File size: 19,095 Bytes
5b47bfd 9bbe4fa 5b47bfd 9bbe4fa 5b47bfd 5786d54 5b47bfd ae7bfe4 5b47bfd ae7bfe4 5b47bfd 5786d54 5b47bfd b2bdc31 5b47bfd ae7bfe4 5786d54 5b47bfd 5786d54 ae7bfe4 5b47bfd ae7bfe4 5b47bfd 5786d54 9bbe4fa 5b47bfd 5786d54 ae7bfe4 5786d54 5b47bfd 5786d54 ae7bfe4 5786d54 5b47bfd 9bbe4fa 5b47bfd b2bdc31 5b47bfd b2bdc31 5786d54 b2bdc31 ae7bfe4 b2bdc31 5b47bfd b2bdc31 5786d54 b2bdc31 ae7bfe4 b2bdc31 5b47bfd b2bdc31 5b47bfd b2bdc31 5b47bfd 1b1ad9b 5b47bfd 5786d54 ae7bfe4 5786d54 5b47bfd 5786d54 ae7bfe4 5786d54 5b47bfd 9bbe4fa ae7bfe4 9bbe4fa 5786d54 9bbe4fa 5786d54 9bbe4fa 5786d54 ae7bfe4 5786d54 9bbe4fa 5786d54 9bbe4fa 5786d54 ae7bfe4 5786d54 9bbe4fa 5786d54 9bbe4fa 5786d54 9bbe4fa ae7bfe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import logging
import os
import re
import xml.etree.ElementTree as ET
from itertools import groupby
from typing import Optional
import datasets
_CITATION = """\
@misc{solar3.0,
title = {Developmental corpus {\v S}olar 3.0},
author = {Arhar Holdt, {\v S}pela and Rozman, Tadeja and Stritar Ku{\v c}uk, Mojca and Krek, Simon and Krap{\v s} Vodopivec, Irena and Stabej, Marko and Pori, Eva and Goli, Teja and Lavri{\v c}, Polona and Laskowski, Cyprian and Kocjan{\v c}i{\v c}, Polonca and Klemenc, Bojan and Krsnik, Luka and Kosem, Iztok},
url = {http://hdl.handle.net/11356/1589},
note = {Slovenian language resource repository {CLARIN}.{SI}},
year = {2022}
}
"""
_DESCRIPTION = """\
Šolar is a developmental corpus of 5485 school texts (e.g., essays), written by students in Slovenian secondary schools
(age 15-19) and pupils in the 7th-9th grade of primary school (13-15), with a small percentage also from the 6th grade.
Part of the corpus (1516 texts) is annotated with teachers' corrections using a system of labels described in the
document available at https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Smernice-za-oznacevanje-korpusa-Solar_V1.1.pdf (in Slovenian).
"""
_HOMEPAGE = "http://hdl.handle.net/11356/1589"
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
_URLS = {
"solar_tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Solar.TEI.zip"
}
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
def namespace(element):
# https://stackoverflow.com/a/12946675
m = re.match(r'\{.*\}', element.tag)
return m.group(0) if m else ''
def resolve_element(tag_el, ne_tag: Optional[str] = "O"):
if not tag_el.tag.endswith(("w", "pc", "seg")):
return []
if tag_el.tag.endswith(("w", "pc")):
form = tag_el.text.strip()
lemma = tag_el.text.strip() if tag_el.tag.endswith("pc") else tag_el.attrib["lemma"]
ana = tag_el.attrib["ana"] # JOS/MTE specifications
msd = tag_el.attrib["msd"] # UD specifications
ret_ne_tag = ne_tag
id_tag = tag_el.attrib[f"{XML_NAMESPACE}id"]
space_after = False if "join" in tag_el.attrib and tag_el.attrib["join"]=="right" else True
return [(id_tag, form, lemma, ana, msd, ret_ne_tag, space_after)]
# Named entities: words and punctuation nested directly below current element
elif tag_el.tag.endswith("seg"):
anns = []
ret_ne_tag = tag_el.attrib["subtype"].upper()
for idx_child, curr_child in enumerate(tag_el):
anns.extend(resolve_element(curr_child, ne_tag=f"B-{ret_ne_tag}" if idx_child == 0 else f"I-{ret_ne_tag}"))
return anns
def extract_sent_id(tok_id):
# e.g., `extract_sent_id("#solar1s.3.2.44") == "solar1s.3.2"` or `extract_sent_id("solar1s.3.2.44") == "solar1s.3.2"`
_tok_id = tok_id[1:] if tok_id.startswith("#") else tok_id
return ".".join(_tok_id.split(".")[: -1])
def find_involved_sents(correction_group_el):
src_sent_ids = set()
tgt_sent_ids = set()
for _curr_corr in correction_group_el:
sent_ids = list(map(lambda _tok_id: extract_sent_id(_tok_id),
_curr_corr.attrib["target"].split(" ")))
for _s_id in sent_ids:
if "t" in _s_id:
tgt_sent_ids.add(_s_id)
else:
src_sent_ids.add(_s_id)
return sorted(list(src_sent_ids)), sorted(list(tgt_sent_ids))
def read_data(data_path):
data = {} # ID_sent -> sentence_metadata
tree = ET.parse(data_path)
root = tree.getroot()
NAMESPACE = namespace(root)
for curr_text in root.iterfind(f".//{NAMESPACE}div"):
id_text = curr_text.attrib[f"{XML_NAMESPACE}id"]
bibl_el = curr_text.find(f"{NAMESPACE}bibl")
if bibl_el is None:
text_title = "Unknown_title"
logging.warning(f"The following text does not have a 'bibl' element: {curr_text.attrib}. "
f"Setting title to 'Unknown_title'")
is_manually_validated = False
else:
text_title = bibl_el.attrib["n"]
note_el = bibl_el.find(f"{NAMESPACE}note")
is_manually_validated = note_el.text == "DA"
for idx_par, curr_par in enumerate(curr_text.iterfind(f".//{NAMESPACE}p")):
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f".//{NAMESPACE}s")):
id_sent = curr_sent.attrib[f"{XML_NAMESPACE}id"]
ids, forms, lemmas, msds, nes, spaces_after = [], [], [], [], [], []
msds_jos, msds_ud = [], []
for curr_el in curr_sent:
curr_annotations = resolve_element(curr_el)
for curr_ann in curr_annotations:
ids.append(curr_ann[0])
forms.append(curr_ann[1])
lemmas.append(curr_ann[2])
msds_jos.append(curr_ann[3])
msds_ud.append(curr_ann[4])
nes.append(curr_ann[5])
spaces_after.append(curr_ann[6])
data[id_sent] = {
"id_doc": id_text,
"doc_title": text_title,
"id_token": ids, "form": forms, "lemma": lemmas, "ana": msds_jos, "msd": msds_ud, "ne_tag": nes, "space_after": spaces_after,
"is_manually_validated": is_manually_validated
}
return data
class Solar3(datasets.GeneratorBasedBuilder):
"""Šolar is a developmental corpus of school texts (e.g., essays), annotated with metadata and (partially)
with teachers' corrections. """
VERSION = datasets.Version("3.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sentence_level", version=VERSION,
description="Annotations at sentence-level."),
datasets.BuilderConfig(name="document_level", version=VERSION,
description="Annotations at document-level."),
]
DEFAULT_CONFIG_NAME = "sentence_level" # default = annotations as provided in the original data
def _info(self):
features = datasets.Features(
{
"id_doc": datasets.Value("string"),
"doc_title": datasets.Value("string"),
"is_manually_validated": datasets.Value("bool"),
"src_tokens": datasets.Sequence(datasets.Value("string")),
"src_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"tgt_tokens": datasets.Sequence(datasets.Value("string")),
"tgt_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"corrections": [
{
"idx_src": datasets.Sequence(datasets.Value("int32")),
"idx_tgt": datasets.Sequence(datasets.Value("int32")),
"corr_types": datasets.Sequence(datasets.Value("string"))
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS["solar_tei"]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"source_path": os.path.join(data_dir, "Solar.TEI", "solar-orig.xml"),
"target_path": os.path.join(data_dir, "Solar.TEI", "solar-corr.xml"),
"links_path": os.path.join(data_dir, "Solar.TEI", "solar-errs.xml")
}
)
]
@staticmethod
def generate_sentences(source_path, target_path, links_path):
source_data = read_data(source_path)
target_data = read_data(target_path)
data = ET.parse(links_path)
root = data.getroot()
NAMESPACE = namespace(root)
for idx_corr, corrected_sent in enumerate(root.iterfind(f"{NAMESPACE}linkGrp")):
# Involved sentences according to the IDs of token mappings - 'corresp' does not list all of them!
# (possible bug in data)
involved_src_sents, involved_tgt_sents = find_involved_sents(corrected_sent)
id_doc, doc_title, is_manually_validated = None, None, False
src_sent_data, tgt_sent_data = {}, {}
tok2position = {}
assert len(involved_src_sents) > 0 or len(involved_tgt_sents) > 0
if len(involved_src_sents) > 0:
src_sent_data = source_data[involved_src_sents[0]]
for src_sent_id in involved_src_sents[1:]:
curr_sent_data = source_data[src_sent_id]
src_sent_data["id_token"].extend(curr_sent_data["id_token"])
src_sent_data["form"].extend(curr_sent_data["form"])
src_sent_data["lemma"].extend(curr_sent_data["lemma"])
src_sent_data["ana"].extend(curr_sent_data["ana"])
src_sent_data["msd"].extend(curr_sent_data["msd"])
src_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
src_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = src_sent_data["id_doc"]
doc_title = src_sent_data["doc_title"]
is_manually_validated |= src_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(src_sent_data["id_token"]):
tok2position[_tok] = _pos
if len(involved_tgt_sents) > 0:
tgt_sent_data = target_data[involved_tgt_sents[0]]
for tgt_sent_id in involved_tgt_sents[1:]:
curr_sent_data = target_data[tgt_sent_id]
tgt_sent_data["id_token"].extend(curr_sent_data["id_token"])
tgt_sent_data["form"].extend(curr_sent_data["form"])
tgt_sent_data["lemma"].extend(curr_sent_data["lemma"])
tgt_sent_data["ana"].extend(curr_sent_data["ana"])
tgt_sent_data["msd"].extend(curr_sent_data["msd"])
tgt_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
tgt_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = tgt_sent_data["id_doc"]
doc_title = tgt_sent_data["doc_title"]
is_manually_validated |= tgt_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(tgt_sent_data["id_token"]):
tok2position[_tok] = _pos
corr_data = []
for token_info in corrected_sent.findall(f"{NAMESPACE}link"):
connections = token_info.attrib["target"].split(" ")
corrections = token_info.attrib["type"]
if corrections == "ID":
continue
src_inds, tgt_inds = [], []
corr_types = []
for curr_corr in corrections.split("|"):
corr_types.append(curr_corr)
for curr_tok in connections:
# Token IDs have an index at the end, but it is 1-based; convert it to 0-based
idx_tok = tok2position[curr_tok[1:]]
if "t" in curr_tok: # target token
tgt_inds.append(idx_tok)
else: # source token
src_inds.append(idx_tok)
corr_data.append({"idx_src": src_inds, "idx_tgt": tgt_inds, "corr_types": corr_types})
yield idx_corr, {
"id_doc": id_doc[:-1], # doc ID without the "s" or "t" info
"doc_title": doc_title,
"is_manually_validated": is_manually_validated,
"id_src_tokens": src_sent_data.get("id_token", []),
"src_tokens": src_sent_data.get("form", []),
"src_ling_annotations": {
"lemma": src_sent_data.get("lemma", []),
"ana": src_sent_data.get("ana", []),
"msd": src_sent_data.get("msd", []),
"ne_tag": src_sent_data.get("ne_tag", []),
"space_after": src_sent_data.get("space_after", [])
},
"id_tgt_tokens": tgt_sent_data.get("id_token", []),
"tgt_tokens": tgt_sent_data.get("form", []),
"tgt_ling_annotations": {
"lemma": tgt_sent_data.get("lemma", []),
"ana": tgt_sent_data.get("ana", []),
"msd": tgt_sent_data.get("msd", []),
"ne_tag": tgt_sent_data.get("ne_tag", []),
"space_after": tgt_sent_data.get("space_after", [])
},
"corrections": corr_data
}
@staticmethod
def aggregate_docs(sent_level_data):
# NOTE: assuming here that `sent_level_data` is pre-sorted by id_doc, which is done in the raw data
for idx_doc, (curr_id, curr_group) in enumerate(groupby(sent_level_data, key=lambda tup: tup[1]["id_doc"])):
curr_instances = map(lambda tup: tup[1], curr_group) # remove the redundant index info from datasets
src_tokens, tgt_tokens, mapped_corrections = [], [], []
src_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
tgt_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
seen_src_tokens, seen_tgt_tokens = {}, {}
# Need to keep the current base position of source and target tokens AND previous base position:
# A source may map into multiple targets (or vice versa), but we do not want to write it twice in a doc.
# Therefore, when the same sentence is encountered twice, the base is shifted to the previous one to map
# the indices of corrected tokens correctly.
src_base, tgt_base = 0, 0
prev_src_base, prev_tgt_base = 0, 0
doc_title, is_validated = None, None
for curr_inst in curr_instances:
doc_title, is_validated = curr_inst["doc_title"], curr_inst["is_manually_validated"]
id_src_toks, id_tgt_toks = curr_inst["id_src_tokens"], curr_inst["id_tgt_tokens"]
curr_src_toks, curr_tgt_toks = curr_inst["src_tokens"], curr_inst["tgt_tokens"]
curr_src_anns, curr_tgt_anns = curr_inst["src_ling_annotations"], curr_inst["tgt_ling_annotations"]
curr_corrs = curr_inst["corrections"]
num_added_src, num_added_tgt = 0, 0
for idx_position, (id_tok, tok) in enumerate(zip(id_src_toks, curr_src_toks)):
if id_tok not in seen_src_tokens:
src_tokens.append(tok)
src_ling_anns["lemma"].append(curr_src_anns["lemma"][idx_position])
src_ling_anns["ana"].append(curr_src_anns["ana"][idx_position])
src_ling_anns["msd"].append(curr_src_anns["msd"][idx_position])
src_ling_anns["ne_tag"].append(curr_src_anns["ne_tag"][idx_position])
src_ling_anns["space_after"].append(curr_src_anns["space_after"][idx_position])
seen_src_tokens[id_tok] = tok
num_added_src += 1
for idx_position, (id_tok, tok) in enumerate(zip(id_tgt_toks, curr_tgt_toks)):
if id_tok not in seen_tgt_tokens:
tgt_tokens.append(tok)
tgt_ling_anns["lemma"].append(curr_tgt_anns["lemma"][idx_position])
tgt_ling_anns["ana"].append(curr_tgt_anns["ana"][idx_position])
tgt_ling_anns["msd"].append(curr_tgt_anns["msd"][idx_position])
tgt_ling_anns["ne_tag"].append(curr_tgt_anns["ne_tag"][idx_position])
tgt_ling_anns["space_after"].append(curr_tgt_anns["space_after"][idx_position])
seen_tgt_tokens[id_tok] = tok
num_added_tgt += 1
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
for corr in curr_corrs:
mapped_corrections.append({
"idx_src": list(map(lambda _i: src_base + _i, corr["idx_src"])),
"idx_tgt": list(map(lambda _i: tgt_base + _i, corr["idx_tgt"])),
"corr_types": corr["corr_types"]
})
src_base += num_added_src
tgt_base += num_added_tgt
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
yield idx_doc, {
"id_doc": curr_id,
"doc_title": doc_title,
"is_manually_validated": is_validated,
"src_tokens": src_tokens,
"src_ling_annotations": src_ling_anns,
"tgt_tokens": tgt_tokens,
"tgt_ling_annotations": tgt_ling_anns,
"corrections": mapped_corrections
}
def _generate_examples(self, source_path, target_path, links_path):
sent_level_data = list(Solar3.generate_sentences(source_path, target_path, links_path))
if self.config.name == "sentence_level":
# Remove IDs that are only useful for aggregating the document-level data
for i, instance in sent_level_data:
yield i, {_k: _v for _k, _v in instance.items() if _k not in {"id_src_tokens", "id_tgt_tokens"}}
else:
yield from list(Solar3.aggregate_docs(sent_level_data))
|