Datasets:
Upload 2 files
Browse files- token_counter.py +43 -0
- token_filter.py +24 -0
token_counter.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import tiktoken
|
3 |
+
|
4 |
+
# Load the JSON data from your file
|
5 |
+
with open('your_json_file_here.json', 'r') as json_file:
|
6 |
+
data = json.load(json_file)
|
7 |
+
|
8 |
+
# Initialize a list to store token lengths
|
9 |
+
token_lengths = []
|
10 |
+
|
11 |
+
# Iterate through items in the JSON file
|
12 |
+
for item in data:
|
13 |
+
if 'conversations' in item:
|
14 |
+
all_content = ""
|
15 |
+
for conversation in item['conversations']:
|
16 |
+
if 'message' in conversation:
|
17 |
+
all_content += conversation['message']
|
18 |
+
|
19 |
+
# Calculate token length for all content
|
20 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
21 |
+
num_tokens = len(encoding.encode(all_content))
|
22 |
+
|
23 |
+
# Add token length as a property to the item
|
24 |
+
item['token_length'] = num_tokens
|
25 |
+
token_lengths.append(num_tokens)
|
26 |
+
|
27 |
+
# Calculate the average token length for each item
|
28 |
+
for i, item in enumerate(data):
|
29 |
+
num_contents = len(item.get('conversations', []))
|
30 |
+
if num_contents > 0:
|
31 |
+
item['average_token_length'] = item['token_length'] / num_contents
|
32 |
+
|
33 |
+
# Save the updated data with average token lengths to a new JSON file
|
34 |
+
with open('json_file_w_token_counts.json', 'w') as updated_json_file:
|
35 |
+
json.dump(data, updated_json_file, indent=4)
|
36 |
+
|
37 |
+
# Optionally, you can print the average token length for each item
|
38 |
+
for i, item in enumerate(data):
|
39 |
+
print(f"Item {i + 1} - Average Token Length: {item.get('average_token_length')}")
|
40 |
+
|
41 |
+
# Optionally, you can print the total average token length for all items
|
42 |
+
total_average_token_length = sum(item.get('average_token_length', 0) for item in data) / len(data)
|
43 |
+
print(f"Total Average Token Length for all items: {total_average_token_length}")
|
token_filter.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
# Load the JSON data from your file
|
4 |
+
with open('your_json_file_here.json', 'r') as json_file:
|
5 |
+
data = json.load(json_file)
|
6 |
+
|
7 |
+
# Define the minimum values for filtering
|
8 |
+
minimum_average_token_length = 125 # Set your desired minimum average token length
|
9 |
+
minimum_conversations_length = 10 # Set your desired minimum length of the 'conversations' array
|
10 |
+
|
11 |
+
# Filter the items that meet the minimum criteria
|
12 |
+
filtered_items = [
|
13 |
+
item for item in data
|
14 |
+
if item.get('average_token_length', 0) >= minimum_average_token_length
|
15 |
+
and len(item.get('conversations', [])) >= minimum_conversations_length
|
16 |
+
]
|
17 |
+
|
18 |
+
# Save the filtered items to a new JSON file
|
19 |
+
with open('filtered_json_file.json', 'w') as filtered_json_file:
|
20 |
+
json.dump(filtered_items, filtered_json_file, indent=4)
|
21 |
+
|
22 |
+
# Optionally, you can print the filtered items
|
23 |
+
for i, item in enumerate(filtered_items):
|
24 |
+
print(f"Filtered Item {i + 1} - Average Token Length: {item.get('average_token_length')}, Conversations Length: {len(item.get('conversations', []))}")
|