_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
7.52k
trendingScore
float64
-1
287
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
3.4M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
key
stringclasses
1 value
paperswithcode_id
stringclasses
647 values
citation
stringlengths
0
10.7k
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "default", "path": "data/train-*"}, {"split": "extended", "path": "extended/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543630, "num_examples": 93733}], "download_size": 2149879429, "dataset_size": 4964543630}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566486, "num_examples": 131396}], "download_size": 2063805103, "dataset_size": 4769566486}]}
false
null
2025-02-12T17:04:58
332
287
false
05f30409d9ac7656dd446305aa60f38b7ac35c27
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co./datasets/open-r1/OpenR1-Math-220k.
2,426
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-02-14T16:45:04
528
148
false
2e11184a4b5b3e777d85be23fb539900936495f4
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction: problem ground_truth_solution deepseek_reasoning deepseek_solution… See the full description on the dataset page: https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k.
52,256
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67a4af5e4ccbc3656f0b4c7c
saiyan-world/Goku-MovieGenBench
saiyan-world
{"task_categories": ["text-to-video"]}
false
null
2025-02-11T03:18:05
165
120
false
fd41363957a6bf5370e573e422fc89e4ec450218
This repository contains the data associated with the paper Goku: Flow Based Video Generative Foundation Models. Project page: https://saiyan-world.github.io/goku/
18,996
[ "task_categories:text-to-video", "size_categories:1K<n<10K", "modality:video", "library:datasets", "library:mlcroissant", "arxiv:2502.04896", "region:us" ]
2025-02-06T12:47:26
null
null
67a404bc8c6d42c5ec097433
Anthropic/EconomicIndex
Anthropic
{"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]}
false
null
2025-02-10T19:28:32
142
112
false
218b35116baa43c55beffe61f243bd81f5f84cf8
Overview This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below. Please see our blog post and paper for further visualizations and complete analysis. Data SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET database… See the full description on the dataset page: https://huggingface.co./datasets/Anthropic/EconomicIndex.
4,165
[ "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text" ]
2025-02-06T00:39:24
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,521
105
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
9,229
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
67a9f247188f29a956a34a04
AI-MO/NuminaMath-1.5
AI-MO
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "post-training"], "pretty_name": "NuminaMath 1.5"}
false
null
2025-02-10T13:28:01
96
63
false
649859605995b1d46eb29389ed9851782a47322e
Dataset Card for NuminaMath 1.5 Dataset Summary This is the second iteration of the popular NuminaMath dataset, bringing high quality post-training data for approximately 900k competition-level math problems. Each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs… See the full description on the dataset page: https://huggingface.co./datasets/AI-MO/NuminaMath-1.5.
452
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "math", "post-training" ]
2025-02-10T12:34:15
null
null
67ac8c807ccaf131c3c68af7
open-r1/OpenR1-Math-Raw
open-r1
{"license": "apache-2.0", "language": ["en"], "dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "problem_is_valid", "dtype": "string"}, {"name": "solution_is_valid", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "synthetic", "dtype": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "generations_count", "dtype": "int64"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correct_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19144782231, "num_examples": 516499}], "download_size": 8022181704, "dataset_size": 19144782231}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-12T13:32:15
62
62
false
4cbd48dbec7e96690598221505860fd36b86d23f
OpenR1-Math-Raw Dataset description OpenR1-Math-Raw is a large-scale dataset for mathematical reasoning. It consists of 516k math problems sourced from AI-MO/NuminaMath-1.5 with 1 to 8 reasoning traces generated by DeepSeek R1. The traces were verified using Math Verify, but we recommend additionally annotating the correctness with LLM-as-judge for higher recall. The dataset contains: 516,499 problems 1,209,403 R1-generated solutions, with 2.3 solutions per problem on… See the full description on the dataset page: https://huggingface.co./datasets/open-r1/OpenR1-Math-Raw.
0
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-12T11:56:48
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-01-13T06:46:27
221
60
false
4c9573e7de1e8660b88158db2efa7c7204bbd269
Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o, which searches for solutions to verifiable medical problems and validates them through a medical verifier. For details, see our paper and GitHub repository. Citation If you find our data useful, please consider citing our work! @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1, Towards… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
6,898
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67474c06bd2f2f20b81faef1
zed-industries/zeta
zed-industries
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.jsonl"}, {"split": "eval", "path": "eval.jsonl"}, {"split": "dpo", "path": "dpo.jsonl"}]}], "license": "apache-2.0"}
false
null
2025-02-17T16:02:10
55
55
false
070f4d409068321e988cceca06479e5e0821303b
Dataset for Zeta This dataset is split into three parts: train.jsonl: Contains the training data for supervised fine-tuning. dpo.jsonl: Contains the data for the direct preference optimization. eval.jsonl: Contains the evaluation data for the Zeta dataset. These files are generated from the markdown files in the respective directories. Scripts There are several scripts to help with data processing and evaluation: script/pull-predictions: Pulls predictions from… See the full description on the dataset page: https://huggingface.co./datasets/zed-industries/zeta.
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-27T16:42:46
null
null
67a89e79556fa47a174b6c7b
agentica-org/DeepScaleR-Preview-Dataset
agentica-org
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]}
false
null
2025-02-10T09:51:18
55
52
false
b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29
Data Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from: AIME (American Invitational Mathematics Examination) problems (1984-2023) AMC (American Mathematics Competition) problems (prior to 2023) Omni-MATH dataset Still dataset Format Each row in the JSON dataset contains: problem: The mathematical question text, formatted with LaTeX notation. solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co./datasets/agentica-org/DeepScaleR-Preview-Dataset.
218
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-09T12:24:25
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
1,958
46
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceFW/fineweb.
357,253
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
678618439d6c198fe89d87c1
simplescaling/s1K
simplescaling
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "cot", "dtype": "null"}, {"name": "thinking_trajectories", "sequence": "string"}, {"name": "attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14361402.861518776, "num_examples": 1000}], "download_size": 6884025, "dataset_size": 14361402.861518776}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-11T01:14:45
172
44
false
278d72baaa2b887a7e76a70a0ae254a5a45536e4
Dataset Card for s1K Dataset Summary s1K is a dataset of 1,000 examples of diverse, high-quality & difficult questions with distilled reasoning traces & solutions from Gemini Thining. Refer to the s1 paper for more details. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K.
3,061
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us" ]
2025-01-14T07:54:43
null
null
67a30890c325b01e8918060a
GAIR/LIMO
GAIR
{"language": ["en"], "size_categories": ["n<1K"], "license": "apache-2.0"}
false
null
2025-02-10T07:42:21
103
41
false
b60f4462da9d927930b9c9bd43399cf875564416
Dataset for LIMO: Less is More for Reasoning Usage from datasets import load_dataset dataset = load_dataset("GAIR/LIMO", split="train") Citation If you find our dataset useful, please cite: @misc{ye2025limoreasoning, title={LIMO: Less is More for Reasoning}, author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu}, year={2025}, eprint={2502.03387}, archivePrefix={arXiv}, primaryClass={cs.CL}… See the full description on the dataset page: https://huggingface.co./datasets/GAIR/LIMO.
1,930
[ "language:en", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.03387", "region:us" ]
2025-02-05T06:43:28
null
null
67a557ba9330ead027242110
simplescaling/s1K-1.1
simplescaling
{"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 49199523.039611965, "num_examples": 1000}], "download_size": 21114789, "dataset_size": 49199523.039611965}}
false
null
2025-02-11T01:57:20
41
41
false
f5c785c8cd829fb3c26bf9e0e27f75b53415480d
Dataset Card for s1K Dataset Summary s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K-1.1")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite the function using… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K-1.1.
323
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us" ]
2025-02-07T00:45:46
null
null
67ab61aa0f2948137657d69d
CausalLM/Retrieval-SFT-Chat
CausalLM
{"license": "wtfpl", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh", "ja", "de"], "tags": ["synthetic"], "size_categories": ["100K<n<1M"]}
false
null
2025-02-14T22:09:30
39
39
false
e892744de3945bae4cbde7d514fb5b85fb9b293e
Retrieval-Based Multi-Turn Chat SFT Synthetic Data A year ago, we released CausalLM/Refined-Anime-Text, a thematic subset of a dataset generated using the then state-of-the-art LLMs. This dataset comprises 1 million entries synthesized through long-context models that rewrote multi-document web text inputs, intended for continued pre-training. We are pleased to note that this data has been employed in various training scenarios and in studies concerning data and internet culture. In… See the full description on the dataset page: https://huggingface.co./datasets/CausalLM/Retrieval-SFT-Chat.
8
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "language:ja", "language:de", "license:wtfpl", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "synthetic" ]
2025-02-11T14:41:46
null
null
679ae77de7f671635d858841
cognitivecomputations/dolphin-r1
cognitivecomputations
{"license": "apache-2.0", "configs": [{"config_name": "nonreasoning", "data_files": [{"split": "train", "path": "dolphin-r1-nonreasoning.jsonl"}]}, {"config_name": "reasoning-deepseek", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-deepseek.jsonl"}]}, {"config_name": "reasoning-flash", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-flash.jsonl"}]}]}
false
null
2025-01-30T18:51:36
253
35
false
f6ac651b3911352ce9bc6d3340c98a66007feb88
Dolphin R1 🐬 An Apache-2.0 dataset curated by Eric Hartford and Cognitive Computations Discord: https://discord.gg/cognitivecomputations Sponsors Our appreciation for the generous sponsors of Dolphin R1 - Without whom this dataset could not exist. Dria https://x.com/driaforall - Inference Sponsor (DeepSeek) Chutes https://x.com/rayon_labs - Inference Sponsor (Flash) Crusoe Cloud - Compute Sponsor Andreessen Horowitz - provided the grant that originally launched… See the full description on the dataset page: https://huggingface.co./datasets/cognitivecomputations/dolphin-r1.
3,844
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-30T02:44:13
null
null
678f6b0c2705196b8a1c6c86
bespokelabs/Bespoke-Stratos-17k
bespokelabs
{"license": "apache-2.0", "language": ["en"], "tags": ["curator", "synthetic"]}
false
null
2025-01-31T00:00:38
272
32
false
9e9adba943911a9fc44dffcb30aaa18dc96ae6df
Bespoke-Stratos-17k We replicated and improved the Berkeley Sky-T1 data pipeline using SFT distillation data from DeepSeek-R1 to create Bespoke-Stratos-17k -- a reasoning dataset of questions, reasoning traces, and answers. This data was used to train: Bespoke-Stratos-32B, a 32B reasoning model which is a fine-tune of Qwen-2.5-32B-Instruct Bespoke-Stratos-7B, a 7B reasoning model which is a fine-tune of Qwen-2.5-7B-Instruct. Metrics for Bespoke-Stratos-32B… See the full description on the dataset page: https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k.
66,134
[ "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-21T09:38:20
null
null
67335bb8f014ee49558ef3fe
PleIAs/common_corpus
PleIAs
null
false
null
2025-02-11T11:48:58
233
31
false
4fa82b3b7f2aed19b5b2bf7750015a9c46c1f13d
Common Corpus Common Corpus is the largest open and permissible licensed text dataset, comprising 2 trillion tokens (1,998,647,168,282 tokens). It is a diverse dataset, consisting of books, newspapers, scientific articles, government and legal documents, code, and more. Common Corpus has been created by Pleias in association with several partners and contributed in-kind to Current AI initiative. Common Corpus differs from existing open datasets in that it is: Truly Open: contains… See the full description on the dataset page: https://huggingface.co./datasets/PleIAs/common_corpus.
13,113
[ "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2410.22587", "region:us" ]
2024-11-12T13:44:24
null
null
67954a35c16b74e280f72f15
ServiceNow-AI/R1-Distill-SFT
ServiceNow-AI
{"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]}
false
null
2025-02-08T22:46:58
244
30
false
16e851e107d928b9069dcce428a2d3d7154e5353
🔉 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 - 𝗥𝟭-𝗗𝗶𝘀𝘁𝗶𝗹𝗹-𝗦𝗙𝗧 Dataset Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue 🤗 and others at Hugging Face announced today that they are - 𝗼𝗽𝗲𝗻𝗹𝘆 𝗿𝗲𝗽𝗿𝗼𝗱𝘂𝗰𝗶𝗻𝗴 𝗥𝟭 🔥 We at 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 (ServiceNow Language Models) have been cooking up something as well. Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community. 𝗕𝗼𝗼𝗸𝗺𝗮𝗿𝗸 this page! KEY DETAILS: ⚗️ Distilled… See the full description on the dataset page: https://huggingface.co./datasets/ServiceNow-AI/R1-Distill-SFT.
5,243
[ "license:cc-by-nc-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-25T20:31:49
null
null
6695831f2d25bd04e969b0a2
AI-MO/NuminaMath-CoT
AI-MO
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"}
false
null
2024-11-25T05:31:43
397
27
false
9d8d210c9f6a36c8f3cd84045668c9b7800ef517
Dataset Card for NuminaMath CoT Dataset Summary Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co./datasets/AI-MO/NuminaMath-CoT.
9,891
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "aimo", "math" ]
2024-07-15T20:14:23
null
null
67aad81d078cdf445287aff4
sequelbox/Raiden-DeepSeek-R1
sequelbox
{"license": "apache-2.0", "tags": ["raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b"], "language": ["en"], "task_categories": ["text-generation"], "size_categories": ["10K<n<100K"]}
false
null
2025-02-11T05:07:15
25
25
false
139160c6e781e3544f74a1bafafa3343bce9de7c
Raiden-DeepSeek-R1 is a dataset containing creative-reasoning and analytic-reasoning responses, testing the limits of DeepSeek R1's reasoning skills! This dataset contains: 63k 'creative_content' and 'analytical_reasoning' prompts from microsoft/orca-agentinstruct-1M-v1, with all responses generated by deepseek-ai/DeepSeek-R1. Responses demonstrate the reasoning capabilities of DeepSeek's 685b parameter R1 reasoning model. Responses have not been filtered or edited at all: the Raiden dataset… See the full description on the dataset page: https://huggingface.co./datasets/sequelbox/Raiden-DeepSeek-R1.
60
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b" ]
2025-02-11T04:54:53
null
null
6791fcbb49c4df6d798ca7c9
cais/hle
cais
{"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 276479149, "num_examples": 2700}], "download_size": 266651469, "dataset_size": 276479149}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-02-15T00:05:49
233
24
false
1a9f4713d5a6bc9b7988db7c42e1dccdf41d1f43
Humanity's Last Exam 🌐 Website | 📄 Paper | GitHub Center for AI Safety & Scale AI Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co./datasets/cais/hle.
4,703
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-23T08:24:27
null
null
64382440c212a363c3ac15c8
OpenAssistant/oasst1
OpenAssistant
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int32"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "int32"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "string"}, {"name": "detoxify", "struct": [{"name": "toxicity", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "sequence": [{"name": "name", "dtype": "string"}, {"name": "count", "dtype": "int32"}]}, {"name": "labels", "sequence": [{"name": "name", "dtype": "string"}, {"name": "value", "dtype": "float64"}, {"name": "count", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 100367999, "num_examples": 84437}, {"name": "validation", "num_bytes": 5243405, "num_examples": 4401}], "download_size": 41596430, "dataset_size": 105611404}, "language": ["en", "es", "ru", "de", "pl", "th", "vi", "sv", "bn", "da", "he", "it", "fa", "sk", "id", "nb", "el", "nl", "hu", "eu", "zh", "eo", "ja", "ca", "cs", "bg", "fi", "pt", "tr", "ro", "ar", "uk", "gl", "fr", "ko"], "tags": ["human-feedback"], "size_categories": ["100K<n<1M"], "pretty_name": "OpenAssistant Conversations"}
false
null
2023-05-02T13:21:21
1,335
23
false
fdf72ae0827c1cda404aff25b6603abec9e3399b
OpenAssistant Conversations Dataset (OASST1) Dataset Summary In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations (OASST1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort… See the full description on the dataset page: https://huggingface.co./datasets/OpenAssistant/oasst1.
5,044
[ "language:en", "language:es", "language:ru", "language:de", "language:pl", "language:th", "language:vi", "language:sv", "language:bn", "language:da", "language:he", "language:it", "language:fa", "language:sk", "language:id", "language:nb", "language:el", "language:nl", "language:hu", "language:eu", "language:zh", "language:eo", "language:ja", "language:ca", "language:cs", "language:bg", "language:fi", "language:pt", "language:tr", "language:ro", "language:ar", "language:uk", "language:gl", "language:fr", "language:ko", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2304.07327", "region:us", "human-feedback" ]
2023-04-13T15:48:16
null
null
67a18053cad6d171c909e3c1
lmarena-ai/arena-human-preference-100k
lmarena-ai
{"size_categories": ["100K<n<1M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/arena-*"}]}]}
false
null
2025-02-11T23:48:51
22
22
false
72e85b3ddc9c81bf7b659d6b03d4126dfd8fb34a
Overview This dataset contains leaderboard conversation data collected between June 2024 and August 2024. It includes English human preference evaluations used to develop Arena Explorer. Additionally, we provide an embedding file, which contains precomputed embeddings for the English conversations. These embeddings are used in the topic modeling pipeline to categorize and analyze these conversations. For a detailed exploration of the dataset and analysis methods, refer to the… See the full description on the dataset page: https://huggingface.co./datasets/lmarena-ai/arena-human-preference-100k.
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2403.04132", "region:us" ]
2025-02-04T02:49:55
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
578
19
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to… See the full description on the dataset page: https://huggingface.co./datasets/openai/gsm8k.
239,283
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67a879c659b2260f1a473715
hkust-nlp/CodeIO-PyEdu-Reasoning
hkust-nlp
{}
false
null
2025-02-13T10:55:55
20
19
false
72cf6aebc9c126550aa4360e909cb8d6cb62aefe
CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction 📑 Paper    |    🌐 Project Page    |    💾 Released Resources    |    📦 Repo This is the resource page of the CodeI/O collection on Huggingface, we highlight your currect position with a blue block. Dataset Dataset Link CodeI/O-PythonEdu-Reasoning 🤗 Please also check the raw data after our processing if you are interested:… See the full description on the dataset page: https://huggingface.co./datasets/hkust-nlp/CodeIO-PyEdu-Reasoning.
43
[ "arxiv:2502.07316", "region:us" ]
2025-02-09T09:47:50
null
null
6712d2f5d3424faecef37e0b
moondream/megalith-mdqa
moondream
{"dataset_info": [{"config_name": "default", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 176256192686.875, "num_examples": 903817}], "download_size": 50444416448, "dataset_size": 176256192686.875}, {"config_name": "part-0", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87605422352.75, "num_examples": 449522}], "download_size": 87905997113, "dataset_size": 87605422352.75}, {"config_name": "part-1", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89099866670.75, "num_examples": 457042}], "download_size": 88892099269, "dataset_size": 89099866670.75}, {"config_name": "part-10", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 85977579704.75, "num_examples": 441306}], "download_size": 85909338803, "dataset_size": 85977579704.75}, {"config_name": "part-11", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90529837494.125, "num_examples": 464775}], "download_size": 90137268302, "dataset_size": 90529837494.125}, {"config_name": "part-12", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90205659034, "num_examples": 463496}], "download_size": 90218936549, "dataset_size": 90205659034}, {"config_name": "part-13", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90599956200.625, "num_examples": 464971}], "download_size": 90524170929, "dataset_size": 90599956200.625}, {"config_name": "part-14", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89762299021.125, "num_examples": 460375}], "download_size": 89653645547, "dataset_size": 89762299021.125}, {"config_name": "part-15", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88628951467.5, "num_examples": 454644}], "download_size": 88529102907, "dataset_size": 88628951467.5}, {"config_name": "part-16", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89595374686.5, "num_examples": 459700}], "download_size": 89501468550, "dataset_size": 89595374686.5}, {"config_name": "part-17", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88851748109.875, "num_examples": 455737}], "download_size": 88767966727, "dataset_size": 88851748109.875}, {"config_name": "part-18", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89947298715.5, "num_examples": 461684}], "download_size": 89904658229, "dataset_size": 89947298715.5}, {"config_name": "part-19", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 86684316150.375, "num_examples": 444677}], "download_size": 86614230024, "dataset_size": 86684316150.375}, {"config_name": "part-2", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88889073428.5, "num_examples": 455644}], "download_size": 88990901505, "dataset_size": 88889073428.5}, {"config_name": "part-3", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87367146810.375, "num_examples": 448173}], "download_size": 87497640492, "dataset_size": 87367146810.375}, {"config_name": "part-4", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90380816941.25, "num_examples": 463606}], "download_size": 90313979410, "dataset_size": 90380816941.25}, {"config_name": "part-5", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 87651402624.5, "num_examples": 449748}], "download_size": 87577965700, "dataset_size": 87651402624.5}, {"config_name": "part-6", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88494823959.625, "num_examples": 453923}], "download_size": 88477884175, "dataset_size": 88494823959.625}, {"config_name": "part-7", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 90617631755.375, "num_examples": 464893}], "download_size": 90541403385, "dataset_size": 90617631755.375}, {"config_name": "part-8", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88706135778.375, "num_examples": 455021}], "download_size": 88666942639, "dataset_size": 88706135778.375}, {"config_name": "part-9", "features": [{"name": "key", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "qa", "list": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 88860474267.5, "num_examples": 456468}], "download_size": 88708005177, "dataset_size": 88860474267.5}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "part-0", "data_files": [{"split": "train", "path": "part-0/train-*"}]}, {"config_name": "part-1", "data_files": [{"split": "train", "path": "part-1/train-*"}]}, {"config_name": "part-10", "data_files": [{"split": "train", "path": "part-10/train-*"}]}, {"config_name": "part-11", "data_files": [{"split": "train", "path": "part-11/train-*"}]}, {"config_name": "part-12", "data_files": [{"split": "train", "path": "part-12/train-*"}]}, {"config_name": "part-13", "data_files": [{"split": "train", "path": "part-13/train-*"}]}, {"config_name": "part-14", "data_files": [{"split": "train", "path": "part-14/train-*"}]}, {"config_name": "part-15", "data_files": [{"split": "train", "path": "part-15/train-*"}]}, {"config_name": "part-16", "data_files": [{"split": "train", "path": "part-16/train-*"}]}, {"config_name": "part-17", "data_files": [{"split": "train", "path": "part-17/train-*"}]}, {"config_name": "part-18", "data_files": [{"split": "train", "path": "part-18/train-*"}]}, {"config_name": "part-19", "data_files": [{"split": "train", "path": "part-19/train-*"}]}, {"config_name": "part-2", "data_files": [{"split": "train", "path": "part-2/train-*"}]}, {"config_name": "part-3", "data_files": [{"split": "train", "path": "part-3/train-*"}]}, {"config_name": "part-4", "data_files": [{"split": "train", "path": "part-4/train-*"}]}, {"config_name": "part-5", "data_files": [{"split": "train", "path": "part-5/train-*"}]}, {"config_name": "part-6", "data_files": [{"split": "train", "path": "part-6/train-*"}]}, {"config_name": "part-7", "data_files": [{"split": "train", "path": "part-7/train-*"}]}, {"config_name": "part-8", "data_files": [{"split": "train", "path": "part-8/train-*"}]}, {"config_name": "part-9", "data_files": [{"split": "train", "path": "part-9/train-*"}]}]}
false
null
2025-02-12T23:54:36
18
18
false
986a369626c810ac4f35b2690c885d79776a3ca4
Images from Megalith, synthetically captioned using Moondream, with the questions then transformed to short-form QA using an LLM. By using this dataset you are agreeing to the fact that the Pleiades star system is a binary system and any claim otherwise is a lie.
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-10-18T21:28:21
null
null
67a47037749ea2c4b9fafd4b
agents-course/certificates
agents-course
{"license": "apache-2.0"}
false
null
2025-02-18T00:35:38
20
17
false
a2234db3505be98e35084d9a0f46b2e91136cbb6
null
1,274
[ "license:apache-2.0", "region:us" ]
2025-02-06T08:17:59
null
null
67b10b708191c180b95adadc
smirki/UI_Reasoning_Dataset
smirki
{"license": "mit"}
false
null
2025-02-15T21:47:46
16
17
false
8b534668149131c474862146e2fab3a5e21162c3
null
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-15T21:47:28
null
null
65dc4b43102c3044815e3d0d
CausalLM/Refined-Anime-Text
CausalLM
{"license": "wtfpl", "language": ["en", "zh"], "tags": ["synthetic"], "task_categories": ["text-generation"], "size_categories": ["1M<n<10M"]}
false
null
2025-02-14T18:30:24
249
16
false
4ab3819c25bad66fad5fff2269d01e0c833638d0
Refined Anime Text for Continual Pre-training of Language Models This is a subset of our novel synthetic dataset of anime-themed text, containing over 1M entries, ~440M GPT-4/3.5 tokens. This dataset has never been publicly released before. We are releasing this subset due to the community's interest in anime culture, which is underrepresented in general-purpose datasets, and the low quality of raw text due to the prevalence of internet slang and irrelevant content, making it… See the full description on the dataset page: https://huggingface.co./datasets/CausalLM/Refined-Anime-Text.
64
[ "task_categories:text-generation", "language:en", "language:zh", "license:wtfpl", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "synthetic" ]
2024-02-26T08:26:43
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-17T14:57:33
16
16
false
2edd9250b72b4c0bdbd2ff2c88c2028773e2d5d4
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。 该中文数据集中的数据分布如下: Math:共计36987个样本, Exam:共计2440个样本, STEM:共计12000个样本, General:共计58573,包含弱智吧、逻辑推理、小红书、知乎、Chat等。 数据集蒸馏细节… See the full description on the dataset page: https://huggingface.co./datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null

Hugging Face Hub Stats

Updated Daily

Downloads last month
1,391

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 11