|
import argparse |
|
import re |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Optional, Union |
|
|
|
import nltk |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
def split_into_chunks(text, tokenizer, max_tokens=128): |
|
|
|
sentences = nltk.sent_tokenize(text) |
|
|
|
|
|
chunks = [] |
|
current_chunk = [] |
|
tokens_count = 0 |
|
|
|
for sentence in sentences: |
|
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False) |
|
sentence_token_count = len(sentence_tokens) |
|
|
|
if tokens_count + sentence_token_count > max_tokens: |
|
|
|
if current_chunk: |
|
chunk_text = tokenizer.decode(current_chunk) |
|
chunks.append(chunk_text) |
|
current_chunk = [] |
|
tokens_count = 0 |
|
|
|
|
|
current_chunk.extend(sentence_tokens) |
|
tokens_count += sentence_token_count |
|
|
|
|
|
if current_chunk: |
|
chunk_text = tokenizer.decode(current_chunk) |
|
chunks.append(chunk_text) |
|
|
|
return chunks |
|
|
|
|
|
def to_lang_code(texts, lang_code, model, tokenizer, max_tokens=128, sentence_joiner=" "): |
|
is_string = isinstance(texts, str) |
|
if is_string: |
|
texts = [texts] |
|
batch_size = len(texts) |
|
to_translate = [] |
|
lengths = [] |
|
for text in texts: |
|
|
|
chunks = split_into_chunks(text, tokenizer=tokenizer, max_tokens=max_tokens) |
|
lengths.append(len(chunks)) |
|
to_translate += chunks |
|
translated_texts = [] |
|
|
|
to_translate_batches = [to_translate[i:i + batch_size] for i in range(0, len(to_translate), batch_size)] |
|
for to_translate_batch in to_translate_batches: |
|
inputs = tokenizer(to_translate_batch, return_tensors="pt", padding=True, truncation=True).to(DEVICE) |
|
translated_tokens = model.generate( |
|
**inputs, |
|
forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], |
|
max_length=512, |
|
|
|
) |
|
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) |
|
translated_texts += translated_text |
|
|
|
outputs = [] |
|
start = 0 |
|
for length in lengths: |
|
outputs.append(sentence_joiner.join(translated_texts[start:start + length])) |
|
start += length |
|
return outputs[0] if is_string else outputs |
|
|
|
|
|
def main( |
|
dataset_name: str, |
|
dataset_columns: Union[list, tuple], |
|
model_name: Optional[str]="facebook/nllb-200-1.3B", |
|
model_revision: Optional[str]=None, |
|
dataset_splits: Union[list, tuple]=("train", "validation", "test"), |
|
dataset_config: Optional[str]=None, |
|
dataset_revision: Optional[str]=None, |
|
source_lang: Optional[str]="eng_Latn", |
|
target_langs: Optional[Union[list, tuple]]=("nob_Latn", "nno_Latn"), |
|
sentence_joiner: Optional[str]=" ", |
|
max_tokens_per_chunk: Optional[int]=128, |
|
batch_size: Optional[int]=24, |
|
output_dir: Optional[Path]=Path("./"), |
|
) -> None: |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_auth_token=True, torch_dtype=torch.float32) |
|
model.to(DEVICE, torch.float32, True) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, revision=model_revision, use_auth_token=True, src_lang=source_lang, |
|
) |
|
|
|
for lang_code in target_langs: |
|
lang_code_short = re.split(r"[-_ /]", lang_code)[0] |
|
if dataset_config: |
|
output_path = output_dir / dataset_config / lang_code_short |
|
else: |
|
output_path = output_dir / lang_code_short |
|
for split in dataset_splits: |
|
ds = load_dataset(dataset_name, name=dataset_config, revision=dataset_revision, split=split) |
|
translate = partial( |
|
to_lang_code, |
|
lang_code=lang_code, |
|
model=model, |
|
tokenizer=tokenizer, |
|
sentence_joiner=sentence_joiner, |
|
max_tokens=max_tokens_per_chunk, |
|
) |
|
ds = ds.map( |
|
lambda batch: { |
|
column: translate(batch[column]) |
|
for column in dataset_columns |
|
}, |
|
batched=True, |
|
batch_size=batch_size, |
|
desc=f"Translating to {lang_code} ({split})", |
|
) |
|
ds.save_to_disk(output_path / split, max_shard_size="1GB") |
|
json_filename = f"{lang_code_short}_{split}.json.gz".lower() |
|
ds.to_pandas().to_json( |
|
output_path / json_filename, orient='records', lines=True |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Translate datasets using Facebook's NLLB models") |
|
parser.add_argument('dataset_name') |
|
parser.add_argument('dataset_columns', help="Comma separated column names to translate") |
|
parser.add_argument('--dataset_splits', default="train,validation,test", help="Comma separated splits to translate") |
|
parser.add_argument('--dataset_config') |
|
parser.add_argument('--dataset_revision') |
|
parser.add_argument('--model_name', default="facebook/nllb-200-1.3B") |
|
parser.add_argument('--model_revision') |
|
parser.add_argument('--source_lang', default="eng_Latn") |
|
parser.add_argument('--target_langs', default="nob_Latn,nno_Latn", help="Comma separated target languages to translate to") |
|
parser.add_argument('--sentence_joiner', default=" ", help="String to join sentences split for translation") |
|
parser.add_argument('--max_tokens_per_chunk', default=128, type=int, help="Max number of tokens for each chunk for translation") |
|
parser.add_argument('--batch_size', '-bs', default=24, type=int, help='Number of inputs per batch for prediction') |
|
parser.add_argument('--output_dir', '-o', default="./", type=str) |
|
args = parser.parse_args() |
|
main( |
|
dataset_name=args.dataset_name, |
|
dataset_columns=args.dataset_columns.split(","), |
|
dataset_splits=args.dataset_splits.split(","), |
|
dataset_config=args.dataset_config, |
|
dataset_revision=args.dataset_revision, |
|
model_name=args.model_name, |
|
model_revision=args.model_revision, |
|
source_lang=args.source_lang, |
|
target_langs=args.target_langs.split(","), |
|
sentence_joiner=args.sentence_joiner, |
|
max_tokens_per_chunk=args.max_tokens_per_chunk, |
|
batch_size=args.batch_size, |
|
output_dir=Path(args.output_dir), |
|
) |
|
|