|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, text_features |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["English"] |
|
_PUBMED = False |
|
|
|
_CITATION = """\ |
|
@inproceedings{, |
|
author = {Dannenfelser, Ruth and Zhong, Jeffrey and Zhang, Ran and Yao, Vicky}, |
|
title = {Into the Single Cell Multiverse: an End-to-End Dataset for Procedural Knowledge Extraction in Biomedical Texts}, |
|
publisher = {Advances in Neural Information Processing Systems}, |
|
volume = {36}, |
|
year = {2024}, |
|
url = {https://proceedings.neurips.cc/paper_files/paper/2023/file/23e3d86c9a19d0caf2ec997e73dfcfbd-Paper-Datasets_and_Benchmarks.pdf}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "flambe" |
|
_DISPLAYNAME = "Flambe" |
|
|
|
_DESCRIPTION = """\ |
|
FlaMBe is a dataset aimed at procedural knowledge extraction from biomedical texts, |
|
particularly focusing on single cell research methodologies described in academic papers. It includes |
|
annotations from 55 full-text articles and 1,195 abstracts, covering nearly 710,000 tokens, and is |
|
distinguished by its comprehensive named entity recognition (NER) and disambiguation (NED) for |
|
tissue/cell types, software tools, and computational methods. This dataset, to our knowledge, is |
|
the largest of its kind for tissue/cell types, links entities to identifiers in relevant knowledge |
|
bases and annotates nearly 400 workflow relations between tool-context pairs. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ylaboratory/flambe" |
|
|
|
_LICENSE = "CC_BY_4p0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://zenodo.org/records/10050681/files/data.zip?download", |
|
"ned": { |
|
"tissue_test": "https://zenodo.org/records/11218662/files/tissue_ned_test.csv?download", |
|
"tissue_train": "https://zenodo.org/records/11218662/files/tissue_ned_train.csv?download", |
|
"tissue_val": "https://zenodo.org/records/11218662/files/tissue_ned_val.csv?download", |
|
"tool_test": "https://zenodo.org/records/11218662/files/tool_ned_test.csv?download", |
|
"tool_train": "https://zenodo.org/records/11218662/files/tool_ned_train.csv?download", |
|
"tool_val": "https://zenodo.org/records/11218662/files/tool_ned_val.csv?download", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION, |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class FlambeDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="flambe_ner_fulltext_tools_source", |
|
version=SOURCE_VERSION, |
|
description="NER dataset for tools from full papers", |
|
schema="source", |
|
subset_id="flambe_ner_fulltext_tools_source", |
|
), |
|
BigBioConfig( |
|
name="flambe_ner_fulltext_tissues_source", |
|
version=SOURCE_VERSION, |
|
description="NER dataset for tissues from full papers", |
|
schema="source", |
|
subset_id="flambe_ner_fulltext_tissues_source", |
|
), |
|
BigBioConfig( |
|
name="flambe_ner_abstract_tissues_source", |
|
version=SOURCE_VERSION, |
|
description="NER dataset for tissues from abstracts", |
|
schema="source", |
|
subset_id="flambe_ner_abstract_tissues_source", |
|
), |
|
BigBioConfig( |
|
name="flambe_ned_tissues", |
|
version=SOURCE_VERSION, |
|
description="NED dataset for tissues from full papers", |
|
schema="source_ned_tissue", |
|
subset_id="flambe_ned_tissues", |
|
), |
|
BigBioConfig( |
|
name="flambe_ned_tools", |
|
version=SOURCE_VERSION, |
|
description="NED dataset for tools from full papers", |
|
schema="source_ned_tool", |
|
subset_id="flambe_ned_tools", |
|
), |
|
BigBioConfig( |
|
name="flambe_fulltext_tools_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="Flambe Tissues BigBio schema", |
|
schema="bigbio_text", |
|
subset_id="flambe_tool_bigbio", |
|
), |
|
BigBioConfig( |
|
name="flambe_fulltext_tissues_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="Flambe Tool BigBio schema", |
|
schema="bigbio_text", |
|
subset_id="flambe_tissue_bigbio", |
|
), |
|
BigBioConfig( |
|
name="flambe_abstract_tissues_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="Flambe Tool BigBio schema", |
|
schema="bigbio_text", |
|
subset_id="flambe_tissue_bigbio", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "flambe_ner_fulltext_tools_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
elif self.config.schema == "source_ned_tissue": |
|
features = datasets.Features( |
|
{ |
|
"orginal_text": datasets.Value("string"), |
|
"mapped_NCIT": datasets.Value("string"), |
|
"NCIT_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "source_ned_tool": |
|
features = datasets.Features( |
|
{ |
|
"orginal_text": datasets.Value("string"), |
|
"standardized_name": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
path = { |
|
"flambe_ner_fulltext_tools_source": { |
|
"train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"), |
|
}, |
|
"flambe_ner_fulltext_tissues_source": { |
|
"train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"), |
|
}, |
|
"flambe_ner_abstract_tissues_source": { |
|
"train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"), |
|
}, |
|
"flambe_ned_tissues": { |
|
"train": dl_manager.download_and_extract(_URLS["ned"]["tissue_train"]), |
|
"test": dl_manager.download_and_extract(_URLS["ned"]["tissue_test"]), |
|
"dev": dl_manager.download_and_extract(_URLS["ned"]["tissue_val"]), |
|
}, |
|
"flambe_ned_tools": { |
|
"train": dl_manager.download_and_extract(_URLS["ned"]["tool_train"]), |
|
"test": dl_manager.download_and_extract(_URLS["ned"]["tool_test"]), |
|
"dev": dl_manager.download_and_extract(_URLS["ned"]["tool_val"]), |
|
}, |
|
"flambe_fulltext_tools_bigbio_text": { |
|
"train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"), |
|
}, |
|
"flambe_fulltext_tissues_bigbio_text": { |
|
"train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"), |
|
}, |
|
"flambe_abstract_tissues_bigbio_text": { |
|
"train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"), |
|
"test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"), |
|
"dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"), |
|
}, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path[self.config.name]["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": path[self.config.name]["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": path[self.config.name]["dev"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath, "r") as f: |
|
id_value = None |
|
tokens = [] |
|
tags = [] |
|
key = 0 |
|
for line in f: |
|
line = line.strip() |
|
if line: |
|
parts = line.split() |
|
if parts[1] == "begin": |
|
if id_value is not None: |
|
yield key, {"id": id_value, "tokens": tokens, "tags": tags} |
|
key += 1 |
|
tokens = [] |
|
tags = [] |
|
id_value = parts[0] |
|
elif parts[1] == "end": |
|
yield key, {"id": id_value, "tokens": tokens, "tags": tags} |
|
key += 1 |
|
id_value = None |
|
tokens = [] |
|
tags = [] |
|
else: |
|
tokens.append(parts[0]) |
|
tags.append(parts[1]) |
|
if id_value is not None: |
|
yield key, {"id": id_value, "tokens": tokens, "tags": tags} |
|
key += 1 |
|
elif self.config.schema == "bigbio_text": |
|
with open(filepath, "r") as f: |
|
id_value = None |
|
tokens = [] |
|
tags = [] |
|
key = 0 |
|
for line in f: |
|
line = line.strip() |
|
if line: |
|
parts = line.split() |
|
if parts[1] == "begin": |
|
if id_value is not None: |
|
yield key, { |
|
"id": key, |
|
"document_id": id_value, |
|
"text": " ".join(tokens), |
|
"labels": tags, |
|
} |
|
key += 1 |
|
tokens = [] |
|
tags = [] |
|
id_value = parts[0] |
|
elif parts[1] == "end": |
|
yield key, { |
|
"id": key, |
|
"document_id": id_value, |
|
"text": " ".join(tokens), |
|
"labels": tags, |
|
} |
|
key += 1 |
|
id_value = None |
|
tokens = [] |
|
tags = [] |
|
else: |
|
tokens.append(parts[0]) |
|
tags.append(parts[1]) |
|
if id_value is not None: |
|
yield key, { |
|
"id": key, |
|
"document_id": id_value, |
|
"text": " ".join(tokens), |
|
"labels": tags, |
|
} |
|
key += 1 |
|
|
|
elif self.config.schema == "source_ned_tissue": |
|
key = 0 |
|
for line in open(filepath): |
|
csv_row = line.strip("\n").split(",") |
|
if csv_row is not None: |
|
yield key, {"orginal_text": csv_row[0], "mapped_NCIT": csv_row[1], "NCIT_name": csv_row[2]} |
|
key += 1 |
|
|
|
elif self.config.schema == "source_ned_tool": |
|
key = 0 |
|
for line in open(filepath): |
|
csv_row = line.strip("\n").split(",") |
|
if csv_row is not None: |
|
yield key, {"orginal_text": csv_row[0], "standardized_name": csv_row[1], "url": csv_row[2]} |
|
key += 1 |
|
|
|
|
|
if __name__ == "__main__": |
|
datasets.load_dataset(__file__) |
|
|