|
import os |
|
import json |
|
import collections |
|
|
|
import datasets |
|
from datasets import NamedSplit |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains all THIENVIET products images and annotations split in training |
|
and validation. |
|
""" |
|
|
|
_URL = "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/yenthienviet_coco_hf.zip" |
|
|
|
_CATEGORIES = [ |
|
"hop_dln", |
|
"hop_jn", |
|
"hop_vtg", |
|
"hop_ytv", |
|
"lo_kids", |
|
"lo_ytv", |
|
"loc_dln", |
|
"loc_jn", |
|
"loc_kids", |
|
"loc_ytv", |
|
] |
|
|
|
|
|
class Yenthienviet(datasets.GeneratorBasedBuilder): |
|
"""Yenthienviet dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence( |
|
datasets.Value("float32"), length=4 |
|
), |
|
"category": datasets.ClassLabel(names=_CATEGORIES), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
archive = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_file_path": "annotations/train.json", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_file_path": "annotations/test.json", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=NamedSplit("val"), |
|
gen_kwargs={ |
|
"annotation_file_path": "annotations/val.json", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotation_file_path, files): |
|
def process_annot(annot, category_id_to_category): |
|
return { |
|
"id": annot["id"], |
|
"area": annot["area"], |
|
"bbox": annot["bbox"], |
|
"category": category_id_to_category[annot["category_id"]], |
|
} |
|
|
|
image_id_to_image = [] |
|
idx = 0 |
|
|
|
|
|
for path, f in files: |
|
file_name = os.path.basename(path) |
|
if path == annotation_file_path: |
|
annotations = json.load(f) |
|
category_id_to_category = { |
|
category["id"]: category["name"] |
|
for category in annotations["categories"] |
|
} |
|
image_id_to_annotations = collections.defaultdict(list) |
|
for annot in annotations["annotations"]: |
|
image_id_to_annotations[annot["image_id"]].append(annot) |
|
image_id_to_image = { |
|
annot["file_name"]: annot for annot in annotations["images"] |
|
} |
|
elif file_name in image_id_to_image: |
|
image = image_id_to_image[file_name] |
|
objects = [ |
|
process_annot(annot, category_id_to_category) |
|
for annot in image_id_to_annotations[image["id"]] |
|
] |
|
yield idx, { |
|
"image_id": image["id"], |
|
"image": {"path": path, "bytes": f.read()}, |
|
"width": image["width"], |
|
"height": image["height"], |
|
"objects": objects, |
|
} |
|
idx += 1 |
|
|