Datasets:
cjvt
/

solar3 / solar3.py
Matej U
Added (punctuation) spacing information to annotations.
ae7bfe4
raw
history blame
19.1 kB
import logging
import os
import re
import xml.etree.ElementTree as ET
from itertools import groupby
from typing import Optional
import datasets
_CITATION = """\
@misc{solar3.0,
title = {Developmental corpus {\v S}olar 3.0},
author = {Arhar Holdt, {\v S}pela and Rozman, Tadeja and Stritar Ku{\v c}uk, Mojca and Krek, Simon and Krap{\v s} Vodopivec, Irena and Stabej, Marko and Pori, Eva and Goli, Teja and Lavri{\v c}, Polona and Laskowski, Cyprian and Kocjan{\v c}i{\v c}, Polonca and Klemenc, Bojan and Krsnik, Luka and Kosem, Iztok},
url = {http://hdl.handle.net/11356/1589},
note = {Slovenian language resource repository {CLARIN}.{SI}},
year = {2022}
}
"""
_DESCRIPTION = """\
Šolar is a developmental corpus of 5485 school texts (e.g., essays), written by students in Slovenian secondary schools
(age 15-19) and pupils in the 7th-9th grade of primary school (13-15), with a small percentage also from the 6th grade.
Part of the corpus (1516 texts) is annotated with teachers' corrections using a system of labels described in the
document available at https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Smernice-za-oznacevanje-korpusa-Solar_V1.1.pdf (in Slovenian).
"""
_HOMEPAGE = "http://hdl.handle.net/11356/1589"
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
_URLS = {
"solar_tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Solar.TEI.zip"
}
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
def namespace(element):
# https://stackoverflow.com/a/12946675
m = re.match(r'\{.*\}', element.tag)
return m.group(0) if m else ''
def resolve_element(tag_el, ne_tag: Optional[str] = "O"):
if not tag_el.tag.endswith(("w", "pc", "seg")):
return []
if tag_el.tag.endswith(("w", "pc")):
form = tag_el.text.strip()
lemma = tag_el.text.strip() if tag_el.tag.endswith("pc") else tag_el.attrib["lemma"]
ana = tag_el.attrib["ana"] # JOS/MTE specifications
msd = tag_el.attrib["msd"] # UD specifications
ret_ne_tag = ne_tag
id_tag = tag_el.attrib[f"{XML_NAMESPACE}id"]
space_after = False if "join" in tag_el.attrib and tag_el.attrib["join"]=="right" else True
return [(id_tag, form, lemma, ana, msd, ret_ne_tag, space_after)]
# Named entities: words and punctuation nested directly below current element
elif tag_el.tag.endswith("seg"):
anns = []
ret_ne_tag = tag_el.attrib["subtype"].upper()
for idx_child, curr_child in enumerate(tag_el):
anns.extend(resolve_element(curr_child, ne_tag=f"B-{ret_ne_tag}" if idx_child == 0 else f"I-{ret_ne_tag}"))
return anns
def extract_sent_id(tok_id):
# e.g., `extract_sent_id("#solar1s.3.2.44") == "solar1s.3.2"` or `extract_sent_id("solar1s.3.2.44") == "solar1s.3.2"`
_tok_id = tok_id[1:] if tok_id.startswith("#") else tok_id
return ".".join(_tok_id.split(".")[: -1])
def find_involved_sents(correction_group_el):
src_sent_ids = set()
tgt_sent_ids = set()
for _curr_corr in correction_group_el:
sent_ids = list(map(lambda _tok_id: extract_sent_id(_tok_id),
_curr_corr.attrib["target"].split(" ")))
for _s_id in sent_ids:
if "t" in _s_id:
tgt_sent_ids.add(_s_id)
else:
src_sent_ids.add(_s_id)
return sorted(list(src_sent_ids)), sorted(list(tgt_sent_ids))
def read_data(data_path):
data = {} # ID_sent -> sentence_metadata
tree = ET.parse(data_path)
root = tree.getroot()
NAMESPACE = namespace(root)
for curr_text in root.iterfind(f".//{NAMESPACE}div"):
id_text = curr_text.attrib[f"{XML_NAMESPACE}id"]
bibl_el = curr_text.find(f"{NAMESPACE}bibl")
if bibl_el is None:
text_title = "Unknown_title"
logging.warning(f"The following text does not have a 'bibl' element: {curr_text.attrib}. "
f"Setting title to 'Unknown_title'")
is_manually_validated = False
else:
text_title = bibl_el.attrib["n"]
note_el = bibl_el.find(f"{NAMESPACE}note")
is_manually_validated = note_el.text == "DA"
for idx_par, curr_par in enumerate(curr_text.iterfind(f".//{NAMESPACE}p")):
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f".//{NAMESPACE}s")):
id_sent = curr_sent.attrib[f"{XML_NAMESPACE}id"]
ids, forms, lemmas, msds, nes, spaces_after = [], [], [], [], [], []
msds_jos, msds_ud = [], []
for curr_el in curr_sent:
curr_annotations = resolve_element(curr_el)
for curr_ann in curr_annotations:
ids.append(curr_ann[0])
forms.append(curr_ann[1])
lemmas.append(curr_ann[2])
msds_jos.append(curr_ann[3])
msds_ud.append(curr_ann[4])
nes.append(curr_ann[5])
spaces_after.append(curr_ann[6])
data[id_sent] = {
"id_doc": id_text,
"doc_title": text_title,
"id_token": ids, "form": forms, "lemma": lemmas, "ana": msds_jos, "msd": msds_ud, "ne_tag": nes, "space_after": spaces_after,
"is_manually_validated": is_manually_validated
}
return data
class Solar3(datasets.GeneratorBasedBuilder):
"""Šolar is a developmental corpus of school texts (e.g., essays), annotated with metadata and (partially)
with teachers' corrections. """
VERSION = datasets.Version("3.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sentence_level", version=VERSION,
description="Annotations at sentence-level."),
datasets.BuilderConfig(name="document_level", version=VERSION,
description="Annotations at document-level."),
]
DEFAULT_CONFIG_NAME = "sentence_level" # default = annotations as provided in the original data
def _info(self):
features = datasets.Features(
{
"id_doc": datasets.Value("string"),
"doc_title": datasets.Value("string"),
"is_manually_validated": datasets.Value("bool"),
"src_tokens": datasets.Sequence(datasets.Value("string")),
"src_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"tgt_tokens": datasets.Sequence(datasets.Value("string")),
"tgt_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"corrections": [
{
"idx_src": datasets.Sequence(datasets.Value("int32")),
"idx_tgt": datasets.Sequence(datasets.Value("int32")),
"corr_types": datasets.Sequence(datasets.Value("string"))
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS["solar_tei"]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"source_path": os.path.join(data_dir, "Solar.TEI", "solar-orig.xml"),
"target_path": os.path.join(data_dir, "Solar.TEI", "solar-corr.xml"),
"links_path": os.path.join(data_dir, "Solar.TEI", "solar-errs.xml")
}
)
]
@staticmethod
def generate_sentences(source_path, target_path, links_path):
source_data = read_data(source_path)
target_data = read_data(target_path)
data = ET.parse(links_path)
root = data.getroot()
NAMESPACE = namespace(root)
for idx_corr, corrected_sent in enumerate(root.iterfind(f"{NAMESPACE}linkGrp")):
# Involved sentences according to the IDs of token mappings - 'corresp' does not list all of them!
# (possible bug in data)
involved_src_sents, involved_tgt_sents = find_involved_sents(corrected_sent)
id_doc, doc_title, is_manually_validated = None, None, False
src_sent_data, tgt_sent_data = {}, {}
tok2position = {}
assert len(involved_src_sents) > 0 or len(involved_tgt_sents) > 0
if len(involved_src_sents) > 0:
src_sent_data = source_data[involved_src_sents[0]]
for src_sent_id in involved_src_sents[1:]:
curr_sent_data = source_data[src_sent_id]
src_sent_data["id_token"].extend(curr_sent_data["id_token"])
src_sent_data["form"].extend(curr_sent_data["form"])
src_sent_data["lemma"].extend(curr_sent_data["lemma"])
src_sent_data["ana"].extend(curr_sent_data["ana"])
src_sent_data["msd"].extend(curr_sent_data["msd"])
src_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
src_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = src_sent_data["id_doc"]
doc_title = src_sent_data["doc_title"]
is_manually_validated |= src_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(src_sent_data["id_token"]):
tok2position[_tok] = _pos
if len(involved_tgt_sents) > 0:
tgt_sent_data = target_data[involved_tgt_sents[0]]
for tgt_sent_id in involved_tgt_sents[1:]:
curr_sent_data = target_data[tgt_sent_id]
tgt_sent_data["id_token"].extend(curr_sent_data["id_token"])
tgt_sent_data["form"].extend(curr_sent_data["form"])
tgt_sent_data["lemma"].extend(curr_sent_data["lemma"])
tgt_sent_data["ana"].extend(curr_sent_data["ana"])
tgt_sent_data["msd"].extend(curr_sent_data["msd"])
tgt_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
tgt_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = tgt_sent_data["id_doc"]
doc_title = tgt_sent_data["doc_title"]
is_manually_validated |= tgt_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(tgt_sent_data["id_token"]):
tok2position[_tok] = _pos
corr_data = []
for token_info in corrected_sent.findall(f"{NAMESPACE}link"):
connections = token_info.attrib["target"].split(" ")
corrections = token_info.attrib["type"]
if corrections == "ID":
continue
src_inds, tgt_inds = [], []
corr_types = []
for curr_corr in corrections.split("|"):
corr_types.append(curr_corr)
for curr_tok in connections:
# Token IDs have an index at the end, but it is 1-based; convert it to 0-based
idx_tok = tok2position[curr_tok[1:]]
if "t" in curr_tok: # target token
tgt_inds.append(idx_tok)
else: # source token
src_inds.append(idx_tok)
corr_data.append({"idx_src": src_inds, "idx_tgt": tgt_inds, "corr_types": corr_types})
yield idx_corr, {
"id_doc": id_doc[:-1], # doc ID without the "s" or "t" info
"doc_title": doc_title,
"is_manually_validated": is_manually_validated,
"id_src_tokens": src_sent_data.get("id_token", []),
"src_tokens": src_sent_data.get("form", []),
"src_ling_annotations": {
"lemma": src_sent_data.get("lemma", []),
"ana": src_sent_data.get("ana", []),
"msd": src_sent_data.get("msd", []),
"ne_tag": src_sent_data.get("ne_tag", []),
"space_after": src_sent_data.get("space_after", [])
},
"id_tgt_tokens": tgt_sent_data.get("id_token", []),
"tgt_tokens": tgt_sent_data.get("form", []),
"tgt_ling_annotations": {
"lemma": tgt_sent_data.get("lemma", []),
"ana": tgt_sent_data.get("ana", []),
"msd": tgt_sent_data.get("msd", []),
"ne_tag": tgt_sent_data.get("ne_tag", []),
"space_after": tgt_sent_data.get("space_after", [])
},
"corrections": corr_data
}
@staticmethod
def aggregate_docs(sent_level_data):
# NOTE: assuming here that `sent_level_data` is pre-sorted by id_doc, which is done in the raw data
for idx_doc, (curr_id, curr_group) in enumerate(groupby(sent_level_data, key=lambda tup: tup[1]["id_doc"])):
curr_instances = map(lambda tup: tup[1], curr_group) # remove the redundant index info from datasets
src_tokens, tgt_tokens, mapped_corrections = [], [], []
src_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
tgt_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
seen_src_tokens, seen_tgt_tokens = {}, {}
# Need to keep the current base position of source and target tokens AND previous base position:
# A source may map into multiple targets (or vice versa), but we do not want to write it twice in a doc.
# Therefore, when the same sentence is encountered twice, the base is shifted to the previous one to map
# the indices of corrected tokens correctly.
src_base, tgt_base = 0, 0
prev_src_base, prev_tgt_base = 0, 0
doc_title, is_validated = None, None
for curr_inst in curr_instances:
doc_title, is_validated = curr_inst["doc_title"], curr_inst["is_manually_validated"]
id_src_toks, id_tgt_toks = curr_inst["id_src_tokens"], curr_inst["id_tgt_tokens"]
curr_src_toks, curr_tgt_toks = curr_inst["src_tokens"], curr_inst["tgt_tokens"]
curr_src_anns, curr_tgt_anns = curr_inst["src_ling_annotations"], curr_inst["tgt_ling_annotations"]
curr_corrs = curr_inst["corrections"]
num_added_src, num_added_tgt = 0, 0
for idx_position, (id_tok, tok) in enumerate(zip(id_src_toks, curr_src_toks)):
if id_tok not in seen_src_tokens:
src_tokens.append(tok)
src_ling_anns["lemma"].append(curr_src_anns["lemma"][idx_position])
src_ling_anns["ana"].append(curr_src_anns["ana"][idx_position])
src_ling_anns["msd"].append(curr_src_anns["msd"][idx_position])
src_ling_anns["ne_tag"].append(curr_src_anns["ne_tag"][idx_position])
src_ling_anns["space_after"].append(curr_src_anns["space_after"][idx_position])
seen_src_tokens[id_tok] = tok
num_added_src += 1
for idx_position, (id_tok, tok) in enumerate(zip(id_tgt_toks, curr_tgt_toks)):
if id_tok not in seen_tgt_tokens:
tgt_tokens.append(tok)
tgt_ling_anns["lemma"].append(curr_tgt_anns["lemma"][idx_position])
tgt_ling_anns["ana"].append(curr_tgt_anns["ana"][idx_position])
tgt_ling_anns["msd"].append(curr_tgt_anns["msd"][idx_position])
tgt_ling_anns["ne_tag"].append(curr_tgt_anns["ne_tag"][idx_position])
tgt_ling_anns["space_after"].append(curr_tgt_anns["space_after"][idx_position])
seen_tgt_tokens[id_tok] = tok
num_added_tgt += 1
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
for corr in curr_corrs:
mapped_corrections.append({
"idx_src": list(map(lambda _i: src_base + _i, corr["idx_src"])),
"idx_tgt": list(map(lambda _i: tgt_base + _i, corr["idx_tgt"])),
"corr_types": corr["corr_types"]
})
src_base += num_added_src
tgt_base += num_added_tgt
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
yield idx_doc, {
"id_doc": curr_id,
"doc_title": doc_title,
"is_manually_validated": is_validated,
"src_tokens": src_tokens,
"src_ling_annotations": src_ling_anns,
"tgt_tokens": tgt_tokens,
"tgt_ling_annotations": tgt_ling_anns,
"corrections": mapped_corrections
}
def _generate_examples(self, source_path, target_path, links_path):
sent_level_data = list(Solar3.generate_sentences(source_path, target_path, links_path))
if self.config.name == "sentence_level":
# Remove IDs that are only useful for aggregating the document-level data
for i, instance in sent_level_data:
yield i, {_k: _v for _k, _v in instance.items() if _k not in {"id_src_tokens", "id_tgt_tokens"}}
else:
yield from list(Solar3.aggregate_docs(sent_level_data))