Datasets:
cjvt
/

parquet-converter commited on
Commit
d4d5d96
1 Parent(s): 81eca6c

Update parquet files

Browse files
Files changed (5) hide show
  1. .gitattributes +0 -51
  2. README.md +0 -94
  3. dataset_infos.json +0 -1
  4. default/sloie-train.parquet +3 -0
  5. sloie.py +0 -102
.gitattributes DELETED
@@ -1,51 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.lz4 filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.npy filter=lfs diff=lfs merge=lfs -text
14
- *.npz filter=lfs diff=lfs merge=lfs -text
15
- *.onnx filter=lfs diff=lfs merge=lfs -text
16
- *.ot filter=lfs diff=lfs merge=lfs -text
17
- *.parquet filter=lfs diff=lfs merge=lfs -text
18
- *.pb filter=lfs diff=lfs merge=lfs -text
19
- *.pickle filter=lfs diff=lfs merge=lfs -text
20
- *.pkl filter=lfs diff=lfs merge=lfs -text
21
- *.pt filter=lfs diff=lfs merge=lfs -text
22
- *.pth filter=lfs diff=lfs merge=lfs -text
23
- *.rar filter=lfs diff=lfs merge=lfs -text
24
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
- *.tar.* filter=lfs diff=lfs merge=lfs -text
26
- *.tflite filter=lfs diff=lfs merge=lfs -text
27
- *.tgz filter=lfs diff=lfs merge=lfs -text
28
- *.wasm filter=lfs diff=lfs merge=lfs -text
29
- *.xz filter=lfs diff=lfs merge=lfs -text
30
- *.zip filter=lfs diff=lfs merge=lfs -text
31
- *.zst filter=lfs diff=lfs merge=lfs -text
32
- *tfevents* filter=lfs diff=lfs merge=lfs -text
33
- # Audio files - uncompressed
34
- *.pcm filter=lfs diff=lfs merge=lfs -text
35
- *.sam filter=lfs diff=lfs merge=lfs -text
36
- *.raw filter=lfs diff=lfs merge=lfs -text
37
- # Audio files - compressed
38
- *.aac filter=lfs diff=lfs merge=lfs -text
39
- *.flac filter=lfs diff=lfs merge=lfs -text
40
- *.mp3 filter=lfs diff=lfs merge=lfs -text
41
- *.ogg filter=lfs diff=lfs merge=lfs -text
42
- *.wav filter=lfs diff=lfs merge=lfs -text
43
- # Image files - uncompressed
44
- *.bmp filter=lfs diff=lfs merge=lfs -text
45
- *.gif filter=lfs diff=lfs merge=lfs -text
46
- *.png filter=lfs diff=lfs merge=lfs -text
47
- *.tiff filter=lfs diff=lfs merge=lfs -text
48
- # Image files - compressed
49
- *.jpg filter=lfs diff=lfs merge=lfs -text
50
- *.jpeg filter=lfs diff=lfs merge=lfs -text
51
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,94 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - found
6
- language:
7
- - sl
8
- license:
9
- - cc-by-nc-sa-4.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- - 100K<n<1M
15
- source_datasets: []
16
- task_categories:
17
- - text-classification
18
- - token-classification
19
- task_ids: []
20
- pretty_name: Dataset of Slovene idiomatic expressions SloIE
21
- tags:
22
- - idiom-detection
23
- - multiword-expression-detection
24
- ---
25
-
26
- # Dataset Card for SloIE
27
-
28
- ### Dataset Summary
29
-
30
- SloIE is a manually labelled dataset of Slovene idiomatic expressions. It contains 29399 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning, with appropriate manual annotations for each token. The idiomatic expressions were selected from the [Slovene Lexical Database]( (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic meaning were selected. The sentences were extracted from the Gigafida corpus.
31
-
32
- For a more detailed description of the dataset, please see the paper Škvorc et al. (2022) - see below.
33
-
34
- ### Supported Tasks and Leaderboards
35
-
36
- Idiom detection.
37
-
38
- ### Languages
39
-
40
- Slovenian.
41
-
42
- ## Dataset Structure
43
-
44
- ### Data Instances
45
-
46
- A sample instance from the dataset:
47
- ```json
48
- {
49
- 'sentence': 'Fantje regljajo v enem kotu, deklice pa svoje obrazke barvajo s pisanimi barvami.',
50
- 'expression': 'barvati kaj s črnimi barvami',
51
- 'word_order': [11, 10, 12, 13, 14],
52
- 'sentence_words': ['Fantje', 'regljajo', 'v', 'enem', 'kotu,', 'deklice', 'pa', 'svoje', 'obrazke', 'barvajo', 's', 'pisanimi', 'barvami.'],
53
- 'is_idiom': ['*', '*', '*', '*', '*', '*', '*', '*', 'NE', 'NE', 'NE', 'NE', 'NE']
54
- }
55
- ```
56
-
57
- In this `sentence`, the words of the expression "barvati kaj s črnimi barvami" are used in a literal sense, as indicated by the "NE" annotations inside `is_idiom`. The "*" annotations indicate the words are not part of the expression.
58
-
59
- ### Data Fields
60
-
61
- - `sentence`: raw sentence in string form - **WARNING**: this is at times slightly different from the words inside `sentence_words` (e.g., "..." here could be "." in `sentence_words`);
62
- - `expression`: the annotated idiomatic expression;
63
- - `word_order`: numbers indicating the positions of tokens that belong to the expression;
64
- - `sentence_words`: words in the sentence;
65
- - `is_idiom`: a string denoting whether each word has an idiomatic (`"DA"`), literal (`"NE"`), or ambiguous (`"NEJASEN ZGLED"`) meaning. `"*"` means that the word is not part of the expression.
66
-
67
- ## Additional Information
68
-
69
- ### Dataset Curators
70
-
71
- Tadej Škvorc, Polona Gantar, Marko Robnik-Šikonja.
72
-
73
- ### Licensing Information
74
-
75
- CC BY-NC-SA 4.0.
76
-
77
- ### Citation Information
78
-
79
- ```
80
- @article{skvorc2022mice,
81
- title = {MICE: Mining Idioms with Contextual Embeddings},
82
- journal = {Knowledge-Based Systems},
83
- volume = {235},
84
- pages = {107606},
85
- year = {2022},
86
- doi = {https://doi.org/10.1016/j.knosys.2021.107606},
87
- url = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},
88
- author = {{\v S}kvorc, Tadej and Gantar, Polona and Robnik-{\v S}ikonja, Marko},
89
- }
90
- ```
91
-
92
- ### Contributions
93
-
94
- Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "SloIE is a manually labelled dataset of Slovene idiomatic expressions. \nIt contains 29,400 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning, \nwith appropriate manual annotations for each token. The idiomatic expressions were selected from the Slovene Lexical \nDatabase (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic \nmeaning were selected. The sentences were extracted from the Gigafida corpus.\n", "citation": "@article{skvorc2022mice,\ntitle = {MICE: Mining Idioms with Contextual Embeddings},\njournal = {Knowledge-Based Systems},\nvolume = {235},\npages = {107606},\nyear = {2022},\nissn = {0950-7051},\ndoi = {https://doi.org/10.1016/j.knosys.2021.107606},\nurl = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},\nauthor = {{\u000b S}kvorc, Tadej and Gantar, Polona and Robnik-{\u000b S}ikonja, Marko},\n}\n", "homepage": "http://hdl.handle.net/11356/1030", "license": "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "expression": {"dtype": "string", "id": null, "_type": "Value"}, "word_order": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence_words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "is_idiom": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sloie", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 15801505, "num_examples": 29399, "dataset_name": "sloie"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1335/SloIE.zip": {"num_bytes": 4425132, "checksum": "26602f475742c4717c7bfaa32e6d66b98220dfb5c7dc010d1b1cc8e7eb9a33b1"}}, "download_size": 4425132, "post_processing_size": null, "dataset_size": 15801505, "size_in_bytes": 20226637}}
 
 
default/sloie-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bfabb25c4649a8e5b68878bd6d259935cc5f8a1f9a74c8e1f51dea803dd78c4
3
+ size 6689061
sloie.py DELETED
@@ -1,102 +0,0 @@
1
- """ SloIE is a manually labelled dataset of Slovene idiomatic expressions. """
2
-
3
-
4
- import os
5
-
6
- import datasets
7
-
8
- _CITATION = """\
9
- @article{skvorc2022mice,
10
- title = {MICE: Mining Idioms with Contextual Embeddings},
11
- journal = {Knowledge-Based Systems},
12
- volume = {235},
13
- pages = {107606},
14
- year = {2022},
15
- issn = {0950-7051},
16
- doi = {https://doi.org/10.1016/j.knosys.2021.107606},
17
- url = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},
18
- author = {{\v S}kvorc, Tadej and Gantar, Polona and Robnik-{\v S}ikonja, Marko},
19
- }
20
- """
21
-
22
- _DESCRIPTION = """\
23
- SloIE is a manually labelled dataset of Slovene idiomatic expressions.
24
- It contains 29,400 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning,
25
- with appropriate manual annotations for each token. The idiomatic expressions were selected from the Slovene Lexical
26
- Database (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic
27
- meaning were selected. The sentences were extracted from the Gigafida corpus.
28
- """
29
-
30
- _HOMEPAGE = "http://hdl.handle.net/11356/1030"
31
-
32
- _LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
33
-
34
- _URLS = {
35
- "sloie": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1335/SloIE.zip"
36
- }
37
-
38
-
39
- class SloIE(datasets.GeneratorBasedBuilder):
40
- """ SloIE is a manually labelled dataset of Slovene idiomatic expressions. """
41
-
42
- VERSION = datasets.Version("1.0.0")
43
-
44
- def _info(self):
45
- features = datasets.Features(
46
- {
47
- "sentence": datasets.Value("string"),
48
- "expression": datasets.Value("string"),
49
- "word_order": datasets.Sequence(datasets.Value("int32")),
50
- "sentence_words": datasets.Sequence(datasets.Value("string")),
51
- "is_idiom": datasets.Sequence(datasets.Value("string"))
52
- }
53
- )
54
- return datasets.DatasetInfo(
55
- description=_DESCRIPTION,
56
- features=features,
57
- homepage=_HOMEPAGE,
58
- license=_LICENSE,
59
- citation=_CITATION,
60
- )
61
-
62
- def _split_generators(self, dl_manager):
63
- urls = _URLS["sloie"]
64
- data_dir = dl_manager.download_and_extract(urls)
65
- return [
66
- datasets.SplitGenerator(
67
- name=datasets.Split.TRAIN,
68
- gen_kwargs={"file_path": os.path.join(data_dir, "SloIE.txt")}
69
- )
70
- ]
71
-
72
- def _generate_examples(self, file_path):
73
- idx_instance = 0
74
- with open(file_path, "r", encoding="utf-8") as f:
75
- line = f.readline().strip()
76
- while line:
77
- assert line.startswith("#")
78
- sent = line[1:] # Remove initial "#"
79
- word_order = list(map(int, f.readline().strip().split(" ")))
80
- expression = ""
81
- sentence_words, idiomaticity = [], []
82
-
83
- line = f.readline().strip()
84
- while line:
85
- token_info = line.split("\t")
86
- word, is_idiomatic_str, expression = token_info
87
- sentence_words.append(word)
88
- idiomaticity.append(is_idiomatic_str)
89
-
90
- line = f.readline().strip()
91
- # Encountered start of the next sentence - Note that "#" may also be an annotated word, hence the second condition
92
- if line.startswith("#") and len(line.split("\t")) == 1:
93
- break
94
-
95
- yield idx_instance, {
96
- "sentence": sent,
97
- "expression": expression,
98
- "word_order": word_order,
99
- "sentence_words": sentence_words,
100
- "is_idiom": idiomaticity
101
- }
102
- idx_instance += 1