_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
6.81k
trendingScore
float64
0
108
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
2.19M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
key
stringclasses
1 value
citation
stringlengths
0
10.7k
paperswithcode_id
stringclasses
645 values
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
6,812
108
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
5,256
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
66cbf7ef92e9f5b19fcd65aa
cfahlgren1/react-code-instructions
cfahlgren1
{"license": "mit", "pretty_name": "React Code Instructions"}
false
null
2025-01-12T00:23:14
101
56
false
809623581765243ac82ba0bd09553f36c9f6ac9c
React Code Instructions Popular Queries Number of instructions by Model Unnested Messages Instructions Added Per Day Dataset of Claude Artifact esque React Apps generated by Llama 3.1 70B, Llama 3.1 405B, and Deepseek Chat V3. Examples Virtual Fitness Trainer Website LinkedIn Clone iPhone Calculator Chipotle Waitlist Apple Store
520
[ "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2024-08-26T03:35:11
null
null
67750882633d421965733171
DAMO-NLP-SG/multimodal_textbook
DAMO-NLP-SG
{"license": "apache-2.0", "task_categories": ["text-generation", "summarization"], "language": ["en"], "tags": ["Pretraining", "Interleaved", "Reasoning"], "size_categories": ["1M<n<10M"]}
false
null
2025-01-11T11:48:45
64
55
false
b83d307b2682d6b12420f5b93f4360880ea89df4
Multimodal-Textbook-6.5M Overview This dataset is for "2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining", containing 6.5M images interleaving with 0.8B text from instructional videos. It contains pre-training corpus using interleaved image-text format. Specifically, our multimodal-textbook includes 6.5M keyframes extracted from instructional videos, interleaving with 0.8B ASR texts. All the images and text are extracted from… See the full description on the dataset page: https://huggingface.co./datasets/DAMO-NLP-SG/multimodal_textbook.
2,087
[ "task_categories:text-generation", "task_categories:summarization", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "arxiv:2501.00958", "region:us", "Pretraining", "Interleaved", "Reasoning" ]
2025-01-01T09:18:58
null
null
6758176e04e2f15d7bfacd54
PowerInfer/QWQ-LONGCOT-500K
PowerInfer
{"license": "apache-2.0", "language": ["en"]}
false
null
2024-12-26T10:19:19
92
33
false
10a787d967281599e9be6761717147817c018424
This repository contains approximately 500,000 instances of responses generated using QwQ-32B-Preview language model. The dataset combines prompts from multiple high-quality sources to create diverse and comprehensive training data. The dataset is available under the Apache 2.0 license. Over 75% of the responses exceed 8,000 tokens in length. The majority of prompts were carefully created using persona-based methods to create challenging instructions. Bias, Risks, and Limitations… See the full description on the dataset page: https://huggingface.co./datasets/PowerInfer/QWQ-LONGCOT-500K.
582
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-10T10:26:54
null
null
66a6da71f0dc7c8df2e0f979
OpenLeecher/lmsys_chat_1m_clean
OpenLeecher
{"language": ["en"], "size_categories": ["100K<n<1M"], "pretty_name": "Cleaned LMSYS dataset", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "category", "dtype": "string"}, {"name": "grounded", "dtype": "bool"}, {"name": "deepseek_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "phi-3-mini_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "flaw", "dtype": "string"}, {"name": "agreement", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 1673196622, "num_examples": 273402}], "download_size": 906472159, "dataset_size": 1673196622}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-12-31T22:35:13
55
23
false
e9f2f6838a2dbba87c216bb6bc406e8d7ce0f389
Cleaning and Categorizing A few weeks ago, I had the itch to do some data crunching, so I began this project - to clean and classify lmsys-chat-1m. The process was somewhat long and tedious, but here is the quick overview: 1. Removing Pure Duplicate Instructions The first step was to eliminate pure duplicate instructions. This involved: Removing whitespace and punctuation. Ensuring that if two instructions matched after that, only one was retained. This step… See the full description on the dataset page: https://huggingface.co./datasets/OpenLeecher/lmsys_chat_1m_clean.
609
[ "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-28T23:55:29
null
null
67449661149efb6edaa63b98
HuggingFaceTB/finemath
HuggingFaceTB
{"license": "odc-by", "dataset_info": [{"config_name": "finemath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 137764105388.93857, "num_examples": 21405610}], "download_size": 65039196945, "dataset_size": 137764105388.93857}, {"config_name": "finemath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 39101488149.09091, "num_examples": 6699493}], "download_size": 18365184633, "dataset_size": 39101488149.09091}, {"config_name": "infiwebmath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 96485696853.10182, "num_examples": 13882669}], "download_size": 46808660851, "dataset_size": 96485696853.10182}, {"config_name": "infiwebmath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 40002719500.1551, "num_examples": 6296212}], "download_size": 19234328998, "dataset_size": 40002719500.1551}], "configs": [{"config_name": "finemath-3plus", "data_files": [{"split": "train", "path": "finemath-3plus/train-*"}]}, {"config_name": "finemath-4plus", "data_files": [{"split": "train", "path": "finemath-4plus/train-*"}]}, {"config_name": "infiwebmath-3plus", "data_files": [{"split": "train", "path": "infiwebmath-3plus/train-*"}]}, {"config_name": "infiwebmath-4plus", "data_files": [{"split": "train", "path": "infiwebmath-4plus/train-*"}]}]}
false
null
2024-12-23T11:19:16
242
21
false
8f233cf84cff0b817b3ffb26d5be7370990dd557
📐 FineMath What is it? 📐 FineMath consists of 34B tokens (FineMath-3+) and 54B tokens (FineMath-3+ with InfiMM-WebMath-3+) of mathematical educational content filtered from CommonCrawl. To curate this dataset, we trained a mathematical content classifier using annotations generated by LLama-3.1-70B-Instruct. We used the classifier to retain only the most educational mathematics content, focusing on clear explanations and step-by-step problem solving rather than… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceTB/finemath.
35,291
[ "license:odc-by", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "doi:10.57967/hf/3847", "region:us" ]
2024-11-25T15:23:13
null
null
6763e94724dee5a47c7c77f7
agibot-world/AgiBotWorld-Alpha
agibot-world
{"pretty_name": "AgiBot World", "size_categories": ["n>1T"], "task_categories": ["other"], "language": ["en"], "tags": ["real-world", "dual-arm", "Robotics manipulation"], "extra_gated_prompt": "### AgiBot World COMMUNITY LICENSE AGREEMENT\nAgiBot World Alpha Release Date: December 30, 2024 All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Email": "text", "Country": "country", "Affiliation": "text", "Phone": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "Research interest": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the AgiBot Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the AgiBot Privacy Policy.", "extra_gated_button_content": "Submit"}
false
null
2025-01-09T02:59:03
156
21
false
53f3739cc041164023f988d7c7b98f6af3f0d2c0
Key Features 🔑 1 million+ trajectories from 100 robots. 100+ real-world scenarios across 5 target domains. Cutting-edge hardware: visual tactile sensors / 6-DoF dexterous hand / mobile dual-arm robots Tasks involving: Contact-rich manipulation Long-horizon planning Multi-robot collaboration Your browser does not support the video tag. Your browser does not support the video tag.… See the full description on the dataset page: https://huggingface.co./datasets/agibot-world/AgiBotWorld-Alpha.
9,556
[ "task_categories:other", "language:en", "size_categories:10M<n<100M", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "real-world", "dual-arm", "Robotics manipulation" ]
2024-12-19T09:37:11
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["medical", "biology"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "medical_o1_sft.json"}]}]}
false
null
2025-01-04T13:01:37
48
20
false
06ac0b8d4960fa84ef55198ea8086266f1e3da81
Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o, which searches for solutions to verifiable medical problems and validates them through a medical verifier. For details, see our paper and GitHub repository. Citation If you find our data useful, please consider citing our work! @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
446
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
677c1f196b1653e3955dbce7
Rapidata/text-2-image-Rich-Human-Feedback
Rapidata
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "word_scores", "dtype": "string"}, {"name": "alignment_score_norm", "dtype": "float32"}, {"name": "coherence_score_norm", "dtype": "float32"}, {"name": "style_score_norm", "dtype": "float32"}, {"name": "alignment_heatmap", "sequence": {"sequence": "float16"}}, {"name": "coherence_heatmap", "sequence": {"sequence": "float16"}}, {"name": "alignment_score", "dtype": "float32"}, {"name": "coherence_score", "dtype": "float32"}, {"name": "style_score", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 25257389633.104, "num_examples": 13024}], "download_size": 17856619960, "dataset_size": 25257389633.104}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["text-to-image", "text-classification", "image-classification", "image-to-text", "image-segmentation"], "language": ["en"], "tags": ["t2i", "preferences", "human", "flux", "midjourney", "imagen", "dalle", "heatmap", "coherence", "alignment", "style", "plausiblity"], "pretty_name": "Rich Human Feedback for Text to Image Models", "size_categories": ["1M<n<10M"]}
false
null
2025-01-11T13:23:04
18
18
false
e77afd00e481d9d2ca41a5b5c4f89cb704de45c6
Building upon Google's research Rich Human Feedback for Text-to-Image Generation we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the Python API. Collection took roughly 5 days. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were… See the full description on the dataset page: https://huggingface.co./datasets/Rapidata/text-2-image-Rich-Human-Feedback.
375
[ "task_categories:text-to-image", "task_categories:text-classification", "task_categories:image-classification", "task_categories:image-to-text", "task_categories:image-segmentation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2312.10240", "region:us", "t2i", "preferences", "human", "flux", "midjourney", "imagen", "dalle", "heatmap", "coherence", "alignment", "style", "plausiblity" ]
2025-01-06T18:21:13
null
null
6695831f2d25bd04e969b0a2
AI-MO/NuminaMath-CoT
AI-MO
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"}
false
null
2024-11-25T05:31:43
308
17
false
9d8d210c9f6a36c8f3cd84045668c9b7800ef517
Dataset Card for NuminaMath CoT Dataset Summary Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co./datasets/AI-MO/NuminaMath-CoT.
3,424
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "aimo", "math" ]
2024-07-15T20:14:23
null
null
66a1d16a27fd84b81d732482
TEAMREBOOTT-AI/SciCap-MLBCAP
TEAMREBOOTT-AI
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "image-to-text"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "figure_type", "dtype": "string"}, {"name": "ocr", "dtype": "string"}, {"name": "paragraph", "dtype": "string"}, {"name": "mention", "dtype": "string"}, {"name": "figure_description", "dtype": "string"}, {"name": "mlbcap_long", "dtype": "string"}, {"name": "mlbcap_short", "dtype": "string"}, {"name": "categories", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2444177418.129, "num_examples": 47639}], "download_size": 2487129056, "dataset_size": 2444177418.129}, "size_categories": ["10K<n<100K"]}
false
null
2025-01-07T13:56:33
15
15
false
44f062ec4e5ec42898326cbea2f80f147a1ba861
MLBCAP: Multi-LLM Collaborative Caption Generation in Scientific Documents 📄 PaperMLBCAP has been accepted for presentation at AI4Research @ AAAI 2025. 🎉 📌 Introduction Scientific figure captioning is a challenging task that demands contextually accurate descriptions of visual content. Existing approaches often oversimplify the task by treating it as either an image-to-text conversion or text summarization problem, leading to suboptimal results. Furthermore… See the full description on the dataset page: https://huggingface.co./datasets/TEAMREBOOTT-AI/SciCap-MLBCAP.
200
[ "task_categories:text-generation", "task_categories:image-to-text", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2501.02552", "region:us" ]
2024-07-25T04:15:38
null
null
673a1149a7a311f5bed5c624
HuggingFaceTB/smoltalk
HuggingFaceTB
{"language": ["en"], "tags": ["synthetic"], "pretty_name": "SmolTalk", "size_categories": ["1M<n<10M"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "data/all/train-*"}, {"split": "test", "path": "data/all/test-*"}]}, {"config_name": "smol-magpie-ultra", "data_files": [{"split": "train", "path": "data/smol-magpie-ultra/train-*"}, {"split": "test", "path": "data/smol-magpie-ultra/test-*"}]}, {"config_name": "smol-constraints", "data_files": [{"split": "train", "path": "data/smol-constraints/train-*"}, {"split": "test", "path": "data/smol-constraints/test-*"}]}, {"config_name": "smol-rewrite", "data_files": [{"split": "train", "path": "data/smol-rewrite/train-*"}, {"split": "test", "path": "data/smol-rewrite/test-*"}]}, {"config_name": "smol-summarize", "data_files": [{"split": "train", "path": "data/smol-summarize/train-*"}, {"split": "test", "path": "data/smol-summarize/test-*"}]}, {"config_name": "apigen-80k", "data_files": [{"split": "train", "path": "data/apigen-80k/train-*"}, {"split": "test", "path": "data/apigen-80k/test-*"}]}, {"config_name": "everyday-conversations", "data_files": [{"split": "train", "path": "data/everyday-conversations/train-*"}, {"split": "test", "path": "data/everyday-conversations/test-*"}]}, {"config_name": "explore-instruct-rewriting", "data_files": [{"split": "train", "path": "data/explore-instruct-rewriting/train-*"}, {"split": "test", "path": "data/explore-instruct-rewriting/test-*"}]}, {"config_name": "longalign", "data_files": [{"split": "train", "path": "data/longalign/train-*"}, {"split": "test", "path": "data/longalign/test-*"}]}, {"config_name": "metamathqa-50k", "data_files": [{"split": "train", "path": "data/metamathqa-50k/train-*"}, {"split": "test", "path": "data/metamathqa-50k/test-*"}]}, {"config_name": "numina-cot-100k", "data_files": [{"split": "train", "path": "data/numina-cot-100k/train-*"}, {"split": "test", "path": "data/numina-cot-100k/test-*"}]}, {"config_name": "openhermes-100k", "data_files": [{"split": "train", "path": "data/openhermes-100k/train-*"}, {"split": "test", "path": "data/openhermes-100k/test-*"}]}, {"config_name": "self-oss-instruct", "data_files": [{"split": "train", "path": "data/self-oss-instruct/train-*"}, {"split": "test", "path": "data/self-oss-instruct/test-*"}]}, {"config_name": "systemchats-30k", "data_files": [{"split": "train", "path": "data/systemchats-30k/train-*"}, {"split": "test", "path": "data/systemchats-30k/test-*"}]}]}
false
null
2024-11-26T11:02:25
276
14
false
5a40ecb185e55dd30edf3c24b77e67f6ea0d659b
SmolTalk Dataset description This is a synthetic dataset designed for supervised finetuning (SFT) of LLMs. It was used to build SmolLM2-Instruct family of models and contains 1M samples. During the development of SmolLM2, we observed that models finetuned on public SFT datasets underperformed compared to other models with proprietary instruction datasets. To address this gap, we created new synthetic datasets that improve instruction following while covering… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceTB/smoltalk.
6,294
[ "language:en", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "synthetic" ]
2024-11-17T15:52:41
null
null
673e9e53cdad8a9744b0bf1b
O1-OPEN/OpenO1-SFT
O1-OPEN
{"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en", "zh"], "size_categories": ["10K<n<100K"]}
false
null
2024-12-17T02:30:09
321
14
false
63112de109aa755e9cdfad63a13f08a92dd7df36
SFT Data for CoT Activation 🎉🎉🎉This repository contains the dataset used for fine-tuning a language model using SFT for Chain-of-Thought Activation. 🌈🌈🌈The dataset is designed to enhance the model's ability to generate coherent and logical reasoning sequences. ☄☄☄By using this dataset, the model can learn to produce detailed and structured reasoning steps, enhancing its performance on complex reasoning tasks. Statistics 1️⃣Total Records: 77,685… See the full description on the dataset page: https://huggingface.co./datasets/O1-OPEN/OpenO1-SFT.
2,119
[ "task_categories:question-answering", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-21T02:43:31
null
null
67734d5c7ec2413faa8d3c85
PowerInfer/LONGCOT-Refine-500K
PowerInfer
{"language": ["en"], "license": "apache-2.0"}
false
null
2025-01-02T06:10:43
35
14
false
88bf8410db01197006e572a46c88311720a23577
This repository contains approximately 500,000 instances of responses generated using Qwen2.5-72B-Instruct. The dataset combines prompts from multiple high-quality sources to create diverse and comprehensive training data. The dataset is available under the Apache 2.0 license. Bias, Risks, and Limitations This dataset is mainly in English. The dataset inherits the biases, errors, and omissions known to exist in data used for seed sources and models used for data generation.… See the full description on the dataset page: https://huggingface.co./datasets/PowerInfer/LONGCOT-Refine-500K.
280
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-31T01:48:12
null
null
6649d353babc0b33565e1a4a
HumanLLMs/Human-Like-DPO-Dataset
HumanLLMs
{"language": ["en"], "license": "other", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data.json"}]}]}
false
null
2024-09-23T16:30:29
40
13
false
77522f471820b963b4f81e7492a3e37febde5f18
null
253
[ "language:en", "license:other", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-05-19T10:24:19
null
null
676593a303cc6dbb6e857610
Rapidata/text-2-video-human-preferences
Rapidata
{"license": "apache-2.0", "task_categories": ["text-to-video", "video-classification"], "tags": ["human", "preferences", "coherence", "plausibilty", "style", "alignment"], "language": ["en"], "pretty_name": "Human Preferences for Text to Video Models", "size_categories": ["1K<n<10K"], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "video1", "dtype": "string"}, {"name": "video2", "dtype": "string"}, {"name": "weighted_results1_Alignment", "dtype": "float64"}, {"name": "weighted_results2_Alignment", "dtype": "float64"}, {"name": "detailedResults_Alignment", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "weighted_results1_Coherence", "dtype": "float64"}, {"name": "weighted_results2_Coherence", "dtype": "float64"}, {"name": "detailedResults_Coherence", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "weighted_results1_Preference", "dtype": "float64"}, {"name": "weighted_results2_Preference", "dtype": "float64"}, {"name": "detailedResults_Preference", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "file_name1", "dtype": "string"}, {"name": "file_name2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 478042, "num_examples": 316}], "download_size": 121718, "dataset_size": 478042}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-01-11T13:23:47
13
13
false
ec394c772df65ab3377c9c481e76459c23028aff
Rapidata Video Generation Preference Dataset This dataset was collected in ~12 hours using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. The data collected in this dataset informs our text-2-video model benchmark. We just started so currently only two models are represented in this set: Sora Hunyouan Pika 2.0 is currently being evaluated and will be added next. Explore our latest model rankings on our website. If you get value… See the full description on the dataset page: https://huggingface.co./datasets/Rapidata/text-2-video-human-preferences.
130
[ "task_categories:text-to-video", "task_categories:video-classification", "language:en", "license:apache-2.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "human", "preferences", "coherence", "plausibilty", "style", "alignment" ]
2024-12-20T15:56:19
null
null
67744720363e2be467b7c2b5
qingy2024/FineQwQ-142k
qingy2024
{"language": ["en"], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "10k", "num_bytes": 87273156.45129532, "num_examples": 10000}, {"name": "25k", "num_bytes": 218182891.12823832, "num_examples": 25000}, {"name": "50k", "num_bytes": 436365782.25647664, "num_examples": 50000}, {"name": "100k", "num_bytes": 872731564.5129533, "num_examples": 100000}, {"name": "142k", "num_bytes": 1239278821.6083937, "num_examples": 142000}], "download_size": 1265768860, "dataset_size": 2853832215.9573574}, "configs": [{"config_name": "default", "data_files": [{"split": "10k", "path": "data/10k-*"}, {"split": "25k", "path": "data/25k-*"}, {"split": "50k", "path": "data/50k-*"}, {"split": "100k", "path": "data/100k-*"}, {"split": "142k", "path": "data/142k-*"}]}]}
false
null
2025-01-07T18:00:44
14
13
false
f7443bb54d207f590a5d13924c80c9eacfd66fe1
Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design Original Sources: qingy2024/QwQ-LongCoT-Verified-130K (amphora/QwQ-LongCoT-130K), amphora/QwQ-LongCoT-130K-2, PowerInfer/QWQ-LONGCOT-500K. Source Information Rows % powerinfer/qwq-500k Only coding problems kept to avoid overlap 50,899 35.84% qwq-longcot-verified Verified math problems 64,096 45.14% amphora-magpie Diverse general purpose reasoning 27,015 19.02%
285
[ "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-31T19:33:52
null
null
677396c13cd7faf7e8f9dc8c
PRIME-RL/Eurus-2-RL-Data
PRIME-RL
{"license": "mit"}
false
null
2025-01-06T11:21:52
19
12
false
5cbc5bc54c9c8417afd3539fb267422c33b525e6
Eurus-2-RL-Data Links 📜 Blog 🤗 PRIME Collection Introduction Eurus-2-RL-Data is a high-quality RL training dataset of mathematics and coding problems with outcome verifiers (LaTeX answers for math and test cases for coding). For math, we source from NuminaMath-CoT. The problems span from Chinese high school mathematics to International Mathematical Olympiad competition questions. For coding, we source from APPS, CodeContests, TACO, and… See the full description on the dataset page: https://huggingface.co./datasets/PRIME-RL/Eurus-2-RL-Data.
182
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.01981", "region:us" ]
2024-12-31T07:01:21
null
null
6775e1c326815bf20d874413
fal/cosmos-openvid-1m
fal
{"size_categories": ["100K<n<1M"], "viewer": true, "license": "apache-2.0"}
false
null
2025-01-09T02:12:51
17
12
false
10b41fc29006eff62ff64b8795b8ae8ef7ff9cde
Cosmos-Tokenized OpenVid-1M Cosmos-Tokenized OpenVid-1M How to use Shards are stored in parquet format. It has 4 columns: serialized_latent, caption, fps, video. serialized_latent is the latent vector of the video, serialized using torch.save(). Please use the following function to deserialize it:def deserialize_tensor( serialized_tensor: bytes, device: Optional[str] = None ) -> torch.Tensor: return torch.load( io.BytesIO(serialized_tensor)… See the full description on the dataset page: https://huggingface.co./datasets/fal/cosmos-openvid-1m.
735
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-02T00:45:55
null
null
677e5956e84a20259e43d869
Rapidata/Translation-gpt4o_mini-v-gpt4o-v-deepl
Rapidata
{"dataset_info": {"features": [{"name": "original_text", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "total_responses", "dtype": "int64"}, {"name": "weighted_votes_1", "dtype": "float64"}, {"name": "weighted_votes_2", "dtype": "float64"}, {"name": "translation_model_1", "dtype": "string"}, {"name": "translation_model_2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10792019, "num_examples": 746}], "download_size": 1059070, "dataset_size": 10792019}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-01-11T13:23:54
12
12
false
c243b1f54587f0ec225fdc6ff910d48e44668aa3
If you get value from this dataset and would like to see more in the future, please consider liking it. Overview This dataset compares the translation capabilities of GPT-4o and GPT-4o-mini against DeepL across different languages. The comparison involved 100 distinct texts in 4 languages, with each translation being rated by 100 native speakers. Texts that were translated identically across platforms were excluded from the analysis. Results The comparative… See the full description on the dataset page: https://huggingface.co./datasets/Rapidata/Translation-gpt4o_mini-v-gpt4o-v-deepl.
61
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-08T10:54:14
null
null
676f70968756741d47c691df
FreedomIntelligence/medical-o1-verifiable-problem
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["medical", "biology"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "medical_o1_verifiable_problem.json"}]}]}
false
null
2024-12-30T02:56:46
21
11
false
46d5175eb74fdef3516d51d52e8c40db04bbdf35
Introduction This dataset features open-ended medical problems designed to improve LLMs' medical reasoning. Each entry includes a open-ended question and a ground-truth answer based on challenging medical exams. The verifiable answers enable checking LLM outputs, refining their reasoning processes. For details, see our paper and GitHub repository. Citation If you find our data useful, please consider citing our work!… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/medical-o1-verifiable-problem.
177
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:26
null
null
660e7b9b4636ce2b0e77b699
mozilla-foundation/common_voice_17_0
mozilla-foundation
{"pretty_name": "Common Voice Corpus 17.0", "annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ab", "af", "am", "ar", "as", "ast", "az", "ba", "bas", "be", "bg", "bn", "br", "ca", "ckb", "cnh", "cs", "cv", "cy", "da", "de", "dv", "dyu", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gl", "gn", "ha", "he", "hi", "hsb", "ht", "hu", "hy", "ia", "id", "ig", "is", "it", "ja", "ka", "kab", "kk", "kmr", "ko", "ky", "lg", "lij", "lo", "lt", "ltg", "lv", "mdf", "mhr", "mk", "ml", "mn", "mr", "mrj", "mt", "myv", "nan", "ne", "nhi", "nl", "nn", "nso", "oc", "or", "os", "pa", "pl", "ps", "pt", "quy", "rm", "ro", "ru", "rw", "sah", "sat", "sc", "sk", "skr", "sl", "sq", "sr", "sv", "sw", "ta", "te", "th", "ti", "tig", "tk", "tok", "tr", "tt", "tw", "ug", "uk", "ur", "uz", "vi", "vot", "yi", "yo", "yue", "zgh", "zh", "zu", "zza"], "language_bcp47": ["zh-CN", "zh-HK", "zh-TW", "sv-SE", "rm-sursilv", "rm-vallader", "pa-IN", "nn-NO", "ne-NP", "nan-tw", "hy-AM", "ga-IE", "fy-NL"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "source_datasets": ["extended|common_voice"], "paperswithcode_id": "common-voice", "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to not attempt to determine the identity of speakers in the Common Voice dataset."}
false
null
2024-06-16T13:50:23
208
10
false
b10d53980ef166bc24ce3358471c1970d7e6b5ec
Dataset Card for Common Voice Corpus 17.0 Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 31175 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines. The dataset currently consists of 20408 validated hours in 124 languages, but more voices and languages are always added. Take a look at the Languages… See the full description on the dataset page: https://huggingface.co./datasets/mozilla-foundation/common_voice_17_0.
20,031
[ "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "source_datasets:extended|common_voice", "language:ab", "language:af", "language:am", "language:ar", "language:as", "language:ast", "language:az", "language:ba", "language:bas", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:ckb", "language:cnh", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dv", "language:dyu", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gn", "language:ha", "language:he", "language:hi", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ig", "language:is", "language:it", "language:ja", "language:ka", "language:kab", "language:kk", "language:kmr", "language:ko", "language:ky", "language:lg", "language:lij", "language:lo", "language:lt", "language:ltg", "language:lv", "language:mdf", "language:mhr", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:mt", "language:myv", "language:nan", "language:ne", "language:nhi", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:os", "language:pa", "language:pl", "language:ps", "language:pt", "language:quy", "language:rm", "language:ro", "language:ru", "language:rw", "language:sah", "language:sat", "language:sc", "language:sk", "language:skr", "language:sl", "language:sq", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:ti", "language:tig", "language:tk", "language:tok", "language:tr", "language:tt", "language:tw", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:vot", "language:yi", "language:yo", "language:yue", "language:zgh", "language:zh", "language:zu", "language:zza", "license:cc0-1.0", "size_categories:10M<n<100M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:1912.06670", "region:us" ]
2024-04-04T10:06:19
@inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
common-voice
66c84764a47b2d6c582bbb02
amphion/Emilia-Dataset
amphion
{"license": "cc-by-nc-4.0", "task_categories": ["text-to-speech", "automatic-speech-recognition"], "language": ["zh", "en", "ja", "fr", "de", "ko"], "pretty_name": "Emilia", "size_categories": ["10M<n<100M"], "extra_gated_prompt": "Terms of Access: The researcher has requested permission to use the Emilia dataset and the Emilia-Pipe preprocessing pipeline. In exchange for such permission, the researcher hereby agrees to the following terms and conditions:\n1. The researcher shall use the dataset ONLY for non-commercial research and educational purposes.\n2. The authors make no representations or warranties regarding the dataset, \n including but not limited to warranties of non-infringement or fitness for a particular purpose.\n\n3. The researcher accepts full responsibility for their use of the dataset and shall defend and indemnify the authors of Emilia, \n including their employees, trustees, officers, and agents, against any and all claims arising from the researcher's use of the dataset, \n including but not limited to the researcher's use of any copies of copyrighted content that they may create from the dataset.\n\n4. The researcher may provide research associates and colleagues with access to the dataset,\n provided that they first agree to be bound by these terms and conditions.\n \n5. The authors reserve the right to terminate the researcher's access to the dataset at any time.\n6. If the researcher is employed by a for-profit, commercial entity, the researcher's employer shall also be bound by these terms and conditions, and the researcher hereby represents that they are fully authorized to enter into this agreement on behalf of such employer.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Position": "text", "Your Supervisor/manager/director": "text", "I agree to the Terms of Access": "checkbox"}}
false
null
2024-09-06T13:29:55
186
10
false
bcaad00d13e7c101485990a46e88f5884ffed3fc
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation This is the official repository 👑 for the Emilia dataset and the source code for the Emilia-Pipe speech data preprocessing pipeline. News 🔥 2024/08/28: Welcome to join Amphion's Discord channel to stay connected and engage with our community! 2024/08/27: The Emilia dataset is now publicly available! Discover the most extensive and diverse speech generation… See the full description on the dataset page: https://huggingface.co./datasets/amphion/Emilia-Dataset.
38,534
[ "task_categories:text-to-speech", "task_categories:automatic-speech-recognition", "language:zh", "language:en", "language:ja", "language:fr", "language:de", "language:ko", "license:cc-by-nc-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2407.05361", "region:us" ]
2024-08-23T08:25:08
null
null
677ca887f1edc5b457c1eb22
lianghsun/tw-instruct-500k
lianghsun
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["Taiwan", "ROC", "tw", "zh-tw", "chat", "instruction"], "pretty_name": "Common Task-Oriented Dialogues in Taiwan", "size_categories": ["100K<n<1M"]}
false
null
2025-01-10T05:03:52
10
10
false
8cce79fe4783e14eeaa1a279a6e0d29f65bb5862
Dataset Card for Dataset Name [👋歡迎加入 Discord 討論,我們正在找人一塊擴充這個對話集🎉] 台灣常見任務對話集(Common Task-Oriented Dialogues in Taiwan) 為台灣社會裡常見的任務對話,從 lianghsun/tw-instruct 截取出 50 萬筆的子集合版本。 Dataset Details Dataset Description 這個資料集為合成資料集(synthetic datasets),內容由 a. reference-based 和 b. reference-free 的子資料集組合而成。生成 reference-based 資料集時,會先以我們收集用來訓練 lianghsun/Llama-3.2-Taiwan-3B 時的繁體中文文本作為參考文本,透過 LLM 去生成指令對話集,如果參考文本有特別領域的問法,我們將會特別設計該領域或者是適合該文本的問題;生成 reference-free… See the full description on the dataset page: https://huggingface.co./datasets/lianghsun/tw-instruct-500k.
24
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "Taiwan", "ROC", "tw", "zh-tw", "chat", "instruction" ]
2025-01-07T04:07:35
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-03T11:58:46
1,813
9
false
e31fdfd3918d4b48e837d69d274e624a067d7091
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceFW/fineweb.
148,387
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
66bffb77453a7ef6c587560c
edinburgh-dawg/mmlu-redux-2.0
edinburgh-dawg
{"dataset_info": [{"config_name": "abstract_algebra", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "anatomy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "astronomy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "business_ethics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "clinical_knowledge", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "computer_security", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "conceptual_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "econometrics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "electrical_engineering", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "elementary_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "formal_logic", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "global_facts", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_european_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_geography", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_government_and_politics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_macroeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_microeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_statistics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_us_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_world_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "human_aging", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "human_sexuality", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "international_law", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "jurisprudence", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "logical_fallacies", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "machine_learning", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "management", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "marketing", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "medical_genetics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "miscellaneous", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "moral_disputes", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "moral_scenarios", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "nutrition", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "philosophy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "prehistory", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_accounting", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_law", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "public_relations", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "security_studies", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "sociology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "us_foreign_policy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "virology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "world_religions", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}], "configs": [{"config_name": "abstract_algebra", "data_files": [{"split": "test", "path": "abstract_algebra/data-*"}]}, {"config_name": "anatomy", "data_files": [{"split": "test", "path": "anatomy/data-*"}]}, {"config_name": "astronomy", "data_files": [{"split": "test", "path": "astronomy/data-*"}]}, {"config_name": "business_ethics", "data_files": [{"split": "test", "path": "business_ethics/data-*"}]}, {"config_name": "clinical_knowledge", "data_files": [{"split": "test", "path": "clinical_knowledge/data-*"}]}, {"config_name": "college_biology", "data_files": [{"split": "test", "path": "college_biology/data-*"}]}, {"config_name": "college_chemistry", "data_files": [{"split": "test", "path": "college_chemistry/data-*"}]}, {"config_name": "college_computer_science", "data_files": [{"split": "test", "path": "college_computer_science/data-*"}]}, {"config_name": "college_mathematics", "data_files": [{"split": "test", "path": "college_mathematics/data-*"}]}, {"config_name": "college_medicine", "data_files": [{"split": "test", "path": "college_medicine/data-*"}]}, {"config_name": "college_physics", "data_files": [{"split": "test", "path": "college_physics/data-*"}]}, {"config_name": "computer_security", "data_files": [{"split": "test", "path": "computer_security/data-*"}]}, {"config_name": "conceptual_physics", "data_files": [{"split": "test", "path": "conceptual_physics/data-*"}]}, {"config_name": "econometrics", "data_files": [{"split": "test", "path": "econometrics/data-*"}]}, {"config_name": "electrical_engineering", "data_files": [{"split": "test", "path": "electrical_engineering/data-*"}]}, {"config_name": "elementary_mathematics", "data_files": [{"split": "test", "path": "elementary_mathematics/data-*"}]}, {"config_name": "formal_logic", "data_files": [{"split": "test", "path": "formal_logic/data-*"}]}, {"config_name": "global_facts", "data_files": [{"split": "test", "path": "global_facts/data-*"}]}, {"config_name": "high_school_biology", "data_files": [{"split": "test", "path": "high_school_biology/data-*"}]}, {"config_name": "high_school_chemistry", "data_files": [{"split": "test", "path": "high_school_chemistry/data-*"}]}, {"config_name": "high_school_computer_science", "data_files": [{"split": "test", "path": "high_school_computer_science/data-*"}]}, {"config_name": "high_school_european_history", "data_files": [{"split": "test", "path": "high_school_european_history/data-*"}]}, {"config_name": "high_school_geography", "data_files": [{"split": "test", "path": "high_school_geography/data-*"}]}, {"config_name": "high_school_government_and_politics", "data_files": [{"split": "test", "path": "high_school_government_and_politics/data-*"}]}, {"config_name": "high_school_macroeconomics", "data_files": [{"split": "test", "path": "high_school_macroeconomics/data-*"}]}, {"config_name": "high_school_mathematics", "data_files": [{"split": "test", "path": "high_school_mathematics/data-*"}]}, {"config_name": "high_school_microeconomics", "data_files": [{"split": "test", "path": "high_school_microeconomics/data-*"}]}, {"config_name": "high_school_physics", "data_files": [{"split": "test", "path": "high_school_physics/data-*"}]}, {"config_name": "high_school_psychology", "data_files": [{"split": "test", "path": "high_school_psychology/data-*"}]}, {"config_name": "high_school_statistics", "data_files": [{"split": "test", "path": "high_school_statistics/data-*"}]}, {"config_name": "high_school_us_history", "data_files": [{"split": "test", "path": "high_school_us_history/data-*"}]}, {"config_name": "high_school_world_history", "data_files": [{"split": "test", "path": "high_school_world_history/data-*"}]}, {"config_name": "human_aging", "data_files": [{"split": "test", "path": "human_aging/data-*"}]}, {"config_name": "human_sexuality", "data_files": [{"split": "test", "path": "human_sexuality/data-*"}]}, {"config_name": "international_law", "data_files": [{"split": "test", "path": "international_law/data-*"}]}, {"config_name": "jurisprudence", "data_files": [{"split": "test", "path": "jurisprudence/data-*"}]}, {"config_name": "logical_fallacies", "data_files": [{"split": "test", "path": "logical_fallacies/data-*"}]}, {"config_name": "machine_learning", "data_files": [{"split": "test", "path": "machine_learning/data-*"}]}, {"config_name": "management", "data_files": [{"split": "test", "path": "management/data-*"}]}, {"config_name": "marketing", "data_files": [{"split": "test", "path": "marketing/data-*"}]}, {"config_name": "medical_genetics", "data_files": [{"split": "test", "path": "medical_genetics/data-*"}]}, {"config_name": "miscellaneous", "data_files": [{"split": "test", "path": "miscellaneous/data-*"}]}, {"config_name": "moral_disputes", "data_files": [{"split": "test", "path": "moral_disputes/data-*"}]}, {"config_name": "moral_scenarios", "data_files": [{"split": "test", "path": "moral_scenarios/data-*"}]}, {"config_name": "nutrition", "data_files": [{"split": "test", "path": "nutrition/data-*"}]}, {"config_name": "philosophy", "data_files": [{"split": "test", "path": "philosophy/data-*"}]}, {"config_name": "prehistory", "data_files": [{"split": "test", "path": "prehistory/data-*"}]}, {"config_name": "professional_accounting", "data_files": [{"split": "test", "path": "professional_accounting/data-*"}]}, {"config_name": "professional_law", "data_files": [{"split": "test", "path": "professional_law/data-*"}]}, {"config_name": "professional_medicine", "data_files": [{"split": "test", "path": "professional_medicine/data-*"}]}, {"config_name": "professional_psychology", "data_files": [{"split": "test", "path": "professional_psychology/data-*"}]}, {"config_name": "public_relations", "data_files": [{"split": "test", "path": "public_relations/data-*"}]}, {"config_name": "security_studies", "data_files": [{"split": "test", "path": "security_studies/data-*"}]}, {"config_name": "sociology", "data_files": [{"split": "test", "path": "sociology/data-*"}]}, {"config_name": "us_foreign_policy", "data_files": [{"split": "test", "path": "us_foreign_policy/data-*"}]}, {"config_name": "virology", "data_files": [{"split": "test", "path": "virology/data-*"}]}, {"config_name": "world_religions", "data_files": [{"split": "test", "path": "world_religions/data-*"}]}], "license": "cc-by-4.0", "task_categories": ["question-answering"], "language": ["en"], "pretty_name": "MMLU-Redux-2.0", "size_categories": ["1K<n<10K"]}
false
null
2024-11-07T15:38:08
9
9
false
63f54ebd32c36485c679f53b8e2f576d689b9b34
Dataset Card for MMLU-Redux-2.0 MMLU-Redux is a subset of 5,700 manually re-annotated questions across 57 MMLU subjects. Dataset Details Dataset Description Each data point in MMLU-Redux contains seven columns: question (str): The original MMLU question. choices (List[str]): The original list of four choices associated with the question from the MMLU dataset. answer (int): The MMLU ground truth label in the form of an array index between 0 and… See the full description on the dataset page: https://huggingface.co./datasets/edinburgh-dawg/mmlu-redux-2.0.
312
[ "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:arrow", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2406.04127", "doi:10.57967/hf/3469", "region:us" ]
2024-08-17T01:23:03
null
null
674dc01bf413e32210acb235
Rapidata/human-style-preferences-images
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "votes_image1", "dtype": "int64"}, {"name": "votes_image2", "dtype": "int64"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}, {"name": "image1_path", "dtype": "string"}, {"name": "image2_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26229461236, "num_examples": 63752}], "download_size": 17935847407, "dataset_size": 26229461236}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "image-classification", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3"], "size_categories": ["100K<n<1M"], "pretty_name": "imagen-3 vs. Flux-1.1-pro vs. Flux-1-pro vs. Dalle-3 vs. Midjourney-5.2 vs. Stabel-Diffusion-3 - Human Preference Dataset"}
false
null
2025-01-10T21:59:31
12
9
false
79acd5ebcc535309c08d996ab1f88c01077a7b12
Rapidata Image Generation Preference Dataset This dataset was collected in ~4 Days using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview One of the largest human preference datasets for text-to-image models, this release contains over 1,200,000 human… See the full description on the dataset page: https://huggingface.co./datasets/Rapidata/human-style-preferences-images.
405
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-classification", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3" ]
2024-12-02T14:11:39
null
null

Hugging Face Hub Stats

Updated Daily

Downloads last month
1,239

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 10