hyperedge
int64
2
164k
nodes
stringlengths
3
97
timestamp
float64
2.8k
33M
2
[3, 4]
2,797
3
[3, 5]
3,304
5
[8, 6]
7,926
7
[9, 10]
19,403
8
[11, 12]
19,560
9
[13, 14]
21,077
10
[13, 15]
21,280
11
[16, 17]
21,793
12
[18, 19]
21,799
13
[20, 13]
22,038
14
[21, 22]
23,175
15
[21, 23]
23,263
17
[42, 43]
23,646
18
[44, 45]
23,652
21
[50, 51]
24,004
22
[42, 52]
24,076
24
[55, 56, 57, 58, 59, 60]
24,522
25
[61, 62]
24,710
26
[55]
24,832
27
[64, 63]
25,325
28
[65, 66]
25,424
29
[5, 63]
25,431
31
[69, 70]
25,597
33
[42, 43]
25,654
34
[72, 71]
25,656
35
[73, 22]
25,811
36
[72, 71]
25,870
37
[72, 71]
25,991
38
[74, 75]
25,991
40
[78, 79]
26,272
41
[80, 78]
26,402
42
[80, 78]
26,484
44
[20, 63]
27,094
45
[42, 52]
27,119
46
[83, 84]
27,133
47
[22, 23]
27,145
49
[73, 22]
27,187
50
[42, 43, 86, 87, 88]
27,235
51
[83, 87]
27,254
52
[89, 90]
27,343
53
[91, 92]
27,362
54
[21, 93]
27,408
55
[96, 42, 43, 52, 86, 88, 94, 95]
27,492
56
[89, 90, 97]
27,598
57
[98, 99, 100, 101, 102, 103]
27,689
58
[104, 105]
27,718
59
[104, 105]
27,822
60
[42, 52]
28,102
62
[91, 107]
28,150
63
[108, 63]
28,193
64
[67, 109, 110, 111, 112, 113]
28,260
65
[114, 115]
28,326
67
[118, 119]
28,544
68
[120, 77]
28,555
72
[13, 15]
29,181
73
[125, 126]
29,445
74
[14, 127]
29,586
75
[128, 129, 130, 131]
29,670
77
[41, 27, 30]
29,736
78
[22, 23]
29,768
80
[56, 57, 60, 55]
29,864
83
[136, 137]
29,929
84
[138, 139]
29,998
85
[21, 23]
30,000
86
[140, 141]
30,009
89
[145, 146]
30,105
90
[89, 90]
30,114
91
[145, 146]
30,153
92
[147, 148]
30,274
93
[83, 84]
30,276
94
[149, 150]
30,281
95
[104, 151]
30,392
97
[152, 29]
30,470
98
[153, 154]
30,512
99
[153, 154]
30,668
100
[155, 156]
30,698
101
[13, 14]
30,809
103
[16, 140]
30,932
104
[160, 159]
30,953
105
[3, 4, 5]
30,970
107
[13, 15]
31,082
108
[40, 24, 36, 30]
31,085
109
[161, 162]
31,232
112
[108, 63]
31,307
113
[73, 164]
31,335
114
[73, 164]
31,347
115
[140, 165]
31,377
116
[120, 77]
31,435
118
[168, 169]
31,471
121
[41, 172]
31,652
122
[83, 84]
31,682
123
[104, 124, 173, 62]
31,721
124
[25, 97]
31,773
126
[174, 22]
32,006
127
[176, 175]
32,126
128
[177, 178, 179]
32,180
130
[22, 23]
32,636
131
[131, 181]
32,748
132
[44, 45]
32,765
134
[184, 130]
32,914

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="email-Eu-25", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
30

Collection including SauravMaheshkar/email-Eu-25