Datasets:

Languages:
English
License:
File size: 14,767 Bytes
bd45da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5ce5f
bd45da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5ce5f
bd45da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import re
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import BigBioConfig, Tasks, text_features

_LOCAL = False
_LANGUAGES = ["English"]
_PUBMED = False

_CITATION = """\
@inproceedings{,
  author    = {Dannenfelser, Ruth and Zhong, Jeffrey and Zhang, Ran and Yao, Vicky},
  title     = {Into the Single Cell Multiverse: an End-to-End Dataset for Procedural Knowledge Extraction in Biomedical Texts},
  publisher   = {Advances in Neural Information Processing Systems},
  volume    = {36},
  year      = {2024},
  url       = {https://proceedings.neurips.cc/paper_files/paper/2023/file/23e3d86c9a19d0caf2ec997e73dfcfbd-Paper-Datasets_and_Benchmarks.pdf},
}
"""

_DATASETNAME = "flambe"
_DISPLAYNAME = "Flambe"

_DESCRIPTION = """\
FlaMBe is a dataset aimed at procedural knowledge extraction from biomedical texts, 
particularly focusing on single cell research methodologies described in academic papers. It includes 
annotations from 55 full-text articles and 1,195 abstracts, covering nearly 710,000 tokens, and is 
distinguished by its comprehensive named entity recognition (NER) and disambiguation (NED) for 
tissue/cell types, software tools, and computational methods. This dataset, to our knowledge, is 
the largest of its kind for tissue/cell types, links entities to identifiers in relevant knowledge 
bases and annotates nearly 400 workflow relations between tool-context pairs. 
"""

_HOMEPAGE = "https://github.com/ylaboratory/flambe"

_LICENSE = "CC_BY_4p0"

_URLS = {
    _DATASETNAME: "https://zenodo.org/records/10050681/files/data.zip?download",
    "ned": {
        "tissue_test": "https://zenodo.org/records/11218662/files/tissue_ned_test.csv?download",
        "tissue_train": "https://zenodo.org/records/11218662/files/tissue_ned_train.csv?download",
        "tissue_val": "https://zenodo.org/records/11218662/files/tissue_ned_val.csv?download",
        "tool_test": "https://zenodo.org/records/11218662/files/tool_ned_test.csv?download",
        "tool_train": "https://zenodo.org/records/11218662/files/tool_ned_train.csv?download",
        "tool_val": "https://zenodo.org/records/11218662/files/tool_ned_val.csv?download",
    },
}

_SUPPORTED_TASKS = [
    Tasks.NAMED_ENTITY_RECOGNITION,
    Tasks.NAMED_ENTITY_DISAMBIGUATION,
]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class FlambeDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="flambe_ner_fulltext_tools_source",
            version=SOURCE_VERSION,
            description="NER dataset for tools from full papers",
            schema="source",
            subset_id="flambe_ner_fulltext_tools_source",
        ),
        BigBioConfig(
            name="flambe_ner_fulltext_tissues_source",
            version=SOURCE_VERSION,
            description="NER dataset for tissues from full papers",
            schema="source",
            subset_id="flambe_ner_fulltext_tissues_source",
        ),
        BigBioConfig(
            name="flambe_ner_abstract_tissues_source",
            version=SOURCE_VERSION,
            description="NER dataset for tissues from abstracts",
            schema="source",
            subset_id="flambe_ner_abstract_tissues_source",
        ),
        BigBioConfig(
            name="flambe_ned_tissues",
            version=SOURCE_VERSION,
            description="NED dataset for tissues from full papers",
            schema="source_ned_tissue",
            subset_id="flambe_ned_tissues",
        ),
        BigBioConfig(
            name="flambe_ned_tools",
            version=SOURCE_VERSION,
            description="NED dataset for tools from full papers",
            schema="source_ned_tool",
            subset_id="flambe_ned_tools",
        ),
        BigBioConfig(
            name="flambe_fulltext_tools_bigbio_text",
            version=BIGBIO_VERSION,
            description="Flambe Tissues BigBio schema",
            schema="bigbio_text",
            subset_id="flambe_tool_bigbio",
        ),
        BigBioConfig(
            name="flambe_fulltext_tissues_bigbio_text",
            version=BIGBIO_VERSION,
            description="Flambe Tool BigBio schema",
            schema="bigbio_text",
            subset_id="flambe_tissue_bigbio",
        ),
        BigBioConfig(
            name="flambe_abstract_tissues_bigbio_text",
            version=BIGBIO_VERSION,
            description="Flambe Tool BigBio schema",
            schema="bigbio_text",
            subset_id="flambe_tissue_bigbio",
        ),
    ]

    DEFAULT_CONFIG_NAME = "flambe_ner_fulltext_tools_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "tags": datasets.Sequence(datasets.Value("string")),
                }
            )

        elif self.config.schema == "source_ned_tissue":
            features = datasets.Features(
                {
                    "orginal_text": datasets.Value("string"),
                    "mapped_NCIT": datasets.Value("string"),
                    "NCIT_name": datasets.Value("string"),
                }
            )

        elif self.config.schema == "source_ned_tool":
            features = datasets.Features(
                {
                    "orginal_text": datasets.Value("string"),
                    "standardized_name": datasets.Value("string"),
                    "url": datasets.Value("string"),
                }
            )

        elif self.config.schema == "bigbio_text":
            features = text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        # TODO: KEEP if your dataset is PUBLIC; remove if not

        # TODO: KEEP if your dataset is PUBLIC; remove if not
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        path = {
            "flambe_ner_fulltext_tools_source": {
                "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"),
                "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"),
            },
            "flambe_ner_fulltext_tissues_source": {
                "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"),
                "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"),
            },
            "flambe_ner_abstract_tissues_source": {
                "train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"),
                "test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"),
            },
            "flambe_ned_tissues": {
                "train": dl_manager.download_and_extract(_URLS["ned"]["tissue_train"]),
                "test": dl_manager.download_and_extract(_URLS["ned"]["tissue_test"]),
                "dev": dl_manager.download_and_extract(_URLS["ned"]["tissue_val"]),
            },
            "flambe_ned_tools": {
                "train": dl_manager.download_and_extract(_URLS["ned"]["tool_train"]),
                "test": dl_manager.download_and_extract(_URLS["ned"]["tool_test"]),
                "dev": dl_manager.download_and_extract(_URLS["ned"]["tool_val"]),
            },
            "flambe_fulltext_tools_bigbio_text": {
                "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"),
                "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"),
            },
            "flambe_fulltext_tissues_bigbio_text": {
                "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"),
                "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"),
            },
            "flambe_abstract_tissues_bigbio_text": {
                "train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"),
                "test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"),
                "dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"),
            },
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": path[self.config.name]["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": path[self.config.name]["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": path[self.config.name]["dev"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with open(filepath, "r") as f:
                id_value = None
                tokens = []
                tags = []
                key = 0
                for line in f:
                    line = line.strip()
                    if line:
                        parts = line.split()
                        if parts[1] == "begin":
                            if id_value is not None:
                                yield key, {"id": id_value, "tokens": tokens, "tags": tags}
                                key += 1
                                tokens = []
                                tags = []
                            id_value = parts[0]
                        elif parts[1] == "end":
                            yield key, {"id": id_value, "tokens": tokens, "tags": tags}
                            key += 1
                            id_value = None
                            tokens = []
                            tags = []
                        else:
                            tokens.append(parts[0])
                            tags.append(parts[1])
                if id_value is not None:
                    yield key, {"id": id_value, "tokens": tokens, "tags": tags}
                    key += 1
        elif self.config.schema == "bigbio_text":
            with open(filepath, "r") as f:
                id_value = None
                tokens = []
                tags = []
                key = 0
                for line in f:
                    line = line.strip()
                    if line:
                        parts = line.split()
                        if parts[1] == "begin":
                            if id_value is not None:
                                yield key, {
                                    "id": key,
                                    "document_id": id_value,
                                    "text": " ".join(tokens),
                                    "labels": tags,
                                }
                                key += 1
                                tokens = []
                                tags = []
                            id_value = parts[0]
                        elif parts[1] == "end":
                            yield key, {
                                "id": key,
                                "document_id": id_value,
                                "text": " ".join(tokens),
                                "labels": tags,
                            }
                            key += 1
                            id_value = None
                            tokens = []
                            tags = []
                        else:
                            tokens.append(parts[0])
                            tags.append(parts[1])
                if id_value is not None:
                    yield key, {
                        "id": key,
                        "document_id": id_value,
                        "text": " ".join(tokens),
                        "labels": tags,
                    }
                    key += 1

        elif self.config.schema == "source_ned_tissue":
            key = 0
            for line in open(filepath):
                csv_row = line.strip("\n").split(",")
                if csv_row is not None:
                    yield key, {"orginal_text": csv_row[0], "mapped_NCIT": csv_row[1], "NCIT_name": csv_row[2]}
                    key += 1

        elif self.config.schema == "source_ned_tool":
            key = 0
            for line in open(filepath):
                csv_row = line.strip("\n").split(",")
                if csv_row is not None:
                    yield key, {"orginal_text": csv_row[0], "standardized_name": csv_row[1], "url": csv_row[2]}
                    key += 1


if __name__ == "__main__":
    datasets.load_dataset(__file__)