0Nb8HmMwKapm6jVagGYMQUoBO/cJwknwkw6dwuzDgUpOFBAJpnUtNXgc/nw\nODzEUjGqI9V4HV621W8zgyklZQPi99JKS3Hl5+Po359EfT2O0lKB8Pl8Zv+Z0wiekk6jQpYET8qq\nDUVTUaH/d3pMv5nvyac+Vm+O8bl91Efr8bl9hBNhIqk2U8og6pUgrj1dIHbO/HwSDQ2S6PR6ScVi\n4jfr602UiBLethOGKGSKaglQAY/Ktyl/Nh4r4am+CkXgpZK89sDNjopR64e47Vn5QTsqRQWUxy9T\nVd+avToIFkpFkZEpsjFVmXPZXuuCyTtn7hPbuScR9Inm8RDxeEQ2x+PhGOIvzb6+ykqBoxrXNiMc\nxh0Om2iSTmYLoEH6JUHuE2UKOlmQzOXMtD7ka7nUFcDugmaOFDho6gL62b2JntebWG6aVIJf/hPe\n4uLPH++koWlaBUJc/z2EHOUSXddP+/KtxE6o4C0nCncAj/XvjzfphA9g2t4A8xYH+BiY8cR4Jr60\niV7P9QJgxV4JJJ6ZJ8+3z/qfMcLdEtjIE7fApiVxGkcDA+Dx0bu5bN1y/vvSnUyYDXc3NMDp8PFw\n+LRrhF5H4dDo0RS8WvCF+71q3hC0x+DTq6BpUYSapWOIbNvGyrvvZoYeBBe8fwXcPT4Ib8LDN3Ym\nOpk4eBPrgO/PDJLKBPfTwD6YeeM7vDYS3pwWoN8j/WTwaTD1m0GiqShz0j3cfk4QjsFPvwO8DeTB\nprtg8bYnufrF70M6LJtawNXHrpY+vO1wTp9usAoyXxYdtMTCe5j3DT85T8MHFwKvw6vfArrBvacH\n+eNtwFUwr29QGLCaYdHp0GcX0AFTM4IwCgpXA7th6WN3QquxON8HE8JXcdVaWNuwlgHJARYm0MDf\nxdPjxB1xijKKmFYUwOPw4MJJtiubgwVJPjilmdwbbyBv3DjS+/fHNWKEqXWiMlWNWPJt7T4fbr9f\n9GWMbKOqnBWmFeJPl8mqq6MrPpdMVDURcZLKUQGc6TuT4sxi+rn6UJDMJUybuZ+oF5K+NNp/9xKu\nvDwcHg+pmhqSSGVQBS+Kgl8FR6qPS7lJlWWzC4KqCpmqKv4BqVDnYDU9q8BMwRIVzbB9taxYqNR7\n9qZtVRlTrI8xpHqnet9UiOPEckyq+uYClmavMKuGirBEMUYqU45MwXVUgKrGKzhKlvG3khtQskMq\n8LKTWinHqZy4F0uewAP0Rq59NZa+XdTnM6E4iq0rDWjNdZA4pXPn3V/D8qsKnFbQ7fNv/oPsXx02\niSS/a5Cv8w2DdvlvokA+aSftf9tqa2t56KEvbzXRr9DRr/ji/IM+Wce9w412nwRoAxMDGdh1IO3u\nJPc+fi8DXAMYEBsAwIoJEzpv+6DOFQuukH/qYcbYBhrPaAQNeqX3oi5WRyQVIe6JU5uopaathv45\n/fGn+/Gn+ynvWs4z0Wfo1uRk/oElxN0yn7UX5uD2+0kvK8OVn4/b7ydWXY1eVERGeTnp/fvjMBbn\nWkE3NF3mPN2IMX1uQb1ku7JNfxhOyKK+NdEq/XfefMLxMA3RBvzpfvK1XAqd3clNZqDpUnVTJCpZ\nRzrQIh1o6WnEDx0iFQ6bkE09FpNgLi/PVCVQVTal6qNMITrAgkaqvmoH0vMWwwrSlM6bgv6r4CZF\nZ/ji8VU3sBAequpHXh66x0PC4+mknNBGZ51SO6xT9eGr81NBmjKVEFUoFZWItreCgFXVU4gSzevF\nU1xMyu/HaVTVwAp8McaAVN50DP8ZDpOKxeiorCTR0ECawfjpMKSOXEVFJMNhkgapTGTbNlLhMI19\ncqSCipW0tptKGniMDPXX2Qv3L+4flV2l63o/Xddv1nX9l7qu1/6tG55QwdtX2bRzhbTk4/ny+W7v\nG6QuDQqmB3lm4XWMaC/h1poaGANPA489EqB4WAkbp/VixRsBVg5dzPYMWNY4jnu/4BhjZ8ly+iUj\noPIdgaXXruGMILwGkA13rXmaDxbUoSPowaW3j+S6rRAqLaXoF8aOjmNf6BhzFWc9+iiHA1D9HTh3\nk/TrPPiTPFYuvI6VZYvZ0u8Vfm6DY3UBHIZg1bob4BvAZS9Aw6JH2Dl3DxgJ/2Wrx7HWsZbZL8c4\nfBPQH24H4U6/Eq5oAb4DGy/5DW8MgvkL6hgf2MivZ/XjobtgajjITz8bzWnDesN34IGhQfYN+i4P\njYaN8wPM6Rbg8slIAx1w6S+AImi4DLYXbIeBMPlp2FeGzBjpUHUubBsHT10DywYtg+tgNIAH7nA/\nKivpDNjp22lhDjxIpOOFgTkD8af7eTr0HBVNFTx78Dl2texi0SeLyHPkEvaBIzeH9LIyob4FWv1+\n6hEcuCLmaPP5cHg8ZA0bZl5XpTvjwmlCQHxuH+Vdysn35FOWU4bP5aPyWCUVTRXsbtktLGDRevI9\n+TS624i7oaQuA//BFFmtKfQd7xN9/U84fD7CW7YQ372blC1jpYhVVOVN9bepCqGdyVHBKuwOSzko\nr3ylDDdej9CZujglt6gJ/1C4fwUzScfKYEZt56CCKZAVturRS2IxVBrtiSY7psLj60Dl8A94jDUs\ny15hVtLsAVwaVo+AovdXVUI3AslUV0tlN9OwqmcR5NbIMMafiuXoVPCnmLzcyK0PVsCXfdyzfSGg\nfFB6O8T/8CdcCdjjFqmKel36G/17WvDu+JD2XbuI1tTQUVkpixAFN/oH29fNNvl1mqZpDuCwruuF\nuq5/W9f1FCLOMfQrNj1pJ+2fYqeddhrTpk37u/cTWxyDYtBaNLbfuZ23ZrxlvvfnWX/uxEw54uER\n/FyzKnGbmzZL9S4K13W/Dv2/dDIdmYz239gpK9bL1Ys8Tx5eh5doKkp1pBqfy8ctWbeILE/hREAS\nigBxrwOHz4fm8eAbNoyswYNx+nwCV8zPJ72sDMeZvUm4MBfmIALMPpcPj9ODz+WjOFOqJz6XjzOz\nziSckIBtV8suYqkY0VSUcCLMoeRhWrU23HFMBkt3XHqlHB4PDo+Hjvfel6qfUe2Jh0JSFfT5pCrn\n8XTqZbf3givfqMxedVMQyrvV94HFOqn2BRYbsgrW7FBM+zhl9h5uzevFlZ9PWmkpSY+nE1ulkqRR\nPlf5WOUDuyA+KPu4fatEptKBzUCWkEo6yGV7AIQ9HlOYW/UNOvPzzcDXHijGDZSSCuiU5A5G9U0F\n76oal7L1cCeNZLcKAL1Rg/HbK/2ZIG0sPTtyyWmR9z3NHaTekPWzIwXNN13ytfSF/6v6R7vpun5E\n07T/0DRtiqZpszVNm6Vp2pc33xp2QgVvc3we1o4YQebgwcwrDMLH0HN8kNn9glyvKHvCsGpGgILq\nAg78ULb7kcEK+H5Po/PlT19+nCtXr+aSBwZyw+RMrgeGbYXHfD5wQN+KCpbMGcBzswP8cQ7UniLb\ntBtowXXH8aj+Hpjwq3UcHgLFlZXEf2C8sVsWnFuAtWVrmX1KsNN2B66Asx+DVCzG+m7r4UFgAGTU\nzKZjlqx0lD3+2r38PHg1vaZAv539+E4shmc57L8MHtttnNg3Qb8MTp+cCR+AqxF4CXYbzV/jZgPn\nwYMPDWfa1AKumAnvzt3Dr5+7gGmFAe665mnO3Hw2Q94ewoEyWDN0OXGfj6l9gsweG6RfRj96pfWy\nGC42Q14VbPgJ0snig5njxsE3YHJyMiWbYeuCAA/MKIH+sD3HgMcNAPpiNCTCTXvGicMyWCh6ab3I\nbM0kHBf64fpYPRFvhNqOWu7y3gjp4gg8Mek1S4XD6LEY3tJSMgcNkmuRl0fY40Hz+/EWFZE1VNaM\nqd490J0O06mBSAfke/JNdktl0VSU/jn9Kcspo9RXKsFcuJJdLbsAaEg1c7g7NOU56Mhw4DFgAQ6v\nl/SyMtz9+wtkhc7Miiqr5sKCT6o+MTVJ22n8wYKHKDjGJuBFLGfixmKOVMQiqipmZ75SgZdm25/a\nhwr2FHNkd/l6yMfKGqZhVe3scBYNWL1uOR3Z7Uxpvd3cn53MRAVXKsCy/4wUjAQEdaQwA8dTLGtI\nwkMFZKp6qY4HFutXzPgMKmuZDhQYn6kgHCaBEKG4EUfW5vNx7Je/wnX5JYD0cChT2UPVsG0+Z6aR\n9P01+pP/22YEa1OOe0039HNO2kk74aympoYFCxb8Q/al36zDb5EHsPC2hSw6R5ifi6YXsWTuVO4Y\n8igbj21kzGLIulcaiPSgbk7e653r0e7XiPgj7I7slUkqCgPTBuJxSDClerB3texiy5EteBweDqQJ\ngURzrlS7wECFGIFRrLoazePB7ffjKS4WiFzXHFIOCdyURlzKAVFnEhdOE30SjofxOrx4HV4OdRwi\n35NvkpQoBkzFCh1LxTia1kZHmuzPkbKCyVQshvfMM82eO5X80mMxnD4f0cpKtFjM7FlXkH+VzFQJ\nT+hcObNruS3DCto8WD4mhazLVK/28QyNdgZn1SuuetIUO3EyFEIPhXDu3k1+LGZWwjxYPh2sap0K\nEuNYEgSqgqYYkJV0gOr9Pp6uX/l+1V7RxTiuHo2a1UvdpqemAkfAJCqxXx/1ebSaGlx5eXRs2YLX\nqLTFQyGzH9Hp85lwVvV9KUKbbD3DDPa7itwfaW2yKnDayFF8//i47d/GNE1bhaiO3WW8dD3Q62/Z\n9oQK3gB+tGEDAG9876+8aTQD33WVBEIHgYK5MPWCefzq3vWsSq3iJYA8GAaMnx5k8sVV/Prmrdz+\ngyBP3Qc/nFFCyc6vPo8b5gR5F1i7OEAJY01BxhFAmwfuXDyKGytF7wyg+4vH7eAb8MtlAa7Ygyg4\n7JOL3f0xKH4Xeh5XrZ2zPMAjPx7BhJljOQbM+gQmjLyDrlHrR/BgfoA9V++h/DOgG/R+UzDkx1av\nhl6gvQBz/3wBC+8fJAxXWdB/PpT8tIQD917OnPfu4c1btjFtQR3cDf+58Drey3+HyvZ98BeIdG/A\n6/DS8zBwNcx6PkzieuB92KPvofaCWlkx94SpS+bBO3KduQlwQU3xh/A2LOqxCOpkwg4nwix1w8DX\nYEFREcHfBZh7t09m0AQ8e+5qiMKbM4BTIc+bR3mXcqKpKA3RBuZljBcVDAck1r3EddnXmXTIuiZZ\no1Q4jNeoWDpKS81+pJwxPxCo5Jm90TNlkV2fLwyRziREUm0kSJqwj3AibMJE8r35pmyBek8t6MOJ\nMD6Xj6gzSXu6OCVHbg5pZ55pEqMkw2GTwcmO2VeyAKrxWQVFykFlY2mgqclcZQnVuKuQnjcl1Nlu\nvJeB1ROWRufgBywClzgCMbVTFKttPFhOMgcr6EoBHyHab4ocRDk3FSh2ZHfwXyPvYMpFM/jRhJuY\netEMbhs+iRWsIXDR5/tJPMZn9NjOVTm0vljVs0w6B5mqitnVOMdTsITQj2H1yqlsJ3xehsBhbKeu\nO0DujTdwtBv8sW0HofYQBXXQ+6k/4330V/hWroRNm2jdtAlPLEa0spLo9r9d1/F/av8GsMlXNU2b\nrGlaT03TuqrHP+tkTtpJ+zIrKirivvvu+//aVgto8njVqqLpY3XoDtrPjdeel6faq2qJu2HmgQAz\n8wNsmARTTh1vbvegHoALkAk6AdwJAzx9IQLX+a9je8t2ijOLKcspMyVs6tx10osWzRDZAI8VLKnE\nU6p3D7zFxXhLS3EXFkqC0e/HkZtD3A0dxkSpa1awpXre7HOJxyE+sDCt0JxbVD9cfazeDCrVazGP\nCIgnXFLJi3sdZsDhzM7uVOVx+Hzo0aiZ9LPrmaleNvV3JpZ/tEvXqGDpLqzFrT2gUr7GLp+TtI1T\ncEyT7MwQDk9g9aUpRIn9f5DE4REswi171U0FTOlIglL5uS6IH/trOioqoat60R1YDJaqeqcZtP9g\nVcdiHg8dHg/paowRHKvKoiJJU8eMviXV4Q5VZVOtJeGwWTFT94orAe9p+/i0/QC6JpW2bodT1C9f\nQeTJX5AMh4l+9BEOrxfXgaNkql6Ir8H+xf2jskG6rv8QaNR1fQ4in1z6FdsAJ2DwtgGIrVzJm0VF\n/HEGJMaNw3GZgwe75dF2CrTnwiMLRlB3UR0D35RtFrw9HYDHPjJofL8gbv3hWtj+YBWPal3wtQAA\nIABJREFUPXEr23ttJ3J5hNxD0D4EisJh+Ab8xx64fvGPTaqX2TdLoPjkHKlwPTpoEDrwzFnPQAX4\nN8DTTuAoHBk9GncKtk7a+rljz/WJDMDu8XDe/guYet48OdVwmI/HWOPmZwZY80CAj0+H3y16jllF\nDdwWWMiQwEYZEAdWQOv1MOrtUURWdeedCTfxRBf41bVwy5Yt9H/rLeovgw33w++nwfQHq2he+Cqz\nk4/wWtcIdz0GHIb1pevhKKzvu57QPNhcuJnNRzbDOhjyiyHwCjxcVAT7IfkA9HqnF/SEF66C7aM3\nUzcasp5EuOS+BduHb4dz4eoPr6bphzC1IMg014+EVfMPMO27NQTSgsyaE4bLkdmuVb6vi6cC58JO\n/07O73I+VbEqajNqmVAYJHKVMG9mXn0V5+l9RGw7ItnFY6fl4B14AdpF5+LweskaPBi3309meTk0\ntgjWP2FR+vvC4tDaMiRzFGoXOOSull2mhk6oPSRO0Cip25uy1Y891C6MX96oZKKUk1QMmCpjFfF4\nTEp81WisMnI+rKygcgBxLCInVeGCzlT7ryCkq2GsqpIao2CRKlOngjllqvLmMy69PXADS9xbYfZV\nhlDtowkRJqnGqgiqAHHWwYmsXLecgr1+Sjf3o2CvOJXmHk2ktaZz28g7WJi9gtuGT+IH48Yxbfgk\nshEY5el07jEIIfDN7liO8NgVV3AYSzxc9US0YVUOj6cDaMdwYMb/WVg0zIqlMoIlYqqyiqqvI2P4\nZWZmWEFqdEMTJxkOs+XYp+Z3/o+0f4Pg7UakhfkN4M+2x0k7aSec7d+/n2Aw+NUDjzPtbQ2+B6O6\nj5L/79PQntDQXtJEKxTQntHMCEEfrDNVC/JA7yAP3BZkzJSuzD4a5NHZUzlj5hlMv3cB+o26TFzF\nwHSY0x5EX6izvmE9dIOynDIuCfchloqx87ydEIGdnp3i31w+kQhQaAEjGIt6oaWL9MBpBd2Ie6W/\nt91wHs6kSN8kXNYj5pCTVgiY+li96RMPdRwi25Vtzi+HOg4RTUXxuX1EU1GzNy7pFJSMEut2JTDZ\nmPVoFHdhIZ6iItJKS4VUo6GhEz2+gsFnYEnLqPYB5bcUCkRppKrK2/G9YgpSqbZN5zhSMyySElWR\nS4XDZtLVvn+QvnoVENlbCOqx9F3TbWPsLMmqJcH0KUiCUSVuPQjqJQcJ7lQKX/lrzba/xO7dxIwK\nWu73v29WzFKlpWai1ROLmceyQ0NVENsV6BmLkQZ0jcVoq6gg0dCA0+cjo7xcJHGOGDe0YTFHknQj\nq2qv+ilzntKNmEegs4n6+s+9//fav7h/VKby0m2aphUiX+8XE2rY7IQK3jJiMcb8GSYaOtkqM7DO\nJUvYL1oiLVwaYBdwy8qVHDIGli0BqqU/6Hlg2hYJvvI/kG02GZDLXYXH7SwE4Xm1TALcswLMfjLA\nZUBy42uMOQzffest/po9/Fg5d615WpYn1TDhkRnMCwep6Qe/NCaum98sAeC9773D1L3TeWG8VK42\nATmTzuQWo+oIcMZmeLeogQlRCK4KMHk5vJEUwZhdD0D2H8Gf7udbByeyY9yfuNlwDqfV5HHl05D/\nPoxYAt+d6GbMUZgB7H8QBj4Ep36zB0vOBjLg2E1AEfinAjVCa7ziQICrnmuEoTDtzhooBGcj1ObV\nwocwqjGTredslSCjBCkDNcCDF8LUBfPY6NhIl7nAGTA/8XO4Ht5+CGYWBZg7CZkJj2LNoi0Im+VA\nmByfzCLnIloehoV6gGB9gMzJsOeGPYzXgrQbsEkF7Yh5oCFPnE2yTw+0gm4Wbv6UHBq6OXiz2wG2\nOfcS9cr4er3Z7HvzOD343D7O73I+PrfPZJg8v8v5fL/H9/Gn+01JARDSkkJnd/ome1KQzDWhJlEv\nJHp2I/3CC8goLycVi+HKy8OVn48Hi/5XQf7srI6qyVlDMnEZSE+XgnUoGQFVJfoucl8rx3AMK5Cy\ni3qr4+i2/duDNPX7UpUssOApSkw7GwlwvMa5dcEiOFEN1ctZY7JXPs4aJrfeTu7BLvxlZAWVwz/g\nLyPfpXL4Hjqy26m5aD+1F+0HIJrdYR5PNZLnIRW3MuNYmcZzAdBuiNkrZknlsJWGjnJ6qpqn+uqU\nI1aZTrCcutLD0WMxEgcOkt0Kl2ZcxPWJb+JKQOOyFfQIh82G+CxAr6kxs5zvj6zgpH3edF0v0nW9\n+PjHP/u8TtpJ+2t2+umnEwgE/kfb/ELTeOoi4HXo7epJ8F3b9o3IxGlk30oyS9De0Og/u7/4u/eB\nOQiTcTeYcHqQKr2K32oaRdOL4Cro9UkvyIUBcSE5mXzaZCb7JpPd5mRCUZCN7RsZsnsIKzwB5ngC\nbGl6g9U1q3ml7Q08MametaeLfzqWJb5PsT+qYCrlEDSKQpC0Zchr7e4knpSTSKoNr8NLcWZxp2At\n25VNqa/U7HPzOrwUphWS78nH7+puVu1UYjPhkn1HMkH3d0OPRs05NFpZSTIcFskCn88k4FLL6nYs\nxIWquikIfgdWS4BCgGjABKzATlWt1EP5VQdW8tQe/CnIotKOy6CzNqpCzeRjVQhVdUwlU1VSUUkS\n2CuHioRMoVtUMJphO6Y9catM6armYKFi/MaxkuEw6ZdeYpJpKbFztT8X4g/tfeiqnSHL+FzNWGga\njH2CtIKoCmnCBfnefPome9KtyUlah4xLM5i823ftMlm9VQIhtm8/J+0LbaOmaV2AhUj0UAM8+7ds\neEIFb8c3RAy4D3qtXo0XmDG+gQumdGUfcM9/bpA7uQR+PgvSZgbNDIPB18QfpWeX3gbufO74IOyH\nR+4bwaCVK7miEuqvgDduvZV7hk+SY28GdJiX+/kMnNvvh8egz2p4YnaA6z64jlP792DFWwGr0GeD\nzHdktzMwfwhFf5bKwqWTg0z53bW8xhp4QMbsnxPgzMmZ3BmGgYwlAkwrDzJgphy/958BDS6cHuTo\nHcaOXzeeB8N9ty/iHHXAF2HPowF+UdTA0tFrpPp4DgSXxFnVDX4N9L4fHukIsKrsIBPvA1LCIlh3\nNizIDsC3YOJ/a9z+oyAzLv9IWDHUqnwDQt0XhbZkBHIhqwnmvhuQ6PMd+O83S1iwZroEYjfA5F2T\nqcurg7fhwk3wQDLIR4tHSTnlMOCGmV0CjGkcQ/UI4New6NxFFFQXkLMQXnW9xy+iL8pMswnc7W7m\n5QZpzYZD3ZO0u5MknVCR2EtbhjinSCZEeuYQz0kj7pZMX5G3J2BlIPO1XHQNqmMHiCWFbvlQxyFK\nfaUMzhuMz+1jW/02Xj/yOqH2EA3RBkLtIXwuH3kOCdiasyT6cyalITu9HbQP9qO3d0i2zqjGxEMh\nM7uXxJo4dSRQyUWqYEovRj03I85AMVL5sIKyl+VymLh1Nfkr56RISOwsWmqMYt7qMMZ2w+pBU5VA\nNUZlDL3IxG/PMkaxRLJvZSweYFH2Cpp7NJlOqteO3pyzrpz3R1aQ1ppOc49GotkdXLj6mwB4W9O4\nccJN3DF8khlsKU22Y3R2mirnlzKuTSOdm8QzsJyjcnrKIaps6zGkanfY2EcEcPTvT9rUAL5xP6Cj\nspLmXEtKAqyKnJIvUP2IjlCIWEUF1T2qcJ/Azdj/rIZsTdMyNU2bqWnaz4z/SzRN+49/ysmctJP2\nFbZv3z4WLVr0leO0RzS0lTLT/DAIPzwEnAIPuIIEugelWmZkmUfFR8lk+SlU+apgM+y5bA+POQIi\n4+OGnWfthCgsf+9ucMB1s6HWXwuvQm1HrZlV0yZpPP7J4ywKL2LWJUFeGwdcAFtLtvJOwWEeP/pz\ndrXsYlaX8WyPbCecnjR7zKJeOKI1mwySKYf4wmNZBiLFmSTuhgRJNN2Y/5JOYo4kDdEGs9dN9bXl\nefOoj9V3IipRQdyull2SVHUk6eLKJeXAlC5wx8UfuxIWKYYiKYmHQsKW6PGYsjcKvp+OVXUDi+FY\nQfwzsfq4FYplGZZ/AKvapIIm6Nwvp3yECuRSSNBlR8soEhBFsqX8utM4BxUYKjKvRmR91YLE8VHb\nflVw2mY775jt2IptWkH/VS+6IiNT2xn8cLjy8givfwF3YSFOn4+sQYNw+/10eDwmEYryXdB5baB6\n5BVUNFVeTtbgwXiLisgcPJj0Cy8g/s1zAQnAw3H57syeyspKCX49HkmC1tcTD4WIbn+H6PMvkWxo\nIHkCk3r9M03X9Qd0XW/SdX09UAScqev6zL9l2xMqeFs5rRfUw/5r4YyaGoZkDWHEs7B30CCenCNj\n+s+X5yXDO2/bDfgYOPdnwHa49CX4VT+Y/3GAu14BT8LB/F8UAfDaA0YV7n1r+3HPAsXQcQVMWD6D\n6RfN4Iy5QeYMCqLa2Toe6HzMj8sOcqgQ7pozgLdv6MV3G29i5lsB5n+7iAGbF5vj/uMQfHOmUPeO\nZSzRB2CVoQ0VuURm5wvXyY+dGoG8fzwchrwyhIJZBcxZdCVDZ/Xj9vs2c2iGgQp9QnzE8CeGEM1u\n57cj4IFRQfYDtzGWaBfgUqHnv+WwVHKa7od7pgS5FOC/4KbnxjE+eDV9a/KYOiLInO0BDs8ZBfsh\ntCQuwew5yMr1GLJS7wZ/7AZ8ArwNs3oGpaevGKp3V8EHmPSFi85cBAONbffAQ6tKeSbrGXFIGtAb\nHugdpKKxguL5wEcwcM8Q6jLqAJh132YhEokBB0WvjhYJlMKJMNFUlFrtMD6Xj5C7mbhbIBpNXeTx\naZc2ol5xGuWuvoCF598d2cuull3satlFvieffE8+2+q38W7TuybkoypSJT1wbumBa4g2UBM9AEg/\ngCMl+0o5RBDV4fXSsWsX8VCIzPJyEjU1JhPmUbkkZgCk2BMVU2ImVlUMZKJW7FBdsYS6Aa5BtN5U\nMKecgqqI5SEBUAGWA1RVOx/iGJVDVI5Eab2pCl4OljNThCvqPfu2dnKV5h5NVA7fgwOo6xsirTWd\ntNZ0cg92odeO3vTa0Zucg12o63uI5h6NVA7/gPdHVvAXW/VKOeauxqMHcnupBEnS9mxnmlQwG9UX\nkEQgnm3GeTZj9QrkGvtoR8RKm3OlQrxg2CfmedTny6LHlZ9P68iRNBQVoY0YYb5vTpxfrtv7f9nW\nIL9cg0WIEDDvn3c6J+2kfbH17t2byZMnf/XAIYiDVvZLrMigFQumkAnP+J+Riak3siwrBnbAeGcQ\ntiGTeC3o9+nc0f1RawLPgNUPIZNhO+zUdjK7Z4BIMoI+Raffi/247NeIOtQBISxREjeBjiCkib5s\nQ6qZqtQBWrU2urhy2ZXaR2u21Qt3IK2ZlEN8mSKeSDql/y3qTFIdqe4ELcv35ps6p2DB1lTFDaA4\ns5imRHMn/6jpRn+6EcRpyRTO/Hycp0hXsyLHcBitBlHjMqYhSweVeAQrAan8kup1U35AVbjuoXMF\nS1XVVECkII0K8WEyDmNBM9X2qj9NVbu6YhGPKUIyJfjtwtJbBSvhp3rQVZIULPIVjc4BqZ0BU/Wt\n2an/0xDf7kN8fRcgraYGh8djBsMgzJ6aUQVT10a1VqjEb9znw2tc70wsdklvqbRdOX0+kkeO8mHm\nYWbnv0DUK7wEjpTAbL3tKdIvvICcqQGyR92AHo2KpqBRRVU28fXXOWlfbrqud+i63vy3jj+hgjfA\nVAIa+bg8b7gJmkZdwo+XQ+PcRlLTIFgVYOLTiPDzmyXcOREqgHMnGispA157wzprt9dMvgHN6+We\n0Ru494wgT5YCXWH8pJX8+om1PPKsLMzSbNsA7L8QrnsfDl15Bgt6LKFqnPRarb9bePNvv9Oq0m2d\nsJkHzg0yoaaGm8OwfdhWXvhG5/3lTAfvBghs2c3K+G/Zfg3s9NkG9IHfIBNFRVMFdfPr+NnkV9jz\nzT1ce1R6jZY8EoArRNHvDzdvpfHTBi4CcyHpPQDePwJbDaKG1dKndBCYV+KnBejoAz9evZqNEzfS\n+EYDY/4whtmXB1nmXgYZ0G0pLPwOsBdKPiiRGaIHcApcugELt3cxViOUYokIA4dhzK4x0sHbDlwK\n932vUoK5PHjswwC8A2iwp3SPzC6nwPZ9W1k3C6anBbj4BVgfWQ+FQC5MeGYG5MCM+iDb6rex7JNl\nbAhtMAO5t/W98vmj4qC6dWSY+H3FphV3w9tt79GaaMXn9lHdVs22hm3SbG0EaSDBoVtzm1TI1ZFq\n8rx5+NP9fBDei6Zb8JOkE5JuB5rXS9KousW2bEE3Jk975eogEiQp6IOqxilRazXxKwflw2LHUnCL\nl5G+N2W5WJA+kEnZnplUGHmVbVMwk3QsyKJygopAJY5M6C1YjrMdC46oAiANITIJAXfsnc7K1auJ\nAC09mujIbuftcX+iaEdv3h73J1p6NFF70X7SWtMp3dyPjux2Ll06nIK9fhZmryALy5l6bMcIIUFY\nMhwmrbwcp99Pm8dj9q7FsPTo7HpxiikT49p0IGLubUVFpJWXoz8cQPN4aE8Hr8PL0G5DOaI1m30g\nnmYBuaoqamTbNhOCg/FdzDvf/7VMov8GPW+9dV0PYvAF6Lr+Nbaun7ST9vdZVVUVjzzyyFcPPGA8\nAH2KLpPkYSQwS8rf7no37jfdMnH1RXzgh8gkNhbJLh2BW7bfQubhTNF3UzCMZpjTFGDJrH4M7DpQ\nHEA2zDkUZG5hAG2exu45u5lcP1laFsIS3FX5qhjWbRj6XJ1+qX5sPLxR/Jbh3xIk8af7iTmSZsXN\n5/IRd0OYNrONwBuV/0PtIZHHidVTGa4U0q54mGyXgO19Ll8nvTfVF14fFdKSlMOq8IH8rY6RisVI\n1tcTeeNPnao1Do8H39ChOHw+0xdkY1Wm0rAYkRU6RAViqk9NMx6PYvV9g9UTnYZFwqUqUl4s6QEF\np1TkWUqCJ4oF0VQwTrDa9h1Y/WgqgWj3v58Zj2pjfDMWquX4Pm2VoLSTtqjkrb2HLwcrKMwyrqsr\nPx93YaEVQOXlmcLdGPtRHiGOITNgHCsGpJWWonk8spa5+FyO9e9B3XndKHR2x5/mxxsFHxkmJDLp\ndggZTTKFXncUT3ExmhFEqkDu67J/cf/4d9sJFbzV3lgLWXLDLgis4LLpW/EDFWHp9VqatgaQqgrA\n432sbX/0JMxdEmffT4Ap8NlVcHQkfHdqkOorYchBSY89eYOMrzO2C36vP88UNdB3wwaIwYOfBDgt\n511+dvEj/GzCTfR+BarPtY7zfHk5P7gnyE/HjmbNjABbgNFczvX3rmfW6h+b4x4eWs6tt09iF8gv\nYxIEbrECvdfypex7LjBgE0RGwnOLAwzYOoBxb0D3+yDSOwKNRlXlW0Az7Bw9mvVNL/J4H5gxo4TM\nJRD/plQdWQV3KXxBX3h1mKGTdTf0/s53+FVWFn+YWEbP5XIOv1g6BjZC4oew9sdr4WwEd5oJD02A\ne+8DzoWqGVVS/z8bcVyFiArmMQSf0IDMDtVACgbuHAhJWNu0FtqhV0cv3E+7ZZb5EKiF8b2CMjO/\nBfSAzKOZEtnkwsgnYd6VQTgK7lY3XAPrZ8FTzz0OrRB7GPaE9zDmtDH0z+lPfayeV+peoT5Wz1+6\nHGZj66vsbHmPtgwp7TtSVgDnjktg9lbDW1SGK/G5fMRSMSqaKmiINhBNRaloqsDj8JDnySPPm0dx\nRjHFmcXEUjGTabJel6xlvbfN3H+ytdVkaop5PGTEYibO3FBsIAurX0wRboCVaVQBGljOym0bl47E\nzSOwfrz2hmuVLVTwDyMJbFbNFC7ffdz2uu09sLTjFIRTCaCrips6TxUsNWNlOHXg8XXLmbl3Oq9O\nfoULV19C0Y7e1Fy0n9yDFuFg7sEudGS305Hdzl9GVnDPRTNMQhF1br0Q6qXLgG+Hw6RVVKBHo6JT\nZIyJYTlwBXNpRn7juViwywxsQt+DB8u2Q85lf+IAtQkR5wjHw7S7BXJ07JQ0tGsuI1ZTQ3pZGWAR\nwHR4PCRtmoz/aIslY/+wxz/JopqmqdsJTdMM0PVJO2knnpWUlDBx4sSvHKdfo0NMWCS1DRqjuo6C\ns2DaJwGZhHIh3jVO/Lo4nAL9XusnE08+MmH+DindnA2rjq4icmqEzdduZmZHAM6EW067hdntQTxO\njyws24FjoC/UWXrkZwxISv/boiOLBP0Slf3pU3Q2xjcy9tGx7IntYWCXgQD40/ymzE1FUwW/Ofgb\nqiL7eDr0HC6kOuZ1eE0IXMoh/rG6rZpQe8j0eSrBWR+r71RxU6bYJxVhiRJwThiey5GSQC7hkopQ\nKhpFj8Vo371bIHaVlURrakiGw7j9flPyRpFqqaDJjk5RAZQ9MakqbXchca+C/4NVtbPLrKugxa77\nln7cPpU/UrqiCokSMR6KjdJOSqKOqfRSY7aHZnv/MJ1aIwGrf8+k+qeztIDShTV9GeLncisrafrN\nb4h+9JFc+4YGs/oVxerLc2H56y6xGE0Iq6YXTJkAOwFJ0gkvN76Kx+mhztlMTfQAx7Ig4pVEgDqW\nIiVRvYzKvq6q27+4f/y77YQK3pT98a+8FrsDujAWxy9g5O1BHhoNtz0E1blVrFsCE54UKvJNd4s8\n4/Hx/mXr1vHGDWfx4zCcelYPZnwISyeO5JOfDOLKIzLmg2HW+BGNN/D8g8+y6kp4YXaAbo9v4v5R\nE5nysEC87ip6GoD1E27i1NlBblgOE24J8vYQeA6Y8i0bkcHzcH8uNOXDtFMDvGahr1g1K8DCOYNo\nBH48KciwbsPMWWNhfYCF+VLZWAe8WgKTuv+aH8+dxG1t8MiDVfx0Irgfh0trIBoAE+P5Dlz+CYwU\nWTIeyn6R5LFpbLn1FZbdAWn1sPb8tSxeNpSnAebB1YuuJvi0QErvWwyMBz6E65ZdZ9XyY0hlczAS\nxBUjWcNyJMsI3Dlzu8xaxv+1F9cSvzQOg8H9thv6wlO3INW8MTD03SuJzIyYyssv/BjYBtM7AsR/\nEmfoC1dy3VPQWNPAND2AJwj0h7IJa6mJ1FAfrcfr8FIZrsTv6k6oPYQ/3U9VZB/t6Vb2b2fLe+yN\n7SPfk2/CTGKpGI2ORrwOL7Xttexs3mmSkygRUqUBp17P8+bhc/lwJqGwNQN3XGAhzmzJSqaXleGM\nxczMnoI9FCNwB1Ups8MS0+jMQqXw7yoj6ETWAHHgD4DBPWo2civHoLRolCNRhB1K100RdGRgNSwr\n1it707dyjM1Y8gLtSBJZ4ewdSCXLruN2FEk4NyPOJYJICHw0fI/BQnk2j+x4EICCveL8e+3ozYWr\nLyGtNZ1vL7qS1awx9eG8xu2lI2sVVV10+HwcKyriIBJYthpj9hq3lco0qt65duCD/v2JANmjbiDp\nSyO3WRr1+8WlJ1Jlj0PtIeoN9IL3o4O48vKkd7GhwbxGmbEYWTU1dA2F/irN80njfqRA3EPTtGeQ\nbt3/GSPESTtp/0v20UcfsXTp0i8do23R0OZoMgEYVbVnfvAMNML8U4LSI56FwCRrAAfsOXUP0yMB\nC2PeDvwIq1QTg1tevYUHTg3Cn2CVexXkws7wTnb6dwojhQGkagg2mCLf+mwd8kGfr6PfIeGIPl1n\nzd1r0B/SCcfDDMn7pgn3P9RxiF0tuyjKLCKWilGWU8an7QdEzy0VJeqV57fb3iOWjOFP85uEJKrK\nVhmu7KTjpubLwrRCM6lp+lVHEkcKMqNWd5USeNadDlLhMK68PBweD7HqalKxmLBNvvUW6ZWVZGEl\nPVWyUSUx7RqjYEEl1RLFBTxG5zYAVb1K2saDVXVTJChu+UrINN5XcgQKnQKdE6FgSdSksHqj7YlU\nxdys7CCyhKozbocGLMmfKBaUUgV9cdv2cSxpAVXZ6474yCjS+6Y0Z7MGDyZr8GB8Q4fiKS8nXlpK\npLSUGNbCX1Ed6tEosaFDyf3+9+U43XNMeG1GG1yTdTmACMK7fWZQDuCOpsze8E4C3+Ewsa+Bifnf\nyTRNu1jTtCzj7x9omrZE07S/SedN03X9q0f9L5imafrrwHa/n+mjQjAGYWXoh6wYD8Kq+2D9Q8O5\nVDsPbWqQ24DcPbCun8DQV/dYwk/fnMeBogYyV0PxGSVUXFzFFmBkC8w/RyhpFy78gM/cB1k6cyQT\nn/sty1wp7piMCGj1hIf+o5RkfT0zahtY8NMA3ijcMzgIPSF8lgRTZyBB5toJNzEk+zQmdA8yTQ9w\nyhGYUBaEOExrCDD/wiBLNwZonhtkDFB0AKiCm345jk2zfsfrRQ28OmgQ9978FqvHwLhmWJQr6MK3\nHgjgnRnkrtlQNQdKloD7oJv4/Dj8BpZtGcfr2e2c2/M0KhJ72XjnRl7IgGtnw3dbbuL50mcpOVRC\n1cwqxk8fx4RFq6lG0IrT34SMvpm0PRyBUVBTBkW/R2aeDOAv8iG7buvK9e+PZeWyxbIq/gRpznMg\nSuKnIk7rN8isk4vMWoeQaEWBrMNIY2ICzqu+gPc875isE/vvgN5PQ2g0/LK8nCnXVQhEsxqYiiwB\nuyL9dz+DzFAmESL0y+jHnuQe2b8h1O6OuRmUJ202g3MuIpQ4jN/VnS1NbwASgKkmVaXfVuustTAY\nbqAJMp2ZRBwRMlOZDM4bbGrYFKYV4k/3kx534kpIJS+jDdi7H2d2Nh2GxklkyxYTyqgugdIrU9lD\nO5YfLLYpO5RDYeYVrNIjPwWV5DUn33YsLH0EC0KiMpgqM6i0cBS8QwUejbbzU4QqCpqi+sucCFRD\nM7brwIJ2ali4+UwsVqsMLCjKMtaYn7Wub8hkoCzYW8jqdcsZtuhKinb05ol1y81AVn3mNuNzfYpU\nmT8DEkaVs0ssZlYSm/v3x7F7NxlYbJUh49y8I0fiWLcOx7QAcTcm9NUXlh63v+j7ODOtj9nYH3Mk\n8SaddN9xkNZXXiHV0GAGrunAXbPh8Tlwq66jaRq6rrb8+0zTNL1kRsk/YlcAVD1Y9Q87t7/FNE1z\nAN8HXkN0awDe1nX96BdvddK+zDRN008UX/3vaC0tLRw+fJgzzjjjC8doW4yfkKIG5qxYAAAgAElE\nQVTqVRi4FmT1HEHWKmciK3JVxlGwixSWMGYU6IkkQN9F/GgUCdQSxn7mIimPPxiHXaiLbtxnSMYK\nQ9gb0B7VmOaS3Mj8TwXhU+AoYHDeYCqaJJFc217LLcW3mH4PxB/60/2E2kOm6LcKyrwOL9satklP\neYcQdikZAJ/LZ+qe+lw+sl3ZeBweijOLiaaiZOtCtZXeLugXZ9IgLYmmhFkyN4eO994n0dBgMSQ2\nNJjoCNV3pipi0FljTfkke6VLBVdOxE+cQudqmEKSKMSGIvdSftGBLCM0LMiiCgjTER+kkCVqfyqo\nctnGqWflQ1VPnSI5AfHdCSz90Uw6B6hKV85OGhZF/KmqRqpzVbeTChJbgZYRI3Dl55Oor8fp89FR\nWUn7rl14YjEw+tmilZV0Q26llM9Hev/+Arv0+2kvlOBNVUxjHjiUPAyA39UdZ1Jed8elMuff00I8\nFCIeCpnJTrffT7SmhqlGJfBE9ZH/2/7Rbpqm7UbItcuAtcCTwPW6rg/5qm1PyMrbToP0KbhWSD0m\nh6WR+JaXYPOFmxkyNcjpQO6T8O1fX8t/z7qWFX3n4To4kcmXyhJ2wIEB5v5GtsDqHHhw51Emlm/i\nsz4H4aiQEaRSKe74mYwLGZW3SZWVjG5o4MUsmFm/hOI5QSoNghSf8WtdviBA7ejRPH/fs5TPDVLy\nWQnzBwZpMX6NyZvg/vFBXjkf3u96mNvoXPK/cPVqnihq4NyXoItNfqAjV+KWwc1G79agQcTmQMkU\n4D8h3s2YegbAnfeu5vnxz+Kd04tjzjjxDLi2EhgPz5/1LDRB1cgqbr16Es9u3ciqfv24/EVYO6ME\nPoa2VRH4T+A3UPQiDP3oSgmy8uVY5EDjpY2snLxYiEj2YClF5wGlkHFxJkvSEF34s7HokLKQGWc/\nlhOLA6/Ce8PfgUvBMcYBXug9G2gD/4cw5fsVZtpLnwWsB8rg25uvha1Ad4icGsGdclPdVs2DOQGp\n8GnwyN4RxLvHCScEm7/64M/ZcmQL21p2UB2pZnvLdraGt7K9aTuh9hB7ju2htkvt52c+w7rSVRxX\ne4h8j2Qwq9uqqY/VmxmprGMywTm8XjqMSSoZDuPIyyPm99OIlaVTGHw7k6MiHfHYXrPDE8Ga9BVe\n/XXgBawJH2P7KBZ9v5rUlbOzN2E7bduq9YLK9Nl7umK2e1btKyJflUz4xnuHkQBJx6IzTkfibVUF\njAI/YSwd2e3cyVjm7p3Os0uf5cW5L9Dd1INrNI+lzlPBYFRz9jHjWEmfD1d+PmmlpTQiFb+jhvZa\nvKjIDBgVY1gPILFuHRGk0dodh5YcyG5OkThwkKgXc/GiLD3uJL/eECj1+dA9HjKx4CzBOXxt9q/M\nNqnregqYout6va7rvzceJwO3k3bC2ocffsijjz76pWN++nqA6R8YVbQDWDSEXZCJyYtAK47Jc68j\nveAgnOe8wIo04siE245k4aqwmKxiSMXuEtnX7OUBZn9oFau1lZrsuwTIsAVuL2rQB+YfNdoyLgLS\noS67jvXN6/G5fNTqtRR4CzhFz+0Efwx1hExI5SuHX6G6rZqKpgoqmiqoj9VT6iulNlaLx+HpJMpt\n1z5Vrym2yXAiTNSZNKGTdh1UEBKMxIGDJjOiIipR/kgRUCm3bJd7AauypfRFj2eNTCBdHXZoP8az\nytEq/6iSpXYCEjuhh6L9V1+Zgk8qAhR1HnbttBhWT5vy3eqcVSUxYfytYJWKql99PpDbI4LFmqmQ\nNS6stUO6cc5K7FvVw1z5+ejRqPSgGTDGjPJyssaNI2vwYOlHs5232++nraKCeChEe2EO6e2W5mlO\nC7x77D0qw5WArHnibmhKNNPuTpLdKt+p0+fDlZdn6qJGa2rMitzXYf+q/vE4SxhZuWuB5bquL8fK\nw3+pnXDB2wWhEAOeAl6GH+7ezdNXwKLzF/Hw+nIAdg+DwS3w3ISbCB7ujMJJANN21vAeMH/2Tqr7\nVZG3D9blSCbiirkjKNGsaD2xcqVkzRph9SJ47ooreLIEVo0bx1UvlZnjrp0vTPnkwTwHnB+UjNLh\ni3qYY4IPVjH2IeHzPzwSnAbZZBqQ9lIeq4GCPyK4rpesc665Cl5fPApSMO4eec1AG/LsaTsYaQR2\nC3IDVJ8CdIdkGrxyNixcF6C9D0x94XYAek4tYPFzAZP0ZcKGGXAarPzlYhrKj7Lw93sgC6ouqhI4\nxlGgDyx4dAX0hL8ceUeqaK8hWUX7TJqHzHKf0qnTtu3NCBM/QHIGISyu3Dak8pYFY5fdQd0Q+Zv+\nCLvMJphVtEiiiMEIheJrWHiFOGgvwfabgA/g5W+8IOxaLqAbxGfGibgiPNb4cznPfHCWnUVBUwH5\nnnyzwlabVsvW2FbqvHUW3uBUqC2otUDuWbJPXNDV0RU0GNZtGNFUFK/DS543j1B7CI/TYwZxrVob\nzbkSCNgdkx37HQ+FiCPBzRGszJ0KojTkq2ozLpkK2pSOTApr8nZgVbqGIbGywrDbYSMurCqd/f10\nrMKiglDaoZWKkVLBNlUDeAdWEAVWwKfWGy1IIKegnhifJw0JJI/H7d/WejsRBDZyDPgpa+jIbmdO\njyVcM/lGfrZuOUuyV7CgxxIW9lhismDGkcDwIqTnv0s4jB4KmVo0IEGzKz+fRE0N9cY1B8vJlQCu\nQYNIf+tD4m4JvuOhEIn6ek79oIXz2nqa0J6GVDPuuFTmkuEwqXAYp89Hm8djwl0/XDrGJEc5aZ+z\nVzVNm6xpWk9N07qqxz/7pE7aSVOmPanxqAETO+uss7jbaLn43LiVIg9w14Ag83KC1qT5GVaWSmXI\nspDJrQlqz6mFc+C98Dsy+bQifjcPwbp1RfyhyrzlwoCcAejlOvr9OvdPWMCctKCMcyDwosNAEjKP\nZdpOEDgPyID5PYOCmmk3Xs+T/nBOlQrZU4efozJcSb4nny1Ht1AZrmRzw2ZCHSEaHY1sb9luBmLb\nm7bLgj0JESJEkjLbeR3eTtpudhITf7rfZJ5UJGHHsoQFGmQujVZXo3m96NEoDp+P9LIy3H4/MY+H\nhMdjVsFU0GX3N3HbR1M+UgVPCk2SQNgmlfSMSuSp0oryU/YqmheLwEQlDFUVLB2TN8ZkVj5+O7ft\nYYckxhE/2I5BuoWVmFQQS4x9ZiEB3DG5fcwCrBMrcFRVwjSs9gvVDwhwOlLQ9a1ezbFt20iFw2ge\nD26/H1d+vlTFDh0io7yc9KFDaVHskpWV+GIxfEOHSr93lnx3St7h2pbz+GHrxZye6M6xLPi0/QCn\n6LlkRp1mkKd5veixmNn3D9B80yWctC+1sKZp05Byye81TbMvt77UTqjgbVhcbtQB1QM4r+cF/KJc\nArbq8+X9DVfJ869y4Omlz9J/epAxc1/g5WteoKDve9y/GH5qLA/ett1A++YHuGf4Bm5f+iw3v96N\nqeXzeHzjvTxqiGZHbDHgj8Nw56Wr+bD/LvoC8XS5M+/dao1Z0RTgnlSQe+4M0t4dViweBcCanyxn\n1KQg3V8AzoOCmjwU2eSGJ4ZQcynsuwIYKULLI6Vtjr6TnmHpuDUwCtKOWf1M2w9spfi34NkBPacF\n2QdwDJwz4Uqjly19Lnw8DM5ZV07dd+uYdGvQbBaqHL4HnoJFp0DRxj4iAdgB06sDMhMNAXbD1Jm3\nQzrse7iRby+/lsi9WGqYmchMoiNVNA/iiNSsczpSkTuICV0EOT4fAb1hzX8up2APUr1LQ/AM5XD/\n+xOthqrXwP2Jcc/6YexLd9B2FQx8CuZ+B8HKXYfMbmEZTzbUFdfJsRvh/tjPaIg1sPnoZtY3r6eR\nRtm/aiBTtI1qllfVQJV+0qDR2QgO2Hh0oxkEgvS5nd/lfHwuH2UZfSlszSC7VYJ4d4u0DnuLi/EN\nHWpeArdx+ZSYtjqVY1gQDlXZUjUf5RzsLFnql6yCqjeQvkqVNczE6qtTwZXK0ilLYPXNObCIU9zI\nmsKNJU+goB6qguYy9pfAciJ2eEeOcfzTkECr1vjq7RIGqnKoglGlXfMjxrJgx4PMPChkAZMvmsGU\n1tup63uI3INdWMUaE3pqh5LkAJpfKnY5I0aQd/fdpJeVEa8QiFDC4zEDP7WuSgMufOstum3YQOGc\nIPH//hWOXj1IhsPosRiOFCZlNsDRtDaRgfB6cfh8JBoa0GMxs4F+V8suvi77N2CbvBG4A7ld/2x7\nnLST9k8zbZmGZkNItWzYgPaSRu5TuSxbtuyvbzRSnjLfyhRUimowUmxIB7HYp1oxe7fJQib7RkR2\n51xj7GEYEBogE9oOZDLbD1TDzpadaMut89Nv1dHv09GDOvoAXfbbD44tFGervWrAKN+Fxa8MhToY\n6BpIL1cvCweYLefQEGugVhdiplcOv0KeJ49oKoo75SbuiENUkpcRd4S4Jw4eaPQ2UpIp66Re6b2I\npWJmgFYZrjTlBECCOp/LR32snsyoE09MoOkmy6RDKjT62b3Ro1HioZCpiap5vXiKi4WaHgsFovyV\nMhU3a7bXFbTSiUUI8iiyVLATmai+bBU82bXUVHJRVbbssE17gKb6sFUAaK/4KX+ngisFdVTjFEvm\nAaSrRLFUquO2Ygl7Y9tOvaa0W+3HNJQlzAA1YXzdn4HJ9Oj0+XD3Owtv37OIGwnPVDiMMy8Pl9Fy\noK5R5sKFaFOCJBY/iXvDn0hvt4Te7Vbk7YkjBXXOZmHd9jrQCrqheTwm9PLrrLrBvw3b5PXI1z9O\n1/U6BEi98G/Z8IQK3uz2Xtd3mPJiBQ1A8TF4+4ZevLFiMn2BjxYH0ICr9hiD35GnFUcDMCNAH2Bs\nLMbcXHijD9wzLci742XMju+eCsBtly6kOlRF8IkA40fewdF5AYZt2gRA4w+t8+ga70rFNFg7BMiF\n5CKJ9BoMzbf0pfBMj2foiYh+dwDN18p7jX9p4JvPXcCtmxez9eatdDf2ufSlAL0agVYommr70L+B\neBbcB/AIbH8AFn4QgGppxwME/3U+0AVunhmkYxa8D8zc8aBg7XcAWbBsDLz8gxfgWpjcAjVP74Pz\n4dMrYN64IHTAQ9cgVbAJQCV0rYKXT3uBTIWJ6wbsQypouUijXxKZedRqvhjmVwdYqgUMwRHj9dMQ\np1SPpK22I45Ldf6+B48rBq73YOaRAPHSuCz5HDBt3XIeBTgbZt0HD+oBeBWW3oKs4BuMa5GNZDEv\ngcaMRuIlcYt+6UysZjA163YBToVeoV5Wpy/G5zHUsv8fe+ceHlV5tf3fnsnM5DQEMuE0gCQiRpRg\nVaoFrIitYLWC1rP2gNTWI0pRGk6CKCAjeERFaovaVmxVtKLtJ2hFbIWqFC1YNSImCIRoDoRMTjOT\nzP7+WM/az8Rq69tq1fflua65JpnZ571nrWetdd/3yjPlv6AvyLaWbR4f4JW9r8jnSTFmOW140BBt\nEdDy4oskq6pI19d7WcJ9waAXsGlftUwIhAZwmcIi+lK4hUI40ogg6FlY8nVmjxvF6WvFTYMtDfLU\nyGv20IcgffLNZ5l8A+1f04mFdXZk7EczpBqwbQa2YmPkZvP3XrPMPrN8g3kUdmKVtluBHV/bzkuT\n/sQpc07j/UOrvf5v6qiVaB1AHq9R1dWkq6rYt3q1p7AVBNxgkIJk0iO66zYCWNjKDowaVxpCJ3yd\nzqYmT946Ui9Z5DxfLrmtQubOLi3FFw7jmMxwHJg6d/NnJp/4ZYZNAriuW+y6bsmHX5/Lwewf+wfg\nLHGEWdICzloHDoW5zyTFmBXDlVde+ZHruUUunAkt322BZ+DIp48UY6S9SPogvsiH+B01gNXIzFrx\nbO/hJUQ3hzeLEYSukMujsInRDx//DDlm99AM7qN0x+HWFeO5+th10Bs2Ohupbq+2ZZ4OGOEfQcPA\nBgb7LfKoJlQjgVpeyssYNuQ2eNHNiLwR4JOgj05pGh7OClPZUknQF6SsoIxIKCKtBDqER5dMi4Kf\n9j91HancOK5pzp1Mkt1qeG8GMhksLiZUXOwpHLqmN2oT4n8UOaFDgzSlH2gDbT1dH1ZtMrPSpSGx\n+rFMWL5jlgtjAyqwwZeiZZJmX3lYAbE0XYMwPRZFsmRhY/gdWGhjEAvJ3IutLvqQR6gNr+sSDVgk\nTdAcpyYylSPfjI3XSwHfpk00v/gi7RUVci/a2umoqyMdj5OoqiJRUYEbiXi8dq8FQzAoiVAjNhJK\nSHPu9lwfoYTAKAMpUZuMprp7fpOGfV7D9Y76egLf/DqFj73MZzW+zP4RwHGcLOAh13Vvdl33TwCu\n677nuu4vP8n6X6jgbX5AlOMv3PEVqIQbjyulGLpquwLDr44JXzcJ5zQDZ8IFjz7KaYtiXDQ/5kGZ\nckaKcMW9l1zCVxvgxGUw6tlmFj09iz+cAoRg0izBiU+ZFSMXYA4UNsJ1A8SW/vamBv5oGmpvC8Kc\nvTHaF8WIPA9FFfDrKfa4Hpk2jbJZ8FvglRMQfXMkzvjavCP5K3DQg3Di9TGeLoSbHx7DvkUw+004\nkQsBCPxOEIh3dJbzkm74YDh/zmmcuAx2fwf+Ph5WDYCC6+Xrs5dBZB/ccvY4GASNBTC5waybb67f\nEuAFEXXhzzD/BJiRAL6NVMRUg1ahhf0Ry3AwtlyURKpmanW6yeczC2I8cOg6LlxxuQR6QbN+CHgH\nGr4BU34xWz5rRcoyRXDpz2FoxVAWZpVzzFUxuAB4HTq/A4PbYUYjQtY+Fma3x6AYpvwKC3JXwlYm\n/sA0CGeP+fsAuK29nFP9pzLaP5pr2oU/uaNkhwSnzUgQl2fOzyh4BNIBwgGBHheFhKB9SP4hJNIJ\nkkGp0DR2FyKvk5NNVlER7UbuOFhcLD3eTPU31zTKzCRP67sa6baMz7UYmc54zzzFp5HKWxIrF6yJ\nsbQ5FVWtCmEbiKqZSpnbrfw07VVTiw0QFf6h2TxFyiqKVgPDNF1hn9o7rhXbfw0sZ64WSy1sxAZ/\nHcCKR++i+64ePHX972jsv5cVj95F1de2A1Z8pQkbCG4C/KWlhMeMIXTIIeKYgEKj9KmBsb53w0Jp\nBgMHxeM03Ptz0j7JUrbmQvdGA/NJ+/F3CizW172AnGHDyB85kh5nneVlg99h//i44ThOnuM41zqO\nc6/5f7DjON/+vI9r//i/N0beezwj7z3efvAz864lDgd4B+66666PXN9Z44jRDQCHweYhmwXuuA8J\nyDQTVoud5SvCIxvci1zxfcUIHaEnDG0cKuuUIobzLLykpnvVRwvTuDe6uGcZnttqB2e9IwEi8JOv\nrxYDuw3wQap3yuLt8mBj+0b4ALblbmOHf4cEbACdMDEy0YNaXNPrGib3ngwB2OjfCBEY3mM4p/Y5\nlQABGtIN1CRrPCXmkC9ENCdKNFtQEEFfUNoFGCiJ86FTScfjHtTdMT4yHY/TUV9PdmkpgWhUqm8G\nOQFd29NowJaV8bdyqsFWvu5AAh4N0rQypwlLhV2mMvahh6qCXwo+0qpaZlsARbho8jRzKIpGk59g\n4ZPau04DUG3BA7ZVUD3i4xqwVcE8s++4Wa8Jm0jV5G2u2Z4CpXzmevuHDaEtBzrD2QT69fNaAaSq\nq/HX13sUC/X7hyST9Fi3jqKqKjre3g6Vu0j7pALX6ZeAvCXU6fEec9pMQrtXAb5DBpFluOf7xz8f\nrut2AGnHcbr/y4U/YnyhgrdZGWpaQ3cPBUROdfG4kXxz2iqWFC/hSeDdSZOkge8jZoEM+Pedw4cz\naDHcv6Sc1k2bOO4auGLMPbQVYslkwMnLYcy2k+j5exFKmHdnOU3A9DULvGXuWFDOnBtG8JWtW6lF\n4hKAqb9EyDfL4VSg/hz4qhJsIrDt7mv4QzAIf4VzfjyRY81XLywqZ/6VEaLASabR5/MA98ITi8q5\nbuUtgMDiz5wfYxxw8rUSXP6/8O94/1LoZ/bz5G0TaZ8DP5stlcCWApi6bA27h0L3bdjGYSqvdDrs\n+y5cd/NUOFZiNvaZ71Yj0McDgCGI+pXW9DvknIhiCVDFSIbRh7QmyINX33yZnz96lzCFOxBYYxlw\nHBS+C7e9MJ/TN54n69VC7AQ4cveRTOh5Cs59v+MbwN58xDlijqkBkd10kYyp4hDysRZToZ17zP1t\nQBxlPzmXhbcVM6UwxpM1T7LeWc+S3CUSoPZAyOHHYFNwJnJKppOk3BQluSUMzBlIPBWnur2aeEfc\nUyMMJUSlsFtjmnSjZJxyysqkyWUoJK0CwmFP5MPBSuqrw9GARqtKmm0Emx3Mwhp3rYIdj+W86e1V\nMROt3IGNb3OwgZJi65vMurlYCKXCJAGvsWc3bNFSkaa5ZplM56cwSD2HJqRAm8BKImtQmsD2j9uG\ndc4ukN2Uw7E/G82z1zxNAoj9ZT5+czxBs85r5poOAQ6sqKD5xRdpu/12nFDIy8TqNYsjxd+dSJI6\ns7VCDdLvLXF9jH2rV5P/1MukfdBjr9xf15F77La1k04mSVVXs/eRR2gxQbljOBqfxfhfAJu8D7nM\nI83/1cCCj198/9g//r3hNDo4jf8oFue83PWzmTnlYsAOR941a5aGhokNXH755Xbdhx2chx1uGma5\n79Qivq8QgfEfChyJGMZapCmli/i4erygzvmZ4xl090YXRsjvmx6Ir20E/gQ0w91Z/7ybhvNrB+fX\njpCh+iG+bjtW1QlsGakNKyesAmJJc3y5iF8vgfur74cQ9HH7sCS8hKV7ltr1ErD2qrW8svcVUqGU\ncMKRNjp1yTqKgkUex01HxNcdf6cIWyh00nUEpZIViVi+WyhE2kDWA9GoQNKrq0mbZKeiR1QYS9kP\nyvHSQC2zoqYzyEuRaYFDV3GRzGQkGetnindoHjeNDb7Mpejiv7UfnOaSMyt2me16FDGiAaFy4FQj\nTf16IzIl0x5uIeQ2q998H5sYzcY+YiA+LoWAnVqxqBaAjldew3n8j4D0olUlyFBpKZ2RCI7pq1eb\ncR0SSBDoO2SQLLvmZVHVRlBHRY1+kp1Jr+qWCEGoLS33uKiI/FGjOPj6GP7PEDr5JfePOlqArY7j\nrHAcZ6l53fFJVvxCBW8APwWaVqzgletfZ8b1FdQVF9OxYQO7lopRe9csl7sZwZC3A+9IV4Ho8/DT\nczbB92HOQbYh9m3n3EfO88AxMHXWGln4BFj3w6cBeHzWQ1QldvIOsOiFWdAIjV+bTVYHHPN7KZ9d\niblYFwLDYF82MFe2f8PXZnPrReO5dMBidk+FJcEl3P52mCP2HM3QpsuYe3c5m7+ymUcTzwDQYwvw\nK+i3bp1nbGZeEmPxudfCq/D8oTLHGfI6HBbHRDMwd+zVtPWyPayyOyH91nZmdpaTtxPoCf0akZKh\nkqBUX/aXUPA78x3CaWYvMhMeD32P6y9WJh9xQu8jAZFqsuxFrEsQa3n8wDeBc4DvwaxDF8AlMP9H\nEalqaTrrXeAe2NZtqwRLw6F8A2wu2cyCrBgz5lTwDtDjJRhxzwi+qlSi17DpMxBLWUTXbtcF5sb0\nNMuUYEssu2Hm/VVC5p4K82ea9Xab69AXyIIzms+QwLVZtpnKSkEurKtd58FBlPtWmdxJ0ZOvkfZJ\n1W1fDx++7gXSt8YQggdXVPDA7MEEolE6DdROK1UK49DMnwZtIPdVSclqwNVwK3RS6X73Y6tyjvlc\nb3cmnEQDuFyss8uEYOo+FVpZj/h0fXzUASgPQbOOHRkv6ErwVn5bO7YZaDuSpO7Eoyh6fLqw2Vcr\nwmV99Mfreccs4+JpCvEWMtfpiTiv1813TjJJq4FrJLCBp87N9JgjSLz+EuKosqeXS0+csjJyysrw\nHXc0bTnihPKbIU4r7/Zspb0wm3jvbNzzTsZNJgkmk/zAnPecxGdj/L/ssElgkOu6MUzB13Xd/dou\n+8enPm537vdk851NNlgrm1sGb4oS48YD17PxgPUsPCRmyyKtQD6441zccS5btmxh2bJl3vru2eKZ\nyxdtFaOYgxibHGxjrncQw5aL+A+w/VvyEURHDyw0XxTaGfHwCIpCRfJ5XwRxshM4EC4bG5MG4Hc5\nOOX2fJzfOORPyxfc3cGI33sMcQJ9sQQtjSK0PJXZj0YzfZpJ8yPX7lD5e1RklKRYeuIhayYGJjL6\n1tHM+uBkz8cOzB7oNe8uCQ5gd/tukukkiXSC+kQ9gRSe2FNHlgRtHVniLzsDPpycbDrXrMFfVERW\nURH+SESqb0boKx2P4ySTXQIb9TN6akonyAzE1F+6wN3YrguqkKwBmW5DAx9VbvRlfK/93TJ7mHbD\nqktmBnFgk4Ja1dNqlvrzpLkV6vdbsQJlqjSpfj9uXk3YGFyteCMSqG3HBnsK09yH+DU9bxA6h1Y1\nE8/9ic76ekKlpfhCIU/ps6OuDjcY9NoQVA8fTvPIkXQWF9PpF3pBorKS5nypvvnSwmMcmhpARxbs\n7SH3tra3T3jj/6Wq25fcP+p4DLgW0VLfxP+AG/6FC97AHlTrOfKejkbJnxwj9mo5fYD2FStgJzx6\nDlL5qbHr/mYarOoNFadBrCbA0iUws+EKDyLRfpy8bx4MyxZOY98p8FhP+NrVK8m8jQv/Mp8HeYZj\n/zKfcT8Re71M1ai2yI93RwEsBW47fj6Fq1cDYt+uvwi2Fdfzao3gfXtcFoM34Ht/7c8bM8fJNg6G\nc+Nw2k648D3J+D24pIWLIxcz5o1Z/N0cx8NhSPwIiEJ0bBYPA19dDfen7of1MOWmR1n4AxOo5mIr\nUqpTC9AA3zzim8w/DdgLjXnwg+XAC3DhyssZ8fJo9hy8CxwYsnWY7XTcF7EGKWS2fBg2pdQH29Dr\nCbju+FtYdPYsqIfZ79bz2HcQi5OLWKoAvD7qdVHabAI2wuLvA6fBigugrAoohI2FGyWyVBB3BzZq\nacXKKbZh1TbazH52IVZsh5wzIdlP7M8S+DvRqC09NcDy78PzxwqUtvAvhSz+40jJHgD44Kz+ZzH7\nb1/l2oU7KMkr4cnWJxmWGEDFKcWSaUpAdrsYLlXO6qivp3LkSC5/63A6L6HzHU8AACAASURBVDgZ\nXzCIk0ziFhd3CWz0tPRyZmEDLIVOgjge5cepYzoBqbx1YNGs6tB0/RBdnYOum5WxXQ3k8rFZwiwk\n21eHVaAswCJwwMJFNLOZm7FddXR7zHHtRBxgk9nu+9iAVOcSLwHrkJ/yI2Z/fbF97lSgpD9d9XNG\nIclnPxCKx/EZZS11mk1AfSRCYzTKu5EIm4JBqrHzmcQbb5KsrKRt61Zy1qyhZV6MHm/U0rh6NbnN\n4trjHXH8WwW6WbA3Ldd23Dh+ZaDU+8fHjoTjOB5VxXGcQXTV0Nk/9o//aDhphymdFzL2t2NFEAQJ\n5m537pd/eiKZoUK6yvt2mqDtGxbpM2zYMC677DK77VpHqmogQVgbMrVyEDk/Nd69zDbbsSRfncUr\nVEDhDaYF0obZG9h4zEYD2wF+jXDdXoKhzw+1mvWHm2N53AE/tAxqkQbgz5j11ACrWAqIQdXIw4/1\nj1om0qxdP8Q4K6nKZIQXuuViYP3AbhEhWX/QeiYvWwEpuOOmBiKhCJFghJbOFnqu387m3M082e1J\n6pJ1PLL7EeYNjJFzTYw28+vv9MuE35cGfyrN+70hf9o0OsPZ7D2yvyTEjKS9ytor70153VrpUh+a\nOXHVeFQvQQdSeeuOrbbp8urzQtjgLZOflkln0Kcjs4qmiUA9Ni1Q6jo65dLkqT4KyhFXNK0mVVvM\n5e+GXHZFq3RmbCcf8adbEaSW8t20fcA2LHhop/ksC3lsVSVZr2vaJBudYBA3mSTb0A6KLr2UrDPP\n9Pj3rZs2kTt8OImQrZb6f/E7IvXQrWofWR1CKQBRbW7PliprMigKzk4wSOXHqLfuH3a4rns/8DDS\nB/UB13Xvd133gU+y7hcueAveDDNegjvKyvjWgtEsOLOWgvHjWX3DCFIBOP9hu+wPrsmDKCzcXM4e\nYOHEYs7dBztNM+CaQkn2Lrj9CjgUbj17PLuA85vO54Uzz2TIYivq0gf4/nqoKYIxj57kleKPB/ga\njJg5kMvn3c6F0y+n0giaHDO9DycCY4pOohnYd6WoHAFElgPfEm2RYuDCv17OFatXc/7VKznijaMh\nF34ehicGwH0j7+K2i87ktHth+VHLGdcCG8NhEoIcJafDR+oCmPO9GHvPPFPk/CPIxnsjhj6MOJCM\nhlxjfnES/Bl4AXJufVa4gEeZifa3gIlw30N3sfEH62XdALx5+BapVA1ArGVvZNatKZ4spDKnqag2\n4Ei47pmpfCt9msz634alS04S2cwd8N54xJG2IPDHl6Hw/UKmPQhsg8S0abAFCdq6Z5xLH6yEk2r1\nmhszsXYi59ecL8fUB4F17oQ9ExFFj0F42MDy6TFYBX+/+nipFFYDBXDxU3Di1ABT711DwwENTJu8\ngcDMANcUXwP5sPyM5UxYs4a9N5Rzf/f7+fU8+NHMGC8ctJFASrhR2siy86D+dNTVWcx+fT2B1X8i\nWFKCLxKho6rKo+g1I8ZflRfB4tiViJ3EJkg1S6eOax3CedOgT79rx1L+NEDiQ4+FOp8QNluoPLS4\neZT0lckHyMY6USVFx7HzAxcLA/FjETxZ5nLvQOYwqrKpsEntMddgjn0QQgt5DXkknkWc105znJny\n0NofV/vn5APBZNK7TimEIO8mEpLlTSapjEZpRvI9/nCYtOkv1Aj4iotpfvFFAGrvuYcDa3M5ZndP\nOHQQBXvF1fuA1Jo15J9wAp/lSLmpT+31OY3rEKZQf8dxViLtCf85Jmz/2D/+J8MoQK/tt1ZQOLth\nyjLhjr9+yusWA65JP8A9zsUd+4+cstdee4177rkH5zfGwbyCGKVeSKBUg3DY1YAXIQZH68kqhqXY\nNc1igc0+HQrOL2T77okuR95+pBg8NbiD4PVe0s6HfUC1qGN6waeqWUbo2mgzFytLqAGdcTJ5TXni\nU/NhdNtooTIcYpb/MTZJ2g1W5a9iZiAm/jMI7kKXeybfg3u2ixt0cX/q8trd13BCzxNYtagGcuGq\nRx4Rh3IkfKvwRC458BJogNaby732AB1Z0hdMVQl7vw+u30dWB/SqSZNdWip9xyIRj/eWVVQEkQj+\naNQLRprpynFTzrciUNR3AizHVqA+jBBxsMGXVsiUz4bZjnZvcDI+14Rn5ktzyFq505YAHRn/q89T\nSGIm791ntq8VsxC2AbkiWT4w594ZDtMbeRQrzWevmWN1zPp5GdvvAE8Upv2tt0hVV5OsqsJngmRf\nWLx0VlER6XgcXyhE7fjxBKJRsktLyTp4ENntkKisJFlZiS8YJLCvHTeZhFffpPf7whHPaxGIrOMK\naiUQjYqK6O7dfJbjS+4fAXAcZzzwKuIrcRznCMdxVn+Sdb9wwRsAf4YhW7dy/6z1hLPkAZvgP47Z\nX4mx4myxp+4EaPl2CxwMMwMx7jay/48WQOuit7hkyUmEgaZolPgtd0MlXGqqYyXBAaQOH8Txr8Bp\nS07icKSodNtS0QRe1/tpngBO7XYis+64GN8ZPnYcKBK7u4/aRslq+OX0cmp61nDMU3LIl7cbWNjC\ncqYB718MG0vhgeHDOed5iI7O99q7tXdrp/pkmD29D2+bz65fso5VP4KbZ4/h5iXlzFkV51ngvjki\nXRl4F3gTpgx4VFY4Fwv2bsc6qg4kRQOsK3iaRW+Us2BalCHAjc8CNZDfCkNeHwb7oO+b/a2EUhbi\nHJoxeDSzTeW8aVRRjZU/ymD2rp/yDPSE606/hXWHPk3d94CecMCvgFOh9jtIQfj70HBcA3e9fBXs\nhUunLLb4ALBcvWbEkYG1csYS3x+4n5XRlXJsreacz4C+r8ETyrKpQxqergSGwMrESinvnAaDnxkM\n2ZAKp+AxqLoCeAtSo1NEbn8SJgL3wqB7wbk2xoKJ8N0NcphvHrDFa2KpwVsgJa0CsoqKpPmowXpr\n00p/NNqlB4zKDkNXIZF2bCUt812dTQJJCI83l0sDIHUse7GZSCVFa2ClaFcNvGqwcsqdGdv34RVL\nPVniFiwkRL/rhkXn6PHrttoz3hXzr0RwI7TqVSAxy1Uj8fsb5vg6EaTRNuRx6G5eaWS+ssn8r1nU\nfKRKT9j2uNSKaKKiwuOn+RChk466OuLr1jEAmR/1q6oip6KCZGUl2aWlnipaqC1Ne65PVLuAzuJi\n6v9FQ9//eDif4utzGK7rrkWae1yI/AKHu6677vM5mv3jsxrOEw7OfQ7O48IRc/b+lx+49YgR2I08\n69GM74KIL1Ejlf0Pa3vj8MMP5+ahN0MEnA2OzYKpeNdXsbN6JRmr4e5GVzKvwgrUX+qrB9Jax4zN\nUzfLrH0oFD5byPm7zocfYIVPVIWiGVuq2YMYsFwkqASbZVMycoZkcEvPFjmOaljfdz0zd5ZbwvMz\nMDowWpKfffAiksCjARsYfmiMvGwJwbSfDYA73wTBI+Rt/hWLuOPyO3B/6Hq9v1IBUZn0d0oFLhWQ\n6ozCKEGglJ3xOIF+/UgnEgSLi+Vzo+CsQ6tmms9V2oH6x8zXD7FqkElsQKXKiplqzpm+ryXjc7CJ\nU/1fBcD0GFyzjCZHP/ye0XmGzDBBe9MpQEqFx/Q4GrBQzwazT18wSE0wyHbkkWhECqj15m/Nb6uC\nZhgYFI/TsXo1fkMrUDERFVPTa97+1lukEwmvUhcqLSX519fwbd9F05o1FIwfT2c8TtPTT5MViUg1\nz7UQykRI7m+islJEaB58EDeZlOD+sxpfYv+YMa5DyER7AVzXfZUuVuLjh+O6/5iF+jyG4ziu67qs\nceRq/ua2iYR8IYbUdWfK1TEqCsQ+n7ATeBzcK8GJA7lw/a3lzBkT47YnypkyK0Z7CIbPGUo0J8ro\npa/jBIPkjxrFlcc8yPNXSlFpUBLeDsLFS07izbrXqDmohllt5Rw8OUYYwRQ331rOvFNj8AAwHCsB\nFIG7N5dz2YCYOI5K4Puw7QBYtbCc6YEYL02D58vKSG/dyozngcFw99JyfrwoRlYLVOdJbDHsNqAJ\nCr8fYXdxPTlpYDc8PADObjH7ywf2QuE9hTQsapActvY+1Jm5C0esOZpX616m4goofRfqDpTC29+j\nUdZUV/PCVigMR2jsv5d0RxraoO/O/uw5YJcFTtdjtXnTiJXQvxU732j2GaFrecbU7S+56WruXHsz\nWX+FPo/0oaZHjWxjqLmw2Qhk5DEkY6oBo6aaNGhrxTqRbLPPbkhgWYBNvZXIcZSkBzP4TyWs/eZa\nWAObZsPwl4A8mPz8ZFZXr2ZHwQ5GJEew8fCNUAEvTpNDCAKBdxAlsjlwSz78acp5PH7QQyzbMY1L\ncxfz53lw4ezBbLtgG7Eh0HprOYEUFDbgwSg7ssAfb6ezrg5K+tO55U1aXnyRdH29p3ilwYbCG8FC\nFMNYww/WtoSwUr4vIIHX+RnrZXLUFWqSyPhcnYUWaVuRAElFSOJYIRN1AB3m8qqyl74bETXvkVEH\nqHMkzSXocYAlbrea4xiA5clpFfIDJIjKPOcsJFGsAqdNSBVun/l+GPBwMEg4maQJCI8ZQzqRIKuo\niFR1NW1bthCIRklVV1OUTHqkbEUQRegqsazCL32xTrQjGKTn1J/QsXMXex95BDeZ9O7bdGM/HcfB\ndd1PxRU4juMy9dPYkhm38Kkd2ycdjuP80XXdb/yrz/aPTzbUP35RhnOdw8WRi1nee7n8ELchvrAv\n8Da4P/nsjtV5xjzKI4DfIT9ixYkHsZUr7XmiWaIguMf843E5ex3Bo90HXIHg2HqZ7XRDsrLdsdAC\nncEnsaUSzXipodLdKBTBMe8NiI/9EfAUDP37UF4/6nVBs2xCjOGBiJHegc2aDcKqWyoRuRu2xKPR\nTKafBolg9mErgblIeeYVcBfba+HcbSqCl306923JqFHkDBtGbWkBOW221xuIwIUKQiWDUrlJ79gl\n/TYTCa8PmY6O+nppLRCPQySCY3xpJsxRYYQq9nkLcAm2KJnpUzUW1iqYJiU1P6xVtJaM7SrFP431\nbRrLZ6JZtOtD5vdgA0z1PQnk9mnQptXAZDBIVjKJG4kQqq/35goekiQapbO6mm7INCwf8ZnaBkiT\nsxpsNgOpSIRc0zO5Mx4n+5BDAEksq3hJorKSZFUVnfE4WZEIoZIS0okECaOgHTIBtS8clsobkNq0\nCTcSIX/MGJq+NohwHLJ21tL+1ltkb9hA+8iRXGOQLPAF9pGfg3/U4TjOS67rHuM4zquu6x5hPtvi\nuu6wf7XuF67yNs44qJAvRHVbNVMuEj5X6S/h2TvLYTtc65Zz5Z2TRZO/ARZNulMMnRk/n1nOb69/\nnbWHrWXWfdXM3F5F6MEH+b1p41ICcB+cMnswc695mp2LanjlIug/Wfb15JmXM+1hmPd+TAzf6WbD\nbQiMsAku+3pMyh97gbPgtgPgqbnlTD9BtnEYUP7drVwJ7Dse7/huLiuDhWKby8BTwHyvuJ6ca2CP\nD54bAGc/BLV5SBbOQCRevalBrMBxyHuGQSzcF2HDucKxew64dcp4AHZOmkTv6mpe2CjbaDignnTC\nREQ+2NPDNJtR69YDIV8HEIdViLVwil3QdgIZal2eJGAZ3LPqZrLWApug5owaOArOT51P+wlmuych\nGdOvI5U43X4KKb90IpGtdmcGsUr55rt8bImoOx6mrrJ+G2vb18JjcKMGblHgPVh6xlJ2DNwB02Dj\nqRvFMl8kWjBT77iYK+64mFNXnQqjYOzSsTBuHI8PeQiOAP/ixczrVs6xN0vPm51DYN+d5Z7SUkMh\nTJoXoyMLGm+/WxxPiSi9+MNhAtEo+ePGQSTiVdDAVt5UCUuNdCahWY12O1ZS/3AEOavyyQksWVud\njyaF1RVnBl8qAALWuWTjcfjpQB65fYjzi2OrawrpyNwudEXrgKWEgG2MqhL7ykVozfi+A4usVTK6\nFn//DlRg6ZeqAdACPAXifEwftqTpMaPOX50WyJwnzxx/ZzjsCcHsNdvuQdesbCYhPfnOduIPPkie\n6R8HNnD7TIbvU3z9F4fjODmO40SAno7jFGa8ipFE8f7xv2Qsr18uf7yLJftsAfbCbRMmfGb7dU/8\n0O+uHovaCCKGQREbWnrhYwK3rY4YpsOBSYjfORjbYLsOMVitWGnBODZIVHiBVvYcugZPGhGof1Pf\nGQTeh9cPeF2yVqrw3IaoKj0HM+vLhce9F+nf+ppZJhfL984sBSnWTks+EWT9AVBYXSjHplCfKDhT\nM+arw+V1Yyyz8ey/P3KO/zrVQwsASWw25+P5y9Cr20mEJHDL6pDP/EVFhA4dIgImhqPlhEKkqqsF\nPREM4kSjOKGQBEZG6Vd9XhPW/6UQDTUn49IkM77TpKCOzC5D0JULBxaWn0DmbVoBBDv9UR+cQh7H\nzMBN+XNK1dfYXtEnKgQaAAqSSTrDYbLr6z3/qcXcFNBZXe0lGjXxuTMYpM3s18VSHOrDYTqLi/Eb\nNJA27fb66fl9ovLp9+Hv1k2E1UzrBh2+cJi84cMJlpTQtnUrbVu3khWJ4CYSuJEIvnCYQL9+9Hij\nlkAKWl95BV8oRPvIkXzm40voHz9i/N1xnAuALNNOZynSMe1fjs//0P/JuLL8SfgLLC8QcYuFu2PQ\nE24wQRYHQrInlN93BdTCd6+PwQxIvf4mK5eWe7/CWXeX8/ykSZyyUCat24Fl70zjb/O3AcJ1/upT\n8sN689AFHPboXdx4rZGGeh4mb5jM3HfLxYgXmIP7GzLzbwLWwJQZ8vHgpwZDqeG+nSif/RagFnot\nkuO+ZdM47up2N85t0DlWljngp4WM6XMSfRfK/++cBz13Y2f1rTBQpTYzZ8ZGSrChTz2/NPu89A9w\n+OrVFAIXrVhBX8A3xw81cPrU8yyguxNxJpq1a0eeiH1m24ofUOsGMsPV8kwIm/rZhwRKCaQSWQJ8\nT46NTliZXEn2HxF99ycQ7J/f/B9EgraTsVZV4SKqFwx2Vq8Ris6u/UjrhloYmBrIQGcgM1T94gMk\nQ/s+Ag15BHHIlcArMPlZWN6ynOVtyzn+6Wbu3ljOyTPO4213KFTB3JfL+fF7MLdbjFVXw9W/zmbA\n9VCfbqR7o1TdIrVpVgJOdS1zZsTZa6ACgUSatIHttVdUyDmEw7QALcGgB41QaX299BqUaZUqE7ef\nQnrSP4aFPwawHDkN9NTYK8xRoSGaAcw2l1h7zai2TCYkJIg4hMyMnsIgNThUGEsttuk45tFQR9KA\nlThWkVDNFaTMfg9CHinVwFHCtXIICsxn3c1tHIBAKkciBOnOujryR44kVFxM+IzT8H/9aK/i1lFf\nT9BUyzQTC9AeDFKXcbyNQNaYMV4j73wgVFqKPxwmeNAgQJ3/fZ+94fySBm/AxUgNoRSrnPVXpPnH\nnf/1o9k/PtXhPOzgXOd4Sg15r+R5mY4zGs+Ag2FEUHB0Hn/ssxiVwEbEEIDXp8xThNJqVxDIAvfr\n/xi4jbz3eEb8ZTS8CPwKkQ0owZbitawClrAUwAZ2yqXTaptm4VoRQ9MNK8uvxC2drT+EbTsQoStV\noAkYCguTMeHWgSRUNUBU9Q4/tgdMJpxDS0pteMpPDYc0iIE+GAkOAY4G5wYHZ7XDHccAz8PMQ2Pc\nPWUKzo3/2b1rKBS13vxmqbp1axKBi1CGZFFWh8DuQCCB6UaZePhMwjNYXEzOsGGESktF0CQYFG5c\ncbEX4AWiUe+Wa3DWgnDCd2NvUabIpuactVCpUx8NxFTZWSmNLcgtUTRKa8Z6WtUD63/Vv2VSH7RL\nQwjxO5hlQmb7DcGgp+6cb4InFQvtQG5jf2T6lQ6HPUXLFJCVTLILeQy1MtgD6B2P06eqiuzSUpKV\nlXTU1ZF33NdpPaw/+w7pKY27/T6czrQEY8kkHfX1pLZu9RQj27Zu9SCWvnCYfBOUtVdUEKivJ1lV\nRbKyEqdPT5yWduHPJRIkq6r+5TPyH48vp3/88LgCqfUkEKvQBEz5p2uY8YWDTQK0Ow73IvP7Y38O\nvAWLfnY30y+/jBtvhMVVERqW19N2I+S8A7ccBFMboK5QJrYnvwljfzeWtUeuhZ1w3oZJPLR0BdwO\n1+aV887favnKoJ605sK8XjEeuADqxozBWbeOujvLWTgkJob3KbySxNzCcuYFY/IrH4xXaRrx9ghu\nvHYjaeCEOAyODWbu/G10AhOA7p1wmx+mzAKOgL4H92fP5l0S2FXA/SfAxEZ4sDtc8ARcW1XOj66K\nkQQOehZJ9RyMrThlqEn6/D7S7WmxAPOB2UAVVA+Ge4NB5m5M0jcgFaA9jbsEH5iDBC+FZjttWGyd\n4u5UW7cbVkKpG7axiMooaQOxXKycoVHlGPOXk1hXJq0YqEMcVAQpo6hD8yOZwL5IFDIAwfSr7H8T\nthr4AVYxK1NxMherhpFnjre7HMP8inLacmBBcwy+D7ctL+cb18f4zuzBbDtum/Dkas31DcHY98ay\nNm8tczvLyf1JjAQw52lYtLmc6fkxsZ7b4LaWclquj+HeVI4vLU0qk8EMtaWAQEGyW9OkqqvxhcO0\nbdlCqrpaGmOGw6STSU8sQ/2+Qiq1EpVjXprFU8663oIwNlhSh5GJ2FHDbx6XLn3hFF6y1+xDk9Xq\n/JRDljSXtR0rpKZVNg3yFDquVTellmTSJpSFpuIn7eY2a2WrAHlMFNKi59tqXr3N/wea49httuk3\nt/A1c07h2eUEEmnaKyqIr1tHTlkZbRs2eElypYoEzHk0hsMQj3vft4XD9Db3ZVc4TCAeJ2LuT5E5\npwmIcNxPM2znpw4J+em/Xu4Tj5s+F9jkla7r3vGhz7Jd123/uHX2j48fnxZs0pnmwBHgnv/vbct5\n2IEqcH/q4tziiI2OI7bRxaMVzAqUs6Az9rENp/+T4ZQ7AiMchBiSOBbnrJg3rX51fnTg5vzNgXYY\nsWU0Gw9dL0akHsFoqxpFJowhaPalvyI1vAnEkGiWTdUvdBsF2Iqdqkip4VToQYB/JFeVID73HWzk\noEZZFaL8WHqB8vPU6OpxYZbvjoftG7FzBBuP2yjnuwEWF5QzrUdMjrMbLK4q5ynfX0imk2yY/YmK\nAP8wnDUOc98sx98p8Eht1q2VNl/a0gwUQqkc4466OnxGHVGDCK9alEx6LQUy+XAd9fU4wSDBZJIU\n4kcKsI+BBjb6UtilDg22NHGoFTpFqKpP85nPfOEwoXjcEyPRXLjPcNxDWAVJBzy+tRMK4YvHvcRl\nJh1T95tEfFsc6+M0AKzGUh20+Krn4kd+huo/k8h0qgDYW1bm9dLr+ObRgMxb2p74A/knnICbSAi9\nw/TaC48ZQ3tFBVmRiJcEdZNJT3myddMmOuNxul91Gc2//q13L/KSSU4A/miCvM8UNvlp+cjPwT8C\nOI6TBTzjuu6Yf2f9zz/u/Bfj+YvgvIZJHNV0GXwbZuyEmcX1kAdH/kFgoVM3A/Vw6s9Gc/JcIAue\nmLHWawr30PErYBfUzIQbdsZ4aMAK+s2KMc8vlbAsoGPdOqauhauusP3hyEUCtd4wLz8mOHWQzFUO\nkAcbT9zI8abfW3sY6i9q4Lu/h90GIxzzQ82hC3jGtKe9dNQ+Nk+EdwyAaKLp2PjCHRcDMOOqGAfE\n4KDH5PsXjkEyjCrV1wi+tA8chLfmk884yBxbkdRc5z6bpP4o2LNpF4lubXAD0ASnTztPLEUcsRSN\n2Jm8WpN8ZGYdMO+tiOPqjs34KSFIISWKMegFfADrTnlaLGIhApZSS1NmzkObiEfl/Gky1zUXcX57\nsNyFd7FZzWbEIr4ku7v5mXKLP3waKieY8+gJ1/w0xtzJMRgGi4bczZSjYpS9CW/P3wZN8NrVsOCX\nURgIz10Aa5vXQi7MGxKj/BWYY+QOd3drhcPgle/A2PRY/pDzKrNugdl7YgRSEA9Da64EbjltorzU\nkQWt+T58A/vjD4fJGTaM3OHD6XHWWeQMG0b+yJFCzI5G8UejXjVIs4Lq5/fQtdeLHylr/B4rDqJZ\nOLB9aDCXSmNyzUqqkEi9uayaDNYklDojhYloQKhEbt22aa3kzRsy5kpdpJy1IWkiY90ObHu+XPO3\nQlKKsI9iE9bBNiKPkgqsFGGrcrv1+EulWp7I8ZGOx+k+fjyJigp8kQg+JHdQgE2IJwGMI/UhAeLx\n8TjHIPH8cSZwU6SSQTqxNON8P7Px5a286bjwIz7792aC+8enO179D9cvhhnLpgudIB+B/ith1PiB\nBcmYhS7+G8NZ5OAs+vj51MK95ZKpDdC1AUVmxazjowM3b2TDxl7rZZ0qRIJfyUeZSkxqQBV7nkn+\nVdhiJ1bMJM/8r1muvVgCMoghCiMGpxsWktANQaIcgPi9GvOZiSAC7wfkOicQ+EEOMltXopWiYYJ4\ntIblV5q/eyHVyjdgY+lGiQJagBKYVhQj8G6Aa5xrcL/rMm1AxhzoE4xpy6YRvDrI8QuP58wlZzLn\njukMfGEgK+sf8/huqYAkNzuyRNxLGzsHk/Jd2gftuT7SRQX4DhlE1oD+8jK94Nxk0gvk9DNVSwyV\nlnoiGknTU/Vxc1kyedmqDqmf6VAfqMAeReA2Ab7iYs+/anUuC/DH4158DwLDzyoutpL8GNhiMCg+\nOpkkN5kUJWrTBsGHQP4DZWUkTAVR8wRaQdOCqvqbvsjjo+cSomuDcA309HzVj2cVFUlQOeJofGkI\nxw2EtbSUzro6Qa/E4/gqKvAbpJA2UAcJlNsrKuhcs4Yeq1fTv7qaPvE4Tct+TrKqCieZxJ9MkohG\n+eMN5XTU13cJ3D6T8eX2j7iu2wGkHcfp/u+s/4UM3rJdl6ZIhGOfguN3w7pef+DEtbBvlHx/TSe0\nz4Y3j9oCv8DDnr344/XeNnLq4MFLEaN1EPAU9FljvpwG3wGW7ZwGzXDBnaa91y7ofT222tQTmS32\nB3KhPojM/nojxGFg4OqB7J4nVbfsh+SzZc9PY+b3quj+EJTPgFlvzOJlYOeZ0M0YoIOeAOLwrcWi\nJrn80OU8MAFyX4BN5TCibjT0gOMqkIZWplzg62aqbUnwZflgNzT1xOis1QAAIABJREFURDKGe2T/\nZ+6D0x87j4umnEfuaXk0FNVLVa47PD5PDjLXZ9JyA7DKWphzr6GLI2YgEmips+qPZAZV7rAnVsbf\nRWCKmk7S6lxvs14tVvq4Ue4bA5GqYH85xi4NUgqQmXpvrOZ9AhgGZ7x6BlcfEpNt5UBqCZTsBsbA\njSMhOwnBZ4F1MP3Jy1gxQe7b0gsuYNaecgLArB9Ww9tCv2teAHsuQqx+d7hxGPAduP6Kpdx6+3i+\n+ndY667lWxuzeWeq3I/J18YYdU2Mje0yI0oF8NQnc9oMzj+ZJGGMoTqgjvp6AtEoucOH4wuHSUej\npMJhry+Ncs/USCvcw0HwaGOwAVUmJ07llFXBWiGZyqVTFUoVRlMREdWJyXwpOidljkergPVYSKVm\n/RRxG0BieoVWdiIBj7Yp0MKxBpPaPsGHbTR+IJIz0b53mtnchsw/dmATy/2RQKs/Ar1JBYA3thMw\n/Ihcg9fXQFbb/yl/zjXOVTOu6iQ1Aa6dKFRktZH/0vi0lLT+y/lEx3H6Oo5zFJDjOM6RjuMcZd6P\nx+rh7R//5eFscHBe+M8fBvdslxFvj2BRR0yAsEMyvswBcmFEywgUj9x3Rl/Z/60OzspPvn93+j8G\nXdfdNh3nZQemwcxhMa8PGgOwOG6ws/B/NnaZ12GILxsEnIaFJ2gWTDNR6s/82GofiCFTw6FwCRB/\npUoXup5KAIKFNfoRA9OM+NF1iJGqwwalvYDukPpqSoxed2yV7gPER/ZEgkQNLBNyThffi8wNdoB7\no4sbc3HPMhdnOF4JJ9UtxeJLpXWS+wOX52c+/4mqbrPvnE7vX29gXq+pVLVUsWrQKnLaYBrnsu3r\n2wj8bTuBX/2B7R07PWVmkApcR5a8MitxmVBKt61dKj19ehIsKSEQjeILh3GCQTqNKqK/qEgaThcV\nkU4mySoqojMY5AwsPF79jPLNM2GTGpCpD1QaQEdpKelwmGRVlccySRv/TCSCG4l4ysadSD8110AF\ns8z3AMGSEgiHPdAQ1dXkDBsmvrKsjKxIhGBJCZ2mcpVZ0PWaZGY8Ch3II9ANmUbpY5UOh0kjU8D3\nkcdHe8oXAO66dbiJBE5LOwnj5Dr94DtkEL6Bgs7KLi2VHIPhveWUleHPECjxG7imPl5BpJKo8M50\nOIybUQ39zMfn4B8dx7nOcZxdjuO8al4n/Ydn0QJsdRxnheM4S83rjn+5Fl/Q4C1z9K3vT015DY+O\nFc+/dO4k5veKkN2IPJWnmQX3gu8upH/ZTuA1qJlXTkp0O8i9MI8j9h4throdcs0sbNPFwDhwqmBR\nTTnkQZ8NfeTLXsivqQJIQeRBs69aZIbZDjMX7gDg12G49aHxXHVwnEtd0z/uG9B+owiIzJoP5Tef\nzyik+BSbXcbiCfC+/z2xHgXwgyegb/f+DN8LG09fLxk4lT422cR02li2jIYma4FbZo9j6wHQ2QN4\nER6fJEFaa9hM469Hfs35QC60d2sDF06/+jxohCOePhp2w3lzJ1lgt864W7Ez+lbE6TUjTmEw4pCU\ndVuJDerykMihFwJ9rDT/7zL/h802NmNLS8phazXLazD3JhLElSKCLZ2wqnSViJ8YQlUjiFVZCTN+\nCfwZRr80WgLXJ2DSncCRcOVZD7JgcIzDnkeucRkEZthK1MRdE2EZbFp8Bnf8oZy7IhF+8svVUAyF\njYV0rF4tRvxo6Tn+FlDZUkltj07SPmjLkSAuHhZH5ORkw/FHSwYxkSBYUkKwuNiDgPjDYYLFxQSi\nUYhEaAH2hsNegKUyx6oauQ2pvClEUoO3TFGSLGzwpBm9BmxPVi1+JrGB3j6sYW5D5hxtGdvSgM5B\nnIQ+EkHz3onMHxSaqYGZ6YnuNRRXhGsSy5PLMo+JCpjqfrtjkbKaKGtHEuXvIHQV7dMWPuVkAIIH\nDRLFSeNAnU2bCCHznL3BILVYemZuMukpheVhC9F9seirTBGXTsQhXvUFgZt/AcdYBFXaD7jZ/H0z\nMBWY+Tke1//JEbw6SPBqkzLJAo4FBhn4438yGmF0y2jBKysJaC/QDBvzNkoyrhZqetZwq1GQ5n2p\nqB2/8PhPto8hUDyrGOfX0oZAkTKKqCGFGK0+WM6YSeQBHzkxc3Y5OG9lfFGL+KO3kMobci7uCS7u\naGnk7Y52LWThMLOPntjOy2rA1Agr0Vj9YmbzrTosESsH61t7mfW+iRim3lg8uxpgzRwp1j6MTSYr\nZDIHmdU3mX1HkP50B4Nzu4Nzi4Nzl8Pod0dzx/wLZF9RuNX991owzr9iEde8+CLdqvbxw6UNnLH9\nDB5NyIV0x7pc9cgj7L30ZFbuXslz7X+hMb+zi2/UQKIjCxq72/YBySB0hgWs6E+lyYpEPDGTrKIi\nrxecLxj0fKjPcOL8ySSP+P209uolQY8RClO4pOq5eIJg4TBuMCjfFxd7wYtCBhORiCBA4nGcqEzI\n/EVFwgUzyA0v3k8kpKG1OUYdrcEgLcEgrpHqDw4fTqdJ5iYrKwmPH08iGiVhgjBFwbTRhSnjcb/9\n2GSnPu7q67Ox/WF3BINUhcMihFpSQrx3Nr60XGsQXr4vjcd5C5SWkl1aKsqfptrZUVeHEwoRrK4m\njC3sglQO0yY4Tcfj5I0fT3LZr0Rt+3/ncIFbXNc9wrye/g+39xhwLSLhtwnLEf+X4wsbvP1+ysHw\nZ7hn2C7m3l9OLbAKmDxhBQDnTZ3E9mwkiHIQwYp6rNjGSLj6wBiBvwMvQuv8Fl4d8DK0wnk/ncSj\n3eHSsxdTBlQOxlNhWnM11BxRI1CQQ5FZHFgISBQJAJPAMfD6nZPpt1nsJ8DcXyQZnD2YU/NPZdZv\ny8neCROuh+tnw/irVwJw88Jyyv+4lc6FxmCuQoKYTthTu0v+V2ZIJgZNZ7Uu0AjplRLInTkdZj/0\nZ4YC4YY8eBfSw+Dxmx9i+uELIBfG9B4HBTDiF6OZfsQC5hQvgWp4/NyHqB8Ad5/7MntK4aGfr2DE\nYyMgG75122m22tYNsRLZ5vz1eN43x1drjvlgbD3fR1d83aFIiWQklp+wEwmg2rHBXp65zv3grseu\nYubOcuaXR6Si1wC8B+3j4InxQDOsGSv3yQfihH1m+wWwvmy9gLUuRrT1n0CcX42ogD7zI8Qa9odh\nt8BVN58vvQWPg+HTVvHqW83MXlEPC2H6A+XcdFMDTbeXU9rhY+Kuiay542Iu/yksnb+N3xevpeXa\nGDmmiqlG0m1rJ5QA38D++MJhUrt3k47HCRYXEyopwU0kPIXEznhcgpQPwTK0+hRHCpXHYuEVmuDV\njgs1GY+PCqYpckeNumby9DY0YatvbeYWfGCW3YcVMdN1tTqocv8Bc2wRrBMBqyypXDdFIO3Diq/p\n46XUEZ9ZRmkaqtCt10KF7XzmeDcCbdEobS+J2mpHlvTca3jwQZo3bMAdPpzQBRfgAwq/+12PJlJi\njkn5bwF5DLzG50pJ2TZyJG2TJnWBh37m40sKm3Rd9wGD4b/Qdd0xGa/xrus+9t89mv0jeXOy6wc9\n/ufbcBY4wpUzY0yP4yAf1vdbbxN8eciPdCBQD4GXAtxVcxXsgqmLsRxrUy1zbvhkweOOgh3mRMwH\nKaT0rrPxIiSTpPjqTL34j2NX5oN7iitOOwTucBcOhXdnv4s7wv1IqKU71hWj+yji8xSu2Q1riDLV\nkJWwq78/xeb1QIzOB1jCUiYloBorHbwHS7oyNA0CMLZprOwjbrazC3gdSaRqRbAvuONc3NNdXJ+L\nO96VbZfKMuvz1nPlVx+U+/IO/MSoejs3SIX0fypYcvmyZcy5Ms6mvZvY3LiZyxcs8r678dJFcAas\n/9Z6+j39Nr60CJjoaM+2aJUs4zi0ApcK+UiFfKSTSdxkUnqRJRIeBy4QjXpoFl84LH9HIpwxcCC5\nH3wg/rG+XrTNwmGcaBQ3EiGrrMzbf1Yk4tEaFLGh3C6Q6pI/GvUCm2BJCVmRiAR4xcW0a3Bnls0u\nLSUYjUrVKpHwFKf1+3RG/zonFKIzHhdIYjxOyASDSpFU/5qD+ENFuuRhhcBT4AWR6ruU7+6EQuSP\nHElWcTEdXx3iXffujSZ4rqykY+cunK99hcCoowmPEfpVdmkp/kiE1KZN0tg7GPQCXtXk6QDaN22S\nDc4pJ3f4cO+c/yvj8/OPnxqexXXd+xGppJeM77zfdd0HPsm6X9jgDWBE3ggmxGFeaYxLX4FzN8Bt\nE2BafT0XrFjBn0BSEWth0R3lcALSS0xTFX3hkp9cLX9/BzFsF8KIRIIFvxHSZqgKSm4D/grTkzFO\nbzBwwj8gssedSJYtQ9e9pGCw/EqegqUdS6EdTnwQfvLd1V6w9+SPnmTa5BjXPlYOx0J4bjnnrpbY\nJrcV+DVkz4yx+ajN3PTb4dBsmlj3NMcawgaibdjgUUsEwKrvA3Phks1XM69Q6ietG1tgN1w29mr+\n7ocHfrMM4rCuZg3X58PTP17PopdmMXvXVG66YDij/zia3WbTSYAmeO7ajdT2gJcm/cnq3KaRkkkR\n5O7Lk1+ukrzfxcJG9BjbEGekag/vI4FaHJH7VLKS9uhR55yFZDffB8bB6bffzsJIjNmP1DN6yWjw\nwR3HwVmxU5mwRvYz7vew6RiI7AaOg9oLoHBboQiSHIVEM2/KNecHZtsheUxOfA7SX5NjWjoVVjas\npOTJt+nzlz7MeAkOf/QuBr40ENJwwHtwURX0ebedZVlp7h9xP1v2beGXN8FJc+HBk7cIRt3AQNI+\n4b+lCrJJ+6Dj7e2ESkrIPuIrnmxvR10dnfE4iYoKz9D7IhHPyWhw1orcigSi+bIeCcjaMz7XQE25\ncrsiEU9EpANIhMMef04F0sBSGtXo67xEIYutiN9X9ax6bI8ahUVqRaw6Y5uZ21AIS5NZrhD5SWkx\nVwNILbz6sdAW5akptl8rcWlsBjBYXCzQmrd30ZwvjV8LJn6PQDRK3qhR0pA7GCT+3HO0Yed3Sk1R\n+ucrSMunPRmPZKq6muYVKwiVlRHBBo+f6fiSBm86XNd91HGcbzuO81PHcebo6/M5mv+7w1lq5hnF\nSD63DAl+DrTLlM0tw3my63zE+eOH5ieXIFWbmzI+34X8AGuxVAMQiF+/FJd/43YKAyZqM4oOgzcM\nlv8/yY/or1g+VzsMrBloq25aVWpCKlDaixSsSkQfpBVA5nhKXs5aR7TdDJpmdXo1DzzwL+ZMzyPB\n53azj2xzDHo+ajAU+tANCzfowEoTKg4drEqV0haysXxzFflSdYoWuPPVS1jbdy0kTC89hS4UYxOo\n3eGuN67yIKs63Jgr+z0Na4C3y3Vz+7s4sx3Z3nbZnzPjk89RnRkOdMIPC8/FveUjgt+R8tmfvx4g\ntOZlXMfCIzOFSxIhQa50ZGj5+9JS1VEhk3Q8TlZRkcAN43Fyhg3DCQYJRKPkDBuGv6iI3+3ZQ2u/\nfmQZREsgGiXbcONCprLU/YILvIAjVV1Ndmmp8MKMLwHxK6p+6QsGSVRWesGJEwoJTDMeh2iU4PDh\nZEUitG3Z4sE7/eGwF+hll5aKgqaBS4JAEXUZgHRpKa3hMD5s77YWuvaLU85eIza40xyCFoI1yHIT\nCeLr1lEwYQL5TWnazDy2JU+usS8UksplJ/jq9tEyoIBAv374w2FaTR83XzhMautWTxm7Est6wVyb\nrA/2ESwuZu8jj9AZjzPrv1F5+/z842THcf7mOM4v/l2+mg7HccYjLOSnzf9HOI6z+hOt+0VUm9SR\ncBzumzaNS4cshk548Ucwed6RfKvwREZMjvHtF5HTPgfSPcG3GnniR8H0Ixew6NxZ0ovtOcRgvYLw\n3w5CDOgaoAby9uTREmmRJ7IMcUo7wXetj/S9aQnIlDSkhKIhwBuIMfw2gv9vRDKBRYhh/DswEFaN\nhe815NG6tQX+BLe+PJ7bhv6NnyzcwZSfI9sfgfDofNhAMYTAUr6GnWmGgSao7CWZmMsmTeLKFSsY\nDBS9C7wJTafAhCUn8f+ueZoLJ03iihUrGDUF5twV4PrfGdz8ILlWjYXQfS5iAS4HHFh0wN1Mr71M\nPtsOfdv6s6fvLnw9fKSb0+DAiN+OZuN562XmrlW5WqzsYRM2qlDMm+rZRswy2tirFqnK7QTehuaJ\nkP9bs9x7sG0SDN6MDfy+gsz4/4bIIiyBkhMGU9l/G33u6UPNwBo6L5XNFa+H5aNh0Z8HU9mwTZyb\nNi09Wu7Z9mNhUAr4f0A7NJwNhSngV7BiErx96AJ+9odbGP7QUYxLHkFDIfR5tZZ+K1bQC7h18Rl8\nZ9oqqsxpZt0gPeCCSSFrO9W10twyw+in43E6myQNljBZN83G5QwbRkddHcmqKsmgBYPkJZMe9aI1\n41HTuNoHpAxhOquiwqpMGjVFXySCv77ek0BWzpgP228mBzuH0McPrJJWD2zGzUUw7gFTIewwjspv\nGqhqEjqZ8UgrgTobq2CZi4VK9sCKtuWZx0V1bpTumEnI9ptbWRMO0z0eF4Xw6VLNTrzxJu0VFXQ7\nyULSm597TvoHbdqEb8wY8tet82Ci/c0y2i9HxU3qgA+Ki0lWVRHCVtgv/JCt+tSVtK79NLZkxg2f\ni9rkcuS2nwDcC5yFZBd/+N88jv8t499Vm3SWOjAOSWRVQ+H4CA0v1kuF7G1wL3QpmytViK3zttr1\n/ujID+F9bPWnD/KDOwTmnwKzr4PBHYPZ1rlNnJHONPPMstXID+q7cOSvjmRz7mbZpv7gAuBOdnGm\nOl0m/M4t5lHNhls/KOcnY2PwAoLQUPRHCNvgK4wNBtvNvlvBHfXR10tbGLjn2u9ra2tpaWmhuLj4\no9e53RzTWWbfW+gKl8zskqyGNAfx6ZnkJQ3slHilGHPFwDVhyETmvJR3X4EY/F6ID8wDeoM7wcVx\nHVgB7g/lfG4sKaFgwgQuP/92AWIZBSj38o9/fpzNjqUvZPhtd9Yne+acGQ7n9zyfoakB7Mht5J7J\n9/zDMjeagChUUkLbt44mq0NUKEMJw78ywVzaJ35T/wfwx9s9nxkqKaF10yZCpaWkqqtxgkGSVVVe\ng+9QSQnv79hBj1698LW04DMBUkd9vRfoAbRt2SJBmekpp+sDnoBH0FT2tKF1VlERHXV1XvI1beCG\n/nDYU8HURtaBaNTrmabHoPsFUdLUYDFVXe1V4XzBIKH6esC21tFHTSttOhVVRG0t9lHSz9QnF/7o\nIhru/bm0zCkupuOKc8hpk+pmW45c62AS/O/sIhCN0vzii/x/9s48vKrq6v+fc+6cm5uE3IRAEjQR\nMIAQhwYLUqtoC2graLW1aKsF+9bWEcdgwbFiTZ2oQ9XWgrWOVVvFnxZwwAlBRFEUJAImQggJGUhy\nM9zxnN8fa+9zLtZWba217+t+njw399x95nP22t+1vuu7csaPp/vxxzEaGzHHjSPV3Eygo0PAowJ0\n/sZGp7B44Q9+INdtxw5iK1Zw2UdE374wNrKRPepC8+Ke9tEwjKeRUeTDbR5ScbFNff8FMPRfsWmG\nYbyB2MgVWUW637Fte+zHrfuFjryBiD3wLeAQWDN9Om/MfYMFs+v49mb46ZUXwF5Qp6Tlk9NxZlcF\nTYPkyX8MpiSmMPG+iaw8ESescFWlyhw+DvoyfUInKMel+U0H6xlLtpetPBVCwMr7yOwS2QdtuDyr\n9xBg8T7cMgWOXwT9m/okCnQm3Hzxu3xw0AfM6cINXXQA96jj07leESSHT+9bzcgn3zONQmDQdli4\naBETO+Ww7H2g7Vvy/4ozlrId+PmiRUxqh/EL4aqrU2J0wAlZFKQQELOXfE8UwB8evAPTY0IGRm+u\nZue+Atz2Xj2cyXdNY9ZpZ7Lqey+IkQnjhnEG46qOgRu20YhgNK6nUnP0W9T3ZsQoHQe5OmRTCEtn\nw8ilSNRskNrmMLjva8hzcT1wBNzxtc1QBvOubYHvw42HHCIlgAw4/VVo2LDZTULXRuHPwBsw/JfA\nE0huwFQYcXEhG3xyT2b3wrXfn0fntg6WH7ucxZkn2RTfQsuBxbxbWsrTN9XSHG/mivkjueJ8H2XA\nDy+tY41/C54tTfTk4XjVUiX5YoDa27ETCXxlZdjJpOPBy5s2jWBVFXYigdXY6OS42Ur+WHvW3kPm\nMrq0EUBS0TICFRXYNTVkVEK1TyVVB6qqsEpLMYH+SASjooJuVWvOUvuJKaNGaamkEUYi9Pn9jsCo\nltjPILkBViwmSdu6eGosRioS2QNgZQ8wOqIXwwVuA8hrpKWTNZjSuXIauOmauJoqaqvtdCB1cfIA\n89xzWTOklZu8fyYwZjTh7x4r+YbA7nvvxff22xhr10pB1RUrnNyAsNrOB1mPYxhX8LSqsZFJSNTc\n5G+B27+l/ZdH3oBDbNs+Bei0bftKxAVV9R87mv/L7V3EKXkcdN7ZwZUttcJuUPbqncHvfPR6yrm2\nd//eYiP62ZN2GYLNQza7dTzAFdNowmViPAhv+N5wWRYgs8ssUJNdMNo+P0tQA8Q+jsbNactF6IJx\nsI+3safY2JNttzil5oD/nWZ/394DuAG88sor3HPPPX9/Jd3acG2dPpcc9b+BDBwaWMZwxUqyueSa\nE66pBzHcenHZuvNJZJ6RRu5XFCfskfPdMLSB8biKIBaB0W5g3GKQd9KJnLFwIfbBNvYZttxHt+7y\n3zTjfkO45zqUo+u0+MC4wsC47OPn2/YvbSK+CDtz+2noa+AWNZn/cEs3NtK3YgVb/K0E40KZTGVF\nYQdCQp80rSzxr4Tl5KB59x2OlUxi+P1OAW8tYW+q2m8Aj7e2smv7dkwF2kCcop7BxWK3VMROq1bq\n9XXzRqPkTppEoKrKoTwGqqqkr4q2ZdejS7e3O/Xo9DJfaSnp9nahYmrbCs5x6micE9lTeXtWMkm/\n348PN6+8HRnK04id1LdI12nVVSG0wKkX8CSTWMkkA6+uwYxECI0bh/mTE9lkbKc3VyJvoQG5xrqs\nUWzFChEmCQVlrhKNSq23QAC7pgb/IYc4tU8TAOr6mIsWkVq0iIFlyxyBk397+2ft4T6I4pv++1Cz\nbfubtm2P+4i/JbZt77JVA+5CRsZ/paVs2/6wDpr1kT0/1L7Q4G3W7NkYoSA5vjCYcN6EJQwEgGfg\n1sUqX+wIqH0WzNfh7JtPl1mYTvfzAxNg+deXs+qgVUxaDVdXw7bB0LnfuZALrfsgNdd04U2QwW4D\nLgdMF9/Q+uQjkIF0X2QA1oAvD+GeB5DBeS84+zGgDHyP+IgrnnrDoM3SfwCJDB6AGICzkIregxFP\nWz2iyNCXdSwm3HXhUhHM2Aglm8HMMwlvEywSQgY/7hM8tgu5HuMuPpWpsekwEw564SDh3T0HaR9c\nukUZcyCQEjETK2a5T4cHSjaWUtA0iBXnLGXxPbeJUdJookldn+2q/251LT5MjYnItXAKjfaoa6Xr\nuk0FXkbUOKJAORyOuh5nQV+13G82wMmXA41w1XURDnr2IKYug6QPLm+Mghcu+uEreB5BcuR0bTkd\nDdQSjqVybuxGPKSXw6p86Lywk5Egs/er4PbLgJEQ/n2Yd6a9w/7GCLxpmHddM5PPq2PVPqvYbG/m\nthtTnHI1/L60lJHhEfSOKxevYixGJhLEsMEaLjEeX2kpiU2bJMHZ7ydUXS2gLZkUIxKN4qmqwlB9\nU0C330+vuoST5FGiExUUVh5HMxIhp6aGHEXhCI0bRyDLm+ytqCD3kEMkAbmyksjkyQTGjcNQCeBG\nRQV2czMpBc7sZFLmeKWl+JDcMk2BjEye7CQ3a6lmHV3U3sFshS/9muiateDmmxXgqmDr1Eedd2bi\nzsWSuCJROu3FnjyZ3ZfX0l8UpKGvge8O+Q5GxqLv4cdIbtlKsqEBT0eHY+zAVfPWNXD1tjQ1UwcQ\ntEqlpoV+bu2fVc76qL//TNMum37DMMqQx/SjvJlfts+41f1yLsaAgfGBIQ5JC279Qy28AVPypnD5\ncXXirFLjs32mzTuD38G4y8BYph4YpXh41MCxfHDwBzKxV/Uz2Qbz70FeCs1tBnlh+3DD43oA0LoN\nzWqflTAxPRFywfjjh+ia8w2MP6hlz4Fx5SiXMwZiY3bhKh5lNftIERipW1n7qZNTJ06cyCmnnLLH\nsvBut9aBfa4NP0W8O9twbddHNQ2UfLh12HShMK393o28m0WIrdRUghAyv9BAVUcXG4EumOephTbo\nv65P7kWn6rMTuB2ogLO+Wofx2ywwfJz9keqdoCKKLch90woZmuY5PuuYP0H71jl3ckv+LUS8ETpq\nyv/m90saGvBfU4v/mlq+NuduWtRooFUok3757P8ITdpMeTGJkOmIa2jREn9lJVYsJnlpCqAAHD9q\nFKUHSHpCaNy4PYCZNbyczIhyzIJ8AVFF+RIkAGe7wQMPEEBXkC/y/rEYnrw8ATaKomn4/djJJGYg\nIMAwL0/AYCBApqMDTyRC+JijnZIHRiDgROrsRMIBhTo6BwIQ7UQCfzJJH67IdwTXualLDupUCR2N\nC+GCO/04eaNRgtXV5J10Iub3jibthVg6RiABOe1xvNvb8Kahp8CUSGNFBfH6err/8pgjqGKCUyDd\nzMoDTPv9pOrrSTU348NVvv7c2n/APhqGkc1FPg7hNPwrbYNhGCcDXsMwRhqGcQufsKTOFxq8Aby0\nq42jfj/NwaKhB4AmOGt2HXdcfIPU+/LBkIfVSBAFDJi76AxJ4J0AuycBzwAdMD8Fe62EheddDUDJ\nA8hA2oGbULwfwpmKIjNNPYbvRo6jETfs2o7wzbXik1aIbMBJ0r50Uy2paSnuAQFnbYi8MarfSMQo\n9SBqU5U45zLxvcPk/+Ww9y17wwI44cGDKYjDjTdOZdYlZxLzWhCSXf/u8lq4Ga648kZe1BfxMPh/\n9yxj2XeWQCm8dPkbAGw4QV7yS86t45cnVQmgewUaujdDCq7zQOuYHVS+OtK5Hwf++WDohwMfk0+i\nMNQqd+vUVOJKIlfAaKta3ugh6hx1tLJcXSetkvEUQhEdCiRVKNVQAAAgAElEQVQgNkW6Bf+Ek5AU\n7kQihyZC++mFy66NsejyN2CXkoJv7GBlBDcZSitwBdRfIWL4Q7hJW0NwtHknXgz8Evy3I5FS1Z2H\noe9XfZy+9nT+OvAiHxitLKyv5Q2g+WQ4e+jZ/OR9OMZ3DGc0N3PCGXVYpgDp9OB8BkLQkyfexMSo\ncgbWrydUXU1g1Chyxo8n3d6Ov7KScE2NGIRIhGRDA2m/H0PVrjECATxVVTQMHsyqvDyMigrh5FdV\nkXvIIWLMRgwXFUtFEUk1N+OvrHSUo0LV1SQaGyUhWRm0bM+fJxLBU1Xl0D5MpX6VicUwFP/fjkYl\nYuj344lGMf1+oSMGAniTSSetQ4MhkHlMQdZyHZkbUJ/NuONor1qmWfN9uKUQNHt5B9ARjeK5ppbU\nNw8mkIBtgySUEIzD7qiJv7QUxgxnYP16MtEoXerYc3GdcBrHZ2sP6EfDVv/HgNeuqeW9m/45Rbb/\no+3/GYYxCLgOcac1IjGCL9vn1ZbA2Df3ZN8sn7hcqHRpYJhEXYxrDa66JMKQrUOYt1k94x1ZKzUi\n43Yu4jn6cFRLe1RAZpYmMv4rNgcduIDABwzAKnsV1MPVLbXM26cWDDDuNcQWdsHV10RdjnI3YjM1\nXbIHcZJmc7yzWu1X66AXjPfkoIwrDIy3DIwNf3+mdvzMmVT+shJjl7FHnpzxwodKLOxW5zJOXYcc\nXNqADoeADCa6OJiJq9akwyLZqkthda30sgwyP9AJTRHV7wNYMFQpbo5GBtQ8hLFShtirLqAJ7J98\nPDvAuMlw5YO1h8qvjjuAzAcsPvGM/BjbZmLjREpDpTzfv/oj+9Reci1FP5dzKFdzAW9aAFzK5+a7\n9eS5OXDxHBNvWhX7zlikB+c7Ua1kQwMepUSZXfdtya5d7FYgS4Oq5N7FTi5dICFg0Q4HXbpmFoiy\nB+IS2RuI4ykqInfSJLF3aj/+ykpnux5NpYxGBeCo33WzTBzQp+2mjr5pG6wdoIn6ehFhwY0L6NdN\nC5LonDetCp1dG1aHbDKRCIGpU8mpqaFjWJC+sFzLJxMvUhGuIO2F9r2CZMrlmgTWbZVoYVkZuZMm\nybkkkxjJJKh5gRZW0c0TiUAkIkBz+nQCl8nYcfkXJBXr39TqDMNYbxjGW8BhwHn/4vbORhBHArGP\nPcCcT7LiFxq83f/73wPwjV37cOt9tZAPP2r9EfTAzSPA+gYy8ASg5fwW7hxzp+Shac9NAYSvDjNo\nJ+I1G4I7IyyAgRlAMeyeievpshDPWhx3IDZwB+YCxMulk3FCuLrpKQR8rEYSm3OBHRCs+yOshZ9c\nDAsvWizbM5EZq9Z+166LXMTYjZTtrwq+wAIF9M57bzy3XQnrhq9h6HvlnH/PMhbfdBsLbq2FnTA+\nAy92b2PgArhi6/l8U42fjwfh+4MG0XMQkuPXBtunwy1TLiDYB+dPEVGXO4+FObXzYQosHLyYi7qh\nkw5axzQzavlY4nlx3jphLaPXVLPumDVikLbAzpwmd5ZuqWuk5A3fnbZewkRDkby2AK4U0ruqXxeS\n84ccHzsh8mfEaI+RxVdMv1FqtD00m3e/DhwAV3wbKIED/iTX8mYWgwWvz6+Ve6hdUCFcT6lGDdqA\n5uC+BQUIqNT5Gg3AeXDKjXDzOVC4LcqdjXcCcHfX3dzjeZreSIRHkVpwt99+EQkrwaBbYcUvannV\n3siuweJJTATESPXniIHKfO0A4jmmmwenJI97V66kXyk4+Ssr8VdWEqisxFNVRaCiAm80yvBgkK+F\nhHMUqq52ZJQBrK5uAYIq2uYrLRVqSSJBsKqKgfXrSTU3k2xo2IP64YlE8JeWklDKUr7SUkLjxhEa\nN47Cn/7USfr2KMOkcwOsWEy+KyqoHY3Sr2SX07jB7A4EhGlWbVxeDSc1RAMnHR1TqZ28p25DWD0q\nmjY5GDF4vpRcz7dKu3i46WHyvHmE+8T4XzB+BW8WttJ3wYnSt7QUT1ER3X4/Sdwi4BZuofA8xH+j\nhUm86jEMb2mjoAtO/bwM03+YNmkYxgWGYViGYRR+fO+/bbZtX2Xb9m7bth9F3FujbNv+LDP5vmwf\n136sPvvgrBF18uK1Ig+0fjHbcOxcS56Qho1HFVgpgr8Oe8xNqgUBcgZujpYW3IjjSs6mZZ/sQBx0\nWcqCZHBno1UwvzCrIPRG9TkS5l/VAQMw5/JZYh9iapsR5OVXNV+N5YYArudcgPWjd37Ej975EbwL\nRp9a3gJsBeNV6f/hVlxSAl+DwoEovA3GBoNrCm+lsCIKOfLdDthwEBIZ+x0yUHTiqjzp89ZpBCFw\nkoy1dL8+hxzE3qA+4+oYh6pr3AH2SbbYo22qfyluzr0qwn3M1mNk8OpGAK0qaGY8+dFA1dggINb4\niyGDcnY+ngaXhjp+rRxlqYhorYFxifqsNdwSFFmtyF9EY18jRf6iv/lNt9Nsm5Zf1fJKdDsDIVek\nJOMRoKNplBpwgHx6MqIcab8p+cxatMS773A8g4vxlZU5YhvfnTiRIcoGeqNRAXwpyZ2zDdmfabl1\n5lL5QUf+36lrVlSEHQ6SiQQd6qURCuIrK3O2awwpxvT7HbCmbaSpRFDSXjD64ljJpCO0oiNuvtJS\nLFU6SDedx2dWVNAfjWKrtAXNytVNq0RTWkpk+nQn2O3gbJVPx5jheNPQmwt/HpASDsXxHGwDHu5+\nkns8T9MazbDr8OGYKu8PwAwEpJyR3+9QSrUDeOCVV/CvXYvR0YEvFpO68JWVtAwB/7Wfo4PzP2Af\nbds+xbbtatu297dt+1jbtlv/xbM42rbtn9u2XaP+5gHHfJIVv9DgDeDqRYv42ZnXcdbVdbScCb+Y\nczd8Bc7ZBaaqBvz8VxHxkb0R0NSLo9rUN7OP54fCb6sQQ3UnVNojwZb8XIBBf8JRUnSMmi7u1Isr\n6adrs+Th1nrRalgavFQC1UArTHxjImyFeac0yyB8NMy5TxkjTfnQhhC1XZV0c3cJ8Bw8fwpcAPSd\nD099pYcCYNt4OHzhFObMmA8FcNlZdeyuhpQHHr/+IdnASuBtOPIxmLEBfhPbzAZg5hWzGbqznL3T\ncutzEmFemPM0a446iNN3w8I/Xg0WnMgsJv9uGv0VQqOM5w0Q7AlStXysROPWjWTyLdMwR5lCY+kD\nMjDzrNly3aLIeXYgM/Q4Dp108vJpkAuj09XsPBGuu/YQOeZ+3AJhVQgP34Cbn6jlisfPBxNW7Rdn\n9D2yzSu6EEXRuy6gctJIjmIWROAcf514RvfD5brpIuI6ozcHV4deez/zcPMNFG2Tv8o+Tga+u+QE\nAPymH74Fp1/+BuGaGp6bM5No2iR93XUsZzm3bT6XrgL4Te0TojLpFUPhycDgFoviVovcHgvDljy4\nZEFQePtFReTU1BDWUbTSUidfzq8oIoHKSj7w+3k5ncZOJh2OvZVI4B1WTnpwPoExo/GPGC6evbw8\nxxPoP/pIck45kXBNDeFJk0T1qqgIKxbDE42Sbm8nV3Ha9YAdqKykZ+lS5zgcmue4ccKDVxSQUHW1\n0EKUpLOeo5nqNdHUjijixG9Tr5KOfu3CFSztR4BagfqtFHeOpGvXNfr9DLr4PIKdcSwTElaClkQL\nT7Q+wQVddVzbWUfYClPkLyLcB4PPPZdglaRc+ZNJAuoRyFe3eS+kWocPGTq0quY29RjHN23i/0oz\nDGMYQib/4OP6/oNtnKkib9i2HZdFxhmf0SF+2T7UjJsMjJcMjJ8bzP1BHfwBmA/vjHjHza16DTfc\nPQa5u/vishTyYUGqTpyJGZi7qdYV1fAhL67mEsOeCTg6auTFLQugFRR0DdAwbnhgACdvbEFRHffd\nCIWnR6VfPnLMRYgjLYwMInr2GgKisKC2VAaGl4BnBHQaqwzuNu92j2U1Imr1jKyjKZjZAM7YYvCX\nQx+At6BzR4fY8ATMeXUWnVaHHIMBRresc83iWvgGLNxnsQwiIVyKo04K1rTRoeq4c9U5R3FFQbKr\nSAcQUGgjUTSVG25/08a+0HZskv1dW/oeDpTAE/s9IR3HIKUM0ojj910wbvtbAGfvZ8MmOGbzMS71\n1MSVGtZND86aKuHFdX6a0jflTf1NSYElFy+hIlxBaaiUv9duvGou/TlwoiqdNJAFIAMJKSMQGpBI\nG7hROdOC9LBigkqy3xOJYBbkO/XijJAArYzP5JG1a9nZ2IhZkE9/rklGXetYSdABbHqZFkvJRIL0\n7pVPelgxyQIF2rzidDWGFGMV5WNkLKf+nO0xZTuqYDjg0C9NFaXzptVxtbdjKWCkI3Y6X29g/Xqn\nhh0IEPJEIkLFTCadsgE6GK5ZuANI6kK8vh5KS4njUhdzVdQtEZBr2uXpJ2AGWNW5isf6nuby9jre\n6X2HsmAZfssjJQQqhepqRiLEFR3Sk0wSbGzE98orFDQ344nFsP1+R7TMe8ghBOfWYvr9e5R/+LJ9\n4vZRtU8/UT3UL7TaJMD7hsHwRpjywBSWH7YcaqCwOUpnc4cMJL3ITG+w3pD6zFHLWnBr0bwP87pq\nWXBYncwW9eDkJM+ovi24XrFcxKuVwA0ZaGlfHy781Q/uWITGUAy8AL96qYaLv7FWIkthZNBOIQZC\nJy3tjRjSKYiROQpm/mw2D/xgEa8eASvyfkP9lA1ULd+PYT1ncNf103jmwqXMG7OAIzfOYwOLAWic\nsJWFS65mx2Ah4k4G9p47hJ3XtnDS2NNoOGszh988lV+tv5S9Vw/n1O//jJtfXkBLRQf+uDonE2ad\ndiYlG0t564TXCPbIyCrf1zJq+Vgev/5Busp3YyUtcuJh4nkDFDQNIr+pkO7yTr73kx9xx303yPWI\nqOs3CLdmXLe6P6/DL2dX8dvfWzT0bRZv6gPqHuyjrlelusZaTmkTYthiwIFw5yA4fam63gfCdhOG\nPavORfP2FLB0pJqzE8dzcDkIWilD8xNUZeZbM7WcdWodi6pk0dyLC+lMdfLeTfBgJMIlsRi+dnkG\n3twHlo0bR+LUo8nrcaNuKR/kd7sKT4WdrtHyZCAwYBFbsYJQdTXxTZsk0lVWRrKhQRKky4th41a8\nRUXsXreOTChE0ahRAFhF+aR8YpC8afkMDQj1ww4HSfnAu72NTHkx3l1Sf8IIBDBCQRIb392jBg1I\nNE0rb2WraNnJJMnmZlHDqqrCyqJRZCcpB5qbJVdNyTJbsRjpt9/GBozSUkLNzfSo26jZVZq1owVD\nehHglAf0RqOUKxXLpOrjr6nBc8yRACzzr2NF2wr8pp+AGaBzSKeTBzJ3RC27012MePBtEupYrY4O\nZ145FpcqmVSPpg667wS8kyczoMRNAC74O+PlZ66kdfVnsSXV5n86tUnDMB5GlLQeB75i23bnp92l\nYRhv2ba9/4eWvWnb9gGfdltftr9vH53fb1K3V+ugnQdci0zkixH7cjTwLGKfDoOzm87mlspboAl8\n9T5SM1McuPVg1jWskbG2hj3UCh0Q14W8MCncqFMXriemEJfHBS69UY/B2jnWj4zjKVx5fFPt9032\nzLUqRl7QXGTM3oyrAl2GvKyHInZ9NzAEjlp0LH/91mOyj/2Rl7sHoWO+CUe9eixTr5rBnO2zYAti\nJ/bCDcH34FIide22D+CaN2r53df+TMNem6VPhzqPcnVOubg1T3TCr05Was/ax051DtkudK3QlIuA\n170Q+kGT2o8X7B/aXHL7XK6N1sk12QfOXnc2t4yUskXsAgxXfTK7OaUjQrhK0Zo6qcW89B+4dIg0\ne+bqgUgQjQF7xCefQxoLDO6dD22X1zL4yjq2X1NLIqCKcnukjJKmUXoybr03X0pAiCdlOblvGnz5\nUhJZylECPL6ERVt/L/mhHNIRrxPNs7Kus2nh1GMdCAlg9KQsUgGT/hyXVqn7pXxyPCmf0hRQTdel\nA7X9zm4HhNkeE3sgjun3S9qBsq+pHTtIqtQFkAhfYtMmESxR6Qe9K1c6tjfZ2MhQ5HXoQx4xHzBQ\nVUXB9On0rlzp1DUFid7lTZuGnUjQN0zmBk8mXqQ90U7ADFAVqWJF2wo6051MKZ5CVaSKfdpySPoh\nr0uES3TaRmrZMqcQuH6N9VTJVA7dvGnTGBhTjvGXZ7notdf+/r3/otrIT2kfP4tmGMZRyIh8IvAg\n7lsVAcbYtv2xQihf+MjbPrbNtffXiifnBbiurpZdFR3iMWwHojDkrSEysI1DBC+6gBa4fR/kiXtX\nbSwCC/apk9mf5nN3IQOS5nmvRQZNzVNvU/0UPRNw6QRa5ETx+AFJNSxDOOvD4eJfrZXj2o3rOtGf\nacTb1gFUw+mLThfvqA0P/GIRx79+PM8vqGVu/Rksnnobc9efwWBgxoUncguL+WDCVi777WHc+dRN\nPPTbu7l29dUkBsv4PQw49rJjufTaFo6+7Fie3vUE377oeK59Zx4/Ofo8gj0husplTnbOlAtoCOJQ\nPd484TVenf0S+z8ynpKNpSy7bIkD4hY/dBuHLZzCjAtPZOiWcvKbBmFts+gq382o5aJ6UrF6uFyv\nKAx9r5zjfjkTDJj8m2muElk/MBEueaaehpGbxUjFEI/ifkAn9I9X98XA4dW1TlP3YyTwNJz+ptxX\n2uU+D3tXtjOx+TAZ6XpwJx+JrO9hOT5ycaOgHtxq0RZi5A+HjihQL9oyO2+opdPqhHy4oO4YLmuK\ncelvaqEFrvxLLQcsgnFvv81lh9bxZmEroVfexZeCDquLeFCicOE+6CyUwd4ywburm0wsRmTyZEkw\nHjVKEpxDQacGTGDAEmpkYT47CgtZsWsXZkE+qZJ8+nPEqOicAct0PZFprzKC0SjetOTfWUUS7bO6\nuvFXVpIenC/89lDQUWc0AgEnomcnk0IBaW8nNG6cw/fXeW666To2fX6/1KpTilrx+noySoXS8Pv3\ncPLqUkhalDSpLn0MhxmEpUocbItG6UeAW7KhAd97TXje3sr67vWk7BR94T6qIlWcZJ/EMdYxjM0d\ny+50F0VGAf3HH0rB6T8m72c/FvVN9XrXI3Od7eAkiOuE8AGg71sHk/H/LT3o397+Q7RJwzBmAE22\nba//2M4fcwaGYTh7NwzDw+dUIu//dNP0878g0Ridd2YhbAzU8p1wS/EtQrVrhdQRMiNd175G7Fcc\nyScHF7hpyp5WYLayfrdxc4l7cKNzOmKjo3NKUbGyRuVRB9TxmGobAGtwB4E+XNvaBrcfLf+enTjb\nzUVPqGPagFvj7QP463cek9+DuFTDQnVse8NfL36MOfWzpM8mpAZcSn5zHLq7cZ2ObXKMPz+ujtYx\nzWLHtNLkSFz+dS8u6PPhKnT2IgRirS4xFFdAS7NOPMicZB/Epq1BBicvAmoDcMQNR3Ht/nUyV0D6\n3zL6FrlOLQjQbUMKbi8XiqRxh4HxG8OtGduH64TWwC2JC7q1R0uLqeh7raOofuD5jwZul90892+W\ngQA3gB/Mg/OsOl68+XRye8Ve9Rj9e4AiXT4gm7mSCEjR7uzlhi2fvpT0z3igN8/k4WeeoXGg07GF\naa+7Pd0SAaFmmpZ89ueaDmVTR+Y05VAfg16ut5Ndk87oi2MW5GN7TBIhU44vJJRLrYxpKlpmsKpK\naJrKRgJOuYD4pk2OAJinsdEpgzugHo0+oE85XLuWLHFqtRWefDKFJ58spQd27MAIBAhv7yavB2Kp\nGEkrScQnwHJayTT2Du5NZbiSjkQHbcVyPXoKTNLt7STq6yXfvaqK3miUFmUDdbxDB41zJ0/GSiQw\nn3zpI+/5v7X9B9MKPoPWjOSCD6jP1xH0sQSR7vvY9oWPvIGoZ23KaaU+Vs+qwlXCb+pFBuwhSG2v\nyS3Csa9AOON7gf0NMJYAr8OU4BRSPpMV+y511Q4NBDhFsnamc8+yef6aA54dAdLKCSDb60e8gSNx\nVbkqEe+WrfroOm060qOpfANyvLTDoikw+w04/tnjeXTio1AMB647mHXT1oAPZp16Jg/99m72Xj2c\n1jFSXjueF2d3YR9e4Lq83/CznjOonXIBH0zY6pzWFVc9xuHtOfQX9fOzKRfQOqZZRcwKeeBXi5j4\n58OYetUMfrX+UmKFfZwwZyZVy8ey7LLHGbKxlK7y3U7/TVPeYcKiQ1l22RL2f0T0nLvKd/Pu1PVM\n/P1hjFo+ljdPeI11x6xh9AvVvPuN9Yx+pppgT5B1314jYNmEyfdNY+mFSxk7fySbz9kMa+HKY/2c\nkUwSBr7yVDXvfmW93AudM5AAojD3vlquLa8TA6g5dwZihIfhGqad6j4kEYPTou6dpuEM4ObD6aio\n/h/gdISS2wN3/whW3Xw6dybu5CTzJO4ffD87fghl/fByjqw2/hK5lyf1n0R7sp2EleD4gQn0KGpS\nxoNDZdA1bvxJMT52Sxt2abHjzetT+r+BhBgOzdFP9yUYaO8gOKKUvvCe3j9fyjUs2tj4FTjV+9Ue\nRW9atpfbIx5HvX1/EtLbm/AoSqWdSDjeOF3nRnsFe195RdSxKivxK7Cn69UBTlQvUV9PWkXPFOvG\nUdEqkFvKVqArEsETizmFs9NVVYRrajDuu0/q3fr95E6aRO/KlfgrK8k/7lhiEXjZu5GElaDIX0Qs\nHeO13a+RtJKcW/I/xEIZhrZ5yOm16B5k0heGoTsheW2do2PTo46rEwGYg5NJdvn9RGfPJj04n8Rf\nnuLi9X8fz3zmXsVr/oUNvI9bzBjguU9Vx+bnwBTbtnsMw2gAamzb7viIvv+wGYZxPTKq3Ym8aacD\n22zbvuDTbuvL9vGRN4Dpv5rOE6knZNI9GAEeDTiKkwxHxsMRCCAoRGZhu3CBWTdu5KgUeSkGcG1i\nNi0wi0LnsGA0xU6DF53EmufuZ+G7JzBn4iOuc20MEmYPIAOCYoA4dnYAOFCdTzFu/TRL9clB5gIJ\n1T8XAZJduFRNH27kcEDtR4tn6dDCB4jys37aNyDzCZ3TV6WWBdT+0qpvdmhiALH32t+j5w0xZKAL\nIIOMVp7Q0blscfAeGPK8mtOEgEaJthnLDLk/G4EZ6piSyNxDe5t0YTBdy3QT7gDbr66frs2ik6Q0\nAwVkvqLz/wO4bBQN3vWcR9eBscC+Rp7LfS/dl2lDprFi14o9agZ+VBt3+TgmFU2iPSGsjoOTIxzn\nZsbj1nnTn7omHEAktqeTMrfXVazUtq9ndw/+/Bx8Pi8pn6xrG7K9DzctWOLJSB/HqapYLKaVJXBi\nuBFBTakM9lvYHhMjI3Y0e11vGjK72hwhEysrAgfiVM2mXcbr6x06pc4rj69dS1Rd7pgqKq4FTvyV\nlSSGSj5f770PkT9jBqkdMi/07juc9HtbyYwbTmO0n45EB5t6N1GdX83azrVU51czyh7mUFILuuQ6\nxiISiTQtsP70lNAni4pINjSQN20aht9Pz7Jl2IkE0dmz8UQiDl30jIUL/+49/0LZyOz2888/8qab\nYRgX27b9qw8tO9e27V9/7Lr/DeBNJ8b235jC9z4yYDYg048lwAm4CdM7EOO0HgmVrMahUTiDpIkY\nDS0+oukX2iBpProWKNFUAS1Bl8Q1Znq/Fq5Xqkets7f6fwiuDrqmIQQRA9KJeOZy1d9uxDDoqGEc\nMbI9sp+hW8vpLt9NftMgpl01g0BPkHsevIP+SB9z91/Assse57XvrwHgm9dPY8U+S7G+IwyH5xHb\nM14VB+kugVHry9lZ1cRRC47lr/Mf48A/H0xBUyEFTYNonLDVAW5DNpayacoGDnikhjdPWEtB0yCC\nPSE2TXmHGReeyAtznuawhd/kjjtuIKcgTH9+H2TANE0sw2Lm/8ymccJWVs18ATNkYvVYFPZEaa2Q\nCX35+nJ27t3EvHtqeap4Beu+u0bu1zZkCtiHGMAIbu5GPjJJHZX1m06k9yKTladxcxLAFSvxqudI\nG/cYAuyiuPq7XXCzXcs5V9ax1QPDN8DxTx3Powc+yuhkNSf/cAetV57EGWfdwuhH5D7VnSuyxC/O\niJKwElRFqiiO55AIwI5MK6P6S+gLu9QLbQTCfULPMDJiSWyPidXVDYX5gBirlE+oIZs3bOH15ga+\nfdw3GQgJ2LJMMTDgqnSZlgzEgYRrTLJr6OjinIa9J5jzxOLYiQQexX33FhUR37RJlCoV9dATjdL3\nyiuOwpedSJBW8siAI6Ki6/GkOzowIxES9fWExo0j8fbbeCsqqGhspB+ZO9io+rOTJ+M59GD8SaF+\nJjZtItHYSN60abTffjsgeQG++noSQMutZ1Mfq6ehr4HSUCllwTJi6RiTMmNI+vc8/95ciHaA2d7t\nKnvFYoSXLKElq9RBsKqKnPGild2vqCCfK3j75WexJdUu+WTGyTCMsQixTlesLEdG1INt2971aXap\nIm0/QaongryJd9m2/Q8qcH3Z/l77pOAN4InRT4gDE1waI4h9aUYcjO8jdLzBQBhu6qjlvFF14pzU\nFMFOZBxMSx+Hbp7AjZJpx6WmBYLYRy3+1Y9rV0sQ4KABmE5k7cdVA9bOM92iiI0+AhmfNdslX+0z\njWtLtZMVXPCoQQe4NeI0PVOnOgwg84gB4BzVZ/uHzkMLXGlgqZdlN03TV6IhewAgDXxVnj5R3FQN\nfbxavUlH3zzq3KJgD5eORovh1pTVjJEY7twhB7lXNkI9TSB2sA830qBtpMpBZ1PW+eh7FcCtTTeg\nftPnlcSdB50G9pisAus/NxjrG/sPwZtxvcHtuy7ipSECMqKBKIWpHFI+YaiUJQscgS8NyLRt0/bL\nMsUmRmIu4NOfub2w+E9/4WtTD6F47xIyHrFx2ompAaGOmGn6pQaLuun1wn1iL4NxV3gsEXBpl9p+\ngvQLDbj16jyxPWmTmfZ2YayoAtoZn0n6va0OXdLw+0k2NMi5lpXRu3KlYzNTb79NeLq8477SUnoq\nBLTl9giVtCdPrkcgIcJldjJJ7LnnCFRW8vq3h9KeFNqk3/Q7Ebhhhki6BhIuUE0EBLx503sWS+++\n+4+EDznEyc/3RqMkQiYdURjyfvwfAjf4AtvIT2gf/7WGdVkAACAASURBVB3NMIx1ujh31rJPlF7w\nhadNAiRvkLdu35dHSnSrGaEixoCvI9QCgDeh5XuIEWmT7/hxi2RozryFm4NVrL5rfr7uo0MDO5CB\nqg+XwqeLU2dwlSOHIwhpO6pyMK5x2IEL3MK43jlwKR2qmRPULYmpPspzedwVMwEoaCokv2kQrWOa\n+cODt/PWCWvpj8gGLtk4j4KmQodl8viFS0l8B46fM5M6ZDx+svxGPvDDzhL40ZyZbKtuwg7AVxd9\nnYl3H0bF6uFUZdEfGye8LwXPgVHL96Nq+ViCPUEqVg+nYvVwRi0fy1snrGXIxlLqp2zgwDUHE+wJ\ngqWAW9qCAXjot3ez6scvwAawumRZa0UHvm3geVn2NfO82Vx9dh3rjl3j3pN8XFVOLZk8Cbcw2BTc\npGsd2dRe13vh2ZnqGuukaP3EW7h5jbpgiqYDafln4G7f0/CgMG+vfrKWGRc9Crnw+NHrufE0m4AZ\nYHQctp8A162spfbZtxn4zqGs715Pkb+ItbvXssPfRUNyOwEz4Az+IMbEk5EBNxGA1hLoHmTSVmKK\nCtfQfFpL3BIDaa/0y//KXnz9iAlkPGIodLFNzcfXNBGtqKWbN+0mfmuvIChvYixOenuTo7xlFeWL\nRHNREakdOwhVV4vXUJUHAFfJMlBR4ahRhg85hGBVlRTyjEYdlS5vNIoViwmto6oKb0UF6Y4OGkpL\n2VVRQRrxx4SUWEvGI8Dz0sAfWXq4jXHqsWTa24lMniy/19eLY97vZ2RLDketCvLj0Heccz3ILzKl\nughpyifnO7gxjtHchlmQj5VIOJ7O2OTJRCZPpvAHP3BKJPQPL6Zzv2IHxH2u7T9Am7Rt+x3btkts\n2660bbsSmWof9GmBm9pWxrbt223bPgEBcau/BG6fU9M1LB13PWIPm+DyVK0ACJDUgwjgg/OidW4U\nSdutgFpf1/gAGWN1DpROBNWOTnCBngYsOqJTiJs7lsYFEP6s49QUPi3oMYCkMOyDgE1NvN2i9qdr\nipD1qZ8wnUQLbn5eDq7aQ4dco1mXnilzgGKkTM9mZCDyfGjdPtwIXvY75cEtlaB/C+A6cnvZEzCG\nEcCsI16aYtmB3Bct5pKtPrEFjFqDXxt3QwoWVi925ys6x64bV2VJl8DJRRzIO3DVscERWis8OMrN\nfzjZjUqCq75s4ZZ20E1PLDTwC+0J3ECicP8IuN162mlc7q3lwYI1+D1+YmmJLrV4uojRz2C7YI+i\n3YYtNk2nBKR8wkjpzZXxPOmHrgI3r9wy5fdvHH8khSWFeNNuLpymWWYDPW0rddO0SA3otM00sk5T\nUyj18Wk7mvHIsSb9LsjUueNppcZsRiKO+EkqYOJJWaKQqdSi+4blS4258QeQbGjA9Psp+ulPidfX\nEzjkEOL19RgHjKZ3r3wsE1YHt7C10ualyBa8aUUf3dVGsqGBgfXrCSjF6kM6hvF1z4HCTgkUUeQv\nYkSyhEBCgFtoQM7Dm4YSpZ/oySjwaUk+YOHJJ+PddziGUqC0kkm686G0ySKVH+Rzb//FtEnDMGYa\nhvEEUGkYxhNZf8+zZ6GWv9v+K8AbQOorKRryNsvgeiAywCaQqNkIJDpTBEOW4Q4yJuJH7sRNB+xH\nBswM7qS/H9f46KqIcVyevoFbwt5EkY6RQTdbEXclMAQOih8kg6DmjweRwXUAGUhDCPWhCTcPYAew\nWQGbQer3Vhxv5l9+8QB4YMjGUnaObmLqVeKBaRnTzHEXzcTyCTMlnicn7wEWsZhO4K6FD3BsaQEn\nz5pFPG+AOXNmMkj1/d6cmZw3YT4fTNjK8z95QUXdCqlaPpaCpkImLDoUwFleP+UdyWlT6+//SA0F\nTYMc+mTF6uF8ddGhmIaJZVr8dPoFsBSspCURsxFQuWkk/WVIFDUKU16awl9+8gKPX/8Qhk5g19FN\nn7rGFpIDEEeM0H64BsnGlVvul7/CZwuhEI58Xd0/PZnQdYi0l9RS92cvXMBoAz8CAvDGpW/Ae/Dt\n82H+FJG1vneCgLmbfiWzoBtnTOUFRJzk8cHwWmYjZ4W+z474Do4o+DoAI81hVPYWCO3R68ohp3wu\nnTHasSeo0n10wnbGA/EgvN/UxPMrVtEe6Kc31+Xg5/S7Hsm4Gku1IdJJ4ZpWkk219GSge2iQzIhy\nx2hpg5Xp6XHy4hINDfjKykRSWNWB0/lwgcpKIscfC0Bg4sEk6utFxTISIfeIIwhVVxM8/YekmptJ\nPPIIuY2NhBQYzGlslPru0SiBykp+O/wtLojVMb/jRmZXzKbIX8SOvH46asoZePtt0o2NmBUVmOee\nizeZJLP+XThwNKYF3+2bwFd6pbaGzpvQUUZfSozp7jHF9OSBOfVQQtXVZGIxRwks3d5OurGR4KhR\n5GxtI6qG0X8Udftf3P5pWoZhGC8YhpGnSg28DvzOMIybPrtD+7J9uC25eAlP9D7hTuxbEKOwG5nI\nD4Er++qk3A6446tW2tWRJe1g1GMkuNEWM2uZpv+n2HMmofPA9Tg7Ftcma9aDBiZduCIrepkHJyWC\nyUgUcSNilx9Dcr+61DFrVUSdz6yPS4Ma7bwaqvroBCLlzFt85G3yfz+SJ3ggbt21EK5jNay2rwFc\nGDdSqPevywNop2sQF6yG1LHoa6uTeyPqMw8X0Laqfv04+XJzXpzPnPZZ0AxzXpzlglMTmWsUIo5O\nndsNMi9K4IqG+dS17gH7pzadr3ZwzvT7XMeyjpT6cItcajCqgaeObh6Go4j5SdvJN57Mrv2LGXRe\nHWXBMkYkSyQKRA5+00+enbMH7V/TGHUETDsobcMFTz15LntEr5vywVNPPEtLRwexUIZelRupgZgn\nI/ZRb0uzMrRoCuwJ1jwZWd4tJBjneLIdsXo9Hb1ytqMpkmOGQ2E+fcPyHaeq2d5NKmBihIKk8qXm\nWsYDvc88S8/tdxFUCs4gTJBAZSUF06ezdXA/j2deZH5n3R6Mk1XGRlpVbURTqVUGqqqkXqwCqzWR\nAylLFlDY49lDbbM3V65fpDVOT54s2z1I1DmTfmECZXwCNv0jhpOJxaS8QgYSof8aGPFFaq8ANyBx\n7+vV/zcg4vL/e3LeAIz7FfpSypInbT+J+yvvd2mQio991Ylw2esIMNLRFu011EqDmrpI1nJNDdDL\ntedK1SvDixgUXSdOD3i6nEAJLrDTdEpNu/CAww0rUut2Ih6wt5HoYbHq50eMxF7gFM/UXkMbJt8x\njbdOeI3Osg4m/3oaAC/MWU6/1yLYD9cOEWXKx69/kFcrOpjy8kg2fW0zS4CXvzoPwzC4YfXV/KL8\nRqY2nc/jYxYQzxtg2WVLOGzhN6lYPZx4XtwBgeACwu7y3ZRsLKWgaRD1UzYAsPfq4bSM2UHrmGaC\nPSGCPSEWP3Ab9MHQbeXMuPBE7nj4Bgp3R0WhcsBycthmnXcmi+++Dd6DiWsPI9gTcs6NPnX/NOju\nVtdMR8sGIUC+S90rrdClaZH96rdJuDRLECPZh+tR1HWJdE04E255eTZnH76IllPgrl/VMr+mDvaD\nuZMXcO2Z83j3TBi9RPpeurWWaz+4kdSMFOEnwizIOYvcq+qomz+SUZFR+E0/leFKwgmPDHQBVWzU\nliTtsp4cLFOoHv05ruEKDUjfTTniBhvVX0J7QQa/5aEj0YU34cHM8xBRrm1PRtbRCdgDPnFBJ6wE\nhakcx6hoWki4T/oGEi6PvzcX8s+rI/OLWqw/PUV40iQGyvLJaY+T2rFDaJCBAP1FggzT9z6G6ffj\nLSoiMPFg6OwmVZJP+umXMJXR0VGsdHs73n2H01WgKJqPPEvuN46krVhAa9edd5E/YwZ2IkFHTTnX\nbL+RqD/KtCHTGJEs4cnEi0yKTqKoy+PkCw489Bi59fUMUrfzrVtrye+G8PZukg0NJA8T5oGmi4bV\nRCzpl3PN7QVzaxN9a9cSUDWBdK6BnUgQnjSJ2IoVAMz9mFIBnzkl5LrPYkuqXfQfUdN607btAwzD\n+DEwzLbtyw3DeNu27XGf53H8b2mfhDYJYFxmCC2yDcn93YVMsrXoRj/i19WqyiNwo1hJXJCixUA0\ntU+PqzrXOzvvW0dotK3SNlnvQ9eC05E0TT3MwRUY0SkNAVxVZg0eYrjCKzp/q1Udo1/96ZxmDTZ0\neYQcXPvZgFwbH6pQJJLnFkCUi/xIzlsCN5KF2mYxYk80NVSDwgQuMEOdq5n1HVyAp+cY3bBw0mLm\n7J4l+83gCLmwG7FlhyA5DuDm5ms6q2aZ2Oo483GBdFxdPz3n6cbNbdOUSNS12At5Rlaq89PPiB/3\nHmnbmL3+APBNsCd/urnjguvmSrTsl7/h2bkHiUy9x0+Rv4hAxvM3TksQqqJtyCe49tOXgp25/RTH\nc9jh72JYvECET3IyJKwEme40oXCIgNcnRbIzLm1yICTfE8oYhlKePdIIdH/NbNH99XE92fU0p3Ue\nSrJAgI2mSpqWC+pSPlGUtrq6MQIBUvlB4sEs+mdrt7A/TDeSp4VRNMiMbpY+TeWiVK1pmm3F8vlg\n258ZP2g8+8eHOXOHjAeSZoaiLg+RVkk5GFi2zNHIMX9R6+QPmpZELbX9D/fJch3V1A5hT1MbnsHF\nJAJubr5ncLFzrFZXN2eqdIZ/1L6wNvI/YB8/i/ZfA5ntk2yYATefBXTA/Tn3uwPp68igVqGi/7ps\nnokMZp24HjStrKSzOnS5ej04pVUfXcg0m1KgaQ29iDcrhCt7rGgpjmqUpkZqA6cjbNowRiF+AnC8\nOvZB6vcO3Bw6rfugqSQGrDhnKfs/Mp6h75bTqARJpl41nWAcZp1yJnObz6BkYykNFR3cNmE+My48\nkYu/Oo/vHgi/fmkBC5+9Go8lRbwfH7MAkKjaYQu/yR2zbnBUKLX8v/69YvVw9l49nIKmQVzUcwZ7\nK3ply5gdjFo+lqrlY/njokXc9chtbPEJcAOpOzf5d9PoLOugx2uJN3I7FGaiLL7vNgrbo8y8dTar\n9nqBrvJOOlMdYoQ0R79PXcM8RAXNh/y+ETcnEWS7nbggrUKuaeFNhWKEdQ6BLhugmza8Oim/C05b\ntAimwm+vr+WAi+tgGNx2zbl8feM8CMNDwEHrDuK4Z2Yy6Kk3ifqjXH2YFCjtuek3XLq+nKJAEX7T\nT1GgiISVoC+QoScngzctvP6G5HaK4yLP25PnJmDrwbytWAbWIn8RsVSMv9qrCSc8BOPwXv17LHti\nOQAx50HeMzcglo7R0NdALB1zaCHaAGkKpq6lo+mYg3ZDfzSK9aenCGgZ45ffxIrFMAMBPJEIdjgo\nCdybJNs/UFVFTk0NPXkCfIwNW/GVlpJTU0NOTY3D9bf3G87OoWIYAgnI/caRZHZJZCv9njzHyb2L\n6agpF5qjP8X4QeOp2VWCNw2TopN4bfdrtBdkxGjs6ibV3EyHup1bgMhZdZhPvoQRCBAYNYrcXgis\nfhfueIi+S+vI7GqjLyznn/FAyxBomVjuFBoPVVcD4D/6SPKmTXPy+z4OuP1b2n+ANvkZN49hGEOB\n7wFPqmVfDE/h/+amRBwpRsazg5C0AhuZ5Hfg5kVpumInYuPUpHCP+mMaVOmSADr3SwMCcPOjrKw/\nPU7rEgA9iH3TUSHUsWQxAJyi1sC8QbWu864cx2biQcBcDjKuZ69v46gSO/tJIbahVZ1/DMxyU9bd\nDAvHLpZtr0DK9Gj5W8220crDOn/OYE86oV6m0yx01A1cMJt9fj3AWETl8q2sa62ZIcPU+W7Gjc5l\nRzw1cPOr/Raofh5krpOdR9etzt2TtR9LHce+QAkc9OpBAuI6sq5b9jxIA2oDZ15jX2N/auB2y6Vz\nyXn2Tf5qr6b4pz/lonkvOJTJhJWgx+inL5DBMsWmNadb91B23D1IomXZtd/CZg7xIES8Ebb4W0Vs\nIx2jMJXDskeX09DUSNIUY5+tUKmBW8KSh2SX0eUAI1/KpVRqCmS2wxPgtM5DyUSCjthYXo/Kb8u4\nxxfIes7tcJCePKUArSOERfkOEya7NIJWjg4kJG0i6ZftBxJyDXQU8c34RirDlYAs6/T180zPi9QP\nbCGUknlCascOcUQikTjf1KkEGyTMHRiwsEwRKSnaFif88rvO/k0Lp3h6yxBZ1zLl2C1T7LSmsFpd\n3Z/qOfhM23+3fQTAMIyJhmG8ZhhGr2EYKcMwLMMwPlHFvP8a8KbbOS8gg42mMYZQGu7w0Feh9nHg\nYFwag/Y06cFO4+sCZIDSA6KW89WDs+bHa45/Ni73IRE4bTg0JSHb6AVwcwEG2LMpakPwNcS75kWE\nOXRmSQ+uJLNWowq6x7Hi7KV0l++mu7yTpRcKmGvXlOO10DqmmXYg2BMinjfAC3OWs3IdzDrpTCbe\ndxgAQ+vLuWbjPK7YOI+WMTuon7KB7plw51M3Ec8bYMhGt8jm5U3ncy6zCPYEqe05AxuY33Q+ALcs\nv4EfMMsBesHzfaIiXN3EZvV374VLAchdqM5npKhT5vSF6Szt4IFfLOKGV2uJ58Ulv8EHhamoW1NP\nX5Pd6lPTUHbgAjgboY5oT6Hi/Xd+q9MFzyAGPA9XcVRLSKeQyUGJqFwObS3nsr3qqAJu/kMtZ37v\n13xw0UVwNORNncobyTc4YNheLPrqDqoiVRCN8sG3PiBYVcXOl5pYdc4qVnasZGnLUsJmDrF0jLx+\nD2kvFBkFVPrFW9afI96t/hyc4qFa8SpNhlg6RlVoBGXBMvoCGTYZ2zFKDSYcPQGAokSOk2yc8omB\n22V04Tf91McEfOzItDp8ds1x13lvGtgNhOCp0Drmn9JB7bfeJtXcTN9K0RbXoiQghsIywTusnNC4\ncZiBAImQSUEXeAYXE6isxBw13KFZ+EpLybS3E1Ob0ACyJw921BTTVgwP7b8D86IfY5lwd9uDNPu6\nOCh0EEf2jXGA7cNND7N291oSVoJAAjoWLRJQqV4bo6ICu6ICO5mk97nniK9fT8/9D5FqbibZ2Iiv\ntJSORYtIXlrnGErTgvImyJ8+nVSJ0EJzamqwDck97PzOwcR/eixftn+qXYXotG61bXuNYRjDkSnp\nl+3f2Owfqkl1G260qAbC68MyXuYh6rvtCEVQ12eLIWNrttAGuBN/HWEDN7Lmy/qeTVHUTreM2j7q\n92ygoie3WlxDO9BUvvKCZJ3011GkXtzyA7twUx50dEjb337cCFSOe0yzbj1T5g1+sLZZAuZGKRCV\nQGjypQiJqRdXPVID0F7Evnz42gRwwVIIN+1CH5uOloXA3tfGnmhj59nY+6qVqiUKh6nuyRZcwSyP\n2vYgtQ0/LvU/qfaVUN+1iEtQnbue62hncrZYmnYot8Ibw95w6Z0gttSDqxOgwacGsf9E1uoJ159A\nawmULlsGwM9yruPbz0F7sp36WD1hM4ewmUPCSmBaECGHUq/w/3ROWiDh2kedegCu87LMU0K73eWs\ns+9R+1JSWoIXD76US7l00gisBLF0jPXd6xnkLaDZ14VtSJ92uwvTcsFaW7CfeFDAy4Ntf+b3hS8J\ndVKJi2XTD7OVJvvCAtJ6c8XW5PZKn76wm8qghVN68mQOAPJdA7uWIbDSs5Fnwxudenav9q9zCqFX\nMQxfCvLsHEqDpazvXu8IlnmLivCVlhKaPJnCs8/AV1YmCpVdceL19Xia2jDbu7FiMQJjRmO2d5O/\nM05g2Ro8GaVE3SvFy1M+lxmk0z4uGKhj5375n/6B+LJlt1uBkxDbGAROA37zSVb8r6FNAhgvCIL6\nw+Fw6pOIsakB7kOiMhNxDc1G9kxQzlZT0hQQD653qQ8Z/HpwxUjAjYbpwVjnsGm+fp7ah6Y8JnAl\newdwufc6eTmBW9NsBK5iVvRD+9Sywnm4hjMXTK+JZVngBdMyGfBaDusk9C60jHbH7xJk7J91/M9Y\n/uQSTt3nDII9IVrG7OCOe29g5tzZLF60iMr15Zz6/Z+xYOM8Z8y3cW2qFze3WtPeAS6cMJ+FL1zN\n5FumseLspbwZkLJB51xcyHfLv8vJ59zJcKBsN7AL0lUw/kGpPbjumDUUtkWZceH3WVx9G1dfBvN/\nB6PLpLQAXrknhR1ROgd34IRY9HX8AKHg6CJhukCXpriiDrYTeS00P9+fde9t1d8DfBX4JZK0ruv7\nfRsawxI2OHMD3LUfHA6MqINrbq/ggMZGjp4H4YTQJeecUsfxfzmeRzsfZaRnJJOKJtHQ10BZsIyE\nlWBUcAQv96xmUv4EdNM0yUBCvGdJK0nEK0gnYSVIWknaE+1UhUZgmfBo859JNaYIvx+m6FtFNPY1\nMm2I0GejZgHN6VY6Eh2UhkqJmgUEz6pj0w0nMcqWPLCeHHnIvGompWWQo5u78d9xBz+5GiiG27dc\nRH+uHFz6kacwAgEikyfTUWw6ssJWl9AkuwrEOObvFsnkzK42jCHFTkQNoOmIChr6GigKFDEkU0BB\nF/xi4Hf8pOJ/uHvbHyjyF1EZrqQ0VEppqoC8Hng5dwtjvSN4vn81ZcEyxqbEUJnPrcETjfLs+ATR\nQJTqv+6kf+1aEVU54mAGLq3DowRUkmvXkgMkqqqkuPjbb1OkXqfmigpyamocOuiuiiCdvn7y7BwW\nJOu43KwF4Io51/Jx7TOnhNz4WWxJtfP/O2khXza3fVLaJIDxJ3WrtyKAROc67YOMhTpyNhYZsLVz\nMoQL5sysflqoS7cMrqqiBgPatmoRL00IMHHl7HPVd53Xpqnq2rGqwYUundOFKyqWQGyi3ncI10EK\nLmXeytqeZuYMQkCRDxgHCwcvZs6WWSwcsZg5V82CmYja5FbgOiTHLoIwX7Td0BErDWA1uNJO4kJ1\nvEFciiSiEmn0Gti5H33vjHZD1nsY+L7atwa0abAnKZXJZw3JM3sNNxqmHc+9iMHPrq0XQ2xmErGT\n2akbGjjr+9GAzH8KcO99tnKnBuPjwD7qk88XT77xZADuj96PfWqWIuVt8jAd1n0YoyKjaE+0E/FF\nKPWWUD+wharQCKdvdv6bpjkmrAQB05UkTVgJwmYO2wa2s1doGG90r+P9R97nwMkHsmvQLiblTyCG\njOu2AY2J7UR8EaJmAZ4MbLdbGTnnbpI31YpCcyhDOOEhEYC7t/2B/xl6KqYFOYueovZ0JcbSDjfZ\ntQyExBaCKCPHSoJO+QIN5GIRN1VCO09Blg2EpO/mIS6Dpjgux9ngaWV993qOKD6Ce7fdC8ARxUdQ\nERhGtEPqzzanW/n/7J15fFT11f/fd/bMZLIHwgRMIiCIiIKgIFZEK6IWUaGujz5IWxdwQVyCggsK\nShQURXFpC2oVfSzYIlURqxQrgoqAAREMmCAQErJnMpPZ7++Pc7/3Dlrr8thaf4/n9ZrXzNyZu898\nz/ec8zmfj9/hJyfp5YDWSiCegyci++3MgD2eVno+8yG+4cOJVFbiHnYsrTmQ+f4uXL160vmesP0l\nGhvxDhlCrLpaGKZra/FdeSWth2abgW/KBs1Z0rqR2QG3eiuYrpUz6+qv94/wH+wjf0D/qGnah7qu\nH6NpWqWu6wOMZf//sE0q00ekDRw5SGBTjQwyqkoF1gCo8O+qp001YKvJvYIaKNp5Vd1S2izpmUbF\ndAUySKbDIcCq4qjso4LhKVZEtbwEGVj7GcuNrJxZnctHYBNqfUXDbMBWUskUaBK4pRIp3EFwdcih\n7zxclBHm9JttElDdl7UQT3sGfc7pz8Pv3MNNe6fiac9gTq+FLFi0iDndH6BqwF7em/h3dGS8T79c\nCkqvyMXUpZnRbzYPrJ8F7fDijSu57OLJvD67nJr7ymke3syca59gC1B8Dyy4YSJPCwqPTee9T12/\nWrrt6o67PYNBSx/lLm85JwHE4JOhlaCDt9UHLmgubMJUVN5r3G8P0szebJyk6tmwG9fPYdxXEKfa\nw1inAIv9LIRFipKEkgdLuD+3HDbDg2vKzetd+hZMPgC8A7+ugF53ygVINDVxxnRgEnw0N8SrGZuY\nubycZcctY0TmCKoiVQz6IE6Bq8AMwhwJKPYUS4CVaqU2IfjejW2biDuhtrPWhDrWdgpm1u/wE0vF\naEq1UherZ3jBcLzdvfT+eW8GZA9gdNFoXDYXLpuLmugeilxdKfWVAnDPvgpuvx5uuWEJYS/8vvkF\nTp00lx3BHbQkWslvkqqfOwo7+jtpHTxYYLyfQ8QrQ4N9yy4STU14Rp9CNENETHObUgLzLMimscCC\nayphUkd+Pq05sOukbrQM73lQ4FbbWcuK9jfYni8eb059BXXUsTWylRUtK8i35eCOCmz0hI5eFDbA\nWYmhuOwuk9gldOaxxI/qSXuinec+f47K07uRvPXXwhDphcKbbiL30kvwDh4sf/HSUhwG82Vnnz64\n5BSFrOTInnQWZxPJ85DZIVnffcl6Tm87m62Jnd8ocPuX2I8fNvmT/UCmn5fmJ+uRRJcDYV9WfigH\nkdNJr8S0cDBrpLJU2nJVNVPwQFWFU9tQpE/pwZ8DC6JJ2ncN3+wL+cz3JR0lEqwp8o5iY31DJxMv\nlharIpxSgRxY/ltNxdScoAzmn7IYOmDKh5dx0fKLmPLeZTAJSdgOAi5G/EgBIk+w2zjuHKRqmWu8\nd3MwC2MW4ku8addJJRnhKwM3AL1Al8ANZG7gRchVMq3ADZD5yWbEjyl5BTUP0bCSl81IZdKG9PWl\ntwWARY6iSEhSxn4LZZ+mVAEcxOSp36x/q8ANYPn+5bzV8NZBgRvAuM5xlNSWMK5zqMl+CBJU9XP1\nojZRT5AwTalWc53tkZ04sFPbWSuszakojbFG8/PPOyUg29i2iTJfGQPHDETL1xiSO4QgYXw2L416\nK02pVg7J6IHf4SdImBcaXqLY3pXgwnLiTuhyQwW+qJ1mZxh7Eq4q/G/e7ljPzM8rKJ+zRarWx8MV\neVfQmWH0jHdGSB5oINjVQ9Av/XmqOtWcJ2gYpa0KUhXryITt+a00ZyX5PJDEbXObkM99rlYa3WGp\notnczK2aa57nkoYlZlUPoFesK93bvGR0QlFS/BRq3gAAIABJREFUfGfEI5W8bfY9bA9u58DEk6g7\n1IOrrIzWHIFthgf3FBiny0WisRH/mWegFRXi7tOHZG2t5EGCQbPnT1U6HdhpSrWy29tqicD8UPb/\nh38MaZrmBj7SNO0+TdOmcnCq7CvtR1V5A9D+IOe16FKYuB5xFJ8iwZuCFbiRybnKQKmMmdKkycWK\nTnQOxrInjG2qql0mMjAHje2n97CpqEaxdimMeyeSTcvDGjR7YpGoFCPBhWo0xjimFNYg2mJsq4ex\nXaW/kwEXXjORv01Zxf4+e0m6pcYaMoK0un61zHlvOgNfOZb1F7zPleMnU7yuhD/se4LdkV1cOGki\nTy9ahOsOoBdELoH5WQuZtmcSkWzMNsGs5VA91pLHwzgVxYI8bsqF/GnK89x5wgMM2juV31aMYUr5\nCuLA6FYYuPJY3rvgffq805v1J1TRNQZBF/jnQfQGSWoWGfuyA1nNcOUFN/D67S8Tyepkf9+9eDt8\nhHNCeFt9hFMhmXG3G/ejA3FOSkcnbFxXNbFQgW86c5r6PahmbFWlbQW2w9z74JapTu7+3UNM+9sk\n2fYS4Epjf3ugchQM+AzuO28wN5+5gdqZcEXFGI7w96MuZgjJ+9ZBL+mLc9vcZiA2PH84IHCRQEaA\nIldXM1vYkmhle3A7wUQQv8NPX39fch05hFKSkWuKNlEdFv2XcE2Y+s31jL5k9EEZSJdNUs3pWcg5\nJ1SwYP5EPh3k45AlH3LNu+/yCOK/Fbr4r4EAW0eP5gS/n7ZuHrL3R9jTx0Ng7V4iRt+Xb/hwDpR6\nyG0BZ1uE7b1T5r5sKQkCOzOgoFF69XJaJQBrSrXSGG1koN6Lem+YnKSXPbro3bVnwUM1jzCl5Gp8\nIfjQvpMh8V4sT77N4NzB+PFSVCcQk9YcCLmTZMTt7ErsMTVr+vj7kBW2U9AIkU2bcR1zNFE3eDtS\ndKxdS/1/HY87aSf/L5txFhfTvnIlNr+feG0thVdeSUeWTZqwN38ipCoFBXwwItPsh1h641K+iX3v\nWcV/Lpnz7WzKT5W3H7t9m8obgDZbsyQDVAYO5I+fi0zwFUQjhkVmkoXFyqgGfEXKoVAK6X1rOla/\nl+obV5UvVZVS6yvGSgXtSB+HFSV/wjjmMOIgWrCo6VXApETEVbI1lfYdhaBR0EeQKlo7lni5H0vE\nXvX5LTaOc4Sxf0Xnr6qBVVj+Jg8JkrpioXLUObVjwRCb5KEf+w0rpq8Zf9EIcAQWtBLQthmffWwc\nR5axP1Vt05F76kLgl2GsnkE1bwFL9kHpt6kkt0o8K1+qzsmY3OrXfUXlcLlmBdOVoN9mfe/IO4Sb\n6J67tjJG17n94Wkc0Folgde6ArrBqNAo3DY37Yl2ynxlNEWbTD9W4C4g1yFN7aFUmGAiSDAufXKB\nDGnr8Nm8JEiyI7iDQEaA2s5aAhkBXl38KsecdAw9evb4h8fts3lNCYKiOlk25ZgK+DtUvH4k5adu\n4dkH4E/3jzN7834RGsg1d8/hQU3jwMJyk4nY2xiho4sHRwIThZLRicn8qPZjSwnxSPpI3J6FmcQt\n0buyNbGTvp5e7EvWU2wXjbpVDW8wJHcIPSI57HTJd4PxoFmhdMalelefb2Faaztr2d6xnb6ZfSlz\n9cAdld45xZCpSLziTuml63LAIGsx9OGS7dJ2FR7cE1vKWtcZhy1FrTxxyhPyu+j3Lcak/1Qf+QP6\nR03TSrF45a9H/tkLdV3f+XXr/vBx57c0helXySFakQHYjcW8BBaMQAk0K7hGHJnAK6hdNO2Rzkqp\n+q0U9ECxa6mMn+qXS7d42rIsZPBT4tsKSpmLRC6txrMaVBVsYSfC0KWIUhRevQDIg7yGfJ5/eBFb\nBuzlnHLRfrscuLX5aq7lMj4a/wE8Cy9d8D6PsRiAGftuZhm7CHuEOfLmoTPQZ4L3TB9zuj/A1e2T\n6MyWy1SPJGRrxkqSsRlrrFe94PdlLeT5+c+TLIW7am7kgmYf95WvYMaTI/ACj9xXzvmXT6AeeOeE\nKh6fVw4LoehGH+/dAK8Bk24/GyfiR7N2AL+XXr2xN55PW/cWum3vTtgZggSE7SG5dnlIgFaENFwr\nVrAIkj1UkEi3sWHlgLOwsrSqj0FVXUNIYD0JtJEjuaNoKtNmTYKucM5vL+Tl2cAy2He4nPyA6cBr\ncPOkDVyRfwWBWZAI2ZlTUMGG5g1UtlVS0ljCqI9HsVHbyGO3rWNA9gD8Dj9rm9aaP5XVB1ZTF6un\nMdbIx8FtLK9djtvmZkjuEGKpGC6bizVNb1MTqqGyrVJEp/OHsyO4A393Pz8b8zPWNq7lrQNvsT24\nndrOWmo7a2mKNuENQ3W4mkM+h6IlRbQtWsSCxgU43/0Nnpvlb/Fr4O2LL+a49TD9N7UMLimkadEi\njplWwdpDGuhaD6me3XHk5+MddQodXTymhlxbNw+FES9um5t1LeupTdSTtFtwkJRNAjdPRKCcBe4C\nXup8w4R29A13xRmXz6859Gr2JeuxJ6HMV8Za+zb6+Pvgx4umw+eBJJ8VSjP7IWv3k7RDmasHG1o2\nAFAdqibqFm0b1zFHE133Pu4ohDNt+E78Ge6ksFPajjuatr4yU4vX1uIbPJhodTW+kARudr9fYJbV\n1SxJLWHw77byg9qPtPKmadp1xvMJ/949/2RfMhW8qCpLFBlHI1jU+jEkwFLzvlqs8REsv6X6uNMR\nJypwU/DJdNSJ0hpTFThFz6/YHxXJhpoyqe1mIFqpWYjvVZUg1Xqg9rsVqwqXzgCZjpZRPiCB+Iyo\nbNeb8omvDSJQSRBy7pOxErkgydYsY/3DseCMrcZ2VYCk5AM0ZP6hWC87gEPSAq+vMf10qW7p51g9\ncdo6De1TTSqBYaAvlmZeHCsYTiHn5DSeA1jQR5VAzsPqYczgYJ1Tn3G90glL1Jzpiz37hmmrNasi\n2nxw4AYwsstItnbIOKo9oPFeeBNrG9fSnmhnXN44qIZLb1mF3+EXREpnLY0xgVDWRiThWRXaSVVo\nJ03RJoLxIIGMAGW+MmpCNdSEakiQpLazFpfNZa7/QcsH9Dm9D3qBTmWbSLzUdtaaQVheXJKbmyPb\nyG+SoG3KMRUHHfu0XgKZH3PTMsAK3ABi95ST02qxUcZyhHCgOc+CRTbnSc/6qoY3aLWHaUm0mr3t\nKRs05iRpz5JgqMjVlRK9K+simwBZ/7CIBG7eMJztOxWAFzpewe/wU+TqSoG7gJgtabZbtGeBv9OO\nv9OOO2mn1N1D5h1OP1F7kohHgjPVn+eMW+QoSjqhoRCaemcTq64mFQziLC4mo1M+j7nAE05hS8Hh\njTk8+uR13ypw+5fYj9A//gNrBGK6rrfpun4ncBMWVeE/tR9d5Q0MzHQvZODYiQzMClsPFga/CRlM\nFX2uqsAoBiaV+VPsWOkORA1iKsiDgzVd0iGXcDBlsgr8gkhgmYdUjbKwMp+bscpYXZBIyYlU2hoR\n6KSq6BmwzW6fdWf/YXvp9ml39h+6F5vHRiqSIpoJfd/pTfXxVZS92xtPewal6w9lxV1/5tS5o/HX\nZLHlkY2cNP40Hl/6qKkrqniCioznNuDxrIUc2z6JT4BLsFoh1BiuErQuYPSTI1hz+RqSwB+AaTX5\n3FDaROiRcq67uoKubXJdGvPgHWAscOTt/Xntrq30eBGC5wlR6N+AulE3sHzu/5iSA+HskDUZUPpt\n6n6pA0kgGdSBiMN3G/c9/d6Rdq9AgjX1Omr8RrIgcqmc6wbg0XkXMfuGJXRF5jeBhI3UrSkRYVdz\nekUbrUHlvTDgL8Bb4MRJ3BZnWPYwClwFnNHYlwfcfwYwgzK/02/2wYEwSm7v2E5NqIZSX6nZs1bm\nLaPU3YOVTW/gd/hpijaxo2MHvVt7s/vD3Zx80ckc4e/Hx8FtZo/b2rb1nGaXnjrvhl20L13KScCW\n665jcu+HqLlaDj0ODHkJmbychEwK7oEpq2eQNz6OK2YRqSjIh3JMdUXSKF4TqqE90c7w7KGm9EFT\ntIkPWj4gkBFgSK6IW1e2VXKcdyCZHULjH+qRfZAWjoJl7EvWm99XjnpA9gCydC9Z7eDd1UDjkYWs\ni2zi9MhA7EnpFehd54VqqRLax5yCa3cDwcMKcUct7Z+OTGlAT739vmD68/PxDR+O5nYTq65Gc7no\nWL2arNGj6aysJBWLfSuWye89q/jI97Elw67+92UWNU37SNf1ozRN26Tr+sB/xz7/L9i3rbwBaM9q\nMoCpwEz5N9Urpd4nkCpSAzKGpqMUVIVHEYQomKTyd6pfTlXj1PjsSvuuCgaU/1T7aMfSg1M9Ywru\np1oKOrGCPuV7M5BknfLbquI2BGHWzMGq+nUxjkvBBRWLsYJbJpHA6G/G6/8ytqlkDJTP6WZcg04s\nPbli49xXAqOxWKpz0o5b+bA60I/89nMtbZ3xt/0zcClWsK2kENR9UfMQ1QPuxQpCa9KOFawKqfKD\nGpbfVGLkau5hIFj0O//5sV/20GWsrFtJXZc6CXqBEk+J2TKw4L5mLn4Eetf1NiGCKql5TEcPXnas\nN/1jMBGkwCVC0gAuu4umaJMJlfQ7/GQ5JGrMd+fTFG3C7/ATTUXNCty2P27j8OMPx9PDwxH+fiaC\nRVXmCqJes5+uS02ESfO/eRnnrgemHSTOrSCS7qjVaxZ3WqgTkCqi3+EnK2xnu7aHaCpKb59UzqpC\nO2mMNXKyZ6hJ2a9YkZW8kC1lVMkSreQ6cmhJyLbLfGUUttjpyBTJnQNdYENwEwWuAvolpUe8LVsq\nZ9kt8mNsyZcTjzstCQalF1tUB1TvFYboQKFZqXPWC7GJEhMHvtU1g/9gH/lv9I9fNE3T3gNO0XW9\nw3jvB17Xdf34r1v3h487v6vthPtvNM6vCXE8Ck6nsoaKsMKDDNBgBXlqLPJiDeKKDlmJcapsY3pm\nUg2SCm6itqnolxW8QzU6NyGBm2q4Vlmzo411co33O5EB1BD6NmUKwMyc7j98L0Rgf9e93Nn3ATzt\nGaBjVtgOXzmAnL25lK4/lBHzR6EBq69fydF/Opb/YSfrJ/4dJ/DLKReyDXii+wM81G82WhyuHzqD\np4zt/N3lomroDNYBD+XnE0PGdxVDeYG/I1U8xap8EXDe5ROYHoJ7PBU8f3s53XZ3BxsUvC698h8B\nJ6w/jS5A6Dzwr5KE5hTgyVcfxNOeQc7eXMLekFwTg+jEbFL3IYGt+tXqcq12FiLVyqTxO1CZ31ys\nxvjdxusjEQhMHPp/0h/blTZwwjm3n407DnOnXMiSU5ZwxqsD8L4MP5vRm1RniiJbkdUvqWAlBoX0\nhJmDzN9HnDikIOAJ4LK5mON8kZpwDbWRWlM6IBgP8kHLB1SHqqlsq2R7x3bcNjdnBc4iloyZgRsI\npOLkwpMBGJw3mLO6nUXvnr055vRjCGQEWFb7Ekf4+9EYbeT+zx4gloqx29sqAtVH9iQT2DyjnFm/\nWgaD4M+3l3P0o/KXWHIucBU8ePdZFM0u4vCfDSD3l3FsKUsLLegXZ5LRKe9Vk3QwERQSFn9fgoQl\nA5mKmdDOYCLIyrqVZMTtFLgK2BzZhm+PEJzEneLgNB0+cO5ka2In+5L1ZgZSwUsHZA+gIOqV/W/b\ny/5BhaRsslzRNxdMfUKolqurcZWW4u1IkehRaPbyJe2YBCvax7voNMS2E01NpAw9t8iOHbS//jrJ\nYJBrz3mO8mlGU/pP9l1sm6ZpVUAfTdO2fOHxf1Lp/Ac1VZVKIMGYB4uxF2QMy8ei7Y+nLVdVFVVZ\ns2FB0uHg/qivymKn91upQE35VlX9SWfB6oFFFFKE5QOTSML2MOMzJSqu9u8x1utAnBOID2jCCvKa\nsaqRSh/UDhyFMFafiQW53IT46jwsDbQP5bU+UJdHFx29UBfCkxxjP6oV4nMsJmSj4qlt//bzQ32Y\nLoEbWDB/RbCm2j5UwKaSyV4s/dKEcQztxudtWEgjDxacRmVnyxBfqpLH7V8fuGm3ajy19ymhrjd+\nJ0WuIvNzv8PP0/eOMn9zwUSQkV1Gku/OpzpczeLkK2ZwBtIXHkwE2RfZR3W4mh3BHURTUcp8ZRR7\nis1WAQWdDGQEzCBxeMFwAhkBupzShdziXNoT7XzeuQefzcvqA6tNBua3IuvZmtj5rQM3ZUpuR0nv\nZHSKvwn6JVm4o3OnScTS29cLl82FAztvRtcL/DMRZE3T22xs20RvXy8GZA9gB3vI6JRtqMCtwROm\nXQuzR68nQRKXzUWCpNli4cBOxCNJSseBNjRd/GP/eA8yOyTwym2RRCxA0mkz2abT4ZyZHQLpdCRA\nc7uxdyk8iJ1aiYWH1q4lVl39na7ZT/YPza0CNwBd15UQytfaj7LyBkb1TVG+K1HJdApj9Vo5nUak\nyqUGbLAciOpxU43WKkOoJv6KCjmMDJoqoFMVHgOOgQ1LM0dlx9qNz/Yh7F55MOfshUy7c5IIcR4w\n9tMFqSKdiJX5TNOQ8UZ8hG0Gd60Ps5rku91H1qWWHpun3UPRtgCv3/4yxy36GafdNZZf7Z3KhcBy\n2T1aC5wz80LmzH+e7sblu2noDB5cPwutFeI5VvLUsw/uLxbyr/NvhLq50l89CbDHodFpEX2BlRgs\n/B28+mv47NZyut9TwdnPQNulckpTRt3A3avmUXg9cDqQD48sK+fau+6nZH1PqgdVWZlcJdWgMqbq\nnkSR4O5IrMCsBQseqSA7meAt9BHeFJL70Al5h+Tzy5fH88TgJ2g6XjYV+Jtc65dGiFTSkZ8De+DP\nw2HvlVdydf7j4sQbwNnpJO6IgxuK4kXUZdVBDIoiRfgdfgIZAdNJuG1uduu7IQJF7iLKfGUmzKMq\nJMzpg3IGqZ+1CJcaNP99/MLyUh2upsAlZB9+p589VXto29xGydkluOwuij3FrKxfyZzsqWbWb2ti\nJ8v6LOPjs+CIiJw3QWg+RIq+058cwboJa7jsosmMWfoou44/nntP2M6drt9QVyRZvI5McSA5rfI6\n5MPsWXDZXNRGainzlnFIhmDqN8a2sS+yj2A8yJDcIWY1cWThSI7SeplBYHuWOLioG6pSe/ig5QNi\nqZgJDa1sq6TUV0qBq4ATOnqZVNENhSI+XthiJzLzQfwjR+IZeDSp1jY6Kyuxud2iLee0EXWDp1nS\nikm/aNPpdQ1oLpep3+YqKyPR2Ii73+FEt31C4uWXuek5mHVtPtMbrWb4b2Lfe1bx0e9jS4ZN/vdm\nFjVNKwJWAWP4QvO1rus1/67j+P/JvlPlbYFx6b1IEAMyWKux1YVM8pWfNJJRJkxSVegU0kERgehp\n302HZij/mT4Gg6V/lsKqeKm+OrtxbD64I6ecmZ0VktiMAR9CXjSP5p7N0AAzM8q5I1BhVQpVb50i\nP1HkKxoMe3MY645ZJ+eyG/ETak6QiVVNzEICmmXG9kYhzi4FfIL47M+BUtBzdbR2DT3ry/dBO2Bc\n6xAM++sI1p27xjrHDkx5Gz3w3eZb2p0a/AwJDhXRVsw4ZxVQq759tUz133mRylslVhZW9bPZ5Ljo\nBmzBRCzpU7/FXOx2DV+nj5A7hC/qo8xbRmOs0ayurWtbB0kYljdMEphGRU1BIxXkscAt1bb2hCVz\nVdtZS19/X/ZF9pnrqaBNVdFA/GxjtJHGWCPFnmLefPZNeh7Xk8ySTApcBQQyAqysW8m43DMBCby2\nR3Z+455mZffdM42WXAl2VDUMpILVniXBz26tnlgyZrJiuuySQYklYzTGGhnmGchurZ5gPEgsFSPf\nnY/f4Tdlf5ScjtJfVYiW7R3bOTPnVJJ22BLaRr47nx5aVzqdSRpjjRwekj5yWwq61stzbOcunMXF\naBketKSwQbcbSRnFitmZIYGcLSX9e7EcD449DegBaTNQrJmJT3ehx6RiMWX58m913eA/2Ef+m/1j\nummatha4Vtf1D433g4EFuq4P+7p1f7yVt/7AIXDOu9L3hQ3JyKnMWnrwpBq2FLNjunaJgnEoCIHa\nVjqsEqyslh8r+6X66RTuX7FLpsPychFncSoCuUvAtE8mSZ9VFFhnbEdBQRSlo6K9NwQ6wzkh2bdR\nXSx7tzd4YMBhgzlp/iiGLvoZOXtzqetXS59V/QF46/I15OzN5cni+5kPjJ87miQQyYVl859nYLMP\nX6Mc9pz1s1gFzM9ZjHMfHPVObzyzYF2xnOr57wAT5BJfANzd/QFiTsu/64iPuHXUDTzHYmwTbJwx\nC0bdU8HZb8OofaNEM/RleP32l3kNYBB0K+oO6+DqsRWkkimqj62Sa6quq8Lo5xrvFcNWJ1AEn7iM\nz19HsqmqlyNkfH8PhN8KmcH9AyfCktImDnzWzrCtI4gDi/LzmX/SYsrsvTm3DY6cD02HAO/Kbbs6\n53G5P0YWN67HzSx1nVZnQlfqEtL57La5qeteR133OmF+jEJ/f3+aYk1saNkgTFeJIE7NSZG7iFgy\nRiwZIxiXbGNvXy/y3VK6Vb1dyoLxIIGSACU/L8Hv9NM3sy9rm9bid4iQ5h5PKzPbKhjZ0gs2G+Rn\n7yNZaSc8DLwNnHb5GmpcsPi0R4kBF737LvPva+YN/zaChNlfmCSYIZj6zgxxKJ3OJLmOHNMpBTwB\n+sd7CLa/420GufpxafJUxgbG4nf6cdvcXF76G4KJIBGPBG5Rt6Vhk7IJJCaQEaAx1sjg3MEMcvVj\nYv4FDMkdQiAjQMIB6z07TX2ejLgd13uf4CorI7JjBx1/fZPQ2rXY3G4SjY1EM2zY4ymibmg8xEOw\nq4ekXZxh+IMP5Lt+P5EdO2hbvhy7309s5y4SjY28One0sG3+J9iPtOcNQNf1OoP2eD9W1+++nwK3\nf6/p1xgTcMU+qPp9Va8UWP1Z6ULOX6QaTu9nU+upapYLC56uxmsFq1TB0hc/S6/wtWBBHwH9FmMH\nn4B+l/HaDgxCAjcfMhbrxj7SWxnU8YVh3XHrrKrjoLRzVnIDnQhKA2RuMAbpeVOi4k4Ejv8+Eiga\ngeg/CtwAqcJ1kc/Wla6RX7zX2EcxEnTFQav+6jmi9rqG1vnlz2854h6m/XE2IzePlvM0Erqm5I1K\ncDqN142Y2rD6GF16Fv4Hq9dfBXCqV68BQfwY5C3fJnADSWD6HX6zwlobqZVgxFVAdaiaPFueXJfm\nddSEakyWyHWxdQQ8AZNB0u/wUx2qpinaJAzL0SYK3AU0xhpN1maQoK3I1ZVARoDqkFTmGqONFLgL\nTEhm2allZBdnU+YrI5qK8lbDW2yNbxVNNCM2/C6B2ye+ekKpMPXeMCGfyAoojVUl9F3k6orLLu0R\npe4e9NC60hRtog89GOYZSEantEoo2OSGZvHxXxTqVj6vtrPW9LmdziT2pAS8vWISuOV02A8K3FI2\nCbRCPnAc1hMQTbqk02YGaiZDtPrfaUYA53Lhao1g71II1XvNADXhAFevnjgKCr5T4PYvsR+pf/yC\nTQFe1DTtHU3T1D/1mm+y4g9/6N/RlGzAHfOflwUJZGBqxMp4pbNiqepcevOt0oVR+O50Qe7OtO+k\nO6JE2rIgVpXMgVV2Ssfh1xvHsQmrQXgHphPsbe8Nfphz/EIG1hxrZcXU+Kn6tZIwJ3ehBDHbBLLY\nbWt31o1fA0Bdv1qOWjqY0XeNpb5fLZefcT2Txk/mo/EbaAo0MNZ/CH+9cSU3Dp2BBgx/cgRhb4hU\nATzJYk6fO5p+QBcug/+B7SdUsWAGDHsGypth1wlw5dQbeOzii82+cdfHRuHzzxIvpYBHVs3jf558\niksfuRS80Ddhg3Ww+JZV0lv3MRy9dDBdgLKy3oy+aywjI6PBCQP/dKzFjqKudQwL4uLHgqQaOm/D\nb86DT2HagtlsUNS1HsTBt8h6ofHQ9gv423Ew9RkY/VsYPf95brx8DUUPwMimJs7mMqr/UgV2SE2B\nqydOhLPAF0aC6lYs/SGlj6MmL2pCkQdV9ir8Dj+jgqN4sKGcNX3WgA5b9a3EfXFTw21I7hBKvVJd\nctld5LvzTVz8xrZNZDmyROPNwPhXh6qJpqICD6mP0fBWAy6bi5X1Kwl4AuS78jn8tgoao43cllvO\n1YMruMNfTj1Iz0MU7j2pD6cDd/5BHu8B0x6czWelpRRPh+X3j2NFywpiqRhza0RSoD0LPNUNJO2Q\nFbaT2wKDsgdySEYPCtwFdGTCIbV2RntPpNkZZleXMBlxO7mOHEbkn0hLopUT7QPxhqVy15wnDiPq\nFn0dJY1Q4BInrRitnv38WaGEdsNRWi9ajf9O3pufoL38Mtp/i3h2vFayt4nGRrJGj8bdmaKp0IY9\nCY3usCk26o4CF5yBb/hwUsEgrtJSnIEAnZWVdG7Zgs3tZvXVK7nTw7euuv1kXzZN005CAMoLjUeV\npmkjftCD+j9oT10LT92KjFc+ZLxSgsyKiEtNYhR7MshgrogwYmnLFIY+fR31GVjjdno1z9Asw8XB\nFTyjUje/ajykYGasAu0hTUg7pokDbKowSoaKLEX9NR1pz8o362nHpcjBlMC2F6sK1m5851Csat1y\n4K/Ga/W5Hal2qSDwG5hepqOfajjvTAT6GcIMjPWyf1C126uRv7tAIKHrQKvV0BIa2k4J5O79+FYA\nVl+6Uq5deruGelZ9a0b7hn6GLoEbSK/2UISUJWqcj7oeisSmHdjDl2j9v4nVueuoc9dR4imhwFVA\nc0YzNeEaABMiqKqstZFaynxluG1u5mSUMyTei6rcKqKpKKsbVuOyu+RhczEge4BZqVPBoAryPg5u\nk4RnIkjAI9W37cHtRFNR2hPt7F+9n9a90hemiEpGZI7gPX0bW7Lrv7E2WbrdfOscXq59mec+f44F\nPRbw+31P40qJT1RkXiBBXJGrqwnvTNoFOtqZIYzJQb9Q7tfF6hns6Mcvs8+kuN2LJyJslTGXBIWq\nxy2QEaA6XI3f4ScjbienVYhUXom+jb/TTtgLn/lFViFlg6JNDSKBkwH2uPwxU7EY9niKuNMSPt+X\nFSbhkIBP9bZFvDZ0n4fkAclspHbvJWMkI8FYAAAgAElEQVRfG2zbZS77yb4/03X9A6R76CqE17yv\nrusb/vlaYj9a2CQYNLUgk3qFAXchA7RyGGDBNJSlZwPTMf4qmxXDCgD1tHUVTEHBP5JpzxoWW5Nq\n9K5FAjalcfO58VyC8LQ/C/PeHMkNK1dz+JsD+CS7UvD3iklEUf0aPXWn3302df1ksrrpl+8z8sHR\nlK7vSWv3ZnL25tFn1RF8NH4DTy9ahB044ckRrL58DQkkdlybtZAb2yfxm/GTeXDpo+S0wY5s2UUJ\n4J4H3st8hEMhgj3A/1cEbvIY7LsTipcDn8JIbTSrHSuJT5He5BTQMwURm/S1zaoYw7XlK/gIuPEu\noBts+Y1VWFzIYlq7t+Bp9/DR+A08tmgROe9B+DjwBo1zVw4XrEqb33jvhW7bu7P/+b3kJfNouq+Z\nVcBpG7Eckqq4NoP35z4+zAuxLD+fGc80UbK2hN0n7oZe8GkveBHY8/AVPHrtEzjeAw6Dylw4rbI7\n+z/dCyfCqN+PYtWwVbARSRKo7Svq5TSI7ZicMayoW8FbD8rhnvxbyKvKI+AJmHASZSFCXHHIFTxR\n8wS9vb1NLbRSX6kp0F0bqeXkwpNpT7QTTARp6GggO5lNoDBwUFZuR8cOZj0Qp/w24BxIDoI5wMfz\nLuL4qix+/fjjPAlMSdhY4kix5/jjuWnOu/AX+T1W7CgnMvNB7ngyRsUE+OzhK+gRycGWsuCOCYdU\n4A793E7IB284RFcH4LCWHG6IVHBRwUUc29aDuiLB20c8grnfmd2K3+Gna5Od51NvmIQm0VSUIldX\nclsk6zj6+gqGvQi/Ow92Liw3yVJyN+6lY+1acn/5S5oWLcI3fDiePn0Irl6NIz8fze0mFQwSP/VY\nGnOSdGuwk9EpAaMvZEFDUq3SfN2+cqUIe0flD37TjHe58wy44zuMid87JOSJ72NLhl3x74eFaJq2\nEbhQ1/UdxvvDgBd0XR/0z9f8yf6RfRf/qOxpTWPC/cYbpSmq/JYXC96o+r2V30kX41bBWIIvJ0bV\n99IrbardQH2m0CluY/sNWD1wqrfcKcem33HweT6kPQXAlJ2XiQ9VjFmqWmgzljmQgK0LkjbIwSIN\nUZo0bsQ3t4Lz907iE+IS4H1qbOcwGLj6WDaNfh89+ztCHGfIX63b+d3Z32cvp88+m83jZT5We+Se\nL39/yxf+mm7kvkQwSVy6ObsD0P5MC6GRIblWSmtPVd+MucJBerjp+/mjsR91H5UO3WXffQ6ordJg\nI4xzjGNZ/jK57lHpefM7/FSFq/DZfISSIfKceaavGt11NIGMAHPPmAvPwqDkIBMWqfqpQSRyAM4K\nnEVlW6UpJ6CqcX6Hn32RfRR7ivE7/SZ0Mtoexev14nA5zGNd1W8V/T/sz1ldzmT25G8fvJVOL2X3\n0bshG+7YVs7Mzyt4zHETB4pEbqYj05LM8QfFV7ZmioxBqa+UwoiX7jdWcOPNeUwu/g0pmwR2mR2Y\nGqbv6dsY5OrHxpiwLitJnO3B7QzPHkp+kwR4at0ESRyIn4u5IK8Z3PvbIC8bezxFR5ZN4JAdKSJe\nSWo6EuITHQnpOw97xTf6QvJembMtQioYRCsqhOY27H4/V95333f/rfyn+sgfwD8q0zTtPGClruvt\nmqbdhtT7Z+m6vvHr1v3RVt4A9LHySxuzYYyF7c7EypSpyb6CUKuqmcKGk/ZaOTXFUqVw4+mZRdU/\nl95LpwbPdMeG8VkWVgDSgNV3ANIDB9wwbTVj5o/h55+NELYsBX9QD7W/JLx225/ZdN77bDrrfbxt\nPt6b+Hdqhu6i67YAm8d/YFbfFKvwm5evIQUs4FEuzCrhxvZJJIGnX3iMD4FnssXPNQH35+fz6Q3Q\nnBcCG/gbIPVzSHSFhjsN3dSxwLVwSuoo1k6RU+oOLBg6g1dsMG3oDI57GU54tobdwNlA3e2Q+I0k\nIFUsfBWX4Wn3cFfNTTy3aBFz+s3m8KYBeFMIpm8N0pynBFc9WD0OduA12J+1l5fuhWfua2bGgnJO\nq0EOUk0G1ORjD2zOC3H4w3DvZRGG7RvBhMILeGw0XLT8Ig57HWbcCA9d+wSXTJyI7RipFK4HdgzY\nK78LF6yKrKLyJBgWMqDIasIRld+Ns91p/uZWJFcwb/NIPp44kbvnjmZebTnNZc1sDW4llorhd/jx\nO/wMzh1MkaOIZz9/lt7e3mamLt+dT02ohh3BHTTFmkyZgS1tW6gJ1VDQXsCeN/aY362yV7E1KDSY\ntuOPhyxYPggW3F6OrU8flhyzhNY/ihKs7cor2etIcUEInIEAoRPhrsf8zB0P8ekV3LEuxpMTwDGz\nnMZoI62ZSaJu6TerdbaStEO3BjudGeKsNrRsoEckh14vbEF7dzMjMkfQ29aD9ixxSnGnOIb6fGmy\nnls1lzccmxieP5wCLYe3DryF2+Ymv0mgG8dcX8Gw+TBu9zh2LiwnUAsFKzbjXfZ3OtauJXP4cDor\nK8mfOBFPnz50rBX5BUdBAZrLhTMQILMDXCk7zrgVuGm69LwlDzQQq64mtGEDyWCQWG0t8dpabprx\nLvde3+c7BW7/EvsRwyYNc6jADUDX9U+x6iU/2b/JtIUaEx6FQeFBB1fFwBJ7Tvdb6lkFdOlkJcpP\nqmBOoVb4wrMlN3VwjzJYPlW1MSjmZsVyGOZLdp0+QV58ALzJwTIDqv8rE/ETbgQmmt7yr3yIgt27\nga4QvzBuyfi8hfR8+WDTMd89cAPQZ+lwHezvs1dYkJGg7R8FbmCwUNYgqI4szN5qYnKceGT9/c/s\nJUQI3jVWVG0bqufP/aVNm6a9olmkaiqodv7vAjdAKqGHwLL4MtgtiUvARJjkOQQyWZJRYlbIXDZB\nmtx/1f3oJToTMicQjAdZFVllQirdNjdum1v0Ph3+gyj/zV3HGtnesZ0sRxbV4WohAQsLkmPPm3t4\n67O38Dv8rG5YDUD/D/vTGGtk0d6nv9Op1syuYf6L45l1UT5PNbzAPV3L2dyjnZjLYm6s9wp5l2oL\nUMQrPf+2n9u1CsJXXskNz3pMwe50Uq034utpT7SzMbaN9kQ71aFqAo6urG1cS5mvzKzMea8TWYO6\nWD0FrXYyO6BLXYrCBgMK2S1b5HOcNnwhWRZ3S4AJFpOlglnak+KjNV2W6xq4O1MSuLlc2OMp7H7/\nV1yVH9B+3P5R2W1G4HYCInu+CHj8m6z4wx/6/9ZcsOLIFRKgfY4MlgoOqXDdKjsHlsOwIQN5NO3h\nQgZ5VelRsD1Fday2lS5IqpxhuiNTk3pDpJFOxHEcggy4RyGDc2/YcBoMLV/BIVcvYNhTIyy6ZrCg\nJenaOoa+XNgX4qilgynaFiCaFWHsjRewe+guPhq/gT3AteMnm6zGv2EyZ3rGix75O1DjSDECeG3i\nRP4ArHiknBkrmljUbzZO4NliIA8eufhiHgZWA/cBT02cSNkHvZkxuYL+wPB3erMfuHT9LM4Mw/y3\nZsFpUD57C0cDvVIwv99sHhk/nggiZ3Bv9we4btQN3Fd5G5decCW/Gj+Z+n61XHHG9XKwW5HA9nUs\nVkd1HxxQ9lFvCIPvER9L513Ez4HZY4wmdgMmCYhTPgCz5wU47HXgQgjNCrGuaQ1Trq/gqvfAvS5X\nAvyfS7/60T0LOefBcyAA+10u8bvvA8/DuMxxDOgwetA6wWf3WZMNJ8TdcTnWfrDxVpg28B26LVrE\n6okreTj6Am9eBVeUXcGR2Uea0I8dwR2U+cpMkpOtwa1UtlWaMgJKsFvRIDcnmsl35bPFtYWiU4qo\nDlUz+pk6Lsq6CKfmpNRbyiMn7eORlnLGVsEUTwWn7dgB66C8qYn595Rz4uOPE9gBr/qgc+lS/Akb\nt98e5IkZvWldeCMcBg2BAJl3VFDgLqCwxS59arYkXfQcUjYZ/FM20ZdpPr+ZV3LWs/C+BqZOfp3z\ng0PFcdgNBqwEptMYkD2AeTnlnBYbSJbupV0L8+uMcymO5eCMw0W3VvDZ+PGMi49j2bhlFNUZfXFl\nZTgKCohedz7OQADXMUfTkm+j9eWXSTQ1mY4lXluLMxCgNiCMmEpcFMC+t4Fwz0IiZYVkDBhAsrER\nV5lUDB0FBTy2+iZ+su/VPtQ07Xeapp2kadpITdN+hyhx/GT/RtMnyeS82FNsMT8qOCRYvjGI5fPA\nQpeA5X8cWHT+aln6DELJByhfqJApJs4+7bN0n2ZL+04W/9CmPHyZ+MYRiF/VsCD2qvLkxGJTVCzS\nBipC76fLY7COni8PDks7/lFQe3Ytuk9H7/W/C2huOeIeITsxdGdfu+bPaO/9k163VzXoCQNXHmtW\nHylA/JnqXwP0+3UoRchFmpD5i6J7VlBKJ18y7W1j3+lzFPhWcNCvMv0iXR636DASVhy3gv6Z/aXv\nzekn35VPwBMgmAiyo2MHoe4h9t+7n4cnP2xuY/F1iwkmglxTeI3ZS62EumOpGGW+MmKpmIky2RfZ\nR5m3jGA8SJm3jPZEu/jLeFD65ZIxLv/ZWE4+9GRG7irkwfCvqO2sNaUJ9t+7/6tO52vtuj/+kRlX\nN7Fb2w1IIGpLCcyx3ZvEZ/OaRF8NnjBlHTls7LuRKcOWwmlw9cLHcV11CYBJTqLpUGdvZUjuEE51\nDmWY3o/T7ENNEe5xuWdyaKIrcSfcXVLBLdPFvwYcMsHMaxb25ANdrL65lE0qf6nWNhM6qZgx1etM\no/LqjkrAFvZKQjZlg2QwSLK9Hc3tJum0kYrF+Mn+JaZmrL8Afqvr+l/4h//iL9uPPnjTT5eBdvr+\ncqnWKAy/MlWJU2OnwuCDDPqqZ0k5tBasXoBo2raUIGkYC3euMlgqIwniBJVYdAeWo0shDqUfsATm\nn72YXefD4A8hd1o5N82DdUPXcM68C2U/uUjwqcRJjSZjb4ePvP35DPzTsRRtk0xW120BIlmdnPBR\nHcct+hldgMW/eJT8FnjqnnIKXoOPDszjAPDwY9KzdsnEiTx/8SKmNfu4p6GCO897gMxt0/nV/An8\nVyvwd7j2mecAOG8azGiE3osWcX7lucI6COw8oYpuwP0TJ4IH3jO0eOrPglE1+cyaW073s9s5fOlS\nOoAXT6jitr1TmblqHteeMJ3HVs0zb9P2UVvZnQMV5bDvCug4C7x2n6VX45VrWrQtANkQui3E4huW\n4Pmcg3vQVGAdBQ6D6TNr5fOVMP235dzmLacTuOK9Kxhc7AA7LPxbORc/BuV5FSzLWgYboX8sJmoP\nI4Bfw8ZhlVRlQjwrDnkQsoXAYQRxbshL5uEMOXnibBi0B+7JnUr13eU8OOEsdt+9mybgyG0aG1o2\n0BhrpCpRRTARZF3LOupidbzb9C7YYXj+cBMy4rK5BHoSqqLAVYDP5gMgqy2L2NtCi3z/2AbWNq3l\n+PzjqdKq2H3WbhoKYcolM+BUGNQKp3eejTMCkVsrGHAPzJ8+nk1AW7/ZpOpTbLwJqk6t4uRJc3nZ\nD9Mn1XIy0Ksth/LGCj4ObiMjbidpF+bJqFsygAv2L2DhH8up/mwHv9g8mr+dBfuKxRkUNoBzegUh\nn8gLZMTt9DzgNfH1AH4jPX57SwVT+lTw0vjx2JYuZdFNy+i9qDeuGNh27SUVDNJ5/OHkN4n4tj2e\nwv9pA65AAFcggM3vNwO3lnwbRXVQlhTHlrIJjKWtr2jWeKobCG/YQP7EibgCAdylpfhHjjQlBP5j\nTPseHz+MXYVMYa9FGrA/Npb9ZD+ArXCu4DZXuRXQpNdA1VRBLQthTSlUP5XyYWqMTe9lSw/0wAqo\n4MvolWjaOqrip/ar9Nz+genX6Pg+9wn5R3ps5UnbrlquEq3K/36F6Vk6eomOXqbz0IaHWLVq1Vd/\n+VvatKtmW72FWwA7aE3/5M9YA5uOel9eNyCJTC8C/XSDtltD+1hDn6zDfyNTPSW27cKCUOqgfaox\n6H+OQ3tfQ/udJpBQBbPE+L6RoNaWfH8DxB2byrljUzlbg1sJOUMmEUlVqIpSXyl9MvvQv7k/h912\n2JfW/WX3XxJMBDkvcaIpD+CyudgX2Wfqfg7IHkBNqIa+mX2lB8wpCdDazlpTF7TUV0q+O5/n33uL\n3i/Ws6WfznPFHzE4b7DJ+vi/Nf1OnVmP59OclSQv7mVXYg8O7KbfBtFW89m8TDtKqmT6VB36wbTH\ny02WR5CAKewVX++L2oXV0SE+CwSG6XvuTW7XKrg7ItuaXlTOnEMqKGywCMD0QCH5TbJuxCMVNceB\nNjqLs9HtNrPSp/RV7Ul5qOWK2dIZF5bmVEE2rl490aNRtJDB2uz8DwsXftz+Udk+TdOeBM4HXtE0\nzcM3jMv+w+7Gd7QwzO5WYUkBdGBBChTDpBq4FAZfnblyJGBiwE0z4IqAJdCZSlvuxLr5IaymbGVq\nP+kOai+QCVOeuYyeL8GYv45hhWsHXAG9X+xNc2GtVQk0MoneqM887nCmyAXsGPUxm8dvYMmiRUSy\nOrl923SCVWOoGbqLw1IQniCskvYk8DMonXYBXYD2556j60twRN9Cdp8Csy48gbzL8rlz91TevneU\nUNy3wrqTYNCsQUz9CzTNgUgB/K3fbAZOqmA/cFSzj07EB9y9aBEzPS7RF3dKsrC+tIkZYyq4+roK\nTgQmzR3NYKB7ZXfOfnIEt+ydal727L25FG0r5t5RNwir8Xrjtj5vSCMo4XNg3X+vEXhp2EDY7MGS\nbEi/3y3Aa0iWMgfmTF7I7PEV3H1JBYFp8MQZT2B76CE2HweRTZt54SqgDu4KlvPmRJH92QjCq38A\nrl95Lq/NKOdBvVyYTn+hbnsIIhJ0+R1+No26gSt/dQM3Ta5gk3cPd/d9hxo7nFcDV097nMG5gwn5\nQlzT/Rr6+PsIrEQXfThnysmqhlWsblhtVtwaY43kOfNM4pJgIoier9P39L4cU2njpuWFVN6zm99O\nX0P93fCXoTDz8gqyz4/z+hBoz0HYR2dLonmMfQylS5cy/W9wzrbpsFiIS3gFzngAPnionLKTejO1\nYgw33VTBbaXlDLH3I+4UYe7GnCSNeisnXVPBzLxyJv2sgrGBsSwILWD9PeXcdk0FRddXcD8vsOCd\n3hzQWslqlwpY0o7JzAXiwCIeeGY2LL8Yzli6lGtfkd/PBYWSJNDcbuKHdSezQ6Cb9i27iLttApEc\nfiyeAQNINDaS+PmxJJua8IbFCXkikkVU7Fs5rVDQKE7O5vcT3rABZ0CSH9O13wN8K1Huf7n9yGGT\nuq5HdF2fp+v6ucbjQV3Xo1+/5k/2fZuqviUVhBGsCpvq4U4X1U6H36llGpZci/6Fz5SpbarfneqD\nS99WukyPqsypsbsDiwHyC6Y9qxH6ZUiqWW1YMgN+LKmddFKUTGO5V6puX2fnnHMOp5122td+75vY\nnMXTmbN4ugkBnX/yYgnEtoHW9uXZon6GjneYD29Xn1Tc1DykBxasNYEEqoCeqcNcBD7px9KvUwF2\nO2wqfF+2cwaSMFYTVRtWcroDU1D7+7Cq1B6qUnugLyAqNwQTQUoySqgJ1TAgewBlvjI+vfvTL637\n8OSHWdu4lncyd0oFLdbEgOwBgCA2oqkolW2VuGwugUbGpW/cJPpyCqGJkpw55Rcn03Hp0Ry5TePi\nfUcxeLuHxdct/of7/i62adpJgoZxhult6wFAlu7FGZc+tNpEPSWTjMDtPPn9TXh4AsUbGjjp5grC\ndz/I7cEK5hxXgT0JXcNeE6Giuq9UP1rwklPM/5Y+VmfW1XPQz9R50fG29LAdaKMjUxKq7Vmynj0p\nvjNlE6bJ0IpXib/ypmi26RwEoYx4xEfmN8nyji4ek2HSlpON7vOg+zzfy3X7Xu1H7B/T7DwEZzZK\n1/VWpGzzjWBAP/yhfw+mj5M/x7D3hllZP8UJofRQVA+UatBWVbUwFv28F4tJUmmzgDWYpgd8bqzG\n6fTPVOAVwyJEUf1rnVjY+/3QfC4c8fRQXnP8macy4Y1ZVayZtsbqw9PBVmgj7A7hjfjABgNfOpbm\n4iZOu+ssTrvrLB5iMUXbAtzVbzZ3Tp7K/JGzaLPBq8CjI0dyU58KbumRywsbXiAEzIhB/bkw+uYK\nSl6WQw4s6saDd5Vzzi2r8GRkA/Aei9l4ykY4CR71+9kCzPnDdPoDvX4Hcx642ixcApwSi+EzTq8b\n4ueXHw7jnhmHDVh840q0F2Hq8otZd9ka3GEorMln+6itfDR+A2umrKKtewvXJIGBcMmUC1k7GcEz\nKqKYsDzyQvnQCrkHYMIHE6wscDvi2PMRQpirkf6BOmHj5CkkC9oX2CbaqjuAqY++zgVPAf8Ntw+q\n4I+jbqACkeFrnSrHcO1NFbzh38bZMysInYZkRNVvpQRWRFfQnNnM40Pm8fjCeUw5YwZL2pdw533N\n/BF4thRu/Us5pzqHQgwWDFoAQHOqmZKMEko8JcRtcUo8JQBUxaqoi9WZPW+hZMh0TC31LaxcupJx\nixZxy9gdLDZO/ZTb+3M6oPvgxusrqDz+eH5/1ln8fP0sUnfLJVrxqxXyc/4cjmuDmXe5uOq38MZ9\nwGlwd58Krlt1LisyV0A1eBf+mef7vUZWO3Tr8BJMBDniQA6bBg9m5nX3QxRW1q2E3jAtWMGTF1/M\nVc/B7iN2M2LDcIqSOSY1sT0pAZUyBe147MkRXHtrCVHgzTPhlYsvZltsJwDxfftIOCRwcyQgFQyS\n+GAzqYJstFrpX3MUFGCfXkFo9Wr0zZ/g3r5XmrkdMmHNahfq5IQDnNEU9gGH4xx+LPHaWqYOfp1p\nbx3KT/aT/V+wcYw72OsryCFY8H+FLFHfU8t8WL5NtQ/YMPt+zaBOwRlVqK72kV4dS5MHMPebaezj\nq+xTRFpHQ6j3HVj9boqwRLUotGEFpN/Ali1bxhtvvPHNvvw1ph8rJzm/YDE4Ycq+yyCA6ae0Rg2t\n8eAgLpTbQfivIS67eLKF4tmH1doR5yA5I/1OXaZ9XoRFUn2urrsOdMLTxcY2FNN2G2YQyCHAQGG7\n1J7+fkoQSzKXyIv9UJddh8smzJHN3mYAXr755a9cd0D2AHYEd/BfuecSHxhnR3AHBa4CKtsqCWQE\niKVi4gONwK0x2khNqAaXzUVTtInKtkqiqSh+h58ly57HvWANwdWrSQWDTH7sse/l/JSp/nSQZGEo\nFcYdFR/lQKj7QQJzZYO3exi4aBGbby0n/8brGeMdwzXrrpEqWcKqgikyEkdCXt/dWAEdoN9sbeuh\nO6Yx1n4ivhC0HppN3CnfzWqXHm9dg2BXD66YVMzil5xBxoABBP0G87Jx3D4jP65kA9SxJBxW3x6A\nFoowefa3J3n5yf656boe0nV9ma7rVcb7/bqufyMIwI+abfKg9f9kDD4dWDCQFFaDrpISUBlB1fum\nsoERLKHuKDKAKjy5EnyOIQ4hZmxXkVakw0pU31wk7fvK1LYvAJ6Gz2+FZ0tLmVBTQzfjEJ07Qe8F\nWhyJgDLAG/IRzg6ZEgJ5e/IZe+MFtHZvZtn854kiJE8Azyy8kbl75kpfQAPMyi5nxlUVsBiYCK9m\nwhl3wDszYTDwknH65y+FF8fDefPgkaorOffxxwncAw+uP4vrK16Wgf9PMM9RjjsKRfdUMH4H7Ooj\nSBbPcphy7wzmrJ9lXmJ7DMkQDoXWk+EPwIGHyrn7mArmvF3OzbdWUFzZnb6r+tNn1RHsHrqL1277\nMxyAT4olPnoXUQW4HMisQZhP2pDj2QGMhD0u6LHWuA8eJBv5EjAcS4+vCPjQeG4GDkDeSfk05zYx\nP3sxE7iMnDugaaZxHe8o57CZFZz5OnKCCaRhvgFxlq9BXrs0Y7tsLup61PHw/nLujP2W5tnN2DQZ\n9W5+8iaW1b7EKe+fRdmqeVJEnFPOrUMqJN8C+FI+Qo6QNZlJGfceLGptG+Sl8qTyFtdJRBI8/Vuo\ncbnQ3G7OCQY58g743Uy4BHDXG9fgfJidB9PvgPl6OZ8UtHLatU9QdeSRlM/awvyxi5my/DLoC2//\nP/bOPC6q8vvj7zsw7CCLuCAmpmSumZmKZWgWmuWWtqjfUmnRXBHRQcRdlJuIiEtahraoLVpqm0tl\nuKSZmbmVoQmKuIIIDtsA9/fHc5+5oy36Lf1q/Tqv1zjOnbs+d7jn+ZzzOZ/TAPbGWwAYMUKF7yHx\nOwseB7NRXF053zTQ3kDUvRjuilX5DpioQrIFCoKTmfxpNFEvxnP2iV84WXKSHt9U4fzDDal1Entz\nULNNRAnPKvkEmHypsSObM22C+TJ/C92dHqDSJPbvVlRJga8Jj6PnsNYPxCV9r6hT869i5/a7lIFH\noooVsPXujVZWhuLigsnVlcp6wRR5COqJ6Wg2TlWrChqIrkrpHBBA31mzWNyyJWO+/Za/YtddSWvZ\n9diTbgNunprWv3Z97K/6RwBljkJXW1c+qvjIUIAEg40ia9Fkpk2yS6Rvk2IljjRJCfyuBIHSJzqq\nIcptZB2cY8ZPljucB24H7fnLr1U5osBOSHlmKVEXBgqnICX4PTAyim5cLo4SIK7has2xjx8/jqur\nK9WrV//D9f4bk1L/nAUaI67NB4OtUwJa8BXXeUj/8iLC58iSjgrsY6iFGdsoL+vr34tR52/Wj1UH\nYvbFkBSZJFohlOvfPQZMBpqAea8ZWzObocKZAZ7ZnljrWu0Z2z917V8o8Cm0qNICV5MrOyp2/EpF\n9Lds3oRYIXa16yhRnVZR42gNgtyFqrIMXsoa8CC3IHLLhAqcLDHwNntTVlGGUqRgcjGxN2Hvn76G\na7WJqbEE5MLZagIEVZqEzxkb92uwo4xTmG+yMMysijp6k6hr8yjCDsBkaUGWcobby6tT4sZl6pgv\nz4jFWU8suBdjB2QuZQazpczFCFzm+YM5RqUyKAiPF55B0QRAk4FUqVJZ7G4wVUD46QonQaMEGJKS\n8pfG6Zb1kQP+nv7xH5F5A9B66g+G5hiRPKkAWYChMiWdilSWNDu8F2M4IEfgJjNwjtQS6cRkWwG5\nnRVB2ZPrBejrnNL3Xw3C0sLocwMKPqYAACAASURBVCSS5mP98cvMZOUUMWGe0CiBBfVhSnCync/e\n8ItmtE5rR8MNzbj7vVb4nwigdVo7Mtsc5a5V96Lph2yCEKyqeU7wUk5FwTsJEN9c5aQ33D1C7K/L\nONCmwP3vikt+ChgbVwdaCr83yDyIYX0XEZQJDIeNzU00WdkE3oOD0+DhSSpl3+2lO/Byv5bUywO3\nMjjZHRJ2TrezYhSg59g+HIyDMw+C7xqYlBnAO+c+gC9hSJxKx6TO+Gb7803kVhatn81n8WuE86kJ\nDTOhZrJgfVQHvI6AutwiOH77EcnlFtBkehO6vdNKTCxkNtQVkXWrQOyvEgG8XPTPFwBfsITkolaB\nGgzEdxXQFNLatiVgL9SconII/XfRCBE5vQey4mDxPbA4HvIm5ZFXI4/Tj5yGXHCdrpJXngcWQVUs\ncK7EWllEr6DH8e3hzONA9B6Ia6nyRUf44mXACQHc5LHkxEiqh8nJD5BXnodNs1GeXw7p0H85TDpb\nRp/CQj5MsnB+CjwfI+Y1dTNCmaGGMLWON+O/guIpcNtUlcXPL8YfsEzbz4nucHT+Hs51h5IG8N0k\nC+cCYbX7TlgERztB7JMquS2DsaWl4TVKxblcOIxTXkU8ugR8WAqDIHoneGVHU+edOsTvnA5Aem46\nowasw71YgLVyZ/Ge5y+cRYDJl9zKfHJbBuNShr1mwGwzooMu3/yIU7VAusSpOFetyqnGVex9akxH\ns6lIVGkMlHTogMeqVRStW4dWVkZF/WDB7V/+KRw6ilPVqhRVdcPJ2xuTiwtaaSlPzprFijG3qFDJ\n35w2qShK05tz5H/tqlYPA5RJX6j3ErX/Xhz/b8LIajn2VHMEa1fSMTWH7R23k/3FKrBnhy7rvfp7\nlguEQtQvA+EQQjgFDP99EUPgS6pjBujHLQKl4I/nZqtWreKLL764hhO5dtPqayICeYd+Xh/r51aC\nCCBqoBQpBO2vbWyjC6twCdGmR85BpF2RSdTGauLVQbNn5rQIXUTkPo2ktknwE+I8ZB+4zYgJQyXY\nGtgMkZjDgBmsjayX1xX+GftUvEmp/2sBbmAE+Bbc+QOLXxCCJZnWTMoqy+z+T7YbyCkxlCclsCu0\nib5yx748xsvhf17W/lpNWaQQkCvO23fZF/aM1W8BNwBtpsbQhET6+vSlVVl9eo4WtMncAAGmbGZD\nEOyOkuoUeYj/x8+PNfahGKUHFz9cg6dVALdzgQKAnQvE3ly7YMW7OM9/l5GAVlpKwcw5VGzdZWe9\nlDtDwIkSKk1G9k++KvR5R4m/218GbjfE/t7+8S/zUP8x4A0QD7afgfoYylhSQcsXI/PlWOfmSH0E\ng3ahYEycZbZN1rU5rqvpL8kjD3D4zqRvcxEdgQB3wY4WOwDIuzuPZsDol1SUbXCmUQ5DrRCbHQ0I\n4Pbjw0JIIavNUZ56cQAvdommgZ6pmpAdzVn98LmIgNr+KmfgCaj5AWQlWPBo6clnwPcfIRxCMPyi\nn5+aaMFphn6+OwTTEIB9Aii95w0fTl3Dge4HqEgUw9HsG4heuQFzNNy+ezcL/OG0ixHwlD3Go9vE\nU2dnPYKB6tFi3LrHPE1GVAZ0E37s7Zj1HOqyj/CUh+kZ3YeaPwWLMSuG0yHAg0I3tQDxj+WCKiKM\nbWB7FcAH+k89QN9UZ0GPrISi+xEyCRn6yXjq96C6fn9K9HtzHFL2BWO5CE/LTJ4zQrnQBk/vEWUU\nM19qIPZlE9vUWQPLXg1n0FgEiCyB4fuHE+4UzoqEcMqTISEZnnpxAD7lJnwrBJfdvVgweZe0gCUP\niZ9CxzyI8Ikw6jccC/jlu+w9KOs53IAa4N7enW39gO0QOgPuiFGpOhmIgDtK4dgdGRy/oxcjCgtp\n8mUTXkOUN6QkWjgUa8HaA9YOHkzHYfMITIOgzABGtVb5uPpm0jums2Qi1JsPHIQpT6oUAWMq4ID5\nBONiVXKKc5iV1hZTv8/BG9a3gYFAVlAWVdfCCp8V0A9S9lo441HEKa8ifPMheN9FOx3E6xI03CLq\n1FxL4Snnhyl3Fjz/Mhd4yX8W0+7chn+iSnLKAM60Eb2ORldTMY1XUZYvZ+mUFtQGTN7enENg+MLN\nmymYOQebGXw6d6Zo925Kf/pJNBvVzeTtTYAelP2rWbd/7TftFUVRvlUUZYiiKFVu9sn8a6CN0vjI\n+SMjE+YoQiLr0xzpkNJPSho/GOIgsn5KBkrld/JZJdfX6f+XsV8cqZdOUEerI3z1SdBmaL/KugFo\nrfVl6xB1YbUQz0J5HPkLc6RgXtKPJ0pbUfJ/H8D17t2bjh07/u73f9pe019+wH8w5hOuoNXW0Dx+\nB9Tcq7/nYNQa6nVryte/fR3aoxrao5fvT7tLg20IH+aEcPLHMRy2O2LyYEX4UBexXBv6F9FbCCLY\n2TiL8IAH8BrjdbUtABg/JpHxYxJJmJ6BH5AXkWfv+yYFuyRQs1ZYySvPo7Sy1A7oZFPwnz/+mbCw\nsL92Dddg2mCNc4EwsUzFJSSEgK1HmTri6vTC0spSHhmv8lnTpnhdEnVyZpuuUaCb9JGOy16eEYtb\niQCLNjN49+pBmusmjt8mWvlc8hJKy9raL/C7AF6ZmcSNzyQtzoLi6op56igqS0up/OkopkrwO1mC\n4u6GU2GJPWsoj2e6IlDwr11X+xpAUZS3/+wO/jG0Sft+ViuE7g0lIyTDiAjKB5+GiDwVOXyWVDWp\nEgmGYiEYTUqlOU6kQTihCozGpkX6NtoVx6ihb/MjxHpbSAxW4W6w1YZkwPIxmDqbKHWupNU7rXAr\ncGdH/3TC3gindVo7SnyKWZv0Lm3S2hGeEkGJTzFPFQzBxeFULiDqzeYGBBA/IxcCIex8ODt+TBdR\ntcfh+PMCx9Qc60/sl7fz4YueLHgxnRZHIGxlGIMn7KD/NnGdw3cPZ17xPPzP+ZPych6nmjbFkrif\nFrtbsEfZAzbYOw2aW6HA00hMyt6plQjcugR4AvE8fyYyko5paVyYZuG5CSr+F+Huz1rRfNW9LF2x\nAGxg8xQYyzsTToaIW+YXI8ZxRwLURTAOPYEHgf5qVz76z0eCFhmMoE3m6vf6vL5iIUZPIDPQFA7r\nAc8G5yA1qh8jblsu7ld/ROTQCRE1bQTWELHuog4d6Lh5M7WBgFPgP8efbkHdAFjWcBnLO0G/8ZCb\nINb3AczJ4j9vPC+W9Y8BHoZNnUTj8rSFFhLzVfE7KcSg9ErgZsVoYgsCfZ+A4+vhNtHejSVN4NvU\nQaRlpjEr2UZPoM54aHhfMxZ32UcdoM7nQAv41l80U3/eCgmeMBp4LTKSsmPHcG/dig6JKh8EBTH5\n6XPYbrOxKgp6vwv7noJmn+vndAQuPS9O8yCwImI0QRHOvJ73DsNnZBHzFbwc05ITA8LwNHmQeEQF\nZ5jhL2i35c7wi3c+QTZfvC6JbJxPAZi37MW9WTNsriZGuKnM+yWS75pVsqzdMtFpvi984CGwdr8M\n+CBUXP/jEwSlt3ySak+iawEBlOfm4tGyJeagINwaNKBo925cw1ox7FGVV9aM+UtNRx3tulNC3roe\ne9LtmZtDC9Ebc0ci/vx3AUuvlc//r11u180/JitQBgPcB7DswjLho2QDzkKEH3OsdZMmfamTw7uk\nQkqfCJc37JalBxJQOTblluBP3/egwEEsGv7H7Y3szbrPDhSRKPmcd9Rnc0I876UCdDXEc18CUk/Q\nlF+P46xZs6hduzZPP/30H57Df2vKTP3PLgaD2SNbNriAVu3372lAlmhanZeVK8BfIYJq+eB/9zvo\nl9wPgBUNVxgMJNm0PB8jwCmD0DbQRv5Fiu4mBc5B7EULM1/6c7VS8xUxdiumhREe8ACJJ1Sj7s/x\naWbCaFLuDKEuoRz96Cgfz/yYRx555C9cxdVNmafYNRFS9vTmYlg9ACZGX/2a9ysKby6MIac4hya2\n2qTmv8Fztfrb+8SZKo2m3a6lCHXLAid8CkSmLiAXKmeIkoFxU8U+4/wtzMhUSUoSnzfOjKDjuI14\nx1o4n6jinGjBY/dRAJzvqIftwI84V61KSd1Ae9NulzJB25T0yeiJ16fW7Zb1kTfBPyqKchCYAUxD\nPB0cj69pmvbBVffxjwNvr4ox6FXQi9V+qw0Q5o7xgJIqkCaMlgAyyqhHnuxD6dguwNHxSJMRTB9E\nisgNw4FVFdtPumRhilkVy1oDZfBzGyFkeLRBA0yHDxMJBJ6HsA/CuXNjE5auXEDdb0JxK3Cn+aqW\ntE5rx7uvLmPri+mYEMGzcoT/kkxAeSmewCe9e5Pbrh5RI1XKgCnVYlj0ZhIcE9fRsHYznu0isnrT\n8jw542/FezYQCMefhYULLSRmqNAZJh2yEDZKZftcC14jVSzRMPm9ZE43OsmidbPhKJxrLJKbMkgo\ncYaGCJY+XQqbXCF5Yg8a16hP4CsbeGn/fhb6LGRkwRDGtYnHN9ufwxEHWLk4jT6DIml6RyC++fCZ\n3yEWWT6i1gdQ+TiYDgC3I4CyhqCgFGMU1Fdi9C2SYiaymamcfMjMLPByYkvMj3ZkVFuV1K0WRrRR\nxb6zMSg4DwCXYHrXAAbm5vID0DvPkyKrldDFoWQ0zIBAOBEBL07sASBooMXQdVFXHliby5g3voYT\ncOpBcdxlwLh1iEyh/C3qGcDL6isdpb0l7UiDsFwRWRw5YQfewLBtoQybEIz35s1E6KvXcLgPVWM8\nsfpYSUxayL5J2+g7egXNgNb7gon6qB+upaI3XFenrnSwfMRAwC8fynxF0/JQ4F2W8ggDafAmAhgP\nE/TYD2etJMcMQZ8A4fCJF6TN6mWXfe5cvTPtCutjqoQLfuC3J5tNzQpoX9JI1AicLxG0jpAq+GRe\nFP1lzp+n4K5g7hirchyIyYCFr1sY4qPCcIh9y0KdISr9gXeAgt697SqS5qAgTK6uFO/bh6sEbXXr\n4tSuFe+at3DMeoxJFc/cuuBt+fXYk279bh6nX1EUZ6AHkIqI5ZiAOE3TVt+M8/m72vXyjwDKFMV4\nnshglny/Mosma73BaJcjWSVyPUmJlM9aR5VJuV/H5Y6BTQniagJuoD0nrvHB2Y+wufl6tI4O9V27\nFZEdOoDITP2IaA8kM0gKwiGCvdbN/twvgZrHgin1Kca1wP1XDbOzsrJwd3enWrVq1zqM12zKBf1P\nLxfhtP0RvsdPLNYCf/u+Kln6djaEj/MF7Y6r/waUhfp2DTFAtazBl/daSkU79n2TgFz3kdrgXx/r\n5RmCvmepoopxPy+ypTfKlDcUMa+SDEnZqkKWszjrNeMVVnCCCbVFCcrMg7PJS8rD+3/YXPp1HWw+\nd41/p72TenOnW328C+E92ybu9buXWmW+uJYa9WhHy09Q16U2/nlc1mbHtRScpgg1S5tedhM9MZFx\nr8RSVVe5HK1pJMyKxW2sSitgW6IFLVaFoCD8+/XDlpND6bFjuD7YTuzHjL1p9ybvQ7QvaXTdgBvc\nwj7yJvhHRVHaiSPzBGKKfJlpmjbwqvv4p4E30AGc/odtd0IgHl4yEyZTRLI595WRQ1nXJrNsVoyM\niKydA4Nj76Xv8xIGCPRC1LrVRBRvHQU8IeLzCDaGbxSqh1b4qrZ4hnYApgcnM/lINB3md2bz4PWk\neC3ljXde4XSjHHKaZZODUbss2SznuFwgrDrQ8By8EihOsR3Q5BFgCVyqBenAo+OA5jAl28K+yiOs\njl5NghPsmdWL1dGrYT2iyNodtlSHB76BTa3FpYUAq4KCGP91DnwAMW4xVI29nREFQ+wJI3dgHksZ\nzkCciiB8Tjjpj6QzYauFuJEqanAyhyMO8FPEAXY8vYuBkZHs7b2b8JSHWfTWbCqqwyuDBzOs6SLe\nHiqEt3oADb6BGZstxLVVxYmAUb8oM6SuDstkttXmcG8qMIAdsOdJ2DLRQlR7VRxIQwATx0xsffji\nMeg4GU5OhlrS6f0MNd6qwekqp6E3kANbwo3a/vvf1Nc7A31NfVlx7wo8mnhStMfK8oeEdo3TNsRE\nRIqUyN+tDeHknaCXZy/Sxqwmaa6FwpEqr3R0o3R2CdM7BhD/nciyrveEzlaYnWTB6imahKYOm4dy\nBLLqQ6MYT84mWfFMgy2RostCv1cg9SUYUQKkw/wPBzNs7iL4Cio6wev6cNjiLMziHeJmZHFeP0XL\nj8B2iE1OoO6h8TyESH6ujOrDhyNW0mRZEwDOl51nZ+JpAFZPscBXuxg9eTOJ24XTUTSjUeio/iqz\nn+tAyebN+MWK74cMVClqAIExnhxKsvLR4MEMe3IRtIAiX1jcrRvfhnsRaqqN1/tbcfr6a4oCAqiW\nm0tpZCTF+/ZRvG8fgdGjqMy/SGYzL+oetl1XHv8t65jgZjmnu4ABCDb3JmCJpml7FEUJAnZqmnbb\n//J8/u52Q8CbB2JiLIGVY6BS+kDpPx17msp1HEsIpPKjIyiT/tIR6DkKoMhMnHQanqCNN8AbwObH\n16PV1VDKFbHfHxDPycMI2kUxhu/11D8HYThHnRIa9no4pxvl4Jvtx+GIg1j9Lu8LpKoqdevW5ckn\nn/wvR/PqpvykCGXH7xCASoIkK2h1rhAsKdb/TE9gjNVPCKCnyzhrd/3x78CuHBnocCxHNpEcf0ch\nmmKM9gH6vb6SOqm8ru/3HEam1hm0qTcQvBUrsAo894nAo93HS1qvDTzx5IngJ3hzmHC2FU4VjBgx\ngs6dO9OlS5cbdm5X2uuKcs3ADWDMK2PYd3EfDzjdTcexAnAtThmAt7MAnLUKPCj0FiUXnlYB3GKb\niPWmZAjf6FEkANcfgaytisIu4MI8CzW+P4dzQABFu3dj1fudlvm6CcpkvugLt8XlEA8WNQIgavK/\n4O2K4z6BkPu5E7hX07Q9Dt+NQzBNKoAR18IyURTleU3TlvyZ0/5n1bxJk04lECNyKCNNThgqVSAe\nWBKYSX6/rJOzYTQZdXRqjn3hJJ9fthtAX/ccYuLtC/5H/WEFcAR6fdWLZeM2MnuThSJ/KKsN7WeJ\nZ3sGMDY7Gmywuel6SrxgBAP57OldfN8s267AbMUIYOZiJGokLs0GMgLF4R8E1kweDY0h4s0IViDK\nA6I2x/PIwR5MKlBZ/Z/VTHWC2WP9aTFmNaecQI1tKhRQ1gnm4PhdFvYDmxsl8KHPQmb/pwR1uYUw\nr3DChiQR+9YQQPgbmbwczkAqgYHPDiW9Yzp8CNMGq5wF3Arc+CpqI4cjDhL2TitWTkwjPziPRfNm\n0/C7ZqwFXm+/B45BT8BSAQ2SQW0NbrGqkMr04PJmr1JiWT7gPRGOXdZXyImCpLl6iu1azIeoSFXc\nM2eH/SkYDWtlACAWapUA++FtXdXrdN3TzMuIFI2xA2DzbAv3jhJJ2J57+kBnsb+I0Su49ABMjmgI\nn8CSpM44vYaIip6BsMIwMZkqg0EM4uho7LUPq19azXGgw0iVtsDz4QOhEkJycwU1aB08BLAYRnur\nTOyhcrjwMMrXMHz9cOqshx+SrHhmwp5IeOArkbxc9hKMqIB5QyLJ7wTDui6Cz+FSJ3DaCy+egkGj\nhFTw4BlZDLooksyWvZDZEN57HhJnjmdQJtTbDiNia/Bh15UQAE/6PMoB9wOM+iSQz4GQbTD6DpXR\nUZvx/EjUL7iWgu94lUtThVNSuzdldPPNeEyyUPjJp+T7wvS2ASQBk75qSBHwfu0feftBiFkRg8cC\nGBW2jhXZKwgYpXLpiXZUtG2LX24uF5o2JTctDeeAAAKjR1H8zS5KDx8maO1+bnn7mwuWIDJt3wN3\naZo2RDo5TdNygPibdlb/mhCPsCHyoGCwTiSYAkOwQgI4CcycHZZJIZMSh31oDu+OzbpBPDikn9W3\n97f525tLU9cACJv7rBfb1BKiHjihFz9DSvulRk2Yj76vqvq+/bHXhskAa58XInErcKfGoSBCdtbj\nrlUt7eBQ2lNPPUX79u2vdQj/O6uHqHu7B+EcpUCLOyj7r5gzFiLaIciWRvmIGv5ghC8qBeXEVeaZ\nofpLZlKl6MmVNFhXDNVsZ4fltivWBZRPFEHjuMDlvQHLuaGW+kI/OADWBla6unYV9ZHFMLz6cNCg\nhnMNRoYMY1ngMkAAN4C4uDjatWt3Y0/uCvtvgBtAzfe/4z/jNhJvFb5vU5LFDtxSh6ZS5iKAm28+\nnKkOLul7STxgYVM3aDtaxa3k6nVpWxWFfXEWLsyz4J8Hp1oEkn2bCZe6dXENCRH9277/Ea24hPJq\nVTD/cJROx2oB1xe43RC7Of5xP2JKusVxoaIojRD6f40QM76FiqJcy97fVBRlpKIoq/XXcEVRzFff\n7B8K3uwSt6e4PBsj5YjB6J0iHZAEaFKARE70SzEyIjL6KJ2ZGTFDl9LuktN+CQEa3MF83Eyea57Y\n3yVY7buaVfEWCl+rTlybeN4EssaIoFpdINVnIcXeUNRJPBsLMFrQFSJ8lQcCj+RiMATBKLmT7eru\nA7YC8f1m83AS5BTnsDKpM/e/Cyl9p3Pfgq0cnALMgolfQ16vPNymWKj5Bdie6cKC9sBzUCNaZEWi\nK2DCofHEfjCEu6q14hdvwTusg7juEgw/LANjAK+tWgBNIMIjgpjXY7ABsc8N4UizbIrMYnBrFgRz\nslk2YenhNF/VkvcjI/n+kV3QFzy3QXhiOJ9Ew/qkzkSXwN3rWhl/fD4YbRvkvZFKkxJgy5NxM+4N\nICKa9YEj+vIg/T0QMRHw0ge0PnTci4iCToPSFvCfDKAKtDjdgqV19hIS/BOch9DRKivmQEsrtExZ\nycFqcHAEHJ1rITUkhCq7d7N4Djwes54ZuRbKHhL91na02EFqmQUawdqctdTbBrSF1Mmw2As+mG3h\n8Jgx1Ad+nvgKSS3gEYDvYUaWhTXAqmjoUNkZLkHbBZ1Z2xbm3T8PnGFW6iAww7SoPtx9uhVhKqyN\n6sNBJ3BOS2MvMPlROPoonAFYB+ZZZqbOAdvc5jwP5FSB54AZPUKoDTxpBTW+KYkrLNAS9ieeZtI+\nC0yD1/PeYf84+OWFtlQFWA0z+8C8tZFY77Yy97Hl1Jqikp9gIRTBsZ/a6RemBFsodwb3Zs2Ie0wl\nIDeX9yY2wTkggIbjIT0mnZOAu82JlKEwY3EIOMG8+FCylDP25tsudevi06kTiqsr1i1bKTl8mEvb\nt1OamXlrqmf9s+xDTdPe1DStSC5QFGUkgKZpb/7+Zv/a/9LiqooIvl09UoIyMIKRkqUiAVwZhi+U\nWbMrH/o4fO+4TDornZmSRx4t3FsQ5hlGnYN1RCPrdxTYqwM4CRRz9e2qQ9S+gUKwRNYC18DIIMnM\nn67Y2yG1s67M3JLwlAjcCtwJ2VmPL0d/dtk4rFy5ki1bLpuPXRdT1inwGXg862n0bANDBbvmb2zU\nBBIbLxTzlwAEyJ6HaDngCuQ7tBT4reN5I8Ze1jLKqK5jPYMMTjswUOzvroAHKAtE/zdlkSKYKKfE\ncgIQY+0FuIAy+cYl9Ye//TY8DjSFby98S2llKWqAhZqXPJjha2FQ9f4AaH01O3ADSExM5Kuvvrph\n53U9LHDzZp6dZHyeMDqR1KGppA5NRUlUmHhJ5XvlCNYZKn4XoKhjc3sd2rY5Ftz1IMAfZd3a6YDy\nvTMf4JZXQu2sSvyGqxSsX4/Xg6J+QyowuxZX4lxV1Fmaz1z83X3+fzZN037SNO23Or13B1ZqmmbT\nNC0TMaNs9RvrXWmvAC2ABcBCRIjnmpoS/iPBGxgAbrxiMSgd7hiTfGny791V/07WTBVgOC30z8X6\nZxk5MyHQUglGwZkEgX5ALtja2ISTydW384MRLVUmb4hmbdK79MEAY6WAd8EQe/IvG+GLfDFEqkBg\nFZlAkrR1DQOP6MKIBCDYmi99/BITgcdW9eHNmPWCnxkI8ZNyeWxbKEyAGutqkPqRhdF3quR0hPl5\nbzD0LKgzLRxOFvudP8GC50UgBzaXrCd+xGJ2PJHOWYCuxnC6ALFt4hkQGYlVv4aoh+LZd1HU2NU/\nB1vmCCrA5IbJfF93F24F7pjOi338FHGAlQvTOFEFdrQAmkL66HQenQCb26yHEvg+fJe4UDfE/a2C\nUaQuKR1yYKz6K19/P4VRxC6L20v077P0/x8T10kOTC+0iJuxH95pLnrnuQDrQmFdc9jTfw977t9D\n4KpV8Av0TYOzLIViwaR0BpYujCHfqYgVz3oxb2ITmgAfzYygcaxKUqKFSW+UcXdhK44HVUA5nO51\nmg33ixs94owQKpvUUOWlarOYOrMHS4AZY/0J+Bzy7gO3zXvpnS5CQptD18M6WJv0Dr9MsjB/0WB+\nfggajFjM9OUW4lJW8kPv3czZ3o0Mn/00PgMvnYH2ZfCd2pV6KfB8Umc6eHTGNsXGICDqk4HUyfMk\n6D14GYj7JpOUKRY4BqH795PvC2yF94AphSqpbhZmzMiiHtD4rC8HgMRACw2B4bXSmNcP5jbL5snP\nwTJEpQvgknWO/9z2HwJyRUTxQotgPm0CL52EA6MP4FK3Lv4vBNBhXmdKZlvYZvuBIGDFs14kJ8Fg\n8+PUL6tOZWEhlZGRuNStiy0nh/Lz5ynLzMQ/J4eqZbKA5xa3v3/mrf9vLLsqj/9f+9+YNln4xxnn\nRNTfzrl3wigJkLQ9WTcGBgtB0kDkhF/+35FS6eSwbSmQi1AM9AJzmRkugrnczJ6SPey4sIOsllmC\nDnBcfxUhQIMsXfBGgLbaCKdZR18mEx4SiOg+OMVpqZ0qeTH4At9EbuV0oxyqZPv9ajz69OlDeHj4\nfz+QVzGtmzi5IsV6eRuDPKAQtKpXqENW0wwRk6aQUn+puA+dEWBJMkMq+H07Bl13dDWiqWZ9fQ+M\nukUw7plU/ywS52Sfr0hALAPSpfr7Gf2Vh8FqusGmtdY4NfMUo7yNx8o4SyKToxIv64EmLTY29obc\nz+tpz+jASpus0eaKrF2dwjoAjByzmjBEPVqHsSobKnayJ8Fi75Vq/aOm9roNTUjk9ekZ1Js7lwsB\nJpx79xY1b1XcRGPuOsFcgYiFwQAAIABJREFU2r6dyrIy8t9/X2xznZua3xC7tfxjEGKWKC0b8bS6\nmt2raVp/TdO+1DTtC03TBnBtoO+fWfNm3+dCBWyQ8HIQ42NyxI2SxUiOaOgclytWyYJsGV2UwK7c\n4f+yrko6L1kr59gfR0owmxB0g0CMJp31xeeSxgZToRDB/ijH6EJgxWCESKGoM/rnLAyfKxOLFYjn\n7l0IvBmA6NX8KbDmOBy+TSSUAvfAshYwYDrwLDRZ0oQDQw/gYfakyNXKl56wMyQEBj9FXHNVHKgj\n+J8TfeZaBjRg2kUVU5yJyuxKmA8Hk4zElWu5iUvOlbgAST4LeffVZbQ6ezdBMUvJ7PYCS5MXELfO\nwozOKtQBk2Ki/9MvkR+cx97euzl2dwYch2UNRcZq2hAVPkJQOQfo4yt7/Xjr45zrsExmSyWfVEPU\nEVRiLxTHTR/c0xiZVLDXdcw+aKFyw1bGpH/N+EUWEs6r8CSErgzlk+kZAOwG+p6A6SstHHISRfAr\nslewoHIkF95+m0NxnXh79Aqhp/IpsEe/MQ+JQ6VEgOuYMYwfmkZqSC4+wPyZEXRccYqG+wW9Lwho\nAHhXwkETvDnkOT5b+Dr7DsAj7/XgM9MaNkyGzQstJCoqqdv64b98OQcWWkjMUwlXwuk/Pp3bEWWM\ngZ/At4+KMrtnv0aQ2/T2Gqs6wtEEC96FUHroRwBGrVoHsZCVLIbzs379GNF4uYg1LYHxt1sIHH4n\nUdEDSfWw8Px0laQkC2usm9hTvgc84JW8MZyoY6LmMJXhFZDgJJqJ14s2Y/OxEVMthttynHAuh7Ij\nR3Hy8eG5tDTS4iz0maESMAuIhled4MXXIPWrfoxov5xTL0DNBTDvu0gK1q9n/As5LCy1YN2yFZOr\nK9rmzZQEBBCYm8tpF/EHP7HUUT72+th15/O/dz32pNuT/7uaN0VR+gB9EaW2Wx2+8gYqNE27AXrs\n/3y7Ef4RRNZkQf5IhgbMNXpkglEzLn81jrQ7GaCUn3V/Zy43YzPZjN5rzg7LPW2Xb1umf+8H5nNm\nvJ29cTG5cFo5LXykO+K9AaInmSxRy9T3cTdGJsmMABI4nL8HmEwmxjabRnrURvKDL+Cb7YdbgTsN\nNjam1KeEtPfn28dh+vTpNG7cmJ49e/6ZYfxDCxkfAkDWo1nQDOGjLgEFoLX6/XuqvKUP/pPAagT9\nsgpQBFqLP9huoSLGDbGufW4jBb5kLlyWkjhS787pn70R4+rnsFzOcWRNI8AJ0JJvjTmko0VHRxMe\nHk737t1v9qn8aeud1JuRY1bbs2cvz4jlgh8EnhPfO1XAyCnXRm18uVkzKvp1wTdfAD7ZgNv0nfDx\nTt7eIhvXoQMAI3UQdz3tlvWRV/hHRVE2YWi9OVqcpmkf6etsBkbLcgBFUeYharmX65+XAJ9eTTVS\nUZQ9wJOaph3RP9cD3tc0rcXVTvsfm3kDB/okiIe6F4YylVT4yEM8oCSFUmZrwABsMhtncvi/BHiS\nN+6LQc+TGTuJ7IsQnPUaCIQWhMj+nAS376D7xB6MbxNPjXPgfAncSuANlgICfKnBydj007+I8Gkm\nxHP8EkYmrkDfbV1EPbcrUHULvLgZgmIiYbvAjzYg/LNwBsyCMC2M1Fct3HsonEHvDqJohZU3PYWf\nKB/2FHElKuyEC91gkyeMf+N53p66hp4jVTwLPKlcX0lhCAzeN5rGZWJYJjRKoPqhIF5lKVZgw8R1\nbHt6F+dLz6OeNnMXZ9h/G3QdpsIl6DC3M24F7mS2OYpbgTvHWmdQ9/tQ8IQBlZDvVMR+M3C/oAWS\njQBql/T3k/r9kJQcOTkoQ4DmYn3gnBDRWh99YGXK0xMRI5EI2EOsk7G9nMltf8BznCedhqsQIb7P\naJzBHSthtNoVT8SNiY9RWTFqBcNHr4Ae4DV3LvGnc2k3egVn9UOXdIFv4xH1CFniHKLWgC0nh6Uh\nuZwHuqXCxoKNOPfuQrfZIvB8EEGw7junL9mAOuB19r0GvT7rxatT10BVONChA+5Rc+A+GDFoOb2A\nGkPu5EQ8mFzdiSwTw7RwtoV9j8InwLPvwvm2sGcokAFz5najM2CpqdIjUWVUvXU8um4dw18dTkky\nREX1IbQURry+nONx0OvTXpTMgYCP90LvT1ibDCMeVNkKTGylUsutFvMrROb7zdBdeA9TKUy00DWp\nKz7AbTPhUrKNV6xjqHVGALdCb3Dy8cE5LQ2PBZATBLPnW2CIuNcvvgbTL1gY8cxydr8A8+dZSNnc\nGxA93aZ7WshLVPH4+msKdeBmDgpi0Dfg98QTNwS4/WuX2dfAbATBOEn//2xER4pON/G8/rXfsnIY\n6jWXeZmRl9WJ2WcGMmsmBaAcBcCkcpZOVbdpNmMZGPXIcn8SKMh6KRtQAjYXG3nkcdrjtHj+yu/y\nEQ259+vHPIjw3W6IQJxs9H2ByzOG+rErTZW8+mnyZcCtxKeYbyK3XgbcAPr163fDaqQyEzLFf24H\n/9wAET09+MfADUB7RiPl2aWid21DfaFew6bs+u058FxlGSlDlxo99coxwKIs6wDjfhRgZNRkW4fq\niMmFZCpJ1lJ1xL3RGTLaKO2WBG4AY8eOpYMORP6utipmlR24JU2PxVQp2ulYPYV4SZHHte0neWos\npie74FEEI8uSqTJBxVQJJYvfwpaTg5O3NyM6LSd+juAm3wjgdkvZQQRFSL6uME3THtY0relvvD76\ng72eRHACpAXry65mY4AvFUVJVxQlHfgS0TrgqvaPzryBIZvb5EwTDlQ5ICbmYIiXOCMeYDKSKCkJ\njo0+ZfZNArMrVSwdFZu8MCJa/lzed6YCAdxkxk6mvGsjuO+KvtwDUryWUuJTTHrURt6fuoak4GTi\nsqPtteF6yxd7mzn5/HVD+LNqGOJR24B5bm58UlLCxyNHMjRiLosfhUEnYHVtmP5OK3yz/dlsWg8X\nIcItgthxG3nwNch5QVzSYUTwrcsRWF9fZJycfRYSe2oI+zyh2T5gE+SPBt9RoM2BoH3BnDqXzSPp\nPfhs0BrMs81kJ9s4BTRfDslvdqLahg0caJRAVhvRe+R0oxxON8rhx06CYjmnZzdG3b0OqsDeaGh+\nBqO2LUcfgBIul7pWMJx5JiK75tjDQMMAbScQaNdR6bEEiIAiN3hDXzwAcF8L6H0/p7xloelolSrA\nkshINkxcS97hXEo6gdsSIBvenSwSbIXAqKg+fNhlJeHfhpPuks5XY6B9Jaw1wYi4OmQ1zGLDM4af\nBIEzDwA9YuHLRJg1sQef3b6GkQNgblNgCmQ8DqEXgLcQlKMm4tqX1IYjjRKYcGg8nmUwb3AkL6Sl\niV6AH8DgRaPpu3E2DziI1CZ0E+D+xbEw9WX4JWUAyVHLcALeiBe1MT2nqzywLZRjpRmwCV5JhJfS\ngR/g3AhIaBNPyrrpZFWDb4GfAgLInzaQ9kOSeCwP6iTVYe2MLJpPB1OsidhFY6hxWtBCyp3B9fuj\nRL8jglXz48fgn6hSCuyIGM2i+NmM/8FCwiMqc6K7Yd2+nU3RTej5fSAmV1dM3t5UFhZy4f338Sgr\nw7lbN2w5OYydv5uUJAHwbpRjuu5RxVXXY0+69b55rQL+tetjN8o/gkPNUhUEEDIhnp2SMikDlY7i\nIzIGUglmzNiwiXfNdnlLADDol64YTAjpeyWYMyMCoGZ9PV+MnqmeGL3IQhGOyB2h8iWbgEtGiwyY\neoht/U8GkB98gdZp7XArcMc3248P5qz41RhMnTqVu+6664Znauxqkp+C1uuP76e9r93GgcJHSca3\nTmPUwn69vX2bzwcKpbHdGEBOjrljn718xHjLbJz0kTLIDWK8g7hccRvQht8ac8ffsjFjxtC2bdsb\nkkm9GTYxNRb3YuEjJ94rqM7aA9c2/urMWLu4ic0sMna2z7dS+Wg7vM6KxnlD75lL6s8Whk+7cSIl\nt6yP/BP+Uc+8xWia9p3+uRFClrAVIhXwOVD/Wh7aiqK4IXLlGvCzpmklV9kE+Idn3sDIvh2ofsAQ\nq5By/1IRBAyuoqQ9mhGOTD7oZNRRFmY7qlNKqoakUpoQwE1XhyJP35cfhiplK8T51MYouDbp5wdM\nzYzh3VeXsWbqGp6Y2IMx2dH2AOgph1Ny1OKohuFTZUXla23iyVKjcXq+AXXegqGT5oJZ/LpiPoqh\nKfD9wV28GbOesmho2LoZtb4L5dsECzwAXwEpSRY+CU7m29kWuAj3A0XzLYwpGAIKNNsGdQtCqdta\ndEyO2hHPaeBU/Wx+1ElS39aCLck2NgHNR4HWD6If2sCLeZ4kfj2elYvSyGxzlMw2RznT6CQUweBH\nRjNq5TpmvBGCLRqa74P3qovxC1sVLmSjdXVGXBHOSRZi5yGcjqR9yD8h6bRcENk4OahyEnFabPvI\njB5YETVr+Qi2I1Uht5q4h5OaqPQuN/F+xGiqZPuRdykXvhCB4tRMMXZPbYSALyHkS/hQXUnibguP\nKG34ZAy0nwl8KXTUuwV1471n4OP5w9kLdCyDjp+KbFse4jfywyQLn1VbA4dh7hjYtV/8fhqUm6AK\nxDjHEJYTTtjGcE7XhrOJFnoeGs+bY8ZAHAxMS8PtY5g330LCsCAuBl/glchI8IEd3UAd35QJ5SZe\nXAkTall4GBgUtQz/LVClBFpMV7l9uooGHNuTQdjXYZxLhJc+gXfDgR4wIjKSM41ymBcbSQCwu1EC\n+dMGkvSw6Bi6xl/cgsbABG8LPztXUmXxp9jMML/jB1hCVEyrVlGpVVI5qZKLiSpPX4L+H0PKxtnM\negAShqrMXm5h1PJ1bIpuQvctbjjfUQ/F1ZXKwkJm1P4CjwmjYJrehsDFheRJnbDl5Py9Iop/05o3\nRVG26++XFEUpvOJVcLXt/7WbZ+HF4QY3X/rBQoRPcmyl49gbzBlcTC6YJedcBiDl707/7OnkKerc\nALNixlypry8FMDQEYJN2QX8vRoAIqZ8g6ZMa4vnuqx/DBXsA1gNPu8CKzLp9E7mV/OC83wRuAM88\n8wz33XffNYzSXzPNXRPRVB9Qvv/j+eJIbQAAKRFLDdEWCbJcf3+bqL0DRcDyOELC+iLGPXFU0s7H\nUBi70syIe1+IUdcmlbev7A93C1pMTAwdO/4zGNoLo6L4MPcTVhR9grfOLrpW4DZtdiyyJ32FExSn\nLuFcIJT2aId3IWiebgyNF8Dtb2c3wT8qitJTUZQTQBvgE0VRPgPQNO0QIo93CPgMGHKt0TZN00o0\nTftB07R91wrc4P9B5s2+/yWKaJD9OUb0STZArolARO4YDzhZhOuYXZMRSQ3hdGR0SsrJS9VDGS10\nQjgbMyIjcgZRWySL2ZoiHqx5EPZDODv6pdNzfB92Rm4lZGc98oMv4Fbgxtand9nrvw9jBENl+Z4v\nRnsynV1IYkgIozIz2YRoLzOlOTAXyIes7jBM7cpHd37E+u7Qd6w/eQl5sBbmfRrJ8O5pcBfsDYHm\nZcAuMQSTvrUQMUrlvglAe6joCHOAmMlwZDI882o4O1qm80ELUV/tcQHO+4khqQrcsS2UH+/PoMOr\n4ex4Mh1+guRJnTBteJqo0oHiotywyxFfCBS1el2AFSNHMnTyXHHxsiO5BF3HMCYNsjjbH6Nm4wyG\n85H+0h3h/D3138E5fYCLgHqw/lHRl9tjJyxuA4NK9O884ZIrLEHUbL2DWC88M4C8FbngBrujhZ89\n2EmwxAZu2IDfAlg2VADsLQstHP75OB/ev5KB7wyl8aoFxJyAVbXFaXUGasXW4HT701AErz4OL/4I\nUxvCxFmIne+CD76EfcHJTN4bDQlAf3j5+ZYU7d5NC6DbBzD9hQDit+XCL7D8Uei3D/CCD26Hxyvh\njAmqLxHjmbq+HwXLRfOU+IuwYOJIhibM5aIXzFxoodravUQv2ADfwL5+IvDt+x3UNAdzamU26sdN\nqb9/P722w9QdFsbEqLingzqsKZZv99NnSCQ909KwbAvlmFcG65uL+cNDQNUSaDKjCQcmH4CN4h5s\nCIUX4+rwy4wscWs/h7cfEsH31hvBc6MnL9uex+Tigi0nB3NQEBf9TFS5UInmZKLk+70cv3gvtUxf\nAhCzfTs3yq57VPEPmfL/pT3+b+bt72433D9O038erRHgwoTBFnFUcASj11uFAGIuJhfKKg0hIBs2\n+/eXmRuC1QBGNk4yYeRz2AfBIDiDUe4vC7/N+joyIOeHCN4FYhfmqJkdLKj3YRnU3SGCiTUOBXG6\nUQ6/3PdbInHCJk+eTMuWLXnsscf+cJyulymbFCEHbUWUAVQHcsHfJ0AEAk8i6Ik1IfTLUDKiM0Sf\n2DLEnCEQtJa//j0o6YrwU/L++SH85WmMjKfMrMnWDXkY9wWMNjkSQLvrx70E2oRbY754NbNYLLRq\n1YpevXrd7FP5SxY/P5YEZ5Ump0TP1OeURxn1oHrN4O2eqffwbMXDgKBaOpeD8vVetLbNcdUj/cNG\nqb8SzrkRdsv6yL+pf3S++ir/IPsGUYgrI0r+CAdyil+rOEkqpMy4yWikFLWQqlsFGHSSfP17H/39\nDAIYVkc8oFtgOJtaGPS9INjROB3KID1qI91jnmb9xLWE7KzH9hfT7WJQ5/TTP4fR4swVo5a4OqJz\n4GYgIDOTAmDnfAszAlSeGz+C1w+kcnKo8AH3zOvA9r7bqUUeeb55zGzSALcGDRh+RxorugvFxJEJ\n4UA6Ux/xZuLCQqbcpdIaKJ4GF6ZBSocOuAQFkTp5ObNSB7HxxcV8AXw318LjmSrlfgIzeSB81C/3\nZwgFf59iSvQoq5kN1N/2C5PrJZO6LQEA1wJ3TtXNxu9TmPONBfMUldKffjKENbwRKDYdTKNNVG6q\nFEV6Xghgk8vlBfWeGFEWGUF20e9DJcJ5SRrOEXGvOqeL1b5oAztBpCD1JuteabDwZwvvAqdrQtNw\nFX/Av28AeYdycQc6LQPYgHrSQsWGDZwfCk8kdcY324/TuVvY0WQHMWdjSFqZBEMgtlMCy6MO0Lz2\nbQxr/QHuwKf3n6bLJ+In83FDONSyJfTYzZpQ6LEaHn8P1leNZn9VESP4cg6MjdkN7YHOcP4hqPqV\n4LE3+aYJT3KAfhfAI9iT7+YNgzwVbyC2zEKX51V2tjzMvYgMYGqVeWyLLCRlQG+emFnAG0NUyoGz\nGy3cdhzS2pgJKl/P1M0dCYwRNI6X3tzP3S6t4OguXMpgL+LHGLV/P+vnd+Y/aWn8CBxrkcFRD6g3\nG7gf1M8tkKtywPcAZSZwWQZsFcCtT/DTlKHingGzQmHMvmC83nMn/NsgHv3Kii3kJKWHD+PTuTMV\nhYX4OFWxA7egDRtQurlSfv7GArcbYn9zToSiKG2AQ5qmFeiffYCGmqZ9c3PP7F/7LdMmaAaAcwBn\n9kbXUhkL7G0FJHBzNblirbBiVnTBkkowVwoqJWAoMUs6o6zFkn3jqujfyabSBYhnuS8CqHghHMht\n/LqxtHSClWL9U77ZNFzfjLo7QrkYnEeDjU0o8SmmfUqEAEu/Y88++yxVqlT5K0N4zTZXWUYKS4mq\nGCicSwvsoDSvVAQAaQbsA5wh48EMQaXRWTlU/7VgSdB+vdzmCGLOYUZU3Uiq5EXEuBdhSFjLhtzS\nP4LhI124nLVSoO/vb2LR0dG4ubnd7NP4y5bgLHzr/ilGb9Ioro3a2CmxE/f63Yv5aAkV3m64lMG5\nQPC7vzkgWvPYrqmj2C1qf3Mf+Vft/03mDUBJEs4p9aKFEdVU8UCS/U8k3dGRjygzZ1J8RGZyJDCQ\n0UgZRQzEcHyXEDx1GwLM+WIoVfro296u7zMX8WD2gbq7Quke8xQXgy/QYGNjovXWAaf0TY8g/JYf\nBoOhUj/c/YhL+hbothj6XupL8ugV1FgGpMAXe6HjWBh+23Dmuc3D8ydPrD2tbLlPbN9lJqwfJ+b+\nPyHKxdZHjKZeO2fKJqgM0IfCDUgDzi600HSIih/QZQZsiRMBvicXQ88f+/BWykr7kMmSNBf90k3n\nYHC/0czfOJskn4VktjlKqU8JX0UZTemP3ZFBaTVwXa9fWAt9zC4C2xFRYh+Mtg7AG9Wh/3eISYIs\nFy3Rx7+Sy+sGnDDolf4YwPuYWMX0nInKRZXMumDhtgniIfqUrgwzLxBiYzyxjrYyuP9oFq2YTc2c\nYE79kE3UAtGDePrO6UxeGEPSbUmsf0wwZV8DjkWMZlGH2cwcJy7nqSNQVl/c4zpLYM4JC85TVPrq\np5o2zYLt9XeJ25pJk9eaUJpXSrX5GXQCJkbDgoqRDJo7F+cLcNIPao0HHoEWXwjBopGT9tB/KvAC\nhKeF08mpDXGFKsUJ8EqnTtTYsIG+B4E7RY2hsq4nURkDid1kwWuIuO7bET6++7cIKdOvgY8hJ0lI\nCj6on2vgPjjRTPycfwLCJsCpaYK980AerPWH7huAM+D/QACZIbnMDwmhe2YmqamD2FXte76/exez\nGsCYVxC81YMwsz2MOwuhqaHET8+g/yUInxvOk2ebc6yBmaRTSSy0Wag0iQijqRKcjmRTUVhI1Nq1\n3Gi77lHF63nK3f/3kUVFUfYCLTRNq9Q/OwG7NU27+395Hv8U+5/4x3HiJzLH1cKoAhVPJ0+snlbq\n2OqQVZZl1LfpAA1NADhvZ29KK0vt2TebyYYnnlgrrPbG3/6V/pRWlmKttF4eCJXAzgcRfZTAwU3/\nzhmjVs5T/+yEETCtgaHe5SK+v/s9obTtm+1PiU8x+cEXaJPW7lciJY42YcIEwsLC6NKly/UZzD8w\n5bxiOEVZoiHbFEmwLCmhktkjA72O7QZOghahGfuUdhSDDeSB8HGyH+09CEkEMCK/cvzB6JPqqCR6\nRdskbdStMWf8I4uNjeWee+7hiSeeuNmnctNMOaiQ+o4Fp8ISXOfOZWSMJxP9hgn6pLtoAO5a+sd9\n4q7r+dyqPvIm+EdpiqJ8ALwOfCZ95bXa/yvsqsWIh45TYQl2+UYvxENR1ktJ8Quw92WzRyGl04HL\ni63l+laMjI6kUJY77EsCO2myF5kXBs0PWJv0LqcbneR0oxwUxLNTap4E6pvmYrA2bRjtcWqeE8/8\nzEHQd/QKalwCfgGeho4LgJbQd9g8pgxxYdxSN2bHd8AVSJkZgTYOOpeAWyaMm9iD5sDteekUu8P4\n87ASAfLWAe+/Go57MeSPHEn3aDPWOHggGg4FJzM/y8JbKSuRcS9ZYgbweFQfekX1QQsUzvWZyEhO\nN8ohZGc9ANqnRBCysx53bmyMf1GAGL77gEehyZtNxPifRSBMN31QzsC56nCqulCv5ycEWpDqab4Y\nCpSOamiyR583ImuqpzjnDRKvMudKMoZB6QSVDP0eMB3qzKlDUlwdrPdbeacmTNw4G7bAqduymfKc\nC357Xial73RygMBXNtDrx14cGzOG1OBkvICIjbPhWRj3I8THh4K3uIw6J8QNLp+iUjHRQsAl0bnx\nkhfEDc/kTG34YuoBXpifwfatokH3tmQYM2kJClDhB8Oi+tDT2odt90PspD3c63cvp3wWiuv3g/SL\n6cTVUmEgLOrWjeixG+hbBJMbQ6ETKM0bUspAKkOh0RCVGMT8qAhYNLGHyF7vh+m7LGxJgqC1sDAh\nnEi1K7MXWjjRTAR+fYEtCRboD0Oi+vDATDF2R4EtncDjMU/yauaS1rs3l2KeovFO2FXte/qvug1+\nEsBt1ksQ964F/5AA7gLerQYZQzN4CCHoU1heiN/cuSSdSuLVaTCkrcqwNkJJa1QXlYK7/kah4n+g\nOTojTdNkuORfu0VNmyn846hS0b7F6m6FYsiqzBLPD01XlET839/sb9/WihVvZ2/xQX++mhUz5nIz\nVEJhuV6s4+hDXbGDO9wx+m66IfynN0Z2ToI5x9YFcl8yIqiB//EASnxKCNlZD99sP13B2I38YNlL\n4LdtwIABtG7d+r8csT9pjvTTcrA3Q1UwagplCccphI+SAmkSvJYCnjCu8QzGNZ4BVohYEiH83lHE\neLhgtAoA4UdlzUXm/7F35mFVldsf/+zDDIIMTigKplwS0dQoRc2x0CyHUiu1QamcBxTxMDiiICcE\nccCpfmiDWl4sc0qpNMsccsjQVBxBEUcQQWZk//5498umeyurq0Hlep7znGnvffZ03vV+1/qu70JM\nGEAXe5GAsvIUUqqMylr9Ul0ErjrbxIkT8ff3r+rdqFJTm6vkzTFx3suCKy4uhK60xlAuQNvsOybC\nLE1/GnB7YL9oS4EhwBlFUaIVRfG62wrS/lGZNwBlgTbwNEYIXki7gxjkJKVDRv2ytWdZGC2LdaWj\nkXSQmtr7LHTAB2Lma4UYgJ0QA68tusOqjQBvpYjB1gwa7/EkteNp+k7vx0cRGyhH0N/NEJmtm9oq\ntRHAzkLbxTSgzx74ur1Y9hFgscMSbHJH8z6wAhF06w803g88DEU1xc++BwzNgcOOQqTqOpDUvj2L\nu1wisyiTz+NKeXfAGFYOTqD36d5EGjfR8gacrQVNJsHVODG+r1pgZMoEE8H+QSxKjq1osbaUlYxn\nGAtZybsfLuXF4UMJyx5L3eP1qXe8PkUORbRLfIKV6xKEw7AQWcjzrU4LsHYceAo925mHrmp2HTY0\nh3470OWOzdHVsszQo7dSVbIMXZCGSidSm1jUy6jHldFXKqgi4QlGis3uMK+tEN8of1T4yb3a6j0A\n1xKErPU+ODAGHtsDzhucmez8JmHBIoO13UwwPwE29unDD92ceTTFwLgXEtneU6NbPiUu8JyHXKjR\ntSuB3ZMIfHcq8aY5kAVnn4cmvsCrYju7x0MrbZs1voRFqwMoaFIbo70J0mDuFi8mpqayjJWofT5h\nYtONonDME+KeFPvT5wYU1RLbuAY0egf8Lvuxd8xeSpxhMXAwdjBrHl6Dz34fjr1yjCJPsN4PkW3B\nfqqRpe0/48SJFOL3DqBGUhKZ84wYJpuYmor4r9kBHtD66OMMmlfOiIMH8Z3qycw5pykGAn5EpJZ7\nUFFvccBVdFUYkACs9NlCAAAgAElEQVQ8j5jQLYRLYdBgIUSE29M0L480Dw9qvPwiAFfrCgcFEB78\nF40qbrz7cr/Z+lRJ5u0TBIN7KWLkHAV0VVW135+5H38X+7P8I4AytdKtckdkzbLLsysm9RbodW71\nreuTV5aHi6ULaQVpWBosyTfkQ6lOqwTIt9OaVEswJksLZNapFKFoCDrDRaox26CrPVtVWs8GMbZr\n9HfbO2KFR5J8eTjZhyvel9gf8A1WucIRZLa4+IvHHB4ezhNPPEHPnj3/8Hm7my1QVgnlyDboTB9Z\nrlGMDmplKYYDwuFbI3xX5Xp7KVxihnDW/wK2IeiWudq6sm5f83lxz8Okd9Dr28zQQWLlHqdyDgS6\n2nYlNWbZ4L06W3h4OC1btuTFF1+s6l2pMusR3YPOoclETbYjdKU14TduEBcRQq6DoEv+XHPz+2nV\n1kdWgX/8T1MUxRF4CZiKCKu8DXygqjJa9jPr/NPAG2gArhGYZrTAOPgonvmenLY7LQZSKUMsi7VU\nBFCwQ49ISc69LPx11paXTkdKHruiUzBrodcNyMZsjRCT0WLtt8rEdp0vuNA53p/O8f4MY1jFWJqr\nPWTQEQSIkzobl4BnsmGdM7yQAEVjwPpLuNwdBo7qxjM7LhH6fCo0gXfeEPPjrCVGgkabqL0F6ACz\n6ljyZkkJ9acBPeCdjvDGcqAetC58nIFpXQUQKYZpbxupcRuKrGHGGybIgIQVExi9YEGFD7DRDt8c\nCPeOJNX/GI4ZzuS4ZZPW7iw/DDjIdI95XPG+xPbpG3HMcKLIoYgTT6XgesKNyz4ZkAK5rcBhMxQ/\nC1bydr5GBfgaFBHA2tcSxZs8hMPLQY/oulQ6iSCckQO6U5LF2do1jjJ5EHY0jS32YlM7FhmJfNkE\ns7VraaSiR0jBILCdCa0ffpzv23+H82Jnssdpkd5UeCvEF2svLwatXs0h7We+8o6k9fFwQLBAz3mL\ner/oueFs6AudEQFUgHf8g5icHMspoFcJTG38Fla9zzFtwjKoAYcbivqyfOCrmP6YgtfTdCbQEtwP\nurMjKp0mCYheQWbAIdg9CTqWA6th0Ssw7hiwERb+OITxr6xmXU94YRIQBr3/rzchxk100M5nvNVK\nxjGs4l6sVQR8Chb7LdgWV8oNxF9i+G5P0Wx9C1x+AVyvQesdj/PSS99hTAHPdZ6cDjot0JkFBL4+\nlen75gDgfAOi3jHCso9wSkvjTUTbhK0eHlgNe5GgASbU5iIbPPgMFDQVCdc2oTDHSShn/VnADe6D\nY9p8L7ak2bNVAt7qAgsB2WzpS2CCqqrX/sz9+LtYVYC32D1dCeq4U4yd6SLTll2ajZ2ZAEn1retz\nuug0zgZnLA2WZJVkUWpTCgX6shVlBhaVniVgaYQOYuzQg6MStEkAZ49e0mCGCILma5/X1Lan1YM1\n+6Il1rnWtEp6jH2awuRlnwxQQTX88vk7e/YsTk5OODs7/+Iy/6tVyPgfGCYiZrKnrFR/lC2GJJCq\n3CohX/u8CH3eoVFP4x9dSeDWYfAEwr+lI/xYvra9fG0bUl05Cx0Q56GrY+dpn99Gl6221X5T9lAt\nBXVO9Zgz/ppdu3YNKyurP62OsTpalCL+x2GVxo3pC0NIuPQ2AFmmrD91f6qtj6wC/1jZFEVxQejf\nvYxogLUGUQXlo6pql19c758I3gCUMEVE7CzRJeUlt7u00sOBit5r3EKnb0jhESldbEBEDiWH/yH0\nAdcaMQi7IgbkfG1Ze3TlkUKxL7bFdkQ5L6bIoZDA3NEVtcKSzZmFPtbX0H5O9nYrQlz5MyNHMtZp\nGTwJS7cFs+nMGW6cOsV3W34k0wPq74Ej7QXG9NiqrdwV+ALO9oEmKTDL15LeJSW0SYT8ADgB+O6G\nmR2F/LqZvT1Tt2Rhsc4C34fbs2v4LjYDx98yMnW8iTJrmOewhMm5owF4JSCAtolPcNL/GLfcBFJq\nm/gE7364tKL/To7bTXLcblLkUMhV70wKlHywhK/sYJ/DEkKyRlNmAeY52j4XVDop/wLVHpQNCJBy\nGD2r5oAQiKmsIGpAZFW1hqMVctga99/uCzvynxTIbmFPYMgQ3tSUGFeGGBkcbcIxRCy7LRp6yp4j\nDhB2ykhUmQn6AG/Dt3NFYLT2GVjTVPz8C8XgPsud9AbpdC0U0d60dmc5X+80YduMNB9rwhV4J3Yw\na/LXkD4dli8WoOTTs5upO/9HQoH2wKIoIyGPmnj62350fOc7mmRmkh1i5E60iXETgX5C8RHAuFgU\nPq/qLHb3SLupbJ++EWOvFIZ+Lc7NR+0hdZ6R0Mkm/g0M3g1rOmq90O3tsfLwwDj+KKvfhCFzYbDl\nYNa8skbwaQvEeS2cKcDWccTc79nTQE1wj3cn/aV04ltC4GXACWK6tafJnj3cAIYXw0IrGL8F3n0G\nXpsL10PFb7e6CpwE9+3upLdNp6gvWCeI/w1XYZaNEafDGeQ+4vanAjeoxo4Jqtw5PbD/3f5s/+hi\ndAEg/MAjBHXaKereCtOhBtgVCnRlb27PleIrgF77Ji2vLE9QLCvXq9VAAI48RFejyiImklQrGSvS\nb8oAqiyYlvVu9uh+2UV8b5tnV8HkAHDMcOKk/49c9c7EK7k5h1/8Za2c0NBQunXrxlNPPfU/nLW7\nWwWAOzdMFweRtfAF6DXZElg1QPg3CXrlfEP6ttvw3OZBdI73J/DMMHGOziCeZRscmUXrjqiuaYxo\nVCyZK7IBN9o6la9DDmLeo7VE+ivUu4GoYfT29mbQoEFVvSvVymbHhhB/7e0/HbhBNfaRVegfNYbK\nw4hOvStVVb1c6btDqqo++kvr/qNq3v7LriNmhTXQe54UoUel5AAqo1UyCiVTDkXaMp6IjsrFiEGw\nCbpMrwM6RVKqY8karHLEwKhdBdezbljnWvPDgINsny5ywlLUUvY2LUeMyxYI/yV94y2EDzvisITx\ni1eQMhdCUo3UiYlh68OfsOLHHzG4Gah/B863h1ZbROCTJuLY4myBI9BkKfh96sfYkhLavA08B7Wz\n7fBNgfSOsHqqJ8aSEu6EvQGHID6ulM+H78JyFcTM9mP8FBNcgSdWdCbk+mgmt5uKgqCy7A/4hoc1\n9S8AU8q0Chnn/QHf8MOAg5x4UjTnLrDLBzvYbAcvhdRjXO5oyAdzGZm8rZ1TWwQ1dQesBr7uB9Hr\njSJtVQvhdCSFpAS9DqAM4cR8EFQTB0QDsobiepSUl4jXDWHzXH8arV7N4MBBDA4cxGh3E/Fuccz8\nII6IBHuhaN0MLPZYQBl8e2sf4WZGsV+B0GErrGrfnqKmghF4EiGqMWjDcOLHwM7x20ievI25HU9D\nfag11sR1VrLfy4tWa08xczq474AGY01EeZjYOv9HdiyHp/LgJVNvzO5AzHdGQiM2EL4zk5dWwamv\nLBhXAEnzgS1ge/QoxoFHOd8Z0jpDYXAw/YD4FXM48WQKQ0tgTifY3R4yZxiJDljM8pEjARgZEcTg\nLyD4HHz/+rOUHz0KXeHsPCMj7EbwZNAa0upA7OquLNw/BIaIv1UOOr033nMl2MGwqHTUlhB4DW66\niv9XcMwejgHDY8BkBeNDge8hzdKSg6Hi3m61Tbt2p2HsVw2giQBuhhEGcR3bgfOP17n++N+kzk25\nh48qMEVRGiqK8omiKNe1x3pFUf4mF+fvb3JyF9RqJ86FzqTXSBc1bPkW5Jfnk1+eT1ZJFs4Wznja\nCUl+e3N77M3tcbF0wcXSRYCAymBEKjd7oAt91UCvH5fa15VLC8zQe6vKjJQsoJbra6CnoGY+t9yy\nKXIopN7x+qS1O8dV70ysc60pcvj19kmvv/46vr6+f/h8/RZTbikE3h5GYM4wun7cUwCwW+iiLDXQ\nqf6gZ9hAHONt9Lp8TaVM7S7A1DvTY0VN+Bn0OUoRqM+oqH3FY/L7k5lsOZmI00YRtLyK8Huy961U\nQCtCrw1vgMgS1gLsQdn714gBjRs3jqeffrqqd6Na2exYEW2uCuB2X+wv7B8r2duqqjZTVTVKAjdF\nUawAfg24wT848wagzNKuXDHCIUhaYyMgE+zyf6qYVaFE6YEO9tzQFQ/d0Qt+tfoh7qCrjNxGl0WW\njkhSPjQqSeuPH6dV0mNY5VqzQKsZk9m2W+iaG2XoZV0W2vsp0/vxTsQGJgcEsPaNRPa3hxfC3Olx\npzs3TYn8+wSicVo2zHI2cnl7Gcv6xopkrS2wCDInQf0UISdfkJbP8jaa8vxuT+Z2PM1L34LfDj+m\nTdtLr/dg4fYhZH7vjWOGE4oxncHhJuoA/ab3Y23Ehoq2MiD8U7d5PUlrdxaPfU04qVEoT3RJwbZI\nRE2tc2246n2J7EZZkA+Z9uK43QD7G9q5luCrAL0b+XewMEwEF5v/qF0L2TcuV1tW9hS6g3BcUno5\nE+gA0XWWABCSNBrOwtOXRXmOMWIDB9q3ByB42R5YCwfngu8BcXGKtTIJqwvgt02ktPYadjFs2xje\n/XApaeblFQm+TbFGWgWJ+rcLwLhQuDMXzK6K78/XhcZboagXWJfAdUsB0q1vi2Nc2g3Oho1ia9RS\nHgkIYExiIt8CxsuwwxW6zYAZjkZqTTSxfLoPA2s+w1fqD/SavI0awcG8FBPDBwEBjAtNJNJTYHcZ\nQ6gLPL8WUgfBFmDSGZj7jBf/Sk3lTIsWGOccJTa+K4/t3Cl6zE+B8rfAcBGiVhuxDTFxxTuS6Jhw\nAYQ3ahf9BXC96EbAriFE3jBBGJy3gsZzIS8UZi2ZTN0sM4JLTMTMhuAbwBIY5zyOgzcPsvexvVgk\nW1BqXwreQCpcmQ71coA9cLEXNNSCLNNWG4kY/+cXYd/zqOLWe7ElzXr99siioiiPI0oc5bAyWlXV\nA7/3JxVF+QIRT/lA+2gIMERV1fub2vibWlX4RwBlklJRk21XZkc++RV1avXM62Fvbk9eWR71beqT\nWZhJfZv6pOaliro3qRzpgF6nVR9duEuOv0UIvyjxVQ10uiXo9EmpTgnC+TlR0d8NK/FbrifcaJXk\nS47G7tgf8A3WuTa472vC8acrF7n/1KZMmUKPHj3ua2PnBcoqdgUm88mctRV13dzQju024hxJ4Swb\n9FozG+3zynRSqdaZg5AxLkBw52shGCVyglAIaq+f3jezY0OY7moSTlUqXMpMngV6H9o72m/fQDgh\nV/Fafa56zBl/zWbMmMG//vUvhgwZUtW7Um1sdmwI04KqTqCk2vrI3+Ef77UpivL9fyowK4pyWFXV\nNndd958M3kADcPaI6P1xcM51JtuQLRxDFrqzKEUMmpULfL3QQUQTbbk76LL0IByRqj0XoveWK0Gn\nQlgBZuD3XmeKHArx2NeEtfFrKUeMrXno7chkhwKNxVBRy2xAUBufXwyFY8EmDVxz3fisZQZfjhpF\n/aVLcQJ63gSL2RYsjivlpsMScqLTsSiFKRNMmAN2ZQYWmJczbiEwUpyDr12hUwmUWIqZWFeg8TnY\n8ZDwJ594RxK9Ihy1Iyj5cNNOfC7FSkYNGEPNDCduud3EfV8Tctyyueqdydp3EnG+4FLR181gY8Ax\nw4lslywRcb0DXZf35IcBB/BK9uGZ0GNMvZAlDj4POC/6sHWXSlifAq9C/9j+rG++Xpx/BwQykTQc\ntJMooy5SmKY2whGCAB1y4tADTI+KJBzAKbc4Zm6eBEB6K3DX6JI7BsDWJZOZ13se2MDkdZOZVzKP\nLwOhewQszQsmKzGRqR+LqJfn554MrPc8DmHulOSO5llxOPRPhW+9BPPTeSLEOhrhK9El3X7nToZf\nhhRXaBkLDIQZ640cKzuDvYU9G/tt4rBHFsnA8C/FyX/vSXh1A6RrMhGdwtxJ75NOZDvIX2xkZafV\nbGiZQRbQqwBM840YbUwwAsrtwLAZGjt6cv7IaZyfdeE9jyw6IQRM6wEfDhiATVISpSNHMnbRMgaN\nCGDt8ESwhxvNoVYKsBLwBb/8zryY0Y6GESb6H4aFHxsZn28i9khXhu/cybORndlls4tbk6DLh49j\nfdqMMdP28nII+Fj68HnEMVyLIPbprgR9spMYRzCfYWRingmTi6CUTgmrGudUbR0T/F7w9hUwV1XV\n7YqiPA1MUVW1611W+7nt/KCq6iN3++yB/TarUvAGYgC8pomXWGXjXOxMtkU2dsV2NLZtjKWZJZmF\nmVwpvoKnnSeni07jbulOeo10XWNUtgKQohuSLmiP8JtSst4Sva2LQftebsMWPRhajBjXa4ptNvum\nJUUOhTyc3JwjAw7ycLIPPww4QJFDEflOkm/483bmzBlcXFxwcnL61eX+F6ugTGYP08+DrEe7gU4P\nleBWtg8oQJwD2aNNQc9ogphTlKP7rOuVviv6b/D2X2qR8ndB75knmULSP0LFHEbtXz3mjL9m165d\nw9LSEkdHx6relQemWbX1kVUA3hRFcUWEslYDg9HliByAZaqqPny3bfyzaZOAOkMbiMyAVgjg5oKY\nyEtqYz56gbDM+jRBL7D2oQJsVDgoKWQiHUwpOqhTEA6qJhVyyI0Pemq1X858HL8WMwQ+kWO01NWQ\niT0VHQNmaZ+1BBgKNidgswdM2DyEVh/DgrIt/B/QMwbmxxvJiCvliqUlIVGjifYyMWuCiTUIabjy\n+eWM2yw2ftAS2AydVsNCS5gba+RalJE1wMKHoNs2UdoXvT8caoMyDVgLTifAMg2sbkOgfxDLkxK4\n6p1JzQwn9gd8jWOGM18FJuN6zI3sRllcbpaBbakd5WXlZOdniUZ1HwKHRN1CtmsWe1/fxetZWTTb\n1VJEGPcCdaD7ZbhaA3gfXNu4cdAAocHrhUpXCSKrJh2kbO2goEdtZS+c69oJzaOiX59zjjNZj4Jl\nnz5c7dOHy127MnPjJCGU0gTcC6igVnZLhnmN5okirytQ94M9xKxrT1Ng+XR4MyaG/VPaQx3gLNTw\nceKzWjsJ2Tua6V/Al+3bixIFL+gwRQD1g/Mh7+26BG3cSZD/TtoACxOMtDwFTeMbijqvp0ysN6zn\n0RQD5z2yaIgmkNkBvnoSngWe+2oQZ4F/A+mW6dxpJ9r9RIw1cbFlBgfCjLwfEAD7wC/cREL6BFLs\nhB7L1mfh/NenOTUWsldlkQU47IFWCeJ29kxKYiDQetkyuALNH67N3nZQ2hxemd4PnyQfts0HBsKX\nw3cR2M3ES5MsiG8D4/1M+Nj7UPrU49wB5oXvAm/xt/veVwDWl0/DrWg41u4Ye4GN1jBg5066vtMT\nF2BiZxOEgG+46T//2n9tM9zDx++zy4iRCcQlvvQry/6aZSmK8oqiKGaKopgrivIyeoXpA/uLmBqn\nign8NaAOZDtkQylCjKQArAxW2FvYczjnMPbm9vjY+5BVkgW1Id0lXWc7uGrPWsuSisySLCsAvY+b\nBCKy35sEMfK1DNZZIe5UBVzPu5He7izWuTYVwO2k/zGstKxbt9hfp9AtW7aMI0eO3IMz9ss2QR0q\ngBvQ9b2e4p91EzFfqIWeiQQxZ5CA1R7hlywQktIWCHrkbsT50wLIagtVPLpVevwHcPP+7BGaNW4p\nfleqLctMnw160LkQvd5flpDcRle5rOa2dOlSNm3aVNW78cDup1WNf7xX1gOYhyAmx2qvYwFNJu7u\n9o8Hb4CY5B9HNH2WVAJJJzCnolDaGWcx8fdGDGQKgmJZpC0rhaoknVI6IcltlIpSWs8cGV1zPePG\nLbdsctyy2TF5GwtYybVKi0mqpARuslxAfiYTgbnA02/1Y+j2oQDsUL4n8nm48MoFXgcKg2HiQBMd\np3oyoqSExZlGcAHDVUhfbOQ2EGJnxH2PO372nTkGMAhwFfgU4PUwExcWjhBvFKgdB7ftocBLNGOO\n3zaA/pv7k+4BHIRlH8fSd3o/vgpMZp6mJLh9+qcVoiWGcgMUwwfO+Ry2BhrAyOggigJgexf4ZNZa\nCq2AnSJE8W2vFHy2+TD/e6NwKPuh7heAC3zUMgNXtHlCfwRX30V7qAhQVhux3hXEJMIJMWko0h6W\niJSSA2TXz8YOSC3yJLXIk8KUFKK7LCF6wBJ4CwEKH4J1bWG/P+x/FngMyIDg6Xsws7fHGRFWMT8B\nLlYu1Hu3HjSCHS99JwCKJ9AJNj9jgRXgvduT994SPbAfBmZ+PYkj9sBY8D0D4xUTrIIJFy/S/6v+\nwsGOgj6Jibw/ciRpQK/3ocAautwRgDy/bhbdNotDb6O04eWAAPYBY/2DuAgsM9/C2vaJcE7MtZos\nWEB94N3p/di7wMg0O6Ooj3wG0mKN4A3Lx4j77pkIcJ6plVk0hPFTTPglgsVNeC1iA4cjjgmFzbMQ\nE2sktQusjCslIs2FS8/AsXHHCOkggNdjl8DUE+yPwMymsPfmXt4a5EvNPRCVYuT5DdDnIxg6ryf+\nk7cRkAw0hy/riNuxqrJu98WqruYtBIhVFOUCEAOE/sEjCABeQPzTLgMDgWF/cFsPrApNnasKp3MF\n8BPZNwvFAncbd1rUbMH5/PO0cWxDLata3Ci5QbZTts5UqY1gtSgIJ6WJiwC6gAlUsE8qwIOsbZbr\nSeBmzU+zRAoYrAwV/sQxw6lCzbje8fo4ZjhjnWuNda41LumyluG/bcSIEbRuff/7x6tOKqqTAFRd\nd/QUA2chIlon29UYEGGOm+g1b5I1YocAfbVg2JExqK1V8fD7bdmwE11SONElRShdtUA4S4dKCzgi\nzqsNIipsj96aQZsTKSurvlDobjZ69Gh69+5d1bvxwO6n/YVr3lRVXaUxWoaqqtq10qOPqqof/5Zt\n/ONpkxW/H61dRXvEYJaKnuKyRTiOR9BldBsiJvkliIHVBgEEbqILnki1SVmsLaON/xlVuwMGxcAj\nSb5ac1FnopMSsECM6TLY6KC9l0wGmeBzRSSOrBGlRoY58N5U8b4XosVWhwCY0cLIvEuLyTeKuoX1\nGqOgJ2BfZiBkWTBR5SYWHx+Jx7Jl3ACGZkOuMyyNNFI73EQOMMkES28Ek+lmYHaZCcZCvJVQVOx1\nC5Jqiv31AR4vM5BnXs5s70j2B3xDj4g+pLU7y4qt8xnfMYxP533Eec/TbK0rTstTW8C5uQvZX2QJ\n8dQ8iK+1kmKG8UPsYB6euYnpi/IEx7ADxO82QoSY/AfGwOVgcDUhgLg1eu+gDPSJgcyoykhn5Yjj\ndYQDA8FDbQ95DcF+LcwZBBO1r+zyqNDyf7cVTExzoWaGM+e/Oy0uVD1Y9yy8UI6oIHpdLOse6c6n\nUemAkL0PC04jfucAmicJ/uWaAWN4tNYdSs6f59Xt20n09cWuQwe+UK7xyVNrCQmOxKz8fb48eZJ9\ni+HjsfD8AfDZ5EO+fzHfdjwNiKxZ4GQoEG3p0ErqaHwBSIbzb0DjjRDZB5xCjIyeaSIq3kiYYiJu\nRw8ctm+nFfDpAiOzfU3gCyN7BzEuOZZCROLZKR8WRxrJdgbHHOg7x8T7LkKlburuLFY3gyGfQr29\n9bjy8BU2D4VnEHESW+A9S0tS5w5gTfM10BC6ftaTnu9ewjj6KOTCW//2xefgQXrFUFGclzgAAj4F\numk39jn48lXoVsXj2D2nhGz/HzbwA5BS6f0HP6WFKIryOWL0+k8LB8YDCaqqfqIoykBg+IM6taq3\nqvaPAIpREfHixmCx2AIXSxe87L3IKs6iuLyYkvIS0s3SdZ/ngXBSdxCBzTL0IKYEZpJbLwGZDGpK\nMCfDy7J8QZYuuKMLhtmAbY6omZYCJQA1M5wrlCfl88fz1/zssU2aNIl+/frRqVOn//Es/TaTFEqA\nwH3DhJ+SPkiCuEJQW9/7a64UKoLZAuL8OSImFqDXZMjX1ujqzKCXFtSo3vTJ2bNn06hRI1577bWq\n3pUHplm18pGVrUeV0CZfUVX1fUVRghD/tIqvAFVV1bi7bqOqHYK0auGctIhSeQAYplDRGNSi2ILS\nXqWCgleOcCru2kpWiOiiLPitnGWTah1SErkc4chkb5pKah7DBom6sPR2Z1kdv5ZCBPaT+PEWeiKv\nsrqwHFMdEWzCflpfudPWgmHxVBFEWUPYAsieAM4XYaZfHOaFkbgEBDDquRgBQE/A3FFwMKY/6x3X\nQx3I7yuodj0Qi7h/ARufhD7rgAGw1BjMqOgYsSPLIOH8BMaYFkACFAWBdQ584AgvavtuVQ4zG8WR\n6n+MHLfsigjphxEbyEZM6rsDK6YaGTjHhOsqiAyrT/iMTG6OgE3A3K0tOXEwhTvT4eWAANY+lMjh\nqTBka0tOPJZCmlYP4XECnbcPIlop/57F6HUTUv2zMrDTxJjCDhspX+JA6PFwal6EyLYaEszMJHy3\neGm3wY58T0FqfW8EvCpLK1bBzLGQtXgci6wXQSncGgXxlpZYe3nx8tGjfBBpZNaoxYQkjmV6V5OY\ndHtBUQfBTnHeA6TD6kHidmuAaAAS/hUCjaXBwjwj451M0BOGfj6UXoGreMEE243QCUGh5TMwjDdQ\nHqsd5MMQG9+Vzjt3AuC7GZY/CyMWQ4jBSPfRJp76Cs53Efq1tkBroPs5QZetj6BjXkNk9m4DeVFG\n1Hc3EDomtaJ5+GlH8LwA+Y3A7j3gHETMBDXWSO3rMLqGSYDaVfBOKLzxBTQracmJoymMsxuHS3Rj\nZk6YxN5gODRyJGP7LYNyaJ37ON+3/g405W/1laofw+65Y0q+F1vSzP931bzlqqrqoL1WgBxVVX9z\nsyRFURb9yteqqqrjf+u2Hphu1cI/Rmq30GBgCWLMtAPnYmeKy4vJr52vq0ZK8S7JPJE0EnN0gCab\nVEsnB8I/1kCvd5PSyqD71hqIoKesJTeAQTVgrTXjliDOfV8TrHOtyXG7ybkOUtnq5+3UqVPUqVPn\nT6+RUr7TzmkeIvhbqj1L0CvNAGrze3P9lU+13/RDlCiUodfJSVE20JlE8FMVTG1/1Zerftz9Jbt+\n/Trm5ub3tYbxgf0+q7Y+8nf4x3tliqKMUFV1uaIoM/kpeANAVdVZd9uG+d0W+CeZOkxFWamIMXMG\nMAdoAqXOpa+vuLIAACAASURBVILH5gD4oiOmMn4q+y/FSWQRdgE6V78I3dnI20RzXH7vdqbu8fqk\n+h9jXfxaEljJSwyr6MkpaedSyVdB798pWRaOiMQg56D3xt7AJp56B45aQ4vB0Gh1Iz4Y8gTDJjpi\nnWtNyNws+hec4+v2cKhPHyaGbWTdh4+T6r8NbGFOAxc+IItCVuKaOkyghi+EsBUAIdA4JoacGBgV\nEMDaJYmM+XoBBdbwCSLzc9RRC7LugMvd4KwBYvwvYZ1rQ73jDTgy4ABXvDOpGQxPx/Tjs34b4DIs\n3AumdlMhbQ4TMzOpPQKcwhEUzvQUcACzJOBCIq3rP87+4M6M3wmjGqXQCLGr1EVkzuTfooCfisjI\n17fR5abRTqrWkDQqzQTbIBrwW+WHY+ZeAMYUUaFymT84n6Q2ws91ArJrQOByoD44TzVicwuujoW6\nSVBzNXC0BDiKwb49xlsmTjjDN5hgMfjd9OPFgOFMXfIjY0bPI+ZLIcKRORtOOsDu0h/Y6bcNkuCh\nD105N/Uy4x8xkdcT+pf4473+GC9oiKoMAeZXN4MhG8SE5vLYDLCBZttaiua7MyBycH3Kns3kNvDy\nWFiNiadOA9dg64QJtFmwgGfT4Ln4QfRfX0IJ6+kLWERo56s9+B/wJzbUxGuz2kBzyHYE53AB3Dgo\nAgDUAnpAh5nQvbGJ1CDgHXAudiE4NIvngRvPLyFk42hC3o3koxWrOB9zmsxBsAKY6bOML3vC2K0t\nBXA7AYv3jGTM0qX8La3qCO1nFEXprKrqLkR+89dnvf9th9D/dZVj+Ao/46Qe2F/H1HBVALg1CF94\nEyzyLcj2ycbimIUONpzQHZQTeuG2vAOkouEd9HG4cruAIm1dK3TJetk6QPrYEipUMLGC8vJy6mrZ\ntavemRQ5FGKda80V78zfdGwJCQkMHDiQjh07/oEz88dNfVwVAE6rfacWen297Dn7n8Dpf7AFyiri\nWUngF8NgB3rQWQY5NUBeYbLYvjJ7iOoN3ABWrFiBq6srAQEBVb0rD+x+2V+46EtV1eXa88w/uo0H\nmbefMSVYEemFXHRagUaFww49Klan0ntZ0CvpHrL1gARulZuRSudlCX4fdMY614Yct2xeHD6U4NzR\nFXXBUutE9jWVY7lkkMjx3YDIyqgIkYjPpm7gtKXwg+/b21M7L49OQPM4uDVJ9BlrewuRuSgB/6P+\nfJv1LdOcxxLSwcTIyCBeTo6l436gNhgaGThlXk7TczBsyhjmJCWwGRgxBXLeAsdQcY6mWRuZ7W5i\n4UEj44NNlNYEi2/hTgcI944k1f8YbROfIK3dWfYHfEOO203qaaA1yyMLJQl4EgZNCmDt24kcMBPH\n1zYBGAildWD4gDE0TUrAISCA4YmJWG0V67xrCctWdKbP8F2E3tRO0AF0+WnQQxW10SONddGzcIXa\n59Lff4eo0nEHi+kWvB9XijfQ8iJwC674QNswd9LfSIeLwEGx2rogeCFe20Yp0BKcvVyITBCOZNRD\nMUTfNBISaCL8/wRAiywxURwEVh/DxuchbLoPoyKO8QwC/HRElPDVngi75kPn/eCX7Mde417hYLUJ\n0vwlRnIcIXCioJLKIOoMrU5xeZvlJPx7AmPCF1BYBx5KcSOpZQYeQIO52vnwoIL3GvJsJHWb7mfY\nxo0cArqnwPWWsB14eRXMnBrHtIxJmG0G9VmIsLRkRlAJCy8MYfDq1dSaBiGuRqIHmlhUG8ZdB+ZC\nQRx8K04jA+ZCSai4j6d6R3Jz5AWW91lOogcExACj4bwdLF9iJPZMHFMXK7hoTrm6gLd7HlX84l5s\nSbMnf1fmzRdIQAwzhYhWAd//0Z9WFMVOVdX8uy/5wH7NqpN/BFBma7dTbXSwcQlRwytpkw7osF1B\nb7ANOqyXgM8aHdCZ81PhEqmm6Ijue+uht+/RisCdLwvKdnajLJwvuPBI0mNc8c781RYB0k6dOkXd\nunWpWfM3J5nvqSmnFDGOP4Jw0PJSl1FBVVQ736PM23rt5Mt2X8WVvjRDz7hlo7c8kkAZILd6sB1+\nzR5k3qqfVVsf+Tv84702RVHeBSaoqpqjvXcCYlVVvWvU4QF4+xlTgrXr6Kg93BBgTCuQrpD7lzQO\nZ3RZXcnlB72hJuiFalJtBHg6th9p7c7hse8hvJJ9uOV2k3eSEshF+KWb6OBN9veWwa8ybbMS0JUD\nvl9DcSew0iKX6RYCX34O9GkPg/sPZs3La4h5rj1W3Z6gyxwTLT+FuVO8CN2eymEPwXZZPWQItqtX\n88Y5OPWQOIRwU28eXdSVmfsnYahroPxsOaVe8Fb9+gRlZmJ9A1bXggHA0IAA1vZNJLMv1I8DBoHf\nps7U0/q4pbUTxWKp/sfILsziaDNocRjUNqAcgZJW4phSgEkrOrP3+V2QAfM/MTLRyURMnpGvLY+z\n6eYm4fR9gD4Q0ioSt04XGTt2mX4xZd4gB9GwDu1katm1n9QfmiPQBOK6WWwRF6p0Rik3NZ+egK66\n0GAXjIwMIig5Fs8YMEwUoaDy+eXgDZPTJ9M4VXi84pMnmfT+dvLqCHoowMEJExhTdwF7w8AvRNud\nEguCts3E93g47dFq196HU69oGUVt95OB1xDNrtkKZUMFFu9wES41hHV9+jD74d188VY2GxGqoK++\nB4tPGnGKMjFkO0QfMhLSzQS7IGKOPdNX5nFmAKwHjB9B+DUjka+aWF0TLnh54ZeayqFZRgpnmJia\nCne84I0BY1i5JAGuwVc+sCvWiPOP1zHY2zPmtQUMixpDbtsrdL3ZlPIoExeWTMYjw4yXo0w4fgR3\nXgSzQ+ImvtIO6h2BLa1g3ryezJ+8reIytgoB6sHcpV60Tk0FoEc1GS/gPjimL+/FljTrXiW0kPbA\nO4C9qqoNFUVphaifG/1n7sffxaqTfwRQ5orbaZqdkdkXTcIH1kE4C6kmWZnpUIIAJHb8VCSgTHtI\ncCCzbxL02WrfmaG31ZGZKFlbLoVMVHC+6EKO200cM5wqnrPc7y5yOm7cOAYNGkR7rZ/nn2nKyUon\n5A4VGcp7RZP8r9+T4E1mLtLQmSet0DOlhegBzzL0855f/TNvc+fOpU6dOrz++utVvSsPTLNq6yOr\nwD9KUxTliKqqre722c/ZXzjxeP9MjVGF7n4jmFNg1AczWa8mgZt0LlJtUkpBon0nI4iO/LQptwoG\nOwOfTdsAgHWuDda5NiQmJXBbWyQfcXFK0ANectOg13zfRvjDBsCOTuA3qw3zX+gD78OXgM23MG7b\nQ/A2NPq/5gz+YDDs2UPxjm/4rEULlu4O5oXUVOb28KIQSAfG/99q3tAaXZ9EqB4ONW5iasYk1jeA\n8uxy5q8xYpEKLTIzsZ4EWbVEIM89pB59ExMZkT6ChUuMJEwCvhAqYJ/ErWVfwDf8MOAgjyT5AlDS\nTFOHTIF57duT1gost8GiKCN+c2DvgF1EP7QEbkCjWSYa+3piMe1hNnXcxNfRcGAm5A+AQkuIfiWc\n0ro1BcK9gth5KXPcAF0OuUi7bvLa5WuPMiqk/zGDUptSSm1KIQucrovH7SVGHBHyeZjBsrdixZ9o\nPJTfKSe6XRvmBcORZ2BejXmUOFpz0cuaSR9sB0WT6wfaLoaLn9eBN8DvDsyKs6SNTRvC40qxPh7O\nSRcXEl1cCNwCEVeNHARmXoeZh8C0HroaRwgFyKNAKpiHQoev4WJDaPAVTJy0kezJ2bTZJjJ259zi\nwB3GNjVxGijuAe3CTLAHFqUGUJ6Xx8wB0DQfbIYMATuIHGOC98Vt/2pqKl1OQ6cZJl4G2AFmS+GR\npAQogCUfGDkAzHjKxJrGJ7jykDXTvjGysmEC5ZcsGdvHRKZ3JG5XzCg5dATHmwK4rQCuPAqzOllS\n74i4mZ85BC9M3kar3dBqiriURIJfnh+hx6ofcLsvVnVqk/fK4hFaSDcAVFU9AnSusr15YPfU1FDx\n/5udbxJiQjUR0UYrhOMqRAdVkvcvJ/+VRTGkAImMRsr1FXTapDTJcJEKlDZUlCXY5thhULXgmVJO\n3eMN8Er2+U3ADWDs2LH4+PjcfcH7YaXaIxtxPJIWer9MUlHPaw9Zt18bMfmQ+2Ol7UcJ4hpKoO38\n35usbvbmm2/y/PPPV/VuPLD7aX9t/yhNURTFudIbZ/R0wq+vWF2iedUtsgigfKJd2XzEgFUDHbw5\nUCFoUtEt2wyd11/5xpDORg6AtmJZg2qgR0QfHDOcqZnhxPzkWBT0ntK3EH5M1rqZowcwJRuzDBHo\nvIQQVByd5oLHu+6smHGY70KMjLY1wSPQZmhbDr+5H6KhyADbEK1iCgDzaCPeISb6bYXPe0HMXH9G\nhibzfuAgPrFZy4W58IV26P0vQNybPZg0ZjupfcRpGR8QwNqWicTeMvLsDBM2QKMciHMEAytZvnU+\njhmCvpDqf4wihyIKbPPpurgnSyZvozawFZG1MwfqpbmQ3SCLwxYiYfb6bk/a7G1Ji+D1hCBq0GZO\nokLi+OnyfnzWWwBhjgIXtPPeDZ3O2gSdy38WXWlSomQQIFs6zcvATog72INJ729ndR34cbERq0nz\neaGkhM1A8BzgcZgzyAUlS3BQAhA9vsuAMVpdWG+r3nS4401ID5PYF7SLegFm5BmxLQDzMgjqaBL7\nkAPru0P/PeCzzYdjzY6BA0QdNdI9xMQtwP8xYC7YbbNjzqnumG3cSPFsI5Ommaid5sKQzYMJH7uI\neoeg/47+rO+3nhGfjWD5v5YzLdXI7CEm8moJH34R8XwW6L9VuzEQ+xFlacSqGIIGmPi4OTy/C0yd\n4aZ3JNFTwrk8FFyLYbsV9JgCzIFsS+iwtSUnrqSw+LuRjF24jDJLUYNXBBzo04eJLTbyUaSY46Vb\nWjIjuUTsiDdwEEYUC5qn07JGRM8N505fMNOiGKp59Ron4D5EFXfciy1p1q1KMm/fqar6uKIo36uq\n2lr77EGT7j9o1dE/AijztdsqF0Gxq4eesbFFFyex46eVkJVFSyo3mJYRSlmOIOvELdAbeFdiShhq\nGChXyytES6SVG8ppvMcT4K5iJSCk5V977TXatm37ew7/nplytJJwifbyt8r//15r85E4xu+LRC9N\nytC1Zy3RSwokOJYme/bdAfW56ncvVjaTyYSzszNvvvlmVe/KA9Os2vrIKvCP0hRFeRWh8rwO8c8f\nCESqqvreXdetLg6h2jonDcAFvjWV+Ig5ghpSuX5NvpY0kcqcfom2JPdR1sJpjqv1x4/jsa8JAOvi\n11Zk2mSbuRLEZNcafc6P9pP56DXEV4BmCJph313wY2dY5B9EdHIsjiVgHmhOWb0y5ixw4XbdSdS4\nGgdZWdQAAuPg6iSoGw5hrkaiXjIx+N3BrMlYQ9p88IgAnoaogR70TUsjuU8fPvMrIrlzMiXtBfiL\nWWTEMmg+tiUl9NAO/d0lk+k6eh6vpLnQI6IvayMTGRQewAeJibiluHG5WYY4H9OACXC2DnyKuHMb\nfgqmY0aMviYO9hAZvR4zgOeAGvBBU1GS2G0H0AGiay8h5MJo3nWE1w4BWRDR3160FGhR6XpIqyzT\nI5VB5etKNBH/Df4AbAwVskbtZ7UhcMZhQGDBDlKOvTH0XtKbTe02cVHLLTT8FDof68wun12c6Cs+\nGxnZmVnhu+hyHXJrC6zSPA9u2oPTJYh9x8hmux9YqNEFd40ciZm9Pe857GbQyYcwq1WLoQsWcB7w\nWQBZE4QCZz3g7Zj+WBmsaGzZkMhXTVAOPzrBssXjGD12Ec12ICYGT0D0MiMnba+yqtEqtj4PvYoh\nopY9L+bl4RUL8UErYcAW+icl0XAO0BG2doG3AwfxcfxargCuBXDJVuDk3bONFNhCsyATLxyD/T6C\nafwtojXAYkTic0tAAGtjE5n2npGzZRdZ88YafqwJp4F+7wPH4b25IgAduAvctwtJ1+uTb1BwXpRN\nqW2q3xgB98ExfXUvtqRZlyoBb0nAfMTlb4toQeCrqupLf+Z+/F2suvpH0ABcLkJQageil5sUGJHg\nzBK9bKCc/456VwZ2cgw2R6dMSiDhiC44pYFCQ7mBckM5tjl2FNjn03i/J+ntzlJuKMf1mBuZLS7e\n9RhSU1NxdXXFwcHhrsv+HazXjOcqXn/WfMNPpYUqx/0r0yblawXUPtXzXpR248YNDAYDzs5/gTTh\nP8SqrY/sUnXgDUBRlOZAV+3tDlVVj//a8tIe0CbvYupzKtSA+Ig5BE6fqguSyLHLEREl/E91LEk/\nUBBnWQ6IGlBwPekGQI7bTaxzbYh1WEIZOu2/BJ1JItsDlFb6XvoyiR0bfwoXNBGH5iXwwxN7eHq2\nHzmW0IEONEhuhMHenpnHw3k9Kwu7GUacga2T4D1gvrmRmHNxbKgFO5/6GiZBu5B6LEwdQth+I2H/\nTmMDMDFoI6+FJnO0PSwDHCfDv8aZmHGxhAJLS1oWiwBprZCHSBowhhUeWRQ5FLLBFXy2beNz4LJX\nBiFvG1n4yhDCXI2wTpyySSZoOA1K+4J7uImQs0ZaIxisJ2ZByOBIUpvCWUtLQaUrA7ZDyIHRHHQU\nPe4GfzWYW/4wIS9PSNZf0R6V6TcF6I1HZeO8yvWKWoF4cr9kkh2Ssc4G62x4PfsJzIH4WW1oAAK5\n5IltbxqxiejeS/garaatJ+yavAt2iVq0ZjPgWuubjNraEo6LhuPr5xnBTEjucwiCWpvYOWAbtYBt\ns43s8czlxZgY9t7Zi9vq1YzpvwC7r8FnMhANg+b6MzQEek+y4Mng9YwLWoPtOJNQE0mB5lth0UOL\n2Nq1K7Gzu7K7L7AEBoSZuJVWDOeh10X40Qq65+Xxqa+gsroxjO/8LGk4B+ZNhYVdoNcXkGy+kQzE\n8Wy2he+B51Pc2GrzAzNeM/FCIozYMYK2t6HBIXjhFvjs9iRish1nY42sbZvIZieYfcNEZNAaQvwi\naf4O9NuCiFJEQDYreQ0B3M5HpXM4Kp0LztUbuN0X++vTJkcBYxC4/RKi28SYKtubB3b/zA6N+47e\no62cn9Z7K+jy/7JFgMy+yTo3Bb22DfQ2O6XasxyjZYmCVoogWwQANPu8ZUWbgN8K3ADmz59PqlZL\n+0+wz3ptqHhwA33eoqBHj80R/i0P/Zr8RWaMK1euZN26dVW9Gw/sftpf2z9WNjnzlBy932QPMm+/\n0ZTPFUELkeIkpQiHJQN1BehFavba93e014UIh6NFHxt/58ktt2xqZjjTSqv9qnu8PvHJsZgjJvNy\nLJWCl1JfQwYvbRAYQ9ZfGYAun8KnfaHvWigaBNaxEG5pJPK6ibFlb7K4xdusGQSDk2D+USNFH24g\n9O1Uvu0E/UPqcWXwFbGvuyG62EhIiYmjM6HFDbhUCxpMgey3YImLCxmPDiU4OZYPLC2Z8WEJb0X5\nMurgQd4NMxLb62OGv27godRUZk/3YUTG42x1y6ZHRF++NH1MS1tvIp82cakpNAgBT3NPTnucpln9\nlpwghQ96wbl5Rqb3MzGzqegptl8T97DLFn3VTowQDMl2iGSodSnMn2Nk4kgTt11h4PR+9DhuTmCC\naH7NJXQAV46IDtugN10HPQNXhwrFSb9kPxxL6/LU/kKGb99ewRwxSGGTfXCmBzS9A73n9QbgTIt0\nekT0Id40B47ClbFQbwZsmCXas42YA/hC2BkjUXVMWgoODvQUFNimcYAbzJ3mReiGVKKe9iAsMY02\n37ThzdvdKb11i/HBKyjxhP9DpDXanIALzUQW7jbg/DXiBA2EyUmTmffYPNIfE2KSFgiRkEUJAYyL\nTIRTsLczvBU4iInxa+kUC8P2jmHlygRK7MHyMKxoAzc8PAg7m8YaM3E6by42cjDve5LNk0kKhkeB\nDTOMTLQ2MTcU1GgjfUNM7AXeSBH7kzIEWhbAQlsILDMwZtkYFrVfBF+C+013jkSl47QBNvSDJwAX\njcKj1qq+YwPch6jirnuxJc06V0nmrbaqqtfvvuQD+y1W7f3jCu32ckWANnMEqJNUdTnGSs6/HIvN\n0LNxEtjdQQ+SyqCoiuDty75vUvjEXGTerHNtaJv4BCf9j3HVO5NHknxJ9f+RfKfKnJVftpMnT9Kg\nQQPs7e3/2An4i1lFSQiI6K/0Z5UL62WJCJWe74D6QvW9D6U9yLxVP6u2PrIK/KM0RVEmAG8CHyNG\ntH7A26qqLrzrutXFIVR35wSgfC+ub1EbsL6AmAlLvX7ZlM0anatfuZ9NJTztnOlCzQxnrHNtcMxw\not7x+iTFr61oEXcb4cOytU1W7kIAei3xbXTfdhsB5Da2b0/w9j1wFL5sD91nwtaZ0KstRBy3xzSi\nnPx++WztCL2uQptlbQCYMeMwt4H+gPUJBChdAnjBpVehwbcQ9Y0RJcTEHRcXpl7KAjNYNCKAcX0T\nRXbrWfiogaDK1XgHoZThB/OsYPI52PAQjEpx4/L+DCiET8eLsPw1oFcO5DiC42IoGwvmEdDVtifP\n5TzCeHcTuW8KXPwdcH7CBACaLVjAgRaCF2mMP8ry7hAV5s6UqHQA+gANJbXxDHqhdWXQLdObuYii\nQbRr1RQB4E4Cj2nnvbl4/ghYHziITwatxe+HzuwYvgubDRDfD76J6c+44PV02Q74QFkDsU6UvT1h\neXmYl0O5QRCcvbWfmzzXn9dCkysYnEMOIP7KHWHhXiPj803MSrAU1+l4CY9t7sCBRd/CQoSsP+jo\n/hvx9HmweDYA3b+At0J8+bB3OYdrHCYxCAKmQcJsQbfttlgsO6J8BPVLHXkuyERc/FAWBa7CM0QU\nQyiDzXm7ZQZrYgfjHbVdrGB8g4FTTHgdg1ltLBlXUkIW4Kk1zyYFsIazr4i51nu+vjQ4eJCz9va8\nkZfHDWADMBwYE9Ofx4PXY6Ud0nEPD8K2pEGd6g/c4D44pq/vxZY061Ql4O00Qg7hI+BjVVVv3mWV\nB/Yr9pfwj+u0W8wGQW201L6QWTPZ+wZ0oAY/rXmTqobSyclacak0aY0Yu80BM7AtsKNmhhO33G5S\nYJ9Ps89bUuRQSHq7s1jn2lAzw+k3Zd+GDx/OiBEjePTRR//w8f8VrUJ5UtaJO6L7SWvt+Q46+L4O\n6vDqfR8CxMbGYmtry6hRo6p6Vx6YZtXWR1aBf5SmKMpRoJ1sp6Moih2wT1XVFr++5gPw9rtNyRDX\nOK0heOSj17n9h1hJ4+803n1ZOQZzERkssMsX/WguuFD3eAPaJT7BvoBvaJXki1eyD0UOhUw5Ho4N\nAkeU8FO2nxRKLEX4RjmeypZyX0+YwBinBcybKYQznC8DXwHHIGhVA2JfvSQ4iL2AixDvA22ATnOA\nYXC2ATR5G6gJ4VeNuIwz0QTRPmBCZGcec3qMxqPn0QmBfw4BPc5B+kPgvhwSR8CWmP6sH7xeZLam\nwq158Dbwf1tbcuKJFLou78nOZ7ZxqxnUXIxQyTCDOStdmHo2C5bCjlDoVo5osr0SFl4ewvgVq5nb\nxgub1FSaI/x32wh4LnsQn1ivZUM0nPDyInRLKkM3DwWgeeAqgq9pJykFveDaotJrR+05B91pFVNB\nc12SIPqwDYk2UbMc8g0iSKnl8xh/GmgI162h9pfwQXd4WUYv/w1cAvcb7kzJ7wfA6f0islvkUEhY\nciyNrkLX93vildycZT6xYj1N6CSufw+MzXfw77hS7BE48v/ZO/O4qqru/7/PZZRJAVFUkEER58ws\nhzSnJzTNoTRzKFOzHFFE9CrihKDeVARxyCE0c54yZy1zyMSKzBBFxAEEEQfmedy/P/a5gD2ZfZ9f\njrler/va95y7z7777LPP+Zy112etleHsjE9cHMa/IDXZquC12I+EPtHMn7QTtyAYeWgi9Y4sonCu\nlq6+OpoXawj5dAgXEq35vM0igsK7yCF5qwYLvdbxEzK2Szrwha3MleQ3MoXSQDVV4RHgB8ieAxZf\ngWeGJ0V7jPE8sohzwKApwMcw/YCWZTdXY6wxJrluMmhgyzBIZi12DCWxSRPyzp9n1j5IeBscfYDP\n5B/bZNry6YHhzPfQYWZjTu4tlSrZ8Ol/JsBTDEzwxMBJUZSWQH+gF5JNvFUI8dXj7sfzIM8KPupF\nOa1ON32krQoJnsv8p/SBvQwoX/DUK24GlLsbaCoca0UZycjlgsTYKonWVE604XbDJKqr6Wiiu0Zi\nlm6O+5FGnH1fv5r0YImOjsbBweFfY3nTi3LkD8qbKeUUSZMK+/QUWDPuy1MkejydczJFDSBmq+LZ\nC3ny8tRi5JNX3l4TQuSp25WAn18ob49IlAx5nROqgGMO5auDyO8aoSprlXPKOLWaUg2lSilmGebk\nVsnB5bQb+VZ5dAj2IN0hlZd2vMrsi9MoQj4bU9Qm89RmDdTvlbnfWFQNydhsdA8SqspcYOOBWQ0D\nqfluJplW4JemY+w8qNu3L15uO9DM0XDSsJTXgVmLtcyup6OwuzyNpcOGMSYsDN+Ggcz/dBpXvaBO\nKqywgVEXoKQRGMyCjhZdueQRxaSmiXjfhpEfTsT+yCLeBqbP6M2H/rsZuAxGlIxgJSsJHrcWr9Kh\nDBg+jJYOdrzlr8N9PRADC461YdI3pymygxV+Wg5qYhjlv5ue+hCX9rDJEQaeAOqDzSIbvL9QqJ2S\nwuDV6mBUBqMzRiw29WYBW/jYpj8zBujQVFfDR/9YCi4VBlP/QqHXgCsClP42vonMjq3ft1x+XTdW\nlknztfiOkcmwiQWv0X4E9wmA0XDWHJqXQKoBdF/VHo+cVthO0DEC6O81gFir8wBE9YuS1rLLsGsx\nvJsGQf27oJiYMKHeHmbW0rLw5lICF+bwJtBoAczJ8GLFmk0kjZOaaYEvXAO+UqNhRgZK+ubO2ju5\n8j4cHj+eMYEhRFtAg2WwIFVL6bYDGFatysRdx2T/g2DPHDmX+kfCuabQ7AhgC/mvgOlGoB4kqFZI\nxyD40huyRo6koEZl2s7U0fIGbKsNB4KH4LywKbO+9GbRKS2pNmCVCaXTdIxC5k5/M0BO4F2fyZgy\nbjkgNV7fSAAAIABJREFUzME81Zws1cdN84w8D+ARANOpf6IlVdo+cYfsqsjgJYOEqBAS8IX8bXmW\n8FEv9ylwehaK/urrFTd9WgD9Pj2OVlQc9DRKvYO3BqguMVWvuGU4pGKiptwxzaxEdJdI2W4uCPOH\nj9vw4cMZO3YszZo9NL3ScyXK9+rg642TdpRTWSsmCtdbTPV+/Dy9ihtAcHAwhoaGjB079kl35YWo\n8tRi5BPER0VRvIEh3E+bXCeEWPzQY58WQHjWwEmvwOlXBm3u2pJqn4LGUCppZVSQUqgRrUZXLIUa\nMQ5kOKRhmmlK9Yu1qJJojfOZOmwICyvLJHATSTOLozyIpT5VjoVap6J3o57BeQFJn5x+yo2PT79L\n9jorWl2cRu8pyHABBuA/1JIZ57P40VlGBHRaJhueG+CMV1wcqwDRsycTOuxhVlAQJHozKwFWOMLH\nwKfBQ/DzWkfdlZA/AkICZaTB2S/r4CiEzpF54X6dq2VD/n6ixkXh72LJ9Kwsus3ozUHf3eSZwuSl\nntQcG0o7YJHXAFqGtaN+5mh+XqqlxVgd7+6Ac32h2Wa4O0Di94Rhw/ggLIwC4GQrP2I8ovDy303w\njN50MnKn13SpSNWbKy/NKV84NVdazqa8ritfUXRUS70pE3VgbyK1YX0aAQ3lmbHfgoIa0r9wB9Jg\nN97HnBybHOJ9wUm/CqQGO7neE6YtGghAte2u1DoTQG3g/VzgDkw5oKXjaB11kRiZrB7++/jxjHkp\nBDrARle4ulDLdB8dyhToY9uHaZN20twfJs4AW2dnfI/H0fqr1oR7hBPcci1ePw7lxuuyj96TYdtn\n0C8LjGYaYWloyfjqn2A5UYf3asAM8gbByhlavLroIEr2IWKETNlkDzT5HvZ1grenQWwgnAUSZ2uZ\n6KujWE3lsGauGr3SdR1Xe8rh2zZsGIa2try9YAGO6yBocxc6HT5Ms7NwtzlsZC26yOl4N03EFXgX\nULzl/5cEPVuKGzwCYPrxn2hJldefCG2yMjI+7PtIEvLXSMvbr4+zH8+LPGv4qBfltHJ/Xjd94C59\n4BF9FGZ9WTHaoT46s16s1H0WgAloDDW0DGtXln6mZVg74lpd5XrrWMwyzMm3yqNUU/q3FLjo6Ggc\nHR2xsLD4y3rPoyhfVng0GFDOQNErbPp0SPrvAJVAtHt65+MLy9vTJ08tRj4BfKwoiqK8gjQTCOAH\nIcRvf+u4vwIERVFMgRPIW9cY+EYIMVX9zRMYjXzs7hdCaNX9YUg23jQhxH5FUZyRhoFxQoilap2l\nwC9CiC8r/NczB05KhiIBZSkwEjQaDdUv1uR2wySpwOlXHFVtS6OROWnMsswxzTTFJLMSBVZ5jGs7\nDdNMUyZljiYPSVXLQL7Q6w1EBsi/0rvPGavf05CK3egtr/Fb75/hd1jYEvohqY3V42x5v68LK0wi\nWPwfLRMa6vAfbsmMz7LomNOVET6HaIVM7fLqrxBwVItfGx1mDc0JHNKZCR57oCeU1AaDWBhxcAQF\npQXcTk3nYLXdmA00565NDoeBvX3HsDZkmfzjM9Dnxz7EZMUQ4B9F7zj43llm6Q3t2xcvzx0smtUR\nk9avMTZAR5xGntMOIHmplvpjdQy+gNSWrgPNoMf3PRir3curwEc6aV0aqt1L/EwtuoIvSW4lVaCr\nvWUXzHQVLtZ/KAeemmqpz9enp+3cVvfrgaoKMhb/a5DfGEzT5XXcX1n+3P2WWm87YAatS9sTPlh6\n0d5Q/QWsAcvj4BulZcJYHXaxsOCjNgAMOX0au21ANcjtACHu7qSM78GPKT8SbhkOQyGzMoTWrIlj\nUhItAfcJar+/BvzgqErpv652pQdQPQ6+dJa6ab8CYAUc9YKxB5oSXRzJ4l+1nMy4wcfBmwFYqevB\nK6EdmXXYG2wgqQZcBtyB9U2aUKlpU8Z9vJH4TuA0U47flhEw9ZQbk/a9S//5OqKRjNxVs7V0nanj\nF+B2kyZoz55nnpGco9N+gUOvQtdYwAlSjMF2MxQNkPNPbwR1fsaeA/AUAxM8KeXtOjL7x1Ykh//Z\nu6h/Qx4XRj6T+PiTOuX0z90/+rtVsOKU+YYbcn9EQz1tsoKfG5Vk2eDHpoCkoFdJtCbG4wKVE60x\nzazE9Tax8q9KNZSWliKM/nrshg4dyoQJE2jatOn/fL7PooQo6wDw2jpU7tBfK0vKr0Mlyv03MtVS\nHzSmFMSbT9+8DAkJQVEUxo0b96S78kJUeWox8sng4x8j6VR8EiKESH1oGw8DBEVRzIQQuYqiGAKn\nAB/kresLdBNCFOkjiymK0hiZa3kOsEkI8b4KTGeQt30jtX4oEPGsK28AilCwuWHL584pjIyzxSSz\nklTeNKVlVEm9X5xZunkZ0IBME/D+p0MAcD/SmHGJ3mWuczeRL7MplOcCN6Q8LVl19f/zkM/Z34Da\nSCvcW0ClPRDWE4bdA1bCpWlQPx3OV4Em04FWMO2alu/TTxL+TjjzGsOcVHN22OTQrQBYBiu8YdQh\nONAVJs9oTNQnUQRP6MtWj7vs+fQENb2NKLIqonCWzDv3PdBnLpJ60RrYC6umygAmlkCvhV055nyI\nkr7Q12sAU4I30/Ik7HwD+qyE6fla3huvIwnoGgQ3vGHCgj7svL2TkZET+XzWIrgCfW73YeeQncTZ\ngbPedJ4O8yNVK9tLOvSRiJZmjgRg7ODPy5W2HLXMUjtWUfQvCerg2q+SATuSR0vFsKg2HET6iGUg\njVVd9sjqRT3BKAjoCztrQ58SIExtq5kcIH8DLWN9dJgBoUB6qJbFg2TEkNzbObhtdCO2byzLmsEb\nwPFhwxgaFoZbpAOXmybKHHo+PtwsyGSu7yrpSVQP2AKh0cO4eaYOHS9OwwR5vHcrP+qcCcAzATgO\njWMbM8o/CuGrZayRjrjZ4LtoIJsGqybGrTBrfhCfJHpjCyxp0YIqERHYAx6A6Rk43AqujB/PmPdC\n6BPeh7mTduK+Ds4OkczU34HdrfwIfieALVoZBGeBszO+I+LAA4b8MIS+XuuIma3lrh3U/DERZeNG\neZ2ewWcAPAJgOv1PtKRKmycCThohROnDaz778jgw8pnFx4oKnD4dAJTnSFXU3wwoX6WsmBdVg1xE\nK0QCYVW1fmUwy5LBSjoEe5BvlUdywyRMMytxySOKDIc08q3yyhZTSwwqeo//t1y8eBEnJyfMzc3/\nst7zKMp+Ra4Cg1xtLFS/6302KlWorF/YNED6qwNi9NM3L19Y3p4+eWox8sngYxzlxOT/EiGEy4N+\n08tD/Q+EELnqV2PkLZsGjATmCSGK1Dr6kNDFyPUYkz80cxc4Cnz0sP971kQognyrfIakmvOdcwoF\neqoG5flnzLLMoRByK+dIZQ5IrZ1C9Ys1y9qZmuhdtviYRrnftj7gU0Wcs0AaifKQOJeCZDrYAe/+\nKBW3tJ4wbBocrwp7pqk6xBcyyAg5wBm49ttdwpuG89mQFrwGzLTJods10BhowAN+7jsGDsvkzN/4\nR0E+zK97iimfnqASkBZUhFGmEctZy1d+Wmn9cYHvP4FvG8uTuLZcy1WkAevYu4egRBqNJgRvpmUM\nhL0hoy6GjYCIlBha+5gTMqM3d71h+DwPdo7fSfBC+PDIIlofbc1nS1qwM2knqXaqLnYFaaK8Bj8a\nXORHg4tc6Y6MsuIEcU0tiGtqIV+LbqsfS/Vji6RJpiMjxCQCSTBg2jAGTBsGVyC5XzLJs5KZuVNL\nfm2YZ2nJOUtLWs1ojDkyTL/vDS1LeoLRSsAc7Jfbs8FrAHEGcPgT4B1pNexBD4QCG/y0/AwcWNgV\ne08duVE5DO4/EnZCyvBUOAxjdPLObh8WhoU/3NqdSPVUcwqAMUMWsjV0lTyHlrDNUY6158dhTLk4\njZhBg7gAaK5A8BcBeN4GMqFPch+8/aMYMxnG/keHUZYRzufA2cQRXacmpNjB4bHgk+jNTqDjqvY4\nR0RQG+h5AUwvAL9Bl/0wpn0I3IOvJ3zN/i5doJOML2N9CE4YGzPgTADJWmle2AX49osjcCos2qdl\nhNc6zlpaMt1zKTfyEjij5m97VhW3RyKaf/DzBOTforjBC4z8KxEtRRm/36XYrTwKsz6SZEWapCHl\nSp0BEgA1SKAzpDxCMJS99tQ/0pi4VldJd0ijSqI1cWqUSdNMU0o1pXT173Ufzj5IdDod169ff2i9\n51ISkP4W2cgVyTzKfTQs1P36lw59cDaVzvo0Km4AmzZt4quvXsRGeq7l2cZHZyGEy4M+f6eNv2N5\n0yBdXeoAK4QQkxVF+Q1JiemK9BryEUJEqPUXI/mbE4UQJ9VVxb3IyO0Hke/qITwnlje9mKdZ8NKO\nFgz99ART4mxJrZVSZm3LrZJTllhUYyiplXq/t/bBHphmVmJtmDTRpEFZnswk5NzKodwYZIEMKmGF\nVPA0yFD7Jsiw7zeQDiYGWciVsbowK3AcA+Ytwf0cBDSDn3Q92Fu6F5rDti7Q7yzYbLEh9ZNUAr7W\n0mCyjrOhWip/eRT7iAj6AV+MH8/HISGY/gRO3zgxfW48vy/1RDc2lGBnZxrGxdERCFqspfkEHSOm\n2LN3fjJGQLMFUDBJYkKkHAY6XJAnUvAqLHJ25tO4OKqugW3D5Xn22wjEA8XwzQy42qULxzoZE6rd\ni8q6o9420PUD7QLoUdqDNmGXaR4TQ33K/d5dfkRqrHrnQJD5CQCXZm5cryTpNfoXg3luMPUadNzV\nlTcMXgJg9m0dTJO/71ItdXpXuU7AshBp8TOf7sSUhNFSOwVaF7YnvOMJ3vqqNweV3WAH81T/6al6\n698PsL8rdD8HuEGJObj6OhHvFS9B1VS9uJUgvxaYrobeUf3xDNlCRKAWbWMdCyK1GBaD7WwdnYFa\nM4E2QBysGQHDd8G8d9X5M2wYnp+FcasqnEYqwL8MGkRpHQeyl63B70gKKa9A2Bwtk97RcbexfIeq\n+RNcaCkXCl5V553JPTm2X3aBOGNj2hQW8uEUe5bMT6bfTGAg5LuD6VbADpy+c2La3HgutvKj95kA\nuvuYk7pQDoTxM3zvwyNYVTzzT7SkSqsny+l/3uVxYOSzjo/Kz3L6BbdcC4DXmaHlVjiQypg++bY+\nOAnq9yKkn7I+R5yR/L31+vYAZcpaukMayQ2TcD5Thzg1CmW+VT71jzRi1+JN/JX8qy1vF8svhM2X\nNqTapkqFrbe685JaWoN469mYg6mpqZSWllK1atUn3ZUXospTi5FPEB9V7BgEuAgh/BVFqQ3YCyF+\nftixhg+roK6gNlMd0A8ritJBPc5aCNFKUZRXkWmrXNX6Ex7QznVFUX4CBj7ov/Ly8oiIiODVV1/l\n3LlzNGvWjAsXLtC4cWMuXbpEgwYNuHr1KnXq1OHGjRs4OTmRlJRErVq1uHv3LtWqVSMtLQ1ra2uy\ns7OxtLQkLy8PMzMziouLMTQ01A/Yw077/yw51tm0oQNrV7XntvMJjNRoTbmWOeVcfgGlqlrRMqxd\nGeAc9NmMMTKvmz7ooZ4loo+wrGecGKl1CtQ6elZJERCD9FMyuAvzLGHqDeBXKJi3BDWGB37fQcZ/\n9lL5FgzcNJAebGJWc5h1JJV8N8hAR9ctr/HbdR193u/DzokRVB0Ag0NCML0HbIexlfpz03gxodah\nuPbsSa09e+gdBD2KerDXXsd6YOb8ZF79CX5sKU/MxB9oCIF95ZI0dSDLFExOAcVxiIE1yRqehAng\nFOnAUP9erF23DEzgrKUWoyLoP1nHzo4dAXA7dgx+l+e+PEUqT6Pn7QXg6LvQeY0838jXZVkVWBYq\n6wV2lM5w10WsjMoBpKjPeNul0GO79Kcz89ExHDAL1MISOMAZrqp8zKW+TrJO28qMO1ZK9QULuGy1\nnPmOy5kyebRsTBTSektrDk7ZTaoZvOzrRAviqQ7EvzMRgJ+G/YDfFhhyvCEcB1ffY8TOjcfYAkm1\nzId5U93pGRODaRYEW4LXnC2Em5vT2zKdwF4waZlOcho/gMZfNaaxgPAuUVhOhuy+fcl8dwdBDkGY\n2W/C86MwMIMaubDLDLxXtSf8nY2wFTxnexL2Sig7gEnNdcz8VoshOuwugP9BLQno2O0xkTe+WkRq\ndSipCoELtXzkowP3QsQn8J7De0QvMsPXBAqPlnCZhXLSpoOzuTMDiOe3MwFUAnJG5MDCR6e4CSEQ\nQqAoCoWFhRgZGZGXl4epqSlZWVlYWFiUPS/u3r1L1apVSUpKokaNGiQkJODg4MD169dxdnYmNjYW\nNzc3oqOjqV+/PpGRkTRp0oSIiIhHkxvqhar1zMjjwsi4uDjy8vIwNzcnPz8fc3NzCgoKqFSpEoWF\nhZiamlJUVISpqSnFxcWYmJhQXFyMsbExJSUlGBsbU1paiqGhIUKIstLAwABFUVAUBY1G80jwUbwm\nUH5X8Do3lOBma6UyFsf9kQ0VpEVHT0HRR+dyrPA75fVjPKJoGdaugtLmSpVEay55XKD+kUYkN0wi\numskrcLaYZ5m8ZcJu+fNm4evry8NGjT4x8/9aRd9OhbltEJqL9XV5jZltEhU5qHo8mwobgBbtmwh\nPz8fb2/vJ92Vp1r0C0IlJZJWXFxcjEajoaioCAMDAwoLCzE0NKSgoKAMP42NjcnLy8PExITc3FxM\nTU3Jzs6mUqVKZGdnY2ZmRmZmJubm5mRkZGBpaUlp6SMgYjwfGLkc+UTrhEwSla3ua/GwAx+qvOlF\nCJGhKMp+tdFEJBsKIcQviqKUKopiK4RIeUgzc5ExKf40N3pGRgarVq2ibt26BAcHExQUxNy5c1my\nZAnTp09nxYoVeHt7s3r1akaOHMnatWsZPHgwX331Fe+//z5bt27l3XffZefOnfTs2ZNvvvmG7t27\ns2/fPjw8PDhy5AidOnXi2LFjZdvdu3fnwIED9OrViz179tCnTx927dpV1t4HH3zAxo0bGTp0KGvX\nruXTTz9l9erVjB49mhUrVjB+/HhCQkLw8fFh56LNOI9xxu5nawZr0lifhLTYzAFmqx9/sH3ZjnMn\nfuHleq+RtTSThYSQwnjGAsHIqI7L1fJzZKKkHciIfDuBD5AxMvoAG4HBwLfAa8jgiMfsoGM3mLBl\nPIsLQjAZMoQvb6+DI7BkMsx0n877Hbfz0aVNrAHMJ3rB1WA2AcMGA1d/xvlOHXb+Zyfshe8XeNEt\nPxhy4K1f36LzGh2xAFFwc88eGD+eDd4hfHBlL0TB4Knwxu03ONryJG13K+h6L0f7wSjoLrH4BmA9\n2JrgRjWZ2vYC89ZDQse2FGzchuUMmNM0kSQqkbADvgDGocPGHxn6YPsxTu2AQDMvtgcG8973kNRJ\nx3GQHiavwbnBg/E5WoRj9epcIJiGyGTQga/rIBwJTNHIsJhxQHO5RN4Y6LqtF1VsqhNjeQErYD5Q\nLaOQSTUW88sE+KJFC1pHROCx25yf3zHi929/Z1TdSPnfr49mTXcgHyYEgCnhzBsAbee3xWbfKTgX\nTzLwo5sbP9l/z2/v/8ar215l4pe/MHN0DjOWX2Ddh2A8Dab6gtUULy4mxjN13NdYjIEFoz/ktOl2\nzkzPZxE5vDluJX2/hMCPYOVoV7yXX+P0O464fX0Qy88AO9i1Nx2vAOA3b+gAM9pD1mfjyZscwtEF\nY3D/dBntk8dhOGMJRf4K24EWfuNg3xJmt9OxsX193CI1nPXRMSMJzPt+zjteA3i3/XVqe9Sjso8O\nfGDkJ/K67t+yn2tvXsNjIrTSjuUT4It35bz9hBNUfd+EsSensqjVLLgNQwcO5LObN5kwYQJBQUF4\nenoSGhrKyJEjWbFiBcOHD2f16tVl998HH3zA+vXrGTBgAJs3b+a9995j27Zt9O7dm6+//poePXqw\nZ88e3nrrLQ4ePIiHhwfffvst3bp14+DBg/Ts2fO/7vNt27YxcOBANm/ezEcffcT69esZOXIkYWFh\neHt7s2rVKvz8/Fi2bBkBAQEsWbKE4OBgFi1axBdffIGbm9tDHnv/gzyjAfVVX60HiRBCPLcRBB41\nRkZFRREXF4ejoyPXr1/HycmJa9eu4ezszNWrV3F2dubKlSu4uroSGxuLq6srly9fpm7duly6dIl6\n9eoRHR1NvXr1uHjxIvXr1+fChQs0aNCA8+fP06hRIyIjI2nUqBGXLl2iUaNGxMTE0KBBAy5fvkyD\nBg2IjY3F3d2dK1euUK9ePa5evUq9evW4du0adevW5fr169StW5e4uDhcXV2Jj4/H1dWVGzdu8LXz\n1yQkJDBu4VAJdPZIeknNCuUdpEN3mlreQ9ozU5FO3clI5kQ6pNVMJUI5g1maGca/mHCuWQQlKcUY\n/G7I1duXMS4wpt3qzhx67xuKDxaj1FLYm7WXatWqce/evbLSzs6Odu3akZaWxnfffUfVqlVJTU0t\nK21tbUlLS8PGxoaMjAysra1JT0+/r9QvAlXcX6VKFTIyMqhSpcp/bWdkZFC5cmUyMzPLSisrqwdu\nZ2VlYWlpSVZWFlZWVmXb+kXq7OxsLCws/ms7JyfnofvNzc3Jzs7mhuMNsrOzaXi6oaTJFCFXiUuB\nfIivH39fPywsLO7btrS0JDMz80+3K56PlZUVGRkZf7qtH5c/265cuTLp6ellZcVxTU1NxdrampSU\nFKytrXF2dqZy5cqcPHkSGxsb7t27h62tbdki3Z07d8pKOzs7bt++TbVq1UhOTqZatWr3bVevXp1b\nt26Vlfb29iQlJZWVNWrU4ObNm9SsWZPExMSyslatWiQkJJSVDg4O3LhxA0dHR+Lj43F0dLxvu3bt\n2mX39Z/dz3Xq1Cm7n2NiYu67r/XlxYsXcXd3L7uvo6KiaNiwIefPny8rGzVqxO+//06TJk3KFiEv\nXrxI48aNiY6O/tP7X1/GxsZSv379svtfX167dg03NzeuXr2Km5sbcXFx1KlTh/j4eFxcXDA2NuYf\nlyeAkYqivAfMQr49viqEOKvud0a+Vert1OFCiNF/o8mWQoiXVaYGQohURVGMHnYQPDzaZFWgWAiR\nriaPO4xUQeoCNYUQMxVFqQd8J4So/YA2nIG9Qk06pyjKVqAVMF0Isb5CvcdCC9H/R1FREYaGhmUr\n8fqHjP4hrL+p9Ten/ia7evUqrq6uxMTE4O7uTlRUFI0aNeLcuXO89NJL/Prrr/Sy603arVTJLzsD\n1rVsSItLhZbg+lk9jF4zouhMIW0ud+Bu/G3aXO2Aa5Y3nYBDSCXsONKK9gPQGRkMpJNadgYOqIN4\nBpkBd4e6fzcyacQxQJk0juwFS0ju0IG12cfx7zyO1RFfM7p6O/Z/e5uRd4/ygRe8XqUTmlnf88MF\nYB4ywsi3sDUMFnd+jTeO/kw6Ug8NAkJuAOPAP68LMzIP83U4vNMFfK/UIfHqVd5EKp/hE6HvIthx\nEZgLvhtg7vuwY6tUNi2NjFj4QRHzzMcwNXIZkzqMYfvh/Xz6Uxzf1KpFyzG9Oeu7jFPXwcDPkJiN\nxfgDTpPHMCdhGT71xvDt/hP8PjgKtkKg64fsPnOG0t5WnIs7h/FsY/Im5oEXsBapYM1RB2gZ8hac\nC0yEtu3gPWB8F6TWfACZU+g8jO86huP7fqB9j3ac3PcDvU9HcsjBgQ8SE9mPjIU+pAcyM/oXwHgw\nWWfCkY0FfA5sXoqkUn4KrACmAGHwymutubk/nuTGSRgWGBK9qhi3MTDeYSwht5bKyDMH4acl0LID\neLTzIDM8nav1r5O+JoOi4EI6BziwPjGR2YAnoAWOjzGjw3EXDrx/AY5A3CmZKL0W8I2JCUsLCni/\nV3NcW7iSv+AILVxduWBkRMOubfh9TgifIN86b4/qQ/sVO9kzpzPdpx9lyi/AEpif2QuTb75hQgL0\nb2pNjekfke0dzOqVsH2E9L88B0y8Ap11nTk64ajsQB149UwbRm84zTVgam5umYU9KiqKJk2alFnY\nr1y5UgYCzs7OJCYm4ujoyO3bt7G3ty976dKDt/5lpKCgAFNTU0pKSsos7Y9D/nFKyC//REuqvPr4\naCGKogyh3BH7j/8pKlLlnwd5XBj5OGmTQghKSkpQFIXi4mIURblvJb7iinx+fn7ZSryxsXHZSnxO\nTk7Zirx+Jd7CwqJsRd4p3ElSSO4hc3nmIy30uUhLTyoyeEYB8oGiL9ORzt2pQDVotuo1RLVSLKOs\noKrgSoPLaCobUCm2EoZWhuQW5fLa/tf5/sOD5DXIYUfujvte0vUv55MnT2bUqFEYGxvf91L+oJdx\n/ba+vHnz5n/td3BwKHtp/+N2QkLCfS/vN27coHbt2g/cjo+Px8nJqewlX78dFxdXVjo7O//Xtp45\n8Ff7XVxc7jve2dmZXtt7yXG+C3v67SE+Ph5nZ+f7+vHHbScnpzJG1B+3K55P7dq1SUhI+NNt/bj8\n2bajo2MZDujHU7998+ZNHBwcyphYGzZswMTEhHbt2lGrVi1u3bpFzZo1uX37NjVq1CA5OZkaNWqU\n4cmdO3fKyurVq5cxufQ4k5KSUlY+SLmvqOTrlfg/Kvt65T0rK+s+5V2/nZ2djZWVFTk5OWXMsYqW\n9vz8fMzMzMos7npLe1FR0X2W9tLSUoyMjO6ztBsYSOfSP1raH5c8tRj5f8BHRVH0XjkrkbT3ispb\n2TP874rKtGiDpMi/rCiKHXBECPHyQ499iPLWBPiScte+r4QQC1TNMAxJ7CpUT+L4A9pwBvYIIZqq\n202RwRGHPgnl7XGJeZrMF5OryWFKm0CWnJpLbpUcWq+RPH37izWpkiijhS7fsQwFyRTJQuKUETLi\nJOq2nlGiD8pVhfLFsWJk3A2BVPstgDEHmrK3WyQhSz0JbRCK4UZDipsWgwZmF2lpO1FH5wJIMgGH\nYg2li0rZpIWBt2GJ9yDGDdqITUNbVjmn8OlkG1JnpaJbrMVgmo4rHhO51vE8SXlJRGVFgRkcD5Sx\nroedhcDmYKDm/vL3WsdeYMwF8DzmSejQUNgu/cGmfnqCSy1a0DAigh3BQzDRmOCUWwVfRx0vG7yO\nddpiAAAgAElEQVTGb+d/Zkcg9E1AAskB4CKs8INRUVDQGLYAHy1QB+oDWBqqZayLTmpiAAGyGJA6\njDWqX6F5lvrbTFncCoIasRDtBtuMjZn5cyE3msFKlWbZ31NHk6myfQD/VtLxzS4ri1H31LY2wYJx\n0hcPZABIkMr23oVdOdbkEFyDPaPke0f8Ii3WE3WMC4ZIL+jj50asQSxMAvQ54/TPVTsI8u2C947D\nxFpCv1kvU5BagNeSi8Qt1dJ2rI50YLvXAL7uv5mBPw6k1VmFcXM2stVVKvWr5mvx81lA6exSzs8B\nN6DmZBvWfZZKHDAGMFgCa8bB8JuyD7oBkNYwkBNeR3DPdcFEI2MsrGy5UiqjPsA+iBgCLe7CzA1a\n5nguoDStVE7kPaDzAn8fc0IW5jAMqdRdAgY8R/c6PAJg+iezob3ywuftUcnjwsjnDR+h3A+OKkgl\nTp8mwAj5eqQPUa9PD2CCVOjUxKcu59ywv1izzOcNIK7VNUwzTYlvdZXKiTbcbphEL5/3ybfK+0u/\nt6ioKFxdXTEzM3tEZ/tCHqekpaVRUlLywuftKZKnFiP/B3xUFOUY/4zy9gEys9crSBzpC/gJIbY9\n9NinBRCeS3AqrTAf1GTdAK3UZKL2F2uyy383ClLxSqOc2p+GVM70ua8EcoFSg8S4UqTiZoIMaKIP\nYFIVmRotE/gZyUx5ews4bHAifl88BsuQgGgHwQPkMWeXjKCaqMKcBB2nFkLbDPBfraW6j45OwP4Z\nWob767AogB0mkDhDyzmb2zgvbErVty+T1LgyczvoIB1i2sKA2c35deZZkoEam5GRVGoj2by14K3Z\nvTn4+m7Su8CGkSPp//nn7EGGW9NeQ3I/XaBkUHl6meYzGhM1K4pbGqhRAHtM4IK7O2/GxFAJaHQH\ndleD3rdgqOcY3FpI5dm3m/Rvm9UtiMMjtgMQPi0cgAVtZb61SVtPc1VN3F1HVcb2q8/87vPALUfS\n4k4GxBKNfBuzyYGAZVo6TNZxOERLi/E6LIHTn2nxa6hj2nUtK3pIxzvbNTZcDohlvrs7U3fHsKQB\njNsGwf3WYjLpIvH7qzDn4jQ+CR5CUl4SR+4cYcdiuN6mDZM8T3NoAHSNg5lfa5n9oY45VSGkqg33\ndqfymVcLxkREcBr5zqMPyGYHDF7Ylc0+h/hqjpZJ03Sc1MAbB4DWMHOdlpoTdBgAvywZgc+4lQxe\n1Z4BJxx4ZeNGXvdHmnobygsT4w5DVrUnPOMErfNbM2V6OI2AumpgEoBIdxg4ozHXvK6TG5fDoeZw\ncqmWud10oIGzzrLey8/ZfQ6PAJjO/hMtqdL8iYRCrgZMRs4gfbBxIYTo9Dj78bzI84iPAEq4Oi1t\nkfhQTLkjdwES4OyQoJiv7i8Gm7u2VFYXP/XKW5VEG5IbJgEy91u8GrQEoIt/L0wzKxG2femf9qN/\n//4EBARQt27dR3SmL+RxyqpVq0hPT2fy5MlPuisvRJWnFiP/B3x8gPIWBcQiY7b6CSFOPbCB+9tq\ngFxjBzgqhIj+O8c9Pl7Rv1CERnUELlWwuWnLtC2DmOwjwUO/YqhBKmapyItRjFTc9Mu4eqawPq50\nnrrPDKmk2SFf2jPVdnYDN9q0we70ad4FbH4BYuCTffHMB0iBRcc60ujYMc46O9M9Lo5+41ZifROm\n79DSFB2xlcHtqI5cwCwIdGsPEAa4/OJG3ymxZPvrsPgO5mcu59PPPycTyfHZsmgg99jE2f5naaNp\nTfgr4ei6QXTwEAZ7rZNKz3QwzaoEp6HKWYDPGeupnuBJpA9aQ9D01GDQpxTOga4VrPSPoke+DesD\nP4EsHW5AYUwMcUDfzcBR6H0X4u0AlhG9Aw618pMmSaBKojVVjVWNLEYWJW+3AyDV8TTrWYvXgaHE\nV4V5HhPpnrUIAJff3SgGRreNpYYamDKglS0BteHNFKkYmk93Yv2CPuy028ndITr80iAwVQcn4epg\nOejKNJhm3xu26hg3C/L6gWvkdG6FJ8J4mP8hEL6OvM5Q6Tvo+xbs9jgNb0PXHUAB2CeV4r9OS+kC\ngfn1rVgfsmXyrggmGyGTq+UCOXDoQ2jnY46XyUvYZxxiyNrbBCzU0g4dmEOuNRSioxjpU+k4biXu\nxRpmGZ5g3E9wZSPMtNQy+5yONW1heIl04GmaX5/w4hOEO4bTK11OOJt5NqSSCtflPIyqFAWJcKu5\nVNy3DtCVRf5UnsOXzxfyQNmI9FJ9GxiBJCvf/asDXsi/T0RrIRU4ffJnfZoAfYhlayToWSFBL1eW\n+Vb55DdM4qUdLTDNrES6QyrHvA/hctqN6y1jMcsyL1PcTDIrca5vRJl17s/Ez8+PWrVqPboTfSGP\nVd577z2Ki4sfXvGFvJA/iKIo31IWyu4+8RVC7H3AYUmAoxAiTVGU5sBuRVEaCSGyHlBf/1+hwGYh\nxJ+vKv2V6COyPemP7MrzKzZxtsImzlawD/HWjN6i9ar2ohBEHogpDQNFGogbIK6CuALiAohfQJwF\nEQHiPIhoEDEgzqm/J4CIBXFKPS4exE0QW0EkgfgRRICtrRgLYjIIbiB8lvuIAFtbwTr5f1xBLO7Z\nU5CBWAmiAARBiDAQDQ40FeQiCEAsBFEj0kHMdXYWJCA0xRrBd4hDIPhK1olFlnPnawXbEEQiOKnW\nyUW0ntNasL+8zvcgKEFwF8EFhOdST/ElCCbL/7efYi966HoIomU/g0Dkg+A0gl8QW0BEgnA55SaK\nQRxX+78SBHfkJxz54SyCIvlxOeUmXE65Cc+lnsJzqaf4CXlN3prRW8y3Wi7mWy0XwSCCQZ7HNgTT\nESM9Jgp2I/wtLUWpOrZMQLBD/eyXH5dTbvLcbyI+a9FCLPXViiV+WnEB2W+my2v7C7KtGBA2k22E\nzWQbUQxi5mKtaB/YXkSAYBdiaN8xYgeIwyBIR3wFgloI9iGC+/YV8SDWgzDyNhL4I8hG7FfHap3+\nHGYhMkEs6thREIYoUucLW9Xr86ucWyM9JorZxsZiynKt4AZilkOQmOUQJIrVucJ+BAVyLs2fqxVk\ny/lIqbzeoercfMdrgNiGOgcin+97Wwgh1OfXP/Ys5Nw/+PkH+/Z/OIezahlZYV/E4+7H8/J53vFR\nCCG4IHGApeqz5q76HE9TPxkIUsuf42ap5sLllJt4ectrglKJSTZxtsIs1bzse41IB4m7JfIZpcfh\nP0rfvn3F1atXn8BZv5BHIatXrxbz5s170t14IRXkqcHI1QhGVPj8D/1ChpVo/r/+XqHeEKRD0DVg\nIdDi7/bhBW3yMcrAjz8GYPO7YaS/LamP5sgAWvr8bSCpgoWUB3sypDw9AEjLmynSNluI5CSZIq12\n99TfrZE5uVqeBm7B8T7QYQoy61AxFP1Hzhb3fZD+NlQJg9xhYBYAnlU8aTE2lCshWuZU0xExAFwA\nW2+gqerjlA0dP+/Khz6HGLYSZmdrGThRR03A/BySBmMIsTWgBmBxDi40g71ztUypo2PRJS0Tp+oo\nMQZ9Ks2sYcPwXBwGv0JJJzBIByLh5BvSR0ufS1sfRX+/elwvwKgEGhxuSrMdMsLq5m5hcBGai+YA\nnJ14lrlLtfddD19baTnb9IncdgM2tvIj+JsAYquD2x7wvyyPmdFa1l3zOgyPkvWTG8vSvgDyTEC/\ndJKu+spV/TaaCev3EF4Fzo4fzxi/ENbYQQeg7lGgNuS7Qestr2F/sSar/HfjeAdYDtmzYE3fvnh9\nugOn406M2KQwPi6OIqSn7L3GjTEc0Y3ddQ4RXTtS/vENuNdNmjvGRAPnJTUzc+ElZnSX/S9qAEYL\nYGmall5zdZxABnjzzoFD5nDGIYhZE7zl9bOGZd+PRxMSwqj1EDQYcj/T4mepo/md5pztclauN3WE\n6eu1zCnR8Y039MqB5XO0LDbcRWy/WEST5/u+hkdACYn8J1pSpekToU2eETJM/hFgCXKmbBdC1Hmc\n/Xhe5N+Aj1Ah55hAPoNMud8XTqgfI6hxwUGlTEra5O99I3A6U4f4VjLGvWlmJXKr5PDWrN4c9N1d\n5kwuKv33OJ4/fx43NzdMTR9snXshz46kpaVRXFyMnZ3dk+7KC1HlqcXI/wEfVdqkjxDiV3W7KpAm\nhChRFMUVySNrLIRI/5vt2SIDyg8AagshHsrffqG8PWYRFXLopCAZIhoka8QEqXilIHFGg2SMmCAV\nOksk7d8YySqpjMxjDZI+aa/WN0IqfvbIjK9ZyCRDu4Jg6Okx1N+xjHHAIltbtCkp/CewPSfuncCl\njxun2sZSaw+E7h7GW2Fh1D2NjDBxA+gBHIGgqeCdDZssYOxkG1KbpEIJZAyBtaylH0NJQAbvqITM\nPrt/2DA2rwnjggYCFw1k8MRNXOzSBe+vDhNdTZ5z23woNAXj/bCtO/QLhmCvtcyfMpXk2cnsUrmj\necD+RQN5e+Im2iKjKBrcAPbAy1VfA+C3zjLH4X712f0fYOlsqVRNrCYVmZhR4B4N76wcAMCy4M3U\n3CXrF6tJrQ2XQOD8mkzbJ30pdB9Jf9SPz5/n88+0+KXp+GaerNsDGbzy5DwPAI68cQSAIb8MAaCt\n1zp+X+qJXb50ip9hLPtxcxwsaOVH8CIZXWWbmptOnz1s/6BBjBu8kfQuUOVXuPqKPJ8woCkycqeF\nOhfG7JODvkNlUE/1cyP2rViOvy7dRZodRs02BbfcJEk7AbgbqEWbouOd0gF87b0ZDGB+g+WMyhxN\nZX0Qm3UbYQbsmwdvr4DAOTWZti6JDR4QHaolsIGOl+9JRfRK6QUALs+5zL9BnlpggielvPVABst1\nBEKRxLdZQog9j7Mfz4v8W/ARQIlXp6oBEvRAUibzkKBogqRs37Il3SGNUk0pCHAJd6NKojXpDmlc\nbyM57jY3bMm3yqd98Juc8PqW3JIcRNX/Hsc+ffqwaNEinJ2dH/n5vZBHL2FhYSQnJ+Pr6/uku/JC\nVHlqMfL/gI+KoryDXIysirSf/CaEeEtRlD7IKMNFSLvMDCHE/ge39F/ttkQGLukNXBRC9HjoMU8L\nIPybwAmkEpeAVLT0NP9S9Xs6UkHLRiptxWq9EsqTdhsgX9gz1N8qq7/foNxVoJ43pAdB8KSxzGq8\nFM5BxGL5mw1gHQN8B/55Wmr66Bh+B6kdWkOBpbT7XvHVMvZDHaIBzJuvxbe+DkwhvitsqFmTKUlJ\nGEwHXoHg3jL5xYWOHTE+doyBSFesYyFavMbrWNexIxM7HyPFD2xLZIcDjWHaLuAWnB8DTZYAH8HK\nyrKfB4KH8FJadXLMwa+WTr4KHpVjmDIbbPMhwRTOA91WIHMFAUW9ZOk4RVKXk2cly6RtQNwscD4O\nXlP8AKiWvAGAyXFxGG6EwkHSB3GHr5axXaSCtfygloPWF2li3pC5jXUMXToGAPfmFrTx1dECcJ1i\nT7JFMil+sNTYmJkhhdAIbGrbssE5hagW0io4OSyC75vC68jMDJ8grZMdA9szadoJ3l4KQXu7sL1P\nPr/3jSCXHM7ZQLOboFunReicmBI2mqy+YHkS5p7W4uutg++AKuB2wI3AgFheB3rMbs7ZN89CIiyJ\n1GIVoKM/YDoVMIHYWXDQT0ubAB1NgYlLPQm1D4V0CD09DM/+YeAC99RUZnsATx9zmtZrQXjGCagJ\nA5MHsumuGsmtqzq/2/977mV4BMAU9U+0pErjF9Emn3X5t+FjmQJXA0kv0QcyMaQcLE3BLN2c3Co5\n2NyQilz1izW53TCJ6hdrcqtxIppSDaXFpWgMNZSmlkrLW5UXlrfnXdLT0ykqKnpheXuK5KnFyCeI\nj4qifAa8gyTCbQG+/tvWuqcFEP5t4ARwQ7XCmSKtJ93V/YWUUyf1AUr0rrf6oCYKEsNMkVEAqqhl\nLaQidwe5BFDvDoyqBp/PUaj/ShOiTSJZ0VmGsu/8DdAQUt3A5rBs5FxLaHYD5tWGqQnABsifCqb5\nsMEURviY41Hck9anYpk8OoIVw2DUOml1q+wNwTf64vXZDi64QqPvgByo4eJAhkMan9vkEBOqZYqn\nDnPg8ylaRr+nY8pPWuaO1qH5DqmRGgEXYdaH4Kye08kQLXNcpCLFbRi5fSIZDmlsdg+Tg6UGJqGh\nLAasGQbAafujaLoZk7cvi+QeyQAcUi1bXVWeY2tjmb5hUFwrAAL7b2R700QA3ijWUM2vGuO/rgzA\nttmyHLhExvqZ1Oc0AEUTZVu/Ay0iYVZTGA9Y/wqhr4AYNIg3N26kwWmYf1xLV18dzbYhyWTN4GwH\naB4NLilunGkbS/WfkLQhe1gyXwsBOlIWa5k9Ssf3pjDAxgbfT4bRQreQukD1dCSfsrYcH9pRzisd\nB6yAZcnjGdMihOwPweIADA0bg1vEfny/jCO/vbTCxSBZSR8kyAlU5Cotp+8ekBMvryesATx9YN9C\niOnYkek7f2aG8wKmLBsNjv8+xQ0eATBd+CdaUqXRY83zphVC6B6QrFuI5zhJ96OUfyM+AiiFctoG\nm6zFK3uofNbrqSjGoFE0lCqloICmVIPTmTpcbxNbptRRCDUuO3CrUaIEzVSokeRAUpOE+/7nnXfe\nISQkhNq1/zQV3wt5xmTdunUkJibi5+f3pLvyQlR5ajHyMeLjH0VRlBHATiHEvYdW/uOxTwsg/FvB\nKbUCjbLtgaaEd4tEg7SoFVO+4FhKGdWfXCR+6fO9pSJtuPlqO78joz9eBH4J1FJpmo5XgUZI/7pa\ngPkswB2m3dNSKQ/6TdZR7wqcqwvNTkBwe3gDaF4ABIFmkoYdhqVcadGC7/rY8MbCX/G7mSI7uh/o\nBMHOUNSmDQ1Pn6b7EVjlAU2A1gmweI2WwbN1hLVpg8vp00z0dSLeLJ6gH7rgPfcwya+AfSQUNYW5\ni7RY7PuZiaHHONtYKjW7G0DvPYAVdIzoylGfQxwEVLczrIDQhfJcACalSkVvhMsIAL6/8z0/BEgq\njf2Pss5CVYnz0UcT9pfFKVPJ9wrwMSd0YQ4AwzZD2ABItLSkTlYWg1ZA+Cg4MVfLq746Lg6TyqLn\nR2EMDR3D2n7LZGNn1OscBDZZMOSLIaxruA5/D5mKrsFmoDXM36RlSjVdGaWRY7KImyMtkGtnaPGa\nqMNJ54Sxxpg7/7lLxrV0gg/05aMdO5gQPISWN+Uq42qLo5ztcZaA5uAXDIFeMO0mpNeCpba2+K1M\nYcVPkzBZsIBhhTDPGKbuggUXtEzy1RFqAJ4JMPLjiXzechHfzIFpMxozyT8Kc6DvAmAoLKwKw4Eq\nS5CdBMQH/757GJ5iYILHrbz1EELsVZN1/1GEeM6SdD8u+bfiI4CSqSpwldfiFTtUgp2R+gG5oqmo\nVrjKOZhlmGOaaUqqYwqUQIPvmpJvlcf1l2PlMdkgrO8fy8jISNzd3TExMeGFPPuSnp5OYWEh1apV\ne3jlF/JY5KnFyCeovP3/yAvl7SmRVEUpo1B+B7SkPEBJMeV+2vlIaxuU+8pVR/qMmSGtccVIduE+\nYNnCrhy7c0hatFohtb7zsGEsfLANPO94Yq4xwyIb/Bx1eMR5cKTTEbADr4F+vHomgBvu7iR5euA5\nNpR6C8CzkideY0Px0vVgb/u9ND7QmKgPo8r4mwu6t+FmaSeC/QOgLYSbwclALQOn6XCMBCxgbidn\nXoqLowXwxXwtM+8E8W1QERfGj2eHY4zs89vAa5BnCpV+goUt4WWgcwyscIeYVn4MOhOAFTAveAgA\nDXKqA6D9VCpvQzYOYV3iOngTepyTNOIgrYz26lYkx3H2EukL9+5EeYzKEGSNr9w/driOSFWp+mjL\nawyO7kiN2TqsgG5qRo78BmC6Dhgkt82yzAHI3SCVvyzV3mAIuEY6cEm17P0M/FyzJksPabhlkMjK\nRnCm7xga7lhG9mItpp/vJntsbwJb6cAF7Bfa4zM/mcXAdqRV1hipwLsATqeBy/DOuQG0i07lk8OH\n8VjVnvCkEwy4MYzN48IIbwat5wEfw/lqcEheEqyRSnC3SFgwsg1vnD5Ny0NAIiw7P54x40NY5SqN\nm3pPtmFLZCk8/733LjwCYPpbmV7+pjR4NsHphZTLvx0flUylPOnnJaSzrzGUJUk1RP6uUeuo9BSb\nJFtSa0klTp/cW2OqocSg5L72e/XqxfLly1+kC3hOZP369cTFxTFjxown3ZUXospTi5HPKD6+UN6e\nIslSrXBZSLeu1ylPxKdP3p2LxCD9S3uaum1HeWRKkAFN9P7dB4AuwMmOHRl57BjmJ6B1THu6+Pdi\n1jpvSd2rC5xAvr3XkeWIiBEMH7eSLpNtuPtZKrWm2DM97332VY7nYNvdHPWAs8Cka0iKXwbMrmvM\nzFmFLPGVlr7O26C4HxgWQYSRpGseQyoA3fzciM2PJXshWOTAdXNYb2zMq4WFdLuDVAYLIbj6WrxK\nhjJfp8XsQiLjWm9EN1aep6d6vmYqC8bM3Jzcqzl4eUq6RMczMghIryjYqZrpmqjH1FMtbZTClGpa\n7EfXB/5fe/cen3P5P3D8dc1pmeOQcyEiIS3K6ZdUTMi55FBp30JCw+ae8yHDbXM+q5bKsSSHKIcU\nydkIRaGGORXD2Jx3/f64rtm+fbHRvd331vv5eNyPz+77/lyfXfdp773v6/q8Lwhc/AaHmsMue/eJ\nLl0A6DB9Ovm2wajVDi5PLcyQN3vRLnc75v5nLnwCoz+pRh/ndvgJxvaCXmFwJNgk1zMGOPBKgLoj\nnGwBLg5yUH+Yk+/ffZeHJ0yg/mcw7IiDQR2d3CgIWdYBe2BLNygPDJzcnd7dzEy0UpthXQ0z6NkA\nCKkxgFGbh/MX0GBFFf7TaDdBK2Bkz/KoE++ytu9inlGPky3EyYrwhnx34xtz0PVAIPgmFCDm1zMs\n8IdjwI1atci1cSOvAT5r4eNn4XU7xbTu+brM7b+O4j3tk1NaEjdIg8D0qyuOZJVP15G35OvgJP7Z\nunlda900PfqR2Uh8NNRZBTlh1P1TCTnZNakCZRbMO+26SdhyxN7HifLReGXxollQG74cO88ExSyY\nIJobdPak5/Onn36iQoUKMvKWScjIm+fx2BiZjvHRlSR580DHbRJ3GTMj0R8Tl7KTlJBdwiRtuUma\nPZIL8wVjrP05F2ZE7gfg1Towa4NJ8hpPA+Lh597w6DCol7Mh3z3/DVuqQscVVdhXabfJymLgWAAU\nj4PdPhBRYwC+P09g0PwLzGoMHScDr0JCXpMgVsJ84ZnT/u48M+B8ZxgwuTsNu02i8TUoMrAIG0ad\n5FvMDMGf+YjavMH6oQ56V3bCTljwnjlPfXeXLsRv385D27ezMCCAeY4Iyn1qxsUOPHkAfoahg7Mz\nf3EF9p0xpYd+fdU8F+U3w9oaZuonQNbl8GNjaBDkQ9zzZjTsA1tco57dZ4Pdft/aFCNpvdBMfUz8\nLvY+uy0fB7N9oMMc4BFMwmun8ox4tBRxvdtQuruTT0Prsq7GOpzPgR9QDcg/HGgEK/1gn30dHwWa\n/gr8AcMagq9NFotOn04rm8T5HvGllE8pIutGcuoZKF8kH6tOnmPbu+/yTuUJ+D5fAICYn86wvpl5\nbzzjBHrBYvsGGTCoEntz74V2MPm9LlSdPp06S2GX/Xe66ho4+DyUTZxqeQB+LAe1z2LeD1sgtp/5\n/wcgp3xeb/LYwATpnbw9Y39sgSl4Oxvz56stcEprHZge/chsJD4mUVfsWzk7jPf6iMBrb5hz3xJM\n1UkwlShjSp6hywu9mbliHAleCaZ4iU4wFcHygs6W9Hw2adKE999/n6JFi6b/AxIuN3v2bA4ePMiQ\nIUPc3RVheWyMdEPyppTyvdP9WuuYFI/hKQFBgtN/O2gTuMXvOQh+ysnuBiZ5yIpJ6i5iKkYmLi2Q\nG1Pg5H57X07Mmm8VgI2YBO+lfg9yuPZhjjQ2o1/j5z/JzhpbWVIKmkXA6QAIrxjKqBH94RkIbDiA\n8X2Gm4zs/yCqKJQ6Da0+akVA8BdsnOQg3zkI7uxk7f3wbH/4IBQCAK/BQEUIbQNnpwYR0jWclcCY\noX5Uz1+dJ3rM4DgwZBUMbZKdS2UHM2pgf6gPKwrC3mrVeH77do4AjwE7gZYLocvM3ry8agwbR5sp\njQNam6mOC+y0xieAspshMNCMvL1gR95216pF8EemuMjB8mbfQ/a5PgrE+vvjv3IlAEtGOXggxEmH\nHXYHuzLViKqlAEjo2gaAGzaLaWinW7491Kwp99Jckxz2XW3+ugyfb/papY/Zr+k+WP2IyYfA5H9g\nEjmANrvtjb/Cb5VgUZ6pTNgwgjFVojnVtCk9KyxlzGjoPQXmvmOS+fyY8xl9MP81tw5sy5fPz2Nk\n7/JkLVCA4E4b2dcRHjkGB4ub98yowLbU+ekkL333HQ98ipkL2Q7CHoGf7TTUWa1mMe4DBz37OE1B\nFCCulyRuf+fywHTAFUeyyrklOO3QWj+R0m0idSQ+/i+V+JY+ZjZeRb1IuJGAVxYzd/KpiP9j03/W\n8cLQ5nzdfzEoKLq/BCeKRVNvVkO+6/IN2sc8p7t27aJixYpkz57dHQ9FuNj58+e5cuWKjLx5EI+N\nke6Jj1Hc/Krpf2mtS6d4DE8JCBKcbu0Xm8Q9ugoONzB51AV7X+LC3pcwsxaz2dsSMCNwiYt8LwW2\nANWBoD/Beb8ZgQsYC5SHPxrDbqDFdS/qjm/Ay6cqUzgsjJZ2zYL4nDCTj9g6ZjWTe8/ldeeLHLt8\njNf2lCHwtYXMbAqdTgE7AC/QDUEdgO4ru3M6Mo55wRG8uPRFlj2/DH6B5a9C43XAgxC0IojwGuFs\n94PeoXVZV3MdL257kdGOZSwNdeDI62RUrIN1l39l1rDFFAI2YUayYjCjgnhDaMli9D1+HFuwng5b\n4OxTUDzGnns2Iw5K2Dsvms2kbabIyOX9+wFuJnc3i4bYaZUj34O+dl07MNMgAfa0bg1AYP2FkAtG\nvT0VgJC+XU0Hd8GwLA4G1XIycYWDHjWddD7UmbAeJgtqPbIBS/quYgZwo149en/2HccKwZ3nyg0A\nACAASURBVFygF5BlAdAIDueG10JNRcyv+6/jQ2BUoULU7lmPz979DHbChjrmPQDwyAngE8yyCQ0x\nSdkDQFaIKwrVVlTh1PfR9Bgdw5B5mEXjLsGQB8woL/Z9UxkocAxCljjI3dVJ/7Gge8pn9FZcHpgO\nuuJIVlm3BKd9QBOt9SF7vQywXGv9yJ1biluR+HhrPmdz3fw5Pl/czYm6Xgle5IvOb6ZPPhJN0X0m\naSt6vAQnHowGDTkTTEVKrTSNGjVi1qxZ8s9+JjF37lz279/PsGHDUt5ZpAuPjZFuiI+uIMlbBhCV\nrCKlF2Z07QBwEDNVMR4zzTB5Vco8mBG605hpbjcwI3AX+zmoP8LJg4D3UfNt5YObH2JtnQOU/gpi\nmpjkqNuGcqypc4AHgGyfwILXoM0u4Gv4sa8Z8XsYyNsXxo6Eq3mmErKoKz8+D7UPYBKGh+GFT5tz\nrsRZNh1dR1h2By0HOlni788lO8rV/1vM0Nc5uBIIQZO781A3P5rzBgClRsCY1fXoXfU7Ro4zjw+g\nvz1Z9ar9VzBxFO2R8+Z3D2kxFoD20b0AM8r1DDBxkoPA7mYErNBZ0+ayrZQ4nY8A0INNMhc31MnP\nAQG8HhEBmORobaiDrGu2Ej7hAL9XiWbcKAfBIeZ42U7A+GkOmg0z10sPge1DoO2AclTJW4XRwV9Q\nPaoAA3vURi1twZLwBTQI+ob6wMeTu/NKt0mUASZMdTDqIXOM5f7QvFc2rgVeg1VANRj6ZHYGj73K\nrG7m+Ugcfz+KKVQTxUesC1zFQw8X59Bvx/iy+TxaLG7Lly/Mgydg3CQzEsjOfbxXYQMxzWJ4YWVz\nvn56MaW9y7GqzgEKA3mCoFLOSrQdZhZU6Sefz9vy2MAE7kreGgIzgT/sTaWATlrrlenZj8xC4uOd\nqevJ3t4xUPpAOS7nucT5Emd5bGE1omoc4kT5aDM9xQu4D9q+ab68mzc1gp37dsrIWyZy/vx5Ll++\nTOHChVPeWaQLj42Rbk7elFL5MXXybi4yqbVen2I7TwkIEpxSFqUU8fbnMpjlvGLsz2eBroOaM3/Y\nYq5ipleex4yglB8JoX0hCCi1uwRFfinGhFe2UhIoPQZoB4wBukFoKXOO16lQB47HnNQ8XpdNL68z\n2VokzK8Dr4wEXoNtxU0iWWN3CWZVieYcZvrm2/0e5HDgYZgCvm8UYPj0N0nwgm5vO01HY2F9Hdju\n70/20qXpFj6dsAa18N+48eY5fn5rYeJaB+r4X7wcEcE0+7gLBATgGxFBA6DQUSA/fJzLLJnQbAac\nMisD8DXQDG5+vqvbqojLe0DjMebnS3ZttumDTTKTc6hJmK7Zc852nDbzIj8KnwIrYYY9dmdbrCOo\nXBAAc+rM58SCaKaFwoNA5GgHAwKchBaE7YFtGTp+HicwCXVNJ1x3QNYNmDOC7GBf53OdKTt/D471\nmzmUNYHSEVDzel1e+sKbiitXsh34D1B0DhxsDy8CHwNVgTHly3Mq/0ssf34Bb8y+Rr+1UdRcU5d5\nndZRaimU21qO/sMPYGeL8jgQEeLguVHOm+evlf0Gc4Lgp/Bz56T3GIC3fC5T5PLA9LsrjmSVcU9w\nUkp5Y2Zua2C/1vpKCk3EbUh8TFliApfzgg/x1+JgMfCWWULAO9abmCJnTEDMltSmbbcA5n74IQ0b\nNmT27NkULFjQLX0XrjV//nz27NlDaGiou7siLI+NkW6KjwBKqbcwK/GWxJwdVAPYpLV+NsW2nhIQ\nJDil3i9KUQyIBiqvgvMNTCGt+zBx6TJmymQ2u90EtFwE7IVNg8z0yUuYUblFQx2UHuyk5SwIig8i\n/PdwGAAn80FEqVL0mxzFoSZm0e+aC8A5vDJv7dlDDmAiZi3oOvswUxITgJXw88vw6FrAB+Y8ZQqC\nfAMEnMasRl4ZXlz+Io1OV+DtUmG0u9yOPr3nUnU3jF/oIPBZJyefgSJTgNfNYz6TC2aMctAvi12o\n+zHAG2JtRZI8C8x2aLRJxAaXsPvlBXJC/NOQcy9cqwTZ7OLVujGojYBd9+1SsNne9719oiNB9wIV\nYa+3hMe/eZKdWbfCYRi7yp9e81fCJOif38Gih74GIH7DeRwJr9C1j5OLvpBrOPjGmvGx6NHmPNQP\n7CF7mIFBDo2Fh0KAWrCgqVmwPSum2Ez9xMqOFeCvzlAoCsaVgqs1azJ+xlHGVIkmp93lItDhA4h4\nEwIuwge54E0nZmj2YThew7wvCvUCHoATgWYa7sMbMZVTgCNmHXJKyucx1VwemKJccSSrlNuSt8qY\nwrLe2Pn9WutP0rsfmYHEx9RLnEoZ7xUHC4AOmD+m1zEx6grJvuMG7aPZuXMnlSpVIlu2bP9zPJHx\nyMib5/HYGFnKrcnbXsy/5Ju01lWVUhWAkVrrFim29ZSAIMHp7pyzUynPY85zS0zW7ExAvDEjPTHA\nIkyBCgeQdxicGmSmAIZmz87Aq1fxWghbWpvYVnuz3flR4DdY3gAGzH+SmN2nOKwPM/lsFx6fPp3a\nG2D4Rgc+cdCzlpNYfzPqpnoCz4HfDj+OXzpO6TLl6dZpHX+MdjAgzknYUPO7Pw6tSyNq4PB1Mu7r\nplRcupRiwMJxDiKv/kJnxzKexSRc5AUKwOmcUPATWPyaSQjznsaczAdm1GgPZi4nmOodwCK7PEBL\nOwT3WVk4XKsWrTdupHTidHibQPmN8eNEiz9ZXyWaZf7+bG9gziKb23CuqVB2A848DQttsxcwjzn/\nPhj2ZG4GbbpArP19Iyqab/xGre9vbjhjNrvKJ1WvnNe+PTcuXGB8pZ/oPFfRb00UTIWxP/vTauVK\nvrH7db4Mp7zN+n9nBjg4O3ocg0tfpe+rgcxqupAu1f5k/uIKtG+0m0uTHNw35AOanjnDdsx5jZ2z\ndmZG5xkwGWJ7Q54bsCgLtLwC9MWsmXQFttgRt6JI4na3PDYwgVuCk1JqCFAX85dkOebjskFr3To9\n+5FZSHy8e+q8fcsn5mPXSFoI1cdc1znNc9qgQQPmz5+Pr+8di8CJDOKzzz5j165djBgxwt1dEZbH\nxshSbk3etmutqymldgE1tNaXlVK/aK0rpthYa+0RF9MVcbei4OZl8DiHjgG9B/Rl0GdAnwS9E/QL\n/V/Qu0A3GNlAnwfNFnSc3Y/BZhthj8FmdM33auoDoA+BHg+6bmhdTTyanmh+N5fR1arpj0F3HN9R\nR4DmqD3eNfTI8uU1v6NDpjr0FMz1SQEBmnj0sHCHngmaGejhBQpo5qGHZs+uj4BuFdZKfwL6OmiG\noFeDXgzmd+8zt4dMdegzoNmAPgd6ImgS7GW5vbxvL0fR3Sd316NGmMd1JPF4p81lBmjWoT/GXFhg\nfkfihQvo8YMcOrDGAB1YY4Ae17SpHte0qY4FHQt6mr0QYy6+fXy1bx9fPXCCQ88FXXNmXT25n0Mz\nHF1pUCX9DehpwcGafeifQY8a4TDPSySaCHP5C3NZCZrL6Kugx/r7m8c3zDzuroM7a3ajWWjazLBt\npgUH69mgT2Cer7P2MUzu0kVPbN9eR4LGiR4JmjhzuWzfB1vkM3jP7N8vl/0t5IgLLy7s2108hr2Y\nf5V/stcLA2vSux+Z5SLx8Z/jHOZyysQFEpKe08jISH3t2jU39k640vnz5/XJkyfd3Q2RjMfGSDfE\nx2SP40tMsfAhmIlWS4EVqWkrI2+ZxGE7Eqcws0JKYgaf8gNTMWu/PQfUAiZj1hz7yd+fXj1WMrRF\ndgZvukrCE6bA4pD3IeotU6ywR4PevLdqDIWuYebXLQa/o370GhxJh56YYb9iMPdtM12zKTC8xgBm\nrhhHofCCHH7lsDkBrTJmeuINoAiMuOygX3tzDpxXRS9GZk2gNmY6ZynMqGEBIOtZCGtci+AGG/lq\nCDQ5D4wC3oJ+KxxMb/IBUaXO4P9eTQA2tdxkqrnstE9MYglGOyUwcbpMXG14H9hlS+K/FDgLgMaJ\nX9R1MJv5D5jtK2vt7VFwJcCMgjUOgynB8M5eWG1H3Op/a37nxKrmeg6g8yKY2BJ6JK7Z8Adsehlq\nHjM/cxrYBgtDofVSWN0U6q+Exf5m6GJCibH0tIVX8kZByAoHK7o6IaQKWe/LytUbV9lbZS+XWsN7\nkx306+bkPFD8W0yVSeBqORhdoACvnDmTOEv05mLlFYEc8tn7R1z+reIRVxzJesAtI2/btNbVlVI7\ngGcxf4L2a63Lp9BU3ILER9dRf9qPQv7EG+BZ/2dZtGgRefPmdVu/hOssXLiQbdu24XQ63d0VYXls\njHRDfLwVu0ZqHuAbrfXVFPf3lIAgwck1jtgk7iwwe2oQzq7hNH6zGcEfLOExTMLSNwHWe5l/2ldi\nTkbxxRSIDBwLPAk8CuH5IWg8dKQjs3xnQXtMlYw9cHycWUsu31cwsolZCq0qsAtTKCRHL7gyFnLs\ngFlPwB/jHAwt6aTmvppsKrKJKW/BO5dhrTdEAQE7MBnRY/Dg+gf5dcRhfgG2BAcTEBbGUcxC4D3W\nQuKHNryj2Ta3j71sf8ypn9mhwfQGfNB3FVMrhlLll/40BHznYP6N3ApFS5t1A05kiWb5o9D4L3OM\nq4XM1qeXmWtzbfg1AKb0fdc8r8VN9pflw8UAFPrVrOX25ygH/bo70T6gTsGQwjDkGFwvDnOA18cA\n9W1HLwCbMQuyAc4y4LgBj3/+JANe2cp9mPMZ4wc5CKxhg89PsK0vVD8Avu/78uq4C7x37RpZgZzb\noGiOEpz4Kprj/aDYV3CyiTmv7nWg5AGYVQ462vpF05aZk/ueCgvjcfnMuYTLA9NRVxzJKumW5G0q\n0B9oA/TGnJa7U2v9Rnr2I7OQ+Jg21DWFzqaJjIykSpUqZM2a1d1dEi4QGxtLfHw8RYoUcXdXhOWx\nMdI98TGP1jr2dot1a1mk+9/rJ5vElQYGYkazXsfkXr2OwMcPmPu+x1Sh/Ap4+Rp0adyb6fPHmEwu\nC4zpU4+JNX9n84jDFL0Mw7xhUARQFoiEXYFQdR+wGOL6mmSw5WLY0xwqL4XtTWFF7twMmnkBcsLZ\nZpA/DOYGQ7spmBGueOAvuFEFtgNP/QgtPjel7b/3h2cWwqiAqYT82ZXF3tysptlyPYx/+iMCeIM8\nazDJHzDthklOsoSF8QqmiMfoGmbR7vFOs2h30fwmefu9SjQAzUY2AOC5hMcBWMFmAHr1XwdA4IZy\nAPyx9ACXR5sRwvy74PH9TzLqla2cBV5ZChFN4bepDr46uZyNw/aSZxFM2xRMy7AwCtvzCQ83Nv2c\nX7ky37d4iPBhi6ke48Ns3zjW237+3+bhzHK+SD/HMrYNcNB1uJOsa+DG8+Ac5WDq5E9YGH2CVweU\n40DuAyxwwK+5czOo7wX+6meGOd4Mb0iTuMforZ2g4eOh5vfGBwfTZfToe3pfiVtzeWA65oojWcXT\nNzgppRRQUmt9xF4vDeTRWv+UXn3IbCQ+pq169eqxdOlScufO7e6uCBdYtGgRmzZtIiwszN1dEZbH\nxsh0jo8ASqnlWuvGt1usW8si3SJWKY7bn88AG6tVo+L27TTZCxyC083MtMocoQ5uZAHv73Yxrfrv\nrB5+gB1Aq6MwYo6DflWcjJvelJ6DlzKiVSk+6pCN3Nly89bgSN4+gMkWTkPYVgdNBzpZCgSPgOv9\nIOtwoBEs9oNPw1oREPwFjddgqo5MAKrB9qehWgQEXQ4ivG44QeuCCH893AzLbYIzb8KnfERb3rg5\nI7KhLdk4502zbW8GwWgxrS0A50qc5btapuzHkVrmvgeGwJIh0MyW6P/e3v6kPeaU90y1yisDzYhX\nDyDPFghtUQyA5sfNs9lmUCX21trLtw1N29zL4dfGUD6xYgxwxk7LKZBYX68WfFMWGsYAG2D8J60J\n7LkQLkKr3a3Is6UIHy2YAsEwMaeDHoFOVhaE+a3foVjdXIQ+aPpUZGMRWmdrxuR3Z5jV1a8DeeCv\nGlBoCPAIRLWBFSHmsZwdZdqVAF6Tz1ia8NjABHcVnJRSL2Hm31cAntRa77C31wdGYhYNuQoEa62/\nu80xFLBHa13JBb0XSHxMazt27KBq1apkyZIl5Z2Fx5ORN8/jsTHSDcmbK0jy9i/w/vvvE9epEwFA\n3j9h3JtNOb90KRWAVy7CglzQpic4Czpw1HRS6ftK7G24l0fOVWFflt30/81UlSwf4qSVXYi6zTAn\nRZdAi+/a0nv8PNYAfTBrz5VeBdQB51OVWfGKL6H911EnDpb4wA9Tg+jWNZxiwGMrqrDv4G529TBF\nIgdNDaL4qSz07G7OhRv/qYPAos6bFSSdgZVxhOyBX2B4Xgd5+ph1yt45DdlGZKNOsecAGBxkErbN\neaYCUCK2K0MHmJGzX4cfAMDLTpOcb6dJJhYkK4D5dZ/Z63ns9iLQYzB8MxQafgJFfinCCwdbkSPW\nm+nTx8BMODDK7FvOHrtFaFv2N/iZTxvtptpVzLl/0dBlSW+GrxrD8BoDKLXZjAS+aH/PWaCaE35z\nwMNOeCGuOc/kKM+l/k6ex5xiWHUv8B/4eAtEZc/Orq6t+PLteThbV6b1nj08dAG4AZPymWPGIgts\npzWXB6YTrjiSVfSukrcKmILqM4DeWutIe3tV4KTW+qRS6lFgpda6xB2O8zEwRWu99Z8/ACHxMW3V\nrVuXFStW4OPj4+6uCBdYvHgxGzZsIDw83N1dEZbHxsi7iI+uopTyu9P9iXH3jsfwlIAgwSntHDt2\nDKUUxYoVQ/1l3qMjIsyoTPUQJ5Ux57xdxiw9UHItLH4W9o52MPblD/i61BnW16pF8OyNXCkDOeJh\nUrcAzn7+OYOWXCDqWfDr40v53OW5knCFLwZHUnow+MT5EPdSHOOXO3hmmJOqe+FMJTPlcTXmK/wX\nMUsZbKsYSqHCayj43XcUBHYAg2aY/n/cGV6fgSlEAowoaPreKcSMKBW0i25jk6ZWBVoB8EWPL8wN\n32JO8AMzUgVmHingXGaOdW2sGcbrdcbU9F9qd2sKnAC+7mf2e2OEE59pwB8w0c48HNLHTFuOyRHD\ntPdMjZBdxYrR0o7SVQDKbCjHnjoHKBzkQ2j4ZAJPmVN/NhSGOruBQsBEmDQSuq+C8TNbE1hzIfG9\nzWsSa7ucYzLM72aWufuqfn2CG6yGinDZTsVU5jCAqc3STT5T6cLlgemUK45kFb774KSU+o5kydvf\n7lOYMjtFtNbXbtP+V8zk6sOY893AVPWqcld9F4DEx7QmI2+Zy4ULF4iLi5ORNw/isTHyHuLjP6WU\n+h4zXfI+4AmS/jOtAmzXWtdM8RieEhAkOKWd6dOnkyVLFt56663/un2kM4Q+NgE6gakumWUVZPsm\nG9dyX2PxUGh+DiqNrcTKYXvZAHTolY1rPa+ZzGAT+O30I7J4pMlY8gBVYEZOU9UyO2Yk7pnrXiSM\nTsA5rzIt9uzhIWDKAAc9Wji58ATkvgGzs0CHgZgT9GZDzuY+7PKN4+FFwCVY294kl38BPaMKEPPr\nGW6esFoU2u1vx9zAuea6OV2Nr2qbbZN5EG9mUvKRbfKOncoY9prZBtvz5X57Hh4Os4+lA+yyX8RG\nAfmAX0IcDEh4H4CYh805pU47bTNPsDnXbuYT69iZayvjZ7Xm6YUL2Q0cmGSSv9DS5vme2QQ69YSL\n4yDXYihapgS97fl3QavM8QbuczD/r0UcqH8A9sDcbtDuR4iqbZLefZ2zcn3kdQCu+MLUweZ3XB/q\nJEg+S+nKYwMTpEXy1hropLVucIf2pW51u9Y66m76IQyJj2mrTp06rFmzBm9v75R3Fh5v2bJlrF27\nlnHjxrm7K8Ly2BjphuQtkVJqETBYa73HXq8EDNVat0qxracEBAlOaSc6OhovLy+KFSt2y/tvKEXo\nGMfN64OvmwRjfJyDzsOc3HcOcib4ED81DrwgKF8Q4S+Fw0iYPRZO1atH2FP7OPniSYosK8LJXicJ\nvd+MFD0M7ANe+wCGvwkD7MLYObv50HNON/J0d+JIrKszAopkLcLvo06SMwKoaRvvh2/6QUP7/f1y\nH9g6zsFTPZ00+gzCxpsT14I3bLx5HAAamU1csgFqn8T5kF5mE2qXDM7bpQsACRcuAFBzzhwAVmTP\nzv9dvUq+ZM+Xn00avy1pts8tgKttTGLY+SLwI0T6wyZgYB9fQtaWoU/L7XTM2ZFGgbN4+RMY8hoM\nBlQMSUNlPYGf4IU1zWmgyuM71EkOzELgdtCRHMHB/DlhAicGvMGEQTPIBiQWQw6Rz4/buDww/emK\nI1n3/3dwUkqtBm71lXQ/rfUyu88tkzc7ZXIJUF9r/YcLeynuQOJj2tq+fTt+fn54eXm5uyvCBS5c\nuMDFixcpWrSou7siLI+Nkfe7NXn7nwW5U7tItyRv/wJTp07F29ubgICAFPfNciNp2kjCTwlmwbg9\nMPM5CIzxYbVvHGWBj/JMZUvADwBMHD+P6iFFOJnrJEPvc9C9txPf92HiYQfZhjtJAD4c6kdkw0jG\nDvKnV5uVDBk0liH7e/FHLigOtA1rRWmf0pToGs4DmJyt/xjgQSAXDPzVQZ93nRSOsUkk3Kwy0mKF\nGVb7Mu88vh8Kz9gcjgpmcy1ZMdbHB5kaCg2LNASgTVczJ/4Hf396jVzJIj9oeRBml4UOCfDIN0mz\nvPbVNSPb832gNfAnUCwGInzhaaDsebPf4rzQPHEqpy3ZMMvfbDsehZw+PsTHxdF9SXcAJp2aZO4s\nAVSH635myYVqM2Bl56S+5wFqOuG6A54BFgBFASWfG7dzeWD66x8c4Ed7SRTmmpE3pVQJzCTkjlrr\nTf+gh+IuSXxMW7Vq1eL7778ne/bs7u6KcIGvvvqK1atXM2HCBHd3RVgeFSOTK+TW5G0+pqTCbMxZ\nL+2AXFrrtim29ZSAIMEp7URHR5MlS5a7+hZqiUp6L/8a6sDRwMmo1Q5uTP6U/j2P4xfvx9eDIyk8\nBzMsVBGTUZyHBeXM2muRmGmTB4DgfUAMjFvloGdfp8l8dgF14ZEfq7Bv626mXnagRzl5ZyTE9DXF\nO44Cfd+ryaZXNnG+HORdB3PqQl57XxOg5EDTz2mXzbTFt9uGkeAHI+1I418PJCWtPu3NKTr9u5vx\nqk/t7Z33me3ZR8w2/0GzjSgLL9l9PrSTLoN7dQLgmsOe7vMzDN/u4K0+TmzBS55eAZsaQeM+vkwf\nHcPLR4DdEHQkiPAqJmEc0aEUAFejopjYx5fNo2N4+Cj4TPAhrm2cKdry/EdsCfiBpyMiAEic+Hrk\n998pUaIE2bIllloR7uSxgQnuKTjZ5C0oWbXJfMA6zBSPxS7snUgFiY9pa9u2bVSrVg2l3PI/nHAx\nGXnzPB4bI92bvN0HvA38n71pPTBNa305xbaeEhAkOKWdyZMnkytXLjp27HhP7UePCAEgob9JePoA\nU9q3p8dTc8zkKx9o+0UAbSIi2DA1iP90DWc30KYX4A9sgZpF6jKl0zr8QoBHYdersKpaNfps3A5n\nYUphuBjqIDYP7I7/hWXdl/FjTqj9Aex+ExLnZ80PCOAdm8jUsdMjz/cz29+A6rOg30UzBXREXjuh\n0I561Vxcl9mdzLptO+zxXh5itheHQK73gdfhUHZ4aA2Mfd7cV9Xu+2zilMuzMPSig8FXnUT1NefC\n5Quy97WxDeySAUfuh1nAoB9h4HYHge86KbDL7rvWPHedr3Tm+KXjVMlZkU7dncQDS0Y4COnlBFM4\nk2nNoUuyz0fdunWZO3cuxYsXv9NLJ9KJywPTaVccySp4V9UmW2Am8hbE1MrZqbV+QSk1AAghaQYv\nmKmTruypuA2Jj2mrRo0abNiwQRbpziS+/vprVqxYwaRJk9zdFWF5bIy8i/joSSR5+xc4evQoWbNm\ndcm3UDuSfTNZLcr+UBQu5TDLjY2c7CBHr3FUu3qVxhMhoYepLOm/AHLW92GEbxyBc6DdyXZE9J6L\n91UYnx0CF8LM1vD7VAej/nRCbgiLdxAc7wQf4A2YWdxUfwTYihlr/g14Fnj6W1hkVgqgZR8YWthB\nwd4meXvn96T+B7Yzi2D/0sxUMF/lsNVBTN0P/EaaE+Qin0h2qk8Ns6k3y0y13N9gLwCfV4mmzhK4\n1Aym+fuzvUEBRvU2RVMecEK7rO04dvkYza/W4MmhTmofscdbC/0vOAi96GR7X6jZKxvXMKN4p8ea\nXQra7110jlt/JqKioihevLiMvHkIlwemmJT3SzXfjBmcRBKJj2lLRt4yl4sXLxIbG3vb8/xF+vPY\nGOnG+KiUehhTpaEipvIkmKrMZVJs6ykBQYJT2pk4cSL58uXjtddec/mx1WHFpGFJ0xJV9uxcvz8v\ngcWdZrWoMkBVmBYezNv3h1H3al3WnV5HkRxF6Hf0OV6YM4dDwG/t29Oj6RzYAsPez82gSReI6QiP\n7i7BiZhoXtzyIv5/FKfj9OnkcsJ5B2y3v/M5WymSB2F+OVPgA6CxndU40eY3BYAfGvQGoMsqc1Ja\n4uf//YAAKkVE0D8MM1K3Ej42szD5s5YpiHL/xo3EBgSQIyKCTlEwsxR0ircH2GN/1zIHP99/jgE9\nZpAfWA4cASoDDf+Cy4Xghm1yBJOAAlRPMNvTXlAgFZ+DevXq8cknn1CyZMkU9xVpz2MDE0jylglI\nfExb1atXZ+vWrZK8ZRIrV65k6dKlTJkyxd1dEZbHxkj3Jm8/YmrXjcWMTXQEsmitB6bY1lMCggSn\ntHPkyBGyZ8+e5mueTHn77Zs/n3okLwDvve7kaD4oOc/cvqQtNDsCXIHIcjCp9Tt8sHAKPwAHgTOh\nDir1d/IUUHNAOQ4MPsC2bFDdLMNG98u2yEfcJOIdZv2zIhOB4zAxq5ku2Wy4GXFLrFOSO7GACaBN\nHoY6C+vz31wajsSyJL8BOwsUMMexa76VxcxwtLMvyToEs1gdUOmqqUiyZ9heTmISx1xhMO6ig7jJ\nptMDpprjjP/clLZssXAhwM1iSdXu4X0fFRVFsWLF5AR7D+HywHTWFUey8kvyltFJJxrTQAAADgFJ\nREFUfEw7Wmu2b99O9erV3d0V4SIy8uZ5PDZGujE+KqUitdZ+Sqk9WuvKyW9Lsa2nBAQJTmln3Lhx\nFCpUiA4dOqTr71Xnkz4Pox6YCkDIlq6mUMkOYKS982OIeRN8B0LCexCBOY+s9RDw7WgSqYE9arP/\n+aLMeGeGafesaZqzgllyACB7b7Omy+CLV82ddqXtaa2T+hQbahI8x+Mmwau5oya1C9QmvH140k7R\nEP9o0hj2D3ZbEbOS4u7WrclmE7B3hpj7Jl43xy1hq2tGD3LAL4du+by8+/nnt3nGUu+5557jww8/\npFSpUv/4WOKfc3lgOueKI1n5JHnL6CQ+pp2EhARq1KjB1q1b3d0V4SKrV69m0aJFTJs2zd1dEZbH\nxkg3xkel1EZMsZKFmErOx4GRWuvyKbb1lIAgwSntpNfIW2qo/ck+I3b+4EFbTr/sLPi4I7w+DbgC\n5AHf/b6MHh3D8kC7HEC/ecy4Hzp/i6lichl4Ch4/9CT/+d58WXHxATPq92OWXwB4wrHs5q8cYs8l\naxHSli/rzGOXTezKJevjMbtNXDThMvDocljSOGmfZokVTw5B55OdqddjBpiu3LSkdWuXJGq3IiNv\nnsVjAxNI8pYJSHxMO1prduzYQbVq1dzdFeEiMvLmeTw2Rro3easO7De94D3MilCjtdabU2zrKQFB\nglPaGTNmDMWKFaNt2xSXjnCbQ0qx0v78ot3OSXa/V+XKFN6zh452UO2wzVkeTEi20yyzOWlPwfts\ngIMLw530v5G0yyinGSEL8baVKAsDCRD5atI+4WPaATCp91zqrKjCD43M+m4FxyTtM8ycOsexiWYh\ntno9ZtAmHd+/9evXZ+bMmZQuXTrdfqe4PZcHpvOuOJKVV5K3jE7iY9q5fv06derUYfPmFP9fEhnE\nt99+y2effcaMGTPc3RVheWyMdFN8VEplAZxa66AUd75Ve08JCBKc0s7hw4fx9vamcOHC7u7KPRld\nJWmh7OjOzwBQrpspAZwz2X7OAWb87EBuW808MbFLtlb96WZmO9tev1K5MgA32je6uU+/bCaxm/Sz\nyQLb2qUJUlNIJL0cPnyYokWLysibh3B5YLrgiiNZuSV5y+gkPqadhIQEIiMjZeQtE4mLi+PcuXOy\nlI4H8dgY6cb4qJTaDNS8lz/uHpW8ubsPQghxrzwyMIEkb5mAxEchREbnkTHSvcnbdKAY8DmQWLtc\na60XpdTWY1aklH8uhBDCkr+GIhmJj0IIkYwb/iIqpcKAJsBV4BDwhtb6vL2vLxCAqebQQ2u9KhWH\n9AbOcLME300pJm8eM/ImhBDCfqsY58ID+sg//0IIITIHl8bIu4iPSqn6wLda6wSl1CgArXWIUqoi\nMBeoDhQH1gAPa60Tbn+0f8YrrQ4s0pZS6l2l1B6l1F6l1Lv2tieVUluVUjuVUttsJZvE/SOUUruU\nUo3t9S+VUs2S3f+rUqp/sutfKKVapOdj+je7zeu5wL6WO5VSfyildibbX15PIYS4BYmPmY/ESOFu\nWuvVyRKyLUAJ+3MzYJ7W+prWOgqzbPGTadkXSd4yIKVUJeBNTJb/GNBEKfUQMBoYqLV+HBhkryfu\nfwR4AnjNHmYDUMveXwC4CNRM9mtqAD+m+YMRt309tdZttNaP29fzC3uR1/PfQLnwIsS/iMTHzEdi\npPgf7o+PAcAK+3MxIDrZfdGYEbg0I8lbxlQB2KK1vqy1vgGsA1piFvjLa/fJR9KSZdcBHyBHsmNs\nxP4hs9tlQCEApVRp4JLW+s+0fBDiptu9ngAopRTwMjDP3iSvZ2bn5cKLEP8uEh8zH4mR4r/dazz8\nAQhNdvkbpdRqO8L798uLyfbpD1zVWs+9Qw/T9Jw0jylYIu7KXiBUKeWLWUO6MbAVCAE2KqXCMW/T\nWgBa6/1KqayYP3h2hTIigUpKqWyYb5/WAWWUUo8Afsg3UOnpdq9nov8DTmmtD4G8nkIIcQcSHzMf\niZHCNeraS6K/JXBa6/p3aq6U6gg0Ap5LdvMxoGSy6yVI+nLoVsfoneyqJmkMUNs+jL1TH0CStwzJ\n/mFyAquAOGAnZlWzD4HuWusvlVIv2ev1bZuefzvGFaXUz5g/WjUwU0jKYALa48gfsnRzh9czUVvM\nybDJ28jrmZnJdEch7onEx8xHYqT4H+6pNtkQCAbqaq0vJ7trKTBXKTUWM12yHP/95cLf5cYkauUx\nU4GXYh5RkxTaJfVFqk1mfEqpUMwcW6fWOo+9TQHntNZ579DOiSlT+pLWurpS6nGgO1AVeE1rvTft\ney/+Tik1AjiitZ5uvz2MBvy01sdTaCevZyaglNJcdeEBs0u1SfHvJfEx85EY+e/m0hh5F/FRKXXA\ntCDG3rRJa93V3tcPcx7cdeBdrfXKVBzvB6CR1vqCvZ4bWKG1/r+U2soZERmUUup+u30AM/d7LnBQ\nKZU4IPws8FsKh9kIdAZ22eu7Md9IlZQ/Yunrb69nC5K+RXwe2JdSULLk9RRC/OtJfMx8JEYKd9Na\nl9NaP5hYJCcxcbP3jdBal9VaV0hN4mbdD1xLdv2avS1FMm0y41poKyZdA7pqrc8rpToBU5RSOYBL\nQKcUjrEJKG23aK1vKKVOAYfTsN/i1v7+esba29uQdBJ2SuT1zCxknEyIf0LiY+YjMVIkyRwx8hNg\nq1JqEeYRNQc+Tk1DmTYphBAeRCml/+u7uH8qm0ybFEIIkTm4NEa6OT4qpZ4A6tir67XWO++0fyIZ\neRNCCE8jE9qFEEKIW8s8MTIncEFrHaGUKqSUKq21/iOlRjLyJoQQHkQppf+rjto/5SUjb0IIITIH\nl8ZIN8ZHpdQQzELy5bXWDyuligOfaa1rp9Q28+SuQgghhBBCCOH5WgDNMMtfoLU+hllGIEUybVII\nITyMV4LrvldLcOkwnhBCCOFeroqRbo6PV7TWCWblElBK+aS2oSRvQgjhYbxj73PZseLNl3pCCCFE\npuCqGOnm+Pi5UmoGkM9Www0APkhNQ0nehBBCCCGEECKdaK3DlFINgAvAw8BArfXq1LSV5E0IITyM\nd6y3y44lI29CCCEyE1fFSHfGR6WUU2vtAFbd4rY7kuRNCCE8TA4XTpsUQgghMpNMEiMbAH9P1Brd\n4rb/IcmbEEIIIYQQQqQxpdTbQFfgIaXUnmR35QZ+TM0xJHkTQggP48qCJUIIIURmksFj5Fzga2AU\nZpQtcZ25C1rrM6k5gCRvQgjhYTJ4YBJCCCHSTEaOkVrr88B5pdQE4KzWOhZAKZVHKfWU1npLSseQ\nRbqFEEIIIYQQIv1MAy4mux4HTE9NQxl5E0IID+PKapNCCCFEZpJZYqTWOiHZzzeUUllS006SNyGE\n8DAZeUqIEEIIkZYySYz8QynVAzMCp4C3gd9T01CmTQohhBBCCCFE+ukC1AaOAdFADaBTahrKyJsQ\nQniYTPKtohBCCOFymSFGaq1PAW3upa0kb0II4WEyy3x+IYQQwtUyQ4xUSpUHpgJFtNaPKqWqAE21\n1sNTaivTJoUQQgghhBAi/bwP9AOu2ut7gLapaSgjb0II4WEyw5QQIYQQIi1kkhiZU2u9RSmzRrfW\nWiulrqWmoSRvQgjhYTJJYBJCCCFcLpPEyL+UUmUTryilWgMnUtNQpk0KIYQAQCn1klLqZ6XUDaWU\n39/uq6KU2qSU2quU2q2UyuGufgohhBAZXDdgBlBeKXUc6IlZLiBFMvImhBAexo3fKu4BWmACyk1K\nqazAp0AHrfUepVR+IFXTO4QQQghXyugjb3Yx7re11s8ppXIBXlrr2NS2l+RNCCE8TA43VdLSWu8H\nSJyDn0wDYLfWeo/d72w6d00IIYQA3BcjXUVrfUMpVUcppbTWF++2vSRvQgghUlIO0Eqpb4BCwHyt\ndZib+ySEEEJkVLuAJUqpz4F4e5vWWi9KqaEkb0II4WHSckqIUmo1UOQWd/XTWi+7TbNsQB2gGnAJ\n+FYptUNrvTaNuimEEELcUkafNmnlAM4Az/7tdknehBAio/kngelw3O8cifvjtvdrrevfw2GPAuu1\n1jEASqkVgB8gyZsQQoh0ldGTN3vOW4zWuve9tJfkTQghMpEHfcrwoE+Zm9d/PH3P+VXyE99WAn2U\nUvdhCpXUBcbe64GFEEKIfyt7zltte86bvtv2krwJIYSHcde3ikqpFsBEoCCwXCm1U2v9gtb6nFJq\nLLAN0MByrfXXbumkEEKIf7WMPvJmyTlvQggh/hmt9ZfAl7e5bw4wJ317JIQQQmRK3kAMcs6bEEJk\nfN4ZvAyyEEIIkVYyQ4zUWne817aSvAkhhIfJJFNChBBCCJfLDDFSKVUSc5pCHXvTeuBdrXV0im3v\n4Tw5IYQQaUQp5fI/ylrr/1l1WwghhMhoXB0j3RUflVJrMKcizLY3tQfap6YitCRvQgghhBBCCJFO\nlFI/aa0fS+m2W/FKu24JIYQQQgghhPibM0qpV5VSWZRSWZVSHYDTqWkoI29CCCGEEEIIkU6UUqWA\nSUANe9NGoLvW+kiKbSV5E0IIIYQQQgjPJ9MmhRBCCCGEECKdKKU+UUrlS3Y9v1IqIjVtJXkTQggh\nhBBCiPRTRWt9LvGK1vos4JeahpK8CSGEEEIIIUT6UUop32RXfIEsqWkoi3QLIYQQQgghRPoZA2xS\nSn0GKOAlIDQ1DaVgiRBCCCGEEEKkI6XUo8CzgAbWaq1/SVU7Sd6EEEIIIYQQwvPJOW9CCCGEEEII\nkQFI8iaEEEIIIYQQGYAkb0IIIYQQQgiRAUjyJoQQQgghhBAZgCRvQgghhBBCCJEB/D+PNqsAdAht\nXAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10cd29cd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display = pyart.graph.RadarMapDisplay(radar)\n", "fig = plt.figure(figsize = [15,7])\n", "plt.subplot(1,2,1)\n", "display.plot_ppi_map('velocity', sweep = 2, resolution = 'i',\n", " mask_outside = False,\n", " cmap = pyart.graph.cm.NWSVel,\n", " vmin = -nyq, vmax = nyq)\n", "plt.subplot(1,2,2)\n", "display.plot_ppi_map('corrected_velocity', sweep = 2, resolution = 'i',\n", " mask_outside = False,\n", " cmap = pyart.graph.cm.NWSVel,\n", " vmin = -1.5*nyq, vmax = 1.5*nyq)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-2-clause
jdespraz/deep_generative_networks
autoencoder.ipynb
1
8895
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(123)\n", "\n", "import os\n", "from keras.models import Model\n", "from keras.layers import Input, Convolution2D, MaxPooling2D, BatchNormalization\n", "from keras.layers import Flatten, Dense, Reshape, UpSampling2D\n", "from keras.utils.layer_utils import print_summary\n", "\n", "import cv2\n", "import h5py\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def autoencoder(weights_path=None):\n", " # encoder\n", " inputs = Input(shape=(3,224,224), name='input')\n", " \n", " enc1 = Convolution2D(32, 3, 3, activation='relu')(inputs)\n", " enc1 = BatchNormalization(mode = 0 , axis = 1)(enc1)\n", " enc1 = Convolution2D(32, 3, 3, activation='relu')(enc1)\n", " enc1 = BatchNormalization(mode = 0 , axis = 1)(enc1)\n", " enc1 = MaxPooling2D((2,2), strides=(2,2))(enc1)\n", " \n", " enc2 = Convolution2D(64, 3, 3, activation='relu')(enc1)\n", " enc2 = BatchNormalization(mode = 0 , axis = 1)(enc2)\n", " enc2 = Convolution2D(64, 3, 3, activation='relu')(enc2)\n", " enc2 = BatchNormalization(mode = 0 , axis = 1)(enc2)\n", " enc2 = MaxPooling2D((2,2), strides=(2,2))(enc2)\n", " \n", " enc3 = Convolution2D(128, 3, 3, activation='relu')(enc2)\n", " enc3 = BatchNormalization(mode = 0 , axis = 1)(enc3)\n", " enc3 = Convolution2D(128, 3, 3, activation='relu')(enc3)\n", " enc3 = BatchNormalization(mode = 0 , axis = 1)(enc3)\n", " enc3 = MaxPooling2D((2,2), strides=(2,2))(enc3)\n", " \n", " enc4 = Convolution2D(256, 3, 3, activation='relu')(enc3)\n", " enc4 = BatchNormalization(mode = 0 , axis = 1)(enc4)\n", " enc4 = Convolution2D(256, 3, 3, activation='relu')(enc4)\n", " enc4 = BatchNormalization(mode = 0 , axis = 1)(enc4)\n", " enc4 = MaxPooling2D((2,2), strides=(2,2))(enc4)\n", " \n", " enc5 = Convolution2D(512, 3, 3, activation='relu')(enc4)\n", " enc5 = BatchNormalization(mode = 0 , axis = 1)(enc5)\n", " enc5 = Convolution2D(512, 3, 3, activation='relu')(enc5)\n", " enc5 = BatchNormalization(mode = 0 , axis = 1)(enc5)\n", " enc5 = MaxPooling2D((2,2), strides=(2,2))(enc5)\n", " \n", " enc6 = Flatten()(enc5)\n", " enc6 = Dense(2048, activation='relu')(enc6)\n", " enc6 = Dense(5*5*128, activation='linear', name='encoded_img')(enc6)\n", " \n", " # decoder (generator)\n", " g2 = Reshape((128,5,5))(enc6)\n", " \n", " g3 = UpSampling2D(size=(2, 2))(g2) # 10x10\n", " g3 = Convolution2D(512,2,2,activation='relu',border_mode='valid')(g3) # 9x9\n", " g3 = BatchNormalization(mode = 0 , axis = 1)(g3)\n", " g3 = Convolution2D(512,2,2,activation='relu',border_mode='same')(g3) # 9x9\n", " g3 = BatchNormalization(mode = 0 , axis = 1)(g3)\n", " \n", " g4 = UpSampling2D(size=(2, 2))(g3) # 18x18\n", " g4 = Convolution2D(256,3,3,activation='relu',border_mode='valid')(g4) # 16x16\n", " g4 = BatchNormalization(mode = 0 , axis = 1)(g4)\n", " g4 = Convolution2D(256,3,3,activation='relu',border_mode='same')(g4) # 16x16\n", " g4 = BatchNormalization(mode = 0 , axis = 1)(g4)\n", " \n", " g5 = UpSampling2D(size=(2, 2))(g4) # 32x32\n", " g5 = Convolution2D(256,3,3,activation='relu',border_mode='valid')(g5)# 30x30\n", " g5 = BatchNormalization(mode = 0 , axis = 1)(g5)\n", " g5 = Convolution2D(256,3,3,activation='relu',border_mode='same')(g5) # 30x30\n", " g5 = BatchNormalization(mode = 0 , axis = 1)(g5)\n", " \n", " g6 = UpSampling2D(size=(2, 2))(g5) # 60x60\n", " g6 = Convolution2D(128,3,3,activation='relu',border_mode='valid')(g6) # 58x58\n", " g6 = BatchNormalization(mode = 0 , axis = 1)(g6)\n", " g6 = Convolution2D(128,3,3,activation='relu',border_mode='same')(g6) # 58x58\n", " g6 = BatchNormalization(mode = 0 , axis = 1)(g6)\n", " \n", " g7 = UpSampling2D(size=(2, 2))(g6) # 116x116\n", " g7 = Convolution2D(128,4,4,activation='relu',border_mode='valid')(g7) # 113x113\n", " g7 = BatchNormalization(mode = 0 , axis = 1)(g7)\n", " g7 = Convolution2D(128,4,4,activation='relu',border_mode='same')(g7) # 113x113\n", " g7 = BatchNormalization(mode = 0 , axis = 1)(g7)\n", " \n", " g8 = UpSampling2D(size=(2, 2))(g7) # 226x226\n", " g8 = Convolution2D(64,3,3,activation='relu',border_mode='valid')(g8) # 224x224\n", " g8 = BatchNormalization(mode = 0 , axis = 1)(g8)\n", " g8 = Convolution2D(64,3,3,activation='relu',border_mode='same')(g8) # 224x224\n", " g8 = BatchNormalization(mode = 0 , axis = 1)(g8)\n", " g8 = Convolution2D(3,3,3,activation='relu',border_mode='same')(g8) # 224x224\n", " g8 = BatchNormalization(mode = 0, axis = 1, name='image')(g8)\n", " \n", " return Model(input=inputs, output=[g8,enc6])\n", "\n", "\n", "# compile model\n", "model = autoencoder()\n", "print_summary(model.layers)\n", "model.compile(optimizer='adadelta', loss='mean_squared_error')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def transform_image(im):\n", " im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_RGB2BGR)\n", " im = im.astype(np.float32)\n", " im[:,:,0] -= 103.939\n", " im[:,:,1] -= 116.779\n", " im[:,:,2] -= 123.68\n", " im = im.transpose((2,0,1))\n", " im = np.expand_dims(im, axis=0)\n", " return im\n", "\n", "def reconstruct_image(im):\n", " im2 = np.squeeze(im)*1\n", " im2 = im2.transpose((1,2,0))\n", " im2[:,:,0] += 103.939\n", " im2[:,:,1] += 116.779\n", " im2[:,:,2] += 123.68\n", " im2 = im2.astype(np.uint8)\n", " return cv2.cvtColor(im2,cv2.COLOR_BGR2RGB)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# get all images and corresponding filter responses\n", "path_all = 'n02084071/'\n", "f_imgs = os.listdir(path_all)\n", "train_pics = []\n", "for i, pic in enumerate(f_imgs):\n", " img = cv2.resize(cv2.imread(path_all+pic), (224, 224)).astype(np.float32)\n", " img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB)\n", " img = transform_image(img)\n", " train_pics.append(img)\n", " \n", "train_pics = np.squeeze(np.array(train_pics))\n", "dummy_labels = np.zeros(shape=(len(f_imgs),5*5*128))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# train auto-encoder\n", "model.fit(train_pics, [train_pics,dummy_labels], nb_epoch=400, batch_size=24, class_weight=[1.,0.])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# test\n", "idx = np.random.choice(train_pics.shape[0])\n", "pic = train_pics[idx:idx+1]\n", "out = model.predict(pic)\n", "\n", "code = np.squeeze(out[1])\n", "print('code: ',code)\n", "plt.figure()\n", "plt.plot(code)\n", "plt.show()\n", "\n", "plt.figure(figsize=(10,10))\n", "plt.subplot(1,2,1)\n", "plt.imshow(reconstruct_image(pic))\n", "plt.subplot(1,2,2)\n", "plt.imshow(reconstruct_image(out[0]))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# save the decoder weights for later use\n", "model.save_weights('decoder_weights.h5')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
xArchange/XGBoost-Analysis
XGB_RF_GB_exp.ipynb
1
53855
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from timeit import default_timer as timer\n", "\n", "# Pre-splits the dataset into training and testing folds for all the classifiers to use.\n", "def splitting_dataset(folder_name, dataset_name, num_folds):\n", " from numpy import genfromtxt\n", " from sklearn.model_selection import StratifiedKFold\n", "\n", " # Loads the dataset.\n", " dataset = genfromtxt(folder_name + '/' + dataset_name, delimiter=\",\")\n", " # Splits the dataset into the data and the labels.\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " y = dataset[:, len(dataset[0]) - 1]\n", "\n", " print(\"Splitting the whole dataset into training and testing folds...\")\n", "\n", " # Creating folds with StratifiedKFold.\n", " skf = StratifiedKFold(n_splits = num_folds, random_state = None, shuffle = True)\n", " skf.get_n_splits(X, y)\n", " # Opening the dataset file for copying lines.\n", " f_ds = open(folder_name + \"/\" + dataset_name)\n", " # Creating a list from its lines.\n", " dataset_lines = []\n", " for line in f_ds:\n", " dataset_lines.append(line)\n", "\n", " ctr = 0; # For naming the files.\n", "\n", " # For each fold...\n", " for train_index, test_index in skf.split(X, y):\n", " train_name = folder_name + '/' + 'fold' + str(ctr) + '_train.data'; # file for train instances\n", " test_name = folder_name + '/' + '/fold' + str(ctr) + '_test.data'; # file for test instances\n", " f_train = open(train_name, 'w')\n", " f_test = open(test_name, 'w')\n", "\n", " # Selecting the training and testing instances + labels.\n", " X_train, X_test = X[train_index], X[test_index]\n", " y_train, y_test = y[train_index], y[test_index]\n", "\n", " # Printing the training data (+labels) into the train file.\n", " for i in train_index:\n", " f_train.write(dataset_lines[i])\n", "\n", " # Printing the testing data (+labels) into the test file.\n", " for i in test_index:\n", " f_test.write(dataset_lines[i])\n", "\n", " ctr += 1;\n", " f_train.close()\n", " f_test.close()\n", "\n", " print(\"%.2f %%\" % (ctr / num_folds * 100))\n", "\n", " f_ds.close()\n", " print(\"The whole dataset has been split into folds!\") \n", " print(\"\\n\")\n", " \n", " return\n", "\n", "\n", "\n", "# Performs the grid search for all of the classifiers, including the extended ones. \n", "def general_grid_search(folder_name, num_folds, missing):\n", " # Grid search and extension for XGBoost.\n", " parameters_xgboost = grid_search_xgboost(folder_name, num_folds, missing)\n", " # Grid search and extension for RF.\n", " parameters_rf = grid_search_rf(folder_name, num_folds, missing)\n", " # Grid search and extension for GB\n", " parameters_gb = grid_search_gb(folder_name, num_folds, missing)\n", " \n", " return parameters_xgboost, parameters_rf, parameters_gb\n", "\n", "\n", "\n", "# Grid search for XGBoost. Checks also if the extension of the grid search\n", "# is necessary and if it is, performs it by calling the extended grid search function.\n", "def grid_search_xgboost(folder_name, num_folds, missing):\n", " from numpy import genfromtxt\n", " from xgboost import XGBClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " # Initializes the parameters' list.\n", " #print(\"Initializing the parameters to test for XGBoost...\") \n", " learning_rate = [0.05, 0.1, 0.2]\n", " max_depth = [3, 5, 6, 8]\n", " subsample = [0.5, 0.8, 1]\n", " gamma = [0, 0.1, 0.2, 0.3]\n", " min_child_weight = [1, 3, 5]\n", " #print(\"The parameters to test for XGBoost have been initialized!\\n\")\n", " \n", " # Initialize the arrays that'll contain the best parameters for each fold (10). Will be returned at the end.\n", " best_learning_rate = []\n", " best_max_depth = []\n", " best_subsample = []\n", " best_gamma = []\n", " best_min_child_weight = []\n", " \n", " imputer = Imputer(missing_values = missing) \n", " xgb_model = XGBClassifier(n_estimators = 200)\n", " \n", " # For each fold, loads the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Loads the dataset (training fold).\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Splits the dataset into the data and the labels.\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Timed grid search.\n", " start = timer()\n", " param_grid = dict(learning_rate = learning_rate, max_depth = max_depth, \n", " subsample = subsample, gamma = gamma, min_child_weight = min_child_weight)\n", " #print(\"Starting the grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(xgb_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The grid search is over!\")\n", " end = timer()\n", " time_grid_xgb.append(end - start) \n", "\n", " # Summarizes results. \n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " best_learning_rate.append(grid_result.best_params_['learning_rate'])\n", " best_max_depth.append(grid_result.best_params_['max_depth'])\n", " best_subsample.append(grid_result.best_params_['subsample'])\n", " best_gamma.append(grid_result.best_params_['gamma'])\n", " best_min_child_weight.append(grid_result.best_params_['min_child_weight'])\n", " \n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", " \n", " print(\"Done with the normal grid search for XGBoost!\\n\")\n", " \n", " # Grid extension.\n", " parameters_xgboost = grid_extension_xgboost(folder_name, num_folds, missing, best_learning_rate, \n", " best_max_depth, best_subsample, best_gamma, best_min_child_weight)\n", " \n", " return parameters_xgboost\n", "\n", "\n", "\n", "# Grid search for Random Forest. Checks also if the extension of the grid search\n", "# is necessary and if it is, performs it by calling the extended grid search function.\n", "def grid_search_rf(folder_name, num_folds, missing):\n", " from numpy import genfromtxt\n", " from sklearn.ensemble import RandomForestClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " # Initializes the parameters' list.\n", " #print(\"Initializing the parameters to test for Random Forest...\") \n", " max_features = [\"auto\", \"log2\", None]\n", " min_samples_leaf = [1, 25, 50, 70]\n", " max_depth = [None, 5, 8, 10]\n", " min_samples_split = [2, 5, 8, 10]\n", " #print(\"The parameters to test for Random Forest have been initialized!\\n\")\n", " \n", " # Initialize the arrays that'll contain the best parameters for each fold (10). Will be returned at the end.\n", " best_max_features = []\n", " best_min_samples_leaf = []\n", " best_max_depth = []\n", " best_min_samples_split = []\n", " \n", " imputer = Imputer(missing_values = missing) \n", " rf_model = RandomForestClassifier(n_estimators = 200) \n", " \n", " # For each fold, loads the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Loads the dataset (training fold).\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Splits the dataset into the data and the labels.\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Timed grid search.\n", " start = timer()\n", " param_grid = dict(max_features = max_features, min_samples_leaf = min_samples_leaf, \n", " max_depth = max_depth, min_samples_split = min_samples_split)\n", " #print(\"Starting the grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(rf_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The grid search is over!\")\n", " end = timer()\n", " time_grid_rf.append(end - start) \n", "\n", " # Summarize results \n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " best_max_features.append(grid_result.best_params_['max_features']) \n", " best_min_samples_leaf.append(grid_result.best_params_['min_samples_leaf'])\n", " best_max_depth.append(grid_result.best_params_['max_depth'])\n", " best_min_samples_split.append(grid_result.best_params_['min_samples_split'])\n", " \n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", " \n", " print(\"Done with the normal grid search for Random Forests!\\n\")\n", " \n", " # Grid extension.\n", " parameters_rf = grid_extension_rf(folder_name, num_folds, missing, best_max_features, best_min_samples_leaf,\n", " best_max_depth, best_min_samples_split)\n", " \n", " return parameters_rf\n", "\n", " \n", " \n", "# Grid search for Gradient Boosting. Checks also if the extension of the grid search\n", "# is necessary and if it is, performs it by calling the extended grid search function.\n", "def grid_search_gb(folder_name, num_folds, missing):\n", " from numpy import genfromtxt\n", " from sklearn.ensemble import GradientBoostingClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " # Initializes the parameters' list.\n", " #print(\"Initializing the parameters to test for Gradient Boosting...\") \n", " learning_rate = [0.05, 0.1, 0.2]\n", " max_depth = [3, 5, 6, 8]\n", " subsample = [0.5, 0.8, 1]\n", " max_features = [\"auto\", \"log2\", None]\n", " min_samples_split = [2, 5, 8, 10]\n", " #print(\"The parameters to test for Gradient Boosting have been initialized!\\n\")\n", " \n", " # Initialize the arrays that'll contain the best parameters for each fold (10). Will be returned at the end.\n", " best_learning_rate = []\n", " best_max_depth = []\n", " best_subsample = []\n", " best_max_features = []\n", " best_min_samples_split = []\n", " \n", " imputer = Imputer(missing_values = missing) \n", " gb_model = GradientBoostingClassifier(n_estimators = 200) \n", " \n", " # For each fold, loads the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Loads the dataset (training fold).\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Splits the dataset into the data and the labels.\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Timed grid search.\n", " start = timer()\n", " param_grid = dict(learning_rate = learning_rate, max_depth = max_depth, subsample = subsample, \n", " max_features = max_features, min_samples_split = min_samples_split)\n", " #print(\"Starting the grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(gb_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The grid search is over!\")\n", " end = timer()\n", " time_grid_gb.append(end - start) \n", "\n", " # Summarize results \n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " best_learning_rate.append(grid_result.best_params_['learning_rate'])\n", " best_max_depth.append(grid_result.best_params_['max_depth'])\n", " best_subsample.append(grid_result.best_params_['subsample'])\n", " best_max_features.append(grid_result.best_params_['max_features']) \n", " best_min_samples_split.append(grid_result.best_params_['min_samples_split'])\n", " \n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", " \n", " print(\"Done with the normal grid search for Gradient Boosting!\\n\")\n", " \n", " # Grid extension.\n", " parameters_gb = grid_extension_gb(folder_name, num_folds, missing, best_learning_rate, best_max_depth,\n", " best_subsample, best_max_features, best_min_samples_split)\n", " \n", " return parameters_gb\n", " \n", " \n", " \n", "# Checks whether the grid extension is needed for XGBoost and performs it if it's the case.\n", "# In any case, also groups all the parameters into one 2D array to avoid having too\n", "# many parameters going around.\n", "def grid_extension_xgboost(folder_name, num_folds, missing, best_learning_rate, \n", " best_max_depth, best_subsample, best_gamma, \n", " best_min_child_weight): \n", " from numpy import genfromtxt\n", " from xgboost import XGBClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " need = False # Initializing the boolean that'll be use to know if the extension is needed. \n", " \n", " # Checks whether the grid extension is needed.\n", " if (best_learning_rate.count(0.05) >= num_folds / 2 or best_learning_rate.count(0.2) >= num_folds / 2 \n", " or best_max_depth.count(3) >= num_folds / 2 or best_max_depth.count(8) >= num_folds / 2 \n", " or best_subsample.count(0.5) >= num_folds / 2 or best_subsample.count(1) >= num_folds / 2 \n", " or best_gamma.count(0) >= num_folds / 2 or best_gamma.count(0.3) >= num_folds / 2\n", " or best_min_child_weight.count(1) >= num_folds / 2 or best_min_child_weight.count(5) >= num_folds / 2): \n", " need = True\n", " \n", " # If the extension is needed...\n", " if need == True:\n", " #print(\"\\nStarting the grid expansion...\") \n", "\n", " imputer = Imputer(missing_values = missing)\n", "\n", " # For each fold, load the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Load the dataset (training fold)\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Split the dataset into the data and the labels\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Initializes the model with the best found parameter for each fold (individually).\n", " # The parameters on the extreme of the grid will be added to the parameters' dictionary.\n", " xgb_model = XGBClassifier(n_estimators = 200, learning_rate = best_learning_rate[i], max_depth = best_max_depth[i],\n", " subsample = best_subsample[i], gamma = best_gamma[i], \n", " min_child_weight = best_min_child_weight[i])\n", "\n", " param_grid = dict()\n", "\n", " if best_learning_rate[i] == 0.05 or best_learning_rate[i] == 0.2:\n", " if best_learning_rate[i] == 0.05:\n", " learning_rate = [0.01, 0.03, 0.05, 0.07]\n", " else:\n", " learning_rate = [0.15, 0.2, 0.25, 0.3]\n", " param_grid['learning_rate'] = learning_rate\n", " bool_lr = True\n", " else:\n", " bool_lr = False\n", "\n", " if best_max_depth[i] == 3 or best_max_depth[i] == 8:\n", " if best_max_depth[i] == 3:\n", " max_depth = [1, 2, 3, 4]\n", " else:\n", " max_depth = [7, 8, 9, 10]\n", " param_grid['max_depth'] = max_depth\n", " bool_md = True\n", " else:\n", " bool_md = False\n", "\n", " if best_subsample[i] == 0.5 or best_subsample[i] == 1:\n", " if best_subsample[i] == 0.5:\n", " subsample = [0.4, 0.5, 0.6]\n", " else:\n", " subsample = [0.9, 0.95, 1]\n", " param_grid['subsample'] = subsample\n", " bool_s = True\n", " else:\n", " bool_s = False\n", "\n", " if best_gamma[i] == 0 or best_gamma[i] == 0.3:\n", " if best_gamma[i] == 0:\n", " gamma = [0, 0.03, 0.05]\n", " else:\n", " gamma = [0.25, 0.3, 0.4]\n", " param_grid['gamma'] = gamma\n", " bool_g = True\n", " else:\n", " bool_g = False\n", "\n", " if best_min_child_weight[i] == 1 or best_min_child_weight[i] == 5:\n", " if best_min_child_weight[i] == 1:\n", " min_child_weight = [0, 1, 2]\n", " else:\n", " min_child_weight = [5, 6, 7, 8] \n", " param_grid['min_child_weight'] = min_child_weight\n", " bool_mcw = True\n", " else:\n", " bool_mcw = False\n", "\n", " # Timed extended grid search.\n", " start = timer()\n", " #print(\"Starting the (expended) grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(xgb_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The (expended) grid search is over!\")\n", " end = timer()\n", " time_grid_xgb[i] += (end - start)\n", "\n", " # Summarizes results.\n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " # Replaces the old parameters on the extreme of the grid by the newly found values.\n", " if bool_lr == True:\n", " best_learning_rate[i] = grid_result.best_params_['learning_rate']\n", " if bool_md == True:\n", " best_max_depth[i] = grid_result.best_params_['max_depth']\n", " if bool_s == True:\n", " best_subsample[i] = grid_result.best_params_['subsample']\n", " if bool_g == True:\n", " best_gamma[i] = grid_result.best_params_['gamma']\n", " if bool_mcw == True:\n", " best_min_child_weight[i] = grid_result.best_params_['min_child_weight']\n", "\n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", "\n", " print(\"Done with the grid expansion for XGBoost!\\n\") \n", " \n", " parameters_xgboost = [best_learning_rate, best_max_depth, best_subsample, best_gamma, best_min_child_weight]\n", " \n", " return parameters_xgboost \n", "\n", "\n", "\n", "# Checks whether the grid extension is needed for Random Forest and performs it if it's the case.\n", "# In any case, also groups all the parameters into one 2D array to avoid having too\n", "# many parameters going around.\n", "def grid_extension_rf(folder_name, num_folds, missing, best_max_features, best_min_samples_leaf,\n", " best_max_depth, best_min_samples_split): \n", " from numpy import genfromtxt\n", " from sklearn.ensemble import RandomForestClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " need = False # Initializing the boolean that'll be use to know if the extension is needed. \n", " \n", " # Checks whether the grid extension is needed.\n", " if (best_min_samples_leaf.count(1) >= num_folds / 2 or best_min_samples_leaf.count(70) >= num_folds / 2 \n", " or best_max_depth.count(10) >= num_folds / 2 or best_min_samples_split.count(1) >= num_folds / 2 \n", " or best_min_samples_split.count(10) >= num_folds / 2):\n", " need = True\n", " \n", " # If the extension is needed...\n", " if need == True:\n", " #print(\"\\nStarting the grid expansion...\") \n", "\n", " imputer = Imputer(missing_values = missing)\n", " # For each fold, loads the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Loads the dataset (training fold).\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Splits the dataset into the data and the labels.\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Initializes the model with the best found parameter for each fold (individually).\n", " # The parameters on the extreme of the grid will be added to the parameters' dictionary.\n", " rf_model = RandomForestClassifier(n_estimators = 200, max_features = best_max_features[i],\n", " min_samples_leaf = best_min_samples_leaf[i], max_depth = best_max_depth[i],\n", " min_samples_split = best_min_samples_split[i])\n", " \n", " param_grid = dict()\n", " \n", " if best_min_samples_leaf[i] == 1 or best_min_samples_leaf[i] == 70:\n", " if best_min_samples_leaf[i] == 1:\n", " min_samples_leaf = [1, 5, 10, 15]\n", " else:\n", " min_samples_leaf = [60, 70, 80]\n", " param_grid['min_samples_leaf'] = min_samples_leaf\n", " bool_msl = True\n", " else:\n", " bool_msl = False\n", " \n", " if best_max_depth[i] == 10:\n", " max_depth = [9, 10, 15, 20]\n", " param_grid['max_depth'] = max_depth\n", " bool_md = True\n", " else:\n", " bool_md = False\n", " \n", " if best_min_samples_split[i] == 1 or best_min_samples_split[i] == 10:\n", " if best_min_samples_split[i] == 1:\n", " min_samples_split = [1, 2, 3, 4]\n", " else:\n", " min_samples_split = [9, 10, 11, 15]\n", " param_grid['min_samples_split'] = min_samples_split\n", " bool_mss = True\n", " else:\n", " bool_mss = False\n", "\n", " # Timed extended grid search.\n", " start = timer()\n", " #print(\"Starting the (expended) grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(rf_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The (expended) grid search is over!\")\n", " end = timer()\n", " time_grid_rf[i] += (end - start)\n", "\n", " # Summarizes results.\n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " # Replaces the old parameters on the extreme of the grid by the newly found values.\n", " if bool_msl == True:\n", " best_min_samples_leaf[i] = grid_result.best_params_['min_samples_leaf'] \n", " if bool_md == True:\n", " best_max_depth[i] = grid_result.best_params_['max_depth']\n", " if bool_mss == True:\n", " best_min_samples_split[i] = grid_result.best_params_['min_samples_split']\n", "\n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", "\n", " print(\"Done with the grid expansion for Random Forests!\\n\") \n", " \n", " parameters_rf = [best_max_features, best_min_samples_leaf, best_max_depth, best_min_samples_split] \n", " \n", " return parameters_rf\n", "\n", "\n", "\n", "# Checks whether the grid extension is needed for XGBoost and performs it if it's the case.\n", "# In any case, also groups all the parameters into one 2D array to avoid having too\n", "# many parameters going around.\n", "def grid_extension_gb(folder_name, num_folds, missing, best_learning_rate, \n", " best_max_depth, best_subsample, best_max_features, \n", " best_min_samples_split): \n", " from numpy import genfromtxt\n", " from sklearn.ensemble import GradientBoostingClassifier\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " \n", " need = False # Initializing the boolean that'll be use to know if the extension is needed. \n", " \n", " # Checks whether the grid extension is needed.\n", " if (best_learning_rate.count(0.05) >= num_folds / 2 or best_learning_rate.count(0.2) >= num_folds / 2 \n", " or best_max_depth.count(3) >= num_folds / 2 or best_max_depth.count(8) >= num_folds / 2 \n", " or best_subsample.count(0.5) >= num_folds / 2 or best_subsample.count(1) >= num_folds / 2 \n", " or best_min_samples_split.count(1) >= num_folds / 2 or best_min_samples_split.count(10) >= num_folds / 2): \n", " need = True\n", " \n", " # If the extension is needed...\n", " if need == True:\n", " #print(\"\\nStarting the grid expansion...\") \n", "\n", " imputer = Imputer(missing_values = missing)\n", "\n", " # For each fold, load the training dataset in and perform the grid search on it.\n", " for i in range(0, num_folds):\n", " # Load the dataset (training fold)\n", " #print(\"Loading training dataset...\") \n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training dataset was loaded in!\")\n", "\n", " # Split the dataset into the data and the labels\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1]\n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " # Initializes the model with the best found parameter for each fold (individually).\n", " # The parameters on the extreme of the grid will be added to the parameters' dictionary.\n", " gb_model = GradientBoostingClassifier(n_estimators = 200, learning_rate = best_learning_rate[i], \n", " max_depth = best_max_depth[i], subsample = best_subsample[i], \n", " max_features = best_max_features[i], min_samples_split = best_min_samples_split[i])\n", "\n", " param_grid = dict()\n", "\n", " if best_learning_rate[i] == 0.05 or best_learning_rate[i] == 0.2:\n", " if best_learning_rate[i] == 0.05:\n", " learning_rate = [0.01, 0.03, 0.05, 0.07]\n", " else:\n", " learning_rate = [0.15, 0.2, 0.25, 0.3]\n", " param_grid['learning_rate'] = learning_rate\n", " bool_lr = True\n", " else:\n", " bool_lr = False\n", "\n", " if best_max_depth[i] == 3 or best_max_depth[i] == 8:\n", " if best_max_depth[i] == 3:\n", " max_depth = [1, 2, 3, 4]\n", " else:\n", " max_depth = [7, 8, 9, 10]\n", " param_grid['max_depth'] = max_depth\n", " bool_md = True\n", " else:\n", " bool_md = False\n", "\n", " if best_subsample[i] == 0.5 or best_subsample[i] == 1:\n", " if best_subsample[i] == 0.5:\n", " subsample = [0.4, 0.5, 0.6]\n", " else:\n", " subsample = [0.9, 0.95, 1]\n", " param_grid['subsample'] = subsample\n", " bool_s = True\n", " else:\n", " bool_s = False\n", "\n", " if best_min_samples_split[i] == 1 or best_min_samples_split[i] == 10:\n", " if best_min_samples_split[i] == 1:\n", " min_samples_split = [1, 2, 3, 4]\n", " else:\n", " min_samples_split = [9, 10, 11, 15]\n", " param_grid['min_samples_split'] = min_samples_split\n", " bool_mss = True\n", " else:\n", " bool_mss = False\n", "\n", " # Timed extended grid search.\n", " start = timer()\n", " #print(\"Starting the (expended) grid search...\")\n", " kfold = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 7)\n", " grid_search = GridSearchCV(gb_model, param_grid, scoring = \"neg_log_loss\", n_jobs = -1, cv = kfold, verbose = 1)\n", " grid_result = grid_search.fit(X, Y)\n", " #print(\"The (expended) grid search is over!\")\n", " end = timer()\n", " time_grid_gb[i] += (end - start)\n", "\n", " # Summarizes results.\n", " print(\"Best: %f using %s \\n\" % (grid_result.best_score_, grid_result.best_params_))\n", "\n", " # Replaces the old parameters on the extreme of the grid by the newly found values.\n", " if bool_lr == True:\n", " best_learning_rate[i] = grid_result.best_params_['learning_rate']\n", " if bool_md == True:\n", " best_max_depth[i] = grid_result.best_params_['max_depth']\n", " if bool_s == True:\n", " best_subsample[i] = grid_result.best_params_['subsample']\n", " if bool_mss == True:\n", " best_min_samples_split[i] = grid_result.best_params_['min_samples_split']\n", "\n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", "\n", " print(\"Done with the grid expansion for Gradient Boosting!\\n\") \n", " \n", " parameters_gb = [best_learning_rate, best_max_depth, best_subsample, best_max_features, best_min_samples_split]\n", " \n", " return parameters_gb \n", "\n", "\n", "\n", "# Trains all the models with the final parameters and tests them.\n", "def train_and_test(folder_name, num_folds, missing, parameters_xgboost, parameters_rf, parameters_gb):\n", " from numpy import genfromtxt\n", " from xgboost import XGBClassifier\n", " from sklearn.ensemble import RandomForestClassifier\n", " from sklearn.ensemble import GradientBoostingClassifier\n", " from sklearn.metrics import accuracy_score\n", " from sklearn.preprocessing import Imputer\n", " from sklearn.model_selection import GridSearchCV\n", " from sklearn.model_selection import StratifiedKFold\n", " \n", " # Initializes the default models.\n", " print(\"Initializing all the default models...\")\n", " xgb_d_model = XGBClassifier(n_estimators = 200)\n", " rf_d_model = RandomForestClassifier(n_estimators = 200)\n", " gb_d_model = GradientBoostingClassifier(n_estimators = 200)\n", " print(\"All the default models have been initialized!\")\n", " \n", " # Will store the accuracy for each fold. An average will then be computed.\n", " xgb_d_results = []\n", " xgb_results = []\n", " rf_d_results = []\n", " rf_results = []\n", " gb_d_results = []\n", " gb_results = []\n", " \n", " imputer = Imputer(missing_values = missing)\n", " \n", " depth_rf_d = []\n", " depth_rf = []\n", " \n", " # For each fold, loads the training/testing dataset in and fits the models before testing.\n", " for i in range(0, num_folds):\n", " # Loads the dataset (training fold).\n", " #print(\"Loading the training set...\")\n", " dataset = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_train.data', delimiter=\",\")\n", " #print(\"Training set was loaded in!\")\n", " \n", " # Split the dataset into the data and the labels\n", " #print(\"Splitting the dataset into data and labels...\")\n", " X = dataset[:, 0 : len(dataset[0]) - 1]\n", " Y = dataset[:, len(dataset[0]) - 1] \n", " X = imputer.fit_transform(X, Y)\n", " #print(\"The data and labels from the dataset have been split!\")\n", "\n", " print(\"Training all the default models over the fold with the best parameters...\")\n", " start = timer()\n", " xgb_d_model.fit(X, Y)\n", " end = timer()\n", " time_fit_xgb_d.append(end - start) \n", " \n", " start = timer()\n", " rf_d_model.fit(X, Y)\n", " end = timer()\n", " time_fit_rf_d.append(end - start)\n", " \n", " start = timer()\n", " gb_d_model.fit(X, Y)\n", " end = timer()\n", " time_fit_gb_d.append(end - start)\n", " print(\"All the default models have been trained!\")\n", " \n", " print(\"Initializing all the tuned models and training them over the fold with the best parameters...\")\n", " xgb_model = XGBClassifier(n_estimators = 200, learning_rate = parameters_xgboost[0][i], \n", " max_depth = parameters_xgboost[1][i], subsample = parameters_xgboost[2][i],\n", " gamma = parameters_xgboost[3][i], min_child_weight = parameters_xgboost[4][i])\n", " \n", " rf_model = RandomForestClassifier(n_estimators = 200, max_features = parameters_rf[0][i], \n", " min_samples_leaf = parameters_rf[1][i], max_depth = parameters_rf[2][i],\n", " min_samples_split = parameters_rf[3][i])\n", " \n", " gb_model = GradientBoostingClassifier(n_estimators = 200, learning_rate = parameters_gb[0][i], \n", " max_depth = parameters_gb[1][i], subsample = parameters_gb[2][i],\n", " max_features = parameters_gb[3][i], min_samples_split = parameters_gb[4][i])\n", " \n", " start = timer()\n", " xgb_model.fit(X, Y)\n", " end = timer()\n", " time_fit_xgb.append(end - start)\n", " \n", " start = timer()\n", " rf_model.fit(X, Y)\n", " end = timer()\n", " time_fit_rf.append(end - start)\n", " \n", " start = timer()\n", " gb_model.fit(X, Y)\n", " end = timer()\n", " time_fit_gb.append(end - start)\n", " print(\"All the tuned models have been initialized and trained!\")\n", " \n", " # Loads the dataset (testing fold).\n", " #print(\"Loading testing dataset...\") \n", " testing = genfromtxt(folder_name + '/' + 'fold' + str(i) + '_test.data', delimiter=\",\")\n", " #print(\"Testing dataset was loaded in!\")\n", "\n", " # Splits the testing fold into the data and the labels.\n", " #print(\"Splitting the testing set into data and labels...\")\n", " X_test = testing[:, 0 : len(dataset[0]) - 1]\n", " Y_test = testing[:, len(dataset[0]) - 1]\n", " X_test = imputer.fit_transform(X_test, Y_test);\n", " #print(\"The data and labels from the testing set have been split!\\n\")\n", " \n", " # Makes predictions for test data.\n", " xgb_d_Y_pred = xgb_d_model.predict(X_test)\n", " xgb_d_predictions = [round(value) for value in xgb_d_Y_pred]\n", " xgb_Y_pred = xgb_model.predict(X_test)\n", " xgb_predictions = [round(value) for value in xgb_Y_pred]\n", " rf_d_Y_pred = rf_d_model.predict(X_test)\n", " rf_d_predictions = [round(value) for value in rf_d_Y_pred]\n", " rf_Y_pred = rf_model.predict(X_test)\n", " rf_predictions = [round(value) for value in rf_Y_pred]\n", " gb_d_Y_pred = gb_d_model.predict(X_test)\n", " gb_d_predictions = [round(value) for value in gb_d_Y_pred]\n", " gb_Y_pred = gb_model.predict(X_test)\n", " gb_predictions = [round(value) for value in gb_Y_pred]\n", "\n", " # Evaluates predictions.\n", " xgb_d_accuracy = accuracy_score(Y_test, xgb_d_predictions)\n", " xgb_accuracy = accuracy_score(Y_test, xgb_predictions)\n", " rf_d_accuracy = accuracy_score(Y_test, rf_d_predictions)\n", " rf_accuracy = accuracy_score(Y_test, rf_predictions)\n", " gb_d_accuracy = accuracy_score(Y_test, gb_d_predictions)\n", " gb_accuracy = accuracy_score(Y_test, gb_predictions)\n", "\n", " # Saves the predictions results.\n", " xgb_d_results.append(xgb_d_accuracy)\n", " xgb_results.append(xgb_accuracy)\n", " rf_d_results.append(rf_d_accuracy)\n", " rf_results.append(rf_accuracy)\n", " gb_d_results.append(gb_d_accuracy)\n", " gb_results.append(gb_accuracy)\n", " \n", " #print(\"Default XGBoost accuracy %.2f%%\" % (xgb_d_accuracy * 100.0))\n", " #print(\"XGBoost accuracy: %.2f%%\" % (xgb_accuracy * 100.0))\n", " #print(\"Default Random Forests accuracy: %.2f%%\" % (rf_d_accuracy * 100.0))\n", " #print(\"Random Forests accuracy: %.2f%%\" % (rf_accuracy * 100.0))\n", " #print(\"Default Gradient Boosting accuracy: %.2f%%\" % (gb_d_accuracy * 100.0))\n", " #print(\"Gradient Boosting accuracy: %.2f%% \\n\" % (gb_accuracy * 100.0))\n", "\n", " print(\"%.2f %%\\n\" % ((i + 1) / num_folds * 100))\n", " \n", " # Saving the depth of the trees for random forests. \n", " tmp = [estimator.tree_.max_depth for estimator in rf_d_model.estimators_]\n", " depth_rf_d.append(sum(tmp) / len(tmp)) \n", " tmp = [estimator.tree_.max_depth for estimator in rf_model.estimators_]\n", " depth_rf.append(sum(tmp) / len(tmp))\n", " \n", " return xgb_d_results, xgb_results, rf_d_results, rf_results, gb_d_results, gb_results, depth_rf_d, depth_rf\n", "\n", "\n", "\n", "# Finds the most frequent parameters of a classifier out of its parameters array. \n", "def find_most_frequent_parameters(parameters):\n", " n_parameters = len(parameters) # Number of different parameters\n", " most_frequent_parameters = [] # 1D array containing the most frequent parameters.\n", " \n", " for i in range(0, n_parameters):\n", " for j in range(0, len(parameters[i])):\n", " if parameters[i][j] == None:\n", " parameters[i][j] = -1\n", " \n", " (values, counts) = np.unique(parameters[i], return_counts = True)\n", " ind = np.argmax(counts)\n", " most_frequent_parameters.append(values[ind]) # Stores the most frequent value for parameter i\n", " \n", " if most_frequent_parameters[i] == -1:\n", " most_frequent_parameters[i] = None\n", " \n", " return most_frequent_parameters\n", "\n", "\n", " \n", "# Prints the final accuracy results.\n", "def print_results(num_folds, xgb_d_results, xgb_results, rf_d_results, rf_results, gb_d_results, gb_results):\n", " print(\"\\t\\t XGB d.\\t\\t XGB t.\\t\\t RF d.\\t\\t RF t.\\t\\t GB d.\\t\\t GB t.\")\n", " for i in range(0, num_folds):\n", " print(\"Fold \", i + 1, \"\\t %.2f%%\" % (xgb_d_results[i] * 100.0), \"\\t %.2f%%\" % (xgb_results[i] * 100.0), \n", " \"\\t %.2f%%\" % (rf_d_results[i] * 100), \"\\t %.2f%%\" % (rf_results[i] * 100), \n", " \"\\t %.2f%%\" % (gb_d_results[i] * 100), \"\\t %.2f%%\" % (gb_results[i] * 100))\n", " print(\"Average\", \"\\t %.2f%%\" % (sum(xgb_d_results) / float(len(xgb_d_results)) * 100.0), \n", " \"\\t %.2f%%\" % (sum(xgb_results) / float(len(xgb_results)) * 100.0), \n", " \"\\t %.2f%%\" % (sum(rf_d_results) / float(len(rf_d_results)) * 100.0), \n", " \"\\t %.2f%%\" % (sum(rf_results) / float(len(rf_results)) * 100.0), \n", " \"\\t %.2f%%\" % (sum(gb_d_results) / float(len(gb_d_results)) * 100.0), \n", " \"\\t %.2f%%\" % (sum(gb_results) / float(len(gb_results)) * 100.0))\n", " \n", " print(\"Std dev\", \"\\t %.2f\" % (np.std(xgb_d_results)), \"\\t\\t %.2f\" % (np.std(xgb_results)),\n", " \"\\t\\t %.2f\" % (np.std(rf_d_results)), \"\\t\\t %.2f\" % (np.std(rf_results)), \"\\t\\t %.2f\" % (np.std(gb_d_results)),\n", " \"\\t\\t %.2f\" % (np.std(gb_results))) \n", " print(\"\\n\")\n", " print(\"\\n\")\n", " return\n", "\n", "\n", "\n", "# Prints the time for finding the optimum parameters.\n", "def print_timing(num_folds):\n", " print(\"\\t\\tXGB d.\\t XGB t.\\t\\t RF d.\\t RF t.\\t\\t GB d.\\t GB t.\")\n", " for i in range(0, num_folds):\n", " print(\"Fold \", i + 1, \"\\t %.2f\" % time_fit_xgb_d[i], \"\\t %.2f\" % time_grid_xgb[i], \"+ %.2f\" % time_fit_xgb[i], \n", " \"\\t %.2f\" % time_fit_rf_d[i], \"\\t %.2f\" % time_grid_rf[i], \"+ %.2f\" % time_fit_rf[i],\n", " \"\\t %.2f\" % time_fit_gb_d[i], \"\\t %.2f\" % time_grid_gb[i], \"+ %.2f\" % time_fit_gb[i]) \n", " \n", " print(\"Average\", \"\\t %.2f\" % (sum(time_fit_xgb_d) / float(len(time_fit_xgb_d))), \n", " \"\\t %.2f\" % (sum(time_grid_xgb) / float(len(time_grid_xgb))), \"+ %.2f\" % (sum(time_fit_xgb) / float(len(time_fit_xgb))),\n", " \"\\t %.2f\" % (sum(time_fit_rf_d) / float(len(time_fit_rf_d))), \n", " \"\\t %.2f\" % (sum(time_grid_rf) / float(len(time_grid_rf))), \"+ %.2f\" % (sum(time_fit_rf) / float(len(time_fit_rf))),\n", " \"\\t %.2f\" % (sum(time_fit_gb_d) / float(len(time_fit_gb_d))), \n", " \"\\t %.2f\" % (sum(time_grid_gb) / float(len(time_grid_gb))), \"+ %.2f\" % (sum(time_fit_gb) / float(len(time_fit_gb)))) \n", " print(\"\\n\")\n", " print(\"\\n\")\n", " return\n", "\n", "\n", "\n", "# Prints the average depth of each model. \n", "def print_depth(parameters_xgboost, parameters_gb, depth_rf_d, depth_rf):\n", " print(\"Depth of default XGBoost: \", 3) # Default value.\n", " print(\"Depth of tuned XGBoost: \", sum(parameters_xgboost[1]) / len(parameters_xgboost[1])) # Average max_depth value.\n", " print(\"Depth of default Random Forest: \", sum(depth_rf_d) / len(depth_rf_d)) # Since default value is \"None\", mean of all the depths.\n", " print(\"Depth of tuned Random Forest: \", sum(depth_rf) / len(depth_rf)) # Average value between the \"None\" and the \"fixed\" depths. \n", " print(\"Depth of default Gradient Boosting:\", 3) # Default value.\n", " print(\"Depth of tuned Gradient Boosting: \", sum(parameters_gb[1]) / len(parameters_gb[1])) # Average max_depth value.\n", " print(\"\\n\")\n", " print(\"\\n\")\n", " return\n", " \n", " \n", " \n", "# Prints the mode of the parameters.\n", "def print_mode(parameters_xgboost, parameters_rf, parameters_gb):\n", " # XGBoost\n", " most_frequent_xgboost = find_most_frequent_parameters(parameters_xgboost)\n", " print(\"XGBoost most frequent parameters\")\n", " print(\"Learning rate: \", most_frequent_xgboost[0])\n", " print(\"Depth: \", most_frequent_xgboost[1])\n", " print(\"Subsample: \", most_frequent_xgboost[2])\n", " print(\"Gamma: \", most_frequent_xgboost[3])\n", " print(\"Min child weight: \", most_frequent_xgboost[4])\n", " \n", " # Random Forests\n", " most_frequent_rf = find_most_frequent_parameters(parameters_rf) \n", " print(\"\\n\")\n", " print(\"Random Forest most frequent parameters\")\n", " print(\"Max features: \", most_frequent_rf[0])\n", " print(\"Min samples leaf: \", most_frequent_rf[1])\n", " print(\"Max depth: \", most_frequent_rf[2])\n", " print(\"Min samples split: \", most_frequent_rf[3]) \n", " \n", " # Gradient Boosting\n", " most_frequent_gb = find_most_frequent_parameters(parameters_gb)\n", " print(\"\\n\")\n", " print(\"Gradient Boosting most frequent parameters\")\n", " print(\"Learning rate: \", most_frequent_gb[0])\n", " print(\"Depth: \", most_frequent_gb[1])\n", " print(\"Subsample: \", most_frequent_gb[2])\n", " print(\"Max features: \", most_frequent_gb[3])\n", " print(\"Min samples split: \", most_frequent_gb[4])\n", " \n", " return \n", " \n", " \n", " \n", "# Compare the three classifiers. \n", "def compare_classifiers(folder_name, dataset_name, num_folds, missing):\n", " # Initializing all the variables for the time measurements.\n", " global time_grid_xgb, time_grid_rf, time_grid_gb\n", " global time_fit_xgb_d, time_fit_xgb\n", " global time_fit_rf_d, time_fit_rf\n", " global time_fit_gb_d, time_fit_gb\n", " time_grid_xgb = []\n", " time_grid_rf = []\n", " time_grid_gb = []\n", " time_fit_xgb_d = []\n", " time_fit_xgb = []\n", " time_fit_rf_d = []\n", " time_fit_rf = []\n", " time_fit_gb_d = []\n", " time_fit_gb = []\n", " \n", " # Splitting the dataset\n", " splitting_dataset(folder_name, dataset_name, num_folds) \n", " # Learning the parameters over the basic grid for XGBoost, RF and GB\n", " parameters_xgboost, parameters_rf, parameters_gb = general_grid_search(folder_name, num_folds, missing) \n", " # Training and testing with the best parameters of each fold for each classifier.\n", " xgb_d_results, xgb_results, rf_d_results, rf_results, gb_d_results, gb_results, depth_rf_d, depth_rf = train_and_test(folder_name, num_folds, missing, parameters_xgboost, parameters_rf, parameters_gb)\n", " # Printing stuff (accuracy, most frequent parameters, depth, std).\n", " print_results(num_folds, xgb_d_results, xgb_results, rf_d_results, rf_results, gb_d_results, gb_results)\n", " print_timing(num_folds)\n", " print_depth(parameters_xgboost, parameters_gb, depth_rf_d, depth_rf)\n", " print_mode(parameters_xgboost, parameters_rf, parameters_gb)\n", "\n", " return" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
google/referring-manipulation
third_party/blended_diffusion/CLIP/notebooks/Interacting_with_CLIP.ipynb
1
3599403
null
apache-2.0
JarronL/pynrc
dev_utils/test_speckle_bar.ipynb
1
1277710
null
mit
jaidevd/inmantec_fdp
notebooks/day4/05_intro_keras.ipynb
1
5932
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n", "os.environ['KERAS_BACKEND'] = \"theano\"\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Activation\n", "from keras.optimizers import SGD, RMSprop\n", "from sklearn.metrics import accuracy_score\n", "from sklearn.datasets import load_digits\n", "from sklearn.preprocessing import OneHotEncoder\n", "import numpy as np\n", "from utils import backprop_decision_boundary, backprop_make_classification, backprop_make_moons\n", "import matplotlib.pyplot as plt\n", "plt.style.use('ggplot')\n", "plt.rc('figure', figsize=(8, 6))\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting started with the Keras Sequential model\n", "\n", "## The Sequential model is a linear stack of layers." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# simulate data\n", "X, Y = backprop_make_classification()\n", "plt.scatter(X[:, 0], X[:, 1], c=Y.argmax(1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Same neural network architecture as before, but now in keras:\n", "### 1. Input layer has two neurons\n", "### 2. Hidden layer has three neurons\n", "### 3. Output layer has two neurons" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(3, input_dim=2)) # input layer is implicit\n", "model.add(Activation('sigmoid'))\n", "model.add(Dense(2)) # input dimensions are inferred\n", "model.add(Activation('sigmoid'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compilation Step:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sgd = SGD(lr=0.1)\n", "model.compile(optimizer=sgd, loss=\"binary_crossentropy\", metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model.fit(X, Y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# make dummy data\n", "backprop_decision_boundary(model.predict, X, Y)\n", "y_hat = model.predict(X)\n", "print(\"Accuracy: \", accuracy_score(np.argmax(Y, axis=1), np.argmax(y_hat, axis=1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Q: What went wrong?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(3, input_dim=2)) # input layer is implicit\n", "model.add(Activation('sigmoid'))\n", "model.add(Dense(2)) # input dimensions are inferred\n", "model.add(Activation('sigmoid'))\n", "# Why design the NN again?\n", "model.compile(optimizer=sgd, loss=\"binary_crossentropy\", metrics=['accuracy'])\n", "model.fit(X, Y, epochs=10000, verbose=0)\n", "backprop_decision_boundary(model.predict, X, Y)\n", "y_hat = model.predict(X)\n", "print(\"Accuracy: \", accuracy_score(np.argmax(Y, axis=1), np.argmax(y_hat, axis=1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Q: How do we reduce epochs?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(3, input_dim=2)) # input layer is implicit\n", "model.add(Activation('sigmoid'))\n", "model.add(Dense(2)) # input dimensions are inferred\n", "model.add(Activation('sigmoid'))\n", "sgd.lr = 0.4\n", "model.compile(optimizer=sgd, loss=\"binary_crossentropy\", metrics=['accuracy'])\n", "model.fit(X, Y, epochs=1000, verbose=0)\n", "backprop_decision_boundary(model.predict, X, Y)\n", "y_hat = model.predict(X)\n", "print(\"Accuracy: \", accuracy_score(np.argmax(Y, axis=1), np.argmax(y_hat, axis=1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise: Make a neural network to classify MNIST data\n", "## Hints: \n", "### 1. Two hidden layers, first of size 128, second of size 63.\n", "### 2. Use \"categorical_crossentropy\" loss function\n", "### 3. Use the RMSprop optimizer" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "digits = load_digits()\n", "X = digits.data\n", "X /= 255\n", "y = digits.target\n", "y = OneHotEncoder().fit_transform(y.reshape(-1, 1)) # What is this?\n", "y = y.todense()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# enter code here" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
sevenval/history-diagnostics
benchmark_get_windows.ipynb
1
10837
{ "metadata": { "name": "", "signature": "sha256:9912e70c71d78314e8430de20fc1c9f9ebd6cc5fddc6455abfba2940bc51aafa" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Benchmarking `searchsorted` (1) vs. `unique` (2) based get_windows\n", "\n", "tl;dr `unique`-based is much faster if there are a lot of empty windows (i.e. sparse data)\n" ] }, { "cell_type": "code", "collapsed": true, "input": [ "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Old version `searchsorted()`-based." ] }, { "cell_type": "code", "collapsed": false, "input": [ "def get_windows_1(times, window_size, start=None, end=None):\n", " t = times\n", " if start is None:\n", " start = times[0]\n", " if end is None:\n", " end = times[-1]\n", " n_windows = 1 + int((end - start) / window_size)\n", " windows = []\n", " idx_last = 0\n", " num_requests = 0\n", " n_empty = 0\n", " for i_window in range(0, n_windows):\n", " idx_included = np.searchsorted(t[idx_last:] , start + (i_window + 1) * window_size, \"right\")\n", " if idx_included == 0:\n", " n_empty += 1\n", " else:\n", " windows.append(np.arange(idx_last, idx_last + idx_included))\n", " idx_last += idx_included\n", " num_requests += len(windows[-1])\n", " assert num_requests == len(t), (num_requests, len(t))\n", " assert n_windows == len(windows) + n_empty, (n_windows, len(windows), n_empty)\n", "\n", " return windows\n", " \n", "get_windows_1(np.concatenate((np.zeros(4), np.arange(8))), 0.1)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "[array([0, 1, 2, 3, 4]),\n", " array([5]),\n", " array([6]),\n", " array([7]),\n", " array([8]),\n", " array([9]),\n", " array([10]),\n", " array([11])]" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## New version `unique()`-based." ] }, { "cell_type": "code", "collapsed": false, "input": [ "def get_windows_2(times, window_size, start=None, end_unused=None):\n", " if start is None:\n", " start = times[0]\n", " window_idx = ((times - start) / window_size).astype(int)\n", " #print(times)\n", " #print(window_idx)\n", " #print(window_size)\n", " first_idx = np.unique(window_idx, return_index=True)[1]\n", " # print(first_idx)\n", " windows = []\n", " for i, j in enumerate(first_idx):\n", " if i < len(first_idx) - 1:\n", " end = first_idx[i+1]\n", " else:\n", " end = len(window_idx)\n", " #print(i, j, end, np.arange(j, end)\n", " windows.append(np.arange(j, end))\n", " return windows\n", "\n", "get_windows_2(np.concatenate((np.zeros(4), np.arange(8))), 0.1)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "[array([0, 1, 2, 3, 4]),\n", " array([5]),\n", " array([6]),\n", " array([7]),\n", " array([8]),\n", " array([9]),\n", " array([10]),\n", " array([11])]" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "data1 = np.concatenate((np.zeros(4), np.arange(8)))\n", "data2 = np.random.rand(20)\n", "data2.sort()\n", "data3 = np.random.rand(1000)\n", "data3.sort()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Verify that both algorithms give the same results" ] }, { "cell_type": "code", "collapsed": false, "input": [ "r1 = get_windows_1(data3, 1e-3)\n", "r2 = get_windows_2(data3, 1e-3)\n", "print(\"same length\" if len(r1) == len(r2) else \"different length!\")\n", "for i1, i2 in zip(r1, r2):\n", " if len(i1) != len(i2) or (i1 != i2).any():\n", " print(i1, i2)\n", " break\n", "else:\n", " print(\"equal items\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "same length\n", "equal items\n" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Benchmarking results" ] }, { "cell_type": "code", "collapsed": false, "input": [ "for n, data in enumerate((data1, data2, data3), 1):\n", " print(\"data #{}\".format(n))\n", " for sz in (0.1, 0.01, 0.001, 1e-4):\n", " print(\" window size: {}\".format(sz))\n", " print(\" 1:\", end=\"\")\n", " %timeit get_windows_1(data3, sz, 0, 7)\n", " print(\" 2:\", end=\"\")\n", " %timeit get_windows_2(data3, sz, 0, 7)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "data #1\n", " window size: 0.1\n", " 1:10000 loops, best of 3: 185 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:10000 loops, best of 3: 61.2 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.01\n", " 1:1000 loops, best of 3: 1.84 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 283 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.001\n", " 1:100 loops, best of 3: 17.4 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 1.59 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.0001\n", " 1:10 loops, best of 3: 160 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:100 loops, best of 3: 2.5 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "data #2\n", " window size: 0.1\n", " 1:10000 loops, best of 3: 196 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:10000 loops, best of 3: 63.6 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.01\n", " 1:100 loops, best of 3: 1.9 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 283 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.001\n", " 1:100 loops, best of 3: 18 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 1.61 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.0001\n", " 1:10 loops, best of 3: 167 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:100 loops, best of 3: 2.38 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "data #3\n", " window size: 0.1\n", " 1:10000 loops, best of 3: 196 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:10000 loops, best of 3: 62 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.01\n", " 1:100 loops, best of 3: 1.87 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 279 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.001\n", " 1:100 loops, best of 3: 18 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:1000 loops, best of 3: 1.6 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " window size: 0.0001\n", " 1:10 loops, best of 3: 165 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " 2:100 loops, best of 3: 2.37 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }
mit
facaiy/book_notes
健身/动作整理/硬拉/Untitled.ipynb
2
761
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "硬拉知识整理\n", "=======" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 动作要领" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 生理学基础" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
cgpotts/cs224u
setup.ipynb
1
8424
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Course set-up" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "__author__ = \"Christopher Potts\"\n", "__version__ = \"CS224u, Stanford, Spring 2022\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook covers the steps you'll need to take to get set up for [CS224u](http://web.stanford.edu/class/cs224u/)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Contents\n", "\n", "1. [Anaconda](#Anaconda)\n", "1. [The course Github repository](#The-course-Github-repository)\n", "1. [Main data distribution](#Main-data-distribution)\n", "1. [Additional installations](#Additional-installations)\n", "1. [Jupyter notebooks](#Jupyter-notebooks)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Anaconda\n", "\n", "We recommend installing [the free Anaconda Python distribution](https://www.anaconda.com/products/individual), which includes IPython, Numpy, Scipy, matplotlib, scikit-learn, NLTK, and many other useful packages. This is not required, but it's an easy way to get all these packages installed. Unless you're very comfortable with Python package management and like installing things, this is the option for you!\n", "\n", "Please be sure that you download the __Python 3__ version, which currently installs Python 3.9. __Our codebase is not compatible with Python 2__.\n", "\n", "One you have Anaconda installed, create a virtual environment for the course. In a terminal, run\n", "\n", "```conda create -n nlu python=3.9 anaconda```\n", "\n", "to create an environment called `nlu`.\n", "\n", "Then, to enter the environment, run\n", "\n", "```conda activate nlu```\n", "\n", "To leave it, you can just close the window, or run\n", "\n", "```conda deactivate```\n", "\n", "If your version of Anaconda is older than version 4.4 (see `conda --version`), then replace `conda` with `source` in the above (and consider upgrading your Anaconda!).\n", "\n", "[This page](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) has more detailed instructions on managing virtual environments with Anaconda." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The course Github repository\n", "\n", "The core materials for the course are on Github:\n", "\n", "https://github.com/cgpotts/cs224u\n", "\n", "We'll be working in this repository a lot, and it will receive updates throughout the quarter, as we add new materials and correct bugs.\n", "\n", "If you're new to git and Github, we recommend using [Github's Desktop Apps](https://desktop.github.com). Then you just have to clone our repository and sync your local copy with the official one when there are updates. \n", "\n", "If you are comfortable with git in the command line, you can type the following command to clone the course's Github repo:\n", "\n", "```git clone https://github.com/cgpotts/cs224u```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Main data distribution\n", "\n", "The datasets needed to run the course notebooks and complete the assignments are in the following zip archive:\n", "\n", "http://web.stanford.edu/class/cs224u/data/data.tgz\n", "\n", "We recommend that you download it, unzip it, and place it in the same directory as your local copy of this Github repository. If you decide to put it somewhere else, you'll need to adjust the paths given in the \"Set-up\" sections of essentially all the notebooks.\n", "\n", "We recommend you to check the `md5` checksum of the `data.tgz` after the download. The current version (as of March 25, 2022), the checksum is `5e4a4e4c6b1aca47d711e25cb306a3aa`. If you see the different checksum, then please report this to the teaching staff." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Additional installations\n", "\n", "Be sure to do these additional installations from [inside your virtual environment](#Anaconda) for the course! Before you proceed from here, perhaps run\n", "\n", "```conda activate nlu```\n", "\n", "to make sure you are in that environment.\n", "\n", "If you are running Anaconda, then you can simply run\n", "\n", "```pip install -r requirements.txt```\n", "\n", "from inside the course virtual environment to install the core additional packages.\n", "\n", "People who aren't using Anaconda should edit `requirements.txt` so that it installs all the prerequisites that come with Anaconda and then run the above `pip` command from inside the course virtual environment to install the core additional packages." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our most important and finicky installations relate to our deep learning code. The following will check that you have the desired versions of the core libraries ([PyTorch](https://pytorch.org/) and [Hugging Face](https://huggingface.co./) `transformers`):" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", "assert torch.__version__ == '1.10.0',\\\n", " f\"torch version is {torch.__version__}\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import transformers\n", "\n", "assert transformers.__version__ == '4.17.0',\\\n", " f\"transformers version is {transformers.__version__}\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the above tests didn't pass, you *might* be okay, but it is probably best to change your versions inside the `nlu` virtual environment. These are fast-changing libraries and we can't ensure complete backward compatibility.\n", "\n", "If you have a [CUDA-enabled GPU](https://developer.nvidia.com/cuda-gpus), we recommend following the instructions posted here for installing PyTorch in a way that will let you take advantage of this:\n", "\n", "https://pytorch.org/get-started/locally/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Jupyter notebooks\n", "\n", "The majority of the materials for this course are Jupyter notebooks, which allow you to work in a browser, mixing code and description. It's a powerful form of [literate programming](https://en.wikipedia.org/wiki/Literate_programming), and increasingly a standard for open science.\n", "\n", "To start a notebook server, navigate to the directory where you want to work and run\n", "\n", "```jupyter notebook --port 5656```\n", "\n", "The port specification is optional. \n", "\n", "This should launch a browser that takes you to a view of the directory you're in. You can then open notebooks for working and create new notebooks.\n", "\n", "A major advantage of working with Anaconda is that you can switch virtual environments from inside a notebook, via the __Kernel__ menu. If this isn't an option for you, then run this command while inside your virtual environment:\n", "\n", "```python -m ipykernel install --user --name nlu --display-name \"nlu\"```\n", "\n", "(If you named your environment something other than `nlu`, then change the `--name` and `--display-name` values.) \n", "\n", "[Additional discussion of Jupyter and kernels.](https://stackoverflow.com/a/44786736)\n", "\n", "For some tips on getting started with notebooks, see [our Jupyter tutorial](tutorial_jupyter_notebooks.ipynb)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
datactive/bigbang
examples/git-analysis/Git Loading Tutorials.ipynb
1
134780
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Loading From Git\n", "This will familiarize you with the different ways to access a GitRepo (or MultiGitRepo) object and how to use its data.\n", "\n", "\n", "* Single Repo:\n", " * remote `get_repo(\"https://github.com/sbenthall/bigbang.git\", in_type = \"remote\" )`\n", " * local `get_repo(\"~/urap/bigbang/archives/sample_git_repos/bigbang\", in_type = \"local\" )`\n", " * name `get_repo(\"bigbang\", in_type = \"name\")`\n", "* Multiple Repos:\n", " * With repo names: `get_multi_repo(repo_names=[\"bigbang\",\"django\"])`\n", " * With repo objects: `get_multi_repo(repos=[{list of existing GitRepo objects}]`\n", " * With Github Organization names `get_org_multirepo(\"glass-bead-labs\")`\n", "\n", "# Repo Locations\n", "As of now, repos are clones into `archives/sample_git_repos/{repo_name}`. Their caches are stored at `archives/sample_git_repos/{repo_name}_backup.csv`.\n", "\n", "# Caches\n", "Caches are stored at `archives/sample_git_repos/{repo_name}_backup.csv`. They are the dumped `.csv` files of a GitRepo object's `commit_data` attribute, which is a pandas dataframe of all commit information. We can initialize a GitRepo object by feeding the cache's Pandas dataframe into the GitRepo init function. However, the init function will need to do some processing before it can use the cache as its commit data. It needs to convert the `\"Touched File\"` attribute of the cache dataframe from unicode `\"[file1, file2, file3]\"` to an actual list `[\"file1\", \"file2\", \"file3\"]`. It will also need to convert the time index of the cache from string to datetime.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Single Repos\n", "Here, we can load in three ways. We can use a github url, a local path to a repo, or the name of a repo. All of these return a `GitRepo` object.\n", "\n", "## Remote\n", "A remote call to `get_repo` will extract the repo's name from its git url. Thus, `https://github.com/sbenthall/bigbang.git` will yield `bigbang` as its name. It will check if the repo already exists. If it doesn't it will send a shell command to clone the remote repository to `archives/sample_git_repos/{repo_name}`. It will then return `get_repo({name}, in_type=\"name\")`. Before returning, however, it will cache the GitRepo object at `archives/sample_git_repos/{repo_name}_backup.csv` to make loading faster the next time.\n", "\n", "## Local\n", "A local call is the simplest. It will first extract the repo name from the filepath. Thus, `~/urap/bigbang/archives/sample_git_repos/bigbang` will yield `bigbang`. It will check to see if a git repo exists at the given address. If it does, it will initialize a GitPython object, which only needs a name and a filepath to a Git repo. Note that this option does not check or create a cache.\n", "\n", "## Name\n", "This is the preferred and easiest way to load a git repository. It works under the assumptions above about where a git repo and its cache should be stored. It will check to see if a cache exists. If it does, then it will load a GitPython object using that cache.\n", "\n", "If a cache is not found, then the function constructs a filepath from the name, using the above rule about where repo locations. It will pass off the function to `get_repo(filepath, in_type=\"local\")`. Before returning the answer, it will cache the result." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>Commit Message</th>\n", " <th>Committer Email</th>\n", " <th>Committer Name</th>\n", " <th>HEXSHA</th>\n", " <th>Parent Commit</th>\n", " <th>Time</th>\n", " <th>Touched File</th>\n", " <th>Person-ID</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0 </th>\n", " <td> 2015-04-13 22:49:33</td>\n", " <td> Merge pull request #195 from jesscxu/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> e6f985d15ff4736a08e2112b6c7ff0c0d0836a75</td>\n", " <td> [02d30c7ba4b02e899c4f098531812ca390983c0b, 5b5...</td>\n", " <td>2015-04-13 22:49:33</td>\n", " <td> [examples/viz/git/glass.json, examples/viz/git...</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>1 </th>\n", " <td> 2015-04-13 22:44:21</td>\n", " <td> Adding d3 visualization of GitDiff.ipynb graph\\n</td>\n", " <td> [email protected]</td>\n", " <td> Jessica Xu</td>\n", " <td> 5b54cc96d652a07b12b5c31d4f5ad5269e1aec37</td>\n", " <td> [02d30c7ba4b02e899c4f098531812ca390983c0b]</td>\n", " <td>2015-04-13 22:44:21</td>\n", " <td> [examples/viz/git/glass.json, examples/viz/git...</td>\n", " <td> 2</td>\n", " </tr>\n", " <tr>\n", " <th>2 </th>\n", " <td> 2015-04-10 21:59:33</td>\n", " <td> Merge pull request #194 from vsporeddy/master\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 02d30c7ba4b02e899c4f098531812ca390983c0b</td>\n", " <td> [3723718c356155a8c2c2104e813d61263a1f23c7, 2ec...</td>\n", " <td>2015-04-10 21:59:33</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>3 </th>\n", " <td> 2015-04-10 18:19:22</td>\n", " <td> Changed to directed graph</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 2ec31ee60878a08e5738dfa40245740e79dde97c</td>\n", " <td> [f5316bf07da3d4d51ac3bc1875b24d10693daa02]</td>\n", " <td>2015-04-10 18:19:22</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>4 </th>\n", " <td> 2015-04-10 18:18:13</td>\n", " <td> Merge pull request #3 from sbenthall/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> f5316bf07da3d4d51ac3bc1875b24d10693daa02</td>\n", " <td> [9aacab2a8eb5e7eabcb227caea5a82d99e5f8835, 372...</td>\n", " <td>2015-04-10 18:18:13</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>5 </th>\n", " <td> 2015-04-10 17:54:34</td>\n", " <td> Merge pull request #192 from Aryan-Barbarian/m...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 3723718c356155a8c2c2104e813d61263a1f23c7</td>\n", " <td> [a22c55ea0887bdff8f62e50d2abdca02f6fdbce6, ed6...</td>\n", " <td>2015-04-10 17:54:34</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>6 </th>\n", " <td> 2015-04-10 17:53:13</td>\n", " <td> Merge pull request #193 from vsporeddy/master\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> a22c55ea0887bdff8f62e50d2abdca02f6fdbce6</td>\n", " <td> [2b1f678c8ad75458b6a6b7484bed0ca72baee298, 9aa...</td>\n", " <td>2015-04-10 17:53:13</td>\n", " <td> [bigbang/get_dependencies.py, examples/File De...</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>7 </th>\n", " <td> 2015-04-10 17:30:29</td>\n", " <td> Fixed an issue where git repos with hyphens in...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> ed60740e26981e216542a258c0c5aa0afa50af95</td>\n", " <td> [8dac7fc397738b057d7fbdcd2bea1552e6f88339]</td>\n", " <td>2015-04-10 17:30:29</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>8 </th>\n", " <td> 2015-04-10 16:55:36</td>\n", " <td> Update File Dependency Network.ipynb</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 9aacab2a8eb5e7eabcb227caea5a82d99e5f8835</td>\n", " <td> [465c3a275bc341e2dab9d43c0363c2a7fff59b15]</td>\n", " <td>2015-04-10 16:55:36</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>9 </th>\n", " <td> 2015-04-10 16:54:44</td>\n", " <td> Create get_dependencies.py</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 465c3a275bc341e2dab9d43c0363c2a7fff59b15</td>\n", " <td> [95e074b3e32017adf92e74a8fb19e471bf95f1ee]</td>\n", " <td>2015-04-10 16:54:44</td>\n", " <td> [bigbang/get_dependencies.py]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td> 2015-04-10 16:53:57</td>\n", " <td> Update requirements.txt</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 95e074b3e32017adf92e74a8fb19e471bf95f1ee</td>\n", " <td> [68a5743f1cfe1241cb2608739418850b0b285360]</td>\n", " <td>2015-04-10 16:53:57</td>\n", " <td> [requirements.txt]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td> 2015-04-10 16:53:31</td>\n", " <td> Create File Dependency Network.ipynb</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 68a5743f1cfe1241cb2608739418850b0b285360</td>\n", " <td> [be536710f94ec072e04431e7cd043ad24f5f1afb]</td>\n", " <td>2015-04-10 16:53:31</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td> 2015-04-10 16:18:26</td>\n", " <td> Merge pull request #2 from sbenthall/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> be536710f94ec072e04431e7cd043ad24f5f1afb</td>\n", " <td> [3287f61619d148ccb7deb77c4821812d1dc9cff0, 2b1...</td>\n", " <td>2015-04-10 16:18:26</td>\n", " <td> [.gitignore, README.md, bigbang/archive.py, bi...</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td> 2015-04-10 11:06:56</td>\n", " <td> Warning people how long git diffs will take\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 8dac7fc397738b057d7fbdcd2bea1552e6f88339</td>\n", " <td> [0db0b375fcb90522f6a8700d87820e8fd91e5343]</td>\n", " <td>2015-04-10 11:06:56</td>\n", " <td> [bigbang/git_repo.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td> 2015-04-10 10:56:57</td>\n", " <td> Fixed another bug with repo loading logic\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 0db0b375fcb90522f6a8700d87820e8fd91e5343</td>\n", " <td> [a121a04579461d4a520fbe4113f0cd0b3a052911]</td>\n", " <td>2015-04-10 10:56:57</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td> 2015-04-10 10:35:54</td>\n", " <td> Fixed repo loading bug. The answer fetched was...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a121a04579461d4a520fbe4113f0cd0b3a052911</td>\n", " <td> [2b1f678c8ad75458b6a6b7484bed0ca72baee298]</td>\n", " <td>2015-04-10 10:35:54</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td> 2015-04-06 23:30:06</td>\n", " <td> Merge pull request #190 from dwins/setting_wit...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 2b1f678c8ad75458b6a6b7484bed0ca72baee298</td>\n", " <td> [48dfc9b5472471b5a8768f56566c6246c63aa3fe, c03...</td>\n", " <td>2015-04-06 23:30:06</td>\n", " <td> [bigbang/archive.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td> 2015-04-06 23:21:00</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 48dfc9b5472471b5a8768f56566c6246c63aa3fe</td>\n", " <td> [ff0a46b3afac4995517d7dc0ad1281f457e818b4, bc5...</td>\n", " <td>2015-04-06 23:21:00</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td> 2015-04-06 23:20:37</td>\n", " <td> Merge branch 'master' of https://github.com/ra...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> bc5ccc1fe3034f939ef2f74789a949d2f3604694</td>\n", " <td> [ff0a46b3afac4995517d7dc0ad1281f457e818b4, 039...</td>\n", " <td>2015-04-06 23:20:37</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td> 2015-04-06 23:13:58</td>\n", " <td> Merge branch 'cool9210-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> ff0a46b3afac4995517d7dc0ad1281f457e818b4</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 505...</td>\n", " <td>2015-04-06 23:13:58</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td> 2015-04-06 23:13:27</td>\n", " <td> Merge branch 'master' of https://github.com/co...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 505689d8494bab11e69f0687364dbba2a461b532</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 3fa...</td>\n", " <td>2015-04-06 23:13:27</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td> 2015-04-03 21:41:36</td>\n", " <td> Avoid SettingWithCopyWarning\\n\\nfixes #162\\n</td>\n", " <td> [email protected]</td>\n", " <td> David Winslow</td>\n", " <td> c03e3d20fae49a6d2f0458a4132af557b7ec355b</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e]</td>\n", " <td>2015-04-03 21:41:36</td>\n", " <td> [bigbang/archive.py]</td>\n", " <td> 5</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td> 2015-04-02 23:45:44</td>\n", " <td> committing twopeople\\n</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 3fa34b21dc5e7d6c7a7154fcda9473f4b0f18f93</td>\n", " <td> [e57bd1d4a81466b73027808d1f55fb9b4c671072]</td>\n", " <td>2015-04-02 23:45:44</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 6</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td> 2015-04-02 23:26:23</td>\n", " <td> updated robustness notebook\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> 039df37b77929fe52b183dfbf436254b95a4742d</td>\n", " <td> [a69e75b9e36afaf1a1b7af1f51ef00e9c3468095]</td>\n", " <td>2015-04-02 23:26:23</td>\n", " <td> [bigbang/twopeople.py, examples/Collaboration ...</td>\n", " <td> 7</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td> 2015-04-01 04:14:15</td>\n", " <td> Merge branch 'dwins-email_character_sets'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e</td>\n", " <td> [05d773f13331693d796a75daac2529b2efb8ccff, 561...</td>\n", " <td>2015-04-01 04:14:15</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td> 2015-03-31 20:34:42</td>\n", " <td> Consistently represent email data as Unicode\\n</td>\n", " <td> [email protected]</td>\n", " <td> David Winslow</td>\n", " <td> 56140670a9f627e226d449c17d29544be6f5598d</td>\n", " <td> [05d773f13331693d796a75daac2529b2efb8ccff]</td>\n", " <td>2015-03-31 20:34:42</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 5</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td> 2015-03-31 04:50:46</td>\n", " <td> changing type attribute to be keyed to string ...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 05d773f13331693d796a75daac2529b2efb8ccff</td>\n", " <td> [3e1c1f07f1b0d4a55751405b65004bd2b469945f]</td>\n", " <td>2015-03-31 04:50:46</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td> 2015-03-30 01:08:56</td>\n", " <td> Merge pull request #182 from Aryan-Barbarian/g...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 3e1c1f07f1b0d4a55751405b65004bd2b469945f</td>\n", " <td> [11905640d44377fb0c007cd340ab780e408f2d10, a71...</td>\n", " <td>2015-03-30 01:08:56</td>\n", " <td> [.gitignore, README.md, bigbang/git_repo.py, b...</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td> 2015-03-24 04:43:47</td>\n", " <td> Added the option to override the cache and for...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a713fad3a49cbb803cac33b01cfa3283fe20840f</td>\n", " <td> [225b0ee0c3b4db0cda06155eacc1b7d945572306]</td>\n", " <td>2015-03-24 04:43:47</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td> 2015-03-24 04:17:58</td>\n", " <td> Fixed bugs relating to caching the data.\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 225b0ee0c3b4db0cda06155eacc1b7d945572306</td>\n", " <td> [d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f]</td>\n", " <td>2015-03-24 04:17:58</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td> 2015-03-24 03:55:41</td>\n", " <td> Repo Loader wasn't importing pandas\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f</td>\n", " <td> [c5919b8d0fc2482b172923e58e51dad54ff209f9]</td>\n", " <td>2015-03-24 03:55:41</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td> 2015-03-24 03:54:51</td>\n", " <td> Repo Loader tries to cache now?\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> c5919b8d0fc2482b172923e58e51dad54ff209f9</td>\n", " <td> [fa5688b0711d68ec0ffa436d7f31c73907c81e35]</td>\n", " <td>2015-03-24 03:54:51</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td> 2015-03-24 03:40:36</td>\n", " <td> Git Repo takes flags for initialization now. N...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> fa5688b0711d68ec0ffa436d7f31c73907c81e35</td>\n", " <td> [c886ee31fbd48f17afc1b3158983591a17389dfd]</td>\n", " <td>2015-03-24 03:40:36</td>\n", " <td> [bigbang/git_repo.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td> 2015-03-22 19:51:47</td>\n", " <td> Fixed issues in the ipython notebooks regardin...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> c886ee31fbd48f17afc1b3158983591a17389dfd</td>\n", " <td> [d5187fadf9a8529bfc57ac9bade890cd7167a20b]</td>\n", " <td>2015-03-22 19:51:47</td>\n", " <td> [examples/Committer Dominance.ipynb, examples/...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td> 2015-03-22 19:32:33</td>\n", " <td> Moved git files into the main bigbang library....</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d5187fadf9a8529bfc57ac9bade890cd7167a20b</td>\n", " <td> [89de558656441f4f4e2ec16cc96d757c073d4772]</td>\n", " <td>2015-03-22 19:32:33</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td> 2015-03-17 21:26:03</td>\n", " <td> Fixing the readme\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 89de558656441f4f4e2ec16cc96d757c073d4772</td>\n", " <td> [befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d]</td>\n", " <td>2015-03-17 21:26:03</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td> 2015-03-17 21:14:42</td>\n", " <td> One more tweak to the README\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d</td>\n", " <td> [d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501]</td>\n", " <td>2015-03-17 21:14:42</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td> 2015-03-17 21:10:21</td>\n", " <td> Updated README\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501</td>\n", " <td> [b7c4d709b0a07972c90b336a0f7a667981416b7a]</td>\n", " <td>2015-03-17 21:10:21</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>38</th>\n", " <td> 2015-03-17 20:41:16</td>\n", " <td> The repo loader can now correctly fetch files.\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> b7c4d709b0a07972c90b336a0f7a667981416b7a</td>\n", " <td> [974c7a2e1765365dd40705e6ae7b41d9f984a118]</td>\n", " <td>2015-03-17 20:41:16</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td> 2015-03-17 20:27:58</td>\n", " <td> Small bug with repo loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 974c7a2e1765365dd40705e6ae7b41d9f984a118</td>\n", " <td> [598cf71c6697e4e346894bb58dfbeb30bda3c4aa]</td>\n", " <td>2015-03-17 20:27:58</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td> 2015-03-17 20:26:12</td>\n", " <td> RepoLoader generates the sample git directory ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 598cf71c6697e4e346894bb58dfbeb30bda3c4aa</td>\n", " <td> [a0f02f7f9a401c79815df5f5f52ca483dd6c007b]</td>\n", " <td>2015-03-17 20:26:12</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td> 2015-03-17 20:25:37</td>\n", " <td> Moved a lot of git repo loading functionality ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a0f02f7f9a401c79815df5f5f52ca483dd6c007b</td>\n", " <td> [8c102702f168ba86a8bb81802fe61db70361dfb0]</td>\n", " <td>2015-03-17 20:25:37</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td> 2015-03-17 20:06:49</td>\n", " <td> Very rough first draft of repo loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 8c102702f168ba86a8bb81802fe61db70361dfb0</td>\n", " <td> [296dd9a35d2aa006b8f8e9c32852b073e961b3bd]</td>\n", " <td>2015-03-17 20:06:49</td>\n", " <td> [bin/collect_git.py, git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>43</th>\n", " <td> 2015-03-17 19:14:08</td>\n", " <td> collect git now imports from Repository Loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 296dd9a35d2aa006b8f8e9c32852b073e961b3bd</td>\n", " <td> [0ff39bd05a7b4b792459b991a0f726422c7d2ef0]</td>\n", " <td>2015-03-17 19:14:08</td>\n", " <td> [bin/collect_git.py, git_data/GitRepo.py, git_...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td> 2015-03-17 18:53:17</td>\n", " <td> Slight cleanup in collect git script\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 0ff39bd05a7b4b792459b991a0f726422c7d2ef0</td>\n", " <td> [4f5104300b17035460a9f5e7819f8999da72e75b]</td>\n", " <td>2015-03-17 18:53:17</td>\n", " <td> [bin/collect_git.py]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td> 2015-03-17 18:31:44</td>\n", " <td> Merge remote-tracking branch 'upstream/master'...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 4f5104300b17035460a9f5e7819f8999da72e75b</td>\n", " <td> [f54194242ea036274d788039e77b2619020434dd, 119...</td>\n", " <td>2015-03-17 18:31:44</td>\n", " <td> [bigbang/mailman.py, bigbang/twopeople.py, req...</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td> 2015-03-17 00:03:27</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 11905640d44377fb0c007cd340ab780e408f2d10</td>\n", " <td> [00f13d97385763b699b52b562fc204d80149098b, 9f6...</td>\n", " <td>2015-03-17 00:03:27</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td> 2015-03-17 00:03:11</td>\n", " <td> Merge branch 'master' of https://github.com/ra...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 9f6c74e01dbbdd14468befa8cde1de82d08d7935</td>\n", " <td> [00f13d97385763b699b52b562fc204d80149098b, a69...</td>\n", " <td>2015-03-17 00:03:11</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td> 2015-03-16 23:56:02</td>\n", " <td> functions to create df\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> a69e75b9e36afaf1a1b7af1f51ef00e9c3468095</td>\n", " <td> [847720442d7cab223a6c83f0bd9db37ca28bdfbd]</td>\n", " <td>2015-03-16 23:56:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 7</td>\n", " </tr>\n", " <tr>\n", " <th>49</th>\n", " <td> 2015-03-14 20:18:01</td>\n", " <td> fixing variable reference in data collection e...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 00f13d97385763b699b52b562fc204d80149098b</td>\n", " <td> [701212ecb79f1b400c2e293d98ff582c750532d0]</td>\n", " <td>2015-03-14 20:18:01</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td> 2015-03-12 21:51:25</td>\n", " <td> adding jsonschema as a pip requirement\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 701212ecb79f1b400c2e293d98ff582c750532d0</td>\n", " <td> [aef98ed18e82a52ca4dfc593769f99f4618f8edb]</td>\n", " <td>2015-03-12 21:51:25</td>\n", " <td> [requirements.txt]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td> 2015-03-10 20:33:56</td>\n", " <td> git will now ignore the git_locals.json file, ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> f54194242ea036274d788039e77b2619020434dd</td>\n", " <td> [aef98ed18e82a52ca4dfc593769f99f4618f8edb]</td>\n", " <td>2015-03-10 20:33:56</td>\n", " <td> [.gitignore]</td>\n", " <td> 4</td>\n", " </tr>\n", " <tr>\n", " <th>52</th>\n", " <td> 2015-03-10 00:06:20</td>\n", " <td> Merge branch 'cool9210-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> aef98ed18e82a52ca4dfc593769f99f4618f8edb</td>\n", " <td> [a87af8aed3e0e2fb964579b8a7144361d4c19d2f, e57...</td>\n", " <td>2015-03-10 00:06:20</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>53</th>\n", " <td> 2015-03-10 00:01:08</td>\n", " <td> Merge branch 'master' of https://github.com/co...</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> e57bd1d4a81466b73027808d1f55fb9b4c671072</td>\n", " <td> [0547569578a496cf80d153ca9cf2d20849c1736c, 4ba...</td>\n", " <td>2015-03-10 00:01:08</td>\n", " <td> []</td>\n", " <td> 6</td>\n", " </tr>\n", " <tr>\n", " <th>54</th>\n", " <td> 2015-03-09 23:52:56</td>\n", " <td> This change is adding duration, reciprocity, a...</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 0547569578a496cf80d153ca9cf2d20849c1736c</td>\n", " <td> [a87af8aed3e0e2fb964579b8a7144361d4c19d2f]</td>\n", " <td>2015-03-09 23:52:56</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 6</td>\n", " </tr>\n", " <tr>\n", " <th>55</th>\n", " <td> 2015-03-09 23:40:02</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> a87af8aed3e0e2fb964579b8a7144361d4c19d2f</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07, 847...</td>\n", " <td>2015-03-09 23:40:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>56</th>\n", " <td> 2015-03-09 23:31:02</td>\n", " <td> first commit\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> 847720442d7cab223a6c83f0bd9db37ca28bdfbd</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07]</td>\n", " <td>2015-03-09 23:31:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 7</td>\n", " </tr>\n", " <tr>\n", " <th>57</th>\n", " <td> 2015-03-09 23:20:54</td>\n", " <td> Create twopeople.py</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 4ba2d1df3cb06eec91795ff22489b5533690dcfa</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07]</td>\n", " <td>2015-03-09 23:20:54</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 6</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td> 2015-03-05 22:47:56</td>\n", " <td> Merge branch 'vsporeddy'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 8c450a41c5446db94c0cff7151a8ef2297c43a07</td>\n", " <td> [0b47f504de03817db97e0d3556c98f7c252bc0f9, fef...</td>\n", " <td>2015-03-05 22:47:56</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td> 2015-03-04 05:48:45</td>\n", " <td> Update Git Diffs.ipynb\\n\\nAdded node colors an...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> fefb82dbc2b827cafb47edea9678f43f2a411681</td>\n", " <td> [0b47f504de03817db97e0d3556c98f7c252bc0f9]</td>\n", " <td>2015-03-04 05:48:45</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 3</td>\n", " </tr>\n", " <tr>\n", " <th></th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>372 rows × 9 columns</p>\n", "</div>" ], "text/plain": [ " Unnamed: 0 Commit Message \\\n", "0 2015-04-13 22:49:33 Merge pull request #195 from jesscxu/master\\n\\... \n", "1 2015-04-13 22:44:21 Adding d3 visualization of GitDiff.ipynb graph\\n \n", "2 2015-04-10 21:59:33 Merge pull request #194 from vsporeddy/master\\... \n", "3 2015-04-10 18:19:22 Changed to directed graph \n", "4 2015-04-10 18:18:13 Merge pull request #3 from sbenthall/master\\n\\... \n", "5 2015-04-10 17:54:34 Merge pull request #192 from Aryan-Barbarian/m... \n", "6 2015-04-10 17:53:13 Merge pull request #193 from vsporeddy/master\\... \n", "7 2015-04-10 17:30:29 Fixed an issue where git repos with hyphens in... \n", "8 2015-04-10 16:55:36 Update File Dependency Network.ipynb \n", "9 2015-04-10 16:54:44 Create get_dependencies.py \n", "10 2015-04-10 16:53:57 Update requirements.txt \n", "11 2015-04-10 16:53:31 Create File Dependency Network.ipynb \n", "12 2015-04-10 16:18:26 Merge pull request #2 from sbenthall/master\\n\\... \n", "13 2015-04-10 11:06:56 Warning people how long git diffs will take\\n \n", "14 2015-04-10 10:56:57 Fixed another bug with repo loading logic\\n \n", "15 2015-04-10 10:35:54 Fixed repo loading bug. The answer fetched was... \n", "16 2015-04-06 23:30:06 Merge pull request #190 from dwins/setting_wit... \n", "17 2015-04-06 23:21:00 Merge branch 'raj4-master'\\n \n", "18 2015-04-06 23:20:37 Merge branch 'master' of https://github.com/ra... \n", "19 2015-04-06 23:13:58 Merge branch 'cool9210-master'\\n \n", "20 2015-04-06 23:13:27 Merge branch 'master' of https://github.com/co... \n", "21 2015-04-03 21:41:36 Avoid SettingWithCopyWarning\\n\\nfixes #162\\n \n", "22 2015-04-02 23:45:44 committing twopeople\\n \n", "23 2015-04-02 23:26:23 updated robustness notebook\\n \n", "24 2015-04-01 04:14:15 Merge branch 'dwins-email_character_sets'\\n \n", "25 2015-03-31 20:34:42 Consistently represent email data as Unicode\\n \n", "26 2015-03-31 04:50:46 changing type attribute to be keyed to string ... \n", "27 2015-03-30 01:08:56 Merge pull request #182 from Aryan-Barbarian/g... \n", "28 2015-03-24 04:43:47 Added the option to override the cache and for... \n", "29 2015-03-24 04:17:58 Fixed bugs relating to caching the data.\\n \n", "30 2015-03-24 03:55:41 Repo Loader wasn't importing pandas\\n \n", "31 2015-03-24 03:54:51 Repo Loader tries to cache now?\\n \n", "32 2015-03-24 03:40:36 Git Repo takes flags for initialization now. N... \n", "33 2015-03-22 19:51:47 Fixed issues in the ipython notebooks regardin... \n", "34 2015-03-22 19:32:33 Moved git files into the main bigbang library.... \n", "35 2015-03-17 21:26:03 Fixing the readme\\n \n", "36 2015-03-17 21:14:42 One more tweak to the README\\n \n", "37 2015-03-17 21:10:21 Updated README\\n \n", "38 2015-03-17 20:41:16 The repo loader can now correctly fetch files.\\n \n", "39 2015-03-17 20:27:58 Small bug with repo loader\\n \n", "40 2015-03-17 20:26:12 RepoLoader generates the sample git directory ... \n", "41 2015-03-17 20:25:37 Moved a lot of git repo loading functionality ... \n", "42 2015-03-17 20:06:49 Very rough first draft of repo loader\\n \n", "43 2015-03-17 19:14:08 collect git now imports from Repository Loader\\n \n", "44 2015-03-17 18:53:17 Slight cleanup in collect git script\\n \n", "45 2015-03-17 18:31:44 Merge remote-tracking branch 'upstream/master'... \n", "46 2015-03-17 00:03:27 Merge branch 'raj4-master'\\n \n", "47 2015-03-17 00:03:11 Merge branch 'master' of https://github.com/ra... \n", "48 2015-03-16 23:56:02 functions to create df\\n \n", "49 2015-03-14 20:18:01 fixing variable reference in data collection e... \n", "50 2015-03-12 21:51:25 adding jsonschema as a pip requirement\\n \n", "51 2015-03-10 20:33:56 git will now ignore the git_locals.json file, ... \n", "52 2015-03-10 00:06:20 Merge branch 'cool9210-master'\\n \n", "53 2015-03-10 00:01:08 Merge branch 'master' of https://github.com/co... \n", "54 2015-03-09 23:52:56 This change is adding duration, reciprocity, a... \n", "55 2015-03-09 23:40:02 Merge branch 'raj4-master'\\n \n", "56 2015-03-09 23:31:02 first commit\\n \n", "57 2015-03-09 23:20:54 Create twopeople.py \n", "58 2015-03-05 22:47:56 Merge branch 'vsporeddy'\\n \n", "59 2015-03-04 05:48:45 Update Git Diffs.ipynb\\n\\nAdded node colors an... \n", " ... ... \n", "\n", " Committer Email Committer Name \\\n", "0 [email protected] Sebastian Benthall \n", "1 [email protected] Jessica Xu \n", "2 [email protected] Sebastian Benthall \n", "3 [email protected] Venkata Poreddy \n", "4 [email protected] Venkata Poreddy \n", "5 [email protected] Sebastian Benthall \n", "6 [email protected] Sebastian Benthall \n", "7 [email protected] Aryan Falahatpisheh \n", "8 [email protected] Venkata Poreddy \n", "9 [email protected] Venkata Poreddy \n", "10 [email protected] Venkata Poreddy \n", "11 [email protected] Venkata Poreddy \n", "12 [email protected] Venkata Poreddy \n", "13 [email protected] Aryan Falahatpisheh \n", "14 [email protected] Aryan Falahatpisheh \n", "15 [email protected] Aryan Falahatpisheh \n", "16 [email protected] Sebastian Benthall \n", "17 [email protected] sb \n", "18 [email protected] sb \n", "19 [email protected] sb \n", "20 [email protected] sb \n", "21 [email protected] David Winslow \n", "22 [email protected] Ki Deuk Kim \n", "23 [email protected] Raj Agrawal \n", "24 [email protected] sb \n", "25 [email protected] David Winslow \n", "26 [email protected] sb \n", "27 [email protected] Sebastian Benthall \n", "28 [email protected] Aryan Falahatpisheh \n", "29 [email protected] Aryan Falahatpisheh \n", "30 [email protected] Aryan Falahatpisheh \n", "31 [email protected] Aryan Falahatpisheh \n", "32 [email protected] Aryan Falahatpisheh \n", "33 [email protected] Aryan Falahatpisheh \n", "34 [email protected] Aryan Falahatpisheh \n", "35 [email protected] Aryan Falahatpisheh \n", "36 [email protected] Aryan Falahatpisheh \n", "37 [email protected] Aryan Falahatpisheh \n", "38 [email protected] Aryan Falahatpisheh \n", "39 [email protected] Aryan Falahatpisheh \n", "40 [email protected] Aryan Falahatpisheh \n", "41 [email protected] Aryan Falahatpisheh \n", "42 [email protected] Aryan Falahatpisheh \n", "43 [email protected] Aryan Falahatpisheh \n", "44 [email protected] Aryan Falahatpisheh \n", "45 [email protected] Aryan Falahatpisheh \n", "46 [email protected] sb \n", "47 [email protected] sb \n", "48 [email protected] Raj Agrawal \n", "49 [email protected] sb \n", "50 [email protected] sb \n", "51 [email protected] Aryan Falahatpisheh \n", "52 [email protected] sb \n", "53 [email protected] Ki Deuk Kim \n", "54 [email protected] Ki Deuk Kim \n", "55 [email protected] sb \n", "56 [email protected] Raj Agrawal \n", "57 [email protected] Ki Deuk Kim \n", "58 [email protected] sb \n", "59 [email protected] Venkata Poreddy \n", " ... ... \n", "\n", " HEXSHA \\\n", "0 e6f985d15ff4736a08e2112b6c7ff0c0d0836a75 \n", "1 5b54cc96d652a07b12b5c31d4f5ad5269e1aec37 \n", "2 02d30c7ba4b02e899c4f098531812ca390983c0b \n", "3 2ec31ee60878a08e5738dfa40245740e79dde97c \n", "4 f5316bf07da3d4d51ac3bc1875b24d10693daa02 \n", "5 3723718c356155a8c2c2104e813d61263a1f23c7 \n", "6 a22c55ea0887bdff8f62e50d2abdca02f6fdbce6 \n", "7 ed60740e26981e216542a258c0c5aa0afa50af95 \n", "8 9aacab2a8eb5e7eabcb227caea5a82d99e5f8835 \n", "9 465c3a275bc341e2dab9d43c0363c2a7fff59b15 \n", "10 95e074b3e32017adf92e74a8fb19e471bf95f1ee \n", "11 68a5743f1cfe1241cb2608739418850b0b285360 \n", "12 be536710f94ec072e04431e7cd043ad24f5f1afb \n", "13 8dac7fc397738b057d7fbdcd2bea1552e6f88339 \n", "14 0db0b375fcb90522f6a8700d87820e8fd91e5343 \n", "15 a121a04579461d4a520fbe4113f0cd0b3a052911 \n", "16 2b1f678c8ad75458b6a6b7484bed0ca72baee298 \n", "17 48dfc9b5472471b5a8768f56566c6246c63aa3fe \n", "18 bc5ccc1fe3034f939ef2f74789a949d2f3604694 \n", "19 ff0a46b3afac4995517d7dc0ad1281f457e818b4 \n", "20 505689d8494bab11e69f0687364dbba2a461b532 \n", "21 c03e3d20fae49a6d2f0458a4132af557b7ec355b \n", "22 3fa34b21dc5e7d6c7a7154fcda9473f4b0f18f93 \n", "23 039df37b77929fe52b183dfbf436254b95a4742d \n", "24 6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e \n", "25 56140670a9f627e226d449c17d29544be6f5598d \n", "26 05d773f13331693d796a75daac2529b2efb8ccff \n", "27 3e1c1f07f1b0d4a55751405b65004bd2b469945f \n", "28 a713fad3a49cbb803cac33b01cfa3283fe20840f \n", "29 225b0ee0c3b4db0cda06155eacc1b7d945572306 \n", "30 d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f \n", "31 c5919b8d0fc2482b172923e58e51dad54ff209f9 \n", "32 fa5688b0711d68ec0ffa436d7f31c73907c81e35 \n", "33 c886ee31fbd48f17afc1b3158983591a17389dfd \n", "34 d5187fadf9a8529bfc57ac9bade890cd7167a20b \n", "35 89de558656441f4f4e2ec16cc96d757c073d4772 \n", "36 befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d \n", "37 d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501 \n", "38 b7c4d709b0a07972c90b336a0f7a667981416b7a \n", "39 974c7a2e1765365dd40705e6ae7b41d9f984a118 \n", "40 598cf71c6697e4e346894bb58dfbeb30bda3c4aa \n", "41 a0f02f7f9a401c79815df5f5f52ca483dd6c007b \n", "42 8c102702f168ba86a8bb81802fe61db70361dfb0 \n", "43 296dd9a35d2aa006b8f8e9c32852b073e961b3bd \n", "44 0ff39bd05a7b4b792459b991a0f726422c7d2ef0 \n", "45 4f5104300b17035460a9f5e7819f8999da72e75b \n", "46 11905640d44377fb0c007cd340ab780e408f2d10 \n", "47 9f6c74e01dbbdd14468befa8cde1de82d08d7935 \n", "48 a69e75b9e36afaf1a1b7af1f51ef00e9c3468095 \n", "49 00f13d97385763b699b52b562fc204d80149098b \n", "50 701212ecb79f1b400c2e293d98ff582c750532d0 \n", "51 f54194242ea036274d788039e77b2619020434dd \n", "52 aef98ed18e82a52ca4dfc593769f99f4618f8edb \n", "53 e57bd1d4a81466b73027808d1f55fb9b4c671072 \n", "54 0547569578a496cf80d153ca9cf2d20849c1736c \n", "55 a87af8aed3e0e2fb964579b8a7144361d4c19d2f \n", "56 847720442d7cab223a6c83f0bd9db37ca28bdfbd \n", "57 4ba2d1df3cb06eec91795ff22489b5533690dcfa \n", "58 8c450a41c5446db94c0cff7151a8ef2297c43a07 \n", "59 fefb82dbc2b827cafb47edea9678f43f2a411681 \n", " ... \n", "\n", " Parent Commit Time \\\n", "0 [02d30c7ba4b02e899c4f098531812ca390983c0b, 5b5... 2015-04-13 22:49:33 \n", "1 [02d30c7ba4b02e899c4f098531812ca390983c0b] 2015-04-13 22:44:21 \n", "2 [3723718c356155a8c2c2104e813d61263a1f23c7, 2ec... 2015-04-10 21:59:33 \n", "3 [f5316bf07da3d4d51ac3bc1875b24d10693daa02] 2015-04-10 18:19:22 \n", "4 [9aacab2a8eb5e7eabcb227caea5a82d99e5f8835, 372... 2015-04-10 18:18:13 \n", "5 [a22c55ea0887bdff8f62e50d2abdca02f6fdbce6, ed6... 2015-04-10 17:54:34 \n", "6 [2b1f678c8ad75458b6a6b7484bed0ca72baee298, 9aa... 2015-04-10 17:53:13 \n", "7 [8dac7fc397738b057d7fbdcd2bea1552e6f88339] 2015-04-10 17:30:29 \n", "8 [465c3a275bc341e2dab9d43c0363c2a7fff59b15] 2015-04-10 16:55:36 \n", "9 [95e074b3e32017adf92e74a8fb19e471bf95f1ee] 2015-04-10 16:54:44 \n", "10 [68a5743f1cfe1241cb2608739418850b0b285360] 2015-04-10 16:53:57 \n", "11 [be536710f94ec072e04431e7cd043ad24f5f1afb] 2015-04-10 16:53:31 \n", "12 [3287f61619d148ccb7deb77c4821812d1dc9cff0, 2b1... 2015-04-10 16:18:26 \n", "13 [0db0b375fcb90522f6a8700d87820e8fd91e5343] 2015-04-10 11:06:56 \n", "14 [a121a04579461d4a520fbe4113f0cd0b3a052911] 2015-04-10 10:56:57 \n", "15 [2b1f678c8ad75458b6a6b7484bed0ca72baee298] 2015-04-10 10:35:54 \n", "16 [48dfc9b5472471b5a8768f56566c6246c63aa3fe, c03... 2015-04-06 23:30:06 \n", "17 [ff0a46b3afac4995517d7dc0ad1281f457e818b4, bc5... 2015-04-06 23:21:00 \n", "18 [ff0a46b3afac4995517d7dc0ad1281f457e818b4, 039... 2015-04-06 23:20:37 \n", "19 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 505... 2015-04-06 23:13:58 \n", "20 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 3fa... 2015-04-06 23:13:27 \n", "21 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e] 2015-04-03 21:41:36 \n", "22 [e57bd1d4a81466b73027808d1f55fb9b4c671072] 2015-04-02 23:45:44 \n", "23 [a69e75b9e36afaf1a1b7af1f51ef00e9c3468095] 2015-04-02 23:26:23 \n", "24 [05d773f13331693d796a75daac2529b2efb8ccff, 561... 2015-04-01 04:14:15 \n", "25 [05d773f13331693d796a75daac2529b2efb8ccff] 2015-03-31 20:34:42 \n", "26 [3e1c1f07f1b0d4a55751405b65004bd2b469945f] 2015-03-31 04:50:46 \n", "27 [11905640d44377fb0c007cd340ab780e408f2d10, a71... 2015-03-30 01:08:56 \n", "28 [225b0ee0c3b4db0cda06155eacc1b7d945572306] 2015-03-24 04:43:47 \n", "29 [d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f] 2015-03-24 04:17:58 \n", "30 [c5919b8d0fc2482b172923e58e51dad54ff209f9] 2015-03-24 03:55:41 \n", "31 [fa5688b0711d68ec0ffa436d7f31c73907c81e35] 2015-03-24 03:54:51 \n", "32 [c886ee31fbd48f17afc1b3158983591a17389dfd] 2015-03-24 03:40:36 \n", "33 [d5187fadf9a8529bfc57ac9bade890cd7167a20b] 2015-03-22 19:51:47 \n", "34 [89de558656441f4f4e2ec16cc96d757c073d4772] 2015-03-22 19:32:33 \n", "35 [befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d] 2015-03-17 21:26:03 \n", "36 [d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501] 2015-03-17 21:14:42 \n", "37 [b7c4d709b0a07972c90b336a0f7a667981416b7a] 2015-03-17 21:10:21 \n", "38 [974c7a2e1765365dd40705e6ae7b41d9f984a118] 2015-03-17 20:41:16 \n", "39 [598cf71c6697e4e346894bb58dfbeb30bda3c4aa] 2015-03-17 20:27:58 \n", "40 [a0f02f7f9a401c79815df5f5f52ca483dd6c007b] 2015-03-17 20:26:12 \n", "41 [8c102702f168ba86a8bb81802fe61db70361dfb0] 2015-03-17 20:25:37 \n", "42 [296dd9a35d2aa006b8f8e9c32852b073e961b3bd] 2015-03-17 20:06:49 \n", "43 [0ff39bd05a7b4b792459b991a0f726422c7d2ef0] 2015-03-17 19:14:08 \n", "44 [4f5104300b17035460a9f5e7819f8999da72e75b] 2015-03-17 18:53:17 \n", "45 [f54194242ea036274d788039e77b2619020434dd, 119... 2015-03-17 18:31:44 \n", "46 [00f13d97385763b699b52b562fc204d80149098b, 9f6... 2015-03-17 00:03:27 \n", "47 [00f13d97385763b699b52b562fc204d80149098b, a69... 2015-03-17 00:03:11 \n", "48 [847720442d7cab223a6c83f0bd9db37ca28bdfbd] 2015-03-16 23:56:02 \n", "49 [701212ecb79f1b400c2e293d98ff582c750532d0] 2015-03-14 20:18:01 \n", "50 [aef98ed18e82a52ca4dfc593769f99f4618f8edb] 2015-03-12 21:51:25 \n", "51 [aef98ed18e82a52ca4dfc593769f99f4618f8edb] 2015-03-10 20:33:56 \n", "52 [a87af8aed3e0e2fb964579b8a7144361d4c19d2f, e57... 2015-03-10 00:06:20 \n", "53 [0547569578a496cf80d153ca9cf2d20849c1736c, 4ba... 2015-03-10 00:01:08 \n", "54 [a87af8aed3e0e2fb964579b8a7144361d4c19d2f] 2015-03-09 23:52:56 \n", "55 [8c450a41c5446db94c0cff7151a8ef2297c43a07, 847... 2015-03-09 23:40:02 \n", "56 [8c450a41c5446db94c0cff7151a8ef2297c43a07] 2015-03-09 23:31:02 \n", "57 [8c450a41c5446db94c0cff7151a8ef2297c43a07] 2015-03-09 23:20:54 \n", "58 [0b47f504de03817db97e0d3556c98f7c252bc0f9, fef... 2015-03-05 22:47:56 \n", "59 [0b47f504de03817db97e0d3556c98f7c252bc0f9] 2015-03-04 05:48:45 \n", " ... ... \n", "\n", " Touched File Person-ID \n", "0 [examples/viz/git/glass.json, examples/viz/git... 1 \n", "1 [examples/viz/git/glass.json, examples/viz/git... 2 \n", "2 [examples/File Dependency Network.ipynb] 1 \n", "3 [examples/File Dependency Network.ipynb] 3 \n", "4 [bigbang/git_repo.py, bigbang/repo_loader.py] 3 \n", "5 [bigbang/git_repo.py, bigbang/repo_loader.py] 1 \n", "6 [bigbang/get_dependencies.py, examples/File De... 1 \n", "7 [bigbang/repo_loader.py] 4 \n", "8 [examples/File Dependency Network.ipynb] 3 \n", "9 [bigbang/get_dependencies.py] 3 \n", "10 [requirements.txt] 3 \n", "11 [examples/File Dependency Network.ipynb] 3 \n", "12 [.gitignore, README.md, bigbang/archive.py, bi... 3 \n", "13 [bigbang/git_repo.py] 4 \n", "14 [bigbang/git_repo.py, bigbang/repo_loader.py] 4 \n", "15 [bigbang/git_repo.py, bigbang/repo_loader.py] 4 \n", "16 [bigbang/archive.py] 1 \n", "17 [examples/Collaboration Robustness.ipynb] 1 \n", "18 [examples/Collaboration Robustness.ipynb] 1 \n", "19 [bigbang/twopeople.py] 1 \n", "20 [bigbang/twopeople.py] 1 \n", "21 [bigbang/archive.py] 5 \n", "22 [bigbang/twopeople.py] 6 \n", "23 [bigbang/twopeople.py, examples/Collaboration ... 7 \n", "24 [bigbang/mailman.py] 1 \n", "25 [bigbang/mailman.py] 5 \n", "26 [examples/Git Diffs.ipynb] 1 \n", "27 [.gitignore, README.md, bigbang/git_repo.py, b... 1 \n", "28 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 \n", "29 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 \n", "30 [bigbang/repo_loader.py] 4 \n", "31 [bigbang/repo_loader.py] 4 \n", "32 [bigbang/git_repo.py] 4 \n", "33 [examples/Committer Dominance.ipynb, examples/... 4 \n", "34 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 \n", "35 [README.md] 4 \n", "36 [README.md] 4 \n", "37 [README.md] 4 \n", "38 [git_data/RepoLoader.py] 4 \n", "39 [git_data/RepoLoader.py] 4 \n", "40 [git_data/RepoLoader.py] 4 \n", "41 [git_data/RepoLoader.py] 4 \n", "42 [bin/collect_git.py, git_data/RepoLoader.py] 4 \n", "43 [bin/collect_git.py, git_data/GitRepo.py, git_... 4 \n", "44 [bin/collect_git.py] 4 \n", "45 [bigbang/mailman.py, bigbang/twopeople.py, req... 4 \n", "46 [bigbang/twopeople.py] 1 \n", "47 [bigbang/twopeople.py] 1 \n", "48 [bigbang/twopeople.py] 7 \n", "49 [bigbang/mailman.py] 1 \n", "50 [requirements.txt] 1 \n", "51 [.gitignore] 4 \n", "52 [examples/Collaboration Robustness.ipynb] 1 \n", "53 [] 6 \n", "54 [examples/Collaboration Robustness.ipynb] 6 \n", "55 [bigbang/twopeople.py] 1 \n", "56 [bigbang/twopeople.py] 7 \n", "57 [bigbang/twopeople.py] 6 \n", "58 [examples/Git Diffs.ipynb] 1 \n", "59 [examples/Git Diffs.ipynb] 3 \n", " ... ... \n", "\n", "[372 rows x 9 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from bigbang import repo_loader # The file that handles most loading\n", "\n", "repo = repo_loader.get_repo(\"https://github.com/sbenthall/bigbang.git\", in_type = \"remote\" )\n", "# repo = repo_loader.get_repo(\"../\", in_type = \"local\" ) # I commented this out because it may take too long\n", "repo = repo_loader.get_repo(\"bigbang\", in_type = \"name\")\n", "repo.commit_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# MultiRepos\n", "These are the ways we can get MultiGitRepo objects. MultiGitRepo objects are GitRepos that were created with a list of GitRepos. Basically, a MultiGitRepo's `commit_data` contains the commit_data from all of its GitRepos. The only difference is that each entry has an extra attribute, `Repo Name` that tells us which Repo that commit is initially from.\n", "\n", "## List of Repos / List of Repo Names (`get_multi_repo`)\n", "This is rather simple. We can call the `get_multi_repo` method with either a list of repo names `[\"bigbang\", \"django\", \"scipy\"]` or a list of actual GitRepo objects. This returns us the merged MultiGitRepo. Please note that this will not work if a local clone / cache of the repos does not exist for every repo name (e.g. if you ask for `[\"bigbang\", \"django\", \"scipy\"]`, you must already have a local copy of those in your sample_git_repos directory.\n", "\n", "## Github Organization's Repos (`get_org_multirepo`)\n", "This is more useful to us. We can use this method to get a MultiGitRepo that contains the information from every repo in a Github Organization. This requires that we input the organization's name *exactly* as it appears on Github (edX, glass-bead-labs, codeforamerica, etc.)\n", "\n", "It will look for `examples/{org_name}_urls.txt`, which should be a file that contains all of the git urls of the projects that belong to that organization. If this file doesn't yet exist, it will make a call to the Github API. This requires a stable internet connection, and it may randomly stall on requests that do not time out.\n", "\n", "The function will then use the list of git urls and the `get_repo` method to get each repo. It will use this list of repos to create a MultiGitRepo object, using `get_multi_repo`.\n", "\n", "\n", "Note that the examples below will not work if you don't have an internet connection, and may take some time to process. The first call may also fail if you do not have all of the repositories" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>Commit Message</th>\n", " <th>Committer Email</th>\n", " <th>Committer Name</th>\n", " <th>HEXSHA</th>\n", " <th>Parent Commit</th>\n", " <th>Time</th>\n", " <th>Touched File</th>\n", " <th>Person-ID</th>\n", " <th>Repo Name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0 </th>\n", " <td> 2015-04-13 22:49:33</td>\n", " <td> Merge pull request #195 from jesscxu/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> e6f985d15ff4736a08e2112b6c7ff0c0d0836a75</td>\n", " <td> [02d30c7ba4b02e899c4f098531812ca390983c0b, 5b5...</td>\n", " <td>2015-04-13 22:49:33</td>\n", " <td> [examples/viz/git/glass.json, examples/viz/git...</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>1 </th>\n", " <td> 2015-04-13 22:44:21</td>\n", " <td> Adding d3 visualization of GitDiff.ipynb graph\\n</td>\n", " <td> [email protected]</td>\n", " <td> Jessica Xu</td>\n", " <td> 5b54cc96d652a07b12b5c31d4f5ad5269e1aec37</td>\n", " <td> [02d30c7ba4b02e899c4f098531812ca390983c0b]</td>\n", " <td>2015-04-13 22:44:21</td>\n", " <td> [examples/viz/git/glass.json, examples/viz/git...</td>\n", " <td> 2</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>2 </th>\n", " <td> 2015-04-10 21:59:33</td>\n", " <td> Merge pull request #194 from vsporeddy/master\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 02d30c7ba4b02e899c4f098531812ca390983c0b</td>\n", " <td> [3723718c356155a8c2c2104e813d61263a1f23c7, 2ec...</td>\n", " <td>2015-04-10 21:59:33</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>3 </th>\n", " <td> 2015-04-10 18:19:22</td>\n", " <td> Changed to directed graph</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 2ec31ee60878a08e5738dfa40245740e79dde97c</td>\n", " <td> [f5316bf07da3d4d51ac3bc1875b24d10693daa02]</td>\n", " <td>2015-04-10 18:19:22</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>4 </th>\n", " <td> 2015-04-10 18:18:13</td>\n", " <td> Merge pull request #3 from sbenthall/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> f5316bf07da3d4d51ac3bc1875b24d10693daa02</td>\n", " <td> [9aacab2a8eb5e7eabcb227caea5a82d99e5f8835, 372...</td>\n", " <td>2015-04-10 18:18:13</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>5 </th>\n", " <td> 2015-04-10 17:54:34</td>\n", " <td> Merge pull request #192 from Aryan-Barbarian/m...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 3723718c356155a8c2c2104e813d61263a1f23c7</td>\n", " <td> [a22c55ea0887bdff8f62e50d2abdca02f6fdbce6, ed6...</td>\n", " <td>2015-04-10 17:54:34</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>6 </th>\n", " <td> 2015-04-10 17:53:13</td>\n", " <td> Merge pull request #193 from vsporeddy/master\\...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> a22c55ea0887bdff8f62e50d2abdca02f6fdbce6</td>\n", " <td> [2b1f678c8ad75458b6a6b7484bed0ca72baee298, 9aa...</td>\n", " <td>2015-04-10 17:53:13</td>\n", " <td> [bigbang/get_dependencies.py, examples/File De...</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>7 </th>\n", " <td> 2015-04-10 17:30:29</td>\n", " <td> Fixed an issue where git repos with hyphens in...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> ed60740e26981e216542a258c0c5aa0afa50af95</td>\n", " <td> [8dac7fc397738b057d7fbdcd2bea1552e6f88339]</td>\n", " <td>2015-04-10 17:30:29</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>8 </th>\n", " <td> 2015-04-10 16:55:36</td>\n", " <td> Update File Dependency Network.ipynb</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 9aacab2a8eb5e7eabcb227caea5a82d99e5f8835</td>\n", " <td> [465c3a275bc341e2dab9d43c0363c2a7fff59b15]</td>\n", " <td>2015-04-10 16:55:36</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>9 </th>\n", " <td> 2015-04-10 16:54:44</td>\n", " <td> Create get_dependencies.py</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 465c3a275bc341e2dab9d43c0363c2a7fff59b15</td>\n", " <td> [95e074b3e32017adf92e74a8fb19e471bf95f1ee]</td>\n", " <td>2015-04-10 16:54:44</td>\n", " <td> [bigbang/get_dependencies.py]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td> 2015-04-10 16:53:57</td>\n", " <td> Update requirements.txt</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 95e074b3e32017adf92e74a8fb19e471bf95f1ee</td>\n", " <td> [68a5743f1cfe1241cb2608739418850b0b285360]</td>\n", " <td>2015-04-10 16:53:57</td>\n", " <td> [requirements.txt]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td> 2015-04-10 16:53:31</td>\n", " <td> Create File Dependency Network.ipynb</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> 68a5743f1cfe1241cb2608739418850b0b285360</td>\n", " <td> [be536710f94ec072e04431e7cd043ad24f5f1afb]</td>\n", " <td>2015-04-10 16:53:31</td>\n", " <td> [examples/File Dependency Network.ipynb]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td> 2015-04-10 16:18:26</td>\n", " <td> Merge pull request #2 from sbenthall/master\\n\\...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> be536710f94ec072e04431e7cd043ad24f5f1afb</td>\n", " <td> [3287f61619d148ccb7deb77c4821812d1dc9cff0, 2b1...</td>\n", " <td>2015-04-10 16:18:26</td>\n", " <td> [.gitignore, README.md, bigbang/archive.py, bi...</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td> 2015-04-10 11:06:56</td>\n", " <td> Warning people how long git diffs will take\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 8dac7fc397738b057d7fbdcd2bea1552e6f88339</td>\n", " <td> [0db0b375fcb90522f6a8700d87820e8fd91e5343]</td>\n", " <td>2015-04-10 11:06:56</td>\n", " <td> [bigbang/git_repo.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td> 2015-04-10 10:56:57</td>\n", " <td> Fixed another bug with repo loading logic\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 0db0b375fcb90522f6a8700d87820e8fd91e5343</td>\n", " <td> [a121a04579461d4a520fbe4113f0cd0b3a052911]</td>\n", " <td>2015-04-10 10:56:57</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td> 2015-04-10 10:35:54</td>\n", " <td> Fixed repo loading bug. The answer fetched was...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a121a04579461d4a520fbe4113f0cd0b3a052911</td>\n", " <td> [2b1f678c8ad75458b6a6b7484bed0ca72baee298]</td>\n", " <td>2015-04-10 10:35:54</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td> 2015-04-06 23:30:06</td>\n", " <td> Merge pull request #190 from dwins/setting_wit...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 2b1f678c8ad75458b6a6b7484bed0ca72baee298</td>\n", " <td> [48dfc9b5472471b5a8768f56566c6246c63aa3fe, c03...</td>\n", " <td>2015-04-06 23:30:06</td>\n", " <td> [bigbang/archive.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td> 2015-04-06 23:21:00</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 48dfc9b5472471b5a8768f56566c6246c63aa3fe</td>\n", " <td> [ff0a46b3afac4995517d7dc0ad1281f457e818b4, bc5...</td>\n", " <td>2015-04-06 23:21:00</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td> 2015-04-06 23:20:37</td>\n", " <td> Merge branch 'master' of https://github.com/ra...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> bc5ccc1fe3034f939ef2f74789a949d2f3604694</td>\n", " <td> [ff0a46b3afac4995517d7dc0ad1281f457e818b4, 039...</td>\n", " <td>2015-04-06 23:20:37</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td> 2015-04-06 23:13:58</td>\n", " <td> Merge branch 'cool9210-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> ff0a46b3afac4995517d7dc0ad1281f457e818b4</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 505...</td>\n", " <td>2015-04-06 23:13:58</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td> 2015-04-06 23:13:27</td>\n", " <td> Merge branch 'master' of https://github.com/co...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 505689d8494bab11e69f0687364dbba2a461b532</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 3fa...</td>\n", " <td>2015-04-06 23:13:27</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td> 2015-04-03 21:41:36</td>\n", " <td> Avoid SettingWithCopyWarning\\n\\nfixes #162\\n</td>\n", " <td> [email protected]</td>\n", " <td> David Winslow</td>\n", " <td> c03e3d20fae49a6d2f0458a4132af557b7ec355b</td>\n", " <td> [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e]</td>\n", " <td>2015-04-03 21:41:36</td>\n", " <td> [bigbang/archive.py]</td>\n", " <td> 5</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td> 2015-04-02 23:45:44</td>\n", " <td> committing twopeople\\n</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 3fa34b21dc5e7d6c7a7154fcda9473f4b0f18f93</td>\n", " <td> [e57bd1d4a81466b73027808d1f55fb9b4c671072]</td>\n", " <td>2015-04-02 23:45:44</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 6</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td> 2015-04-02 23:26:23</td>\n", " <td> updated robustness notebook\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> 039df37b77929fe52b183dfbf436254b95a4742d</td>\n", " <td> [a69e75b9e36afaf1a1b7af1f51ef00e9c3468095]</td>\n", " <td>2015-04-02 23:26:23</td>\n", " <td> [bigbang/twopeople.py, examples/Collaboration ...</td>\n", " <td> 7</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td> 2015-04-01 04:14:15</td>\n", " <td> Merge branch 'dwins-email_character_sets'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e</td>\n", " <td> [05d773f13331693d796a75daac2529b2efb8ccff, 561...</td>\n", " <td>2015-04-01 04:14:15</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td> 2015-03-31 20:34:42</td>\n", " <td> Consistently represent email data as Unicode\\n</td>\n", " <td> [email protected]</td>\n", " <td> David Winslow</td>\n", " <td> 56140670a9f627e226d449c17d29544be6f5598d</td>\n", " <td> [05d773f13331693d796a75daac2529b2efb8ccff]</td>\n", " <td>2015-03-31 20:34:42</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 5</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td> 2015-03-31 04:50:46</td>\n", " <td> changing type attribute to be keyed to string ...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 05d773f13331693d796a75daac2529b2efb8ccff</td>\n", " <td> [3e1c1f07f1b0d4a55751405b65004bd2b469945f]</td>\n", " <td>2015-03-31 04:50:46</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td> 2015-03-30 01:08:56</td>\n", " <td> Merge pull request #182 from Aryan-Barbarian/g...</td>\n", " <td> [email protected]</td>\n", " <td> Sebastian Benthall</td>\n", " <td> 3e1c1f07f1b0d4a55751405b65004bd2b469945f</td>\n", " <td> [11905640d44377fb0c007cd340ab780e408f2d10, a71...</td>\n", " <td>2015-03-30 01:08:56</td>\n", " <td> [.gitignore, README.md, bigbang/git_repo.py, b...</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td> 2015-03-24 04:43:47</td>\n", " <td> Added the option to override the cache and for...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a713fad3a49cbb803cac33b01cfa3283fe20840f</td>\n", " <td> [225b0ee0c3b4db0cda06155eacc1b7d945572306]</td>\n", " <td>2015-03-24 04:43:47</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td> 2015-03-24 04:17:58</td>\n", " <td> Fixed bugs relating to caching the data.\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 225b0ee0c3b4db0cda06155eacc1b7d945572306</td>\n", " <td> [d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f]</td>\n", " <td>2015-03-24 04:17:58</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td> 2015-03-24 03:55:41</td>\n", " <td> Repo Loader wasn't importing pandas\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f</td>\n", " <td> [c5919b8d0fc2482b172923e58e51dad54ff209f9]</td>\n", " <td>2015-03-24 03:55:41</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td> 2015-03-24 03:54:51</td>\n", " <td> Repo Loader tries to cache now?\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> c5919b8d0fc2482b172923e58e51dad54ff209f9</td>\n", " <td> [fa5688b0711d68ec0ffa436d7f31c73907c81e35]</td>\n", " <td>2015-03-24 03:54:51</td>\n", " <td> [bigbang/repo_loader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td> 2015-03-24 03:40:36</td>\n", " <td> Git Repo takes flags for initialization now. N...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> fa5688b0711d68ec0ffa436d7f31c73907c81e35</td>\n", " <td> [c886ee31fbd48f17afc1b3158983591a17389dfd]</td>\n", " <td>2015-03-24 03:40:36</td>\n", " <td> [bigbang/git_repo.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td> 2015-03-22 19:51:47</td>\n", " <td> Fixed issues in the ipython notebooks regardin...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> c886ee31fbd48f17afc1b3158983591a17389dfd</td>\n", " <td> [d5187fadf9a8529bfc57ac9bade890cd7167a20b]</td>\n", " <td>2015-03-22 19:51:47</td>\n", " <td> [examples/Committer Dominance.ipynb, examples/...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td> 2015-03-22 19:32:33</td>\n", " <td> Moved git files into the main bigbang library....</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d5187fadf9a8529bfc57ac9bade890cd7167a20b</td>\n", " <td> [89de558656441f4f4e2ec16cc96d757c073d4772]</td>\n", " <td>2015-03-22 19:32:33</td>\n", " <td> [bigbang/git_repo.py, bigbang/repo_loader.py, ...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td> 2015-03-17 21:26:03</td>\n", " <td> Fixing the readme\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 89de558656441f4f4e2ec16cc96d757c073d4772</td>\n", " <td> [befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d]</td>\n", " <td>2015-03-17 21:26:03</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td> 2015-03-17 21:14:42</td>\n", " <td> One more tweak to the README\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d</td>\n", " <td> [d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501]</td>\n", " <td>2015-03-17 21:14:42</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td> 2015-03-17 21:10:21</td>\n", " <td> Updated README\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501</td>\n", " <td> [b7c4d709b0a07972c90b336a0f7a667981416b7a]</td>\n", " <td>2015-03-17 21:10:21</td>\n", " <td> [README.md]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>38</th>\n", " <td> 2015-03-17 20:41:16</td>\n", " <td> The repo loader can now correctly fetch files.\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> b7c4d709b0a07972c90b336a0f7a667981416b7a</td>\n", " <td> [974c7a2e1765365dd40705e6ae7b41d9f984a118]</td>\n", " <td>2015-03-17 20:41:16</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td> 2015-03-17 20:27:58</td>\n", " <td> Small bug with repo loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 974c7a2e1765365dd40705e6ae7b41d9f984a118</td>\n", " <td> [598cf71c6697e4e346894bb58dfbeb30bda3c4aa]</td>\n", " <td>2015-03-17 20:27:58</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td> 2015-03-17 20:26:12</td>\n", " <td> RepoLoader generates the sample git directory ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 598cf71c6697e4e346894bb58dfbeb30bda3c4aa</td>\n", " <td> [a0f02f7f9a401c79815df5f5f52ca483dd6c007b]</td>\n", " <td>2015-03-17 20:26:12</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td> 2015-03-17 20:25:37</td>\n", " <td> Moved a lot of git repo loading functionality ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> a0f02f7f9a401c79815df5f5f52ca483dd6c007b</td>\n", " <td> [8c102702f168ba86a8bb81802fe61db70361dfb0]</td>\n", " <td>2015-03-17 20:25:37</td>\n", " <td> [git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td> 2015-03-17 20:06:49</td>\n", " <td> Very rough first draft of repo loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 8c102702f168ba86a8bb81802fe61db70361dfb0</td>\n", " <td> [296dd9a35d2aa006b8f8e9c32852b073e961b3bd]</td>\n", " <td>2015-03-17 20:06:49</td>\n", " <td> [bin/collect_git.py, git_data/RepoLoader.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>43</th>\n", " <td> 2015-03-17 19:14:08</td>\n", " <td> collect git now imports from Repository Loader\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 296dd9a35d2aa006b8f8e9c32852b073e961b3bd</td>\n", " <td> [0ff39bd05a7b4b792459b991a0f726422c7d2ef0]</td>\n", " <td>2015-03-17 19:14:08</td>\n", " <td> [bin/collect_git.py, git_data/GitRepo.py, git_...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td> 2015-03-17 18:53:17</td>\n", " <td> Slight cleanup in collect git script\\n</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 0ff39bd05a7b4b792459b991a0f726422c7d2ef0</td>\n", " <td> [4f5104300b17035460a9f5e7819f8999da72e75b]</td>\n", " <td>2015-03-17 18:53:17</td>\n", " <td> [bin/collect_git.py]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td> 2015-03-17 18:31:44</td>\n", " <td> Merge remote-tracking branch 'upstream/master'...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> 4f5104300b17035460a9f5e7819f8999da72e75b</td>\n", " <td> [f54194242ea036274d788039e77b2619020434dd, 119...</td>\n", " <td>2015-03-17 18:31:44</td>\n", " <td> [bigbang/mailman.py, bigbang/twopeople.py, req...</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td> 2015-03-17 00:03:27</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 11905640d44377fb0c007cd340ab780e408f2d10</td>\n", " <td> [00f13d97385763b699b52b562fc204d80149098b, 9f6...</td>\n", " <td>2015-03-17 00:03:27</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td> 2015-03-17 00:03:11</td>\n", " <td> Merge branch 'master' of https://github.com/ra...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 9f6c74e01dbbdd14468befa8cde1de82d08d7935</td>\n", " <td> [00f13d97385763b699b52b562fc204d80149098b, a69...</td>\n", " <td>2015-03-17 00:03:11</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td> 2015-03-16 23:56:02</td>\n", " <td> functions to create df\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> a69e75b9e36afaf1a1b7af1f51ef00e9c3468095</td>\n", " <td> [847720442d7cab223a6c83f0bd9db37ca28bdfbd]</td>\n", " <td>2015-03-16 23:56:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 7</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>49</th>\n", " <td> 2015-03-14 20:18:01</td>\n", " <td> fixing variable reference in data collection e...</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 00f13d97385763b699b52b562fc204d80149098b</td>\n", " <td> [701212ecb79f1b400c2e293d98ff582c750532d0]</td>\n", " <td>2015-03-14 20:18:01</td>\n", " <td> [bigbang/mailman.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td> 2015-03-12 21:51:25</td>\n", " <td> adding jsonschema as a pip requirement\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 701212ecb79f1b400c2e293d98ff582c750532d0</td>\n", " <td> [aef98ed18e82a52ca4dfc593769f99f4618f8edb]</td>\n", " <td>2015-03-12 21:51:25</td>\n", " <td> [requirements.txt]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td> 2015-03-10 20:33:56</td>\n", " <td> git will now ignore the git_locals.json file, ...</td>\n", " <td> [email protected]</td>\n", " <td> Aryan Falahatpisheh</td>\n", " <td> f54194242ea036274d788039e77b2619020434dd</td>\n", " <td> [aef98ed18e82a52ca4dfc593769f99f4618f8edb]</td>\n", " <td>2015-03-10 20:33:56</td>\n", " <td> [.gitignore]</td>\n", " <td> 4</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>52</th>\n", " <td> 2015-03-10 00:06:20</td>\n", " <td> Merge branch 'cool9210-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> aef98ed18e82a52ca4dfc593769f99f4618f8edb</td>\n", " <td> [a87af8aed3e0e2fb964579b8a7144361d4c19d2f, e57...</td>\n", " <td>2015-03-10 00:06:20</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>53</th>\n", " <td> 2015-03-10 00:01:08</td>\n", " <td> Merge branch 'master' of https://github.com/co...</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> e57bd1d4a81466b73027808d1f55fb9b4c671072</td>\n", " <td> [0547569578a496cf80d153ca9cf2d20849c1736c, 4ba...</td>\n", " <td>2015-03-10 00:01:08</td>\n", " <td> []</td>\n", " <td> 6</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>54</th>\n", " <td> 2015-03-09 23:52:56</td>\n", " <td> This change is adding duration, reciprocity, a...</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 0547569578a496cf80d153ca9cf2d20849c1736c</td>\n", " <td> [a87af8aed3e0e2fb964579b8a7144361d4c19d2f]</td>\n", " <td>2015-03-09 23:52:56</td>\n", " <td> [examples/Collaboration Robustness.ipynb]</td>\n", " <td> 6</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>55</th>\n", " <td> 2015-03-09 23:40:02</td>\n", " <td> Merge branch 'raj4-master'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> a87af8aed3e0e2fb964579b8a7144361d4c19d2f</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07, 847...</td>\n", " <td>2015-03-09 23:40:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>56</th>\n", " <td> 2015-03-09 23:31:02</td>\n", " <td> first commit\\n</td>\n", " <td> [email protected]</td>\n", " <td> Raj Agrawal</td>\n", " <td> 847720442d7cab223a6c83f0bd9db37ca28bdfbd</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07]</td>\n", " <td>2015-03-09 23:31:02</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 7</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>57</th>\n", " <td> 2015-03-09 23:20:54</td>\n", " <td> Create twopeople.py</td>\n", " <td> [email protected]</td>\n", " <td> Ki Deuk Kim</td>\n", " <td> 4ba2d1df3cb06eec91795ff22489b5533690dcfa</td>\n", " <td> [8c450a41c5446db94c0cff7151a8ef2297c43a07]</td>\n", " <td>2015-03-09 23:20:54</td>\n", " <td> [bigbang/twopeople.py]</td>\n", " <td> 6</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td> 2015-03-05 22:47:56</td>\n", " <td> Merge branch 'vsporeddy'\\n</td>\n", " <td> [email protected]</td>\n", " <td> sb</td>\n", " <td> 8c450a41c5446db94c0cff7151a8ef2297c43a07</td>\n", " <td> [0b47f504de03817db97e0d3556c98f7c252bc0f9, fef...</td>\n", " <td>2015-03-05 22:47:56</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 1</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td> 2015-03-04 05:48:45</td>\n", " <td> Update Git Diffs.ipynb\\n\\nAdded node colors an...</td>\n", " <td> [email protected]</td>\n", " <td> Venkata Poreddy</td>\n", " <td> fefb82dbc2b827cafb47edea9678f43f2a411681</td>\n", " <td> [0b47f504de03817db97e0d3556c98f7c252bc0f9]</td>\n", " <td>2015-03-04 05:48:45</td>\n", " <td> [examples/Git Diffs.ipynb]</td>\n", " <td> 3</td>\n", " <td> bigbang</td>\n", " </tr>\n", " <tr>\n", " <th></th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>412 rows × 10 columns</p>\n", "</div>" ], "text/plain": [ " Unnamed: 0 Commit Message \\\n", "0 2015-04-13 22:49:33 Merge pull request #195 from jesscxu/master\\n\\... \n", "1 2015-04-13 22:44:21 Adding d3 visualization of GitDiff.ipynb graph\\n \n", "2 2015-04-10 21:59:33 Merge pull request #194 from vsporeddy/master\\... \n", "3 2015-04-10 18:19:22 Changed to directed graph \n", "4 2015-04-10 18:18:13 Merge pull request #3 from sbenthall/master\\n\\... \n", "5 2015-04-10 17:54:34 Merge pull request #192 from Aryan-Barbarian/m... \n", "6 2015-04-10 17:53:13 Merge pull request #193 from vsporeddy/master\\... \n", "7 2015-04-10 17:30:29 Fixed an issue where git repos with hyphens in... \n", "8 2015-04-10 16:55:36 Update File Dependency Network.ipynb \n", "9 2015-04-10 16:54:44 Create get_dependencies.py \n", "10 2015-04-10 16:53:57 Update requirements.txt \n", "11 2015-04-10 16:53:31 Create File Dependency Network.ipynb \n", "12 2015-04-10 16:18:26 Merge pull request #2 from sbenthall/master\\n\\... \n", "13 2015-04-10 11:06:56 Warning people how long git diffs will take\\n \n", "14 2015-04-10 10:56:57 Fixed another bug with repo loading logic\\n \n", "15 2015-04-10 10:35:54 Fixed repo loading bug. The answer fetched was... \n", "16 2015-04-06 23:30:06 Merge pull request #190 from dwins/setting_wit... \n", "17 2015-04-06 23:21:00 Merge branch 'raj4-master'\\n \n", "18 2015-04-06 23:20:37 Merge branch 'master' of https://github.com/ra... \n", "19 2015-04-06 23:13:58 Merge branch 'cool9210-master'\\n \n", "20 2015-04-06 23:13:27 Merge branch 'master' of https://github.com/co... \n", "21 2015-04-03 21:41:36 Avoid SettingWithCopyWarning\\n\\nfixes #162\\n \n", "22 2015-04-02 23:45:44 committing twopeople\\n \n", "23 2015-04-02 23:26:23 updated robustness notebook\\n \n", "24 2015-04-01 04:14:15 Merge branch 'dwins-email_character_sets'\\n \n", "25 2015-03-31 20:34:42 Consistently represent email data as Unicode\\n \n", "26 2015-03-31 04:50:46 changing type attribute to be keyed to string ... \n", "27 2015-03-30 01:08:56 Merge pull request #182 from Aryan-Barbarian/g... \n", "28 2015-03-24 04:43:47 Added the option to override the cache and for... \n", "29 2015-03-24 04:17:58 Fixed bugs relating to caching the data.\\n \n", "30 2015-03-24 03:55:41 Repo Loader wasn't importing pandas\\n \n", "31 2015-03-24 03:54:51 Repo Loader tries to cache now?\\n \n", "32 2015-03-24 03:40:36 Git Repo takes flags for initialization now. N... \n", "33 2015-03-22 19:51:47 Fixed issues in the ipython notebooks regardin... \n", "34 2015-03-22 19:32:33 Moved git files into the main bigbang library.... \n", "35 2015-03-17 21:26:03 Fixing the readme\\n \n", "36 2015-03-17 21:14:42 One more tweak to the README\\n \n", "37 2015-03-17 21:10:21 Updated README\\n \n", "38 2015-03-17 20:41:16 The repo loader can now correctly fetch files.\\n \n", "39 2015-03-17 20:27:58 Small bug with repo loader\\n \n", "40 2015-03-17 20:26:12 RepoLoader generates the sample git directory ... \n", "41 2015-03-17 20:25:37 Moved a lot of git repo loading functionality ... \n", "42 2015-03-17 20:06:49 Very rough first draft of repo loader\\n \n", "43 2015-03-17 19:14:08 collect git now imports from Repository Loader\\n \n", "44 2015-03-17 18:53:17 Slight cleanup in collect git script\\n \n", "45 2015-03-17 18:31:44 Merge remote-tracking branch 'upstream/master'... \n", "46 2015-03-17 00:03:27 Merge branch 'raj4-master'\\n \n", "47 2015-03-17 00:03:11 Merge branch 'master' of https://github.com/ra... \n", "48 2015-03-16 23:56:02 functions to create df\\n \n", "49 2015-03-14 20:18:01 fixing variable reference in data collection e... \n", "50 2015-03-12 21:51:25 adding jsonschema as a pip requirement\\n \n", "51 2015-03-10 20:33:56 git will now ignore the git_locals.json file, ... \n", "52 2015-03-10 00:06:20 Merge branch 'cool9210-master'\\n \n", "53 2015-03-10 00:01:08 Merge branch 'master' of https://github.com/co... \n", "54 2015-03-09 23:52:56 This change is adding duration, reciprocity, a... \n", "55 2015-03-09 23:40:02 Merge branch 'raj4-master'\\n \n", "56 2015-03-09 23:31:02 first commit\\n \n", "57 2015-03-09 23:20:54 Create twopeople.py \n", "58 2015-03-05 22:47:56 Merge branch 'vsporeddy'\\n \n", "59 2015-03-04 05:48:45 Update Git Diffs.ipynb\\n\\nAdded node colors an... \n", " ... ... \n", "\n", " Committer Email Committer Name \\\n", "0 [email protected] Sebastian Benthall \n", "1 [email protected] Jessica Xu \n", "2 [email protected] Sebastian Benthall \n", "3 [email protected] Venkata Poreddy \n", "4 [email protected] Venkata Poreddy \n", "5 [email protected] Sebastian Benthall \n", "6 [email protected] Sebastian Benthall \n", "7 [email protected] Aryan Falahatpisheh \n", "8 [email protected] Venkata Poreddy \n", "9 [email protected] Venkata Poreddy \n", "10 [email protected] Venkata Poreddy \n", "11 [email protected] Venkata Poreddy \n", "12 [email protected] Venkata Poreddy \n", "13 [email protected] Aryan Falahatpisheh \n", "14 [email protected] Aryan Falahatpisheh \n", "15 [email protected] Aryan Falahatpisheh \n", "16 [email protected] Sebastian Benthall \n", "17 [email protected] sb \n", "18 [email protected] sb \n", "19 [email protected] sb \n", "20 [email protected] sb \n", "21 [email protected] David Winslow \n", "22 [email protected] Ki Deuk Kim \n", "23 [email protected] Raj Agrawal \n", "24 [email protected] sb \n", "25 [email protected] David Winslow \n", "26 [email protected] sb \n", "27 [email protected] Sebastian Benthall \n", "28 [email protected] Aryan Falahatpisheh \n", "29 [email protected] Aryan Falahatpisheh \n", "30 [email protected] Aryan Falahatpisheh \n", "31 [email protected] Aryan Falahatpisheh \n", "32 [email protected] Aryan Falahatpisheh \n", "33 [email protected] Aryan Falahatpisheh \n", "34 [email protected] Aryan Falahatpisheh \n", "35 [email protected] Aryan Falahatpisheh \n", "36 [email protected] Aryan Falahatpisheh \n", "37 [email protected] Aryan Falahatpisheh \n", "38 [email protected] Aryan Falahatpisheh \n", "39 [email protected] Aryan Falahatpisheh \n", "40 [email protected] Aryan Falahatpisheh \n", "41 [email protected] Aryan Falahatpisheh \n", "42 [email protected] Aryan Falahatpisheh \n", "43 [email protected] Aryan Falahatpisheh \n", "44 [email protected] Aryan Falahatpisheh \n", "45 [email protected] Aryan Falahatpisheh \n", "46 [email protected] sb \n", "47 [email protected] sb \n", "48 [email protected] Raj Agrawal \n", "49 [email protected] sb \n", "50 [email protected] sb \n", "51 [email protected] Aryan Falahatpisheh \n", "52 [email protected] sb \n", "53 [email protected] Ki Deuk Kim \n", "54 [email protected] Ki Deuk Kim \n", "55 [email protected] sb \n", "56 [email protected] Raj Agrawal \n", "57 [email protected] Ki Deuk Kim \n", "58 [email protected] sb \n", "59 [email protected] Venkata Poreddy \n", " ... ... \n", "\n", " HEXSHA \\\n", "0 e6f985d15ff4736a08e2112b6c7ff0c0d0836a75 \n", "1 5b54cc96d652a07b12b5c31d4f5ad5269e1aec37 \n", "2 02d30c7ba4b02e899c4f098531812ca390983c0b \n", "3 2ec31ee60878a08e5738dfa40245740e79dde97c \n", "4 f5316bf07da3d4d51ac3bc1875b24d10693daa02 \n", "5 3723718c356155a8c2c2104e813d61263a1f23c7 \n", "6 a22c55ea0887bdff8f62e50d2abdca02f6fdbce6 \n", "7 ed60740e26981e216542a258c0c5aa0afa50af95 \n", "8 9aacab2a8eb5e7eabcb227caea5a82d99e5f8835 \n", "9 465c3a275bc341e2dab9d43c0363c2a7fff59b15 \n", "10 95e074b3e32017adf92e74a8fb19e471bf95f1ee \n", "11 68a5743f1cfe1241cb2608739418850b0b285360 \n", "12 be536710f94ec072e04431e7cd043ad24f5f1afb \n", "13 8dac7fc397738b057d7fbdcd2bea1552e6f88339 \n", "14 0db0b375fcb90522f6a8700d87820e8fd91e5343 \n", "15 a121a04579461d4a520fbe4113f0cd0b3a052911 \n", "16 2b1f678c8ad75458b6a6b7484bed0ca72baee298 \n", "17 48dfc9b5472471b5a8768f56566c6246c63aa3fe \n", "18 bc5ccc1fe3034f939ef2f74789a949d2f3604694 \n", "19 ff0a46b3afac4995517d7dc0ad1281f457e818b4 \n", "20 505689d8494bab11e69f0687364dbba2a461b532 \n", "21 c03e3d20fae49a6d2f0458a4132af557b7ec355b \n", "22 3fa34b21dc5e7d6c7a7154fcda9473f4b0f18f93 \n", "23 039df37b77929fe52b183dfbf436254b95a4742d \n", "24 6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e \n", "25 56140670a9f627e226d449c17d29544be6f5598d \n", "26 05d773f13331693d796a75daac2529b2efb8ccff \n", "27 3e1c1f07f1b0d4a55751405b65004bd2b469945f \n", "28 a713fad3a49cbb803cac33b01cfa3283fe20840f \n", "29 225b0ee0c3b4db0cda06155eacc1b7d945572306 \n", "30 d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f \n", "31 c5919b8d0fc2482b172923e58e51dad54ff209f9 \n", "32 fa5688b0711d68ec0ffa436d7f31c73907c81e35 \n", "33 c886ee31fbd48f17afc1b3158983591a17389dfd \n", "34 d5187fadf9a8529bfc57ac9bade890cd7167a20b \n", "35 89de558656441f4f4e2ec16cc96d757c073d4772 \n", "36 befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d \n", "37 d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501 \n", "38 b7c4d709b0a07972c90b336a0f7a667981416b7a \n", "39 974c7a2e1765365dd40705e6ae7b41d9f984a118 \n", "40 598cf71c6697e4e346894bb58dfbeb30bda3c4aa \n", "41 a0f02f7f9a401c79815df5f5f52ca483dd6c007b \n", "42 8c102702f168ba86a8bb81802fe61db70361dfb0 \n", "43 296dd9a35d2aa006b8f8e9c32852b073e961b3bd \n", "44 0ff39bd05a7b4b792459b991a0f726422c7d2ef0 \n", "45 4f5104300b17035460a9f5e7819f8999da72e75b \n", "46 11905640d44377fb0c007cd340ab780e408f2d10 \n", "47 9f6c74e01dbbdd14468befa8cde1de82d08d7935 \n", "48 a69e75b9e36afaf1a1b7af1f51ef00e9c3468095 \n", "49 00f13d97385763b699b52b562fc204d80149098b \n", "50 701212ecb79f1b400c2e293d98ff582c750532d0 \n", "51 f54194242ea036274d788039e77b2619020434dd \n", "52 aef98ed18e82a52ca4dfc593769f99f4618f8edb \n", "53 e57bd1d4a81466b73027808d1f55fb9b4c671072 \n", "54 0547569578a496cf80d153ca9cf2d20849c1736c \n", "55 a87af8aed3e0e2fb964579b8a7144361d4c19d2f \n", "56 847720442d7cab223a6c83f0bd9db37ca28bdfbd \n", "57 4ba2d1df3cb06eec91795ff22489b5533690dcfa \n", "58 8c450a41c5446db94c0cff7151a8ef2297c43a07 \n", "59 fefb82dbc2b827cafb47edea9678f43f2a411681 \n", " ... \n", "\n", " Parent Commit Time \\\n", "0 [02d30c7ba4b02e899c4f098531812ca390983c0b, 5b5... 2015-04-13 22:49:33 \n", "1 [02d30c7ba4b02e899c4f098531812ca390983c0b] 2015-04-13 22:44:21 \n", "2 [3723718c356155a8c2c2104e813d61263a1f23c7, 2ec... 2015-04-10 21:59:33 \n", "3 [f5316bf07da3d4d51ac3bc1875b24d10693daa02] 2015-04-10 18:19:22 \n", "4 [9aacab2a8eb5e7eabcb227caea5a82d99e5f8835, 372... 2015-04-10 18:18:13 \n", "5 [a22c55ea0887bdff8f62e50d2abdca02f6fdbce6, ed6... 2015-04-10 17:54:34 \n", "6 [2b1f678c8ad75458b6a6b7484bed0ca72baee298, 9aa... 2015-04-10 17:53:13 \n", "7 [8dac7fc397738b057d7fbdcd2bea1552e6f88339] 2015-04-10 17:30:29 \n", "8 [465c3a275bc341e2dab9d43c0363c2a7fff59b15] 2015-04-10 16:55:36 \n", "9 [95e074b3e32017adf92e74a8fb19e471bf95f1ee] 2015-04-10 16:54:44 \n", "10 [68a5743f1cfe1241cb2608739418850b0b285360] 2015-04-10 16:53:57 \n", "11 [be536710f94ec072e04431e7cd043ad24f5f1afb] 2015-04-10 16:53:31 \n", "12 [3287f61619d148ccb7deb77c4821812d1dc9cff0, 2b1... 2015-04-10 16:18:26 \n", "13 [0db0b375fcb90522f6a8700d87820e8fd91e5343] 2015-04-10 11:06:56 \n", "14 [a121a04579461d4a520fbe4113f0cd0b3a052911] 2015-04-10 10:56:57 \n", "15 [2b1f678c8ad75458b6a6b7484bed0ca72baee298] 2015-04-10 10:35:54 \n", "16 [48dfc9b5472471b5a8768f56566c6246c63aa3fe, c03... 2015-04-06 23:30:06 \n", "17 [ff0a46b3afac4995517d7dc0ad1281f457e818b4, bc5... 2015-04-06 23:21:00 \n", "18 [ff0a46b3afac4995517d7dc0ad1281f457e818b4, 039... 2015-04-06 23:20:37 \n", "19 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 505... 2015-04-06 23:13:58 \n", "20 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e, 3fa... 2015-04-06 23:13:27 \n", "21 [6856dc4b4b7ce515c34c180f5ff72dd1b2676b1e] 2015-04-03 21:41:36 \n", "22 [e57bd1d4a81466b73027808d1f55fb9b4c671072] 2015-04-02 23:45:44 \n", "23 [a69e75b9e36afaf1a1b7af1f51ef00e9c3468095] 2015-04-02 23:26:23 \n", "24 [05d773f13331693d796a75daac2529b2efb8ccff, 561... 2015-04-01 04:14:15 \n", "25 [05d773f13331693d796a75daac2529b2efb8ccff] 2015-03-31 20:34:42 \n", "26 [3e1c1f07f1b0d4a55751405b65004bd2b469945f] 2015-03-31 04:50:46 \n", "27 [11905640d44377fb0c007cd340ab780e408f2d10, a71... 2015-03-30 01:08:56 \n", "28 [225b0ee0c3b4db0cda06155eacc1b7d945572306] 2015-03-24 04:43:47 \n", "29 [d51c62ea197eedbe3ff7ff63ebb2c1a9a497b21f] 2015-03-24 04:17:58 \n", "30 [c5919b8d0fc2482b172923e58e51dad54ff209f9] 2015-03-24 03:55:41 \n", "31 [fa5688b0711d68ec0ffa436d7f31c73907c81e35] 2015-03-24 03:54:51 \n", "32 [c886ee31fbd48f17afc1b3158983591a17389dfd] 2015-03-24 03:40:36 \n", "33 [d5187fadf9a8529bfc57ac9bade890cd7167a20b] 2015-03-22 19:51:47 \n", "34 [89de558656441f4f4e2ec16cc96d757c073d4772] 2015-03-22 19:32:33 \n", "35 [befc9ba1742ca9cd8eb2dfc03be3289ab1d1a99d] 2015-03-17 21:26:03 \n", "36 [d0f9f1f7e62d9471b8aba0e52831bd93f7fb6501] 2015-03-17 21:14:42 \n", "37 [b7c4d709b0a07972c90b336a0f7a667981416b7a] 2015-03-17 21:10:21 \n", "38 [974c7a2e1765365dd40705e6ae7b41d9f984a118] 2015-03-17 20:41:16 \n", "39 [598cf71c6697e4e346894bb58dfbeb30bda3c4aa] 2015-03-17 20:27:58 \n", "40 [a0f02f7f9a401c79815df5f5f52ca483dd6c007b] 2015-03-17 20:26:12 \n", "41 [8c102702f168ba86a8bb81802fe61db70361dfb0] 2015-03-17 20:25:37 \n", "42 [296dd9a35d2aa006b8f8e9c32852b073e961b3bd] 2015-03-17 20:06:49 \n", "43 [0ff39bd05a7b4b792459b991a0f726422c7d2ef0] 2015-03-17 19:14:08 \n", "44 [4f5104300b17035460a9f5e7819f8999da72e75b] 2015-03-17 18:53:17 \n", "45 [f54194242ea036274d788039e77b2619020434dd, 119... 2015-03-17 18:31:44 \n", "46 [00f13d97385763b699b52b562fc204d80149098b, 9f6... 2015-03-17 00:03:27 \n", "47 [00f13d97385763b699b52b562fc204d80149098b, a69... 2015-03-17 00:03:11 \n", "48 [847720442d7cab223a6c83f0bd9db37ca28bdfbd] 2015-03-16 23:56:02 \n", "49 [701212ecb79f1b400c2e293d98ff582c750532d0] 2015-03-14 20:18:01 \n", "50 [aef98ed18e82a52ca4dfc593769f99f4618f8edb] 2015-03-12 21:51:25 \n", "51 [aef98ed18e82a52ca4dfc593769f99f4618f8edb] 2015-03-10 20:33:56 \n", "52 [a87af8aed3e0e2fb964579b8a7144361d4c19d2f, e57... 2015-03-10 00:06:20 \n", "53 [0547569578a496cf80d153ca9cf2d20849c1736c, 4ba... 2015-03-10 00:01:08 \n", "54 [a87af8aed3e0e2fb964579b8a7144361d4c19d2f] 2015-03-09 23:52:56 \n", "55 [8c450a41c5446db94c0cff7151a8ef2297c43a07, 847... 2015-03-09 23:40:02 \n", "56 [8c450a41c5446db94c0cff7151a8ef2297c43a07] 2015-03-09 23:31:02 \n", "57 [8c450a41c5446db94c0cff7151a8ef2297c43a07] 2015-03-09 23:20:54 \n", "58 [0b47f504de03817db97e0d3556c98f7c252bc0f9, fef... 2015-03-05 22:47:56 \n", "59 [0b47f504de03817db97e0d3556c98f7c252bc0f9] 2015-03-04 05:48:45 \n", " ... ... \n", "\n", " Touched File Person-ID Repo Name \n", "0 [examples/viz/git/glass.json, examples/viz/git... 1 bigbang \n", "1 [examples/viz/git/glass.json, examples/viz/git... 2 bigbang \n", "2 [examples/File Dependency Network.ipynb] 1 bigbang \n", "3 [examples/File Dependency Network.ipynb] 3 bigbang \n", "4 [bigbang/git_repo.py, bigbang/repo_loader.py] 3 bigbang \n", "5 [bigbang/git_repo.py, bigbang/repo_loader.py] 1 bigbang \n", "6 [bigbang/get_dependencies.py, examples/File De... 1 bigbang \n", "7 [bigbang/repo_loader.py] 4 bigbang \n", "8 [examples/File Dependency Network.ipynb] 3 bigbang \n", "9 [bigbang/get_dependencies.py] 3 bigbang \n", "10 [requirements.txt] 3 bigbang \n", "11 [examples/File Dependency Network.ipynb] 3 bigbang \n", "12 [.gitignore, README.md, bigbang/archive.py, bi... 3 bigbang \n", "13 [bigbang/git_repo.py] 4 bigbang \n", "14 [bigbang/git_repo.py, bigbang/repo_loader.py] 4 bigbang \n", "15 [bigbang/git_repo.py, bigbang/repo_loader.py] 4 bigbang \n", "16 [bigbang/archive.py] 1 bigbang \n", "17 [examples/Collaboration Robustness.ipynb] 1 bigbang \n", "18 [examples/Collaboration Robustness.ipynb] 1 bigbang \n", "19 [bigbang/twopeople.py] 1 bigbang \n", "20 [bigbang/twopeople.py] 1 bigbang \n", "21 [bigbang/archive.py] 5 bigbang \n", "22 [bigbang/twopeople.py] 6 bigbang \n", "23 [bigbang/twopeople.py, examples/Collaboration ... 7 bigbang \n", "24 [bigbang/mailman.py] 1 bigbang \n", "25 [bigbang/mailman.py] 5 bigbang \n", "26 [examples/Git Diffs.ipynb] 1 bigbang \n", "27 [.gitignore, README.md, bigbang/git_repo.py, b... 1 bigbang \n", "28 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 bigbang \n", "29 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 bigbang \n", "30 [bigbang/repo_loader.py] 4 bigbang \n", "31 [bigbang/repo_loader.py] 4 bigbang \n", "32 [bigbang/git_repo.py] 4 bigbang \n", "33 [examples/Committer Dominance.ipynb, examples/... 4 bigbang \n", "34 [bigbang/git_repo.py, bigbang/repo_loader.py, ... 4 bigbang \n", "35 [README.md] 4 bigbang \n", "36 [README.md] 4 bigbang \n", "37 [README.md] 4 bigbang \n", "38 [git_data/RepoLoader.py] 4 bigbang \n", "39 [git_data/RepoLoader.py] 4 bigbang \n", "40 [git_data/RepoLoader.py] 4 bigbang \n", "41 [git_data/RepoLoader.py] 4 bigbang \n", "42 [bin/collect_git.py, git_data/RepoLoader.py] 4 bigbang \n", "43 [bin/collect_git.py, git_data/GitRepo.py, git_... 4 bigbang \n", "44 [bin/collect_git.py] 4 bigbang \n", "45 [bigbang/mailman.py, bigbang/twopeople.py, req... 4 bigbang \n", "46 [bigbang/twopeople.py] 1 bigbang \n", "47 [bigbang/twopeople.py] 1 bigbang \n", "48 [bigbang/twopeople.py] 7 bigbang \n", "49 [bigbang/mailman.py] 1 bigbang \n", "50 [requirements.txt] 1 bigbang \n", "51 [.gitignore] 4 bigbang \n", "52 [examples/Collaboration Robustness.ipynb] 1 bigbang \n", "53 [] 6 bigbang \n", "54 [examples/Collaboration Robustness.ipynb] 6 bigbang \n", "55 [bigbang/twopeople.py] 1 bigbang \n", "56 [bigbang/twopeople.py] 7 bigbang \n", "57 [bigbang/twopeople.py] 6 bigbang \n", "58 [examples/Git Diffs.ipynb] 1 bigbang \n", "59 [examples/Git Diffs.ipynb] 3 bigbang \n", " ... ... ... \n", "\n", "[412 rows x 10 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Using GitHub API\n", "multirepo = repo_loader.get_org_multirepo(\"glass-bead-labs\")\n", "\n", "# List of repo names\n", "multirepo = repo_loader.get_multi_repo(repo_names = [\"bigbang\",\"bead.glass\"])\n", "\n", "# List of actual repos\n", "repo1 = repo_loader.get_repo(\"bigbang\", in_type=\"name\")\n", "repo2 = repo_loader.get_repo(\"bead.glass\", in_type=\"name\")\n", "multirepo = repo_loader.get_multi_repo(repos = [repo1, repo2])\n", "\n", "multirepo.commit_data" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
AshivDhondea/SORADSIM
example_notebooks/notebook_001_orbitpropa.ipynb
1
89562
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Demonstrate orbit propagation (OP) using Cowell's method.\n", "\n", "Example: ISS TLE file downloaded from celestrak.com on 3 August 2017\n", "\n", "ISS (ZARYA)\n", "\n", "1 25544U 98067A 17213.83387828 .00000874 00000-0 20415-4 0 9996\n", "\n", "2 25544 51.6427 170.7730 0006301 93.4612 353.3163 15.54246517 68858\n", "\n", "@author: Ashiv Dhondea\n", "\n", "Created on 10 August 2017\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Load the libraries required\n", "import AstroConstants as AstCnst\n", "import AstroFunctions as AstFn\n", "import DynamicsFunctions as DynFn\n", "import MathsFunctions as MathsFn\n", "import Num_Integ as Integ\n", "\n", "import math\n", "import numpy as np\n", "\n", "# Importing what's needed for nice plots.\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.axes_grid.anchored_artists import AnchoredText\n", "from matplotlib import rc\n", "rc('font', **{'family': 'serif', 'serif': ['Helvetica']}); \n", "rc('text', usetex=True)\n", "params = {'text.latex.preamble' : [r'\\usepackage{amsmath}', r'\\usepackage{amssymb}']}\n", "plt.rcParams.update(params)\n", "\n", "# Matplotlib inline. Comment out if you don't want inline plots.\n", "%matplotlib inline\n", "\n", "# Libraries related to time keeping and formatting.\n", "import datetime as dt\n", "import pytz\n", "import aniso8601" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Place the contents of the TLE file here.\n", "## ISS (ZARYA) \n", "tle_line1 = '1 25544U 98067A 17213.83387828 .00000874 00000-0 20415-4 0 9996';\n", "tle_line2 = '2 25544 51.6427 170.7730 0006301 93.4612 353.3163 15.54246517 68858';" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Read the Keplerians as well as the epoch of validity of the TLE file\n", "a,e,i,BigOmega,omega,E,nu,epoch = AstFn.fnTLEtoKeps(tle_line1,tle_line2);" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "semi-major axis in [km]\n", "6782.48079627\n", "eccentricity\n", "0.0006301\n", "inclination in [deg]\n", "51.6427\n", "RAAN in [deg]\n", "170.773\n", "argument of perigee in [deg]\n", "93.4612\n", "true anomaly in [deg]\n", "96.4355054078\n", "epoch\n", "17213.83387828\n" ] } ], "source": [ "print 'semi-major axis in [km]' \n", "print a\n", "print 'eccentricity' \n", "print e\n", "print 'inclination in [deg]' \n", "print i\n", "print 'RAAN in [deg]' \n", "print BigOmega\n", "print 'argument of perigee in [deg]' \n", "print omega\n", "print 'true anomaly in [deg]' \n", "print math.degrees(nu)\n", "print 'epoch' \n", "print epoch" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TLE epoch date is 2017-08-01\n", "UTC time = 20 h 0 min 47.083392 s\n" ] } ], "source": [ "# Calculate epoch at which the TLE was valid\n", "year,dayy, hrs, mins, secs, millisecs = AstFn.fn_Calculate_Epoch_Time(epoch);\n", "todays_date = AstFn.fn_epoch_date(year,dayy);\n", "print \"TLE epoch date is\", todays_date\n", "print \"UTC time = \",hrs,\"h\",mins,\"min\",secs+millisecs,\"s\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a datetime object for the epoch of validity\n", "timestamp_tle_epoch = dt.datetime(year=todays_date.year,month=todays_date.month,day=todays_date.day,hour=hrs,minute=mins,second=secs,microsecond=int(millisecs),tzinfo= pytz.utc)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ECI state vector read from TLE file\n", "[ 6.71156486e+03 -3.57343479e+02 -9.14171985e+02 -5.44290159e-01\n", " 4.83654902e+00 -5.92219633e+00]\n" ] } ], "source": [ "# Convert Keplerians to Cartesian state vector\n", "xstate = AstFn.fnKepsToCarts(a,e, math.radians(i), math.radians(omega),math.radians(BigOmega),nu);\n", "print 'ECI state vector read from TLE file'\n", "print xstate" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the Kepler period is 92.649395 min\n" ] } ], "source": [ "# Find Kepler period\n", "T = AstFn.fnKeplerOrbitalPeriod(a);\n", "print \"the Kepler period is %f min\" %(T/60.)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# time step for simulation\n", "delta_t = 1; #[s]\n", "# duration of simulation.\n", "# here, we have chosen to simulate the orbit over two orbits, at a constant time step of delta_t\n", "timevec = np.arange(0,T*2 +delta_t,delta_t,dtype=np.float64);\n", "# state vectors in the ECI frame. contain x, y, z position and x, y, z velocity in [km] & [km/s]\n", "x_state = np.zeros([6,len(timevec)],dtype=np.float64);\n", "# position state vectors in the ECEF frame\n", "xecef = np.zeros([3,len(timevec)],dtype=np.float64);\n", "# Latitude & longitude of the ground track\n", "lat = np.zeros([len(timevec)],dtype=np.float64);\n", "lon = np.zeros([len(timevec)],dtype=np.float64);" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "index = 0;\n", "x_state[:,index] = xstate; # load initial conditions to the Initial Value Problem\n", "theta_GMST = math.radians(AstFn.fn_Convert_Datetime_to_GMST(timestamp_tle_epoch)); \n", "## Rotate ECI position vector by GMST angle to get ECEF position\n", "theta_GMST = AstFn.fnZeroTo2Pi(theta_GMST);\n", "xecef[:,index] = AstFn.fnECItoECEF(x_state[0:3,index],theta_GMST);\n", "lat[index],lon[index] = AstFn.fnCarts_to_LatLon(xecef[:,index]); # convert Cartesian position vector to latitude, longitude\n", "\n", "for index in range(1,len(timevec)):\n", " # Read the time and figure out the timestamps for each time instant\n", " current_time = timevec[index];\n", " hrs,mins,secs = AstFn.fnSeconds_To_Hours(current_time + (timestamp_tle_epoch.hour*60*60) + (timestamp_tle_epoch.minute*60)+ timestamp_tle_epoch.second);\n", " dys = timestamp_tle_epoch.day + int(math.ceil(hrs/24)); \n", " if hrs >= 24:\n", " hrs = hrs - 24*int(math.ceil(hrs/24)) ;\n", " # Perform the RK4 simulation step\n", " x_state[:,index] = Integ.fnRK4_vector(DynFn.fnKepler_J2, delta_t, x_state[:,index-1],timevec[index]);\n", " # Find the epoch object & figure out the GMST angle from the epoch\n", " tle_epoch_test = dt.datetime(year=timestamp_tle_epoch.year,month=timestamp_tle_epoch.month,day=int(dys),hour=int(hrs),minute=int(mins),second=int(secs),microsecond=0,tzinfo= pytz.utc);\n", " theta_GMST = math.radians(AstFn.fn_Convert_Datetime_to_GMST(tle_epoch_test)); \n", " ## Rotate ECI position vector by GMST angle to get ECEF position\n", " theta_GMST = AstFn.fnZeroTo2Pi(theta_GMST);\n", " xecef[:,index] = AstFn.fnECItoECEF(x_state[0:3,index],theta_GMST);\n", " lat[index],lon[index] = AstFn.fnCarts_to_LatLon(xecef[:,index]);# convert Cartesian position vector to latitude, longitude" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAEiCAYAAAAReBALAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8TecbwL8nQ0Rkh9gkQWyhiFFbrbZG7dKiRulQFK1W\nS6s1OlC0qP6MltqqVXvF3ntLSEiQyJC9731/f5x7j3uTm+RmkNDz/XzuJznnHec57xnveZ/3eZ9H\nEkKgoqKioqKi8mJiUdgCqKioqKioqDw91I5eRUVFRUXlBUbt6FVUVFRUVF5g1I5eRUVFRUXlBUbt\n6FVUVFRUVF5g1I5eRUVFRUXlBUbt6FVUVFRUVF5grApbABXTSJLUC3gFGAlEA+uAJUKIC5IkeQCz\ngduABDgCMUCAEOI3Xfkc82Rz7N66497WHRvgDuAECCHEDwV4qgWCJEmOwD6gIdBBCLE/i3wNgLPA\nHiAQaKQrY7jdAHAWQsQWsIy9gKXIbehakHXnFUmSRiBfVxfgjBBik4k8HkBDU2lm1L8YuC2E+D7f\nwj4lJElqL4TYl0MeR+Rnwgu5rfYIIZZmyJPntpQkaQ/wGIjKUGS3EGLz05QpN/lzW1/Gsoby5eWc\nVfKIEEL9FeEfoAX8M+wLANpm2HcGGJ6bPFkc7yzgD9hn2N8A+YGcUNhtko3sDQAN0C6bPO2BmQbb\nE3VlDNtuHVDlKck4C4gs7LbSybIEWJfNPTRRJ29UxnvQzPoddfdvkTjfbOQ8Y0aeAMDH4D7TAosK\nqi11+zUGPy0Qmd19mF+Z8nA/5Kq+DHVPAjT5PWf1l7efqrp/ztB9xXsCzhmSJuUmTxZ1LwF8gN5C\niDjDNCHEeWBGHsV+Vki6X3Y4Infk2bEOuf1eWHT3yAhkTYaeM8haIACEEN8LIT5F1ubkhcnIWiEn\nSZLeyKusTwtJkhwlSZqN3Elmmw/wAPqB8iycQx5NI0mSE/lvyz1CCEv9T1e2nRAi6GnJZKK+LPPn\ntr4MdfcC+ppIytU5q+QdtaN/zhBCxCC/LDZKknRGkqRZOtXjfqFTyZuTJwv66MpfzCL9V2AjyA+v\nJElRuvpHSJK0W5Kkmbq0hpIkrZckaYIkSRN1/3vo0tpLkhQgSZJWkiQH3b7duu3hBnmidPt8dPWv\nlyRpt6EwuuPsliRppq7sSCBbn85CiM1CiAs55QGcszm/JZIkrdOd325JkiZmkMtTJ+9MXduf0Z9r\nRnRpp/XnnkWenNozx7YyQQfktjJUm0Yjd8pVcihrLu2R7ykJudM3wpx7Qbevg8H5r9e16SJJkobn\noo5Zuvz6a9kOufPppUtfpL++GdE9T15CCMNzaIj8EQMF05afGMjaC7kTzOo5LBCZJEmaLUlSgC7t\nlRzyt89lffpzaYA84DD1cZ2rc1bJB4WtUlB/2f8wrbqvAuzCWOUVgIHKy5w8Gep0NHWsHGSbhaxq\n8wHeABYhjzK0GEwbIKstAzJsawCHDMfOqOrUAG/otvX1vmFQJgr42KBMe3JQ3Zs4h0yq++zOT7d/\nkYEcepVpO1Ny6eT217c7Bqp75A+TGTnI55mL9jTZVlnUOyJjWxnU45Mh75nc3BcG9Q8zKJ+p3lzc\nC1qgZwa57Q3KZFuHrsx6g/ra8UTlvZgMKmUzzm2k7r6oX9Btqbt2u3IjT15l0m2fMid/Luo7neFc\nJhjmLchzVn/m/9QR/XOIECJICNFJyOquV5DnzvTGd2bnyVBnDPIXupHKWpKkBrrR0Hrd6HOdbjSk\nx0kIcUHII+XRyCM4gWzYpucc4JGhnLns1f3VjyRcdH9fQX6hZ2tEVQBkPD+ATwFJNwLUj5z07dZP\nJ9d5ACFEoBCimsigjpQkaT0wUQjxWQ7H74357ZlVW5kiCnmk7WSwT28gGJ05e655VwjxP93/M8li\nVJ8Tes0FsiEpPDk3SZhvLLkX6K0b5Z8BXhI5aHWykacDcqfXUDwZfRZkW87GWD3+1GQS8nRCEzPz\nm1tfY51Mjsj3gN5wN7sptVyfs0ruUDv65wxJkjwkSZql3xayOn408D26zsacPFmwXlfex6DseSHP\nLe5BVg2eFsYW7RlfZKZU507kPHeeW5x1dWbXmRUERucnSZIncqfrIWS16a8Yn5u54SAXA66SJOVk\nL/C02lM/V2zYfk4gfyTmp2JJktoDjjp1+CLkjzKQO1uTUxhZIYQIRL4GDXW7GgNnc9HJg9xJOSF/\nNJ0GZkmSNMGE3B66Dsok+g5VCNFYCHHX4BkrkLbUHbs3ufg4KECZcsqf2/r6YnwP9NXJu8jw/ZKX\nc1bJPWpH/3wy0sTcnyfGX8Xm5DFCCDEKeSS6wWAkpceLzJ2Oqc5mo+5vQ4N9TZCX0ZzRbWd8qE0Z\n6mSsO+P2ep08hsdxNpEvJ7Iz4DO1vxfyiP1X3baXCbmiedK56TsQ/ehbAqJ0H0t9gD4Z5/gzYE57\n5tRWmRCy8dbZDPJ7Imt+8su7yKPm0brfKOT5WAnIqMEw517YC/TXaUE8TeTJqY6RwCsGWplRmB5x\n9yazASugdKjrgceSJC2WZMPV9lCgbdlI9zfjcjOT5FcmSZIm6TQcOebPQ31LDa7/aHT3qm7bUJuS\nq3NWyRvqOvoiim5UpDeQcdGpidchqzD3II+OqiK/8J2R1yobvkTNyZMJIUQjSbaQXixJ0h3kl7NA\nfsg/Qfdi1MnXHtkYZ6ZudIsQIlCSpJeA2ZIkNdaVr4L84tePwtYjv1RnS5J0Vn9o4BPdi0JCVomD\nrNYbjTy3LZA7xjNC9iegP44r8vxkVV2e2ZIk9cluNKUz/mnMEyOjPpIkeSEbBO3P6vyQO/hGwFLp\nyTrgDTrZo4QQm3VlZ+tGMucARyHEDwZ1uugMxTboys+SJMnTYGrA8Hpk1Z4NhRCxOmOnHNsqi2bo\nAKzX3VvOwGMhxHsGbTQC+cWuN/ybiXwPmTTo1MkyWXeOI4EfdPs9ePKhOFGSJIHsEyKIHO4FnexO\nyLYQeuv43pIkbRBC9NNt53Q/AfTVyRGD/NGkNwRbArTXXatoU/eMbtS5W1fnCIMkw4/mgmjLKOT7\n4VxGGZ6GTMgdtUMu8ue2Pr2c+nsCXTsvMbgnzT5nlbwjCWGuplFFRUXl2aL7IPtUP/er2+cD7Ede\nBmrSMZKKisoTVNW9iopKUcaFDGpd3WhQHaGoqJiJOqJXUVEp0ugM57yQp4+cdf+fyWoKQUVFxRi1\no1dRUVFRUXmBUVX3KioqKioqLzBqR6+ioqKiovICo3b0KioqKioqLzBqR6+ioqKiovICUyQc5ug8\ng90GXIUQS3X7eqFzfSmE+L4w5VNRUVFRUXleKfQRvc5bmBByaFAvSZKq6DxsCSHEPiDa0DeyioqK\nioqKivkUekeP7OZVHzDhtm67H098UN/hiYtPFRUVFRUVlVxQFFT3kTyJiOSEHGxCH9Nbj2vGQioq\nKioqKio5UxRG9Bt5EhHJC4goRFlUVFRUVFReKAp9RK+LzrVONy8fjayqd8V4lB+ZsZwuApaKioqK\nisp/BiFEbkNxF/6IXtfBN9LFO3bUGeXp406j+7vXVFkhRJH6TZ06tdBlUGV6seRSZVJl+i/Ipcpk\n3i+vFHpHL+QOPkoXA32JwT69Rf5jkXU87SJFUFBQYYuQCVUm8ymKcqkymYcqk/kURblUmZ4uha66\nBxDyKD7jPjUylYqKioqKSj4p9BH9i8SQIUMKW4RMqDKZT1GUS5XJPFSZzKcoyqXK9HR5bsPUSpIk\nnlfZVVRUVFRUcoskSYjn0RjvRcLPz6+wRciEKpP5FEW5VJnMQ5XJfIqiXKpMT5ciMUdv4NfeQz83\nr/q6V8lIujad+NR40jRpWFlYYWNlQwnrEoQnhGMhWSBJEunadKwsrLCULHGwcSA5PRlJkrCxtEGS\ncv0hbBYarYb41HjsitlxK/IW18OvExIbQjfvbqy/up5P931qslyXql0IjA7kRsQNANzt3EnRpBCd\nHP0kUyDUuFoDawtrShYryddtv6ZphaaULFbyqZyLiorKi0ehq+51y+sQQpzXWdlHAhJyp79ZkqQR\nwOmMlveq6v7FIF2bzs6AnUQmRlLVpSrOts6M3DqSo8FHcyxrbWFNmjYNAKfiTqRqUilhXQKNVkO6\nNp2DQw7S8NeGWZYvW7IswxoM491G71LBoYKyXyu0xKXEEZ0cTUxKDJUdK7P11lb61OrDNL9p+Ef5\nU8yyGPXc63Hq/in+uvFXrs+7VIlShCeG57qcIU7FnUjTpJGQlsDS15fyToN3sJBUJZ2KyotKXlX3\nRaWjny2E6ChJ0nAhxG+SJM0Cdgsh9us6/wZCiB8ylFM7+ueIu9F36bmuJ+dDz+e6bKNyjdjUdxMp\n6SksOrOIuSfmUsOtBhdHXeRW5C1uRtykV61eRmWuh1+n1/peXI+4DoCnsyd3Ht8xVb1J7IvZ41Tc\nCXsbe66FX8u1zIZYW1hTu3Rt+tfuz4e+H1LCugQAtyJvEZ0cjVZouRV5i8FbBufrOIZUc6lGabvS\nVHOthq2VLcWtimNrZYuVhRW21raMbzaeYpbFCux4/3U0Wg3BscEM2jyIo8FH2TlwJ52qdgJkfx8f\nbP+AJWeXsGPgDjp4dnhq2iWVF5u8dvSFrrrXjeTvSJIUBQzX7XbiOfR17+fnR5s2bQpbDCMKS6aI\nxAhKfV/KdGIg4GFePX/1+4ue63pSeV5lZV9pu9IkpSUxftd4FnZdSJ3SdZ7kv/4Xb6x/I1M9ZnXy\nBnLdG3cPp+JOAIzbOY4N1zbQu1ZvtvlvIyAqAPti9oRPDMfGyoY0TRp3Y+5yLfwaY3eOZYzvGMb4\njslxdF3dtbry//mH8geQTxkfypYsS9sqbQmND8XugR3RZaJZcGqBkrdPrT5s999OQlpClnX7R/nj\nH+VPfff6XHp0iSP3jhild/fuTs1SNXNuExO8qPd5qiaVW5G3CIkNYezOsVRxqsJLZV/C281b+Qjr\n6NWRv/v/TXGr4jyMe0i5OeVM1rXlxhY6f9MZPMDWypak9CS5/KqOAExvO50prabkS94FJxcwZucY\nlndfzhCfIWaVkb6SlPv84JCD3I2+y4O4B3y671NKFitJ31p9aefRDt8KvlR1qZov+XLDi3pPFRWK\nwojeEfgUWWU/GWgEfAIsFkJc0I3oOwghJmcoV+RG9EXxxngWMg3/Zzh77+xlfLPxjPEdI79MMrBj\n4A6uPLrCxD0Tc9XRZ8ebdd9kVc9VCAS/X/ydoX8PNbvs3E5zaVyuMVqhpVnFZlhZWD031+/0/dM0\n+a0JAK9Vf42v2nzFS7++lGNdq99YTeeqnXGxdckxb25lMofk9GQkJEWTkKpJZdGZRWy5sYXXqr8m\n3xsG2FjakKJJMdrnW96XDp4dOBZ8jL/7/429jb0ik311e3pv6E1IbIhszzFZtpswl0pzKxEcG5xj\nvrG+Y5l3cl7OFZq4z1+r/hrBMcEMbzicD5p8YLZsprCfaU98ajwA2i+1ZmkJuq/tzj87/zH7+Xu7\n/tv8r9v/sLJ4umPC5+XZK2yeZ9X9RGCJECJW5x3PC9nP/R6d6r4X8nx9JtX94MGDqVKlCgBOTk74\n+PgoF0ZvMalu53/7fux9xi8Zj2NxR+r51pPnl6+FU921Oq+0ewWLry3klxogVognowZ48kLRbdtU\ntWFNrzXs2LuDpWeXZkrPantp3aV4OHnQ4XAHs/L3LdGXXjV7UaF+BVotb4XmjsYofXHtxXi7eReJ\n9s3ttlZo2bprK47FHZX0Pfv20PGPjpnaY+kYee7+0MFDhSZvVFIUrqN1Sjkzr7c521+2/pKvhn6l\nHO/ovaNMCZyipO8YtIPOHTqbLa9Gq6FBswY8TnrM6q2rmXpgqnK8trTF1daVVeNXcTfmLt4fe9O8\nUnMOTD1AZGIkFT+qiEarySTv/qn7qeRYieBLwQXWnvndbv6/5hw/fDzH9jXc/qrKV9x5fIeT1icZ\n13QcNsE2VHaqXCTO50Xe1v+v99K3cuXK57ajnwAsFULE6LaHA2eQ/d//pvsQ2KMa4z0dZh+Zzabr\nmwiJDSEpPYno5GjmdJzDuGbjlDxrr6xlwKYB2dYzp+Mcxu8eD0B5+/IUsyxGYHRglvkXdFnAhzs+\nzFG+IT5D6FurL52rdiZFk4Ltt7aZ8izvvhwXWxcm7ZmEbwVffr/4u5JWw60Gtla2pGvT8Xbzpk+t\nPvSt3TfH4z5vGGpR7KztcCvhxt2Yu4iphf+MDNw8kD8v/5ltntJ2pWlesTn7A/cTmxKbKb29R3tK\n25WmgkMFvj+WeRHOw48fUqZkmQKT+UUnMjGSmJQYttzYQlh8GLtu7yIsIYyY5BgsJAvKO5TnVuQt\nozK+5X05ef+ksm0hWXBy+EmqOFXBwcZBtfl4BjzPc/Q/SJI0UZKk24CLwfK6Rs+br3u/Iqjq8fPz\no3Xr1iSnJxOeGM6jhEdEJ0fzyh+vZFlm/O7xRh19ZGKm4IGZ2HzjiRfj+3H3lf/frPtm5pd8IGZ1\n8sMbDGdh14XYWNkAsP7q+kx5unt3Z4jPEKWjuxl588l5NB2Pl4sXsSmxxCTH4OHskW0nX1SvX04y\njds5zmj785afs/nGZlI1qYUmkyHzO88nOCaYw/cOZ5nnUcIjPJw8THbyAPsC9+Fo48iZkWfwdPYk\nOT2Z3rV6cynsEi62Ltw4c4MybYpWR1/U7ichBCmaFE4cOUGbNm1wLeHK+Gbyx/nsV2YreR4lPOJx\n8mPuPL7Dq3++qpS/GHbRqD6t0HIw6CCN9zQGIHhcsNHqldxQ1NoKiqZMeaXQO3oAU+vkVV/3+SMs\nPoyXl79MwNkAOJi7sr+9/huH7x6mZeWWAFx5dEVJ2zVoF+Xsy/Hqn69yL+YeEhKNyzdmfuf5eLl4\nUeaHMorhEaB08sHjgtEKLfbF7Nm+Zzt/xv/Jdv/tWcrg7erNb+d/47fzmW+DlT1WUqZkGRqXa4yz\nrTMgz1FeCruEzxIfJd+cE3MylX2r3lvYWmfWCjyvRCdHc/bhWaN9n+3/DIApLfNn7FVQuJZw5dDQ\nQ8p2WHwYZX7M3CnPPTGXXYN20dGrI/NOzGPcLuMPmJiUGLRCy6hGo5R9+o7FL8Dv6Qj/lLgddZvD\n9w5zL+YelpIljco1Uqz0nxYWX8vGoQdaH8iUFvg4EM/5csDQtC/ScC/pjrerN5v6biIxLZGZR2Zy\nP/Y+dUrXobprdeW5nrBnAgBjmowh8HEg92PvczfmLp7OnlR0qIh7Sfenek4q5lHoqvu8oqruTfPa\nn6+xzX+b2fkNLXZ3+O+g659dlbRSJUrx/SvfI0kSFRwq0P739gUtbq55r9F7/Pzqz1mml/q+FBGJ\nEVmmv13/bYpZFCM2NRYLyYLKjpXln1Nl0jRptK7SWrG2fx7ourorOwJ2mEzLrTHasyQuJY7zoedp\nvaK1si/9i3QsLSyN8qVp0hCI50otnJCawIZrG7gXc4+pflNxtXWlf53+pKSn8DD+IWcfniU0PhSQ\n1d9aoQUgZFwI5R3KPzW5roVfo1SJUpSyK0WqJpVe63vh4+5DYHQgqy+vVvLdGXMHD2cPqi2oRkBU\ngLL/1PBTNC7fmDRNGsO3DsfRxtFoNQjI03b34+7TsGxD7jy+Q3RyNCWsSxD0URCl7LJYhVOApGpS\n0Wg1JKQl8OWBL/Ep48PwhsM59/AcJ0JO8OGODxnTZAxDfIbgbOtMZcfKz9VSx+fWGC+vqB29ad5Y\n9wZ/3fgr1+vGR700ilqlajFm5xiT6bVK1cp2Pfm4puOYe2KuybSyJcvyMP6h0b6PfD/ip5M/mS0f\nyJ7ktg/MWgtgSERiBJuubeJ+3H2mH5quyNGqcitaVGxBCesS2FjZcDf6Lndj5N/u27sBWNNrDX1r\n930unM+ka9Oxnm5tMm1BlwX5tuxWyZn7sfe5HnGda+HXmHtiLkHRQTQo04Cr4VdJ1aTi7eptNKUE\n4OXsRZ3SdfB29eZ+3H0G1x/MK15ZT6dlh34VxljfscztbPwM3oy4yY6AHdhZ23H78W1mH51tlF7O\nvhwP4h4Y7Yv5NAYHGwceJz0mLCEM+2L2lClZJtNHGMgfbBaSBSWsS2TqMG9H3abqAnmJnrudO6ET\nQvN0frmhxbIWHAs+pmx7u3qz5LUltFnZJssy1V2rcyvyFlYWVng5e/Eo4RE9a/TEw9mDjl4daVK+\nyVOX21zUjr4IUFhzOkIIvjr4FVYWVhwNPkrtUrVJ1aRSq1Qtbp65ScvWLQl8HKio2czFy9kLGysb\nypYsS6+avXhv+3vYWNpw/f3rxKXG8SDuAV1WdzEqM7X1VL46+JXRvoxGPPplR2VLlsXWWjaUE0IY\nLW3qWq0rvuV9meo3Vdln7hKivOLn58fa+LUsO7+MNG0ans6e3B5z+6kdz1yZsrunUtJTKP5t8SzT\nn4Yx3tO6z7VCy6t/vsovXX/Bwzl36y8Lcz7V0BBy1EujWHx2sbyhu89frfYq7Tza0bRCU7xdvXGx\ndSnQ+/hmxE1q/FyDeZ3m8VHTjwDZrsbtezclTzWXarxV7y2+9PuS76t+z7A3hinTXgXJ46THfLz7\nYwSCFRdWKPsvvHuB+mXqZ1muoK7f5bDLLDqziIthFzkWfIxqLtXwj/I3mbdsybLEpcbxd/+/2Xht\nI4vOLDLOoLt+RcGgVc9za4ynUjDoO9e2VdpSpmQZLCQL1l9dz4ETB5gXNo/apWrjYuuCfTF7apWq\nxdxOc9l8fTOPkx/jaONIBYcKlLMvR61StSjvUB4hBBqh4Y+Lf3Av5h4hsSHsGLiDzlU7K8f87uh3\nmeRYdn4ZaV+kGY0yjTp5HSMajuDyo8ucCDlhtL+dRzv2B+5nh/8OToacpFmFZhwPOU6jco0Y9s8w\netboScvKLZ+aen3xa4tZ9OoiLL624M7jO8w/OZ8xvqa1HIXFseBjLDi1gGYVmplc39zBswN73tpT\nCJLlDyEEOwN2EpEYkeuOvjCw+cYmk8Gj0snr0I+OzeV21G3sbewpbVfarPzBMcHsD9zPyh4riU+N\nZ/aR2cSmxBKZ9MSA9uzIszQsK7uC/qL1F/j5+RVoJ3/10VWOhxzHL8jPaArAkOMhx7kUdomopCgs\nLSxxK+GGpWTJ1fCrfNbyM6O8p+6fYqrfVMrbl6e+e328XLyUOBB1StfJtj1PhJxg0ZlFTGw+kYND\nDnIz4iZhCWFG044dPDvwRo03GNpgKMWt5I/kdh7t+OXVX0hOTybwcSABUQFcPX2VSQMnFUALFT6F\nPqLXucA9C9xG9nG/RwgxOqegNkVxRF9YTN47mVlHZ7Ho1UVGhkogq3a3+2/nl9O/sOv2rkxle9To\nQTWXajQs2xBbK1t6rOvBpOaT+O5Y5k4c5K/bezH3mHN8jlmq94F1B9K5amdC40MVhyjftP2GKQem\nUM2lGj1q9GDZ+WVGLyaACc0m8NPJnxRf9hnxcvbi8ujLT9WwzuIrCwSCL1t9yVdtv8q5wFPGlCOi\njIRPDMethFuO+VTyTmRiJE3/19Ro/tqQa+9dy7XXwZMhJ2n6v6bKdp9afXinwTvsDNjJTyd/4qs2\nX/FFqy8QCCITI5lzfA6zjs5S8g+qNwg7azscbBxwsHHA0cYRx+KOFLcqTp9afQpUgyCEYLv/dr44\n8EWWLq3trO0Y+dJIIhIj+OPSH8r+Dxp/gFZoCU8MZ8O1Dcr+yo6V8a3gCzxZXTOv0zyuhl8lKDqI\nsIQwLCQLLoReoJpLNS6MuqC4ks7IyZCTVHaqrCy3NHQwZchb9d5i8suTcSzuiLudu8mpiaLGc6u6\nlySpnRBiv+5/H+TO3Rk1qI1Z/HL6F97f/j7udu48/Pih0QM9buc4Iw9etUvVZozvGHzL+zLr6CzW\nXllL/zr9sbG0YeXFlSbrPzPiDKsurWLeyXn80/8fXvd+nZ0BOzOp7C+NusQ3h78xuQQO5Pn1jl4d\nqelWk86rZa2A9kstGqHJNMd8cdRF6rnXy3b+WU/jco1Z/cZqqrpULXC1fnBMMJXmVQJkd6F21na8\nVC5nD3RPg7iUOEr/UJrk9GST6VNaTmF6u+nPWKr/Hnce36H97+0Jig5iiM8QFr+6WJk60T8fueVm\nxE1aLm+pBDkyVDcPazCM/53/H5C9XUvJYiVpXbk1C7oseOrakOvh16n1Sy2jfWdHnsXb1duk8Wdw\nTDBp2jQcbByMPkLTNGmceXCGtVfWUrNUTZyLy1oGC8mCNlXamDTeW3lhJUP+HsKJYSeUD4PT90/j\nU8YHa0vT74qMH8g9avTgfux9Tj84nSlvPfd6ygfF5JcnM6P9jBxa49ny3Hb0huQ2qE3FORVpVbkV\nC7sufCqqXCEEkiTxMO4hKy+uJCktiYZlG9K4fGNcbWVPX/o13lA484RLzixh1DZ5FF/ZsTKft/yc\nw/cOs+XGFuJS4+hi2YUdmsxW2YajjnRtOidDTlLdtTpOxZ2QJAnbb+W580ujLlHXvS4LTy3kwx0f\nEjExAtcSrjxKeMSe23sY9NcgQJ6HzMra37e8L3vf3kvJYiWZfnA6Xy7/Ervqdrzf+H1aVW7FojOL\nlLJ/9/+bbt7dlLLSVxK1StXi564/k5KeQnvP9oq6uulvTU1OC5wZcYZ67vWyfPCzIuP1m3pgKl8f\n+jpTvu7e3dnSf0uu6s4rfn5+tGrdCsuvjUcbIxuOpIR1CeVDblm3ZQxtYL4LYEO0QsuU/VPoW7sv\nPmV8csxfWPPhaZo09tyRpyS6VO3CtfBrlLYrTSm7Us9MphmHZ/D5/s+V7Y+bfYwQgv1B+/l3wL9G\nVvM5ybTuyjoWnFrAtfBr/NjxR+X6HQg8QLvf2yn5PmzyYSbr9k5enRjiM4TlF5YTGh/KpbBLStqZ\nEWey/SAtiuvDzZWp7qK6XHl0hTW91tCnVh8m7ZnEnBNzcCvhRu1StTn38ByOxR0JiQ3JVLaiQ0Xu\njbunbJ97eM7IdfQPr/xAO492DPprkGx4HAhDeg6hhFUJPn35U9xLupOcnkxiWiLJ6cmkalKxtrDG\n2tKasiXLPlWNwKZrm+i9oTdM4/nu6HUd+mmdK9zFmOHrnmmyP+xr71/D09kz3zIkpCaw8dpGAIb8\nPUTZb1/3da8wAAAgAElEQVTMnjql63A85LiynZyerKiVm1Vohr2NPVKQRKf2najmWg0PJw/sitnh\nauuKjZUNxSyLoW/rvIw8NVoN0cnRaISGh3EP6bmuJ1sHbKV26doIIUhKT2KH/w7WXl1LTbeauNq6\n0tGrI2FXw2jQtAFOs40/hJyLOxObEotjcUdSNakcGXokW2OZhNQEys0ph4utC22qtMHH3YcOnh3w\ndvMmIjGCNZfXYGlhyeD6g3Ga7USXql34981/iUyMpOXylgRGB3Jy+Enqlq6L1TtWWfravjL6CrVL\n11bOWb/86NvD31LBoQKtK7fG09lT/2XLo4RHrLy4EhdbF0ZsHZGpvh87/shQn6FmzUlmfNmkalLZ\ncmML/Tb2M5n/WRjpbNy+kT6n+5hMq+BQweiFlld5Xl72MkeDj+a4dFHP0+woUjWpbLu1DUmSKG9f\n3qTK1SSBMGPYDCa3nJxz3nyQpknD9zffLFXWVhZW7Ht7H+cfnqdUeCnefP3NLOvSjzQvj75sFJgp\nLiWOZv9rxtXwq1hKlkxpNYWIxAhCYkP4++bfAPSs0ZPN/Z44qXrn73dYfmE5kLNm4Xnu6FM1qXRb\n002ZhqzuWp0Dgw+Qqknl1P1TuNi6UNWlKhuvbVSmCof4DCE2JZaVPVZSslhJo/o0Wtk1tmEnLYQg\nVZPK0s1LCXML45vD3wDytbWxtMGumB02ljbYWNmQrk0nOT2Z+NR44lPjzTIY1gqtsqJHP5jMjuT0\n5CceQac9/x39LCHEp7r/zeroC1L22r/UVpaPda7amZ0BOwEI/TiU0nalkSSJ6ORoYlNicbdzx9rS\nmpDYECrPq0yLii3wj/KnVqla1C1dF/8of+5G3yUxLZG7MXczHattlbYcunsIx+KOLH51MV2rdVVU\nXolpiUzYPYGjwUf5pu037Lq9i59PZ/3y3dhno/ylB0hIjGo0ikcJj3C3c6dx+cY0LteYGm41iEyK\nxP2HrJ1XZPVyuBR2CXc7d9xLuiOE4Mi9I7Ra0UpJty9mT+zkWE6GnGTkvyOVkUWryq1oU7kNZe3L\nUsyyGMP+GQbA8WHH8S3vy+7bu+m8unOmzspcjgw9QvOKzTM9JPGp8fRa30tZKqdnz1t76ODZIdfH\n6b2+N5uubzKZdm7kORqUbZDrOnOD4fRBdkxrPY2pbabmmM8U+g+qwlhPnK5NR0Ji+qHpmVZrZEWv\nmr2wtrRm3519iro7Ixv6bKC7d/dca3UykpKewq9nf6VFpRY0KNPAqI3StelcD7/OkXtHSEpPIiE1\nAd8KvnRa9cTxjZWFFYPrD6aCQwUqOVaikmMl6rnXk98puo4+o5ErGKubM2q5TNFvYz9l2uxZ3JdF\ngZDYEFxtXZ+6AywhBDEpMTjaOGb5jIz6dxRLzi5hYvOJ+Jb35VLYJeJS47CztuNc6Dk6eHTA09mT\nNVfWsO7qOkCeQthyQ9YMutu5y8bSNvakadJwKu5EabvS1C1dl/pl6lPPvR7l7ctjZWn13Hf0u4UQ\nHXX/z8SMoDav932dBjXkhy+3QW16zOyBf5Q/zVs251HiIzmiE7DkwyWMfGlkgQUl8H7Jm123d1H6\nUWlsrGyw9rLm7xt/s2H7BoJjgunUoRMnQk5QP7k+ofGh3LLX+ZfOIsiE78u+dPTqSAtNC47cO8Ky\n6GXyOlhd+vgB4/Gt4Muhg4dYcWEFCeUTKG5VnLIRZQl8HJipvqlDptK1WlcunLiAhWSBjZcN8anx\nvPfze5mOX9WlKmXrlpVdmerKh8wPYeKeiazZusakvHjIfsrPHT/H46THSrrlXUu6VO3C7+N+x9nW\nmaZTmnIy5CR21e3o5t0ty/oaNGsgj6YM6l/9xmrKRZbL1P5tV7Q1Kr/rrV10bN8xV9fPwsNCdupi\n4nqs6b2G/q/1z1V9OW1XbViVcvblOHTwEBqthnZt25GqSWXdtnVEJUXx2P2xPJ2gk2dkr5FMbjmZ\noAtBBXL8Z7U9bfk0uWPPJqhK4/KNeb/P+/iU8eHmmZuUsitFmzZtkCRJqa9V61Z0X9udf3f9i6eL\nJ3cc7yjlLS0sKVW7FI42jpSLLEeLii34dNCn2BWzyyTPH3//QWJaIr279sbZ1lkJAjQjeIY8XWAQ\ntCkpLYl3F77LtlvbiCoTxZGhRwi6EIRGaHCp6cKXB77k/PHzyvn82PFHLpy4wKOERyRXSObsw7PE\n34yXtVJV5PdvS21LJjSfQLdOcofe97u+7AvcR1SZKKP2sfS0ZOnrS/GI8ShS1/O/vr1p+yam+U3D\nq6EX50PP00LTAkcbR9xqufHN4W+ol1QPO2s7bKra4BfkZ3S/j240mtaiNYlpidRsXJPYlFhOHT1F\nUloSAVEBnDl2hvvB90lJT4GLz/GIXpIkD+QRfCfddgPgpZyC2jBN/r92qdp83fZrOnp1zKSaMYWh\nMdmr1V6lX+1+dK3WFdcS+Qt7n1eVWHhCODsCdnDo7iGWX1iueMp6MP4Bdx7fwaeMT549nPn5+dGk\nRRNuRNzg64NfE5EYwdHgo0q6i60LWqElOjna7DrL2Zejo1dH3vF5h4jECBadWaTMnZpiyWvyx5NG\nq6HcnHI8uvKIg18dpPWK1gyqN4hVl1Ypedf0WkP/Ov2VEU3f2n1Z13sdi88sxs7ajgF1B1B5XuVM\nTj761+nP7z1+NxrBxaXE4TDryVKc16u/TstKLRndeLTJ+yS765dxbrZHjR781e+v7Bsql6Rp0ij2\nTQYPcIHgUMMBC8mCGm41qORYiaS0JFa/sVoJ0fqsKQjVr6kVBJ7OngR8GIBA5NpZUUaZ0jRpSJJE\naHwo0cnRnAg5webrm428CO57ex/tPOS58Ff/fNXIJXOZkmW4OOoiy84vY8r+KWiErOKt4VaDGxE3\nMh2/ilMVJCTcS7rTrEIz2XlUoPzh/UPHH4xGglqhZf3V9YTGh7LNfxt77+wFjFdMBEQFUG1BNeq5\n1+NS2CW6e3enmGUxxVLdnFG+uW1VFPgvyZSUlsTZh2dpubwlg+sP5rtXvstxOaUQgvVX19O/bv/n\nvqOfJIQYbbBvODqXBab83kuSJBJTEzkRcsLIcAVgYZeFlCxWEg9nD5qUb6KsldSjFVr8gvw4EXKC\nPXf2cCnsEtPbTudA0AFGvTSKdh7t8qTGLGo3a3RyNAvXL2TSwElGLkS/8vuKaQenISFR3qG8ojov\nblU8k1V32yptWfzaYmW+OiU9hWMhx9gfuJ8qTlUIig7K8vivV3+dJa8toax9WWVfSnoK+/bvo23b\ntrh970ZiWiIA/Wr3Y23vtUq+Q3cP0XpFaz5u9jE/dHyizNkfuD9LV7xjmozhpy6ZrZIfJz1m4OaB\n3Ii4oUTUa1mpJdPaTKNFxRaKQWVW1y8+NR77mXKn2tGrIwFRARwacqhA3ZXGJMdksqPwcPJgQrkJ\nDHhtgGIkWRTI732erk2n3cp2SpCbd196lxntZ+Bi65JvmS6HXSYwOpBOXp2MDGX13Iy4yd83/+aT\nvZ8AKEsntUKL1ddWtPNox77AfYCsKVp4aiE3I28SlRTF2/XfZqzvWMWIVQjBmQdnqOBQIZOle0Ri\nBKePnqbLK8arU0xxOewylZ0qK+vD5xyfwz83/+H0g9N09+7OmitruPXBLaq5VsP1O1eikuRR/pGh\nR2hRqUWe26ooocpkHi+E1X1ukCRJ7PDfQSevTkiSRFxKHPNPzmfKAeNAHh5OHjSv2Jz3Gr9H84rN\nlf2Pkx6z5OwSQuNDs10PXpS8ImVFdHI0h+8e5mH8Q848OEOaNo1bkbeMXEHWc69HcavinBye2Uo9\nI4+THuPynfzSHeIzhOXdl5stixCCvXf2suLiCr5/5XvK2ZfLMm+6Np3fL/7OrCOzcLZ1pmWlliw8\ntZDqrtUpZ1+Ow/cOs+S1JQyqN0gpo9Fq+PXsr0QnR1PJsRItKrVg6dmlzDgygx87/qhE49Iz+t/R\nLD67mA8af8DMDjMpYV0ikwX7zoE7sw0oEhIbQsW5FeXzK4D7Ybv/djZe28i37b5lX+A+ll9Yzv7A\n/fL5fakxezT7IO4BNX+uyfAGw/mm3TcIBGmaNCwtLIlMjMSpuBOf7fsM1xKu3I+9z5RWUwrdEY2h\nlmV+5/m0rtKaeu71cixnaMCUHR/t+Ij5p+Yr2wPqDKCmW02quVajqktVytuXJz41ng3XNvDTyZ+w\ns7ZjWINhOBZ3ZMLuCZSzL0d5h/IcuXcEkKMv/t7j92eyxtqUlqNu6bpsHbCVyk6VlX3xqfEExwRT\nw61Gkfn4U3k2/Cc7eqbBpOaTKGVXiooOFelarStHg4+y9spalndfztXwq9RdVFcpE/tpLO4/uBtF\nVzO1dEVPbju5wuKL/V8olqE5kZuOKlWTWuDBRFZcWMHQv+VlRNPbTqedRztaLMs8Kvn1tV8ZUHdA\nJhV7ZGIk50PPU9mxMgJB8/81JzIpkuPDjtO0QtNM9WR8eY5uNJrpbafz+f7PWXJ2CQD+H/pT1aVq\ntnLr69nUdxNv1HzD/BPWEZUUhet3rrzX6D1+OfNLpvRZ7WcxqcUks1/cH2z/IFsjTUMcbRyJSYkB\nIOijIKNO41mSqknF5ht5lH137F0qOWZvZLj3zl5e+eMVRV3uXNwZvyF+OX4YBEUHMfTvofgF+eFu\n5847Dd7BP8qfgKgA7sfex9LCUgkqY2NpwzsN3mH15dXEpsTy62u/MuKlEYTGh+Jg45ClU5anQfe1\n3fnn5j/YWNpQzbUaX7f5mu41uj8XMRdUng3/yY7+20PfEp4QjiRJLD6zWOnA7429Z2Sp3KNGD9b0\nWkNxq+I0WdpEcZTwQeMP+PTlT0lKT+JymLzE5ZfTv2BjZcMXrb7I9bx4Yal60jRpxKXGsfXmVqNl\ngYBs1NSiMacfnObe2HtUdKz4zOUzJDQ+lCafNyHYJThTmj7yFchBcvrV7qc4xYAn85YgR9YztLi+\n/v51arjVyFRnxoh8hkxsPpEZ7Wco6/Kzu34P4x5Sbo6snfi9x+/8dv43Vr+x2qz4279f/J3BWwYD\n8nSGU3EnBtYdiJWFFb4VfLO1K8lKpv4b+yvWu3p8yvgwsflEWlduzYXQC3Sp1kXpJH49+yvv/vsu\nbaq04cDgzGFKc0Ne7vN/bv5D97XdAdjSbwvda3TPNn94Qjilf5DnLf/q9xdJaUl8svcTgmODSfws\nMZOltSmZ2q5sy/Hg48R/Fk/T35oSGB1IVFIUK7qvUJ6T5M+TFRX/46TH2BWzK7CP26Ko+oWiKZcq\nkzH3Y+9TYa78bulVsxcVHCqQkp7C4tcX//d83Rv6SJ788mT6buyLX5CfUScfPjEcV1tXZaR0asQp\ntELLsH+GcSzkGI2WNqKEdYlMkd5GNxpdZEN8ZsTa0hoXWxf61O5DMctiJKUn8dPJn2hTuQ0v+bzE\n293fLjTZgqKD6LmuJ71q9qJphaY0q9CM4Jhg+rXsR3xqPKcfnOZRwiM6V+3M1gFbiU2Jxe07N+ae\nmMvcE3NpU6UNwxoMY1C9QcSnxgPgVsIt07Kqlstb8ucbf9KsYjOl44xKiqJNlTZEToqk74a+ytzr\nyh4rqepS1WgqJyfK2pcldUoqxb4pxttb5PZcc3kNE1tMzLGsvpMf3Wg0v7yaeTSfF1b2WImNlQ2/\nX/xd2fd3/7+p4FABC8mCcvblOBZ8jL139rLq8irFXev8zvOzqrLASdemczf6rhLBDCBuclyOBrNh\n8WHMPDITkJ2/pGvTmbxvMrbWtix9fanZHfG7L72LX5AfL/36kpFDGcMPpJuRNxUNwdMI8qKikhf0\njsgAZXnvjHZ599JXJEb0Oit7TwAhxCbdvjz7uo9LieNuzF3WXF7DjCNPGsenjA/b3txmNG88/eB0\n/rrxF2ObjlVeyAAPP36o+Ep+kbgddRu/ID+GNRyWKS05PZkbETeoU7qOyWApeUFvVJeRoT5D8S3v\nS2RSpGLN3qZKGy6GXsTa0ppHCY+M8id9nvTEaQSwvPtyBtcfjCRJaIWWGYdn8MWBLwBZFR8SG0LP\ndT2V1QTjmo5jcP3B+CzxoZpLNW59eCtP57Pq0ire+ustk3EFTHHk3hFaLm8JQMCHAXi5eOXpuFmx\n7Pwyhv0zjPru9bkYdhGQDQ2DY4OxkCzoVr0bnat2pq57XcqWLPvU53RPhpykkmMltvtvZ/jW4UZp\nHzb5kPldTH9opGvTGf7PcB7GP2T37d3ULlWbMiXLEJEYQURiBNPaTGNw/cG5XhcfnRzN8eDj/HPz\nHw7ePYhdMTtODT+lzm2rFGmWnV9GTHIM45qN42DQQdqsbEPzis05NuzY86u6lyRpvRCiryRJE4C9\nyMFt8u3rPj41nmPBx/j17K9sur6JNlXasHXAVmVEMevILCbvk/3w9K7Vm6rOVWlWsRktKrbI9VK7\nS2GXqOpS9ZnO6eWFMj+UISwhTNneOmArZUqWofHSxkb5gscFm6WWNoc9t/fQcVVHZfvfAf/yavVX\ngSdeqC6FXeKfm//QtVpX2q5sS4omBRtLG258cIPWK1pT060m7T3aM2nvJErblWZ4g+F4OnsqnYmY\nKjh1/xS+vz1R9Xs6e2bS1OjJj1Hd5/s+Vz4gs5vzVtxWIq8Eeb/J+3k+pjkkpydz5/EdQuNDKVuy\nbK6NtYKig/D4ySPPPtv10wOdvDqRokmhk1cnStuV5uyDs8x+ZXaWI3mt0OL5kyd3Y+4y1GcoM9vP\nJDk9mSo/VaGGWw3Ojjxb5J8rFZWMLDi5gDE75ciXCZ8lmH0Pp2vTOX3/NDcibvDOP+8YJ07L2zp6\nhBCF+gN6ARMy7JsFtNP93z5jum6/yA/XHl0TTEOsvrRaaLSafNV1JeyKYBqiwpgKQqPViNT01HzV\nV5AcOHBAhMaFijc3vSn+uPiH2BWwS9h+YyuYRpa/CbsmCK1Wm+9jP4h9ID7Y9oFSb3hCuCJTVuy5\nvUcwDTH7yGzxKP6RSExNVMoHRAYIpiGGbBkiav9cW9m/5foWpXxCaoLYdmubeBD7QHy862PR8Y+O\nwmmWk9H5PYh9kGVbmcvqS6uV+padW2YyT0JqgmAaYof/DrPrzY9M+cWwjbLDlEz/3vxXKXvh4QWx\n9/Zes4+rf378I/2VfbHJsYJpiNjk2BzLa7VaMeCHAcLrJy+x5/Yeka5JN/vYT5Nnee1yQ1GU63mU\nacPVDWLgpoGi7Yq2ouwPZQXTENceXRMPYh+Ikf+MVJ4H36W+Od6TWq1WrL28VgzcNFAUm15MMA3R\nb0M/MXH3RPGV31fikz2fiE3XNgldv5frfrYozNE3BoROfd9ByGp6JyDKIE+uPdnsub2H9p7tTVqs\nCiEU1fTAzQMZuHkgJ4efREJiwp4JbOm3xaz5unRtOpP3TuaH4/I675CYkExLt1b2WEmjco2oVaqW\nqSqeCeuvrufPy3/y5+U/jfa727kTlhCGc3Fn9ry1p8Ajs7Ve0Rr/KH/2vrWX9p6m175npINnh0yj\n7UH1BvF69deV9cND6surIRafWczobaMZ9s8wfjnzC7sG7aKEdQkcbBwYsXUEM9rPIFWTSg23Gmi0\nGjZd38Swf4aRoknJ97m9WfdNHG0ceW3Na7zzzztGX95/9PyD7t7dWXpuKTXcatCmSpt8H+9ZoJ8e\nWdVzVaY0jVbD1we/ZkqrKSZKYhQPwGeJHBjHHL/fAFfDrwIo/i4SUhNI16YDcPnRZSNbCq3QEp4Q\nzt2Yu5y+f5ro5GjeafAOay6voXGLxny440MsJAtOjzitagFUngqh8aG8t+09LoVd4rOWn1HRoSLr\nr67nt/O/UeuXWpQsVlKxJ6pbui4nhp8gVZNKaloqGqHh3MNz2Bezx9vNm5T0FDZc28C7/74LwOwO\ns5nQfAJ1S9ct0CWdha6610WqixBC/KDzgncH6AAsEXn0dS+EwOJrC/rX6c+aXmuM0vRzrBnpVbOX\nYvRgjpolY2SzNlXayK4Ns6BFxRY0KteILTe2cDfmLt+/8r0SdCH9i/Rn4ms8PjWehacWEpcSR/0y\n9SlvX57G5RsbGTela9MZv2s8vuV9GVhvYL6OJ30lsaL7Cgb7DM45sxnoLd89nT25PeY2IMt75sEZ\nLoddZsRLI+j4R0fFS9+YJmOYf2o+q3quYmC9gcw/OZ+Pdn4EFJx/BI1WQ891PanhVoPwxHBWXFhh\nlK739Pe8s/XmVrqt7ZblR5s+XLIefdRDgKuPrpKuTTcZNOlEyAma/a+ZWTJ08OygeJGztrBWgkqZ\n4sH4B0aOmlRUzCVdm05wTDAuti44FndU9mu0Gty+dyM6OZrPXv6MKa2mKKs/tEKL5deWuJVwIyIx\nAm9XbzydPbkYdjGTF88m5ZuQlJbE5UeXATkSYUevjrzf+H2TTp4MeW6X1+k699viyXy8FyAww9f9\n4MGDqVKlCkAmX/cHDshLiNq2bQs88U3cpEUTHGc54hbmRmh8KBdnX6T+4vpGvoeXvr6Urbu28u5L\n71KhfgXK2Zfjhz9/oKNXR9q1baeEWtXnB0z66t7z1h5at2nNpbBLLN+yHCEEhy0Oyxc4Q377B/ZM\nfnkypWuXJiAqgE5WsgOXZ+m7+XLYZcbcGJPpfOZ2motPsk+u6tuzbw8d/+hI1KIonG2d8y3fvv37\n2Oa/jbmhcwE40PqAyfwHOci0g9MU+UMXhuJe0p3d+3bT6Y9O+fZ9n9N24+aNWXd1HcN+ko0d436V\nrcwL2xd3Xrc9G3iy4OQCfJJ9GLR5ECHzQyjvUD5T/gMHDtBuZTvwgBENR/CmvRy1rWK9irLVfSAs\nfm0xTjWcGLF1BC21LZnYYiLWnta8vPzlTM9DL9te9KrZizfP6aK/ZRH7IeP2uAHjGN9sPAHnAopE\n+6nbRWu7ecvmrLuyji07txCTEoOFhwXp2nRCr4TiVsINUUUO3JXx/hpTegw3I2+yS7OL8vblWdVw\nlVH9G7ZtoO+GvuABDco0YGyZsQz+a7BS3ivGi9tRtwmeL9s++fn50Xt9byLdIxFTRZby6v8PCgoC\nYOXKlc9tR+8B9DIY0d9GHtU3Ejn4ui9o2T/Z8wnfHfsuy/Tkz5MpZlkMi6+NpwPG+o7ljZpvkHYn\njXZt22VROjORiZFs99+uLNcypE2VNsxoN4NmFc0b7WSFn5lrQQ0NEys6VMTexp6KDhWxsbLhs5c/\nM1rPbg4RiRGU+r4UAF7OXpwZeQan4k65ksmQwMeBeM73pIpTFQ4PPZyloaDeMY0h1V2rcytStrK/\n+cFNvBd6K2mG6uW8yPW0edYy7QrYRefVnWlZqSUONg5s898GyMvyPvT9MEuZ9Fo0gE9afEKbKm3Y\nfH0zqy6tMnJQZVRmqmDeiXmM2zVO2Wfo6+HKoytGDq8mNZ/E121lLVrxb2U1v/76qdfOfIqiXM9C\npkN3DzFh9wTsitnxevXXKVWiFKXsSpGUlsS5h+fwdvMmPCGcRwmP+PTlTzl66CjdT3YnXZtOJcdK\nvF79dS6EXuD16q/zycufGNU7aPMggmODeTThEbEpsfgs8VHU90N9hrKs+7ICOYe8jugL3RhP11kP\nRzbKm5lhX3tgeBZlsjVuMCQqMcqsfAmpCeJy2GVxO+q2EEI2DFt/Zb1gGmLTtU2i17peJo3X9OTV\noESr1YoNVzeYrPvzfZ/nqc7cypSaniouPLwgHic9ztfxDIlIiBC3Im6JARsHiI92fCTSNekiMTUx\nz+10MfSi6L6mu+i+pnuWeRJTE8X8E/PFroBdShvWX1RfrL60WhwKOiSEkM9Vn+Y0y0kp+zwaBBUk\nKy+szNJAc8iWIeJu9N1sZXqc9Fi8v+19ozLrrqwTTEMM3DRQMA3x9l9vi/MPzyvGnoGPAwXTECeC\nT4iXl71s9Dz9eOxHpa5Wy1sJ51nOStri04vFh9s/VLb/69cuNxRFuZ6mTJGJkcL6a2vBNMSK8yvM\nNr7OSab+G/sLpiHK/1hebL25Vdk/9cBUwTSE40xHERAZkB/RM0EejfEKfUSfV8wd0QvdSKNO6Tpc\nHn3Z7PpXXlgpL80796vR/oxzg+ObjufHTj+aL3g2xKbE4jjLMdN+w/nO55GZh2fy2f7PsLWyVUZ3\nX7T6gm7e3WhUrlGu6kpKS6LSvEqs671OiTxmCo1Ww92Yu3g6e5pMN/Tnv773evrU7pMrOV5E9KN5\nPat6rmLNlTXUd6/PjCMzuDL6CrVL1zarrriUOFoub6ms7f+kxSf4R/lzOewyx4cdV5av6j0Xtq3S\nlgNBB5TRT0BUAC2WtWB80/F8uu9T4EkkQxUVc5l3Yh7fHPqGyk6V+bnrzybdZOcWIQRT/aYy/dB0\njr1zjKYVmhrZV8WnxuM134viVsW5O/Zuvo9nyHM7R59XcqO6D44JptK8Sjl65fKP9GfBqQUmfd/7\nDfajZeWWfHngS749/C2ezp5cHn25wC17DSOlZcRcK+aixv3Y+2y4toGhPkNJ16YzzW8atta2bLi2\ngXru9RjWYBiNyjXKNgCOHsNQrvlpj6uPrlJnUR1AdoU8vOFwk8Zi/zW23NhCz3U9ATly4aJXF1Hj\nZ9m1cOqUVLMd1sw/OZ/dt3ez+LXFSkAgzZcaLL+2ZPLLk3G3c2fLzS2KAWvsp7H87/z/GNt0LCD7\nKvj59M9EfxpNujadC6EXqOlW87nxVvlf5Xr4dYpZFitwx1C55WHcQybvm8yx4GNs6b+lQFc9HQw6\nyPCtw9k5cKfJ8zRcP1/QQdHUjj6PPIx7yNoraxm/e7zJ9NwEGymoeaaE1ATOPTxHqxWtMqWZEwzk\nachUkOhlSklPYeGphey5s4ddt3cBMLj+YGytbHEq7sR7jd9T5muFEBy+d1jxsnd6xOlcawMyIoRg\nR8AORm8bzb2YexAIayespWXllmZ9dDwLntX1u/roKt3Xduf249tG+w8MPsAnez/BQrKgvH15Nvbd\naJZMhh8MgBJ0qPWK1hy6e0jZv+3NbVR0qIinsyeRSZGULVmWzdc303+TvFLB3BdlUb7PixpPS67E\ntOCPv+0AACAASURBVETsZsgfYrnt4ApKpriUOL4/9j0/n/6ZqKQo1vZaS786/XIumAuZZh+ZTVhC\nGHM6zTFZzvU7Vz5p8Qn13esrUTFLzihJXfe6fNP2G7OXGpsirx19UVhH/8xJ06Sx/up6/IL8+O28\ncaj7Q0MOMfvobGZ1mEWd0nUKRT67Yna0rNzSZNpbf73FwSEHn7FEOaNX+0ZOijQ7rriNlQ0fN/+Y\nj5t/TMvlLUnXptO6cmtiUmJYf3U9tta2fNn6S6Vudzt35nScw+jGo5U11/lBkiS6VuvK5dGXKfdj\nORJIUDqYjX020qtWr3wfo6gTmRjJxmsbGbXNtDvftivlVSvhE8Opt6geAzYNYJD9IJN5DelRo4fR\n9i+nf8E/0l/p5DtX7czOgJ38df0v/KP8OXX/VCajve7e2Qe+USk6CCEYt1M2qpzQbEKhyfH+9vf5\n49IfyvaobaNITEskODaYz1p+hpWFFe9ufZeKjhWz9AmREz5lfExGC51+cDpnH54lKimKVE2qUejr\nQfUGseTsEjr80YF2Hu3Y9/a+PB07rxSJEb0kSbOEEJ9KkjRCCLFUty/Pvu6z4kbEDT7Y/oES3KSq\nS1W+bPUltUvXxtrCmqPBR83yX/6s+OPiHyYt8m+8fwNvN28TJQoHvUU8yA/B+XfP57vOrw9+TXRy\nNHM6zSEqKYrqC6rzZt03s/SVnleymypxt3Pn5PCThRbW9VmgD7/bpkobVvVchaWFJWV/LIuXsxe3\nH9+mdqnaXA2/yqnhp6jsVBn3H9yBzCO2lPQU/KP8uR11mwWnFnD6wWliU2JzPP47Pu/QpVoXunl3\nIyw+jMVnFqMVWmZ2mFnwJ6vyVIhLiaPvxr7sDNgJwJGhR2hRKXPo6WdBqiaVC6EXjFxh6/Ep48Mv\nXX+h+TLZAVNep/4S0xIp/X1pHnz8AAcbB0COIVJ1QVW+bfctDcs2pJ1Hu0zBl9K16UQnR5OQmpDn\nd8pzrbqXJCkKiATeFfLa+Qbk0dd94ONAyjuUJyAqAA8nD8WhwXdHv+OTvU+WRKzrvY6+tfs+xbPK\nPynpKcoyormd5hotQ7oz5g4ezh5ZFX2mGKpp7aztiJscl29bgm5rurH11lZAXhJ3P/Y+k/ZOeioB\nSb7Y/wXfHP6Gaa2n8aHvh9yOus2vZ3/lt/O/yZHyJobnXMlzypT9U/j28LdUcKhA8LhgxXj17ti7\nVJ735GWkD+facnlLjtw7QouKLRjbdCy9a8m+/PUfDBm5OOoi9dzrkZyerGhhtELL3jt7aVqhqfKi\nVHk+uRh6UfGECNC4XGNOjThViBLJBEUHMef4HGJSYhjTZAyNlj6Z5qvoUJHg2GCOvnM0VxEsDWn/\ne3s+8v2Ibt7d+HjXx8w5IavxYz+Nxd7G9MAhO/TPT/jEcNxKuGWd7zlfXvdGhm2zfN0P2jxIWX5z\nMOigCIsPM1oSVHluZWVZwuZrm8Vnez8rEB/uWfE0loj8eelPwTREuR/LCa1WKwb/NVg5v4dxDwtF\nJlO8s+UdRa5FpxflW6YTwSeU+k6GnBRnH5w1yw97fjCUKyU95akfzxye5vXT+5PX/0ZtHSVqLqwp\nKs2tJLZc36IshwuNCxVxKXFCCHkJ6oj5I4Tdt3ai9fLWQgghRm0dpdTx5qY3n5q82fFfWzKWH/Ir\nV1xKnDgQeEB8sf8L5bp3Xd1V+AX6FZpMOZGaniom7JogmIZYfn65qDa/mvj7xt95lmnm4Znig20f\niNC4UCFNk8SZ+2dEdFJ0nuVbeHKheH/b+yJNk2a0v+bCmsLiKwvZz/00nmtf9wCeOle3ejW9Wb7u\n9915Ms+xP3A/zSs2Z/Gri9kesJ0JzSbwcqWXlfSeNXvSs2ZPU9UUaQbUHUCf2n2ISIxAkiRW9FjB\nkteWUPzb4pT9sSw/df6JMb5jCltMlnZbioONA/NOzmP0ttG84vlKvixv65Suw/zO8xmzc4yRGu7O\nGNPR6AqCezH3eGPdG1wIvUBgtOway8Pp2WhNcqOkKCglnEPxkoBW2V5skNZjHICW34HfgRXnf6dF\npRZISJwPPU9CsQQciztiN8OOxLREAOZ1msdHTT8qGOFUiizfHvqWWUdnAfLzcXzYcdxLuheyVNlj\nZWHFwbuybdMfl/7AtYQrF0Mv0s27W57qa1CmAZP3TWbLzS1Mbzs933FCsops+Xb9twmKDqLX+vzZ\nCxUJ1b0eSZJmIoep7QMsFnn0df+ik3EaAqBL1S6MbTqWjl4dsyj1bHh9zev8e+tfzr97Hp8yPjkX\nyAat0MpudJOi6FK1C71r9aZB2Qa5ridVk8rc/7N31WFRfU34vTSKgoHYii0WdheInWC3P8XubtfG\nLuxEDAxQsQEBxRYRlRBRQBCkU2rZ3fn+uOwKssDuwsLix/s8+8C995wzc/PEzLzz6gCUlZSRlJ6E\nwPhANKjYACpKKlBTVoOWmhbm3J8DJUYJe0324tLnS/D45QEAeDPjDTrU6CC1THV1gMuVro4kj3Oz\nZoCPj9Tq5CkzNSNVZOICgIS0BNQ5WAcJ6Ql/CnIEYmr/jT+jlf/TV/P/AgISIDAuEDoaOlKn8y4u\nCG3oYUvDUPdQXbhMcYGJtQkSVieIEpxJipPuJ0XOqw4THWBS30QeKmdDSkYKYlJiUFundsn0us+0\nwccQkR3YWbw+gDgAQtdtHbD2+xyYOnVqrlz3isKtLI/t5V2WY9XpzI4+c8L50PEhHjo+hG4zXQQv\nCcbr56+LRb9D/Q/BvI054r/Ew/WLa4Hbc5rsJNpO8EsAMvOUSFq/skFlzH8wH09dn6JV1VZIrZnK\n0uFmcllXblYZAxsOBAKBzUab0a12NzbUMvN4xzMdscNoB755fMPoZqPRr0+/bO337s3KA1wz//7Z\ndnGR7nxdXfMv7+3dK3P2n1MeABBlL9+vX6/MAUfO8nXqsNuaqprZ5M24OwMJX9hOfuOUjehSqwsO\nKA/Ay5CXWDNxDdY6rwUCgSmGU3Bh8QWx+jKMeP2AXiBSrPepdFu6bSVGCSGfQhCCEIXQR5Jt95fu\nQCDwM/EnuHwuvnl8Q8rXFHBcOdhmtE3i9i7EX4DVRyu057bHDqMd6FO/j1z1F/4v5LqXFcU+o2cY\nxhBAABElMgxzAn9WEIuc676gcC3iuFlxvO5CCL2ii1onSeDq6oqUGikYdGUQdMvoolvtbtjbd2+u\nLHaygMvnYubdmbD6aCXa16JKC/jF+IHL56Jd9XZwD3MH8Mf79sDVA1j6dSn61e+HPSZ78DLkJWbf\nn43GlRrDL8Yvc1abczAtz8eQ7TB7yUWmOHOBsN3UjFQ4fHfA65+vkZieCNcfrvCJylxKCAQ+7mKd\n7ApDpoEB4O0tdVPZoKjPuaLpBCimXvLWyfqjNSzfWWKn8U4sfrQYQfFBSOImAQAyNmSIndX/rZOt\njy1G3hgJywGWuS61yxslNo4+c3nePNPz/puwQ2cYpl3msn3c3518KVhU1KwI2kR4G/pWbDiJIiLi\ndwSMLxpDUIddCm5SuQlufbkFr0gvdKvdDTuMd6CqVtUCycgarWDW1AxLOy/FksdL8DaU9QbuXLMz\nXk5/maPe0sdLAX1gfY/14Al4mN1+JoCZ8MtSRiAgubIT5tX5FjbEtftHvgaAoQBnOMa3GI+Wei1h\nVNcIRwYegaurq0ydfF4ys553YXT8pSiFEN6R3ph8ezI29dyEymUq43PkZwxvMhx2o+1wxuNM/g1k\nokedHtjfd3+xdfIFgiwefIrwgxRJbf4fYHrNlPpZ9yNwQL0u9CpudXIghZtCCx4sEHnpmtubi/4K\nBAKy+WxD4IA2Om8skJyv0V9FMrwjvUX7Hb87UvV91QkcUPNjzck/xl90zM7Hjq58ukKa1QMIEGT/\n/ZXc5WP4xwLpJw5s9/fnpyhY6bAyx/UoCsh6PQQCAf1K+pUjsobH55HbDzfa8WwHNTzckMABeUV4\nSdwuX8CnkIQQWvxwMQ2+MphG2IygNU5rRMmv8gKXx6WEtATJT0IMPvz6QC+DX9LPhJ/E4/OIiCg8\nKZySuckFavf/AR9+fSC9PXp0+v1pIiJ6FfJKlOgqhZuSb32BQEA9z/ckCzcLeasqEVCa1Ob/G3a+\ndjC7bpYtnagiYe2Ttdj5/A8JSrfa3di8zwA61Oggmm0DwKKOi9CgYgPUr1AfLfRaoEa5GhLPoi94\nXsBGl414Nf0VapSvke1YfFo8KuyqkG2f8rYM8HnKom3hqtj7sPdod7oddDR0sLX3Vix4uAB6ZfUQ\ntiwMSoySdCf/F/52qFP0xziNlwbN7ZpZHPLYa1QUev9923OTaXrNFLe+3BJtr+u+Dtvdtou2tdS0\nRGlDq5StAq85XtAtq5un7KdBT7Hn5R5Rql4AuDj8In4m/kRkciQOvjmIiOURqFK2yl86stTKg64M\n+rNvk/QXiyfgYaPLxmzvTVYs6rgIB/sflLrd/xckc5OhtVMLF4dfxKRWkwCwycqm3pkKgF1N9J3n\nm2vdJY+XYE67OWhzqg2umF7BuBbjikr1XFGi4+hl+UGRpj6ZKM64WWHq1RUOK7LtV5RYXh6fR8nc\nZIr8HUm2D2xF+4UpHfP6TbCdQIlpiTLL/hT+id6HvRelTGXjUXPO2mccmpFrG+m89AJzMMgyS1WU\n+xeXGkfggOodqkcuLi4yzbrTMtJo/ZP1outt5WkllQ5qauJlggPCFNCJdyfI9JppjuenqWVT6ni6\nI/W52IfAAQXFBUkkr+vZrgQOaOjVoaLZc+TvSDr+7jid9ThLLY61IHBAL4JfZKu30mGlSCdwQPPv\nz5fqPIUQpsiufaA2PQ16Sp/CP5HDNwfa93IfnXQ/SWGJYTK1qyjPVFbIqlN8ajy9+fkmx7sZnxpP\nPc73IHAgOhaVHEWTb00mcEA2n23oyJsjOdpzDnCmDqc7iO7fda/rMuklL0DGGX3BpialUBhEpUSh\nStkq2G2yu7hVEQtlJWWUUS0D3bK6Ii78e1/vYfPTzdnK7eqzCwBwa8yf2dnlz5dR3iI7g9pD/4fY\n6LIxT5kfwz/COdAZLU+0RNtTbTGm+Sh2VsoRABwl6FhUBDjsK/B5zmdMaDkh17bUlNVkss0L7c8M\nw9qehd1USYOOhg6aVG6CoPggANm7eSCnnR1gnUV/Jv4UbXuGe2bjCJ9yewqiU6Il1iE9XZxMAram\nYkjjIZjVbhZsR9tifvv5AICphlMBAL7RvngT+gZOAU6wHW0rSpSUF9x+uOFFyAsELQrCnbF3QETY\n4LwBVfZWwdz7c/Ho2yPRTF6YgQ8APkd8xmmP0/i17Bdcprrg7NCzsHxnidSM1Fwk5Q4ha1srvVbo\nUacHWui1gEl9EyztvBQz285EtXLVpG7zX8Oel3vQ8UxH3P5yW7TvW+w3dDrbCS2rtETGhgzRe3v0\n7VFc/HgRAPtMzGo7CwA72b3hfQMdTneA0UUjvA19iwktJuDcsHP/TPpqhVq6ZxhmBWXy2suD6/5f\nhnuYO2bYz4Dn7JLjtyg0N5g1NUMZ1TI4OvAo/GP90fZUW4wyGIWwpDB8i/0GTVVNjGw6Etoa2nAP\nc8cdvzuiNsQtiWZNQauhooG09SmiY9NuT8d5z/PoXbc31nVfhx51ekicelUaZO30SsJjmpKRApdA\nF9TSrgVlRhnl1cujernqYBhGZKpocbwFzg87nyNrIBGBQFBilDLPmz3hyruriDry0KWhEJAAjY40\nwupuq1FRsyIWPFyA6uWq49X0V1JlZMwKZjOTzaQgvNarnVbjQ/gHLOiwAP0b9EcGPwMHXh/Ade/r\nyBBk4MiAIzDSN8q13Xtf72HI1SEiQqqI3xGouo91Ev00+xNa6LUQW883yhdtT7XFkQFHEJcWh10v\ndmGvyV5MMZwi0/n9iP8BLp+LhpUaylT/X0dkciQm2k3E3XF3oa6iDr9oP3Q/3x1bem8Rm7dk8JXB\n6FmnJ5wCneAV6YWwpLBsx88NPYephlMVNh14iea6B4BMD/uVRNSvIFz3/6/Y8nQLvsV+w8URF4tb\nFYlh/dEaN31vQk1ZDd1rd8fCjgvh8N0BB14fECXICFwUiDtf7mDx48U56ouzjwJg+djNHQG+OoQf\n/7jUOAy4PAB6WnqwHGAp0axOWmS1vaupsTPQkgArTyvMfzgf9SvUR4YgA1w+F8ncZESnRINPfGiq\naCI5IxlAzpz07mHuGG87Hv6x/gDYjHNOAU5IXpckKqO7Ww9mTc1wfPBx+Mf4Y9a9WWhTrQ3WdFuD\nLue6sLwGAIIWBUmV7EOYo0D4HEgyuCIi2PnaYeSNkVBilPB2xttcWc1anWgFFSUVvJ/5HgAbzdHk\naBOMaz4O0wynie18BSTAggcL4BfjhyeBT3Bj1A1RPoBSFB4EJMBv7m9oW2ija62usBlpgxveN2Dx\nwgI7jXfiv9b/ZSv/OeIzJt6aiE8RnxC3Kg46GjqicDkAojTMwUuCi+N0JEaJt9GD5bR/nPm/RFz3\niobitH3NtJ9Jh18fzrE/P53kyf2fG4Q6XfhwgcbbjqcFDxbQBucNouMfwz/maq//EvWFPoV/onRe\nuti2C+IhLuv9MzCQ3vYuKYrimRLarvkCfrb9XB6XuDwuJaUn0cfwj6LcCll10tujR+CAeHwe2X+x\np9PvT4ts4EseLcl2PwZfGUzhSeH0K+kXVdpVic5/OE8BsQHZ7u/ce3Pz9VJP56WTb5QvgQN6FfIq\nh05qan9kPvJ/RKkZqTnaCI4Ppn0v95H2Tm2KS40TK+dF8AvS26NHAbEBon3vw95Th9MdqPq+6uT4\n3TEHN3lWKKItnEgx9ZJWJ+HzorlNk6rurUp6e/TI7JqZ2KgYof+S8NfXui8teriIKu2qRKbXTGnd\nk3WiXA4F0akogJJso2cYpjURZU3QKxHXfSn+oEutLiIuZ2mgtEUJzGYG977ek4NWeaNb7W646XMT\nt7/czrbM1utCrxxlD/c/DMFGARpXbowWei2ypYDkCXhgGGLttQBrd+fI/9Fu1oxdovfxKbm2dwAi\nm/bf0QSqyqpQVVaFlpoWWuq1zMZvwOVzcefLHUQkR6BhxYZQVlLGkMZDMKPNDNGsPDY1FuAo4fkP\nlrPg3nh7VC1XBY+/PWZt128tUe9wPbSr3g4pa1MQuCgQx9yPQdtCO099u57rCq9ILwDAqBujYONl\nA49fHgiMC8S6J+ugZ1EHTS2bgVHJQP+GfaGpqo69L/ciIC4AAhIgNjUWlctURuNKjZGQnoCXITk5\nFQD2nVrTbQ16W/UW+Rq0qdYGyzovQ1hSGP678x/+u/Mf0nhpMlz1UsiKfS/3AQAsB1giZV0Kfi37\nhfDl4bg5+qZYfoe/TXPTDKfh6Y+nuDjiImxH22Kb0TZoqWkVie7FBYVYumcYxojY9LSPiV26P4FS\nrnupYOVphVn3ZiFtvXQfnZs+NzHqxihoqGggdZ30DkMFRVB8ECpqVsyWrjQoPkjk7GSkbwQdDZ1c\n66upC5DBzVzJ4iihnFo57Ou7D1w+V67EFsJl4n/hERSGIfE38iUKHXz98zWGXB2ChhUbYlHHRTAz\nMMvBLOYb5QuDYwYAgCMDjmB+B3YwIRqMAdjiug39GvTDf3f+g3eUNzb02IAa5Wrg1pdbeDSRNd0k\npCXAxssGtr62cAxwzFMvbXVtjGg6Aks6LRF98AUkgLo6gZfBnpfqFnVoqmoiMT0RALCiywpY9LHI\n87wtnltgzRP280ObSHS9dDR0EJ8Wj6tmVzG2+dh8r1spcsfb0LeY/2A+NFQ08GTyk1z9ZmJSYjDo\nyiCYNTXDiq4rJG5/wOUBInNgwuqEEpseucTa6DNn8x8y/xd29BYAHDI7fzOw9vq9f9Ur7eizYN/L\nfVjuuBzJa5NRRrWMVHW9Ir0gIIHMbGfFgeiUaOiWzVzo4Shha++tGNZ4WK5OUoWFourgo5Kj8o3z\nLizsfbkXKxxXSBTrbe9nj2E2w3BmyBlMbDkRTY82FWX6y1o/OiUaunt0oaqkigxBRo62/3T4BHD+\n8BhU06qGX79/YZrhNJwbdg7dznXDi5AXuepTQaMCNFU14TDRAc2qNMtT96yOgsncVGioaEg0sIlJ\niUHlPZVF50hEUNryp56kA6RS5ERKRgrK7igL4A+fhtMkJ9z9eheH3hxCwMIA6FfQz8Z2ubDDQmw3\n3i7xLDw1IxVldpTB0MZDYe9nD3VldaknRIoCWTt6RXg66zEMY5rpdFcpk/veBoCQ+Lwe2Ix2OTB1\n6lRwOBxwOBwcPHgwRyKAot4+ePBggeoXZLt1emsgEHgX+i7bcWGZvOo3r9Icsb6xRabv37pJW59h\nCLplPwNKjqIl+m6CbojxjZGpPeF2XvePYVxFiVqI5Ht9BCRAlXlVYHPPBq6urvjN/Y37Dvex+/Ju\nmdrLb/uO3x2YaphKVH6YzTAgEHjo9BANlzUUdfIIzJ6Iw+utFxAIZAgysKrrqhztubg8xaU7VwCw\nXvM9qSc68Trh2bRnAIDzt85jzZk12G60XdT+ngZ7/qwcBALOPZwRuyoWoUtD4XjFMV/9XVxcwX4j\nGZRVewt1tWcSXZ/xduOBQMClpwsA9mNbPaY6EMjSoioxSlI/T8W5Lfy/OPWxe2iHwTsGw8Sazfw2\nmzsbb5+zpFkT7CbgpdtLIBCod7geghOCMfPITCAQcJvmhkMDDsH9pbvE8jRUNIBAoFpUNZwewqbT\nlkRfRbh/rq6u4HA4mDp1KqZOnQqZIYthXx4/AOYA/AEYZm7PAOuINyOX8rJ7NMgJxe28cfDVQdLb\no0eTb02m6ORohdBJHGTV6Q9hyh+Sm65nu8pVL3k62uUFoZOXi4tLNkeiqOQoSkxLFOs8JCv6Wvcl\nHQsdicoKiUT2vNhDFm4WlJqRKtbZjYjIytOKDr8+nI2q9cHXB7TTbSfZf7GnHc92/EVgxJbJyxlz\nhcOKbI6ZQsjyTEl6X8EBrXFak2N/82PN6ZzHuVzrKeK7R6QYeh1+fZh0d+vSWY+zlMxNpvuP7xM4\noIl2E0XP/l2/uwQOKDwpnBLSEqjtybYEDqR69kddH0XNjjYjcEA+kT6kuU1TLFGOOCjCdfobKKXA\nLQUAmFibwCnA6Z8L68m6ZL740WIcenMIABCyJAQ1y9eUu8zihF+0H06+P4k9JnvgE+WDlidaopxa\nOSSuSSyU9n2ifNDsWDM4TXKCb7Qvpreeni0/PQAkpidi7v25eBP6Bq5TXHPQCwPsSgRfwAeXz4W6\nijqUGWU8D36OA68P4JLpJZRRLYPq+6rj1+9fqF+hPr7HfQcA7O6zGyu6rhBdbzU1Andt/ouN+jr6\n8JrrJbWpKiskCckbZjMM9n72MNI3gtMkJ1GMtfIWZYxoMgI3R9+UWf7/KyKTIzHtzjR8jfmKUQaj\ncNrjNFrptUL76u0xrsU4tNRriXn35+GY+zEALIVx4upEmFibQFtDG/v67kPL4y0RvzperNnkefBz\nfI74jLkP5gIAHk14hDehb+Ae5o6bo29mc+YtSSixNnpZUdrRi4fQHrWhxwZs6b2luNUpMMR9iF//\nfI3OZztjRusZOD30dKHLzBoPr4iP2BqnNbB4YSETf7o4eEd6o8OZDkjJYImF2ldvD9vRtrjgeQEe\n4R5QYpTwMfwjOtfqDAtjC5RTL4eH/g/hFekFvxg/hP8Oh1uwGwBAt4wuolKioMwog0/8bHJe/PcC\n1bSq4YT7CZz3PI+olCicGHQCs9rNylZOaEvvcb4Xnv1gl9evj7yORpUawfCkIe6MvYObPjdh/cka\nALCv7z6oKKng0JtD6F23N7b03oIKGhUw8sZIPPB/AN0yurgw/AIGNhyY6zXIa1CXmJ6I1U6rcdz9\nONpWa4uWei3xPPg5/GP90atuL7hMcZHhqpcCAMztzXHmwxn0qNMDP+J/4EfCD6ztthbbjVmTTWhi\nKGoeYAfytInA5XOht1cPb2a8wdOgpzBva56jTVFuBgCNKjWC9QhrdKjRAeb25qigWUFh2UMlQYmP\no5f2h9Kl+1zx4OsDUt+qTqGJoQqjU1ZIqlNuS6uz7s4SLd8Wtl7FsUyfF8RdK4FAIDLNFDZ4fB5V\n21uNwAGNvTmWbnjfoBveN8jhmwN5RXhRm5NtCFNAgy4Poo3OG+mcxzlyDnAmrwgvOudxjnwifSiZ\nm0xpGWkUkhBCfAGfjrw5QuAgW76Cnud7UqMjjXKNYReaaKbenkrtTrWje373KDUjld6HvSeBQEAx\nKTGiZ0BpsxJhCuisx1la67SWtHZokdpWNQIHIr7z27638z134b1XU8v92jh8c6Cjb4/Sm59vyD/G\nP1c+ByLF+R78DUXTa8yNMYQpoCm3ppDNZ5scpiDNbZpUa38t0TY4ILcfbqLtZG4yeUV40YdfH+im\n900aeHkgmVw0IcfvjiJuCGF2zHeh7yTWS9GuE5HsS/fFno++FIWPAQ0HYEvvLehxvgdONj9Z3OrI\nhLxmWCffs+e0oEPhZunr3Tt3mYoEhmFQqYx8qCUIhAqaFaCqrIrXP1/DJ8oH2uraohl799rdMbvd\nbBwffzxH3b+93oUmlamGU7Hl6Ra8//Uever2AgBMaTUFGioauYZOsveAAcOcB0AY/BcvQvyqeNwc\ndRN96vUROVf1bt0bv5J+4dLnSwhOYBnOpreejmc/nkkUTiW870Le/r+fA2UlZZjUN4FJfZN82yqF\nZHgf9h7XvK/BzMAMF4ZfEFumV91eUFdRx9z7c0WUysIIIfcwdwy3GY6yamWRzE1GaFIoapWvhZlt\nZ0JLTQue4Z5Y7rAcLkHsqkslzf9PSpbSpft/GMxmtrec3XY2FnRcAANdg2LWKH/k1cGn8dKw7sk6\n7H+9HxNbToT1COtClammVnJoa+WF4++O46rXVTyd+hTuYe5QVlJGQloCTrw/gfXd10sdvig0JQGy\nxy8LQ/G2Pd0Bp0An6JbRhc1IG7G22fDf4ai2rxrKqZXD+WHnWYKl4y1gN9oOI5qOkEIm+7f01imG\naAAAIABJREFUEyNfnPE4A/O75jDWN4bTZLHBVaLvGMAONN2C3eAx0wMm1iaISY0RhXAKMabZGFzz\nvpajnX1992Fp56WFfxJFiBJto88kxQEAEyJanbmvNKlNAZH1BQGA7UbbsabbGgVO2MD+FXdb73+9\njxl3Z6Bb7W44MehEoc1o//UP+teYr+AJePkO8hy+O2CH2w58i/2G++Pvo1XVVoUi/3nwc3Q/3x0A\ncG/cPQxqNCifGuIh630SvgOy+DOoqwNcbukAUN6463cXQ22G4sfiH2KTGzGbGXSr3Q2uU1wRlxYH\n3T3580uY1DPBycEnUUu7Vg4yp5KMEhtHn9nJjySWArcNwzCGmUltKHNffGZsvcIjaxykIoA2EZx7\nOKNeBZaSYJ3zOlGaxuKEuOuU24f8Xeg7VNpdCYOvDoaNmQ1ujLpRoE7+efBz+ET5iJWpaPcPKJhO\n653Xo7FlY2x9tjXPcna+dph6eyrmtJuDwEWB+Xby0ujUtVZX/Fj8A7pldDH46mA0O9YMTSybsBnH\n/O6CL+DnqBOaGIoFDxagiWUTND/WHGufrIXQgi4uHW5uOvlG+QIAolZESaxvVgjT4nK54mXmB0V8\nngDF02tI4yEYqDIQp96fyrWMjoYOlJWUs3XyI5r8WaGpq1MXAPBtwTfYj7XHo4mPoF9Bv0CdvKJd\np4Kg2Ic6mZ25kOden1jaWwsADpn7AgD0AVBy8q8qEBiGgf8Cf3yN+YoBlwdg6p2pmNRqEpS3KGN1\n19XY1GsTSyhRrDqyf//u5NN56ehwpgMAwH6sPXrW7VlgWQMuD0CHGh3gPOWJWJn/Esa3GA81ZTVs\n7Lkx1zKxqbEwu26Gq2ZXMab5mELXgWEY1NaujcgVkeDyufCO9Iaqsiqe/XiGlU4rERAXgEWdFmWr\nU/NATTSo2AA3R91EOj8dxheNccL9BGqUr4FJdq1hbWqVaUP/0/smpCXg2Y9niEyOFIWVjroxCr3r\n9kblMpULdA5ZBxj/8vNSXHga9BQP/B/gAe8Bqperjrnt52Y7nnU15vig47D1tYVTgBPehb1Dw4oN\nYTfGDlpqWqLOvn7F+kWpfomAQizdA2wuegDviaW9LeW6lwMEJECnM52wuNNiTLCbAACoVb4WHkx4\ngOZVmhe5PkLbq0AAseaES58u4eyHs3Ce7Fyo5gaGKV2OFWKn2054R3nDeoR1kZt0Pvz6gN5WvVFL\nuxbaVW+HSS0nwUjfCA2PNMTJwSdF+eKJCJHJkVjmsAyXP19mqVLNXwMAVjmuweE3h5HKy56nYUST\nEbj15RaujbyG0c1GF4q+/7qZp7gQmhiKZQ7LcM37GupVqIfvC7/nW0dokrEwtsCqbqvkraLCoMQu\n3QuRaYefzTBM3qmrSiEzlBgl7DTeiQl2EzC//XwYVjWEST0TtDguH374dF46eAIeuHwu0nnpEJAA\nu1/sBrOZyZZpTmmLErqe64p1T9ah+r7qOONxBgDrqKPMKBdaB6Su/mdWVtrJswhJDIG2unax+G20\nrtYa4cvDcXH4RRjqGcL8rjm6nuuKZG4yGldqLCrHMAz0tPRwyfQSaBPhzYw3+J3OxvzvMtmJ+R3m\nI3BRIAQbBaI6pk1NEbUiqsCdvNYOLfZ53czgpPupTH0K1GQp/kIqL1XkPDemmWSrSsJoDcOqJcKq\nW+wo9hl9Fnu8cMk+BkBFAI6UT1KbKVOmoG7dugAAHR0dGBoaolevXgD+2FeKctvT0xOLFy8uNvni\ntoX7bO7ZoKpWVfTs2ZNNyJFJUQ599s9Rg6Mw0DUoNPkbzm3AtmfbAH2gjGoZMEEMtNW1UduwNl7P\n2AEAOGzjhfZd26OOdh0YbzFmbaqZ+hxuchjPg5/jesp10CYqsD5/eOpzL6/I968w2uML+HjKPMXG\nnhvx/Nlz8AV89HHrA+APj7sk7f2tW2GdbzI3GagLdKrZCZ/ffpaofu/e7PaBAwdhaGiId6rvsNJp\nJawNrfE97js4PzgyPz/RKdEY9W4Ue6KZ70v0sWhUr1AJXK4rXFxK3vdAnvdP1u2g+CAMXDAQvsrs\n+y/J/VpwbAHUlNWwb9Y+uemnCPdP+H9QUBAAwMrKqmQS5gBYAcAo8/8TAEwBGCKT4z7zuKGYetJy\nDcgdikiw4OLiIiIXSeGmEBFRCjeFjKyMqNyOctl4xGNSYgosLzEtMVubSelJlJSeRCEJIXTN61om\np7kzDb06NNc2LnpepPqH6lM6L53qH6pPD/0fFkgnSUlwFPX+yQoen0fDrg6j5Y+XExGJ7kk6L53c\nQ91Jb48egQOK+B1RZDrJA+z9dSEioqT0JAIH1PhIY5bcpwCkSlHJUQQOqM3JNkREtOjhIhpwaUA2\nuXlB0a6TEIqol7OzM4EDmn5nep7luDwumV0zy0a+JC8o4nWCjIQ5itDRlwebwMYcwPEs+0tcUhtF\nRtZO/Kb3TdFHf+vTrQQOaOT1kdTgcANyDnCWWQaPzxO1q2Ohk4M1TNIO1yfSRzQwOf3+NI29OVZm\nnRSN6a4o4R3pLbofZtfMCBxQzf01CRyQ/kF9Ovb2GAkEguJWs1AgTHhERLTt6bZsg03PX54ytzvB\ndgKBA/oR/4PSeelUbW81WuGwgoLigoiIlWlgUBhn8P+N9U/WEzigyN+ReZYbfGUwgQPyi/YrIs0U\nCyW2o5f1V9rRyw4en0f6B/UJHNDu57up+7nu1PJ4S9rptpPAAbkEusjU7rOgZwQO6KT7yRzHpOlw\n+QI+gQPa8WwHhSSEUMVdFSkxLZEOvT5E423HE4/Pk6id/+dOXoi41Di69PES+UT6UEJaAoED+u/2\nf/9MB58VwkyDAoGAGh5uSIOvDKYjb45Q+1Pts2XQkxajro8icEC3fG+RV4QXLXywkCrvrkzjbo6j\niN8R7CqVrhf1ON8jT0rcUojH8XfHSXunNv1K+pVnuQ+/PpC5vTld9LxYRJopHko7egWAIi715KWT\nwzcHUt6sTOV3lidwQKscV5GRlRGBA/oa/VVqWWGJYQQOKC0jLdv+vztcSa7TKfdTBA4oLjWO9A/q\n01mPs9lmaflBlk6+pN0/aZCUnkT6B/Vppv3MArelyNdJ2Nk/+PqA2pxsQzw+j0bYjBCZL2QBX8Cn\nKnuqEDigppZNKYWbQvZf7AkckNYOrT9pdpVTyc7HLodOigZF0utX0i8CBzRw28A8y8WlxhE4oNWO\nq4tIM8W6TkLI2tErjNd9KYoeJvVNkLEhAzNaz4C+jj6ufL4C+7H2UGKUMPLGSEQlS0c0IuQXP/j6\noGifrCFJ5m3NMaHFBLQ71Q6RyZEY23ws/Bf4Y003Nspy5t2ZSOeJd50vDYPKiaNvj6JDjQ44OaRk\n5j6QFN7egIEBMLBRfzBgYONlg2ODjuHy58t49O2RTG0qMUqwHW0LAPCN9oWtry2GNB4C2kSIXhGN\nqYZTAY4SwFeHac9G0D+kj4GXB6L3hd7Y4bYD5vbmOP3+NLY/246FDxeC2cxg5PWRWOm4Mtdn+P8F\nq51Wo7x6eSztvBRdznZBSEJItuNCQiVtdW1cHH4RO4x3FIeaJR7F7nUvK0rj6AsPW59uxUbXjWhT\nrQ2aV2mO1V1XY6nDUkT8jsBb87cSs0sNuToE977eQ8aGDKgoqRS4w/3N/Y1FDxfBpL4JxjYfC909\nuqKkFkIELAyAfgV90XZpJ58TsamxaHWiFW6MuoFONTsVtzpFAjbVMKHOAX14z/WG9SdrnPY4jfvj\n76OqVlWZ2jzy5gj2vtqLee3nYUKLCdDR0MGgK4NQXr08NFU1Uat8LezrtwdeET54/P0xNrluQp96\nfXD7y21MNZyKqmWrgifgYe+rvdjUcxPufb2H9tXb4/jgnAmC/nVk8DOw9PFSnP1wFg8mPMCVz1dw\n2uM0TJua4uaom1DaooSFHRbi8NvD+L3mN8qqlS1ulfHo2yOoK6ujt37vYtOhRHPdy4LSjr7wEJMS\ngyWPl4jye+/vux8LOy7EoCuDoKGiAZuRNhKx5828OxOtq7bGnPZz5NLhvgh+gW7nu8FquBWql6sO\nE2s2i9j98fcxsOHA0k5eDIgIptdNoa+jj/399he3OkUKlquewHCU2YQ6FmxCnZiVMaioWVGmNuc/\nmI+j746irGpZpPJSYaRvhEcTHiE0KRRDrg5BRc2KcJ3qjMS03yinXi7PtqJTokWUrvyNfLFJev5F\npGSkoOreqkjiJsFjpgd+Jv7ECscVaFy5MYY0GoLJrSZDfZs6xrcYjwUdFijM4HSjy0YISIBtRtuK\nTYcSnY8erMe9OQCLLPvMwHrdr8ilTiFYPAoXimjTkUYnp+9OBA5Ifas6ERGl89Jp1PVR1Ne6r0TO\nTNuebqPVjqvztY/npZNvlC+tdVorssX3s+5H4ICue10nIqLrXtcpKT2JiEhUZt79eYXieFfS7584\n2PrYUuMjjXP4TRQEJek6AXwCBKLQ0sm3JtO6J+sKJCshLYF4fF4Oh8a0jDSy9bGlcjV+ECCgBw4P\n8m1LGGEy6voo0tymSQMv522rLijSeenUcGlDmR1uZcGrkFf0KfwTHX17lFY6rKSmlk2p2dFm9CXq\nCxERbXLZRCN3jaQqe6rQ99jvRaZXflDE5xzysNEzDLOCYZjlEvxWMAyzXOpRBkRJbRyJ6DSAegzD\nGClCUpvr3tfR+WznohZbrDCuZwzTpqa4NpJlqVJTVsMVsysop1YOix4uyqc2oK2hDQsT1oYmy6za\nxssGTY82xY7nf+xwj78/BgCMvjkazGaG/Qt2QOs33w8AcHToXgAEcBj4x/hLL/gfRWJ6IlY6rsSG\nHhugrqJe3OoUC8ISIwAAZdQ04B/jj409NuK4e8GWysurl4eyUk7GRnUVdZg2NUVccA0wKhkY2Df/\nVbCmuk2RsDoBN3xuIJWXCr9oPwhIgNoHamO5g0yf1BwIig/CpU+XEJ0SjWbHmsE/xh+9rXrDzteu\nUNoXgv566fkCPo6/O47OZzuj5YmWmPdgHj5FfsJ2o+34POczGldm2Q+HNh6Kmz43Ub9CfVECrlIU\nLvJcumcYxjizs82/ISnK/lXPHGynfiaTGe8bgAYAHIhlxjMG0JrEMOPlpXtBcej1ISx+vBhLOi3B\ngdcHsLvPbqzoukJu8hQZv5J+odmxZvCZ55OnfVNVTQBeBgO+gHJdhvSL9kOTo03Qv0F/kXPU8s7L\nsafvHrQ+2Rqe4X9yFz2a8Aj2fvY45n4sWxvl1Mpht8luTGgxAb+5v1G9fFXWGQpA08pN4TPPp6Cn\n/E/g8qfLWP1kNYIXBytsauKiABFBKfNxFAgAze2aiFsVB01VTbnIi0+LR7tT7fB9kT8ARqJB79ib\nY3HN+xoCFwUiMjkSHc90RP8G/fFwwsMC6WLrY4vJtycjJSNFtK9d9XaY3no67P3s8WDCgwK1DwDh\nv8NRbV81AED1ctXRvEpzlFEtg6dBT1G9XHWMaz4OiemJsOhjketzeOr9KRhWNUSHGh0KrM+/jBK9\ndC/8gc1YZwiWIc8wc58xgJ1iyhZoCURSbHDekC2s6/8xTjaFm0LggJ4FPcuzHCCgSrsq0YvgF7mW\nmWk/k8AB2frYUkBsALU/1T7Hdf2d/ps+R3wWbfMFfApLDKOhV4eS7m5d6naum4j4BRBQX+u+BA6I\nL+AX/GT/IQivy4dfH4pblWLHssfLMlkZidqdakdDrgwpFCbIv+H2w4309ujRvPvziIgkNinxBXwq\nu72siGyq85nOBSKKEqLq3qp0+PVhCkkIoejkaJG5QUim9OBr/uaFvOAV4UXV9lajzmc604UPF2jo\n1aEEDsjIyohCE0MLrL+8IRAIKIOfUdxqSAzIK7yOYRhthmHMGIYxZRimvNQjCQmRuVz/nogUKh3t\nlt5bQJsIY5uPBQCob1NHUHyQ2LJZ+YkVBYWh05foLwCAWtq1ci0jTBt6sP9BdD3XFXGpcWLLnfI4\nhVU1VsG0qSn0tPTwLuwdVJVUoaasJipTVq1stmx6SowSqpWrhltjbiEqJQrPg5+jjGoZgCMAQCir\nynrkamzTALOZQbdz3dDqRCtw+VypzvNfu3+PJrArJsNthheSNixK4nWKSY0Rrfq4z3yLu1/votLu\nSlI/I3mBL+Cj+/nu6FCjA/b32w9XV1fRbD6/BRUlRglJa5IQtyoOv5b9goqSCmy8bGTW5X3Ye/Q4\n3wPhv8MxpvkY1CxfE5XKVALDMHB1dYWBrgH2mOzBwCsD0de6r0wyUjNS0fx4c/Sp1wcvp7/E4EaD\n4RTgBABwDnSWKnSwuJ6pYTbDoLpVVeyxwtSJiODw3SGHeaOoIEnclDER2QIAwzCmAArXsJNdjjAV\nbRzYxDYAoAM20U0OTJ06tciS2syqNAsO4Q6IrRqLE+4n0F+lf47ynp6eCpEkIuu2EAVpr3W11jDT\nNEP7de2xa8YuTDOchqdPn4qOsx8xV7i6AhN7TcRpj9Pov60/BjUahA2TNyD8dziu3b8m+gj0rNMT\nLi4u2P+K9QJPW58msT5bem1B/Yr1MaFlNQCu8I+phbt+3XHr4S3wGT62TN2CCpoVsODYAqi/VofH\nTg80q9IMj5weQU1ZDca9jaGqrJprEovivl+Fff9a6rVEo0qNFOZ85LXt6emZ5/GO3I54EvsE33hc\nqKuoQWWbM+osMMdZj7OY035OgeW7uLiIbN5HBhzBS7eXoueJiE2qxA6GJWuvRUoLuAW6QQhp9Ln0\n6RIWHF+ASS0m4e6qu9DW0BZbvh3aoXvt7nAMcMSdR3egraEt1fm7BrqiffX2uDjiIlxdXbHt2TaM\naTUGZVXL4srdK/jm8Q36xvoStffq3Suk89LRpXsXlFMvV2TPz/VR1+Ee5i7374GTsxP6WfcD/zwf\nDBip3n/XLEltZEZ+U36w3u/lM39msiwbSCDDPMv/xlDQpDYvgl+Q5RvLQvVgLm6AAzrx7oREZV+F\nvKIWx1rQoMuDyPqjNUupKmZpMpmbTAMuDSBwQHp79Eh3ty41PNyQdCx0RMv6Eb8jJGa5E+LChwt/\nWMjALkFOtJuYzbTyd6KekddHkslFk2z7whLDJJZZ0nHX7y71s+5X3GoUO/gCPg27OozAAT0JeEIA\n0SP/R1TvUD2KTo4uUNuxKbG098VeqrGvBt3wvpGrCQlgOfklwYdfH0TRL9LgpPtJqra3GnlHektU\nPoWbQpV3V5YpEsEl0IVq7KtBwfHBRMTy1attVSNwQK6BrhK3wxfwqYJFBVLarFQo5gRpseDBAtr2\ndFuRypQVkCcFbmbnaySLAAnbjgHrhBeDP5nsSpPaFAE6n+lM32K+SVw+mZtMJ96doP6X+os63Nw+\nlAGxAeQR5pFrW+CA7n+9L7HsFG6KSObkW5OJiCjydyQdf3ecbnjfoDn35hA4oPMfztO3mG/kG+VL\niWmJdOnjJZpzbw4deXOEwAE9DXpKZ96fIeXNyjTy+sgSZ9u38rQiyzeWREQUHB+cJ2/96fenafSN\n0UWlmkJDIBBQxV0Vqdu5biKq3CWPllDP8z0lzp+QFakZqeQd6U0GRw2o14Ve5PbDLd86kn62MvgZ\npGOhQ+FJ4RLr8t/t/6ipZVOpE744BzhTj/M9iIjIzseODr8+LHHdNU5rqIJFBZG/g1+0n1TfEyKi\nnwk/qcqeKqJcDMKBQ1HhrMfZIh9cyAq5dPS5dbIFLVsYP0Xs6BUx7lJeOrEzeYFoljzl1hT6FP5J\ndDwhLYFcAl1E8ct/6xSaGEplt5eVKrmK8ONcGPgR/4NWOqwkcCAazZeU+9fUsmm2FYpbvrdyrT/s\n6jC68umK3HUqbkiqU1J6EpXdXpaSucnZnuElj5ZILCvydyTNuDODKu2qRA0ON6BR10eJfY7F6ZQ1\ny15+6H2ht0QD4a/RX8nsmhn1udhHxDGRF/7Wy+azDQ28PJAif0eSyhYVAgd02/e2RDpm8DMIHJDq\nFlX6Ef9Dojp/Y+vTraQzW4eI2ImHzWcbmdopbCjicy5rR5+fjZ6RMD6eARAvQblS/ENgozwIv5J+\nwfqTNYwvGqOuTl10rNERlu8sAQCVy1TG+u7rsbDjwmyhNTX21wAAdDnXBWVUy8A70hvaGtow0DXA\nTuOdaFK5SQ55Pj6Fx3pXW7s2dhjvwO6Xu7HeZT3W9VhXOA0XAXzm+eDDrw/Y5LoJd7/excuQlxje\nJKfDHRHhjt8dGOkbFYOWigktNS20qtoKq51WQyA4BCUlBuAI8PK0ZJwZCWkJMLtuhprla8Jjlgdq\na9eWSn56OuuYx9rr8y7btlpbDLoySEQp/TeICF3OdYFXpBemt56Og10OQktNSyp9AMDihQU8wz1R\nZW8VLOu8DI0qNYL1J2sMazIs37oqSirgbeBhrO1Y1DlYB0lrkqTWYYPLBiAVOONxBq9+voLjJEep\nz6EU+UCW0YEi/KCAM/r/FwDic3CnZqTS06CntOv5Lrr/9T7x+Dz6Gv2Vmh9rTsOuDsu2PHr181Uy\nPGFI97/ep0f+j8g70ps+hX+i/S/3EzjIMaovDOY7secipZ+AoqD/pf4EDmjczXG5hgdZvrGkChYV\nKDEtsYi1yxupGanF6udi52NH4IC6n+tOIQkhmeag3M03ydxkWu24mrR3apOOhQ4NuTJE5tmrEJI8\nz8KMbaffnxZ7fPfz3QQO6KH/wwLpIhAIyOm7EzkHOBMRG3qnf1Bf6jbG3hxLa53WSi0/6+pUcbyL\njY40ooOvDha5XFkAedroi+IHlhQn63aJo8D9f4AsHW5MSgyBA9LdrUu7nu/Kd2kOHNCxt8cKJFNS\nOH53FJtaV9Fxyv0Uzb47m4LignIts+zxMjK2Mi5CrfJHUFwQgQPS2KZRrHp4R3rTasfVVPtAbbrt\ne5sAQY7l97jUODr/4Ty1P9WeKu+uTL0v9KafCT8LTYfcBsxZMfrGaGpwuIFY08D9r/fl0jEKBALS\nsdAh3yhfqeo5fXeiLme7SC3ve+z3HJ299Udrqcx6soIv4NP+l/vJP8Zf7rIKA7J29AqRRSGT/e5G\nlu1ip8CVBX+HRCkCClMnWZPGVNSsCO56Ltb3WA/Lt5YYu3csqu6tiu7nu4PZzCAsKUxUNo2XBg0V\nDUwxnFIgmZJCaCLgCXgl6v6ZtzXH8cHHUUenTq51V3RZgSeBT3D50+Ui0UkSRCSzlLRpvDTUO1RP\nlNq4qHUy0DXAzj47MbfdXMx7MA/Q9YGSEpDOS8f2Z9vR/1J/NDzSEHe/3sXwJsMRsTwCzlOcUaN8\njULTiYg1R+UF6xHWSOOlwSvSK8exFlVaSKyLOL2WPV4GZnPOAH+GYVBOrRxm3ZuFJwFPoLFNA+ue\n5G/a6lSzE96FvgNPwJNKn5iUGCAw+75JtybBP1b+dNbKW5SRkpGCBhUb5DimiN8DWaEQHX1mh/49\ny64x+GPzDwDQp8iVKkU2qGdSpcva4aoqq2Jhx4UIXhKMK2ZXcGzQMRhUNgAATL41GRG/I0BE+Jn4\nE9W0qrGEOJBOpkugC3a47UB0SjQ2umxEE8sm2OC8Ic86jt8dYaRvJDc61OKEkE5YUbJ/AUCHGh2w\n03gnACAwPrDYM7at6rYK0wynAfNYgiYNVTW4/nDFvPbz8GbGG9iOtsXa7mtz6BmbGoua+2uC2cwg\nPq1g7kl5kemoKatheOPhuON3J8cxAvtiCHO2S4u8OtKKmhXx7MczrH6yGun8dOx4vgOm10zxPfZ7\nrnXKqJZBhiADEb8jpNLD/K652P2NLRtjz4s9UrUlLc4MOYMFHRfIVYYiQGHS1DIM40BEfTP/PwHg\nBBF5Zs72+9AfMh1heVIU3f8fIInzkCz4FPEJJtYmiEyOhJG+EVZ0WYEdbjvwbNozMAxgYAB4e+de\nny/gI/x3OB59e4QZd2eILUObsiuezE2GhooGm5hkM4ONPTbCzMAMLfVaFuapFTsS0hKgs0tHtB23\nKg46Gjp51Cga8AQ8dD/fHU6TnBQiz/jniM9oeaIllndejr39dkPITy8gAQD2Op5wP4FdL3ahR50e\nsB9njwx+BobaDMXToKdIWJ0AVWXx7GqSIL9Vq4/hH9HHug/emb9DXZ26ov3LHi/D/tf7czzfkqL6\nvuqITI4Eb2POGbhwpj+40WB0qtEJ41qMw+n3p2HxwgLXRl7D6Gajc9T5mfgTtQ7Ukkqf2NRYVNpd\nKc8y3xZ8Q/2K9SVuU1HxMuQlkrnJMKlvInMbsnLdSzWcZhhGn2GY65kZ68qXlCX1UhQM8syH0lKv\nJW6PuQ2Apc1c5bQKbsFuIpm5dfJEhIOvD6LOwTpobNkYtr62GN9ifLYyver2QuNKjfHsxzPY+drB\nP8YfQfFB0NqpBZWtKhh5fSQWdliILc+2YNCVQfI7yWKCtoY2bo25Jdr+lfSrGLX5AxUlFbya/koh\nOnkA+B7HzlJvfbmFZG4qAMKBVwfQ9GhTKG9RRsXdFbHWeS3KqpXFk0A2b5eqsioeTniIlHUpBerk\ngT8dfG7vWauqrTCr7SzsfrE7235VZVVsN9ous1yr4VZwmuwk9phZUzMAwEP/h1jYcSHqVaiHnX3Y\nlZgxN8fgzpc7ooFQakYqbvneQvvT7bGgg3Sz42bHmgEAXKa4wN3cXWyZlyEvpWpTUWF80Rj/2f9X\nPMKlMejjD1td68y/hUaiA+Bxlv934g9xjhmA5WLKF9yzoZChiHGXBdVJHo5w4nQSOuHseLYjG/Od\nEH+T2lz5dIXAAd31uyvyOhd6on8M/0hEbIzvsKvDqOvZrtTpTCcqv7M8tTzeMofjjzCpzr94/+JT\n48nhm4PoPKUlM5GHTvJAQXVKSk8iYytjYjgMy+oIAV35dIUe+j+kwLhAIiKaZDeJwIFYbojC0Cmv\n90zoxBibEktEf5xIwYHUTmuS6HXm/RmxXvAhCSGi/TX316S6B+sSOKAWx1rQk4AnUumR9RxcXFyy\ntV1YnvjJ3GSZ6yricw45xdH/jQDh+CDzb2GuA2Ydz14H0BaAM4B6AMQGVhYl170k2//sLc/sAAAg\nAElEQVQaV7qJCQD0ApH89dWP10dgXCDWOq8FsBqYooSuG7vg2NxjGHJ1CEI+hkBPSw8LRi/Aiq4r\nsPLMSiCBXVoUtvfI8RGgz64MxPrGAgBuj70tOh5SOQS1WtVC++rt8ebFGxhbGQMsFTecnjjhq8/X\nYr9fhXn/hNsm9U3g1N0JfS72QYMjDRC+LBy+7r4KcX6FtZ0f131+2+4v3bG+9no8nviYNelMdMX4\nltWQlZv+56efmNBiAjRVNeX2PWAY8e9boGcgEAhYvrXErHazMG7fOCAZgD6w5PESDNcYXqjX87vH\nd9ZBTh9Y47QG/VT6iY7Hr4pHt03d4BXoJXp/Djc9DPyAaDu/9s/YnYG5vTn7vk52hucd9v6J0lcL\nnfMkbE/cNl/ARx+3PkhZm4I3L95IXb+wv+dn3p/B5d+XEbo0FF/ffwUANGnXBOrK6vj45qPY+sL/\nC8p1L5WNnmGYFWA7eZH3CRGdKZAGbLtmAE6B5by3y9w3A5mPmjgZpTZ6+UNedvm8ZRKg6yNyjqqr\nU1dstsAWVVrkWP4NTgjGJtdN2NBjA+pVqCeRPCKC0hbWgjWu+ThcMbtS8JNQUAjPdYfRDqzpvib/\nCv/nyGo7/x77HQ2ONIDXHC80q9KsSGT+jaufr2K723bU1q4NDRUN6JbRxSmPU6ijXQdWw63Qs27P\nQtNjtdNq7Hu1Dwa6BohOiUbo0tBsx608rTD1zlQcHXgUc9rNyTXPvDhkfecCFgZAv4K+6Fhcahwq\n7mbzmakoqaBW+VoIjA+Ex0wPtK7WWurz4Av4UFZSlrqePHDN6xrG2o7FwX4HsajTIgBsxs10frrE\nfg2y2uildsZjGMYc7GzbAYATESVKK7QwUNrRyxfyDmvLXSah85muePXzVbZju/rswn3/+4hMjsSX\n6C+wHW0L06amhSL3yucrmGA3AQCwrvs6bDPaVijtKiK2Pt2Kja4b8XH2x3/O+VAeEA52dffoIjol\nWmbHN2llqqmxLHpZQURY+2QtPCM8cdn0MuY/mA8dDR20q94O5z3Pw22am/gG80A6Lx0+UT4wrGqY\nrbMWOuMt7LAQNt42eD7tORpWaig6nsZLQ0hCSLZ9koKIYPXRCsObDM/mHJp1AACwA++zQ8+ij3Uf\nzGo7C5NbTc6z3ePvjuPCxwt4M+ON1DoVFTL4GVBilESDj4S0BATGB8KwqmTubnJzxmMYxpBhGCPh\nD2wY3HUACQBOSyvwX8bfy62KAFl0kncnL06nP+F7DF5Of5ntg9qkchNMaTUFu/rswpfoL/Ca41Vo\nnTwAjG8xHrSJcLvjbWx32w7Lt5ZQlEFkYT9T01pPAwC0OtEKyx4vk6mNf+U5lwQGBuwqkxKjhOS1\nyUWiExHA5ebczzAMdvbZiYcTHqKiZkVU1aqKVF4qhjYeitc/X8uk1zXva2hzqk2OMhkbMhC6NBSW\n7ywRmRyJwVcH4+LHi6LjGioaMnXyAPCf/X8443EGaspq2XS6/YU1szFgUFa1LGqVr4Wu57riZchL\nhCSE5NtuGi8tW1huQSEyp2xm8Dz4udgy70LfgdnMSPy9UFVWzbbCoK2hLXEnXxBI4nW/G4AJgL4A\nZmf+7QtgFIAK8lOt6GHjZYPNrpuLWw2FQFH3c1xuTpm0iUCbCL7zfKGnpYdONTthZpuZOPfhnFx0\n0NbQhvUIaxx5ewSNLBvhrMdZHHx9ELue78KL4BdykVnUqFm+JmgTgdOTg/2v92P6nemIS42TuD6X\nz8WL4BdgNjM5fgsfLpSj5sUDYdRH5IrwQu1EJEF+q+HRKdG44HkBw2yGYWjjoTLJGNd8HFymuIBP\nfPhE+Yg6LBUlFVQvVx3z288HABzsdxBTbk9B21NtRd72suDRt0e44HkBL0JeoNmxZkjmsoMn50Bn\nmF5nB+9hy8KwzWgbXIJc8CH8AwBgQssJ+ba9pPMSuExxkVm33PB1/ld0q90NSelJOY4ZVjWE/Vh7\nqUwXAOAX7YfGlo0LS8V8ke/SPcMw+kQUmPm/MbHkNsJjrYnog5x1zE2vQl+6P//hPALiArDVaGuh\ntluSUDx2efavJHLXO69HYHwgLpsWLttbVjz+9hj9L/fH5FaToaqkirMfzgIAutfujqMDj6KFnmyM\nZIqGsKQwUXKh6BXRqFSGjWeOTY2Fc6AzAuICkMHPQIYgAzPazMBD/4eY+2AueAIeyquXx4lBJ9Cj\nTg/oaenhmtc1TLw1MZtJIDY1FhU1Kxbb+RUGHL87YrzdeESvjIQwvr6okN97QUS44HkBKkoqGN9i\nfIFs0ec/nMd/9v+hlV4rdKzREcb1jEWx8rp7dOEx0wPuYe7Y9WIXetbpiV0mu6Rqn8vnYsGDBTjl\ncQoOEx2goaKBHhd6ZCtTuUxlhC4NhZqyGngCHg6/OYxlDsvwzvwd2lVvJ/O5FRaYzQy853rDQNcg\n37JuP9zQ40IPCDYKxA4CIpMjMfnWZDya+Eg6HYrCRs8wjBEROee2XZQotdEXPorPLi+5zEOvD8Ev\nxg/HBh2Tn1J/ISk9CeG/w+Ea5IqZ92ZiUcdFONj/YJHJlyf4Aj5WOq7Eec/zKKdeDhU0KiAgLgA9\n6vRA40rsjGP/6/0AgIENB2J229kY3Giw2I/XmJtj8CX6C/TK6uFTxCdEJEfg4vCLGNt8bIFjzQsC\njW0aWNZ5GbYbSxdznpieiObHmuPcsHPoU69PsQ2Ci0ImT8BDwyMN0aBiA5g2McU2t2041P8QRhqM\nxIhrI2BSzwRz28/Fj/gfaH+6PSJXRErcttCREQDqVaiH7wu/4/Kny5h4a6KoTJPKTeA7z1ds/Uuf\nLmHSrUlF4h+RF3gCntgsguKQmJ4Ij18e6FW3V6HqIGtHL22suzmA5QBMwca654hvL6wfSmBSG0WM\nu5RUJ3kmjvkbWXWSVua6J+ukimWWBpJcq+7nuhM4oGdBzwpdvjgU1TMVHB9Mmts0aZXjKrHXNp2X\nnq9OKdwUmntvLlm4WdBdv7uiGOjVjqvlpXa+OhGxHA3SZmPj8rhkctGEZt+d/acdKd+Rwrp3RcFj\nQUT0I/4H1TtUj+bem0uvQl5R5d2V6ejbo3TK/RR1O9eNMvgZFJ0cTRV3VZRYFpfHpb7WfcnIyki0\nTyAQiJ4N91D3XHXi8rgEDujo26OkuU1TqnMsDCji9xxFEUdPRKczKWlNALwjIlupRxYSIGtSG4Zh\n6jEMY0hEnvKQVYo/UPTZin+MP57+eIr57ecXGzf9s2nPsO7JOtz9ehfd63QvFh3kgVratZCyLiXX\n41kdp3KDpqomjg46KtruXrs7amnXgluw9N7ghYmKmhURGB+Yf8FMZPAzMN5uPDRUNHBk4BHRfiLJ\nc8kXNopC5tLHS8Hlc/Eh/AO01LTwYPwDdDjTAQDQplobnPE4g4ktJyKNl4aAuIA8Q1jTeemYbj8d\nbsFuaF6lOe6Pv5/tuKqSKnYa70Tb6m1zbUNVWRXjmo9Dp5qdkLIuBYnpiRh1YxQeTXgktU38/x6y\njA6EPwDlC1I/j3Yt8IcZzxjFzIxnbGVMU25NKTJ5RY2inM3LKjODn0HggKbdniaX2bw0+Bj+kbR2\naNE5j3PFqkdJQKcznYolx3hWRCVHETigpPSkfMv6RPpQ93PdaejVobmmLi6OxcSieEe3P9tO4IAc\nvzuSyhYVmnd/HkUlR1HzY81FM/DJtybTJLtJNO32NLFtDLw8kMABjbcdT+CAvkR9IR6fl6PcTe+b\n1PJ4yzz1SUxLpJCEECJimQuFOiSmJRb8ZBUM0cnRZHjCMN9yKIo0tZkhdqbCH7Kkli1k6ACIzbKd\nd9YDOSM+LR5WH62KUwW5oSTY5SN+R6C3VW8AwOkhp4s905wwPWix8VaXILz++bpIwofyQuUylUGb\nCFpqWrmWISJYPLdAjws9YNrUFLfG3IK6irrYsmzInby0zU0/+ctY230taBPBxNoEPAEPbsFueBny\nEm9nvEXbauzM++LHi7D+ZI3znudx7F12P5lfSb/wwP8BAOBF8AvcHXcXjSs3Fusk2K9BP3yK+IQZ\n9jPAE/Aw6dYkMJsZ7H6xG3e+3IG9nz3KW5THgMsDAAA3fW6K6iZxc3q/l3Sk89PhGe6J6JRoubQv\nbY7I1WApaeuDDbGTfD1Mjjj0+hBan5SeNUlSuM90l8gRpKTGFxdVJz/i2gj4x/gDcJVKZtV9VfE8\n+DmujbwmV5YrSe+ff6w/fnN/y02PrChpz5T1R2sseJA9sUlVrapy1uiPTglpCZhzbw5G3xiNpkeb\nSlSXiNDmVBtYfbTCx9kfsbjT4jzT5wpD7vLr7OVx7wpjgJGfXicGnQAAjDYYjcNvDgNgv4Gvp2eP\n1f/7GvnH+qN11dagTYSgxUEiempxsHxrCYDtwFW3quLSnUsAgFVOqzD82nAMsxkGANjWmyWvKq9e\nXlSXJ+AhNSO1QGF+kqAo373q5arj7Yy3cotSkZbrfhZlhtoBIlu6PBAHQHjGOgBixBUSct0/+vYI\nntGecG3sWqzc2yWN6753byArl7c89Xno+BC3H97G7bF2AH7i2I1jMNA1yLd++y7tAQDLqi5Dlagq\neZ5PQbcluX+dunVi418z34JaB2phcsvJqBFbA00qN4FRb6NC1U+e5yuP7Z/KP/Ex4iNcXV1F8fkG\nlQ3kLt/T0xNEBPPP5mw2usz7s+v5LqzqtirP+rUO1ELop/+xd+ZxUVXvH39fQHYQFBFRVNx3wd38\npbillftWaqZfc6nMUkvLMkVzX9PKTC1zyV0z03IHt9xxR1EQNwRllZ0B5vz+GGZkZ2BWdN6v17zm\nLuee85l7595zzznPeZ4wNvXbhLuDu1rl+fkp7p+CfNPr4nng5wcdO/ogSYrydXU+x7YYS5WYKpAK\n00KnYTvXFr8Oivnp8zvP56ujX0EoxN2Og6xZb/7+/sSnxXM54jKP4x8THBBcaHlT106lTZU2nJ5+\nGvNZ5hAB33b4lupe1Tl87zDpIem0r9qe3vUUFf6UNVMUfbyeCnsR29EKnwZzPphDUHQQ1WKr0bZK\nW7zbenPz2U3MH5prfD50+Tw/cvQISelJ9O7eO8f+IMsg/r7zN63SFbYRyn2a+rov9ph8ro9OrO4B\nb15EypsMeOWTpjhDICZyoe9xeblcropKV5yIVF8c/EL02dpHx+rURzneiy9i3eV1quX6P9YXrotc\nRb9t/VTR8151ZvnPEmYzzfRWXlRSlMAX8Tz1udgVuEvgi7j05FKhx3yy/xOBLyLgSUCJyjTUeL1e\nyvFFdNnQReCLuBB2QQihuI+d5zsLfBFL/1uqsppX7lPOiskdbTI7VyOuCuf5zuLx88ci4EmA6h6q\nsbxGjoh1kUmRqsh8Sh19t/YVcrlcdFrfSeCLMJ9pLn46/5No8nMT4b3KWwzaMUhlqR8aG1ri6+rz\nu4+4G323RMeqw/nH5/N9Bu4K3CVqLq9Z4HHoY4weCEAxLr8z6/te4clLhshywpNl4R8rTBb3WuWF\nu1n9lam0ko1NeY5smoy0aWlFHKHgYfxDZJkyrj29pkt5alPepjx7393L7XG3ORaqcCExv/N8bn58\nk+MjjhMSE0LTVU1ZG7C2WB7nXkbebfQu5WzK8Tj+sV7KU87Vf5b0jP7b+9Orbi+aVcrr3lXJzsCd\n/HjhR5a8saREAVOU6Hu8Xl82Ap5OnqRlpLHyrZV86/ctoLiPwz8Px8vNi0mHJtFiTQsuh18mLSMN\nSZKY1XEWoBivz4/k9GSarmrKkjeWUNmxMvvu7GNSm0ms7rGae7E5q5MKiypgNstM4XkxK7jpOw3f\nwWyWmereyxSZOFo5MrTxUC5HXKZFJUUXw7h/xuG53JNeW3vh87sPc0/OzRo2zJ++2/piNduKTHkm\nACcenCiWW+Hi0rJyS9K/Tc+zvV/9fgR/Gqz9AovzVgB0LsnbhC4+FPJamynPFO5L3EVsSmyBaXSB\nMc67zDf2u4FbIcU5T7OPz9Y4JrW6FPf6dVjXQQzdNTTP9rLzyqo0t1/XXozZO0aM2z9O4IuISIjQ\nqSZ9UBxNvn6+Al/Ek/gnOtMjl8uFn59fjvnZ+FJofPRDwYeE7RxbsS9on8blF9Q7pstrp0mPnLq6\n5HK5kMvlIiEtQdReUVtsvLpRte9Q8KE8MeOtZ1sLIYRo/ktzMXTXUPH5wc9FeEK4uBh2URUXXtnr\ncvPZTSGEELVW1BL77+wXbae1FbZzbIXLQhcRlxIn5HK5+OfOP6LF6hYCX8T1p9fFxbCLYsK/E4T5\nTHPVvdR5feccGgbtGCQ++OsD1ewBWYZMbLq6KUeaXy7+kmcGxuLTi0WHdR1UPRFL/lsiGK5Ivytw\nV8lOtA5AHy16kc39rTEjITGu5TjKWpUlJiVGFYnJhP5bH5qW2b6awk3max6vaUmN9vAb7sfGvhvz\nbL8w+gIXR18kcWoiX//f1zSr1IwqjlUAaLiyIZuubdK3VIPx9etfA9BgZQOVX3NtEhobitksM5Jk\nSUiSxO1xtzn1v1OETQqjk2enAo97Y9MbDGwwkLfrvK2xBn32jOUu0yr/iQFaQZIkJEnC3tKe3e/s\nZtLBSRy5dwSArjW7kjld0fod32o87zV5j3cbvQvAnE4KD4RLziyh0pJKtFjTAvu59sw5MQeXRS4A\nKjey0cnRfH30a848OkPd8nXxcPTg438+Jl2ezpu132RDH0UgncY/N6bFmhZ8f+57MoWi3D7b+jDS\nO+fMl52BO/G/70/45+F0qdGFMuZlGNpkKGKGIPWbVP7o9wf77+7HbbEbb/3xliqQzuevfY7/CH+V\ngeGktpNY02sNdmXs6L+9P7ZzbEnLUK8X0igpzlsB2cbKUcxv71SStwttfFDzdVaWIROj/hol0jPT\n1Ur/MmOI+fKWliUv80n8E1F+QXmx+uJq1Vhdaef60+ui+vfVxRcHvyhwnvbLhrKlbTfHTsgyZFrN\n2z/UX+CL+Hjfx2of8+2xbwW+iPCEcK1oWHhqobC0lBu8p0zX/Hv3X+G6yFXsuLlDCKHwlij5SgVe\n06ikKPEg7oFIz0wXB4MPCnwRHks9RLNfmqnSXAy7qGppuy5yVS2vurBKlWbL9S2qHrGB2weKm89u\niokHJoqZ/jOFEEJMPjRZdVylxZXELP9Z4mLYxUKfGQlpCeL3y7+LmstrirF/jxUp6Sn5prvx9IYq\n70//+VSkZ6Yb9L6lhC364vq67yeE2J1tfZQQYq1W3zzU1yKKo91E6fPodS/2Hq3XtlYFunhZeJb0\njP/99T8uPrlI04pNGek9UtUaelnJkGdQ5rsydKvZrdiBPApDGTxkeNPh/N7nd7WOUfbw3R1/l1rl\namlUvhAC5wXOPJ70GAcr+6xtGmVZLPTtB+Pc43MM+3MYnTw78Xbtt+m1tZfaPujlQp5nSt6Re0fo\nurErAB6OHjyKV4Sj3TVol9qhqNddXkd4Yjg96/Tk4pOLXH16lb+C/sLGwoaFXRcWOs0vNiWWwbsG\n07RiUxb+t5D+9fvj5eZFQloCKy+upHml5hx/cByAbQO28c7OdwAM5ndfp77uUfi4vwgEAxeyPgfJ\nsow3xAcjtLo35vFUEKJBA/2WrenYZaY8U+CL2H9nv3aFFYA+r59cLhenHpwSuwJ3Cfu59gW2Eoz5\nP1VcWq9prXVbiyfxTwS+CK8vi/YqJsQLD4v4opOWGSh6sYTQ37Urbk+dproiEiJejHlPQXhP9Ra9\nf+stTj44qUrz6PkjtXrhbkfeVuQzHHEn6o4q37D4MLX19NjcQ9ReUVvgi8piPVOeKQ4FHxLlF5QX\ntyJvFXp8wJMAUXVZ1Tw2B8oxepvZNiqbgno/1hP4Ivbc2qP13il1QJdj9EKINSi66gcKIVpmfboJ\nLbbmc8/JlySpvyRJnSVJmqytMl5VlG/9Skcf+ixTk5aGmWTGvM7zeHvz2yrHHS8LkiTRrmo7+tXv\nR+1ytQkIDzC0JJ0zv8t8QNGjoS0q2lcE4ErEFc49Pldk+tSMVADqlK9ToOc7TRACZDKtZ1tkmfqk\non1FZNNkuASZ8+YjeNf5CrYnj/Pe9B60XtsaaaaExzIPGqxsoLCYnynx2b+fMezPYbRc0zJHXnVd\n6iJmCPxG+FG7fG3EDIGYIVT+DLIjhGDD1Q3Khh7pmencjb7L34P/Zucghee82FTFTBczyYyuNbvS\nq24vRv89utDf413Jm9DPQmlduTUAh4cdVoXFndFhBuGfh6tsCq6MVUwA67OtD5azLdl4Na+NjlFS\nnLcC8s6j10qLHsVLRHC2dW+gn3jRm2CaR19CDDEuryxXW3xx8AvhstAlRwS1l4kRe0aIXy7+otMy\n5HK5mH18dqHzm/XByD0jxbyT87Sa5/Rj0wW+iBarW6iVfsqhKcUa0y8uhrjnGjTQb5nR0dFi1NjK\nws8P1af/MFth9qWZwBex5foWcebRmRwt5An/ThCz/Gep8ijofk5MS1RZ/N+NvisarWwkph+bLpJl\nyQJfxMJTC8X1p9dzzMbJlGeK2cdn5/CDn5qeqkpzIexCjh6cjMwM0WZtGzF452Cx7cY2kZiWKAZs\nHyAqLKyQr2/+7ITFh4lJBybl+G3t17XXix0YuhqjlyTprhCitiRJ/YEFQAigHCPwFELU1sYLhyRJ\nB4UQ3bKW5wOHhBDHsubSewshFudKL4rSri1kmTKtjxHHpsTScX1HAsYGFOpuU1NK27h8fggh6L+9\nP07WTvzW+zftZWwktPutHdPbT6dbrW46KyM1IxWbOTYkTk3EztJOZ+UUxcUnF+m/vT+hn4Vq9X+v\nHHe/9uE1GldsXGjaT//9lBrONZjQZoLWys+jpxTEkNCEkydPcv68D82by+nYUY6fnxnnL0qE2Ixm\nddRqHK0ciU+LL1aeTSs2JT4tvsBIgw8mPKBq2apUWFSB4U2Hs/rSakY1G8XSbkvzTf/zhZ/5+J+P\nVetda3Tl4HsHkSSJWitqERIbwowOMzj7+CxXn17l6PtHabiyYb52JOEJ4VRyqKRaV9qc5MeTSU9y\npNUGR+4dYdqxaZwbfa5EY/RF3mnZKvIAoLlQdNm/IYR4AxhU3AILIbt4rQS1GbFnBBMOaHYzr7yw\nEqvZ6nXx5XZbWhgB4QFcfXqVm89uqpw0aBvFja++Ju2VWTjFOU+KPCU29t3Intt7ePj8YcmEqUFx\ndWmDC2EXCI0Nxae6T777taXJ2sIaMUNopZLXRJOztTMxKTFa91P+WxPFC6BAUctlyjM58+hMvmkb\nVGjAqYenCsxLCEGVpVU0cvSjqGz9S3x8ycvUjw/+Ro0aERLioVrv2FFOaEhV5g+Zj5ghiJ4SzY2P\nbrB70G6OvX+MIY2HUMm+kMovFK4+vVpoOGHli2Hk5EgWv7GY+KnxBVbyAH3r9+Wvd/8iYEwAMVNi\nuPb0GmazzOi+qTshsSH83vt3fH18OfDeAYY1GUaTn5twbtQ5DoUcotaKWriPd+fLw18SHBOM+1J3\nAiMDVXlbmFlwfITCSG9AgwGM8Bqh2ue+NO+wg6bUKV+HcS3HlTyDknQD6OKDogWvXF5FVnc9im79\nefmkL7Kb407UHXE5/HKR6XKz4coGlSGJXC4X92LuqXVccY1clNOONlzZUFyJRaLsPtSnMZe6XZYl\n1VRlaRVRbkG5Eh2rDvo2fDv14JTAF7HtxrYC07xMxnhCCBGeEC7wRUQnR2tPkMirSdm1Omz3sDxp\no5OjBb6IH879kG9eyvsy8FmgVjXpi6LuQW3p+u23peLDD6uJxYvNBMiFu3uUWsfJ5XIRnhAuMjIz\nxMg9I1WGb+P/GS+EeOFUR/k5++isVqbXxqbEisWnF4u/g/5WufRVkinPFMN2DxP4Isb+PTaHMd73\nZ74X++/sL/Q/m92xl7ohkUsCJey6L1ZQG0mSvESWO9qsLnUhhDimxnGjAWWHkpS1fC/Xsdk7nIoV\n1AbAyckJLy8vjYMOtG7Xmvf3vI/zU2fsLe3x8fHB09lTZ0FIZNNklDEvo9WgCQ0bAiiCYOg7qIk6\nQXJ8fHxKlP8nFT7hq5CvSJQlcvG/izrRr0TX52vexnl8c+wbmrVtxqCGg/R2fbSxXtLrl3291Tet\nWNtrrdb0Kbcp17uYdWFp6FL+tPwzT/pyNuWol1iP8SvHM6rZKKwtrDl67CjmZub4+PggSRJ+Hfx4\nevMp9X3qa6QvuzZNfl9x1yWp4PtfG9fP398fT09vevcOIDAwkL1799GrlwNQ9PGSJHH74m1uc5u1\nvdbStWZXRq8YTQtZC9Iy0hROdUKhR50e/PH5HzhaOebJb8nmJTSo0AC3Rm7UdanL+dPnVfvlQs76\nPevxdPbMU/4HbT7AeYEzfaz68Fmbz1T7Txw/wVCHocTVicPCzCJHXNb+DfoTHBDMtbBrBZ6PdvJ2\nrGu6jupe1em4viOOYx05NvwYPj4+ZMozsRhpwYwOM/D9n2+xzrdyWd9BbfrlWtfa9DpytuhNQW00\nwFDGd/qYvocvKkcZpZW0jDSBL+KdHe8YWopB6Lqha6GBO7RBTHKMqnWVn3GV0hGKLEOmmsZ57vG5\nfPMqjc6aDGEQqI0y41LiROs1rUVUUsG9AxMPTMwzFW7a0WnixP0TIiEtQYzZO6bAaZz7gvap7VI7\ne1CdolD2VIXEhIiY5Bhx5tEZ1b5MeaZYcXaFeJb4TK28CgNdTq+TJGm0JEkXgYWSJF3I+hzU7BUj\nR/79geaSJPXLqsFLZVCb3G/xhiD3+Jw+NBV3+p4mmi6NucSP53/U6hQtJfq6fnNOzKFnnZ5sHbC1\nyLTG8J/KjSaaYlNiSU5PZlr7adoTRF5NIbEhqmVzM/M86c+FneO9Ju9RxrwMZpIZE1pPwN7SPk86\nWaYMs1lm9N3WV2NN+qSw8Xpd6VLXRiA/lJrKWpfl7KizlLct2CyrhnONPNv2391Pn219cJjnwOqA\n1QDcj7ufJ93EgxN5v+n7AEQlRxWq6cb5G6pgXEWhtLNKSEvA2caZNlXaqPaZSUeM1d4AACAASURB\nVGaMbz2eCnYV1MpLF6jVdS+EWCNJ0naghrIS1iZCiF3ArlzbNJqj329bPz5p9Umh/q5fNl52S1+A\nZpWa8X7T95lyeIrantCMiSG7hrDlxhYeTtCdUaExM+KvEbjauTK08VCdllOtbDUAutToku9+M8ks\nh9X/su7L8qQRQjD/lGLu/57be7j05BLN3ZvrQK1uEEL/sS30UaZyvns9l3ocff8oFWwrqCIXRidH\nq/zpV3aonOfYkNgQtg7YSpIsiY1XNzKx7UStaKrsWNlg3vLUoiTdAIoeBKpjxL7uld0zujTeKooh\nu4boLTa5Jj7lNcEQZV56cknYzLYplV2q9nPti4yR/rLy+PljUW5BuQL9imubwjzgrb+yXrz+2+uF\nHn8k5IjAF7Ho9CJRYWGFHD7aSwul/blw/el14TjPUUi+kth8bbPIyMxQXdf8fEIoh2HwJU88+bSM\nNGE200ykpqeKXwN+FV6rvMSRkCPaEaon0GXXvRJJkqpLkrRKkqSfga+AsVp+79Aa8uly/Ib74T/c\n3yDlRydHs/n6ZvYG7dVLeTKZYebLN2ig3zJBMdWkoWtDPv3303ynaQkhuP70uv6FqYGNhY0qkt2r\nxqGQQ3Sp0QVrC2u9lHdixAmsLazz7aJ1d3Dn5MOTBR4bkxJDl42K3oAvXvuCMc3HIMvUs8s7LZCW\nFXCttEWtBNh4dSONf25MfFo8G/tuZMjuIVRfXh2AU/87la8fBuW0yTHNxuQZijGTzDCXzJELOW/V\nfouyVmV5a/Nb/H7ld82EqkFYfBjSTIl/7/6r87Lyo7geKz4EfkExp34BMF/rirSEJEn4VPcp0nmG\nNsk+9lXetjxihmBM8zGExITkSXs14qrWXgIkCSwL8Oejq/E4TdzqaqrJ3tKeI8OOcCn8Er239ubG\nsxs59rsvdafJqia8+cebxKTEFJCL9nWpS3HmkL9MY/R/Bf3FGzXe0K6YLPLT9Hq110n5JoXKjnm7\ncN/8480824QQ3Iq8xUf7PqL8QsUY8b1P7wEw5+ScPP+zkmgyBLnHzvWhq7jj9bk1paSn8P6e92lb\npS2Z0zMZ2kQx1GMmmdHJsxOOVo755uPh6EF1p+oERQflcXIWnxaPTRkbLM0tcbN3w3+EP1v7by2w\notfmeVL+B9/a/FaJw6Zr4m+luBX9NqEYo48RQoSSc0rcK8n5sPOFvhGefnia9VfX59k+aOcgBu8a\nrHH5yhspTY+hkg1hC5CbstZlOfL+EXyq+dB5Q2eG7BrC3ei7ABx7XzFr80DwAdZfyXvuDYUQAoEg\nQ55haCkG4WDIQbUjkumSdZfXkSHPUP1PlFRYVIEGKxtwJPQI9pb2XBl7BU9nTwOp1C6GuFdLYpwX\nEhOC1yovbOfaAvDfB/+pWu63xt3i/mf3Ofr+0QIbcJ7Onvwz5B8SZYnUXFGTb499i+siV6SZEmcf\nn6VZpWY5jDO93Ly4GXlTL7Hmf3rrJ9VycSrt56nPkWZKWHxXrNnwOSlOPz8K5zXbAE8UTm1+Lsl4\nQT75js76zM+2rX9WeZMLOEabQx8l5puj3wivVV5i+J/DBb6Ih3EPVftiU2IFvohkWbJOyjbEFBpD\njfkVRnxqvJh9fLYov6C8mHpkqspPdm7/1obm0fNHwnWRa6m0LdAUpd9xQ/32jMwM8WvAr6LN2jbC\ndZGruPH0Rp791b+vLnbe3Jnn2DtRd0SFhRV05gRFnxjzeH1GZoZwnOeoGmM/GHxQo3IfxD0Q7//5\nvsAXYfWdlei9pbdYdmZZjjRyuVy0XtNazPCboVFZ6nLg7gExYPuAPPYDBZE9oh++lHiMXpPKuTP5\nzG8vYT7Vs5a3A50ohUFtlBcie7CMTHmm8F7lrZNgB6XdyEYXRCVFCe9V3jr1TKUJyormVURpRJWY\nlqj3slPSU0SjlY3Ea7++Jvbf2Z/vi3d6ZrooM6uMePz8cZ59vwX8JobuGqoPqTrHEI0DdQPuKIPW\n7Lm1R2y/sV1r5W+7sU3gi/D53UdEJkXm2b8vaJ/ouqGr1sorCnwRP577Ua20PTf3FPgiGq9srDhW\nnxW9sqVNPq5pS5DXaF44x5kPjMr67pStrC/yOU7tE7vu8jqtx8HOj8NHDuutxaLuz9emG054EWtb\nE3TpGjQhLUHgSw6HFeqia5elfbf2FZuvbS7WMS+TC9yB2weKr498rV0xWRSk6Xnqc7Xjz/fa0kv8\nce2PPNs//edTsfDUQq1pMjTgZ3TOdPz8/MQHf30g+mzto5MIi4U9l58mPhWSryQuhF3IEWNeV9fv\nbvRdgS+FOgVSEhQVJL47/p04+eCkEKLkFX2JwkcJIY4KIRYBGk8qFUKsES/mzDcDLqKloDZK9GXl\na2FukcfBwokHJxi+Z3ietE1XNc0RJKE4FGZ8pysMYQtQEuwt7XG0cuS3y8YV5e521G3+vP0n1Zyq\nGVqKwVjx5grmnZrHrsBdRSfWApuvb6bs/LL0rtub5K+Ti4w/727vzror63Jskws5K86voHONzkWW\n9yDuAWYzdReJUlv4+Sm+9WmJLwoYr++8obMiXv2Bzzj18BS/9fpNJ9E8C3N842rnypxOc2i5piWW\nsy3Zd2ef1soVyh+ejZrONQHYdG1TkcfXKV+Hae2n8X9V/08jHRqM7gOwQ8PjVUiS5A1cEkJcUdcb\nkbq+7t9t9C5uUW45fGHryte0EuV6ufrlaOLaJE/6ftb9eHztMQ06NyhW/h07KtYPHvTH318/vrOV\nUfAUDwjN89OWr+2C1ms41+D2xdv4OxT/eivRtr4ec3tADLSt0lYn+etzXZPr165qOwbsGIBfBz+t\n6lNuy75/1r5ZmDuas/ud3Zw4fqLQ4/38/Fi1cxVebb1y7E+ronizfX77Of5B+f+fTj88TdLdJGYd\nn4UwF6RnpnP65GmyY2zXz8/Pn44dwcrKh7Q0/ZTv5wcdO3ZAkmDQwnc5GHKQ55WeA1CvfD1G1B2B\ns42zQc5P28y27Gy5kwEXBtBzS092ttyZwztfSfJPSEug19leTGwzkTct3lRE5qsOY5qPYV/bfVgm\nWRaZv3JZ577uyeXfXt19udKNRtElPyrbcqdcab7ItjyPF133/VGj617pP3zuiblFdocYA6cfns53\n+6Adg4R/qH+++0qr/2p9M/nQZDHnxBxDy1BxIeyCcF3kKu7H3je0FIMjy5CJGstriP139uu8rCvh\nV0TZeWVzdMcWxOZrm0XjlY3zdBtPOTSl0OGGoKgggS/i84Ofi9iUWHH+8XmNdesTfd3bcSlx4syj\nM6LqsqoC5ALk4vj94zqxX9KUBj81EJ/+86lW8uq9pbfAF+Gx1EOM+muUwBfx9h9vlzg/dDVGj6Ir\n/ecCPhdKUmg+ZYzOttwZ8KIEQW323NojYlNiS3wSNUXdMZ2w+LACPTt9cfALcTHsYp7tJa1wNRln\n0lUlr+uxy6lHppbIilYXuiKTIkWn9Z3EV4e/KtHxxjjOq6mm/Xf2ixrLa2jVYLIgTW6L3cTS/5YW\neXztFbXF8fvHc2yTy+Wi1opaRXoyPPXglLj57KbamgxNbl26ruyXn10u8EVUXVZVrL+yPt8yjelc\nhcaGCnwRzh86axyIJi0jTTjMdVDZiUz4d4JGhn8lrejVGQy5h8JBTn6f0EKOU4uswDXzJUkKliQp\nOuuHZA+Fq3ZQm971euNk7aSpJJ3j7uCOfLo8x1jUTP+ZbL6+mUVvLMrjT9sQ89YVoW4NO1e+pBy+\nd5gGFQzgsg/F/Nhx+8fRZ2sfhu4eSqUllShnU45ZHWcZRI8x8lbtt6hWthrHQouMcK0x3Wt1VysA\nUqbIO6/5xrMbZMgz8HbzLvTYdlXbGez/pi10OV4fHBMMwNkPzqoCyggD+OFXl+pO1alTvg6xKbGq\nWAclxdLckvip8QR9EkTbKm15r8l7HBp2SEtK1UcSRTzJJUnyFArnOMXap2skSRJFaS9NLD2zFFc7\nV95r8l6O7VZWhnNvW1pPr+0cW65/dJ2a5Wrqrcy0jDRWXVzF1ptbOfv4LN+2/5ba5WpTwa4CHap1\nwKaMjd60lAaG7xlOp+qdGO6V11BVm9T+oTbvNnyX7zp9V2i62SdmExobyq+9f1Vt8/X3JSEtgSXd\nluhUozGgy8bEwB0DaeXeisntJufYbqhnm7r8fuV3lp9bzpb+W6jnUs/QcgCFUaEQotivSEUa4xVW\nkRuqkn8ZmdR2Up5tDRvmvBHux92nulP1POnWXV7H0dCjbOpXtBWnOpTmSh4UYUn1GRIyNDaUQTsH\nUcG2ApPaTKJ3vd553G+ayImLjQv3Yu/pLH8hBIGRgQTHBGNhVrTNccMKDTkQfAAhBJIkkSHPYNvN\nbaztqVEQzVKDsoWti3v/5IOTfNcx74tWWpruytQGw5oM4+Hzh7Rf157hTYfTvVZ3tWZfGCPGPxek\nFJHbcltTAgNf3ABpGWl4LvckUZaYJ52rnSuDGg7SiiZ9TN3T9nnKTmpGKrJMGQ6WDsU+tiS6gmOC\n8Vnvw6AGg9g/ZD8DGw7UaiWvy3NVUrShqW/9vuy/u19zMVlk13Qw+CAt17TkjU1vML/zfKZ3mF7k\n8T3r9gSgy8YujPxrJBUXV6SGcw3aerTViiZjoiBdBU2B05TKjpXznWKcs8z8NRmSkydOMr3DdL7r\n+B2LzyxWBTkqjWg6vc6Ejsj9lmtlYVVgvOO367yttTLB+OfKF8btqNvUcK5R6LxZbTJ231jGtRyX\np1vSROHUKV+HO9F3yJRn5vA9rikRiRF0/6M7s3xm8U37b9Sek21hZoH/CH9+PP8jcalxBIwJwKOs\nh07mdBsz2m7ZJ6cnExAeAECiLDFPRDldlKltxjQfw4f7P2RAgwGGllJiihyj14sIhdEdQFchxFdZ\n2/oDcUAzoXDOk/uYl2qMPjvK8K8liQynSZkAN58F8u/df/n8tc/1V7gW8b/vz1dHvuLsqLN6Kc9u\nrh1b+29VtQhNqE+9H+uxuf9mmlVqprU8hRCYzTLj87afs/iNxVrL91VDW2P2skwZVrMVjork0+WF\nvoAbQ7Csgui8oTNh8WHc/uS2QXWUdIze4K+rWZX8ACHEUaCZJEleWc5zRNa2OEmSvAyrUn8ou84N\nUckLAY+eP+JgyEH9Fa5l9gbtpWuNrnorz9namVtRt/RW3stEv/r9WHZ2mVbzTJenYyaZMfX/pmo1\n31cNbXXjW5pbEjYpDHtLe1IzUvVSpi6QkAiKDjK0jBJj8IpeKNzpfpS16pk1le4dFK15UEzvKxWD\nI5qOySlb8trsOi9KU+636G61uul8+oeuxi5lmTKWnV1Gjzo9SnR8cXUFRQURkRjBm7XyxjbXFsY4\nzqstTd+8/g2nH55Gmikhy5RpRdO6y+toVblVDq9mhsIYrx2or0tbFa+7gzst3Fuw8drGIjUZU2Wf\n/Tyt671Ob67UdYHBK3olkiRNBsZmrWrV131pwJDd9cbYVVYSjtw7ApDHD4G2EUIQFBVEpw2dmNd5\nXoGxsU0Ujp2lHVc/vArAP3f/0Ti/uSfnMvvkbFb3WK1xXiYUaKviXfrGUqYdm6ZWHHZjquyV3I+7\nX2SPhDFjFGP0SiRJ2o7CRe4CYJVQ+L3vDHQRQkzNlfalGKNv2DCndb2+eNkqeYCQmBBq/VCLiM8j\nqGhfUSdlJKQl4DjfUbVekIGkCfX54tAXLDmzRKNz6X/fn47rOxI8Pliv/hNeFbTxvJBmSlwcfVHt\nF3FjekYN3zOcDVc3GPx+19k8em0gSdJoQHmGpKzle0KIY9nG46+g6KYfA8QC5bLSOwHR+eWrblAb\nY13v2BHAByH0V/64cT4EBkK1av78/ruifGM5H5quHw45TI86PahoX1Fn5YWWzXIdEQrr+ryIdGYM\nv7+0rn/b/luWbF7Csi3LmDh4YrGPf5r4lI6+HZnUdpKqkjem3/cyrCuD4EhSyZ9XnnGe7L61m+bu\nzdVKrwiCowiq5eeXd3+mPJPOnTrr5fcf9z/OZ/U+Q4m+zr9yWedBbXT9QeHLXhnAZhXQjxL6ujc0\nxfHXrK9gMdk1GUuAGl35td5za49GASOK0qX0gY0vYs2lNSUuR5uaDIEuNP11+y/h+b2nSJYlF+u4\nsPgw4bLQRTCcQmOOGwJjvHZCGC7+RUhMSIFBhgrSlJGZISwtMwXIxbrL60TXDV2F3Rw71X1oP9de\nDNg+QOwL2lcyUYWg1JSanirwRSw7s0zrZRQXSujr3hjm0f8CDJIkqSaKH7EbQJKkFsX1dV9aMESX\nlDF1g+mKGs41dOpt7b9H/wGwb/A+rfkuMKGgbZW2hMaFci/2Hg1dG6p1zJ3oO/TY3INPW33K/7X4\nP735TniVEULhurYkc95rONcgXZ5OWmYaZczLFJo2LjWOLde38OOFH3H47il2lnb8z/s+FmWG8fT5\nc1LSU3Czd+OrI1+x+MxidgbupL5LfQLHBaryWPLfEio5VGJI4yEl+akAyIWctze/zetVX2dCmwkl\nzsfglOTtwBg+GEPTtASYQs3qjt2Bu0XH3ztqlEdBrcIfzv0g8EX8e/dfjfI3kT9/B/0t8EVEJUUV\nmi4hLUGcuH9CzDs5T5RfUF6svrhaTwpN5Ka4zxWf330EvuTptXme+lzcirwlLoZdFDee3hBBUUGi\n8/rOovum7uLA3QM57smCynz8/LHAFzH1yFQhhBC3I28LfBEOcx1K9NuUfHP0G4Ev4nL4ZY3y0RaU\n4hb9K4OpJa9b9t/dz+tVXy/x8UIonK1MajOJ95q8h5ebF5IkERITwvh/x/OB9wd0r9Vdi4pNKFFO\niXRZ5MLNj29yPuw8MSkx7L61m+iUaJLTkylvU57LEZext7Snf/3+nB55mroudQ2s/NVFFNOjnf99\nf1xsXbCyUDjQSctI44/rf/DB3g8AaFKxCemZ6cgyZTRybcSOgTvytPwLKrOyY2WiJkfhssiFiMQI\ndgbuBMC7kjdyIS+Rh0O5kDP/1Hx2DdqFl5tuXblEJUcx6/gsVry5Qif5G5XVfXEwRqt7f39/lTFF\ndpSVrT6nzymt+cEfIfJqMiQFnSdNSJQl4rHMg5sf38Tdwb3Euj66+RG3o25jLpnjbOOMo5UjMSkx\nzO88n7EtxhadiZbRxbnSFF1pOhh8kMVnFqumSY5rOY6uNbpS2bEyZa3KEhIbgpu9Gw0qNMgTT+BV\nOk+aom1d6jYmbjy7wei/R3P28VmaVWpGQHgAr1d9nc9af0b5Z+WLpamgMqWZih1tq7TlzOMzAGzu\nt5lBDQcV29XykCVDCLAK4Na4WzofFjp676jKl/6tcbcKjJZn1Fb3rzKGbsUbqc8OrbPh6gZ8qvuU\nuJJXEvhxIL239sbD0YOvX/+aRFkiLrYuRuGA5WWnW61udKvVDSEEmSIzT9S52uVrG0iZicLI3sou\nrDHTyLUR/438j4DwAMISwohLjWNYk2FIkoT/M/9il6m0FVCuA2R8m8EP539g4sGJqrRDdg/BTDLj\nnUbvqJ2/LFPGrsBdbJi4QS+2H9mj4tX/qb7Wp/EZVYtekqTJIsuv/cvg697QlfyrQlxqHC4LXTg0\n7BCdPDtpnN++O/vouaUn1z+6TiPXRlpQaMLEq4ExPPMy5Bl0+L0DNhY2/M/rf5ibmbPov0VcGnNJ\n7Tznn5rP1KNT9TpvXi7kmM960etw79N7eDp75khTan3dK1E6xslaLtW+7rO/3errD68sE16tSh5g\n5F8jcbZxpmP1jlrJz9naGRdbF8rZlCs6sQkTJlQonz36nACRvcyGDRWRCE+PPM2R948wtMlQOnl2\nIiA8gHWX1+U5NiEtgewNxvi0eK4/vc7Uo/qPlWAmmak8RQJ8fexrHsc/5odzP6hm/JQ4b03F6YhS\n6+s+e2Wrr/H47GXmruT9jbDvXtuarCysWNR1kUZdbHIhZ/Pfm9l+czvv7HyHX3v9qvEwgDZ4Fa6f\nNjBpUh9d6xJC0cjJ3vjQtSblsy8wMG+ZrnauDGo4iJF7R9JidQt8/X25HH6Z8f+Mx3G+I2azzAiO\nCeaLQ19Q/fvqDN41GBdbF4Y5DtNIU0loUrEJnk6ebOizgeT0ZOr/VJ+vj33NgtMLNMrXKMboJUny\nFkIclSRpStamUufrXvnnsrTUXzz37H/oV60Vnx0PRw8ePX9U7OM6/N6BEw9O4O3mzeWIyxAKPbv1\nZG7nufSsYwo7a8JESVE2cvQdZ74ge4FtA7bxa69f+fPWn1yOuEyPLT2oVrYa3Wp241joMWr/UJt6\nLvW4/tF1KjtWBgzzojbl8BTi0+J5p9E7vNfkPZadXcbnhz7n7dqa+e0wijF6SZI6CYU73INCiG6S\nJK2iFPm6N4ZxqVcZaabEoIaD2DZgW7GPa1ulLcu7L8fdwV11g5swYUJ7vJgBZJzPSCEEf97+Ey83\nL2quqMko71Gs6bVG9wLz0VHnxzoExwTzZbsv6VuvL21+bcOcTnP4st2XmJuZG7fVfVG+7oUQx3Id\nEkcp8HWf21e9v7/ufR937KhYfxl91Wuy3olOOaYN5Zc+NSOVI/IjvFX7LRKCEiAURvQYQcvKLfH3\n9+cud43m95jWTesvy/rNmy+el5Kk2J+f73ptr2f3lQ+K9ez7hRB0OtGJya9NplFyI3Zc2gHA2str\nGeo4VG/nRy7k1J9cnw7VOrC8+3KmHp3Kgk0LOOB2ACJAdlTGB78qfA2UmJJ42dHmB+iPwr/9aOAi\nCj/3Ru3r/sWIUM7tuvRtXVCZRWGM/ra1qSklPUXgi+ixuYdYcXZFoWmvRlwV+CKa/9JcOMx1EG/9\n8ZaITo7WiS5tYdKkHiZN6mNoXcrnWIMGL7bpWpOyTEvLF9vkcrnAF1FrRS3h+b2naLu2rcAXMffE\nXL1oUrLp6iaV7/7sn1ZrWonU9NRcv6NknvEMbownhNglsvzbA2Wztl0BlSW+0fi6z23Zro9uKEOU\nWZrYd2ef6vvTA58Wmra6U3UALoVfYkq7Kewfst9kWW/ChJ4pzHBO12XKZC+s8yVJYliTYQTHBHN3\n/F3++0Bh2b7p+ib9iAIiEiP4aP9HHBh6gMcTH+Ph6MF3Hb/jj35/cPC9gyovgppiFGP0JUGfY/SG\nMHozGdqpx7Rj05hzcg4ALd1bcn70+QLTZp+n+nGLj/np7Z/0otGECRP5Y+jx+1p1ZQQPtmJ6++ns\nvbOXKxFXuPbhNRpXbKxzDbOOz2LB6QVMajOJr1//mi4bu9DKvRVLuy0tcAaRUY/R65qhu4ey+fpm\n7XsTMlXwRk+zSs2wsbAhJSOFP/r9UWjas4/P4mDpwOdtP2eGzww9KTRhwkRBKK3iFS1sxbI+nnsv\n5t5bgq+cWRUCqfr174RNCtP5tNqNVzfy04WfOBd2joltJtK4YmPKzi9LujydI8OO6MQTn8G77rXB\n8KbD6Vuvr9byK2l3udLAQp9l6lKTrtCmpv7b+5OSkQLAygsrC0wXmxLL3JNz6Vyjc4GV/Mt+rrSF\nSZN6GKMmME5dP/3kr3ruKZ+F+ujWV5QpQWRDHk58QGXHF5W8ts+TLFNG+3XtmeY3jWntp5H+bTrT\nO0znnZ3vMNJ7JAu7LMSmjI1Wy1TyUrTo36j5Bm/UfEOjPKysFOM3SkwteONHlinLsV6QL/T5p+Yz\n9+RcPJ09+aXHL/qQZsKEiRKS3dOdvlr5+ZXp56fdMqxmK8bbs7vWXnFuBT3q9GBVj1XaLSwXr/wY\nval7vvTivMCZuNQ41XrKNylYW1jnSHM3+i51fqxDyKch1HCuoW+JJoyIlHTF/0MfQUpMaI/cl0sf\nz0xtN/yEUITABmjn0Y43a73Jt37fIhCcG3WOVpVbqZVPqfZ1L0nS/Kzv0dm29ZckqbMkSZO1X96L\nj6WlfqzZc3dHmSzoNSNRlpijkg//PDxPJQ/g6ezJ4EaD6bmlJ2P/Hkt6Zro+ZZowImzn2rLuSl5/\n5yaMm+yTi+HFc9RKOwbp+ZKWln+ZJX1HlCSJyMmRAJx+dBq/+3508uzEhdEX1K7kNcEoKnpgjCRJ\nd4EQ0E1Qm4IqWm26q809plNQmfqs4I1xPE4bmnLHIy/IBa6FmQWb+m1iymtTWB2wmkRZok51aRuT\nJvVQR1Pk5EgGNxqsezFZGON5AuPUpa6m7M9Q5VQ5XY3nKzUV9KJR3DJdbF049N4h/h78N0feP8KR\n94/Qwr2FdkUXgLFU9KOEELXFCw95Gge1yX4xskeS02VFq/D8ZPjK/VUgd8s8MDIw33QZ8gxmn5jN\npEOTmNtpLs42zvqQZ8IIcbF10ZmxkyYIIZBmSkgzJX449wOldThV3xRWATdsqP8y1elh6FqzKz3q\n9NCNuEIwijF6SZK+AC6TFXu+JL7u83u70kd3vL7LNKHgeepznBY4qdbTpqXlaeVvub6FtZfXciz0\nGKGfhaoc5pgwYUxkH78FiJkSY3oh1ZDcz2ZLS90HG9NHfVCq59ELIRYDSJLUJatiVwtJGgFUz1pz\nws8vp697bfqelyT/rHJ8sr79s7TnTG/yPa+f9f9O/gehgCcAnD5xGkmSVPuPHjvKkA1DwBOGNh7K\n/Sv3uc99o9FvWjetK9clSWJezXlMPTKVXt174WzjbFT6SuN6bl/6kqQMIa5YB38sLCA9XXvl5/al\nn923PyhN+DsihPr5K5fv37/P+vWUnJL4zS3uB4Uf+1FZH+Vyp2z7+mUtT87aNy/b/v7AF/nkWSx/\nwuqQs2Mm76coDO1DOj9eZk1O851UfqHXX1kv5HK5ap/Sf/TTxKdF5hMaGyr6bu0rHMY4CI+lHuLv\noL+1ok8bvMzXT5uYNKmPMeoyhKbCnvWWltrVVHVZVcWzqog6xtKyqHoIIUpQB+ulRS+EKCzm3wUU\n4/AANYFVKILbtACOATWAw/kdqAsDDFPXe+nBzd5NZXk/fM9whu8ZrvKOGJMSA8DagLV8/frXBeax\n4eoGhu8ZrlhJg4T4BHpu6al1L4smTJgwLgp71ksSWdFJtcV9FIFbC0cmvA3BngAAH+1JREFUKzJJ\niTCWMfrRQAzgKV50448iq3NWCLE2n2OEMWg3YTg2XdvEsD+HFZmusEo7u/97JRGfR1DRvqLG+kyY\nMGFCm5R0jN4oKvqSYKroTQBIM4v+z+8fsp83a71pNI5SniY+JSYlhlrlalHGvIyh5ZgwYaKUUKod\n5rwsZDegMBZedk1ihuCnt/KPQregywIWdFnA2H1jqf9TfZafXc6ViCv8cO4HVde+rnQVhtsSNxqs\nbIDlbEtG7R1V6HSql/36aQuTJvUxRl0mTbrFKKzuTZjQhI9bfsxHLT5CLuRYfPfiL/3lkS9zpJtw\ncIJqWS7kfNbmM71pzE76t+lEJkUy/t/x/Hr5V1a8uQLbMrYG0WLChImXH1PXvYmXiktPLtFiTV5v\nUx2qdWDXoF2Uty1vAFUmTJgwoTmmMXoTJkyYMGHiJaZUj9FLkuSdFcSmf7ZtOgtqoyuMcUzHpEl9\njFGXSZN6mDSpjzHqMmnSLUZR0QNThRC7AE9Jkrx0EdTGhInSzsUnF9WaZWDChAkT2TF4131WK141\nfz5r23zgkBDiWJZLXO/s+7PSmLruTbxSPEt6xvKzy5nTeY6hpZgwYcIAlOau+5ZA+azue2U3vRMK\nBzpKTBZUJoweIUS+0/a0haudq6mSN2HCRLExlul10UKIy1lBbfoDajXVR4wYQfXq1QFwcnLCy8vL\nYEEU/P39uXLlChMmTDBY+fmtK7cZi57sWoxFj3I99/WTZcq443CHhLQE2ma2LfL4fUH7WBKxhFHe\noxjqOFQr+pTbjOH85NZiLHoAvv/+e4Pf/7nXjfF5YLp+6q8bw/VTLt+/fx9N0EvXfZaLW2VBUtby\nvayu+clAiBBid1a6mln7D2ftz9O1n5Wn0XXd+/v7qy6UsWDSpD7+/v54enkSmRxJC/cWXH96nSar\nmgAgny4v0rOeEIK7MXdxsHSgkkMlrWkytnNl0qQexqgJjFOXSZN6lNrpdZIkeQL9hRCLlZU+iiA3\nLYQQa7O2HRZCXMl1nNFV9CZKH+EJ4bT/vT3BMcE5tqd/m46FmbF0eJkwYcJEKR6jF0KEorCs7w+U\nE0LsVlbqWYZ4sbkreRMmtMXxB8dVlfzENhPZ3G8z7zR8h2VnlhlYmQkTJkxoB4NX9ABCiLVCiF1C\niKm5th3NL3KdsZJ9XMVYMGnKS1pGGjtu7mDIriHYWNjwbftvAVi2ZRlDdg9h281tTDkyxaAalRj6\nXOWHSZN6GKMmME5dJk26xSgqehMm9MWRe0ewnmPNoJ2D2HJjC3229eFe7D1W91hNz7o9DS3PhAmD\nERwTzOGQw0QmRRaY5trTazxJeKJHVcXjWOixPMNwJoxgjL6kmMboTRSH9/98n123dvF+k/dZdWkV\nAN5u3hwedpjytuVZfnY5Ew5OIOTTECraVUQu5DhYORhYtQljQy7khMWHEZ4YjoSETRkbXO1ccbVz\nNZim6ORo/rj+Bz3r9MTT2TPHvtSMVGJTYilrXbbQwElCCJwWONGkYhOuP72OdyVvutXsxt93/uZJ\nwhOEELT1aMvWG1tVx4zwGsG63uvyzS8hLYHTj05z89lNolOiGdp4KA1dGxZY/rnH5/g3+F+mtJui\n0ikXcsykvG3RqxFXOf7gOIMbDcbO0o6U9BRiUmL4K+gvJh+ezMAGA9k+cHuh56y0UmqN8UqKqaI3\nURRCCALCA6jnUg/7efY59oVNCsPdwR2AbTe28e6ud/my3ZfM7zLfEFJNGDkTD0zk+3Pf42rnirlk\nrvrvJKcnE54YjqudK60qt2LJG0v0Xul/c/Qb5p6ai5lkxpu13sTJ2gkHSwduRN4gIDwAB0sHktKT\nmPLaFDpU70BMSgxh8WHEpsZiW8aWQyGHOBhyEIC4L+OwsrDi37v/curhKdYErGFCmwm80/Adzjw+\nQ8MKDbEws6DV2lYAVLCtQJOKTajnUo92Hu2QZcoY8dcIQBFIysvNC2sLa344/wP1XOphY2FDmypt\nGOk9EhdbF1IzUolLjWPU3lFceHIBgEaujbjx7AYAVctWxcPRgyYVm/Bp60+p51KPej/WIyg6CGdr\nZ1IzUrGysKK8TXkikyOJT4sHoGGFhrg7uFPJoRLu9u4cCDnAhNYTqOFcAzd7NyzNLfEo6wGAhFTk\njBpjodRW9Fnubi+hsLaXUFjYf5RlnBcHNBNCLMrnOKOr6I1xOsarqikqOYrum7pzKfxSju1XP7xK\nk4pNcmyTZkp81OIjBtkNeiXPVXF5WTUJIQhLCOPSk0v43/fH2sKaHy/8SKIsUZXm8tjLeLnl9Mgt\nF3ImHZzE8nPLVdvaV2tPhWcV6N2tN5UcKlG1bFXSMtJIzUilon1FKtpVxMrCSiO9Ss48OsNrv73G\n0MZD6V6rO5nyTB7HP6Zl5Za082iHnaUdd6PvUufHOgC0yWiDV2svnG2cSUlP4fSj01S0r8jiroup\n61JX7XLlQs7D5w+5HXWboKggdt3axfO051x7eo2j7x+lk2cnVdqo5CgOBh/E3cGdPbf38FfQXySl\nJxGVHAVA05SmlG9Qnqn/N5XVl1ZzLuwc1z+6TnRyNA+fP+TIvSMsP7ecBFkCDpYOXPvoGtWdquer\nKyEtgdC4UJ4kPCE8IZwnCU+Y5jeNt2u/TVxqHE+TnpKQlkBKRorqxeDQe4foWrNrjnw0/U8JIRi8\nazCzO82mVrlaJc4nO6W5ou8khDiWteyFonJ3RjF3Xjm3/kJpmF73sj4AtY0+NP12+Tc+2PtBjm2x\nX8biZO2UJ22N5TXYO3gvUYFRr+S5Ki4vk6bo5Gj+vP0nm65t4trTa5hJZrjZu9GhWgdWXlypSte0\nYlNql6/N1v5bMTczz5NPpjyTC08ukJaRRucNnckUmRAK5RqUIy0jDTd7N8qYl8G2jC1PE5/yLOkZ\nNmVsKGtVFgcrB2JSYohIjODMB2doU6UNZx6dwdLckiYVm1DGvEyOspJkSWy/uZ2Re0cCYCaZ0bF6\nR3YM3IGzjXOhv1cIwfHjx43q+hVHk1zItdYCj06O5tTDU/TZ1gczyYzKDpVJkCWwoc8GrCysOHXi\nFG3+rw12ZeywtrAmQ56Bl5sXdpZ2auWfKc/E4jsLfunxC2Oaj9FYL5Tiij47kiSNypo7b/J1/xKS\nkJaA43xHxjYfy6oeq7Se/53oO2y7sY1L4Zd4q/ZbfOD9AX/e/pOBOwYCIGbk/3/psqEL7zV5jxFe\nI7Su6WXi76C/6b21N11qdOHQsEMa5SUXcpJkSVqxg4hNieXEgxNkyDNoUKEBJx+e5NN/P+X1aq8z\n0mskfer1waaMjSr9ucfnaPNrG1xsXZBlymjn0Y5PWn1C80rNqWhfUZVO+XzRRbeuXMh5nvqc+LR4\nEmQJmElmzDo+C//7Co+MNmVsVEZvztbOBIwNwMPRg9C4UGr/UJuO1TvyetXX8XLzorl7czwcPUpN\n97MxIhdyzoedp+2vbanhXIN7sfcA6F6rO0myJFIyUgBFYKkPm39IXZe6HAs9xvhW46nmVA1PJ888\nL2S6oNRX9FkV+gUhRLwkSauAVUKIK1nbu2SfepeV3lTRlzLSM9OZeHAigxsNpl3VdhrlNebvMawJ\nWAPAsCbDOHzvMBGJEYBiXO/h84eqtONbjWdh14VYW1jnm1e739pxO+o20VOiNdL0siKE4ErEFZqt\nbqbaVq1sNepXqM8sn1nYlrHFTDLDysIK2zK2vL35bTLlmbzm8Ro3nt3g5MOTHHzvIDYWNuwN2svW\nm1t5HP8YS3NLetXthbebN5bmlgRFBZGSkcKl8EtMaD2BFu4taFKxCZIkqZwXJacnsytwFw5WDpx8\ncJLUjFRVy7tHnR5cjbjKo/hHVHGswuKui1l7eS2XnlyifbX2CmOt1yaz6D/FSODF0RfxruSdr8GX\noUjPTCc2NZbyNuWJSIygyrIqOfa72rnS2bMza3quUbtlaUJ77Li5gzvRd3iW9IwV51fQvFJzYlNj\nVS8GNz66UajRoaa8DBX9fCHEV1nLalX0w4cPN/m6f0V9pTuOdSQhLQGyjIw/q/gZLSq1YMDbA7C2\nsOaznz9jxbkVbJy0kfeavFdoftJMicH2g2ll3uqVun5pGWk8KveIW5G3eHD1AXZl7Ih3jyclPYWI\nGxGkpKeQXjWdmJQYnt9+DkDMzzF8u+5bfjr/EwBebb2QZcpICErg0fNHqutBaNZ31nqj5EYIIbhp\nd5O65euyqPYiYlNjCXEMIV2eTkhACNtvbs/3eAszC6rHVicqJYo4t7gc++d+MJcedXpwdMtRvLy8\neL3969yJvsPDqw+xsrDCx8eHx/GP+XX3r8w6MQt5NTmzfGbRJKUJZa3LGv3z4KnLUx7FP8It0g2b\nMjb06d4HczNzg99/2l4v7b7u1/25jpF/jQRP6FazG3UT6mJpbknDVg1JTk/mxPETWEgWLP1wKa52\nrsW6//2z+bpfv3698Vb0hfm6z5bmkBDijazleZh83WuFl1WTXMgxn/VirHRQw0FsG7CtRHl9c/Qb\ngmOD+cjlo5fyXOVmz+09/HD+B46FKm6/6e2nI0kSqRmpNK/UHAcrByzNLXGwdMDZxhknayfK25RX\ndQ0XpEkIobgu+Yxha0JCWgK3om7h7uBOZYfK+XZRq3uehBB66+I2xnsPjFPXy6Lp4fOHnHl0hn+C\n/1H912wtbIlIiuDEgxPEpMRQp3wdetTuwapLq1jYZSHjWo1TO/9S3aLP8ne/SgjRLWvdG2hu8nVv\nfBwLPcaNZze4FXmLW1G3OP7gOAC1y9XmbsxdGrs25vqz68zoMANfH98cxybKEjkfdp5nSc+oU74O\n5pI5FmYWVHKoRDmbcmqVH5EYQVpGGi62Lqopcw6WDnSr1Y2BDQYyqOGgYv+mQTsGsSNwBzc/vkmD\nCg2KfbyxkSHPIC41jiRZEs+SnnEg+ABXnyq6tM+HnQdgTc81qnnIJkyY0A9yIedKxBX23N7Ddye+\nAwq2HcqPklb0xhS1455yIStkbXOTr3v1CIsPQ5Ypo7JjZSzNLXVSxs1nN7kfd58eW3oAMKPDDPo3\n6I/XHS9uPLuhmKtuaU9L95Zcf3admcdnsuLcCswkM+RCTlpmGkIIlVGLt5s3GfIM0uXphMWHUc2p\nGlUcq2BtYY2VuRXWFtbYWNhgZ2nHP3f/oWa5muy7sy+HJk8nT+RCzoPnD9gbtJedgTvxcvOiTvk6\nxfpt7au1Z0fgDnz9fUu1ow0hBPvu7OOTfz8hPi0eRytHnKyd6OzZmYENBlK1bFViU2N5zeO1fGcf\nmDBhQreYSWZ4OHpQxkxhuLei+wq9lGsULfqSYIwtel12PyWnJ3P96XWcrJ2IT4snJiWG82HnWXVp\nFU8SnlC1bFWeJT2jdrna1HWpSwXbCjyOf0z0rWjGDxqPi60LLrYumEvmmJuZY2luiSxThr2lPZUd\nKmNuZp7v1BUhBAJB89XNuRJxhbdrv83+u/tV+w8MPUC3Wt3y6E2UJZKakQooHFJYW1hjU8YGM8ks\nz3nKlGcSEB5AVHIUqRmpqk9KRgpJsiTWXl5L68qt2XhtoyL99EyuRFzhQtgFHKwcGLtvrGqu8953\n9xbblW3DlQ0JjAyEUBC/l67/lBCCyORIwuLDaLGmBXIhZ/uA7QxsONBgmgyBSZP6GKOul12TEIID\nwQeY5jeN4Jhg1fz94rTm4eVo0b9yRCdHcyf6DlHJUUSnRBOdHE1wTDC3om4xpPEQbkXeIjAqkMDI\nQCKTIknLTMPJ2okazjVoXqk5ztbOLOu2DJ/qPrjauZKSnkJgZCDBMcFEJUcREhvC7cjb/Hn7TyKT\nIolKjkIu5GTIM8iQZ2Bpbkl8WjxRyVFYW1gTnxaPQNDCvQUzOszg80Ofcyf6jkqvT3UfprWfxtJu\nS6n7Y10aVmhIW4+2+f42e0t77C3t892XG3Mzc1pWblng/sntJgOwoe8G1bhXs0rNaFZJYQU+pPGQ\nEs+v3XJ9C4GRgYxvNZ5+HfoV61hD8jz1OV8f/VrleMTF1oWv2n3FlHZTKGtd1tDyTJh45UlJT2Hb\nzW3876//AVDTuSYLuy6kZ52eepmKlx1Ti15H/HT+Jz759xMA1vVeR2hsKKFxodyPu8+D5w9U079a\nuLegol1FytmUo7xNeZ4lP2Pz9c2M9BpJPZd6NKjQgPoV6lOtbDWtGzkpSUlPITk9GSdrJ84+PsvB\nkIOceXyGI/eOUNO5JudHn6fmipp4uXmRJEsiNC5U5dFKNk2m9z+tthBC4LzAmedpCovyOZ3m4OXm\nZbRd21cirvBrwK+cCzvHhScXGN1sNFPaTaGmc03THGoTJoyIPbf30HdbX0BhKDyu5TjaV2uvcb6l\n2hivJBhbRX8v9h6hsaHceHaDuzF3+enCT6p9QxsPpYZzDTydPKnuVJ1qTtWwMrfC1c611FaSibJE\nbCxsdPbyoS/kQs6hkENce3qNqOQoLkdc5nL4ZT5u+TH/8/pfniAh+iQ5PZnL4Zc58/gM58POsyNw\nBwB/9PuD6k7Vec3jNYNpM2HCRMFIM1/Uxfc+vae150ipruiz+bX3VMafNwZf9xnyDHbf2k18Wjxy\nIc/xsbGwoaJ9RVLSU/C778fPF3+GUPho4EeUMStDeGI4OwJ34O3mTcDYAJ3qLIyXfexLmyh1hcSE\nsOTMErbd3EbTik1xtXNlabelqkAmucmUZwJo9NKTmpHKneg7XHxykcmHJ9OmShv+ufsPbpFuDHhr\nAK2rtKZ15dbUKlfL4K13Y7x+Jk3qY4y6XiZNGfIMynxXhpk+MxncaDD3Yu/RukprrfQSltox+qyp\ndPeyLO07Z/m7lwAhhDgqSVINSZK8dGl5nynPJDQulCRZEvdi7+F/35/g2GCsLazZfWs3I71GYm5m\njplkpvrEp8UTnRKNpbklbSq34fa424TfCDe6P6uJ4lOzXE1Wvr2ShV0Xcvz+cXps6UG1stVY0HWB\nKk3fbX2JS43jv0f/IcuU5Th+/5D9NKjQgItPLrI3aC+P4x/jd9+PmT4zcbVzVRk4yjJl3I2+y8qL\nK7G2sKaGcw2qlq1KTEoMQxoN4ddev3L74m3Tf8qEiVKEhZkF3Wp2Y03AGmb4zwAUNktDGg3hl56/\nqNK9+cebnHp4igq2FahgVyHnd37b7CqUWJPBW/RZFf0CIcQbxfV1X2tFLcrblFdNKRO8+C3KOdpl\nzMtwIPgA3m7eqrCE2UmSJXHhyQWcrZ1xsHLA08mToOggktOTGd9qPM0rNadzjc66PAUmjJz7cfep\naFcxh7/0W5G3eJLwBAszC848PsPliMtsv7ldNZ3Qw9GDBhUa0KtuLzwcPZh/ej7tq7YnOiUaM8kM\nCQlLc0uepz3HytyKH9/6sdQO45gwYSInGfIM1gasJSQmhK9f/xonayfSMtNyuOFOSU9BlikjMjmS\nyKTI/L+zLT98/hB8KdVd96uAQcCorIh1arnAvR15m+iUaDLkGS+2IyFQeOhKz0wnXZ7OweCDtKzc\nEgfLvAE0LM0taeHeQqO3JRMmTJgwYUKXCCEwMzMrUUWv6EY04AcoC8wDvgCiUXi7XgV4Ze3vDMzL\n5zhhbPj5+RlaQh5MmtTHGHWZNKmHSZP6GKMukyb1yKr3il3P6mWMvghf92OyKvJ4SZLuAQOAWOD/\n27uXpTaSLAzA/+EBgJYiWBuI3nPrF+DyAsD0bL3gYpYmIKb9AjNgK7zt9jAvYLfxA2DEAzRyiH0b\nqfceITF7+8wiT0IhS1ASlDIl/i/CYVWhy09RVaeUVVnp74k6agcA33n69Gl0g9rENChDUix5Yp7m\n369/p8/OzqLKE+v6FOs0/36tp/1jP6hNt4I33YvIDoADVb206TUAJQBzynvdExFRpHZ2dvD69Wtk\nWYtEBNvb2ygUCn3fvW4XwDmAnF53r1uDG4zyqstd02tY6ImIKJihoSF8+fIF+Xw+s8+o1WoYGxvD\n169fuy70Q1kE65SqvlLVD8mCrqr/UdViqyIfq+bm1hgwU3ox5mKmdJgpvRhz9WsmVb1R5Mvlcsvn\nFYvFGz+7vLxs+bxqtYpnz57h7OwMh4eHuLy8RD6fx7dv3zoL3yR4P3oiIqJ+54t3sVjEwsICisUi\nGo0GZmdnkcvlUCqVcHx8jN3dXZRKpavXVSoV5PN5LC4uYnx8HJOTk5iamsLIyAgODg6ws7Nz72xR\nNN13g033REQUkjWlo1wuo16vY35+HltbW9jf30epVEIul8Po6CgqlQrq9TqOj4+xv7+P09NTXF5e\nYnl5GYVCAaurq3jy5Amq1SpevnyJzc1NVCoVLC4uYnh4+Opz+vocfTdY6ImIKCRfgHv1OX19jn5Q\n9Ot5pl6LMRMQZy5mSoeZ0osxFzNlK4pCLyK7IrJs/e39vBW79/1uyGyd8H1BY8JM6cWYi5nSYab0\nYszVr5lEBLVay9u8PJharYahofuV6uCF3m5xq6r6AcCkiDyx+9+rqhYBNGygm+g1Go3QEb7DTOnF\nmIuZ0mGm9GLM1a+Ztre3MTY2BhHJ7N/Y2BieP39+r98lhqvulwD8YY/PbXoSwJHNqwBYBBDfIR8R\nET1ahUIBhULh7icGFkOhr+Hm7W7zcPe/v0g8J7u7ETyg+96mMAvMlF6MuZgpHWZKL8ZczJSt4Ffd\ni8g4gA1VfWGj1n2G+0b/Ru8YvS5AXCIiomC6ueo++KA2qloVkbd2Xr4B11Sfxx2D2nTzyxIRET02\nPSn0qnrQ7mdW4GdtAJsNdePRVwHMAjgBMAHgYy9yEhFRdkRkWlXLiWnf02pSVX+xeStwX/pmVPVV\noFx7qvqLiKz7+tXrXC0y+c+/Gv8lbabgV93bL3IhIssA3iTm+Svy6y1GrptumvZd8dZazOtJ97wW\nmfbs/2BdBltkWrd/e6EyUX+LZX2xDAsxrcsiMm0ZVmLJZBmi6L5s+/Pfm6Y/WiGdEJH5ED2umnOZ\nDRH5E+4CcfQ6V4tlNQ3XCl4EUBWRqU4yBS/0AGAD2nxIFvR2g9o89AJ4CH2yokSxUSXyRLHzacoU\n3Y46poIWcn1pyrEAYNVyzITY5tt4oaqHAMZjySQRdV+2zztPzJqA61EFuFO2EwD+DvcN1c9bRMZa\n5AKANVX9UVVPbLqnudpk2rf/x61Wps4URaHvxEMvgAwzxbaiRLFRAXHtfJpEtaOOsKAFWV+a2ReA\nLZsMss03s4PDPyxfIYZMZsk+G7juvhxDLqjqQeKL3AyAEtw1WTH0uJpoOpgOmstauSsicpHIkTpT\n3xX6ZvddABmKbUWJaaOKbucT4446woIWw3Z1xbatTZsMne0nAHlrFYpimzfN3ZcnEVn3ZTt4/dR8\nijYk2wcUAeTsgDsoERkBUAfwTwAH4nqrpdb3hf6+CyArsa0oXiQbVYw7n1h31LEVtGjYxUfPbB8Q\ng1ri+qIVXPc0Cuk93PYF+/+/AbO0s5DoPl3HHT2usmbXMS3b5AWA8QhybQD4l6oWAKwDWO0kUww3\nzLlBbumK1+YlfgH8T0Qq6HABZJHJnl+zpulMVpQulpMXw0b1Hu7vBridz2e4Qh9aTVXLIrIY0Y4a\nqvpKRN6JyKfAUULv7ADcuFbgDK5VYyOCbDVct1I14A4cG4Ezodvuyxm60S1a3FXtBXu8AOAtgDn0\nvsdVMtcprv+WkwB+g2sB7XWuZCb109Yzbc0ypMoUXaG/rStewoMtgIwyZb6idJGppxvVbQcioXY+\ndxwcBdlR35YpwoL2DnF0e10E4A96RuFOuTzoNt+F9wD8RZw+UyVwpqi6L9vB86yILFuOBQB7IvIP\nAD8A+Ju6m6TNSZseV73IZRnW7XTwZ5+hl7laZCrYBcznAHKJ7nWpMgW/M16nbAH8G8C6fWP2TZvN\nC2ANQBWJPoc9zrQO+zafKK7BMtnK8A6uUPiN6qSXmRLZkjufX1V1q2neLlwPgZ6dXrBTPit+g4Jb\nnyoA5gJm2oU7zXIi7q6RRxFk6vn60iLDMICf4Q6MZvx1DKGz2efX4f4+L2LIZBl8M3QlUbSC56Le\n6btCT4Mhxp1PbDvqWAsaEfUXFnoiIqIB1vdX3RMREVF7LPREREQDjIWeiIhogLHQExERDTAWeiIi\nogHGQk9E0bAblay1+Vnw4XGJ+hELPVEfEZFxux1uKXEvgqw+688HeI9xETnqYJS9kcRNr1bEDWU8\nAlyNyMj+wEQdYqEn6iOqWoW7Zempvwtjhp/1o39sd3rs5j2qcLerzd313CS7k+NH+x2DDKNKNChY\n6InoO/ZNfMUej+B69Lyu3q6L12ibx0TUIRZ6ogFi57jn7Xy2L9QLIvI5Mf83u72uf82eiEzZaxfs\nlMAFgH173gSAUWtGn2p6z+FE8/x8qxz2ej9/1+avyS1DSttAQ0uW5fiBFxPRoxLd6HVE1B0/tK4f\nqtgK+LmqFm3Uq4qq/iUiM7BR1azYjtiIXUv22A/MdA73hmURqSdPFSTe0w+FegQ3aptvdh9J5Fiy\n/9cT+U5E5B3cvfxbUtXDB11ARI8Uv9ETDQArrku4HmoXcEPYzvmnwH1L90aB63P+9k39U9N5/7ua\n3KXN4+Yc3iyAhrUeTMMN5UpEGWOhJxoMMwBKSDSTA5i0eXcRVT3z38DbuACuDii85LnzycTjUwA/\nJaZH4Q4EjgDAPqsMN4wyEWWMhZ6oj1hT+xKAOTtnvm7N5jnrljZq58BXAJSsSX4awDiAn+3CuiW4\n89/+PP2miLwVkV99H/bka+w5v9vPksX9DYANe65/n2Frcq9Zjmm4g48N2Ll2yz2PmwclRJQRDlNL\n9IjZefOPdu5+GO4g4IdQ49yLyI6qFrr9ORF9jxfjET1upwBmRMQ3ryvCXuXeyXUBRJQCCz3RI6aq\nZwDOErPKobKYhoistWpRsOsD2ARJ1CE23RMREQ0wXoxHREQ0wFjoiYiIBhgLPRER0QBjoSciIhpg\nLPREREQDjIWeiIhogP0fanQCeercrFQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x3cb8748>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot results \n", "coastline_data= np.loadtxt('Coastline.txt',skiprows=1)\n", "w, h = plt.figaspect(0.5)\n", "fig = plt.figure(figsize=(w,h))\n", "ax = fig.gca()\n", "plt.rc('text', usetex=True)\n", "plt.rc('font', family='serif');\n", "plt.rc('font',family='helvetica');\n", "params = {'legend.fontsize': 8,\n", " 'legend.handlelength': 2}\n", "plt.rcParams.update(params)\n", "\n", "groundtrack_title = timestamp_tle_epoch.strftime('%d %B %Y %H:%M:%S')\n", "fig.suptitle(r\"\\textbf{ISS Ground Track on %s}\" %groundtrack_title,fontsize=14)\n", "plt.plot(coastline_data[:,0],coastline_data[:,1],'g');\n", "ax.set_xlabel(r'Longitude $[\\mathrm{^\\circ}]$',fontsize=12)\n", "ax.set_ylabel(r'Latitude $[\\mathrm{^\\circ}]$',fontsize=12)\n", "plt.xlim(-180,180);\n", "plt.ylim(-90,90);\n", "plt.yticks([-90,-80,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90]);\n", "plt.xticks([-180,-150,-120,-90,-60,-30,0,30,60,90,120,150,180]);\n", "plt.plot(math.degrees(lon[0]),math.degrees(lat[0]),'yo',markersize=5,label=timestamp_tle_epoch.isoformat() + 'Z');\n", "for index in range(1,len(timevec)-1):\n", " plt.plot(math.degrees(lon[index]),math.degrees(lat[index]),'b.',markersize=1);\n", "\n", "ax.grid(True);\n", "\n", "at = AnchoredText(\"AshivD\",prop=dict(size=5), frameon=True,loc=4)\n", "at.patch.set_boxstyle(\"round,pad=0.,rounding_size=0.2\")\n", "ax.add_artist(at)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
sjhonatan/intro-python
08-for/for.ipynb
2
1526
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Playlist no youtube\n", "\n", "https://www.youtube.com/playlist?list=PLvu-cXEstYRPZXyug9IqTJq4JtdBxXgeS" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import time\n", "nome = 'tutorial de python'\n", "vogais = ['a', 'e', 'i', 'o', 'u']" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "O número de vogais é 8\n" ] } ], "source": [ "numeroVogais = 2\n", "for letras in nome:\n", " if letras in vogais: \n", " numeroVogais += 1\n", "\n", "print('O número de vogais é {}'.format(numeroVogais))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit