|
import os |
|
import shutil |
|
import json |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
from glob import glob |
|
from typing import Dict, Any, List, Union, Iterator |
|
|
|
import yaml |
|
from yaml.loader import SafeLoader |
|
import datasets |
|
from datasets.download.download_manager import DownloadManager, ArchiveIterable |
|
from pylabel import importer |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Training image sets and labels/bounding box coordinates for detecting brain |
|
tumors in MR images. |
|
- The datasets JPGs exported at their native size and are separated by plan |
|
(Axial, Coronal and Sagittal). |
|
- Tumors were hand labeled using https://makesense.ai |
|
- Bounding box coordinates and MGMT positive labels were marked on ~400 images |
|
for each plane in the T1wCE series from the RSNA-MICCAI competition data. |
|
""" |
|
|
|
_URLS = { |
|
"yolo": "https://huggingface.co./datasets/chanelcolgate/tumorsbrain/resolve/main/data/archive.zip" |
|
} |
|
|
|
_CLASSES = ["negative", "positive"] |
|
|
|
|
|
|
|
def copy_yolo_files(from_folder, to_folder, images_labels, train_test): |
|
from_path = os.path.join(from_folder, images_labels, train_test) |
|
to_path = os.path.join(to_folder, images_labels, train_test) |
|
os.makedirs(to_path, exist_ok=True) |
|
|
|
file_ext = "*.jpg" if images_labels == "images" else "*.txt" |
|
files = glob(os.path.join(from_path, file_ext)) |
|
|
|
for file in tqdm(files): |
|
shutil.copy(file, to_path) |
|
|
|
|
|
def yolo_to_coco(input_folder, output_folder, train_test): |
|
labels_path = os.path.join(input_folder, "labels", train_test) |
|
images_path = os.path.join(input_folder, "images", train_test) |
|
coco_dir = os.path.join(output_folder, train_test) |
|
os.makedirs(coco_dir, exist_ok=True) |
|
|
|
txt_files = glob(os.path.join(labels_path, "*.txt")) |
|
img_files = glob(os.path.join(images_path, "*.jpg")) |
|
|
|
for f in tqdm(txt_files): |
|
shutil.copy(f, coco_dir) |
|
|
|
for f in tqdm(img_files): |
|
shutil.copy(f, coco_dir) |
|
|
|
|
|
with open(os.path.join(input_folder, "classes.txt"), "r") as f: |
|
classes = f.read().split("\n") |
|
|
|
|
|
dataset = importer.ImportYoloV5( |
|
path=coco_dir, cat_names=classes, name="brain tumors" |
|
) |
|
|
|
coco_file = os.path.join(coco_dir, "_annotations.coco.json") |
|
|
|
dataset.export.ExportToCoco(coco_file, cat_id_index=0) |
|
|
|
for f in txt_files: |
|
os.remove(f.replace(labels_path, coco_dir)) |
|
|
|
|
|
def round_box_values(box, decimals=2): |
|
return [round(val, decimals) for val in box] |
|
|
|
|
|
class COCOHelper: |
|
"""Helper class to load COCO annotations""" |
|
|
|
def __init__(self, annotation_path: Path, images_dir: Path) -> None: |
|
with open(annotation_path, "r") as file: |
|
data = json.load(file) |
|
self.data = data |
|
|
|
dict_id2annot: Dict[int, Any] = {} |
|
for annot in self.annotations: |
|
dict_id2annot.setdefault(annot["image_id"], []).append(annot) |
|
|
|
|
|
dict_id2annot = { |
|
k: list(sorted(v, key=lambda a: a["id"])) |
|
for k, v in dict_id2annot.items() |
|
} |
|
|
|
self.dict_path2annot: Dict[str, Any] = {} |
|
self.dict_path2id: Dict[str, Any] = {} |
|
for img in self.images: |
|
path_img = os.path.join(images_dir, img["file_name"]) |
|
path_img_str = os.path.normpath(path_img) |
|
idx = int(img["id"]) |
|
annot = dict_id2annot.get(idx, []) |
|
self.dict_path2annot[path_img_str] = annot |
|
self.dict_path2id[path_img_str] = img["id"] |
|
|
|
def __len__(self) -> int: |
|
return len(self.data["images"]) |
|
|
|
@property |
|
def images(self) -> List[Dict[str, Union[str, int]]]: |
|
return self.data["images"] |
|
|
|
@property |
|
def annotations(self) -> List[Any]: |
|
return self.data["annotations"] |
|
|
|
@property |
|
def categories(self) -> List[Dict[str, Union[str, int]]]: |
|
return self.data["categories"] |
|
|
|
def get_annotations(self, image_path: str) -> List[Any]: |
|
return self.dict_path2annot.get(image_path, []) |
|
|
|
def get_image_id(self, image_path: str) -> int: |
|
return self.dict_path2id.get(image_path, -1) |
|
|
|
|
|
class COCOBrainTumor(datasets.GeneratorBasedBuilder): |
|
"""COCO Brain Tumor dataset""" |
|
|
|
VERSION = datasets.Version("1.0.1") |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
""" |
|
Return the dataset metadata and features. |
|
|
|
Returns: |
|
DatasetInfo: Metadata and features of the dataset. |
|
""" |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"image_id": datasets.Value("int64"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("float64"), |
|
"bbox": datasets.Sequence( |
|
datasets.Value("float32"), length=4 |
|
), |
|
"label": datasets.ClassLabel(names=_CLASSES), |
|
"iscrowd": datasets.Value("bool"), |
|
} |
|
), |
|
} |
|
), |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Provides the split information and downloads the data. |
|
|
|
Args: |
|
dl_manager (DownloadManager): The DownloadManager to use for |
|
downloading and extracting data. |
|
|
|
Returns: |
|
List[SplitGenerator]: List of SplitGenrator objects representing |
|
the data splits. |
|
""" |
|
archive_yolo = dl_manager.download(_URLS["yolo"]) |
|
archive_yolo = dl_manager.extract(archive_yolo) |
|
data_folder = "braintumors" |
|
data_folder_yolo = data_folder + "_yolo" |
|
data_folder_coco = data_folder + "_coco" |
|
folders = os.listdir(str(archive_yolo)) |
|
|
|
for from_folder in folders: |
|
from_folder = os.path.join(archive_yolo, from_folder) |
|
to_folder = os.path.join(archive_yolo, data_folder_yolo) |
|
for images_labels in ["images", "labels"]: |
|
for train_test in ["train", "test"]: |
|
copy_yolo_files( |
|
from_folder, to_folder, images_labels, train_test |
|
) |
|
|
|
|
|
with open( |
|
os.path.join(archive_yolo, folders[0], folders[0] + ".yaml") |
|
) as f: |
|
classes = yaml.load(f, Loader=SafeLoader)["names"] |
|
|
|
|
|
with open( |
|
os.path.join(archive_yolo, data_folder_yolo, "classes.txt"), "w" |
|
) as f: |
|
f.write("\n".join(classes)) |
|
|
|
data_folder_yolo = os.path.join(archive_yolo, data_folder_yolo) |
|
data_folder_coco = os.path.join(archive_yolo, data_folder_coco) |
|
yolo_to_coco(data_folder_yolo, data_folder_coco, "train") |
|
yolo_to_coco(data_folder_yolo, data_folder_coco, "test") |
|
|
|
name_ds = str(archive_yolo) + "/braintumors_coco" |
|
image_root_train = name_ds + "/train" |
|
image_root_test = name_ds + "/test" |
|
af = "_annotations.coco.json" |
|
json_file_train = name_ds + "/train/" + af |
|
json_file_test = name_ds + "/test/" + af |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_path": json_file_train, |
|
"images_dir": image_root_train, |
|
"images": dl_manager.iter_files(image_root_train), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_path": json_file_test, |
|
"images_dir": image_root_test, |
|
"images": dl_manager.iter_files(image_root_test), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, annotation_path: Path, images_dir: Path, images: ArchiveIterable |
|
) -> Iterator: |
|
""" |
|
Generates examples for the dataset. |
|
|
|
Args: |
|
annotation_path (Path): The path to the annotation file. |
|
images_dir (Path): The path to the directory containing the images. |
|
images: (ArchiveIterable): An iterable containing the images. |
|
|
|
Yields: |
|
Dict[str, Union[str, Image]]: A dictionary containing the |
|
generated examples. |
|
""" |
|
coco_annotation = COCOHelper(annotation_path, images_dir) |
|
|
|
for image_path in images: |
|
image_path = os.path.normpath(image_path) |
|
if "_annotations.coco.json" not in image_path: |
|
f = open(image_path, "rb") |
|
annotations = coco_annotation.get_annotations(image_path) |
|
ret = { |
|
"image": {"path": image_path, "bytes": f.read()}, |
|
"image_id": coco_annotation.get_image_id(image_path), |
|
"objects": [ |
|
{ |
|
"id": annot["id"], |
|
"area": annot["area"], |
|
"bbox": round_box_values( |
|
annot["bbox"], 2 |
|
), |
|
"label": annot["category_id"], |
|
"iscrowd": bool(annot["iscrowd"]), |
|
} |
|
for annot in annotations |
|
], |
|
} |
|
yield image_path, ret |
|
|