|
--- |
|
license: apache-2.0 |
|
tags: |
|
- natural-language-understanding |
|
language_creators: |
|
- expert-generated |
|
- machine-generated |
|
multilinguality: |
|
- multilingual |
|
pretty_name: Polyglot or Not? Fact-Completion Benchmark |
|
size_categories: |
|
- 100K<n<1M |
|
task_categories: |
|
- text-generation |
|
- fill-mask |
|
- text2text-generation |
|
dataset_info: |
|
features: |
|
- name: dataset_id |
|
dtype: string |
|
- name: stem |
|
dtype: string |
|
- name: 'true' |
|
dtype: string |
|
- name: 'false' |
|
dtype: string |
|
- name: relation |
|
dtype: string |
|
- name: subject |
|
dtype: string |
|
- name: object |
|
dtype: string |
|
splits: |
|
- name: English |
|
num_bytes: 3474255 |
|
num_examples: 26254 |
|
- name: Spanish |
|
num_bytes: 3175733 |
|
num_examples: 18786 |
|
- name: French |
|
num_bytes: 3395566 |
|
num_examples: 18395 |
|
- name: Russian |
|
num_bytes: 659526 |
|
num_examples: 3289 |
|
- name: Portuguese |
|
num_bytes: 4158146 |
|
num_examples: 22974 |
|
- name: German |
|
num_bytes: 2611160 |
|
num_examples: 16287 |
|
- name: Italian |
|
num_bytes: 3709786 |
|
num_examples: 20448 |
|
- name: Ukrainian |
|
num_bytes: 1868358 |
|
num_examples: 7918 |
|
- name: Polish |
|
num_bytes: 1683647 |
|
num_examples: 9484 |
|
- name: Romanian |
|
num_bytes: 2846002 |
|
num_examples: 17568 |
|
- name: Czech |
|
num_bytes: 1631582 |
|
num_examples: 9427 |
|
- name: Bulgarian |
|
num_bytes: 4597410 |
|
num_examples: 20577 |
|
- name: Swedish |
|
num_bytes: 3226502 |
|
num_examples: 21576 |
|
- name: Serbian |
|
num_bytes: 1327674 |
|
num_examples: 5426 |
|
- name: Hungarian |
|
num_bytes: 865409 |
|
num_examples: 4650 |
|
- name: Croatian |
|
num_bytes: 1195097 |
|
num_examples: 7358 |
|
- name: Danish |
|
num_bytes: 3580458 |
|
num_examples: 23365 |
|
- name: Slovenian |
|
num_bytes: 1299653 |
|
num_examples: 7873 |
|
- name: Dutch |
|
num_bytes: 3732795 |
|
num_examples: 22590 |
|
- name: Catalan |
|
num_bytes: 3319466 |
|
num_examples: 18898 |
|
download_size: 27090207 |
|
dataset_size: 52358225 |
|
language: |
|
- en |
|
- fr |
|
- es |
|
- de |
|
- uk |
|
- bg |
|
- ca |
|
- da |
|
- hr |
|
- hu |
|
- it |
|
- nl |
|
- pl |
|
- pt |
|
- ro |
|
- ru |
|
- sl |
|
- sr |
|
- sv |
|
- cs |
|
--- |
|
|
|
# Dataset Card |
|
|
|
- **Homepage:** https://bit.ly/ischool-berkeley-capstone |
|
- **Repository:** https://github.com/daniel-furman/Capstone |
|
- **Point of Contact:** daniel[email protected] |
|
|
|
## Dataset Summary |
|
|
|
This is the dataset for **Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models**. |
|
|
|
## Test Description |
|
|
|
Given a factual association such as *The capital of France is **Paris***, we determine whether a model adequately "knows" this information with the following test: |
|
|
|
* Step **1**: prompt the model to predict the likelihood of the token **Paris** following *The Capital of France is* |
|
|
|
* Step **2**: prompt the model to predict the average likelihood of a set of false, counterfactual tokens following the same stem. |
|
|
|
If the value from **1** is greater than the value from **2** we conclude that model adequately recalls that fact. Formally, this is an application of the Contrastive Knowledge Assessment proposed in [[1][bib]]. |
|
|
|
For every foundation model of interest (like [LLaMA](https://arxiv.org/abs/2302.13971)), we perform this assessment on a set of facts translated into 20 languages. All told, we score foundation models on 303k fact-completions ([results](https://github.com/daniel-furman/capstone#multilingual-fact-completion-results)). |
|
|
|
We also score monolingual models (like [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)) on English-only fact-completion ([results](https://github.com/daniel-furman/capstone#english-fact-completion-results)). |
|
|
|
## Languages |
|
|
|
The dataset covers 20 languages, which use either the Latin or Cyrillic scripts: bg, ca, cs, da, de, en, es, fr, hr, hu, it, |
|
nl, pl, pt, ro, ru, sl, sr, sv, uk. |
|
|
|
## Data Splits |
|
|
|
The dataset splits correspond to the 20 languages above. |
|
|
|
## Source Data |
|
|
|
We sourced the English cut of the dataset from [1] and [2] and used the Google Translate API to produce the other 19 language cuts. |
|
|
|
## Licensing Information |
|
|
|
The dataset is licensed under the Apache 2.0 license and may be used with the corresponding affordances without limit. |
|
|
|
## Citation Information |
|
|
|
``` |
|
@misc{schott2023polyglot, |
|
doi = {10.48550/arXiv.2305.13675}, |
|
title={Polyglot or Not? Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models}, |
|
author={Tim Schott and Daniel Furman and Shreshta Bhat}, |
|
year={2023}, |
|
eprint={2305.13675, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## Bibliography |
|
|
|
[1] Dong, Qingxiu, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. "Calibrating Factual Knowledge in Pretrained Language Models". In Findings of the Association for Computational Linguistics: EMNLP 2022. [arXiv:2210.03329][cka] (2022). |
|
|
|
``` |
|
@misc{dong2022calibrating, |
|
doi = {10.48550/arXiv.2210.03329}, |
|
title={Calibrating Factual Knowledge in Pretrained Language Models}, |
|
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li}, |
|
year={2022}, |
|
eprint={2210.03329}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
[2] Meng, Kevin, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. "Mass Editing Memory in a Transformer." arXiv preprint [arXiv:2210.07229][memit] (2022). |
|
|
|
``` |
|
@misc{meng2022massediting, |
|
doi = {10.48550/arXiv.2210.07229}, |
|
title={Mass-Editing Memory in a Transformer}, |
|
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau}, |
|
year={2022}, |
|
eprint={2210.07229}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |