dataset_info:
- config_name: Autonomous Driving
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 134659773
num_examples: 100
- name: test_closed
num_bytes: 67549223
num_examples: 150
download_size: 270416985
dataset_size: 202208996
- config_name: Domestic Robot
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 91702060
num_examples: 100
- name: test_closed
num_bytes: 177827577
num_examples: 200
download_size: 105390299
dataset_size: 269529637
- config_name: Open-World Game
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 16139511
num_examples: 117
- name: test_closed
num_bytes: 19069366
num_examples: 141
download_size: 34988721
dataset_size: 35208877
configs:
- config_name: Autonomous Driving
data_files:
- split: test_open
path: Autonomous Driving/test_open-*
- split: test_closed
path: Autonomous Driving/test_closed-*
- config_name: Domestic Robot
data_files:
- split: test_open
path: Domestic Robot/test_open-*
- split: test_closed
path: Domestic Robot/test_closed-*
- config_name: Open-World Game
data_files:
- split: test_open
path: Open-World Game/test_open-*
- split: test_closed
path: Open-World Game/test_closed-*
license: apache-2.0
task_categories:
- multiple-choice
- visual-question-answering
language:
- en
pretty_name: PCA-Bench
PCA-Bench
PCA-Bench is an innovative benchmark for evaluating and locating errors in Multimodal LLMs when conducting embodied decision making tasks, specifically focusing on perception, cognition, and action.
Release
- [2024.02.15] PCA-Bench-V1 is released. We release the open and closed track data in huggingface. We also set an online leaderboard accepting users' submission.
- [2023.12.15] PCA-EVAL is accepted to Foundation Model for Decision Making Workshop @NeurIPS 2023. PCA-Evaluation tool is released in github.
Leaderboard
Submit Results
📢 For close track evaluaiton and PCA-Evaluation, please follow this file to organize your model output. Submit Six JSON files from different domains and different tracks, along with your model name and organization to us via email. Ensure you use the dataset's provided prompt as the default input for fair comparison.
We will send the PCA-Eval results of your model to you and update the leaderboard.
We provide sample code to get the six json files. User only needs to add your model inference code:
# Sample code for PCA-Eval
from datasets import load_dataset
from tqdm import tqdm
import json
import os
def YOUR_INFERENCE_CODE(prompt,image):
"""Simple single round multimodal conversation call.
"""
response = YOUR_MODEL.inference(prompt,image)
return response
output_path = "./Results-DIR-PATH/"
os.mkdir(output_path)
dataset_ad = load_dataset("PCA-Bench/PCA-Bench-V1","Autonomous Driving")
dataset_dr = load_dataset("PCA-Bench/PCA-Bench-V1","Domestic Robot")
dataset_og = load_dataset("PCA-Bench/PCA-Bench-V1","Open-World Game")
test_dataset_dict = {"Autonomous-Driving":dataset_ad,"Domestic-Robot":dataset_dr,"Open-World-Game":dataset_og}
test_split = ["test_closed","test_open"]
test_domain = list(test_dataset_dict.keys())
for domain in test_domain:
for split in test_split:
print("testing on %s:%s"%(domain,split))
prediction_results = []
output_filename = output_path+"%s-%s.json"%(domain,split)
prompts = test_dataset_dict[domain][split]['question_prompt']
images = test_dataset_dict[domain][split]['image']
for prompt_id in tqdm(range(len(prompts))):
user_inputs = prompts[prompt_id] # do not change the prompts for fair comparison
index = prompt_id
image = images[prompt_id]
outputs = YOUR_INFERENCE_CODE(user_inputs,image)
prediction_results.append({
'prompt': user_inputs,
'model_output': outputs,
'index': index,
})
with open(output_filename, 'w') as f:
json.dump(prediction_results, f, indent=4)
# submit the 6 json files in the output_path to our email
You could also simply compute the multiple-choice accuracy locally as a comparison metric in your own experiments. However, in the online leaderboard, we only consider the average action score and Genuine PCA score when ranking models.
For more information, refer to the offical github repo