Datasets:
parquet-converter
commited on
Commit
•
d4d5d96
1
Parent(s):
81eca6c
Update parquet files
Browse files- .gitattributes +0 -51
- README.md +0 -94
- dataset_infos.json +0 -1
- default/sloie-train.parquet +3 -0
- sloie.py +0 -102
.gitattributes
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
-
# Audio files - uncompressed
|
34 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
37 |
-
# Audio files - compressed
|
38 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
39 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
42 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
43 |
-
# Image files - uncompressed
|
44 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
47 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
48 |
-
# Image files - compressed
|
49 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
language_creators:
|
5 |
-
- found
|
6 |
-
language:
|
7 |
-
- sl
|
8 |
-
license:
|
9 |
-
- cc-by-nc-sa-4.0
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
size_categories:
|
13 |
-
- 10K<n<100K
|
14 |
-
- 100K<n<1M
|
15 |
-
source_datasets: []
|
16 |
-
task_categories:
|
17 |
-
- text-classification
|
18 |
-
- token-classification
|
19 |
-
task_ids: []
|
20 |
-
pretty_name: Dataset of Slovene idiomatic expressions SloIE
|
21 |
-
tags:
|
22 |
-
- idiom-detection
|
23 |
-
- multiword-expression-detection
|
24 |
-
---
|
25 |
-
|
26 |
-
# Dataset Card for SloIE
|
27 |
-
|
28 |
-
### Dataset Summary
|
29 |
-
|
30 |
-
SloIE is a manually labelled dataset of Slovene idiomatic expressions. It contains 29399 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning, with appropriate manual annotations for each token. The idiomatic expressions were selected from the [Slovene Lexical Database]( (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic meaning were selected. The sentences were extracted from the Gigafida corpus.
|
31 |
-
|
32 |
-
For a more detailed description of the dataset, please see the paper Škvorc et al. (2022) - see below.
|
33 |
-
|
34 |
-
### Supported Tasks and Leaderboards
|
35 |
-
|
36 |
-
Idiom detection.
|
37 |
-
|
38 |
-
### Languages
|
39 |
-
|
40 |
-
Slovenian.
|
41 |
-
|
42 |
-
## Dataset Structure
|
43 |
-
|
44 |
-
### Data Instances
|
45 |
-
|
46 |
-
A sample instance from the dataset:
|
47 |
-
```json
|
48 |
-
{
|
49 |
-
'sentence': 'Fantje regljajo v enem kotu, deklice pa svoje obrazke barvajo s pisanimi barvami.',
|
50 |
-
'expression': 'barvati kaj s črnimi barvami',
|
51 |
-
'word_order': [11, 10, 12, 13, 14],
|
52 |
-
'sentence_words': ['Fantje', 'regljajo', 'v', 'enem', 'kotu,', 'deklice', 'pa', 'svoje', 'obrazke', 'barvajo', 's', 'pisanimi', 'barvami.'],
|
53 |
-
'is_idiom': ['*', '*', '*', '*', '*', '*', '*', '*', 'NE', 'NE', 'NE', 'NE', 'NE']
|
54 |
-
}
|
55 |
-
```
|
56 |
-
|
57 |
-
In this `sentence`, the words of the expression "barvati kaj s črnimi barvami" are used in a literal sense, as indicated by the "NE" annotations inside `is_idiom`. The "*" annotations indicate the words are not part of the expression.
|
58 |
-
|
59 |
-
### Data Fields
|
60 |
-
|
61 |
-
- `sentence`: raw sentence in string form - **WARNING**: this is at times slightly different from the words inside `sentence_words` (e.g., "..." here could be "." in `sentence_words`);
|
62 |
-
- `expression`: the annotated idiomatic expression;
|
63 |
-
- `word_order`: numbers indicating the positions of tokens that belong to the expression;
|
64 |
-
- `sentence_words`: words in the sentence;
|
65 |
-
- `is_idiom`: a string denoting whether each word has an idiomatic (`"DA"`), literal (`"NE"`), or ambiguous (`"NEJASEN ZGLED"`) meaning. `"*"` means that the word is not part of the expression.
|
66 |
-
|
67 |
-
## Additional Information
|
68 |
-
|
69 |
-
### Dataset Curators
|
70 |
-
|
71 |
-
Tadej Škvorc, Polona Gantar, Marko Robnik-Šikonja.
|
72 |
-
|
73 |
-
### Licensing Information
|
74 |
-
|
75 |
-
CC BY-NC-SA 4.0.
|
76 |
-
|
77 |
-
### Citation Information
|
78 |
-
|
79 |
-
```
|
80 |
-
@article{skvorc2022mice,
|
81 |
-
title = {MICE: Mining Idioms with Contextual Embeddings},
|
82 |
-
journal = {Knowledge-Based Systems},
|
83 |
-
volume = {235},
|
84 |
-
pages = {107606},
|
85 |
-
year = {2022},
|
86 |
-
doi = {https://doi.org/10.1016/j.knosys.2021.107606},
|
87 |
-
url = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},
|
88 |
-
author = {{\v S}kvorc, Tadej and Gantar, Polona and Robnik-{\v S}ikonja, Marko},
|
89 |
-
}
|
90 |
-
```
|
91 |
-
|
92 |
-
### Contributions
|
93 |
-
|
94 |
-
Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "SloIE is a manually labelled dataset of Slovene idiomatic expressions. \nIt contains 29,400 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning, \nwith appropriate manual annotations for each token. The idiomatic expressions were selected from the Slovene Lexical \nDatabase (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic \nmeaning were selected. The sentences were extracted from the Gigafida corpus.\n", "citation": "@article{skvorc2022mice,\ntitle = {MICE: Mining Idioms with Contextual Embeddings},\njournal = {Knowledge-Based Systems},\nvolume = {235},\npages = {107606},\nyear = {2022},\nissn = {0950-7051},\ndoi = {https://doi.org/10.1016/j.knosys.2021.107606},\nurl = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},\nauthor = {{\u000b S}kvorc, Tadej and Gantar, Polona and Robnik-{\u000b S}ikonja, Marko},\n}\n", "homepage": "http://hdl.handle.net/11356/1030", "license": "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "expression": {"dtype": "string", "id": null, "_type": "Value"}, "word_order": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence_words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "is_idiom": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sloie", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 15801505, "num_examples": 29399, "dataset_name": "sloie"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1335/SloIE.zip": {"num_bytes": 4425132, "checksum": "26602f475742c4717c7bfaa32e6d66b98220dfb5c7dc010d1b1cc8e7eb9a33b1"}}, "download_size": 4425132, "post_processing_size": null, "dataset_size": 15801505, "size_in_bytes": 20226637}}
|
|
|
|
default/sloie-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bfabb25c4649a8e5b68878bd6d259935cc5f8a1f9a74c8e1f51dea803dd78c4
|
3 |
+
size 6689061
|
sloie.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
""" SloIE is a manually labelled dataset of Slovene idiomatic expressions. """
|
2 |
-
|
3 |
-
|
4 |
-
import os
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
_CITATION = """\
|
9 |
-
@article{skvorc2022mice,
|
10 |
-
title = {MICE: Mining Idioms with Contextual Embeddings},
|
11 |
-
journal = {Knowledge-Based Systems},
|
12 |
-
volume = {235},
|
13 |
-
pages = {107606},
|
14 |
-
year = {2022},
|
15 |
-
issn = {0950-7051},
|
16 |
-
doi = {https://doi.org/10.1016/j.knosys.2021.107606},
|
17 |
-
url = {https://www.sciencedirect.com/science/article/pii/S0950705121008686},
|
18 |
-
author = {{\v S}kvorc, Tadej and Gantar, Polona and Robnik-{\v S}ikonja, Marko},
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
_DESCRIPTION = """\
|
23 |
-
SloIE is a manually labelled dataset of Slovene idiomatic expressions.
|
24 |
-
It contains 29,400 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning,
|
25 |
-
with appropriate manual annotations for each token. The idiomatic expressions were selected from the Slovene Lexical
|
26 |
-
Database (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic
|
27 |
-
meaning were selected. The sentences were extracted from the Gigafida corpus.
|
28 |
-
"""
|
29 |
-
|
30 |
-
_HOMEPAGE = "http://hdl.handle.net/11356/1030"
|
31 |
-
|
32 |
-
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
|
33 |
-
|
34 |
-
_URLS = {
|
35 |
-
"sloie": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1335/SloIE.zip"
|
36 |
-
}
|
37 |
-
|
38 |
-
|
39 |
-
class SloIE(datasets.GeneratorBasedBuilder):
|
40 |
-
""" SloIE is a manually labelled dataset of Slovene idiomatic expressions. """
|
41 |
-
|
42 |
-
VERSION = datasets.Version("1.0.0")
|
43 |
-
|
44 |
-
def _info(self):
|
45 |
-
features = datasets.Features(
|
46 |
-
{
|
47 |
-
"sentence": datasets.Value("string"),
|
48 |
-
"expression": datasets.Value("string"),
|
49 |
-
"word_order": datasets.Sequence(datasets.Value("int32")),
|
50 |
-
"sentence_words": datasets.Sequence(datasets.Value("string")),
|
51 |
-
"is_idiom": datasets.Sequence(datasets.Value("string"))
|
52 |
-
}
|
53 |
-
)
|
54 |
-
return datasets.DatasetInfo(
|
55 |
-
description=_DESCRIPTION,
|
56 |
-
features=features,
|
57 |
-
homepage=_HOMEPAGE,
|
58 |
-
license=_LICENSE,
|
59 |
-
citation=_CITATION,
|
60 |
-
)
|
61 |
-
|
62 |
-
def _split_generators(self, dl_manager):
|
63 |
-
urls = _URLS["sloie"]
|
64 |
-
data_dir = dl_manager.download_and_extract(urls)
|
65 |
-
return [
|
66 |
-
datasets.SplitGenerator(
|
67 |
-
name=datasets.Split.TRAIN,
|
68 |
-
gen_kwargs={"file_path": os.path.join(data_dir, "SloIE.txt")}
|
69 |
-
)
|
70 |
-
]
|
71 |
-
|
72 |
-
def _generate_examples(self, file_path):
|
73 |
-
idx_instance = 0
|
74 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
75 |
-
line = f.readline().strip()
|
76 |
-
while line:
|
77 |
-
assert line.startswith("#")
|
78 |
-
sent = line[1:] # Remove initial "#"
|
79 |
-
word_order = list(map(int, f.readline().strip().split(" ")))
|
80 |
-
expression = ""
|
81 |
-
sentence_words, idiomaticity = [], []
|
82 |
-
|
83 |
-
line = f.readline().strip()
|
84 |
-
while line:
|
85 |
-
token_info = line.split("\t")
|
86 |
-
word, is_idiomatic_str, expression = token_info
|
87 |
-
sentence_words.append(word)
|
88 |
-
idiomaticity.append(is_idiomatic_str)
|
89 |
-
|
90 |
-
line = f.readline().strip()
|
91 |
-
# Encountered start of the next sentence - Note that "#" may also be an annotated word, hence the second condition
|
92 |
-
if line.startswith("#") and len(line.split("\t")) == 1:
|
93 |
-
break
|
94 |
-
|
95 |
-
yield idx_instance, {
|
96 |
-
"sentence": sent,
|
97 |
-
"expression": expression,
|
98 |
-
"word_order": word_order,
|
99 |
-
"sentence_words": sentence_words,
|
100 |
-
"is_idiom": idiomaticity
|
101 |
-
}
|
102 |
-
idx_instance += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|