a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A000201 | [
"1",
"3",
"4",
"6",
"8",
"9",
"11",
"12",
"14",
"16",
"17",
"19",
"21",
"22",
"24",
"25",
"27",
"29",
"30",
"32",
"33",
"35",
"37",
"38",
"40",
"42",
"43",
"45",
"46",
"48",
"50",
"51",
"53",
"55",
"56",
"58",
"59",
"61",
"63",
"64",
"66",
"67",
"69",
"71",
"72",
"74",
"76",
"77",
"79",
"80",
"82",
"84",
"85",
"87",
"88",
"90",
"92",
"93",
"95",
"97",
"98",
"100",
"101",
"103",
"105",
"106",
"108",
"110"
] | Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622. |
A000202 | [
"1",
"3",
"4",
"6",
"8",
"9",
"11",
"12",
"14",
"16",
"17",
"19",
"21",
"22",
"24",
"25",
"27",
"29",
"30",
"32",
"34",
"35",
"37",
"38",
"40",
"42",
"43",
"45",
"47",
"48",
"50",
"51",
"53",
"55",
"56",
"58",
"60",
"61",
"63",
"64",
"66",
"68",
"69",
"71",
"73",
"74",
"76",
"77",
"79",
"81",
"82",
"84",
"86",
"87",
"89",
"90",
"92",
"94",
"95",
"97",
"99",
"100",
"102",
"103",
"105",
"107",
"108",
"110"
] | a(8i+j) = 13i + a(j), where 1<=j<=8. |
A000203 | [
"1",
"3",
"4",
"7",
"6",
"12",
"8",
"15",
"13",
"18",
"12",
"28",
"14",
"24",
"24",
"31",
"18",
"39",
"20",
"42",
"32",
"36",
"24",
"60",
"31",
"42",
"40",
"56",
"30",
"72",
"32",
"63",
"48",
"54",
"48",
"91",
"38",
"60",
"56",
"90",
"42",
"96",
"44",
"84",
"78",
"72",
"48",
"124",
"57",
"93",
"72",
"98",
"54",
"120",
"72",
"120",
"80",
"90",
"60",
"168",
"62",
"96",
"104",
"127",
"84",
"144",
"68",
"126",
"96",
"144"
] | a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n). |
A000204 | [
"1",
"3",
"4",
"7",
"11",
"18",
"29",
"47",
"76",
"123",
"199",
"322",
"521",
"843",
"1364",
"2207",
"3571",
"5778",
"9349",
"15127",
"24476",
"39603",
"64079",
"103682",
"167761",
"271443",
"439204",
"710647",
"1149851",
"1860498",
"3010349",
"4870847",
"7881196",
"12752043",
"20633239",
"33385282",
"54018521",
"87403803",
"141422324"
] | Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3. |
A000205 | [
"1",
"1",
"3",
"4",
"8",
"14",
"25",
"45",
"82",
"151",
"282",
"531",
"1003",
"1907",
"3645",
"6993",
"13456",
"25978",
"50248",
"97446",
"189291",
"368338",
"717804",
"1400699",
"2736534",
"5352182",
"10478044",
"20531668",
"40264582",
"79022464",
"155196838",
"304997408",
"599752463",
"1180027022",
"2322950591",
"4575114295"
] | Number of positive integers <= 2^n of form x^2 + 3 y^2. |
A000206 | [
"1",
"1",
"3",
"4",
"12",
"22",
"71",
"181",
"618",
"1957",
"6966",
"24367",
"89010",
"324766",
"1204815",
"4482400",
"16802826",
"63195016",
"238711285",
"904338163",
"3436380192",
"13089961012",
"49979421837",
"191221556269",
"733014218506",
"2814758323498",
"10825986453978",
"41700030726757",
"160842946895004"
] | Even sequences with period 2n. |
A000207 | [
"1",
"1",
"1",
"3",
"4",
"12",
"27",
"82",
"228",
"733",
"2282",
"7528",
"24834",
"83898",
"285357",
"983244",
"3412420",
"11944614",
"42080170",
"149197152",
"531883768",
"1905930975",
"6861221666",
"24806004996",
"90036148954",
"327989004892",
"1198854697588",
"4395801203290",
"16165198379984",
"59609171366326",
"220373278174641"
] | Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of planar 2-trees. |
A000208 | [
"1",
"1",
"3",
"4",
"12",
"28",
"94",
"298",
"1044",
"3658",
"13164",
"47710",
"174948",
"645436",
"2397342",
"8948416",
"33556500",
"126324496",
"477225962",
"1808414182",
"6871973952",
"26178873448",
"99955697946",
"382438918234",
"1466015854100",
"5629499869780"
] | Number of even sequences with period 2n. |
A000209 | [
"0",
"2",
"-2",
"0",
"1",
"-3",
"0",
"1",
"-7",
"0",
"1",
"-226",
"-1",
"0",
"7",
"-1",
"0",
"3",
"-1",
"0",
"2",
"-2",
"0",
"2",
"-2",
"0",
"1",
"-3",
"0",
"1",
"-6",
"0",
"1",
"-75",
"-1",
"0",
"8",
"-1",
"0",
"4",
"-1",
"0",
"2",
"-1",
"0",
"2",
"-2",
"0",
"1",
"-3",
"0",
"1",
"-6",
"0",
"1",
"-45",
"-1",
"0",
"8",
"-1",
"0",
"4",
"-1",
"0",
"2",
"-1",
"0",
"2",
"-2",
"0",
"1",
"-3",
"0",
"1",
"-6",
"0",
"1",
"-32",
"-1",
"0",
"9",
"-1"
] | Nearest integer to tan n. |
A000210 | [
"1",
"3",
"5",
"6",
"8",
"10",
"12",
"13",
"15",
"17",
"18",
"20",
"22",
"24",
"25",
"27",
"29",
"30",
"32",
"34",
"36",
"37",
"39",
"41",
"42",
"44",
"46",
"48",
"49",
"51",
"53",
"54",
"56",
"58",
"60",
"61",
"63",
"65",
"67",
"68",
"70",
"72",
"73",
"75",
"77",
"79",
"80",
"82",
"84",
"85",
"87",
"89",
"91",
"92",
"94",
"96",
"97",
"99",
"101",
"103",
"104",
"106",
"108",
"109",
"111",
"113",
"115",
"116"
] | A Beatty sequence: floor(n*(e-1)). |
A000211 | [
"4",
"3",
"5",
"6",
"9",
"13",
"20",
"31",
"49",
"78",
"125",
"201",
"324",
"523",
"845",
"1366",
"2209",
"3573",
"5780",
"9351",
"15129",
"24478",
"39605",
"64081",
"103684",
"167763",
"271445",
"439206",
"710649",
"1149853",
"1860500",
"3010351",
"4870849",
"7881198"
] | a(n) = a(n-1) + a(n-2) - 2, a(0) = 4, a(1) = 3. |
A000212 | [
"0",
"0",
"1",
"3",
"5",
"8",
"12",
"16",
"21",
"27",
"33",
"40",
"48",
"56",
"65",
"75",
"85",
"96",
"108",
"120",
"133",
"147",
"161",
"176",
"192",
"208",
"225",
"243",
"261",
"280",
"300",
"320",
"341",
"363",
"385",
"408",
"432",
"456",
"481",
"507",
"533",
"560",
"588",
"616",
"645",
"675",
"705",
"736",
"768",
"800",
"833",
"867",
"901",
"936"
] | a(n) = floor(n^2/3). |
A000213 | [
"1",
"1",
"1",
"3",
"5",
"9",
"17",
"31",
"57",
"105",
"193",
"355",
"653",
"1201",
"2209",
"4063",
"7473",
"13745",
"25281",
"46499",
"85525",
"157305",
"289329",
"532159",
"978793",
"1800281",
"3311233",
"6090307",
"11201821",
"20603361",
"37895489",
"69700671",
"128199521",
"235795681",
"433695873",
"797691075",
"1467182629"
] | Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1. |
A000214 | [
"3",
"5",
"10",
"32",
"382",
"15768919",
"16224999167506438730294",
"84575066435667906978109556031081616704183639810103015118"
] | Number of equivalence classes of Boolean functions of n variables under action of AG(n,2). |
A000215 | [
"3",
"5",
"17",
"257",
"65537",
"4294967297",
"18446744073709551617",
"340282366920938463463374607431768211457",
"115792089237316195423570985008687907853269984665640564039457584007913129639937"
] | Fermat numbers: a(n) = 2^(2^n) + 1. |
A000216 | [
"2",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37"
] | Take sum of squares of digits of previous term, starting with 2. |
A000217 | [
"0",
"1",
"3",
"6",
"10",
"15",
"21",
"28",
"36",
"45",
"55",
"66",
"78",
"91",
"105",
"120",
"136",
"153",
"171",
"190",
"210",
"231",
"253",
"276",
"300",
"325",
"351",
"378",
"406",
"435",
"465",
"496",
"528",
"561",
"595",
"630",
"666",
"703",
"741",
"780",
"820",
"861",
"903",
"946",
"990",
"1035",
"1081",
"1128",
"1176",
"1225",
"1275",
"1326",
"1378",
"1431"
] | Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n. |
A000218 | [
"3",
"9",
"81",
"65",
"61",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37"
] | Take sum of squares of digits of previous term; start with 3. |
A000219 | [
"1",
"1",
"3",
"6",
"13",
"24",
"48",
"86",
"160",
"282",
"500",
"859",
"1479",
"2485",
"4167",
"6879",
"11297",
"18334",
"29601",
"47330",
"75278",
"118794",
"186475",
"290783",
"451194",
"696033",
"1068745",
"1632658",
"2483234",
"3759612",
"5668963",
"8512309",
"12733429",
"18974973",
"28175955",
"41691046",
"61484961",
"90379784",
"132441995",
"193487501",
"281846923"
] | Number of planar partitions (or plane partitions) of n. |
A000220 | [
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"3",
"6",
"15",
"29",
"67",
"139",
"310",
"667",
"1480",
"3244",
"7241",
"16104",
"36192",
"81435",
"184452",
"418870",
"955860",
"2187664",
"5025990",
"11580130",
"26765230",
"62027433",
"144133676",
"335731381",
"783859852",
"1834104934",
"4300433063",
"10102854473",
"23778351222"
] | Number of asymmetric trees with n nodes (also called identity trees). |
A000221 | [
"5",
"25",
"29",
"85",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145"
] | Take sum of squares of digits of previous term; start with 5. |
A000222 | [
"0",
"0",
"1",
"3",
"6",
"38",
"213",
"1479",
"11692",
"104364",
"1036809",
"11344859",
"135548466",
"1755739218",
"24504637741",
"366596136399",
"5852040379224",
"99283915922264",
"1783921946910417",
"33840669046326579",
"675849838112277598",
"14174636583759324798"
] | Coefficients of ménage hit polynomials. |
A000223 | [
"3",
"7",
"10",
"19",
"32",
"34",
"37",
"51",
"81",
"119",
"122",
"134",
"157",
"160",
"161",
"174",
"221",
"252",
"254",
"294",
"305",
"309",
"364",
"371",
"405",
"580",
"682",
"734",
"756",
"763",
"776",
"959",
"1028",
"1105",
"1120",
"1170",
"1205",
"1550",
"1570",
"1576",
"1851",
"1930",
"2028",
"2404",
"2411",
"2565",
"2675",
"2895",
"2905",
"2940",
"3133",
"3211",
"3240",
"3428"
] | Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)). |
A000224 | [
"1",
"2",
"2",
"2",
"3",
"4",
"4",
"3",
"4",
"6",
"6",
"4",
"7",
"8",
"6",
"4",
"9",
"8",
"10",
"6",
"8",
"12",
"12",
"6",
"11",
"14",
"11",
"8",
"15",
"12",
"16",
"7",
"12",
"18",
"12",
"8",
"19",
"20",
"14",
"9",
"21",
"16",
"22",
"12",
"12",
"24",
"24",
"8",
"22",
"22",
"18",
"14",
"27",
"22",
"18",
"12",
"20",
"30",
"30",
"12",
"31",
"32",
"16",
"12",
"21",
"24",
"34",
"18",
"24",
"24",
"36",
"12"
] | Number of squares mod n. |
A000225 | [
"0",
"1",
"3",
"7",
"15",
"31",
"63",
"127",
"255",
"511",
"1023",
"2047",
"4095",
"8191",
"16383",
"32767",
"65535",
"131071",
"262143",
"524287",
"1048575",
"2097151",
"4194303",
"8388607",
"16777215",
"33554431",
"67108863",
"134217727",
"268435455",
"536870911",
"1073741823",
"2147483647",
"4294967295",
"8589934591"
] | a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.) |
A000226 | [
"1",
"1",
"3",
"7",
"18",
"44",
"117",
"299",
"793",
"2095",
"5607",
"15047",
"40708",
"110499",
"301541",
"825784",
"2270211",
"6260800",
"17319689",
"48042494",
"133606943",
"372430476",
"1040426154",
"2912415527",
"8167992598",
"22947778342",
"64577555147",
"182009003773",
"513729375064",
"1452007713130"
] | Number of n-node unlabeled connected graphs with one cycle of length 3. |
A000227 | [
"1",
"3",
"7",
"20",
"55",
"148",
"403",
"1097",
"2981",
"8103",
"22026",
"59874",
"162755",
"442413",
"1202604",
"3269017",
"8886111",
"24154953",
"65659969",
"178482301",
"485165195",
"1318815734",
"3584912846",
"9744803446",
"26489122130",
"72004899337",
"195729609429",
"532048240602",
"1446257064291",
"3931334297144",
"10686474581524"
] | Nearest integer to e^n. |
A000228 | [
"1",
"1",
"3",
"7",
"22",
"82",
"333",
"1448",
"6572",
"30490",
"143552",
"683101",
"3274826",
"15796897",
"76581875",
"372868101",
"1822236628",
"8934910362",
"43939164263",
"216651036012",
"1070793308942"
] | Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells. |
A000229 | [
"3",
"7",
"23",
"71",
"311",
"479",
"1559",
"5711",
"10559",
"18191",
"31391",
"422231",
"701399",
"366791",
"3818929",
"9257329",
"22000801",
"36415991",
"48473881",
"175244281",
"120293879",
"427733329",
"131486759",
"3389934071",
"2929911599",
"7979490791",
"36504256799",
"23616331489",
"89206899239",
"121560956039"
] | a(n) is the least number m such that the n-th prime is the least quadratic nonresidue modulo m. |
A000230 | [
"2",
"3",
"7",
"23",
"89",
"139",
"199",
"113",
"1831",
"523",
"887",
"1129",
"1669",
"2477",
"2971",
"4297",
"5591",
"1327",
"9551",
"30593",
"19333",
"16141",
"15683",
"81463",
"28229",
"31907",
"19609",
"35617",
"82073",
"44293",
"43331",
"34061",
"89689",
"162143",
"134513",
"173359",
"31397",
"404597",
"212701",
"188029",
"542603",
"265621",
"461717",
"155921",
"544279",
"404851",
"927869",
"1100977",
"360653",
"604073"
] | a(0)=2; for n>=1, a(n) = smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists. |
A000231 | [
"2",
"3",
"7",
"46",
"4336",
"134281216",
"288230380379570176",
"2658455991569831764110243006194384896",
"452312848583266388373324160190187140390789016525312000869601987902398529536"
] | Number of inequivalent Boolean functions of n variables under action of complementing group. |
A000232 | [
"3",
"8",
"14",
"14",
"25",
"24",
"23",
"22",
"25",
"59",
"98",
"97",
"98",
"97",
"174",
"176",
"176",
"176",
"176",
"291",
"290",
"289",
"740",
"874",
"873",
"872",
"873",
"872",
"871",
"870",
"869",
"868",
"867",
"866",
"2180",
"2179",
"2178",
"2177",
"2771",
"2770",
"2769",
"2768",
"2767",
"2766",
"2765",
"2764",
"2763",
"2763",
"2763",
"2763",
"3366",
"4208",
"4207"
] | Construct a triangle as in A036262. Sequence is one less than the position of the first number larger than 2 in the n-th row (n-th difference). |
A000233 | [
"1",
"3",
"8",
"16",
"30",
"46",
"64",
"96",
"126",
"158",
"216",
"256",
"302",
"396",
"448",
"512",
"636",
"702",
"792",
"960",
"1052",
"1118",
"1344",
"1472",
"1550",
"1866",
"1944",
"2048",
"2442",
"2540",
"2688",
"3072",
"3212",
"3388",
"3888",
"4032",
"4094",
"4746",
"4928",
"5056",
"5832",
"5852",
"5976",
"6912",
"7020",
"7180",
"8064",
"8192"
] | Generalized class numbers. |
A000234 | [
"1",
"3",
"8",
"18",
"37",
"72",
"136",
"251",
"445",
"770",
"1312",
"2202",
"3632",
"5908",
"9501",
"15111",
"23781",
"37083",
"57293",
"87813",
"133530",
"201574",
"302265",
"450317",
"666743",
"981488",
"1437003",
"2092976",
"3033253",
"4375104",
"6282026",
"8981046",
"12786327",
"18131492",
"25612628"
] | Partitions into non-integral powers (see Comments for precise definition). |
A000235 | [
"0",
"0",
"0",
"1",
"3",
"8",
"18",
"38",
"76",
"147",
"277",
"509",
"924",
"1648",
"2912",
"5088",
"8823",
"15170",
"25935",
"44042",
"74427",
"125112",
"209411",
"348960",
"579326",
"958077",
"1579098",
"2593903",
"4247768",
"6935070",
"11290627",
"18330973",
"29684082",
"47946852",
"77258764",
"124198083"
] | Number of n-node rooted trees of height 3. |
A000236 | [
"3",
"8",
"20",
"44",
"80",
"343",
"288",
"608",
"1023",
"2848",
"4095",
"40959",
"16383",
"32768",
"11375",
"655360",
"262143",
"3670016",
"1048575",
"2097151"
] | Maximum m such that there are no two adjacent elements belonging to the same n-th power residue class modulo some prime p in the sequence 1,2,...,m (equivalently, there is no n-th power residue modulo p in the sequence 1/2,2/3,...,(m-1)/m). |
A000237 | [
"0",
"1",
"1",
"3",
"8",
"26",
"84",
"297",
"1066",
"3976",
"15093",
"58426",
"229189",
"910127",
"3649165",
"14756491",
"60103220",
"246357081",
"1015406251",
"4205873378",
"17497745509",
"73084575666",
"306352303774",
"1288328048865",
"5433980577776",
"22982025183983"
] | Number of mixed Husimi trees with n nodes; or rooted polygonal cacti with bridges. |
A000238 | [
"1",
"1",
"3",
"8",
"27",
"91",
"350",
"1376",
"5743",
"24635",
"108968",
"492180",
"2266502",
"10598452",
"50235931",
"240872654",
"1166732814",
"5702001435",
"28088787314",
"139354922608",
"695808554300",
"3494390057212",
"17641695461662",
"89495023510876",
"456009893224285",
"2332997330210440"
] | Number of oriented trees with n nodes. |
A000239 | [
"1",
"1",
"3",
"8",
"28",
"143",
"933",
"7150",
"62310",
"607445",
"6545935",
"77232740",
"989893248",
"13692587323",
"203271723033",
"3223180454138",
"54362625941818",
"971708196867905",
"18347779304380995",
"364911199401630640",
"7624625589633857940",
"166977535317365068775",
"3824547112283439914893",
"91440772473772839055238"
] | One-half of number of permutations of [n] with exactly one run of adjacent symbols differing by 1. |
A000240 | [
"1",
"0",
"3",
"8",
"45",
"264",
"1855",
"14832",
"133497",
"1334960",
"14684571",
"176214840",
"2290792933",
"32071101048",
"481066515735",
"7697064251744",
"130850092279665",
"2355301661033952",
"44750731559645107",
"895014631192902120",
"18795307255050944541",
"413496759611120779880"
] | Rencontres numbers: number of permutations of [n] with exactly one fixed point. |
A000241 | [
"0",
"0",
"0",
"0",
"0",
"1",
"3",
"9",
"18",
"36",
"60",
"100",
"150"
] | Crossing number of complete graph with n nodes. |
A000242 | [
"1",
"3",
"9",
"25",
"69",
"186",
"503",
"1353",
"3651",
"9865",
"26748",
"72729",
"198447",
"543159",
"1491402",
"4107152",
"11342826",
"31408719",
"87189987",
"242603970",
"676524372",
"1890436117",
"5292722721",
"14845095153",
"41708679697",
"117372283086",
"330795842217"
] | 3rd power of rooted tree enumerator; number of linear forests of 3 rooted trees. |
A000243 | [
"1",
"3",
"9",
"26",
"75",
"214",
"612",
"1747",
"4995",
"14294",
"40967",
"117560",
"337830",
"972027",
"2800210",
"8075889",
"23315775",
"67380458",
"194901273",
"564239262",
"1634763697",
"4739866803",
"13752309730",
"39926751310",
"115988095896",
"337138003197"
] | Number of trees with n nodes, 2 of which are labeled. |
A000244 | [
"1",
"3",
"9",
"27",
"81",
"243",
"729",
"2187",
"6561",
"19683",
"59049",
"177147",
"531441",
"1594323",
"4782969",
"14348907",
"43046721",
"129140163",
"387420489",
"1162261467",
"3486784401",
"10460353203",
"31381059609",
"94143178827",
"282429536481",
"847288609443",
"2541865828329",
"7625597484987"
] | Powers of 3: a(n) = 3^n. |
A000245 | [
"0",
"1",
"3",
"9",
"28",
"90",
"297",
"1001",
"3432",
"11934",
"41990",
"149226",
"534888",
"1931540",
"7020405",
"25662825",
"94287120",
"347993910",
"1289624490",
"4796857230",
"17902146600",
"67016296620",
"251577050010",
"946844533674",
"3572042254128",
"13505406670700",
"51166197843852",
"194214400834356"
] | a(n) = 3*(2*n)!/((n+2)!*(n-1)!). |
A000246 | [
"1",
"1",
"1",
"3",
"9",
"45",
"225",
"1575",
"11025",
"99225",
"893025",
"9823275",
"108056025",
"1404728325",
"18261468225",
"273922023375",
"4108830350625",
"69850115960625",
"1187451971330625",
"22561587455281875",
"428670161650355625",
"9002073394657468125",
"189043541287806830625"
] | Number of permutations in the symmetric group S_n that have odd order. |
A000247 | [
"0",
"3",
"10",
"25",
"56",
"119",
"246",
"501",
"1012",
"2035",
"4082",
"8177",
"16368",
"32751",
"65518",
"131053",
"262124",
"524267",
"1048554",
"2097129",
"4194280",
"8388583",
"16777190",
"33554405",
"67108836",
"134217699",
"268435426",
"536870881",
"1073741792",
"2147483615"
] | a(n) = 2^n - n - 2. |
A000248 | [
"1",
"1",
"3",
"10",
"41",
"196",
"1057",
"6322",
"41393",
"293608",
"2237921",
"18210094",
"157329097",
"1436630092",
"13810863809",
"139305550066",
"1469959371233",
"16184586405328",
"185504221191745",
"2208841954063318",
"27272621155678841",
"348586218389733556",
"4605223387997411873"
] | Expansion of e.g.f. exp(x*exp(x)). |
A000249 | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"3",
"10",
"42",
"193",
"966",
"5215",
"30170",
"186234",
"1222065",
"8496274",
"62395234",
"482700052",
"3923995651",
"33444263516",
"298233514595",
"2777192597789",
"26959282453367",
"272370017131462",
"2859607460620573",
"31156130591833647",
"351808270089157421"
] | Nearest integer to modified Bessel function K_n(5). |
A000250 | [
"1",
"3",
"10",
"45",
"272",
"2548",
"39632",
"1104306",
"56871880",
"5463113568",
"978181717680",
"326167542296048",
"202701136710498400",
"235284321080559981952",
"511531711735594715527360",
"2089424601541011618029114896",
"16084004145036771186002041099712",
"234026948449058790311618594954430848",
"6454432593140577452393525511509194184320"
] | Number of symmetric reflexive relations on n nodes: (1/2)*A000666. |
A000251 | [
"1",
"3",
"11",
"29",
"74",
"167",
"367",
"755",
"1515",
"2931",
"5551",
"10263",
"18677",
"33409",
"59024",
"102984",
"177915",
"304458",
"516939",
"871180",
"1458882",
"2428548",
"4021670",
"6627515",
"10874462",
"17770474",
"28932739",
"46943967",
"75925797",
"122433291",
"196879385",
"315759282",
"505168033",
"806290796",
"1284034606",
"2040485004",
"3235965074",
"5121801962",
"8091411114",
"12759606939",
"20085832527",
"31565046053",
"49523414558",
"77575278933",
"121329065354",
"189475663960",
"295465391518",
"460087656595",
"715436020515",
"1110994054004"
] | Number of trees of diameter 6. |
A000252 | [
"1",
"6",
"48",
"96",
"480",
"288",
"2016",
"1536",
"3888",
"2880",
"13200",
"4608",
"26208",
"12096",
"23040",
"24576",
"78336",
"23328",
"123120",
"46080",
"96768",
"79200",
"267168",
"73728",
"300000",
"157248",
"314928",
"193536",
"682080",
"138240",
"892800",
"393216",
"633600",
"470016",
"967680",
"373248"
] | Number of invertible 2 X 2 matrices mod n. |
A000253 | [
"0",
"1",
"4",
"11",
"27",
"63",
"142",
"312",
"673",
"1432",
"3015",
"6295",
"13055",
"26926",
"55284",
"113081",
"230572",
"468883",
"951347",
"1926527",
"3894878",
"7863152",
"15855105",
"31936240",
"64269135",
"129234351",
"259690239",
"521524126",
"1046810092",
"2100221753",
"4212028452",
"8444387067"
] | a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1). |
A000254 | [
"0",
"1",
"3",
"11",
"50",
"274",
"1764",
"13068",
"109584",
"1026576",
"10628640",
"120543840",
"1486442880",
"19802759040",
"283465647360",
"4339163001600",
"70734282393600",
"1223405590579200",
"22376988058521600",
"431565146817638400",
"8752948036761600000",
"186244810780170240000"
] | Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!. |
A000255 | [
"1",
"1",
"3",
"11",
"53",
"309",
"2119",
"16687",
"148329",
"1468457",
"16019531",
"190899411",
"2467007773",
"34361893981",
"513137616783",
"8178130767479",
"138547156531409",
"2486151753313617",
"47106033220679059",
"939765362752547227",
"19690321886243846661",
"432292066866171724421"
] | a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1. |
A000256 | [
"1",
"1",
"0",
"1",
"3",
"12",
"52",
"241",
"1173",
"5929",
"30880",
"164796",
"897380",
"4970296",
"27930828",
"158935761",
"914325657",
"5310702819",
"31110146416",
"183634501753",
"1091371140915",
"6526333259312",
"39246152584304",
"237214507388796",
"1440503185260748"
] | Number of simple triangulations of the plane with n nodes. |
A000257 | [
"1",
"1",
"3",
"12",
"56",
"288",
"1584",
"9152",
"54912",
"339456",
"2149888",
"13891584",
"91287552",
"608583680",
"4107939840",
"28030648320",
"193100021760",
"1341536993280",
"9390758952960",
"66182491668480",
"469294031831040",
"3346270487838720",
"23981605162844160",
"172667557172477952"
] | Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1. |
A000258 | [
"1",
"1",
"3",
"12",
"60",
"358",
"2471",
"19302",
"167894",
"1606137",
"16733779",
"188378402",
"2276423485",
"29367807524",
"402577243425",
"5840190914957",
"89345001017415",
"1436904211547895",
"24227076487779802",
"427187837301557598",
"7859930038606521508",
"150601795280158255827"
] | Expansion of e.g.f. exp(exp(exp(x)-1)-1). |
A000259 | [
"1",
"3",
"13",
"63",
"326",
"1761",
"9808",
"55895",
"324301",
"1908878",
"11369744",
"68395917",
"414927215",
"2535523154",
"15592255913",
"96419104103",
"599176447614",
"3739845108057",
"23435007764606",
"147374772979438",
"929790132901804",
"5883377105975922",
"37328490926964481",
"237427707464042693"
] | Number of certain rooted planar maps. |
A000260 | [
"1",
"1",
"3",
"13",
"68",
"399",
"2530",
"16965",
"118668",
"857956",
"6369883",
"48336171",
"373537388",
"2931682810",
"23317105140",
"187606350645",
"1524813969276",
"12504654858828",
"103367824774012",
"860593023907540",
"7211115497448720",
"60776550501588855"
] | Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices. |
A000261 | [
"0",
"1",
"3",
"13",
"71",
"465",
"3539",
"30637",
"296967",
"3184129",
"37401155",
"477471021",
"6581134823",
"97388068753",
"1539794649171",
"25902759280525",
"461904032857319",
"8702813980639617",
"172743930157869827",
"3602826440828270029",
"78768746000235327495",
"1801366114380914335441"
] | a(n) = n*a(n-1) + (n-3)*a(n-2), with a(1) = 0, a(2) = 1. |
A000262 | [
"1",
"1",
"3",
"13",
"73",
"501",
"4051",
"37633",
"394353",
"4596553",
"58941091",
"824073141",
"12470162233",
"202976401213",
"3535017524403",
"65573803186921",
"1290434218669921",
"26846616451246353",
"588633468315403843",
"13564373693588558173",
"327697927886085654441",
"8281153039765859726341"
] | Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset. |
A000263 | [
"3",
"14",
"39",
"91",
"173",
"307",
"502",
"779",
"1150",
"1651",
"2280",
"3090",
"4090",
"5313",
"6787",
"8564",
"10643",
"13103",
"15948",
"19235",
"23000",
"27316",
"32174",
"37677",
"43849",
"50758",
"58427",
"66978",
"76373",
"86765",
"98171",
"110662",
"124310",
"139202",
"155339",
"172885"
] | Number of partitions into non-integral powers. |
A000264 | [
"1",
"1",
"3",
"14",
"80",
"518",
"3647",
"27274",
"213480",
"1731652",
"14455408",
"123552488",
"1077096124",
"9548805240",
"85884971043",
"782242251522",
"7203683481720",
"66989439309452",
"628399635777936",
"5940930064989720",
"56562734108608536"
] | Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle. |
A000265 | [
"1",
"1",
"3",
"1",
"5",
"3",
"7",
"1",
"9",
"5",
"11",
"3",
"13",
"7",
"15",
"1",
"17",
"9",
"19",
"5",
"21",
"11",
"23",
"3",
"25",
"13",
"27",
"7",
"29",
"15",
"31",
"1",
"33",
"17",
"35",
"9",
"37",
"19",
"39",
"5",
"41",
"21",
"43",
"11",
"45",
"23",
"47",
"3",
"49",
"25",
"51",
"13",
"53",
"27",
"55",
"7",
"57",
"29",
"59",
"15",
"61",
"31",
"63",
"1",
"65",
"33",
"67",
"17",
"69",
"35",
"71",
"9",
"73",
"37",
"75",
"19",
"77"
] | Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n. |
A000266 | [
"1",
"1",
"1",
"3",
"15",
"75",
"435",
"3045",
"24465",
"220185",
"2200905",
"24209955",
"290529855",
"3776888115",
"52876298475",
"793144477125",
"12690313661025",
"215735332237425",
"3883235945814225",
"73781482970470275",
"1475629660064134575",
"30988222861346826075",
"681740902935880863075"
] | Expansion of e.g.f. exp(-x^2/2) / (1-x). |
A000267 | [
"1",
"2",
"3",
"3",
"4",
"4",
"5",
"5",
"5",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"14",
"14",
"14",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"17",
"17",
"17",
"17",
"17"
] | Integer part of square root of 4n+1. |
A000268 | [
"1",
"3",
"15",
"105",
"947",
"10472",
"137337",
"2085605",
"36017472",
"697407850",
"14969626900",
"352877606716",
"9064191508018",
"252024567201300",
"7542036496650006",
"241721880399970938",
"8261159383595659128",
"299916384730043070880",
"11526945327529620432872",
"467583770376898192016104"
] | E.g.f.: -log(1+log(1+log(1-x))). |
A000269 | [
"3",
"16",
"67",
"251",
"888",
"3023",
"10038",
"32722",
"105228",
"334836",
"1056611",
"3311784",
"10322791",
"32026810",
"98974177",
"304835956",
"936147219",
"2867586542",
"8764280567",
"26733395986",
"81399821915",
"247459136331",
"751211286356",
"2277496842016"
] | Number of trees with n nodes, 3 of which are labeled. |
A000270 | [
"1",
"1",
"0",
"3",
"16",
"95",
"672",
"5397",
"48704",
"487917",
"5373920",
"64547175",
"839703696",
"11762247419",
"176509466560",
"2825125339305",
"48040633506048",
"864932233294681",
"16436901752820288",
"328791893988472843",
"6905593482159150480",
"151941269284478380119",
"3495011687269591273312"
] | For n >= 2, a(n) = b(n+1)+b(n)+b(n-1), where the b(i) are the ménage numbers A000179; a(0)=a(1)=1. |
A000271 | [
"1",
"0",
"0",
"1",
"3",
"16",
"96",
"675",
"5413",
"48800",
"488592",
"5379333",
"64595975",
"840192288",
"11767626752",
"176574062535",
"2825965531593",
"48052401132800",
"865108807357216",
"16439727718351881",
"328839946389605643",
"6906458590966507696"
] | Sums of ménage numbers. |
A000272 | [
"1",
"1",
"1",
"3",
"16",
"125",
"1296",
"16807",
"262144",
"4782969",
"100000000",
"2357947691",
"61917364224",
"1792160394037",
"56693912375296",
"1946195068359375",
"72057594037927936",
"2862423051509815793",
"121439531096594251776",
"5480386857784802185939"
] | Number of trees on n labeled nodes: n^(n-2) with a(0)=1. |
A000273 | [
"1",
"1",
"3",
"16",
"218",
"9608",
"1540944",
"882033440",
"1793359192848",
"13027956824399552",
"341260431952972580352",
"32522909385055886111197440",
"11366745430825400574433894004224",
"14669085692712929869037096075316220928",
"70315656615234999521385506555979904091217920"
] | Number of unlabeled simple digraphs with n nodes. |
A000274 | [
"0",
"0",
"1",
"3",
"18",
"110",
"795",
"6489",
"59332",
"600732",
"6674805",
"80765135",
"1057289046",
"14890154058",
"224497707343",
"3607998868005",
"61576514013960",
"1112225784377144",
"21197714949305577",
"425131949816628507",
"8950146311929021210"
] | Number of permutations of length n with 2 consecutive ascending pairs. |
A000275 | [
"1",
"1",
"3",
"19",
"211",
"3651",
"90921",
"3081513",
"136407699",
"7642177651",
"528579161353",
"44237263696473",
"4405990782649369",
"515018848029036937",
"69818743428262376523",
"10865441556038181291819",
"1923889742567310611949459",
"384565973956329859109177427",
"86180438505835750284241676121"
] | Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden. |
A000276 | [
"3",
"20",
"130",
"924",
"7308",
"64224",
"623376",
"6636960",
"76998240",
"967524480",
"13096736640",
"190060335360",
"2944310342400",
"48503818137600",
"846795372595200",
"15618926924697600",
"303517672703078400",
"6198400928176128000",
"132720966600284160000",
"2973385109386137600000"
] | Associated Stirling numbers. |
A000277 | [
"1",
"2",
"5",
"6",
"9",
"10",
"13",
"16",
"17",
"20",
"23",
"24",
"27",
"30",
"33",
"34",
"37",
"40",
"43",
"44",
"47",
"50",
"53",
"56",
"57",
"60",
"63",
"66",
"69",
"70",
"73",
"76",
"79",
"82",
"85",
"86",
"89",
"92",
"95",
"98",
"101",
"102",
"105",
"108",
"111",
"114",
"117",
"120",
"121",
"124",
"127",
"130",
"133",
"136",
"139",
"140",
"143",
"146",
"149",
"152",
"155"
] | 3*n - 2*floor(sqrt(4*n+5)) + 5. |
A000278 | [
"0",
"1",
"1",
"2",
"3",
"7",
"16",
"65",
"321",
"4546",
"107587",
"20773703",
"11595736272",
"431558332068481",
"134461531248108526465",
"186242594112190847520182173826",
"18079903385772308300945867582153787570051",
"34686303861638264961101080464895364211215702792496667048327"
] | a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1. |
A000279 | [
"3",
"24",
"216",
"1824",
"15150",
"124416",
"1014888",
"8241792",
"66724398",
"538990800",
"4346692680",
"35009591040",
"281699380560",
"2264868936960",
"18198009147600",
"146142982814208",
"1173123636533454",
"9413509300965936",
"75513633110271264",
"605598295606296000",
"4855626127979443908",
"38924245740546950784"
] | Card matching: coefficients B[n,1] of t in the reduced hit polynomial A[n,n,n](t). |
A000280 | [
"0",
"1",
"1",
"2",
"3",
"11",
"38",
"1369",
"56241",
"2565782650",
"177895665388171",
"16891164530321501264425013171",
"5629840598310484749297545401724540333537382"
] | a(n) = a(n-1) + a(n-2)^3. |
A000281 | [
"1",
"3",
"57",
"2763",
"250737",
"36581523",
"7828053417",
"2309644635483",
"898621108880097",
"445777636063460643",
"274613643571568682777",
"205676334188681975553003",
"184053312545818735778213457",
"193944394596325636374396208563"
] | Expansion of cos(x)/cos(2x). |
A000282 | [
"3",
"70",
"3783",
"338475",
"40565585",
"6061961733",
"1083852977811",
"225615988054171",
"53595807366038234",
"14308700593468127485",
"4241390625289880226714",
"1382214286200071777573643",
"491197439886557439295166226",
"189044982636675290371386547592",
"78334771617452038208125184627931",
"34771576300926271400714044414858372"
] | Finite automata. |
A000283 | [
"0",
"1",
"1",
"2",
"5",
"29",
"866",
"750797",
"563696885165",
"317754178345286893212434",
"100967717855888389973004846476977145423449281581"
] | a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1. |
A000284 | [
"0",
"1",
"1",
"2",
"9",
"731",
"390617900",
"59601394712394173339000731",
"211723599072542785377729319366442939995427829921816290889198752331804918235791"
] | a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1. |
A000285 | [
"1",
"4",
"5",
"9",
"14",
"23",
"37",
"60",
"97",
"157",
"254",
"411",
"665",
"1076",
"1741",
"2817",
"4558",
"7375",
"11933",
"19308",
"31241",
"50549",
"81790",
"132339",
"214129",
"346468",
"560597",
"907065",
"1467662",
"2374727",
"3842389",
"6217116",
"10059505",
"16276621",
"26336126",
"42612747",
"68948873",
"111561620",
"180510493",
"292072113",
"472582606"
] | a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2. |
A000286 | [
"0",
"1",
"1",
"4",
"5",
"11",
"20",
"36",
"65",
"119",
"218",
"412",
"770",
"1466",
"2784",
"5322",
"10226",
"19691",
"38048",
"73665",
"142927",
"277822",
"540851",
"1054502",
"2058507",
"4023164",
"7871226",
"15414517",
"30213010",
"59266164",
"116343183",
"228545303",
"449240025",
"883569304",
"1738768584",
"3423466797",
"6743729031"
] | Number of positive integers <= 2^n of form 2 x^2 + 5 y^2. |
A000287 | [
"1",
"0",
"4",
"6",
"24",
"66",
"214",
"676",
"2209",
"7296",
"24460",
"82926",
"284068",
"981882",
"3421318",
"12007554",
"42416488",
"150718770",
"538421590",
"1932856590",
"6969847486",
"25237057110",
"91729488354",
"334589415276",
"1224445617889",
"4494622119424"
] | Number of rooted polyhedral graphs with n edges. |
A000288 | [
"1",
"1",
"1",
"1",
"4",
"7",
"13",
"25",
"49",
"94",
"181",
"349",
"673",
"1297",
"2500",
"4819",
"9289",
"17905",
"34513",
"66526",
"128233",
"247177",
"476449",
"918385",
"1770244",
"3412255",
"6577333",
"12678217",
"24438049",
"47105854",
"90799453",
"175021573",
"337364929",
"650291809",
"1253477764"
] | Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1. |
A000289 | [
"1",
"4",
"7",
"31",
"871",
"756031",
"571580604871",
"326704387862983487112031",
"106735757048926752040856495274871386126283608871",
"11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068031"
] | A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1). |
A000290 | [
"0",
"1",
"4",
"9",
"16",
"25",
"36",
"49",
"64",
"81",
"100",
"121",
"144",
"169",
"196",
"225",
"256",
"289",
"324",
"361",
"400",
"441",
"484",
"529",
"576",
"625",
"676",
"729",
"784",
"841",
"900",
"961",
"1024",
"1089",
"1156",
"1225",
"1296",
"1369",
"1444",
"1521",
"1600",
"1681",
"1764",
"1849",
"1936",
"2025",
"2116",
"2209",
"2304",
"2401",
"2500"
] | The squares: a(n) = n^2. |
A000291 | [
"2",
"4",
"9",
"16",
"29",
"47",
"77",
"118",
"181",
"267",
"392",
"560",
"797",
"1111",
"1541",
"2106",
"2863",
"3846",
"5142",
"6808",
"8973",
"11733",
"15275",
"19753",
"25443",
"32582",
"41569",
"52770",
"66757",
"84078",
"105555",
"131995",
"164566",
"204450",
"253292",
"312799",
"385285",
"473183",
"579722",
"708353",
"863553"
] | Number of bipartite partitions of n white objects and 2 black ones. |
A000292 | [
"0",
"1",
"4",
"10",
"20",
"35",
"56",
"84",
"120",
"165",
"220",
"286",
"364",
"455",
"560",
"680",
"816",
"969",
"1140",
"1330",
"1540",
"1771",
"2024",
"2300",
"2600",
"2925",
"3276",
"3654",
"4060",
"4495",
"4960",
"5456",
"5984",
"6545",
"7140",
"7770",
"8436",
"9139",
"9880",
"10660",
"11480",
"12341",
"13244",
"14190",
"15180"
] | Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6. |
A000293 | [
"1",
"1",
"4",
"10",
"26",
"59",
"140",
"307",
"684",
"1464",
"3122",
"6500",
"13426",
"27248",
"54804",
"108802",
"214071",
"416849",
"805124",
"1541637",
"2930329",
"5528733",
"10362312",
"19295226",
"35713454",
"65715094",
"120256653",
"218893580",
"396418699",
"714399381",
"1281403841",
"2287986987",
"4067428375",
"7200210523",
"12693890803",
"22290727268",
"38993410516",
"67959010130",
"118016656268",
"204233654229",
"352245710866",
"605538866862",
"1037668522922",
"1772700955975",
"3019333854177",
"5127694484375",
"8683676638832",
"14665233966068",
"24700752691832",
"41495176877972",
"69531305679518"
] | a(n) = number of solid (i.e., three-dimensional) partitions of n. |
A000294 | [
"1",
"1",
"4",
"10",
"26",
"59",
"141",
"310",
"692",
"1483",
"3162",
"6583",
"13602",
"27613",
"55579",
"110445",
"217554",
"424148",
"820294",
"1572647",
"2992892",
"5652954",
"10605608",
"19765082",
"36609945",
"67405569",
"123412204",
"224728451",
"407119735",
"733878402",
"1316631730",
"2351322765",
"4180714647",
"7401898452",
"13051476707",
"22922301583",
"40105025130",
"69909106888",
"121427077241",
"210179991927",
"362583131144"
] | Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2). |
A000295 | [
"0",
"0",
"1",
"4",
"11",
"26",
"57",
"120",
"247",
"502",
"1013",
"2036",
"4083",
"8178",
"16369",
"32752",
"65519",
"131054",
"262125",
"524268",
"1048555",
"2097130",
"4194281",
"8388584",
"16777191",
"33554406",
"67108837",
"134217700",
"268435427",
"536870882",
"1073741793",
"2147483616",
"4294967263",
"8589934558"
] | Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018). |
A000296 | [
"1",
"0",
"1",
"1",
"4",
"11",
"41",
"162",
"715",
"3425",
"17722",
"98253",
"580317",
"3633280",
"24011157",
"166888165",
"1216070380",
"9264071767",
"73600798037",
"608476008122",
"5224266196935",
"46499892038437",
"428369924118314",
"4078345814329009",
"40073660040755337",
"405885209254049952",
"4232705122975949401"
] | Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions. |
A000297 | [
"0",
"4",
"12",
"25",
"44",
"70",
"104",
"147",
"200",
"264",
"340",
"429",
"532",
"650",
"784",
"935",
"1104",
"1292",
"1500",
"1729",
"1980",
"2254",
"2552",
"2875",
"3224",
"3600",
"4004",
"4437",
"4900",
"5394",
"5920",
"6479",
"7072",
"7700",
"8364",
"9065",
"9804",
"10582",
"11400",
"12259",
"13160",
"14104",
"15092",
"16125",
"17204"
] | a(n) = (n+1)*(n+3)*(n+8)/6. |
A000298 | [
"1",
"4",
"12",
"30",
"70",
"159",
"339",
"706",
"1436",
"2853",
"5551",
"10622",
"19975",
"37043",
"67811",
"122561",
"219090",
"387578",
"678977",
"1178769",
"2029115",
"3465056",
"5872648",
"9882301",
"16517284",
"27430358",
"45275673",
"74297072",
"121245153",
"196810381",
"317850809",
"510830685",
"817139589",
"1301251186",
"2063204707",
"3257690903",
"5123047561"
] | Number of partitions into non-integral powers. |
A000299 | [
"0",
"0",
"0",
"0",
"1",
"4",
"13",
"36",
"93",
"225",
"528",
"1198",
"2666",
"5815",
"12517",
"26587",
"55933",
"116564",
"241151",
"495417",
"1011950",
"2055892",
"4157514",
"8371318",
"16792066",
"33564256",
"66875221",
"132849983",
"263192599",
"520087551",
"1025295487",
"2016745784",
"3958608430",
"7754810743"
] | Number of n-node rooted trees of height 4. |
A000300 | [
"1",
"4",
"14",
"44",
"133",
"388",
"1116",
"3168",
"8938",
"25100",
"70334",
"196824",
"550656",
"1540832",
"4314190",
"12089368",
"33911543",
"95228760",
"267727154",
"753579420",
"2123637318",
"5991571428",
"16923929406",
"47857425416",
"135478757308",
"383929643780",
"1089118243128",
"3092612497260"
] | 4th power of rooted tree enumerator: linear forests of 4 rooted trees. |