File size: 4,300 Bytes
d2b51c2
c1ca73d
 
d7fef5a
 
c1ca73d
 
d7fef5a
 
 
 
 
 
 
c1ca73d
d7fef5a
c1ca73d
d7fef5a
 
 
 
 
 
 
 
c16befb
 
d7fef5a
 
 
c1ca73d
 
d7fef5a
c1ca73d
d7fef5a
c1ca73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7fef5a
 
c1ca73d
d7fef5a
 
c1ca73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7fef5a
c1ca73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import json
import collections

import datasets
from datasets import NamedSplit
from datasets.download.download_manager import DownloadManager


_DESCRIPTION = """\
This dataset contains all THIENVIET products images and annotations split in training
    and validation.
"""

_URL = "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/yenthienviet_coco_hf.zip"

_CATEGORIES = [
    "hop_dln",
    "hop_jn",
    "hop_vtg",
    "hop_ytv",
    "lo_kids",
    "lo_ytv",
    "loc_dln",
    "loc_jn",
    "loc_kids",
    "loc_ytv",
]


class Yenthienviet(datasets.GeneratorBasedBuilder):
    """Yenthienviet dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(
                            datasets.Value("float32"), length=4
                        ),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
        )

    def _split_generators(self, dl_manager: DownloadManager):
        archive = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_file_path": "annotations/train.json",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_file_path": "annotations/test.json",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=NamedSplit("val"),
                gen_kwargs={
                    "annotation_file_path": "annotations/val.json",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, annotation_file_path, files):
        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = []
        idx = 0
        # This loop relies on the ordering of the files in the archive:
        # Annotation files come first, then the images.
        for path, f in files:
            file_name = os.path.basename(path)
            if path == annotation_file_path:
                annotations = json.load(f)
                category_id_to_category = {
                    category["id"]: category["name"]
                    for category in annotations["categories"]
                }
                image_id_to_annotations = collections.defaultdict(list)
                for annot in annotations["annotations"]:
                    image_id_to_annotations[annot["image_id"]].append(annot)
                image_id_to_image = {
                    annot["file_name"]: annot for annot in annotations["images"]
                }
            elif file_name in image_id_to_image:
                image = image_id_to_image[file_name]
                objects = [
                    process_annot(annot, category_id_to_category)
                    for annot in image_id_to_annotations[image["id"]]
                ]
                yield idx, {
                    "image_id": image["id"],
                    "image": {"path": path, "bytes": f.read()},
                    "width": image["width"],
                    "height": image["height"],
                    "objects": objects,
                }
                idx += 1