Datasets:
Unnamed: 0
int64 0
7.83M
β | u
int64 1
3.7M
| i
int64 1
3.7M
| ts
float64 0
2.24B
| label
float64 0
35
| idx
int64 1
7.83M
|
---|---|---|---|---|---|
0 | 384 | 353 | 0 | 0 | 1 |
1 | 411 | 353 | 0 | 0 | 2 |
2 | 676 | 353 | 0 | 0 | 3 |
3 | 467 | 353 | 0 | 0 | 4 |
4 | 120 | 353 | 0 | 0 | 5 |
5 | 149 | 353 | 0 | 0 | 6 |
6 | 204 | 353 | 0 | 0 | 7 |
7 | 53 | 353 | 0 | 0 | 8 |
8 | 342 | 353 | 0 | 0 | 9 |
9 | 80 | 353 | 0 | 0 | 10 |
10 | 523 | 353 | 0 | 0 | 11 |
11 | 412 | 353 | 0 | 0 | 12 |
12 | 158 | 353 | 0 | 0 | 13 |
13 | 536 | 353 | 0 | 0 | 14 |
14 | 711 | 353 | 0 | 0 | 15 |
15 | 712 | 353 | 0 | 0 | 16 |
16 | 6 | 353 | 0 | 0 | 17 |
17 | 81 | 353 | 0 | 0 | 18 |
18 | 457 | 353 | 0 | 0 | 19 |
19 | 719 | 353 | 0 | 0 | 20 |
20 | 381 | 353 | 0 | 0 | 21 |
21 | 505 | 353 | 0 | 0 | 22 |
22 | 356 | 353 | 0 | 0 | 23 |
23 | 218 | 353 | 0 | 0 | 24 |
24 | 643 | 353 | 0 | 0 | 25 |
25 | 217 | 353 | 0 | 0 | 26 |
26 | 610 | 353 | 0 | 0 | 27 |
27 | 705 | 353 | 0 | 0 | 28 |
28 | 410 | 353 | 0 | 0 | 29 |
29 | 58 | 353 | 0 | 0 | 30 |
30 | 566 | 353 | 0 | 0 | 31 |
31 | 708 | 353 | 0 | 0 | 32 |
32 | 103 | 353 | 0 | 0 | 33 |
33 | 456 | 353 | 0 | 0 | 34 |
34 | 231 | 353 | 0 | 0 | 35 |
35 | 468 | 353 | 0 | 0 | 36 |
36 | 282 | 353 | 0 | 0 | 37 |
37 | 734 | 353 | 0 | 0 | 38 |
38 | 527 | 353 | 0 | 0 | 39 |
39 | 363 | 353 | 0 | 0 | 40 |
40 | 603 | 353 | 0 | 0 | 41 |
41 | 174 | 353 | 0 | 0 | 42 |
42 | 469 | 353 | 0 | 0 | 43 |
43 | 692 | 353 | 0 | 0 | 44 |
44 | 366 | 353 | 0 | 0 | 45 |
45 | 401 | 353 | 0 | 0 | 46 |
46 | 662 | 353 | 0 | 0 | 47 |
47 | 539 | 353 | 0 | 0 | 48 |
48 | 518 | 353 | 0 | 0 | 49 |
49 | 15 | 353 | 0 | 0 | 50 |
50 | 650 | 353 | 0 | 0 | 51 |
51 | 682 | 353 | 0 | 0 | 52 |
52 | 139 | 353 | 0 | 0 | 53 |
53 | 592 | 353 | 0 | 0 | 54 |
54 | 183 | 353 | 0 | 0 | 55 |
55 | 343 | 353 | 0 | 0 | 56 |
56 | 66 | 353 | 0 | 0 | 57 |
57 | 136 | 353 | 0 | 0 | 58 |
58 | 380 | 353 | 0 | 0 | 59 |
59 | 167 | 353 | 0 | 0 | 60 |
60 | 195 | 353 | 0 | 0 | 61 |
61 | 597 | 353 | 0 | 0 | 62 |
62 | 392 | 353 | 0 | 0 | 63 |
63 | 398 | 353 | 0 | 0 | 64 |
64 | 428 | 353 | 0 | 0 | 65 |
65 | 451 | 353 | 0 | 0 | 66 |
66 | 111 | 353 | 0 | 0 | 67 |
67 | 630 | 353 | 0 | 0 | 68 |
68 | 114 | 353 | 0 | 0 | 69 |
69 | 242 | 353 | 0 | 0 | 70 |
70 | 345 | 353 | 0 | 0 | 71 |
71 | 413 | 353 | 0 | 0 | 72 |
72 | 402 | 353 | 0 | 0 | 73 |
73 | 593 | 353 | 0 | 0 | 74 |
74 | 513 | 353 | 0 | 0 | 75 |
75 | 497 | 353 | 0 | 0 | 76 |
76 | 702 | 353 | 0 | 0 | 77 |
77 | 8 | 353 | 0 | 0 | 78 |
78 | 672 | 353 | 0 | 0 | 79 |
79 | 198 | 353 | 0 | 0 | 80 |
80 | 334 | 353 | 0 | 0 | 81 |
81 | 663 | 353 | 0 | 0 | 82 |
82 | 563 | 353 | 0 | 0 | 83 |
83 | 601 | 353 | 0 | 0 | 84 |
84 | 254 | 353 | 0 | 0 | 85 |
85 | 714 | 353 | 0 | 0 | 86 |
86 | 596 | 353 | 0 | 0 | 87 |
87 | 344 | 353 | 0 | 0 | 88 |
88 | 572 | 353 | 0 | 0 | 89 |
89 | 675 | 353 | 0 | 0 | 90 |
90 | 112 | 353 | 0 | 0 | 91 |
91 | 143 | 353 | 0 | 0 | 92 |
92 | 185 | 353 | 0 | 0 | 93 |
93 | 361 | 353 | 0 | 0 | 94 |
94 | 65 | 353 | 0 | 0 | 95 |
95 | 573 | 353 | 0 | 0 | 96 |
96 | 332 | 353 | 0 | 0 | 97 |
97 | 197 | 353 | 0 | 0 | 98 |
98 | 326 | 353 | 0 | 0 | 99 |
99 | 32 | 353 | 0 | 0 | 100 |
The dataset is dynamic graphs for paper CrossLink. The usage of this dataset can be seen in Github
π Introduction
CrossLink learns the evolution pattern of a specific downstream graph and subsequently makes pattern-specific link predictions. It employs a technique called conditioned link generation, which integrates both evolution and structure modeling to perform evolution-specific link prediction. This conditioned link generation is carried out by a transformer-decoder architecture, enabling efficient parallel training and inference. CrossLink is trained on extensive dynamic graphs across diverse domains, encompassing 6 million dynamic edges. Extensive experiments on eight untrained graphs demonstrate that CrossLink achieves state-of-the-art performance in cross-domain link prediction. Compared to advanced baselines under the same settings, CrossLink shows an average improvement of 11.40% in Average Precision across eight graphs. Impressively, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
Format
Please keep the dataset in the fellow format:
Unnamed: 0 | u | i | ts | label | idx |
---|---|---|---|---|---|
idx-1 |
source node |
target node |
interaction time |
defalut: 0 |
from 1 to the #edges |
You can prepare those data by the code in preprocess_data
folder
You can also use our raw data in huggingface
π Citation
If you find this work helpful, please consider citing:
@misc{huang2024graphmodelcrossdomaindynamic,
title={One Graph Model for Cross-domain Dynamic Link Prediction},
author={Xuanwen Huang and Wei Chow and Yang Wang and Ziwei Chai and Chunping Wang and Lei Chen and Yang Yang},
year={2024},
eprint={2402.02168},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2402.02168},
}
- Downloads last month
- 245