chanelcolgate
commited on
Commit
·
d12d104
1
Parent(s):
2130214
new file: braintumor.py
Browse files- README.md +32 -3
- braintumor.py +276 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,7 +1,36 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# Dataset Card for Dataset Name
|
|
|
1 |
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: image
|
5 |
+
dtype: image
|
6 |
+
- name: image_id
|
7 |
+
dtype: int64
|
8 |
+
- name: objects
|
9 |
+
sequence:
|
10 |
+
- name: id
|
11 |
+
dtype: int64
|
12 |
+
- name: area
|
13 |
+
dtype: float64
|
14 |
+
- name: bbox
|
15 |
+
sequence: float32
|
16 |
+
length: 4
|
17 |
+
- name: label
|
18 |
+
dtype:
|
19 |
+
class_label:
|
20 |
+
names:
|
21 |
+
'0': negative
|
22 |
+
'1': positive
|
23 |
+
- name: iscrowd
|
24 |
+
dtype: bool
|
25 |
+
splits:
|
26 |
+
- name: train
|
27 |
+
num_bytes: 222568
|
28 |
+
num_examples: 893
|
29 |
+
- name: test
|
30 |
+
num_bytes: 55697
|
31 |
+
num_examples: 223
|
32 |
+
download_size: 12896319
|
33 |
+
dataset_size: 278265
|
34 |
---
|
35 |
|
36 |
# Dataset Card for Dataset Name
|
braintumor.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import json
|
4 |
+
from pathlib import Path
|
5 |
+
from tqdm import tqdm
|
6 |
+
from glob import glob
|
7 |
+
from typing import Dict, Any, List, Union, Iterator
|
8 |
+
|
9 |
+
import yaml
|
10 |
+
from yaml.loader import SafeLoader
|
11 |
+
import datasets
|
12 |
+
from datasets.download.download_manager import DownloadManager, ArchiveIterable
|
13 |
+
from pylabel import importer
|
14 |
+
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
Training image sets and labels/bounding box coordinates for detecting brain
|
18 |
+
tumors in MR images.
|
19 |
+
- The datasets JPGs exported at their native size and are separated by plan
|
20 |
+
(Axial, Coronal and Sagittal).
|
21 |
+
- Tumors were hand labeled using https://makesense.ai
|
22 |
+
- Bounding box coordinates and MGMT positive labels were marked on ~400 images
|
23 |
+
for each plane in the T1wCE series from the RSNA-MICCAI competition data.
|
24 |
+
"""
|
25 |
+
|
26 |
+
_URLS = {
|
27 |
+
"yolo": "https://huggingface.co/datasets/chanelcolgate/tumorsbrain/resolve/main/data/archive.zip"
|
28 |
+
}
|
29 |
+
|
30 |
+
_CLASSES = ["negative", "positive"]
|
31 |
+
|
32 |
+
|
33 |
+
# move all into one folder
|
34 |
+
def copy_yolo_files(from_folder, to_folder, images_labels, train_test):
|
35 |
+
from_path = os.path.join(from_folder, images_labels, train_test)
|
36 |
+
to_path = os.path.join(to_folder, images_labels, train_test)
|
37 |
+
os.makedirs(to_path, exist_ok=True)
|
38 |
+
# get files
|
39 |
+
file_ext = "*.jpg" if images_labels == "images" else "*.txt"
|
40 |
+
files = glob(os.path.join(from_path, file_ext))
|
41 |
+
# move files
|
42 |
+
for file in tqdm(files):
|
43 |
+
shutil.copy(file, to_path)
|
44 |
+
|
45 |
+
|
46 |
+
def yolo_to_coco(input_folder, output_folder, train_test):
|
47 |
+
labels_path = os.path.join(input_folder, "labels", train_test)
|
48 |
+
images_path = os.path.join(input_folder, "images", train_test)
|
49 |
+
coco_dir = os.path.join(output_folder, train_test)
|
50 |
+
os.makedirs(coco_dir, exist_ok=True)
|
51 |
+
|
52 |
+
txt_files = glob(os.path.join(labels_path, "*.txt"))
|
53 |
+
img_files = glob(os.path.join(images_path, "*.jpg"))
|
54 |
+
# copy annotations
|
55 |
+
for f in tqdm(txt_files):
|
56 |
+
shutil.copy(f, coco_dir)
|
57 |
+
# copy images
|
58 |
+
for f in tqdm(img_files):
|
59 |
+
shutil.copy(f, coco_dir)
|
60 |
+
|
61 |
+
# get the classes
|
62 |
+
with open(os.path.join(input_folder, "classes.txt"), "r") as f:
|
63 |
+
classes = f.read().split("\n")
|
64 |
+
|
65 |
+
# load dataset
|
66 |
+
dataset = importer.ImportYoloV5(
|
67 |
+
path=coco_dir, cat_names=classes, name="brain tumors"
|
68 |
+
)
|
69 |
+
# export
|
70 |
+
coco_file = os.path.join(coco_dir, "_annotations.coco.json")
|
71 |
+
# Detection requires starting index from 1
|
72 |
+
dataset.export.ExportToCoco(coco_file, cat_id_index=0)
|
73 |
+
# now delete yolo annotations in coco set
|
74 |
+
for f in txt_files:
|
75 |
+
os.remove(f.replace(labels_path, coco_dir))
|
76 |
+
|
77 |
+
|
78 |
+
def round_box_values(box, decimals=2):
|
79 |
+
return [round(val, decimals) for val in box]
|
80 |
+
|
81 |
+
|
82 |
+
class COCOHelper:
|
83 |
+
"""Helper class to load COCO annotations"""
|
84 |
+
|
85 |
+
def __init__(self, annotation_path: Path, images_dir: Path) -> None:
|
86 |
+
with open(annotation_path, "r") as file:
|
87 |
+
data = json.load(file)
|
88 |
+
self.data = data
|
89 |
+
|
90 |
+
dict_id2annot: Dict[int, Any] = {}
|
91 |
+
for annot in self.annotations:
|
92 |
+
dict_id2annot.setdefault(annot["image_id"], []).append(annot)
|
93 |
+
|
94 |
+
# Sort by id
|
95 |
+
dict_id2annot = {
|
96 |
+
k: list(sorted(v, key=lambda a: a["id"]))
|
97 |
+
for k, v in dict_id2annot.items()
|
98 |
+
}
|
99 |
+
|
100 |
+
self.dict_path2annot: Dict[str, Any] = {}
|
101 |
+
self.dict_path2id: Dict[str, Any] = {}
|
102 |
+
for img in self.images:
|
103 |
+
path_img = os.path.join(images_dir, img["file_name"])
|
104 |
+
path_img_str = os.path.normpath(path_img)
|
105 |
+
idx = int(img["id"])
|
106 |
+
annot = dict_id2annot.get(idx, [])
|
107 |
+
self.dict_path2annot[path_img_str] = annot
|
108 |
+
self.dict_path2id[path_img_str] = img["id"]
|
109 |
+
|
110 |
+
def __len__(self) -> int:
|
111 |
+
return len(self.data["images"])
|
112 |
+
|
113 |
+
@property
|
114 |
+
def images(self) -> List[Dict[str, Union[str, int]]]:
|
115 |
+
return self.data["images"]
|
116 |
+
|
117 |
+
@property
|
118 |
+
def annotations(self) -> List[Any]:
|
119 |
+
return self.data["annotations"]
|
120 |
+
|
121 |
+
@property
|
122 |
+
def categories(self) -> List[Dict[str, Union[str, int]]]:
|
123 |
+
return self.data["categories"]
|
124 |
+
|
125 |
+
def get_annotations(self, image_path: str) -> List[Any]:
|
126 |
+
return self.dict_path2annot.get(image_path, [])
|
127 |
+
|
128 |
+
def get_image_id(self, image_path: str) -> int:
|
129 |
+
return self.dict_path2id.get(image_path, -1)
|
130 |
+
|
131 |
+
|
132 |
+
class COCOBrainTumor(datasets.GeneratorBasedBuilder):
|
133 |
+
"""COCO Brain Tumor dataset"""
|
134 |
+
|
135 |
+
VERSION = datasets.Version("1.0.1")
|
136 |
+
|
137 |
+
def _info(self) -> datasets.DatasetInfo:
|
138 |
+
"""
|
139 |
+
Return the dataset metadata and features.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
DatasetInfo: Metadata and features of the dataset.
|
143 |
+
"""
|
144 |
+
return datasets.DatasetInfo(
|
145 |
+
description=_DESCRIPTION,
|
146 |
+
features=datasets.Features(
|
147 |
+
{
|
148 |
+
"image": datasets.Image(),
|
149 |
+
"image_id": datasets.Value("int64"),
|
150 |
+
"objects": datasets.Sequence(
|
151 |
+
{
|
152 |
+
"id": datasets.Value("int64"),
|
153 |
+
"area": datasets.Value("float64"),
|
154 |
+
"bbox": datasets.Sequence(
|
155 |
+
datasets.Value("float32"), length=4
|
156 |
+
),
|
157 |
+
"label": datasets.ClassLabel(names=_CLASSES),
|
158 |
+
"iscrowd": datasets.Value("bool"),
|
159 |
+
}
|
160 |
+
),
|
161 |
+
}
|
162 |
+
),
|
163 |
+
)
|
164 |
+
|
165 |
+
def _split_generators(
|
166 |
+
self, dl_manager: DownloadManager
|
167 |
+
) -> List[datasets.SplitGenerator]:
|
168 |
+
"""
|
169 |
+
Provides the split information and downloads the data.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
dl_manager (DownloadManager): The DownloadManager to use for
|
173 |
+
downloading and extracting data.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
List[SplitGenerator]: List of SplitGenrator objects representing
|
177 |
+
the data splits.
|
178 |
+
"""
|
179 |
+
archive_yolo = dl_manager.download_and_extract(_URLS["yolo"])
|
180 |
+
data_folder = "braintumors"
|
181 |
+
data_folder_yolo = data_folder + "_yolo"
|
182 |
+
data_folder_coco = data_folder + "_coco"
|
183 |
+
folders = os.listdir(str(archive_yolo))
|
184 |
+
|
185 |
+
# copy
|
186 |
+
for from_folder in folders:
|
187 |
+
from_folder = os.path.join(archive_yolo, from_folder)
|
188 |
+
to_folder = os.path.join(archive_yolo, data_folder_yolo)
|
189 |
+
for images_labels in ["images", "labels"]:
|
190 |
+
for train_test in ["train", "test"]:
|
191 |
+
copy_yolo_files(
|
192 |
+
from_folder, to_folder, images_labels, train_test
|
193 |
+
)
|
194 |
+
|
195 |
+
# Open the file and load the file
|
196 |
+
with open(
|
197 |
+
os.path.join(archive_yolo, folders[0], folders[0] + ".yaml")
|
198 |
+
) as f:
|
199 |
+
classes = yaml.load(f, Loader=SafeLoader)["names"]
|
200 |
+
|
201 |
+
# Write classes.txt
|
202 |
+
with open(
|
203 |
+
os.path.join(archive_yolo, data_folder_yolo, "classes.txt"), "w"
|
204 |
+
) as f:
|
205 |
+
f.write("\n".join(classes))
|
206 |
+
|
207 |
+
data_folder_yolo = os.path.join(archive_yolo, data_folder_yolo)
|
208 |
+
data_folder_coco = os.path.join(archive_yolo, data_folder_coco)
|
209 |
+
yolo_to_coco(data_folder_yolo, data_folder_coco, "train")
|
210 |
+
yolo_to_coco(data_folder_yolo, data_folder_coco, "test")
|
211 |
+
|
212 |
+
name_ds = str(archive_yolo) + "/braintumors_coco"
|
213 |
+
image_root_train = name_ds + "/train"
|
214 |
+
image_root_test = name_ds + "/test"
|
215 |
+
af = "_annotations.coco.json"
|
216 |
+
json_file_train = name_ds + "/train/" + af
|
217 |
+
json_file_test = name_ds + "/test/" + af
|
218 |
+
|
219 |
+
return [
|
220 |
+
datasets.SplitGenerator(
|
221 |
+
name=datasets.Split("train"),
|
222 |
+
gen_kwargs={
|
223 |
+
"annotation_path": json_file_train,
|
224 |
+
"images_dir": image_root_train,
|
225 |
+
"images": dl_manager.iter_files(image_root_train),
|
226 |
+
},
|
227 |
+
),
|
228 |
+
datasets.SplitGenerator(
|
229 |
+
name=datasets.Split("test"),
|
230 |
+
gen_kwargs={
|
231 |
+
"annotation_path": json_file_test,
|
232 |
+
"images_dir": image_root_test,
|
233 |
+
"images": dl_manager.iter_files(image_root_test),
|
234 |
+
},
|
235 |
+
),
|
236 |
+
]
|
237 |
+
|
238 |
+
def _generate_examples(
|
239 |
+
self, annotation_path: Path, images_dir: Path, images: ArchiveIterable
|
240 |
+
) -> Iterator:
|
241 |
+
"""
|
242 |
+
Generates examples for the dataset.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
annotation_path (Path): The path to the annotation file.
|
246 |
+
images_dir (Path): The path to the directory containing the images.
|
247 |
+
images: (ArchiveIterable): An iterable containing the images.
|
248 |
+
|
249 |
+
Yields:
|
250 |
+
Dict[str, Union[str, Image]]: A dictionary containing the
|
251 |
+
generated examples.
|
252 |
+
"""
|
253 |
+
coco_annotation = COCOHelper(annotation_path, images_dir)
|
254 |
+
|
255 |
+
for image_path in images:
|
256 |
+
image_path = os.path.normpath(image_path)
|
257 |
+
if "_annotations.coco.json" not in image_path:
|
258 |
+
f = open(image_path, "rb")
|
259 |
+
annotations = coco_annotation.get_annotations(image_path)
|
260 |
+
ret = {
|
261 |
+
"image": {"path": image_path, "bytes": f.read()},
|
262 |
+
"image_id": coco_annotation.get_image_id(image_path),
|
263 |
+
"objects": [
|
264 |
+
{
|
265 |
+
"id": annot["id"],
|
266 |
+
"area": annot["area"],
|
267 |
+
"bbox": round_box_values(
|
268 |
+
annot["bbox"], 2
|
269 |
+
), # [x, y, w, h]
|
270 |
+
"label": annot["category_id"],
|
271 |
+
"iscrowd": bool(annot["iscrowd"]),
|
272 |
+
}
|
273 |
+
for annot in annotations
|
274 |
+
],
|
275 |
+
}
|
276 |
+
yield image_path, ret
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pylabel
|