File size: 9,853 Bytes
d12d104 293bec0 d12d104 778725e d12d104 778725e d12d104 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import shutil
import json
from pathlib import Path
from tqdm import tqdm
from glob import glob
from typing import Dict, Any, List, Union, Iterator
import yaml
from yaml.loader import SafeLoader
import datasets
from datasets.download.download_manager import DownloadManager, ArchiveIterable
from pylabel import importer
_DESCRIPTION = """\
Training image sets and labels/bounding box coordinates for detecting brain
tumors in MR images.
- The datasets JPGs exported at their native size and are separated by plan
(Axial, Coronal and Sagittal).
- Tumors were hand labeled using https://makesense.ai
- Bounding box coordinates and MGMT positive labels were marked on ~400 images
for each plane in the T1wCE series from the RSNA-MICCAI competition data.
"""
_URLS = {
"yolo": "https://huggingface.co./datasets/chanelcolgate/tumorsbrain/resolve/main/data/archive.zip"
}
_CLASSES = ["negative", "positive"]
# move all into one folder
def copy_yolo_files(from_folder, to_folder, images_labels, train_test):
from_path = os.path.join(from_folder, images_labels, train_test)
to_path = os.path.join(to_folder, images_labels, train_test)
os.makedirs(to_path, exist_ok=True)
# get files
file_ext = "*.jpg" if images_labels == "images" else "*.txt"
files = glob(os.path.join(from_path, file_ext))
# move files
for file in tqdm(files):
shutil.copy(file, to_path)
def yolo_to_coco(input_folder, output_folder, train_test):
labels_path = os.path.join(input_folder, "labels", train_test)
images_path = os.path.join(input_folder, "images", train_test)
coco_dir = os.path.join(output_folder, train_test)
os.makedirs(coco_dir, exist_ok=True)
txt_files = glob(os.path.join(labels_path, "*.txt"))
img_files = glob(os.path.join(images_path, "*.jpg"))
# copy annotations
for f in tqdm(txt_files):
shutil.copy(f, coco_dir)
# copy images
for f in tqdm(img_files):
shutil.copy(f, coco_dir)
# get the classes
with open(os.path.join(input_folder, "classes.txt"), "r") as f:
classes = f.read().split("\n")
# load dataset
dataset = importer.ImportYoloV5(
path=coco_dir, cat_names=classes, name="brain tumors"
)
# export
coco_file = os.path.join(coco_dir, "_annotations.coco.json")
# Detection requires starting index from 1
dataset.export.ExportToCoco(coco_file, cat_id_index=0)
# now delete yolo annotations in coco set
for f in txt_files:
os.remove(f.replace(labels_path, coco_dir))
def round_box_values(box, decimals=2):
return [round(val, decimals) for val in box]
class COCOHelper:
"""Helper class to load COCO annotations"""
def __init__(self, annotation_path: Path, images_dir: Path) -> None:
with open(annotation_path, "r") as file:
data = json.load(file)
self.data = data
dict_id2annot: Dict[int, Any] = {}
for annot in self.annotations:
dict_id2annot.setdefault(annot["image_id"], []).append(annot)
# Sort by id
dict_id2annot = {
k: list(sorted(v, key=lambda a: a["id"]))
for k, v in dict_id2annot.items()
}
self.dict_path2annot: Dict[str, Any] = {}
self.dict_path2id: Dict[str, Any] = {}
for img in self.images:
path_img = os.path.join(images_dir, img["file_name"])
path_img_str = os.path.normpath(path_img)
idx = int(img["id"])
annot = dict_id2annot.get(idx, [])
self.dict_path2annot[path_img_str] = annot
self.dict_path2id[path_img_str] = img["id"]
def __len__(self) -> int:
return len(self.data["images"])
@property
def images(self) -> List[Dict[str, Union[str, int]]]:
return self.data["images"]
@property
def annotations(self) -> List[Any]:
return self.data["annotations"]
@property
def categories(self) -> List[Dict[str, Union[str, int]]]:
return self.data["categories"]
def get_annotations(self, image_path: str) -> List[Any]:
return self.dict_path2annot.get(image_path, [])
def get_image_id(self, image_path: str) -> int:
return self.dict_path2id.get(image_path, -1)
class COCOBrainTumor(datasets.GeneratorBasedBuilder):
"""COCO Brain Tumor dataset"""
VERSION = datasets.Version("1.0.1")
def _info(self) -> datasets.DatasetInfo:
"""
Return the dataset metadata and features.
Returns:
DatasetInfo: Metadata and features of the dataset.
"""
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"image_id": datasets.Value("int64"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("float64"),
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"label": datasets.ClassLabel(names=_CLASSES),
"iscrowd": datasets.Value("bool"),
}
),
}
),
)
def _split_generators(
self, dl_manager: DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Provides the split information and downloads the data.
Args:
dl_manager (DownloadManager): The DownloadManager to use for
downloading and extracting data.
Returns:
List[SplitGenerator]: List of SplitGenrator objects representing
the data splits.
"""
archive_yolo = dl_manager.download(_URLS["yolo"])
archive_yolo = dl_manager.extract(archive_yolo)
data_folder = "braintumors"
data_folder_yolo = data_folder + "_yolo"
data_folder_coco = data_folder + "_coco"
folders = os.listdir(str(archive_yolo))
# copy
for from_folder in folders:
from_folder = os.path.join(archive_yolo, from_folder)
to_folder = os.path.join(archive_yolo, data_folder_yolo)
for images_labels in ["images", "labels"]:
for train_test in ["train", "test"]:
copy_yolo_files(
from_folder, to_folder, images_labels, train_test
)
# Open the file and load the file
with open(
os.path.join(archive_yolo, folders[0], folders[0] + ".yaml")
) as f:
classes = yaml.load(f, Loader=SafeLoader)["names"]
# Write classes.txt
with open(
os.path.join(archive_yolo, data_folder_yolo, "classes.txt"), "w"
) as f:
f.write("\n".join(classes))
data_folder_yolo = os.path.join(archive_yolo, data_folder_yolo)
data_folder_coco = os.path.join(archive_yolo, data_folder_coco)
yolo_to_coco(data_folder_yolo, data_folder_coco, "train")
yolo_to_coco(data_folder_yolo, data_folder_coco, "test")
name_ds = str(archive_yolo) + "/braintumors_coco"
image_root_train = name_ds + "/train"
image_root_test = name_ds + "/test"
af = "_annotations.coco.json"
json_file_train = name_ds + "/train/" + af
json_file_test = name_ds + "/test/" + af
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_path": json_file_train,
"images_dir": image_root_train,
"images": dl_manager.iter_files(image_root_train),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_path": json_file_test,
"images_dir": image_root_test,
"images": dl_manager.iter_files(image_root_test),
},
),
]
def _generate_examples(
self, annotation_path: Path, images_dir: Path, images: ArchiveIterable
) -> Iterator:
"""
Generates examples for the dataset.
Args:
annotation_path (Path): The path to the annotation file.
images_dir (Path): The path to the directory containing the images.
images: (ArchiveIterable): An iterable containing the images.
Yields:
Dict[str, Union[str, Image]]: A dictionary containing the
generated examples.
"""
coco_annotation = COCOHelper(annotation_path, images_dir)
for image_path in images:
image_path = os.path.normpath(image_path)
if "_annotations.coco.json" not in image_path:
f = open(image_path, "rb")
annotations = coco_annotation.get_annotations(image_path)
ret = {
"image": {"path": image_path, "bytes": f.read()},
"image_id": coco_annotation.get_image_id(image_path),
"objects": [
{
"id": annot["id"],
"area": annot["area"],
"bbox": round_box_values(
annot["bbox"], 2
), # [x, y, w, h]
"label": annot["category_id"],
"iscrowd": bool(annot["iscrowd"]),
}
for annot in annotations
],
}
yield image_path, ret
|