SKNahin's picture
Update README.md
b779cb6 verified
metadata
dataset_info:
  features:
    - name: audio
      dtype: audio
    - name: transcription
      dtype: string
    - name: duration
      dtype: float64
    - name: sr
      dtype: int64
    - name: wav2vec2pred
      dtype: string
    - name: wer
      dtype: float64
    - name: wps
      dtype: float64
    - name: is_better
      dtype: bool
  splits:
    - name: commonvoice
      num_bytes: 26613419533.408
      num_examples: 963636
    - name: openslr
      num_bytes: 2246649669.92
      num_examples: 198789
    - name: madasr
      num_bytes: 6101023454.02
      num_examples: 372065
    - name: shrutilipi
      num_bytes: 5017828548.87
      num_examples: 246370
    - name: flerus
      num_bytes: 120214199.914
      num_examples: 3006
    - name: kathbath
      num_bytes: 92451768.598
      num_examples: 4589
    - name: indictts
      num_bytes: 227151543.152
      num_examples: 12752
    - name: ucla
      num_bytes: 20343224982.168
      num_examples: 1921116
    - name: gali
      num_bytes: 345715480
      num_examples: 10000
  download_size: 58948504311
  dataset_size: 61107679180.05001
configs:
  - config_name: default
    data_files:
      - split: commonvoice
        path: data/commonvoice-*
      - split: openslr
        path: data/openslr-*
      - split: madasr
        path: data/madasr-*
      - split: shrutilipi
        path: data/shrutilipi-*
      - split: flerus
        path: data/flerus-*
      - split: kathbath
        path: data/kathbath-*
      - split: indictts
        path: data/indictts-*
      - split: ucla
        path: data/ucla-*
      - split: gali
        path: data/gali-*
task_categories:
  - automatic-speech-recognition
language:
  - bn
size_categories:
  - 1M<n<10M

Open Large Bengali ASR Data

This is a collection of publicly available ASR data for Bengali. It contains 5000 hours of audio. We have a filtering column called is_better to filter good-quality audio from the corpus. It is set based on the wer between original transcription and prediction taken from a Bengali-Wav2Vec2 model and word-per-second (wps).

Datasets: