Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
code
Size:
< 1K
License:
annotations_creators: [] | |
language_creators: | |
- crowdsourced | |
- expert-generated | |
language: | |
- code | |
license: | |
- apache-2.0 | |
multilinguality: | |
- multilingual | |
size_categories: | |
- unknown | |
source_datasets: [] | |
task_categories: | |
- text-generation | |
task_ids: | |
- language-modeling | |
pretty_name: HumanEval-X | |
# HumanEval-X | |
## Dataset Description | |
[HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation. | |
## Languages | |
The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go. | |
## Dataset Structure | |
To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded. | |
```python | |
from datasets import load_dataset | |
load_dataset("THUDM/humaneval-x", "js") | |
DatasetDict({ | |
test: Dataset({ | |
features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'], | |
num_rows: 164 | |
}) | |
}) | |
``` | |
```python | |
next(iter(data["test"])) | |
{'task_id': 'JavaScript/0', | |
'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n', | |
'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n', | |
'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n', | |
'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n', | |
'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'} | |
``` | |
## Data Fields | |
* ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"]. | |
* ``prompt``: the function declaration and docstring, used for code generation. | |
* ``declaration``: only the function declaration, used for code translation. | |
* ``canonical_solution``: human-crafted example solutions. | |
* ``test``: hidden test samples, used for evaluation. | |
* ``example_test``: public test samples (appeared in prompt), used for evaluation. | |
## Data Splits | |
Each subset has one split: test. | |
## Citation Information | |
Refer to https://github.com/THUDM/CodeGeeX. |