blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
261
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
45
license_type
stringclasses
2 values
repo_name
stringlengths
8
111
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
72 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
530k
616M
star_events_count
int64
0
102k
fork_events_count
int64
0
24.6k
gha_license_id
stringclasses
9 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
40 values
src_encoding
stringclasses
10 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
2 classes
length_bytes
int64
11
4.05M
extension
stringclasses
25 values
content
stringlengths
10
4.04M
authors
sequencelengths
1
1
author_id
stringclasses
578 values
6b59d53ff5dca12c2cf49ecda84be12a1c60a12c
a3644ed207867df4d78a04af39ac3e26f86f9012
/ibvp/language/symbolic/util.py
cf587104d319938fea973aba507443ccc906a896
[ "MIT" ]
permissive
ibvp/ibvp
006887be85a37ac4da51664d5fec9244c446cacd
c758b150cbd822bd17444499bea29c53b0606327
refs/heads/master
2022-05-07T02:17:46.232332
2022-03-20T19:34:13
2022-03-20T19:34:13
21,990,116
1
1
null
null
null
null
UTF-8
Python
false
false
2,418
py
from __future__ import division from __future__ import absolute_import from six.moves import range __copyright__ = "Copyright (C) 2010-2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np def pretty(expr): from ibvp.language.symbolic.mappers import PrettyStringifyMapper stringify_mapper = PrettyStringifyMapper() from pymbolic.mapper.stringifier import PREC_NONE result = stringify_mapper(expr, PREC_NONE) splitter = "="*75 + "\n" cse_strs = stringify_mapper.get_cse_strings() if cse_strs: result = "\n".join(cse_strs)+"\n"+splitter+result return result def join_fields(*args): from pytools.obj_array import make_obj_array, log_shape from pymbolic.geometric_algebra import MultiVector, bit_count res_list = [] for arg in args: if isinstance(arg, list): res_list.extend(arg) elif isinstance(arg, MultiVector): for grade in arg.all_grades(): for bits in range(2**arg.space.dimensions): if bit_count(bits) == grade: res_list.append(arg.data.get(bits, 0)) elif isinstance(arg, np.ndarray): if log_shape(arg) == (): res_list.append(arg) else: res_list.extend(arg.flat) else: res_list.append(arg) return make_obj_array(res_list)
06683c64c9c082713d0b286d60bf3d006bef3569
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/NicolasHug_Surprise/Surprise-master/examples/grid_search_usage.py
f915af8c2eff0478eb4c7a991024a2a4e4aa1ff3
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
1,150
py
""" This module describes how to manually train and test an algorithm without using the evaluate() function. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from surprise import GridSearch from surprise import SVD from surprise import Dataset param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005], 'reg_all': [0.4, 0.6]} grid_search = GridSearch(SVD, param_grid, measures=['RMSE', 'FCP']) # Prepare Data data = Dataset.load_builtin('ml-100k') data.split(n_folds=3) grid_search.evaluate(data) # best RMSE score print(grid_search.best_score['RMSE']) # >>> 0.96117566386 # combination of parameters that gave the best RMSE score print(grid_search.best_params['RMSE']) # >>> {'reg_all': 0.4, 'lr_all': 0.005, 'n_epochs': 10} # best FCP score print(grid_search.best_score['FCP']) # >>> 0.702279736531 # combination of parameters that gave the best FCP score print(grid_search.best_params['FCP']) # >>> {'reg_all': 0.6, 'lr_all': 0.005, 'n_epochs': 10} import pandas as pd # noqa results_df = pd.DataFrame.from_dict(grid_search.cv_results) print(results_df)
e854ed4a3386c854b4fb23ef278a885098c04eaf
2b49bf0b7b9a62eb665cb0da9a86d7c65433f8a2
/Additional/206.Reverse Linked List.py
06f7ef7c083a993eeb7cd52a2f6ada4422dd50d7
[]
no_license
samuel871211/My-python-code
f7472fff671437d6181b91d36a77e24eb04678c6
3120cfb6ccaeade969dd0ea0ff335b4a5789ba74
refs/heads/master
2023-03-04T13:48:37.658549
2023-02-28T06:16:52
2023-02-28T06:16:52
210,172,178
3
5
null
null
null
null
UTF-8
Python
false
false
551
py
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseList(self, head: ListNode) -> ListNode: a = [] while head != None: a.append(head.val) head = head.next if len(a) == 0: return None else: a.reverse() newhead = ListNode(a[0]) cur = newhead for i in range(1,len(a)): cur.next = ListNode(a[i]) cur = cur.next return newhead
904ddc6a110c928eecd9ed053afa3bf80f4931a3
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/25/usersdata/98/11884/submittedfiles/av1_3.py
e38e0f0784c64456ff7dcadb762460593411b8a4
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
# -*- coding: utf-8 -*- from __future__ import division import math a=int(input('Digite o valor de a: ')) b=int(input('Digite o valor de b: ')) i=1 cont=0 c=0 while True: if a%i==0 and b%i==0: cont=cont+1 c=i i=i+1 if i==a or i==b: break
e50e19db7754f252118d5e3c69541abe67d0fdab
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/42/usersdata/69/21660/submittedfiles/jain.py
34c02d431af79001b4eb9414ce0115cad59ff0fc
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,090
py
# -*- coding: utf-8 -*- from __future__ import division import funcoes ''' ENTRADA TESTE f = 0.2 dH = 5 L = 3250 Q = 0.005 g = 9.81 v = 0.000001 e = 0.00006 k = 10 A saida para esta entrada é aproximadamente: 0.1247 (D) e 0.0224 (f) ''' f = 0.2 dH = input('Digite a perda de carga: ') L = input('Digite o comprimento da tubulação: ') Q = input('Digite a vazão: ') g = input('Digite a gravidade: ') v = input('Digite a viscosidade cinemática: ') e = input('Digite a rugosidade absoluta: ') k = 10 #comece aqui import math def diametro(fn,L,Q,dH): Diam=((8*fn*L*Q*Q)/(math.pi*math.pi*dH*g))**(1/5) return Diam def Reynalds(Q,D,v): R=4*Q/(math.pi*D*v) return R def atrito(Rey,E,D): s=(E/(3.7*D))+(5.74/(Rey**0.9)) t=(2500/Rey)**6 f=(((64/Rey)**8)+9.5*((math.log(s)-t)**(-16)))**0.125 return f for i in range(0,k,1): D=diametro(fn,L,Q,dH) Rey=Reynalds(Q,D,v) fn=atrito(Rey,e,D) if 0.000001<=(e/D)<=0.01 and 5000<=Rey<=100000000: if fn==f: break else: f=fn print('%.10f'%f) print('%.10f'%D)
d84e02f5f2815a7f82b35a8daa0cb83b201fc09c
6e1508ebdaf63b3afee10926bdf74ce9478f3508
/kadanesalgorithm.py
4ebc51ef1200e349f04a36b701abf97ccdb58046
[]
no_license
dopeprogr4mmer/DSA
5f2741a924bec9b6add7b4d92d207ec553576439
18f4bd93b264acfd4cfd91b9aa318bdf502d0339
refs/heads/main
2023-07-17T22:33:40.347653
2021-08-25T05:28:04
2021-08-25T05:28:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,454
py
<<<<<<< HEAD <<<<<<< HEAD import sys ======= >>>>>>> d86366dc91ea42926b2be1e049e46fb03f518c05 ======= >>>>>>> d86366dc91ea42926b2be1e049e46fb03f518c05 def maxSubArraySum(a,size): max_so_far = 0 max_ending_here = 0 for i in range(size): <<<<<<< HEAD <<<<<<< HEAD #max_ending_here += a[i] if max_ending_here + a[i]<a[i]: max_ending_here = a[i] else: max_ending_here+=a[i] if(max_so_far<max_ending_here): max_so_far = max_ending_here print(max_so_far) return max_so_far def max_SubArray_Sum(a,size): #Kadane algo ##Your code here output_arr = [0]*size output_arr[0]=a[0] max_sum = a[0] for i in range(1,size): output_arr[i] = max(a[i], output_arr[i-1]+a[i]) #print(output_arr) max_sum = max(max_sum, output_arr[i]) print(output_arr, max_sum) return max_sum maxSubArraySum([2,3,-6,3,3,-6,1,-5], 5) ======= ======= >>>>>>> d86366dc91ea42926b2be1e049e46fb03f518c05 max_ending_here += a[i] if max_ending_here<0: max_ending_here = 0 elif(max_so_far<max_ending_here): max_so_far = max_ending_here <<<<<<< HEAD return max_so_far >>>>>>> d86366dc91ea42926b2be1e049e46fb03f518c05 ======= return max_so_far >>>>>>> d86366dc91ea42926b2be1e049e46fb03f518c05
c4de4f95686f6d39c4a347e4462b601fbc2bd6d2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03828/s176803120.py
3c09dd5cfe45d562d5aee2961335ac10dec7d7b7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
from collections import Counter MOD = 10 ** 9 + 7 def factorize(n): """ Simple factorize :param n: number to factorize :return: list of factors time complexity : O(n√n) space complexity : O(n) """ factors = [] for i in range(2, n+1): while n % i == 0: n = n // i factors.append(i) return factors def main(): N = int(input()) factors = [] for i in range(1, N+1): factors += factorize(i) factor_counts = list(Counter(factors).values()) ans = 1 for v in factor_counts: ans = ans * (v+1) % MOD print(ans) main()
f970d26407f174a743bcb989cdae5fd18f1cf862
969ae96c883fa8aee938a03af40be54dad60f0ca
/query_scripts/intersect_base.py
13528a869bc3f58b6e98c732106540b26f4a338d
[]
no_license
fuxmanlab/altered_TFBS
1cd695c734cbbfd23b72c683ff9a531306144337
2cc4a3c95836b3f980764619597b37cd967091dc
refs/heads/master
2022-11-19T06:42:35.100582
2020-07-28T14:58:02
2020-07-28T14:58:02
264,718,739
1
0
null
null
null
null
UTF-8
Python
false
false
3,149
py
# Base class for loading, saving, and querying the .bed and .vcf # files import useful import tempfile import os import glob import shutil class IntersectBase(object): ''' Base class for intersecting .bed and .vcf files with the alterome datafiles using Spark-SQL.''' def __init__(self, filename, hadoop=False): if not hadoop: if not os.path.exists(filename): raise OSError("File not found: %s" % filename) self.filename = filename # The loaded dataframe from the file self.df = None #The result of the query self.intersect_df = None # Are we on hadoop? self.hadoop = hadoop def to_df(self, spark): ''' Convert the file to a Spark DataFrame, stored internally in self.df. The df is registered as a Spark SQL temp table. ''' pass def intersection_query(self,spark): ''' Intersection query for the .bed and .vcf files with the alterome in the tfbs_df and tf_info_df dataframes. Stores the result internally in self.intersect_df. ''' pass def write_df(self, output_csv, npartitions=None): ''' Write in parallel to a set of output CSV files and them consolidate them into 1.''' tmp_name = self.df_to_csv(output_csv, npartitions) if not self.hadoop: self.consolidate_csv(tmp_name,output_csv) @useful.timeit def df_to_csv(self,output_csv, npartitions=None): # Repartition if asked if npartitions: self.intersect_df.repartition(npartitions) # Get a unique temporary filename using the process id if not self.hadoop: tmp_name = str(os.getpid())+'_tmp' tmp_path = os.path.join(os.environ['TMPDIR'],tmp_name+'.csv') if os.path.exists(tmp_path): shutil.rmtree(tmp_path) self.intersect_df.write.option('header','true').csv(tmp_path) return tmp_path else: self.intersect_df.write.option('header','true').csv(output_csv) @useful.timeit def consolidate_csv(self, input_dir,output_csv, delete_input=True): print("Consolidating parallel CSV files.") if os.path.exists(output_csv): os.unlink(output_csv) # Then write a loop to read them in one-by-one and append to the requested output_csv csv_files = glob.glob(os.path.join(input_dir,'*.csv')) shutil.copyfile(csv_files.pop(0),output_csv) # Now open the output file for appending and add all the # others to it. with open(output_csv, 'ab') as outfile: for fname in csv_files : with open(fname, 'rb') as infile: # Throw away the header line infile.readline() # Block copy rest of file from input to output without parsing shutil.copyfileobj(infile, outfile) # Finally delete the whole temp directory if requested. if delete_input: shutil.rmtree(input_dir)
403fac664e7532d39cf7a726cf9165c6b7e21555
fa461310d67a51dc0f473e54bd02c90c12c7f7dc
/Query understanding/demo1.py
a9f1754dc771f5deedea583220bd1d8b0d3f305b
[]
no_license
yangeryang/Ads-ranking-
624cf215eda0837e0df738a7ec96d2811d053916
216c10fa49c52e0fbb913ef2a7d53cd92700d576
refs/heads/master
2020-05-22T05:23:33.137029
2019-05-12T16:36:27
2019-05-12T16:36:27
186,234,700
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
import sys from pyspark import SparkContext if __name__ == "__main__": file = sys.argv[1] #raw train file sc = SparkContext(appName="demo1") data_uc = sc.textFile(file).map(lambda line: line.upper()) data_filt = data_uc.filter(lambda line: line.startswith("T")) #data_uc... data_filt.saveAsTextFile("demo_T_output6") sc.stop()
76a29edd0e8bbc220e530784749c7239e7e13007
650772c1de39412ed293bdd9f28518d3e50b2ef0
/transformations/color_demo.py
4f726733b2310e4fb9232d6f0ae9d75b6b914973
[]
no_license
tuftsceeo/Onshape-PLUS-Team
2ecb62d40ba5349cad3ebd39368b771d95d88649
40bcd952ca7b84660615d8812c0e3ec3ce0211e6
refs/heads/master
2022-12-03T07:22:49.854357
2020-08-22T00:47:29
2020-08-22T00:47:29
285,607,231
0
1
null
null
null
null
UTF-8
Python
false
false
2,350
py
############################################################################### # Project name: Color Demo # File name: color_demo.py # Author: Therese (Teo) Patrosio @imnotartsy # Date: 7/21/20 # Description: Connects spike bluetooth to onshape api for 7/23 demo # History: # Last modified by Teo 7/24/20 # (C) Tufts Center for Engineering Education and Outreach (CEEO) ############################################################################### import serial #pip3 install pyserial import utils.transform_utils as transform import utils.onshape_utils as onshape import argparse from datetime import datetime ### Connect to Serial ser = serial.Serial('/dev/tty.LEGOHubOwen-SerialPortP') # serial.Serial(port_args.port) # ### Gets Spike starter message for i in range(0,2): line = ser.readline() print(line.decode(), end="") ### Catch case for if spike goes into data spewing mode (untested) (WIP) # Cancels any Data Sending ser.write('\x03'.encode()) ser.write('\x03'.encode()) ser.write('\x03'.encode()) ser.write('\x03'.encode()) ### Message to send to serial ## This program gets the gesture of the spike message = """ import hub,utime\r\n from spike.control import wait_for_seconds\r\n def setMotor(large, small):\r\n\b\b hub.port.C.motor.run_to_position(large, 50)\r\n\b hub.port.D.motor.run_to_position(small, 50)\r\n\b \r\n\r\n\r\n\r\n """ print(message) ser.write('\x03'.encode()) ser.write(message.encode()) last = 0 assembly = onshape.getAssemblyInfo(False) # print(assembly["MvFKyhclA9pW5axe3"]["fullPath"]) ### Read Data and call API for i in range(0,1000): line = ser.readline() ## Prints serial line print(line.decode(), end="") try: curr = int(line.decode()) except: print("position not updated") curr = last ## If state changes, call a transform if(abs(curr - last) > 5): ## Sets transformation args = [0, 0, 0, 0, 0, 1, curr] ## Transforms set up (get matrix and part id from assembly info) M = transform.getTranslationMatrix(args, False) partsToTransform = [assembly["MvFKyhclA9pW5axe3"]["fullPath"]] # selects motor axle state = onshape.postTransform(M, False, partsToTransform, False) print("\tTransformation status:", state, datetime.now()) last = curr ser.close()
736a6dd319cdb36e01d57e42fdf371c5db550c22
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/ghwatson_faststyle/faststyle-master/losses.py
7a4cc6b60cea27257d8a4820a88ca8fb5d7f1574
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
3,526
py
""" This file contains the different loss functions. File author: Grant Watson Date: Feb 2017 """ import tensorflow as tf import numpy as np def content_loss(content_layers, target_content_layers, content_weights): """Defines the content loss function. :param content_layers List of tensors for layers derived from training graph. :param target_content_layers List of placeholders to be filled with content layer data. :param content_weights List of floats to be used as weights for content layers. """ assert(len(target_content_layers) == len(content_layers)) num_content_layers = len(target_content_layers) # Content loss content_losses = [] for i in xrange(num_content_layers): content_layer = content_layers[i] target_content_layer = target_content_layers[i] content_weight = content_weights[i] loss = tf.reduce_sum(tf.squared_difference(content_layer, target_content_layer)) loss = content_weight * loss _, h, w, c = content_layer.get_shape().as_list() num_elements = h * w * c loss = loss / tf.cast(num_elements, tf.float32) content_losses.append(loss) content_loss = tf.add_n(content_losses, name='content_loss') return content_loss def style_loss(grams, target_grams, style_weights): """Defines the style loss function. :param grams List of tensors for Gram matrices derived from training graph. :param target_grams List of numpy arrays for Gram matrices precomputed from style image. :param style_weights List of floats to be used as weights for style layers. """ assert(len(grams) == len(target_grams)) num_style_layers = len(target_grams) # Style loss style_losses = [] for i in xrange(num_style_layers): gram, target_gram = grams[i], target_grams[i] style_weight = style_weights[i] _, c1, c2 = gram.get_shape().as_list() size = c1*c2 loss = tf.reduce_sum(tf.square(gram - tf.constant(target_gram))) loss = style_weight * loss / size style_losses.append(loss) style_loss = tf.add_n(style_losses, name='style_loss') return style_loss def tv_loss(X): """Creates 2d TV loss using X as the input tensor. Acts on different colour channels individually, and uses convolution as a means of calculating the differences. :param X: 4D Tensor """ # These filters for the convolution will take the differences across the # spatial dimensions. Constructing these on paper has to be done carefully, # but can be easily understood when one realizes that the sub-3x3 arrays # should have no mixing terms as the RGB channels should not interact # within this convolution. Thus, the 2 3x3 subarrays are identity and # -1*identity. The filters should look like: # v_filter = [ [(3x3)], [(3x3)] ] # h_filter = [ [(3x3), (3x3)] ] ident = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) v_array = np.array([[ident], [-1*ident]]) h_array = np.array([[ident, -1*ident]]) v_filter = tf.constant(v_array, tf.float32) h_filter = tf.constant(h_array, tf.float32) vdiff = tf.nn.conv2d(X, v_filter, strides=[1, 1, 1, 1], padding='VALID') hdiff = tf.nn.conv2d(X, h_filter, strides=[1, 1, 1, 1], padding='VALID') loss = tf.reduce_sum(tf.square(hdiff)) + tf.reduce_sum(tf.square(vdiff)) return loss
40a5badf20a8815924f3d9ea4e245dba81149a88
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03588/s910432178.py
314d7a583d1067ee67cd31e93342774353c07a3a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
import sys def solve(): readline = sys.stdin.buffer.readline mod = 10 ** 9 + 7 n = int(readline()) ab = [list(map(int, readline().split())) for _ in range(n)] ab.sort() print((ab[-1][0] - ab[0][0] + 1) + (ab[0][0] - 1) + (ab[-1][1])) if __name__ == '__main__': solve()
702e397972e162ab5ddf2af196684a76f393bd61
71673d845952b50986d1c21dc5bbbcab2a2a2651
/introduction_to_lxml.py
0783fcf78d6a6982eff93f7b0558518976c20d60
[]
no_license
afcarl/introductionToWebScraping
77a44bfb7655e44231bed216d37b015e3cf52a5c
d1039aeee87365f2807dd198e53bd1bb6224a550
refs/heads/master
2020-03-26T04:23:54.052825
2015-06-18T14:23:40
2015-06-18T14:23:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
import requests import lxml.html base_url = "https://www.google.com" def scrape(url,base_url,depth): if depth == 0: return True r = requests.get(url) html = lxml.html.fromstring(r.text) links = html.xpath("//a/@href") for ind,link in enumerate(links): if "http" in link: print link else: print base_url+link links[ind] = base_url+link for link in links: scrape(link,base_url,depth-1) scrape(base_url,base_url,5)
611ca1b0710e080956b3f0259d5042c17ada5814
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/signalr/azure-mgmt-signalr/azure/mgmt/signalr/aio/operations/_usages_operations.py
aa1860efef37dbf2413c285639f2957501b5bfdb
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
5,150
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._usages_operations import build_list_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UsagesOperations: """UsagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.signalr.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, location: str, **kwargs: Any ) -> AsyncIterable["_models.SignalRUsageList"]: """List resource usage quotas by location. :param location: the location like "eastus". :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SignalRUsageList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.signalr.models.SignalRUsageList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SignalRUsageList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( location=location, subscription_id=self._config.subscription_id, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( location=location, subscription_id=self._config.subscription_id, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SignalRUsageList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.SignalRService/locations/{location}/usages'} # type: ignore
df4017d719a457eb43a5aa6c9d289e9e674a9b84
e61802befd592a18d535999277e3d4767042a441
/problem_11.py
8c4304f4ad7e6f7973982931f25f9f46d2d2458a
[]
no_license
subenakhatun/pythonbasic
5962804d4aaee18c9bc5e8f1d178ae846efabd85
36066df0a9355c6d451e80e06fba2fb712759f3d
refs/heads/master
2021-07-20T23:21:49.113162
2020-05-15T04:11:19
2020-05-15T04:11:19
163,249,284
0
0
null
null
null
null
UTF-8
Python
false
false
31
py
str = 'subena' print(len(str))
45158fd73f856d10753fdab1158bbd52cbc902c4
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/es_maml/policies.py
f901bf44a33836629722349dd7c0953bd0a94da7
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
9,160
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains policies used in MAML.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import numpy as np import tensorflow.compat.v1 as tf import tensorflow_probability as tfp class Policy(object): r"""Abstract class for different policies \Pi: S -> A. Class is responsible for creating different policies and provides an interface for computing actions recommended by policies in different input states. In particular, this class provides an interface that accepts compressed vectorized form of the policy and decompresses it. Standard procedure for improving the parameters of the policy with an interface given by the class: policy = policies.ParticularClassThatInheritsFromBaseClass(...) vectorized_network = policy.get_initial() while(...): new_vectorized_network = SomeTransformationOf(vectorized_network) policy.update(new_vectorized_network) and SomeTransformationOf is a single step of some optimization procedure such as gradient descent that sees the policy in the vectorized form. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def update(self, vectorized_parameters): """Updates the policy using new parameters from <vectorized_parameters>. Updates the parameters of the policy using new parameters encoded by <vectorized_parameters>. The size of the vector <vectorized_parameters> should be the number of all biases and weights of the neural network. We use the convention where parameters encoding matrices of connections of the neural network come in <vectorized_parameters> before parameters encoding biases and furthermore the order in <vectorized_parameters> of parameters encoding weights for different matrices/biases-vectors is inherited from the order of these matrices/biases-vectors in the decompressed neural network. Details regarding compression depend on different neural network architectures used (such as: structured and unstructured) and are given in the implementations of that abstract method in specific classes that inherit from Policy. Args: vectorized_parameters: parameters of the neural network in the vectorized form. Returns: """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_action(self, state): """Returns the action proposed by a policy in a given state. Returns an action proposed by the policy in <state>. Args: state: input state Returns: Action proposed by the policy represented by an object of the class in a given state. """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_initial(self): """Returns the default parameters of the policy in the vectorized form. Initial parameters of the policy are output in the vectorized form. Args: Returns: Numpy array encoding in the vectorized form initial parameters of the policy. """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_total_num_parameters(self): """Outputs total number of parameters of the policy. Args: Returns: Total number of parameters used by the policy. """ raise NotImplementedError('Abstract method') class BasicTFPolicy(Policy): """Basic Policy implemented in Tensorflow.""" def __init__(self, state_dimensionality, action_dimensionality, hidden_layers, scope): self.state_dimensionality = state_dimensionality self.action_dimensionality = action_dimensionality self.input_ph = tf.placeholder( dtype=tf.float32, shape=[None, self.state_dimensionality]) self.output_ph = tf.placeholder( dtype=tf.float32, shape=[None, self.action_dimensionality]) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self.out = self.input_ph for i, layer_size in enumerate(hidden_layers): self.out = tf.layers.dense( self.out, layer_size, activation=tf.nn.relu, name='h' + str(i)) self.main_out = tf.layers.dense( self.out, self.action_dimensionality, name='main_out') self.secondary_out = tf.layers.dense( self.out, self.action_dimensionality, name='secondary_out') self.action = tfp.distributions.Normal( loc=self.main_out, scale=self.secondary_out).sample() self.loss = tf.losses.mean_squared_error(self.main_out, self.output_ph) self.obj_tensor = -1.0 * self.loss self.tf_params = tf.trainable_variables(scope) self.shapes = [v.shape.as_list() for v in self.tf_params] self.sizes = [int(np.prod(s)) for s in self.shapes] self.total_nb_parameters = sum(self.sizes) self.assign_ph_dict = { v: tf.placeholder(dtype=tf.float32, shape=v.shape.as_list()) for v in self.tf_params } self.assign_ops = [] for v in self.tf_params: self.assign_ops.append(v.assign(self.assign_ph_dict[v])) with tf.control_dependencies(self.assign_ops): # This is needed to input Numpy Params into network temporarily self.action = tf.identity(self.action) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.np_params = np.concatenate([ self.sess.run(tf.reshape(tf_param, [-1])) for tf_param in self.tf_params ]) def update(self, flattened_weights): self.np_params = flattened_weights def get_action(self, state): ph_dict = {} for ind, v in enumerate(self.tf_params): numpy_flat_val = self.np_params[sum(self.sizes[:ind] ):sum(self.sizes[:ind + 1])] numpy_reshaped = np.reshape(numpy_flat_val, self.shapes[ind]) v_ph = self.assign_ph_dict[v] ph_dict[v_ph] = numpy_reshaped ph_dict[self.input_ph] = state.reshape(-1, self.state_dimensionality) action_numpy = self.sess.run(self.action, feed_dict=ph_dict) return action_numpy.flatten() def get_initial(self): return self.np_params def get_total_num_parameters(self): return self.total_nb_parameters class DeterministicNumpyPolicy(Policy): """Deterministic Policy implemented in Numpy.""" def __init__(self, state_dimensionality, action_dimensionality, hidden_layers, init_sd=None): self.state_dimensionality = state_dimensionality self.action_dimensionality = action_dimensionality self.layers = hidden_layers + [action_dimensionality] self.layers.insert(0, state_dimensionality) self.weights = [] self.biases = [] self.weight_positions = [] self.bias_positions = [] self.init_params = [] flat_pos = 0 for dims in zip(self.layers[:-1], self.layers[1:]): in_size = dims[0] out_size = dims[1] if init_sd is None: init_sd = np.sqrt(2.0 / (in_size)) init_weights = init_sd * np.random.normal(0, 1, size=(out_size * in_size)) self.init_params.extend(init_weights.tolist()) self.weights.append(np.reshape(init_weights, (out_size, in_size))) self.weight_positions.append(flat_pos) flat_pos += out_size * in_size init_biases = np.zeros(out_size) self.init_params.extend(init_biases.tolist()) self.biases.append(init_biases) self.bias_positions.append(flat_pos) flat_pos += out_size self.weight_positions.append(flat_pos) def update(self, flat_weights): for i, dims in enumerate(zip(self.layers[:-1], self.layers[1:])): in_size = dims[0] out_size = dims[1] start_pos = self.weight_positions[i] end_pos = start_pos + (out_size * in_size) self.weights[i] = np.reshape( np.array(flat_weights[start_pos:end_pos]), (out_size, in_size)) start_pos = self.bias_positions[i] end_pos = start_pos + out_size self.biases[i] = np.reshape( np.array(flat_weights[start_pos:end_pos]), (out_size)) def get_action(self, state): neuron_values = np.reshape(np.array(state), (self.state_dimensionality)) for i in range(len(self.weights)): neuron_values = np.matmul(self.weights[i], neuron_values) neuron_values += self.biases[i] if i < len(self.weights) - 1: np.maximum(neuron_values, 0, neuron_values) np.tanh(neuron_values, neuron_values) # this is sometimes not needed return neuron_values def get_initial(self): return np.array(self.init_params) def get_total_num_parameters(self): return self.weight_positions[-1]
3b8746a1cdd4600634297132c55f8cb3205475c4
d8349b7c3ca5289ea4627719699ae88b536fa24e
/uhr.py
bb9d4cef9887219b82c8773ba0814e754bdfe453
[]
no_license
Mighty-Yth/Affinity
8277ae59785f5663b1458e579f9f49e7719b4871
a4f92421f014c0b296596234b0727bb2b0f526f1
refs/heads/master
2020-03-28T20:29:42.009120
2018-09-17T06:00:18
2018-09-17T06:00:18
149,075,792
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
import discord from discord.ext import commands class Uhr: def __init__(self, identity,user,EXP): self.identity = identity self.user= user self.EXP = EXP def __str__(self): return self.identity + ':' + self.user+':' + str(self.EXP) def deposit(self,amount): if amount >= 0: self.EXP += amount def remove(self,amount): if amount >= 0 and amount<= self.EXP: self.EXP -= amount
c92b4463310cabc5b593f28b34d7d29802149be3
8f4e9d24de3dfbd2efae58877ab0043a7da57831
/Learn_PhythonEx/ex6.py
a9b2054e8db34cbb6de3068fbfe0bc208451d780
[]
no_license
dersonnex/Python_learning
1cbcfe428a4765adabdca65d275b63c37acb0ea8
7827962c5f208b36c6511a20d220cba609494853
refs/heads/master
2021-01-12T06:00:52.179117
2017-11-14T09:43:54
2017-11-14T09:43:54
77,274,272
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
x= "There are %d types of people." % 10 # defines veriable X binary = "binary" # defines veriable binary do_not = "don't" # defines veriable do_not y = "Those who know %s and those who %s." % (binary, do_not) # defines veriable y print x print y print "I said: %r." % x #I said :there are 10 types of people. print "I also said: '%s'." % y hilarious = False joke_evaluation = "Isn't that joke so fanny?! %r" print joke_evaluation % hilarious w = "This is the left side of ..." e = "a string with a right side." print w + e
ca80285ee2929ac20cf43ad7fff92fb60b9efdea
f81c8e4d702d5c88af92c691d35b6f9c0d2f4390
/backend/dark_waterfall_26026/wsgi.py
e5039146e98431c055564aea9a661c25a52173fd
[]
no_license
crowdbotics-apps/dark-waterfall-26026
bdfd44240dae3c1ad20ed8b7a8da701308db5958
95f9eda959b6d21778ff59db2c5c9a585d6a670c
refs/heads/master
2023-04-12T17:31:25.091727
2021-04-29T19:14:56
2021-04-29T19:14:56
362,922,208
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
""" WSGI config for dark_waterfall_26026 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dark_waterfall_26026.settings') application = get_wsgi_application()
ae7a1e257d3423cfd604b1e6c27ffe19ee1012f5
6b3e8b4291c67195ad51e356ba46602a15d5fe38
/rastervision2/examples/utils.py
d521e74560b2de4494f0d0ff4344208ee3e221b0
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
csaybar/raster-vision
4f5bb1125d4fb3ae5c455db603d8fb749221dd74
617ca15f64e3b8a391432306a743f7d0dfff352f
refs/heads/master
2021-02-26T19:02:53.752971
2020-02-27T17:25:31
2020-02-27T17:25:31
245,547,406
2
1
NOASSERTION
2020-03-07T01:24:09
2020-03-07T01:24:08
null
UTF-8
Python
false
false
4,864
py
import csv from io import StringIO import tempfile import os import rasterio from shapely.strtree import STRtree from shapely.geometry import shape, mapping import shapely from rastervision.core import Box from rastervision.data import RasterioCRSTransformer, GeoJSONVectorSource from rastervision.utils.files import (file_to_str, file_exists, get_local_path, upload_or_copy, make_dir, json_to_file) from rastervision.filesystem import S3FileSystem def str_to_bool(x): if type(x) == str: if x.lower() == 'true': return True elif x.lower() == 'false': return False else: raise ValueError('{} is expected to be true or false'.format(x)) return x def get_scene_info(csv_uri): csv_str = file_to_str(csv_uri) reader = csv.reader(StringIO(csv_str), delimiter=',') return list(reader) def crop_image(image_uri, window, crop_uri): im_dataset = rasterio.open(image_uri) rasterio_window = window.rasterio_format() im = im_dataset.read(window=rasterio_window) with tempfile.TemporaryDirectory() as tmp_dir: crop_path = get_local_path(crop_uri, tmp_dir) make_dir(crop_path, use_dirname=True) meta = im_dataset.meta meta['width'], meta['height'] = window.get_width(), window.get_height() meta['transform'] = rasterio.windows.transform( rasterio_window, im_dataset.transform) with rasterio.open(crop_path, 'w', **meta) as dst: dst.colorinterp = im_dataset.colorinterp dst.write(im) upload_or_copy(crop_path, crop_uri) def save_image_crop(image_uri, image_crop_uri, label_uri=None, label_crop_uri=None, size=600, min_features=10, vector_labels=True): """Save a crop of an image to use for testing. If label_uri is set, the crop needs to cover >= min_features. Args: image_uri: URI of original image image_crop_uri: URI of cropped image to save label_uri: optional URI of label file label_crop_uri: optional URI of cropped labels to save size: height and width of crop Raises: ValueError if cannot find a crop satisfying min_features constraint. """ if not file_exists(image_crop_uri): print('Saving test crop to {}...'.format(image_crop_uri)) old_environ = os.environ.copy() try: request_payer = S3FileSystem.get_request_payer() if request_payer == 'requester': os.environ['AWS_REQUEST_PAYER'] = request_payer im_dataset = rasterio.open(image_uri) h, w = im_dataset.height, im_dataset.width extent = Box(0, 0, h, w) windows = extent.get_windows(size, size) if label_uri and vector_labels: crs_transformer = RasterioCRSTransformer.from_dataset( im_dataset) vs = GeoJSONVectorSource(label_uri, crs_transformer) geojson = vs.get_geojson() geoms = [] for f in geojson['features']: g = shape(f['geometry']) geoms.append(g) tree = STRtree(geoms) def p2m(x, y, z=None): return crs_transformer.pixel_to_map((x, y)) for w in windows: use_window = True if label_uri and vector_labels: w_polys = tree.query(w.to_shapely()) use_window = len(w_polys) >= min_features if use_window and label_crop_uri is not None: print('Saving test crop labels to {}...'.format( label_crop_uri)) label_crop_features = [ mapping(shapely.ops.transform(p2m, wp)) for wp in w_polys ] label_crop_json = { 'type': 'FeatureCollection', 'features': [{ 'geometry': f } for f in label_crop_features] } json_to_file(label_crop_json, label_crop_uri) if use_window: crop_image(image_uri, w, image_crop_uri) if not vector_labels and label_uri and label_crop_uri: crop_image(label_uri, w, label_crop_uri) break if not use_window: raise ValueError('Could not find a good crop.') finally: os.environ.clear() os.environ.update(old_environ)
811fd686f5129b674ddd6d46c77719477b3fb263
b2eb8af13e5532fc5c613bbd68af97fa5938b758
/beginner level/count digits.py
084171349b4c07bb3c473b3a1c85a5dcdc51e228
[]
no_license
rahasudha2910/python-programming
81964ffd61c6a814e22543a9315b05eca028fd59
f3cfbb9a3d368cd17fbd59c6ce4affa83fe36585
refs/heads/master
2021-04-06T00:24:45.160387
2018-05-03T06:16:38
2018-05-03T06:16:38
125,213,347
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
count=0 number=int(input()) while(number>0): number=number/10 count=count+1 print("numer of digits:",count)
c2835b1f8a3632284eca779d2dc1f17bfaf30295
6d501ea43b1a52bf4af44ae5677eba8b928ffec3
/directory/signals.py
e1d22e0a309d7321f2db634715374ef5fabc6e4f
[]
no_license
mozilla/hive-django
78d5e7bf687e2311a41d2b6d555b9671c4270b4d
bf95dce0af0148ecacde2256d235788fd79c7d5e
refs/heads/master
2023-08-27T12:47:36.977377
2016-05-04T21:12:47
2016-05-04T21:12:47
55,106,672
0
2
null
2016-05-04T21:12:47
2016-03-31T00:12:58
Python
UTF-8
Python
false
false
1,684
py
from django.dispatch import receiver from django.contrib.sites.models import Site from django.db.models.signals import post_save from django.contrib.auth.signals import user_logged_in from django.contrib import messages from registration.signals import user_activated from .models import City, User, Organization, Membership, is_user_vouched_for @receiver(post_save, sender=City) def clear_site_cache_when_city_changes(**kwargs): # It's possible that the site may be associated with a different # city now, so clear the site cache. Site.objects.clear_cache() @receiver(post_save, sender=User) def create_membership_for_user(sender, raw, instance, **kwargs): if raw: return if not len(Membership.objects.filter(user=instance)): membership = Membership(user=instance) membership.save() @receiver(user_activated) def auto_register_user_with_organization(sender, user, request, **kwargs): if user.membership.organization: return orgs = Organization.objects.possible_affiliations_for(user) if orgs.count() != 1: return org = orgs[0] user.membership.organization = org user.membership.save() @receiver(user_logged_in) def tell_user_to_update_their_profile(sender, user, request, **kwargs): if not is_user_vouched_for(user): return if not user.membership.bio: messages.info(request, 'You don\'t have a bio! You should write one ' 'so community members can learn more about you. ' 'Just visit your user profile by accessing the ' 'user menu at the top-right corner of this page.', fail_silently=True)
f264cbe12ec190255d0fe7fb1219395eaff22bc8
743c3b0cd875fe294fc15b96de678c93ecd8ab27
/foruser/myuser/urls.py
838fc3a9e5c5fdfd03f5f634b2ec6fe3d8967638
[]
no_license
yudian03/LOGIN
f3cc760ee25a34ce7b939de5475fc7f7097b59a3
3db6278bc15be6244187d9744f3bdf562c7d409f
refs/heads/master
2020-05-01T04:30:17.146513
2019-03-23T10:51:11
2019-03-23T10:51:11
177,276,374
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
from django.urls import path from . import views urlpatterns = [ path('register/',views.register), path('login/',views.login), path('home/',views.home), path('logout/',views.logout) ]
a955aa2adcf7d72b65e3af9165bf022c5a057ec0
9d29b302cca89a4ad816f99f1d3c708862dd4c0b
/client.py
73c58c8f77fdac730b4bde122ffd76801a4ac751
[]
no_license
Manoj-M-97/Flight-Booking-System
a28c57c770ea06cc4c8704dbddc2740ec3d86fcd
649d74c63d73a24a3fd97406008903f806ffa34b
refs/heads/master
2020-03-22T04:02:38.788029
2018-07-02T16:48:21
2018-07-02T16:48:21
139,468,945
0
0
null
null
null
null
UTF-8
Python
false
false
1,361
py
# Python program to implement client side of chat room. import socket import select import sys server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if len(sys.argv) != 3: print "Correct usage: script, IP address, port number" exit() IP_address = str(sys.argv[1]) Port = int(sys.argv[2]) server.connect((IP_address, Port)) cl="CLOSE" while True: # maintains a list of possible input streams sockets_list = [sys.stdin, server] """ There are two possible input situations. Either the user wants to give manual input to send to other people, or the server is sending a message to be printed on the screen. Select returns from sockets_list, the stream that is reader for input. So for example, if the server wants to send a message, then the if condition will hold true below.If the user wants to send a message, the else condition will evaluate as true""" read_sockets,write_socket, error_socket = select.select(sockets_list,[],[]) for socks in read_sockets: if socks == server: message = socks.recv(2048) if (message.endswith(cl)): print "Connection Terminated" exit() print message else: message = sys.stdin.readline() server.send(message) sys.stdout.flush() server.close()
c3b2ccf3279e3d6c131b50d1a8a089fc8ee00b32
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/BizListDataInfo.py
5f874dfae528b4b6592ad1306c025ec59eb0239e
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,206
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class BizListDataInfo(object): def __init__(self): self._code = None self._name = None @property def code(self): return self._code @code.setter def code(self, value): self._code = value @property def name(self): return self._name @name.setter def name(self, value): self._name = value def to_alipay_dict(self): params = dict() if self.code: if hasattr(self.code, 'to_alipay_dict'): params['code'] = self.code.to_alipay_dict() else: params['code'] = self.code if self.name: if hasattr(self.name, 'to_alipay_dict'): params['name'] = self.name.to_alipay_dict() else: params['name'] = self.name return params @staticmethod def from_alipay_dict(d): if not d: return None o = BizListDataInfo() if 'code' in d: o.code = d['code'] if 'name' in d: o.name = d['name'] return o
bd171b67cb9363e6bad907a04d5ab5e0bc909104
c16d80fa4837ca849056dc1e66191825037969ed
/gptneo_piqa.py
d804ccdcc15115883cf1b8dceb7408a4520b8371
[]
no_license
vivekvkashyap/gpt2-commonsens
c289819e440b52dfb7390c614494cd85437cd1c3
f5d884bcf27c2bd2cb3cf8fa55f6151d12e17b9d
refs/heads/main
2023-06-25T17:37:08.203910
2021-07-27T05:06:33
2021-07-27T05:06:33
389,845,411
0
0
null
null
null
null
UTF-8
Python
false
false
9,707
py
import jax print(jax.local_device_count()) import jax.numpy as jnp import flax import flax.linen as nn from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key from flax.training import train_state from flax.metrics.tensorboard import SummaryWriter from flax.training import checkpoints from datasets import load_dataset,load_metric from transformers import GPT2Tokenizer from tqdm import tqdm import logging import optax import math from pathlib import Path from typing import Callable from itertools import chain from flax.metrics import tensorboard from datasets import load_dataset,load_metric from transformers import GPTNeoConfig,GPT2Tokenizer from model_file import FlaxGPTNeoForMultipleChoice logger = logging.getLogger() logger.setLevel(logging.INFO) tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') dataset=load_dataset('piqa') num_choices=2 def preprocess(example): example['first_sentence']=[example['goal']]*num_choices example['second_sentence']=[example[f'sol{i}'] for i in [1,2]] return example train_dataset=dataset['train'].map(preprocess) validation_dataset=dataset['validation'].map(preprocess) test_dataset=dataset['test'].map(preprocess) len_train_dataset=16113 len_validation_dataset=1838 len_test_dataset=3084 train_dataset=train_dataset.select(range(len_train_dataset)) test_dataset=test_dataset.select(range(len_test_dataset)) validation_dataset=validation_dataset.select(range(len_validation_dataset)) remove_col=train_dataset.column_names def tokenize(examples): tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') tokenized_examples['labels']=int(examples['label']) return tokenized_examples train_dataset=train_dataset.map(tokenize) validation_dataset=validation_dataset.map(tokenize) train_dataset=train_dataset.remove_columns(remove_col) validation_dataset=validation_dataset.remove_columns(remove_col) test_dataset=test_dataset.remove_columns(remove_col) per_device_batch_size=4 seed=0 num_train_epochs=3 learning_rate=2e-5 model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1)) total_batch_size = per_device_batch_size * jax.local_device_count() print('The overall batch size (both for training and eval) is', total_batch_size) num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=0, transition_steps=num_train_steps) class TrainState(train_state.TrainState): logits_function:Callable=flax.struct.field(pytree_node=False) loss_function:Callable=flax.struct.field(pytree_node=False) def adamw(weight_decay): return optax.adafactor(learning_rate=learning_rate_function) decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight']) def traverse(function): def mask(data): flat=flax.traverse_util.flatten_dict(data) return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()}) return mask gradient_transformation=optax.chain( optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))), optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path)))) def loss_function(logits,labels): logits=flax.linen.log_softmax(logits) xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices)) return jnp.mean(xentropy) def eval_function(logits): return logits.argmax(-1) state=TrainState.create(apply_fn=model.__call__, params=model.params, tx=gradient_transformation, logits_function=eval_function, loss_function=loss_function) def train_step(state,batch,dropout_rng): targets=batch.pop("labels") dropout_rng,new_dropout_rng=jax.random.split(dropout_rng) def loss_function(params): logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0] loss=state.loss_function(logits,targets) return loss grad_function=jax.value_and_grad(loss_function) loss,grad=grad_function(state.params) grad=jax.lax.pmean(grad,"batch") new_state=state.apply_gradients(grads=grad) #Added. logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0] accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets) metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch") return new_state,metrics,new_dropout_rng parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) def eval_step(state, batch): targets=batch.pop('labels') logits = state.apply_fn(**batch, params=state.params, train=False) loss=state.loss_function(logits,targets) predictions=state.logits_function(logits) eval_accuracy=jnp.equal(predictions,targets) #eval_acc=jnp.equal(predictions,targets) metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch") #return state.logits_function(logits) #(8,4) return targets,predictions,metrics parallel_eval_step = jax.pmap(eval_step, axis_name="batch") def glue_train_data_loader(rng,dataset,batch_size): steps_per_epoch=len_train_dataset//batch_size perms=jax.random.permutation(rng,len_train_dataset) perms=perms[:steps_per_epoch*batch_size] perms=perms.reshape((steps_per_epoch,batch_size)) for perm in perms: batch=dataset[perm] #print(jnp.array(batch['label'])) batch={k:jnp.array(v) for k,v in batch.items()} batch=shard(batch) yield batch rng=jax.random.PRNGKey(seed) dropout_rngs=jax.random.split(rng,jax.local_device_count()) def glue_eval_data_loader(dataset, batch_size): for i in range(len_validation_dataset // batch_size): batch = dataset[i * batch_size : (i + 1) * batch_size] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch state = flax.jax_utils.replicate(state) actual_task = "mnli" metric = load_metric('glue', "mnli") actual_taskmetric = load_metric('glue', actual_task) workdir='./piqa_tensorboard' summary_writer = tensorboard.SummaryWriter(workdir) logger.info(f"***** Running training *****") logger.info(f" Num examples = {len_train_dataset}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {per_device_batch_size}") logger.info(f" Total train batch size = {total_batch_size}") logger.info(f" Total optimization steps = {num_train_steps}") for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)): rng, input_rng = jax.random.split(rng) train_acc_metrics=[] train_loss_metrics=[] eval_acc_metrics=[] eval_loss_metrics=[] # train with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train: for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)): state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs) train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item()) train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item()) if idx%5==0: summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx) summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx) if idx%20==0: logger.info(f"train_step_loss{idx}: {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}: {jax.device_get(train_metric['accuracy']).mean().item()} ") progress_bar_train.update(1) # evaluate with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval: for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)): labels,predictions,eval_metric=parallel_eval_step(state, batch) eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item()) eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item()) progress_bar_eval.update(1) if idx%5==0: logger.info(f"eval_step_loss {idx} : {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc {idx} : {jax.device_get(eval_metric['accuracy']).mean().item()}") summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx) summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx) logger.info(f"---------------------Epoch {epoch} done-----------------") logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}") logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}") if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained( './', params=params, push_to_hub=True, commit_message=f"Piqa:Saving weights of epoch {epoch} at step {idx}",) summary_writer.flush()
4716976f68bf061fef859306dd4192440aa5d090
94312b972c9ea96404535d26a297c72e75f84d22
/Weather_WebCrawl.py
350443ebd66136fe19578ad51278528825577cdc
[]
no_license
1LuvCode/My_Slut_TJ
2e8092d78857497a45a22d4af2270dc4c51cdada
d7f39542cccb51b46d4d53d6489ef3b82079bc4d
refs/heads/main
2023-02-25T20:16:32.461565
2021-02-02T11:28:37
2021-02-02T11:28:37
335,256,950
0
0
null
null
null
null
UTF-8
Python
false
false
5,695
py
import requests from bs4 import BeautifulSoup def Crawling_Weather(Finallocation): url = 'https://search.naver.com/search.naver?where=nexearch&sm=top_hty&fbm=1&ie=utf8&query=' + Finallocation hdr = {'User-Agent': ( 'mozilla/5.0 (windows nt 10.0; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/78.0.3904.70 safari/537.36')} req = requests.get(url, headers=hdr) html = req.text soup = BeautifulSoup(html, 'html.parser') LocationInfo = "" NowTemp = "" CheckDust = [] # 오류 체크 ErrorCheck = soup.find('span', {'class': 'btn_select'}) if 'None' in str(ErrorCheck): print("Error! 지역 검색 오류!") return None else: # 지역 정보 for i in soup.select('span[class=btn_select]'): LocationInfo = i.text # 현재 온도 NowTemp = soup.find('span', {'class': 'todaytemp'}).text + soup.find('span', {'class': 'tempmark'}).text[2:] # 날씨 캐스트 WeatherCast = soup.find('p', {'class': 'cast_txt'}).text # 오늘 오전온도, 오후온도, 체감온도 TodayMorningTemp = soup.find('span', {'class': 'min'}).text TodayAfternoonTemp = soup.find('span', {'class': 'max'}).text TodayFeelTemp = soup.find('span', {'class': 'sensible'}).text[5:] # 자외선 지수 TodayUV = soup.find('span', {'class': 'indicator'}).text[4:-2] + " " + soup.find('span', {'class': 'indicator'}).text[-2:] # 미세먼지, 초미세먼지, 오존 지수 CheckDust1 = soup.find('div', {'class': 'sub_info'}) CheckDust2 = CheckDust1.find('div', {'class': 'detail_box'}) for i in CheckDust2.select('dd'): CheckDust.append(i.text) FineDust = CheckDust[0][:-2] + " " + CheckDust[0][-2:] UltraFineDust = CheckDust[1][:-2] + " " + CheckDust[1][-2:] Ozon = CheckDust[2][:-2] + " " + CheckDust[2][-2:] # 내일 오전, 오후 온도 및 상태 체크 tomorrowArea = soup.find('div', {'class': 'tomorrow_area'}) tomorrowCheck = tomorrowArea.find_all('div', {'class': 'main_info morning_box'}) # 내일 오전온도 tomorrowMoring1 = tomorrowCheck[0].find('span', {'class': 'todaytemp'}).text tomorrowMoring2 = tomorrowCheck[0].find('span', {'class': 'tempmark'}).text[2:] tomorrowMoring = tomorrowMoring1 + tomorrowMoring2 # 내일 오전상태 tomorrowMState1 = tomorrowCheck[0].find('div', {'class': 'info_data'}) tomorrowMState2 = tomorrowMState1.find('ul', {'class': 'info_list'}) tomorrowMState3 = tomorrowMState2.find('p', {'class': 'cast_txt'}).text tomorrowMState4 = tomorrowMState2.find('div', {'class': 'detail_box'}) tomorrowMState5 = tomorrowMState4.find('span').text.strip() tomorrowMState = tomorrowMState3 + " " + tomorrowMState5 # 내일 오후온도 tomorrowAfter1 = tomorrowCheck[1].find('p', {'class': 'info_temperature'}) tomorrowAfter2 = tomorrowAfter1.find('span', {'class': 'todaytemp'}).text tomorrowAfter3 = tomorrowAfter1.find('span', {'class': 'tempmark'}).text[2:] tomorrowAfter = tomorrowAfter2 + tomorrowAfter3 # 내일 오후상태 tomorrowAState1 = tomorrowCheck[1].find('div', {'class': 'info_data'}) tomorrowAState2 = tomorrowAState1.find('ul', {'class': 'info_list'}) tomorrowAState3 = tomorrowAState2.find('p', {'class': 'cast_txt'}).text tomorrowAState4 = tomorrowAState2.find('div', {'class': 'detail_box'}) tomorrowAState5 = tomorrowAState4.find('span').text.strip() tomorrowAState = tomorrowAState3 + " " + tomorrowAState5 Weather_info_dict = { '지역':LocationInfo, '현재온도':NowTemp, '체감온도':TodayFeelTemp, '오전온도':TodayMorningTemp, '오후온도':TodayAfternoonTemp, '현재상태':WeatherCast, '현재자외선지수':TodayUV, '현재미세먼지농도':FineDust, '현재초미세먼지농도':UltraFineDust, '현재오존지수':Ozon, '내일오전온도':tomorrowMoring, '내일오전상태':tomorrowMState, '내일오후온도':tomorrowAfter, '내일오후상태':tomorrowAState } return Weather_info_dict # print("=========================================") # print(LocationInfo + " 날씨 정보입니다.") # print("=========================================") # print("현재온도: " + NowTemp) # print("체감온도: " + TodayFeelTemp) # print("오전/오후 온도: " + TodayMorningTemp + "/" + TodayAfternoonTemp) # print("현재 상태: " + WeatherCast) # print("현재 자외선 지수: " + TodayUV) # print("현재 미세먼지 농도: " + FineDust) # print("현재 초미세먼지 농도: " + UltraFineDust) # print("현재 오존 지수: " + Ozon) # print("=========================================") # print(LocationInfo + " 내일 날씨 정보입니다.") # print("=========================================") # print("내일 오전 온도: " + tomorrowMoring) # print("내일 오전 상태: " + tomorrowMState) # print("내일 오후 온도: " + tomorrowAfter) # print("내일 오후 상태: " + tomorrowAState)
707062ffa62600fed5892717cfc5efb6677b3277
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_plough.py
8524ffbb0f26cf406e78e16dbed5ed7ccee77fc1
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
#calss header class _PLOUGH(): def __init__(self,): self.name = "PLOUGH" self.definitions = [u'a large farming tool with blades that digs the soil in fields so that seeds can be planted', u'If land is under the plough, crops are grown on it: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
8aa66e9bfbe8bd636da164d691be14c9753a0cf6
2e318c8fdbb8e8826937ffbf1eede7034a47960a
/GazeGAN_using_CSC/train_old1.py
3a4c6f4bdfa7d3250a264ab2b5f775c39e7fdeb4
[]
no_license
chenkeshuai/Sal-CFS-GAN
e06efbe5e49360c8f5634704c487483795c10d31
8ae0fb77efff503190bcc8b6333c1d21ea1bfbce
refs/heads/master
2022-06-06T01:18:00.664722
2020-05-06T10:54:11
2020-05-06T10:54:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,507
py
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. ### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). import time from collections import OrderedDict from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util from util.visualizer import Visualizer import os import numpy as np import torch from torch.autograd import Variable opt = TrainOptions().parse() iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') if opt.continue_train: try: start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int) except: start_epoch, epoch_iter = 1, 0 print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) else: start_epoch, epoch_iter = 1, 0 if opt.debug: opt.display_freq = 1 opt.print_freq = 1 opt.niter = 1 opt.niter_decay = 0 opt.max_dataset_size = 10 data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training images = %d' % dataset_size) model = create_model(opt) visualizer = Visualizer(opt) total_steps = (start_epoch-1) * dataset_size + epoch_iter display_delta = total_steps % opt.display_freq print_delta = total_steps % opt.print_freq save_delta = total_steps % opt.save_latest_freq My_Limit = 600 # just for debugging phase, to control the total training steps for saving time for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() if epoch != start_epoch: epoch_iter = epoch_iter % dataset_size for i, data in enumerate(dataset, start=epoch_iter): if(i > My_Limit): break iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize # whether to collect output images save_fake = total_steps % opt.display_freq == display_delta ############## Forward Pass ###################### losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake) # sum per device losses losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ] loss_dict = dict(zip(model.module.loss_names, losses)) print("loss dict is :", loss_dict) # calculate final loss scalar # loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 # loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + loss_dict.get('Loss_CC',0) print("CC loss is :", loss_dict.get('Loss_CC',0)) ############### Backward Pass #################### # update generator weights model.module.optimizer_G.zero_grad() loss_G.backward() model.module.optimizer_G.step() # update discriminator weights model.module.optimizer_D.zero_grad() loss_D.backward() model.module.optimizer_D.step() #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) ############## Display results and errors ########## ### print out errors if total_steps % opt.print_freq == print_delta: errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()} t = (time.time() - iter_start_time) / opt.batchSize visualizer.print_current_errors(epoch, epoch_iter, errors, t) visualizer.plot_current_errors(errors, total_steps) ### display output images if save_fake: visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0])), ('real_image', util.tensor2im(data['image'][0]))]) visualizer.display_current_results(visuals, epoch, total_steps) ### save latest model if total_steps % opt.save_latest_freq == save_delta: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.module.save('latest') np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') if epoch_iter >= dataset_size: break # end of epoch iter_end_time = time.time() print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ''' ### save model for this epoch if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.module.save('latest') model.module.save(epoch) np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d') ''' ### instead of only training the local enhancer, train the entire network after certain iterations if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): model.module.update_fixed_params() ### linearly decay learning rate after certain iterations if epoch > opt.niter: model.module.update_learning_rate()
effa795ba011f8dc2f6b6da9ac6642b41478c955
ac2567d2be46412f10a47aba6b062347fb831ec9
/twitterTest.py
d48b78dc469f066c5c8a5c8ce76e0454cb493cd7
[]
no_license
rhymg/TwitterScraping
e9e8d4098ba4d28cdb0d17f76de98a81c08432aa
769effdbdf83a170c13d2cac51ca5df7956e2dab
refs/heads/master
2022-11-24T11:46:46.637370
2020-07-18T19:19:17
2020-07-18T19:19:17
280,906,432
0
0
null
2020-07-19T16:34:18
2020-07-19T16:34:17
null
UTF-8
Python
false
false
531
py
import GetOldTweets3 as got; word = 'fuck'; f = open("usernameTest.txt", "a"); tweetCriteria = got.manager.TweetCriteria().setQuerySearch(word).setMaxTweets(10); tweets = got.manager.TweetManager.getTweets(tweetCriteria); for tweet in tweets: print(tweet.text + ' BY: ' + tweet.username + '\n'); if word in tweet.text.lower(): print('This has ' + word + ' in it.\n'); f.write(tweet.username + '\n'); else: print('This does not have ' + word + ' in it.\n'); f.close();
11e480051d1e2e4b524f910449fa7a03d3d0f592
b3db0cb0849fc3c981077cc5dc071c6eac6fd1ed
/C.1.14.py
f9372e61feee0ec164fad2d51aa25739dd93f3b8
[]
no_license
Andi-Abdi/Tugas-Struktur-Data
bcfcfd3cf4ac28ce966b30d07041d775b33db778
49162ad9c5869161df01bc1a0f8697c2d7d1623a
refs/heads/main
2023-05-11T11:58:46.484954
2021-05-31T14:46:22
2021-05-31T14:46:22
372,522,215
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
def odd_product_pair(data): data = set(data) for y in data: for x in data: if y == x : continue if y*x % 2 == 1: return True return False print(odd_product_pair([5,7,9,14,16]))
275aa3e362920aae1e2af84fe0380f36fa448f39
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/pygame/pygameweb/pygameweb/db.py
57c70ca70133b811d4447037d0df7cd54b72e632
[ "BSD-2-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:95c026dc0e7051336cd999158979e81f159d4470489660469d0e0175c66400da size 1274
ec81f69f8b35b27ca38c0fabe125ba6ef4bc3a1d
1975ee674b36084366b1bbe2c091d8f0f8795dc0
/demo/class_views.py
49ac0086b684256a0215318d23d4992296ad6f5e
[]
no_license
srikanthpragada/PYTHON_03_JULY_2018_WEBDEMO
f193213788deadcab7ac7b183328269ba1334488
56e076ad30703117cafc56d6d95449c6ec8eebb2
refs/heads/master
2020-03-25T11:45:53.128704
2018-08-23T15:29:05
2018-08-23T15:29:05
143,747,408
0
0
null
null
null
null
UTF-8
Python
false
false
877
py
from django.views.generic import TemplateView, ListView from django.shortcuts import render from .forms import LoginForm from .models import Course class ClassView1(TemplateView): template_name = 'class_view1.html' class LoginView(TemplateView): template_name = 'login.html' def get(self, request): form = LoginForm() return render(request, self.template_name, {'form': form}) def post(self, request): form = LoginForm(request.POST) if form.is_valid(): print(form.cleaned_data['username'], form.cleaned_data['password']) return render(request, self.template_name, {'form': form}) # Generic View - ListView demo class ListCourseView(ListView): model = Course template_name = "courses.html" # default is demo/course_list.html context_object_name = 'courses' # default is object_list
946eaac05979a4f663b7fefeba08d4f1dd8efb16
d21c924fc23b812aaedeb2cfa3dfb108535a507f
/tw2/jqplugins/fg/defaults.py
310f64fb53f192fa733e55b3ba04ea7270501562
[]
no_license
toscawidgets/tw2.jqplugins.fg
eba3a90949c59dd7c6b3740ab09faa9b5d824a6d
8317f3bec82364b95e86aa3655c7f787b25d715f
refs/heads/master
2020-05-17T12:13:14.385977
2011-11-04T15:41:50
2011-11-04T15:41:50
954,861
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
#jQuery.ui _fg_dirname_ = 'jquery/fg/%(subdir)s'
79848a0117879783d1f2f0c37b6a8586c18147c6
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/IPV6-TCP-MIB.py
ae7c821868888b0850cd5394fcb2bb61fbdbaeb3
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
5,095
py
# # PySNMP MIB module IPV6-TCP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IPV6-TCP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:45:44 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint") Ipv6Address, Ipv6IfIndexOrZero = mibBuilder.importSymbols("IPV6-TC", "Ipv6Address", "Ipv6IfIndexOrZero") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") MibScalar, MibTable, MibTableRow, MibTableColumn, experimental, ObjectIdentity, Gauge32, Counter64, Counter32, Bits, NotificationType, IpAddress, ModuleIdentity, Integer32, iso, TimeTicks, Unsigned32, mib_2, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "experimental", "ObjectIdentity", "Gauge32", "Counter64", "Counter32", "Bits", "NotificationType", "IpAddress", "ModuleIdentity", "Integer32", "iso", "TimeTicks", "Unsigned32", "mib-2", "MibIdentifier") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ipv6TcpMIB = ModuleIdentity((1, 3, 6, 1, 3, 86)) ipv6TcpMIB.setRevisions(('2017-02-22 00:00', '1998-01-29 00:00',)) if mibBuilder.loadTexts: ipv6TcpMIB.setLastUpdated('201702220000Z') if mibBuilder.loadTexts: ipv6TcpMIB.setOrganization('IETF IPv6 MIB Working Group') tcp = MibIdentifier((1, 3, 6, 1, 2, 1, 6)) ipv6TcpConnTable = MibTable((1, 3, 6, 1, 2, 1, 6, 16), ) if mibBuilder.loadTexts: ipv6TcpConnTable.setStatus('obsolete') ipv6TcpConnEntry = MibTableRow((1, 3, 6, 1, 2, 1, 6, 16, 1), ).setIndexNames((0, "IPV6-TCP-MIB", "ipv6TcpConnLocalAddress"), (0, "IPV6-TCP-MIB", "ipv6TcpConnLocalPort"), (0, "IPV6-TCP-MIB", "ipv6TcpConnRemAddress"), (0, "IPV6-TCP-MIB", "ipv6TcpConnRemPort"), (0, "IPV6-TCP-MIB", "ipv6TcpConnIfIndex")) if mibBuilder.loadTexts: ipv6TcpConnEntry.setStatus('obsolete') ipv6TcpConnLocalAddress = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 1), Ipv6Address()) if mibBuilder.loadTexts: ipv6TcpConnLocalAddress.setStatus('obsolete') ipv6TcpConnLocalPort = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))) if mibBuilder.loadTexts: ipv6TcpConnLocalPort.setStatus('obsolete') ipv6TcpConnRemAddress = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 3), Ipv6Address()) if mibBuilder.loadTexts: ipv6TcpConnRemAddress.setStatus('obsolete') ipv6TcpConnRemPort = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))) if mibBuilder.loadTexts: ipv6TcpConnRemPort.setStatus('obsolete') ipv6TcpConnIfIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 5), Ipv6IfIndexOrZero()) if mibBuilder.loadTexts: ipv6TcpConnIfIndex.setStatus('obsolete') ipv6TcpConnState = MibTableColumn((1, 3, 6, 1, 2, 1, 6, 16, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("closed", 1), ("listen", 2), ("synSent", 3), ("synReceived", 4), ("established", 5), ("finWait1", 6), ("finWait2", 7), ("closeWait", 8), ("lastAck", 9), ("closing", 10), ("timeWait", 11), ("deleteTCB", 12)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ipv6TcpConnState.setStatus('obsolete') ipv6TcpConformance = MibIdentifier((1, 3, 6, 1, 3, 86, 2)) ipv6TcpCompliances = MibIdentifier((1, 3, 6, 1, 3, 86, 2, 1)) ipv6TcpGroups = MibIdentifier((1, 3, 6, 1, 3, 86, 2, 2)) ipv6TcpCompliance = ModuleCompliance((1, 3, 6, 1, 3, 86, 2, 1, 1)).setObjects(("IPV6-TCP-MIB", "ipv6TcpGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ipv6TcpCompliance = ipv6TcpCompliance.setStatus('obsolete') ipv6TcpGroup = ObjectGroup((1, 3, 6, 1, 3, 86, 2, 2, 1)).setObjects(("IPV6-TCP-MIB", "ipv6TcpConnState")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ipv6TcpGroup = ipv6TcpGroup.setStatus('obsolete') mibBuilder.exportSymbols("IPV6-TCP-MIB", ipv6TcpConnTable=ipv6TcpConnTable, ipv6TcpConnEntry=ipv6TcpConnEntry, ipv6TcpMIB=ipv6TcpMIB, ipv6TcpGroups=ipv6TcpGroups, ipv6TcpConnIfIndex=ipv6TcpConnIfIndex, tcp=tcp, ipv6TcpConnRemPort=ipv6TcpConnRemPort, ipv6TcpConformance=ipv6TcpConformance, PYSNMP_MODULE_ID=ipv6TcpMIB, ipv6TcpConnState=ipv6TcpConnState, ipv6TcpConnRemAddress=ipv6TcpConnRemAddress, ipv6TcpConnLocalPort=ipv6TcpConnLocalPort, ipv6TcpCompliances=ipv6TcpCompliances, ipv6TcpConnLocalAddress=ipv6TcpConnLocalAddress, ipv6TcpCompliance=ipv6TcpCompliance, ipv6TcpGroup=ipv6TcpGroup)
480127fceb33213f368de855a806d8bd709a0909
2136c75df909b40c2667679b2ba4740d8b50a299
/test.py
86957845b7c17d62c3ce76575f6a1f07d42c824f
[]
no_license
jianglikun/preMLI
19e91935266539afa15cb86a3e62608840c775d1
54b48fba7adf7fb232ac1a2cec883c596d49d3a3
refs/heads/main
2023-09-04T17:32:13.657101
2021-11-10T08:27:42
2021-11-10T08:27:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,748
py
import os os.environ["CUDA_VISIBLE_DEVICES"]="4" from model import get_model from model import get_model_max from model import get_model_C_mul from model import get_model_C_sub import tensorflow as tf import numpy as np from sklearn.metrics import roc_auc_score,average_precision_score, f1_score from sklearn.metrics import accuracy_score,recall_score def stat(y_label,y_pred): # print('y_label=',y_label) # print('y_pred=',y_pred) threshold = 0.5 auc = roc_auc_score(y_label, y_pred) aupr = average_precision_score(y_label, y_pred) for i in range(len(y_pred)): if y_pred[i][0] >= threshold: y_pred[i][0] = 1 if y_pred[i][0] < threshold: y_pred[i][0] = 0 TP = 0 TN = 0 FP = 0 FN = 0 for i in range(len(y_pred)): if y_pred[i][0] == 0 and y_label[i] == 0: TN = TN + 1 if y_pred[i][0] == 1 and y_label[i] == 1: TP = TP + 1 if y_pred[i][0] == 0 and y_label[i] == 1: FN = FN + 1 if y_pred[i][0] == 1 and y_label[i] == 0: FP = FP + 1 specificity = TN/(TN+FP) recall = recall_score(y_label,y_pred) acc = accuracy_score(y_label,y_pred) f1 = f1_score(y_label, y_pred) acc = round(acc, 4) auc = round(auc,4) aupr = round(aupr, 4) f1 = round(f1,4) return acc,auc,aupr,f1,recall,specificity ########################## datatype = 2021 kmer = 3 ########################## for m in range(100): model=None model=get_model() model.load_weights('./model/3mer2021/Solanum lycopersicumModel%s.h5'%m) if datatype == 2020: names = ['Arabidopsis lyrata','Solanum lycopersicum'] elif datatype == 2021: names = ['aly','mtr','stu','bdi'] for name in names: Data_dir='/home/yxy/Project/002/processData/3mer/' if datatype == 2020: test=np.load(Data_dir+'5mer%s_test.npz'%name) elif datatype == 2021: test=np.load(Data_dir+'%s%stest2021.npz'%(name,kmer)) X_mi_tes,X_lnc_tes,y_tes=test['X_mi_tes'],test['X_lnc_tes'],test['y_tes'] print("****************Testing %s specific model on %s cell line****************"%(m,name)) y_pred = model.predict([X_mi_tes,X_lnc_tes]) auc = roc_auc_score(y_tes, y_pred) aupr = average_precision_score(y_tes, y_pred) f1 = f1_score(y_tes, np.round(y_pred.reshape(-1))) print("AUC : ", auc) print("AUPR : ", aupr) print("f1_score", f1) acc,auc,aupr,f1,recall,specificity = stat(y_tes, y_pred) print("ACC : ", acc,"auc : ", auc,"aupr :" , aupr,"f1 : ", f1,"recall : ",recall,"specificity : ",specificity)
31068cd2c89faea0c9efdff5214f7c0d9abac707
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_suffered.py
f5ba9fb4722605fcd51182e2e5bcc1348faf8603
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
#calss header class _SUFFERED(): def __init__(self,): self.name = "SUFFERED" self.definitions = suffer self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['suffer']
351ef3112a8105eea8a02b98a6ff6303a19eee43
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_Integration/trend_LinearTrend/cycle_30/ar_/test_artificial_128_Integration_LinearTrend_30__100.py
7a5e907e035774475c35332c1022bd9fc95546df
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
275
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 30, transform = "Integration", sigma = 0.0, exog_count = 100, ar_order = 0);
42f0deaf250627b10751156d712d786cdc96ee26
6bf1b595a7f4d3cbf0995455869d438a7d0e0624
/lingvo/tasks/milan/score_functions.py
9c4ce867b372dfed657bec15a96096952923b006
[ "Apache-2.0" ]
permissive
huaxz1986/lingvo
889abc82b1bab6f37ba861c41eb480b7e89362c0
b83984577610423e3b1c6b04ca248cd23f2842f7
refs/heads/master
2022-05-15T03:29:56.903688
2022-04-02T01:41:25
2022-04-02T01:41:25
173,536,461
1
0
Apache-2.0
2019-03-03T05:52:01
2019-03-03T05:52:01
null
UTF-8
Python
false
false
1,664
py
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of combination functions for dual-encoder models.""" from lingvo import compat as tf from lingvo.core import base_layer class DotProductScoreFunction(base_layer.BaseLayer): """Performs dot product combination between two encoded vectors.""" @classmethod def Params(cls): p = super().Params() p.name = 'dot_product_score_function' return p def FProp(self, theta, x, y): """Computes pair-wise dot product similarity. Args: theta: NestedMap of variables belonging to this layer and its children. x: batch of encoded representations from modality x. A float32 Tensor of shape [x_batch_size, encoded_dim] y: batch of encoded representations from modality y. A float32 Tensor of shape [y_batch_size, encoded_dim] Returns: Pairwise dot products. A float32 Tensor with shape `[x_batch_size, y_batch_size]`. """ return tf.matmul(x, y, transpose_b=True)
8158442771c431dd35672a9edc586edd0fe33d1d
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/leetCode/BreadthFirstSearch/103_BinaryTreeZigzagLevelOrderTraversal.py
4445a0088162de197a6843a1be5b63a07388215c
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
797
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None c.. Solution o.. ___ zigzagLevelOrder root __ n.. root: r_ [] left2right = 1 # 1. scan the level from left to right. -1 reverse. ans, stack, temp # list, [root], [] _____ stack: temp = [node.val ___ node __ stack] stack = [child ___ node __ stack ___ child __ (node.left, node.right) __ child] ans += [temp[::left2right]] # Pythonic way left2right *= -1 r_ ans """ [] [1] [1,2,3] [0,1,2,3,4,5,6,null,null,7,null,8,9,null,10] """
18418bc2a39d5aeb5d6d8aaa063f549811e5c5cf
9c7f47b2f31ea4ae55e33c706efe524eb62ff177
/HT_11/HT_11_1.py
3fdafbfbc8e4ba14a7b22a1f6076c98a1208a2cc
[]
no_license
Kantarian/GITHUB
05b6d5425b345667a4188ced23da76ed337b910a
fa047cbb2beb9bf372b22596bea8aaef80423872
refs/heads/main
2023-02-14T16:57:50.229446
2021-01-13T15:43:48
2021-01-13T15:43:48
311,783,371
0
0
null
null
null
null
UTF-8
Python
false
false
2,146
py
#1. Створити клас Calc, який буде мати атребут last_result та 4 методи. Методи повинні виконувати математичні операції з 2-ма числами, а саме додавання, віднімання, # множення, ділення. # - Якщо під час створення екземпляру класу звернутися до атребута last_result він повинен повернути пусте значення # - Якщо використати один з методів - last_result повенен повернути результат виконання попереднього методу. # - Додати документування в клас (можете почитати цю статтю: https://realpython.com/documenting-python-code/ ) class Calc(): def __init__(self,a,b,last_result = None): self.a=a self.b=b self.last_result = last_result def add(self): self.last_result = self.a+self.b return self.last_result def mul(self): self.last_result = self.a*self.b return self.last_result def div(self): self.last_result = self.a/self.b return self.last_result def sub(self): self.last_result = self.a-self.b return self.last_result a=int(input("Enter first number: ")) b=int(input("Enter second number: ")) obj=Calc(a,b) choice=1 while choice!=0: print("0. Exit") print("1. Add") print("2. Subtraction") print("3. Multiplication") print("4. Division") print("5. Last result") choice=int(input("Enter choice: ")) if choice==1: print("Result: ",obj.add()) elif choice==2: print("Result: ",obj.sub()) elif choice==3: print("Result: ",obj.mul()) elif choice==4: print("Result: ",round(obj.div(),2)) elif choice==5: print("Last Result: ",round(obj.last_result)) elif choice==0: print("Exiting!") else: print("Invalid choice!!")
da74b5b74654f0fbd6447f906cfa0864252ad0ea
43e788ee824ce1f6611d42690688136e5840af0e
/Video.py
5727fe4166addad073efc4954296de4a11e5ee5a
[]
no_license
Karthik8396/lrn_opencv2
3b9c9d824bee26c5d3c5c8ab54fb12e5a9bf145e
1d475f5b285cca187ff449f0036dcfe3dd5db136
refs/heads/master
2020-07-10T05:09:03.104573
2019-08-31T14:23:17
2019-08-31T14:23:17
204,174,443
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
import cv2 import numpy cap=cv2.VideoCapture(0) #first webcam fourcc =cv2.VideoWriter_fourcc(*'XVID') # for saving the video and fourcc is codec out=cv2.VideoWriter('output.avi',fourcc,20.0,(640,480)) # adding codec and size of video cv2.VideoWriter() while True : ret,frame = cap.read() gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) cv2.imshow('frame',frame) cv2.imshow('gray',gray) out.write(frame) if cv2.waitKey(1) & 0xFF == ord('q'): #waitkey return 32 bit value(32 ones) 0xFF is 11111111(8 bit value),logical and makes it true and if executes break #ord is for getting key value cap.release() out.release() cv2.destroyAllWindows()
8031b06595673b677e41319deb604caa3164a455
5ca39c2f45bdef4f93e57b17a357a2565fe1cf02
/contactbook.py
05a5715d3a06a40a21e502278f0cf56788ca7c36
[]
no_license
Ajit1999/ContactBook-API
de6f51d0e1fcf49b5c8b8bfacf4b7750b64b9356
df64583db98eb3421f07177f3c7dbb771c218ac4
refs/heads/main
2023-07-12T00:12:38.396876
2021-08-22T11:55:31
2021-08-22T11:55:31
398,787,514
1
0
null
null
null
null
UTF-8
Python
false
false
2,215
py
from flask import Flask from flask_pymongo import PyMongo from bson.json_util import dumps from bson.objectid import ObjectId from flask import jsonify, request app = Flask(__name__) app.secret_key = "secretkey" app.config['MONGO_URI'] = "mongodb://localhost:27017/User" mongo = PyMongo(app) @app.route('/add',methods=['POST']) def add_user(): _json = request.json _name = _json['name'] _address = _json['address'] _contactno = _json['contact'] _email = _json['email'] if _name and _address and _contactno and _email and request.method == 'POST': id = mongo.db.user.insert({'name':_name,'address':_address,'contact':_contactno,'email':_email}) resp = jsonify("Contact added sucessfully") resp.status_code = 200 return resp else: return not_found() @app.route('/users') def users(): users = mongo.db.user.find() resp = dumps(users) return resp @app.route('/user/<id>') def user(id): user = mongo.db.user.find_one({'_id':ObjectId(id)}) resp = dumps(user) return resp @app.route('/delete/<id>',methods=['DELETE']) def delete_user(id): delete_user = mongo.db.user.delete_one({'_id': ObjectId(id)}) resp = jsonify("Contact deleted successfully") resp.status_code = 200 return resp @app.route('/update/<id>', methods =['PUT']) def update(id): _id = id _json = request.json _name = _json['name'] _address = _json['address'] _contactno = _json['contact'] _email = _json['email'] if _name and _address and _contactno and _email and _id and request.method == 'PUT': mongo.db.user.update({'_id':ObjectId(_id['$oid']) if '$oid' in _id else ObjectId(_id)}, {'$set': {'name':_name,'address':_address,'contact':_contactno,'email':_email,}}) resp = jsonify("Contact updated Successfully") resp.status_code = 200 return resp else: return not_found() @app.errorhandler(404) def not_found(error=None): message = { 'status': 404, 'message':'Not Found' + request.url } resp = jsonify(message) resp.status_code = 404 return resp if __name__ =="__main__": app.run(debug = True)
f031555a692495a482d208cf6100105e71ac4dbc
79b38e6dad187bed26039f77611cc3feb7d75c1a
/issegm1/solve_ST.py
70e0b3b0d45f420e221a8fc3e8d48bb954d43064
[]
no_license
engrjavediqbal/MLSL
aa362c04a47b2bc921331bbb47dd4fe15bdb4bbe
94ac81096fd6ba2c85352807dc93f6a6b6cc472d
refs/heads/master
2023-08-04T11:22:13.335469
2023-07-25T13:55:41
2023-07-25T13:55:41
209,766,533
4
0
null
null
null
null
UTF-8
Python
false
false
48,503
py
from __future__ import print_function from sklearn.datasets import fetch_mldata import logging import copy from datetime import datetime import argparse import cPickle import os import os.path as osp import re import sys import math import time from functools import partial from PIL import Image from multiprocessing import Pool from sklearn.metrics import log_loss import numpy as np import mxnet as mx import scipy.io from util1 import mxutil from util1 import transformer as ts from util1 import util from util1.lr_scheduler import FixedScheduler, LinearScheduler, PolyScheduler from data1 import FileIter, make_divisible #from data_src import FileIter, make_divisible, parse_split_file def parse_split_file_tgt(dataset_tgt, split_tgt, data_root=''): split_filename = 'issegm1/data_list/{}/{}.lst'.format(dataset_tgt, split_tgt) image_list = [] label_gt_list = [] image_data_list = [] with open(split_filename) as f: for item in f.readlines(): fields = item.strip().split('\t') image_list.append(os.path.join(data_root, fields[0])) image_data_list.append(fields[0]) label_gt_list.append(os.path.join(data_root, fields[1])) return image_list, label_gt_list,image_data_list def parse_model_label(args): assert args.model is not None fields = [_.strip() for _ in osp.basename(args.model).split('_')] # parse fields i = 0 num_fields = len(fields) # database dataset = fields[i] if args.dataset is None else args.dataset dataset_tgt = args.dataset_tgt i += 1 ######################## network structure assert fields[i].startswith('rn') net_type = re.compile('rn[a-z]*').findall(fields[i])[0] net_name = fields[i][len(net_type):].strip('-') i += 1 # number of classes assert fields[i].startswith('cls') classes = int(fields[i][len('cls'):]) i += 1 ######################## feature resolution #feat_stride = 32 feat_stride = 8 if i < num_fields and fields[i].startswith('s'): feat_stride = int(fields[i][len('s'):]) i += 1 # learning rate lr_params = { 'type': 'fixed', 'base': 0.1, 'args': None, } if args.base_lr is not None: lr_params['base'] = args.base_lr if args.lr_type in ('linear',): lr_params['type'] = args.lr_type elif args.lr_type in ('poly',): lr_params['type'] = args.lr_type elif args.lr_type == 'step': lr_params['args'] = {'step': [int(_) for _ in args.lr_steps.split(',')], 'factor': 0.1} model_specs = { # model 'lr_params': lr_params, 'net_type': net_type, 'net_name': net_name, 'classes': classes, 'feat_stride': feat_stride, # data 'dataset': dataset, 'dataset_tgt': dataset_tgt } return model_specs def parse_args(): parser = argparse.ArgumentParser(description='Tune FCRNs from ResNets.') parser.add_argument('--dataset', default=None, help='The source dataset to use, e.g. cityscapes, voc.') parser.add_argument('--dataset-tgt', dest='dataset_tgt', default=None, help='The target dataset to use, e.g. cityscapes, GM.') parser.add_argument('--split', dest='split', default='train', help='The split to use, e.g. train, trainval.') parser.add_argument('--split-tgt', dest='split_tgt', default='val', help='The split to use in target domain e.g. train, trainval.') parser.add_argument('--data-root', dest='data_root', help='The root data dir. for source domain', default=None, type=str) parser.add_argument('--data-root-tgt', dest='data_root_tgt', help='The root data dir. for target domain', default=None, type=str) parser.add_argument('--output', default=None, help='The output dir.') parser.add_argument('--model', default=None, help='The unique label of this model.') parser.add_argument('--batch-images', dest='batch_images', help='The number of images per batch.', default=None, type=int) parser.add_argument('--crop-size', dest='crop_size', help='The size of network input during training.', default=None, type=int) parser.add_argument('--origin-size', dest='origin_size', help='The size of images to crop from in source domain', default=2048, type=int) parser.add_argument('--origin-size-tgt', dest='origin_size_tgt', help='The size of images to crop from in target domain', default=2048, type=int) parser.add_argument('--scale-rate-range', dest='scale_rate_range', help='The range of rescaling', default='0.7,1.3', type=str) parser.add_argument('--weights', default=None, help='The path of a pretrained model.') parser.add_argument('--gpus', default='0', help='The devices to use, e.g. 0,1,2,3') # parser.add_argument('--lr-type', dest='lr_type', help='The learning rate scheduler, e.g., fixed(default)/step/linear', default=None, type=str) parser.add_argument('--base-lr', dest='base_lr', help='The lr to start from.', default=None, type=float) parser.add_argument('--lr-steps', dest='lr_steps', help='The steps when to reduce lr.', default=None, type=str) parser.add_argument('--weight-decay', dest='weight_decay', help='The weight decay in sgd.', default=0.0005, type=float) # parser.add_argument('--from-epoch', dest='from_epoch', help='The epoch to start from.', default=None, type=int) parser.add_argument('--stop-epoch', dest='stop_epoch', help='The index of epoch to stop.', default=None, type=int) parser.add_argument('--to-epoch', dest='to_epoch', help='The number of epochs to run.', default=None, type=int) # how many rounds to generate pseudo labels parser.add_argument('--idx-round', dest='idx_round', help='The current number of rounds to generate pseudo labels', default=0, type=int) # initial portion of selected pseudo labels in target domain parser.add_argument('--init-tgt-port', dest='init_tgt_port', help='The initial portion of pixels selected in target dataset, both by global and class-wise threshold', default=0.3, type=float) parser.add_argument('--init-src-port', dest='init_src_port', help='The initial portion of images selected in source dataset', default=0.3, type=float) parser.add_argument('--seed-int', dest='seed_int', help='The random seed', default=0, type=int) parser.add_argument('--mine-port', dest='mine_port', help='The portion of data being mined', default=0.5, type=float) # parser.add_argument('--mine-id-number', dest='mine_id_number', help='Thresholding value for deciding mine id', default=3, type=int) parser.add_argument('--mine-thresh', dest='mine_thresh', help='The threshold to determine the mine id', default=0.001, type=float) parser.add_argument('--mine-id-address', dest='mine_id_address', help='The address of mine id', default=None, type=str) # parser.add_argument('--phase', help='Phase of this call, e.g., train/val.', default='train', type=str) parser.add_argument('--with-prior', dest='with_prior', help='with prior', default='True', type=str) # for testing parser.add_argument('--test-scales', dest='test_scales', help='Lengths of the longer side to resize an image into, e.g., 224,256.', default=None, type=str) parser.add_argument('--test-flipping', dest='test_flipping', help='If average predictions of original and flipped images.', default=False, action='store_true') parser.add_argument('--test-steps', dest='test_steps', help='The number of steps to take, for predictions at a higher resolution.', default=1, type=int) # parser.add_argument('--kvstore', dest='kvstore', help='The type of kvstore, e.g., local/device.', default='local', type=str) parser.add_argument('--prefetch-threads', dest='prefetch_threads', help='The number of threads to fetch data.', default=1, type=int) parser.add_argument('--prefetcher', dest='prefetcher', help='The type of prefetercher, e.g., process/thread.', default='thread', type=str) parser.add_argument('--cache-images', dest='cache_images', help='If cache images, e.g., 0/1', default=None, type=int) parser.add_argument('--log-file', dest='log_file', default=None, type=str) parser.add_argument('--check-start', dest='check_start', help='The first epoch to snapshot.', default=1, type=int) parser.add_argument('--check-step', dest='check_step', help='The steps between adjacent snapshots.', default=4, type=int) parser.add_argument('--debug', help='True means logging debug info.', default=False, action='store_true') parser.add_argument('--backward-do-mirror', dest='backward_do_mirror', help='True means less gpu memory usage.', default=False, action='store_true') parser.add_argument('--no-cudnn', dest='no_mxnet_cudnn_autotune_default', help='True means deploy cudnn.', default=False, action='store_true') parser.add_argument('--kc-policy', dest='kc_policy', help='The kc determination policy, currently only "global" and "cb" (class-balanced)', default='cb', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.debug: os.environ['MXNET_ENGINE_TYPE'] = 'NaiveEngine' if args.backward_do_mirror: os.environ['MXNET_BACKWARD_DO_MIRROR'] = '1' if args.no_mxnet_cudnn_autotune_default: os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0' if args.output is None: if args.phase == 'val': args.output = osp.dirname(args.weights) else: args.output = 'output' if args.weights is not None: if args.model is None: assert '_ep-' in args.weights parts = osp.basename(args.weights).split('_ep-') args.model = '_'.join(parts[:-1]) if args.phase == 'train': if args.from_epoch is None: assert '_ep-' in args.weights parts = os.path.basename(args.weights).split('_ep-') assert len(parts) == 2 from_model = parts[0] if from_model == args.model: parts = os.path.splitext(os.path.basename(args.weights))[0].split('-') args.from_epoch = int(parts[-1]) if args.model is None: raise NotImplementedError('Missing argument: args.model') if args.from_epoch is None: args.from_epoch = 0 if args.log_file is None: if args.phase == 'train': args.log_file = '{}.log'.format(args.model) elif args.phase == 'val': suffix = '' if args.split_tgt != 'val': suffix = '_{}'.format(args.split_tgt) args.log_file = '{}{}.log'.format(osp.splitext(osp.basename(args.weights))[0], suffix) else: raise NotImplementedError('Unknown phase: {}'.format(args.phase)) model_specs = parse_model_label(args) if args.data_root is None: args.data_root = osp.join('data', model_specs['dataset']) return args, model_specs def get_dataset_specs_tgt(args, model_specs): dataset = args.dataset dataset_tgt = args.dataset_tgt meta = {} mine_id = None mine_id_priority = None mine_port = args.mine_port mine_th = args.mine_thresh cmap_path = 'data/shared/cmap.pkl' cache_images = args.phase == 'train' mx_workspace = 1650 sys.path.insert(0, 'data/cityscapesscripts/helpers') if args.phase == 'train': mine_id = np.load(args.mine_id_address + '/mine_id.npy') mine_id_priority = np.load(args.mine_id_address + '/mine_id_priority.npy') mine_th = np.zeros(len(mine_id)) # trainId starts from 0 if dataset == 'gta' and dataset_tgt == 'cityscapes': from labels import id2label, trainId2label # label_2_id_tgt = 255 * np.ones((256,)) for l in id2label: if l in (-1, 255): continue label_2_id_tgt[l] = id2label[l].trainId id_2_label_tgt = np.array([trainId2label[_].id for _ in trainId2label if _ not in (-1, 255)]) valid_labels_tgt = sorted(set(id_2_label_tgt.ravel())) id_2_label_src = id_2_label_tgt label_2_id_src = label_2_id_tgt valid_labels_src = valid_labels_tgt # cmap = np.zeros((256, 3), dtype=np.uint8) for i in id2label.keys(): cmap[i] = id2label[i].color # ident_size = True # #max_shape_src = np.array((1052, 1914)) max_shape_src = np.array((1024, 2048)) max_shape_tgt = np.array((1024, 2048)) # if args.split in ('train+', 'trainval+'): cache_images = False # if args.phase in ('val',): mx_workspace = 8192 elif dataset == 'synthia' and dataset_tgt == 'cityscapes': from labels_cityscapes_synthia import id2label as id2label_tgt from labels_cityscapes_synthia import trainId2label as trainId2label_tgt from labels_synthia import id2label as id2label_src label_2_id_src = 255 * np.ones((256,)) for l in id2label_src: if l in (-1, 255): continue label_2_id_src[l] = id2label_src[l].trainId label_2_id_tgt = 255 * np.ones((256,)) for l in id2label_tgt: if l in (-1, 255): continue label_2_id_tgt[l] = id2label_tgt[l].trainId id_2_label_tgt = np.array([trainId2label_tgt[_].id for _ in trainId2label_tgt if _ not in (-1, 255)]) valid_labels_tgt = sorted(set(id_2_label_tgt.ravel())) id_2_label_src = None valid_labels_src = None # cmap = np.zeros((256, 3), dtype=np.uint8) for i in id2label_tgt.keys(): cmap[i] = id2label_tgt[i].color # ident_size = True # max_shape_src = np.array((760, 1280)) max_shape_tgt = np.array((1024, 2048)) # if args.split in ('train+', 'trainval+'): cache_images = False # if args.phase in ('val',): mx_workspace = 8192 else: raise NotImplementedError('Unknow dataset: {}'.format(args.dataset)) if cmap is None and cmap_path is not None: if osp.isfile(cmap_path): with open(cmap_path) as f: cmap = cPickle.load(f) meta['gpus'] = args.gpus meta['mine_port'] = mine_port meta['mine_id'] = mine_id meta['mine_id_priority'] = mine_id_priority meta['mine_th'] = mine_th meta['label_2_id_tgt'] = label_2_id_tgt meta['id_2_label_tgt'] = id_2_label_tgt meta['valid_labels_tgt'] = valid_labels_tgt meta['label_2_id_src'] = label_2_id_src meta['id_2_label_src'] = id_2_label_src meta['valid_labels_src'] = valid_labels_src meta['cmap'] = cmap meta['ident_size'] = ident_size meta['max_shape_src'] = meta.get('max_shape_src', max_shape_src) meta['max_shape_tgt'] = meta.get('max_shape_tgt', max_shape_tgt) meta['cache_images'] = args.cache_images if args.cache_images is not None else cache_images meta['mx_workspace'] = mx_workspace return meta '''def _get_metric(): def _eval_func(label, pred): # global sxloss gt_label = label.ravel() valid_flag = gt_label != 255 labels = gt_label[valid_flag].astype(int) n,c,h,w = pred.shape valid_inds = np.where(valid_flag)[0] probmap = np.rollaxis(pred.astype(np.float32),1).reshape((c, -1)) valid_probmap = probmap[labels, valid_inds] log_valid_probmap = -np.log(valid_probmap+1e-32) sum_metric = log_valid_probmap.sum() num_inst = valid_flag.sum() return (sum_metric, num_inst + (num_inst == 0)) return mx.metric.CustomMetric(_eval_func, 'loss')''' class Multi_Accuracy(mx.metric.EvalMetric): """Calculate accuracies of multi label""" def __init__(self, num=None): self.num = num super(Multi_Accuracy, self).__init__('multi-accuracy') def reset(self): """Resets the internal evaluation result to initial state.""" self.num_inst = 0 if self.num is None else [0] * self.num self.sum_metric = 0.0 if self.num is None else [0.0] * self.num def update(self, labels, preds): mx.metric.check_label_shapes(labels, preds) if self.num is not None: assert len(labels) == self.num for i in range(len(labels)): #print ('I am here in accuracy') #pred_label = mx.nd.argmax_channel(preds[i]).asnumpy().astype('int32') pred_label = preds[i].asnumpy().astype('float') label = labels[i].asnumpy().astype('int32') mx.metric.check_label_shapes(label, pred_label) if self.num is None: #self.sum_metric += (pred_label.flat == label.flat).sum() #self.num_inst += len(pred_label.flat) outEval = _eval_func(label, pred_label) self.sum_metric = outEval[0] self.num_inst = outEval[1] else: if i==0: outEval = _eval_func(label, pred_label) self.sum_metric[i] = outEval[0] self.num_inst[i] = outEval[1] else: #self.sum_metric[i] = (pred_label.flat == label.flat).sum() #print(label.shape, pred_label.shape, label, pred_label) #self.sum_metric[i] = log_loss(label.flat, pred_label.flat) self.sum_metric[i] = cross_entropy(label.flatten(), pred_label.flatten()) self.num_inst[i] = len(pred_label.flat) #print self.sum_metric[i], self.num_inst[i] def get(self): """Gets the current evaluation result. Returns ------- names : list of str Name of the metrics. values : list of float Value of the evaluations. """ if self.num is None: return super(Multi_Accuracy, self).get() else: return zip(*(('%s-task%d'%(self.name, i), float('nan') if self.num_inst[i] == 0 else self.sum_metric[i] / self.num_inst[i]) for i in range(self.num))) def get_name_value(self): """Returns zipped name and value pairs. Returns ------- list of tuples A (name, value) tuple list. """ if self.num is None: return super(Multi_Accuracy, self).get_name_value() name, value = self.get() return list(zip(name, value)) def _eval_func(label, pred): # global sxloss gt_label = label.ravel() valid_flag = gt_label != 255 labels = gt_label[valid_flag].astype(int) n,c,h,w = pred.shape valid_inds = np.where(valid_flag)[0] probmap = np.rollaxis(pred.astype(np.float32),1).reshape((c, -1)) valid_probmap = probmap[labels, valid_inds] log_valid_probmap = -np.log(valid_probmap+1e-32) sum_metric = log_valid_probmap.sum() num_inst = valid_flag.sum() return (sum_metric, num_inst + (num_inst == 0)) def cross_entropy(targets, predictions): N = predictions.shape[0] lo = np.log(predictions+ 1e-6) #print predictions,lo ce = -np.sum(targets*lo)/N return ce def _get_scalemeanstd(): if model_specs['net_type'] in ('rna',): return (1.0 / 255, np.array([0.485, 0.456, 0.406]).reshape((1, 1, 3)), np.array([0.229, 0.224, 0.225]).reshape((1, 1, 3))) return None, None, None def _get_transformer_image(): scale, mean_, std_ = _get_scalemeanstd() transformers = [] if scale > 0: transformers.append(ts.ColorScale(np.single(scale))) transformers.append(ts.ColorNormalize(mean_, std_)) return transformers def _get_module(args, margs, dargs, net=None): if net is None: # the following lines show how to create symbols for our networks if model_specs['net_type'] == 'rna': from util1.symbol.symbol import cfg as symcfg symcfg['lr_type'] = 'alex' symcfg['workspace'] = dargs.mx_workspace symcfg['bn_use_global_stats'] = True if model_specs['net_name'] == 'a1': from util1.symbol.resnet_v2 import fcrna_model_a1, fcrna_model_a1_1 #net = fcrna_model_a1(margs.classes, margs.feat_stride, bootstrapping=False) net = fcrna_model_a1_1(margs.classes, margs.feat_stride, bootstrapping=False) if net is None: raise NotImplementedError('Unknown network: {}'.format(vars(margs))) contexts = [mx.gpu(int(_)) for _ in args.gpus.split(',')] #mod = mx.mod.Module(net, context=contexts) mod = mx.mod.Module(net, context=contexts, label_names=['softmax_label', 'sigmoid_label']) return mod def _make_dirs(path): if not osp.isdir(path): os.makedirs(path) def facc(label, pred): pred = pred.argmax(1).ravel() label = label.ravel() return (pred == label).mean() def fentropy(label, pred): pred_source = pred[:, 1, :, :].ravel() label = label.ravel() return -(label * np.log(pred_source + 1e-12) + (1. - label) * np.log(1. - pred_source + 1e-12)).mean() def _interp_preds_as_impl(num_classes, im_size, pred_stride, imh, imw, pred): imh0, imw0 = im_size pred = pred.astype(np.single, copy=False) input_h, input_w = pred.shape[0] * pred_stride, pred.shape[1] * pred_stride assert pred_stride >= 1. this_interp_pred = np.array(Image.fromarray(pred).resize((input_w, input_h), Image.CUBIC)) if imh0 == imh: interp_pred = this_interp_pred[:imh, :imw] else: interp_method = util.get_interp_method(imh, imw, imh0, imw0) interp_pred = np.array(Image.fromarray(this_interp_pred[:imh, :imw]).resize((imw0, imh0), interp_method)) return interp_pred def interp_preds_as(im_size, net_preds, pred_stride, imh, imw, threads=4): num_classes = net_preds.shape[0] worker = partial(_interp_preds_as_impl, num_classes, im_size, pred_stride, imh, imw) if threads == 1: ret = [worker(_) for _ in net_preds] else: pool = Pool(threads) ret = pool.map(worker, net_preds) pool.close() return np.array(ret) class ScoreUpdater(object): def __init__(self, valid_labels, c_num, x_num, logger=None, label=None, info=None): self._valid_labels = valid_labels self._confs = np.zeros((c_num, c_num, x_num)) self._pixels = np.zeros((c_num, x_num)) self._logger = logger self._label = label self._info = info @property def info(self): return self._info def reset(self): self._start = time.time() self._computed = np.zeros((self._pixels.shape[1],)) self._confs[:] = 0 self._pixels[:] = 0 @staticmethod def calc_updates(valid_labels, pred_label, label): num_classes = len(valid_labels) pred_flags = [set(np.where((pred_label == _).ravel())[0]) for _ in valid_labels] class_flags = [set(np.where((label == _).ravel())[0]) for _ in valid_labels] conf = [len(class_flags[j].intersection(pred_flags[k])) for j in xrange(num_classes) for k in xrange(num_classes)] pixel = [len(class_flags[j]) for j in xrange(num_classes)] return np.single(conf).reshape((num_classes, num_classes)), np.single(pixel) def do_updates(self, conf, pixel, i, computed=True): if computed: self._computed[i] = 1 self._confs[:, :, i] = conf self._pixels[:, i] = pixel def update(self, pred_label, label, i, computed=True): conf, pixel = ScoreUpdater.calc_updates(self._valid_labels, pred_label, label) self.do_updates(conf, pixel, i, computed) self.scores(i) def scores(self, i=None, logger=None): confs = self._confs pixels = self._pixels num_classes = pixels.shape[0] x_num = pixels.shape[1] class_pixels = pixels.sum(1) class_pixels += class_pixels == 0 scores = confs[xrange(num_classes), xrange(num_classes), :].sum(1) acc = scores.sum() / pixels.sum() cls_accs = scores / class_pixels class_preds = confs.sum(0).sum(1) ious = scores / (class_pixels + class_preds - scores) logger = self._logger if logger is None else logger if logger is not None: if i is not None: speed = 1. * self._computed.sum() / (time.time() - self._start) logger.info('Done {}/{} with speed: {:.2f}/s'.format(i + 1, x_num, speed)) name = '' if self._label is None else '{}, '.format(self._label) logger.info('{}pixel acc: {:.2f}%, mean acc: {:.2f}%, mean iou: {:.2f}%'. \ format(name, acc * 100, cls_accs.mean() * 100, ious.mean() * 100)) with util.np_print_options(formatter={'float': '{:5.2f}'.format}): logger.info('\n{}'.format(cls_accs * 100)) logger.info('\n{}'.format(ious * 100)) return acc, cls_accs, ious def overall_scores(self, logger=None): acc, cls_accs, ious = self.scores(None, logger) return acc, cls_accs.mean(), ious.mean() def _train_impl(args, model_specs, logger): if len(args.output) > 0: _make_dirs(args.output) # dataiter dataset_specs_tgt = get_dataset_specs_tgt(args, model_specs) scale, mean_, _ = _get_scalemeanstd() if scale > 0: mean_ /= scale margs = argparse.Namespace(**model_specs) dargs = argparse.Namespace(**dataset_specs_tgt) # number of list_lines split_filename = 'issegm1/data_list/{}/{}.lst'.format(margs.dataset, args.split) num_source = 0 with open(split_filename) as f: for item in f.readlines(): num_source = num_source + 1 # batches_per_epoch = num_source // args.batch_images # optimizer assert args.to_epoch is not None if args.stop_epoch is not None: assert args.stop_epoch > args.from_epoch and args.stop_epoch <= args.to_epoch else: args.stop_epoch = args.to_epoch from_iter = args.from_epoch * batches_per_epoch to_iter = args.to_epoch * batches_per_epoch lr_params = model_specs['lr_params'] base_lr = lr_params['base'] if lr_params['type'] == 'fixed': scheduler = FixedScheduler() elif lr_params['type'] == 'step': left_step = [] for step in lr_params['args']['step']: if from_iter > step: base_lr *= lr_params['args']['factor'] continue left_step.append(step - from_iter) model_specs['lr_params']['step'] = left_step scheduler = mx.lr_scheduler.MultiFactorScheduler(**lr_params['args']) elif lr_params['type'] == 'linear': scheduler = LinearScheduler(updates=to_iter + 1, frequency=50, stop_lr=min(base_lr / 100., 1e-6), offset=from_iter) elif lr_params['type'] == 'poly': scheduler = PolyScheduler(updates=to_iter + 1, frequency=50, stop_lr=min(base_lr / 100., 1e-8), power=0.9, offset=from_iter) initializer = mx.init.Xavier(rnd_type='gaussian', factor_type='in', magnitude=2) optimizer_params = { 'learning_rate': base_lr, 'momentum': 0.9, 'wd': args.weight_decay, 'lr_scheduler': scheduler, 'rescale_grad': 1.0 / len(args.gpus.split(',')), } data_src_port = args.init_src_port data_src_num = int(num_source * data_src_port) mod = _get_module(args, margs, dargs) addr_weights = args.weights # first weights should be xxxx_ep-0000.params! addr_output = args.output # initializer net_args = None net_auxs = None ### if addr_weights is not None: net_args, net_auxs = mxutil.load_params_from_file(addr_weights) print ('feat_stride', margs.feat_stride) ####################################### training model to_model = osp.join(addr_output, str(args.idx_round), '{}_ep'.format(args.model)) dataiter = FileIter(dataset=margs.dataset, split=args.split, data_root=args.data_root, num_sel_source=data_src_num, num_source=num_source, seed_int=args.seed_int, dataset_tgt=args.dataset_tgt, split_tgt=args.split_tgt, data_root_tgt=args.data_root_tgt, sampler='random', batch_images=args.batch_images, meta=dataset_specs_tgt, rgb_mean=mean_, feat_stride=margs.feat_stride, label_stride=margs.feat_stride, origin_size=args.origin_size, origin_size_tgt=args.origin_size_tgt, crop_size=args.crop_size, scale_rate_range=[float(_) for _ in args.scale_rate_range.split(',')], transformer=None, transformer_image=ts.Compose(_get_transformer_image()), prefetch_threads=args.prefetch_threads, prefetcher_type=args.prefetcher, ) dataiter.reset() #ad = dataiter.next() #label_shapes = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in label_shapes] #print (ad) mod.fit( dataiter, eval_metric=Multi_Accuracy(2), #eval_metric=_get_metric(), batch_end_callback=mx.callback.log_train_metric(10, auto_reset=False), epoch_end_callback=mx.callback.do_checkpoint(to_model), kvstore=args.kvstore, optimizer='sgd', optimizer_params=optimizer_params, initializer=initializer, arg_params=net_args, aux_params=net_auxs, allow_missing=args.from_epoch == 0, begin_epoch=args.from_epoch, num_epoch=args.stop_epoch, ) # @profile # MST: def _val_impl(args, model_specs, logger): if len(args.output) > 0: _make_dirs(args.output) # dataiter dataset_specs_tgt = get_dataset_specs_tgt(args, model_specs) scale, mean_, _ = _get_scalemeanstd() if scale > 0: mean_ /= scale #print (model_specs) margs = argparse.Namespace(**model_specs) dargs = argparse.Namespace(**dataset_specs_tgt) mod = _get_module(args, margs, dargs) addr_weights = args.weights # first weights should be xxxx_ep-0000.params! addr_output = args.output # current round index cround = args.idx_round net_args = None net_auxs = None ### if addr_weights is not None: net_args, net_auxs = mxutil.load_params_from_file(addr_weights) ###### save_dir = osp.join(args.output, str(cround), 'results') save_dir_self_train = osp.join(args.output, str(cround), 'self_train') # pseudo labels save_dir_pseudo_labelIds = osp.join(save_dir_self_train, 'pseudo_labelIds') save_dir_pseudo_color = osp.join(save_dir_self_train, 'pseudo_color') # without sp save_dir_nplabelIds = osp.join(save_dir, 'nplabelIds') save_dir_npcolor = osp.join(save_dir, 'npcolor') # probability map save_dir_probmap = osp.join(args.output, 'probmap') save_dir_stats = osp.join(args.output, 'stats') _make_dirs(save_dir) _make_dirs(save_dir_pseudo_labelIds) _make_dirs(save_dir_pseudo_color) _make_dirs(save_dir_nplabelIds) _make_dirs(save_dir_npcolor) _make_dirs(save_dir_probmap) _make_dirs(save_dir_stats) if args.with_prior == 'True': # with sp save_dir_splabelIds = osp.join(save_dir_self_train, 'splabelIds') save_dir_spcolor = osp.join(save_dir_self_train, 'spcolor') _make_dirs(save_dir_splabelIds) _make_dirs(save_dir_spcolor) if args.kc_policy == 'cb': # reweighted prediction map save_dir_rwlabelIds = osp.join(save_dir_self_train, 'rwlabelIds') save_dir_rwcolor = osp.join(save_dir_self_train, 'rwcolor') _make_dirs(save_dir_rwlabelIds) _make_dirs(save_dir_rwcolor) ###### dataset_tgt = model_specs['dataset_tgt'] image_list_tgt, label_gt_list_tgt,image_tgt_list = parse_split_file_tgt(margs.dataset_tgt, args.split_tgt) has_gt = args.split_tgt in ('train', 'val',) crop_sizes = sorted([int(_) for _ in args.test_scales.split(',')])[::-1] crop_size = crop_sizes[0] assert len(crop_sizes) == 1, 'multi-scale testing not implemented' label_stride = margs.feat_stride x_num = len(image_list_tgt) do_forward = True # for all images that has the same resolution if do_forward: batch = None transformers = [ts.Scale(crop_size, Image.CUBIC, False)] transformers += _get_transformer_image() transformer = ts.Compose(transformers) scorer_np = ScoreUpdater(dargs.valid_labels_tgt, margs.classes, x_num, logger) scorer_np.reset() # with prior if args.with_prior == 'True': scorer = ScoreUpdater(dargs.valid_labels_tgt, margs.classes, x_num, logger) scorer.reset() done_count = 0 # for multi-scale testing num_classes = margs.classes init_tgt_port = float(args.init_tgt_port) # class-wise cls_exist_array = np.zeros([1, num_classes], dtype=int) cls_thresh = np.zeros([num_classes]) # confidence thresholds for all classes cls_size = np.zeros([num_classes]) # number of predictions in each class array_pixel = 0.0 # prior if args.with_prior == 'True': in_path_prior = 'spatial_prior/{}/prior_array.mat'.format(args.dataset) sprior = scipy.io.loadmat(in_path_prior) prior_array = sprior["prior_array"].astype(np.float32) #prior_array = np.maximum(prior_array,0) ############################ network forward for i in xrange(x_num): start = time.time() ############################ network forward on single image (from official ResNet-38 implementation) sample_name = osp.splitext(osp.basename(image_list_tgt[i]))[0] im_path = osp.join(args.data_root_tgt, image_list_tgt[i]) rim = np.array(Image.open(im_path).convert('RGB'), np.uint8) if do_forward: im = transformer(rim) imh, imw = im.shape[:2] # init if batch is None: if dargs.ident_size: input_h = make_divisible(imh, margs.feat_stride) input_w = make_divisible(imw, margs.feat_stride) else: input_h = input_w = make_divisible(crop_size, margs.feat_stride) label_h, label_w = input_h / label_stride, input_w / label_stride test_steps = args.test_steps pred_stride = label_stride / test_steps pred_h, pred_w = label_h * test_steps, label_w * test_steps input_data = np.zeros((1, 3, input_h, input_w), np.single) input_label = 255 * np.ones((1, label_h * label_w), np.single) #dataiter_tgt = mx.io.NDArrayIter(input_data, input_label) input_label2 = np.ones((1, 19), np.single) label = {'softmax_label':input_label, 'sigmoid_label':input_label2} dataiter_tgt = mx.io.NDArrayIter(input_data, label) batch = dataiter_tgt.next() mod.bind(dataiter_tgt.provide_data, dataiter_tgt.provide_label, for_training=False, force_rebind=True) if not mod.params_initialized: mod.init_params(arg_params=net_args, aux_params=net_auxs) nim = np.zeros((3, imh + label_stride, imw + label_stride), np.single) sy = sx = label_stride // 2 nim[:, sy:sy + imh, sx:sx + imw] = im.transpose(2, 0, 1) net_preds = np.zeros((margs.classes, pred_h, pred_w), np.single) sy = sx = pred_stride // 2 + np.arange(test_steps) * pred_stride for ix in xrange(test_steps): for iy in xrange(test_steps): input_data = np.zeros((1, 3, input_h, input_w), np.single) input_data[0, :, :imh, :imw] = nim[:, sy[iy]:sy[iy] + imh, sx[ix]:sx[ix] + imw] batch.data[0] = mx.nd.array(input_data) mod.forward(batch, is_train=False) this_call_preds = mod.get_outputs()[0].asnumpy()[0] if args.test_flipping: batch.data[0] = mx.nd.array(input_data[:, :, :, ::-1]) mod.forward(batch, is_train=False) # average the original and flipped image prediction this_call_preds = 0.5 * ( this_call_preds + mod.get_outputs()[0].asnumpy()[0][:, :, ::-1]) net_preds[:, iy:iy + pred_h:test_steps, ix:ix + pred_w:test_steps] = this_call_preds interp_preds_np = interp_preds_as(rim.shape[:2], net_preds, pred_stride, imh, imw) ########################### #save predicted labels and confidence score vectors in target domains # no prior prediction with trainIDs pred_label_np = interp_preds_np.argmax(0) # no prior prediction with labelIDs if dargs.id_2_label_tgt is not None: pred_label_np = dargs.id_2_label_tgt[pred_label_np] # no prior color prediction im_to_save_np = Image.fromarray(pred_label_np.astype(np.uint8)) im_to_save_npcolor = im_to_save_np.copy() if dargs.cmap is not None: im_to_save_npcolor.putpalette(dargs.cmap.ravel()) # save no prior prediction with labelIDs and colors out_path_np = osp.join(save_dir_nplabelIds, '{}.png'.format(sample_name)) out_path_npcolor = osp.join(save_dir_npcolor, '{}.png'.format(sample_name)) im_to_save_np.save(out_path_np) im_to_save_npcolor.save(out_path_npcolor) # with prior if args.with_prior == 'True': probmap = np.multiply(prior_array,interp_preds_np).astype(np.float32) elif args.with_prior == 'False': probmap = interp_preds_np.copy().astype(np.float32) pred_label = probmap.argmax(0) probmap_max = np.amax(probmap, axis=0) ############################ save confidence scores of target domain as class-wise vectors for idx_cls in np.arange(0, num_classes): idx_temp = pred_label == idx_cls sname = 'array_cls' + str(idx_cls) if not (sname in locals()): exec ("%s = np.float32(0)" % sname) if idx_temp.any(): cls_exist_array[0, idx_cls] = 1 probmap_max_cls_temp = probmap_max[idx_temp].astype(np.float32) len_cls = probmap_max_cls_temp.size # downsampling by rate 4 probmap_cls = probmap_max_cls_temp[0:len_cls:4] exec ("%s = np.append(%s,probmap_cls)" % (sname, sname)) ############################ save prediction # save prediction probablity map out_path_probmap = osp.join(save_dir_probmap, '{}.npy'.format(sample_name)) np.save(out_path_probmap, probmap.astype(np.float32)) # save predictions with spatial priors, if sp exist. if args.with_prior == 'True': if dargs.id_2_label_tgt is not None: pred_label = dargs.id_2_label_tgt[pred_label] im_to_save_sp = Image.fromarray(pred_label.astype(np.uint8)) im_to_save_spcolor = im_to_save_sp.copy() if dargs.cmap is not None: # save color seg map im_to_save_spcolor.putpalette(dargs.cmap.ravel()) out_path_sp = osp.join(save_dir_splabelIds, '{}.png'.format(sample_name)) out_path_spcolor = osp.join(save_dir_spcolor, '{}.png'.format(sample_name)) im_to_save_sp.save(out_path_sp) im_to_save_spcolor.save(out_path_spcolor) # log information done_count += 1 if not has_gt: logger.info( 'Done {}/{} with speed: {:.2f}/s'.format(i + 1, x_num, 1. * done_count / (time.time() - start))) continue if args.split_tgt in ('train', 'val'): # evaluate with ground truth label_path = osp.join(args.data_root_tgt, label_gt_list_tgt[i]) label = np.array(Image.open(label_path), np.uint8) if args.with_prior == 'True': scorer.update(pred_label, label, i) scorer_np.update(pred_label_np, label, i) # save target training list fout = 'issegm1/data_list/{}/{}_training_gpu{}.lst'.format(args.dataset_tgt,args.split_tgt,args.gpus) fo = open(fout, "w") for idx_image in range(x_num): sample_name = osp.splitext(osp.basename(image_list_tgt[idx_image]))[0] fo.write(image_tgt_list[idx_image] + '\t' + osp.join(save_dir_pseudo_labelIds, '{}.png'.format(sample_name)) + '\n') fo.close() ############################ kc generation start_sort = time.time() # threshold for each class if args.kc_policy == 'global': for idx_cls in np.arange(0,num_classes): tname = 'array_cls' + str(idx_cls) exec ("array_pixel = np.append(array_pixel,%s)" % tname) # reverse=False for ascending losses and reverse=True for descending confidence array_pixel = sorted(array_pixel, reverse = True) len_cls = len(array_pixel) len_thresh = int(math.floor(len_cls * init_tgt_port)) cls_size[:] = len_cls cls_thresh[:] = array_pixel[len_thresh-1].copy() array_pixel = 0.0 if args.kc_policy == 'cb': for idx_cls in np.arange(0, num_classes): tname = 'array_cls' + str(idx_cls) if cls_exist_array[0, idx_cls] == 1: exec("%s = sorted(%s,reverse=True)" % (tname, tname)) # reverse=False for ascending losses and reverse=True for descending confidence exec("len_cls = len(%s)" % tname) cls_size[idx_cls] = len_cls len_thresh = int(math.floor(len_cls * init_tgt_port)) if len_thresh != 0: exec("cls_thresh[idx_cls] = %s[len_thresh-1].copy()" % tname) exec("%s = %d" % (tname, 0.0)) # threshold for mine_id with priority mine_id_priority = np.nonzero(cls_size / np.sum(cls_size) < args.mine_thresh)[0] # chosen mine_id mine_id_all = np.argsort(cls_size / np.sum(cls_size)) mine_id = mine_id_all[:args.mine_id_number] print(mine_id) np.save(save_dir_stats + '/mine_id.npy', mine_id) np.save(save_dir_stats + '/mine_id_priority.npy', mine_id_priority) np.save(save_dir_stats + '/cls_thresh.npy', cls_thresh) np.save(save_dir_stats + '/cls_size.npy', cls_size) logger.info('Kc determination done in %.2f s.', time.time() - start_sort) ############################ pseudo-label generation for i in xrange(x_num): sample_name = osp.splitext(osp.basename(image_list_tgt[i]))[0] sample_pseudo_label_name = osp.join(save_dir_pseudo_labelIds, '{}.png'.format(sample_name)) sample_pseudocolor_label_name = osp.join(save_dir_pseudo_color, '{}.png'.format(sample_name)) out_path_probmap = osp.join(save_dir_probmap, '{}.npy'.format(sample_name)) probmap = np.load(out_path_probmap) rw_probmap = np.zeros(probmap.shape, np.single) cls_thresh[cls_thresh == 0] = 1.0 # cls_thresh = 0 means there is no prediction in this class ############# pseudo-label assignment for idx_cls in np.arange(0, num_classes): cls_thresh_temp = cls_thresh[idx_cls] cls_probmap = probmap[idx_cls,:,:] cls_rw_probmap = np.true_divide(cls_probmap,cls_thresh_temp) rw_probmap[idx_cls,:,:] = cls_rw_probmap.copy() rw_probmap_max = np.amax(rw_probmap, axis=0) pseudo_label = np.argmax(rw_probmap,axis=0) ############# pseudo-label selection idx_unconfid = rw_probmap_max < 1 idx_confid = rw_probmap_max >= 1 # pseudo-labels with labelID pseudo_label = pseudo_label.astype(np.uint8) pseudo_label_labelID = dargs.id_2_label_tgt[pseudo_label] rw_pred_label = pseudo_label_labelID.copy() # ignore label assignment, compatible with labelIDs pseudo_label_labelID[idx_unconfid] = 0 ############# save pseudo-label im_to_save_pseudo = Image.fromarray(pseudo_label_labelID.astype(np.uint8)) im_to_save_pseudocol = im_to_save_pseudo.copy() if dargs.cmap is not None: # save segmentation prediction with color im_to_save_pseudocol.putpalette(dargs.cmap.ravel()) out_path_pseudo = osp.join(save_dir_pseudo_labelIds, '{}.png'.format(sample_name)) out_path_colpseudo = osp.join(save_dir_pseudo_color, '{}.png'.format(sample_name)) im_to_save_pseudo.save(out_path_pseudo) im_to_save_pseudocol.save(out_path_colpseudo) ############# save reweighted pseudo-label in cbst if args.kc_policy == 'cb': im_to_save_rw = Image.fromarray(rw_pred_label.astype(np.uint8)) im_to_save_rwcolor = im_to_save_rw.copy() if dargs.cmap is not None: im_to_save_rwcolor.putpalette(dargs.cmap.ravel()) out_path_rw = osp.join(save_dir_rwlabelIds, '{}.png'.format(sample_name)) out_path_rwcolor = osp.join(save_dir_rwcolor, '{}.png'.format(sample_name)) # save no prior prediction with labelIDs and colors im_to_save_rw.save(out_path_rw) im_to_save_rwcolor.save(out_path_rwcolor) ## remove probmap folder import shutil shutil.rmtree(save_dir_probmap) ## if __name__ == "__main__": util.cfg['choose_interpolation_method'] = True args, model_specs = parse_args() if len(args.output) > 0: _make_dirs(args.output) logger = util.set_logger(args.output, args.log_file, args.debug) logger.info('start with arguments %s', args) logger.info('and model specs %s', model_specs) if args.phase == 'train': _train_impl(args, model_specs, logger) elif args.phase == 'val': _val_impl(args, model_specs, logger) else: raise NotImplementedError('Unknown phase: {}'.format(args.phase))
a33b2f9f3cd62ddd7189114556f08b0144aad7c6
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/tenth/rank_2p49_Q.py
c80b9b7c96acce81b347d895d8286c78c576e7d8
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,204
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '2p49.csv' identifier = 'Q' thresholdCoef = 0.1 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/tenth/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/tenth/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) df1 = df1.reindex(sorted(df1.columns), axis = 1) # Drop features with coefficients below threshold coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs = coefs[np.abs(coefs['coefficients']) < thresholdCoef] dropList = list(coefs.index) del coefs df1.drop(dropList, axis = 1, inplace = True) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
3095ad9d0178728b8363be5fa150c0ea43e6ecea
9c902c6bc6ea2cce71195acd5baa8f44ab928eb6
/pythonapp/imgtxt/admin.py
0124dec01736c26d6587dbe332000f3719f39cdc
[]
no_license
mogilivishal/Verzeo-OCR-Project
a383b56014e13dfef598a191012fc51dc9579624
8b34a6c8b323e0b55c7902f2c4f873a1e4ce04e7
refs/heads/master
2022-04-17T20:32:45.724447
2020-02-16T17:38:52
2020-02-16T17:38:52
240,932,822
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
from django.contrib import admin from .models import Document admin.site.register(Document)
7f9a2d07182faa806f9337f02a6a0ce4035514fd
0676f6e4d3510a0305d29aa0b1fe740d538d3b63
/Python/SImplifyPline/CleanUpPolyline.py
1ce7d7116eb272886ed20d4186ae8a3b571c98fb
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
pgolay/PG_Scripts
f70ffe7e5ca07acd6f4caedc9a9aec566542da7c
796704a7daa6ac222a40bb02afdb599f74a6b0d4
refs/heads/master
2021-01-19T16:53:41.525879
2017-02-07T18:26:10
2017-02-07T18:26:10
2,730,362
9
1
null
2016-12-30T17:58:08
2011-11-08T00:04:33
Python
UTF-8
Python
false
false
1,898
py
import Rhino import scriptcontext as sc """ Cleans up by collapsing tiny segments in a polyline. """ def CleanUpPolyline(): while True: tol = sc.doc.ModelAbsoluteTolerance if sc.sticky.has_key("PLineSimplifyTol"): tol = sc.sticky["PLineSimplifyTol"] go = Rhino.Input.Custom.GetObject() go.AcceptNumber(True, False) go.GeometryFilter = Rhino.DocObjects.ObjectType.Curve opDblTol = Rhino.Input.Custom.OptionDouble(tol) go.AddOptionDouble("SegmentTolerance",opDblTol) result = go.Get() if( go.CommandResult() != Rhino.Commands.Result.Success ): return if result == Rhino.Input.GetResult.Object: if type(go.Object(0).Geometry()) == Rhino.Geometry.PolylineCurve: curve = go.Object(0).Geometry() rc, pLine = curve.TryGetPolyline() pLineId = go.Object(0).ObjectId else: sc.doc.Objects.UnselectAll() sc.doc.Views.Redraw() print "Sorry, that was not a polyline." continue break elif result == Rhino.Input.GetResult.Option: tol = opDblTol.CurrentValue sc.sticky["PLineSimplifyTol"] = tol continue elif result == Rhino.Input.GetResult.Number: tol = go.Number() sc.sticky["PLineSimplifyTol"] = tol continue break count = pLine.CollapseShortSegments(tol) if count !=0: sc.doc.Objects.Replace(pLineId, pLine) sc.doc.Views.Redraw() print str(count) + " short segments were collapsed." else: print "No short segments were collapsed." pass if __name__ == "__main__": CleanUpPolyline()
ede12f3384950d410a2e5b5c0bb5ba2b28076ac9
6c67e2ae195521910fd3d8180fc5a70b9f60db81
/controllers/utils/rtsq_library/rtsq_level.py
bbe95532b2799521638fa5f25075270c273de949
[ "MIT" ]
permissive
zeroday0619/Real-Time-Delivery-Query-API
be8b7f0cd74e6c8651fc034064f51e6ec20bac17
fc2f973c205fe453f77ae27dcd99ce3c2e84528d
refs/heads/master
2020-09-08T01:43:08.857874
2019-11-17T22:32:44
2019-11-17T22:32:44
220,975,056
1
0
null
null
null
null
UTF-8
Python
false
false
810
py
def level(resp): """ Args: resp: level: string Returns: [level 1: 배송준비중, 2: 집화완료, 3: 배송중, 4: 지점 도착, 5: 배송출발, 6:배송 완료] """ if resp['level'] == 1: return { "code": 1, "level": "배송 준비중" } elif resp['level'] == 2: return { "code": 2, "level": "집화 완료" } elif resp['level'] == 3: return { "code": 3, "level": "배송중" } elif resp['level'] == 4: return { "code": 4, "level": "지점 도착" } elif resp['level'] == 5: return { "code": 5, "level": "배송 출발" } elif resp['level'] == 6: return { "code": 6, "level": "배송 완료" } else: return { "code": 0, "level": "Internal System Error" }
ee3452616d5ab280c04845cc2164cbdf6db586d2
9032e88ca0c90a15b96d2142d2629484cdf469b6
/py_controls/MemoryManager.py
fd1bc79f0d91f58ce62c4bd3349152244c888609
[ "MIT" ]
permissive
CyberCrunch/DU_AI_Gov
856db1db4e67e37ac8c8f05fc096a9bbc50027a8
a9fcf3b603c39bf0704df172a6745620d1d3c06b
refs/heads/master
2021-06-20T12:46:35.360703
2017-08-08T19:18:14
2017-08-08T19:18:14
77,530,730
2
0
null
null
null
null
UTF-8
Python
false
false
2,088
py
# -*- coding: utf-8 -*- """ Created on Fri Dec 30 15:52:43 2016 @author: robin """ import json from enum import Enum #testing possible enums for readability...(not implemeted) class NrH(Enum): #human data formtat for Json name = 0 human = 1 job = 2 status = 3 position = 4 money = 5 class NrL(Enum): #location data formtat for Json name = 0 location = 1 planet = 2 structure = 3 longitude = 4 latitude = 5 resource = 6 reward = 7 class SpH(Enum): #human string formtat for registration name = 0 job = 1 class SpL(Enum): #location string formtat for registration name = 0 planet = 1 structure = 2 longitude = 3 latitude = 4 def regHuman(msg): splitStr = msg.split() if(len(splitStr) != 2): return "Invalid Parameters, please use Format: !reg YourName YourJob" with open('memoryDB.json', 'r+') as json_file: json_data = json.load(json_file) json_data[splitStr[SpH.name.value]] = ['Human', splitStr[SpH.job.value],"idle", "unknownPos", 0] json_file.seek(0, 0) json_file.write(json.dumps(json_data, indent=4)) json_file.truncate() return ("New human registered: " +msg) def regLocation(msg): splitStr = msg.split() if(len(splitStr) != 5): return ("Invalid Parameters, please use Format: !geodata name planet type longitude latitude") with open('memoryDB.json', 'r+') as json_file: json_data = json.load(json_file) json_data[splitStr[SpL.name.value]] = ['Location', splitStr[SpL.planet.value], splitStr[SpL.structure.value], splitStr[SpL.longitude.value], splitStr[SpL.latitude.value], "default", 0] json_file.seek(0, 0) json_file.write(json.dumps(json_data, indent=4)) json_file.truncate() return ("New location registered: " +msg) def getDatabase(): with open('memoryDB.json', 'r') as json_file: json_data = json.load(json_file) return(json.dumps(json_data, indent=4, sort_keys=True))
6e1066a32d3b678c93a683c91c32ca9925549774
72d010d00355fc977a291c29eb18aeb385b8a9b0
/MPK261/__init__.py
1878e1129184af07da8510e9e370e01adae46916
[]
no_license
maratbakirov/AbletonLive10_MIDIRemoteScripts
bf0749c5c4cce8e83b23f14f671e52752702539d
ed1174d9959b20ed05fb099f0461bbc006bfbb79
refs/heads/master
2021-06-16T19:58:34.038163
2021-05-09T11:46:46
2021-05-09T11:46:46
203,174,328
0
0
null
2019-08-19T13:04:23
2019-08-19T13:04:22
null
UTF-8
Python
false
false
741
py
# Embedded file name: /Users/versonator/Jenkins/live/output/mac_64_static/Release/python-bundle/MIDI Remote Scripts/MPK261/__init__.py # Compiled at: 2018-04-23 20:27:04 from __future__ import absolute_import, print_function, unicode_literals from .MPK261 import MPK261 from _Framework.Capabilities import controller_id, inport, outport, CONTROLLER_ID_KEY, PORTS_KEY, NOTES_CC, SCRIPT, REMOTE def get_capabilities(): return {CONTROLLER_ID_KEY: controller_id(vendor_id=2536, product_ids=[ 37], model_name='MPK261'), PORTS_KEY: [ inport(props=[NOTES_CC, SCRIPT, REMOTE]), outport(props=[SCRIPT, REMOTE])]} def create_instance(c_instance): return MPK261(c_instance)
130a1da7648c1cb9b3d0bdc2b94793d83b2e1729
999a7707806f941d334170e9909a268d102929b2
/yelpCNN.py
3057ac376eecfe679a7625817028c878379593e2
[]
no_license
wanaaaa/yelpCNN1D
7e089ab4ca60e3cf478a6d5b0a5a3b3e80253ba4
2f1f1ad9b8101d7a52f2f3c4d01d92e3f197b19b
refs/heads/main
2023-02-12T20:54:31.046391
2021-01-10T18:12:19
2021-01-10T18:12:19
328,447,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,147
py
# https://chriskhanhtran.github.io/posts/cnn-sentence-classification/ from functionClass import * from gensim.models import Word2Vec import torch import torch.optim as optim device = 'cuda' rateReviewTrainList, rateReviewTestList, maxListCount = dataRead() xyDataLoader = DataLoaderFun(rateReviewTrainList, maxListCount, batchSize=2500) textCNNmodel = trainFun(xyDataLoader, maxListCount, epochs=20) # textCNNmodel = TextCnn(maxListCount).cuda(device=device) textCNNmodel = TextCnn(maxListCount).cpu() textCNNmodel.load_state_dict(torch.load('traindTextCNNmodel.model')) textCNNmodel.eval() # ================================================ # ================================================ # ================================================ xyTestDataLoader = DataLoaderFun(rateReviewTestList, maxListCount, batchSize=1) for epoch in range(1): # print("num of epochs->", epoch) for step, batch in enumerate(xyTestDataLoader): x_test, y_test = tuple(t.to('cpu') for t in batch) y_pridict = textCNNmodel(x_test) print("y_pridict->", y_pridict, 'y_test->', y_test) # break torch.cuda.empty_cache()
2be33a204326b77eed20224274574b433213be6a
73501b9e3623c3a9338306dbe52d1d89700f3d91
/upload_this_on_arduino/pyduino.py
2e4bf4eb623b2c987b4a395798e2605767cf5739
[]
no_license
rouanro/PS
72af2d8f5f3d1c628b8ad599c244235781b04c61
a474d5ac9d23d50388c1811ddf256efa408b33d6
refs/heads/master
2020-03-18T21:57:12.402332
2018-05-29T15:19:15
2018-05-29T15:19:15
135,315,081
0
0
null
null
null
null
UTF-8
Python
false
false
4,357
py
""" A library to interface Arduino through serial connection """ import serial import smtplib from email.message import EmailMessage class Arduino(): """ Models an Arduino connection """ def __init__(self, serial_port='/dev/ttyACM0', baud_rate=9600, read_timeout=5): """ Initializes the serial connection to the Arduino board """ self.conn = serial.Serial(serial_port, baud_rate) self.conn.timeout = read_timeout # Timeout for readline() def set_pin_mode(self, pin_number, mode): """ Performs a pinMode() operation on pin_number Internally sends b'M{mode}{pin_number} where mode could be: - I for INPUT - O for OUTPUT - P for INPUT_PULLUP MO13 """ # command = (''.join(('M',mode,str(pin_number)))).encode() #print 'set_pin_mode =',command,(''.join(('M',mode,str(pin_number)))) # self.conn.write(command) def digital_read(self, pin_number): """ Performs a digital read on pin_number and returns the value (1 or 0) Internally sends b'RD{pin_number}' over the serial connection """ command = (''.join(('RD', str(pin_number)))).encode() #self.conn.write(command) line_received = self.conn.readline().decode().strip() header, value = line_received.split(':') # e.g. D13:1 if header == ('D'+ str(pin_number)): # If header matches return int(value) def digital_write(self, pin_number, digital_value): """ Writes the digital_value on pin_number Internally sends b'WD{pin_number}:{digital_value}' over the serial connection """ command = (''.join(('WD', str(pin_number), ':', str(digital_value)))).encode() #self.conn.write(command) def analog_read(self, pin_number): """ Performs an analog read on pin_number and returns the value (0 to 1023) Internally sends b'RA{pin_number}' over the serial connection """ command = (''.join(('RA', str(pin_number)))).encode() self.conn.write(command) print(command) line_received = self.conn.readline().decode().strip() #header, value = line_received.split(':') # e.g. A4:1 if line_received[0:2] == ("A0"): value = line_received[3:] # If header matches return int(value) if line_received[0:2] == ("A4"): value = line_received[3:] return value # me == the sender's email address # you == the recipient's email address # msg = EmailMessage() # msg['Subject'] = 'Teeeeeeeeeeest' # msg['From'] = '[email protected]' # msg['To'] = '[email protected]' # Send the message via our own SMTP server. # s = smtplib.SMTP('localhost') # s.send_message(msg) # s.quit() def analog_write(self, pin_number, analog_value): """ Writes the analog value (0 to 255) on pin_number Internally sends b'WA{pin_number}:{analog_value}' over the serial connection """ command = (''.join(('WA', str(pin_number), ':', str(analog_value)))).encode() #self.conn.write(command) def send_message(self, message): command = message.encode() self.conn.write(command) def send_email(self, user, pwd, recipient, subject, body): FROM = user TO = recipient if isinstance(recipient, list) else [recipient] SUBJECT = subject TEXT = body # Prepare actual message message = """From: %s\nTo: %s\nSubject: %s\n\n%s """ % (FROM, ", ".join(TO), SUBJECT, TEXT) try: server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.login(user, pwd) server.sendmail(FROM, TO, message) server.close() print('successfully sent the mail') except: print("failed to send mail") def close(self): """ To ensure we are properly closing our connection to the Arduino device. """ self.conn.close() print ('Connection to Arduino closed')
530f4767b7bb69cd945bd97def72737f1ad66039
7da328d5365788bec00b62e3c3de8b5133fba092
/impala/tests/test_impala.py
8c58516171a9ff74ed847675759c70ca285b5840
[ "Apache-2.0" ]
permissive
attilajeges/impyla
f7520677e426f42e60ecf9199d8dacd38eae1b99
35297fd573bd8d8984f89eec91f12dbb1837549a
refs/heads/master
2023-07-15T17:15:48.683389
2020-10-01T23:10:16
2020-10-01T23:10:16
260,346,345
0
0
Apache-2.0
2020-05-01T00:18:06
2020-05-01T00:18:06
null
UTF-8
Python
false
false
2,025
py
# Copyright 2019 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pytest import yield_fixture BIGGER_TABLE_NUM_ROWS = 100 @yield_fixture(scope='module') def bigger_table(cur): table_name = 'tmp_bigger_table' ddl = """CREATE TABLE {0} (s string) STORED AS PARQUET""".format(table_name) cur.execute(ddl) dml = """INSERT INTO {0} VALUES {1}""".format(table_name, ",".join(["('row{0}')".format(i) for i in xrange(BIGGER_TABLE_NUM_ROWS)])) # Disable codegen and expr rewrites so query runs faster. cur.execute("set disable_codegen=1") cur.execute("set enable_expr_rewrites=0") cur.execute(dml) try: yield table_name finally: cur.execute("DROP TABLE {0}".format(table_name)) def test_has_more_rows(cur, bigger_table): """Test that impyla correctly handles empty row batches returned with the hasMoreRows flag.""" # Set the fetch timeout very low and add sleeps so that Impala will return # empty batches. Run on a single node with a single thread to make as predictable # as possible. cur.execute("set fetch_rows_timeout_ms=1") cur.execute("set num_nodes=1") cur.execute("set mt_dop=1") cur.execute("""select * from {0} where s != cast(sleep(2) as string)""".format(bigger_table)) expected_rows = [("row{0}".format(i),) for i in xrange(BIGGER_TABLE_NUM_ROWS)] assert sorted(cur.fetchall()) == sorted(expected_rows)
bb452e72141b555c7dd30f34a66fc3fe30f86fbd
220a2a22f7ecbb960e6a09b1153ec5094aef15f5
/Log-Parsers/Recognition_Long_Talks/general_classes.py
a374a5df875af86c516cbe3be40426c999673ee0
[]
no_license
jrweis01/Rubidium
89b27b8376891b42eb6b8bf952f70d92dd81768c
6050241aa19401bd5196939aadfc4a095f771d0a
refs/heads/master
2020-05-30T05:29:11.649283
2019-06-02T07:03:19
2019-06-02T07:03:19
189,561,081
0
0
null
null
null
null
UTF-8
Python
false
false
6,156
py
from templates_data import * import openpyxl import os import sys import shutil import datetime class Utils(object): def fetch_files_from_folder(self, pathToFolder): _pathToFiles = [] _fileNames = [] for dirPath, dirNames, fileNames in os.walk(pathToFolder): selected_path = [os.path.join(dirPath, item) for item in fileNames] _pathToFiles.extend(selected_path) selectedFile = [item for item in fileNames] _fileNames.extend(selectedFile) # Try to remove empty entries if none of the required files are in directory try: _pathToFiles.remove('') _imageFiles.remove('') except ValueError: pass # Warn if nothing was found in the given path if selectedFile == []: print 'No files with given parameters were found in:\n', dirPath, '\n' print len(_fileNames), 'files were found is searched folder(s)' return _pathToFiles, _fileNames def get_excel_worksheet(self): pass @staticmethod def insertion_sort(items): for i in range(1, len(items)): j = i while j > 0 and items[j] > items[j - 1]: items[j - 1], items[j] = items[j], items[j - 1] j = j - 1 return items def sort_order_dict(self,order_dict): for key in order_dict: items = order_dict[key] items = self.insertion_sort(items) def sorting_headers(self,sorting_dict,order_dict): sorted_list = [] for m in order_dict["noise_file_name"]: for i in order_dict["trig_to_ASR_delay"]: for j in order_dict["signal_dB"]: for k in order_dict["noise_dB"]: for key in sorting_dict: if (sorting_dict[key]["noise_file_name"] == str(m) and sorting_dict[key]["trig_to_ASR_delay"] == str(int(i)) and sorting_dict[key]["signal_dB"] == str(int(j)) and sorting_dict[key]["noise_dB"] == str(int(k))): sorted_list.append(key) return sorted_list def clear_dict_values(self,dict): for key in dict: dict[key].clear() def get_folder_location_path(self,folder): program_path = os.path.dirname(sys.argv[0]) template_path = program_path + '\\' + folder return template_path class ExcelHandler(object): def __init__(self, workbook_name): self.wb_name = workbook_name self.wb_name_with_dt = self._creat_new_excel_from_template_with_name_and_datetime(workbook_name) self.wb = openpyxl.load_workbook(str(self.wb_name_with_dt)) self.template_info = {} self.template_indexes = {'TRIG_ONLY': 4, 'MP_mTRIG_sASR': 4 ,'LJ_sTRIG_mASR' : 4} self.sheet_MP = None self.sheet_trig_only = None self.sheet_LJ_sTRIG_mASR = None def run_log_printing_LJ_sTRIG_mASR(self,log_dict): ''' for 'LJ_sTRIG_mASR' SHEET TEMPLATE''' asr_section = log_dict['asr_results_dict'] trig_section = log_dict['trig_results_dict_format'] if self.sheet_LJ_sTRIG_mASR is None: self.sheet_LJ_sTRIG_mASR = self._open_sheet('LJ_sTRIG_mASR') ROW = self.template_indexes['LJ_sTRIG_mASR'] ''' printing header section''' self._write_line_to_excel_sheet(self.sheet_LJ_sTRIG_mASR, ROW, 1, log_dict,EXCEL_LJ_sTRIG_mASR_TEMPLATE_HEADER_SECTION) ''' printing trig section''' self._write_line_to_excel_sheet(self.sheet_LJ_sTRIG_mASR,ROW,27,trig_section,EXCEL_LJ_sTRIG_mASR_TEMPLATE_TRIG_SECTION) ''' printing asr section''' cmd_template_order = ['volume_down' , 'volume_up' , 'next_song', 'pause' , 'resume', 'what_distance_have_i_done'] cmd_template_dict = {'volume_down': 'empty1.wav' , 'volume_up' : 'empty2.wav' , 'next_song' : 'empty3.wav', 'pause' : 'empty4.wav', 'resume' : 'empty5.wav' , 'what_distance_have_i_done' : 'empty6.wav'} for command in cmd_template_order: curr_key = cmd_template_dict[command] if curr_key in asr_section.keys(): curr_cmd_dict = asr_section[curr_key] self._write_line_to_excel_sheet(self.sheet_LJ_sTRIG_mASR, ROW, 10, curr_cmd_dict, EXCEL_LJ_sTRIG_mASR_TEMPLATE_ASR_SECTION) else: pass ROW += 1 self.template_indexes['LJ_sTRIG_mASR']+=6 def run_log_printing_TRIG_ONLY(self,log_dict,exl_tab_name): ''' for 'TRIG_ONLY' SHEET TEMPLATE''' if self.sheet_trig_only is None: self.sheet_trig_only = self._open_sheet(exl_tab_name) ROW = self.template_indexes[exl_tab_name] self._write_line_to_excel_sheet(self.sheet_trig_only,ROW,1,log_dict,EXCEL_TRIG_TEMPLATE_TUPLE) self.template_indexes[exl_tab_name] += 1 def run_log_printing_TRIG_ASR_MP(self,log_dict): ''' for 'MP_mTrig_sASR' SHEET TEMPLATE''' if self.sheet_MP is None: self.sheet_MP = self._open_sheet("MP_mTRIG_sASR") ROW = self.template_indexes["MP_mTRIG_sASR"] self._write_line_to_excel_sheet(self.sheet_MP,ROW,1,log_dict,EXCEL_MP_CMD_TEMPLATE) self.template_indexes['MP_mTRIG_sASR']+=1 def get_new_wb_name(self): return self.wb_name_with_dt def _creat_new_excel_from_template_with_name_and_datetime(self,project_name): program_path = os.path.dirname(sys.argv[0]) template_path = program_path + '\\template\exl.xlsx' shutil.copy2(str(template_path), str(program_path)) date_time = datetime.datetime.strftime(datetime.datetime.now(), '_%Y-%m-%d__%H_%M_%S') exl_file_name = str(project_name) + str(date_time) + ".xlsx" os.rename("exl.xlsx", str(exl_file_name)) return str(exl_file_name) def _write_line_to_excel_sheet(self,sheet,row,column,val_dict,template_list): row = str(row) start_col = column for i, key in enumerate(template_list): col = self._num_to_excel_alphabeit_colms(i+start_col) try: # sheet[col + row] = str(val_dict[key]) sheet[col + row] = val_dict[key] except : print key def _open_sheet(self,sheet_name): sheet = self.wb.get_sheet_by_name(sheet_name) return sheet def _num_to_excel_alphabeit_colms(self,index_num): cal1 = index_num % 27 cal2 = index_num // 26 new = index_num - cal2 * 26 if new == 0: new = 26 cal2 -= 1 if cal2: mychar = chr(cal2 + 64) + chr(new + 64) else: mychar = chr(index_num + 64) return mychar def save_workbook(self): self.wb.save(str(self.wb_name_with_dt))
c45e6ce9c846d77c6611d7c5fa1d641c22336a01
4b8c81f54cc52e096ad9ae751f00e88254aab0ca
/20-01-21 while홀.py
631fadc6b7eb53e75d2df8df8fc563a8e1db0e4e
[]
no_license
dlatpdbs/python
50305cfcc92bb6c9bae409ec31ebd9e4aa868075
2f740941fe1ef172d40cb10a63c1ed19c5925e68
refs/heads/main
2022-12-27T15:24:31.243739
2020-10-14T05:26:32
2020-10-14T05:26:32
301,933,143
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
q=1 while q <=100: print(q) q=q+2
9abb3baada0faed6fe83d3c15b41aa7c7958cb80
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_27357.py
1163c19de3fb005d7b6fa68a6a453f6f2e63147f
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
# pyplot.savefig with empty export plt.show()
c7a6bbfb9e4f4606a0720e7f9c0efa56e7d90f30
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/DataQuality/DataQualityConfigurations/python/TCTDisplay.py
6fa11e45427f043ea1f2b19da409200372d1fc14
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
1,330
py
# Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration from DataQualityUtils.DQWebDisplayConfig import DQWebDisplayConfig dqconfig = DQWebDisplayConfig() dqconfig.config = "TCT" dqconfig.hcfg = "/afs/cern.ch/user/a/atlasdqm/dqmdisk/tier0/han_config/Collisions/collisions_run.1.41.hcfg" dqconfig.hcfg_min10 = "/afs/cern.ch/user/a/atlasdqm/dqmdisk/tier0/han_config/Collisions/collisions_minutes10.1.9.hcfg" dqconfig.hcfg_min30 = "/afs/cern.ch/user/a/atlasdqm/dqmdisk/tier0/han_config/Collisions/collisions_minutes30.1.5.hcfg" dqconfig.hanResultsDir = "/afs/cern.ch/atlas/offline/external/FullChainTest/tier0/dqm/han_results" dqconfig.htmlDir = "/afs/cern.ch/atlas/offline/external/FullChainTest/tier0/dqm/www" dqconfig.htmlWeb = "http://atlas-project-fullchaintest.web.cern.ch/atlas-project-FullChainTest/tier0/dqm/www" dqconfig.runlist = "runlist_TCT.xml" dqconfig.indexFile = "results_TCT.html" dqconfig.lockFile = "DQWebDisplay_TCT.lock" dqconfig.dbConnection = "sqlite://;schema=MyCOOL_histo.db;dbname=OFLP200" dqconfig.dqmfOfl = "/GLOBAL/DETSTATUS/DQMFOFL" dqconfig.dbConnectionHisto = "sqlite://;schema=MyCOOL_histo.db;dbname=OFLP200" dqconfig.dqmfOflHisto = "/GLOBAL/DETSTATUS/DQMFOFLH" dqconfig.dbTagName = "DetStatusDQMFOFL-TCT"
1533905896294b79dff04e1b69b2cda7c0496874
fa1dc1d0d2a169326c97dab863e15403bbd6bdbd
/CS486-686_A2Q2ANN.py
c52223b2857731732b02c8b7a75ccd93868316f2
[ "MIT" ]
permissive
mojivalipour/nnscratch
f07b893f7ac9792f5c9bb8e8ca5c664e392b6786
5e0b7f100d1057fab2c166df5696163634acd726
refs/heads/master
2022-11-18T11:43:15.553593
2020-07-17T05:19:10
2020-07-17T05:19:10
271,581,705
3
8
null
null
null
null
UTF-8
Python
false
false
21,331
py
#!/usr/bin/env python # coding: utf-8 # Design and Programming by Lead TA: Mojtaba Valipour @ Data Analytics Lab - UWaterloo.ca # COURSE: CS 486/686 - Artificial Intelligence - University of Waterloo - Spring 2020 - Alice Gao # Please let me know if you find any bugs in the code: [email protected] # The code will be available at https://github.com/mojivalipour/nnscratch # Version: 0.9.0 # Implement a neural network from scratch ''' Sources: - http://neuralnetworksanddeeplearning.com/chap2.html ''' print('Life is easy, you just need to do your best to find your place!') # Libraries import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from sklearn import datasets from sklearn.manifold import TSNE # visualization for data with more than two features from os import path import pandas as pd import csv import copy import random # Helper functions def fixSeed(seed=1010): np.random.seed(seed) random.seed(seed) # The hyper-parameters for the neural network nSamples = None # use None if you want to use full sample size # frogsSmall is the same dataset in Q1 that you have to use for comparision dataset = '2moons' # 2moons/frogsSmall/frogs noise = 0.05 # Noise in artificial datasets visNumSamples = 500 # number of samples to visualize # for regression, we use mean squared error. # for classification, we use cross entropy. # for now only mse is supported! lossFunction = 'mse' gdMethod = 'batch' # batch gradient descent method batchSize = 64 # only for minibatch gradient descent numEpochs = 200 # number of epochs learningRate = [0.5,0.05,0.005] # learning rates # for now only relu and sigmoid is supported lastActivationFunc = 'sigmoid' # relu/sigmoid/softmax # last layer activation function, this one is important # because we need to use it for classification later crossValidationFlag = True # if you like to run cross validation, set this flag to True kFold = 3 # k-fold cross validation, at least need to be 2 seed = 6565 # Do not change the seed for Assignment fixSeed(seed=seed) # fix the seed of random generator to make sure comparision is possible # Some Useful Notes for those students who are interested to know more: ''' - Neural networks are prone to overfitting. Increasing the number of parameters could lead to models that have complexity bigger than data. - Regularization, Normalization and Dropout are popular solutions to overfitting! - In a neural network, we usually use the softmax function as last layer activation for multi-class classification and sigmoid for single class classification. - For regression problems, we usually use Relu as last layer activation function and MSE as the loss function that we want to minimize. - Cross-entropy is the most useful loss function for multi-class classification. - Sometimes we need to use multiple neurons in the output layer, which means that we consider a neuron for each class. In this case, we need to use one-hot vectors to encode the labels. - Weight initialization is important! Gradient descent is not robust to weight initialization! Xavier initialization is the most popular method to initialize weights in neural networks. ''' # Load data colorBox = ['#377eb8','#FA0000','#344AA7', '#1EFA39','#00FBFF','#C500FF','#000000','#FFB600'] if dataset == '2moons': nSamples = 1000 if nSamples is None else nSamples X,y = datasets.make_moons(n_samples=nSamples, noise=noise, random_state=seed) numSamples, numFeatures, numClasses = X.shape[0], X.shape[1], 2 # shuffle X,y idxList = list(range(nSamples)) random.shuffle(idxList) # inplace X, y = X[idxList,:], y[idxList] elif dataset == 'frogsSmall' or dataset == 'frogs': if dataset == 'frogs': # original dataset name = 'Frogs_MFCCs.csv' else: # a small subset of frogs original dataset, same as A2Q1 name = 'frogs-small.csv' # check if we already have the file in the directory if not path.isfile(name): # otherwise ask user to upload it print("Please put this {} file in the current directory using choose files ...".format(name)) # just load the csv file X = pd.read_csv(name, sep=',') X["Family"] = X["Family"].astype('category') X["FamilyCat"] = X["Family"].cat.codes # added to the last column X, y = X.iloc[:,0:22].to_numpy(), X.iloc[:,-1].to_numpy() nSamples = X.shape[0] if nSamples is None else nSamples X, y = X[:nSamples,:], y[:nSamples] # filter number of samples numSamples, numFeatures, numClasses = X.shape[0], X.shape[1], len(np.unique(y)) print('#INFO: N (Number of Samples): {}, D (Number of Features): {}, C (Number of Classes): {}'.format(numSamples, numFeatures, numClasses)) plt.figure() # if y min is not zero, make it zero y = y - y.min() assert y.min() == 0 # sample required sample for visualization indices = list(range(numSamples)) selectedIndices = np.random.choice(indices, visNumSamples) colors = [colorBox[y[idx]] for idx in selectedIndices] if numFeatures == 2: XR = X[selectedIndices, :] else: # use tsne to reduce dimensionality for visualization XR = TSNE(n_components=2).fit_transform(X[selectedIndices,:]) plt.scatter(XR[:, 0], XR[:, 1], s=10, color=colors) plt.savefig('dataset.png') if len(y.shape) < 2: y = np.expand_dims(y,-1) # shape of y should be N x 1 # Define the network structure # # 2-Layer Network # config = { # # Layer Name: [Number of Nodes (in and out), Bias, Activation Function] # 'Hidden Layer 0': [[numFeatures, 30], True, 'relu'], # w1 # 'Fully Connected': [[30, 1], True, lastActivationFunc] # w2 # } # overfit network example config = { # Layer Name: [Number of Nodes (in and out), Bias, Activation Function] 'Hidden Layer 0': [[numFeatures, 1000], True, 'sigmoid'], # w1 'Fully Connected': [[1000, 1], True, lastActivationFunc] # w2 } # 3-Layer Network # config = { # # Layer Name: [Number of Nodes (in and out), Bias, Activation Function] # 'Hidden Layer 0': [[numFeatures, 3], True, 'sigmoid'], # w1 # 'Hidden Layer 1': [[3, 5], True, 'sigmoid'], # w2 # 'Fully Connected': [[5, 1], True, lastActivationFunc] # w2 # } # 4-layer Network # config = { # # Layer Name: [Number of Nodes (in and out), Bias, Activation Function] # 'Hidden Layer 0': [[numFeatures, 100], True, 'relu'], # w1 # 'Hidden Layer 1': [[100, 50], True, 'relu'], # w2 # 'Hidden Layer 2': [[50, 5], True, 'relu'], # w3 # 'Fully Connected': [[5, 1], True, lastActivationFunc] # w4 # } # Fully Connected Neural Network Class class neuralNetwork(): # initializing network def __init__(self, config=None, numClass=2, learningRate=0.005, numEpochs=10, batchSize= 64, lossFunction='mse'): self.config = config self.configKeyList = list(self.config.keys()) self.lossFunction = lossFunction self.numLayers = len(self.config) self.layers = {} self.layerShapes = {} self.learningRate = learningRate self.numEpochs = numEpochs self.loss = [] self.lossT = [] self.acc = [] self.accT = [] self.batchSize = batchSize self.numClass = numClass self.initWeights() # random init def initWeights(self): self.loss = [] self.lossT = [] self.acc = [] self.accT = [] if self.config != None: for key in config: # w is parameters, b is bias, a is activation function self.layers[key] = {'W':np.random.randn(self.config[key][0][0], self.config[key][0][1])/np.sqrt(self.config[key][0][1]), 'b':np.random.randn(self.config[key][0][1], ) if self.config[key][1]==True else [], 'a':self.config[key][2]} # keep track of shape only for better understanding self.layerShapes[key] = {'IS':self.config[key][0][0],'OS':self.config[key][0][1], 'NP':np.prod(self.layers[key]['W'].shape)+len(self.layers[key]['b'])} else: raise '#Err: Make sure you set a configuration correctly!' # activation functions def relu(self, X): return np.maximum(0, X) def sigmoid(self, X): #TODO: fix the overflow problem in Numpy exp function return 1./(1. + np.exp(-X)) def activationFunc(self, X, type='sigmoid'): if type == 'sigmoid': return self.sigmoid(X) elif type == 'relu': return self.relu(X) elif type == 'None': return X # do nothing else: raise '#Err: Not implemented activation function!' # objective/loss/cost functions def mse(self, y, yPred): # mean square error return np.mean(np.power(y-yPred,2)) def lossFunc(self, y, yPred, type='mse'): if type == 'mse': return self.mse(y, yPred) else: raise '#Err: Not implemented objective function!' # back-propagation learning # forward pass def forward(self, X): # apply a(W.T x X + b) for each layer for key in config: #print(X.shape, self.layers[key]['W'].shape) # save input of each layer for backward pass self.layers[key]['i'] = X z = np.dot(X, self.layers[key]['W']) z = z + self.layers[key]['b'] if len(self.layers[key]['b'])!=0 else z # save middle calculation for backward pass self.layers[key]['z'] = z X = self.activationFunc(z, type=self.layers[key]['a']) # save middle calculation for backward pass self.layers[key]['o'] = X return X # yPred # backward pass def backward(self, y, yPred): # derivative of sigmoid def sigmoidPrime(x): return self.sigmoid(x) * (1-self.sigmoid(x)) # derivative of relu def reluPrime(x): return np.where(x <= 0, 0, 1) def identity(x): return x #TODO: It's not necessary to use double for, # it is possible to implement faster and more efficient version # for each parameter (weights and bias) in each layer for idx, key in enumerate(config): # calculate derivatives if self.layers[key]['a'] == 'sigmoid': fPrime = sigmoidPrime elif self.layers[key]['a'] == 'relu': fPrime = reluPrime elif self.layers[key]['a'] == 'softmax': fPrime = softmaxPrime else: # None fPrime = identity deWRTdyPred = -(y-yPred) if self.lossFunction == 'mse' else 1 # de/dyPred # print('de/dy') # dyPred/dyPredBeforeActivation # in case of sigmoid g(x) x (1-g(x)) dyPredWRTdyPredPre = fPrime(self.layers[self.configKeyList[-1]]['o']) # print('dy/dz') # element wise multiplication/ hadamard product delta = np.multiply(deWRTdyPred, dyPredWRTdyPredPre) for idxW in range(len(config),idx,-1): # reverse if idxW-1 == idx: # calculating the derivative for the last one is different # because it is respected to that specific weight #print('\nWeights of layer',idx) deltaB = delta dxWRTdW = self.layers[key]['i'].T # dxWRTdW delta = np.dot(dxWRTdW,delta) #print('dz/dw') else: # this loop is depended to the number of layers in the configuration # print('\nWeights of layer',idxW-1) # the weights of current layer # how fast the cost is changing as a function of the output activation dxWRTdh = self.layers[self.configKeyList[idxW-1]]['W'].T # dxPreWRTdx-1 # print('dz/da') # print('output of layer',idxW-1-1) # the output of previous layer # how fast the activation function is changing dhWRTdhPre = fPrime(self.layers[self.configKeyList[idxW-1-1]]['o']) # dx-1WRTdx-1Pre # print('da/dz') delta = np.dot(delta, dxWRTdh) * dhWRTdhPre # sanity check: Numerical Gradient Checking # f'(x) = lim (f(x+deltax)-f(x))/deltax when deltax -> 0 # update parameters # W = W - Gamma * dL/dW self.layers[key]['djWRTdw'] = delta self.layers[key]['W'] = self.layers[key]['W'] - self.learningRate/y.shape[0] * delta # b = b - Gamma * dL/db self.layers[key]['djWRTdb'] = deltaB if len(self.layers[key]['b'])!=0: self.layers[key]['b'] = self.layers[key]['b'] - self.learningRate/y.shape[0] * np.sum(deltaB, axis=0) # Utility Functions def summary(self, space=20): print('{: <{}} | {: <{}} | {: <{}} | {: <{}}'.format("Layer Name", space, "Input Shape", space, "Output Shape", space, "Number of Parameters",space)) for key in config: print('{: <{}} | {: <{}} | {: <{}} | {: <{}}'.format(key, space, self.layerShapes[key]['IS'], space, self.layerShapes[key]['OS'], space, self.layerShapes[key]['NP'], space)) def fit(self, X, y, XT=None, yT=None, method='batch', batchSize=None, numEpochs=None, learningRate=None, initialState=None): if numEpochs is None: # overwrite numEpochs = self.numEpochs if learningRate is not None: self.learningRate = learningRate if batchSize is not None: self.batchSize = batchSize # if initialState is not None: # # use the given initial parameters (weights and bias) # self.layers = initialState if method == 'batch': # this is infact mini-batch gradient descent, just for consistency in course material # same as batched gradient descent in class to make it easier for you pBar = tqdm(range(numEpochs)) for edx in pBar: for idx in range(0, X.shape[0], self.batchSize): start = idx end = start + self.batchSize end = end if end < X.shape[0] else X.shape[0] #TODO: Support variable batchsize if end-start != self.batchSize: continue x_, y_ = X[start:end, :], y[start:end, :] yPred = self.forward(x_) loss = self.lossFunc(y_, yPred, type=self.lossFunction) self.backward(y_, yPred) yPred,yPredOrig = self.predict(X) loss = self.lossFunc(y, yPredOrig, type=self.lossFunction) self.loss.append(loss) acc = self.accuracy(y, yPred) self.acc.append(acc) if XT is not None: yPred, yPredOrig = self.predict(XT) loss = self.lossFunc(yT, yPredOrig, type=self.lossFunction) self.lossT.append(loss) acc = self.accuracy(yT, yPred) self.accT.append(acc) else: raise '#Err: {} Gradient Descent Method is Not implemented!'.format(method) def predict(self, X): yPred = self.forward(X) yPredOrigin = copy.deepcopy(yPred) # last layer activation function, class prediction should be single # and the output is between zero and one if self.config[self.configKeyList[-1]][-1] == 'sigmoid': yPred[yPred < 0.5] = 0 yPred[yPred >= 0.5] = 1 # multi-class problem elif self.config[self.configKeyList[-1]][-1] == 'softmax': raise '#Err: Prediction is not supported for softmax yet!' # single/multi class problem, single node and it can be anything greater than 0 elif self.config[self.configKeyList[-1]][-1] == 'relu': yPred = np.round(yPred) yPred = np.clip(yPred, 0, self.numClass-1) # sanity check return yPred, yPredOrigin def error(self, y, yPred): return self.lossFunc(y, yPred, type=self.lossFunction) def accuracy(self, y, yPred): return 100*np.sum(y==yPred)/y.shape[0] def plotLoss(self, loss=None, ax=None): if loss is None: loss = self.loss if ax is None: plt.plot(loss) plt.xlabel("Epochs") plt.ylabel("Loss") plt.title("Loss Per Epoch") plt.show() else: ax.plot(loss) ax.set_xlabel("Epochs") ax.set_ylabel("Loss") ax.set_title("Loss Per Epoch") def crossValidationIndices(self, index, k=5): # index is a list of indexes cvList = [] for idx in range(k): # iterate over k-folds interval = int(len(index)/k) start = idx * interval end = start + interval testIndexes = list(range(start,end)) trainIndexes = list(range(0,start)) + list(range(end,len(index))) cvList.append((trainIndexes, testIndexes)) return cvList if crossValidationFlag: if len(learningRate) == 1: fig, ax = plt.subplots(3,len(learningRate),figsize=(8,15)) else: fig, ax = plt.subplots(3,len(learningRate),figsize=(30,3*(len(learningRate)+2))) else: fig, ax = plt.subplots(1,1+len(learningRate),figsize=(30,1+len(learningRate))) for ldx, lr in enumerate(learningRate): nn = neuralNetwork(config=config, numClass=numClasses, numEpochs=numEpochs, learningRate=lr, lossFunction=lossFunction) # Initialize the network and the weights nn.initWeights() if crossValidationFlag: indexes = list(range(X.shape[0])) cvIndices = nn.crossValidationIndices(indexes, k=kFold) accList = [] accTList = [] lossList = [] lossTList = [] for k in range(kFold): nn.initWeights() XTrain, yTrain = X[cvIndices[k][0],:], y[cvIndices[k][0],:] XTest, yTest = X[cvIndices[k][1],:], y[cvIndices[k][1],:] # Train the network nn.fit(XTrain, yTrain, XTest, yTest, method=gdMethod, batchSize=batchSize, numEpochs=numEpochs, learningRate=lr) accList.append(nn.acc) accTList.append(nn.accT) lossList.append(nn.loss) lossTList.append(nn.lossT) acc = np.mean(accList, axis=0) accT = np.mean(accTList, axis=0) loss = np.mean(lossList, axis=0) lossT = np.mean(lossTList, axis=0) # print the network structure nn.summary() yPred, yPredOrig = nn.predict(X) print('#INFO: Mean squared error is {}'.format(nn.error(y,yPred))) colors = [colorBox[int(yPred[idx])] for idx in selectedIndices] if len(learningRate) == 1: ax[2].scatter(XR[:, 0], XR[:, 1], s=10, color=colors) ax[2].set_xlabel("X1") ax[2].set_ylabel("X2") ax[2].set_title("Data, LR: {}".format(lr)) ax[0].plot(acc) ax[0].plot(accT) ax[0].legend(['Train','Test']) ax[0].set_xlabel("Epochs") ax[0].set_ylabel("Accuracy") ax[0].set_title("Accuracy Per Epoch"+", LR: {}".format(lr)) ax[1].plot(loss) ax[1].plot(lossT) ax[1].legend(['Train','Test']) ax[1].set_xlabel("Epochs") ax[1].set_ylabel("Loss") ax[1].set_title("Loss Per Epoch"+", LR: {}".format(lr)) else: ax[2,ldx].scatter(XR[:, 0], XR[:, 1], s=10, color=colors) ax[2,ldx].set_xlabel("X1") ax[2,ldx].set_ylabel("X2") ax[2,ldx].set_title("Data, LR: {}".format(lr)) ax[0,ldx].plot(acc) ax[0,ldx].plot(accT) ax[0,ldx].legend(['Train','Test']) ax[0,ldx].set_xlabel("Epochs") ax[0,ldx].set_ylabel("Accuracy") ax[0,ldx].set_title("Accuracy Per Epoch"+", LR: {}".format(lr)) ax[1,ldx].plot(loss) ax[1,ldx].plot(lossT) ax[1,ldx].legend(['Train','Test']) ax[1,ldx].set_xlabel("Epochs") ax[1,ldx].set_ylabel("Loss") ax[1,ldx].set_title("Loss Per Epoch"+", LR: {}".format(lr)) else: # Perform a single run for visualization. nn.fit(X, y, method=gdMethod, batchSize=batchSize, numEpochs=numEpochs, learningRate=lr) # print the network structure nn.summary() yPred, yPredOrig = nn.predict(X) print('#INFO: Mean squared error is {}'.format(nn.error(y,yPred))) colors = [colorBox[int(yPred[idx])] for idx in selectedIndices] ax[ldx+1].scatter(XR[:, 0], XR[:, 1], s=10, color=colors) ax[ldx+1].set_xlabel("X1") ax[ldx+1].set_ylabel("X2") ax[ldx+1].set_title("LR: {}".format(lr)) # Plot the mean squared error with respect to the nu nn.plotLoss(ax=ax[0]) # train accuracy acc = nn.accuracy(y.squeeze(-1),yPred.squeeze(-1)) print('#INFO: Train Accuracy is {}'.format(acc)) if not crossValidationFlag: ax[0].legend(["LR: "+str(lr) for lr in learningRate]) # please feel free to save subplots for a better report fig.savefig('results.png')
3b91d9f42ee1ecda8632567b35ac5caa51d497c7
35053a371d85c2d45a4f52239d8a70b38194ef48
/Count of Matches in Tournament.py
96c8b115113e1096f964d3dcc4f40e3f4b7f16a1
[]
no_license
Kuehar/LeetCode
51d169c81a2e572ea854399fc78e1130220388f9
4555c20455f181f9dd7b3aba2a8779dea795edfb
refs/heads/master
2023-04-16T10:13:03.584541
2023-04-06T11:47:21
2023-04-06T11:47:21
243,361,421
4
0
null
null
null
null
UTF-8
Python
false
false
388
py
class Solution: def numberOfMatches(self, n: int) -> int: return n-1 # O(1) Solution. # Always this answer is n-1. Sum of matches are always equals to sum of loser. # Runtime: 28 ms, faster than 82.44% of Python3 online submissions for Count of Matches in Tournament. # Memory Usage: 14.3 MB, less than 40.04% of Python3 online submissions for Count of Matches in Tournament.
c37ff8cfcff227220d098069e2f3040dce7f56e8
9145d24e2517d7f3cea6e89158806b95919449b8
/doc/conf.py
37c50aca46644bd4ce262e466fa2696daa55957c
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
pombredanne/coveragepy
b6de846694156581ee0b9a3348f4cfd48719855f
2364947d7814a065cf2c05d930eda94203b20f1c
refs/heads/master
2021-01-22T23:43:21.800229
2017-03-18T11:14:13
2017-03-18T11:14:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,618
py
# -*- coding: utf-8 -*- # Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt # # coverage.py documentation build configuration file, created by # sphinx-quickstart on Wed May 13 22:18:33 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.append(os.path.abspath('.')) # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.ifconfig', 'sphinxcontrib.spelling', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Coverage.py' copyright = u'2009\N{EN DASH}2017, Ned Batchelder' # CHANGEME # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '4.3.4' # CHANGEME # The full version, including alpha/beta/rc tags. release = '4.3.4' # CHANGEME # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. #html_theme = 'default' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # otherwise, readthedocs.org uses their theme by default, so no need to specify it # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} #html_style = "neds.css" #html_add_permalinks = "" # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['_templates'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_use_modindex = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '.htm' # Output file base name for HTML help builder. htmlhelp_basename = 'coveragepydoc' # -- Spelling --- spelling_word_list_filename = 'dict.txt' spelling_show_suggestions = False # When auto-doc'ing a class, write the class' docstring and the __init__ docstring # into the class docs. autoclass_content = "class" prerelease = bool(max(release).isalpha()) def setup(app): app.add_stylesheet('coverage.css') app.add_config_value('prerelease', False, 'env') app.info("** Prerelease = %r" % prerelease)
875a564377d75822b6c87a33792ad8d32b40b7b6
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/datacatalog/outputs.py
26d9e4bddb4ce2d56c83f67f19a73cd325ca56ef
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,362
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from ._enums import * __all__ = [ 'PrincipalsResponse', ] @pulumi.output_type class PrincipalsResponse(dict): """ User principals. """ def __init__(__self__, *, object_id: Optional[str] = None, upn: Optional[str] = None): """ User principals. :param str object_id: Object Id for the user :param str upn: UPN of the user. """ if object_id is not None: pulumi.set(__self__, "object_id", object_id) if upn is not None: pulumi.set(__self__, "upn", upn) @property @pulumi.getter(name="objectId") def object_id(self) -> Optional[str]: """ Object Id for the user """ return pulumi.get(self, "object_id") @property @pulumi.getter def upn(self) -> Optional[str]: """ UPN of the user. """ return pulumi.get(self, "upn") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
69e2f645ab6431a303076a1506514f479e530747
9fc5dd13e0595bd5796cd7ec109e3b7c290e2692
/wikipedia-scape.py
a54f56c6c75b06d0d4069f56a187c27ded4d5b68
[]
no_license
ronandoolan2/python-webscraping
812d5190dfe5f24029b4737438c80e8d40716971
4dc83a331415c3e55f06b1a8d0de47710db5ccd0
refs/heads/master
2021-01-19T00:54:22.801053
2017-04-16T09:10:47
2017-04-16T09:10:47
87,218,764
0
0
null
null
null
null
UTF-8
Python
false
false
756
py
from bs4 import BeautifulSoup import urllib2 import re wiki = "http://en.wikipedia.org/wiki/Mad_Max:_Fury_Road" header = {'User-Agent': 'Mozilla/5.0'} #Needed to prevent 403 error on Wikipedia req = urllib2.Request(wiki,headers=header) page = urllib2.urlopen(req) soup = BeautifulSoup(page) rnd = "" pick = "" NFL = "" player = "" pos = "" college = "" conf = "" notes = "" table = soup.find("table", { "class" : "wikitable sortable" }) print table #output = open('output.csv','w') for row in table.findAll("tr"): cells = row.findAll("href") for cell in cells: # search-term = re.search(r'director',cell) # if search-term: # print search-term #print "---" print cell.text print cells.text #print "---"
6ac793e3b8df59989fc5a148e4385b6fe3b6ed70
dbab24ee5055dad1a57bb212ae30da994022eab5
/Python/Chapter 6 - tehtävä 3.py
4703757b6f12df00e86114119c5ffd8b7220709e
[]
no_license
MikBom/mikbom-github.io
e8ab24080a6c6383f4ad973a817e10ab84375e4f
3dc7312798473a7620529d24fa771d5b09bafbbc
refs/heads/main
2023-08-14T07:04:01.427822
2021-09-21T16:08:32
2021-09-21T16:08:32
301,965,605
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
vari = input("Valitse kohde (1-3):") if vari == "1": print("Haukion Kala Oy") elif vari == "2": print("Metallipaja VasaraAika") elif vari == "3": print("Balin palapelitehdas")
1aeaca94f2d4d9feb9733db3c8cad22d7ff94e80
cf5b2850dc9794eb0fc11826da4fd3ea6c22e9b1
/examples/conditional_format.py
868eec6890126a075a32371064be80ab9628e826
[ "BSD-2-Clause" ]
permissive
glasah/XlsxWriter
bcf74b43b9c114e45e1a3dd679b5ab49ee20a0ec
1e8aaeb03000dc2f294ccb89b33806ac40dabc13
refs/heads/main
2023-09-05T03:03:53.857387
2021-11-01T07:35:46
2021-11-01T07:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,956
py
############################################################################### # # Example of how to add conditional formatting to an XlsxWriter file. # # Conditional formatting allows you to apply a format to a cell or a # range of cells based on certain criteria. # # SPDX-License-Identifier: BSD-2-Clause # Copyright 2013-2021, John McNamara, [email protected] # import xlsxwriter workbook = xlsxwriter.Workbook('conditional_format.xlsx') worksheet1 = workbook.add_worksheet() worksheet2 = workbook.add_worksheet() worksheet3 = workbook.add_worksheet() worksheet4 = workbook.add_worksheet() worksheet5 = workbook.add_worksheet() worksheet6 = workbook.add_worksheet() worksheet7 = workbook.add_worksheet() worksheet8 = workbook.add_worksheet() worksheet9 = workbook.add_worksheet() # Add a format. Light red fill with dark red text. format1 = workbook.add_format({'bg_color': '#FFC7CE', 'font_color': '#9C0006'}) # Add a format. Green fill with dark green text. format2 = workbook.add_format({'bg_color': '#C6EFCE', 'font_color': '#006100'}) # Some sample data to run the conditional formatting against. data = [ [34, 72, 38, 30, 75, 48, 75, 66, 84, 86], [6, 24, 1, 84, 54, 62, 60, 3, 26, 59], [28, 79, 97, 13, 85, 93, 93, 22, 5, 14], [27, 71, 40, 17, 18, 79, 90, 93, 29, 47], [88, 25, 33, 23, 67, 1, 59, 79, 47, 36], [24, 100, 20, 88, 29, 33, 38, 54, 54, 88], [6, 57, 88, 28, 10, 26, 37, 7, 41, 48], [52, 78, 1, 96, 26, 45, 47, 33, 96, 36], [60, 54, 81, 66, 81, 90, 80, 93, 12, 55], [70, 5, 46, 14, 71, 19, 66, 36, 41, 21], ] ############################################################################### # # Example 1. # caption = ('Cells with values >= 50 are in light red. ' 'Values < 50 are in light green.') # Write the data. worksheet1.write('A1', caption) for row, row_data in enumerate(data): worksheet1.write_row(row + 2, 1, row_data) # Write a conditional format over a range. worksheet1.conditional_format('B3:K12', {'type': 'cell', 'criteria': '>=', 'value': 50, 'format': format1}) # Write another conditional format over the same range. worksheet1.conditional_format('B3:K12', {'type': 'cell', 'criteria': '<', 'value': 50, 'format': format2}) ############################################################################### # # Example 2. # caption = ('Values between 30 and 70 are in light red. ' 'Values outside that range are in light green.') worksheet2.write('A1', caption) for row, row_data in enumerate(data): worksheet2.write_row(row + 2, 1, row_data) worksheet2.conditional_format('B3:K12', {'type': 'cell', 'criteria': 'between', 'minimum': 30, 'maximum': 70, 'format': format1}) worksheet2.conditional_format('B3:K12', {'type': 'cell', 'criteria': 'not between', 'minimum': 30, 'maximum': 70, 'format': format2}) ############################################################################### # # Example 3. # caption = ('Duplicate values are in light red. ' 'Unique values are in light green.') worksheet3.write('A1', caption) for row, row_data in enumerate(data): worksheet3.write_row(row + 2, 1, row_data) worksheet3.conditional_format('B3:K12', {'type': 'duplicate', 'format': format1}) worksheet3.conditional_format('B3:K12', {'type': 'unique', 'format': format2}) ############################################################################### # # Example 4. # caption = ('Above average values are in light red. ' 'Below average values are in light green.') worksheet4.write('A1', caption) for row, row_data in enumerate(data): worksheet4.write_row(row + 2, 1, row_data) worksheet4.conditional_format('B3:K12', {'type': 'average', 'criteria': 'above', 'format': format1}) worksheet4.conditional_format('B3:K12', {'type': 'average', 'criteria': 'below', 'format': format2}) ############################################################################### # # Example 5. # caption = ('Top 10 values are in light red. ' 'Bottom 10 values are in light green.') worksheet5.write('A1', caption) for row, row_data in enumerate(data): worksheet5.write_row(row + 2, 1, row_data) worksheet5.conditional_format('B3:K12', {'type': 'top', 'value': '10', 'format': format1}) worksheet5.conditional_format('B3:K12', {'type': 'bottom', 'value': '10', 'format': format2}) ############################################################################### # # Example 6. # caption = ('Cells with values >= 50 are in light red. ' 'Values < 50 are in light green. Non-contiguous ranges.') # Write the data. worksheet6.write('A1', caption) for row, row_data in enumerate(data): worksheet6.write_row(row + 2, 1, row_data) # Write a conditional format over a range. worksheet6.conditional_format('B3:K6', {'type': 'cell', 'criteria': '>=', 'value': 50, 'format': format1, 'multi_range': 'B3:K6 B9:K12'}) # Write another conditional format over the same range. worksheet6.conditional_format('B3:K6', {'type': 'cell', 'criteria': '<', 'value': 50, 'format': format2, 'multi_range': 'B3:K6 B9:K12'}) ############################################################################### # # Example 7. # caption = 'Examples of color scales with default and user colors.' data = range(1, 13) worksheet7.write('A1', caption) worksheet7.write('B2', "2 Color Scale") worksheet7.write('D2', "2 Color Scale + user colors") worksheet7.write('G2', "3 Color Scale") worksheet7.write('I2', "3 Color Scale + user colors") for row, row_data in enumerate(data): worksheet7.write(row + 2, 1, row_data) worksheet7.write(row + 2, 3, row_data) worksheet7.write(row + 2, 6, row_data) worksheet7.write(row + 2, 8, row_data) worksheet7.conditional_format('B3:B14', {'type': '2_color_scale'}) worksheet7.conditional_format('D3:D14', {'type': '2_color_scale', 'min_color': "#FF0000", 'max_color': "#00FF00"}) worksheet7.conditional_format('G3:G14', {'type': '3_color_scale'}) worksheet7.conditional_format('I3:I14', {'type': '3_color_scale', 'min_color': "#C5D9F1", 'mid_color': "#8DB4E3", 'max_color': "#538ED5"}) ############################################################################### # # Example 8. # caption = 'Examples of data bars.' worksheet8.write('A1', caption) worksheet8.write('B2', "Default data bars") worksheet8.write('D2', "Bars only") worksheet8.write('F2', "With user color") worksheet8.write('H2', "Solid bars") worksheet8.write('J2', "Right to left") worksheet8.write('L2', "Excel 2010 style") worksheet8.write('N2', "Negative same as positive") data = range(1, 13) for row, row_data in enumerate(data): worksheet8.write(row + 2, 1, row_data) worksheet8.write(row + 2, 3, row_data) worksheet8.write(row + 2, 5, row_data) worksheet8.write(row + 2, 7, row_data) worksheet8.write(row + 2, 9, row_data) data = [-1, -2, -3, -2, -1, 0, 1, 2, 3, 2, 1, 0] for row, row_data in enumerate(data): worksheet8.write(row + 2, 11, row_data) worksheet8.write(row + 2, 13, row_data) worksheet8.conditional_format('B3:B14', {'type': 'data_bar'}) worksheet8.conditional_format('D3:D14', {'type': 'data_bar', 'bar_only': True}) worksheet8.conditional_format('F3:F14', {'type': 'data_bar', 'bar_color': '#63C384'}) worksheet8.conditional_format('H3:H14', {'type': 'data_bar', 'bar_solid': True}) worksheet8.conditional_format('J3:J14', {'type': 'data_bar', 'bar_direction': 'right'}) worksheet8.conditional_format('L3:L14', {'type': 'data_bar', 'data_bar_2010': True}) worksheet8.conditional_format('N3:N14', {'type': 'data_bar', 'bar_negative_color_same': True, 'bar_negative_border_color_same': True}) ############################################################################### # # Example 9. # caption = 'Examples of conditional formats with icon sets.' data = [ [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], ] worksheet9.write('A1', caption) for row, row_data in enumerate(data): worksheet9.write_row(row + 2, 1, row_data) worksheet9.conditional_format('B3:D3', {'type': 'icon_set', 'icon_style': '3_traffic_lights'}) worksheet9.conditional_format('B4:D4', {'type': 'icon_set', 'icon_style': '3_traffic_lights', 'reverse_icons': True}) worksheet9.conditional_format('B5:D5', {'type': 'icon_set', 'icon_style': '3_traffic_lights', 'icons_only': True}) worksheet9.conditional_format('B6:D6', {'type': 'icon_set', 'icon_style': '3_arrows'}) worksheet9.conditional_format('B7:E7', {'type': 'icon_set', 'icon_style': '4_arrows'}) worksheet9.conditional_format('B8:F8', {'type': 'icon_set', 'icon_style': '5_arrows'}) worksheet9.conditional_format('B9:F9', {'type': 'icon_set', 'icon_style': '5_ratings'}) workbook.close()
96f12a1ab1eb7f33d8ce8497a6de454ae5054716
12fe05ebba89ea0f11d6f5d2fd8f047ee6369ff6
/minmax3.py
c6f28978343f73c011e14f3c2fb0c7170c66fa0b
[]
no_license
daniilvarlamov/domzad
d467c4b9f51a1a640b0b001216849131c2463500
69e1b4c6fa27dc4d17499cfc6817c97d90f8391a
refs/heads/main
2023-01-20T21:58:33.078060
2020-11-26T09:18:16
2020-11-26T09:18:16
303,324,132
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
N = int(input("Введите количество прямоугольников") for i in range (N): a = int(input("Введите стороны прямоугольника") b = int(input()) P = 2*(a+b) if (i=1): Max = P if (P>Max): Max = P print(Max)
d35605db5bdf283207a2c171638328c4c8b53252
4e30d990963870478ed248567e432795f519e1cc
/tests/api/v3_1_1/test_nbar_app.py
13a1bcd9798917799871178339c1315dd3a03d61
[ "MIT" ]
permissive
CiscoISE/ciscoisesdk
84074a57bf1042a735e3fc6eb7876555150d2b51
f468c54998ec1ad85435ea28988922f0573bfee8
refs/heads/main
2023-09-04T23:56:32.232035
2023-08-25T17:31:49
2023-08-25T17:31:49
365,359,531
48
9
MIT
2023-08-25T17:31:51
2021-05-07T21:43:52
Python
UTF-8
Python
false
false
9,399
py
# -*- coding: utf-8 -*- """IdentityServicesEngineAPI nbar_app API fixtures and tests. Copyright (c) 2021 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest from fastjsonschema.exceptions import JsonSchemaException from ciscoisesdk.exceptions import MalformedRequest from ciscoisesdk.exceptions import ciscoisesdkException from tests.environment import IDENTITY_SERVICES_ENGINE_VERSION pytestmark = pytest.mark.skipif(IDENTITY_SERVICES_ENGINE_VERSION != '3.1.1', reason='version does not match') def is_valid_get_nbar_apps(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') assert hasattr(obj, 'status_code') json_schema_validate('jsd_1e8a476ad8455fdebad0d8973c810495_v3_1_1').validate(obj.response) return True def get_nbar_apps(api): endpoint_result = api.nbar_app.get_nbar_apps( filter='value1,value2', filter_type='string', page=0, size=0, sort='string', sort_by='string' ) return endpoint_result @pytest.mark.nbar_app def test_get_nbar_apps(api, validator): try: assert is_valid_get_nbar_apps( validator, get_nbar_apps(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def get_nbar_apps_default(api): endpoint_result = api.nbar_app.get_nbar_apps( filter=None, filter_type=None, page=None, size=None, sort=None, sort_by=None ) return endpoint_result @pytest.mark.nbar_app def test_get_nbar_apps_default(api, validator): try: assert is_valid_get_nbar_apps( validator, get_nbar_apps_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_create_nbar_app(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') assert hasattr(obj, 'status_code') json_schema_validate('jsd_ccc30178afce5e51a65e96cd95ca1773_v3_1_1').validate(obj.response) return True def create_nbar_app(api): endpoint_result = api.nbar_app.create_nbar_app( active_validation=False, description='string', id='string', name='string', network_identities=[{'ports': 'string', 'protocol': 'string'}], payload=None ) return endpoint_result @pytest.mark.nbar_app def test_create_nbar_app(api, validator): try: assert is_valid_create_nbar_app( validator, create_nbar_app(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def create_nbar_app_default(api): endpoint_result = api.nbar_app.create_nbar_app( active_validation=False, description=None, id=None, name=None, network_identities=None, payload=None ) return endpoint_result @pytest.mark.nbar_app def test_create_nbar_app_default(api, validator): try: assert is_valid_create_nbar_app( validator, create_nbar_app_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_get_nbar_app_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') assert hasattr(obj, 'status_code') json_schema_validate('jsd_61e99726f3745554a07ee102f74fe3bd_v3_1_1').validate(obj.response) return True def get_nbar_app_by_id(api): endpoint_result = api.nbar_app.get_nbar_app_by_id( id='string' ) return endpoint_result @pytest.mark.nbar_app def test_get_nbar_app_by_id(api, validator): try: assert is_valid_get_nbar_app_by_id( validator, get_nbar_app_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def get_nbar_app_by_id_default(api): endpoint_result = api.nbar_app.get_nbar_app_by_id( id='string' ) return endpoint_result @pytest.mark.nbar_app def test_get_nbar_app_by_id_default(api, validator): try: assert is_valid_get_nbar_app_by_id( validator, get_nbar_app_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_update_nbar_app_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') assert hasattr(obj, 'status_code') json_schema_validate('jsd_b55622f1671359919573b261ba16ea71_v3_1_1').validate(obj.response) return True def update_nbar_app_by_id(api): endpoint_result = api.nbar_app.update_nbar_app_by_id( active_validation=False, description='string', id='string', name='string', network_identities=[{'ports': 'string', 'protocol': 'string'}], payload=None ) return endpoint_result @pytest.mark.nbar_app def test_update_nbar_app_by_id(api, validator): try: assert is_valid_update_nbar_app_by_id( validator, update_nbar_app_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def update_nbar_app_by_id_default(api): endpoint_result = api.nbar_app.update_nbar_app_by_id( active_validation=False, id='string', description=None, name=None, network_identities=None, payload=None ) return endpoint_result @pytest.mark.nbar_app def test_update_nbar_app_by_id_default(api, validator): try: assert is_valid_update_nbar_app_by_id( validator, update_nbar_app_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_delete_nbar_app_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') assert hasattr(obj, 'status_code') json_schema_validate('jsd_44d289d5685350f5b00f130db0a45142_v3_1_1').validate(obj.response) return True def delete_nbar_app_by_id(api): endpoint_result = api.nbar_app.delete_nbar_app_by_id( id='string' ) return endpoint_result @pytest.mark.nbar_app def test_delete_nbar_app_by_id(api, validator): try: assert is_valid_delete_nbar_app_by_id( validator, delete_nbar_app_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def delete_nbar_app_by_id_default(api): endpoint_result = api.nbar_app.delete_nbar_app_by_id( id='string' ) return endpoint_result @pytest.mark.nbar_app def test_delete_nbar_app_by_id_default(api, validator): try: assert is_valid_delete_nbar_app_by_id( validator, delete_nbar_app_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e
8cb3d749f4466525d40f270c8a048fd83397d6b0
e25e7f0d944d302c2fd13b7517d97c5e0b5558ec
/FixTree_TBCNN/pycparser/c_parser.py
9a9d09657ad6d9acb7465f692d2e3c1c7d25ba04
[]
no_license
NizhenJenny/FixTree
06702a0d529d861e34b045aac286434b0ce3d86f
be30a2cdeb6cc0aa13f29d2cd4d4ce325f00f2a0
refs/heads/master
2020-05-24T21:33:04.030992
2019-08-19T09:52:10
2019-08-19T09:52:10
187,477,281
0
0
null
null
null
null
UTF-8
Python
false
false
63,913
py
#------------------------------------------------------------------------------ # pycparser: c_parser.py # # CParser class: Parser and AST builder for the C language # # Copyright (C) 2008-2015, Eli Bendersky # License: BSD #------------------------------------------------------------------------------ import re from .ply import yacc from . import c_ast from .c_lexer import CLexer from .plyparser import PLYParser, Coord, ParseError from .ast_transforms import fix_switch_cases class CParser(PLYParser): def __init__( self, lex_optimize=True, lextab='pycparser.lextab', yacc_optimize=True, yacctab='pycparser.yacctab', yacc_debug=False, taboutputdir=''): """ Create a new CParser. Some arguments for controlling the debug/optimization level of the parser are provided. The defaults are tuned for release/performance mode. The simple rules for using them are: *) When tweaking CParser/CLexer, set these to False *) When releasing a stable parser, set to True lex_optimize: Set to False when you're modifying the lexer. Otherwise, changes in the lexer won't be used, if some lextab.py file exists. When releasing with a stable lexer, set to True to save the re-generation of the lexer table on each run. lextab: Points to the lex table that's used for optimized mode. Only if you're modifying the lexer and want some tests to avoid re-generating the table, make this point to a local lex table file (that's been earlier generated with lex_optimize=True) yacc_optimize: Set to False when you're modifying the parser. Otherwise, changes in the parser won't be used, if some parsetab.py file exists. When releasing with a stable parser, set to True to save the re-generation of the parser table on each run. yacctab: Points to the yacc table that's used for optimized mode. Only if you're modifying the parser, make this point to a local yacc table file yacc_debug: Generate a parser.out file that explains how yacc built the parsing table from the grammar. taboutputdir: Set this parameter to control the location of generated lextab and yacctab files. """ self.clex = CLexer( error_func=self._lex_error_func, on_lbrace_func=self._lex_on_lbrace_func, on_rbrace_func=self._lex_on_rbrace_func, type_lookup_func=self._lex_type_lookup_func) self.clex.build( optimize=lex_optimize, lextab=lextab, outputdir=taboutputdir) self.tokens = self.clex.tokens rules_with_opt = [ 'abstract_declarator', 'assignment_expression', 'declaration_list', 'declaration_specifiers', 'designation', 'expression', 'identifier_list', 'init_declarator_list', 'initializer_list', 'parameter_type_list', 'specifier_qualifier_list', 'block_item_list', 'type_qualifier_list', 'struct_declarator_list' ] for rule in rules_with_opt: self._create_opt_rule(rule) self.cparser = yacc.yacc( module=self, start='translation_unit_or_empty', debug=yacc_debug, optimize=yacc_optimize, tabmodule=yacctab, outputdir=taboutputdir) # Stack of scopes for keeping track of symbols. _scope_stack[-1] is # the current (topmost) scope. Each scope is a dictionary that # specifies whether a name is a type. If _scope_stack[n][name] is # True, 'name' is currently a type in the scope. If it's False, # 'name' is used in the scope but not as a type (for instance, if we # saw: int name; # If 'name' is not a key in _scope_stack[n] then 'name' was not defined # in this scope at all. self._scope_stack = [dict()] # Keeps track of the last token given to yacc (the lookahead token) self._last_yielded_token = None def parse(self, text, filename='', debuglevel=0): """ Parses C code and returns an AST. text: A string containing the C source code filename: Name of the file being parsed (for meaningful error messages) debuglevel: Debug level to yacc """ self.clex.filename = filename self.clex.reset_lineno() self._scope_stack = [dict()] self._last_yielded_token = None return self.cparser.parse( input=text, lexer=self.clex, debug=debuglevel) ######################-- PRIVATE --###################### def _push_scope(self): self._scope_stack.append(dict()) def _pop_scope(self): assert len(self._scope_stack) > 1 self._scope_stack.pop() def _add_typedef_name(self, name, coord): """ Add a new typedef name (ie a TYPEID) to the current scope """ if not self._scope_stack[-1].get(name, True): self._parse_error( "Typedef %r previously declared as non-typedef " "in this scope" % name, coord) self._scope_stack[-1][name] = True def _add_identifier(self, name, coord): """ Add a new object, function, or enum member name (ie an ID) to the current scope """ if self._scope_stack[-1].get(name, False): self._parse_error( "Non-typedef %r previously declared as typedef " "in this scope" % name, coord) self._scope_stack[-1][name] = False def _is_type_in_scope(self, name): """ Is *name* a typedef-name in the current scope? """ for scope in reversed(self._scope_stack): # If name is an identifier in this scope it shadows typedefs in # higher scopes. in_scope = scope.get(name) if in_scope is not None: return in_scope return False def _lex_error_func(self, msg, line, column): self._parse_error(msg, self._coord(line, column)) def _lex_on_lbrace_func(self): self._push_scope() def _lex_on_rbrace_func(self): self._pop_scope() def _lex_type_lookup_func(self, name): """ Looks up types that were previously defined with typedef. Passed to the lexer for recognizing identifiers that are types. """ is_type = self._is_type_in_scope(name) return is_type def _get_yacc_lookahead_token(self): """ We need access to yacc's lookahead token in certain cases. This is the last token yacc requested from the lexer, so we ask the lexer. """ return self.clex.last_token # To understand what's going on here, read sections A.8.5 and # A.8.6 of K&R2 very carefully. # # A C type consists of a basic type declaration, with a list # of modifiers. For example: # # int *c[5]; # # The basic declaration here is 'int c', and the pointer and # the array are the modifiers. # # Basic declarations are represented by TypeDecl (from module c_ast) and the # modifiers are FuncDecl, PtrDecl and ArrayDecl. # # The standard states that whenever a new modifier is parsed, it should be # added to the end of the list of modifiers. For example: # # K&R2 A.8.6.2: Array Declarators # # In a declaration T D where D has the form # D1 [constant-expression-opt] # and the type of the identifier in the declaration T D1 is # "type-modifier T", the type of the # identifier of D is "type-modifier array of T" # # This is what this method does. The declarator it receives # can be a list of declarators ending with TypeDecl. It # tacks the modifier to the end of this list, just before # the TypeDecl. # # Additionally, the modifier may be a list itself. This is # useful for pointers, that can come as a chain from the rule # p_pointer. In this case, the whole modifier list is spliced # into the new location. def _type_modify_decl(self, decl, modifier): """ Tacks a type modifier on a declarator, and returns the modified declarator. Note: the declarator and modifier may be modified """ #~ print '****' #~ decl.show(offset=3) #~ modifier.show(offset=3) #~ print '****' modifier_head = modifier modifier_tail = modifier # The modifier may be a nested list. Reach its tail. # while modifier_tail.type: modifier_tail = modifier_tail.type # If the decl is a basic type, just tack the modifier onto # it # if isinstance(decl, c_ast.TypeDecl): modifier_tail.type = decl return modifier else: # Otherwise, the decl is a list of modifiers. Reach # its tail and splice the modifier onto the tail, # pointing to the underlying basic type. # decl_tail = decl while not isinstance(decl_tail.type, c_ast.TypeDecl): decl_tail = decl_tail.type modifier_tail.type = decl_tail.type decl_tail.type = modifier_head return decl # Due to the order in which declarators are constructed, # they have to be fixed in order to look like a normal AST. # # When a declaration arrives from syntax construction, it has # these problems: # * The innermost TypeDecl has no type (because the basic # type is only known at the uppermost declaration level) # * The declaration has no variable name, since that is saved # in the innermost TypeDecl # * The typename of the declaration is a list of type # specifiers, and not a node. Here, basic identifier types # should be separated from more complex types like enums # and structs. # # This method fixes these problems. # def _fix_decl_name_type(self, decl, typename): """ Fixes a declaration. Modifies decl. """ # Reach the underlying basic type # type = decl while not isinstance(type, c_ast.TypeDecl): type = type.type decl.name = type.declname type.quals = decl.quals # The typename is a list of types. If any type in this # list isn't an IdentifierType, it must be the only # type in the list (it's illegal to declare "int enum ..") # If all the types are basic, they're collected in the # IdentifierType holder. # for tn in typename: if not isinstance(tn, c_ast.IdentifierType): if len(typename) > 1: self._parse_error( "Invalid multiple types specified", tn.coord) else: type.type = tn return decl if not typename: # Functions default to returning int # if not isinstance(decl.type, c_ast.FuncDecl): self._parse_error( "Missing type in declaration", decl.coord) type.type = c_ast.IdentifierType( ['int'], coord=decl.coord) else: # At this point, we know that typename is a list of IdentifierType # nodes. Concatenate all the names into a single list. # type.type = c_ast.IdentifierType( [name for id in typename for name in id.names], coord=typename[0].coord) return decl def _add_declaration_specifier(self, declspec, newspec, kind): """ Declaration specifiers are represented by a dictionary with the entries: * qual: a list of type qualifiers * storage: a list of storage type qualifiers * type: a list of type specifiers * function: a list of function specifiers This method is given a declaration specifier, and a new specifier of a given kind. Returns the declaration specifier, with the new specifier incorporated. """ spec = declspec or dict(qual=[], storage=[], type=[], function=[]) spec[kind].insert(0, newspec) return spec def _build_declarations(self, spec, decls, typedef_namespace=False): """ Builds a list of declarations all sharing the given specifiers. If typedef_namespace is true, each declared name is added to the "typedef namespace", which also includes objects, functions, and enum constants. """ is_typedef = 'typedef' in spec['storage'] declarations = [] # Bit-fields are allowed to be unnamed. # if decls[0].get('bitsize') is not None: pass # When redeclaring typedef names as identifiers in inner scopes, a # problem can occur where the identifier gets grouped into # spec['type'], leaving decl as None. This can only occur for the # first declarator. # elif decls[0]['decl'] is None: if len(spec['type']) < 2 or len(spec['type'][-1].names) != 1 or \ not self._is_type_in_scope(spec['type'][-1].names[0]): coord = '?' for t in spec['type']: if hasattr(t, 'coord'): coord = t.coord break self._parse_error('Invalid declaration', coord) # Make this look as if it came from "direct_declarator:ID" decls[0]['decl'] = c_ast.TypeDecl( declname=spec['type'][-1].names[0], type=None, quals=None, coord=spec['type'][-1].coord) # Remove the "new" type's name from the end of spec['type'] del spec['type'][-1] # A similar problem can occur where the declaration ends up looking # like an abstract declarator. Give it a name if this is the case. # elif not isinstance(decls[0]['decl'], (c_ast.Struct, c_ast.Union, c_ast.IdentifierType)): decls_0_tail = decls[0]['decl'] while not isinstance(decls_0_tail, c_ast.TypeDecl): decls_0_tail = decls_0_tail.type if decls_0_tail.declname is None: decls_0_tail.declname = spec['type'][-1].names[0] del spec['type'][-1] for decl in decls: assert decl['decl'] is not None if is_typedef: declaration = c_ast.Typedef( name=None, quals=spec['qual'], storage=spec['storage'], type=decl['decl'], coord=decl['decl'].coord) else: declaration = c_ast.Decl( name=None, quals=spec['qual'], storage=spec['storage'], funcspec=spec['function'], type=decl['decl'], init=decl.get('init'), bitsize=decl.get('bitsize'), coord=decl['decl'].coord) if isinstance(declaration.type, (c_ast.Struct, c_ast.Union, c_ast.IdentifierType)): fixed_decl = declaration else: fixed_decl = self._fix_decl_name_type(declaration, spec['type']) # Add the type name defined by typedef to a # symbol table (for usage in the lexer) # if typedef_namespace: if is_typedef: self._add_typedef_name(fixed_decl.name, fixed_decl.coord) else: self._add_identifier(fixed_decl.name, fixed_decl.coord) declarations.append(fixed_decl) return declarations def _build_function_definition(self, spec, decl, param_decls, body): """ Builds a function definition. """ assert 'typedef' not in spec['storage'] declaration = self._build_declarations( spec=spec, decls=[dict(decl=decl, init=None)], typedef_namespace=True)[0] return c_ast.FuncDef( decl=declaration, param_decls=param_decls, body=body, coord=decl.coord) def _select_struct_union_class(self, token): """ Given a token (either STRUCT or UNION), selects the appropriate AST class. """ if token == 'struct': return c_ast.Struct else: return c_ast.Union ## ## Precedence and associativity of operators ## precedence = ( ('left', 'LOR'), ('left', 'LAND'), ('left', 'OR'), ('left', 'XOR'), ('left', 'AND'), ('left', 'EQ', 'NE'), ('left', 'GT', 'GE', 'LT', 'LE'), ('left', 'RSHIFT', 'LSHIFT'), ('left', 'PLUS', 'MINUS'), ('left', 'TIMES', 'DIVIDE', 'MOD') ) ## ## Grammar productions ## Implementation of the BNF defined in K&R2 A.13 ## # Wrapper around a translation unit, to allow for empty input. # Not strictly part of the C99 Grammar, but useful in practice. # def p_translation_unit_or_empty(self, p): """ translation_unit_or_empty : translation_unit | empty """ if p[1] is None: p[0] = c_ast.FileAST([]) else: p[0] = c_ast.FileAST(p[1]) def p_translation_unit_1(self, p): """ translation_unit : external_declaration """ # Note: external_declaration is already a list # p[0] = p[1] def p_translation_unit_2(self, p): """ translation_unit : translation_unit external_declaration """ if p[2] is not None: p[1].extend(p[2]) p[0] = p[1] # Declarations always come as lists (because they can be # several in one line), so we wrap the function definition # into a list as well, to make the return value of # external_declaration homogenous. # def p_external_declaration_1(self, p): """ external_declaration : function_definition """ p[0] = [p[1]] def p_external_declaration_2(self, p): """ external_declaration : declaration """ p[0] = p[1] def p_external_declaration_3(self, p): """ external_declaration : pp_directive """ p[0] = p[1] def p_external_declaration_4(self, p): """ external_declaration : SEMI """ p[0] = None def p_pp_directive(self, p): """ pp_directive : PPHASH """ self._parse_error('Directives not supported yet', self._coord(p.lineno(1))) # In function definitions, the declarator can be followed by # a declaration list, for old "K&R style" function definitios. # def p_function_definition_1(self, p): """ function_definition : declarator declaration_list_opt compound_statement """ # no declaration specifiers - 'int' becomes the default type spec = dict( qual=[], storage=[], type=[c_ast.IdentifierType(['int'], coord=self._coord(p.lineno(1)))], function=[]) p[0] = self._build_function_definition( spec=spec, decl=p[1], param_decls=p[2], body=p[3]) def p_function_definition_2(self, p): """ function_definition : declaration_specifiers declarator declaration_list_opt compound_statement """ spec = p[1] p[0] = self._build_function_definition( spec=spec, decl=p[2], param_decls=p[3], body=p[4]) def p_statement(self, p): """ statement : labeled_statement | expression_statement | compound_statement | selection_statement | iteration_statement | jump_statement """ p[0] = p[1] # In C, declarations can come several in a line: # int x, *px, romulo = 5; # # However, for the AST, we will split them to separate Decl # nodes. # # This rule splits its declarations and always returns a list # of Decl nodes, even if it's one element long. # def p_decl_body(self, p): """ decl_body : declaration_specifiers init_declarator_list_opt """ spec = p[1] # p[2] (init_declarator_list_opt) is either a list or None # if p[2] is None: # By the standard, you must have at least one declarator unless # declaring a structure tag, a union tag, or the members of an # enumeration. # ty = spec['type'] s_u_or_e = (c_ast.Struct, c_ast.Union, c_ast.Enum) if len(ty) == 1 and isinstance(ty[0], s_u_or_e): decls = [c_ast.Decl( name=None, quals=spec['qual'], storage=spec['storage'], funcspec=spec['function'], type=ty[0], init=None, bitsize=None, coord=ty[0].coord)] # However, this case can also occur on redeclared identifiers in # an inner scope. The trouble is that the redeclared type's name # gets grouped into declaration_specifiers; _build_declarations # compensates for this. # else: decls = self._build_declarations( spec=spec, decls=[dict(decl=None, init=None)], typedef_namespace=True) else: decls = self._build_declarations( spec=spec, decls=p[2], typedef_namespace=True) p[0] = decls # The declaration has been split to a decl_body sub-rule and # SEMI, because having them in a single rule created a problem # for defining typedefs. # # If a typedef line was directly followed by a line using the # type defined with the typedef, the type would not be # recognized. This is because to reduce the declaration rule, # the parser's lookahead asked for the token after SEMI, which # was the type from the next line, and the lexer had no chance # to see the updated type symbol table. # # Splitting solves this problem, because after seeing SEMI, # the parser reduces decl_body, which actually adds the new # type into the table to be seen by the lexer before the next # line is reached. def p_declaration(self, p): """ declaration : decl_body SEMI """ p[0] = p[1] # Since each declaration is a list of declarations, this # rule will combine all the declarations and return a single # list # def p_declaration_list(self, p): """ declaration_list : declaration | declaration_list declaration """ p[0] = p[1] if len(p) == 2 else p[1] + p[2] def p_declaration_specifiers_1(self, p): """ declaration_specifiers : type_qualifier declaration_specifiers_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'qual') def p_declaration_specifiers_2(self, p): """ declaration_specifiers : type_specifier declaration_specifiers_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'type') def p_declaration_specifiers_3(self, p): """ declaration_specifiers : storage_class_specifier declaration_specifiers_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'storage') def p_declaration_specifiers_4(self, p): """ declaration_specifiers : function_specifier declaration_specifiers_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'function') def p_storage_class_specifier(self, p): """ storage_class_specifier : AUTO | REGISTER | STATIC | EXTERN | TYPEDEF """ p[0] = p[1] def p_function_specifier(self, p): """ function_specifier : INLINE """ p[0] = p[1] def p_type_specifier_1(self, p): """ type_specifier : VOID | _BOOL | CHAR | SHORT | INT | LONG | FLOAT | DOUBLE | _COMPLEX | SIGNED | UNSIGNED """ p[0] = c_ast.IdentifierType([p[1]], coord=self._coord(p.lineno(1))) def p_type_specifier_2(self, p): """ type_specifier : typedef_name | enum_specifier | struct_or_union_specifier """ p[0] = p[1] def p_type_qualifier(self, p): """ type_qualifier : CONST | RESTRICT | VOLATILE """ p[0] = p[1] def p_init_declarator_list_1(self, p): """ init_declarator_list : init_declarator | init_declarator_list COMMA init_declarator """ p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]] # If the code is declaring a variable that was declared a typedef in an # outer scope, yacc will think the name is part of declaration_specifiers, # not init_declarator, and will then get confused by EQUALS. Pass None # up in place of declarator, and handle this at a higher level. # def p_init_declarator_list_2(self, p): """ init_declarator_list : EQUALS initializer """ p[0] = [dict(decl=None, init=p[2])] # Similarly, if the code contains duplicate typedefs of, for example, # array types, the array portion will appear as an abstract declarator. # def p_init_declarator_list_3(self, p): """ init_declarator_list : abstract_declarator """ p[0] = [dict(decl=p[1], init=None)] # Returns a {decl=<declarator> : init=<initializer>} dictionary # If there's no initializer, uses None # def p_init_declarator(self, p): """ init_declarator : declarator | declarator EQUALS initializer """ p[0] = dict(decl=p[1], init=(p[3] if len(p) > 2 else None)) def p_specifier_qualifier_list_1(self, p): """ specifier_qualifier_list : type_qualifier specifier_qualifier_list_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'qual') def p_specifier_qualifier_list_2(self, p): """ specifier_qualifier_list : type_specifier specifier_qualifier_list_opt """ p[0] = self._add_declaration_specifier(p[2], p[1], 'type') # TYPEID is allowed here (and in other struct/enum related tag names), because # struct/enum tags reside in their own namespace and can be named the same as types # def p_struct_or_union_specifier_1(self, p): """ struct_or_union_specifier : struct_or_union ID | struct_or_union TYPEID """ klass = self._select_struct_union_class(p[1]) p[0] = klass( name=p[2], decls=None, coord=self._coord(p.lineno(2))) def p_struct_or_union_specifier_2(self, p): """ struct_or_union_specifier : struct_or_union brace_open struct_declaration_list brace_close """ klass = self._select_struct_union_class(p[1]) p[0] = klass( name=None, decls=p[3], coord=self._coord(p.lineno(2))) def p_struct_or_union_specifier_3(self, p): """ struct_or_union_specifier : struct_or_union ID brace_open struct_declaration_list brace_close | struct_or_union TYPEID brace_open struct_declaration_list brace_close """ klass = self._select_struct_union_class(p[1]) p[0] = klass( name=p[2], decls=p[4], coord=self._coord(p.lineno(2))) def p_struct_or_union(self, p): """ struct_or_union : STRUCT | UNION """ p[0] = p[1] # Combine all declarations into a single list # def p_struct_declaration_list(self, p): """ struct_declaration_list : struct_declaration | struct_declaration_list struct_declaration """ p[0] = p[1] if len(p) == 2 else p[1] + p[2] def p_struct_declaration_1(self, p): """ struct_declaration : specifier_qualifier_list struct_declarator_list_opt SEMI """ spec = p[1] assert 'typedef' not in spec['storage'] if p[2] is not None: decls = self._build_declarations( spec=spec, decls=p[2]) elif len(spec['type']) == 1: # Anonymous struct/union, gcc extension, C1x feature. # Although the standard only allows structs/unions here, I see no # reason to disallow other types since some compilers have typedefs # here, and pycparser isn't about rejecting all invalid code. # node = spec['type'][0] if isinstance(node, c_ast.Node): decl_type = node else: decl_type = c_ast.IdentifierType(node) decls = self._build_declarations( spec=spec, decls=[dict(decl=decl_type)]) else: # Structure/union members can have the same names as typedefs. # The trouble is that the member's name gets grouped into # specifier_qualifier_list; _build_declarations compensates. # decls = self._build_declarations( spec=spec, decls=[dict(decl=None, init=None)]) p[0] = decls def p_struct_declaration_2(self, p): """ struct_declaration : specifier_qualifier_list abstract_declarator SEMI """ # "Abstract declarator?!", you ask? Structure members can have the # same names as typedefs. The trouble is that the member's name gets # grouped into specifier_qualifier_list, leaving any remainder to # appear as an abstract declarator, as in: # typedef int Foo; # struct { Foo Foo[3]; }; # p[0] = self._build_declarations( spec=p[1], decls=[dict(decl=p[2], init=None)]) def p_struct_declarator_list(self, p): """ struct_declarator_list : struct_declarator | struct_declarator_list COMMA struct_declarator """ p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]] # struct_declarator passes up a dict with the keys: decl (for # the underlying declarator) and bitsize (for the bitsize) # def p_struct_declarator_1(self, p): """ struct_declarator : declarator """ p[0] = {'decl': p[1], 'bitsize': None} def p_struct_declarator_2(self, p): """ struct_declarator : declarator COLON constant_expression | COLON constant_expression """ if len(p) > 3: p[0] = {'decl': p[1], 'bitsize': p[3]} else: p[0] = {'decl': c_ast.TypeDecl(None, None, None), 'bitsize': p[2]} def p_enum_specifier_1(self, p): """ enum_specifier : ENUM ID | ENUM TYPEID """ p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1))) def p_enum_specifier_2(self, p): """ enum_specifier : ENUM brace_open enumerator_list brace_close """ p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1))) def p_enum_specifier_3(self, p): """ enum_specifier : ENUM ID brace_open enumerator_list brace_close | ENUM TYPEID brace_open enumerator_list brace_close """ p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1))) def p_enumerator_list(self, p): """ enumerator_list : enumerator | enumerator_list COMMA | enumerator_list COMMA enumerator """ if len(p) == 2: p[0] = c_ast.EnumeratorList([p[1]], p[1].coord) elif len(p) == 3: p[0] = p[1] else: p[1].enumerators.append(p[3]) p[0] = p[1] def p_enumerator(self, p): """ enumerator : ID | ID EQUALS constant_expression """ if len(p) == 2: enumerator = c_ast.Enumerator( p[1], None, self._coord(p.lineno(1))) else: enumerator = c_ast.Enumerator( p[1], p[3], self._coord(p.lineno(1))) self._add_identifier(enumerator.name, enumerator.coord) p[0] = enumerator def p_declarator_1(self, p): """ declarator : direct_declarator """ p[0] = p[1] def p_declarator_2(self, p): """ declarator : pointer direct_declarator """ p[0] = self._type_modify_decl(p[2], p[1]) # Since it's impossible for a type to be specified after a pointer, assume # it's intended to be the name for this declaration. _add_identifier will # raise an error if this TYPEID can't be redeclared. # def p_declarator_3(self, p): """ declarator : pointer TYPEID """ decl = c_ast.TypeDecl( declname=p[2], type=None, quals=None, coord=self._coord(p.lineno(2))) p[0] = self._type_modify_decl(decl, p[1]) def p_direct_declarator_1(self, p): """ direct_declarator : ID """ p[0] = c_ast.TypeDecl( declname=p[1], type=None, quals=None, coord=self._coord(p.lineno(1))) def p_direct_declarator_2(self, p): """ direct_declarator : LPAREN declarator RPAREN """ p[0] = p[2] def p_direct_declarator_3(self, p): """ direct_declarator : direct_declarator LBRACKET type_qualifier_list_opt assignment_expression_opt RBRACKET """ quals = (p[3] if len(p) > 5 else []) or [] # Accept dimension qualifiers # Per C99 6.7.5.3 p7 arr = c_ast.ArrayDecl( type=None, dim=p[4] if len(p) > 5 else p[3], dim_quals=quals, coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=arr) def p_direct_declarator_4(self, p): """ direct_declarator : direct_declarator LBRACKET STATIC type_qualifier_list_opt assignment_expression RBRACKET | direct_declarator LBRACKET type_qualifier_list STATIC assignment_expression RBRACKET """ # Using slice notation for PLY objects doesn't work in Python 3 for the # version of PLY embedded with pycparser; see PLY Google Code issue 30. # Work around that here by listing the two elements separately. listed_quals = [item if isinstance(item, list) else [item] for item in [p[3],p[4]]] dim_quals = [qual for sublist in listed_quals for qual in sublist if qual is not None] arr = c_ast.ArrayDecl( type=None, dim=p[5], dim_quals=dim_quals, coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=arr) # Special for VLAs # def p_direct_declarator_5(self, p): """ direct_declarator : direct_declarator LBRACKET type_qualifier_list_opt TIMES RBRACKET """ arr = c_ast.ArrayDecl( type=None, dim=c_ast.ID(p[4], self._coord(p.lineno(4))), dim_quals=p[3] if p[3] != None else [], coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=arr) def p_direct_declarator_6(self, p): """ direct_declarator : direct_declarator LPAREN parameter_type_list RPAREN | direct_declarator LPAREN identifier_list_opt RPAREN """ func = c_ast.FuncDecl( args=p[3], type=None, coord=p[1].coord) # To see why _get_yacc_lookahead_token is needed, consider: # typedef char TT; # void foo(int TT) { TT = 10; } # Outside the function, TT is a typedef, but inside (starting and # ending with the braces) it's a parameter. The trouble begins with # yacc's lookahead token. We don't know if we're declaring or # defining a function until we see LBRACE, but if we wait for yacc to # trigger a rule on that token, then TT will have already been read # and incorrectly interpreted as TYPEID. We need to add the # parameters to the scope the moment the lexer sees LBRACE. # if self._get_yacc_lookahead_token().type == "LBRACE": if func.args is not None: for param in func.args.params: if isinstance(param, c_ast.EllipsisParam): break self._add_identifier(param.name, param.coord) p[0] = self._type_modify_decl(decl=p[1], modifier=func) def p_pointer(self, p): """ pointer : TIMES type_qualifier_list_opt | TIMES type_qualifier_list_opt pointer """ coord = self._coord(p.lineno(1)) # Pointer decls nest from inside out. This is important when different # levels have different qualifiers. For example: # # char * const * p; # # Means "pointer to const pointer to char" # # While: # # char ** const p; # # Means "const pointer to pointer to char" # # So when we construct PtrDecl nestings, the leftmost pointer goes in # as the most nested type. nested_type = c_ast.PtrDecl(quals=p[2] or [], type=None, coord=coord) if len(p) > 3: tail_type = p[3] while tail_type.type is not None: tail_type = tail_type.type tail_type.type = nested_type p[0] = p[3] else: p[0] = nested_type def p_type_qualifier_list(self, p): """ type_qualifier_list : type_qualifier | type_qualifier_list type_qualifier """ p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]] def p_parameter_type_list(self, p): """ parameter_type_list : parameter_list | parameter_list COMMA ELLIPSIS """ if len(p) > 2: p[1].params.append(c_ast.EllipsisParam(self._coord(p.lineno(3)))) p[0] = p[1] def p_parameter_list(self, p): """ parameter_list : parameter_declaration | parameter_list COMMA parameter_declaration """ if len(p) == 2: # single parameter p[0] = c_ast.ParamList([p[1]], p[1].coord) else: p[1].params.append(p[3]) p[0] = p[1] def p_parameter_declaration_1(self, p): """ parameter_declaration : declaration_specifiers declarator """ spec = p[1] if not spec['type']: spec['type'] = [c_ast.IdentifierType(['int'], coord=self._coord(p.lineno(1)))] p[0] = self._build_declarations( spec=spec, decls=[dict(decl=p[2])])[0] def p_parameter_declaration_2(self, p): """ parameter_declaration : declaration_specifiers abstract_declarator_opt """ spec = p[1] if not spec['type']: spec['type'] = [c_ast.IdentifierType(['int'], coord=self._coord(p.lineno(1)))] # Parameters can have the same names as typedefs. The trouble is that # the parameter's name gets grouped into declaration_specifiers, making # it look like an old-style declaration; compensate. # if len(spec['type']) > 1 and len(spec['type'][-1].names) == 1 and \ self._is_type_in_scope(spec['type'][-1].names[0]): decl = self._build_declarations( spec=spec, decls=[dict(decl=p[2], init=None)])[0] # This truly is an old-style parameter declaration # else: decl = c_ast.Typename( name='', quals=spec['qual'], type=p[2] or c_ast.TypeDecl(None, None, None), coord=self._coord(p.lineno(2))) typename = spec['type'] decl = self._fix_decl_name_type(decl, typename) p[0] = decl def p_identifier_list(self, p): """ identifier_list : identifier | identifier_list COMMA identifier """ if len(p) == 2: # single parameter p[0] = c_ast.ParamList([p[1]], p[1].coord) else: p[1].params.append(p[3]) p[0] = p[1] def p_initializer_1(self, p): """ initializer : assignment_expression """ p[0] = p[1] def p_initializer_2(self, p): """ initializer : brace_open initializer_list_opt brace_close | brace_open initializer_list COMMA brace_close """ if p[2] is None: p[0] = c_ast.InitList([], self._coord(p.lineno(1))) else: p[0] = p[2] def p_initializer_list(self, p): """ initializer_list : designation_opt initializer | initializer_list COMMA designation_opt initializer """ if len(p) == 3: # single initializer init = p[2] if p[1] is None else c_ast.NamedInitializer(p[1], p[2]) p[0] = c_ast.InitList([init], p[2].coord) else: init = p[4] if p[3] is None else c_ast.NamedInitializer(p[3], p[4]) p[1].exprs.append(init) p[0] = p[1] def p_designation(self, p): """ designation : designator_list EQUALS """ p[0] = p[1] # Designators are represented as a list of nodes, in the order in which # they're written in the code. # def p_designator_list(self, p): """ designator_list : designator | designator_list designator """ p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]] def p_designator(self, p): """ designator : LBRACKET constant_expression RBRACKET | PERIOD identifier """ p[0] = p[2] def p_type_name(self, p): """ type_name : specifier_qualifier_list abstract_declarator_opt """ #~ print '==========' #~ print p[1] #~ print p[2] #~ print p[2].children() #~ print '==========' typename = c_ast.Typename( name='', quals=p[1]['qual'], type=p[2] or c_ast.TypeDecl(None, None, None), coord=self._coord(p.lineno(2))) p[0] = self._fix_decl_name_type(typename, p[1]['type']) def p_abstract_declarator_1(self, p): """ abstract_declarator : pointer """ dummytype = c_ast.TypeDecl(None, None, None) p[0] = self._type_modify_decl( decl=dummytype, modifier=p[1]) def p_abstract_declarator_2(self, p): """ abstract_declarator : pointer direct_abstract_declarator """ p[0] = self._type_modify_decl(p[2], p[1]) def p_abstract_declarator_3(self, p): """ abstract_declarator : direct_abstract_declarator """ p[0] = p[1] # Creating and using direct_abstract_declarator_opt here # instead of listing both direct_abstract_declarator and the # lack of it in the beginning of _1 and _2 caused two # shift/reduce errors. # def p_direct_abstract_declarator_1(self, p): """ direct_abstract_declarator : LPAREN abstract_declarator RPAREN """ p[0] = p[2] def p_direct_abstract_declarator_2(self, p): """ direct_abstract_declarator : direct_abstract_declarator LBRACKET assignment_expression_opt RBRACKET """ arr = c_ast.ArrayDecl( type=None, dim=p[3], dim_quals=[], coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=arr) def p_direct_abstract_declarator_3(self, p): """ direct_abstract_declarator : LBRACKET assignment_expression_opt RBRACKET """ p[0] = c_ast.ArrayDecl( type=c_ast.TypeDecl(None, None, None), dim=p[2], dim_quals=[], coord=self._coord(p.lineno(1))) def p_direct_abstract_declarator_4(self, p): """ direct_abstract_declarator : direct_abstract_declarator LBRACKET TIMES RBRACKET """ arr = c_ast.ArrayDecl( type=None, dim=c_ast.ID(p[3], self._coord(p.lineno(3))), dim_quals=[], coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=arr) def p_direct_abstract_declarator_5(self, p): """ direct_abstract_declarator : LBRACKET TIMES RBRACKET """ p[0] = c_ast.ArrayDecl( type=c_ast.TypeDecl(None, None, None), dim=c_ast.ID(p[3], self._coord(p.lineno(3))), dim_quals=[], coord=self._coord(p.lineno(1))) def p_direct_abstract_declarator_6(self, p): """ direct_abstract_declarator : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN """ func = c_ast.FuncDecl( args=p[3], type=None, coord=p[1].coord) p[0] = self._type_modify_decl(decl=p[1], modifier=func) def p_direct_abstract_declarator_7(self, p): """ direct_abstract_declarator : LPAREN parameter_type_list_opt RPAREN """ p[0] = c_ast.FuncDecl( args=p[2], type=c_ast.TypeDecl(None, None, None), coord=self._coord(p.lineno(1))) # declaration is a list, statement isn't. To make it consistent, block_item # will always be a list # def p_block_item(self, p): """ block_item : declaration | statement """ p[0] = p[1] if isinstance(p[1], list) else [p[1]] # Since we made block_item a list, this just combines lists # def p_block_item_list(self, p): """ block_item_list : block_item | block_item_list block_item """ # Empty block items (plain ';') produce [None], so ignore them p[0] = p[1] if (len(p) == 2 or p[2] == [None]) else p[1] + p[2] def p_compound_statement_1(self, p): """ compound_statement : brace_open block_item_list_opt brace_close """ p[0] = c_ast.Compound( block_items=p[2], coord=self._coord(p.lineno(1))) def p_labeled_statement_1(self, p): """ labeled_statement : ID COLON statement """ p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1))) def p_labeled_statement_2(self, p): """ labeled_statement : CASE constant_expression COLON statement """ p[0] = c_ast.Case(p[2], [p[4]], self._coord(p.lineno(1))) def p_labeled_statement_3(self, p): """ labeled_statement : DEFAULT COLON statement """ p[0] = c_ast.Default([p[3]], self._coord(p.lineno(1))) def p_selection_statement_1(self, p): """ selection_statement : IF LPAREN expression RPAREN statement """ p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1))) def p_selection_statement_2(self, p): """ selection_statement : IF LPAREN expression RPAREN statement ELSE statement """ p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1))) def p_selection_statement_3(self, p): """ selection_statement : SWITCH LPAREN expression RPAREN statement """ p[0] = fix_switch_cases( c_ast.Switch(p[3], p[5], self._coord(p.lineno(1)))) def p_iteration_statement_1(self, p): """ iteration_statement : WHILE LPAREN expression RPAREN statement """ p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1))) def p_iteration_statement_2(self, p): """ iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """ p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1))) def p_iteration_statement_3(self, p): """ iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """ p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1))) def p_iteration_statement_4(self, p): """ iteration_statement : FOR LPAREN declaration expression_opt SEMI expression_opt RPAREN statement """ p[0] = c_ast.For(c_ast.DeclList(p[3], self._coord(p.lineno(1))), p[4], p[6], p[8], self._coord(p.lineno(1))) def p_jump_statement_1(self, p): """ jump_statement : GOTO ID SEMI """ p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1))) def p_jump_statement_2(self, p): """ jump_statement : BREAK SEMI """ p[0] = c_ast.Break(self._coord(p.lineno(1))) def p_jump_statement_3(self, p): """ jump_statement : CONTINUE SEMI """ p[0] = c_ast.Continue(self._coord(p.lineno(1))) def p_jump_statement_4(self, p): """ jump_statement : RETURN expression SEMI | RETURN SEMI """ p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1))) def p_expression_statement(self, p): """ expression_statement : expression_opt SEMI """ if p[1] is None: p[0] = c_ast.EmptyStatement(self._coord(p.lineno(1))) else: p[0] = p[1] def p_expression(self, p): """ expression : assignment_expression | expression COMMA assignment_expression """ if len(p) == 2: p[0] = p[1] else: if not isinstance(p[1], c_ast.ExprList): p[1] = c_ast.ExprList([p[1]], p[1].coord) p[1].exprs.append(p[3]) p[0] = p[1] def p_typedef_name(self, p): """ typedef_name : TYPEID """ p[0] = c_ast.IdentifierType([p[1]], coord=self._coord(p.lineno(1))) def p_assignment_expression(self, p): """ assignment_expression : conditional_expression | unary_expression assignment_operator assignment_expression """ if len(p) == 2: p[0] = p[1] else: p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord) # K&R2 defines these as many separate rules, to encode # precedence and associativity. Why work hard ? I'll just use # the built in precedence/associativity specification feature # of PLY. (see precedence declaration above) # def p_assignment_operator(self, p): """ assignment_operator : EQUALS | XOREQUAL | TIMESEQUAL | DIVEQUAL | MODEQUAL | PLUSEQUAL | MINUSEQUAL | LSHIFTEQUAL | RSHIFTEQUAL | ANDEQUAL | OREQUAL """ p[0] = p[1] def p_constant_expression(self, p): """ constant_expression : conditional_expression """ p[0] = p[1] def p_conditional_expression(self, p): """ conditional_expression : binary_expression | binary_expression CONDOP expression COLON conditional_expression """ if len(p) == 2: p[0] = p[1] else: p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord) def p_binary_expression(self, p): """ binary_expression : cast_expression | binary_expression TIMES binary_expression | binary_expression DIVIDE binary_expression | binary_expression MOD binary_expression | binary_expression PLUS binary_expression | binary_expression MINUS binary_expression | binary_expression RSHIFT binary_expression | binary_expression LSHIFT binary_expression | binary_expression LT binary_expression | binary_expression LE binary_expression | binary_expression GE binary_expression | binary_expression GT binary_expression | binary_expression EQ binary_expression | binary_expression NE binary_expression | binary_expression AND binary_expression | binary_expression OR binary_expression | binary_expression XOR binary_expression | binary_expression LAND binary_expression | binary_expression LOR binary_expression """ if len(p) == 2: p[0] = p[1] else: p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord) def p_cast_expression_1(self, p): """ cast_expression : unary_expression """ p[0] = p[1] def p_cast_expression_2(self, p): """ cast_expression : LPAREN type_name RPAREN cast_expression """ p[0] = c_ast.Cast(p[2], p[4], self._coord(p.lineno(1))) def p_unary_expression_1(self, p): """ unary_expression : postfix_expression """ p[0] = p[1] def p_unary_expression_2(self, p): """ unary_expression : PLUSPLUS unary_expression | MINUSMINUS unary_expression | unary_operator cast_expression """ p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord) def p_unary_expression_3(self, p): """ unary_expression : SIZEOF unary_expression | SIZEOF LPAREN type_name RPAREN """ p[0] = c_ast.UnaryOp( p[1], p[2] if len(p) == 3 else p[3], self._coord(p.lineno(1))) def p_unary_operator(self, p): """ unary_operator : AND | TIMES | PLUS | MINUS | NOT | LNOT """ p[0] = p[1] def p_postfix_expression_1(self, p): """ postfix_expression : primary_expression """ p[0] = p[1] def p_postfix_expression_2(self, p): """ postfix_expression : postfix_expression LBRACKET expression RBRACKET """ p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord) def p_postfix_expression_3(self, p): """ postfix_expression : postfix_expression LPAREN argument_expression_list RPAREN | postfix_expression LPAREN RPAREN """ p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord) def p_postfix_expression_4(self, p): """ postfix_expression : postfix_expression PERIOD ID | postfix_expression PERIOD TYPEID | postfix_expression ARROW ID | postfix_expression ARROW TYPEID """ field = c_ast.ID(p[3], self._coord(p.lineno(3))) p[0] = c_ast.StructRef(p[1], p[2], field, p[1].coord) def p_postfix_expression_5(self, p): """ postfix_expression : postfix_expression PLUSPLUS | postfix_expression MINUSMINUS """ p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord) def p_postfix_expression_6(self, p): """ postfix_expression : LPAREN type_name RPAREN brace_open initializer_list brace_close | LPAREN type_name RPAREN brace_open initializer_list COMMA brace_close """ p[0] = c_ast.CompoundLiteral(p[2], p[5]) def p_primary_expression_1(self, p): """ primary_expression : identifier """ p[0] = p[1] def p_primary_expression_2(self, p): """ primary_expression : constant """ p[0] = p[1] def p_primary_expression_3(self, p): """ primary_expression : unified_string_literal | unified_wstring_literal """ p[0] = p[1] def p_primary_expression_4(self, p): """ primary_expression : LPAREN expression RPAREN """ p[0] = p[2] def p_primary_expression_5(self, p): """ primary_expression : OFFSETOF LPAREN type_name COMMA identifier RPAREN """ coord = self._coord(p.lineno(1)) p[0] = c_ast.FuncCall(c_ast.ID(p[1], coord), c_ast.ExprList([p[3], p[5]], coord), coord) def p_argument_expression_list(self, p): """ argument_expression_list : assignment_expression | argument_expression_list COMMA assignment_expression """ if len(p) == 2: # single expr p[0] = c_ast.ExprList([p[1]], p[1].coord) else: p[1].exprs.append(p[3]) p[0] = p[1] def p_identifier(self, p): """ identifier : ID """ p[0] = c_ast.ID(p[1], self._coord(p.lineno(1))) def p_constant_1(self, p): """ constant : INT_CONST_DEC | INT_CONST_OCT | INT_CONST_HEX | INT_CONST_BIN """ p[0] = c_ast.Constant( 'int', p[1], self._coord(p.lineno(1))) def p_constant_2(self, p): """ constant : FLOAT_CONST | HEX_FLOAT_CONST """ p[0] = c_ast.Constant( 'float', p[1], self._coord(p.lineno(1))) def p_constant_3(self, p): """ constant : CHAR_CONST | WCHAR_CONST """ p[0] = c_ast.Constant( 'char', p[1], self._coord(p.lineno(1))) # The "unified" string and wstring literal rules are for supporting # concatenation of adjacent string literals. # I.e. "hello " "world" is seen by the C compiler as a single string literal # with the value "hello world" # def p_unified_string_literal(self, p): """ unified_string_literal : STRING_LITERAL | unified_string_literal STRING_LITERAL """ if len(p) == 2: # single literal p[0] = c_ast.Constant( 'string', p[1], self._coord(p.lineno(1))) else: p[1].value = p[1].value[:-1] + p[2][1:] p[0] = p[1] def p_unified_wstring_literal(self, p): """ unified_wstring_literal : WSTRING_LITERAL | unified_wstring_literal WSTRING_LITERAL """ if len(p) == 2: # single literal p[0] = c_ast.Constant( 'string', p[1], self._coord(p.lineno(1))) else: p[1].value = p[1].value.rstrip()[:-1] + p[2][2:] p[0] = p[1] def p_brace_open(self, p): """ brace_open : LBRACE """ p[0] = p[1] def p_brace_close(self, p): """ brace_close : RBRACE """ p[0] = p[1] def p_empty(self, p): 'empty : ' p[0] = None def p_error(self, p): # If error recovery is added here in the future, make sure # _get_yacc_lookahead_token still works! # if p: self._parse_error( 'before: %s' % p.value, self._coord(lineno=p.lineno, column=self.clex.find_tok_column(p))) else: self._parse_error('At end of input', '') #------------------------------------------------------------------------------ if __name__ == "__main__": import pprint import time, sys #t1 = time.time() #parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False) #sys.write(time.time() - t1) #buf = ''' #int (*k)(int); #''' ## set debuglevel to 2 for debugging #t = parser.parse(buf, 'x.c', debuglevel=0) #t.show(showcoord=True)
08a65bb7db851c3827f50ea795ce9e58ad45c818
7eebbfaee45fdc57c4fc6ba32c87c35be1e62b14
/airbyte-integrations/connectors/source-facebook-pages/source_facebook_pages/streams.py
717fb1c76800fc295cff19b40b475069c0e2914a
[ "MIT", "Elastic-2.0" ]
permissive
Velocity-Engineering/airbyte
b6e1fcead5b9fd7c74d50b9f27118654604dc8e0
802a8184cdd11c1eb905a54ed07c8732b0c0b807
refs/heads/master
2023-07-31T15:16:27.644737
2021-09-28T08:43:51
2021-09-28T08:43:51
370,730,633
0
1
MIT
2021-06-08T05:58:44
2021-05-25T14:55:43
Java
UTF-8
Python
false
false
4,651
py
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # from abc import ABC from typing import Any, Iterable, Mapping, MutableMapping, Optional import requests from airbyte_cdk.sources.streams.http import HttpStream from source_facebook_pages.metrics import PAGE_FIELDS, PAGE_METRICS, POST_FIELDS, POST_METRICS class FacebookPagesStream(HttpStream, ABC): url_base = "https://graph.facebook.com/v11.0/" primary_key = "id" data_field = "data" def __init__( self, access_token: str = None, page_id: str = None, **kwargs, ): super().__init__(**kwargs) self._access_token = access_token self._page_id = page_id @property def path_param(self): return self.name[:-1] def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: data = response.json() if not data.get("data") or not data.get("paging"): return {} return { "limit": 100, "after": data.get("paging", {}).get("cursors", {}).get("after"), } def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, any] = None, next_page_token: Mapping[str, Any] = None, ) -> MutableMapping[str, Any]: next_page_token = next_page_token or {} params = {"access_token": self._access_token, **next_page_token} return params def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: if not self.data_field: yield response.json() records = response.json().get(self.data_field, []) for record in records: yield record class Page(FacebookPagesStream): """ API docs: https://developers.facebook.com/docs/graph-api/reference/page/, """ data_field = "" def path(self, **kwargs) -> str: return self._page_id def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: return None def request_params(self, **kwargs) -> MutableMapping[str, Any]: params = super().request_params(**kwargs) # we have to define which fields will return from Facebook API # because FB API doesn't provide opportunity to get fields dynamically without delays # so in PAGE_FIELDS we define fields that user can get from API params["fields"] = PAGE_FIELDS return params class Post(FacebookPagesStream): """ https://developers.facebook.com/docs/graph-api/reference/v11.0/page/feed, """ def path(self, **kwargs) -> str: return f"{self._page_id}/posts" def request_params(self, **kwargs) -> MutableMapping[str, Any]: params = super().request_params(**kwargs) params["fields"] = POST_FIELDS return params class PageInsights(FacebookPagesStream): """ API docs: https://developers.facebook.com/docs/graph-api/reference/page/insights/, """ def path(self, **kwargs) -> str: return f"{self._page_id}/insights" def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: return None def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, any] = None, next_page_token: Mapping[str, Any] = None, ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) params["metric"] = ",".join(PAGE_METRICS) return params class PostInsights(FacebookPagesStream): """ API docs: https://developers.facebook.com/docs/graph-api/reference/post/insights/, """ def path(self, **kwargs) -> str: return f"{self._page_id}/posts" def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, any] = None, next_page_token: Mapping[str, Any] = None, ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) params["fields"] = f'insights.metric({",".join(POST_METRICS)})' return params def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: # unique case so we override this method records = response.json().get(self.data_field) or [] for insights in records: if insights.get("insights"): data = insights.get("insights").get("data") for insight in data: yield insight else: yield insights
3d1e771da9ec0f32bfd297a1b19794e9054adce4
1825283527f5a479204708feeaf55f4ab6d1290b
/leetcode/python/45/sol.py
3db6f97188dd189aef4c4caf07b43524d9f7f299
[]
no_license
frankieliu/problems
b82c61d3328ffcc1da2cbc95712563355f5d44b5
911c6622448a4be041834bcab25051dd0f9209b2
refs/heads/master
2023-01-06T14:41:58.044871
2019-11-24T03:47:22
2019-11-24T03:47:22
115,065,956
1
0
null
2023-01-04T07:25:52
2017-12-22T02:06:57
HTML
UTF-8
Python
false
false
2,156
py
10-lines C++ (16ms) / Python BFS Solutions with Explanations https://leetcode.com/problems/jump-game-ii/discuss/18019 * Lang: python3 * Author: jianchao-li * Votes: 71 This problem has a nice BFS structure. Let's illustrate it using the example `nums = [2, 3, 1, 1, 4]` in the problem statement. We are initially at position `0`. Then we can move at most `nums[0]` steps from it. So, after one move, we may reach `nums[1] = 3` or `nums[2] = 1`. So these nodes are reachable in `1` move. From these nodes, we can further move to `nums[3] = 1` and `nums[4] = 4`. Now you can see that the target `nums[4] = 4` is reachable in `2` moves. Putting these into codes, we keep two pointers `start` and `end` that record the current range of the starting nodes. Each time after we make a move, update `start` to be `end + 1` and `end` to be the farthest index that can be reached in `1` move from the current `[start, end]`. To get an accepted solution, it is important to handle all the edge cases. And the following codes handle all of them in a unified way without using the unclean `if` statements :-) ---------- **C++** class Solution { public: int jump(vector<int>& nums) { int n = nums.size(), step = 0, start = 0, end = 0; while (end < n - 1) { step++; int maxend = end + 1; for (int i = start; i <= end; i++) { if (i + nums[i] >= n - 1) return step; maxend = max(maxend, i + nums[i]); } start = end + 1; end = maxend; } return step; } }; ---------- **Python** class Solution: # @param {integer[]} nums # @return {integer} def jump(self, nums): n, start, end, step = len(nums), 0, 0, 0 while end < n - 1: step += 1 maxend = end + 1 for i in range(start, end + 1): if i + nums[i] >= n - 1: return step maxend = max(maxend, i + nums[i]) start, end = end + 1, maxend return step
7dd79a81c2691091fdf63dedb45319a7eae1a591
0fb12be061ab050904ceea99f6a938985a0d8acf
/report_mako2pdf/lib/xhtml2pdf/reportlab_paragraph.py
eba9e9aa506f6c2e6a82f44c220787a1075fbb14
[]
no_license
libermatos/Openerp_6.1
d17fbff1f35948e0c4176e2ed34ac5d7f8453834
510df13df7ea651c055b408ad66c580ca29d4ad7
refs/heads/master
2023-06-19T00:24:36.002581
2021-07-07T01:17:20
2021-07-07T01:17:20
383,574,889
0
0
null
null
null
null
UTF-8
Python
false
false
71,161
py
# -*- coding: utf-8 -*- # Copyright ReportLab Europe Ltd. 2000-2008 # see license.txt for license details # history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/platypus/paragraph.py # Modifications by Dirk Holtwick, 2008 from string import join, whitespace from operator import truth from reportlab.pdfbase.pdfmetrics import stringWidth, getAscentDescent from reportlab.platypus.paraparser import ParaParser from reportlab.platypus.flowables import Flowable from reportlab.lib.colors import Color from reportlab.lib.enums import TA_LEFT, TA_RIGHT, TA_CENTER, TA_JUSTIFY from reportlab.lib.textsplit import ALL_CANNOT_START from copy import deepcopy from reportlab.lib.abag import ABag import re PARAGRAPH_DEBUG = False LEADING_FACTOR = 1.0 _wsc_re_split = re.compile('[%s]+' % re.escape(''.join(( u'\u0009', # HORIZONTAL TABULATION u'\u000A', # LINE FEED u'\u000B', # VERTICAL TABULATION u'\u000C', # FORM FEED u'\u000D', # CARRIAGE RETURN u'\u001C', # FILE SEPARATOR u'\u001D', # GROUP SEPARATOR u'\u001E', # RECORD SEPARATOR u'\u001F', # UNIT SEPARATOR u'\u0020', # SPACE u'\u0085', # NEXT LINE #u'\u00A0', # NO-BREAK SPACE u'\u1680', # OGHAM SPACE MARK u'\u2000', # EN QUAD u'\u2001', # EM QUAD u'\u2002', # EN SPACE u'\u2003', # EM SPACE u'\u2004', # THREE-PER-EM SPACE u'\u2005', # FOUR-PER-EM SPACE u'\u2006', # SIX-PER-EM SPACE u'\u2007', # FIGURE SPACE u'\u2008', # PUNCTUATION SPACE u'\u2009', # THIN SPACE u'\u200A', # HAIR SPACE u'\u200B', # ZERO WIDTH SPACE u'\u2028', # LINE SEPARATOR u'\u2029', # PARAGRAPH SEPARATOR u'\u202F', # NARROW NO-BREAK SPACE u'\u205F', # MEDIUM MATHEMATICAL SPACE u'\u3000', # IDEOGRAPHIC SPACE )))).split def split(text, delim=None): if type(text) is str: text = text.decode('utf8') if type(delim) is str: delim = delim.decode('utf8') elif delim is None and u'\xa0' in text: return [uword.encode('utf8') for uword in _wsc_re_split(text)] return [uword.encode('utf8') for uword in text.split(delim)] def strip(text): if type(text) is str: text = text.decode('utf8') return text.strip().encode('utf8') class ParaLines(ABag): """ class ParaLines contains the broken into lines representation of Paragraphs kind=0 Simple fontName, fontSize, textColor apply to whole Paragraph lines [(extraSpace1,words1),....,(extraspaceN,wordsN)] kind==1 Complex lines [FragLine1,...,FragLineN] """ class FragLine(ABag): """ class FragLine contains a styled line (ie a line with more than one style):: extraSpace unused space for justification only wordCount 1+spaces in line for justification purposes words [ParaFrags] style text lumps to be concatenated together fontSize maximum fontSize seen on the line; not used at present, but could be used for line spacing. """ #our one and only parser # XXXXX if the parser has any internal state using only one is probably a BAD idea! _parser = ParaParser() def _lineClean(L): return join(filter(truth, split(strip(L)))) def cleanBlockQuotedText(text, joiner=' '): """This is an internal utility which takes triple- quoted text form within the document and returns (hopefully) the paragraph the user intended originally.""" L = filter(truth, map(_lineClean, split(text, '\n'))) return join(L, joiner) def setXPos(tx, dx): if dx > 1e-6 or dx < -1e-6: tx.setXPos(dx) def _leftDrawParaLine(tx, offset, extraspace, words, last=0): setXPos(tx, offset) tx._textOut(join(words), 1) setXPos(tx, -offset) return offset def _centerDrawParaLine(tx, offset, extraspace, words, last=0): m = offset + 0.5 * extraspace setXPos(tx, m) tx._textOut(join(words), 1) setXPos(tx, -m) return m def _rightDrawParaLine(tx, offset, extraspace, words, last=0): m = offset + extraspace setXPos(tx, m) tx._textOut(join(words), 1) setXPos(tx, -m) return m def _justifyDrawParaLine(tx, offset, extraspace, words, last=0): setXPos(tx, offset) text = join(words) if last: #last one, left align tx._textOut(text, 1) else: nSpaces = len(words) - 1 if nSpaces: tx.setWordSpace(extraspace / float(nSpaces)) tx._textOut(text, 1) tx.setWordSpace(0) else: tx._textOut(text, 1) setXPos(tx, -offset) return offset def imgVRange(h, va, fontSize): """ return bottom,top offsets relative to baseline(0) """ if va == 'baseline': iyo = 0 elif va in ('text-top', 'top'): iyo = fontSize - h elif va == 'middle': iyo = fontSize - (1.2 * fontSize + h) * 0.5 elif va in ('text-bottom', 'bottom'): iyo = fontSize - 1.2 * fontSize elif va == 'super': iyo = 0.5 * fontSize elif va == 'sub': iyo = -0.5 * fontSize elif hasattr(va, 'normalizedValue'): iyo = va.normalizedValue(fontSize) else: iyo = va return iyo, iyo + h _56 = 5. / 6 _16 = 1. / 6 def _putFragLine(cur_x, tx, line): xs = tx.XtraState cur_y = xs.cur_y x0 = tx._x0 autoLeading = xs.autoLeading leading = xs.leading cur_x += xs.leftIndent dal = autoLeading in ('min', 'max') if dal: if autoLeading == 'max': ascent = max(_56 * leading, line.ascent) descent = max(_16 * leading, -line.descent) else: ascent = line.ascent descent = -line.descent leading = ascent + descent if tx._leading != leading: tx.setLeading(leading) if dal: olb = tx._olb if olb is not None: xcy = olb - ascent if tx._oleading != leading: cur_y += leading - tx._oleading if abs(xcy - cur_y) > 1e-8: cur_y = xcy tx.setTextOrigin(x0, cur_y) xs.cur_y = cur_y tx._olb = cur_y - descent tx._oleading = leading # Letter spacing if xs.style.letterSpacing != 'normal': tx.setCharSpace(int(xs.style.letterSpacing)) ws = getattr(tx, '_wordSpace', 0) nSpaces = 0 words = line.words for f in words: if hasattr(f, 'cbDefn'): cbDefn = f.cbDefn kind = cbDefn.kind if kind == 'img': #draw image cbDefn,cur_y,cur_x w = cbDefn.width h = cbDefn.height txfs = tx._fontsize if txfs is None: txfs = xs.style.fontSize iy0, iy1 = imgVRange(h, cbDefn.valign, txfs) cur_x_s = cur_x + nSpaces * ws tx._canvas.drawImage(cbDefn.image.getImage(), cur_x_s, cur_y + iy0, w, h, mask='auto') cur_x += w cur_x_s += w setXPos(tx, cur_x_s - tx._x0) elif kind == 'barcode': barcode = cbDefn.barcode w = cbDefn.width h = cbDefn.height txfs = tx._fontsize if txfs is None: txfs = xs.style.fontSize iy0, iy1 = imgVRange(h, cbDefn.valign, txfs) cur_x_s = cur_x + nSpaces * ws barcode.draw(canvas=tx._canvas, xoffset=cur_x_s) cur_x += w cur_x_s += w setXPos(tx, cur_x_s - tx._x0) else: name = cbDefn.name if kind == 'anchor': tx._canvas.bookmarkHorizontal(name, cur_x, cur_y + leading) else: func = getattr(tx._canvas, name, None) if not func: raise AttributeError("Missing %s callback attribute '%s'" % (kind, name)) func(tx._canvas, kind, cbDefn.label) if f is words[-1]: if not tx._fontname: tx.setFont(xs.style.fontName, xs.style.fontSize) tx._textOut('', 1) elif kind == 'img': tx._textOut('', 1) else: cur_x_s = cur_x + nSpaces * ws if (tx._fontname, tx._fontsize) != (f.fontName, f.fontSize): tx._setFont(f.fontName, f.fontSize) if xs.textColor != f.textColor: xs.textColor = f.textColor tx.setFillColor(f.textColor) if xs.rise != f.rise: xs.rise = f.rise tx.setRise(f.rise) text = f.text tx._textOut(text, f is words[-1]) # cheap textOut # XXX Modified for XHTML2PDF # Background colors (done like underline) if hasattr(f, "backColor"): if xs.backgroundColor != f.backColor or xs.backgroundFontSize != f.fontSize: if xs.backgroundColor is not None: xs.backgrounds.append((xs.background_x, cur_x_s, xs.backgroundColor, xs.backgroundFontSize)) xs.background_x = cur_x_s xs.backgroundColor = f.backColor xs.backgroundFontSize = f.fontSize # Underline if not xs.underline and f.underline: xs.underline = 1 xs.underline_x = cur_x_s xs.underlineColor = f.textColor elif xs.underline: if not f.underline: xs.underline = 0 xs.underlines.append((xs.underline_x, cur_x_s, xs.underlineColor)) xs.underlineColor = None elif xs.textColor != xs.underlineColor: xs.underlines.append((xs.underline_x, cur_x_s, xs.underlineColor)) xs.underlineColor = xs.textColor xs.underline_x = cur_x_s # Strike if not xs.strike and f.strike: xs.strike = 1 xs.strike_x = cur_x_s xs.strikeColor = f.textColor # XXX Modified for XHTML2PDF xs.strikeFontSize = f.fontSize elif xs.strike: if not f.strike: xs.strike = 0 # XXX Modified for XHTML2PDF xs.strikes.append((xs.strike_x, cur_x_s, xs.strikeColor, xs.strikeFontSize)) xs.strikeColor = None xs.strikeFontSize = None elif xs.textColor != xs.strikeColor: xs.strikes.append((xs.strike_x, cur_x_s, xs.strikeColor, xs.strikeFontSize)) xs.strikeColor = xs.textColor xs.strikeFontSize = f.fontSize xs.strike_x = cur_x_s if f.link and not xs.link: if not xs.link: xs.link = f.link xs.link_x = cur_x_s xs.linkColor = xs.textColor elif xs.link: if not f.link: xs.links.append((xs.link_x, cur_x_s, xs.link, xs.linkColor)) xs.link = None xs.linkColor = None elif f.link != xs.link or xs.textColor != xs.linkColor: xs.links.append((xs.link_x, cur_x_s, xs.link, xs.linkColor)) xs.link = f.link xs.link_x = cur_x_s xs.linkColor = xs.textColor txtlen = tx._canvas.stringWidth(text, tx._fontname, tx._fontsize) cur_x += txtlen nSpaces += text.count(' ') cur_x_s = cur_x + (nSpaces - 1) * ws # XXX Modified for XHTML2PDF # Underline if xs.underline: xs.underlines.append((xs.underline_x, cur_x_s, xs.underlineColor)) # XXX Modified for XHTML2PDF # Backcolor if hasattr(f, "backColor"): if xs.backgroundColor is not None: xs.backgrounds.append((xs.background_x, cur_x_s, xs.backgroundColor, xs.backgroundFontSize)) # XXX Modified for XHTML2PDF # Strike if xs.strike: xs.strikes.append((xs.strike_x, cur_x_s, xs.strikeColor, xs.strikeFontSize)) if xs.link: xs.links.append((xs.link_x, cur_x_s, xs.link, xs.linkColor)) if tx._x0 != x0: setXPos(tx, x0 - tx._x0) def _leftDrawParaLineX( tx, offset, line, last=0): setXPos(tx, offset) _putFragLine(offset, tx, line) setXPos(tx, -offset) def _centerDrawParaLineX( tx, offset, line, last=0): m = offset + 0.5 * line.extraSpace setXPos(tx, m) _putFragLine(m, tx, line) setXPos(tx, -m) def _rightDrawParaLineX( tx, offset, line, last=0): m = offset + line.extraSpace setXPos(tx, m) _putFragLine(m, tx, line) setXPos(tx, -m) def _justifyDrawParaLineX( tx, offset, line, last=0): setXPos(tx, offset) extraSpace = line.extraSpace nSpaces = line.wordCount - 1 if last or not nSpaces or abs(extraSpace) <= 1e-8 or line.lineBreak: _putFragLine(offset, tx, line) # no space modification else: tx.setWordSpace(extraSpace / float(nSpaces)) _putFragLine(offset, tx, line) tx.setWordSpace(0) setXPos(tx, -offset) def _sameFrag(f, g): """ returns 1 if two ParaFrags map out the same """ if (hasattr(f, 'cbDefn') or hasattr(g, 'cbDefn') or hasattr(f, 'lineBreak') or hasattr(g, 'lineBreak')): return 0 for a in ('fontName', 'fontSize', 'textColor', 'backColor', 'rise', 'underline', 'strike', 'link'): if getattr(f, a, None) != getattr(g, a, None): return 0 return 1 def _getFragWords(frags): """ given a Parafrag list return a list of fragwords [[size, (f00,w00), ..., (f0n,w0n)],....,[size, (fm0,wm0), ..., (f0n,wmn)]] each pair f,w represents a style and some string each sublist represents a word """ R = [] W = [] n = 0 hangingStrip = False for f in frags: text = f.text # of paragraphs if text != '': if hangingStrip: hangingStrip = False text = text.lstrip() S = split(text) if S == []: S = [''] if W != [] and text[0] in whitespace: W.insert(0, n) R.append(W) W = [] n = 0 for w in S[:-1]: W.append((f, w)) n += stringWidth(w, f.fontName, f.fontSize) W.insert(0, n) R.append(W) W = [] n = 0 w = S[-1] W.append((f, w)) n += stringWidth(w, f.fontName, f.fontSize) if text and text[-1] in whitespace: W.insert(0, n) R.append(W) W = [] n = 0 elif hasattr(f, 'cbDefn'): w = getattr(f.cbDefn, 'width', 0) if w: if W != []: W.insert(0, n) R.append(W) W = [] n = 0 R.append([w, (f, '')]) else: W.append((f, '')) elif hasattr(f, 'lineBreak'): #pass the frag through. The line breaker will scan for it. if W != []: W.insert(0, n) R.append(W) W = [] n = 0 R.append([0, (f, '')]) hangingStrip = True if W != []: W.insert(0, n) R.append(W) return R def _split_blParaSimple(blPara, start, stop): f = blPara.clone() for a in ('lines', 'kind', 'text'): if hasattr(f, a): delattr(f, a) f.words = [] for l in blPara.lines[start:stop]: for w in l[1]: f.words.append(w) return [f] def _split_blParaHard(blPara, start, stop): f = [] lines = blPara.lines[start:stop] for l in lines: for w in l.words: f.append(w) if l is not lines[-1]: i = len(f) - 1 while i >= 0 and hasattr(f[i], 'cbDefn') and not getattr(f[i].cbDefn, 'width', 0): i -= 1 if i >= 0: g = f[i] if not g.text: g.text = ' ' elif g.text[-1] != ' ': g.text += ' ' return f def _drawBullet(canvas, offset, cur_y, bulletText, style): """ draw a bullet text could be a simple string or a frag list """ tx2 = canvas.beginText(style.bulletIndent, cur_y + getattr(style, "bulletOffsetY", 0)) tx2.setFont(style.bulletFontName, style.bulletFontSize) tx2.setFillColor(hasattr(style, 'bulletColor') and style.bulletColor or style.textColor) if isinstance(bulletText, basestring): tx2.textOut(bulletText) else: for f in bulletText: if hasattr(f, "image"): image = f.image width = image.drawWidth height = image.drawHeight gap = style.bulletFontSize * 0.25 img = image.getImage() # print style.bulletIndent, offset, width canvas.drawImage( img, style.leftIndent - width - gap, cur_y + getattr(style, "bulletOffsetY", 0), width, height) else: tx2.setFont(f.fontName, f.fontSize) tx2.setFillColor(f.textColor) tx2.textOut(f.text) canvas.drawText(tx2) #AR making definition lists a bit less ugly #bulletEnd = tx2.getX() bulletEnd = tx2.getX() + style.bulletFontSize * 0.6 offset = max(offset, bulletEnd - style.leftIndent) return offset def _handleBulletWidth(bulletText, style, maxWidths): """ work out bullet width and adjust maxWidths[0] if neccessary """ if bulletText: if isinstance(bulletText, basestring): bulletWidth = stringWidth(bulletText, style.bulletFontName, style.bulletFontSize) else: #it's a list of fragments bulletWidth = 0 for f in bulletText: bulletWidth = bulletWidth + stringWidth(f.text, f.fontName, f.fontSize) bulletRight = style.bulletIndent + bulletWidth + 0.6 * style.bulletFontSize indent = style.leftIndent + style.firstLineIndent if bulletRight > indent: #..then it overruns, and we have less space available on line 1 maxWidths[0] -= (bulletRight - indent) def splitLines0(frags, widths): """ given a list of ParaFrags we return a list of ParaLines each ParaLine has 1) ExtraSpace 2) blankCount 3) [textDefns....] each text definition is a (ParaFrag, start, limit) triplet """ #initialise the algorithm lines = [] lineNum = 0 maxW = widths[lineNum] i = -1 l = len(frags) lim = start = 0 while 1: #find a non whitespace character while i < l: while start < lim and text[start] == ' ': start += 1 if start == lim: i += 1 if i == l: break start = 0 f = frags[i] text = f.text lim = len(text) else: break # we found one if start == lim: break # if we didn't find one we are done #start of a line g = (None, None, None) line = [] cLen = 0 nSpaces = 0 while cLen < maxW: j = text.find(' ', start) if j < 0: j == lim w = stringWidth(text[start:j], f.fontName, f.fontSize) cLen += w if cLen > maxW and line != []: cLen = cLen - w #this is the end of the line while g.text[lim] == ' ': lim -= 1 nSpaces -= 1 break if j < 0: j = lim if g[0] is f: g[2] = j #extend else: g = (f, start, j) line.append(g) if j == lim: i += 1 def _do_under_line(i, t_off, ws, tx, lm=-0.125): y = tx.XtraState.cur_y - i * tx.XtraState.style.leading + lm * tx.XtraState.f.fontSize textlen = tx._canvas.stringWidth(join(tx.XtraState.lines[i][1]), tx._fontname, tx._fontsize) tx._canvas.line(t_off, y, t_off + textlen + ws, y) _scheme_re = re.compile('^[a-zA-Z][-+a-zA-Z0-9]+$') def _doLink(tx, link, rect): if isinstance(link, unicode): link = link.encode('utf8') parts = link.split(':', 1) scheme = len(parts) == 2 and parts[0].lower() or '' if _scheme_re.match(scheme) and scheme != 'document': kind = scheme.lower() == 'pdf' and 'GoToR' or 'URI' if kind == 'GoToR': link = parts[1] tx._canvas.linkURL(link, rect, relative=1, kind=kind) else: if link[0] == '#': link = link[1:] scheme = '' tx._canvas.linkRect("", scheme != 'document' and link or parts[1], rect, relative=1) def _do_link_line(i, t_off, ws, tx): xs = tx.XtraState leading = xs.style.leading y = xs.cur_y - i * leading - xs.f.fontSize / 8.0 # 8.0 factor copied from para.py text = join(xs.lines[i][1]) textlen = tx._canvas.stringWidth(text, tx._fontname, tx._fontsize) _doLink(tx, xs.link, (t_off, y, t_off + textlen + ws, y + leading)) # XXX Modified for XHTML2PDF def _do_post_text(tx): """ Try to find out what the variables mean: tx A structure containing more informations about paragraph ??? leading Height of lines ff 1/8 of the font size y0 The "baseline" postion ??? y 1/8 below the baseline """ xs = tx.XtraState leading = xs.style.leading autoLeading = xs.autoLeading f = xs.f if autoLeading == 'max': # leading = max(leading, f.fontSize) leading = max(leading, LEADING_FACTOR * f.fontSize) elif autoLeading == 'min': leading = LEADING_FACTOR * f.fontSize ff = 0.125 * f.fontSize y0 = xs.cur_y y = y0 - ff # Background for x1, x2, c, fs in xs.backgrounds: inlineFF = fs * 0.125 gap = inlineFF * 1.25 tx._canvas.setFillColor(c) tx._canvas.rect(x1, y - gap, x2 - x1, fs + 1, fill=1, stroke=0) xs.backgrounds = [] xs.background = 0 xs.backgroundColor = None xs.backgroundFontSize = None # Underline yUnderline = y0 - 1.5 * ff tx._canvas.setLineWidth(ff * 0.75) csc = None for x1, x2, c in xs.underlines: if c != csc: tx._canvas.setStrokeColor(c) csc = c tx._canvas.line(x1, yUnderline, x2, yUnderline) xs.underlines = [] xs.underline = 0 xs.underlineColor = None # Strike for x1, x2, c, fs in xs.strikes: inlineFF = fs * 0.125 ys = y0 + 2 * inlineFF if c != csc: tx._canvas.setStrokeColor(c) csc = c tx._canvas.setLineWidth(inlineFF * 0.75) tx._canvas.line(x1, ys, x2, ys) xs.strikes = [] xs.strike = 0 xs.strikeColor = None yl = y + leading for x1, x2, link, c in xs.links: # No automatic underlining for links, never! _doLink(tx, link, (x1, y, x2, yl)) xs.links = [] xs.link = None xs.linkColor = None xs.cur_y -= leading def textTransformFrags(frags, style): tt = style.textTransform if tt: tt = tt.lower() if tt == 'lowercase': tt = unicode.lower elif tt == 'uppercase': tt = unicode.upper elif tt == 'capitalize': tt = unicode.title elif tt == 'none': return else: raise ValueError('ParaStyle.textTransform value %r is invalid' % style.textTransform) n = len(frags) if n == 1: #single fragment the easy case frags[0].text = tt(frags[0].text.decode('utf8')).encode('utf8') elif tt is unicode.title: pb = True for f in frags: t = f.text if not t: continue u = t.decode('utf8') if u.startswith(u' ') or pb: u = tt(u) else: i = u.find(u' ') if i >= 0: u = u[:i] + tt(u[i:]) pb = u.endswith(u' ') f.text = u.encode('utf8') else: for f in frags: t = f.text if not t: continue f.text = tt(t.decode('utf8')).encode('utf8') class cjkU(unicode): """ simple class to hold the frag corresponding to a str """ def __new__(cls, value, frag, encoding): self = unicode.__new__(cls, value) self._frag = frag if hasattr(frag, 'cbDefn'): w = getattr(frag.cbDefn, 'width', 0) self._width = w else: self._width = stringWidth(value, frag.fontName, frag.fontSize) return self frag = property(lambda self: self._frag) width = property(lambda self: self._width) def makeCJKParaLine(U, extraSpace, calcBounds): words = [] CW = [] f0 = FragLine() maxSize = maxAscent = minDescent = 0 for u in U: f = u.frag fontSize = f.fontSize if calcBounds: cbDefn = getattr(f, 'cbDefn', None) if getattr(cbDefn, 'width', 0): descent, ascent = imgVRange(cbDefn.height, cbDefn.valign, fontSize) else: ascent, descent = getAscentDescent(f.fontName, fontSize) else: ascent, descent = getAscentDescent(f.fontName, fontSize) maxSize = max(maxSize, fontSize) maxAscent = max(maxAscent, ascent) minDescent = min(minDescent, descent) if not _sameFrag(f0, f): f0 = f0.clone() f0.text = u''.join(CW) words.append(f0) CW = [] f0 = f CW.append(u) if CW: f0 = f0.clone() f0.text = u''.join(CW) words.append(f0) return FragLine(kind=1, extraSpace=extraSpace, wordCount=1, words=words[1:], fontSize=maxSize, ascent=maxAscent, descent=minDescent) def cjkFragSplit(frags, maxWidths, calcBounds, encoding='utf8'): """ This attempts to be wordSplit for frags using the dumb algorithm """ from reportlab.rl_config import _FUZZ U = [] # get a list of single glyphs with their widths etc etc for f in frags: text = f.text if not isinstance(text, unicode): text = text.decode(encoding) if text: U.extend([cjkU(t, f, encoding) for t in text]) else: U.append(cjkU(text, f, encoding)) lines = [] widthUsed = lineStartPos = 0 maxWidth = maxWidths[0] for i, u in enumerate(U): w = u.width widthUsed += w lineBreak = hasattr(u.frag, 'lineBreak') endLine = (widthUsed > maxWidth + _FUZZ and widthUsed > 0) or lineBreak if endLine: if lineBreak: continue extraSpace = maxWidth - widthUsed + w #This is the most important of the Japanese typography rules. #if next character cannot start a line, wrap it up to this line so it hangs #in the right margin. We won't do two or more though - that's unlikely and #would result in growing ugliness. nextChar = U[i] if nextChar in ALL_CANNOT_START: extraSpace -= w i += 1 lines.append(makeCJKParaLine(U[lineStartPos:i], extraSpace, calcBounds)) try: maxWidth = maxWidths[len(lines)] except IndexError: maxWidth = maxWidths[-1] # use the last one lineStartPos = i widthUsed = w i -= 1 #any characters left? if widthUsed > 0: lines.append(makeCJKParaLine(U[lineStartPos:], maxWidth - widthUsed, calcBounds)) return ParaLines(kind=1, lines=lines) class Paragraph(Flowable): """ Paragraph(text, style, bulletText=None, caseSensitive=1) text a string of stuff to go into the paragraph. style is a style definition as in reportlab.lib.styles. bulletText is an optional bullet defintion. caseSensitive set this to 0 if you want the markup tags and their attributes to be case-insensitive. This class is a flowable that can format a block of text into a paragraph with a given style. The paragraph Text can contain XML-like markup including the tags: <b> ... </b> - bold <i> ... </i> - italics <u> ... </u> - underline <strike> ... </strike> - strike through <super> ... </super> - superscript <sub> ... </sub> - subscript <font name=fontfamily/fontname color=colorname size=float> <onDraw name=callable label="a label"> <link>link text</link> attributes of links size/fontSize=num name/face/fontName=name fg/textColor/color=color backcolor/backColor/bgcolor=color dest/destination/target/href/link=target <a>anchor text</a> attributes of anchors fontSize=num fontName=name fg/textColor/color=color backcolor/backColor/bgcolor=color href=href <a name="anchorpoint"/> <unichar name="unicode character name"/> <unichar value="unicode code point"/> <img src="path" width="1in" height="1in" valign="bottom"/> The whole may be surrounded by <para> </para> tags The <b> and <i> tags will work for the built-in fonts (Helvetica /Times / Courier). For other fonts you need to register a family of 4 fonts using reportlab.pdfbase.pdfmetrics.registerFont; then use the addMapping function to tell the library that these 4 fonts form a family e.g. from reportlab.lib.fonts import addMapping addMapping('Vera', 0, 0, 'Vera') #normal addMapping('Vera', 0, 1, 'Vera-Italic') #italic addMapping('Vera', 1, 0, 'Vera-Bold') #bold addMapping('Vera', 1, 1, 'Vera-BoldItalic') #italic and bold It will also be able to handle any MathML specified Greek characters. """ def __init__(self, text, style, bulletText=None, frags=None, caseSensitive=1, encoding='utf8'): self.caseSensitive = caseSensitive self.encoding = encoding self._setup(text, style, bulletText, frags, cleanBlockQuotedText) def __repr__(self): n = self.__class__.__name__ L = [n + "("] keys = self.__dict__.keys() for k in keys: v = getattr(self, k) rk = repr(k) rv = repr(v) rk = " " + rk.replace("\n", "\n ") rv = " " + rk.replace("\n", "\n ") L.append(rk) L.append(rv) L.append(") #" + n) return '\n'.join(L) def _setup(self, text, style, bulletText, frags, cleaner): if frags is None: text = cleaner(text) _parser.caseSensitive = self.caseSensitive style, frags, bulletTextFrags = _parser.parse(text, style) if frags is None: raise ValueError("xml parser error (%s) in paragraph beginning\n'%s'" \ % (_parser.errors[0], text[:min(30, len(text))])) textTransformFrags(frags, style) if bulletTextFrags: bulletText = bulletTextFrags #AR hack self.text = text self.frags = frags self.style = style self.bulletText = bulletText self.debug = PARAGRAPH_DEBUG # turn this on to see a pretty one with all the margins etc. def wrap(self, availWidth, availHeight): if self.debug: print id(self), "wrap" try: print repr(self.getPlainText()[:80]) except: print "???" # work out widths array for breaking self.width = availWidth style = self.style leftIndent = style.leftIndent first_line_width = availWidth - (leftIndent + style.firstLineIndent) - style.rightIndent later_widths = availWidth - leftIndent - style.rightIndent if style.wordWrap == 'CJK': #use Asian text wrap algorithm to break characters blPara = self.breakLinesCJK([first_line_width, later_widths]) else: blPara = self.breakLines([first_line_width, later_widths]) self.blPara = blPara autoLeading = getattr(self, 'autoLeading', getattr(style, 'autoLeading', '')) leading = style.leading if blPara.kind == 1 and autoLeading not in ('', 'off'): height = 0 if autoLeading == 'max': for l in blPara.lines: height += max(l.ascent - l.descent, leading) elif autoLeading == 'min': for l in blPara.lines: height += l.ascent - l.descent else: raise ValueError('invalid autoLeading value %r' % autoLeading) else: if autoLeading == 'max': leading = max(leading, LEADING_FACTOR * style.fontSize) elif autoLeading == 'min': leading = LEADING_FACTOR * style.fontSize height = len(blPara.lines) * leading self.height = height return self.width, height def minWidth(self): """ Attempt to determine a minimum sensible width """ frags = self.frags nFrags = len(frags) if not nFrags: return 0 if nFrags == 1: f = frags[0] fS = f.fontSize fN = f.fontName words = hasattr(f, 'text') and split(f.text, ' ') or f.words func = lambda w, fS=fS, fN=fN: stringWidth(w, fN, fS) else: words = _getFragWords(frags) func = lambda x: x[0] return max(map(func, words)) def _get_split_blParaFunc(self): return self.blPara.kind == 0 and _split_blParaSimple or _split_blParaHard def split(self, availWidth, availHeight): if self.debug: print id(self), "split" if len(self.frags) <= 0: return [] #the split information is all inside self.blPara if not hasattr(self, 'blPara'): self.wrap(availWidth, availHeight) blPara = self.blPara style = self.style autoLeading = getattr(self, 'autoLeading', getattr(style, 'autoLeading', '')) leading = style.leading lines = blPara.lines if blPara.kind == 1 and autoLeading not in ('', 'off'): s = height = 0 if autoLeading == 'max': for i, l in enumerate(blPara.lines): h = max(l.ascent - l.descent, leading) n = height + h if n > availHeight + 1e-8: break height = n s = i + 1 elif autoLeading == 'min': for i, l in enumerate(blPara.lines): n = height + l.ascent - l.descent if n > availHeight + 1e-8: break height = n s = i + 1 else: raise ValueError('invalid autoLeading value %r' % autoLeading) else: l = leading if autoLeading == 'max': l = max(leading, LEADING_FACTOR * style.fontSize) elif autoLeading == 'min': l = LEADING_FACTOR * style.fontSize s = int(availHeight / l) height = s * l n = len(lines) allowWidows = getattr(self, 'allowWidows', getattr(self, 'allowWidows', 1)) allowOrphans = getattr(self, 'allowOrphans', getattr(self, 'allowOrphans', 0)) if not allowOrphans: if s <= 1: # orphan? del self.blPara return [] if n <= s: return [self] if not allowWidows: if n == s + 1: # widow? if (allowOrphans and n == 3) or n > 3: s -= 1 # give the widow some company else: del self.blPara # no room for adjustment; force the whole para onwards return [] func = self._get_split_blParaFunc() P1 = self.__class__(None, style, bulletText=self.bulletText, frags=func(blPara, 0, s)) #this is a major hack P1.blPara = ParaLines(kind=1, lines=blPara.lines[0:s], aH=availHeight, aW=availWidth) P1._JustifyLast = 1 P1._splitpara = 1 P1.height = height P1.width = availWidth if style.firstLineIndent != 0: style = deepcopy(style) style.firstLineIndent = 0 P2 = self.__class__(None, style, bulletText=None, frags=func(blPara, s, n)) for a in ('autoLeading', # possible attributes that might be directly on self. ): if hasattr(self, a): setattr(P1, a, getattr(self, a)) setattr(P2, a, getattr(self, a)) return [P1, P2] def draw(self): #call another method for historical reasons. Besides, I #suspect I will be playing with alternate drawing routines #so not doing it here makes it easier to switch. self.drawPara(self.debug) def breakLines(self, width): """ Returns a broken line structure. There are two cases A) For the simple case of a single formatting input fragment the output is A fragment specifier with - kind = 0 - fontName, fontSize, leading, textColor - lines= A list of lines Each line has two items. 1. unused width in points 2. word list B) When there is more than one input formatting fragment the output is A fragment specifier with - kind = 1 - lines= A list of fragments each having fields - extraspace (needed for justified) - fontSize - words=word list each word is itself a fragment with various settings This structure can be used to easily draw paragraphs with the various alignments. You can supply either a single width or a list of widths; the latter will have its last item repeated until necessary. A 2-element list is useful when there is a different first line indent; a longer list could be created to facilitate custom wraps around irregular objects. """ if self.debug: print id(self), "breakLines" if not isinstance(width, (tuple, list)): maxWidths = [width] else: maxWidths = width lines = [] lineno = 0 style = self.style #for bullets, work out width and ensure we wrap the right amount onto line one _handleBulletWidth(self.bulletText, style, maxWidths) maxWidth = maxWidths[0] self.height = 0 autoLeading = getattr(self, 'autoLeading', getattr(style, 'autoLeading', '')) calcBounds = autoLeading not in ('', 'off') frags = self.frags nFrags = len(frags) if nFrags == 1 and not hasattr(frags[0], 'cbDefn'): f = frags[0] fontSize = f.fontSize fontName = f.fontName ascent, descent = getAscentDescent(fontName, fontSize) words = hasattr(f, 'text') and split(f.text, ' ') or f.words spaceWidth = stringWidth(' ', fontName, fontSize, self.encoding) cLine = [] currentWidth = -spaceWidth # hack to get around extra space for word 1 for word in words: #this underscores my feeling that Unicode throughout would be easier! wordWidth = stringWidth(word, fontName, fontSize, self.encoding) newWidth = currentWidth + spaceWidth + wordWidth if newWidth <= maxWidth or not len(cLine): # fit one more on this line cLine.append(word) currentWidth = newWidth else: if currentWidth > self.width: self.width = currentWidth #end of line lines.append((maxWidth - currentWidth, cLine)) cLine = [word] currentWidth = wordWidth lineno += 1 try: maxWidth = maxWidths[lineno] except IndexError: maxWidth = maxWidths[-1] # use the last one #deal with any leftovers on the final line if cLine != []: if currentWidth > self.width: self.width = currentWidth lines.append((maxWidth - currentWidth, cLine)) return f.clone(kind=0, lines=lines, ascent=ascent, descent=descent, fontSize=fontSize) elif nFrags <= 0: return ParaLines(kind=0, fontSize=style.fontSize, fontName=style.fontName, textColor=style.textColor, ascent=style.fontSize, descent=-0.2 * style.fontSize, lines=[]) else: if hasattr(self, 'blPara') and getattr(self, '_splitpara', 0): #NB this is an utter hack that awaits the proper information #preserving splitting algorithm return self.blPara n = 0 words = [] for w in _getFragWords(frags): f = w[-1][0] fontName = f.fontName fontSize = f.fontSize spaceWidth = stringWidth(' ', fontName, fontSize) if not words: currentWidth = -spaceWidth # hack to get around extra space for word 1 maxSize = fontSize maxAscent, minDescent = getAscentDescent(fontName, fontSize) wordWidth = w[0] f = w[1][0] if wordWidth > 0: newWidth = currentWidth + spaceWidth + wordWidth else: newWidth = currentWidth #test to see if this frag is a line break. If it is we will only act on it #if the current width is non-negative or the previous thing was a deliberate lineBreak lineBreak = hasattr(f, 'lineBreak') endLine = (newWidth > maxWidth and n > 0) or lineBreak if not endLine: if lineBreak: continue #throw it away nText = w[1][1] if nText: n += 1 fontSize = f.fontSize if calcBounds: cbDefn = getattr(f, 'cbDefn', None) if getattr(cbDefn, 'width', 0): descent, ascent = imgVRange(cbDefn.height, cbDefn.valign, fontSize) else: ascent, descent = getAscentDescent(f.fontName, fontSize) else: ascent, descent = getAscentDescent(f.fontName, fontSize) maxSize = max(maxSize, fontSize) maxAscent = max(maxAscent, ascent) minDescent = min(minDescent, descent) if not words: g = f.clone() words = [g] g.text = nText elif not _sameFrag(g, f): if currentWidth > 0 and ((nText != '' and nText[0] != ' ') or hasattr(f, 'cbDefn')): if hasattr(g, 'cbDefn'): i = len(words) - 1 while i >= 0: wi = words[i] cbDefn = getattr(wi, 'cbDefn', None) if cbDefn: if not getattr(cbDefn, 'width', 0): i -= 1 continue if not wi.text.endswith(' '): wi.text += ' ' break else: if not g.text.endswith(' '): g.text += ' ' g = f.clone() words.append(g) g.text = nText else: if nText != '' and nText[0] != ' ': g.text += ' ' + nText for i in w[2:]: g = i[0].clone() g.text = i[1] words.append(g) fontSize = g.fontSize if calcBounds: cbDefn = getattr(g, 'cbDefn', None) if getattr(cbDefn, 'width', 0): descent, ascent = imgVRange(cbDefn.height, cbDefn.valign, fontSize) else: ascent, descent = getAscentDescent(g.fontName, fontSize) else: ascent, descent = getAscentDescent(g.fontName, fontSize) maxSize = max(maxSize, fontSize) maxAscent = max(maxAscent, ascent) minDescent = min(minDescent, descent) currentWidth = newWidth else: # either it won't fit, or it's a lineBreak tag if lineBreak: g = f.clone() words.append(g) if currentWidth > self.width: self.width = currentWidth #end of line lines.append(FragLine(extraSpace=maxWidth - currentWidth, wordCount=n, lineBreak=lineBreak, words=words, fontSize=maxSize, ascent=maxAscent, descent=minDescent)) #start new line lineno += 1 try: maxWidth = maxWidths[lineno] except IndexError: maxWidth = maxWidths[-1] # use the last one if lineBreak: n = 0 words = [] continue currentWidth = wordWidth n = 1 g = f.clone() maxSize = g.fontSize if calcBounds: cbDefn = getattr(g, 'cbDefn', None) if getattr(cbDefn, 'width', 0): minDescent, maxAscent = imgVRange(cbDefn.height, cbDefn.valign, maxSize) else: maxAscent, minDescent = getAscentDescent(g.fontName, maxSize) else: maxAscent, minDescent = getAscentDescent(g.fontName, maxSize) words = [g] g.text = w[1][1] for i in w[2:]: g = i[0].clone() g.text = i[1] words.append(g) fontSize = g.fontSize if calcBounds: cbDefn = getattr(g, 'cbDefn', None) if getattr(cbDefn, 'width', 0): descent, ascent = imgVRange(cbDefn.height, cbDefn.valign, fontSize) else: ascent, descent = getAscentDescent(g.fontName, fontSize) else: ascent, descent = getAscentDescent(g.fontName, fontSize) maxSize = max(maxSize, fontSize) maxAscent = max(maxAscent, ascent) minDescent = min(minDescent, descent) #deal with any leftovers on the final line if words != []: if currentWidth > self.width: self.width = currentWidth lines.append(ParaLines(extraSpace=(maxWidth - currentWidth), wordCount=n, words=words, fontSize=maxSize, ascent=maxAscent, descent=minDescent)) return ParaLines(kind=1, lines=lines) return lines def breakLinesCJK(self, width): """Initially, the dumbest possible wrapping algorithm. Cannot handle font variations.""" if self.debug: print id(self), "breakLinesCJK" if not isinstance(width, (list, tuple)): maxWidths = [width] else: maxWidths = width style = self.style #for bullets, work out width and ensure we wrap the right amount onto line one _handleBulletWidth(self.bulletText, style, maxWidths) if len(self.frags) > 1: autoLeading = getattr(self, 'autoLeading', getattr(style, 'autoLeading', '')) calcBounds = autoLeading not in ('', 'off') return cjkFragSplit(self.frags, maxWidths, calcBounds, self.encoding) elif not len(self.frags): return ParaLines(kind=0, fontSize=style.fontSize, fontName=style.fontName, textColor=style.textColor, lines=[], ascent=style.fontSize, descent=-0.2 * style.fontSize) f = self.frags[0] if 1 and hasattr(self, 'blPara') and getattr(self, '_splitpara', 0): #NB this is an utter hack that awaits the proper information #preserving splitting algorithm return f.clone(kind=0, lines=self.blPara.lines) lines = [] lineno = 0 self.height = 0 f = self.frags[0] if hasattr(f, 'text'): text = f.text else: text = ''.join(getattr(f, 'words', [])) from reportlab.lib.textsplit import wordSplit lines = wordSplit(text, maxWidths[0], f.fontName, f.fontSize) #the paragraph drawing routine assumes multiple frags per line, so we need an #extra list like this # [space, [text]] # wrappedLines = [(sp, [line]) for (sp, line) in lines] return f.clone(kind=0, lines=wrappedLines, ascent=f.fontSize, descent=-0.2 * f.fontSize) def beginText(self, x, y): return self.canv.beginText(x, y) def drawPara(self, debug=0): """Draws a paragraph according to the given style. Returns the final y position at the bottom. Not safe for paragraphs without spaces e.g. Japanese; wrapping algorithm will go infinite.""" if self.debug: print id(self), "drawPara", self.blPara.kind #stash the key facts locally for speed canvas = self.canv style = self.style blPara = self.blPara lines = blPara.lines leading = style.leading autoLeading = getattr(self, 'autoLeading', getattr(style, 'autoLeading', '')) #work out the origin for line 1 leftIndent = style.leftIndent cur_x = leftIndent if debug: bw = 0.5 bc = Color(1, 1, 0) bg = Color(0.9, 0.9, 0.9) else: bw = getattr(style, 'borderWidth', None) bc = getattr(style, 'borderColor', None) bg = style.backColor #if has a background or border, draw it if bg or (bc and bw): canvas.saveState() op = canvas.rect kwds = dict(fill=0, stroke=0) if bc and bw: canvas.setStrokeColor(bc) canvas.setLineWidth(bw) kwds['stroke'] = 1 br = getattr(style, 'borderRadius', 0) if br and not debug: op = canvas.roundRect kwds['radius'] = br if bg: canvas.setFillColor(bg) kwds['fill'] = 1 bp = getattr(style, 'borderPadding', 0) op(leftIndent - bp, -bp, self.width - (leftIndent + style.rightIndent) + 2 * bp, self.height + 2 * bp, **kwds) canvas.restoreState() nLines = len(lines) bulletText = self.bulletText if nLines > 0: _offsets = getattr(self, '_offsets', [0]) _offsets += (nLines - len(_offsets)) * [_offsets[-1]] canvas.saveState() alignment = style.alignment offset = style.firstLineIndent + _offsets[0] lim = nLines - 1 noJustifyLast = not (hasattr(self, '_JustifyLast') and self._JustifyLast) if blPara.kind == 0: if alignment == TA_LEFT: dpl = _leftDrawParaLine elif alignment == TA_CENTER: dpl = _centerDrawParaLine elif self.style.alignment == TA_RIGHT: dpl = _rightDrawParaLine elif self.style.alignment == TA_JUSTIFY: dpl = _justifyDrawParaLine f = blPara cur_y = self.height - getattr(f, 'ascent', f.fontSize) # TODO fix XPreformatted to remove this hack if bulletText: offset = _drawBullet(canvas, offset, cur_y, bulletText, style) #set up the font etc. canvas.setFillColor(f.textColor) tx = self.beginText(cur_x, cur_y) if autoLeading == 'max': leading = max(leading, LEADING_FACTOR * f.fontSize) elif autoLeading == 'min': leading = LEADING_FACTOR * f.fontSize #now the font for the rest of the paragraph tx.setFont(f.fontName, f.fontSize, leading) ws = getattr(tx, '_wordSpace', 0) t_off = dpl(tx, offset, ws, lines[0][1], noJustifyLast and nLines == 1) if f.underline or f.link or f.strike: xs = tx.XtraState = ABag() xs.cur_y = cur_y xs.f = f xs.style = style xs.lines = lines xs.underlines = [] xs.underlineColor = None # XXX Modified for XHTML2PDF xs.backgrounds = [] xs.backgroundColor = None xs.backgroundFontSize = None xs.strikes = [] xs.strikeColor = None # XXX Modified for XHTML2PDF xs.strikeFontSize = None xs.links = [] xs.link = f.link canvas.setStrokeColor(f.textColor) dx = t_off + leftIndent if dpl != _justifyDrawParaLine: ws = 0 # XXX Never underline! underline = f.underline strike = f.strike link = f.link if underline: _do_under_line(0, dx, ws, tx) if strike: _do_under_line(0, dx, ws, tx, lm=0.125) if link: _do_link_line(0, dx, ws, tx) #now the middle of the paragraph, aligned with the left margin which is our origin. for i in xrange(1, nLines): ws = lines[i][0] t_off = dpl(tx, _offsets[i], ws, lines[i][1], noJustifyLast and i == lim) if dpl != _justifyDrawParaLine: ws = 0 if underline: _do_under_line(i, t_off + leftIndent, ws, tx) if strike: _do_under_line(i, t_off + leftIndent, ws, tx, lm=0.125) if link: _do_link_line(i, t_off + leftIndent, ws, tx) else: for i in xrange(1, nLines): dpl(tx, _offsets[i], lines[i][0], lines[i][1], noJustifyLast and i == lim) else: f = lines[0] cur_y = self.height - getattr(f, 'ascent', f.fontSize) # TODO fix XPreformatted to remove this hack # default? dpl = _leftDrawParaLineX if bulletText: oo = offset offset = _drawBullet(canvas, offset, cur_y, bulletText, style) if alignment == TA_LEFT: dpl = _leftDrawParaLineX elif alignment == TA_CENTER: dpl = _centerDrawParaLineX elif self.style.alignment == TA_RIGHT: dpl = _rightDrawParaLineX elif self.style.alignment == TA_JUSTIFY: dpl = _justifyDrawParaLineX else: raise ValueError("bad align %s" % repr(alignment)) #set up the font etc. tx = self.beginText(cur_x, cur_y) xs = tx.XtraState = ABag() xs.textColor = None # XXX Modified for XHTML2PDF xs.backColor = None xs.rise = 0 xs.underline = 0 xs.underlines = [] xs.underlineColor = None # XXX Modified for XHTML2PDF xs.background = 0 xs.backgrounds = [] xs.backgroundColor = None xs.backgroundFontSize = None xs.strike = 0 xs.strikes = [] xs.strikeColor = None # XXX Modified for XHTML2PDF xs.strikeFontSize = None xs.links = [] xs.link = None xs.leading = style.leading xs.leftIndent = leftIndent tx._leading = None tx._olb = None xs.cur_y = cur_y xs.f = f xs.style = style xs.autoLeading = autoLeading tx._fontname, tx._fontsize = None, None dpl(tx, offset, lines[0], noJustifyLast and nLines == 1) _do_post_text(tx) #now the middle of the paragraph, aligned with the left margin which is our origin. for i in xrange(1, nLines): f = lines[i] dpl(tx, _offsets[i], f, noJustifyLast and i == lim) _do_post_text(tx) canvas.drawText(tx) canvas.restoreState() def getPlainText(self, identify=None): """ Convenience function for templates which want access to the raw text, without XML tags. """ frags = getattr(self, 'frags', None) if frags: plains = [] for frag in frags: if hasattr(frag, 'text'): plains.append(frag.text) return join(plains, '') elif identify: text = getattr(self, 'text', None) if text is None: text = repr(self) return text else: return '' def getActualLineWidths0(self): """ Convenience function; tells you how wide each line actually is. For justified styles, this will be the same as the wrap width; for others it might be useful for seeing if paragraphs will fit in spaces. """ assert hasattr(self, 'width'), "Cannot call this method before wrap()" if self.blPara.kind: func = lambda frag, w=self.width: w - frag.extraSpace else: func = lambda frag, w=self.width: w - frag[0] return map(func, self.blPara.lines) if __name__ == '__main__': # NORUNTESTS def dumpParagraphLines(P): print 'dumpParagraphLines(<Paragraph @ %d>)' % id(P) lines = P.blPara.lines for l, line in enumerate(lines): line = lines[l] if hasattr(line, 'words'): words = line.words else: words = line[1] nwords = len(words) print 'line%d: %d(%s)\n ' % (l, nwords, str(getattr(line, 'wordCount', 'Unknown'))), for w in xrange(nwords): print "%d:'%s'" % (w, getattr(words[w], 'text', words[w])), print def fragDump(w): R = ["'%s'" % w[1]] for a in ('fontName', 'fontSize', 'textColor', 'rise', 'underline', 'strike', 'link', 'cbDefn', 'lineBreak'): if hasattr(w[0], a): R.append('%s=%r' % (a, getattr(w[0], a))) return ', '.join(R) def dumpParagraphFrags(P): print 'dumpParagraphFrags(<Paragraph @ %d>) minWidth() = %.2f' % (id(P), P.minWidth()) frags = P.frags n = len(frags) for l in xrange(n): print "frag%d: '%s' %s" % ( l, frags[l].text, ' '.join(['%s=%s' % (k, getattr(frags[l], k)) for k in frags[l].__dict__ if k != text])) l = 0 cum = 0 for W in _getFragWords(frags): cum += W[0] print "fragword%d: cum=%3d size=%d" % (l, cum, W[0]), for w in W[1:]: print '(%s)' % fragDump(w), print l += 1 from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import cm import sys TESTS = sys.argv[1:] if TESTS == []: TESTS = ['4'] def flagged(i, TESTS=TESTS): return 'all' in TESTS or '*' in TESTS or str(i) in TESTS styleSheet = getSampleStyleSheet() B = styleSheet['BodyText'] style = ParagraphStyle("discussiontext", parent=B) style.fontName = 'Helvetica' if flagged(1): text = '''The <font name=courier color=green>CMYK</font> or subtractive method follows the way a printer mixes three pigments (cyan, magenta, and yellow) to form colors. Because mixing chemicals is more difficult than combining light there is a fourth parameter for darkness. For example a chemical combination of the <font name=courier color=green>CMY</font> pigments generally never makes a perfect black -- instead producing a muddy color -- so, to get black printers don't use the <font name=courier color=green>CMY</font> pigments but use a direct black ink. Because <font name=courier color=green>CMYK</font> maps more directly to the way printer hardware works it may be the case that &amp;| &amp; | colors specified in <font name=courier color=green>CMYK</font> will provide better fidelity and better control when printed. ''' P = Paragraph(text, style) dumpParagraphFrags(P) aW, aH = 456.0, 42.8 w, h = P.wrap(aW, aH) dumpParagraphLines(P) S = P.split(aW, aH) for s in S: s.wrap(aW, aH) dumpParagraphLines(s) aH = 500 if flagged(2): P = Paragraph("""Price<super><font color="red">*</font></super>""", styleSheet['Normal']) dumpParagraphFrags(P) w, h = P.wrap(24, 200) dumpParagraphLines(P) if flagged(3): text = """Dieses Kapitel bietet eine schnelle <b><font color=red>Programme :: starten</font></b> <onDraw name=myIndex label="Programme :: starten"> <b><font color=red>Eingabeaufforderung :: (&gt;&gt;&gt;)</font></b> <onDraw name=myIndex label="Eingabeaufforderung :: (&gt;&gt;&gt;)"> <b><font color=red>&gt;&gt;&gt; (Eingabeaufforderung)</font></b> <onDraw name=myIndex label="&gt;&gt;&gt; (Eingabeaufforderung)"> Einf&#xfc;hrung in Python <b><font color=red>Python :: Einf&#xfc;hrung</font></b> <onDraw name=myIndex label="Python :: Einf&#xfc;hrung">. Das Ziel ist, die grundlegenden Eigenschaften von Python darzustellen, ohne sich zu sehr in speziellen Regeln oder Details zu verstricken. Dazu behandelt dieses Kapitel kurz die wesentlichen Konzepte wie Variablen, Ausdr&#xfc;cke, Kontrollfluss, Funktionen sowie Ein- und Ausgabe. Es erhebt nicht den Anspruch, umfassend zu sein.""" P = Paragraph(text, styleSheet['Code']) dumpParagraphFrags(P) w, h = P.wrap(6 * 72, 9.7 * 72) dumpParagraphLines(P) if flagged(4): text = '''Die eingebaute Funktion <font name=Courier>range(i, j [, stride])</font><onDraw name=myIndex label="eingebaute Funktionen::range()"><onDraw name=myIndex label="range() (Funktion)"><onDraw name=myIndex label="Funktionen::range()"> erzeugt eine Liste von Ganzzahlen und f&#xfc;llt sie mit Werten <font name=Courier>k</font>, f&#xfc;r die gilt: <font name=Courier>i &lt;= k &lt; j</font>. Man kann auch eine optionale Schrittweite angeben. Die eingebaute Funktion <font name=Courier>xrange()</font><onDraw name=myIndex label="eingebaute Funktionen::xrange()"><onDraw name=myIndex label="xrange() (Funktion)"><onDraw name=myIndex label="Funktionen::xrange()"> erf&#xfc;llt einen &#xe4;hnlichen Zweck, gibt aber eine unver&#xe4;nderliche Sequenz vom Typ <font name=Courier>XRangeType</font><onDraw name=myIndex label="XRangeType"> zur&#xfc;ck. Anstatt alle Werte in der Liste abzuspeichern, berechnet diese Liste ihre Werte, wann immer sie angefordert werden. Das ist sehr viel speicherschonender, wenn mit sehr langen Listen von Ganzzahlen gearbeitet wird. <font name=Courier>XRangeType</font> kennt eine einzige Methode, <font name=Courier>s.tolist()</font><onDraw name=myIndex label="XRangeType::tolist() (Methode)"><onDraw name=myIndex label="s.tolist() (Methode)"><onDraw name=myIndex label="Methoden::s.tolist()">, die seine Werte in eine Liste umwandelt.''' aW = 420 aH = 64.4 P = Paragraph(text, B) dumpParagraphFrags(P) w, h = P.wrap(aW, aH) print 'After initial wrap', w, h dumpParagraphLines(P) S = P.split(aW, aH) dumpParagraphFrags(S[0]) w0, h0 = S[0].wrap(aW, aH) print 'After split wrap', w0, h0 dumpParagraphLines(S[0]) if flagged(5): text = '<para> %s <![CDATA[</font></b>& %s < >]]></para>' % (chr(163), chr(163)) P = Paragraph(text, styleSheet['Code']) dumpParagraphFrags(P) w, h = P.wrap(6 * 72, 9.7 * 72) dumpParagraphLines(P) if flagged(6): for text in [ '''Here comes <FONT FACE="Helvetica" SIZE="14pt">Helvetica 14</FONT> with <STRONG>strong</STRONG> <EM>emphasis</EM>.''', '''Here comes <font face="Helvetica" size="14pt">Helvetica 14</font> with <Strong>strong</Strong> <em>emphasis</em>.''', '''Here comes <font face="Courier" size="3cm">Courier 3cm</font> and normal again.''', ]: P = Paragraph(text, styleSheet['Normal'], caseSensitive=0) dumpParagraphFrags(P) w, h = P.wrap(6 * 72, 9.7 * 72) dumpParagraphLines(P) if flagged(7): text = """<para align="CENTER" fontSize="24" leading="30"><b>Generated by:</b>Dilbert</para>""" P = Paragraph(text, styleSheet['Code']) dumpParagraphFrags(P) w, h = P.wrap(6 * 72, 9.7 * 72) dumpParagraphLines(P) if flagged(8): text = """- bullet 0<br/>- bullet 1<br/>- bullet 2<br/>- bullet 3<br/>- bullet 4<br/>- bullet 5""" P = Paragraph(text, styleSheet['Normal']) dumpParagraphFrags(P) w, h = P.wrap(6 * 72, 9.7 * 72) dumpParagraphLines(P) S = P.split(6 * 72, h / 2.0) print len(S) dumpParagraphLines(S[0]) dumpParagraphLines(S[1]) if flagged(9): text = """Furthermore, the fundamental error of regarding <img src="../docs/images/testimg.gif" width="3" height="7"/> functional notions as categorial delimits a general convention regarding the forms of the<br/> grammar. I suggested that these results would follow from the assumption that""" P = Paragraph(text, ParagraphStyle('aaa', parent=styleSheet['Normal'], align=TA_JUSTIFY)) dumpParagraphFrags(P) w, h = P.wrap(6 * cm - 12, 9.7 * 72) dumpParagraphLines(P) if flagged(10): text = """a b c\xc2\xa0d e f""" P = Paragraph(text, ParagraphStyle('aaa', parent=styleSheet['Normal'], align=TA_JUSTIFY)) dumpParagraphFrags(P) w, h = P.wrap(6 * cm - 12, 9.7 * 72) dumpParagraphLines(P)
8bfa5c02a3089abb03156a6609bfed1a989474e9
d5f8ca3c13f681d147b7614f1902df7ba34e06f9
/Graduate/model/densenet.py
38359413ab29892a7c8f412c5fc1741039a65696
[]
no_license
hhjung1202/OwnAdaptation
29a6c0a603ab9233baf293096fb9e7e956647a10
50805730254419f090f4854387be79648a01fbb4
refs/heads/master
2021-06-25T22:31:15.437642
2020-11-26T18:19:55
2020-11-26T18:19:55
176,670,379
1
0
null
2020-06-11T07:35:55
2019-03-20T06:36:19
Python
UTF-8
Python
false
false
7,429
py
import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from torch import Tensor import itertools class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class _Gate_selection(nn.Sequential): phase = 2 def __init__(self, num_input_features, growth_rate, count, reduction=4): super(_Gate_selection, self).__init__() self.actual = (count+1) // 2 LongTensor = torch.cuda.LongTensor if torch.cuda.is_available() else torch.LongTensor self.init = LongTensor([i for i in range(num_input_features)]).view(1, -1) s = num_input_features arr = [] for j in range(count): arr += [[i for i in range(s, s + growth_rate)]] s+=growth_rate self.arr = LongTensor(arr) self.avg_pool = nn.AdaptiveAvgPool2d(1) channels = num_input_features + growth_rate * count self.fc1 = nn.Linear(channels, channels//reduction) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Linear(channels//reduction, count) self.sigmoid = nn.Sigmoid() self.flat = Flatten() def forward(self, x, x_norm): b, _, w, h = x_norm.size() out = self.avg_pool(x_norm) # batch, channel 합친거, w, h out = self.flat(out) out = self.relu(self.fc1(out)) out = self.sigmoid(self.fc2(out)) _, sort = out.sort() indices = sort[:,:self.actual] # batch, sort # shuffle indices = indices[:, torch.randperm(indices.size(1))] select = self.init.repeat(b,1) select = torch.cat([select, self.arr[indices].view(b,-1)], 1) select = select.view(select.size(0), -1, 1, 1).repeat(1,1,w,h) x = x.gather(1, select) return x class _Bottleneck(nn.Sequential): def __init__(self, num_input_features, growth_rate, count=1): super(_Bottleneck, self).__init__() self.norm1 = nn.BatchNorm2d(num_input_features) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(num_input_features, 4 * growth_rate, kernel_size=1, stride=1, bias=False) self.norm2 = nn.BatchNorm2d(4 * growth_rate) self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False) self.count = count def forward(self, x): if isinstance(x, Tensor): x = [x] out = torch.cat(x,1) out = self.norm1(out) out = self.relu(out) out = self.conv1(out) out = self.norm2(out) out = self.relu(out) out = self.conv2(out) return out class _Basic(nn.Sequential): def __init__(self, num_input_features, growth_rate): super(_Basic, self).__init__() self.norm1 = nn.BatchNorm2d(num_input_features) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(num_input_features, growth_rate, kernel_size=3, stride=1, padding=1, bias=False) self.count = count def forward(self, x): if isinstance(x, Tensor): x = [x] out = torch.cat(x,1) out = self.norm1(out) out = self.relu(out) out = self.conv1(out) return out class _DenseLayer(nn.Module): def __init__(self, num_input_features, growth_rate, num_layers, Block): super(_DenseLayer, self).__init__() self.num_layers = num_layers self.init_block = Block(num_input_features, growth_rate) for i in range(1, num_layers): j = (i-1)//2 + 1 setattr(self, 'layer{}'.format(i), Block(num_input_features + growth_rate * j, growth_rate)) setattr(self, 'norm{}'.format(i), nn.BatchNorm2d(num_input_features + growth_rate * (i+1))) setattr(self, 'gate{}'.format(i), _Gate_selection(num_input_features, growth_rate, i+1, reduction=4)) def forward(self, x): out = self.init_block(x) x = [x] + [out] out = torch.cat(x,1) for i in range(1, self.num_layers): out = getattr(self, 'layer{}'.format(i))(out) x += [out] x_cat = torch.cat(x,1) x_norm = getattr(self, 'norm{}'.format(i))(x_cat) out = getattr(self, 'gate{}'.format(i))(x_cat, x_norm) return x_cat class _Transition(nn.Sequential): def __init__(self, num_input_features, tr_features): super(_Transition, self).__init__() self.norm = nn.BatchNorm2d(tr_features) self.relu = nn.ReLU(inplace=True) self.conv = nn.Conv2d(tr_features, num_input_features // 2, kernel_size=1, stride=1, bias=False) self.pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): # out = torch.cat(x,1) out = self.norm(x) out = self.relu(out) out = self.conv(out) out = self.pool(out) return out class DenseNet(nn.Module): def __init__(self, growth_rate=12, num_init_features=24, num_classes=10, is_bottleneck=True, layer=28): super(DenseNet, self).__init__() if layer is 28: block_config=[4,4,4] elif layer is 40: block_config=[6,6,6] elif layer is 52: block_config=[8,8,8] elif layer is 64: block_config=[10,10,10] if is_bottleneck: Block = _Bottleneck else: Block = _Basic block_config = [2*x for x in block_config] self.features = nn.Sequential() self.features.add_module('conv0', nn.Conv2d(3, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)) num_features = num_init_features for i in range(len(block_config)): self.features.add_module('layer%d' % (i + 1), _DenseLayer(num_features, growth_rate, block_config[i], Block)) tr_features = num_features + block_config[i] * growth_rate num_features = num_features + block_config[i] * growth_rate // 2 if i != len(block_config) - 1: self.features.add_module('transition%d' % (i + 1), _Transition(num_features, tr_features)) num_features = num_features // 2 # Final batch norm self.norm = nn.BatchNorm2d(tr_features) self.relu = nn.ReLU(inplace=True) self.pool = nn.AvgPool2d(kernel_size=8, stride=1) self.fc = nn.Linear(tr_features, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) # Linear layer # Official init from torch repo. def forward(self, x): out = self.features(x) # out = torch.cat(out,1) out = self.norm(out) out = self.relu(out) out = self.pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out if __name__=='__main__': x = torch.randn(4,3,32,32) model = DenseNet(growth_rate=12, num_init_features=24, num_classes=10, is_bottleneck=True, layer=40) y = model(x) print(y.size())
0d98db9ec83456db136f54a759d5de5a9a1ccb42
c42b08296e47e113ea66d8d14b383abccfbce409
/myhashtry.py
877c1cafe1784c183cfe3f85b83929bd081b06e3
[]
no_license
unmutilated/code
49750a92ec855158740f456b3b1d3dd34890ca88
8961e5cf394aecdf71d70cc6b2ff03f35de14db5
refs/heads/master
2022-05-24T13:14:37.318698
2020-04-27T20:11:08
2020-04-27T20:11:08
259,436,704
0
0
null
null
null
null
UTF-8
Python
false
false
1,308
py
import sys import hashlib Output = [] def ReadFile(): file0 = open("CRY_Lab_02_B_hashes.txt", "r") lines = f.readlines() file0.close() s = set() for data in lines: s.add(data.strip()) print("Read in {0} lines from the MD5 hash file".format(len(lines))) return s def SaveFile(): file1 = open("Output.txt","w") file1.writelines(Output) file1.close def HashFind(): hashset = ReadFile() alph = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&\'()*+,-./:;<=>?@" count = 0 for element in range(0, len(alph)): m = alph[element] print(element) #for debuggig print(len(alph)) #for debugging h = hashlib.md5(m.encode()).hexdigest() if h in hashset: Output.append("{0} Found a hash: {1} hashes to {2}\n".format(count, m, h)) count = count +1 if count >= 1000: print("All Done") SaveFile() sys.exit() else: sys.exit() if __name__ == "__main__": while True: userchoice = input("to hash press h [Enter to quit]: ").upper() if userchoice.startswith("H"): HashFind() else: sys.exit()
4cb3844e79b7b04d524f902a1436ea166712750d
7bc1d2a995ce6488c7dd20909a6f9443d6d8ced8
/admin.py
f9970ac554b7883eb5ab7ee1f153581bbdd2be7d
[]
no_license
strategy2231/django_learn
dd4f7d1bd77157b893a8ea2d8355e980898687f5
9b9544c24d42892acef53943eb707bc5b8ca48c3
refs/heads/master
2021-01-12T16:01:43.756219
2016-10-25T18:45:48
2016-10-25T18:45:48
71,918,737
0
0
null
2016-10-25T18:40:31
2016-10-25T16:50:45
Python
UTF-8
Python
false
false
612
py
# Register your models here. from django.contrib import admin from restaurants.models import Restaurant, Food,Comment class RestaurantAdmin(admin.ModelAdmin): list_display = ('name', 'phone_number', 'address','date') search_fields = ('name',) class FoodAdmin(admin.ModelAdmin): list_display = ('name', 'restaurant', 'price','is_spicy','comment','date') list_filter = ('is_spicy',) #fields = ('price','restaurant') search_fields = ('name',) ordering = ('-price',) admin.site.register(Restaurant,RestaurantAdmin) admin.site.register(Food,FoodAdmin) admin.site.register(Comment)
82792a3be9979e79865b11f08d068150204766e1
2c74bb301f1ed83b79254944183ac5a18a639fdf
/tests/components/select/test_device_condition.py
7c1dc443e5626cdb246bbc9a3f633cbd756d466c
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
8,288
py
"""The tests for Select device conditions.""" from __future__ import annotations import pytest import voluptuous_serialize from homeassistant.components import automation from homeassistant.components.device_automation import DeviceAutomationType from homeassistant.components.select import DOMAIN from homeassistant.components.select.device_condition import ( async_get_condition_capabilities, ) from homeassistant.core import HomeAssistant, ServiceCall from homeassistant.helpers import ( config_validation as cv, device_registry, entity_registry, ) from homeassistant.helpers.entity import EntityCategory from homeassistant.setup import async_setup_component from tests.common import ( MockConfigEntry, assert_lists_same, async_get_device_automations, async_mock_service, mock_device_registry, mock_registry, ) @pytest.fixture def device_reg(hass: HomeAssistant) -> device_registry.DeviceRegistry: """Return an empty, loaded, registry.""" return mock_device_registry(hass) @pytest.fixture def entity_reg(hass: HomeAssistant) -> entity_registry.EntityRegistry: """Return an empty, loaded, registry.""" return mock_registry(hass) @pytest.fixture def calls(hass: HomeAssistant) -> list[ServiceCall]: """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") async def test_get_conditions( hass: HomeAssistant, device_reg: device_registry.DeviceRegistry, entity_reg: entity_registry.EntityRegistry, ) -> None: """Test we get the expected conditions from a select.""" config_entry = MockConfigEntry(domain="test", data={}) config_entry.add_to_hass(hass) device_entry = device_reg.async_get_or_create( config_entry_id=config_entry.entry_id, connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) entity_reg.async_get_or_create(DOMAIN, "test", "5678", device_id=device_entry.id) expected_conditions = [ { "condition": "device", "domain": DOMAIN, "type": "selected_option", "device_id": device_entry.id, "entity_id": f"{DOMAIN}.test_5678", "metadata": {"secondary": False}, } ] conditions = await async_get_device_automations( hass, DeviceAutomationType.CONDITION, device_entry.id ) assert_lists_same(conditions, expected_conditions) @pytest.mark.parametrize( "hidden_by,entity_category", ( (entity_registry.RegistryEntryHider.INTEGRATION, None), (entity_registry.RegistryEntryHider.USER, None), (None, EntityCategory.CONFIG), (None, EntityCategory.DIAGNOSTIC), ), ) async def test_get_conditions_hidden_auxiliary( hass, device_reg, entity_reg, hidden_by, entity_category, ): """Test we get the expected conditions from a hidden or auxiliary entity.""" config_entry = MockConfigEntry(domain="test", data={}) config_entry.add_to_hass(hass) device_entry = device_reg.async_get_or_create( config_entry_id=config_entry.entry_id, connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) entity_reg.async_get_or_create( DOMAIN, "test", "5678", device_id=device_entry.id, entity_category=entity_category, hidden_by=hidden_by, ) expected_conditions = [ { "condition": "device", "domain": DOMAIN, "type": condition, "device_id": device_entry.id, "entity_id": f"{DOMAIN}.test_5678", "metadata": {"secondary": True}, } for condition in ["selected_option"] ] conditions = await async_get_device_automations( hass, DeviceAutomationType.CONDITION, device_entry.id ) assert_lists_same(conditions, expected_conditions) async def test_if_selected_option( hass: HomeAssistant, calls: list[ServiceCall] ) -> None: """Test for selected_option conditions.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: [ { "trigger": {"platform": "event", "event_type": "test_event1"}, "condition": [ { "condition": "device", "domain": DOMAIN, "device_id": "", "entity_id": "select.entity", "type": "selected_option", "option": "option1", } ], "action": { "service": "test.automation", "data": { "result": "option1 - {{ trigger.platform }} - {{ trigger.event.event_type }}" }, }, }, { "trigger": {"platform": "event", "event_type": "test_event2"}, "condition": [ { "condition": "device", "domain": DOMAIN, "device_id": "", "entity_id": "select.entity", "type": "selected_option", "option": "option2", } ], "action": { "service": "test.automation", "data": { "result": "option2 - {{ trigger.platform }} - {{ trigger.event.event_type }}" }, }, }, ] }, ) # Test with non existing entity hass.bus.async_fire("test_event1") hass.bus.async_fire("test_event2") await hass.async_block_till_done() assert len(calls) == 0 hass.states.async_set( "select.entity", "option1", {"options": ["option1", "option2"]} ) hass.bus.async_fire("test_event1") hass.bus.async_fire("test_event2") await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["result"] == "option1 - event - test_event1" hass.states.async_set( "select.entity", "option2", {"options": ["option1", "option2"]} ) hass.bus.async_fire("test_event1") hass.bus.async_fire("test_event2") await hass.async_block_till_done() assert len(calls) == 2 assert calls[1].data["result"] == "option2 - event - test_event2" async def test_get_condition_capabilities(hass: HomeAssistant) -> None: """Test we get the expected capabilities from a select condition.""" config = { "platform": "device", "domain": DOMAIN, "type": "selected_option", "entity_id": "select.test", "option": "option1", } # Test when entity doesn't exists capabilities = await async_get_condition_capabilities(hass, config) assert capabilities assert "extra_fields" in capabilities assert voluptuous_serialize.convert( capabilities["extra_fields"], custom_serializer=cv.custom_serializer ) == [ { "name": "option", "required": True, "type": "select", "options": [], }, { "name": "for", "optional": True, "type": "positive_time_period_dict", }, ] # Mock an entity hass.states.async_set("select.test", "option1", {"options": ["option1", "option2"]}) # Test if we get the right capabilities now capabilities = await async_get_condition_capabilities(hass, config) assert capabilities assert "extra_fields" in capabilities assert voluptuous_serialize.convert( capabilities["extra_fields"], custom_serializer=cv.custom_serializer ) == [ { "name": "option", "required": True, "type": "select", "options": [("option1", "option1"), ("option2", "option2")], }, { "name": "for", "optional": True, "type": "positive_time_period_dict", }, ]
d4703ba2bdb76a23ad5f3eef4f0eb86443e92219
93dd16432fcb4b42670f208edf81b2eb29f40d41
/pycaesarcipher.py
980eed0fa1ec667cce8da2834d93cf03891ce125
[ "MIT" ]
permissive
shyams1993/pycaesarcipher
d067f4fda7acdb5f70687d5262a6fbc39d5e3790
a396f165cc9a103950d060c94e25f7f344e7b257
refs/heads/master
2022-06-27T17:28:48.417994
2020-05-07T10:05:25
2020-05-07T10:05:25
261,873,682
1
0
null
null
null
null
UTF-8
Python
false
false
3,180
py
class pycaesarcipher(): ''' DOCSTRING: This class contains the encipher function & decipher function to one of the most simplest substitution Ciphers - "Caesar's Cipher" ''' def __init__(self): return None def caesar_encipher(self,word,shiftkey): ''' DOCSTRING: Function to encipher a given string using caesar cipher. \nINPUT: Any string and shiftkey. \nLOGIC: To encrypt, it uses the basic formula : (character + shiftkey) \nOUTPUT: The Enciphered string result. \nUSAGE: First import the CaesarCipher package; Then, create an instance of the class by using a variable to assign & call an instance of the class. \nSyntax: variable_name = CaesarCipher() \nThen create another variable to call either the caesar_encipher() method or caesae_decipher() method using two positional arguments : target word/variable, shiftkey \nSyntax: another_variable = variable_name.caesar_encipher("string",integer) \n\nThis logic uses ASCII code representation to convert the strings to integers. You can use any string, but this method will convert the string to lowercase and then encipher to maintain uniformity. ''' word = word.lower() ciphertext = [] for w in range(len(word)): x = (ord(word[w]) + shiftkey) if x > 122: y = (x-122)+96 ciphertext.append(chr(y)) elif ord(word[w]) == 32: y = 32 ciphertext.append(chr(y)) else: ciphertext.append(chr(x)) word = ''.join([str(s) for s in ciphertext]) return word def caesar_decipher(self,word,shiftkey): ''' DOCSTRING: Function to decipher a given string using caesar cipher. \nINPUT: Any string and shiftkey. \nLOGIC: To decipher, it uses the basic formula : (character - shiftkey) \nOUTPUT: The deciphered string result. \nUSAGE: First import the CaesarCipher package; Then, create an instance of the class by using a variable to assign & call an instance of the class. \nSyntax: variable_name = CaesarCipher() \nThen create another variable to call either the caesar_encipher() method or caesae_decipher() method using two positional arguments : target word/variable, shiftkey \nSyntax: another_variable = variable_name.caesar_decipher("string",integer) \n\nThis logic uses ASCII code representation to convert the strings to integers. You can use any string, but this method will convert the string to lowercase and then decipher to maintain uniformity. ''' word = word.lower() plaintext = [] for w in range(len(word)): x = (ord(word[w]) - shiftkey) if x>=70 and x < 97: y = (x-96)+122 plaintext.append(chr(y)) elif ord(word[w]) == 32: plaintext.append(chr(32)) else: plaintext.append(chr(x)) word = ''.join([str(s) for s in plaintext]) return word
a31cb5f185c80ea397b6d84e1e2a1d488a88fd68
a383c318c17b382bc3acad86b106584123ec5cd5
/tifa/models/product_attr.py
fb9b11ea5d0303b510746f3e2d342138c1d3f67e
[ "MIT" ]
permissive
Jormungendr/tifa
86f20aa8ca28548a5861c6dcd54ab12840aa0b0c
f703fd27f54000e7d51f06d2456d09cc79e0ab72
refs/heads/master
2023-07-13T08:21:26.464652
2021-08-24T14:19:52
2021-08-24T14:19:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,506
py
import sqlalchemy as sa from sqlalchemy.orm import relationship from tifa.globals import Model from tifa.models.attr import Attribute, AttributeValue from tifa.models.product import ProductType, Product, ProductVariant class AttributeProduct(Model): __tablename__ = "attribute_product" __table_args__ = (sa.UniqueConstraint("attribute_id", "product_type_id"),) id = sa.Column(sa.Integer, primary_key=True) attribute_id = sa.Column( sa.ForeignKey("attribute.id"), nullable=False, ) attribute = relationship(Attribute) product_type_id = sa.Column( sa.ForeignKey("product_type.id"), nullable=False, ) product_type = relationship(ProductType) sort_order = sa.Column(sa.Integer, index=True) class AssignedProductAttribute(Model): __tablename__ = "assigned_product_attribute" __table_args__ = (sa.UniqueConstraint("product_id", "assignment_id"),) id = sa.Column(sa.Integer, primary_key=True) product_id = sa.Column(sa.ForeignKey("product.id"), nullable=False) product = relationship(Product) assignment_id = sa.Column( sa.ForeignKey("attribute_product.id"), nullable=False, ) assignment = relationship(AttributeProduct) class AssignedProductAttributeValue(Model): __tablename__ = "assigned_product_attribute_value" __table_args__ = (sa.UniqueConstraint("value_id", "assignment_id"),) id = sa.Column(sa.Integer, primary_key=True) sort_order = sa.Column(sa.Integer, index=True) assignment_id = sa.Column( sa.ForeignKey("assigned_product_attribute.id"), nullable=False, ) assignment = relationship(AssignedProductAttribute) value_id = sa.Column( sa.ForeignKey("attribute_value.id"), nullable=False, ) value = relationship(AttributeValue) class AttributeVariant(Model): __tablename__ = "attribute_variant" __table_args__ = (sa.UniqueConstraint("attribute_id", "product_type_id"),) id = sa.Column(sa.Integer, primary_key=True) attribute_id = sa.Column( sa.ForeignKey("attribute.id"), nullable=False, ) product_type_id = sa.Column( sa.ForeignKey("product_type.id"), nullable=False, ) sort_order = sa.Column(sa.Integer, index=True) attribute = relationship(Attribute) product_type = relationship(ProductType) class AssignedVariantAttribute(Model): __tablename__ = "assigned_variant_attribute" __table_args__ = (sa.UniqueConstraint("variant_id", "assignment_id"),) id = sa.Column(sa.Integer, primary_key=True) variant_id = sa.Column( sa.ForeignKey("product_variant.id"), nullable=False, ) assignment_id = sa.Column( sa.ForeignKey("attribute_variant.id"), nullable=False, ) assignment = relationship(AttributeVariant) variant = relationship(ProductVariant) class AssignedVariantAttributeValue(Model): __tablename__ = "assigned_variant_attribute_value" __table_args__ = (sa.UniqueConstraint("value_id", "assignment_id"),) id = sa.Column(sa.Integer, primary_key=True) sort_order = sa.Column(sa.Integer, index=True) assignment_id = sa.Column( sa.ForeignKey( "assigned_variant_attribute.id", ), nullable=False, ) assignment = relationship(AssignedVariantAttribute) value_id = sa.Column( sa.ForeignKey("attribute_value.id"), nullable=False, ) value = relationship(AttributeValue)
8479fc36a34cd92829460ba09dac9233003f21e2
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_145/588.py
bc85913e20b14805e33519ef4c6568305d07637f
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,649
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import math def read(f): n = int(f.readline().strip()) for i in xrange(n): p, q = map(int, f.readline().strip().split('/')) yield p, q def main(f): for i, (p, q) in enumerate(read(f)): if 2 ** int(math.log(q) / math.log(2)) != q: print("Case #{0}: impossible".format(i+1)) else: n = int(math.ceil((math.log(q) - math.log(p)) / math.log(2))) print("Case #{0}: {1}".format(i+1, n)) _input = """ 5 1/2 3/4 1/4 2/23 123/31488 """.strip() _output = """ Case #1: 1 Case #2: 1 Case #3: 2 Case #4: impossible Case #5: 8 """.strip() def test_main(compare=False): import sys from difflib import unified_diff from StringIO import StringIO if compare: stdout = sys.stdout sys.stdout = StringIO() try: main(StringIO(_input)) result = sys.stdout.getvalue().strip() finally: sys.stdout = stdout print(result) for line in unified_diff(result.splitlines(), _output.splitlines(), 'Output', 'Expect', lineterm=''): print(line) if result == _output: print("OK") else: print("NG") else: main(StringIO(_input)) if __name__ == '__main__': test = False compare = False if test: test_main(compare) else: import sys if len(sys.argv) > 1: f = open(sys.argv[1]) main(f) f.close() else: main(sys.stdin)
3aea4843be237c4dcdce35ea871082ef159c6872
b9029f7e08bb93c435290e9e01dba3507714bafc
/tasks.py
a64b8ddab455bd356781035556f67836cb43532a
[ "BSD-3-Clause" ]
permissive
njwardhan/colour
3a4bf7994e25f02e15aa16bc03d35d7f6cc61a50
60679360c3990bc549b5f947bfeb621383e18b5e
refs/heads/master
2022-09-29T06:17:36.380542
2020-01-25T05:10:15
2020-01-25T05:10:15
253,715,920
0
0
null
2020-04-07T07:14:32
2020-04-07T07:14:31
null
UTF-8
Python
false
false
13,629
py
# -*- coding: utf-8 -*- """ Invoke - Tasks ============== """ from __future__ import unicode_literals import sys try: import biblib.bib except ImportError: pass import fnmatch import os import re import toml import uuid from invoke import task import colour from colour.utilities import message_box __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'APPLICATION_NAME', 'APPLICATION_VERSION', 'PYTHON_PACKAGE_NAME', 'PYPI_PACKAGE_NAME', 'BIBLIOGRAPHY_NAME', 'clean', 'formatting', 'tests', 'quality', 'examples', 'preflight', 'docs', 'todo', 'requirements', 'build', 'virtualise', 'tag', 'release', 'sha256' ] APPLICATION_NAME = colour.__application_name__ APPLICATION_VERSION = colour.__version__ PYTHON_PACKAGE_NAME = colour.__name__ PYPI_PACKAGE_NAME = 'colour-science' BIBLIOGRAPHY_NAME = 'BIBLIOGRAPHY.bib' @task def clean(ctx, docs=True, bytecode=False): """ Cleans the project. Parameters ---------- ctx : invoke.context.Context Context. docs : bool, optional Whether to clean the *docs* directory. bytecode : bool, optional Whether to clean the bytecode files, e.g. *.pyc* files. Returns ------- bool Task success. """ message_box('Cleaning project...') patterns = ['build', '*.egg-info', 'dist'] if docs: patterns.append('docs/_build') patterns.append('docs/generated') if bytecode: patterns.append('**/*.pyc') for pattern in patterns: ctx.run("rm -rf {}".format(pattern)) @task def formatting(ctx, yapf=False, asciify=True, bibtex=True): """ Formats the codebase with *Yapf*, converts unicode characters to ASCII and cleanup the "BibTeX" file. Parameters ---------- ctx : invoke.context.Context Context. yapf : bool, optional Whether to format the codebase with *Yapf*. asciify : bool, optional Whether to convert unicode characters to ASCII. bibtex : bool, optional Whether to cleanup the *BibTeX* file. Returns ------- bool Task success. """ if yapf: message_box('Formatting codebase with "Yapf"...') ctx.run('yapf -p -i -r --exclude \'.git\' .') if asciify: message_box('Converting unicode characters to ASCII...') with ctx.cd('utilities'): ctx.run('./unicode_to_ascii.py') if bibtex and sys.version_info[:2] >= (3, 2): message_box('Cleaning up "BibTeX" file...') bibtex_path = BIBLIOGRAPHY_NAME with open(bibtex_path) as bibtex_file: bibtex = biblib.bib.Parser().parse( bibtex_file.read()).get_entries() for entry in sorted(bibtex.values(), key=lambda x: x.key): try: del entry['file'] except KeyError: pass for key, value in entry.items(): entry[key] = re.sub('(?<!\\\\)\\&', '\\&', value) with open(bibtex_path, 'w') as bibtex_file: for entry in bibtex.values(): bibtex_file.write(entry.to_bib()) bibtex_file.write('\n') @task def tests(ctx, nose=True): """ Runs the unit tests with *Nose* or *Pytest*. Parameters ---------- ctx : invoke.context.Context Context. nose : bool, optional Whether to use *Nose* or *Pytest*. Returns ------- bool Task success. """ if nose: message_box('Running "Nosetests"...') ctx.run( 'nosetests --with-doctest --with-coverage --cover-package={0} {0}'. format(PYTHON_PACKAGE_NAME), env={'MPLBACKEND': 'AGG'}) else: message_box('Running "Pytest"...') ctx.run( 'py.test --disable-warnings --doctest-modules ' '--ignore={0}/examples {0}'.format(PYTHON_PACKAGE_NAME), env={'MPLBACKEND': 'AGG'}) @task def quality(ctx, flake8=True, rstlint=True): """ Checks the codebase with *Flake8* and lints various *restructuredText* files with *rst-lint*. Parameters ---------- ctx : invoke.context.Context Context. flake8 : bool, optional Whether to check the codebase with *Flake8*. rstlint : bool, optional Whether to lint various *restructuredText* files with *rst-lint*. Returns ------- bool Task success. """ if flake8: message_box('Checking codebase with "Flake8"...') ctx.run('flake8 {0} --exclude=examples'.format(PYTHON_PACKAGE_NAME)) if rstlint: message_box('Linting "README.rst" file...') ctx.run('rst-lint README.rst') @task def examples(ctx, plots=False): """ Runs the examples. Parameters ---------- ctx : invoke.context.Context Context. plots : bool, optional Whether to skip or only run the plotting examples: This a mutually exclusive switch. Returns ------- bool Task success. """ message_box('Running examples...') for root, _dirnames, filenames in os.walk( os.path.join(PYTHON_PACKAGE_NAME, 'examples')): for filename in fnmatch.filter(filenames, '*.py'): if not plots and ('plotting' in root or 'examples_interpolation' in filename or 'examples_contrast' in filename): continue if plots and ('plotting' not in root and 'examples_interpolation' not in filename and 'examples_contrast' not in filename): continue ctx.run('python {0}'.format(os.path.join(root, filename))) @task(formatting, tests, quality, examples) def preflight(ctx): """ Performs the preflight tasks, i.e. *formatting*, *tests*, *quality*, and *examples*. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Finishing "Preflight"...') @task def docs(ctx, plots=True, html=True, pdf=True): """ Builds the documentation. Parameters ---------- ctx : invoke.context.Context Context. plots : bool, optional Whether to generate the documentation plots. html : bool, optional Whether to build the *HTML* documentation. pdf : bool, optional Whether to build the *PDF* documentation. Returns ------- bool Task success. """ if plots: with ctx.cd('utilities'): message_box('Generating plots...') ctx.run('./generate_plots.py') with ctx.prefix('export COLOUR_SCIENCE_DOCUMENTATION_BUILD=True'): with ctx.cd('docs'): if html: message_box('Building "HTML" documentation...') ctx.run('make html') if pdf: message_box('Building "PDF" documentation...') ctx.run('make latexpdf') @task def todo(ctx): """ Export the TODO items. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Exporting "TODO" items...') with ctx.cd('utilities'): ctx.run('./export_todo.py') @task def requirements(ctx): """ Export the *requirements.txt* file. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Exporting "requirements.txt" file...') ctx.run('poetry run pip freeze | ' 'egrep -v "github.com/colour-science|enum34" ' '> requirements.txt') @task(clean, preflight, docs, todo, requirements) def build(ctx): """ Builds the project and runs dependency tasks, i.e. *docs*, *todo*, and *preflight*. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Building...') pyproject_content = toml.load('pyproject.toml') pyproject_content['tool']['poetry']['name'] = PYPI_PACKAGE_NAME pyproject_content['tool']['poetry']['packages'] = [{ 'include': PYTHON_PACKAGE_NAME, 'from': '.' }] with open('pyproject.toml', 'w') as pyproject_file: toml.dump(pyproject_content, pyproject_file) ctx.run('poetry build') ctx.run('git checkout -- pyproject.toml') with ctx.cd('dist'): ctx.run('tar -xvf {0}-{1}.tar.gz'.format(PYPI_PACKAGE_NAME, APPLICATION_VERSION)) ctx.run('cp {0}-{1}/setup.py ../'.format(PYPI_PACKAGE_NAME, APPLICATION_VERSION)) ctx.run('rm -rf {0}-{1}'.format(PYPI_PACKAGE_NAME, APPLICATION_VERSION)) with open('setup.py') as setup_file: source = setup_file.read() setup_kwargs = [] def sub_callable(match): setup_kwargs.append(match) return '' template = """ setup({0} ) """ source = re.sub( 'setup_kwargs = {(.*)}.*setup\\(\\*\\*setup_kwargs\\)', sub_callable, source, flags=re.DOTALL)[:-2] setup_kwargs = setup_kwargs[0].group(1).splitlines() for i, line in enumerate(setup_kwargs): setup_kwargs[i] = re.sub('^\\s*(\'(\\w+)\':\\s?)', ' \\2=', line) if setup_kwargs[i].strip().startswith('long_description'): setup_kwargs[i] = ( ' long_description=open(\'README.rst\').read(),') source += template.format('\n'.join(setup_kwargs)) with open('setup.py', 'w') as setup_file: setup_file.write(source) @task def virtualise(ctx, tests=True): """ Create a virtual environment for the project build. Parameters ---------- ctx : invoke.context.Context Context. tests : bool, optional Whether to run tests on the virtual environment. Returns ------- bool Task success. """ unique_name = '{0}-{1}'.format(PYPI_PACKAGE_NAME, uuid.uuid1()) with ctx.cd('dist'): ctx.run('tar -xvf {0}-{1}.tar.gz'.format(PYPI_PACKAGE_NAME, APPLICATION_VERSION)) ctx.run('mv {0}-{1} {2}'.format(PYPI_PACKAGE_NAME, APPLICATION_VERSION, unique_name)) with ctx.cd(unique_name): ctx.run('poetry env use 3') ctx.run('poetry install --extras "optional plotting"') ctx.run('source $(poetry env info -p)/bin/activate') ctx.run('python -c "import imageio;' 'imageio.plugins.freeimage.download()"') if tests: ctx.run('poetry run nosetests', env={'MPLBACKEND': 'AGG'}) @task def tag(ctx): """ Tags the repository according to defined version using *git-flow*. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Tagging...') result = ctx.run('git rev-parse --abbrev-ref HEAD', hide='both') assert result.stdout.strip() == 'develop', ( 'Are you still on a feature or master branch?') with open(os.path.join(PYTHON_PACKAGE_NAME, '__init__.py')) as file_handle: file_content = file_handle.read() major_version = re.search("__major_version__\\s+=\\s+'(.*)'", file_content).group(1) minor_version = re.search("__minor_version__\\s+=\\s+'(.*)'", file_content).group(1) change_version = re.search("__change_version__\\s+=\\s+'(.*)'", file_content).group(1) version = '.'.join((major_version, minor_version, change_version)) result = ctx.run('git ls-remote --tags upstream', hide='both') remote_tags = result.stdout.strip().split('\n') tags = set() for remote_tag in remote_tags: tags.add( remote_tag.split('refs/tags/')[1].replace('refs/tags/', '^{}')) tags = sorted(list(tags)) assert 'v{0}'.format(version) not in tags, ( 'A "{0}" "v{1}" tag already exists in remote repository!'.format( PYTHON_PACKAGE_NAME, version)) ctx.run('git flow release start v{0}'.format(version)) ctx.run('git flow release finish v{0}'.format(version)) @task(clean, build) def release(ctx): """ Releases the project to *Pypi* with *Twine*. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Releasing...') with ctx.cd('dist'): ctx.run('twine upload *.tar.gz') ctx.run('twine upload *.whl') @task def sha256(ctx): """ Computes the project *Pypi* package *sha256* with *OpenSSL*. Parameters ---------- ctx : invoke.context.Context Context. Returns ------- bool Task success. """ message_box('Computing "sha256"...') with ctx.cd('dist'): ctx.run('openssl sha256 {0}-*.tar.gz'.format(PYPI_PACKAGE_NAME))
140b356fa408e4eb413cb2c100895ff01e14c112
264cbdc7c2b4091179ba5fbdbb15005f6ac58b9f
/Algos/C51/examples/python/c51_ddqn.py
bb6455d9b4ae5b306ac48462cd633e024bd33c62
[]
no_license
geeko66/PA2018-2019-KA
e25b49dd71ad4b5b2f3a00624147a9b24151c3d8
186d127608c8ea754a6e64836b0347d32cf37da6
refs/heads/master
2020-04-15T21:46:42.503444
2019-01-16T11:12:12
2019-01-16T11:12:12
165,046,443
0
0
null
null
null
null
UTF-8
Python
false
false
15,185
py
#!/usr/bin/env python from __future__ import print_function import skimage as skimage from skimage import transform, color, exposure from skimage.viewer import ImageViewer import random from random import choice import numpy as np from collections import deque import time import math import pickle import json from keras.models import model_from_json from keras.models import Sequential, load_model, Model from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, Dense, Flatten, merge, MaxPooling2D, Input, AveragePooling2D, Lambda, Merge, Activation, Embedding from keras.optimizers import SGD, Adam, rmsprop from keras import backend as K from keras.utils import np_utils from vizdoom import DoomGame, ScreenResolution from vizdoom import * import itertools as it from time import sleep import tensorflow as tf from networks import Networks import sys # Not needed for the bonseyes's project def preprocessImg(img, size): img = np.rollaxis(img, 0, 3) # It becomes (640, 480, 3) img = skimage.transform.resize(img,size) img = skimage.color.rgb2gray(img) return img class C51Agent: def __init__(self, state_size, action_size, num_atoms): # get size of state and action self.state_size = state_size self.action_size = action_size # these is hyper parameters for the DQN self.gamma = 0.99 self.learning_rate = 0.0001 self.epsilon = 1.0 self.initial_epsilon = 1.0 self.final_epsilon = 0.0001 self.batch_size = 32 self.observe = 2000 self.explore = 50000 self.frame_per_action = 4 self.update_target_freq = 3000 self.timestep_per_train = 100 # Number of timesteps between training interval # Initialize Atoms self.num_atoms = num_atoms # 51 for C51 self.v_max = 30 # Max possible score for Defend the center is 26 - 0.1*26 = 23.4 self.v_min = -10 # -0.1*26 - 1 = -3.6 self.delta_z = (self.v_max - self.v_min) / float(self.num_atoms - 1) self.z = [self.v_min + i * self.delta_z for i in range(self.num_atoms)] # Create replay memory using deque self.memory = deque() self.max_memory = 50000 # number of previous transitions to remember # Models for value distribution self.model = None self.target_model = None # Performance Statistics self.stats_window_size= 50 # window size for computing rolling statistics self.mavg_score = [] # Moving Average of Survival Time self.var_score = [] # Variance of Survival Time self.mavg_ammo_left = [] # Moving Average of Ammo used self.mavg_kill_counts = [] # Moving Average of Kill Counts def update_target_model(self): """ After some time interval update the target model to be same with model """ self.target_model.set_weights(self.model.get_weights()) def get_action(self, state): """ Get action from model using epsilon-greedy policy """ if np.random.rand() <= self.epsilon: #print("----------Random Action----------") action_idx = random.randrange(self.action_size) else: action_idx = self.get_optimal_action(state) return action_idx def get_optimal_action(self, state): """Get optimal action for a state """ z = self.model.predict(state) # Return a list [1x51, 1x51, 1x51] z_concat = np.vstack(z) q = np.sum(np.multiply(z_concat, np.array(self.z)), axis=1) # Pick action with the biggest Q value action_idx = np.argmax(q) return action_idx def shape_reward(self, r_t, misc, prev_misc, t): """ Reward design: Will be the inverted time in Bonseyes (x = -x) because the time is the thing we want to minimize, therrefore we maximize the invert time """ # Check any kill count if misc[0] > prev_misc[0]: r_t = r_t + 1 if misc[1] < prev_misc[1]: # Use ammo r_t = r_t - 0.1 if misc[2] < prev_misc[2]: # Loss HEALTH r_t = r_t - 0.1 return r_t # save sample <s,a,r,s'> to the replay memory def replay_memory(self, s_t, action_idx, r_t, s_t1, is_terminated, t): """ Used for the replay experience """ self.memory.append((s_t, action_idx, r_t, s_t1, is_terminated)) if self.epsilon > self.final_epsilon and t > self.observe: self.epsilon -= (self.initial_epsilon - self.final_epsilon) / self.explore if len(self.memory) > self.max_memory: self.memory.popleft() # Update the target model to be same with model if t % self.update_target_freq == 0: self.update_target_model() # pick samples randomly from replay memory (with batch_size) def train_replay(self): """ Notes: Update this part to prioritize the experience replay following the other code. To see!!! """ num_samples = min(self.batch_size * self.timestep_per_train, len(self.memory)) replay_samples = random.sample(self.memory, num_samples) state_inputs = np.zeros(((num_samples,) + self.state_size)) next_states = np.zeros(((num_samples,) + self.state_size)) m_prob = [np.zeros((num_samples, self.num_atoms)) for i in range(action_size)] action, reward, done = [], [], [] for i in range(num_samples): state_inputs[i,:,:,:] = replay_samples[i][0] action.append(replay_samples[i][1]) reward.append(replay_samples[i][2]) next_states[i,:,:,:] = replay_samples[i][3] done.append(replay_samples[i][4]) z = self.model.predict(next_states) # Return a list [32x51, 32x51, 32x51] z_ = self.target_model.predict(next_states) # Return a list [32x51, 32x51, 32x51] # Get Optimal Actions for the next states (from distribution z) optimal_action_idxs = [] z_concat = np.vstack(z) q = np.sum(np.multiply(z_concat, np.array(self.z)), axis=1) # length (num_atoms x num_actions) q = q.reshape((num_samples, action_size), order='F') optimal_action_idxs = np.argmax(q, axis=1) # Project Next State Value Distribution (of optimal action) to Current State for i in range(num_samples): if done[i]: # Terminal State # Distribution collapses to a single point Tz = min(self.v_max, max(self.v_min, reward[i])) bj = (Tz - self.v_min) / self.delta_z m_l, m_u = math.floor(bj), math.ceil(bj) m_prob[action[i]][i][int(m_l)] += (m_u - bj) m_prob[action[i]][i][int(m_u)] += (bj - m_l) else: for j in range(self.num_atoms): Tz = min(self.v_max, max(self.v_min, reward[i] + self.gamma * self.z[j])) bj = (Tz - self.v_min) / self.delta_z m_l, m_u = math.floor(bj), math.ceil(bj) m_prob[action[i]][i][int(m_l)] += z_[optimal_action_idxs[i]][i][j] * (m_u - bj) m_prob[action[i]][i][int(m_u)] += z_[optimal_action_idxs[i]][i][j] * (bj - m_l) loss = self.model.fit(state_inputs, m_prob, batch_size=self.batch_size, epochs=1, verbose=0) return loss.history['loss'] # load the saved model def load_model(self, name): self.model.load_weights(name) # save the model which is under training def save_model(self, name): self.model.save_weights(name) if __name__ == "__main__": print("System path") print(sys.path) # Avoid Tensorflow eats up GPU memory config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.set_session(sess) game = DoomGame() # game.load_config("..\..\scenarios\defend_the_center.cfg") game.load_config("/Users/tesla/Downloads/ViZDoom-master/scenarios/defend_the_center.cfg") game.set_sound_enabled(True) game.set_screen_resolution(ScreenResolution.RES_640X480) game.set_window_visible(False) game.set_mode(Mode.PLAYER) game.init() game.new_episode("./episode_rec/ep1.lmp") game_state = game.get_state() misc = game_state.game_variables # [KILLCOUNT, AMMO, HEALTH] prev_misc = misc action_size = game.get_available_buttons_size() img_rows , img_cols = 64, 64 # Convert image into Black and white img_channels = 4 # We stack 4 frames # C51 num_atoms = 51 state_size = (img_rows, img_cols, img_channels) agent = C51Agent(state_size, action_size, num_atoms) agent.model = Networks.value_distribution_network(state_size, num_atoms, action_size, agent.learning_rate) agent.target_model = Networks.value_distribution_network(state_size, num_atoms, action_size, agent.learning_rate) x_t = game_state.screen_buffer # 480 x 640 x_t = preprocessImg(x_t, size=(img_rows, img_cols)) s_t = np.stack(([x_t]*4), axis=2) # It becomes 64x64x4 s_t = np.expand_dims(s_t, axis=0) # 1x64x64x4 is_terminated = game.is_episode_finished() # Start training epsilon = agent.initial_epsilon GAME = 0 t = 0 max_life = 0 # Maximum episode life (Proxy for agent performance) life = 0 # Buffer to compute rolling statistics tot_reward_buffer, life_buffer, ammo_buffer, kills_buffer, mavg_score, \ var_score, mavg_ammo_left, mavg_kill_counts, \ mavg_tot_rewards = [], [], [], [], [], [], [], [], [] losses_buffer, epsilon_buffer, stats_store = [], [], [] episode_co = 1 while not game.is_episode_finished(): loss = 0 r_t = 0 a_t = np.zeros([action_size]) # Epsilon Greedy action_idx = agent.get_action(s_t) a_t[action_idx] = 1 a_t = a_t.astype(int) game.set_action(a_t.tolist()) skiprate = agent.frame_per_action game.advance_action(skiprate) game_state = game.get_state() # Observe again after we take the action is_terminated = game.is_episode_finished() r_t = game.get_last_reward() #each frame we get reward of 0.1, so 4 frames will be 0.4 if (is_terminated): if (life > max_life): max_life = life GAME += 1 life_buffer.append(life) ammo_buffer.append(misc[1]) kills_buffer.append(misc[0]) print("Episode Finish ", misc) game.new_episode("./episode_rec/ep" + str(episode_co) + "_rec.lmp") episode_co += 1 game_state = game.get_state() misc = game_state.game_variables x_t1 = game_state.screen_buffer x_t1 = game_state.screen_buffer misc = game_state.game_variables x_t1 = preprocessImg(x_t1, size=(img_rows, img_cols)) x_t1 = np.reshape(x_t1, (1, img_rows, img_cols, 1)) s_t1 = np.append(x_t1, s_t[:, :, :, :3], axis=3) r_t = agent.shape_reward(r_t, misc, prev_misc, t) if (is_terminated): life = 0 else: life += 1 #update the cache prev_misc = misc # save the sample <s, a, r, s'> to the replay memory and decrease epsilon agent.replay_memory(s_t, action_idx, r_t, s_t1, is_terminated, t) # Do the training if t > agent.observe and t % agent.timestep_per_train == 0: loss = agent.train_replay() losses_buffer.append({'loss': loss, 'episode': GAME}) s_t = s_t1 t += 1 # save progress every 10000 iterations if t % 10000 == 0: print("Now we save model") agent.model.save_weights("./models/c51_ddqn.h5", overwrite=True) # print info state = "" if t <= agent.observe: state = "observe" elif t > agent.observe and t <= agent.observe + agent.explore: state = "explore" else: state = "train" if is_terminated: print("TIME", t, "/ GAME", GAME, "/ STATE", state, \ "/ EPSILON", agent.epsilon, "/ ACTION", action_idx, "/ REWARD", r_t, \ "/ LIFE", max_life, "/ LOSS", loss) epsilon_buffer.append(agent.epsilon) tot_reward_buffer.append(r_t) # Save Agent's Performance Statistics if GAME % agent.stats_window_size == 0 and t > agent.observe: print("Update Rolling Statistics") agent.mavg_score.append(np.mean(np.array(life_buffer))) agent.var_score.append(np.var(np.array(life_buffer))) agent.mavg_ammo_left.append(np.mean(np.array(ammo_buffer))) agent.mavg_kill_counts.append(np.mean(np.array(kills_buffer))) mavg_tot_rewards.append(np.mean(np.array(tot_reward_buffer))) # Reset rolling stats buffer life_buffer, ammo_buffer, kills_buffer = [], [], [] # Write Rolling Statistics to file with open("./c51_ddqn_stats.txt", "w") as stats_file: stats_file.write('Game: ' + str(GAME) + '\n') stats_file.write('Max Score: ' + str(max_life) + '\n') stats_file.write('mavg_score: ' + str(agent.mavg_score) + '\n') stats_file.write('var_score: ' + str(agent.var_score) + '\n') stats_file.write('mavg_ammo_left: ' + str(agent.mavg_ammo_left) + '\n') stats_file.write('mavg_kill_counts: ' + str(agent.mavg_kill_counts) + '\n') stats_file.write('mavg_rewards: ' + str(mavg_tot_rewards) + "\n") with open("./ddqn_pr_steps_stats" + str(GAME) + ".pickle", 'wb') as handle: pickle.dump(stats_store.append( {'game': GAME, 'max_score': max_life, 'mavg_score': agent.mavg_score, 'var_score': agent.var_score, 'mavg_ammo_left': agent.mavg_ammo_left, 'mavg_kill_counts': agent.mavg_kill_counts, 'mavg_tot_rewards': mavg_tot_rewards}), handle, protocol=pickle.HIGHEST_PROTOCOL) with open("./buffer_dic_data" + str(GAME) + ".pickle", 'wb') as handle: pickle.dump(stats_store.append({'life_buffer': life_buffer, 'ammo_buffer': ammo_buffer, 'kills_buffer': kills_buffer, 'tot_reward_buffer': tot_reward_buffer, 'losses': losses_buffer, 'epsilon': epsilon_buffer}), handle, protocol=pickle.HIGHEST_PROTOCOL)
729aafbd622a90e8bebf023ef2424d3fcf61b70c
afea9757be324c8def68955a12be11d71ce6ad35
/willyanealves/services/migrations/0014_auto_20201209_1623.py
aa5563d97e9d3dbc154b4da10bedc96ae1265e5e
[]
no_license
bergpb/willyane-alves
c713cac3ec3a68005f3b8145985693d2477ba706
8b2b9922ba35bf2043f2345228f03d80dbd01098
refs/heads/master
2023-02-10T19:57:50.893172
2021-01-11T16:17:14
2021-01-11T16:17:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
# Generated by Django 3.1.2 on 2020-12-09 19:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('stock', '0001_initial'), ('services', '0013_remove_kititem_price'), ] operations = [ migrations.AlterField( model_name='kititem', name='item', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='stockitem', to='stock.stock'), ), ]
041cf40053b8f029ba5b1f64754d2048cbb70f5e
2af6a5c2d33e2046a1d25ae9dd66d349d3833940
/res_bw/scripts/common/lib/idlelib/grepdialog.py
05f4b74a7d37f75455c785428aa681b07d431a4b
[]
no_license
webiumsk/WOT-0.9.12-CT
e6c8b5bb106fad71b5c3056ada59fb1aebc5f2b2
2506e34bd6634ad500b6501f4ed4f04af3f43fa0
refs/heads/master
2021-01-10T01:38:38.080814
2015-11-11T00:08:04
2015-11-11T00:08:04
45,803,240
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
4,154
py
# 2015.11.10 21:36:11 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/idlelib/GrepDialog.py import os import fnmatch import sys from Tkinter import * from idlelib import SearchEngine from idlelib.SearchDialogBase import SearchDialogBase def grep(text, io = None, flist = None): root = text._root() engine = SearchEngine.get(root) if not hasattr(engine, '_grepdialog'): engine._grepdialog = GrepDialog(root, engine, flist) dialog = engine._grepdialog searchphrase = text.get('sel.first', 'sel.last') dialog.open(text, searchphrase, io) class GrepDialog(SearchDialogBase): title = 'Find in Files Dialog' icon = 'Grep' needwrapbutton = 0 def __init__(self, root, engine, flist): SearchDialogBase.__init__(self, root, engine) self.flist = flist self.globvar = StringVar(root) self.recvar = BooleanVar(root) def open(self, text, searchphrase, io = None): SearchDialogBase.open(self, text, searchphrase) if io: path = io.filename or '' else: path = '' dir, base = os.path.split(path) head, tail = os.path.splitext(base) if not tail: tail = '.py' self.globvar.set(os.path.join(dir, '*' + tail)) def create_entries(self): SearchDialogBase.create_entries(self) self.globent = self.make_entry('In files:', self.globvar) def create_other_buttons(self): f = self.make_frame() btn = Checkbutton(f, anchor='w', variable=self.recvar, text='Recurse down subdirectories') btn.pack(side='top', fill='both') btn.select() def create_command_buttons(self): SearchDialogBase.create_command_buttons(self) self.make_button('Search Files', self.default_command, 1) def default_command(self, event = None): prog = self.engine.getprog() if not prog: return path = self.globvar.get() if not path: self.top.bell() return from idlelib.OutputWindow import OutputWindow save = sys.stdout try: sys.stdout = OutputWindow(self.flist) self.grep_it(prog, path) finally: sys.stdout = save def grep_it(self, prog, path): dir, base = os.path.split(path) list = self.findfiles(dir, base, self.recvar.get()) list.sort() self.close() pat = self.engine.getpat() print 'Searching %r in %s ...' % (pat, path) hits = 0 for fn in list: try: with open(fn) as f: for lineno, line in enumerate(f, 1): if line[-1:] == '\n': line = line[:-1] if prog.search(line): sys.stdout.write('%s: %s: %s\n' % (fn, lineno, line)) hits += 1 except IOError as msg: print msg print 'Hits found: %s\n(Hint: right-click to open locations.)' % hits if hits else 'No hits.' def findfiles(self, dir, base, rec): try: names = os.listdir(dir or os.curdir) except os.error as msg: print msg return [] list = [] subdirs = [] for name in names: fn = os.path.join(dir, name) if os.path.isdir(fn): subdirs.append(fn) elif fnmatch.fnmatch(name, base): list.append(fn) if rec: for subdir in subdirs: list.extend(self.findfiles(subdir, base, rec)) return list def close(self, event = None): if self.top: self.top.grab_release() self.top.withdraw() if __name__ == '__main__': import unittest unittest.main('idlelib.idle_test.test_grep', verbosity=2, exit=False) # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\idlelib\grepdialog.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.10 21:36:11 Střední Evropa (běžný čas)
489be89dfb47f43097ad446f460e1cbd05328464
2cfe527e8a5d9c44aa0f83574b1016ec35755446
/PyFunnels/PyF_theharvester.py
4b3c10eeaa1b0b57eb4a4a85d46a07744ac7e1e2
[ "MIT" ]
permissive
polling-repo-continua/PyFunnels
e3d7a6a89d0369914f5b7ca160c16ea9ebe025c6
f8089c3c39248eb1ef97f2681c43f76f55a07900
refs/heads/master
2022-02-14T12:07:09.866528
2019-08-13T17:52:07
2019-08-13T17:52:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,056
py
import xml.etree.ElementTree as ET class PyFtheHarvester: CAPABILITIES = ['domains', 'ips', 'emails'] def __init__(self, file, list_domains = [], list_ips = [], list_emails = [] ): self.file = file self.list_domains = list_domains self.list_ips = list_ips self.list_emails = list_emails self.tree = ET.parse(self.file) self.root = self.tree.getroot() def domains(self): for d in self.root.findall('host'): domain = d.find('hostname').text if domain not in self.list_domains: self.list_domains.append(domain) def ips(self): for i in self.root.findall('host'): ip = i.find('ip').text if ip not in self.list_ips: self.list_ips.append(ip) def emails(self): for e in self.root.findall('email'): email = e.text if email not in self.list_emails: self.list_emails.append(email)
c91563eee6c60960746a34671256bdc380a91e08
af3ec207381de315f4cb6dddba727d16d42d6c57
/dialogue-engine/test/programytest/storage/stores/nosql/mongo/store/test_sets.py
b4a1ce00829727f91194650b0127c7d2bb059299
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mcf-yuichi/cotoba-agent-oss
02a5554fe81ce21517f33229101013b6487f5404
ce60833915f484c4cbdc54b4b8222d64be4b6c0d
refs/heads/master
2023-01-12T20:07:34.364188
2020-11-11T00:55:16
2020-11-11T00:55:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,711
py
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest from programytest.storage.asserts.store.assert_sets import SetStoreAsserts from programy.storage.stores.nosql.mongo.store.sets import MongoSetsStore from programy.storage.stores.nosql.mongo.engine import MongoStorageEngine from programy.storage.stores.nosql.mongo.config import MongoStorageConfiguration import programytest.storage.engines as Engines class MongoSetsStoreTests(SetStoreAsserts): @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_initialise(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assertEqual(store.storage_engine, engine) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_set_storage(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_set_storage(store) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_upload_from_text(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_upload_from_text(store) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_upload_from_text_file(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_upload_from_text_file(store) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_upload_text_files_from_directory_no_subdir(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_upload_text_files_from_directory_no_subdir(store) @unittest.skip("CSV not supported yet") def test_upload_from_csv_file(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_upload_from_csv_file(store) @unittest.skip("CSV not supported yet") def test_upload_csv_files_from_directory_with_subdir(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoSetsStore(engine) self.assert_upload_csv_files_from_directory_with_subdir(store)
e7b6ed30d1d3b6ae95bd07204d6d545021943528
a3ffecad8d176142f0f9b7504503365b8e64bd69
/turtle2/n2.py
2bd41ffc2fb2ecbcdad4ab57df34e1a505316357
[]
no_license
dumb-anchovy/mipt_python_1sem
517a497d879be1f32530c023af2a9481430c024f
76d4f378ff74345ac3107d42ce16a68cc5d2e46f
refs/heads/main
2023-08-27T16:48:18.210559
2021-11-02T11:25:17
2021-11-02T11:25:17
410,534,058
0
0
null
null
null
null
UTF-8
Python
false
false
1,199
py
import turtle as t a0 = [0, 0, 40, 0, 0, -80, -40, 0, 0, 80, 0, 0] a1 = [0, -40, 40, 40, 0, -80, -40, 80] a2 = [0, 0, 40, 0, 0, -40, -40, -40, 40, 0, -40, 80] a3 = [0, 0, 40, 0, -40, -40, 40, 0, -40, -40, 0, 80] a4 = [0, 0, 0, -40, 40, 0, 0, -40, 0, 80, -40, 0] a5 = [40, 0, -40, 0, 0, -40, 40, 0, 0, -40, -40, 0, 0, 80] a6 = [40, 0, -40, -40, 0, -40, 40, 0, 0, 40, -40, 0, 0, 40] a7 = [0, 0, 40, 0, -40, -40, 0, -40, 0, 80] a8 = [0, 0, 40, 0, 0, -40, -40, 0, 0, -40, 40, 0, 0, 40, -40, 0, 0, 40, 0, 0] a9 = [0, -80, 40, 40, 0, 40, -40, 0, 0, -40, 40, 0, -40, 40] al = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] def ch(a): x = t.xcor() y = t.ycor() for n in range(0, len(a), 2): if (n == 0) or (n == len(a) - 2): x += a[n] y += a[n + 1] t.penup() t.goto(x, y) t.pendown() else: x += a[n] y += a[n + 1] t.goto(x, y) x = -370 y = 0 t.penup() t.goto(x, y) t.pendown() #141700 k = [1, 4, 1, 7, 0, 0] for j in k: ch(al[j]) x = t.xcor() y = t.ycor() t.penup() t.goto(x + 80, y) t.pendown() t.exitonclick()
c941709fbed0b9fa452dac0e4e3ea4916d99de51
3b630e8ffae16049b09ea90b3d4af4e2c7b9483b
/firstphy.py
35ea0b20e4778b407114c119c477c625d43f2d8e
[]
no_license
shafifx/myhub
fe91a2d46c0ba7f7d58057e1d05aecc067989fc9
a3939fe4743a80535af1334f1f7fc78f28482745
refs/heads/main
2023-06-06T22:34:09.271540
2021-07-08T16:17:53
2021-07-08T16:17:53
383,184,433
0
0
null
2021-07-08T16:17:53
2021-07-05T15:21:38
Python
UTF-8
Python
false
false
43
py
hry pythonhttps://github.com/shafifx/myhub
78f31a9c174255d188697506e1941c866f62891c
8f949493064b77dd3f19ceeed1e86382ace176d6
/posts/urls.py
3f113ad6817989d01a71ca2970489a00507bc58f
[]
no_license
sudhanshu-jha/simplesocial
44a19a1b1051dcc8577de5d87660a5b890b829d1
6d40293be75703d5498025150acf9e91bae6f77c
refs/heads/master
2020-04-17T07:41:54.207867
2019-01-18T10:24:14
2019-01-18T10:24:14
135,698,629
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
from django.conf.urls import url from . import views app_name = "posts" urlpatterns = [ url(r"^$", views.PostList.as_view(), name="all"), url(r"new/$", views.CreatePost.as_view(), name="create"), url(r"by/(?P<username>[-\w]+)/$", views.UserPosts.as_view(), name="for_user"), url( r"by/(?P<username>[-\w]+)/(?P<pk>\d+)/$", views.PostDetail.as_view(), name="single", ), url(r"delete/(?P<pk>\d+)/$", views.DeletePost.as_view(), name="delete"), ]
c82b677441afb16074f0386638f5da0f86f9303e
56a8d1f72b005bd52560c3804541be729876aa9f
/rotation.py
2f05ebde4daf3525b7c39a173e8cbb402cf3dc59
[]
no_license
drrobotk/pycodilitytests
e5e13c9dd683207290e598e577d73555c0ef29ed
acb5a8ad52135fa327fb97d7c42f95ae23cb3389
refs/heads/master
2021-04-14T03:16:33.397722
2020-03-22T15:23:57
2020-03-22T15:23:57
249,203,592
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
# you can write to stdout for debugging purposes, e.g. # print("this is a debug message") def solution(A, K): k = 0 # write your code in Python 3.6 if len(A) != 0: for i in range(K): k = A[len(A)-1] A.pop() A.insert(0,k) return A if __name__ == '__main__': A = [] K = 3 result = solution(A, K) print(result)
0f0a43f2a910cb3bd27dccab958083608f47a592
0258e0c9595406ceb3de32067aff776bc2a58fa8
/06_p12.py
a649f413d98bebdcef131856db0da2a3d6949b5d
[]
no_license
akromibn37/python_code
72c016c361b3ba2e04c83e1d1a703171b0bd8819
41d1a09f8ec8696e37ad83c1a0cb6506c7f0f4f6
refs/heads/master
2020-03-21T22:57:25.111642
2018-06-29T14:14:33
2018-06-29T14:14:33
139,157,588
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
data = input().strip() l = [] for x in range(len(data)): l.append(data[x]) num = int(input().strip()) out = "" i = 0 while i<num: out = "" command = [e for e in input().split()] if command[0] == "in": l.insert(int(command[2]),command[1]) elif command[0] == "out": l.pop(int(command[1])) elif command[0] == "swap": x = l[int(command[1])] y = l[int(command[2])] l[int(command[1])] = y l[int(command[2])] = x for j in range(len(l)): out += l[j] print(out) i+=1
8ab81a05046b4fbe1d20f70062f9411fee994e8d
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_to_M_Gk3_no_pad/pyr_Tcrop255_pad20_jit15/Sob_k17_s001/pyr_4s/L4/step10_a.py
75773149c2e2458db22e88582b00384156b134b7
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
41,921
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_4side_L4 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_I_gt_MC use_loss_obj = [G_sobel_k17_loss_info_builder.set_loss_target("UNet_Mask").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# # 1 3 6 10 15 21 28 36 45 55 # side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # side2 OK 4 ch032_1side_2__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 ch032_1side_3__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 ch032_1side_4__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 ch032_1side_5__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
a39cbb706ac3420712b45eb050eae01efddba13e
1e3f458b297b349eb875aebab254e05cdad2458e
/guessno.py
6d6b1cee5d25c4ad5b2e5dd171bb21ffbf8c8694
[]
no_license
mezeru/Python_Coding
899169e162d01a2a1f6f043e45f3b07dc68e1001
99941431025b5c35731903dabb6c9e6106f59fcc
refs/heads/master
2023-07-04T11:51:28.174018
2021-08-06T20:05:58
2021-08-06T20:05:58
255,226,334
2
0
null
null
null
null
UTF-8
Python
false
false
466
py
import random def rnum(): return (random.randint(0,10)) fnum=rnum() cou = 0 while True: print("Guesses the no :") cou=cou+1 G=int(input()) if fnum == G : print("You guessed right in " + str(cou)+" Guess") break elif fnum > G: print("You guessed LOW") continue elif fnum < G: print("You guessed High") continue else: continue
a3832070b1ec7002d6f2dd0a9f5bd280d29a3962
1fe8d4133981e53e88abf633046060b56fae883e
/venv/lib/python3.8/site-packages/tensorflow/python/keras/layers/cudnn_recurrent 2.py
96ae66c775e623fff4738688d4f11005c5261b33
[]
no_license
Akira331/flask-cifar10
6c49db8485038731ce67d23f0972b9574746c7a7
283e7a2867c77d4b6aba7aea9013bf241d35d76c
refs/heads/master
2023-06-14T16:35:06.384755
2021-07-05T14:09:15
2021-07-05T14:09:15
382,864,970
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:52c49577848819c4116b99c29c11e765e7a2d686e7ccb4dc7b84454bdf31510f size 20854
170eb1cf38678e8baf10258b548535244e7f2996
12df1e58fe493c4a929e6d54a938f9b357964701
/Day-5 Closest Value in BST.py
68d748a07e7b9618aa7fce5bd8d1b7190170c74e
[]
no_license
Anshul-Dagar/100-Day-Coding-Challenge
132dadc50b572428c7e33ceda329770d8766965a
33f10cc6357d4ca3fa8a16cc954f6559f39e73bb
refs/heads/main
2023-02-12T04:04:12.389433
2021-01-09T13:56:36
2021-01-09T13:56:36
326,140,337
0
0
null
null
null
null
UTF-8
Python
false
false
1,768
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 6 19:30:49 2021 @author: ironman """ class BST: def __init__(self,value): self.value=value self.left=None self.right=None def insert(self,value): currentnode=self while True: if value<currentnode.value: if currentnode.left is None: currentnode.left=BST(value) break else: currentnode=currentnode.left else: if currentnode.right is None: currentnode.right=BST(value) break else: currentnode=currentnode.right return self def contain(self,value): currentnode=self while currentnode is not None: if value<currentnode.value: currentnode=currentnode.left elif value>currentnode.value: currentnode=currentnode.right else: return True return False def findClosestValueInBst(target,tree): return findClosestValueInBstHelper(target,tree,float("inf")) def findClosestValueInBstHelper(target,tree,closest): currentnode=tree while currentnode is not None: if abs(target-closest)>abs(target-currentnode.value): closest=currentnode.value if target>currentnode.value: currentnode=currentnode.right elif target<currentnode.value: currentnode=currentnode.left else: break return closest tree=BST(10) tree.insert(5) tree.insert(15) tree.insert(2) tree.insert(5) tree.insert(1) ans=findClosestValueInBst(9,tree) print(ans)
4f763a66d6c6077358c6dadee57b52bddcadf918
2a9572e6f1cfb329a12d6835071483ec89ec6538
/flask_test/flask_blog.py
1ceec00beaf74f9b274f237f1860dfff21615f7f
[]
no_license
Cezar04/petproject
c8a4c810a8b05d0645dc36601539034dc35be6b5
9093d2435f779235db5f9e79417395e4dd13e8b0
refs/heads/master
2022-11-13T11:12:29.785362
2020-07-03T11:14:25
2020-07-03T11:14:25
276,875,375
0
0
null
null
null
null
UTF-8
Python
false
false
1,859
py
from flask import Flask, render_template, url_for, flash, redirect, request from forms import registration_form, login_form, post_form import data_manager app = Flask(__name__) app.config['SECRET_KEY'] = 'haker' posts = [ {"author":"Gigel", "title": "blog post 1", "content":"First post content", "date_posted": "marite 200001"}, {"author":"Gina gaina", "title": "blog post 2", "content":"First post content", "date_posted": "marite 202"} ] @app.route('/') @app.route('/home') def home(): return render_template('home.html', posts=posts) @app.route('/about') def about(): return render_template("about.html") @app.route('/register', methods=["GET", "POST"]) def register(): form = registration_form() if form.validate_on_submit(): flash(f"Account created for {form.username.data}!", "success") return redirect(url_for("home")) return render_template("register.html", title="Register", form=form) @app.route('/login', methods=["GET", "POST"]) def login(): form = login_form() if form.validate_on_submit(): if form.email.data == "[email protected]" and form.password.data == "1234": flash('You are logged in!', 'success') return redirect(url_for('home')) else: flash("Login failed, check username and password", 'danger') return render_template("login.html", title="Login", form=form) @app.route('/post/new', methods=["GET", "POST"]) def new_post(): form = post_form() if form.validate_on_submit(): # post = posts(title=form.title.data, author=form.content.data, content=form.content.data) flash("Post Created", "success") return redirect(url_for("home")) return render_template("create_post.html", title="New Post", form=form) if __name__ == "__main__": app.run(debug=True)
6e40ec6f6b3b14aa33b9e1e5a07f218ba7ee36e0
00d2f3fde2c3d9e03a1babc958e35285d5798352
/removedependent.py
626bf7416873208dd75191cd10f065def3a4c318
[]
no_license
N-S-Krishnan/Database-GUI-Elmasri-and-Navathe-
14043e90c2e25e6c5ab080cc5efe985731479b93
f8a60edad75505ad0587f3a3562cfc14cc0d018f
refs/heads/main
2023-04-22T07:34:54.141788
2021-04-26T01:07:05
2021-04-26T01:07:05
361,572,801
0
0
null
null
null
null
UTF-8
Python
false
false
9,474
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'removedependent.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMessageBox from PyQt5.QtWidgets import QTableWidgetItem import mysql.connector from PyQt5.QtCore import QRegExp from PyQt5.QtGui import QRegExpValidator class Ui_RemoveDependent(object): passedssn = -1 deldepname = "" db = None # mysql connection def __init__(self, obj): self.passedssn = obj.textEdit.text() def setupUi(self, RemoveDependent): RemoveDependent.setObjectName("RemoveDependent") RemoveDependent.resize(700, 505) self.buttonBox = QtWidgets.QDialogButtonBox(RemoveDependent) self.buttonBox.setGeometry(QtCore.QRect(310, 420, 321, 31)) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Close) self.buttonBox.setObjectName("buttonBox") self.verticalLayoutWidget = QtWidgets.QWidget(RemoveDependent) self.verticalLayoutWidget.setGeometry(QtCore.QRect(30, 80, 641, 201)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.tabdependents = QtWidgets.QTableWidget(self.verticalLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tabdependents.sizePolicy().hasHeightForWidth()) self.tabdependents.setSizePolicy(sizePolicy) self.tabdependents.setMinimumSize(QtCore.QSize(639, 0)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.tabdependents.setFont(font) self.tabdependents.setAutoFillBackground(True) self.tabdependents.setGridStyle(QtCore.Qt.SolidLine) self.tabdependents.setRowCount(10) self.tabdependents.setColumnCount(4) self.tabdependents.setObjectName("tabdependents") item = QtWidgets.QTableWidgetItem() self.tabdependents.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.tabdependents.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.tabdependents.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.tabdependents.setHorizontalHeaderItem(3, item) self.tabdependents.horizontalHeader().setSortIndicatorShown(False) self.verticalLayout.addWidget(self.tabdependents) self.label_2 = QtWidgets.QLabel(RemoveDependent) self.label_2.setGeometry(QtCore.QRect(30, 360, 161, 16)) self.label_2.setObjectName("label_2") self.empssn = QtWidgets.QLineEdit(RemoveDependent) self.empssn.setGeometry(QtCore.QRect(90, 20, 101, 31)) self.empssn.setObjectName("empssn") self.gobutton = QtWidgets.QPushButton(RemoveDependent) self.gobutton.setGeometry(QtCore.QRect(40, 420, 93, 28)) self.gobutton.setObjectName("gobutton") self.dname = QtWidgets.QTextEdit(RemoveDependent) self.dname.setGeometry(QtCore.QRect(230, 350, 271, 31)) self.dname.setObjectName("dname") self.label = QtWidgets.QLabel(RemoveDependent) self.label.setGeometry(QtCore.QRect(30, 20, 71, 21)) self.label.setObjectName("label") self.empname = QtWidgets.QLabel(RemoveDependent) self.empname.setGeometry(QtCore.QRect(240, 20, 71, 21)) self.empname.setObjectName("empname") self.empname_2 = QtWidgets.QTextEdit(RemoveDependent) self.empname_2.setGeometry(QtCore.QRect(310, 20, 261, 31)) self.empname_2.setObjectName("empname_2") self.label_6 = QtWidgets.QLabel(RemoveDependent) self.label_6.setGeometry(QtCore.QRect(30, 310, 121, 16)) self.label_6.setObjectName("label_6") self.depcount = QtWidgets.QTextEdit(RemoveDependent) self.depcount.setGeometry(QtCore.QRect(210, 300, 31, 31)) self.depcount.setObjectName("depcount") self.retranslateUi(RemoveDependent) self.buttonBox.rejected.connect(RemoveDependent.reject) QtCore.QMetaObject.connectSlotsByName(RemoveDependent) self.empssn.setText(self.passedssn) self.empssn.setDisabled(True) self.select_data() self.tabdependents.clicked.connect(self.select_depname) self.gobutton.clicked.connect(self.processdelete) def retranslateUi(self, RemoveDependent): _translate = QtCore.QCoreApplication.translate RemoveDependent.setWindowTitle(_translate("RemoveDependent", "RemoveDependent")) self.tabdependents.setSortingEnabled(True) item = self.tabdependents.horizontalHeaderItem(0) item.setText(_translate("RemoveDependent", "Name")) item = self.tabdependents.horizontalHeaderItem(1) item.setText(_translate("RemoveDependent", "Sex")) item = self.tabdependents.horizontalHeaderItem(2) item.setText(_translate("RemoveDependent", "Date of Birth")) item = self.tabdependents.horizontalHeaderItem(3) item.setText(_translate("RemoveDependent", "Relationship")) self.label_2.setText(_translate("RemoveDependent", "Name to Delete:")) self.gobutton.setText(_translate("RemoveDependent", "Delete")) self.label.setText(_translate("RemoveDependent", "Emp SSN")) self.empname.setText(_translate("RemoveDependent", "Emp Name")) self.label_6.setText(_translate("RemoveDependent", "Dependent Count")) def select_data(self): # Retrieve data on existing dependents that correspond to an ssn value given try: #print("select dependents") self.db = mysql.connector.connect(option_files='mydb.conf') cursor = self.db.cursor() cursor.execute("select concat(fname, ' ', minit,' ', lname) empname from employee where ssn =" + str(self.passedssn) + " for update ") for row in cursor: self.empname_2.setText(row[0]) #print(row) self.empname_2.setDisabled(True) nrows = cursor.rowcount #print('nrows', nrows) if nrows <= 0 : msg = QtWidgets.QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("No employee with ssn "+ str(self.passedssn)) msg.setWindowTitle("Add Dependent") msg.exec() self.reject() cursor.execute("select dependent_name, sex, bdate, relationship from dependent where essn =" + str(self.passedssn) + " for update ") result = cursor.fetchall() nrows = cursor.rowcount self.depcount.setText(str(nrows)) self.depcount.setDisabled(True) self.tabdependents.setRowCount(0) for rnum, rdata in enumerate(result): self.tabdependents.insertRow(rnum) for colnum, cdata in enumerate(rdata): self.tabdependents.setItem(rnum, colnum,QTableWidgetItem(str(cdata))) #self.tabdependents.setDisabled(True) except mysql.connector.Error as e: msg = QtWidgets.QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("SQL Error "+ str(e.msg)) msg.setWindowTitle("Add Dependent") msg.exec() def select_depname(self, item): cellContent = item.data() #print(cellContent) # test #sf = "You clicked on {} {}".format(item.row(), item.column()) #print(sf) myrow = item.row() mycol = item.column() if mycol == 0: self.dname.setText(cellContent) self.deldepname = cellContent def processdelete(self, item): if self.dname != "": self.db = mysql.connector.connect(option_files='mydb.conf') cursor = self.db.cursor() # The number of variables we pass to the delete query is small enough where we can place them directly into # the string that forms the sql query cursor.execute("delete from dependent where essn =" + str(self.passedssn)+" and dependent_name = '"+self.deldepname+"'") self.db.commit() msg = QtWidgets.QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("Deleted dependent with essn "+ str(self.passedssn) + " dep name '" + self.deldepname +"'") msg.setWindowTitle("Delete Dependent") msg.exec() self.dname.setText("") self.select_data() def reject(self): #print("in reject") self.db.commit() self._close() QDialog.reject(self)
de3fe45a87e82c646b0708bb94ef18a5f539f842
4d675034878c4b6510e1b45b856cc0a71af7f886
/mmdet/models/seg_heads/panoptic_fusion_heads/heuristic_fusion_head.py
06c1de2b9010fef13bd2322bbd3352d82a1f3e2f
[ "Apache-2.0", "BSD-2-Clause-Views", "MIT", "BSD-2-Clause" ]
permissive
shinya7y/UniverseNet
101ebc2ad8f15482ee45ea8d6561aa338a0fa49e
3652b18c7ce68122dae7a32670624727d50e0914
refs/heads/master
2023-07-22T08:25:42.646911
2023-07-08T18:09:34
2023-07-08T18:09:34
263,555,721
407
58
Apache-2.0
2023-01-27T01:13:31
2020-05-13T07:23:43
Python
UTF-8
Python
false
false
4,482
py
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
bded7a0abc4bf1dc4955561f7e0715bcba19006f
7bd5ca970fbbe4a3ed0c7dadcf43ba8681a737f3
/codeforces/cf326-350/cf334/b.py
3d79209e1a77d7ad5f7c126cf1c70b802e0ece89
[]
no_license
roiti46/Contest
c0c35478cd80f675965d10b1a371e44084f9b6ee
c4b850d76796c5388d2e0d2234f90dc8acfaadfa
refs/heads/master
2021-01-17T13:23:30.551754
2017-12-10T13:06:42
2017-12-10T13:06:42
27,001,893
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
# -*- coding: utf-8 -*- import sys,copy,math,heapq,itertools as it,fractions,re,bisect,collections as coll mod = 10**9 + 7 class UnionFind: def __init__(self, size): self.rank = [0] * size self.par = range(size) self.g_num = size def find(self, x): if x == self.par[x]: return x self.par[x] = self.find(self.par[x]) return self.par[x] def same(self, x, y): return self.find(x) == self.find(y) def unite(self, x, y): x, y = self.find(x), self.find(y) if x == y: return self.g_num -= 1 if (self.rank[x] > self.rank[y]): self.par[y] = x else: self.par[x] = y if (self.rank[x] == self.rank[y]): self.rank[y] += 1 def group_num(self): return self.g_num #prime = [1] * 1000005 #prime[0] = prime[1] = 0 #for i in xrange(int(1000005**0.5) + 1): # if prime[i]: # prime[2*i::i] = [0] * len(prime[2*i::i]) p, k = map(int, raw_input().split()) if k == 0: print pow(p, p - 1, mod) exit() uf = UnionFind(p) cnt = 0 for x in xrange(p): if x == k*x % p: if k > 1: cnt += 1 else: uf.unite(x, k*x % p) ans = pow(p, uf.group_num() - cnt, mod) print ans
f4777bda143cb4bb504692f3c4f72056032d0fb3
ce7c501af175bcf7834d2f2b896bb6b7f8527bce
/main.py
290f602c537818c5f2dc519cb94786b326e956aa
[]
no_license
Harikrishnan6336/Python_Learn_From_Home
b167657c8a8661dbb87e4c9263f9ab2555af4426
7d2567e11e6c45a44627108b194cbbd74c963cd7
refs/heads/master
2021-03-30T09:45:01.294468
2020-03-17T19:54:10
2020-03-17T19:54:10
248,039,844
1
1
null
null
null
null
UTF-8
Python
false
false
2,640
py
#This code is meant to be submitted to Python Learn From Home program by TinkerHub class Tech: info = {} #The key of the dictionary is the name of the participant. #And the value is a list comprising of [stack, designation, available time] # Adds the tech stack of the participant def addStacks(self,name): stack=input("\nThe available Stacks are : Python, GO, Web, UI/UX, Flutter \nEnter a stack you are expert at/interested in[Case sensitive] : ") self.info[name] = [None, None, None] if name in self.info: self.info[name][0] = stack return # Sets a participant as a mentor or a learner # 1 denotes Mentor and 2 denotes Learner def setMentorOrLearner(self,name): desig = int(input("\nAre you a \n1.Mentor\n2.Learner\n\nEnter your choice : ")) if name in self.info: self.info[name][1] = desig return # Sets the available time for a mentor def setAvailableTime(self,name): if self.info[name][1] == 1 : available_time=int(input("\nEnter available time(in minutes) : ")) if name in self.info: self.info[name][2] = available_time return #Gives the mentors satisfying the given specifications def getMentor(self,stack,time): flag = 0 print("\nThe available mentors are : ") for mentor in self.info: if self.info[mentor][0] == stack and self.info[mentor][2] >= time: print("{} ".format(mentor)) flag = 1 if flag == 0: print("None") return obj = Tech() go = True while go: # A menu-driven program print("\nWELCOME Tech learner/mentor") print("\nMENU") print("\n[1].Enter the details of a participant") print("[2].Check the availablity of mentors") print("[3].EXIT") choice = int(input("\nEnter your choice : ")) if(choice == 1): name = input("\nEnter your name : ") obj.addStacks(name) obj.setMentorOrLearner(name) obj.setAvailableTime(name) elif(choice == 2): stack=input("\nThe available Stacks are : Python, GO, Web, UI/UX, Flutter,\nEnter a stack you are interested in learning [Case sensitive] : ") time=int(input("Enter the required time you need mentoring for : ")) obj.getMentor(stack,time) elif(choice == 3): print("\nExiting \nThank You") break else: print("INVALID CHOICE!!!") flag = input("\nDo you want to continue (Y/N)? ") if(flag == 'n' or flag == 'N'): print("\nExiting \nThank You") go = False
098998f8d95c610204722f8f0990286191492db1
e9a0efee2089b1c3bf843633c7b226638bc09e0d
/DataStructures and Algorithms/Ammortization onArrays/CaesarCipher.py
5bb577ea9668f61442f19fefda679a1816f4a8c4
[ "MIT" ]
permissive
abhishekratnam/Datastructuresandalgorithmsinpython
41226cf41d288e24dbe9cd9643650151cb2a1037
9339319f441755797f4d2818ac9cf742a63ab5ea
refs/heads/master
2020-04-15T03:16:24.337787
2019-02-01T23:47:52
2019-02-01T23:47:52
164,342,637
0
0
null
null
null
null
UTF-8
Python
false
false
1,445
py
class CaesarCipher: """Class for doing encryption and decryption using a Caesar Cipher.""" def __init__(self,shift): """Construct Caesar Cipher using given integer shift for rotation.""" encoder = [None] * 26 decoder = [None] * 26 for k in range(26): encoder[k] = chr((k + shift)%26 + ord('A')) decoder[k] = chr((k - shift)%26 + ord('A')) self._forward = ''.join(encoder) self._backward = ''.join(decoder) def encrypt(self, message): """Return string representing encripted message.""" return self._transform(message, self._forward) def decrypt(self, secret): """Returns the decrypted message with given secret.""" return self._transform(secret, self._backward) def _transform(self, original, code): """Utility to perform transformation based on given code string.""" msg = list(original) for k in range(len(msg)): if msg[k].isupper(): j = ord(msg[k]) - ord('A') msg[k] = code[j] return ''.join(msg) if __name__ == '__main__': cipher = CaesarCipher(3) message = "THE EAGLE IS IN PLAY; MEET AT JOE'S." coded = cipher.encrypt(message) print('Secret:', coded) answer = cipher.decrypt(coded) print('Message: ', answer)
0e28bd12d0e6eb69f2357634329e50e95b087d15
8444ea5cd42c09a7061b481fcb8135f72201d57e
/FileMiner/setup.py
34c5deb70de7b44f9bacfa68b8bc8558705ba4a0
[ "MIT" ]
permissive
Igerald/FileMiner-PythonPackageConcept
9c7489bd5b4f75da713756c3a296cc5f6cd6c7d3
77ab9884a0e3848613fa75a5a143072cd3e6122c
refs/heads/master
2020-09-20T13:13:53.682202
2019-11-27T18:26:47
2019-11-27T18:26:47
224,491,955
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
import setuptools with open("README.md",'r') as f: long_text = f.read() setuptools.setup( name = "FileMiner", version = "1.0.0", author = "Isaiah Gerald", author_email = "[email protected]", description = "pkg-template-description", long_description = long_text, long_description_content_type = "text/markdown", url = "https://github.com/pypa/sampleproject", packages = setuptools.find_packages(), classifiers = ["Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent",], )
8eefdcd0f560f9474b98e085a4292b064e7dce77
65329299fca8dcf2e204132624d9b0f8f8f39af7
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/mt_ipv6_reachability/prefixes/prefix/subTLVs/__init__.py
21732f34697d6d2ac9444bb3316752278e827cf6
[ "Apache-2.0" ]
permissive
darylturner/napalm-yang
bf30420e22d8926efdc0705165ed0441545cdacf
b14946b884ad2019b896ee151285900c89653f44
refs/heads/master
2021-05-14T12:17:37.424659
2017-11-17T07:32:49
2017-11-17T07:32:49
116,404,171
0
0
null
2018-01-05T16:21:37
2018-01-05T16:21:36
null
UTF-8
Python
false
false
11,048
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import subTLVs_ class subTLVs(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/mt-ipv6-reachability/prefixes/prefix/subTLVs. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container describes IS prefix sub-TLVs. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__subTLVs',) _yang_name = 'subTLVs' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__subTLVs = YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'levels', u'level', u'link-state-database', u'lsp', u'tlvs', u'tlv', u'mt-ipv6-reachability', u'prefixes', u'prefix', u'subTLVs'] def _get_subTLVs(self): """ Getter method for subTLVs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/mt_ipv6_reachability/prefixes/prefix/subTLVs/subTLVs (list) YANG Description: List of subTLV types in the LSDB for the specified TLV. """ return self.__subTLVs def _set_subTLVs(self, v, load=False): """ Setter method for subTLVs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/mt_ipv6_reachability/prefixes/prefix/subTLVs/subTLVs (list) If this variable is read-only (config: false) in the source YANG file, then _set_subTLVs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_subTLVs() directly. YANG Description: List of subTLV types in the LSDB for the specified TLV. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """subTLVs must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False)""", }) self.__subTLVs = t if hasattr(self, '_set'): self._set() def _unset_subTLVs(self): self.__subTLVs = YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) subTLVs = __builtin__.property(_get_subTLVs) _pyangbind_elements = {'subTLVs': subTLVs, } import subTLVs_ class subTLVs(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/mt-ipv6-reachability/prefixes/prefix/subTLVs. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container describes IS prefix sub-TLVs. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__subTLVs',) _yang_name = 'subTLVs' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__subTLVs = YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'levels', u'level', u'link-state-database', u'lsp', u'tlvs', u'tlv', u'mt-ipv6-reachability', u'prefixes', u'prefix', u'subTLVs'] def _get_subTLVs(self): """ Getter method for subTLVs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/mt_ipv6_reachability/prefixes/prefix/subTLVs/subTLVs (list) YANG Description: List of subTLV types in the LSDB for the specified TLV. """ return self.__subTLVs def _set_subTLVs(self, v, load=False): """ Setter method for subTLVs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/mt_ipv6_reachability/prefixes/prefix/subTLVs/subTLVs (list) If this variable is read-only (config: false) in the source YANG file, then _set_subTLVs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_subTLVs() directly. YANG Description: List of subTLV types in the LSDB for the specified TLV. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """subTLVs must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False)""", }) self.__subTLVs = t if hasattr(self, '_set'): self._set() def _unset_subTLVs(self): self.__subTLVs = YANGDynClass(base=YANGListType("subtlv_type",subTLVs_.subTLVs, yang_name="subTLVs", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='subtlv-type', extensions=None), is_container='list', yang_name="subTLVs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=False) subTLVs = __builtin__.property(_get_subTLVs) _pyangbind_elements = {'subTLVs': subTLVs, }