id
int64 599M
2.47B
| url
stringlengths 58
61
| repository_url
stringclasses 1
value | events_url
stringlengths 65
68
| labels
listlengths 0
4
| active_lock_reason
null | updated_at
stringlengths 20
20
| assignees
listlengths 0
4
| html_url
stringlengths 46
51
| author_association
stringclasses 4
values | state_reason
stringclasses 3
values | draft
bool 2
classes | milestone
dict | comments
sequencelengths 0
30
| title
stringlengths 1
290
| reactions
dict | node_id
stringlengths 18
32
| pull_request
dict | created_at
stringlengths 20
20
| comments_url
stringlengths 67
70
| body
stringlengths 0
228k
β | user
dict | labels_url
stringlengths 72
75
| timeline_url
stringlengths 67
70
| state
stringclasses 2
values | locked
bool 1
class | number
int64 1
7.11k
| performed_via_github_app
null | closed_at
stringlengths 20
20
β | assignee
dict | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2,379,588,676 | https://api.github.com/repos/huggingface/datasets/issues/7007 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7007/events | [] | null | 2024-06-28T05:31:21Z | [] | https://github.com/huggingface/datasets/pull/7007 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7007). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005225 / 0.011353 (-0.006128) | 0.003856 / 0.011008 (-0.007152) | 0.063455 / 0.038508 (0.024947) | 0.030184 / 0.023109 (0.007075) | 0.248518 / 0.275898 (-0.027380) | 0.270596 / 0.323480 (-0.052884) | 0.003185 / 0.007986 (-0.004800) | 0.002739 / 0.004328 (-0.001590) | 0.049379 / 0.004250 (0.045129) | 0.043190 / 0.037052 (0.006138) | 0.257181 / 0.258489 (-0.001308) | 0.283385 / 0.293841 (-0.010456) | 0.029702 / 0.128546 (-0.098844) | 0.012022 / 0.075646 (-0.063624) | 0.204531 / 0.419271 (-0.214741) | 0.035621 / 0.043533 (-0.007912) | 0.257745 / 0.255139 (0.002606) | 0.269033 / 0.283200 (-0.014167) | 0.019283 / 0.141683 (-0.122400) | 1.152477 / 1.452155 (-0.299678) | 1.180929 / 1.492716 (-0.311788) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094520 / 0.018006 (0.076514) | 0.299383 / 0.000490 (0.298893) | 0.000224 / 0.000200 (0.000024) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019267 / 0.037411 (-0.018145) | 0.062458 / 0.014526 (0.047933) | 0.075743 / 0.176557 (-0.100814) | 0.128564 / 0.737135 (-0.608572) | 0.075549 / 0.296338 (-0.220789) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288809 / 0.215209 (0.073600) | 2.854469 / 2.077655 (0.776814) | 1.581731 / 1.504120 (0.077611) | 1.460196 / 1.541195 (-0.080999) | 1.485567 / 1.468490 (0.017077) | 0.708824 / 4.584777 (-3.875953) | 2.362389 / 3.745712 (-1.383323) | 2.980804 / 5.269862 (-2.289057) | 1.918788 / 4.565676 (-2.646888) | 0.088389 / 0.424275 (-0.335886) | 0.005266 / 0.007607 (-0.002341) | 0.348598 / 0.226044 (0.122554) | 3.443202 / 2.268929 (1.174273) | 1.979311 / 55.444624 (-53.465314) | 1.655774 / 6.876477 (-5.220702) | 1.685538 / 2.142072 (-0.456535) | 0.788695 / 4.805227 (-4.016532) | 0.138403 / 6.500664 (-6.362261) | 0.043288 / 0.075469 (-0.032181) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975874 / 1.841788 (-0.865913) | 11.506991 / 8.074308 (3.432683) | 9.640619 / 10.191392 (-0.550773) | 0.131897 / 0.680424 (-0.548527) | 0.014912 / 0.534201 (-0.519289) | 0.304173 / 0.579283 (-0.275110) | 0.262483 / 0.434364 (-0.171881) | 0.342636 / 0.540337 (-0.197701) | 0.440337 / 1.386936 (-0.946599) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005961 / 0.011353 (-0.005392) | 0.004023 / 0.011008 (-0.006985) | 0.050230 / 0.038508 (0.011722) | 0.033204 / 0.023109 (0.010095) | 0.263462 / 0.275898 (-0.012436) | 0.287517 / 0.323480 (-0.035963) | 0.004432 / 0.007986 (-0.003553) | 0.002938 / 0.004328 (-0.001390) | 0.049297 / 0.004250 (0.045047) | 0.041166 / 0.037052 (0.004113) | 0.279220 / 0.258489 (0.020731) | 0.312857 / 0.293841 (0.019016) | 0.032567 / 0.128546 (-0.095979) | 0.012566 / 0.075646 (-0.063080) | 0.060579 / 0.419271 (-0.358692) | 0.033760 / 0.043533 (-0.009773) | 0.264219 / 0.255139 (0.009080) | 0.282929 / 0.283200 (-0.000270) | 0.017434 / 0.141683 (-0.124248) | 1.148472 / 1.452155 (-0.303683) | 1.247434 / 1.492716 (-0.245282) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004566 / 0.018006 (-0.013440) | 0.296110 / 0.000490 (0.295621) | 0.000219 / 0.000200 (0.000019) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022514 / 0.037411 (-0.014897) | 0.076554 / 0.014526 (0.062029) | 0.090427 / 0.176557 (-0.086130) | 0.128611 / 0.737135 (-0.608524) | 0.090748 / 0.296338 (-0.205590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.315051 / 0.215209 (0.099842) | 3.099662 / 2.077655 (1.022007) | 1.706009 / 1.504120 (0.201889) | 1.574637 / 1.541195 (0.033442) | 1.592454 / 1.468490 (0.123964) | 0.724699 / 4.584777 (-3.860078) | 0.949954 / 3.745712 (-2.795758) | 2.818915 / 5.269862 (-2.450946) | 1.931290 / 4.565676 (-2.634386) | 0.079308 / 0.424275 (-0.344967) | 0.005414 / 0.007607 (-0.002193) | 0.373547 / 0.226044 (0.147503) | 3.742222 / 2.268929 (1.473293) | 2.076239 / 55.444624 (-53.368385) | 1.772359 / 6.876477 (-5.104118) | 1.894369 / 2.142072 (-0.247703) | 0.803650 / 4.805227 (-4.001578) | 0.136995 / 6.500664 (-6.363669) | 0.041565 / 0.075469 (-0.033905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989806 / 1.841788 (-0.851982) | 12.151497 / 8.074308 (4.077189) | 10.188075 / 10.191392 (-0.003317) | 0.141194 / 0.680424 (-0.539230) | 0.016351 / 0.534201 (-0.517850) | 0.303242 / 0.579283 (-0.276041) | 0.127446 / 0.434364 (-0.306918) | 0.339806 / 0.540337 (-0.200532) | 0.443527 / 1.386936 (-0.943409) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dd631431cb73c3ca434dfd6b115a6c30c5a665a5 \"CML watermark\")\n"
] | Fix CI by temporarily pinning ruff < 0.5.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7007/reactions"
} | PR_kwDODunzps5z2Q68 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7007.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7007",
"merged_at": "2024-06-28T05:25:17Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7007.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7007"
} | 2024-06-28T05:09:17Z | https://api.github.com/repos/huggingface/datasets/issues/7007/comments | As a hotfix for CI, temporarily pin ruff upper version < 0.5.0.
Fix #7006.
Revert once root cause is fixed. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/7007/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7007/timeline | closed | false | 7,007 | null | 2024-06-28T05:25:17Z | null | true |
2,379,581,543 | https://api.github.com/repos/huggingface/datasets/issues/7006 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7006/events | [
{
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks",
"id": 4296013012,
"name": "maintenance",
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance"
}
] | null | 2024-06-28T05:25:18Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/7006 | MEMBER | completed | null | null | [] | CI is broken after ruff-0.5.0: E721 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7006/reactions"
} | I_kwDODunzps6N1Yhn | null | 2024-06-28T05:03:28Z | https://api.github.com/repos/huggingface/datasets/issues/7006/comments | After ruff-0.5.0 release (https://github.com/astral-sh/ruff/releases/tag/0.5.0), our CI is broken due to E721 rule.
See: https://github.com/huggingface/datasets/actions/runs/9707641618/job/26793170961?pr=6983
> src/datasets/features/features.py:844:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/7006/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7006/timeline | closed | false | 7,006 | null | 2024-06-28T05:25:18Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,378,424,349 | https://api.github.com/repos/huggingface/datasets/issues/7005 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7005/events | [] | null | 2024-06-28T09:56:19Z | [] | https://github.com/huggingface/datasets/issues/7005 | NONE | completed | null | null | [
"Hi ! `data_dir=` is for directories, can you try using `data_files=` instead ?",
"If you are trying to load your image dataset from a local folder, you should replace \"data_dir=path/to/jsonl/metadata.jsonl\" with the real folder path in your computer.\r\n\r\nhttps://huggingface.co./docs/datasets/en/image_load#imagefolder",
"Ah yes. My bad. I was giving file name. I should have given the folder directory as the path. That solved my issue. Thank you @albertvillanova and @lhoestq. "
] | EmptyDatasetError: The directory at /metadata.jsonl doesn't contain any data files | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7005/reactions"
} | I_kwDODunzps6Nw-Ad | null | 2024-06-27T15:08:26Z | https://api.github.com/repos/huggingface/datasets/issues/7005/comments | ### Describe the bug
while trying to load custom dataset from jsonl file, I get the error: "metadata.jsonl doesn't contain any data files"
### Steps to reproduce the bug
This is my [metadata_v2.jsonl](https://github.com/user-attachments/files/16016011/metadata_v2.json) file. I have this file in the folder with all images mentioned in that json(l) file.
Through below mentioned command I am trying to load_dataset so that I can upload it as mentioned here on the [official website](https://huggingface.co./docs/datasets/en/image_dataset#upload-dataset-to-the-hub).
````
from datasets import load_dataset
dataset = load_dataset("imagefolder", data_dir="path/to/jsonl/metadata.jsonl")
````
error:
````
EmptyDatasetError Traceback (most recent call last)
Cell In[18], line 3
1 from datasets import load_dataset
----> 3 dataset = load_dataset("imagefolder",
4 data_dir="path/to/jsonl/file/metadata.jsonl")
5 dataset[0]["objects"]
File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:2594, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)
2589 verification_mode = VerificationMode(
2590 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
2591 )
2593 # Create a dataset builder
-> 2594 builder_instance = load_dataset_builder(
2595 path=path,
2596 name=name,
2597 data_dir=data_dir,
2598 data_files=data_files,
2599 cache_dir=cache_dir,
2600 features=features,
2601 download_config=download_config,
2602 download_mode=download_mode,
2603 revision=revision,
2604 token=token,
2605 storage_options=storage_options,
2606 trust_remote_code=trust_remote_code,
2607 _require_default_config_name=name is None,
2608 **config_kwargs,
2609 )
2611 # Return iterable dataset in case of streaming
2612 if streaming:
File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:2266, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)
2264 download_config = download_config.copy() if download_config else DownloadConfig()
2265 download_config.storage_options.update(storage_options)
-> 2266 dataset_module = dataset_module_factory(
2267 path,
2268 revision=revision,
2269 download_config=download_config,
2270 download_mode=download_mode,
2271 data_dir=data_dir,
2272 data_files=data_files,
2273 cache_dir=cache_dir,
2274 trust_remote_code=trust_remote_code,
2275 _require_default_config_name=_require_default_config_name,
2276 _require_custom_configs=bool(config_kwargs),
2277 )
2278 # Get dataset builder class from the processing script
2279 builder_kwargs = dataset_module.builder_kwargs
File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:1805, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs)
1782 # We have several ways to get a dataset builder:
1783 #
1784 # - if path is the name of a packaged dataset module
(...)
1796
1797 # Try packaged
1798 if path in _PACKAGED_DATASETS_MODULES:
1799 return PackagedDatasetModuleFactory(
1800 path,
1801 data_dir=data_dir,
1802 data_files=data_files,
1803 download_config=download_config,
1804 download_mode=download_mode,
-> 1805 ).get_module()
1806 # Try locally
1807 elif path.endswith(filename):
File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:1140, in PackagedDatasetModuleFactory.get_module(self)
1135 def get_module(self) -> DatasetModule:
1136 base_path = Path(self.data_dir or "").expanduser().resolve().as_posix()
1137 patterns = (
1138 sanitize_patterns(self.data_files)
1139 if self.data_files is not None
-> 1140 else get_data_patterns(base_path, download_config=self.download_config)
1141 )
1142 data_files = DataFilesDict.from_patterns(
1143 patterns,
1144 download_config=self.download_config,
1145 base_path=base_path,
1146 )
1147 supports_metadata = self.name in _MODULE_SUPPORTS_METADATA
File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/data_files.py:503, in get_data_patterns(base_path, download_config)
501 return _get_data_files_patterns(resolver)
502 except FileNotFoundError:
--> 503 raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
EmptyDatasetError: The directory at path/to/jsonl/file/metadata.jsonl doesn't contain any data files`
```
### Expected behavior
It should be able load the whole file in a format of "dataset" inside the dataset variable. But it gives error "The directory at "path/to/jsonl/metadata.jsonl" doesn't contain any data files."
### Environment info
I am using conda environment. | {
"avatar_url": "https://avatars.githubusercontent.com/u/117731544?v=4",
"events_url": "https://api.github.com/users/Aki1991/events{/privacy}",
"followers_url": "https://api.github.com/users/Aki1991/followers",
"following_url": "https://api.github.com/users/Aki1991/following{/other_user}",
"gists_url": "https://api.github.com/users/Aki1991/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Aki1991",
"id": 117731544,
"login": "Aki1991",
"node_id": "U_kgDOBwRw2A",
"organizations_url": "https://api.github.com/users/Aki1991/orgs",
"received_events_url": "https://api.github.com/users/Aki1991/received_events",
"repos_url": "https://api.github.com/users/Aki1991/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Aki1991/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Aki1991/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Aki1991"
} | https://api.github.com/repos/huggingface/datasets/issues/7005/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7005/timeline | closed | false | 7,005 | null | 2024-06-28T09:56:19Z | null | false |
2,376,064,264 | https://api.github.com/repos/huggingface/datasets/issues/7004 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7004/events | [] | null | 2024-06-29T00:15:49Z | [] | https://github.com/huggingface/datasets/pull/7004 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7004). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005188 / 0.011353 (-0.006165) | 0.003812 / 0.011008 (-0.007196) | 0.062408 / 0.038508 (0.023900) | 0.030734 / 0.023109 (0.007625) | 0.236528 / 0.275898 (-0.039370) | 0.267684 / 0.323480 (-0.055796) | 0.003182 / 0.007986 (-0.004804) | 0.004009 / 0.004328 (-0.000319) | 0.048966 / 0.004250 (0.044715) | 0.045259 / 0.037052 (0.008207) | 0.250586 / 0.258489 (-0.007903) | 0.287079 / 0.293841 (-0.006762) | 0.029235 / 0.128546 (-0.099311) | 0.012216 / 0.075646 (-0.063431) | 0.203864 / 0.419271 (-0.215408) | 0.036324 / 0.043533 (-0.007209) | 0.245180 / 0.255139 (-0.009959) | 0.270327 / 0.283200 (-0.012872) | 0.018676 / 0.141683 (-0.123007) | 1.115568 / 1.452155 (-0.336586) | 1.183267 / 1.492716 (-0.309449) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094307 / 0.018006 (0.076301) | 0.299071 / 0.000490 (0.298581) | 0.000219 / 0.000200 (0.000019) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018336 / 0.037411 (-0.019076) | 0.062973 / 0.014526 (0.048447) | 0.074137 / 0.176557 (-0.102420) | 0.120553 / 0.737135 (-0.616582) | 0.075411 / 0.296338 (-0.220927) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284751 / 0.215209 (0.069542) | 2.789294 / 2.077655 (0.711640) | 1.457789 / 1.504120 (-0.046331) | 1.339140 / 1.541195 (-0.202055) | 1.341685 / 1.468490 (-0.126805) | 0.714928 / 4.584777 (-3.869849) | 2.361197 / 3.745712 (-1.384516) | 2.791569 / 5.269862 (-2.478293) | 1.892261 / 4.565676 (-2.673416) | 0.077954 / 0.424275 (-0.346321) | 0.005454 / 0.007607 (-0.002153) | 0.350766 / 0.226044 (0.124721) | 3.416749 / 2.268929 (1.147820) | 1.835377 / 55.444624 (-53.609247) | 1.506456 / 6.876477 (-5.370020) | 1.642728 / 2.142072 (-0.499344) | 0.791543 / 4.805227 (-4.013684) | 0.133102 / 6.500664 (-6.367562) | 0.042572 / 0.075469 (-0.032897) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977958 / 1.841788 (-0.863830) | 11.438271 / 8.074308 (3.363963) | 9.305719 / 10.191392 (-0.885673) | 0.141239 / 0.680424 (-0.539185) | 0.014330 / 0.534201 (-0.519871) | 0.302201 / 0.579283 (-0.277082) | 0.261688 / 0.434364 (-0.172676) | 0.338752 / 0.540337 (-0.201586) | 0.468466 / 1.386936 (-0.918470) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005629 / 0.011353 (-0.005723) | 0.003997 / 0.011008 (-0.007011) | 0.050447 / 0.038508 (0.011939) | 0.031694 / 0.023109 (0.008585) | 0.277392 / 0.275898 (0.001494) | 0.290440 / 0.323480 (-0.033040) | 0.004403 / 0.007986 (-0.003583) | 0.002851 / 0.004328 (-0.001478) | 0.048593 / 0.004250 (0.044343) | 0.040622 / 0.037052 (0.003570) | 0.282640 / 0.258489 (0.024151) | 0.309390 / 0.293841 (0.015549) | 0.031453 / 0.128546 (-0.097094) | 0.012424 / 0.075646 (-0.063223) | 0.060311 / 0.419271 (-0.358960) | 0.033195 / 0.043533 (-0.010338) | 0.266867 / 0.255139 (0.011728) | 0.281966 / 0.283200 (-0.001234) | 0.018026 / 0.141683 (-0.123657) | 1.136273 / 1.452155 (-0.315882) | 1.141643 / 1.492716 (-0.351073) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095011 / 0.018006 (0.077005) | 0.300571 / 0.000490 (0.300082) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022903 / 0.037411 (-0.014508) | 0.077130 / 0.014526 (0.062604) | 0.089576 / 0.176557 (-0.086980) | 0.127156 / 0.737135 (-0.609980) | 0.090008 / 0.296338 (-0.206331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289270 / 0.215209 (0.074061) | 2.848239 / 2.077655 (0.770585) | 1.546788 / 1.504120 (0.042668) | 1.417275 / 1.541195 (-0.123920) | 1.456214 / 1.468490 (-0.012276) | 0.716688 / 4.584777 (-3.868088) | 0.940242 / 3.745712 (-2.805470) | 2.911956 / 5.269862 (-2.357906) | 1.871358 / 4.565676 (-2.694318) | 0.077553 / 0.424275 (-0.346722) | 0.005279 / 0.007607 (-0.002328) | 0.343338 / 0.226044 (0.117294) | 3.368694 / 2.268929 (1.099766) | 1.896765 / 55.444624 (-53.547859) | 1.612414 / 6.876477 (-5.264063) | 1.615934 / 2.142072 (-0.526138) | 0.794016 / 4.805227 (-4.011212) | 0.131821 / 6.500664 (-6.368843) | 0.041495 / 0.075469 (-0.033975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.003418 / 1.841788 (-0.838370) | 12.073906 / 8.074308 (3.999598) | 10.166291 / 10.191392 (-0.025101) | 0.131224 / 0.680424 (-0.549200) | 0.015246 / 0.534201 (-0.518955) | 0.299835 / 0.579283 (-0.279448) | 0.124308 / 0.434364 (-0.310056) | 0.336414 / 0.540337 (-0.203924) | 0.429569 / 1.386936 (-0.957367) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#83d28601fad73755b74314a9bc1e327005514d54 \"CML watermark\")\n",
"@lhoestq Thank you!"
] | Fix WebDatasets KeyError for user-defined Features when a field is missing in an example | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7004/reactions"
} | PR_kwDODunzps5zrIYR | {
"diff_url": "https://github.com/huggingface/datasets/pull/7004.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7004",
"merged_at": "2024-06-28T09:30:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7004.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7004"
} | 2024-06-26T18:58:05Z | https://api.github.com/repos/huggingface/datasets/issues/7004/comments | Fixes: https://github.com/huggingface/datasets/issues/6900
Not sure if this needs any addition stuff before merging | {
"avatar_url": "https://avatars.githubusercontent.com/u/10626398?v=4",
"events_url": "https://api.github.com/users/ProGamerGov/events{/privacy}",
"followers_url": "https://api.github.com/users/ProGamerGov/followers",
"following_url": "https://api.github.com/users/ProGamerGov/following{/other_user}",
"gists_url": "https://api.github.com/users/ProGamerGov/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ProGamerGov",
"id": 10626398,
"login": "ProGamerGov",
"node_id": "MDQ6VXNlcjEwNjI2Mzk4",
"organizations_url": "https://api.github.com/users/ProGamerGov/orgs",
"received_events_url": "https://api.github.com/users/ProGamerGov/received_events",
"repos_url": "https://api.github.com/users/ProGamerGov/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ProGamerGov/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ProGamerGov/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ProGamerGov"
} | https://api.github.com/repos/huggingface/datasets/issues/7004/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7004/timeline | closed | false | 7,004 | null | 2024-06-28T09:30:12Z | null | true |
2,373,084,132 | https://api.github.com/repos/huggingface/datasets/issues/7003 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7003/events | [] | null | 2024-06-25T16:16:11Z | [] | https://github.com/huggingface/datasets/pull/7003 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7003). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005633 / 0.011353 (-0.005720) | 0.004366 / 0.011008 (-0.006642) | 0.064081 / 0.038508 (0.025573) | 0.031790 / 0.023109 (0.008681) | 0.239270 / 0.275898 (-0.036628) | 0.267424 / 0.323480 (-0.056055) | 0.003229 / 0.007986 (-0.004756) | 0.002849 / 0.004328 (-0.001479) | 0.050147 / 0.004250 (0.045897) | 0.046119 / 0.037052 (0.009066) | 0.253506 / 0.258489 (-0.004983) | 0.280464 / 0.293841 (-0.013377) | 0.030561 / 0.128546 (-0.097985) | 0.012258 / 0.075646 (-0.063388) | 0.212222 / 0.419271 (-0.207049) | 0.036695 / 0.043533 (-0.006838) | 0.242141 / 0.255139 (-0.012998) | 0.263014 / 0.283200 (-0.020186) | 0.020008 / 0.141683 (-0.121675) | 1.103701 / 1.452155 (-0.348453) | 1.151641 / 1.492716 (-0.341076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095884 / 0.018006 (0.077878) | 0.300858 / 0.000490 (0.300368) | 0.000209 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018713 / 0.037411 (-0.018698) | 0.063659 / 0.014526 (0.049134) | 0.074588 / 0.176557 (-0.101968) | 0.120779 / 0.737135 (-0.616356) | 0.077768 / 0.296338 (-0.218570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281680 / 0.215209 (0.066471) | 2.754658 / 2.077655 (0.677003) | 1.454036 / 1.504120 (-0.050084) | 1.333153 / 1.541195 (-0.208042) | 1.383616 / 1.468490 (-0.084874) | 0.728933 / 4.584777 (-3.855844) | 2.374989 / 3.745712 (-1.370723) | 2.990824 / 5.269862 (-2.279038) | 1.899065 / 4.565676 (-2.666612) | 0.078657 / 0.424275 (-0.345619) | 0.005162 / 0.007607 (-0.002445) | 0.335883 / 0.226044 (0.109838) | 3.323047 / 2.268929 (1.054119) | 1.848290 / 55.444624 (-53.596335) | 1.519510 / 6.876477 (-5.356966) | 1.563608 / 2.142072 (-0.578465) | 0.807890 / 4.805227 (-3.997337) | 0.134517 / 6.500664 (-6.366147) | 0.042208 / 0.075469 (-0.033262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963634 / 1.841788 (-0.878154) | 11.617868 / 8.074308 (3.543560) | 9.804648 / 10.191392 (-0.386744) | 0.142311 / 0.680424 (-0.538113) | 0.013748 / 0.534201 (-0.520453) | 0.300309 / 0.579283 (-0.278974) | 0.268214 / 0.434364 (-0.166150) | 0.342406 / 0.540337 (-0.197931) | 0.430315 / 1.386936 (-0.956621) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005533 / 0.011353 (-0.005820) | 0.004208 / 0.011008 (-0.006800) | 0.051732 / 0.038508 (0.013224) | 0.031296 / 0.023109 (0.008187) | 0.275091 / 0.275898 (-0.000807) | 0.296889 / 0.323480 (-0.026591) | 0.004363 / 0.007986 (-0.003623) | 0.002807 / 0.004328 (-0.001522) | 0.049727 / 0.004250 (0.045476) | 0.039798 / 0.037052 (0.002746) | 0.284379 / 0.258489 (0.025890) | 0.317281 / 0.293841 (0.023440) | 0.031286 / 0.128546 (-0.097261) | 0.012384 / 0.075646 (-0.063263) | 0.061619 / 0.419271 (-0.357652) | 0.032974 / 0.043533 (-0.010559) | 0.274313 / 0.255139 (0.019174) | 0.296142 / 0.283200 (0.012943) | 0.017391 / 0.141683 (-0.124291) | 1.148369 / 1.452155 (-0.303786) | 1.171539 / 1.492716 (-0.321177) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097309 / 0.018006 (0.079302) | 0.304701 / 0.000490 (0.304212) | 0.000208 / 0.000200 (0.000008) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022382 / 0.037411 (-0.015030) | 0.077000 / 0.014526 (0.062474) | 0.088165 / 0.176557 (-0.088392) | 0.129060 / 0.737135 (-0.608075) | 0.090128 / 0.296338 (-0.206211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285308 / 0.215209 (0.070099) | 2.816680 / 2.077655 (0.739025) | 1.542418 / 1.504120 (0.038298) | 1.418567 / 1.541195 (-0.122628) | 1.447018 / 1.468490 (-0.021472) | 0.737055 / 4.584777 (-3.847722) | 0.968285 / 3.745712 (-2.777427) | 2.880120 / 5.269862 (-2.389741) | 1.921813 / 4.565676 (-2.643864) | 0.079110 / 0.424275 (-0.345165) | 0.005826 / 0.007607 (-0.001781) | 0.336441 / 0.226044 (0.110397) | 3.326384 / 2.268929 (1.057456) | 1.929205 / 55.444624 (-53.515419) | 1.618215 / 6.876477 (-5.258261) | 1.769688 / 2.142072 (-0.372385) | 0.808009 / 4.805227 (-3.997219) | 0.136384 / 6.500664 (-6.364280) | 0.041332 / 0.075469 (-0.034137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.010884 / 1.841788 (-0.830903) | 12.266118 / 8.074308 (4.191810) | 10.287424 / 10.191392 (0.096032) | 0.143172 / 0.680424 (-0.537251) | 0.015798 / 0.534201 (-0.518403) | 0.301604 / 0.579283 (-0.277679) | 0.131079 / 0.434364 (-0.303285) | 0.338396 / 0.540337 (-0.201941) | 0.460721 / 1.386936 (-0.926215) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e1d31387aa594b2e745c8ed8964962c134d203d \"CML watermark\")\n"
] | minor fix for bfloat16 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7003/reactions"
} | PR_kwDODunzps5zhRAK | {
"diff_url": "https://github.com/huggingface/datasets/pull/7003.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7003",
"merged_at": "2024-06-25T16:10:10Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7003.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7003"
} | 2024-06-25T16:10:04Z | https://api.github.com/repos/huggingface/datasets/issues/7003/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/7003/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7003/timeline | closed | false | 7,003 | null | 2024-06-25T16:10:10Z | null | true |
2,373,010,351 | https://api.github.com/repos/huggingface/datasets/issues/7002 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7002/events | [] | null | 2024-06-25T16:10:16Z | [] | https://github.com/huggingface/datasets/pull/7002 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7002). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005321 / 0.011353 (-0.006032) | 0.003495 / 0.011008 (-0.007514) | 0.065577 / 0.038508 (0.027069) | 0.030876 / 0.023109 (0.007767) | 0.255216 / 0.275898 (-0.020682) | 0.265111 / 0.323480 (-0.058368) | 0.003149 / 0.007986 (-0.004837) | 0.004062 / 0.004328 (-0.000267) | 0.051142 / 0.004250 (0.046891) | 0.042460 / 0.037052 (0.005408) | 0.270692 / 0.258489 (0.012203) | 0.284957 / 0.293841 (-0.008884) | 0.030143 / 0.128546 (-0.098403) | 0.012148 / 0.075646 (-0.063498) | 0.203706 / 0.419271 (-0.215565) | 0.035948 / 0.043533 (-0.007584) | 0.251391 / 0.255139 (-0.003748) | 0.270908 / 0.283200 (-0.012292) | 0.018496 / 0.141683 (-0.123187) | 1.118567 / 1.452155 (-0.333587) | 1.157695 / 1.492716 (-0.335021) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.135649 / 0.018006 (0.117643) | 0.281489 / 0.000490 (0.281000) | 0.000244 / 0.000200 (0.000044) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018700 / 0.037411 (-0.018711) | 0.062305 / 0.014526 (0.047779) | 0.074968 / 0.176557 (-0.101589) | 0.121490 / 0.737135 (-0.615645) | 0.075585 / 0.296338 (-0.220754) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276929 / 0.215209 (0.061720) | 2.733543 / 2.077655 (0.655888) | 1.414585 / 1.504120 (-0.089535) | 1.301975 / 1.541195 (-0.239220) | 1.336698 / 1.468490 (-0.131792) | 0.720650 / 4.584777 (-3.864127) | 2.374796 / 3.745712 (-1.370917) | 2.866534 / 5.269862 (-2.403327) | 1.819607 / 4.565676 (-2.746069) | 0.077914 / 0.424275 (-0.346361) | 0.005146 / 0.007607 (-0.002461) | 0.331722 / 0.226044 (0.105678) | 3.290875 / 2.268929 (1.021946) | 1.799806 / 55.444624 (-53.644818) | 1.476816 / 6.876477 (-5.399660) | 1.511441 / 2.142072 (-0.630631) | 0.798043 / 4.805227 (-4.007185) | 0.134577 / 6.500664 (-6.366087) | 0.042055 / 0.075469 (-0.033415) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967908 / 1.841788 (-0.873880) | 11.215688 / 8.074308 (3.141380) | 9.486403 / 10.191392 (-0.704989) | 0.141864 / 0.680424 (-0.538560) | 0.013462 / 0.534201 (-0.520739) | 0.302601 / 0.579283 (-0.276682) | 0.266870 / 0.434364 (-0.167494) | 0.336963 / 0.540337 (-0.203375) | 0.425374 / 1.386936 (-0.961562) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005549 / 0.011353 (-0.005803) | 0.003464 / 0.011008 (-0.007544) | 0.051421 / 0.038508 (0.012913) | 0.032320 / 0.023109 (0.009211) | 0.269591 / 0.275898 (-0.006307) | 0.292015 / 0.323480 (-0.031465) | 0.004351 / 0.007986 (-0.003634) | 0.002772 / 0.004328 (-0.001556) | 0.048836 / 0.004250 (0.044586) | 0.039501 / 0.037052 (0.002449) | 0.282419 / 0.258489 (0.023930) | 0.312289 / 0.293841 (0.018448) | 0.031788 / 0.128546 (-0.096759) | 0.012074 / 0.075646 (-0.063572) | 0.060457 / 0.419271 (-0.358814) | 0.033106 / 0.043533 (-0.010427) | 0.270323 / 0.255139 (0.015184) | 0.287855 / 0.283200 (0.004655) | 0.017865 / 0.141683 (-0.123818) | 1.130406 / 1.452155 (-0.321749) | 1.178679 / 1.492716 (-0.314038) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093606 / 0.018006 (0.075600) | 0.297328 / 0.000490 (0.296838) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022498 / 0.037411 (-0.014913) | 0.076927 / 0.014526 (0.062401) | 0.088013 / 0.176557 (-0.088544) | 0.127279 / 0.737135 (-0.609857) | 0.089424 / 0.296338 (-0.206914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296441 / 0.215209 (0.081232) | 2.913051 / 2.077655 (0.835396) | 1.581816 / 1.504120 (0.077696) | 1.451575 / 1.541195 (-0.089620) | 1.458968 / 1.468490 (-0.009522) | 0.727191 / 4.584777 (-3.857586) | 0.954607 / 3.745712 (-2.791106) | 2.824357 / 5.269862 (-2.445505) | 1.886779 / 4.565676 (-2.678898) | 0.079397 / 0.424275 (-0.344878) | 0.005566 / 0.007607 (-0.002041) | 0.351655 / 0.226044 (0.125611) | 3.395790 / 2.268929 (1.126862) | 1.886238 / 55.444624 (-53.558387) | 1.615413 / 6.876477 (-5.261064) | 1.723922 / 2.142072 (-0.418150) | 0.807858 / 4.805227 (-3.997369) | 0.132998 / 6.500664 (-6.367667) | 0.040396 / 0.075469 (-0.035073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008527 / 1.841788 (-0.833261) | 11.736104 / 8.074308 (3.661796) | 10.283367 / 10.191392 (0.091975) | 0.141386 / 0.680424 (-0.539038) | 0.015722 / 0.534201 (-0.518479) | 0.301785 / 0.579283 (-0.277498) | 0.123073 / 0.434364 (-0.311291) | 0.340478 / 0.540337 (-0.199859) | 0.462936 / 1.386936 (-0.924000) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bfb0a414d68e945addf95a9419a8314c372e19ba \"CML watermark\")\n"
] | Fix dump of bfloat16 torch tensor | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7002/reactions"
} | PR_kwDODunzps5zhBld | {
"diff_url": "https://github.com/huggingface/datasets/pull/7002.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7002",
"merged_at": "2024-06-25T15:51:52Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7002.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7002"
} | 2024-06-25T15:38:09Z | https://api.github.com/repos/huggingface/datasets/issues/7002/comments | close https://github.com/huggingface/datasets/issues/7000 | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/7002/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7002/timeline | closed | false | 7,002 | null | 2024-06-25T15:51:52Z | null | true |
2,372,930,879 | https://api.github.com/repos/huggingface/datasets/issues/7001 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7001/events | [] | null | 2024-06-25T15:21:19Z | [] | https://github.com/huggingface/datasets/issues/7001 | NONE | null | null | null | [
"Ok it seems the solution is to use the directory string without the trailing \"/\" which in my case as: \r\n\r\n`parquet_dir = \"~/data/Parquet\" `\r\n\r\nStill i think this is a weird behavior... "
] | Datasetbuilder Local Download FileNotFoundError | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7001/reactions"
} | I_kwDODunzps6NcA0_ | null | 2024-06-25T15:02:34Z | https://api.github.com/repos/huggingface/datasets/issues/7001/comments | ### Describe the bug
So I was trying to download a dataset and save it as parquet and I follow the [tutorial](https://huggingface.co./docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage) of Huggingface. However, during the excution I face a FileNotFoundError.
I debug the code and it seems there is a bug there:
So first it creates a .incomplete folder and before moving its contents the following code deletes the directory
[Code](https://github.com/huggingface/datasets/blob/98fdc9e78e6d057ca66e58a37f49d6618aab8130/src/datasets/builder.py#L984)
hence as a result I face with:
``` FileNotFoundError: [Errno 2] No such file or directory: '~/data/Parquet/.incomplete '```
### Steps to reproduce the bug
```
from datasets import load_dataset_builder
from pathlib import Path
parquet_dir = "~/data/Parquet/"
Path(parquet_dir).mkdir(parents=True, exist_ok=True)
builder = load_dataset_builder(
"rotten_tomatoes",
)
builder.download_and_prepare(parquet_dir, file_format="parquet")
```
### Expected behavior
Downloads the files and saves as parquet
### Environment info
Ubuntu,
Python 3.10
```
datasets 2.19.1
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/12601271?v=4",
"events_url": "https://api.github.com/users/purefall/events{/privacy}",
"followers_url": "https://api.github.com/users/purefall/followers",
"following_url": "https://api.github.com/users/purefall/following{/other_user}",
"gists_url": "https://api.github.com/users/purefall/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/purefall",
"id": 12601271,
"login": "purefall",
"node_id": "MDQ6VXNlcjEyNjAxMjcx",
"organizations_url": "https://api.github.com/users/purefall/orgs",
"received_events_url": "https://api.github.com/users/purefall/received_events",
"repos_url": "https://api.github.com/users/purefall/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/purefall/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/purefall/subscriptions",
"type": "User",
"url": "https://api.github.com/users/purefall"
} | https://api.github.com/repos/huggingface/datasets/issues/7001/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7001/timeline | open | false | 7,001 | null | null | null | false |
2,372,887,585 | https://api.github.com/repos/huggingface/datasets/issues/7000 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7000/events | [] | null | 2024-06-25T16:04:00Z | [] | https://github.com/huggingface/datasets/issues/7000 | NONE | completed | null | null | [
"@lhoestq Thank you for merging #6607, but unfortunately the issue persists for `IterableDataset` :pensive: ",
"Hi ! I opened https://github.com/huggingface/datasets/pull/7002 to fix this bug",
"Amazing, thank you so much @lhoestq! :pray:"
] | IterableDataset: Unsupported ScalarType BFloat16 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7000/reactions"
} | I_kwDODunzps6Nb2Qh | null | 2024-06-25T14:43:26Z | https://api.github.com/repos/huggingface/datasets/issues/7000/comments | ### Describe the bug
`IterableDataset.from_generator` crashes when using BFloat16:
```
File "/usr/local/lib/python3.11/site-packages/datasets/utils/_dill.py", line 169, in _save_torchTensor
args = (obj.detach().cpu().numpy(),)
^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: Got unsupported ScalarType BFloat16
```
### Steps to reproduce the bug
```python
import torch
from datasets import IterableDataset
def demo(x):
yield {"x": x}
x = torch.tensor([1.], dtype=torch.bfloat16)
dataset = IterableDataset.from_generator(
demo,
gen_kwargs=dict(x=x),
)
example = next(iter(dataset))
print(example)
```
### Expected behavior
Code sample should print:
```python
{'x': tensor([1.], dtype=torch.bfloat16)}
```
### Environment info
```
datasets==2.20.0
torch==2.2.2
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/170015089?v=4",
"events_url": "https://api.github.com/users/stoical07/events{/privacy}",
"followers_url": "https://api.github.com/users/stoical07/followers",
"following_url": "https://api.github.com/users/stoical07/following{/other_user}",
"gists_url": "https://api.github.com/users/stoical07/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/stoical07",
"id": 170015089,
"login": "stoical07",
"node_id": "U_kgDOCiI5cQ",
"organizations_url": "https://api.github.com/users/stoical07/orgs",
"received_events_url": "https://api.github.com/users/stoical07/received_events",
"repos_url": "https://api.github.com/users/stoical07/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/stoical07/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stoical07/subscriptions",
"type": "User",
"url": "https://api.github.com/users/stoical07"
} | https://api.github.com/repos/huggingface/datasets/issues/7000/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7000/timeline | closed | false | 7,000 | null | 2024-06-25T15:51:53Z | null | false |
2,372,124,589 | https://api.github.com/repos/huggingface/datasets/issues/6999 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6999/events | [] | null | 2024-07-03T12:01:42Z | [] | https://github.com/huggingface/datasets/pull/6999 | MEMBER | null | false | {
"closed_at": null,
"closed_issues": 3,
"created_at": "2023-02-13T16:22:42Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
},
"description": "Next major release",
"due_on": null,
"html_url": "https://github.com/huggingface/datasets/milestone/10",
"id": 9038583,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels",
"node_id": "MI_kwDODunzps4Aier3",
"number": 10,
"open_issues": 5,
"state": "open",
"title": "3.0",
"updated_at": "2024-06-28T06:51:30Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/10"
} | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6999). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | Remove tasks | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6999/reactions"
} | PR_kwDODunzps5zd-ak | {
"diff_url": "https://github.com/huggingface/datasets/pull/6999.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6999",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6999.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6999"
} | 2024-06-25T09:06:16Z | https://api.github.com/repos/huggingface/datasets/issues/6999/comments | Remove tasks, as part of the 3.0 release. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6999/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6999/timeline | open | false | 6,999 | null | null | null | true |
2,371,973,926 | https://api.github.com/repos/huggingface/datasets/issues/6998 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6998/events | [] | null | 2024-06-25T08:22:38Z | [] | https://github.com/huggingface/datasets/pull/6998 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6998). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005396 / 0.011353 (-0.005957) | 0.003974 / 0.011008 (-0.007034) | 0.063490 / 0.038508 (0.024982) | 0.030299 / 0.023109 (0.007189) | 0.244489 / 0.275898 (-0.031409) | 0.274116 / 0.323480 (-0.049364) | 0.003187 / 0.007986 (-0.004798) | 0.003433 / 0.004328 (-0.000896) | 0.049313 / 0.004250 (0.045062) | 0.043677 / 0.037052 (0.006624) | 0.260198 / 0.258489 (0.001709) | 0.283558 / 0.293841 (-0.010283) | 0.029728 / 0.128546 (-0.098819) | 0.011950 / 0.075646 (-0.063696) | 0.204371 / 0.419271 (-0.214901) | 0.035712 / 0.043533 (-0.007821) | 0.252715 / 0.255139 (-0.002424) | 0.268906 / 0.283200 (-0.014293) | 0.021153 / 0.141683 (-0.120529) | 1.125599 / 1.452155 (-0.326556) | 1.163122 / 1.492716 (-0.329594) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095089 / 0.018006 (0.077083) | 0.298576 / 0.000490 (0.298086) | 0.000214 / 0.000200 (0.000014) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018567 / 0.037411 (-0.018844) | 0.062337 / 0.014526 (0.047811) | 0.074231 / 0.176557 (-0.102326) | 0.120960 / 0.737135 (-0.616175) | 0.076124 / 0.296338 (-0.220215) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286936 / 0.215209 (0.071727) | 2.816656 / 2.077655 (0.739001) | 1.486772 / 1.504120 (-0.017348) | 1.373289 / 1.541195 (-0.167905) | 1.392739 / 1.468490 (-0.075752) | 0.708091 / 4.584777 (-3.876686) | 2.410034 / 3.745712 (-1.335678) | 2.912701 / 5.269862 (-2.357161) | 1.850924 / 4.565676 (-2.714752) | 0.078896 / 0.424275 (-0.345380) | 0.005116 / 0.007607 (-0.002491) | 0.332275 / 0.226044 (0.106231) | 3.306562 / 2.268929 (1.037633) | 1.853051 / 55.444624 (-53.591573) | 1.556210 / 6.876477 (-5.320267) | 1.558892 / 2.142072 (-0.583181) | 0.789917 / 4.805227 (-4.015310) | 0.133683 / 6.500664 (-6.366981) | 0.042566 / 0.075469 (-0.032904) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957050 / 1.841788 (-0.884738) | 11.401462 / 8.074308 (3.327154) | 9.782988 / 10.191392 (-0.408404) | 0.142127 / 0.680424 (-0.538296) | 0.014730 / 0.534201 (-0.519471) | 0.302647 / 0.579283 (-0.276636) | 0.264654 / 0.434364 (-0.169710) | 0.341340 / 0.540337 (-0.198998) | 0.425808 / 1.386936 (-0.961128) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005679 / 0.011353 (-0.005674) | 0.003513 / 0.011008 (-0.007495) | 0.050135 / 0.038508 (0.011627) | 0.031614 / 0.023109 (0.008505) | 0.260064 / 0.275898 (-0.015834) | 0.285816 / 0.323480 (-0.037664) | 0.004428 / 0.007986 (-0.003558) | 0.002816 / 0.004328 (-0.001512) | 0.048441 / 0.004250 (0.044191) | 0.039622 / 0.037052 (0.002570) | 0.274940 / 0.258489 (0.016451) | 0.311837 / 0.293841 (0.017996) | 0.031439 / 0.128546 (-0.097107) | 0.012056 / 0.075646 (-0.063590) | 0.060109 / 0.419271 (-0.359163) | 0.033123 / 0.043533 (-0.010409) | 0.261563 / 0.255139 (0.006424) | 0.282640 / 0.283200 (-0.000560) | 0.017168 / 0.141683 (-0.124515) | 1.127859 / 1.452155 (-0.324295) | 1.182414 / 1.492716 (-0.310303) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095517 / 0.018006 (0.077510) | 0.300578 / 0.000490 (0.300088) | 0.000212 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022192 / 0.037411 (-0.015220) | 0.076617 / 0.014526 (0.062091) | 0.087405 / 0.176557 (-0.089151) | 0.127011 / 0.737135 (-0.610124) | 0.088706 / 0.296338 (-0.207632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294260 / 0.215209 (0.079051) | 2.872879 / 2.077655 (0.795224) | 1.531374 / 1.504120 (0.027254) | 1.399232 / 1.541195 (-0.141962) | 1.400708 / 1.468490 (-0.067782) | 0.714003 / 4.584777 (-3.870773) | 0.943144 / 3.745712 (-2.802568) | 2.833396 / 5.269862 (-2.436466) | 1.890570 / 4.565676 (-2.675106) | 0.077664 / 0.424275 (-0.346611) | 0.005651 / 0.007607 (-0.001956) | 0.349476 / 0.226044 (0.123431) | 3.405768 / 2.268929 (1.136840) | 1.869739 / 55.444624 (-53.574885) | 1.575293 / 6.876477 (-5.301184) | 1.692981 / 2.142072 (-0.449092) | 0.795363 / 4.805227 (-4.009865) | 0.131532 / 6.500664 (-6.369132) | 0.041183 / 0.075469 (-0.034286) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000821 / 1.841788 (-0.840967) | 11.987795 / 8.074308 (3.913487) | 10.147652 / 10.191392 (-0.043740) | 0.141314 / 0.680424 (-0.539110) | 0.015506 / 0.534201 (-0.518695) | 0.305090 / 0.579283 (-0.274193) | 0.123403 / 0.434364 (-0.310960) | 0.346507 / 0.540337 (-0.193831) | 0.471318 / 1.386936 (-0.915618) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#186b560eb2393c7d1913f4b3e76e9e04a081e09b \"CML watermark\")\n"
] | Fix tests using hf-internal-testing/librispeech_asr_dummy | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6998/reactions"
} | PR_kwDODunzps5zddYG | {
"diff_url": "https://github.com/huggingface/datasets/pull/6998.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6998",
"merged_at": "2024-06-25T08:13:42Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6998.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6998"
} | 2024-06-25T07:59:44Z | https://api.github.com/repos/huggingface/datasets/issues/6998/comments | Fix tests using hf-internal-testing/librispeech_asr_dummy once that dataset has been converted to Parquet.
Fix #6997. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6998/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6998/timeline | closed | false | 6,998 | null | 2024-06-25T08:13:42Z | null | true |
2,371,966,127 | https://api.github.com/repos/huggingface/datasets/issues/6997 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6997/events | [
{
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks",
"id": 4296013012,
"name": "maintenance",
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance"
}
] | null | 2024-06-25T08:13:43Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6997 | MEMBER | completed | null | null | [] | CI is broken for tests using hf-internal-testing/librispeech_asr_dummy | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6997/reactions"
} | I_kwDODunzps6NYVSv | null | 2024-06-25T07:55:44Z | https://api.github.com/repos/huggingface/datasets/issues/6997/comments | CI is broken: https://github.com/huggingface/datasets/actions/runs/9657882317/job/26637998686?pr=6996
```
FAILED tests/test_inspect.py::test_get_dataset_config_names[hf-internal-testing/librispeech_asr_dummy-expected4] - AssertionError: assert ['clean'] == ['clean', 'other']
Right contains one more item: 'other'
Full diff:
[
'clean',
- 'other',
]
FAILED tests/test_inspect.py::test_get_dataset_default_config_name[hf-internal-testing/librispeech_asr_dummy-None] - AssertionError: assert 'clean' is None
```
Note that repository was recently converted to Parquet: https://huggingface.co./datasets/hf-internal-testing/librispeech_asr_dummy/commit/5be91486e11a2d616f4ec5db8d3fd248585ac07a | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6997/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6997/timeline | closed | false | 6,997 | null | 2024-06-25T08:13:43Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,371,841,671 | https://api.github.com/repos/huggingface/datasets/issues/6996 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6996/events | [] | null | 2024-07-01T12:36:59Z | [] | https://github.com/huggingface/datasets/pull/6996 | MEMBER | null | false | {
"closed_at": null,
"closed_issues": 3,
"created_at": "2023-02-13T16:22:42Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
},
"description": "Next major release",
"due_on": null,
"html_url": "https://github.com/huggingface/datasets/milestone/10",
"id": 9038583,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels",
"node_id": "MI_kwDODunzps4Aier3",
"number": 10,
"open_issues": 5,
"state": "open",
"title": "3.0",
"updated_at": "2024-06-28T06:51:30Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/10"
} | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6996). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | Remove deprecated code | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6996/reactions"
} | PR_kwDODunzps5zdAg0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6996.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6996",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6996.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6996"
} | 2024-06-25T06:54:40Z | https://api.github.com/repos/huggingface/datasets/issues/6996/comments | Remove deprecated code, as part of the 3.0 release.
First merge:
- [x] #6983
- [x] #6987
- [ ] #6999 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6996/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6996/timeline | open | false | 6,996 | null | null | null | true |
2,370,713,475 | https://api.github.com/repos/huggingface/datasets/issues/6995 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6995/events | [] | null | 2024-07-16T17:51:06Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6995 | NONE | completed | null | null | [
"What is the version of your installed `huggingface-hub`:\r\n```python\r\nimport huggingface_hub\r\nprint(huggingface_hub.__version__)\r\n```\r\n\r\nIt seems you have a very old version of `huggingface-hub`, where `CommitInfo` was not still implemented. You need to update it:\r\n```\r\npip install -U huggingface-hub\r\n```\r\n\r\nNote that `CommitInfo` was implemented in huggingface-hub 0.10.0 and datasets requires \"huggingface-hub>=0.21.2\"",
"The version of my huggingface-hub is 0.23.4.",
"The error message says there is no CommitInfo in your installed huggingface-hub library:\r\n```\r\nImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (D:\\Anaconda3\\envs\\CS224S\\Lib\\site-packages\\huggingface_hub_init_.py)\r\n```\r\n\r\nAnd this is implemented since version 0.10.0:\r\n- https://github.com/huggingface/huggingface_hub/pull/1066",
"I am getting the exact same issue when I `import datasets`. The version of my huggingface-hub is also 0.23.4. I dont see a solution in the comments. Not sure why is this issue closed?",
"I closed the issue because the problem is not related to the `datasets` library.\r\n\r\nThe problem is with your local Python environment: it seems corrupted. You could try to remove it and regenerate it again.",
"I have recreated my conda environment but still run into the same issue. Here is my environment:\r\n```\r\nconda create --name esm python=3.10\r\n conda activate esm\r\n conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia\r\n pip3 install -r requirements.txt\r\n```\r\nRequirements.txt\r\n```\r\naccelerate\r\ndatasets==2.20.0\r\npyfastx\r\ntransformers\r\nboto3\r\nhuggingface_hub==0.23.4\r\n```\r\n\r\nAnd then I get:\r\n```\r\n>>> import datasets\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/datasets/__init__.py\", line 17, in <module>\r\n from .arrow_dataset import Dataset\r\n File \"/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 63, in <module>\r\n from huggingface_hub import (\r\nImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/huggingface_hub/__init__.py)\r\n>>>\r\n```\r\n\r\n",
"You can check:\r\n```\r\n>>> import huggingface_hub\r\n>>> print(huggingface_hub.__version__)\r\n```",
"This is what I see:\r\n```\r\n>>> import huggingface_hub\r\n>>> print(huggingface_hub.__version__)\r\n0.23.4\r\n```",
"Installing `chardet` makes it work for some reason"
] | ImportError when importing datasets.load_dataset | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6995/reactions"
} | I_kwDODunzps6NTjeD | null | 2024-06-24T17:07:22Z | https://api.github.com/repos/huggingface/datasets/issues/6995/comments | ### Describe the bug
I encountered an ImportError while trying to import `load_dataset` from the `datasets` module in Hugging Face. The error message indicates a problem with importing 'CommitInfo' from 'huggingface_hub'.
### Steps to reproduce the bug
1. pip install git+https://github.com/huggingface/datasets
2. from datasets import load_dataset
### Expected behavior
ImportError Traceback (most recent call last)
Cell In[7], [line 1](vscode-notebook-cell:?execution_count=7&line=1)
----> [1](vscode-notebook-cell:?execution_count=7&line=1) from datasets import load_dataset
[3](vscode-notebook-cell:?execution_count=7&line=3) train_set = load_dataset("mispeech/speechocean762", split="train")
[4](vscode-notebook-cell:?execution_count=7&line=4) test_set = load_dataset("mispeech/speechocean762", split="test")
File d:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\__init__.py:[1](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:1)7
1 # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
[2](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:2) #
[3](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:3) # Licensed under the Apache License, Version 2.0 (the "License");
(...)
[12](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:12) # See the License for the specific language governing permissions and
[13](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:13) # limitations under the License.
[15](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:15) __version__ = "2.20.1.dev0"
---> [17](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:17) from .arrow_dataset import Dataset
[18](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:18) from .arrow_reader import ReadInstruction
[19](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:19) from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File d:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\arrow_dataset.py:63
[61](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:61) import pyarrow.compute as pc
[62](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:62) from fsspec.core import url_to_fs
---> [63](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:63) from huggingface_hub import (
[64](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:64) CommitInfo,
[65](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:65) CommitOperationAdd,
...
[70](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:70) )
[71](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:71) from huggingface_hub.hf_api import RepoFile
[72](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:72) from multiprocess import Pool
ImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (d:\Anaconda3\envs\CS224S\Lib\site-packages\huggingface_hub\__init__.py)
Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?580889ab-0f61-4f37-9214-eaa2b3807f85) or open in a [text editor](command:workbench.action.openLargeOutput?580889ab-0f61-4f37-9214-eaa2b3807f85). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)...
### Environment info
Leo@DESKTOP-9NHUAMI MSYS /d/Anaconda3/envs/CS224S/Lib/site-packages/huggingface_hub
$ datasets-cli env
Traceback (most recent call last):
File "<frozen runpy>", line 198, in _run_module_as_main
File "<frozen runpy>", line 88, in _run_code
File "D:\Anaconda3\envs\CS224S\Scripts\datasets-cli.exe\__main__.py", line 4, in <module>
File "D:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\__init__.py", line 17, in <module>
from .arrow_dataset import Dataset
File "D:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\arrow_dataset.py", line 63, in <module>
from huggingface_hub import (
ImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (D:\Anaconda3\envs\CS224S\Lib\site-packages\huggingface_hub\__init__.py)
(CS224S) | {
"avatar_url": "https://avatars.githubusercontent.com/u/124846947?v=4",
"events_url": "https://api.github.com/users/Leo-Lsc/events{/privacy}",
"followers_url": "https://api.github.com/users/Leo-Lsc/followers",
"following_url": "https://api.github.com/users/Leo-Lsc/following{/other_user}",
"gists_url": "https://api.github.com/users/Leo-Lsc/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Leo-Lsc",
"id": 124846947,
"login": "Leo-Lsc",
"node_id": "U_kgDOB3EDYw",
"organizations_url": "https://api.github.com/users/Leo-Lsc/orgs",
"received_events_url": "https://api.github.com/users/Leo-Lsc/received_events",
"repos_url": "https://api.github.com/users/Leo-Lsc/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Leo-Lsc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Leo-Lsc/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Leo-Lsc"
} | https://api.github.com/repos/huggingface/datasets/issues/6995/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6995/timeline | closed | false | 6,995 | null | 2024-06-25T06:11:37Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,370,491,689 | https://api.github.com/repos/huggingface/datasets/issues/6994 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6994/events | [] | null | 2024-06-26T04:37:35Z | [] | https://github.com/huggingface/datasets/pull/6994 | CONTRIBUTOR | null | false | null | [
"Sure~",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6994). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005538 / 0.011353 (-0.005815) | 0.003997 / 0.011008 (-0.007011) | 0.063444 / 0.038508 (0.024935) | 0.032552 / 0.023109 (0.009442) | 0.266574 / 0.275898 (-0.009324) | 0.282841 / 0.323480 (-0.040639) | 0.004279 / 0.007986 (-0.003706) | 0.002788 / 0.004328 (-0.001540) | 0.049226 / 0.004250 (0.044976) | 0.044688 / 0.037052 (0.007636) | 0.275464 / 0.258489 (0.016975) | 0.305278 / 0.293841 (0.011437) | 0.030097 / 0.128546 (-0.098450) | 0.012237 / 0.075646 (-0.063410) | 0.205526 / 0.419271 (-0.213745) | 0.036145 / 0.043533 (-0.007388) | 0.267395 / 0.255139 (0.012256) | 0.289149 / 0.283200 (0.005949) | 0.019044 / 0.141683 (-0.122639) | 1.162294 / 1.452155 (-0.289861) | 1.183642 / 1.492716 (-0.309074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.139125 / 0.018006 (0.121119) | 0.301743 / 0.000490 (0.301253) | 0.000260 / 0.000200 (0.000061) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019494 / 0.037411 (-0.017917) | 0.063078 / 0.014526 (0.048552) | 0.076989 / 0.176557 (-0.099567) | 0.121363 / 0.737135 (-0.615773) | 0.080040 / 0.296338 (-0.216298) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284401 / 0.215209 (0.069192) | 2.805397 / 2.077655 (0.727742) | 1.555609 / 1.504120 (0.051489) | 1.405662 / 1.541195 (-0.135533) | 1.459492 / 1.468490 (-0.008999) | 0.718376 / 4.584777 (-3.866401) | 2.395918 / 3.745712 (-1.349794) | 2.976753 / 5.269862 (-2.293108) | 1.883938 / 4.565676 (-2.681738) | 0.078867 / 0.424275 (-0.345408) | 0.005207 / 0.007607 (-0.002400) | 0.335178 / 0.226044 (0.109133) | 3.313414 / 2.268929 (1.044485) | 1.856929 / 55.444624 (-53.587696) | 1.565319 / 6.876477 (-5.311158) | 1.592723 / 2.142072 (-0.549350) | 0.793621 / 4.805227 (-4.011606) | 0.134208 / 6.500664 (-6.366456) | 0.042853 / 0.075469 (-0.032616) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981553 / 1.841788 (-0.860235) | 11.810438 / 8.074308 (3.736130) | 9.529874 / 10.191392 (-0.661518) | 0.142216 / 0.680424 (-0.538207) | 0.014303 / 0.534201 (-0.519898) | 0.304600 / 0.579283 (-0.274684) | 0.261869 / 0.434364 (-0.172495) | 0.347301 / 0.540337 (-0.193036) | 0.437395 / 1.386936 (-0.949541) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005881 / 0.011353 (-0.005472) | 0.004039 / 0.011008 (-0.006969) | 0.050241 / 0.038508 (0.011733) | 0.032670 / 0.023109 (0.009561) | 0.264940 / 0.275898 (-0.010959) | 0.287105 / 0.323480 (-0.036374) | 0.004844 / 0.007986 (-0.003142) | 0.002867 / 0.004328 (-0.001462) | 0.048083 / 0.004250 (0.043833) | 0.040965 / 0.037052 (0.003913) | 0.274390 / 0.258489 (0.015901) | 0.312107 / 0.293841 (0.018266) | 0.031714 / 0.128546 (-0.096832) | 0.012603 / 0.075646 (-0.063043) | 0.060698 / 0.419271 (-0.358573) | 0.033130 / 0.043533 (-0.010402) | 0.264444 / 0.255139 (0.009305) | 0.282797 / 0.283200 (-0.000403) | 0.027872 / 0.141683 (-0.113811) | 1.139026 / 1.452155 (-0.313129) | 1.181431 / 1.492716 (-0.311285) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097314 / 0.018006 (0.079308) | 0.301326 / 0.000490 (0.300836) | 0.000215 / 0.000200 (0.000015) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023394 / 0.037411 (-0.014018) | 0.076270 / 0.014526 (0.061744) | 0.089065 / 0.176557 (-0.087491) | 0.129996 / 0.737135 (-0.607139) | 0.089642 / 0.296338 (-0.206697) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295390 / 0.215209 (0.080181) | 2.877849 / 2.077655 (0.800194) | 1.537129 / 1.504120 (0.033009) | 1.409441 / 1.541195 (-0.131754) | 1.432468 / 1.468490 (-0.036023) | 0.718054 / 4.584777 (-3.866722) | 0.930872 / 3.745712 (-2.814841) | 2.841028 / 5.269862 (-2.428834) | 1.921990 / 4.565676 (-2.643686) | 0.077638 / 0.424275 (-0.346637) | 0.005494 / 0.007607 (-0.002113) | 0.336331 / 0.226044 (0.110287) | 3.330490 / 2.268929 (1.061561) | 1.887994 / 55.444624 (-53.556630) | 1.593332 / 6.876477 (-5.283144) | 1.726956 / 2.142072 (-0.415116) | 0.783612 / 4.805227 (-4.021615) | 0.129926 / 6.500664 (-6.370738) | 0.040792 / 0.075469 (-0.034677) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980274 / 1.841788 (-0.861514) | 12.193871 / 8.074308 (4.119563) | 10.348934 / 10.191392 (0.157542) | 0.141584 / 0.680424 (-0.538840) | 0.015737 / 0.534201 (-0.518464) | 0.300725 / 0.579283 (-0.278558) | 0.127190 / 0.434364 (-0.307174) | 0.341142 / 0.540337 (-0.199196) | 0.459523 / 1.386936 (-0.927413) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#637246baf96f07b19b193ed101f34b65cb35cffb \"CML watermark\")\n"
] | Fix incorrect rank value in data splitting | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6994/reactions"
} | PR_kwDODunzps5zYYXr | {
"diff_url": "https://github.com/huggingface/datasets/pull/6994.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6994",
"merged_at": "2024-06-25T16:19:17Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6994.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6994"
} | 2024-06-24T15:07:47Z | https://api.github.com/repos/huggingface/datasets/issues/6994/comments | Fix #6990. | {
"avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4",
"events_url": "https://api.github.com/users/yzhangcs/events{/privacy}",
"followers_url": "https://api.github.com/users/yzhangcs/followers",
"following_url": "https://api.github.com/users/yzhangcs/following{/other_user}",
"gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yzhangcs",
"id": 18402347,
"login": "yzhangcs",
"node_id": "MDQ6VXNlcjE4NDAyMzQ3",
"organizations_url": "https://api.github.com/users/yzhangcs/orgs",
"received_events_url": "https://api.github.com/users/yzhangcs/received_events",
"repos_url": "https://api.github.com/users/yzhangcs/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yzhangcs"
} | https://api.github.com/repos/huggingface/datasets/issues/6994/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6994/timeline | closed | false | 6,994 | null | 2024-06-25T16:19:17Z | null | true |
2,370,444,104 | https://api.github.com/repos/huggingface/datasets/issues/6993 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6993/events | [] | null | 2024-07-08T13:10:53Z | [] | https://github.com/huggingface/datasets/pull/6993 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6993). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005810 / 0.011353 (-0.005543) | 0.003984 / 0.011008 (-0.007024) | 0.064347 / 0.038508 (0.025839) | 0.031943 / 0.023109 (0.008834) | 0.252596 / 0.275898 (-0.023302) | 0.274032 / 0.323480 (-0.049448) | 0.003494 / 0.007986 (-0.004492) | 0.002817 / 0.004328 (-0.001511) | 0.050132 / 0.004250 (0.045881) | 0.048008 / 0.037052 (0.010955) | 0.249037 / 0.258489 (-0.009452) | 0.288526 / 0.293841 (-0.005315) | 0.031038 / 0.128546 (-0.097509) | 0.012542 / 0.075646 (-0.063104) | 0.205682 / 0.419271 (-0.213590) | 0.038022 / 0.043533 (-0.005511) | 0.259001 / 0.255139 (0.003862) | 0.267455 / 0.283200 (-0.015744) | 0.021980 / 0.141683 (-0.119703) | 1.123996 / 1.452155 (-0.328159) | 1.173801 / 1.492716 (-0.318915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102827 / 0.018006 (0.084821) | 0.317210 / 0.000490 (0.316720) | 0.000222 / 0.000200 (0.000022) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019483 / 0.037411 (-0.017928) | 0.064098 / 0.014526 (0.049572) | 0.076219 / 0.176557 (-0.100337) | 0.122898 / 0.737135 (-0.614237) | 0.080657 / 0.296338 (-0.215681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.215209 (0.063169) | 2.792314 / 2.077655 (0.714659) | 1.516439 / 1.504120 (0.012319) | 1.374052 / 1.541195 (-0.167143) | 1.370848 / 1.468490 (-0.097642) | 0.756002 / 4.584777 (-3.828775) | 2.349581 / 3.745712 (-1.396131) | 2.994094 / 5.269862 (-2.275768) | 1.904242 / 4.565676 (-2.661435) | 0.078769 / 0.424275 (-0.345506) | 0.005103 / 0.007607 (-0.002505) | 0.336331 / 0.226044 (0.110287) | 3.329502 / 2.268929 (1.060574) | 1.863545 / 55.444624 (-53.581079) | 1.554690 / 6.876477 (-5.321787) | 1.588448 / 2.142072 (-0.553624) | 0.787322 / 4.805227 (-4.017905) | 0.138345 / 6.500664 (-6.362320) | 0.042228 / 0.075469 (-0.033241) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968607 / 1.841788 (-0.873181) | 11.972076 / 8.074308 (3.897768) | 9.927608 / 10.191392 (-0.263784) | 0.141666 / 0.680424 (-0.538758) | 0.014591 / 0.534201 (-0.519610) | 0.301995 / 0.579283 (-0.277288) | 0.274360 / 0.434364 (-0.160004) | 0.338396 / 0.540337 (-0.201941) | 0.431081 / 1.386936 (-0.955855) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006122 / 0.011353 (-0.005231) | 0.004201 / 0.011008 (-0.006807) | 0.050204 / 0.038508 (0.011695) | 0.033222 / 0.023109 (0.010113) | 0.274357 / 0.275898 (-0.001542) | 0.296238 / 0.323480 (-0.027242) | 0.004542 / 0.007986 (-0.003444) | 0.002880 / 0.004328 (-0.001449) | 0.049103 / 0.004250 (0.044852) | 0.042294 / 0.037052 (0.005242) | 0.286459 / 0.258489 (0.027970) | 0.324988 / 0.293841 (0.031147) | 0.032084 / 0.128546 (-0.096462) | 0.012329 / 0.075646 (-0.063318) | 0.060261 / 0.419271 (-0.359010) | 0.034130 / 0.043533 (-0.009403) | 0.271432 / 0.255139 (0.016293) | 0.306251 / 0.283200 (0.023051) | 0.019744 / 0.141683 (-0.121939) | 1.153483 / 1.452155 (-0.298672) | 1.209126 / 1.492716 (-0.283591) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004737 / 0.018006 (-0.013270) | 0.313458 / 0.000490 (0.312968) | 0.000216 / 0.000200 (0.000017) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022472 / 0.037411 (-0.014939) | 0.076725 / 0.014526 (0.062199) | 0.091356 / 0.176557 (-0.085201) | 0.132427 / 0.737135 (-0.604708) | 0.091072 / 0.296338 (-0.205266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294414 / 0.215209 (0.079205) | 2.913695 / 2.077655 (0.836040) | 1.567309 / 1.504120 (0.063189) | 1.448664 / 1.541195 (-0.092531) | 1.466386 / 1.468490 (-0.002105) | 0.718605 / 4.584777 (-3.866172) | 0.951963 / 3.745712 (-2.793749) | 2.812565 / 5.269862 (-2.457297) | 1.886483 / 4.565676 (-2.679193) | 0.077912 / 0.424275 (-0.346363) | 0.005371 / 0.007607 (-0.002236) | 0.349528 / 0.226044 (0.123484) | 3.431049 / 2.268929 (1.162121) | 1.920210 / 55.444624 (-53.524414) | 1.637927 / 6.876477 (-5.238549) | 1.767502 / 2.142072 (-0.374570) | 0.808672 / 4.805227 (-3.996555) | 0.134261 / 6.500664 (-6.366403) | 0.041295 / 0.075469 (-0.034174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023454 / 1.841788 (-0.818334) | 12.433731 / 8.074308 (4.359423) | 10.413191 / 10.191392 (0.221799) | 0.156813 / 0.680424 (-0.523611) | 0.015446 / 0.534201 (-0.518755) | 0.301935 / 0.579283 (-0.277348) | 0.133655 / 0.434364 (-0.300709) | 0.340296 / 0.540337 (-0.200041) | 0.466314 / 1.386936 (-0.920622) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6cf563fd57807e923a29ebbe327fecb4ef969877 \"CML watermark\")\n",
"Hi @lhoestq,\r\n\r\nI was confused by `legacy` prefix added to the [image data loading](https://huggingface.co./docs/datasets/main/en/image_dataset#legacy-loading-script) script section. I have a custom image dataset and have looked through the documentation to find something similar but can't find a good alternative What is now the recommend way to create a custom image dataset then? I want the HF format but will not host it on the hub.\r\n\r\nApologies in advance if this is the wrong place to ask such questions...",
"We stopped making new features for datasets with scripts for obvious security reasons, that's why they are marked as \"legacy\". What is blocking you from hosting on HF ?",
"Hi, thanks for the prompt answer :) I am working on proprietary datasets for the company where I am employed. We want to keep the data in-house but would like to investigate the use of the HF ecosystem.",
"I see ! Note that it's possible to have private repos on HF (+ dataset viewer) and you can even choose the storage region, if it can help"
] | less script docs | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6993/reactions"
} | PR_kwDODunzps5zYN7P | {
"diff_url": "https://github.com/huggingface/datasets/pull/6993.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6993",
"merged_at": "2024-06-27T09:31:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6993.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6993"
} | 2024-06-24T14:45:28Z | https://api.github.com/repos/huggingface/datasets/issues/6993/comments | + mark as legacy in some parts of the docs since we'll not build new features for script datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6993/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6993/timeline | closed | false | 6,993 | null | 2024-06-27T09:31:21Z | null | true |
2,367,890,622 | https://api.github.com/repos/huggingface/datasets/issues/6992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6992/events | [] | null | 2024-06-25T15:43:05Z | [] | https://github.com/huggingface/datasets/issues/6992 | NONE | null | null | null | [
"Hi ! can you try updating `datasets` and `huggingface_hub` ?\r\n\r\n```\r\npip install -U datasets huggingface_hub\r\n```"
] | Dataset with streaming doesn't work with proxy | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6992/reactions"
} | I_kwDODunzps6NIyS- | null | 2024-06-22T16:12:08Z | https://api.github.com/repos/huggingface/datasets/issues/6992/comments | ### Describe the bug
I'm currently trying to stream data using dataset since the dataset is too big but it hangs indefinitely without loading the first batch. I use AIMOS which is a supercomputer that uses proxy to connect to the internet. I assume it has to do with the network configurations. I've already set up both HTTP_PROXY and HTTPS_PROXY. streaming = False works fine.
### Steps to reproduce the bug
use load_dataset with streaming = True in AIMOS
### Expected behavior
does not hang indefinitely and loads batches to start training run
### Environment info
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_gnu conda-forge
_pytorch_select 2.0 cuda_2 https://ftp.osuosl.org/pub/open-ce/1.10.0
abseil-cpp 20220623.0 h9888cd1_6 conda-forge
absl-py 1.0.0 py311h399429b_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
aiofiles 23.2.1 pyhd8ed1ab_0 conda-forge
aiohttp 3.8.6 py311hf118e41_0
aiosignal 1.2.0 pyhd3eb1b0_0
archspec 0.2.3 pyhd8ed1ab_0 conda-forge
arrow-cpp 11.0.0 ha3edaa6_5_cpu conda-forge
async-timeout 4.0.2 py311h6ffa863_0
attrs 23.1.0 py311h6ffa863_0
av 10.0.0 py311he6153ed_2 https://ftp.osuosl.org/pub/open-ce/1.10.0
aws-c-auth 0.6.24 hb81f6d7_5 conda-forge
aws-c-cal 0.5.20 h3c2b4d9_6 conda-forge
aws-c-common 0.8.11 h4194056_0 conda-forge
aws-c-compression 0.2.16 ha19333d_3 conda-forge
aws-c-event-stream 0.2.18 h12a9399_6 conda-forge
aws-c-http 0.7.4 ha2cde00_2 conda-forge
aws-c-io 0.13.17 h9189062_2 conda-forge
aws-c-mqtt 0.8.6 h40d1a04_6 conda-forge
aws-c-s3 0.2.4 hbdbe4f0_3 conda-forge
aws-c-sdkutils 0.1.7 ha19333d_3 conda-forge
aws-checksums 0.1.14 ha19333d_3 conda-forge
aws-crt-cpp 0.19.7 hd018011_7 conda-forge
aws-sdk-cpp 1.10.57 hb9575ba_4 conda-forge
blas 1.0 openblas
blinker 1.8.2 pyhd8ed1ab_0 conda-forge
boltons 23.0.0 py311h6ffa863_0
boost-cpp 1.82.0 h25e6d66_2
bottleneck 1.3.5 py311h34f6284_0
brotli 1.0.9 hf118e41_7
brotli-bin 1.0.9 hf118e41_7
brotli-python 1.0.9 py311h4a02239_7
bzip2 1.0.8 h7b6447c_0
c-ares 1.19.1 hf118e41_0
ca-certificates 2024.6.2 h0f6029e_0 conda-forge
cachetools 5.3.3 pyhd8ed1ab_0 conda-forge
certifi 2024.6.2 pyhd8ed1ab_0 conda-forge
cffi 1.15.1 py311hf118e41_3
charset-normalizer 2.0.4 pyhd3eb1b0_0
click 8.1.7 unix_pyh707e725_0 conda-forge
conda 24.5.0 py311h1af927a_0 conda-forge
conda-content-trust 0.2.0 py311h6ffa863_0
conda-libmamba-solver 23.11.1 py311h6ffa863_0
conda-package-handling 2.2.0 py311h6ffa863_0
conda-package-streaming 0.9.0 py311h6ffa863_0
contourpy 1.0.5 py311h25e6d66_0
cryptography 41.0.3 py311hb0e80e7_0
cudatoolkit 11.8.0 hedcfb66_13 conda-forge
cudnn 8.9.2_11.8 h9ceb136_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
cycler 0.11.0 pyhd3eb1b0_0
datasets 2.12.0 py311h6ffa863_0
dill 0.3.6 py311h6ffa863_0
distro 1.9.0 pyhd8ed1ab_0 conda-forge
ffmpeg 4.2.2 opence_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
filelock 3.9.0 py311h6ffa863_0
fmt 9.1.0 h25e6d66_0
fonttools 4.25.0 pyhd3eb1b0_0
freetype 2.12.1 hd23a775_0
frozendict 2.4.4 py311hb02d432_0 conda-forge
frozenlist 1.4.0 py311hf118e41_0
fsspec 2023.9.2 py311h6ffa863_0
gflags 2.2.2 he6710b0_0
giflib 5.2.1 hf118e41_3
glog 0.6.0 hbe088e0_0 conda-forge
gmp 6.3.0 h46f38da_0 conda-forge
gmpy2 2.1.5 py311h2758da7_1 conda-forge
google-auth 2.30.0 pyhff2d567_0 conda-forge
google-auth-oauthlib 0.5.3 pyhd8ed1ab_0 conda-forge
grpc-cpp 1.51.1 h8ba971d_1 conda-forge
grpcio 1.54.3 py311h414e0d3_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
huggingface_hub 0.17.3 py311h6ffa863_0
icu 73.1 h4a02239_0
idna 3.4 py311h6ffa863_0
importlib-metadata 6.0.0 py311h6ffa863_0
jinja2 3.1.4 pyhd8ed1ab_0 conda-forge
jpeg 9e hf118e41_1
jsonpatch 1.32 pyhd3eb1b0_0
jsonpointer 2.1 pyhd3eb1b0_0
kiwisolver 1.4.4 py311h4a02239_0
krb5 1.20.1 hc019ccd_1
lame 3.100 hb283c62_1003 conda-forge
lcms2 2.12 h2045e0b_0
ld_impl_linux-ppc64le 2.38 hec883e6_1
lerc 3.0 h29c3540_0
leveldb 1.23 h24532b4_1 conda-forge
libabseil 20220623.0 cxx17_h9235812_6 conda-forge
libarchive 3.6.2 hd8ab008_2
libarrow 11.0.0 h837770b_5_cpu conda-forge
libboost 1.82.0 haf51a6a_2
libbrotlicommon 1.0.9 hf118e41_7
libbrotlidec 1.0.9 hf118e41_7
libbrotlienc 1.0.9 hf118e41_7
libcrc32c 1.1.2 h3b9df90_0 conda-forge
libcurl 8.4.0 h4d62439_0
libdeflate 1.17 hf118e41_1
libedit 3.1.20221030 hf118e41_0
libev 4.33 h140841e_1
libevent 2.1.10 h19c23f1_4 conda-forge
libexpat 2.6.2 h46f38da_0 conda-forge
libffi 3.4.4 h4a02239_0
libgcc-ng 13.2.0 h31e42bb_10 conda-forge
libgfortran-ng 11.2.0 hb3889a9_1
libgfortran5 11.2.0 h1234567_1
libgomp 13.2.0 h31e42bb_10 conda-forge
libgoogle-cloud 2.7.0 h11140b6_1 conda-forge
libgrpc 1.51.1 h4d29a31_1 conda-forge
libmamba 1.5.3 h7c6fafd_0
libmambapy 1.5.3 py311h828bf7b_0
libnghttp2 1.57.0 h44e5816_0
libnsl 2.0.1 ha17a0cc_0 conda-forge
libopenblas 0.3.23 hc5a31fb_2 https://ftp.osuosl.org/pub/open-ce/1.10.0
libopus 1.3.1 h4e0d66e_1 conda-forge
libpng 1.6.39 hf118e41_0
libprotobuf 3.21.12 h1776448_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
libsolv 0.7.24 h0f529ac_0
libsqlite 3.45.3 hd4bbf49_0 conda-forge
libssh2 1.10.0 h50fa78f_2
libstdcxx-ng 13.2.0 h262982c_10 conda-forge
libthrift 0.18.0 h82f1162_0 conda-forge
libtiff 4.5.1 h4a02239_0
libutf8proc 2.8.0 hb283c62_0 conda-forge
libuuid 2.38.1 h4194056_0 conda-forge
libvpx 1.13.1 h46f38da_0 conda-forge
libwebp 1.3.2 h0f96ee2_0
libwebp-base 1.3.2 hf118e41_0
libxcrypt 4.4.36 ha17a0cc_1 conda-forge
libxml2 2.10.4 h18e3229_1
libzlib 1.2.13 h1f2b957_6 conda-forge
llvm-openmp 14.0.6 hc028133_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
lmdb 0.9.31 ha17a0cc_1 conda-forge
lz4-c 1.9.4 h4a02239_0
markdown 3.4.4 pyhd8ed1ab_0 conda-forge
markupsafe 2.1.5 py311h32d8acf_0 conda-forge
matplotlib 3.8.0 py311h6ffa863_0
matplotlib-base 3.8.0 py311h52e1fcc_0
menuinst 2.1.1 py311h1af927a_0 conda-forge
mpc 1.3.1 heaf1863_0 conda-forge
mpfr 4.2.1 haad2271_1 conda-forge
mpmath 1.3.0 pyhd8ed1ab_0 conda-forge
multidict 6.0.2 py311hf118e41_0
multiprocess 0.70.14 py311h6ffa863_0
munkres 1.1.4 py_0
mypy_extensions 1.0.0 pyha770c72_0 conda-forge
nccl 2.18.3 cuda11.8_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
ncurses 6.4 h4a02239_0
nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge
networkx 2.8.8 pyhd8ed1ab_0 conda-forge
nomkl 3.0 0 https://ftp.osuosl.org/pub/open-ce/1.10.0
numactl 2.0.16 hba61f60_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
numexpr 2.8.7 py311hc46fc55_0
numpy 1.24.3 py311h148a09e_0
numpy-base 1.24.3 py311h06b82f6_0
oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge
openjpeg 2.4.0 hfe35807_0
openssl 3.3.1 h1f2b957_0 conda-forge
orc 1.8.2 h341c9a4_2 conda-forge
packaging 23.1 py311h6ffa863_0
pandas 2.1.1 py311h52e1fcc_0
pcre2 10.42 h280155c_0
pillow 10.0.1 py311he33076b_0
pip 23.3 py311h6ffa863_0
platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge
pluggy 1.0.0 py311h6ffa863_1
pooch 1.8.2 pyhd8ed1ab_0 conda-forge
protobuf 4.21.12 py311ha7baec7_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
psutil 5.9.8 py311hd26027c_0 conda-forge
pyarrow 11.0.0 py311h04a18d5_1
pyasn1 0.6.0 pyhd8ed1ab_0 conda-forge
pyasn1-modules 0.4.0 pyhd8ed1ab_0 conda-forge
pybind11-abi 4 hd3eb1b0_1
pycosat 0.6.6 py311hf118e41_0
pycparser 2.21 pyhd3eb1b0_0
pyjwt 2.8.0 pyhd8ed1ab_1 conda-forge
pyopenssl 23.2.0 py311h6ffa863_0
pyparsing 3.0.9 py311h6ffa863_0
pyre-extensions 0.0.30 pyhd8ed1ab_0 conda-forge
pysocks 1.7.1 py311h6ffa863_0
python 3.11.8 h3332dee_0_cpython conda-forge
python-dateutil 2.8.2 pyhd3eb1b0_0
python-tzdata 2023.3 pyhd3eb1b0_0
python-xxhash 2.0.2 py311hf118e41_1
python_abi 3.11 4_cp311 conda-forge
pytorch 2.0.1 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
pytorch-base 2.0.1 cuda11.8_py311_pb4.21.12_4 https://ftp.osuosl.org/pub/open-ce/1.10.0
pytz 2023.3.post1 py311h6ffa863_0
pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge
pyyaml 6.0.1 py311hf118e41_0
re2 2023.02.01 h883269e_0 conda-forge
readline 8.2 hf118e41_0
regex 2023.10.3 py311hf118e41_0
reproc 14.2.4 h29c3540_1
reproc-cpp 14.2.4 h29c3540_1
requests 2.31.0 py311h6ffa863_0
requests-oauthlib 2.0.0 pyhd8ed1ab_0 conda-forge
responses 0.13.3 pyhd3eb1b0_0
rsa 4.9 pyhd8ed1ab_0 conda-forge
ruamel.yaml 0.17.21 py311hf118e41_0
s2n 1.3.37 h5e47323_0 conda-forge
safetensors 0.4.0 py311hda16d9e_0
scipy 1.11.1 py311hd69e9bb_0 https://ftp.osuosl.org/pub/open-ce/1.10.0
sentencepiece 0.1.97 h1e74c73_py311_pb4.21.12_2 https://ftp.osuosl.org/pub/open-ce/1.10.0
setuptools 68.0.0 py311h6ffa863_0
six 1.16.0 pyhd3eb1b0_1
snappy 1.1.9 h29c3540_0
sqlite 3.41.2 hf118e41_0
sympy 1.12.1 pypyh2585a3b_103 conda-forge
tabulate 0.8.10 pyhd8ed1ab_0 conda-forge
tensorboard 2.13.0 pyhab0730d_pb4.21.12_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
tensorboard-data-server 0.7.0 pyh6f84499_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
tensorboard-plugin-wit 1.6.0 pyh9f0ad1d_0 conda-forge
tk 8.6.13 hd4bbf49_0 conda-forge
tokenizers 0.13.3 py311h3d4f45a_0
torchdata 0.6.0 py311_2 https://ftp.osuosl.org/pub/open-ce/1.10.0
torchsnapshot 0.1.0 pyhd8ed1ab_0 conda-forge
torchtext-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
torchtnt 0.2.4 pyhd8ed1ab_0 conda-forge
torchvision-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0
tornado 6.3.3 py311hf118e41_0
tqdm 4.65.0 py311h7837921_0
transformers 4.32.1 py311h6ffa863_0
truststore 0.8.0 py311h6ffa863_0
typing-extensions 4.7.1 py311h6ffa863_0
typing_extensions 4.7.1 py311h6ffa863_0
typing_inspect 0.9.0 pyhd8ed1ab_0 conda-forge
tzdata 2023c h04d1e81_0
urllib3 1.26.18 py311h6ffa863_0
utf8proc 2.6.1 h140841e_0
werkzeug 2.3.8 pyhd8ed1ab_0 conda-forge
wheel 0.41.2 py311h6ffa863_0
xxhash 0.8.0 h140841e_3
xz 5.4.2 hf118e41_0
yaml 0.2.5 h7b6447c_0
yaml-cpp 0.8.0 h4a02239_0
yarl 1.8.1 py311hf118e41_0
zipp 3.11.0 py311h6ffa863_0
zlib 1.2.13 h1f2b957_6 conda-forge
zstandard 0.19.0 py311hf118e41_0
zstd 1.5.5 h57e4825_0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/57779173?v=4",
"events_url": "https://api.github.com/users/YHL04/events{/privacy}",
"followers_url": "https://api.github.com/users/YHL04/followers",
"following_url": "https://api.github.com/users/YHL04/following{/other_user}",
"gists_url": "https://api.github.com/users/YHL04/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/YHL04",
"id": 57779173,
"login": "YHL04",
"node_id": "MDQ6VXNlcjU3Nzc5MTcz",
"organizations_url": "https://api.github.com/users/YHL04/orgs",
"received_events_url": "https://api.github.com/users/YHL04/received_events",
"repos_url": "https://api.github.com/users/YHL04/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/YHL04/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/YHL04/subscriptions",
"type": "User",
"url": "https://api.github.com/users/YHL04"
} | https://api.github.com/repos/huggingface/datasets/issues/6992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6992/timeline | open | false | 6,992 | null | null | null | false |
2,367,711,094 | https://api.github.com/repos/huggingface/datasets/issues/6991 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6991/events | [] | null | 2024-07-12T12:11:18Z | [] | https://github.com/huggingface/datasets/pull/6991 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6991). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"@albertvillanova Any chance we could get this in before the next release? Everything depending on HuggingFace has their NumPy upgrade blocked.",
"The incompatible libraries are:\r\n- faiss-cpu 1.8.0.post1 requires numpy<2.0,>=1.0, but you have numpy 2.0.0 which is incompatible.\r\n- tensorflow 2.16.2 requires numpy<2.0.0,>=1.23.5; python_version <= \"3.11\", but you have numpy 2.0.0 which is incompatible.\r\n- transformers 4.42.3 requires numpy<2.0,>=1.17, but you have numpy 2.0.0 which is incompatible.",
"Why is it installing numpy 2 if the dependencies don't support it?",
"For me, I'm getting:\r\n```\r\nβ― uv pip install --system \"datasets[tests] @ .\"\r\nFound existing alias for \"uv pip install\". You should use: \"pipi\"\r\nResolved 119 packages in 934ms\r\n Built datasets @ file:///Users/neil/src/datasets\r\nPrepared 1 package in 1.28s\r\nUninstalled 1 package in 10ms\r\nInstalled 2 packages in 17ms\r\n - datasets==2.20.1.dev0 (from file:///Users/neil/src/datasets)\r\n + datasets==2.20.1.dev0 (from file:///Users/neil/src/datasets)\r\n + numpy==1.26.4\r\n```",
"Which version on Python do you have?",
"3.12.4 I'll try on 3.10 now.",
"Please, note that I obtained the previous incompatible libraries in my local environment, by forcing the update of numpy.",
"In the Python 3.10 CI, the situation is different:\r\n- for example, they install an older version of tensorflow (2.14.0), where probably the constraint on numpy was not yet implemented. See the details: https://github.com/huggingface/datasets/actions/runs/9879100332/job/27306903343?pr=6991\r\n```\r\n> uv pip install --system \"datasets[tests] @ .\"\r\n...\r\n + faiss-cpu==1.8.0\r\n...\r\n + numpy==2.0.0\r\n...\r\n + tensorflow==2.14.0\r\n```\r\n\r\nSee, CI installs:\r\n- faiss-cpu 1.8.0 instead of 1.8.0.post1\r\n- tensorflow 2.14.0 instead of 2.16.2\r\n- transformers 4.41.2 instead of 4.42.3",
"~~The main point is that we cannot support numpy 2.0 until tensorflow and faiss do.~~\r\n\r\nAlternatively, we should ignore/select tests depending on the installed versions.",
"> Alternatively, we should ignore/select tests depending on the installed versions.\r\n\r\nThat works.\r\n\r\nAlternatively, you could depend on tensorflow >= 2.16.2 (etc.) for the tests?",
"Yes, I was thinking of a workaround solution.\r\n\r\nThe issue I see is that our CI will not test numpy 2.0 indeed.",
"> The issue I see is that our CI will not test numpy 2.0 indeed.\r\n\r\nRight, that's the advantage of the test skipping you wanted, I see your point.\r\n\r\nThing is, it won't be long before tensorflow supports numpy 2.0, and then the situation is resolved and your tests test numpy 2.0. Do you really want to invest a lot of effort into testing numpy 2.0 for a few months benefit?",
"Without testing Numpy 2.0, we do not know if there are some other parts in the code broken.",
"> Without testing Numpy 2.0, we do not know if there are some other parts in the code broken.\r\n\r\nYes, you're right. I understand you're point, but you could say this for anything that your test dependencies don't support.\r\n\r\nI guess the solution is to write tests that don't depend on tensorflow, etc., but still use numpy. You could write some Jax tests for example.\r\n\r\nThat said, blocking numpy 2 isn't a good solution in my opinion. These dependencies are extremely late in supporting Numpy 2. They were supposed to be testing against preview releases over three months ago. I don't think the world should have to wait for them.",
"> I guess the solution is to write tests that don't depend on tensorflow, etc., but still use numpy.\r\nThat is my point. What we cannot do is just blindly support Numpy 2.0 without knowing its consequences. We need to test it:\r\n- to know if our core code works with it\r\n- to know what optional libraries are incompatible\r\n\r\nFor example, while testing locally, I have discovered that librosa is also incompatible with numpy-2.0, due to its dependency on soxr:\r\n- https://github.com/dofuuz/python-soxr/issues/28",
"While testing locally, I have also discovered that pytorch does not support Numpy 2.0 on Windows platforms:\r\n- https://github.com/pytorch/pytorch/issues/128860",
"I am adding Numpy 2.0 tests to your PR if you don't mind, before merging this PR.",
"Awesome, thank you! Please let me know if I need to do anything.",
"Now we test numpy 2.0 in the `test_py310_numpy2` CI tests: https://github.com/huggingface/datasets/actions/runs/9907254874/job/27370545495?pr=6991\r\n```\r\n + numpy==2.0.0\r\n```",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005709 / 0.011353 (-0.005643) | 0.003947 / 0.011008 (-0.007061) | 0.064407 / 0.038508 (0.025899) | 0.029903 / 0.023109 (0.006794) | 0.244838 / 0.275898 (-0.031060) | 0.268894 / 0.323480 (-0.054586) | 0.003200 / 0.007986 (-0.004786) | 0.002867 / 0.004328 (-0.001461) | 0.050016 / 0.004250 (0.045765) | 0.047682 / 0.037052 (0.010629) | 0.252186 / 0.258489 (-0.006303) | 0.292050 / 0.293841 (-0.001791) | 0.030277 / 0.128546 (-0.098270) | 0.012283 / 0.075646 (-0.063364) | 0.205875 / 0.419271 (-0.213397) | 0.037202 / 0.043533 (-0.006331) | 0.246045 / 0.255139 (-0.009094) | 0.272422 / 0.283200 (-0.010777) | 0.020572 / 0.141683 (-0.121111) | 1.114343 / 1.452155 (-0.337812) | 1.169909 / 1.492716 (-0.322808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096612 / 0.018006 (0.078605) | 0.303025 / 0.000490 (0.302535) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019292 / 0.037411 (-0.018119) | 0.062548 / 0.014526 (0.048023) | 0.076027 / 0.176557 (-0.100530) | 0.121752 / 0.737135 (-0.615383) | 0.076608 / 0.296338 (-0.219730) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283900 / 0.215209 (0.068691) | 2.829829 / 2.077655 (0.752174) | 1.428934 / 1.504120 (-0.075186) | 1.316796 / 1.541195 (-0.224399) | 1.330012 / 1.468490 (-0.138478) | 0.702245 / 4.584777 (-3.882532) | 2.380454 / 3.745712 (-1.365259) | 2.882881 / 5.269862 (-2.386980) | 1.920345 / 4.565676 (-2.645332) | 0.077860 / 0.424275 (-0.346415) | 0.005295 / 0.007607 (-0.002312) | 0.336968 / 0.226044 (0.110924) | 3.327808 / 2.268929 (1.058879) | 1.781958 / 55.444624 (-53.662666) | 1.489412 / 6.876477 (-5.387065) | 1.634829 / 2.142072 (-0.507243) | 0.787985 / 4.805227 (-4.017243) | 0.134397 / 6.500664 (-6.366267) | 0.042906 / 0.075469 (-0.032563) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967647 / 1.841788 (-0.874141) | 11.714541 / 8.074308 (3.640233) | 9.350228 / 10.191392 (-0.841164) | 0.142675 / 0.680424 (-0.537749) | 0.014609 / 0.534201 (-0.519592) | 0.301970 / 0.579283 (-0.277314) | 0.262350 / 0.434364 (-0.172014) | 0.342933 / 0.540337 (-0.197404) | 0.437321 / 1.386936 (-0.949615) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005622 / 0.011353 (-0.005731) | 0.003958 / 0.011008 (-0.007050) | 0.050667 / 0.038508 (0.012159) | 0.032842 / 0.023109 (0.009733) | 0.252292 / 0.275898 (-0.023606) | 0.280602 / 0.323480 (-0.042878) | 0.004313 / 0.007986 (-0.003673) | 0.002870 / 0.004328 (-0.001458) | 0.049549 / 0.004250 (0.045299) | 0.040448 / 0.037052 (0.003396) | 0.270264 / 0.258489 (0.011775) | 0.302988 / 0.293841 (0.009147) | 0.030840 / 0.128546 (-0.097707) | 0.012131 / 0.075646 (-0.063515) | 0.060061 / 0.419271 (-0.359211) | 0.033025 / 0.043533 (-0.010507) | 0.251909 / 0.255139 (-0.003230) | 0.275511 / 0.283200 (-0.007689) | 0.018399 / 0.141683 (-0.123284) | 1.160744 / 1.452155 (-0.291411) | 1.188265 / 1.492716 (-0.304452) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097719 / 0.018006 (0.079712) | 0.304389 / 0.000490 (0.303899) | 0.000217 / 0.000200 (0.000017) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022964 / 0.037411 (-0.014447) | 0.076897 / 0.014526 (0.062372) | 0.088930 / 0.176557 (-0.087626) | 0.128926 / 0.737135 (-0.608209) | 0.091049 / 0.296338 (-0.205290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285670 / 0.215209 (0.070461) | 2.806071 / 2.077655 (0.728416) | 1.527161 / 1.504120 (0.023041) | 1.410291 / 1.541195 (-0.130903) | 1.427071 / 1.468490 (-0.041419) | 0.705527 / 4.584777 (-3.879250) | 0.926915 / 3.745712 (-2.818797) | 2.893078 / 5.269862 (-2.376784) | 1.907113 / 4.565676 (-2.658564) | 0.077326 / 0.424275 (-0.346949) | 0.005182 / 0.007607 (-0.002425) | 0.332282 / 0.226044 (0.106237) | 3.312889 / 2.268929 (1.043960) | 1.853839 / 55.444624 (-53.590785) | 1.592013 / 6.876477 (-5.284464) | 1.620234 / 2.142072 (-0.521838) | 0.776894 / 4.805227 (-4.028333) | 0.132411 / 6.500664 (-6.368253) | 0.041430 / 0.075469 (-0.034039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.003468 / 1.841788 (-0.838320) | 12.472251 / 8.074308 (4.397943) | 10.603243 / 10.191392 (0.411851) | 0.132561 / 0.680424 (-0.547863) | 0.015790 / 0.534201 (-0.518411) | 0.306724 / 0.579283 (-0.272559) | 0.125812 / 0.434364 (-0.308552) | 0.343782 / 0.540337 (-0.196555) | 0.445915 / 1.386936 (-0.941021) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dfc2b1b14ab8f32730d2bc36c8016ecefbcbabd1 \"CML watermark\")\n"
] | Unblock NumPy 2.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6991/reactions"
} | PR_kwDODunzps5zPoQs | {
"diff_url": "https://github.com/huggingface/datasets/pull/6991.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6991",
"merged_at": "2024-07-12T12:04:53Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6991.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6991"
} | 2024-06-22T09:19:53Z | https://api.github.com/repos/huggingface/datasets/issues/6991/comments | Fixes https://github.com/huggingface/datasets/issues/6980 | {
"avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4",
"events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}",
"followers_url": "https://api.github.com/users/NeilGirdhar/followers",
"following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}",
"gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NeilGirdhar",
"id": 730137,
"login": "NeilGirdhar",
"node_id": "MDQ6VXNlcjczMDEzNw==",
"organizations_url": "https://api.github.com/users/NeilGirdhar/orgs",
"received_events_url": "https://api.github.com/users/NeilGirdhar/received_events",
"repos_url": "https://api.github.com/users/NeilGirdhar/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NeilGirdhar"
} | https://api.github.com/repos/huggingface/datasets/issues/6991/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6991/timeline | closed | false | 6,991 | null | 2024-07-12T12:04:53Z | null | true |
2,366,660,785 | https://api.github.com/repos/huggingface/datasets/issues/6990 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6990/events | [] | null | 2024-06-25T16:19:19Z | [] | https://github.com/huggingface/datasets/issues/6990 | CONTRIBUTOR | completed | null | null | [
"ah yes good catch ! feel free to open a PR with your suggested fix"
] | Problematic rank after calling `split_dataset_by_node` twice | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6990/reactions"
} | I_kwDODunzps6NEGCx | null | 2024-06-21T14:25:26Z | https://api.github.com/repos/huggingface/datasets/issues/6990/comments | ### Describe the bug
I'm trying to split `IterableDataset` by `split_dataset_by_node`.
But when doing split on a already split dataset, the resulting `rank` is greater than `world_size`.
### Steps to reproduce the bug
Here is the minimal code for reproduction:
```py
>>> from datasets import load_dataset
>>> from datasets.distributed import split_dataset_by_node
>>> dataset = load_dataset('fla-hub/slimpajama-test', split='train', streaming=True)
>>> dataset = split_dataset_by_node(dataset, 1, 32)
>>> dataset._distributed
DistributedConfig(rank=1, world_size=32)
>>> dataset = split_dataset_by_node(dataset, 1, 15)
>>> dataset._distributed
DistributedConfig(rank=481, world_size=480)
```
As you can see, the second rank 481 > 480, which is problematic.
### Expected behavior
I think this error comes from this line @lhoestq
https://github.com/huggingface/datasets/blob/a6ccf944e42c1a84de81bf326accab9999b86c90/src/datasets/iterable_dataset.py#L2943-L2944
We may need to obtain the rank first. Then the above code gives
```py
>>> dataset._distributed
DistributedConfig(rank=16, world_size=480)
```
### Environment info
datasets==2.20.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4",
"events_url": "https://api.github.com/users/yzhangcs/events{/privacy}",
"followers_url": "https://api.github.com/users/yzhangcs/followers",
"following_url": "https://api.github.com/users/yzhangcs/following{/other_user}",
"gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yzhangcs",
"id": 18402347,
"login": "yzhangcs",
"node_id": "MDQ6VXNlcjE4NDAyMzQ3",
"organizations_url": "https://api.github.com/users/yzhangcs/orgs",
"received_events_url": "https://api.github.com/users/yzhangcs/received_events",
"repos_url": "https://api.github.com/users/yzhangcs/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yzhangcs"
} | https://api.github.com/repos/huggingface/datasets/issues/6990/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6990/timeline | closed | false | 6,990 | null | 2024-06-25T16:19:19Z | null | false |
2,365,556,449 | https://api.github.com/repos/huggingface/datasets/issues/6989 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6989/events | [] | null | 2024-06-21T02:12:55Z | [] | https://github.com/huggingface/datasets/issues/6989 | NONE | null | null | null | [] | cache in nfs error | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6989/reactions"
} | I_kwDODunzps6M_4bh | null | 2024-06-21T02:09:22Z | https://api.github.com/repos/huggingface/datasets/issues/6989/comments | ### Describe the bug
- When reading dataset, a cache will be generated to the ~/. cache/huggingface/datasets directory
- When using .map and .filter operations, runtime cache will be generated to the /tmp/hf_datasets-* directory
- The default is to use the path of tempfile.tempdir
- If I modify this path to the NFS disk, an error will be reported, but the program will continue to run
- https://github.com/huggingface/datasets/blob/main/src/datasets/config.py#L257
```
Traceback (most recent call last):
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap
self.run()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server
server.serve_forever()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever
sys.exit(0)
SystemExit: 0
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers
finalizer()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__
res = self._callback(*self._args, **self._kwargs)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir
rmtree(tempdir)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree
_rmtree_safe_fd(fd, path, onerror)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd
onerror(os.unlink, fullname, sys.exc_info())
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd
os.unlink(entry.name, dir_fd=topfd)
OSError: [Errno 16] Device or resource busy: '.nfs000000038330a012000030b4'
Traceback (most recent call last):
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap
self.run()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server
server.serve_forever()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever
sys.exit(0)
SystemExit: 0
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers
finalizer()
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__
res = self._callback(*self._args, **self._kwargs)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir
rmtree(tempdir)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree
_rmtree_safe_fd(fd, path, onerror)
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd
onerror(os.unlink, fullname, sys.exc_info())
File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd
os.unlink(entry.name, dir_fd=topfd)
OSError: [Errno 16] Device or resource busy: '.nfs0000000400064d4a000030e5'
```
### Steps to reproduce the bug
```
import os
import time
import tempfile
from datasets import load_dataset
def add_column(sample):
# print(type(sample))
# time.sleep(0.1)
sample['__ds__stats__'] = {'data': 123}
return sample
def filt_column(sample):
# print(type(sample))
if len(sample['content']) > 10:
return True
else:
return False
if __name__ == '__main__':
input_dir = '/mnt/temp/CN/small' # some json dataset
dataset = load_dataset('json', data_dir=input_dir)
temp_dir = '/media/release/release/temp/temp' # a nfs folder
os.makedirs(temp_dir, exist_ok=True)
# change huggingface-datasets runtime cache in nfsοΌdefault in /tmpοΌ
tempfile.tempdir = temp_dir
aa = dataset.map(add_column, num_proc=64)
aa = aa.filter(filt_column, num_proc=64)
print(aa)
```
### Expected behavior
no error occur
### Environment info
datasets==2.18.0
ubuntu 20.04 | {
"avatar_url": "https://avatars.githubusercontent.com/u/66729924?v=4",
"events_url": "https://api.github.com/users/simplew2011/events{/privacy}",
"followers_url": "https://api.github.com/users/simplew2011/followers",
"following_url": "https://api.github.com/users/simplew2011/following{/other_user}",
"gists_url": "https://api.github.com/users/simplew2011/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simplew2011",
"id": 66729924,
"login": "simplew2011",
"node_id": "MDQ6VXNlcjY2NzI5OTI0",
"organizations_url": "https://api.github.com/users/simplew2011/orgs",
"received_events_url": "https://api.github.com/users/simplew2011/received_events",
"repos_url": "https://api.github.com/users/simplew2011/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simplew2011/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simplew2011/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simplew2011"
} | https://api.github.com/repos/huggingface/datasets/issues/6989/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6989/timeline | open | false | 6,989 | null | null | null | false |
2,364,129,918 | https://api.github.com/repos/huggingface/datasets/issues/6988 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6988/events | [] | null | 2024-06-21T16:04:58Z | [] | https://github.com/huggingface/datasets/pull/6988 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6988). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"`Dataset` objects are not made to be subclassed, so I don't think going in that direction is a good idea. In particular there is absolutely no test to make sure it works well, and nothing in the internal has been made to anticipate this use case.\r\n\r\nI'd suggest to use a separate function to push changes to the Dataset card, and call it after `push_to_hub()`. This way people can also use a similar logic with other tools that `datasets`. You can also use composition instead of subclassing.",
"Would you consider an alternative where a Dataset instance carries a dataset card template which can be updated?\n\nI don't want to burden my users with having to call another method after `push_to_hub` themselves. If you're not a fan of the template approach above either, then I'll likely subclass `push_to_hub` to once again download the just-uploaded-but-empty dataset card, update it, and reupload it. It'll just be a bit more requests than necessary, but not a big deal overall.\n\n- Tom Aarsen ",
"Actually I find the idea of overriding `_create_dataset_card` better than implementing a templating logic. My main concern is that if we go in that direction we better make sure that subclasses of `Dataset` are working well. \r\n\r\nWell if it's been working fine on your side why not, but make sure you test correctly features that could not work because of subclassing (e.g. I'm pretty sure `map()` won't return your subclass of `Dataset`). Or at least the ones that matter for your lib.\r\n\r\nIf it sounds good to you I'm fine with merging your addition to let you override the dataset card.",
"> e.g. I'm pretty sure map() won't return your subclass of Dataset\r\n\r\nI understand that there's limitations such as this one. The subclass doesn't have to be robust - I'd just like some simple automatic dataset card generation options directly after generating the dataset. This can be removed if the user does additional steps before pushing the model, e.g. mapping, filtering, saving to disk and uploading the loaded dataset, etc.\r\n\r\n> If it sounds good to you I'm fine with merging your addition to let you override the dataset card.\r\n\r\nThat would be quite useful for me! I appreciate it.\r\n\r\nI'm not very sure what the test failures are caused by, I believe the only change in behaviour is that\r\n```python\r\n DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)\r\n MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)\r\n```\r\nare not called when `dataset_card` was already defined. Unless these have side-effects other than updating `dataset_card_data`, it shouldn't be any different than `main`.\r\n\r\n- Tom Aarsen",
"Let's try to have this PR merged then !\r\n\r\nIMO your current implementation can be improved since you path both the dataset card data and the dataset card itself, which is redundant. Also I anticipate the failures in the CI to come from your default implementation which doesn't correspond to what it was doing before\r\n\r\n> Unless these have side-effects other than updating dataset_card_data, it shouldn't be any different than main.\r\n\r\nIndeed the dataset_card_data is the value from attribute of the dataset_card from a few lines before your changes, so yes it modifies the dataset_card object too."
] | [`feat`] Move dataset card creation to method for easier overriding | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6988/reactions"
} | PR_kwDODunzps5zDpXX | {
"diff_url": "https://github.com/huggingface/datasets/pull/6988.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6988",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6988.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6988"
} | 2024-06-20T10:47:57Z | https://api.github.com/repos/huggingface/datasets/issues/6988/comments | Hello!
## Pull Request overview
* Move dataset card creation to method for easier overriding
## Details
It's common for me to fully automatically download, reformat, and upload a dataset (e.g. see https://huggingface.co./datasets?other=sentence-transformers), but one aspect that I cannot easily automate is the dataset card generation. This is because during `push_to_hub`, the dataset card is created in 3 lines of code in a much larger method. To automatically generate a dataset card, I need to either:
1. Subclass `Dataset`/`DatasetDict`, copy the entire `push_to_hub` method to override the ~3 lines used to generate the dataset card. This is not viable as the method is likely to change over time.
2. Use `push_to_hub` normally, then separately download the pushed (but empty) dataset card, update it, and reupload the modified dataset. This works fine, but prevents me from being able to return a `Dataset` to my users which will automatically use a nice dataset card.
So, in this PR I'm proposing to move the dataset generation into another method so that it can be overridden more easily. For example, imagine the following use case:
````python
import json
from typing import Any, Dict, Optional
from datasets import Dataset, load_dataset
from datasets.info import DatasetInfosDict, DatasetInfo
from datasets.utils.metadata import MetadataConfigs
from huggingface_hub import DatasetCardData, DatasetCard
TEMPLATE = r"""---
{dataset_card_data}
---
# Dataset Card for {source_dataset_name} with mined hard negatives
This dataset is a collection of {column_one}-{column_two}-negative triplets from the {source_dataset_name} dataset. See [{source_dataset_name}](https://huggingface.co./datasets/{source_dataset_id}) for additional information. This dataset can be used directly with Sentence Transformers to train embedding models.
## Mining Parameters
The negative samples have been mined using the following parameters:
- `range_min`: {range_min}, i.e. we skip the {range_min} most similar samples
- `range_max`: {range_max}, i.e. we only look at the top {range_max} most similar samples
- `margin`: {margin}, i.e. we require negative similarity + margin < positive similarity, so negative samples can't be more similar than the known true answer
- `sampling_strategy`: {sampling_strategy}, i.e. whether to randomly sample from the candidate negatives or take the "top" negatives
- `num_negatives`: {num_negatives}, i.e. we mine {num_negatives} negatives per question-answer pair
## Dataset Format
- Columns: {column_one}, {column_two}, negative
- Column types: str, str, str
- Example:
```python
{example}
```
"""
class HNMDataset(Dataset):
@classmethod
def from_dict(cls, *args, mining_kwargs: Dict[str, Any], **kwargs) -> "HNMDataset":
dataset = super().from_dict(*args, **kwargs)
dataset.mining_kwargs = mining_kwargs
return dataset
def _create_dataset_card(
self,
dataset_card_data: DatasetCardData,
dataset_card: Optional[DatasetCard],
config_name: str,
info_to_dump: DatasetInfo,
metadata_config_to_dump: MetadataConfigs,
) -> DatasetCard:
if dataset_card:
return dataset_card
DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
dataset_card_data.tags = ["sentence-transformers"]
dataset_name = self.mining_kwargs["source_dataset"].info.dataset_name
# Very messy, just as an example:
dataset_id = list(self.mining_kwargs["source_dataset"].info.download_checksums.keys())[0].removeprefix("hf://datasets/").split("@")[0]
content = TEMPLATE.format(**{
"dataset_card_data": str(dataset_card_data),
"source_dataset_name": dataset_name,
"source_dataset_id": dataset_id,
"range_min": self.mining_kwargs["range_min"],
"range_max": self.mining_kwargs["range_max"],
"margin": self.mining_kwargs["margin"],
"sampling_strategy": self.mining_kwargs["sampling_strategy"],
"num_negatives": self.mining_kwargs["num_negatives"],
"column_one": self.column_names[0],
"column_two": self.column_names[1],
"example": json.dumps(self[0], indent=4),
})
return DatasetCard(content)
source_dataset = load_dataset("sentence-transformers/gooaq", split="train[:100]")
dataset = HNMDataset.from_dict({
"query": source_dataset["question"],
"answer": source_dataset["answer"],
# "negative": ... <- In my case, this column would be 'mined' automatically with these parameters
}, mining_kwargs={
"range_min": 10,
"range_max": 20,
"max_score": 0.9,
"margin": 0.1,
"sampling_strategy": "random",
"num_negatives": 3,
"source_dataset": source_dataset,
})
dataset.push_to_hub("tomaarsen/mining_demo", private=True)
````
In this script, I've created a subclass which stores some additional information about how the dataset was generated. It's a bit hacky (e.g. setting a `mining_kwargs` parameter in `from_dict` that wasn't created in `__init__`, but that's just a consequence of how the `from_...` methods don't accept kwargs), but it allows me to create a "hard negatives mining" function that returns a dataset which people can use locally like normal, but if they choose to upload it, then it'll automatically include some information, e.g.: https://huggingface.co./datasets/tomaarsen/mining_demo
This allows others to actually find this dataset (e.g. via the `sentence-transformers` tag) and get an idea of the quality, source, etc. by looking at the model card.
## Note
I'm not fixed on this solution whatsoever: I am also completely fine with other solutions, e.g. a `dataset.set_dataset_card_creator` method that allows me to provide a function without even having to subclass anything. I'm open to all ideas :)
cc @albertvillanova @lhoestq
cc @LysandreJik
- Tom Aarsen | {
"avatar_url": "https://avatars.githubusercontent.com/u/37621491?v=4",
"events_url": "https://api.github.com/users/tomaarsen/events{/privacy}",
"followers_url": "https://api.github.com/users/tomaarsen/followers",
"following_url": "https://api.github.com/users/tomaarsen/following{/other_user}",
"gists_url": "https://api.github.com/users/tomaarsen/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/tomaarsen",
"id": 37621491,
"login": "tomaarsen",
"node_id": "MDQ6VXNlcjM3NjIxNDkx",
"organizations_url": "https://api.github.com/users/tomaarsen/orgs",
"received_events_url": "https://api.github.com/users/tomaarsen/received_events",
"repos_url": "https://api.github.com/users/tomaarsen/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/tomaarsen/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tomaarsen/subscriptions",
"type": "User",
"url": "https://api.github.com/users/tomaarsen"
} | https://api.github.com/repos/huggingface/datasets/issues/6988/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6988/timeline | open | false | 6,988 | null | null | null | true |
2,363,728,190 | https://api.github.com/repos/huggingface/datasets/issues/6987 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6987/events | [] | null | 2024-06-26T19:41:55Z | [] | https://github.com/huggingface/datasets/pull/6987 | MEMBER | null | false | {
"closed_at": null,
"closed_issues": 3,
"created_at": "2023-02-13T16:22:42Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
},
"description": "Next major release",
"due_on": null,
"html_url": "https://github.com/huggingface/datasets/milestone/10",
"id": 9038583,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels",
"node_id": "MI_kwDODunzps4Aier3",
"number": 10,
"open_issues": 5,
"state": "open",
"title": "3.0",
"updated_at": "2024-06-28T06:51:30Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/10"
} | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6987). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005931 / 0.011353 (-0.005422) | 0.004127 / 0.011008 (-0.006881) | 0.063854 / 0.038508 (0.025346) | 0.034687 / 0.023109 (0.011577) | 0.251397 / 0.275898 (-0.024501) | 0.280348 / 0.323480 (-0.043132) | 0.005008 / 0.007986 (-0.002977) | 0.002930 / 0.004328 (-0.001398) | 0.050703 / 0.004250 (0.046452) | 0.047109 / 0.037052 (0.010057) | 0.258525 / 0.258489 (0.000035) | 0.288759 / 0.293841 (-0.005081) | 0.030547 / 0.128546 (-0.097999) | 0.102184 / 0.075646 (0.026537) | 0.207934 / 0.419271 (-0.211338) | 0.036477 / 0.043533 (-0.007056) | 0.338160 / 0.255139 (0.083021) | 0.310735 / 0.283200 (0.027535) | 0.018637 / 0.141683 (-0.123045) | 1.228539 / 1.452155 (-0.223616) | 1.168004 / 1.492716 (-0.324713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098355 / 0.018006 (0.080348) | 0.302310 / 0.000490 (0.301820) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019607 / 0.037411 (-0.017804) | 0.063795 / 0.014526 (0.049269) | 0.075029 / 0.176557 (-0.101528) | 0.121293 / 0.737135 (-0.615842) | 0.076480 / 0.296338 (-0.219858) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285285 / 0.215209 (0.070076) | 2.747455 / 2.077655 (0.669801) | 1.454190 / 1.504120 (-0.049929) | 1.330777 / 1.541195 (-0.210418) | 1.358292 / 1.468490 (-0.110198) | 0.724991 / 4.584777 (-3.859786) | 2.374889 / 3.745712 (-1.370823) | 2.985868 / 5.269862 (-2.283994) | 1.921521 / 4.565676 (-2.644156) | 0.078589 / 0.424275 (-0.345686) | 0.005104 / 0.007607 (-0.002503) | 0.333898 / 0.226044 (0.107853) | 3.317702 / 2.268929 (1.048773) | 1.887161 / 55.444624 (-53.557463) | 1.510700 / 6.876477 (-5.365777) | 1.544175 / 2.142072 (-0.597898) | 0.804262 / 4.805227 (-4.000965) | 0.134015 / 6.500664 (-6.366649) | 0.042819 / 0.075469 (-0.032650) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.012142 / 1.841788 (-0.829645) | 11.861780 / 8.074308 (3.787472) | 9.797285 / 10.191392 (-0.394107) | 0.142114 / 0.680424 (-0.538310) | 0.013984 / 0.534201 (-0.520217) | 0.302412 / 0.579283 (-0.276871) | 0.265060 / 0.434364 (-0.169304) | 0.337510 / 0.540337 (-0.202828) | 0.432197 / 1.386936 (-0.954739) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005920 / 0.011353 (-0.005433) | 0.003991 / 0.011008 (-0.007017) | 0.049874 / 0.038508 (0.011366) | 0.033771 / 0.023109 (0.010662) | 0.264789 / 0.275898 (-0.011109) | 0.287554 / 0.323480 (-0.035926) | 0.004341 / 0.007986 (-0.003644) | 0.002888 / 0.004328 (-0.001441) | 0.049383 / 0.004250 (0.045133) | 0.040757 / 0.037052 (0.003704) | 0.286067 / 0.258489 (0.027578) | 0.311105 / 0.293841 (0.017264) | 0.031482 / 0.128546 (-0.097064) | 0.012358 / 0.075646 (-0.063288) | 0.060298 / 0.419271 (-0.358973) | 0.033237 / 0.043533 (-0.010296) | 0.265804 / 0.255139 (0.010665) | 0.281273 / 0.283200 (-0.001927) | 0.017879 / 0.141683 (-0.123804) | 1.154059 / 1.452155 (-0.298096) | 1.156758 / 1.492716 (-0.335958) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004677 / 0.018006 (-0.013329) | 0.300768 / 0.000490 (0.300278) | 0.000212 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023032 / 0.037411 (-0.014379) | 0.077498 / 0.014526 (0.062973) | 0.089134 / 0.176557 (-0.087422) | 0.129691 / 0.737135 (-0.607444) | 0.091372 / 0.296338 (-0.204967) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290823 / 0.215209 (0.075613) | 2.873159 / 2.077655 (0.795504) | 1.563361 / 1.504120 (0.059241) | 1.447048 / 1.541195 (-0.094147) | 1.490473 / 1.468490 (0.021983) | 0.715642 / 4.584777 (-3.869135) | 0.996223 / 3.745712 (-2.749489) | 2.861466 / 5.269862 (-2.408396) | 1.915581 / 4.565676 (-2.650096) | 0.077892 / 0.424275 (-0.346383) | 0.005463 / 0.007607 (-0.002144) | 0.339670 / 0.226044 (0.113626) | 3.412830 / 2.268929 (1.143902) | 1.908676 / 55.444624 (-53.535949) | 1.625358 / 6.876477 (-5.251119) | 1.769437 / 2.142072 (-0.372635) | 0.792505 / 4.805227 (-4.012722) | 0.133007 / 6.500664 (-6.367657) | 0.041305 / 0.075469 (-0.034164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986882 / 1.841788 (-0.854905) | 12.368101 / 8.074308 (4.293793) | 10.367439 / 10.191392 (0.176047) | 0.141248 / 0.680424 (-0.539176) | 0.016144 / 0.534201 (-0.518057) | 0.300962 / 0.579283 (-0.278321) | 0.126863 / 0.434364 (-0.307501) | 0.341107 / 0.540337 (-0.199230) | 0.439819 / 1.386936 (-0.947117) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2754625d45e153bd9758af40e65e7545321fc2a \"CML watermark\")\n"
] | Remove beam | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6987/reactions"
} | PR_kwDODunzps5zCRH6 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6987.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6987",
"merged_at": "2024-06-26T19:35:42Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6987.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6987"
} | 2024-06-20T07:27:14Z | https://api.github.com/repos/huggingface/datasets/issues/6987/comments | Remove beam, as part of the 3.0 release. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6987/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6987/timeline | closed | false | 6,987 | null | 2024-06-26T19:35:42Z | null | true |
2,362,584,179 | https://api.github.com/repos/huggingface/datasets/issues/6986 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6986/events | [] | null | 2024-08-12T14:43:48Z | [] | https://github.com/huggingface/datasets/pull/6986 | NONE | null | false | null | [
"@albertvillanova @KennethEnevoldsen"
] | Add large_list type support in string_to_arrow | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6986/reactions"
} | PR_kwDODunzps5y-Zi0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6986.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6986",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6986.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6986"
} | 2024-06-19T14:54:25Z | https://api.github.com/repos/huggingface/datasets/issues/6986/comments | add large_list type support in string_to_arrow() and _arrow_to_datasets_dtype() in features.py
Fix #6984
| {
"avatar_url": "https://avatars.githubusercontent.com/u/16257131?v=4",
"events_url": "https://api.github.com/users/arthasking123/events{/privacy}",
"followers_url": "https://api.github.com/users/arthasking123/followers",
"following_url": "https://api.github.com/users/arthasking123/following{/other_user}",
"gists_url": "https://api.github.com/users/arthasking123/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/arthasking123",
"id": 16257131,
"login": "arthasking123",
"node_id": "MDQ6VXNlcjE2MjU3MTMx",
"organizations_url": "https://api.github.com/users/arthasking123/orgs",
"received_events_url": "https://api.github.com/users/arthasking123/received_events",
"repos_url": "https://api.github.com/users/arthasking123/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/arthasking123/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/arthasking123/subscriptions",
"type": "User",
"url": "https://api.github.com/users/arthasking123"
} | https://api.github.com/repos/huggingface/datasets/issues/6986/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6986/timeline | closed | false | 6,986 | null | 2024-08-12T14:43:47Z | null | true |
2,362,378,276 | https://api.github.com/repos/huggingface/datasets/issues/6985 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6985/events | [] | null | 2024-08-01T03:35:02Z | [] | https://github.com/huggingface/datasets/issues/6985 | NONE | completed | null | null | [
"Please note that the error is raised just at import:\r\n```python\r\nimport pyarrow.parquet as pq\r\n```\r\n\r\nTherefore it must be caused by some problem with your pyarrow installation. I would recommend you uninstall and install pyarrow again.\r\n\r\nI also see that it seems you use conda to install pyarrow. Please note that pyarrow offers 3 different packages in conda-forge: https://arrow.apache.org/docs/python/install.html#using-conda\r\n```\r\nconda install -c conda-forge pyarrow\r\n```\r\n> While the pyarrow [conda-forge](https://conda-forge.org/) package is the right choice for most users, both a minimal and maximal variant of the package exist, either of which may be better for your use case. See [Differences between conda-forge packages](https://arrow.apache.org/docs/python/install.html#python-conda-differences).\r\n\r\nPlease, make sure you install the right one: I guess it is either `pyarrow` (or `pyarrow-all`).",
"I have same issue, please downgrade pyarrow==15.0.2, it seem datasets library need to be fix",
"It is not a problem with the `datasets` library: we support latest version of `pyarrow` and our Continuous Integration tests are using pyarrow 16.1.0 without any problem.\r\n\r\nThe error reported here is raised when importing pyarrow.parquet:\r\n```\r\n---> 29 import pyarrow.parquet as pq\r\n```\r\n```\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/__init__.py:20\r\n 1 # Licensed to the Apache Software Foundation (ASF) under one\r\n 2 # or more contributor license agreements. See the NOTICE file\r\n 3 # distributed with this work for additional information\r\n (...)\r\n 17 \r\n 18 # flake8: noqa\r\n---> 20 from .core import *\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/core.py:33\r\n 30 import pyarrow as pa\r\n 32 try:\r\n---> 33 import pyarrow._parquet as _parquet\r\n 34 except ImportError as exc:\r\n 35 raise ImportError(\r\n 36 \"The pyarrow installation is not built with support \"\r\n 37 f\"for the Parquet file format ({str(exc)})\"\r\n 38 ) from None\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/_parquet.pyx:1, in init pyarrow._parquet()\r\n\r\nAttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'\r\n```\r\n\r\nThis can only be explained if pyarrow was not properly installed. \r\n\r\nIf the user just installed `pyarrow-core` from conda-forge, then its parquet subpackage is not installed and cannot be imported. You can check pyarrow docs:\r\n- Differences between conda-forge packages: https://arrow.apache.org/docs/python/install.html#python-conda-differences\r\n> The `pyarrow-core` package includes the following functionality:\r\n> ...\r\n> The `pyarrow` package adds the following:\r\n> ...\r\n> Parquet (i.e., `pyarrow.parquet`)",
"I'm still seeing the same issue on datasets version 2.20.0. I installed pyarrow version 17.0.0 with `pip install`. Downgrading to pyarrow==15.0.2 also did not resolve the issue.",
"@RenaLu As of UTC time 07/27/2024 23:20:00, I hit the same issue and reinstalling `pyarrow==15.0.2` resolved the issue for me. You may want to check if your `pyarrow` is successfully downgraded.",
"I can confirm @albertvillanova's [analysis & suggestion](https://github.com/huggingface/datasets/issues/6985#issuecomment-2188022888) - `pip uninstall pyarrow` followed by `pip install pyarrow` solved it for me. \r\n\r\nI suspect this is because pyarrow was initially installed as a pandas extra `pandas[...,parquet,...]`, then pip-upgrading pyarrow resulted in the issue.\r\n\r\n@RenaLu did you uninstall pyarrow between changing versions?",
"After trying all the above combinations and failing, running the following in the notebook fixed the error!!\r\n`!conda install -c conda-forge -y datasets pyarrow libparquet`\r\nNote : Uninstall any existing dataset and pyarrow installations in the env before executing the above."
] | AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType' | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6985/reactions"
} | I_kwDODunzps6Mzwgk | null | 2024-06-19T13:22:28Z | https://api.github.com/repos/huggingface/datasets/issues/6985/comments | ### Describe the bug
I have been struggling with this for two days, any help would be appreciated. Python 3.10
```
from setfit import SetFitModel
from huggingface_hub import login
access_token_read = "cccxxxccc"
# Authenticate with the Hugging Face Hub
login(token=access_token_read)
# Load the models from the Hugging Face Hub
trainer_relv = SetFitModel.from_pretrained("snowdere/trainer_relevance")
trainer_trust = SetFitModel.from_pretrained("snowdere/trainer_trust")
trainer_sent = SetFitModel.from_pretrained("snowdere/trainer_sent")
trainer_topic = SetFitModel.from_pretrained("snowdere/trainer_topic")
```
```
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 from setfit import SetFitModel
2 from huggingface_hub import login
4 access_token_read = "ccsddsds"
File /opt/conda/lib/python3.10/site-packages/setfit/__init__.py:7
4 import os
5 import warnings
----> 7 from .data import get_templated_dataset, sample_dataset
8 from .model_card import SetFitModelCardData
9 from .modeling import SetFitHead, SetFitModel
File /opt/conda/lib/python3.10/site-packages/setfit/data.py:5
3 import pandas as pd
4 import torch
----> 5 from datasets import Dataset, DatasetDict, load_dataset
6 from torch.utils.data import Dataset as TorchDataset
8 from . import logging
File /opt/conda/lib/python3.10/site-packages/datasets/__init__.py:18
1 # ruff: noqa
2 # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
3 #
(...)
13 # See the License for the specific language governing permissions and
14 # limitations under the License.
16 __version__ = "2.19.0"
---> 18 from .arrow_dataset import Dataset
19 from .arrow_reader import ReadInstruction
20 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:76
73 from tqdm.contrib.concurrent import thread_map
75 from . import config
---> 76 from .arrow_reader import ArrowReader
77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence
78 from .data_files import sanitize_patterns
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_reader.py:29
26 from typing import TYPE_CHECKING, List, Optional, Union
28 import pyarrow as pa
---> 29 import pyarrow.parquet as pq
30 from tqdm.contrib.concurrent import thread_map
32 from .download.download_config import DownloadConfig
File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/__init__.py:20
1 # Licensed to the Apache Software Foundation (ASF) under one
2 # or more contributor license agreements. See the NOTICE file
3 # distributed with this work for additional information
(...)
17
18 # flake8: noqa
---> 20 from .core import *
File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/core.py:33
30 import pyarrow as pa
32 try:
---> 33 import pyarrow._parquet as _parquet
34 except ImportError as exc:
35 raise ImportError(
36 "The pyarrow installation is not built with support "
37 f"for the Parquet file format ({str(exc)})"
38 ) from None
File /opt/conda/lib/python3.10/site-packages/pyarrow/_parquet.pyx:1, in init pyarrow._parquet()
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
```
setfit: 1.0.3
transformers: 4.41.2
lingua-language-detector: 2.0.2
polars: 0.20.31
lightning: None
google-cloud-bigquery: 3.24.0
shapely: 2.0.4
pyarrow: 16.0.0
### Steps to reproduce the bug
I have tried all version combinations for Dataset and Pyarrow, the all have the same error since a few days ago. This is accross multiple scripts I have.
### Expected behavior
Just ron normally.
### Environment info
3.10 | {
"avatar_url": "https://avatars.githubusercontent.com/u/26666267?v=4",
"events_url": "https://api.github.com/users/firmai/events{/privacy}",
"followers_url": "https://api.github.com/users/firmai/followers",
"following_url": "https://api.github.com/users/firmai/following{/other_user}",
"gists_url": "https://api.github.com/users/firmai/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/firmai",
"id": 26666267,
"login": "firmai",
"node_id": "MDQ6VXNlcjI2NjY2MjY3",
"organizations_url": "https://api.github.com/users/firmai/orgs",
"received_events_url": "https://api.github.com/users/firmai/received_events",
"repos_url": "https://api.github.com/users/firmai/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/firmai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/firmai/subscriptions",
"type": "User",
"url": "https://api.github.com/users/firmai"
} | https://api.github.com/repos/huggingface/datasets/issues/6985/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6985/timeline | closed | false | 6,985 | null | 2024-06-25T05:40:51Z | null | false |
2,362,143,554 | https://api.github.com/repos/huggingface/datasets/issues/6984 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6984/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-08-12T14:43:46Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6984 | NONE | completed | null | null | [
"Hi ! Thanks for reporting :)\r\n\r\nWe don't support `large_list` yet, though it should be added to `Sequence` IMO (maybe with a parameter `large=True` ?)"
] | Convert polars DataFrame back to datasets | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6984/reactions"
} | I_kwDODunzps6My3NC | null | 2024-06-19T11:38:48Z | https://api.github.com/repos/huggingface/datasets/issues/6984/comments | ### Feature request
This returns error.
```python
from datasets import Dataset
dsdf = Dataset.from_dict({"x": [[1, 2], [3, 4, 5]], "y": ["a", "b"]})
Dataset.from_polars(dsdf.to_polars())
```
ValueError: Arrow type large_list<item: int64> does not have a datasets dtype equivalent.
### Motivation
When datasets contain Sequence data type, it will be converted to Arrow type large_list. However, the reverse (from large_list to Sequence) does not work.
### Your contribution
No | {
"avatar_url": "https://avatars.githubusercontent.com/u/38550511?v=4",
"events_url": "https://api.github.com/users/ljw20180420/events{/privacy}",
"followers_url": "https://api.github.com/users/ljw20180420/followers",
"following_url": "https://api.github.com/users/ljw20180420/following{/other_user}",
"gists_url": "https://api.github.com/users/ljw20180420/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ljw20180420",
"id": 38550511,
"login": "ljw20180420",
"node_id": "MDQ6VXNlcjM4NTUwNTEx",
"organizations_url": "https://api.github.com/users/ljw20180420/orgs",
"received_events_url": "https://api.github.com/users/ljw20180420/received_events",
"repos_url": "https://api.github.com/users/ljw20180420/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ljw20180420/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ljw20180420/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ljw20180420"
} | https://api.github.com/repos/huggingface/datasets/issues/6984/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6984/timeline | closed | false | 6,984 | null | 2024-08-12T14:43:46Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,361,806,201 | https://api.github.com/repos/huggingface/datasets/issues/6983 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6983/events | [] | null | 2024-06-28T06:57:38Z | [] | https://github.com/huggingface/datasets/pull/6983 | MEMBER | null | false | {
"closed_at": null,
"closed_issues": 3,
"created_at": "2023-02-13T16:22:42Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
},
"description": "Next major release",
"due_on": null,
"html_url": "https://github.com/huggingface/datasets/milestone/10",
"id": 9038583,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels",
"node_id": "MI_kwDODunzps4Aier3",
"number": 10,
"open_issues": 5,
"state": "open",
"title": "3.0",
"updated_at": "2024-06-28T06:51:30Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/10"
} | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6983). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005566 / 0.011353 (-0.005787) | 0.003977 / 0.011008 (-0.007031) | 0.063250 / 0.038508 (0.024742) | 0.030907 / 0.023109 (0.007798) | 0.244989 / 0.275898 (-0.030909) | 0.272139 / 0.323480 (-0.051341) | 0.004332 / 0.007986 (-0.003653) | 0.002960 / 0.004328 (-0.001368) | 0.050147 / 0.004250 (0.045896) | 0.044740 / 0.037052 (0.007688) | 0.256947 / 0.258489 (-0.001542) | 0.290372 / 0.293841 (-0.003469) | 0.030444 / 0.128546 (-0.098102) | 0.012675 / 0.075646 (-0.062971) | 0.203852 / 0.419271 (-0.215420) | 0.036977 / 0.043533 (-0.006556) | 0.244401 / 0.255139 (-0.010738) | 0.270020 / 0.283200 (-0.013179) | 0.018177 / 0.141683 (-0.123506) | 1.122189 / 1.452155 (-0.329966) | 1.176688 / 1.492716 (-0.316028) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100721 / 0.018006 (0.082715) | 0.311824 / 0.000490 (0.311335) | 0.000222 / 0.000200 (0.000022) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020039 / 0.037411 (-0.017373) | 0.062084 / 0.014526 (0.047558) | 0.074317 / 0.176557 (-0.102240) | 0.123935 / 0.737135 (-0.613200) | 0.076186 / 0.296338 (-0.220153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284827 / 0.215209 (0.069618) | 2.782727 / 2.077655 (0.705072) | 1.417624 / 1.504120 (-0.086496) | 1.294476 / 1.541195 (-0.246718) | 1.332658 / 1.468490 (-0.135832) | 0.724820 / 4.584777 (-3.859957) | 2.384546 / 3.745712 (-1.361166) | 2.866759 / 5.269862 (-2.403103) | 1.930756 / 4.565676 (-2.634921) | 0.083090 / 0.424275 (-0.341185) | 0.005566 / 0.007607 (-0.002041) | 0.340117 / 0.226044 (0.114072) | 3.342417 / 2.268929 (1.073488) | 1.807842 / 55.444624 (-53.636782) | 1.511647 / 6.876477 (-5.364830) | 1.653893 / 2.142072 (-0.488179) | 0.803983 / 4.805227 (-4.001244) | 0.136205 / 6.500664 (-6.364459) | 0.042815 / 0.075469 (-0.032654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962346 / 1.841788 (-0.879442) | 11.792239 / 8.074308 (3.717931) | 9.236256 / 10.191392 (-0.955136) | 0.143200 / 0.680424 (-0.537224) | 0.015050 / 0.534201 (-0.519151) | 0.304623 / 0.579283 (-0.274660) | 0.266417 / 0.434364 (-0.167947) | 0.341213 / 0.540337 (-0.199124) | 0.454258 / 1.386936 (-0.932678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005917 / 0.011353 (-0.005436) | 0.004005 / 0.011008 (-0.007003) | 0.049781 / 0.038508 (0.011273) | 0.033310 / 0.023109 (0.010200) | 0.271881 / 0.275898 (-0.004017) | 0.296855 / 0.323480 (-0.026625) | 0.004479 / 0.007986 (-0.003507) | 0.002818 / 0.004328 (-0.001510) | 0.048213 / 0.004250 (0.043962) | 0.043480 / 0.037052 (0.006428) | 0.285963 / 0.258489 (0.027473) | 0.317304 / 0.293841 (0.023463) | 0.031619 / 0.128546 (-0.096928) | 0.012312 / 0.075646 (-0.063335) | 0.059904 / 0.419271 (-0.359368) | 0.033152 / 0.043533 (-0.010381) | 0.274198 / 0.255139 (0.019059) | 0.290469 / 0.283200 (0.007269) | 0.019424 / 0.141683 (-0.122258) | 1.133669 / 1.452155 (-0.318485) | 1.194427 / 1.492716 (-0.298290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101561 / 0.018006 (0.083555) | 0.312617 / 0.000490 (0.312127) | 0.000216 / 0.000200 (0.000016) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023705 / 0.037411 (-0.013706) | 0.076781 / 0.014526 (0.062255) | 0.089922 / 0.176557 (-0.086634) | 0.129182 / 0.737135 (-0.607953) | 0.092022 / 0.296338 (-0.204317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300977 / 0.215209 (0.085768) | 2.909088 / 2.077655 (0.831433) | 1.592821 / 1.504120 (0.088701) | 1.466627 / 1.541195 (-0.074568) | 1.497558 / 1.468490 (0.029068) | 0.720986 / 4.584777 (-3.863791) | 0.958039 / 3.745712 (-2.787673) | 3.023413 / 5.269862 (-2.246448) | 1.933245 / 4.565676 (-2.632432) | 0.080500 / 0.424275 (-0.343775) | 0.005243 / 0.007607 (-0.002364) | 0.361259 / 0.226044 (0.135215) | 3.447317 / 2.268929 (1.178389) | 1.938234 / 55.444624 (-53.506390) | 1.671563 / 6.876477 (-5.204913) | 1.674647 / 2.142072 (-0.467425) | 0.790606 / 4.805227 (-4.014621) | 0.133312 / 6.500664 (-6.367352) | 0.041241 / 0.075469 (-0.034228) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996167 / 1.841788 (-0.845621) | 12.460877 / 8.074308 (4.386569) | 10.608415 / 10.191392 (0.417023) | 0.134076 / 0.680424 (-0.546348) | 0.016166 / 0.534201 (-0.518035) | 0.301218 / 0.579283 (-0.278065) | 0.128979 / 0.434364 (-0.305385) | 0.336453 / 0.540337 (-0.203884) | 0.435561 / 1.386936 (-0.951375) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#70e7355b7125fb792107ef5128ee3ad15cbec26c \"CML watermark\")\n"
] | Remove metrics | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6983/reactions"
} | PR_kwDODunzps5y7tK7 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6983.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6983",
"merged_at": "2024-06-28T06:51:30Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6983.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6983"
} | 2024-06-19T09:08:55Z | https://api.github.com/repos/huggingface/datasets/issues/6983/comments | Remove all metrics, as part of the 3.0 release.
Note they are deprecated since 2.5.0 version. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6983/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6983/timeline | closed | false | 6,983 | null | 2024-06-28T06:51:30Z | null | true |
2,361,661,469 | https://api.github.com/repos/huggingface/datasets/issues/6982 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6982/events | [] | null | 2024-07-08T06:20:16Z | [] | https://github.com/huggingface/datasets/issues/6982 | NONE | completed | null | null | [
"it seems the bug will happened in all windows system, I tried it in windows8.1, 10, 11 and all of them failed. But it won't happened in the Linux(Ubuntu and Centos7) and Mac (both my virtual and physical machine). I still don't know what the problem is. May be related to the path? I cannot run the split file in my windows server which created in Linux (even I replace the path in the arrow document)....work for it for a week but still cannot fix it .....upset",
"Have you properly logged in? Are you using the a valid token?\r\n\r\nNote that this dataset is gated and you must follow the right procedure to be able to access it. You can find more info in the docs: https://huggingface.co./docs/hub/datasets-gated#access-gated-datasets-as-a-user",
"> Have you properly logged in? Are you using the a valid token?\r\n> \r\n> Note that this dataset is gated and you must follow the right procedure to be able to access it. You can find more info in the docs: https://huggingface.co./docs/hub/datasets-gated#access-gated-datasets-as-a-user\r\n\r\nI finally found it what happened. It is not about the logging. When I copy the dataset from its original path (C:/Users/cybes/.cache/huggingface/datasets/downloads/extracted/XXX/cv-corpus-7.0-2021-07-21) to the desktop and load each tsv in it one by one , when I load the test spilt, the following warning occurs:\r\n\"ArrowInvalid: Failed to parse string: 'Benchmark' as a scalar of type double\"\r\n\r\nThen I manually deleted them in the \"segment\", the error won't happen anymore, even I replace the original path with these revised tsv and use the previous loading method (common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"train\", trust_remote_code=True)). It can work properly."
] | cannot split dataset when using load_dataset | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6982/reactions"
} | I_kwDODunzps6MxBgd | null | 2024-06-19T08:07:16Z | https://api.github.com/repos/huggingface/datasets/issues/6982/comments | ### Describe the bug
when I use load_dataset methods to load mozilla-foundation/common_voice_7_0, it can successfully download and extracted the dataset but It cannot generating the arrow document,
This bug happened in my server, my laptop, so as #6906 , but it won't happen in the google colab. I work for it for days, even I load the datasets from local path, it can Generatingβtrainβsplit and validation split but bug happen again in testβsplit.
### Steps to reproduce the bug
from datasets import load_dataset, load_metric, Audio
common_voice_train = load_dataset("mozilla-foundation/common_voice_7_0", "ja", split="train", token=selftoken, trust_remote_code=True)
### Expected behavior
```
{
"name": "ValueError",
"message": "Instruction \"train\" corresponds to no data!",
"stack": "---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[2], line 3
1 from datasets import load_dataset, load_metric, Audio
----> 3 common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"train\",token='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')#,trust_remote_code=True)#,streaming=True)
4 common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"test\",token='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')#,trust_remote_code=True)#,streaming=True)
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\load.py:2626, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)
2622 # Build dataset for splits
2623 keep_in_memory = (
2624 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
2625 )
-> 2626 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
2627 # Rename and cast features to match task schema
2628 if task is not None:
2629 # To avoid issuing the same warning twice
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1266, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)
1263 verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS)
1265 # Create a dataset for each of the given splits
-> 1266 datasets = map_nested(
1267 partial(
1268 self._build_single_dataset,
1269 run_post_process=run_post_process,
1270 verification_mode=verification_mode,
1271 in_memory=in_memory,
1272 ),
1273 split,
1274 map_tuple=True,
1275 disable_tqdm=True,
1276 )
1277 if isinstance(datasets, dict):
1278 datasets = DatasetDict(datasets)
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\utils\\py_utils.py:484, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, batched, batch_size, types, disable_tqdm, desc)
482 if batched:
483 data_struct = [data_struct]
--> 484 mapped = function(data_struct)
485 if batched:
486 mapped = mapped[0]
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1296, in DatasetBuilder._build_single_dataset(self, split, run_post_process, verification_mode, in_memory)
1293 split = Split(split)
1295 # Build base dataset
-> 1296 ds = self._as_dataset(
1297 split=split,
1298 in_memory=in_memory,
1299 )
1300 if run_post_process:
1301 for resource_file_name in self._post_processing_resources(split).values():
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1370, in DatasetBuilder._as_dataset(self, split, in_memory)
1368 if self._check_legacy_cache():
1369 dataset_name = self.name
-> 1370 dataset_kwargs = ArrowReader(cache_dir, self.info).read(
1371 name=dataset_name,
1372 instructions=split,
1373 split_infos=self.info.splits.values(),
1374 in_memory=in_memory,
1375 )
1376 fingerprint = self._get_dataset_fingerprint(split)
1377 return Dataset(fingerprint=fingerprint, **dataset_kwargs)
File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\arrow_reader.py:256, in BaseReader.read(self, name, instructions, split_infos, in_memory)
254 msg = f'Instruction \"{instructions}\" corresponds to no data!'
255 #msg = f'Instruction \"{self._path}\",\"{name}\",\"{instructions}\",\"{split_infos}\" corresponds to no data!'
--> 256 raise ValueError(msg)
257 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)
ValueError: Instruction \"train\" corresponds to no data!"
}
```
### Environment info
Environment:
python 3.9
windows 11 pro
VScode+jupyter | {
"avatar_url": "https://avatars.githubusercontent.com/u/17721894?v=4",
"events_url": "https://api.github.com/users/cybest0608/events{/privacy}",
"followers_url": "https://api.github.com/users/cybest0608/followers",
"following_url": "https://api.github.com/users/cybest0608/following{/other_user}",
"gists_url": "https://api.github.com/users/cybest0608/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/cybest0608",
"id": 17721894,
"login": "cybest0608",
"node_id": "MDQ6VXNlcjE3NzIxODk0",
"organizations_url": "https://api.github.com/users/cybest0608/orgs",
"received_events_url": "https://api.github.com/users/cybest0608/received_events",
"repos_url": "https://api.github.com/users/cybest0608/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/cybest0608/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cybest0608/subscriptions",
"type": "User",
"url": "https://api.github.com/users/cybest0608"
} | https://api.github.com/repos/huggingface/datasets/issues/6982/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6982/timeline | closed | false | 6,982 | null | 2024-07-08T06:20:16Z | null | false |
2,361,520,022 | https://api.github.com/repos/huggingface/datasets/issues/6981 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6981/events | [] | null | 2024-06-19T14:32:59Z | [] | https://github.com/huggingface/datasets/pull/6981 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6981). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005578 / 0.011353 (-0.005775) | 0.003946 / 0.011008 (-0.007062) | 0.063317 / 0.038508 (0.024808) | 0.031878 / 0.023109 (0.008769) | 0.312571 / 0.275898 (0.036673) | 0.281415 / 0.323480 (-0.042065) | 0.004139 / 0.007986 (-0.003846) | 0.002730 / 0.004328 (-0.001598) | 0.049539 / 0.004250 (0.045289) | 0.045056 / 0.037052 (0.008003) | 0.263820 / 0.258489 (0.005330) | 0.297817 / 0.293841 (0.003976) | 0.029490 / 0.128546 (-0.099056) | 0.012467 / 0.075646 (-0.063179) | 0.204607 / 0.419271 (-0.214664) | 0.036305 / 0.043533 (-0.007228) | 0.244102 / 0.255139 (-0.011037) | 0.267855 / 0.283200 (-0.015345) | 0.019794 / 0.141683 (-0.121889) | 1.130784 / 1.452155 (-0.321371) | 1.172507 / 1.492716 (-0.320209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092430 / 0.018006 (0.074424) | 0.296460 / 0.000490 (0.295970) | 0.000210 / 0.000200 (0.000010) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019467 / 0.037411 (-0.017944) | 0.062850 / 0.014526 (0.048324) | 0.074067 / 0.176557 (-0.102490) | 0.123280 / 0.737135 (-0.613856) | 0.077036 / 0.296338 (-0.219302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282687 / 0.215209 (0.067478) | 2.786715 / 2.077655 (0.709060) | 1.492028 / 1.504120 (-0.012092) | 1.373603 / 1.541195 (-0.167592) | 1.405004 / 1.468490 (-0.063486) | 0.714408 / 4.584777 (-3.870369) | 2.376785 / 3.745712 (-1.368927) | 2.916150 / 5.269862 (-2.353712) | 1.921184 / 4.565676 (-2.644493) | 0.078354 / 0.424275 (-0.345921) | 0.005236 / 0.007607 (-0.002371) | 0.334647 / 0.226044 (0.108603) | 3.262069 / 2.268929 (0.993140) | 1.858300 / 55.444624 (-53.586324) | 1.572968 / 6.876477 (-5.303509) | 1.659145 / 2.142072 (-0.482927) | 0.779546 / 4.805227 (-4.025681) | 0.132623 / 6.500664 (-6.368041) | 0.042423 / 0.075469 (-0.033046) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985516 / 1.841788 (-0.856271) | 12.001321 / 8.074308 (3.927013) | 9.927011 / 10.191392 (-0.264381) | 0.142645 / 0.680424 (-0.537779) | 0.013808 / 0.534201 (-0.520393) | 0.303422 / 0.579283 (-0.275861) | 0.262666 / 0.434364 (-0.171698) | 0.339369 / 0.540337 (-0.200969) | 0.431028 / 1.386936 (-0.955908) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005848 / 0.011353 (-0.005505) | 0.003971 / 0.011008 (-0.007037) | 0.050746 / 0.038508 (0.012238) | 0.031554 / 0.023109 (0.008445) | 0.277678 / 0.275898 (0.001780) | 0.300776 / 0.323480 (-0.022704) | 0.004428 / 0.007986 (-0.003558) | 0.002773 / 0.004328 (-0.001555) | 0.049882 / 0.004250 (0.045632) | 0.039833 / 0.037052 (0.002780) | 0.289143 / 0.258489 (0.030654) | 0.321425 / 0.293841 (0.027584) | 0.031701 / 0.128546 (-0.096845) | 0.012687 / 0.075646 (-0.062960) | 0.060650 / 0.419271 (-0.358621) | 0.033318 / 0.043533 (-0.010215) | 0.277019 / 0.255139 (0.021880) | 0.292345 / 0.283200 (0.009145) | 0.018520 / 0.141683 (-0.123163) | 1.143933 / 1.452155 (-0.308222) | 1.183913 / 1.492716 (-0.308803) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094467 / 0.018006 (0.076461) | 0.298822 / 0.000490 (0.298332) | 0.000201 / 0.000200 (0.000001) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022811 / 0.037411 (-0.014601) | 0.078084 / 0.014526 (0.063558) | 0.089079 / 0.176557 (-0.087477) | 0.130229 / 0.737135 (-0.606906) | 0.090851 / 0.296338 (-0.205487) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294981 / 0.215209 (0.079772) | 2.908294 / 2.077655 (0.830639) | 1.591281 / 1.504120 (0.087161) | 1.446032 / 1.541195 (-0.095162) | 1.469441 / 1.468490 (0.000951) | 0.726477 / 4.584777 (-3.858300) | 0.983086 / 3.745712 (-2.762626) | 2.892715 / 5.269862 (-2.377147) | 1.974092 / 4.565676 (-2.591584) | 0.079500 / 0.424275 (-0.344775) | 0.005497 / 0.007607 (-0.002110) | 0.342220 / 0.226044 (0.116176) | 3.414508 / 2.268929 (1.145579) | 1.941550 / 55.444624 (-53.503074) | 1.645268 / 6.876477 (-5.231209) | 1.805909 / 2.142072 (-0.336163) | 0.814483 / 4.805227 (-3.990744) | 0.135867 / 6.500664 (-6.364797) | 0.041718 / 0.075469 (-0.033751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.999751 / 1.841788 (-0.842036) | 12.488263 / 8.074308 (4.413954) | 10.867040 / 10.191392 (0.675648) | 0.143999 / 0.680424 (-0.536425) | 0.015496 / 0.534201 (-0.518705) | 0.302170 / 0.579283 (-0.277113) | 0.123753 / 0.434364 (-0.310611) | 0.340424 / 0.540337 (-0.199913) | 0.458339 / 1.386936 (-0.928597) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a6ccf944e42c1a84de81bf326accab9999b86c90 \"CML watermark\")\n"
] | Update docs on trust_remote_code defaults to False | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6981/reactions"
} | PR_kwDODunzps5y6tnN | {
"diff_url": "https://github.com/huggingface/datasets/pull/6981.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6981",
"merged_at": "2024-06-19T14:26:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6981.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6981"
} | 2024-06-19T07:12:21Z | https://api.github.com/repos/huggingface/datasets/issues/6981/comments | Update docs on trust_remote_code defaults to False.
The docs needed to be updated due to this PR:
- #6954 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6981/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6981/timeline | closed | false | 6,981 | null | 2024-06-19T14:26:37Z | null | true |
2,360,909,930 | https://api.github.com/repos/huggingface/datasets/issues/6980 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6980/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-07-12T12:04:54Z | [] | https://github.com/huggingface/datasets/issues/6980 | CONTRIBUTOR | completed | null | null | [] | Support NumPy 2.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6980/reactions"
} | I_kwDODunzps6MuKBq | null | 2024-06-18T23:30:22Z | https://api.github.com/repos/huggingface/datasets/issues/6980/comments | ### Feature request
Support NumPy 2.0.
### Motivation
NumPy introduces the Array API, which bridges the gap between machine learning libraries. Many clients of HuggingFace are eager to start using the Array API.
Besides that, NumPy 2 provides a cleaner interface than NumPy 1.
### Tasks
NumPy 2.0 was released for testing so that libraries could ensure compatibility [since mid-March](https://github.com/numpy/numpy/issues/24300#issuecomment-1986815755). What needs to be done for HuggingFace to support Numpy 2?
- [x] Fix use of `array`: https://github.com/huggingface/datasets/pull/6976
- [ ] Remove [NumPy version limit](https://github.com/huggingface/datasets/pull/6975): https://github.com/huggingface/datasets/pull/6991 | {
"avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4",
"events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}",
"followers_url": "https://api.github.com/users/NeilGirdhar/followers",
"following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}",
"gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NeilGirdhar",
"id": 730137,
"login": "NeilGirdhar",
"node_id": "MDQ6VXNlcjczMDEzNw==",
"organizations_url": "https://api.github.com/users/NeilGirdhar/orgs",
"received_events_url": "https://api.github.com/users/NeilGirdhar/received_events",
"repos_url": "https://api.github.com/users/NeilGirdhar/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NeilGirdhar"
} | https://api.github.com/repos/huggingface/datasets/issues/6980/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6980/timeline | closed | false | 6,980 | null | 2024-07-12T12:04:53Z | null | false |
2,360,175,363 | https://api.github.com/repos/huggingface/datasets/issues/6979 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6979/events | [] | null | 2024-06-21T17:09:32Z | [] | https://github.com/huggingface/datasets/issues/6979 | NONE | completed | null | null | [
"Hello,\r\n\r\nHave you tried loading the dataset in streaming mode? [Documentation](https://huggingface.co./docs/datasets/v2.20.0/stream)\r\n\r\nThis way you wouldn't have to load it all. Also, let's be nice to Parquet, it's a really nice technology and we don't need to be mean :)",
"I have downloaded part of it, just want to know how to load part of it, stream mode is not work for me since my network (in china) not stable, I don't want do it all again and again.\r\n\r\nJust curious, doesn't there a way to load part of it?",
"Could you convert the IterableDataset to a Dataset after taking the first 100 rows with `.take`? This way, you would have a local copy of the first 100 rows on your system and thus won't need to download. Would that work?\r\n\r\nHere is a [SO question](https://stackoverflow.com/questions/76227219/can-i-convert-an-iterabledataset-to-dataset) detailing how to do the conversion.",
"I mean, the parquet is like:\r\n\r\n00000-0143554\r\n00001-0143554\r\n00002-0143554\r\n...\r\n00100-0143554\r\n...\r\n09100-0143554\r\n\r\nI just downloaded the first 9900 part of it. \r\n\r\nI can not load with load_dataset, it throw an error says my file is not same as parquet all amount.\r\n\r\nHow could I load the only I have? \r\n\r\n( I really don't want downlaod them all, cause, I don't need all, and pulus, its huge.... )\r\n\r\nAs I said, I have donwloaded about 9999... It's not about stream... I just wnat to konw how to load offline... part....",
"Hi, @lucasjinreal.\r\n\r\nI am not sure of understanding your issue. What is the error message and stack trace you get? What version of `datasets` are you using? Could you provide a reproducible example?\r\n\r\nWithout knowing all those details, I would naively say that you can load whatever number of Parquet files by using the \"parquet\" loader: https://huggingface.co./docs/datasets/loading#parquet\r\n```python\r\nds = load_dataset(\"parquet\", data_files=\"data/train-001*-of-00314.parquet\", split=\"train\")\r\n```",
"@albertvillanova Not sure you have tested with this or not, but I have tried,\r\n\r\nthe only error I got is it still laodding all parquet with a progress bar maxium to the whole number 014354, and it loads my 0 - 000999 part, then throws an error.\r\n\r\nSays Numinfo is not same.\r\n\r\nI am so confused,",
"Yes, my code snippet works.\n\nCould you copy-paste your code and the output? Otherwise we are not able to know what the issue is.",
"@albertvillanova Hi, thanks for the tracing of the issue.\r\n\r\nThis is the output:\r\n\r\n```\r\nython get_llava_recap_cc3m.py\r\nGenerating train split: 3%|ββββ | 101910/3199866 [00:16<08:30, 6065.67 examples/s]\r\nTraceback (most recent call last):\r\n File \"get_llava_recap_cc3m.py\", line 31, in <module>\r\n dataset = load_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\")\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/load.py\", line 2582, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1005, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1118, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/info_utils.py\", line 101, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=156885281898.75, num_examples=3199866, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=4994080770, num_examples=101910, shard_lengths=[10191, 10291, 10291, 10291, 10291, 10191, 10191, 10291, 10291, 9591], dataset_name='llava-recap-cc3m')}]\r\n```\r\n\r\nthis is my code:\r\n\r\n```\r\ndataset = load_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\")\r\n```\r\n\r\nMy situation and requirements:\r\n\r\n00314 is all, but I downlaode about 150, half of it, as you can see, i used `0000*-of-00314.` which should be at most 99 file being loaded.\r\n\r\nBut it just fail.\r\n\r\nCan u understand my issue now?\r\n\r\nIf so, then **do not** suggest me with stream, Just want to know, is there a way to load part if it...... **and please don't say you can not replicate my issue when you have downloaded them all**, my english is not good, but I think all situations and all prerequists I have addressed already.\r\n\r\n",
"I see you did not use the \"parquet\" loader as I suggested in my code snippet above: https://github.com/huggingface/datasets/issues/6979#issuecomment-2182031415\r\nPlease try passing \"parquet\" instead of \"llava-recap-cc3m/\" to `load_dataset`, and the complete path to data files in `data_files`:\r\n```python\r\nload_dataset(\"parquet\", data_files=\"llava-recap-cc3m/data/train-001*-of-00314.parquet\")\r\n```",
"Let me explain that you get the error because of this content within the `dataset_info` YAML tag in the `llava-recap-cc3m/README.md`:\r\n```\r\n - name: train\r\n num_bytes: 156885281898.75\r\n num_examples: 3199866\r\n```\r\n\r\nBy default, if there is that content in the README file, `load_dataset` performs a basic check to verify it the generated number of examples matches the expected one and raises a `NonMatchingSplitsSizesError` if that is not the case. \r\n\r\nYou can avoid this basic check by passing `verification_mode=\"no_checks\"`:\r\n```python\r\nload_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\", verification_mode=\"no_checks\")\r\n```",
"And please, next time you have an issue, please fill the Bug template issue with all the necessary information: https://github.com/huggingface/datasets/issues/new?assignees=&labels=&projects=&template=bug-report.yml\r\n\r\nOtherwise it is very difficult for us to understand the underlying problem and to propose a pertinent solution.",
"thank u albert!\r\n\r\nIt solved my issue!"
] | How can I load partial parquet files only? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6979/reactions"
} | I_kwDODunzps6MrWsD | null | 2024-06-18T15:44:16Z | https://api.github.com/repos/huggingface/datasets/issues/6979/comments | I have a HUGE dataset about 14TB, I unable to download all parquet all. I just take about 100 from it.
dataset = load_dataset("xx/", data_files="data/train-001*-of-00314.parquet")
How can I just using 000 - 100 from a 00314 from all partially?
I search whole net didn't found a solution, **this is stupid if they didn't support it, and I swear I wont using stupid parquet any more**
| {
"avatar_url": "https://avatars.githubusercontent.com/u/21303438?v=4",
"events_url": "https://api.github.com/users/lucasjinreal/events{/privacy}",
"followers_url": "https://api.github.com/users/lucasjinreal/followers",
"following_url": "https://api.github.com/users/lucasjinreal/following{/other_user}",
"gists_url": "https://api.github.com/users/lucasjinreal/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lucasjinreal",
"id": 21303438,
"login": "lucasjinreal",
"node_id": "MDQ6VXNlcjIxMzAzNDM4",
"organizations_url": "https://api.github.com/users/lucasjinreal/orgs",
"received_events_url": "https://api.github.com/users/lucasjinreal/received_events",
"repos_url": "https://api.github.com/users/lucasjinreal/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lucasjinreal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lucasjinreal/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lucasjinreal"
} | https://api.github.com/repos/huggingface/datasets/issues/6979/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6979/timeline | closed | false | 6,979 | null | 2024-06-21T13:32:50Z | null | false |
2,359,511,469 | https://api.github.com/repos/huggingface/datasets/issues/6978 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6978/events | [] | null | 2024-06-19T06:23:24Z | [] | https://github.com/huggingface/datasets/pull/6978 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6978). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005144 / 0.011353 (-0.006209) | 0.003500 / 0.011008 (-0.007509) | 0.063670 / 0.038508 (0.025162) | 0.031793 / 0.023109 (0.008683) | 0.239611 / 0.275898 (-0.036287) | 0.276681 / 0.323480 (-0.046799) | 0.004148 / 0.007986 (-0.003838) | 0.002713 / 0.004328 (-0.001615) | 0.048832 / 0.004250 (0.044582) | 0.043066 / 0.037052 (0.006014) | 0.256835 / 0.258489 (-0.001655) | 0.292224 / 0.293841 (-0.001617) | 0.027530 / 0.128546 (-0.101017) | 0.010509 / 0.075646 (-0.065137) | 0.203370 / 0.419271 (-0.215901) | 0.035643 / 0.043533 (-0.007890) | 0.252161 / 0.255139 (-0.002978) | 0.271883 / 0.283200 (-0.011316) | 0.018658 / 0.141683 (-0.123024) | 1.081676 / 1.452155 (-0.370479) | 1.142146 / 1.492716 (-0.350571) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093484 / 0.018006 (0.075477) | 0.298607 / 0.000490 (0.298117) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019021 / 0.037411 (-0.018390) | 0.062471 / 0.014526 (0.047946) | 0.075393 / 0.176557 (-0.101163) | 0.121040 / 0.737135 (-0.616095) | 0.077613 / 0.296338 (-0.218726) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294857 / 0.215209 (0.079648) | 2.931143 / 2.077655 (0.853489) | 1.510866 / 1.504120 (0.006746) | 1.379574 / 1.541195 (-0.161621) | 1.352358 / 1.468490 (-0.116133) | 0.561670 / 4.584777 (-4.023107) | 2.378434 / 3.745712 (-1.367278) | 2.713203 / 5.269862 (-2.556658) | 1.706416 / 4.565676 (-2.859260) | 0.062355 / 0.424275 (-0.361920) | 0.004971 / 0.007607 (-0.002636) | 0.336498 / 0.226044 (0.110453) | 3.316464 / 2.268929 (1.047535) | 1.833035 / 55.444624 (-53.611589) | 1.532808 / 6.876477 (-5.343668) | 1.537323 / 2.142072 (-0.604749) | 0.639430 / 4.805227 (-4.165798) | 0.115808 / 6.500664 (-6.384856) | 0.043545 / 0.075469 (-0.031924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974428 / 1.841788 (-0.867360) | 11.368914 / 8.074308 (3.294606) | 9.754488 / 10.191392 (-0.436904) | 0.146277 / 0.680424 (-0.534146) | 0.013917 / 0.534201 (-0.520284) | 0.286809 / 0.579283 (-0.292474) | 0.267144 / 0.434364 (-0.167219) | 0.326161 / 0.540337 (-0.214177) | 0.418059 / 1.386936 (-0.968877) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005341 / 0.011353 (-0.006012) | 0.003460 / 0.011008 (-0.007548) | 0.050135 / 0.038508 (0.011627) | 0.032014 / 0.023109 (0.008905) | 0.259835 / 0.275898 (-0.016063) | 0.286275 / 0.323480 (-0.037205) | 0.004350 / 0.007986 (-0.003636) | 0.002800 / 0.004328 (-0.001529) | 0.049358 / 0.004250 (0.045107) | 0.040182 / 0.037052 (0.003130) | 0.278352 / 0.258489 (0.019863) | 0.307869 / 0.293841 (0.014028) | 0.029151 / 0.128546 (-0.099395) | 0.010091 / 0.075646 (-0.065555) | 0.058814 / 0.419271 (-0.360458) | 0.033150 / 0.043533 (-0.010383) | 0.263594 / 0.255139 (0.008455) | 0.284065 / 0.283200 (0.000866) | 0.017968 / 0.141683 (-0.123714) | 1.145605 / 1.452155 (-0.306550) | 1.196884 / 1.492716 (-0.295832) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094045 / 0.018006 (0.076039) | 0.299031 / 0.000490 (0.298541) | 0.000210 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022510 / 0.037411 (-0.014901) | 0.077478 / 0.014526 (0.062953) | 0.087746 / 0.176557 (-0.088811) | 0.129311 / 0.737135 (-0.607825) | 0.089921 / 0.296338 (-0.206418) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290279 / 0.215209 (0.075070) | 2.880725 / 2.077655 (0.803070) | 1.541262 / 1.504120 (0.037142) | 1.424475 / 1.541195 (-0.116719) | 1.436397 / 1.468490 (-0.032093) | 0.578237 / 4.584777 (-4.006540) | 0.965249 / 3.745712 (-2.780463) | 2.682534 / 5.269862 (-2.587327) | 1.732859 / 4.565676 (-2.832817) | 0.065523 / 0.424275 (-0.358752) | 0.005466 / 0.007607 (-0.002141) | 0.343985 / 0.226044 (0.117940) | 3.397463 / 2.268929 (1.128534) | 1.929370 / 55.444624 (-53.515255) | 1.605135 / 6.876477 (-5.271342) | 1.753926 / 2.142072 (-0.388146) | 0.659929 / 4.805227 (-4.145298) | 0.118093 / 6.500664 (-6.382571) | 0.041252 / 0.075469 (-0.034217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.009177 / 1.841788 (-0.832610) | 11.959624 / 8.074308 (3.885316) | 10.484672 / 10.191392 (0.293280) | 0.142085 / 0.680424 (-0.538339) | 0.015955 / 0.534201 (-0.518245) | 0.283649 / 0.579283 (-0.295634) | 0.125681 / 0.434364 (-0.308683) | 0.320490 / 0.540337 (-0.219847) | 0.440353 / 1.386936 (-0.946583) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e47a746bcda4b97db2467542b76d3215b3569ff0 \"CML watermark\")\n",
"Maybe a patch release will be needed with this fix."
] | Fix regression for pandas < 2.0.0 in JSON loader | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6978/reactions"
} | PR_kwDODunzps5yz0h6 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6978.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6978",
"merged_at": "2024-06-19T05:50:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6978.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6978"
} | 2024-06-18T10:26:34Z | https://api.github.com/repos/huggingface/datasets/issues/6978/comments | A regression was introduced for pandas < 2.0.0 in PR:
- #6914
As described in pandas docs, the `dtype_backend` parameter was first added in pandas 2.0.0: https://pandas.pydata.org/docs/reference/api/pandas.read_json.html
This PR fixes the regression by passing (or not) the `dtype_backend` parameter depending on pandas version.
Maybe, in a future 3.0 `datasets` release, we could just require pandas > 2.0.
Reported by:
- #6977 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6978/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6978/timeline | closed | false | 6,978 | null | 2024-06-19T05:50:18Z | null | true |
2,359,295,045 | https://api.github.com/repos/huggingface/datasets/issues/6977 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6977/events | [] | null | 2024-06-18T10:06:10Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6977 | NONE | completed | null | null | [
"Thanks for reporting, @xiaoyaolangzhi.\r\n\r\nIndeed, we are currently requiring `pandas` >= 2.0.0.\r\n\r\nYou will need to update pandas in your local environment:\r\n```\r\npip install -U pandas\r\n``` ",
"Thank you very much."
] | load json file error with v2.20.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6977/reactions"
} | I_kwDODunzps6Mn_xF | null | 2024-06-18T08:41:01Z | https://api.github.com/repos/huggingface/datasets/issues/6977/comments | ### Describe the bug
```
load_dataset(path="json", data_files="./test.json")
```
```
Generating train split: 0 examples [00:00, ? examples/s]
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 132, in _generate_tables
pa_table = paj.read_json(
File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to array in row 0
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1997, in _prepare_split_single
for _, table in generator:
File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 155, in _generate_tables
df = pd.read_json(f, dtype_backend="pyarrow")
File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper
return func(*args, **kwargs)
TypeError: read_json() got an unexpected keyword argument 'dtype_backend'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/app/t1.py", line 11, in <module>
load_dataset(path=data_path, data_files="./t2.json")
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2616, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1029, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1124, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1884, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 2040, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
```
```
import pandas as pd
with open("./test.json", "r") as f:
df = pd.read_json(f, dtype_backend="pyarrow")
```
```
Traceback (most recent call last):
File "/app/t3.py", line 3, in <module>
df = pd.read_json(f, dtype_backend="pyarrow")
File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper
return func(*args, **kwargs)
TypeError: read_json() got an unexpected keyword argument 'dtype_backend'
```
### Steps to reproduce the bug
.
### Expected behavior
.
### Environment info
```
datasets 2.20.0
pandas 1.5.3
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/15037766?v=4",
"events_url": "https://api.github.com/users/xiaoyaolangzhi/events{/privacy}",
"followers_url": "https://api.github.com/users/xiaoyaolangzhi/followers",
"following_url": "https://api.github.com/users/xiaoyaolangzhi/following{/other_user}",
"gists_url": "https://api.github.com/users/xiaoyaolangzhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/xiaoyaolangzhi",
"id": 15037766,
"login": "xiaoyaolangzhi",
"node_id": "MDQ6VXNlcjE1MDM3NzY2",
"organizations_url": "https://api.github.com/users/xiaoyaolangzhi/orgs",
"received_events_url": "https://api.github.com/users/xiaoyaolangzhi/received_events",
"repos_url": "https://api.github.com/users/xiaoyaolangzhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/xiaoyaolangzhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xiaoyaolangzhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/xiaoyaolangzhi"
} | https://api.github.com/repos/huggingface/datasets/issues/6977/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6977/timeline | closed | false | 6,977 | null | 2024-06-18T10:06:09Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,357,107,203 | https://api.github.com/repos/huggingface/datasets/issues/6976 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6976/events | [] | null | 2024-06-19T14:30:32Z | [] | https://github.com/huggingface/datasets/pull/6976 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6976). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005361 / 0.011353 (-0.005992) | 0.003983 / 0.011008 (-0.007025) | 0.062865 / 0.038508 (0.024357) | 0.029880 / 0.023109 (0.006771) | 0.261465 / 0.275898 (-0.014433) | 0.269791 / 0.323480 (-0.053689) | 0.004198 / 0.007986 (-0.003788) | 0.002942 / 0.004328 (-0.001387) | 0.049002 / 0.004250 (0.044751) | 0.043232 / 0.037052 (0.006180) | 0.328774 / 0.258489 (0.070285) | 0.297308 / 0.293841 (0.003467) | 0.030552 / 0.128546 (-0.097994) | 0.012632 / 0.075646 (-0.063015) | 0.204156 / 0.419271 (-0.215116) | 0.036014 / 0.043533 (-0.007519) | 0.241224 / 0.255139 (-0.013915) | 0.268358 / 0.283200 (-0.014842) | 0.019227 / 0.141683 (-0.122456) | 1.114515 / 1.452155 (-0.337639) | 1.147029 / 1.492716 (-0.345688) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094925 / 0.018006 (0.076919) | 0.301548 / 0.000490 (0.301059) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018875 / 0.037411 (-0.018536) | 0.062824 / 0.014526 (0.048298) | 0.075657 / 0.176557 (-0.100900) | 0.121926 / 0.737135 (-0.615209) | 0.077102 / 0.296338 (-0.219236) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286018 / 0.215209 (0.070808) | 2.832222 / 2.077655 (0.754567) | 1.462629 / 1.504120 (-0.041491) | 1.354746 / 1.541195 (-0.186449) | 1.339504 / 1.468490 (-0.128986) | 0.718381 / 4.584777 (-3.866396) | 2.401456 / 3.745712 (-1.344256) | 3.013518 / 5.269862 (-2.256343) | 1.944892 / 4.565676 (-2.620784) | 0.078793 / 0.424275 (-0.345482) | 0.005219 / 0.007607 (-0.002388) | 0.349551 / 0.226044 (0.123507) | 3.417844 / 2.268929 (1.148916) | 1.830669 / 55.444624 (-53.613956) | 1.502134 / 6.876477 (-5.374343) | 1.529242 / 2.142072 (-0.612830) | 0.793732 / 4.805227 (-4.011495) | 0.133571 / 6.500664 (-6.367093) | 0.042588 / 0.075469 (-0.032881) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.988167 / 1.841788 (-0.853620) | 11.926728 / 8.074308 (3.852420) | 9.806971 / 10.191392 (-0.384421) | 0.173951 / 0.680424 (-0.506473) | 0.015308 / 0.534201 (-0.518893) | 0.310768 / 0.579283 (-0.268515) | 0.268261 / 0.434364 (-0.166103) | 0.342962 / 0.540337 (-0.197375) | 0.431255 / 1.386936 (-0.955681) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005680 / 0.011353 (-0.005673) | 0.004231 / 0.011008 (-0.006778) | 0.051009 / 0.038508 (0.012501) | 0.031431 / 0.023109 (0.008322) | 0.268582 / 0.275898 (-0.007316) | 0.287942 / 0.323480 (-0.035538) | 0.004442 / 0.007986 (-0.003543) | 0.002818 / 0.004328 (-0.001511) | 0.050241 / 0.004250 (0.045991) | 0.039933 / 0.037052 (0.002881) | 0.285814 / 0.258489 (0.027325) | 0.316082 / 0.293841 (0.022241) | 0.032416 / 0.128546 (-0.096130) | 0.012398 / 0.075646 (-0.063248) | 0.060779 / 0.419271 (-0.358493) | 0.033706 / 0.043533 (-0.009827) | 0.273915 / 0.255139 (0.018776) | 0.289752 / 0.283200 (0.006553) | 0.017859 / 0.141683 (-0.123824) | 1.150224 / 1.452155 (-0.301930) | 1.197467 / 1.492716 (-0.295250) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093810 / 0.018006 (0.075803) | 0.302529 / 0.000490 (0.302039) | 0.000221 / 0.000200 (0.000021) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022903 / 0.037411 (-0.014508) | 0.077445 / 0.014526 (0.062919) | 0.089335 / 0.176557 (-0.087222) | 0.130848 / 0.737135 (-0.606287) | 0.091106 / 0.296338 (-0.205232) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294194 / 0.215209 (0.078985) | 2.886983 / 2.077655 (0.809328) | 1.557768 / 1.504120 (0.053648) | 1.424467 / 1.541195 (-0.116727) | 1.440625 / 1.468490 (-0.027865) | 0.724793 / 4.584777 (-3.859984) | 0.985216 / 3.745712 (-2.760496) | 2.856826 / 5.269862 (-2.413036) | 1.911638 / 4.565676 (-2.654039) | 0.080350 / 0.424275 (-0.343925) | 0.005616 / 0.007607 (-0.001991) | 0.348713 / 0.226044 (0.122668) | 3.414764 / 2.268929 (1.145835) | 1.925056 / 55.444624 (-53.519568) | 1.635752 / 6.876477 (-5.240725) | 1.761117 / 2.142072 (-0.380955) | 0.808309 / 4.805227 (-3.996918) | 0.136893 / 6.500664 (-6.363771) | 0.042116 / 0.075469 (-0.033354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004740 / 1.841788 (-0.837048) | 12.495859 / 8.074308 (4.421550) | 10.681233 / 10.191392 (0.489841) | 0.133320 / 0.680424 (-0.547104) | 0.015943 / 0.534201 (-0.518258) | 0.304869 / 0.579283 (-0.274414) | 0.128616 / 0.434364 (-0.305748) | 0.345930 / 0.540337 (-0.194407) | 0.457434 / 1.386936 (-0.929502) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84d9dea52098c9403efb43d5b542dd6d45000bec \"CML watermark\")\n"
] | Ensure compatibility with numpy 2.0.0 | {
"+1": 2,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6976/reactions"
} | PR_kwDODunzps5yrmNP | {
"diff_url": "https://github.com/huggingface/datasets/pull/6976.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6976",
"merged_at": "2024-06-19T14:04:34Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6976.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6976"
} | 2024-06-17T11:29:22Z | https://api.github.com/repos/huggingface/datasets/issues/6976/comments | Following the conversion guide, copy=False is no longer required and will result in an error: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword.
The following fix should resolve the issue.
error found during testing on the MTEB repository e.g. [here](https://github.com/embeddings-benchmark/mteb/pull/938) | {
"avatar_url": "https://avatars.githubusercontent.com/u/23721977?v=4",
"events_url": "https://api.github.com/users/KennethEnevoldsen/events{/privacy}",
"followers_url": "https://api.github.com/users/KennethEnevoldsen/followers",
"following_url": "https://api.github.com/users/KennethEnevoldsen/following{/other_user}",
"gists_url": "https://api.github.com/users/KennethEnevoldsen/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/KennethEnevoldsen",
"id": 23721977,
"login": "KennethEnevoldsen",
"node_id": "MDQ6VXNlcjIzNzIxOTc3",
"organizations_url": "https://api.github.com/users/KennethEnevoldsen/orgs",
"received_events_url": "https://api.github.com/users/KennethEnevoldsen/received_events",
"repos_url": "https://api.github.com/users/KennethEnevoldsen/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/KennethEnevoldsen/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/KennethEnevoldsen/subscriptions",
"type": "User",
"url": "https://api.github.com/users/KennethEnevoldsen"
} | https://api.github.com/repos/huggingface/datasets/issues/6976/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6976/timeline | closed | false | 6,976 | null | 2024-06-19T14:04:34Z | null | true |
2,357,003,959 | https://api.github.com/repos/huggingface/datasets/issues/6975 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6975/events | [] | null | 2024-06-17T12:49:53Z | [] | https://github.com/huggingface/datasets/pull/6975 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6975). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005168 / 0.011353 (-0.006185) | 0.003720 / 0.011008 (-0.007288) | 0.063347 / 0.038508 (0.024839) | 0.031474 / 0.023109 (0.008364) | 0.243233 / 0.275898 (-0.032665) | 0.276695 / 0.323480 (-0.046785) | 0.004109 / 0.007986 (-0.003877) | 0.002689 / 0.004328 (-0.001639) | 0.049522 / 0.004250 (0.045271) | 0.043477 / 0.037052 (0.006425) | 0.258578 / 0.258489 (0.000088) | 0.288134 / 0.293841 (-0.005707) | 0.027836 / 0.128546 (-0.100710) | 0.010677 / 0.075646 (-0.064969) | 0.206412 / 0.419271 (-0.212860) | 0.036204 / 0.043533 (-0.007329) | 0.250588 / 0.255139 (-0.004551) | 0.272354 / 0.283200 (-0.010846) | 0.018359 / 0.141683 (-0.123324) | 1.118867 / 1.452155 (-0.333288) | 1.157318 / 1.492716 (-0.335399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092927 / 0.018006 (0.074921) | 0.298252 / 0.000490 (0.297762) | 0.000228 / 0.000200 (0.000028) | 0.000042 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018824 / 0.037411 (-0.018588) | 0.069304 / 0.014526 (0.054778) | 0.075094 / 0.176557 (-0.101462) | 0.122546 / 0.737135 (-0.614590) | 0.076453 / 0.296338 (-0.219885) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287131 / 0.215209 (0.071922) | 2.838945 / 2.077655 (0.761291) | 1.473578 / 1.504120 (-0.030542) | 1.351214 / 1.541195 (-0.189981) | 1.354924 / 1.468490 (-0.113566) | 0.577092 / 4.584777 (-4.007685) | 2.348072 / 3.745712 (-1.397640) | 2.762130 / 5.269862 (-2.507732) | 1.725195 / 4.565676 (-2.840482) | 0.063596 / 0.424275 (-0.360679) | 0.004921 / 0.007607 (-0.002686) | 0.335422 / 0.226044 (0.109377) | 3.340398 / 2.268929 (1.071469) | 1.789390 / 55.444624 (-53.655234) | 1.516247 / 6.876477 (-5.360229) | 1.529653 / 2.142072 (-0.612420) | 0.643547 / 4.805227 (-4.161680) | 0.116491 / 6.500664 (-6.384173) | 0.042404 / 0.075469 (-0.033065) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959839 / 1.841788 (-0.881948) | 11.269778 / 8.074308 (3.195470) | 9.574898 / 10.191392 (-0.616494) | 0.128979 / 0.680424 (-0.551444) | 0.013901 / 0.534201 (-0.520300) | 0.280778 / 0.579283 (-0.298505) | 0.256511 / 0.434364 (-0.177853) | 0.319361 / 0.540337 (-0.220977) | 0.411803 / 1.386936 (-0.975133) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005453 / 0.011353 (-0.005899) | 0.003478 / 0.011008 (-0.007530) | 0.050055 / 0.038508 (0.011547) | 0.031415 / 0.023109 (0.008306) | 0.275057 / 0.275898 (-0.000841) | 0.296690 / 0.323480 (-0.026789) | 0.004253 / 0.007986 (-0.003732) | 0.002777 / 0.004328 (-0.001551) | 0.049553 / 0.004250 (0.045303) | 0.039843 / 0.037052 (0.002791) | 0.286938 / 0.258489 (0.028449) | 0.318579 / 0.293841 (0.024738) | 0.029773 / 0.128546 (-0.098774) | 0.010404 / 0.075646 (-0.065242) | 0.057915 / 0.419271 (-0.361356) | 0.033486 / 0.043533 (-0.010047) | 0.273293 / 0.255139 (0.018154) | 0.293155 / 0.283200 (0.009955) | 0.017843 / 0.141683 (-0.123839) | 1.131130 / 1.452155 (-0.321024) | 1.167412 / 1.492716 (-0.325304) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092553 / 0.018006 (0.074547) | 0.298888 / 0.000490 (0.298399) | 0.000201 / 0.000200 (0.000001) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022646 / 0.037411 (-0.014765) | 0.076921 / 0.014526 (0.062395) | 0.089238 / 0.176557 (-0.087318) | 0.128793 / 0.737135 (-0.608342) | 0.089190 / 0.296338 (-0.207148) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292552 / 0.215209 (0.077343) | 2.884277 / 2.077655 (0.806622) | 1.568798 / 1.504120 (0.064678) | 1.441819 / 1.541195 (-0.099375) | 1.435766 / 1.468490 (-0.032724) | 0.572435 / 4.584777 (-4.012342) | 0.957387 / 3.745712 (-2.788326) | 2.650843 / 5.269862 (-2.619019) | 1.727424 / 4.565676 (-2.838252) | 0.063470 / 0.424275 (-0.360805) | 0.005314 / 0.007607 (-0.002293) | 0.345881 / 0.226044 (0.119836) | 3.395463 / 2.268929 (1.126535) | 1.921340 / 55.444624 (-53.523285) | 1.621563 / 6.876477 (-5.254914) | 1.742561 / 2.142072 (-0.399512) | 0.639948 / 4.805227 (-4.165279) | 0.116091 / 6.500664 (-6.384573) | 0.041218 / 0.075469 (-0.034251) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.991506 / 1.841788 (-0.850281) | 11.897462 / 8.074308 (3.823154) | 10.083008 / 10.191392 (-0.108384) | 0.140626 / 0.680424 (-0.539798) | 0.015454 / 0.534201 (-0.518747) | 0.283856 / 0.579283 (-0.295427) | 0.125935 / 0.434364 (-0.308429) | 0.323884 / 0.540337 (-0.216454) | 0.438348 / 1.386936 (-0.948588) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e59582adc7fcb53a86a8ca8eda7e04a4e7b25bd2 \"CML watermark\")\n"
] | Set temporary numpy upper version < 2.0.0 to fix CI | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6975/reactions"
} | PR_kwDODunzps5yrPct | {
"diff_url": "https://github.com/huggingface/datasets/pull/6975.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6975",
"merged_at": "2024-06-17T12:43:56Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6975.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6975"
} | 2024-06-17T10:36:54Z | https://api.github.com/repos/huggingface/datasets/issues/6975/comments | Set temporary numpy upper version < 2.0.0 to fix CI. See: https://github.com/huggingface/datasets/actions/runs/9546031216/job/26308072017
```
A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.0 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6975/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6975/timeline | closed | false | 6,975 | null | 2024-06-17T12:43:56Z | null | true |
2,355,517,362 | https://api.github.com/repos/huggingface/datasets/issues/6973 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6973/events | [] | null | 2024-07-01T11:25:40Z | [] | https://github.com/huggingface/datasets/issues/6973 | NONE | completed | null | null | [
"add remove_unused_columns=False to training_args\r\nhttps://github.com/huggingface/datasets/issues/6535#issuecomment-1874024704",
"Closing this issue because it was a reported and fixed in transformers."
] | IndexError during training with Squad dataset and T5-small model | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6973/reactions"
} | I_kwDODunzps6MZley | null | 2024-06-16T07:53:54Z | https://api.github.com/repos/huggingface/datasets/issues/6973/comments | ### Describe the bug
I am encountering an IndexError while training a T5-small model on the Squad dataset using the transformers and datasets libraries. The error occurs even with a minimal reproducible example, suggesting a potential bug or incompatibility.
### Steps to reproduce the bug
1.Install the required libraries: !pip install transformers datasets
2.Run the following code:
!pip install transformers datasets
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorWithPadding
# Load a small, publicly available dataset
from datasets import load_dataset
dataset = load_dataset("squad", split="train[:100]") # Use a small subset for testing
# Load a pre-trained model and tokenizer
model_name = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Define a basic data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=2,
num_train_epochs=1,
)
# Create a trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
)
# Train the model
trainer.train()
### Expected behavior
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
[<ipython-input-23-f13a4b23c001>](https://localhost:8080/#) in <cell line: 34>()
32
33 # Train the model
---> 34 trainer.train()
10 frames
[/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_index_key(key, size)
427 if isinstance(key, int):
428 if (key < 0 and key + size < 0) or (key >= size):
--> 429 raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
430 return
431 elif isinstance(key, slice):
IndexError: Invalid key: 42 is out of bounds for size 0
### Environment info
transformers version:4.41.2
datasets version:1.18.4
Python version:3.10.12
| {
"avatar_url": "https://avatars.githubusercontent.com/u/151521233?v=4",
"events_url": "https://api.github.com/users/ramtunguturi36/events{/privacy}",
"followers_url": "https://api.github.com/users/ramtunguturi36/followers",
"following_url": "https://api.github.com/users/ramtunguturi36/following{/other_user}",
"gists_url": "https://api.github.com/users/ramtunguturi36/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ramtunguturi36",
"id": 151521233,
"login": "ramtunguturi36",
"node_id": "U_kgDOCQgH0Q",
"organizations_url": "https://api.github.com/users/ramtunguturi36/orgs",
"received_events_url": "https://api.github.com/users/ramtunguturi36/received_events",
"repos_url": "https://api.github.com/users/ramtunguturi36/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ramtunguturi36/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ramtunguturi36/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ramtunguturi36"
} | https://api.github.com/repos/huggingface/datasets/issues/6973/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6973/timeline | closed | false | 6,973 | null | 2024-07-01T11:25:40Z | null | false |
2,353,531,912 | https://api.github.com/repos/huggingface/datasets/issues/6972 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6972/events | [] | null | 2024-06-14T15:43:43Z | [] | https://github.com/huggingface/datasets/pull/6972 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6972). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005195 / 0.011353 (-0.006157) | 0.003734 / 0.011008 (-0.007275) | 0.063087 / 0.038508 (0.024579) | 0.031467 / 0.023109 (0.008358) | 0.245183 / 0.275898 (-0.030715) | 0.280071 / 0.323480 (-0.043409) | 0.003205 / 0.007986 (-0.004780) | 0.003311 / 0.004328 (-0.001018) | 0.049967 / 0.004250 (0.045717) | 0.044927 / 0.037052 (0.007875) | 0.262244 / 0.258489 (0.003755) | 0.284549 / 0.293841 (-0.009292) | 0.027595 / 0.128546 (-0.100952) | 0.010521 / 0.075646 (-0.065126) | 0.206928 / 0.419271 (-0.212343) | 0.036179 / 0.043533 (-0.007354) | 0.254256 / 0.255139 (-0.000883) | 0.272733 / 0.283200 (-0.010467) | 0.020456 / 0.141683 (-0.121226) | 1.118527 / 1.452155 (-0.333628) | 1.152741 / 1.492716 (-0.339975) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096642 / 0.018006 (0.078636) | 0.306981 / 0.000490 (0.306491) | 0.000220 / 0.000200 (0.000020) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019031 / 0.037411 (-0.018380) | 0.063960 / 0.014526 (0.049435) | 0.074428 / 0.176557 (-0.102129) | 0.121226 / 0.737135 (-0.615909) | 0.077111 / 0.296338 (-0.219228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279830 / 0.215209 (0.064621) | 2.748243 / 2.077655 (0.670588) | 1.481554 / 1.504120 (-0.022566) | 1.355015 / 1.541195 (-0.186180) | 1.379655 / 1.468490 (-0.088835) | 0.560378 / 4.584777 (-4.024399) | 2.407241 / 3.745712 (-1.338471) | 2.837090 / 5.269862 (-2.432771) | 1.767084 / 4.565676 (-2.798593) | 0.063517 / 0.424275 (-0.360758) | 0.005024 / 0.007607 (-0.002584) | 0.334845 / 0.226044 (0.108800) | 3.290712 / 2.268929 (1.021783) | 1.836923 / 55.444624 (-53.607702) | 1.543671 / 6.876477 (-5.332806) | 1.582319 / 2.142072 (-0.559754) | 0.637689 / 4.805227 (-4.167538) | 0.119515 / 6.500664 (-6.381149) | 0.042191 / 0.075469 (-0.033278) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980018 / 1.841788 (-0.861770) | 11.620211 / 8.074308 (3.545903) | 9.697799 / 10.191392 (-0.493593) | 0.131733 / 0.680424 (-0.548691) | 0.014007 / 0.534201 (-0.520193) | 0.286046 / 0.579283 (-0.293237) | 0.264776 / 0.434364 (-0.169588) | 0.325041 / 0.540337 (-0.215296) | 0.452740 / 1.386936 (-0.934196) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005603 / 0.011353 (-0.005750) | 0.003810 / 0.011008 (-0.007199) | 0.050773 / 0.038508 (0.012265) | 0.032601 / 0.023109 (0.009492) | 0.268035 / 0.275898 (-0.007863) | 0.292614 / 0.323480 (-0.030866) | 0.005076 / 0.007986 (-0.002910) | 0.004487 / 0.004328 (0.000159) | 0.049988 / 0.004250 (0.045737) | 0.040258 / 0.037052 (0.003205) | 0.284145 / 0.258489 (0.025656) | 0.318291 / 0.293841 (0.024450) | 0.029672 / 0.128546 (-0.098875) | 0.010534 / 0.075646 (-0.065113) | 0.059020 / 0.419271 (-0.360252) | 0.033451 / 0.043533 (-0.010082) | 0.270220 / 0.255139 (0.015081) | 0.290500 / 0.283200 (0.007300) | 0.017123 / 0.141683 (-0.124560) | 1.130870 / 1.452155 (-0.321285) | 1.160038 / 1.492716 (-0.332678) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097045 / 0.018006 (0.079039) | 0.314573 / 0.000490 (0.314083) | 0.000203 / 0.000200 (0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022396 / 0.037411 (-0.015015) | 0.079393 / 0.014526 (0.064867) | 0.088460 / 0.176557 (-0.088097) | 0.128050 / 0.737135 (-0.609085) | 0.093070 / 0.296338 (-0.203268) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293858 / 0.215209 (0.078649) | 2.819956 / 2.077655 (0.742301) | 1.540181 / 1.504120 (0.036061) | 1.419671 / 1.541195 (-0.121524) | 1.441594 / 1.468490 (-0.026897) | 0.565200 / 4.584777 (-4.019577) | 0.963967 / 3.745712 (-2.781745) | 2.752137 / 5.269862 (-2.517725) | 1.779239 / 4.565676 (-2.786438) | 0.063787 / 0.424275 (-0.360488) | 0.005344 / 0.007607 (-0.002263) | 0.344283 / 0.226044 (0.118239) | 3.353263 / 2.268929 (1.084334) | 1.898678 / 55.444624 (-53.545947) | 1.607868 / 6.876477 (-5.268609) | 1.781938 / 2.142072 (-0.360134) | 0.652119 / 4.805227 (-4.153108) | 0.117883 / 6.500664 (-6.382781) | 0.048811 / 0.075469 (-0.026658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013154 / 1.841788 (-0.828634) | 12.421963 / 8.074308 (4.347655) | 10.352056 / 10.191392 (0.160664) | 0.143784 / 0.680424 (-0.536640) | 0.016370 / 0.534201 (-0.517831) | 0.283668 / 0.579283 (-0.295615) | 0.127070 / 0.434364 (-0.307294) | 0.326199 / 0.540337 (-0.214138) | 0.432776 / 1.386936 (-0.954160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5e72fb13b4824dcb27aedb807e4e28c420dec244 \"CML watermark\")\n"
] | Fix webdataset pickling | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6972/reactions"
} | PR_kwDODunzps5yfa_e | {
"diff_url": "https://github.com/huggingface/datasets/pull/6972.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6972",
"merged_at": "2024-06-14T15:37:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6972.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6972"
} | 2024-06-14T14:43:02Z | https://api.github.com/repos/huggingface/datasets/issues/6972/comments | ...by making tracked iterables picklable.
This is important to make streaming datasets compatible with multiprocessing e.g. for parallel data loading | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6972/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6972/timeline | closed | false | 6,972 | null | 2024-06-14T15:37:35Z | null | true |
2,351,830,856 | https://api.github.com/repos/huggingface/datasets/issues/6971 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6971/events | [] | null | 2024-06-14T14:03:34Z | [] | https://github.com/huggingface/datasets/pull/6971 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6971). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"@HuggingFaceDocBuilderDev There is no doc for this change. Call a human.",
"Haha it was me who triggered the CI for your PR",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005051 / 0.011353 (-0.006302) | 0.004831 / 0.011008 (-0.006178) | 0.063006 / 0.038508 (0.024498) | 0.031589 / 0.023109 (0.008480) | 0.296202 / 0.275898 (0.020304) | 0.274274 / 0.323480 (-0.049205) | 0.003199 / 0.007986 (-0.004786) | 0.002768 / 0.004328 (-0.001561) | 0.049422 / 0.004250 (0.045172) | 0.045174 / 0.037052 (0.008121) | 0.263814 / 0.258489 (0.005325) | 0.288125 / 0.293841 (-0.005716) | 0.027641 / 0.128546 (-0.100905) | 0.010439 / 0.075646 (-0.065207) | 0.203075 / 0.419271 (-0.216196) | 0.036259 / 0.043533 (-0.007274) | 0.245159 / 0.255139 (-0.009980) | 0.268897 / 0.283200 (-0.014303) | 0.019493 / 0.141683 (-0.122190) | 1.108330 / 1.452155 (-0.343824) | 1.155835 / 1.492716 (-0.336881) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096860 / 0.018006 (0.078854) | 0.309428 / 0.000490 (0.308938) | 0.000197 / 0.000200 (-0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019275 / 0.037411 (-0.018136) | 0.062623 / 0.014526 (0.048098) | 0.073871 / 0.176557 (-0.102686) | 0.120410 / 0.737135 (-0.616726) | 0.075766 / 0.296338 (-0.220572) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279876 / 0.215209 (0.064667) | 2.742429 / 2.077655 (0.664774) | 1.414368 / 1.504120 (-0.089752) | 1.293194 / 1.541195 (-0.248001) | 1.318043 / 1.468490 (-0.150447) | 0.570904 / 4.584777 (-4.013873) | 2.384386 / 3.745712 (-1.361326) | 2.757953 / 5.269862 (-2.511908) | 1.728766 / 4.565676 (-2.836910) | 0.062699 / 0.424275 (-0.361576) | 0.004951 / 0.007607 (-0.002656) | 0.332222 / 0.226044 (0.106177) | 3.407429 / 2.268929 (1.138500) | 1.777136 / 55.444624 (-53.667488) | 1.521269 / 6.876477 (-5.355207) | 1.544814 / 2.142072 (-0.597258) | 0.646249 / 4.805227 (-4.158978) | 0.117032 / 6.500664 (-6.383632) | 0.042274 / 0.075469 (-0.033195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.016249 / 1.841788 (-0.825539) | 11.794003 / 8.074308 (3.719695) | 9.871925 / 10.191392 (-0.319467) | 0.133694 / 0.680424 (-0.546730) | 0.014904 / 0.534201 (-0.519297) | 0.287453 / 0.579283 (-0.291831) | 0.271802 / 0.434364 (-0.162561) | 0.324711 / 0.540337 (-0.215626) | 0.411812 / 1.386936 (-0.975124) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005376 / 0.011353 (-0.005977) | 0.003631 / 0.011008 (-0.007377) | 0.050154 / 0.038508 (0.011646) | 0.033665 / 0.023109 (0.010556) | 0.279062 / 0.275898 (0.003164) | 0.298899 / 0.323480 (-0.024581) | 0.004388 / 0.007986 (-0.003598) | 0.002810 / 0.004328 (-0.001518) | 0.049032 / 0.004250 (0.044781) | 0.040531 / 0.037052 (0.003478) | 0.287220 / 0.258489 (0.028731) | 0.319060 / 0.293841 (0.025219) | 0.029473 / 0.128546 (-0.099073) | 0.010317 / 0.075646 (-0.065329) | 0.058483 / 0.419271 (-0.360789) | 0.033359 / 0.043533 (-0.010174) | 0.276404 / 0.255139 (0.021265) | 0.295013 / 0.283200 (0.011813) | 0.019372 / 0.141683 (-0.122311) | 1.172624 / 1.452155 (-0.279531) | 1.176815 / 1.492716 (-0.315902) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097347 / 0.018006 (0.079341) | 0.306959 / 0.000490 (0.306469) | 0.000200 / 0.000200 (-0.000000) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022776 / 0.037411 (-0.014635) | 0.077865 / 0.014526 (0.063340) | 0.088806 / 0.176557 (-0.087751) | 0.130448 / 0.737135 (-0.606687) | 0.090973 / 0.296338 (-0.205365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301168 / 0.215209 (0.085959) | 2.957634 / 2.077655 (0.879979) | 1.556999 / 1.504120 (0.052879) | 1.413940 / 1.541195 (-0.127255) | 1.427970 / 1.468490 (-0.040520) | 0.587653 / 4.584777 (-3.997124) | 0.951295 / 3.745712 (-2.794417) | 2.691004 / 5.269862 (-2.578858) | 1.755826 / 4.565676 (-2.809851) | 0.064883 / 0.424275 (-0.359392) | 0.005379 / 0.007607 (-0.002228) | 0.353790 / 0.226044 (0.127745) | 3.457747 / 2.268929 (1.188818) | 1.891884 / 55.444624 (-53.552740) | 1.616619 / 6.876477 (-5.259858) | 1.736167 / 2.142072 (-0.405906) | 0.669257 / 4.805227 (-4.135970) | 0.119620 / 6.500664 (-6.381044) | 0.041390 / 0.075469 (-0.034080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008851 / 1.841788 (-0.832937) | 13.151216 / 8.074308 (5.076908) | 10.398371 / 10.191392 (0.206979) | 0.143420 / 0.680424 (-0.537004) | 0.015759 / 0.534201 (-0.518442) | 0.293068 / 0.579283 (-0.286215) | 0.131449 / 0.434364 (-0.302914) | 0.334715 / 0.540337 (-0.205623) | 0.445824 / 1.386936 (-0.941112) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#087671dcaf817c906a8649404c07b0440e2732ea \"CML watermark\")\n"
] | packaging: Remove useless dependencies | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6971/reactions"
} | PR_kwDODunzps5yZoc3 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6971.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6971",
"merged_at": "2024-06-14T13:57:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6971.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6971"
} | 2024-06-13T18:43:43Z | https://api.github.com/repos/huggingface/datasets/issues/6971/comments | Revert changes in #6396 and #6404. CVE-2023-47248 has been fixed since PyArrow v14.0.1. Meanwhile Python requirements requires `pyarrow>=15.0.0`. | {
"avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4",
"events_url": "https://api.github.com/users/daskol/events{/privacy}",
"followers_url": "https://api.github.com/users/daskol/followers",
"following_url": "https://api.github.com/users/daskol/following{/other_user}",
"gists_url": "https://api.github.com/users/daskol/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/daskol",
"id": 9336514,
"login": "daskol",
"node_id": "MDQ6VXNlcjkzMzY1MTQ=",
"organizations_url": "https://api.github.com/users/daskol/orgs",
"received_events_url": "https://api.github.com/users/daskol/received_events",
"repos_url": "https://api.github.com/users/daskol/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/daskol/subscriptions",
"type": "User",
"url": "https://api.github.com/users/daskol"
} | https://api.github.com/repos/huggingface/datasets/issues/6971/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6971/timeline | closed | false | 6,971 | null | 2024-06-14T13:57:24Z | null | true |
2,351,380,029 | https://api.github.com/repos/huggingface/datasets/issues/6970 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6970/events | [] | null | 2024-06-13T15:06:18Z | [] | https://github.com/huggingface/datasets/pull/6970 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6970). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005450 / 0.011353 (-0.005902) | 0.003911 / 0.011008 (-0.007098) | 0.063467 / 0.038508 (0.024959) | 0.031029 / 0.023109 (0.007920) | 0.247916 / 0.275898 (-0.027982) | 0.274737 / 0.323480 (-0.048743) | 0.003255 / 0.007986 (-0.004731) | 0.002842 / 0.004328 (-0.001487) | 0.049617 / 0.004250 (0.045366) | 0.046689 / 0.037052 (0.009637) | 0.255152 / 0.258489 (-0.003337) | 0.288630 / 0.293841 (-0.005211) | 0.028174 / 0.128546 (-0.100372) | 0.010773 / 0.075646 (-0.064873) | 0.202119 / 0.419271 (-0.217153) | 0.035914 / 0.043533 (-0.007619) | 0.248197 / 0.255139 (-0.006942) | 0.273508 / 0.283200 (-0.009691) | 0.020626 / 0.141683 (-0.121057) | 1.125668 / 1.452155 (-0.326487) | 1.156678 / 1.492716 (-0.336038) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098294 / 0.018006 (0.080288) | 0.306661 / 0.000490 (0.306172) | 0.000227 / 0.000200 (0.000027) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019118 / 0.037411 (-0.018293) | 0.063086 / 0.014526 (0.048560) | 0.077735 / 0.176557 (-0.098822) | 0.123159 / 0.737135 (-0.613976) | 0.077228 / 0.296338 (-0.219111) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280031 / 0.215209 (0.064822) | 2.762524 / 2.077655 (0.684870) | 1.444571 / 1.504120 (-0.059549) | 1.330590 / 1.541195 (-0.210604) | 1.371937 / 1.468490 (-0.096553) | 0.563847 / 4.584777 (-4.020930) | 2.369908 / 3.745712 (-1.375804) | 2.827441 / 5.269862 (-2.442420) | 1.749864 / 4.565676 (-2.815812) | 0.063996 / 0.424275 (-0.360279) | 0.005060 / 0.007607 (-0.002547) | 0.326067 / 0.226044 (0.100023) | 3.270170 / 2.268929 (1.001242) | 1.785164 / 55.444624 (-53.659460) | 1.560432 / 6.876477 (-5.316045) | 1.587005 / 2.142072 (-0.555068) | 0.645714 / 4.805227 (-4.159513) | 0.119975 / 6.500664 (-6.380689) | 0.043962 / 0.075469 (-0.031507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979003 / 1.841788 (-0.862785) | 11.988701 / 8.074308 (3.914393) | 9.788564 / 10.191392 (-0.402828) | 0.142644 / 0.680424 (-0.537780) | 0.014924 / 0.534201 (-0.519277) | 0.285942 / 0.579283 (-0.293341) | 0.264086 / 0.434364 (-0.170278) | 0.343360 / 0.540337 (-0.196977) | 0.413467 / 1.386936 (-0.973469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005818 / 0.011353 (-0.005535) | 0.003726 / 0.011008 (-0.007283) | 0.050936 / 0.038508 (0.012428) | 0.032000 / 0.023109 (0.008890) | 0.273282 / 0.275898 (-0.002616) | 0.293889 / 0.323480 (-0.029591) | 0.004287 / 0.007986 (-0.003699) | 0.002797 / 0.004328 (-0.001531) | 0.049088 / 0.004250 (0.044838) | 0.040235 / 0.037052 (0.003183) | 0.280240 / 0.258489 (0.021751) | 0.315749 / 0.293841 (0.021908) | 0.029986 / 0.128546 (-0.098560) | 0.010440 / 0.075646 (-0.065206) | 0.058935 / 0.419271 (-0.360336) | 0.033198 / 0.043533 (-0.010335) | 0.274321 / 0.255139 (0.019182) | 0.288039 / 0.283200 (0.004840) | 0.018865 / 0.141683 (-0.122818) | 1.114915 / 1.452155 (-0.337240) | 1.180548 / 1.492716 (-0.312169) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095028 / 0.018006 (0.077022) | 0.304797 / 0.000490 (0.304307) | 0.000221 / 0.000200 (0.000021) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022556 / 0.037411 (-0.014855) | 0.076839 / 0.014526 (0.062313) | 0.090255 / 0.176557 (-0.086302) | 0.128748 / 0.737135 (-0.608387) | 0.091718 / 0.296338 (-0.204621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296061 / 0.215209 (0.080852) | 2.851376 / 2.077655 (0.773722) | 1.548084 / 1.504120 (0.043964) | 1.428589 / 1.541195 (-0.112606) | 1.467244 / 1.468490 (-0.001246) | 0.583533 / 4.584777 (-4.001244) | 0.967436 / 3.745712 (-2.778277) | 2.774775 / 5.269862 (-2.495087) | 1.800435 / 4.565676 (-2.765242) | 0.063998 / 0.424275 (-0.360277) | 0.005420 / 0.007607 (-0.002187) | 0.346353 / 0.226044 (0.120308) | 3.383885 / 2.268929 (1.114956) | 1.902914 / 55.444624 (-53.541710) | 1.599545 / 6.876477 (-5.276932) | 1.772754 / 2.142072 (-0.369318) | 0.651804 / 4.805227 (-4.153423) | 0.120380 / 6.500664 (-6.380284) | 0.043311 / 0.075469 (-0.032159) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004414 / 1.841788 (-0.837374) | 12.356077 / 8.074308 (4.281769) | 10.513420 / 10.191392 (0.322028) | 0.132419 / 0.680424 (-0.548005) | 0.015470 / 0.534201 (-0.518731) | 0.284883 / 0.579283 (-0.294400) | 0.130763 / 0.434364 (-0.303601) | 0.320068 / 0.540337 (-0.220270) | 0.430284 / 1.386936 (-0.956652) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#574791e0a0cf57ba761f679a054b9e89e4a3ee22 \"CML watermark\")\n"
] | Set dev version | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6970/reactions"
} | PR_kwDODunzps5yYF37 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6970.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6970",
"merged_at": "2024-06-13T14:59:56Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6970.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6970"
} | 2024-06-13T14:59:45Z | https://api.github.com/repos/huggingface/datasets/issues/6970/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6970/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6970/timeline | closed | false | 6,970 | null | 2024-06-13T14:59:56Z | null | true |
2,351,351,436 | https://api.github.com/repos/huggingface/datasets/issues/6969 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6969/events | [] | null | 2024-06-13T15:04:39Z | [] | https://github.com/huggingface/datasets/pull/6969 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6969). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005414 / 0.011353 (-0.005939) | 0.003936 / 0.011008 (-0.007073) | 0.064129 / 0.038508 (0.025621) | 0.032985 / 0.023109 (0.009875) | 0.244051 / 0.275898 (-0.031847) | 0.273500 / 0.323480 (-0.049980) | 0.003227 / 0.007986 (-0.004759) | 0.002858 / 0.004328 (-0.001470) | 0.049212 / 0.004250 (0.044962) | 0.046432 / 0.037052 (0.009380) | 0.249543 / 0.258489 (-0.008946) | 0.297339 / 0.293841 (0.003498) | 0.027880 / 0.128546 (-0.100666) | 0.010582 / 0.075646 (-0.065065) | 0.202345 / 0.419271 (-0.216927) | 0.036402 / 0.043533 (-0.007131) | 0.253157 / 0.255139 (-0.001982) | 0.283355 / 0.283200 (0.000155) | 0.021907 / 0.141683 (-0.119776) | 1.174431 / 1.452155 (-0.277723) | 1.172103 / 1.492716 (-0.320613) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097942 / 0.018006 (0.079936) | 0.307114 / 0.000490 (0.306624) | 0.000230 / 0.000200 (0.000030) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019149 / 0.037411 (-0.018262) | 0.064283 / 0.014526 (0.049758) | 0.075643 / 0.176557 (-0.100913) | 0.122531 / 0.737135 (-0.614604) | 0.077360 / 0.296338 (-0.218978) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291790 / 0.215209 (0.076581) | 2.869234 / 2.077655 (0.791580) | 1.550266 / 1.504120 (0.046146) | 1.392392 / 1.541195 (-0.148802) | 1.375700 / 1.468490 (-0.092790) | 0.574963 / 4.584777 (-4.009814) | 2.444746 / 3.745712 (-1.300966) | 2.920602 / 5.269862 (-2.349259) | 1.812720 / 4.565676 (-2.752957) | 0.064811 / 0.424275 (-0.359464) | 0.005163 / 0.007607 (-0.002444) | 0.341306 / 0.226044 (0.115261) | 3.443177 / 2.268929 (1.174249) | 1.843510 / 55.444624 (-53.601115) | 1.534023 / 6.876477 (-5.342454) | 1.603575 / 2.142072 (-0.538498) | 0.656923 / 4.805227 (-4.148304) | 0.120338 / 6.500664 (-6.380326) | 0.042958 / 0.075469 (-0.032511) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975993 / 1.841788 (-0.865795) | 11.942335 / 8.074308 (3.868027) | 9.964277 / 10.191392 (-0.227115) | 0.131247 / 0.680424 (-0.549176) | 0.014166 / 0.534201 (-0.520035) | 0.283994 / 0.579283 (-0.295290) | 0.267516 / 0.434364 (-0.166848) | 0.328363 / 0.540337 (-0.211974) | 0.412204 / 1.386936 (-0.974732) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005867 / 0.011353 (-0.005486) | 0.003860 / 0.011008 (-0.007148) | 0.050247 / 0.038508 (0.011739) | 0.033819 / 0.023109 (0.010710) | 0.264840 / 0.275898 (-0.011058) | 0.291253 / 0.323480 (-0.032227) | 0.004481 / 0.007986 (-0.003504) | 0.002880 / 0.004328 (-0.001449) | 0.048528 / 0.004250 (0.044278) | 0.041720 / 0.037052 (0.004667) | 0.280467 / 0.258489 (0.021978) | 0.315244 / 0.293841 (0.021404) | 0.030569 / 0.128546 (-0.097977) | 0.010494 / 0.075646 (-0.065152) | 0.058652 / 0.419271 (-0.360620) | 0.034181 / 0.043533 (-0.009352) | 0.266466 / 0.255139 (0.011327) | 0.292038 / 0.283200 (0.008838) | 0.018501 / 0.141683 (-0.123182) | 1.115965 / 1.452155 (-0.336189) | 1.162753 / 1.492716 (-0.329963) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101301 / 0.018006 (0.083295) | 0.296812 / 0.000490 (0.296322) | 0.000212 / 0.000200 (0.000012) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023662 / 0.037411 (-0.013749) | 0.080678 / 0.014526 (0.066153) | 0.089867 / 0.176557 (-0.086689) | 0.130803 / 0.737135 (-0.606332) | 0.091479 / 0.296338 (-0.204860) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286028 / 0.215209 (0.070819) | 2.780072 / 2.077655 (0.702418) | 1.520146 / 1.504120 (0.016026) | 1.372952 / 1.541195 (-0.168243) | 1.428734 / 1.468490 (-0.039756) | 0.571484 / 4.584777 (-4.013293) | 0.969643 / 3.745712 (-2.776069) | 2.788157 / 5.269862 (-2.481705) | 1.841166 / 4.565676 (-2.724511) | 0.063311 / 0.424275 (-0.360964) | 0.005320 / 0.007607 (-0.002287) | 0.333341 / 0.226044 (0.107296) | 3.295141 / 2.268929 (1.026213) | 1.865537 / 55.444624 (-53.579088) | 1.584655 / 6.876477 (-5.291821) | 1.747417 / 2.142072 (-0.394655) | 0.634549 / 4.805227 (-4.170678) | 0.116373 / 6.500664 (-6.384291) | 0.041567 / 0.075469 (-0.033902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023086 / 1.841788 (-0.818702) | 13.091905 / 8.074308 (5.017597) | 10.572164 / 10.191392 (0.380772) | 0.142208 / 0.680424 (-0.538216) | 0.015692 / 0.534201 (-0.518509) | 0.284309 / 0.579283 (-0.294974) | 0.126467 / 0.434364 (-0.307897) | 0.322719 / 0.540337 (-0.217618) | 0.439952 / 1.386936 (-0.946985) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98fdc9e78e6d057ca66e58a37f49d6618aab8130 \"CML watermark\")\n"
] | Release: 2.20.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6969/reactions"
} | PR_kwDODunzps5yX_nC | {
"diff_url": "https://github.com/huggingface/datasets/pull/6969.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6969",
"merged_at": "2024-06-13T14:55:53Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6969.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6969"
} | 2024-06-13T14:48:20Z | https://api.github.com/repos/huggingface/datasets/issues/6969/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6969/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6969/timeline | closed | false | 6,969 | null | 2024-06-13T14:55:53Z | null | true |
2,351,331,417 | https://api.github.com/repos/huggingface/datasets/issues/6968 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6968/events | [] | null | 2024-06-13T17:31:37Z | [] | https://github.com/huggingface/datasets/pull/6968 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6968). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Oops, sorry for the style issue. Fixed in https://github.com/huggingface/datasets/pull/6968/commits/a4e2b28fa647b28190ae2615d7271e6ac63c8499.\r\n\r\nRegarding docs, I can't find mentions of `HF_DATASETS_OFFLINE` anywhere else in `datasets`/`hub-docs`. Once this is merged and released, I'm planning to update some `transformers` docs that briefly mention it.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005173 / 0.011353 (-0.006180) | 0.003485 / 0.011008 (-0.007524) | 0.063867 / 0.038508 (0.025359) | 0.031338 / 0.023109 (0.008229) | 0.242093 / 0.275898 (-0.033805) | 0.266606 / 0.323480 (-0.056874) | 0.003069 / 0.007986 (-0.004916) | 0.003307 / 0.004328 (-0.001022) | 0.051059 / 0.004250 (0.046808) | 0.044396 / 0.037052 (0.007344) | 0.254896 / 0.258489 (-0.003593) | 0.282835 / 0.293841 (-0.011006) | 0.027548 / 0.128546 (-0.100998) | 0.010520 / 0.075646 (-0.065126) | 0.201701 / 0.419271 (-0.217570) | 0.035613 / 0.043533 (-0.007920) | 0.240955 / 0.255139 (-0.014184) | 0.271902 / 0.283200 (-0.011298) | 0.019826 / 0.141683 (-0.121857) | 1.116994 / 1.452155 (-0.335161) | 1.162886 / 1.492716 (-0.329831) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093683 / 0.018006 (0.075677) | 0.297970 / 0.000490 (0.297480) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018952 / 0.037411 (-0.018459) | 0.062710 / 0.014526 (0.048184) | 0.073641 / 0.176557 (-0.102916) | 0.121200 / 0.737135 (-0.615935) | 0.075723 / 0.296338 (-0.220616) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286056 / 0.215209 (0.070847) | 2.811424 / 2.077655 (0.733770) | 1.448045 / 1.504120 (-0.056075) | 1.338309 / 1.541195 (-0.202885) | 1.328371 / 1.468490 (-0.140119) | 0.557282 / 4.584777 (-4.027495) | 2.362235 / 3.745712 (-1.383477) | 2.732108 / 5.269862 (-2.537754) | 1.730911 / 4.565676 (-2.834765) | 0.061689 / 0.424275 (-0.362586) | 0.004947 / 0.007607 (-0.002660) | 0.346700 / 0.226044 (0.120656) | 3.355989 / 2.268929 (1.087060) | 1.828078 / 55.444624 (-53.616546) | 1.511531 / 6.876477 (-5.364946) | 1.535897 / 2.142072 (-0.606175) | 0.630276 / 4.805227 (-4.174951) | 0.115808 / 6.500664 (-6.384857) | 0.042199 / 0.075469 (-0.033270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969203 / 1.841788 (-0.872584) | 11.282997 / 8.074308 (3.208689) | 9.538914 / 10.191392 (-0.652478) | 0.140072 / 0.680424 (-0.540352) | 0.014021 / 0.534201 (-0.520180) | 0.283784 / 0.579283 (-0.295499) | 0.255973 / 0.434364 (-0.178391) | 0.320284 / 0.540337 (-0.220053) | 0.412689 / 1.386936 (-0.974247) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005201 / 0.011353 (-0.006152) | 0.003312 / 0.011008 (-0.007697) | 0.050044 / 0.038508 (0.011536) | 0.033610 / 0.023109 (0.010501) | 0.266429 / 0.275898 (-0.009469) | 0.287782 / 0.323480 (-0.035698) | 0.004316 / 0.007986 (-0.003670) | 0.002696 / 0.004328 (-0.001633) | 0.049667 / 0.004250 (0.045417) | 0.040244 / 0.037052 (0.003192) | 0.278870 / 0.258489 (0.020381) | 0.311415 / 0.293841 (0.017574) | 0.029150 / 0.128546 (-0.099396) | 0.010046 / 0.075646 (-0.065600) | 0.058527 / 0.419271 (-0.360744) | 0.032871 / 0.043533 (-0.010662) | 0.266582 / 0.255139 (0.011443) | 0.286157 / 0.283200 (0.002957) | 0.017197 / 0.141683 (-0.124486) | 1.120944 / 1.452155 (-0.331211) | 1.161111 / 1.492716 (-0.331606) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092679 / 0.018006 (0.074672) | 0.299195 / 0.000490 (0.298705) | 0.000204 / 0.000200 (0.000004) | 0.000048 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022212 / 0.037411 (-0.015199) | 0.076734 / 0.014526 (0.062208) | 0.088326 / 0.176557 (-0.088230) | 0.128209 / 0.737135 (-0.608926) | 0.088807 / 0.296338 (-0.207531) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291782 / 0.215209 (0.076573) | 2.882990 / 2.077655 (0.805335) | 1.601638 / 1.504120 (0.097518) | 1.457560 / 1.541195 (-0.083635) | 1.470517 / 1.468490 (0.002027) | 0.565738 / 4.584777 (-4.019039) | 0.949235 / 3.745712 (-2.796478) | 2.661927 / 5.269862 (-2.607934) | 1.722178 / 4.565676 (-2.843498) | 0.063680 / 0.424275 (-0.360595) | 0.005339 / 0.007607 (-0.002268) | 0.344280 / 0.226044 (0.118235) | 3.432998 / 2.268929 (1.164070) | 1.985516 / 55.444624 (-53.459108) | 1.651826 / 6.876477 (-5.224651) | 1.764541 / 2.142072 (-0.377531) | 0.640219 / 4.805227 (-4.165008) | 0.116541 / 6.500664 (-6.384124) | 0.041237 / 0.075469 (-0.034232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013927 / 1.841788 (-0.827861) | 11.876661 / 8.074308 (3.802353) | 10.264144 / 10.191392 (0.072752) | 0.131151 / 0.680424 (-0.549273) | 0.015774 / 0.534201 (-0.518427) | 0.284948 / 0.579283 (-0.294335) | 0.125924 / 0.434364 (-0.308439) | 0.319845 / 0.540337 (-0.220493) | 0.431978 / 1.386936 (-0.954958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#68f67741ffde68c98d0a2f59ac4d8e3a7bc03065 \"CML watermark\")\n"
] | Use `HF_HUB_OFFLINE` instead of `HF_DATASETS_OFFLINE` | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6968/reactions"
} | PR_kwDODunzps5yX7Qr | {
"diff_url": "https://github.com/huggingface/datasets/pull/6968.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6968",
"merged_at": "2024-06-13T17:25:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6968.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6968"
} | 2024-06-13T14:39:40Z | https://api.github.com/repos/huggingface/datasets/issues/6968/comments | To use `datasets` offline, one can use the `HF_DATASETS_OFFLINE` environment variable. This PR makes `HF_HUB_OFFLINE` the recommended environment variable for offline training. Goal is to be more consistent with the rest of HF ecosystem and have a single config value to set.
The changes are backward-compatible meaning that:
- `HF_DATASETS_OFFLINE` environment is still taken into account, though not documented
- `datasets.config.HF_DATASETS_OFFLINE` still exists, though it is not used anymore (in favor of `datasets.config.HF_HUB_OFFLINE`)
**Note:** it might break things in downstream libraries if they were monkeypatching `datasets.config.HF_DATASETS_OFFLINE` in their CI tests (for instance). Not much of a problem IMO. | {
"avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4",
"events_url": "https://api.github.com/users/Wauplin/events{/privacy}",
"followers_url": "https://api.github.com/users/Wauplin/followers",
"following_url": "https://api.github.com/users/Wauplin/following{/other_user}",
"gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Wauplin",
"id": 11801849,
"login": "Wauplin",
"node_id": "MDQ6VXNlcjExODAxODQ5",
"organizations_url": "https://api.github.com/users/Wauplin/orgs",
"received_events_url": "https://api.github.com/users/Wauplin/received_events",
"repos_url": "https://api.github.com/users/Wauplin/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Wauplin"
} | https://api.github.com/repos/huggingface/datasets/issues/6968/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6968/timeline | closed | false | 6,968 | null | 2024-06-13T17:25:37Z | null | true |
2,349,146,398 | https://api.github.com/repos/huggingface/datasets/issues/6967 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6967/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-06-12T16:04:04Z | [] | https://github.com/huggingface/datasets/issues/6967 | NONE | null | null | null | [] | Method to load Laion400m | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6967/reactions"
} | I_kwDODunzps6MBSEe | null | 2024-06-12T16:04:04Z | https://api.github.com/repos/huggingface/datasets/issues/6967/comments | ### Feature request
Large datasets like Laion400m are provided as embeddings. The provided methods in load_dataset are not straightforward for loading embedding files, i.e. img_emb_XX.npy ; XX = 0 to 99
### Motivation
The trial and experimentation is the key pivot of HF. It would be great if HF can load embeddings files s,ealessly.
### Your contribution
I cam write the loader with some help. | {
"avatar_url": "https://avatars.githubusercontent.com/u/6862868?v=4",
"events_url": "https://api.github.com/users/humanely/events{/privacy}",
"followers_url": "https://api.github.com/users/humanely/followers",
"following_url": "https://api.github.com/users/humanely/following{/other_user}",
"gists_url": "https://api.github.com/users/humanely/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/humanely",
"id": 6862868,
"login": "humanely",
"node_id": "MDQ6VXNlcjY4NjI4Njg=",
"organizations_url": "https://api.github.com/users/humanely/orgs",
"received_events_url": "https://api.github.com/users/humanely/received_events",
"repos_url": "https://api.github.com/users/humanely/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/humanely/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/humanely/subscriptions",
"type": "User",
"url": "https://api.github.com/users/humanely"
} | https://api.github.com/repos/huggingface/datasets/issues/6967/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6967/timeline | open | false | 6,967 | null | null | null | false |
2,348,934,466 | https://api.github.com/repos/huggingface/datasets/issues/6966 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6966/events | [] | null | 2024-06-19T14:16:21Z | [] | https://github.com/huggingface/datasets/pull/6966 | CONTRIBUTOR | null | false | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005326 / 0.011353 (-0.006027) | 0.003448 / 0.011008 (-0.007560) | 0.062516 / 0.038508 (0.024008) | 0.030222 / 0.023109 (0.007113) | 0.237006 / 0.275898 (-0.038892) | 0.258224 / 0.323480 (-0.065256) | 0.003191 / 0.007986 (-0.004795) | 0.002768 / 0.004328 (-0.001560) | 0.048754 / 0.004250 (0.044504) | 0.043694 / 0.037052 (0.006641) | 0.248832 / 0.258489 (-0.009657) | 0.272217 / 0.293841 (-0.021624) | 0.029684 / 0.128546 (-0.098862) | 0.011997 / 0.075646 (-0.063650) | 0.204047 / 0.419271 (-0.215225) | 0.035944 / 0.043533 (-0.007589) | 0.242094 / 0.255139 (-0.013045) | 0.258897 / 0.283200 (-0.024303) | 0.019228 / 0.141683 (-0.122455) | 1.110193 / 1.452155 (-0.341961) | 1.166780 / 1.492716 (-0.325937) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097162 / 0.018006 (0.079156) | 0.303148 / 0.000490 (0.302659) | 0.000229 / 0.000200 (0.000029) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019981 / 0.037411 (-0.017431) | 0.062669 / 0.014526 (0.048144) | 0.074801 / 0.176557 (-0.101756) | 0.120509 / 0.737135 (-0.616626) | 0.075957 / 0.296338 (-0.220382) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279527 / 0.215209 (0.064318) | 2.722749 / 2.077655 (0.645094) | 1.441770 / 1.504120 (-0.062350) | 1.312172 / 1.541195 (-0.229023) | 1.329418 / 1.468490 (-0.139072) | 0.723939 / 4.584777 (-3.860838) | 2.359146 / 3.745712 (-1.386566) | 2.963445 / 5.269862 (-2.306416) | 1.881974 / 4.565676 (-2.683702) | 0.078189 / 0.424275 (-0.346086) | 0.005249 / 0.007607 (-0.002358) | 0.334508 / 0.226044 (0.108463) | 3.271961 / 2.268929 (1.003032) | 1.817365 / 55.444624 (-53.627259) | 1.522755 / 6.876477 (-5.353721) | 1.514203 / 2.142072 (-0.627870) | 0.803486 / 4.805227 (-4.001741) | 0.134189 / 6.500664 (-6.366475) | 0.042761 / 0.075469 (-0.032708) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971126 / 1.841788 (-0.870662) | 11.367159 / 8.074308 (3.292851) | 9.520174 / 10.191392 (-0.671218) | 0.142705 / 0.680424 (-0.537719) | 0.014586 / 0.534201 (-0.519615) | 0.300869 / 0.579283 (-0.278414) | 0.263161 / 0.434364 (-0.171203) | 0.336403 / 0.540337 (-0.203935) | 0.436088 / 1.386936 (-0.950848) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005800 / 0.011353 (-0.005553) | 0.003906 / 0.011008 (-0.007103) | 0.050197 / 0.038508 (0.011689) | 0.031348 / 0.023109 (0.008238) | 0.265636 / 0.275898 (-0.010262) | 0.286550 / 0.323480 (-0.036930) | 0.004502 / 0.007986 (-0.003484) | 0.002828 / 0.004328 (-0.001501) | 0.049668 / 0.004250 (0.045417) | 0.039552 / 0.037052 (0.002499) | 0.279091 / 0.258489 (0.020602) | 0.309987 / 0.293841 (0.016146) | 0.032104 / 0.128546 (-0.096442) | 0.011989 / 0.075646 (-0.063657) | 0.059875 / 0.419271 (-0.359397) | 0.033446 / 0.043533 (-0.010087) | 0.265256 / 0.255139 (0.010117) | 0.285649 / 0.283200 (0.002449) | 0.018330 / 0.141683 (-0.123353) | 1.140073 / 1.452155 (-0.312081) | 1.194538 / 1.492716 (-0.298178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093692 / 0.018006 (0.075685) | 0.301422 / 0.000490 (0.300932) | 0.000216 / 0.000200 (0.000016) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022844 / 0.037411 (-0.014568) | 0.077129 / 0.014526 (0.062603) | 0.087948 / 0.176557 (-0.088608) | 0.129905 / 0.737135 (-0.607230) | 0.089872 / 0.296338 (-0.206466) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293135 / 0.215209 (0.077926) | 2.880280 / 2.077655 (0.802626) | 1.554250 / 1.504120 (0.050130) | 1.428005 / 1.541195 (-0.113190) | 1.520863 / 1.468490 (0.052373) | 0.759903 / 4.584777 (-3.824874) | 0.959674 / 3.745712 (-2.786038) | 2.848914 / 5.269862 (-2.420948) | 1.900355 / 4.565676 (-2.665322) | 0.079434 / 0.424275 (-0.344841) | 0.005487 / 0.007607 (-0.002121) | 0.344837 / 0.226044 (0.118793) | 3.401730 / 2.268929 (1.132802) | 1.887526 / 55.444624 (-53.557098) | 1.596821 / 6.876477 (-5.279655) | 1.732190 / 2.142072 (-0.409882) | 0.800929 / 4.805227 (-4.004299) | 0.132763 / 6.500664 (-6.367901) | 0.041185 / 0.075469 (-0.034284) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.994396 / 1.841788 (-0.847391) | 12.488692 / 8.074308 (4.414384) | 10.365952 / 10.191392 (0.174560) | 0.142951 / 0.680424 (-0.537472) | 0.015448 / 0.534201 (-0.518753) | 0.305577 / 0.579283 (-0.273706) | 0.126897 / 0.434364 (-0.307467) | 0.340784 / 0.540337 (-0.199554) | 0.461955 / 1.386936 (-0.924981) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1d65718438ac4bc401468e57d5358e69012ed0c8 \"CML watermark\")\n"
] | Remove underlines between badges | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6966/reactions"
} | PR_kwDODunzps5yPwL4 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6966.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6966",
"merged_at": "2024-06-19T14:10:11Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6966.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6966"
} | 2024-06-12T14:32:11Z | https://api.github.com/repos/huggingface/datasets/issues/6966/comments | ## Before:
<img width="935" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/93666e72-059b-4180-9e1d-ff176a3d9dac">
## After:
<img width="956" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/75df7c3e-f473-44f0-a872-eeecf6a85fe2">
| {
"avatar_url": "https://avatars.githubusercontent.com/u/35881688?v=4",
"events_url": "https://api.github.com/users/novialriptide/events{/privacy}",
"followers_url": "https://api.github.com/users/novialriptide/followers",
"following_url": "https://api.github.com/users/novialriptide/following{/other_user}",
"gists_url": "https://api.github.com/users/novialriptide/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/novialriptide",
"id": 35881688,
"login": "novialriptide",
"node_id": "MDQ6VXNlcjM1ODgxNjg4",
"organizations_url": "https://api.github.com/users/novialriptide/orgs",
"received_events_url": "https://api.github.com/users/novialriptide/received_events",
"repos_url": "https://api.github.com/users/novialriptide/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/novialriptide/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/novialriptide/subscriptions",
"type": "User",
"url": "https://api.github.com/users/novialriptide"
} | https://api.github.com/repos/huggingface/datasets/issues/6966/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6966/timeline | closed | false | 6,966 | null | 2024-06-19T14:10:11Z | null | true |
2,348,653,895 | https://api.github.com/repos/huggingface/datasets/issues/6965 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6965/events | [] | null | 2024-06-24T15:22:21Z | [] | https://github.com/huggingface/datasets/pull/6965 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6965). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005879 / 0.011353 (-0.005474) | 0.004144 / 0.011008 (-0.006865) | 0.063327 / 0.038508 (0.024819) | 0.032577 / 0.023109 (0.009468) | 0.242936 / 0.275898 (-0.032962) | 0.269882 / 0.323480 (-0.053598) | 0.003339 / 0.007986 (-0.004647) | 0.002901 / 0.004328 (-0.001428) | 0.049163 / 0.004250 (0.044912) | 0.047072 / 0.037052 (0.010019) | 0.261120 / 0.258489 (0.002631) | 0.287857 / 0.293841 (-0.005984) | 0.029688 / 0.128546 (-0.098858) | 0.012702 / 0.075646 (-0.062944) | 0.204040 / 0.419271 (-0.215231) | 0.036012 / 0.043533 (-0.007521) | 0.244210 / 0.255139 (-0.010929) | 0.267600 / 0.283200 (-0.015599) | 0.019627 / 0.141683 (-0.122056) | 1.103770 / 1.452155 (-0.348385) | 1.197710 / 1.492716 (-0.295006) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101683 / 0.018006 (0.083677) | 0.311825 / 0.000490 (0.311335) | 0.000236 / 0.000200 (0.000036) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019642 / 0.037411 (-0.017769) | 0.061618 / 0.014526 (0.047092) | 0.075237 / 0.176557 (-0.101320) | 0.122250 / 0.737135 (-0.614886) | 0.076087 / 0.296338 (-0.220251) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285120 / 0.215209 (0.069911) | 2.811527 / 2.077655 (0.733872) | 1.457961 / 1.504120 (-0.046159) | 1.333819 / 1.541195 (-0.207376) | 1.387863 / 1.468490 (-0.080627) | 0.730828 / 4.584777 (-3.853949) | 2.417224 / 3.745712 (-1.328488) | 2.994842 / 5.269862 (-2.275020) | 1.922079 / 4.565676 (-2.643598) | 0.087486 / 0.424275 (-0.336789) | 0.005211 / 0.007607 (-0.002396) | 0.335585 / 0.226044 (0.109541) | 3.297664 / 2.268929 (1.028735) | 1.809391 / 55.444624 (-53.635233) | 1.501646 / 6.876477 (-5.374831) | 1.567573 / 2.142072 (-0.574500) | 0.800816 / 4.805227 (-4.004411) | 0.134204 / 6.500664 (-6.366460) | 0.043156 / 0.075469 (-0.032313) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982955 / 1.841788 (-0.858833) | 12.256850 / 8.074308 (4.182542) | 9.821500 / 10.191392 (-0.369892) | 0.143739 / 0.680424 (-0.536685) | 0.014425 / 0.534201 (-0.519776) | 0.302718 / 0.579283 (-0.276565) | 0.267746 / 0.434364 (-0.166618) | 0.340036 / 0.540337 (-0.200301) | 0.436211 / 1.386936 (-0.950725) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006136 / 0.011353 (-0.005217) | 0.004125 / 0.011008 (-0.006883) | 0.050341 / 0.038508 (0.011833) | 0.034547 / 0.023109 (0.011438) | 0.270237 / 0.275898 (-0.005661) | 0.294503 / 0.323480 (-0.028977) | 0.004528 / 0.007986 (-0.003458) | 0.003103 / 0.004328 (-0.001225) | 0.048817 / 0.004250 (0.044566) | 0.041301 / 0.037052 (0.004249) | 0.279461 / 0.258489 (0.020972) | 0.319376 / 0.293841 (0.025535) | 0.032733 / 0.128546 (-0.095813) | 0.012426 / 0.075646 (-0.063221) | 0.060543 / 0.419271 (-0.358729) | 0.034015 / 0.043533 (-0.009518) | 0.267387 / 0.255139 (0.012248) | 0.288590 / 0.283200 (0.005390) | 0.019697 / 0.141683 (-0.121986) | 1.145994 / 1.452155 (-0.306161) | 1.198122 / 1.492716 (-0.294595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099091 / 0.018006 (0.081085) | 0.313767 / 0.000490 (0.313277) | 0.000220 / 0.000200 (0.000020) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023219 / 0.037411 (-0.014192) | 0.083609 / 0.014526 (0.069084) | 0.089529 / 0.176557 (-0.087028) | 0.131025 / 0.737135 (-0.606110) | 0.091947 / 0.296338 (-0.204391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283711 / 0.215209 (0.068502) | 2.811702 / 2.077655 (0.734047) | 1.577720 / 1.504120 (0.073600) | 1.415700 / 1.541195 (-0.125495) | 1.436097 / 1.468490 (-0.032393) | 0.732090 / 4.584777 (-3.852687) | 0.990552 / 3.745712 (-2.755160) | 2.887319 / 5.269862 (-2.382543) | 1.923707 / 4.565676 (-2.641969) | 0.079361 / 0.424275 (-0.344915) | 0.005520 / 0.007607 (-0.002087) | 0.336684 / 0.226044 (0.110639) | 3.325342 / 2.268929 (1.056413) | 1.911853 / 55.444624 (-53.532771) | 1.621450 / 6.876477 (-5.255027) | 1.807964 / 2.142072 (-0.334109) | 0.813958 / 4.805227 (-3.991269) | 0.137564 / 6.500664 (-6.363100) | 0.043151 / 0.075469 (-0.032318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002775 / 1.841788 (-0.839013) | 12.526367 / 8.074308 (4.452058) | 10.426992 / 10.191392 (0.235600) | 0.134902 / 0.680424 (-0.545522) | 0.016726 / 0.534201 (-0.517475) | 0.303549 / 0.579283 (-0.275734) | 0.129334 / 0.434364 (-0.305030) | 0.339254 / 0.540337 (-0.201084) | 0.456845 / 1.386936 (-0.930091) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5464b32ce03739431235c13f314732201abcfac \"CML watermark\")\n"
] | Improve skip take shuffling and distributed | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6965/reactions"
} | PR_kwDODunzps5yOyNG | {
"diff_url": "https://github.com/huggingface/datasets/pull/6965.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6965",
"merged_at": "2024-06-24T15:16:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6965.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6965"
} | 2024-06-12T12:30:27Z | https://api.github.com/repos/huggingface/datasets/issues/6965/comments | set the right behavior of skip/take depending on whether it's called after or before shuffle/split_by_node | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6965/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6965/timeline | closed | false | 6,965 | null | 2024-06-24T15:16:16Z | null | true |
2,344,973,229 | https://api.github.com/repos/huggingface/datasets/issues/6964 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6964/events | [] | null | 2024-06-14T15:04:49Z | [] | https://github.com/huggingface/datasets/pull/6964 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6964). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005735 / 0.011353 (-0.005618) | 0.003746 / 0.011008 (-0.007263) | 0.063115 / 0.038508 (0.024606) | 0.033557 / 0.023109 (0.010447) | 0.247599 / 0.275898 (-0.028299) | 0.275310 / 0.323480 (-0.048170) | 0.004203 / 0.007986 (-0.003783) | 0.002770 / 0.004328 (-0.001558) | 0.050951 / 0.004250 (0.046700) | 0.046609 / 0.037052 (0.009557) | 0.256237 / 0.258489 (-0.002252) | 0.292050 / 0.293841 (-0.001791) | 0.027991 / 0.128546 (-0.100556) | 0.010367 / 0.075646 (-0.065279) | 0.202295 / 0.419271 (-0.216977) | 0.037287 / 0.043533 (-0.006246) | 0.250330 / 0.255139 (-0.004809) | 0.281250 / 0.283200 (-0.001950) | 0.018832 / 0.141683 (-0.122851) | 1.117303 / 1.452155 (-0.334852) | 1.141593 / 1.492716 (-0.351123) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097318 / 0.018006 (0.079312) | 0.304853 / 0.000490 (0.304364) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020353 / 0.037411 (-0.017058) | 0.065497 / 0.014526 (0.050971) | 0.076205 / 0.176557 (-0.100351) | 0.122471 / 0.737135 (-0.614665) | 0.079522 / 0.296338 (-0.216816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282604 / 0.215209 (0.067395) | 2.743198 / 2.077655 (0.665543) | 1.480436 / 1.504120 (-0.023684) | 1.373935 / 1.541195 (-0.167260) | 1.388901 / 1.468490 (-0.079589) | 0.571961 / 4.584777 (-4.012816) | 2.431790 / 3.745712 (-1.313922) | 2.942126 / 5.269862 (-2.327736) | 1.857361 / 4.565676 (-2.708316) | 0.063535 / 0.424275 (-0.360740) | 0.005039 / 0.007607 (-0.002568) | 0.331726 / 0.226044 (0.105682) | 3.282504 / 2.268929 (1.013576) | 1.852303 / 55.444624 (-53.592321) | 1.506665 / 6.876477 (-5.369812) | 1.577524 / 2.142072 (-0.564548) | 0.646267 / 4.805227 (-4.158960) | 0.118706 / 6.500664 (-6.381958) | 0.043437 / 0.075469 (-0.032033) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978073 / 1.841788 (-0.863714) | 12.028575 / 8.074308 (3.954267) | 10.066303 / 10.191392 (-0.125090) | 0.131763 / 0.680424 (-0.548661) | 0.016479 / 0.534201 (-0.517722) | 0.286012 / 0.579283 (-0.293271) | 0.266824 / 0.434364 (-0.167540) | 0.328452 / 0.540337 (-0.211885) | 0.414562 / 1.386936 (-0.972374) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005943 / 0.011353 (-0.005409) | 0.003992 / 0.011008 (-0.007016) | 0.051159 / 0.038508 (0.012651) | 0.033805 / 0.023109 (0.010695) | 0.268425 / 0.275898 (-0.007474) | 0.295662 / 0.323480 (-0.027818) | 0.004473 / 0.007986 (-0.003512) | 0.002910 / 0.004328 (-0.001418) | 0.048595 / 0.004250 (0.044345) | 0.043724 / 0.037052 (0.006671) | 0.280552 / 0.258489 (0.022063) | 0.319052 / 0.293841 (0.025211) | 0.031269 / 0.128546 (-0.097278) | 0.010976 / 0.075646 (-0.064671) | 0.060128 / 0.419271 (-0.359144) | 0.034198 / 0.043533 (-0.009335) | 0.269664 / 0.255139 (0.014525) | 0.292249 / 0.283200 (0.009049) | 0.019950 / 0.141683 (-0.121733) | 1.143073 / 1.452155 (-0.309082) | 1.188553 / 1.492716 (-0.304164) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095188 / 0.018006 (0.077182) | 0.300207 / 0.000490 (0.299717) | 0.000205 / 0.000200 (0.000005) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023610 / 0.037411 (-0.013802) | 0.082868 / 0.014526 (0.068342) | 0.089059 / 0.176557 (-0.087498) | 0.131735 / 0.737135 (-0.605401) | 0.091467 / 0.296338 (-0.204872) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302497 / 0.215209 (0.087287) | 2.985794 / 2.077655 (0.908140) | 1.590783 / 1.504120 (0.086663) | 1.468819 / 1.541195 (-0.072375) | 1.503115 / 1.468490 (0.034625) | 0.575109 / 4.584777 (-4.009668) | 0.972370 / 3.745712 (-2.773342) | 2.727976 / 5.269862 (-2.541886) | 1.793438 / 4.565676 (-2.772238) | 0.068840 / 0.424275 (-0.355435) | 0.005440 / 0.007607 (-0.002167) | 0.351843 / 0.226044 (0.125799) | 3.523108 / 2.268929 (1.254180) | 1.928576 / 55.444624 (-53.516049) | 1.627939 / 6.876477 (-5.248538) | 1.837618 / 2.142072 (-0.304454) | 0.669351 / 4.805227 (-4.135876) | 0.121822 / 6.500664 (-6.378842) | 0.042056 / 0.075469 (-0.033413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020081 / 1.841788 (-0.821707) | 13.417448 / 8.074308 (5.343140) | 10.974516 / 10.191392 (0.783124) | 0.135240 / 0.680424 (-0.545184) | 0.017581 / 0.534201 (-0.516620) | 0.289080 / 0.579283 (-0.290203) | 0.127679 / 0.434364 (-0.306685) | 0.331818 / 0.540337 (-0.208520) | 0.453143 / 1.386936 (-0.933793) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef2fb358433678b322d275c0bdee3239fa6485b2 \"CML watermark\")\n"
] | Fix resuming arrow format | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6964/reactions"
} | PR_kwDODunzps5yCNGa | {
"diff_url": "https://github.com/huggingface/datasets/pull/6964.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6964",
"merged_at": "2024-06-14T14:58:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6964.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6964"
} | 2024-06-10T22:40:33Z | https://api.github.com/repos/huggingface/datasets/issues/6964/comments | following https://github.com/huggingface/datasets/pull/6658 | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6964/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6964/timeline | closed | false | 6,964 | null | 2024-06-14T14:58:37Z | null | true |
2,344,269,477 | https://api.github.com/repos/huggingface/datasets/issues/6963 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6963/events | [] | null | 2024-06-28T09:53:11Z | [] | https://github.com/huggingface/datasets/pull/6963 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6963). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"ci failures are r-unrelated to this PR, merging",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005532 / 0.011353 (-0.005821) | 0.004018 / 0.011008 (-0.006991) | 0.064685 / 0.038508 (0.026177) | 0.031303 / 0.023109 (0.008194) | 0.254670 / 0.275898 (-0.021228) | 0.271357 / 0.323480 (-0.052123) | 0.003372 / 0.007986 (-0.004614) | 0.004153 / 0.004328 (-0.000175) | 0.050381 / 0.004250 (0.046131) | 0.046837 / 0.037052 (0.009784) | 0.253166 / 0.258489 (-0.005323) | 0.294257 / 0.293841 (0.000416) | 0.029746 / 0.128546 (-0.098800) | 0.012519 / 0.075646 (-0.063127) | 0.208822 / 0.419271 (-0.210449) | 0.036925 / 0.043533 (-0.006608) | 0.247636 / 0.255139 (-0.007503) | 0.269102 / 0.283200 (-0.014097) | 0.019021 / 0.141683 (-0.122662) | 1.138825 / 1.452155 (-0.313330) | 1.203301 / 1.492716 (-0.289415) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095950 / 0.018006 (0.077944) | 0.303347 / 0.000490 (0.302857) | 0.000221 / 0.000200 (0.000022) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019014 / 0.037411 (-0.018397) | 0.062220 / 0.014526 (0.047694) | 0.074811 / 0.176557 (-0.101745) | 0.122917 / 0.737135 (-0.614218) | 0.075765 / 0.296338 (-0.220574) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288359 / 0.215209 (0.073150) | 2.849491 / 2.077655 (0.771837) | 1.479448 / 1.504120 (-0.024672) | 1.350560 / 1.541195 (-0.190635) | 1.366079 / 1.468490 (-0.102411) | 0.733609 / 4.584777 (-3.851168) | 2.416014 / 3.745712 (-1.329698) | 2.954834 / 5.269862 (-2.315028) | 1.985703 / 4.565676 (-2.579974) | 0.080589 / 0.424275 (-0.343686) | 0.005581 / 0.007607 (-0.002026) | 0.343706 / 0.226044 (0.117661) | 3.416257 / 2.268929 (1.147329) | 1.865937 / 55.444624 (-53.578687) | 1.545911 / 6.876477 (-5.330566) | 1.711004 / 2.142072 (-0.431069) | 0.821231 / 4.805227 (-3.983996) | 0.138865 / 6.500664 (-6.361799) | 0.046466 / 0.075469 (-0.029003) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965632 / 1.841788 (-0.876155) | 11.812101 / 8.074308 (3.737792) | 9.399156 / 10.191392 (-0.792236) | 0.143325 / 0.680424 (-0.537099) | 0.014824 / 0.534201 (-0.519377) | 0.306143 / 0.579283 (-0.273140) | 0.264063 / 0.434364 (-0.170301) | 0.347820 / 0.540337 (-0.192517) | 0.476818 / 1.386936 (-0.910118) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005978 / 0.011353 (-0.005375) | 0.004482 / 0.011008 (-0.006526) | 0.053788 / 0.038508 (0.015280) | 0.033963 / 0.023109 (0.010853) | 0.267258 / 0.275898 (-0.008640) | 0.290916 / 0.323480 (-0.032563) | 0.004485 / 0.007986 (-0.003500) | 0.002876 / 0.004328 (-0.001453) | 0.048637 / 0.004250 (0.044386) | 0.042050 / 0.037052 (0.004997) | 0.278607 / 0.258489 (0.020118) | 0.315411 / 0.293841 (0.021570) | 0.032059 / 0.128546 (-0.096487) | 0.012851 / 0.075646 (-0.062795) | 0.061672 / 0.419271 (-0.357600) | 0.034545 / 0.043533 (-0.008988) | 0.262068 / 0.255139 (0.006929) | 0.291197 / 0.283200 (0.007997) | 0.019092 / 0.141683 (-0.122591) | 1.108690 / 1.452155 (-0.343464) | 1.161025 / 1.492716 (-0.331691) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096775 / 0.018006 (0.078768) | 0.306825 / 0.000490 (0.306335) | 0.000210 / 0.000200 (0.000010) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023160 / 0.037411 (-0.014251) | 0.078794 / 0.014526 (0.064268) | 0.088954 / 0.176557 (-0.087602) | 0.129488 / 0.737135 (-0.607648) | 0.091239 / 0.296338 (-0.205099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292911 / 0.215209 (0.077702) | 2.910802 / 2.077655 (0.833148) | 1.569310 / 1.504120 (0.065191) | 1.433807 / 1.541195 (-0.107388) | 1.478619 / 1.468490 (0.010129) | 0.720982 / 4.584777 (-3.863795) | 0.972104 / 3.745712 (-2.773608) | 3.026941 / 5.269862 (-2.242921) | 1.919170 / 4.565676 (-2.646506) | 0.079292 / 0.424275 (-0.344983) | 0.005227 / 0.007607 (-0.002380) | 0.345363 / 0.226044 (0.119319) | 3.416149 / 2.268929 (1.147221) | 1.938377 / 55.444624 (-53.506248) | 1.626037 / 6.876477 (-5.250440) | 1.644405 / 2.142072 (-0.497668) | 0.802485 / 4.805227 (-4.002742) | 0.135114 / 6.500664 (-6.365550) | 0.042015 / 0.075469 (-0.033454) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.014812 / 1.841788 (-0.826976) | 12.583844 / 8.074308 (4.509536) | 10.522495 / 10.191392 (0.331103) | 0.143336 / 0.680424 (-0.537088) | 0.015843 / 0.534201 (-0.518357) | 0.306556 / 0.579283 (-0.272727) | 0.129654 / 0.434364 (-0.304710) | 0.340442 / 0.540337 (-0.199896) | 0.445220 / 1.386936 (-0.941716) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5cab892dcd26fb51938634e13e300c6611ab66e0 \"CML watermark\")\n"
] | [Streaming] retry on requests errors | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6963/reactions"
} | PR_kwDODunzps5x_yu- | {
"diff_url": "https://github.com/huggingface/datasets/pull/6963.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6963",
"merged_at": "2024-06-28T09:46:52Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6963.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6963"
} | 2024-06-10T15:51:56Z | https://api.github.com/repos/huggingface/datasets/issues/6963/comments | reported in https://discuss.huggingface.co/t/speeding-up-streaming-of-large-datasets-fineweb/90714/6 when training using a streaming a dataloader
cc @Wauplin it looks like the retries from `hfh` are not always enough. In this PR I let `datasets` do additional retries (that users can configure in `datasets.config`) since I couldn't find an easy way to increase the max_retries for `hfh` users in general. | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6963/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6963/timeline | closed | false | 6,963 | null | 2024-06-28T09:46:52Z | null | true |
2,343,394,378 | https://api.github.com/repos/huggingface/datasets/issues/6962 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6962/events | [] | null | 2024-06-11T08:31:52Z | [] | https://github.com/huggingface/datasets/pull/6962 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6962). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005520 / 0.011353 (-0.005833) | 0.003989 / 0.011008 (-0.007019) | 0.064786 / 0.038508 (0.026278) | 0.031075 / 0.023109 (0.007966) | 0.241619 / 0.275898 (-0.034279) | 0.275341 / 0.323480 (-0.048139) | 0.003139 / 0.007986 (-0.004847) | 0.002820 / 0.004328 (-0.001508) | 0.049766 / 0.004250 (0.045515) | 0.045047 / 0.037052 (0.007995) | 0.251906 / 0.258489 (-0.006583) | 0.285889 / 0.293841 (-0.007952) | 0.028297 / 0.128546 (-0.100249) | 0.010683 / 0.075646 (-0.064963) | 0.206467 / 0.419271 (-0.212805) | 0.036267 / 0.043533 (-0.007266) | 0.250720 / 0.255139 (-0.004419) | 0.268565 / 0.283200 (-0.014635) | 0.020394 / 0.141683 (-0.121289) | 1.114283 / 1.452155 (-0.337872) | 1.163884 / 1.492716 (-0.328833) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.112698 / 0.018006 (0.094692) | 0.302740 / 0.000490 (0.302251) | 0.000209 / 0.000200 (0.000009) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019337 / 0.037411 (-0.018075) | 0.062854 / 0.014526 (0.048328) | 0.077088 / 0.176557 (-0.099468) | 0.120926 / 0.737135 (-0.616209) | 0.075594 / 0.296338 (-0.220744) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290787 / 0.215209 (0.075578) | 2.867894 / 2.077655 (0.790239) | 1.490043 / 1.504120 (-0.014076) | 1.356383 / 1.541195 (-0.184812) | 1.400229 / 1.468490 (-0.068261) | 0.582076 / 4.584777 (-4.002701) | 2.398270 / 3.745712 (-1.347442) | 2.856459 / 5.269862 (-2.413403) | 1.815545 / 4.565676 (-2.750131) | 0.063259 / 0.424275 (-0.361016) | 0.005056 / 0.007607 (-0.002551) | 0.347699 / 0.226044 (0.121655) | 3.466511 / 2.268929 (1.197582) | 1.862096 / 55.444624 (-53.582528) | 1.532324 / 6.876477 (-5.344152) | 1.599411 / 2.142072 (-0.542661) | 0.657350 / 4.805227 (-4.147878) | 0.118981 / 6.500664 (-6.381683) | 0.042224 / 0.075469 (-0.033245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965649 / 1.841788 (-0.876139) | 11.896501 / 8.074308 (3.822193) | 9.873923 / 10.191392 (-0.317469) | 0.141165 / 0.680424 (-0.539258) | 0.013885 / 0.534201 (-0.520316) | 0.291464 / 0.579283 (-0.287819) | 0.273153 / 0.434364 (-0.161211) | 0.324395 / 0.540337 (-0.215942) | 0.422040 / 1.386936 (-0.964897) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005640 / 0.011353 (-0.005713) | 0.004035 / 0.011008 (-0.006973) | 0.050831 / 0.038508 (0.012323) | 0.032841 / 0.023109 (0.009732) | 0.272226 / 0.275898 (-0.003672) | 0.297880 / 0.323480 (-0.025599) | 0.004397 / 0.007986 (-0.003588) | 0.002762 / 0.004328 (-0.001566) | 0.049887 / 0.004250 (0.045637) | 0.040372 / 0.037052 (0.003320) | 0.286337 / 0.258489 (0.027848) | 0.320015 / 0.293841 (0.026174) | 0.029992 / 0.128546 (-0.098554) | 0.010781 / 0.075646 (-0.064865) | 0.059391 / 0.419271 (-0.359880) | 0.034410 / 0.043533 (-0.009123) | 0.273024 / 0.255139 (0.017885) | 0.288953 / 0.283200 (0.005754) | 0.018072 / 0.141683 (-0.123611) | 1.125742 / 1.452155 (-0.326413) | 1.175233 / 1.492716 (-0.317483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093470 / 0.018006 (0.075463) | 0.313248 / 0.000490 (0.312758) | 0.000324 / 0.000200 (0.000124) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023529 / 0.037411 (-0.013882) | 0.077305 / 0.014526 (0.062779) | 0.088916 / 0.176557 (-0.087640) | 0.128792 / 0.737135 (-0.608344) | 0.090141 / 0.296338 (-0.206197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291110 / 0.215209 (0.075901) | 2.848118 / 2.077655 (0.770464) | 1.581664 / 1.504120 (0.077544) | 1.446390 / 1.541195 (-0.094804) | 1.452594 / 1.468490 (-0.015896) | 0.571213 / 4.584777 (-4.013564) | 0.976382 / 3.745712 (-2.769330) | 2.756192 / 5.269862 (-2.513670) | 1.770274 / 4.565676 (-2.795403) | 0.064513 / 0.424275 (-0.359763) | 0.005334 / 0.007607 (-0.002273) | 0.347380 / 0.226044 (0.121335) | 3.424800 / 2.268929 (1.155871) | 1.942374 / 55.444624 (-53.502250) | 1.636069 / 6.876477 (-5.240407) | 1.795327 / 2.142072 (-0.346745) | 0.658942 / 4.805227 (-4.146285) | 0.119542 / 6.500664 (-6.381123) | 0.041826 / 0.075469 (-0.033643) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007230 / 1.841788 (-0.834558) | 12.293084 / 8.074308 (4.218776) | 10.618104 / 10.191392 (0.426712) | 0.133691 / 0.680424 (-0.546733) | 0.015725 / 0.534201 (-0.518476) | 0.288860 / 0.579283 (-0.290423) | 0.130546 / 0.434364 (-0.303818) | 0.327279 / 0.540337 (-0.213059) | 0.428768 / 1.386936 (-0.958168) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#af3acfdfcf76bb980dbac871540e30c2cade0cf9 \"CML watermark\")\n"
] | fix(ci): remove unnecessary permissions | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6962/reactions"
} | PR_kwDODunzps5x8yHt | {
"diff_url": "https://github.com/huggingface/datasets/pull/6962.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6962",
"merged_at": "2024-06-11T08:25:47Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6962.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6962"
} | 2024-06-10T09:28:02Z | https://api.github.com/repos/huggingface/datasets/issues/6962/comments | ### What does this PR do?
Remove unnecessary permissions granted to the actions workflow.
Sorry for the mishap. | {
"avatar_url": "https://avatars.githubusercontent.com/u/9112841?v=4",
"events_url": "https://api.github.com/users/McPatate/events{/privacy}",
"followers_url": "https://api.github.com/users/McPatate/followers",
"following_url": "https://api.github.com/users/McPatate/following{/other_user}",
"gists_url": "https://api.github.com/users/McPatate/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/McPatate",
"id": 9112841,
"login": "McPatate",
"node_id": "MDQ6VXNlcjkxMTI4NDE=",
"organizations_url": "https://api.github.com/users/McPatate/orgs",
"received_events_url": "https://api.github.com/users/McPatate/received_events",
"repos_url": "https://api.github.com/users/McPatate/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/McPatate/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/McPatate/subscriptions",
"type": "User",
"url": "https://api.github.com/users/McPatate"
} | https://api.github.com/repos/huggingface/datasets/issues/6962/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6962/timeline | closed | false | 6,962 | null | 2024-06-11T08:25:47Z | null | true |
2,342,022,418 | https://api.github.com/repos/huggingface/datasets/issues/6961 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6961/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-06-13T16:05:00Z | [] | https://github.com/huggingface/datasets/issues/6961 | NONE | null | null | null | [
"We're unlikely to add more features/support for datasets with python loading scripts, which include datasets with manual download. Sorry for the inconvenience"
] | Manual downloads should count as downloads | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6961/reactions"
} | I_kwDODunzps6LmG0S | null | 2024-06-09T04:52:06Z | https://api.github.com/repos/huggingface/datasets/issues/6961/comments | ### Feature request
I would like to request that manual downloads of data files from Hugging Face dataset repositories count as downloads of a dataset. According to the documentation for the Hugging Face Hub, that is currently not the case: https://huggingface.co./docs/hub/en/datasets-download-stats
### Motivation
This would ensure that downloads are accurately reported to end users.
### Your contribution
N/A | {
"avatar_url": "https://avatars.githubusercontent.com/u/8473183?v=4",
"events_url": "https://api.github.com/users/umarbutler/events{/privacy}",
"followers_url": "https://api.github.com/users/umarbutler/followers",
"following_url": "https://api.github.com/users/umarbutler/following{/other_user}",
"gists_url": "https://api.github.com/users/umarbutler/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/umarbutler",
"id": 8473183,
"login": "umarbutler",
"node_id": "MDQ6VXNlcjg0NzMxODM=",
"organizations_url": "https://api.github.com/users/umarbutler/orgs",
"received_events_url": "https://api.github.com/users/umarbutler/received_events",
"repos_url": "https://api.github.com/users/umarbutler/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/umarbutler/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/umarbutler/subscriptions",
"type": "User",
"url": "https://api.github.com/users/umarbutler"
} | https://api.github.com/repos/huggingface/datasets/issues/6961/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6961/timeline | open | false | 6,961 | null | null | null | false |
2,340,791,685 | https://api.github.com/repos/huggingface/datasets/issues/6960 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6960/events | [] | null | 2024-06-08T14:58:27Z | [] | https://github.com/huggingface/datasets/pull/6960 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6960). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Yes!",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005007 / 0.011353 (-0.006346) | 0.003603 / 0.011008 (-0.007405) | 0.062719 / 0.038508 (0.024211) | 0.029327 / 0.023109 (0.006217) | 0.250360 / 0.275898 (-0.025538) | 0.265095 / 0.323480 (-0.058385) | 0.004205 / 0.007986 (-0.003781) | 0.002713 / 0.004328 (-0.001616) | 0.049209 / 0.004250 (0.044958) | 0.045162 / 0.037052 (0.008110) | 0.260439 / 0.258489 (0.001950) | 0.287778 / 0.293841 (-0.006063) | 0.027458 / 0.128546 (-0.101088) | 0.010169 / 0.075646 (-0.065477) | 0.199487 / 0.419271 (-0.219784) | 0.036584 / 0.043533 (-0.006949) | 0.254523 / 0.255139 (-0.000616) | 0.269902 / 0.283200 (-0.013298) | 0.017138 / 0.141683 (-0.124545) | 1.099285 / 1.452155 (-0.352869) | 1.150878 / 1.492716 (-0.341839) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092868 / 0.018006 (0.074862) | 0.300421 / 0.000490 (0.299932) | 0.000213 / 0.000200 (0.000013) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018810 / 0.037411 (-0.018601) | 0.062341 / 0.014526 (0.047815) | 0.074779 / 0.176557 (-0.101777) | 0.120641 / 0.737135 (-0.616494) | 0.075020 / 0.296338 (-0.221318) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277782 / 0.215209 (0.062573) | 2.716427 / 2.077655 (0.638772) | 1.434204 / 1.504120 (-0.069916) | 1.335990 / 1.541195 (-0.205205) | 1.336636 / 1.468490 (-0.131854) | 0.557562 / 4.584777 (-4.027215) | 2.323517 / 3.745712 (-1.422196) | 2.647937 / 5.269862 (-2.621925) | 1.728735 / 4.565676 (-2.836941) | 0.061888 / 0.424275 (-0.362387) | 0.004981 / 0.007607 (-0.002627) | 0.329429 / 0.226044 (0.103385) | 3.324708 / 2.268929 (1.055779) | 1.832641 / 55.444624 (-53.611983) | 1.514386 / 6.876477 (-5.362091) | 1.656912 / 2.142072 (-0.485160) | 0.630706 / 4.805227 (-4.174521) | 0.116250 / 6.500664 (-6.384414) | 0.042598 / 0.075469 (-0.032871) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969217 / 1.841788 (-0.872570) | 11.232580 / 8.074308 (3.158272) | 9.541306 / 10.191392 (-0.650086) | 0.139544 / 0.680424 (-0.540880) | 0.014441 / 0.534201 (-0.519760) | 0.285834 / 0.579283 (-0.293449) | 0.261950 / 0.434364 (-0.172414) | 0.325449 / 0.540337 (-0.214889) | 0.415501 / 1.386936 (-0.971435) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005422 / 0.011353 (-0.005931) | 0.003528 / 0.011008 (-0.007480) | 0.049582 / 0.038508 (0.011074) | 0.032683 / 0.023109 (0.009574) | 0.277309 / 0.275898 (0.001411) | 0.298598 / 0.323480 (-0.024882) | 0.004325 / 0.007986 (-0.003661) | 0.002741 / 0.004328 (-0.001588) | 0.047933 / 0.004250 (0.043683) | 0.040778 / 0.037052 (0.003726) | 0.287492 / 0.258489 (0.029003) | 0.311408 / 0.293841 (0.017567) | 0.029482 / 0.128546 (-0.099064) | 0.010630 / 0.075646 (-0.065016) | 0.057745 / 0.419271 (-0.361526) | 0.033501 / 0.043533 (-0.010031) | 0.279880 / 0.255139 (0.024741) | 0.297421 / 0.283200 (0.014221) | 0.017907 / 0.141683 (-0.123776) | 1.152221 / 1.452155 (-0.299934) | 1.189332 / 1.492716 (-0.303385) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094464 / 0.018006 (0.076457) | 0.300769 / 0.000490 (0.300279) | 0.000196 / 0.000200 (-0.000004) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022232 / 0.037411 (-0.015179) | 0.076626 / 0.014526 (0.062100) | 0.087807 / 0.176557 (-0.088750) | 0.128847 / 0.737135 (-0.608288) | 0.092135 / 0.296338 (-0.204203) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299013 / 0.215209 (0.083804) | 2.929788 / 2.077655 (0.852133) | 1.614185 / 1.504120 (0.110065) | 1.486720 / 1.541195 (-0.054475) | 1.492473 / 1.468490 (0.023983) | 0.563699 / 4.584777 (-4.021078) | 0.928820 / 3.745712 (-2.816892) | 2.597271 / 5.269862 (-2.672590) | 1.716534 / 4.565676 (-2.849142) | 0.062568 / 0.424275 (-0.361707) | 0.005168 / 0.007607 (-0.002439) | 0.353781 / 0.226044 (0.127737) | 3.493732 / 2.268929 (1.224803) | 2.018343 / 55.444624 (-53.426282) | 1.694516 / 6.876477 (-5.181961) | 1.796950 / 2.142072 (-0.345123) | 0.634846 / 4.805227 (-4.170382) | 0.115230 / 6.500664 (-6.385434) | 0.040816 / 0.075469 (-0.034654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986212 / 1.841788 (-0.855575) | 11.954392 / 8.074308 (3.880084) | 10.299670 / 10.191392 (0.108278) | 0.128358 / 0.680424 (-0.552066) | 0.016313 / 0.534201 (-0.517888) | 0.289621 / 0.579283 (-0.289662) | 0.124708 / 0.434364 (-0.309656) | 0.325269 / 0.540337 (-0.215068) | 0.415133 / 1.386936 (-0.971803) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97513be330114a8aa07e5199ec252ac662aeb76d \"CML watermark\")\n"
] | feat(ci): add trufflehog secrets detection | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6960/reactions"
} | PR_kwDODunzps5x0R3T | {
"diff_url": "https://github.com/huggingface/datasets/pull/6960.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6960",
"merged_at": "2024-06-08T14:52:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6960.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6960"
} | 2024-06-07T16:18:23Z | https://api.github.com/repos/huggingface/datasets/issues/6960/comments | ### What does this PR do?
Adding a GH action to scan for leaked secrets on each commit.
| {
"avatar_url": "https://avatars.githubusercontent.com/u/9112841?v=4",
"events_url": "https://api.github.com/users/McPatate/events{/privacy}",
"followers_url": "https://api.github.com/users/McPatate/followers",
"following_url": "https://api.github.com/users/McPatate/following{/other_user}",
"gists_url": "https://api.github.com/users/McPatate/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/McPatate",
"id": 9112841,
"login": "McPatate",
"node_id": "MDQ6VXNlcjkxMTI4NDE=",
"organizations_url": "https://api.github.com/users/McPatate/orgs",
"received_events_url": "https://api.github.com/users/McPatate/received_events",
"repos_url": "https://api.github.com/users/McPatate/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/McPatate/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/McPatate/subscriptions",
"type": "User",
"url": "https://api.github.com/users/McPatate"
} | https://api.github.com/repos/huggingface/datasets/issues/6960/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6960/timeline | closed | false | 6,960 | null | 2024-06-08T14:52:18Z | null | true |
2,340,229,908 | https://api.github.com/repos/huggingface/datasets/issues/6959 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6959/events | [] | null | 2024-06-10T07:33:53Z | [] | https://github.com/huggingface/datasets/pull/6959 | CONTRIBUTOR | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6959). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Test should be fixed by https://github.com/huggingface/datasets/pull/6959/commits/ef8f7cee79ffb070d9b5190f21128fc523b3d3ee (tested locally). Let's see what CI says :crossed_fingers: ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005678 / 0.011353 (-0.005675) | 0.004119 / 0.011008 (-0.006889) | 0.063901 / 0.038508 (0.025393) | 0.032071 / 0.023109 (0.008961) | 0.243182 / 0.275898 (-0.032716) | 0.280709 / 0.323480 (-0.042770) | 0.004195 / 0.007986 (-0.003791) | 0.002810 / 0.004328 (-0.001518) | 0.048722 / 0.004250 (0.044472) | 0.049381 / 0.037052 (0.012328) | 0.257816 / 0.258489 (-0.000673) | 0.288460 / 0.293841 (-0.005381) | 0.028518 / 0.128546 (-0.100029) | 0.010775 / 0.075646 (-0.064871) | 0.203149 / 0.419271 (-0.216122) | 0.038792 / 0.043533 (-0.004741) | 0.248502 / 0.255139 (-0.006637) | 0.268251 / 0.283200 (-0.014949) | 0.019536 / 0.141683 (-0.122147) | 1.133935 / 1.452155 (-0.318220) | 1.182855 / 1.492716 (-0.309862) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097531 / 0.018006 (0.079525) | 0.303612 / 0.000490 (0.303122) | 0.000222 / 0.000200 (0.000022) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019670 / 0.037411 (-0.017741) | 0.063439 / 0.014526 (0.048913) | 0.075119 / 0.176557 (-0.101438) | 0.122419 / 0.737135 (-0.614717) | 0.076965 / 0.296338 (-0.219374) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286780 / 0.215209 (0.071571) | 2.811860 / 2.077655 (0.734206) | 1.485165 / 1.504120 (-0.018954) | 1.373296 / 1.541195 (-0.167898) | 1.412700 / 1.468490 (-0.055790) | 0.566442 / 4.584777 (-4.018335) | 2.382616 / 3.745712 (-1.363096) | 2.677214 / 5.269862 (-2.592647) | 1.760073 / 4.565676 (-2.805603) | 0.062673 / 0.424275 (-0.361602) | 0.005050 / 0.007607 (-0.002557) | 0.341701 / 0.226044 (0.115657) | 3.321182 / 2.268929 (1.052253) | 1.811715 / 55.444624 (-53.632909) | 1.554986 / 6.876477 (-5.321491) | 1.727448 / 2.142072 (-0.414624) | 0.642193 / 4.805227 (-4.163034) | 0.117878 / 6.500664 (-6.382786) | 0.042814 / 0.075469 (-0.032655) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985894 / 1.841788 (-0.855894) | 12.195975 / 8.074308 (4.121667) | 9.890180 / 10.191392 (-0.301212) | 0.142638 / 0.680424 (-0.537786) | 0.015207 / 0.534201 (-0.518994) | 0.283140 / 0.579283 (-0.296143) | 0.266016 / 0.434364 (-0.168348) | 0.325518 / 0.540337 (-0.214820) | 0.418994 / 1.386936 (-0.967942) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005978 / 0.011353 (-0.005374) | 0.003915 / 0.011008 (-0.007093) | 0.051592 / 0.038508 (0.013084) | 0.033338 / 0.023109 (0.010229) | 0.267925 / 0.275898 (-0.007973) | 0.296011 / 0.323480 (-0.027469) | 0.004503 / 0.007986 (-0.003483) | 0.002854 / 0.004328 (-0.001475) | 0.049958 / 0.004250 (0.045707) | 0.041708 / 0.037052 (0.004656) | 0.287185 / 0.258489 (0.028696) | 0.322715 / 0.293841 (0.028874) | 0.030088 / 0.128546 (-0.098458) | 0.010709 / 0.075646 (-0.064938) | 0.059736 / 0.419271 (-0.359536) | 0.034294 / 0.043533 (-0.009239) | 0.264316 / 0.255139 (0.009177) | 0.285471 / 0.283200 (0.002272) | 0.019197 / 0.141683 (-0.122486) | 1.135571 / 1.452155 (-0.316583) | 1.190019 / 1.492716 (-0.302698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099251 / 0.018006 (0.081245) | 0.305357 / 0.000490 (0.304867) | 0.000215 / 0.000200 (0.000015) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023206 / 0.037411 (-0.014205) | 0.077835 / 0.014526 (0.063310) | 0.090242 / 0.176557 (-0.086315) | 0.131208 / 0.737135 (-0.605928) | 0.091726 / 0.296338 (-0.204612) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292487 / 0.215209 (0.077278) | 2.837044 / 2.077655 (0.759389) | 1.553155 / 1.504120 (0.049035) | 1.433645 / 1.541195 (-0.107550) | 1.476702 / 1.468490 (0.008212) | 0.561926 / 4.584777 (-4.022851) | 0.954630 / 3.745712 (-2.791082) | 2.752286 / 5.269862 (-2.517575) | 1.782746 / 4.565676 (-2.782931) | 0.062984 / 0.424275 (-0.361291) | 0.005056 / 0.007607 (-0.002551) | 0.341700 / 0.226044 (0.115656) | 3.343726 / 2.268929 (1.074798) | 1.953390 / 55.444624 (-53.491234) | 1.616989 / 6.876477 (-5.259488) | 1.785104 / 2.142072 (-0.356969) | 0.643465 / 4.805227 (-4.161763) | 0.115905 / 6.500664 (-6.384759) | 0.041678 / 0.075469 (-0.033791) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000237 / 1.841788 (-0.841550) | 12.633517 / 8.074308 (4.559208) | 10.553485 / 10.191392 (0.362092) | 0.143188 / 0.680424 (-0.537236) | 0.016020 / 0.534201 (-0.518181) | 0.286739 / 0.579283 (-0.292544) | 0.128488 / 0.434364 (-0.305876) | 0.321932 / 0.540337 (-0.218405) | 0.418635 / 1.386936 (-0.968301) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9510252f03fded02b8cc87ca6dfa3195d17594ba \"CML watermark\")\n"
] | Better error handling in `dataset_module_factory` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 2,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6959/reactions"
} | PR_kwDODunzps5xyVt6 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6959.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6959",
"merged_at": "2024-06-10T07:27:43Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6959.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6959"
} | 2024-06-07T11:24:15Z | https://api.github.com/repos/huggingface/datasets/issues/6959/comments | cc @cakiki who reported it on [slack](https://huggingface.slack.com/archives/C039P47V1L5/p1717754405578539) (private link)
This PR updates how errors are handled in `dataset_module_factory` when the `dataset_info` cannot be accessed:
1. Use multiple `except ... as e` instead of using `isinstance(e, ...)`
2. Always raise `DatasetNotFoundError` with `from e` so that the initial error is explicitly logged in the stacktrace.
3. Differentiate `RepoNotFoundError` / `GatedRepoError` / `RevisionNotFoundError` cases | {
"avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4",
"events_url": "https://api.github.com/users/Wauplin/events{/privacy}",
"followers_url": "https://api.github.com/users/Wauplin/followers",
"following_url": "https://api.github.com/users/Wauplin/following{/other_user}",
"gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Wauplin",
"id": 11801849,
"login": "Wauplin",
"node_id": "MDQ6VXNlcjExODAxODQ5",
"organizations_url": "https://api.github.com/users/Wauplin/orgs",
"received_events_url": "https://api.github.com/users/Wauplin/received_events",
"repos_url": "https://api.github.com/users/Wauplin/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Wauplin"
} | https://api.github.com/repos/huggingface/datasets/issues/6959/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6959/timeline | closed | false | 6,959 | null | 2024-06-10T07:27:43Z | null | true |
2,337,476,383 | https://api.github.com/repos/huggingface/datasets/issues/6958 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6958/events | [] | null | 2024-07-01T11:27:46Z | [] | https://github.com/huggingface/datasets/issues/6958 | NONE | completed | null | null | [
"I can load public dataset, but for my private dataset it fails",
"https://huggingface.co./docs/datasets/upload_dataset",
"I have checked the API HTTP link. Repository Not Found for url: https://huggingface.co./api/datasets/xxx/xxx.\r\n\r\n![image](https://github.com/huggingface/datasets/assets/39621324/4aceef59-0c65-4161-9665-676d25d73225)\r\n\r\nIt just works fine.",
"It seems that everything is in a mass huh....\r\n\r\n![image](https://github.com/huggingface/datasets/assets/39621324/fb2fe12c-4f0a-4bf6-9656-63ba50347b10)\r\n",
"https://huggingface.co./datasets/rajpurkar/squad/blob/main/squad.py fails again",
"https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py#L81 can not use this, too complex. I just need a def to load my file to a dict",
"I am facing the same issue. Did you find a fix?",
"You should authenticate to be able to access private or gated repos: https://huggingface.co./docs/hub/datasets-gated#access-gated-datasets-as-a-user"
] | My Private Dataset doesn't exist on the Hub or cannot be accessed | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6958/reactions"
} | I_kwDODunzps6LUw8f | null | 2024-06-06T06:52:19Z | https://api.github.com/repos/huggingface/datasets/issues/6958/comments | ### Describe the bug
```
File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory
raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg)
datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed
>>> dataset = load_dataset("xxxx", token=True)
404 error 404 Client Error. (Request ID: Root=xxxx)
Repository Not Found for url: https://huggingface.co./api/datasets/xxx/xxx.
Please make sure you specified the correct `repo_id` and `repo_type`.
If you are trying to access a private or gated repo, make sure you are authenticated.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2593, in load_dataset
builder_instance = load_dataset_builder(
File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2265, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory
raise e1 from None
File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory
raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg)
datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed
```
### Steps to reproduce the bug
123
### Expected behavior
123
### Environment info
123 | {
"avatar_url": "https://avatars.githubusercontent.com/u/39621324?v=4",
"events_url": "https://api.github.com/users/wangguan1995/events{/privacy}",
"followers_url": "https://api.github.com/users/wangguan1995/followers",
"following_url": "https://api.github.com/users/wangguan1995/following{/other_user}",
"gists_url": "https://api.github.com/users/wangguan1995/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/wangguan1995",
"id": 39621324,
"login": "wangguan1995",
"node_id": "MDQ6VXNlcjM5NjIxMzI0",
"organizations_url": "https://api.github.com/users/wangguan1995/orgs",
"received_events_url": "https://api.github.com/users/wangguan1995/received_events",
"repos_url": "https://api.github.com/users/wangguan1995/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/wangguan1995/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wangguan1995/subscriptions",
"type": "User",
"url": "https://api.github.com/users/wangguan1995"
} | https://api.github.com/repos/huggingface/datasets/issues/6958/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6958/timeline | closed | false | 6,958 | null | 2024-07-01T11:27:46Z | null | false |
2,335,559,400 | https://api.github.com/repos/huggingface/datasets/issues/6957 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6957/events | [] | null | 2024-06-05T13:01:07Z | [] | https://github.com/huggingface/datasets/pull/6957 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6957). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005371 / 0.011353 (-0.005982) | 0.003834 / 0.011008 (-0.007174) | 0.063032 / 0.038508 (0.024524) | 0.031623 / 0.023109 (0.008514) | 0.250008 / 0.275898 (-0.025890) | 0.273998 / 0.323480 (-0.049482) | 0.004114 / 0.007986 (-0.003871) | 0.002821 / 0.004328 (-0.001508) | 0.049470 / 0.004250 (0.045220) | 0.046586 / 0.037052 (0.009534) | 0.276807 / 0.258489 (0.018318) | 0.288607 / 0.293841 (-0.005234) | 0.027427 / 0.128546 (-0.101119) | 0.010634 / 0.075646 (-0.065012) | 0.202451 / 0.419271 (-0.216821) | 0.036346 / 0.043533 (-0.007187) | 0.250426 / 0.255139 (-0.004713) | 0.274104 / 0.283200 (-0.009096) | 0.018461 / 0.141683 (-0.123222) | 1.120326 / 1.452155 (-0.331829) | 1.157635 / 1.492716 (-0.335081) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102287 / 0.018006 (0.084281) | 0.313145 / 0.000490 (0.312655) | 0.000255 / 0.000200 (0.000055) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019494 / 0.037411 (-0.017917) | 0.063252 / 0.014526 (0.048727) | 0.075318 / 0.176557 (-0.101239) | 0.122194 / 0.737135 (-0.614942) | 0.076837 / 0.296338 (-0.219501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284098 / 0.215209 (0.068889) | 2.822301 / 2.077655 (0.744647) | 1.490185 / 1.504120 (-0.013935) | 1.366723 / 1.541195 (-0.174472) | 1.398832 / 1.468490 (-0.069658) | 0.563661 / 4.584777 (-4.021116) | 2.385129 / 3.745712 (-1.360583) | 2.689823 / 5.269862 (-2.580039) | 1.731271 / 4.565676 (-2.834405) | 0.063351 / 0.424275 (-0.360924) | 0.004974 / 0.007607 (-0.002633) | 0.332163 / 0.226044 (0.106119) | 3.314906 / 2.268929 (1.045977) | 1.811331 / 55.444624 (-53.633294) | 1.513357 / 6.876477 (-5.363120) | 1.718454 / 2.142072 (-0.423618) | 0.639663 / 4.805227 (-4.165564) | 0.120377 / 6.500664 (-6.380287) | 0.043254 / 0.075469 (-0.032215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978534 / 1.841788 (-0.863253) | 11.622313 / 8.074308 (3.548005) | 9.608732 / 10.191392 (-0.582660) | 0.131339 / 0.680424 (-0.549085) | 0.015226 / 0.534201 (-0.518975) | 0.287317 / 0.579283 (-0.291966) | 0.266647 / 0.434364 (-0.167717) | 0.324243 / 0.540337 (-0.216094) | 0.442025 / 1.386936 (-0.944911) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005673 / 0.011353 (-0.005680) | 0.003722 / 0.011008 (-0.007286) | 0.049483 / 0.038508 (0.010975) | 0.033308 / 0.023109 (0.010199) | 0.261912 / 0.275898 (-0.013986) | 0.291151 / 0.323480 (-0.032329) | 0.004389 / 0.007986 (-0.003596) | 0.002762 / 0.004328 (-0.001567) | 0.048970 / 0.004250 (0.044719) | 0.041509 / 0.037052 (0.004457) | 0.273288 / 0.258489 (0.014798) | 0.308351 / 0.293841 (0.014510) | 0.029958 / 0.128546 (-0.098589) | 0.010500 / 0.075646 (-0.065146) | 0.058253 / 0.419271 (-0.361019) | 0.033820 / 0.043533 (-0.009713) | 0.261089 / 0.255139 (0.005950) | 0.282179 / 0.283200 (-0.001021) | 0.018543 / 0.141683 (-0.123140) | 1.121303 / 1.452155 (-0.330852) | 1.166141 / 1.492716 (-0.326575) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099209 / 0.018006 (0.081203) | 0.316920 / 0.000490 (0.316430) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023339 / 0.037411 (-0.014072) | 0.077127 / 0.014526 (0.062602) | 0.088160 / 0.176557 (-0.088396) | 0.129449 / 0.737135 (-0.607686) | 0.093159 / 0.296338 (-0.203180) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281262 / 0.215209 (0.066053) | 2.797504 / 2.077655 (0.719850) | 1.513354 / 1.504120 (0.009234) | 1.383034 / 1.541195 (-0.158161) | 1.395202 / 1.468490 (-0.073288) | 0.563180 / 4.584777 (-4.021597) | 0.979330 / 3.745712 (-2.766383) | 2.674008 / 5.269862 (-2.595853) | 1.762174 / 4.565676 (-2.803502) | 0.062333 / 0.424275 (-0.361942) | 0.004991 / 0.007607 (-0.002616) | 0.336043 / 0.226044 (0.109999) | 3.313500 / 2.268929 (1.044571) | 1.848083 / 55.444624 (-53.596541) | 1.554723 / 6.876477 (-5.321754) | 1.743485 / 2.142072 (-0.398587) | 0.657117 / 4.805227 (-4.148111) | 0.115736 / 6.500664 (-6.384928) | 0.040527 / 0.075469 (-0.034942) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005876 / 1.841788 (-0.835911) | 12.525895 / 8.074308 (4.451587) | 10.492961 / 10.191392 (0.301569) | 0.143443 / 0.680424 (-0.536981) | 0.016652 / 0.534201 (-0.517548) | 0.288236 / 0.579283 (-0.291047) | 0.131401 / 0.434364 (-0.302963) | 0.322885 / 0.540337 (-0.217452) | 0.416048 / 1.386936 (-0.970888) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6548e0e282aeeda7bfb18beafbc65ebecd780c63 \"CML watermark\")\n"
] | Fix typos in docs | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6957/reactions"
} | PR_kwDODunzps5xiTwJ | {
"diff_url": "https://github.com/huggingface/datasets/pull/6957.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6957",
"merged_at": "2024-06-05T12:43:26Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6957.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6957"
} | 2024-06-05T10:46:47Z | https://api.github.com/repos/huggingface/datasets/issues/6957/comments | Fix typos in docs introduced by:
- #6956
Typos:
- `comparisions` => `comparisons`
- two consecutive sentences both ending in colon
- split one sentence into two
Sorry, I did not have time to review that PR.
CC: @lhoestq | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6957/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6957/timeline | closed | false | 6,957 | null | 2024-06-05T12:43:26Z | null | true |
2,333,940,021 | https://api.github.com/repos/huggingface/datasets/issues/6956 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6956/events | [] | null | 2024-06-04T16:46:34Z | [] | https://github.com/huggingface/datasets/pull/6956 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6956). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005348 / 0.011353 (-0.006005) | 0.003785 / 0.011008 (-0.007223) | 0.061674 / 0.038508 (0.023166) | 0.032127 / 0.023109 (0.009017) | 0.247095 / 0.275898 (-0.028803) | 0.276466 / 0.323480 (-0.047014) | 0.004197 / 0.007986 (-0.003789) | 0.002734 / 0.004328 (-0.001594) | 0.049604 / 0.004250 (0.045354) | 0.048553 / 0.037052 (0.011500) | 0.253230 / 0.258489 (-0.005259) | 0.286954 / 0.293841 (-0.006887) | 0.028181 / 0.128546 (-0.100365) | 0.010602 / 0.075646 (-0.065044) | 0.200719 / 0.419271 (-0.218552) | 0.037278 / 0.043533 (-0.006254) | 0.251565 / 0.255139 (-0.003574) | 0.269026 / 0.283200 (-0.014174) | 0.017632 / 0.141683 (-0.124050) | 1.136216 / 1.452155 (-0.315939) | 1.181158 / 1.492716 (-0.311559) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004892 / 0.018006 (-0.013114) | 0.312921 / 0.000490 (0.312431) | 0.000247 / 0.000200 (0.000047) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019303 / 0.037411 (-0.018108) | 0.062699 / 0.014526 (0.048174) | 0.075227 / 0.176557 (-0.101329) | 0.122919 / 0.737135 (-0.614217) | 0.076506 / 0.296338 (-0.219833) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277299 / 0.215209 (0.062090) | 2.754771 / 2.077655 (0.677116) | 1.457164 / 1.504120 (-0.046956) | 1.318878 / 1.541195 (-0.222317) | 1.374245 / 1.468490 (-0.094245) | 0.566253 / 4.584777 (-4.018524) | 2.352589 / 3.745712 (-1.393123) | 2.764263 / 5.269862 (-2.505599) | 1.843141 / 4.565676 (-2.722535) | 0.063996 / 0.424275 (-0.360279) | 0.005045 / 0.007607 (-0.002562) | 0.336703 / 0.226044 (0.110658) | 3.342538 / 2.268929 (1.073609) | 1.836664 / 55.444624 (-53.607960) | 1.528901 / 6.876477 (-5.347576) | 1.769562 / 2.142072 (-0.372511) | 0.674192 / 4.805227 (-4.131035) | 0.122421 / 6.500664 (-6.378243) | 0.043714 / 0.075469 (-0.031756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989432 / 1.841788 (-0.852356) | 12.178341 / 8.074308 (4.104033) | 9.730838 / 10.191392 (-0.460554) | 0.146751 / 0.680424 (-0.533673) | 0.014720 / 0.534201 (-0.519481) | 0.285821 / 0.579283 (-0.293462) | 0.266474 / 0.434364 (-0.167889) | 0.327886 / 0.540337 (-0.212451) | 0.455672 / 1.386936 (-0.931264) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005691 / 0.011353 (-0.005662) | 0.004089 / 0.011008 (-0.006919) | 0.049878 / 0.038508 (0.011370) | 0.033578 / 0.023109 (0.010469) | 0.268295 / 0.275898 (-0.007603) | 0.288918 / 0.323480 (-0.034561) | 0.005092 / 0.007986 (-0.002894) | 0.002916 / 0.004328 (-0.001412) | 0.049489 / 0.004250 (0.045239) | 0.042495 / 0.037052 (0.005442) | 0.276253 / 0.258489 (0.017764) | 0.313321 / 0.293841 (0.019480) | 0.029386 / 0.128546 (-0.099160) | 0.010926 / 0.075646 (-0.064720) | 0.071747 / 0.419271 (-0.347525) | 0.033642 / 0.043533 (-0.009891) | 0.264950 / 0.255139 (0.009811) | 0.282962 / 0.283200 (-0.000238) | 0.018878 / 0.141683 (-0.122805) | 1.170685 / 1.452155 (-0.281470) | 1.198321 / 1.492716 (-0.294396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100422 / 0.018006 (0.082415) | 0.311750 / 0.000490 (0.311260) | 0.000235 / 0.000200 (0.000035) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023093 / 0.037411 (-0.014318) | 0.076934 / 0.014526 (0.062408) | 0.088959 / 0.176557 (-0.087598) | 0.129511 / 0.737135 (-0.607624) | 0.090151 / 0.296338 (-0.206187) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301646 / 0.215209 (0.086437) | 2.961780 / 2.077655 (0.884126) | 1.656051 / 1.504120 (0.151931) | 1.533154 / 1.541195 (-0.008041) | 1.585152 / 1.468490 (0.116662) | 0.582157 / 4.584777 (-4.002620) | 0.954881 / 3.745712 (-2.790831) | 2.813174 / 5.269862 (-2.456688) | 1.842840 / 4.565676 (-2.722837) | 0.065598 / 0.424275 (-0.358677) | 0.005306 / 0.007607 (-0.002301) | 0.359610 / 0.226044 (0.133565) | 3.575320 / 2.268929 (1.306391) | 2.015327 / 55.444624 (-53.429297) | 1.734086 / 6.876477 (-5.142391) | 1.919081 / 2.142072 (-0.222991) | 0.671178 / 4.805227 (-4.134049) | 0.120109 / 6.500664 (-6.380555) | 0.042353 / 0.075469 (-0.033116) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.011726 / 1.841788 (-0.830062) | 13.007806 / 8.074308 (4.933498) | 10.632486 / 10.191392 (0.441094) | 0.148535 / 0.680424 (-0.531889) | 0.015988 / 0.534201 (-0.518213) | 0.290023 / 0.579283 (-0.289260) | 0.130685 / 0.434364 (-0.303679) | 0.322912 / 0.540337 (-0.217425) | 0.420596 / 1.386936 (-0.966340) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#336512dcba4fdb4c349d5ecb632b6ced80e038d5 \"CML watermark\")\n"
] | update docs on N-dim arrays | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6956/reactions"
} | PR_kwDODunzps5xcwXz | {
"diff_url": "https://github.com/huggingface/datasets/pull/6956.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6956",
"merged_at": "2024-06-04T16:40:27Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6956.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6956"
} | 2024-06-04T16:32:19Z | https://api.github.com/repos/huggingface/datasets/issues/6956/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6956/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6956/timeline | closed | false | 6,956 | null | 2024-06-04T16:40:27Z | null | true |
2,333,802,815 | https://api.github.com/repos/huggingface/datasets/issues/6955 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6955/events | [] | null | 2024-06-05T10:18:56Z | [] | https://github.com/huggingface/datasets/pull/6955 | CONTRIBUTOR | null | false | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005507 / 0.011353 (-0.005845) | 0.003757 / 0.011008 (-0.007251) | 0.063274 / 0.038508 (0.024766) | 0.029720 / 0.023109 (0.006610) | 0.247974 / 0.275898 (-0.027924) | 0.272283 / 0.323480 (-0.051197) | 0.004186 / 0.007986 (-0.003799) | 0.002820 / 0.004328 (-0.001508) | 0.049070 / 0.004250 (0.044820) | 0.050026 / 0.037052 (0.012973) | 0.256501 / 0.258489 (-0.001988) | 0.297082 / 0.293841 (0.003241) | 0.028549 / 0.128546 (-0.099997) | 0.010361 / 0.075646 (-0.065285) | 0.213202 / 0.419271 (-0.206070) | 0.038117 / 0.043533 (-0.005416) | 0.258878 / 0.255139 (0.003739) | 0.282980 / 0.283200 (-0.000220) | 0.018911 / 0.141683 (-0.122772) | 1.118857 / 1.452155 (-0.333298) | 1.157763 / 1.492716 (-0.334953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004499 / 0.018006 (-0.013507) | 0.310445 / 0.000490 (0.309956) | 0.000218 / 0.000200 (0.000018) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019275 / 0.037411 (-0.018137) | 0.063257 / 0.014526 (0.048731) | 0.075833 / 0.176557 (-0.100724) | 0.122323 / 0.737135 (-0.614812) | 0.079046 / 0.296338 (-0.217292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292811 / 0.215209 (0.077602) | 2.903501 / 2.077655 (0.825846) | 1.592434 / 1.504120 (0.088314) | 1.450833 / 1.541195 (-0.090362) | 1.481285 / 1.468490 (0.012795) | 0.570150 / 4.584777 (-4.014627) | 2.388618 / 3.745712 (-1.357094) | 2.699322 / 5.269862 (-2.570540) | 1.781405 / 4.565676 (-2.784272) | 0.063451 / 0.424275 (-0.360824) | 0.004979 / 0.007607 (-0.002628) | 0.353346 / 0.226044 (0.127302) | 3.541217 / 2.268929 (1.272289) | 1.972335 / 55.444624 (-53.472289) | 1.634780 / 6.876477 (-5.241697) | 1.815944 / 2.142072 (-0.326128) | 0.651559 / 4.805227 (-4.153669) | 0.118398 / 6.500664 (-6.382266) | 0.041962 / 0.075469 (-0.033507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971435 / 1.841788 (-0.870352) | 11.843740 / 8.074308 (3.769431) | 9.716333 / 10.191392 (-0.475059) | 0.145923 / 0.680424 (-0.534501) | 0.015073 / 0.534201 (-0.519128) | 0.293307 / 0.579283 (-0.285976) | 0.265505 / 0.434364 (-0.168859) | 0.327578 / 0.540337 (-0.212760) | 0.436409 / 1.386936 (-0.950527) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005647 / 0.011353 (-0.005706) | 0.003669 / 0.011008 (-0.007339) | 0.050234 / 0.038508 (0.011726) | 0.033033 / 0.023109 (0.009924) | 0.269303 / 0.275898 (-0.006595) | 0.282472 / 0.323480 (-0.041008) | 0.004283 / 0.007986 (-0.003703) | 0.002821 / 0.004328 (-0.001507) | 0.050887 / 0.004250 (0.046637) | 0.041618 / 0.037052 (0.004565) | 0.277628 / 0.258489 (0.019139) | 0.310539 / 0.293841 (0.016698) | 0.030036 / 0.128546 (-0.098511) | 0.010401 / 0.075646 (-0.065245) | 0.058845 / 0.419271 (-0.360427) | 0.033676 / 0.043533 (-0.009857) | 0.261148 / 0.255139 (0.006009) | 0.295232 / 0.283200 (0.012032) | 0.018603 / 0.141683 (-0.123080) | 1.132182 / 1.452155 (-0.319972) | 1.173763 / 1.492716 (-0.318953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100594 / 0.018006 (0.082588) | 0.308101 / 0.000490 (0.307611) | 0.000217 / 0.000200 (0.000017) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023040 / 0.037411 (-0.014371) | 0.080676 / 0.014526 (0.066150) | 0.094687 / 0.176557 (-0.081870) | 0.129780 / 0.737135 (-0.607356) | 0.092241 / 0.296338 (-0.204097) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294799 / 0.215209 (0.079590) | 2.957570 / 2.077655 (0.879915) | 1.576795 / 1.504120 (0.072675) | 1.446869 / 1.541195 (-0.094326) | 1.463133 / 1.468490 (-0.005357) | 0.568511 / 4.584777 (-4.016266) | 1.011502 / 3.745712 (-2.734211) | 2.759571 / 5.269862 (-2.510291) | 1.771738 / 4.565676 (-2.793939) | 0.064104 / 0.424275 (-0.360171) | 0.005160 / 0.007607 (-0.002448) | 0.347554 / 0.226044 (0.121510) | 3.463905 / 2.268929 (1.194976) | 1.931843 / 55.444624 (-53.512781) | 1.622765 / 6.876477 (-5.253712) | 1.809146 / 2.142072 (-0.332926) | 0.653388 / 4.805227 (-4.151839) | 0.122703 / 6.500664 (-6.377961) | 0.041680 / 0.075469 (-0.033790) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000428 / 1.841788 (-0.841359) | 12.503003 / 8.074308 (4.428695) | 10.434802 / 10.191392 (0.243410) | 0.144684 / 0.680424 (-0.535740) | 0.015988 / 0.534201 (-0.518213) | 0.287179 / 0.579283 (-0.292104) | 0.124811 / 0.434364 (-0.309553) | 0.327855 / 0.540337 (-0.212482) | 0.425144 / 1.386936 (-0.961792) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7170067f819222153fcd45682db61279bdfe673 \"CML watermark\")\n"
] | Fix small typo | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6955/reactions"
} | PR_kwDODunzps5xcSYm | {
"diff_url": "https://github.com/huggingface/datasets/pull/6955.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6955",
"merged_at": "2024-06-04T15:20:55Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6955.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6955"
} | 2024-06-04T15:19:02Z | https://api.github.com/repos/huggingface/datasets/issues/6955/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/17081356?v=4",
"events_url": "https://api.github.com/users/marcenacp/events{/privacy}",
"followers_url": "https://api.github.com/users/marcenacp/followers",
"following_url": "https://api.github.com/users/marcenacp/following{/other_user}",
"gists_url": "https://api.github.com/users/marcenacp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/marcenacp",
"id": 17081356,
"login": "marcenacp",
"node_id": "MDQ6VXNlcjE3MDgxMzU2",
"organizations_url": "https://api.github.com/users/marcenacp/orgs",
"received_events_url": "https://api.github.com/users/marcenacp/received_events",
"repos_url": "https://api.github.com/users/marcenacp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/marcenacp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/marcenacp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/marcenacp"
} | https://api.github.com/repos/huggingface/datasets/issues/6955/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6955/timeline | closed | false | 6,955 | null | 2024-06-04T15:20:55Z | null | true |
2,333,530,558 | https://api.github.com/repos/huggingface/datasets/issues/6954 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6954/events | [] | null | 2024-06-17T16:32:24Z | [] | https://github.com/huggingface/datasets/pull/6954 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6954). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"yay! π ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004881 / 0.011353 (-0.006472) | 0.003246 / 0.011008 (-0.007762) | 0.062496 / 0.038508 (0.023988) | 0.030760 / 0.023109 (0.007651) | 0.241500 / 0.275898 (-0.034398) | 0.272073 / 0.323480 (-0.051407) | 0.004123 / 0.007986 (-0.003863) | 0.002796 / 0.004328 (-0.001533) | 0.049015 / 0.004250 (0.044764) | 0.047095 / 0.037052 (0.010043) | 0.257002 / 0.258489 (-0.001487) | 0.287602 / 0.293841 (-0.006239) | 0.027281 / 0.128546 (-0.101265) | 0.010132 / 0.075646 (-0.065514) | 0.203699 / 0.419271 (-0.215572) | 0.036553 / 0.043533 (-0.006980) | 0.246221 / 0.255139 (-0.008918) | 0.268137 / 0.283200 (-0.015062) | 0.017260 / 0.141683 (-0.124423) | 1.100677 / 1.452155 (-0.351478) | 1.148367 / 1.492716 (-0.344349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102519 / 0.018006 (0.084513) | 0.301929 / 0.000490 (0.301439) | 0.000223 / 0.000200 (0.000023) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018590 / 0.037411 (-0.018821) | 0.061615 / 0.014526 (0.047089) | 0.074579 / 0.176557 (-0.101978) | 0.121415 / 0.737135 (-0.615720) | 0.075696 / 0.296338 (-0.220642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283842 / 0.215209 (0.068633) | 2.788321 / 2.077655 (0.710666) | 1.481376 / 1.504120 (-0.022743) | 1.356064 / 1.541195 (-0.185131) | 1.380592 / 1.468490 (-0.087898) | 0.575577 / 4.584777 (-4.009199) | 2.471858 / 3.745712 (-1.273854) | 2.760769 / 5.269862 (-2.509093) | 1.808638 / 4.565676 (-2.757038) | 0.064930 / 0.424275 (-0.359345) | 0.005056 / 0.007607 (-0.002551) | 0.337794 / 0.226044 (0.111750) | 3.359444 / 2.268929 (1.090515) | 1.829540 / 55.444624 (-53.615084) | 1.518660 / 6.876477 (-5.357817) | 1.671612 / 2.142072 (-0.470460) | 0.664286 / 4.805227 (-4.140941) | 0.119593 / 6.500664 (-6.381071) | 0.042519 / 0.075469 (-0.032950) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.993152 / 1.841788 (-0.848636) | 11.733054 / 8.074308 (3.658746) | 9.746734 / 10.191392 (-0.444658) | 0.143026 / 0.680424 (-0.537398) | 0.014900 / 0.534201 (-0.519301) | 0.292243 / 0.579283 (-0.287040) | 0.261301 / 0.434364 (-0.173063) | 0.330838 / 0.540337 (-0.209500) | 0.523719 / 1.386936 (-0.863217) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005707 / 0.011353 (-0.005646) | 0.003523 / 0.011008 (-0.007485) | 0.052265 / 0.038508 (0.013757) | 0.034296 / 0.023109 (0.011187) | 0.266589 / 0.275898 (-0.009309) | 0.288441 / 0.323480 (-0.035039) | 0.004507 / 0.007986 (-0.003478) | 0.002745 / 0.004328 (-0.001583) | 0.049417 / 0.004250 (0.045167) | 0.042679 / 0.037052 (0.005627) | 0.278518 / 0.258489 (0.020029) | 0.328751 / 0.293841 (0.034911) | 0.029530 / 0.128546 (-0.099016) | 0.010373 / 0.075646 (-0.065274) | 0.058207 / 0.419271 (-0.361064) | 0.033434 / 0.043533 (-0.010099) | 0.267902 / 0.255139 (0.012763) | 0.288192 / 0.283200 (0.004993) | 0.018866 / 0.141683 (-0.122817) | 1.132734 / 1.452155 (-0.319421) | 1.172879 / 1.492716 (-0.319837) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097787 / 0.018006 (0.079780) | 0.305509 / 0.000490 (0.305019) | 0.000268 / 0.000200 (0.000068) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023230 / 0.037411 (-0.014181) | 0.076637 / 0.014526 (0.062111) | 0.088386 / 0.176557 (-0.088171) | 0.131079 / 0.737135 (-0.606057) | 0.091142 / 0.296338 (-0.205197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295586 / 0.215209 (0.080377) | 2.872090 / 2.077655 (0.794435) | 1.538152 / 1.504120 (0.034032) | 1.405695 / 1.541195 (-0.135500) | 1.421058 / 1.468490 (-0.047432) | 0.561179 / 4.584777 (-4.023598) | 0.943954 / 3.745712 (-2.801758) | 2.684381 / 5.269862 (-2.585481) | 1.757457 / 4.565676 (-2.808220) | 0.062903 / 0.424275 (-0.361372) | 0.004998 / 0.007607 (-0.002610) | 0.370290 / 0.226044 (0.144245) | 3.374988 / 2.268929 (1.106059) | 1.899282 / 55.444624 (-53.545342) | 1.598787 / 6.876477 (-5.277690) | 1.735371 / 2.142072 (-0.406702) | 0.647367 / 4.805227 (-4.157860) | 0.116975 / 6.500664 (-6.383689) | 0.040811 / 0.075469 (-0.034658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996380 / 1.841788 (-0.845408) | 12.225657 / 8.074308 (4.151349) | 10.291221 / 10.191392 (0.099829) | 0.142791 / 0.680424 (-0.537633) | 0.016087 / 0.534201 (-0.518114) | 0.299978 / 0.579283 (-0.279305) | 0.149444 / 0.434364 (-0.284920) | 0.321354 / 0.540337 (-0.218984) | 0.414492 / 1.386936 (-0.972444) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a2dc287cbef5311cf1a32ad4e3685f4052db227c \"CML watermark\")\n",
"@lhoestq Thanks for the PR, Is there a way to detect if `trust_remote_code=True` will be required for loading the dataset, without loading it? It would be great if you could please point me to the relevant documentation.",
"You can check the presence of a python loading script in the repository.\r\n\r\nIf there is a .py file named after the repository name, then it requires trust_remote_code.",
"Thanks @lhoestq for the reference."
] | Remove default `trust_remote_code=True` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6954/reactions"
} | PR_kwDODunzps5xbWtU | {
"diff_url": "https://github.com/huggingface/datasets/pull/6954.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6954",
"merged_at": "2024-06-07T12:20:29Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6954.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6954"
} | 2024-06-04T13:22:56Z | https://api.github.com/repos/huggingface/datasets/issues/6954/comments | TODO:
- [x] fix tests | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6954/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6954/timeline | closed | false | 6,954 | null | 2024-06-07T12:20:29Z | null | true |
2,333,366,120 | https://api.github.com/repos/huggingface/datasets/issues/6953 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6953/events | [
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
}
] | null | 2024-07-01T11:31:25Z | [] | https://github.com/huggingface/datasets/issues/6953 | MEMBER | completed | null | null | [
"Canonical datasets are no longer mentioned in the docs."
] | Remove canonical datasets from docs | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6953/reactions"
} | I_kwDODunzps6LFFdo | null | 2024-06-04T12:09:03Z | https://api.github.com/repos/huggingface/datasets/issues/6953/comments | Remove canonical datasets from docs, now that we no longer have canonical datasets. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6953/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6953/timeline | closed | false | 6,953 | null | 2024-07-01T11:31:25Z | null | false |
2,333,320,411 | https://api.github.com/repos/huggingface/datasets/issues/6952 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6952/events | [] | null | 2024-06-10T14:09:59Z | [] | https://github.com/huggingface/datasets/pull/6952 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6952). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005232 / 0.011353 (-0.006121) | 0.003744 / 0.011008 (-0.007264) | 0.064089 / 0.038508 (0.025581) | 0.032409 / 0.023109 (0.009300) | 0.255886 / 0.275898 (-0.020013) | 0.276033 / 0.323480 (-0.047447) | 0.004165 / 0.007986 (-0.003821) | 0.002741 / 0.004328 (-0.001588) | 0.052145 / 0.004250 (0.047894) | 0.043863 / 0.037052 (0.006811) | 0.258844 / 0.258489 (0.000355) | 0.290108 / 0.293841 (-0.003733) | 0.027390 / 0.128546 (-0.101156) | 0.010543 / 0.075646 (-0.065103) | 0.206936 / 0.419271 (-0.212335) | 0.036778 / 0.043533 (-0.006755) | 0.254331 / 0.255139 (-0.000808) | 0.279037 / 0.283200 (-0.004163) | 0.018564 / 0.141683 (-0.123119) | 1.112765 / 1.452155 (-0.339390) | 1.160099 / 1.492716 (-0.332617) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092148 / 0.018006 (0.074142) | 0.297156 / 0.000490 (0.296667) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018797 / 0.037411 (-0.018615) | 0.062992 / 0.014526 (0.048466) | 0.076361 / 0.176557 (-0.100195) | 0.121168 / 0.737135 (-0.615968) | 0.075845 / 0.296338 (-0.220494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293842 / 0.215209 (0.078633) | 2.880720 / 2.077655 (0.803065) | 1.477779 / 1.504120 (-0.026341) | 1.345136 / 1.541195 (-0.196059) | 1.352153 / 1.468490 (-0.116337) | 0.574722 / 4.584777 (-4.010055) | 2.373925 / 3.745712 (-1.371787) | 2.750704 / 5.269862 (-2.519157) | 1.725979 / 4.565676 (-2.839697) | 0.063006 / 0.424275 (-0.361269) | 0.005019 / 0.007607 (-0.002588) | 0.341228 / 0.226044 (0.115184) | 3.352576 / 2.268929 (1.083647) | 1.821363 / 55.444624 (-53.623261) | 1.529441 / 6.876477 (-5.347036) | 1.543401 / 2.142072 (-0.598671) | 0.634282 / 4.805227 (-4.170945) | 0.115565 / 6.500664 (-6.385099) | 0.042514 / 0.075469 (-0.032956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.987532 / 1.841788 (-0.854255) | 11.483853 / 8.074308 (3.409545) | 9.565657 / 10.191392 (-0.625735) | 0.141247 / 0.680424 (-0.539176) | 0.015026 / 0.534201 (-0.519175) | 0.299905 / 0.579283 (-0.279378) | 0.267667 / 0.434364 (-0.166697) | 0.320661 / 0.540337 (-0.219676) | 0.427368 / 1.386936 (-0.959568) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005448 / 0.011353 (-0.005905) | 0.003726 / 0.011008 (-0.007283) | 0.049776 / 0.038508 (0.011268) | 0.032733 / 0.023109 (0.009624) | 0.261387 / 0.275898 (-0.014511) | 0.280087 / 0.323480 (-0.043393) | 0.004351 / 0.007986 (-0.003634) | 0.002842 / 0.004328 (-0.001487) | 0.049440 / 0.004250 (0.045190) | 0.039585 / 0.037052 (0.002533) | 0.266331 / 0.258489 (0.007842) | 0.299643 / 0.293841 (0.005802) | 0.029649 / 0.128546 (-0.098897) | 0.010381 / 0.075646 (-0.065265) | 0.058596 / 0.419271 (-0.360676) | 0.033271 / 0.043533 (-0.010262) | 0.251070 / 0.255139 (-0.004069) | 0.272850 / 0.283200 (-0.010349) | 0.016728 / 0.141683 (-0.124955) | 1.146952 / 1.452155 (-0.305202) | 1.182602 / 1.492716 (-0.310114) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091673 / 0.018006 (0.073667) | 0.297228 / 0.000490 (0.296738) | 0.000197 / 0.000200 (-0.000003) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023174 / 0.037411 (-0.014237) | 0.078866 / 0.014526 (0.064341) | 0.088436 / 0.176557 (-0.088121) | 0.129650 / 0.737135 (-0.607485) | 0.091100 / 0.296338 (-0.205238) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293882 / 0.215209 (0.078673) | 2.882667 / 2.077655 (0.805012) | 1.562949 / 1.504120 (0.058829) | 1.435104 / 1.541195 (-0.106090) | 1.450815 / 1.468490 (-0.017675) | 0.584090 / 4.584777 (-4.000687) | 0.984176 / 3.745712 (-2.761536) | 2.668740 / 5.269862 (-2.601121) | 1.766993 / 4.565676 (-2.798683) | 0.064710 / 0.424275 (-0.359565) | 0.005329 / 0.007607 (-0.002278) | 0.346008 / 0.226044 (0.119964) | 3.414576 / 2.268929 (1.145647) | 1.911388 / 55.444624 (-53.533236) | 1.660357 / 6.876477 (-5.216120) | 1.818628 / 2.142072 (-0.323444) | 0.659585 / 4.805227 (-4.145643) | 0.116980 / 6.500664 (-6.383684) | 0.041364 / 0.075469 (-0.034105) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005659 / 1.841788 (-0.836129) | 12.023761 / 8.074308 (3.949453) | 10.351086 / 10.191392 (0.159694) | 0.143261 / 0.680424 (-0.537162) | 0.016143 / 0.534201 (-0.518058) | 0.287793 / 0.579283 (-0.291490) | 0.123698 / 0.434364 (-0.310666) | 0.325241 / 0.540337 (-0.215097) | 0.418772 / 1.386936 (-0.968164) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#37a603679f451826cfafd8aae00738b01dcb9d58 \"CML watermark\")\n"
] | Move info_utils errors to exceptions module | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6952/reactions"
} | PR_kwDODunzps5xaosH | {
"diff_url": "https://github.com/huggingface/datasets/pull/6952.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6952",
"merged_at": "2024-06-10T14:03:55Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6952.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6952"
} | 2024-06-04T11:48:32Z | https://api.github.com/repos/huggingface/datasets/issues/6952/comments | Move `info_utils` errors to `exceptions` module.
Additionally rename some of them, deprecate the former ones, and make the deprecation backward compatible (by making the new errors inherit from the former ones). | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6952/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6952/timeline | closed | false | 6,952 | null | 2024-06-10T14:03:55Z | null | true |
2,333,231,042 | https://api.github.com/repos/huggingface/datasets/issues/6951 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6951/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-07-01T11:33:10Z | [] | https://github.com/huggingface/datasets/issues/6951 | NONE | not_planned | null | null | [
"@xianbaoqian ",
"Feel free to open a PR in `m-a-p/COIG-CQIA` to define a default subset. Currently there is no default.\r\n\r\nYou can find some documentation at https://huggingface.co./docs/hub/datasets-manual-configuration#multiple-configurations",
"@lhoestq \r\n\r\nWhilst having a default subset readily available (e.g. `all`) by the dataset author is an ideal solution, it is not always the reality.\r\n\r\nWithout the ability to fork the dataset, this can be problematic.\r\n\r\nAs far as I know, it is not possible at all to specify multiple subsets in a generalized programmatic way without hard coding subset names for a specific dataset.\r\n\r\nEven the ability to fetch subset names and loop over them would be sufficient.",
"Please note that each subset can have different feature columns, thus making it impossible to load them all into a unique Dataset instance.\r\n\r\nThat is why subsets were created: to support different but related datasets to coexist in a single dataset repository.\r\n\r\nIf you would like to programmatically get the list of subset names, you can use `datasets.get_dataset_config_names`: https://huggingface.co./docs/datasets/v2.20.0/en/load_hub#configurations"
] | load_dataset() should load all subsets, if no specific subset is specified | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6951/reactions"
} | I_kwDODunzps6LEkfC | null | 2024-06-04T11:02:33Z | https://api.github.com/repos/huggingface/datasets/issues/6951/comments | ### Feature request
Currently load_dataset() is forcing users to specify a subset. Example
`from datasets import load_dataset
dataset = load_dataset("m-a-p/COIG-CQIA")`
```---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-10-c0cb49385da6>](https://localhost:8080/#) in <cell line: 2>()
1 from datasets import load_dataset
----> 2 dataset = load_dataset("m-a-p/COIG-CQIA")
3 frames
[/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _create_builder_config(self, config_name, custom_features, **config_kwargs)
582 if not config_kwargs:
583 example_of_usage = f"load_dataset('{self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')"
--> 584 raise ValueError(
585 "Config name is missing."
586 f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}"
ValueError: Config name is missing.
Please pick one among the available configs: ['chinese_traditional', 'coig_pc', 'exam', 'finance', 'douban', 'human_value', 'logi_qa', 'ruozhiba', 'segmentfault', 'wiki', 'wikihow', 'xhs', 'zhihu']
Example of usage:
`load_dataset('coig-cqia', 'chinese_traditional')`
```
This means a dataset cannot contain all the subsets at the same time. I guess one workaround is to manually specify the subset files like in [here](https://huggingface.co./datasets/m-a-p/COIG-CQIA/discussions/1#658698b44bb41498f75c5622), which is clumsy.
### Motivation
Ideally, if not subset is specified, the API should just try to load all subsets. This makes it much easier to handle datasets w/ subsets.
### Your contribution
Not sure since I'm not familiar w/ the lib src. | {
"avatar_url": "https://avatars.githubusercontent.com/u/5577741?v=4",
"events_url": "https://api.github.com/users/windmaple/events{/privacy}",
"followers_url": "https://api.github.com/users/windmaple/followers",
"following_url": "https://api.github.com/users/windmaple/following{/other_user}",
"gists_url": "https://api.github.com/users/windmaple/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/windmaple",
"id": 5577741,
"login": "windmaple",
"node_id": "MDQ6VXNlcjU1Nzc3NDE=",
"organizations_url": "https://api.github.com/users/windmaple/orgs",
"received_events_url": "https://api.github.com/users/windmaple/received_events",
"repos_url": "https://api.github.com/users/windmaple/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/windmaple/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/windmaple/subscriptions",
"type": "User",
"url": "https://api.github.com/users/windmaple"
} | https://api.github.com/repos/huggingface/datasets/issues/6951/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6951/timeline | closed | false | 6,951 | null | 2024-07-01T11:33:10Z | null | false |
2,333,005,974 | https://api.github.com/repos/huggingface/datasets/issues/6950 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6950/events | [
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
}
] | null | 2024-06-25T08:05:49Z | [] | https://github.com/huggingface/datasets/issues/6950 | NONE | completed | null | null | [
"Hi ! It seems the documentation was outdated in this paragraph\r\n\r\nI fixed it here: https://github.com/huggingface/datasets/pull/6956",
"Fixed."
] | `Dataset.with_format` behaves inconsistently with documentation | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6950/reactions"
} | I_kwDODunzps6LDtiW | null | 2024-06-04T09:18:32Z | https://api.github.com/repos/huggingface/datasets/issues/6950/comments | ### Describe the bug
The actual behavior of the interface `Dataset.with_format` is inconsistent with the documentation.
https://huggingface.co./docs/datasets/use_with_pytorch#n-dimensional-arrays
https://huggingface.co./docs/datasets/v2.19.0/en/use_with_tensorflow#n-dimensional-arrays
> If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists.
> In particular, a PyTorch formatted dataset outputs nested lists instead of a single tensor.
> A TensorFlow formatted dataset outputs a RaggedTensor instead of a single tensor.
But I get a single tensor by default, which is inconsistent with the description.
Actually the current behavior seems more reasonable to me. Therefore, the document needs to be modified.
### Steps to reproduce the bug
```python
>>> from datasets import Dataset
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': tensor([[1, 2],
[3, 4]])}
>>> ds = ds.with_format("tf")
>>> ds[0]
{'data': <tf.Tensor: shape=(2, 2), dtype=int64, numpy=
array([[1, 2],
[3, 4]])>}
```
### Expected behavior
```python
>>> from datasets import Dataset
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': [tensor([1, 2]), tensor([3, 4])]}
>>> ds = ds.with_format("tf")
>>> ds[0]
{'data': <tf.RaggedTensor [[1, 2], [3, 4]]>}
```
### Environment info
datasets==2.19.1
torch==2.1.0
tensorflow==2.13.1 | {
"avatar_url": "https://avatars.githubusercontent.com/u/42494185?v=4",
"events_url": "https://api.github.com/users/iansheng/events{/privacy}",
"followers_url": "https://api.github.com/users/iansheng/followers",
"following_url": "https://api.github.com/users/iansheng/following{/other_user}",
"gists_url": "https://api.github.com/users/iansheng/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/iansheng",
"id": 42494185,
"login": "iansheng",
"node_id": "MDQ6VXNlcjQyNDk0MTg1",
"organizations_url": "https://api.github.com/users/iansheng/orgs",
"received_events_url": "https://api.github.com/users/iansheng/received_events",
"repos_url": "https://api.github.com/users/iansheng/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/iansheng/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/iansheng/subscriptions",
"type": "User",
"url": "https://api.github.com/users/iansheng"
} | https://api.github.com/repos/huggingface/datasets/issues/6950/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6950/timeline | closed | false | 6,950 | null | 2024-06-25T08:05:49Z | null | false |
2,332,336,573 | https://api.github.com/repos/huggingface/datasets/issues/6949 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6949/events | [] | null | 2024-07-01T11:33:46Z | [] | https://github.com/huggingface/datasets/issues/6949 | NONE | completed | null | null | [
"Hi, @lion-ops.\r\n\r\nIn our Continuous Integration we have many tests on loading JSON files and all of them work properly.\r\n\r\nCould you please share your \"train.json\" file, so that we can try to reproduce the issue you have? ",
"> Hi, @lion-ops.\r\n> \r\n> In our Continuous Integration we have many tests on loading JSON files and all of them work properly.\r\n> \r\n> Could you please share your \"train.json\" file, so that we can try to reproduce the issue you have?\r\n\r\nThank you for your reply. I can load it normally in another server. Is it possible that the disk of my server is a network disk in the LAN, so it will be downloaded from the LAN and get stuck?"
] | load_dataset error | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6949/reactions"
} | I_kwDODunzps6LBKG9 | null | 2024-06-04T01:24:45Z | https://api.github.com/repos/huggingface/datasets/issues/6949/comments | ### Describe the bug
Why does the program get stuck when I use load_dataset method, and it still gets stuck after loading for several hours? In fact, my json file is only 21m, and I can load it in one go using open('', 'r').
### Steps to reproduce the bug
1. pip install datasets==2.19.2
2. from datasets import Dataset, DatasetDict, NamedSplit, Split, load_dataset
3. data = load_dataset('json', data_files='train.json')
### Expected behavior
It is able to load my json correctly
### Environment info
datasets==2.19.2 | {
"avatar_url": "https://avatars.githubusercontent.com/u/27952522?v=4",
"events_url": "https://api.github.com/users/lion-ops/events{/privacy}",
"followers_url": "https://api.github.com/users/lion-ops/followers",
"following_url": "https://api.github.com/users/lion-ops/following{/other_user}",
"gists_url": "https://api.github.com/users/lion-ops/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lion-ops",
"id": 27952522,
"login": "lion-ops",
"node_id": "MDQ6VXNlcjI3OTUyNTIy",
"organizations_url": "https://api.github.com/users/lion-ops/orgs",
"received_events_url": "https://api.github.com/users/lion-ops/received_events",
"repos_url": "https://api.github.com/users/lion-ops/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lion-ops/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lion-ops/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lion-ops"
} | https://api.github.com/repos/huggingface/datasets/issues/6949/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6949/timeline | closed | false | 6,949 | null | 2024-07-01T11:33:46Z | null | false |
2,331,758,300 | https://api.github.com/repos/huggingface/datasets/issues/6948 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6948/events | [] | null | 2024-06-03T18:10:57Z | [] | https://github.com/huggingface/datasets/issues/6948 | NONE | null | null | null | [] | to_tf_dataset: Visible devices cannot be modified after being initialized | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6948/reactions"
} | I_kwDODunzps6K-87c | null | 2024-06-03T18:10:57Z | https://api.github.com/repos/huggingface/datasets/issues/6948/comments | ### Describe the bug
When trying to use to_tf_dataset with a custom data_loader collate_fn when I use parallelism I am met with the following error as many times as number of workers there were in ``num_workers``.
File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 314, in _bootstrap
self.run()
File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/opt/miniconda/envs/env/lib/python3.11/site-packages/datasets/utils/tf_utils.py", line 438, in worker_loop
tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/framework/config.py", line 566, in set_visible_devices
context.context().set_visible_devices(devices, device_type)
File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/eager/context.py", line 1737, in set_visible_devices
raise RuntimeError(
RuntimeError: Visible devices cannot be modified after being initialized
### Steps to reproduce the bug
1. Download a dataset using HuggingFace load_dataset
2. Define a function that transforms the data in some way to be used in the collate_fn argument
3. Provide a ``batch_size`` and ``num_workers`` value in the ``to_tf_dataset`` function
4. Either retrieve directly or use tfds benchmark to test the dataset
``` python
from datasets import load_datasets
import tensorflow_datasets as tfds
from keras_cv.layers import Resizing
def data_loader(examples):
x = Resizing(examples[0]['image'], 256, 256, crop_to_aspect_ratio=True)
return {X[0]: x}
ds = load_datasets("logasja/FDF", split="test")
ds = ds.to_tf_dataset(collate_fn=data_loader, batch_size=16, num_workers=2)
tfds.benchmark(ds)
```
### Expected behavior
Use multiple processes to apply transformations from the collate_fn to the tf dataset on the CPU.
### Environment info
- `datasets` version: 2.19.1
- Platform: Linux-6.5.0-1023-oracle-x86_64-with-glibc2.35
- Python version: 3.11.8
- `huggingface_hub` version: 0.22.2
- PyArrow version: 15.0.2
- Pandas version: 2.2.1
- `fsspec` version: 2024.2.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/7151661?v=4",
"events_url": "https://api.github.com/users/logasja/events{/privacy}",
"followers_url": "https://api.github.com/users/logasja/followers",
"following_url": "https://api.github.com/users/logasja/following{/other_user}",
"gists_url": "https://api.github.com/users/logasja/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/logasja",
"id": 7151661,
"login": "logasja",
"node_id": "MDQ6VXNlcjcxNTE2NjE=",
"organizations_url": "https://api.github.com/users/logasja/orgs",
"received_events_url": "https://api.github.com/users/logasja/received_events",
"repos_url": "https://api.github.com/users/logasja/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/logasja/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/logasja/subscriptions",
"type": "User",
"url": "https://api.github.com/users/logasja"
} | https://api.github.com/repos/huggingface/datasets/issues/6948/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6948/timeline | open | false | 6,948 | null | null | null | false |
2,331,114,055 | https://api.github.com/repos/huggingface/datasets/issues/6947 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6947/events | [] | null | 2024-06-25T06:21:28Z | [] | https://github.com/huggingface/datasets/issues/6947 | NONE | completed | null | null | [
"same problem here",
"Hello,\r\n\r\nAre you sure you are really using datasets version 2.19.2? We just made the patch release yesterday specifically to fix this issue:\r\n- #6925\r\n\r\nI can't reproduce the error:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation')\r\nDownloading readme: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 41.1k/41.1k [00:00<00:00, 596kB/s]\r\nDownloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 40.7M/40.7M [00:04<00:00, 8.50MB/s]\r\nGenerating validation split: 45576 examples [00:01, 44956.75 examples/s]\r\n\r\nIn [3]: ds\r\nOut[3]: \r\nDataset({\r\n features: ['text', 'timestamp', 'url'],\r\n num_rows: 45576\r\n})\r\n```",
"> Hello,\r\n> \r\n> Are you sure you are really using datasets version 2.19.2? We just made the patch release yesterday specifically to fix this issue:\r\n> \r\n> * [Fix NonMatchingSplitsSizesError/ExpectedMoreSplits when passing data_dir/data_files in no-code Hub datasetsΒ #6925](https://github.com/huggingface/datasets/pull/6925)\r\n> \r\n> I can't reproduce the error:\r\n> \r\n> ```python\r\n> In [1]: from datasets import load_dataset\r\n> \r\n> In [2]: ds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation')\r\n> Downloading readme: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 41.1k/41.1k [00:00<00:00, 596kB/s]\r\n> Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 40.7M/40.7M [00:04<00:00, 8.50MB/s]\r\n> Generating validation split: 45576 examples [00:01, 44956.75 examples/s]\r\n> \r\n> In [3]: ds\r\n> Out[3]: \r\n> Dataset({\r\n> features: ['text', 'timestamp', 'url'],\r\n> num_rows: 45576\r\n> })\r\n> ```\r\nThank you for your reply,ExpectedMoreSplits was encountered in datasets version 2.12.2. After I updated the version, that is, datasets version 2.19.2, I encountered the FileNotFoundError problem mentioned above.",
"That might be due to a corrupted cache.\r\n\r\nPlease, retry loading the dataset passing: `download_mode=\"force_redownload\"`\r\n```python\r\nds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n```\r\n\r\nIt the above command does not fix the issue, then you will need to fix the cache manually, by removing the corresponding directory inside `~/.cache/huggingface/`.\r\n",
"> That might be due to a corrupted cache.\r\n> \r\n> Please, retry loading the dataset passing: `download_mode=\"force_redownload\"`\r\n> \r\n> ```python\r\n> ds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n> ```\r\n> \r\n> It the above command does not fix the issue, then you will need to fix the cache manually, by removing the corresponding directory inside `~/.cache/huggingface/`.\r\n\r\nThe two methods you mentioned above can not solve this problem, but the command line interface shows Downloading readme: 41.1kB [00:00, 281kB/s], and then FileNotFoundError appears. It is worth noting that I have no problem loading other datasets with the initial method, such as wikitext datasets",
"> The two methods you mentioned above can not solve this problem, but the command line interface shows Downloading readme: 41.1kB [00:00, 281kB/s], and then FileNotFoundError appears.\r\n\r\nSame issue encountered.\r\n",
"I really think the issue is caused by a corrupted cache, between versions 2.12.0 (there does not exist 2.12.2 version) and 2.19.2.\r\n\r\nAre you sure you removed all the corresponding corrupted directories within the cache?\r\n\r\nYou can easily check if the issue is caused by a corrupted cache by removing the entire cache:\r\n```shell\r\nmv ~/.cache/huggingface ~/.cache/huggingface.bak\r\n```\r\nand then reloading the dataset:\r\n```python\r\nds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n```",
"@albertvillanova Thanks for the reply. I tried removing the entire cache and reloading the dataset as you suggest. However, the same issue still exists. \r\n\r\nAs a test, I switch to a new platform, which (is a Windows system and) hasn't downloaded huggingface dataset before, and the dataset is loaded successfully. So I think \"a corrupted cache\" explanation makes sense. I wonder, besides `~/.cache/huggingface`, is there any other directory that may save the cache thing?\r\n\r\nAs a side note, I am using `datasets==2.20.0` and proxy `export HF_ENDPOINT=https://hf-mirror.com`.",
"Ho @ZhangGe6,\r\n\r\nAs far as I know, that directory is the only one where the cache is saved, unless you configured another one. You can check it:\r\n```python\r\nimport datasets.config\r\n\r\nprint(datasets.config.HF_CACHE_HOME)\r\n# ~/.cache/huggingface\r\n\r\nprint(datasets.config.HF_DATASETS_CACHE)\r\n# ~/.cache/huggingface/datasets\r\n\r\nprint(datasets.config.HF_MODULES_CACHE)\r\n# ~/.cache/huggingface/modules\r\n\r\nprint(datasets.config.DOWNLOADED_DATASETS_PATH)\r\n# ~/.cache/huggingface/datasets/downloads\r\n\r\nprint(datasets.config.EXTRACTED_DATASETS_PATH)\r\n# ~/.cache/huggingface/datasets/downloads/extracted\r\n```\r\n\r\nAdditionally, `datasets` uses `huggingface_hub`, but its cache directory should also be inside `~/.cache/huggingface`, unless you configured another one. You can check it:\r\n```python\r\nimport huggingface_hub.constants\r\n\r\nprint(huggingface_hub.constants.HF_HOME)\r\n# ~/.cache/huggingface\r\n\r\nprint(huggingface_hub.constants.HF_HUB_CACHE)\r\n# ~/.cache/huggingface/hub\r\n```",
"@albertvillanova I checked the directories you listed, and find that they are the same as the ones you provided. I am going to find more clues and will update what I find here.",
"I've had a similar problem, and for some reason decreasing the number of workers in the dataloader solved it",
"Same issue.\r\n",
"Hi folks. Finally, I find it is a network issue that causes huggingface hub unreachable (in China).\r\n\r\nTo run the following script \r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n```\r\nWithout setting `export HF_ENDPOINT=https://hf-mirror.com`, I get the following error log\r\n```bash\r\nTraceback (most recent call last):\r\n File \".\\demo.py\", line 8, in <module>\r\n ds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 2594, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 2266, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 1914, in dataset_module_factory\r\n raise e1 from None\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 1845, in dataset_module_factory\r\n raise ConnectionError(f\"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})\") from e\r\nConnectionError: Couldn't reach 'allenai/c4' on the Hub (ConnectionError)\r\n```\r\nAfter setting `export HF_ENDPOINT=https://hf-mirror.com`, I get the following error, which is exactly the same as what we are debugging in this issue\r\n```bash\r\nDownloading readme: 41.1kB [00:00, 41.1MB/s]\r\nTraceback (most recent call last):\r\n File \".\\demo.py\", line 8, in <module>\r\n ds = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation', download_mode=\"force_redownload\")\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 2594, in loa builder_instance = load_dataset_builder(\r\n File \"D:\\SoftwareInstall\\Python\\lib\\site-packages\\datasets\\load.py\", line 2266, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n raise FileNotFoundError(\r\nFileNotFoundError: Couldn't find a dataset script at C:\\Users\\ZhangGe\\Desktop\\allenai\\c4\\c4.py or any data file in the same directory. Couldn't find 'allenai/c4' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/allenai/c4@1588ec454eed extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', \r\n'.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns',pm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', \r\n'.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']\r\n```\r\n\r\n**Using a proxy software that avoids the internet access restrictions imposed by China, I can download the dataset using the same script**\r\n```bash\r\nDownloading readme: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 41.1k/41.1k [00:00<00:00, 312kB/s] \r\nDownloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββ| 40.7M/40.7M [00:19<00:00, 2.07MB/s] \r\nGenerating validation split: 45576 examples [00:00, 54883.48 examples/s]\r\n```\r\nSo `allenai/c4` is still unreachable even after setting `export HF_ENDPOINT=https://hf-mirror.com`.",
"I have created an issue to inform the maintainers of `hf-mirror`οΌhttps://github.com/padeoe/hf-mirror-site/issues/30",
"Thanks for the investigation: so finally it is an issue with the specific endpoint you are using.\r\n\r\nYou properly opened an issue in their repo, so they can fix it.\r\n\r\nI am closing this issue here."
] | FileNotFoundErrorοΌerror when loading C4 dataset | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6947/reactions"
} | I_kwDODunzps6K8fpH | null | 2024-06-03T13:06:33Z | https://api.github.com/repos/huggingface/datasets/issues/6947/comments | ### Describe the bug
can't load c4 datasets
When I replace the datasets package to 2.12.2 I get raise datasets.utils.info_utils.ExpectedMoreSplits: {'train'}
How can I fix thisοΌ
### Steps to reproduce the bug
1.from datasets import load_dataset
2.dataset = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation')
3. raise FileNotFoundError(
FileNotFoundError: Couldn't find a dataset script at local_path/c4_val/allenai/c4/c4.py or any data file in the same directory. Couldn't find 'allenai/c4' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/allenai/c4@1588ec454efa1a09f29cd18ddd04fe05fc8653a2/en/c4-validation.00003-of-00008.json.gz' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']
### Expected behavior
The data was successfully imported
### Environment info
python version 3.9
datasets version 2.19.2 | {
"avatar_url": "https://avatars.githubusercontent.com/u/62374585?v=4",
"events_url": "https://api.github.com/users/W-215/events{/privacy}",
"followers_url": "https://api.github.com/users/W-215/followers",
"following_url": "https://api.github.com/users/W-215/following{/other_user}",
"gists_url": "https://api.github.com/users/W-215/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/W-215",
"id": 62374585,
"login": "W-215",
"node_id": "MDQ6VXNlcjYyMzc0NTg1",
"organizations_url": "https://api.github.com/users/W-215/orgs",
"received_events_url": "https://api.github.com/users/W-215/received_events",
"repos_url": "https://api.github.com/users/W-215/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/W-215/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/W-215/subscriptions",
"type": "User",
"url": "https://api.github.com/users/W-215"
} | https://api.github.com/repos/huggingface/datasets/issues/6947/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6947/timeline | closed | false | 6,947 | null | 2024-06-25T06:21:28Z | null | false |
2,330,276,848 | https://api.github.com/repos/huggingface/datasets/issues/6946 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6946/events | [] | null | 2024-06-04T10:00:08Z | [] | https://github.com/huggingface/datasets/pull/6946 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6946). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004847 / 0.011353 (-0.006506) | 0.003199 / 0.011008 (-0.007810) | 0.060677 / 0.038508 (0.022169) | 0.030544 / 0.023109 (0.007435) | 0.240870 / 0.275898 (-0.035028) | 0.261320 / 0.323480 (-0.062160) | 0.002816 / 0.007986 (-0.005170) | 0.002483 / 0.004328 (-0.001845) | 0.048527 / 0.004250 (0.044277) | 0.045496 / 0.037052 (0.008444) | 0.251296 / 0.258489 (-0.007193) | 0.285746 / 0.293841 (-0.008095) | 0.025076 / 0.128546 (-0.103470) | 0.009417 / 0.075646 (-0.066229) | 0.191361 / 0.419271 (-0.227911) | 0.033778 / 0.043533 (-0.009755) | 0.235581 / 0.255139 (-0.019558) | 0.261069 / 0.283200 (-0.022131) | 0.018255 / 0.141683 (-0.123428) | 1.098437 / 1.452155 (-0.353718) | 1.127124 / 1.492716 (-0.365592) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004479 / 0.018006 (-0.013527) | 0.283706 / 0.000490 (0.283216) | 0.000214 / 0.000200 (0.000014) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018364 / 0.037411 (-0.019048) | 0.058398 / 0.014526 (0.043872) | 0.073056 / 0.176557 (-0.103501) | 0.117147 / 0.737135 (-0.619989) | 0.073683 / 0.296338 (-0.222656) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.265121 / 0.215209 (0.049912) | 2.636981 / 2.077655 (0.559327) | 1.380192 / 1.504120 (-0.123928) | 1.270779 / 1.541195 (-0.270416) | 1.295729 / 1.468490 (-0.172762) | 0.523768 / 4.584777 (-4.061009) | 2.295720 / 3.745712 (-1.449992) | 2.519211 / 5.269862 (-2.750650) | 1.618712 / 4.565676 (-2.946965) | 0.058321 / 0.424275 (-0.365954) | 0.004492 / 0.007607 (-0.003115) | 0.316101 / 0.226044 (0.090057) | 3.169913 / 2.268929 (0.900984) | 1.793412 / 55.444624 (-53.651213) | 1.473784 / 6.876477 (-5.402693) | 1.565325 / 2.142072 (-0.576748) | 0.592734 / 4.805227 (-4.212493) | 0.109333 / 6.500664 (-6.391331) | 0.039063 / 0.075469 (-0.036406) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.935504 / 1.841788 (-0.906284) | 10.865520 / 8.074308 (2.791212) | 9.219337 / 10.191392 (-0.972055) | 0.135284 / 0.680424 (-0.545140) | 0.013664 / 0.534201 (-0.520537) | 0.271601 / 0.579283 (-0.307682) | 0.260456 / 0.434364 (-0.173908) | 0.302931 / 0.540337 (-0.237406) | 0.414643 / 1.386936 (-0.972293) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004801 / 0.011353 (-0.006552) | 0.003092 / 0.011008 (-0.007917) | 0.046471 / 0.038508 (0.007963) | 0.031337 / 0.023109 (0.008228) | 0.258920 / 0.275898 (-0.016978) | 0.269842 / 0.323480 (-0.053638) | 0.003976 / 0.007986 (-0.004009) | 0.002661 / 0.004328 (-0.001668) | 0.045676 / 0.004250 (0.041426) | 0.038199 / 0.037052 (0.001146) | 0.277382 / 0.258489 (0.018893) | 0.289351 / 0.293841 (-0.004490) | 0.028452 / 0.128546 (-0.100094) | 0.009737 / 0.075646 (-0.065910) | 0.055201 / 0.419271 (-0.364071) | 0.032686 / 0.043533 (-0.010847) | 0.259617 / 0.255139 (0.004478) | 0.277163 / 0.283200 (-0.006037) | 0.017825 / 0.141683 (-0.123858) | 1.102797 / 1.452155 (-0.349357) | 1.105018 / 1.492716 (-0.387699) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094844 / 0.018006 (0.076838) | 0.290519 / 0.000490 (0.290029) | 0.000211 / 0.000200 (0.000012) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021917 / 0.037411 (-0.015494) | 0.075278 / 0.014526 (0.060753) | 0.085971 / 0.176557 (-0.090586) | 0.127072 / 0.737135 (-0.610063) | 0.088244 / 0.296338 (-0.208095) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276704 / 0.215209 (0.061495) | 2.736960 / 2.077655 (0.659305) | 1.519634 / 1.504120 (0.015514) | 1.403026 / 1.541195 (-0.138168) | 1.418465 / 1.468490 (-0.050025) | 0.552425 / 4.584777 (-4.032352) | 0.955244 / 3.745712 (-2.790468) | 2.556563 / 5.269862 (-2.713298) | 1.705095 / 4.565676 (-2.860582) | 0.061212 / 0.424275 (-0.363063) | 0.004707 / 0.007607 (-0.002900) | 0.326284 / 0.226044 (0.100239) | 3.253911 / 2.268929 (0.984983) | 1.868649 / 55.444624 (-53.575976) | 1.598697 / 6.876477 (-5.277780) | 1.682617 / 2.142072 (-0.459455) | 0.606379 / 4.805227 (-4.198848) | 0.114126 / 6.500664 (-6.386538) | 0.038869 / 0.075469 (-0.036601) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.966354 / 1.841788 (-0.875433) | 11.575918 / 8.074308 (3.501609) | 9.816597 / 10.191392 (-0.374795) | 0.141492 / 0.680424 (-0.538932) | 0.015375 / 0.534201 (-0.518826) | 0.276027 / 0.579283 (-0.303256) | 0.118979 / 0.434364 (-0.315385) | 0.313467 / 0.540337 (-0.226870) | 0.403539 / 1.386936 (-0.983397) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b59c75856d765e60b66a5216062102d001c6612 \"CML watermark\")\n"
] | Re-enable import sorting disabled by flake8:noqa directive when using ruff linter | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6946/reactions"
} | PR_kwDODunzps5xQNao | {
"diff_url": "https://github.com/huggingface/datasets/pull/6946.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6946",
"merged_at": "2024-06-04T09:54:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6946.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6946"
} | 2024-06-03T06:24:47Z | https://api.github.com/repos/huggingface/datasets/issues/6946/comments | Re-enable import sorting that was wrongly disabled by `flake8: noqa` directive after switching to `ruff` linter in datasets-2.10.0 PR:
- #5519
Note that after the linter switch, we wrongly replaced `flake8: noqa` with `ruff: noqa` in datasets-2.17.0 PR:
- #6619
That replacement was wrong because we kept the `isort: skip` directives although they were indeed disabled by `flake8: noqa` first and by `ruff: noqa` afterwards. See for example `__init__.py` file after the linter switch:
- We kept the `flake8: noqa` directive
https://github.com/huggingface/datasets/blob/06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e/src/datasets/__init__.py#L1
- Whereas we also kept the `isort: skip` directives (that were disabled)
https://github.com/huggingface/datasets/blob/06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e/src/datasets/__init__.py#L82-L84
Fix #6942. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6946/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6946/timeline | closed | false | 6,946 | null | 2024-06-04T09:54:23Z | null | true |
2,330,224,869 | https://api.github.com/repos/huggingface/datasets/issues/6945 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6945/events | [] | null | 2024-06-18T07:36:15Z | [] | https://github.com/huggingface/datasets/pull/6945 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6945). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005725 / 0.011353 (-0.005627) | 0.003788 / 0.011008 (-0.007220) | 0.063059 / 0.038508 (0.024551) | 0.031364 / 0.023109 (0.008255) | 0.259209 / 0.275898 (-0.016689) | 0.278805 / 0.323480 (-0.044675) | 0.003032 / 0.007986 (-0.004953) | 0.002633 / 0.004328 (-0.001696) | 0.049804 / 0.004250 (0.045554) | 0.046717 / 0.037052 (0.009665) | 0.267246 / 0.258489 (0.008757) | 0.299271 / 0.293841 (0.005430) | 0.027687 / 0.128546 (-0.100860) | 0.010524 / 0.075646 (-0.065123) | 0.201736 / 0.419271 (-0.217536) | 0.036192 / 0.043533 (-0.007341) | 0.264492 / 0.255139 (0.009353) | 0.280809 / 0.283200 (-0.002391) | 0.018187 / 0.141683 (-0.123496) | 1.170751 / 1.452155 (-0.281404) | 1.223450 / 1.492716 (-0.269266) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096610 / 0.018006 (0.078604) | 0.297122 / 0.000490 (0.296632) | 0.000211 / 0.000200 (0.000011) | 0.000046 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018380 / 0.037411 (-0.019031) | 0.062214 / 0.014526 (0.047688) | 0.075833 / 0.176557 (-0.100723) | 0.121825 / 0.737135 (-0.615310) | 0.075475 / 0.296338 (-0.220864) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275601 / 0.215209 (0.060392) | 2.698014 / 2.077655 (0.620359) | 1.434043 / 1.504120 (-0.070077) | 1.313217 / 1.541195 (-0.227978) | 1.339014 / 1.468490 (-0.129476) | 0.566703 / 4.584777 (-4.018074) | 2.367794 / 3.745712 (-1.377918) | 2.660787 / 5.269862 (-2.609074) | 1.738503 / 4.565676 (-2.827174) | 0.061693 / 0.424275 (-0.362582) | 0.004978 / 0.007607 (-0.002629) | 0.334719 / 0.226044 (0.108675) | 3.300889 / 2.268929 (1.031960) | 1.764493 / 55.444624 (-53.680131) | 1.475956 / 6.876477 (-5.400521) | 1.635988 / 2.142072 (-0.506084) | 0.643906 / 4.805227 (-4.161321) | 0.118002 / 6.500664 (-6.382662) | 0.042593 / 0.075469 (-0.032876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.953511 / 1.841788 (-0.888276) | 11.489727 / 8.074308 (3.415419) | 9.775017 / 10.191392 (-0.416375) | 0.139864 / 0.680424 (-0.540560) | 0.014219 / 0.534201 (-0.519982) | 0.284389 / 0.579283 (-0.294894) | 0.264250 / 0.434364 (-0.170113) | 0.323471 / 0.540337 (-0.216866) | 0.415189 / 1.386936 (-0.971747) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005437 / 0.011353 (-0.005916) | 0.003710 / 0.011008 (-0.007298) | 0.049940 / 0.038508 (0.011432) | 0.032565 / 0.023109 (0.009456) | 0.266374 / 0.275898 (-0.009524) | 0.288069 / 0.323480 (-0.035411) | 0.004140 / 0.007986 (-0.003845) | 0.002669 / 0.004328 (-0.001660) | 0.049646 / 0.004250 (0.045395) | 0.040926 / 0.037052 (0.003874) | 0.278805 / 0.258489 (0.020316) | 0.311396 / 0.293841 (0.017555) | 0.029363 / 0.128546 (-0.099183) | 0.010260 / 0.075646 (-0.065386) | 0.058222 / 0.419271 (-0.361049) | 0.033063 / 0.043533 (-0.010470) | 0.266798 / 0.255139 (0.011659) | 0.283091 / 0.283200 (-0.000109) | 0.017904 / 0.141683 (-0.123779) | 1.139531 / 1.452155 (-0.312624) | 1.163909 / 1.492716 (-0.328808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089063 / 0.018006 (0.071057) | 0.296757 / 0.000490 (0.296268) | 0.000202 / 0.000200 (0.000002) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022843 / 0.037411 (-0.014568) | 0.076032 / 0.014526 (0.061507) | 0.087545 / 0.176557 (-0.089012) | 0.128870 / 0.737135 (-0.608266) | 0.089359 / 0.296338 (-0.206980) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285213 / 0.215209 (0.070004) | 2.854950 / 2.077655 (0.777295) | 1.539311 / 1.504120 (0.035191) | 1.413753 / 1.541195 (-0.127442) | 1.440819 / 1.468490 (-0.027671) | 0.564734 / 4.584777 (-4.020043) | 0.944924 / 3.745712 (-2.800788) | 2.703612 / 5.269862 (-2.566249) | 1.749429 / 4.565676 (-2.816247) | 0.063239 / 0.424275 (-0.361036) | 0.005024 / 0.007607 (-0.002583) | 0.340866 / 0.226044 (0.114821) | 3.359511 / 2.268929 (1.090582) | 1.895794 / 55.444624 (-53.548831) | 1.606613 / 6.876477 (-5.269864) | 1.756539 / 2.142072 (-0.385533) | 0.646553 / 4.805227 (-4.158675) | 0.121278 / 6.500664 (-6.379386) | 0.041066 / 0.075469 (-0.034403) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005548 / 1.841788 (-0.836240) | 12.080103 / 8.074308 (4.005794) | 10.444822 / 10.191392 (0.253430) | 0.145024 / 0.680424 (-0.535400) | 0.015287 / 0.534201 (-0.518914) | 0.288567 / 0.579283 (-0.290716) | 0.118034 / 0.434364 (-0.316330) | 0.333474 / 0.540337 (-0.206864) | 0.421716 / 1.386936 (-0.965220) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3d95159dbd918009e1ff710dba0cd15d96d4264e \"CML watermark\")\n",
"@albertvillanova could I ask why we should use latest `requests` here? we are using `docker` and `datasets` in the same time. However, docker requires requests<2.32.0.",
"Hi @pingsutw,\r\n\r\nWe updated the minimum required `requests` version for security reasons: https://www.cve.org/CVERecord?id=CVE-2024-35195\r\n- affected versions < 2.32.0 \r\n\r\nLatest version of `docker` should normally support `requests` >= 2.32.0: https://github.com/docker/docker-py/releases/tag/7.1.0\r\n> Fixed an issue due to an update in the [requests](https://github.com/psf/requests) package breaking docker-py by applying the https://github.com/psf/requests/pull/6710\r\n- https://github.com/docker/docker-py/pull/3257\r\n\r\nI guess you need to update your `docker` library as well:\r\n```\r\npip install -U docker\r\n```",
"> I guess you need to update your docker library as well:\r\n\r\nThank you! it works for me π "
] | Update yanked version of minimum requests requirement | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6945/reactions"
} | PR_kwDODunzps5xQCCx | {
"diff_url": "https://github.com/huggingface/datasets/pull/6945.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6945",
"merged_at": "2024-06-03T06:09:43Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6945.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6945"
} | 2024-06-03T05:45:50Z | https://api.github.com/repos/huggingface/datasets/issues/6945/comments | Update yanked version of minimum requests requirement.
Version 2.32.1 was yanked: https://pypi.org/project/requests/2.32.1/ | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6945/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6945/timeline | closed | false | 6,945 | null | 2024-06-03T06:09:43Z | null | true |
2,330,207,120 | https://api.github.com/repos/huggingface/datasets/issues/6944 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6944/events | [] | null | 2024-06-03T05:37:51Z | [] | https://github.com/huggingface/datasets/pull/6944 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6944). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005150 / 0.011353 (-0.006203) | 0.003663 / 0.011008 (-0.007346) | 0.062832 / 0.038508 (0.024324) | 0.031928 / 0.023109 (0.008819) | 0.246455 / 0.275898 (-0.029443) | 0.272121 / 0.323480 (-0.051359) | 0.004220 / 0.007986 (-0.003765) | 0.002756 / 0.004328 (-0.001573) | 0.050071 / 0.004250 (0.045821) | 0.046074 / 0.037052 (0.009022) | 0.259676 / 0.258489 (0.001187) | 0.290674 / 0.293841 (-0.003167) | 0.027822 / 0.128546 (-0.100724) | 0.010791 / 0.075646 (-0.064855) | 0.202827 / 0.419271 (-0.216445) | 0.037057 / 0.043533 (-0.006476) | 0.256128 / 0.255139 (0.000989) | 0.269422 / 0.283200 (-0.013777) | 0.017395 / 0.141683 (-0.124288) | 1.125919 / 1.452155 (-0.326236) | 1.177708 / 1.492716 (-0.315008) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098466 / 0.018006 (0.080460) | 0.305508 / 0.000490 (0.305018) | 0.000232 / 0.000200 (0.000032) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018866 / 0.037411 (-0.018545) | 0.062079 / 0.014526 (0.047553) | 0.074670 / 0.176557 (-0.101886) | 0.121025 / 0.737135 (-0.616111) | 0.075883 / 0.296338 (-0.220455) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291880 / 0.215209 (0.076671) | 2.874064 / 2.077655 (0.796409) | 1.477040 / 1.504120 (-0.027080) | 1.356198 / 1.541195 (-0.184997) | 1.354676 / 1.468490 (-0.113814) | 0.559731 / 4.584777 (-4.025046) | 2.362746 / 3.745712 (-1.382966) | 2.678838 / 5.269862 (-2.591024) | 1.752633 / 4.565676 (-2.813044) | 0.064023 / 0.424275 (-0.360252) | 0.005035 / 0.007607 (-0.002572) | 0.354807 / 0.226044 (0.128762) | 3.424463 / 2.268929 (1.155534) | 1.810476 / 55.444624 (-53.634149) | 1.519031 / 6.876477 (-5.357446) | 1.693957 / 2.142072 (-0.448116) | 0.647987 / 4.805227 (-4.157240) | 0.118993 / 6.500664 (-6.381671) | 0.042186 / 0.075469 (-0.033283) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982565 / 1.841788 (-0.859223) | 11.645075 / 8.074308 (3.570767) | 9.588360 / 10.191392 (-0.603032) | 0.142369 / 0.680424 (-0.538055) | 0.014025 / 0.534201 (-0.520176) | 0.285668 / 0.579283 (-0.293616) | 0.265825 / 0.434364 (-0.168539) | 0.323371 / 0.540337 (-0.216966) | 0.421227 / 1.386936 (-0.965709) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005587 / 0.011353 (-0.005766) | 0.003664 / 0.011008 (-0.007345) | 0.050411 / 0.038508 (0.011903) | 0.033268 / 0.023109 (0.010159) | 0.266631 / 0.275898 (-0.009267) | 0.291135 / 0.323480 (-0.032345) | 0.004275 / 0.007986 (-0.003710) | 0.002822 / 0.004328 (-0.001506) | 0.049349 / 0.004250 (0.045099) | 0.040653 / 0.037052 (0.003601) | 0.282641 / 0.258489 (0.024152) | 0.315460 / 0.293841 (0.021619) | 0.029343 / 0.128546 (-0.099203) | 0.010606 / 0.075646 (-0.065040) | 0.058783 / 0.419271 (-0.360489) | 0.033205 / 0.043533 (-0.010327) | 0.266805 / 0.255139 (0.011666) | 0.288907 / 0.283200 (0.005707) | 0.017817 / 0.141683 (-0.123866) | 1.128132 / 1.452155 (-0.324023) | 1.175120 / 1.492716 (-0.317597) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095653 / 0.018006 (0.077647) | 0.304825 / 0.000490 (0.304335) | 0.000212 / 0.000200 (0.000012) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022766 / 0.037411 (-0.014645) | 0.076598 / 0.014526 (0.062072) | 0.088314 / 0.176557 (-0.088242) | 0.127888 / 0.737135 (-0.609247) | 0.090391 / 0.296338 (-0.205947) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293384 / 0.215209 (0.078175) | 2.883742 / 2.077655 (0.806087) | 1.533868 / 1.504120 (0.029748) | 1.391964 / 1.541195 (-0.149231) | 1.423732 / 1.468490 (-0.044759) | 0.575457 / 4.584777 (-4.009320) | 0.970860 / 3.745712 (-2.774852) | 2.711405 / 5.269862 (-2.558457) | 1.774468 / 4.565676 (-2.791208) | 0.064611 / 0.424275 (-0.359664) | 0.005120 / 0.007607 (-0.002487) | 0.343892 / 0.226044 (0.117847) | 3.362579 / 2.268929 (1.093650) | 1.880200 / 55.444624 (-53.564424) | 1.587435 / 6.876477 (-5.289042) | 1.756464 / 2.142072 (-0.385609) | 0.661469 / 4.805227 (-4.143759) | 0.119030 / 6.500664 (-6.381634) | 0.041704 / 0.075469 (-0.033765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.025008 / 1.841788 (-0.816780) | 12.146244 / 8.074308 (4.071936) | 10.397267 / 10.191392 (0.205875) | 0.145917 / 0.680424 (-0.534507) | 0.015779 / 0.534201 (-0.518422) | 0.287122 / 0.579283 (-0.292161) | 0.125464 / 0.434364 (-0.308900) | 0.323315 / 0.540337 (-0.217023) | 0.416761 / 1.386936 (-0.970175) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e2d15a6b1871f3998986853298e4338d72891491 \"CML watermark\")\n"
] | Set dev version | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6944/reactions"
} | PR_kwDODunzps5xP-KD | {
"diff_url": "https://github.com/huggingface/datasets/pull/6944.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6944",
"merged_at": "2024-06-03T05:31:46Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6944.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6944"
} | 2024-06-03T05:29:59Z | https://api.github.com/repos/huggingface/datasets/issues/6944/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6944/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6944/timeline | closed | false | 6,944 | null | 2024-06-03T05:31:47Z | null | true |
2,330,176,890 | https://api.github.com/repos/huggingface/datasets/issues/6943 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6943/events | [] | null | 2024-06-03T05:17:41Z | [] | https://github.com/huggingface/datasets/pull/6943 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6943). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | Release 2.19.2 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6943/reactions"
} | PR_kwDODunzps5xP3jp | {
"diff_url": "https://github.com/huggingface/datasets/pull/6943.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6943",
"merged_at": "2024-06-03T05:17:40Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6943.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6943"
} | 2024-06-03T05:01:50Z | https://api.github.com/repos/huggingface/datasets/issues/6943/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6943/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6943/timeline | closed | false | 6,943 | null | 2024-06-03T05:17:40Z | null | true |
2,329,562,382 | https://api.github.com/repos/huggingface/datasets/issues/6942 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6942/events | [
{
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks",
"id": 4296013012,
"name": "maintenance",
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance"
}
] | null | 2024-06-04T09:54:24Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6942 | MEMBER | completed | null | null | [] | Import sorting is disabled by flake8 noqa directive after switching to ruff linter | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6942/reactions"
} | I_kwDODunzps6K2k0O | null | 2024-06-02T09:43:34Z | https://api.github.com/repos/huggingface/datasets/issues/6942/comments | When we switched to `ruff` linter in PR:
- #5519
import sorting was disabled in all files containing the `# flake8: noqa` directive
- https://github.com/astral-sh/ruff/issues/11679
We should re-enable import sorting on those files. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6942/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6942/timeline | closed | false | 6,942 | null | 2024-06-04T09:54:24Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,328,930,165 | https://api.github.com/repos/huggingface/datasets/issues/6941 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6941/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-06-01T05:34:52Z | [] | https://github.com/huggingface/datasets/issues/6941 | NONE | null | null | null | [] | Supporting FFCV: Fast Forward Computer Vision | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6941/reactions"
} | I_kwDODunzps6K0Kd1 | null | 2024-06-01T05:34:52Z | https://api.github.com/repos/huggingface/datasets/issues/6941/comments | ### Feature request
Supporting FFCV, https://github.com/libffcv/ffcv
### Motivation
According to the benchmark, FFCV seems to be fastest image loading method.
### Your contribution
no | {
"avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4",
"events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}",
"followers_url": "https://api.github.com/users/Luciennnnnnn/followers",
"following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}",
"gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Luciennnnnnn",
"id": 20135317,
"login": "Luciennnnnnn",
"node_id": "MDQ6VXNlcjIwMTM1MzE3",
"organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs",
"received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events",
"repos_url": "https://api.github.com/users/Luciennnnnnn/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Luciennnnnnn"
} | https://api.github.com/repos/huggingface/datasets/issues/6941/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6941/timeline | open | false | 6,941 | null | null | null | false |
2,328,637,831 | https://api.github.com/repos/huggingface/datasets/issues/6940 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6940/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-06-01T07:34:12Z | [] | https://github.com/huggingface/datasets/issues/6940 | NONE | null | null | null | [] | Enable Sharding to Equal Sized Shards | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6940/reactions"
} | I_kwDODunzps6KzDGH | null | 2024-05-31T21:55:50Z | https://api.github.com/repos/huggingface/datasets/issues/6940/comments | ### Feature request
Add an option when sharding a dataset to have all shards the same size. Will be good to provide both an option of duplication, and by truncation.
### Motivation
Currently the behavior of sharding is "If n % i == l, then the first l shards will have length (n // i) + 1, and the remaining shards will have length (n // i).". However, when using FSDP we want the shards to have the same size. This requires the user to manually handle this situation, but it will be nice if we had an option to shard the dataset into equally sized shards.
### Your contribution
For now just a PR. I can also add code that does what is needed, but probably not efficient.
Shard to equal size by duplication:
```
remainder = len(dataset) % num_shards
num_missing_examples = num_shards - remainder
duplicated = dataset.select(list(range(num_missing_examples)))
dataset = concatenate_datasets([dataset, duplicated])
shard = dataset.shard(num_shards, shard_idx)
```
Or by truncation:
```
shard = dataset.shard(num_shards, shard_idx)
num_examples_per_shard = len(dataset) // num_shards
shard = shard.select(list(range(num_examples_per_shard)))
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4",
"events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}",
"followers_url": "https://api.github.com/users/yuvalkirstain/followers",
"following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}",
"gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yuvalkirstain",
"id": 57996478,
"login": "yuvalkirstain",
"node_id": "MDQ6VXNlcjU3OTk2NDc4",
"organizations_url": "https://api.github.com/users/yuvalkirstain/orgs",
"received_events_url": "https://api.github.com/users/yuvalkirstain/received_events",
"repos_url": "https://api.github.com/users/yuvalkirstain/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yuvalkirstain"
} | https://api.github.com/repos/huggingface/datasets/issues/6940/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6940/timeline | open | false | 6,940 | null | null | null | false |
2,328,059,386 | https://api.github.com/repos/huggingface/datasets/issues/6939 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6939/events | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | null | 2024-05-31T17:10:39Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6939 | MEMBER | completed | null | null | [] | ExpectedMoreSplits error when using data_dir | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6939/reactions"
} | I_kwDODunzps6Kw136 | null | 2024-05-31T15:08:42Z | https://api.github.com/repos/huggingface/datasets/issues/6939/comments | As reported by @regisss, an `ExpectedMoreSplits` error is raised when passing `data_dir`:
```python
from datasets import load_dataset
dataset = load_dataset(
"lvwerra/stack-exchange-paired",
split="train",
cache_dir=None,
data_dir="data/rl",
)
```
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2609, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1027, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1140, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py", line 92, in verify_splits
raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits)))
datasets.utils.info_utils.ExpectedMoreSplits: {'test'}
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6939/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6939/timeline | closed | false | 6,939 | null | 2024-05-31T17:10:39Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,327,568,281 | https://api.github.com/repos/huggingface/datasets/issues/6938 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6938/events | [] | null | 2024-05-31T15:28:03Z | [] | https://github.com/huggingface/datasets/pull/6938 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6938). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"fix is included in https://github.com/huggingface/datasets/pull/6925"
] | Fix expected splits when passing data_files or dir | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6938/reactions"
} | PR_kwDODunzps5xHNKm | {
"diff_url": "https://github.com/huggingface/datasets/pull/6938.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6938",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6938.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6938"
} | 2024-05-31T11:04:22Z | https://api.github.com/repos/huggingface/datasets/issues/6938/comments | reported on slack:
The following code snippet gives an error with v2.19 but not with v2.18:
from datasets import load_dataset
```
dataset = load_dataset(
"lvwerra/stack-exchange-paired",
split="train",
cache_dir=None,
data_dir="data/rl",
)
```
and the error is:
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2609, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1027, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1140, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py", line 92, in verify_splits
raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits)))
datasets.utils.info_utils.ExpectedMoreSplits: {'test'}
```
| {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6938/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6938/timeline | closed | false | 6,938 | null | 2024-05-31T15:28:02Z | null | true |
2,327,212,611 | https://api.github.com/repos/huggingface/datasets/issues/6937 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6937/events | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | null | 2024-05-31T08:11:57Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6937 | MEMBER | null | null | null | [] | JSON loader implicitly coerces floats to integers | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6937/reactions"
} | I_kwDODunzps6KtnJD | null | 2024-05-31T08:09:12Z | https://api.github.com/repos/huggingface/datasets/issues/6937/comments | The JSON loader implicitly coerces floats to integers.
The column values `[0.0, 1.0, 2.0]` are coerced to `[0, 1, 2]`.
See CI error in dataset-viewer: https://github.com/huggingface/dataset-viewer/actions/runs/9290164936/job/25576926446
```
=================================== FAILURES ===================================
___________________________ test_statistics_endpoint ___________________________
normal_user_public_json_dataset = 'DVUser/tmp-dataset-17170199043860'
def test_statistics_endpoint(normal_user_public_json_dataset: str) -> None:
dataset = normal_user_public_json_dataset
config, split = get_default_config_split()
statistics_response = poll_until_ready_and_assert(
relative_url=f"/statistics?dataset={dataset}&config={config}&split={split}",
check_x_revision=True,
dataset=dataset,
)
content = statistics_response.json()
assert len(content) == 3
assert sorted(content) == ["num_examples", "partial", "statistics"], statistics_response
statistics = content["statistics"]
num_examples = content["num_examples"]
partial = content["partial"]
assert isinstance(statistics, list), statistics
assert len(statistics) == 6
assert num_examples == 4
assert partial is False
string_label_column = statistics[0]
assert "column_name" in string_label_column
assert "column_statistics" in string_label_column
assert "column_type" in string_label_column
assert string_label_column["column_name"] == "col_1"
assert string_label_column["column_type"] == "string_label" # 4 unique values -> label
assert isinstance(string_label_column["column_statistics"], dict)
assert string_label_column["column_statistics"] == {
"nan_count": 0,
"nan_proportion": 0.0,
"no_label_count": 0,
"no_label_proportion": 0.0,
"n_unique": 4,
"frequencies": {
"There goes another one.": 1,
"Vader turns round and round in circles as his ship spins into space.": 1,
"We count thirty Rebel ships, Lord Vader.": 1,
"The wingman spots the pirateship coming at him and warns the Dark Lord": 1,
},
}
int_column = statistics[1]
assert "column_name" in int_column
assert "column_statistics" in int_column
assert "column_type" in int_column
assert int_column["column_name"] == "col_2"
assert int_column["column_type"] == "int"
assert isinstance(int_column["column_statistics"], dict)
assert int_column["column_statistics"] == {
"histogram": {"bin_edges": [0, 1, 2, 3, 3], "hist": [1, 1, 1, 1]},
"max": 3,
"mean": 1.5,
"median": 1.5,
"min": 0,
"nan_count": 0,
"nan_proportion": 0.0,
"std": 1.29099,
}
float_column = statistics[2]
assert "column_name" in float_column
assert "column_statistics" in float_column
assert "column_type" in float_column
assert float_column["column_name"] == "col_3"
> assert float_column["column_type"] == "float"
E AssertionError: assert 'int' == 'float'
E - float
E + int
tests/test_14_statistics.py:72: AssertionError
=========================== short test summary info ============================
FAILED tests/test_14_statistics.py::test_statistics_endpoint - AssertionError: assert 'int' == 'float'
- float
+ int
```
This bug was introduced after:
- #6914
We have reported the issue to pandas:
- https://github.com/pandas-dev/pandas/issues/58866 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6937/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6937/timeline | open | false | 6,937 | null | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,326,119,853 | https://api.github.com/repos/huggingface/datasets/issues/6936 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6936/events | [] | null | 2024-07-22T23:08:42Z | [] | https://github.com/huggingface/datasets/issues/6936 | NONE | null | null | null | [
"I got the same issue. Any updates so far for this issue?"
] | save_to_disk() freezes when saving on s3 bucket with multiprocessing | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6936/reactions"
} | I_kwDODunzps6KpcWt | null | 2024-05-30T16:48:39Z | https://api.github.com/repos/huggingface/datasets/issues/6936/comments | ### Describe the bug
I'm trying to save a `Dataset` using the `save_to_disk()` function with:
- `num_proc > 1`
- `dataset_path` being a s3 bucket path e.g. "s3://{bucket_name}/{dataset_folder}/"
The hf progress bar shows up but the saving does not seem to start.
When using one processor only (`num_proc=1`), everything works fine.
When saving the dataset on local disk (as opposed to s3 bucket) with `num_proc > 1`, everything works fine.
Thank you for your help! :)
### Steps to reproduce the bug
I tried without any storage options:
```
from datasets import load_dataset
sandbox_ds = load_dataset("openai_humaneval")
sandbox_ds["test"].save_to_disk(
"s3://bucket-name/test_multiprocessing_saving/",
num_proc=4,
)
```
and with the specific s3fs storage options:
```
from datasets import load_dataset
from s3fs import S3FileSystem
def get_s3fs():
return S3FileSystem()
sandbox_ds = load_dataset("openai_humaneval")
sandbox_ds["test"].save_to_disk(
"s3://bucket-name/test_multiprocessing_saving/",
num_proc=4,
storage_options=get_s3fs().storage_options, # also tried: storage_options=S3FileSystem().storage_options
)
```
I'm guessing I might use `storage_options` parameter wrongly, but I didn't find anything online that made it work.
**NB**: Behavior is the same when trying to save the whole `DatasetDict`.
### Expected behavior
Progress bar fills in and saving is carried out.
### Environment info
`datasets==2.18.0` | {
"avatar_url": "https://avatars.githubusercontent.com/u/54974949?v=4",
"events_url": "https://api.github.com/users/ycattan/events{/privacy}",
"followers_url": "https://api.github.com/users/ycattan/followers",
"following_url": "https://api.github.com/users/ycattan/following{/other_user}",
"gists_url": "https://api.github.com/users/ycattan/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ycattan",
"id": 54974949,
"login": "ycattan",
"node_id": "MDQ6VXNlcjU0OTc0OTQ5",
"organizations_url": "https://api.github.com/users/ycattan/orgs",
"received_events_url": "https://api.github.com/users/ycattan/received_events",
"repos_url": "https://api.github.com/users/ycattan/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ycattan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ycattan/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ycattan"
} | https://api.github.com/repos/huggingface/datasets/issues/6936/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6936/timeline | open | false | 6,936 | null | null | null | false |
2,325,612,022 | https://api.github.com/repos/huggingface/datasets/issues/6935 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6935/events | [] | null | 2024-05-30T12:53:36Z | [] | https://github.com/huggingface/datasets/issues/6935 | NONE | null | null | null | [] | Support for pathlib.Path in datasets 2.19.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6935/reactions"
} | I_kwDODunzps6KngX2 | null | 2024-05-30T12:53:36Z | https://api.github.com/repos/huggingface/datasets/issues/6935/comments | ### Describe the bug
After the recent update of `datasets`, Dataset.save_to_disk does not accept a pathlib.Path anymore. It was supported in 2.18.0 and previous versions. Is this intentional? Was it supported before only because of a Python dusk-typing miracle?
### Steps to reproduce the bug
```
from datasets import Dataset
import pathlib
path = pathlib.Path("./my_out_path")
Dataset.from_dict(
{"text": ["hello world"], "label": [777], "split": ["train"]}
.save_to_disk(path)
```
This results in an error when using datasets 2.19:
```
Traceback (most recent call last):
File "<stdin>", line 3, in <module>
File "/Users/jb/scratch/venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1515, in save_to_disk
fs, _ = url_to_fs(dataset_path, **(storage_options or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/jb/scratch/venv/lib/python3.11/site-packages/fsspec/core.py", line 383, in url_to_fs
chain = _un_chain(url, kwargs)
^^^^^^^^^^^^^^^^^^^^^^
File "/Users/jb/scratch/venv/lib/python3.11/site-packages/fsspec/core.py", line 323, in _un_chain
if "::" in path
^^^^^^^^^^^^
TypeError: argument of type 'PosixPath' is not iterable
```
Converting to str works, however.
```
Dataset.from_dict(
{"text": ["hello world"], "label": [777], "split": ["train"]}
).save_to_disk(str(path))
```
### Expected behavior
My dataset gets saved to disk without an error.
### Environment info
aiohttp==3.9.5
aiosignal==1.3.1
attrs==23.2.0
certifi==2024.2.2
charset-normalizer==3.3.2
datasets==2.19.0
dill==0.3.8
filelock==3.14.0
frozenlist==1.4.1
fsspec==2024.3.1
huggingface-hub==0.23.2
idna==3.7
multidict==6.0.5
multiprocess==0.70.16
numpy==1.26.4
packaging==24.0
pandas==2.2.2
pyarrow==16.1.0
pyarrow-hotfix==0.6
python-dateutil==2.9.0.post0
pytz==2024.1
PyYAML==6.0.1
requests==2.32.3
six==1.16.0
tqdm==4.66.4
typing_extensions==4.12.0
tzdata==2024.1
urllib3==2.2.1
xxhash==3.4.1
yarl==1.9.4 | {
"avatar_url": "https://avatars.githubusercontent.com/u/12202811?v=4",
"events_url": "https://api.github.com/users/lamyiowce/events{/privacy}",
"followers_url": "https://api.github.com/users/lamyiowce/followers",
"following_url": "https://api.github.com/users/lamyiowce/following{/other_user}",
"gists_url": "https://api.github.com/users/lamyiowce/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lamyiowce",
"id": 12202811,
"login": "lamyiowce",
"node_id": "MDQ6VXNlcjEyMjAyODEx",
"organizations_url": "https://api.github.com/users/lamyiowce/orgs",
"received_events_url": "https://api.github.com/users/lamyiowce/received_events",
"repos_url": "https://api.github.com/users/lamyiowce/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lamyiowce/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lamyiowce/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lamyiowce"
} | https://api.github.com/repos/huggingface/datasets/issues/6935/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6935/timeline | open | false | 6,935 | null | null | null | false |
2,325,341,717 | https://api.github.com/repos/huggingface/datasets/issues/6934 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6934/events | [] | null | 2024-05-31T10:25:08Z | [] | https://github.com/huggingface/datasets/pull/6934 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6934). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005218 / 0.011353 (-0.006135) | 0.003313 / 0.011008 (-0.007695) | 0.062992 / 0.038508 (0.024484) | 0.029621 / 0.023109 (0.006512) | 0.244421 / 0.275898 (-0.031477) | 0.267178 / 0.323480 (-0.056302) | 0.002986 / 0.007986 (-0.005000) | 0.002607 / 0.004328 (-0.001721) | 0.049149 / 0.004250 (0.044898) | 0.045362 / 0.037052 (0.008310) | 0.252862 / 0.258489 (-0.005627) | 0.286326 / 0.293841 (-0.007515) | 0.027888 / 0.128546 (-0.100658) | 0.010295 / 0.075646 (-0.065352) | 0.205525 / 0.419271 (-0.213746) | 0.036696 / 0.043533 (-0.006837) | 0.248716 / 0.255139 (-0.006423) | 0.263803 / 0.283200 (-0.019397) | 0.016926 / 0.141683 (-0.124757) | 1.123093 / 1.452155 (-0.329062) | 1.155434 / 1.492716 (-0.337282) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092349 / 0.018006 (0.074343) | 0.298154 / 0.000490 (0.297664) | 0.000213 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018496 / 0.037411 (-0.018915) | 0.061983 / 0.014526 (0.047457) | 0.075043 / 0.176557 (-0.101514) | 0.120678 / 0.737135 (-0.616457) | 0.074917 / 0.296338 (-0.221422) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290558 / 0.215209 (0.075349) | 2.842635 / 2.077655 (0.764981) | 1.485761 / 1.504120 (-0.018359) | 1.346948 / 1.541195 (-0.194247) | 1.352424 / 1.468490 (-0.116066) | 0.564567 / 4.584777 (-4.020210) | 2.393583 / 3.745712 (-1.352129) | 2.654061 / 5.269862 (-2.615800) | 1.729154 / 4.565676 (-2.836523) | 0.064652 / 0.424275 (-0.359623) | 0.004973 / 0.007607 (-0.002634) | 0.334924 / 0.226044 (0.108879) | 3.330518 / 2.268929 (1.061590) | 1.773848 / 55.444624 (-53.670776) | 1.513796 / 6.876477 (-5.362681) | 1.676492 / 2.142072 (-0.465580) | 0.650551 / 4.805227 (-4.154677) | 0.118423 / 6.500664 (-6.382241) | 0.042700 / 0.075469 (-0.032769) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.943394 / 1.841788 (-0.898394) | 11.235766 / 8.074308 (3.161458) | 9.896586 / 10.191392 (-0.294806) | 0.130174 / 0.680424 (-0.550249) | 0.014148 / 0.534201 (-0.520053) | 0.284002 / 0.579283 (-0.295281) | 0.261354 / 0.434364 (-0.173010) | 0.320839 / 0.540337 (-0.219499) | 0.422399 / 1.386936 (-0.964537) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005496 / 0.011353 (-0.005857) | 0.003603 / 0.011008 (-0.007406) | 0.050104 / 0.038508 (0.011596) | 0.032939 / 0.023109 (0.009830) | 0.265643 / 0.275898 (-0.010255) | 0.291819 / 0.323480 (-0.031661) | 0.004273 / 0.007986 (-0.003713) | 0.002715 / 0.004328 (-0.001613) | 0.049191 / 0.004250 (0.044941) | 0.040782 / 0.037052 (0.003730) | 0.276562 / 0.258489 (0.018072) | 0.314307 / 0.293841 (0.020466) | 0.029878 / 0.128546 (-0.098669) | 0.010134 / 0.075646 (-0.065513) | 0.058686 / 0.419271 (-0.360585) | 0.033562 / 0.043533 (-0.009971) | 0.265961 / 0.255139 (0.010822) | 0.282009 / 0.283200 (-0.001191) | 0.018956 / 0.141683 (-0.122727) | 1.149668 / 1.452155 (-0.302487) | 1.192242 / 1.492716 (-0.300474) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089449 / 0.018006 (0.071443) | 0.300346 / 0.000490 (0.299856) | 0.000198 / 0.000200 (-0.000001) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022094 / 0.037411 (-0.015317) | 0.075987 / 0.014526 (0.061461) | 0.088191 / 0.176557 (-0.088365) | 0.127698 / 0.737135 (-0.609437) | 0.089642 / 0.296338 (-0.206696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299127 / 0.215209 (0.083918) | 2.961219 / 2.077655 (0.883565) | 1.589108 / 1.504120 (0.084988) | 1.464060 / 1.541195 (-0.077135) | 1.475249 / 1.468490 (0.006759) | 0.569041 / 4.584777 (-4.015736) | 0.966965 / 3.745712 (-2.778747) | 2.653049 / 5.269862 (-2.616813) | 1.733650 / 4.565676 (-2.832026) | 0.062537 / 0.424275 (-0.361738) | 0.005003 / 0.007607 (-0.002605) | 0.353345 / 0.226044 (0.127301) | 3.432888 / 2.268929 (1.163960) | 1.953217 / 55.444624 (-53.491407) | 1.651995 / 6.876477 (-5.224482) | 1.764549 / 2.142072 (-0.377523) | 0.647255 / 4.805227 (-4.157973) | 0.116827 / 6.500664 (-6.383837) | 0.040765 / 0.075469 (-0.034704) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985490 / 1.841788 (-0.856298) | 11.965147 / 8.074308 (3.890839) | 10.488286 / 10.191392 (0.296894) | 0.142134 / 0.680424 (-0.538290) | 0.015415 / 0.534201 (-0.518786) | 0.289864 / 0.579283 (-0.289419) | 0.122778 / 0.434364 (-0.311586) | 0.328691 / 0.540337 (-0.211647) | 0.422677 / 1.386936 (-0.964259) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#456f790d2c2e9181bc305ab3d54fe2ca58742b9b \"CML watermark\")\n",
"There was an incident in hub-ci that invalidated our token. It's been fixed so I reverted this change"
] | Revert ci user | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6934/reactions"
} | PR_kwDODunzps5w_laB | {
"diff_url": "https://github.com/huggingface/datasets/pull/6934.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6934",
"merged_at": "2024-05-30T10:45:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6934.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6934"
} | 2024-05-30T10:45:26Z | https://api.github.com/repos/huggingface/datasets/issues/6934/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6934/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6934/timeline | closed | false | 6,934 | null | 2024-05-30T10:45:37Z | null | true |
2,325,300,800 | https://api.github.com/repos/huggingface/datasets/issues/6933 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6933/events | [] | null | 2024-05-30T10:30:54Z | [] | https://github.com/huggingface/datasets/pull/6933 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6933). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004937 / 0.011353 (-0.006416) | 0.003706 / 0.011008 (-0.007302) | 0.062627 / 0.038508 (0.024119) | 0.031372 / 0.023109 (0.008263) | 0.246616 / 0.275898 (-0.029282) | 0.272196 / 0.323480 (-0.051284) | 0.004129 / 0.007986 (-0.003856) | 0.002766 / 0.004328 (-0.001562) | 0.049975 / 0.004250 (0.045725) | 0.045098 / 0.037052 (0.008046) | 0.261802 / 0.258489 (0.003313) | 0.290088 / 0.293841 (-0.003753) | 0.027082 / 0.128546 (-0.101465) | 0.010442 / 0.075646 (-0.065205) | 0.201795 / 0.419271 (-0.217477) | 0.037081 / 0.043533 (-0.006452) | 0.249500 / 0.255139 (-0.005639) | 0.268800 / 0.283200 (-0.014399) | 0.017556 / 0.141683 (-0.124127) | 1.137201 / 1.452155 (-0.314953) | 1.186993 / 1.492716 (-0.305723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097426 / 0.018006 (0.079419) | 0.303653 / 0.000490 (0.303163) | 0.000235 / 0.000200 (0.000035) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020206 / 0.037411 (-0.017206) | 0.063673 / 0.014526 (0.049147) | 0.076173 / 0.176557 (-0.100383) | 0.122459 / 0.737135 (-0.614676) | 0.076958 / 0.296338 (-0.219380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282146 / 0.215209 (0.066937) | 2.785682 / 2.077655 (0.708027) | 1.468847 / 1.504120 (-0.035273) | 1.346731 / 1.541195 (-0.194464) | 1.378459 / 1.468490 (-0.090031) | 0.564961 / 4.584777 (-4.019816) | 2.400095 / 3.745712 (-1.345617) | 2.658285 / 5.269862 (-2.611577) | 1.747873 / 4.565676 (-2.817803) | 0.063763 / 0.424275 (-0.360512) | 0.004969 / 0.007607 (-0.002638) | 0.337764 / 0.226044 (0.111720) | 3.309568 / 2.268929 (1.040639) | 1.812516 / 55.444624 (-53.632109) | 1.521519 / 6.876477 (-5.354957) | 1.690091 / 2.142072 (-0.451982) | 0.640922 / 4.805227 (-4.164305) | 0.119291 / 6.500664 (-6.381373) | 0.042195 / 0.075469 (-0.033274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965327 / 1.841788 (-0.876461) | 11.538832 / 8.074308 (3.464523) | 9.594644 / 10.191392 (-0.596748) | 0.144687 / 0.680424 (-0.535737) | 0.014049 / 0.534201 (-0.520152) | 0.296873 / 0.579283 (-0.282410) | 0.269281 / 0.434364 (-0.165083) | 0.325091 / 0.540337 (-0.215246) | 0.420917 / 1.386936 (-0.966019) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005239 / 0.011353 (-0.006114) | 0.003168 / 0.011008 (-0.007840) | 0.049301 / 0.038508 (0.010793) | 0.032248 / 0.023109 (0.009139) | 0.266463 / 0.275898 (-0.009435) | 0.293311 / 0.323480 (-0.030168) | 0.004185 / 0.007986 (-0.003800) | 0.002681 / 0.004328 (-0.001647) | 0.048644 / 0.004250 (0.044393) | 0.040366 / 0.037052 (0.003314) | 0.280345 / 0.258489 (0.021856) | 0.312745 / 0.293841 (0.018904) | 0.029616 / 0.128546 (-0.098930) | 0.010001 / 0.075646 (-0.065646) | 0.057365 / 0.419271 (-0.361906) | 0.033189 / 0.043533 (-0.010344) | 0.267601 / 0.255139 (0.012462) | 0.285647 / 0.283200 (0.002448) | 0.017119 / 0.141683 (-0.124564) | 1.139776 / 1.452155 (-0.312378) | 1.172451 / 1.492716 (-0.320266) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095462 / 0.018006 (0.077455) | 0.303009 / 0.000490 (0.302519) | 0.000227 / 0.000200 (0.000027) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023026 / 0.037411 (-0.014385) | 0.077905 / 0.014526 (0.063380) | 0.087275 / 0.176557 (-0.089282) | 0.127355 / 0.737135 (-0.609780) | 0.088940 / 0.296338 (-0.207399) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298267 / 0.215209 (0.083058) | 2.894679 / 2.077655 (0.817024) | 1.568663 / 1.504120 (0.064543) | 1.438342 / 1.541195 (-0.102853) | 1.456110 / 1.468490 (-0.012380) | 0.556337 / 4.584777 (-4.028440) | 0.969795 / 3.745712 (-2.775917) | 2.667348 / 5.269862 (-2.602513) | 1.767169 / 4.565676 (-2.798507) | 0.060969 / 0.424275 (-0.363306) | 0.005009 / 0.007607 (-0.002598) | 0.343299 / 0.226044 (0.117255) | 3.396529 / 2.268929 (1.127601) | 1.889816 / 55.444624 (-53.554808) | 1.635077 / 6.876477 (-5.241400) | 1.795238 / 2.142072 (-0.346835) | 0.631876 / 4.805227 (-4.173352) | 0.115483 / 6.500664 (-6.385181) | 0.041772 / 0.075469 (-0.033697) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008423 / 1.841788 (-0.833364) | 12.432488 / 8.074308 (4.358180) | 10.418002 / 10.191392 (0.226610) | 0.142395 / 0.680424 (-0.538029) | 0.015718 / 0.534201 (-0.518483) | 0.281917 / 0.579283 (-0.297366) | 0.132619 / 0.434364 (-0.301745) | 0.318500 / 0.540337 (-0.221838) | 0.410798 / 1.386936 (-0.976138) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3d6cd158d2e3bb9030fea7c5a9580b9d34d721ac \"CML watermark\")\n"
] | update ci user | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6933/reactions"
} | PR_kwDODunzps5w_cW4 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6933.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6933",
"merged_at": "2024-05-30T10:23:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6933.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6933"
} | 2024-05-30T10:23:02Z | https://api.github.com/repos/huggingface/datasets/issues/6933/comments | token is ok to be public since it's only for the hub-ci | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6933/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6933/timeline | closed | false | 6,933 | null | 2024-05-30T10:23:12Z | null | true |
2,324,729,267 | https://api.github.com/repos/huggingface/datasets/issues/6932 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6932/events | [] | null | 2024-06-04T12:56:20Z | [] | https://github.com/huggingface/datasets/pull/6932 | CONTRIBUTOR | null | false | null | [
"thanks !",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005050 / 0.011353 (-0.006303) | 0.003786 / 0.011008 (-0.007222) | 0.062406 / 0.038508 (0.023898) | 0.029459 / 0.023109 (0.006349) | 0.262388 / 0.275898 (-0.013510) | 0.274119 / 0.323480 (-0.049361) | 0.004085 / 0.007986 (-0.003901) | 0.002754 / 0.004328 (-0.001574) | 0.048779 / 0.004250 (0.044529) | 0.046187 / 0.037052 (0.009135) | 0.263513 / 0.258489 (0.005024) | 0.294260 / 0.293841 (0.000419) | 0.027391 / 0.128546 (-0.101155) | 0.010567 / 0.075646 (-0.065080) | 0.200225 / 0.419271 (-0.219046) | 0.036165 / 0.043533 (-0.007367) | 0.251757 / 0.255139 (-0.003382) | 0.268271 / 0.283200 (-0.014928) | 0.018446 / 0.141683 (-0.123237) | 1.125787 / 1.452155 (-0.326368) | 1.163172 / 1.492716 (-0.329544) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004428 / 0.018006 (-0.013578) | 0.301730 / 0.000490 (0.301241) | 0.000215 / 0.000200 (0.000015) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019424 / 0.037411 (-0.017987) | 0.062269 / 0.014526 (0.047743) | 0.074289 / 0.176557 (-0.102268) | 0.121069 / 0.737135 (-0.616067) | 0.076485 / 0.296338 (-0.219853) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277315 / 0.215209 (0.062106) | 2.742027 / 2.077655 (0.664372) | 1.472970 / 1.504120 (-0.031150) | 1.350065 / 1.541195 (-0.191130) | 1.378806 / 1.468490 (-0.089684) | 0.567742 / 4.584777 (-4.017035) | 2.376752 / 3.745712 (-1.368960) | 2.662459 / 5.269862 (-2.607402) | 1.750396 / 4.565676 (-2.815280) | 0.063589 / 0.424275 (-0.360686) | 0.004987 / 0.007607 (-0.002620) | 0.326441 / 0.226044 (0.100397) | 3.224125 / 2.268929 (0.955197) | 1.801623 / 55.444624 (-53.643001) | 1.534712 / 6.876477 (-5.341765) | 1.652365 / 2.142072 (-0.489708) | 0.647624 / 4.805227 (-4.157603) | 0.117161 / 6.500664 (-6.383504) | 0.041908 / 0.075469 (-0.033561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954879 / 1.841788 (-0.886909) | 11.571875 / 8.074308 (3.497567) | 9.489146 / 10.191392 (-0.702246) | 0.141630 / 0.680424 (-0.538794) | 0.014764 / 0.534201 (-0.519437) | 0.285003 / 0.579283 (-0.294280) | 0.266138 / 0.434364 (-0.168226) | 0.323527 / 0.540337 (-0.216810) | 0.419658 / 1.386936 (-0.967278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005359 / 0.011353 (-0.005994) | 0.003615 / 0.011008 (-0.007393) | 0.050692 / 0.038508 (0.012184) | 0.033632 / 0.023109 (0.010522) | 0.273614 / 0.275898 (-0.002284) | 0.303780 / 0.323480 (-0.019700) | 0.004171 / 0.007986 (-0.003814) | 0.002687 / 0.004328 (-0.001642) | 0.050002 / 0.004250 (0.045751) | 0.040824 / 0.037052 (0.003772) | 0.287759 / 0.258489 (0.029270) | 0.324144 / 0.293841 (0.030303) | 0.029101 / 0.128546 (-0.099445) | 0.010244 / 0.075646 (-0.065402) | 0.059599 / 0.419271 (-0.359672) | 0.033146 / 0.043533 (-0.010387) | 0.276592 / 0.255139 (0.021453) | 0.293670 / 0.283200 (0.010470) | 0.018270 / 0.141683 (-0.123413) | 1.126216 / 1.452155 (-0.325939) | 1.155658 / 1.492716 (-0.337058) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093537 / 0.018006 (0.075530) | 0.302706 / 0.000490 (0.302216) | 0.000216 / 0.000200 (0.000016) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023118 / 0.037411 (-0.014293) | 0.076995 / 0.014526 (0.062469) | 0.089476 / 0.176557 (-0.087080) | 0.130705 / 0.737135 (-0.606430) | 0.090258 / 0.296338 (-0.206081) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285920 / 0.215209 (0.070710) | 2.830581 / 2.077655 (0.752927) | 1.561695 / 1.504120 (0.057575) | 1.522791 / 1.541195 (-0.018403) | 1.429875 / 1.468490 (-0.038615) | 0.566683 / 4.584777 (-4.018094) | 0.957157 / 3.745712 (-2.788555) | 2.663718 / 5.269862 (-2.606143) | 1.748885 / 4.565676 (-2.816791) | 0.063697 / 0.424275 (-0.360578) | 0.004996 / 0.007607 (-0.002611) | 0.340042 / 0.226044 (0.113998) | 3.352792 / 2.268929 (1.083863) | 1.907189 / 55.444624 (-53.537435) | 1.608177 / 6.876477 (-5.268300) | 1.775438 / 2.142072 (-0.366634) | 0.645264 / 4.805227 (-4.159963) | 0.116441 / 6.500664 (-6.384223) | 0.040671 / 0.075469 (-0.034798) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005050 / 1.841788 (-0.836738) | 12.040057 / 8.074308 (3.965749) | 10.213560 / 10.191392 (0.022168) | 0.138383 / 0.680424 (-0.542041) | 0.015409 / 0.534201 (-0.518792) | 0.283509 / 0.579283 (-0.295774) | 0.125501 / 0.434364 (-0.308863) | 0.318816 / 0.540337 (-0.221521) | 0.415454 / 1.386936 (-0.971482) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cbb29cea0e21dc0eb8f7de01d0c6ed5718d6ce4e \"CML watermark\")\n"
] | Update dataset_dict.py | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6932/reactions"
} | PR_kwDODunzps5w9d7w | {
"diff_url": "https://github.com/huggingface/datasets/pull/6932.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6932",
"merged_at": "2024-06-04T12:50:13Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6932.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6932"
} | 2024-05-30T05:22:35Z | https://api.github.com/repos/huggingface/datasets/issues/6932/comments | shape returns (number of rows, number of columns) | {
"avatar_url": "https://avatars.githubusercontent.com/u/20263729?v=4",
"events_url": "https://api.github.com/users/Arunprakash-A/events{/privacy}",
"followers_url": "https://api.github.com/users/Arunprakash-A/followers",
"following_url": "https://api.github.com/users/Arunprakash-A/following{/other_user}",
"gists_url": "https://api.github.com/users/Arunprakash-A/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Arunprakash-A",
"id": 20263729,
"login": "Arunprakash-A",
"node_id": "MDQ6VXNlcjIwMjYzNzI5",
"organizations_url": "https://api.github.com/users/Arunprakash-A/orgs",
"received_events_url": "https://api.github.com/users/Arunprakash-A/received_events",
"repos_url": "https://api.github.com/users/Arunprakash-A/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Arunprakash-A/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Arunprakash-A/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Arunprakash-A"
} | https://api.github.com/repos/huggingface/datasets/issues/6932/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6932/timeline | closed | false | 6,932 | null | 2024-06-04T12:50:13Z | null | true |
2,323,457,525 | https://api.github.com/repos/huggingface/datasets/issues/6931 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6931/events | [] | null | 2024-05-29T16:33:18Z | [] | https://github.com/huggingface/datasets/pull/6931 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6931). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005362 / 0.011353 (-0.005991) | 0.003969 / 0.011008 (-0.007039) | 0.063390 / 0.038508 (0.024882) | 0.030814 / 0.023109 (0.007705) | 0.246891 / 0.275898 (-0.029007) | 0.271047 / 0.323480 (-0.052432) | 0.004036 / 0.007986 (-0.003950) | 0.002732 / 0.004328 (-0.001597) | 0.049466 / 0.004250 (0.045216) | 0.047227 / 0.037052 (0.010175) | 0.255978 / 0.258489 (-0.002511) | 0.297956 / 0.293841 (0.004115) | 0.028641 / 0.128546 (-0.099905) | 0.010510 / 0.075646 (-0.065136) | 0.204268 / 0.419271 (-0.215004) | 0.037093 / 0.043533 (-0.006440) | 0.247287 / 0.255139 (-0.007852) | 0.263830 / 0.283200 (-0.019370) | 0.018335 / 0.141683 (-0.123348) | 1.116074 / 1.452155 (-0.336081) | 1.182589 / 1.492716 (-0.310128) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094435 / 0.018006 (0.076429) | 0.310422 / 0.000490 (0.309932) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019220 / 0.037411 (-0.018192) | 0.062090 / 0.014526 (0.047564) | 0.074511 / 0.176557 (-0.102046) | 0.121825 / 0.737135 (-0.615310) | 0.075406 / 0.296338 (-0.220933) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281185 / 0.215209 (0.065976) | 2.770157 / 2.077655 (0.692502) | 1.472095 / 1.504120 (-0.032025) | 1.339342 / 1.541195 (-0.201853) | 1.374621 / 1.468490 (-0.093869) | 0.566607 / 4.584777 (-4.018170) | 2.357642 / 3.745712 (-1.388070) | 2.735034 / 5.269862 (-2.534827) | 1.782779 / 4.565676 (-2.782897) | 0.063046 / 0.424275 (-0.361229) | 0.005015 / 0.007607 (-0.002592) | 0.336690 / 0.226044 (0.110646) | 3.360955 / 2.268929 (1.092027) | 1.804424 / 55.444624 (-53.640200) | 1.517334 / 6.876477 (-5.359143) | 1.665254 / 2.142072 (-0.476818) | 0.627185 / 4.805227 (-4.178042) | 0.114388 / 6.500664 (-6.386276) | 0.041788 / 0.075469 (-0.033681) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975270 / 1.841788 (-0.866517) | 11.647633 / 8.074308 (3.573325) | 9.872873 / 10.191392 (-0.318519) | 0.141744 / 0.680424 (-0.538680) | 0.014524 / 0.534201 (-0.519677) | 0.286697 / 0.579283 (-0.292586) | 0.266837 / 0.434364 (-0.167527) | 0.328513 / 0.540337 (-0.211825) | 0.424676 / 1.386936 (-0.962260) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005654 / 0.011353 (-0.005699) | 0.004058 / 0.011008 (-0.006950) | 0.051030 / 0.038508 (0.012522) | 0.033085 / 0.023109 (0.009976) | 0.307532 / 0.275898 (0.031634) | 0.335672 / 0.323480 (0.012192) | 0.004244 / 0.007986 (-0.003742) | 0.002842 / 0.004328 (-0.001487) | 0.050131 / 0.004250 (0.045880) | 0.040709 / 0.037052 (0.003656) | 0.319514 / 0.258489 (0.061025) | 0.357153 / 0.293841 (0.063312) | 0.029014 / 0.128546 (-0.099532) | 0.010999 / 0.075646 (-0.064648) | 0.058789 / 0.419271 (-0.360482) | 0.033284 / 0.043533 (-0.010249) | 0.310783 / 0.255139 (0.055644) | 0.331466 / 0.283200 (0.048266) | 0.018998 / 0.141683 (-0.122685) | 1.138822 / 1.452155 (-0.313332) | 1.180731 / 1.492716 (-0.311985) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095725 / 0.018006 (0.077719) | 0.302788 / 0.000490 (0.302298) | 0.000206 / 0.000200 (0.000006) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023247 / 0.037411 (-0.014164) | 0.077619 / 0.014526 (0.063093) | 0.090489 / 0.176557 (-0.086067) | 0.132033 / 0.737135 (-0.605102) | 0.090964 / 0.296338 (-0.205374) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297912 / 0.215209 (0.082703) | 2.954107 / 2.077655 (0.876452) | 1.591155 / 1.504120 (0.087035) | 1.469217 / 1.541195 (-0.071978) | 1.513315 / 1.468490 (0.044825) | 0.562728 / 4.584777 (-4.022049) | 0.960093 / 3.745712 (-2.785620) | 2.852106 / 5.269862 (-2.417756) | 1.861668 / 4.565676 (-2.704009) | 0.063530 / 0.424275 (-0.360745) | 0.005194 / 0.007607 (-0.002413) | 0.351116 / 0.226044 (0.125072) | 3.498787 / 2.268929 (1.229859) | 1.952223 / 55.444624 (-53.492401) | 1.696208 / 6.876477 (-5.180269) | 1.861650 / 2.142072 (-0.280422) | 0.653494 / 4.805227 (-4.151733) | 0.123797 / 6.500664 (-6.376868) | 0.042696 / 0.075469 (-0.032773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006657 / 1.841788 (-0.835131) | 12.659771 / 8.074308 (4.585463) | 10.672140 / 10.191392 (0.480748) | 0.143726 / 0.680424 (-0.536698) | 0.015895 / 0.534201 (-0.518306) | 0.285952 / 0.579283 (-0.293331) | 0.126078 / 0.434364 (-0.308286) | 0.325943 / 0.540337 (-0.214395) | 0.410774 / 1.386936 (-0.976162) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88d53d1ae762bec6736fffb000e6540e52bf1998 \"CML watermark\")\n"
] | [WebDataset] Support compressed files | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6931/reactions"
} | PR_kwDODunzps5w5I-Y | {
"diff_url": "https://github.com/huggingface/datasets/pull/6931.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6931",
"merged_at": "2024-05-29T16:24:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6931.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6931"
} | 2024-05-29T14:19:06Z | https://api.github.com/repos/huggingface/datasets/issues/6931/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6931/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6931/timeline | closed | false | 6,931 | null | 2024-05-29T16:24:21Z | null | true |
2,323,225,922 | https://api.github.com/repos/huggingface/datasets/issues/6930 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6930/events | [] | null | 2024-07-23T06:25:24Z | [] | https://github.com/huggingface/datasets/issues/6930 | NONE | null | null | null | [
"How do you solve it ?\r\n",
"> How do you solve it ?\r\n\r\nPlease check your Python environment and dataset version. I have just resolved the issue, which was caused by a Python environment switching error\r\n"
] | ValueError: Couldn't infer the same data file format for all splits. Got {'train': ('json', {}), 'validation': (None, {})} | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6930/reactions"
} | I_kwDODunzps6KeZ1C | null | 2024-05-29T12:40:05Z | https://api.github.com/repos/huggingface/datasets/issues/6930/comments | ### Describe the bug
When I run the code en = load_dataset("allenai/c4", "en", streaming=True), I encounter an error: raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") ValueError: Couldn't infer the same data file format for all splits. Got {'train': ('json', {}), 'validation': (None, {})}.
However, running dataset = load_dataset('allenai/c4', streaming=True, data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation') works fine. What is the issue here?
### Steps to reproduce the bug
run codeοΌ
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
from datasets import load_dataset
en = load_dataset("allenai/c4", "en", streaming=True)
### Expected behavior
Successfully loaded the dataset.
### Environment info
- `datasets` version: 2.18.0
- Platform: Linux-6.5.0-28-generic-x86_64-with-glibc2.17
- Python version: 3.8.19
- `huggingface_hub` version: 0.22.2
- PyArrow version: 15.0.2
- Pandas version: 2.0.3
- `fsspec` version: 2024.2.0
| {
"avatar_url": "https://avatars.githubusercontent.com/u/41767521?v=4",
"events_url": "https://api.github.com/users/CLL112/events{/privacy}",
"followers_url": "https://api.github.com/users/CLL112/followers",
"following_url": "https://api.github.com/users/CLL112/following{/other_user}",
"gists_url": "https://api.github.com/users/CLL112/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/CLL112",
"id": 41767521,
"login": "CLL112",
"node_id": "MDQ6VXNlcjQxNzY3NTIx",
"organizations_url": "https://api.github.com/users/CLL112/orgs",
"received_events_url": "https://api.github.com/users/CLL112/received_events",
"repos_url": "https://api.github.com/users/CLL112/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/CLL112/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/CLL112/subscriptions",
"type": "User",
"url": "https://api.github.com/users/CLL112"
} | https://api.github.com/repos/huggingface/datasets/issues/6930/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6930/timeline | open | false | 6,930 | null | null | null | false |
2,322,980,077 | https://api.github.com/repos/huggingface/datasets/issues/6929 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6929/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-05-29T20:51:56Z | [] | https://github.com/huggingface/datasets/issues/6929 | NONE | null | null | null | [
"you're right, we're tackling this here: https://github.com/huggingface/dataset-viewer/issues/2757",
"@severo : great !"
] | Avoid downloading the whole dataset when only README.me has been touched on hub. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6929/reactions"
} | I_kwDODunzps6Kddzt | null | 2024-05-29T10:36:06Z | https://api.github.com/repos/huggingface/datasets/issues/6929/comments | ### Feature request
`datasets.load_dataset()` triggers a new download of the **whole dataset** when the README.md file has been touched on huggingface hub, even if data files / parquet files are the exact same.
I think the current behaviour of the load_dataset function is triggered whenever a change of the hash of latest commit on huggingface hub, but is there a clever way to only download again the dataset **if and only if** data is modified ?
### Motivation
The current behaviour is a waste of network bandwidth / disk space / research time.
### Your contribution
I don't have time to submit a PR, but I hope a simple solution will emerge from this issue ! | {
"avatar_url": "https://avatars.githubusercontent.com/u/73740254?v=4",
"events_url": "https://api.github.com/users/zinc75/events{/privacy}",
"followers_url": "https://api.github.com/users/zinc75/followers",
"following_url": "https://api.github.com/users/zinc75/following{/other_user}",
"gists_url": "https://api.github.com/users/zinc75/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/zinc75",
"id": 73740254,
"login": "zinc75",
"node_id": "MDQ6VXNlcjczNzQwMjU0",
"organizations_url": "https://api.github.com/users/zinc75/orgs",
"received_events_url": "https://api.github.com/users/zinc75/received_events",
"repos_url": "https://api.github.com/users/zinc75/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/zinc75/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zinc75/subscriptions",
"type": "User",
"url": "https://api.github.com/users/zinc75"
} | https://api.github.com/repos/huggingface/datasets/issues/6929/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6929/timeline | open | false | 6,929 | null | null | null | false |
2,322,267,727 | https://api.github.com/repos/huggingface/datasets/issues/6928 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6928/events | [] | null | 2024-06-04T13:08:19Z | [] | https://github.com/huggingface/datasets/pull/6928 | CONTRIBUTOR | null | false | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005062 / 0.011353 (-0.006291) | 0.003410 / 0.011008 (-0.007598) | 0.062241 / 0.038508 (0.023733) | 0.030294 / 0.023109 (0.007185) | 0.249249 / 0.275898 (-0.026649) | 0.267718 / 0.323480 (-0.055761) | 0.003047 / 0.007986 (-0.004938) | 0.002661 / 0.004328 (-0.001668) | 0.049142 / 0.004250 (0.044892) | 0.047929 / 0.037052 (0.010877) | 0.255262 / 0.258489 (-0.003227) | 0.286241 / 0.293841 (-0.007600) | 0.027064 / 0.128546 (-0.101482) | 0.010374 / 0.075646 (-0.065273) | 0.201454 / 0.419271 (-0.217818) | 0.036586 / 0.043533 (-0.006947) | 0.255200 / 0.255139 (0.000061) | 0.267660 / 0.283200 (-0.015539) | 0.018621 / 0.141683 (-0.123062) | 1.159821 / 1.452155 (-0.292334) | 1.171597 / 1.492716 (-0.321120) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004752 / 0.018006 (-0.013254) | 0.295427 / 0.000490 (0.294937) | 0.000225 / 0.000200 (0.000025) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018914 / 0.037411 (-0.018497) | 0.061180 / 0.014526 (0.046654) | 0.073649 / 0.176557 (-0.102907) | 0.120142 / 0.737135 (-0.616993) | 0.074754 / 0.296338 (-0.221585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286637 / 0.215209 (0.071428) | 2.807941 / 2.077655 (0.730287) | 1.473577 / 1.504120 (-0.030542) | 1.353112 / 1.541195 (-0.188083) | 1.363020 / 1.468490 (-0.105470) | 0.567745 / 4.584777 (-4.017032) | 2.384887 / 3.745712 (-1.360826) | 2.685132 / 5.269862 (-2.584730) | 1.755922 / 4.565676 (-2.809755) | 0.062296 / 0.424275 (-0.361979) | 0.004941 / 0.007607 (-0.002666) | 0.346752 / 0.226044 (0.120707) | 3.378623 / 2.268929 (1.109694) | 1.809070 / 55.444624 (-53.635555) | 1.531490 / 6.876477 (-5.344986) | 1.687954 / 2.142072 (-0.454119) | 0.639917 / 4.805227 (-4.165310) | 0.118455 / 6.500664 (-6.382209) | 0.043072 / 0.075469 (-0.032397) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977154 / 1.841788 (-0.864634) | 11.380127 / 8.074308 (3.305819) | 9.621632 / 10.191392 (-0.569760) | 0.141768 / 0.680424 (-0.538655) | 0.014120 / 0.534201 (-0.520081) | 0.285073 / 0.579283 (-0.294210) | 0.264801 / 0.434364 (-0.169563) | 0.322357 / 0.540337 (-0.217981) | 0.431192 / 1.386936 (-0.955744) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005162 / 0.011353 (-0.006191) | 0.003499 / 0.011008 (-0.007509) | 0.049667 / 0.038508 (0.011159) | 0.032473 / 0.023109 (0.009363) | 0.259988 / 0.275898 (-0.015910) | 0.285723 / 0.323480 (-0.037757) | 0.004197 / 0.007986 (-0.003789) | 0.002710 / 0.004328 (-0.001618) | 0.049235 / 0.004250 (0.044984) | 0.040440 / 0.037052 (0.003387) | 0.276791 / 0.258489 (0.018302) | 0.311990 / 0.293841 (0.018149) | 0.029217 / 0.128546 (-0.099329) | 0.010217 / 0.075646 (-0.065429) | 0.057844 / 0.419271 (-0.361427) | 0.032799 / 0.043533 (-0.010734) | 0.260705 / 0.255139 (0.005566) | 0.280439 / 0.283200 (-0.002761) | 0.018682 / 0.141683 (-0.123001) | 1.135946 / 1.452155 (-0.316208) | 1.163144 / 1.492716 (-0.329572) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097968 / 0.018006 (0.079961) | 0.309276 / 0.000490 (0.308786) | 0.000214 / 0.000200 (0.000014) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022623 / 0.037411 (-0.014788) | 0.075471 / 0.014526 (0.060945) | 0.087928 / 0.176557 (-0.088629) | 0.129537 / 0.737135 (-0.607599) | 0.089376 / 0.296338 (-0.206963) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298223 / 0.215209 (0.083014) | 2.940462 / 2.077655 (0.862807) | 1.586024 / 1.504120 (0.081904) | 1.451161 / 1.541195 (-0.090034) | 1.457707 / 1.468490 (-0.010783) | 0.571172 / 4.584777 (-4.013604) | 0.961591 / 3.745712 (-2.784121) | 2.661258 / 5.269862 (-2.608604) | 1.755172 / 4.565676 (-2.810504) | 0.063430 / 0.424275 (-0.360845) | 0.005034 / 0.007607 (-0.002573) | 0.352356 / 0.226044 (0.126312) | 3.454986 / 2.268929 (1.186057) | 1.967375 / 55.444624 (-53.477249) | 1.638465 / 6.876477 (-5.238012) | 1.774098 / 2.142072 (-0.367975) | 0.650094 / 4.805227 (-4.155134) | 0.117377 / 6.500664 (-6.383287) | 0.041229 / 0.075469 (-0.034240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.014356 / 1.841788 (-0.827432) | 12.175823 / 8.074308 (4.101515) | 10.657486 / 10.191392 (0.466094) | 0.145080 / 0.680424 (-0.535344) | 0.015563 / 0.534201 (-0.518638) | 0.287093 / 0.579283 (-0.292190) | 0.127164 / 0.434364 (-0.307200) | 0.318518 / 0.540337 (-0.221820) | 0.415333 / 1.386936 (-0.971603) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#372078f617d9210c7f073c22f5f6f4fbee52c67f \"CML watermark\")\n"
] | Update process.mdx: Code Listings Fixes | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6928/reactions"
} | PR_kwDODunzps5w1ECb | {
"diff_url": "https://github.com/huggingface/datasets/pull/6928.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6928",
"merged_at": "2024-06-04T12:55:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6928.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6928"
} | 2024-05-29T03:17:07Z | https://api.github.com/repos/huggingface/datasets/issues/6928/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/16918280?v=4",
"events_url": "https://api.github.com/users/FadyMorris/events{/privacy}",
"followers_url": "https://api.github.com/users/FadyMorris/followers",
"following_url": "https://api.github.com/users/FadyMorris/following{/other_user}",
"gists_url": "https://api.github.com/users/FadyMorris/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/FadyMorris",
"id": 16918280,
"login": "FadyMorris",
"node_id": "MDQ6VXNlcjE2OTE4Mjgw",
"organizations_url": "https://api.github.com/users/FadyMorris/orgs",
"received_events_url": "https://api.github.com/users/FadyMorris/received_events",
"repos_url": "https://api.github.com/users/FadyMorris/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/FadyMorris/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FadyMorris/subscriptions",
"type": "User",
"url": "https://api.github.com/users/FadyMorris"
} | https://api.github.com/repos/huggingface/datasets/issues/6928/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6928/timeline | closed | false | 6,928 | null | 2024-06-04T12:55:00Z | null | true |
2,322,260,725 | https://api.github.com/repos/huggingface/datasets/issues/6927 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6927/events | [] | null | 2024-05-29T03:12:46Z | [] | https://github.com/huggingface/datasets/pull/6927 | CONTRIBUTOR | null | false | null | [] | Update process.mdx: Minor Code Listings Updates and Fixes | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6927/reactions"
} | PR_kwDODunzps5w1CmF | {
"diff_url": "https://github.com/huggingface/datasets/pull/6927.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6927",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6927.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6927"
} | 2024-05-29T03:09:01Z | https://api.github.com/repos/huggingface/datasets/issues/6927/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/16918280?v=4",
"events_url": "https://api.github.com/users/FadyMorris/events{/privacy}",
"followers_url": "https://api.github.com/users/FadyMorris/followers",
"following_url": "https://api.github.com/users/FadyMorris/following{/other_user}",
"gists_url": "https://api.github.com/users/FadyMorris/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/FadyMorris",
"id": 16918280,
"login": "FadyMorris",
"node_id": "MDQ6VXNlcjE2OTE4Mjgw",
"organizations_url": "https://api.github.com/users/FadyMorris/orgs",
"received_events_url": "https://api.github.com/users/FadyMorris/received_events",
"repos_url": "https://api.github.com/users/FadyMorris/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/FadyMorris/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FadyMorris/subscriptions",
"type": "User",
"url": "https://api.github.com/users/FadyMorris"
} | https://api.github.com/repos/huggingface/datasets/issues/6927/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6927/timeline | closed | false | 6,927 | null | 2024-05-29T03:12:46Z | null | true |
2,322,164,287 | https://api.github.com/repos/huggingface/datasets/issues/6926 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6926/events | [] | null | 2024-05-29T03:11:20Z | [] | https://github.com/huggingface/datasets/pull/6926 | CONTRIBUTOR | null | false | null | [] | Update process.mdx: Fix code listing in Shard section | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6926/reactions"
} | PR_kwDODunzps5w0uII | {
"diff_url": "https://github.com/huggingface/datasets/pull/6926.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6926",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6926.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6926"
} | 2024-05-29T01:25:55Z | https://api.github.com/repos/huggingface/datasets/issues/6926/comments | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/16918280?v=4",
"events_url": "https://api.github.com/users/FadyMorris/events{/privacy}",
"followers_url": "https://api.github.com/users/FadyMorris/followers",
"following_url": "https://api.github.com/users/FadyMorris/following{/other_user}",
"gists_url": "https://api.github.com/users/FadyMorris/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/FadyMorris",
"id": 16918280,
"login": "FadyMorris",
"node_id": "MDQ6VXNlcjE2OTE4Mjgw",
"organizations_url": "https://api.github.com/users/FadyMorris/orgs",
"received_events_url": "https://api.github.com/users/FadyMorris/received_events",
"repos_url": "https://api.github.com/users/FadyMorris/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/FadyMorris/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FadyMorris/subscriptions",
"type": "User",
"url": "https://api.github.com/users/FadyMorris"
} | https://api.github.com/repos/huggingface/datasets/issues/6926/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6926/timeline | closed | false | 6,926 | null | 2024-05-29T03:11:08Z | null | true |
2,321,084,967 | https://api.github.com/repos/huggingface/datasets/issues/6925 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6925/events | [] | null | 2024-06-02T14:11:13Z | [] | https://github.com/huggingface/datasets/pull/6925 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6925). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Do you think this is worth making a patch release for?\r\nCC: @huggingface/datasets",
"I will add some regression tests before merging.\r\n\r\nAnd I will make a patch release afterwards.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004959 / 0.011353 (-0.006394) | 0.003654 / 0.011008 (-0.007354) | 0.064087 / 0.038508 (0.025579) | 0.031942 / 0.023109 (0.008833) | 0.236830 / 0.275898 (-0.039068) | 0.265359 / 0.323480 (-0.058121) | 0.003108 / 0.007986 (-0.004878) | 0.002824 / 0.004328 (-0.001504) | 0.049102 / 0.004250 (0.044852) | 0.046070 / 0.037052 (0.009017) | 0.248830 / 0.258489 (-0.009659) | 0.283900 / 0.293841 (-0.009941) | 0.027799 / 0.128546 (-0.100747) | 0.010572 / 0.075646 (-0.065074) | 0.223595 / 0.419271 (-0.195677) | 0.036951 / 0.043533 (-0.006582) | 0.238813 / 0.255139 (-0.016326) | 0.253841 / 0.283200 (-0.029359) | 0.018471 / 0.141683 (-0.123212) | 1.131969 / 1.452155 (-0.320186) | 1.173763 / 1.492716 (-0.318954) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095504 / 0.018006 (0.077498) | 0.301469 / 0.000490 (0.300979) | 0.000212 / 0.000200 (0.000012) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019194 / 0.037411 (-0.018217) | 0.062313 / 0.014526 (0.047787) | 0.075852 / 0.176557 (-0.100704) | 0.121996 / 0.737135 (-0.615140) | 0.076416 / 0.296338 (-0.219923) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292465 / 0.215209 (0.077256) | 2.910234 / 2.077655 (0.832579) | 1.479672 / 1.504120 (-0.024448) | 1.332281 / 1.541195 (-0.208913) | 1.354095 / 1.468490 (-0.114395) | 0.573438 / 4.584777 (-4.011339) | 2.382406 / 3.745712 (-1.363307) | 2.708289 / 5.269862 (-2.561572) | 1.739665 / 4.565676 (-2.826011) | 0.063514 / 0.424275 (-0.360761) | 0.005008 / 0.007607 (-0.002599) | 0.350070 / 0.226044 (0.124025) | 3.475837 / 2.268929 (1.206909) | 1.804639 / 55.444624 (-53.639985) | 1.520472 / 6.876477 (-5.356005) | 1.658061 / 2.142072 (-0.484011) | 0.648495 / 4.805227 (-4.156732) | 0.118394 / 6.500664 (-6.382270) | 0.042557 / 0.075469 (-0.032912) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.960772 / 1.841788 (-0.881016) | 11.451629 / 8.074308 (3.377321) | 9.613331 / 10.191392 (-0.578061) | 0.130259 / 0.680424 (-0.550164) | 0.015828 / 0.534201 (-0.518373) | 0.287581 / 0.579283 (-0.291702) | 0.266517 / 0.434364 (-0.167847) | 0.327334 / 0.540337 (-0.213003) | 0.427881 / 1.386936 (-0.959055) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005364 / 0.011353 (-0.005989) | 0.003723 / 0.011008 (-0.007285) | 0.049990 / 0.038508 (0.011482) | 0.032023 / 0.023109 (0.008913) | 0.258609 / 0.275898 (-0.017289) | 0.281250 / 0.323480 (-0.042230) | 0.004222 / 0.007986 (-0.003764) | 0.002799 / 0.004328 (-0.001529) | 0.049546 / 0.004250 (0.045296) | 0.040298 / 0.037052 (0.003246) | 0.273552 / 0.258489 (0.015063) | 0.304042 / 0.293841 (0.010201) | 0.030116 / 0.128546 (-0.098430) | 0.010792 / 0.075646 (-0.064855) | 0.058427 / 0.419271 (-0.360845) | 0.033415 / 0.043533 (-0.010118) | 0.258794 / 0.255139 (0.003655) | 0.275304 / 0.283200 (-0.007896) | 0.017944 / 0.141683 (-0.123739) | 1.109291 / 1.452155 (-0.342864) | 1.156627 / 1.492716 (-0.336090) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096700 / 0.018006 (0.078693) | 0.301108 / 0.000490 (0.300618) | 0.000208 / 0.000200 (0.000008) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022632 / 0.037411 (-0.014779) | 0.075813 / 0.014526 (0.061287) | 0.090302 / 0.176557 (-0.086254) | 0.130375 / 0.737135 (-0.606760) | 0.089710 / 0.296338 (-0.206629) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297091 / 0.215209 (0.081882) | 2.910379 / 2.077655 (0.832725) | 1.570460 / 1.504120 (0.066340) | 1.441619 / 1.541195 (-0.099576) | 1.442417 / 1.468490 (-0.026073) | 0.570034 / 4.584777 (-4.014743) | 0.952613 / 3.745712 (-2.793099) | 2.659274 / 5.269862 (-2.610588) | 1.751013 / 4.565676 (-2.814663) | 0.064639 / 0.424275 (-0.359636) | 0.005145 / 0.007607 (-0.002462) | 0.347478 / 0.226044 (0.121434) | 3.443862 / 2.268929 (1.174933) | 1.897246 / 55.444624 (-53.547379) | 1.609267 / 6.876477 (-5.267210) | 1.755116 / 2.142072 (-0.386956) | 0.658982 / 4.805227 (-4.146245) | 0.117000 / 6.500664 (-6.383664) | 0.041453 / 0.075469 (-0.034016) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005843 / 1.841788 (-0.835944) | 12.101306 / 8.074308 (4.026998) | 10.370706 / 10.191392 (0.179314) | 0.139374 / 0.680424 (-0.541050) | 0.015605 / 0.534201 (-0.518596) | 0.286978 / 0.579283 (-0.292305) | 0.122951 / 0.434364 (-0.311413) | 0.331729 / 0.540337 (-0.208609) | 0.422088 / 1.386936 (-0.964848) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#157585f964b1c7f675860af0d21712555b34aabc \"CML watermark\")\n"
] | Fix NonMatchingSplitsSizesError/ExpectedMoreSplits when passing data_dir/data_files in no-code Hub datasets | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6925/reactions"
} | PR_kwDODunzps5wxDRE | {
"diff_url": "https://github.com/huggingface/datasets/pull/6925.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6925",
"merged_at": "2024-05-31T17:10:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6925.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6925"
} | 2024-05-28T13:33:38Z | https://api.github.com/repos/huggingface/datasets/issues/6925/comments | Fix `NonMatchingSplitsSizesError` or `ExpectedMoreSplits` error for no-code Hub datasets if the user passes:
- `data_dir`
- `data_files`
The proposed solution is to avoid using exported dataset info (from Parquet exports) in these cases.
Additionally, also if the user passes `revision` other than "main" (so that no network requests are made).
This PR fixes a bug introduced by:
- #6714
Fix #6918, fix #6939. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6925/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6925/timeline | closed | false | 6,925 | null | 2024-05-31T17:10:37Z | null | true |
2,320,531,015 | https://api.github.com/repos/huggingface/datasets/issues/6924 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6924/events | [] | null | 2024-05-28T09:07:41Z | [] | https://github.com/huggingface/datasets/issues/6924 | NONE | null | null | null | [] | Caching map result of DatasetDict. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6924/reactions"
} | I_kwDODunzps6KUH5H | null | 2024-05-28T09:07:41Z | https://api.github.com/repos/huggingface/datasets/issues/6924/comments | Hi!
I'm currenty using the map function to tokenize a somewhat large dataset, so I need to use the cache to save ~25 mins.
Changing num_proc incduces the recomputation of the map, I'm not sure why and if this is excepted behavior?
here it says, that cached files are loaded sequentially:
https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3005-L3006
it seems like I can pass in a fingerprint, and load it directly:
https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3108-L3125
**Environment Setup:**
- Python 3.11.9
- datasets 2.19.1 conda-forge
- Linux 6.1.83-1.el9.elrepo.x86_64
**MRE**
```python
fixed raw_datasets
fixed tokenize_function
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=9,
remove_columns=['text'],
load_from_cache_file= True,
desc="Running tokenizer on dataset line_by_line",
)
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=5,
remove_columns=['text'],
load_from_cache_file= True,
desc="Running tokenizer on dataset line_by_line",
)
``` | {
"avatar_url": "https://avatars.githubusercontent.com/u/56939432?v=4",
"events_url": "https://api.github.com/users/MostHumble/events{/privacy}",
"followers_url": "https://api.github.com/users/MostHumble/followers",
"following_url": "https://api.github.com/users/MostHumble/following{/other_user}",
"gists_url": "https://api.github.com/users/MostHumble/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MostHumble",
"id": 56939432,
"login": "MostHumble",
"node_id": "MDQ6VXNlcjU2OTM5NDMy",
"organizations_url": "https://api.github.com/users/MostHumble/orgs",
"received_events_url": "https://api.github.com/users/MostHumble/received_events",
"repos_url": "https://api.github.com/users/MostHumble/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MostHumble/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MostHumble/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MostHumble"
} | https://api.github.com/repos/huggingface/datasets/issues/6924/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6924/timeline | open | false | 6,924 | null | null | null | false |
2,319,292,872 | https://api.github.com/repos/huggingface/datasets/issues/6923 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6923/events | [] | null | 2024-05-27T14:27:57Z | [] | https://github.com/huggingface/datasets/issues/6923 | NONE | null | null | null | [] | Export Parquet Tablet Audio-Set is null bytes in Arrow | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6923/reactions"
} | I_kwDODunzps6KPZnI | null | 2024-05-27T14:27:57Z | https://api.github.com/repos/huggingface/datasets/issues/6923/comments | ### Describe the bug
Exporting the processed audio inside the table with the dataset.to_parquet function, the object pyarrow {bytes: null, path: "Some/Path"}
At the same time, the same dataset uploaded to the hub has bit arrays
![Screenshot from 2024-05-27 19-14-49](https://github.com/huggingface/datasets/assets/140120605/ddfba089-426f-4659-9df4-7a634c948b9e)
![Screenshot from 2024-05-27 19-12-51](https://github.com/huggingface/datasets/assets/140120605/4cf8c0a1-650e-491b-86c8-b475c284a021)
### Steps to reproduce the bug
1.Get dataset from audio and cast it
2.Export and push dataset
3.Itβs scary to be indignant at the difference in the uploaded dataset and the fact that it was saved locally
```py
from datasets import Dataset, Audio
df = Dataset.from_csv("./datasets.csv")
df = df.cast_column("audio", Audio(16000))
df.to_parquet("./datasets.parquet")
df.push_to_hub(repo_id="************", token="**********************")
```
You can use "try replicate case" for this
[replicate_packet.zip](https://github.com/huggingface/datasets/files/15457114/replicate_packet.zip)
### Expected behavior
Two parquet tables identical in content. It is obvious?
### Environment info
Python 3.11+ (I try did it in 3.12 and got same result ) | {
"avatar_url": "https://avatars.githubusercontent.com/u/140120605?v=4",
"events_url": "https://api.github.com/users/anioji/events{/privacy}",
"followers_url": "https://api.github.com/users/anioji/followers",
"following_url": "https://api.github.com/users/anioji/following{/other_user}",
"gists_url": "https://api.github.com/users/anioji/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/anioji",
"id": 140120605,
"login": "anioji",
"node_id": "U_kgDOCFoSHQ",
"organizations_url": "https://api.github.com/users/anioji/orgs",
"received_events_url": "https://api.github.com/users/anioji/received_events",
"repos_url": "https://api.github.com/users/anioji/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/anioji/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/anioji/subscriptions",
"type": "User",
"url": "https://api.github.com/users/anioji"
} | https://api.github.com/repos/huggingface/datasets/issues/6923/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6923/timeline | open | false | 6,923 | null | null | null | false |
2,318,602,059 | https://api.github.com/repos/huggingface/datasets/issues/6922 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6922/events | [] | null | 2024-05-27T09:08:19Z | [] | https://github.com/huggingface/datasets/pull/6922 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6922). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005525 / 0.011353 (-0.005828) | 0.004013 / 0.011008 (-0.006996) | 0.063931 / 0.038508 (0.025423) | 0.033857 / 0.023109 (0.010748) | 0.250910 / 0.275898 (-0.024988) | 0.278289 / 0.323480 (-0.045191) | 0.004289 / 0.007986 (-0.003697) | 0.002800 / 0.004328 (-0.001529) | 0.050127 / 0.004250 (0.045877) | 0.048901 / 0.037052 (0.011848) | 0.260628 / 0.258489 (0.002139) | 0.293904 / 0.293841 (0.000063) | 0.028339 / 0.128546 (-0.100207) | 0.010879 / 0.075646 (-0.064767) | 0.203618 / 0.419271 (-0.215654) | 0.036241 / 0.043533 (-0.007292) | 0.250481 / 0.255139 (-0.004657) | 0.274274 / 0.283200 (-0.008926) | 0.018912 / 0.141683 (-0.122771) | 1.146785 / 1.452155 (-0.305370) | 1.199795 / 1.492716 (-0.292921) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095571 / 0.018006 (0.077564) | 0.302961 / 0.000490 (0.302471) | 0.000217 / 0.000200 (0.000017) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020121 / 0.037411 (-0.017290) | 0.063231 / 0.014526 (0.048705) | 0.075434 / 0.176557 (-0.101122) | 0.123994 / 0.737135 (-0.613141) | 0.076479 / 0.296338 (-0.219860) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277816 / 0.215209 (0.062607) | 2.775481 / 2.077655 (0.697826) | 1.454881 / 1.504120 (-0.049239) | 1.339055 / 1.541195 (-0.202140) | 1.347810 / 1.468490 (-0.120681) | 0.572802 / 4.584777 (-4.011975) | 2.357490 / 3.745712 (-1.388222) | 2.822548 / 5.269862 (-2.447313) | 1.746538 / 4.565676 (-2.819138) | 0.066159 / 0.424275 (-0.358116) | 0.005037 / 0.007607 (-0.002570) | 0.329256 / 0.226044 (0.103212) | 3.277511 / 2.268929 (1.008582) | 1.807855 / 55.444624 (-53.636769) | 1.505507 / 6.876477 (-5.370970) | 1.634237 / 2.142072 (-0.507835) | 0.643999 / 4.805227 (-4.161229) | 0.117494 / 6.500664 (-6.383170) | 0.042634 / 0.075469 (-0.032835) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977689 / 1.841788 (-0.864098) | 12.261836 / 8.074308 (4.187528) | 9.871541 / 10.191392 (-0.319851) | 0.147293 / 0.680424 (-0.533130) | 0.015134 / 0.534201 (-0.519067) | 0.287677 / 0.579283 (-0.291606) | 0.264622 / 0.434364 (-0.169742) | 0.330511 / 0.540337 (-0.209826) | 0.467618 / 1.386936 (-0.919318) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005690 / 0.011353 (-0.005663) | 0.003801 / 0.011008 (-0.007207) | 0.051817 / 0.038508 (0.013309) | 0.033355 / 0.023109 (0.010246) | 0.264416 / 0.275898 (-0.011482) | 0.288494 / 0.323480 (-0.034986) | 0.004246 / 0.007986 (-0.003740) | 0.002814 / 0.004328 (-0.001515) | 0.050547 / 0.004250 (0.046297) | 0.042977 / 0.037052 (0.005925) | 0.276884 / 0.258489 (0.018395) | 0.303758 / 0.293841 (0.009917) | 0.029412 / 0.128546 (-0.099134) | 0.010697 / 0.075646 (-0.064949) | 0.059497 / 0.419271 (-0.359775) | 0.033670 / 0.043533 (-0.009862) | 0.261311 / 0.255139 (0.006172) | 0.286478 / 0.283200 (0.003278) | 0.019386 / 0.141683 (-0.122297) | 1.155943 / 1.452155 (-0.296211) | 1.198512 / 1.492716 (-0.294205) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092954 / 0.018006 (0.074948) | 0.294144 / 0.000490 (0.293655) | 0.000213 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023013 / 0.037411 (-0.014398) | 0.077161 / 0.014526 (0.062635) | 0.089957 / 0.176557 (-0.086600) | 0.129305 / 0.737135 (-0.607831) | 0.091006 / 0.296338 (-0.205333) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294091 / 0.215209 (0.078882) | 2.885395 / 2.077655 (0.807741) | 1.555658 / 1.504120 (0.051538) | 1.423276 / 1.541195 (-0.117919) | 1.476485 / 1.468490 (0.007995) | 0.569507 / 4.584777 (-4.015270) | 0.979221 / 3.745712 (-2.766491) | 2.818503 / 5.269862 (-2.451358) | 1.871938 / 4.565676 (-2.693739) | 0.064342 / 0.424275 (-0.359933) | 0.005495 / 0.007607 (-0.002112) | 0.351451 / 0.226044 (0.125407) | 3.516078 / 2.268929 (1.247149) | 1.928351 / 55.444624 (-53.516273) | 1.625362 / 6.876477 (-5.251115) | 1.813756 / 2.142072 (-0.328317) | 0.657642 / 4.805227 (-4.147585) | 0.117893 / 6.500664 (-6.382771) | 0.042009 / 0.075469 (-0.033460) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.032893 / 1.841788 (-0.808894) | 12.983400 / 8.074308 (4.909092) | 10.747204 / 10.191392 (0.555812) | 0.133163 / 0.680424 (-0.547261) | 0.015875 / 0.534201 (-0.518326) | 0.312592 / 0.579283 (-0.266691) | 0.124780 / 0.434364 (-0.309584) | 0.350735 / 0.540337 (-0.189603) | 0.447130 / 1.386936 (-0.939806) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#048c789607af0370c1f2337248897956f7a91617 \"CML watermark\")\n"
] | Remove torchaudio remnants from code | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6922/reactions"
} | PR_kwDODunzps5wolTm | {
"diff_url": "https://github.com/huggingface/datasets/pull/6922.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6922",
"merged_at": "2024-05-27T08:59:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6922.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6922"
} | 2024-05-27T08:45:07Z | https://api.github.com/repos/huggingface/datasets/issues/6922/comments | Remove torchaudio remnants from code.
Follow-up on:
- #5573 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6922/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6922/timeline | closed | false | 6,922 | null | 2024-05-27T08:59:21Z | null | true |
2,318,394,398 | https://api.github.com/repos/huggingface/datasets/issues/6921 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6921/events | [] | null | 2024-05-27T08:07:16Z | [] | https://github.com/huggingface/datasets/pull/6921 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6921). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005252 / 0.011353 (-0.006100) | 0.003752 / 0.011008 (-0.007257) | 0.064034 / 0.038508 (0.025526) | 0.031205 / 0.023109 (0.008096) | 0.248903 / 0.275898 (-0.026995) | 0.275808 / 0.323480 (-0.047671) | 0.003135 / 0.007986 (-0.004851) | 0.002635 / 0.004328 (-0.001693) | 0.049869 / 0.004250 (0.045619) | 0.047602 / 0.037052 (0.010549) | 0.259738 / 0.258489 (0.001249) | 0.296131 / 0.293841 (0.002290) | 0.027467 / 0.128546 (-0.101080) | 0.010449 / 0.075646 (-0.065197) | 0.201369 / 0.419271 (-0.217903) | 0.036317 / 0.043533 (-0.007216) | 0.244347 / 0.255139 (-0.010792) | 0.267597 / 0.283200 (-0.015602) | 0.019930 / 0.141683 (-0.121753) | 1.149012 / 1.452155 (-0.303143) | 1.188083 / 1.492716 (-0.304633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095190 / 0.018006 (0.077184) | 0.300705 / 0.000490 (0.300215) | 0.000222 / 0.000200 (0.000022) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019297 / 0.037411 (-0.018115) | 0.063183 / 0.014526 (0.048657) | 0.075094 / 0.176557 (-0.101463) | 0.123556 / 0.737135 (-0.613579) | 0.076721 / 0.296338 (-0.219618) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284136 / 0.215209 (0.068927) | 2.814041 / 2.077655 (0.736387) | 1.471038 / 1.504120 (-0.033082) | 1.344002 / 1.541195 (-0.197193) | 1.353875 / 1.468490 (-0.114615) | 0.599495 / 4.584777 (-3.985282) | 2.394491 / 3.745712 (-1.351221) | 2.781734 / 5.269862 (-2.488128) | 1.729829 / 4.565676 (-2.835848) | 0.064194 / 0.424275 (-0.360081) | 0.005022 / 0.007607 (-0.002585) | 0.343384 / 0.226044 (0.117340) | 3.357067 / 2.268929 (1.088139) | 1.816323 / 55.444624 (-53.628301) | 1.549405 / 6.876477 (-5.327072) | 1.594394 / 2.142072 (-0.547679) | 0.660650 / 4.805227 (-4.144578) | 0.120271 / 6.500664 (-6.380393) | 0.042422 / 0.075469 (-0.033047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975776 / 1.841788 (-0.866011) | 11.828093 / 8.074308 (3.753784) | 9.384164 / 10.191392 (-0.807228) | 0.140761 / 0.680424 (-0.539663) | 0.014038 / 0.534201 (-0.520163) | 0.284904 / 0.579283 (-0.294379) | 0.263430 / 0.434364 (-0.170934) | 0.320856 / 0.540337 (-0.219482) | 0.419199 / 1.386936 (-0.967737) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005672 / 0.011353 (-0.005681) | 0.003667 / 0.011008 (-0.007341) | 0.049989 / 0.038508 (0.011481) | 0.033115 / 0.023109 (0.010006) | 0.269808 / 0.275898 (-0.006090) | 0.293286 / 0.323480 (-0.030193) | 0.004238 / 0.007986 (-0.003748) | 0.002722 / 0.004328 (-0.001606) | 0.049516 / 0.004250 (0.045265) | 0.042076 / 0.037052 (0.005024) | 0.282182 / 0.258489 (0.023693) | 0.310817 / 0.293841 (0.016976) | 0.029824 / 0.128546 (-0.098722) | 0.010516 / 0.075646 (-0.065130) | 0.058223 / 0.419271 (-0.361049) | 0.033263 / 0.043533 (-0.010270) | 0.268769 / 0.255139 (0.013630) | 0.288308 / 0.283200 (0.005108) | 0.018531 / 0.141683 (-0.123151) | 1.136806 / 1.452155 (-0.315349) | 1.192636 / 1.492716 (-0.300080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096583 / 0.018006 (0.078577) | 0.303678 / 0.000490 (0.303188) | 0.000211 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022741 / 0.037411 (-0.014670) | 0.075799 / 0.014526 (0.061273) | 0.089930 / 0.176557 (-0.086626) | 0.129093 / 0.737135 (-0.608042) | 0.089672 / 0.296338 (-0.206666) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292789 / 0.215209 (0.077580) | 2.860137 / 2.077655 (0.782483) | 1.566678 / 1.504120 (0.062558) | 1.437756 / 1.541195 (-0.103439) | 1.472347 / 1.468490 (0.003857) | 0.566814 / 4.584777 (-4.017963) | 0.963918 / 3.745712 (-2.781794) | 2.717199 / 5.269862 (-2.552663) | 1.763612 / 4.565676 (-2.802064) | 0.063601 / 0.424275 (-0.360674) | 0.005308 / 0.007607 (-0.002299) | 0.363111 / 0.226044 (0.137066) | 3.458222 / 2.268929 (1.189293) | 1.939185 / 55.444624 (-53.505440) | 1.659552 / 6.876477 (-5.216925) | 1.801006 / 2.142072 (-0.341067) | 0.648884 / 4.805227 (-4.156343) | 0.116259 / 6.500664 (-6.384405) | 0.041384 / 0.075469 (-0.034085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.001594 / 1.841788 (-0.840194) | 12.371125 / 8.074308 (4.296817) | 10.489763 / 10.191392 (0.298371) | 0.132500 / 0.680424 (-0.547924) | 0.014742 / 0.534201 (-0.519459) | 0.282258 / 0.579283 (-0.297026) | 0.122755 / 0.434364 (-0.311608) | 0.346068 / 0.540337 (-0.194269) | 0.424943 / 1.386936 (-0.961994) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#df445c20346a34c08e7e039e4ec1a302eef3a69c \"CML watermark\")\n"
] | Support fsspec 2024.5.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6921/reactions"
} | PR_kwDODunzps5wn4Dz | {
"diff_url": "https://github.com/huggingface/datasets/pull/6921.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6921",
"merged_at": "2024-05-27T08:01:08Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6921.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6921"
} | 2024-05-27T07:00:59Z | https://api.github.com/repos/huggingface/datasets/issues/6921/comments | Support fsspec 2024.5.0. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6921/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6921/timeline | closed | false | 6,921 | null | 2024-05-27T08:01:08Z | null | true |
2,317,648,021 | https://api.github.com/repos/huggingface/datasets/issues/6920 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6920/events | [] | null | 2024-05-27T09:11:17Z | [] | https://github.com/huggingface/datasets/pull/6920 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6920). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005643 / 0.011353 (-0.005710) | 0.003810 / 0.011008 (-0.007198) | 0.065896 / 0.038508 (0.027388) | 0.031692 / 0.023109 (0.008583) | 0.258297 / 0.275898 (-0.017601) | 0.294555 / 0.323480 (-0.028925) | 0.004403 / 0.007986 (-0.003583) | 0.002857 / 0.004328 (-0.001472) | 0.049848 / 0.004250 (0.045597) | 0.049719 / 0.037052 (0.012666) | 0.266393 / 0.258489 (0.007904) | 0.306214 / 0.293841 (0.012373) | 0.028283 / 0.128546 (-0.100264) | 0.010450 / 0.075646 (-0.065196) | 0.203064 / 0.419271 (-0.216208) | 0.036535 / 0.043533 (-0.006998) | 0.247839 / 0.255139 (-0.007300) | 0.270538 / 0.283200 (-0.012661) | 0.018748 / 0.141683 (-0.122935) | 1.117478 / 1.452155 (-0.334677) | 1.162575 / 1.492716 (-0.330141) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101074 / 0.018006 (0.083068) | 0.304321 / 0.000490 (0.303831) | 0.000270 / 0.000200 (0.000070) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019036 / 0.037411 (-0.018376) | 0.064496 / 0.014526 (0.049970) | 0.076848 / 0.176557 (-0.099709) | 0.122979 / 0.737135 (-0.614156) | 0.078008 / 0.296338 (-0.218330) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287009 / 0.215209 (0.071800) | 2.839084 / 2.077655 (0.761429) | 1.495977 / 1.504120 (-0.008143) | 1.379147 / 1.541195 (-0.162047) | 1.413170 / 1.468490 (-0.055320) | 0.616408 / 4.584777 (-3.968369) | 2.419183 / 3.745712 (-1.326529) | 2.905720 / 5.269862 (-2.364142) | 1.801634 / 4.565676 (-2.764043) | 0.064034 / 0.424275 (-0.360241) | 0.005098 / 0.007607 (-0.002509) | 0.341732 / 0.226044 (0.115688) | 3.365262 / 2.268929 (1.096334) | 1.844335 / 55.444624 (-53.600289) | 1.561450 / 6.876477 (-5.315027) | 1.646254 / 2.142072 (-0.495819) | 0.654993 / 4.805227 (-4.150234) | 0.119837 / 6.500664 (-6.380827) | 0.043375 / 0.075469 (-0.032094) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000352 / 1.841788 (-0.841435) | 12.765122 / 8.074308 (4.690813) | 9.818879 / 10.191392 (-0.372513) | 0.133986 / 0.680424 (-0.546438) | 0.014065 / 0.534201 (-0.520136) | 0.295859 / 0.579283 (-0.283424) | 0.268497 / 0.434364 (-0.165867) | 0.330909 / 0.540337 (-0.209429) | 0.449218 / 1.386936 (-0.937718) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005646 / 0.011353 (-0.005707) | 0.003926 / 0.011008 (-0.007082) | 0.050437 / 0.038508 (0.011929) | 0.031828 / 0.023109 (0.008719) | 0.268218 / 0.275898 (-0.007680) | 0.292987 / 0.323480 (-0.030493) | 0.004353 / 0.007986 (-0.003633) | 0.002933 / 0.004328 (-0.001395) | 0.050357 / 0.004250 (0.046107) | 0.042988 / 0.037052 (0.005935) | 0.281627 / 0.258489 (0.023138) | 0.305664 / 0.293841 (0.011824) | 0.030162 / 0.128546 (-0.098385) | 0.010856 / 0.075646 (-0.064790) | 0.059528 / 0.419271 (-0.359744) | 0.033800 / 0.043533 (-0.009733) | 0.268200 / 0.255139 (0.013061) | 0.284982 / 0.283200 (0.001782) | 0.019105 / 0.141683 (-0.122578) | 1.171714 / 1.452155 (-0.280441) | 1.205690 / 1.492716 (-0.287026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100979 / 0.018006 (0.082973) | 0.314691 / 0.000490 (0.314201) | 0.000217 / 0.000200 (0.000017) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023816 / 0.037411 (-0.013596) | 0.081749 / 0.014526 (0.067223) | 0.090118 / 0.176557 (-0.086438) | 0.131615 / 0.737135 (-0.605520) | 0.091821 / 0.296338 (-0.204517) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301222 / 0.215209 (0.086013) | 2.835310 / 2.077655 (0.757655) | 1.562396 / 1.504120 (0.058276) | 1.432365 / 1.541195 (-0.108830) | 1.468358 / 1.468490 (-0.000132) | 0.561300 / 4.584777 (-4.023477) | 0.962294 / 3.745712 (-2.783419) | 2.799705 / 5.269862 (-2.470157) | 1.803035 / 4.565676 (-2.762642) | 0.064104 / 0.424275 (-0.360171) | 0.005480 / 0.007607 (-0.002127) | 0.342519 / 0.226044 (0.116475) | 3.406286 / 2.268929 (1.137357) | 1.966962 / 55.444624 (-53.477663) | 1.654664 / 6.876477 (-5.221813) | 1.829303 / 2.142072 (-0.312769) | 0.650932 / 4.805227 (-4.154295) | 0.119211 / 6.500664 (-6.381453) | 0.043739 / 0.075469 (-0.031730) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006657 / 1.841788 (-0.835130) | 12.915348 / 8.074308 (4.841040) | 10.808156 / 10.191392 (0.616764) | 0.132664 / 0.680424 (-0.547760) | 0.015574 / 0.534201 (-0.518627) | 0.284525 / 0.579283 (-0.294758) | 0.122322 / 0.434364 (-0.312042) | 0.326826 / 0.540337 (-0.213511) | 0.416593 / 1.386936 (-0.970343) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#15ffefe5be194790a50af88ae1236a51b0ac95e6 \"CML watermark\")\n"
] | [WebDataset] Add `.pth` support for torch tensors | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6920/reactions"
} | PR_kwDODunzps5wlchX | {
"diff_url": "https://github.com/huggingface/datasets/pull/6920.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6920",
"merged_at": "2024-05-27T09:04:54Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6920.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6920"
} | 2024-05-26T11:12:07Z | https://api.github.com/repos/huggingface/datasets/issues/6920/comments | In this PR I add support for `.pth` but with `weights_only=True` to disallow the use of pickle | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | https://api.github.com/repos/huggingface/datasets/issues/6920/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6920/timeline | closed | false | 6,920 | null | 2024-05-27T09:04:54Z | null | true |
2,315,618,993 | https://api.github.com/repos/huggingface/datasets/issues/6919 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6919/events | [] | null | 2024-05-24T14:59:45Z | [] | https://github.com/huggingface/datasets/issues/6919 | NONE | null | null | null | [] | Invalid YAML in README.md: unknown tag !<tag:yaml.org,2002:python/tuple> | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6919/reactions"
} | I_kwDODunzps6KBYqx | null | 2024-05-24T14:59:45Z | https://api.github.com/repos/huggingface/datasets/issues/6919/comments | ### Describe the bug
I wrote a notebook to load an existing dataset, process it, and upload as a private dataset using `dataset.push_to_hub(...)` at the end. The push to hub is failing with:
```
ValueError: Invalid metadata in README.md.
- Invalid YAML in README.md: unknown tag !<tag:yaml.org,2002:python[/tuple](http://192.168.1.128:8888/tuple)> (50:11)
47 | - 4
48 | - 4
49 | - 8
50 | - !!binary |
----------------^
51 | TwAAAA==
52 | '1': !!python[/object/apply](http://192.168.1.128:8888/object/apply):nump ...
```
My dataset has a `train` and `validation` dataset. These are the features:
```
{'c1': Value(dtype='string', id=None),
'c2': Value(dtype='string', id=None),
'c3': [{'value': Value(dtype='string', id=None),
'start': Value(dtype='int64', id=None),
'end': Value(dtype='int64', id=None),
'label': Value(dtype='string', id=None)}],
'c4': Value(dtype='string', id=None),
'c5': Value(dtype='string', id=None),
'c6': Value(dtype='string', id=None),
'c7': Value(dtype='string', id=None),
'c8': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None),
'c9': Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None),
'c10': Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None),
'labels': Sequence(feature=ClassLabel(names=['O', 'B-ABC', 'I-ABC', ...], id=None), length=-1, id=None),
'c12': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}
```
This used to work until I decided to cast the `labels` feature to a `Sequence(ClassLabel(...))` type with:
```
ds['train'] = ds['train'].cast_column("labels", Sequence(ClassLabel(names=list(labels))))
ds['validation'] = ds['validation'].cast_column("labels", Sequence(ClassLabel(names=list(labels))))
```
### Steps to reproduce the bug
1. Start with any token classification dataset.
2. Add a `labels` column with data such as `[0,0,0,12,13,13,13,0,0]`.
3. Cast the label column from `Sequence` to `Sequence(ClassLabel))` with:
```
labels = ['O', 'B-TEST', 'I-TEST']
ds = ds.cast_column("labels", Sequence(ClassLabel(names=labels)))
```
4. Push to hub with `ds.push_to_hub("me/awesome-stuff-dataset")`
### Expected behavior
I expected `push_to_hub` to successfully push my dataset to the hub without error.
### Environment info
Python 3.11.9
datasets==2.19.1
transformers==4.41.1
PyYAML==6.0.1 | {
"avatar_url": "https://avatars.githubusercontent.com/u/67964?v=4",
"events_url": "https://api.github.com/users/juanqui/events{/privacy}",
"followers_url": "https://api.github.com/users/juanqui/followers",
"following_url": "https://api.github.com/users/juanqui/following{/other_user}",
"gists_url": "https://api.github.com/users/juanqui/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/juanqui",
"id": 67964,
"login": "juanqui",
"node_id": "MDQ6VXNlcjY3OTY0",
"organizations_url": "https://api.github.com/users/juanqui/orgs",
"received_events_url": "https://api.github.com/users/juanqui/received_events",
"repos_url": "https://api.github.com/users/juanqui/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/juanqui/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/juanqui/subscriptions",
"type": "User",
"url": "https://api.github.com/users/juanqui"
} | https://api.github.com/repos/huggingface/datasets/issues/6919/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6919/timeline | open | false | 6,919 | null | null | null | false |
2,315,322,738 | https://api.github.com/repos/huggingface/datasets/issues/6918 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6918/events | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | null | 2024-05-31T17:10:38Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6918 | NONE | completed | null | null | [
"Thanks for reporting, @srehaag.\r\n\r\nWe are investigating this issue.",
"I confirm there is a bug for data-based Hub datasets when the user passes `data_dir`, which was introduced by PR:\r\n- #6714"
] | NonMatchingSplitsSizesError when using data_dir | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6918/reactions"
} | I_kwDODunzps6KAQVy | null | 2024-05-24T12:43:39Z | https://api.github.com/repos/huggingface/datasets/issues/6918/comments | ### Describe the bug
Loading a dataset from with a data_dir argument generates a NonMatchingSplitsSizesError if there are multiple directories in the dataset.
This appears to happen because the expected split is calculated based on the data in all the directories whereas the recorded split is calculated based on the data in the directory specified using the data_dir argument.
This is recent behavior. Until the past few weeks loading using the data_dir argument worked without any issue.
### Steps to reproduce the bug
Simple test dataset available here: https://huggingface.co./datasets/srehaag/hf-bug-temp
The dataset contains two directories "data1" and "data2", each with a file called "train.parquet" with a 2 x 5 table.
from datasets import load_dataset
dataset = load_dataset("srehaag/hf-bug-temp", data_dir = "data1")
Generates:
---------------------------------------------------------------------------
NonMatchingSplitsSizesError Traceback (most recent call last)
Cell In[3], <a href='vscode-notebook-cell:?execution_count=3&line=2'>line 2</a>
<a href='vscode-notebook-cell:?execution_count=3&line=1'>1</a> from datasets import load_dataset
----> <a href='vscode-notebook-cell:?execution_count=3&line=2'>2</a> dataset = load_dataset("srehaag/hf-bug-temp", data_dir = "data1")
File ~/.python/current/lib/python3.10/site-packages/datasets/load.py:2609, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2606'>2606</a> return builder_instance.as_streaming_dataset(split=split)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2608'>2608</a> # Download and prepare data
-> <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2609'>2609</a> builder_instance.download_and_prepare(
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2610'>2610</a> download_config=download_config,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2611'>2611</a> download_mode=download_mode,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2612'>2612</a> verification_mode=verification_mode,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2613'>2613</a> num_proc=num_proc,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2614'>2614</a> storage_options=storage_options,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2615'>2615</a> )
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2617'>2617</a> # Build dataset for splits
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2618'>2618</a> keep_in_memory = (
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2619'>2619</a> keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2620'>2620</a> )
File ~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1027, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1025'>1025</a> if num_proc is not None:
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1026'>1026</a> prepare_split_kwargs["num_proc"] = num_proc
-> <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1027'>1027</a> self._download_and_prepare(
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1028'>1028</a> dl_manager=dl_manager,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1029'>1029</a> verification_mode=verification_mode,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1030'>1030</a> **prepare_split_kwargs,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1031'>1031</a> **download_and_prepare_kwargs,
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1032'>1032</a> )
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1033'>1033</a> # Sync info
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1034'>1034</a> self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1140, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1137'>1137</a> dl_manager.manage_extracted_files()
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1139'>1139</a> if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS:
-> <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1140'>1140</a> verify_splits(self.info.splits, split_dict)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1142'>1142</a> # Update the info object with the splits.
<a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1143'>1143</a> self.info.splits = split_dict
File ~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:101, in verify_splits(expected_splits, recorded_splits)
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:95'>95</a> bad_splits = [
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:96'>96</a> {"expected": expected_splits[name], "recorded": recorded_splits[name]}
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:97'>97</a> for name in expected_splits
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:98'>98</a> if expected_splits[name].num_examples != recorded_splits[name].num_examples
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:99'>99</a> ]
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:100'>100</a> if len(bad_splits) > 0:
--> <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:101'>101</a> raise NonMatchingSplitsSizesError(str(bad_splits))
<a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:102'>102</a> logger.info("All the splits matched successfully.")
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=212, num_examples=10, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=106, num_examples=5, shard_lengths=None, dataset_name='hf-bug-temp')}]
__________
By contrast, this loads the data from both data1/train.parquet and data2/train.parquet without any error message:
from datasets import load_dataset
dataset = load_dataset("srehaag/hf-bug-temp")
### Expected behavior
Should load the 5 x 2 table from data1/train.parquet without error message.
### Environment info
Used Codespaces to simplify environment (see details below), but bug is present across various configurations.
- `datasets` version: 2.19.1
- Platform: Linux-6.5.0-1021-azure-x86_64-with-glibc2.31
- Python version: 3.10.13
- `huggingface_hub` version: 0.23.1
- PyArrow version: 16.1.0
- Pandas version: 2.2.2
- `fsspec` version: 2024.3.1 | {
"avatar_url": "https://avatars.githubusercontent.com/u/86664538?v=4",
"events_url": "https://api.github.com/users/srehaag/events{/privacy}",
"followers_url": "https://api.github.com/users/srehaag/followers",
"following_url": "https://api.github.com/users/srehaag/following{/other_user}",
"gists_url": "https://api.github.com/users/srehaag/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/srehaag",
"id": 86664538,
"login": "srehaag",
"node_id": "MDQ6VXNlcjg2NjY0NTM4",
"organizations_url": "https://api.github.com/users/srehaag/orgs",
"received_events_url": "https://api.github.com/users/srehaag/received_events",
"repos_url": "https://api.github.com/users/srehaag/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/srehaag/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/srehaag/subscriptions",
"type": "User",
"url": "https://api.github.com/users/srehaag"
} | https://api.github.com/repos/huggingface/datasets/issues/6918/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6918/timeline | closed | false | 6,918 | null | 2024-05-31T17:10:38Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,314,683,663 | https://api.github.com/repos/huggingface/datasets/issues/6917 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6917/events | [] | null | 2024-05-24T07:54:51Z | [] | https://github.com/huggingface/datasets/issues/6917 | NONE | null | null | null | [] | WinError 32 The process cannot access the file during load_dataset | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6917/reactions"
} | I_kwDODunzps6J90UP | null | 2024-05-24T07:54:51Z | https://api.github.com/repos/huggingface/datasets/issues/6917/comments | ### Describe the bug
When I try to load the opus_book from hugging face (following the [guide on the website](https://huggingface.co./docs/transformers/main/en/tasks/translation))
```python
from datasets import load_dataset, Dataset
dataset = load_dataset("Helsinki-NLP/opus_books", "en-fr", features=["id", "translation"])
```
I get an error:
`PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: 'C:/Users/Me/.cache/huggingface/datasets/Helsinki-NLP___parquet/ca-de-a39f1ef185b9b73b/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec.incomplete\\parquet-train-00000-00000-of-NNNNN.arrow'
`
<details><summary>Full stacktrace</summary>
<p>
```python
AttributeError Traceback (most recent call last)
File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\builder.py:1858, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
[1857](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1857) _time = time.time()
-> [1858](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1858) for _, table in generator:
[1859](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1859) if max_shard_size is not None and writer._num_bytes > max_shard_size:
File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\packaged_modules\parquet\parquet.py:59, in Parquet._generate_tables(self, files)
[58](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:58) def _generate_tables(self, files):
---> [59](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:59) schema = self.config.features.arrow_schema if self.config.features is not None else None
[60](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:60) if self.config.features is not None and self.config.columns is not None:
AttributeError: 'list' object has no attribute 'arrow_schema'
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\builder.py:1882, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
[1881](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1881) num_shards = shard_id + 1
-> [1882](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1882) num_examples, num_bytes = writer.finalize()
[1883](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1883) writer.close()
File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\arrow_writer.py:584, in ArrowWriter.finalize(self, close_stream)
[583](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/arrow_writer.py:583) # If schema is known, infer features even if no examples were written
--> [584](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/arrow_writer.py:584) if self.pa_writer is None and self.schema:
...
--> [627](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:627) os.unlink(fullname)
[628](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:628) except OSError:
[629](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:629) onerror(os.unlink, fullname, sys.exc_info())
PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: 'C:/Users/Me/.cache/huggingface/datasets/Helsinki-NLP___parquet/ca-de-a39f1ef185b9b73b/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec.incomplete\\parquet-train-00000-00000-of-NNNNN.arrow'
```
</p>
</details>
### Steps to reproduce the bug
Steps to reproduce:
Just execute these lines
```python
from datasets import load_dataset, Dataset
dataset = load_dataset("Helsinki-NLP/opus_books", "en-fr", features=["id", "translation"])
```
### Expected behavior
I expect the dataset to be loaded without any errors.
### Environment info
| Package| Version|
|--------|--------|
| transformers| 4.37.2|
| python| 3.9.19|
| pytorch| 2.3.0|
| datasets|2.12.0 |
| arrow | 1.2.3|
I am using Conda on Windows 11. | {
"avatar_url": "https://avatars.githubusercontent.com/u/56682168?v=4",
"events_url": "https://api.github.com/users/elwe-2808/events{/privacy}",
"followers_url": "https://api.github.com/users/elwe-2808/followers",
"following_url": "https://api.github.com/users/elwe-2808/following{/other_user}",
"gists_url": "https://api.github.com/users/elwe-2808/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/elwe-2808",
"id": 56682168,
"login": "elwe-2808",
"node_id": "MDQ6VXNlcjU2NjgyMTY4",
"organizations_url": "https://api.github.com/users/elwe-2808/orgs",
"received_events_url": "https://api.github.com/users/elwe-2808/received_events",
"repos_url": "https://api.github.com/users/elwe-2808/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/elwe-2808/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elwe-2808/subscriptions",
"type": "User",
"url": "https://api.github.com/users/elwe-2808"
} | https://api.github.com/repos/huggingface/datasets/issues/6917/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6917/timeline | open | false | 6,917 | null | null | null | false |
2,311,675,564 | https://api.github.com/repos/huggingface/datasets/issues/6916 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6916/events | [] | null | 2024-05-23T00:07:53Z | [] | https://github.com/huggingface/datasets/issues/6916 | NONE | completed | null | null | [] | ```push_to_hub()``` - Prevent Automatic Generation of Splits | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6916/reactions"
} | I_kwDODunzps6JyV6s | null | 2024-05-22T23:52:15Z | https://api.github.com/repos/huggingface/datasets/issues/6916/comments | ### Describe the bug
I currently have a dataset which has not been splited. When pushing the dataset to my hugging face dataset repository, it is split into a testing and training set. How can I prevent the split from happening?
### Steps to reproduce the bug
1. Have a unsplit dataset
```python
Dataset({ features: ['input', 'output', 'Attack', '__index_level_0__'], num_rows: 944685 })
```
2. Push it to huggingface
```python
dataset.push_to_hub(dataset_name)
```
3. On the hugging face dataset repo, the dataset then appears to be splited:
![image](https://github.com/huggingface/datasets/assets/29337128/b4fbc141-42b0-4f49-98df-dd479648fe09)
4. Indeed, when loading the dataset from this repo, the dataset is split in two testing and training set.
```python
from datasets import load_dataset, Dataset
dataset = load_dataset("Jetlime/NF-CSE-CIC-IDS2018-v2", streaming=True)
dataset
```
output:
```
IterableDatasetDict({
train: IterableDataset({
features: ['input', 'output', 'Attack', '__index_level_0__'],
n_shards: 2
})
test: IterableDataset({
features: ['input', 'output', 'Attack', '__index_level_0__'],
n_shards: 1
})
```
### Expected behavior
The dataset shall not be splited, as not requested.
### Environment info
- `datasets` version: 2.19.1
- Platform: Linux-6.2.0-35-generic-x86_64-with-glibc2.35
- Python version: 3.10.12
- `huggingface_hub` version: 0.23.0
- PyArrow version: 15.0.2
- Pandas version: 2.2.2
- `fsspec` version: 2024.3.1 | {
"avatar_url": "https://avatars.githubusercontent.com/u/29337128?v=4",
"events_url": "https://api.github.com/users/jetlime/events{/privacy}",
"followers_url": "https://api.github.com/users/jetlime/followers",
"following_url": "https://api.github.com/users/jetlime/following{/other_user}",
"gists_url": "https://api.github.com/users/jetlime/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jetlime",
"id": 29337128,
"login": "jetlime",
"node_id": "MDQ6VXNlcjI5MzM3MTI4",
"organizations_url": "https://api.github.com/users/jetlime/orgs",
"received_events_url": "https://api.github.com/users/jetlime/received_events",
"repos_url": "https://api.github.com/users/jetlime/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jetlime/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jetlime/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jetlime"
} | https://api.github.com/repos/huggingface/datasets/issues/6916/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6916/timeline | closed | false | 6,916 | null | 2024-05-23T00:07:53Z | null | false |
2,310,564,961 | https://api.github.com/repos/huggingface/datasets/issues/6915 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6915/events | [] | null | 2024-06-06T09:32:10Z | [] | https://github.com/huggingface/datasets/pull/6915 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6915). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"I pushed a change that fixes 2.15 cache reloading (I fixed the packaged module hash), feel free to merge if this change is fine for you",
"Something weird happened in GitHub: I just merged this PR to main, See: https://github.com/huggingface/datasets/commit/5bbbf1b19766e31a6905f3e82bf3aa3f9f84a982\r\n\r\nHowever this PR still appears as Open...\r\n\r\nIf I retry to merge this PR, an error appears: \"Merge attempt failed: Merge already in progress\"\r\n![Screenshot from 2024-06-06 06-29-22](https://github.com/huggingface/datasets/assets/8515462/5fe87442-cc5d-4e9b-b60e-fdfbab830c81)\r\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005543 / 0.011353 (-0.005810) | 0.004059 / 0.011008 (-0.006949) | 0.064678 / 0.038508 (0.026170) | 0.032615 / 0.023109 (0.009506) | 0.245883 / 0.275898 (-0.030015) | 0.273545 / 0.323480 (-0.049935) | 0.004268 / 0.007986 (-0.003718) | 0.003160 / 0.004328 (-0.001168) | 0.051982 / 0.004250 (0.047731) | 0.051186 / 0.037052 (0.014134) | 0.254009 / 0.258489 (-0.004480) | 0.289594 / 0.293841 (-0.004247) | 0.028459 / 0.128546 (-0.100087) | 0.011061 / 0.075646 (-0.064585) | 0.203571 / 0.419271 (-0.215700) | 0.038049 / 0.043533 (-0.005484) | 0.243700 / 0.255139 (-0.011439) | 0.264816 / 0.283200 (-0.018383) | 0.019556 / 0.141683 (-0.122127) | 1.114395 / 1.452155 (-0.337759) | 1.168915 / 1.492716 (-0.323802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098814 / 0.018006 (0.080808) | 0.308218 / 0.000490 (0.307728) | 0.000221 / 0.000200 (0.000022) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019660 / 0.037411 (-0.017752) | 0.070542 / 0.014526 (0.056017) | 0.078906 / 0.176557 (-0.097650) | 0.126658 / 0.737135 (-0.610477) | 0.080427 / 0.296338 (-0.215911) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280686 / 0.215209 (0.065477) | 2.767480 / 2.077655 (0.689825) | 1.455325 / 1.504120 (-0.048795) | 1.336677 / 1.541195 (-0.204518) | 1.380359 / 1.468490 (-0.088131) | 0.576310 / 4.584777 (-4.008467) | 2.431829 / 3.745712 (-1.313883) | 2.815266 / 5.269862 (-2.454595) | 1.908962 / 4.565676 (-2.656714) | 0.065306 / 0.424275 (-0.358969) | 0.005229 / 0.007607 (-0.002378) | 0.336018 / 0.226044 (0.109973) | 3.349283 / 2.268929 (1.080355) | 1.814696 / 55.444624 (-53.629929) | 1.520969 / 6.876477 (-5.355508) | 1.735322 / 2.142072 (-0.406751) | 0.661513 / 4.805227 (-4.143714) | 0.121465 / 6.500664 (-6.379199) | 0.044505 / 0.075469 (-0.030964) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989204 / 1.841788 (-0.852584) | 12.608414 / 8.074308 (4.534106) | 10.133358 / 10.191392 (-0.058034) | 0.133986 / 0.680424 (-0.546438) | 0.014332 / 0.534201 (-0.519869) | 0.293207 / 0.579283 (-0.286076) | 0.265657 / 0.434364 (-0.168707) | 0.325972 / 0.540337 (-0.214365) | 0.478103 / 1.386936 (-0.908833) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006070 / 0.011353 (-0.005283) | 0.004122 / 0.011008 (-0.006886) | 0.050572 / 0.038508 (0.012064) | 0.033732 / 0.023109 (0.010623) | 0.271282 / 0.275898 (-0.004616) | 0.296247 / 0.323480 (-0.027233) | 0.004400 / 0.007986 (-0.003585) | 0.002914 / 0.004328 (-0.001415) | 0.049332 / 0.004250 (0.045082) | 0.042213 / 0.037052 (0.005161) | 0.281230 / 0.258489 (0.022741) | 0.315514 / 0.293841 (0.021673) | 0.030864 / 0.128546 (-0.097682) | 0.011185 / 0.075646 (-0.064461) | 0.059227 / 0.419271 (-0.360044) | 0.034006 / 0.043533 (-0.009527) | 0.270059 / 0.255139 (0.014920) | 0.284014 / 0.283200 (0.000814) | 0.019502 / 0.141683 (-0.122181) | 1.143650 / 1.452155 (-0.308505) | 1.190968 / 1.492716 (-0.301749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100502 / 0.018006 (0.082496) | 0.307863 / 0.000490 (0.307373) | 0.000212 / 0.000200 (0.000012) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023442 / 0.037411 (-0.013969) | 0.080185 / 0.014526 (0.065659) | 0.089372 / 0.176557 (-0.087185) | 0.131030 / 0.737135 (-0.606105) | 0.091174 / 0.296338 (-0.205165) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304187 / 0.215209 (0.088978) | 3.043055 / 2.077655 (0.965400) | 1.629578 / 1.504120 (0.125459) | 1.533762 / 1.541195 (-0.007432) | 1.546134 / 1.468490 (0.077643) | 0.577739 / 4.584777 (-4.007038) | 0.986310 / 3.745712 (-2.759402) | 2.791650 / 5.269862 (-2.478212) | 1.841190 / 4.565676 (-2.724487) | 0.064943 / 0.424275 (-0.359333) | 0.005251 / 0.007607 (-0.002356) | 0.355009 / 0.226044 (0.128965) | 3.560935 / 2.268929 (1.292007) | 1.991995 / 55.444624 (-53.452629) | 1.708796 / 6.876477 (-5.167681) | 1.917721 / 2.142072 (-0.224351) | 0.667667 / 4.805227 (-4.137561) | 0.119956 / 6.500664 (-6.380708) | 0.042069 / 0.075469 (-0.033400) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006242 / 1.841788 (-0.835546) | 13.321644 / 8.074308 (5.247336) | 10.712409 / 10.191392 (0.521017) | 0.134036 / 0.680424 (-0.546388) | 0.017645 / 0.534201 (-0.516555) | 0.289077 / 0.579283 (-0.290206) | 0.131356 / 0.434364 (-0.303007) | 0.333062 / 0.540337 (-0.207275) | 0.425327 / 1.386936 (-0.961609) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#09ebf5190afbd017f3ca24ef444be2d933411eed \"CML watermark\")\n",
"Indeed, the merge commit is: https://github.com/huggingface/datasets/commit/5bbbf1b19766e31a6905f3e82bf3aa3f9f84a982\r\n\r\nThe following commit is just empty: https://github.com/huggingface/datasets/commit/09ebf5190afbd017f3ca24ef444be2d933411eed"
] | Validate config name and data_files in packaged modules | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6915/reactions"
} | PR_kwDODunzps5wNIUh | {
"diff_url": "https://github.com/huggingface/datasets/pull/6915.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6915",
"merged_at": "2024-06-06T09:24:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6915.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6915"
} | 2024-05-22T13:36:33Z | https://api.github.com/repos/huggingface/datasets/issues/6915/comments | Validate the config attributes `name` and `data_files` in packaged modules by making the derived classes call their parent `__post_init__` method.
Note that their parent `BuilderConfig` validates its attributes `name` and `data_files` in its `__post_init__` method: https://github.com/huggingface/datasets/blob/60d21efbc01e15d0b596ac1072750cbecd91548a/src/datasets/builder.py#L128-L137
This PR makes the derived config classes call their parent `__post_init__` method to validate their `name` and `data_files` attributes. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6915/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6915/timeline | closed | false | 6,915 | null | 2024-06-06T09:24:35Z | null | true |
2,310,107,326 | https://api.github.com/repos/huggingface/datasets/issues/6914 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6914/events | [] | null | 2024-05-29T13:18:47Z | [] | https://github.com/huggingface/datasets/pull/6914 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6914). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005492 / 0.011353 (-0.005861) | 0.004087 / 0.011008 (-0.006921) | 0.065334 / 0.038508 (0.026826) | 0.032282 / 0.023109 (0.009173) | 0.246441 / 0.275898 (-0.029457) | 0.278807 / 0.323480 (-0.044673) | 0.003245 / 0.007986 (-0.004741) | 0.003795 / 0.004328 (-0.000534) | 0.050082 / 0.004250 (0.045832) | 0.050613 / 0.037052 (0.013561) | 0.258885 / 0.258489 (0.000396) | 0.297257 / 0.293841 (0.003416) | 0.028847 / 0.128546 (-0.099699) | 0.011377 / 0.075646 (-0.064270) | 0.206089 / 0.419271 (-0.213182) | 0.037354 / 0.043533 (-0.006178) | 0.257319 / 0.255139 (0.002180) | 0.275134 / 0.283200 (-0.008066) | 0.018064 / 0.141683 (-0.123619) | 1.112371 / 1.452155 (-0.339783) | 1.160909 / 1.492716 (-0.331807) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101893 / 0.018006 (0.083887) | 0.311084 / 0.000490 (0.310594) | 0.000208 / 0.000200 (0.000008) | 0.000042 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019548 / 0.037411 (-0.017863) | 0.064396 / 0.014526 (0.049870) | 0.074900 / 0.176557 (-0.101656) | 0.122750 / 0.737135 (-0.614385) | 0.076693 / 0.296338 (-0.219646) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288609 / 0.215209 (0.073400) | 2.831354 / 2.077655 (0.753699) | 1.453961 / 1.504120 (-0.050159) | 1.327702 / 1.541195 (-0.213493) | 1.382140 / 1.468490 (-0.086351) | 0.568465 / 4.584777 (-4.016312) | 2.427199 / 3.745712 (-1.318513) | 2.810586 / 5.269862 (-2.459275) | 1.839227 / 4.565676 (-2.726449) | 0.063219 / 0.424275 (-0.361056) | 0.005111 / 0.007607 (-0.002496) | 0.341447 / 0.226044 (0.115403) | 3.357429 / 2.268929 (1.088501) | 1.806501 / 55.444624 (-53.638123) | 1.541696 / 6.876477 (-5.334781) | 1.755400 / 2.142072 (-0.386673) | 0.661442 / 4.805227 (-4.143785) | 0.120203 / 6.500664 (-6.380461) | 0.044429 / 0.075469 (-0.031040) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.987810 / 1.841788 (-0.853978) | 12.765467 / 8.074308 (4.691159) | 10.497788 / 10.191392 (0.306396) | 0.132723 / 0.680424 (-0.547701) | 0.014484 / 0.534201 (-0.519717) | 0.285763 / 0.579283 (-0.293520) | 0.264377 / 0.434364 (-0.169987) | 0.326971 / 0.540337 (-0.213367) | 0.429432 / 1.386936 (-0.957504) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005996 / 0.011353 (-0.005357) | 0.004092 / 0.011008 (-0.006916) | 0.051660 / 0.038508 (0.013152) | 0.036661 / 0.023109 (0.013552) | 0.271133 / 0.275898 (-0.004765) | 0.295728 / 0.323480 (-0.027752) | 0.004452 / 0.007986 (-0.003534) | 0.002915 / 0.004328 (-0.001413) | 0.050669 / 0.004250 (0.046418) | 0.044431 / 0.037052 (0.007378) | 0.284683 / 0.258489 (0.026194) | 0.318799 / 0.293841 (0.024958) | 0.031094 / 0.128546 (-0.097452) | 0.010810 / 0.075646 (-0.064836) | 0.059740 / 0.419271 (-0.359531) | 0.034912 / 0.043533 (-0.008621) | 0.268779 / 0.255139 (0.013640) | 0.291294 / 0.283200 (0.008095) | 0.019769 / 0.141683 (-0.121914) | 1.124833 / 1.452155 (-0.327322) | 1.168301 / 1.492716 (-0.324416) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097080 / 0.018006 (0.079074) | 0.304636 / 0.000490 (0.304146) | 0.000232 / 0.000200 (0.000032) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023186 / 0.037411 (-0.014225) | 0.082232 / 0.014526 (0.067706) | 0.089427 / 0.176557 (-0.087130) | 0.132715 / 0.737135 (-0.604421) | 0.092820 / 0.296338 (-0.203518) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300672 / 0.215209 (0.085463) | 2.969603 / 2.077655 (0.891948) | 1.577827 / 1.504120 (0.073707) | 1.440768 / 1.541195 (-0.100427) | 1.494526 / 1.468490 (0.026035) | 0.574599 / 4.584777 (-4.010178) | 0.963300 / 3.745712 (-2.782412) | 2.847854 / 5.269862 (-2.422008) | 1.841248 / 4.565676 (-2.724428) | 0.062321 / 0.424275 (-0.361954) | 0.005389 / 0.007607 (-0.002218) | 0.350853 / 0.226044 (0.124808) | 3.463514 / 2.268929 (1.194586) | 1.937661 / 55.444624 (-53.506964) | 1.665320 / 6.876477 (-5.211157) | 1.849028 / 2.142072 (-0.293044) | 0.655333 / 4.805227 (-4.149894) | 0.119062 / 6.500664 (-6.381602) | 0.043387 / 0.075469 (-0.032082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004118 / 1.841788 (-0.837670) | 13.350894 / 8.074308 (5.276585) | 11.179363 / 10.191392 (0.987971) | 0.135169 / 0.680424 (-0.545255) | 0.016298 / 0.534201 (-0.517903) | 0.288467 / 0.579283 (-0.290816) | 0.132712 / 0.434364 (-0.301651) | 0.325436 / 0.540337 (-0.214901) | 0.413406 / 1.386936 (-0.973530) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#670e1cf31606f397ae0f858b568b1b4ed50c1843 \"CML watermark\")\n"
] | Preserve JSON column order and support list of strings field | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6914/reactions"
} | PR_kwDODunzps5wLi3e | {
"diff_url": "https://github.com/huggingface/datasets/pull/6914.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6914",
"merged_at": "2024-05-29T13:12:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6914.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6914"
} | 2024-05-22T09:58:54Z | https://api.github.com/repos/huggingface/datasets/issues/6914/comments | Preserve column order when loading from a JSON file with a list of dict (or with a field containing a list of dicts).
Additionally, support JSON file with a list of strings field.
Fix #6913. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6914/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6914/timeline | closed | false | 6,914 | null | 2024-05-29T13:12:23Z | null | true |
2,309,605,889 | https://api.github.com/repos/huggingface/datasets/issues/6913 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6913/events | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | null | 2024-05-29T13:12:24Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6913 | MEMBER | completed | null | null | [] | Column order is nondeterministic when loading from JSON | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6913/reactions"
} | I_kwDODunzps6JqcoB | null | 2024-05-22T05:30:14Z | https://api.github.com/repos/huggingface/datasets/issues/6913/comments | As reported by @meg-huggingface, the order of the JSON object keys is not preserved while loading a dataset from a JSON file with a list of objects.
For example, when loading a JSON files with a list of objects, each with the following ordered keys:
- [ID, Language, Topic],
the resulting dataset may have columns:
- [ID, Topic, Language], or
- [Topic, Language, ID], or
- [Topic, ID, Language],...
This issue is caused by the use of a Python set (which does not preserve the order):
https://github.com/huggingface/datasets/blob/60d21efbc01e15d0b596ac1072750cbecd91548a/src/datasets/packaged_modules/json/json.py#L168
introduced in
- #5772 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6913/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6913/timeline | closed | false | 6,913 | null | 2024-05-29T13:12:24Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,309,365,961 | https://api.github.com/repos/huggingface/datasets/issues/6912 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6912/events | [
{
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset",
"id": 2067376369,
"name": "dataset request",
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request"
}
] | null | 2024-06-03T14:40:10Z | [] | https://github.com/huggingface/datasets/issues/6912 | NONE | null | null | null | [
"@mariosasko, @lhoestq, @albertvillanova\r\nHello! Can anyone help? or can you guys suggest who can help with this?",
"Hi ! Feel free to download the dataset and create a `Dataset` object with it.\r\n\r\nThen your'll be able to use `push_to_hub()` to upload the dataset to HF in Parquet format and make it streamable :)",
"> Hi ! Feel free to download the dataset and create a `Dataset` object with it.\r\n> \r\n> Then your'll be able to use `push_to_hub()` to upload the dataset to HF in Parquet format and make it streamable :)\r\n\r\nThe dataset is several TB in total, which I do not have the resources to handle."
] | Add MedImg for streaming | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6912/reactions"
} | I_kwDODunzps6JpiDJ | null | 2024-05-22T00:55:30Z | https://api.github.com/repos/huggingface/datasets/issues/6912/comments | ### Feature request
Host the MedImg dataset (similar to Imagenet but for biomedical images).
### Motivation
There is a clear need for biomedical image foundation models and large scale biomedical datasets that are easily streamable. This would be an excellent tool for the biomedical community.
### Your contribution
MedImg can be found [here](https://www.cuilab.cn/medimg/#). | {
"avatar_url": "https://avatars.githubusercontent.com/u/72926928?v=4",
"events_url": "https://api.github.com/users/lhallee/events{/privacy}",
"followers_url": "https://api.github.com/users/lhallee/followers",
"following_url": "https://api.github.com/users/lhallee/following{/other_user}",
"gists_url": "https://api.github.com/users/lhallee/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhallee",
"id": 72926928,
"login": "lhallee",
"node_id": "MDQ6VXNlcjcyOTI2OTI4",
"organizations_url": "https://api.github.com/users/lhallee/orgs",
"received_events_url": "https://api.github.com/users/lhallee/received_events",
"repos_url": "https://api.github.com/users/lhallee/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhallee/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhallee/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhallee"
} | https://api.github.com/repos/huggingface/datasets/issues/6912/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6912/timeline | open | false | 6,912 | null | null | null | false |
2,308,152,711 | https://api.github.com/repos/huggingface/datasets/issues/6911 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6911/events | [] | null | 2024-05-23T08:05:58Z | [] | https://github.com/huggingface/datasets/pull/6911 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6911). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005136 / 0.011353 (-0.006217) | 0.003136 / 0.011008 (-0.007872) | 0.063752 / 0.038508 (0.025244) | 0.031060 / 0.023109 (0.007950) | 0.249848 / 0.275898 (-0.026050) | 0.275918 / 0.323480 (-0.047561) | 0.004047 / 0.007986 (-0.003938) | 0.002696 / 0.004328 (-0.001632) | 0.049884 / 0.004250 (0.045634) | 0.044646 / 0.037052 (0.007593) | 0.264769 / 0.258489 (0.006280) | 0.299874 / 0.293841 (0.006033) | 0.027530 / 0.128546 (-0.101016) | 0.010026 / 0.075646 (-0.065620) | 0.204007 / 0.419271 (-0.215265) | 0.035982 / 0.043533 (-0.007550) | 0.253560 / 0.255139 (-0.001579) | 0.276206 / 0.283200 (-0.006993) | 0.017770 / 0.141683 (-0.123913) | 1.156008 / 1.452155 (-0.296146) | 1.197265 / 1.492716 (-0.295451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092960 / 0.018006 (0.074954) | 0.302876 / 0.000490 (0.302386) | 0.000214 / 0.000200 (0.000014) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019060 / 0.037411 (-0.018351) | 0.062262 / 0.014526 (0.047737) | 0.073836 / 0.176557 (-0.102721) | 0.122327 / 0.737135 (-0.614809) | 0.076050 / 0.296338 (-0.220289) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282489 / 0.215209 (0.067280) | 2.745084 / 2.077655 (0.667429) | 1.453044 / 1.504120 (-0.051076) | 1.339065 / 1.541195 (-0.202130) | 1.341395 / 1.468490 (-0.127095) | 0.586497 / 4.584777 (-3.998280) | 2.342198 / 3.745712 (-1.403514) | 2.684984 / 5.269862 (-2.584878) | 1.703738 / 4.565676 (-2.861939) | 0.062489 / 0.424275 (-0.361786) | 0.004906 / 0.007607 (-0.002701) | 0.332325 / 0.226044 (0.106280) | 3.255381 / 2.268929 (0.986452) | 1.797045 / 55.444624 (-53.647579) | 1.515197 / 6.876477 (-5.361280) | 1.508317 / 2.142072 (-0.633756) | 0.635973 / 4.805227 (-4.169254) | 0.117292 / 6.500664 (-6.383372) | 0.041456 / 0.075469 (-0.034013) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.973934 / 1.841788 (-0.867853) | 11.288665 / 8.074308 (3.214356) | 9.269404 / 10.191392 (-0.921988) | 0.143190 / 0.680424 (-0.537234) | 0.014366 / 0.534201 (-0.519835) | 0.285936 / 0.579283 (-0.293347) | 0.261632 / 0.434364 (-0.172732) | 0.327191 / 0.540337 (-0.213146) | 0.418900 / 1.386936 (-0.968036) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005131 / 0.011353 (-0.006222) | 0.003181 / 0.011008 (-0.007827) | 0.049697 / 0.038508 (0.011189) | 0.032754 / 0.023109 (0.009645) | 0.263954 / 0.275898 (-0.011944) | 0.285110 / 0.323480 (-0.038370) | 0.004133 / 0.007986 (-0.003852) | 0.002713 / 0.004328 (-0.001615) | 0.051684 / 0.004250 (0.047433) | 0.040607 / 0.037052 (0.003554) | 0.277919 / 0.258489 (0.019429) | 0.304773 / 0.293841 (0.010932) | 0.029530 / 0.128546 (-0.099016) | 0.010176 / 0.075646 (-0.065470) | 0.058501 / 0.419271 (-0.360771) | 0.033436 / 0.043533 (-0.010097) | 0.269899 / 0.255139 (0.014760) | 0.284490 / 0.283200 (0.001290) | 0.017092 / 0.141683 (-0.124591) | 1.132399 / 1.452155 (-0.319756) | 1.167290 / 1.492716 (-0.325427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094460 / 0.018006 (0.076454) | 0.301462 / 0.000490 (0.300972) | 0.000202 / 0.000200 (0.000002) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022767 / 0.037411 (-0.014645) | 0.075993 / 0.014526 (0.061467) | 0.087729 / 0.176557 (-0.088827) | 0.127599 / 0.737135 (-0.609536) | 0.088873 / 0.296338 (-0.207465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286420 / 0.215209 (0.071211) | 2.811376 / 2.077655 (0.733722) | 1.558645 / 1.504120 (0.054525) | 1.426371 / 1.541195 (-0.114824) | 1.422347 / 1.468490 (-0.046143) | 0.567181 / 4.584777 (-4.017596) | 0.936731 / 3.745712 (-2.808982) | 2.643566 / 5.269862 (-2.626296) | 1.727843 / 4.565676 (-2.837834) | 0.062748 / 0.424275 (-0.361527) | 0.005033 / 0.007607 (-0.002574) | 0.339708 / 0.226044 (0.113663) | 3.354119 / 2.268929 (1.085190) | 1.877594 / 55.444624 (-53.567030) | 1.589202 / 6.876477 (-5.287274) | 1.707780 / 2.142072 (-0.434292) | 0.644520 / 4.805227 (-4.160708) | 0.115226 / 6.500664 (-6.385438) | 0.040004 / 0.075469 (-0.035465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002774 / 1.841788 (-0.839014) | 11.812647 / 8.074308 (3.738339) | 10.384198 / 10.191392 (0.192806) | 0.131120 / 0.680424 (-0.549304) | 0.014862 / 0.534201 (-0.519339) | 0.282873 / 0.579283 (-0.296410) | 0.120415 / 0.434364 (-0.313949) | 0.321995 / 0.540337 (-0.218343) | 0.441987 / 1.386936 (-0.944949) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b12a2c5016499cc1d110798c6815f0245f61010e \"CML watermark\")\n"
] | Remove dead code for non-dict data_files from packaged modules | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6911/reactions"
} | PR_kwDODunzps5wE2ah | {
"diff_url": "https://github.com/huggingface/datasets/pull/6911.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6911",
"merged_at": "2024-05-23T07:59:57Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6911.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6911"
} | 2024-05-21T12:10:24Z | https://api.github.com/repos/huggingface/datasets/issues/6911/comments | Remove dead code for non-dict data_files from packaged modules.
Since the merge of this PR:
- #2986
the builders' variable self.config.data_files is always a dict, which makes the condition on (str, list, tuple) dead code. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6911/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6911/timeline | closed | false | 6,911 | null | 2024-05-23T07:59:57Z | null | true |
2,307,570,084 | https://api.github.com/repos/huggingface/datasets/issues/6910 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6910/events | [] | null | 2024-05-23T06:04:05Z | [] | https://github.com/huggingface/datasets/pull/6910 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6910). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005135 / 0.011353 (-0.006218) | 0.003757 / 0.011008 (-0.007251) | 0.063122 / 0.038508 (0.024614) | 0.029837 / 0.023109 (0.006727) | 0.246120 / 0.275898 (-0.029778) | 0.268529 / 0.323480 (-0.054951) | 0.004136 / 0.007986 (-0.003849) | 0.002650 / 0.004328 (-0.001678) | 0.048749 / 0.004250 (0.044499) | 0.045279 / 0.037052 (0.008226) | 0.257970 / 0.258489 (-0.000519) | 0.285993 / 0.293841 (-0.007848) | 0.027612 / 0.128546 (-0.100935) | 0.010175 / 0.075646 (-0.065471) | 0.207373 / 0.419271 (-0.211899) | 0.037672 / 0.043533 (-0.005861) | 0.249603 / 0.255139 (-0.005536) | 0.271081 / 0.283200 (-0.012119) | 0.018174 / 0.141683 (-0.123509) | 1.116703 / 1.452155 (-0.335452) | 1.169261 / 1.492716 (-0.323455) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095161 / 0.018006 (0.077155) | 0.301112 / 0.000490 (0.300623) | 0.000221 / 0.000200 (0.000021) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023218 / 0.037411 (-0.014193) | 0.063125 / 0.014526 (0.048599) | 0.075857 / 0.176557 (-0.100699) | 0.137922 / 0.737135 (-0.599213) | 0.076989 / 0.296338 (-0.219349) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279272 / 0.215209 (0.064063) | 2.776463 / 2.077655 (0.698809) | 1.472220 / 1.504120 (-0.031900) | 1.347105 / 1.541195 (-0.194090) | 1.361014 / 1.468490 (-0.107476) | 0.589233 / 4.584777 (-3.995544) | 2.395212 / 3.745712 (-1.350500) | 2.794855 / 5.269862 (-2.475007) | 1.698350 / 4.565676 (-2.867327) | 0.063328 / 0.424275 (-0.360947) | 0.005020 / 0.007607 (-0.002588) | 0.335872 / 0.226044 (0.109828) | 3.293486 / 2.268929 (1.024558) | 1.837270 / 55.444624 (-53.607354) | 1.535694 / 6.876477 (-5.340782) | 1.559696 / 2.142072 (-0.582376) | 0.639302 / 4.805227 (-4.165925) | 0.116554 / 6.500664 (-6.384110) | 0.042305 / 0.075469 (-0.033164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971562 / 1.841788 (-0.870226) | 11.710500 / 8.074308 (3.636192) | 9.505935 / 10.191392 (-0.685457) | 0.139161 / 0.680424 (-0.541263) | 0.014351 / 0.534201 (-0.519850) | 0.285790 / 0.579283 (-0.293493) | 0.265718 / 0.434364 (-0.168646) | 0.323558 / 0.540337 (-0.216780) | 0.412635 / 1.386936 (-0.974301) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005987 / 0.011353 (-0.005366) | 0.003787 / 0.011008 (-0.007221) | 0.049839 / 0.038508 (0.011331) | 0.032817 / 0.023109 (0.009708) | 0.268304 / 0.275898 (-0.007594) | 0.303409 / 0.323480 (-0.020071) | 0.004924 / 0.007986 (-0.003061) | 0.002740 / 0.004328 (-0.001589) | 0.048906 / 0.004250 (0.044655) | 0.044266 / 0.037052 (0.007213) | 0.290506 / 0.258489 (0.032017) | 0.314124 / 0.293841 (0.020283) | 0.030242 / 0.128546 (-0.098304) | 0.010555 / 0.075646 (-0.065091) | 0.058849 / 0.419271 (-0.360423) | 0.033540 / 0.043533 (-0.009993) | 0.267833 / 0.255139 (0.012694) | 0.291056 / 0.283200 (0.007857) | 0.018611 / 0.141683 (-0.123072) | 1.137620 / 1.452155 (-0.314534) | 1.199554 / 1.492716 (-0.293162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096716 / 0.018006 (0.078709) | 0.302033 / 0.000490 (0.301543) | 0.000217 / 0.000200 (0.000017) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023208 / 0.037411 (-0.014203) | 0.076231 / 0.014526 (0.061705) | 0.088672 / 0.176557 (-0.087884) | 0.129033 / 0.737135 (-0.608103) | 0.090709 / 0.296338 (-0.205630) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297033 / 0.215209 (0.081824) | 2.951181 / 2.077655 (0.873526) | 1.567690 / 1.504120 (0.063570) | 1.436809 / 1.541195 (-0.104385) | 1.469696 / 1.468490 (0.001206) | 0.567963 / 4.584777 (-4.016813) | 0.954168 / 3.745712 (-2.791544) | 2.700473 / 5.269862 (-2.569389) | 1.742144 / 4.565676 (-2.823532) | 0.065027 / 0.424275 (-0.359248) | 0.005319 / 0.007607 (-0.002288) | 0.346459 / 0.226044 (0.120415) | 3.446117 / 2.268929 (1.177189) | 1.953142 / 55.444624 (-53.491483) | 1.639131 / 6.876477 (-5.237346) | 1.830664 / 2.142072 (-0.311409) | 0.657807 / 4.805227 (-4.147420) | 0.117987 / 6.500664 (-6.382678) | 0.040726 / 0.075469 (-0.034744) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992666 / 1.841788 (-0.849122) | 12.305377 / 8.074308 (4.231069) | 10.274829 / 10.191392 (0.083437) | 0.141731 / 0.680424 (-0.538692) | 0.015100 / 0.534201 (-0.519101) | 0.282298 / 0.579283 (-0.296985) | 0.124301 / 0.434364 (-0.310063) | 0.320914 / 0.540337 (-0.219424) | 0.445855 / 1.386936 (-0.941081) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b66daa02b3307079a90fbfd13856e9bec0fc1ab \"CML watermark\")\n"
] | Fix wrong type hints in data_files | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6910/reactions"
} | PR_kwDODunzps5wC2An | {
"diff_url": "https://github.com/huggingface/datasets/pull/6910.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6910",
"merged_at": "2024-05-23T05:58:05Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6910.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6910"
} | 2024-05-21T07:41:09Z | https://api.github.com/repos/huggingface/datasets/issues/6910/comments | Fix wrong type hints in data_files introduced in:
- #6493 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6910/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6910/timeline | closed | false | 6,910 | null | 2024-05-23T05:58:05Z | null | true |
2,307,508,120 | https://api.github.com/repos/huggingface/datasets/issues/6909 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6909/events | [] | null | 2024-05-21T07:45:58Z | [] | https://github.com/huggingface/datasets/pull/6909 | MEMBER | null | false | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6909). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005375 / 0.011353 (-0.005978) | 0.004005 / 0.011008 (-0.007003) | 0.062407 / 0.038508 (0.023899) | 0.032241 / 0.023109 (0.009131) | 0.256092 / 0.275898 (-0.019806) | 0.285740 / 0.323480 (-0.037740) | 0.004146 / 0.007986 (-0.003839) | 0.002831 / 0.004328 (-0.001497) | 0.049179 / 0.004250 (0.044928) | 0.048303 / 0.037052 (0.011251) | 0.270841 / 0.258489 (0.012352) | 0.303209 / 0.293841 (0.009368) | 0.027642 / 0.128546 (-0.100905) | 0.010661 / 0.075646 (-0.064985) | 0.201999 / 0.419271 (-0.217272) | 0.036532 / 0.043533 (-0.007001) | 0.262441 / 0.255139 (0.007302) | 0.280944 / 0.283200 (-0.002256) | 0.018369 / 0.141683 (-0.123314) | 1.122249 / 1.452155 (-0.329906) | 1.171352 / 1.492716 (-0.321364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096433 / 0.018006 (0.078427) | 0.297272 / 0.000490 (0.296782) | 0.000222 / 0.000200 (0.000023) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019645 / 0.037411 (-0.017766) | 0.062744 / 0.014526 (0.048219) | 0.076096 / 0.176557 (-0.100460) | 0.121882 / 0.737135 (-0.615253) | 0.076267 / 0.296338 (-0.220072) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.274159 / 0.215209 (0.058950) | 2.729371 / 2.077655 (0.651716) | 1.454328 / 1.504120 (-0.049792) | 1.330517 / 1.541195 (-0.210678) | 1.338832 / 1.468490 (-0.129658) | 0.600252 / 4.584777 (-3.984525) | 2.388658 / 3.745712 (-1.357054) | 2.837717 / 5.269862 (-2.432145) | 1.747329 / 4.565676 (-2.818347) | 0.064620 / 0.424275 (-0.359655) | 0.004955 / 0.007607 (-0.002653) | 0.340253 / 0.226044 (0.114209) | 3.351559 / 2.268929 (1.082630) | 1.822718 / 55.444624 (-53.621907) | 1.518663 / 6.876477 (-5.357814) | 1.548066 / 2.142072 (-0.594006) | 0.663525 / 4.805227 (-4.141702) | 0.118334 / 6.500664 (-6.382331) | 0.042060 / 0.075469 (-0.033410) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976509 / 1.841788 (-0.865278) | 11.703321 / 8.074308 (3.629013) | 9.305605 / 10.191392 (-0.885787) | 0.131016 / 0.680424 (-0.549408) | 0.014299 / 0.534201 (-0.519902) | 0.293963 / 0.579283 (-0.285320) | 0.264018 / 0.434364 (-0.170345) | 0.330265 / 0.540337 (-0.210073) | 0.427239 / 1.386936 (-0.959697) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005437 / 0.011353 (-0.005916) | 0.003774 / 0.011008 (-0.007234) | 0.049927 / 0.038508 (0.011419) | 0.032246 / 0.023109 (0.009137) | 0.271808 / 0.275898 (-0.004090) | 0.295652 / 0.323480 (-0.027828) | 0.004220 / 0.007986 (-0.003766) | 0.002803 / 0.004328 (-0.001525) | 0.049656 / 0.004250 (0.045406) | 0.041938 / 0.037052 (0.004885) | 0.282199 / 0.258489 (0.023710) | 0.310206 / 0.293841 (0.016365) | 0.030389 / 0.128546 (-0.098157) | 0.010593 / 0.075646 (-0.065054) | 0.057862 / 0.419271 (-0.361409) | 0.033937 / 0.043533 (-0.009596) | 0.268920 / 0.255139 (0.013781) | 0.286000 / 0.283200 (0.002800) | 0.018766 / 0.141683 (-0.122917) | 1.118556 / 1.452155 (-0.333599) | 1.175083 / 1.492716 (-0.317633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095135 / 0.018006 (0.077129) | 0.304735 / 0.000490 (0.304245) | 0.000210 / 0.000200 (0.000010) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022971 / 0.037411 (-0.014441) | 0.076204 / 0.014526 (0.061678) | 0.090801 / 0.176557 (-0.085756) | 0.130149 / 0.737135 (-0.606987) | 0.090986 / 0.296338 (-0.205352) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298535 / 0.215209 (0.083326) | 2.882959 / 2.077655 (0.805304) | 1.574018 / 1.504120 (0.069899) | 1.445251 / 1.541195 (-0.095944) | 1.483651 / 1.468490 (0.015160) | 0.572012 / 4.584777 (-4.012765) | 0.972223 / 3.745712 (-2.773489) | 2.745776 / 5.269862 (-2.524085) | 1.783980 / 4.565676 (-2.781697) | 0.063910 / 0.424275 (-0.360365) | 0.005397 / 0.007607 (-0.002210) | 0.349104 / 0.226044 (0.123059) | 3.433303 / 2.268929 (1.164374) | 1.961506 / 55.444624 (-53.483119) | 1.665905 / 6.876477 (-5.210571) | 1.800977 / 2.142072 (-0.341095) | 0.655843 / 4.805227 (-4.149384) | 0.118320 / 6.500664 (-6.382345) | 0.041748 / 0.075469 (-0.033722) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006835 / 1.841788 (-0.834952) | 12.506123 / 8.074308 (4.431815) | 10.564310 / 10.191392 (0.372918) | 0.143121 / 0.680424 (-0.537303) | 0.016340 / 0.534201 (-0.517861) | 0.284181 / 0.579283 (-0.295102) | 0.125975 / 0.434364 (-0.308389) | 0.324369 / 0.540337 (-0.215969) | 0.443713 / 1.386936 (-0.943223) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#60d21efbc01e15d0b596ac1072750cbecd91548a \"CML watermark\")\n"
] | Update requests >=2.32.1 to fix vulnerability | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6909/reactions"
} | PR_kwDODunzps5wCoiE | {
"diff_url": "https://github.com/huggingface/datasets/pull/6909.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6909",
"merged_at": "2024-05-21T07:38:25Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6909.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6909"
} | 2024-05-21T07:11:20Z | https://api.github.com/repos/huggingface/datasets/issues/6909/comments | Update requests >=2.32.1 to fix vulnerability. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | https://api.github.com/repos/huggingface/datasets/issues/6909/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6909/timeline | closed | false | 6,909 | null | 2024-05-21T07:38:25Z | null | true |
2,304,958,116 | https://api.github.com/repos/huggingface/datasets/issues/6908 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6908/events | [] | null | 2024-05-24T10:58:09Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6908 | NONE | completed | null | null | [
"I am not able to reproduce the error with datasets 2.19.1:\r\n```python\r\nIn [1]: from datasets import load_dataset; ds = load_dataset(\"stas/c4-en-10k\", streaming=True); item = next(iter(ds[\"train\"])); item\r\nOut[1]: {'text': 'Beginners BBQ Class Taking Place in Missoula!\\nDo you want to get better at making delicious BBQ? You will have the opportunity, put this on your calendar now. Thursday, September 22nd join World Class BBQ Champion, Tony Balay from Lonestar Smoke Rangers. He will be teaching a beginner level class for everyone who wants to get better with their culinary skills.\\nHe will teach you everything you need to know to compete in a KCBS BBQ competition, including techniques, recipes, timelines, meat selection and trimming, plus smoker and fire information.\\nThe cost to be in the class is $35 per person, and for spectators it is free. Included in the cost will be either a t-shirt or apron and you will be tasting samples of each meat that is prepared.'}\r\n\r\nIn [2]: from datasets import load_dataset; ds = load_dataset(\"stas/c4-en-10k\", download_mode=\"force_redownload\"); ds\r\nDownloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 13.3M/13.3M [00:00<00:00, 18.7MB/s]\r\nGenerating train split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10000/10000 [00:00<00:00, 78548.55 examples/s]\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['text'],\r\n num_rows: 10000\r\n })\r\n})\r\n```\r\n\r\nLooking at your error traceback, I notice that the code line numbers do not correspond to the ones of datasets 2.19.1.\r\n\r\nAdditionally, I can't reproduce the issue with `HfFileSystem`:\r\n```python\r\nIn [1]: from huggingface_hub import HfFileSystem\r\n\r\nIn [2]: fs = HfFileSystem()\r\n\r\nIn [3]: with fs.open(\"datasets/stas/c4-en-10k/c4-en-10k.py\", \"rb\") as f:\r\n ...: data = f.read()\r\n ...: \r\n\r\nIn [4]: data[:20]\r\nOut[4]: b'# coding=utf-8\\n# Cop'\r\n```\r\n\r\nCould you please verify the `datasets` and `huggingface_hub` versions you are indeed using?\r\n```python\r\nimport datasets; print(datasets.__version__)\r\n\r\nimport huggingface_hub; print(huggingface_hub.__version__)\r\n```",
"Thanks for your reply! After I update the datasets version from 2.15.0 back to 2.19.1 again, it seems everything work well. Sorry for bordering you!"
] | Fail to load "stas/c4-en-10k" dataset since 2.16 version | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6908/reactions"
} | I_kwDODunzps6JYt6k | null | 2024-05-20T02:43:59Z | https://api.github.com/repos/huggingface/datasets/issues/6908/comments | ### Describe the bug
When update datasets library to version 2.16+ ( I test it on 2.16, 2.19.0 and 2.19.1), using the following code to load stas/c4-en-10k dataset
```python
from datasets import load_dataset, Dataset
dataset = load_dataset('stas/c4-en-10k')
```
and then it raise UnicodeDecodeError like
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 2523, in load_dataset
builder_instance = load_dataset_builder(
File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 2195, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 1846, in dataset_module_factory
raise e1 from None
File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 1798, in dataset_module_factory
can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read()
File "/home/*/conda3/envs/watermark/lib/python3.10/codecs.py", line 322, in decode
(result, consumed) = self._buffer_decode(data, self.errors, final)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte
```
I found that fs.open loads a gzip file and parses it like plain text using utf-8 encoder.
```python
fs = HfFileSystem('https://huggingface.co.')
fs.open("datasets/stas/c4-en-10k/c4-en-10k.py", "rb")
data = fs.read() # data is gzip bytes begin with b'\x1f\x8b\x08\x00\x00\tn\x88\x00...'
data2 = unzip_gzip_bytes(data) # data2 is what we want: '# coding=utf-8\n# Copyright 2020 The HuggingFace Datasets...'
```
### Steps to reproduce the bug
1. Install datasets between version 2.16 and 2.19
2. Use `datasets.load_dataset` method to load `stas/c4-en-10k` dataset.
### Expected behavior
Load dataset normally.
### Environment info
Platform = Linux-5.4.0-159-generic-x86_64-with-glibc2.35
Python = 3.10.14
Datasets = 2.19 | {
"avatar_url": "https://avatars.githubusercontent.com/u/38173059?v=4",
"events_url": "https://api.github.com/users/guch8017/events{/privacy}",
"followers_url": "https://api.github.com/users/guch8017/followers",
"following_url": "https://api.github.com/users/guch8017/following{/other_user}",
"gists_url": "https://api.github.com/users/guch8017/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/guch8017",
"id": 38173059,
"login": "guch8017",
"node_id": "MDQ6VXNlcjM4MTczMDU5",
"organizations_url": "https://api.github.com/users/guch8017/orgs",
"received_events_url": "https://api.github.com/users/guch8017/received_events",
"repos_url": "https://api.github.com/users/guch8017/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/guch8017/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/guch8017/subscriptions",
"type": "User",
"url": "https://api.github.com/users/guch8017"
} | https://api.github.com/repos/huggingface/datasets/issues/6908/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6908/timeline | closed | false | 6,908 | null | 2024-05-24T10:58:09Z | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |
2,303,855,833 | https://api.github.com/repos/huggingface/datasets/issues/6907 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6907/events | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | null | 2024-05-18T08:53:28Z | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | https://github.com/huggingface/datasets/issues/6907 | NONE | null | null | null | [
"Update: I ended up deciding to go back to use lines of dictionaries instead of arrays, not because of this issue as my users would be capable of downloading my corpus without `datasets`, but the speed and storage savings are not currently worth breaking my API and harming the backwards compatibility of each new revision.\r\n\r\nWith that said, for a static dataset that is not regularly updated like mine, and particularly for extremely large datasets with millions or billions of rows, using arrays could have a meaningful impact, and so there is probably still value in supporting this structure, provided the effort is not too much."
] | Support the deserialization of json lines files comprised of lists | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6907/reactions"
} | I_kwDODunzps6JUgzZ | null | 2024-05-18T05:07:23Z | https://api.github.com/repos/huggingface/datasets/issues/6907/comments | ### Feature request
I manage a somewhat large and popular Hugging Face dataset known as the [Open Australian Legal Corpus](https://huggingface.co./datasets/umarbutler/open-australian-legal-corpus). I recently updated my corpus to be stored in a json lines file where each line is an array and each element represents a value at a particular column. Previously, my corpus was stored as a json lines file where each line was a dictionary and the keys were the fields.
Essentially, a line in my json lines file used to look like this:
```json
{"version_id":"","type":"","jurisdiction":"","source":"","citation":"","url":"","when_scraped":"","text":""}
```
And now it looks like this:
```json
["","","","","","","",""]
```
This saves 65 bytes per document and allows me very quickly serialise and deserialise documents via `msgspec`.
After making this change, I found that `datasets` was incapable of deserialising my Corpus without a custom loading script, even if I ensured that the `dataset_info` field in my dataset card contained the desired names of my features.
I would like to request that functionality be added to support this format which is more memory-efficent and faster than using dictionaries.
### Motivation
The [documentation](https://huggingface.co./docs/datasets/en/dataset_script) for creating dataset loading scripts asserts that:
> In the next major release, the new safety features of π€ Datasets will disable running dataset loading scripts by default, and you will have to pass trust_remote_code=True to load datasets that require running a dataset script.
I would rather not require my users to pass `trust_remote_code=True` which means that I will need built-in support for this format.
### Your contribution
I would be happy to submit a PR for this if this is something you would incorporate into `datasets` and if I can be pointed to where the code would need to go. | {
"avatar_url": "https://avatars.githubusercontent.com/u/8473183?v=4",
"events_url": "https://api.github.com/users/umarbutler/events{/privacy}",
"followers_url": "https://api.github.com/users/umarbutler/followers",
"following_url": "https://api.github.com/users/umarbutler/following{/other_user}",
"gists_url": "https://api.github.com/users/umarbutler/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/umarbutler",
"id": 8473183,
"login": "umarbutler",
"node_id": "MDQ6VXNlcjg0NzMxODM=",
"organizations_url": "https://api.github.com/users/umarbutler/orgs",
"received_events_url": "https://api.github.com/users/umarbutler/received_events",
"repos_url": "https://api.github.com/users/umarbutler/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/umarbutler/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/umarbutler/subscriptions",
"type": "User",
"url": "https://api.github.com/users/umarbutler"
} | https://api.github.com/repos/huggingface/datasets/issues/6907/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6907/timeline | open | false | 6,907 | null | null | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | false |