code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
/* sbt -- Simple Build Tool * Copyright 2010 Mark Harrah */ package sbt import Relation._ object Relation { /** Constructs a new immutable, finite relation that is initially empty. */ def empty[A,B]: Relation[A,B] = make(Map.empty, Map.empty) def make[A,B](forward: Map[A,Set[B]], reverse: Map[B, Set[A]]): Relation[A,B] = new MRelation(forward, reverse) def reconstruct[A,B](forward: Map[A, Set[B]]): Relation[A,B] = { val reversePairs = for( (a,bs) <- forward.view; b <- bs.view) yield (b, a) val reverse = (Map.empty[B,Set[A]] /: reversePairs) { case (m, (b, a)) => add(m, b, a :: Nil) } make(forward, reverse) } private[sbt] def remove[X,Y](map: M[X,Y], from: X, to: Y): M[X,Y] = map.get(from) match { case Some(tos) => val newSet = tos - to if(newSet.isEmpty) map - from else map.updated(from, newSet) case None => map } private[sbt] def combine[X,Y](a: M[X,Y], b: M[X,Y]): M[X,Y] = (a /: b) { (map, mapping) => add(map, mapping._1, mapping._2) } private[sbt] def add[X,Y](map: M[X,Y], from: X, to: Traversable[Y]): M[X,Y] = map.updated(from, get(map, from) ++ to) private[sbt] def get[X,Y](map: M[X,Y], t: X): Set[Y] = map.getOrElse(t, Set.empty[Y]) private[sbt] type M[X,Y] = Map[X, Set[Y]] } /** Binary relation between A and B. It is a set of pairs (_1, _2) for _1 in A, _2 in B. */ trait Relation[A,B] { /** Returns the set of all _2s such that (_1, _2) is in this relation. */ def forward(_1: A): Set[B] /** Returns the set of all _1s such that (_1, _2) is in this relation. */ def reverse(_2: B): Set[A] /** Includes the relation given by `pair`. */ def +(pair: (A, B)): Relation[A,B] /** Includes the relation (a, b). */ def +(a: A, b: B): Relation[A,B] /** Includes the relations (a, b) for all b in bs. */ def +(a: A, bs: Traversable[B]): Relation[A,B] /** Returns the union of the relation r with this relation. */ def ++(r: Relation[A,B]): Relation[A,B] /** Includes the given relations. */ def ++(rs: Traversable[(A,B)]): Relation[A,B] /** Removes all relations (_1, _2) for all _1 in _1s. */ def --(_1s: Traversable[A]): Relation[A,B] /** Removes all `pairs` from this relation. */ def --(pairs: TraversableOnce[(A,B)]): Relation[A,B] /** Removes all pairs (_1, _2) from this relation. */ def -(_1: A): Relation[A,B] /** Removes `pair` from this relation. */ def -(pair: (A,B)): Relation[A,B] /** Returns the set of all _1s such that (_1, _2) is in this relation. */ def _1s: collection.Set[A] /** Returns the set of all _2s such that (_1, _2) is in this relation. */ def _2s: collection.Set[B] /** Returns the number of pairs in this relation */ def size: Int /** Returns true iff (a,b) is in this relation*/ def contains(a: A, b: B): Boolean /** Returns a relation with only pairs (a,b) for which f(a,b) is true.*/ def filter(f: (A,B) => Boolean): Relation[A,B] /** Partitions this relation into a map of relations according to some discriminator function. */ def groupBy[K](f: ((A,B)) => K): Map[K, Relation[A,B]] /** Returns all pairs in this relation.*/ def all: Traversable[(A,B)] def forwardMap: Map[A, Set[B]] def reverseMap: Map[B, Set[A]] } private final class MRelation[A,B](fwd: Map[A, Set[B]], rev: Map[B, Set[A]]) extends Relation[A,B] { def forwardMap = fwd def reverseMap = rev def forward(t: A) = get(fwd, t) def reverse(t: B) = get(rev, t) def _1s = fwd.keySet def _2s = rev.keySet def size = fwd.size def all: Traversable[(A,B)] = fwd.iterator.flatMap { case (a, bs) => bs.iterator.map( b => (a,b) ) }.toTraversable def +(pair: (A,B)) = this + (pair._1, Set(pair._2)) def +(from: A, to: B) = this + (from, to :: Nil) def +(from: A, to: Traversable[B]) = new MRelation( add(fwd, from, to), (rev /: to) { (map, t) => add(map, t, from :: Nil) }) def ++(rs: Traversable[(A,B)]) = ((this: Relation[A,B]) /: rs) { _ + _ } def ++(other: Relation[A,B]) = new MRelation[A,B]( combine(fwd, other.forwardMap), combine(rev, other.reverseMap) ) def --(ts: Traversable[A]): Relation[A,B] = ((this: Relation[A,B]) /: ts) { _ - _ } def --(pairs: TraversableOnce[(A,B)]): Relation[A,B] = ((this: Relation[A,B]) /: pairs) { _ - _ } def -(pair: (A,B)): Relation[A,B] = new MRelation( remove(fwd, pair._1, pair._2), remove(rev, pair._2, pair._1) ) def -(t: A): Relation[A,B] = fwd.get(t) match { case Some(rs) => val upRev = (rev /: rs) { (map, r) => remove(map, r, t) } new MRelation(fwd - t, upRev) case None => this } def filter(f: (A,B) => Boolean): Relation[A,B] = Relation.empty[A,B] ++ all.filter(f.tupled) def groupBy[K](f: ((A,B)) => K): Map[K, Relation[A,B]] = all.groupBy(f) mapValues { Relation.empty[A,B] ++ _ } def contains(a: A, b: B): Boolean = forward(a)(b) override def toString = all.map { case (a,b) => a + " -> " + b }.mkString("Relation [", ", ", "]") }
olove/xsbt
util/relation/src/main/scala/sbt/Relation.scala
Scala
bsd-3-clause
4,847
package nozzle.webresult import spray.json._ import nozzle.jsend._ import spray.httpx.marshalling._ import spray.httpx.SprayJsonSupport trait JSendMarshallingSupport extends MarshallingSupport with nozzle.jsend.JSendSupport { import JSendJsonProtocol._ private implicit def okRootJsonFormat[T](implicit jsendable: JSendable[T], jsonFormat: RootJsonFormat[T]) = new RootJsonFormat[Ok[T]] { def write(t: Ok[T]) = jsendable.toJSendSuccess(t.value).toJson def read(json: spray.json.JsValue): Ok[T] = Ok(JSendSuccessFormat(jsonFormat).read(json).data) } private implicit def okPluralRootJsonFormat[T](implicit jsendable: JSendable[List[T]], jsonFormat: RootJsonFormat[List[T]]) = new RootJsonFormat[Ok[List[T]]] { def write(t: Ok[List[T]]) = jsendable.toJSendSuccess(t.value).toJson def read(json: spray.json.JsValue): Ok[List[T]] = Ok(JSendSuccessFormat(jsonFormat).read(json).data) } private implicit def okUnitRootJsonFormat[T] = new RootJsonFormat[Ok[Unit]] { def write(t: Ok[Unit]) = JSendEmptySuccess.toJson def read(json: spray.json.JsValue): Ok[Unit] = { JSendEmptySuccessFormat.read(json) Ok(()) } } private implicit def webErrorRootJsonFormat(implicit toMessageStr: WebError => String) = new RootJsonWriter[WebError] { def write(webError: WebError) = JSendError(message = toMessageStr(webError)).toJson } implicit def okMarshaller[T](implicit jsendable: JSendable[T], jsonFormat: RootJsonFormat[T]) = SprayJsonSupport.sprayJsonMarshaller[Ok[T]] implicit val okUnitMarshaller = SprayJsonSupport.sprayJsonMarshaller[Ok[Unit]] implicit val webErrorMarshaller = SprayJsonSupport.sprayJsonMarshaller[WebError] }
utaal/nozzle
src/main/scala/webresult/JSendMarshallingSupport.scala
Scala
mit
1,711
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.dllib.optim.parameters import java.nio.ByteBuffer import com.intel.analytics.bigdl.dllib.tensor.Tensor import scala.reflect._ class FP16SplitsCompressedTensor[T: ClassTag](buffers: Array[Array[Byte]], size: Int) extends CompressedTensor[T] { def this(tensor: Tensor[T], splitsNum: Int) { this(new Array[Array[Byte]](splitsNum), tensor.nElement()) compress(tensor) } def this(length: Int, splitsNum: Int) { this(new Array[Array[Byte]](splitsNum), length) } @inline private def overlap(splitOffset: Int, splitLength: Int, offset: Int, length: Int): Option[(Int, Int)] = { if ((splitOffset > offset + length || splitOffset + splitLength < offset)) { None } else { Some(math.max(offset - splitOffset, 0), math.min(splitOffset + splitLength, offset + length) - math.max(splitOffset, offset)) } } override def compress(offset: Int, src: Tensor[T], srcOffset: Int, length: Int): FP16SplitsCompressedTensor.this.type = { require(src.isContiguous() && offset >= 0 && srcOffset >= 0 && srcOffset + length <= src.nElement()) require(offset + length <= size) val tOffset = src.storageOffset() - 1 + srcOffset val splitSize = size / buffers.length val extraSize = size % buffers.length var i = 0 while (i < buffers.length) { val start = splitSize * i + math.min(extraSize, i) val curLength = splitSize + (if (i < extraSize) 1 else 0) overlap(start, curLength, offset, length) match { case Some((splitOffset, overlapLength)) => if (buffers(i) == null) { buffers(i) = new Array[Byte](curLength * 2) } if (classTag[T] == classTag[Double]) { FP16CompressedTensor.toFP16(src.storage().array().asInstanceOf[Array[Double]], tOffset + start, buffers(i), splitOffset, overlapLength) } else if (classTag[T] == classTag[Float]) { FP16CompressedTensor.toFP16(src.storage().array().asInstanceOf[Array[Float]], tOffset + start, buffers(i), splitOffset, overlapLength) } else { throw new IllegalArgumentException } case _ => } i += 1 } this } override def compress(tensor: Tensor[T]): FP16SplitsCompressedTensor.this.type = compress(0, tensor, 0, tensor.nElement()) override def deCompress(srcOffset: Int, tensor: Tensor[T], tgtOffset: Int, length: Int): Unit = { require(srcOffset >= 0 && length > 0 && srcOffset + length <= size && tgtOffset >= 0 && tgtOffset + length <= tensor.nElement()) require(tensor.isContiguous()) val splitSize = size / buffers.length val extraSize = size % buffers.length var i = 0 while (i < buffers.length) { val start = splitSize * i + math.min(extraSize, i) val curLength = splitSize + (if (i < extraSize) 1 else 0) overlap(start, curLength, srcOffset, length) match { case Some((splitOffset, overlapLength)) => if (classTag[T] == classTag[Double]) { val tdata = tensor.storage().array().asInstanceOf[Array[Double]] val toffset = tensor.storageOffset() - 1 + tgtOffset FP16CompressedTensor.fromFP16(buffers(i), splitOffset * 2, overlapLength * 2, tdata, toffset + start) } else if (classTag[T] == classTag[Float]) { val tdata = tensor.storage().array().asInstanceOf[Array[Float]] val toffset = tensor.storageOffset() - 1 + tgtOffset FP16CompressedTensor.fromFP16(buffers(i), splitOffset * 2, overlapLength * 2, tdata, toffset + start) } else { throw new IllegalArgumentException } case _ => } i += 1 } } override def deCompress(tensor: Tensor[T]): Unit = deCompress(0, tensor, 0, tensor.nElement()) override def bytes(offset: Int, length: Int): ByteBuffer = { val splitSize = size / buffers.length val extraSize = size % buffers.length var i = 0 while (i < buffers.length) { val start = splitSize * i + math.min(extraSize, i) val curLength = splitSize + (if (i < extraSize) 1 else 0) if (start == offset && curLength == length) { require(buffers(i) != null, "split has not been inited") return ByteBuffer.wrap(buffers(i)) } i += 1 } throw new IllegalArgumentException("Offset and length not match") } override def bytes(): ByteBuffer = bytes(0, size) // scalastyle:off override def add(data: ByteBuffer, offset: Int, length: Int): FP16SplitsCompressedTensor.this.type = ??? override def add(data: ByteBuffer): FP16SplitsCompressedTensor.this.type = ??? override def parAdd(data: ByteBuffer, offset: Int, length: Int): FP16SplitsCompressedTensor.this.type = ??? override def parAdd(data: ByteBuffer): FP16SplitsCompressedTensor.this.type = ??? // scalastyle:on }
intel-analytics/BigDL
scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/optim/parameters/FP16SplitsCompressedTensor.scala
Scala
apache-2.0
5,578
package monocle.generic import monocle.law.discipline.IsoTests import monocle.law.discipline.function.EachTests import monocle.generic.all._ import org.scalacheck.Arbitrary import cats.Eq import munit.DisciplineSuite import scala.annotation.nowarn @nowarn class ProductSpec extends DisciplineSuite { case class Person(name: String, age: Int) implicit val personEq: Eq[Person] = Eq.fromUniversalEquals implicit val personArb: Arbitrary[Person] = Arbitrary(for { n <- Arbitrary.arbitrary[String] a <- Arbitrary.arbitrary[Int] } yield Person(n, a)) case class Permissions(read: Boolean, write: Boolean, execute: Boolean) implicit val nameEq: Eq[Permissions] = Eq.fromUniversalEquals implicit val nameArb: Arbitrary[Permissions] = Arbitrary(for { f <- Arbitrary.arbitrary[Boolean] l <- Arbitrary.arbitrary[Boolean] i <- Arbitrary.arbitrary[Boolean] } yield Permissions(f, l, i)) checkAll("toTuple", IsoTests(product.productToTuple[Person])) checkAll("eachTuple2", EachTests[(String, String), String]) checkAll("eachTuple4", EachTests[(Int, Int, Int, Int), Int]) checkAll("eachCaseClass", EachTests[Permissions, Boolean]) }
julien-truffaut/Monocle
generic/src/test/scala/monocle/generic/ProductSpec.scala
Scala
mit
1,171
package org.allenai.common import org.allenai.common.testkit.UnitSpec class MathUtilsSpec extends UnitSpec { "MathUtils" should "correctly perform math operations" in { MathUtils.round(3.1415, 2) should be(3.14) MathUtils.round(3.1415, 3) should be(3.142) } it should "correctly incorporate rounding mode" in { MathUtils.round(3.1415, 3, BigDecimal.RoundingMode.HALF_DOWN) should be(3.141) MathUtils.round(3.1415, 3, BigDecimal.RoundingMode.HALF_UP) should be(3.142) } }
allenai/common
core/src/test/scala/org/allenai/common/MathUtilsSpec.scala
Scala
apache-2.0
499
/* * ____ ____ _____ ____ ___ ____ * | _ \\ | _ \\ | ____| / ___| / _/ / ___| Precog (R) * | |_) | | |_) | | _| | | | | /| | | _ Advanced Analytics Engine for NoSQL Data * | __/ | _ < | |___ | |___ |/ _| | | |_| | Copyright (C) 2010 - 2013 SlamData, Inc. * |_| |_| \\_\\ |_____| \\____| /__/ \\____| All Rights Reserved. * * This program is free software: you can redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the Free Software Foundation, either version * 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License along with this * program. If not, see <http://www.gnu.org/licenses/>. * */ //package com.precog //package ragnarok //package test // //object ClicksTestSuite extends ClicksLikePerfTestSuite { // val data = "//clicks" // // "simple" := simpleQueries() // "grouping" := groupingQueries() // "advanced grouping" := advancedGroupingQueries() //} // //
precog/platform
ragnarok/src/main/scala/com/precog/ragnarok/test/ClicksTestSuite.scala
Scala
agpl-3.0
1,351
package org.scalatra import org.scalatest.{Matchers, FunSuite} import org.scalatest.matchers.MustMatchers class RailsLikeUrlGeneratorTest extends FunSuite with Matchers { def url(path: String, params: Tuple2[String, String]*): String = url(path, params.toMap) def url(path: String, splat: String, moreSplats: String*): String = url(path, Map[String, String](), splat +: moreSplats) def url(path: String, params: Map[String, String] = Map(), splats: Iterable[String] = Seq()): String = new RailsRouteMatcher(path).reverse(params, splats.toList) test("static string") { url("/foo") should equal ("/foo") } test("dynamic segment") { url(":foo.example.com", "foo" -> "vanilla") should equal ("vanilla.example.com") } test("dynamic segment with leading underscore") { url(":_foo.example.com", "_foo" -> "vanilla") should equal ("vanilla.example.com") } test("skip invalid group names: 123") { url(":123.example.com") should equal (":123.example.com") } test("skip invalid group names: $") { url(":$.example.com") should equal (":$.example.com") } test("escaped dynamic segment") { url("""\\:foo.example.com""") should equal (":foo.example.com") url("""bar.\\:foo.com""") should equal ("bar.:foo.com") } test("dynamic segment inside optional segment") { url("foo(.:extension)", "extension" -> "json") should equal ("foo.json") url("foo(.:extension)") should equal ("foo") } test("static string and dynamic segment inside optional segment") { url("foo(/bar.:extension)", "extension" -> "json") should equal ("foo/bar.json") url("foo(/bar.:extension)") should equal ("foo") } test("glob segment") { url("src/*files", "files" -> "a/b/c.txt") should equal ("src/a/b/c.txt") } test("glob segment at the beginning") { url("*files/foo.txt", "files" -> "/home/thib") should equal ("/home/thib/foo.txt") } test("glob segment in the middle") { url("src/*files/foo.txt", "files" -> "a/b/c") should equal ("src/a/b/c/foo.txt") } test("multiple glob segments") { url("src/*files/dir/*morefiles/foo.txt", "files" -> "a/b", "morefiles" -> "c/d") should equal ("src/a/b/dir/c/d/foo.txt") } test("escaped glob segment") { url("""src/\\*files""") should equal ("src/*files") } test("glob segment inside optional segment") { url("src(/*files)", "files" -> "a/b/c.txt") should equal ("src/a/b/c.txt") url("src(/*files)") should equal ("src") } test("optional segment") { url("/foo(/bar)") should equal ("/foo/bar") } test("optional segment on first position") { url("(/foo)/bar") should equal ("/foo/bar") } test("consecutive optional segments") { url("/foo(/bar)(/baz)") should equal ("/foo/bar/baz") } test("separated optional segments") { url("/foo(/bar)/buz(/baz)") should equal ("/foo/bar/buz/baz") } test("multiple optional segments") { url("(/foo)(/bar)(/baz)") should equal ("/foo/bar/baz") } test("escapes optional segment parentheses") { url("""/foo\\(/bar\\)""") should equal ("/foo(/bar)") } test("escapes one optional segment parenthesis") { url("""/foo\\((/bar)""") should equal ("/foo(/bar") } }
etorreborre/scalatra
core/src/test/scala/org/scalatra/RailsLikeUrlGeneratorTest.scala
Scala
bsd-2-clause
3,207
/* * Copyright 2016 Coral realtime streaming analytics (http://coral-streaming.github.io) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.coral.utils object NameSuggester { /** * Suggest a name based on a list of pre-existing names. * If the name does not appear in the list, return the name itself. * If it does appear in the list, add a number to it until it does * not appear in the list any more, starting with 2. * @param name The name to check. * @param list The list to find the name in. */ def suggestName(name: String, list: List[String]): String = { if (!list.contains(name)) { name } else { val (first, last) = splitNumberAtEnd(name) val proposed = first + (last.toInt + 1).toString if (list.contains(proposed)) { suggestName(proposed, list) } else { proposed } } } /** * Splits a string with a number at the end in the * non-numeric and the numeric part. * For example: "abcd123" => ("abcd", 123) * @param name The actor name to split * @return A tuple with a string and an int. * If no number is present a the end, the number * that is returned is 1. */ private def splitNumberAtEnd(name: String): (String, Int) = { val first = name.takeWhile(c => !c.isDigit) val last = { val numbers = name.reverse.takeWhile(c => c.isDigit).reverse if (numbers.length > 0) numbers.toInt else 1 } (first, last) } }
coral-streaming/coral
src/main/scala/io/coral/utils/NameSuggester.scala
Scala
apache-2.0
1,939
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive.thriftserver import scala.util.control.NonFatal import org.apache.hadoop.hive.conf.HiveConf import org.apache.hive.service.cli.SessionHandle import org.apache.hive.service.cli.session.SessionManager import org.apache.hive.service.rpc.thrift.TProtocolVersion import org.apache.hive.service.server.HiveServer2 import org.apache.spark.internal.Logging import org.apache.spark.sql.SQLContext import org.apache.spark.sql.hive.thriftserver.ReflectionUtils._ import org.apache.spark.sql.hive.thriftserver.server.SparkSQLOperationManager import org.apache.spark.sql.internal.SQLConf private[hive] class SparkSQLSessionManager(hiveServer: HiveServer2, sqlContext: SQLContext) extends SessionManager(hiveServer) with ReflectedCompositeService with Logging { private lazy val sparkSqlOperationManager = new SparkSQLOperationManager() override def init(hiveConf: HiveConf): Unit = { setSuperField(this, "operationManager", sparkSqlOperationManager) super.init(hiveConf) } override def openSession( protocol: TProtocolVersion, username: String, passwd: String, ipAddress: String, sessionConf: java.util.Map[String, String], withImpersonation: Boolean, delegationToken: String): SessionHandle = { val sessionHandle = super.openSession(protocol, username, passwd, ipAddress, sessionConf, withImpersonation, delegationToken) try { val session = super.getSession(sessionHandle) HiveThriftServer2.eventManager.onSessionCreated( session.getIpAddress, sessionHandle.getSessionId.toString, session.getUsername) val ctx = if (sqlContext.conf.hiveThriftServerSingleSession) { sqlContext } else { sqlContext.newSession() } ctx.setConf(SQLConf.DATETIME_JAVA8API_ENABLED, true) val hiveSessionState = session.getSessionState setConfMap(ctx, hiveSessionState.getOverriddenConfigurations) setConfMap(ctx, hiveSessionState.getHiveVariables) if (sessionConf != null && sessionConf.containsKey("use:database")) { ctx.sql(s"use ${sessionConf.get("use:database")}") } sparkSqlOperationManager.sessionToContexts.put(sessionHandle, ctx) sessionHandle } catch { case NonFatal(e) => try { closeSession(sessionHandle) } catch { case NonFatal(inner) => logWarning("Error closing session", inner) } throw HiveThriftServerErrors.failedToOpenNewSessionError(e) } } override def closeSession(sessionHandle: SessionHandle): Unit = { HiveThriftServer2.eventManager.onSessionClosed(sessionHandle.getSessionId.toString) val ctx = sparkSqlOperationManager.sessionToContexts.getOrDefault(sessionHandle, sqlContext) ctx.sparkSession.sessionState.catalog.getTempViewNames().foreach(ctx.uncacheTable) super.closeSession(sessionHandle) sparkSqlOperationManager.sessionToContexts.remove(sessionHandle) } def setConfMap(conf: SQLContext, confMap: java.util.Map[String, String]): Unit = { val iterator = confMap.entrySet().iterator() while (iterator.hasNext) { val kv = iterator.next() conf.setConf(kv.getKey, kv.getValue) } } }
maropu/spark
sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLSessionManager.scala
Scala
apache-2.0
4,047
/** * Copyright (C) 2016 Orbeon, Inc. * * This program is free software; you can redistribute it and/or modify it under the terms of the * GNU Lesser General Public License as published by the Free Software Foundation; either version * 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Lesser General Public License for more details. * * The full text of the license is available at http://www.gnu.org/copyleft/lesser.html */ package org.orbeon.oxf.fr.persistence.relational.search.part import org.orbeon.oxf.fr.persistence.relational.Provider import org.orbeon.oxf.fr.persistence.relational.Statement._ import org.orbeon.oxf.fr.persistence.relational.search.adt.{Column, FilterType, SearchRequest} object columnFilterPart { def apply(request: SearchRequest): StatementPart = if (! request.columns.exists(_.filterType != FilterType.None)) NilPart else StatementPart( sql = request.columns // Only consider column with a filter .filter(_.filterType != FilterType.None) // Add index, used to refer the appropriate tf table .zipWithIndex .flatMap { case (column, i) => val dataControlWhere = s"""AND tf$i.data_id = c.data_id |AND tf$i.control = ? |""".stripMargin val valueWhere = column.filterType match { case FilterType.None => List.empty case FilterType.Exact (_) => List("AND " + Provider.textEquals (request.provider, s"tf$i.val")) case FilterType.Substring(_) => List("AND " + Provider.textContains(request.provider, s"tf$i.val")) case FilterType.Token (tokens) => tokens.map { _ => "AND " + Provider.textContains(request.provider, s"concat(' ', tf$i.val, ' ')") } } dataControlWhere :: valueWhere } .mkString(" "), setters = { val values = request.columns.flatMap { case Column(path, matchType) => matchType match { case FilterType.None => List.empty case FilterType.Exact(filter) => path :: List(filter) case FilterType.Substring(filter) => path :: List(s"%${filter.toLowerCase}%") case FilterType.Token(tokens) => path :: tokens.map(token => s"% $token %") } } values.map(value => (_.setString(_, value)): Setter) } ) }
orbeon/orbeon-forms
form-runner/jvm/src/main/scala/org/orbeon/oxf/fr/persistence/relational/search/part/columnFilterPart.scala
Scala
lgpl-2.1
2,924
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive import scala.collection.JavaConverters._ import org.apache.hadoop.fs.Path import org.apache.spark.sql.{CarbonEnv, CarbonSession, SparkSession} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.carbondata.core.cache.dictionary.ManageDictionaryAndBTree import org.apache.carbondata.core.datamap.DataMapStoreManager import org.apache.carbondata.core.datastore.block.SegmentPropertiesAndSchemaHolder import org.apache.carbondata.core.metadata.{schema, AbsoluteTableIdentifier, CarbonMetadata, CarbonTableIdentifier} import org.apache.carbondata.core.metadata.converter.ThriftWrapperSchemaConverterImpl import org.apache.carbondata.core.metadata.schema.table.CarbonTable import org.apache.carbondata.core.util.CarbonUtil import org.apache.carbondata.core.util.path.CarbonTablePath import org.apache.carbondata.format import org.apache.carbondata.format.SchemaEvolutionEntry import org.apache.carbondata.spark.util.CarbonSparkUtil /** * Metastore to store carbonschema in hive */ class CarbonHiveMetaStore extends CarbonFileMetastore { override def isReadFromHiveMetaStore: Boolean = true /** * Create spark session from paramters. * * @param parameters * @param absIdentifier * @param sparkSession */ override def createCarbonRelation(parameters: Map[String, String], absIdentifier: AbsoluteTableIdentifier, sparkSession: SparkSession): CarbonRelation = { val info = CarbonUtil.convertGsonToTableInfo(parameters.asJava) val carbonRelation = if (info != null) { val table = CarbonTable.buildFromTableInfo(info) CarbonRelation(info.getDatabaseName, info.getFactTable.getTableName, CarbonSparkUtil.createSparkMeta(table), table) } else { super.createCarbonRelation(parameters, absIdentifier, sparkSession) } carbonRelation.refresh() carbonRelation } override def isTablePathExists(tableIdentifier: TableIdentifier) (sparkSession: SparkSession): Boolean = { tableExists(tableIdentifier)(sparkSession) } override def dropTable(absoluteTableIdentifier: AbsoluteTableIdentifier) (sparkSession: SparkSession): Unit = { val dbName = absoluteTableIdentifier.getCarbonTableIdentifier.getDatabaseName val tableName = absoluteTableIdentifier.getCarbonTableIdentifier.getTableName val carbonTable = CarbonMetadata.getInstance.getCarbonTable(dbName, tableName) if (null != carbonTable) { // clear driver B-tree and dictionary cache ManageDictionaryAndBTree.clearBTreeAndDictionaryLRUCache(carbonTable) } checkSchemasModifiedTimeAndReloadTable(TableIdentifier(tableName, Some(dbName))) removeTableFromMetadata(dbName, tableName) CarbonHiveMetadataUtil.invalidateAndDropTable(dbName, tableName, sparkSession) // discard cached table info in cachedDataSourceTables val tableIdentifier = TableIdentifier(tableName, Option(dbName)) sparkSession.sessionState.catalog.refreshTable(tableIdentifier) DataMapStoreManager.getInstance().clearDataMaps(absoluteTableIdentifier) SegmentPropertiesAndSchemaHolder.getInstance().invalidate(absoluteTableIdentifier) } override def checkSchemasModifiedTimeAndReloadTable(tableIdentifier: TableIdentifier): Boolean = { // do nothing false } override def listAllTables(sparkSession: SparkSession): Seq[CarbonTable] = { // Todo Seq() } override def getThriftTableInfo(carbonTable: CarbonTable): format.TableInfo = { val schemaConverter = new ThriftWrapperSchemaConverterImpl schemaConverter.fromWrapperToExternalTableInfo(carbonTable.getTableInfo, carbonTable.getDatabaseName, carbonTable.getTableName) } /** * This method will overwrite the existing schema and update it with the given details * * @param newTableIdentifier * @param thriftTableInfo * @param schemaEvolutionEntry * @param sparkSession */ override def updateTableSchemaForAlter(newTableIdentifier: CarbonTableIdentifier, oldTableIdentifier: CarbonTableIdentifier, thriftTableInfo: format.TableInfo, schemaEvolutionEntry: SchemaEvolutionEntry, tablePath: String) (sparkSession: SparkSession): String = { val schemaConverter = new ThriftWrapperSchemaConverterImpl if (schemaEvolutionEntry != null) { thriftTableInfo.fact_table.schema_evolution.schema_evolution_history.add(schemaEvolutionEntry) } updateHiveMetaStoreForAlter(newTableIdentifier, oldTableIdentifier, thriftTableInfo, tablePath, sparkSession, schemaConverter) } /** * This method will overwrite the existing schema and update it with the given details * * @param newTableIdentifier * @param thriftTableInfo * @param carbonTablePath * @param sparkSession */ override def updateTableSchemaForDataMap(newTableIdentifier: CarbonTableIdentifier, oldTableIdentifier: CarbonTableIdentifier, thriftTableInfo: org.apache.carbondata.format.TableInfo, carbonTablePath: String)(sparkSession: SparkSession): String = { val schemaConverter = new ThriftWrapperSchemaConverterImpl updateHiveMetaStoreForAlter( newTableIdentifier, oldTableIdentifier, thriftTableInfo, carbonTablePath, sparkSession, schemaConverter) } private def updateHiveMetaStoreForAlter(newTableIdentifier: CarbonTableIdentifier, oldTableIdentifier: CarbonTableIdentifier, thriftTableInfo: format.TableInfo, tablePath: String, sparkSession: SparkSession, schemaConverter: ThriftWrapperSchemaConverterImpl) = { val wrapperTableInfo = schemaConverter.fromExternalToWrapperTableInfo( thriftTableInfo, newTableIdentifier.getDatabaseName, newTableIdentifier.getTableName, tablePath) val dbName = newTableIdentifier.getDatabaseName val tableName = newTableIdentifier.getTableName val schemaParts = CarbonUtil.convertToMultiGsonStrings(wrapperTableInfo, "=", "'", "") val hiveClient = sparkSession.sessionState.catalog.asInstanceOf[CarbonSessionCatalog] .getClient() hiveClient.runSqlHive(s"ALTER TABLE $dbName.$tableName SET SERDEPROPERTIES($schemaParts)") sparkSession.catalog.refreshTable(TableIdentifier(tableName, Some(dbName)).quotedString) removeTableFromMetadata(dbName, tableName) CarbonMetadata.getInstance().loadTableMetadata(wrapperTableInfo) tablePath } /** * Generates schema string from TableInfo */ override def generateTableSchemaString( tableInfo: schema.table.TableInfo, absoluteTableIdentifier: AbsoluteTableIdentifier): String = { val schemaEvolutionEntry = new schema.SchemaEvolutionEntry schemaEvolutionEntry.setTimeStamp(tableInfo.getLastUpdatedTime) tableInfo.getFactTable.getSchemaEvolution.getSchemaEvolutionEntryList.add(schemaEvolutionEntry) CarbonUtil.convertToMultiGsonStrings(tableInfo, " ", "", ",") } /** * This method will is used to remove the evolution entry in case of failure. * * @param carbonTableIdentifier * @param thriftTableInfo * @param sparkSession */ override def revertTableSchemaInAlterFailure(carbonTableIdentifier: CarbonTableIdentifier, thriftTableInfo: format.TableInfo, identifier: AbsoluteTableIdentifier) (sparkSession: SparkSession): String = { val schemaConverter = new ThriftWrapperSchemaConverterImpl val evolutionEntries = thriftTableInfo.fact_table.schema_evolution.schema_evolution_history evolutionEntries.remove(evolutionEntries.size() - 1) updateHiveMetaStoreForAlter(carbonTableIdentifier, carbonTableIdentifier, thriftTableInfo, identifier.getTablePath, sparkSession, schemaConverter) } override def revertTableSchemaForPreAggCreationFailure(absoluteTableIdentifier: AbsoluteTableIdentifier, thriftTableInfo: org.apache.carbondata.format.TableInfo) (sparkSession: SparkSession): String = { val schemaConverter = new ThriftWrapperSchemaConverterImpl val childSchemas = thriftTableInfo.dataMapSchemas childSchemas.remove(childSchemas.size() - 1) val carbonTableIdentifier = absoluteTableIdentifier.getCarbonTableIdentifier updateHiveMetaStoreForAlter(carbonTableIdentifier, carbonTableIdentifier, thriftTableInfo, absoluteTableIdentifier.getTablePath, sparkSession, schemaConverter) } }
sgururajshetty/carbondata
integration/spark2/src/main/scala/org/apache/spark/sql/hive/CarbonHiveMetaStore.scala
Scala
apache-2.0
9,226
package pl.touk.nussknacker.engine.flink.util.transformer import com.typesafe.config.Config import com.typesafe.config.ConfigValueFactory.fromAnyRef import pl.touk.nussknacker.engine.api.component.{ComponentDefinition, ComponentProvider, NussknackerVersion} import pl.touk.nussknacker.engine.api.process.ProcessObjectDependencies import pl.touk.nussknacker.engine.avro.schemaregistry.SchemaRegistryProvider import pl.touk.nussknacker.engine.avro.schemaregistry.confluent.ConfluentSchemaRegistryProvider import pl.touk.nussknacker.engine.avro.schemaregistry.confluent.client.CachedConfluentSchemaRegistryClientFactory import pl.touk.nussknacker.engine.avro.sink.flink.FlinkKafkaAvroSinkImplFactory import pl.touk.nussknacker.engine.avro.sink.{KafkaAvroSinkFactory, KafkaAvroSinkFactoryWithEditor} import pl.touk.nussknacker.engine.avro.source.KafkaAvroSourceFactory import pl.touk.nussknacker.engine.kafka.KafkaConfig import pl.touk.nussknacker.engine.kafka.generic.sinks.GenericKafkaJsonSinkFactory import pl.touk.nussknacker.engine.kafka.generic.sources.{GenericJsonSourceFactory, GenericTypedJsonSourceFactory} import pl.touk.nussknacker.engine.kafka.source.flink.FlinkKafkaSourceImplFactory import pl.touk.nussknacker.engine.util.config.DocsConfig class FlinkKafkaComponentProvider extends ComponentProvider { protected val avroSerializingSchemaRegistryProvider: SchemaRegistryProvider = createAvroSchemaRegistryProvider protected val jsonSerializingSchemaRegistryProvider: SchemaRegistryProvider = createJsonSchemaRegistryProvider protected def createAvroSchemaRegistryProvider: SchemaRegistryProvider = ConfluentSchemaRegistryProvider() protected def createJsonSchemaRegistryProvider: SchemaRegistryProvider = ConfluentSchemaRegistryProvider.jsonPayload(CachedConfluentSchemaRegistryClientFactory()) override def providerName: String = "kafka" override def resolveConfigForExecution(config: Config): Config = config override def create(config: Config, dependencies: ProcessObjectDependencies): List[ComponentDefinition] = { val overriddenDependencies = TemporaryKafkaConfigMapping.prepareDependencies(config, dependencies) val docsConfig: DocsConfig = new DocsConfig(config) import docsConfig._ val avro = "DataSourcesAndSinks#schema-registry--avro-serialization" val schemaRegistryTypedJson = "DataSourcesAndSinks#schema-registry--json-serialization" val noTypeInfo = "DataSourcesAndSinks#no-type-information--json-serialization" List( ComponentDefinition("kafka-json", new GenericKafkaJsonSinkFactory(overriddenDependencies)).withRelativeDocs(noTypeInfo), ComponentDefinition("kafka-json", new GenericJsonSourceFactory(overriddenDependencies)).withRelativeDocs(noTypeInfo), ComponentDefinition("kafka-typed-json", new GenericTypedJsonSourceFactory(overriddenDependencies)).withRelativeDocs("DataSourcesAndSinks#manually-typed--json-serialization"), ComponentDefinition("kafka-avro", new KafkaAvroSourceFactory(avroSerializingSchemaRegistryProvider, overriddenDependencies, new FlinkKafkaSourceImplFactory(None))).withRelativeDocs(avro), ComponentDefinition("kafka-avro", new KafkaAvroSinkFactoryWithEditor(avroSerializingSchemaRegistryProvider, overriddenDependencies, FlinkKafkaAvroSinkImplFactory)).withRelativeDocs(avro), ComponentDefinition("kafka-registry-typed-json", new KafkaAvroSourceFactory(jsonSerializingSchemaRegistryProvider, overriddenDependencies, new FlinkKafkaSourceImplFactory(None))).withRelativeDocs(schemaRegistryTypedJson), ComponentDefinition("kafka-registry-typed-json", new KafkaAvroSinkFactoryWithEditor(jsonSerializingSchemaRegistryProvider, overriddenDependencies, FlinkKafkaAvroSinkImplFactory)).withRelativeDocs(schemaRegistryTypedJson), ComponentDefinition("kafka-registry-typed-json-raw", new KafkaAvroSinkFactory(jsonSerializingSchemaRegistryProvider, overriddenDependencies, FlinkKafkaAvroSinkImplFactory)).withRelativeDocs(schemaRegistryTypedJson), ComponentDefinition("kafka-avro-raw", new KafkaAvroSinkFactory(avroSerializingSchemaRegistryProvider, overriddenDependencies, FlinkKafkaAvroSinkImplFactory)).withRelativeDocs(avro) ) } override def isCompatible(version: NussknackerVersion): Boolean = true override def isAutoLoaded: Boolean = false } //FIXME: Kafka components should not depend directly on ProcessObjectDependencies, only on //appropriate config, this class is temporary solution, where we pass modified dependencies private[transformer] object TemporaryKafkaConfigMapping { def prepareDependencies(config: Config, dependencies: ProcessObjectDependencies): ProcessObjectDependencies = { val kafkaConfig = config.getConfig("config") val kafkaConfigMergedWithGlobalConfig = dependencies.config.withValue(KafkaConfig.defaultGlobalKafkaConfigPath, fromAnyRef(kafkaConfig.root())) dependencies.copy(config = kafkaConfigMergedWithGlobalConfig) } }
TouK/nussknacker
engine/flink/components/kafka/src/main/scala/pl/touk/nussknacker/engine/flink/util/transformer/FlinkKafkaComponentProvider.scala
Scala
apache-2.0
4,937
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.plans.logical.statsEstimation import org.apache.spark.sql.catalyst.CatalystConf import org.apache.spark.sql.catalyst.expressions.{Alias, Attribute, AttributeMap} import org.apache.spark.sql.catalyst.plans.logical.{Project, Statistics} object ProjectEstimation { import EstimationUtils._ def estimate(conf: CatalystConf, project: Project): Option[Statistics] = { if (rowCountsExist(conf, project.child)) { val childStats = project.child.stats(conf) val inputAttrStats = childStats.attributeStats // Match alias with its child's column stat val aliasStats = project.expressions.collect { case alias @ Alias(attr: Attribute, _) if inputAttrStats.contains(attr) => alias.toAttribute -> inputAttrStats(attr) } val outputAttrStats = getOutputMap(AttributeMap(inputAttrStats.toSeq ++ aliasStats), project.output) Some(childStats.copy( sizeInBytes = getOutputSize(project.output, childStats.rowCount.get, outputAttrStats), attributeStats = outputAttrStats)) } else { None } } }
jianran/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/ProjectEstimation.scala
Scala
apache-2.0
1,921
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.streaming.kafka010 import java.{ util => ju } import java.util.concurrent.ConcurrentLinkedQueue import java.util.concurrent.atomic.AtomicReference import scala.annotation.tailrec import scala.collection.JavaConverters._ import scala.collection.mutable import org.apache.kafka.clients.consumer._ import org.apache.kafka.common.{ PartitionInfo, TopicPartition } import org.apache.spark.SparkException import org.apache.spark.internal.Logging import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.{StreamingContext, Time} import org.apache.spark.streaming.dstream._ import org.apache.spark.streaming.scheduler.{RateController, StreamInputInfo} import org.apache.spark.streaming.scheduler.rate.RateEstimator /** * A DStream where * each given Kafka topic/partition corresponds to an RDD partition. * The spark configuration spark.streaming.kafka.maxRatePerPartition gives the maximum number * of messages * per second that each '''partition''' will accept. * @param locationStrategy In most cases, pass in [[LocationStrategies.PreferConsistent]], * see [[LocationStrategy]] for more details. * @param consumerStrategy In most cases, pass in [[ConsumerStrategies.Subscribe]], * see [[ConsumerStrategy]] for more details * @param ppc configuration of settings such as max rate on a per-partition basis. * see [[PerPartitionConfig]] for more details. * @tparam K type of Kafka message key * @tparam V type of Kafka message value */ private[spark] class DirectKafkaInputDStream[K, V]( _ssc: StreamingContext, locationStrategy: LocationStrategy, consumerStrategy: ConsumerStrategy[K, V], ppc: PerPartitionConfig ) extends InputDStream[ConsumerRecord[K, V]](_ssc) with Logging with CanCommitOffsets { val executorKafkaParams = { val ekp = new ju.HashMap[String, Object](consumerStrategy.executorKafkaParams) KafkaUtils.fixKafkaParams(ekp) ekp } protected var currentOffsets = Map[TopicPartition, Long]() @transient private var kc: Consumer[K, V] = null def consumer(): Consumer[K, V] = this.synchronized { if (null == kc) { kc = consumerStrategy.onStart(currentOffsets.mapValues(l => new java.lang.Long(l)).asJava) } kc } override def persist(newLevel: StorageLevel): DStream[ConsumerRecord[K, V]] = { logError("Kafka ConsumerRecord is not serializable. " + "Use .map to extract fields before calling .persist or .window") super.persist(newLevel) } protected def getBrokers = { val c = consumer val result = new ju.HashMap[TopicPartition, String]() val hosts = new ju.HashMap[TopicPartition, String]() val assignments = c.assignment().iterator() while (assignments.hasNext()) { val tp: TopicPartition = assignments.next() if (null == hosts.get(tp)) { val infos = c.partitionsFor(tp.topic).iterator() while (infos.hasNext()) { val i = infos.next() hosts.put(new TopicPartition(i.topic(), i.partition()), i.leader.host()) } } result.put(tp, hosts.get(tp)) } result } protected def getPreferredHosts: ju.Map[TopicPartition, String] = { locationStrategy match { case PreferBrokers => getBrokers case PreferConsistent => ju.Collections.emptyMap[TopicPartition, String]() case PreferFixed(hostMap) => hostMap } } // Keep this consistent with how other streams are named (e.g. "Flume polling stream [2]") private[streaming] override def name: String = s"Kafka 0.10 direct stream [$id]" protected[streaming] override val checkpointData = new DirectKafkaInputDStreamCheckpointData /** * Asynchronously maintains & sends new rate limits to the receiver through the receiver tracker. */ override protected[streaming] val rateController: Option[RateController] = { if (RateController.isBackPressureEnabled(ssc.conf)) { Some(new DirectKafkaRateController(id, RateEstimator.create(ssc.conf, context.graph.batchDuration))) } else { None } } protected[streaming] def maxMessagesPerPartition( offsets: Map[TopicPartition, Long]): Option[Map[TopicPartition, Long]] = { val estimatedRateLimit = rateController.map(_.getLatestRate()) // calculate a per-partition rate limit based on current lag val effectiveRateLimitPerPartition = estimatedRateLimit.filter(_ > 0) match { case Some(rate) => val lagPerPartition = offsets.map { case (tp, offset) => tp -> Math.max(offset - currentOffsets(tp), 0) } val totalLag = lagPerPartition.values.sum lagPerPartition.map { case (tp, lag) => val maxRateLimitPerPartition = ppc.maxRatePerPartition(tp) val backpressureRate = Math.round(lag / totalLag.toFloat * rate) tp -> (if (maxRateLimitPerPartition > 0) { Math.min(backpressureRate, maxRateLimitPerPartition)} else backpressureRate) } case None => offsets.map { case (tp, offset) => tp -> ppc.maxRatePerPartition(tp) } } if (effectiveRateLimitPerPartition.values.sum > 0) { val secsPerBatch = context.graph.batchDuration.milliseconds.toDouble / 1000 Some(effectiveRateLimitPerPartition.map { case (tp, limit) => tp -> (secsPerBatch * limit).toLong }) } else { None } } /** * The concern here is that poll might consume messages despite being paused, * which would throw off consumer position. Fix position if this happens. */ private def paranoidPoll(c: Consumer[K, V]): Unit = { val msgs = c.poll(0) if (!msgs.isEmpty) { // position should be minimum offset per topicpartition msgs.asScala.foldLeft(Map[TopicPartition, Long]()) { (acc, m) => val tp = new TopicPartition(m.topic, m.partition) val off = acc.get(tp).map(o => Math.min(o, m.offset)).getOrElse(m.offset) acc + (tp -> off) }.foreach { case (tp, off) => logInfo(s"poll(0) returned messages, seeking $tp to $off to compensate") c.seek(tp, off) } } } /** * Returns the latest (highest) available offsets, taking new partitions into account. */ protected def latestOffsets(): Map[TopicPartition, Long] = { val c = consumer paranoidPoll(c) val parts = c.assignment().asScala // make sure new partitions are reflected in currentOffsets val newPartitions = parts.diff(currentOffsets.keySet) // position for new partitions determined by auto.offset.reset if no commit currentOffsets = currentOffsets ++ newPartitions.map(tp => tp -> c.position(tp)).toMap // don't want to consume messages, so pause c.pause(newPartitions.asJava) // find latest available offsets c.seekToEnd(currentOffsets.keySet.asJava) parts.map(tp => tp -> c.position(tp)).toMap } // limits the maximum number of messages per partition protected def clamp( offsets: Map[TopicPartition, Long]): Map[TopicPartition, Long] = { maxMessagesPerPartition(offsets).map { mmp => mmp.map { case (tp, messages) => val uo = offsets(tp) tp -> Math.min(currentOffsets(tp) + messages, uo) } }.getOrElse(offsets) } override def compute(validTime: Time): Option[KafkaRDD[K, V]] = { val untilOffsets = clamp(latestOffsets()) val offsetRanges = untilOffsets.map { case (tp, uo) => val fo = currentOffsets(tp) OffsetRange(tp.topic, tp.partition, fo, uo) } val rdd = new KafkaRDD[K, V]( context.sparkContext, executorKafkaParams, offsetRanges.toArray, getPreferredHosts, true) // Report the record number and metadata of this batch interval to InputInfoTracker. val description = offsetRanges.filter { offsetRange => // Don't display empty ranges. offsetRange.fromOffset != offsetRange.untilOffset }.map { offsetRange => s"topic: ${offsetRange.topic}\\tpartition: ${offsetRange.partition}\\t" + s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}" }.mkString("\\n") // Copy offsetRanges to immutable.List to prevent from being modified by the user val metadata = Map( "offsets" -> offsetRanges.toList, StreamInputInfo.METADATA_KEY_DESCRIPTION -> description) val inputInfo = StreamInputInfo(id, rdd.count, metadata) ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo) currentOffsets = untilOffsets commitAll() Some(rdd) } override def start(): Unit = { val c = consumer paranoidPoll(c) if (currentOffsets.isEmpty) { currentOffsets = c.assignment().asScala.map { tp => tp -> c.position(tp) }.toMap } // don't actually want to consume any messages, so pause all partitions c.pause(currentOffsets.keySet.asJava) } override def stop(): Unit = this.synchronized { if (kc != null) { kc.close() } } protected val commitQueue = new ConcurrentLinkedQueue[OffsetRange] protected val commitCallback = new AtomicReference[OffsetCommitCallback] /** * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. */ def commitAsync(offsetRanges: Array[OffsetRange]): Unit = { commitAsync(offsetRanges, null) } /** * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. * @param callback Only the most recently provided callback will be used at commit. */ def commitAsync(offsetRanges: Array[OffsetRange], callback: OffsetCommitCallback): Unit = { commitCallback.set(callback) commitQueue.addAll(ju.Arrays.asList(offsetRanges: _*)) } protected def commitAll(): Unit = { val m = new ju.HashMap[TopicPartition, OffsetAndMetadata]() var osr = commitQueue.poll() while (null != osr) { val tp = osr.topicPartition val x = m.get(tp) val offset = if (null == x) { osr.untilOffset } else { Math.max(x.offset, osr.untilOffset) } m.put(tp, new OffsetAndMetadata(offset)) osr = commitQueue.poll() } if (!m.isEmpty) { consumer.commitAsync(m, commitCallback.get) } } private[streaming] class DirectKafkaInputDStreamCheckpointData extends DStreamCheckpointData(this) { def batchForTime: mutable.HashMap[Time, Array[(String, Int, Long, Long)]] = { data.asInstanceOf[mutable.HashMap[Time, Array[OffsetRange.OffsetRangeTuple]]] } override def update(time: Time): Unit = { batchForTime.clear() generatedRDDs.foreach { kv => val a = kv._2.asInstanceOf[KafkaRDD[K, V]].offsetRanges.map(_.toTuple).toArray batchForTime += kv._1 -> a } } override def cleanup(time: Time): Unit = { } override def restore(): Unit = { batchForTime.toSeq.sortBy(_._1)(Time.ordering).foreach { case (t, b) => logInfo(s"Restoring KafkaRDD for time $t ${b.mkString("[", ", ", "]")}") generatedRDDs += t -> new KafkaRDD[K, V]( context.sparkContext, executorKafkaParams, b.map(OffsetRange(_)), getPreferredHosts, // during restore, it's possible same partition will be consumed from multiple // threads, so dont use cache false ) } } } /** * A RateController to retrieve the rate from RateEstimator. */ private[streaming] class DirectKafkaRateController(id: Int, estimator: RateEstimator) extends RateController(id, estimator) { override def publish(rate: Long): Unit = () } }
bOOm-X/spark
external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/DirectKafkaInputDStream.scala
Scala
apache-2.0
12,482
/* * Copyright 2016 Carlo Micieli * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.hascalator package dst import Prelude._ class SplayTreeSpec extends AbstractTestSpec with SampleSplayTrees { describe("A SplayTree") { describe("empty") { it("should create an empty Splay tree") { SplayTree.empty[Int].isEmpty shouldEqual true } } describe("fromList") { it("should create an empty Splay tree from the empty list") { val tree = SplayTree.fromList(List.empty[Int]) tree.isEmpty shouldEqual true } it("should create a Splay tree from a list") { val tree = SplayTree.fromList(List(42, 15, 67, 109, 4, 55)) tree.size shouldEqual 6 tree.isEmpty shouldEqual false tree.top shouldEqual Maybe.just(4) } } describe("pop") { it("should remove min element from a Splay tree") { val (m, tree) = splayTree.pop m shouldEqual 4 tree.top shouldEqual Maybe.just(15) } } describe("merge") { it("should merge two empty Splay trees") { val tree = emptySplayTree merge emptySplayTree tree.isEmpty shouldEqual true } it("should merge two Splay trees") { val tree = splayTree merge emptySplayTree tree.top shouldEqual splayTree.top } } describe("insert") { it("should create a singleton Splay tree adding a key to the empty tree") { val tree = emptySplayTree insert 42 tree.isEmpty shouldEqual false } it("should increase the size") { val tree = emptySplayTree insert 42 tree.size shouldEqual 1 } } describe("isEmpty") { it("should return true for empty Splay trees") { emptySplayTree.isEmpty shouldEqual true } } } } trait SampleSplayTrees { val emptySplayTree: SplayTree[Int] = SplayTree.empty[Int] def singleton(x: Int): SplayTree[Int] = SplayTree.fromList(List(x)) val splayTree: SplayTree[Int] = SplayTree.fromList(List(42, 15, 67, 109, 4, 55)) }
CarloMicieli/hascalator
core/src/test/scala/io/hascalator/dst/SplayTreeSpec.scala
Scala
apache-2.0
2,583
package text.kanji /** * @author K.Sakamoto * Created on 2016/07/26 */ object JISLevel2KanjiCharacter extends KanjiCharacter { override val kanji: Seq[String] = readKanjiCSV("jis_level_2") }
ktr-skmt/FelisCatusZero
src/main/scala/text/kanji/JISLevel2KanjiCharacter.scala
Scala
apache-2.0
208
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.streaming.api.scala import org.apache.flink.annotation.Public import org.apache.flink.streaming.api.datastream.{ SplitStream => SplitJavaStream } /** * The SplitStream represents an operator that has been split using an * [[org.apache.flink.streaming.api.collector.selector.OutputSelector]]. * Named outputs can be selected using the [[SplitStream#select()]] function. * To apply a transformation on the whole output simply call * the appropriate method on this stream. */ @Public class SplitStream[T](javaStream: SplitJavaStream[T]) extends DataStream[T](javaStream){ /** * Sets the output names for which the next operator will receive values. */ def select(outputNames: String*): DataStream[T] = asScalaStream(javaStream.select(outputNames: _*)) }
yew1eb/flink
flink-streaming-scala/src/main/scala/org/apache/flink/streaming/api/scala/SplitStream.scala
Scala
apache-2.0
1,608
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.scheduler import java.util.concurrent.Semaphore import scala.concurrent.TimeoutException import scala.concurrent.duration._ import org.apache.spark.{LocalSparkContext, SparkConf, SparkContext, SparkException, SparkFunSuite, TestUtils} import org.apache.spark.internal.config import org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend import org.apache.spark.util.{RpcUtils, SerializableBuffer, ThreadUtils} class WorkerDecommissionSuite extends SparkFunSuite with LocalSparkContext { override def beforeEach(): Unit = { val conf = new SparkConf().setAppName("test").setMaster("local") .set(config.Worker.WORKER_DECOMMISSION_ENABLED, true) sc = new SparkContext("local-cluster[2, 1, 1024]", "test", conf) } test("verify task with no decommissioning works as expected") { val input = sc.parallelize(1 to 10) input.count() val sleepyRdd = input.mapPartitions{ x => Thread.sleep(100) x } assert(sleepyRdd.count() === 10) } test("verify a task with all workers decommissioned succeeds") { val input = sc.parallelize(1 to 10) // Listen for the job val sem = new Semaphore(0) sc.addSparkListener(new SparkListener { override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = { sem.release() } }) TestUtils.waitUntilExecutorsUp(sc = sc, numExecutors = 2, timeout = 10000) // 10s val sleepyRdd = input.mapPartitions{ x => Thread.sleep(5000) // 5s x } // Start the task. val asyncCount = sleepyRdd.countAsync() // Wait for the job to have started sem.acquire(1) // Give it time to make it to the worker otherwise we'll block Thread.sleep(2000) // 2s // Decommission all the executors, this should not halt the current task. // decom.sh message passing is tested manually. val sched = sc.schedulerBackend.asInstanceOf[StandaloneSchedulerBackend] val execs = sched.getExecutorIds() execs.foreach(execId => sched.decommissionExecutor(execId)) val asyncCountResult = ThreadUtils.awaitResult(asyncCount, 20.seconds) assert(asyncCountResult === 10) // Try and launch task after decommissioning, this should fail val postDecommissioned = input.map(x => x) val postDecomAsyncCount = postDecommissioned.countAsync() val thrown = intercept[java.util.concurrent.TimeoutException]{ val result = ThreadUtils.awaitResult(postDecomAsyncCount, 20.seconds) } assert(postDecomAsyncCount.isCompleted === false, "After exec decommission new task could not launch") } }
spark-test/spark
core/src/test/scala/org/apache/spark/scheduler/WorkerDecommissionSuite.scala
Scala
apache-2.0
3,417
package org.jetbrains.sbt import java.io.File import com.intellij.openapi.module.Module import com.intellij.openapi.roots.ModuleRootModificationUtil import com.intellij.openapi.vfs.VfsUtil import org.jetbrains.plugins.scala.base.libraryLoaders.ScalaLibraryLoader.{ScalaCompilerLoader, ScalaLibraryLoaderAdapter, ScalaReflectLoader, ScalaRuntimeLoader} import org.jetbrains.plugins.scala.base.libraryLoaders.{IvyLibraryLoader, IvyLibraryLoaderAdapter} import org.jetbrains.plugins.scala.debugger._ import org.jetbrains.sbt.MockSbt._ import scala.collection.JavaConverters._ /** * @author Nikolay Obedin * @since 7/27/15. */ trait MockSbtBase extends ScalaSdkOwner { implicit val sbtVersion: String protected def scalaLoaders = Seq(ScalaCompilerLoader(), ScalaRuntimeLoader(), ScalaReflectLoader()) override protected def librariesLoaders: Seq[IvyLibraryLoader] override protected def setUpLibraries(): Unit = { val classPath = librariesLoaders.map(urlForLibraryRoot) ModuleRootModificationUtil.addModuleLibrary(module, "sbt", classPath.asJava, List.empty[String].asJava) } } trait MockSbt_0_12 extends MockSbtBase { override implicit val version: ScalaVersion = Scala_2_9 private val sbt_0_12_modules = Seq("sbt","collections","interface","io","ivy","logging","main","process") override protected def librariesLoaders: Seq[ScalaLibraryLoaderAdapter] = Seq(ScalaCompilerLoader(), ScalaRuntimeLoader()) ++ sbt_0_12_modules.map(sbtLoader) } trait MockSbt_0_13 extends MockSbtBase { override implicit val version: ScalaVersion = Scala_2_10 private val sbt_0_13_modules = Seq("sbt", "collections", "interface", "io", "ivy", "logging", "main", "main-settings", "process") override protected def librariesLoaders: Seq[ScalaLibraryLoaderAdapter] = scalaLoaders ++ sbt_0_13_modules.map(sbtLoader) } trait MockSbt_1_0 extends MockSbtBase { override implicit val version: ScalaVersion = Scala_2_12 // https://github.com/sbt/sbt/blob/1.x/project/Dependencies.scala // update them when updating versions.sbtVersion // TODO find a way to automatically get the dependencies via transitive deps from org.scala-sbt:sbt artifact private val ioVersion = "1.0.2" private val utilVersion = "1.0.2" private val lmVersion = "1.0.3" private val zincVersion = "1.0.3" private val sbt_1_0_modules = Seq("sbt", "test-agent") private val util_cross = Seq("util-cache","util-control","util-logging","util-position","util-relation","util-tracking") private val lm_cross = Seq("librarymanagement-core","librarymanagement-ivy") private val sbt_1_0_modules_cross = Seq( "main","logic","collections","actions","completion", "run","task-system","tasks","testing","main-settings", "command","protocol","core-macros") private def compilerInterfaceLoader(implicit module: Module) = new SbtBaseLoader() { override val name: String = "compiler-interface" override val version: String = zincVersion } private def utilInterfaceLoader = new SbtBaseLoader() { override val name: String = "util-interface" override val version: String = utilVersion } private def ioLoader = new SbtBaseLoader_Cross() { override val name: String = "io" override val version: String = ioVersion } override protected def librariesLoaders: Seq[IvyLibraryLoader] = scalaLoaders ++ sbt_1_0_modules.map(sbtLoader) ++ sbt_1_0_modules_cross.map(sbtLoader_cross) ++ util_cross.map(sbtLoader_cross(_)(utilVersion)) ++ lm_cross.map(sbtLoader_cross(_)(lmVersion)) ++ Seq(compilerInterfaceLoader, ioLoader, utilInterfaceLoader) } private[sbt] object MockSbt { def urlForLibraryRoot(loader: IvyLibraryLoader) (implicit version: ScalaVersion): String = { val file = new File(loader.path) assert(file.exists(), s"library root for ${loader.name} does not exist at $file") VfsUtil.getUrlForLibraryRoot(file) } abstract class SbtBaseLoader(implicit val version: String) extends ScalaLibraryLoaderAdapter { override val vendor: String = "org.scala-sbt" override def fileName(implicit version: ScalaVersion): String = s"$name-${this.version}" } /** Loads library with cross-versioning. */ abstract class SbtBaseLoader_Cross(implicit val version: String) extends IvyLibraryLoaderAdapter { override val vendor: String = "org.scala-sbt" } def sbtLoader(libraryName: String)(implicit version: String): SbtBaseLoader = new SbtBaseLoader() { override val name: String = libraryName } def sbtLoader_cross(libraryName: String)(implicit version: String): SbtBaseLoader_Cross = new SbtBaseLoader_Cross() { override val name: String = libraryName } }
triplequote/intellij-scala
scala/scala-impl/test/org/jetbrains/sbt/MockSbt.scala
Scala
apache-2.0
4,747
/** * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.ksmpartners.ernie.server import com.ksmpartners.ernie.model.ModelObject import com.ksmpartners.ernie.server.RestGenerator._ import net.liftweb.http._ import com.ksmpartners.ernie.server.service.ServiceRegistry import net.liftweb.json._ import JsonDSL._ import net.liftweb.common.Box import com.ksmpartners.ernie.server.filter.AuthUtil._ import com.ksmpartners.ernie.server.filter.SAMLConstants._ import com.ksmpartners.ernie.server.RestGenerator.Parameter import com.ksmpartners.ernie.server.RestGenerator.Filter import com.ksmpartners.ernie.server.RestGenerator.RequestTemplate import net.liftweb.http.ResponseWithReason import net.liftweb.common.Full import scala.Some import net.liftweb.http.BadResponse import com.ksmpartners.ernie.server.RestGenerator.ErnieError import ErnieFilters._ import net.liftweb.http.auth.userRoles /** * Contains filters that pre-process ernie requests */ object ErnieFilters { /** * Method that verifies that the requesting user is in the given role * @param req - The request being handled * @param role - The role to verify * @param f - The function to be called if the user is in the role * @return the function f, or a ForbiddenResponse if the user is not in the specified role */ private def authFilter(req: Req, role: String*)(f: () => Box[LiftResponse]): () => Box[LiftResponse] = { if (role.foldLeft(false)((b, s) => b || isUserInRole(req, s)) || (if ((!userRoles.isEmpty) && (userRoles.is.size > 0)) { role.foldLeft(true)((r: Boolean, theRole: String) => r && (userRoles.is.find(f => f.name == theRole).isDefined || userRoles.is.foldLeft(true)((res: Boolean, userRole: net.liftweb.http.auth.Role) => res && (userRole.name == theRole)))) } else false)) f else () => { log.debug("Response: Forbidden Response. Reason: User is not authorized to perform that action") Full(ForbiddenResponse("User is not authorized to perform that action")) } } val readAuthFilter = Filter("Read Authorization Filter", authFilter(_: Req, readRole)_, None, ErnieError(ResponseWithReason(ForbiddenResponse(), "User is not authorized to perform that action"), None), readRole) val writeAuthFilter = Filter("Write Authorization Filter", authFilter(_: Req, writeRole)_, None, ErnieError(ResponseWithReason(ForbiddenResponse(), "User is not authorized to perform that action"), None), writeRole) val writeRunAuthFilter = Filter("Write Authorization Filter", authFilter(_: Req, runRole, writeRole)_, None, ErnieError(ResponseWithReason(ForbiddenResponse(), "User is not authorized to perform that action"), None), writeRole, runRole) val authFilters: List[Filter] = List(readAuthFilter, writeAuthFilter, writeRunAuthFilter) /** * Return true if the given request accepts an ernie response as defined in ModelObject */ def acceptsErnieJson(req: Req): Boolean = req.weightedAccept.find(_.matches(ModelObject.TYPE_PREFIX -> ModelObject.TYPE_POSTFIX)).isDefined /** * Method that verifies that the requesting user accepts the correct ctype * @param req - The request being handled * @param f - The function to be called if the user accepts the correct ctype * @return the function f, or a NotAcceptableResponse if the user does not accept the correct ctype */ private def ctypeFilter(req: Req)(f: () => Box[LiftResponse]): () => Box[LiftResponse] = { if (acceptsErnieJson(req)) f else () => { log.debug("Response: Not Acceptable Response. Reason: Resource only serves " + ModelObject.TYPE_FULL) Full(NotAcceptableResponse("Resource only serves " + ModelObject.TYPE_FULL)) } } val jsonFilter = Filter("JSON Content Type Filter", ctypeFilter(_: Req)_, None, ErnieError(ResponseWithReason(NotAcceptableResponse(), "Resource only serves " + ModelObject.TYPE_FULL), None)) val idFilter = Filter("ID is long filter", idIsLongFilter(_: Req)_, None, ErnieError(ResponseWithReason(BadResponse(), "Job ID provided is not a number"), None)) private def idIsLongFilter(req: Req)(f: () => Box[LiftResponse]): () => Box[LiftResponse] = try { req.path(0).toLong f } catch { case _ => () => { log.debug("Response: Bad Response. Reason: Job ID provided is not a number") Full(ResponseWithReason(BadResponse(), ("Job ID provided is not a number: " + req.path(0)))) } } } /** * Contains JSON representations of the various responses returned in Ernie operations */ object ErnieModels { val parameterEntity = ("ParameterEntity" -> ("properties" -> ("paramName" -> ("type" -> "string")) ~ ("dataType" -> ("type" -> "string")) ~ ("allowNull" -> ("type" -> "boolean")) ~ ("defaultValue" -> ("type" -> "string"))) ~ ("id" -> "ParameterEntity")) val definitionEntity = ("DefinitionEntity" -> (("properties" -> ("createdDate" -> ("type" -> "Date")) ~ ("defId" -> ("type" -> "string")) ~ ("defDescription" -> ("type" -> "string")) ~ ("createdUser" -> ("type" -> "string")) ~ ("paramNames" -> ("type" -> "Array") ~ ("items" -> ("type" -> "string"))) ~ ("params" -> ("type" -> "Array") ~ ("items" -> ("type" -> "ParameterEntity"))) ~ ("unsupportedReportTypes" -> ("type" -> "Array") ~ ("items" -> ("type" -> "string")))) ~ ("id" -> "DefinitionEntity"))) val definitionResponse = ("DefinitionResponse" -> (("properties" -> JNothing) ~ ("id" -> "DefinitionResponse"))) val deleteResponse = ("DeleteResponse" -> (("properties" -> ("deleteStatus" -> ("type" -> "string"))) ~ ("id" -> "DeleteResponse"))) val deleteDefinitionResponse = ("DefinitionDeleteResponse" -> (("properties" -> ("deleteStatus" -> ("type" -> "string"))) ~ ("id" -> "DefinitionDeleteResponse"))) val jobsMapResponse = ("jobStatusMap" -> ("id" -> "jobStatusMap") ~ ("properties" -> ("jobStatusMap" -> (("type" -> "Array") ~ ("items" -> ("type" -> "string")) ~ ("description" -> "Jobs map"))))) val jobsCatalogResponse = ("JobsCatalogResponse" -> ("id" -> "JobsCatalogResponse") ~ ("properties" -> ("jobsCatalog" -> (("type" -> "Array") ~ ("items" -> ("$ref" -> "JobEntity")))))) val reportDefinitionMapResponse = ("reportDefMap" -> ("id" -> "reportDefMap") ~ ("properties" -> ("reportDefMap" -> (("type" -> "Array") ~ ("items" -> ("type" -> "string")) ~ ("description" -> "Defs map"))))) val reportEntity = ("ReportEntity" -> (("properties" -> ("createdDate" -> ("type" -> "Date")) ~ ("startDate" -> ("type" -> "Date")) ~ ("finishDate" -> ("type" -> "Date")) ~ ("retentionDate" -> ("type" -> "Date")) ~ ("rptId" -> ("type" -> "string")) ~ ("sourceDefId" -> ("type" -> "string")) ~ ("createdUser" -> ("type" -> "string")) ~ ("params" -> ("type" -> "Array") ~ ("description" -> "Report parameters") ~ ("items" -> ("type" -> "string"))) ~ ("reportType" -> ("type" -> "string"))) ~ ("id" -> "ReportEntity"))) val jobEntity = ("JobEntity" -> ("properties" -> ("jobId" -> ("type" -> "long")) ~ ("jobStatus" -> ("type" -> "string")) ~ ("submitDate" -> ("type" -> "Date")) ~ ("rptId" -> ("type" -> "string")) ~ ("rptEntity" -> ("type" -> "ReportEntity"))) ~ ("id" -> "JobEntity")) val reportResponse = ("ReportResponse" -> (("properties" -> ("jobId" -> ("type" -> "long")) ~ ("jobStatus" -> ("type" -> "string"))) ~ ("id" -> "ReportResponse"))) val statusResponse = ("StatusResponse" -> (("properties" -> ("jobStatus" -> ("type" -> "string"))) ~ ("id" -> "StatusResponse"))) val models = definitionEntity ~ definitionResponse ~ deleteResponse ~ jobEntity ~ jobsCatalogResponse ~ jobsMapResponse ~ reportDefinitionMapResponse ~ reportEntity ~ reportResponse ~ statusResponse ~ deleteDefinitionResponse ~ parameterEntity ~ definitionEntity } /** * Contains the [[com.ksmpartners.ernie.server.RestGenerator.RequestTemplate]]s that define the valid operations for a [[com.ksmpartners.ernie.server.RestGenerator.Resource]] */ object ErnieRequestTemplates { val justJSON = List(Product(ModelObject.TYPE_FULL, "")) val anything = Nil val results = List(Product("application/pdf", ""), Product("application/csv", ""), Product("application/html", "")) val jsonFile = List(Product("json", "json")) val getJobsList = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getJobsListAction) val headJobsList = getToHead(getJobsList) val postJob = RequestTemplate(PostRequest, justJSON, List(writeRunAuthFilter, jsonFilter), ServiceRegistry.jobsResource.postJobAction, Parameter("ReportRequest", "body", "ReportRequest")) val getCatalog = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getJobsCatalogAction) val headCatalog = getToHead(getCatalog) val getCompleteCatalog = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getCompleteCatalogAction) val headCompleteCatalog = getToHead(getCompleteCatalog) val getFailedCatalog = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getFailedCatalogAction) val headFailedCatalog = getToHead(getFailedCatalog) val getDeletedCatalog = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getDeletedCatalogAction) val headDeletedCatalog = getToHead(getDeletedCatalog) val getExpiredCatalog = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.jobsResource.getExpiredCatalogAction) val headExpiredCatalog = getToHead(getExpiredCatalog) val purgeExpired = RequestTemplate(DeleteRequest, justJSON, List(writeAuthFilter, jsonFilter), ServiceRegistry.jobsResource.purgeAction) val getJob = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter, idFilter), ServiceRegistry.jobEntityResource.getJobDetailAction) val headJob = getToHead(getJob) val getJobStatus = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter, idFilter), ServiceRegistry.jobStatusResource.getJobStatusAction) val headJobStatus = getToHead(getJobStatus) val getJobResult = RequestTemplate(GetRequest, results, List(readAuthFilter, idFilter), ServiceRegistry.jobResultsResource.getJobResultAction, Parameter("Accept", "header", "string")) val headJobResult = getToHead(getJobResult) val deleteJobResult = RequestTemplate(DeleteRequest, justJSON, List(writeAuthFilter, jsonFilter, idFilter), ServiceRegistry.jobResultsResource.deleteReportAction) val getReportDetail = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter, idFilter), ServiceRegistry.jobResultsResource.getDetailAction) val headReportDetail = getToHead(getReportDetail) val resourcesJSON = RequestTemplate(GetRequest, jsonFile, Nil, Action("Get Swagger Resources JSON", (_: Package) => Full(JsonResponse(DispatchRestAPI.resourceListing)), "", "", "byte")) val jobsJSON = RequestTemplate(GetRequest, jsonFile, Nil, Action("Get Swagger Jobs JSON", (_: Package) => Full(JsonResponse(DispatchRestAPI.jobsAPI)), "", "", "byte")) val defsJSON = RequestTemplate(GetRequest, jsonFile, Nil, Action("Get Swagger Defs JSON", (_: Package) => Full(JsonResponse(DispatchRestAPI.defsAPI)), "", "", "byte")) val getDefs = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.defsResource.getDefsAction) val headDefs = getToHead(getDefs) val postDef = RequestTemplate(PostRequest, justJSON, List(writeAuthFilter, jsonFilter), ServiceRegistry.defsResource.postDefAction, Parameter("DefinitionEntity", "body", "DefinitionEntity")) val getDef = RequestTemplate(GetRequest, justJSON, List(readAuthFilter, jsonFilter), ServiceRegistry.defDetailResource.getDefDetailAction) val headDef = getToHead(getDef) val putDesign = RequestTemplate(PutRequest, justJSON, List(writeAuthFilter, jsonFilter), ServiceRegistry.defDetailResource.putDefAction, Parameter("Rptdesign", "body", "byte")) val deleteDef = RequestTemplate(DeleteRequest, justJSON, List(writeAuthFilter, jsonFilter), ServiceRegistry.defDetailResource.deleteDefAction) }
ksmpartners/ernie
ernie-server/src/main/scala/com/ksmpartners/ernie/server/ErnieModel.scala
Scala
apache-2.0
12,805
import sbt._ import sbt.Keys._ import bintray.Plugin._ import bintray.Keys._ object Build extends Build { val customBintraySettings = bintrayPublishSettings ++ Seq( packageLabels in bintray := Seq("json"), bintrayOrganization in bintray := Some("plasmaconduit"), repository in bintray := "releases" ) val root = Project("root", file(".")) .settings(customBintraySettings: _*) .settings( name := "json", organization := "com.plasmaconduit", version := "0.25.0", crossScalaVersions := Seq("2.10.6", "2.11.2"), licenses += ("MIT", url("http://opensource.org/licenses/MIT")), scalacOptions += "-feature", scalacOptions += "-deprecation", scalacOptions += "-unchecked", scalacOptions in Test ++= Seq("-Yrangepos"), resolvers ++= Seq("snapshots", "releases").map(Resolver.sonatypeRepo), resolvers += "Plasma Conduit Repository" at "http://dl.bintray.com/plasmaconduit/releases", libraryDependencies <++= (scalaVersion) { (v) => if (v.startsWith("2.11.")) { Seq("org.scala-lang.modules" %% "scala-parser-combinators" % "1.0.2") } else { Seq() } }, libraryDependencies += "com.plasmaconduit" %% "validation" % "0.7.0", libraryDependencies += "org.specs2" %% "specs2" % "2.3.11" % "test" ) }
plasmaconduit/json
project/Build.scala
Scala
mit
1,477
/** * Copyright 2011-2016 GatlingCorp (http://gatling.io) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.gatling.jms.client import javax.jms.{ Message, MessageConsumer } import io.gatling.jms.protocol.JmsProtocol import io.gatling.jms.request.JmsDestination object JmsClient { def apply(protocol: JmsProtocol, destination: JmsDestination, replyDestination: JmsDestination): JmsClient = { new SimpleJmsClient( protocol.connectionFactoryName, destination, replyDestination, protocol.url, protocol.credentials, protocol.anonymousConnect, protocol.contextFactory, protocol.deliveryMode, protocol.messageMatcher ) } } trait JmsClient { /** * Gets a new consumer for the reply queue */ def createReplyConsumer(selector: String = null): MessageConsumer /** * * @return the name of the reply destination */ def replyDestinationName: String /** * Wrapper to send a BytesMessage, returns the message ID of the sent message */ def sendBytesMessage(bytes: Array[Byte], props: Map[String, Any], jmsType: Option[String]): Message /** * Wrapper to send a MapMessage, returns the message ID of the sent message * <p> * Note that map must match the javax.jms.MapMessage contract ie: "This method works only * for the objectified primitive object types (Integer, Double, Long ...), String objects, * and byte arrays." */ def sendMapMessage(map: Map[String, Any], props: Map[String, Any], jmsType: Option[String]): Message /** * Wrapper to send an ObjectMessage, returns the message ID of the sent message */ def sendObjectMessage(o: java.io.Serializable, props: Map[String, Any], jmsType: Option[String]): Message /** * Wrapper to send a TextMessage, returns the message ID of the sent message */ def sendTextMessage(messageText: String, props: Map[String, Any], jmsType: Option[String]): Message def close(): Unit }
ryez/gatling
gatling-jms/src/main/scala/io/gatling/jms/client/JmsClient.scala
Scala
apache-2.0
2,476
package integrationtest import _root_.controller._ import service._ import skinny.{ Routes, _ } import skinny.test.SkinnyFlatSpec class RootControllerSpec extends SkinnyFlatSpec with unit.SkinnyTesting { class EchoServiceMock extends EchoService { override def echo(s: String): String = s.toUpperCase } addFilter(Controllers.root, "/*") addFilter(ErrorController, "/*") addFilter(new RootController with Routes { override val echoService = new EchoServiceMock get("/mock/?".r)(index).as(Symbol("index")) }, "/*") it should "show top page" in { get("/?echo=abcdEFG") { status should equal(200) body should include("abcdEFG") header("X-Content-Type-Options") should equal("nosniff") header("X-XSS-Protection") should equal("1; mode=block") } get("/mock/?echo=abcdEFG") { status should equal(200) body should include("ABCDEFG") } } it should "renew session attributes" in { session { get("/session/renew", "locale" -> "ja", "returnTo" -> "/") { status should equal(302) } get("/") { status should equal(200) body should include("プログラマ") } } } it should "show error" in { get("/error") { status should equal(500) body.size should be > 0 } get("/error/runtime") { status should equal(500) body.size should be > 0 } } it should "show nested i18n messages" in { get("/nested-i18n", "foo" -> "will be OK") { status should equal(200) } get("/nested-i18n", "foo" -> "will be NG") { status should equal(400) body should include("foo must include 'OK'") } session { get("/session/renew", "locale" -> "ja", "returnTo" -> "/") { status should equal(302) } get("/nested-i18n", "foo" -> "will be NG") { status should equal(400) body should include("ふー は 'OK' を含まなければならない") } } } }
skinny-framework/skinny-framework
example/src/test/scala/integrationtest/RootControllerSpec.scala
Scala
mit
1,990
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // scalastyle:off println package org.apache.spark.examples.mllib import org.apache.spark.{SparkConf, SparkContext} // $example on$ import org.apache.spark.mllib.tree.GradientBoostedTrees import org.apache.spark.mllib.tree.configuration.BoostingStrategy import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel import org.apache.spark.mllib.util.MLUtils // $example off$ object GradientBoostingRegressionExample { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("GradientBoostedTreesRegressionExample") val sc = new SparkContext(conf) // $example on$ // Load and parse the data file. val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") // Split the data into training and test sets (30% held out for testing) val splits = data.randomSplit(Array(0.7, 0.3)) val (trainingData, testData) = (splits(0), splits(1)) // Train a GradientBoostedTrees model. // The defaultParams for Regression use SquaredError by default. val boostingStrategy = BoostingStrategy.defaultParams("Regression") boostingStrategy.numIterations = 3 // Note: Use more iterations in practice. boostingStrategy.treeStrategy.maxDepth = 5 // Empty categoricalFeaturesInfo indicates all features are continuous. boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]() val model = GradientBoostedTrees.train(trainingData, boostingStrategy) // Evaluate model on test instances and compute test error val labelsAndPredictions = testData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val testMSE = labelsAndPredictions.map{ case(v, p) => math.pow((v - p), 2)}.mean() println("Test Mean Squared Error = " + testMSE) println("Learned regression GBT model:\\n" + model.toDebugString) // Save and load model model.save(sc, "target/tmp/myGradientBoostingRegressionModel") val sameModel = GradientBoostedTreesModel.load(sc, "target/tmp/myGradientBoostingRegressionModel") // $example off$ } } // scalastyle:on println
mrchristine/spark-examples-dbc
src/main/scala/org/apache/spark/examples/mllib/GradientBoostingRegressionExample.scala
Scala
apache-2.0
2,926
/* * Copyright (C) 2012 The Regents of The University California. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package shark.execution import java.util.{HashMap => JHashMap, List => JavaList} import java.io.File import org.apache.hadoop.hive.metastore.api.FieldSchema import org.apache.hadoop.hive.ql.{Context, DriverContext} import org.apache.hadoop.hive.ql.exec.{TableScanOperator => HiveTableScanOperator, Utilities} import org.apache.hadoop.hive.ql.metadata.{Partition, Table} import org.apache.hadoop.hive.ql.optimizer.ppr.PartitionPruner import org.apache.hadoop.hive.ql.parse._ import org.apache.hadoop.hive.ql.plan.{PlanUtils, CreateTableDesc, PartitionDesc} import org.apache.hadoop.hive.ql.plan.api.StageType import org.apache.hadoop.hive.ql.session.SessionState import scala.collection.JavaConversions._ import shark.api.TableRDD import shark.{LogHelper, SharkEnv} import spark.RDD class SparkWork( val pctx: ParseContext, val terminalOperator: TerminalOperator, val resultSchema: JavaList[FieldSchema]) extends java.io.Serializable /** * SparkTask executes a query plan composed of RDD operators. */ class SparkTask extends org.apache.hadoop.hive.ql.exec.Task[SparkWork] with java.io.Serializable with LogHelper { private var _tableRdd: TableRDD = null def tableRdd = _tableRdd override def execute(driverContext: DriverContext): Int = { logInfo("Executing " + this.getClass.getName) val ctx = driverContext.getCtx() // Adding files to the SparkContext // Added required files val files = Utilities.getResourceFiles(conf, SessionState.ResourceType.FILE) files.split(",").filterNot(x => x.isEmpty || SharkEnv.addedFiles.contains(x)).foreach { x => logInfo("Adding file " + x ) SharkEnv.addedFiles.add(x) SharkEnv.sc.addFile(x) } // Added required jars val jars = Utilities.getResourceFiles(conf, SessionState.ResourceType.JAR) jars.split(",").filterNot(x => x.isEmpty || SharkEnv.addedJars.contains(x)).foreach { x => logInfo("Adding jar " + x ) SharkEnv.addedJars.add(x) SharkEnv.sc.addJar(x) } Operator.hconf = conf // Replace Hive physical plan with Shark plan. val terminalOp = work.terminalOperator val tableScanOps = terminalOp.returnTopOperators().asInstanceOf[Seq[TableScanOperator]] //ExplainTaskHelper.outputPlan(terminalOp, Console.out, true, 2) //ExplainTaskHelper.outputPlan(hiveTopOps.head, Console.out, true, 2) initializeTableScanTableDesc(tableScanOps) // Initialize the Hive query plan. This gives us all the object inspectors. initializeAllHiveOperators(terminalOp) terminalOp.initializeMasterOnAll() val sinkRdd = terminalOp.execute().asInstanceOf[RDD[Any]] _tableRdd = new TableRDD(sinkRdd, work.resultSchema, terminalOp.objectInspector) 0 } def initializeTableScanTableDesc(topOps: Seq[TableScanOperator]) { // topToTable maps Hive's TableScanOperator to the Table object. val topToTable: JHashMap[HiveTableScanOperator, Table] = work.pctx.getTopToTable() // Add table metadata to TableScanOperators topOps.foreach { op => op.table = topToTable.get(op.hiveOp) op.tableDesc = Utilities.getTableDesc(op.table) PlanUtils.configureInputJobPropertiesForStorageHandler(op.tableDesc) if (op.table.isPartitioned) { val ppl = PartitionPruner.prune( op.table, work.pctx.getOpToPartPruner().get(op.hiveOp), work.pctx.getConf(), "", work.pctx.getPrunedPartitions()) op.parts = ppl.getConfirmedPartns.toArray ++ ppl.getUnknownPartns.toArray val allParts = op.parts ++ ppl.getDeniedPartns.toArray if (allParts.size == 0) { op.firstConfPartDesc = new PartitionDesc(op.tableDesc, null) } else { op.firstConfPartDesc = Utilities.getPartitionDesc(allParts(0).asInstanceOf[Partition]) } } } } def initializeAllHiveOperators(terminalOp: TerminalOperator) { // Need to guarantee all parents are initialized before the child. val topOpList = new scala.collection.mutable.MutableList[HiveTopOperator] val queue = new scala.collection.mutable.Queue[Operator[_]] queue.enqueue(terminalOp) while (!queue.isEmpty) { val current = queue.dequeue() current match { case op: HiveTopOperator => topOpList += op case _ => Unit } queue ++= current.parentOperators } // Run the initialization. This guarantees that upstream operators are // initialized before downstream ones. topOpList.reverse.foreach { topOp => topOp.initializeHiveTopOperator() } } override def getType = StageType.MAPRED override def getName = "MAPRED-SPARK" override def localizeMRTmpFilesImpl(ctx: Context) = Unit }
vax11780/shark
src/main/scala/shark/execution/SparkTask.scala
Scala
apache-2.0
5,370
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.sources import java.io.File import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.physical.HashPartitioning import org.apache.spark.sql.execution.DataSourceScanExec import org.apache.spark.sql.execution.datasources.{BucketSpec, DataSourceStrategy} import org.apache.spark.sql.execution.exchange.ShuffleExchange import org.apache.spark.sql.execution.joins.SortMergeJoinExec import org.apache.spark.sql.functions._ import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.test.SQLTestUtils import org.apache.spark.util.Utils import org.apache.spark.util.collection.BitSet class BucketedReadSuite extends QueryTest with SQLTestUtils with TestHiveSingleton { import testImplicits._ private val df = (0 until 50).map(i => (i % 5, i % 13, i.toString)).toDF("i", "j", "k") private val nullDF = (for { i <- 0 to 50 s <- Seq(null, "a", "b", "c", "d", "e", "f", null, "g") } yield (i % 5, s, i % 13)).toDF("i", "j", "k") test("read bucketed data") { withTable("bucketed_table") { df.write .format("parquet") .partitionBy("i") .bucketBy(8, "j", "k") .saveAsTable("bucketed_table") for (i <- 0 until 5) { val table = spark.table("bucketed_table").filter($"i" === i) val query = table.queryExecution val output = query.analyzed.output val rdd = query.toRdd assert(rdd.partitions.length == 8) val attrs = table.select("j", "k").queryExecution.analyzed.output val checkBucketId = rdd.mapPartitionsWithIndex((index, rows) => { val getBucketId = UnsafeProjection.create( HashPartitioning(attrs, 8).partitionIdExpression :: Nil, output) rows.map(row => getBucketId(row).getInt(0) -> index) }) checkBucketId.collect().foreach(r => assert(r._1 == r._2)) } } } // To verify if the bucket pruning works, this function checks two conditions: // 1) Check if the pruned buckets (before filtering) are empty. // 2) Verify the final result is the same as the expected one private def checkPrunedAnswers( bucketSpec: BucketSpec, bucketValues: Seq[Integer], filterCondition: Column, originalDataFrame: DataFrame): Unit = { // This test verifies parts of the plan. Disable whole stage codegen. withSQLConf(SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key -> "false") { val bucketedDataFrame = spark.table("bucketed_table").select("i", "j", "k") val BucketSpec(numBuckets, bucketColumnNames, _) = bucketSpec // Limit: bucket pruning only works when the bucket column has one and only one column assert(bucketColumnNames.length == 1) val bucketColumnIndex = bucketedDataFrame.schema.fieldIndex(bucketColumnNames.head) val bucketColumn = bucketedDataFrame.schema.toAttributes(bucketColumnIndex) val matchedBuckets = new BitSet(numBuckets) bucketValues.foreach { value => matchedBuckets.set(DataSourceStrategy.getBucketId(bucketColumn, numBuckets, value)) } // Filter could hide the bug in bucket pruning. Thus, skipping all the filters val plan = bucketedDataFrame.filter(filterCondition).queryExecution.executedPlan val rdd = plan.find(_.isInstanceOf[DataSourceScanExec]) assert(rdd.isDefined, plan) val checkedResult = rdd.get.execute().mapPartitionsWithIndex { case (index, iter) => if (matchedBuckets.get(index % numBuckets) && iter.nonEmpty) Iterator(index) else Iterator() } // TODO: These tests are not testing the right columns. // // checking if all the pruned buckets are empty // val invalidBuckets = checkedResult.collect().toList // if (invalidBuckets.nonEmpty) { // fail(s"Buckets $invalidBuckets should have been pruned from:\\n$plan") // } checkAnswer( bucketedDataFrame.filter(filterCondition).orderBy("i", "j", "k"), originalDataFrame.filter(filterCondition).orderBy("i", "j", "k")) } } test("read partitioning bucketed tables with bucket pruning filters") { withTable("bucketed_table") { val numBuckets = 8 val bucketSpec = BucketSpec(numBuckets, Seq("j"), Nil) // json does not support predicate push-down, and thus json is used here df.write .format("json") .partitionBy("i") .bucketBy(numBuckets, "j") .saveAsTable("bucketed_table") for (j <- 0 until 13) { // Case 1: EqualTo checkPrunedAnswers( bucketSpec, bucketValues = j :: Nil, filterCondition = $"j" === j, df) // Case 2: EqualNullSafe checkPrunedAnswers( bucketSpec, bucketValues = j :: Nil, filterCondition = $"j" <=> j, df) // Case 3: In checkPrunedAnswers( bucketSpec, bucketValues = Seq(j, j + 1, j + 2, j + 3), filterCondition = $"j".isin(j, j + 1, j + 2, j + 3), df) } } } test("read non-partitioning bucketed tables with bucket pruning filters") { withTable("bucketed_table") { val numBuckets = 8 val bucketSpec = BucketSpec(numBuckets, Seq("j"), Nil) // json does not support predicate push-down, and thus json is used here df.write .format("json") .bucketBy(numBuckets, "j") .saveAsTable("bucketed_table") for (j <- 0 until 13) { checkPrunedAnswers( bucketSpec, bucketValues = j :: Nil, filterCondition = $"j" === j, df) } } } test("read partitioning bucketed tables having null in bucketing key") { withTable("bucketed_table") { val numBuckets = 8 val bucketSpec = BucketSpec(numBuckets, Seq("j"), Nil) // json does not support predicate push-down, and thus json is used here nullDF.write .format("json") .partitionBy("i") .bucketBy(numBuckets, "j") .saveAsTable("bucketed_table") // Case 1: isNull checkPrunedAnswers( bucketSpec, bucketValues = null :: Nil, filterCondition = $"j".isNull, nullDF) // Case 2: <=> null checkPrunedAnswers( bucketSpec, bucketValues = null :: Nil, filterCondition = $"j" <=> null, nullDF) } } test("read partitioning bucketed tables having composite filters") { withTable("bucketed_table") { val numBuckets = 8 val bucketSpec = BucketSpec(numBuckets, Seq("j"), Nil) // json does not support predicate push-down, and thus json is used here df.write .format("json") .partitionBy("i") .bucketBy(numBuckets, "j") .saveAsTable("bucketed_table") for (j <- 0 until 13) { checkPrunedAnswers( bucketSpec, bucketValues = j :: Nil, filterCondition = $"j" === j && $"k" > $"j", df) checkPrunedAnswers( bucketSpec, bucketValues = j :: Nil, filterCondition = $"j" === j && $"i" > j % 5, df) } } } private val df1 = (0 until 50).map(i => (i % 5, i % 13, i.toString)).toDF("i", "j", "k").as("df1") private val df2 = (0 until 50).map(i => (i % 7, i % 11, i.toString)).toDF("i", "j", "k").as("df2") /** * A helper method to test the bucket read functionality using join. It will save `df1` and `df2` * to hive tables, bucketed or not, according to the given bucket specifics. Next we will join * these 2 tables, and firstly make sure the answer is corrected, and then check if the shuffle * exists as user expected according to the `shuffleLeft` and `shuffleRight`. */ private def testBucketing( bucketSpecLeft: Option[BucketSpec], bucketSpecRight: Option[BucketSpec], joinType: String = "inner", joinCondition: (DataFrame, DataFrame) => Column, shuffleLeft: Boolean, shuffleRight: Boolean): Unit = { withTable("bucketed_table1", "bucketed_table2") { def withBucket( writer: DataFrameWriter[Row], bucketSpec: Option[BucketSpec]): DataFrameWriter[Row] = { bucketSpec.map { spec => writer.bucketBy( spec.numBuckets, spec.bucketColumnNames.head, spec.bucketColumnNames.tail: _*) }.getOrElse(writer) } withBucket(df1.write.format("parquet"), bucketSpecLeft).saveAsTable("bucketed_table1") withBucket(df2.write.format("parquet"), bucketSpecRight).saveAsTable("bucketed_table2") withSQLConf(SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "0", SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key -> "false") { val t1 = spark.table("bucketed_table1") val t2 = spark.table("bucketed_table2") val joined = t1.join(t2, joinCondition(t1, t2), joinType) // First check the result is corrected. checkAnswer( joined.sort("bucketed_table1.k", "bucketed_table2.k"), df1.join(df2, joinCondition(df1, df2), joinType).sort("df1.k", "df2.k")) assert(joined.queryExecution.executedPlan.isInstanceOf[SortMergeJoinExec]) val joinOperator = joined.queryExecution.executedPlan.asInstanceOf[SortMergeJoinExec] assert( joinOperator.left.find(_.isInstanceOf[ShuffleExchange]).isDefined == shuffleLeft, s"expected shuffle in plan to be $shuffleLeft but found\\n${joinOperator.left}") assert( joinOperator.right.find(_.isInstanceOf[ShuffleExchange]).isDefined == shuffleRight, s"expected shuffle in plan to be $shuffleRight but found\\n${joinOperator.right}") } } } private def joinCondition(joinCols: Seq[String]) (left: DataFrame, right: DataFrame): Column = { joinCols.map(col => left(col) === right(col)).reduce(_ && _) } test("avoid shuffle when join 2 bucketed tables") { val bucketSpec = Some(BucketSpec(8, Seq("i", "j"), Nil)) testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = bucketSpec, joinCondition = joinCondition(Seq("i", "j")), shuffleLeft = false, shuffleRight = false ) } // Enable it after fix https://issues.apache.org/jira/browse/SPARK-12704 ignore("avoid shuffle when join keys are a super-set of bucket keys") { val bucketSpec = Some(BucketSpec(8, Seq("i"), Nil)) testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = bucketSpec, joinCondition = joinCondition(Seq("i", "j")), shuffleLeft = false, shuffleRight = false ) } test("only shuffle one side when join bucketed table and non-bucketed table") { val bucketSpec = Some(BucketSpec(8, Seq("i", "j"), Nil)) testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = None, joinCondition = joinCondition(Seq("i", "j")), shuffleLeft = false, shuffleRight = true ) } test("only shuffle one side when 2 bucketed tables have different bucket number") { val bucketSpec1 = Some(BucketSpec(8, Seq("i", "j"), Nil)) val bucketSpec2 = Some(BucketSpec(5, Seq("i", "j"), Nil)) testBucketing( bucketSpecLeft = bucketSpec1, bucketSpecRight = bucketSpec2, joinCondition = joinCondition(Seq("i", "j")), shuffleLeft = false, shuffleRight = true ) } test("only shuffle one side when 2 bucketed tables have different bucket keys") { val bucketSpec1 = Some(BucketSpec(8, Seq("i"), Nil)) val bucketSpec2 = Some(BucketSpec(8, Seq("j"), Nil)) testBucketing( bucketSpecLeft = bucketSpec1, bucketSpecRight = bucketSpec2, joinCondition = joinCondition(Seq("i")), shuffleLeft = false, shuffleRight = true ) } test("shuffle when join keys are not equal to bucket keys") { val bucketSpec = Some(BucketSpec(8, Seq("i"), Nil)) testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = bucketSpec, joinCondition = joinCondition(Seq("j")), shuffleLeft = true, shuffleRight = true ) } test("shuffle when join 2 bucketed tables with bucketing disabled") { val bucketSpec = Some(BucketSpec(8, Seq("i", "j"), Nil)) withSQLConf(SQLConf.BUCKETING_ENABLED.key -> "false") { testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = bucketSpec, joinCondition = joinCondition(Seq("i", "j")), shuffleLeft = true, shuffleRight = true ) } } test("avoid shuffle when grouping keys are equal to bucket keys") { withTable("bucketed_table") { df1.write.format("parquet").bucketBy(8, "i", "j").saveAsTable("bucketed_table") val tbl = spark.table("bucketed_table") val agged = tbl.groupBy("i", "j").agg(max("k")) checkAnswer( agged.sort("i", "j"), df1.groupBy("i", "j").agg(max("k")).sort("i", "j")) assert(agged.queryExecution.executedPlan.find(_.isInstanceOf[ShuffleExchange]).isEmpty) } } test("avoid shuffle when grouping keys are a super-set of bucket keys") { withTable("bucketed_table") { df1.write.format("parquet").bucketBy(8, "i").saveAsTable("bucketed_table") val tbl = spark.table("bucketed_table") val agged = tbl.groupBy("i", "j").agg(max("k")) checkAnswer( agged.sort("i", "j"), df1.groupBy("i", "j").agg(max("k")).sort("i", "j")) assert(agged.queryExecution.executedPlan.find(_.isInstanceOf[ShuffleExchange]).isEmpty) } } test("SPARK-17698 Join predicates should not contain filter clauses") { val bucketSpec = Some(BucketSpec(8, Seq("i"), Seq("i"))) testBucketing( bucketSpecLeft = bucketSpec, bucketSpecRight = bucketSpec, joinType = "fullouter", joinCondition = (left: DataFrame, right: DataFrame) => { val joinPredicates = left("i") === right("i") val filterLeft = left("i") === Literal("1") val filterRight = right("i") === Literal("1") joinPredicates && filterLeft && filterRight }, shuffleLeft = false, shuffleRight = false ) } test("error if there exists any malformed bucket files") { withTable("bucketed_table") { df1.write.format("parquet").bucketBy(8, "i").saveAsTable("bucketed_table") val tableDir = new File(hiveContext .sparkSession.warehousePath, "bucketed_table") Utils.deleteRecursively(tableDir) df1.write.parquet(tableDir.getAbsolutePath) val agged = spark.table("bucketed_table").groupBy("i").count() val error = intercept[RuntimeException] { agged.count() } assert(error.toString contains "Invalid bucket file") } } test("disable bucketing when the output doesn't contain all bucketing columns") { withTable("bucketed_table") { df1.write.format("parquet").bucketBy(8, "i").saveAsTable("bucketed_table") checkAnswer(hiveContext.table("bucketed_table").select("j"), df1.select("j")) checkAnswer(hiveContext.table("bucketed_table").groupBy("j").agg(max("k")), df1.groupBy("j").agg(max("k"))) } } }
gioenn/xSpark
sql/hive/src/test/scala/org/apache/spark/sql/sources/BucketedReadSuite.scala
Scala
apache-2.0
16,035
package com.alvin.niagara.util import java.util.Properties import com.alvin.niagara.config.Config import com.alvin.niagara.model.PostTags import org.apache.kafka.clients.producer._ /** * Created by JINC4 on 5/26/2016. * * Avro message producer connects to kafka cluster * Then, Sents avro message to kafka */ class AvroProducer extends Config { val props = new Properties() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.ACKS_CONFIG, "all") val producer = new KafkaProducer[String, Array[Byte]](props) /** * Sent a Post object as Avro records to Kafka. * * @param post a case class to send * @return A sequence of FutureRecordMetadata instances */ def send(post: PostTags) = { val message = new ProducerRecord[String, Array[Byte]](postTopic, PostTags.serialize(post)) producer.send(message) } def close() = producer.close() }
AlvinCJin/Niagara
src/main/scala/com/alvin/niagara/util/AvroProducer.scala
Scala
apache-2.0
1,162
/******************************************************************* * See the NOTICE file distributed with this work for additional * * information regarding Copyright ownership. The author/authors * * license this file to you under the terms of the Apache License * * Version 2.0 (the "License"); you may not use this file except * * in compliance with the License. You may obtain a copy of the * * License at: * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, * * software distributed under the License is distributed on an * * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, * * either express or implied. See the License for the specific * * language governing permissions and limitations under the * * License. * ******************************************************************/ /** Provides an API for convenient use of 'java.time' classes. * * @example * {{{ * import java.time._ * import scalatime._ // NOTE: Package name was changed from codes.reactive.scalatime => scalatime * // for versions 0.5.x and newer. If still using 0.4.x, use codes.reactive.scalatime * * // Obtain a Duration instance from a Long * val duration = 10L minutes * * val otherDuration = 1L minute * * // Obtain a Period instance from an Int * val period = 2 weeks * * // Obtains a LocalDate instance * val localDate = LocalDate.of(2014, 6, 7) * * // Obtain a default TemporalQuery for precision * val query = temporal.TemporalQueries.precision * * // Obtain a Duration instance from a sum of Durations * duration + otherDuration * * // Add a TemporalAmount to a Temporal * period <<+ localDate * * // Add a TemporalAmount to a Temporal * localDate + period * * // Subtract a TemporalAmount from a Temporal * localDate - period * * // Query a specified Temporal * val result = query |> localDate * }}} * */ package object scalatime extends impl.ToAllOps with impl.ToAllStd
reactivecodes/scala-time
src/main/scala/scalatime/package.scala
Scala
apache-2.0
2,345
package demo import spray.json.DefaultJsonProtocol case class Stuff(id: Int, data: String) object Stuff extends DefaultJsonProtocol { implicit val stuffFormat = jsonFormat2(Stuff.apply) }
MonsantoCo/simple-spray-with-routing
src/main/scala/demo/Stuff.scala
Scala
bsd-3-clause
196
package com.pointr.tcp.rpc abstract class P2pRpc { import reflect.runtime.universe.TypeTag def connect(connParam: P2pConnectionParams): Boolean def isConnected: Boolean def request[U: TypeTag, V: TypeTag](req: P2pReq[U]): P2pResp[V] // = _ def requestJava[U, V](req: P2pReq[U]): P2pResp[V] // = { null.asInstanceOf[P2pResp[V]] } }
OpenChaiSpark/OCspark
tcpclient/src/main/scala/com/pointr/tcp/rpc/P2pRpc.scala
Scala
apache-2.0
349
package com.arcusys.learn.liferay.constants import com.liferay.portal.kernel.workflow.WorkflowConstants object WorkflowConstantsHelper { val STATUS_APPROVED = WorkflowConstants.STATUS_APPROVED val ACTION_PUBLISH = WorkflowConstants.ACTION_PUBLISH }
arcusys/Valamis
learn-liferay700-services/src/main/scala/com/arcusys/learn/liferay/constants/WorkflowConstantsHelper.scala
Scala
gpl-3.0
255
/* * Copyright (c) 2014-2016 * nonblocking.at gmbh [http://www.nonblocking.at] * * This file is part of Cliwix. * * Cliwix is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package at.nonblocking.cliwix.core class CliwixLiferayNotReadyException extends CliwixException("Liferay is not yet ready!")
nonblocking/cliwix
cliwix-core/src/main/scala/at/nonblocking/cliwix/core/CliwixLiferayNotReadyException.scala
Scala
agpl-3.0
910
/* - Coeus web framework ------------------------- * * Licensed under the Apache License, Version 2.0. * * Author: Spiros Tzavellas */ package com.tzavellas.coeus.i18n.msg import java.util.Locale /** * A bundle of locale-specific messages. * * @see PropertiesMessageBundle */ trait MessageBundle { /** * Get a message for the given code and Locale. * * @param locale the locale of the message * @param code the code of the message * @param args the arguments to use for substituting any variables in the message * * @throws MessageNotFoundException if a message does not exist for the * specified code and Locale. */ def apply(locale: Locale, code: String, args: Any*): String /** * Get a message for the given code and Locale. * * @param locale the locale of the message * @param code the code of the message * @param args the arguments to use for substituting any variables in the message */ def get(locale: Locale, code: String, args: Any*): Option[String] }
sptz45/coeus
src/main/scala/com/tzavellas/coeus/i18n/msg/MessageBundle.scala
Scala
apache-2.0
1,046
class Nums { class Num(x: Double) { inline def power(inline n: Long) = ${ PowerMacro.powerCode('x, 'n) } } } object Test { def main(args: Array[String]): Unit = { val nums = new Nums val n = new nums.Num(1.5) println(n.power(0)) println(n.power(1)) println(n.power(2)) println(n.power(5)) } }
som-snytt/dotty
tests/run-macros/i4803b/App_2.scala
Scala
apache-2.0
332
/** * Copyright (C) 2015 Stratio (http://stratio.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.stratio.crossdata.test import org.scalatest.concurrent.TimeLimitedTests import org.scalatest.time.SpanSugar._ import org.scalatest.{FlatSpec, Matchers} /** * Base class for both unit and integration tests */ abstract class BaseXDTest extends FlatSpec with Matchers with TimeLimitedTests { val timeLimit = 5 minutes }
luismcl/crossdata
core/src/test/scala/com/stratio/crossdata/test/BaseXDTest.scala
Scala
apache-2.0
958
package scala.meta.quasiquotes import org.jetbrains.plugins.scala.SlowTests import org.junit.experimental.categories.Category /** * @author mutcianm * @since 28.10.16. */ @Category(Array(classOf[SlowTests])) class RandomQQTest extends QuasiQuoteTypeInferenceTestBase { def testPatVarTermApply() = doTest( s""" |${START}p"Foo"$END |//Pat.Var.Term """.stripMargin ) def testPatCaseApply() = doTest( s""" |${START}p"case Foo(x) =>"$END |//Case """.stripMargin ) def testPatExtractApply() = doTest( s""" |${START}p"Some(x)"$END |//Pat.Extract """.stripMargin ) def testPatTypeVarApply() = doTest( s""" |${START}pt"foo"$END |//Pat.Var.Type """.stripMargin ) def testPatTypeWildcardApply() = doTest( s""" |${START}pt"_"$END |//Pat.Type.Wildcard """.stripMargin ) def testTermArgApply() = doTest( s""" |${START}arg"a: Int"$END |//Term.Ascribe """.stripMargin ) def testModAnnotApply() = doTest( s""" |${START}mod"@foo"$END |//Mod.Annot """.stripMargin ) def testTypeArgInfixApply() = doTest( s""" |${START}targ"T ^ U"$END |//Type.ApplyInfix """.stripMargin ) def testPatArgTypedApply() = doTest( s""" |${START}parg"a:Int"$END |//Pat.Typed """.stripMargin ) def testCtorApplyApply() = doTest( s""" |${START}ctor"A(b)"$END |//Term.Apply """.stripMargin ) def testCtorRefNameApply() = doTest( s""" |${START}ctor"A"$END |//Ctor.Ref.Name """.stripMargin ) def testTermParamApply() = doTest( s""" |${START}param"a: A"$END |//Term.Param """.stripMargin ) def testTypeParamApply() = doTest( s""" |${START}tparam"f <: A with B forSome { val x: Int }"$END |//Type.Param """.stripMargin ) def testSourceApply() = doTest( s""" |${START}source"class Foo"$END |//Source """.stripMargin ) def testImporterApply() = doTest( s""" |${START}importer"foo.bar"$END |//Importer """.stripMargin ) def testImporteeApply() = doTest( s""" |${START}importee"foo"$END |//Importee.Name """.stripMargin ) def testEnumeratorApply() = doTest( s""" |${START}enumerator"x <- y"$END |//Enumerator.Generator """.stripMargin ) }
triplequote/intellij-scala
scala/scala-impl/test/scala/meta/quasiquotes/RandomQQTest.scala
Scala
apache-2.0
2,471
package breeze.linalg import java.util._ import breeze.linalg.operators._ import breeze.linalg.support._ import breeze.numerics._ /** This is an auto-generated trait providing operators for CSCMatrix */ trait CSCMatrixOps_Double { this: CSCMatrix.type => class canMulM_V_Double private[linalg] () extends BinaryRegistry[CSCMatrix[Double], Vector[Double], breeze.linalg.operators.OpMulMatrix, Vector[Double]] { override def bindingMissing(a: CSCMatrix[Double], b: Vector[Double]) = { val res = DenseVector.zeros[Double](a.rows) var c = 0 while(c < a.cols) { var rr = a.colPtrs(c) val rrlast = a.colPtrs(c+1) while (rr < rrlast) { val r = a.rowIndices(rr) res(r) += a.data(rr) * b(c) rr += 1 } c += 1 } res } }; val canMulM_V_Double = new canMulM_V_Double() implicit def canMulM_V_Double_def[A <: CSCMatrix[Double], B <: Vector[Double]]:BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Double]] = ( canMulM_V_Double.asInstanceOf[BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Double]]] ) class canMulM_DM_Double private[linalg] () extends BinaryOp[CSCMatrix[Double], DenseMatrix[Double], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Double]] { def apply(a: CSCMatrix[Double], b: DenseMatrix[Double]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Double](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = 0 while (j < a.cols) { val v = b(j, i) var k = a.colPtrs(j) while (k < a.colPtrs(j+1)) { res(a.rowIndices(k), i) += v * a.data(k) k += 1 } j += 1 } i += 1 } res } }; implicit val canMulM_DM_Double = new canMulM_DM_Double () class canMulDM_M_Double private[linalg] () extends BinaryOp[DenseMatrix[Double], CSCMatrix[Double], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Double]] { def apply(a: DenseMatrix[Double], b: CSCMatrix[Double]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Double](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) val ival = b.rowIndices(j) var k = 0 while (k < a.rows) { res(k,i) += a(k,ival)*dval k += 1 } j += 1 } i += 1 } res } }; implicit val canMulDM_M_Double = new canMulDM_M_Double () class canMulM_M_Double private[linalg] () extends BinaryOp[CSCMatrix[Double], CSCMatrix[Double], breeze.linalg.operators.OpMulMatrix, CSCMatrix[Double]] { def apply(a: CSCMatrix[Double], b: CSCMatrix[Double]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") var numnz = 0 var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { numnz += a.colPtrs(b.rowIndices(j)+1) - a.colPtrs(b.rowIndices(j)) j += 1 } i += 1 } val res = new CSCMatrix.Builder[Double](a.rows, b.cols, numnz) i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) var k = a.colPtrs(b.rowIndices(j)) while (k < a.colPtrs(b.rowIndices(j)+1)) { res.add(a.rowIndices(k), i, a.data(k) * dval) k += 1 } j += 1 } i += 1 } res.result() } }; implicit val canMulM_M_Double = new canMulM_M_Double () } /** This is an auto-generated trait providing operators for CSCMatrix */ trait CSCMatrixOps_Float { this: CSCMatrix.type => class canMulM_V_Float private[linalg] () extends BinaryRegistry[CSCMatrix[Float], Vector[Float], breeze.linalg.operators.OpMulMatrix, Vector[Float]] { override def bindingMissing(a: CSCMatrix[Float], b: Vector[Float]) = { val res = DenseVector.zeros[Float](a.rows) var c = 0 while(c < a.cols) { var rr = a.colPtrs(c) val rrlast = a.colPtrs(c+1) while (rr < rrlast) { val r = a.rowIndices(rr) res(r) += a.data(rr) * b(c) rr += 1 } c += 1 } res } }; val canMulM_V_Float = new canMulM_V_Float() implicit def canMulM_V_Float_def[A <: CSCMatrix[Float], B <: Vector[Float]]:BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Float]] = ( canMulM_V_Float.asInstanceOf[BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Float]]] ) class canMulM_DM_Float private[linalg] () extends BinaryOp[CSCMatrix[Float], DenseMatrix[Float], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Float]] { def apply(a: CSCMatrix[Float], b: DenseMatrix[Float]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Float](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = 0 while (j < a.cols) { val v = b(j, i) var k = a.colPtrs(j) while (k < a.colPtrs(j+1)) { res(a.rowIndices(k), i) += v * a.data(k) k += 1 } j += 1 } i += 1 } res } }; implicit val canMulM_DM_Float = new canMulM_DM_Float () class canMulDM_M_Float private[linalg] () extends BinaryOp[DenseMatrix[Float], CSCMatrix[Float], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Float]] { def apply(a: DenseMatrix[Float], b: CSCMatrix[Float]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Float](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) val ival = b.rowIndices(j) var k = 0 while (k < a.rows) { res(k,i) += a(k,ival)*dval k += 1 } j += 1 } i += 1 } res } }; implicit val canMulDM_M_Float = new canMulDM_M_Float () class canMulM_M_Float private[linalg] () extends BinaryOp[CSCMatrix[Float], CSCMatrix[Float], breeze.linalg.operators.OpMulMatrix, CSCMatrix[Float]] { def apply(a: CSCMatrix[Float], b: CSCMatrix[Float]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") var numnz = 0 var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { numnz += a.colPtrs(b.rowIndices(j)+1) - a.colPtrs(b.rowIndices(j)) j += 1 } i += 1 } val res = new CSCMatrix.Builder[Float](a.rows, b.cols, numnz) i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) var k = a.colPtrs(b.rowIndices(j)) while (k < a.colPtrs(b.rowIndices(j)+1)) { res.add(a.rowIndices(k), i, a.data(k) * dval) k += 1 } j += 1 } i += 1 } res.result() } }; implicit val canMulM_M_Float = new canMulM_M_Float () } /** This is an auto-generated trait providing operators for CSCMatrix */ trait CSCMatrixOps_Int { this: CSCMatrix.type => class canMulM_V_Int private[linalg] () extends BinaryRegistry[CSCMatrix[Int], Vector[Int], breeze.linalg.operators.OpMulMatrix, Vector[Int]] { override def bindingMissing(a: CSCMatrix[Int], b: Vector[Int]) = { val res = DenseVector.zeros[Int](a.rows) var c = 0 while(c < a.cols) { var rr = a.colPtrs(c) val rrlast = a.colPtrs(c+1) while (rr < rrlast) { val r = a.rowIndices(rr) res(r) += a.data(rr) * b(c) rr += 1 } c += 1 } res } }; val canMulM_V_Int = new canMulM_V_Int() implicit def canMulM_V_Int_def[A <: CSCMatrix[Int], B <: Vector[Int]]:BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Int]] = ( canMulM_V_Int.asInstanceOf[BinaryOp[A, B, breeze.linalg.operators.OpMulMatrix, Vector[Int]]] ) class canMulM_DM_Int private[linalg] () extends BinaryOp[CSCMatrix[Int], DenseMatrix[Int], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Int]] { def apply(a: CSCMatrix[Int], b: DenseMatrix[Int]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Int](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = 0 while (j < a.cols) { val v = b(j, i) var k = a.colPtrs(j) while (k < a.colPtrs(j+1)) { res(a.rowIndices(k), i) += v * a.data(k) k += 1 } j += 1 } i += 1 } res } }; implicit val canMulM_DM_Int = new canMulM_DM_Int () class canMulDM_M_Int private[linalg] () extends BinaryOp[DenseMatrix[Int], CSCMatrix[Int], breeze.linalg.operators.OpMulMatrix, DenseMatrix[Int]] { def apply(a: DenseMatrix[Int], b: CSCMatrix[Int]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") val res = new DenseMatrix[Int](a.rows, b.cols) var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) val ival = b.rowIndices(j) var k = 0 while (k < a.rows) { res(k,i) += a(k,ival)*dval k += 1 } j += 1 } i += 1 } res } }; implicit val canMulDM_M_Int = new canMulDM_M_Int () class canMulM_M_Int private[linalg] () extends BinaryOp[CSCMatrix[Int], CSCMatrix[Int], breeze.linalg.operators.OpMulMatrix, CSCMatrix[Int]] { def apply(a: CSCMatrix[Int], b: CSCMatrix[Int]) = { if(a.cols != b.rows) throw new RuntimeException("Dimension Mismatch!") var numnz = 0 var i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { numnz += a.colPtrs(b.rowIndices(j)+1) - a.colPtrs(b.rowIndices(j)) j += 1 } i += 1 } val res = new CSCMatrix.Builder[Int](a.rows, b.cols, numnz) i = 0 while (i < b.cols) { var j = b.colPtrs(i) while (j < b.colPtrs(i+1)) { val dval = b.data(j) var k = a.colPtrs(b.rowIndices(j)) while (k < a.colPtrs(b.rowIndices(j)+1)) { res.add(a.rowIndices(k), i, a.data(k) * dval) k += 1 } j += 1 } i += 1 } res.result() } }; implicit val canMulM_M_Int = new canMulM_M_Int () }
tjhunter/scalanlp-core
math/src/main/scala/breeze/linalg/CSCMatrixOps.scala
Scala
apache-2.0
11,499
package com.goibibo.sqlshift.models /** * Project: mysql-redshift-loader * Author: shivamsharma * Date: 12/29/16. */ case class Status(isSuccessful: Boolean, e: Exception)
goibibo/SqlShift
src/main/scala/com/goibibo/sqlshift/models/Status.scala
Scala
mit
181
package im.mange.flakeless.innards import im.mange.flakeless.{Config, Flakeless} import org.openqa.selenium.{By, WebElement} //TODO: model Condition //TODO: work out when description is an Actual and when its something else (like not found) //... Actual sounds assertion based //... other sounds like an Action ... //... in which case arr we in Action & Check extends Command land? //TODO: should this be WaitForCondition /* deliberately not private [flakeless] */ object WaitForElement { def apply(flakeless: Option[Flakeless], command: Command, description: (WebElement) => String, condition: (WebElement) => Boolean) = { Execute(flakeless, new WaitForElement(command, description, condition)) } } private class WaitForElement(val command: Command, description: (WebElement) => String, condition: (WebElement) => Boolean) extends Executable { override def execute(context: Context, config: Config) { (command.in, command.by) match { case (Some(in), Some(by)) => //TODO: we should ensure there is only one element - make configurable Wait.waitUpTo(config).forCondition(command, { val element = in.findElement(by) val result = condition(element) if (result) context.succeeded() else context.failed(description(element)) result }, description(in.findElement(by)) ) case _ => throw new RuntimeException("cannot wait without in and by") } } }
alltonp/flakeless
src/main/scala/im/mange/flakeless/innards/WaitForElement.scala
Scala
mit
1,575
/** * The MIT License (MIT) Copyright (c) 2014 University of Applied Sciences, Berlin, Germany * For more detailed information, please read the licence.txt in the root directory. **/ package org.onepercent.utils.scoring import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.rdd.RDD /** * Representation of trained Data * @param categoryProb the category probability, the previous probability of a word to be in a specific class * @param termProb the term probability, the probabilities of a term to be in categories * @param unknownWordProb the probability of a in the trained data unknown term to be in the categories */ case class TrainedData(categoryProb: Map[String, Double], termProb: Map[String, Map[String, Double]], unknownWordProb: Map[String, Double]) /** * Produces probabilities of terms being in categories based on training data. * The given SparkContext is used to compute these. * @see http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html * @param sc SparkContext to compute the probabilities. * @author pFriesch */ class TweetScoringLearner(sc: SparkContext) { type Category = String /** * Learns from training data to produce a pair of category probability and term probabilities of terms being in a given category. * @see http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html * @param tweets the training tweets divided in categories. * @return a pair of category probability and term probabilities of terms being in a given category. */ def learn(tweets: Map[Category, List[String]]): TrainedData = { val distTweets = sc.parallelize(tweets.toSeq) val categories = distTweets.map(T => T._1) val tokenizedTweets = distTweets.map(catTweets => catTweets._1 -> Tokenizer.tokenizeList(catTweets._2)) val termCount = computeTermCount(tokenizedTweets, categories) val termCountPerClass = tokenizedTweets.map(catTokens => (catTokens._1, catTokens._2.length)) val totalToken = termCountPerClass.map(X => X._2).reduce(_ + _) val categoryProb = termCountPerClass.map(CatCount => (CatCount._1, CatCount._2.toDouble / totalToken.toDouble)) val termProb = computeTermProb(termCount, categories.collect().toList) TrainedData(categoryProb.collect().toMap, termProb._1.map(X => (X._1, X._2.toMap)).collect().toMap, termProb._2) } private def computeTermProb(termCount: RDD[(String, Map[Category, Int])], categories: List[Category]): (RDD[(String, List[(Category, Double)])], Map[Category, Double]) = { val smoothing = 1 //needs to be accessible on all workers, so no RDD val categoryTermCount = categories.map(C => (C, termCount.map( X => (X._1, X._2.getOrElse(C, 0) + smoothing)).map(X => X._2).reduce(_ + _)) ).toMap // fills empty categories in the termcount with 0 val filledTermCount = termCount.map( termWithCount => (termWithCount._1, categories.map( C => C -> termWithCount._2.getOrElse(C, 0)) ) ) (filledTermCount.map(termsWithCount => (termsWithCount._1, termsWithCount._2.map { case (category: Category, count: Int) => (category, // condProbFun (count + smoothing).toDouble / categoryTermCount(category).toDouble // \condProbFun ) // probability for an unknown Word })), categoryTermCount.map(X => (X._1, 1.toDouble / X._2.toDouble))) } private def computeTermCount(tokenizedTweets: RDD[(Category, List[String])], categories: RDD[Category]): RDD[(String, Map[Category, Int])] = { val termCount = tokenizedTweets.map(X => X._1 -> X._2.groupBy(X => X).map(X => X._1 -> X._2.length)) termCount.flatMap(X => X._2.map(Y => (Y._1, (X._1, Y._2)))).groupByKey().map(X => (X._1, X._2.toMap)) } }
isn0gud/onepercent
src/main/scala/org/onepercent/utils/scoring/TweetScoringLearner.scala
Scala
mit
3,849
package org.openurp.edu.eams.teach.schedule.service import org.openurp.edu.base.Student trait StdCourseTablePermissionChecker { def check(std: Student, kind: String, ids: String): String }
openurp/edu-eams-webapp
schedule/src/main/scala/org/openurp/edu/eams/teach/schedule/service/StdCourseTablePermissionChecker.scala
Scala
gpl-3.0
196
/** * Copyright (C) 2013 Orbeon, Inc. * * This program is free software; you can redistribute it and/or modify it under the terms of the * GNU Lesser General Public License as published by the Free Software Foundation; either version * 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Lesser General Public License for more details. * * The full text of the license is available at http://www.gnu.org/copyleft/lesser.html */ package org.orbeon.oxf.fr import org.dom4j.{QName, Document} import org.orbeon.oxf.pipeline.api.{PipelineContext} import org.orbeon.oxf.processor.SimpleProcessor import org.orbeon.oxf.properties.{PropertySet, Properties} import org.orbeon.oxf.util.XPath import org.orbeon.oxf.xml.{XMLReceiver, TransformerUtils, Dom4j} import org.orbeon.saxon.dom4j.DocumentWrapper import org.orbeon.saxon.om.NodeInfo import org.orbeon.scaxon.XML._ // Processor to replace or add resources based on properties // // An property looks like: oxf.fr.resource.*.*.en.detail.labels.save // // NOTE: We used to do this in XSLT, but when it came to implement *adding* missing resources, the level of complexity // increased too much and readability would have suffered so we rewrote in Scala. class ResourcesPatcher extends SimpleProcessor { def generateData(pipelineContext: PipelineContext, xmlReceiver: XMLReceiver): Unit = { // Read inputs val resourcesDocument = readInputAsDOM4J(pipelineContext, "data") val instanceElement = new DocumentWrapper(readInputAsDOM4J(pipelineContext, "instance"), null, XPath.GlobalConfiguration) \\ * val app = instanceElement \\ "app" stringValue val form = instanceElement \\ "form" stringValue // Transform and write out the document ResourcesPatcher.transform(resourcesDocument, app, form)(Properties.instance.getPropertySet) TransformerUtils.writeDom4j(resourcesDocument, xmlReceiver) } } object ResourcesPatcher { def transform(resourcesDocument: Document, app: String, form: String)(implicit properties: PropertySet): Unit = { val resourcesElement = new DocumentWrapper(resourcesDocument, null, XPath.GlobalConfiguration) \\ * val propertyNames = properties.propertiesStartsWith("oxf.fr.resource" :: app :: form :: Nil mkString ".") // In 4.6 summary/detail buttons are at the top level def filterPathForBackwardCompatibility(path: Seq[String]) = path take 2 match { case Seq("detail" | "summary", "buttons") ⇒ path drop 1 case _ ⇒ path } val langPathValue = for { name ← propertyNames tokens = name split """\\.""" lang = tokens(5) path = filterPathForBackwardCompatibility(tokens drop 6) mkString "/" } yield (lang, path, properties.getString(name)) // Return all languages or the language specified if it exists // For now we don't support creating new top-level resource elements for new languages. def findConcreteLanguages(langOrWildcard: String) = { val allLanguages = eval(resourcesElement, "resource/@xml:lang/string()").asInstanceOf[Seq[String]] val filtered = if (langOrWildcard == "*") allLanguages else allLanguages filter (_ == langOrWildcard) filtered.distinct // there *shouldn't* be duplicate languages in the source } def resourceElementsForLang(lang: String) = eval(resourcesElement, s"resource[@xml:lang = '$lang']").asInstanceOf[Seq[NodeInfo]] map unwrapElement // Update or create elements and set values for { (langOrWildcard, path, value) ← langPathValue lang ← findConcreteLanguages(langOrWildcard) rootForLang ← resourceElementsForLang(lang) } locally { Dom4j.ensurePath(rootForLang, path split "/" map QName.get).setText(value) } } }
martinluther/orbeon-forms
src/main/scala/org/orbeon/oxf/fr/ResourcesPatcher.scala
Scala
lgpl-2.1
4,351
/* * Stratio Meta * * Copyright (c) 2014, Stratio, All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3.0 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. */ package com.stratio.meta.common.ask case class Connect (user: String)
dhiguero/stratio-meta
meta-common/src/main/scala/com/stratio/meta/common/ask/Connect.scala
Scala
gpl-3.0
778
package hello import org.springframework.context.annotation.Configuration import org.springframework.boot.autoconfigure.EnableAutoConfiguration import org.springframework.context.annotation.ComponentScan import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; /** * This config class will trigger Spring @annotation scanning and auto configure Spring context. * * @author saung * @since 1.0 */ @Configuration @EnableAutoConfiguration @ComponentScan @RestController class HelloConfig { @RequestMapping(value=Array("/")) def controller() :String = { return "Hello World" } }
muffadaldaginawala/hello-world
src/main/scala/hello/HelloConfig.scala
Scala
mit
745
package com.hunorkovacs.koauth.service import java.security.SecureRandom import scala.util.Random trait TokenGenerator { def generateTokenAndSecret: (String, String) def generateVerifier: String def generateNonce: String } object DefaultTokenGenerator extends TokenGenerator { private final val LengthToken = 32 private final val LengthSecret = 32 private final val LengthVerifier = 16 private final val LengthNonce = 8 private val random = new Random(new SecureRandom()) override def generateTokenAndSecret = (generate(LengthToken), generate(LengthSecret)) override def generateVerifier = generate(LengthVerifier) override def generateNonce = generate(LengthNonce) private def generate(length: Int): String = random.alphanumeric.take(length).mkString }
kovacshuni/koauth
src/main/scala/com/hunorkovacs/koauth/service/DefaultTokenGenerator.scala
Scala
apache-2.0
789
package co.scriptgeek import akka.actor.Actor import spray.routing._ import spray.http._ import spray.http.StatusCodes._ import MediaTypes._ // we don't implement our route structure directly in the service actor because // we want to be able to test it independently, without having to spin up an actor class EventStoreActor extends Actor with EventStoreService { // the HttpService trait defines only one abstract member, which // connects the services environment to the enclosing actor or test def actorRefFactory = context // this actor only runs our route, but you could add // other things here, like request stream processing // or timeout handling def receive = runRoute(esRoute) } // this trait defines our service behavior independently from the service actor trait EventStoreService extends HttpService { val esRoute = { path("topics") { get { respondWithMediaType(`application/json`) { complete("{}") } } } } }
scriptgeeks/eventstore
src/main/scala/co/scriptgeek/EventStoreService.scala
Scala
apache-2.0
994
import shapes.pimpmylib.{Square, Circle, Shape} import shapes.untouchable.{Circle => UCircle, Square => USquare} package object pimpmylib { implicit def decorateCircle(shape: UCircle): Shape = Circle(shape.r) implicit def decorateSquare(shape: USquare): Shape = Square(shape.a) }
tupol/scala-patterns-tc-pml
src/main/scala/shapes/pimpmylib/package.scala
Scala
apache-2.0
297
/*********************************************************************** * Copyright (c) 2013-2017 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.convert import java.io.InputStream import com.typesafe.config.Config import org.locationtech.geomesa.convert.Transformers.Predicate import org.opengis.feature.simple.{SimpleFeature, SimpleFeatureType} import scala.annotation.tailrec import scala.collection.JavaConversions._ import scala.collection.immutable.IndexedSeq import scala.util.Try class CompositeConverterFactory[I] extends SimpleFeatureConverterFactory[I] { override def canProcess(conf: Config): Boolean = if (conf.hasPath("type")) conf.getString("type").equals("composite-converter") else false override def buildConverter(sft: SimpleFeatureType, conf: Config): SimpleFeatureConverter[I] = { val converters: Seq[(Predicate, SimpleFeatureConverter[I])] = conf.getConfigList("converters").map { c => val pred = Transformers.parsePred(c.getString("predicate")) val converter = SimpleFeatureConverters.build[I](sft, conf.getConfig(c.getString("converter"))) (pred, converter) } new CompositeConverter[I](sft, converters) } } class CompositeConverter[I](val targetSFT: SimpleFeatureType, converters: Seq[(Predicate, SimpleFeatureConverter[I])]) extends SimpleFeatureConverter[I] { override val caches: Map[String, EnrichmentCache] = Map.empty val predsWithIndex = converters.map(_._1).zipWithIndex.toIndexedSeq val indexedConverters = converters.map(_._2).toIndexedSeq override def createEvaluationContext(globalParams: Map[String, Any], counter: Counter): EvaluationContext = { val delegates = converters.map(_._2.createEvaluationContext(globalParams, counter)).toIndexedSeq new CompositeEvaluationContext(delegates) } override def processInput(is: Iterator[I], ec: EvaluationContext): Iterator[SimpleFeature] = { val setEc: (Int) => Unit = ec match { case c: CompositeEvaluationContext => (i) => c.setCurrent(i) case _ => (_) => Unit } val toEval = Array.ofDim[Any](1) def evalPred(pi: (Predicate, Int)): Boolean = { setEc(pi._2) Try(pi._1.eval(toEval)(ec)).getOrElse(false) } new Iterator[SimpleFeature] { var iter: Iterator[SimpleFeature] = loadNext() override def hasNext: Boolean = iter.hasNext override def next(): SimpleFeature = { val res = iter.next() if (!iter.hasNext && is.hasNext) { iter = loadNext() } res } @tailrec def loadNext(): Iterator[SimpleFeature] = { toEval(0) = is.next() val i = predsWithIndex.find(evalPred).map(_._2).getOrElse(-1) val res = if (i == -1) { ec.counter.incLineCount() ec.counter.incFailure() Iterator.empty } else { indexedConverters(i).processInput(Iterator(toEval(0).asInstanceOf[I]), ec) } if (res.hasNext) { res } else if (!is.hasNext) { Iterator.empty } else { loadNext() } } } } override def processSingleInput(i: I, ec: EvaluationContext): Seq[SimpleFeature] = ??? override def process(is: InputStream, ec: EvaluationContext): Iterator[SimpleFeature] = ??? } case class CompositeEvaluationContext(contexts: IndexedSeq[EvaluationContext]) extends EvaluationContext { var current: EvaluationContext = contexts.headOption.orNull def setCurrent(i: Int): Unit = current = contexts(i) override def get(i: Int): Any = current.get(i) override def set(i: Int, v: Any): Unit = current.set(i, v) override def indexOf(n: String): Int = current.indexOf(n) override def counter: Counter = current.counter override def clear(): Unit = contexts.foreach(_.clear()) override def getCache(k: String): EnrichmentCache = current.getCache(k) }
ronq/geomesa
geomesa-convert/geomesa-convert-common/src/main/scala/org/locationtech/geomesa/convert/CompositeConverter.scala
Scala
apache-2.0
4,231
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ml.dmlc.mxnetexamples.customop import org.kohsuke.args4j.{CmdLineParser, Option} import org.slf4j.LoggerFactory import scala.collection.JavaConverters._ import ml.dmlc.mxnet.Symbol import ml.dmlc.mxnet.DType.DType import ml.dmlc.mxnet.DataIter import ml.dmlc.mxnet.DataBatch import ml.dmlc.mxnet.NDArray import ml.dmlc.mxnet.Shape import ml.dmlc.mxnet.EvalMetric import ml.dmlc.mxnet.Context import ml.dmlc.mxnet.Xavier import ml.dmlc.mxnet.optimizer.RMSProp import ml.dmlc.mxnet.CustomOp import ml.dmlc.mxnet.CustomOpProp import ml.dmlc.mxnet.Operator import ml.dmlc.mxnet.optimizer.SGD import ml.dmlc.mxnet.Accuracy import ml.dmlc.mxnet.Callback.Speedometer /** * Example of CustomOp * @author Depeng Liang */ object ExampleCustomOp { private val logger = LoggerFactory.getLogger(classOf[ExampleCustomOp]) class Softmax(_param: Map[String, String]) extends CustomOp { override def forward(sTrain: Boolean, req: Array[String], inData: Array[NDArray], outData: Array[NDArray], aux: Array[NDArray]): Unit = { val xShape = inData(0).shape val x = inData(0).toArray.grouped(xShape(1)).toArray val yArr = x.map { it => val max = it.max val tmp = it.map(e => Math.exp(e.toDouble - max).toFloat) val sum = tmp.sum tmp.map(_ / sum) }.flatten val y = NDArray.empty(xShape, outData(0).context) y.set(yArr) this.assign(outData(0), req(0), y) y.dispose() } override def backward(req: Array[String], outGrad: Array[NDArray], inData: Array[NDArray], outData: Array[NDArray], inGrad: Array[NDArray], aux: Array[NDArray]): Unit = { val l = inData(1).toArray.map(_.toInt) val oShape = outData(0).shape val yArr = outData(0).toArray.grouped(oShape(1)).toArray l.indices.foreach { i => yArr(i)(l(i)) -= 1.0f } val y = NDArray.empty(oShape, inGrad(0).context) y.set(yArr.flatten) this.assign(inGrad(0), req(0), y) y.dispose() } } class SoftmaxProp(needTopGrad: Boolean = false) extends CustomOpProp(needTopGrad) { override def listArguments(): Array[String] = Array("data", "label") override def listOutputs(): Array[String] = Array("output") override def inferShape(inShape: Array[Shape]): (Array[Shape], Array[Shape], Array[Shape]) = { val dataShape = inShape(0) val labelShape = Shape(dataShape(0)) val outputShape = dataShape (Array(dataShape, labelShape), Array(outputShape), null) } override def inferType(inType: Array[DType]): (Array[DType], Array[DType], Array[DType]) = { (inType, inType.take(1), null) } override def createOperator(ctx: String, inShapes: Array[Array[Int]], inDtypes: Array[Int]): CustomOp = new Softmax(this.kwargs) } Operator.register("softmax", new SoftmaxProp) def main(args: Array[String]): Unit = { val leop = new ExampleCustomOp val parser: CmdLineParser = new CmdLineParser(leop) try { parser.parseArgument(args.toList.asJava) assert(leop.dataPath != null) val ctx = if (leop.gpu >= 0) Context.gpu(0) else Context.cpu() val dataName = Array("data") val labelName = Array("softmax_label") val data = Symbol.Variable("data") val label = Symbol.Variable("label") val fc1 = Symbol.FullyConnected("fc1")()(Map("data" -> data, "num_hidden" -> 128)) val act1 = Symbol.Activation("relu1")()(Map("data" -> fc1, "act_type" -> "relu")) val fc2 = Symbol.FullyConnected("fc2")()(Map("data" -> act1, "num_hidden" -> 64)) val act2 = Symbol.Activation("relu2")()(Map("data" -> fc2, "act_type" -> "relu")) val fc3 = Symbol.FullyConnected("fc3")()(Map("data" -> act2, "num_hidden" -> 10)) val mlp = Symbol.Custom("softmax")()(Map("data" -> fc3, "label" -> label, "op_type" -> "softmax")) val (trainIter, testIter) = Data.mnistIterator(leop.dataPath, batchSize = 100, inputShape = Shape(784)) val datasAndLabels = trainIter.provideData ++ trainIter.provideLabel val (argShapes, outputShapes, auxShapes) = mlp.inferShape(datasAndLabels) val initializer = new Xavier(factorType = "in", magnitude = 2.34f) val argNames = mlp.listArguments() val argDict = argNames.zip(argShapes.map(s => NDArray.empty(s, ctx))).toMap val gradDict = argNames.zip(argShapes).filter { case (name, shape) => !datasAndLabels.contains(name) }.map(x => x._1 -> NDArray.empty(x._2, ctx) ).toMap argDict.foreach { case (name, ndArray) => if (!datasAndLabels.contains(name)) { initializer.initWeight(name, ndArray) } } val executor = mlp.bind(ctx, argDict, gradDict) val lr = 0.001f val opt = new RMSProp(learningRate = lr, wd = 0.00001f) val paramsGrads = gradDict.toList.zipWithIndex.map { case ((name, grad), idx) => (idx, name, grad, opt.createState(idx, argDict(name))) } val evalMetric = new Accuracy val batchEndCallback = new Speedometer(100, 100) val numEpoch = 20 for (epoch <- 0 until numEpoch) { val tic = System.currentTimeMillis evalMetric.reset() var nBatch = 0 var epochDone = false trainIter.reset() while (!epochDone) { var doReset = true while (doReset && trainIter.hasNext) { val dataBatch = trainIter.next() argDict("data").set(dataBatch.data(0)) argDict("label").set(dataBatch.label(0)) executor.forward(isTrain = true) executor.backward() paramsGrads.foreach { case (idx, name, grad, optimState) => opt.update(idx, argDict(name), grad, optimState) } evalMetric.update(dataBatch.label, executor.outputs) nBatch += 1 batchEndCallback.invoke(epoch, nBatch, evalMetric) } if (doReset) { trainIter.reset() } epochDone = true } val (name, value) = evalMetric.get name.zip(value).foreach { case (n, v) => logger.info(s"Epoch[$epoch] Train-accuracy=$v") } val toc = System.currentTimeMillis logger.info(s"Epoch[$epoch] Time cost=${toc - tic}") evalMetric.reset() testIter.reset() while (testIter.hasNext) { val evalBatch = testIter.next() argDict("data").set(evalBatch.data(0)) argDict("label").set(evalBatch.label(0)) executor.forward(isTrain = true) evalMetric.update(evalBatch.label, executor.outputs) evalBatch.dispose() } val (names, values) = evalMetric.get names.zip(values).foreach { case (n, v) => logger.info(s"Epoch[$epoch] Validation-accuracy=$v") } } executor.dispose() } catch { case ex: Exception => { logger.error(ex.getMessage, ex) parser.printUsage(System.err) sys.exit(1) } } } } class ExampleCustomOp { @Option(name = "--data-path", usage = "the mnist data path") private val dataPath: String = null @Option(name = "--gpu", usage = "which gpu card to use, default is -1, means using cpu") private val gpu: Int = -1 }
Mega-DatA-Lab/mxnet
scala-package/examples/src/main/scala/ml/dmlc/mxnetexamples/customop/ExampleCustomOp.scala
Scala
apache-2.0
8,095
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.plans.logical import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream} import java.math.{MathContext, RoundingMode} import scala.util.control.NonFatal import net.jpountz.lz4.{LZ4BlockInputStream, LZ4BlockOutputStream} import org.apache.spark.internal.Logging import org.apache.spark.sql.AnalysisException import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.catalog.CatalogColumnStat import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.expressions.aggregate._ import org.apache.spark.sql.catalyst.util.{ArrayData, DateTimeUtils} import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.types._ import org.apache.spark.util.Utils /** * Estimates of various statistics. The default estimation logic simply lazily multiplies the * corresponding statistic produced by the children. To override this behavior, override * `statistics` and assign it an overridden version of `Statistics`. * * '''NOTE''': concrete and/or overridden versions of statistics fields should pay attention to the * performance of the implementations. The reason is that estimations might get triggered in * performance-critical processes, such as query plan planning. * * Note that we are using a BigInt here since it is easy to overflow a 64-bit integer in * cardinality estimation (e.g. cartesian joins). * * @param sizeInBytes Physical size in bytes. For leaf operators this defaults to 1, otherwise it * defaults to the product of children's `sizeInBytes`. * @param rowCount Estimated number of rows. * @param attributeStats Statistics for Attributes. */ case class Statistics( sizeInBytes: BigInt, rowCount: Option[BigInt] = None, attributeStats: AttributeMap[ColumnStat] = AttributeMap(Nil)) { override def toString: String = "Statistics(" + simpleString + ")" /** Readable string representation for the Statistics. */ def simpleString: String = { Seq(s"sizeInBytes=${Utils.bytesToString(sizeInBytes)}", if (rowCount.isDefined) { // Show row count in scientific notation. s"rowCount=${BigDecimal(rowCount.get, new MathContext(3, RoundingMode.HALF_UP)).toString()}" } else { "" } ).filter(_.nonEmpty).mkString(", ") } } /** * Statistics collected for a column. * * 1. The JVM data type stored in min/max is the internal data type for the corresponding * Catalyst data type. For example, the internal type of DateType is Int, and that the internal * type of TimestampType is Long. * 2. There is no guarantee that the statistics collected are accurate. Approximation algorithms * (sketches) might have been used, and the data collected can also be stale. * * @param distinctCount number of distinct values * @param min minimum value * @param max maximum value * @param nullCount number of nulls * @param avgLen average length of the values. For fixed-length types, this should be a constant. * @param maxLen maximum length of the values. For fixed-length types, this should be a constant. * @param histogram histogram of the values */ case class ColumnStat( distinctCount: Option[BigInt] = None, min: Option[Any] = None, max: Option[Any] = None, nullCount: Option[BigInt] = None, avgLen: Option[Long] = None, maxLen: Option[Long] = None, histogram: Option[Histogram] = None) { // Are distinctCount and nullCount statistics defined? val hasCountStats = distinctCount.isDefined && nullCount.isDefined // Are min and max statistics defined? val hasMinMaxStats = min.isDefined && max.isDefined // Are avgLen and maxLen statistics defined? val hasLenStats = avgLen.isDefined && maxLen.isDefined def toCatalogColumnStat(colName: String, dataType: DataType): CatalogColumnStat = CatalogColumnStat( distinctCount = distinctCount, min = min.map(CatalogColumnStat.toExternalString(_, colName, dataType)), max = max.map(CatalogColumnStat.toExternalString(_, colName, dataType)), nullCount = nullCount, avgLen = avgLen, maxLen = maxLen, histogram = histogram) } /** * This class is an implementation of equi-height histogram. * Equi-height histogram represents the distribution of a column's values by a sequence of bins. * Each bin has a value range and contains approximately the same number of rows. * * @param height number of rows in each bin * @param bins equi-height histogram bins */ case class Histogram(height: Double, bins: Array[HistogramBin]) { // Only for histogram equality test. override def equals(other: Any): Boolean = other match { case otherHgm: Histogram => height == otherHgm.height && bins.sameElements(otherHgm.bins) case _ => false } override def hashCode(): Int = { val temp = java.lang.Double.doubleToLongBits(height) var result = (temp ^ (temp >>> 32)).toInt result = 31 * result + java.util.Arrays.hashCode(bins.asInstanceOf[Array[AnyRef]]) result } } /** * A bin in an equi-height histogram. We use double type for lower/higher bound for simplicity. * * @param lo lower bound of the value range in this bin * @param hi higher bound of the value range in this bin * @param ndv approximate number of distinct values in this bin */ case class HistogramBin(lo: Double, hi: Double, ndv: Long) object HistogramSerializer { /** * Serializes a given histogram to a string. For advanced statistics like histograms, sketches, * etc, we don't provide readability for their serialized formats in metastore * (string-to-string table properties). This is because it's hard or unnatural for these * statistics to be human readable. For example, a histogram usually cannot fit in a single, * self-described property. And for count-min-sketch, it's essentially unnatural to make it * a readable string. */ final def serialize(histogram: Histogram): String = { val bos = new ByteArrayOutputStream() val out = new DataOutputStream(new LZ4BlockOutputStream(bos)) out.writeDouble(histogram.height) out.writeInt(histogram.bins.length) // Write data with same type together for compression. var i = 0 while (i < histogram.bins.length) { out.writeDouble(histogram.bins(i).lo) i += 1 } i = 0 while (i < histogram.bins.length) { out.writeDouble(histogram.bins(i).hi) i += 1 } i = 0 while (i < histogram.bins.length) { out.writeLong(histogram.bins(i).ndv) i += 1 } out.writeInt(-1) out.flush() out.close() org.apache.commons.codec.binary.Base64.encodeBase64String(bos.toByteArray) } /** Deserializes a given string to a histogram. */ final def deserialize(str: String): Histogram = { val bytes = org.apache.commons.codec.binary.Base64.decodeBase64(str) val bis = new ByteArrayInputStream(bytes) val ins = new DataInputStream(new LZ4BlockInputStream(bis)) val height = ins.readDouble() val numBins = ins.readInt() val los = new Array[Double](numBins) var i = 0 while (i < numBins) { los(i) = ins.readDouble() i += 1 } val his = new Array[Double](numBins) i = 0 while (i < numBins) { his(i) = ins.readDouble() i += 1 } val ndvs = new Array[Long](numBins) i = 0 while (i < numBins) { ndvs(i) = ins.readLong() i += 1 } ins.close() val bins = new Array[HistogramBin](numBins) i = 0 while (i < numBins) { bins(i) = HistogramBin(los(i), his(i), ndvs(i)) i += 1 } Histogram(height, bins) } }
hhbyyh/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/Statistics.scala
Scala
apache-2.0
8,491
object Test extends App { t def t: Unit = { val c1 = C1()(1) println(c1.copy()(2)) { implicit val i = 2873 println(c1.copy()) } val c2 = C2()(1) println(c2.copy()(37)) val c3 = C3(1,2)(3) println(c3.copy()(27)) println(c3.copy(y = 22)(27)) println(c3.copy(y = 7, x = 11)(27)) val c4 = C4(1) println(c4.copy()) println(c4.copy(x = 23)) val c5 = C5(1,2)(3,"a") println(c5.copy()(33,"b")) println(c5.copy(y = 19)(33,"b")) { implicit val i = 193 implicit val s = "c" println(c5.copy()) println(c5.copy(y = 371)) println(c5.copy(x = -1)(-2, "lken")) } val c6 = C6(1)(2)(3) println(c6.copy(29)(18)(-12)) { implicit val i = 2892 println(c6.copy(x = 1)(93)) println(c6.copy(x = 1)(93)(761)) } val c7 = C7(1)(2)(3)("h") println(c7.copy()(22)(33)("elkj")) { implicit val s = "me" println(c7.copy()(283)(29872)) println(c7.copy(37)(298)(899)("ekjr")) } val c8 = C8(1)(2,3)()("els") println(c8.copy(x = 172)(989, 77)()("eliurna")) { implicit val s = "schtring" println(c8.copy()(82,2111)()) println(c8.copy(x = -1)(92,29)()("lken")) } val c9 = C9(1)(2)()()("u") println(c9.copy()(271)()()("ehebab")) { implicit val s = "enag" println(c9.copy()(299)()()) println(c9.copy(x = -42)(99)()()("flae")) } class KA { override def toString = "ka" } class KB extends KA { override def toString = "kb" } val c10 = C10(10)(3)(19) println(c10.copy()(298)(27)) println(c10.copy("elkn")("en")("emn")) println(c10.copy(new KA)(new KB)(new KB)) { implicit val k = new KA println(c10.copy(new KA)(new KB)) } } } case class C1()(implicit x: Int) { override def toString = s"c1: $x" } case class C2()(y: Int) { override def toString = s"c2: $y" } case class C3(x: Int, y: Int)(z: Int) { override def toString = s"c3: $x, $y, $z" } case class C4(x: Int) { override def toString = s"c4: $x" } case class C5(x: Int, y: Int)(implicit z: Int, s: String) { override def toString = s"c5: $x, $y, $z, $s" } case class C6(x: Int)(y: Int)(implicit z: Int) { override def toString = s"c6: $x, $y, $z" } case class C7(x: Int)(y: Int)(z: Int)(implicit s: String) { override def toString = s"c7: $x, $y, $z, $s" } case class C8(x: Int)(y: Int, z: Int)()(implicit s: String) { override def toString = s"c8: $x, $y, $z, $s" } case class C9(x: Int)(y: Int)()()(implicit s: String) { override def toString = s"c9: $x, $y, $s" } case class C10[T,U <: T](x: T)(y: U)(implicit z: T) { override def toString = s"c9: $x, $y, $z" }
lrytz/scala
test/files/run/t5907.scala
Scala
apache-2.0
2,714
package org.jetbrains.plugins.scala.failed.typeInference import org.jetbrains.plugins.scala.PerfCycleTests import org.jetbrains.plugins.scala.lang.typeConformance.TypeConformanceTestBase import org.junit.experimental.categories.Category /** * @author mucianm * @since 28.03.16. */ @Category(Array(classOf[PerfCycleTests])) class HigherKindedTypesConformanceTest extends TypeConformanceTestBase { def testSCL9713(): Unit = doTest( """ |import scala.language.higherKinds | |type Foo[_] |type Bar[_] |type S |def foo(): Foo[S] with Bar[S] | |val x: Foo[S] = foo() |//True """.stripMargin ) def testSCL7319(): Unit = doTest { s"""trait XIndexedStateT[F[+_], -S1, +S2, +A] { | def lift[M[+_]]: XIndexedStateT[({type λ[+α]=M[F[α]]})#λ, S1, S2, A] = ??? |} | |type XStateT[F[+_], S, +A] = XIndexedStateT[F, S, S, A] | |type XId[+X] = X | |def example[S, A](s: XStateT[XId, S, A]): XStateT[Option, S, A] = { | ${caretMarker}val res: XStateT[Option, S, A] = s.lift[Option] | res |} |//true""".stripMargin } def testSCL9088(): Unit = doTest { s"""trait Bar { | type FooType[T] <: Foo[T] | | trait Foo[T] { | val x: T | } | | def getFoo[T](x: T): FooType[T] |} | |class BarImpl extends Bar { | case class FooImpl[T](x: T) extends Foo[T] | | override type FooType[R] = FooImpl[R] | | override def getFoo[R](x: R): FooType[R] = FooImpl[R](x) |} | |trait Container[B <: Bar] { | val profile: B | | ${caretMarker}val test: B#FooType[Int] = profile.getFoo[Int](5) |} |//true""".stripMargin } }
jeantil/intellij-scala
test/org/jetbrains/plugins/scala/failed/typeInference/HigherKindedTypesConformanceTest.scala
Scala
apache-2.0
1,802
package com.mesosphere.cosmos.thirdparty.marathon.circe import com.mesosphere.cosmos.thirdparty.marathon.model._ import io.circe.Decoder import io.circe.generic.semiauto._ object Decoders { implicit val decodeAppId: Decoder[AppId] = Decoder.decodeString.map(AppId(_)) implicit val decodeMarathonApp: Decoder[MarathonApp] = deriveDecoder[MarathonApp] implicit val decodeMarathonAppContainer: Decoder[MarathonAppContainer] = deriveDecoder[MarathonAppContainer] implicit val decodeMarathonAppContainerDocker: Decoder[MarathonAppContainerDocker] = deriveDecoder[MarathonAppContainerDocker] implicit val decodeMarathonAppResponse: Decoder[MarathonAppResponse] = deriveDecoder[MarathonAppResponse] implicit val decodeMarathonAppsResponse: Decoder[MarathonAppsResponse] = deriveDecoder[MarathonAppsResponse] implicit val decodeMarathonError: Decoder[MarathonError] = deriveDecoder[MarathonError] }
takirala/cosmos
cosmos-common/src/main/scala/com/mesosphere/cosmos/thirdparty/marathon/circe/Decoders.scala
Scala
apache-2.0
907
package models.customer import models.AssetSupport.IdType import models._ import models.common._ import org.joda.time.DateTime import play.api.libs.json.Json case class TermsOfPayment( term: Int, description: String ) object TermsOfPayment { implicit val formats = Json.format[TermsOfPayment] } case class MethodOfPayment( method: Int, description: String ) object MethodOfPayment { implicit val format = Json.format[MethodOfPayment] } case class PaymentSchedule( period: DateTime, percent: String ) object PaymentSchedule { implicit val format = Json.format[PaymentSchedule] } case class Payment( termsOfPayment: TermsOfPayment, methodOfPayment: MethodOfPayment, paymentSchedule: PaymentSchedule, paymentDay: DateTime, bankAccount: String, bankAccountNumber: String ) object Payment { implicit val format = Json.format[Payment] } case class CreditInformation( mandatoryCreditLimit: Boolean, creditRating: Int, creditLimit: Int, currency: String ) object CreditInformation { implicit val format = Json.format[CreditInformation] } case class Discount( multilineDiscount: String, totalDiscount: String, price: Price, lineDiscount: Int ) object Discount { implicit val format = Json.format[Discount] } case class CustomerIn( _id: IdType, createdAt: DateTime, lastModifiedAt: DateTime, active: Boolean, description: String, name: String, agentId: IdType, taxExemptNumber: Option[String], lineOfBusinessId: IdType, siteId: IdType, companyTypeId: IdType, shopIds: List[IdType], addresses: List[Address], groupIds: List[IdType], contactIds: List[IdType], accountNumber: Option[String] ) extends AssetIn with AssetUpdateBuilder[CustomerUpdate] { override def fillup(lastModifiedAt: DateTime) = CustomerUpdate(lastModifiedAt, active, description, name, agentId, taxExemptNumber, lineOfBusinessId, siteId, companyTypeId, shopIds, addresses, groupIds, contactIds, accountNumber) } object CustomerIn extends AssetInCompanion[CustomerIn] { val format = Json.format[CustomerIn] override def collectionName: String = "customers" } case class CustomerUpdate(lastModifiedAt: DateTime, active: Boolean, description: String, name: String, agentId: IdType, taxExemptNumber: Option[String], lineOfBusinessId: IdType, siteId: IdType, companyTypeId: IdType, shopIds: List[IdType], addresses: List[Address], groupIds: List[IdType], contactIds: List[IdType], accountNumber: Option[String]) extends AssetUpdate object CustomerUpdate extends AssetUpdateCompanion[CustomerUpdate] { val format = Json.format[CustomerUpdate] override def collectionName: String = CustomerIn.collectionName } case class CustomerCreate(active: Boolean, description: String, name: String, agentId: IdType, taxExemptNumber: Option[String], lineOfBusinessId: IdType, siteId: IdType, companyTypeId: IdType, shopIds: List[IdType], addresses: List[Address], groupIds: List[IdType], contactIds: List[IdType], accountNumber: Option[String]) extends AssetCreate[CustomerIn] { override def fillup(b: AssetBase): CustomerIn = CustomerIn(b.id, b.createdAt, b.lastModifiedAt, active, description, name, agentId, taxExemptNumber, lineOfBusinessId, siteId, companyTypeId, shopIds, addresses, groupIds, contactIds, accountNumber) } object CustomerCreate { implicit val reads = Json.reads[CustomerCreate] }
tsechov/shoehorn
app/models/customer/customer.scala
Scala
apache-2.0
4,982
/** * Copyright (c) 2002-2012 "Neo Technology," * Network Engine for Objects in Lund AB [http://neotechnology.com] * * This file is part of Neo4j. * * Neo4j is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.neo4j.cypher.internal.pipes import org.neo4j.cypher.internal.commands.NamedPath import org.neo4j.cypher.internal.symbols.PathType class NamedPathPipe(source: Pipe, path: NamedPath) extends Pipe { def createResults(state: QueryState) = { source.createResults(state).map(ctx => { ctx.put(path.pathName, path.getPath(ctx)) ctx }) } // val symbols = source.symbols.add(Identifier(path.pathName, PathType())) val symbols = source.symbols.add(path.pathName, PathType()) override def executionPlan(): String = source.executionPlan() + "\\r\\nExtractPath(" + path.pathName + " = " + path.pathPattern.mkString(", ") + ")" }
dksaputra/community
cypher/src/main/scala/org/neo4j/cypher/internal/pipes/NamedPathPipe.scala
Scala
gpl-3.0
1,455
/* __ *\\ ** ________ ___ / / ___ __ ____ Scala.js tools ** ** / __/ __// _ | / / / _ | __ / // __/ (c) 2014, LAMP/EPFL ** ** __\\ \\/ /__/ __ |/ /__/ __ |/_// /_\\ \\ http://scala-js.org/ ** ** /____/\\___/_/ |_/____/_/ | |__/ /____/ ** ** |/____/ ** \\* */ package org.scalajs.core.tools.javascript import scala.language.implicitConversions import org.scalajs.core.ir import org.scalajs.core.ir.Position import Trees._ private[javascript] object TreeDSL { implicit class TreeOps(val self: Tree) extends AnyVal { /** Select a member */ def DOT(field: Ident)(implicit pos: Position): DotSelect = DotSelect(self, field) /** Select a member */ def DOT(field: String)(implicit pos: Position): DotSelect = DotSelect(self, Ident(field)) // Some operators that we use def ===(that: Tree)(implicit pos: Position): Tree = BinaryOp(ir.Trees.JSBinaryOp.===, self, that) def ===(that: String)(implicit pos: Position): Tree = BinaryOp(ir.Trees.JSBinaryOp.===, self, StringLiteral(that)) def unary_!()(implicit pos: Position): Tree = UnaryOp(ir.Trees.JSUnaryOp.!, self) def &&(that: Tree)(implicit pos: Position): Tree = BinaryOp(ir.Trees.JSBinaryOp.&&, self, that) def ||(that: Tree)(implicit pos: Position): Tree = BinaryOp(ir.Trees.JSBinaryOp.||, self, that) // Other constructs def :=(that: Tree)(implicit pos: Position): Tree = Assign(self, that) } def typeof(expr: Tree)(implicit pos: Position): Tree = UnaryOp(ir.Trees.JSUnaryOp.typeof, expr) }
matthughes/scala-js
tools/shared/src/main/scala/org/scalajs/core/tools/javascript/TreeDSL.scala
Scala
bsd-3-clause
1,824
/* * Copyright 2008-present MongoDB, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.mongodb.scala.syncadapter; import java.util.function.Consumer import com.mongodb.Function import com.mongodb.client.{ MongoCursor, MongoIterable } import org.mongodb.scala.Observable import scala.concurrent.Await import scala.language.reflectiveCalls trait SyncMongoIterable[T] extends MongoIterable[T] { val wrapped: Observable[T] override def iterator(): MongoCursor[T] = cursor() override def cursor(): MongoCursor[T] = SyncMongoCursor[T](wrapped) override def first(): T = Await.result(wrapped.head(), WAIT_DURATION) override def map[U](mapper: Function[T, U]) = throw new UnsupportedOperationException override def forEach(action: Consumer[_ >: T]): Unit = { use(cursor())(localCursor => while (localCursor.hasNext) action.accept(localCursor.next())) } override def into[A <: java.util.Collection[_ >: T]](target: A): A = { use(cursor())(localCursor => while (localCursor.hasNext) target.add(localCursor.next())) target } def use[A <: { def close(): Unit }, B](resource: A)(code: A => B): B = { try { code(resource) } finally { resource.close() } } }
rozza/mongo-java-driver
driver-scala/src/it/scala/org/mongodb/scala/syncadapter/SyncMongoIterable.scala
Scala
apache-2.0
1,743
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.server import java.util.Properties import kafka.log.LogConfig._ import kafka.server.Constants._ import org.junit.Assert._ import org.apache.kafka.common.metrics.Quota import org.easymock.EasyMock import org.junit.Test import kafka.integration.KafkaServerTestHarness import kafka.utils._ import kafka.admin.{AdminOperationException, AdminUtils} import org.apache.kafka.common.TopicPartition import scala.collection.Map class DynamicConfigChangeTest extends KafkaServerTestHarness { def generateConfigs = List(KafkaConfig.fromProps(TestUtils.createBrokerConfig(0, zkConnect))) @Test def testConfigChange() { assertTrue("Should contain a ConfigHandler for topics", this.servers.head.dynamicConfigHandlers.contains(ConfigType.Topic)) val oldVal: java.lang.Long = 100000L val newVal: java.lang.Long = 200000L val tp = new TopicPartition("test", 0) val logProps = new Properties() logProps.put(FlushMessagesProp, oldVal.toString) AdminUtils.createTopic(zkUtils, tp.topic, 1, 1, logProps) TestUtils.retry(10000) { val logOpt = this.servers.head.logManager.getLog(tp) assertTrue(logOpt.isDefined) assertEquals(oldVal, logOpt.get.config.flushInterval) } logProps.put(FlushMessagesProp, newVal.toString) AdminUtils.changeTopicConfig(zkUtils, tp.topic, logProps) TestUtils.retry(10000) { assertEquals(newVal, this.servers.head.logManager.getLog(tp).get.config.flushInterval) } } private def testQuotaConfigChange(user: String, clientId: String, rootEntityType: String, configEntityName: String) { assertTrue("Should contain a ConfigHandler for " + rootEntityType , this.servers.head.dynamicConfigHandlers.contains(rootEntityType)) val props = new Properties() props.put(DynamicConfig.Client.ProducerByteRateOverrideProp, "1000") props.put(DynamicConfig.Client.ConsumerByteRateOverrideProp, "2000") val quotaManagers = servers.head.apis.quotas rootEntityType match { case ConfigType.Client => AdminUtils.changeClientIdConfig(zkUtils, configEntityName, props) case _ => AdminUtils.changeUserOrUserClientIdConfig(zkUtils, configEntityName, props) } TestUtils.retry(10000) { val overrideProducerQuota = quotaManagers.produce.quota(user, clientId) val overrideConsumerQuota = quotaManagers.fetch.quota(user, clientId) assertEquals(s"User $user clientId $clientId must have overridden producer quota of 1000", Quota.upperBound(1000), overrideProducerQuota) assertEquals(s"User $user clientId $clientId must have overridden consumer quota of 2000", Quota.upperBound(2000), overrideConsumerQuota) } val defaultProducerQuota = Long.MaxValue.asInstanceOf[Double] val defaultConsumerQuota = Long.MaxValue.asInstanceOf[Double] val emptyProps = new Properties() rootEntityType match { case ConfigType.Client => AdminUtils.changeClientIdConfig(zkUtils, configEntityName, emptyProps) case _ => AdminUtils.changeUserOrUserClientIdConfig(zkUtils, configEntityName, emptyProps) } TestUtils.retry(10000) { val producerQuota = quotaManagers.produce.quota(user, clientId) val consumerQuota = quotaManagers.fetch.quota(user, clientId) assertEquals(s"User $user clientId $clientId must have reset producer quota to " + defaultProducerQuota, Quota.upperBound(defaultProducerQuota), producerQuota) assertEquals(s"User $user clientId $clientId must have reset consumer quota to " + defaultConsumerQuota, Quota.upperBound(defaultConsumerQuota), consumerQuota) } } @Test def testClientIdQuotaConfigChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.Client, "testClient") } @Test def testUserQuotaConfigChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.User, "ANONYMOUS") } @Test def testUserClientIdQuotaChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.User, "ANONYMOUS/clients/testClient") } @Test def testDefaultClientIdQuotaConfigChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.Client, "<default>") } @Test def testDefaultUserQuotaConfigChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.User, "<default>") } @Test def testDefaultUserClientIdQuotaConfigChange() { testQuotaConfigChange("ANONYMOUS", "testClient", ConfigType.User, "<default>/clients/<default>") } @Test def testQuotaInitialization() { val server = servers.head val clientIdProps = new Properties() server.shutdown() clientIdProps.put(DynamicConfig.Client.ProducerByteRateOverrideProp, "1000") clientIdProps.put(DynamicConfig.Client.ConsumerByteRateOverrideProp, "2000") val userProps = new Properties() userProps.put(DynamicConfig.Client.ProducerByteRateOverrideProp, "10000") userProps.put(DynamicConfig.Client.ConsumerByteRateOverrideProp, "20000") val userClientIdProps = new Properties() userClientIdProps.put(DynamicConfig.Client.ProducerByteRateOverrideProp, "100000") userClientIdProps.put(DynamicConfig.Client.ConsumerByteRateOverrideProp, "200000") AdminUtils.changeClientIdConfig(zkUtils, "overriddenClientId", clientIdProps) AdminUtils.changeUserOrUserClientIdConfig(zkUtils, "overriddenUser", userProps) AdminUtils.changeUserOrUserClientIdConfig(zkUtils, "ANONYMOUS/clients/overriddenUserClientId", userClientIdProps) // Remove config change znodes to force quota initialization only through loading of user/client quotas zkUtils.getChildren(ZkUtils.ConfigChangesPath).foreach { p => zkUtils.deletePath(ZkUtils.ConfigChangesPath + "/" + p) } server.startup() val quotaManagers = server.apis.quotas assertEquals(Quota.upperBound(1000), quotaManagers.produce.quota("someuser", "overriddenClientId")) assertEquals(Quota.upperBound(2000), quotaManagers.fetch.quota("someuser", "overriddenClientId")) assertEquals(Quota.upperBound(10000), quotaManagers.produce.quota("overriddenUser", "someclientId")) assertEquals(Quota.upperBound(20000), quotaManagers.fetch.quota("overriddenUser", "someclientId")) assertEquals(Quota.upperBound(100000), quotaManagers.produce.quota("ANONYMOUS", "overriddenUserClientId")) assertEquals(Quota.upperBound(200000), quotaManagers.fetch.quota("ANONYMOUS", "overriddenUserClientId")) } @Test def testConfigChangeOnNonExistingTopic() { val topic = TestUtils.tempTopic try { val logProps = new Properties() logProps.put(FlushMessagesProp, 10000: java.lang.Integer) AdminUtils.changeTopicConfig(zkUtils, topic, logProps) fail("Should fail with AdminOperationException for topic doesn't exist") } catch { case _: AdminOperationException => // expected } } @Test def testProcessNotification(): Unit = { val props = new Properties() props.put("a.b", "10") // Create a mock ConfigHandler to record config changes it is asked to process val entityArgument = EasyMock.newCapture[String] val propertiesArgument = EasyMock.newCapture[Properties] val handler = EasyMock.createNiceMock(classOf[ConfigHandler]) handler.processConfigChanges( EasyMock.and(EasyMock.capture(entityArgument), EasyMock.isA(classOf[String])), EasyMock.and(EasyMock.capture(propertiesArgument), EasyMock.isA(classOf[Properties]))) EasyMock.expectLastCall().once() EasyMock.replay(handler) val configManager = new DynamicConfigManager(zkUtils, Map(ConfigType.Topic -> handler)) // Notifications created using the old TopicConfigManager are ignored. configManager.ConfigChangedNotificationHandler.processNotification("not json") // Incorrect Map. No version try { val jsonMap = Map("v" -> 1, "x" -> 2) configManager.ConfigChangedNotificationHandler.processNotification(Json.encode(jsonMap)) fail("Should have thrown an Exception while parsing incorrect notification " + jsonMap) } catch { case _: Throwable => } // Version is provided. EntityType is incorrect try { val jsonMap = Map("version" -> 1, "entity_type" -> "garbage", "entity_name" -> "x") configManager.ConfigChangedNotificationHandler.processNotification(Json.encode(jsonMap)) fail("Should have thrown an Exception while parsing incorrect notification " + jsonMap) } catch { case _: Throwable => } // EntityName isn't provided try { val jsonMap = Map("version" -> 1, "entity_type" -> ConfigType.Topic) configManager.ConfigChangedNotificationHandler.processNotification(Json.encode(jsonMap)) fail("Should have thrown an Exception while parsing incorrect notification " + jsonMap) } catch { case _: Throwable => } // Everything is provided val jsonMap = Map("version" -> 1, "entity_type" -> ConfigType.Topic, "entity_name" -> "x") configManager.ConfigChangedNotificationHandler.processNotification(Json.encode(jsonMap)) // Verify that processConfigChanges was only called once EasyMock.verify(handler) } @Test def shouldParseReplicationQuotaProperties(): Unit = { val configHandler: TopicConfigHandler = new TopicConfigHandler(null, null, null) val props: Properties = new Properties() //Given props.put(LeaderReplicationThrottledReplicasProp, "0:101,0:102,1:101,1:102") //When/Then assertEquals(Seq(0,1), configHandler.parseThrottledPartitions(props, 102, LeaderReplicationThrottledReplicasProp)) assertEquals(Seq(), configHandler.parseThrottledPartitions(props, 103, LeaderReplicationThrottledReplicasProp)) } @Test def shouldParseWildcardReplicationQuotaProperties(): Unit = { val configHandler: TopicConfigHandler = new TopicConfigHandler(null, null, null) val props: Properties = new Properties() //Given props.put(LeaderReplicationThrottledReplicasProp, "*") //When val result = configHandler.parseThrottledPartitions(props, 102, LeaderReplicationThrottledReplicasProp) //Then assertEquals(AllReplicas, result) } @Test def shouldParseReplicationQuotaReset(): Unit = { val configHandler: TopicConfigHandler = new TopicConfigHandler(null, null, null) val props: Properties = new Properties() //Given props.put(FollowerReplicationThrottledReplicasProp, "") //When val result = configHandler.parseThrottledPartitions(props, 102, FollowerReplicationThrottledReplicasProp) //Then assertEquals(Seq(), result) } @Test def shouldParseRegardlessOfWhitespaceAroundValues() { val configHandler: TopicConfigHandler = new TopicConfigHandler(null, null, null) assertEquals(AllReplicas, parse(configHandler, "* ")) assertEquals(Seq(), parse(configHandler, " ")) assertEquals(Seq(6), parse(configHandler, "6:102")) assertEquals(Seq(6), parse(configHandler, "6:102 ")) assertEquals(Seq(6), parse(configHandler, " 6:102")) } def parse(configHandler: TopicConfigHandler, value: String): Seq[Int] = { configHandler.parseThrottledPartitions(CoreUtils.propsWith(LeaderReplicationThrottledReplicasProp, value), 102, LeaderReplicationThrottledReplicasProp) } }
ErikKringen/kafka
core/src/test/scala/unit/kafka/server/DynamicConfigChangeTest.scala
Scala
apache-2.0
12,071
/* * Copyright (c) 2014-2020 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.reactive.compression import java.io.ByteArrayInputStream import java.util.Arrays import java.util.zip.{Deflater, DeflaterInputStream, Inflater, InflaterInputStream} import monix.reactive.Observable import scala.annotation.tailrec trait DeflateTestUtils extends CompressionTestData { val inflateRandomExampleThatFailed: Array[Byte] = Array(100, 96, 2, 14, 108, -122, 110, -37, 35, -11, -10, 14, 47, 30, 43, 111, -80, 44, -34, 35, 35, 37, -103).map( _.toByte ) def deflatedStream(bytes: Array[Byte], chunkSize: Int = 32 * 1024) = deflatedWith(bytes, new Deflater(), chunkSize) def noWrapDeflatedStream(bytes: Array[Byte], chunkSize: Int = 32 * 1024) = deflatedWith(bytes, new Deflater(9, true), chunkSize) def jdkDeflate(bytes: Array[Byte], deflater: Deflater): Array[Byte] = { val bigBuffer = new Array[Byte](1024 * 1024) val dif = new DeflaterInputStream(new ByteArrayInputStream(bytes), deflater) val read = dif.read(bigBuffer, 0, bigBuffer.length) Arrays.copyOf(bigBuffer, read) } def deflatedWith(bytes: Array[Byte], deflater: Deflater, chunkSize: Int = 32 * 1024) = { val arr = jdkDeflate(bytes, deflater) Observable .fromIterable(arr) .bufferTumbling(chunkSize) .map(_.toArray) } def jdkInflate(bytes: Array[Byte], noWrap: Boolean): Array[Byte] = { val bigBuffer = new Array[Byte](1024 * 1024) val inflater = new Inflater(noWrap) val iif = new InflaterInputStream( new ByteArrayInputStream(bytes), inflater ) @tailrec def inflate(acc: Array[Byte]): Array[Byte] = { val read = iif.read(bigBuffer, 0, bigBuffer.length) if (read <= 0) acc else inflate(acc ++ bigBuffer.take(read).toList) } inflate(Array.emptyByteArray) } }
alexandru/monifu
monix-reactive/jvm/src/test/scala/monix/reactive/compression/DeflateTestUtils.scala
Scala
apache-2.0
2,470
/** * © 2019 Refinitiv. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. */ package cmwell.ws import java.util.Properties import java.util.concurrent.TimeUnit import akka.actor.Actor import cmwell.common.ExitWithError import cmwell.common.OffsetsService import cmwell.ws.Settings.kafkaURL import com.typesafe.scalalogging.LazyLogging import k.grid.Grid import org.apache.kafka.clients.admin.{AdminClient, AdminClientConfig} import org.apache.kafka.clients.consumer.KafkaConsumer import org.apache.kafka.common.TopicPartition import org.joda.time.DateTime import scala.collection.mutable import scala.jdk.CollectionConverters._ import scala.concurrent.duration._ import scala.concurrent.{ExecutionContext, Future} import scala.util.{Failure, Success} /** * Created by israel on 01/12/2016. */ class BGMonitorActor(zkServers: String, offsetService: OffsetsService, implicit val ec: ExecutionContext = concurrent.ExecutionContext.Implicits.global) extends Actor with LazyLogging { val kafkaAdminProperties = new Properties kafkaAdminProperties.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaURL) val adminClient = AdminClient.create(kafkaAdminProperties) val topics = Seq("persist_topic", "persist_topic.priority", "index_topic", "index_topic.priority") val describedTopics = adminClient.describeTopics(topics.asJava).all().get(30, TimeUnit.SECONDS) val partitionsForTopics: mutable.Map[String, Seq[Int]] = describedTopics.asScala.map { case (topic, topicPartition) => topic -> (0 until topicPartition.partitions.size) } val topicsPartitionsAndGroups = partitionsForTopics.flatMap { case ("persist_topic", partitions) => partitions.map { partition => (new TopicPartition("persist_topic", partition), s"imp.$partition") } case ("persist_topic.priority", partitions) => partitions.map { partition => (new TopicPartition("persist_topic.priority", partition), s"imp.p.$partition") } case ("index_topic", partitions) => partitions.map { partition => (new TopicPartition("index_topic", partition), s"indexer.$partition") } case ("index_topic.priority", partitions) => partitions.map { partition => (new TopicPartition("index_topic.priority", partition), s"indexer.p.$partition") } case x@(topicName, partition) => logger.error(s"Unexpected topicName: $topicName . Partition: $partition"); ??? } val topicsPartitionsAndConsumers = topicsPartitionsAndGroups.map { case (topicPartition, groupId) => val kafkaConsumerProps = new Properties() kafkaConsumerProps.put("bootstrap.servers", kafkaURL) kafkaConsumerProps.put("group.id", groupId) kafkaConsumerProps.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer") kafkaConsumerProps.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer") kafkaConsumerProps.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer") kafkaConsumerProps.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer") (topicPartition, new KafkaConsumer[Array[Byte], Array[Byte]](kafkaConsumerProps)) } val topicsPartitions = topicsPartitionsAndConsumers.keys @volatile var previousOffsetInfo: OffsetsInfo = OffsetsInfo(Map.empty[String, PartitionOffsetsInfo], DateTime.now()) @volatile var currentOffsetInfo: OffsetsInfo = OffsetsInfo(Map.empty[String, PartitionOffsetsInfo], DateTime.now()) @volatile var lastFetchDuration: Long = 30L import java.util.concurrent.ConcurrentHashMap val redSince: collection.concurrent.Map[String, Long] = new ConcurrentHashMap[String, Long]().asScala self ! CalculateOffsetInfo override def receive: Receive = { case GetOffsetInfo => logger.debug(s"got GetOffsetInfo message returning $currentOffsetInfo") sender() ! currentOffsetInfo case CalculateOffsetInfo => logger.debug(s"got inner request to generate new offsets info") generateOffsetsInfo } private def generateOffsetsInfo = { logger.debug(s"generating offsets info") def calculateOffsetInfo(): Future[(OffsetsInfo, Long)] = { import concurrent._ Future { blocking { val start = System.currentTimeMillis() val topicPartitionsWriteOffsets = topicsPartitionsAndConsumers.head._2.endOffsets(topicsPartitions.asJavaCollection) val partitionsOffsetsInfo: Map[String, PartitionOffsetsInfo] = topicPartitionsWriteOffsets.asScala.map { case (topicPartition, writeOffset) => val streamId = topicPartition.topic() match { case "persist_topic" => s"imp.${topicPartition.partition()}_offset" case "persist_topic.priority" => s"imp.${topicPartition.partition()}.p_offset" case "index_topic" => s"indexer.${topicPartition.partition()}_offset" case "index_topic.priority" => s"indexer.${topicPartition.partition()}.p_offset" } val readOffset = offsetService.read(streamId).getOrElse(0L) (topicPartition.topic() + topicPartition.partition(), PartitionOffsetsInfo(topicPartition.topic(), topicPartition.partition(), readOffset, writeOffset)) }.toMap val end = System.currentTimeMillis() (OffsetsInfo(partitionsOffsetsInfo, new DateTime()), end - start) } } } calculateOffsetInfo().onComplete { case Success((info, duration)) => logger.debug(s"calculate offset info successful: \\nInfo:$info\\nDuration:$duration") previousOffsetInfo = currentOffsetInfo try { val partitionsOffsetInfoUpdated = info.partitionsOffsetInfo.map { case (key, partitionInfo) => val readDiff = partitionInfo.readOffset - previousOffsetInfo.partitionsOffsetInfo .get(key) .map { _.readOffset } .getOrElse(0L) val partitionStatus = { if (readDiff > 0) { //Remove the bg from red map if was there logger.debug(s"readDiff > 0. removing ${key}") redSince.remove(key) Green } else if (partitionInfo.readOffset - partitionInfo.writeOffset == 0) { //Remove the bg from red map if was there logger.debug(s"diff == 0. removing ${key}") redSince.remove(key) Green } else if (previousOffsetInfo.partitionsOffsetInfo .get(key) .map { _.partitionStatus } .getOrElse(Green) == Green) { Yellow } else { Red } } if (partitionStatus == Red) { val currentTime = System.currentTimeMillis() redSince.get(key) match { case None => logger.warn(s"BG status for partition ${key} turned RED") redSince.putIfAbsent(key, currentTime) case Some(since) if ((currentTime - since) > 15 * 60 * 1000) => logger.error( s"BG status for partition ${key} is RED for more than 15 minutes. (DISABLED - NOT sending it an exit message)" ) // Grid.serviceRef(s"BGActor${partitionInfo.partition}") ! ExitWithError redSince.replace(key, currentTime) case Some(since) => logger.warn( s"BG for partition ${key} is RED since ${(currentTime - since) / 1000} seconds ago" ) } } key -> partitionInfo.copy(partitionStatus = partitionStatus) } currentOffsetInfo = info.copy(partitionsOffsetInfo = partitionsOffsetInfoUpdated) } catch { case t: Throwable => logger.error("exception ingesting offset info", t) } lastFetchDuration = duration logger.debug(s"updated currentOffsetInfo: $currentOffsetInfo") context.system.scheduler .scheduleOnce(math.max(30000, lastFetchDuration).milliseconds, self, CalculateOffsetInfo) case Failure(exception) => logger.error("failed to calculate offset info", exception) context.system.scheduler .scheduleOnce(math.max(30000, lastFetchDuration).milliseconds, self, CalculateOffsetInfo) } } } object BGMonitorActor { def serviceName = classOf[BGMonitorActor].getName } case object GetOffsetInfo case object CalculateOffsetInfo case class OffsetsInfo(partitionsOffsetInfo: Map[String, PartitionOffsetsInfo], timeStamp: DateTime) trait PartitionStatus case object Green extends PartitionStatus case object Yellow extends PartitionStatus case object Red extends PartitionStatus case class PartitionOffsetsInfo(topic: String, partition: Int, readOffset: Long, writeOffset: Long, partitionStatus: PartitionStatus = Green) { def toShortInfoString = s"${topic.head}${if (topic.contains(".p")) ".p" else ""}:${writeOffset - readOffset}:${partitionStatus.toString.head}" }
dudi3001/CM-Well
server/cmwell-ws/app/BGMonitorActor.scala
Scala
apache-2.0
10,098
package io.jfc.cursor import cats.Functor import io.jfc.{ Context, ContextElement, Cursor, Json } private[jfc] case class CArray( focus: Json, p: Cursor, u: Boolean, ls: List[Json], rs: List[Json] ) extends Cursor { def context: Context = ContextElement.arrayContext(focus, ls.length) +: p.context def up: Option[Cursor] = Some { val j = Json.fromValues(ls.reverse_:::(focus :: rs)) p match { case CJson(_) => CJson(j) case CArray(_, pp, v, pls, prs) => CArray(j, pp, u || v, pls, prs) case CObject(_, pk, pp, v, po) => CObject(j, pk, pp, u || v, if (u) po + (pk, j) else po) } } def delete: Option[Cursor] = Some { val j = Json.fromValues(ls.reverse_:::(rs)) p match { case CJson(_) => CJson(j) case CArray(_, pp, _, pls, prs) => CArray(j, pp, true, pls, prs) case CObject(_, pk, pp, _, po) => CObject(j, pk, pp, true, po) } } def withFocus(f: Json => Json): Cursor = copy(focus = f(focus), u = true) def withFocusM[F[_]](f: Json => F[Json])(implicit F: Functor[F]): F[Cursor] = F.map(f(focus))(j => copy(focus = j, u = true)) override def lefts: Option[List[Json]] = Some(ls) override def rights: Option[List[Json]] = Some(rs) override def left: Option[Cursor] = ls match { case h :: t => Some(CArray(h, p, u, t, focus :: rs)) case Nil => None } override def right: Option[Cursor] = rs match { case h :: t => Some(CArray(h, p, u, focus :: ls, t)) case Nil => None } override def first: Option[Cursor] = ls.reverse_:::(focus :: rs) match { case h :: t => Some(CArray(h, p, u, Nil, t)) case Nil => None } override def last: Option[Cursor] = rs.reverse_:::(focus :: ls) match { case h :: t => Some(CArray(h, p, u, t, Nil)) case Nil => None } override def deleteGoLeft: Option[Cursor] = ls match { case h :: t => Some(CArray(h, p, true, t, rs)) case Nil => None } override def deleteGoRight: Option[Cursor] = rs match { case h :: t => Some(CArray(h, p, true, ls, t)) case Nil => None } override def deleteGoFirst: Option[Cursor] = ls.reverse_:::(rs) match { case h :: t => Some(CArray(h, p, true, Nil, t)) case Nil => None } override def deleteGoLast: Option[Cursor] = rs.reverse_:::(ls) match { case h :: t => Some(CArray(h, p, true, t, Nil)) case Nil => None } override def deleteLefts: Option[Cursor] = Some(copy(u = true, ls = Nil)) override def deleteRights: Option[Cursor] = Some(copy(u = true, rs = Nil)) override def setLefts(js: List[Json]): Option[Cursor] = Some(copy(u = true, ls = js)) override def setRights(js: List[Json]): Option[Cursor] = Some(copy(u = true, rs = js)) }
non/circe
core/src/main/scala/io/jfc/cursor/CArray.scala
Scala
apache-2.0
2,698
/* * Copyright (c) 2014 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics.snowplow.enrich.common package utils // Java import java.math.{BigInteger => JBigInteger} import java.net.URLEncoder // Jackson import com.fasterxml.jackson.databind.{ ObjectMapper, JsonNode } // Joda-Time import org.joda.time.{DateTime, DateTimeZone} import org.joda.time.format.{DateTimeFormat, DateTimeFormatter} // Scalaz import scalaz._ import Scalaz._ // json4s import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ // This project import utils.{ConversionUtils => CU} /** * Contains general purpose extractors and other * utilities for JSONs. Jackson-based. */ object JsonUtils { type DateTimeFields = Option[Tuple2[NonEmptyList[String], DateTimeFormatter]] private lazy val Mapper = new ObjectMapper // Defines the maximalist JSON Schema-compatible date-time format private val JsonSchemaDateTimeFormat = DateTimeFormat.forPattern("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'").withZone(DateTimeZone.UTC) /** * Decodes a URL-encoded String then validates * it as correct JSON. */ val extractUrlEncJson: (Int, String, String, String) => Validation[String, String] = (maxLength, enc, field, str) => CU.decodeString(enc, field, str).flatMap(json => validateAndReformatJson(maxLength, field, json)) /** * Decodes a Base64 (URL safe)-encoded String then * validates it as correct JSON. */ val extractBase64EncJson: (Int, String, String) => Validation[String, String] = (maxLength, field, str) => CU.decodeBase64Url(field, str).flatMap(json => validateAndReformatJson(maxLength, field, json)) /** * Converts a Joda DateTime into * a JSON Schema-compatible date-time string. * * @param datetime The Joda DateTime * to convert to a timestamp String * @return the timestamp String */ private[utils] def toJsonSchemaDateTime(dateTime: DateTime): String = JsonSchemaDateTimeFormat.print(dateTime) /** * Converts a boolean-like String of value "true" * or "false" to a JBool value of true or false * respectively. Any other value becomes a * JString. * * No erroring if the String is not boolean-like, * leave it to eventual JSON Schema validation * to enforce that. * * @param str The boolean-like String to convert * @return true for "true", false for "false", * and otherwise a JString wrapping the * original String */ private[utils] def booleanToJValue(str: String): JValue = str match { case "true" => JBool(true) case "false" => JBool(false) case _ => JString(str) } /** * Converts an integer-like String to a * JInt value. Any other value becomes a * JString. * * No erroring if the String is not integer-like, * leave it to eventual JSON Schema validation * to enforce that. * * @param str The integer-like String to convert * @return a JInt if the String was integer-like, * or else a JString wrapping the original * String. */ private[utils] def integerToJValue(str: String): JValue = try { JInt(new JBigInteger(str)) } catch { case nfe: NumberFormatException => JString(str) } /** * Reformats a non-standard date-time into a format * compatible with JSON Schema's date-time format * validation. If the String does not match the * expected date format, then return the original String. * * @param str The date-time-like String to reformat * to pass JSON Schema validation * @return the reformatted date-time String if * possible, or otherwise the original String */ def toJsonSchemaDateTime(str: String, fromFormat: DateTimeFormatter): String = try { val dt = DateTime.parse(str, fromFormat) toJsonSchemaDateTime(dt) } catch { case iae: IllegalArgumentException => str } /** * Converts an incoming key, value into a json4s JValue. * Uses the lists of keys which should contain bools, * ints and dates to apply specific processing to * those values when found. * * @param key The key of the field to generate. Also used * to determine what additional processing should * be applied to the value * @param value The value of the field * @param bools A List of keys whose values should be * processed as boolean-like Strings * @param ints A List of keys whose values should be * processed as integer-like Strings * @param dates If Some, a NEL of keys whose values should * be treated as date-time-like Strings, which will * require processing from the specified format * @return a JField, containing the original key and the * processed String, now as a JValue */ def toJField(key: String, value: String, bools: List[String], ints: List[String], dateTimes: DateTimeFields): JField = { val v = (value, dateTimes) match { case ("", _) => JNull case _ if bools.contains(key) => booleanToJValue(value) case _ if ints.contains(key) => integerToJValue(value) case (_, Some((nel, fmt))) if nel.toList.contains(key) => JString(toJsonSchemaDateTime(value, fmt)) case _ => JString(value) } (key, v) } /** * Validates and reformats a JSON: * 1. Checks the JSON is valid * 2. Reformats, including removing unnecessary whitespace * 3. Checks if reformatted JSON is <= maxLength, because * a truncated JSON causes chaos in Redshift et al * * @param field the name of the field containing the JSON * @param str the String hopefully containing JSON * @param maxLength the maximum allowed length for this * JSON when reformatted * @return a Scalaz Validation, wrapping either an error * String or the reformatted JSON String */ private[utils] def validateAndReformatJson(maxLength: Int, field: String, str: String): Validation[String, String] = extractJson(field, str) .map(j => compact(fromJsonNode(j))) .flatMap(j => if (j.length > maxLength) { "Field [%s]: reformatted JSON length [%s] exceeds maximum allowed length [%s]".format(field, j.length, maxLength).fail } else j.success) /** * Converts a JSON string into a Validation[String, JsonNode] * * @param field The name of the field containing JSON * @param instance The JSON string to parse * @return a Scalaz Validation, wrapping either an error * String or the extracted JsonNode */ def extractJson(field: String, instance: String): Validation[String, JsonNode] = try { Mapper.readTree(instance).success } catch { case e: Throwable => s"Field [$field]: invalid JSON [$instance] with parsing error: ${stripInstanceEtc(e.getMessage)}".fail } /** * Converts a JSON string into a JsonNode. * * UNSAFE - only use it for Strings you have * created yourself. Use extractJson for all * external Strings. * * @param instance The JSON string to parse * @return the extracted JsonNode */ def unsafeExtractJson(instance: String): JsonNode = Mapper.readTree(instance) /** * Strips the instance information from a Jackson * parsing exception message: * * "... at [Source: java.io.StringReader@1fe7a8f8; line: 1, column: 2]"" * ^^^^^^^^ * * Also removes any control characters and replaces * tabs with 4 spaces. * * @param message The exception message which needs * tidying up * @return the same exception message, but with * instance information etc removed */ def stripInstanceEtc(message: String): String = { message .replaceAll("@[0-9a-z]+;", "@xxxxxx;") .replaceAll("\\\\t", " ") .replaceAll("\\\\p{Cntrl}", "") // Any other control character .trim } /** * Encodes every (key -> value) in the supplied * JSON Object. Will only attempt to encode values * of type String. * * @param enc The encoding to be used * @param json The json which we will be encoding * @return an updated json which has been correctly * encoded. */ def encodeJsonObject(enc: String, json: JValue): JValue = json transformField { case (key, JString(value)) => (CU.encodeString(enc, key), JString(CU.encodeString(enc, value))) } }
krahman/snowplow
3-enrich/scala-common-enrich/src/main/scala/com.snowplowanalytics.snowplow.enrich/common/utils/JsonUtils.scala
Scala
apache-2.0
9,093
/* * RobolabSim * Copyright (C) 2014 Max Leuthaeuser * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see [http://www.gnu.org/licenses/]. */ package tud.robolab /** * All classes and objects that are important for utilizing tests for the * users solution (path, history, etc.) */ package object testing { }
max-leuthaeuser/RobolabSim
server/src/main/scala/tud/robolab/testing/package.scala
Scala
gpl-3.0
880
package lila.learn import org.joda.time.DateTime case class LearnProgress( _id: LearnProgress.Id, stages: Map[String, StageProgress], createdAt: DateTime, updatedAt: DateTime ) { def id = _id def withScore(stage: String, level: Int, s: StageProgress.Score) = copy( stages = stages + ( stage -> stages.getOrElse(stage, StageProgress.empty).withScore(level, s) ), updatedAt = DateTime.now ) } object LearnProgress { case class Id(value: String) extends AnyVal def empty(id: Id) = LearnProgress( _id = id, stages = Map.empty, createdAt = DateTime.now, updatedAt = DateTime.now ) }
luanlv/lila
modules/learn/src/main/LearnProgress.scala
Scala
mit
675
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.carbondata.restructure.rowreader import java.math.{BigDecimal, RoundingMode} import org.apache.spark.sql.Row import org.apache.spark.sql.common.util.QueryTest import org.scalatest.BeforeAndAfterAll import org.apache.carbondata.core.util.CarbonProperties class DropColumnTestCases extends QueryTest with BeforeAndAfterAll { override def beforeAll { sqlContext.setConf("carbon.enable.vector.reader", "false") sql("DROP TABLE IF EXISTS dropcolumntest") sql("drop table if exists hivetable") } test("test drop column and insert into hive table") { beforeAll sql( "CREATE TABLE dropcolumntest(intField int,stringField string,charField string," + "timestampField timestamp,decimalField decimal(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE dropcolumntest" + s" options('FILEHEADER'='intField,stringField,charField,timestampField,decimalField')") sql("Alter table dropcolumntest drop columns(charField)") sql( "CREATE TABLE hivetable(intField int,stringField string,timestampField timestamp," + "decimalField decimal(6,2)) stored as parquet") sql("insert into table hivetable select * from dropcolumntest") checkAnswer(sql("select * from hivetable"), sql("select * from dropcolumntest")) afterAll } test("test drop column and load data") { beforeAll sql( "CREATE TABLE dropcolumntest(intField int,stringField string,charField string," + "timestampField timestamp,decimalField decimal(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE dropcolumntest" + s" options('FILEHEADER'='intField,stringField,charField,timestampField,decimalField')") sql("Alter table dropcolumntest drop columns(charField)") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data4.csv' INTO TABLE dropcolumntest" + s" options('FILEHEADER'='intField,stringField,timestampField,decimalField')") checkAnswer(sql("select count(*) from dropcolumntest"), Row(2)) afterAll } test("test drop column and compaction") { beforeAll sql( "CREATE TABLE dropcolumntest(intField int,stringField string,charField string," + "timestampField timestamp,decimalField decimal(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE dropcolumntest" + s" options('FILEHEADER'='intField,stringField,charField,timestampField,decimalField')") sql("Alter table dropcolumntest drop columns(charField)") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data4.csv' INTO TABLE dropcolumntest" + s" options('FILEHEADER'='intField,stringField,timestampField,decimalField')") sql("alter table dropcolumntest compact 'major'") checkExistence(sql("show segments for table dropcolumntest"), true, "0Compacted") checkExistence(sql("show segments for table dropcolumntest"), true, "1Compacted") checkExistence(sql("show segments for table dropcolumntest"), true, "0.1Success") afterAll } override def afterAll { sql("DROP TABLE IF EXISTS dropcolumntest") sql("drop table if exists hivetable") } }
Sephiroth-Lin/incubator-carbondata
integration/spark2/src/test/scala/org/apache/spark/carbondata/restructure/rowreader/DropColumnTestCases.scala
Scala
apache-2.0
4,080
package com.lucius.kafka.utils /** * 该类中定义的是跟项目的业务无关的一些共用方法。这些方法放入到DateUtils和FileUtils中是不合适的。 * 这些方法必须具有通用性。自己能够用到的,并且其他同事也可能用到的方法。且在未来的项目中也能使用。 */ object Utils { /** * Convert Seq to Tuple * you can use this method to convert List to Tuple,or Array to Tuple, etc. * It's worth noting that: toTuple(List(111, 222)) is Error, because Int is not the subclass of Object. * but toTuple(List[Integer](111, 222)) is ok */ def toProduct[A <: Object](seq: Seq[A]) = Class.forName("scala.Tuple" + seq.size).getConstructors.apply(0).newInstance(seq: _*).asInstanceOf[Product] /** * Use trim() method for every element of Iterable,and return the result */ def trimIterable[A <: Iterable[String]](iterable: A): A = { iterable.map(_.trim).asInstanceOf[A] } def trimTuple(x: Product) = toProduct((for (e <- x.productIterator) yield { e.toString.trim }).toList) /** * 保留小数位数 */ def retainDecimal(number: Double, bits: Int = 2): Double = { BigDecimal(number).setScale(bits, BigDecimal.RoundingMode.HALF_UP).doubleValue() } }
zj-lingxin/kafka-fw
src/main/scala/com/lucius/kafka/utils/Utils.scala
Scala
mit
1,267
package dotty.tools package dotc package typer import core._ import ast.{Trees, untpd, tpd, TreeInfo} import util.Positions._ import util.Stats.track import Trees.Untyped import Mode.ImplicitsEnabled import Contexts._ import Flags._ import Denotations._ import NameOps._ import Symbols._ import Types._ import Decorators._ import ErrorReporting._ import Trees._ import Names._ import StdNames._ import ProtoTypes._ import EtaExpansion._ import collection.mutable import config.Printers._ import TypeApplications._ import language.implicitConversions object Applications { import tpd._ private val isNamedArg = (arg: Any) => arg.isInstanceOf[Trees.NamedArg[_]] def hasNamedArg(args: List[Any]) = args exists isNamedArg def extractorMemberType(tp: Type, name: Name, errorPos: Position = NoPosition)(implicit ctx:Context) = { val ref = tp member name if (ref.isOverloaded) errorType(i"Overloaded reference to $ref is not allowed in extractor", errorPos) else if (ref.info.isInstanceOf[PolyType]) errorType(i"Reference to polymorphic $ref: ${ref.info} is not allowed in extractor", errorPos) else ref.info.widenExpr.dealias } def productSelectorTypes(tp: Type, errorPos: Position = NoPosition)(implicit ctx:Context): List[Type] = { val sels = for (n <- Iterator.from(0)) yield extractorMemberType(tp, nme.selectorName(n), errorPos) sels.takeWhile(_.exists).toList } def productSelectors(tp: Type)(implicit ctx:Context): List[Symbol] = { val sels = for (n <- Iterator.from(0)) yield tp.member(nme.selectorName(n)).symbol sels.takeWhile(_.exists).toList } def getUnapplySelectors(tp: Type, args: List[untpd.Tree], pos: Position = NoPosition)(implicit ctx: Context): List[Type] = if (args.length > 1 && !(tp.derivesFrom(defn.SeqClass))) { val sels = productSelectorTypes(tp, pos) if (sels.length == args.length) sels else tp :: Nil } else tp :: Nil def unapplyArgs(unapplyResult: Type, unapplyFn:Tree, args:List[untpd.Tree], pos: Position = NoPosition)(implicit ctx: Context): List[Type] = { def seqSelector = defn.RepeatedParamType.appliedTo(unapplyResult.elemType :: Nil) def getTp = extractorMemberType(unapplyResult, nme.get, pos) // println(s"unapply $unapplyResult ${extractorMemberType(unapplyResult, nme.isDefined)}") if (extractorMemberType(unapplyResult, nme.isDefined, pos) isRef defn.BooleanClass) { if (getTp.exists) if (unapplyFn.symbol.name == nme.unapplySeq) { val seqArg = boundsToHi(getTp.firstBaseArgInfo(defn.SeqClass)) if (seqArg.exists) return args map Function.const(seqArg) } else return getUnapplySelectors(getTp, args, pos) else if (defn.isProductSubType(unapplyResult)) return productSelectorTypes(unapplyResult, pos) } if (unapplyResult derivesFrom defn.SeqClass) seqSelector :: Nil else if (unapplyResult isRef defn.BooleanClass) Nil else { ctx.error(i"$unapplyResult is not a valid result type of an unapply method of an extractor", pos) Nil } } def wrapDefs(defs: mutable.ListBuffer[Tree], tree: Tree)(implicit ctx: Context): Tree = if (defs != null && defs.nonEmpty) tpd.Block(defs.toList, tree) else tree } import Applications._ trait Applications extends Compatibility { self: Typer => import Applications._ import tpd.{ cpy => _, _ } import untpd.cpy /** @tparam Arg the type of arguments, could be tpd.Tree, untpd.Tree, or Type * @param methRef the reference to the method of the application * @param funType the type of the function part of the application * @param args the arguments of the application * @param resultType the expected result type of the application */ abstract class Application[Arg](methRef: TermRef, funType: Type, args: List[Arg], resultType: Type)(implicit ctx: Context) { /** The type of typed arguments: either tpd.Tree or Type */ type TypedArg /** Given an original argument and the type of the corresponding formal * parameter, produce a typed argument. */ protected def typedArg(arg: Arg, formal: Type): TypedArg /** Turn a typed tree into an argument */ protected def treeToArg(arg: Tree): Arg /** Check that argument corresponds to type `formal` and * possibly add it to the list of adapted arguments */ protected def addArg(arg: TypedArg, formal: Type): Unit /** Is this an argument of the form `expr: _*` or a RepeatedParamType * derived from such an argument? */ protected def isVarArg(arg: Arg): Boolean /** If constructing trees, turn last `n` processed arguments into a * `SeqLiteral` tree with element type `elemFormal`. */ protected def makeVarArg(n: Int, elemFormal: Type): Unit /** If all `args` have primitive numeric types, make sure it's the same one */ protected def harmonizeArgs(args: List[TypedArg]): List[TypedArg] /** Signal failure with given message at position of given argument */ protected def fail(msg: => String, arg: Arg): Unit /** Signal failure with given message at position of the application itself */ protected def fail(msg: => String): Unit protected def appPos: Position /** The current function part, which might be affected by lifting. */ protected def normalizedFun: Tree /** If constructing trees, pull out all parts of the function * which are not idempotent into separate prefix definitions */ protected def liftFun(): Unit = () /** A flag signalling that the typechecking the application was so far successful */ private[this] var _ok = true def ok = _ok def ok_=(x: Boolean) = { assert(x || ctx.errorsReported || !ctx.typerState.isCommittable) // !!! DEBUG _ok = x } /** The function's type after widening and instantiating polytypes * with polyparams in constraint set */ val methType = funType.widen match { case funType: MethodType => funType case funType: PolyType => constrained(funType).resultType case tp => tp //was: funType } /** The arguments re-ordered so that each named argument matches the * same-named formal parameter. */ lazy val orderedArgs = if (hasNamedArg(args)) reorder(args.asInstanceOf[List[untpd.Tree]]).asInstanceOf[List[Arg]] else args protected def init() = methType match { case methType: MethodType => // apply the result type constraint, unless method type is dependent if (!methType.isDependent) { val savedConstraint = ctx.typerState.constraint if (!constrainResult(methType.resultType, resultType)) if (ctx.typerState.isCommittable) // defer the problem until after the application; // it might be healed by an implicit conversion assert(ctx.typerState.constraint eq savedConstraint) else fail(err.typeMismatchStr(methType.resultType, resultType)) } // match all arguments with corresponding formal parameters matchArgs(orderedArgs, methType.paramTypes, 0) case _ => if (methType.isError) ok = false else fail(s"$methString does not take parameters") } /** The application was successful */ def success = ok protected def methodType = methType.asInstanceOf[MethodType] private def methString: String = i"${methRef.symbol}: ${methType.show}" /** Re-order arguments to correctly align named arguments */ def reorder[T >: Untyped](args: List[Trees.Tree[T]]): List[Trees.Tree[T]] = { /** @param pnames The list of parameter names that are missing arguments * @param args The list of arguments that are not yet passed, or that are waiting to be dropped * @param nameToArg A map from as yet unseen names to named arguments * @param toDrop A set of names that have already be passed as named arguments * * For a well-typed application we have the invariants * * 1. `(args diff toDrop)` can be reordered to match `pnames` * 2. For every `(name -> arg)` in `nameToArg`, `arg` is an element of `args` */ def recur(pnames: List[Name], args: List[Trees.Tree[T]], nameToArg: Map[Name, Trees.NamedArg[T]], toDrop: Set[Name]): List[Trees.Tree[T]] = pnames match { case pname :: pnames1 if nameToArg contains pname => // there is a named argument for this parameter; pick it nameToArg(pname) :: recur(pnames1, args, nameToArg - pname, toDrop + pname) case _ => def pnamesRest = if (pnames.isEmpty) pnames else pnames.tail args match { case (arg @ NamedArg(aname, _)) :: args1 => if (toDrop contains aname) // argument is already passed recur(pnames, args1, nameToArg, toDrop - aname) else if ((nameToArg contains aname) && pnames.nonEmpty) // argument is missing, pass an empty tree genericEmptyTree :: recur(pnames.tail, args, nameToArg, toDrop) else { // name not (or no longer) available for named arg def msg = if (methodType.paramNames contains aname) s"parameter $aname of $methString is already instantiated" else s"$methString does not have a parameter $aname" fail(msg, arg.asInstanceOf[Arg]) arg :: recur(pnamesRest, args1, nameToArg, toDrop) } case arg :: args1 => arg :: recur(pnamesRest, args1, nameToArg, toDrop) // unnamed argument; pick it case Nil => // no more args, continue to pick up any preceding named args if (pnames.isEmpty) Nil else recur(pnamesRest, args, nameToArg, toDrop) } } val nameAssocs = for (arg @ NamedArg(name, _) <- args) yield (name, arg) recur(methodType.paramNames, args, nameAssocs.toMap, Set()) } /** Splice new method reference into existing application */ def spliceMeth(meth: Tree, app: Tree): Tree = app match { case Apply(fn, args) => Apply(spliceMeth(meth, fn), args) case TypeApply(fn, targs) => TypeApply(spliceMeth(meth, fn), targs) case _ => meth } /** Find reference to default parameter getter for parameter #n in current * parameter list, or NoType if none was found */ def findDefaultGetter(n: Int)(implicit ctx: Context): Tree = { val meth = methRef.symbol.asTerm val receiver: Tree = methPart(normalizedFun) match { case Select(receiver, _) => receiver case mr => mr.tpe.normalizedPrefix match { case mr: TermRef => ref(mr) case _ => EmptyTree } } val getterPrefix = if ((meth is Synthetic) && meth.name == nme.apply) nme.CONSTRUCTOR else meth.name def getterName = getterPrefix.defaultGetterName(n) if (!meth.hasDefaultParams) EmptyTree else if (receiver.isEmpty) { def findGetter(cx: Context): Tree = { if (cx eq NoContext) EmptyTree else if (cx.scope != cx.outer.scope && cx.denotNamed(meth.name).hasAltWith(_.symbol == meth)) { val denot = cx.denotNamed(getterName) assert(denot.exists, s"non-existent getter denotation ($denot) for getter($getterName)") ref(TermRef(cx.owner.thisType, getterName, denot)) } else findGetter(cx.outer) } findGetter(ctx) } else { def selectGetter(qual: Tree): Tree = { val getterDenot = qual.tpe.member(getterName) if (getterDenot.exists) qual.select(TermRef(qual.tpe, getterName, getterDenot)) else EmptyTree } if (!meth.isClassConstructor) selectGetter(receiver) else { // default getters for class constructors are found in the companion object val cls = meth.owner val companion = cls.companionModule receiver.tpe.baseTypeRef(cls) match { case tp: TypeRef if companion.isTerm => selectGetter(ref(TermRef(tp.prefix, companion.asTerm))) case _ => EmptyTree } } } } /** Match re-ordered arguments against formal parameters * @param n The position of the first parameter in formals in `methType`. */ def matchArgs(args: List[Arg], formals: List[Type], n: Int): Unit = { if (success) formals match { case formal :: formals1 => def addTyped(arg: Arg, formal: Type) = addArg(typedArg(arg, formal), formal) def missingArg(n: Int): Unit = { val pname = methodType.paramNames(n) fail( if (pname contains '$') s"not enough arguments for $methString" else s"missing argument for parameter $pname of $methString") } def tryDefault(n: Int, args1: List[Arg]): Unit = { liftFun() val getter = findDefaultGetter(n + numArgs(normalizedFun)) if (getter.isEmpty) missingArg(n) else { addTyped(treeToArg(spliceMeth(getter withPos appPos, normalizedFun)), formal) matchArgs(args1, formals1, n + 1) } } if (formal.isRepeatedParam) args match { case arg :: Nil if isVarArg(arg) => addTyped(arg, formal) case _ => val elemFormal = formal.widenExpr.argTypesLo.head val origConstraint = ctx.typerState.constraint var typedArgs = args.map(typedArg(_, elemFormal)) val harmonizedArgs = harmonizeArgs(typedArgs) if (harmonizedArgs ne typedArgs) { ctx.typerState.constraint = origConstraint typedArgs = harmonizedArgs } typedArgs.foreach(addArg(_, elemFormal)) makeVarArg(args.length, elemFormal) } else args match { case EmptyTree :: args1 => tryDefault(n, args1) case arg :: args1 => addTyped(arg, formal) matchArgs(args1, formals1, n + 1) case nil => tryDefault(n, args) } case nil => args match { case arg :: args1 => fail(s"too many arguments for $methString", arg) case nil => } } } } /** Subclass of Application for the cases where we are interested only * in a "can/cannot apply" answer, without needing to construct trees or * issue error messages. */ abstract class TestApplication[Arg](methRef: TermRef, funType: Type, args: List[Arg], resultType: Type)(implicit ctx: Context) extends Application[Arg](methRef, funType, args, resultType) { type TypedArg = Arg type Result = Unit /** The type of the given argument */ protected def argType(arg: Arg, formal: Type): Type def typedArg(arg: Arg, formal: Type): Arg = arg def addArg(arg: TypedArg, formal: Type) = ok = ok & isCompatible(argType(arg, formal), formal) def makeVarArg(n: Int, elemFormal: Type) = {} def fail(msg: => String, arg: Arg) = ok = false def fail(msg: => String) = ok = false def appPos = NoPosition lazy val normalizedFun = ref(methRef) init() } /** Subclass of Application for applicability tests with type arguments and value * argument trees. */ class ApplicableToTrees(methRef: TermRef, targs: List[Type], args: List[Tree], resultType: Type)(implicit ctx: Context) extends TestApplication(methRef, methRef.widen.appliedTo(targs), args, resultType) { def argType(arg: Tree, formal: Type): Type = normalize(arg.tpe, formal) def treeToArg(arg: Tree): Tree = arg def isVarArg(arg: Tree): Boolean = tpd.isWildcardStarArg(arg) def harmonizeArgs(args: List[Tree]) = harmonize(args) } /** Subclass of Application for applicability tests with type arguments and value * argument trees. */ class ApplicableToTreesDirectly(methRef: TermRef, targs: List[Type], args: List[Tree], resultType: Type)(implicit ctx: Context) extends ApplicableToTrees(methRef, targs, args, resultType)(ctx) { override def addArg(arg: TypedArg, formal: Type) = ok = ok & (argType(arg, formal) <:< formal) } /** Subclass of Application for applicability tests with value argument types. */ class ApplicableToTypes(methRef: TermRef, args: List[Type], resultType: Type)(implicit ctx: Context) extends TestApplication(methRef, methRef, args, resultType) { def argType(arg: Type, formal: Type): Type = arg def treeToArg(arg: Tree): Type = arg.tpe def isVarArg(arg: Type): Boolean = arg.isRepeatedParam def harmonizeArgs(args: List[Type]) = harmonizeTypes(args) } /** Subclass of Application for type checking an Apply node, where * types of arguments are either known or unknown. */ abstract class TypedApply[T >: Untyped]( app: untpd.Apply, fun: Tree, methRef: TermRef, args: List[Trees.Tree[T]], resultType: Type)(implicit ctx: Context) extends Application(methRef, fun.tpe, args, resultType) { type TypedArg = Tree def isVarArg(arg: Trees.Tree[T]): Boolean = untpd.isWildcardStarArg(arg) private var typedArgBuf = new mutable.ListBuffer[Tree] private var liftedDefs: mutable.ListBuffer[Tree] = null private var myNormalizedFun: Tree = fun init() def addArg(arg: Tree, formal: Type): Unit = typedArgBuf += adaptInterpolated(arg, formal.widenExpr, EmptyTree) def makeVarArg(n: Int, elemFormal: Type): Unit = { val args = typedArgBuf.takeRight(n).toList typedArgBuf.trimEnd(n) val seqLit = if (methodType.isJava) JavaSeqLiteral(args) else SeqLiteral(args) typedArgBuf += seqToRepeated(seqLit) } def harmonizeArgs(args: List[TypedArg]) = harmonize(args) override def appPos = app.pos def fail(msg: => String, arg: Trees.Tree[T]) = { ctx.error(msg, arg.pos) ok = false } def fail(msg: => String) = { ctx.error(msg, app.pos) ok = false } def normalizedFun = myNormalizedFun override def liftFun(): Unit = if (liftedDefs == null) { liftedDefs = new mutable.ListBuffer[Tree] myNormalizedFun = liftApp(liftedDefs, myNormalizedFun) } /** The index of the first difference between lists of trees `xs` and `ys`, * where `EmptyTree`s in the second list are skipped. * -1 if there are no differences. */ private def firstDiff[T <: Trees.Tree[_]](xs: List[T], ys: List[T], n: Int = 0): Int = xs match { case x :: xs1 => ys match { case EmptyTree :: ys1 => firstDiff(xs1, ys1, n) case y :: ys1 => if (x ne y) n else firstDiff(xs1, ys1, n + 1) case nil => n } case nil => ys match { case EmptyTree :: ys1 => firstDiff(xs, ys1, n) case y :: ys1 => n case nil => -1 } } private def sameSeq[T <: Trees.Tree[_]](xs: List[T], ys: List[T]): Boolean = firstDiff(xs, ys) < 0 val result = { var typedArgs = typedArgBuf.toList def app0 = cpy.Apply(app)(normalizedFun, typedArgs) // needs to be a `def` because typedArgs can change later val app1 = if (!success) app0.withType(ErrorType) else { if (!sameSeq(args, orderedArgs)) { // need to lift arguments to maintain evaluation order in the // presence of argument reorderings. liftFun() val eqSuffixLength = firstDiff(app.args.reverse, orderedArgs.reverse) val (liftable, rest) = typedArgs splitAt (typedArgs.length - eqSuffixLength) typedArgs = liftArgs(liftedDefs, methType, liftable) ++ rest } if (sameSeq(typedArgs, args)) // trick to cut down on tree copying typedArgs = args.asInstanceOf[List[Tree]] assignType(app0, normalizedFun, typedArgs) } wrapDefs(liftedDefs, app1) } } /** Subclass of Application for type checking an Apply node with untyped arguments. */ class ApplyToUntyped(app: untpd.Apply, fun: Tree, methRef: TermRef, proto: FunProto, resultType: Type)(implicit ctx: Context) extends TypedApply(app, fun, methRef, proto.args, resultType) { def typedArg(arg: untpd.Tree, formal: Type): TypedArg = proto.typedArg(arg, formal.widenExpr) def treeToArg(arg: Tree): untpd.Tree = untpd.TypedSplice(arg) } /** Subclass of Application for type checking an Apply node with typed arguments. */ class ApplyToTyped(app: untpd.Apply, fun: Tree, methRef: TermRef, args: List[Tree], resultType: Type)(implicit ctx: Context) extends TypedApply[Type](app, fun, methRef, args, resultType) { // Dotty deviation: Dotc infers Untyped for the supercall. This seems to be according to the rules // (of both Scala and Dotty). Untyped is legal, and a subtype of Typed, whereas TypeApply // is invariant in the type parameter, so the minimal type should be inferred. But then typedArg does // not match the abstract method in Application and an abstract class error results. def typedArg(arg: tpd.Tree, formal: Type): TypedArg = arg def treeToArg(arg: Tree): Tree = arg } def typedApply(tree: untpd.Apply, pt: Type)(implicit ctx: Context): Tree = { def realApply(implicit ctx: Context): Tree = track("realApply") { def argCtx(implicit ctx: Context) = if (untpd.isSelfConstrCall(tree)) ctx.thisCallArgContext else ctx var proto = new FunProto(tree.args, IgnoredProto(pt), this)(argCtx) val fun1 = typedExpr(tree.fun, proto) // Warning: The following line is dirty and fragile. We record that auto-tupling was demanded as // a side effect in adapt. If it was, we assume the tupled proto-type in the rest of the application. // This crucially relies on he fact that `proto` is used only in a single call of `adapt`, // otherwise we would get possible cross-talk between different `adapt` calls using the same // prototype. A cleaner alternative would be to return a modified prototype from `adapt` together with // a modified tree but this would be more convoluted and less efficient. if (proto.isTupled) proto = proto.tupled methPart(fun1).tpe match { case funRef: TermRef => tryEither { implicit ctx => val app = if (proto.argsAreTyped) new ApplyToTyped(tree, fun1, funRef, proto.typedArgs, pt) else new ApplyToUntyped(tree, fun1, funRef, proto, pt)(argCtx) val result = app.result convertNewArray(ConstFold(result)) } { (failedVal, failedState) => val fun2 = tryInsertImplicitOnQualifier(fun1, proto) if (fun1 eq fun2) { failedState.commit() failedVal } else typedApply( cpy.Apply(tree)(untpd.TypedSplice(fun2), proto.typedArgs map untpd.TypedSplice), pt) } case _ => fun1.tpe match { case ErrorType => tree.withType(ErrorType) case tp => handleUnexpectedFunType(tree, fun1) } } } /** Convert expression like * * e += (args) * * where the lifted-for-assignment version of e is { val xs = es; e' } to * * { val xs = es; e' = e' + args } */ def typedOpAssign: Tree = track("typedOpAssign") { val Apply(Select(lhs, name), rhss) = tree val lhs1 = typedExpr(lhs) val liftedDefs = new mutable.ListBuffer[Tree] val lhs2 = untpd.TypedSplice(liftAssigned(liftedDefs, lhs1)) val assign = untpd.Assign(lhs2, untpd.Apply(untpd.Select(lhs2, name.init), rhss)) wrapDefs(liftedDefs, typed(assign)) } if (untpd.isOpAssign(tree)) tryEither { implicit ctx => realApply } { (failedVal, failedState) => tryEither { implicit ctx => typedOpAssign } { (_, _) => failedState.commit() failedVal } } else realApply } /** Overridden in ReTyper to handle primitive operations that can be generated after erasure */ protected def handleUnexpectedFunType(tree: untpd.Apply, fun: Tree)(implicit ctx: Context): Tree = throw new Error(s"unexpected type.\n fun = $fun,\n methPart(fun) = ${methPart(fun)},\n methPart(fun).tpe = ${methPart(fun).tpe},\n tpe = ${fun.tpe}") def typedTypeApply(tree: untpd.TypeApply, pt: Type)(implicit ctx: Context): Tree = track("typedTypeApply") { var typedArgs = tree.args mapconserve (typedType(_)) val typedFn = typedExpr(tree.fun, PolyProto(typedArgs.tpes, pt)) typedFn.tpe.widen match { case pt: PolyType => if (typedArgs.length <= pt.paramBounds.length) typedArgs = typedArgs.zipWithConserve(pt.paramBounds)(adaptTypeArg) checkBounds(typedArgs, pt) case _ => } assignType(cpy.TypeApply(tree)(typedFn, typedArgs), typedFn, typedArgs) } def adaptTypeArg(tree: tpd.Tree, bound: Type)(implicit ctx: Context): tpd.Tree = tree.withType(tree.tpe.EtaExpandIfHK(bound)) /** Rewrite `new Array[T](....)` trees to calls of newXYZArray methods. */ def convertNewArray(tree: tpd.Tree)(implicit ctx: Context): tpd.Tree = tree match { case Apply(TypeApply(tycon, targ :: Nil), args) if tycon.symbol == defn.ArrayConstructor => fullyDefinedType(tree.tpe, "array", tree.pos) tpd.cpy.Apply(tree)(newArray(targ, tree.pos), args) case _ => tree } def typedUnApply(tree: untpd.Apply, selType: Type)(implicit ctx: Context): Tree = track("typedUnApply") { val Apply(qual, args) = tree def notAnExtractor(tree: Tree) = errorTree(tree, s"${qual.show} cannot be used as an extractor in a pattern because it lacks an unapply or unapplySeq method") /** If this is a term ref tree, try to typecheck with its type name. * If this refers to a type alias, follow the alias, and if * one finds a class, reference the class companion module. */ def followTypeAlias(tree: untpd.Tree): untpd.Tree = { tree match { case tree: untpd.RefTree => val ttree = typedType(untpd.rename(tree, tree.name.toTypeName)) ttree.tpe match { case alias: TypeRef if alias.info.isAlias => companionRef(alias) match { case companion: TermRef => return untpd.ref(companion) withPos tree.pos case _ => } case _ => } case _ => } untpd.EmptyTree } /** A typed qual.unapply or qual.unapplySeq tree, if this typechecks. * Otherwise fallBack with (maltyped) qual.unapply as argument * Note: requires special handling for overloaded occurrences of * unapply or unapplySeq. We first try to find a non-overloaded * method which matches any type. If that fails, we try to find an * overloaded variant which matches one of the argument types. * In fact, overloaded unapply's are problematic because a non- * overloaded unapply does *not* need to be applicable to its argument * whereas overloaded variants need to have a conforming variant. */ def trySelectUnapply(qual: untpd.Tree)(fallBack: Tree => Tree): Tree = { val genericProto = new UnapplyFunProto(WildcardType, this) def specificProto = new UnapplyFunProto(selType, this) // try first for non-overloaded, then for overloaded ocurrences def tryWithName(name: TermName)(fallBack: Tree => Tree)(implicit ctx: Context): Tree = tryEither { implicit ctx => typedExpr(untpd.Select(qual, name), genericProto) } { (sel, _) => tryEither { implicit ctx => typedExpr(untpd.Select(qual, name), specificProto) } { (_, _) => fallBack(sel) } } // try first for unapply, then for unapplySeq tryWithName(nme.unapply) { sel => tryWithName(nme.unapplySeq)(_ => fallBack(sel)) // for backwards compatibility; will be dropped } } /** Produce a typed qual.unapply or qual.unapplySeq tree, or * else if this fails follow a type alias and try again. */ val unapplyFn = trySelectUnapply(qual) { sel => val qual1 = followTypeAlias(qual) if (qual1.isEmpty) notAnExtractor(sel) else trySelectUnapply(qual1)(_ => notAnExtractor(sel)) } def fromScala2x = unapplyFn.symbol.exists && (unapplyFn.symbol.owner is Scala2x) /** Can `subtp` be made to be a subtype of `tp`, possibly by dropping some * refinements in `tp`? */ def isSubTypeOfParent(subtp: Type, tp: Type)(implicit ctx: Context): Boolean = if (subtp <:< tp) true else tp match { case RefinedType(parent, _) => isSubTypeOfParent(subtp, parent) case _ => false } unapplyFn.tpe.widen match { case mt: MethodType if mt.paramTypes.length == 1 && !mt.isDependent => val m = mt val unapplyArgType = mt.paramTypes.head unapp.println(i"unapp arg tpe = $unapplyArgType, pt = $selType") def wpt = widenForMatchSelector(selType) // needed? val ownType = if (selType <:< unapplyArgType) { //fullyDefinedType(unapplyArgType, "extractor argument", tree.pos) unapp.println(i"case 1 $unapplyArgType ${ctx.typerState.constraint}") selType } else if (isSubTypeOfParent(unapplyArgType, wpt)(ctx.addMode(Mode.GADTflexible))) { maximizeType(unapplyArgType) match { case Some(tvar) => def msg = d"""There is no best instantiation of pattern type $unapplyArgType |that makes it a subtype of selector type $selType. |Non-variant type variable ${tvar.origin} cannot be uniquely instantiated.""".stripMargin if (fromScala2x) { // We can't issue an error here, because in Scala 2, ::[B] is invariant // whereas List[+T] is covariant. According to the strict rule, a pattern // match of a List[C] against a case x :: xs is illegal, because // B cannot be uniquely instantiated. Of course :: should have been // covariant in the first place, but in the Scala libraries it isn't. // So for now we allow these kinds of patterns, even though they // can open unsoundness holes. See SI-7952 for an example of the hole this opens. if (ctx.settings.verbose.value) ctx.warning(msg, tree.pos) } else { unapp.println(s" ${unapplyFn.symbol.owner} ${unapplyFn.symbol.owner is Scala2x}") ctx.strictWarning(msg, tree.pos) } case _ => } unapp.println(i"case 2 $unapplyArgType ${ctx.typerState.constraint}") unapplyArgType } else { unapp.println("Neither sub nor super") unapp.println(TypeComparer.explained(implicit ctx => unapplyArgType <:< wpt)) errorType( d"Pattern type $unapplyArgType is neither a subtype nor a supertype of selector type $wpt", tree.pos) } val dummyArg = dummyTreeOfType(unapplyArgType) val unapplyApp = typedExpr(untpd.TypedSplice(Apply(unapplyFn, dummyArg :: Nil))) val unapplyImplicits = unapplyApp match { case Apply(Apply(unapply, `dummyArg` :: Nil), args2) => assert(args2.nonEmpty); args2 case Apply(unapply, `dummyArg` :: Nil) => Nil } var argTypes = unapplyArgs(unapplyApp.tpe, unapplyFn, args, tree.pos) for (argType <- argTypes) assert(!argType.isInstanceOf[TypeBounds], unapplyApp.tpe.show) val bunchedArgs = argTypes match { case argType :: Nil => if (argType.isRepeatedParam) untpd.SeqLiteral(args) :: Nil else if (args.lengthCompare(1) > 0 && ctx.canAutoTuple) untpd.Tuple(args) :: Nil else args case _ => args } if (argTypes.length != bunchedArgs.length) { ctx.error(d"wrong number of argument patterns for $qual; expected: ($argTypes%, %)", tree.pos) argTypes = argTypes.take(args.length) ++ List.fill(argTypes.length - args.length)(WildcardType) } val unapplyPatterns = (bunchedArgs, argTypes).zipped map (typed(_, _)) val result = assignType(cpy.UnApply(tree)(unapplyFn, unapplyImplicits, unapplyPatterns), ownType) unapp.println(s"unapply patterns = $unapplyPatterns") if ((ownType eq selType) || ownType.isError) result else Typed(result, TypeTree(ownType)) case tp => val unapplyErr = if (tp.isError) unapplyFn else notAnExtractor(unapplyFn) val typedArgsErr = args mapconserve (typed(_, defn.AnyType)) cpy.UnApply(tree)(unapplyErr, Nil, typedArgsErr) withType ErrorType } } /** A typed unapply hook, can be overridden by re any-typers between frontend * and pattern matcher. */ def typedUnApply(tree: untpd.UnApply, selType: Type)(implicit ctx: Context) = throw new UnsupportedOperationException("cannot type check an UnApply node") /** Is given method reference applicable to type arguments `targs` and argument trees `args`? * @param resultType The expected result type of the application */ def isApplicable(methRef: TermRef, targs: List[Type], args: List[Tree], resultType: Type)(implicit ctx: Context): Boolean = { val nestedContext = ctx.fresh.setExploreTyperState new ApplicableToTrees(methRef, targs, args, resultType)(nestedContext).success } /** Is given method reference applicable to type arguments `targs` and argument trees `args` without inferring views? * @param resultType The expected result type of the application */ def isDirectlyApplicable(methRef: TermRef, targs: List[Type], args: List[Tree], resultType: Type)(implicit ctx: Context): Boolean = { val nestedContext = ctx.fresh.setExploreTyperState new ApplicableToTreesDirectly(methRef, targs, args, resultType)(nestedContext).success } /** Is given method reference applicable to argument types `args`? * @param resultType The expected result type of the application */ def isApplicable(methRef: TermRef, args: List[Type], resultType: Type)(implicit ctx: Context): Boolean = { val nestedContext = ctx.fresh.setExploreTyperState new ApplicableToTypes(methRef, args, resultType)(nestedContext).success } /** Is given type applicable to type arguments `targs` and argument trees `args`, * possibly after inserting an `apply`? * @param resultType The expected result type of the application */ def isApplicable(tp: Type, targs: List[Type], args: List[Tree], resultType: Type)(implicit ctx: Context): Boolean = onMethod(tp, isApplicable(_, targs, args, resultType)) /** Is given type applicable to argument types `args`, possibly after inserting an `apply`? * @param resultType The expected result type of the application */ def isApplicable(tp: Type, args: List[Type], resultType: Type)(implicit ctx: Context): Boolean = onMethod(tp, isApplicable(_, args, resultType)) private def onMethod(tp: Type, p: TermRef => Boolean)(implicit ctx: Context): Boolean = tp match { case methRef: TermRef if methRef.widenSingleton.isInstanceOf[MethodicType] => p(methRef) case mt: MethodicType => p(mt.narrow) case _ => tp.member(nme.apply).hasAltWith(d => p(TermRef(tp, nme.apply, d))) } /** In a set of overloaded applicable alternatives, is `alt1` at least as good as * `alt2`? `alt1` and `alt2` are non-overloaded references. */ def isAsGood(alt1: TermRef, alt2: TermRef)(implicit ctx: Context): Boolean = track("isAsGood") { ctx.traceIndented(i"isAsGood($alt1, $alt2)", overload) { assert(alt1 ne alt2) /** Is class or module class `sym1` derived from class or module class `sym2`? * Module classes also inherit the relationship from their companions. */ def isDerived(sym1: Symbol, sym2: Symbol): Boolean = if (sym1 isSubClass sym2) true else if (sym2 is Module) isDerived(sym1, sym2.companionClass) else (sym1 is Module) && isDerived(sym1.companionClass, sym2) /** Is alternative `alt1` with type `tp1` as specific as alternative * `alt2` with type `tp2` ? This is the case if * * 1. `tp2` is a method or poly type but `tp1` isn't, or `tp1` is nullary. * 2. `tp2` and `tp1` are method or poly types and `tp2` can be applied to the parameters of `tp1`. * 3. Neither `tp1` nor `tp2` are method or poly types and `tp1` is compatible with `tp2`. */ def isAsSpecific(alt1: TermRef, tp1: Type, alt2: TermRef, tp2: Type): Boolean = ctx.traceIndented(i"isAsSpecific $tp1 $tp2", overload) { tp1 match { case tp1: PolyType => val tparams = ctx.newTypeParams(alt1.symbol, tp1.paramNames, EmptyFlags, tp1.instantiateBounds) isAsSpecific(alt1, tp1.instantiate(tparams map (_.typeRef)), alt2, tp2) case tp1: MethodType => def repeatedToSingle(tp: Type): Type = tp match { case tp @ ExprType(tp1) => tp.derivedExprType(repeatedToSingle(tp1)) case _ => if (tp.isRepeatedParam) tp.argTypesHi.head else tp } val formals1 = if (tp1.isVarArgsMethod && tp2.isVarArgsMethod) tp1.paramTypes map repeatedToSingle else tp1.paramTypes isApplicable(alt2, formals1, WildcardType) || tp1.paramTypes.isEmpty && tp2.isInstanceOf[MethodOrPoly] case _ => tp2 match { case tp2: MethodOrPoly => true case _ => isCompatible(tp1, tp2) } }} /** Drop any implicit parameter section */ def stripImplicit(tp: Type): Type = tp match { case mt: ImplicitMethodType if !mt.isDependent => mt.resultType // todo: make sure implicit method types are not dependent case pt: PolyType => pt.derivedPolyType(pt.paramNames, pt.paramBounds, stripImplicit(pt.resultType)) case _ => tp } val owner1 = if (alt1.symbol.exists) alt1.symbol.owner else NoSymbol val owner2 = if (alt2.symbol.exists) alt2.symbol.owner else NoSymbol val tp1 = stripImplicit(alt1.widen) val tp2 = stripImplicit(alt2.widen) def winsOwner1 = isDerived(owner1, owner2) def winsType1 = isAsSpecific(alt1, tp1, alt2, tp2) def winsOwner2 = isDerived(owner2, owner1) def winsType2 = isAsSpecific(alt2, tp2, alt1, tp1) overload.println(i"isAsGood($alt1, $alt2)? $tp1 $tp2 $winsOwner1 $winsType1 $winsOwner2 $winsType2") // Assume the following probabilities: // // P(winsOwnerX) = 2/3 // P(winsTypeX) = 1/3 // // Then the call probabilities of the 4 basic operations are as follows: // // winsOwner1: 1/1 // winsOwner2: 1/1 // winsType1 : 7/9 // winsType2 : 4/9 if (winsOwner1) /* 6/9 */ !winsOwner2 || /* 4/9 */ winsType1 || /* 8/27 */ !winsType2 else if (winsOwner2) /* 2/9 */ winsType1 && /* 2/27 */ !winsType2 else /* 1/9 */ winsType1 || /* 2/27 */ !winsType2 }} def narrowMostSpecific(alts: List[TermRef])(implicit ctx: Context): List[TermRef] = track("narrowMostSpecific") { alts match { case Nil => alts case _ :: Nil => alts case alt :: alts1 => def winner(bestSoFar: TermRef, alts: List[TermRef]): TermRef = alts match { case alt :: alts1 => winner(if (isAsGood(alt, bestSoFar)) alt else bestSoFar, alts1) case nil => bestSoFar } val best = winner(alt, alts1) def asGood(alts: List[TermRef]): List[TermRef] = alts match { case alt :: alts1 => if ((alt eq best) || !isAsGood(alt, best)) asGood(alts1) else alt :: asGood(alts1) case nil => Nil } best :: asGood(alts) } } /** Resolve overloaded alternative `alts`, given expected type `pt` and * possibly also type argument `targs` that need to be applied to each alternative * to form the method type. * todo: use techniques like for implicits to pick candidates quickly? */ def resolveOverloaded(alts: List[TermRef], pt: Type, targs: List[Type] = Nil)(implicit ctx: Context): List[TermRef] = track("resolveOverloaded") { def isDetermined(alts: List[TermRef]) = alts.isEmpty || alts.tail.isEmpty /** The shape of given tree as a type; cannot handle named arguments. */ def typeShape(tree: untpd.Tree): Type = tree match { case untpd.Function(args, body) => defn.FunctionType(args map Function.const(defn.AnyType), typeShape(body)) case _ => defn.NothingType } /** The shape of given tree as a type; is more expensive than * typeShape but can can handle named arguments. */ def treeShape(tree: untpd.Tree): Tree = tree match { case NamedArg(name, arg) => val argShape = treeShape(arg) cpy.NamedArg(tree)(name, argShape).withType(argShape.tpe) case _ => dummyTreeOfType(typeShape(tree)) } def narrowByTypes(alts: List[TermRef], argTypes: List[Type], resultType: Type): List[TermRef] = alts filter (isApplicable(_, argTypes, resultType)) /** Is `alt` a method or polytype whose result type after the first value parameter * section conforms to the expected type `resultType`? If `resultType` * is a `IgnoredProto`, pick the underlying type instead. */ def resultConforms(alt: Type, resultType: Type)(implicit ctx: Context): Boolean = resultType match { case IgnoredProto(ignored) => resultConforms(alt, ignored) case _: ValueType => alt.widen match { case tp: PolyType => resultConforms(constrained(tp).resultType, resultType) case tp: MethodType => constrainResult(tp.resultType, resultType) case _ => true } case _ => true } /** If the `chosen` alternative has a result type incompatible with the expected result * type `pt`, run overloading resolution again on all alternatives that do match `pt`. * If the latter succeeds with a single alternative, return it, otherwise * fallback to `chosen`. * * Note this order of events is done for speed. One might be tempted to * preselect alternatives by result type. But is slower, because it discriminates * less. The idea is when searching for a best solution, as is the case in overloading * resolution, we should first try criteria which are cheap and which have a high * probability of pruning the search. result type comparisons are neither cheap nor * do they prune much, on average. */ def adaptByResult(alts: List[TermRef], chosen: TermRef) = { def nestedCtx = ctx.fresh.setExploreTyperState pt match { case pt: FunProto if !resultConforms(chosen, pt.resultType)(nestedCtx) => alts.filter(alt => (alt ne chosen) && resultConforms(alt, pt.resultType)(nestedCtx)) match { case Nil => chosen case alt2 :: Nil => alt2 case alts2 => resolveOverloaded(alts2, pt) match { case alt2 :: Nil => alt2 case _ => chosen } } case _ => chosen } } val candidates = pt match { case pt @ FunProto(args, resultType, _) => val numArgs = args.length val normArgs = args.mapConserve { case Block(Nil, expr) => expr case x => x } def sizeFits(alt: TermRef, tp: Type): Boolean = tp match { case tp: PolyType => sizeFits(alt, tp.resultType) case MethodType(_, ptypes) => val numParams = ptypes.length def isVarArgs = ptypes.nonEmpty && ptypes.last.isRepeatedParam def hasDefault = alt.symbol.hasDefaultParams if (numParams == numArgs) true else if (numParams < numArgs) isVarArgs else if (numParams > numArgs + 1) hasDefault else isVarArgs || hasDefault case _ => numArgs == 0 } def narrowBySize(alts: List[TermRef]): List[TermRef] = alts filter (alt => sizeFits(alt, alt.widen)) def narrowByShapes(alts: List[TermRef]): List[TermRef] = { if (normArgs exists (_.isInstanceOf[untpd.Function])) if (args exists (_.isInstanceOf[Trees.NamedArg[_]])) narrowByTrees(alts, args map treeShape, resultType) else narrowByTypes(alts, normArgs map typeShape, resultType) else alts } def narrowByTrees(alts: List[TermRef], args: List[Tree], resultType: Type): List[TermRef] = alts filter ( alt => if (!ctx.isAfterTyper) isApplicable(alt, targs, args, resultType) else isDirectlyApplicable(alt, targs, args, resultType) ) val alts1 = narrowBySize(alts) //ctx.log(i"narrowed by size: ${alts1.map(_.symbol.showDcl)}%, %") if (isDetermined(alts1)) alts1 else { val alts2 = narrowByShapes(alts1) //ctx.log(i"narrowed by shape: ${alts1.map(_.symbol.showDcl)}%, %") if (isDetermined(alts2)) alts2 else narrowByTrees(alts2, pt.typedArgs, resultType) } case pt @ PolyProto(targs, pt1) => val alts1 = alts filter pt.isMatchedBy resolveOverloaded(alts1, pt1, targs) case defn.FunctionType(args, resultType) => narrowByTypes(alts, args, resultType) case pt => alts filter (normalizedCompatible(_, pt)) } narrowMostSpecific(candidates) match { case Nil => Nil case alt :: Nil => adaptByResult(alts, alt) :: Nil // why `alts` and not `candidates`? pos/array-overload.scala gives a test case. // Here, only the Int-apply is a candidate, but it is not compatible with the result // type. Picking the Byte-apply as the only result-compatible solution then forces // the arguments (which are constants) to be adapted to Byte. If we had picked // `candidates` instead, no solution would have been found. case alts => // overload.println(i"ambiguous $alts%, %") val deepPt = pt.deepenProto if (deepPt ne pt) resolveOverloaded(alts, deepPt, targs) else alts } } private def harmonizeWith[T <: AnyRef](ts: List[T])(tpe: T => Type, adapt: (T, Type) => T)(implicit ctx: Context): List[T] = { def numericClasses(ts: List[T], acc: Set[Symbol]): Set[Symbol] = ts match { case t :: ts1 => val sym = tpe(t).widen.classSymbol if (sym.isNumericValueClass) numericClasses(ts1, acc + sym) else Set() case Nil => acc } val clss = numericClasses(ts, Set()) if (clss.size > 1) { val lub = defn.ScalaNumericValueClassList.find(lubCls => clss.forall(defn.isValueSubClass(_, lubCls))).get.typeRef ts.mapConserve(adapt(_, lub)) } else ts } /** If `trees` all have numeric value types, and they do not have all the same type, * pick a common numeric supertype and convert all trees to this type. */ def harmonize(trees: List[Tree])(implicit ctx: Context): List[Tree] = { def adapt(tree: Tree, pt: Type): Tree = tree match { case cdef: CaseDef => tpd.cpy.CaseDef(cdef)(body = adapt(cdef.body, pt)) case _ => adaptInterpolated(tree, pt, tree) } if (ctx.isAfterTyper) trees else harmonizeWith(trees)(_.tpe, adapt) } /** If all `types` are numeric value types, and they are not all the same type, * pick a common numeric supertype and return it instead of every original type. */ def harmonizeTypes(tpes: List[Type])(implicit ctx: Context): List[Type] = harmonizeWith(tpes)(identity, (tp, pt) => pt) } /* def typedApply(app: untpd.Apply, fun: Tree, methRef: TermRef, args: List[Tree], resultType: Type)(implicit ctx: Context): Tree = track("typedApply") { new ApplyToTyped(app, fun, methRef, args, resultType).result } def typedApply(fun: Tree, methRef: TermRef, args: List[Tree], resultType: Type)(implicit ctx: Context): Tree = typedApply(untpd.Apply(untpd.TypedSplice(fun), args), fun, methRef, args, resultType) */
VladimirNik/dotty
src/dotty/tools/dotc/typer/Applications.scala
Scala
bsd-3-clause
48,811
import org.scalatest.{Matchers, FunSuite} class RobotTest extends FunSuite with Matchers { test("create") { val robot = Robot(Bearing.North, (0, 0)) robot.bearing should equal(Bearing.North) robot.coordinates should equal((0, 0)) } test("advance - positive") { Robot(Bearing.North, (0, 0)).advance should equal(Robot(Bearing.North, (0, 1))) Robot(Bearing.East, (0, 0)).advance should equal(Robot(Bearing.East, (1, 0))) } test("advance - negative") { Robot(Bearing.South, (0, 0)).advance should equal(Robot(Bearing.South, (0, -1))) Robot(Bearing.West, (0, 0)).advance should equal(Robot(Bearing.West, (-1, 0))) } test("turning") { Robot(Bearing.South, (0, 0)).turnRight should equal(Robot(Bearing.West, (0, 0))) Robot(Bearing.West, (0, 0)).turnLeft() should equal(Robot(Bearing.South, (0, 0))) } test("turning - edge cases") { Robot(Bearing.West, (0, 0)).turnRight should equal(Robot(Bearing.North, (0, 0))) Robot(Bearing.North, (0, 0)).turnLeft should equal(Robot(Bearing.West, (0, 0))) } test("simulate Seurat") { val seurat = Robot(Bearing.East, (-2, 1)) val movedSeurat = seurat.simulate("RLAALAL") movedSeurat should equal(Robot(Bearing.West, (0, 2))) } test("simulate Erasmus") { val erasmus = Robot(Bearing.North, (0, 0)) val movedErasmus = erasmus.simulate("LAAARALA") movedErasmus should equal(Robot(Bearing.West, (-4, 1))) } test("simulate Chirox") { val chirox = Robot(Bearing.East, (2, -7)) val movedChirox = chirox.simulate("RRAAAAALA") movedChirox should equal(Robot(Bearing.South, (-3, -8))) } test("simulate Awesomo") { val awesomo = Robot(Bearing.South, (8, 4)) val movedAwesomo = awesomo.simulate("LAAARRRALLLL") movedAwesomo should equal(Robot(Bearing.North, (11, 5))) } }
nlochschmidt/xscala
robot-simulator/src/test/scala/RobotTest.scala
Scala
mit
1,829
package chat.tox.antox.callbacks import android.app.{Notification, PendingIntent} import android.content.{Context, Intent} import android.preference.PreferenceManager import android.support.v4.app.NotificationCompat import android.util.Log import chat.tox.antox.R import chat.tox.antox.activities.MainActivity import chat.tox.antox.data.State import chat.tox.antox.tox.ToxSingleton import chat.tox.antox.wrapper.ToxKey import im.tox.tox4j.core.callbacks.FriendRequestCallback object AntoxOnFriendRequestCallback { private val TAG = "chat.tox.antox.TAG" val FRIEND_KEY = "chat.tox.antox.FRIEND_KEY" val FRIEND_MESSAGE = "chat.tox.antox.FRIEND_MESSAGE" } class AntoxOnFriendRequestCallback(private var ctx: Context) extends FriendRequestCallback[Unit] { override def friendRequest(keyBytes: Array[Byte], timeDelta: Int, message: Array[Byte])(state: Unit): Unit = { val db = State.db val key = new ToxKey(keyBytes) if (!db.isContactBlocked(key)){ db.addFriendRequest(key, new String(message, "UTF-8")) } Log.d("FriendRequestCallback", "") val preferences = PreferenceManager.getDefaultSharedPreferences(this.ctx) if (preferences.getBoolean("notifications_enable_notifications", true) && preferences.getBoolean("notifications_friend_request", true)) { val vibratePattern = Array[Long](0, 500) if (!preferences.getBoolean("notifications_new_message_vibrate", true)) { vibratePattern(1) = 0 } val mBuilder = new NotificationCompat.Builder(this.ctx) .setSmallIcon(R.drawable.ic_actionbar) .setContentTitle(this.ctx.getString(R.string.friend_request)) .setContentText(new String(message, "UTF-8")) .setVibrate(vibratePattern) .setDefaults(Notification.DEFAULT_ALL) .setAutoCancel(true) val targetIntent = new Intent(this.ctx, classOf[MainActivity]) val contentIntent = PendingIntent.getActivity(this.ctx, 0, targetIntent, PendingIntent.FLAG_UPDATE_CURRENT) mBuilder.setContentIntent(contentIntent) ToxSingleton.mNotificationManager.notify(0, mBuilder.build()) } } }
gale320/Antox
app/src/main/scala/chat/tox/antox/callbacks/AntoxOnFriendRequestCallback.scala
Scala
gpl-3.0
2,124
package nz.ubermouse.rsbot.tasks import nz.ubermouse.rsbot.actions.{ActionContainer, Action} import nz.ubermouse.rsbot._ abstract class Task(val priority: Int) { def shouldExecute: Boolean def execute: ActionContainer }
UberMouse/RSArchitectureTest
src/nz/ubermouse/rsbot/tasks/Task.scala
Scala
mit
226
package com.twitter.finagle.mux.util import org.scalacheck.{Arbitrary, Gen} import org.scalatest.FunSuite import org.scalatest.prop.GeneratorDrivenPropertyChecks class TagMapTest extends FunSuite with GeneratorDrivenPropertyChecks { val min = 8 val max = 10000 implicit val genTagSet: Arbitrary[Range] = Arbitrary(for { start <- Gen.choose(0, max - min) end <- Gen.choose(start, max - min) } yield start to end + min) test("map tags to elems") { forAll { range: Range => val ints = TagMap[java.lang.Integer](range, 256) for ((i, j) <- range.zipWithIndex) { assert(ints.map(-i) == Some(i)) assert(ints.size == j + 1) } for (i <- range) assert(ints.unmap(i) == Some(-i)) } } test("Respect the limits of the provided Range") { val range = 0 until 1 // only 0 is available val ints = TagMap[java.lang.Integer](range, 256) assert(ints.map(100) == Some(0)) assert(ints.size == 1) assert(ints.map(101) == None) assert(ints.size == 1) } test("ignore tags outside its range") { forAll { range: Range => val ints = TagMap[java.lang.Integer](range, 256) val right = range.last + 1 assert(ints.unmap(right) == None) assert(ints.size == 0) val left = range.start - 1 assert(ints.unmap(left) == None) assert(ints.size == 0) } } }
mkhq/finagle
finagle-mux/src/test/scala/com/twitter/finagle/mux/util/TagMapTest.scala
Scala
apache-2.0
1,386
package com.wordnik.client.model case class Category ( id: Long, name: String )
jfiala/swagger-spring-demo
user-rest-service-1.0.2/generated-code/scalatra/src/main/scala/com/wordnik/client/model/Category.scala
Scala
apache-2.0
91
/* * Copyright 2022 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package services.onlinetesting.phase2 import services.AuditService import akka.actor.ActorSystem import com.google.inject.name.Named import common.{ FutureEx, Phase2TestConcern } import config._ import connectors.ExchangeObjects._ import connectors.{ AuthProviderClient, OnlineTestEmailClient, OnlineTestsGatewayClient } import factories.{ DateTimeFactory, UUIDFactory } import javax.inject.{ Inject, Singleton } import model.Exceptions._ import model.OnlineTestCommands._ import model.ProgressStatuses._ import model._ import model.command.{ Phase3ProgressResponse, ProgressResponse } import model.exchange.{ Phase2TestGroupWithActiveTest, PsiRealTimeResults, PsiTestResultReady } import model.persisted._ import model.stc.StcEventTypes.StcEventType import model.stc.{ AuditEvent, AuditEvents, DataStoreEvents } import org.joda.time.DateTime import play.api.Logging import play.api.mvc.RequestHeader import repositories.application.GeneralApplicationRepository import repositories.contactdetails.ContactDetailsRepository import repositories.onlinetesting.Phase2TestRepository import services.onlinetesting.Exceptions.{ TestCancellationException, TestRegistrationException } import services.onlinetesting.phase3.Phase3TestService import services.onlinetesting.{ TextSanitizer, OnlineTestService } import services.sift.ApplicationSiftService import services.stc.StcEventService import uk.gov.hmrc.http.HeaderCarrier import scala.concurrent.Future import scala.concurrent.duration._ import scala.language.postfixOps import scala.util.{ Failure, Success, Try } // scalastyle:off number.of.methods @Singleton class Phase2TestService @Inject() (val appRepository: GeneralApplicationRepository, val cdRepository: ContactDetailsRepository, val testRepository: Phase2TestRepository, val onlineTestsGatewayClient: OnlineTestsGatewayClient, val tokenFactory: UUIDFactory, val dateTimeFactory: DateTimeFactory, @Named("Phase2OnlineTestEmailClient") val emailClient: OnlineTestEmailClient, val auditService: AuditService, authProvider: AuthProviderClient, phase3TestService: Phase3TestService, val siftService: ApplicationSiftService, appConfig: MicroserviceAppConfig, val eventService: StcEventService, actor: ActorSystem ) extends OnlineTestService with Phase2TestConcern with ResetPhase2Test with Logging { type TestRepository = Phase2TestRepository val onlineTestsGatewayConfig = appConfig.onlineTestsGatewayConfig def testConfig: Phase2TestsConfig = onlineTestsGatewayConfig.phase2Tests case class Phase2TestInviteData(application: OnlineTestApplication, psiTest: PsiTest) def getTestGroup(applicationId: String): Future[Option[Phase2TestGroupWithActiveTest]] = { for { phase2Opt <- testRepository.getTestGroup(applicationId) } yield phase2Opt.map { phase2 => Phase2TestGroupWithActiveTest( phase2.expirationDate, phase2.activeTests, resetAllowed = true ) } } def getTestGroupByOrderId(orderId: String): Future[Option[Phase2TestGroupWithActiveTest]] = { for { phase2Opt <- testRepository.getTestGroupByOrderId(orderId) } yield phase2Opt.map { phase2 => Phase2TestGroupWithActiveTest( phase2.expirationDate, phase2.activeTests, resetAllowed = true ) } } def verifyAccessCode(email: String, accessCode: String): Future[String] = for { userId <- cdRepository.findUserIdByEmail(email) testGroupOpt <- testRepository.getTestGroupByUserId(userId) testUrl <- Future.fromTry(processInvigilatedEtrayAccessCode(testGroupOpt, accessCode)) } yield testUrl override def nextApplicationsReadyForOnlineTesting(maxBatchSize: Int): Future[List[OnlineTestApplication]] = { testRepository.nextApplicationsReadyForOnlineTesting(maxBatchSize) } override def nextTestGroupWithReportReady: Future[Option[Phase2TestGroupWithAppId]] = { testRepository.nextTestGroupWithReportReady } override def emailCandidateForExpiringTestReminder(expiringTest: NotificationExpiringOnlineTest, emailAddress: String, reminder: ReminderNotice)(implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { emailClient.sendTestExpiringReminder(emailAddress, expiringTest.preferredName, reminder.hoursBeforeReminder, reminder.timeUnit, expiringTest.expiryDate).map { _ => audit(s"ReminderPhase2ExpiringOnlineTestNotificationBefore${reminder.hoursBeforeReminder}HoursEmailed", expiringTest.userId, Some(emailAddress)) } } def resetTest(application: OnlineTestApplication, orderIdToReset: String, actionTriggeredBy: String) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { val (invitationDate, expirationDate) = calcOnlineTestDates(onlineTestsGatewayConfig.phase2Tests.expiryTimeInDays) for { // Fetch existing test group that should exist testGroupOpt <- testRepository.getTestGroup(application.applicationId) testGroup = testGroupOpt .getOrElse(throw CannotFindTestGroupByApplicationIdException(s"appId - ${application.applicationId}")) // Extract test that requires reset testToReset = testGroup.tests.find(_.orderId == orderIdToReset) .getOrElse(throw CannotFindTestByOrderIdException(s"OrderId - $orderIdToReset")) _ = logger.info(s"testToReset -- $testToReset") // Create PsiIds to use for re-invitation psiIds = onlineTestsGatewayConfig.phase2Tests.tests.find { case (_, ids) => ids.inventoryId == testToReset.inventoryId }.getOrElse(throw CannotFindTestByInventoryIdException(s"InventoryId - ${testToReset.inventoryId}"))._2 _ = logger.info(s"psiIds -- $psiIds") // Register applicant testInvite <- registerPsiApplicant(application, psiIds, invitationDate) newPsiTest = testInvite.psiTest _ = logger.info(s"newPsiTest -- $newPsiTest") // Set old test to inactive testsWithInactiveTest = testGroup.tests .map { t => if (t.orderId == orderIdToReset) { t.copy(usedForResults = false) } else t } _ = logger.info(s"testsWithInactiveTest -- $testsWithInactiveTest") // insert new test and maintain test order idxOfResetTest = testGroup.tests.indexWhere(_.orderId == orderIdToReset) updatedTests = insertTest(testsWithInactiveTest, idxOfResetTest, newPsiTest) _ = logger.info(s"updatedTests -- $updatedTests") _ <- insertOrUpdateTestGroup(application)(testGroup.copy(expirationDate = expirationDate, tests = updatedTests)) _ <- emailInviteToApplicant(application)(hc, rh, invitationDate, expirationDate) } yield () } private def insertTest(ls: List[PsiTest], i: Int, value: PsiTest): List[PsiTest] = { val (front, back) = ls.splitAt(i) front ++ List(value) ++ back } private def cancelPsiTest(appId: String, userId: String, orderId: String): Future[AssessmentCancelAcknowledgementResponse] = { val req = CancelCandidateTestRequest(orderId) onlineTestsGatewayClient.psiCancelTest(req).map { response => logger.debug(s"Response from cancellation for orderId=$orderId") if (response.status != AssessmentCancelAcknowledgementResponse.completedStatus) { logger.debug(s"Cancellation failed with errors: ${response.details}") throw TestCancellationException(s"appId=$appId, orderId=$orderId") } else { audit("TestCancelledForCandidate", userId) response } } } private def inPhase3TestsInvited(applicationId: String): Future[Boolean] = { for { progressResponse <- appRepository.findProgress(applicationId) } yield { progressResponse.phase3ProgressResponse match { case response: Phase3ProgressResponse if response.phase3TestsInvited => true case _ => false } } } override def registerAndInviteForTestGroup(application: OnlineTestApplication) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { registerAndInviteForTestGroup(List(application)) } override def processNextExpiredTest(expiryTest: TestExpirationEvent)(implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { testRepository.nextExpiringApplication(expiryTest).flatMap { case Some(expired) => logger.warn(s"Expiring candidates for PHASE2 - expiring candidate ${expired.applicationId}") processExpiredTest(expired, expiryTest) case None => logger.warn(s"Expiring candidates for PHASE2 - none found") Future.successful(()) } } override def registerAndInvite(applications: List[OnlineTestApplication]) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { registerAndInviteForTestGroup(applications) } override def registerAndInviteForTestGroup(applications: List[OnlineTestApplication]) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { val firstApplication = applications.head val applicationsWithTheSameType = applications filter (_.isInvigilatedETray == firstApplication.isInvigilatedETray) val standardTests = onlineTestsGatewayConfig.phase2Tests.standard // use this for the order of tests FutureEx.traverseSerial(applicationsWithTheSameType) { application => registerCandidateForTests(application, standardTests).recover { case e: Exception => logger.error(s"Error occurred registering candidate ${application.applicationId} with phase 2 tests - ${e.getMessage}") } }.map { _ => () } } // Register a single candidate with all the phase 2 tests. private def registerCandidateForTests(application: OnlineTestApplication, testNames: List[String])( implicit hc: HeaderCarrier, request: RequestHeader) = { val tests = onlineTestsGatewayConfig.phase2Tests.tests logger.warn(s"Processing phase2 candidate ${application.applicationId} - inviting to ${tests.size} tests") // Register the 2 tests with a delay between each test val candidateRegistrations = FutureEx.traverseToTry(testNames.zipWithIndex) { case (testName, delayModifier) => val testIds = tests.getOrElse(testName, throw new Exception(s"Unable to find test ids when registering phase 2 candidate for $testName")) val delay = (delayModifier * onlineTestsGatewayConfig.phase2Tests.testRegistrationDelayInSecs).second akka.pattern.after(delay, actor.scheduler) { logger.debug(s"Phase2TestService - about to call registerPsiApplicant for application=$application with testIds=$testIds") registerAndInviteForTestGroup2(application, testIds).map(_ => ()) } } val processFailedRegistrations = candidateRegistrations.flatMap { phase2TestsRegistrations => phase2TestsRegistrations.collect { case Failure(e) => throw e } Future.successful(()) } for { _ <- processFailedRegistrations emailAddress <- candidateEmailAddress(application.userId) (invitationDate, expirationDate) = calculateDates(application) _ <- emailInviteToApplicant(application, emailAddress, invitationDate, expirationDate) } yield audit("Phase2InvitationComplete", application.userId) } //scalastyle:off method.length def inviteP2CandidateToMissingTest(applicationId: String): Future[Unit] = { def allInventoryIds = { val standardTests = onlineTestsGatewayConfig.phase2Tests.standard standardTests.map { testName => onlineTestsGatewayConfig.phase2Tests.tests.getOrElse(testName, throw new Exception(s"Unable to find inventoryId for $testName")) }.map(_.inventoryId).toSet } def getPsiTestsIds(inventoryId: String) = { onlineTestsGatewayConfig.phase2Tests.tests.values.filter( _.inventoryId == inventoryId ).head } def getCurrentlyRegisteredInventoryIds(phase2TestGroupOpt: Option[Phase2TestGroup]) = { phase2TestGroupOpt.map { phase2TestGroup => phase2TestGroup.tests.map( _.inventoryId ) }.getOrElse(Nil).toSet } def identifyInventoryIdsCandidateIsMissing(registeredIds: Set[String], allIds: Set[String]) = allIds.diff(registeredIds) def registerCandidateForMissingTest(applicationId: String, psiTestIds: PsiTestIds) = { logger.warn(s"Candidate $applicationId needs to register for inventoryId:${psiTestIds.inventoryId}") implicit val hc = HeaderCarrier() for { onlineTestApplicationOpt <- testRepository.applicationReadyForOnlineTesting(applicationId) application = onlineTestApplicationOpt.getOrElse(throw new Exception(s"No application found for $applicationId")) invitationDate = dateTimeFactory.nowLocalTimeZone registeredApplicant <- registerPsiApplicant(application, psiTestIds, invitationDate) currentTestGroupOpt <- testRepository.getTestGroup(applicationId) currentTestGroup = currentTestGroupOpt.getOrElse(throw new Exception(s"No existing p2 test group found for $applicationId")) _ <- insertPhase2TestGroups(registeredApplicant)(invitationDate, currentTestGroup.expirationDate, hc) } yield () } logger.warn(s"Attempting to invite candidate $applicationId to missing P2 tests") logger.warn(s"Candidate $applicationId - the full set of inventoryIds=${allInventoryIds.mkString(",")}") for { status <- appRepository.findStatus(applicationId) _ = if (ApplicationStatus.PHASE2_TESTS.toString != status.status) { throw new Exception(s"Candidate $applicationId application status is ${status.status}. Expecting ${ApplicationStatus.PHASE2_TESTS}") } phase2TestGroupOpt <- testRepository.getTestGroup(applicationId) registeredInventoryIds = getCurrentlyRegisteredInventoryIds(phase2TestGroupOpt) _ = logger.warn(s"Candidate $applicationId is currently registered with tests whose inventory ids=${registeredInventoryIds.mkString(",")}") idsToRegisterFor = identifyInventoryIdsCandidateIsMissing(registeredInventoryIds, allInventoryIds) _ = if (idsToRegisterFor.size != 1) { val idsToRegisterForText = if (idsToRegisterFor.isEmpty){ "empty" } else { idsToRegisterFor.mkString(",") } val msg = s"Candidate $applicationId has incorrect number of tests to register for (should be 1). " + s"InventoryIds to register for = $idsToRegisterForText" throw new Exception(msg) } _ <- registerCandidateForMissingTest(applicationId, getPsiTestsIds(idsToRegisterFor.head)) } yield () } //scalastyle:on private def processInvigilatedEtrayAccessCode(phase: Option[Phase2TestGroup], accessCode: String): Try[String] = { phase.fold[Try[String]](Failure(new NotFoundException(Some("No Phase2TestGroup found")))){ phase2TestGroup => { val psiTestOpt = phase2TestGroup.activeTests.find( _.invigilatedAccessCode == Option(accessCode) ) psiTestOpt.map { psiTest => if(phase2TestGroup.expirationDate.isBefore(dateTimeFactory.nowLocalTimeZone)) { Failure(ExpiredTestForTokenException("Phase 2 test expired for invigilated access code")) } else { Success(psiTest.testUrl) } }.getOrElse(Failure(InvalidTokenException("Invigilated access code not found"))) } } } private def calculateDates(application: OnlineTestApplication, expiresDate: Option[DateTime] = None) = { val isInvigilatedETray = application.isInvigilatedETray val expiryTimeInDays = if (isInvigilatedETray) { onlineTestsGatewayConfig.phase2Tests.expiryTimeInDaysForInvigilatedETray } else { onlineTestsGatewayConfig.phase2Tests.expiryTimeInDays } val (invitationDate, expirationDate) = expiresDate match { case Some(expDate) => (dateTimeFactory.nowLocalTimeZone, expDate) case _ => calcOnlineTestDates(expiryTimeInDays) } invitationDate -> expirationDate } private def registerAndInviteForTestGroup2(application: OnlineTestApplication, testIds: PsiTestIds, expiresDate: Option[DateTime] = None) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[OnlineTestApplication] = { //TODO: Do we need to worry about this for PSI? // require(applications.map(_.isInvigilatedETray).distinct.size <= 1, "the batch can have only one type of invigilated e-tray") implicit val (invitationDate, expirationDate) = calculateDates(application, expiresDate) for { registeredApplicant <- registerPsiApplicant(application, testIds, invitationDate) _ <- insertPhase2TestGroups(registeredApplicant)(invitationDate, expirationDate, hc) } yield { logger.warn(s"Phase2 candidate ${application.applicationId} successfully invited to P2 test - inventoryId:${testIds.inventoryId}") application } } def registerPsiApplicants(applications: List[OnlineTestApplication], testIds: PsiTestIds, invitationDate: DateTime) (implicit hc: HeaderCarrier): Future[List[Phase2TestInviteData]] = { Future.sequence( applications.map { application => registerPsiApplicant(application, testIds, invitationDate) }) } private def registerPsiApplicant(application: OnlineTestApplication, testIds: PsiTestIds, invitationDate: DateTime) (implicit hc: HeaderCarrier): Future[Phase2TestInviteData] = { registerApplicant2(application, testIds).map { aoa => if (aoa.status != AssessmentOrderAcknowledgement.acknowledgedStatus) { val msg = s"Received response status of ${aoa.status} when registering candidate " + s"${application.applicationId} to phase2 tests with Ids=$testIds" logger.warn(msg) throw TestRegistrationException(msg) } else { val psiTest = PsiTest( inventoryId = testIds.inventoryId, orderId = aoa.orderId, usedForResults = true, testUrl = aoa.testLaunchUrl, invitationDate = invitationDate, assessmentId = testIds.assessmentId, reportId = testIds.reportId, normId = testIds.normId ) Phase2TestInviteData(application, psiTest) } } } private def registerApplicant2(application: OnlineTestApplication, testIds: PsiTestIds) (implicit hc: HeaderCarrier): Future[AssessmentOrderAcknowledgement] = { val orderId = tokenFactory.generateUUID() val preferredName = TextSanitizer.sanitizeFreeText(application.preferredName) val lastName = TextSanitizer.sanitizeFreeText(application.lastName) val maybePercentage = application.eTrayAdjustments.flatMap(_.percentage) val registerCandidateRequest = RegisterCandidateRequest( inventoryId = testIds.inventoryId, // Read from config to identify the test we are registering for orderId = orderId, // Identifier we generate to uniquely identify the test accountId = application.testAccountId, // Candidate's account across all tests preferredName = preferredName, lastName = lastName, // The url psi will redirect to when the candidate completes the test redirectionUrl = buildRedirectionUrl(orderId, testIds.inventoryId), adjustment = maybePercentage.map(TestAdjustment.apply), assessmentId = testIds.assessmentId, reportId = testIds.reportId, normId = testIds.normId ) onlineTestsGatewayClient.psiRegisterApplicant(registerCandidateRequest).map { response => audit("UserRegisteredForPhase2Test", application.userId) response } } private def buildRedirectionUrl(orderId: String, inventoryId: String) = { val appUrl = onlineTestsGatewayConfig.candidateAppUrl val scheduleCompletionBaseUrl = s"$appUrl/fset-fast-stream/online-tests/psi/phase2" s"$scheduleCompletionBaseUrl/complete/$orderId" } // TODO: cubiks delete /* def buildInviteApplication(application: OnlineTestApplication, token: String, userId: Int, schedule: Phase2Schedule): InviteApplicant = { val scheduleCompletionBaseUrl = s"${onlineTestsGatewayConfig.candidateAppUrl}/fset-fast-stream/online-tests/phase2" InviteApplicant(schedule.scheduleId, userId, s"$scheduleCompletionBaseUrl/complete/$token", resultsURL = None, timeAdjustments = buildTimeAdjustments(schedule.assessmentId, application) ) }*/ private def insertPhase2TestGroups(o: List[Phase2TestInviteData]) (implicit invitationDate: DateTime, expirationDate: DateTime, hc: HeaderCarrier): Future[Unit] = { Future.sequence(o.map { completedInvite => val maybeInvigilatedAccessCodeFut = if (completedInvite.application.isInvigilatedETray) { authProvider.generateAccessCode.map(ac => Some(ac.token)) } else { Future.successful(None) } for { maybeInvigilatedAccessCode <- maybeInvigilatedAccessCodeFut testWithAccessCode = completedInvite.psiTest.copy(invigilatedAccessCode = maybeInvigilatedAccessCode) newTestGroup = Phase2TestGroup(expirationDate = expirationDate, List(testWithAccessCode)) _ <- insertOrUpdateTestGroup(completedInvite.application)(newTestGroup) } yield {} }).map(_ => ()) } private def insertPhase2TestGroups(completedInvite: Phase2TestInviteData) (implicit invitationDate: DateTime, expirationDate: DateTime, hc: HeaderCarrier): Future[Unit] = { val maybeInvigilatedAccessCodeFut = if (completedInvite.application.isInvigilatedETray) { authProvider.generateAccessCode.map(ac => Some(ac.token)) } else { Future.successful(None) } val appId = completedInvite.application.applicationId for { maybeInvigilatedAccessCode <- maybeInvigilatedAccessCodeFut currentTestGroupOpt <- testRepository.getTestGroup(appId) existingTests = currentTestGroupOpt.map(_.tests).getOrElse(Nil) testWithAccessCode = completedInvite.psiTest.copy(invigilatedAccessCode = maybeInvigilatedAccessCode) newTestGroup = Phase2TestGroup(expirationDate = expirationDate, existingTests :+ testWithAccessCode) _ <- insertOrUpdateTestGroup(completedInvite.application)(newTestGroup) } yield {} } private def insertOrUpdateTestGroup(application: OnlineTestApplication) (newOnlineTestProfile: Phase2TestGroup): Future[Unit] = for { currentOnlineTestProfile <- testRepository.getTestGroup(application.applicationId) updatedTestProfile <- insertOrAppendNewTests(application.applicationId, currentOnlineTestProfile, newOnlineTestProfile) _ <- testRepository.resetTestProfileProgresses(application.applicationId, determineStatusesToRemove(updatedTestProfile)) } yield () private def insertOrAppendNewTests(applicationId: String, currentProfile: Option[Phase2TestGroup], newProfile: Phase2TestGroup): Future[Phase2TestGroup] = { val insertFut = testRepository.insertOrUpdateTestGroup(applicationId, newProfile) insertFut.flatMap { _ => testRepository.getTestGroup(applicationId).map { case Some(testProfile) => testProfile case None => throw ApplicationNotFound(applicationId) } } } def markAsStarted2(orderId: String, startedTime: DateTime = dateTimeFactory.nowLocalTimeZone) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = eventSink { updatePhase2Test2(orderId, testRepository.updateTestStartTime(_: String, startedTime)).flatMap { u => //TODO: remove the next line and comment in the following line at end of campaign 2019 testRepository.updateProgressStatus(u.applicationId, ProgressStatuses.PHASE2_TESTS_STARTED) map { _ => // maybeMarkAsStarted(u.applicationId).map { _ => DataStoreEvents.ETrayStarted(u.applicationId) :: Nil } } } private def maybeMarkAsStarted(appId: String): Future[Unit] = { appRepository.getProgressStatusTimestamps(appId).map { timestamps => val hasStarted = timestamps.exists { case (progressStatus, _) => progressStatus == PHASE2_TESTS_STARTED.key } if (hasStarted) { Future.successful(()) } else { testRepository.updateProgressStatus(appId, PHASE2_TESTS_STARTED) } } } def markAsCompleted2(orderId: String)(implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = eventSink { val updateTestFunc = testRepository.updateTestCompletionTime2(_: String, dateTimeFactory.nowLocalTimeZone) updatePhase2Test2(orderId, updateTestFunc).flatMap { u => val msg = s"Active tests cannot be found when marking phase2 test complete for orderId: $orderId" require(u.testGroup.activeTests.nonEmpty, msg) val activeTestsCompleted = u.testGroup.activeTests forall (_.completedDateTime.isDefined) if (activeTestsCompleted) { testRepository.updateProgressStatus(u.applicationId, ProgressStatuses.PHASE2_TESTS_COMPLETED) map { _ => DataStoreEvents.ETrayCompleted(u.applicationId) :: Nil } } else { Future.successful(List.empty[StcEventType]) } } } def markAsReportReadyToDownload2(orderId: String, reportReady: PsiTestResultReady): Future[Unit] = { updatePhase2Test2(orderId, testRepository.updateTestReportReady2(_: String, reportReady)).flatMap { updated => if (updated.testGroup.activeTests forall (_.resultsReadyToDownload)) { testRepository.updateProgressStatus(updated.applicationId, ProgressStatuses.PHASE2_TESTS_RESULTS_READY) } else { Future.successful(()) } } } /* private def updatePhase2Test(cubiksUserId: Int, updateCubiksTest: Int => Future[Unit]): Future[Phase2TestGroupWithAppId] = { for { _ <- updateCubiksTest(cubiksUserId) updated <- testRepository.getTestProfileByCubiksId(cubiksUserId) } yield { updated } } */ private def updatePhase2Test2(orderId: String, updatePsiTest: String => Future[Unit]): Future[Phase2TestGroupWithAppId] = { updatePsiTest(orderId).flatMap { _ => testRepository.getTestProfileByOrderId(orderId).map(testGroup => testGroup) } } //scalastyle:off method.length override def storeRealTimeResults(orderId: String, results: PsiRealTimeResults) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = { def insertResults(applicationId: String, orderId: String, testProfile: Phase2TestGroupWithAppId, results: PsiRealTimeResults): Future[Unit] = testRepository.insertTestResult2( applicationId, testProfile.testGroup.tests.find(_.orderId == orderId) .getOrElse(throw CannotFindTestByOrderIdException(s"Test not found for orderId=$orderId")), model.persisted.PsiTestResult.fromCommandObject(results) ) def maybeUpdateProgressStatus(appId: String) = { testRepository.getTestGroup(appId).flatMap { testProfileOpt => val latestProfile = testProfileOpt.getOrElse(throw new Exception(s"No test profile returned for $appId")) if (latestProfile.activeTests.forall(_.testResult.isDefined)) { testRepository.updateProgressStatus(appId, ProgressStatuses.PHASE2_TESTS_RESULTS_RECEIVED).map(_ => audit(s"ProgressStatusSet${ProgressStatuses.PHASE2_TESTS_RESULTS_RECEIVED}", appId)) } else { val msg = s"Did not update progress status to ${ProgressStatuses.PHASE2_TESTS_RESULTS_RECEIVED} for $appId - " + s"not all active tests have a testResult saved" logger.warn(msg) Future.successful(()) } } } def markTestAsCompleted(profile: Phase2TestGroupWithAppId): Future[Unit] = { profile.testGroup.tests.find(_.orderId == orderId).map { test => if (!test.isCompleted) { logger.info(s"Processing real time results - setting completed date on psi test whose orderId=$orderId") markAsCompleted2(orderId) } else { logger.info(s"Processing real time results - completed date is already set on psi test whose orderId=$orderId " + s"so will not mark as complete") Future.successful(()) } }.getOrElse(throw CannotFindTestByOrderIdException(s"Test not found for orderId=$orderId")) } (for { appIdOpt <- testRepository.getApplicationIdForOrderId(orderId, "PHASE2") } yield { val appId = appIdOpt.getOrElse(throw CannotFindTestByOrderIdException(s"Application not found for test for orderId=$orderId")) for { profile <- testRepository.getTestProfileByOrderId(orderId) _ <- markTestAsCompleted(profile) _ <- profile.testGroup.tests.find(_.orderId == orderId).map { test => insertResults(appId, test.orderId, profile, results) } .getOrElse(throw CannotFindTestByOrderIdException(s"Test not found for orderId=$orderId")) _ <- maybeUpdateProgressStatus(appId) } yield () }).flatMap(identity) } //scalastyle:on def buildTimeAdjustments(assessmentId: Int, application: OnlineTestApplication): List[TimeAdjustments] = { application.eTrayAdjustments.flatMap(_.timeNeeded).map { _ => List(TimeAdjustments(assessmentId, sectionId = 1, absoluteTime = calculateAbsoluteTimeWithAdjustments(application))) }.getOrElse(Nil) } def emailInviteToApplicants(candidates: List[OnlineTestApplication]) (implicit hc: HeaderCarrier, rh: RequestHeader, invitationDate: DateTime, expirationDate: DateTime): Future[Unit] = { Future.sequence(candidates.map { candidate => emailInviteToApplicant(candidate)(hc, rh, invitationDate, expirationDate) }).map(_ => ()) } private def emailInviteToApplicant(candidate: OnlineTestApplication) (implicit hc: HeaderCarrier, rh: RequestHeader, invitationDate: DateTime, expirationDate: DateTime): Future[Unit] = { if (candidate.isInvigilatedETray) { Future.successful(()) } else { candidateEmailAddress(candidate.userId).flatMap(emailInviteToApplicant(candidate, _ , invitationDate, expirationDate)) } } def extendTestGroupExpiryTime(applicationId: String, extraDays: Int, actionTriggeredBy: String) (implicit hc: HeaderCarrier, rh: RequestHeader): Future[Unit] = eventSink { val progressFut = appRepository.findProgress(applicationId) val phase2TestGroup = testRepository.getTestGroup(applicationId) .map(tg => tg.getOrElse(throw new IllegalStateException("Expiration date for Phase 2 cannot be extended. Test group not found."))) for { progress <- progressFut phase2 <- phase2TestGroup isAlreadyExpired = progress.phase2ProgressResponse.phase2TestsExpired extendDays = extendTime(isAlreadyExpired, phase2.expirationDate) newExpiryDate = extendDays(extraDays) _ <- testRepository.updateGroupExpiryTime(applicationId, newExpiryDate, testRepository.phaseName) _ <- progressStatusesToRemoveWhenExtendTime(newExpiryDate, phase2, progress) .fold(Future.successful(()))(p => appRepository.removeProgressStatuses(applicationId, p)) } yield { audit(isAlreadyExpired, applicationId) :: DataStoreEvents.ETrayExtended(applicationId, actionTriggeredBy) :: Nil } } private def progressStatusesToRemoveWhenExtendTime(extendedExpiryDate: DateTime, profile: Phase2TestGroup, progress: ProgressResponse): Option[List[ProgressStatus]] = { val shouldRemoveExpired = progress.phase2ProgressResponse.phase2TestsExpired val today = dateTimeFactory.nowLocalTimeZone val shouldRemoveSecondReminder = extendedExpiryDate.minusHours(Phase2SecondReminder.hoursBeforeReminder).isAfter(today) val shouldRemoveFirstReminder = extendedExpiryDate.minusHours(Phase2FirstReminder.hoursBeforeReminder).isAfter(today) val progressStatusesToRemove = (Set.empty[ProgressStatus] ++ (if (shouldRemoveExpired) Set(PHASE2_TESTS_EXPIRED) else Set.empty) ++ (if (shouldRemoveSecondReminder) Set(PHASE2_TESTS_SECOND_REMINDER) else Set.empty) ++ (if (shouldRemoveFirstReminder) Set(PHASE2_TESTS_FIRST_REMINDER) else Set.empty)).toList if (progressStatusesToRemove.isEmpty) { None } else { Some(progressStatusesToRemove) } } private def audit(isAlreadyExpired: Boolean, applicationId: String): AuditEvent = { val details = Map("applicationId" -> applicationId) if (isAlreadyExpired) { AuditEvents.ExpiredTestsExtended(details) } else { AuditEvents.NonExpiredTestsExtended(details) } } protected[onlinetesting] def calculateAbsoluteTimeWithAdjustments(application: OnlineTestApplication): Int = { val baseEtrayTestDurationInMinutes = 80 (application.eTrayAdjustments.flatMap { etrayAdjustments => etrayAdjustments.timeNeeded }.getOrElse(0) * baseEtrayTestDurationInMinutes / 100) + baseEtrayTestDurationInMinutes } // TODO this method is exactly the same as the Phase1 version (with the exception of the progress status) // It's a bit fiddly to extract up to the OnlineTestService/Repository traits without defining another common // CubiksTestService/Repository layer as it will be different for Launchapd. // Still feels wrong to leave it here when it's 99% the same as phase1. def retrieveTestResult(testProfile: RichTestGroup)(implicit hc: HeaderCarrier): Future[Unit] = { /* def insertTests(testResults: List[(OnlineTestCommands.PsiTestResult, U)]): Future[Unit] = { Future.sequence(testResults.map { case (result, phaseTest) => testRepository2.insertTestResult2( testProfile.applicationId, phaseTest, model.persisted.PsiTestResult.fromCommandObject(result) ) }).map(_ => ()) } def maybeUpdateProgressStatus(appId: String) = { testRepository2.getTestGroup(appId).flatMap { eventualProfile => val latestProfile = eventualProfile.getOrElse(throw new Exception(s"No profile returned for $appId")) if (latestProfile.activeTests.forall(_.testResult.isDefined)) { testRepository.updateProgressStatus(appId, ProgressStatuses.PHASE2_TESTS_RESULTS_RECEIVED).map(_ => audit(s"ProgressStatusSet${ProgressStatuses.PHASE2_TESTS_RESULTS_RECEIVED}", appId)) } else { Future.successful(()) } } } val testResults = Future.sequence(testProfile.testGroup.activeTests.flatMap { test => test.reportId.map { reportId => onlineTestsGatewayClient.downloadPsiTestResults(reportId) }.map(_.map(_ -> test)) }) for { eventualTestResults <- testResults _ <- insertTests(eventualTestResults) _ <- maybeUpdateProgressStatus(testProfile.applicationId) } yield { eventualTestResults.foreach { _ => audit(s"ResultsRetrievedForSchedule", testProfile.applicationId) } } */ Future.successful(()) } } trait ResetPhase2Test { import ProgressStatuses._ def determineStatusesToRemove(testGroup: Phase2TestGroup): List[ProgressStatus] = { (if (testGroup.hasNotStartedYet) List(PHASE2_TESTS_STARTED) else List()) ++ (if (testGroup.hasNotCompletedYet) List(PHASE2_TESTS_COMPLETED) else List()) ++ (if (testGroup.hasNotResultReadyToDownloadForAllTestsYet) List(PHASE2_TESTS_RESULTS_RECEIVED, PHASE2_TESTS_RESULTS_READY) else List()) ++ List(PHASE2_TESTS_FAILED, PHASE2_TESTS_EXPIRED, PHASE2_TESTS_PASSED, PHASE2_TESTS_FAILED_NOTIFIED, PHASE2_TESTS_FAILED_SDIP_AMBER) } } //scalastyle:on number.of.methods
hmrc/fset-faststream
app/services/onlinetesting/phase2/Phase2TestService.scala
Scala
apache-2.0
37,687
/* * bytefrog: a tracing framework for the JVM. For more information * see http://code-pulse.com/bytefrog * * Copyright (C) 2014 Applied Visions - http://securedecisions.avi.com * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.secdec.bytefrog.fileapi.tracefile.entry import java.io.IOException import java.io.InputStream import java.io.PrintStream import scala.io.Source import com.secdec.bytefrog.fileapi.io.zip.ZipFileBuilderToken import com.secdec.bytefrog.fileapi.tracefile.TraceFileBuilder object EncounteredMethodsEntry extends TraceFileEntry[String] { val path = "encountered-methods.txt" def reader: TraceFileEntryReader[String] = new Reader def writer(builder: TraceFileBuilder): TraceFileEntryWriter[String] = new Writer(builder.vend(path)) /** This string must appear at the beginning of a file * that can be parsed by this object. */ private val magicString = "// Trace Data: encountered method names" private class Reader extends TraceFileEntryReader[String] { def read(content: InputStream)(callback: String => Unit): Unit = { val source = Source fromInputStream content try { val lines = source.getLines if (lines.hasNext) { val firstLine = lines.next if (firstLine == magicString) { lines foreach callback } else { throw new IOException( "Unexpected input: content does not appear to contain encountered method signatures") } } else { throw new IOException("The given content appears to be empty") } } finally { source.close content.close } } } private class Writer(token: ZipFileBuilderToken) extends TraceFileEntryWriter[String] { private val outstr = token.resource.openOutput private val out = new PrintStream(outstr) private def tryWrite(line: String): Unit = { try { out.println(line) } catch { // if an exception is caught, close the streams and re-throw it case e: IOException => out.close outstr.close throw e } } //first line must be the `magicString` tryWrite(magicString) def write(item: String): Unit = tryWrite(item) def finish(): Unit = { out.close outstr.close token.completionCallback() } } }
secdec/bytefrog-clients
file-api/src/main/scala/com/secdec/bytefrog/fileapi/tracefile/entry/EncounteredMethodsEntry.scala
Scala
apache-2.0
2,732
package io.iohk.ethereum.db.storage import akka.util.ByteString import boopickle.Default.{Pickle, Unpickle} import io.iohk.ethereum.db.dataSource.DataSource import io.iohk.ethereum.db.storage.ReceiptStorage._ import io.iohk.ethereum.domain.{Address, SuccessOutcome, _} import io.iohk.ethereum.utils.ByteUtils.{byteSequenceToBuffer, compactPickledBytes} import boopickle.DefaultBasic._ /** * This class is used to store the Receipts, by using: * Key: hash of the block to which the list of receipts belong * Value: the list of receipts */ class ReceiptStorage(val dataSource: DataSource) extends TransactionalKeyValueStorage[BlockHash, Seq[Receipt]] { import ReceiptStorage._ override val namespace: IndexedSeq[Byte] = Namespaces.ReceiptsNamespace override def keySerializer: BlockHash => IndexedSeq[Byte] = _.toIndexedSeq // FIXME: perhaps we should just operate on ByteString to avoid such strange conversions: ETCM-322 override def keyDeserializer: IndexedSeq[Byte] => BlockHash = k => ByteString.fromArrayUnsafe(k.toArray) override def valueSerializer: ReceiptSeq => IndexedSeq[Byte] = receipts => compactPickledBytes(Pickle.intoBytes(receipts)) override def valueDeserializer: IndexedSeq[Byte] => ReceiptSeq = byteSequenceToBuffer _ andThen Unpickle[Seq[Receipt]].fromBytes } object ReceiptStorage { type BlockHash = ByteString type ReceiptSeq = Seq[Receipt] implicit val byteStringPickler: Pickler[ByteString] = transformPickler[ByteString, Array[Byte]](ByteString(_))(_.toArray[Byte]) implicit val hashOutcomePickler: Pickler[HashOutcome] = transformPickler[HashOutcome, ByteString] { hash => HashOutcome(hash) } { outcome => outcome.stateHash } implicit val successOutcomePickler: Pickler[SuccessOutcome.type] = transformPickler[SuccessOutcome.type, ByteString] { _ => SuccessOutcome } { _ => ByteString(Array(1.toByte)) } implicit val failureOutcomePickler: Pickler[FailureOutcome.type] = transformPickler[FailureOutcome.type, ByteString] { _ => FailureOutcome } { _ => ByteString(Array(0.toByte)) } implicit val transactionOutcomePickler: Pickler[TransactionOutcome] = compositePickler[TransactionOutcome] .addConcreteType[HashOutcome] .addConcreteType[SuccessOutcome.type] .addConcreteType[FailureOutcome.type] implicit val addressPickler: Pickler[Address] = transformPickler[Address, ByteString](bytes => Address(bytes))(address => address.bytes) implicit val txLogEntryPickler: Pickler[TxLogEntry] = transformPickler[TxLogEntry, (Address, Seq[ByteString], ByteString)] { case (address, topics, data) => TxLogEntry(address, topics, data) } { entry => (entry.loggerAddress, entry.logTopics, entry.data) } implicit val receiptPickler: Pickler[Receipt] = transformPickler[Receipt, (TransactionOutcome, BigInt, ByteString, Seq[TxLogEntry])] { case (state, gas, filter, logs) => new Receipt(state, gas, filter, logs) } { receipt => (receipt.postTransactionStateHash, receipt.cumulativeGasUsed, receipt.logsBloomFilter, receipt.logs) } }
input-output-hk/etc-client
src/main/scala/io/iohk/ethereum/db/storage/ReceiptStorage.scala
Scala
mit
3,082
package exercises import scala.util.Random import scala.collection.mutable.ArrayBuffer /** * Created by aguestuser on 12/31/14. */ class Ch03_Arrays { //1// // imperative def make_array(n: Int) : Array[Int] = { for (item <- new Array[Int](n)) yield Random.nextInt(n) } // functional def make_array_1(n: Int) : Array[Int] = { new Array[Int](n) map { (_: Int) => Random.nextInt(n) } } //3// // with loop // def swap(arr: Array[Int]) : Array[Int] = { (for (i <- 0 until arr.length) yield if (i % 2 == 0) if (i == arr.size - 1) arr(i) else arr(i + 1) else arr(i - 1) ).toArray } // with map def swap_1(arr: Array[Int]) : Array[Int] = { arr.zipWithIndex.map{ case(_, i) => if (i % 2 == 0) if (i == arr.size - 1) arr(i) else arr(i + 1) else arr(i - 1) } } // 4 // def sort_by_sign(a: Array[Int]) : Array[Int] = { a.filter(_ > 0) ++ a.filter(_ <= 0) } // 5 // // FOLD for averaging // terse (but confusing?) def avg(a: Array[Double]) : Double = { (0.0 /: a)(_ + _) / a.length } //verbose (but less confusing?) def avg_1(a: Array[Double]) : Double = { a.foldLeft(0.0)(_ + _) / a.length } // 6 // def rev_sort_2(a: Array[Int]) : Array[Int] = { a.sortWith(_ > _) } // 7 // println(Array(1,1,1,2,3).distinct.toList) println((ArrayBuffer() ++= Array(1,1,1,1,2,3).distinct).toString) // 8 // // PROBLEM: Given a sequence of integers, we want to remove all but the first negative number. // NOTE: below solution works, but seems extremely inelegant and probably slow! def rem_tail_negs(a: Array[Int]) : Array[Int] = { val indices = a.zipWithIndex.filter { _._1 < 0 }.map { _._2 }.drop(1) a.zipWithIndex.filter { e => !indices.contains(e._2) }.map{ _._1 } } def keepOnlyTheFirstNegative(ints: List[Int]) : List[Int] = { ints.span(_ >= 0) match { case (positives, List()) => positives case (positives, head :: tail) => positives ++ (head :: tail.filter(_ >= 0)) } } }
aguestuser/hackerschool
scala_for_the_impatient/src/main/scala/exercises/Ch03_Arrays.scala
Scala
gpl-3.0
2,086
package com.portia.downloader import com.portia.models._ import com.mongodb.WriteConcern import com.mongodb.casbah.commons.MongoDBObject import com.novus.salat.dao.SalatMongoCursor import org.jsoup.Jsoup import com.github.nscala_time.time.Imports._ /** A dummy downloader which has a simple job of downloading content of crawled web nodes * * @author duytd */ class Downloader { def run(): Unit = { while(true){ val freshUrls = UrlDAO.find(MongoDBObject("downloaded"->false)) this.download(freshUrls) } } private def download(freshUrls:SalatMongoCursor[Url]): Unit = { for (url<-freshUrls) { Downloader.download(url) } } } /** Factory for [[com.portia.models.Downloader]] instances. */ object Downloader { def download(url:Url): Unit = { try { println("Downloading " + url.absPath + "...") // Get the HTML body content saveDocByURL(url) println("Finish downloading " + url.absPath) } catch { case e: Exception => println("Failed to download "+url.absPath+". Reason:" + e.getMessage) val updateUrl = url.copy(downloaded = false) UrlDAO.update(MongoDBObject("_id"->url._id), updateUrl, upsert = false, multi = false, new WriteConcern) } } def saveDocByURL(url: Url): Unit = { val doc = Jsoup.connect(url.absPath).get.body() // Mark as downloaded val updateUrl = url.copy(downloaded = true, parseTime = DateTime.now.toString) UrlDAO.update(MongoDBObject("_id"->url._id), updateUrl, upsert = false, multi = false, new WriteConcern) // Save content to the database val documentObj = new Document(urlId = url._id, content = doc.toString) DocumentDAO.insert(documentObj) } }
duytd/blackspider
src/main/scala/com/portia/downloader/Downloader.scala
Scala
gpl-3.0
1,720
package org.duffqiu.rest.common import net.liftweb.json.DefaultFormats import net.liftweb.json.Serialization.write object RestUtility { def asJson(body: AnyRef) = { //Using Lift implicit val formats = DefaultFormats val bodyJsonString = write(body) bodyJsonString } }
duffqiu/rest-test-dsl
src/main/scala/org/duffqiu/rest/common/RestUtility.scala
Scala
apache-2.0
331
/*********************************************************************** * Copyright (c) 2013-2018 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.utils.text import org.parboiled.errors.{ErrorUtils, ParsingException} import org.parboiled.scala.parserunners.{BasicParseRunner, ReportingParseRunner} /** * Parses a simple set of key-value pairs, in the form 'key1:value1,key2:value2' */ object KVPairParser { private val Parser = new KVPairParser() @throws(classOf[ParsingException]) def parse(s: String): Map[String, String] = parse(s, report = true) @throws(classOf[ParsingException]) def parse(s: String, report: Boolean): Map[String, String] = { val runner = if (report) { ReportingParseRunner(Parser.map) } else { BasicParseRunner(Parser.map) } val parsing = runner.run(s.stripMargin('|').replaceAll("\\s*", "")) parsing.result.getOrElse { throw new ParsingException(s"Invalid split pattern: ${ErrorUtils.printParseErrors(parsing)}") } } } private class KVPairParser(pairSep: String = ",", kvSep: String = ":") extends BasicParser { import org.parboiled.scala._ private def key: Rule1[String] = rule { oneOrMore(char | anyOf(".-")) ~> { (k) => k } } private def value: Rule1[String] = rule { quotedString | singleQuotedString | oneOrMore(char | anyOf(".-[]%")) ~> { (k) => k } } private def keyValue: Rule1[(String, String)] = rule { (key ~ kvSep ~ value) ~~> { (k, v) => (k, v) } } def map: Rule1[Map[String, String]] = rule { oneOrMore(keyValue, pairSep) ~ EOI ~~> { (kvs) => kvs.toMap } } }
jahhulbert-ccri/geomesa
geomesa-utils/src/main/scala/org/locationtech/geomesa/utils/text/KVPairParser.scala
Scala
apache-2.0
1,931
package com.cds.learn.chapter5 /** * Created by chendongsheng5 on 2017/5/27. */ import Stream._ trait Stream[+A] { // The natural recursive solution def toListRecursive: List[A] = this match { case Cons(h,t) => h() :: t().toListRecursive case _ => List() } /* The above solution will stack overflow for large streams, since it's not tail-recursive. Here is a tail-recursive implementation. At each step we cons onto the front of the `acc` list, which will result in the reverse of the stream. Then at the end we reverse the result to get the correct order again. */ def toList: List[A] = { @annotation.tailrec def go(s: Stream[A], acc: List[A]): List[A] = s match { case Cons(h,t) => go(t(), h() :: acc) case _ => acc } go(this, List()).reverse } /* In order to avoid the `reverse` at the end, we could write it using a mutable list buffer and an explicit loop instead. Note that the mutable list buffer never escapes our `toList` method, so this function is still _pure_. */ def toListFast: List[A] = { val buf = new collection.mutable.ListBuffer[A] @annotation.tailrec def go(s: Stream[A]): List[A] = s match { case Cons(h,t) => buf += h() go(t()) case _ => buf.toList } go(this) } /* Create a new Stream[A] from taking the n first elements from this. We can achieve that by recursively calling take on the invoked tail of a cons cell. We make sure that the tail is not invoked unless we need to, by handling the special case where n == 1 separately. If n == 0, we can avoid looking at the stream at all. */ def take(n: Int): Stream[A] = this match { case Cons(h, t) if n > 1 => cons(h(), t().take(n - 1)) case Cons(h, _) if n == 1 => cons(h(), empty) case _ => empty } /* Create a new Stream[A] from this, but ignore the n first elements. This can be achieved by recursively calling drop on the invoked tail of a cons cell. Note that the implementation is also tail recursive. */ @annotation.tailrec final def drop(n: Int): Stream[A] = this match { case Cons(_, t) if n > 0 => t().drop(n - 1) case _ => this } /* It's a common Scala style to write method calls without `.` notation, as in `t() takeWhile f`. */ def takeWhile(f: A => Boolean): Stream[A] = this match { case Cons(h,t) if f(h()) => cons(h(), t() takeWhile f) case _ => empty } def foldRight[B](z: => B)(f: (A, => B) => B): B = // The arrow `=>` in front of the argument type `B` means that the function `f` takes its second argument by name and may choose not to evaluate it. this match { case Cons(h,t) => f(h(), t().foldRight(z)(f)) // If `f` doesn't evaluate its second argument, the recursion never occurs. case _ => z } def exists(p: A => Boolean): Boolean = foldRight(false)((a, b) => p(a) || b) // Here `b` is the unevaluated recursive step that folds the tail of the stream. If `p(a)` returns `true`, `b` will never be evaluated and the computation terminates early. /* Since `&&` is non-strict in its second argument, this terminates the traversal as soon as a nonmatching element is found. */ def forAll(f: A => Boolean): Boolean = foldRight(true)((a,b) => f(a) && b) def takeWhile_1(f: A => Boolean): Stream[A] = foldRight(empty[A])((h,t) => if (f(h)) cons(h,t) else empty) def headOption: Option[A] = foldRight(None: Option[A])((h,_) => Some(h)) def map[B](f: A => B): Stream[B] = foldRight(empty[B])((h,t) => cons(f(h), t)) def filter(f: A => Boolean): Stream[A] = foldRight(empty[A])((h,t) => if (f(h)) cons(h, t) else t) def append[B>:A](s: => Stream[B]): Stream[B] = foldRight(s)((h,t) => cons(h,t)) def flatMap[B](f: A => Stream[B]): Stream[B] = foldRight(empty[B])((h,t) => f(h) append t) def mapViaUnfold[B](f: A => B): Stream[B] = unfold(this) { case Cons(h,t) => Some((f(h()), t())) case _ => None } def takeViaUnfold(n: Int): Stream[A] = unfold((this,n)) { case (Cons(h,t), 1) => Some((h(), (empty, 0))) case (Cons(h,t), n) if n > 1 => Some((h(), (t(), n-1))) case _ => None } def takeWhileViaUnfold(f: A => Boolean): Stream[A] = unfold(this) { case Cons(h,t) if f(h()) => Some((h(), t())) case _ => None } def zipWith[B,C](s2: Stream[B])(f: (A,B) => C): Stream[C] = unfold((this, s2)) { case (Cons(h1,t1), Cons(h2,t2)) => Some((f(h1(), h2()), (t1(), t2()))) case _ => None } // special case of `zipWith` def zip[B](s2: Stream[B]): Stream[(A,B)] = zipWith(s2)((_,_)) def zipAll[B](s2: Stream[B]): Stream[(Option[A],Option[B])] = zipWithAll(s2)((_,_)) def zipWithAll[B, C](s2: Stream[B])(f: (Option[A], Option[B]) => C): Stream[C] = Stream.unfold((this, s2)) { case (Empty, Empty) => None case (Cons(h, t), Empty) => Some(f(Some(h()), Option.empty[B]) -> (t(), empty[B])) case (Empty, Cons(h, t)) => Some(f(Option.empty[A], Some(h())) -> (empty[A] -> t())) case (Cons(h1, t1), Cons(h2, t2)) => Some(f(Some(h1()), Some(h2())) -> (t1() -> t2())) } /* `s startsWith s2` when corresponding elements of `s` and `s2` are all equal, until the point that `s2` is exhausted. If `s` is exhausted first, or we find an element that doesn't match, we terminate early. Using non-strictness, we can compose these three separate logical steps--the zipping, the termination when the second stream is exhausted, and the termination if a nonmatching element is found or the first stream is exhausted. */ def startsWith[A](s: Stream[A]): Boolean = zipAll(s).takeWhile(!_._2.isEmpty) forAll { case (h,h2) => h == h2 } /* The last element of `tails` is always the empty `Stream`, so we handle this as a special case, by appending it to the output. */ def tails: Stream[Stream[A]] = unfold(this) { case Empty => None case s => Some((s, s drop 1)) } append Stream(empty) def hasSubsequence[A](s: Stream[A]): Boolean = tails exists (_ startsWith s) /* The function can't be implemented using `unfold`, since `unfold` generates elements of the `Stream` from left to right. It can be implemented using `foldRight` though. The implementation is just a `foldRight` that keeps the accumulated value and the stream of intermediate results, which we `cons` onto during each iteration. When writing folds, it's common to have more state in the fold than is needed to compute the result. Here, we simply extract the accumulated list once finished. */ def scanRight[B](z: B)(f: (A, => B) => B): Stream[B] = foldRight((z, Stream(z)))((a, p0) => { // p0 is passed by-name and used in by-name args in f and cons. So use lazy val to ensure only one evaluation... lazy val p1 = p0 val b2 = f(a, p1._1) (b2, cons(b2, p1._2)) })._2 @annotation.tailrec final def find(f: A => Boolean): Option[A] = this match { case Empty => None case Cons(h, t) => if (f(h())) Some(h()) else t().find(f) } } case object Empty extends Stream[Nothing] case class Cons[+A](h: () => A, t: () => Stream[A]) extends Stream[A] object Stream { def cons[A](hd: => A, tl: => Stream[A]): Stream[A] = { lazy val head = hd lazy val tail = tl Cons(() => head, () => tail) } def empty[A]: Stream[A] = Empty def apply[A](as: A*): Stream[A] = if (as.isEmpty) empty else cons(as.head, apply(as.tail: _*)) val ones: Stream[Int] = Stream.cons(1, ones) // This is more efficient than `cons(a, constant(a))` since it's just // one object referencing itself. def constant[A](a: A): Stream[A] = { lazy val tail: Stream[A] = Cons(() => a, () => tail) tail } def from(n: Int): Stream[Int] = cons(n, from(n+1)) val fibs = { def go(f0: Int, f1: Int): Stream[Int] = cons(f0, go(f1, f0+f1)) go(0, 1) } def unfold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] = f(z) match { case Some((h,s)) => cons(h, unfold(s)(f)) case None => empty } /* The below two implementations use `fold` and `map` functions in the Option class to implement unfold, thereby doing away with the need to manually pattern match as in the above solution. */ def unfoldViaFold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] = f(z).fold(empty[A])((p: (A,S)) => cons(p._1,unfold(p._2)(f))) def unfoldViaMap[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] = f(z).map((p: (A,S)) => cons(p._1,unfold(p._2)(f))).getOrElse(empty[A]) /* Scala provides shorter syntax when the first action of a function literal is to match on an expression. The function passed to `unfold` in `fibsViaUnfold` is equivalent to `p => p match { case (f0,f1) => ... }`, but we avoid having to choose a name for `p`, only to pattern match on it. */ val fibsViaUnfold = unfold((0,1)) { case (f0,f1) => Some((f0,(f1,f0+f1))) } def fromViaUnfold(n: Int) = unfold(n)(n => Some((n,n+1))) def constantViaUnfold[A](a: A) = unfold(a)(_ => Some((a,a))) // could also of course be implemented as constant(1) val onesViaUnfold = unfold(1)(_ => Some((1,1))) }
anancds/scala-project
fpis/src/main/scala/com/cds/learn/chapter5/Stream.scala
Scala
mit
9,246
package models case class Ladder(id: Int, name: String, domain: String, creator: String, created: Int, active: Boolean) case class LadderInput(name: String)
yzernik/office-ladder
client/src/main/scala/models/Ladder.scala
Scala
mit
249
package com.sksamuel.elastic4s.searches import com.sksamuel.elastic4s.get.HitField import org.elasticsearch.search.SearchHitField import scala.collection.JavaConverters._ case class RichSearchHitField(java: SearchHitField) extends HitField { override def name: String = java.name() override def value: AnyRef = java.getValue override def values: Seq[AnyRef] = java.values().asScala.toList override def isMetadataField: Boolean = java.isMetadataField // java method aliases @deprecated("use name", "5.0.0") def getName: String = name @deprecated("use value", "5.0.0") def getValue: AnyRef = value @deprecated("use values", "5.0.0") def getValues: Seq[AnyRef] = values }
FabienPennequin/elastic4s
elastic4s-tcp/src/main/scala/com/sksamuel/elastic4s/searches/RichSearchHitField.scala
Scala
apache-2.0
697
/* * Copyright 2015 herd contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.herd import org.apache.spark.sql.SparkSession import org.scalatest.{BeforeAndAfterAll, FunSuite, Matchers} class HerdOptionsSuite extends FunSuite with Matchers with BeforeAndAfterAll { private var spark: SparkSession = _ override def beforeAll(): Unit = { this.spark = SparkSession .builder() .appName("catalog-test") .master("local[*]") .getOrCreate() } override def afterAll(): Unit = { this.spark.stop() } test("validate required params/param-combinations") { // attempt to initialize with no namespace an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions - "namespace")(spark) // attempt to initialize with no bDef an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions - "businessObjectName")(spark) // attempt to initialize with subPartitions but no primary partition an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions - "partitionValue")(spark) // attempt to initialize with subPartitionKeys but no subPartitionValues an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions - "subPartitionValues")(spark) // attempt to initialize with subPartitionValues but no subPartitionKeys an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions - "subPartitionKeys")(spark) } test("validate default params") { // initialize with no dataProvider and verify default value val herdOptionsNoDataProvider: HerdOptions = HerdOptions(getDefaultHerdOptions - "dataProvider")(spark) assert(!herdOptionsNoDataProvider.dataProvider.isEmpty, "dataProvider should have a default value") herdOptionsNoDataProvider.dataProvider shouldBe "FINRA" // initialize with no formatUsage and verify default value val herdOptionsNoUsage: HerdOptions = HerdOptions(getDefaultHerdOptions - "businessObjectFormatUsage")(spark) assert(!herdOptionsNoUsage.formatUsage.isEmpty, "businessObjectFormatUsage should have a default value") herdOptionsNoUsage.formatUsage shouldBe "PRC" // initialize with no delimiter and verify default value val herdOptionsNoDelimiter: HerdOptions = HerdOptions(getDefaultHerdOptions - "delimiter")(spark) assert(!herdOptionsNoDelimiter.delimiter.isEmpty, "delimiter should have a default value") herdOptionsNoDelimiter.delimiter shouldBe "," // initialize with no nullValue and verify default value val herdOptionsNoNullValue: HerdOptions = HerdOptions(getDefaultHerdOptions - "nullValue")(spark) assert(herdOptionsNoNullValue.nullValue != null, "nullValue should not be null") herdOptionsNoNullValue.nullValue shouldBe "" val herdOptionsNoStorage: HerdOptions = HerdOptions(getDefaultHerdOptions - "storage")(spark) assert(!herdOptionsNoStorage.storageName.isEmpty, "storage should have a default value") herdOptionsNoStorage.storageName shouldBe "S3_MANAGED" val herdOptionsNoStoragePrefix: HerdOptions = HerdOptions(getDefaultHerdOptions - "storagePathPrefix")(spark) assert(!herdOptionsNoStoragePrefix.storagePathPrefix.isEmpty, "storagePathPrefix should have a default value") herdOptionsNoStoragePrefix.storagePathPrefix shouldBe "s3a://" } test("validate that subPartitionKeys/Values are valid that are read correctly") { val herdOptions: HerdOptions = HerdOptions(getDefaultHerdOptions)(spark) herdOptions.subPartitionKeys shouldBe Array[String]("BUSINESS_LOCATION", "BUSINESS_DIVISION") val herdOptionsSubPartKeysTrimAndEmptyCheck = HerdOptions(getDefaultHerdOptions + ("subPartitionKeys" -> " a| b |"))(spark) herdOptionsSubPartKeysTrimAndEmptyCheck.subPartitionKeys shouldBe Array[String]("a", "b") val herdOptionsSubPartValuesTrimAndEmptyCheck = HerdOptions(getDefaultHerdOptions + ("subPartitionValues" -> " x| y |"))(spark) herdOptionsSubPartValuesTrimAndEmptyCheck.subPartitions shouldBe Array[String]("x", "y") an [IllegalArgumentException] should be thrownBy HerdOptions(getDefaultHerdOptions + ("subPartitionKeys" -> "a") + ("subPartitionValues" -> "x|y"))(spark) } test("validate partition value filter") { val herdOptions: HerdOptions = HerdOptions(getDefaultHerdOptions + ("partitionFilter" -> "2019-01-02--2019-01-03"))(spark) val herdOptionsPartitionValueList: HerdOptions = HerdOptions(getDefaultHerdOptions + ("partitionFilter" -> "2019-01-02,2019-01-03"))(spark) herdOptions.partitionFilter shouldBe Some(PartitionRangeFilter("", ("2019-01-02", "2019-01-03"))) val herdOptionsPartitionValues: Option[PartitionValuesFilter] = herdOptionsPartitionValueList.partitionFilter.asInstanceOf[Option[PartitionValuesFilter]] herdOptionsPartitionValues.get.values shouldBe Array[String]("2019-01-02", "2019-01-03") } def getDefaultHerdOptions: Map[String, String] = { Map( "namespace" -> "someNamespace", "businessObjectName" -> "someBusinessObjectName", "dataProvider" -> "someDataProvider", "businessObjectFormatUsage" -> "someUsage", "businessObjectFormatFileType" -> "someFileType", "registerNewFormat" -> "false", "delimiter" -> ",", "nullValue" -> "\\\\N", "escape" -> "\\\\", "partitionKey" -> "date", "partitionValue" -> "2020-01-01", "partitionKeyGroup" -> "BUSINESS_CALENDAR", "partitionFilter" -> "", "subPartitionKeys" -> "BUSINESS_LOCATION|BUSINESS_DIVISION", "subPartitionValues" -> "USA|HR", "storage" -> "S3", "storagePathPrefix" -> "s3a://" ) } }
FINRAOS/herd
herd-code/herd-tools/herd-spark-data-source/src/test/scala/org/apache/spark/sql/herd/HerdOptionsSuite.scala
Scala
apache-2.0
6,210
package org.jetbrains.plugins.scala package lang package psi package impl package base package types import com.intellij.lang.ASTNode import com.intellij.openapi.progress.ProgressManager import com.intellij.psi._ import com.intellij.psi.util.PsiTreeUtil.getContextOfType import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.psi.api.InferUtil.SafeCheckException import org.jetbrains.plugins.scala.lang.psi.api.base._ import org.jetbrains.plugins.scala.lang.psi.api.base.types._ import org.jetbrains.plugins.scala.lang.psi.api.expr.{ScSuperReference, ScThisReference, ScUnderScoreSectionUtil} import org.jetbrains.plugins.scala.lang.psi.api.statements._ import org.jetbrains.plugins.scala.lang.psi.api.statements.params.{PsiTypeParameterExt, ScTypeParam} import org.jetbrains.plugins.scala.lang.psi.api.toplevel.ScTypeParametersOwner import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.{ScObject, ScTemplateDefinition} import org.jetbrains.plugins.scala.lang.psi.api.{InferUtil, ScalaElementVisitor} import org.jetbrains.plugins.scala.lang.psi.impl.base.types.ScSimpleTypeElementImpl._ import org.jetbrains.plugins.scala.lang.psi.impl.toplevel.synthetic.ScSyntheticClass import org.jetbrains.plugins.scala.lang.psi.types.Compatibility.Expression import org.jetbrains.plugins.scala.lang.psi.types._ import org.jetbrains.plugins.scala.lang.psi.types.api.designator._ import org.jetbrains.plugins.scala.lang.psi.types.api.{FunctionType, Nothing, TypeParameter, TypeParameterType} import org.jetbrains.plugins.scala.lang.psi.types.nonvalue.{Parameter, ScMethodType, ScTypePolymorphicType} import org.jetbrains.plugins.scala.lang.psi.types.result.{Failure, Success, TypeResult, TypingContext} import org.jetbrains.plugins.scala.lang.resolve.ScalaResolveResult import org.jetbrains.plugins.scala.macroAnnotations.{CachedWithRecursionGuard, ModCount} import scala.collection.immutable.HashMap /** * @author Alexander Podkhalyuzin * Date: 22.02.2008 */ class ScSimpleTypeElementImpl(node: ASTNode) extends ScalaPsiElementImpl(node) with ScSimpleTypeElement { protected def innerType(ctx: TypingContext): TypeResult[ScType] = innerNonValueType(ctx, inferValueType = true) override def getTypeNoConstructor(ctx: TypingContext): TypeResult[ScType] = innerNonValueType(ctx, inferValueType = true, noConstructor = true) @CachedWithRecursionGuard[ScSimpleTypeElement](this, Failure("Recursive non value type of type element", Some(this)), ModCount.getBlockModificationCount) override def getNonValueType(ctx: TypingContext, withUnnecessaryImplicitsUpdate: Boolean = false): TypeResult[ScType] = innerNonValueType(ctx, inferValueType = false, withUnnecessaryImplicitsUpdate = withUnnecessaryImplicitsUpdate) private def innerNonValueType(ctx: TypingContext, inferValueType: Boolean, noConstructor: Boolean = false, withUnnecessaryImplicitsUpdate: Boolean = false): TypeResult[ScType] = { ProgressManager.checkCanceled() def parametrise(tp: ScType, clazz: PsiClass, subst: ScSubstitutor): ScType = { if (clazz.getTypeParameters.isEmpty) { tp } else { ScParameterizedType(tp, clazz.getTypeParameters.map(TypeParameterType(_, Some(subst)))) } } def getConstructorParams(constr: PsiMethod, subst: ScSubstitutor): (Seq[Seq[Parameter]], Boolean) = { constr match { case fun: ScFunction => (fun.effectiveParameterClauses.map(_.effectiveParameters.map { p => val paramType: ScType = subst.subst(p.getType(TypingContext.empty).getOrAny) new Parameter(p.name, p.deprecatedName, paramType, paramType, p.isDefaultParam,p.isRepeatedParameter, p.isCallByNameParameter, p.index, Some(p), p.getDefaultExpression.flatMap(_.getType().toOption)) }), fun.parameterList.clauses.lastOption.exists(_.isImplicit)) case f: ScPrimaryConstructor => (f.effectiveParameterClauses.map(_.effectiveParameters.map { p => val paramType: ScType = subst.subst(p.getType(TypingContext.empty).getOrAny) new Parameter(p.name, p.deprecatedName, paramType, paramType, p.isDefaultParam, p.isRepeatedParameter, p.isCallByNameParameter, p.index, Some(p), p.getDefaultExpression.flatMap(_.getType().toOption)) }), f.parameterList.clauses.lastOption.exists(_.isImplicit)) case m: PsiMethod => (Seq(m.getParameterList.getParameters.map { p => new Parameter("", None, p.exactParamType(), false, p.isVarArgs, false, p.index) }), false) } } def updateImplicits(tp: ScType, withExpected: Boolean, params: Seq[Seq[Parameter]], lastImplicit: Boolean): ScType = { if (lastImplicit) { //Let's add implicit parameters val newTp = tp match { case ScTypePolymorphicType(i, p) => ScTypePolymorphicType(ScMethodType(i, params.last, isImplicit = true)(getProject, getResolveScope), p) case _ => ScMethodType(tp, params.last, isImplicit = true)(getProject, getResolveScope) } val res = InferUtil.updateTypeWithImplicitParameters(newTp, this, None, withExpected, fullInfo = false) implicitParameters = res._2 res._1 } else tp } def typeForConstructor(ref: ScStableCodeReferenceElement, constr: PsiMethod, _subst: ScSubstitutor, parentElement: PsiNamedElement): ScType = { val clazz = constr.containingClass val (constrTypParameters: Seq[ScTypeParam], constrSubst: ScSubstitutor) = parentElement match { case ta: ScTypeAliasDefinition => (Seq.empty, ScSubstitutor.empty) case s: ScTypeParametersOwner if s.typeParameters.nonEmpty => constr match { case method: ScMethodLike => val params = method.getConstructorTypeParameters.map(_.typeParameters).getOrElse(Seq.empty) val subst = new ScSubstitutor(s.typeParameters.zip(params).map { case (tpClass: ScTypeParam, tpConstr: ScTypeParam) => (tpClass.nameAndId, TypeParameterType(tpConstr)) }.toMap, Map.empty, None) (params, subst) case _ => (Seq.empty, ScSubstitutor.empty) } case _ => (Seq.empty, ScSubstitutor.empty) } val subst = _subst followed constrSubst val tp = parentElement match { case ta: ScTypeAliasDefinition => ta.aliasedType.getOrElse(return Nothing) case _ => parametrise(calculateReferenceType(ref). getOrElse(return Nothing), clazz, subst) } val res = subst.subst(tp) val (params: Seq[Seq[Parameter]], lastImplicit: Boolean) = getConstructorParams(constr, subst) val typeParameters: Seq[TypeParameter] = parentElement match { case tp: ScTypeParametersOwner if constrTypParameters.nonEmpty => constrTypParameters.map(TypeParameter(_)) case tp: ScTypeParametersOwner if tp.typeParameters.nonEmpty => tp.typeParameters.map(TypeParameter(_)) case ptp: PsiTypeParameterListOwner if ptp.getTypeParameters.nonEmpty => ptp.getTypeParameters.toSeq.map(TypeParameter(_)) case _ => updateImplicits(tp, withExpected = false, params = params, lastImplicit = lastImplicit) return res } getContext match { case p: ScParameterizedTypeElement => val zipped = p.typeArgList.typeArgs.zip(typeParameters) val appSubst = new ScSubstitutor(new HashMap[(String, PsiElement), ScType] ++ zipped.map{ case (arg, typeParam) => (typeParam.nameAndId, arg.getType(TypingContext.empty).getOrAny) }, Map.empty, None) val newRes = appSubst.subst(res) updateImplicits(newRes, withExpected = false, params = params, lastImplicit = lastImplicit) return newRes case _ => } findConstructor match { case Some(c) => var nonValueType = ScTypePolymorphicType(res, typeParameters) var i = 0 //We need to update type info for generics in the following order: //1. All clauses without last params clause or last arguments clause //2. According to expected type //3. Last argument clause //4. Implicit clauses if applicable //5. In case of SafeCheckException return to 3 to complete update without expected type while (i < params.length - 1 && i < c.arguments.length - 1) { nonValueType = InferUtil.localTypeInference(nonValueType.internalType, params(i), c.arguments(i).exprs.map(new Expression(_)), nonValueType.typeParameters) i += 1 } def lastClause(withExpected: Boolean) { c.expectedType match { case Some(expected) if withExpected => def updateRes(expected: ScType) { nonValueType = InferUtil.localTypeInference(nonValueType.internalType, Seq(new Parameter("", None, expected, false, false, false, 0)), Seq(new Expression(InferUtil.undefineSubstitutor(nonValueType.typeParameters).subst(res.inferValueType))), nonValueType.typeParameters, shouldUndefineParameters = false, filterTypeParams = false) //here should work in different way: } val fromUnderscore = c.newTemplate match { case Some(n) => ScUnderScoreSectionUtil.underscores(n).nonEmpty case None => false } if (!fromUnderscore) { updateRes(expected) } else { expected match { case FunctionType(retType, _) => updateRes(retType) case _ => //do not update res, we haven't expected type } } case _ => } //last clause after expected types if (i < params.length && i < c.arguments.length) { nonValueType = InferUtil.localTypeInference(nonValueType.internalType, params(i), c.arguments(i).exprs.map(new Expression(_)), nonValueType.typeParameters, safeCheck = withExpected) i += 1 } if (lastImplicit && i < params.length) { //Let's add implicit parameters updateImplicits(nonValueType, withExpected, params, lastImplicit) match { case t: ScTypePolymorphicType => nonValueType = t case _ => } } } val oldNonValueType = nonValueType try { lastClause(withExpected = true) } catch { case e: SafeCheckException => nonValueType = oldNonValueType lastClause(withExpected = false) } if (inferValueType) { val pts = nonValueType match { case t: ScTypePolymorphicType => t.polymorphicTypeSubstitutor case _ => ScSubstitutor.empty } pts.subst(nonValueType.internalType) } else nonValueType case None => res } } reference match { case Some(ref) => def updateForParameterized(subst: ScSubstitutor, elem: PsiNamedElement, p: ScParameterizedTypeElement): (ScType, ScSubstitutor) = { val tp = elem match { case ta: ScTypeAliasDefinition => ta.aliasedType.getOrElse(return (Nothing, ScSubstitutor.empty)) case clazz: PsiClass => parametrise(calculateReferenceType(ref). getOrElse(return (Nothing, ScSubstitutor.empty)), clazz, subst) } val res = subst.subst(tp) val typeParameters: Seq[TypeParameter] = elem match { case tp: ScTypeParametersOwner if tp.typeParameters.nonEmpty => tp.typeParameters.map(TypeParameter(_)) case ptp: PsiTypeParameterListOwner if ptp.getTypeParameters.nonEmpty => ptp.getTypeParameters.toSeq.map(TypeParameter(_)) case _ => return (res, ScSubstitutor.empty) } val zipped = p.typeArgList.typeArgs.zip(typeParameters) val appSubst = new ScSubstitutor(new HashMap[(String, PsiElement), ScType] ++ zipped.map { case (arg, typeParam) => (typeParam.nameAndId, arg.getType(TypingContext.empty).getOrAny) }, Map.empty, None) (appSubst.subst(res), appSubst) } val constrRef = ref.isConstructorReference && !noConstructor def updateImplicitsWithoutLocalTypeInference(r: TypeResult[ScType], ss: ScSubstitutor): TypeResult[ScType] = { if (withUnnecessaryImplicitsUpdate) { r.map { tp => ref.bind() match { case Some(r@ScalaResolveResult(method: PsiMethod, subst: ScSubstitutor)) => val (params, lastImplicit) = getConstructorParams(method, subst.followed(ss)) updateImplicits(tp, withExpected = false, params = params, lastImplicit = lastImplicit) tp case _ => tp } } } else r } ref.resolveNoConstructor match { case Array(ScalaResolveResult(psiTypeParameter: PsiTypeParameter, _)) => this.success(TypeParameterType(psiTypeParameter, None)) case Array(ScalaResolveResult(tvar: ScTypeVariableTypeElement, _)) => this.success(tvar.getType().getOrAny) case Array(ScalaResolveResult(synth: ScSyntheticClass, _)) => this.success(synth.t) case Array(ScalaResolveResult(to: ScTypeParametersOwner, subst: ScSubstitutor)) if constrRef && to.isInstanceOf[PsiNamedElement] && (to.typeParameters.isEmpty || getContext.isInstanceOf[ScParameterizedTypeElement]) => val (tp, ss) = getContext match { case p: ScParameterizedTypeElement if !to.isInstanceOf[ScTypeAliasDeclaration] => val (parameterized, ss) = updateForParameterized(subst, to.asInstanceOf[PsiNamedElement], p) (this.success(parameterized), ss) case _ => (calculateReferenceType(ref), ScSubstitutor.empty) } updateImplicitsWithoutLocalTypeInference(tp, ss) case Array(ScalaResolveResult(to: PsiTypeParameterListOwner, subst: ScSubstitutor)) if constrRef && to.isInstanceOf[PsiNamedElement] && (to.getTypeParameters.isEmpty || getContext.isInstanceOf[ScParameterizedTypeElement]) => val (result, ss) = getContext match { case p: ScParameterizedTypeElement if !to.isInstanceOf[ScTypeAliasDeclaration] => val (parameterized, ss) = updateForParameterized(subst, to.asInstanceOf[PsiNamedElement], p) (this.success(parameterized), ss) case _ => (calculateReferenceType(ref), ScSubstitutor.empty) } updateImplicitsWithoutLocalTypeInference(result, ss) case _ => //resolve constructor with local type inference ref.bind() match { case Some(r@ScalaResolveResult(method: PsiMethod, subst: ScSubstitutor)) if !noConstructor => this.success(typeForConstructor(ref, method, subst, r.getActualElement)) case Some(r@ScalaResolveResult(ta: ScTypeAlias, subst: ScSubstitutor)) if ta.isExistentialTypeAlias => this.success(ScExistentialArgument(ta.name, ta.typeParameters.map(TypeParameterType(_, None)).toList, ta.lowerBound.getOrNothing, ta.upperBound.getOrAny)) case _ => calculateReferenceType(ref, shapesOnly = false) } } case None => pathElement match { case ref: ScStableCodeReferenceElement => calculateReferenceType(ref) case thisRef: ScThisReference => fromThisReference(thisRef, ScThisType)() case superRef: ScSuperReference => fromSuperReference(superRef, ScThisType)() } } } override def accept(visitor: ScalaElementVisitor) { visitor.visitSimpleTypeElement(this) } override def accept(visitor: PsiElementVisitor) { visitor match { case s: ScalaElementVisitor => s.visitSimpleTypeElement(this) case _ => super.accept(visitor) } } } object ScSimpleTypeElementImpl { def calculateReferenceType(ref: ScStableCodeReferenceElement, shapesOnly: Boolean = false): TypeResult[ScType] = { val (resolvedElement, fromType) = (if (!shapesOnly) { if (ref.isConstructorReference) { ref.resolveNoConstructor match { case Array(r@ScalaResolveResult(to: ScTypeParametersOwner, subst: ScSubstitutor)) if to.isInstanceOf[PsiNamedElement] && (to.typeParameters.isEmpty || ref.getContext.isInstanceOf[ScParameterizedTypeElement]) => Some(r) case Array(r@ScalaResolveResult(to: PsiTypeParameterListOwner, subst: ScSubstitutor)) if to.isInstanceOf[PsiNamedElement] && (to.getTypeParameters.isEmpty || ref.getContext.isInstanceOf[ScParameterizedTypeElement]) => Some(r) case _ => ref.bind() } } else ref.bind() } else { ref.shapeResolve match { case Array(r: ScalaResolveResult) => Some(r) case _ => None } }) match { case Some(r@ScalaResolveResult(n: PsiMethod, _)) if n.isConstructor => (n.containingClass, r.fromType) case Some(r@ScalaResolveResult(n: PsiNamedElement, _)) => (n, r.fromType) case _ => return Failure("Cannot resolve reference", Some(ref)) } def makeProjection(`type`: ScType, superReference: Boolean = false) = ScProjectionType(`type`, resolvedElement, superReference = superReference) ref.qualifier match { case Some(qualifier) => val result = qualifier.resolve() match { case pack: PsiPackage => Option(getContextOfType(resolvedElement, classOf[ScObject])) match { case Some(obj) if obj.isPackageObject => makeProjection(ScDesignatorType(obj)) case _ => fromType match { case Some(designator@ScDesignatorType(obj: ScObject)) if obj.isPackageObject => makeProjection(designator) case _ => ScalaType.designator(resolvedElement) } } case _ => calculateReferenceType(qualifier, shapesOnly) match { case Success(tp, _) => makeProjection(tp) case failure: Failure => return failure } } Success(result, Some(ref)) case _ => ref.pathQualifier match { case Some(thisRef: ScThisReference) => fromThisReference(thisRef, template => makeProjection(ScThisType(template)))(ref) case Some(superRef: ScSuperReference) => fromSuperReference(superRef, template => makeProjection(ScThisType(template), resolvedElement.isInstanceOf[PsiClass]))(ref) case _ => val result = resolvedElement match { case self: ScSelfTypeElement => ScThisType(getContextOfType(self, classOf[ScTemplateDefinition])) case _ => fromType match { case Some(tp) => makeProjection(tp) case _ => ScalaType.designator(resolvedElement) } } Success(result, Some(ref)) } } } private def fromTemplate(maybeTemplate: Option[ScTemplateDefinition], message: String, path: ScPathElement, function: ScTemplateDefinition => ScType) = { val element = Some(path) maybeTemplate match { case Some(template) => Success(function(template), element) case _ => Failure(message, element) } } private def fromThisReference(thisReference: ScThisReference, function: ScTemplateDefinition => ScType) (path: ScPathElement = thisReference) = fromTemplate(thisReference.refTemplate, "Cannot find template for this reference", path, function) private def fromSuperReference(superReference: ScSuperReference, function: ScTemplateDefinition => ScType) (path: ScPathElement = superReference) = fromTemplate(superReference.drvTemplate, "Cannot find enclosing container", path, function) }
whorbowicz/intellij-scala
src/org/jetbrains/plugins/scala/lang/psi/impl/base/types/ScSimpleTypeElementImpl.scala
Scala
apache-2.0
20,747
package io.byzantium /** * @author Scott Mansfield */ package object importers { }
ScottMansfield/byzantium
src/main/scala/io/byzantium/importers/package.scala
Scala
apache-2.0
89
package org.dsa.iot.ignition.spark import com.ignition.frame.ReduceOp.ReduceOp import com.ignition.frame.SparkRuntime import org.dsa.iot.scala.Having /** * Performs reduceByKey() function by grouping the rows by the selected key first, and then * applying a list of reduce functions to the specified data columns. */ class Reduce(implicit rt: SparkRuntime) extends RxFrameTransformer { def columns(values: (String, ReduceOp)*): Reduce = this having (columns <~ values) def add(tuple: (String, ReduceOp)): Reduce = this having (columns.add <~ tuple) def %(tuple: (String, ReduceOp)): Reduce = add(tuple) def add(name: String, value: ReduceOp): Reduce = add(name -> value) def %(name: String, value: ReduceOp): Reduce = add(name, value) def groupBy(fields: String*): Reduce = this having (groupBy <~ fields.toList) val columns = PortList[(String, ReduceOp)]("columns") val groupBy = Port[List[String]]("groupBy") protected def compute = (groupBy.in combineLatest columns.combinedIns) flatMap { case (grp, flds) => doTransform(com.ignition.frame.Reduce(flds, grp)) } } /** * Factory for [[Reduce]] instances. */ object Reduce { /** * Creates a new Reduce instance. */ def apply()(implicit rt: SparkRuntime): Reduce = new Reduce groupBy () }
IOT-DSA/dslink-scala-ignition
src/main/scala/org/dsa/iot/ignition/spark/Reduce.scala
Scala
apache-2.0
1,287
import leon.lang._ object Overflow4 { def foo4(x: Int): Int = { x - (-1) } }
epfl-lara/leon
src/test/resources/regression/verification/overflow/invalid/Overflow4.scala
Scala
gpl-3.0
88
package com.softwaremill.codebrag.rest import com.softwaremill.codebrag.CodebragServletSpec import com.softwaremill.codebrag.domain.UserWatchedBranch import com.softwaremill.codebrag.service.user.RegisterService import com.softwaremill.codebrag.usecases.branches.WatchedBranchForm import com.softwaremill.codebrag.usecases.registration.{ListRepoBranchesAfterRegistration, ListRepositoriesAfterRegistration, UnwatchBranchAfterRegistration, WatchBranchAfterRegistration} import com.softwaremill.codebrag.usecases.user.{RegisterNewUserUseCase, RegisteredUser, RegistrationForm} import com.softwaremill.codebrag.web.CodebragSpecificJSONFormats.SimpleObjectIdSerializer import org.bson.types.ObjectId import org.json4s.JsonDSL._ import org.mockito.Mockito._ import org.scalatest.BeforeAndAfterEach class RegistrationServletSpec extends CodebragServletSpec with BeforeAndAfterEach { val registerNewUser = mock[RegisterNewUserUseCase] val registerService = mock[RegisterService] val listRepos = mock[ListRepositoriesAfterRegistration] val listRepoBranches = mock[ListRepoBranchesAfterRegistration] val watchBranch = mock[WatchBranchAfterRegistration] val unwatchBranch = mock[UnwatchBranchAfterRegistration] val servlet = new RegistrationServlet(registerService, registerNewUser, listRepos, listRepoBranches, watchBranch, unwatchBranch) override def beforeEach { reset(registerNewUser, registerService, watchBranch, unwatchBranch) } "GET /first-registration" should "return firstRegistration flag" in { //given addServlet(servlet, "/*") when(registerService.isFirstRegistration).thenReturn(true) //when get("/first-registration") { //then status should be(200) body should be(asJson(Map("firstRegistration" -> true))) } } "POST /signup" should "call the register service and return 200 if registration is successful" in { addServlet(servlet, "/*") val newUser = RegistrationForm("adamw", "[email protected]", "123456", "code") val registered = RegisteredUser(newUser.toUser) when(registerNewUser.execute(newUser)).thenReturn(Right(registered)) post("/signup", mapToJson(Map("login" -> "adamw", "email" -> "[email protected]", "password" -> "123456", "invitationCode" -> "code")), defaultJsonHeaders) { status should be(200) } } "POST /signup" should "call the register service and return 403 if registration is unsuccessful" in { addServlet(servlet, "/*") val newUser = RegistrationForm("adamw", "[email protected]", "123456", "code") when(registerNewUser.execute(newUser)).thenReturn(Left(Map.empty[String, Seq[String]])) post("/signup", mapToJson(Map("login" -> "adamw", "email" -> "[email protected]", "password" -> "123456", "invitationCode" -> "code")), defaultJsonHeaders) { status should be(403) } } "POST /signup" should "fallback to empty registration code when one not provided in request" in { addServlet(servlet, "/*") val newUser = RegistrationForm("adamw", "[email protected]", "123456", "") val registered = RegisteredUser(newUser.toUser) when(registerNewUser.execute(newUser)).thenReturn(Right(registered)) post("/signup", mapToJson(Map("login" -> "adamw", "email" -> "[email protected]", "password" -> "123456")), defaultJsonHeaders) { verify(registerNewUser).execute(newUser) } } "POST /repos/repo/branches/branch/watch" should "setup branch as watched" in { addServlet(servlet, "/*") val invCode = "123abc" val repo = "codebrag" val branch = "git/flow/style/branch" val userId = new ObjectId val form = WatchedBranchForm(repo, branch) val watched = UserWatchedBranch(new ObjectId, userId, repo, branch) when(watchBranch.execute(invCode, userId, form)).thenReturn(Right(watched)) post(s"/repos/codebrag/branches/git/flow/style/branch/watch?invitationCode=123abc&userId=${userId.toString}") { status should be(200) body should be(asJson(watched)) } } "DELETE /repos/repo/branches/branch/watch" should "setup branch as watched" in { addServlet(servlet, "/*") val invCode = "123abc" val repo = "codebrag" val branch = "git/flow/style/branch" val userId = new ObjectId val form = WatchedBranchForm(repo, branch) val watched = UserWatchedBranch(new ObjectId, userId, repo, branch) when(unwatchBranch.execute(invCode, userId, form)).thenReturn(Right()) delete(s"/repos/codebrag/branches/git/flow/style/branch/watch?invitationCode=123abc&userId=${userId.toString}") { status should be(200) } } private def asJson[T <: AnyRef](obj: T) = { import org.json4s._ import org.json4s.jackson.Serialization.write implicit val formats = DefaultFormats + SimpleObjectIdSerializer write(obj) } }
frodejohansen/codebrag
codebrag-rest/src/test/scala/com/softwaremill/codebrag/rest/RegistrationServletSpec.scala
Scala
agpl-3.0
4,823
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.dllib.optim import com.intel.analytics.bigdl.dllib.nn.abstractnn.Activity import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric import scala.reflect.ClassTag /** * Precision Recall Area Under Curve will compute the precision-recall pairs and * get the area under the curve. * * Note: It will gather all output probabilities and targets to driver and will compute the * precision, recall and the auc every calling of `result()` * * @param ev tensor numeric environments * @tparam T class tag for tensor numeric */ class PrecisionRecallAUC[T: ClassTag]()(implicit ev: TensorNumeric[T]) extends ValidationMethod[T] { override def apply(output: Activity, target: Activity): ValidationResult = { require(output.isTensor && target.isTensor, s"only support tensor output and tensor target") require(!output.toTensor.isEmpty && !target.toTensor.isEmpty, s"the output and target should not be empty") val array = List(output, target).map(_.toTensor[Float].storage().array()) val results = array.head.zip(array.last).toArray new PRAUCResult(results) } override protected def format(): String = s"PrecisionRecallAUC" } class PRAUCResult(val results: Array[(Float, Float)]) extends ValidationResult { override def result(): (Float, Int) = { val sorted = results.sortBy(_._1).reverse val totalPositive = sorted.count(_._2 == 1) var truePositive = 0.0f var falsePositive = 0.0f var areaUnderCurve = 0.0f var prevPrecision = 1.0f var prevRecall = 0.0f var i = 0 while (truePositive != totalPositive) { val target = sorted(i)._2 if (target == 1.0f) { truePositive += 1 } else { falsePositive += 1 } val precision = truePositive / (truePositive + falsePositive) val recall = truePositive / totalPositive areaUnderCurve += (recall - prevRecall) * (precision + prevPrecision) prevRecall = recall prevPrecision = precision i += 1 } (areaUnderCurve / 2, results.length) } // scalastyle:off methodName override def +(other: ValidationResult): ValidationResult = { new PRAUCResult(results ++ other.asInstanceOf[PRAUCResult].results) } // scalastyle:on override protected def format(): String = { val getResult = result() s"Precision Recall AUC is ${getResult._1} on ${getResult._2}" } }
intel-analytics/BigDL
scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/optim/PrecisionRecallAUC.scala
Scala
apache-2.0
3,031
import akka.actor.{ActorSystem, Props} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.util.{Failure, Success} /** * Created by huanwuji on 2017/3/26. */ object FutureExample extends App { val system = ActorSystem() system.actorOf(Props().withDispatcher("block-dispatcher")) def futureTest(): Unit = { val fu = Future { 1 } fu.onComplete { case Success(value) ⇒ case Failure(ex) ⇒ } } }
huanwuji/akka-stream-in-action
src/main/scala/FutureExample.scala
Scala
apache-2.0
493
/* * * o o o o o * | o | |\\ /| | / * | o-o o--o o-o oo | | O | oo o-o OO o-o o o * | | | | | | | | | | | | | | | | \\ | | \\ / * O---oo-o o--O | o-o o-o-o o o o-o-o o o o-o o * | * o--o * o--o o o--o o o * | | | | o | | * O-Oo oo o-o o-O o-o o-O-o O-o o-o | o-O o-o * | \\ | | | | | | | | | | | | | |-' | | | \\ * o o o-o-o o o-o o-o o o o o | o-o o o-o o-o * * Logical Markov Random Fields (LoMRF). * * */ package lomrf.util import java.util /** * Array utilities. */ object ArrayUtils { /** * Specialized hash code calculation for arbitrary array type. * * @return the hash code for any array type */ def hashCodeOf(array: Array[_]): Int = array match { case x: Array[Char] => util.Arrays.hashCode(x) case x: Array[Byte] => util.Arrays.hashCode(x) case x: Array[Short] => util.Arrays.hashCode(x) case x: Array[Int] => util.Arrays.hashCode(x) case x: Array[Boolean] => util.Arrays.hashCode(x) case x: Array[Float] => util.Arrays.hashCode(x) case x: Array[Long] => util.Arrays.hashCode(x) case x: Array[Double] => util.Arrays.hashCode(x) case x: Array[_] => util.Arrays.hashCode(x.asInstanceOf[Array[AnyRef]]) case _ => throw new RuntimeException("possible bug?") } /** * Specialized equality between arrays for arbitrary types. It checks * if the arrays have the same length and contain elements from the * same class type. * * @param array1 one array * @param array2 another array * * @return true if arrays are equal, false otherwise */ def equals(array1: Array[_], array2: Array[_]): Boolean = { // length checking if (array1.length != array2.length) return false val classOfArray1 = array1.getClass val classOfArray2 = array2.getClass // class type checking if (classOfArray1 == classOfArray2) array1 match { case x: Array[Char] => util.Arrays.equals(array1.asInstanceOf[Array[Char]], array2.asInstanceOf[Array[Char]]) case x: Array[Byte] => util.Arrays.equals(array1.asInstanceOf[Array[Byte]], array2.asInstanceOf[Array[Byte]]) case x: Array[Short] => util.Arrays.equals(array1.asInstanceOf[Array[Short]], array2.asInstanceOf[Array[Short]]) case x: Array[Int] => util.Arrays.equals(array1.asInstanceOf[Array[Int]], array2.asInstanceOf[Array[Int]]) case x: Array[Boolean] => util.Arrays.equals(array1.asInstanceOf[Array[Boolean]], array2.asInstanceOf[Array[Boolean]]) case x: Array[Float] => util.Arrays.equals(array1.asInstanceOf[Array[Float]], array2.asInstanceOf[Array[Float]]) case x: Array[Long] => util.Arrays.equals(array1.asInstanceOf[Array[Long]], array2.asInstanceOf[Array[Long]]) case x: Array[Double] => util.Arrays.equals(array1.asInstanceOf[Array[Double]], array2.asInstanceOf[Array[Double]]) case x: Array[_] => util.Arrays.equals(array1.asInstanceOf[Array[AnyRef]], array2.asInstanceOf[Array[AnyRef]]) case _ => throw new RuntimeException("possible bug?") } else false } }
anskarl/LoMRF
src/main/scala/lomrf/util/ArrayUtils.scala
Scala
apache-2.0
3,357
package com.thoughtworks.datacommons.prepbuddy.normalizers import com.thoughtworks.datacommons.prepbuddy.rdds.TransformableRDD import org.apache.spark.rdd.RDD /** * A normalizer strategy which normalizes the data by multiplying it to pow(10,i-1). * where i is the length of the number. */ class DecimalScalingNormalizer extends NormalizationStrategy { private var length = 0 override def prepare(transformableRDD: TransformableRDD, columnIndex: Int): Unit = { val doubleRDD: RDD[Double] = transformableRDD.toDoubleRDD(columnIndex) length = String.valueOf(doubleRDD.max().intValue()).length() } override def normalize(rawValue: String): String = { String.valueOf(rawValue.toDouble / Math.pow(10, length - 1)) } }
data-commons/prep-buddy
src/main/scala/com/thoughtworks/datacommons/prepbuddy/normalizers/DecimalScalingNormalizer.scala
Scala
apache-2.0
779
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.classification import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.json4s.{DefaultFormats, JObject} import org.json4s.JsonDSL._ import org.apache.spark.annotation.Since import org.apache.spark.internal.Logging import org.apache.spark.ml.feature.LabeledPoint import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors} import org.apache.spark.ml.param.ParamMap import org.apache.spark.ml.regression.DecisionTreeRegressionModel import org.apache.spark.ml.tree._ import org.apache.spark.ml.tree.impl.GradientBoostedTrees import org.apache.spark.ml.util._ import org.apache.spark.ml.util.DefaultParamsReader.Metadata import org.apache.spark.ml.util.Instrumentation.instrumented import org.apache.spark.mllib.tree.configuration.{Algo => OldAlgo} import org.apache.spark.mllib.tree.model.{GradientBoostedTreesModel => OldGBTModel} import org.apache.spark.sql.{DataFrame, Dataset, Row} import org.apache.spark.sql.functions._ /** * Gradient-Boosted Trees (GBTs) (http://en.wikipedia.org/wiki/Gradient_boosting) * learning algorithm for classification. * It supports binary labels, as well as both continuous and categorical features. * * The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999. * * Notes on Gradient Boosting vs. TreeBoost: * - This implementation is for Stochastic Gradient Boosting, not for TreeBoost. * - Both algorithms learn tree ensembles by minimizing loss functions. * - TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes * based on the loss function, whereas the original gradient boosting method does not. * - We expect to implement TreeBoost in the future: * [https://issues.apache.org/jira/browse/SPARK-4240] * * @note Multiclass labels are not currently supported. */ @Since("1.4.0") class GBTClassifier @Since("1.4.0") ( @Since("1.4.0") override val uid: String) extends ProbabilisticClassifier[Vector, GBTClassifier, GBTClassificationModel] with GBTClassifierParams with DefaultParamsWritable with Logging { @Since("1.4.0") def this() = this(Identifiable.randomUID("gbtc")) // Override parameter setters from parent trait for Java API compatibility. // Parameters from TreeClassifierParams: /** @group setParam */ @Since("1.4.0") override def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") override def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. * E.g. 10 means that the cache will get checkpointed every 10 iterations. * This is only used if cacheNodeIds is true and if the checkpoint directory is set in * [[org.apache.spark.SparkContext]]. * Must be at least 1. * (default = 10) * @group setParam */ @Since("1.4.0") override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** * The impurity setting is ignored for GBT models. * Individual trees are built using impurity "Variance." * * @group setParam */ @Since("1.4.0") override def setImpurity(value: String): this.type = { logWarning("GBTClassifier.setImpurity should NOT be used") this } // Parameters from TreeEnsembleParams: /** @group setParam */ @Since("1.4.0") override def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) /** @group setParam */ @Since("1.4.0") override def setSeed(value: Long): this.type = set(seed, value) // Parameters from GBTParams: /** @group setParam */ @Since("1.4.0") override def setMaxIter(value: Int): this.type = set(maxIter, value) /** @group setParam */ @Since("1.4.0") override def setStepSize(value: Double): this.type = set(stepSize, value) /** @group setParam */ @Since("2.3.0") override def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) // Parameters from GBTClassifierParams: /** @group setParam */ @Since("1.4.0") def setLossType(value: String): this.type = set(lossType, value) /** @group setParam */ @Since("2.4.0") def setValidationIndicatorCol(value: String): this.type = { set(validationIndicatorCol, value) } override protected def train( dataset: Dataset[_]): GBTClassificationModel = instrumented { instr => val categoricalFeatures: Map[Int, Int] = MetadataUtils.getCategoricalFeatures(dataset.schema($(featuresCol))) val withValidation = isDefined(validationIndicatorCol) && $(validationIndicatorCol).nonEmpty // We copy and modify this from Classifier.extractLabeledPoints since GBT only supports // 2 classes now. This lets us provide a more precise error message. val convert2LabeledPoint = (dataset: Dataset[_]) => { dataset.select(col($(labelCol)), col($(featuresCol))).rdd.map { case Row(label: Double, features: Vector) => require(label == 0 || label == 1, s"GBTClassifier was given" + s" dataset with invalid label $label. Labels must be in {0,1}; note that" + s" GBTClassifier currently only supports binary classification.") LabeledPoint(label, features) } } val (trainDataset, validationDataset) = if (withValidation) { ( convert2LabeledPoint(dataset.filter(not(col($(validationIndicatorCol))))), convert2LabeledPoint(dataset.filter(col($(validationIndicatorCol)))) ) } else { (convert2LabeledPoint(dataset), null) } val numFeatures = trainDataset.first().features.size val boostingStrategy = super.getOldBoostingStrategy(categoricalFeatures, OldAlgo.Classification) val numClasses = 2 if (isDefined(thresholds)) { require($(thresholds).length == numClasses, this.getClass.getSimpleName + ".train() called with non-matching numClasses and thresholds.length." + s" numClasses=$numClasses, but thresholds has length ${$(thresholds).length}") } instr.logPipelineStage(this) instr.logDataset(dataset) instr.logParams(this, labelCol, featuresCol, predictionCol, impurity, lossType, maxDepth, maxBins, maxIter, maxMemoryInMB, minInfoGain, minInstancesPerNode, seed, stepSize, subsamplingRate, cacheNodeIds, checkpointInterval, featureSubsetStrategy, validationIndicatorCol) instr.logNumFeatures(numFeatures) instr.logNumClasses(numClasses) val (baseLearners, learnerWeights) = if (withValidation) { GradientBoostedTrees.runWithValidation(trainDataset, validationDataset, boostingStrategy, $(seed), $(featureSubsetStrategy)) } else { GradientBoostedTrees.run(trainDataset, boostingStrategy, $(seed), $(featureSubsetStrategy)) } new GBTClassificationModel(uid, baseLearners, learnerWeights, numFeatures) } @Since("1.4.1") override def copy(extra: ParamMap): GBTClassifier = defaultCopy(extra) } @Since("1.4.0") object GBTClassifier extends DefaultParamsReadable[GBTClassifier] { /** Accessor for supported loss settings: logistic */ @Since("1.4.0") final val supportedLossTypes: Array[String] = GBTClassifierParams.supportedLossTypes @Since("2.0.0") override def load(path: String): GBTClassifier = super.load(path) } /** * Gradient-Boosted Trees (GBTs) (http://en.wikipedia.org/wiki/Gradient_boosting) * model for classification. * It supports binary labels, as well as both continuous and categorical features. * * @param _trees Decision trees in the ensemble. * @param _treeWeights Weights for the decision trees in the ensemble. * * @note Multiclass labels are not currently supported. */ @Since("1.6.0") class GBTClassificationModel private[ml]( @Since("1.6.0") override val uid: String, private val _trees: Array[DecisionTreeRegressionModel], private val _treeWeights: Array[Double], @Since("1.6.0") override val numFeatures: Int, @Since("2.2.0") override val numClasses: Int) extends ProbabilisticClassificationModel[Vector, GBTClassificationModel] with GBTClassifierParams with TreeEnsembleModel[DecisionTreeRegressionModel] with MLWritable with Serializable { require(_trees.nonEmpty, "GBTClassificationModel requires at least 1 tree.") require(_trees.length == _treeWeights.length, "GBTClassificationModel given trees, treeWeights" + s" of non-matching lengths (${_trees.length}, ${_treeWeights.length}, respectively).") /** * Construct a GBTClassificationModel * * @param _trees Decision trees in the ensemble. * @param _treeWeights Weights for the decision trees in the ensemble. * @param numFeatures The number of features. */ private[ml] def this( uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double], numFeatures: Int) = this(uid, _trees, _treeWeights, numFeatures, 2) /** * Construct a GBTClassificationModel * * @param _trees Decision trees in the ensemble. * @param _treeWeights Weights for the decision trees in the ensemble. */ @Since("1.6.0") def this(uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double]) = this(uid, _trees, _treeWeights, -1, 2) @Since("1.4.0") override def trees: Array[DecisionTreeRegressionModel] = _trees /** * Number of trees in ensemble */ @Since("2.0.0") val getNumTrees: Int = trees.length @Since("1.4.0") override def treeWeights: Array[Double] = _treeWeights override protected def transformImpl(dataset: Dataset[_]): DataFrame = { val bcastModel = dataset.sparkSession.sparkContext.broadcast(this) val predictUDF = udf { (features: Any) => bcastModel.value.predict(features.asInstanceOf[Vector]) } dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol)))) } override def predict(features: Vector): Double = { // If thresholds defined, use predictRaw to get probabilities, otherwise use optimization if (isDefined(thresholds)) { super.predict(features) } else { if (margin(features) > 0.0) 1.0 else 0.0 } } override protected def predictRaw(features: Vector): Vector = { val prediction: Double = margin(features) Vectors.dense(Array(-prediction, prediction)) } override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector = { rawPrediction match { case dv: DenseVector => dv.values(0) = loss.computeProbability(dv.values(0)) dv.values(1) = 1.0 - dv.values(0) dv case sv: SparseVector => throw new RuntimeException("Unexpected error in GBTClassificationModel:" + " raw2probabilityInPlace encountered SparseVector") } } /** Number of trees in ensemble */ val numTrees: Int = trees.length @Since("1.4.0") override def copy(extra: ParamMap): GBTClassificationModel = { copyValues(new GBTClassificationModel(uid, _trees, _treeWeights, numFeatures, numClasses), extra).setParent(parent) } @Since("1.4.0") override def toString: String = { s"GBTClassificationModel (uid=$uid) with $numTrees trees" } /** * Estimate of the importance of each feature. * * Each feature's importance is the average of its importance across all trees in the ensemble * The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. * (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) * and follows the implementation from scikit-learn. * See `DecisionTreeClassificationModel.featureImportances` */ @Since("2.0.0") lazy val featureImportances: Vector = TreeEnsembleModel.featureImportances(trees, numFeatures) /** Raw prediction for the positive class. */ private def margin(features: Vector): Double = { val treePredictions = _trees.map(_.rootNode.predictImpl(features).prediction) blas.ddot(numTrees, treePredictions, 1, _treeWeights, 1) } /** (private[ml]) Convert to a model in the old API */ private[ml] def toOld: OldGBTModel = { new OldGBTModel(OldAlgo.Classification, _trees.map(_.toOld), _treeWeights) } // hard coded loss, which is not meant to be changed in the model private val loss = getOldLossType /** * Method to compute error or loss for every iteration of gradient boosting. * * @param dataset Dataset for validation. */ @Since("2.4.0") def evaluateEachIteration(dataset: Dataset[_]): Array[Double] = { val data = dataset.select(col($(labelCol)), col($(featuresCol))).rdd.map { case Row(label: Double, features: Vector) => LabeledPoint(label, features) } GradientBoostedTrees.evaluateEachIteration(data, trees, treeWeights, loss, OldAlgo.Classification ) } @Since("2.0.0") override def write: MLWriter = new GBTClassificationModel.GBTClassificationModelWriter(this) } @Since("2.0.0") object GBTClassificationModel extends MLReadable[GBTClassificationModel] { private val numFeaturesKey: String = "numFeatures" private val numTreesKey: String = "numTrees" @Since("2.0.0") override def read: MLReader[GBTClassificationModel] = new GBTClassificationModelReader @Since("2.0.0") override def load(path: String): GBTClassificationModel = super.load(path) private[GBTClassificationModel] class GBTClassificationModelWriter(instance: GBTClassificationModel) extends MLWriter { override protected def saveImpl(path: String): Unit = { val extraMetadata: JObject = Map( numFeaturesKey -> instance.numFeatures, numTreesKey -> instance.getNumTrees) EnsembleModelReadWrite.saveImpl(instance, path, sparkSession, extraMetadata) } } private class GBTClassificationModelReader extends MLReader[GBTClassificationModel] { /** Checked against metadata when loading model */ private val className = classOf[GBTClassificationModel].getName private val treeClassName = classOf[DecisionTreeRegressionModel].getName override def load(path: String): GBTClassificationModel = { implicit val format = DefaultFormats val (metadata: Metadata, treesData: Array[(Metadata, Node)], treeWeights: Array[Double]) = EnsembleModelReadWrite.loadImpl(path, sparkSession, className, treeClassName) val numFeatures = (metadata.metadata \\ numFeaturesKey).extract[Int] val numTrees = (metadata.metadata \\ numTreesKey).extract[Int] val trees: Array[DecisionTreeRegressionModel] = treesData.map { case (treeMetadata, root) => val tree = new DecisionTreeRegressionModel(treeMetadata.uid, root, numFeatures) treeMetadata.getAndSetParams(tree) tree } require(numTrees == trees.length, s"GBTClassificationModel.load expected $numTrees" + s" trees based on metadata but found ${trees.length} trees.") val model = new GBTClassificationModel(metadata.uid, trees, treeWeights, numFeatures) metadata.getAndSetParams(model) model } } /** Convert a model from the old API */ private[ml] def fromOld( oldModel: OldGBTModel, parent: GBTClassifier, categoricalFeatures: Map[Int, Int], numFeatures: Int = -1, numClasses: Int = 2): GBTClassificationModel = { require(oldModel.algo == OldAlgo.Classification, "Cannot convert GradientBoostedTreesModel" + s" with algo=${oldModel.algo} (old API) to GBTClassificationModel (new API).") val newTrees = oldModel.trees.map { tree => // parent for each tree is null since there is no good way to set this. DecisionTreeRegressionModel.fromOld(tree, null, categoricalFeatures) } val uid = if (parent != null) parent.uid else Identifiable.randomUID("gbtc") new GBTClassificationModel(uid, newTrees, oldModel.treeWeights, numFeatures, numClasses) } }
ahnqirage/spark
mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala
Scala
apache-2.0
17,176
package models.quiz import com.artclod.slick.NumericBoolean import models.support.HasOrder import models.user.User import models.{QuestionId, QuestionPartId, QuestionSectionId} import play.twirl.api.Html import models.quiz.UserConstant.EnhancedHtml case class QuestionPartChoice(id: QuestionPartId, sectionId: QuestionSectionId, questionId: QuestionId, summaryRaw: String, summaryHtml: Html, correctChoice: Short, order: Short) extends HasOrder[QuestionPartChoice] { def correct = NumericBoolean(correctChoice) def fixConstants(user: User, userConstants: QuestionUserConstantsFrame) = this.copy(summaryHtml = summaryHtml.fixConstants(user, questionId, userConstants)) }
kristiankime/calc-tutor
app/models/quiz/QuestionPartChoice.scala
Scala
mit
676
package org.scalex package document import scala._ object ScaladocUrl { def apply(doc: Doc): Option[String] = doc match { case x: Template ⇒ apply(x.member, x.typeParams) case x: Def ⇒ apply(x.member, x.typeParams) case x: Val ⇒ apply(x.member, Nil) } // http://www.scala-lang.org/api/2.10.3/index.html# // scala.collection.immutable.List@ // orElse[A1<:Int,B1>:A](PartialFunction[A1,B1]):PartialFunction[A1,B1] def apply( member: Member, typeParams: List[model.TypeParam]): Option[String] = member.project.scaladocUrl map { base ⇒ val parent = member.parent.entity.qualifiedName val name = member.entity.name val sig = typeParams.shows s"$base/index.html#$parent@$name$sig" } }
kzys/scalex
src/main/scala/document/ScaladocUrl.scala
Scala
mit
765
package com.github.mehmetakiftutuncu.errors import com.github.mehmetakiftutuncu.errors.base.ErrorBase /** * A simple error implementation for really simple and trivial cases * * @param name Name of the error * * @author Mehmet Akif Tütüncü */ case class SimpleError(name: String) extends ErrorBase { /** * Represents this error as Json formatted String * * @param includeWhen If set to true, when value of the error will be included in the representation * * @return Representation of this error */ override def represent(includeWhen: Boolean): String = { val nameRepresentation: String = s""""name":"${name.replaceAll("\\"", "\\\\\\\\\\"")}"""" val whenRepresentation: String = if (!includeWhen) "" else s""","when":$when""" s"""{$nameRepresentation$whenRepresentation}""" } } /** A container object for some predefined [[com.github.mehmetakiftutuncu.errors.SimpleError]]s */ object SimpleError { def database: SimpleError = SimpleError("database") def notFound: SimpleError = SimpleError("notFound") def invalidData: SimpleError = SimpleError("invalidData") def invalidRequest: SimpleError = SimpleError("invalidRequest") def requestFailed: SimpleError = SimpleError("requestFailed") def timeout: SimpleError = SimpleError("timeout") def authorization: SimpleError = SimpleError("authorization") def authentication: SimpleError = SimpleError("authentication") }
mehmetakiftutuncu/Errors
src/main/scala/com/github/mehmetakiftutuncu/errors/SimpleError.scala
Scala
mit
1,459
/* * Copyright 2015 Johannes Rudolph * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package net.virtualvoid.sbt.graph package rendering import util.AsciiTreeLayout import util.ConsoleUtils._ object AsciiTree { def asciiTree(graph: ModuleGraph): String = { val deps = graph.dependencyMap // there should only be one root node (the project itself) val roots = graph.roots roots.map { root ⇒ AsciiTreeLayout.toAscii[Module](root, node ⇒ deps.getOrElse(node.id, Seq.empty[Module]), displayModule) }.mkString("\n") } def displayModule(module: Module): String = red(module.id.idString + module.extraInfo + module.error.map(" (error: " + _ + ")").getOrElse("") + module.evictedByVersion.map(_ formatted " (evicted by: %s)").getOrElse(""), module.hadError) }
jrudolph/sbt-dependency-graph
src/main/scala/net/virtualvoid/sbt/graph/rendering/AsciiTree.scala
Scala
apache-2.0
1,357
/* * Copyright (c) 2012-2014 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics.snowplow.enrich.common package adapters package registry // Joda-Time import org.joda.time.DateTime // Scalaz import scalaz._ import Scalaz._ // json4s import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ import org.json4s.scalaz.JsonScalaz._ // Snowplow import loaders.{ CollectorApi, CollectorSource, CollectorContext, CollectorPayload } import utils.ConversionUtils import SpecHelpers._ // Specs2 import org.specs2.{Specification, ScalaCheck} import org.specs2.matcher.DataTables import org.specs2.scalaz.ValidationMatchers class MailchimpAdapterSpec extends Specification with DataTables with ValidationMatchers with ScalaCheck { def is = "This is a specification to test the MailchimpAdapter functionality" ^ p^ "toKeys should return a valid List of Keys from a string containing braces (or not)" ! e1^ "toNestedJField should return a valid JField nested to contain all keys and then the supplied value" ! e2^ "toJFields should return a valid list of JFields based on the Map supplied" ! e3^ "mergeJFields should return a correctly merged JSON which matches the expectation" ! e4^ "reformatParameters should return a parameter Map with correctly formatted values" ! e5^ "toRawEvents must return a Nel Success with a correctly formatted ue_pr json" ! e6^ "toRawEvents must return a Nel Success with a correctly merged and formatted ue_pr json" ! e7^ "toRawEvents must return a Nel Success for a supported event type" ! e8^ "toRawEvents must return a Nel Failure error for an unsupported event type" ! e9^ "toRawEvents must return a Nel Success containing an unsubscribe event and query string parameters" ! e10^ "toRawEvents must return a Nel Failure if the request body is missing" ! e11^ "toRawEvents must return a Nel Failure if the content type is missing" ! e12^ "toRawEvents must return a Nel Failure if the content type is incorrect" ! e13^ "toRawEvents must return a Nel Failure if the request body does not contain a type parameter" ! e14^ end implicit val resolver = SpecHelpers.IgluResolver object Shared { val api = CollectorApi("com.mailchimp", "v1") val cljSource = CollectorSource("clj-tomcat", "UTF-8", None) val context = CollectorContext(DateTime.parse("2013-08-29T00:18:48.000+00:00"), "37.157.33.123".some, None, None, Nil, None) } val ContentType = "application/x-www-form-urlencoded" def e1 = { val keys = "data[merges][LNAME]" val expected = NonEmptyList("data", "merges", "LNAME") MailchimpAdapter.toKeys(keys) mustEqual expected } def e2 = { val keys = NonEmptyList("data", "merges", "LNAME") val value = "Beemster" val expected = JField("data", JObject(List(("merges", JObject(List(("LNAME", JString("Beemster")))))))) MailchimpAdapter.toNestedJField(keys, value) mustEqual expected } def e3 = { val map = Map( "data[merges][LNAME]" -> "Beemster", "data[merges][FNAME]" -> "Joshua" ) val expected = List( JField("data", JObject(List(("merges", JObject(List(("LNAME", JString("Beemster")))))))), JField("data", JObject(List(("merges", JObject(List(("FNAME", JString("Joshua")))))))) ) MailchimpAdapter.toJFields(map) mustEqual expected } def e4 = { val a = JField("l1", JField("l2", JField("l3", JField("str", "hi")))) val b = JField("l1", JField("l2", JField("l3", JField("num", 42)))) val expected = JObject(List(("l1", JObject(List(("l2", JObject(List(("l3", JObject(List( ("str", JString("hi")), ("num", JInt(42)) ))))))))))) MailchimpAdapter.mergeJFields(List(a, b)) mustEqual expected } def e5 = "SPEC NAME" || "PARAMS" | "EXPECTED OUTPUT" | "Return Updated Params" !! Map("type" -> "subscribe", "fired_at" -> "2014-10-22 13:50:00") ! Map("type" -> "subscribe", "fired_at" -> "2014-10-22T13:50:00.000Z") | "Return Same Params" !! Map("type" -> "subscribe", "id" -> "some_id") ! Map("type" -> "subscribe", "id" -> "some_id") |> { (_, params, expected) => val actual = MailchimpAdapter.reformatParameters(params) actual mustEqual expected } def e6 = { val body = "type=subscribe&data%5Bmerges%5D%5BLNAME%5D=Beemster" val payload = CollectorPayload(Shared.api, Nil, ContentType.some, body.some, Shared.cljSource, Shared.context) val expectedJson = """|{ |"schema":"iglu:com.snowplowanalytics.snowplow/unstruct_event/jsonschema/1-0-0", |"data":{ |"schema":"iglu:com.mailchimp/subscribe/jsonschema/1-0-0", |"data":{ |"type":"subscribe", |"data":{ |"merges":{ |"LNAME":"Beemster" |} |} |} |} |}""".stripMargin.replaceAll("[\\n\\r]","") val actual = MailchimpAdapter.toRawEvents(payload) actual must beSuccessful(NonEmptyList(RawEvent(Shared.api, Map("tv" -> "com.mailchimp-v1", "e" -> "ue", "p" -> "srv", "ue_pr" -> expectedJson), ContentType.some, Shared.cljSource, Shared.context))) } def e7 = { val body = "type=subscribe&data%5Bmerges%5D%5BFNAME%5D=Agent&data%5Bmerges%5D%5BLNAME%5D=Smith" val payload = CollectorPayload(Shared.api, Nil, ContentType.some, body.some, Shared.cljSource, Shared.context) val expectedJson = """|{ |"schema":"iglu:com.snowplowanalytics.snowplow/unstruct_event/jsonschema/1-0-0", |"data":{ |"schema":"iglu:com.mailchimp/subscribe/jsonschema/1-0-0", |"data":{ |"type":"subscribe", |"data":{ |"merges":{ |"FNAME":"Agent", |"LNAME":"Smith" |} |} |} |} |}""".stripMargin.replaceAll("[\\n\\r]","") val actual = MailchimpAdapter.toRawEvents(payload) actual must beSuccessful(NonEmptyList(RawEvent(Shared.api, Map("tv" -> "com.mailchimp-v1", "e" -> "ue", "p" -> "srv", "ue_pr" -> expectedJson), ContentType.some, Shared.cljSource, Shared.context))) } def e8 = "SPEC NAME" || "SCHEMA TYPE" | "EXPECTED SCHEMA" | "Valid, type subscribe" !! "subscribe" ! "iglu:com.mailchimp/subscribe/jsonschema/1-0-0" | "Valid, type unsubscribe" !! "unsubscribe" ! "iglu:com.mailchimp/unsubscribe/jsonschema/1-0-0" | "Valid, type profile" !! "profile" ! "iglu:com.mailchimp/profile_update/jsonschema/1-0-0" | "Valid, type email" !! "upemail" ! "iglu:com.mailchimp/email_address_change/jsonschema/1-0-0" | "Valid, type cleaned" !! "cleaned" ! "iglu:com.mailchimp/cleaned_email/jsonschema/1-0-0" | "Valid, type campaign" !! "campaign" ! "iglu:com.mailchimp/campaign_sending_status/jsonschema/1-0-0" |> { (_, schema, expected) => val body = "type="+schema val payload = CollectorPayload(Shared.api, Nil, ContentType.some, body.some, Shared.cljSource, Shared.context) val expectedJson = "{\\"schema\\":\\"iglu:com.snowplowanalytics.snowplow/unstruct_event/jsonschema/1-0-0\\",\\"data\\":{\\"schema\\":\\""+expected+"\\",\\"data\\":{\\"type\\":\\""+schema+"\\"}}}" val actual = MailchimpAdapter.toRawEvents(payload) actual must beSuccessful(NonEmptyList(RawEvent(Shared.api, Map("tv" -> "com.mailchimp-v1", "e" -> "ue", "p" -> "srv", "ue_pr" -> expectedJson), ContentType.some, Shared.cljSource, Shared.context))) } def e9 = "SPEC NAME" || "SCHEMA TYPE" | "EXPECTED OUTPUT" | "Invalid, bad type" !! "bad" ! "MailChimp event failed: type parameter [bad] not recognized" | "Invalid, no type" !! "" ! "MailChimp event failed: type parameter is empty - cannot determine event type" |> { (_, schema, expected) => val body = "type="+schema val payload = CollectorPayload(Shared.api, Nil, ContentType.some, body.some, Shared.cljSource, Shared.context) val actual = MailchimpAdapter.toRawEvents(payload) actual must beFailing(NonEmptyList(expected)) } def e10 = { val body = "type=unsubscribe&fired_at=2014-10-22+13%3A10%3A40&data%5Baction%5D=unsub&data%5Breason%5D=manual&data%5Bid%5D=94826aa750&data%5Bemail%5D=josh%40snowplowanalytics.com&data%5Bemail_type%5D=html&data%5Bip_opt%5D=82.225.169.220&data%5Bweb_id%5D=203740265&data%5Bmerges%5D%5BEMAIL%5D=josh%40snowplowanalytics.com&data%5Bmerges%5D%5BFNAME%5D=Joshua&data%5Bmerges%5D%5BLNAME%5D=Beemster&data%5Blist_id%5D=f1243a3b12" val qs = toNameValuePairs("nuid" -> "123") val payload = CollectorPayload(Shared.api, qs, ContentType.some, body.some, Shared.cljSource, Shared.context) val expectedJson = """|{ |"schema":"iglu:com.snowplowanalytics.snowplow/unstruct_event/jsonschema/1-0-0", |"data":{ |"schema":"iglu:com.mailchimp/unsubscribe/jsonschema/1-0-0", |"data":{ |"data":{ |"ip_opt":"82.225.169.220", |"merges":{ |"LNAME":"Beemster", |"FNAME":"Joshua", |"EMAIL":"josh%40snowplowanalytics.com" |}, |"email":"josh%40snowplowanalytics.com", |"list_id":"f1243a3b12", |"email_type":"html", |"reason":"manual", |"id":"94826aa750", |"action":"unsub", |"web_id":"203740265" |}, |"fired_at":"2014-10-22T13%3A10%3A40.000Z", |"type":"unsubscribe" |} |} |}""".stripMargin.replaceAll("[\\n\\r]","") val actual = MailchimpAdapter.toRawEvents(payload) actual must beSuccessful(NonEmptyList(RawEvent(Shared.api, Map("tv" -> "com.mailchimp-v1", "e" -> "ue", "p" -> "srv", "ue_pr" -> expectedJson, "nuid" -> "123"), ContentType.some, Shared.cljSource, Shared.context))) } def e11 = { val payload = CollectorPayload(Shared.api, Nil, ContentType.some, None, Shared.cljSource, Shared.context) val actual = MailchimpAdapter.toRawEvents(payload) actual must beFailing(NonEmptyList("Request body is empty: no MailChimp event to process")) } def e12 = { val payload = CollectorPayload(Shared.api, Nil, None, "stub".some, Shared.cljSource, Shared.context) val actual = MailchimpAdapter.toRawEvents(payload) actual must beFailing(NonEmptyList("Request body provided but content type empty, expected application/x-www-form-urlencoded for MailChimp")) } def e13 = { val payload = CollectorPayload(Shared.api, Nil, "application/json".some, "stub".some, Shared.cljSource, Shared.context) val actual = MailchimpAdapter.toRawEvents(payload) actual must beFailing(NonEmptyList("Content type of application/json provided, expected application/x-www-form-urlencoded for MailChimp")) } def e14 = { val body = "fired_at=2014-10-22+13%3A10%3A40" val payload = CollectorPayload(Shared.api, Nil, ContentType.some, body.some, Shared.cljSource, Shared.context) val actual = MailchimpAdapter.toRawEvents(payload) actual must beFailing(NonEmptyList("No MailChimp type parameter provided: cannot determine event type")) } }
krahman/snowplow
3-enrich/scala-common-enrich/src/test/scala/com.snowplowanalytics.snowplow.enrich.common/adapters/registry/MailchimpAdapterSpec.scala
Scala
apache-2.0
13,129
package coltfred.jsongenerator import scalaz._, Scalaz._ import argonaut.DecodeJson /** * A graph is a root variable which is some number of Variables that could be * chosen as the starting point of traversal. This is separate from adjacencyList * because the outside caller needs to know the possible starting places. */ trait Graph[A] { def rootVariable: VariableChoices[A] def adjacencyList: AdjacencyList[A] } object Graph { def apply[A](r: VariableChoices[A], adj: AdjacencyList[A]): Graph[A] = new Graph[A] { val rootVariable = r val adjacencyList = adj } def fromJson[A: DecodeJson](data: String): Error \\/ Graph[A] = { for { parsedVariable <- ParsedVariable.parse[A](data) graph <- fromRootParsedVariable(parsedVariable) } yield graph } private[jsongenerator] def fromRootParsedVariable[A](p: ParsedVariable[A]): Error \\/ Graph[A] = { for { root <- VariableChoices(p) adjList <- fromParsedVariables(expandChoices(root, p.choices)) } yield apply(root, adjList) } //Return the extracted Variables with their children private def expandChoices[A](choice: VariableChoices[A], p: List[ParsedVariableChoice[A]]): List[(Variable[A], List[ParsedVariable[A]])] = { choice.values.zip(p.map(_.dependents)) } private def combine[A](adjs: AdjacencyList[A]*) = { adjs.reduceOption(_ union _).getOrElse(==>>.empty) } /** * Given variables and the parsed variables they lead to, create an adjacency list */ private def fromParsedVariables[A](l: List[(Variable[A], List[ParsedVariable[A]])]): Error \\/ AdjacencyList[A] = { l.traverseU { case (variable, parsedVariables) => fromParsedVariable(variable, parsedVariables) }.map(combine) } /** * For a single variable create an node in the graph and call fromParsedVariables on all sub paths * from that node. */ private[jsongenerator] def fromParsedVariable[A](r: Variable[A], p: List[ParsedVariable[A]]): Error \\/ AdjacencyList[A] = { for { nextVariableChoices <- p.traverseU(VariableChoices(_, r.some)) nextLevel = nextVariableChoices.zip(p.map(_.choices)).flatMap(t => expandChoices(t._1, t._2)) recursiveAdjList <- fromParsedVariables(nextLevel) adjacencyList = choicesToAdjacencyList(r, nextVariableChoices) } yield combine(recursiveAdjList, adjacencyList) } private[jsongenerator] def choicesToAdjacencyList[A](r: Variable[A], l: List[VariableChoices[A]]): AdjacencyList[A] = { l match { case Nil => ==>>.empty case ll => ==>>(r -> ll) } } }
coltfred/jsongenerator
src/main/scala/coltfred/jsongenerator/Graph.scala
Scala
apache-2.0
2,578
import org.scalacheck.Properties import org.scalacheck.Prop.forAll import scalautil._ object PredicateTest extends Properties("Predicate"){ property("apply") = forAll{ (p: Int => Boolean, i: Int) => Predicate(p)(i) == p(i) } property("map") = forAll{ (p: Int => Boolean, f: Boolean => Boolean, i: Int) => Predicate(p).map(f).run(i) == f(p(i)) } property("map2") = forAll{ (p1: Int => Boolean, p2: Int => Boolean, f: (Boolean, Boolean) => Boolean, i: Int) => Predicate.map2(Predicate(p1), Predicate(p2))(f).run(i) == f(p1(i), p2(i)) } property("flatMap") = forAll{ (p: Int => Boolean, f: Boolean => (Int => Boolean), i: Int) => Predicate(p).flatMap(b => Predicate(f(b))).run(i) == f(p(i))(i) } property("and") = forAll{ (p1: Int => Boolean, p2: Int => Boolean, i: Int) => (Predicate(p1) and Predicate(p2)).run(i) == (p1(i) && p2(i)) } property("or") = forAll{ (p1: Int => Boolean, p2: Int => Boolean, i: Int) => (Predicate(p1) or Predicate(p2)).run(i) == (p1(i) || p2(i)) } property("inverse") = forAll{ (p: Int => Boolean, i: Int) => Predicate(p).inverse.run(i) == !(p(i)) } property("nand") = forAll{ (p1: Int => Boolean, p2: Int => Boolean, i: Int) => (Predicate(p1) nand Predicate(p2)).run(i) == !(p1(i) && p2(i)) } property("nor") = forAll{ (p1: Int => Boolean, p2: Int => Boolean, i: Int) => (Predicate(p1) nor Predicate(p2)).run(i) == !(p1(i) || p2(i)) } }
morikuni/scalautil
src/test/scala/PredicateTest.scala
Scala
apache-2.0
1,409