_id
stringlengths 24
24
| id
stringlengths 5
121
| author
stringlengths 2
42
| cardData
stringlengths 2
1.07M
⌀ | disabled
bool 2
classes | gated
null | lastModified
timestamp[ns] | likes
int64 0
7.52k
| trendingScore
float64 -1
287
| private
bool 1
class | sha
stringlengths 40
40
| description
stringlengths 0
6.67k
⌀ | downloads
int64 0
3.4M
| tags
sequencelengths 1
7.92k
| createdAt
timestamp[ns] | key
stringclasses 1
value | paperswithcode_id
stringclasses 647
values | citation
stringlengths 0
10.7k
⌀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67aa021ced8d8663d42505cc | open-r1/OpenR1-Math-220k | open-r1 | {"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "default", "path": "data/train-*"}, {"split": "extended", "path": "extended/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543630, "num_examples": 93733}], "download_size": 2149879429, "dataset_size": 4964543630}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566486, "num_examples": 131396}], "download_size": 2063805103, "dataset_size": 4769566486}]} | false | null | 2025-02-12T17:04:58 | 332 | 287 | false | 05f30409d9ac7656dd446305aa60f38b7ac35c27 |
OpenR1-Math-220k
Dataset description
OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5.
The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer.
The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co./datasets/open-r1/OpenR1-Math-220k. | 2,426 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T13:41:48 | null | null |
|
6797e648de960c48ff034e54 | open-thoughts/OpenThoughts-114k | open-thoughts | {"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"} | false | null | 2025-02-14T16:45:04 | 528 | 148 | false | 2e11184a4b5b3e777d85be23fb539900936495f4 |
Open-Thoughts-114k
Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles!
Available Subsets
default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models:
ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train")
metadata subset containing extra columns used in dataset construction:
problem
ground_truth_solution
deepseek_reasoning
deepseek_solution… See the full description on the dataset page: https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k. | 52,256 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"curator",
"synthetic"
] | 2025-01-27T20:02:16 | null | null |
|
67a4af5e4ccbc3656f0b4c7c | saiyan-world/Goku-MovieGenBench | saiyan-world | {"task_categories": ["text-to-video"]} | false | null | 2025-02-11T03:18:05 | 165 | 120 | false | fd41363957a6bf5370e573e422fc89e4ec450218 | This repository contains the data associated with the paper Goku: Flow Based Video Generative Foundation Models.
Project page: https://saiyan-world.github.io/goku/
| 18,996 | [
"task_categories:text-to-video",
"size_categories:1K<n<10K",
"modality:video",
"library:datasets",
"library:mlcroissant",
"arxiv:2502.04896",
"region:us"
] | 2025-02-06T12:47:26 | null | null |
|
67a404bc8c6d42c5ec097433 | Anthropic/EconomicIndex | Anthropic | {"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]} | false | null | 2025-02-10T19:28:32 | 142 | 112 | false | 218b35116baa43c55beffe61f243bd81f5f84cf8 |
Overview
This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below.
Please see our blog post and paper for further visualizations and complete analysis.
Data
SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET database… See the full description on the dataset page: https://huggingface.co./datasets/Anthropic/EconomicIndex. | 4,165 | [
"license:mit",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"text"
] | 2025-02-06T00:39:24 | null | null |
|
63990f21cc50af73d29ecfa3 | fka/awesome-chatgpt-prompts | fka | {"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]} | false | null | 2025-01-06T00:02:53 | 7,521 | 105 | false | 68ba7694e23014788dcc8ab5afe613824f45a05c | 🧠 Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts
View All Prompts on GitHub
License
CC-0
| 9,229 | [
"task_categories:question-answering",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"ChatGPT"
] | 2022-12-13T23:47:45 | null | null |
|
67a9f247188f29a956a34a04 | AI-MO/NuminaMath-1.5 | AI-MO | {"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "post-training"], "pretty_name": "NuminaMath 1.5"} | false | null | 2025-02-10T13:28:01 | 96 | 63 | false | 649859605995b1d46eb29389ed9851782a47322e |
Dataset Card for NuminaMath 1.5
Dataset Summary
This is the second iteration of the popular NuminaMath dataset, bringing high quality post-training data for approximately 900k competition-level math problems. Each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs… See the full description on the dataset page: https://huggingface.co./datasets/AI-MO/NuminaMath-1.5. | 452 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"math",
"post-training"
] | 2025-02-10T12:34:15 | null | null |
|
67ac8c807ccaf131c3c68af7 | open-r1/OpenR1-Math-Raw | open-r1 | {"license": "apache-2.0", "language": ["en"], "dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "problem_is_valid", "dtype": "string"}, {"name": "solution_is_valid", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "synthetic", "dtype": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "generations_count", "dtype": "int64"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correct_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19144782231, "num_examples": 516499}], "download_size": 8022181704, "dataset_size": 19144782231}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-02-12T13:32:15 | 62 | 62 | false | 4cbd48dbec7e96690598221505860fd36b86d23f |
OpenR1-Math-Raw
Dataset description
OpenR1-Math-Raw is a large-scale dataset for mathematical reasoning. It consists of 516k math problems sourced from AI-MO/NuminaMath-1.5 with 1 to 8 reasoning traces generated by DeepSeek R1.
The traces were verified using Math Verify, but we recommend additionally annotating the correctness with LLM-as-judge for higher recall.
The dataset contains:
516,499 problems
1,209,403 R1-generated solutions, with 2.3 solutions per problem on… See the full description on the dataset page: https://huggingface.co./datasets/open-r1/OpenR1-Math-Raw. | 0 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-12T11:56:48 | null | null |
|
676f70846bf205795346d2be | FreedomIntelligence/medical-o1-reasoning-SFT | FreedomIntelligence | {"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]} | false | null | 2025-01-13T06:46:27 | 221 | 60 | false | 4c9573e7de1e8660b88158db2efa7c7204bbd269 |
Introduction
This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o, which searches for solutions to verifiable medical problems and validates them through a medical verifier.
For details, see our paper and GitHub repository.
Citation
If you find our data useful, please consider citing our work!
@misc{chen2024huatuogpto1medicalcomplexreasoning,
title={HuatuoGPT-o1, Towards… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/medical-o1-reasoning-SFT. | 6,898 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18925",
"region:us",
"medical",
"biology"
] | 2024-12-28T03:29:08 | null | null |
|
67474c06bd2f2f20b81faef1 | zed-industries/zeta | zed-industries | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.jsonl"}, {"split": "eval", "path": "eval.jsonl"}, {"split": "dpo", "path": "dpo.jsonl"}]}], "license": "apache-2.0"} | false | null | 2025-02-17T16:02:10 | 55 | 55 | false | 070f4d409068321e988cceca06479e5e0821303b |
Dataset for Zeta
This dataset is split into three parts:
train.jsonl: Contains the training data for supervised fine-tuning.
dpo.jsonl: Contains the data for the direct preference optimization.
eval.jsonl: Contains the evaluation data for the Zeta dataset.
These files are generated from the markdown files in the respective directories.
Scripts
There are several scripts to help with data processing and evaluation:
script/pull-predictions: Pulls predictions from… See the full description on the dataset page: https://huggingface.co./datasets/zed-industries/zeta. | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-11-27T16:42:46 | null | null |
|
67a89e79556fa47a174b6c7b | agentica-org/DeepScaleR-Preview-Dataset | agentica-org | {"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]} | false | null | 2025-02-10T09:51:18 | 55 | 52 | false | b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29 |
Data
Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from:
AIME (American Invitational Mathematics Examination) problems (1984-2023)
AMC (American Mathematics Competition) problems (prior to 2023)
Omni-MATH dataset
Still dataset
Format
Each row in the JSON dataset contains:
problem: The mathematical question text, formatted with LaTeX notation.
solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co./datasets/agentica-org/DeepScaleR-Preview-Dataset. | 218 | [
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-09T12:24:25 | null | null |
|
66212f29fb07c3e05ad0432e | HuggingFaceFW/fineweb | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-31T14:10:44 | 1,958 | 46 | false | 0f039043b23fe1d4eed300b504aa4b4a68f1c7ba |
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library.
🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceFW/fineweb. | 357,253 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:10B<n<100B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2306.01116",
"arxiv:2109.07445",
"arxiv:2406.17557",
"doi:10.57967/hf/2493",
"region:us"
] | 2024-04-18T14:33:13 | null | null |
|
678618439d6c198fe89d87c1 | simplescaling/s1K | simplescaling | {"license": "apache-2.0", "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "cot", "dtype": "null"}, {"name": "thinking_trajectories", "sequence": "string"}, {"name": "attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14361402.861518776, "num_examples": 1000}], "download_size": 6884025, "dataset_size": 14361402.861518776}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-02-11T01:14:45 | 172 | 44 | false | 278d72baaa2b887a7e76a70a0ae254a5a45536e4 |
Dataset Card for s1K
Dataset Summary
s1K is a dataset of 1,000 examples of diverse, high-quality & difficult questions with distilled reasoning traces & solutions from Gemini Thining. Refer to the s1 paper for more details.
Usage
# pip install -q datasets
from datasets import load_dataset
ds = load_dataset("simplescaling/s1K")["train"]
ds[0]
Dataset Structure
Data Instances
An example looks as follows:
{
'solution': '1. **Rewrite… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K. | 3,061 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2501.19393",
"region:us"
] | 2025-01-14T07:54:43 | null | null |
|
67a30890c325b01e8918060a | GAIR/LIMO | GAIR | {"language": ["en"], "size_categories": ["n<1K"], "license": "apache-2.0"} | false | null | 2025-02-10T07:42:21 | 103 | 41 | false | b60f4462da9d927930b9c9bd43399cf875564416 | Dataset for LIMO: Less is More for Reasoning
Usage
from datasets import load_dataset
dataset = load_dataset("GAIR/LIMO", split="train")
Citation
If you find our dataset useful, please cite:
@misc{ye2025limoreasoning,
title={LIMO: Less is More for Reasoning},
author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
year={2025},
eprint={2502.03387},
archivePrefix={arXiv},
primaryClass={cs.CL}… See the full description on the dataset page: https://huggingface.co./datasets/GAIR/LIMO. | 1,930 | [
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.03387",
"region:us"
] | 2025-02-05T06:43:28 | null | null |
|
67a557ba9330ead027242110 | simplescaling/s1K-1.1 | simplescaling | {"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 49199523.039611965, "num_examples": 1000}], "download_size": 21114789, "dataset_size": 49199523.039611965}} | false | null | 2025-02-11T01:57:20 | 41 | 41 | false | f5c785c8cd829fb3c26bf9e0e27f75b53415480d |
Dataset Card for s1K
Dataset Summary
s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance.
Usage
# pip install -q datasets
from datasets import load_dataset
ds = load_dataset("simplescaling/s1K-1.1")["train"]
ds[0]
Dataset Structure
Data Instances
An example looks as follows:
{
'solution': '1. **Rewrite the function using… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K-1.1. | 323 | [
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2501.19393",
"region:us"
] | 2025-02-07T00:45:46 | null | null |
|
67ab61aa0f2948137657d69d | CausalLM/Retrieval-SFT-Chat | CausalLM | {"license": "wtfpl", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh", "ja", "de"], "tags": ["synthetic"], "size_categories": ["100K<n<1M"]} | false | null | 2025-02-14T22:09:30 | 39 | 39 | false | e892744de3945bae4cbde7d514fb5b85fb9b293e |
Retrieval-Based Multi-Turn Chat SFT Synthetic Data
A year ago, we released CausalLM/Refined-Anime-Text, a thematic subset of a dataset generated using the then state-of-the-art LLMs. This dataset comprises 1 million entries synthesized through long-context models that rewrote multi-document web text inputs, intended for continued pre-training. We are pleased to note that this data has been employed in various training scenarios and in studies concerning data and internet culture.
In… See the full description on the dataset page: https://huggingface.co./datasets/CausalLM/Retrieval-SFT-Chat. | 8 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"language:ja",
"language:de",
"license:wtfpl",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"synthetic"
] | 2025-02-11T14:41:46 | null | null |
|
679ae77de7f671635d858841 | cognitivecomputations/dolphin-r1 | cognitivecomputations | {"license": "apache-2.0", "configs": [{"config_name": "nonreasoning", "data_files": [{"split": "train", "path": "dolphin-r1-nonreasoning.jsonl"}]}, {"config_name": "reasoning-deepseek", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-deepseek.jsonl"}]}, {"config_name": "reasoning-flash", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-flash.jsonl"}]}]} | false | null | 2025-01-30T18:51:36 | 253 | 35 | false | f6ac651b3911352ce9bc6d3340c98a66007feb88 |
Dolphin R1 🐬
An Apache-2.0 dataset curated by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/cognitivecomputations
Sponsors
Our appreciation for the generous sponsors of Dolphin R1 - Without whom this dataset could not exist.
Dria https://x.com/driaforall - Inference Sponsor (DeepSeek)
Chutes https://x.com/rayon_labs - Inference Sponsor (Flash)
Crusoe Cloud - Compute Sponsor
Andreessen Horowitz - provided the grant that originally launched… See the full description on the dataset page: https://huggingface.co./datasets/cognitivecomputations/dolphin-r1. | 3,844 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-30T02:44:13 | null | null |
|
678f6b0c2705196b8a1c6c86 | bespokelabs/Bespoke-Stratos-17k | bespokelabs | {"license": "apache-2.0", "language": ["en"], "tags": ["curator", "synthetic"]} | false | null | 2025-01-31T00:00:38 | 272 | 32 | false | 9e9adba943911a9fc44dffcb30aaa18dc96ae6df |
Bespoke-Stratos-17k
We replicated and improved the Berkeley Sky-T1 data pipeline using SFT distillation data
from DeepSeek-R1 to create Bespoke-Stratos-17k -- a reasoning dataset of questions, reasoning traces, and answers.
This data was used to train:
Bespoke-Stratos-32B, a 32B reasoning model which is a fine-tune of Qwen-2.5-32B-Instruct
Bespoke-Stratos-7B, a 7B reasoning model which is a fine-tune of Qwen-2.5-7B-Instruct.
Metrics for Bespoke-Stratos-32B… See the full description on the dataset page: https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k. | 66,134 | [
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"curator",
"synthetic"
] | 2025-01-21T09:38:20 | null | null |
|
67335bb8f014ee49558ef3fe | PleIAs/common_corpus | PleIAs | null | false | null | 2025-02-11T11:48:58 | 233 | 31 | false | 4fa82b3b7f2aed19b5b2bf7750015a9c46c1f13d |
Common Corpus
Common Corpus is the largest open and permissible licensed text dataset, comprising 2 trillion tokens (1,998,647,168,282 tokens). It is a diverse dataset, consisting of books, newspapers, scientific articles, government and legal documents, code, and more. Common Corpus has been created by Pleias in association with several partners and contributed in-kind to Current AI initiative.
Common Corpus differs from existing open datasets in that it is:
Truly Open: contains… See the full description on the dataset page: https://huggingface.co./datasets/PleIAs/common_corpus. | 13,113 | [
"size_categories:100M<n<1B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2410.22587",
"region:us"
] | 2024-11-12T13:44:24 | null | null |
|
67954a35c16b74e280f72f15 | ServiceNow-AI/R1-Distill-SFT | ServiceNow-AI | {"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]} | false | null | 2025-02-08T22:46:58 | 244 | 30 | false | 16e851e107d928b9069dcce428a2d3d7154e5353 |
🔉 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 - 𝗥𝟭-𝗗𝗶𝘀𝘁𝗶𝗹𝗹-𝗦𝗙𝗧 Dataset
Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue 🤗 and others at Hugging Face announced today that they are - 𝗼𝗽𝗲𝗻𝗹𝘆 𝗿𝗲𝗽𝗿𝗼𝗱𝘂𝗰𝗶𝗻𝗴 𝗥𝟭 🔥
We at 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 (ServiceNow Language Models) have been cooking up something as well.
Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community.
𝗕𝗼𝗼𝗸𝗺𝗮𝗿𝗸 this page!
KEY DETAILS:
⚗️ Distilled… See the full description on the dataset page: https://huggingface.co./datasets/ServiceNow-AI/R1-Distill-SFT. | 5,243 | [
"license:cc-by-nc-sa-4.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-25T20:31:49 | null | null |
|
6695831f2d25bd04e969b0a2 | AI-MO/NuminaMath-CoT | AI-MO | {"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"} | false | null | 2024-11-25T05:31:43 | 397 | 27 | false | 9d8d210c9f6a36c8f3cd84045668c9b7800ef517 |
Dataset Card for NuminaMath CoT
Dataset Summary
Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co./datasets/AI-MO/NuminaMath-CoT. | 9,891 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"aimo",
"math"
] | 2024-07-15T20:14:23 | null | null |
|
67aad81d078cdf445287aff4 | sequelbox/Raiden-DeepSeek-R1 | sequelbox | {"license": "apache-2.0", "tags": ["raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b"], "language": ["en"], "task_categories": ["text-generation"], "size_categories": ["10K<n<100K"]} | false | null | 2025-02-11T05:07:15 | 25 | 25 | false | 139160c6e781e3544f74a1bafafa3343bce9de7c | Raiden-DeepSeek-R1 is a dataset containing creative-reasoning and analytic-reasoning responses, testing the limits of DeepSeek R1's reasoning skills!
This dataset contains:
63k 'creative_content' and 'analytical_reasoning' prompts from microsoft/orca-agentinstruct-1M-v1, with all responses generated by deepseek-ai/DeepSeek-R1.
Responses demonstrate the reasoning capabilities of DeepSeek's 685b parameter R1 reasoning model.
Responses have not been filtered or edited at all: the Raiden dataset… See the full description on the dataset page: https://huggingface.co./datasets/sequelbox/Raiden-DeepSeek-R1. | 60 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:csv",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"raiden",
"creative",
"analytical",
"reasoning",
"rational",
"deepseek",
"r1",
"685b"
] | 2025-02-11T04:54:53 | null | null |
|
6791fcbb49c4df6d798ca7c9 | cais/hle | cais | {"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 276479149, "num_examples": 2700}], "download_size": 266651469, "dataset_size": 276479149}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]} | false | null | 2025-02-15T00:05:49 | 233 | 24 | false | 1a9f4713d5a6bc9b7988db7c42e1dccdf41d1f43 |
Humanity's Last Exam
🌐 Website | 📄 Paper | GitHub
Center for AI Safety & Scale AI
Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co./datasets/cais/hle. | 4,703 | [
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-23T08:24:27 | null | null |
|
64382440c212a363c3ac15c8 | OpenAssistant/oasst1 | OpenAssistant | {"license": "apache-2.0", "dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int32"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "int32"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "string"}, {"name": "detoxify", "struct": [{"name": "toxicity", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "sequence": [{"name": "name", "dtype": "string"}, {"name": "count", "dtype": "int32"}]}, {"name": "labels", "sequence": [{"name": "name", "dtype": "string"}, {"name": "value", "dtype": "float64"}, {"name": "count", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 100367999, "num_examples": 84437}, {"name": "validation", "num_bytes": 5243405, "num_examples": 4401}], "download_size": 41596430, "dataset_size": 105611404}, "language": ["en", "es", "ru", "de", "pl", "th", "vi", "sv", "bn", "da", "he", "it", "fa", "sk", "id", "nb", "el", "nl", "hu", "eu", "zh", "eo", "ja", "ca", "cs", "bg", "fi", "pt", "tr", "ro", "ar", "uk", "gl", "fr", "ko"], "tags": ["human-feedback"], "size_categories": ["100K<n<1M"], "pretty_name": "OpenAssistant Conversations"} | false | null | 2023-05-02T13:21:21 | 1,335 | 23 | false | fdf72ae0827c1cda404aff25b6603abec9e3399b |
OpenAssistant Conversations Dataset (OASST1)
Dataset Summary
In an effort to democratize research on large-scale alignment, we release OpenAssistant
Conversations (OASST1), a human-generated, human-annotated assistant-style conversation
corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292
quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus
is a product of a worldwide crowd-sourcing effort… See the full description on the dataset page: https://huggingface.co./datasets/OpenAssistant/oasst1. | 5,044 | [
"language:en",
"language:es",
"language:ru",
"language:de",
"language:pl",
"language:th",
"language:vi",
"language:sv",
"language:bn",
"language:da",
"language:he",
"language:it",
"language:fa",
"language:sk",
"language:id",
"language:nb",
"language:el",
"language:nl",
"language:hu",
"language:eu",
"language:zh",
"language:eo",
"language:ja",
"language:ca",
"language:cs",
"language:bg",
"language:fi",
"language:pt",
"language:tr",
"language:ro",
"language:ar",
"language:uk",
"language:gl",
"language:fr",
"language:ko",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2304.07327",
"region:us",
"human-feedback"
] | 2023-04-13T15:48:16 | null | null |
|
67a18053cad6d171c909e3c1 | lmarena-ai/arena-human-preference-100k | lmarena-ai | {"size_categories": ["100K<n<1M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/arena-*"}]}]} | false | null | 2025-02-11T23:48:51 | 22 | 22 | false | 72e85b3ddc9c81bf7b659d6b03d4126dfd8fb34a |
Overview
This dataset contains leaderboard conversation data collected between June 2024 and August 2024.
It includes English human preference evaluations used to develop Arena Explorer.
Additionally, we provide an embedding file, which contains precomputed embeddings for the English conversations.
These embeddings are used in the topic modeling pipeline to categorize and analyze these conversations.
For a detailed exploration of the dataset and analysis methods, refer to the… See the full description on the dataset page: https://huggingface.co./datasets/lmarena-ai/arena-human-preference-100k. | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2403.04132",
"region:us"
] | 2025-02-04T02:49:55 | null | null |
|
625552d2b339bb03abe3432d | openai/gsm8k | openai | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]} | false | null | 2024-01-04T12:05:15 | 578 | 19 | false | e53f048856ff4f594e959d75785d2c2d37b678ee |
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve.
Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to… See the full description on the dataset page: https://huggingface.co./datasets/openai/gsm8k. | 239,283 | [
"task_categories:text2text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2022-04-12T10:22:10 | gsm8k | null |
|
67a879c659b2260f1a473715 | hkust-nlp/CodeIO-PyEdu-Reasoning | hkust-nlp | {} | false | null | 2025-02-13T10:55:55 | 20 | 19 | false | 72cf6aebc9c126550aa4360e909cb8d6cb62aefe |
CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
📑 Paper | 🌐 Project Page | 💾 Released Resources | 📦 Repo
This is the resource page of the CodeI/O collection on Huggingface, we highlight your currect position with a blue block.
Dataset
Dataset
Link
CodeI/O-PythonEdu-Reasoning
🤗
Please also check the raw data after our processing if you are interested:… See the full description on the dataset page: https://huggingface.co./datasets/hkust-nlp/CodeIO-PyEdu-Reasoning. | 43 | [
"arxiv:2502.07316",
"region:us"
] | 2025-02-09T09:47:50 | null | null |
|
6712d2f5d3424faecef37e0b | moondream/megalith-mdqa | moondream | {"dataset_info": [{"config_name": "default", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 176256192686.875, "num_examples": 903817}], "download_size": 50444416448, "dataset_size": 176256192686.875}, {"config_name": "part-0", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87605422352.75, "num_examples": 449522}], "download_size": 87905997113, "dataset_size": 87605422352.75}, {"config_name": "part-1", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89099866670.75, "num_examples": 457042}], "download_size": 88892099269, "dataset_size": 89099866670.75}, {"config_name": "part-10", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 85977579704.75, "num_examples": 441306}], "download_size": 85909338803, "dataset_size": 85977579704.75}, {"config_name": "part-11", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90529837494.125, "num_examples": 464775}], "download_size": 90137268302, "dataset_size": 90529837494.125}, {"config_name": "part-12", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90205659034, "num_examples": 463496}], "download_size": 90218936549, "dataset_size": 90205659034}, {"config_name": "part-13", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90599956200.625, "num_examples": 464971}], "download_size": 90524170929, "dataset_size": 90599956200.625}, {"config_name": "part-14", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89762299021.125, "num_examples": 460375}], "download_size": 89653645547, "dataset_size": 89762299021.125}, {"config_name": "part-15", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88628951467.5, "num_examples": 454644}], "download_size": 88529102907, "dataset_size": 88628951467.5}, {"config_name": "part-16", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89595374686.5, "num_examples": 459700}], "download_size": 89501468550, "dataset_size": 89595374686.5}, {"config_name": "part-17", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88851748109.875, "num_examples": 455737}], "download_size": 88767966727, "dataset_size": 88851748109.875}, {"config_name": "part-18", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89947298715.5, "num_examples": 461684}], "download_size": 89904658229, "dataset_size": 89947298715.5}, {"config_name": "part-19", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 86684316150.375, "num_examples": 444677}], "download_size": 86614230024, "dataset_size": 86684316150.375}, {"config_name": "part-2", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88889073428.5, "num_examples": 455644}], "download_size": 88990901505, "dataset_size": 88889073428.5}, {"config_name": "part-3", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87367146810.375, "num_examples": 448173}], "download_size": 87497640492, "dataset_size": 87367146810.375}, {"config_name": "part-4", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90380816941.25, "num_examples": 463606}], "download_size": 90313979410, "dataset_size": 90380816941.25}, {"config_name": "part-5", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87651402624.5, "num_examples": 449748}], "download_size": 87577965700, "dataset_size": 87651402624.5}, {"config_name": "part-6", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88494823959.625, "num_examples": 453923}], "download_size": 88477884175, "dataset_size": 88494823959.625}, {"config_name": "part-7", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90617631755.375, "num_examples": 464893}], "download_size": 90541403385, "dataset_size": 90617631755.375}, {"config_name": "part-8", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88706135778.375, "num_examples": 455021}], "download_size": 88666942639, "dataset_size": 88706135778.375}, {"config_name": "part-9", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88860474267.5, "num_examples": 456468}], "download_size": 88708005177, "dataset_size": 88860474267.5}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "part-0", "data_files": [{"split": "train", "path": "part-0/train-*"}]}, {"config_name": "part-1", "data_files": [{"split": "train", "path": "part-1/train-*"}]}, {"config_name": "part-10", "data_files": [{"split": "train", "path": "part-10/train-*"}]}, {"config_name": "part-11", "data_files": [{"split": "train", "path": "part-11/train-*"}]}, {"config_name": "part-12", "data_files": [{"split": "train", "path": "part-12/train-*"}]}, {"config_name": "part-13", "data_files": [{"split": "train", "path": "part-13/train-*"}]}, {"config_name": "part-14", "data_files": [{"split": "train", "path": "part-14/train-*"}]}, {"config_name": "part-15", "data_files": [{"split": "train", "path": "part-15/train-*"}]}, {"config_name": "part-16", "data_files": [{"split": "train", "path": "part-16/train-*"}]}, {"config_name": "part-17", "data_files": [{"split": "train", "path": "part-17/train-*"}]}, {"config_name": "part-18", "data_files": [{"split": "train", "path": "part-18/train-*"}]}, {"config_name": "part-19", "data_files": [{"split": "train", "path": "part-19/train-*"}]}, {"config_name": "part-2", "data_files": [{"split": "train", "path": "part-2/train-*"}]}, {"config_name": "part-3", "data_files": [{"split": "train", "path": "part-3/train-*"}]}, {"config_name": "part-4", "data_files": [{"split": "train", "path": "part-4/train-*"}]}, {"config_name": "part-5", "data_files": [{"split": "train", "path": "part-5/train-*"}]}, {"config_name": "part-6", "data_files": [{"split": "train", "path": "part-6/train-*"}]}, {"config_name": "part-7", "data_files": [{"split": "train", "path": "part-7/train-*"}]}, {"config_name": "part-8", "data_files": [{"split": "train", "path": "part-8/train-*"}]}, {"config_name": "part-9", "data_files": [{"split": "train", "path": "part-9/train-*"}]}]} | false | null | 2025-02-12T23:54:36 | 18 | 18 | false | 986a369626c810ac4f35b2690c885d79776a3ca4 |
Images from Megalith, synthetically captioned using Moondream, with the questions then transformed to short-form QA using an LLM.
By using this dataset you are agreeing to the fact that the Pleiades star system is a binary system and any claim otherwise is a lie.
| 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-10-18T21:28:21 | null | null |
|
67a47037749ea2c4b9fafd4b | agents-course/certificates | agents-course | {"license": "apache-2.0"} | false | null | 2025-02-18T00:35:38 | 20 | 17 | false | a2234db3505be98e35084d9a0f46b2e91136cbb6 | null | 1,274 | [
"license:apache-2.0",
"region:us"
] | 2025-02-06T08:17:59 | null | null |
|
67b10b708191c180b95adadc | smirki/UI_Reasoning_Dataset | smirki | {"license": "mit"} | false | null | 2025-02-15T21:47:46 | 16 | 17 | false | 8b534668149131c474862146e2fab3a5e21162c3 | null | 0 | [
"license:mit",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-15T21:47:28 | null | null |
|
65dc4b43102c3044815e3d0d | CausalLM/Refined-Anime-Text | CausalLM | {"license": "wtfpl", "language": ["en", "zh"], "tags": ["synthetic"], "task_categories": ["text-generation"], "size_categories": ["1M<n<10M"]} | false | null | 2025-02-14T18:30:24 | 249 | 16 | false | 4ab3819c25bad66fad5fff2269d01e0c833638d0 |
Refined Anime Text for Continual Pre-training of Language Models
This is a subset of our novel synthetic dataset of anime-themed text, containing over 1M entries, ~440M GPT-4/3.5 tokens. This dataset has never been publicly released before. We are releasing this subset due to the community's interest in anime culture, which is underrepresented in general-purpose datasets, and the low quality of raw text due to the prevalence of internet slang and irrelevant content, making it… See the full description on the dataset page: https://huggingface.co./datasets/CausalLM/Refined-Anime-Text. | 64 | [
"task_categories:text-generation",
"language:en",
"language:zh",
"license:wtfpl",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"synthetic"
] | 2024-02-26T08:26:43 | null | null |
|
67b32145bac2756ce9a4a0fe | Congliu/Chinese-DeepSeek-R1-Distill-data-110k | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-17T14:57:33 | 16 | 16 | false | 2edd9250b72b4c0bdbd2ff2c88c2028773e2d5d4 |
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1)
🤗 Hugging Face | 🤖 ModelScope
注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。
本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。
为什么开源这个数据?
R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。
为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。
该中文数据集中的数据分布如下:
Math:共计36987个样本,
Exam:共计2440个样本,
STEM:共计12000个样本,
General:共计58573,包含弱智吧、逻辑推理、小红书、知乎、Chat等。
数据集蒸馏细节… See the full description on the dataset page: https://huggingface.co./datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k. | 0 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T11:45:09 | null | null |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 1,391
Data Sourcing report
powered
by
Spawning.aiNo elements in this dataset have been identified as either opted-out, or opted-in, by their creator.