File size: 9,853 Bytes
d12d104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293bec0
 
d12d104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778725e
d12d104
 
 
 
 
 
 
778725e
d12d104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import shutil
import json
from pathlib import Path
from tqdm import tqdm
from glob import glob
from typing import Dict, Any, List, Union, Iterator

import yaml
from yaml.loader import SafeLoader
import datasets
from datasets.download.download_manager import DownloadManager, ArchiveIterable
from pylabel import importer


_DESCRIPTION = """\
Training image sets and labels/bounding box coordinates for detecting brain
tumors in MR images.
- The datasets JPGs exported at their native size and are separated by plan
(Axial, Coronal and Sagittal).
- Tumors were hand labeled using https://makesense.ai
- Bounding box coordinates and MGMT positive labels were marked on ~400 images
for each plane in the T1wCE series from the RSNA-MICCAI competition data.
"""

_URLS = {
    "yolo": "https://huggingface.co./datasets/chanelcolgate/tumorsbrain/resolve/main/data/archive.zip"
}

_CLASSES = ["negative", "positive"]


# move all into one folder
def copy_yolo_files(from_folder, to_folder, images_labels, train_test):
    from_path = os.path.join(from_folder, images_labels, train_test)
    to_path = os.path.join(to_folder, images_labels, train_test)
    os.makedirs(to_path, exist_ok=True)
    # get files
    file_ext = "*.jpg" if images_labels == "images" else "*.txt"
    files = glob(os.path.join(from_path, file_ext))
    # move files
    for file in tqdm(files):
        shutil.copy(file, to_path)


def yolo_to_coco(input_folder, output_folder, train_test):
    labels_path = os.path.join(input_folder, "labels", train_test)
    images_path = os.path.join(input_folder, "images", train_test)
    coco_dir = os.path.join(output_folder, train_test)
    os.makedirs(coco_dir, exist_ok=True)

    txt_files = glob(os.path.join(labels_path, "*.txt"))
    img_files = glob(os.path.join(images_path, "*.jpg"))
    # copy annotations
    for f in tqdm(txt_files):
        shutil.copy(f, coco_dir)
    # copy images
    for f in tqdm(img_files):
        shutil.copy(f, coco_dir)

    # get the classes
    with open(os.path.join(input_folder, "classes.txt"), "r") as f:
        classes = f.read().split("\n")

    # load dataset
    dataset = importer.ImportYoloV5(
        path=coco_dir, cat_names=classes, name="brain tumors"
    )
    # export
    coco_file = os.path.join(coco_dir, "_annotations.coco.json")
    # Detection requires starting index from 1
    dataset.export.ExportToCoco(coco_file, cat_id_index=0)
    # now delete yolo annotations in coco set
    for f in txt_files:
        os.remove(f.replace(labels_path, coco_dir))


def round_box_values(box, decimals=2):
    return [round(val, decimals) for val in box]


class COCOHelper:
    """Helper class to load COCO annotations"""

    def __init__(self, annotation_path: Path, images_dir: Path) -> None:
        with open(annotation_path, "r") as file:
            data = json.load(file)
        self.data = data

        dict_id2annot: Dict[int, Any] = {}
        for annot in self.annotations:
            dict_id2annot.setdefault(annot["image_id"], []).append(annot)

        # Sort by id
        dict_id2annot = {
            k: list(sorted(v, key=lambda a: a["id"]))
            for k, v in dict_id2annot.items()
        }

        self.dict_path2annot: Dict[str, Any] = {}
        self.dict_path2id: Dict[str, Any] = {}
        for img in self.images:
            path_img = os.path.join(images_dir, img["file_name"])
            path_img_str = os.path.normpath(path_img)
            idx = int(img["id"])
            annot = dict_id2annot.get(idx, [])
            self.dict_path2annot[path_img_str] = annot
            self.dict_path2id[path_img_str] = img["id"]

    def __len__(self) -> int:
        return len(self.data["images"])

    @property
    def images(self) -> List[Dict[str, Union[str, int]]]:
        return self.data["images"]

    @property
    def annotations(self) -> List[Any]:
        return self.data["annotations"]

    @property
    def categories(self) -> List[Dict[str, Union[str, int]]]:
        return self.data["categories"]

    def get_annotations(self, image_path: str) -> List[Any]:
        return self.dict_path2annot.get(image_path, [])

    def get_image_id(self, image_path: str) -> int:
        return self.dict_path2id.get(image_path, -1)


class COCOBrainTumor(datasets.GeneratorBasedBuilder):
    """COCO Brain Tumor dataset"""

    VERSION = datasets.Version("1.0.1")

    def _info(self) -> datasets.DatasetInfo:
        """
        Return the dataset metadata and features.

        Returns:
            DatasetInfo: Metadata and features of the dataset.
        """
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "image_id": datasets.Value("int64"),
                    "objects": datasets.Sequence(
                        {
                            "id": datasets.Value("int64"),
                            "area": datasets.Value("float64"),
                            "bbox": datasets.Sequence(
                                datasets.Value("float32"), length=4
                            ),
                            "label": datasets.ClassLabel(names=_CLASSES),
                            "iscrowd": datasets.Value("bool"),
                        }
                    ),
                }
            ),
        )

    def _split_generators(
        self, dl_manager: DownloadManager
    ) -> List[datasets.SplitGenerator]:
        """
        Provides the split information and downloads the data.

        Args:
            dl_manager (DownloadManager): The DownloadManager to use for
                downloading and extracting data.

        Returns:
            List[SplitGenerator]: List of SplitGenrator objects representing
                the data splits.
        """
        archive_yolo = dl_manager.download(_URLS["yolo"])
        archive_yolo = dl_manager.extract(archive_yolo)
        data_folder = "braintumors"
        data_folder_yolo = data_folder + "_yolo"
        data_folder_coco = data_folder + "_coco"
        folders = os.listdir(str(archive_yolo))
        # copy
        for from_folder in folders:
            from_folder = os.path.join(archive_yolo, from_folder)
            to_folder = os.path.join(archive_yolo, data_folder_yolo)
            for images_labels in ["images", "labels"]:
                for train_test in ["train", "test"]:
                    copy_yolo_files(
                        from_folder, to_folder, images_labels, train_test
                    )

        # Open the file and load the file
        with open(
            os.path.join(archive_yolo, folders[0], folders[0] + ".yaml")
        ) as f:
            classes = yaml.load(f, Loader=SafeLoader)["names"]

        # Write classes.txt
        with open(
            os.path.join(archive_yolo, data_folder_yolo, "classes.txt"), "w"
        ) as f:
            f.write("\n".join(classes))

        data_folder_yolo = os.path.join(archive_yolo, data_folder_yolo)
        data_folder_coco = os.path.join(archive_yolo, data_folder_coco)
        yolo_to_coco(data_folder_yolo, data_folder_coco, "train")
        yolo_to_coco(data_folder_yolo, data_folder_coco, "test")

        name_ds = str(archive_yolo) + "/braintumors_coco"
        image_root_train = name_ds + "/train"
        image_root_test = name_ds + "/test"
        af = "_annotations.coco.json"
        json_file_train = name_ds + "/train/" + af
        json_file_test = name_ds + "/test/" + af

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_path": json_file_train,
                    "images_dir": image_root_train,
                    "images": dl_manager.iter_files(image_root_train),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_path": json_file_test,
                    "images_dir": image_root_test,
                    "images": dl_manager.iter_files(image_root_test),
                },
            ),
        ]

    def _generate_examples(
        self, annotation_path: Path, images_dir: Path, images: ArchiveIterable
    ) -> Iterator:
        """
        Generates examples for the dataset.

        Args:
            annotation_path (Path): The path to the annotation file.
            images_dir (Path): The path to the directory containing the images.
            images: (ArchiveIterable): An iterable containing the images.

        Yields:
            Dict[str, Union[str, Image]]: A dictionary containing the
                generated examples.
        """
        coco_annotation = COCOHelper(annotation_path, images_dir)

        for image_path in images:
            image_path = os.path.normpath(image_path)
            if "_annotations.coco.json" not in image_path:
                f = open(image_path, "rb")
                annotations = coco_annotation.get_annotations(image_path)
                ret = {
                    "image": {"path": image_path, "bytes": f.read()},
                    "image_id": coco_annotation.get_image_id(image_path),
                    "objects": [
                        {
                            "id": annot["id"],
                            "area": annot["area"],
                            "bbox": round_box_values(
                                annot["bbox"], 2
                            ),  # [x, y, w, h]
                            "label": annot["category_id"],
                            "iscrowd": bool(annot["iscrowd"]),
                        }
                        for annot in annotations
                    ],
                }
                yield image_path, ret