Latest version of translator
Browse files- translator.py +24 -8
translator.py
CHANGED
@@ -46,7 +46,7 @@ def split_into_chunks(text, tokenizer, max_tokens=128):
|
|
46 |
return chunks
|
47 |
|
48 |
|
49 |
-
def to_lang_code(texts, lang_code, model, tokenizer, max_tokens=128):
|
50 |
is_string = isinstance(texts, str)
|
51 |
if is_string:
|
52 |
texts = [texts]
|
@@ -66,7 +66,7 @@ def to_lang_code(texts, lang_code, model, tokenizer, max_tokens=128):
|
|
66 |
translated_tokens = model.generate(
|
67 |
**inputs,
|
68 |
forced_bos_token_id=tokenizer.lang_code_to_id[lang_code],
|
69 |
-
max_new_tokens=512,
|
70 |
# max_length=int(len(inputs.tokens()) * 1.25) # 25% more tokens for the translation just in case
|
71 |
)
|
72 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
|
@@ -75,7 +75,7 @@ def to_lang_code(texts, lang_code, model, tokenizer, max_tokens=128):
|
|
75 |
outputs = []
|
76 |
start = 0
|
77 |
for length in lengths:
|
78 |
-
outputs.append(
|
79 |
start += length
|
80 |
return outputs[0] if is_string else outputs
|
81 |
|
@@ -90,6 +90,8 @@ def main(
|
|
90 |
dataset_revision: Optional[str]=None,
|
91 |
source_lang: Optional[str]="eng_Latn",
|
92 |
target_langs: Optional[Union[list, tuple]]=("nob_Latn", "nno_Latn"),
|
|
|
|
|
93 |
batch_size: Optional[int]=24,
|
94 |
output_dir: Optional[Path]=Path("./"),
|
95 |
) -> None:
|
@@ -101,9 +103,21 @@ def main(
|
|
101 |
)
|
102 |
|
103 |
for lang_code in target_langs:
|
|
|
|
|
|
|
|
|
|
|
104 |
for split in dataset_splits:
|
105 |
ds = load_dataset(dataset_name, name=dataset_config, revision=dataset_revision, split=split)
|
106 |
-
translate = partial(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
ds = ds.map(
|
108 |
lambda batch: {
|
109 |
column: translate(batch[column])
|
@@ -113,12 +127,10 @@ def main(
|
|
113 |
batch_size=batch_size,
|
114 |
desc=f"Translating to {lang_code} ({split})",
|
115 |
)
|
116 |
-
|
117 |
-
ds.save_to_disk(output_dir / lang_code_short / split, max_shard_size="1GB")
|
118 |
-
|
119 |
json_filename = f"{lang_code_short}_{split}.json.gz".lower()
|
120 |
ds.to_pandas().to_json(
|
121 |
-
|
122 |
)
|
123 |
|
124 |
|
@@ -134,6 +146,8 @@ if __name__ == "__main__":
|
|
134 |
parser.add_argument('--model_revision')
|
135 |
parser.add_argument('--source_lang', default="eng_Latn")
|
136 |
parser.add_argument('--target_langs', default="nob_Latn,nno_Latn", help="Comma separated target languages to translate to")
|
|
|
|
|
137 |
parser.add_argument('--batch_size', '-bs', default=24, type=int, help='Number of inputs per batch for prediction')
|
138 |
parser.add_argument('--output_dir', '-o', default="./", type=str)
|
139 |
args = parser.parse_args()
|
@@ -147,6 +161,8 @@ if __name__ == "__main__":
|
|
147 |
model_revision=args.model_revision,
|
148 |
source_lang=args.source_lang,
|
149 |
target_langs=args.target_langs.split(","),
|
|
|
|
|
150 |
batch_size=args.batch_size,
|
151 |
output_dir=Path(args.output_dir),
|
152 |
)
|
|
|
46 |
return chunks
|
47 |
|
48 |
|
49 |
+
def to_lang_code(texts, lang_code, model, tokenizer, max_tokens=128, sentence_joiner=" "):
|
50 |
is_string = isinstance(texts, str)
|
51 |
if is_string:
|
52 |
texts = [texts]
|
|
|
66 |
translated_tokens = model.generate(
|
67 |
**inputs,
|
68 |
forced_bos_token_id=tokenizer.lang_code_to_id[lang_code],
|
69 |
+
max_length=512, # max_new_tokens=512,
|
70 |
# max_length=int(len(inputs.tokens()) * 1.25) # 25% more tokens for the translation just in case
|
71 |
)
|
72 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
|
|
|
75 |
outputs = []
|
76 |
start = 0
|
77 |
for length in lengths:
|
78 |
+
outputs.append(sentence_joiner.join(translated_texts[start:start + length]))
|
79 |
start += length
|
80 |
return outputs[0] if is_string else outputs
|
81 |
|
|
|
90 |
dataset_revision: Optional[str]=None,
|
91 |
source_lang: Optional[str]="eng_Latn",
|
92 |
target_langs: Optional[Union[list, tuple]]=("nob_Latn", "nno_Latn"),
|
93 |
+
sentence_joiner: Optional[str]=" ",
|
94 |
+
max_tokens_per_chunk: Optional[int]=128,
|
95 |
batch_size: Optional[int]=24,
|
96 |
output_dir: Optional[Path]=Path("./"),
|
97 |
) -> None:
|
|
|
103 |
)
|
104 |
|
105 |
for lang_code in target_langs:
|
106 |
+
lang_code_short = re.split(r"[-_ /]", lang_code)[0]
|
107 |
+
if dataset_config:
|
108 |
+
output_path = output_dir / dataset_config / lang_code_short
|
109 |
+
else:
|
110 |
+
output_path = output_dir / lang_code_short
|
111 |
for split in dataset_splits:
|
112 |
ds = load_dataset(dataset_name, name=dataset_config, revision=dataset_revision, split=split)
|
113 |
+
translate = partial(
|
114 |
+
to_lang_code,
|
115 |
+
lang_code=lang_code,
|
116 |
+
model=model,
|
117 |
+
tokenizer=tokenizer,
|
118 |
+
sentence_joiner=sentence_joiner,
|
119 |
+
max_tokens=max_tokens_per_chunk,
|
120 |
+
)
|
121 |
ds = ds.map(
|
122 |
lambda batch: {
|
123 |
column: translate(batch[column])
|
|
|
127 |
batch_size=batch_size,
|
128 |
desc=f"Translating to {lang_code} ({split})",
|
129 |
)
|
130 |
+
ds.save_to_disk(output_path / split, max_shard_size="1GB")
|
|
|
|
|
131 |
json_filename = f"{lang_code_short}_{split}.json.gz".lower()
|
132 |
ds.to_pandas().to_json(
|
133 |
+
output_path / json_filename, orient='records', lines=True
|
134 |
)
|
135 |
|
136 |
|
|
|
146 |
parser.add_argument('--model_revision')
|
147 |
parser.add_argument('--source_lang', default="eng_Latn")
|
148 |
parser.add_argument('--target_langs', default="nob_Latn,nno_Latn", help="Comma separated target languages to translate to")
|
149 |
+
parser.add_argument('--sentence_joiner', default=" ", help="String to join sentences split for translation")
|
150 |
+
parser.add_argument('--max_tokens_per_chunk', default=128, type=int, help="Max number of tokens for each chunk for translation")
|
151 |
parser.add_argument('--batch_size', '-bs', default=24, type=int, help='Number of inputs per batch for prediction')
|
152 |
parser.add_argument('--output_dir', '-o', default="./", type=str)
|
153 |
args = parser.parse_args()
|
|
|
161 |
model_revision=args.model_revision,
|
162 |
source_lang=args.source_lang,
|
163 |
target_langs=args.target_langs.split(","),
|
164 |
+
sentence_joiner=args.sentence_joiner,
|
165 |
+
max_tokens_per_chunk=args.max_tokens_per_chunk,
|
166 |
batch_size=args.batch_size,
|
167 |
output_dir=Path(args.output_dir),
|
168 |
)
|