code
stringlengths 118
171k
| apis
sequence | extract_api
stringlengths 145
164k
|
---|---|---|
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
import oneflow as flow
import onnxruntime as ort
import onnx
from collections import OrderedDict
import tempfile
import os
import shutil
def convert_to_onnx_and_check(
job_func,
print_outlier=False,
explicit_init=True,
external_data=False,
ort_optimize=True,
opset=None,
):
check_point = flow.train.CheckPoint()
if explicit_init:
# it is a trick to keep check_point.save() from hanging when there is no variable
@flow.global_function(flow.FunctionConfig())
def add_var():
return flow.get_variable(
name="trick",
shape=(1,),
dtype=flow.float,
initializer=flow.random_uniform_initializer(),
)
check_point.init()
flow_weight_dir = tempfile.TemporaryDirectory()
check_point.save(flow_weight_dir.name)
# TODO(daquexian): a more elegant way?
while not os.path.exists(os.path.join(flow_weight_dir.name, "snapshot_done")):
pass
onnx_model_dir = tempfile.TemporaryDirectory()
onnx_model_path = os.path.join(onnx_model_dir.name, "model.onnx")
flow.onnx.export(
job_func,
flow_weight_dir.name,
onnx_model_path,
opset=opset,
external_data=external_data,
)
flow_weight_dir.cleanup()
ort_sess_opt = ort.SessionOptions()
ort_sess_opt.graph_optimization_level = (
ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
if ort_optimize
else ort.GraphOptimizationLevel.ORT_DISABLE_ALL
)
sess = ort.InferenceSession(onnx_model_path, sess_options=ort_sess_opt)
onnx_model_dir.cleanup()
assert len(sess.get_outputs()) == 1
assert len(sess.get_inputs()) <= 1
ipt_dict = OrderedDict()
for ipt in sess.get_inputs():
ipt_data = np.random.uniform(low=-10, high=10, size=ipt.shape).astype(
np.float32
)
ipt_dict[ipt.name] = ipt_data
onnx_res = sess.run([], ipt_dict)[0]
oneflow_res = job_func(*ipt_dict.values()).get().numpy()
rtol, atol = 1e-2, 1e-5
if print_outlier:
a = onnx_res.flatten()
b = oneflow_res.flatten()
for i in range(len(a)):
if np.abs(a[i] - b[i]) > atol + rtol * np.abs(b[i]):
print("a[{}]={}, b[{}]={}".format(i, a[i], i, b[i]))
assert np.allclose(onnx_res, oneflow_res, rtol=rtol, atol=atol)
| [
"oneflow.FunctionConfig",
"oneflow.random_uniform_initializer",
"oneflow.train.CheckPoint",
"oneflow.onnx.export"
] | [((927, 950), 'oneflow.train.CheckPoint', 'flow.train.CheckPoint', ([], {}), '()\n', (948, 950), True, 'import oneflow as flow\n'), ((1396, 1425), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (1423, 1425), False, 'import tempfile\n'), ((1629, 1658), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (1656, 1658), False, 'import tempfile\n'), ((1681, 1728), 'os.path.join', 'os.path.join', (['onnx_model_dir.name', '"""model.onnx"""'], {}), "(onnx_model_dir.name, 'model.onnx')\n", (1693, 1728), False, 'import os\n'), ((1733, 1845), 'oneflow.onnx.export', 'flow.onnx.export', (['job_func', 'flow_weight_dir.name', 'onnx_model_path'], {'opset': 'opset', 'external_data': 'external_data'}), '(job_func, flow_weight_dir.name, onnx_model_path, opset=\n opset, external_data=external_data)\n', (1749, 1845), True, 'import oneflow as flow\n'), ((1937, 1957), 'onnxruntime.SessionOptions', 'ort.SessionOptions', ([], {}), '()\n', (1955, 1957), True, 'import onnxruntime as ort\n'), ((2156, 2220), 'onnxruntime.InferenceSession', 'ort.InferenceSession', (['onnx_model_path'], {'sess_options': 'ort_sess_opt'}), '(onnx_model_path, sess_options=ort_sess_opt)\n', (2176, 2220), True, 'import onnxruntime as ort\n'), ((2344, 2357), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2355, 2357), False, 'from collections import OrderedDict\n'), ((2937, 2993), 'numpy.allclose', 'np.allclose', (['onnx_res', 'oneflow_res'], {'rtol': 'rtol', 'atol': 'atol'}), '(onnx_res, oneflow_res, rtol=rtol, atol=atol)\n', (2948, 2993), True, 'import numpy as np\n'), ((1093, 1114), 'oneflow.FunctionConfig', 'flow.FunctionConfig', ([], {}), '()\n', (1112, 1114), True, 'import oneflow as flow\n'), ((1541, 1592), 'os.path.join', 'os.path.join', (['flow_weight_dir.name', '"""snapshot_done"""'], {}), "(flow_weight_dir.name, 'snapshot_done')\n", (1553, 1592), False, 'import os\n'), ((2411, 2462), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-10)', 'high': '(10)', 'size': 'ipt.shape'}), '(low=-10, high=10, size=ipt.shape)\n', (2428, 2462), True, 'import numpy as np\n'), ((2807, 2826), 'numpy.abs', 'np.abs', (['(a[i] - b[i])'], {}), '(a[i] - b[i])\n', (2813, 2826), True, 'import numpy as np\n'), ((1297, 1330), 'oneflow.random_uniform_initializer', 'flow.random_uniform_initializer', ([], {}), '()\n', (1328, 1330), True, 'import oneflow as flow\n'), ((2843, 2855), 'numpy.abs', 'np.abs', (['b[i]'], {}), '(b[i])\n', (2849, 2855), True, 'import numpy as np\n')] |
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import oneflow as flow
from oneflow.utils.data import Sampler
class CyclicSampler(Sampler):
"""
This sampler supports cyclic sampling, and it is also compatible with
non-data parallelism and data parallelism.
Arguments:
dataset: dataset to be sampled.
micro_batch_size: batch size for per model instance.
global_batch_size is micro_batch_size times data_parallel_size.
shuffle: whether to shuffle the dataset.
consumed_samples: the number of samples that have been trained at the current time,
used for resuming training (default: ``0``).
data_parallel_rank: local rank for data parallelism.
data_parallel_size: the size of data parallelism.
seed: random seed, used for reproducing experiments (default: ``0``).
"""
def __init__(
self,
dataset,
micro_batch_size,
shuffle=False,
consumed_samples=0,
data_parallel_rank=0,
data_parallel_size=1,
seed=0,
):
self.dataset = dataset
self.data_size = len(self.dataset)
self.shuffle = shuffle
self.data_parallel_rank = data_parallel_rank
self.data_parallel_size = data_parallel_size
self.micro_batch_size = micro_batch_size
self.actual_batch_size = self.micro_batch_size * self.data_parallel_size
self.data_size_per_epoch = self.data_size // self.actual_batch_size * self.micro_batch_size
self.consumed_samples = consumed_samples
self.seed = seed
def __iter__(self):
"""divide the data into data_parallel_size buckets,
and shuffle it if `shuffle` is set to `True`.
Each processor samples from its own buckets and data_loader
will load the corresponding data.
"""
epoch = self.consumed_samples // self.data_size_per_epoch
current_epoch_samples = self.consumed_samples % self.data_size_per_epoch
batch = []
while True:
bucket_offset = current_epoch_samples // self.data_parallel_size
start_idx = self.data_parallel_rank * self.data_size_per_epoch
if self.shuffle:
generator = flow.Generator()
generator.manual_seed(self.seed + epoch)
random_idx = flow.randperm(self.data_size_per_epoch, generator=generator).tolist()
indices = [start_idx + x for x in random_idx[bucket_offset:]]
else:
seq_idx = flow.arange(self.data_size_per_epoch).tolist()
indices = [start_idx + x for x in seq_idx[bucket_offset:]]
epoch += 1
if hasattr(self.dataset, "supports_prefetch") and self.dataset.supports_prefetch:
self.dataset.prefetch(indices)
for idx in indices:
batch.append(idx)
if len(batch) == self.micro_batch_size:
self.consumed_samples += self.actual_batch_size
yield batch
batch = []
current_epoch_samples = 0
def __len__(self):
return self.data_size
def set_consumed_samples(self, consumed_samples):
"""You can recover the training iteration by setting `consumed_samples`."""
self.consumed_samples = consumed_samples
def set_epoch(self, epoch):
"""Used for restoring training status."""
self.epoch = epoch
class SingleRoundSampler(Sampler):
"""
This sampler supports single round sampling, and it is also compatible with
non data parallelism and data parallelism.
Arguments:
dataset: dataset to be sampled.
micro_batch_size: batch size for per model instance, global_batch_size
is micro_batch_size times data_parallel_size.
shuffle: whether to shuffle the dataset.
data_parallel_rank: local rank for data parallelism.
data_parallel_size: the size of data parallelism.
seed: random seed, used for reproducing experiments (default: ``0``).
drop_last: whether to drop the remaining data (default: ``False``).
"""
def __init__(
self,
dataset,
micro_batch_size,
shuffle=False,
data_parallel_rank=0,
data_parallel_size=1,
seed=0,
drop_last=False,
):
self.dataset = dataset
self.data_size = len(self.dataset)
self.shuffle = shuffle
self.data_parallel_rank = data_parallel_rank
self.data_parallel_size = data_parallel_size
self.micro_batch_size = micro_batch_size
self.seed = seed
self.drop_last = drop_last
def __iter__(self):
bucket_size = self.data_size // self.data_parallel_size
remain = self.data_size % self.data_parallel_size
start_idx = self.data_parallel_rank * bucket_size
if self.data_parallel_rank < remain:
bucket_size += 1
start_idx += min(self.data_parallel_rank, remain)
if self.shuffle:
generator = flow.Generator()
generator.manual_seed(self.seed)
random_idx = flow.randperm(bucket_size, generator=generator).tolist()
indices = [start_idx + x for x in random_idx]
else:
seq_idx = flow.arange(bucket_size).tolist()
indices = [start_idx + x for x in seq_idx]
if hasattr(self.dataset, "supports_prefetch") and self.dataset.supports_prefetch:
self.dataset.prefetch(indices)
batch = []
for idx in indices:
batch.append(idx)
if len(batch) == self.micro_batch_size:
yield batch
batch = []
if not self.drop_last:
if self.data_parallel_rank >= remain and remain > 0:
batch.append(0)
if len(batch) > 0:
yield batch
def __len__(self):
global_batch_size = self.micro_batch_size * self.data_parallel_size
if self.drop_last:
return self.data_size // global_batch_size
else:
return (self.data_size + global_batch_size - 1) // global_batch_size
| [
"oneflow.arange",
"oneflow.Generator",
"oneflow.randperm"
] | [((5675, 5691), 'oneflow.Generator', 'flow.Generator', ([], {}), '()\n', (5689, 5691), True, 'import oneflow as flow\n'), ((2821, 2837), 'oneflow.Generator', 'flow.Generator', ([], {}), '()\n', (2835, 2837), True, 'import oneflow as flow\n'), ((5762, 5809), 'oneflow.randperm', 'flow.randperm', (['bucket_size'], {'generator': 'generator'}), '(bucket_size, generator=generator)\n', (5775, 5809), True, 'import oneflow as flow\n'), ((5913, 5937), 'oneflow.arange', 'flow.arange', (['bucket_size'], {}), '(bucket_size)\n', (5924, 5937), True, 'import oneflow as flow\n'), ((2924, 2984), 'oneflow.randperm', 'flow.randperm', (['self.data_size_per_epoch'], {'generator': 'generator'}), '(self.data_size_per_epoch, generator=generator)\n', (2937, 2984), True, 'import oneflow as flow\n'), ((3116, 3153), 'oneflow.arange', 'flow.arange', (['self.data_size_per_epoch'], {}), '(self.data_size_per_epoch)\n', (3127, 3153), True, 'import oneflow as flow\n')] |
"""
Modified from https://github.com/microsoft/Swin-Transformer/blob/main/main.py
"""
import os
import time
import argparse
import datetime
import numpy as np
import oneflow as flow
import oneflow.backends.cudnn as cudnn
from flowvision.loss.cross_entropy import (
LabelSmoothingCrossEntropy,
SoftTargetCrossEntropy,
)
from flowvision.utils.metrics import accuracy, AverageMeter
from config import get_config
from models import build_model
from data import build_loader
from lr_scheduler import build_scheduler
from optimizer import build_optimizer
from logger import create_logger
from utils import (
load_checkpoint,
save_checkpoint,
get_grad_norm,
auto_resume_helper,
reduce_tensor,
)
def parse_option():
parser = argparse.ArgumentParser(
"Flowvision image classification training and evaluation script", add_help=False
)
parser.add_argument(
"--model_arch",
type=str,
required=True,
default="swin_tiny_patch4_window7_224",
help="model for training",
)
parser.add_argument(
"--cfg", type=str, required=True, metavar="FILE", help="path to config file",
)
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs="+",
)
# easy config modification
parser.add_argument(
"--batch-size", type=int, default=8, help="batch size for single GPU"
)
parser.add_argument("--data-path", type=str, help="path to dataset")
parser.add_argument(
"--zip",
action="store_true",
help="use zipped dataset instead of folder dataset",
)
parser.add_argument(
"--cache-mode",
type=str,
default="part",
choices=["no", "full", "part"],
help="no: no cache, "
"full: cache all data, "
"part: sharding the dataset into nonoverlapping pieces and only cache one piece",
)
parser.add_argument("--resume", help="resume from checkpoint")
parser.add_argument(
"--accumulation-steps", type=int, help="gradient accumulation steps"
)
parser.add_argument(
"--use-checkpoint",
action="store_true",
help="whether to use gradient checkpointing to save memory",
)
parser.add_argument(
"--output",
default="output",
type=str,
metavar="PATH",
help="root of output folder, the full path is <output>/<model_name>/<tag> (default: output)",
)
parser.add_argument("--tag", help="tag of experiment")
parser.add_argument("--eval", action="store_true", help="Perform evaluation only")
parser.add_argument(
"--throughput", action="store_true", help="Test throughput only"
)
# distributed training
parser.add_argument(
"--local_rank",
type=int,
default=0,
required=False,
help="local rank for DistributedDataParallel",
)
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def main(config):
(
dataset_train,
dataset_val,
data_loader_train,
data_loader_val,
mixup_fn,
) = build_loader(config)
logger.info(f"Creating model:{config.MODEL.ARCH}")
model = build_model(config)
model.cuda()
logger.info(str(model))
optimizer = build_optimizer(config, model)
model = flow.nn.parallel.DistributedDataParallel(model, broadcast_buffers=False)
# FIXME: model with DDP wrapper doesn't have model.module
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
if hasattr(model_without_ddp, "flops"):
flops = model_without_ddp.flops()
logger.info(f"number of GFLOPs: {flops / 1e9}")
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
if config.AUG.MIXUP > 0.0:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.0:
criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = flow.nn.CrossEntropyLoss()
max_accuracy = 0.0
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(
f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}"
)
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f"auto resuming from {resume_file}")
else:
logger.info(f"no checkpoint found in {config.OUTPUT}, ignoring auto resume")
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(
config, model_without_ddp, optimizer, lr_scheduler, logger
)
acc1, acc5, loss = validate(config, data_loader_val, model)
logger.info(
f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%"
)
if config.EVAL_MODE:
return
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
return
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(
config,
model,
criterion,
data_loader_train,
optimizer,
epoch,
mixup_fn,
lr_scheduler,
)
if flow.env.get_rank() == 0 and (
epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)
):
save_checkpoint(
config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
logger,
)
# no validate
acc1, acc5, loss = validate(config, data_loader_val, model)
logger.info(
f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%"
)
max_accuracy = max(max_accuracy, acc1)
logger.info(f"Max accuracy: {max_accuracy:.2f}%")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info("Training time {}".format(total_time_str))
def train_one_epoch(
config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler
):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
start = time.time()
end = time.time()
for idx, (samples, targets) in enumerate(data_loader):
samples = samples.cuda()
targets = targets.cuda()
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
outputs = model(samples)
if config.TRAIN.ACCUMULATION_STEPS > 1:
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = flow.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD
)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step_update(epoch * num_steps + idx)
else:
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = flow.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD
)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
lr_scheduler.step_update(epoch * num_steps + idx)
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]["lr"]
etas = batch_time.avg * (num_steps - idx)
logger.info(
f"Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t"
f"eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t"
f"time {batch_time.val:.4f} ({batch_time.avg:.4f})\t"
f"loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t"
f"grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t"
)
epoch_time = time.time() - start
logger.info(
f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}"
)
@flow.no_grad()
def validate(config, data_loader, model):
criterion = flow.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda()
target = target.cuda()
# compute output
output = model(images)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
logger.info(
f"Test: [{idx}/{len(data_loader)}]\t"
f"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
f"Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t"
f"Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t"
f"Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t"
)
logger.info(f" * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}")
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
@flow.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda()
batch_size = images.shape[0]
for i in range(50):
model(images)
# TODO: add flow.cuda.synchronize()
logger.info(f"throughput averaged with 30 times")
tic1 = time.time()
for i in range(30):
model(images)
tic2 = time.time()
logger.info(
f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}"
)
return
if __name__ == "__main__":
_, config = parse_option()
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
rank = flow.env.get_rank()
world_size = flow.env.get_world_size()
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
seed = config.SEED + flow.env.get_rank()
flow.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
linear_scaled_lr = (
config.TRAIN.BASE_LR
* config.DATA.BATCH_SIZE
* flow.env.get_world_size()
/ 512.0
)
linear_scaled_warmup_lr = (
config.TRAIN.WARMUP_LR
* config.DATA.BATCH_SIZE
* flow.env.get_world_size()
/ 512.0
)
linear_scaled_min_lr = (
config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * flow.env.get_world_size() / 512.0
)
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = (
linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
)
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(
output_dir=config.OUTPUT,
dist_rank=flow.env.get_rank(),
name=f"{config.MODEL.ARCH}",
)
if flow.env.get_rank() == 0:
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
main(config)
| [
"oneflow.env.get_rank",
"oneflow.nn.CrossEntropyLoss",
"oneflow.no_grad",
"oneflow.env.get_world_size",
"oneflow.manual_seed",
"oneflow.nn.parallel.DistributedDataParallel"
] | [((9189, 9203), 'oneflow.no_grad', 'flow.no_grad', ([], {}), '()\n', (9201, 9203), True, 'import oneflow as flow\n'), ((10709, 10723), 'oneflow.no_grad', 'flow.no_grad', ([], {}), '()\n', (10721, 10723), True, 'import oneflow as flow\n'), ((754, 868), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Flowvision image classification training and evaluation script"""'], {'add_help': '(False)'}), "(\n 'Flowvision image classification training and evaluation script',\n add_help=False)\n", (777, 868), False, 'import argparse\n'), ((3034, 3050), 'config.get_config', 'get_config', (['args'], {}), '(args)\n', (3044, 3050), False, 'from config import get_config\n'), ((3224, 3244), 'data.build_loader', 'build_loader', (['config'], {}), '(config)\n', (3236, 3244), False, 'from data import build_loader\n'), ((3313, 3332), 'models.build_model', 'build_model', (['config'], {}), '(config)\n', (3324, 3332), False, 'from models import build_model\n'), ((3395, 3425), 'optimizer.build_optimizer', 'build_optimizer', (['config', 'model'], {}), '(config, model)\n', (3410, 3425), False, 'from optimizer import build_optimizer\n'), ((3438, 3510), 'oneflow.nn.parallel.DistributedDataParallel', 'flow.nn.parallel.DistributedDataParallel', (['model'], {'broadcast_buffers': '(False)'}), '(model, broadcast_buffers=False)\n', (3478, 3510), True, 'import oneflow as flow\n'), ((5411, 5422), 'time.time', 'time.time', ([], {}), '()\n', (5420, 5422), False, 'import time\n'), ((6827, 6841), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6839, 6841), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((6859, 6873), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6871, 6873), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((6891, 6905), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6903, 6905), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((6919, 6930), 'time.time', 'time.time', ([], {}), '()\n', (6928, 6930), False, 'import time\n'), ((6941, 6952), 'time.time', 'time.time', ([], {}), '()\n', (6950, 6952), False, 'import time\n'), ((9262, 9288), 'oneflow.nn.CrossEntropyLoss', 'flow.nn.CrossEntropyLoss', ([], {}), '()\n', (9286, 9288), True, 'import oneflow as flow\n'), ((9324, 9338), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (9336, 9338), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((9356, 9370), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (9368, 9370), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((9388, 9402), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (9400, 9402), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((9420, 9434), 'flowvision.utils.metrics.AverageMeter', 'AverageMeter', ([], {}), '()\n', (9432, 9434), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((9446, 9457), 'time.time', 'time.time', ([], {}), '()\n', (9455, 9457), False, 'import time\n'), ((11676, 11698), 'oneflow.manual_seed', 'flow.manual_seed', (['seed'], {}), '(seed)\n', (11692, 11698), True, 'import oneflow as flow\n'), ((11703, 11723), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (11717, 11723), True, 'import numpy as np\n'), ((12755, 12796), 'os.makedirs', 'os.makedirs', (['config.OUTPUT'], {'exist_ok': '(True)'}), '(config.OUTPUT, exist_ok=True)\n', (12766, 12796), False, 'import os\n'), ((4069, 4093), 'flowvision.loss.cross_entropy.SoftTargetCrossEntropy', 'SoftTargetCrossEntropy', ([], {}), '()\n', (4091, 4093), False, 'from flowvision.loss.cross_entropy import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy\n'), ((4363, 4396), 'utils.auto_resume_helper', 'auto_resume_helper', (['config.OUTPUT'], {}), '(config.OUTPUT)\n', (4381, 4396), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((4926, 5001), 'utils.load_checkpoint', 'load_checkpoint', (['config', 'model_without_ddp', 'optimizer', 'lr_scheduler', 'logger'], {}), '(config, model_without_ddp, optimizer, lr_scheduler, logger)\n', (4941, 5001), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((6468, 6479), 'time.time', 'time.time', ([], {}), '()\n', (6477, 6479), False, 'import time\n'), ((8473, 8484), 'time.time', 'time.time', ([], {}), '()\n', (8482, 8484), False, 'import time\n'), ((9057, 9068), 'time.time', 'time.time', ([], {}), '()\n', (9066, 9068), False, 'import time\n'), ((9740, 9777), 'flowvision.utils.metrics.accuracy', 'accuracy', (['output', 'target'], {'topk': '(1, 5)'}), '(output, target, topk=(1, 5))\n', (9748, 9777), False, 'from flowvision.utils.metrics import accuracy, AverageMeter\n'), ((9794, 9813), 'utils.reduce_tensor', 'reduce_tensor', (['acc1'], {}), '(acc1)\n', (9807, 9813), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((9829, 9848), 'utils.reduce_tensor', 'reduce_tensor', (['acc5'], {}), '(acc5)\n', (9842, 9848), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((9864, 9883), 'utils.reduce_tensor', 'reduce_tensor', (['loss'], {}), '(loss)\n', (9877, 9883), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((10141, 10152), 'time.time', 'time.time', ([], {}), '()\n', (10150, 10152), False, 'import time\n'), ((11077, 11088), 'time.time', 'time.time', ([], {}), '()\n', (11086, 11088), False, 'import time\n'), ((11159, 11170), 'time.time', 'time.time', ([], {}), '()\n', (11168, 11170), False, 'import time\n'), ((11437, 11456), 'oneflow.env.get_rank', 'flow.env.get_rank', ([], {}), '()\n', (11454, 11456), True, 'import oneflow as flow\n'), ((11478, 11503), 'oneflow.env.get_world_size', 'flow.env.get_world_size', ([], {}), '()\n', (11501, 11503), True, 'import oneflow as flow\n'), ((11652, 11671), 'oneflow.env.get_rank', 'flow.env.get_rank', ([], {}), '()\n', (11669, 11671), True, 'import oneflow as flow\n'), ((12949, 12968), 'oneflow.env.get_rank', 'flow.env.get_rank', ([], {}), '()\n', (12966, 12968), True, 'import oneflow as flow\n'), ((12990, 13032), 'os.path.join', 'os.path.join', (['config.OUTPUT', '"""config.json"""'], {}), "(config.OUTPUT, 'config.json')\n", (13002, 13032), False, 'import os\n'), ((4159, 4225), 'flowvision.loss.cross_entropy.LabelSmoothingCrossEntropy', 'LabelSmoothingCrossEntropy', ([], {'smoothing': 'config.MODEL.LABEL_SMOOTHING'}), '(smoothing=config.MODEL.LABEL_SMOOTHING)\n', (4185, 4225), False, 'from flowvision.loss.cross_entropy import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy\n'), ((4256, 4282), 'oneflow.nn.CrossEntropyLoss', 'flow.nn.CrossEntropyLoss', ([], {}), '()\n', (4280, 4282), True, 'import oneflow as flow\n'), ((5909, 6009), 'utils.save_checkpoint', 'save_checkpoint', (['config', 'epoch', 'model_without_ddp', 'max_accuracy', 'optimizer', 'lr_scheduler', 'logger'], {}), '(config, epoch, model_without_ddp, max_accuracy, optimizer,\n lr_scheduler, logger)\n', (5924, 6009), False, 'from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor\n'), ((11849, 11874), 'oneflow.env.get_world_size', 'flow.env.get_world_size', ([], {}), '()\n', (11872, 11874), True, 'import oneflow as flow\n'), ((12003, 12028), 'oneflow.env.get_world_size', 'flow.env.get_world_size', ([], {}), '()\n', (12026, 12028), True, 'import oneflow as flow\n'), ((12135, 12160), 'oneflow.env.get_world_size', 'flow.env.get_world_size', ([], {}), '()\n', (12158, 12160), True, 'import oneflow as flow\n'), ((12877, 12896), 'oneflow.env.get_rank', 'flow.env.get_rank', ([], {}), '()\n', (12894, 12896), True, 'import oneflow as flow\n'), ((5775, 5794), 'oneflow.env.get_rank', 'flow.env.get_rank', ([], {}), '()\n', (5792, 5794), True, 'import oneflow as flow\n'), ((8440, 8451), 'time.time', 'time.time', ([], {}), '()\n', (8449, 8451), False, 'import time\n'), ((10108, 10119), 'time.time', 'time.time', ([], {}), '()\n', (10117, 10119), False, 'import time\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import unittest
from collections import OrderedDict
import numpy as np
import oneflow.experimental as flow
from test_util import GenArgList
def _test_gather_nd(test_case, device):
input = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
indices = np.array([[0], [2]])
np_out = np.array([[1, 2, 3], [7, 8, 9]])
output = flow.gather_nd(
flow.Tensor(input, dtype=flow.float, device=flow.device(device)),
flow.Tensor(indices, dtype=flow.int, device=flow.device(device)),
)
test_case.assertTrue(np.array_equal(output.numpy(), np_out))
def _test_gather_nd_t(test_case, device):
input = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
indices = np.array([[0, 2], [2, 1]])
np_out = np.array([3, 8])
output = flow.gather_nd(
flow.Tensor(input, dtype=flow.float, device=flow.device(device)),
flow.Tensor(indices, dtype=flow.int, device=flow.device(device)),
)
test_case.assertTrue(np.array_equal(output.numpy(), np_out))
def _test_gather_nd_backward(test_case, device):
input = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
indices = np.array([[0], [2]])
np_out = np.array([[1, 2, 3], [7, 8, 9]])
np_grad = np.array([[1, 1, 1], [0, 0, 0], [1, 1, 1]])
of_input = flow.Tensor(
input, requires_grad=True, dtype=flow.float, device=flow.device(device)
)
output = flow.gather_nd(
of_input, flow.Tensor(indices, dtype=flow.int, device=flow.device(device))
)
out_sum = output.sum()
out_sum.backward()
test_case.assertTrue(np.array_equal(output.numpy(), np_out))
test_case.assertTrue(np.array_equal(of_input.grad.numpy(), np_grad))
def _test_gather_nd_backward_t(test_case, device):
input = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
indices = np.array([[0, 2], [2, 1]])
np_out = np.array([3, 8])
np_grad = np.array([[0, 0, 1], [0, 0, 0], [0, 1, 0]])
of_input = flow.Tensor(
input, requires_grad=True, dtype=flow.float, device=flow.device(device)
)
output = flow.gather_nd(
of_input, flow.Tensor(indices, dtype=flow.int, device=flow.device(device))
)
out_sum = output.sum()
out_sum.backward()
test_case.assertTrue(np.array_equal(output.numpy(), np_out))
test_case.assertTrue(np.array_equal(of_input.grad.numpy(), np_grad))
@flow.unittest.skip_unless_1n1d()
class TestGather_nd(flow.unittest.TestCase):
def test_gather_nd(test_case):
arg_dict = OrderedDict()
arg_dict["test_fun"] = [
_test_gather_nd,
_test_gather_nd_t,
_test_gather_nd_backward,
_test_gather_nd_backward_t,
]
arg_dict["device"] = ["cpu", "cuda"]
for arg in GenArgList(arg_dict):
arg[0](test_case, *arg[1:])
if __name__ == "__main__":
unittest.main()
| [
"oneflow.experimental.unittest.skip_unless_1n1d",
"oneflow.experimental.device"
] | [((2909, 2941), 'oneflow.experimental.unittest.skip_unless_1n1d', 'flow.unittest.skip_unless_1n1d', ([], {}), '()\n', (2939, 2941), True, 'import oneflow.experimental as flow\n'), ((786, 829), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'], {}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n', (794, 829), True, 'import numpy as np\n'), ((844, 864), 'numpy.array', 'np.array', (['[[0], [2]]'], {}), '([[0], [2]])\n', (852, 864), True, 'import numpy as np\n'), ((878, 910), 'numpy.array', 'np.array', (['[[1, 2, 3], [7, 8, 9]]'], {}), '([[1, 2, 3], [7, 8, 9]])\n', (886, 910), True, 'import numpy as np\n'), ((1215, 1258), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'], {}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n', (1223, 1258), True, 'import numpy as np\n'), ((1273, 1299), 'numpy.array', 'np.array', (['[[0, 2], [2, 1]]'], {}), '([[0, 2], [2, 1]])\n', (1281, 1299), True, 'import numpy as np\n'), ((1313, 1329), 'numpy.array', 'np.array', (['[3, 8]'], {}), '([3, 8])\n', (1321, 1329), True, 'import numpy as np\n'), ((1641, 1684), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'], {}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n', (1649, 1684), True, 'import numpy as np\n'), ((1699, 1719), 'numpy.array', 'np.array', (['[[0], [2]]'], {}), '([[0], [2]])\n', (1707, 1719), True, 'import numpy as np\n'), ((1733, 1765), 'numpy.array', 'np.array', (['[[1, 2, 3], [7, 8, 9]]'], {}), '([[1, 2, 3], [7, 8, 9]])\n', (1741, 1765), True, 'import numpy as np\n'), ((1781, 1824), 'numpy.array', 'np.array', (['[[1, 1, 1], [0, 0, 0], [1, 1, 1]]'], {}), '([[1, 1, 1], [0, 0, 0], [1, 1, 1]])\n', (1789, 1824), True, 'import numpy as np\n'), ((2311, 2354), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'], {}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n', (2319, 2354), True, 'import numpy as np\n'), ((2369, 2395), 'numpy.array', 'np.array', (['[[0, 2], [2, 1]]'], {}), '([[0, 2], [2, 1]])\n', (2377, 2395), True, 'import numpy as np\n'), ((2409, 2425), 'numpy.array', 'np.array', (['[3, 8]'], {}), '([3, 8])\n', (2417, 2425), True, 'import numpy as np\n'), ((2441, 2484), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, 1], [0, 0, 0], [0, 1, 0]])\n', (2449, 2484), True, 'import numpy as np\n'), ((3395, 3410), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3408, 3410), False, 'import unittest\n'), ((3041, 3054), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3052, 3054), False, 'from collections import OrderedDict\n'), ((3300, 3320), 'test_util.GenArgList', 'GenArgList', (['arg_dict'], {}), '(arg_dict)\n', (3310, 3320), False, 'from test_util import GenArgList\n'), ((1913, 1932), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (1924, 1932), True, 'import oneflow.experimental as flow\n'), ((2573, 2592), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (2584, 2592), True, 'import oneflow.experimental as flow\n'), ((992, 1011), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (1003, 1011), True, 'import oneflow.experimental as flow\n'), ((1066, 1085), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (1077, 1085), True, 'import oneflow.experimental as flow\n'), ((1411, 1430), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (1422, 1430), True, 'import oneflow.experimental as flow\n'), ((1485, 1504), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (1496, 1504), True, 'import oneflow.experimental as flow\n'), ((2030, 2049), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (2041, 2049), True, 'import oneflow.experimental as flow\n'), ((2690, 2709), 'oneflow.experimental.device', 'flow.device', (['device'], {}), '(device)\n', (2701, 2709), True, 'import oneflow.experimental as flow\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import enum
import inspect
from google.protobuf import text_format
import oneflow._oneflow_internal
import oneflow.core.job.job_set_pb2 as job_set_util
import oneflow.framework.c_api_util as c_api_util
class MultiClientSession(object):
class Status(enum.Enum):
CREATED = 1
INITED = 2
CLOSED = 3
def __init__(self, sess_id):
self.sess_ = oneflow._oneflow_internal.RegsiterSession(sess_id)
oneflow._oneflow_internal.CreateMultiClientSessionContext()
self.config_proto_ = self._make_config_proto()
self.function_flag_name2default_val_ = {}
self._update_function_flag_name2defaultVal()
self.scope_attr_name2default_val_ = {}
self._update_scope_attr_name2defaultVal()
self.status_ = self.Status.CREATED
def __del__(self):
self.TryClose()
def TryInit(self):
self._check_status(self.Status.CREATED, self.Status.INITED)
if self.status_ == self.Status.CREATED:
config_proto_str = text_format.MessageToString(self.config_proto)
oneflow._oneflow_internal.InitMultiClientSessionContext(config_proto_str)
self.status_ = self.Status.INITED
def TryClose(self):
if self.status_ != self.Status.CLOSED:
oneflow._oneflow_internal.TryDestroyMultiClientSessionContext()
oneflow._oneflow_internal.ClearSessionById(self.id)
self.status_ = self.Status.CLOSED
@property
def status(self):
return self.status_
@property
def id(self):
return self.sess_.id
@property
def config_proto(self):
return self.config_proto_
@property
def resource(self):
self._check_status(self.Status.INITED)
return c_api_util.CurrentResource()
@property
def function_flag_name2default_val(self):
return self.function_flag_name2default_val_
@property
def scope_attr_name2default_val(self):
return self.scope_attr_name2default_val_
@property
def is_running(self):
return self.status_ == self.Status.INITED
def AnyGlobalFunctionDefined(self):
return False
def _check_status(self, *status):
check_success = False
for stat in status:
if self.status_ == stat:
check_success = True
break
if check_success is False:
caller_func_name = inspect.stack()[1].function
allowed_status = " or ".join([str(stat) for stat in status])
raise ValueError(
"The calling to {} is only allowed when status is {}, but current status is {}".format(
caller_func_name, allowed_status, self.status_
)
)
def _make_config_proto(self):
config_proto = job_set_util.ConfigProto()
config_proto.resource.SetInParent()
config_proto.session_id = self.id
return config_proto
def _update_function_flag_name2defaultVal(self):
items = c_api_util.GetFunctionConfigDef().attr_name2attr_def.items()
self.function_flag_name2default_val_ = {k: v.default_val for (k, v) in items}
def _update_scope_attr_name2defaultVal(self):
items = c_api_util.GetScopeConfigDef().attr_name2attr_def.items()
self.scope_attr_name2default_val_ = {k: v.default_val for (k, v) in items}
| [
"oneflow.framework.c_api_util.CurrentResource",
"oneflow.framework.c_api_util.GetScopeConfigDef",
"oneflow.framework.c_api_util.GetFunctionConfigDef",
"oneflow.core.job.job_set_pb2.ConfigProto"
] | [((2346, 2374), 'oneflow.framework.c_api_util.CurrentResource', 'c_api_util.CurrentResource', ([], {}), '()\n', (2372, 2374), True, 'import oneflow.framework.c_api_util as c_api_util\n'), ((3399, 3425), 'oneflow.core.job.job_set_pb2.ConfigProto', 'job_set_util.ConfigProto', ([], {}), '()\n', (3423, 3425), True, 'import oneflow.core.job.job_set_pb2 as job_set_util\n'), ((1608, 1654), 'google.protobuf.text_format.MessageToString', 'text_format.MessageToString', (['self.config_proto'], {}), '(self.config_proto)\n', (1635, 1654), False, 'from google.protobuf import text_format\n'), ((3007, 3022), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (3020, 3022), False, 'import inspect\n'), ((3610, 3643), 'oneflow.framework.c_api_util.GetFunctionConfigDef', 'c_api_util.GetFunctionConfigDef', ([], {}), '()\n', (3641, 3643), True, 'import oneflow.framework.c_api_util as c_api_util\n'), ((3824, 3854), 'oneflow.framework.c_api_util.GetScopeConfigDef', 'c_api_util.GetScopeConfigDef', ([], {}), '()\n', (3852, 3854), True, 'import oneflow.framework.c_api_util as c_api_util\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import absolute_import
import sys
from functools import reduce
from typing import Any, Optional, Sequence, Union
import numpy as np
import oneflow
import oneflow.core.operator.op_conf_pb2 as op_conf_util
import oneflow.core.operator.interface_blob_conf_pb2 as inter_face_blob_conf_util
import oneflow.python.framework.c_api_util as c_api_util
import oneflow.python.framework.compile_context as compile_context
import oneflow.python.framework.distribute as distribute_util
import oneflow.python.framework.id_util as id_util
import oneflow.python.framework.placement_context as placement_ctx
import oneflow.python.framework.remote_blob as remote_blob_util
import oneflow.python.framework.dtype as dtype_util
from oneflow.python.oneflow_export import oneflow_export
import oneflow_api.oneflow.core.register.logical_blob_id as lbi_util
import oneflow_api
from functools import reduce
import traceback
class ArgBlobDef(object):
def __init__(
self,
shape,
dtype,
batch_axis,
name=None,
distribute=oneflow_api.distribute.auto(),
):
lbi = lbi_util.LogicalBlobId()
if name is None:
name = id_util.UniqueStr("Input_")
lbi.set_op_name(name)
lbi.set_blob_name("out")
self.lbi_ = lbi
assert type(shape) is tuple
for dim in shape:
assert type(dim) is int
assert dim > 0
self.shape_ = shape
self.dtype_ = dtype
assert type(batch_axis) is int
self.batch_axis_ = batch_axis
self.distribute_ = distribute
@property
def lbi(self):
return self.lbi_
@property
def op_name(self):
return self.lbi_.op_name()
@property
def blob_name(self):
return self.lbi_.blob_name()
@property
def unique_name(self):
return self.op_name + "/" + self.blob_name + self._Distribute2Str()
@property
def shape(self):
return self.shape_
@property
def dtype(self):
return self.dtype_
@property
def batch_axis(self):
return self.batch_axis_
@property
def is_dynamic(self):
raise NotImplementedError
@property
def is_tensor_list(self):
raise NotImplementedError
def with_distribute(self, distribute):
return type(self)(
shape=self.shape_,
dtype=self.dtype_,
batch_axis=self.batch_axis_,
name=self.op_name,
)
def Clone(self, op_name=None):
return type(self)(
shape=self.shape_,
dtype=self.dtype_,
batch_axis=self.batch_axis_,
name=op_name,
)
def AddAndInferOp(self, op_conf):
raise NotImplementedError
def EagerAddAndInferOp(self, op_conf):
raise NotImplementedError
def CheckAndAsyncPush(self, session, arg_ndarray):
self._CheckNdarray(arg_ndarray)
self._AsyncPush(session, arg_ndarray)
def _CheckNdarray(self, ndarray):
raise NotImplementedError
def _AsyncPush(self, session, arg_ndarray):
raise NotImplementedError
def SetBatchAxisAndSplitAxis(self, interface_blob_conf):
raise NotImplementedError
def ToInterfaceBlobConf(self):
interface_blob_conf = inter_face_blob_conf_util.InterfaceBlobConf()
interface_blob_conf.shape.dim.extend(self.shape_)
interface_blob_conf.data_type = self.dtype_.oneflow_proto_dtype
interface_blob_conf.is_dynamic = self.is_dynamic
interface_blob_conf.is_tensor_list = self.is_tensor_list
self.SetBatchAxisAndSplitAxis(interface_blob_conf)
return interface_blob_conf
def _Distribute2Str(self):
if type(self.distribute_) is oneflow_api.distribute.AutoDistribute:
return ""
elif type(self.distribute_) is oneflow_api.distribute.SplitDistribute:
return ":S" + str(self.distribute_.axis)
elif type(self.distribute_) is oneflow_api.distribute.BroadcastDistribute:
return ":B"
else:
raise NotImplementedError
class FixedTensorDef(ArgBlobDef):
def __init__(
self,
shape: Sequence[int],
dtype: dtype_util.dtype = dtype_util.float,
batch_axis: int = 0,
name: Optional[str] = None,
) -> None:
if batch_axis is None:
batch_axis = oneflow_api.INVALID_BATCH_AXIS
assert type(batch_axis) is int
if batch_axis != oneflow_api.INVALID_BATCH_AXIS:
if batch_axis < 0:
batch_axis += len(shape)
assert batch_axis >= 0
assert batch_axis < len(shape)
ArgBlobDef.__init__(
self, shape, dtype=dtype, batch_axis=batch_axis, name=name,
)
@property
def is_dynamic(self) -> bool:
return False
@property
def is_tensor_list(self) -> bool:
return False
def AddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> Any:
return compile_context.CurJobAddConsistentOp(op_conf)
def EagerAddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> Any:
parallel_symbol = oneflow.current_scope().device_parallel_desc_symbol
if (
parallel_symbol.device_tag == "gpu"
and list(dict(parallel_symbol.machine_id2device_id_list).keys()) == [0]
and parallel_symbol.parallel_num == 1
):
device_tag = "gpu"
device_ids = "0:%s" % (parallel_symbol.machine_id2device_id_list[0][0])
else:
device_tag = "cpu"
device_ids = "0:0"
with oneflow.scope.placement(device_tag, device_ids):
return compile_context.CurJobAddConsistentOp(op_conf)
def SetBatchAxisAndSplitAxis(
self, interface_blob_conf: inter_face_blob_conf_util.InterfaceBlobConf
) -> None:
if self.batch_axis == oneflow_api.INVALID_BATCH_AXIS:
interface_blob_conf.batch_axis.ClearField("value")
interface_blob_conf.split_axis.ClearField("value")
else:
assert type(self.batch_axis) is int
interface_blob_conf.batch_axis.value = self.batch_axis
interface_blob_conf.split_axis.value = self.batch_axis
def _CheckNdarray(self, ndarray: np.ndarray) -> None:
assert isinstance(ndarray, np.ndarray)
assert ndarray.shape == self.shape
def _AsyncPush(self, session: object, arg_ndarray: np.ndarray) -> None:
session.AsyncPush(self.op_name, _MakePushNdarrayCallback(arg_ndarray))
class MirroredTensorDef(ArgBlobDef):
def __init__(
self,
shape: Sequence[int],
dtype: dtype_util.dtype = dtype_util.float,
batch_axis: int = 0,
name: Optional[str] = None,
) -> None:
assert type(shape) is tuple
assert type(batch_axis) is int
if batch_axis != oneflow_api.INVALID_BATCH_AXIS:
if batch_axis < 0:
batch_axis += len(shape)
assert batch_axis >= 0
assert batch_axis < len(shape)
ArgBlobDef.__init__(self, shape, dtype=dtype, batch_axis=batch_axis, name=name)
self.sub_consistent_blob_list_ = []
@property
def is_dynamic(self) -> bool:
return True
@property
def is_tensor_list(self) -> bool:
return False
def AddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> None:
_AddAndInferMirroredOp(
self.unique_name, op_conf, self.sub_consistent_blob_list_
)
def EagerAddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> Any:
return compile_context.CurJobAddMirroredOp(op_conf)
def SetBatchAxisAndSplitAxis(
self, interface_blob_conf: inter_face_blob_conf_util.InterfaceBlobConf
) -> None:
assert type(self.batch_axis) is int
interface_blob_conf.batch_axis.value = self.batch_axis
interface_blob_conf.split_axis.ClearField("value")
def _CheckNdarray(self, ndarray_list: Sequence[np.ndarray]) -> None:
assert isinstance(ndarray_list, (list, tuple))
assert len(self.sub_consistent_blob_list_) == len(ndarray_list)
def GetElemCnt(shape):
return reduce(lambda x, y: x * y, shape, 1)
for consistent_blob, ndarray in zip(
self.sub_consistent_blob_list_, ndarray_list
):
assert type(ndarray) is np.ndarray
assert len(ndarray.shape) == len(self.shape)
assert GetElemCnt(ndarray.shape) <= GetElemCnt(self.shape)
def _AsyncPush(self, session: object, ndarray_list: Sequence[np.ndarray]) -> None:
for i in range(len(ndarray_list)):
sub_blob = self.sub_consistent_blob_list_[i]
session.AsyncPush(
sub_blob.op_name, _MakePushNdarrayCallback(ndarray_list[i])
)
class MirroredTensorListDef(ArgBlobDef):
def __init__(
self,
shape: Sequence[int],
dtype: dtype_util.dtype = dtype_util.float,
batch_axis: int = 0,
name: Optional[str] = None,
) -> None:
assert type(shape) is tuple
assert type(batch_axis) is int
if batch_axis != oneflow_api.INVALID_BATCH_AXIS:
if batch_axis < 0:
batch_axis += len(shape)
assert batch_axis >= 0
assert batch_axis < len(shape)
ArgBlobDef.__init__(self, shape, dtype=dtype, batch_axis=batch_axis, name=name)
self.sub_consistent_blob_list_ = []
@property
def is_dynamic(self) -> bool:
return True
@property
def is_tensor_list(self) -> bool:
return True
def AddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> None:
_AddAndInferMirroredOp(
self.unique_name, op_conf, self.sub_consistent_blob_list_
)
def EagerAddAndInferOp(self, op_conf: op_conf_util.OperatorConf) -> Any:
return compile_context.CurJobAddMirroredOp(op_conf)
def SetBatchAxisAndSplitAxis(
self, interface_blob_conf: inter_face_blob_conf_util.InterfaceBlobConf
) -> None:
assert type(self.batch_axis) is int
interface_blob_conf.batch_axis.value = self.batch_axis
interface_blob_conf.split_axis.ClearField("value")
def _CheckNdarray(self, ndarray_lists: Sequence[np.ndarray]) -> None:
assert isinstance(ndarray_lists, (list, tuple))
assert len(self.sub_consistent_blob_list_) == len(ndarray_lists)
def GetElemCnt(shape):
return reduce(lambda x, y: x * y, shape, 1)
for consistent_blob, ndarray_list in zip(
self.sub_consistent_blob_list_, ndarray_lists
):
assert type(ndarray_list) is list
elem_cnt = 0
for ndarray in ndarray_list:
assert type(ndarray) is np.ndarray
assert len(ndarray.shape) == len(self.shape)
elem_cnt += GetElemCnt(ndarray.shape)
assert elem_cnt <= GetElemCnt(self.shape)
def _AsyncPush(self, session: object, ndarray_lists: Sequence[np.ndarray]) -> None:
for i in range(len(ndarray_lists)):
sub_blob = self.sub_consistent_blob_list_[i]
session.AsyncPush(
sub_blob.op_name, _MakePushNdarrayListCallback(ndarray_lists[i])
)
def _AddAndInferMirroredOp(mirrored_lbn, op_conf, sub_consistent_blob_list):
compile_context.CurJobAddMirroredOp(op_conf)
job_name = oneflow_api.JobBuildAndInferCtx_GetCurrentJobName()
num_sub_lbi = c_api_util.JobBuildAndInferCtx_MirroredBlobGetNumSubLbi(
job_name, mirrored_lbn
)
for i in range(num_sub_lbi):
sub_lbi = c_api_util.JobBuildAndInferCtx_MirroredBlobGetSubLbi(
job_name, mirrored_lbn, i
)
lbi = lbi_util.LogicalBlobId()
lbi.set_op_name(sub_lbi.op_name)
lbi.set_blob_name(sub_lbi.blob_name)
sub_consistent_blob_list.append(
oneflow_api.ConsistentBlob(lbi, "", oneflow_api.distribute.auto())
)
def _MakePushNdarrayCallback(ndarray):
copied = np.copy(ndarray)
def Copy(ofblob):
capacity = reduce(lambda x, y: x * y, ofblob.static_shape, 1)
elem_cnt = reduce(lambda x, y: x * y, copied.shape, 1)
assert elem_cnt <= capacity, "%s v.s. %s" % (copied.shape, ofblob.static_shape)
ofblob.CopyFromNdarray(copied)
return Copy
def _MakePushNdarrayListCallback(ndarray_list):
copied = [np.copy(ndarray) for ndarray in ndarray_list]
return lambda ofblob: ofblob.CopyFromNdarrayList(copied)
@oneflow_export("FixedTensorDef")
class DeprecatedFixedTensorDef(FixedTensorDef):
def __init__(self, *args, **kwargs):
running_script = traceback.format_stack()[-2].split(",")[0].split(" ")[3]
if not running_script.endswith('input_blob_def.py"'):
print(
"WARNING: oneflow.FixedTensorDef has been deprecated. "
"Please use oneflow.typing.Numpy.Placeholder instead."
)
print(
"""For instance:
- def job_func(images=oneflow.FixedTensorDef((32, 1, 28, 28), dtype=flow.float))
+ def job_func(images:oneflow.typing.Numpy.Placeholder((32, 1, 28, 28), dtype=flow.float))"""
)
print(traceback.format_stack()[-2])
super().__init__(*args, **kwargs)
@oneflow_export("MirroredTensorDef")
class DeprecatedMirroredTensorDef(MirroredTensorDef):
def __init__(self, *args, **kwargs):
running_script = traceback.format_stack()[-2].split(",")[0].split(" ")[3]
if not running_script.endswith('input_blob_def.py"'):
print(
"WARNING: oneflow.MirroredTensorDef has been deprecated. "
"Please use oneflow.typing.ListNumpy.Placeholder instead."
)
print(
"""For instance:
- def job_func(images=oneflow.MirroredTensorDef((32, 1, 28, 28), dtype=flow.float))
+ def job_func(images:oneflow.typing.ListNumpy.Placeholder((32, 1, 28, 28), dtype=flow.float))"""
)
print(traceback.format_stack()[-2])
super().__init__(*args, **kwargs)
@oneflow_export("MirroredTensorListDef")
class DeprecatedTensorListDef(MirroredTensorListDef):
def __init__(self, *args, **kwargs):
running_script = traceback.format_stack()[-2].split(",")[0].split(" ")[3]
if not running_script.endswith('input_blob_def.py"'):
print(
"WARNING: oneflow.MirroredTensorListDef has been deprecated. "
"Please use oneflow.typing.ListListNumpy.Placeholder instead."
)
print(
"""For instance:
- def job_func(images=oneflow.MirroredTensorListDef((32, 1, 28, 28), dtype=flow.float))
+ def job_func(images:oneflow.typing.ListListNumpy.Placeholder((32, 1, 28, 28), dtype=flow.float))"""
)
print(traceback.format_stack()[-2])
super().__init__(*args, **kwargs)
| [
"oneflow.python.framework.c_api_util.JobBuildAndInferCtx_MirroredBlobGetSubLbi",
"oneflow.python.framework.compile_context.CurJobAddMirroredOp",
"oneflow.python.framework.compile_context.CurJobAddConsistentOp",
"oneflow.current_scope",
"oneflow.python.framework.c_api_util.JobBuildAndInferCtx_MirroredBlobGetNumSubLbi",
"oneflow.core.operator.interface_blob_conf_pb2.InterfaceBlobConf",
"oneflow.scope.placement",
"oneflow.python.framework.id_util.UniqueStr",
"oneflow.python.oneflow_export.oneflow_export"
] | [((13187, 13219), 'oneflow.python.oneflow_export.oneflow_export', 'oneflow_export', (['"""FixedTensorDef"""'], {}), "('FixedTensorDef')\n", (13201, 13219), False, 'from oneflow.python.oneflow_export import oneflow_export\n'), ((13988, 14023), 'oneflow.python.oneflow_export.oneflow_export', 'oneflow_export', (['"""MirroredTensorDef"""'], {}), "('MirroredTensorDef')\n", (14002, 14023), False, 'from oneflow.python.oneflow_export import oneflow_export\n'), ((14812, 14851), 'oneflow.python.oneflow_export.oneflow_export', 'oneflow_export', (['"""MirroredTensorListDef"""'], {}), "('MirroredTensorListDef')\n", (14826, 14851), False, 'from oneflow.python.oneflow_export import oneflow_export\n'), ((12010, 12054), 'oneflow.python.framework.compile_context.CurJobAddMirroredOp', 'compile_context.CurJobAddMirroredOp', (['op_conf'], {}), '(op_conf)\n', (12045, 12054), True, 'import oneflow.python.framework.compile_context as compile_context\n'), ((12070, 12121), 'oneflow_api.JobBuildAndInferCtx_GetCurrentJobName', 'oneflow_api.JobBuildAndInferCtx_GetCurrentJobName', ([], {}), '()\n', (12119, 12121), False, 'import oneflow_api\n'), ((12140, 12219), 'oneflow.python.framework.c_api_util.JobBuildAndInferCtx_MirroredBlobGetNumSubLbi', 'c_api_util.JobBuildAndInferCtx_MirroredBlobGetNumSubLbi', (['job_name', 'mirrored_lbn'], {}), '(job_name, mirrored_lbn)\n', (12195, 12219), True, 'import oneflow.python.framework.c_api_util as c_api_util\n'), ((12696, 12712), 'numpy.copy', 'np.copy', (['ndarray'], {}), '(ndarray)\n', (12703, 12712), True, 'import numpy as np\n'), ((1654, 1683), 'oneflow_api.distribute.auto', 'oneflow_api.distribute.auto', ([], {}), '()\n', (1681, 1683), False, 'import oneflow_api\n'), ((1706, 1730), 'oneflow_api.oneflow.core.register.logical_blob_id.LogicalBlobId', 'lbi_util.LogicalBlobId', ([], {}), '()\n', (1728, 1730), True, 'import oneflow_api.oneflow.core.register.logical_blob_id as lbi_util\n'), ((3894, 3939), 'oneflow.core.operator.interface_blob_conf_pb2.InterfaceBlobConf', 'inter_face_blob_conf_util.InterfaceBlobConf', ([], {}), '()\n', (3937, 3939), True, 'import oneflow.core.operator.interface_blob_conf_pb2 as inter_face_blob_conf_util\n'), ((5613, 5659), 'oneflow.python.framework.compile_context.CurJobAddConsistentOp', 'compile_context.CurJobAddConsistentOp', (['op_conf'], {}), '(op_conf)\n', (5650, 5659), True, 'import oneflow.python.framework.compile_context as compile_context\n'), ((8228, 8272), 'oneflow.python.framework.compile_context.CurJobAddMirroredOp', 'compile_context.CurJobAddMirroredOp', (['op_conf'], {}), '(op_conf)\n', (8263, 8272), True, 'import oneflow.python.framework.compile_context as compile_context\n'), ((10527, 10571), 'oneflow.python.framework.compile_context.CurJobAddMirroredOp', 'compile_context.CurJobAddMirroredOp', (['op_conf'], {}), '(op_conf)\n', (10562, 10571), True, 'import oneflow.python.framework.compile_context as compile_context\n'), ((12285, 12364), 'oneflow.python.framework.c_api_util.JobBuildAndInferCtx_MirroredBlobGetSubLbi', 'c_api_util.JobBuildAndInferCtx_MirroredBlobGetSubLbi', (['job_name', 'mirrored_lbn', 'i'], {}), '(job_name, mirrored_lbn, i)\n', (12337, 12364), True, 'import oneflow.python.framework.c_api_util as c_api_util\n'), ((12401, 12425), 'oneflow_api.oneflow.core.register.logical_blob_id.LogicalBlobId', 'lbi_util.LogicalBlobId', ([], {}), '()\n', (12423, 12425), True, 'import oneflow_api.oneflow.core.register.logical_blob_id as lbi_util\n'), ((12755, 12805), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'ofblob.static_shape', '(1)'], {}), '(lambda x, y: x * y, ofblob.static_shape, 1)\n', (12761, 12805), False, 'from functools import reduce\n'), ((12825, 12868), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'copied.shape', '(1)'], {}), '(lambda x, y: x * y, copied.shape, 1)\n', (12831, 12868), False, 'from functools import reduce\n'), ((13077, 13093), 'numpy.copy', 'np.copy', (['ndarray'], {}), '(ndarray)\n', (13084, 13093), True, 'import numpy as np\n'), ((1775, 1802), 'oneflow.python.framework.id_util.UniqueStr', 'id_util.UniqueStr', (['"""Input_"""'], {}), "('Input_')\n", (1792, 1802), True, 'import oneflow.python.framework.id_util as id_util\n'), ((5764, 5787), 'oneflow.current_scope', 'oneflow.current_scope', ([], {}), '()\n', (5785, 5787), False, 'import oneflow\n'), ((6226, 6273), 'oneflow.scope.placement', 'oneflow.scope.placement', (['device_tag', 'device_ids'], {}), '(device_tag, device_ids)\n', (6249, 6273), False, 'import oneflow\n'), ((6294, 6340), 'oneflow.python.framework.compile_context.CurJobAddConsistentOp', 'compile_context.CurJobAddConsistentOp', (['op_conf'], {}), '(op_conf)\n', (6331, 6340), True, 'import oneflow.python.framework.compile_context as compile_context\n'), ((8820, 8856), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'shape', '(1)'], {}), '(lambda x, y: x * y, shape, 1)\n', (8826, 8856), False, 'from functools import reduce\n'), ((11122, 11158), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'shape', '(1)'], {}), '(lambda x, y: x * y, shape, 1)\n', (11128, 11158), False, 'from functools import reduce\n'), ((12601, 12630), 'oneflow_api.distribute.auto', 'oneflow_api.distribute.auto', ([], {}), '()\n', (12628, 12630), False, 'import oneflow_api\n'), ((13912, 13936), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (13934, 13936), False, 'import traceback\n'), ((14736, 14760), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (14758, 14760), False, 'import traceback\n'), ((15580, 15604), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (15602, 15604), False, 'import traceback\n'), ((13334, 13358), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (13356, 13358), False, 'import traceback\n'), ((14144, 14168), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (14166, 14168), False, 'import traceback\n'), ((14972, 14996), 'traceback.format_stack', 'traceback.format_stack', ([], {}), '()\n', (14994, 14996), False, 'import traceback\n')] |
import os
import time
import pickle
from tqdm import tqdm
import librosa
import soundfile as sf
import numpy as np
import oneflow as flow
import utils.data_utils as preprocess
from utils.dataset import trainingDataset
from model.model import Generator, Discriminator
class CycleGANTrainr(object):
def __init__(
self,
logf0s_normalization,
mcep_normalization,
coded_sps_A_norm,
coded_sps_B_norm,
model_checkpoint,
validation_A_dir,
output_A_dir,
validation_B_dir,
output_B_dir,
restart_training_at=None,
):
self.start_epoch = 0
self.num_epochs = 200000
self.mini_batch_size = 10
self.dataset_A = self.loadPickleFile(coded_sps_A_norm)
self.dataset_B = self.loadPickleFile(coded_sps_B_norm)
self.device = flow.device("cuda" if flow.cuda.is_available() else "cpu")
# Speech Parameters
logf0s_normalization = np.load(logf0s_normalization)
self.log_f0s_mean_A = logf0s_normalization["mean_A"]
self.log_f0s_std_A = logf0s_normalization["std_A"]
self.log_f0s_mean_B = logf0s_normalization["mean_B"]
self.log_f0s_std_B = logf0s_normalization["std_B"]
mcep_normalization = np.load(mcep_normalization)
self.coded_sps_A_mean = mcep_normalization["mean_A"]
self.coded_sps_A_std = mcep_normalization["std_A"]
self.coded_sps_B_mean = mcep_normalization["mean_B"]
self.coded_sps_B_std = mcep_normalization["std_B"]
# Generator and Discriminator
self.generator_A2B = Generator().to(self.device)
self.generator_B2A = Generator().to(self.device)
self.discriminator_A = Discriminator().to(self.device)
self.discriminator_B = Discriminator().to(self.device)
# Loss Functions
criterion_mse = flow.nn.MSELoss()
# Optimizer
g_params = list(self.generator_A2B.parameters()) + list(
self.generator_B2A.parameters()
)
d_params = list(self.discriminator_A.parameters()) + list(
self.discriminator_B.parameters()
)
# Initial learning rates
self.generator_lr = 2e-4
self.discriminator_lr = 1e-4
# Learning rate decay
self.generator_lr_decay = self.generator_lr / 200000
self.discriminator_lr_decay = self.discriminator_lr / 200000
# Starts learning rate decay from after this many iterations have passed
self.start_decay = 10000
self.generator_optimizer = flow.optim.Adam(
g_params, lr=self.generator_lr, betas=(0.5, 0.999)
)
self.discriminator_optimizer = flow.optim.Adam(
d_params, lr=self.discriminator_lr, betas=(0.5, 0.999)
)
# To Load save previously saved models
self.modelCheckpoint = model_checkpoint
os.makedirs(self.modelCheckpoint, exist_ok=True)
# Validation set Parameters
self.validation_A_dir = validation_A_dir
self.output_A_dir = output_A_dir
os.makedirs(self.output_A_dir, exist_ok=True)
self.validation_B_dir = validation_B_dir
self.output_B_dir = output_B_dir
os.makedirs(self.output_B_dir, exist_ok=True)
# Storing Discriminatior and Generator Loss
self.generator_loss_store = []
self.discriminator_loss_store = []
self.file_name = "log_store_non_sigmoid.txt"
def adjust_lr_rate(self, optimizer, name="generator"):
if name == "generator":
self.generator_lr = max(0.0, self.generator_lr - self.generator_lr_decay)
for param_groups in optimizer.param_groups:
param_groups["lr"] = self.generator_lr
else:
self.discriminator_lr = max(
0.0, self.discriminator_lr - self.discriminator_lr_decay
)
for param_groups in optimizer.param_groups:
param_groups["lr"] = self.discriminator_lr
def reset_grad(self):
self.generator_optimizer.zero_grad()
self.discriminator_optimizer.zero_grad()
def train(self):
# Training Begins
for epoch in range(self.start_epoch, self.num_epochs):
start_time_epoch = time.time()
# Constants
cycle_loss_lambda = 10
identity_loss_lambda = 5
# Preparing Dataset
n_samples = len(self.dataset_A)
dataset = trainingDataset(
datasetA=self.dataset_A, datasetB=self.dataset_B, n_frames=128
)
train_loader = flow.utils.data.DataLoader(
dataset=dataset,
batch_size=self.mini_batch_size,
shuffle=True,
drop_last=False,
)
pbar = tqdm(enumerate(train_loader))
for i, (real_A, real_B) in enumerate(train_loader):
num_iterations = (n_samples // self.mini_batch_size) * epoch + i
if num_iterations > 10000:
identity_loss_lambda = 0
if num_iterations > self.start_decay:
self.adjust_lr_rate(self.generator_optimizer, name="generator")
self.adjust_lr_rate(self.generator_optimizer, name="discriminator")
real_A = real_A.to(self.device).float()
real_B = real_B.to(self.device).float()
# Generator Loss function
fake_B = self.generator_A2B(real_A)
cycle_A = self.generator_B2A(fake_B)
fake_A = self.generator_B2A(real_B)
cycle_B = self.generator_A2B(fake_A)
identity_A = self.generator_B2A(real_A)
identity_B = self.generator_A2B(real_B)
d_fake_A = self.discriminator_A(fake_A)
d_fake_B = self.discriminator_B(fake_B)
# for the second step adverserial loss
d_fake_cycle_A = self.discriminator_A(cycle_A)
d_fake_cycle_B = self.discriminator_B(cycle_B)
# Generator Cycle loss
cycleLoss = flow.mean(flow.abs(real_A - cycle_A)) + flow.mean(
flow.abs(real_B - cycle_B)
)
# Generator Identity Loss
identiyLoss = flow.mean(flow.abs(real_A - identity_A)) + flow.mean(
flow.abs(real_B - identity_B)
)
# Generator Loss
generator_loss_A2B = flow.mean((1 - d_fake_B) ** 2)
generator_loss_B2A = flow.mean((1 - d_fake_A) ** 2)
# Total Generator Loss
generator_loss = (
generator_loss_A2B
+ generator_loss_B2A
+ cycle_loss_lambda * cycleLoss
+ identity_loss_lambda * identiyLoss
)
self.generator_loss_store.append(generator_loss.item())
# Backprop for Generator
self.reset_grad()
generator_loss.backward()
self.generator_optimizer.step()
# Discriminator Feed Forward
d_real_A = self.discriminator_A(real_A)
d_real_B = self.discriminator_B(real_B)
generated_A = self.generator_B2A(real_B)
d_fake_A = self.discriminator_A(generated_A)
# for the second step adverserial loss
cycled_B = self.generator_A2B(generated_A)
d_cycled_B = self.discriminator_B(cycled_B)
generated_B = self.generator_A2B(real_A)
d_fake_B = self.discriminator_B(generated_B)
# for the second step adverserial loss
cycled_A = self.generator_B2A(generated_B)
d_cycled_A = self.discriminator_A(cycled_A)
# Loss Functions
d_loss_A_real = flow.mean((1 - d_real_A) ** 2)
d_loss_A_fake = flow.mean((0 - d_fake_A) ** 2)
d_loss_A = (d_loss_A_real + d_loss_A_fake) / 2.0
d_loss_B_real = flow.mean((1 - d_real_B) ** 2)
d_loss_B_fake = flow.mean((0 - d_fake_B) ** 2)
d_loss_B = (d_loss_B_real + d_loss_B_fake) / 2.0
# the second step adverserial loss
d_loss_A_cycled = flow.mean((0 - d_cycled_A) ** 2)
d_loss_B_cycled = flow.mean((0 - d_cycled_B) ** 2)
d_loss_A_2nd = (d_loss_A_real + d_loss_A_cycled) / 2.0
d_loss_B_2nd = (d_loss_B_real + d_loss_B_cycled) / 2.0
# Final Loss for discriminator with the second step adverserial loss
d_loss = (d_loss_A + d_loss_B) / 2.0 + (
d_loss_A_2nd + d_loss_B_2nd
) / 2.0
self.discriminator_loss_store.append(d_loss.item())
# Backprop for Discriminator
self.reset_grad()
d_loss.backward()
self.discriminator_optimizer.step()
if (i + 1) % 2 == 0:
pbar.set_description(
"Iter:{} Generator Loss:{:.4f} Discrimator Loss:{:.4f} GA2B:{:.4f} GB2A:{:.4f} G_id:{:.4f} G_cyc:{:.4f} D_A:{:.4f} D_B:{:.4f}".format(
num_iterations,
generator_loss.item(),
d_loss.item(),
generator_loss_A2B,
generator_loss_B2A,
identiyLoss,
cycleLoss,
d_loss_A,
d_loss_B,
)
)
if epoch % 2000 == 0 and epoch != 0:
end_time = time.time()
store_to_file = "Epoch: {} Generator Loss: {:.4f} Discriminator Loss: {}, Time: {:.2f}\n\n".format(
epoch,
generator_loss.item(),
d_loss.item(),
end_time - start_time_epoch,
)
self.store_to_file(store_to_file)
print(
"Epoch: {} Generator Loss: {:.4f} Discriminator Loss: {}, Time: {:.2f}\n\n".format(
epoch,
generator_loss.item(),
d_loss.item(),
end_time - start_time_epoch,
)
)
# Save the Entire model
print("Saving model Checkpoint ......")
store_to_file = "Saving model Checkpoint ......"
self.store_to_file(store_to_file)
self.saveModelCheckPoint(epoch, self.modelCheckpoint)
print("Model Saved!")
if epoch % 2000 == 0 and epoch != 0:
# Validation Set
validation_start_time = time.time()
self.validation_for_A_dir()
self.validation_for_B_dir()
validation_end_time = time.time()
store_to_file = "Time taken for validation Set: {}".format(
validation_end_time - validation_start_time
)
self.store_to_file(store_to_file)
print(
"Time taken for validation Set: {}".format(
validation_end_time - validation_start_time
)
)
def infer(self, PATH="sample"):
num_mcep = 36
sampling_rate = 16000
frame_period = 5.0
n_frames = 128
infer_A_dir = PATH
output_A_dir = PATH
for file in os.listdir(infer_A_dir):
filePath = os.path.join(infer_A_dir, file)
wav, _ = librosa.load(filePath, sr=sampling_rate, mono=True)
wav = preprocess.wav_padding(
wav=wav, sr=sampling_rate, frame_period=frame_period, multiple=4
)
f0, timeaxis, sp, ap = preprocess.world_decompose(
wav=wav, fs=sampling_rate, frame_period=frame_period
)
f0_converted = preprocess.pitch_conversion(
f0=f0,
mean_log_src=self.log_f0s_mean_A,
std_log_src=self.log_f0s_std_A,
mean_log_target=self.log_f0s_mean_B,
std_log_target=self.log_f0s_std_B,
)
coded_sp = preprocess.world_encode_spectral_envelop(
sp=sp, fs=sampling_rate, dim=num_mcep
)
coded_sp_transposed = coded_sp.T
coded_sp_norm = (
coded_sp_transposed - self.coded_sps_A_mean
) / self.coded_sps_A_std
coded_sp_norm = np.array([coded_sp_norm])
if flow.cuda.is_available():
coded_sp_norm = flow.tensor(coded_sp_norm).cuda().float()
else:
coded_sp_norm = flow.tensor(coded_sp_norm).float()
coded_sp_converted_norm = self.generator_A2B(coded_sp_norm)
coded_sp_converted_norm = coded_sp_converted_norm.cpu().detach().numpy()
coded_sp_converted_norm = np.squeeze(coded_sp_converted_norm)
coded_sp_converted = (
coded_sp_converted_norm * self.coded_sps_B_std + self.coded_sps_B_mean
)
coded_sp_converted = coded_sp_converted.T
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
decoded_sp_converted = preprocess.world_decode_spectral_envelop(
coded_sp=coded_sp_converted, fs=sampling_rate
)
wav_transformed = preprocess.world_speech_synthesis(
f0=f0_converted,
decoded_sp=decoded_sp_converted,
ap=ap,
fs=sampling_rate,
frame_period=frame_period,
)
sf.write(
os.path.join(output_A_dir, "convert_" + os.path.basename(file)),
wav_transformed,
sampling_rate,
)
def validation_for_A_dir(self):
num_mcep = 36
sampling_rate = 16000
frame_period = 5.0
n_frames = 128
validation_A_dir = self.validation_A_dir
output_A_dir = self.output_A_dir
print("Generating Validation Data B from A...")
for file in os.listdir(validation_A_dir):
filePath = os.path.join(validation_A_dir, file)
wav, _ = librosa.load(filePath, sr=sampling_rate, mono=True)
wav = preprocess.wav_padding(
wav=wav, sr=sampling_rate, frame_period=frame_period, multiple=4
)
f0, timeaxis, sp, ap = preprocess.world_decompose(
wav=wav, fs=sampling_rate, frame_period=frame_period
)
f0_converted = preprocess.pitch_conversion(
f0=f0,
mean_log_src=self.log_f0s_mean_A,
std_log_src=self.log_f0s_std_A,
mean_log_target=self.log_f0s_mean_B,
std_log_target=self.log_f0s_std_B,
)
coded_sp = preprocess.world_encode_spectral_envelop(
sp=sp, fs=sampling_rate, dim=num_mcep
)
coded_sp_transposed = coded_sp.T
coded_sp_norm = (
coded_sp_transposed - self.coded_sps_A_mean
) / self.coded_sps_A_std
coded_sp_norm = np.array([coded_sp_norm])
if flow.cuda.is_available():
coded_sp_norm = flow.tensor(coded_sp_norm).cuda().float()
else:
coded_sp_norm = flow.tensor(coded_sp_norm).float()
coded_sp_converted_norm = self.generator_A2B(coded_sp_norm)
coded_sp_converted_norm = coded_sp_converted_norm.cpu().detach().numpy()
coded_sp_converted_norm = np.squeeze(coded_sp_converted_norm)
coded_sp_converted = (
coded_sp_converted_norm * self.coded_sps_B_std + self.coded_sps_B_mean
)
coded_sp_converted = coded_sp_converted.T
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
decoded_sp_converted = preprocess.world_decode_spectral_envelop(
coded_sp=coded_sp_converted, fs=sampling_rate
)
wav_transformed = preprocess.world_speech_synthesis(
f0=f0_converted,
decoded_sp=decoded_sp_converted,
ap=ap,
fs=sampling_rate,
frame_period=frame_period,
)
sf.write(
os.path.join(output_A_dir, os.path.basename(file)),
wav_transformed,
sampling_rate,
)
def validation_for_B_dir(self):
num_mcep = 36
sampling_rate = 16000
frame_period = 5.0
n_frames = 128
validation_B_dir = self.validation_B_dir
output_B_dir = self.output_B_dir
print("Generating Validation Data A from B...")
for file in os.listdir(validation_B_dir):
filePath = os.path.join(validation_B_dir, file)
wav, _ = librosa.load(filePath, sr=sampling_rate, mono=True)
wav = preprocess.wav_padding(
wav=wav, sr=sampling_rate, frame_period=frame_period, multiple=4
)
f0, timeaxis, sp, ap = preprocess.world_decompose(
wav=wav, fs=sampling_rate, frame_period=frame_period
)
f0_converted = preprocess.pitch_conversion(
f0=f0,
mean_log_src=self.log_f0s_mean_B,
std_log_src=self.log_f0s_std_B,
mean_log_target=self.log_f0s_mean_A,
std_log_target=self.log_f0s_std_A,
)
coded_sp = preprocess.world_encode_spectral_envelop(
sp=sp, fs=sampling_rate, dim=num_mcep
)
coded_sp_transposed = coded_sp.T
coded_sp_norm = (
coded_sp_transposed - self.coded_sps_B_mean
) / self.coded_sps_B_std
coded_sp_norm = np.array([coded_sp_norm])
if flow.cuda.is_available():
coded_sp_norm = flow.tensor(coded_sp_norm).cuda().float()
else:
coded_sp_norm = flow.tensor(coded_sp_norm).float()
coded_sp_converted_norm = self.generator_B2A(coded_sp_norm)
coded_sp_converted_norm = coded_sp_converted_norm.cpu().detach().numpy()
coded_sp_converted_norm = np.squeeze(coded_sp_converted_norm)
coded_sp_converted = (
coded_sp_converted_norm * self.coded_sps_A_std + self.coded_sps_A_mean
)
coded_sp_converted = coded_sp_converted.T
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
decoded_sp_converted = preprocess.world_decode_spectral_envelop(
coded_sp=coded_sp_converted, fs=sampling_rate
)
wav_transformed = preprocess.world_speech_synthesis(
f0=f0_converted,
decoded_sp=decoded_sp_converted,
ap=ap,
fs=sampling_rate,
frame_period=frame_period,
)
sf.write(
os.path.join(output_B_dir, os.path.basename(file)),
wav_transformed,
sampling_rate,
)
def savePickle(self, variable, fileName):
with open(fileName, "wb") as f:
pickle.dump(variable, f)
def loadPickleFile(self, fileName):
with open(fileName, "rb") as f:
return pickle.load(f)
def store_to_file(self, doc):
doc = doc + "\n"
with open(self.file_name, "a") as myfile:
myfile.write(doc)
def saveModelCheckPoint(self, epoch, PATH):
flow.save(
self.generator_A2B.state_dict(),
os.path.join(PATH, "generator_A2B_%d" % epoch),
)
flow.save(
self.generator_B2A.state_dict(),
os.path.join(PATH, "generator_B2A_%d" % epoch),
)
flow.save(
self.discriminator_A.state_dict(),
os.path.join(PATH, "discriminator_A_%d" % epoch),
)
flow.save(
self.discriminator_B.state_dict(),
os.path.join(PATH, "discriminator_B_%d" % epoch),
)
def loadModel(self, PATH):
self.generator_A2B.load_state_dict(
flow.load(os.path.join(PATH, "generator_A2B"))
)
self.generator_B2A.load_state_dict(
flow.load(os.path.join(PATH, "generator_B2A"))
)
self.discriminator_A.load_state_dict(
flow.load(os.path.join(PATH, "discriminator_A"))
)
self.discriminator_B.load_state_dict(
flow.load(os.path.join(PATH, "discriminator_B"))
)
| [
"oneflow.optim.Adam",
"oneflow.tensor",
"oneflow.mean",
"oneflow.utils.data.DataLoader",
"oneflow.cuda.is_available",
"oneflow.abs",
"oneflow.nn.MSELoss"
] | [((969, 998), 'numpy.load', 'np.load', (['logf0s_normalization'], {}), '(logf0s_normalization)\n', (976, 998), True, 'import numpy as np\n'), ((1269, 1296), 'numpy.load', 'np.load', (['mcep_normalization'], {}), '(mcep_normalization)\n', (1276, 1296), True, 'import numpy as np\n'), ((1866, 1883), 'oneflow.nn.MSELoss', 'flow.nn.MSELoss', ([], {}), '()\n', (1881, 1883), True, 'import oneflow as flow\n'), ((2563, 2630), 'oneflow.optim.Adam', 'flow.optim.Adam', (['g_params'], {'lr': 'self.generator_lr', 'betas': '(0.5, 0.999)'}), '(g_params, lr=self.generator_lr, betas=(0.5, 0.999))\n', (2578, 2630), True, 'import oneflow as flow\n'), ((2692, 2763), 'oneflow.optim.Adam', 'flow.optim.Adam', (['d_params'], {'lr': 'self.discriminator_lr', 'betas': '(0.5, 0.999)'}), '(d_params, lr=self.discriminator_lr, betas=(0.5, 0.999))\n', (2707, 2763), True, 'import oneflow as flow\n'), ((2890, 2938), 'os.makedirs', 'os.makedirs', (['self.modelCheckpoint'], {'exist_ok': '(True)'}), '(self.modelCheckpoint, exist_ok=True)\n', (2901, 2938), False, 'import os\n'), ((3074, 3119), 'os.makedirs', 'os.makedirs', (['self.output_A_dir'], {'exist_ok': '(True)'}), '(self.output_A_dir, exist_ok=True)\n', (3085, 3119), False, 'import os\n'), ((3218, 3263), 'os.makedirs', 'os.makedirs', (['self.output_B_dir'], {'exist_ok': '(True)'}), '(self.output_B_dir, exist_ok=True)\n', (3229, 3263), False, 'import os\n'), ((11748, 11771), 'os.listdir', 'os.listdir', (['infer_A_dir'], {}), '(infer_A_dir)\n', (11758, 11771), False, 'import os\n'), ((14437, 14465), 'os.listdir', 'os.listdir', (['validation_A_dir'], {}), '(validation_A_dir)\n', (14447, 14465), False, 'import os\n'), ((17123, 17151), 'os.listdir', 'os.listdir', (['validation_B_dir'], {}), '(validation_B_dir)\n', (17133, 17151), False, 'import os\n'), ((4262, 4273), 'time.time', 'time.time', ([], {}), '()\n', (4271, 4273), False, 'import time\n'), ((4471, 4550), 'utils.dataset.trainingDataset', 'trainingDataset', ([], {'datasetA': 'self.dataset_A', 'datasetB': 'self.dataset_B', 'n_frames': '(128)'}), '(datasetA=self.dataset_A, datasetB=self.dataset_B, n_frames=128)\n', (4486, 4550), False, 'from utils.dataset import trainingDataset\n'), ((4609, 4720), 'oneflow.utils.data.DataLoader', 'flow.utils.data.DataLoader', ([], {'dataset': 'dataset', 'batch_size': 'self.mini_batch_size', 'shuffle': '(True)', 'drop_last': '(False)'}), '(dataset=dataset, batch_size=self.mini_batch_size,\n shuffle=True, drop_last=False)\n', (4635, 4720), True, 'import oneflow as flow\n'), ((11796, 11827), 'os.path.join', 'os.path.join', (['infer_A_dir', 'file'], {}), '(infer_A_dir, file)\n', (11808, 11827), False, 'import os\n'), ((11849, 11900), 'librosa.load', 'librosa.load', (['filePath'], {'sr': 'sampling_rate', 'mono': '(True)'}), '(filePath, sr=sampling_rate, mono=True)\n', (11861, 11900), False, 'import librosa\n'), ((11919, 12011), 'utils.data_utils.wav_padding', 'preprocess.wav_padding', ([], {'wav': 'wav', 'sr': 'sampling_rate', 'frame_period': 'frame_period', 'multiple': '(4)'}), '(wav=wav, sr=sampling_rate, frame_period=frame_period,\n multiple=4)\n', (11941, 12011), True, 'import utils.data_utils as preprocess\n'), ((12073, 12158), 'utils.data_utils.world_decompose', 'preprocess.world_decompose', ([], {'wav': 'wav', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(wav=wav, fs=sampling_rate, frame_period=frame_period\n )\n', (12099, 12158), True, 'import utils.data_utils as preprocess\n'), ((12211, 12391), 'utils.data_utils.pitch_conversion', 'preprocess.pitch_conversion', ([], {'f0': 'f0', 'mean_log_src': 'self.log_f0s_mean_A', 'std_log_src': 'self.log_f0s_std_A', 'mean_log_target': 'self.log_f0s_mean_B', 'std_log_target': 'self.log_f0s_std_B'}), '(f0=f0, mean_log_src=self.log_f0s_mean_A,\n std_log_src=self.log_f0s_std_A, mean_log_target=self.log_f0s_mean_B,\n std_log_target=self.log_f0s_std_B)\n', (12238, 12391), True, 'import utils.data_utils as preprocess\n'), ((12502, 12581), 'utils.data_utils.world_encode_spectral_envelop', 'preprocess.world_encode_spectral_envelop', ([], {'sp': 'sp', 'fs': 'sampling_rate', 'dim': 'num_mcep'}), '(sp=sp, fs=sampling_rate, dim=num_mcep)\n', (12542, 12581), True, 'import utils.data_utils as preprocess\n'), ((12812, 12837), 'numpy.array', 'np.array', (['[coded_sp_norm]'], {}), '([coded_sp_norm])\n', (12820, 12837), True, 'import numpy as np\n'), ((12854, 12878), 'oneflow.cuda.is_available', 'flow.cuda.is_available', ([], {}), '()\n', (12876, 12878), True, 'import oneflow as flow\n'), ((13235, 13270), 'numpy.squeeze', 'np.squeeze', (['coded_sp_converted_norm'], {}), '(coded_sp_converted_norm)\n', (13245, 13270), True, 'import numpy as np\n'), ((13494, 13534), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['coded_sp_converted'], {}), '(coded_sp_converted)\n', (13514, 13534), True, 'import numpy as np\n'), ((13570, 13662), 'utils.data_utils.world_decode_spectral_envelop', 'preprocess.world_decode_spectral_envelop', ([], {'coded_sp': 'coded_sp_converted', 'fs': 'sampling_rate'}), '(coded_sp=coded_sp_converted, fs=\n sampling_rate)\n', (13610, 13662), True, 'import utils.data_utils as preprocess\n'), ((13718, 13858), 'utils.data_utils.world_speech_synthesis', 'preprocess.world_speech_synthesis', ([], {'f0': 'f0_converted', 'decoded_sp': 'decoded_sp_converted', 'ap': 'ap', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(f0=f0_converted, decoded_sp=\n decoded_sp_converted, ap=ap, fs=sampling_rate, frame_period=frame_period)\n', (13751, 13858), True, 'import utils.data_utils as preprocess\n'), ((14490, 14526), 'os.path.join', 'os.path.join', (['validation_A_dir', 'file'], {}), '(validation_A_dir, file)\n', (14502, 14526), False, 'import os\n'), ((14548, 14599), 'librosa.load', 'librosa.load', (['filePath'], {'sr': 'sampling_rate', 'mono': '(True)'}), '(filePath, sr=sampling_rate, mono=True)\n', (14560, 14599), False, 'import librosa\n'), ((14618, 14710), 'utils.data_utils.wav_padding', 'preprocess.wav_padding', ([], {'wav': 'wav', 'sr': 'sampling_rate', 'frame_period': 'frame_period', 'multiple': '(4)'}), '(wav=wav, sr=sampling_rate, frame_period=frame_period,\n multiple=4)\n', (14640, 14710), True, 'import utils.data_utils as preprocess\n'), ((14772, 14857), 'utils.data_utils.world_decompose', 'preprocess.world_decompose', ([], {'wav': 'wav', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(wav=wav, fs=sampling_rate, frame_period=frame_period\n )\n', (14798, 14857), True, 'import utils.data_utils as preprocess\n'), ((14910, 15090), 'utils.data_utils.pitch_conversion', 'preprocess.pitch_conversion', ([], {'f0': 'f0', 'mean_log_src': 'self.log_f0s_mean_A', 'std_log_src': 'self.log_f0s_std_A', 'mean_log_target': 'self.log_f0s_mean_B', 'std_log_target': 'self.log_f0s_std_B'}), '(f0=f0, mean_log_src=self.log_f0s_mean_A,\n std_log_src=self.log_f0s_std_A, mean_log_target=self.log_f0s_mean_B,\n std_log_target=self.log_f0s_std_B)\n', (14937, 15090), True, 'import utils.data_utils as preprocess\n'), ((15201, 15280), 'utils.data_utils.world_encode_spectral_envelop', 'preprocess.world_encode_spectral_envelop', ([], {'sp': 'sp', 'fs': 'sampling_rate', 'dim': 'num_mcep'}), '(sp=sp, fs=sampling_rate, dim=num_mcep)\n', (15241, 15280), True, 'import utils.data_utils as preprocess\n'), ((15511, 15536), 'numpy.array', 'np.array', (['[coded_sp_norm]'], {}), '([coded_sp_norm])\n', (15519, 15536), True, 'import numpy as np\n'), ((15553, 15577), 'oneflow.cuda.is_available', 'flow.cuda.is_available', ([], {}), '()\n', (15575, 15577), True, 'import oneflow as flow\n'), ((15934, 15969), 'numpy.squeeze', 'np.squeeze', (['coded_sp_converted_norm'], {}), '(coded_sp_converted_norm)\n', (15944, 15969), True, 'import numpy as np\n'), ((16193, 16233), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['coded_sp_converted'], {}), '(coded_sp_converted)\n', (16213, 16233), True, 'import numpy as np\n'), ((16269, 16361), 'utils.data_utils.world_decode_spectral_envelop', 'preprocess.world_decode_spectral_envelop', ([], {'coded_sp': 'coded_sp_converted', 'fs': 'sampling_rate'}), '(coded_sp=coded_sp_converted, fs=\n sampling_rate)\n', (16309, 16361), True, 'import utils.data_utils as preprocess\n'), ((16417, 16557), 'utils.data_utils.world_speech_synthesis', 'preprocess.world_speech_synthesis', ([], {'f0': 'f0_converted', 'decoded_sp': 'decoded_sp_converted', 'ap': 'ap', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(f0=f0_converted, decoded_sp=\n decoded_sp_converted, ap=ap, fs=sampling_rate, frame_period=frame_period)\n', (16450, 16557), True, 'import utils.data_utils as preprocess\n'), ((17176, 17212), 'os.path.join', 'os.path.join', (['validation_B_dir', 'file'], {}), '(validation_B_dir, file)\n', (17188, 17212), False, 'import os\n'), ((17234, 17285), 'librosa.load', 'librosa.load', (['filePath'], {'sr': 'sampling_rate', 'mono': '(True)'}), '(filePath, sr=sampling_rate, mono=True)\n', (17246, 17285), False, 'import librosa\n'), ((17304, 17396), 'utils.data_utils.wav_padding', 'preprocess.wav_padding', ([], {'wav': 'wav', 'sr': 'sampling_rate', 'frame_period': 'frame_period', 'multiple': '(4)'}), '(wav=wav, sr=sampling_rate, frame_period=frame_period,\n multiple=4)\n', (17326, 17396), True, 'import utils.data_utils as preprocess\n'), ((17458, 17543), 'utils.data_utils.world_decompose', 'preprocess.world_decompose', ([], {'wav': 'wav', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(wav=wav, fs=sampling_rate, frame_period=frame_period\n )\n', (17484, 17543), True, 'import utils.data_utils as preprocess\n'), ((17596, 17776), 'utils.data_utils.pitch_conversion', 'preprocess.pitch_conversion', ([], {'f0': 'f0', 'mean_log_src': 'self.log_f0s_mean_B', 'std_log_src': 'self.log_f0s_std_B', 'mean_log_target': 'self.log_f0s_mean_A', 'std_log_target': 'self.log_f0s_std_A'}), '(f0=f0, mean_log_src=self.log_f0s_mean_B,\n std_log_src=self.log_f0s_std_B, mean_log_target=self.log_f0s_mean_A,\n std_log_target=self.log_f0s_std_A)\n', (17623, 17776), True, 'import utils.data_utils as preprocess\n'), ((17887, 17966), 'utils.data_utils.world_encode_spectral_envelop', 'preprocess.world_encode_spectral_envelop', ([], {'sp': 'sp', 'fs': 'sampling_rate', 'dim': 'num_mcep'}), '(sp=sp, fs=sampling_rate, dim=num_mcep)\n', (17927, 17966), True, 'import utils.data_utils as preprocess\n'), ((18197, 18222), 'numpy.array', 'np.array', (['[coded_sp_norm]'], {}), '([coded_sp_norm])\n', (18205, 18222), True, 'import numpy as np\n'), ((18239, 18263), 'oneflow.cuda.is_available', 'flow.cuda.is_available', ([], {}), '()\n', (18261, 18263), True, 'import oneflow as flow\n'), ((18620, 18655), 'numpy.squeeze', 'np.squeeze', (['coded_sp_converted_norm'], {}), '(coded_sp_converted_norm)\n', (18630, 18655), True, 'import numpy as np\n'), ((18879, 18919), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['coded_sp_converted'], {}), '(coded_sp_converted)\n', (18899, 18919), True, 'import numpy as np\n'), ((18955, 19047), 'utils.data_utils.world_decode_spectral_envelop', 'preprocess.world_decode_spectral_envelop', ([], {'coded_sp': 'coded_sp_converted', 'fs': 'sampling_rate'}), '(coded_sp=coded_sp_converted, fs=\n sampling_rate)\n', (18995, 19047), True, 'import utils.data_utils as preprocess\n'), ((19103, 19243), 'utils.data_utils.world_speech_synthesis', 'preprocess.world_speech_synthesis', ([], {'f0': 'f0_converted', 'decoded_sp': 'decoded_sp_converted', 'ap': 'ap', 'fs': 'sampling_rate', 'frame_period': 'frame_period'}), '(f0=f0_converted, decoded_sp=\n decoded_sp_converted, ap=ap, fs=sampling_rate, frame_period=frame_period)\n', (19136, 19243), True, 'import utils.data_utils as preprocess\n'), ((19602, 19626), 'pickle.dump', 'pickle.dump', (['variable', 'f'], {}), '(variable, f)\n', (19613, 19626), False, 'import pickle\n'), ((19727, 19741), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (19738, 19741), False, 'import pickle\n'), ((20007, 20053), 'os.path.join', 'os.path.join', (['PATH', "('generator_A2B_%d' % epoch)"], {}), "(PATH, 'generator_A2B_%d' % epoch)\n", (20019, 20053), False, 'import os\n'), ((20141, 20187), 'os.path.join', 'os.path.join', (['PATH', "('generator_B2A_%d' % epoch)"], {}), "(PATH, 'generator_B2A_%d' % epoch)\n", (20153, 20187), False, 'import os\n'), ((20277, 20325), 'os.path.join', 'os.path.join', (['PATH', "('discriminator_A_%d' % epoch)"], {}), "(PATH, 'discriminator_A_%d' % epoch)\n", (20289, 20325), False, 'import os\n'), ((20415, 20463), 'os.path.join', 'os.path.join', (['PATH', "('discriminator_B_%d' % epoch)"], {}), "(PATH, 'discriminator_B_%d' % epoch)\n", (20427, 20463), False, 'import os\n'), ((872, 896), 'oneflow.cuda.is_available', 'flow.cuda.is_available', ([], {}), '()\n', (894, 896), True, 'import oneflow as flow\n'), ((1605, 1616), 'model.model.Generator', 'Generator', ([], {}), '()\n', (1614, 1616), False, 'from model.model import Generator, Discriminator\n'), ((1662, 1673), 'model.model.Generator', 'Generator', ([], {}), '()\n', (1671, 1673), False, 'from model.model import Generator, Discriminator\n'), ((1721, 1736), 'model.model.Discriminator', 'Discriminator', ([], {}), '()\n', (1734, 1736), False, 'from model.model import Generator, Discriminator\n'), ((1784, 1799), 'model.model.Discriminator', 'Discriminator', ([], {}), '()\n', (1797, 1799), False, 'from model.model import Generator, Discriminator\n'), ((6533, 6563), 'oneflow.mean', 'flow.mean', (['((1 - d_fake_B) ** 2)'], {}), '((1 - d_fake_B) ** 2)\n', (6542, 6563), True, 'import oneflow as flow\n'), ((6601, 6631), 'oneflow.mean', 'flow.mean', (['((1 - d_fake_A) ** 2)'], {}), '((1 - d_fake_A) ** 2)\n', (6610, 6631), True, 'import oneflow as flow\n'), ((7965, 7995), 'oneflow.mean', 'flow.mean', (['((1 - d_real_A) ** 2)'], {}), '((1 - d_real_A) ** 2)\n', (7974, 7995), True, 'import oneflow as flow\n'), ((8028, 8058), 'oneflow.mean', 'flow.mean', (['((0 - d_fake_A) ** 2)'], {}), '((0 - d_fake_A) ** 2)\n', (8037, 8058), True, 'import oneflow as flow\n'), ((8157, 8187), 'oneflow.mean', 'flow.mean', (['((1 - d_real_B) ** 2)'], {}), '((1 - d_real_B) ** 2)\n', (8166, 8187), True, 'import oneflow as flow\n'), ((8220, 8250), 'oneflow.mean', 'flow.mean', (['((0 - d_fake_B) ** 2)'], {}), '((0 - d_fake_B) ** 2)\n', (8229, 8250), True, 'import oneflow as flow\n'), ((8402, 8434), 'oneflow.mean', 'flow.mean', (['((0 - d_cycled_A) ** 2)'], {}), '((0 - d_cycled_A) ** 2)\n', (8411, 8434), True, 'import oneflow as flow\n'), ((8469, 8501), 'oneflow.mean', 'flow.mean', (['((0 - d_cycled_B) ** 2)'], {}), '((0 - d_cycled_B) ** 2)\n', (8478, 8501), True, 'import oneflow as flow\n'), ((9848, 9859), 'time.time', 'time.time', ([], {}), '()\n', (9857, 9859), False, 'import time\n'), ((10980, 10991), 'time.time', 'time.time', ([], {}), '()\n', (10989, 10991), False, 'import time\n'), ((11118, 11129), 'time.time', 'time.time', ([], {}), '()\n', (11127, 11129), False, 'import time\n'), ((20573, 20608), 'os.path.join', 'os.path.join', (['PATH', '"""generator_A2B"""'], {}), "(PATH, 'generator_A2B')\n", (20585, 20608), False, 'import os\n'), ((20686, 20721), 'os.path.join', 'os.path.join', (['PATH', '"""generator_B2A"""'], {}), "(PATH, 'generator_B2A')\n", (20698, 20721), False, 'import os\n'), ((20801, 20838), 'os.path.join', 'os.path.join', (['PATH', '"""discriminator_A"""'], {}), "(PATH, 'discriminator_A')\n", (20813, 20838), False, 'import os\n'), ((20918, 20955), 'os.path.join', 'os.path.join', (['PATH', '"""discriminator_B"""'], {}), "(PATH, 'discriminator_B')\n", (20930, 20955), False, 'import os\n'), ((16714, 16736), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (16730, 16736), False, 'import os\n'), ((19400, 19422), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (19416, 19422), False, 'import os\n'), ((6161, 6187), 'oneflow.abs', 'flow.abs', (['(real_A - cycle_A)'], {}), '(real_A - cycle_A)\n', (6169, 6187), True, 'import oneflow as flow\n'), ((6222, 6248), 'oneflow.abs', 'flow.abs', (['(real_B - cycle_B)'], {}), '(real_B - cycle_B)\n', (6230, 6248), True, 'import oneflow as flow\n'), ((6350, 6379), 'oneflow.abs', 'flow.abs', (['(real_A - identity_A)'], {}), '(real_A - identity_A)\n', (6358, 6379), True, 'import oneflow as flow\n'), ((6414, 6443), 'oneflow.abs', 'flow.abs', (['(real_B - identity_B)'], {}), '(real_B - identity_B)\n', (6422, 6443), True, 'import oneflow as flow\n'), ((13004, 13030), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (13015, 13030), True, 'import oneflow as flow\n'), ((14028, 14050), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (14044, 14050), False, 'import os\n'), ((15703, 15729), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (15714, 15729), True, 'import oneflow as flow\n'), ((18389, 18415), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (18400, 18415), True, 'import oneflow as flow\n'), ((12912, 12938), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (12923, 12938), True, 'import oneflow as flow\n'), ((15611, 15637), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (15622, 15637), True, 'import oneflow as flow\n'), ((18297, 18323), 'oneflow.tensor', 'flow.tensor', (['coded_sp_norm'], {}), '(coded_sp_norm)\n', (18308, 18323), True, 'import oneflow as flow\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow
from oneflow.framework.docstr.utils import add_docstr
add_docstr(
oneflow.tensor,
r"""
Constructs a tensor with data, return a consistent tensor if placement and sbp are in kwargs,
otherwise return a local tensor.
Arguments:
data: Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar or tensor.
Keyword Arguments:
dtype (oneflow.dtype, optional) – the desired data type of returned tensor.
Default: if None, infers data type from data.
device (oneflow.device, optional): the desired device of returned tensor. If placement
and sbp is None, uses the current cpu for the default tensor type.
placement (oneflow.placement, optional): the desired placement of returned tensor.
sbp (oneflow.sbp or tuple of oneflow.sbp, optional): the desired sbp of returned tensor.
requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False
Noted:
The Keyword Argument device is mutually exclusive with placement and sbp.
Consistent tensor only can be constructed from tensor.
For example:
.. code-block:: python
>>> import oneflow as flow
>>> x = flow.tensor([1,2,3])
>>> x
tensor([1, 2, 3], dtype=oneflow.int64)
""",
)
add_docstr(
oneflow.Tensor.atan2,
r"""
See :func:`oneflow.atan2`
""",
)
add_docstr(
oneflow.Tensor.expand_as,
"""
expand_as(other) -> Tensor
Expand this tensor to the same size as :attr:`other`.
``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``.
Please see :meth:`~Tensor.expand` for more information about ``expand``.
Args:
other (:class:`oneflow.Tensor`): The result tensor has the same size
as :attr:`other`.
""",
)
add_docstr(
oneflow.Tensor.numel,
"""
See :func:`oneflow.numel`
""",
)
add_docstr(
oneflow.Tensor.transpose,
"""
See :func:`oneflow.transpose`
""",
)
add_docstr(
oneflow.Tensor.logical_not,
"""
logical_not() -> Tensor
See :func:`oneflow.logical_not`
""",
)
add_docstr(
oneflow.Tensor.std,
"""
See :func:`oneflow.std`
""",
)
add_docstr(
oneflow.Tensor.var,
"""
See :func:`oneflow.var`
""",
)
add_docstr(
oneflow.Tensor.squeeze,
"""
See :func:`oneflow.squeeze`
""",
)
add_docstr(
oneflow.Tensor.negative,
"""
See :func:`oneflow.negative`
""",
)
add_docstr(
oneflow.Tensor.neg,
"""
See :func:`oneflow.neg`
""",
)
add_docstr(
oneflow.Tensor.unfold,
"""
The interface is consistent with PyTorch.
The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html#torch.Tensor.unfold
Returns a view of the original tensor which contains all slices of `size` size from `self`
tensor in the dimension `dimension`.
Step between two slices is given by `step`.
If sizedim is the size of dimension `dimension` for `self`, the size of dimension dimension in the
returned tensor will be (sizedim - size) / step + 1.
An additional dimension of size `size` is appended in the returned tensor.
Args:
dimension (int): dimension in which unfolding happens
size (int): the size of each slice that is unfolded
step (int): the step between each slice
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow as flow
>>> x = flow.arange(1., 8)
>>> x
tensor([ 1., 2., 3., 4., 5., 6., 7.])
>>> x.unfold(0, 2, 1)
tensor([[ 1., 2.],
[ 2., 3.],
[ 3., 4.],
[ 4., 5.],
[ 5., 6.],
[ 6., 7.]])
>>> x.unfold(0, 2, 2)
tensor([[ 1., 2.],
[ 3., 4.],
[ 5., 6.]])
""",
)
add_docstr(
oneflow.Tensor.matmul,
"""
See :func:`oneflow.matmul`
""",
)
add_docstr(
oneflow.Tensor.narrow,
"""
See :func:`oneflow.narrow`
""",
)
add_docstr(
oneflow.Tensor.unsqueeze,
"""
See :func:`oneflow.unsqueeze`
""",
)
add_docstr(
oneflow.Tensor.permute,
"""
See :func:`oneflow.permute`
""",
)
add_docstr(
oneflow.Tensor.to,
"""Performs Tensor dtype and/or device conversion.
A flow.dtype and flow.device are inferred from the arguments of `input.to(*args, **kwargs)`.
.. note::
If the ``input`` Tensor already
has the correct :class:`flow.dtype` and :class:`flow.device`, then ``input`` is returned.
Otherwise, the returned tensor is a copy of ``input`` with the desired.
Args:
input (oneflow.Tensor): An input tensor.
*args (oneflow.Tensor or oneflow.device or oneflow.dtype): Positional arguments
**kwargs (oneflow.device or oneflow.dtype) : Key-value arguments
Returns:
oneflow.Tensor: A Tensor.
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow as flow
>>> arr = np.random.randint(1, 9, size=(1, 2, 3, 4))
>>> input = flow.Tensor(arr)
>>> output = input.to(dtype=flow.float32)
>>> np.array_equal(arr.astype(np.float32), output.numpy())
True
""",
)
| [
"oneflow.framework.docstr.utils.add_docstr"
] | [((660, 1959), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.tensor', '"""\n Constructs a tensor with data, return a consistent tensor if placement and sbp are in kwargs,\n otherwise return a local tensor. \n \n Arguments:\n data: Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar or tensor.\n Keyword Arguments:\n dtype (oneflow.dtype, optional) – the desired data type of returned tensor.\n Default: if None, infers data type from data.\n device (oneflow.device, optional): the desired device of returned tensor. If placement\n and sbp is None, uses the current cpu for the default tensor type.\n placement (oneflow.placement, optional): the desired placement of returned tensor.\n sbp (oneflow.sbp or tuple of oneflow.sbp, optional): the desired sbp of returned tensor.\n requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False\n\n Noted:\n The Keyword Argument device is mutually exclusive with placement and sbp.\n Consistent tensor only can be constructed from tensor.\n\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> x = flow.tensor([1,2,3])\n >>> x\n tensor([1, 2, 3], dtype=oneflow.int64)\n\n """'], {}), '(oneflow.tensor,\n """\n Constructs a tensor with data, return a consistent tensor if placement and sbp are in kwargs,\n otherwise return a local tensor. \n \n Arguments:\n data: Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar or tensor.\n Keyword Arguments:\n dtype (oneflow.dtype, optional) – the desired data type of returned tensor.\n Default: if None, infers data type from data.\n device (oneflow.device, optional): the desired device of returned tensor. If placement\n and sbp is None, uses the current cpu for the default tensor type.\n placement (oneflow.placement, optional): the desired placement of returned tensor.\n sbp (oneflow.sbp or tuple of oneflow.sbp, optional): the desired sbp of returned tensor.\n requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False\n\n Noted:\n The Keyword Argument device is mutually exclusive with placement and sbp.\n Consistent tensor only can be constructed from tensor.\n\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> x = flow.tensor([1,2,3])\n >>> x\n tensor([1, 2, 3], dtype=oneflow.int64)\n\n """\n )\n', (670, 1959), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((1964, 2039), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.atan2', '"""\n See :func:`oneflow.atan2`\n """'], {}), '(oneflow.Tensor.atan2, """\n See :func:`oneflow.atan2`\n """)\n', (1974, 2039), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2053, 2475), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.expand_as', '"""\n expand_as(other) -> Tensor\n\n Expand this tensor to the same size as :attr:`other`.\n ``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``.\n\n Please see :meth:`~Tensor.expand` for more information about ``expand``.\n\n Args:\n other (:class:`oneflow.Tensor`): The result tensor has the same size\n as :attr:`other`.\n """'], {}), '(oneflow.Tensor.expand_as,\n """\n expand_as(other) -> Tensor\n\n Expand this tensor to the same size as :attr:`other`.\n ``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``.\n\n Please see :meth:`~Tensor.expand` for more information about ``expand``.\n\n Args:\n other (:class:`oneflow.Tensor`): The result tensor has the same size\n as :attr:`other`.\n """\n )\n', (2063, 2475), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2479, 2554), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.numel', '"""\n See :func:`oneflow.numel`\n """'], {}), '(oneflow.Tensor.numel, """\n See :func:`oneflow.numel`\n """)\n', (2489, 2554), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2567, 2654), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.transpose', '"""\n See :func:`oneflow.transpose`\n """'], {}), '(oneflow.Tensor.transpose,\n """\n See :func:`oneflow.transpose`\n """)\n', (2577, 2654), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2663, 2787), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.logical_not', '"""\n logical_not() -> Tensor\n See :func:`oneflow.logical_not`\n """'], {}), '(oneflow.Tensor.logical_not,\n """\n logical_not() -> Tensor\n See :func:`oneflow.logical_not`\n """\n )\n', (2673, 2787), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2791, 2862), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.std', '"""\n See :func:`oneflow.std`\n """'], {}), '(oneflow.Tensor.std, """\n See :func:`oneflow.std`\n """)\n', (2801, 2862), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2875, 2946), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.var', '"""\n See :func:`oneflow.var`\n """'], {}), '(oneflow.Tensor.var, """\n See :func:`oneflow.var`\n """)\n', (2885, 2946), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2959, 3038), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.squeeze', '"""\n See :func:`oneflow.squeeze`\n """'], {}), '(oneflow.Tensor.squeeze, """\n See :func:`oneflow.squeeze`\n """)\n', (2969, 3038), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((3051, 3136), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.negative', '"""\n See :func:`oneflow.negative`\n """'], {}), '(oneflow.Tensor.negative,\n """\n See :func:`oneflow.negative`\n """)\n', (3061, 3136), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((3145, 3216), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.neg', '"""\n See :func:`oneflow.neg`\n """'], {}), '(oneflow.Tensor.neg, """\n See :func:`oneflow.neg`\n """)\n', (3155, 3216), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((3229, 4596), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.unfold', '"""\n The interface is consistent with PyTorch.\n The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html#torch.Tensor.unfold\n\n Returns a view of the original tensor which contains all slices of `size` size from `self`\n tensor in the dimension `dimension`.\n\n Step between two slices is given by `step`.\n\n If sizedim is the size of dimension `dimension` for `self`, the size of dimension dimension in the\n returned tensor will be (sizedim - size) / step + 1.\n\n An additional dimension of size `size` is appended in the returned tensor.\n\n Args:\n dimension (int): dimension in which unfolding happens\n size (int): the size of each slice that is unfolded\n step (int): the step between each slice\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n\n >>> x = flow.arange(1., 8)\n >>> x\n tensor([ 1., 2., 3., 4., 5., 6., 7.])\n >>> x.unfold(0, 2, 1)\n tensor([[ 1., 2.],\n [ 2., 3.],\n [ 3., 4.],\n [ 4., 5.],\n [ 5., 6.],\n [ 6., 7.]])\n >>> x.unfold(0, 2, 2)\n tensor([[ 1., 2.],\n [ 3., 4.],\n [ 5., 6.]])\n """'], {}), '(oneflow.Tensor.unfold,\n """\n The interface is consistent with PyTorch.\n The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html#torch.Tensor.unfold\n\n Returns a view of the original tensor which contains all slices of `size` size from `self`\n tensor in the dimension `dimension`.\n\n Step between two slices is given by `step`.\n\n If sizedim is the size of dimension `dimension` for `self`, the size of dimension dimension in the\n returned tensor will be (sizedim - size) / step + 1.\n\n An additional dimension of size `size` is appended in the returned tensor.\n\n Args:\n dimension (int): dimension in which unfolding happens\n size (int): the size of each slice that is unfolded\n step (int): the step between each slice\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n\n >>> x = flow.arange(1., 8)\n >>> x\n tensor([ 1., 2., 3., 4., 5., 6., 7.])\n >>> x.unfold(0, 2, 1)\n tensor([[ 1., 2.],\n [ 2., 3.],\n [ 3., 4.],\n [ 4., 5.],\n [ 5., 6.],\n [ 6., 7.]])\n >>> x.unfold(0, 2, 2)\n tensor([[ 1., 2.],\n [ 3., 4.],\n [ 5., 6.]])\n """\n )\n', (3239, 4596), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4600, 4677), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.matmul', '"""\n See :func:`oneflow.matmul`\n """'], {}), '(oneflow.Tensor.matmul, """\n See :func:`oneflow.matmul`\n """)\n', (4610, 4677), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4690, 4767), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.narrow', '"""\n See :func:`oneflow.narrow`\n """'], {}), '(oneflow.Tensor.narrow, """\n See :func:`oneflow.narrow`\n """)\n', (4700, 4767), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4780, 4867), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.unsqueeze', '"""\n See :func:`oneflow.unsqueeze`\n """'], {}), '(oneflow.Tensor.unsqueeze,\n """\n See :func:`oneflow.unsqueeze`\n """)\n', (4790, 4867), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4876, 4955), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.permute', '"""\n See :func:`oneflow.permute`\n """'], {}), '(oneflow.Tensor.permute, """\n See :func:`oneflow.permute`\n """)\n', (4886, 4955), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4968, 6012), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.Tensor.to', '"""Performs Tensor dtype and/or device conversion.\n A flow.dtype and flow.device are inferred from the arguments of `input.to(*args, **kwargs)`.\n\n .. note::\n If the ``input`` Tensor already\n has the correct :class:`flow.dtype` and :class:`flow.device`, then ``input`` is returned.\n Otherwise, the returned tensor is a copy of ``input`` with the desired.\n\n Args:\n input (oneflow.Tensor): An input tensor.\n *args (oneflow.Tensor or oneflow.device or oneflow.dtype): Positional arguments\n **kwargs (oneflow.device or oneflow.dtype) : Key-value arguments\n\n Returns:\n oneflow.Tensor: A Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n\n >>> arr = np.random.randint(1, 9, size=(1, 2, 3, 4))\n >>> input = flow.Tensor(arr)\n >>> output = input.to(dtype=flow.float32)\n >>> np.array_equal(arr.astype(np.float32), output.numpy())\n True\n\n """'], {}), '(oneflow.Tensor.to,\n """Performs Tensor dtype and/or device conversion.\n A flow.dtype and flow.device are inferred from the arguments of `input.to(*args, **kwargs)`.\n\n .. note::\n If the ``input`` Tensor already\n has the correct :class:`flow.dtype` and :class:`flow.device`, then ``input`` is returned.\n Otherwise, the returned tensor is a copy of ``input`` with the desired.\n\n Args:\n input (oneflow.Tensor): An input tensor.\n *args (oneflow.Tensor or oneflow.device or oneflow.dtype): Positional arguments\n **kwargs (oneflow.device or oneflow.dtype) : Key-value arguments\n\n Returns:\n oneflow.Tensor: A Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n\n >>> arr = np.random.randint(1, 9, size=(1, 2, 3, 4))\n >>> input = flow.Tensor(arr)\n >>> output = input.to(dtype=flow.float32)\n >>> np.array_equal(arr.astype(np.float32), output.numpy())\n True\n\n """\n )\n', (4978, 6012), False, 'from oneflow.framework.docstr.utils import add_docstr\n')] |
import sys
import oneflow as flow
import oneflow.typing as tp
import argparse
import numpy as np
import os
import shutil
import json
from typing import Tuple
from textcnn import TextCNN
sys.path.append("../..")
from text_classification.utils import pad_sequences, load_imdb_data
parser = argparse.ArgumentParser()
parser.add_argument('--ksize_list', type=str, default='2,3,4,5')
parser.add_argument('--n_filters', type=int, default=100)
parser.add_argument('--emb_dim', type=int, default=100)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--sequence_length', type=int, default=150)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--model_load_dir', type=str, default='')
parser.add_argument('--model_save_every_n_iter', type=int, default=1000)
parser.add_argument('--n_steps', type=int, default=10000)
parser.add_argument('--n_epochs', type=int, default=15)
parser.add_argument('--model_save_dir', type=str, default='./best_model')
args = parser.parse_args()
assert ',' in args.ksize_list
args.ksize_list = [int(n) for n in args.ksize_list.split(',')]
args.emb_num = 50000
args.n_classes = 2
model = TextCNN(
args.emb_num, args.emb_dim,
ksize_list=args.ksize_list,
n_filters_list=[args.n_filters] * len(args.ksize_list),
n_classes=args.n_classes, dropout=args.dropout)
def get_train_config():
config = flow.function_config()
config.default_data_type(flow.float)
return config
def get_eval_config():
config = flow.function_config()
config.default_data_type(flow.float)
return config
@flow.global_function('train', get_train_config())
def train_job(text: tp.Numpy.Placeholder((args.batch_size, args.sequence_length), dtype=flow.int32),
label: tp.Numpy.Placeholder((args.batch_size,), dtype=flow.int32)
) -> tp.Numpy:
with flow.scope.placement("gpu", "0:0"):
logits = model.get_logits(text, is_train=True)
loss = flow.nn.sparse_softmax_cross_entropy_with_logits(label, logits, name="softmax_loss")
lr_scheduler = flow.optimizer.PiecewiseConstantScheduler([], [args.lr])
flow.optimizer.Adam(lr_scheduler).minimize(loss)
return loss
@flow.global_function('predict', get_eval_config())
def eval_job(text: tp.Numpy.Placeholder((args.batch_size, args.sequence_length), dtype=flow.int32),
label: tp.Numpy.Placeholder((args.batch_size,), dtype=flow.int32)
) -> Tuple[tp.Numpy, tp.Numpy]:
with flow.scope.placement("gpu", "0:0"):
logits = model.get_logits(text, is_train=False)
loss = flow.nn.sparse_softmax_cross_entropy_with_logits(label, logits, name="softmax_loss")
return label, logits
def suffle_batch(data, label, batch_size):
permu = np.random.permutation(len(data))
data, label = data[permu], label[permu]
batch_n = len(data) // batch_size
x_batch = np.array([data[i * batch_size:i * batch_size + batch_size] for i in range(batch_n)], dtype=np.int32)
y_batch = np.array([label[i * batch_size:i * batch_size + batch_size] for i in range(batch_n)], dtype=np.int32)
return x_batch, y_batch
def acc(labels, logits, g):
predictions = np.argmax(logits, 1)
right_count = np.sum(predictions == labels)
g["total"] += labels.shape[0]
g["correct"] += right_count
def train(checkpoint):
path = '../imdb'
(train_data, train_labels), (test_data, test_labels) = load_imdb_data(path)
with open(os.path.join(path, 'word_index.json')) as f:
word_index = json.load(f)
word_index = {k: (v + 2) for k, v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<UNK>"] = 1
train_data = pad_sequences(train_data, value=word_index["<PAD>"], padding='post', maxlen=args.sequence_length)
test_data = pad_sequences(test_data, value=word_index["<PAD>"], padding='post', maxlen=args.sequence_length)
best_accuracy = 0.0
best_epoch = 0
for epoch in range(1, args.n_epochs + 1):
print("[Epoch:{}]".format(epoch))
data, label = suffle_batch(train_data, train_labels, args.batch_size)
for i, (texts, labels) in enumerate(zip(data, label)):
loss = train_job(texts, labels).mean()
if i % 20 == 0:
print(loss)
data, label = suffle_batch(test_data, test_labels, args.batch_size)
g = {"correct": 0, "total": 0}
for i, (texts, labels) in enumerate(zip(data, label)):
labels, logits = eval_job(texts, labels)
acc(labels, logits, g)
accuracy = g["correct"] * 100 / g["total"]
print("[Epoch:{0:d} ] accuracy: {1:.1f}%".format(epoch, accuracy))
if accuracy > best_accuracy:
best_accuracy = accuracy
best_epoch = epoch
if not os.path.exists(args.model_save_dir):
os.mkdir(args.model_save_dir)
else:
shutil.rmtree(args.model_save_dir)
assert not os.path.exists(args.model_save_dir)
os.mkdir(args.model_save_dir)
print("Epoch:{} save best model.".format(best_epoch))
checkpoint.save(args.model_save_dir)
print("Epoch:{} get best accuracy:{}".format(best_epoch, best_accuracy))
if __name__ == '__main__':
checkpoint = flow.train.CheckPoint()
checkpoint.init()
train(checkpoint)
| [
"oneflow.nn.sparse_softmax_cross_entropy_with_logits",
"oneflow.optimizer.Adam",
"oneflow.function_config",
"oneflow.optimizer.PiecewiseConstantScheduler",
"oneflow.train.CheckPoint",
"oneflow.scope.placement",
"oneflow.typing.Numpy.Placeholder"
] | [((188, 212), 'sys.path.append', 'sys.path.append', (['"""../.."""'], {}), "('../..')\n", (203, 212), False, 'import sys\n'), ((291, 316), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (314, 316), False, 'import argparse\n'), ((1447, 1469), 'oneflow.function_config', 'flow.function_config', ([], {}), '()\n', (1467, 1469), True, 'import oneflow as flow\n'), ((1567, 1589), 'oneflow.function_config', 'flow.function_config', ([], {}), '()\n', (1587, 1589), True, 'import oneflow as flow\n'), ((2131, 2187), 'oneflow.optimizer.PiecewiseConstantScheduler', 'flow.optimizer.PiecewiseConstantScheduler', (['[]', '[args.lr]'], {}), '([], [args.lr])\n', (2172, 2187), True, 'import oneflow as flow\n'), ((3244, 3264), 'numpy.argmax', 'np.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (3253, 3264), True, 'import numpy as np\n'), ((3283, 3312), 'numpy.sum', 'np.sum', (['(predictions == labels)'], {}), '(predictions == labels)\n', (3289, 3312), True, 'import numpy as np\n'), ((3484, 3504), 'text_classification.utils.load_imdb_data', 'load_imdb_data', (['path'], {}), '(path)\n', (3498, 3504), False, 'from text_classification.utils import pad_sequences, load_imdb_data\n'), ((3734, 3836), 'text_classification.utils.pad_sequences', 'pad_sequences', (['train_data'], {'value': "word_index['<PAD>']", 'padding': '"""post"""', 'maxlen': 'args.sequence_length'}), "(train_data, value=word_index['<PAD>'], padding='post', maxlen\n =args.sequence_length)\n", (3747, 3836), False, 'from text_classification.utils import pad_sequences, load_imdb_data\n'), ((3848, 3949), 'text_classification.utils.pad_sequences', 'pad_sequences', (['test_data'], {'value': "word_index['<PAD>']", 'padding': '"""post"""', 'maxlen': 'args.sequence_length'}), "(test_data, value=word_index['<PAD>'], padding='post', maxlen=\n args.sequence_length)\n", (3861, 3949), False, 'from text_classification.utils import pad_sequences, load_imdb_data\n'), ((5343, 5366), 'oneflow.train.CheckPoint', 'flow.train.CheckPoint', ([], {}), '()\n', (5364, 5366), True, 'import oneflow as flow\n'), ((1722, 1801), 'oneflow.typing.Numpy.Placeholder', 'tp.Numpy.Placeholder', (['(args.batch_size, args.sequence_length)'], {'dtype': 'flow.int32'}), '((args.batch_size, args.sequence_length), dtype=flow.int32)\n', (1742, 1801), True, 'import oneflow.typing as tp\n'), ((1824, 1882), 'oneflow.typing.Numpy.Placeholder', 'tp.Numpy.Placeholder', (['(args.batch_size,)'], {'dtype': 'flow.int32'}), '((args.batch_size,), dtype=flow.int32)\n', (1844, 1882), True, 'import oneflow.typing as tp\n'), ((1921, 1955), 'oneflow.scope.placement', 'flow.scope.placement', (['"""gpu"""', '"""0:0"""'], {}), "('gpu', '0:0')\n", (1941, 1955), True, 'import oneflow as flow\n'), ((2027, 2116), 'oneflow.nn.sparse_softmax_cross_entropy_with_logits', 'flow.nn.sparse_softmax_cross_entropy_with_logits', (['label', 'logits'], {'name': '"""softmax_loss"""'}), "(label, logits, name=\n 'softmax_loss')\n", (2075, 2116), True, 'import oneflow as flow\n'), ((2330, 2409), 'oneflow.typing.Numpy.Placeholder', 'tp.Numpy.Placeholder', (['(args.batch_size, args.sequence_length)'], {'dtype': 'flow.int32'}), '((args.batch_size, args.sequence_length), dtype=flow.int32)\n', (2350, 2409), True, 'import oneflow.typing as tp\n'), ((2431, 2489), 'oneflow.typing.Numpy.Placeholder', 'tp.Numpy.Placeholder', (['(args.batch_size,)'], {'dtype': 'flow.int32'}), '((args.batch_size,), dtype=flow.int32)\n', (2451, 2489), True, 'import oneflow.typing as tp\n'), ((2544, 2578), 'oneflow.scope.placement', 'flow.scope.placement', (['"""gpu"""', '"""0:0"""'], {}), "('gpu', '0:0')\n", (2564, 2578), True, 'import oneflow as flow\n'), ((2651, 2740), 'oneflow.nn.sparse_softmax_cross_entropy_with_logits', 'flow.nn.sparse_softmax_cross_entropy_with_logits', (['label', 'logits'], {'name': '"""softmax_loss"""'}), "(label, logits, name=\n 'softmax_loss')\n", (2699, 2740), True, 'import oneflow as flow\n'), ((3586, 3598), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3595, 3598), False, 'import json\n'), ((2192, 2225), 'oneflow.optimizer.Adam', 'flow.optimizer.Adam', (['lr_scheduler'], {}), '(lr_scheduler)\n', (2211, 2225), True, 'import oneflow as flow\n'), ((3520, 3557), 'os.path.join', 'os.path.join', (['path', '"""word_index.json"""'], {}), "(path, 'word_index.json')\n", (3532, 3557), False, 'import os\n'), ((4843, 4878), 'os.path.exists', 'os.path.exists', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (4857, 4878), False, 'import os\n'), ((4896, 4925), 'os.mkdir', 'os.mkdir', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (4904, 4925), False, 'import os\n'), ((4960, 4994), 'shutil.rmtree', 'shutil.rmtree', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (4973, 4994), False, 'import shutil\n'), ((5074, 5103), 'os.mkdir', 'os.mkdir', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (5082, 5103), False, 'import os\n'), ((5022, 5057), 'os.path.exists', 'os.path.exists', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (5036, 5057), False, 'import os\n')] |
"""
@author: <NAME> <<EMAIL>>
"""
import os
import argparse
import pickle
import oneflow as flow
from Wav2Letter.model import Wav2Letter
from Wav2Letter.data import GoogleSpeechCommand
from Wav2Letter.decoder import GreedyDecoder
def get_args():
parser = argparse.ArgumentParser("""Wav2Letter train""")
parser.add_argument("--mfcc_features", type=int, default=13)
parser.add_argument("--datasets_path", type=str, default="speech_data")
parser.add_argument("--output_path", type=str, default="save_models")
parser.add_argument(
"--int_encoder", type=str, default="./speech_data/int_encoder.pkl"
)
args = parser.parse_args()
return args
def infer(opt):
mfcc_features = opt.mfcc_features
datasets_path = opt.datasets_path
models_path = opt.output_path
# load saved numpy arrays for google speech command
gs = GoogleSpeechCommand()
_inputs, _targets = gs.load_vectors(datasets_path)
grapheme_count = gs.intencode.grapheme_count
inputs = flow.Tensor(_inputs).to("cuda")
targets = flow.tensor(_targets, dtype=flow.int).to("cuda")
model = Wav2Letter(mfcc_features, grapheme_count)
model.to("cuda")
model.load_state_dict(flow.load(os.path.join(models_path, "model.pth")))
int_encoder = opt.int_encoder
with open(int_encoder, "rb") as f:
int_to_char = pickle.load(f)["index2char"]
decoder = GreedyDecoder(int_to_char)
inputs = inputs.transpose(1, 2)
sample = inputs[-1000:]
sample_target = targets[-1000:]
log_probs = model(sample)
output = decoder.decode(log_probs)
pred_strings, output = decoder.convert_to_strings(output)
sample_target_strings = decoder.convert_to_strings(
sample_target, remove_repetitions=False, return_offsets=False
)
wer = decoder.wer(sample_target_strings, pred_strings)
print("wer", wer)
if __name__ == "__main__":
opt = get_args()
infer(opt)
| [
"oneflow.Tensor",
"oneflow.tensor"
] | [((263, 306), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Wav2Letter train"""'], {}), "('Wav2Letter train')\n", (286, 306), False, 'import argparse\n'), ((874, 895), 'Wav2Letter.data.GoogleSpeechCommand', 'GoogleSpeechCommand', ([], {}), '()\n', (893, 895), False, 'from Wav2Letter.data import GoogleSpeechCommand\n'), ((1122, 1163), 'Wav2Letter.model.Wav2Letter', 'Wav2Letter', (['mfcc_features', 'grapheme_count'], {}), '(mfcc_features, grapheme_count)\n', (1132, 1163), False, 'from Wav2Letter.model import Wav2Letter\n'), ((1402, 1428), 'Wav2Letter.decoder.GreedyDecoder', 'GreedyDecoder', (['int_to_char'], {}), '(int_to_char)\n', (1415, 1428), False, 'from Wav2Letter.decoder import GreedyDecoder\n'), ((1014, 1034), 'oneflow.Tensor', 'flow.Tensor', (['_inputs'], {}), '(_inputs)\n', (1025, 1034), True, 'import oneflow as flow\n'), ((1060, 1097), 'oneflow.tensor', 'flow.tensor', (['_targets'], {'dtype': 'flow.int'}), '(_targets, dtype=flow.int)\n', (1071, 1097), True, 'import oneflow as flow\n'), ((1221, 1259), 'os.path.join', 'os.path.join', (['models_path', '"""model.pth"""'], {}), "(models_path, 'model.pth')\n", (1233, 1259), False, 'import os\n'), ((1358, 1372), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1369, 1372), False, 'import pickle\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow
from oneflow.framework.docstr.utils import add_docstr
add_docstr(
oneflow.expand,
"""
oneflow.expand(input, *sizes) -> Tensor,
This operator expand the input tensor to a larger size.
Passing -1 as the size for a dimension means not changing the size of that dimension.
Tensor can be also expanded to a larger number of dimensions and the new ones will be appended at the front.
For the new dimensions, the size cannot be set to -1.
Args:
input (oneflow.Tensor): The input Tensor.
*sizes (oneflow.Size or int): The desired expanded size.
Returns:
oneflow.Tensor: The result Tensor.
For example:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> x = np.array([[[[0, 1]],
... [[2, 3]],
... [[4, 5]]]]).astype(np.int32)
>>> input = flow.Tensor(x)
>>> input.shape
oneflow.Size([1, 3, 1, 2])
>>> out = input.expand(1, 3, 2, 2)
>>> out.shape
oneflow.Size([1, 3, 2, 2])
""",
)
| [
"oneflow.framework.docstr.utils.add_docstr"
] | [((660, 1698), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.expand', '"""\n oneflow.expand(input, *sizes) -> Tensor,\n\n This operator expand the input tensor to a larger size.\n\n Passing -1 as the size for a dimension means not changing the size of that dimension.\n\n Tensor can be also expanded to a larger number of dimensions and the new ones will be appended at the front.\n\n For the new dimensions, the size cannot be set to -1.\n\n Args:\n input (oneflow.Tensor): The input Tensor.\n *sizes (oneflow.Size or int): The desired expanded size.\n\n Returns:\n oneflow.Tensor: The result Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n >>> x = np.array([[[[0, 1]],\n ... [[2, 3]],\n ... [[4, 5]]]]).astype(np.int32)\n >>> input = flow.Tensor(x)\n >>> input.shape\n oneflow.Size([1, 3, 1, 2])\n >>> out = input.expand(1, 3, 2, 2)\n >>> out.shape\n oneflow.Size([1, 3, 2, 2])\n\n """'], {}), '(oneflow.expand,\n """\n oneflow.expand(input, *sizes) -> Tensor,\n\n This operator expand the input tensor to a larger size.\n\n Passing -1 as the size for a dimension means not changing the size of that dimension.\n\n Tensor can be also expanded to a larger number of dimensions and the new ones will be appended at the front.\n\n For the new dimensions, the size cannot be set to -1.\n\n Args:\n input (oneflow.Tensor): The input Tensor.\n *sizes (oneflow.Size or int): The desired expanded size.\n\n Returns:\n oneflow.Tensor: The result Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n >>> x = np.array([[[[0, 1]],\n ... [[2, 3]],\n ... [[4, 5]]]]).astype(np.int32)\n >>> input = flow.Tensor(x)\n >>> input.shape\n oneflow.Size([1, 3, 1, 2])\n >>> out = input.expand(1, 3, 2, 2)\n >>> out.shape\n oneflow.Size([1, 3, 2, 2])\n\n """\n )\n', (670, 1698), False, 'from oneflow.framework.docstr.utils import add_docstr\n')] |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow
from oneflow.framework.docstr.utils import add_docstr
add_docstr(
oneflow.diag,
"""
If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
If input is a matrix (2-D tensor), then returns a 1-D tensor with diagonal elements of input.
Args:
input (Tensor): the input tensor.
diagonal (Optional[int], 0): The diagonal to consider.
If diagonal = 0, it is the main diagonal. If diagonal > 0, it is above the main diagonal. If diagonal < 0, it is below the main diagonal. Defaults to 0.
Returns:
oneflow.Tensor: the output Tensor.
For example:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> arr = np.array(
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0],
... ]
... )
>>> input = flow.tensor(arr, dtype=flow.float32)
>>> flow.diag(input)
tensor([1., 5., 9.], dtype=oneflow.float32)
""",
)
add_docstr(
oneflow.tril,
"""Returns the lower triangular part of a matrix (2-D tensor) or batch of matrices input along the specified diagonal,
the other elements of the result tensor out are set to 0.
.. note::
if diagonal = 0, the diagonal of the returned tensor will be the main diagonal,
if diagonal > 0, the diagonal of the returned tensor will be above the main diagonal,
if diagonal < 0, the diagonal of the returned tensor will be below the main diagonal.
Args:
input (Tensor): the input tensor.
diagonal (int, optional): the diagonal to specify.
For example:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))
>>> flow.tril(x)
tensor([[1., 0., 0.],
[1., 1., 0.],
[1., 1., 1.]], dtype=oneflow.float32)
""",
)
add_docstr(
oneflow.triu,
"""Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input,
the other elements of the result tensor out are set to 0.
Args:
input (Tensor): the input tensor.
diagonal (int, optional): the diagonal to consider
For example:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))
>>> flow.triu(x)
tensor([[1., 1., 1.],
[0., 1., 1.],
[0., 0., 1.]], dtype=oneflow.float32)
""",
)
add_docstr(
oneflow.argmax,
"""The op computes the index with the largest value of a Tensor at specified axis.
Args:
input (oneflow.Tensor): Input Tensor
dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)
keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.
Returns:
oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`
For example:
.. code-block:: python
>>> import oneflow as flow
>>> input = flow.tensor([[1, 3, 8, 7, 2],
... [1, 9, 4, 3, 2]], dtype=flow.float32)
>>> output = flow.argmax(input)
>>> output
tensor(6, dtype=oneflow.int64)
>>> output = flow.argmax(input, dim=1)
>>> output
tensor([2, 1], dtype=oneflow.int64)
""",
)
add_docstr(
oneflow.argmin,
"""The op computes the index with the largest value of a Tensor at specified axis.
Args:
input (oneflow.Tensor): Input Tensor
dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)
keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.
Returns:
oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`
For example:
.. code-block:: python
>>> import oneflow as flow
>>> input = flow.tensor([[4, 3, 1, 0, 2],
... [5, 9, 7, 6, 8]], dtype=flow.float32)
>>> output = flow.argmin(input)
>>> output
tensor(3, dtype=oneflow.int64)
>>> output = flow.argmin(input, dim=1)
>>> output
tensor([3, 0], dtype=oneflow.int64)
""",
)
add_docstr(
oneflow.batch_gather,
"""Gather the element in batch dims.
Args:
in (Tensor): the input tensor.
indices (Tensor): the indices tensor, its dtype must be int32/64.
For example:
Example 1:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> x = flow.Tensor(np.array([[1, 2, 3],
... [4, 5, 6]]))
>>> indices = flow.tensor(np.array([1, 0]).astype(np.int64))
>>> out = flow.batch_gather(x, indices)
tensor([[4., 5., 6.],
[1., 2., 3.]], dtype=oneflow.float32)
Example 2:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> x = flow.Tensor(np.array([[[1, 2, 3], [4, 5, 6]],
... [[1, 2, 3], [4, 5, 6]]]))
>>> indices = flow.tensor(np.array([[1, 0],
... [0, 1]]).astype(np.int64))
>>> out = flow.batch_gather(x, indices)
tensor([[[4., 5., 6.],
[1., 2., 3.]],
[[1., 2., 3.],
[4., 5., 6.]]], dtype=oneflow.float32)
""",
)
add_docstr(
oneflow._C.transpose,
"""Returns a tensor that is a transposed version of input. The given dimensions dim0 and dim1 are swapped.
The resulting out tensor shares its underlying storage with the input tensor, so changing the content of one would change the content of the other.
Args:
input (oneflow.Tensor): The input tensor.
dim0 (int): the first dimension to be transposed.
dim1 (int): the second dimension to be transposed.
Returns:
Tensor: A transposed tensor.
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow as flow
>>> input = flow.tensor(np.random.randn(2, 6, 5, 3), dtype=flow.float32)
>>> out = flow.transpose(input, 0, 1).shape
>>> out
oneflow.Size([6, 2, 5, 3])
""",
)
| [
"oneflow.framework.docstr.utils.add_docstr"
] | [((660, 1701), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.diag', '"""\n If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.\n If input is a matrix (2-D tensor), then returns a 1-D tensor with diagonal elements of input.\n\n Args:\n input (Tensor): the input tensor.\n diagonal (Optional[int], 0): The diagonal to consider. \n If diagonal = 0, it is the main diagonal. If diagonal > 0, it is above the main diagonal. If diagonal < 0, it is below the main diagonal. Defaults to 0.\n \n Returns:\n oneflow.Tensor: the output Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n >>> arr = np.array(\n ... [\n ... [1.0, 2.0, 3.0],\n ... [4.0, 5.0, 6.0],\n ... [7.0, 8.0, 9.0],\n ... ]\n ... )\n\n >>> input = flow.tensor(arr, dtype=flow.float32)\n >>> flow.diag(input)\n tensor([1., 5., 9.], dtype=oneflow.float32)\n """'], {}), '(oneflow.diag,\n """\n If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.\n If input is a matrix (2-D tensor), then returns a 1-D tensor with diagonal elements of input.\n\n Args:\n input (Tensor): the input tensor.\n diagonal (Optional[int], 0): The diagonal to consider. \n If diagonal = 0, it is the main diagonal. If diagonal > 0, it is above the main diagonal. If diagonal < 0, it is below the main diagonal. Defaults to 0.\n \n Returns:\n oneflow.Tensor: the output Tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n >>> arr = np.array(\n ... [\n ... [1.0, 2.0, 3.0],\n ... [4.0, 5.0, 6.0],\n ... [7.0, 8.0, 9.0],\n ... ]\n ... )\n\n >>> input = flow.tensor(arr, dtype=flow.float32)\n >>> flow.diag(input)\n tensor([1., 5., 9.], dtype=oneflow.float32)\n """\n )\n', (670, 1701), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((1705, 2663), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.tril', '"""Returns the lower triangular part of a matrix (2-D tensor) or batch of matrices input along the specified diagonal, \n the other elements of the result tensor out are set to 0.\n \n .. note::\n if diagonal = 0, the diagonal of the returned tensor will be the main diagonal,\n if diagonal > 0, the diagonal of the returned tensor will be above the main diagonal, \n if diagonal < 0, the diagonal of the returned tensor will be below the main diagonal.\n\n Args:\n input (Tensor): the input tensor. \n diagonal (int, optional): the diagonal to specify. \n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n\n >>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))\n >>> flow.tril(x)\n tensor([[1., 0., 0.],\n [1., 1., 0.],\n [1., 1., 1.]], dtype=oneflow.float32)\n\n """'], {}), '(oneflow.tril,\n """Returns the lower triangular part of a matrix (2-D tensor) or batch of matrices input along the specified diagonal, \n the other elements of the result tensor out are set to 0.\n \n .. note::\n if diagonal = 0, the diagonal of the returned tensor will be the main diagonal,\n if diagonal > 0, the diagonal of the returned tensor will be above the main diagonal, \n if diagonal < 0, the diagonal of the returned tensor will be below the main diagonal.\n\n Args:\n input (Tensor): the input tensor. \n diagonal (int, optional): the diagonal to specify. \n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n\n >>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))\n >>> flow.tril(x)\n tensor([[1., 0., 0.],\n [1., 1., 0.],\n [1., 1., 1.]], dtype=oneflow.float32)\n\n """\n )\n', (1715, 2663), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((2667, 3311), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.triu', '"""Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, \n the other elements of the result tensor out are set to 0.\n \n Args:\n input (Tensor): the input tensor. \n diagonal (int, optional): the diagonal to consider\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n \n >>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))\n >>> flow.triu(x)\n tensor([[1., 1., 1.],\n [0., 1., 1.],\n [0., 0., 1.]], dtype=oneflow.float32)\n\n """'], {}), '(oneflow.triu,\n """Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, \n the other elements of the result tensor out are set to 0.\n \n Args:\n input (Tensor): the input tensor. \n diagonal (int, optional): the diagonal to consider\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n >>> import numpy as np\n \n >>> x = flow.tensor(np.ones(shape=(3, 3)).astype(np.float32))\n >>> flow.triu(x)\n tensor([[1., 1., 1.],\n [0., 1., 1.],\n [0., 0., 1.]], dtype=oneflow.float32)\n\n """\n )\n', (2677, 3311), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((3315, 4215), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.argmax', '"""The op computes the index with the largest value of a Tensor at specified axis.\n\n Args:\n input (oneflow.Tensor): Input Tensor\n dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)\n keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.\n\n Returns:\n oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> input = flow.tensor([[1, 3, 8, 7, 2],\n ... [1, 9, 4, 3, 2]], dtype=flow.float32)\n >>> output = flow.argmax(input)\n >>> output\n tensor(6, dtype=oneflow.int64)\n >>> output = flow.argmax(input, dim=1)\n >>> output\n tensor([2, 1], dtype=oneflow.int64)\n\n """'], {}), '(oneflow.argmax,\n """The op computes the index with the largest value of a Tensor at specified axis.\n\n Args:\n input (oneflow.Tensor): Input Tensor\n dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)\n keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.\n\n Returns:\n oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> input = flow.tensor([[1, 3, 8, 7, 2],\n ... [1, 9, 4, 3, 2]], dtype=flow.float32)\n >>> output = flow.argmax(input)\n >>> output\n tensor(6, dtype=oneflow.int64)\n >>> output = flow.argmax(input, dim=1)\n >>> output\n tensor([2, 1], dtype=oneflow.int64)\n\n """\n )\n', (3325, 4215), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((4219, 5119), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.argmin', '"""The op computes the index with the largest value of a Tensor at specified axis.\n\n Args:\n input (oneflow.Tensor): Input Tensor\n dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)\n keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.\n\n Returns:\n oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> input = flow.tensor([[4, 3, 1, 0, 2],\n ... [5, 9, 7, 6, 8]], dtype=flow.float32)\n >>> output = flow.argmin(input)\n >>> output\n tensor(3, dtype=oneflow.int64)\n >>> output = flow.argmin(input, dim=1)\n >>> output\n tensor([3, 0], dtype=oneflow.int64)\n\n """'], {}), '(oneflow.argmin,\n """The op computes the index with the largest value of a Tensor at specified axis.\n\n Args:\n input (oneflow.Tensor): Input Tensor\n dim (int, optional): dimension to be calculated. Defaults to the last dim (-1)\n keepdim (bool optional): whether the output tensor has dim retained or not. Ignored if dim=None.\n\n Returns:\n oneflow.Tensor: A Tensor(dtype=int64) contains the index with the largest value of `input`\n\n For example:\n\n .. code-block:: python\n\n >>> import oneflow as flow\n \n >>> input = flow.tensor([[4, 3, 1, 0, 2],\n ... [5, 9, 7, 6, 8]], dtype=flow.float32)\n >>> output = flow.argmin(input)\n >>> output\n tensor(3, dtype=oneflow.int64)\n >>> output = flow.argmin(input, dim=1)\n >>> output\n tensor([3, 0], dtype=oneflow.int64)\n\n """\n )\n', (4229, 5119), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((5123, 6343), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow.batch_gather', '"""Gather the element in batch dims. \n \n Args:\n in (Tensor): the input tensor. \n indices (Tensor): the indices tensor, its dtype must be int32/64. \n\n For example:\n\n Example 1: \n\n .. code-block:: python\n\n >>> import oneflow as flow \n >>> import numpy as np \n\n >>> x = flow.Tensor(np.array([[1, 2, 3], \n ... [4, 5, 6]]))\n >>> indices = flow.tensor(np.array([1, 0]).astype(np.int64))\n >>> out = flow.batch_gather(x, indices)\n\n tensor([[4., 5., 6.],\n [1., 2., 3.]], dtype=oneflow.float32)\n\n Example 2: \n\n .. code-block:: python\n\n >>> import oneflow as flow \n >>> import numpy as np \n\n >>> x = flow.Tensor(np.array([[[1, 2, 3], [4, 5, 6]], \n ... [[1, 2, 3], [4, 5, 6]]]))\n >>> indices = flow.tensor(np.array([[1, 0], \n ... [0, 1]]).astype(np.int64))\n >>> out = flow.batch_gather(x, indices)\n\n tensor([[[4., 5., 6.],\n [1., 2., 3.]],\n [[1., 2., 3.],\n [4., 5., 6.]]], dtype=oneflow.float32)\n\n """'], {}), '(oneflow.batch_gather,\n """Gather the element in batch dims. \n \n Args:\n in (Tensor): the input tensor. \n indices (Tensor): the indices tensor, its dtype must be int32/64. \n\n For example:\n\n Example 1: \n\n .. code-block:: python\n\n >>> import oneflow as flow \n >>> import numpy as np \n\n >>> x = flow.Tensor(np.array([[1, 2, 3], \n ... [4, 5, 6]]))\n >>> indices = flow.tensor(np.array([1, 0]).astype(np.int64))\n >>> out = flow.batch_gather(x, indices)\n\n tensor([[4., 5., 6.],\n [1., 2., 3.]], dtype=oneflow.float32)\n\n Example 2: \n\n .. code-block:: python\n\n >>> import oneflow as flow \n >>> import numpy as np \n\n >>> x = flow.Tensor(np.array([[[1, 2, 3], [4, 5, 6]], \n ... [[1, 2, 3], [4, 5, 6]]]))\n >>> indices = flow.tensor(np.array([[1, 0], \n ... [0, 1]]).astype(np.int64))\n >>> out = flow.batch_gather(x, indices)\n\n tensor([[[4., 5., 6.],\n [1., 2., 3.]],\n [[1., 2., 3.],\n [4., 5., 6.]]], dtype=oneflow.float32)\n\n """\n )\n', (5133, 6343), False, 'from oneflow.framework.docstr.utils import add_docstr\n'), ((6347, 7183), 'oneflow.framework.docstr.utils.add_docstr', 'add_docstr', (['oneflow._C.transpose', '"""Returns a tensor that is a transposed version of input. The given dimensions dim0 and dim1 are swapped.\n\n The resulting out tensor shares its underlying storage with the input tensor, so changing the content of one would change the content of the other.\n\n Args:\n input (oneflow.Tensor): The input tensor.\n dim0 (int): the first dimension to be transposed.\n dim1 (int): the second dimension to be transposed.\n Returns:\n Tensor: A transposed tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n >>> input = flow.tensor(np.random.randn(2, 6, 5, 3), dtype=flow.float32)\n >>> out = flow.transpose(input, 0, 1).shape\n >>> out\n oneflow.Size([6, 2, 5, 3])\n\n """'], {}), '(oneflow._C.transpose,\n """Returns a tensor that is a transposed version of input. The given dimensions dim0 and dim1 are swapped.\n\n The resulting out tensor shares its underlying storage with the input tensor, so changing the content of one would change the content of the other.\n\n Args:\n input (oneflow.Tensor): The input tensor.\n dim0 (int): the first dimension to be transposed.\n dim1 (int): the second dimension to be transposed.\n Returns:\n Tensor: A transposed tensor.\n\n For example:\n\n .. code-block:: python\n\n >>> import numpy as np\n >>> import oneflow as flow\n >>> input = flow.tensor(np.random.randn(2, 6, 5, 3), dtype=flow.float32)\n >>> out = flow.transpose(input, 0, 1).shape\n >>> out\n oneflow.Size([6, 2, 5, 3])\n\n """\n )\n', (6357, 7183), False, 'from oneflow.framework.docstr.utils import add_docstr\n')] |
import oneflow as flow
from utils.dataset import *
import random
# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(letter):
return all_letters.find(letter)
# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def letterToTensor(letter):
# NOTE(<NAME>): oneflow does not provide `flow.zeros`
# tensor = torch.zeros(1, n_letters)
# tensor[0][letterToIndex(letter)] = 1
tensor = flow.Tensor(n_letters)
flow.nn.init.zeros_(tensor)
tensor[letterToIndex(letter)] = 1
return tensor.to("cuda")
# Turn a line into a <line_length x 1 x n_letters>,
# or an array of one-hot letter vectors
def lineToTensor(line):
# NOTE(<NAME>): oneflow does not provide `flow.zeros`
# tensor = torch.zeros(len(line), 1, n_letters)
# for li, letter in enumerate(line):
# tensor[li][0][letterToIndex(letter)] = 1
tensor = flow.Tensor(len(line), 1, n_letters)
flow.nn.init.zeros_(tensor)
for li, letter in enumerate(line):
# NOTE(<NAME>): oneflow Tensor does not support tensor[li][letterToIndex(letter)] = 1
tensor[li, 0, letterToIndex(letter)] = 1
return tensor.to("cuda")
def randomChoice(l):
return l[random.randint(0, len(l) - 1)]
def randomTrainingExample():
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
# category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
category_tensor = flow.Tensor([all_categories.index(category)], dtype=flow.int64)
line_tensor = lineToTensor(line)
return category, line, category_tensor.to("cuda"), line_tensor.to("cuda")
| [
"oneflow.nn.init.zeros_",
"oneflow.Tensor"
] | [((437, 459), 'oneflow.Tensor', 'flow.Tensor', (['n_letters'], {}), '(n_letters)\n', (448, 459), True, 'import oneflow as flow\n'), ((464, 491), 'oneflow.nn.init.zeros_', 'flow.nn.init.zeros_', (['tensor'], {}), '(tensor)\n', (483, 491), True, 'import oneflow as flow\n'), ((933, 960), 'oneflow.nn.init.zeros_', 'flow.nn.init.zeros_', (['tensor'], {}), '(tensor)\n', (952, 960), True, 'import oneflow as flow\n')] |
import argparse
import os
import numpy as np
import time
import pickle
import oneflow as flow
import oneflow.optim as optim
from tqdm import tqdm
from skimage.metrics import peak_signal_noise_ratio
from skimage.metrics import structural_similarity
from utils.of_data_utils import NumpyDataLoader, ValDatasetFromFolder
from utils.of_loss import GeneratorLoss
from models.of_model import Generator, Discriminator
parser = argparse.ArgumentParser(description="Train Super Resolution Models")
parser.add_argument("--data_dir", default="./data/VOC", type=str, help="data root")
parser.add_argument("--hr_size", default=88, type=int, help="training images crop size")
parser.add_argument("--gpu_ids", type=str, default="0")
parser.add_argument(
"--upscale_factor",
default=4,
type=int,
choices=[2, 4, 8],
help="super resolution upscale factor",
)
parser.add_argument("--num_epochs", default=1, type=int, help="train epoch number")
parser.add_argument(
"--train_mode",
default="GPU",
type=str,
choices=["GPU", "CPU"],
help="using GPU or CPU",
)
parser.add_argument("--batch_size", type=int, default=256, required=False)
parser.add_argument("--load_checkpoint_G", type=str, default="", help="load checkpoint")
parser.add_argument("--load_checkpoint_D", type=str, default="", help="load checkpoint")
parser.add_argument(
"--save_path", type=str, default="./srgan", help="save results root dir"
)
parser.add_argument(
"--vgg_path",
type=str,
default="./vgg_imagenet_pretrain_model/vgg16_oneflow_model",
help="vgg pretrained weight path",
)
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument(
"--b1",
type=float,
default=0.5,
help="adam: decay of first order momentum of gradient",
)
parser.add_argument(
"--b2",
type=float,
default=0.999,
help="adam: decay of first order momentum of gradient",
)
def to_numpy(x, mean=True):
if mean:
x = flow.mean(x)
return x.numpy()
def to_tensor(x, grad=True, dtype=flow.float32):
if not isinstance(x, np.ndarray):
x = np.array(x)
return flow.Tensor(x, requires_grad=grad, dtype=dtype)
def save_obj(obj, name):
with open(name + ".pkl", "wb") as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
print("Save {} done.".format(name + ".pkl"))
if __name__ == "__main__":
opt = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
HR_SIZE = opt.hr_size
UPSCALE_FACTOR = opt.upscale_factor
NUM_EPOCHS = opt.num_epochs
TRAIN_MODE = True if opt.train_mode == "GPU" else False
lr_size = opt.hr_size // opt.upscale_factor
modes = ["val", "train", "test"]
train_data = NumpyDataLoader(
dataset_root=opt.data_dir,
mode=modes[1],
hr_size=HR_SIZE,
lr_size=lr_size,
batch_size=opt.batch_size,
)
val_data = ValDatasetFromFolder(opt.data_dir, mode=modes[0], upscale_factor=4)
start_t = time.time()
netG = Generator(UPSCALE_FACTOR)
print("# generator parameters:", sum(param.numel() for param in netG.parameters()))
netD = Discriminator()
print(
"# discriminator parameters:", sum(param.numel() for param in netD.parameters())
)
generator_criterion = GeneratorLoss(opt.vgg_path)
bce = flow.nn.BCEWithLogitsLoss()
end_t = time.time()
print("init time : {}".format(end_t - start_t))
if TRAIN_MODE:
netG.to("cuda")
netD.to("cuda")
generator_criterion.to("cuda")
bce.to("cuda")
if opt.load_checkpoint_G != "":
netG.load_state_dict(flow.load(opt.load_checkpoint_G))
print("netG")
if opt.load_checkpoint_D != "":
netD.load_state_dict(flow.load(opt.load_checkpoint_D))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
results = {
"d_loss": [],
"g_loss": [],
"d_score": [],
"g_score": [],
"psnr": [],
"ssim": [],
}
for epoch in range(0, NUM_EPOCHS):
train_bar = tqdm(train_data)
running_results = {
"batch_sizes": 0,
"d_loss": 0,
"g_loss": 0,
"d_score": 0,
"g_score": 0,
}
netG.train()
netD.train()
for idx in range(len(train_data)):
target, data = train_data[idx]
batch_size = data.shape[0]
running_results["batch_sizes"] += batch_size
z = to_tensor(data, False)
real_img = to_tensor(target, False)
############################
# (1) Update D network: maximize D(x)-1-D(G(z))
###########################
real_img = real_img.to("cuda")
z = z.to("cuda")
fake_img = netG(z)
real_out = netD(real_img)
fake_out = netD(fake_img.detach())
label1 = to_tensor(
np.random.rand(batch_size, 1) * 0.25 + 0.85, False, dtype=flow.float32
).to("cuda")
label0 = to_tensor(
np.random.rand(batch_size, 1) * 0.15, False, dtype=flow.float32
).to("cuda")
d_loss = bce(fake_out, label0) + bce(real_out, label1)
d_loss.backward()
optimizerD.step()
optimizerD.zero_grad()
############################
# (2) Update G network: minimize 1-D(G(z)) + Perception Loss + Image Loss + TV Loss
###########################
fake_img_0 = netG(z)
fake_out_0 = netD(fake_img_0)
g_loss = generator_criterion(fake_out_0, fake_img_0, real_img)
g_loss.backward()
optimizerG.step()
optimizerG.zero_grad()
fake_out = flow.mean(fake_out)
real_out = flow.mean(fake_out)
# loss for current batch before optimization
running_results["g_loss"] += g_loss.numpy() * batch_size
running_results["d_loss"] += d_loss.numpy() * batch_size
running_results["d_score"] += real_out.numpy() * batch_size
running_results["g_score"] += fake_out.numpy() * batch_size
train_bar.set_description(
desc="[%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f"
% (
epoch,
NUM_EPOCHS,
running_results["d_loss"] / running_results["batch_sizes"],
running_results["g_loss"] / running_results["batch_sizes"],
running_results["d_score"] / running_results["batch_sizes"],
running_results["g_score"] / running_results["batch_sizes"],
)
)
netG.eval()
out_path = os.path.join(opt.save_path, "SRF_" + str(UPSCALE_FACTOR))
if not os.path.exists(out_path):
os.makedirs(out_path)
with flow.no_grad():
val_bar = tqdm(val_data)
valing_results = {
"psnrs": 0,
"ssims": 0,
"psnr": 0,
"ssim": 0,
"batch_sizes": 0,
}
val_images = []
print("val data", len(val_data))
for idx in range(len(val_data)):
val_hr, val_lr = val_data[idx]
batch_size = val_lr.shape[0]
valing_results["batch_sizes"] += batch_size
lr = to_tensor(val_lr)
hr = to_tensor(val_hr)
lr = lr.to("cuda")
hr = hr.to("cuda")
sr = netG(lr)
fake = sr[0].data * 255.0
fake = fake.squeeze(0).permute(1, 2, 0)
fake = fake.numpy().astype(np.uint8)
_img = hr[0].data * 255
_img = _img.squeeze(0).permute(1, 2, 0)
_img = _img.numpy().astype(np.uint8)
batch_psnr = peak_signal_noise_ratio(_img, fake)
valing_results["psnrs"] += batch_psnr * batch_size
valing_results["psnr"] = (
valing_results["psnrs"] / valing_results["batch_sizes"]
)
batch_ssim = structural_similarity(_img, fake, multichannel=True)
valing_results["ssims"] += batch_ssim * batch_size
valing_results["ssim"] = (
valing_results["ssims"] / valing_results["batch_sizes"]
)
val_bar.set_description(
desc="[converting LR images to SR images] PSNR: %.4f dB SSIM: %.4f"
% (valing_results["psnr"], valing_results["ssim"])
)
# save loss\scores\psnr\ssim
results["d_loss"].append(
running_results["d_loss"] / running_results["batch_sizes"]
)
results["g_loss"].append(
running_results["g_loss"] / running_results["batch_sizes"]
)
results["d_score"].append(
running_results["d_score"] / running_results["batch_sizes"]
)
results["g_score"].append(
running_results["g_score"] / running_results["batch_sizes"]
)
results["psnr"].append(valing_results["psnr"])
results["ssim"].append(valing_results["ssim"])
# save model parameters
flow.save(
netG.state_dict(),
os.path.join(opt.save_path, "netG_epoch_%d_%d" % (UPSCALE_FACTOR, epoch)),
)
flow.save(
netD.state_dict(),
os.path.join(opt.save_path, "netD_epoch_%d_%d" % (UPSCALE_FACTOR, epoch)),
)
save_obj(results, os.path.join(opt.save_path, "results"))
| [
"oneflow.mean",
"oneflow.no_grad",
"oneflow.load",
"oneflow.Tensor",
"oneflow.nn.BCEWithLogitsLoss"
] | [((422, 490), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Train Super Resolution Models"""'}), "(description='Train Super Resolution Models')\n", (445, 490), False, 'import argparse\n'), ((2149, 2196), 'oneflow.Tensor', 'flow.Tensor', (['x'], {'requires_grad': 'grad', 'dtype': 'dtype'}), '(x, requires_grad=grad, dtype=dtype)\n', (2160, 2196), True, 'import oneflow as flow\n'), ((2741, 2863), 'utils.of_data_utils.NumpyDataLoader', 'NumpyDataLoader', ([], {'dataset_root': 'opt.data_dir', 'mode': 'modes[1]', 'hr_size': 'HR_SIZE', 'lr_size': 'lr_size', 'batch_size': 'opt.batch_size'}), '(dataset_root=opt.data_dir, mode=modes[1], hr_size=HR_SIZE,\n lr_size=lr_size, batch_size=opt.batch_size)\n', (2756, 2863), False, 'from utils.of_data_utils import NumpyDataLoader, ValDatasetFromFolder\n'), ((2922, 2989), 'utils.of_data_utils.ValDatasetFromFolder', 'ValDatasetFromFolder', (['opt.data_dir'], {'mode': 'modes[0]', 'upscale_factor': '(4)'}), '(opt.data_dir, mode=modes[0], upscale_factor=4)\n', (2942, 2989), False, 'from utils.of_data_utils import NumpyDataLoader, ValDatasetFromFolder\n'), ((3004, 3015), 'time.time', 'time.time', ([], {}), '()\n', (3013, 3015), False, 'import time\n'), ((3028, 3053), 'models.of_model.Generator', 'Generator', (['UPSCALE_FACTOR'], {}), '(UPSCALE_FACTOR)\n', (3037, 3053), False, 'from models.of_model import Generator, Discriminator\n'), ((3153, 3168), 'models.of_model.Discriminator', 'Discriminator', ([], {}), '()\n', (3166, 3168), False, 'from models.of_model import Generator, Discriminator\n'), ((3302, 3329), 'utils.of_loss.GeneratorLoss', 'GeneratorLoss', (['opt.vgg_path'], {}), '(opt.vgg_path)\n', (3315, 3329), False, 'from utils.of_loss import GeneratorLoss\n'), ((3340, 3367), 'oneflow.nn.BCEWithLogitsLoss', 'flow.nn.BCEWithLogitsLoss', ([], {}), '()\n', (3365, 3367), True, 'import oneflow as flow\n'), ((3380, 3391), 'time.time', 'time.time', ([], {}), '()\n', (3389, 3391), False, 'import time\n'), ((1990, 2002), 'oneflow.mean', 'flow.mean', (['x'], {}), '(x)\n', (1999, 2002), True, 'import oneflow as flow\n'), ((2126, 2137), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2134, 2137), True, 'import numpy as np\n'), ((2273, 2317), 'pickle.dump', 'pickle.dump', (['obj', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '(obj, f, pickle.HIGHEST_PROTOCOL)\n', (2284, 2317), False, 'import pickle\n'), ((4173, 4189), 'tqdm.tqdm', 'tqdm', (['train_data'], {}), '(train_data)\n', (4177, 4189), False, 'from tqdm import tqdm\n'), ((9496, 9569), 'os.path.join', 'os.path.join', (['opt.save_path', "('netG_epoch_%d_%d' % (UPSCALE_FACTOR, epoch))"], {}), "(opt.save_path, 'netG_epoch_%d_%d' % (UPSCALE_FACTOR, epoch))\n", (9508, 9569), False, 'import os\n'), ((9627, 9700), 'os.path.join', 'os.path.join', (['opt.save_path', "('netD_epoch_%d_%d' % (UPSCALE_FACTOR, epoch))"], {}), "(opt.save_path, 'netD_epoch_%d_%d' % (UPSCALE_FACTOR, epoch))\n", (9639, 9700), False, 'import os\n'), ((9730, 9768), 'os.path.join', 'os.path.join', (['opt.save_path', '"""results"""'], {}), "(opt.save_path, 'results')\n", (9742, 9768), False, 'import os\n'), ((3640, 3672), 'oneflow.load', 'flow.load', (['opt.load_checkpoint_G'], {}), '(opt.load_checkpoint_G)\n', (3649, 3672), True, 'import oneflow as flow\n'), ((3761, 3793), 'oneflow.load', 'flow.load', (['opt.load_checkpoint_D'], {}), '(opt.load_checkpoint_D)\n', (3770, 3793), True, 'import oneflow as flow\n'), ((5894, 5913), 'oneflow.mean', 'flow.mean', (['fake_out'], {}), '(fake_out)\n', (5903, 5913), True, 'import oneflow as flow\n'), ((5937, 5956), 'oneflow.mean', 'flow.mean', (['fake_out'], {}), '(fake_out)\n', (5946, 5956), True, 'import oneflow as flow\n'), ((6964, 6988), 'os.path.exists', 'os.path.exists', (['out_path'], {}), '(out_path)\n', (6978, 6988), False, 'import os\n'), ((7002, 7023), 'os.makedirs', 'os.makedirs', (['out_path'], {}), '(out_path)\n', (7013, 7023), False, 'import os\n'), ((7038, 7052), 'oneflow.no_grad', 'flow.no_grad', ([], {}), '()\n', (7050, 7052), True, 'import oneflow as flow\n'), ((7076, 7090), 'tqdm.tqdm', 'tqdm', (['val_data'], {}), '(val_data)\n', (7080, 7090), False, 'from tqdm import tqdm\n'), ((8060, 8095), 'skimage.metrics.peak_signal_noise_ratio', 'peak_signal_noise_ratio', (['_img', 'fake'], {}), '(_img, fake)\n', (8083, 8095), False, 'from skimage.metrics import peak_signal_noise_ratio\n'), ((8330, 8382), 'skimage.metrics.structural_similarity', 'structural_similarity', (['_img', 'fake'], {'multichannel': '(True)'}), '(_img, fake, multichannel=True)\n', (8351, 8382), False, 'from skimage.metrics import structural_similarity\n'), ((5194, 5223), 'numpy.random.rand', 'np.random.rand', (['batch_size', '(1)'], {}), '(batch_size, 1)\n', (5208, 5223), True, 'import numpy as np\n'), ((5050, 5079), 'numpy.random.rand', 'np.random.rand', (['batch_size', '(1)'], {}), '(batch_size, 1)\n', (5064, 5079), True, 'import numpy as np\n')] |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 43